ATTACHMENT J

PRE-CONSTRUCTION ROAD

Powell Creek Solar Project Putnam County, Ohio

AET Report No. P-00025335A

Date: September 7, 2023

Prepared for:

Westwood Professional Services, Inc. 12701 Whitewater Drive, Suite 300 Minnetonka, MN 55343

Geotechnical

Materials
Forensic

Environmental
Building
Technology
Petrography/Chemistry

American Engineering Testing 550 Cleveland Avenue North St. Paul, MN 55114-1804 TeamAET.com • 800.792.6364 September 7, 2023

Westwood Professional Services, Inc. 12701 Whitewater Drive, Suite 300 Minnetonka, MN 55343

Attn: Mr. Aditya Chivukula Venkata

RE: Report of Pre-construction Road Evaluation Powell Creek Solar Project Putnam County, Ohio AET Report No. P-0025335A

Dear Mr. Venkata:

This report presents the results of the pavement testing and analysis project that AET performed on the proposed haul road for the pre-construction phase of the Powell Creek Solar Project in Putnam County, Ohio.

Sincerely, **American Engineering Testing, Inc.**

Michiel An-

Michael R. Anderson Senior Project Manager, Pavement Division E-mail: manderson@teamaet.com Phone: (651) 523-1275

SIGNATURE PAGE

Prepared for

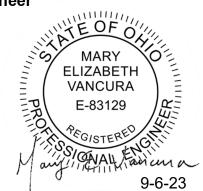
Westwood Professional Services, Inc. 12701 Whitewater Drive, Suite 300 Minnetonka, MN 55343

Attn: Mr. Aditya Chivukula Venkata

Prepared by

American Engineering Testing, Inc. 550 Cleveland Avenue North St. Paul, MN 55114 (651) 659-9001

Report Authored by:


Techol)

Michael R. Anderson Senior Project Manager

Report Reviewed by:

Many E Vancina

Mary E. Vancura, PhD, PE Principal Engineer

Copyright $\ensuremath{\mathbb{C}}$ 2023 American Engineering Testing, Inc. All Rights Reserved

Unauthorized use or copying of this document is prohibited by anyone other than the client for the specific project.

TABLE OF CONTENTS

		Pa	_
1.0	INT	RODUCTION 1	ļ
2.0	SC	OPE OF SERVICES 1	I
3.0	PR	OJECT INFORMATION 1	I
3	3.1	Project location and road1	I
3	3.2	Traffic on the Project road2)
3	3.3	Anticipated traffic due to construction2)
4.0	SU	BSURFACE EXPLORATION, ROAD TESTING, AND RESULTS)
4	l.1	Subsurface conditions	}
4	1.2	Surface course thickness (ground penetrating radar)4	ł
4	1.3	Pavement strength (falling weight deflectometer)5	;
4	l.4	Road condition5	;
4	1.5	Summary results of testing and road condition rating6	;
5.0	EV	ALUATION OF ROAD CONDITION6	5
5	5.1	Summary evaluation6	5
5	5.2	Structural properties of road subgrade7	,
5	5.3	Structural properties of road surface layers7	,
5	5.4	Suitability of the road as a haul route7	,
6.0	TE	ST STANDARDS	,
7.0	LIN	11TATIONS	3

FIGURES AND TABLES

g

1.0 INTRODUCTION

Powell Creek Solar, LLC (PCS), a subsidiary of Avangrid Renewables, LLC ("Avangrid"), is evaluating public roads for potential use as haul routes for the construction of the Powell Creek Solar Project ("Project") in Putnam County, Ohio. To aid in the evaluation, PCS has retained Westwood Professional Services, Inc, (WPS) and American Engineering Testing, Inc., (AET) to evaluate the proposed haul routes. AET was authorized to perform a geotechnical exploration and nondestructive pavement testing at the site and evaluate the suitability of the Project road as a construction haul route in Westwood Work Order No. PWO-0001 – Project Number: R0026093.01, dated 8/9/2023 (WO). This report (AET P-0025335A) describes our surface and structural condition evaluation of the Project road.

2.0 SCOPE OF SERVICES

The authorized scope consists of the following services, which were outlined in the Westwood WO:

- Pavement coring and hand auger soil sampling (referred to as "soil borings") along the Project road to a depth of approximately 1 foot
- Falling weight deflectometer (FWD) testing of the Project road
- Ground penetrating radar (GPR) testing on the Project road
- Digital video logging (DVL) of the Project road using a digital video camera
- Engineering evaluation of the Project road using DVL, GPR, FWD, and soil boring data to (a) assess ability of the road to sustain solar farm construction loads and (b) identify pre-construction road sections that are susceptible to severe damage
- Production of a report summarizing evaluations of the Project road

These services are exclusively intended to evaluate the Project road. The scope is not intended to explore for the presence or extent of environmental contamination in the soil or groundwater. Specific details on the analysis performed are described in the sections below and in appendices to this report.

3.0 PROJECT INFORMATION

3.1 Project location and road

The Project is located within approximately 1,350 acres of privately-owned land southeast of Miller City in Putnam County, Ohio (Figure 1). The project area is situated east of State Route SR 108, north of SR 15, south of County Highway CH E, and west of CH G.

3.2 Traffic on the Project road

The primary transportation arteries through the Project area in Putnam County include SRs and CRs. The following items describe the most current traffic data for the Project road and surrounding roads according to information from the Ohio Department of Transportation (ODOT)¹.

- The 2023 annual average daily traffic (AADT) for SR roads within the Project ranged from 1,269 to 3,029 vehicles with a business/commercial annual average daily traffic (BCADT) volume ranging from 137 to 302 trucks, or 10% to 13%.
- AADT and BCADT traffic records were not available for the CR within the Project. Therefore, we have used an AADT of 126 vehicles and 11% truck traffic for this road within the Project.

For Project road sections where published traffic and truck volumes are not available, we use the minimum design ESALs for CRs, when available, to back-calculate traffic volumes and truck percentages. In cases where minimum design ESALs are not available, we use common minimum daily ESALs to establish traffic volumes and truck percentages.

3.3 Anticipated traffic due to construction

We understand the Project will require public roads to deliver supplies and materials to the work sites during construction. Information related to construction hauling – including but not being limited to transportation plans and estimated truck traffic – does not materially affect our engineering evaluation of the road sections. Construction traffic, loads, and their impact on the Project road will be evaluated in AET Report No. P-0025335B.

4.0 SUBSURFACE EXPLORATION, ROAD TESTING, AND RESULTS

To facilitate testing, condition rating, and analysis, AET divided the Project road (totaling approximately 3.5 centerline miles) into 7 sections according to road type, road condition, and existing traffic. Tests and test results on the Project road are described in the subsections below and summarized in the appended Table 1. One road type was encountered at the Project, a road surfaced with a bituminous wearing course, or "bituminous pavement" (BP).

Our classification follows basic pavement engineering principles to help us organize field/lab activities, analysis, and evaluation. This general classification is not intended to conflict with or replace state agency road classifications, which rely on as-built information, road histories, agency material classifications, and other matters whose review are beyond the scope

¹ Ohio Department of Transportation (2023). Traffic Monitoring Management System - TMMS. Ohio Department of Transportation, Columbus, OH, Available from <u>https://odot.public.ms2soft.com/tcds/tsearch.asp?loc=odot</u>

described in Section 2.

4.1 Subsurface conditions

A total of 6 pavement cores and soil borings were performed along 3.5 centerline miles of Project road selected by WPS. A seventh boring was planned and attempted. However, our core equipment malfunctioned as we encountered pavement coring refusal, and the core and soil boring could not be performed. The number of and location of soil borings and pavement cores were selected by AET. The final locations were recorded with GPS equipment to submeter accuracy. AET contacted Ohio One-Call to avoid public underground utilities at the subsurface test locations.

Subsurface explorations at the Project took place on 8/8/2023, using hand auger sampling to depths of approximately 1 foot. The pavement cores were obtained with a diamond bit coring machine. After samples were obtained, the boreholes were backfilled with granular materials and surfaced with a cold patch asphalt to match the existing road profile. Collected samples were reviewed in our laboratory to evaluate surfacing material, soil layering, and classification. Detailed results of subsurface testing are provided in Appendix A, which includes descriptions of our geotechnical drilling procedure and boring logs. Detailed results of pavement cores and core photographs. These results are summarized below by road type and structural layer.

<u>Bituminous pavement</u>. The road sections had an intact paved surface thickness of $2^{3}/_{4}$ to $7^{1}/_{2}$ inches, where the intact surface was composed of asphalt pavement. As noted previously, we were not able to determine pavement surfacing thickness at one (1) planned location (C-07) because of coring refusal, and we relied on later GPR analysis to determine the pavement thickness at this location. At two locations, we observed deteriorated pavement below the intact surfacing that ranged from 1 to 2 inches in thickness. Deterioration may be due to stripping, base erosion, and/or delamination in previously placed pavement layers. In two of the pavement cores, we observed medium to high severity stripping and the cores broke into several pieces.

Layers directly supporting paved surfaces. Underlying the intact pavement surfacing and the underlying deteriorated pavement materials, we saw what we consider granular base materials. These supporting base layers were observed to have a minimum thickness ranging from 4¹/₂ to 9¹/₂ inches. The soil borings did not penetrate the entire depth of the base material at all locations and actual base thicknesses could not be determined. We relied on GPR analysis to determine approximate base thicknesses for the Project road. All granular base materials were classified as either A-1-b, A-1-a, or A-2-4 according to the Association of State

Highway and Transportation Officials (AASHTO) soil classifications. Later structural analysis incorporated deteriorated pavement, where present, into a composite base layer with underlying aggregate materials. The following items describe base materials according to AASHTO soil classifications.

Laboratory tests were performed on three granular base samples. Moisture content tests yielded 5% to 8% moisture. Fines content tests (to quantify material passing the No. 200 sieve) showed 12% to 27% fines.

<u>Subgrade soils</u>. Native subgrade soils were not encountered in the soil borings due to the shallow depth of sampling. However, we reviewed soil data from the USDA Natural Resource Conservation Service's SSURGO (Soil Survey Geographic Database) which indicated that the primary soils in the upper subgrade zone on the Project road consist of lean and fat clays meeting the AASHTO A-6 and A-7 (plastic) soil categories. SSURGO also indicated some low and high plasticity silts along the Project road to a lesser extent (<10%).

4.2 Surface course thickness (ground penetrating radar)

The road layer thickness testing program uses a high-speed (air coupled) GPR antenna to collect pavement data later analyzed to evaluate layer thicknesses. AET performed GPR testing on approximately 7.0 lane miles of the Project road on 8/8/2023 using a 2 GHz antenna, which allows material layer measurements at depths of up to 18 inches with a resolution of approximately one-half inch. Our analysis of collected GPR data (summarized by road section in Table 1) includes statistical analysis to determine the 15th-percentile values for each section. Engineers often use the 15th percentile value – instead of an average or mean (the 50th percentile value) – as a structural "safety factor" to represent layer thickness for pavement design purposes, which is reported below.

- The thickness of intact pavement on the BP sections ranged from 2.7 to 6.5 inches.
- The thickness of deteriorated pavement and/or base material supporting the BP sections ranged from 3.6 to 6.4 inches.
- For one section (S06), where a soil boring was not successful, we chose what we observed to be the bottom of asphalt pavement materials. However, we judge (based on the condition of pavement cores along other sections of the road and later FWD analysis), that the surfacing thickness along this section includes deteriorated pavements that are weaker than intact pavements. Because of the similarity between materials and the lack of ground truth, the intact pavement could not be distinguished from the deteriorated pavements.

Assessing layer thicknesses is a matter of engineering judgement. The distinction between

layers in the road is not always explicit. Factors influencing definition of radar scans include ambient electromagnetic interference, the presence of moisture, the presence of voids, and the similarity of material layer type between layers. More specific detail, including statistical analysis of GPR data describing average thickness and variability by section, is provided in Appendix C.

4.3 Pavement strength (falling weight deflectometer)

Deflection testing was performed on 3.5 centerline miles of the Project road on 8/8/2023, using a Dynatest 8002 falling weight deflectometer (FWD). FWD test locations are shown in Figure 1 (individual locations were performed at about 0.1 mile spacing). Collected FWD data – along with information about the pavement layer thicknesses (from Project boring logs and GPR analysis), materials (from Project boring logs), and ambient test conditions – are used to estimate the elastic stiffness of pavement layers using back-calculation analysis according to the American Association of State Highway and Transportation Officials (AASHTO). This analysis also accounts for allowable axle loads for a roadway (AASHTO Guide for Design of Pavement Structures, 1993).

Our back-calculation results were used to estimate the effective subgrade resilient modulus (MR), the AASHTO structural number (SN), and structural capacity of all Project road sections. As with GPR-based thickness analysis results, the results of back-calculation analysis of collected Project FWD data are summarized below (and in Table 1) using 15th-percentile values.

- The subgrade MR for all sections ranged from 4.1 to 5.0 ksi.
- The SN value for all sections ranged from 1.0 to 2.8 inches.
- The axle load capacity rating of all sections ranged from 4.4 to 10+ tons/axle.

More details of the FWD testing and analysis procedures, including field test data, are provided in Appendix D.

4.4 Road condition

High-resolution DVL data was collected on 8/8/2023 for 3.5 centerline miles of road in the Project. An AET pavement engineer used DVL data to rate the road in general accordance with ASTM D6433. This procedure results in a pavement condition index (PCI) that describes road condition on a scale of 0 to 100, where the index corresponds to qualitative descriptions of pavement condition: "Good" 70-100; "Fair" 55-69; "Poor" 40-54; "Very Poor" 25-39; "Serious" 10-24; and "Failed" 0-9.

• The BP sections had an average PCI rating of 79 ("Good") except for three sections

(S01A, S03, and S04) with an average PCI rating of 28 ("Very Poor").

- The predominant distresses encountered on BP sections with an average rating as "Good" were longitudinal/transverse cracking and weathering.
- The predominant distresses encountered on BP sections with an average rating as "Very Poor" were longitudinal/transverse cracking, edge cracking, alligator cracking, patching, and low to medium severity weathering.
- The paved road width varies from approximately 14 feet to 16 feet, with approximately 2-to-4-foot gravel shoulders, which may not accommodate two-way truck traffic. The edges of the pavement and gravel shouldering show edge cracking and deterioration. If two-way hauling is planned, it could lead to further distress and damage to the edge of pavement and gravel shouldering.

Table 1 indicates the condition rating for the evaluated sections. More detail on the surface condition rating by road section is provided in Appendix E.

4.5 Summary results of testing and road condition rating

As noted above, all road test and survey results, including summary analysis of test data, are reported in the attached Table 1 for 7 BP sections.

5.0 EVALUATION OF ROAD CONDITION

5.1 Summary evaluation

We evaluated the performance of the road as haul routes given our geotechnical exploration and engineering review of collected data, as summarized in Table 1. The items below and Appendix F provide essential information of risk management and proper use of this evaluation.

- Our evaluation of the load capacity is based on analytical procedures and calculations described in the AASHTO *Guide for Design of Pavement Structures* (1993). In addition, we rely on engineering judgement to evaluate the performance of the Project road and structural improvements to serve as functional haul routes for Project construction.
- Information regarding risk management and proper use of this evaluation is given in Appendix F, "Geotechnical Report Limitations and Guidelines for Use."
- Should changes to the Project layout and use of the road be considered, please notify AET so that we can review the changes and determine if revisions to the evaluation report are necessary.

Based on engineering analysis of the collected survey and test data and the special items noted above, our evaluation has determined that a combination of surface and structural

improvements will be required for some of the Project road sections to serve as functional haul routes for Project construction. The separate AET Report No. P-0025335B considers recommended road improvements for the project, where applicable.

5.2 Structural properties of road subgrade

The predominant subgrade type for the selected road is presumed to be lean to fat clays (A-6 or A-7) based on our review of SSURGO. Our FWD back-calculation analysis of the structural properties of the subgrade found that subgrade soils under the Project road had an average 15th-percentile MR value of 4.5 ksi. In our experience, subgrade MR values less than 4 ksi risk subgrade support issues during truck hauling. Therefore, our field evaluation and analysis found that the subgrade along the Project road is adequate.

5.3 Structural properties of road surface layers

We expect that the structural load bearing capacity of the road surfacing will vary with changes in subgrade support and surfacing thickness. Other variations may occur due to pavement conditions.

- The BP sections have a 15th-percentile SN of 1.6 inches, with minimum and maximum SN of 1.0 and 2.8 inches, respectively. A typical SN for low-volume roads ranges from 2 to 4 inches.
- The BP sections in the Project have a 15th-percentile axle load capacity of 5.3 tons per axle except for 2 sections with an axle load capacity of 9.0 and 10+ tons/axle. The axle load rating accounts for the structural capacity of both pavement and subgrade support.

5.4 Suitability of the road as a haul route

We judge that some of the selected road sections with thin surfacing, "Very Poor" or worse surface condition, low load bearing capacity, and narrow width will require improvements to serve as haul routes for Project construction. Our judgment considers (a) the condition and estimated structural capacity for the tested, evaluated road and (b) basic expectations of the levels of haul traffic associated with solar project construction. AET Report No. P-0025335B describes recommended structural improvements (where appropriate) to address predicted haul traffic from plans provided by WPS.

6.0 TEST STANDARDS

When we refer to a test standard (e.g., ASTM, AASHTO) in this report, we mean that our services were performed in general accordance with that standard. Compliance with any other standards referenced within the specified standard is neither inferred nor implied.

7.0 LIMITATIONS

Within the limitations of scope, budget, and schedule, we have endeavored to provide our services according to accepted geotechnical engineering practices at the present time and this location. Other than this, no warranty, express or implied, is intended. Essential information regarding risk management and proper use of this report is given in Appendix F, "Geotechnical Report Limitations and Guidelines for Use."

Figures and Tables

Figure 1 – Testing Locations

Figure 2 – Surface Condition

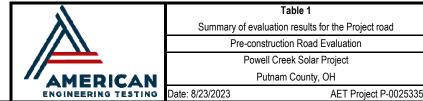
Figure 3 – Surface Thickness

Figure 4 – Axle Load Capacity

Table 1 – Summary of evaluation results for the Project road

File: P-0025335A - 1.mxd Date: 09/07/2023

File: P-0025335A - 2.mxd Date: 08/24/2023


File: P-0025335A - 3.mxd Date: 08/24/2023

File: P-0025335A - 4.mxd Date: 08/24/2023

Section ID	Road	From	То	Length (mi)	Туре	PCI	Surface Thickness (in)^	Base Thickness (in)^	Subgrade MR (ksi)^	Structural Number (in)^	Axle Load Capacity (ton/axle)^
S01A	CR 13	SH 15	0.26 Mi S of CR G-12	0.7	BP	26	2.7	5.1	5.0	1.1	6.5
S01B	CR 13	0.26 Mi S of CR G-12	CR G-12	0.3	BP	92	6.5	6.4	4.2	2.5	9.0
S02	CR 13	CR G-12	CR G	0.5	BP	93	6.4	5.8	4.6	2.8	10+
S03	CR 13	CR G	CR F-12	0.7	BP	22	3.7	4.5	4.5	1.1	4.5
S04	CR 13	CR F-12	SH 613	0.3	BP	37	4.7	3.6	4.1	1.0	5.4
S05	CR 13	CTH 613	RR X-ing	0.6	BP	66	3.3	4.8	5.0	1.1	5.7
S06	CR 13	RR X-ing	CTH E	0.4	BP	66	5.5	4.8	4.1	1.3	4.4

^15th Percentile Values

Appendix A

Geotechnical Field Exploration and Testing Boring Log Notes AASHTO Soil Classification System Unified Soil Classification System Pavement Core Photographs Subsurface Boring Logs Summary of Laboratory Results AASHTO Gradation Curves

Appendix A Geotechnical Field Exploration and Testing AET Report No. P-0025335A

A.1 FIELD EXPLORATION

The subsurface conditions at the site were explored by drilling and sampling six (6) pavement cores and hand auger borings on the paved county roads. The locations of the borings appear on Figure 1, preceding the Subsurface Boring Logs in this appendix.

A.2 SAMPLING METHODS

A.2.1 Direct Push Samples (DP)

Sample types described as "DP" on the boring logs are continuous core samples collected by the direct push method. The method consists of a 2.125 inch OD outer casing with an inner 1.5-inch ID plastic tube driven continuously into the ground.

A.2.2 Hand Auger Sampling (HA)

Sample types described as "HA" on the boring logs are continuous core samples collected by the hand auger method, typically through a core hole or along the shoulder of the roadway. The method consists of a 3.25 inch OD hand auger tool that is manually twisted continuously into the ground to the desired depth or refusal.

A.2.3 Sampling Limitations

Unless observed in a sample, contacts between soil layers are estimated based on the spacing of samples and the action of drilling tools. Cobbles, boulders, and other large objects generally cannot be recovered from test borings, and they may be present in the ground even if they are not noted on the boring logs.

Determining the thickness of "topsoil" layers is usually limited, due to variations in topsoil definition, sample recovery, and other factors. Visual-manual description often relies on color for determination, and transitioning changes can account for significant variation in thickness judgment. Accordingly, the topsoil thickness presented on the logs should not be the sole basis for calculating topsoil stripping depths and volumes. If more accurate information is needed relating to thickness and topsoil quality definition, alternate methods of sample retrieval and testing should be employed.

A.3 CLASSIFICATION METHODS

Soil descriptions shown on the boring logs are based on the Unified Soil Classification (USC) system. The USC system is described in ASTM: D2487 and D2488. Where laboratory classification tests (sieve analysis or Atterberg Limits) have been performed, accurate classifications per ASTM: D2487 are possible. Otherwise, soil descriptions shown on the boring logs are visual-manual judgments. Charts are attached which provide information on the USC system, the descriptive terminology, and the symbols used on the boring logs.

Visual-manual judgment of the AASHTO Soil Group is also noted as a part of the soil description. A chart presenting details of the AASHTO Soil Classification System is also attached.

The boring logs include descriptions of apparent geology. The geologic depositional origin of each soil layer is interpreted primarily by observation of the soil samples, which can be limited. Observations of the surrounding topography, vegetation, and development can sometimes aid this judgment.

A.4 WATER LEVEL MEASUREMENTS

The ground water level measurements are shown at the bottom of the boring logs. The following information appears under "Water Level Measurements" on the logs:

- Date and Time of measurement
- Sampled Depth: lowest depth of soil sampling at the time of measurement
- Casing Depth: depth to bottom of casing or hollow-stem auger at time of measurement
- Cave-in Depth: depth at which measuring tape stops in the borehole
- Water Level: depth in the borehole where free water is encountered
- Drilling Fluid Level: same as Water Level, except that the liquid in the borehole is drilling fluid

The true location of the water table at the boring locations may be different than the water levels measured in the boreholes. This is possible because there are several factors that can affect the water level measurements in the borehole. Some of these factors include: permeability of each soil layer in profile, presence of perched water, amount of time between water level readings, presence of drilling fluid weather conditions, and use of borehole casing

Appendix A Geotechnical Field Exploration and Testing AET Report No. P-0025335A

A.5 LABORATORY TEST METHODS

A.5.1 Water Content Tests

Conducted per AET Procedure 01-LAB-010, which is performed in general accordance with ASTM: D2216 and AASHTO: T265.

A.5.2 Atterberg Limits Tests

Conducted per AET Procedure 01-LAB-030, which is performed in general accordance with ASTM: D4318 and AASHTO: T89, T90.

A.5.3 Sieve Analysis of Soils (thru #200 Sieves)

Conducted per AET Procedure 01-LAB-040, which is performed in general conformance with ASTM: D6913, Method A.

A.6 TEST STANDARD LIMITATIONS

Field and laboratory testing is done in general conformance with the described procedures. Compliance with any other standards referenced within the specified standard is neither inferred nor implied.

A.7 SAMPLE STORAGE

Unless notified to do otherwise, we routinely retain representative samples of the soils recovered from the borings for a period of 30 days.

BORING LOG NOTES

DRILLING AND SAMPLING SYMBOLS

B,H,N:	Size of fluch joint cosing	<i>с</i>
CA:	Size of flush-joint casing Crew Assistant (initials)	
CAS:	Pipe casing, number indicates nominal diameter in	I
CAS.	inches	E
CC:	Crew Chief (initials)	H
COT:	Clean-out tube	L
DC:	Drive casing; number indicates diameter in inches	L
DC: DM:	Drilling mud or bentonite slurry	0
DR:	Driller (initials)	P
DS:	Disturbed sample from auger flights	1
FA:	Flight auger; number indicates outside diameter in	F
	inches	q
HA:	Hand auger; number indicates outside diameter	q
HSA:	Hollow stem auger; number indicates inside diameter	q
	in inches	F
LG:	Field logger (initials)	F
MC:	Column used to describe moisture condition of	
	samples and for the ground water level symbols	
N (BPF):	Standard penetration resistance (N-value) in blows per	S
	foot (see notes)	T
NQ:	NQ wireline core barrel	١
PQ:	PQ wireline core barrel	١
RD:	Rotary drilling with fluid and roller or drag bit	V
REC:	In split-spoon (see notes) and thin-walled tube	9
	sampling, the recovered length (in inches) of sample.	
	In rock coring, the length of core recovered	-
	(expressed as percent of the total core run). Zero	_
DEV	indicates no sample recovered.	ſ
REV:	Revert drilling fluid	a
SS:	Standard split-spoon sampler (steel; 13/8" is inside	i
	diameter; 2" outside diameter); unless indicated	d
SU	otherwise	p
TW:	Spin-up sample from hollow stem auger	i
1 W.	Thin-walled tube; number indicates inside diameter in inches	F
WASH:	Sample of material obtained by screening returning	n
WASH.	rotary drilling fluid or by which has collected inside	1
	the borehole after "falling" through drilling fluid	
WH:	Sampler advanced by static weight of drill rod and	c c
	140-pound hammer	ť
WR:	Sampler advanced by static weight of drill rod	Ā
94mm:	94 millimeter wireline core barrel	r
▼:	Water level directly measured in boring	e
$\overline{\nabla}$:		
<u> </u>	Estimated water level based solely on sample appearance	
	appendition of the second s	

TEST SYMBOLS

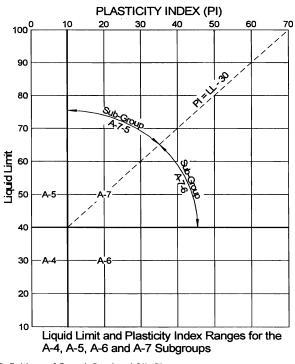
Symbol Definition

CONS:	One-dimensional consolidation test
DEN:	Dry density, pcf
DST:	Direct shear test
E:	Pressuremeter Modulus, tsf
HYD:	Hydrometer analysis
LL:	Liquid Limit, %
LP:	Pressuremeter Limit Pressure, tsf
OC:	Organic Content, %
PERM:	Coefficient of permeability (K) test; F - Field;
	L - Laboratory
PL:	Plastic Limit, %
q _p :	Pocket Penetrometer strength, tsf (approximate)
q _c :	Static cone bearing pressure, tsf
q _u :	Unconfined compressive strength, psf
R:	Electrical Resistivity, ohm-cms
RQD:	Rock Quality Designation of Rock Core, in percent
	(aggregate length of core pieces 4" or more in length
	as a percent of total core run)
SA:	Sieve analysis
TRX:	Triaxial compression test
VSR:	Vane shear strength, remoulded (field), psf
VSU:	Vane shear strength, undisturbed (field), psf
WC:	Water content, as percent of dry weight
%-200:	Percent of material finer than #200 sieve

STANDARD PENETRATION TEST NOTES

The standard penetration test consists of driving the sampler with a 140 pound hammer and counting the number of blows applied in each of three 6" increments of penetration. If the sampler is driven less than 18" (usually in highly resistant material), permitted in ASTM:D1586, the blows for each complete 6" increment and for each partial increment is on the boring log. For partial increments, the number of blows is shown to the nearest 0.1' below the slash.

The length of sample recovered, as shown on the "REC" column, may be greater than the distance indicated in the N column. The disparity is because the N-value is recorded below the initial 6" set (unless partial penetration defined in ASTM:D1586 is encountered) whereas the length of sample recovered is for the entire sampler drive (which may even extend more than 18").


AASHTO SOIL CLASSIFICATION SYSTEM

	Classifi	ication of S	Soils and S	oil-Aggreg	ate Mixture	es							
			Gra	nular Mate	rials			Silt-Clay Materials					
General Classification	(35% or less passing No. 200 sieve)							(More than 35% passing No. 200 sie					
	A	1			A	-2					A-7		
Group Classification				A-2-4		A-2-6	A-2-7	A-4	A-5	A-6	A-7-5		
	A-1-a	A-1-b	A-3		A-2-5	A-2-0		A-4	A-5	A-0	A-7-6		
Sieve Analysis, Percent passing:													
No. 10 (2.00 mm)	50 max.												
No. 40 (0.425 mm)	30 max.	50 max.	51 min.										
No. 200 (0.075 mm)	15 max.	25 max.	10 max.	35 max.	35 max.	35 max.	35 max.	36 min.	36 min.	36 min.	36 min.		
Characteristics of Fraction Passing No. 40 (0.425 mm)													
Liquid limit		••		40 max.	41 min.	40 max.	41 min.	40 max.	41 min.	40 max.	41 min.		
Plasticity index	6 n	nax.	N.P.	10 max.	10 max.	11 min.	11 min.	10 max. 10 max.		11 min.	11 min.		
Usual Types of Significant Constituent Materials	al Types of Significant Constituent Materials Stone Fragments, Gravel and Sand				or Clayey (Gravel and	Sand	Silty	Soils	Claye	y Soils		
General Ratings as Subgrade		Exc	cellent to G	bood			Fair to Poor						

AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS

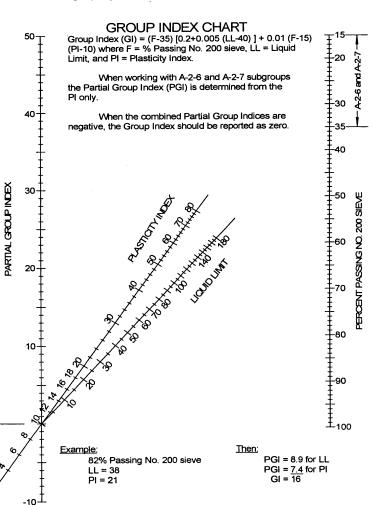
The placing of A-3 before A-2 is necessary in the "left to right elimination process" and does not indicate superiority of A-3 over A-2.

Plasticity index of A-7-5 subgroup is equal to or less than LL minus 30. Plasticity index of A-7-6 subgroup is greater than LL minus 30.

Definitions of Gravel, Sand and Silt-Clay

The terms "gravel", "coarse sand", "fine sand" and "silt-clay", as determinable from the minimum test data required in this classification arrangement and as used in subsequent word descriptions are defined as follows:

 $\ensuremath{\mathsf{GRAVEL}}$ - Material passing sieve with 3-in. square openings and retained on the No. 10 sieve.


 COARSE SAND - Material passing the No. 10 sieve and retained on the No. 40 sieve.

 $\mathsf{FINE}\ \mathsf{SAND}\ \mathsf{-}\ \mathsf{Material}\ \mathsf{passing}\ \mathsf{the}\ \mathsf{No}.\ 40\ \mathsf{sieve}\ \mathsf{and}\ \mathsf{retained}\ \mathsf{on}\ \mathsf{the}\ \mathsf{No}.\ 200\ \mathsf{sieve}.$

COMBINED SILT AND CLAY - Material passing the No. 200 sieve

BOULDERS (retained on 3-in. sieve) should be excluded from the portion of the sample to which the classification is applied, but the percentage of such material, if any, in the sample should be recorded.

The term "silty" is applied to fine material having plasticity index of 10 or less and the term "clayey" is applied to fine material having plasticity index of 11 or greater.

UNIFIED SOIL CLASSIFICATION SYSTEM ASTM Designations: D 2487, D2488

AMERICAN ENGINEERING INC.

significantly affect soil properties.

× 3.	
VA W	
22 3	

								TESTING,	INC.	
Criteria fc	or Assigning Group Sy		Nome Heine Labor	ToeteA	Grour	Soil Classificatio			Notes	
		·		-	Group Symbo	ol .		^A Based on the m (75-mm) sieve.	-	-
Coarse-Grained Soils More	Gravels More than 50% coarse	Clean Gravels Less than 5%	Cu≥4 and 1≤0	_	GW	Well graded g	gravel ^F	^b If field sample boulders, or both	contained cob	
than 50% retained on	fraction retained on No. 4 sieve	fines ^C	Cu<4 and/or 1	I>Cc>3 ^E	GP	Poorly graded		boulders, or both boulders, or both ^C Gravels with 5	h" to group na	ame
No. 200 sieve	Viii • • = • = •	Gravels with Fines more	-	as ML or MH	GM	Silty gravel ^{F.G}		symbols:	ll-graded grave	-
		than 12% fines ^C			GC	Clayey gravel		GW-GC well	l-graded grave	el with clay
	Sands 50% or more of coarse	Clean Sands Less than 5%	Cu <u>></u> 6 and 1 <u><</u> C		SW	Well-graded s			ly graded grav	el with clay
	fraction passes No. 4 sieve	fines ^D	Cu<6 and/or 1		SP	Poorly-graded		symbols:	-graded sand v	
		Sands with Fines more	Fines classify		SM	Silty sand ^{G.H.T}		SW-SC well- SP-SM poorl	graded sand w y graded sand	with clay I with silt
Fine Grainad	Cite and Claur	than 12% fines ^D			SC	Clayey sand ^{G.}	.स. । ज	SP-SC poorly	y graded sand	with clay
Fine-Grained Soils 50% or	Silts and Clays Liquid limit less	inorganic	PI>7 and plots "A" line ^J		CL	Lean clay	4			(D ₃₀) ²
more passes the No. 200	than 50		PI<4 or plots t "A" line	below	ML	Silt ^{KLM}		$^{\rm E}Cu = D_{60} / D_{10}$	Cc = -	D ₁₀ x D ₆₀
sieve	•	organic		oven dried <0.75	5 OL	Organic clay ^K	.L.M.N	^F If soil contains	>15% cand a	dd "with
(see Plasticity Chart below)			Liquid limit –			Organic silt ^{KL}	L.M.O	sand" to group n GIf fines classify	ame.	
	Silts and Clays Liquid limit 50	inorganic		above "A" line	сн	Fat clay ^{KLM}		symbol GC-GM,	or SC-SM.	
	or more		PI plots below	"A" line	МН	Elastic silt ^{KLM}		fines" to group n ¹ If soil contains ≥	iame. ≥15% gravel, :	
		organic	<u>Liquid limit—o</u> Liquid limit—	oven dried <0.75 not dried	5 OH	Organic clay ^K		gravel" to group If Atterberg limi	name. its plot is hatc	
···· • • •					t br	Organic silt ^{K.L}	M.Q	soils is a CL-ML	, silty clay.	
Highly organic soil				ganic matter, d organic in odor		Peat ^R	-	add "with sand"	or "with grav	
					·			whichever is prec	dominant.	
	SIEVE ANALYSIS		60 For classification	of fine-grained soils and				predominantly		
- Screen Opering (iv 3 2 1% 1 3/ 3/ 100 -	(n) Sieve Number 6 4 10 20 40 60 140 20	α,	50-	n of fine-grained soils and tion of coarse-grained soil			\leq	group name. ^M If soil contains	>20% phys N(~ 200
Î Î Î Î Î Î Î Î Î Î Î Î Î Î Î Î Î Î Î				ne = 4 to LL = 25.5.	.J. 19.		_	predominantly	y gravel, add	"gravelly"
29 ao		20	Z Equation of "U"-lia	ine /	UN CHO			to group name ^N Pl≥4 and plots o	or shove "/	- ▲"line
	De = 15mm	¢ RETAINED	Vertical al LL = 10 U 30 -	16 to PI = 7.	/ or /	1 _		^O PI<4 or plots be	low "A" line.	
PERCENT PASSING	╶┽╌┼╌╂┨		STICK STICK					^P Pl plots on or ab	ove "A" line.	
₿ * 0	Da = 2.5mm	PERCENT PERCENT	ਰੋਂ 20-	<u>∕ </u> i∕P	⋗⋌			 ^QPl plots below " ^RFiber Content de 		wn below.
20		80		Cho Cho	- мн	Hor OH				
	+++++++++++++++++++++++++++++++++++++++	 Dw = 0.075mm	10 7	ML or		++-				
50 10		,00	0 10 16 2		50 60	70 80 90	.100	110		
PARTICLE $C_{a} = \frac{Dm}{D_{bc}} = \frac{15}{0.075} = 2$	E SIZE IN MILLIMETERS 200 $C_{e} = \frac{(D_{20})^2}{D_{10.5} D_{10.5}} = \frac{2.5^2}{0.075 \times 15} = 5.$				UQUID LIMIT (LL)					
Ca * Dec 0.075 - 4					Plasticity Chart					
· · · · · · · · · · · · · · · · · · ·		ONAL TERMIN	OLOGY NOTES U				· · · ·	to a service recent of	the ^{ra} leet	나는 수 있었는
Term	<u>Grain Size</u> Particle Si	ize	<u>Gravel Percen</u> Term	ntages Percent	Consistent Term	<u>cy of Plastic Soils</u> N-Value, B		<u>Relative Density</u> Term	of Non-Plasti N-Value,	
Boulders Cobbles	Over 12 3" to 12		A Little Gravel With Gravel	3% - 14% 15% - 29%	Very Soft Soft	less than 2 2 - 4	1	Very Loose Loose	0 - 5 -	
Gravel	#4 sieve t	to 3" G	Gravelly	30% - 50%	Firm	5 - 8	1	Medium Dense	11 -	30
Sand Fines (silt & cla	#200 to #4				Stiff Vom Stiff	9 - 15		Dense	31 -	
Fines (sin & the	ay) Pass #200 s	sieve			Very Stiff Hard	16 - 30 Greater than		Very Dense	Greater	than 50
Mois	sture/Frost Condition		Layering No	otes		Description		Organic Descript		
D (Dry):	(MC Column) Absense of moisture,	, dusty, dry to	aminations: Layers	tone them	1.	Ell Conton	a	oils are described as <u>c</u> nd is judged to have	e sufficient of	rganic fines
M (Moist):	touch. Damp, although free	1	1⁄2" thi	nick of	Term	Fiber Conten (Visual Estima	nt co	ontent to influence the	e Liquid Limi	it properties.
	visible. Soil may stil	ll have a high	differi or colo	ing material	Fibric Peat:	Creater than 6	-	Root Inch	usions	
W (Wet/	water content (over " Free water visible into		UI CON	<i>л</i> .	Hemic Peat:	Greater than 67 33 – 67%	/% W		have sufficient	
Waterbearing):		11.		ets or layers	Sapric Peat:	Less than 33%	%	of roots to properties	o influence th s.	e son
- ,	Waterbearing usually	y relates to		er than ½" of differing	I		Т	race roots: Small roo	ots present, but	
F (Frozen):	sands and sand with s Soil frozen	silt.		ial or color.	I				ufficient quant tly affect soil	

01CLS021 (07/08)

AMERICAN ENGINEERING TESTING, INC.

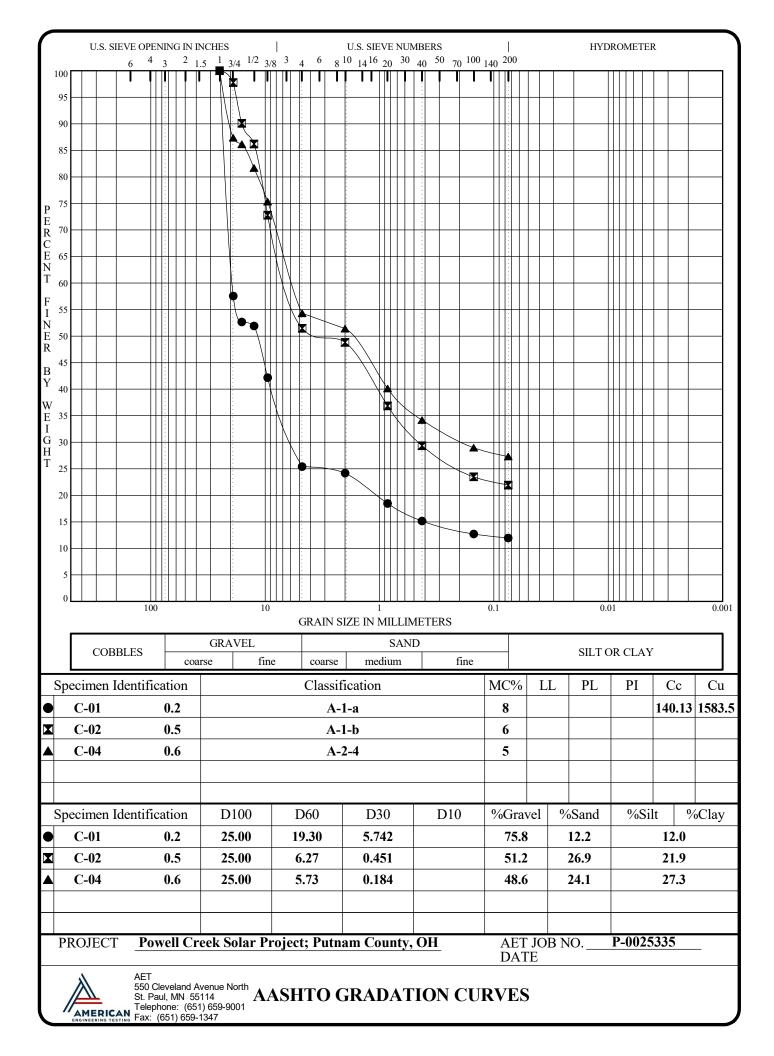
	AET JOB NO: P-0025335 PROJECT: Powell Creek Solar Project; Putnam C								LOG OF BORING NO. C-01 (p. 1 of 1)								f 1)		
	PROJEC	CT:	Powell Creek So	olar Proje															
		CE ELI	EVATION:	DE:	41.0621	96		LON	\G I	TUDE:	-8	84.11 1							
	DEPTH IN FEET		MATERIAL D	DESCRIPTIC	DN		GEOLO	OGY	N	MC	SA	MPLE TYPE	REC		1	BORAT		1	
	FEET	0.5											IN.	WC	DEN	LL	PL	%- #200	
	-	2.5"	Bituminous pavement FILL, mostly silty gra	vel with s	and grav		FILL					CORE							
		(A-			und, gruy							HA		8				12	
	1 -		AF BODDIG																
		ENI	D OF BORING																
/23																			
- 8/23																			
L.GDT																			
-+WEL																			
T+CP1																			
J AE																			
335.GF			DD																
-0025	DEP	DEPTH: DRILLING METHOD			1	ER LEVE				-	יי די די די די		W/A TT		NOTE:				
CORP W-LAT-LONG P-0025335.GPJ AET+CPT+WELL.GDT 8/23/23	0	0-1' Hand Auger DATE TIME S		SAMPI DEPT	TH DE	SING EPTH	DE	'E-IN PTH	FL	DRILLIN UID LE	VEL	WATE LEVE		THE A					
AT-LC														SHEET					
Ч-М-Г	POPING														XPLAN				
COR	BORING COMPLETED: 8/8/2023															ERMIN			
AET	DR: RS LG: NH Rig: 584																IS LOO	ј <u>п осс</u>	

AET J	OB NO	P-0025335			LOG OF BORING NO. C-02 (p. 1 of 1								f 1)			
PROJI	ECT:	Powell Creek So	olar Proje	ct; Putna		ounty, OH										
		EVATION:	DE:	41.067224		LOI	NGIT	UDE:	-8	34.11 1						
DEPTH IN FEET	[MATERIAL I	DESCRIPTIC	DN		GEOLOGY	(N	MC	SAI	MPLE YPE	REC IN		DEN			1
FEET		' Bituminous pavement				FILL						wc	DEN	LL	PL	%- #200
										CORE						
		' FILL, mostly gravelly	y silty sand	l, gray						HA		6				22
1		1-b) D OF BORING							Ħ							
3/23/23																
GDT &																
MELL.																
CPT+																
AET+																
35.GPJ																
CORP W-LAT-LONG P-0025335.GPJ AET+CPT+WELL.GDT 8/23/23 M208 M208 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2						ER LEVEL M			-					NOTE:	REFE	R TO
54 DA	0-1' Hand Auger DATE TIME		SAMPI DEPT	ED CASIN H DEPTI	G CAV	/E-IN PTH	D FLU	RILLIN JID LE	IG VEL	WATE LEVE	ER /	THE A	TTAC	HED		
AT-LO	0-1 Hand Auger												SHEET			
													XPLA			
BORI	BORING COMPLETED: 8/8/2023												T	ERMIN		
b DR: I	RS L	.G: NH Rig: 584													IS LOO	J

Γ	AET JO	B NO:	P-0025335		LOG OF BORING NO. C-03 (p. 1 of 1)													
	PROJEC	CT:	Powell Creek So		41.052244 04.11155													
		CE EL	EVATION:		LATITUDI	E:	41.07	/3344		LON	NGI	TUDE:	-8	1				
	DEPTH IN FEET		MATERIAL I	DESCRIPTIC	DN		GE	OLOGY	N	MC	SĄ	AMPLE TYPE	REC IN.					TESTS
	FEET	7.51					FILL						11N.	WC	DEN	LL	PL	%- #200
		1.5	Bituminous pavemen	t			FILL					CORE						
	-	4.5"	FILL, mostly gravelly	v silty sand	l. grav (A-1	-b)	-					TTA						
	1 -		D OF BORING	, J							F	HA						
		LINI	D OF BORING															
3/23																		
DT 8/2																		
ELL.GT																		
T+WE																		
11+CF																		
PJ A																		
5335.0	DEP	TH:	DRILLING METHOD			WAT	ER LF	VEL MEA	L SURF	L EMEN'	L TS				L		DEFE	
P-002				DATE	TIME	SAMP		CASING DEPTH	1	/E-IN PTH	<u> </u>	DRILLIN JUID LE	IG	WATE LEVE		NOTE: THE A		
CORP W-LAT-LONG P-0025335.GPJ AET+CPT+WELL.GDT 8/23/23		0-1' Hand Auger DATE TIME		DEP	TH	DEPTH	DE	PTH	FL	UID LE	VEL	LEVE		SHEET				
-LAT-L									\vdash					XPLA				
RP W.	BORING COMPLETED: 8/8/2023																GY ON	
망														-		IS LO		
Ę,	DR: RS LG: NH Rig: 584																	- ID 0((

AET JOB NO: P-0025335									LOG OF BORING NO. C-04 (p. 1 of 1)									
	PROJEC	CT:	Powell Creek So	olar Proje	ect; Putna													
		CE ELI	EVATION:		LATITUI	DE:	41.08	80174		LON	LONGITUDE:		-8	84.11 1	180			
I	DEPTH IN FEET		MATERIAL I	MATERIAL DESCRIPTION					N	MC	SAMPLE TYPE		REC) & LA			
	FEET	711 1):				FILL				IYPE		IN.	WC	DEN	LL	PL	%- #200
		/" E	Bituminous pavement				FILI	L				CORE						
	-	5" F	TILL, mostly gravelly s	silty sand, t	trace		-							5				27
	1 -	root	TLL, mostly gravelly s s, pieces of bituminou	s, brown (A-2-4)	_						HA						
		ENI	D OF BORING															
3/23																		
T 8/23																		
LL.GD																		
T+WE																		
T+CP																		
PJ AE																		
335.G		TIL	DDILLING			117 A 27												
CORP.W-LAT-LONG P-0025335.GPJ AET+CPT+WELL.GDT 8/23/23	DEP	111:	DRILLING METHOD			1		EVEL MEA			-		IG	WATE		NOTE:		
	0)-1'	Hand Auger	DATE	TIME	SAMPI DEPT	ГН	CASING DEPTH	DE	/E-IN PTH	FL	DRILLIN UID LE	VEL	WATE LEVE		THE A		
																SHEET		
I-W-I	BORIN	G	0.10.10.000													XPLA		
	BORIN COMPL														-	ERMIN TH	IOLOC IS LO	
AET	DR: R \$	S L	G: NH Rig: 584															

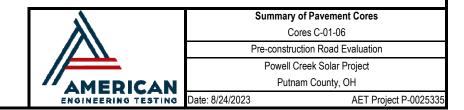
	AET JO	B NO:	P-0025335			LOG OF BORING NO. C-05 (p. 1 of 1)							f 1)				
	PROJEC	CT:	Powell Creek So	olar Proje	ct; Putnan												
		CE EL	EVATION:	:'	41.086182		LONGITUDE:				-84.11187						
	DEPTH IN FEET		MATERIAL D	DESCRIPTION			GEOLOGY		MC	SA	AMPLE FYPE	REC IN.			LABORATORY		
╞	FEET	6" E	Bituminous pavement				FILL						WC	DEN	LL	PL	%-#200
		0 1	Situininous pavement				TILL				CORE						
		6" F	FILL, mostly gravelly s	ilty sand, g	gray (A-1-b))					HA						
	1 —	EN	D OF BORING														
3/23																	
DT 8/2																	
ELL.GI																	
PT+W																	
ET+C																	
GPJ /																	
CORP W-LAT-LONG P-0025335.GPJ AET+CPT+WELL.GDT 8/23/23	DEP	TH:	DRILLING METHOD			WAT	ER LEVEL MEA	SURE	EMEN	TS		L	1	<u>ا ا</u>	NOTE:	REFF	R TO
P-00	ſ	11	Hand Awar	DATE	TIME	SAMPI DEPT	LED CASING TH DEPTH	CAV	/E-IN PTH	FI	DRILLIN UID LE	NG VEI	WATE LEVE		THE A		
FONG	()-1'	Hand Auger			DEFI									SHEET		
V-LAT												-+		E	XPLA	NATIO	ON OF
CRP	BORIN COMPI	G LETEI): 8/8/2023											T	ERMIN	IOLOC	GY ON
AET_C	DR: R		G: NH Rig: 584													IS LOO	G DD 060


AET JOB NO: P-0025335									LO	GOF	BO	RING N	0.	С	-06 (p. 1 o	f 1)		
Р	ROJEC	CT:	Powell Creek So	olar Proje	ct; Putna														
		CE ELI	EVATION:		LATITUD	E:	41.092	2547		LON	I GI	TUDE:	-84.11193						
DE	EPTH IN EET		MATERIAL I	DESCRIPTIC	ESCRIPTION			LOGY	N	MC	SĄ	MPLE FYPE	REC						
F	ËËT	6.51										IYPE	IN.	WC	DEN	LL	PL	%- #200	
		6.5"	Bituminous pavement				FILL					CORE							
	-	5.5"	FILL, mixture of clay	vey gravel a	and silty														
	1 -	grav	FILL, mixture of clay yel, possible cobbles, g	gray to brow	wn (A-1-b))						HA							
		ENI	D OF BORING																
3/23																			
T 8/2:																			
LL.GD																			
T+WE																			
ET+CP																			
SPJ A																			
5335.6	DEP	гн.	DRILLING METHOD			 WATI		EL MEA	 SURE		<u>רי</u>								
CORP W-LAT-LONG P-0025335.GPJ AET+CPT+WELL.GDT 8/23/23	DEL		DITECTION METHOD		TDAT						-	ORILLIN	IG	WATE		NOTE:			
oNG	0	-1'	Hand Auger	DATE	TIME	SAMPI DEPT	Ħ Ĭ	ASING DEPTH	DE	/E-IN PTH	FĹ	DRILLIN UID LE	VEL	WATE LEVE		THE A			
ILAT-L																SHEET XPLAI			
Å ₽ F	BORIN	G	8/8/2022								-					ERMIN			
			e NHL D: 594												1		IS LO		
I Je	DR: R S	5 L	G: NH Rig: 584																

										Sheet	1 of 1
Borehole	Depth	Liquid Limit	Plastic Limit	Plasticity Index	Maximum Size (mm)	%<#200 Sieve	Class- ification	Water Content (%)	Dry Density (pcf)	Satur- ation (%)	Void Ratio
C-01	0.2				25	12	A-1-a	7.6			
C-02	0.5				25	22	A-1-b	6.2			
C-04	0.6				25	27	A-2-4	5.2			

Summary of Laboratory Results

Project: Powell Creek Solar Project Location: Putnam County, OH Number: P-0025335

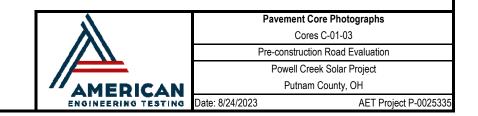


Appendix B

Pavement Coring Results Summary Pavement Core Photographs

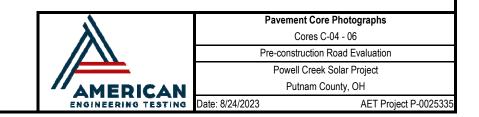
Core Field #	Core Location (Roadway)	Location*	Lane*	Core thickness (in)	DH measurment (in)	Remarks
C-01	CH 13	RWP	NB	2.25	2.50	41.062196, -84.111672 - bituminous pavement, low severity stripping below 1"
C-02	CH 13	RWP	NB	6.50	b 50	40.852926, -84.496851 - bituminous pavement, low severity stripping below 3.5"
C-03	CH 13	RWP	NB	7.50	(50)	41.073343, -84.111747 - bituminous pavement, low severity stripping below 2"
C-04	CH 13	RWP	NB	6.00	7.00	41.080173, -84.111801 - bituminous pavement, high severity stripping between 3 and 4.25", deteriorated pavement between 6" and 7"
C-05	CH 13	RWP	NB	4.00	6.00	41.086181, -84.111869 - bituminous pavement, medium to high severity stripping throughout, deteriorated pavement between 4" and 6"
C-06	CH 13	RWP	NB	6.25	6.50	41.092547, -84.111926 - bituminous pavement, low severity stripping below 4.5"

* - NB - Northbound; RWP - Right wheel path



C-01

C-02



C-04

C-05

C-06

Pre-construction Road Evaluation **Powell Creek Solar Project,** Putnam County, OH September 7, 2023 AET Report No. P-0025335A

Appendix C

Ground Penetrating Radar Field Exploration and Testing GPR Results Plot

C.1 FIELD EXPLORATION

The pavement structural conditions at the site were evaluated nondestructively using Ground Penetrating Radar (GPR). The description of the equipment precedes the GPR Data and Analysis Results in this appendix.

C.2 EQUIPMENT DESCRIPTION

C.2.1 GSSI GPR Test System

The GPR test system owned by AET is a bumper-mounted, 2 GHz air-coupled antenna; dual-channel controller/data acquisition system; wheel-mounted DMI (Distance Measuring Instrument); and laptop with the GSSI controller software. AET uses GPR systems for testing and analysis that meets the ASTM D4748-10 Determining the Thickness of Bound Pavement Layers Using Short-Pulse Radar and D6087 Evaluating Asphalt-Covered Concrete Bridge Decks Using Ground Penetrating Radar test standards. Figure A1 provides an example of a vehicle outfitted with the air-coupled antenna and the raw GPR data prior to processing.

Figure B1. (a) GSSI 2 GHz Air-coupled GPR Test System mounted to the rear of an AET survey vehicle and (b) example of raw data collected using the GPR test system

The GPR antenna emits a high-frequency electromagnetic wave into the material under investigation. The reflected energy caused by changes in the electromagnetic properties within the material is detected by a receiver antenna and recorded for subsequent analysis. The 2 GHz air-coupled GPR can collect radar waveforms at more than 100 signals per second, which allows for data to be collected at driving speeds along the longitudinal dimension of a road with the antennas fixed at the rear or in front of the vehicle.

AET prefers the 2 GHz antenna for road surveys as it combines excellent resolution with reasonable depth penetration (18-24 inches in pavement materials). As data collection is performed at normal driving speeds (45-55 mph), no lane closures are required. At this speed the 2 GHz antenna can collect data at 6-inch interval (2 scans/foot), however data collection varies by project. Specific data collection rates (in scans per foot) will be described in project reports. Vertical scans consist of 512 samples and the recorded length in time of each scan is 12 nanoseconds. Data acquisition uses 300 MHz high pass and 5,000 MHz low pass filters.

In a GPR test, the antenna is moved continuously across the test surface and the control unit collects data at a specified distance increment. In this way, the data collection rate is independent of the scan rate. Alternatively, scanning can be performed at a constant rate of time, regardless of the scan distance. Single point scans can be performed as well. Data is reviewed in the controller software in real-time during field testing to identify reflections and ensure proper data collection parameters.

B.2.2 System Calibrations

Prior to each use, the GPR test system is calibrated using metal plate and air calibration methods suggested by the GPR manufacturer. In addition, the DMI is calibrated to within +/- 1 foot/mile.

• Metal plate calibration is obtained with the antenna placed over a metal plate at the same elevation as a scan obtained over pavement. Time-based collection (as opposed to distance) is performed to provide the

Appendix C Ground Penetrating Radar Field Exploration and Testing AET Project No. P-0025335A

velocity of the radar energy in terms of reflection strengths (amplitudes) from a pavement layer interface relative to a perfect reflector (a metal plate).

- Air calibrations are also performed in time-based collection mode to account for the vertical travel of the antenna during vehicle-mounted testing. To approximate the range of travel encountered during testing, data is collected for fifteen seconds while an operator moves the vehicle vertically (by jumping up and down on the mounting point at the bumper) to record data. This information is used in later GPR analysis.
- The DMI is calibrated by laying out a long distance (typically 100 feet) with a tape measure, marking the termini, and traversing the known distance. Recorded distance in the controller software is confirmed against actual distance, and adjustments in the controller software are made to ensure that DMI information that is paired with GPR data is accurate.

C.2.3 Linear Distance and Spatial Reference System

The distance measuring instrument (DMI) is a trailer mounted two phase encoder system. When DMI is connected to the GPR controller it provides for automatic display and recording distance information in both English and metric units within a 1-foot (0.3 meters) resolution when calibrated using provided procedure in the controller software.

The spatial reference system is provided using either Trimble or EOS Arrow Global Positioning System (GPS) systems that consist of a fully integrated receiver, antenna, and battery unit to provide subfoot (30 cm) post processed accuracy. All GPS information is coupled with raw GPR data within the GPR controller software.

C.2.4 Camera Monitoring System

A truck-mounted, battery-operated independent 4K waterproof multi-functional digital camera with an SD card is used to capture digital video of the pavement surface during GPR data collection.

C.3 SAMPLING METHODS

Sampling methods using the GPR test system comply with the test standard (ASTM D4748-10). Sampling rates (i.e. scans per foot), sampling location (e.g. right wheel path, middle lane, both wheel paths), and the use of alternative equipment for GPR collection, if applicable (e.g. ground-coupled antennas), are described in the body of the project report.

C.4 QUALITY CONTROL (QC) AND QUALITY ASSURANCE (QA)

Beside the daily metal plate calibration, the DMI is also calibrated at regular intervals by driving the vehicle over a known distance to calculate the distance scale factor. The GPR will be monitored in real time in the data collection vehicle to minimize data errors. The GPR units will be identified with a unique number and that number will accompany all data reported from that unit as required in the QC/QA plan.

Scheduled preventive maintenance ensures proper equipment operation and helps identify potential problems that can be corrected to avoid poor quality or missing data that results if the equipment malfunctions while on site. The routine and major maintenance procedures established by the Federal Highway Administration's Long-Term Pavement Performance research program are adopted and any maintenance has been done at the end of the day after the testing is complete and become part of the routine performed at the end of each test/travel day and on days when no other work is scheduled.

As noted in the applicable test standard (ASTM D4748-10), quality assurance of GPR data is compromised when suboptimal test conditions exist. Such conditions may include wet surfaces (including standing water), ambient electromagnetic interference, or pavement distresses that can significantly scatter the GPR signal.

C.5 DATA ANALYSIS METHODS

C.5.1 Data Editing

Field acquisition is seldom so routine that no errors, omissions, or data redundancy occur. Data editing encompasses issues such as data re-organization, data file merging, data header or background information updates, repositioning, and inclusion of elevation information with the data.

C.5.2 Basic Processing

Basic data processing addresses some of the fundamental manipulations applied to data to make a more acceptable product for initial interpretation and data evaluation. In most instances this type of processing is already applied in real-time to generate the real-time display. The advantage of post survey processing is that the basic processing can be done more systematically and non-causal operators to remove or enhance certain features can be applied.

The Reflection Picking procedure is used to eliminate unwanted noise, detects significant reflections, and records the corresponding time and depth. It uses antenna calibration file data to calculate the radar signal velocity within the pavement.

C.5.3 Advanced Processing

Advanced data processing addresses the types of processing which require a certain amount of operator bias to be applied and which will result in data which are significantly different from the raw information which were input to the processing. This stage of analysis relies on supplementary resources (e.g. boring/coring logs, design plans, asbuilt records, historical records, conversations with road engineers/supervisors).

C.5.4 Data Interpretation

In some cases, automated layer interpretation modules within the analysis software can be used from preliminary analysis to map structural layers and calculate the corresponding velocities and depths. When used, the results from these modules require engineering review and approval.

C.6 TEST LIMITATIONS

C.6.1 Test Methods

The testing we performed identified pavement conditions only at those points where we measured pavement thicknesses and observed pavement surface conditions. Depending on the sampling methods and sampling frequency, every location may not be tested. Test conditions may limit the quality of the data collected, and some anomalies may be present in the pavement that compromise data and/or data collection at a given location.

Furthermore, because analysis procedures involve matters of engineering judgement, the final analysis developed represents our professional opinions about the subsurface conditions. More specifically, as relates to pavement systems, assessing layer thicknesses using GPR is a matter of engineering judgement. To enrich the analysis, we rely on supporting test methods and project information. However, even with supporting information, the distinction between layers in the road is not always explicit. Factors influencing definition of radar scans include ambient electromagnetic interference, the presence of moisture, the presence of voids, and the similarity of material layer type between layers.

Other factors external to related to methods and analysis data may require that we alter our conclusions and recommendations accordingly.

C.6.2 Test Standards

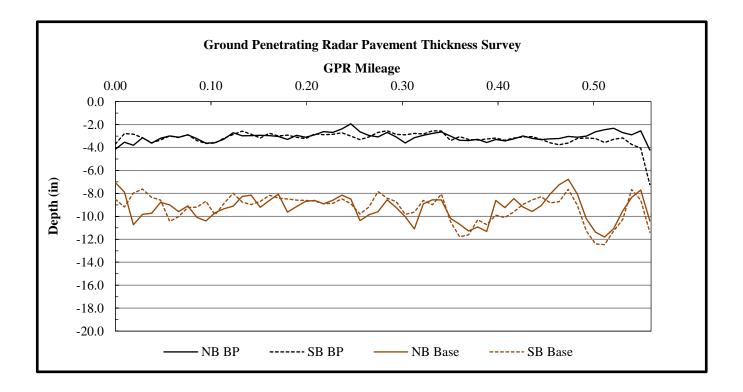
Pavement testing is performed in general conformance with the described procedures. Compliance with any other standards referenced within the specified standard is neither inferred nor implied.

C.7 SUPPORTING TEST METHODS

C.7.1 Soil Boring/Coring Field Exploration

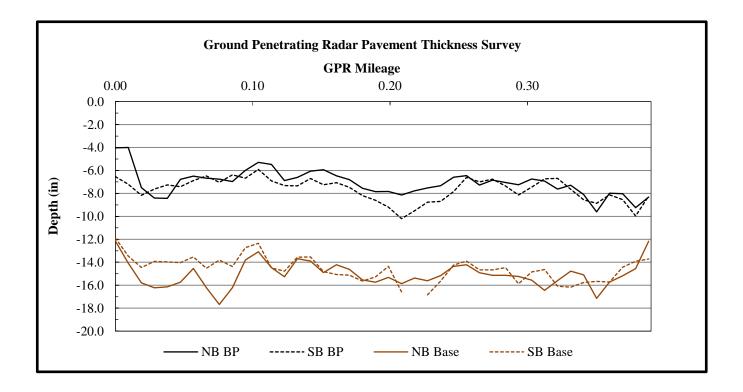
If both pavement thicknesses and subgrade soil types and conditions are desired, pavement cores and soil borings are obtained. The limited number of cores and borings are necessary to verify the GPR layer thickness data.

C.7.2 Pavement Surface Condition

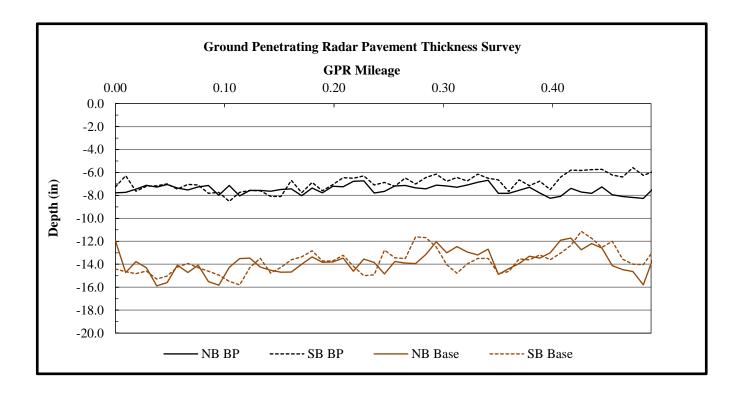

Certain pavement distresses may affect the electromagnetic signal to an extent that complicates the analysis of GPR data. The results of a pavement condition survey are useful to identify near-surface features (e.g. stripped asphalt) or sub-surface features (e.g. local saturated layers due to ingress of water at the surface) when reviewing GPR data.

Appendix C Ground Penetrating Radar Field Exploration and Testing AET Project No. P-0025335A

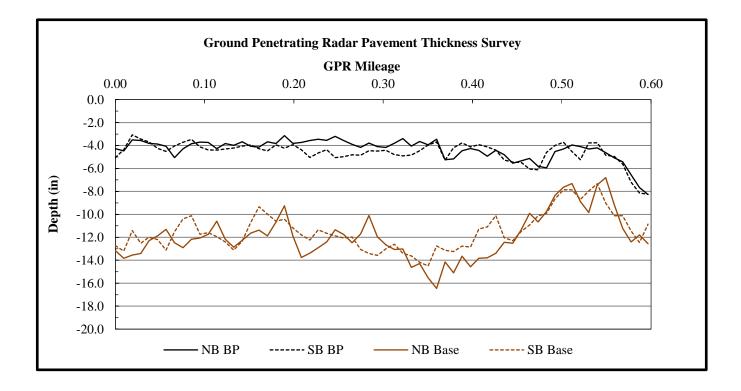
When we do not perform a standard pavement condition survey alongside GPR data, we rely on GPR operators to note possible distresses as they traverse the pavement from about 1 ft (0.3 m) in front of vehicle to about 30 ft (9 m) ahead. These test notes are consulted during GPR analysis, however they are not a substitute for a conventional rigorous pavement condition survey.



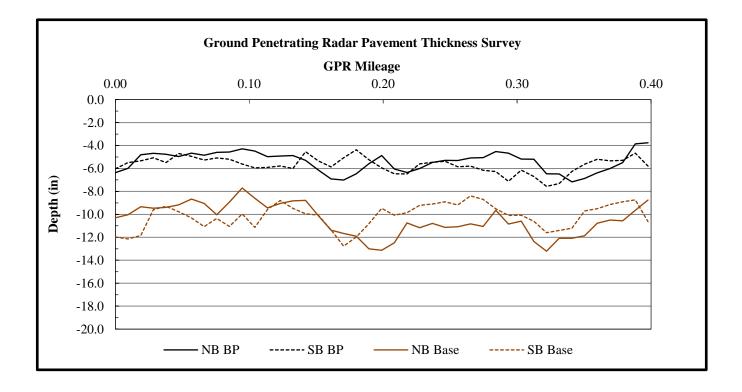
GENERAL INFORMATION: GROUND PENETRATING RADAR															
Project:	Powell Cree	k Solar Pro	iect		Date:	8/22/23									
AET Job No.:	P-0025335		jeet	7	Test Date:	8/8/23									
Road:	CR 13			_	tion/Grid:	S01A									
From:	SH 15				То:	0.26 Mi S o	of CR G-12								
	SUMMARY STATISTICS														
							Units:	inches							
		Ň	B	-		S	B								
Layer	Average	CV	15th Min.		Average	e CV 15th		Min.							
BP	3.1	13%	2.7	1.9	3.2	20%	2.8	2.5							
Base	6.2	19%	6.1	19%	5.0	3.9									



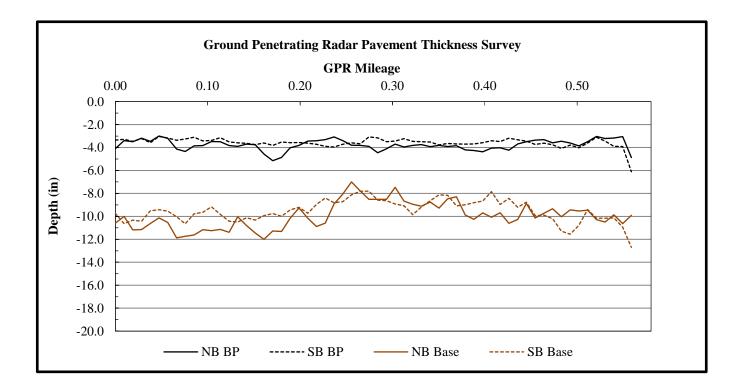
GENERAL INFORMATION: GROUND PENETRATING RADAR															
Project:	Powell Cree	ek Solar Pro	iect		Date:	8/22/23									
AET Job No.:															
Road:	CR 13		tion/Grid:	S01B											
From:	0.26 Mi S o	f CR G-12	To:	CR G-12											
	SUMMARY STATISTICS														
	-						Units:	inches							
		Ν	В			S	B								
Layer	Average	CV	Average	CV	15th	Min.									
BP	7.1	16%	6.1	7.6	13%	6.7	5.9								
Base	8.0	14%	7.5	7.0	14%	6.2	4.0								



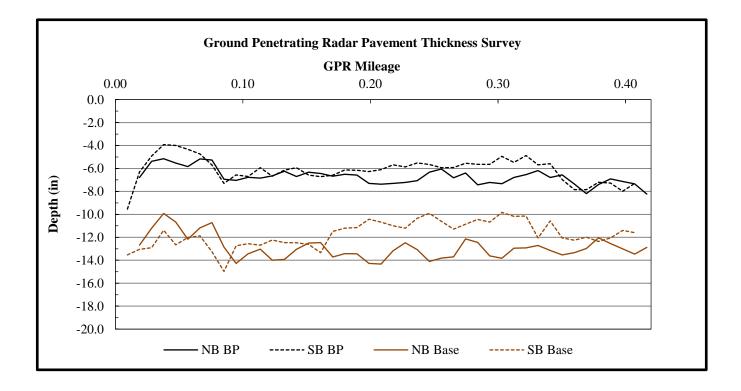
GENERAL INFORMATION: GROUND PENETRATING RADAR															
Proje	Project:Powell Creek Solar ProjectDate:8/22/23														
AET Job No		P-0025335		jeet]	Test Date:	8/8/23								
Roa	ad: (CR 13			Sect	tion/Grid:	S02								
From	m: (CR G-12				To:	CR G								
	SUMMARY STATISTICS														
						1		Units:	inches						
			Ν	В			S	B							
La	ayer	Average	CV	15th	Min.	Average	CV	15th	Min.						
В	BP	7.5	5%	7.1	6.7	6.9	10%	6.2	5.6						
Ba	ase	6.3	17%	5.3	3.8	6.9	13%	6.0	4.6						



GENERAL INFORMATION: GROUND PENETRATING RADAR															
Proj	Project:Powell Creek Solar ProjectDate:8/22/23														
, AET Job N		P-0025335		5	1	Test Date:	8/8/23								
Ro	ad:	CR 13			Sect	ion/Grid:	S03								
Fre	om:	CR G				To:	CR F-12								
	SUMMARY STATISTICS														
								Units:	inches						
			N	B			S	B							
L	ayer	Average	CV	Average	CV	15th	Min.								
	BP	4.4	22%	3.6	3.1	4.6	21%	3.8	3.1						
Ι.	Base	7.6	30%	4.8	2.2	6.9	27%	4.4	2.6						



GENERAL INFORMATION: GROUND PENETRATING RADAR															
Project:	Powell Cree	ek Solar Pro	oject		Date:	8/22/23									
AET Job No.:			5	r	Fest Date:	8/8/23									
Road:	CR 13			Sect	tion/Grid:	S04									
From:	From: CR F-12 To: SH 613														
	SUMMARY STATISTICS														
							Units:	inches							
		N	VB			S	SB	-							
Laye	r Average	CV	15th	Min.											
BP	5.4	16%	4.6	5.7	12%	5.1	4.4								
Base	Base 5.1 21% 4.1 3.4 4.5 28% 3.4 2.5														



GENERAL INFORMATION: GROUND PENETRATING RADAR															
Project:	Project:Powell Creek Solar ProjectDate:8/22/23														
AET Job No.:	P-0025335		5	r	Fest Date:	8/8/23									
Road:	CR 13			Sec	tion/Grid:	S05									
From:	CTH 613				To:	RR X-ing									
	SUMMARY STATISTICS														
			SUM	MARY ST	TATISTIC	S									
							Units:	inches							
		Ν	B	•		5	SB								
Layer	· Average	CV	15th	Min.	Average	CV	15th	Min.							
BP	3.8	12%	3.3	3.0	3.6	12%	3.2	3.0							
Base	6.2	19%	4.7	3.2	6.0	15%	5.1	4.2							

GENERAL INFORMATION: GROUND PENETRATING RADAR															
D	Project: Powell Creek Solar Project Date: 8/22/23														
Proje	ect:	Powell Cree	ek Solar Proje	ect		Date:	8/22/23								
AET Job N	No.:	P-0025335]	Fest Date:	8/8/23								
Roa	ad:	CR 13			Sect	tion/Grid:	S06								
Fro	om:	RR X-ing				To:	CTH E								
	SUMMARY STATISTICS														
								Units:	inches						
			NI	3			S	B							
L	ayer	Average	CV	15th	Min.	Average	CV	15th	Min.						
]	BP	6.7	11%	6.1	5.2	6.1	18%	5.1	3.9						
	Base	6.2	13%	5.3	4.6	5.6	22%	4.5	3.4						

Pre-construction Road Evaluation **Powell Creek Solar Project,** Putnam County, OH September 7, 2023 AET Report No. P-0025335A

Appendix D

Falling Weight Deflectometer Field Exploration and Testing FWD Data and Analysis Results Sheet

Appendix D Falling Weight Deflectometer Field Exploration and Testing Report No. P-0025335A

D.1 PAVEMENT TESTING

The pavement structural conditions at the site were evaluated nondestructively using Falling Weight Deflectometer (FWD). The testing locations appear in Figure 1, preceding Appendix A in this report.

D.2 EQUIPMENT DESCRIPTION

D.2.1 Dynatest 8000 FWD Test System

The FWD owned by AET is a Dynatest 8000 FWD Test System that consists of a Dynatest 8002 trailer and a third generation control and data acquisition unit developed in 2003, called the Dynatest Compact15, featuring fifteen (15) deflection channels. The new generation FWD, including a Compact15 System and a standard PC with the FwdWin field Program constitutes the newest, most sophisticated Dynatest FWD Test System, which fulfills or exceeds all requirements to meet ASTM-4694, ASTM D-4695 Standards. Figure C1 provides a view of this equipment.

Figure C1 Dynatest 8002 FWD Test System

The FWD imposes a dynamic impulse load onto the pavement surface through a load plate. Total pulse is an approximately half sine shape with a total duration typically between 25 to 30 ms. The FWD is capable of applying a variety of loads to the pavement ranging from 1,500 lbf (7 kN) to 27,000 ibf (120 kN) by dropping a variable weight mass from different heights to a standard, 11.8-inch (300-mm) diameter rigid plate.

The drop weights and the buffers are constructed so that the falling weight buffer subassembly may be quickly and conveniently changed between falling masses of 440 lbm (200 kg) for highways and 770 lbm (350 kg) for airports. With the 440 lbm (200 kg) package for highways three drop heights are used with the target load of 6,000 lbf (27 kN) at drop height 1, 9,000 lbf (40 kN) at drop height 2, and 12,000 lbf at drop height 3 (53 kN). The drop sequence consists of two seating drops from drop height 3 and 2 repeat measurements at drop height 1 and 1 measurement at drop height 2 for flexible pavements and 2 repeat measurements at drop height 3 for rigid pavements. The data from the seating drops is not stored.

The FWD is equipped with a load cell to measure the applied forces and nine geophones or deflectors to measure deflections up to 100 mils (2.5 mm). The load cell is capable of accurately measuring the force that is applied perpendicular to the loading plate with a resolution of 0.15 psi (1 kPa) or better. The force is expressed in terms of pressure, as a function of loading plate size.

Nine deflectors at the offsets listed in the following table in the Long Term Performance Program (LTPP) configuration are capable of measuring electronically discrete deflections per test, together with nine (9) separate deflection measuring channels for recording of the data. One (1) of the deflectors measures the deflection of the pavement surface through the center of the loading plate, while seven (7) deflectors are capable of being positioned behind the loading plate along the housing bar, up to a distance of 5 ft (2.5 m) from the center of the loading plate and one (1) being positioned in front of the loading plate along the bar.

Deflector	D1	D2	D3	D4	D5	D6	D7	D8	D9
Offset (in.)	0	8	12	18	24	36	48	60	72

Field testing is performed in accordance with the standard ASTM procedures as described in ASTM D 4695-96, "Standard Guide for General Pavement Deflection Measurements" and the calibration of our equipment is verified each year at the Long Term Pavement Performance Calibration Center in Maplewood, MN.

D.2.2 Linear Distance and Spatial Reference System

Distance measuring instrument (DMI) is a trailer mounted two phase encoder system. When DMI is connected to the Compact15 it provides for automatic display and recording distance information in both English and metric units with a 1 foot (0.3 meters) resolution and four percent accuracy when calibrated using provided procedure in the Field Program.

Spatial reference system is a Trimble ProXH Global Positioning System (GPS) that consists of fully integrated receiver, antenna and battery unit with Trimble's new H-StarTM technology to provide subfoot (30 cm) post-processed accuracy. The External Patch antenna is added to the ProXH receiver for the position of the loading plate. The External Patch antenna can be conveniently elevated with the optional baseball cap to prevent any signal blockage.

D.2.3 Air and Pavement Temperature Measuring System

A temperature monitoring probe, for automatic recording of air temperature, is an electronic (integrated circuit) sensing element in a stainless steel probe. The probe mounts on the FWD unit in a special holder with air circulation and connects to the Compact15. A non-contact Infra-Red (IR) Temperature Transmitter, for automatic recording of pavement surface temperature only, features an integrated IR-detector and digital electronics in a weather proof enclosure. The IR transmitter mounts on the FWD unit in a special holder with air circulation and connects to the Compact15. Both probe and IR transmitter have a resolution of 0.9 °F (0.5 °C) and accuracy within $\pm 1.8^{\circ}$ F (1 °C) in the 0 to 158 °F (-18 to +70°C) range when calibrated using provided procedure.

D.2.4 Camera Monitoring System

A battery operated independent DC-1908E multi-functional digital camera with a SD card is used for easy positioning of the loading plate or of the pavement surface condition at the testing locations.

D.3 SAMPLING METHODS

At the project level, the testing interval is set at 0.1 mi. (maximum) or 10 locations per uniform section in the Outside Wheel Path $(OWP) = 2.5 \text{ ft} \pm 0.25 \text{ ft} (0.76 \text{ m} \pm 0.08 \text{ m})$ for nominal 12 ft (3.7 m) wide lanes. Where a divided roadbed exists, surveys will be taken in both directions if the project will include improvements in both directions. If there is more than one lane in one direction the surveys will be taken in the outer driving lane (truck lane) versus the passing lane of the highway. FWD tests are performed at a constant lateral offset down the test section.

At the network level, FWD tests on 20% mileage or three tests per mile are set with two deflection basins collected at only one load level, without statistically compromising the quality of the data collected. If FWD tests are for the in situ characterization of material stress sensitivity FWD data will be collected at multiple load levels.

D.4 QUALITY CONTROL (QC) AND QUALITY ASSURANCE (QA)

Beside the annual reference calibration the relative calibration of the FWD deflection sensors is conducted monthly but not to exceed 6 weeks during the months in which the FWD unit is continually testing. The DMI is also calibrated monthly by driving the vehicle over a known distance to calculate the distance scale factor. The accuracy of the FWD air temperature and infra-red (IR) sensors are checked on a monthly basis or more frequently if the FWD operator observes "suspicious" temperature readings.

Some care in the placement of the load plate and sensors is taken by the survey crew, especially where the highway surface is rutted or cracked to ensure that the load plate lays on a flat surface and that the load plate and all geophones lie on the same side of any visible cracks. Liberal use of comments placed in the FWD data file at the time of data collection is required. Comments pertaining to proximity to reference markers, bridge abutments, patches, cracks, etc., are all important documentation for the individual evaluating the data.

Scheduled preventive maintenance ensures proper equipment operation and helps identify potential problems that can be corrected to avoid poor quality or missing data that results if the equipment malfunctions while on site. The routine and major maintenance procedures established by the LTPP are adopted and any maintenance has been done at the end of the day after the testing is complete and become part of the routine performed at the end of each test/travel day and on days when no other work is scheduled.

D.5 DATA ANALYSIS METHODS

D.5.1 Inputs

The two-way AADT and HCADT are required to calculate the ESALs. The state average truck percent and truck type distribution are used when HCADT is not provided. The as-built pavement information (layer type, thickness, and construction year) are required and if not provided, GPR and/or coring and boring is needed.

Appendix D Falling Weight Deflectometer Field Exploration and Testing Report No. P-0025335A

D.5.2 Adjustments

Temperature adjustment to the deflections measured on bituminous pavements is determined from the temperature predicted at the middle depth of the pavement using the LTPP BELLS3 model that uses the pavement surface temperature and previous day mean air temperature. The predicted middle depth temperature and the standard temperature of 80 degrees Fahrenheit are used to calculate the temperature adjustment factor for deflection data analysis. Seasonal adjustment developed by Mn/DOT is also used.

D.5.3 Methods

For bituminous pavements, the deflection data were analyzed using the he American Association of State Highway and Transportation Officials' (AASHTO) method for determining the in-place (effective) subgrade and pavement strength and the Asphalt Institute method for determining allowable axle loads for a roadway. The Asphalt Institute method also uses the allowable deflection method for estimating Seasonal Load Capacity and Required Overlay, as described in the Asphalt Institute publication "Manual Series No. 17 Asphalt Overlays and Pavement Rehabilitation".

For gravel roads, the deflection data were analyzed using the American Association of State Highway and Transportation Officials' (AASHTO) method for determining the in-place (effective) subgrade and pavement strength, as well as allowable axle loads for a roadway as in the AASHTO Guide for Design of Pavement Structures, 1993.

For concrete pavements, the deflection data were analyzed using the FAA methods for determining the modulus of subgrade reaction (k-value), effective elastic modulus of concrete slabs, load transfer efficiency (LTE) on approach and leave slabs of a joint, slab support conditions (void analysis) and impulse stiffness modulus ratio (durability analysis) as in the FAA AC 150/5370-11A, Use of Nondestructive Testing Devices in the Evaluation of Airport Pavement, 2004.

D.6 TEST LIMITATIONS

D.6.1 Test Methods

The data derived through the testing program have been used to develop our opinions about the pavement conditions at your site. However, because no testing program can reveal totally what is in the subsurface, conditions between test locations and at other times, may differ from conditions described in this report. The testing we conducted identified pavement conditions only at those points where we measured pavement surface temperature, deflections, and observed pavement surface conditions. Depending on the sampling methods and sampling frequency, every location may not be tested, and some anomalies which are present in the pavement may not be noted on the testing results. If conditions encountered during construction differ from those indicated by our testing, it may be necessary to alter our conclusions and recommendations, or to modify construction procedures, and the cost of construction may be affected.

D.6.2 Test Standards

Pavement testing is done in general conformance with the described procedures. Compliance with any other standards referenced within the specified standard is neither inferred nor implied.

D.7 SUPPORTING TEST METHODS

D.7.1 GSSI Ground Penetrating Radar (GPR)

If the as-built pavement layer thicknesses are not available the thickness data are collected using a bumper-mounted, air-coupled 2-GHz radar unit from GSSI (RoadScan system) that consists of a SIR-20 dual channel data acquisition system, wheel-mounted DMI, ProXH GPS, air-launched (horn) antenna, horn antenna vehicle mounting kit, RADAN software with the Road Structure Module, and system accessories. The system provides continuous data at 1-ft spacing while traveling at highway speed.

D.7.2 Soil Boring/Coring Field Exploration

If both pavement thicknesses and subgrade soil types and conditions are desired the shallow coring/boring and sampling is used. The limited number of coring/boring is necessary to verify the GPR layer thickness data.

D.7.3 Pavement Surface Condition Survey

The type and severity of pavement distress influence the deflection response for a pavement. Therefore, FWD operators record any distress located from about 1 ft (0.3 m) in front of deflector D8 to about 3 ft (0.9 m) behind the load plate. This information is recorded in the FWD file using the comment line in the field program immediately following the test.

550 Cleveland Avenue North St. Paul, Minnesota 55114 Phone: (651) 659-9001 Fax: (651) 659-1379

Prev. Day's Avg. Air Temp.: 70 °F Total AC: 3.1 in. Daily ESALs: 6.0 PCI: 26 Haul ESALs: 0 Soil Type: P Draught Adjustment Factor: 1.00 Seasonal Correction Factor: 1.20 Design Period: 10 Years Projection Factor: 1.1 Growth Factor: 10.46 10-year Design ESALs: 22,911 Design Period: 20 Years Projection Factor: 1.2 Growth Factor: 22.02 20-year Design ESALs: 48,218 36.5

AET Project No. P-0025335 County: Putnam Test Date: Aug 8, 2023 Section: S01A Roadway: CR 13 From: SH 15 To: 0.26 Mi S of CR G-12

	-		tor: 1.00 tor: 1.20							Factor: 2 Design E		8,218								
Station	. D	T :	Air °F	B :4 0F	Land	D1	D2	D3	D4	D4	D6	D7	D8	D9	Effectiv Mr ksi	e Values SN inches	Overlay Thickness inches	Spring Capacity tons/axle	Comments	
0.0	гор	Time	All F	ың ғ	Loau	DI	D2	05	D4	D4	D0	D 7	Do	D9	KSI	menes	menes	tons/axie		ST
0.0	1	11:45	80.6	94.2	5982	29.3	22.6	17.6	11.4	7.2	3.0	1.9	1.6	1.3	5.9	1.6	0.8	9.7		51
0.0	2	11:45	80.6	94.2	5982	29.3	22.0	17.0	11.4	7.1	3.0	1.9	1.6	1.3	5.9	1.6	0.7	10.0		
0.0	3	11:45	80.6	94.2	9022	44.2	34.5	27.2	18.1	11.6	4.8	3.0	2.6	2.2	5.6	1.6	0.8	9.7		
0.0	4	11:45	80.6	94.2	9033	45.1	35.6	28.0	18.7	12.0	4.8	3.0	2.6	2.2	5.5	1.6	0.8	9.5		
0.1	2	11:47	80.6	96.4	6004	30.4	23.8	18.4	11.9	7.4	3.3	2.0	1.7	1.6	5.4	1.6	0.9	9.5		
0.1	3	11:47	80.6	96.4	9132	47.2	36.9	29.1	19.3	12.3	5.4	3.3	2.8	2.5	5.0	1.6	0.9	9.3		
0.1	4	11:47	80.6	96.4	9142	48.2	37.9	30.0	19.9	12.6	5.4	3.3	2.8	2.6	5.0	1.6	1.0	9.1		
0.2	1	11:48	80.6	96.2	5971	35.9	27.9	20.6	11.9	6.9	2.9	1.9	1.6	1.4	6.1	1.3	1.3	8.1		
0.2	2	11:48	80.6	96.2	5982	34.4	27.0	20.0	11.7	6.7	2.9	2.0	1.6	1.4	6.0	1.4	1.2	8.4		
0.2	3	11:48	80.6	96.2	9186	51.4	40.8	31.1	19.0	11.3	4.8	3.2	2.7	2.3	5.6	1.4	1.1	8.7		
0.2	4	11:48	80.6	96.2	9197	53.1	42.0	32.1	19.6	11.4	4.8	3.2	2.7	2.3	5.7	1.4	1.2	8.4		
0.3	1	11:49	80.6	90.4	5927	19.1	15.1	12.3	9.1	6.8	4.1	2.6	1.9	1.4	4.2	2.6	0.0	13.8		
0.3	2	11:49	80.6	90.4	5938	18.5	14.7	12.0	8.9	6.7	4.1	2.6	1.9	1.5	4.3	2.7	0.0	14.2		
0.3	3	11:49	80.6	90.4	9077	30.1	23.8	19.7	14.6	11.0	6.6	4.2	2.9	2.3	4.1	2.6	0.0	13.5		
0.3	4	11:49	80.6	90.4	9088	30.6	24.4	20.2	15.0	11.3	6.7	4.3	3.0	2.3	4.0	2.6	0.0	13.3		
0.4	1	11:51	80.6	94.6	6004	45.3	35.1	26.8	16.5	9.0	2.9	2.0	2.1	1.5	6.1	1.1	1.7	6.5		
0.4	2	11:51	80.6	94.6	6015	43.7	34.0	26.0	16.1	9.0	3.0	2.0	2.0	1.5	5.9	1.2	1.7	6.8		
0.4	3	11:51	80.6	94.6	9033	66.4	52.1	40.8	26.0	15.0	4.7	3.1	3.2	2.5	5.6	1.2	1.7	6.7		
0.4	4	11:51	80.6	94.6	9000	68.1	53.7	42.2	26.8	15.3	4.6	3.1	3.3	2.5	5.7	1.1	1.8	6.5		
0.5	1	11:52	82.4	99.6	5916	42.1	32.6	24.3	12.7	7.4	2.7	1.8	1.7	1.5	6.5	1.2	1.5	7.0		
0.5	2	11:52	82.4	99.6	5971	40.9	31.9	23.8	12.6	7.4	2.8	2.0	1.7	1.5	6.3	1.2	1.5	7.3		
0.5	3	11:52	82.4	99.6	8836	59.1	46.7	35.8	20.4	12.3	4.3	2.8	2.7	2.4	6.1	1.2	1.5	7.4		
0.5	4	11:52	82.4	99.6	8869	61.6	48.5	37.4	21.1	12.6	4.3	2.9	2.7	2.4	6.1	1.2	1.5	7.2		
0.6	1	11:53	82.4	97.3	5960	49.8	35.3	26.7	14.4	7.2	2.1	1.8	1.6	1.5	8.5	1.0	1.5	6.1		
0.6	2	11:53	82.4	97.3	5982	48.2	34.3	26.1	14.2	7.2	2.2	1.8	1.6	1.6	8.0	1.0	1.6	6.3		
0.6	3	11:53	82.4	97.3	8847	70.0	51.0	39.2	23.1	12.0	3.3	2.7	2.6	2.5	7.9	1.0	1.5	6.4		
0.6	4	11:53	82.4	97.3	8847	73.0	53.1	40.9	24.0	12.2	3.2	2.7	2.6	2.4	8.1	1.0	1.6	6.1		

550 Cleveland Avenue North St. Paul, Minnesota 55114 Phone: (651) 659-9001 Fax: (651) 659-1379 AET Project No. P-0025335 County: Putnam Test Date: Aug 8, 2023 Section: S01B Roadway: CR 13 From: 0.26 Mi S of CR G-12 To: CR G-12

Prev. Day's Avg. Air Temp.: 70 °F Total AC: 7.1 in. Daily ESALs: 6.0 PCI: 92 Haul ESALs: 0 Soil Type: P Draught Adjustment Factor: 1.00 Seasonal Correction Factor: 1.20

Station	Drop	Time	Air °F	Bit °F	Load	D1	D2	D3	D4	D4	D6	D7	D8	D9	Effectiv Mr ksi	ve Values SN inches		Spring Capacity tons/axle	Comments
				-															
0.7	1	11:54	82.4	101.1	6015	26.3	19.8	15.7	11.1	8.1	4.2	2.3	1.6	1.3	4.3	2.6	0.0	9.2	
0.7	2	11:54	82.4	101.1	6004	25.2	19.1	15.2	10.8	8.0	4.1	2.3	1.6	1.3	4.3	2.6	0.0	9.6	
0.7	3	11:54	82.4	101.1	9317	41.0	31.2	25.1	18.1	13.4	6.9	3.8	2.6	2.2	4.0	2.6	0.0	9.2	
0.7	4	11:54	82.4	101.1	9307	42.0	31.9	25.7	18.5	13.8	6.9	3.7	2.7	2.3	4.0	2.6	0.0	9.0	
0.8	1	11:55	82.4	101.5	5993	19.9	15.9	13.2	9.4	6.7	3.4	2.0	1.5	1.3	5.1	2.9	0.0	11.8	
0.8	2	11:55	82.4	101.5	6015	19.6	15.8	13.1	9.4	6.7	3.4	2.0	1.5	1.3	5.2	3.0	0.0	12.0	
0.8	3	11:55	82.4	101.5	9339	32.1	26.0	21.8	15.6	11.0	5.6	3.2	2.5	2.2	4.9	2.9	0.0	11.4	
0.8	4	11:55	82.4	101.5	9339	32.3	26.2	22.0	15.8	11.2	5.7	3.2	2.5	2.2	4.9	2.9	0.0	11.4	
0.9	1	11:56	82.4	99.9	5960	25.8	20.8	16.9	11.9	8.1	3.6	2.1	1.5	1.4	4.8	2.5	0.0	9.3	
0.9	2	11:56	82.4	99.9	6037	25.5	20.6	16.8	11.8	8.1	3.7	2.1	1.6	1.4	4.8	2.5	0.0	9.5	
0.9	3	11:56	82.4	99.9	9197	41.3	33.6	27.6	19.7	13.6	6.2	3.4	2.7	2.5	4.4	2.5	0.0	9.0	
0.9	4	11:56	82.4	99.9	9186	42.1	34.3	28.2	20.1	13.8	6.2	3.4	2.7	2.5	4.4	2.5	0.0	8.8	
0.9																			CH13,IC,G12,NB"

American Engineering Testing, Inc. 550 Cleveland Avenue North St. Paul, Minnesota 55114 Phone: (651) 659-9001

Prev. Day's Avg. Air Temp.: 70 °F	Design Period: 10 Years
Total AC: 7.5 in.	Projection Factor: 1.1
Daily ESALs: 6.0	Growth Factor: 10.46
PCI: 93	10-year Design ESALs: 22,911
Haul ESALs: 0	Design Period: 20 Years
Soil Type: P	Projection Factor: 1.2
Draught Adjustment Factor: 1.00	Growth Factor: 22.02
Seasonal Correction Factor: 1.20	20-year Design ESALs: 48,218

Fax: (651) 659-1379

Effective Values Overlay Spring Mr SN Thickness Capacity Station Drop Time Air °F Bit °F Load D1 D2 D3 D4 D4 D6 D7 D8 D9 ksi inches inches tons/axle Comments CH13,IC,G12,NB" 0.9 1.0 11:58 80.6 101.3 6015 16.7 13.7 9.7 3.7 2.3 0.0 11.4 20.8 6.9 1.7 4.8 2.8 1.4 1 11:58 80.6 101.3 6037 20.3 16.4 13.4 9.5 3.7 2.3 1.7 1.4 4.8 2.8 0.0 11.7 1.02 6.8 1.03 11:58 80.6 101.3 9383 32.4 26.2 21.7 15.6 11.2 6.0 3.8 2.8 2.4 4.6 2.8 0.0 11.4 3.8 2.8 1.0 4 11:58 80.6 101.3 9361 32.9 26.7 22.1 15.9 11.4 6.1 2.4 4.6 2.8 0.0 11.2 2.2 1.0 1 11:59 80.6 101.3 5971 14.7 11.9 9.8 7.5 5.8 3.3 1.6 1.2 5.3 3.5 0.0 15.2 6004 14.5 9.7 7.5 3.4 2.2 1.6 5.2 15.4 1.0 2 11:59 80.6 101.3 11.7 5.8 1.2 3.5 0.0 1.0 3 11:59 80.6 101.3 9482 23.7 19.3 16.1 12.4 9.6 5.6 3.5 2.6 2.0 5.0 3.5 0.0 15.0 1.0 4 11:59 80.6 101.3 9471 23.9 19.5 16.2 12.5 9.6 5.6 3.5 2.6 2.0 5.0 3.5 0.0 14.8 2.2 1.1 1 12:00 82.4 100.9 5982 20.3 15.9 13.4 9.8 7.0 3.6 1.6 1.4 4.9 2.8 0.0 11.6 2.2 1.4 4.9 1.1 12:00 82.4 100.9 5993 19.9 15.7 13.1 9.6 6.9 3.6 1.6 2.8 0.0 11.8 2 12:00 82.4 100.9 9328 32.2 25.7 21.7 16.0 11.5 6.0 3.6 2.7 2.3 4.6 2.8 0.0 11.4 1.1 4.5 4.7 1.1 4 12:00 82.4 100.9 9317 32.6 26.0 22.0 16.2 11.7 6.1 3.7 2.7 2.3 2.8 0.0 11.2 2.2 2.4 1.2 1 12:01 82.4 100.5 6004 25.0 19.7 15.8 10.9 7.4 3.8 1.6 1.4 0.0 9.6 7.3 4.7 82.4 10.7 2.2 1.3 2.5 0.0 9.8 1.2 12:01 100.5 6026 24.5 19.3 15.5 3.7 1.6 2 100.5 9307 39.3 25.3 17.6 12.2 6.2 3.6 4.4 2.5 9.5 1.2 12:01 82.4 31.2 2.6 2.2 0.0 1.2 12:01 82.4 100.5 9296 40.0 31.9 25.9 18.1 12.4 6.3 3.6 2.6 2.3 4.4 2.4 0.0 9.3 4 1.3 1 12:02 82.4 100.4 6004 15.7 13.0 11.1 8.2 5.8 3.2 2.0 1.5 1.2 5.5 5.5 3.3 0.0 14.4 6037 5.7 3.3 2.1 1.2 3.3 14.5 1.3 82.4 100.4 15.7 12.9 8.2 12:02 10.9 1.5 0.0 2 5.2 1.3 12:02 82.4 100.4 9449 25.5 18.1 13.5 9.5 5.4 3.4 2.4 2.0 3.2 0.0 14.0 21.1 3 1.3 4 12:02 82.4 100.4 9438 25.6 21.3 18.3 13.6 9.6 5.4 3.4 2.5 2.0 5.1 3.2 0.0 14.0 1.4 1 12:03 82.4 103.8 6004 16.4 13.3 10.7 7.8 5.7 3.2 2.0 1.5 1.2 5.5 3.2 0.0 14.1 5.6 1.4 2 12:03 82.4 103.8 6015 16.1 13.1 10.6 7.7 5.6 3.2 2.1 1.5 1.3 3.2 0.0 14.3 1.4 82.4 9482 25.6 17.2 12.6 9.3 5.3 3.5 2.6 2.1 5.3 3.3 14.2 12:03 103.8 20.9 0.0 3 1.4 12:03 82.4 103.8 9482 26.0 21.2 17.4 12.9 9.4 5.3 3.5 2.6 2.1 5.2 3.2 0.0 14.0 1.4 12:04 80.6 101.9 5982 14.2 11.4 9.6 7.2 5.4 3.1 2.0 1.4 1.1 5.7 3.5 0.0 15.7 1 1.4 2 12:04 80.6 101.9 6037 14.0 11.3 9.5 7.2 5.4 3.1 2.0 1.4 1.1 5.7 3.5 0.0 16.0 1.4 12:04 80.6 101.9 9460 22.5 18.2 15.5 11.8 8.9 5.1 3.2 2.3 1.9 5.5 3.5 0.0 15.7 3 1.4 12:04 80.6 101.9 9460 22.6 18.4 15.7 11.9 9.0 5.2 3.2 2.3 1.9 5.4 3.5 0.0 15.6 4 1.5 CH13,IC,G,NB"

American Engineering Testing, Inc. 550 Cleveland Avenue North

St. Paul, Minnesota 55114 Phone: (651) 659-9001 Fax: (651) 659-1379 AET Project No. P-0025335 County: Putnam Test Date: Aug 8, 2023 Section: S03 Roadway: CR 13 From: CR G To: CR F-12

Prev. Day's Avg. Air Temp.: 70 °F Total AC: 4.4 in. Daily ESALs: 6.0 PCI: 22 Haul ESALs: 0 Soil Type: P Draught Adjustment Factor: 1.00 Seasonal Correction Factor: 1.20

															Effectiv Mr	e Values SN	Overlay Thickness	Spring Capacity	
Station	Drop	Time	Air °F	Bit °F	Load	D1	D2	D3	D4	D4	D6	D7	D8	D9	ksi	inches	inches	tons/axle	Comments
1.5																			CH13,IC,G,NB"
1.5	1	12:05	80.6	101.4	5741	62.4	50.1	37.1	21.1	10.4	2.9	1.7	1.8	1.8	5.9	1.2	1.7	4.8	
1.5	2	12:05	80.6	101.4	6091	65.7	52.8	39.5	22.7	11.4	3.3	2.0	2.0	1.9	5.4	1.2	1.8	4.8	
1.5	3	12:05	80.6	101.4	8355	87.1	70.6	53.7	31.9	16.8	4.7	2.8	2.8	2.7	5.2	1.2	1.8	4.9	
1.5	4	12:05	80.6	101.4	8268	89.2	72.2	54.8	32.5	16.7	4.6	2.8	2.9	2.7	5.3	1.2	1.8	4.8	
1.6	1	12:06	80.6	99.8	5993	71.1	55.4	41.9	22.9	10.7	2.2	1.9	2.1	1.9	8.0	1.1	1.4	4.4	
1.6	2	12:06	80.6	99.8	5960	68.9	54.1	41.1	22.6	10.7	2.4	1.9	2.1	1.9	7.4	1.1	1.5	4.5	
1.6	3	12:06	80.6	99.8	8618	95.7	75.7	58.8	34.1	16.6	3.6	2.9	3.3	2.9	7.0	1.1	1.5	4.7	
1.6	4	12:06	80.6	99.8	8596	98.5	77.7	60.2	34.7	16.9	3.5	2.9	3.3	2.9	7.3	1.1	1.5	4.5	
1.7	1	12:08	80.6	98.4	5971	61.1	47.2	34.5	18.4	8.9	3.1	2.1	1.9	1.6	5.6	1.2	1.7	5.0	
1.7	2	12:08	80.6	98.4	6004	59.6	46.2	33.8	18.3	9.0	3.2	2.1	1.9	1.7	5.5	1.2	1.7	5.1	
1.7	3	12:08	80.6	98.4	8869	84.5	66.6	50.4	28.8	15.0	5.0	3.2	3.0	2.6	5.2	1.3	1.7	5.3	
1.7	4	12:08	80.6	98.4	8836	87.0	68.8	52.0	29.5	15.1	4.9	3.2	3.0	2.7	5.3	1.2	1.7	5.2	
1.8	1	12:09	80.6	102.2	5654	19.5	14.6	10.6	5.8	3.2	1.7	1.3	1.3	1.0	9.7	2.0	0.0	13.9	
1.8	2	12:09	80.6	102.2	5698	19.2	14.3	10.3	5.7	3.1	1.8	1.3	1.2	1.0	9.5	2.1	0.0	14.3	
1.8	3	12:09	80.6	102.2	8902	31.8	24.2	17.8	10.1	5.7	2.7	2.2	2.0	1.9	9.6	2.0	0.0	13.5	
1.8	4	12:09	80.6	102.2	8935	32.0	24.5	18.1	10.3	5.9	2.7	2.2	2.0	1.9	9.7	2.0	0.0	13.5	
1.9	1	12:11	80.6	99.5	5763	60.8	47.2	35.9	20.4	10.6	3.3	2.0	2.0	1.8	5.2	1.2	1.8	4.9	
1.9	2	12:11	80.6	99.5	5840	60.7	47.5	35.9	20.5	10.8	3.5	2.1	2.1	1.9	5.0	1.2	1.9	4.9	
1.9	3	12:11	80.6	99.5	8202	81.7	64.8	49.4	29.3	15.8	5.0	3.1	2.9	2.6	4.9	1.2	1.8	5.1	
1.9	4	12:11	80.6	99.5	8202	83.2	66.1	50.7	29.9	15.9	4.9	3.2	2.8	2.5	5.0	1.2	1.8	5.0	
2.0	1	12:12	82.4	98.5	5971	74.7	59.2	46.6	28.9	16.4	4.1	1.9	2.1	2.1	4.3	1.1	2.3	4.1	
2.0	2	12:12	82.4	98.5	5905	73.5	58.5	46.0	28.7	16.3	4.2	1.9	2.1	2.0	4.2	1.1	2.4	4.1	
2.0	3	12:12	82.4	98.5	8388	99.5	80.5	63.8	41.2	24.2	6.5	2.9	3.3	3.1	3.8	1.2	2.4	4.3	
2.0	4	12:12	82.4	98.5	8322	100.5	81.3	64.4	41.6	24.3	6.3	2.8	3.2	3.1	3.9	1.2	2.4	4.2	
2.1	1	12:13	82.4	100.5	6048	31.1	23.7	18.6	11.6	7.4	3.7	2.5	2.0	1.6	4.8	1.9	0.3	9.5	
2.1	2	12:13	82.4	100.5	6004	30.3	23.1	18.2	11.4	7.3	3.7	2.5	2.0	1.6	4.8	1.9	0.3	9.7	
2.1	3	12:13	82.4	100.5	9197	45.2	35.0	28.1	18.2	11.9	5.9	4.0	3.1	2.7	4.6	2.0	0.2	9.9	
2.1	4	12:13	82.4	100.5	9219	46.3	35.9	28.8	18.5	12.0	5.9	4.0	3.2	2.7	4.6	2.0	0.3	9.7	
2.2	1	12:14	82.4	101.3	6004	31.4	24.7	19.6	12.7	8.3	3.7	2.3	1.8	1.5	4.7	1.9	0.4	9.4	
2.2	2	12:14	82.4	101.3	6037	30.6	24.1	19.1	12.4	8.1	3.7	2.3	1.8	1.5	4.8	1.9	0.3	9.6	
2.2	3	12:14	82.4	101.3	9077	45.8	36.3	29.3	19.6	13.1	5.9	3.6	2.9	2.5	4.5	2.0	0.3	9.7	
2.2	4	12:14	82.4	101.3	9088	47.3	37.5	30.3	20.2	13.5	5.9	3.6	2.9	2.5	4.5	1.9	0.4	9.4	
2.2																			CH13,IC,F12,NB"

550 Cleveland Avenue North St. Paul, Minnesota 55114 Phone: (651) 659-9001 Fax: (651) 659-1379 AET Project No. P-0025335 County: Putnam Test Date: Aug 8, 2023 Section: S04 Roadway: CR 13 From: CR F-12 To: SH 613

Prev. Day's Avg. Air Temp.: 70 °F Total AC: 5.4 in. Daily ESALs: 6.0 PCI: 37 Haul ESALs: 0 Soil Type: P Draught Adjustment Factor: 1.00 Seasonal Correction Factor: 1.20

Station Drop Time Air °F Bit °F Load D1 D2 D3 D4 D4 D6 D7 D8 D9 ksi inches finches tons/axle Camments 22 2 1 1215 82.4 102.9 5927 43.6 33.2 25.3 15.5 9.2 3.6 2.0 1.7 1.4 4.9 1.4 1.5 6.9 7.0 2.2 2 12:15 82.4 102.9 6015 43.3 33.0 25.2 15.6 9.5 3.7 2.0 1.8 1.5 4.8 1.4 1.5 7.0 2.2 3 12:15 82.4 102.9 8197 65.0 49.9 3.6 2.0 1.8 1.5 4.8 1.4 1.6 6.6 9 9.2 2.4 4.6 1.4 1.6 6.6 9.7 9.7 2.3 1 12:16 84.2 100.8 6059																Effectiv	e Values	Overlay	Spring	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $																Mr	SN	Thickness	Capacity	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Station	Drop	Time	Air °F	Bit °F	Load	D1	D2	D3	D4	D4	D6	D7	D8	D9	ksi	inches	inches	tons/axle	Comments
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2.2																			CH13,IC,F12,NB"
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2.2	1	12:15	82.4	102.9	5927	43.6	33.2	25.3	15.5	9.2	3.6	2.0	1.7	1.4	4.9	1.4	1.5	6.9	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2.2	2	12:15	82.4	102.9	6015	43.3	33.0	25.2	15.6	9.5	3.7	2.0	1.8	1.5	4.8	1.4	1.5	7.0	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2.2	3	12:15	82.4	102.9	8847	65.0	49.9	38.5	24.3	14.8	5.7	3.2	2.7	2.4	4.6	1.4	1.6	6.9	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2.2	4	12:15	82.4	102.9	8793	66.6	51.2	39.5	24.9	15.0	5.6	3.1	2.8	2.4	4.6	1.4	1.6	6.7	
2.3 3 12:16 84.2 100.8 9142 45.9 35.5 28.3 18.4 11.5 4.8 2.8 2.4 2.2 5.6 1.7 0.5 9.7 2.3 4 12:16 84.2 100.8 9186 47.4 36.7 29.3 19.0 11.8 4.8 2.8 2.4 2.3 5.6 1.7 0.6 9.5 2.4 1 12:17 84.2 100.2 5949 2.8.0 2.6 18.9 13.0 9.2 4.3 2.4 1.6 1.5 4.1 2.0 0.3 10.2 2.4 2 12:17 84.2 100.2 596 2.7 18.5 13.0 9.2 4.3 2.4 1.6 1.5 4.1 2.0 0.3 10.1 2.4 3 12:17 84.2 100.2 903 43.1 35.4 2.8 2.4 1.6 1.5 4.1 2.1 0.3 10.1 2.4 4 12:17 84.2 100.2 9066 44.2 36.3	2.3	1	12:16	84.2	100.8	6037	30.5	23.4	18.4	11.6	7.1	3.0	1.9	1.5	1.3	5.9	1.7	0.5	9.7	
2.3 4 12:16 84.2 100.8 9186 47.4 36.7 29.3 19.0 11.8 4.8 2.8 2.4 2.3 5.6 1.7 0.6 9.5 2.4 1 12:17 84.2 100.2 5949 28.0 2.6 18.9 13.2 9.4 4.3 2.4 1.6 1.5 4.1 2.0 0.3 10.2 2.4 2 12:17 84.2 100.2 596 2.7.4 2.2 18.5 13.0 9.4 4.3 2.4 1.6 1.5 4.1 2.0 0.3 10.2 2.4 2 12:17 84.2 100.2 903 47.4 2.8 2.1 15.3 7.1 3.8 2.7 2.4 3.8 2.1 0.3 10.1 2.4 4 12:17 84.2 100.2 906 44.2 36.3 30.6 2.0 15.7 7.2 3.7 2.8 2.4 3.7 2.1 0.4 9.9 2.4 1 12:19 84.2 100.7 <t< td=""><td>2.3</td><td>2</td><td>12:16</td><td>84.2</td><td>100.8</td><td>6059</td><td>29.7</td><td>22.8</td><td>18.0</td><td>11.4</td><td>7.0</td><td>3.1</td><td>1.9</td><td>1.5</td><td>1.3</td><td>5.8</td><td>1.7</td><td>0.4</td><td>10.0</td><td></td></t<>	2.3	2	12:16	84.2	100.8	6059	29.7	22.8	18.0	11.4	7.0	3.1	1.9	1.5	1.3	5.8	1.7	0.4	10.0	
2.4 1 12:17 84.2 100.2 5949 28.0 22.6 18.9 13.2 9.4 4.3 2.4 1.6 1.5 4.1 2.0 0.3 10.2 2.4 2 12:17 84.2 100.2 5960 27.4 22.2 18.5 13.0 9.2 4.3 2.4 1.6 1.5 4.1 2.1 0.2 10.4 2.4 3 12:17 84.2 100.2 9033 43.1 35.4 29.8 21.4 15.3 7.1 3.8 2.7 2.4 3.8 2.1 0.3 10.1 2.4 4 12:17 84.2 100.2 9033 43.1 35.4 29.8 21.4 15.3 7.1 3.8 2.7 2.4 3.8 2.1 0.3 10.1 2.4 4 12:17 84.2 100.2 9066 44.2 3.3 3.6 2.1 1.2 1.5 1.5 8.5 1.0 1.4 5.2 2.4 1 12:19 84.2 100.7 615	2.3	3	12:16	84.2	100.8	9142	45.9	35.5	28.3	18.4	11.5	4.8	2.8	2.4	2.2	5.6	1.7	0.5	9.7	
2.4 2 12:17 84.2 100.2 5960 27.4 22.2 18.5 13.0 9.2 4.3 2.4 1.6 1.5 4.1 2.1 0.2 10.4 2.4 3 12:17 84.2 100.2 9033 43.1 35.4 29.8 21.4 15.3 7.1 3.8 2.7 2.4 3.8 2.1 0.3 10.1 2.4 4 12:17 84.2 100.2 9066 44.2 36.3 30.6 22.0 15.7 7.2 3.7 2.8 2.4 3.7 2.1 0.4 9.9 2.4 1 12:19 84.2 100.7 59.6 46.3 34.8 19.1 9.9 2.1 1.2 1.5 8.5 1.0 1.4 5.2 2.4 2 12:19 84.2 100.7 615 58.2 45.4 34.4 19.0 10.0 2.2 1.3 1.6 1.5 8.0 1.0 1.5 5.4 2.4 3 12:19 84.2 100.7 615	2.3	4	12:16	84.2	100.8	9186	47.4	36.7	29.3	19.0	11.8	4.8	2.8	2.4	2.3	5.6	1.7	0.6	9.5	
2.4 3 12:17 84.2 100.2 903 43.1 35.4 29.8 21.4 15.3 7.1 3.8 2.7 2.4 3.8 2.1 0.3 10.1 2.4 4 12:17 84.2 100.2 906 44.2 36.3 30.6 22.0 15.7 7.2 3.7 2.8 2.4 3.7 2.1 0.4 9.9 2.4 1 12:19 84.2 100.7 594 59.6 46.3 34.8 19.1 9.9 2.1 1.5 8.5 1.0 0.4 9.9 2.4 1 12:19 84.2 100.7 694 59.6 46.3 34.8 19.1 9.9 2.1 1.5 8.5 1.0 1.4 5.2 2.4 2 12:19 84.2 100.7 615 54.4 100.0 10.0 2.2 1.3 1.6 1.5 8.0 1.0 1.4 5.2 2.4 3 12:19 84.2 100.7 8803 84.4 66.8 51.5 30.0	2.4	1	12:17	84.2	100.2	5949	28.0	22.6	18.9	13.2	9.4	4.3	2.4	1.6	1.5	4.1	2.0	0.3	10.2	
2.4 4 12:17 84.2 100.2 906 44.2 36.3 30.6 22.0 15.7 7.2 3.7 2.8 2.4 3.7 2.1 0.4 9.9 2.4 1 12:19 84.2 100.7 5949 59.6 46.3 34.8 19.1 9.9 2.1 1.2 1.5 1.5 8.5 1.0 1.4 5.2 2.4 2 12:19 84.2 100.7 6015 58.2 45.6 34.4 19.0 10.0 2.2 1.3 1.6 1.5 8.0 1.0 1.5 5.4 2.4 3 12:19 84.2 100.7 8803 84.4 66.8 51.5 30.0 16.2 3.4 1.7 2.4 2.5 7.7 1.0 1.5 5.4	2.4	2	12:17	84.2	100.2	5960	27.4	22.2	18.5	13.0	9.2	4.3	2.4	1.6	1.5	4.1	2.1	0.2	10.4	
2.4 1 12:19 84.2 100.7 5949 59.6 46.3 34.8 19.1 9.9 2.1 1.2 1.5 1.5 8.5 1.0 1.4 5.2 2.4 2 12:19 84.2 100.7 6015 58.2 45.6 34.4 19.0 10.0 2.2 1.3 1.6 1.5 8.0 1.0 1.5 5.4 2.4 3 12:19 84.2 100.7 8803 84.4 66.8 51.5 30.0 16.2 3.4 1.7 2.4 2.5 7.7 1.0 1.5 5.4	2.4	3	12:17	84.2	100.2	9033	43.1	35.4	29.8	21.4	15.3	7.1	3.8	2.7	2.4	3.8	2.1	0.3	10.1	
2.4 2 12:19 84.2 100.7 6015 58.2 45.6 34.4 19.0 10.0 2.2 1.3 1.6 1.5 8.0 1.0 1.5 5.4 2.4 3 12:19 84.2 100.7 8803 84.4 66.8 51.5 30.0 16.2 3.4 1.7 2.4 2.5 7.7 1.0 1.5 5.4	2.4	4	12:17	84.2	100.2	9066	44.2	36.3	30.6	22.0	15.7	7.2	3.7	2.8	2.4	3.7	2.1	0.4	9.9	
2.4 3 12:19 84.2 100.7 8803 84.4 66.8 51.5 30.0 16.2 3.4 1.7 2.4 2.5 7.7 1.0 1.5 5.4	2.4	1	12:19	84.2	100.7	5949	59.6	46.3	34.8	19.1	9.9	2.1	1.2	1.5	1.5	8.5	1.0	1.4	5.2	
	2.4	2	12:19	84.2	100.7	6015	58.2	45.6	34.4	19.0	10.0	2.2	1.3	1.6	1.5	8.0	1.0	1.5	5.4	
2.4 4 12:19 84.2 100.7 8782 88.0 69.7 53.8 31.0 16.5 3.2 1.6 2.4 2.5 8.2 1.0 1.5 5.2	2.4	3	12:19	84.2	100.7	8803	84.4	66.8	51.5	30.0	16.2	3.4	1.7	2.4	2.5	7.7	1.0	1.5	5.4	
	2.4	4	12:19	84.2	100.7	8782	88.0	69.7	53.8	31.0	16.5	3.2	1.6	2.4	2.5	8.2	1.0	1.5	5.2	

American Engineering Testing, Inc. 550 Cleveland Avenue North

St. Paul, Minnesota 55114 Phone: (651) 659-9001 Fax: (651) 659-1379 AET Project No. P-0025335 County: Putnam Test Date: Aug 8, 2023 Section: S05 Roadway: CR 13 From: SH 613 To: RR X-ing

Prev. Day's Avg. Air Temp.: 70 °F Total AC: 3.8 in. Daily ESALs: 6.0 PCI: 66 Haul ESALs: 0 Soil Type: P Draught Adjustment Factor: 1.00 Seasonal Correction Factor: 1.20

Station Drop Time Air °F Bit °F Load D1 D2 D3 D4 D4 D6 D7 D8 D9 ksi inches inches tons/axia 2.5 1 12:21 84.2 102.5 5971 48.5 37.8 29.0 17.8 10.2 3.9 2.1 1.8 1.6 4.6 1.3 1.9 6.2 2.5 2 12:21 84.2 102.5 6004 47.1 36.8 28.4 17.5 10.3 3.9 2.2 1.8 1.6 4.6 1.3 1.9 6.2 2.5 3 12:21 84.2 102.5 8913 70.9 56.0 44.1 28.1 16.8 6.3 3.3 2.8 2.6 4.2 1.3 1.9 6.4 2.5 4 12:2.1 84.2 102.5 8913 70.9 56.0 44.1 28.1 16.8 6.3 3.3 2.8 2.6<	v
2.5 2 12.21 84.2 102.5 6004 47.1 36.8 28.4 17.5 10.3 3.9 2.2 1.8 1.6 4.5 1.3 1.8 6.5 2.5 3 12:21 84.2 102.5 8913 70.9 56.0 44.1 28.1 16.8 6.3 3.3 2.8 2.6 4.2 1.3 1.9 6.4 2.5 4 12.21 84.2 102.5 8891 73.3 58.1 45.8 29.1 17.4 6.3 3.3 2.8 2.6 4.2 1.3 1.9 6.4 2.5 4 12.21 84.2 102.5 8891 73.3 58.1 45.8 29.1 17.4 6.3 3.2 2.9 2.7 4.1 1.3 2.0 6.1 2.5 1 12.22 82.4 101.5 595.5 55.5 4.0 31.5 1.7 1.8 1.5 7.4 1.0 1.6 5.8 2.5 2 12.22 82.4 101.5 6015 54.0	e Comments
2.5 2 12:21 84.2 102.5 6004 47.1 36.8 28.4 17.5 10.3 3.9 2.2 1.8 1.6 4.5 1.3 1.8 6.5 2.5 3 12:21 84.2 102.5 8913 70.9 56.0 44.1 28.1 16.8 6.3 3.3 2.8 2.6 4.2 1.3 1.9 6.4 2.5 4 12:21 84.2 102.5 881 73.3 58.1 45.8 29.1 17.4 6.3 3.3 2.8 2.6 4.2 1.3 1.9 6.4 2.5 4 12:21 84.2 102.5 8891 73.3 58.1 45.8 29.1 17.4 6.3 3.2 2.9 2.7 4.1 1.3 2.0 6.1 2.5 1 12:22 82.4 101.5 595.5 55.5 7.0 31.5 1.7 8.9 2.3 1.6 1.7 1.5 7.4 1.0 1.6 5.8 2.5 2 12:22 82.4	
2.5 3 12:21 84.2 102.5 8913 70.9 56.0 44.1 28.1 16.8 6.3 3.3 2.8 2.6 4.2 1.3 1.9 6.4 2.5 4 12:21 84.2 102.5 8891 73.3 58.1 45.8 29.1 17.4 6.3 3.2 2.9 2.7 4.1 1.3 2.0 6.1 2.5 1 12:22 82.4 101.5 595 55.5 42.0 31.5 1.7 8.9 2.3 1.6 1.7 1.5 7.7 1.0 1.6 5.6 2.5 2 12:22 82.4 101.5 6015 54.0 41.1 31.0 17.6 9.0 2.4 1.7 1.8 1.5 7.4 1.0 1.6 5.8 2.5 2 12:22 82.4 101.5 6015 54.0 41.1 31.0 17.6 9.0 2.4 1.7 1.8 1.5 7.4 1.0 1.6 5.8	
2.5 4 12:21 84.2 102.5 8891 73.3 58.1 45.8 29.1 17.4 6.3 3.2 2.9 2.7 4.1 1.3 2.0 6.1 2.5 1 12:22 82.4 101.5 5993 55.5 42.0 31.5 17.7 8.9 2.3 1.6 1.7 1.5 7.7 1.0 1.6 5.6 2.5 2 12:22 82.4 101.5 6015 54.0 41.1 31.0 17.6 9.0 2.4 1.7 1.8 1.5 7.4 1.0 1.6 5.8	
2.5 1 12:22 82.4 101.5 5993 55.5 42.0 31.5 17.7 8.9 2.3 1.6 1.7 1.5 7.7 1.0 1.6 5.6 2.5 2 12:22 82.4 101.5 6015 54.0 41.1 31.0 17.6 9.0 2.4 1.7 1.8 1.5 7.4 1.0 1.6 5.8	
2.5 2 12:22 82.4 101.5 6015 54.0 41.1 31.0 17.6 9.0 2.4 1.7 1.8 1.5 7.4 1.0 1.6 5.8	
2.5 3 12:22 82.4 101.5 8793 78.9 61.1 47.0 27.9 14.7 3.6 2.6 2.7 2.4 7.2 1.0 1.6 5.8	
2.5 4 12:22 82.4 101.5 8782 81.3 63.2 48.6 28.7 14.9 3.5 2.5 2.7 2.5 7.5 1.0 1.6 5.6	
2.6 1 12:23 82.4 102.1 6004 47.4 35.8 26.6 15.5 8.7 3.0 1.6 1.7 1.5 6.0 1.2 1.6 6.5	
2.6 2 12:23 82.4 102.1 6048 46.4 35.2 26.3 15.5 8.7 3.1 1.8 1.9 1.7 5.8 1.2 1.6 6.6	
2.6 3 12:23 82.4 102.1 8793 68.7 52.8 40.1 24.4 14.2 4.6 2.6 2.9 2.6 5.7 1.2 1.6 6.5	
2.6 4 12:23 82.4 102.1 8803 71.0 54.5 41.5 25.1 14.5 4.6 2.6 3.0 2.5 5.7 1.2 1.7 6.3	
2.7 1 12:24 82.4 101.4 5873 50.3 38.3 28.8 16.1 8.2 2.6 1.7 1.6 1.5 6.8 1.1 1.6 6.0	
2.7 2 12:24 82.4 101.4 5982 49.5 38 28.5 16.0 8.3 2.7 1.8 1.6 1.5 6.6 1.1 1.6 6.2	
2.7 3 12:24 82.4 101.4 8694 71.8 55.6 42.8 25.2 13.6 4.1 2.5 2.5 2.4 6.3 1.1 1.6 6.2	
2.7 4 12:24 82.4 101.4 8672 74.5 57.7 44.5 26.1 13.8 4.0 2.6 2.6 2.4 6.4 1.1 1.7 6.0	
2.8 1 12:25 82.4 103.0 5905 53.1 43.4 33.3 18.9 9.8 3.0 1.9 1.8 1.6 5.7 1.1 1.9 5.7	
2.8 2 12:25 82.4 103.0 5905 53.2 42.5 32.6 18.7 9.8 3.1 2.0 1.8 1.6 5.5 1.1 1.9 5.7	
2.8 3 12:25 82.4 103.0 8541 74.6 60.9 47.6 28.6 15.7 4.7 2.8 2.6 2.5 5.4 1.1 1.9 5.9	
2.8 4 12:25 82.4 103.0 8475 76.9 62.9 49.2 29.4 15.7 4.6 2.7 2.6 2.5 5.5 1.1 1.9 5.7	
2.9 1 12:26 82.4 106.1 6026 41.5 32.4 24.3 14.1 8.0 2.6 1.6 1.5 1.4 6.8 1.3 1.2 7.5	
2.9 2 12:26 82.4 106.1 6004 39.9 31.2 23.5 13.7 7.9 2.7 1.7 1.5 1.4 6.6 1.3 1.2 7.8	
2.9 3 12:26 82.4 106.1 9066 59.2 46.8 35.8 21.9 13.0 4.2 2.5 2.4 2.3 6.4 1.3 1.1 7.9	
2.9 4 12:26 82.4 106.1 9033 61.3 48.7 37.4 22.8 13.3 4.1 2.5 2.4 2.3 6.5 1.3 1.2 7.6	
3.0 1 12:27 84.2 106.4 6004 32.6 25.1 19.3 11.7 7.2 3.3 2.0 1.7 1.3 5.3 1.6 0.8 9.3	
3.0 2 12:27 84.2 106.4 6015 31.7 24.5 18.8 11.5 7.2 3.3 2.0 1.6 1.3 5.3 1.7 0.7 9.5	
3.0 3 12:27 84.2 106.4 0:00 48.4 38 29.4 18.6 12.0 5.4 3.3 2.7 2.3 5.0 1.7 0.7 9.5	
3.0 4 12:27 84.2 106.4 9186 49.9 39.1 30.6 19.2 12.2 5.5 3.3 2.7 2.3 5.0 1.7 0.8 9.2	

550 Cleveland Avenue North St. Paul, Minnesota 55114 Phone: (651) 659-9001 Fax: (651) 659-1379

AET Project No. P-0025335 County: Putnam Test Date: Aug 8, 2023 Section: S06 Roadway: CR 13 From: RR X-ing To: CR E

Prev. Day's Avg. Air Temp.: 70 °F Total AC: 6.7 in. Daily ESALs: 6.0 PCI: 66 Haul ESALs: 0 Soil Type: P Draught Adjustment Factor: 1.00 Seasonal Correction Factor: 1.20

																ve Values	Overlay	Spring	
Station	Duon	Time	Air °F	Bit °F	Load	D1	D2	D3	D4	D4	D6	D7	D8	D9	Mr ksi	SN inches	Thickness inches	Capacity tons/axle	Comments
Station	Drop	Time	Alf ⁻ F	BII ⁻ F	Load	DI	D2	DS	D4	D4	D0	D /	108	D9	KSI	inches	inches	tons/axie	Comments
3.1	1	12:29	84.2	100.6	5905	60.2	45.4	34.3	20.6	10.9	2.8	1.4	1.6	1.6	6.2	1.3	1.3	4.3	
3.1	2	12:29	84.2	100.6	6004	59.5	45.2	34.3	20.7	11.1	3.0	1.5	1.7	1.6	5.9	1.3	1.4	4.4	
3.1	3	12:29	84.2	100.6	0:00	86.7	66	51.2	31.8	17.6	4.7	2.2	2.6	2.5	5.5	1.3	1.4	4.4	
3.1	4	12:29	84.2	100.6	8672	90.0	68.9	53.1	32.8	18.0	4.5	2.2	2.7	2.6	5.6	1.3	1.5	4.2	
3.2	1	12:30	84.2	102.6	5982	27.2	22.4	18.1	12.4	8.4	3.7	2.0	1.5	1.3	4.7	2.2	0.0	9.0	
3.2	2	12:30	84.2	102.6	6015	26.7	22.0	17.8	12.2	8.3	3.8	2.1	1.5	1.3	4.7	2.3	0.0	9.2	
3.2	3	12:30	84.2	102.6	9142	40.9	33.9	27.8	19.4	13.5	6.2	3.3	2.5	2.3	4.4	2.3	0.0	9.1	
3.2	4	12:30	84.2	102.6	9121	41.8	34.8	28.5	20.0	13.9	6.2	3.3	2.5	2.2	4.3	2.3	0.0	8.9	
3.3	1	12:31	82.4	101.9	5927	28.0	22.7	18.6	12.9	8.8	4.0	2.0	1.5	1.3	4.4	2.2	0.0	8.7	
3.3	2	12:31	82.4	101.9	5993	27.7	22.5	18.5	12.9	8.8	4.0	2.1	1.6	1.4	4.4	2.2	0.0	8.9	
3.3	3	12:31	82.4	101.9	8913	42.5	34.8	28.7	20.3	13.9	6.4	3.2	2.5	2.3	4.1	2.2	0.0	8.6	
3.3	4	12:31	82.4	101.9	8935	43.3	35.5	29.3	20.8	14.2	6.4	3.2	2.5	2.3	4.1	2.2	0.0	8.5	
3.4	1	12:32	82.4	102.0	5993	33.4	26.0	21.0	14.0	9.0	3.9	2.3	1.7	1.5	4.5	1.9	0.3	7.5	
3.4	2	12:32	82.4	102.0	6015	32.8	25.5	20.7	13.9	9.0	4.0	2.4	1.7	1.5	4.5	2.0	0.3	7.6	
3.4	3	12:32	82.4	102.0	9011	50.7	39.7	32.3	22.0	14.6	6.3	3.7	2.9	2.6	4.2	2.0	0.4	7.4	
3.4	4	12:32	82.4	102.0	0:00	51.9	41	33.2	22.6	14.7	6.3	3.7	2.8	2.5	4.2	1.9	0.5	7.2	
3.4	1	12:33	82.4	101.5	6037	22.3	18.5	15.5	11.4	8.4	4.3	2.5	1.8	1.5	4.1	2.7	0.0	10.8	
3.4	2	12:33	82.4	101.5	5982	21.8	18.1	15.2	11.3	8.2	4.2	2.4	1.7	1.4	4.2	2.7	0.0	10.9	
3.4	3	12:33	82.4	101.5	9066	33.6	28.1	23.7	17.7	12.9	6.7	3.8	2.8	2.3	4.0	2.8	0.0	10.7	
3.4	4	12:33	82.4	101.5	9077	34.1	28.6	24.1	17.9	13.0	6.7	3.8	2.8	2.4	4.0	2.7	0.0	10.6	
3.4																			END"

Pre-construction Road Evaluation **Powell Creek Solar Project,** Putnam County, OH September 7, 2023 AET Report No. P-0025335A

Appendix E

Pavement Condition Index Field Exploration and Testing Distresses Data and Pavement Rating Results Sheet

E.1 FIELD WORK

The pavement surface conditions at the site were evaluated nondestructively using Digital Video Log (DVL) and Pavement Condition Index (PCI). The description of the equipment precedes the photos of Structures in this appendix.

E.2 EQUIPMENT DESCRIPTION

E.2.1 MicroPAVERTM PMS System

MicroPAVERTM -- The Pavement Maintenance Management (PMS) System -- originally was developed in the late 1970s to help the Department of Defense (DOD) manage M&R for its vast inventory of pavements. It uses inspection data and a pavement condition index (PCITM) rating from zero (failed) to 100 (excellent) for consistently describing a pavement's condition and for predicting its M&R needs many years into the future. The PCITM for airports became an ASTM standard in 1993 (D5340-10). The PCITM for roads and parking lots became an ASTM standard in 1999 (D6433-09). Figure A1 provides a view of this equipment.

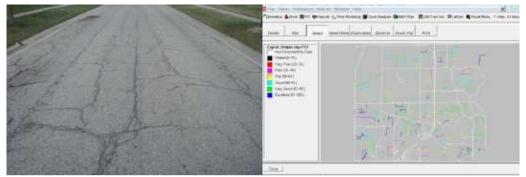


Figure D1 MicroPAVER™ PMS System

External indicators of pavement deterioration caused by loading, environmental factors, construction deficiencies, or a combination thereof. Typical distresses are cracks, rutting, and weathering of the pavement surface. Distress types and severity levels detailed in Inspection Manual must be used to obtain an accurate PCI value.

- A battery operated independent DC-1908E multi-functional digital camera with a SD card is used for easy positioning of the loading plate or of the pavement surface condition at the testing locations.
- Hand Odometer Wheel that reads to the nearest 0.1 ft. (30 mm).
- Straightedge or String Line, (AC only), 10 ft. (3 m).
 Scale, 12 in. (300 mm) that reads to 1/8 in. (3 mm) or better. Additional 12-in. (300 mm) ruler or straightedge is needed to measure faulting in PCC pavements.
- Layout Plan, for network to be inspected.

E.2.2 PCI Calibrations

Since the collection of the pavement distress data is such a critical component of any PMS implementation or update, AET has in place the PCI calibration as a quality control.

The PCI raters undergo internal calibrations every two months. This calibration exercise is conducted by our chief inspector and/or quality control engineer and is performed to ensure that the ratings of pavement distresses are consistent among the crews and in accordance with the ASTM D6344-07.

Survey wheel is calibrated by laying out a long distance (> 50 feet) with tape measure.

E.2.3 Linear Distance and Spatial Reference System

Distance measuring instrument (DMI) is a trailer mounted two phase encoder system. When DMI is connected to the HD Camera it provides for automatic display and recording distance information in both English and metric units with a 1 foot (0.3 meters) resolution and four percent accuracy when calibrated using provided procedure in the Field Program.

Appendix E Pavement Condition Survey Report No. P-0025335A

Spatial reference system is a Trimble ProXRT Global Positioning System (GPS) that consists of fully integrated receiver, antenna and battery unit with Trimble's new H-StarTM technology to provide sub foot (30 cm) post processed accuracy. The External Patch antenna is added to the ProXH receiver for the position of the loading plate. The External Patch antenna can be conveniently elevated with the optional baseball cap to prevent any signal blockage.

E.3 TRAFFIC CONTROL

Traffic control during the PCI data collection operation will be maintained in compliance with Manual on Uniform Traffic Control Devices (MUTCD) and part VI, "Field Manual for Temporary Traffic Control Zone Layouts," as shown in Appendix E. The PCI operation will be mobile in nature and will be moderately disruptive to traffic.

E.4 QUALITY CONTROL (QC) AND QUALITY ASSURANCE (QA)

Beside the daily metal plate calibration, the DMI is also calibrated monthly by driving the vehicle over a known distance to calculate the distance scale factor. The HD video camera will be monitored in real time in the data collection vehicle to minimize data errors. The HD video cameras will be identified with a unique number and that number will accompany all data reported from that unit as required in the QC/QA plan.

Scheduled preventive maintenance ensures proper equipment operation and helps identify potential problems that can be corrected to avoid poor quality or missing data that results if the equipment malfunctions while on site. The routine and major maintenance procedures established by AET are adopted and any maintenance has been done at the end of the day after the testing is complete and become part of the routine performed at the end of each test/travel day and on days when no other work is scheduled.

To insure quality data, the PCI assessments only took place in day light, and data was collected in one lane.

E.5 DATA ANALYSIS METHODS

E.5.1 Data Editing

Field acquisition is seldom so routine that no errors, omissions or data redundancy occur. Data editing encompasses issues such as video editing, video file merging, video log header or background information updates, repositioning and inclusion of elevation information with the video.

E.5.2 Sampling Methods

The sampling rate is set at 10 percent in on lane (OWP) = 500 ft. \pm 50 ft. (23.6 m \pm 2.4 m) for nominal 12 ft. (3.7 m) wide lanes at a survey speed of approximately 30 mph. Where a divided roadbed exists, surveys will be taken in both directions if the project will include improvements in both directions. If there is more than one lane in one direction the surveys will be taken in the outer driving lane (truck lane) versus the passing lane of the highway.

Basic data processing addresses some of the fundamental manipulations applied to data to make a more acceptable product for initial interpretation and data evaluation. In most instances this type of processing is already applied in real-time to generate the real-time display. The advantage of post survey processing is that the basic processing can be done more systematically and non-causal operators to remove or enhance certain features can be applied.

E.5.3 Advance Processing

Advanced data processing addresses the types of processing which require a certain amount of operator bias to be applied and which

will result in data which are significantly different from the raw information which were input to the processing.

E.6 TEST LIMITATIONS

E.6.1 Test Methods

The data derived through the testing program have been used to develop our opinions about the pavement conditions at your site. However, because no testing program can reveal totally what is in the subsurface, conditions between test locations and at other times, may differ from conditions described in this report. The testing we conducted identified pavement conditions only at those areas where we observed pavement surface conditions. Depending on the sampling methods and sampling frequency, every location may not be rated, and some anomalies which are present in the pavement may not be noted on the testing results. If conditions encountered during construction differ from those indicated by our testing, it may be necessary to alter our conclusions and recommendations, or to modify construction procedures, and the cost of construction may be affected.

E.6.2 Test Standards

Pavement testing is done in general conformance with the described procedures. Compliance with any other standards referenced within the specified standard is neither inferred nor implied.

E.7 SUPPORTING TEST METHODS

E.7.1 Falling Weight Deflectometer (FWD)

If the pavement layer moduli and subgrade soil strength are desired the deflection data are collected using a Dynatest 8000 FWD Test System that consists of a Dynatest 8002 trailer and a third-generation control and data acquisition unit developed in 2003, called the Dynatest Compact15, featuring fifteen (15) deflection channels. The new generation FWD, including a Compact15 System and a standard PC with the FwdWin field Program constitutes the newest, most sophisticated Dynatest FWD Test System, which fulfills or exceeds all requirements to meet ASTM-4694 and ASTM D-4695 Standards. The system provides continuous data at pre-set spacing.

E.7.2 Ground Penetrating Radar

If the pavement layer thicknesses are desired the thickness data are collected using a GSSI air-coupled 2 GHz Test System that consists of a bumper-mounted, 2 GHz air-coupled antenna and a SIR-20 control and data acquisition processor, featuring dual channels. The GPR processor, including a SIR-20 data acquisition system, wheel-mounted DMI (Distance Measuring Instrument), and a tough book with the SIR-20 Field Program constitutes the newest, most sophisticated GSSI Test System, which fulfills or exceeds all requirements to meet ASTM-4748 and ASTM D-6087 Standards. The antenna used for Roadscan is the Horn Antenna Model 4105 (2 GHz). The 2 GHz antenna is the current antenna of choice for road survey because it combines excellent resolution with reasonable depth penetration (18-24 inches in pavement materials). The data collection is performed at normal driving speeds (45-55 mph), requiring no lane closures nor causing traffic congestion. At this peed the 2 GHz antenna can collect data at 1-foot interval (1 scan/foot).

E.7.2 Soil Boring/Coring Field Exploration

If both pavement thicknesses and subgrade soil types and conditions are desired the shallow coring/boring and sampling is used. The limited number of coring/boring is necessary to verify the GPR layer thickness data.

Project:	GENERAL INFU	RMATION: PAVEMENT	CONDITION INDEX
	Powell Creek Solar Project	Date:	8/10/23
ſ Job No.:	P-0025335	Test Date:	8/8/23
Road:	CR 13	Section/Grid:	S01A
From:	SH 15	То:	0.26 Mi S of CR G-12
		SUMMARY DISTRESSE	8
	Total Samples	9	PCI 26
	Sample #	2	
	Sample Size	6000	
	Sample Length	750	
			LAN 41.064512 UNIX 41.064512 UNIX 68.1111719 DISTIC: 2500.84

550 Cleveland Avenue North

St. Paul, Minnesota 55114

Phone: (651) 659-9001

Fax: (651) 659-1379

	GENI	ERAL INFO	RMATI	ON: PAVEMEN	T CO	NDITION	IINDFY	
	JENI						INDEA	
Proj	ect: Powell Creek	Solar Project		Da	ate:	8/10/23		
T Job N		5		Test Da	ate:	8/8/23		
Ro	ad: CR 13			Section/G	rid:	S01A		
Fre	om: SH 15				То:	0.26 Mi S o	of CR G-12	
			<u> </u>					
			SUMM	ARY DISTRES	5E2			
Г	Total Samp	les		9	ſ	PCI	26	
	Sample #			2	L	1.01	20	
-	Sample Siz		6	000				
	Sample Len			/50				
	Sample Len	Still		50				
Г	Distresses			Distresses	5			
		Low	9%			Low		
	(1) Alligator	Med	13%	(11) Patch/Ut	Cut	Med		
		High	3%		·	High		
		Low			_			
	(2) Bleeding	Med		(12) Polishe		N/A		
		High		Aggregate	e			
		Low	1%			Low		
	(3) Block	Med		(13) Potho	le	Med		
	Cracking	High		()		High		
		Low				Low		
(4) Bumps/Sags	Med		(14) RR Cros	sing	Med		
Ì	, a Pana aga	High				High		
		Low				Low		
(5) Corrugations	Med		(15) Ruttin	g	Med		
Ì	<i>,</i> , , , , , , , , , , , , , , , , , ,	High		ì	° .	High		
		Low				Low		
	(6) Depression	Med		(16) Shovin	ng	Med		
		High		1 ` ´	<u> </u>	High		
		Low	2%			Low		
	(7) Edge	Med	3%	- (17) Slippag		Med		
	Cracking	High		- Cracking	ľ	High		
	(8) Joint	Low				Low		
	Reflection	Med		(18) Swell	ı İ	Med		
	Cracking	High				High		
	(9) Lane	Low						
	Shoulder	Med		(19) Ravelin	ng	Med		
	Drop	High				High		
	(10) L & T	Low	4%		. I	Low	1000	
	Cracking	Med High	1% 1%	(20) Weather	ng	Med High	100%	

	GENERAL INFO	RMATION: PAVEMEN	IT C	ONDITION INDEX
Project:	Powell Creek Solar Project	D	ate:	8/10/23
Job No.:	P-0025335	Test D	ate:	8/8/23
Road:	CR 13	Section/G		
From:	0.26 Mi S of CR G-12		To:	CR G-12
		SUMMARY DISTRE	3SES	8
	Total Samples	4		PCI 92
	Sample #	1		
	Sample Size	6000		
	Sample Length	750		
				Line 390.61

550 Cleveland Avenue North

St. Paul, Minnesota 55114

Phone: (651) 659-9001

Fax: (651) 659-1379

· · /							ERINGI
G	ENERAL INFO	RMATI	ON: PAVE	MENT CO	ONDITION	INDEX	
Job No.: P-00253 Road: CR 13	Creek Solar Project 35 S of CR G-12			Date: est Date: on/Grid: To:	8/10/23 8/8/23 S01B CR G-12		
		SUMN	IARY DIST	RESSES	i		
Total S	amples		4		PCI	92	
Samj	ple #		1				
Sampl	e Size	6	000				
Sample	Length		750				
Distroggos	-		Dictor	00000	7		
Distresses	Low		Distr	esses	Low		
			(11) D (Med		
(1) Alligator			(11) Patc	n/Ut Cut			
	High		_		High		
	Low		(12) Po	olished			
(2) Bleeding			Aggr		N/A		
	High		88	8			
(3) Block	Low				Low		
Cracking	Med		(13) P	othole	Med		
orwoning	High				High		
	Low				Low		
(4) Bumps/Sag	gs Med		(14) RR	Crossing	Med		
	High				High		
	Low				Low		
(5) Corrugatio	ns Med		(15) R	utting	Med		
	High				High		
	Low				Low		
(6) Depression	n Med		(16) S	noving	Med		
	High			-	High		
	Low	1%			Low		
(7) Edge	Med		(17) Sli		Med		
Cracking	High		Crac	кıng	High		
(8) Joint	Low				Low		
Reflection	Med		(18)	Swell	Med		
Cracking	High		(10),		High		
(9) Lane	Low						
Shoulder	Med		(19) Ra	veling	Med		
Drop	High		、 · ,	0	High		
(10) L & T	Low				Low	100%	
Cracking	Med		(20) We	athering	Med		
Cracking	High				High		

Project: Powell Creek Solar Project T Job No.: P-0025335 Road: CR 13 From: CR G-12 SUM Total Samples Sample # Sample Size Sample Length		Date: est Date: on/Grid: To: RESSES	8/10/23 8/8/23 S02 CR G PCI 9.	3
Road: CR 13 From: CR G-12 SUM Total Samples Sample # Sample Size	Section MMARY DIST 7 2 6000	on/Grid: To:	S02 CR G	3
From: CR G-12 SUM Total Samples Sample # Sample Size	7 2 6000	То:	CR G	3
Total Samples Sample # Sample Size	7 2 6000			3
Total Samples Sample # Sample Size	7 2 6000	RESSES		3
Total Samples Sample # Sample Size	7 2 6000	RESSES		3
Sample # Sample Size	2 6000		PCI 9.	3
Sample # Sample Size	2 6000			<u> </u>
Sample Size	6000			
	750			
				0.51 (P) 5730 97

550 Cleveland Avenue North

St. Paul, Minnesota 55114

Phone: (651) 659-9001

Fax: (651) 659-1379

	GEN	ERAL INFOR	MATION: PAVEMENT	CONDITION	INDEX	
ET Job R		k Solar Project	Date: Test Date: Section/Grid: To:	8/8/23 S02		
		9	SUMMARY DISTRESSE	S		
	Total Sam	ples	7	PCI	93	
	Sample	#	2			
	Sample Si		6000			
	Sample Lei	ngth	750			
Г	Distresses		Distresses			
⊢		Low		Low		
	(1) Alligator	Med	(11) Patch/Ut Cu	It Med		
		High		High		
	(2) Blooding	Low Med	(12) Polished	NT/A		
	(2) Bleeding	High	Aggregate	N/A		
	(2) Dla ala	Low		Low		
	(3) Block	Med	(13) Pothole	Med		
	Cracking	High		High		
		Low		Low		
	(4) Bumps/Sags	Med	(14) RR Crossin	g Med		
		High		High		
		Low		Low		
((5) Corrugations	Med	(15) Rutting	Med		
		High		High		
		Low		Low		
	(6) Depression	Med	(16) Shoving	Med		
_		High		High		
	(7) Edge	Low Med	(17) Slippages	Low		
	Cracking	High	Cracking	Med		
_	(8) Joint	Low		High Low		
	(a) Joint Reflection	Med	(18) Swell	Med		
	Cracking	High	(10) Swell	High		
⊢	(9) Lane	Low				
	Shoulder	Med	(19) Raveling	Med		
L	Drop	High		High		
	(10) L & T	Low		Low	100%	
	Cracking	Med High	(20) Weathering	g Med High		

	GENERAL INFO	RMATION: PAVEMENT C	ONDITION INDEX
Project:	Powell Creek Solar Project	Date:	8/10/23
Г Job No.:	P-0025335	Test Date:	8/8/23
Road:	CR 13	Section/Grid:	S03
From:	CR G	То:	CR F-12
		SUMMARY DISTRESSES	\$
—	Total Samples	9	PCI 22
	Sample #	2	
	Sample Size	6000	
	Sample Length	857	
			A 41.08061 USNa -84.111815 UST (#) - 8468.99

550 Cleveland Avenue North

St. Paul, Minnesota 55114

Phone: (651) 659-9001

Fax: (651) 659-1379

	GEN	ERAL INFO	RMATI	ON: PAVE	MENT CO	DNDITIO	N INDEX	
Project: ET Job No.: Road: From:	Powell Creel P-0025335 CR 13 CR G	< Solar Project			Date: est Date: on/Grid: To:	8/10/23 8/8/23 S03 CR F-12		
			SUMM	ARY DIST	RESSES	;		
	Total Sam	ples		9		PCI	22	
	Sample a			2				
	Sample Si		6	000				
	Sample Ler	ngth	8	857				
Di	stresses			Distr	esses	1		
		Low	3%			Low	9%	1
(1)	Alligator	Med	5%	(11) Patc	h/Ut Cut	Med	1%	1
	_	High				High	7%	1
		Low	30%	(10) P				1
(2)	Bleeding	Med			olished	N/A		
		High	2%	Aggr	egate			
(2	DL -L	Low				Low		1
) Block racking	Med		(13) P	othole	Med		1
C.	racking	High				High		
		Low				Low		1
(4) B	umps/Sags	Med		(14) RR	Crossing	Med		
		High				High		
		Low				Low		
(5) Co	orrugations	Med		(15) R	utting	Med		
		High				High		
		Low				Low		
(6) I	Depression	Med		(16) S	hoving	Med		
		High				High		
C) Edge	Low	2%	(17) Sli	ppages	Low		
	racking	Med	6%		king	Med		
C.	acking	High	3%	Crac	Aing	High		
	B) Joint	Low				Low		1
	eflection	Med		(18)	Swell	Med		1
	racking	High				High		1
) Lane	Low		(10) 5		Med		
	noulder	Med		(19) R	aveling			4
	Drop	High Low	3%	<u> </u>		High Low		1
)) L & T	Med	2%	(20) We	athering	Med	100%	1
C	racking	High		1		High		1

	GENEKAL INFO	RMATION: PAVEMENT C	
Project:	Powell Creek Solar Project	Date:	8/10/23
Г Job No.:	P-0025335	Test Date:	8/8/23
Road:	CR 13	Section/Grid:	S04
From:	CR F-12	То:	SH 613
		SUMMARY DISTRESSES	8
	Total Samples	3	PCI 37
	Sample #	1	·
	Sample Size	6000	
	Sample Length	857	

550 Cleveland Avenue North

St. Paul, Minnesota 55114

Phone: (651) 659-9001

Fax: (651) 659-1379

	GENI	ERAL INFO	RMATI	ON: PAVEMENT C	ONDITION	INDEX	
-				Date: Test Date:	8/10/23 8/8/23		
	CR 13			Section/Grid:	8/8/23 S04		
	CR F-12			To:	SH 613		
			SUMM	ARY DISTRESSES	3		
	T () (•			DOT		
	Total Samp		3		PCI	37	
	Sample #						
	Sample Si			000			
	Sample Len	gth	8	357			
Dist	tresses			Distresses	٦		
	-	Low	5%		Low	19%	
(1) A	lligator	Med		(11) Patch/Ut Cut	Med		
. /	5	High		1	High		
		Low	20%				
(2) B	leeding	Med	12%	(12) Polished Aggregate	N/A		
		High					
		Low		(13) Pothole	Low		
	Block	Med			Med		
Cra	icking	High			High		
		Low		(14) RR Crossing	Low		
(4) B m	mps/Sags	Med			-		
(1) 24	-porougo	High			High		
		Low			Low		
(5) Cor	rugations	Med		(15) Rutting	Med		
(0) 001	- againons	High			High		
		Low			Low		
(6) De	pression	Med		(16) Shoving	Med		
(-) 20	1	High		()~ 8	High		
		Low	2%		Low		
	Edge	Med	5%	(17) Slippages	Med		
Cra	icking	High	3%	Cracking	High		
(8)	Joint	Low	570		Low		
	lection	Med		(18) Swell	Med		
	cking	High			High		
	Lane	Low	1%	(19) Raveling			
	oulder	Med	1%		Med		
	rop	High		()g	High		
	L&T	Low	2%		Low	19%	
	L & I icking	Med	1%	(20) Weathering	Med	81%	
	icking	High			High		

GENERAL INFORMATION: PAVEMENT CONDITION INDEX						
Project:	Powell Creek Solar Project	Date:	8/10/23			
AET Job No.:	P-0025335	Test Date:	8/8/23			
Road:	CR 13	Section/Grid:				
From:	CTH 613	То:				
		SUMMARY DISTRESSES	8			
	Total Samples	12	PCI 66			
	Sample #	2				
	Sample Size	6000				
	Sample Length	857				

550 Cleveland Avenue North

St. Paul, Minnesota 55114

Phone: (651) 659-9001

Fax: (651) 659-1379

GEN	ERAL INFO	RMATI	ON: PAVEMENT CO	NDITION	I INDEX
Project: Powell Creek Solar Project			Date:	8/10/23	
b No.: P-0025335			Test Date:		
Road: CR 13			Section/Grid:	S05/S06	
From: CTH 613			То:	CTH E	
		SUMM	IARY DISTRESSES		
Total Sam	ples		12	PCI	66
Sample #		2 6000 857			
Sample Si	ze				
Sample Ler	ngth				
Distresses			Distresses		
	Low			Low	
(1) Alligator	Med		(11) Patch/Ut Cut	Med	
(1) imgator	High			High	
	Low	30%		8	
(2) Bleeding	Med	3070	(12) Polished	N/A	
(2) Dictuing	High		Aggregate	11/11	
	Low			Low	
(3) Block	Med		(13) Pothole	Med	
Cracking	High			High	
	Low		(14) RR Crossing	Low	
(4) Bumps/Sags	Med			Med	
(4) Dumps/Sags	High			High	
	Low			Low	
(5) Corrugations	Med		(15) Rutting	Med	
(5) Corrugations	High				
	Low			High Low	
(6) Depression	Med		(16) Shoving	Med	
(0) Depression	High		(10) Shoving	High	
	Low	8%		Low	
(7) Edge	Med	8% 6%	(17) Slippages	Med	
Cracking	High	0%	Cracking		
(0) J 4	Low			High Low	
(8) Joint Reflection	Med		(18) Swell	Med	
Cracking	High		(10) Swell		
(9) Lane	Low			High	
Shoulder	Med		(19) Raveling	Med	
Drop	High			High	
(10) L & T	Low	1%		Low	
(10) L & 1 Cracking	Med		(20) Weathering	Med	100%
Clacking	High			High	

Pre-construction Road Evaluation **Powell Creek Solar Project,** Putnam County, OH September 7, 2023 AET Report No. P-0025335A

Geotechnical Report Limitations and Guidelines for Use

F.1 REFERENCE

This appendix provides information to help you manage your risks relating to subsurface problems which are caused by construction delays, cost overruns, claims, and disputes. This information was developed and provided by GBA¹, of which, we are a member firm.

F.2 RISK MANAGEMENT INFORMATION

F.2.1 Geotechnical Services are Performed for Specific Purposes, Persons, and Projects

Geotechnical engineers structure their services to meet the specific needs of their clients. A geotechnical engineering study conducted for a civil engineer may not fulfill the needs of a construction contractor or even another civil engineer. Because each geotechnical engineering study is unique, each geotechnical engineering report is unique, prepared solely for the client. No one except you should rely on your geotechnical engineering report without first conferring with the geotechnical engineer who prepared it. And no one, not even you, should apply the report for any purpose or project except the one originally contemplated.

F.2.2 Read the Full Report

Serious problems have occurred because those relying on a geotechnical engineering report did not read it all. Do not rely on an executive summary. Do not read selected elements only.

F.2.3 A Geotechnical Engineering Report is Based on A Unique Set of Project-Specific Factors

Geotechnical engineers consider a few unique, project-specific factors when establishing the scope of a study. Typically, factors include: the client's goals, objectives, and risk management preferences; the general nature of the structure involved, its size, and configuration; the location of the structure on the site; and other planned or existing site improvements, such as access roads, parking lots, and underground utilities. Unless the geotechnical engineer who conducted the study specifically indicates otherwise, do not rely on a geotechnical engineering report that was:

- not prepared for you,
- not prepared for your project,
- not prepared for the specific site explored, or
- completed before important project changes were made.

Typical changes that can erode the reliability of an existing geotechnical engineering report include those that affect:

- the function of the proposed structure, as when it's changed from a parking garage to an office building, or from a light industrial plant to a refrigerated warehouse,
- elevation, configuration, location, orientation, or weight of the proposed structure,
- composition of the design team, or
- project ownership.

As a rule, always inform your geotechnical engineer of project changes, even minor ones, and request an assessment of their impact. Geotechnical engineers cannot accept responsibility or liability for problems that occur because their reports do not consider developments of which they were not informed.

F.2.4 Subsurface Conditions Can Change

A geotechnical engineering report is based on conditions that existed at the time the study was performed. Do not rely on a geotechnical engineering report whose adequacy may have been affected by: the passage of time; by man-made events, such as construction on or adjacent to the site; or by natural events, such as floods, earthquakes, or groundwater fluctuations. Always contact the geotechnical engineer before applying the report to determine if it is still reliable. A minor amount of additional testing or analysis could prevent major problems.

¹ Geoprofessional Business Association, 15800 Crabbs Branch Way, Suite 300, Rockville, MD 20855 Telephone: 301/565-2733: www.geoprofessional.org

Appendix F Geotechnical Report Limitations and Guidelines for Use Report No. P-0025335A

F.2.5 Most Geotechnical Findings Are Professional Opinions

Site exploration identified subsurface conditions only at those points where subsurface tests are conducted or samples are taken. Geotechnical engineers review field and laboratory data and then apply their professional judgment to render an opinion about subsurface conditions throughout the site. Actual subsurface conditions may differ, sometimes significantly, from those indicated in your report. Retaining the geotechnical engineer who developed your report to provide construction observation is the most effective method of managing the risks associated with unanticipated conditions.

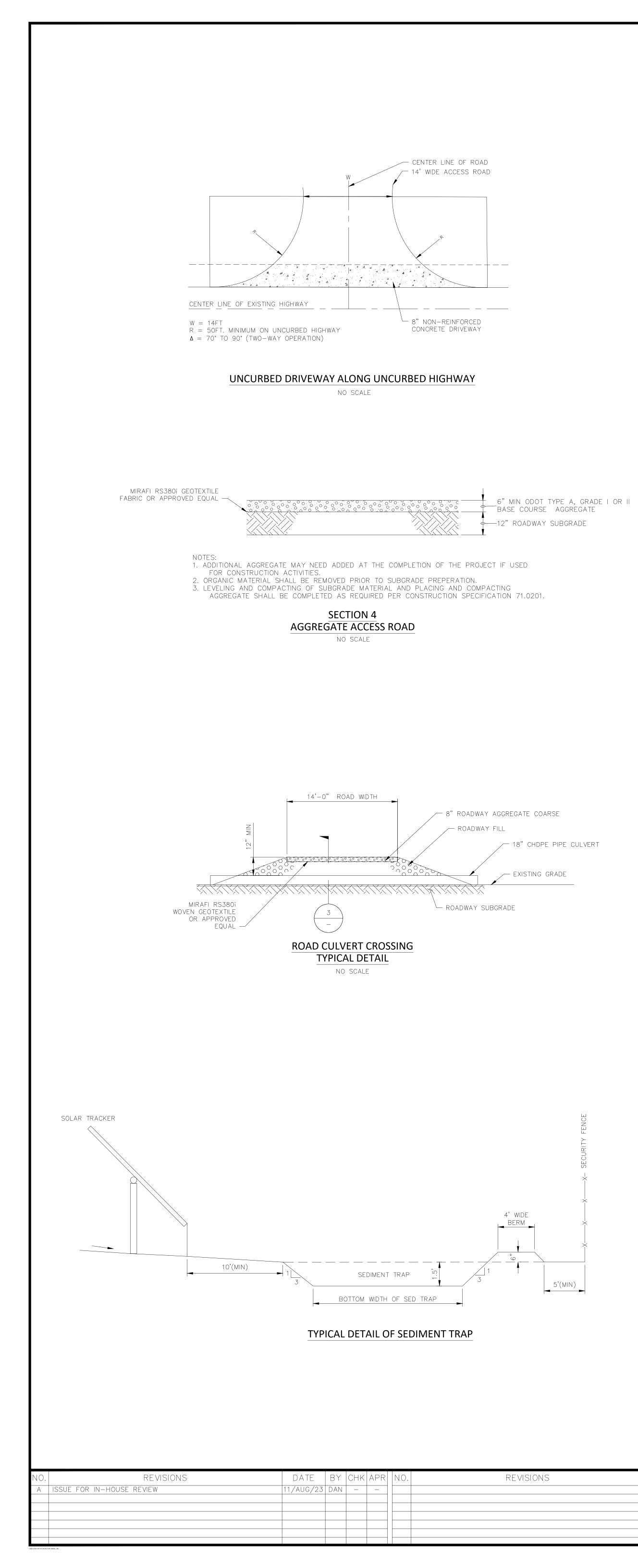
F.2.6 A Geotechnical Engineering Report Is Subject to Misinterpretation

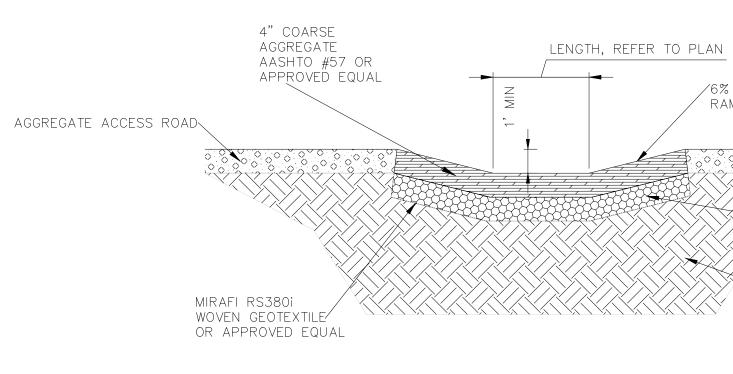
Other design team members' misinterpretation of geotechnical engineering reports has resulted in costly problems. Lower that risk by having your geotechnical engineer confer with appropriate members of the design team after submitting the report. Also retain your geotechnical engineer to review pertinent elements of the design team's plans and specifications. Contractors can also misinterpret a geotechnical engineering report. Reduce that risk by having your geotechnical engineer participate in prebid and preconstruction conferences, and by providing construction observation.

F.2.7 Do Not Redraw the Engineer's Logs

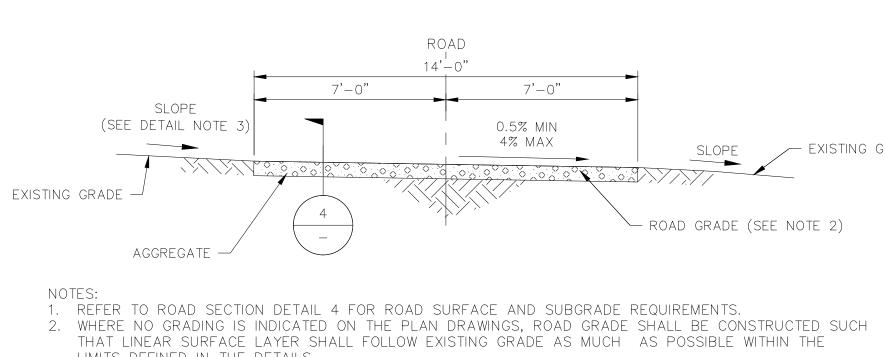
Geotechnical engineers prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in a geotechnical engineering report should never be redrawn for inclusion in architectural or other design drawings. Only photographic or electronic reproduction is acceptable, but recognizes that separating logs from the report can elevate risk.

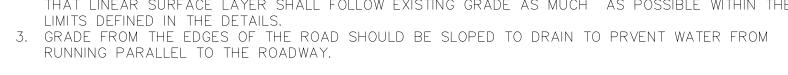
F.2.8 Give Contractors a Complete Report and Guidance

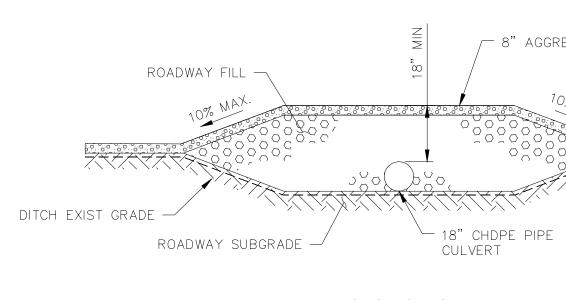

Some owners and design professionals mistakenly believe they can make contractors liable for unanticipated subsurface conditions by limiting what they provide for bid preparation. To help prevent costly problems, give contractors the complete geotechnical engineering report, but preface it with a clearly written letter of transmittal. In the letter, advise contractors that the report was not prepared for purposes of bid development and that the report's accuracy is limited; encourage them to confer with the geotechnical engineer who prepared the report (a modest fee may be required) and/or to conduct additional study to obtain the specific types of information they need or prefer. A prebid conference can also be valuable. Be sure contractors having sufficient time to perform additional study. Only then might you be able to give contractors the best information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions.

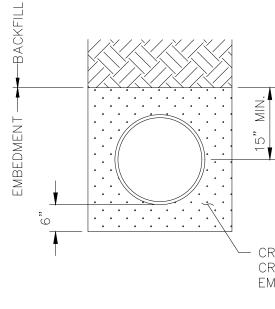

F.2.9 Read Responsibility Provisions Closely

Some clients, design professionals, and contractors do not recognize that geotechnical engineering is far less exact than other engineering disciplines. This lack of understanding has created unrealistic expectations that have led to disappointments, claims, and disputes. To help reduce the risk of such outcomes, geotechnical engineers commonly include a variety of explanatory provisions in their report. Sometimes labeled "limitations" many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. Read these provisions closely. Ask questions. Your geotechnical engineer should respond fully and frankly.


F.2.10 Geoenvironmental Concerns Are Not Covered


The equipment, techniques, and personnel used to perform a geoenvironmental study differ significantly from those used to perform a geotechnical study. For that reason, a geotechnical engineering report does not usually relate any geoenvironmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. Unanticipated environmental problems have led to numerous project failures. If you have not yet obtained your own geoenvironmental information, ask your geotechnical consultant for risk management guidance. Do not rely on an environmental report prepared for someone else.






TYPICAL CROSS SLOPE ROAD SECTION NO SCALE

TYPICAL PIPE BEDDING DETAIL NO SCALE

DATE	ΒY	СНК	APR	

/6% SLOPE MAX APPROACH RAMP ON EACH SIDE /AGRREGATE ACCESS ROAD

-12" OF 6" RIPRAP OR CRUSHED CONCRETE COARSE GRADED AGGREGATE COMPACTED SUBGRADE

SLOPE - EXISTING GRADE - ROAD GRADE (SEE NOTE 2)

/ 8" AGGREGATE ROADWAY COARSE

– MIRAFI RS380i WOVEN GEOTEXTILE OR APPROVED EQUAL

- CRUSHED ROCK OR CRUSHED GRAVEL EMBEDMENT

I HEREBY CERTIFY THAT THIS DOCUMENT WAS PREPARED BY ME OR UNDER MY DIRECT SUPER-VISION AND THAT I AM A DULY REGISTERED PRO-FESSIONAL ENGINEER UNDER THE LAWS OF THE STATE OF OHIO SIGNED _____ DATE _____ REG NO. ____

ENGINEERING RECORD	DATE
DRAWN: MBN	_
DESIGNED: -	_
CHECKED: -	_
APPROVED: -	_
CADFILE: PCS-C-DS-820)-04

NOTES

TO BE USED \bigcirc THE DISTRIBUTION AND USE OF THE NATIVE FORMAT CAD FILE OF THIS DRAWING IS UNCONTROLLED. THE USER SHALL VERIFY TRACEABILITY OF THIS DRAWING TO THE LATEST CONTROLLED VERSION.

POV	VELL CREE	ek sola	AR, LLC	
POWELL	CREEK P	V SOLA	r proje	-CT
POWEL	L CREEK	SOLAR	DRIVEWA	ΥY
TYP	DETAILS	AND SE	ECTIONS	
SCALE:	DWG.NO. PCS-C-DS	6-820-04	SHEET 01	rev a

This foregoing document was electronically filed with the Public Utilities

Commission of Ohio Docketing Information System on

10/2/2023 2:37:20 PM

in

Case No(s). 20-1084-EL-BGN

Summary: Notice of Compliance - Part 6 electronically filed by Teresa Orahood on behalf of Herrnstein, Kara.