BEFORE THE OHIO POWER SITING BOARD

)

)

)

In the Matter of American Transmission Systems, Incorporated's Application for Amendment of the Beaver-Wellington 138 kV Transmission Line Project Certificate of Environmental Compatibility and Public Need

Case No. 22-0494-EL-BTA

SUPPLEMENT TO AMENDMENT APPLICATION: WELLINGTON SECTION ROUTE ADJUSTMENTS

American Transmission Systems, Incorporated ("ATSI") supplements the above-captioned Application for Amendment of the Beaver-Wellington 138 kV Transmission Line Project Certificate of Environmental Compatibility and Public Need with two, additional shifts to the approved centerline. These reroutes will have a combined length of less than .2 miles and both occur along the southern segment—referred to as the Wellington Section—of the Project approved by the Ohio Power Siting Board in Case No. 20-0004-EL-BTX ("OPSB-Approved Route").

The first centerline adjustment starts at the western extent of the Wellington Section, from where the OPSB-Approved Route intersects the existing north-south Brookside-Henrietta/Wellington-Brookside 138 kV transmission line corridor, and extends 790 feet to the east to rejoin the OPSB-Approved Route. This centerline adjustment is necessary to maintain clearances between the rebuilt Hanville-Wellington 69 kV Transmission Line as it crosses perpendicularly under the Brookside-Henrietta/Wellington-Brookside 138 kV Transmission Lines.

Though the certificated Beaver-Wellington 138 kV Transmission Line shares structures with the Hanville-Wellington 69 kV Transmission Line as well as with the Brookside-Henrietta/Wellington-Brookside 138 kV Transmission Lines, the Wellington Section's takeoff structure (93B) from Brookside-Henrietta/Wellington-Brookside must be located north of the point where the Hanville-Wellington 69 kV Transmission Line crosses under the Brookside-Henrietta/Wellington-Brookside 138 kV Transmission Lines for required clearances. Therefore, the Wellington Section splits off from Brookside-Henrietta for three, non-shared structures (91B, 92B, 93B) to the tie-in point with Brookside-Henrietta/Wellington-Brookside.¹ For that Wellington Section segment, which remains within the original survey corridor and is shown on the below drawing, the OPSB-Approved Route would be shifted approximately 30 feet to the north.

¹ ATSI's Project Management team understood this segment of the engineering consultant's detailed line design to have been approved by the Board in Case No. 20-0004-EL-BTX. Therefore, Structures 91B, 92B, and 93B were installed and conductor was strung as of mid-November. ATSI discovered, while preparing this Supplement, that such segment of the Wellington Section had been unintentionally constructed prior to receiving a Certificate. ATSI then promptly self-reported the circumstances to Board Staff. To prevent recurrence, ATSI has undertaken internal process changes and implemented new compliance measures, including the addition of a new layer in the KMZ that is provided to the Project Management team to indicate the certificated centerline.

The second centerline adjustment is located at the eastern extent of the Wellington Section, where the OPSB-Approved Route enters the Wellington Substation. To avoid interference with the existing Wellington-Brookside 138 kV Transmission Line, ATSI is proposing to change the terminus of the route from the western side (as currently certificated) to the southern side of the Wellington Substation. Additionally, the centerline alignment parallel to Jones Road must be shifted approximately four feet south to avoid an existing underground utility line, which ATSI discovered as a field condition. These adjustments likewise remain within the original survey corridor and are shown on the below drawing.

Exhibits 12 and 13 of ATSI's Amendment Application encompass the cultural survey, impact studies, and wetland delineation that are relevant to the centerline shifts outlined herein. The Wellington Section route adjustments will not materially increase social or ecological impacts of the Project certificated in Case No. 20-0004-EL-BTX ("Original Application").

LAND USE

The Wellington Section route adjustments are located within existing right-of-way ("ROW"), though construction may require new temporary access rights. Reroutes presented in this Supplement reduce acreage within the Wellington Section ROW: from 50.5 acres to 49.8 acres. These reroutes also result in

American Transmission Systems, Incorporated

1-2 Beaver-Wellington 138 kV Transmission Line Project Amendment Supplemental Information one fewer property crossed. Properties affected by the centerline shifts outlined in this Supplement are listed below and a Land Use Map is provided as **Supplement Figure 7-2**.

Parcel Number	Easement Status
1800013000001	Easement obtained
2005004000002	Will be supplemented

WETLANDS

The Wellington Section route adjustments reduce total wetland impacts from 4.94 acres to 4.85 acres² and does not entail any new pole placement within wetlands. A wetland and waterbody map is provided as **Supplement Figure 8-5 A**.

ATSI will implement construction BMPs as stated in the Original Application and Amendment Application; ATSI will perform all construction work in accordance with the conditions and requirements of regulatory permits obtained for the Project.

STREAMS

The Wellington Section route adjustments result in 11 fewer linear feet of streams crossed and no additional impacts or other changes. (*See* Supplement Figure 8-5 A)

PROTECTED SPECIES

Wellington Section

Due to the proposed centerline shifts as well as the interim expiration of agency consultations, a follow up letter for the Wellington Section was submitted to the USFWS on May 26, 2022 to request any relevant

American Transmission Systems, Incorporated

² A total of 36 wetlands/wetland complexes were delineated for the OPSB-Approved Route ROW of the Wellington Section and a Wetland and Waterbody Delineation Report Addendum for the Wellington Section is attached hereto.

updates to their initial response. USFWS provided a response on June 1, 2022, concluding that, with proposed tree clearing dates, no impact to any federally endangered, threatened, proposed, or candidate species is anticipated. (See **Supplement Appendix 7-1**.)

In addition, a follow up letter for the Wellington Section was submitted to the ODNR-DOW on March 1, 2022 with additional habitat details. ODNR provided a response dated March 8, 2022 reaffirming the sufficiency of minimization measures as stated in prior correspondence dated April 27, 2020. Based on the proposed avoidance of construction within grassland habitat between from April 1st through July 31st and tree clearing activities being conducted between October 1st and March 31st, the Project will not impact any state-listed species. (See **Supplement Appendix 7-1**.)

CONCLUSION

ATSI requests that the Board consider the information in this Supplement as part of its Certificate Amendment Application in Case No. 22-0494-EL-BTX and approve the route adjustments requested herein.

Respectfully submitted,

/s/ Devan K. Flahive Devan K. Flahive (0097457) Counsel of Record PORTER, WRIGHT, MORRIS & ARTHUR LLP 41 South High Street, Suite 2900 Columbus, OH 43215 (614) 227-1989 / (614) 227-2100 (fax) dflahive@porterwright.com

Anne M. Rericha (0079637) FirstEnergyService Company 76 South Main Street Akron, Ohio 44308 Email: arericha@firstenergygroup.com

Attorneys for American Transmission Systems, Incorporated

CERTIFICATE OF SERVICE

The Ohio Power Siting Board's e-filing system will electronically serve notice of the filing of this document on the parties referenced on the service list of the docket card who have electronically subscribed to the case. In addition, the undersigned hereby certifies that a copy of the foregoing document is also being served via electronic mail on the 15th day of December, 2022, upon the persons listed below.

Staff of the Ohio Power Siting Board

john.jones@ohioAGO.gov christopher.zoeller@puco.ohio.gov

> /s/ Devan K. Flahive Devan K. Flahive

Attorney for AMERICAN TRANSMISSION SYSTEMS, INCORPORATED

Appendix 7-1 Agency Consultation United States Fish and Wildlife

Jacobs

Jacobs 2 Crowne Point Court Cincinnati, Ohio 45241 0 +1 (513) 595-7500 F +1 (513) 595-7860 www.jacobs.com

May 26, 2022

Attention: Patrice Ashfield Ohio Ecological Services Office U.S. Fish and Wildlife Service 4625 Morse Road, Suite 104 Columbus, Ohio 43230

VIA EMAIL

Subject: Federal-Listed Threatened and Endangered Species Consultation ATSI Beaver-Wellington 138 kV Transmission Line Project, Lorain County, Ohio TAILS# 03E15000-2019-TA-1962

Dear Ms. Ashfield:

On behalf of American Transmission Systems Inc. (ATSI), a subsidiary of FirstEnergy Service Company (FirstEnergy), Jacobs Engineering Group Inc. (Jacobs) is requesting an update to the previous comments from U.S. Fish and Wildlife Service (USFWS) regarding the proposed Beaver-Wellington 138 kV Transmission Line Project (Project) in Lorain County, Ohio, received on March 20, 2020 (TAILS# 03E15000-2019-TA-1962).

As stated in our initial consultation letter, the Project consists of rebuilding approximately 6 miles of new double circuit 138 kilovolt (kV) line within an existing 69kV right-of-way (ROW). The Project consists of a 65-foot ROW and 100-foot ROW along turn angles. The Project begins near the intersection of Quarry Road and Bursley Road and extends east and north to the Wellington Substation at the intersection of Jones Road and Hawley Road, south of Wellington, Ohio. The Project area is within the Nova, Sullivan, and Wellington U.S. Geological Survey 7.5" topographical quadrangles in Ohio. The Project area is shown on the attached Overview Figure (Attachment 1).

The Project area is primarily rural which includes agricultural land use and wooded areas. The Project construction will consist of work pad areas around the structure locations, pull pads, access roads, and a construction laydown yard. The Project will occur primarily within the existing 69kV transmission line ROW; however, portions may be wider to accommodate the proposed 65-footwide ROW. Based on the expanded ROW, minor tree clearing will likely be necessary for portions of the Project. Tree clearing will be conducted for this Project between October 1st and March 31st to minimize direct impacts to the Indiana bat (*Myotis sodalis*) and Northern long-eared bat (*Myotis septentrionalis*).

Efforts will be made before, during, and post-construction to minimize the extent and duration of the Project-related disturbances to wetlands, streams and other sensitive habitats. Additionally,

ATSI will utilize best management practices to avoid any indirect impact to streams and wetlands through its use of erosion and sediment controls. Wetlands will be traversed using low ground pressure equipment and/or matted through. Due to the lack of potential habitat and by using best management practices, ATSI and Jacobs believe that the proposed Project will not adversely impact federally protected species that could exist within the Project ROW.

In addition to coordinating with USFWS, Jacobs on behalf of ATSI is also soliciting Ohio Department of Natural Resources for comments regarding the Project's potential to impact protected state species.

Please review the Project details provided above, the attached Overview Figure, and ArcGIS shapefile of the Project centerline. Jacobs requests concurrence from the USFWS that the Project, as proposed with the avoidance and minimization measures, will not likely adversely affect state-listed species.

If you have any questions or require additional information, please contact Benjamin Otto at (513) 377-6458 or ben.otto@jacobs.com.

Regards, Jacobs Engineering Group, Inc.

Say Mo-

Benjamin Otto Project Manager

<u>Attachments</u>: Attachment 1: Overview Map

Otto, Ben/CIN

From: Sent: To: Cc: Subject: Ohio, FW3 <ohio@fws.gov> Wednesday, June 1, 2022 10:02 AM Lubbers, Jake Otto, Ben/CIN [EXTERNAL] Beaver-Wellington 138 kV Transmission Line Project, Lorain County, Ohio (Original TAILS# 03E15000-2019-TA-1962)

UNITED STATES DEPARTMENT OF THE INTERIOR U.S. Fish and Wildlife Service Ecological Services Office 4625 Morse Road, Suite 104 Columbus, Ohio 43230 (614) 416-8993 / Fax (614) 416-8994

Project Code # 2022-0046948

Dear Mr. Lubbers,

The U.S. Fish and Wildlife Service (Service) has received your recent correspondence requesting information about the subject proposal. We offer the following comments and recommendations to assist you in minimizing and avoiding adverse impacts to threatened and endangered species pursuant to the Endangered Species Act of 1973 (16 U.S.C. 1531 et seq), as amended (ESA).

<u>Federally Threatened and Endangered Species</u>: Due to the project type, size, location, and the proposed implementation of seasonal tree cutting (clearing of trees \geq 3 inches diameter at breast height between October 1 and March 31) to avoid impacts to the endangered Indiana bat (*Myotis sodalis*) and threatened northern long-eared bat (*Myotis septentrionalis*), we do not anticipate adverse effects to any other federally endangered, threatened, or proposed species, or proposed or designated critical habitat. Should the project design change, or additional information on listed or proposed species or their critical habitat become available, or if new information reveals effects of the action that were not previously considered, coordination with the Service should be initiated to assess any potential impacts.

<u>Section 7 Coordination</u>: If there is a federal nexus for the project (e.g., federal funding provided, federal permits required to construct), then no tree clearing should occur on any portion of the project area until consultation under section 7 of the ESA, between the Service and the federal action agency, is completed. We recommend the federal action agency submit a determination of effects to this office, relative to the Indiana bat and northern long-eared bat, for our review and concurrence. This letter provides technical assistance only and does not serve as a completed section 7 consultation document.

<u>Stream and Wetland Avoidance</u>: Over 90% of the wetlands in Ohio have been drained, filled, or modified by human activities, thus is it important to conserve the functions and values of the remaining wetlands in Ohio (<u>https://epa.ohio.gov/portals/47/facts/ohio_wetlands.pdf</u>). We recommend avoiding and minimizing project impacts to all wetland habitats (e.g., forests, streams, vernal pools) to the maximum extent possible in order to benefit water quality and fish and wildlife habitat. Additionally, natural buffers around streams and wetlands should be preserved to enhance beneficial functions. If streams or wetlands will be impacted, the U.S. Army Corps of Engineers should be contacted to determine whether a Clean Water Act section 404 permit is required. Best management practices should be used to minimize erosion, especially on slopes. Disturbed areas should be mulched and revegetated with native plant species. In addition, prevention of non-native, invasive plant establishment is critical in maintaining high quality habitats.

Thank you for your efforts to conserve listed species and sensitive habitats in Ohio. We recommend coordinating with the Ohio Department of Natural Resources due to the potential for the proposed project to affect state listed species and/or state lands. Contact Mike Pettegrew, Acting Environmental Services Administrator, at (614) 265-6387 or at mike.pettegrew@dnr.state.oh.us.

If you have questions, or if we can be of further assistance in this matter, please contact our office at (614) 416-8993 or <u>ohio@fws.gov</u>.

Sincerely,

Patrice Ashfield Field Office Supervisor

Ohio Department of Natural Resources

Jacobs

Jacobs 2 Crowne Point Court Suite 100 Cincinnati, OH 45241 0 +1 513 595 7808 C +1 513 377 6458 www.jacobs.com

March 1, 2022

Attention: Mike Pettegrew Environmental Services Administrator Ohio Department of Natural Resources 2045 Morse Road Columbus, Ohio 43229

VIA EMAIL

Subject: 20-287; Beaver-Wellington 138 kV Transmission Line Project, Lorain County, Ohio

Dear Mr. Pettegrew:

On behalf of American Transmission Systems Inc. (ATSI), a subsidiary of FirstEnergy Service Company (FirstEnergy), Jacobs Engineering Group, Inc. (Jacobs) is submitting this follow up letter report to the Ohio Department of Natural Resources (ODNR) in response to comments provided by ODNR on April 27, 2020 regarding the proposed Beaver-Wellington 138 kV Transmission Line Project (Project) in Lorain County, Ohio.

As stated in our initial consultation letter, the Project consists of rebuilding approximately 6 miles of new double circuit 138 kilovolt (kV) line within an existing 69kV right-of-way (ROW). An ecological survey consisting of habitat, wetland and waterbody assessments was conducted within the Project area on August-October 2019 and January-June 2020. The Project consists of a 65-foot ROW and 100-foot ROW along turn angles. Jacobs' ecologists walked the entire length of the Project area to classify the general vegetative communities crossed. The general habitat observations from this survey are identified within the Land Use Maps provided in Attachment 1. The Project area is primarily rural which includes agricultural land use and wooded areas.

The Project construction will consist of work pad areas around the structure locations, pull pads, access roads, and a construction laydown yard. Tree clearing for the Project will occur within the recommended clearing period of October 1st to March 31st. The Project will also require the placement of a temporary culvert crossing within an intermittent stream. The temporary crossing will be installed for access of construction equipment and require the installation of two 48-inch culverts. After construction, the temporary culverts will be removed in their entirety and the stream will be returned to pre-construction elevations. Efforts will be made before, during, and post-construction to minimize the extent and duration of the Project-related disturbances to wetlands, streams and other sensitive habitats. ATSI has notified the U.S. Army Corp of Engineers regarding the temporary culvert and its compliance under Nationwide Permit 57.

Within the original response letter, ODNR Division of Wildlife (DOW) identified that the Project was within the range of the Ohio lamprey (*Ichthyomyzon bdellium*), lake sturgeon (*Acipenser fulvescens*), channel darter (*Percina copelandi*), American eel (*Anguilla rostrata*) and bigmouth shiner (*Notropis*)

Ohio Department of Natural Resources Page 2 March 1, 2022

dorsalis). ODNR DOW stated that these species are unlikely to be affected by the Project due to no in-water work is proposed in perennial streams. The Project is still proposing no in-water work within perennial streams.

The ODNR DOW also identified the Project is within range of the state-threatened spotted turtle (*Clemmys guttata*) and Blanding's turtles (*Emydoidea blandingii*). Based on location, the type of habitat along the project route and the type of work proposed, ODNR indicated that the Project is not likely to impact these species.

ODNR noted that the Project lies within the range of the federally endangered Indiana bat (*Myotis sodalis*). ODNR recommended that if potential suitable habitat occurs within the Project area, the trees should be conserved wherever possible. If tree clearing cannot be avoided, ODNR recommended that tree removal occur between October 1st and March 31st to avoid adverse effects to Indiana bats and other bats during the brood-rearing months. To address any potential bat roosting habitat impacts, construction of the Project will begin with tree and vegetation clearing occurring between October 1st and March 31st to the Indiana bat and other bat species.

At the request of the Ohio Power Siting Board (OPSB), Jacobs conducted a desktop habitat assessment to determine if there are potential hibernaculum(a) present within 0.25-mile the Project area. Jacobs followed the current USFWS "Range-wide Indiana Bat Survey Guidelines" when conducting this assessment and utilized data obtained from the ODNR Mines of Ohio Viewer, ODNR geologic maps, topographic maps, and aerial photographs. During the desktop analysis, no potential karst features were identified within the Project area. The bedrock geologies in the area consist mainly of shale, siltstone, and sandstone (ODNR DGS, 1997). Overlaying soils are generally loams, with varying amounts of glacial till or deposits. During the field survey of the Project, no evidence of potential hibernaculum consisting of caves, rock outcrops, mines, cliffs, or karst features were observed. In addition to the field survey, coordination with ODNR did not identify any known bat hibernaculum or records of federal or state listed bats within a one-mile radius of the Project. Based on the desktop habitat review and the results of the field survey, it does not appear likely that potential hibernaculum exist within 0.25-mile of the Project area.

The remaining three species identified within the ODNR response letter were state-endangered birds that all appear to prefer grassland and wetland habitats. The specific habitat preferences identified by the ODNR are as follows:

- **Upland sandpiper**: Upland sandpipers prefer to nest in dry grasslands including native grasslands, seeded grasslands, grazed and ungrazed pasture, hayfields, and grasslands established through the Conservation Reserve Program (CRP). If grassland habitat will be impacted, ODNR requests construction should be avoided in this habitat during the upland sandpiper nesting period of April 15th to July 31st.
- **Sandhill Cranes**: Sandhill cranes are primarily a wetland-dependent species. On their wintering grounds, they will utilize agricultural fields; however, they roost in shallow, standing

Ohio Department of Natural Resources Page 3 March 1, 2022

water or moist bottomlands. On breeding grounds, they require a rather large tract of wet meadow, shallow marsh, or bog for nesting. If grassland, prairie, or wetland habitat will be impacted, construction should be avoided in this habitat during the species' nesting period of April 1st to September 1st.

• Northern harrier: The northern harrier is a common migrant species that are rare nesters in Ohio but occasionally breed in large marshes and grasslands. If grassland habitat will be impacted, ODNR requests construction should be avoided in this habitat during the northern harrier nesting period of May 15th to August 1st.

During the field survey, no large tracts of wet meadow, shallow marshes, or bogs with shallow standing water were identified which would be potentially suitable nesting habitat for the sandhill crane. Due to the lack of potentially suitable nesting habitat, impacts to the sandhill crane are not likely to occur.

At the time of the field surveys, one area of grassland/old field habitat was identified which exhibited grasses sufficient to provide potential nesting habitat for the upland sandpiper and the northern harrier. This potentially suitable nesting habitat for the upland sandpiper and northern harrier was identified between Structures 52 and 56 and is shown on the attached Habitat Land Use Maps. Based on prior conversations with ODNR, other small grassland areas along the Project were not found to be suitable habitat due to proximity near residential houses and the location of narrow grassland strips surrounded by forested areas.

FirstEnergy has indicated that the installation of the access roads and work pads within the identified grassland habitat area will take place outside of the seasonal nesting restrictions of April 1st through September 1st. If construction would be needed within the seasonal restricted months, FirstEnergy has indicated that timber matting would be installed along these areas prior to April 1st to avoid impacts to these potential nesting bird species. The installation of the access roads prior to April 1st will inhibit any potential bird species from nesting within the work areas of the Project.

Through FirstEnergy's installation of access roads outside of the restricted nesting period in grassland areas and tree clearing activities being conducted between October 1st and March 31st, FirstEnergy and Jacobs believe that the proposed Project will not adversely impact any state-listed species. Please review the Project details provided above and the attached figures. Jacobs requests concurrence from the ODNR that the Project, as proposed with the avoidance and minimization measures, will not likely adversely affect state-listed bird and bat species.

Ohio Department of Natural Resources Page 4 March 1, 2022

If you have any questions or require additional information, please contact Benjamin Otto at (513) 595-7808 or ben.otto@jacobs.com.

Sincerely,

Bengello

Benjamin Otto Senior Ecologist/Project Manager

cc: Auggie Ruggiero, FirstEnergy

Attachments: Attachment 1: Habitat Land Use Maps

Fashingbauer, Karin/CHC

From:	Nathan.Reardon@dnr.ohio.gov
Sent:	Tuesday, March 8, 2022 7:25 AM
То:	Lubbers, Jake
Cc:	Otto, Ben/CIN; Ruggiero, Augustine (Jirousek, Michael J.); Bagato, Steven;
	Mike.Pettegrew@dnr.ohio.gov
Subject:	[EXTERNAL] RE: 20-287; Beaver-Wellington 138 kV Transmission Line Project Follow-Up

Hello Jake,

The DOW concurs that the minimization measures outlined in the ODNR Follow-up letter are sufficient in avoiding/minimizing impacts to state listed species. If you have any questions, please let me know.

Thank you, Nathan

Nathan Reardon Compliance Coordinator ODNR Division of Wildlife 2045 Morse Road Columbus, OH 43229 Phone: 614-265-6741 Email: nathan.reardon@dnr.ohio.gov

Support Ohio's wildlife. Buy a license or stamp at wildohio.gov.

This message is intended solely for the addressee(s). Should you receive this message by mistake, we would be grateful if you informed us that the message has been sent to you in error. In this case, we also ask that you delete this message and any attachments from your mailbox, and do not forward it or any part of it to anyone else. Thank you for your cooperation and understanding.

Please consider the environment before printing this email.

From: Lubbers, Jake <<u>Jake.Lubbers@jacobs.com</u>>
Sent: Tuesday, March 1, 2022 5:03 PM
To: Pettegrew, Mike <<u>Mike.Pettegrew@dnr.ohio.gov</u>>
Cc: Tebbe, Sarah <<u>sarah.tebbe@dnr.ohio.gov</u>>; Otto, Ben/CIN <<u>Ben.Otto@jacobs.com</u>>; Ruggiero, Augustine (Jirousek, Michael J.) <<u>Aruggiero@firstenergycorp.com</u>>; Bagato, Steven <<u>sbagato@burnsmcd.com</u>>

Subject: 20-287; Beaver-Wellington 138 kV Transmission Line Project Follow-Up

Dear Mr. Pettegrew,

On behalf of American Transmission Systems Inc. (ATSI), a subsidiary of FirstEnergy Service Company (FirstEnergy), Jacobs Engineering Group, Inc. (Jacobs) is submitting this follow up letter report to the ODNR in response to comments provided by ODNR on April 27, 2020 regarding the proposed Beaver-Wellington 138 kV Transmission Line Project (Project) in Lorain County, Ohio. Please find the attached letter report requesting concurrence from the ODNR that the
Project, as proposed with the avoidance and minimization measures, will not likely adversely affect state-listed bird and bat species.

Please let us know if you have any questions or need any additional information for your review. Thank you,

Jake Lubbers | Jacobs | Environmental Permitting Scientist 859-652-2160 | jake.lubbers@jacobs.com 2 Crowne Point Court, Suite 100 | Cincinnati, OH 45241 | United States

NOTICE - This communication may contain confidential and privileged information that is for the sole use of the intended recipient. Any viewing, copying or distribution of, or reliance on this message by unintended recipients is strictly prohibited. If you have received this message in error, please notify us immediately by replying to the message and deleting it from your computer.

CAUTION: This is an external email and may not be safe. If the email looks suspicious, please do not click links or open attachments and forward the email to <u>csc@ohio.gov</u> or click the Phish Alert Button if available.

Ohio Historic Preservation Office

October 27, 2021

In reply refer to: 2020-LOR-47668

Karin S. Fashingbauer, Project Manager Jacobs Engineering Group, Inc. 2 Crowne Point Court, Suite 100 Cincinnati, Ohio 45241 Email: <u>karin.fashingbauer@jacobs.com</u>

RE: Section 106 Review-Beaver-Wellington 138kV Transmission Line Project, Lorain County, Ohio.

Dear Ms. Fashingbauer:

This letter is in response to the correspondence received on October 7, 2021 regarding the proposed 6.02-mile long Beaver-Wellington 138kV Transmission Line Project in Lorain County, Ohio. We appreciate the opportunity to comment on this project. The comments of the Ohio State Historic Preservation Office (SHPO) are made pursuant to Section 149.53 of the Ohio Revised Code (O.R.C.) and the Ohio Power Siting Board rules for siting this project (OAC 4906-5). The comments of the Ohio SHPO are also submitted in accordance with the provisions of Section 106 of the National Historic Preservation Act of 1966, as amended (54 U.S.C. 306108 [36 CFR 800]).

The proposed undertaking involves the installation of a new 138kV transmission line within a proposed 65- to 100ft. wide by 6.02-mile right-of-way (ROW) corridor, including access roads, which is defined as the direct Area of Potential Effect (APE). The following review and comments pertain <u>only</u> to the *Phase I Archaeological Reconnaissance for the Beaver-Wellington, 138 kV Transmission Line Project in Lorain County, Ohio* by Jacobs Engineering Group, Inc. (Jacobs 2021). The architectural component has been submitted in a stand-alone report, and therefore the review will be under a separate cover.

The archaeological survey involved a literature review, shovel test unit excavations, surface collection, and visual inspection of the entire APE, as defined above. A total of 204 shovel test units were excavated within the APE. Two previously unrecorded archaeological sites were identified within the APE and were assigned Ohio Archaeological Inventory (OAI) numbers 33LN400 and 33LN402. Site 33LN400 is a low-density (n=3), lithic scatter consisting of non-diagnostic flakes (n=2) and a flake tool. Site 33LN402 represents an isolated find consisting of a non-diagnostic lithic flake. After careful review of the archaeological report, our office concurs with Jacobs that sites 33LN400 and 33LN402 are not considered eligible for the National Register of Historic Places (Criterion D). Therefore, as proposed, the project will have no effect on significant archaeological resources. Furthermore, the SHPO also concurs that, as proposed, no further archaeological investigations are warranted for the 6.02-mile APE. No further coordination in regards to archaeology are required for this project unless the scope of work changes or new/additional archaeological remains are discovered during the course of the project. In such a situation, this office should be contacted as required by O.R.C. and by 36 CFR § 800.13. If you have any questions concerning this review, please contact me via email at sbiehl@ohiohistory.org. Thank you for your cooperation.

2020-LOR-47668 October 27, 2021 Page 2

Sincerely,

Steph M. Biell

Stephen M. Biehl, Project Reviews Coordinator (archaeology) Resource Protection and Review State Historic Preservation Office

RPR Serial No. 1090379

"Please be advised that this is a Section 106 decision. This review decision may not extend to other SHPO programs."

December 13, 2021

In reply refer to: 2020-LOR-47668

Karin S. Fashingbauer, Project Manager Jacobs Engineering Group, Inc. 2 Crowne Point Court, Suite 100 Cincinnati, Ohio 45241 Email: <u>karin.fashingbauer@jacobs.com</u>

RE: Section 106 Review-Addendum to Beaver-Wellington 138kV Transmission Line Project, Lorain County, Ohio.

Dear Ms. Fashingbauer:

This letter is in response to the correspondence received on November 30, 2021 regarding the addendum Phase I archaeological reconnaissance survey to the Beaver-Wellington 138kV Transmission Line Project in Lorain County, Ohio. We appreciate the opportunity to comment on this project. The comments of the Ohio State Historic Preservation Office (SHPO) are made pursuant to Section 149.53 of the Ohio Revised Code (O.R.C.) and the Ohio Power Siting Board rules for siting this project (OAC 4906-5). The comments of the Ohio SHPO are also submitted in accordance with the provisions of Section 106 of the National Historic Preservation Act of 1966, as amended (54 U.S.C. 306108 [36 CFR 800]).

The current addendum project involves the addition of new access roads, work areas, and a laydown yard totaling approximately 5.14-acres, which was considered to be the direct Area of Potential Effect (APE) for the project. The access roads were considered 25-ft in total width along the entire length. The archaeological survey involved an updated literature review, shovel test unit excavations, surface collection, and visual inspection of the entire APE, as defined above. One previously documented archaeological site, 33LN400, was relocated during this project. Site 33LN400 was originally documented during the original Phase I archaeological survey for the Beaver-Wellington 138kV transmission line project. It was documented as a low-density pre-contact lithic scatter consisting of nondiagnostic flakes (n=2) and a flake tool. After review of the original Phase I survey, our office concurred that site 33LN400 was not considered eligible for the National Register of Historic Places (NRHP) under Criterion D. The current addendum survey identified two additional artifacts during shovel testing for the substation expansion area. These artifacts include a non-diagnostic biface fragment and a chert flake. The identification of these additional artifacts has expanded the original site boundary. After careful review of the archaeological addendum report, our office continues to concur with Jacobs that site 33LN400 is not considered eligible for the NRHP under Criterion D. Therefore, as proposed, the addendum project will have no effect on historic properties. Furthermore, the SHPO also concurs that, as proposed, no further archaeological investigations are warranted for the project unless the scope of work changes or new/additional archaeological remains are discovered during the course of the project. In such a situation, this office should be contacted as required by O.R.C. and by 36 CFR § 800.13. If you have any questions concerning this review, please contact me via email at sbiehl@ohiohistory.org. Thank you for your cooperation.

2020-LOR-47668 December 13, 2021 Page 2

Sincerely,

Steph M. Biell

Stephen M. Biehl, Project Reviews Coordinator (archaeology) Resource Protection and Review State Historic Preservation Office

RPR Serial No. 1091022

"Please be advised that this is a Section 106 decision. This review decision may not extend to other SHPO programs."

GEOTECHNICAL ENGINEERING REPORT

BROOKSIDE-WELLINGTON 138KV LINE REBUILD Lorain County, OH

> Prepared For: FirstEnergy

GPD Project No. 2022821.59 October 19, 2022

Contents

SECTI	ON 1	3
1.0 1.1 1.2	Introduction Project Description Purpose and Scope	3 3 3
SECTI	ON 2	4
2.0 2.1 2.2 2.3	Site Conditions Subsurface Exploration Program Laboratory Testing Subsurface Conditions	4 4 5
2.	3.1 Groundwater Conditions	5
SECTI	ON 3	6
3.0 3.1 3.2 3.3	Engineering Recommendations Geotechnical Considerations Fill Material Foundation Systems	6 6 6 7
3.	3.1 Drilled Concrete Piers/Direct Embed Poles	7
3.4	Excavations	9
SECTI	ON 41	0
4.0 4.1 4.2 4.3 4.4 4.5	Additional Design and Construction Considerations 1 Seismic Considerations 1 Surface Drainage 1 Subsurface Drainage 1 Special Conditions 1 Corrosion Potential of soil 1	0 0 0 0
4.6	General Comments 1	0

1.0 Introduction

GPD Group is pleased to submit this Geotechnical Report for the aforementioned project. The purpose of this study was to obtain information on the subsurface conditions at the proposed project site and based on this information, to provide geotechnical recommendations regarding the design and construction of foundations for the transmission line structures associates with the Brookside-Wellington 138kV Line Rebuild. A total of two (2) borings extending to depths of approximately 50 feet below the existing ground surface were drilled at the project site. Individual boring logs and a Boring Location Plan are attached.

1.1 Project Description

We understand the project will consist of a rebuilding the existing 138kV transmission line between the existing Wellington substation and the existing Brookside Substation located in Lorain County, Ohio. The subsurface investigation is to evaluate the subsurface conditions at two structure locations.

1.2 Purpose and Scope

The purposes of this report were to investigate subsurface conditions along the proposed transmission Line and to provide geotechnical engineering recommendations for earthwork and foundation design. Specifically, the scope of work included the following:

- Conducting a field exploration program consisting of site reconnaissance and drilling sample borings at selected locations along the transmission line to explore subsurface conditions and collect soil samples.
- Conducting geotechnical engineering laboratory test on sampled soils to assist with soil classifications and estimation of engineering properties.
- Develop geotechnical engineering recommendations for the design and construction of foundations, retaining structures and earthwork for site grading.

SECTION 2

2.0 Site Conditions

The transmission line rebuild will be along the existing Wellington-Brookside 138kV line located in Lorain County. In general, the boring locations were advanced in agricultural fields.

2.1 Subsurface Exploration Program

The subsurface exploration consisted of drilling and sampling two (2) borings at the site to a depth of 50.0 feet below existing grade. The boring locations were laid out by GPD personnel using coordinates provided in the RFP. The locations of the borings should be considered accurate only to the degree implied by the means and methods used to define them. Borings were offset to maintain clearance to energized lines.

The borings were drilled with a track-mounted rotary drill rig using hollow-stem augers and safety hammer and cat head to advance the boreholes. Representative soil samples were obtained by the split-barrel and Shelby tube sampling procedure in general accordance with the appropriate ASTM standards. In the split-barrel sampling procedure, the number of blows required to advance a standard 2-inch O.D. split-barrel sampler the last 12 inches of the typical total 18-inch penetration by means of a 140-pound hammer with a free fall of 30 inches, is the standard penetration resistance value (N-Value). This value is used to estimate the in-situ relative density of cohesion-less soils and the consistency of cohesive soils. In the thin-walled tube sampling procedure, a thin-walled, seamless steel tube with a sharp cutting edge is pushed hydraulically into the soil to obtain a relatively undisturbed sample of cohesive or moderately cohesive soil. The sampling depths and penetration distance, plus the standard penetration resistance values, are shown on the boring logs. The samples were sealed and returned to the laboratory for testing and classification.

Field logs of each boring were prepared by a GPD Geologist. These logs included visual classifications of the materials encountered during drilling as well as the geologist's interpretation of the subsurface conditions between samples. Final boring logs included with this report represent an interpretation of the field logs and include modifications based on observations made by a senior Geotechnical Engineer and the results of laboratory testing.

2.2 Laboratory Testing

The samples were classified in the laboratory based on visual observation, texture and plasticity. The descriptions of the soils indicated on the boring logs are in accordance with the enclosed General Notes and the Unified Soil Classification System. A brief description of this classification system is attached to this report.

The laboratory testing program consisted of performing the following tests:

- Natural water content tests (ASTM D-2216)
- Atterberg Limits (ASTM D-4318)
- Unconfined Compressive Strength (ASTM D-2166)
- Unit Weight (ASTM D-7263)
- Chemical Suite (Various)

Information from these tests was used in conjunction with field penetration test data to evaluate soil strength in-situ, volume change potential, and soil classification. Results of these tests are attached and provided on the boring logs.

Per the technical guidelines two (2) grab samples were obtained from each boring for environmental testing. The samples were sent to the FirstEnergy Beta lab for testing of polychlorinated biphenyls and total petroleum hydrocarbons.

2.3 Subsurface Conditions

All borings were drilled in brush or agricultural fields with topsoil thickness on the order of about 7 to 12 inches. The surface was generally underlain by varying combinations and sequences of silt and clay with lesser sand extending to boring termination depths of 50.0 feet. Where sampled the soils were damp to moist and medium dense, where granular and medium stiff to hard where cohesive.

2.3.1 Groundwater Conditions

The borings were monitored while drilling and immediately after completion for the presence and level of groundwater. Water levels observed in the borings are noted on the boring logs. At these times, groundwater was observed at a depth of 24 and 24.5 feet below the ground surface. These water level observations provide an approximate indication of the groundwater conditions existing on the site at the time the borings were drilled.

It should be recognized that fluctuations of the groundwater table may occur due to seasonal variations in the amount of rainfall, runoff and other factors not evident at the time the borings were performed. Therefore, groundwater levels during construction or at other times in the life of the structure may be higher or lower than the levels indicated on the boring logs. The possibility of groundwater level fluctuations should be considered when developing the design and construction plans for the project.

3.0 Engineering Recommendations

The following engineering recommendations are based on information provided to GPD Group regarding the design of the proposed project, the field and laboratory testing performed on the soil encountered at this site, and other information discussed in this report. This report does not reflect variations that may occur between borings, across the site, or due to the modifying effects of weather. The nature and extent of such variations may not become evident until during or after construction. If variations appear, GPD should be immediately notified so that further evaluation and supplemental recommendations can be provided.

3.1 Geotechnical Considerations

Based on the information obtained during the course of this study, the following geotechnical considerations should be taken into account during the planning, design and construction phases of the project. These geotechnical considerations are provided as a summary of the primary issues we believe are associated with this site. This report must be read in its entirety for a full description of our geotechnical recommendations:

 Contingent upon proper site preparation and thorough evaluation of the foundation excavations, it is our opinion that the proposed structures can be supported on drilled piers.

The following report sections provide detailed recommendations regarding the geotechnical considerations presented above. In the event changes in the project design occur, GPD Group must review this report to determine if modifications to our recommendations are warranted.

3.2 Fill Material

Any fill or backfill required should be select material, as approved by a qualified geotechnical engineer. For all filling operations, the following should be observed:

- Prior to use, the approved fill material should be tested as outlined in ASTM D-698 to determine the maximum dry density and optimum moisture content for silty or cohesive soils, or ASTM D-4253 and D-4254 for clean granular soils. For each change in borrow material, additional tests will be required.
- For all fill or backfill used, the fill material should be placed on the approved subgrade in controlled lifts, with each lift compacted to a stable condition, and to a minimum of 98% maximum dry density per ASTM D-698 at a moisture content within 1.5% of optimum for cohesive or silty borrow. Controlled lifts of granular material should be compacted to 80% relative density per ASTM D-4254.
- All filling operations should be observed by a qualified soils technician with field density tests made, to assure compaction to specification.

Backfill may consist of mixes of natural soil or crushed aggregate meeting one of the following USCS Classifications: GW, GP, GM, GC, SW, SP, SM, SC, CL, ML, any dual symbol combinations of the proceeding. Backfill material should contain a maximum organic content of 1 percent, and a maximum particle size of 3-inches. Generally, excavated site soils are considered acceptable.

GPD Group | 6

Proper moisture control of fine grained silty soils is critical in attaining the required compaction. It should be noted that both in-situ soils and new fill composed of fine grained soils are susceptible to disturbance by construction equipment traffic when wet. Thus, construction operations should be planned to prevent such disturbance and the resulting weakening of the subgrade soils. Such precautions would include, but not be limited to grading the site to prevent ponding of water, sealing the subgrade soils at the end of operations each day, and allowing wet subgrades to dry before operating heavy equipment on the soil.

Compaction equipment and techniques will be dependent on the type of material being used as fill. A sheepsfoot roller should provide adequate compaction for cohesive (clayey) soils. A vibratory type compactor such as a drum roller will be required for non-cohesive (sandy) soils.

3.3 Foundation Systems

It is our understanding that drilled piers will be used to support the proposed structures.

3.3.1 Drilled Concrete Piers/Direct Embed Poles

Straight shaft drilled piers or direct embed poles may be used to support the planned structures. The piers/poles may bear at any practical depth below frost depth which provides the required resistance, and can be sized to support compression and resist uplift using the following estimated properties:

Layer Number	Layer Type	Depth to Bottom of Layer (ft)	Total Unit Weight (pcf)	Deformation Modulus (ksi)	Friction Angle (ø)	Undrained Shear Strength or Rock Cohesion (psf)	Rock / Concrete Bond Strength (ksf)	End Bearing Strength of Bottom Layer (psf)
11	CL	3	115			1,250		
21	CL	6	110	0.50		750		3,750
3	CL-ML	8	139	4.00		5,365		9,000
4	CL-ML	13	125	1.70		2,750		13,750
5	CL-ML	16	130	2.20		3,500		17,500
6	CL-ML	22	125	1.40		2,000		18,000
7	CL	27	130	0.80		1,500		13,500
8	CL	32	135	1.40		2,000		18,000
9	CL	37	130	0.80		1,500		13,500
10	CL	42	135	1.60		2,500		22,500
11	CL	47	140	2.35		3,750		30,000
12	CL	50	140	2.20		3,500		30,000

Table 1: Soil Design Parameters (B-1)

¹ The upper 42 inches of soil should be ignored due to potential effects of frost action as well as construction disturbance.

Layer Number	Layer Type	Depth to Bottom of Layer (ft)	Total Unit Weight (pcf)	Deformation Modulus (ksi)	Friction Angle (¢)	Undrained Shear Strength or Rock Cohesion (psf)	Rock / Concrete Bond Strength (ksf)	End Bearing Strength of Bottom Layer (psf)
11	ML	3	115		33			
21	CL-ML	6	125	1.40		2,000		10,000
3	CL-ML	11	125	1.70		2,750		13,750
4	CL	13	130	1.60		2,500		12,500
5	CL	17	125	1.10		1,750		8,750
6	CL	22	125	0.70		1,000		9,000
7	CL-ML	32	130	0.80		1,500		13,500
8	CL-ML	37	135	1.40		2,000		18,000
9	CL-ML	42	135	1.80		3,000		27,000
10	CL-ML	47	140	1.60		2,500		22,500
11	ML	50	140	1.10	33			24,000

 Table 2: Soil Design Parameters (B-2)

¹ The upper 42 inches of soil should be ignored due to potential effects of frost action as well as construction disturbance

We recommend that a factor of safety of 3 be applied to the ultimate bearing capacity and a factory of safety of 2 be applied to the ultimate side shear. The pressure meter modulus and certain other parameters were based on correlations with standard penetration test N-count, laboratory test results, and soil/rock type as shown in the User Guide of MFAD version 5.0. A strength factor of 0.63 is recommended for use with MFAD 5.0. Where lower capacity zones exist below and within 1 pier diameter of higher capacity zones, the lower bearing pressure should be used.

During construction, the pier bottom should be clean and inspected by a qualified geotechnical engineer prior to placing concrete. Concrete should be placed as soon after drilling as possible, with the exposed bearing surface kept as dry as practical. If any delay occurs, the bottom of the pier excavation should be re-augered to remove any softened soil. Any water accumulating in the shaft should be removed before placing concrete. Alternately, the concrete may be placed by a tremie method to preclude segregation of the mix. Casing and/or drilling mud should be used as necessary for water control and/or sidewall stability.

If temporary casing is used, while withdrawing casing, care should be exercised to maintain concrete inside the casing at a sufficient level to resist earth and hydrostatic pressures acting on the casing exterior. Arching of the concrete, loss of seal and other problem can occur during casing removal and result in contamination of the drilled shaft. These conditions should be considered during the design and construction phases. Placement of soil backfill should not be permitted around the casing prior to removal.

If permanent casing is used, the casing must be advanced ahead of the excavation via driving, vibro-hammer, or twisting. The casing must be installed in such a way to provide good load transfer through side resistance, under no circumstances should the hole be over drilled and casing placed into the excavation. The provided side shear values should be reduced by a factor of 0.60 for cohesionless soils and 0.50 for cohesive soil.

A reduction factor is recommended where the center to center spacing of piers is between 2.5 and 4 times the pier diameter. A reduction factor of 0.65 would apply when the center to center spacing is reduced to 2.5, the minimum pier spacing. A linear correlation would apply for spacings between 2.5 and 4. Alternatively, an industry standard for pier spacing may be used as designed by others.

3.4 Excavations

Trench walls shall be sloped or shored per the requirements of OSHA regulations. Based on the borings performed at this site, we recommend that the excavations be designed using an OSHA Type "C" soil classification. The soil type should be confirmed by a competent person at the time of construction, who would determine if steeper slopes associated with type B soils could be considered. Groundwater seeps are not anticipated during shallow excavations. Excavations that extend greater than 20 feet shall be designed and approved by a professional engineer.

SECTION 4

4.0 Additional Design and Construction Considerations

4.1 Seismic Considerations

Based on the subsurface profile found in the test boring, a Seismic Site Classification "D" should be used for design of the structures according to the "International Building Code and Related Codes, Section 1613.5.2 Site Class Definitions.

4.2 Surface Drainage

Adequate drainage should be provided at the site to minimize any increase in moisture content of the foundation materials. All areas should be sloped away from the structures to prevent ponding of water. Surface directed away from any slopes to limit potential erosion.

4.3 Subsurface Drainage

At the time of this investigation, groundwater was observed about 16 to 24 feet below the ground surface. Any water encountered during shallow excavations of this project would be the result of water bearing pervious seams, and/or a perched water table condition. Conventional dewatering methods, such as pumping from sumps, should be adequate for temporary removal of any groundwater encountered during excavation at the site. If springs or other significant groundwater is exposed during the excavation process, it may be necessary to install permanent trench drains to remove this water away from future structures.

4.4 Special Conditions

The clay soils have low swell potential and collapsing conditions would not be expected. No mines are identified at the test locations on the ODNR mine map.

4.5 Corrosion Potential of soil

Chemical testing was performed on combined samples from Borings B-1 and B-2 from 1.0 to 5.0 feet below the ground surface.

The chemical testing is not complete at this time. An addendum letter or updated report with the results and recommendations will be provided when the testing is completed.

4.6 General Comments

GPD Group should be retained to review the final design plans and specifications so comments can be made regarding interpretation and implementation of our geotechnical recommendations in the design and specifications. GPD should also be retained to provide testing and observation during site preparation and fill placement operations as well as during the foundation, floor slab and pavement construction phases of the project.

The analysis and recommendations presented in this report are based upon the data obtained from the borings performed at the indicated locations and from other information discussed in this report. This report does not reflect variations that may occur between borings, across the site, or due to the modifying effects of weather. The nature and extent of such variations may not become evident until during or after construction. If variations appear, GPD should be immediately notified so that further evaluation and supplemental recommendations can be provided.

The scope of services for this project does not include either specifically or by implication any environmental assessment of the site or identification of contaminated or hazardous materials or conditions. If the owner is concerned about the potential for such contamination, other studies should be undertaken.

This report has been prepared for the exclusive use of **FirstEnergy Corporation** for specific application to the project discussed and has been prepared in accordance with generally accepted geotechnical engineering practices. No warranties, either express or implied, are intended or made. Site safety, excavation support, and dewatering requirements are the responsibility of others. In the event that changes in the nature, design, or location of the project as outlined in this report are planned, the conclusions and recommendations contained in this report shall not be considered valid unless GPD Group reviews the changes and either verifies or modifies the conclusions of this report in writing.

LOCATION PLAN

LOCATION PLAN

							E	Bori	ng	Nur	nbe	r: E	8-1
	CLIEN	NT Fi	rstEnergy P	ROJECT N	AME We	ellingto	n-Brookside	Line					
	PROJ		NUMBER _2022821.59 P		OCATION	Lora	ain County, O	hio					
	DATE	STAF	RTED September 23, 2022 COMPLETED September 23, 2022	GROUN	D ELEVA	TION		н	OLE S	IZE			
	DRILI		CONTRACTOR GPD Geotechnical Services, Inc.	GROUN			LS:						
	DRILI		IETHOD Hollow Stem Auger with Manual SPT Hammer	$\overline{\mathbb{V}}$ at time			3 24.50 ft						
	LOGO	ED B	Y Nick Burgess CHECKED BY Jason Arney		D OF DR		16.30 ft						
	NOTE	S Si	mco 2400:										
۲					ш	%		ź	()	AT		RG	Γ
ANK.0	Ξ	₽"			¥¤	Υ Σ	UE) UE)	PEI	T (%			'∠	NTE
1 BL/	EPT (€)	AP 0	MATERIAL DESCRIPTION		MB	NGE NGE		(ET (tsf)	STL	8 ⊑	E E E	ΞX	00 %
DB		а В С В			MA NUN		^m O _Z	2 C	NO NO	Ξğ	LIN	AST	ES
BUIL	0				l S	R		۲ ۲	- ŏ	-	<u>م</u>	7	NI LI
SR	<u> </u>		Moist, stiff to medium stiff, brown & gray, silty CLAY, trace o	f sand.									
138k					V ss	100	5-5-6	2.0					
Ч					1	100	(11)	2.0	-				
OKS									-				
BRO	- -				$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $	78	3-3-3 (6)	0.75					
ż	5				<u> </u>		(0)		-				
ngT			Damp, stiff to hard, gray, clayey SILT, little sand, trace of gra	ivel.			10 700	-					
LL VELL					ST 3	67	q _u =10,730 psf		15	30	15	15	
<u>~</u>							•	-					-
ER.C					∬ ss	89	6-11-12	4.0+	13				
STEN	10				4		(23)	1.0		-			
Ξ.										-			
1.59					$\left \right\rangle \left \begin{array}{c} SS \\ 5 \end{array} \right $	89	(22)	4.0+	13				
21/82							()			1			
0228					∕∕ ss	00	9-12-15	1.0.					
12/20	15				6	83	(27)	4.0+	11				
3S/20			-										
			<u>×</u>										
-RIS													
BILCI							E 7 0						-
0 G	20				7	89	(15)	4.0+	13	28	13	15	
Э. - Н													
17:57													
9/22 0			Moist, very stiff to stiff, gray, silty CLAY, trace of sand & grav	el.									
10/1										-			
Ь	 25		₽			100	3-5-6 (11)	1.5	16				
AB.G	20		Wet, gray fine to coarse SAND seam noted at 24.5				()						
US L													
STD													
LNG-													
Ψ					ss	83	5-7-10	2.0	16	28	14	14	
2	30	\////			K A A		(17)						
NIN N		\////											
E LE		\////											
ЦЦ ЦЦ					∬ ss	100	3-5-7	15	15	1			
Ü	35	<u> </u>			/ \ 10	100	(12)	1.5	15				

						E	Bori	ng l	Nun	nbe	r: B	8-1
CLIEN	NT Fin	stEnergy	PROJECT NA	ME We	ellingtor	n-Brookside	Line					
PROJ	ECT N	JMBER _2022821.59	PROJECT LO	CATION	Lorai	n County, O	hio	1				
DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	MOISTURE CONTENT (%)				FINES CONTENT
		Moist, very stiff to stiff, gray, silty CLAY, trace of sand & gra (continued)	avel.	1 55		6-8-12						
<u>40</u>			Ź	11	100	(20)	4.0	14				
 <u>45</u> 				SS 12	94	9-13-17 (30)	3.75	17				
				SS	83	10-12-16	4.0+	14				

Г

520 South Main Street, Suite 2531 Akron, Ohio 44311

Phone 330.572.2100 www.gpdgroup.com

Unconfined Compression Test (ASTM D-2166)

Job Name:		FirstEner	gy Wellingto	n-Brookside L	ine		GPD	Project Nu	mber:	2022821.59
Date:		10/6/22					Lab	Number:		22178
Sample:		B-1 S-3					Mois	sture Conter	nt (%)	14.5
Depth		6.0'-8.0'					Dry	Unit Weigh	t (pcf):	121.7
Strain Rate:		1% per n	ninute				Com	pressive Stu	rength (psf):	10730
Soil:		Damp, ve	ery stiff, brow	vn, clayey SIL	Γ, trace of sa	and & gravel	. Strai	n at Failure	(%):	8.2
							Shea	r Strength (psf):	5365
Technician:		N.C.					Aver	age Length	(in):	3.953
							Aver	age Diamet	er (in):	1.889
Strain	Stress						Leng	gth to Dia. F	Ratio:	2.09
(%)	(psf)						Rem	arks:		
0.00	0.00]
0.13	51.32									
0.25	153.75									
0.38	511.87	1	2000.00							
0.51	741.26									
0.63	944.55									
1.26	2054.63	1	0000.00							
1.90	3226.03									
2.53	4407.20		8000 00 💻							
3.16	5622.52									
3.79	6623.87	pst								
4.43	7562.47	SSS	6000.00							
5.06	8268.55	Str.								
5.69	8988.78	0,	4000.00							
6.32	9554.22		4000.00							
6.96	10063.40									
7.59	10469.82		2000.00							
8.22	10728.27									
8.85	10467.01		0.00							
9.49	9115.43		0.00	2 00	4 00	6 00	× 00	10.00	12.00	
10.12	7966.46		0.00	2.00	4.00	0.00	0.00	10.00	12.00	
					Strai	Π 76				

								E	Bori	ng	Nur	nbe	er: E	3-2	
CLIF	NT	Fir	stEnerav PR		۹WF	E We	ellinato	n-Brookside	Line						
		<u>т н</u>					Llorai	in County C)hio						
								in County, C							
DAT	E 31/	AR	TED September 21, 2022 COMPLETED September 21, 2022	GROUNL		EVA		-	HOLE SIZE						
	LING	G C	ONTRACTOR _ GPD Geotechnical Services, Inc.) W.	ATER		LS:							
DRIL	LING	GΜ	ETHOD Hollow Stem Auger with Manual SPT Hammer		IE C	of Dr	ILLING	i 24.00 ft							
LOG NOT	GED ES	BY Sin	<u>Nick Burgess</u> CHECKED BY Jason Arney nco 2400;	AT ENI	DO	f Dri	LLING								
					L L	Ľ	%		z	(%	AT	ERBE	ERG S	ENT	
Ӗ	HC	רי)				- H	Ъ Г Ц	-UES	L L	URE (°		O	Ł	LN (
EP (€	AP .	ĕ	MATERIAL DESCRIPTION			μЩ	N S S	VAL	(fsf	IST TEV	₿Ę	NT N	Ξŭ	08	
	ß					Z	ы С Ш	шо́г	ÖCI	N N N N	ğĘ	ΓĘ	ASI	ES ES	
0					Ű	6	ц К		Ē	0			Ч	Ľ Ľ	
	<u>, 17</u>	<u>.(</u>	7" Topsoil												
-	1		Damp, medium dense, brown SILT, little sand,		M	SS	94	7-8-10							
					р	1		(18)	_						
			Damp, very stiff, brown, clayey SILT, trace of sand & gravel.			SS 2	100	6-8-9 (17)	4.0+	-					
_ 5						L		(17)		-					
-					M	SS 3	100	6-9-14 (23)	4.0+	14					
_						55		5-0-13							
_ 10					Д	4	100	(22)	4.0+	14	-				
-			Damp to moist, medium stiff to very stiff, gray, silty CLAY, tra sand & gravel.	ce of		SS 5	100	6-9-10 (19)	3.5	13	28	13	15	-	
_					M	SS	100	5-7-7	3.0	12	-				
_ <u>15</u> -						6		(14)	0.0	12					
-															
20					M	SS 7	100	3-3-5 (8)	2.0	15	28	13	15		
_															
_			∇								-				
25			$\frac{2}{3}$ Wet, gray SILT seam noted at 24.5'		Д	8 8	56	4-6-7 (13)	2.0	18					
_															
-	-		Damp, stiff to very stiff, gray clayey SILT, little sand, trace of g	gravel.											
- 30					М	SS 9	83	6-6-7 (13)	4.0+	12	26	12	14		
_															
_						SS	78	5-8-9	4 0+	15	-				
35		뀖			\mathbb{N}	10	10	(17)	104	13					

Boring Number: B-2

	NT <u>Fir</u> IECT N	stEnergy PRC		CT NAME Wellington-Brookside Line									
2 DEPTH	GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE TYPE NUMBER	RECOVERY % [BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	MOISTURE CONTENT (%)	I LIMIT LIMIT			FINES CONTENT (%)		
 40		Damp, stiff to very stiff, gray clayey SILT, little sand, trace of gr (<i>continued</i>) Damp, very stiff, gray, interbedded CLAY & SILT.	avel.	3 ₈₉	6-11-13 (24)	-	13						
 <u>45</u> 		Damp, medium dense, gray SILT, little clay & sand.		§ 100	7-9-11 (20)	-	12						
 50		Boring terminated at 50.0 feet		§ 89	7-10-10 (20)	-	19						

GENERAL NOTES

SAMPLE IDENTIFICATION

The Unified Soil Classification System (USCS), AASHTO 1988 and ASTM designations D2487 and D-2488 are used to identify the encountered materials unless otherwise noted. Coarse-grained soils are defined as having more than 50% of their dry weight retained on a #200 sieve (0.075mm); they are described as: boulders, cobbles, gravel or sand. Fine-grained soils have less than 50% of their dry weight retained on a #200 sieve; they are defined as silts or clay depending on their Atterberg Limit attributes. Major constituents may be added as modifiers and minor constituents may be added according to the relative proportions based on grain size.

DRILLING AND SAMPLING SYMBOLS

- SFA: Solid Flight Auger typically 4" diameter flights, except where noted.
- HSA: Hollow Stem Auger typically 3¹/₄" or 4¹/₄ I.D. openings, except where noted
- M.R.: Mud Rotary Uses a rotary head with Bentonite or Polymer Slurry CP
- R.C.: Diamond Bit Core Sampler
- H.A.: Hand Auger
- P.A.: Power Auger Handheld motorized auger

SOIL PROPERTY SYMBOLS

- N: Standard "N" penetration: Blows per foot of a 140 pound hammer falling 30 inches on a 2-inch O.D. Split-Spoon.
- N_{60} : A "N" penetration value corrected to an equivalent 60% hammer energy transfer efficiency (ETR)
- Q_u: Unconfined compressive strength, TSF
- Q. Pocket penetrometer value, unconfined compressive strength, TSF
- w%: Moisture/water content, %
- LL: Liquid Limit, %
- PL: Plastic Limit, %
- PI: Plasticity Index = (LL-PL),%
- DD: Dry unit weight, pcf
- ▼, ☑, ☑ Apparent groundwater level at time noted

RELATIVE DENSITY OF COARSE-GRAINED SOILS ANGULARITY OF COARSE-GRAINED PARTICLES

Relative Density	N - Blows/foot	Description	Criteria
Very Loose	0 - 4	Angular:	Particles have sharp edges and relatively plane sides with unpolished surfaces
Loose Medium Dense	4 - 10 10 - 30	Subangular:	Particles are similar to angular description, but have
Dense Very Dense	30 - 50 50 - 80	Subrounded:	Particles have nearly plane sides, but have
Extremely Dense	80+	Rounded:	Particles have smoothly curved sides and no edges

GRAIN-SIZE TERMINOLOGY

Component	Size Range	
Boulders:	Over 300 mm (>12 in.)	
Cobbles:	75 mm to 300 mm (3 in. to 12 in.)	
coarse-Grained Gravel:	19 mm to 75 mm (¾ in. to 3 in.) F	-la
Fine-Grained Gravel:	4.75 mm to 19 mm (No.4 to 3/4 in.)	
Coarse-Grained Sand:	2 mm to 4.75 mm (No.10 to No.4)	
Medium-Grained Sand:	0.42 mm to 2 mm (No.40 to No.10)	
Fine-Grained Sand:	0.075 mm to 0.42 mm (No. 200 to No.40))
Silt:	0.005 mm to 0.075 mm	
Clay:	<0.005 mm	

PARTICLE SHAPE

Description	Criteria
Flat:	Particles with width/thickness ratio > 3
Elongated:	Particles with length/width ratio > 3
Flat & Elongated:	Particles meet criteria for both flat and
	elongated

RELATIVE PROPORTIONS OF FINES

Descriptive Term	% Dry Weight
Trace:	< 5%
With:	5% to 12%

>12%

Modifier:

- SS: Split-Spoon 1 3/8" I.D., 2" O.D., except where noted.
- ST: Shelby Tube 3" O.D., except where noted.
- BS: Bulk Sample
- PM: Pressuremeter
- CPT-U: Cone Penetrometer Testing with Pore-Pressure Readings

GENERAL NOTES

CONSISTENCY OF FINE-GRAINED SOILS

<u>Q_U - TSF</u>	<u>N - Blows/foot</u>	<u>Consistency</u>
0 - 0.25	0 - 2	Very Soft
0.25 - 0.50	2 - 4	Soft
0.50 - 1.00	4 - 8	Firm (Medium Stiff)
1.00 - 2.00	8 - 15	Stiff
2.00 - 4.00	15 - 30	Very Stiff
4.00 - 8.00	30 - 50	Hard
8.00+	50+	Very Hard

MOISTURE CONDITION DESCRIPTION

Description Criteria

Dry:	Absence of moisture, dusty, dry to the touch
Moist:	Damp but no visible water
Wet:	Visible free water, usually soil is below water table

RELATIVE PROPORTIONS OF SAND AND GRAVEL Descriptiv

tive Term	% Dry Weight
Trace:	< 15%
With:	15% to 30%
Modifier:	>30%

STRUCTURE DESCRIPTION

Description	Criteria	Description	Criteria
Stratified:	Alternating layers of varying material or color with layers at least 1/4-inch (6 mm) thick	Blocky:	Cohesive soil that can be broken down into small angular lumps which resist further breakdown
Laminated:	Alternating layers of varying material or color with layers less than 1/4-inch (6 mm) thick	Lensed: Layer:	Inclusion of small pockets of different soils Inclusion greater than 3 inches thick (75 mm)
Fissured:	Breaks along definite planes of fracture with little resistance to fracturing	Seam:	Inclusion 1/8-inch to 3 inches (3 to 75 mm) thick extending through the sample
Slickensided:	Fracture planes appear polished or glossy, sometimes striated	Parting:	Inclusion less than 1/8-inch (3 mm) thick
SCAL F		DOCK	

<u>SCALE OF RELATIVE ROCK HARDNESS</u> <u>ROCK BEDDING THICKNESSES</u>

<u>Q_U - TSF</u>	<u>Consistency</u>
2.5 - 10	Extremely Soft
10 - 50	Very Soft
50 - 250	Soft
250 - 525	Medium Hard
525 - 1,050	Moderately Hard
1,050 - 2,600	Hard
>2,600	Very Hard

ROCK VOIDS

<u>Voids</u>	Void Diameter
Pit	<6 mm (<0.25 in)
Vug	6 mm to 50 mm (0.25 in to 2 in)
Cavity	50 mm to 600 mm (2 in to 24 in)
Cave	>600 mm (>24 in)

ROCK QUALITY DESCRIPTION

Rock Mass Description	RQD Value
Excellent	90 -100
Good	75 - 90
Fair	50 - 75
Poor	25 -50
Very Poor	Less than 25

Description	Criteria
Very Thick Bedded	Greater than 3-foot (>1.0 m)
Thick Bedded	1-foot to 3-foot (0.3 m to 1.0 m)
Medium Bedded	4-inch to 1-foot (0.1 m to 0.3 m)
Thin Bedded	1¼-inch to 4-inch (30 mm to 100 mm)
Very Thin Bedded	1/2-inch to 11/4-inch (10 mm to 30 mm)
Thickly Laminated	1/8-inch to 1/2-inch (3 mm to 10 mm)
Thinly Laminated	1/8-inch or less "paper thin" (<3 mm)

GRAIN-SIZED TERMINOLOGY

(Typically Sedimentary Rock) <u>Component</u> <u>Size Range</u>			
Very Coarse Grained	>4.76 mm		
Coarse Grained	2.0 mm - 4.76 mm		
Medium Grained	0.42 mm - 2.0 mm		
Fine Grained	0.075 mm - 0.42 mm		
Very Fine Grained	<0.075 mm		

DEGREE OF WEATHERING

Slightly Weathered:	Rock generally fresh, joints stained and discoloration extends into rock up to 25 mm (1 in), open joints may contain clay, core rings under hammer impact.
Weathered:	Rock mass is decomposed 50% or less, significant portions of the rock show discoloration and weathering effects, cores cannot be broken by hand or scraped by knife.
Highly Weathered:	Rock mass is more than 50% decomposed, complete discoloration of rock fabric, core may be extremely broken and gives clunk sound when struck by hammer, may be shaved with a knife. Page 2 of 2

Major Divisions		Letter	Symbol	Symbol Description		
eve	se 1 the	Clean	GW		Well-graded gravels and gravel-sand mixtures,	
200 Si	vels 1/2 coar tined or sieve	Gravels	GP		Poorly-graded gravels and gravel-sand mixtures, little or no fines.	
Soils ne No. Grav on reta		Gravels	GM		Silty gravels, gravel-sand-silt mixtures.	
ined on t	Mo fracti	With Fines	GC	22/22	Clayey gravels, gravel-sand-clay mixtures.	
rse-gra etained	sing 200	Clean Sanda	SW		Well-graded sands and gravelly sands, little or no fines.	
Coal In ½ re	nds 1 ½ pas 1e No. eve	Clean Sands	SP		Poorly-graded sands and gravelly sands, little or no fines.	
e tha	Sa e thar ugh tl si	Sands With	SM		Silty sands, sand-silt mixtures	
Mor	More	Fines	SC		Clayey sands, sandy-clay mixtures.	
gh the	Silts and Clays Liquid Limit less than		ML		Inorganic silts, very fine sands, rock flour, silty or clayey fine sands.	
oils hroug			CL		Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays.	
ined So sing tl 0 Sieve	50	50%			Organic clays of medium to high plasticity.	
e-grai ½ pas 10.20	C'H				Inorganic silts, micaceous or diatomaceous fines sands or silts, elastic silts.	
Fin than N	Silts and Clays Liquid Limit greater than		СН		Inorganic clays of high plasticity, fat clays.	
Wore 50%)%	ОН		Organic clays of medium to high plasticity.	
Hig	hly Organic	Soils	РТ		Peat, muck, and other highly organic soils.	
Consi			Consi	stency Cl	lassification	
Granular Soils					Cohesive Soils	
Description - Blows Per Foot (Corrected)			rected)		Description - Blows Per Foot (Corrected)	
MCS SPT		[MCS <u>SPT</u>		
Very loos	e <5	<4	-	Very	/ soft <3 <2	
Loose	5 - 1	5 4 - 1	0	Soft	3 - 5 2 - 4	
Medium dense 16 - 40 11 - 30		30	Firm	6 - 10 5 - 8		
Dense 41 - 65 31 - 50		50	Stiff	11 - 20 9 - 15		
Very dens	e >65	>5()	Very	v Stiff 21 - 40 16 - 30	
				Hard	1 >40 >30	
MCS = Modified California Sampleı		SPT = Standard Penetration Test Sampler				

Unified Soil Classification System

Wetland and Waterbody Delineation Addendum Report

Beaver-Wellington 138 kV Transmission Line Project

Lorain County, Ohio

Prepared for

September 2022

Jacobs Engineering Group Inc. 2 Crowne Point Court Suite 100 Cincinnati, OH 45241

Contents

1	Intro	duction				
2	Back	Background Information				
	2.1	Project Area	2-1			
		2.1.1 Annual Precipitation	2-2			
		2.1.2 Drainage Basins	2-2			
		2.1.3 Traditional Navigable Waters	2-3			
3	Wetla	and and Waterbody Delineation				
	3.1	3.1 Desktop Review.				
	3.2	Field Survey Methodology				
4	Field	l Survey Results				
	4.1	Wetlands	4-1			
		4.1.1 Wetland ORAM Results	4-1			
	4.2	Streams				
		4.2.1 HHEI Results				
	4.3	Ponds/Open Water				
5	Conc	lusion				
6	References					

Tables

- 2-1 Recent Precipitation Data (In text)
- 2-2 12-Digit Hydrologic Unit Codes Crossed by the Project (*In text*)
- 3-1 Mapped Soil Units (Follows text)
- 3-2 Mapped National Wetland Inventory Features (In text)
- 4-1 Detailed Delineated Wetland Table (*Follows text*)
- 4-2 Detailed Delineated Stream Table (*Follows text*)
- 4-3 Wetland Summary Table (*In text*)
- 4-4 HHEI Stream Summary Table (*In text*)
- 4-5 Stream Extensions Summary (In text)

Figures

- 1.1 to 1.4 Overview Map
- 2.1 to 2.15 Soils, NHD, NWI, and FEMA Map
- 3.1 to 3.15 Delineated Features Map

Appendices

- A USACE Wetland Determination Field Datasheets
- B OEPA ORAM Datasheets
- C OEPA HHEI Datasheets

Acronyms and Abbreviations

ATSI	American Transmission Systems Incorporated
ESC	Environmental Survey Corridor
٥F	Fahrenheit
GPS	Global Positioning System (GPS)
HHEI	Headwater Habitat Evaluation Index
HUC	Hydrologic Unit Code
Jacobs	Jacobs Engineering Group Inc.
kV	Kilovolt
NHD	National Hydrography Dataset
NRCS	Natural Resource Conservation Service
NWI	National Wetland Inventory
OEPA	Ohio Environmental Protection Agency
OHWM	Ordinary High-Water Mark
ORAM	Ohio Rapid Assessment MethodCWO
PEM	Palustrine emergent
Project	Beaver-Wellington 138 kV Transmission Line Project
QHEI	Qualitative Habitat Evaluation Index
ROW	Right-of-way
TNW	Traditionally navigable water
USACE	United States Army Corps of Engineers
USDA	United States Department of Agriculture
USFWS	United States Fish and Wildlife Service
USGS	United States Geological Survey

ii

1 Introduction

This Wetland and Waterbody Delineation Addendum Report (Addendum Report) summarizes the results of a follow up wetland and waterbody delineation survey conducted in October 2021 by Jacobs Engineering Group Inc. (Jacobs), for American Transmission Services Incorporated (ATSI), a FirstEnergy Services Company on the proposed Beaver-Wellington 138 kV Transmission Line (Project). ATSI plans to construct an approximately 23.2-mile 138-kilovolt (kV) transmission line that will extend from the existing Beaver Substation located in the City of Lorain, Ohio, to the existing Wellington Substation, located in Wellington Township, Lorain County, Ohio. The Project consists of three primary components;

- Expanding the existing Wellington Substation to facilitate installation of new equipment;
- Constructing an approximately 1-mile-long section (known as the Henrietta Section (included under separate cover)) and 6-mile long section (known as the Wellington Section) of new 138 kV transmission line; and
- Reconfiguring (un-six wire) an existing 138 kV transmission line (Outlier Structures) to create room for the new 138 kV transmission line.

Figure 1.1 to Figure 1.4 provides an overview map of the ESC overlain on ArcGIS Online USA topographic maps

This report is an addendum to the previously submitted *Wetland and Waterbody Delineation Report* -*Beaver-Wellington 138 kV Transmission Line Project* – *July 2020* (reffered to as the July 2020 Report). Since the completion of the July 2020 Report, the Project has expanded to include construction areas and access roads located outside of the previously surveyed corridors. This Addendum Report inlcudes the supplemental delineation which assessed an environmental survey corridor (Addendum ESC) consisting of a laydown yard, access roads, pull pads, adjusted alignment areas, and work areas for the Outlier Structures located outside of the previously surveyed corridors. Previously identified features, data forms, photographs, and supporting information of the former surveys of the Project are contained within the July 2020 Report and are not discussed in this addendum report. The results of the supplemental delineation are discussed herein.

2 Background Information

This section describes the Addendum ESC and methodology used during the wetland and waterbody delineation field surveys.

2.1 Project Area

Outlier Section

The Outlier Section of the Project consists of reconfiguring (un-six wire) an existing 138 kV transmission line to create room for the new 138 kV transmission line. The Outlier Structures are located in Lorain County, Ohio and begin along Quarry Road, north of Baumhart Road and extends north, ending south of Russia Road and east of Baumhart Road (41.3340 latitude, -82.2671 longitude) as shown in Figure 1.1 to Figure 1.3.

Review of the USGS 7.5-minute topographic maps indicates that the ESC is within two USGS 7.5-minute topographic quadrangles: Kipton and Vermilion East. Additional review of the USGS 7.5-minute topographic maps of the area indicates that ditches, streams, and rivers drain the ESC, including Beaver Creek and multiple unnamed tributaries of this waterway. Topographic relief is mostly flat, with a general decrease in elevation from south to north, ranging between 810 feet and 844 feet above sea level throughout the ESC (Figure 1.1 to Figure 1.3).

Land use and natural communities observed within the ESC include agricultural land, old field, upland scrub shrub, upland woodlot, residential, existing roadway, and wetland, in addition to the previously identified waterbodies.

Wellington Section

The Wellington Section of the Project consists of a preferred and alternate route which are located generally south of the Village of Wellington in Lorain County, Ohio. The approximately 6-mile preferred route begins from the Brookside-Henrietta 138 kV transmission line approximately 1,300 feet east of Quarry Road (41.1200 latitude, -82.2738 longitude) between Griggs Road and Bursley Road. From here the preferred route extends east until it crosses Clark Road, where it turns northeast. The route continues northeast until turning east along the northern border of Findley State Park prior to heading north connecting to the Wellington Substation. The approximately 4 -mile alternate route begins between OH-38 and Jones Road, from the existing Brookside-Henrietta 138 kV transmission line west of Quarry Road (41.1577 latitude, -82.2732 longitude). The alternate route begins heading east and continues southeast along the southern border of the Wellington Reservoir and then follows the Wheeling and Lake Erie railroad, prior to connecting to the Wellington Substation (41.1481 latitude, -82.1945 longitude). These routes are displayed in Figure 1.3 to Figure 1.4 (Overview Map). The ESC consists of an approximately 4-mile alternate route and an approximately 6 mile preferred route 65-ft ROW (buffered to 265 to 300-feet wide).

Review of the USGS 7.5-minute topographic maps indicates that the ESC of the preferred route is within two USGS 7.5-minute topographic quadrangles: Brighton and Wellington. The ESC of the alternate route is within Nova, Sullivan, and Wellington USGS 7.5-minute topographic quadrangles. Additional review of the USGS 7.5-minute topographic maps of the area indicates that ditches, streams, and rivers drain the ESC, including Charlemont Creek, Wellington Creek, and multiple unnamed tributaries of these waterways. Topographic relief is mostly flat with the steepest elevation changes associated with the larger creeks. Elevation ranges from 815 to 935 feet above sea level throughout the ESC (Figure 1.3 to Figure 1.4).

Land use and natural communities observed within the ESC include agricultural land, old field, upland scrub shrub, upland woodlot, residential, existing roadway, existing railroad, and wetland, in addition to the previously identified waterbodies.

2.1.1 Annual Precipitation

Recent rainfall data for Wellington, Ohio were reviewed prior to completing the environmental survey to determine if climatic conditions were normal at the time of the survey. Wellington, Ohio was the nearest weather station with both historical and recent precipitation records. Rainfall recorded in Wellington, Ohio was approximately normal prior and during to the survey conducted October 2021 (Table 2-1; USDA, 2019), suggesting that climatic conditions were as expected for the region and time of year. This was taken into consideration during the delineation.

Beaver-Wellington 138kV Transmission Line Project (Addendum)				
Precipitation Data	September 2021	October 2021		
Wellington Monthly Sum 1, 3	3.06	3.49		
Wellington Normal Precipitation ^{2, 3}	2.10-3.88	1.77-2.86		
Monthly climatic condition	Average	Above Average		
¹ Monthly weather summary fro	m weather station Wellin	gton 5 5 SW/ 2019-2020 (Wellington, OH)		

Beaver-Wellington 138kV Transmission Line Project (Ad

TABLE 2-1: Recent Precipitation Data

¹Monthly weather summary from weather station Wellington 5.5 SW, 2019-2020 (Wellington, OH)

²USDA WETS Station Climate Data 1971-2000 (Fort Wayne, IN (USDA 2000)

³Displayed in inches

2.1.2 Drainage Basins

The Project spans the Huron-Vermilion (04100012) and the Black-Rocky (04110001) 8-digit Hydrologic Unit Codes (HUCs), and the ECS is within seven 12-digit HUCs, as outlined in Table 2-2 (USGS, 2020).

TABLE 2-2: 12-Digit Hydrologic Unit Codes Crossed by the Project
Beaver-Wellington 138 kV Transmission Line Project (Addendum)

HUC 12-Digit Code	HUC 12-Digit Name
41000120204	Town of Vermilion-Vermilion River
41100010501	Charlemont Creek
41100010502	Upper West Branch Black River
41100010503	Wellington Creek
41100010505	Plum Creek
41100010701	Upper Beaver Creek
41100010703	Quarry Creek-Frontal Lake Erie
C 11000 2020	

Source: USGS 2020

2.1.3 Traditional Navigable Waters

The U.S. Environmental Protection Agency (EPA) and USACE assert jurisdiction over "all waters which are currently used, or were used in the past, or may be susceptible to use in interstate or foreign commerce including all waters which are subject to the ebb and flow of the tide" (USACE and EPA, 2008). These waters are considered traditionally navigable waters (TNW). No TNW directly crosses the ESC, yet many of the streams will be considered tributaries to Lake Erie (USACE, 2009).

3 Wetland and Waterbody Delineation

3.1 Desktop Review

Prior to conducting the field investigations, Jacobs reviewed the following resources to identify the potential for wetlands within the Addendum ESC:

- Aerial photo-based maps (ArcGIS Online, World Imagery Map, 2020a)
- Topographic maps (ArcGIS Online, USA Topo Maps, 2020b)
- NRCS Web Soil Survey (USDA-NRCS, 2021)
- NWI shapefile (USFWS, 2020)
- National Hydrography Dataset (NHD) (USGS, 2020)

According to the NRCS soil survey of Lorain County (USDA-NRCS, 2021), the Addendum ESC consists of 18 soil map units (Table 3-1, follows text). Of these, 10 units are listed as non-hydric, four units are listed as predominately non-hydric, and four units are listed as hydric (Figures 2.1 to 2.15).

NWI data were obtained from the USFWS for review of potential wetlands that may occur within the ESC. The NWI data (USFWS, 2020) identify the type of wetland or open water present at a location using the USFWS classification system (Cowardin et al., 1979). The NWI data indicated that three wetland types are identified in the Addendum ESC within five mapped NWI features (Table 3-2; Figures 2.1 to 2.15; USFWS, 2019). These wetland types include freshwater emergent wetlands (PEM1A), freshwater ponds (PUBGx), and riverine wetlands (R4SBC). The presence of an NWI feature is not a definitive indicator that a wetland or waterbody is present. The information on NWI maps is obtained largely from aerial interpretation, may be outdated, and is only sporadically field-checked. Additional details regarding the mapped NWI wetlands within the Addendum ESC is provided in Table 3-2.

Wetland Type ¹	Mapped NWI Features	Acreage within Addendum ESC
PEM1A	1	0.28
PUBGx	1	0.94
R4SBC	3	0.03
Overall Total	5	1.25

TABLE 3-2: Mapped National Wetland Inventory Features Beaver-Wellington 138 kV Transmission Line Project (Addendum)

¹Cowardin et al. 1979.

As shown on the FEMA floodplain panels (Figures 2.1 to 2.15), the floodplain of one waterway(Unnamed tributary of Wellington Creek) is within the Addendum ESC (FEMA, 2019).

3.2 Field Survey Methodology

A comprehensive methodology of the field surveys and data reviews completed for this report are included within the July 2020 Report. Therefore, a brief summary of the delineation and agency coordination methodology has been provided below.

The boundaries of each wetland and waterbody within the ESC were delineated and recorded using handheld global positioning system (GPS) units. For waterbodies identified within the Project area, the ordinary high-water mark (OHWM) was used as the jurisdictional boundary. Wetland data were recorded on USACE Northcentral and Northeast Regional Supplement wetland determination data forms; stream data were recorded on QHEI forms and HHEI forms. All other land use, habitat, and other supplemental data were collected in a field notebook during the environmental survey.
4 Field Survey Results

Jacobs biologists surveyed the Project in October 2021 by walking the Addendum ESC and evaluating for wetlands and other waters of the U.S. Select features previously delineated within the Addendum ESC were field verified during the October 2021 survey. A total of eight wetlands and four streams were delineated within the Addendum ESC. In addition, two streams were extended from the original 2020 survey corridor into the Addendum ESC. These features are displayed and identified on the Wetlands and Waterbodies Delineation Map (Figures 3.1 to 3.15). Detailed information for wetland and waterbody features within the Addendum ESC is provided in Tables 4-1 (follows text) and 4-2 (follows text), respectively.

4.1 Wetlands

Eight wetlands totaling approximately 0.37 acres, ranging in size from less than 0.01 to 0.17 acres, were delineated within the Addendum ESC. All eight the wetlands were identified as palustrine emergent (PEM) wetlands.

These wetlands are depicted in Figures 3.1 to 3.15. The reported wetland acreage only corresponds to areas delineated within the Addendum ESC, as some wetlands extended beyond the survey boundary. Completed USACE wetland and upland determination forms are provided in Appendix A; representative photographs were taken of each wetland during the field survey and are appended to each USACE wetland and upland form. Detailed information for each delineated wetland within the Addendum ESC is provided in Table 4-1 (follows text) and a summary of the delineated wetlands is provided in Table 4-3.

TABLE 4-3: Wet	land Summary Table		
Beaver-Welling	ton 138 kV Transmission Line Project (A	ddendum)	
	ORAM Category	Number of	

Wetland Tuna	C	RAM Categor	Number of	Acreage within		
wettand Type	Category 1	Category 2	Category 3	Wetlands	Addedndum ESC	
PEM	6	2	0	8	0.37	

4.1.1 Wetland ORAM Results

A total of six Category 1 wetlands and two Category 2 wetlands were identified within the Addendum ESC; no Category 3 wetlands were identified. Completed ORAM forms are included in Appendix B.

Six Category 1 wetlands, all of the PEM habitat type, were identified within the Addedndum ESC. These wetlands were classified as Category 1 wetlands based on ORAM scores ranging from 12.5 to 29. Generally, the Category 1 wetlands scored low due to factors such as small size, intensity of surrounding land use, habitat alteration, poor habitat development, lack of horizontal interspersion, presence of invasive species, and lack of microtopography.

Two Category 2 PEM wetlands were identified within the Addendum ESC. These wetlands were classified as Category 2 wetlands based on ORAM scores ranging from 35 and 39.5. The Category 2 wetlands exhibited much of the same characteristics described above, yet with less habitat alteration, greater horizontal interspersion, less invasive species cover, and greater presence of microtopography than the Category 1 counterparts.

4.1.2 Wetland Extensions

No wetlands originally delineated within the oringinal 2020 survey corridor were extended into the Addendum ESC. Streams

4.2 Streams

A total of four new streams, totaling approximately 69 linear feet, were identified within the Addendum ESC. Of the four streams, three were identified as ephemeral streams and one was an intermittent stream. The four streams were assessed using the HHEI methodology (drainage area less than one square mile).

All streams are shown in Figures 3.1 to 3.15. Completed HHEI forms are provided in Appendix C. Representative photographs were taken of each stream during the field survey and are appended to each HHEI stream form. Detailed information for each delineated stream within the Addendum ESC is provided in Table 4-2 (follows text).

4.2.1 HHEI Results

Four new headwater streams totaling approximately 69 linear feet within the Addendum ESC were evaluated using the HHEI methodology. Two of the streams were categorized as Modified Class 1 streams and two were categorized as Modified Class 2 streams. Of the four streams, three were ephemeral and one was intermittent. Completed HHEI forms are provided in Appendix C and Table 4-4 provides a summary of the HHEI results for streams identified within the Addendum ESC.

				Length (feet)			
Flow Regime	Class 1	Modified Class 1	Class 2	Modified Class 2	Class 3	Number of Streams	Addendum ESA ¹
Ephemeral	0	2	0	1	0	3	40
Intermittent	0	0	0	1	0	1	29
Perennial	0	0	0	0	0	0	0
Total	0	2	0	2	0	4	69

TABLE 4-4: HHEI Summary Table

Beaver-Wellington 138 kV Transmission Line Project (Addendum)

¹This length only corresponds to the area delineated within the Addendum environmental survey area.

4.2.2 Stream Extensions

Two streams originally delineated within the original 2020 survey corridor were extended into the Addendum ESC. A summary of the updated stream lengths is shown in Table 4-5 and detailed information is included in Table 4-2 (follows text). Forms and representative photographs of these streams are provided in the July 2020 report.

Table 4-5. Stream Extensions Summary

Beaver-Wellington 138 kV Transmission Line Project (Addendum)

Stream ID	Flow Regime	Category/Rating/OAC Designation	Extension Length (feet) ^{1,2}	Original Length (feet) ^{1,2}	Updated Total Length (feet) ^{1,2}
Stream BW-14	Perennial	Fair Warmwater	25	360	386
Stream BW-16	Ephemeral	Modified Class 1	26	642	669
Totals 3			51	1,002	1,055

Table 4-5. Stream Extensions Summary

Beaver-Wellington 138 kV Transmission Line Project (Addendum)

			Extension	Original	Updated Total
	Flow	Category/Rating/OAC	Length	Length	Length
Stream ID	Regime	Designation	(feet) ^{1,2}	(feet) ^{1,2}	(feet) ^{1,2}

¹This length only corresponds to the length delineated within the environmental survey corridor.

²Numbers in this table have been rounded for presentation purposes. Thus, the totals may not reflect the exact sum of the addends in all cases.

OAC = Ohio Administrative Code

4.3 Ponds/Open Water

No ponds or open water features were identified within the Addendum ESC.

5 Conclusion

Jacobs conducted an environmental survey of the Addendum ESC of the Beaver-Wellington 138 kV Transmission Line Project in October 2021. Since the completion of the July 2020 Report, the Project has expanded to include construction areas located outside of the previously surveyed corridors.

A total of eight wetlands and four streams were delineated within the Addendum ESC. The eight newly delineated wetlands within the Addendum ESC, totaling approximately 0.37 acres, consited of six Category 1 wetlands and two Category 2 wetlands; no Category 3 wetlands were identified. All newly delineated wetlands were identified as PEM habitat types.

A total of four new streams, totaling approximately 69 linear feet, were identified within the Addendum ESC. Of the four streams, three were identified as ephemeral streams and one was an intermittent stream. All four streams were assessed using the HHEI methodology (drainage area less than 1 mi²). In addition, two streams were extended from the original 2020 survey corridor into the Addendum ESC.

The results of the environmental resource survey described in this Report conducted by Jacobs are limited to the what was identified within the ESC, and depicted in Figure 3.1 to 3.15. The information contained in this wetland delineation report is for a study area that may be much larger than the actual Project limits-of-disturbance for construction; therefore, lengths and acreages listed in this Report may likely not constitute the actual impacts of the Project at the time of construction. If permits are determined to be necessary, actual impacted lengths and/or acreages will be submitted in subsequent permit applications.

The wetland and waterbodies field survey results presented within this Report apply to the site conditions at the time of our assessment. Changes within the environmental survey corridor that may occur with time due to natural processes or human impacts at the project site or on adjacent properties, could invalidate the findings of this Report, especially if Jacobs is unaware and has not had the opportunity to revisit the Project survey corridor. Additionally, changes in applicable standards and regulations may also occur due to legislation or the expansion of knowledge over time. Therefore, the findings of this wetland and waterbodies delineation report may be invalidated, wholly or in part, by changes that are beyond the control of Jacobs.

6 References

Cowardin, L. M., V. Carter, F. C. Golet, E. T. LaRoe. 1979. Classification of wetlands and deepwater habitats of the United States. U.S. Department of the Interior, Fish and Wildlife Service, Washington, D.C.

Federal Emergency Management Agency (FEMA). 2019. Flood Map Service Center. <u>https://msc.fema.gov/portal/search#searchresultsanchor</u>. Accessed January 2019.

Kollmorgen Corporation. 1988. Munsell Soil Color Charts. Baltimore, Maryland.

Mack, John J. 2001. Ohio Rapid Assessment Method for Wetlands, Manual for Using Version 5.0. Ohio EPA Technical Bulletin Wetland/2001-1-1. Ohio Environmental Protection Agency, Division of Surface Water, 401 Wetland Ecology Unit, Columbus, Ohio.

Ohio Environmental Protection Agency (OEPA). 2000. ORAM v. 5.0 Quantitative Score Calibration. Columbus, Ohio.

Ohio Environmental Protection Agency (OEPA). 2018. Field Methods for Evaluating Primary Headwater Streams in Ohio. Version 4.0. Ohio EPA Division of Surface Water, Columbus, Ohio.

Ohio Environmental Protection Agency (OEPA). 2006. Methods for Assessing Habitat in Flowing Waters: Using the Qualitative Habitat Evaluation Index (QHEI). OHIO EPA Technical Bulletin EAS/2006-06-1.

U.S. Army Corps of Engineers (USACE). 1987. Technical Report Y-87-1, Corps of Engineers' Wetlands Delineation Manual.

U.S. Army Corps of Engineers (USACE). 2005. Regulatory Guidance Letter No. 05-05: Ordinary High Water Mark Identification. <u>http://www.nap.usace.army.mil/Portals/39/docs/regulatory/rgls/rgl05-05.pdf</u>.

U.S. Army Corps of Engineers (USACE). 2011. *Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Northcentral and Northeast Region (Version 2.0)*, ed. J. S. Wakeley, R. W. Lichvar, C. V. Noble, and J. F. Berkowitz. ERDC/EL TR-12-1. Vicksburg, MS: U.S. Army Engineer Research and Development Center.

U.S. Department of Agriculture (USDA). 2021. USDA Field Office Climate Data: OBERLIN, OH WETS Station, 1971-2000. <u>http://agacis.rcc-acis.org/?fips=39093</u>. Accessed December 2021.

U.S. Department of Agriculture (USDA), Natural Resources Conservation Service (NRCS). 2021. Soil Survey Geographic (SSURGO) database for Lorain County, Ohio. <u>http://SoilDataMart.nrcs.usda.gov/</u>. Accessed December 2021.

U.S. Fish and Wildlife Service (USFWS). 2020. National Wetlands Inventory. <u>http://www.fws.gov/wetlands/Wetlands-Mapper.html</u>. Accessed December 2021.

U.S. Geological Survey (USGS). 2020. National Hydrography Dataset, Ohio. <u>http://nhd.usgs.gov/data.html.</u> Accessed December 2021.

Tables

TABLE 3-1: Mapped Soil Units

Beaver-Wellington 138 kV Transmission Line Project (Addendum)

Soil type	Soil type description	Hydric status	Acres (ac) within ESC
BtA	Bogart loam, 0 to 2 percent slopes	Nonhydric	0.08
CoC	Conotton gravelly loam, 6 to 12 percent slopes	Nonhydric	0.00
ElC2	Ellsworth silt loam, 6 to 12 percent slopes, eroded	Nonhydric	0.16
ElD2	Ellsworth silt loam, 12 to 18 percent slopes, eroded	Nonhydric	0.24
ElF2	Ellsworth silt loam, 18 to 50 percent slopes, eroded	Nonhydric	0.03
FdA	Fitchville silt loam, low terrace, 0 to 2 percent slopes	Nonhydric	0.00
Lb	Lobdell silt loam	Nonhydric	0.30
MgA	Mahoning silt loam, 0 to 2 percent slopes	Predominantly Nonhydric	3.80
MgB	Mahoning silt loam, 2 to 6 percent slopes	Predominantly Nonhydric	3.83
MkA	Mahoning-Tiro silt loams, 0 to 2 percent slopes	Predominantly Nonhydric	3.22
MkB	Mahoning-Tiro silt loams, 2 to 6 percent slopes	Predominantly Nonhydric	0.40
MnE	Mentor silt loam, 12 to 25 percent slopes	Nonhydric	0.30
Mr	Miner silty clay loam, 0 to 2 percent slopes	Hydric	0.37
MtA	Mitiwanga silt loam, 0 to 2 percent slopes	Nonhydric	1.11
MtB	Mitiwanga silt loam, 2 to 6 percent slopes	Nonhydric	0.49
Sb	Sebring silt loam, 0 to 2 percent slopes	Hydric	0.26
Sd	Sebring silt loam, sandstone substratum, 0 to 2 percent slopes	Hydric	0.28
TrA	Trumbull silty clay loam, 0 to 2 percent slopes	Hydric	0.50

	Loc	ation	Wetley d	Area (ac)				
Wetland ID	Latitude	Longitude	Wetland Type ¹	Addendum ESC	ORAM Score, Category			
Newly Delineated Wetlands								
Wetland OS-01	41.335629	-82.266783	PEM	<0.01	19, Category 1			
Wetland OS-02	41.334041	-82.266832	PEM	0.02	24, Category 1			
Wetland OS-03	41.320556	-82.267154	PEM	0.08	39.5, Category 2			
Wetland OS-04	41.311855	-82.267664	PEM	<0.01	23.5, Category 1			
Wetland OS-05	41.286073	-82.271079	PEM	0.17	23.5, Category 1			
Wetland OS-06a,b	41.283444	-82.271201	PEM	0.04	29, Category 1			
Wetland OS-07	41.281837	-82.270899	PEM	0.03	35, Category 2			
Wetland OS-08	41.160337	-82.273152	PEM	0.02	12.5, Category 1			
	Newly	0.37						

Table 4-1: Detailed Delineated Wetland Table

Beaver-Wellington 138 kV Transmission Line Project (Addendum)

¹Cowardin et al. 1979.

Cells shaded/* = Extension of previously delineated wetland; delineated acreage reflects the extension area only. ID = identification

TABLE 4-2: Detailed Delineated Stream Table

Beaver-Wellington 138 kV Transmission Line Project (Addendum)

	Location	-	Length (ft) Average	A				
Stream ID	Latitude	Longitude	Regime ¹	within Addedndum ESA	OHWM Width (ft)	Width (ft)	Score	Category/ Designation
Extended Streams								
Stream BW-14	41.140332	-82.221533	Perennial	25	8	15	53.25	Fair Warmwater
Stream BW-16	41.140414	-82.220314	Ephemeral	26	15	3	26	Modified Class 1
				Newly Del	ineated Srea	ms		
Stream BW-30	41.119026	-82.251106	Ephemeral	7	2	2.5	23	Modified Class 1
Stream OS-1	41.283591	-82.270953	Intermittent	29	2	2.5	36	Modified Class 2
Stream OS-2	41.277861	-82.271189	Ephemeral	25	3.5	6	36	Modified Class 2
Stream OS-3	41.157793	-82.270666	Ephemeral	8	1	2	19	Modified Class 1
Stream Extension Total				51				
Newly Delineated Stream Total			69					

¹Flow regime estimated based on analysis of drainage area, gradient, and observations at the time of survey

Cells shaded/* = Extension of previously delineated stream; delineated length reflects the extension segment only.

Figures

PUBG

FEET

Figure 2.10 Soils, NHD, NWI, FEMA Outlier Section

Jacobs

9/24/2022

Wetland OS-01 PEM Category 1

Wetland OS-02 PEM Category 1

Wetland OS-06a PEM Category 1

Wetland OS-06b PEM Category 1

Appendix A USACE Wetland Determination Field Datasheets

WETLAND DETERMINATION DATA FORM – Northcentral and Northeast Region

Project/Site: Beaver-Wellington 138 kV Transmi	ssion Line	City/County: Lorain County	Sampling Date: 03/11/2019
Applicant/Owner: FirstEnergy		State: OH	Sampling Point: w-bcr-03/11/19-02
Investigator(s): B.Robertson; Jacobs		Section, Township, Range: <u>N/A</u>	
Landform (hillside, terrace, etc.): depression	Local r	elief (concave, convex, none): <u>concave</u>	Slope %: 1
Subregion (LRR or MLRA): LRR R	Lat: 41.3356	Long: -82.2669	Datum: WGS84
Soil Map Unit Name: Sd, Sebring silt loam, sand	stone substratum, 0 to 2 pe	ercent slopes NWI classification:	N/A
Are climatic / hydrologic conditions on the site typi	cal for this time of year?	Yes X No (If no,	explain in Remarks.)
Are Vegetation, Soil, or Hydrology	significantly disturb	ed? Are "Normal Circumstances" pres	ent? Yes X No
Are Vegetation, Soil, or Hydrology	naturally problema	tic? (If needed, explain any answers in	n Remarks.)
SUMMARY OF FINDINGS – Attach site	e map showing sam	pling point locations, transects, in	nportant features, etc.
Hydrophytic Vegetation Present? Yes	s X No	Is the Sampled Area	
Hydric Soil Present? Yes	X No	within a Wetland? Yes X	No
Wetland Hydrology Present? Yes	s_X_No	If yes, optional Wetland Site ID: Wetland	d OS-01

Remarks: (Explain alternative procedures here or in a separate report.) PEM wetland depression within existing transmission line ROW. Former wetland BW-09 re-verified in Oct. 2021 and re-named Wetland OS-01.

wetland Hydrology Indicators:			Secondary Indicators (minimum of two required)
Primary Indicators (minimum of one is requir	ed; check all that apply)		Surface Soil Cracks (B6)
X Surface Water (A1)	Water-Stained Leaves (B9)		Drainage Patterns (B10)
High Water Table (A2)	Aquatic Fauna (B13)		Moss Trim Lines (B16)
X Saturation (A3)	Marl Deposits (B15)		Dry-Season Water Table (C2)
Water Marks (B1)	Hydrogen Sulfide Odor (C1)		Crayfish Burrows (C8)
Sediment Deposits (B2)	Oxidized Rhizospheres on Living R	oots (C3)	Saturation Visible on Aerial Imagery (C9)
Drift Deposits (B3)	Presence of Reduced Iron (C4)		Stunted or Stressed Plants (D1)
Algal Mat or Crust (B4)	Recent Iron Reduction in Tilled Soil	s (C6)	X Geomorphic Position (D2)
Iron Deposits (B5)	Thin Muck Surface (C7)		Shallow Aquitard (D3)
Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks)		Microtopographic Relief (D4)
Sparsely Vegetated Concave Surface (E	38)		X FAC-Neutral Test (D5)
Field Observations:			
Surface Water Present? Yes X	No Depth (inches): 10		
Water Table Present? Yes	No X Depth (inches):		
Saturation Present? Yes X	No Depth (inches): 0	Wetlan	d Hydrology Present? Yes X No
Saturation Present? Yes X (includes capillary fringe)	No Depth (inches): 0	Wetlan	d Hydrology Present? Yes X No
Saturation Present? Yes X (includes capillary fringe)	No Depth (inches): nitoring well, aerial photos, previous inspe	Wetlan ections), if a	d Hydrology Present? Yes X No
Saturation Present?YesX(includes capillary fringe)Describe Recorded Data (stream gauge, mo	No Depth (inches): nitoring well, aerial photos, previous inspe	Wetlan ections), if a	d Hydrology Present? Yes X No Available:
Saturation Present? Yes X (includes capillary fringe) Describe Recorded Data (stream gauge, mo	No Depth (inches): nitoring well, aerial photos, previous inspe	Wetlan ections), if a	d Hydrology Present? Yes X No
Saturation Present? Yes X (includes capillary fringe)	No Depth (inches): nitoring well, aerial photos, previous inspe	Wetlan	d Hydrology Present? Yes X No
Saturation Present? Yes X (includes capillary fringe)	No Depth (inches): nitoring well, aerial photos, previous inspe	Wetlan ections), if a	d Hydrology Present? Yes X No
Saturation Present? Yes X (includes capillary fringe)	No Depth (inches): nitoring well, aerial photos, previous inspe	Wetlan	d Hydrology Present? Yes X No Available:
Saturation Present? Yes X (includes capillary fringe)	No Depth (inches): nitoring well, aerial photos, previous inspe	Wetlan	d Hydrology Present? Yes X No Available:
Saturation Present? Yes X (includes capillary fringe)	No Depth (inches): nitoring well, aerial photos, previous inspe	Wetlan	d Hydrology Present? Yes X No
Saturation Present? Yes X (includes capillary fringe) Describe Recorded Data (stream gauge, mo Remarks:	No Depth (inches): nitoring well, aerial photos, previous inspe	Wetlan	d Hydrology Present? Yes X No
Saturation Present? Yes X (includes capillary fringe)	No Depth (inches): nitoring well, aerial photos, previous inspe	Wetlan	d Hydrology Present? Yes X No
Saturation Present? Yes X (includes capillary fringe) Describe Recorded Data (stream gauge, mo Remarks:	No Depth (inches): nitoring well, aerial photos, previous inspe	Wetlan ections), if a	d Hydrology Present? Yes X No available:
Saturation Present? Yes X (includes capillary fringe)	No Depth (inches): nitoring well, aerial photos, previous inspe	Wetlan ections), if a	d Hydrology Present? Yes X No available:

VEGETATION – Use scientific names of plants.

Sampling Point: -bcr-03/11/19-C

	Absolute	Dominant	Indicator	
Tree Stratum (Plot size: 30 ft)	% Cover	Species?	Status	Dominance Test worksheet:
1				Number of Dominant Species
2				That Are OBL, FACW, or FAC:(A)
3				Total Number of Dominant
4.				Species Across All Strata: 2 (B)
5				Percent of Dominant Species
6				That Are OBL, FACW, or FAC: 100.0% (A/B)
7				Prevalence Index worksheet:
		=Total Cover		Total % Cover of: Multiply by:
Sapling/Shrub Stratum (Plot size: 15 ft)				OBL species x 1 =20
1				FACW species45x 2 =90
2				FAC species x 3 =0
3.				FACU species 0 x 4 = 0
4.				UPL species 0 x 5 = 0
5.				Column Totals: 65 (A) 110 (B)
6.				Prevalence Index = B/A = 1.69
7.				Hydrophytic Vegetation Indicators:
		=Total Cover		1 - Rapid Test for Hydrophytic Vegetation
Herb Stratum (Plot size: 5 ft)				X 2 - Dominance Test is >50%
1. Phalaris arundinacea	40	Yes	FACW	X 3 - Prevalence Index is $\leq 3.0^{1}$
2 Juncus effusus	20	Yes	OBI	4 - Morphological Adaptations ¹ (Provide supporting
3 Carey sp	15	No		data in Remarks or on a separate sheet)
A Symphystrichum sp	10	No		Problematic Hydrophytic Vegetation ¹ (Evaluation)
4. Symphyothenum sp.				
5. Comus sencea	5		FACVV	¹ Indicators of hydric soil and wetland hydrology must
o				be present, unless disturbed or problematic.
/				Definitions of Vegetation Strata:
8				Tree – Woody plants 3 in. (7.6 cm) or more in
9				diameter at breast height (DBH), regardless of height.
10				Sapling/shrub – Woody plants less than 3 in. DBH
11				and greater than or equal to 3.28 ft (1 m) tall.
12				Herb – All herbaceous (non-woody) plants, regardless
	90	=Total Cover		of size, and woody plants less than 3.28 ft tall.
Woody Vine Stratum (Plot size: 30 ft)				Woody vines – All woody vines greater than 3.28 ft in
1				height.
2				Hydrophytic
3				Vegetation
4				Present? Yes X No
		=Total Cover		
Remarks: (Include photo numbers here or on a sepa	rate sheet.)			

SOIL								Sampli	ing Pointv-bcr-03/11/19
Profile Desc	cription: (Describe	to the de	pth needed to doc	ument tl	he indica	ator or co	onfirm the absence	of indicators.)	
Depth	Matrix		Redo	x Featur	res				
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture		Remarks
0-6	10YR 4/2	95	10YR 5/8	5	С	М	Loamy/Clayey		
	oncontration D-Don	lotion PM			kod San	d Grains	² Location:	PI - Poro Lining	M-Motrix
Hydric Soil	Indicators:			vi3-ivias	keu Sano	J Grains.		for Problemat	j, m–marix.
Histosol			Polyvalue Belo	w Surfa	ce (S8) (2 cm M		DKI MIDA 1/08)
Histosof	(A)			N Sulla	ce (30) (LNN N,		Prairie Roday ($(16) (100 \times 10)$
Flock Hi	intic $(\Lambda 2)$		Thin Dark Surf	") "aco (SQ)		MIDA	140B) 5 cm M	Frame Redux (/	$P(\mathbf{C}, \mathbf{C}, \mathbf{C}, \mathbf{C}) = (\mathbf{C}, \mathbf{C}, \mathbf{C}, \mathbf{C})$
	Subtide (A4)		High Chroma	ace (39) Sonde (S				lucky Feat OFF	(33) (LRR R, L, R)
Flyuroge				Sanus (S Minorol		NR, L)	Folyva	ark Surface (SC	$\frac{1}{100} (\mathbf{LKKK}, \mathbf{L})$
Stratilied	d Dalaw Dark Surface	(111)		Motrix	(F1) (LR I (E2)	κ κ , ι)	Iniii D		$(\mathbf{L}\mathbf{K}\mathbf{K}\mathbf{K},\mathbf{L})$
Depleter	u Below Dark Sullace	e (ATT)	Loaniy Gleyeu		(ГZ)		lion-ivi	anganese Mass	E = (E + 2) (LRR R, L, R)
Thick Da	Air Sullace (A12)		Depleted Math	urfaco (E	6)		Pleanin	Snadia (TAG) (MI DA 144A 145 1400
Sandy K	Nucky Mineral (S1)		Redux Dark St				IVIESIC	Spould (TA6) (M	WILKA 144A, 145, 149D
Sandy G	Sleyed Matrix (S4)		Depleted Dark	Surrace	e (F7)			arent iviaterial (r	FZI)
Sandy P	(SS)		Redox Depres		0)		Very S	nallow Dark Su	
Stripped	Matrix (S6)		Mari (F10) (LR	(R K, L)			Other (Explain in Rem	iarks)
Dark Su	rface (S7)								
31	£ h								
Restrictive	r nydropnytic vegetat	ion and w	retiand hydrology m	ust be pr	resent, u	niess dist	T		
Type	Layer (il observeu).								
Type.									
Depth (i	nches):						Hydric Soil Pres	ent? Yo	es_X_No
Remarks:									
This data for	m is revised from No	rthcentral	and Northeast Reg	ional Su	pplemen	t Version	2.0 to include the NF	RCS Field Indic	ators of Hydric Soi l s,
Version 7.0,	2015 Errata. (http://w	/ww.nrcs.	usda.gov/Internet/F	SE_DOC	CUMENT	S/nrcs14	2p2_051293.docx)		

Site Name	Cowardin Class	Photo Direction		
Wetland OS-01	PEM	North		

Site Name	Cowardin Class	Photo Direction
Wetland OS-01	PEM	East

WETLAND DETERMINATION DATA FORM – Northcentral and Northeast Region

Project/Site: Beaver-Wellington 69 k	V Transmission Line	City/County: Lorain County	Sampling Date: 10/03/18
Applicant/Owner: FirstEnergy		State: OH	Sampling Point: w-bao-100318-01
Investigator(s): BAO		Section, Township, Range: <u>N/A</u>	
Landform (hillside, terrace, etc.):	epression Local r	relief (concave, convex, none): <u>Concave</u>	Slope %: 0
Subregion (LRR or MLRA): LRR R	Lat: 41.3342	Long: <u>-82.2676</u>	Datum: WGS84
Soil Map Unit Name: MtA, Mitiwanga	a silt loam, 0 to 2 percent slopes	NWI classification	: N/A
Are climatic / hydrologic conditions on	the site typical for this time of year?	Yes X No (If no,	explain in Remarks.)
Are Vegetation, Soil,	or Hydrologysignificantly disturb	Ded? Are "Normal Circumstances" pres	sent? Yes X No
Are Vegetation, Soil,	or Hydrology naturally problema	tic? (If needed, explain any answers	in Remarks.)
SUMMARY OF FINDINGS – A	Attach site map showing sam	pling point locations, transects, ir	nportant features, etc.
Hydrophytic Vegetation Present?	Yes X No	Is the Sampled Area	
Hydric Soil Present?	Yes X No	within a Wetland? Yes X	No
Wetland Hydrology Present?	Yes X No	If yes, optional Wetland Site ID: Wetlan	d OS-02
Remarks: (Explain alternative proce BW-01a,b re-verified in Oct. 2021 as	dures here or in a separate report.) PE Wetland OS-02.	M within ROW, cut. Previously delineated W	/etland

Wetland Hydrology Indicators:			Secondary Indicators (minimum of two required)		
Primary Indicators (minimum of one is require	ed; check all that apply)		Surface Soil Cracks (B6)		
Surface Water (A1)	Water-Stained Leaves (B9)		Drainage Patterns (B10)		
High Water Table (A2)	Aquatic Fauna (B13)		Moss Trim Lines (B16)		
X Saturation (A3)	Marl Deposits (B15)		Dry-Season Water Table (C2)		
Water Marks (B1)	Hydrogen Sulfide Odor (C1)		Crayfish Burrows (C8)		
Sediment Deposits (B2)	Oxidized Rhizospheres on Living Re	oots (C3)	Saturation Visible on Aerial Imagery (C9)		
Drift Deposits (B3)	Presence of Reduced Iron (C4)		Stunted or Stressed Plants (D1)		
Algal Mat or Crust (B4)	Recent Iron Reduction in Tilled Soil	s (C6)	Geomorphic Position (D2)		
Iron Deposits (B5)	Thin Muck Surface (C7)		Shallow Aquitard (D3)		
Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks)		Microtopographic Relief (D4)		
Sparsely Vegetated Concave Surface (B	8)		FAC-Neutral Test (D5)		
Field Observations:					
Surface Water Present? Yes	No X Depth (inches):				
Water Table Present? Yes	No X Depth (inches):				
Saturation Present? Yes X	No Depth (inches): 6	Wetlan	d Hydrology Present? Yes X No		
(includes capillary fringe)					
Describe Recorded Data (stream gauge, mor	nitoring well, aerial photos, previous inspe	ctions), if	available:		
Remarks:					

VEGETATION – Use scientific names of plants.

Sampling Point: /-bao-100318-0

Tree Stratum (Plot size: 30 ft)	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test worksheet:
1.				
2.				Number of Dominant Species That Are OBL, FACW, or FAC: 2 (A)
3		·		Total Number of Dominant Species Across All Strata: <u>3</u> (B)
5				Percent of Dominant Species That Are OBL, FACW, or FAC: 66.7% (A/B)
7.				Prevalence Index worksheet:
		=Total Cover		Total % Cover of: Multiply by:
Sapling/Shrub Stratum (Plot size: 15 ft)		•		OBL species 20 x 1 = 20
1. Quercus palustris	5	Yes	FACW	FACW species 35 x 2 = 70
2.				FAC species 25 x 3 = 75
3.				FACU species 0 x 4 = 0
4.				UPL species 0 x 5 = 0
5.				Column Totals: 80 (A) 165 (B)
6.				Prevalence Index = $B/A = 2.06$
7.				Hydrophytic Vegetation Indicators:
	5	=Total Cover		1 - Rapid Test for Hydrophytic Vegetation
Herb Stratum (Plot size: 5 ft)				X 2 - Dominance Test is >50%
1. Juncus sp	40	Yes		X 3 - Prevalence Index is $\leq 3.0^{1}$
2 Scirpus cyperinus	10	No	OBI	4 - Morphological Adaptations ¹ (Provide supporting
3 Anocynum cannabinum	20	No.	FAC	data in Remarks or on a separate sheet)
4 Lysimachia nummularia	30	Yes	FACW	Problematic Hydronbytic Vegetation ¹ (Explain)
5 Polygonum sagittatum	10	No		
6 Echinochloa crus-galli	5	No.		¹ Indicators of hydric soil and wetland hydrology must
7				Definitions of Vegetation Strate:
· · · · · · · · · · · · · · · · · · ·				Definitions of Vegetation Strata.
9.		·		Tree – Woody plants 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of height.
10.				Septime/shrub Weedy plants less than 2 in DPH
11				and greater than or equal to 3.28 ft (1 m) tall.
12.				Harb All herbaceous (non woody) plants, regardless
	115	=Total Cover		of size, and woody plants less than 3.28 ft tall.
Woody Vine Stratum (Plot size: 30 ft)				Woody vines – All woody vines greater than 3.28 ft in
1				height.
2				
3				Hydrophytic Vegetation
4				Present? Yes X No
		=Total Cover		
Remarks: (Include photo numbers here or on a separ	ate sheet.)			

Sampling	Pointw-bao-	-10031	8-0

SOIL								Sampling Point <u>w-bao-100318-0´</u>
Profile Desc	ription: (Describe	to the de	pth needed to docu	ument t	he indica	ator or co	onfirm the absence o	f indicators.)
Depth	Matrix		Redo	x Featu	res			
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0-16	10YR 6/1	95	7.5YR 4/6	5	С	Μ		silty clay loam
¹ Type: C=C	oncentration, D=Dep	letion, RN	/I=Reduced Matrix, N	/IS=Mas	ked San	d Grains.	² Location: P	L=Pore Lining, M=Matrix.
Hydric Soil	Indicators:		Dobuciuo Polo	Surfo			Indicators for	or Problematic Hydric Soils":
Histosol Histic Fr	(AT) binedon (A2)		Polyvalue Beld	w Suna	ice (58) (i	LRR R,	2 cm Mu	rairia Redox (A16) (I RR K R)
Black Hi	stic (A3)		Thin Dark Surf	ace (S9) (LRR R	. MLRA 1	149B) 5 cm Mu	icky Peat or Peat (S3) (LRR K. L. R)
Hydroge	n Sulfide (A4)		High Chroma S	Sands (S	511) (LRF	, R K, L)	Polyvalu	e Below Surface (S8) (LRR K, L)
Stratified	l Layers (A5)		Loamy Mucky	Mineral	(F1) (LRI	R K, L)	Thin Dai	rk Surface (S9) (LRR K, L)
Depleted	d Below Dark Surface	e (A11)	Loamy Gleyed	Matrix ((F2)		Iron-Mar	nganese Masses (F12) (LRR K, L, R)
Thick Da	ark Surface (A12)		x Depleted Matri	x (F3)			Piedmor	nt Floodplain Soils (F19) (MLRA 149B)
Sandy N	lucky Mineral (S1)		Redox Dark Su	urtace (F	-6)		Mesic S	podic (TA6) (MLRA 144A, 145, 149B)
Sandy B	edox (S5)		Depleted Dark	sions (F	8)		Red Par Very Sh	allow Dark Surface (E22)
Stripped	Matrix (S6)		Marl (F10) (LR	R K, L)	0)		Other (E	(xplain in Remarks)
Dark Su	rface (S7)							·
³ Indicators o	f hydrophytic vegetat	ion and v	vetland hydrology mi	ust be p	resent, ui	nless dist	urbed or problematic.	
Restrictive	Layer (if observed):							
Type:								
	1cnes):						Hydric Soll Prese	nt? Yes X No
Remarks:	m is revised from No	rthcontra	and Northeast Reg	ional Su	nnlemen	Version	2.0 to include the NP(29 Field Indicators of Hydric Soils
Version 7.0,	2015 Errata. (http://w	/ww.nrcs.	.usda.gov/Internet/F	SE_DO	CUMENT	S/nrcs14	2p2_051293.docx)	
1								

Site Name	Cowardin Class	Photo Direction
Wetland OS-02	PEM	North

Site Name	cowardin ctass	
Wetland OS-02	PEM	East

Site Name	Cowardin Class	Photo Direction
Wetland OS-02	PEM	South

Site Name	Cowarum Class	
Wetland OS-02	PEM	West

WETLAND DETERMINATION DATA FORM – Northcentral and Northeast Region

Project/Site: Beaver-Wellington 69	kV Transmission Line	City/County: Lorain County	Sampling Date: 10/03/18
Applicant/Owner: FirstEnergy		State: OH	Sampling Point: w-bao-100318-02
Investigator(s): BAO		Section, Township, Range: <u>N/A</u>	
Landform (hillside, terrace, etc.):	Depression Local re	elief (concave, convex, none): <u>Concave</u>	Slope %: 0
Subregion (LRR or MLRA): LRR R	Lat: _41.3205	Long:82.2673	Datum: WGS84
Soil Map Unit Name: Sb, Sebring si	It loam, 0 to 2 percent slopes	NWI classification	: R4SBC
Are climatic / hydrologic conditions or	n the site typical for this time of year?	Yes X No (If no,	explain in Remarks.)
Are Vegetation, Soil,	or Hydrologysignificantly disturbe	ed? Are "Normal Circumstances" pres	sent? Yes X No
Are Vegetation, Soil,	or Hydrology naturally problemat	ic? (If needed, explain any answers	in Remarks.)
SUMMARY OF FINDINGS -	Attach site map showing samp	ling point locations, transects, ir	nportant features, etc.
Hydrophytic Vegetation Present?	Yes X No	Is the Sampled Area	
Hydric Soil Present?	Yes X No	within a Wetland? Yes X	No
Wetland Hydrology Present?	Yes X No	If yes, optional Wetland Site ID: Wetlan	d OS-03
Remarks: (Explain alternative proce braids. Previously delineated Wetla	dures here or in a separate report.) PEN nd BW-03a re-verifed in Oct. 2021 and r	/I in PEM/PFO complex within ROW; stream e-named as Wetland OS-03.	I Crosses,

Wetland Hydrology Indicators:			Secondary Indicators (minimum of two required)
Primary Indicators (minimum of one is require	Surface Soil Cracks (B6)		
X_Surface Water (A1)	- X Surface Water (A1) Water-Stained Leaves (B9)		
High Water Table (A2)	Aquatic Fauna (B13)		Moss Trim Lines (B16)
X Saturation (A3)	Marl Deposits (B15)		Dry-Season Water Table (C2)
Water Marks (B1)	Hydrogen Sulfide Odor (C1)		Crayfish Burrows (C8)
Sediment Deposits (B2)	Oxidized Rhizospheres on Living Ro	oots (C3)	Saturation Visible on Aerial Imagery (C9)
Drift Deposits (B3)	Presence of Reduced Iron (C4)		Stunted or Stressed Plants (D1)
Algal Mat or Crust (B4)	Recent Iron Reduction in Tilled Soils	s (C6)	Geomorphic Position (D2)
Iron Deposits (B5)	Thin Muck Surface (C7)		Shallow Aquitard (D3)
Inundation Visible on Aerial Imagery (B7)	Other (Explain in Remarks)		Microtopographic Relief (D4)
Sparsely Vegetated Concave Surface (B	8)		X FAC-Neutral Test (D5)
Field Observations:			
Surface Water Present? Yes X	No Depth (inches): 3		
Water Table Present? Yes	No X Depth (inches):		
Saturation Present? Yes X	No Depth (inches): 0	Wetlar	nd Hydrology Present? Yes X No
(includes capillary fringe)			
Describe Recorded Data (stream gauge, mor	nitoring well, aerial photos, previous inspe	ctions), if	available:
Remarks:			

VEGETATION – Use scientific names of plants.

Sampling Point: /-bao-100318-0

· · ·	Absolute	Dominant	Indicator	
Tree Stratum (Plot size:30 ft)	% Cover	Species?	Status	Dominance Test worksheet:
1				Number of Dominant Species
2				That Are OBL, FACW, or FAC:3(A)
3				Total Number of Dominant
4				Species Across All Strata: <u>3</u> (B)
5				Percent of Dominant Species
6				That Are OBL, FACW, or FAC:(A/B)
7				Prevalence Index worksheet:
		=Total Cover		Total % Cover of:Multiply by:
Sapling/Shrub Stratum (Plot size: 15 ft)				OBL species 30 x 1 = 30
1				FACW species 95 x 2 = 190
2				FAC species5 x 3 =15
3				FACU species x 4 =
4.				UPL species x 5 =
5				Column Totals: <u>130</u> (A) <u>235</u> (B)
6				Prevalence Index = B/A =1.81
7.				Hydrophytic Vegetation Indicators:
		=Total Cover		1 - Rapid Test for Hydrophytic Vegetation
Herb Stratum (Plot size: 5 ft)				X 2 - Dominance Test is >50%
1. Phalaris arundinacea	30	Yes	FACW	X 3 - Prevalence Index is ≤3.0 ¹
2. Leersia oryzoides	20	Yes	OBL	4 - Morphological Adaptations ¹ (Provide supporting
3. Saururus cernuus	10	No	OBL	data in Remarks or on a separate sheet)
4. Impatiens capensis	15	No	FACW	Problematic Hydrophytic Vegetation ¹ (Explain)
5. Eupatorium perfoliatum	15	 No	FACW	
6. Carex gigantea	5	 No	FACW	Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
7. Toxicodendron radicans	5	No	FAC	Definitions of Vegetation Strata:
8. Lvsimachia nummularia	30	Yes	FACW	
9.				Tree – Woody plants 3 in. (7.6 cm) or more in diameter at breast height (DBH) regardless of height.
10				
11				Sapling/shrub – Woody plants less than 3 in. DBH and greater than or equal to 3 28 ft (1 m) tall
12		·		
12.	130	=Total Cover		Herb – All herbaceous (non-woody) plants, regardless
Woody Vine Stratum (Plot size: 30 ft)	100	- 10(a) 00001		
1				Woody vines – All woody vines greater than 3.28 ft in
·		·		neight.
2				Hydrophytic
3				Vegetation
4.				Present? Yes X No
		=Total Cover		
Remarks: (Include photo numbers here or on a separ	rate sheet.)			

SOIL

Profile Desc	ription: (Describe t	to the dep	oth needed to docu	ument th	ne indica	ator or co	onfirm the absence of	of indicators.)
Depth	Matrix		Redo	x Featur	es			,
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0-18	10YR 4/1	95	10YR 3/6	5	C	M	Loamy/Clayey	
¹ Type: C=Co	ncentration, D=Depl	etion, RM	Reduced Matrix, N	/IS=Mas	ked San	d Grains.	² Location: I	PL=Pore Lining, M=Matrix.
Hydric Soil I	ndicators:						Indicators	for Problematic Hydric Soils ³ :
Histosol	(A1)		Polyvalue Belo	w Surfa	ce (S8) (LRR R,	2 cm M	luck (A10) (LRR K, L, MLRA 149B)
Histic Ep	ipedon (A2)		MLRA 149B)			Coast F	Prairie Redox (A16) (LRR K, L, R)
Black His	stic (A3)		Thin Dark Surf	ace (S9)	(LRR R	, MLRA 1	149B) 5 cm M	lucky Peat or Peat (S3) (LRR K, L, R)
Hydrogei	n Sulfide (A4)		High Chroma S	Sands (S	511) (LRI	R K, L)	Polyval	lue Below Surface (S8) (LRR K, L)
Stratified	Layers (A5)		Loamy Mucky	Mineral	(F1) (LR	R K, L)	Thin Da	ark Surface (S9) (LRR K, L)
Depleted	Below Dark Surface	e (A11)	Loamv Gleved	Matrix (F2)	, ,	Iron-Ma	anganese Masses (F12) (LRR K. L. R)
Thick Da	rk Surface (A12)	()	x Depleted Matri	x (F3)	,		Piedmo	ont Floodplain Soils (F19) (MLRA 149B)
Sandy M	ucky Mineral (S1)		Redox Dark Su	urface (F	6)		Mesic S	Spodic (TA6) (MLRA 144A, 145, 149B)
Sandy G	leved Matrix (S4)		Depleted Dark	Surface	(F7)			arent Material (F21)
Sandy B	edox(S5)		Bedox Depress	sions (F8	3)		Verv St	hallow Dark Surface (F22)
Stripped	Matrix (S6)		Marl (E10) (LR	RKI)	5)		Other (I	Explain in Remarks)
Dark Sur	face (S7)			IX IX, E)				
³ Indicators of	budrophytic vogotati	ion ond w	otland bydralagy m	int he pr	ocont u	alaaa diat	urbod or problematic	
Bestrictive I	nydrophytic vegetati	ion and w	elland hydrology mi	ust be pr	esent, u	ness uisi	In the of problematic.	
	ayer (il observeu).							
l ^{Type.} -								
Depth (in	ches):						Hydric Soil Prese	ent? Yes X No
Remarks:								
This data forr	m is revised from Nor	rthcentral	and Northeast Regi	iona l Su	pplemen	t Version	2.0 to include the NR	RCS Field Indicators of Hydric Soils,
Version 7.0, 2	2015 Errata. (http://w	ww.nrcs.u	usda.gov/Internet/FS	SE_DOC	UMENT	S/nrcs14	2p2_051293.docx)	

Site Name	Cowardin Class	Photo Direction
Wetland OS-03	PEM	North

Site Name	Cowardin Class	Photo Direction
Wetland OS-03	PEM	East

Site Name	Cowardin Class	Photo Direction
Wetland OS-03	PEM	South

Site Name	Cowardin Class	Photo Direction
Wetland OS-03	PEM	West

Site Name	Cowardin Class	Photo Direction		
Wetland OS-03	PEM	Soil		

WETLAND DETERMINATION DATA FORM – Northcentral and Northeast Region

Project/Site: Beaver Wellington/Henrietta	City/County: Lorain Co	Samplir	ng Date: 10	/26/2021
Applicant/Owner: First Energy		_ State: OH Samp	oling Point:	Wetland OS 🔒
Investigator(s): BCR	Section, Township, Range: N	/Α		
Landform (hillslope, terrace, etc.): Lowland	Local relief (concave, convex, no	ne): <u>Concave</u>	Slope	(%) <u>:</u> 2
Subregion (LRR or MLRA): LRR R, MLRA 139 Lat: 41.311852	Long: <u>-82.</u>	267656	Datum:	WGS 1984
Soil Map Unit Name: MgA: Mahoning silt loam, 0 to 2 percen	it slopes	NWI classification: N	/A	
Are climatic / hydrologic conditions on the site typical for this time o	f year? Yes X No	(If no, explain in Remarks.)	1	
Are Vegetation, Soil, or Hydrology significa	ntly disturbed? Are "Normal	Circumstances" present?	Yes X	No
Are Vegetation, Soil, or Hydrology naturally	v problematic? (If needed, e	explain any answers in Ren	narks.)	

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?	Yes X No Yes X No Yes X No	Is the Sampled Area within a Wetland? Yes X No If yes, optional Wetland Site ID: Wetland OS-04
Remarks: (Explain alternative proced	dures here or in a separate report.)	
Wetland OS-04. PEM wetland along a	access road to outlier structure	

Wetland Hydrology Indicators:	Secondary Indicators (minimum of two required)
Primary Indicators (minimum of one is required; check all that apply)	Surface Soil Cracks (B6)
× Surface Water (A1) Water-Stained Leaves (B9)	Drainage Patterns (B10)
× High Water Table (A2) Aquatic Fauna (B13)	Moss Trim Lines (B16)
× Saturation (A3) Marl Deposits (B15)	Dry-Season Water Table (C2)
Water Marks (B1) Hydrogen Sulfide Odor (C1)	Crayfish Burrows (C8)
Sediment Deposits (B2) Oxidized Rhizospheres on Living	Roots (C3) Saturation Visible on Aerial Imagery (C9)
Drift Deposits (B3) Presence of Reduced Iron (C4)	Stunted or Stressed Plants (D1)
Algal Mat or Crust (B4) Recent Iron Reduction in Tilled Sc	Dils (C6) Geomorphic Position (D2)
Iron Deposits (B5) Thin Muck Surface (C7)	Shallow Aquitard (D3)
Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks)	Microtopographic Relief (D4)
Sparsely Vegetated Concave Surface (B8)	FAC-Neutral Test (D5)
Field Observations:	
Surface Water Present? Yes X No Depth (inches): 2	
Water Table Present? Yes X No Depth (inches): 1	
Saturation Present? Yes X No Depth (inches): 0 (includes capillary fringe)	Wetland Hydrology Present? Yes X No
Saturation Present? Yes X No Depth (inches): 0 (includes capillary fringe) 0 0 0 0 Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspective) 0 0	Wetland Hydrology Present? Yes X No tions), if available:
Saturation Present? Yes X No Depth (inches): 0 (includes capillary fringe) 0 0 0 0 Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspective) 0 0	Wetland Hydrology Present? Yes X No
Saturation Present? Yes X No Depth (inches): 0 (includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspec	Wetland Hydrology Present? Yes X No tions), if available:
Saturation Present? Yes X No Depth (inches): 0 (includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspective Remarks:	Wetland Hydrology Present? Yes X No tions), if available:
Saturation Present? Yes X No Depth (inches): 0 (includes capillary fringe) 0 0 0 0 0 Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspective Remarks: 0 0 0	Wetland Hydrology Present? Yes X No tions), if available:
Saturation Present? Yes X No Depth (inches): 0 (includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspect Describe Recorded Data Remarks:	Wetland Hydrology Present? Yes X No
Saturation Present? Yes X No Depth (inches): 0 (includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspect Remarks:	Wetland Hydrology Present? Yes X No
Saturation Present? Yes X No Depth (inches): 0 (includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspect Remarks:	Wetland Hydrology Present? Yes X No tions), if available:
Saturation Present? Yes X No Depth (inches): 0 (includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspect Remarks:	Wetland Hydrology Present? Yes X No tions), if available:
Saturation Present? Yes X No Depth (inches): 0 (includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspect Remarks:	Wetland Hydrology Present? Yes X No tions), if available:
Saturation Present? Yes X No Depth (inches): 0 (includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspect Remarks:	Wetland Hydrology Present? Yes X No tions), if available:
Saturation Present? Yes X No Depth (inches): 0 (includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspect Remarks:	Wetland Hydrology Present? Yes X No
Saturation Present? Yes X No Depth (inches): 0 (includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspect Remarks:	Wetland Hydrology Present? Yes X No tions), if available:

VEGETATION – Use scientific names of plants.

Sampling Point: Wetland O

Tree Stratum (Plot size: 30)	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test worksheet:
1		No		Number of Dominant Species That Are OBL, FACW, or FAC: 3 (A)
23.				Total Number of Dominant Species Across All Strata: <u>3</u> (B)
4				Percent of Dominant Species
5				That Are OBL, FACW, or FAC: 100% (A/B)
6				Prevalence Index worksheet:
7				Total % Cover of: Multiply by:
		= Total Cove	er	OBL species $\frac{70}{25}$ x 1 = $\frac{70}{50}$
Sapling/Shrub Stratum (Plot size: 15)				FACW species 23 x 2 = 50
1 Frangula alnus	10	Yes	FACW	FAC species 20 $x 3 = 0$
2				$\begin{array}{c} FACU \text{ species} \\ \hline 100 \\ \hline 10$
3				Column Totale: 115 (A) 200 (B)
4				
5				Prevalence Index = B/A = 1.74
6				Hydrophytic Vegetation Indicators:
7				1 - Rapid Test for Hydrophytic Vegetation
	10	= Total Cove	er	$\frac{1}{2}$ 2 - Dominance Test is >50%
Herb Stratum (Plot size: 5)				4 - Morphological Adaptations ¹ (Provide supporting
1Juncus effusus	50	Yes	OBL	data in Remarks or on a separate sheet)
2. Epilobium coloratum	20	Yes	OBL	Problematic Hydrophytic Vegetation' (Explain)
3. Erigeron annuus	10	<u>No</u>	FACU	¹ Indicators of hydric soil and wetland hydrology must
4. Bidens frondosa	10	<u>No</u>	FACW	
5. Solidago altissima	10	<u>No</u>	FACU	Definitions of Vegetation Strata:
6 Verbena hastata 7	5	<u>No</u>	FACW	Tree – Woody plants 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of height.
8				Sapling/shrub – Woody plants less than 3 in. DBH and greater than or equal to 3.28 ft (1 m) tall.
10				Herb – All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall.
11				Woody vines – All woody vines greater than 3.28 ft in
12				height.
20	105	= Total Cove	er	
Woody Vine Stratum (Plot size: <u>30</u>)		N		
1		<u>NO</u>		Hydrophytic
2				Vegetation
3				Present? Yes <u>^</u> No
4				
		= Total Cove	er	
Remarks: (Include photo numbers here or on a separate	sheet.)			

SOIL

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)								
Depth	Matrix	<u> </u>	Redo	x Features	<u>S</u> 1	. 2		
(inches)	Color (moist)		Color (moist)	<u>%</u>	Type'	Loc	Texture	Remarks
0 18	10YR 4/2	90	7.5YR 4/6	10	Conc+	PL,M	Silty clay loam	
							·	
							·	
1 Type: C=Cc	ncentration D=Depl	etion RM=	Reduced Matrix M	S=Masked	Sand Gra	ins	² Location	· PI =Pore Lining M=Matrix
Hydric Soil I	ndicators:			5 Maonea			Indicators	for Problematic Hydric Soils ³ :
Histosol	(A1)		Polyvalue Belov	w Surface	(S8) (LRR	R.	2 cm N	Auck (A10) (LRR K. L. MLRA 149B)
Histic Ep	ipedon (A2)	-)	() (,	Coast	Prairie Redox (A16) (LRR K, L, R)
Black His	stic (A3)	_	Thin Dark Surfa	ace (S9) (L	.RR R, ML	RA 149B) 5 cm M	lucky Peat or Peat (S3) (LRR K, L, R)
Hydroge	n Sulfide (A4)	-	Loamy Mucky N	Mineral (F1) (LRR K ,	L)	Dark S	urface (S7) (LRR K, L, M)
Stratified	Layers (A5)	-	Loamy Gleyed	Matrix (F2)		Polyva	lue Below Surface (S8) (LRR K, L)
Depleted	Below Dark Surface	e (A11)	X Depleted Matrix	(F3)			Thin D	ark Surface (S9) (LRR K, L)
Thick Da	rk Surface (A12)	-	Redox Dark Su	rface (F6)			Iron-M	anganese Masses (F12) (LRR K, L, R)
Sandy M	ucky Mineral (S1)	-	Depleted Dark	Surface (F	()		Piedmo	ont Floodplain Soils (F19) (MLRA 149B)
Sandy G	eyed Matrix (54)	-	Redox Depress	sions (F8)			Mesic	Spoulc (1A6) (MLRA 144A, 145, 149B)
Strinned	Matrix (S6)						Verv S	hallow Dark Surface (TE12)
Dark Sur	face (S7) (LRR R. M	ILRA 149B)				Other ((Explain in Remarks)
			/					<u> </u>
³ Indicators of	hydrophytic vegetati	ion and wet	land hydrology mus	st be prese	ent, unless	disturbed	l or problematio	
Restrictive L	ayer (if observed):							
Туре:								
Depth (inc	:hes):						Hydric Soil	Present? Yes X No
Remarks:								

Ν

Soil

Е

WETLAND DETERMINATION DATA FORM – Northcentral and Northeast Region

Project/Site: Beaver	-Wellington 6	9 kV Transmission L	ine	City/County: Lorain C	ounty		Sampling Date:	11/14/18
Applicant/Owner:	FirstEnergy				State	e: <u>OH</u>	Sampling Poin	t: w-bao-111418-02b
Investigator(s): BAO				Section, Tow	nship, Range	e: N/A		
Landform (hillside, ter	race, etc.):	Depression	Local r	elief (concave, convex	, none): <u>Con</u>	cave	Slop	e %: 0
Subregion (LRR or MI	LRA): LRR	R Lat	41.286	Long:	-82.271		Datum:	WGS84
Soil Map Unit Name:	MkA, Mahor	ning-Tiro silt loams, 0	to 2 percent slopes		NWI clas	sification:	N/A	
Are climatic / hydrolog	jic conditions	on the site typical fo	this time of year?	Yes X	No	(If no, e	explain in Remark	.s.)
Are Vegetation	, Soil	, or Hydrology		ed? Are "Norma	al Circumstar	nces" prese	ent? Yes X	No
Are Vegetation	, Soil	, or Hydrology	naturally problema	tic? (If needed,	explain any	answers in	Remarks.)	
SUMMARY OF F	INDINGS -	- Attach site ma	p showing sam	oling point location	ons, trans	ects, im	portant featu	res, etc.
Hydrophytic Vegetati Hydric Soil Present? Wetland Hydrology F	ion Present? Present?	Yes X Yes X Yes X	No No No	Is the Sampled Are within a Wetland? If ves, optional Wetl	ea Y land Site ID:	es X Wetland	<u>No</u> OS-05	
Remarks: (Explain a dominated. Previous	Iternative pro	cedures here or in a wetland BW-04a ve	separate report.) PE ified in Oct. 2021 and	M located within an exi d re-named as Wetland	isting ROW t d OS-05	hat is reed	canary	

			Secondary Indicators (minimum of two required)
Primary Indicators (minimum of one is require	ed; check all that apply)		Surface Soil Cracks (B6)
X_Surface Water (A1)	Water-Stained Leaves (B9)		X Drainage Patterns (B10)
X High Water Table (A2)	Aquatic Fauna (B13)		Moss Trim Lines (B16)
X Saturation (A3)	Marl Deposits (B15)		Dry-Season Water Table (C2)
Water Marks (B1)	Hydrogen Sulfide Odor (C1)		Crayfish Burrows (C8)
Sediment Deposits (B2)	Oxidized Rhizospheres on Living Ro	oots (C3)	Saturation Visible on Aerial Imagery (C9)
Drift Deposits (B3)	Presence of Reduced Iron (C4)		Stunted or Stressed Plants (D1)
Algal Mat or Crust (B4)	Recent Iron Reduction in Tilled Soils	s (C6)	Geomorphic Position (D2)
Iron Deposits (B5)	Thin Muck Surface (C7)		Shallow Aquitard (D3)
Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks)		Microtopographic Relief (D4)
Sparsely Vegetated Concave Surface (B	8)		X FAC-Neutral Test (D5)
Field Observations:			
Surface Water Present? Yes X	No Depth (inches): 3		
Water Table Present? Yes X	No Depth (inches): 4		
Saturation Present? Yes X	No Depth (inches): 0	Wetlan	d Hydrology Present? Yes X No
(includes capillary fringe)			
Describe Recorded Data (stream gauge, mo	nitoring well, aerial photos, previous inspe	ctions), if a	available:
Describe Recorded Data (stream gauge, mo	nitoring well, aerial photos, previous inspe	ctions), if a	available:
Describe Recorded Data (stream gauge, mo	nitoring well, aerial photos, previous inspe	ctions), if a	available:
Describe Recorded Data (stream gauge, moi Remarks:	nitoring well, aerial photos, previous inspe	ctions), if a	available:
Describe Recorded Data (stream gauge, moi Remarks:	nitoring well, aerial photos, previous inspe	ctions), if a	available:
Describe Recorded Data (stream gauge, moi Remarks:	nitoring well, aerial photos, previous inspe	ctions), if a	available:
Describe Recorded Data (stream gauge, moi Remarks:	nitoring well, aerial photos, previous inspe	ctions), if a	available:
Describe Recorded Data (stream gauge, moi Remarks:	nitoring well, aerial photos, previous inspe	ctions), if a	available:
Describe Recorded Data (stream gauge, moi Remarks:	nitoring well, aerial photos, previous inspe	ctions), if a	available:
Describe Recorded Data (stream gauge, moi Remarks:	nitoring well, aerial photos, previous inspe	ctions), if a	available:
Describe Recorded Data (stream gauge, moi Remarks:	nitoring well, aerial photos, previous inspe	ctions), if a	available:
Describe Recorded Data (stream gauge, moi Remarks:	nitoring well, aerial photos, previous inspe	ctions), if a	available:

VEGETATION - Use scientific names of plants.

Sampling Point: -bao-111418-02

Tree Stratum (Distaire: 20 ft)	Absolute	Dominant Species2	Indicator	
	% Cover	Species?		Dominance Test worksheet:
2.				Number of Dominant Species That Are OBL, FACW, or FAC: 1 (A)
3 4				Total Number of Dominant Species Across All Strata:1(B)
5				Percent of Dominant Species That Are OBL, FACW, or FAC: 100.0% (A/B)
7.				Prevalence Index worksheet:
		=Total Cover		Total % Cover of:Multiply by:
Sapling/Shrub Stratum (Plot size: 15 ft)				OBL species25 x 1 =25
1				FACW species 85 x 2 = 170
2				FAC species 10 x 3 = 30
3				FACU species x 4 =
4.				UPL species 0 x 5 = 0
5.				Column Totals: 120 (A) 225 (B)
6.				Prevalence Index = B/A = 1.88
7.				Hydrophytic Vegetation Indicators:
		=Total Cover		1 - Rapid Test for Hydrophytic Vegetation
Herb Stratum (Plot size: 5 ft)				X 2 - Dominance Test is >50%
1. Eupatorium perfoliatum	5	No	FACW	X 3 - Prevalence Index is ≤3.0 ¹
2. Mimulus ringens	5	No	OBL	4 - Morphological Adaptations ¹ (Provide supporting
3. Phalaris arundinacea	75	Yes	FACW	data in Remarks or on a separate sheet)
4. Scirpus cyperinus	5	No	OBL	Problematic Hydrophytic Vegetation ¹ (Explain)
5. Verbena hastata	5	No	FACW	
6. Juncus sp.	10	No	FAC	Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
7. Polvaonum sagittatum	15	No	OBL	Definitions of Vegetation Strata:
8.				
9.				diameter at breast height (DBH), regardless of height.
10				Sapling/shrub – Woody plants less than 3 in. DBH
11				and greater than or equal to 3.28 ft (1 m) tall.
12				Herb – All herbaceous (non-woody) plants, regardless
	120	=Total Cover		of size, and woody plants less than 3.28 ft tall.
<u>Woody Vine Stratum</u> (Plot size: <u>30 ft</u>)				Woody vines – All woody vines greater than 3.28 ft in
·				neight.
2				Hydrophytic
S				Vegetation
4				Present? Yes <u>A</u> NO
		= I otal Cover		
Remarks: (Include photo numbers here or on a separ	ate sheet.)			

SOIL									Sampling Point	tv-bao-111418-02
Profile Des	cription: (Describe	to the de	pth needed to doc	ument tl	he indica	ator or c	onfirm the absenc	e of indica	itors.)	
Depth	Matrix		Redo	x Featur	res					
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture		Remar	ks
0-17	10YR 4/1	95	10YR 5/8	5			Loamy/Clayey		Silty Clay	Loam
¹ Type: C=C	oncentration, D=Depl	etion, RN	/=Reduced Matrix, N	MS=Mas	ked San	d Grains.	² Location:	PL=Pore	Lining, M=Mat	trix.
Hydric Soil Histosol Histic E Black H Hydroge Stratifie Deplete Thick D Sandy N Sandy R Sandy F Strippec Dark Su ³ Indicators c	Indicators: (A1) pipedon (A2) istic (A3) en Sulfide (A4) d Layers (A5) d Below Dark Surface ark Surface (A12) Mucky Mineral (S1) Gleyed Matrix (S4) Redox (S5) H Matrix (S6) rface (S7) f hydrophytic vegetat Layer (if observed):	e (A11) ion and v	Polyvalue Belo MLRA 149B Thin Dark Surf High Chroma S Loamy Mucky Loamy Gleyed X Depleted Matri Redox Dark Su Depleted Dark Redox Depres Marl (F10) (LR	ow Surfa and (S ands (S Sands (S Mineral Matrix (ix (F3) urface (F Surface sions (F Surface sions (F Surface sions (F Surface sions (F Surface sions (F Surface)	ce (S8) (i) (LRR R S11) (LRI (F1) (LRI (F2) =6) = (F7) 8) resent, u	LRR R, , MLRA R K, L) R K, L)	Indicator 2 cm 2 cm Coas 149B) 5 cm Polyv Thin I Iron-I Piedr Mesic Red F Very Other turbed or problemat	s for Prob Muck (A10 t Prairie Re Mucky Pea alue Below Dark Surfa Janganese nont Flood Spodic (T Parent Mat Shallow Da (Explain in	Jematic Hydri Jematic Hydri (LRR K, L, M edox (A16) (LR at or Peat (S3) v Surface (S8) ce (S9) (LRR H e Masses (F12) plain Soils (F12) plain Soils (F12) (A6) (MLRA 14 erial (F21) ark Surface (F2 n Remarks)	c Soils ³ : /ILRA 149B) &R K, L, R) (LRR K, L, R) (LRR K, L) (, L)) (LRR K, L, R) 9) (MLRA 149B) 14A, 145, 149B) 22)
Type:	Layer (II observed).									
Depth (i	nches):						Hydric Soil Pre	sent?	Yes X	No
Remarks: This data for Version 7.0,	rm is revised from No 2015 Errata. (http://w	rthcentra ww.nrcs.	I and Northeast Reg .usda.gov/Internet/F	ional Su SE_DOC	pplemen CUMENT	t Version S/nrcs14	2.0 to include the N 2p2_051293.docx)	IRCS Field	I Indicators of I	Hydric Soils,

Site Name	Cowardin Class	Photo Direction
Wetland OS-05	PEM	North

Site Name	Cowardin Class	Photo Direction
Wetland OS-05	PEM	East

Site Name	Cowardin Class	Photo Direction		
Wetland OS-05	PEM	West		

Wetland OS-06a,b

WETLAND DETERMINATION DATA FORM – Northcentral and Northeast Region

Project/Site: Beaver	-Wellington 6	9 kV Transmissio	on Line	e		City/County: Lor	rain Coui	nty		Sampling Date:	11/14	4/18
Applicant/Owner:	FirstEnergy							State	: OH	Sampling Poi	nt: w-ba	o-111418-01
Investigator(s): BAO						Section	n, Townsł	hip, Range	: <u>N/A</u>			
Landform (hillside, ter	race, etc.):	Depression			Local re	elief (concave, c	onvex, n	one): Cond	cave	Slo	pe %: _	0
Subregion (LRR or ML	_RA): <u>LRR [</u>	٦	Lat:	41.2834		Lo	ong: <u>-82</u>	2.271		Datum:	WGS	684
Soil Map Unit Name: MkA, Mahoning-Tiro silt loams, 0 to 2 percent slopes NWI classification: N/A												
Are climatic / hydrologic conditions on the site typical for this time of year? Yes X No (If no, explain in Remarks.)												
Are Vegetation	, Soil	, or Hydrology		significantly	disturb	ed? Are "	Normal C	Circumstan	ices" prese	ent? Yes X	_ No	
Are Vegetation	, Soil	, or Hydrology	I	naturally pro	oblemat	tic? (If ne	eded, ex	plain any a	answers in	Remarks.)		
SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.												
Hydrophytic Vegetati	on Present?	Yes	Х	No		Is the Sample	ed Area					
Hydric Soil Present?		Yes	Х	No		within a Wetla	and?	Ye	es_X_	No		
Wetland Hydrology P	'resent?	Yes_	Х	No		If yes, optiona	I Wetland	d Site ID:	Wetland	OS-06a,b		
Remarks: (Explain alternative procedures here or in a separate report.) PEM, connect with other, adjacent to S01. Former Wetland BW-05a,b re-verfied in Oct. 2021 and re-named Wetland OS-06a,b												

Wetland Hydrology Indicators:			Secondary Indicators (minimum of two required)				
Primary Indicators (minimum of one is require	ed; check all that apply)		Surface Soil Cracks (B6)				
Surface Water (A1)	Water-Stained Leaves (B9)		x Drainage Patterns (B10)				
High Water Table (A2)	Aquatic Fauna (B13)		Moss Trim Lines (B16)				
x Saturation (A3)	Marl Deposits (B15)		Dry-Season Water Table (C2)				
Water Marks (B1)	Hydrogen Sulfide Odor (C1)		Crayfish Burrows (C8)				
Sediment Deposits (B2)	x Oxidized Rhizospheres on Living R	oots (C3)	Saturation Visible on Aerial Imagery (C9)				
Drift Deposits (B3)	Presence of Reduced Iron (C4)		Stunted or Stressed Plants (D1)				
Algal Mat or Crust (B4)	Recent Iron Reduction in Tilled Soils (C6)		Geomorphic Position (D2)				
Iron Deposits (B5)	Thin Muck Surface (C7)		Shallow Aquitard (D3)				
Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks)		Microtopographic Relief (D4)				
Sparsely Vegetated Concave Surface (B	8)		x FAC-Neutral Test (D5)				
Field Observations:							
Surface Water Present? Yes	No Depth (inches):						
Water Table Present? Yes	No Depth (inches):						
Saturation Present? Yes x	No Depth (inches): 0	Wetland	d Hydrology Present? Yes X No				
(includes capillary fringe)							
Describe Recorded Data (stream gauge, mo	nitoring well, aerial photos, previous inspe	ections), if a	vailable:				
Remarks:							
Wetland OS-06a,b

VEGETATION – Use scientific names of plants.

Sampling Point: /-bao-111418-0

	Absolute	Dominant	Indicator	
<u>Tree Stratum</u> (Plot size: <u>30 ft</u>)	% Cover	Species?	Status	Dominance Test worksheet:
1				Number of Dominant Species
3				
4.				Total Number of Dominant Species Across All Strata: 1 (B)
5				Percent of Dominant Species
6				That Are OBL, FACW, or FAC:0(A/B)
7				Prevalence Index worksheet:
		=Total Cover		Total % Cover of:Multiply by:
Sapling/Shrub Stratum (Plot size: 15 ft)				OBL species <u>10</u> x 1 = <u>10</u>
1				FACW species 75 x 2 = 150
2				FAC species25 x 3 =75
3				FACU species x 4 =
4				UPL species x 5 =
5				Column Totals: 110 (A) 235 (B)
6				Prevalence Index = B/A =
7				Hydrophytic Vegetation Indicators:
		=Total Cover		1 - Rapid Test for Hydrophytic Vegetation
Herb Stratum (Plot size: 5 ft)				X 2 - Dominance Test is >50%
1. Phalaris arundinacea	65	Yes	FACW	X_3 - Prevalence Index is ≤3.0 ¹
2. Eupatorium perfoliatum	10	No	FACW	4 - Morphological Adaptations ¹ (Provide supporting
3. Juncus sp.	15	No	FAC	data in Remarks of on a separate sheet)
4. Solidago sp.	10	No	FAC	Problematic Hydrophytic Vegetation ¹ (Explain)
5. Mimulus ringens	10	No	OBL	¹ Indicators of hydric soil and wetland hydrology must
6				be present, unless disturbed or problematic.
7				Definitions of Vegetation Strata:
8				Tree – Woody plants 3 in. (7.6 cm) or more in
9				diameter at breast height (DBH), regardless of height.
10				Sapling/shrub – Woody plants less than 3 in. DBH
11				and greater than or equal to 3.28 ft (1 m) tall.
12				Herb – All herbaceous (non-woody) plants, regardless
	110	=Total Cover		of size, and woody plants less than 3.28 ft tall.
Woody Vine Stratum (Plot size: 30 ft)				Woody vines – All woody vines greater than 3.28 ft in
1				height.
2				
3				Vegetation
4				Present? Yes X No
		=Total Cover		
Remarks: (Include photo numbers here or on a separ	ate sheet.)			

SOIL

Profile Desc	ription: (Describe	to the de	pth needed to doci	ument tl	he indica	ator or co	onfirm the absence of indicators.)
Depth	Matrix		Redo	x Featur	es		
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture Remarks
0-18	10YR 4/2	90	10YR 5/6	10	С	PL/M	silty clay
¹ Type: C=Co	oncentration, D=Dep	letion, RI	/I=Reduced Matrix, N	∕IS=Mas	ked Sand	d Grains.	² Location: PL=Pore Lining, M=Matrix.
Hydric Soil I	ndicators:						Indicators for Problematic Hydric Soils ³ :
Histosol	(A1)		Polyvalue Belo	ow Surfa	ce (S8) (l	LRR R,	2 cm Muck (A10) (LRR K, L, MLRA 149B)
Histic Ep	ipedon (A2)		MLRA 149B	5)			Coast Prairie Redox (A16) (LRR K, L, R)
Black His	stic (A3)		Thin Dark Surf	ace (S9)) (LRR R	, MLRA 1	149B) 5 cm Mucky Peat or Peat (S3) (LRR K, L, R)
Hydroger	n Sulfide (A4)		High Chroma S	Sands (S	611) (LRF	R K, L)	Polyvalue Below Surface (S8) (LRR K, L)
Stratified	Layers (A5)		Loamy Mucky	Mineral	(F1) (LRI	R K, L)	Thin Dark Surface (S9) (LRR K, L)
Depleted	Below Dark Surface	e (A11)	Loamy Gleyed	Matrix (F2)		Iron-Manganese Masses (F12) (LRR K, L, R)
Thick Da	rk Surface (A12)		X Depleted Matri	ix (F3)			Piedmont Floodplain Soils (F19) (MLRA 149B)
Sandy M	ucky Mineral (S1)		Redox Dark Su	urface (F	6)		Mesic Spodic (TA6) (MLRA 144A, 145, 149B)
Sandy G	leyed Matrix (S4)		Depleted Dark	Surface	(F7)		Red Parent Material (F21)
Sandy R	edox (S5)		Redox Depres	sions (F	8)		Very Shallow Dark Surface (F22)
Stripped	Matrix (S6)		Marl (F10) (LR	R K, L)			Other (Explain in Remarks)
Dark Sur	face (S7)						
³ Indicators of	hydrophytic vegetat	ion and v	vetland hydrology m	ust be pi	resent, ui	nless dist	turbed or problematic.
Restrictive L	.ayer (if observed):						
Type: -							
Depth (in	iches):						Hydric Soil Present? Yes X No
Remarks:							1
This data form	m is revised from No	rthcentra	I and Northeast Reg	iona l Su	pplemen	t Version	2.0 to include the NRCS Field Indicators of Hydric Soils,
Version 7.0, 2	2015 Errata. (http://w	/ww.nrcs	usda.gov/Internet/F	SE_DOO	CUMENT	S/nrcs14	2p2_051293.docx)

Site Name	Cowardin Class	Photo Direction
Wetland OS-06a,b	PEM	West

WETLAND DETERMINATION DATA FORM – Northcentral and Northeast Region

Project/Site: Beaver-Wellington 69 kV Transmission Line	City/County: Lorain County Sampling Date: 10/02/18
Applicant/Owner: FirstEnergy	State: OH Sampling Point: w-bac-100218-01
Investigator(s): BAO	Section, Township, Range: N/A
Landform (hillside, terrace, etc.): Depressioin Local	relief (concave, convex, none): Concave Slope %:
Subregion (LRR or MLRA): LRR R Lat: 41.2819	Long: -82.2709 Datum: WGS84
Soil Map Unit Name: MkA, Mahoning-Tiro silt loams, 0 to 2 percent slopes	NWI classification: N/A
Are climatic / hydrologic conditions on the site typical for this time of year?	Yes X No (If no, explain in Remarks.)
Are Vegetation, Soil, or Hydrologysignificantly distur	bed? Are "Normal Circumstances" present? Yes X No
Are Vegetation, Soil, or Hydrology naturally problema	atic? (If needed, explain any answers in Remarks.)
SUMMARY OF FINDINGS – Attach site map showing sam	pling point locations, transects, important features, etc.
Hydrophytic Vegetation Present? Yes X No	Is the Sampled Area
Hydric Soil Present? Yes X No	within a Wetland? Yes X No
Wetland Hydrology Present? Yes X No	If yes, optional Wetland Site ID: Wetland OS-07
Remarks: (Explain alternative procedures here or in a separate report.) PE complex. Previously delineated Wetland 06a re-verified in Oct. 2021 as W	EM/PSS large wetland within ROW that is part of wetland etland OS-07

Wetland Hydrology Indicators:			Secondary Indicators (minimum of two required)		
Primary Indicators (minimum of one is	Surface Soil Cracks (B6)				
Surface Water (A1)	X Drainage Patterns (B10)				
High Water Table (A2)	Aquatic Fauna (B13)		Moss Trim Lines (B16)		
x Saturation (A3)	Marl Deposits (B15)		Dry-Season Water Table (C2)		
Water Marks (B1)	Hydrogen Sulfide Odd	or (C1)	Crayfish Burrows (C8)		
Sediment Deposits (B2)	Oxidized Rhizosphere	es on Living Roots (C3)	Saturation Visible on Aerial Imagery (C9)		
Drift Deposits (B3)	Presence of Reduced	Iron (C4)	Stunted or Stressed Plants (D1)		
Algal Mat or Crust (B4)	Recent Iron Reduction	n in Tilled Soils (C6)	Geomorphic Position (D2)		
Iron Deposits (B5)	Thin Muck Surface (C	7)	Shallow Aquitard (D3)		
Inundation Visible on Aerial Image	ery (B7) Other (Explain in Rem	narks)	Microtopographic Relief (D4)		
Sparsely Vegetated Concave Sur	face (B8)		X FAC-Neutral Test (D5)		
Field Observations:					
Surface Water Present? Yes	No Depth (inche	es):			
Water Table Present? Yes	No Depth (inche	s):			
Saturation Present? Yes	No Depth (inche	s): Wetlar	etland Hydrology Present? Yes X No		
(includes capillary fringe)					
Describe Recorded Data (stream gau	ge, monitoring well, aerial photos, p	previous inspections), if	available:		
Remarks:					

VEGETATION – Use scientific names of plants.

Sampling Point: /-bao-100218-0

	Absolute	Dominant	Indicator	
Tree Stratum (Plot size: 30 ft)	% Cover	Species?	Status	Dominance Test worksheet:
1				Number of Dominant Species
2				That Are OBL, FACW, or FAC:(A)
3				Total Number of Dominant
4				Species Across All Strata: (B)
5				Percent of Dominant Species
6				That Are OBL, FACW, or FAC: 100.0% (A/B)
7				Prevalence Index worksheet:
		=Total Cover		Total % Cover of: Multiply by:
Sapling/Shrub Stratum (Plot size: 15 ft)				OBL species454545
1. Fraxinus pennsylvanica	5	No	FACW	FACW species 35 x 2 = 70
2. Cornus sericea	5	No	FACW	FAC species 30 x 3 = 90
3. Populus deltoides	10	Yes	FAC	FACU species 0 x 4 = 0
4. Salix nigra	10	Yes	OBL	UPL species 0 x 5 = 0
5.				Column Totals: 110 (A) 205 (B)
6.				Prevalence Index = B/A = 1.86
7.				Hydrophytic Vegetation Indicators:
	30	=Total Cover		1 - Rapid Test for Hydrophytic Vegetation
Herb Stratum (Plot size: 5 ft)				X 2 - Dominance Test is >50%
1 Carex lurida	5	No	OBI	$X_3 - Prevalence Index is <3.01$
2 Symphyotrichum novae-angliae	10	No	FACW	4 - Morphological Adaptations ¹ (Provide supporting
3 Eupstorium perfoliatum	10	No	EACW/	data in Remarks or on a separate sheet)
	20	Voc		Problematic Hydrophytic Vegetation ¹ (Evaluin)
4. <u>Solidago sp.</u>	20	<u>Yes</u>		
5. Scirpus atrovirens		res		¹ Indicators of hydric soil and wetland hydrology must
6. Phragmites australis	5	No	FACW	be present, unless disturbed or problematic.
7				Definitions of Vegetation Strata:
8				Tree – Woody plants 3 in. (7.6 cm) or more in
9				diameter at breast height (DBH), regardless of height.
10				Sapling/shrub – Woody plants less than 3 in. DBH
11				and greater than or equal to 3.28 ft (1 m) tall.
12				Herb – All herbaceous (non-woody) plants, regardless
	80	=Total Cover		of size, and woody plants less than 3.28 ft tall.
Woody Vine Stratum (Plot size: 30 ft)				Woody vines – All woody vines greater than 3.28 ft in
1				height.
2				
3				Hydropnytic Vegetation
4				Present? Yes X No
		=Total Cover		
Remarks: (Include photo numbers here or on a separ	ate sheet.)			

SOIL								Sampling Point <u>w-bao-100218-0</u>
Profile Desc	ription: (Describe t	o the de	pth needed to doc	ument t	he indica	ator or co	onfirm the absence of	f indicators.)
Depth	Matrix		Redo	x Featur	res			
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0-6	10YR 4/2	95	10YR 5/8	5	С	PL/M		silty clay
6-18	10YR 6/1	80	10YR 5/8	20	С	PL/M		
¹ Type: C=Co	oncentration, D=Depl	etion, RN	I=Reduced Matrix, N	VS=Mas	ked San	d Grains.	² Location: Pl	L=Pore Lining, M=Matrix.
Hydric Soil I	ndicators:				(==) (Indicators fo	or Problematic Hydric Soils ³ :
Histosol	(A1)		Polyvalue Belo	ow Surfa	ce (S8) (LRR R,	2 cm Mu	ck (A10) (LRR K, L, MLRA 149B)
Histic Ep	ipedon (A2)		MLRA 1498	5) 			Coast Pr	airie Redox (A16) (LRR K, L, R)
Black His	stic (A3)		Thin Dark Surf	ace (S9		, MLRA 1	149B)5 cm Mu	cky Peat or Peat (S3) (LRR K, L, R)
Hydrogel			High Chroma	Sands (S	511) (LRI	Κ Κ, L)	Polyvalue	
Stratified	Layers (A5)	(0.4.4)	Loamy Mucky	Matrice		κκ, L)	I nin Dar	
	Below Dark Surface	(A11)	Loamy Gleyed	i Matrix (FZ)		Iron-Ivian	Iganese Masses (F12) (LRR K, L, R)
	rk Surrace (A12)		X Depleted Matri	IX (F3)			Pleamon	
Sandy M	ucky Mineral (S1)		Redox Dark Si	urface (F	-6)		Mesic Sp	bodic (TA6) (MLRA 144A, 145, 149B)
Sandy G	leyed Matrix (S4)		Depleted Dark	Surface	e (F7)		Red Pare	ent Material (F21)
Sandy R	edox (S5)		Redox Depres	sions (F	8)		Very Sha	allow Dark Surface (F22)
Stripped	Matrix (S6)		Marl (F10) (LR	R K, L)			Other (E:	xplain in Remarks)
Dark Sur	face (S7)							
³ Indicators of	hydrophytic vegetati	on and w	vetland hydrology m	ust be p	resent, ui	nless dist	turbed or problematic.	
Restrictive L	ayer (if observed):							
Туре:								
Depth (in	nches):						Hydric Soil Preser	nt? Yes X No
Remarks:								
This data form	m is revised from Noi	thcentral	and Northeast Reg	ional Su	pplemen CUMENT	t Version	2.0 to include the NRC	CS Field Indicators of Hydric Soils,
		ww.mcs.	usua.gov/internet/		JOWEN	0/11/03 14	2p2_001200.000x)	

Site Name	Cowardin Class	Photo Direction
Wetland OS-07	PEM	Northwest

Site Name	Cowardin Class	Photo Direction
Wetland OS-07	PEM	Southeast

Site Name	Cowardin Class	Photo Direction
Wetland OS-07	PEM	South

Site Name	Cowarum Class	Photo Direction
Wetland OS-07	PEM	Soil

WETLAND DETERMINATION DATA FORM – Northcentral and Northeast Region

Project/Site: Beaver Wellington/Henrietta	City/County: Lorain Co	Sampli	Sampling Date: 10/25/2021	
Applicant/Owner: First Energy		State: OH Sam	pling Point: <u>\</u>	Vetland OS
Investigator(s): BCR	Section, Township, Range	<u>.</u> N/A		
Landform (hillslope, terrace, etc.): Lowland	Local relief (concave, convex,	none): <u>Concave</u>	Slope	(%):
Subregion (LRR or MLRA): LRR R, MLRA 139 Lat: 41.160378	Long:	82.273096	Datum:	WGS 1984
Soil Map Unit Name: MgB: Mahoning silt loam, 2 to 6 percen	it slopes	NWI classification: N	I/A	
Are climatic / hydrologic conditions on the site typical for this time o	f year? Yes X No	(If no, explain in Remarks.)	
Are Vegetation, Soil, or Hydrology significa	ntly disturbed? Are "Nor	mal Circumstances" present?	Yes X	No
Are Vegetation, Soil, or Hydrology naturally	v problematic? (If neede	ed, explain any answers in Rei	marks.)	

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?	Yes X No Yes X No Yes X No	Is the Sampled Area within a Wetland? Yes X No If yes, optional Wetland Site ID: Wetland OS-08
Remarks: (Explain alternative proced	ures here or in a separate report.)	

Wetland Hydrology Indicate	ors:	Secondary Indicators (minimum of two required)		
Primary Indicators (minimum	of one is required; of	Surface Soil Cracks (B6)		
Surface Water (A1)		Drainage Patterns (B10)		
High Water Table (A2)		Aquatic Fauna (B13)		Moss Trim Lines (B16)
× Saturation (A3)		Marl Deposits (B15)		Dry-Season Water Table (C2)
Water Marks (B1)		Hydrogen Sulfide Odor (C1)	Crayfish Burrows (C8)
Sediment Deposits (B2)		x Oxidized Rhizospheres of	on Living Roots (C3)	Saturation Visible on Aerial Imagery (C9)
Drift Deposits (B3)		Presence of Reduced Irc	on (C4)	Stunted or Stressed Plants (D1)
Algal Mat or Crust (B4)		Recent Iron Reduction in	n Tilled Soils (C6)	Geomorphic Position (D2)
Iron Deposits (B5)		Thin Muck Surface (C7)		Shallow Aquitard (D3)
Inundation Visible on Aer	ial Imagery (B7)	Other (Explain in Remark	ks)	Microtopographic Relief (D4)
Sparsely Vegetated Cond	cave Surface (B8)			FAC-Neutral Test (D5)
Field Observations:				
Surface Water Present?	Yes X No	Depth (inches): 1		
Water Table Present?	Yes X No	Depth (inches): 6	;	
Water rubie ricoent:				
Saturation Present? (includes capillary fringe)	Yes X No	Depth (inches): 0	Wetland I	Hydrology Present? Yes X No
Saturation Present? (includes capillary fringe) Describe Recorded Data (stree	Yes X No	Depth (inches): 0	Wetland I us inspections), if ava	Hydrology Present? Yes X No
Saturation Present? (includes capillary fringe) Describe Recorded Data (stre	Yes X No	Depth (inches): 0	Wetland I us inspections), if ava	Hydrology Present? Yes X No
Saturation Present? (includes capillary fringe) Describe Recorded Data (stree	Yes X No	Depth (inches): 0	Wetland I	Hydrology Present? Yes X No
Saturation Present? (includes capillary fringe) Describe Recorded Data (stre Remarks:	Yes X No	Depth (inches): 0	Wetland I	Hydrology Present? Yes X No
Saturation Present? (includes capillary fringe) Describe Recorded Data (stre Remarks:	Yes X No	Depth (inches): 0	Wetland I	Hydrology Present? Yes X No
Saturation Present? (includes capillary fringe) Describe Recorded Data (stre Remarks:	Yes X No	Depth (inches): 0	Us inspections), if ava	Hydrology Present? Yes X No
Saturation Present? (includes capillary fringe) Describe Recorded Data (stre Remarks:	Yes X No	Depth (inches): 0	Wetland I us inspections), if ava	Hydrology Present? Yes <u>X</u> No
Saturation Present? (includes capillary fringe) Describe Recorded Data (stre Remarks:	Yes X No	Depth (inches): 0	Wetland I us inspections), if ava	Hydrology Present? Yes <u>X</u> No
Saturation Present? (includes capillary fringe) Describe Recorded Data (stre Remarks:	Yes X No	Depth (inches): 0	Wetland I us inspections), if ava	Hydrology Present? Yes X No
Saturation Present? (includes capillary fringe) Describe Recorded Data (stre Remarks:	Yes X No eam gauge, monitor	Depth (inches): 0	Wetland I	Hydrology Present? Yes X No
Saturation Present? (includes capillary fringe) Describe Recorded Data (stre Remarks:	Yes X No eam gauge, monitor	Depth (inches): 0	Wetland I us inspections), if ava	Hydrology Present? Yes X No
Saturation Present? (includes capillary fringe) Describe Recorded Data (stre Remarks:	Yes X No eam gauge, monitor	Depth (inches): 0	Wetland I us inspections), if ava	Hydrology Present? Yes X No
Saturation Present? (includes capillary fringe) Describe Recorded Data (stre	Yes X No 2	Depth (inches): 0	Wetland I us inspections), if ava	Hydrology Present? Yes X No

VEGETATION – Use scientific names of plants.

Sampling Point: Wetland O

Trace Strature (Distaire) 30	Absolute Dominant Indicator	Dominance Test worksheet:
<u>Tree Stratum</u> (Plot size:)	<u>% Cover Species? Status</u>	Number of Dominant Species
1	<u></u>	That Are OBL, FACW, or FAC: (A)
2		Total Number of Dominant
3		Species Across All Strata:1 (B)
4		Percent of Dominant Species
5		That Are OBL, FACW, or FAC:(A/B)
6		Prevalence Index worksheet:
7		Total % Cover of: Multiply by
	= Total Cover	$\frac{1}{\text{OBL species}} 0 \qquad \text{x1} = 0$
Sapling/Shrub Stratum (Plot size: 15)		FACW species $100 \times 2 = 200$
<u>deping/on/de on/dam</u> (1100/0120)	No	FAC species $0 \times 3 = 0$
		FACU species 0 x 4 = 0
2		UPL species x 5 =0
3		Column Totals: <u>100</u> (A) <u>200</u> (B)
4		2.00
5		Prevalence Index = B/A = 2.00
6		Hydrophytic Vegetation Indicators:
7		1 - Rapid Test for Hydrophytic Vegetation
	= Total Cover	X 2 - Dominance Test is >50%
Herb Stratum (Plot size: 5)		\underline{X} 3 - Prevalence Index is $\leq 3.0^1$
1 Phalaris arundinacea		4 - Morphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet)
2		Problematic Hydrophytic Vegetation ¹ (Explain)
3.		¹ Indicators of hydric soil and wetland hydrology must
4		be present, unless disturbed or problematic.
5		Definitions of Vegetation Strata:
3		
-		at breast height (DBH), regardless of height.
7		O errite states the state last the solid DDU
8		and greater than or equal to 3.28 ft (1 m) tall.
9		
10		size, and woody plants less than 3.28 ft tall.
11		
12		woody vines – All woody vines greater than 5.28 It in height.
	100 = Total Cover	
Woody Vine Stratum (Plot size: 30)		
1	No	
·		Hydrophytic
2		Vegetation Present? Yes X No
3		
4		
	= Total Cover	
Remarks: (Include photo numbers here or on a separate	sheet.)	

SOIL

Profile Desc	ription: (Describe t	o the dept	n needed to docun	nent the i	ndicator o	or confirm	n the absence	of indicators.)
Depth	Matrix		Redo	x Feature	<u>s</u>			
(inches)	Color (moist)	<u>%</u>	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0 18	10YR 3/2	90	10YR 4/6	10	Conc	PL,M	Silty clay loam	
¹ Type: C=Co	ncentration, D=Depl	etion, RM=I	Reduced Matrix, MS	S=Masked	Sand Gra	ins.	² Location	: PL=Pore Lining, M=Matrix.
Hydric Soil I	ndicators:						Indicators	for Problematic Hydric Soils ³ :
Histosol	(A1)	_	Polyvalue Below	v Surface	(S8) (LRR	R,	2 cm N	/luck (A10) (LRR K, L, MLRA 149B)
Histic Ep	ipedon (A2)		MLRA 149B)	1			Coast	Prairie Redox (A16) (LRR K, L, R)
Black His	stic (A3)	_	Thin Dark Surfa	ce (S9) (L	.RR R, ML	.RA 149B) 5 cm N	Aucky Peat or Peat (S3) (LRR K, L, R)
Hydroge	n Sulfide (A4)		Loamy Mucky N	lineral (F	1) (LRR K,	L)	Dark S	Surface (S7) (LRR K, L, M)
Stratified	Layers (A5)	_	Loamy Gleyed I	Matrix (F2)	,	Polyva	lue Below Surface (S8) (LRR K, L)
Depleted	Below Dark Surface	e (A11)	Depleted Matrix	(F3)	,		Thin D	ark Surface (S9) (LRR K, L)
 Thick Da	rk Surface (A12)		Redox Dark Sul	face (F6)			Iron-M	anganese Masses (F12) (LRR K, L, R)
Sandy M	ucky Mineral (S1)	-	Depleted Dark S	Surface (F	7)		Piedm	ont Floodplain Soils (F19) (MLRA 149B)
Sandy G	leved Matrix (S4)	-	Redox Depress	ions (F8)	,		Mesic	Spodic (TA6) (MLRA 144A, 145, 149B)
Sandy R	edox (S5)	-		()			Red Pa	arent Material (F21)
Stripped	Matrix (S6)						Verv S	hallow Dark Surface (TF12)
Dark Sur	face (S7) (LRR R. M	LRA 149B					Other	(Explain in Remarks)
		,						
³ Indicators of	hvdrophytic vegetati	on and wet	and hydrology mus	t be prese	ent. unless	disturbed	or problematio	2.
Restrictive L	aver (if observed):				,			
Type:	,							
Dopth (inc	haa);						Undria Cail	Dressent? Yes X No
Depth (inc	nes).						Hydric Soll	Present? fes <u>~</u> No
Remarks:								

Ν

WETLAND DETERMINATION DATA FORM – Northcentral and Northeast Region

Project/Site: Beaver-Wellington 138 kV Transmi	ssion Line	City/County: Lorain County		Sampling Date:	03/11/2019
Applicant/Owner: FirstEnergy		State:	ОН	Sampling Point	upl-bcr-03/11/19-01_02
Investigator(s): B.Robertson; Jacobs		Section, Township, Range: 1	N/A		
Landform (hillside, terrace, etc.): flat ground	Local r	elief (concave, convex, none): <u>none</u>		Slope	: <u>1</u>
Subregion (LRR or MLRA): LRR R	Lat: 41.3360	Long: <u>-82.2670</u>		Datum:	WGS84
Soil Map Unit Name: Sd, Sebring silt loam, sand	lstone substratum, 0 to 2 pe	ercent slopes NWI classif	fication:	N/A	
Are climatic / hydrologic conditions on the site typ	ical for this time of year?	Yes X No	(If no, e	explain in Remarks	s.)
Are Vegetation, Soil, or Hydrology	/significantly disturb	ed? Are "Normal Circumstance	es" prese	ent? Yes X	No
Are Vegetation, Soil, or Hydrology	/ naturally problema	tic? (If needed, explain any an	swers in	Remarks.)	
SUMMARY OF FINDINGS – Attach sit	e map showing sam	pling point locations, transed	cts, im _l	portant featu	res, etc.
Hydrophytic Vegetation Present?	s No X	Is the Sampled Area			

Hydric Soil Present?	Yes	No	Х	within a Wetland? Yes	No X	
Wetland Hydrology Present?	Yes	No	Х	If yes, optional Wetland Site ID: Upla	and OS-01	
Remarks: (Explain alternative procedures here or in a separate report.)						
Remarks: (Explain alternative procedures	here or in a	separat	e repor			

Ine ROW. Former Upland point BW-09 re-verified in Oct 2021 as Upland OS-01

Wetland Hydrology Indicators:				
Primary Indicators (minimum of one is required; check all that apply)				
Surface Water (A1) Water-Stained Leaves (B9)			0)	
High Water Table (A2) Aquatic Fauna (B13)				
Marl Deposits (B15)		Dry-Season Water Tab	ole (C2)	
Hydrogen Sulfide Odor (C1)		Crayfish Burrows (C8)		
Oxidized Rhizospheres on Living Ro	ots (C3)	Saturation Visible on A	erial Imagery (C9)	
Presence of Reduced Iron (C4)		Stunted or Stressed Pl	ants (D1)	
Recent Iron Reduction in Tilled Soils	(C6)	Geomorphic Position (I	D2)	
Thin Muck Surface (C7)		Shallow Aquitard (D3)		
) Other (Explain in Remarks)		Microtopographic Relie	ef (D4)	
8)		FAC-Neutral Test (D5)		
No X Depth (inches):				
No X Depth (inches):				
No X Depth (inches):	Wetland	d Hydrology Present?	Yes No X	
nitoring well, aerial photos, previous inspe	ctions), if a	vailable:		
	ad: check all that apply) Water-Stained Leaves (B9) Aquatic Fauna (B13) Marl Deposits (B15) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres on Living Ro Presence of Reduced Iron (C4) Recent Iron Reduction in Tilled Soils Thin Muck Surface (C7) Other (Explain in Remarks) 8) No X Depth (inches): No X Depth (inches): No X Depth (inches): No X Depth (inches): nitoring well, aerial photos, previous inspectively in the series of	ad: check all that apply)	Secondary Indicators (mini ed; check all that apply) Surface Soil Cracks (B Water-Stained Leaves (B9) Drainage Patterns (B10 Aquatic Fauna (B13) Moss Trim Lines (B16) Marl Deposits (B15) Dry-Season Water Tate Hydrogen Sulfide Odor (C1) Crayfish Burrows (C8) Oxidized Rhizospheres on Living Roots (C3) Saturation Visible on A Presence of Reduced Iron (C4) Stunted or Stressed PI Recent Iron Reduction in Tilled Soils (C6) Geomorphic Position (I Thin Muck Surface (C7) Shallow Aquitard (D3) Microtopographic Relife FAC-Neutral Test (D5) No X Depth (inches): No X </td	

VEGETATION – Use scientific names of plants.

Sampling Point: bcr-03/11/19-01

	Absolute	Dominant	Indicator	
Tree Stratum (Plot size:30 ft)	% Cover	Species?	Status	Dominance Test worksheet:
1. Populus deltoides	15	Yes	FAC	Number of Dominant Species
2. Platanus occidentalis	5	Yes	FACW	That Are OBL, FACW, or FAC: (A)
3				Total Number of Dominant
4				Species Across All Strata:(B)
5				Percent of Dominant Species
6				That Are OBL, FACW, or FAC: 50.0% (A/B)
7				Prevalence Index worksheet:
	20	=Total Cover		Total % Cover of: Multiply by:
Sapling/Shrub Stratum (Plot size: 15 ft)				OBL species x 1 =
1				FACW species7 x 2 =14
2				FAC species X 3 = 45
3				FACU species 103 x 4 = 412
4				UPL species 10 x 5 =50
5				Column Totals: 135 (A) 521 (B)
6				Prevalence Index = B/A =3.86
7				Hydrophytic Vegetation Indicators:
		=Total Cover		1 - Rapid Test for Hydrophytic Vegetation
Herb Stratum (Plot size: 5 ft)				2 - Dominance Test is >50%
1. Setaria faberi	40	Yes	FACU	3 - Prevalence Index is ≤3.0 ¹
2. Schedonorus arundinaceus	30	Yes	FACU	4 - Morphological Adaptations ¹ (Provide supporting
3. Symphyotrichum pilosum	15	No	FACU	data in Remarks or on a separate sheet)
4. Solidago canadensis	10	No	FACU	Problematic Hydrophytic Vegetation ¹ (Explain)
5. Daucus carota	10	No	UPL	¹ Indiactors of hydric coil and watland hydrology must
6. Dipsacus fullonum	8	No	FACU	be present, unless disturbed or problematic.
7. Cornus amomum	2	No	FACW	Definitions of Vegetation Strata:
8.				
9.				diameter at breast height (DBH), regardless of height.
10.				
11.				and greater than or equal to 3.28 ft (1 m) tall.
12.				
	115	=Total Cover		of size, and woody plants less than 3.28 ft tall.
Woody Vine Stratum (Plot size: 30 ft)				
////				Woody vines – All woody vines greater than 3.28 ft in height.
2				
3				Hydrophytic
· · · · · · · · · · · · · · · · · · ·				Vegetation Present? Yes No X
7		=Total Cover		
Remarke: (Include photo numbers here er en e conce				
	ale sheel.)			

SOIL							Sampling Point- <u>bcr-03/11</u>	/19-01
Profile Desc	cription: (Describe	to the dep	oth needed to doc	ument the ir	ndicator	orco	onfirm the absence of indicators.)	
Depth	Matrix		Redo	ox Features				
(inches)	Color (moist)	%	Color (moist)	<u>%</u> Ty	pe ¹ L	oc ²	Texture Remarks	
0-3	10YR 3/4	100					Loamy/Clayey	
3-5	5YR 4/6	100					Loamy/Clayey Red parent material	
				·				
		·		·				
				·				
				·				
				·				
¹ Type: C=C	oncentration, D=Depl	etion, RM	=Reduced Matrix,	MS=Masked	Sand G	rains.	² Location: PL=Pore Lining, M=Matrix.	
Hydric Soil	Indicators:						Indicators for Problematic Hydric Soils ³ :	
Histosol	(A1)		Polyvalue Bel	ow Surface (S	58) (LRF	RR,	2 cm Muck (A10) (LRR K, L, MLRA 149	3)
	pipedon (A2)		MLRA 1498	5) faco (SQ) (LE			Loast Prairie Redox (A16) (LRR K, L, R)	D)
Hvdroge	en Sulfide (A4)		High Chroma	Sands (S11)	(LRR K	-1\2 1 . L)	Polyvalue Below Surface (S8) (LRR K, L	.)
Stratified	d Layers (A5)		Loamy Mucky	Mineral (F1)	(LRR K	, _, , L)	Thin Dark Surface (S9) (LRR K, L)	/
Deplete	d Below Dark Surface	e (A11)	Loamy Gleyed	d Matrix (F2)			Iron-Manganese Masses (F12) (LRR K,	L, R)
Thick Da	ark Surface (A12)		Depleted Matr	rix (F3)			Piedmont Floodplain Soils (F19) (MLRA	149B)
Sandy N	/lucky Mineral (S1)		Redox Dark S	Surface (F6)			Mesic Spodic (TA6) (MLRA 144A, 145, 7	49B)
Sandy G	Bleyed Matrix (S4)		Depleted Dark	< Surface (F7)		Red Parent Material (F21)	
Sandy F	Redox (S5)		Redox Depres	ssions (F8)			Very Shallow Dark Surface (F22)	
Stripped	Matrix (S6)		Marl (F10) (LF	KR K, L)			Other (Explain in Remarks)	
³ Indicators o	f hydrophytic vegetat	ion and we	etland hydrology m	nust be preser	nt, un l es	s dist	turbed or problematic.	
Restrictive	Layer (if observed):							
Type:	Rocl	<у						
Depth (i	nches):	5					Hydric Soil Present? Yes No	<u> </u>
Remarks:			and Narth a sat Day				2.0 to include the NDOO Field Indicatory of Undein Oci	le.
Version 7.0,	2015 Errata. (http://w	rthcentral /ww.nrcs.t	and Northeast Reg usda.gov/Internet/F	SE DOCUM	ENTS/n	rsion rcs14	12.0 to include the NRCS Field indicators of Hydric Sol 12p2 051293.docx)	s,
,			5	_			,	

WETLAND DETERMINATION DATA FORM – Northcentral and Northeast Region

Project/Site: Beaver	-Wellington 69	9 kV Transmissio	n Line	City/County: Lorain County			Sampling Date: 1	0/03/18
Applicant/Owner:	FirstEnergy				State:	ОН	Sampling Point:	u-bao-100318-01
Investigator(s): BAO				Section, Township,	Range: N	I/A		
Landform (hillside, ter	race, etc.):	Flat	Local r	elief (concave, convex, none)	: None		Slope 9	%:
Subregion (LRR or MI	LRA): LRR F	R	Lat: 41.3341	Long: <u>-82.267</u>	73		Datum: V	VGS84
Soil Map Unit Name:	MtA, Mitiwar	nga silt loam, 0 to	2 percent slopes	NV	VI classifi	ication:	N/A	
Are climatic / hydrolog	jic conditions	on the site typica	I for this time of year?	Yes X No		(lf no, e	explain in Remarks.))
Are Vegetation	, Soil	, or Hydrology	significantly disturb	ed? Are "Normal Circu	Imstance	s" pres	ent? Yes X I	No
Are Vegetation	, Soil	, or Hydrology	naturally problemat	ic? (If needed, explain	n any ans	swers ir	Remarks.)	
SUMMARY OF F	INDINGS -	- Attach site r	nap showing samp	bling point locations, t	ransec	ts, im	portant feature	es, etc.

Hydrophytic Vegetation Present?	Yes	No X	Is the Sampled Area
Hydric Soil Present?	Yes	No X	within a Wetland? Yes No X
Wetland Hydrology Present?	Yes	No X	If yes, optional Wetland Site ID: Upland OS-02
Remarks: (Explain alternative procedu Wetland BW-01a. Former upland BW-	res here or in a s 01 re-verified in (separate report.) Ur Oct. 2021.	Jand are located within ROW adjacent to

Wetland Hydrology Indicators:	Secondary Indicators (minimum of two required)	
Primary Indicators (minimum of one is require	Surface Soil Cracks (B6)	
Surface Water (A1)	Water-Stained Leaves (B9)	Drainage Patterns (B10)
High Water Table (A2)	Aquatic Fauna (B13)	Moss Trim Lines (B16)
Saturation (A3)	Marl Deposits (B15)	Dry-Season Water Table (C2)
Water Marks (B1)	Hydrogen Sulfide Odor (C1)	Crayfish Burrows (C8)
Sediment Deposits (B2)	Oxidized Rhizospheres on Living Re	Coots (C3) Saturation Visible on Aerial Imagery (C9)
Drift Deposits (B3)	Presence of Reduced Iron (C4)	Stunted or Stressed Plants (D1)
Algal Mat or Crust (B4)	Recent Iron Reduction in Tilled Soil	Is (C6) Geomorphic Position (D2)
Iron Deposits (B5)	Thin Muck Surface (C7)	Shallow Aquitard (D3)
Inundation Visible on Aerial Imagery (B7)) Other (Explain in Remarks)	Microtopographic Relief (D4)
Sparsely Vegetated Concave Surface (B	8)	FAC-Neutral Test (D5)
Field Observations:		
Surface Water Present? Yes	No Depth (inches):	
Water Table Present? Yes	No Depth (inches):	
Saturation Present? Yes	No Depth (inches):	Wetland Hydrology Present? Yes No x
(includes capillary fringe)		
Describe Recorded Data (stream gauge, mor	nitoring well, aerial photos, previous inspe	ections), if available:
Remarks:		
(includes capillary fringe) Describe Recorded Data (stream gauge, mor Remarks:	nitoring well, aerial photos, previous inspe	ections), if available:

VEGETATION – Use scientific names of plants.

Sampling Point: <u>-bao-100318-0</u>

Tree Stratum (Plot size: 30 ft)	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test worksheet:
1.				
2.				Number of Dominant Species That Are OBL, FACW, or FAC: 0 (A)
3				Total Number of Dominant
4				Species Across All Strata:(B)
5		·		Percent of Dominant Species That Are OBL, FACW, or FAC: 0.0% (A/B)
7.				Prevalence Index worksheet:
		=Total Cover		Total % Cover of: Multiply by:
Sapling/Shrub Stratum (Plot size: 15 ft)				OBL species 0 $x 1 = 0$
1.				FACW species 0 x 2 = 0
2.				FAC species $10 \times 3 = 30$
3.				FACU species 45 x 4 = 180
4.				UPL species 0 x 5 = 0
5.				Column Totals: 55 (A) 210 (B)
6.				Prevalence Index = B/A = 3.82
7.				Hydrophytic Vegetation Indicators:
		=Total Cover		1 - Rapid Test for Hydrophytic Vegetation
Herb Stratum (Plot size: 5 ft)				2 - Dominance Test is >50%
1. Rubus allegheniensis	45	Yes	FACU	3 - Prevalence Index is ≤3.0 ¹
2. Apocynum cannabinum	10	No	FAC	4 - Morphological Adaptations ¹ (Provide supporting
3. Solidago sp.	30	Yes		data in Remarks or on a separate sheet)
4. Poa sp.	20	No		Problematic Hydrophytic Vegetation ¹ (Explain)
5.				
6.				Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
7.				Definitions of Vegetation Strata:
8.				
9.				Tree – Woody plants 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of height.
10.				
11.				Sapling/shrub – Woody plants less than 3 in. DBH and greater than or equal to 3.28 ft (1 m) tall.
12.				
	105	=Total Cover		Herb – All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall.
Woody Vine Stratum (Plot size: 30 ft)				
1.				Woody vines – All woody vines greater than 3.28 ft in height.
2.				
3.				Hydrophytic
4.				Present? Yes No X
		=Total Cover		
Remarks: (Include photo numbers here or on a separ	ate sheet.)	· · · · ·		1
	,			

WETLAND DETERMINATION DATA FORM – Northcentral and Northeast Region

Project/Site: Beaver-W	ellington 69 kV Transmission	Line City/Cou	nty: Lorain County	Sampling Date: 10/02/18
Applicant/Owner: Fi	rstEnergy		State: OH	Sampling Point: u-bao-100218-02
Investigator(s): BAO			Section, Township, Range: N/A	
Landform (hillside, terrac	e, etc.): hillside	Local relief (con	cave, convex, none): concave	Slope %: 3
Subregion (LRR or MLRA	A): LRR R L	at: 41.3208	Long: <u>-82.2673</u>	Datum: WGS84
Soil Map Unit Name: So	d, Sebring silt loam, sandston	e substratum, 0 to 2 percent slo	pes NWI classification:	N/A
Are climatic / hydrologic	conditions on the site typical f	for this time of year?	Yes X No (If no, e	explain in Remarks.)
Are Vegetation, S	Soil, or Hydrology	significantly disturbed?	Are "Normal Circumstances" prese	ent? Yes X No
Are Vegetation, S	Soil, or Hydrology	naturally problematic?	(If needed, explain any answers in	Remarks.)
SUMMARY OF FIN	DINGS – Attach site m	ap showing sampling po	oint locations, transects, im	portant features, etc.

Hydrophytic Vegetation Present?	Yes	No X	Is the Sampled Area			
Hydric Soil Present?	Yes	No X	within a Wetland? Yes <u>No X</u>			
Wetland Hydrology Present?	Yes	No X	If yes, optional Wetland Site ID: Upland OS-03			
Remarks: (Explain alternative procedures here or in a separate report.) hillslope in ROW near weltand OS-03. Upland area re-verified in Oct. 2021						

Wetland Hydrology Indicators:			Secondary Indicators (minimum of two required)	
Primary Indicators (minimum of one is require		Surface Soil Cracks (B6)		
Surface Water (A1)		Drainage Patterns (B10)		
High Water Table (A2)	Aquatic Fauna (B13)		Moss Trim Lines (B16)	
Saturation (A3)	Marl Deposits (B15)		Dry-Season Water Table (C2)	
Water Marks (B1)	Hydrogen Sulfide Odor (C1)		Crayfish Burrows (C8)	
Sediment Deposits (B2)	Oxidized Rhizospheres on Living R	oots (C3)	Saturation Visible on Aerial Imagery (C9)	
Drift Deposits (B3)	Presence of Reduced Iron (C4)		Stunted or Stressed Plants (D1)	
Algal Mat or Crust (B4)	Recent Iron Reduction in Tilled Soil	s (C6)	Geomorphic Position (D2)	
Iron Deposits (B5)	Thin Muck Surface (C7)		Shallow Aquitard (D3)	
Inundation Visible on Aerial Imagery (B7)	Other (Explain in Remarks)		Microtopographic Relief (D4)	
Sparsely Vegetated Concave Surface (B	Sparsely Vegetated Concave Surface (B8)			
Field Observations:				_
Surface Water Present? Yes	No Depth (inches):			
Water Table Present? Yes	No Depth (inches):			
Saturation Present? Yes	No Depth (inches):	Wetlan	ld Hydrology Present? Yes No ⇒	(
(includes capillary fringe)				
Describe Recorded Data (stream gauge, mor	nitoring well, aerial photos, previous inspe	ections), if a	available:	
Remarks:				
Water Table Present? Yes Saturation Present? Yes (includes capillary fringe) Image: Capillary fringe) Describe Recorded Data (stream gauge, mortage) Remarks:	No Depth (inches): No Depth (inches): nitoring well, aerial photos, previous inspe	Wetland	nd Hydrology Present? Yes <u>No</u> available:	

o 1:	D	0004	0.04
Sampling	Pointu-bao-1	0031	8-01

SOIL								Sampling Pointu-bac	100318-0 1
Profile Desc	ription: (Describe t	to the de	oth needed to docu	ument t	he indica	ator or c	onfirm the absence o	f indicators.)	
Depth	Matrix		Redo	x Featur	res				
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks	
0-16	10YR 4/1	90	7.5YR 4/6	10	C	M	Loamy/Clayey	silty clay loam	
	ncentration D=Den	etion RM		 /S=Mas	ked San		² Location: P	L=Pore Lining M=Matrix	
Hydric Soil I	ndicators:			10-11183			Indicators for	or Problematic Hydric Soi	ls ³ :
Histosol	(A1)		Polyvalue Belo	w Surfa	ce (S8) (LRR R,	2 cm Mu	ick (A10) (LRR K, L, MLRA	149B)
Histic Ep	ipedon (A2)		MLRA 149B	6)			Coast Pr	rairie Redox (A16) (LRR K ,	L, R)
Black His	stic (A3)		Thin Dark Surf	ace (S9) (LRR R	, MLRA	149B) 5 cm Mu	icky Peat or Peat (S3) (LRF	≀ K, L, R)
Hydrogen	n Sulfide (A4)		High Chroma S	Sands (S	611) (LRI	R K, L)	Polyvalu	e Below Surface (S8) (LRR	: K, L)
Stratified	Layers (A5)		Loamy Mucky	Mineral	(F1) (LR	R K, L)	Thin Dar	k Surface (S9) (LRR K, L)	
Depleted	Below Dark Surface	e (A11)	Loamy Gleyed	Matrix ((F2)		Iron-Mar	nganese Masses (F12) (LRI	R K, L, R)
Thick Da	rk Surface (A12)		Depleted Matri	ix (F3)			Piedmor	nt Floodplain Soils (F19) (M	LRA 149B)
Sandy IVI	lucky Mineral (S1)		Redox Dark St	Urrace (F	-6) (FZ)			0001C (1A6) (IVILKA 144A, 1	145, 149B)
Sandy G	eyed Matrix (54)		Depleted Dark	Sufface	e (F7)		Red Par	ent Material (F21)	
Stripped	Matrix (S6)		Marl (E10) (LB		0)		Very Sha	volain in Pemarks)	
Dark Sur	face (S7)			ux n, ⊑)			Other (E		
³ Indicators of	hydrophytic vegetat	ion and w	etland hydrology mi	ust be p	resent, u	nless dis	turbed or problematic.		
Restrictive L	ayer (if observed):								
lype: -									
Depth (ir	iches):						Hydric Soil Preser	nt? Yes N	o <u>X</u>
Remarks:	- is an is alfare. No		and Narthaast Daw			• • • • • • • • • •		20 Field Indiantana of Undai	- 0 - ile
Version 7.0.	2015 Errata. (http://w	rthcentral /ww.nrcs.i	usda.gov/Internet/F	SE DO	DUMENT	s/nrcs14	12.0 to include the NRC 12p2 051293.docx)	-S Field Indicators of Hydrig	c 5011s,
Í Í	X I		5	-			· _ /		

VEGETATION – Use scientific names of plants.

Sampling Point: <u>-bao-100218-0</u>

Trop Stratum (Plot size: 20 ft)	Absolute	Dominant	Indicator	Dominance Test worksheet:
<u>Tree Stratum</u> (Plot size: 30 ft)	% Cover	Species?	Status	Dominance Test worksneet:
2.				Number of Dominant Species That Are OBL, FACW, or FAC: 1 (A)
3				Total Number of Dominant Species Across All Strata:2(B)
5				Percent of Dominant Species
7.				Prevalence Index worksheet:
		=Total Cover		Total % Cover of: Multiply by:
Sapling/Shrub Stratum (Plot size: 15 ft)				$\begin{array}{c c c c c c c c c c c c c c c c c c c $
<u> </u>				FACW species 70 $x 2 = 140$
2.				FAC species $0 \times 3 = 0$
3				FACU species 45 x 4 = 180
4				$\frac{1}{100} \frac{1}{100} \frac{1}$
5				$\begin{array}{c c} \hline c & c \\ c & c \\ \hline c & c \\ c & c \\ \hline c & c \\ c$
°		·		$\frac{1}{2} = \frac{1}{2} = \frac{1}$
7				Hydrophytic Vegetation Indicators:
		=Total Cover		1 - Ranid Test for Hydrophytic Vegetation
Herb Stratum (Plot size: 5 ft)				2 - Dominance Test is >50%
1 Ruhus allegheniensis	30	Ves	FACU	$\frac{2}{3} = \frac{2}{2} = \frac{2}$
2 Solidado didantea	50	 	FACW	4 - Mornhological Adaptations ¹ (Provide supporting
2. Diskonthalium alandaatinum		No.		data in Remarks or on a separate sheet)
3. Dichanthelium clandestinum		No		Duch lower tie Undworth tie Merchant (Eveloin)
4. Symphyotrichum pilosum		. <u>INO</u>	FACU	
5. Cirsium vuigare	5	NO	FACU	¹ Indicators of hydric soil and wetland hydrology must
6		·		be present, unless disturbed or problematic.
/				Definitions of Vegetation Strata:
8		·		Tree – Woody plants 3 in. (7.6 cm) or more in
9				diameter at breast height (DBH), regardless of height.
10		·		Sapling/shrub – Woody plants less than 3 in. DBH
11				and greater than or equal to 3.28 ft (1 m) tall.
12		·		Herb – All herbaceous (non-woody) plants, regardless
	115	=Total Cover		of size, and woody plants less than 3.28 ft tall.
Woody Vine Stratum (Plot size: 30 ft)				Woody vines – All woody vines greater than 3.28 ft in
1		·		height.
2		·		Hydrophytic
3				Vegetation
4				Present? Yes No X
		=Total Cover		
Remarks: (Include photo numbers here or on a separate	rate sheet.)			

Sampling	Pointu-bac	-10021	8-02

SOIL							Sampling Pointu-bao-100218-02
Profile Desc	ription: (Describe t	to the dep	th needed to docu	ment th	e indica	tor or co	onfirm the absence of indicators.)
Depth	Matrix		Redox	Feature	es		
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture Remarks
0-18	10YR 4/3	100					Loamy/Clayey
							2
Type: C=Cc	ncentration, D=Depl	etion, RM	=Reduced Matrix, M	S=Masł	ked Sand	Grains.	Location: PL=Pore Lining, M=Matrix.
Histosol	ndicators:		Polyvalue Belov	v Surfac	I) (82) a		a cm Muck (A10) (I BB K I MI BA 149B)
Histic Ep	inedon (A2)	-	MI RA 149B)	v Sunac	Je (30) (I		Coast Prairie Redox (A16) (LRR K L R)
Black His	stic (A3)		Thin Dark Surfa	ce (S9)	(LRR R	MLRA 1	149B) 5 cm Mucky Peat or Peat (S3) (LRR K. L. R)
Hydroger	n Sulfide (A4)	-	High Chroma Sa	ands (S	11) (LRF	R K, L)	Polyvalue Below Surface (S8) (LRR K, L)
Stratified	Layers (A5)		Loamy Mucky M	lineral (F1) (LR F	R K, L)	Thin Dark Surface (S9) (LRR K, L)
Depleted	Below Dark Surface	e (A11)	Loamy Gleyed I	Matrix (F	=2)		Iron-Manganese Masses (F12) (LRR K, L, R)
Thick Da	rk Surface (A12)		Depleted Matrix	(F3)			Piedmont Floodplain Soils (F19) (MLRA 149B)
Sandy M	ucky Mineral (S1)		Redox Dark Sur	face (F	6)		Mesic Spodic (TA6) (MLRA 144A, 145, 149B)
Sandy G	leyed Matrix (S4)		Depleted Dark S	Surface	(F7)		Red Parent Material (F21)
Sandy R	edox (S5)		Redox Depress	ions (F8	3)		Very Shallow Dark Surface (F22)
Dark Sur	Matrix (S6)		Man (F10) (LRF	(K, L)			Other (Explain in Remarks)
	ace (37)						
³ Indicators of	hydrophytic vegetat	ion and we	etland hydrology mu	st be pr	esent, ur	nless dist	turbed or problematic.
Restrictive L	ayer (if observed):						
Туре:							
Depth (in	ches):						Hydric Soil Present? Yes No _X
Remarks:							
This data forr	n is revised from No	rthcentral	and Northeast Regio	nal Sup	plement	Version	2.0 to include the NRCS Field Indicators of Hydric Soils,
Version 7.0, 2	2015 Errata. (http://w	ww.nrcs.u	isda.gov/Internet/FS	E_DOC	UMENT	S/nrcs14	2p2_051293.docx)

WETLAND DETERMINATION DATA FORM – Northcentral and Northeast Region

Project/Site: Beaver Wellington/Henrietta	City/County: Lorain Co	Samplin	g Date: 10/2	26/2021
Applicant/Owner: First Energy		State: OH Samp	ling Point: U	pland OS-04
Investigator(s): BCR	Section, Township, Rang	ge: N/A		
Landform (hillslope, terrace, etc.): Flat	Local relief (concave, conve	ex, none): <u>None</u>	Slope (%) <u>:</u> 1
Subregion (LRR or MLRA): <u>LRR R, MLRA 139</u> Lat: <u>41.311726</u>	Long	-82.267695	Datum:	WGS 1984
Soil Map Unit Name: <u>MgA: Mahoning silt loam, 0 to 2 percen</u>	it slopes	NWI classification: N/	A	
Are climatic / hydrologic conditions on the site typical for this time o	of year? Yes X No	(If no, explain in Remarks.)		
Are Vegetation, Soil, or Hydrology significa	ntly disturbed? Are "N	ormal Circumstances" present?	Yes X	No
Are Vegetation, Soil, or Hydrology naturally	v problematic? (If nee	ded, explain any answers in Rem	arks.)	

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?	Yes Yes Yes	No No No	x X X	Is the Sampled Area within a Wetland? Yes No X If yes, optional Wetland Site ID: Upland OS-04
Remarks: (Explain alternative procedu	ires here or in a	separat	e report.)	
upland point for wetland OS-04 (w-bcr-	102621-02)			

wettallu Hydrology Indicators.	Secondary Indicators (minimum of two required)
Primary Indicators (minimum of one is required; check all that apply)	Surface Soil Cracks (B6)
Surface Water (A1) Water-Stained Leaves (B9)	Drainage Patterns (B10)
High Water Table (A2) Aquatic Fauna (B13)	Moss Trim Lines (B16)
Saturation (A3) Marl Deposits (B15)	Dry-Season Water Table (C2)
Water Marks (B1) Hydrogen Sulfide Odor (C1)	Crayfish Burrows (C8)
Sediment Deposits (B2) Oxidized Rhizospheres on Living F	Roots (C3) Saturation Visible on Aerial Imagery (C9)
Drift Deposits (B3) Presence of Reduced Iron (C4)	Stunted or Stressed Plants (D1)
Algal Mat or Crust (B4) Recent Iron Reduction in Tilled So	ils (C6) Geomorphic Position (D2)
Iron Deposits (B5) Thin Muck Surface (C7)	Shallow Aquitard (D3)
Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks)	Microtopographic Relief (D4)
Sparsely Vegetated Concave Surface (B8)	FAC-Neutral Test (D5)
Field Observations:	
Surface Water Present? Yes <u>No X</u> Depth (inches):	
Water Table Present? Yes X No Depth (inches): 6	
Saturation Present? Yes X No Depth (inches): 6 (includes capillary fringe)	Wetland Hydrology Present? Yes No _X
Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspect	ions), if available:
Remarks:	

VEGETATION – Use scientific names of plants.

Sampling Point: Upland OS

30	Absolute	Dominant Indi	icator	Dominance Test worksheet:
Tree Stratum (Plot size:)	<u>% Cover</u>	<u>Species?</u> St	tatus	Number of Dominant Species
1		No		That Are OBL, FACW, or FAC:0 (A)
2.				
2				I otal Number of Dominant Species Across All Strata: 2 (B)
J				
4				Percent of Dominant Species
5				That Are OBL, FACW, or FAC: 0% (A/B)
6				Provolonce Index worksheet:
7				
·				
		= Total Cover		OBL species $0 \times 1 = 0$
Sapling/Shrub Stratum (Plot size: 15)				FACW species $10 x 2 = 20$
1		No		FAC species $0 \times 3 = 0$
2				FACU species $\frac{95}{2}$ x 4 = $\frac{380}{2}$
				UPL species0 x 5 =0
3				Column Totals: <u>105</u> (A) <u>400</u> (B)
4				
5				Prevalence Index = B/A = 5.81
6				Hydrophytic Vegetation Indicators:
7				1 - Rapid Test for Hydrophytic Vegetation
/				2 - Dominance Test is >50%
		= Total Cover		$3 - Prevalence Index is \leq 30^{1}$
Herb Stratum (Plot size: 5)	60	Vec E		4 - Morphological Adaptations ¹ (Provide supporting
	0		ACO	Data in Remarks or on a separate sheet)
2. Erigeron annuus	25	<u>Yes</u> F	ACU	Problematic Hydrophytic Vegetation (Explain)
3. Doellingeria umbellata	10	<u>No</u>	ACW	¹ Indicators of hydric soil and wetland hydrology must
4. Solidago altissima	10	No F.	ACU	be present, unless disturbed or problematic.
5				Definitions of Vegetation Strata:
6				Tree – Woody plants 3 in. (7.6 cm) or more in diameter
7				at breast height (DDH), regardless of height.
8				Sapling/shrub – Woody plants less than 3 in. DBH
9.				and greater than or equal to 3.28 ft (1 m) tall.
10				Herb - All herbaceous (non-woody) plants, regardless of
				size, and woody plants less than 3.28 ft tall.
11				Woody vines – All woody vines greater than 3.28 ft in
12				height.
	105	= Total Cover	ŀ	
Woody Vine Stratum (Plot size: 30)				
1		No		
				Hydrophytic
2				Vegetation
3				Present? Yes <u>No</u>
4				
		= Total Cover		
Remarks: (Include photo numbers here or on a separate	sheet.)		•	

SOIL

Profile Desc	ription: (Describe t	the dep	th needed to docun	nent the i	ndicator o	or confirn	n the absence	of indicators.)
Depth	Matrix		Redo	x Features	<u>s</u>	2		
(inches)	Color (moist)	%	Color (moist)	%	Type'	Loc	Texture	Remarks
0 18	10YR 5/4	90	7.5YR 4/6	10	Conc+	M	Silty clay loam	
							·	
							·	
							·	
							. <u> </u>	
							·	
1							2	
Type: C=Co	oncentration, D=Depl	etion, RM=	Reduced Matrix, MS	S=Masked	Sand Gra	ins.		i: PL=Pore Lining, M=Matrix.
Hydric Soli i				o ((00) (1 8 8	_	indicators	
HIStosol	(A1) Ninodon (A2)			v Surrace	(58) (LRR	Κ,	2 cm i	Muck (A10) (LRR K, L, MLRA 149B)
HISUC Ep	stic ($\Delta 3$)		Thin Dark Surfa	(SQ) (I		DA 1/08	$\sim 5 \text{ cm}$	Mucky Peat or Peat (S3) (IPPK I P)
Diack Th	n Sulfide (A4)		Loamy Mucky M	lineral (F1		I\A 1430 I)	Dark S	Surface $(S7)$ (IRR K I M)
Stratified	l avers (A5)		Loamy Gleved I	Matrix (F2)	-)	Polyva	alue Below Surface (S8) (LRR K. L)
Depleted	Below Dark Surface	e (A11)	Depleted Matrix	(F3)	/		Thin D	Dark Surface (S9) (LRR K. L)
Thick Da	ark Surface (A12)		Redox Dark Su	face (F6)			Iron-M	langanese Masses (F12) (LRR K, L, R)
Sandy M	lucky Mineral (S1)		Depleted Dark S	Surface (F	7)		Piedm	ont Floodplain Soils (F19) (MLRA 149B)
Sandy G	ileyed Matrix (S4)		Redox Depress	ions (F8)			Mesic	Spodic (TA6) (MLRA 144A, 145, 149B)
Sandy R	edox (S5)						Red P	arent Material (F21)
Stripped	Matrix (S6)						Very S	Shallow Dark Surface (TF12)
Dark Su	rface (S7) (LRR R, M	ILRA 149E	3)				Other	(Explain in Remarks)
2								
Indicators of	hydrophytic vegetati	ion and we	tland hydrology mus	t be prese	ent, unless	disturbec	l or problematio	0.
Restrictive L	_ayer (if observed):							
Туре:								
Depth (inc	ches):						Hydric Soil	Present? Yes <u>No X</u>
Remarks:								

Ν

WETLAND DETERMINATION DATA FORM – Northcentral and Northeast Region

Project/Site: Beaver-Wellington 69 k	V Transmission Line	City/County: Lorain Count	у	Sampling Date: 11/14/18	
Applicant/Owner: FirstEnergy			State: OH	Sampling Point:	
Investigator(s): BAO		Section, Townshi	o, Range: <mark>N/A</mark>		
Landform (hillside, terrace, etc.): te	rrace	Local relief (concave, convex, nor	ne): <u>flat</u>	Slope %: 1	
Subregion (LRR or MLRA): LRR R	Lat: 41.2834	Long: -82.2	2712	Datum: WGS84	
Soil Map Unit Name: MkA, Mahoning	J-Tiro silt loams, 0 to 2 percent	t slopes I	WWI classification:	N/A	
Are climatic / hydrologic conditions on	the site typical for this time of	year? Yes X	No (If no, e	explain in Remarks.)	
Are Vegetation, Soil,	or Hydrologysignificantl	y disturbed? Are "Normal Cir	rcumstances" prese	ent? Yes X No	
Are Vegetation, Soil,	or Hydrology naturally p	roblematic? (If needed, expl	lain any answers ir	n Remarks.)	
SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.					
Hydrophytic Vegetation Present?	Yes NoX	Is the Sampled Area			
Hydric Soil Present?	Yes No X	within a Wetland?	Yes X	No	

nyund soll Fresent?	res			
Wetland Hydrology Present?	Yes	No X	If yes, optional Wetland Site ID:	Upland OS-05
Remarks: (Explain alternative procedures Former Upland BW-04 re-verified in Oct. 20	nere or in a se 021 as Upland	eparate report.) wit OS-05	thin ROW.	

Wetland Hydrology Indicators:		Secondary Indicators (minimum of two required)		
Primary Indicators (minimum of one is rec	Surface Soil Cracks (B6)			
Surface Water (A1)	Surface Water (A1) Water-Stained Leaves (B9)			
High Water Table (A2)	Aquatic Fauna (B13)	Moss Trim Lines (B16)		
Saturation (A3)	Marl Deposits (B15)	Dry-Season Water Table (C2)		
Water Marks (B1)	Hydrogen Sulfide Odor (C1)	Crayfish Burrows (C8)		
Sediment Deposits (B2)	Oxidized Rhizospheres on Living R	oots (C3) Saturation Visible on Aerial Imagery (C9)		
Drift Deposits (B3)	Presence of Reduced Iron (C4)	Stunted or Stressed Plants (D1)		
Algal Mat or Crust (B4)	Recent Iron Reduction in Tilled Soil	s (C6) Geomorphic Position (D2)		
Iron Deposits (B5)	Thin Muck Surface (C7)	Shallow Aquitard (D3)		
Inundation Visible on Aerial Imagery	(B7) Other (Explain in Remarks)	Microtopographic Relief (D4)		
Sparsely Vegetated Concave Surface	e (B8)	FAC-Neutral Test (D5)		
Field Observations:				
Surface Water Present? Yes	No Depth (inches):			
Water Table Present? Yes	No Depth (inches):			
Osturation DescentO	Wetless differences Descent 2 Mar X Ma			
Saturation Present? Yes	No Depth (inches):	wetland Hydrology Present? Yes No		
(includes capillary fringe)	No Deptn (inches):	Wetland Hydrology Present? Yes <u>^</u> No		
(includes capillary fringe) Describe Recorded Data (stream gauge,	monitoring well, aerial photos, previous inspe	ections), if available:		
(includes capillary fringe) Describe Recorded Data (stream gauge,	monitoring well, aerial photos, previous inspe	ections), if available:		
(includes capillary fringe) Describe Recorded Data (stream gauge,	monitoring well, aerial photos, previous inspe	ections), if available:		
(includes capillary fringe) Describe Recorded Data (stream gauge, Remarks:	monitoring well, aerial photos, previous inspe	ections), if available:		
Saturation Present? Yes (includes capillary fringe) Describe Recorded Data (stream gauge, I Remarks:	monitoring well, aerial photos, previous inspe	ections), if available:		
(includes capillary fringe) Describe Recorded Data (stream gauge, Remarks:	monitoring well, aerial photos, previous insp	ections), if available:		
Saturation Present? Yes (includes capillary fringe) Describe Recorded Data (stream gauge, 1 Remarks:	monitoring well, aerial photos, previous inspe	ections), if available:		
Saturation Present? Yes (includes capillary fringe) Describe Recorded Data (stream gauge, 1 Remarks:	monitoring well, aerial photos, previous inspe	ections), if available:		
Saturation Present? Yes (includes capillary fringe) Describe Recorded Data (stream gauge, 1 Remarks:	monitoring well, aerial photos, previous inspe	ections), if available:		
Saturation Present? Yes (includes capillary fringe) Describe Recorded Data (stream gauge, I Remarks:	monitoring well, aerial photos, previous inspe	ections), if available:		
Saturation Present? Yes (includes capillary fringe) Describe Recorded Data (stream gauge, I Remarks:	monitoring well, aerial photos, previous insp	ections), if available:		
Saturation Present? Yes (includes capillary fringe) Describe Recorded Data (stream gauge, 1 Remarks:	monitoring well, aerial photos, previous inspe	ections), if available:		

VEGETATION – Use scientific names of plants.

Sampling Point: <u>-bao-111418-0</u>

Trop Stratum (Plat size: 20.4)	Absolute	Dominant	Indicator	Dominance Test werksheet:
	% Cover	Species?	Status	Dominance Test worksheet:
2				Number of Dominant Species
3.				
4.				Total Number of Dominant Species Across All Strata: 4 (B)
5		·		Percent of Dominant Species That Are OBL, FACW, or FAC: 50.0% (A/B)
7.				Prevalence Index worksheet:
		=Total Cover		Total % Cover of: Multiply by:
Sapling/Shrub Stratum (Plot size:15 ft)		•		OBL species 0 x 1 = 0
1. Rosa multiflora	5	Yes	FACU	FACW species 0 x 2 = 0
2. Frangula alnus	5	Yes	FAC	FAC species25 x 3 =75
3				FACU species25 x 4 =100
4				UPL species x 5 =0
5.				Column Totals: 50 (A) 175 (B)
6.				Prevalence Index = B/A = 3.50
7.				Hydrophytic Vegetation Indicators:
	10	=Total Cover		1 - Rapid Test for Hydrophytic Vegetation
Herb Stratum (Plot size: 5 ft)		•		2 - Dominance Test is >50%
1. Dipsacus fullonum	15	No	FACU	3 - Prevalence Index is ≤3.0 ¹
2. Solidago sp.	50	Yes		4 - Morphological Adaptations ¹ (Provide supporting
3. Setaria pumila	20	Yes	FAC	data in Remarks or on a separate sheet)
4. Cirsium vulgare	5	No	FACU	Problematic Hydrophytic Vegetation ¹ (Explain)
5.				
6.				be present, unless disturbed or problematic.
7.				Definitions of Vegetation Strata:
8.				
9.				Tree – Woody plants 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of height.
10.				
11.				and greater than or equal to 3.28 ft (1 m) tall.
12.				
	90	=Total Cover		of size, and woody plants less than 3.28 ft tall.
Woody Vine Stratum (Plot size: 30 ft)				Woody vines - All woody vines greater than 3.28 ft in
1				height.
2.				
3.				Hydrophytic Vegetation
4.				Present? Yes No X
		=Total Cover		
Remarks: (Include photo numbers here or on a sepa	rate sheet.)			
	,			

SOIL

Sampling	Pointu-bao-111418-02
Sampling	Pointu-bao-111416-02

Profile Desc	ription: (Describe	to the de	pth needed to doc	ument t	he indica	tor or co	onfirm the absence of i	ndicators.)	
Depth	Matrix		Redo	x Featur	es				
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Rema	arks
0-18	10YR 4/2	100						silty clay	/ loam
17							21 a cational DI a	-Dene Lining M-M	-
Type. C=CC	ndicators:	letion, Riv	I-Reduced Matrix, I	vio-ivias	keu Sand	i Grains.	Location. PL-	Problematic Hyd	aurix.
Histosol			Polyvalue Belo	w Surfa	ce (S8) (I	RRR	2 cm Muck		
Histic En	ipedon (A2)		MLRA 149B			,	2 cm Maci	irie Redox (A16) (L	RR K. L. R)
Black His	stic (A3)		Thin Dark Surf	ace (S9)) (LRR R	MLRA 1	49B) 5 cm Much	v Peat or Peat (S3	3) (LRR K. L. R)
Hydroge	n Sulfide (A4)		High Chroma S	Sands (S	611) (LR	R K, L)	Polyvalue	Below Surface (S8	B) (LRR K, L)
Stratified	Layers (A5)		Loamy Mucky	Mineral	(F1) (LRI	R K, L)	Thin Dark	Surface (S9) (LRR	K, L)
Depleted	Below Dark Surface	e (A11)	Loamy Gleyed	Matrix (F2)		Iron-Mang	anese Masses (F1	2) (LRR K, L, R)
Thick Da	rk Surface (A12)		Depleted Matri	ix (F3)			Piedmont	Floodplain Soils (F	19) (MLRA 149B)
Sandy M	ucky Mineral (S1)		Redox Dark Si	urface (F	6)		Mesic Spo	dic (TA6) (MLRA	144A, 145, 149B)
Sandy G	leyed Matrix (S4)		Depleted Dark	Surface	(F7)		Red Parer	nt Material (F21)	
Sandy R	edox (S5)		Redox Depres	sions (F	8)		Very Shall	ow Dark Surface (I	F22)
Stripped	Matrix (S6)		Marl (F10) (LR	R K, L)			Other (Exp	olain in Remarks)	
Dark Sur	face (S7)								
³ Indicators of	hydrophytic vegetat	ion and w	etland hydrology m	ust be p	resent, ui	less dist	urbed or problematic.		
Restrictive L	.ayer (if observed):								
l ^{Type:} -									
Depth (ir	iches):						Hydric Soil Present	? Yes	NoX
Remarks:									
This data for	n is revised from No	rthcentral	and Northeast Reg	ional Su	pplemen	Version	2.0 to include the NRCS	S Field Indicators of	f Hydric Soils,
Version 7.0, 2	2015 Errata. (http://w	ww.nrcs.	usda.gov/Internet/Fa	SE_DOU	JUMENT	S/nrcs14	2p2_051293.docx)		

WETLAND DETERMINATION DATA FORM – Northcentral and Northeast Region

Project/Site: Beave	er-Wellington 6	9 kV Transmissio	n Line	City/County: Lorain C	County	5	Sampling Date:	11/14/18
Applicant/Owner:	FirstEnergy				State:	ОН	Sampling Point	u-bao-111418-01
Investigator(s): BAG	C			Section, Tov	/nship, Range: <u>N</u>	I/A		
Landform (hillside, te	errace, etc.):	Terrace	Local r	elief (concave, conve	k, none): None		Slope	e %:
Subregion (LRR or M	/ILRA): LRR	RI	Lat: 41.2833	Long:	-82.2712		Datum:	WGS84
Soil Map Unit Name	: TrA, Trumbu	ull silty clay loam,	0 to 2 percent slopes		NWI classif	ication:	N/A	
Are climatic / hydrolo	ogic conditions	on the site typical	for this time of year?	Yes X	No	(If no, ex	plain in Remark	s.)
Are Vegetation	, Soil	, or Hydrology	significantly disturb	ed? Are "Norm	al Circumstance	s" preser	nt? Yes X	No
Are Vegetation	, Soil	, or Hydrology _	naturally problemat	ic? (If needed	, explain any ans	swers in I	Remarks.)	
SUMMARY OF	FINDINGS -	- Attach site n	nap showing samp	oling point locati	ons, transec	ts, imp	ortant featu	res, etc.

Hydrophytic Vegetation Present?	Yes	No X	Is the Sampled Area within a Wetland? Yes No X If yes, optional Wetland Site ID: Upland OS-06			
Hydric Soil Present?	Yes	No X				
Wetland Hydrology Present?	Yes	No X				
Remarks: (Explain alternative procedures here or in a separate report.) upland areas						

within ROW located near wetland OS-06. Former upland BW-05 re-verified in 2021.

Wetland Hydrology Indicators:		Secondary Indicators (minimum of two required)					
Primary Indicators (minimum of one is require	Surface Soil Cracks (B6)						
Surface Water (A1)	Water-Stained Leaves (B9)	Drainage Patterns (B10)					
High Water Table (A2)	Aquatic Fauna (B13)	Moss Trim Lines (B16)					
Saturation (A3)	Marl Deposits (B15)	Dry-Season Water Table (C2)					
Water Marks (B1)	Hydrogen Sulfide Odor (C1)	Crayfish Burrows (C8)					
Sediment Deposits (B2)	Oxidized Rhizospheres on Living Ro	ots (C3) Saturation Visible on Aerial Imagery (C9)					
Drift Deposits (B3)	Presence of Reduced Iron (C4)	Stunted or Stressed Plants (D1)					
Algal Mat or Crust (B4)	Recent Iron Reduction in Tilled Soils	(C6) Geomorphic Position (D2)					
Iron Deposits (B5)	Thin Muck Surface (C7)	Shallow Aquitard (D3)					
Inundation Visible on Aerial Imagery (B7)	Other (Explain in Remarks)	Microtopographic Relief (D4)					
Sparsely Vegetated Concave Surface (B8	8)	FAC-Neutral Test (D5)					
Field Observations:							
Surface Water Present? Yes	No Depth (inches):						
Water Table Present? Yes	No Depth (inches):						
Saturation Present? Yes	No Depth (inches):	Wetland Hydrology Present? Yes No X					
(includes capillary fringe)							
Describe Recorded Data (stream gauge, mon	itoring well, aerial photos, previous inspec	tions), if available:					
Remarks:							

VEGETATION – Use scientific names of plants.

Sampling Point: <u>-bao-111418-0</u>

Tree Stratum (Plot size: 30 ft)	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test worksheet:
1				Number of Dominant Species That Are OBL, FACW, or FAC: 0 (A)
3.				Total Number of Dominant
5.				Percent of Dominant Species
6.				That Are OBL, FACW, or FAC: 0.0% (A/B)
7				Prevalence Index worksheet:
		=Total Cover		Total % Cover of:Multiply by:
Sapling/Shrub Stratum (Plot size: 15 ft)	_			OBL species 0 x 1 = 0
1. Rosa multiflora	5	Yes	FACU	FACW species $0 x^2 = 0$
2.				FAC species $0 \times 3 = 0$
3				FACU species 15 $x 4 = 60$
4				UPL species <u>5</u> x 5 = <u>25</u>
5				Column Totals: 20 (A) 85 (B)
6				Prevalence Index = B/A =4.25
7				Hydrophytic Vegetation Indicators:
	5	=Total Cover		1 - Rapid Test for Hydrophytic Vegetation
Herb Stratum (Plot size: 5 ft)				2 - Dominance Test is >50%
1. Solidago sp.	60	Yes		3 - Prevalence Index is ≤3.0 ¹
2. Cirsium vulgare	5	No	FACU	4 - Morphological Adaptations ¹ (Provide supporting
3. Festuca sp.	20	Yes		data in Remarks or on a separate sheet)
4. Daucus carota	5	No	UPL	Problematic Hydrophytic Vegetation ¹ (Explain)
5. Dipsacus fullonum	5	No	FACU	
6				Indicators of hydric soil and wetland hydrology must
7				Definitions of Vegetation Strata:
8				Deminions of Vegetation offata.
9.				Tree – Woody plants 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of height.
10				Sanling/shrub – Woody plants less than 3 in DBH
11.				and greater than or equal to 3.28 ft (1 m) tall.
12.				
	95	=Total Cover		of size, and woody plants less than 3.28 ft tall.
Woody Vine Stratum (Plot size: 30 ft)				Woody vines – All woody vines greater than 3.28 ft in
1				height.
2				Hydrophytic
3				Vegetation
4				Present? Yes No X
		=Total Cover		
Remarks: (Include photo numbers here or on a separ	ate sheet.)			-

Sampling	Pointu-bao-1	1	1	41	8_	0	1
Sampling	F UIIILU=DaU=I	- 1	- 1	41	0	U.	1

SOIL Sampling Pointu-bao-111418-01										
Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)										
Depth	Matrix		Redox	Features						
(inches)	Color (moist)	%	Color (moist)	<u>%</u> T	ype ¹	Loc ²	Texture		Remark	S
0-18	10YR 4/3	100							silty clay lo	bam
						·				
						·	·			
¹ Type: C=Co	oncentration, D=Dep	letion, RM=	Reduced Matrix, M	——— — S=Masked	d Sand	Grains.	² Location: P	L=Pore Lin	ing, M=Matr	rix.
Hydric Soil	Indicators:	,	,				Indicators for	or Problem	natic Hydric	: Soils ³ :
Histosol	(A1)	_	Polyvalue Belov	v Surface	(S8) (L	RR R,	2 cm Mu	ck (A10) (L	RR K, L, M	LRA 149B)
Histic Ep	oipedon (A2)		MLRA 149B)				Coast Pi	airie Redo	x (A16) (LRI	R K, L, R)
Black Hi	stic (A3)	-	Thin Dark Surfa	ce (S9) (L	.RR R,	MLRA 1	49B) 5 cm Mu	cky Peat o	r Peat (S3)	(LRR K, L, R)
Hydroge	n Sulfide (A4)	-	High Chroma Sa	ands (S11 lineral (E1		K, L)	Polyvalu	e Below Su	urface (S8) (LRR K, L)
	l Layers (A5) I Below Dark Surface	- - (Δ11)	Loamy Gleved I	Matrix (F2)		r , L)	Inin Dar	k Sunace (Manese Ma	(39) (LRR N 28888 (F12)	(IRRKIR)
Thick Da	ark Surface (A12)	-	Depleted Matrix	(F3)	/		Piedmor	nt Floodplai	in Soils (F19	(MLRA 149B)
Sandy N	lucky Mineral (S1)	-	Redox Dark Su	face (F6)			Mesic S	odic (TA6)) (MLRA 14 4	4A, 145, 149B)
Sandy G	leyed Matrix (S4)	_	Depleted Dark S	Surface (F	7)		Red Par	ent Materia	al (F21)	
Sandy R	edox (S5)	_	Redox Depress	ions (F8)			Very Sha	allow Dark	Surface (F2	2)
Stripped	Matrix (S6)	-	Marl (F10) (LRF	R K, L)			Other (E	xplain in R	emarks)	
Dark Su	rface (S7)									
³ Indicators o	f hydrophytic yegetat	tion and we	tland hydrology mu	et he nres	ont un	lace dieti	urbed or problematic			
Restrictive	Laver (if observed):		aland hydrology mu	st be pres	ent, un		arbed of problematic.			
Туре:										
Depth (ir	nches):						Hydric Soil Prese	nt?	Yes	No X
Remarks:							-			
This data for	m is revised from No	orthcentral a	and Northeast Regio	onal Suppl	ement	Version	2.0 to include the NR	CS Field Ind	dicators of ⊢	lydric Soils,
Version 7.0,	2015 Errata. (http://v	vww.nrcs.u	sda.gov/Internet/FS	E_DOCUI	MENTS	/nrcs142	2p2_051293.docx)			
1										

WETLAND DETERMINATION DATA FORM – Northcentral and Northeast Region

Project/Site: Beaver Wellington/Henrietta	City/County: Lorain Co	Sampling	Sampling Date: 10/25/2021		
Applicant/Owner: First Energy		State: OH Samp	ling Point: l	Jpland OS-08	
Investigator(s): BCR	Section, Township, Rar	nge: <u>N/A</u>			
Landform (hillslope, terrace, etc.): Flat	Local relief (concave, conv	rex, none): <u>None</u>	Slope	(%):	
Subregion (LRR or MLRA): <u>LRR R, MLRA 139</u> Lat: <u>41.160410</u>	Long	g: <u>-82.273068</u>	_ Datum:_	WGS 1984	
Soil Map Unit Name: <u>MgB: Mahoning silt loam, 2 to 6 percen</u>	it slopes	NWI classification: N/	A		
Are climatic / hydrologic conditions on the site typical for this time o	of year? Yes X No	(If no, explain in Remarks.)			
Are Vegetation, Soil, or Hydrology signification	ntly disturbed? Are "I	Normal Circumstances" present?	Yes X	No	
Are Vegetation, Soil, or Hydrology naturally	v problematic? (If ne	eded, explain any answers in Rem	arks.)		

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

VEGETATION – Use scientific names of plants.

Sampling Point: Upland OS

30	Absolute	Dominant	Indicator	Dominance Test worksheet:
Tree Stratum (Plot size:)	% Cover	<u>Species?</u>	Status	Number of Dominant Species
1		No		That Are OBL, FACW, or FAC: (A)
2				Total Number of Dominant
3.				Species Across All Strata:3 (B)
4				
				That Are OBL_EACW_or EAC [·] 0% (A/B)
5				
6				Prevalence Index worksheet:
7				Total % Cover of:Multiply by:
		= Total Cov	er	OBL species 0 x 1 = 0
Sapling/Shrub Stratum (Plot size: 15)				FACW species $0 x 2 = 0$
<u> </u>		No		FAC species $15 \times 3 = 45$
l				FACU species $95 \times 4 = 380$
2				UPL species $0 \times 5 = 0$
3				Column Totals: 110 (A) 425 (B)
4				
5				Prevalence Index = $B/A = 3.86$
6.				Hydronhytic Vegetation Indicators:
0				1 Papid Test for Hydrophytic Vegetation
7				
		= Total Cov	er	$\frac{2}{2} = \frac{2}{2} = \frac{1}{2} = \frac{1}{2}$
Herb Stratum (Plot size: 5)				4 - Morphological Adaptations ¹ (Provide supporting
1 Schedonorus arundinaceus	30	Yes	FACU	data in Remarks or on a separate sheet)
2. Setaria faberi	30	Yes	FACU	Problematic Hydrophytic Vegetation ¹ (Explain)
3. Xanthium strumarium	15	No	FAC	¹ Indicators of hydric soil and wetland hydrology must
4Cirsium arvense	20	Yes	FACU	be present, unless disturbed or problematic.
5 Taraxacum officinale	15	No	FACU	Definitions of Vegetation Strata:
6.				Tree – Woody plants 3 in. (7.6 cm) or more in diameter
7.				at breast height (DBH), regardless of height.
8.				Sapling/shrub – Woody plants less than 3 in. DBH
9				and greater than or equal to 3.28 ft (1 m) tall.
10				Herb – All herbaceous (non-woody) plants, regardless of
				size, and woody plants less than 3.28 ft tall.
11				Woody vines – All woody vines greater than 3.28 ft in
12				height.
	110	= Total Cov	er	
Woody Vine Stratum (Plot size: 30)				
1.		No		
2				Hydrophytic
2				Vegetation
3				
4				
		= Total Cov	er	
Remarks: (Include photo numbers here or on a separate	sheet.)			

SOIL

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)								
Depth	Matrix		Redo	x Features	<u>i</u> 1	. ?	_	
(inches)	Color (moist)	%	Color (moist)	%	Type	Loc ²	Texture	Remarks
0 12	10YR 4/3	100						
·								
		etion DM-	Reduced Matrix M	S=Mackod	Sand Gr	aine	² Location	· PI = Pore Lining M-Matrix
Hydric Soil I	ndicators:		Reduced Matrix, M	5-IVIASKEU	Sanu Gra	anns.		for Problematic Hydric Soils ³
Histopol	(A1)			v Surfago		סכ	2 om M	
Histosol	(AT) Vinodon (A2)	-			(30) (LR	х к,		Provide Rate $(A10)$ (LRR R, L, MLRA 149B)
Black His	stic (A3)		Thin Dark Surfa) 200 (SQ) (I		DA 1408)	Coast	$f(\mathbf{A}, \mathbf{C}, \mathbf{C}, \mathbf{C}, \mathbf{C}) = f(\mathbf{C}, \mathbf{C}, \mathbf{C})$
Hvdroge	n Sulfide (A4)	-	Loamy Mucky M	/lineral (F1		(A 1430)	Dark S	Surface (S7) (IRR K I M)
Stratified	Ll avers (A5)	-	Loamy Gleved	Matrix (F2)		, =/	Polyva	lue Below Surface (S8) (I RR K I)
Depleted	Below Dark Surface	(A11)	Depleted Matrix	(F3)			Thin D	ark Surface (S9) (LRR K, L)
Thick Da	rk Surface (A12)	· ()	Redox Dark Su	rface (F6)			Iron-M	anganese Masses (F12) (LRR K. L. R)
Sandy M	lucky Mineral (S1)	-	Depleted Dark	Surface (F	7)		Piedmo	ont Floodplain Soils (F19) (MLRA 149B)
Sandy G	leved Matrix (S4)	-	Redox Depress	ions (F8)	,		Mesic	Spodic (TA6) (MLRA 144A, 145, 149B)
Sandy R	edox (S5)	-		, , , , , , , , , , , , , , , , , , ,			Red Pa	arent Material (F21)
Stripped	Matrix (S6)						Very S	hallow Dark Surface (TF12)
Dark Sur	face (S7) (LRR R, M	LRA 149B)				Other ((Explain in Remarks)
³ Indicators of	hydrophytic vegetati	ion and wet	and hydrology mus	t be prese	nt, unless	s disturbed	or problematic	
Restrictive L	ayer (if observed):							
Type:								
Depth (inc	ches):						Hydric Soil	Present? Yes No X
Remarks [.]	,							
itemarks.								

Е
Appendix B OEPA ORAM Datasheets

Date: 03/11/2019

Wetland OS-01

Date: 03/11/2019

w-bcr-03/11/19-02

2	Present in moderate amounts, but not of highest quality or in small amounts of highest quality
3	Present in moderate or greater amounts and of highest quality

19 GRAND TOTAL (max 100 pts)

Refer to the most recent ORAM Score Calibration Report for the scoring breakpoints between wetland categories at the following address: http://www.epa.state.oh.us/dsw/401/401.html last revised 1 February 2001 jjm

Site: FirstEnergy	Beaver-Wellington 69kV Transmissio	on Line	Date:	October 3, 2018	
Wetland: Wet	land OS-02 (BW-01a,b (w-bao-100318	3-01))	Rater:	Ben Otto, Jacobs Solutions	
		//			
1 1	Metric 1. Wetland Area (size). (ma	x 6 pts)			
Subtotal Points	Select one size class and assign score.				
	>50 acres (>20.2ha) (6 pts)	Acres: 0.	26		
	25 to <50 acres (10.1 to <20.2ha	a) (5 pts)			
	10 to <25 acres (4 to <10.1ha) (4	4 pts)			
	3 to <10 acres (1.2 to <4ha) (3 p	uts)			
	0.3 to < 3 acres (0.12 to < 1.2 na)	(2pts)			
	<0.1 acres (0.04 to <0.121	ia) (1 pt)			
11 10	Metric 2. Upland buffers and surro	ounding land use. (ma	ax 14 pts)		
Subtotal Points	2a. Calculate average buffer width (select one	e, do not double check)			
	x WIDE. Buffers average 50m (16	64ft) or more around wetland	d perimeter (7)		
	MEDIUM. Buffers average 25m	to <50m (82 to <164ft) arou	ind wetland perim	neter (4)	
	NARROW. Buffers average 10r	n to <25m (32ft to <82ft) ar	ound wetland per	imeter (1)	
	VERY NARROW. Buffers avera	ige <10m (<32ft) around we	tland perimeter (0))	
	2h Internetty of autrounding land use (calent a	na ar daubla abaak 8 ayar			
	VERY LOW 2nd growth or olde	er forest prairie savannah v	<u>ige)</u> vildlife area_etc_((7)	
	x I OW Old field (>10 years) shr	ubland, young second growt	th forest (5)	. ,	
	MODERATELY HIGH. Resident	tial, fenced pasture, park, co	onservation tillage	new fallow field. (3)	
	x HIGH. Urban, industrial, open p	asture, row cropping, mining	g, construction. (1)	
17 6	Metric 3. Hydrology. (max 30 pts)				
Subtotal Points	3a. Sources of Water. Score all that apply.	3b.	Connectivity. Sc	ore all that apply.	
	High pH groundwater (5)		100 yea	ar floodplain (1)	
	Other groundwater (3)		Betwee	n stream/lake and other human use (1)	
	X Precipitation (1)	ator(2)	Part of	vetland/upland (e.g. forest), complex (1)	
	Perennial surface water (lake or	stream) (5)			
		3d.	Duration inundat	ion/saturation.	
	3c. Maximum water depth. Select only 1.		(select one or	double check & average)	
	>0.7 (27.6in) (3)		Semi- to	permanently inundated/saturated (4)	
	0.4 to 0.7m (15.7 to 27.6in) (2)		Regular	ly inundated/saturated (3)	
	x <0.4m (<15.7in) (1)		Season	ally inundated (2)	
			x Season	ally saturated in upper 30cm (12in) (1)	
	3e. Modifications to natural hydrologic regime		Check all dist	urbances observed	
	None or none apparent (12)		ditch	point source (nonstormwater)	
	Recovered (7)		dike	filling/grading	
	x Recovering (3)		tile	road bed/RR track	
	Recent or no recovery (1)		weir	dredging	
			stormwater input	🔲 other- list	
) mfa)]
25 8	wetric 4. Habitat Alteration and D	evelopment. (max 20	pts.)		
Subtotal Points	4a. Substrate disturbance. Score one or dou	ible check and average.			
	Recovered (3)	40	Habitat alteration	n Score one or double check and average	2
	x Recovering (2)	40.	None of	pr none apparent (9)	
	Recent or no recovery (1)		Recove	ered (6)	
			x Recove	ring (3)	
	4b. Habitat development. Select one.		Recent	or no recovery (1)	
	Excellent (7)				
	Very good (6)	Check all disturban	ices observed		
	Good (5)	I mowing		shrub/sapling removal	
	Moderately good (4)	☐ grazing		herbaceous/aquatic bed removal	
	$\begin{array}{c} x \\ \hline \\ \end{array}$		Ĺ	_ sedimentation	
	Poor (1)				
				nutrient emrichment	
			L		

Site: FirstEnerg	y Beaver-Wellington 69kV Transmission Line	Date:	October 3, 2018
Netland: W	etland BW-01a,b (w-bao-100318-01)	Rater:	Ben Otto, Jacobs Solutions
25 subtotal first	page		
25 0	Metric 5. Special Wetlands. (max 10 pts.)		
Subtotal Points	Check all that apply and score as indicated		
	Bog (10 pts)		
	Fen (10 pts)		
	Old Growth Forest (10 pts)		
	Lake Frie coastel/tributer/wetland upr	ostricted bydrol	p_{0} (10 ptc)
	Lake Erie coastal/tributary wetland-unit	tricted hydrolog	y (5 pts)
	Lake Plain Sand Prairies (Oak Opening	ns) (10 pts)	, (0 p.0)
	Relict Wet Prairies (10 pts)	30) (10 ptc)	
	Known occurrence state/federal threat	ened or endand	ered species (10)
	Significant migatory songbird/waterfow	ہ I habitat or usag	je (10 pts)
	Category 1 Wetland. See Question 1 of	of Qualitative Ra	ating. (-10 pts)
24 -1	Metric 6. Plant Communities, interspersio	n, microtop	ography. (max 20 pts.)
Subtotal Points	6a. Wetland Vegetation Communities		
	Score all present using 0 to 3 scale	vegetatio	n Community Cover Scale
	0 Aquatic bed	0	Absent or comprises <0.1 ha (0.2471 acres) contiguous area
	1 Emergent		
	0 Forest	1	Present and either comprises small part of wetland's vegetation and is
			of moderate quality, or comprises a significant part but is of low quality
	0 Open water		Present and either comprises significant part of wetland's vegetation
	0 Other (list)	2	and is of moderate quality or comprises a small part and is of high
			quality
	6b. Horizontal (plan view) interspersion	3	Present and comprises significant part, or more, of wetland's vegetatio
	Select only one	Ű	and is of high quality
	High (5)		
	Moderately high (4)	Narrative	Description of Vegetation Quality
	Moderate (3)	low	Low spp diversity and/or predominance of nonnative or disturbance
	Moderately low (2)		
	X Low (1)		Native spp are dominant component of the vegetation, although
		moderate	and species diversity moderate to moderately high, but generally w/o
	6c. Coverage of invasive plants.		presence of rare threatened or endangered spp
	Refer to Table 1 ORAM long form for list.		A predominance of native species, with poppative spp and/or
	Add or deduct points for coverage	hinh	disturbance tolerant native species, with hormative sp
	Extensive >75 % cover (-5)	nign	diversity and often, but not always, the presence of rare, threatened, or
	x Moderate 25-75% cover (-3)		endangered spp
	Sparse 5-25% cover (-1)		
	Nearly Absent <5% cover (0)	Mudflat a	nd Open Water Class Quality
	Absent (1)	0	Absent <0.1 ha (0.2471 acres)
		1	Low 0.1 ha to <1 ha (0.2471 acres to 2.47 acres)
		2	Moderate 1 ha to <4 ha (2.47 acres 9.88 acres)
	6d. Microtopography	3	High 4 ha (9.88 acres) or more
	Score all present using U to 3 scale	Microton	ography Cover Scale

0	vegetateu hummouks/tussouks	IVI
0	Coarse woody debris >15 cm (6")	
0	Standing dead > 25 cm (10") dbh	
0	Amphibian breeding pools	

0	Absent
1	Present very small amounts or if more common of marginal quality
2	Present in moderate amounts, but not of highest quality or in small amounts of highest quality
3	Present in moderate or greater amounts and of highest guality

24 GRAND TOTAL (max 100 pts)

Provisional Wetland Category:

Category 1

Site: FirstEnergy	y Beaver-Wellington 69kV Transmissio	on Line	Date:	October 3, 2018
Wetland: Wet	tland OS-03 (BW-03a (w-bao-100318-	02))	Rater:	Ben Otto, Jacobs Solutions
2 2 Subtotal Points	Metric 1. Wetland Area (size). (ma Select one size class and assign score. >50 acres (>20.2ha) (6 pts) 25 to <50 acres (10.1 to <20.2ha) 10 to <25 acres (4 to <10.1ha) (0 3 to <10 acres (1.2 to <4ha) (3 pt) x 0.3 to <3 acres (0.04 to <0.12ha) 0.1 to <0.3 acres (0.04 to <0.12ha) <0.1 acres (0.04ha) (0 pts)	Acres: 0.: a) (5 pts) 4 pts) bts)) (2pts) na) (1 pt)	22	
12 10 Subtotal Points	X WIDE. Buffers average 50m (10 x WIDE. Buffers average 50m (10 MEDIUM. Buffers average 25m NARROW. Buffers average 10n VERY NARROW. Buffers average 10n	bunding land use. (ma <u>e, do not double check)</u> 64ft) or more around wetland to <50m (82 to <164ft) arou m to <25m (32ft to <82ft) arou age <10m (<32ft) around we <u>one or double check & avera</u> er forest prairie savannab y	ax 14 pts) d perimeter (7) and wetland perime bund wetland perimetand perimeter (0) <u>ge)</u> wildlife area, etc. (7)	eter (4) neter (1)
	x LOW. Old field (>10 years), shr MODERATELY HIGH. Residen x HIGH. Urban, industrial, open p	a lotest, prane, savannan, u ubland, young second growt tial, fenced pasture, park, co asture, row cropping, mining	h forest. (5) nservation tillage, ı, construction. (1)) new fallow field. (3)
25 13 Subtotal Points	Metric 3. Hydrology. (max 30 pts) 3a. Sources of Water. Score all that apply. High pH groundwater (5) x Other groundwater (3) x Precipitation (1) Seasonal/Intermittent surface water Perennial surface water (lake or	<i>3b.</i> ater (3) stream) (5) <i>3d</i>	Connectivity. Sco 100 year Between x Part of w Part of rij	ore all that apply. floodplain (1) stream/lake and other human use (1) etland/upland (e.g. forest), complex (1) parian or upland corridor (1)
	3c. Maximum water depth. Select only 1. >0.7 (27.6in) (3) 0.4 to 0.7m (15.7 to 27.6in) (2) x <0.4m (<15.7in) (1)		(select one or of Semi- to X Regularly Seasona X Seasona	double check & average) permanently inundated/saturated (4) y inundated/saturated (3) illy inundated (2) illy saturated in upper 30cm (12in) (1)
	Select one or aduble check & average None or none apparent (12) x Recovered (7) x Recovering (3) Recent or no recovery (1)		ditch dike tile weir stormwater input	 point source (nonstormwater) filling/grading road bed/RR track dredging other- list
36.5 11.5 Subtotal Points	Metric 4. Habitat Alteration and D 4a. Substrate disturbance. Score one or douted in the second of the second se	evelopment. (max 20 uble check and average. 4c.	Habitat alteration None or X Recover Recover	. <i>Score one or double check and average.</i> none apparent (9) red (6) ing (3) or no recovery (1)
	Excellent (7)Very good (6)Good (5)xModerately good (4)Fair (3)Poor to fair (2)Poor (1)	Check all disturban mowing grazing clearcutting selective cutting woody debris removal toxic pollutants	ces observed	shrub/sapling removal herbaceous/aquatic bed removal sedimentation dredging farming nutrient emrichment

Site: FirstEnerg	gy Beaver-Wellington 69kV Transmission Line	Date:	October 3, 2018
Wetland: W	/etland_BW-03a (w-bao-100318-02)	Rater:	Ben Otto, Jacobs Solutions
36.5 subtotal first 36.5 0 Subtotal Points	page Metric 5. Special Wetlands. (max 10 pts.) <u>Check all that apply and score as indicated</u> Bog (10 pts) Fen (10 pts) Old Growth Forest (10 pts) Mature forested wetland (5 pts) Lake Erie coastal/tributary wetland-un Lake Plain Sand Prairies (Oak Openir	rrestricted hydrolog stricted hydrolog ngs) (10 pts)	ogy (10 pts) y (5 pts)
20.5	Relict Wet Prairies (10 pts) Known occurrence state/federal threa Significant migatory songbird/waterfox Category 1 Wetland. See Question 1	tened or endang wl habitat or usag of Qualitative Ra	Jered species (10) Je (10 pts) ating. (-10 pts)
Subtotal Points	6a. Wetland Vegetation Communities, Interspersion 6a. Wetland Vegetation Communities Score all present using 0 to 3 scale	Vegetatio	ograpny. (max 20 pts.) on Community Cover Scale
	0 Aquatic bed 2 Emergent	0	Absent or comprises <0.1 ha (0.2471 acres) contiguous area
	0 Shrub 1 Forest 0 Mudflats	1	Present and either comprises small part of wetland's vegetation and is of moderate quality, or comprises a significant part but is of low quality
	0 Open water 0 Other (list)	2	Present and either comprises significant part of wetland's vegetation and is of moderate quality or comprises a small part and is of high quality
	<u>6b. Horizontal (plan view) interspersion</u> Select only one	3	Present and comprises significant part, or more, of wetland's vegetation and is of high quality
	High (5) Moderately high (4)	Narrative	Description of Vegetation Quality
	Moderate (3) Moderately low (2)	low	Low spp diversity and/or predominance of nonnative or disturbance tolerant native species
	Low (1) None (0)	moderate	Native spp are dominant component of the vegetation, although nonnative and/or disturbance tolerant native spp can also be present, and species diversity moderate to moderately high, but generally w/o presence of rare threatened or endangered spp
	Refer to Table 1 ORAM long form for list. Add or deduct points for coverage Extensive >75 % cover (-5)	high	A predominance of native species, with nonnative spp and/or disturbance tolerant native spp absent or virtually absent, and high sp diversity and often, but not always, the presence of rare, threatened, or endangered spp
	Sparse 5-25% cover (-1)	Mudflata	nd Open Water Class Quality
	Absent (1)		Absent <0.1 ha (0.2471 acres)
		1	Low 0.1 ha to <1 ha (0.2471 acres to 2.47 acres)
		2	Moderate 1 ha to <4 ha (2.47 acres 9.88 acres)
	<u>6d. Microtopography</u>	3	High 4 ha (9.88 acres) or more

0	Absent
1	Present very small amounts or if more common of marginal quality
2	Present in moderate amounts, but not of highest quality or in small amounts of highest quality
3	Present in moderate or greater amounts and of highest quality

Provisional Wetland Category:

modified 2

ORAM v. 5.0 Field Form Quantitative Rating

23.5 GRAND TOTAL (max 100 pts)

Refer to the most recent ORAM Score Calibration Report for the scoring breakpoints between wetland categories at the following address: http://www.epa.state.oh.us/dsw/401/401.html last revised 1 February 2001 jjm

3

quality or in small amounts of highest quality

Present in moderate or greater amounts

and of highest quality

Site: FirstEnergy Beaver-Wellington 69kV Transmission Line			Date:	November 14, 2018
Wetland: Wet	land OS-05 (BW-04a/b (w-bao-111418	3-02a/b))	Rater:	Ben Otto, Jacobs Solutions
22 Subtotal Points	Metric 1. Wetland Area (size). (ma Select one size class and assign score. >50 acres (>20.2ha) (6 pts) 25 to <50 acres (10.1 to <20.2ha) 10 to <25 acres (4 to <10.1ha) (4) 3 to <10 acres (1.2 to <4ha) (3 p) x 0.3 to <3 acres (0.12 to <1.2ha) 0.1 to <0.3 acres (0.04 to <0.12h) <0.1 acres (0.04ha) (0 pts)	Acres: 0.3 a) (5 pts) 4 pts) ts) (2pts) na) (1 pt)	16	
9 7 Subtotal Points	Metric 2. Upland buffers and surro 2a. Calculate average buffer width (select one WIDE. Buffers average 50m (16 X MEDIUM. Buffers average 25m NARROW. Buffers average 10m VERY LOW. Automation of the second of the	Aunding land use. (ma <u>a</u> , <u>do not double check</u>) 54ft) or more around wetland to <50m (82 to <164ft) aroun n to <25m (32ft to <82ft) around ge <10m (<32ft) around wet <u>ane or double check & averau</u> r forest, prairie, savannah, w ubland, young second growth	x 14 pts) perimeter (7) nd wetland perim und wetland peri land perimeter (0 <u>7e)</u> vildlife area, etc. (n forest. (5)	eter (4) meter (1)) 7)
18 9 Subtotal Points	MODERATELY HIGH. Resident X HIGH. Urban, industrial, open particular Metric 3. Hydrology. (max 30 pts) 3a. Sources of Water. Score all that apply. High pH groundwater (5) Other groundwater (3) Description (1)	ial, fenced pasture, park, con asture, row cropping, mining <i>3b.</i>	Connectivity. Sca Betweer	, new fallow field. (3)) ore <i>all that apply.</i> r floodplain (1) n stream/lake and other human use (1)
	X 1.00, match (1) Seasonal/Intermittent surface water Perennial surface water (lake or 3c. Maximum water depth. Select only 1. >0.7 (27.6in) (3) 0.4 to 0.7m (15.7 to 27.6in) (2) x <0.4m (<15.7in) (1) 3e. Modifications to natural hydrologic regime (select one or double check & average None or none apparent (12) x Recovered (7) x Recovering (3) Recent or no recovery (1)	ater (3) stream) (5) 3d 3d 3d 3d - - - - - - - - - - - - -	Duration inundatii (select one or Semi- to Regulari x Seasona Seasona Check all distu ditch dike ile weir stormwater input	iparian or upland corridor (1) ion/saturation. double check & average) o permanently inundated/saturated (4) ly inundated/saturated (3) ally inundated (2) ally saturated in upper 30cm (12in) (1) urbances observed
25.5 7.5 Subtotal Points	Metric 4. Habitat Alteration and Defation of the second	evelopment. (max 20 ble check and average. 4c. Check all disturbance mowing grazing clearcutting selective cutting woody debris removal toxic pollutants	pts.) Habitat alteration None of X Recover Recover Cess observed	n. Score one or double check and average. r none apparent (9) ered (6) ring (3) or no recovery (1) shrub/sapling removal herbaceous/aquatic bed removal sedimentation d dredging farming nutrient emrichment

Site: FirstEnerg	gy Beaver-Wellington 69kV Transmission Line	Date:	November 14, 2018
Wetland: W	/etland BW-04a/b (w-bao-111418-02a/b)	Rater:	Ben Otto, Jacobs Solutions
25.5 subtotal first	page		
25.5 0	Metric 5. Special Wetlands. (max 10 pts.)		
Subtotal Points	Check all that apply and score as indicated		
	Bog (10 pts)		
	Fen (10 pts)		
	Old Growth Forest (10 pts)		
	Mature forested wetland (5 pts)		
	Lake Erie coastal/tributary wetland-unre	estricted hydrol	ogy (10 pts)
	Lake Erie coastal/tributary wetland-rest	ricted hydrolog	y (5 pts)
	Lake Plain Sand Prairies (Oak Opening	ls) (10 pts)	
	Relict Wet Prairies (10 pts)		
	Known occurrence state/federal threate	ened or endang	ered species (10)
	Significant migatory songbird/waterfowl	habitat or usag	je (10 pts)
	Category 1 Wetland. See Question 1 o	of Qualitative Ra	ating. (-10 pts)
22.5	Matria 6 Blant Communities interconstate	miaratan	ography (max 20 ptc.)
23.3 -2		n, microtop	ography. (max 20 pts.)
Subiolai Points	Score all present using 0 to 3 scale	Vegetatio	n Community Cover Scale
		Vegetatio	
		0	Absent or comprises <0.1 ha (0.2471 acres) contiguous area
		1	Present and either comprises small part of wetland's vegetation and is
	0 Mudflats		of moderate quality, or comprises a significant part but is of low quality
	0 Open water		Present and either comprises significant part of wetland's vegetation
	0 Other (list)	2	and is of moderate quality or comprises a small part and is of high
			quality
	6b. Horizontal (plan view) interspersion	2	Present and comprises significant part, or more, of wetland's vegetation
	Select only one	5	and is of high quality
	High (5)		
	Moderately high (4)	Narrative	Description of Vegetation Quality
	Moderate (3)	low	Low spp diversity and/or predominance of nonnative or disturbance
	Moderately low (2)		tolerant native species
	x Low (1)		Native spp are dominant component of the vegetation, although
	None (0)	moderate	nonnative and/or disturbance tolerant native spp can also be present,
			and species diversity moderate to moderately high, but generally w/o
	<u>6c. Coverage of invasive plants.</u>		
	Add or deduct points for coverage		A predominance of native species, with nonnative spp and/or
		high	disturbance tolerant native spp absent or virtually absent, and high sp diversity and often, but not always, the presence of rare, threatened of
	X Extensive >/5 % cover (-5)		endangered spp
	Nearly Absent $<5\%$ cover (0)	Mudflat a	nd Open Water Class Quality
	Absent (1)		Absent <0.1 ha (0.2471 acres)
		1	1 ow 0.1 ha to <1 ha (0.2471 acres to 2.47 acres)
		2	Moderate 1 ha to <4 ha (2.47 acres 0.88 acres)
	6d Microtopography	2	High h has (0.88 acres) or more
	Score all present using 0 to 3 scale		וווטופ (ס.טט מטוכס) טו וווטופ
	0 Vegetated hummocks/tussocks	Microtop	ography Cover Scale
	Coarse woody debris >15 cm (6")	0	Absent
	0 Standing dead > 25 cm (10") dbb		Absolit
	1 Amphibian breeding pools	1	Present very small amounts or if more common of marginal quality

0	Absent
1	Present very small amounts or if more common of marginal quality
2	Present in moderate amounts, but not of highest quality or in small amounts of highest quality
3	Present in moderate or greater amounts and of highest quality

23.5 GRAND TOTAL (max 100 pts)

Provisional Wetland Category:

Category 1

ORAM v. 5.0 Field Form Quantitative Rating	ORAM v	rm Quantitative Rating	RAM v. 5.0 Field Form
--	--------	------------------------	-----------------------

Site: FirstEnergy Beaver-Wellington 69kV Transmission Line		n Line	Date:	November 14, 2018
Wetland: Wet	and OS-06a,b (BW-05a,b (w-bao-1114	418-01))	Rater:	Ben Otto, Jacobs Solutions
0 0 Subtotal Points	Metric 1. Wetland Area (size). (ma Select one size class and assign score. >50 acres (>20.2ha) (6 pts) 25 to <50 acres (10.1 to <20.2ha) 10 to <25 acres (4 to <10.1ha) (4 3 to <10 acres (1.2 to <4ha) (3 p) 0.3 to <3 acres (0.04 to <0.12ha) x <0.1 acres (0.04ha) (0 pts)	Acres: 0.0 a) (5 pts) 4 pts) (2pts) unding land use (ma)	9 9 x 14 nts)	
Subtotal Points	2a. Calculate average buffer width (select one WIDE. Buffers average 50m (16 X MEDIUM. Buffers average 25m NARROW. Buffers average 10n VERY LOW. 2nd growth or olde X MODERATELY HIGH. Resident HIGH. Urban, industrial, open proversition	e, do not double check) 64ft) or more around wetland to <50m (82 to <164ft) arour n to <25m (32ft to <82ft) aro ge <10m (<32ft) around wetland <u>or double check & averago</u> r forest, prairie, savannah, w ubland, young second growth ial, fenced pasture, park, cor asture, row cropping, mining,	perimeter (7) ad wetland perin und wetland per and perimeter ((<u>re)</u> ildlife area, etc. forest. (5) aservation tillage construction. (1	neter (4) rimeter (1) D) (7) e, new fallow field. (3)
20 12 Subtotal Points	Metric 3. Hydrology. (max 30 pts) 3a. Sources of Water. Score all that apply. High pH groundwater (5) Other groundwater (3) Precipitation (1) X Seasonal/Intermittent surface wa Perennial surface water (lake or 3c. Maximum water depth. Select only 1. >0.7 (27.6in) (3) 2.446 Jac (12.54 b) 03.05 (20)	3b. (ater (3) stream) (5) <i>3d. l</i>	Connectivity. So 100 year Betwee Part of X Part of Curation inundation (select one of Semi-tic	core all that apply. ar floodplain (1) en stream/lake and other human use (1) wetland/upland (e.g. forest), complex (1) riparian or upland corridor (1) tion/saturation. r double check & average) o permanently inundated/saturated (4)
	 3e. Modifications to natural hydrologic regime (select one or double check & average None or none apparent (12) x Recovered (7) x Recovering (3) Recent or no recovery (1))	x Seasor x Seasor Check all dist litch like lie veir tormwater input	urbances observed point source (nonstormwater) filling/grading road bed/RR track dredging t v other- list
29 9 Subtotal Points	Metric 4. Habitat Alteration and Defa. 4a. Substrate disturbance. Score one or douted in the second of th	evelopment. (max 20 ble check and average. 4c. Check all disturbance mowing grazing clearcutting selective cutting woody debris removal toxic pollutants	Pts.) Habitat alteratio None of Recove Recove Recent Recent	n. Score one or double check and average. or none apparent (9) ered (6) ering (3) or no recovery (1) shrub/sapling removal herbaceous/aquatic bed removal sedimentation dredging farming nutrient emrichment

Site: FirstEner	gy Beaver-Wellington 69kV Transmission Line	Date:	November 14, 2018
Wetland: W	/etland BW-05a,b (w-bao-111418-01)	Rater:	Ben Otto, Jacobs Solutions
29 subtotal first	page Motric 5 Special Wotlands (may 10 pts)	-	
29 U	Check of thet early and every as indicated		
Subtotal Points	Check all that apply and score as indicated Bog (10 pts) Fen (10 pts)		
	Old Growth Forest (10 pts)		
	Lake Frie coastal/tributan/wetland upr	ostricted bydrol	ogy (10 ptc)
	Lake Erie coastal/tributary wetland-rest	tricted hydrolog	v (5 nts)
	Lake Plain Sand Prairies (Oak Opening	(10 nts)	y (5 pts)
		33) (10 pt3)	
	Known occurrence state/federal threat	anad or and and	nered species (10)
	Significant migatory songbird/waterfow	I habitat or usar	ne (10 nts)
	Category 1 Wetland See Question 1	of Qualitative R	ating (-10 pts)
			3- (· • • • • • • •
29 0	Metric 6. Plant Communities, interspersio	n, microtop	ography. (max 20 pts.)
Subtotal Points	6a. Wetland Vegetation Communities Score all present using 0 to 3 scale	Vegetatio	on Community Cover Scale
		logotatio	
		0	Absent or comprises <0.1 ha (0.2471 acres) contiguous area
	0 Forest	1	Present and either comprises small part of wetland's vegetation and
	0 Mudflats		of moderate quality, or comprises a significant part but is of low qualit
	0 Open water		Present and either comprises significant part of wetland's vegetation
	0 Other (list)	2	and is of moderate quality or comprises a small part and is of high quality
	<u>6b. Horizontal (plan view) interspersion</u>	3	Present and comprises significant part, or more, of wetland's vegetat
	Select only one		
	High (5)	Narrativo	Description of Vagatation Quality
	Moderate (2)	Narrative	
	Moderately law (2)	low	tolerant native species
	x low (1)		
	None (0)	moderate	nonnative spp are dominant component of the vegetation, almough nonnative and/or disturbance tolerant native spp can also be presen and species diversity moderate to moderately high, but generally w/c presence of rare threatened or endangered spp
	Refer to Table 1 ORAM long form for list		
	Add or deduct points for coverage	1	A preuominance or native species, with nonnative spp and/or disturbance tolerant native spp absent or virtually absent and high s
	Extensive >75 % cover (-5)	high	diversity and often, but not always, the presence of rare, threatened,
	x Moderate 25-75% cover (-3)		endangered spp
	Sparse 5-25% cover (-1)		
	Nearly Absent <5% cover (0)	Mudflat a	nd Open Water Class Quality
	Absent (1)	0	Absent <0.1 ha (0.2471 acres)
		1	Low 0.1 ha to <1 ha (0.2471 acres to 2.47 acres)
		2	Moderate 1 ha to <4 ha (2.47 acres 9.88 acres)
	<u>6d. Microtopography</u>	3	High 4 ha (9.88 acres) or more
	Score all present using 0 to 3 scale		
	0 Vegetated hummocks/tussocks	Microtop	ography Cover Scale
		0	

0	Vegetated hummocks/tussocks
0	Coarse woody debris >15 cm (6")
0	Standing dead > 25 cm (10") dbh
1	Amphibian breeding pools

0	Absent
1	Present very small amounts or if more common of marginal quality
2	Present in moderate amounts, but not of highest quality or in small amounts of highest quality
3	Present in moderate or greater amounts and of highest quality

29 GRAND TOTAL (max 100 pts)

Provisional Wetland Category:

Category 1

ORAM v. 5.0 Field Form Quantitative Rating	ORAM v	5.0 Field	Form	Quantitative	Rating
--	--------	-----------	------	--------------	--------

Site: FirstEnergy	Beaver-Wellington 69kV Transmissio	on Line	Date:	October 2, 2018
Wetland: Wetl	and OS-07 (BW-06a,b (w-bao-100218	3-01,01b))	Rater:	Ben Otto, Jacobs Solutions
3 3 Subtotal Points	Metric 1. Wetland Area (size). (ma Select one size class and assign score. >50 acres (>20.2ha) (6 pts) 25 to <50 acres (10.1 to <20.2ha) 10 to <25 acres (4 to <10.1ha) (4 x 3 to <10 acres (1.2 to <4ha) (3 p 0.3 to <3 acres (0.04 to <0.12h) 0.1 to <0.3 acres (0.04 to <0.12h) 0.1 to <0.3 acres (0.04 to <0.12h) 0.1 acres (0.04ha) (0 pts) Metric 2. Upland buffers and surro 2a. Calculate average buffer width (select one)	Acres: 0.4 Acres: 0.4 (5 pts) 4 pts) (2 pts) (2 pts) (2 pts) (1 pt) Acres: 0.4 (1 pt) Acres: 0.4 (1 pt) Acres: 0.4 (1 pt) Acres: 0.4 (1 pt) Acres: 0.4 (1 pt) (1 pt	82 82 8 x 14 pts)	
	WIDE. Buffers average 50m (16 x MEDIUM. Buffers average 25m NARROW. Buffers average 10m VERY LOW. 2nd growth or olde X NODERATELY HIGH. Resident HIGH. Urban, industrial, open particular	Aft) or more around wetland to <50m (82 to <164ft) arou n to <25m (32ft to <82ft) arou gge <10m (<32ft) around wet one or double check & avera r forest, prairie, savannah, v ubland, young second growt tial, fenced pasture, park, co asture, row cropping, mining	d perimeter (7) ind wetland perim bund wetland per lland perimeter (0 <u>ge)</u> vidlife area, etc. (h forest. (5) inservation tillage I, construction. (1	neter (4) imeter (1))) (7) e, new fallow field. (3))
20 9 Subtotal Points	Metric 3. Hydrology. (max 30 pts) 3a. Sources of Water. Score all that apply. High pH groundwater (5) Other groundwater (3) Precipitation (1) Seasonal/Intermittent surface wa Perennial surface water (lake or 3c. Maximum water denth. Select only 1	<i>3b.</i> ater (3) stream) (5) <i>3d.</i>	Connectivity. Sc 100 yea Between X Part of n Duration inundat (select on o co	core all that apply. ar floodplain (1) n stream/lake and other human use (1) wetland/upland (e.g. forest), complex (1) riparian or upland corridor (1) inn/saturation.
	 3c. maximum water depth. Select only 1. >0.7 (27.6in) (3) 0.4 to 0.7m (15.7 to 27.6in) (2) <0.4m (<15.7in) (1) 3e. Modifications to natural hydrologic regime. (select one or double check & average None or none apparent (12) x Recovered (7) x Recovering (3) Recent or no recovery (1) 		Check all distr ditch dike tile weir stormwater input	opermanently inundated/saturated (4) ty inundated/saturated (3) ially inundated (2) ially saturated in upper 30cm (12in) (1) urbances observed point source (nonstormwater) if filling/grading road bed/RR track dredging if other- list
30 10 Subtotal Points	Metric 4. Habitat Alteration and Defa 4a. Substrate disturbance. Score one or dout None or none apparent (4) x Recovered (3) x Recovering (2) Recent or no recovery (1) 4b. Habitat development. Select one. Excellent (7) Very good (6) Good (5) Moderately good (4) x Fair (3) Poor to fair (2) Poor (1)	evelopment. (max 20 <i>ible check and average.</i> <i>4c.</i> Check all disturban ✓ mowing grazing clearcutting selective cutting woody debris removal	Habitat alteration None or X Recove Recent Cess observed	n. Score one or double check and average. r none apparent (9) rred (6) rring (3) or no recovery (1) shrub/sapling removal herbaceous/aquatic bed removal sedimentation dredging farming

Site: FirstEner	gy Beaver-Wellington 69kV Transmission Line	Date:	October 2, 2018
Wetland: V	Vetland BW-06a,b (w-bao-100218-01,01b)	Rater:	Ben Otto, Jacobs Solutions
30 subtotal firs	t page		
30 0	Metric 5. Special Wetlands. (max 10 pts.)		
Subtotal Points	Check all that apply and score as indicated		
	Bog (10 pts)		
	Fen (10 pts)		
	Old Growth Forest (10 pts)		
	Mature forested wetland (5 pts)		
	Lake Erie coastal/tributary wetland-unre	stricted hydrol	ogy (10 pts)
	Lake Erie coastal/tributary wetland-restr	icted hydrolog	/ (5 pts)
	Lake Plain Sand Prairies (Oak Opening	s) (10 pts)	
	Relict Wet Prairies (10 pts)		
	Known occurrence state/federal threate	ned or endang	ered species (10)
	Significant migatory songbird/wateriowi	f Qualitativa R	e (10 pis)
	Calegory I Welland. See Question I o		aung. (-10 pts)
35 5	Matric 6 Plant Communities interspersion	microton	ography (max 20 pts)
Subtotal Dainta	for Wotland Vagatation Communities	i, incrotop	ography. (max zo pro.)
Subtotal Politis	Score all present using 0 to 3 scale	Vegetatio	n Community Cover Scale
		Togotatio	
		0	Absent or comprises <0.1 ha (0.2471 acres) contiguous area
		1	Present and either comprises small part of wetland's vegetation and is
	0 Mudflats		of moderate quality, or comprises a significant part but is of low quality
			Present and either comprises significant part of wetland's vegetation
	0 Other (list)	2	and is of moderate quality or comprises a small part and is of high
			quality
	6b. Horizontal (plan view) interspersion		Present and comprises significant part, or more, of wetland's vegetatio
	Select only one	3	and is of high quality
	High (5)		•
	Moderately high (4)	Narrative	Description of Vegetation Quality
	Moderate (3)	low	Low spp diversity and/or predominance of nonnative or disturbance
	x Moderately low (2)	IOW	tolerant native species
	Low (1)		Native spp are dominant component of the vegetation, although
	None (0)	moderate	nonnative and/or disturbance tolerant native spp can also be present,
			and species diversity moderate to moderately high, but generally w/o
	<u>6c. Coverage of invasive plants.</u>		presence of rare threatened of endangered spp
	Refer to Table 1 ORAM long form for list.		A predominance of native species, with nonnative spp and/or
		high	disturbance tolerant native spp absent or virtually absent, and high sp
	Extensive >75 % cover (-5)		diversity and offen, but not always, the presence of rare, threatened, o
	Moderate 25-75% cover (-3)		
	x Sparse 5-25% cover (-1)	Mudflatio	nd Onen Water Class Quality
	Nearly Absent <5% cover (0)		
			Absent <0.1 Na (0.24/1 acres)
			Low U. I na to <1 ha (U.24/1 acres to 2.4/ acres)
		2	Moderate 1 ha to <4 ha (2.47 acres 9.88 acres)
	<u>6a. Microtopography</u>	3	High 4 ha (9.88 acres) or more
	Score all present using U to 3 scale	Microton	ography Covor Scalo
	U vegetated hummocks/tussocks	wilcrotop	Jyraphy Cover Scale
	0 Coarse woody debris >15 cm (6")	0	Absent
	U Standing dead > 25 cm (10") dbh	1	
	i Amphibian breeding pools	1	resent very small amounts or il more common or marginal quality

0	Absent
1	Present very small amounts or if more common of marginal quality
2	Present in moderate amounts, but not of highest quality or in small amounts of highest quality
3	Present in moderate or greater amounts and of highest quality

Provisional Wetland Category:

modified 2

ORAM v. 5.0 Field Form Quantitative Rating

	of marginal quality
2	Present in moderate amounts, but not of highest
	quality or in small amounts of highest quality
3	Present in moderate or greater amounts
	and of highest quality

12.5 GRAND TOTAL (max 100 pts)

Refer to the most recent ORAM Score Calibration Report for the scoring breakpoints between wetland categories at the following address: http://www.epa.state.oh.us/dsw/401/401.html last revised 1 February 2001 jjm

Appendix C OEPA HHEI Datasheets

Headwater Habitat Evaluation Index Field Form HHEI Score (sum of metrics 1+2+3) 23		
SITE NAME/LOCATION S-BCR-102521-01 SITE NUMBER BW-30 RIVER BASIN Black-Rocky RIVER CODE DRAINAGE AREA (mi ²) LENGTH OF STREAM REACH (ft) 1.669 LAT 41.11905 LONG -82.25110 RIVER MILE DATE 10/25/2021 SCORER BCR COMMENTS Stream BW-30. Ephemeral NOTE: Complete All Items On This Form - Refer to "Headwater Habitat Evaluation Index Field Manual" for In STREAM CHANNEL MODIFICATIONS: NONE / NATURAL CHANNEL RECOVERED RECOVERING RECENT OR	structions NO RECOVERY	
1. SUBSTRATE (Estimate percent of every type present). Check ONLY two predominant substrate TYPE boxes. (Max of 32). Add total number of significant substrate types found (Max of 8). Final metric score is sum of boxes A & B TYPE BLDR SLABS [16 pts] PERCENT TYPE PERCENT BUDDER (>256 mm)[16 pts] BUDROCK [16 pts] SILT [3 pt] 5 BEDROCK [16 pts] BEDROCK [16 pts] BEDROCK [16 pts] 5 COBBLE (65-256 mm)[12 pts] 35 CLAY or HARDPAN [0 pt]	HHEI Metric Points Substrate Max = 40 18 A + B	
2. Maximum Pool Depth (Measure the maximum pool depth within the 61 meter (200 feet) evaluation reach at the time of evaluation. Avoid plunge pools from road culverts or storm water pipes) (Check ONLY one box): X > 30 centimeters [20 pts] 5 cm - 10 cm [15 pts] > 22.5 - 30 cm [30 pts] 5 cm [5pts] > 10 - 22.5 cm [25 pts] X MAXIMUM POOL DEPTH (inches): O Sometria (> 13') [30 pts] > 4.0 meters (> 13') [30 pts] X > 3. BANK FULL WIDTH (Measured as the average of 3 - 4 measurements) (Check ONLY one box): > 4.0 meters (> 13') [30 pts] X > 3. > 1.0 m - 1.5 m (> 3' 3" - 4' 8") [15 pts]	Pool Depth Max = 30 0 Bankfull Width Max=30	
× 3.0 m (> 4' 8" - 9' 7") [20 pts] COMMENTS	5	
This information <u>must</u> also be completed RIPARIAN ZONE AND ELOODPLAIN OUALITY VOTE: River Left (L) and Right (R) as looking downstream	+	
RIPARIAN WIDTH FLOODPLAIN QUALITY (Most Predominant per Bank) L R (Per Bank) L R X Wide >10m Mature Forest, Wetland Conservation Tillage Moderate 5-10m X Immature Forest, Shrub or Old Field Urban or Industrial Narrow <5m	Crop on	
FLOW REGIME (At Time of Evaluation) (Check ONLY one box): Stream Flowing Moist Channel, isolated pools, no flow (intermit Subsurface flow with isolated pools (interstitial) Dry channel, no water (ephemeral) COMMENTS SINUOSITY (Number of bends per 61 m (200 ft) of channel) (Check ONLY one box): None 1.0 2.0 3.0 0.5 1.5 2.5 >3 STREAM GRADIENT ESTIMATE Diversity of the base of the ba	tent)	
	π/100 π)	

May 2020 Revision

ADDITIONAL STREAM INFORMATION (This Information Must Also be Completed):

QHEI PERFORMED? Yes X No QHEI Score (If Yes, Attach Completed QHEI form)		
DOWNSTREAM DESIGNATED USE(S)		
WWH Name: Distance from Evaluated Stream		
CWH Name: Distance from Evaluated Stream		
BWH Name: Distance from Evaluated Stream		
MAPPING: ATTACH COPIES OF MAPS, INCLUDING THE <u>ENTIRE</u> WATERSHED AREA. CLEARLY MARK THE SITE LOCATION.		
JSGS Quadrangle Name:NOVANRCS Soil Map Page:NRCS Soil Map Stream Order:		
County: Lorain County Township/City: Huntington Twp		
MISCELLANEOUS		
Base Flow Conditions? (Y/N): Yes Date of last precipitation: Quantity:		
Photo-documentation Notes:		
ElevatedTurbidity?(Y/N): <u>No</u> Canopy (% open):		
Nere samples collected for water chemistry? (Y/N): <u>No</u> Lab Sample # or ID (attach results):		
Field Measures: Temp (°C) Dissolved Oxygen (mg/l) pH (S.U.) Conductivity (umhos/cm)		
s the sampling reach representative of the stream (Y/N) <u>Yes</u> If not, explain:		
Additional comments/description of pollution impacts:		
BIOLOGICAL OBSERVATIONS (Record all observations below)		
Fish Observed? (Y/N) Species observed (if known):		
Frogs or Tadpoles Observed? (Y/N) Species observed (if known):		
Salamanders Observed? (Y/N) Species observed (if known):		
Aquatic Macroinvertebrates Observed? (Y/N) Species observed (if known):		
Comments Regarding Biology:		

DRAWING AND NARRATIVE DESCRIPTION OF STREAM REACH (This must be completed)

Include important landmarks and other features of interest for site evaluation and a narrative description of the stream's location

Site Photos

BW-30

Upstream

Downstream

Stream OS-01			
ChiefDA Primary Headwater Habitat Evaluation Form			
HHEI Score (sum of metrics 1, 2, 3) :			
SITE NAME/LOCATION FirstEnergy Beaver-Wellington 69kV Transmission Line			
SITE NUMBER s-bao-111418-01 RIVER BASIN DRAINAGE AREA (mi²) 0.45			
LENGTH OF STREAM REACH (ft) 200 LAT. 41.28340 LONG82.27120 RIVER CODE RIVER MILE			
DATE 10/02/18 SCORER BAO COMMENTS Intermittent			
NOTE: Complete All Items On This Form - Refer to "Field Evaluation Manual for Ohio's PHWH Streams" for Instructio	ons		
STREAM CHANNEL NONE / NATURAL CHANNEL RECOVERED RECOVERING RECENT OR NO RECOVER MODIFICATIONS:	RY		
(Max of 32). Add total number of significant substrate types found (Max of 8). Final metric score is sum of boxes A & B.	IHEI		
TYPE PERCENT TYPE PERCENT M DD BLDR SLABS [16 pts] 0% 7D SILT [3 pt] 60% PC	oints		
BOULDER (>256 mm) [16 pts]	ıhstrate		
Image: Decision of the second secon	ax = 40		
□ □ GRAVEL (2-64 mm) [9 pts] 20% □ □ MUCK [0 pts]	16		
SAND (<2 mm) [6 pts]			
Total of Percentages of 0.00% (A) Substrate Percentage 100% (B) A	λ + B		
SCORE OF TWO MOST PREDOMINATE SUBSTRATE TYPES: 12 TOTAL NUMBER OF SUBSTRATE TYPES: 4			
2. Maximum Pool Depth (Measure the maximum pool depth within the 61 meter (200 ft) evaluation reach at the time of Pool	ol Depth		
evaluation. Avoid plunge pools from road culverts or storm water pipes) (Check ONLY one box): Ma > 30 centimeters [20 pts] · · · · · · · · · · · · · · · · · · ·	ax = 30		
> 22.5 - 30 cm [30 pts] < 5 cm [5 pts] < 75 cm [5 pts]	15		
3 BANK FULL WIDTH (Measured as the average of 3-4 measurements) (Check ON/ X one box):	ankfull		
> 4.0 meters (> 13') [30 pts] $ > 1.0 m - 1.5 m (> 3' 3" - 4' 8") [15 pts]$	Nidth		
= 3.0 m - 4.0 m (> 9' 7'' - 13') [25 pts] $ > 1.5 m - 3.0 m (> 9' 7'' - 4' 8'') [20 pts]$	ax=30		
COMMENTS AVERAGE BANKFULL WIDTH Feet : 2.00	5		
This information <u>must</u> also be completed RIPARIAN ZONE AND FLOODPLAIN QUALITY 차NOTE: River Left (L) and Right (R) as looking downstream જે			
RIPARIAN WIDTH FLOOPLAIN QUALITY			
L R (Per Bank) L R (Most Predominant per Bank) L R			
Moderate 5-10m Immature Forest, Shrub or Old Urban or Industrial			
Narrow <5m Residential, Park, New Field Open Pasture, Row Crop			
None Fenced Pasture Mining or Construction			
FLOW REGIME (At Time of Evaluation) (Check ONLY one box): Stream Flowing Moist Channel, isolated pools, no flow (Intermittent)			
Subsurface flow with isolated pools (Interstitial) Dry channel, no water (Ephemeral)			
SINUOSITY (Number of bends per 61 m (200 ft) of channel) (Check ON/ X one box):			
STREAM GRADIENT ESTIMATE Flat (0.5 ft/100 ft) Flat to Moderate Moderate (2 ft/100 ft) Moderate to Severe (10 ft/100 ft)			

Stream OS-01

ADDITIONAL STREAM INFORMATION (This Information Must Also be Completed):			
QHEI PERFORMED? - Yes V No QHEI Score (If Yes, Atta	ach Completed QHEI Form)		
DOWNSTREAM DESIGNATED USE(S)	Distance from 5 activity of 0 to 278		
	Distance from Evaluated Stream		
EWH Name:	Distance from Evaluated Stream		
MAPPING: ATTACH COPIES OF MAPS, INCLUDING THE ENTIRE WATERSHEI	DAREA. CLEARLY MARK THE SITE LOCATION		
USGS Quadrangle Name: Kipton NRCS Soil Map F	Page: NRCS Soil Map Stream Order		
County: Lorain Township / City:			
MISCELLANEOUS			
Base Flow Conditions? (Y/N): Y Date of last precipitation: 11/10/18	Quantity: 0.17		
Photograph Information:			
Elevated Turbidity? (Y/N): Canopy (% open):30%			
Were samples collected for water chemistry? (Y/N): (Note lab sample no. or id.	and attach results) Lab Number:		
Field Measures: Temp (°C) Dissolved Oxygen (mg/l) pH (S.U.)	Conductivity (µmhos/cm)		
Is the sampling reach representative of the stream (Y/N) If not, please explain:			
Additional comments/description of pollution impacts:			
BIOTIC EVALUATION			
Performed? (Y/N): (If Yes, Record all observations. Voucher collections optiona ID number. Include appropriate field data sheets from the Pr	I. NOTE: all voucher samples must be labeled with the s imary Headwater Habitat Assessment Manual)		
Fish Observed? (Y/N) Voucher? (Y/N) Salamanders Observed? (Y/N) Frogs or Tadpoles Observed? (Y/N) Voucher? (Y/N) Aquatic Macroinvertebra	Voucher? (Y/N) tes Observed? (Y/N)Voucher? (Y/N)		
Comments Regarding Biology:			

DRAWING AND NARRATIVE DESCRIPTION OF STREAM REACH (This <u>must</u> be completed):

Include important landmarks and other features of interest for site evaluation and a narrative description of the stream's location

FLOW

PHWH Form Page - 2

Reset Form

Stream OS-02		
ChieEPA Primary Headwater Habitat Evaluation Form HHEI Score (sum of metrics 1, 2, 3) : 36		
OUTE NAME (OCATION FirstEnergy Beaver-Wellington 69kV Transmission Line		
SITE NAME/LOCATION TIStEmergy Deaver-weinington 09kv transmission Line	6	
STE NOMBER RIVER BASIN DRAINAGE AREA (MP)		
DATE 10/02/18 SCOPER BAO		
NOTE: Complete All Items On This Form - Pefer to "Eigld Evaluation Manual for Obio's BHWH Streams" for Instruc		
	,0013	
STREAM CHANNEL INONE / NATURAL CHANNEL RECOVERED RECOVERING RECENT OR NO RECOVERING	VERY	
Stream has been channelized and hpanan area has been cut within ROW. Re-vernied in Oct. 2021		
1. SUBSTRATE (Estimate percent of every type of substrate present. Check ONLY two predominant substrate TYPE boxes (Max of 32). Add total number of significant substrate types found (Max of 8). Final metric score is sum of boxes A & B.	HHEI	
TYPE PERCENT TYPE PERCENT	Metric	
□ BLDR SLABS [16 pts] 0% ✓ SILT [3 pt] 40% □ BOULDER (>256 mm) [16 pts] 0% □ LEAF PACK/WOODY DEBRIS [3 pts] 20%	Foints	
BEDROCK [16 pt]	Substrate	
COBBLE (65-256 mm) [12 pts] 0% CLAY or HARDPAN [0 pt] 40%		
GRAVEL (2-64 mm) [9 pts] 0% MUCK [0 pts] 0% SAND (<2 mm) [6 pts]	6	
Bidr Slabs, Boulder, Cobble, Bedrock	A + B	
SCORE OF TWO MOST PREDOMINATE SUBSTRATE TYPES: 3 TOTAL NUMBER OF SUBSTRATE TYPES: 3		
2. Maximum Pool Depth (Measure the maximum pool depth within the 61 meter (200 ft) evaluation reach at the time of	ool Depth	
 So centimeters [20 pts] So centimeters [20 pts] 	Max = 30	
> 22.5 - 30 cm [30 pts] < 5 cm [5 pts]	15	
	15	
3. BANK FULL WIDTH (Measured as the average of 3-4 measurements) (Check ONLY one box):	Bankfull Width	
= 24.0 meters (273) [30 pts] $ = 3.0 m - 4.0 m (> 9'7" - 13') [25 pts] $ $ = 1.0 m (<=3'3") [5 pts]$	Max=30	
> 1.5 m - 3.0 m (> 9' 7" - 4' 8") [20 pts]		
COMMENTS AVERAGE BANKFULL WIDTH Feet 3.50	15	
This information <u>must</u> also be completed RIPARIAN ZONE AND FLOODPLAIN QUALITY သိုNOTE: River Left (L) and Right (R) as looking downstream		
RIPARIAN WIDTH FLOODPLAIN QUALITY		
L R (Per Bank) L R (Most Predominant per Bank) L R		
Moderate 5-10m		
Field Open Pasture, Row Crop		
FLOW REGIME (At Time of Evaluation) (Check ONLY one box):		
Subsurface flow with isolated pools (Interstitial)		
COMMENTS_Ephemeral with pools present		
SINUOSITY (Number of ben <u>ds per 61 m (200 ft) of channel) (Check ONLY one box):</u>		
✓ None 1.0 2.0 3.0 □ 0.5 □ 1.5 □ 2.5 □ 3.0		
STREAM GRADIENT ESTIMATE Image: Flat (0.5 ft/100 ft) Image: Flat to Moderate Image: Moderate (2 ft/100 ft) Image: Moderate to Severe Image: Severe (10 ft/100 ft) Image: Severe (10 ft/100 ft)	ft)	

Stream OS-02

ADDITIONAL STREAM INFORMATION (This Information Must Also be Completed):	
QHEI PERFORMED? - Yes ✔ No QHEI Score (If Yes, Atta	ch Completed QHEI Form)
DOWNSTREAM DESIGNATED USE(S) WWH Name: Plum Creek CWH Name:	Distance from Evaluated Stream 1.33 Distance from Evaluated Stream Distance from Evaluated Stream
MAPPING: ATTACH COPIES OF MAPS, INCLUDING THE <u>ENTIRE</u> WATERSHED	AREA. CLEARLY MARK THE SITE LOCATION
USGS Quadrangle Name: Kipton NRCS Soil Map P	age: NRCS Soil Map Stream Order
County: Lorain Township / City:	
MISCELLANEOUS Base Flow Conditions? (Y/N): Y Date of last precipitation: 09/26/18	Quantity:1.27
Photograph Information:	
Elevated Turbidity? (Y/N): Canopy (% open):	
Were samples collected for water chemistry? (Y/N): (Note lab sample no. or id. a	and attach results) Lab Number:
Is the sampling reach representative of the stream (Y/N) Y If not, please explain:	
BIOTIC EVALUATION Performed? (Y/N): N (If Yes, Record all observations. Voucher collections optional ID number. Include appropriate field data sheets from the Pri Fish Observed? (Y/N) Voucher? (Y/N) Salamanders Observed? (Y/N) Frogs or Tadpoles Observed? (Y/N) Voucher? (Y/N) Aquatic Macroinvertebrat Comments Regarding Biology:	. NOTE: all voucher samples must be labeled with the site mary Headwater Habitat Assessment Manual) Voucher? (Y/N) es Observed? (Y/N) Voucher? (Y/N)
DRAWING AND NARRATIVE DESCRIPTION OF STREAM R Include important landmarks and other features of interest for site evaluation an Fencerow Old field	REACH (This <u>must</u> be completed): In a narrative description of the stream's location
FLOW	

Stream OS-03 (formerly BW-19)		
ChieFP Primary Headwater Habitat Evaluation Form		
HHEI Score (sum of metrics 1, 2, 3) :		
SITE NAME/LOCATION FirstEnergy Beaver-Wellington 138 kV Transmission Line		
SITE NUMBER S-BAO-100119-01 RIVER BASIN 04110001 DRAINAGE AREA (mi²) 0.04		
LENGTH OF STREAM REACH (ft) 50 LAT. 41.15772 LONG82.27069 RIVER CODE RIVER MILE		
NOTE: Complete All Items On This Form - Refer to "Field Evaluation Manual for Obio's PHWH Streams" for Instruction	ons	
MODIFICATIONS: Riparian cut, channelized	.≺Y	
1. SUBSTRATE (Estimate percent of every type of substrate present. Check ONLY two predominant substrate TYPE boxes		
(Max of 32). Add total number of significant substrate types found (Max of 8). Final metric score is sum of boxes A & B.	IHEI etric	
BLDR SLABS [16 pts]	oints	
Image: Description of the state of the	bstrate	
COBBLE (65-256 mm) [12 pts] 5% CLAY or HARDPAN [0 pt] 40%	ix = 40	
$\Box \Box \Box GRAVEL (2-64 mm) [9 pts] = \frac{25\%}{0\%} \qquad \Box \Box \Delta MUCK [0 pts] = \frac{0\%}{0\%}$	14	
Bldr Slabs, Boulder, Cobble, Bedrock	. + B	
2. Maximum Pool Depth (Measure the maximum pool depth within the 61 meter (200 ft) evaluation reach at the time of evaluation. Avoid plunge pools from road culverts or storm water pipes) (Check ONLY one box): Ma	ol Depth ax = 30	
□ > 30 centimeters [20 pts] □ > 5 cm - 10 cm [15 pts] □ > 22.5 - 30 cm [30 pts] □ < 5 cm [5 pts]		
> 10 - 22.5 cm [25 pts]	0	
COMMENTS MAXIMUM POOL DEPTH (Inches): 0.00		
3. BANK FULL WIDTH (Measured as the average of 3-4 measurements) (Check ONLY one box): Ba	ankfull	
	Vidth ax=30	
> 1.5 m - 3.0 m (> 9' 7" - 4' 8") [20 pts]		
COMMENTS AVERAGE BANKFULL WIDTH (Feet): 2.00	5	
This information must also be completed		
RIPARIAN ZONE AND FLOODPLAIN QUALITY 3NOTE: River Left (L) and Right (R) as looking downstream		
$\underline{L} R (Per Bank) \underline{L} R (Most Predominant per Bank) \underline{L} R$		
Wide >10m Mature Forest, Wetland Conservation Tillage		
Field Compared Field		
Image: Ima		
COMMENTS		
FLOW REGIME (At Time of Evaluation) (Check ONLY one box):		
 Stream Flowing Subsurface flow with isolated pools (Interstitial) COMMENTS Moist Channel, isolated pools, no flow (Intermittent) Dry channel, no water (Ephemeral) 		
SINUOSITY (Number of bends per 61 m (200 ft) of channel) (Check ON/ Y and hox):		
STREAM GRADIENT ESTIMATE ✓ Flat (0.5 ft/100 ft) ☐ Flat to Moderate ✓ Moderate (2 ft/100 ft) ☐ Moderate to Severe		

ADDITIONAL STREAM INFORMATION (This Information Must Also be Completed):		
QHEI PERFORMED? - 🗖 Yes 🗹 No QHEI Score (If Yes, At	tach Completed QHEI Form)	
DOWNSTREAM DESIGNATED USE(S)		
WWH Name: >2 river miles	_ Distance from Evaluated Stream	
	_ Distance from Evaluated Stream _	
EWH Name:	Distance from Evaluated Stream	
MAPPING: ATTACH COPIES OF MAPS, INCLUDING THE ENTIRE WATERSHI	ED AREA. CLEARLY MARK THE SITE LOCATION	
USGS Quadrangle Name: Brighton NRCS Soil Map	Page: NRCS Soil Map Stream Order	
County: Lorain Township / City: Welli	ngton	
MISCELLANEOUS		
Base Flow Conditions? (Y/N): Y Date of last precipitation: 09/29/19	Quantity: 0.04	
Photograph Information: 3 photos		
Elevated Turbidity? (Y/N): _ N Canopy (% open): 70		
Were samples collected for water chemistry? (Y/N): _N (Note lab sample no. or id	. and attach results) Lab Number:	
Field Measures: Temp (°C) Dissolved Oxygen (mg/l) pH (S.U.)	Conductivity (µmhos/cm)	
Is the sampling reach representative of the stream (Y/N) Y If not, please explain:		
Additional comments/description of pollution impacts:		
BIOTIC EVALUATION		
Performed? (Y/N): N (If Yes, Record all observations, Voucher collections option	al. NOTE: all youcher samples must be labeled with the site	
ID number. Include appropriate field data sheets from the F	Primary Headwater Habitat Assessment Manual)	
Fish Observed? (V(N) N Selemenders Observed? (V(N) N	Vousbard (V/N) N	
Frogs or Tadpoles Observed? (Y/N) Voucher? (Y/N) Aquatic Macroinvertebr	ates Observed? (Y/N) Voucher? (Y/N)	
Comments Regarding Biology:		
1		

DRAWING AND NARRATIVE DESCRIPTION OF STREAM REACH (This must be completed):

Include important landmarks and other features of interest for site evaluation and a narrative description of the stream's location

Ephemeral channel at edge of ag. field resulting from ag. swale drainage.

Site Photos

Upstream, south

Downstream, north

Substrate

This foregoing document was electronically filed with the Public Utilities

Commission of Ohio Docketing Information System on

12/15/2022 3:59:18 PM

in

Case No(s). 22-0494-EL-BTA

Summary: Amended Application Supplement to Application for Certificate Amendment electronically filed by Ms. Devan K. Flahive on behalf of American Transmission Systems Incorporated