

180 E. BROAD STREET, SUITE 3400 COLUMBUS, OH 43215-3192 TELEPHONE: (614) 744-2570 FACSIMILE: (844) 670-6009 http://www.dickinsonwright.com

CHRISTINE M.T. PIRIK CPirik@dickinsonwright.com (614) 591-5461

September 22, 2022

Ms. Tanowa Troupe, Secretary Ohio Power Siting Board Docketing Division 180 East Broad Street, 11th Floor Columbus, OH 43215

> Re: Case No. 20-931-EL-BGN In the Matter of the Application of Fox Squirrel Solar, LLC for a Certificate of Environmental Compatibility and Public Need to Construct a Solar-Powered Electric Generation Facility in Madison County, Ohio.

Case No. 21-1031-EL-BGA

In the Matter of the Application of Fox Squirrel Solar, LLC for a Boundary Amendment to it Certificate in Case No. 20-931-EL-BGN

Compliance with Condition 30 and 8 - Transportation Plans and Permits

Dear Ms. Troupe:

Fox Squirrel Solar, LLC ("Applicant") is certified to construct a solar-powered electric generation facility in Madison County, Ohio, in accordance with the orders issued by the Ohio Power Siting Board ("OPSB") in the above-referenced cases.

At this time, the Applicant is filing the attached Transportation Plans in compliance with Condition 30 of the OPSB's July 15, 2021 Order in Case No. 20-931-EL-BGN. In addition, the Applicant is filing the attached Transportation Permits in compliance with Condition 8 of the OPSB's July 15, 2021 Order in Case No. 20-931-EL-BGN. The Transportation Plans were provided to OPSB Staff on September 14, 2022 and the Transportation Permits were provided to OPSB Staff on September 20, 2022.

We are available, at your convenience, to answer any questions you may have.

Respectfully submitted,

cc: Grant Zeto Mark Bellamy Theresa White Randall Schumacher Jon Pawley <u>/s/ Christine M.T. Pirik</u> Christine M.T. Pirik (0029759) Matthew C. McDonnell (0090164) Dickinson Wright PLLC 180 East Broad Street, Suite 3400 Columbus, Ohio 43215 (614) 591-5461 cpirik@dickinsonwright.com mmcdonnell@dickinsonwright.com *Attorneys for Fox Squirrel Solar, LLC*

4894-1712-9779 [95732-2]

Fox Squirrel Solar, LLC Case No. 20-931-EL-BGN Case No. 21-1031-EL-BGA

Attachment 1 Roadway Use and Maintenance Agreement

August 9, 2022

MADISON COUNTY, OHIO

ROADWAY USE AND MAINTENANCE AGREEMENT

This Roadway Use and Maintenance Agreement ("**RUMA**") is entered into as of this <u></u>**T** day of August, 2022 (the "**Effective Date**") by and between the Madison County Board of Commissioners, a political subdivision in the State of Ohio whose mailing address is 1 North Main Street, London, Ohio 43140 (the "**County**"); and Fox Squirrel Solar LLC, a Delaware limited liability company whose mailing address is 15445 Innovation Drive, San Diego, California 92128 (hereinafter "**Operator**"). The County and Operator are sometimes hereinafter referred to individually as a "Party" and collectively as the "Parties."

WHEREAS, Operator is proposing to develop, construct, operate and maintain an approximately 577 megawatt solar-powered electric generation facility, including associated substation facilities and improvements, located in Pleasant, Range, and Oak Run Townships, in Madison County, Ohio (the "**Project**").

WHEREAS, Operator is also seeking qualification of the Project for an exemption from the taxation of tangible personal property and real property under Ohio Revised Code Section ("R.C.") 5727.75, which requires, among other things, the Operator to "repair all roads, bridges, and culverts affected by construction as reasonably required to restore them to their preconstruction condition, as determined by the county engineer in consultation with the local jurisdiction responsible for the roads, bridges and culverts."

WHEREAS, in connection with the development, construction, operation and maintenance of the Project, it is expected that Operator and Operator's employees, suppliers, contractors, subcontractors, agents, and representatives, as well as their respective employees, agents, and representatives (collectively, "**Operator's Representatives**") will need to transport equipment and materials over and/or use certain roads, bridges, culverts, berms, shoulders, roadside ditches, guardrails, traffic control devices, and road markings/striping owned, operated and controlled by the County and which are identified on Exhibit A ("**Designated Roads**"), and the County hereby agrees to permit the above activities on the terms and conditions set forth herein;

WHEREAS, the Parties wish to enter into this RUMA to set forth their mutual understanding and agreement regarding the activities described herein, financial security to be provided by Operator, and certain other issues relating to the use of Designated Roads by Operator and Operator's Representatives in connection with the construction of the Project.

NOW THEREFORE, in consideration of the good faith performance by each Party of the mutual covenants hereinafter set forth, and other good and valuable consideration, the receipt and sufficiency of which are hereby acknowledged, the Parties agree as follows:

ROADWAYS

ROAD STUDY AND APPROVALS:

With respect to the portion of any Designated Road that is identified in Exhibit A, the Operator will, at its expense, be required to determine the load capacity that will be required to accommodate any increased traffic for the Project. Operator will then be required to core the existing pavement at reasonable intervals determined by the County Engineer and determine the existing load capacity; provided, however, that if any other project has previously performed geotechnical investigations of the same Designated Road that meet the requirements of this Agreement, the Operator shall be entitled to rely on such information and shall not be required to independently perform a new investigation.

If the existing load capacity is less than Ninety Percent (90%) of the needed load capacity, the Operator must determine appropriate mitigations to be carried out prior to the use of that portion of the Designated Road for the construction of the Project. If the existing load capacity is greater than or equal to Ninety Percent (90%) of the needed load capacity, then no mitigation is necessary.

All calculations and designs shall be stamped by a professional engineer licensed in the State of Ohio. Additionally, the Operator shall hire an independent third-party professional camera crew and videographer and will create a detailed video record and textual narrative of the pre-existing condition of such Designated Road (the "Road Condition Report"). The Operator shall deliver the Road Condition Report to the County Engineer prior to the earlier of (i) Operator commencement of any improvement to such Designated Road or (ii) any use of such Designated Road for the operation of a motor vehicle or other equipment weighing more than ten (10) tonnes. The County Engineer or their designee may participate reasonably in production of the Road Condition Report; provided, that such participation shall not unreasonably delay the production of the Road Condition Report. The County Engineer shall have ten (10) business days after delivery to review the Road Condition Report. The County Engineer shall be deemed to have accepted the Road Condition Report except to the extent that, and only with respect to specifically stated objections on particular Designated Roads as to which, the County Engineer reasonably determines that the Road Condition Report is not a complete and accurate depiction of the pre-existing condition of the Designated Roads. If the County Engineer makes such a determination, the County Engineer shall, within such ten (10) business day period, provide in writing its specific objections to portions of the Road Condition Report detailing such determination, whereupon the Operator may provide reasonable further documentation of the condition of the Designated Roads. If the Operator disagrees with the County Engineer's determination, the County Engineer and Operator shall promptly meet to confer and attempt to reach agreement; provided further, that failure of the Operator and the County Engineer to reach agreement with respect to the condition of the portion of the Designated Roads to which the County Engineer has specifically objected shall not prevent the Operator from using other Designated Roads or portions thereof for which the Road Condition Report has been accepted by the County Engineer or delay the County Engineer's granting of any further permits, authorizations, or consents, except to the extent that construction of the Project would produce an immediate, material and adverse effect on any portions of the Designated Roads for which the Road Condition Report has not been accepted by the County Engineer.

If the County Engineer does not give written notice of any objection to the completeness and accuracy of the Road Condition Report within ten (10) business days, the Road Condition Report shall be deemed accepted by the County Engineer. For the sake of clarity, no approval of the County or the County Engineer

BD

other than any approval required under this paragraph is necessary prior to use of any such Designated Road by Operator or Operator's Representatives. Any new segments of county roads or township roads, or new bridges, to be included as part of this RUMA after the Effective Date shall be approved by the County Engineer (which approval shall not be unreasonably withheld, conditioned, or delayed) and incorporated into this RUMA as an amended Exhibit A.

ROAD USE:

In connection with the development, construction, operation, and maintenance of the Project, the County hereby acknowledges and agrees that Operator and Operator's Representatives may use the Designated Roads at any time, seven (7) days a week, 365 days a year, starting on the Effective Date. Notwithstanding the foregoing, Operator will endeavor, to the extent practical, to use the Designated Roads in a manner and at times to minimize the impact to and inconvenience of the traveling public.

PRE-PROJECT ROAD MODIFICATIONS:

If the County Engineer and Operator mutually determine that any modifications and/or improvements are reasonably necessary to accommodate the transport of heavy equipment, materials, and/or multiple heavy loads, Operator agrees to submit stamped engineering drawings to the County Engineer for review and approval prior to commencement of the modifications and improvements, which approval shall not be unreasonably withheld, conditioned or delayed. County consents to all such modifications and improvements approved by the County Engineer.

REDUCED LOAD AND SPEED LIMITS:

Pursuant to R.C. 5577.07 and 5577.071, the County may reduce the maximum weight of vehicles and loads, or the maximum speed, on Designated Roads. Nothing in this RUMA relieves Operator or Operator's Representatives from adhering to such reduction designations.

DAMAGES AND REPAIRS:

In the event it is established by the County Engineer that Operator or Operator's Representatives directly caused any damage to the Designated Roads during the hauling of materials or equipment to the Project site, Operator shall repair (or cause to be repaired) such damage so that the Designated Roads are as close as reasonably practicable to the condition that existed immediately prior to such damage occurring.

The County Engineer may request that Operator engage a third-party inspector to inspect the Designated Roads for the County Engineer no more than once every three months during the Project's construction or after any transport of a load greater than fifteen (15) tonnes on the Designated Roads. Repair work by Operator shall be completed based upon standards set forth in the Ohio Department of Transportation's latest Construction and Materials specifications). Following completion of any such repairs, the County Engineer and Operator shall jointly inspect the repair to confirm that it has been completed to the reasonable satisfaction of the County Engineer. The County understands and agrees that Operator is not responsible for any damage to any of the Designated Roads that is not caused by Operator or Operator's Representatives.

COMPLETION OF THE PROJECT:

After completion of the Project, the County Engineer will inspect the Designated Roads for damage caused by Operator within thirty (30) days of receiving notice of completion of the Project from the Operator. The County Engineer will provide a good faith list of damages, if any, caused by Operator or Operator's Representatives, and Operator shall make the necessary repairs based on applicable standards set forth in the Ohio Department of Transportation's latest Construction and Materials specifications. Necessary repairs will result in the Designated Roads' return to, as close as reasonably practicable, to the condition that existed prior to Operator's use under this RUMA, normal wear and tear excepted; provided, however, Operator shall not be required to resurface an entire road as part of this RUMA.

Operator shall provide written notice to the County Engineer that any necessary repair work has been completed. Upon receipt of the repair completion notice, the County Engineer will have thirty (30) days to accept or reject the above work based upon applicable engineering standards. If the County Engineer tenders a rejection notice, Operator will promptly make the necessary repairs as identified in the rejection notice, or to the extent Operator disagrees as to the need for additional repairs, provide a written explanation as to why such repairs are not necessary. If no repairs are required or following the resolution and completion of any additional repairs and the County Engineer's acceptance of the repairs, any Party may terminate this Agreement by providing written notice of such termination to the other Parties.

BASIC TERMS OF ROAD USE

OBEY ALL TRAFFIC LAWS:

All vehicles driven by Operator or Operator's Representatives shall: (i) abide by applicable speed limits as posted, or if not posted, as otherwise applicable; and (ii) comply with all reasonable requests of the County Engineer to take necessary precautions to timely remove dirt, mud, dust, and debris carried onto the Designated Roads by trucks and trailers hauling material to/from the Project.

SIGNAGE:

During construction of the Project, Operator or Operator's Representatives shall be responsible for placing and maintaining signage on the Designated Roads in compliance with applicable provisions of the Ohio Manual of Uniform Traffic Control Devices.

ROAD CLOSURE NOTICE FOR REPAIRS:

This RUMA shall not prohibit the County from closing Designated Roads to any vehicle or combination of vehicles if such closing is authorized by law and is deemed necessary for public safety. In the event it becomes necessary for any of the Designated Roads to be closed for any reason relating to the construction of the Project, Operator shall provide reasonable advance notice of any such closure to County Engineer. Notwithstanding the foregoing, Operator shall provide no less than seven (7) days advance notice of any such closure when reasonably practicable. Operator shall furnish all materials reasonably necessary to close any of the Designated Roads as a result of the construction of the Project. Operator shall designate a person to coordinate the transportation related activities of Operator related to the Project.

PERFORMANCE ASSURANCE BOND:

Prior to commencement of transportation of major equipment or materials to the Project, carrying loads in excess of fifteen (15) tonnes, on routes designated in Exhibit A, Operator shall post a bond or other surety (the "**Performance Bond**") to cover the cost of any damages directly caused to the Designated Roads by Operator or Operator's Representatives, and which are not remedied in accordance with the terms and conditions in this RUMA.

The amount of the Performance Bond shall be **Two Million Seven Hundred Fifteen Thousand Dollars and No Cents (\$2,715,000.00)**

Notwithstanding anything contained herein to the contrary, it is hereby agreed that the maximum amount of Operator's liability and obligation with respect to its obligations hereunder shall not exceed the amount of the Performance Bond (whether paid directly by Operator, as a result of drawing upon the Performance Bond, or otherwise).

The Performance Bond may be posted in the form of: (i) a surety bond made payable to the Madison County Board of Commissioners and issued by a corporation licensed to do business in Ohio; (ii) an irrevocable letter of credit, parental guarantee or other form of financial security reasonably acceptable to the County; or (iii) cash escrow. The Performance Bond shall remain in full force and effect during the term of this RUMA and shall be immediately released upon the completion of any necessary repair work under this RUMA, following construction of Operator's Project.

DRAW CONDITIONS:

The County may draw upon the Performance Bond only if and to the extent that Operator fails or refuses to promptly perform repairs, or to pay the cost of performing repairs, as set forth in this RUMA, and after all of the following draw conditions have been satisfied: (i) the County certify that Operator failed or refused to perform required repairs or to pay the cost of performing repairs required under this RUMA in a reasonable period of time; (ii) the County certify that that the County performed such repairs (or caused such repair work to be performed); (iii) the County certify that the County incurred expenses for the performance of such repair work; and (iv) the County actually submitted details of such expenses to Operator without payment rendered. Any funds drawn upon by the County under the Performance Bond to cover such expenses shall be subject to all defenses available to the surety under law.

If the County draws upon the Performance Bond, the County shall provide a full accounting of the amount of the draw(s) and the cost of repairs to Operator.

GENERAL PROVISIONS

INDEMNITY AND HOLD HARMLESS:

Operator shall indemnify, defend, and hold the County as well as their officials, officers, and employees harmless from any and all losses, claims, costs, expenses, judgments, suits, actions, proceedings, and damages, including reasonable attorneys' fees (collectively, "Claims") involving personal injury, death or damage to property and arising out of the performance or non-performance of the terms of this RUMA by Operator, except this indemnity provision shall not apply to the extent such Claims arise from or relate to the negligence or intentional misconduct of the County and their respective officials, officers, employees, and/or agents.

ASSIGNMENT:

This RUMA may not be assigned without the written consent of the other Parties, which consent shall not be unreasonably withheld, conditioned or delayed. Notwithstanding the foregoing, Operator may assign all or any portion of its rights under this RUMA to any lender, mortgagee, investor, parent-subsidiary or other affiliated entity, all of which may be done without obtaining the consent of the other signatories to this RUMA.

GOVERNING LAW-STATE OF OHIO:

This RUMA shall be governed by and construed in accordance with the laws of the State of Ohio, without regard to conflict of laws provisions in such state. A federal or state court in Ohio having jurisdiction in Madison County, Ohio shall decide any disputes arising under this RUMA.

PREYAILING WAGE:

As it relates to any road repair work completed under this RUMA, Operator is required to comply with Ohio's prevailing wage requirements as applicable under Ohio law; however, the County shall be solely responsible for providing the prevailing wage coordinator.

AMENDMENTS TO AGREEMENT:

This RUMA shall constitute the complete and entire RUMA between the Parties with respect to the subject matter hereof. No prior statement or agreement, oral or written, shall alter or modify the written terms herein. This RUMA may be amended only by written RUMA properly executed by the Parties.

AUTHORITY:

Operator hereby represents and warrants that this RUMA has been duly authorized, executed and delivered on behalf of Operator. The County hereby represents and warrants that this RUMA has been duly authorized, executed and delivered on behalf of the County.

NOTICES:

All notices, requests, demands and other communications required or permitted to be given by the parties hereunder shall be in writing and shall be delivered in person, by mail, e-mail or facsimile to the address of the intended recipient as set forth below:

MADISON COUNTY

Bryan D. Dhume, P.E., P.S. Madison County Engineer 825 US 42 NE

London, Ohio 43140

Phone: (740) 852-9404

Fax: (740) 852-9530

E-mail: engineer@madison.ohio.gov

OPERATOR

Attn: David Warner, Project Manager Phone: 647-523-3035

E-mail: David.Warner@edf-re.com

With copy to: Jeffrey.Gillie@edf-re.com

In addition to the written communications detailed above, the parties agree that the individuals referenced above shall be the contact persons for any verbal communications regarding any concerns/issues that are associated with this RUMA.

RIGHTS AND WAIVERS:

The failure of a Party to exercise any right under this RUMA shall not, unless otherwise provided or agreed to in writing, be deemed a waiver thereof; nor shall a waiver by a Party of any provision herein be deemed a waiver of any future compliance therewith, and such provisions shall remain in full force and effect.

SEVERABILITY:

If any provision of this RUMA proves to be illegal, invalid, or unenforceable, the remainder of this RUMA will not be affected, impaired or invalidated by such finding and shall remain in full force and effect. To the extent practicable, any provision of this RUMA that proves to be illegal, invalid, or unenforceable, shall be replaced with language as similar as possible to accurately reflect the intentions of the Parties and be legal, valid and enforceable.

COUNTERPARTS:

This RUMA may be executed in any number of counterparts, each of which shall be deemed an original, with the same effect as if the signatures thereto and hereto were upon one and the same counterpart, and all such counterparts together shall constitute one and the same instrument. Delivery of an executed counterpart of a signature page to this RUMA by facsimile, .pdf or electronic mail shall be as effective as personal delivery of an originally signed counterpart to this RUMA.

SUCCESSORS AND ASSIGNS:

This RUMA shall inure to the benefit of and shall be binding upon the Parties hereto, their respective successors, permitted assignees, and legal representatives.

BD

LIMITATION ON DAMAGES:

Notwithstanding any provision in this RUMA to the contrary, in no event shall the Parties be liable (including, without limitation under any indemnity hereunder) for any special, punitive, indirect, incidental or consequential damages (including, without limitation, any claims for lost profits and/or lost business opportunity) in connection with this RUMA, and all such damages are hereby waived.

[Signatures on the following pages]

8

IN TESTIMONY WHEREOF, the parties hereto have caused this Agreement to be executed by their respective duly authorized officers as of the day and year first above written.

FOX SQURREL SOLAR LLC

By: Kalling L. Orfair

Name: Kathryn L. O'Hair, Vice President

Date: 08/25/2022

MADISON COUNTY ENGINEER

By:

Name:

Date:

MADISON COUNTY BOARD OF COMMISSIONERS

By:

Name:

Date:

By:

Name:

Date:

By:

Name:

Date:

IN TESTIMONY WHEREOF, the parties hereto have caused this Agreement to be executed by their respective duly authorized officers as of the day and year first above written.

FOX SQURREL SOLAR LLC

By:

Name:

Date:

MADISON COUNTY ENGINEER

By: By Dhune 8-9-26

Date:

MADISON COUNTY BOARD OF COMMISSIONERS

By: ChRis wallace 1 commissioner

Name: AWIC

By: MARK FORRest/ COMMISSION & Name: Makt. Forrest

Date: < . 4 . 202 8

By: DR. TONY Yenihis/ Commissioner

Name: Tay Xu kis

Date: 8.9.203ª

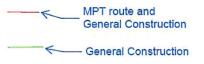
9

APPROVED AS TO FORM

MADISON COUNTY PROSECUTOR

By: 1 h Nick Aditins 8/9/22 Name: Date:

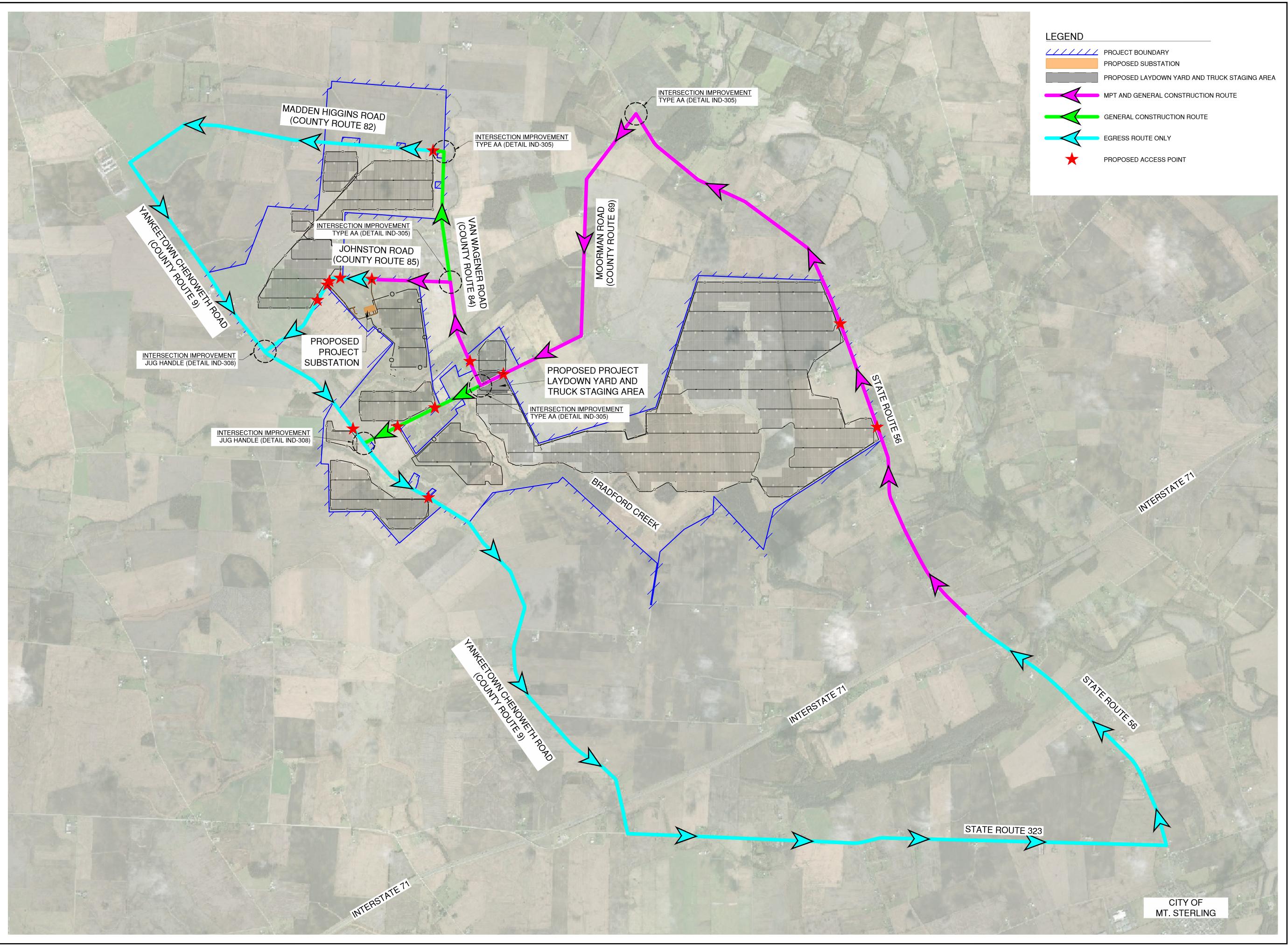
BI>


EXHIBIT A – DESIGNATED ROADS

FOX SQUIRREL SOLAR PROJECT AREA

MPT = Main Power Transformer (only on red road below)

General Construction = non-heavy haul and general contracting traffic road (on red or green road below)

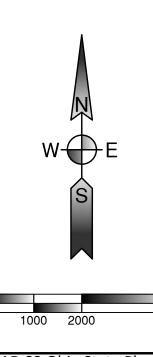

Fox Squirrel Solar, LLC Case No. 20-931-EL-BGN Case No. 21-1031-EL-BGA

Attachment 2 Delivery Flow Plan

Blattner Energy

July 26, 2022

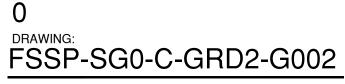
FOX SQUIRREL SOLAR, LLC.


Madison County, Ohio

Rev.	Date	Description	Ву
0	07/26/2022	ISSUED FOR CONSTRUCTION	TLB

Before You Dig

NAD 83 Ohio State Planes, South Zone, US Foot



3350 38th Avenue South Fargo, North Dakota 58104 Phone: 701.280.8500 Fax: 701.237.3191 www.ulteig.com Project Number: 21.00649 Design By: C. SMAALADEN Drawn By: K. GUNDERSON Approved By: L. JORDAHL

DELIVERY FLOW PLAN

REVISION:

Fox Squirrel Solar, LLC Case No. 20-931-EL-BGN Case No. 21-1031-EL-BGA

Attachment 3 Pre-Construction Road Evaluation

American Engineering Testing, Inc.

August 15, 2022

PRE-CONSTRUCTION ROAD EVALUATION

Fox Squirrel Solar Project Madison County, Ohio

AET Report No. P-0013315A

Date: August 15, 2022

Prepared for:

Barr Engineering Co. 4300 MarketPointe Drive, Suite 200 Minneapolis, MN 55435

550 Cleveland Avenue North **Building Technology** Petrography/Chemistry

American Engineering Testing

St. Paul, MN 55114-1804 TeamAET.com • 800.792.6364 August 15, 2022

Barr Engineering Co. 4300 MarketPointe Drive, Suite 200 Minneapolis, MN 55435

Attn: Mr. Cristian Diaz

RE: Pre-construction Road Evaluation Fox Squirrel Solar Project Madison County, Ohio AET Project No. P-0013315

Dear Mr. Diaz:

American Engineering Testing, Inc. (AET) is pleased to present this evaluation report on proposed haul roads for the pre-construction phase of the Fox Squirrel Solar Project in Madison County, Ohio. This evaluation is based on the results of the pavement testing and analysis that AET performed on roads within the Fox Squirrel Solar Project.

Sincerely, **American Engineering Testing, Inc.**

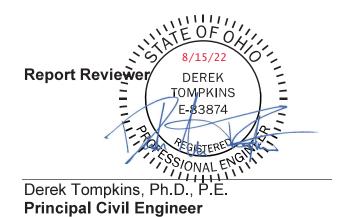
Chunhua Han, Ph.D. **Principal Engineer, Pavement Division** E-mail: chan@teamaet.com Phone: (651) 603-6631, Fax: (651) 659-1347

Pre-construction Road Evaluation Fox Squirrel Solar Project, Madison County, OH August 15, 2022 AET Report No. P-0013315A

SIGNATURE PAGE

Prepared for

Barr Engineering Co. 4300 MarketPointe Drive, Suite 200 Minneapolis, MN 55435


Attn: Mr. Cristian Diaz

Prepared by

American Engineering Testing, Inc. 550 Cleveland Avenue North St. Paul, MN 55114 (651) 659-9001

Project Manager

Chunhua Han, Ph.D. Principal Engineer

Copyright $\ensuremath{\mathbb{C}}$ 2022 American Engineering Testing, Inc. All Rights Reserved

Unauthorized use or copying of this document is strictly prohibited by anyone other than the client for the specific project.

TABLE OF CONTENTS

			<u>Page</u>
1.0	INT	RODUCTION	1
2.0	SC	OPE OF SERVICES	1
3.0	PR	OJECT INFORMATION	1
3	.1	Project locations and roads	1
3	.2	Traffic on Project roads	1
3	.3	Anticipated traffic due to construction	2
4.0	SUI	BSURFACE EXPLORATION, ROAD TESTING, AND RESULTS	2
4	.1	Subsurface conditions	2
4	.2	Surface course thickness (ground penetrating radar)	3
4	.3	Pavement strength (falling weight deflectometer)	4
4	.4	Road condition	4
4	.5	Summary results of testing and road condition rating	4
5.0	EV	ALUATION OF ROAD CONDITION	5
5	.1	Summary evaluation	5
5	.2	Structural properties of road subgrade	5
5	.3	Structural properties of road surface layers	5
5	.4	Suitability of roads as haul routes	5
6.0	TES	ST STANDARDS	6
7.0	LIM	IITATIONS	6

FIGURES AND TABLES

- APPENDIX A Geotechnical Field Exploration and Testing
- APPENDIX B Ground Penetrating Radar Field Exploration and Testing
- APPENDIX C Falling Weight Deflectometer Field Exploration and Testing
- APPENDIX D Pavement Condition Index Field Exploration and Testing
- APPENDIX E Geotechnical Report Limitations and Guidelines for Use

1.0 INTRODUCTION

Barr Engineering ("Barr") has retained American Engineering Testing (AET) to test and evaluate public roads for use as haul routes for the construction of the Fox Squirrel Solar Project ("Project") in Madison County, Ohio. AET performed geotechnical exploration and nondestructive pavement testing at the Project to evaluate the roads selected by Barr as construction haul routes. This report (AET P-0013315A) describes our surface and structural condition evaluation of Project roads.

2.0 SCOPE OF SERVICES

The authorized scope consists of the following services, which were outlined in Barr Work Order 1, dated 5/19/22.

- Direct push soil sampling (referred to as "soil borings") along the Project roads to 4 feet in depth.
- Falling weight deflectometer (FWD) testing of the Project roads
- Ground penetrating radar (GPR) testing on the Project roads
- Digital video logging (DVL) of Project roads using a digital video camera
- Engineering evaluation of the Project roads using DVL, GPR, FWD, and soil boring data to (a) assess ability of the roads to sustain solar farm construction loads and (b) identify preconstruction road sections that are susceptible to significant damage
- Production of the report summarizing evaluations of Project roads

These services are exclusively intended to evaluate the Project roads. The scope is not intended to explore for the presence or extent of environmental contamination in the soil or groundwater. Specific details on the analysis performed are described in the sections below and in appendices to this report.

3.0 PROJECT INFORMATION

3.1 Project locations and roads

The Project is located within approximately 4,250 acres of privately-owned agricultural land north of the City of Chenoweth in Madison County, Ohio (Figure 1). The project area is generally situated west of Ohio State Route SR-56, north of United States Route US-71, south of County Road CR-144, and east of CR-8, as shown in the figures attached to this report.

3.2 Traffic on Project roads

To understand conventional (design) traffic for roads within the Project area, we consulted recent traffic information from the Ohio Department of Transportation (ODOT). The following items describe our understanding of traffic on Project roads based on the ODOT Traffic Monitoring Management System¹.

¹ Ohio Department of Transportation (2022). Traffic Monitoring Management System. Available from <u>https://odot.public.ms2soft.com/tcds/tsearch.asp?loc=odott.com</u>)

- The 2021 annual average daily traffic (AADT) for US highways (US) within the Project was 40,668 vehicles with 13 percent truck traffic.
- The 2021 annual average daily traffic (AADT) for state routes (SR) within the Project was 1,761 vehicles with 30 percent truck traffic.
- The 2019 AADT for CR roads within the Project was 25 to 303 vehicles.
- Truck traffic volumes were not available for county roads (CR) within the Project. Therefore, we have assumed a minimum AADT of 126 and 12 percent truck traffic for these Project roads.

3.3 Anticipated traffic due to construction

We understand that the Project will require the use of public roads to deliver supplies and materials to the work sites during construction. Information related to construction hauling – including but not limited to transportation plans and estimated truck traffic – does not materially affect our engineering evaluation of the road sections.

4.0 SUBSURFACE EXPLORATION, ROAD TESTING, AND RESULTS

To facilitate testing, condition rating, and analysis, AET allocated the Project roads (totaling 20.6 centerline miles) into 17 sections according to road type, road condition, and anticipated construction traffic. Tests and test results on Project roads are described in the subsections below and summarized in the appended Table 1. We encountered roads surfaced with a combination of chip seal, surface treatment, and bituminous wearing course, or "bituminous pavement" (BP).

Our classification of the road sections follows basic pavement engineering principles to help us organize field/lab activities, analysis, and evaluation. These general classifications are not intended to conflict with or replace state agency road classifications, which rely on as-built information, road histories, agency material classifications, and other matters whose review are beyond the scope described in Section 2.

4.1 Subsurface conditions

Thirty-nine (39) soil borings were performed along selected Project roads. Subsurface explorations took place on 6/21/22 using direct push sampling to a depth of approximately 4 feet. After samples were obtained, boring holes were backfilled with a similar surfacing material to match the existing road profile. Collected samples were analyzed in our laboratory to evaluate surfacing material and soil layering and classification. Detailed results of subsurface testing are provided in Appendix A, which includes descriptions of our geotechnical drilling procedure and boring logs. These results are summarized below by road type and structural layer.

<u>Bituminous pavement</u>. The road sections had an intact composite paved surface thickness of 1 to 3-1/4 inches, where the intact surface was composed of seal coating and/or asphalt pavement. We observed deteriorated pavement below the intact paved surface in 38 borings and all cores from the Project roads, where the deterioration may be due to stripping, base erosion, and/or delamination in previously

Pre-construction Road Evaluation **Fox Squirrel Solar Project**, Madison County, OH August 15, 2022 AET Report No. P-0013315A

placed bituminous layers. The deteriorated underlying pavement was varied in composition and ranged from 3/4 to 8-3/4 inches in thickness.

Layers directly supporting paved surfaces. Underlying the intact pavement surfacing and the underlying deteriorated bituminous materials, we observed what we generally consider to be granular base materials. These supporting base layers were observed to have thickness of 4-1/2 to 14-1/2 inches except for one location (B-35) where the pavement was supported by clayey fill materials. Later structural analysis incorporated deteriorated pavement, where present, into a composite base layer with underlying aggregate materials. The following items describe base materials according to Association of State Highway and Transportation Officials (AASHTO) soil classifications.

- Thirty-three (33) samples appeared to consist of granular base materials classified as A-1-b.
- Four (4) samples were classified as A-2-4.
- One (1) sample was classified as A-2-6.
- One (1) sample was classified as A-7-6.

Laboratory tests were performed on two granular base samples. Moisture content tests yielded 7 and 9 percent moisture. Fines content tests (to quantify material passing the No. 200 sieve) indicated 26 and 28 percent fines.

<u>Subgrade soils</u>. From soil borings, we observed that the primary soils within the upper subgrade zone on selected Project roads consisted of lean clay, lean clay with sand, sandy clay, fat clay, and organic clay meeting the A-6, A-7, and A-8 (plastic) soil categories. Laboratory testing was performed on subgrade samples classified as A-6 and A-7: 46 moisture content tests indicated 15 and 37 percent water content; four fines content tests indicated between 74 and 87 percent fines; and four Atterberg limits tests indicated a plasticity index ranging from 16 and 32. One organic content test yielded 6.4 percent organic matter.

4.2 Surface course thickness (ground penetrating radar)

The road layer thickness testing program involves the use of a high-speed (air coupled) GPR antenna to collect pavement data that is later analyzed to evaluate layer thicknesses. AET performed GPR testing on approximately 40.6 lane miles of Project roads on 6/14/22 using a 2 GHz antenna, which allows material layer measurements at depths of 18 inches with a resolution of approximately one-half inch. Our analysis of collected GPR data (summarized by road section in Table 1) included statistical analysis to determine 15th-percentile values for each section. Engineers often use the 15th percentile value – instead of an average or mean (the 50th percentile value) – as a structural "safety factor" to represent layer thickness for pavement design purposes.

- As discussed in Section 4.1, the intact pavements on roads overlaid severely deteriorated, preexisting bituminous pavements. Our GPR analysis attempted to distinguish the intact pavement from a layer consisting of the underlying deteriorated pavement and aggregate base.
- The thickness of intact paved surfacing ranged from 1.4 to 2.5 inches.
- The thickness of composite base (deteriorated pavement and aggregate materials) ranged from

Pre-construction Road Evaluation **Fox Squirrel Solar Project,** Madison County, OH August 15, 2022 AET Report No. P-0013315A

7.8 to 15.9 inches.

Assessing layer thicknesses is a matter of engineering judgement. The distinction between layers in the road is not always explicit. Factors influencing definition of radar scans include ambient electromagnetic interference, the presence of moisture, the presence of voids, and the similarity of material layer type between layers. More specific detail, including statistical analysis of GPR data describing average thickness and variability by section, is provided in Appendix B.

4.3 Pavement strength (falling weight deflectometer)

Deflection testing was performed on 20.6 centerline miles of Project roads on 6/14 and 6/15/22, using a Dynatest 8002 falling weight deflectometer (FWD). Locations of FWD tests are indicated in Figure 1. Collected FWD data – along with information described in the sections above – are used to estimate the elastic stiffness of pavement layers using backcalculation analysis according to the method in the AASHTO *Guide for Design of Pavement Structures* (1993). This method also accounts for allowable axle loads for a roadway. Our backcalculation results were used to estimate the effective subgrade resilient modulus (MR), the AASHTO structural number (SN), and structural capacity of all Project roads. As with GPR-based thickness analysis results, the results of backcalculation analysis of collected Project FWD data are summarized below (and in Table 1) using 15th-percentile values.

- The subgrade MR for all sections ranged from 2.8 to 5.0 ksi.
- The SN value for all sections ranged from 1.2 to 2.4 inches.
- The axle load capacity rating of all sections ranged from 5.4 to 10+ tons/axle.

Additional details of the FWD testing and analysis procedures, including field test data, are provided in Appendix C.

4.4 Road condition

High-resolution DVL data was collected on 6/14/22 for 20.6 centerline miles of roads in the Project. An AET pavement engineer used DVL data to rate the paved roads in general accordance with ASTM D6433. This procedure results in a pavement condition index (PCI) that describes road condition on a scale of 0 to 100, where the index corresponds to qualitative descriptions of pavement condition: "Good" 70-100; "Fair" 55-69; "Poor" 40-54; "Very Poor" 25-39; "Serious" 10-24; and "Failed" 0-9. The road sections, all of which were paved, were rated an average PCI of 53 ("Poor"). The predominant distresses encountered were longitudinal/transverse and edge cracking. We observed that sections along CR 9 (S01 through S08) had an average PCI of 40, which is the lower bound for "Poor" condition. On these sections, we observed low-to-medium severity alligator cracking and patching. Table 1 indicates the condition rating for the evaluated sections. More detail on the surface condition rating by road section is provided in Appendix D.

4.5 Summary results of testing and road condition rating

As noted above, all road test and survey results, including summary analysis of test data, are reported in Table 1 for 17 paved sections.

5.0 EVALUATION OF ROAD CONDITION

5.1 Summary evaluation

We evaluated the performance of the roads as haul routes given the results of testing and analysis (summarized in Table 1). Our evaluation is described in additional detail in the sections below, which correspond to important features of roads.

- Our evaluation of the load capacity is based on analytical procedures and calculations described in the AASHTO *Guide for Design of Pavement Structures* (1993). In addition, we rely on engineering judgement to evaluate the performance of Project roads and structural improvements to serve as functional haul routes for solar farm construction.
- Information regarding risk management and proper use of this evaluation is given in Appendix E, "Geotechnical Report Limitations and Guidelines for Use."
- Should changes to the Project layout and use of roads be considered, please notify AET so that we can review the changes and determine if revisions to the evaluation report are necessary.

We anticipate that some of the paved Project roads will require structural improvements to serve as functional haul routes for Project construction. AET Report P-0013315B considers recommended road improvements for the project, where applicable.

5.2 Structural properties of road subgrade

The predominant subgrade type for the selected roads is lean clay (A-6 or A-7-6). Our FWD backcalculation analysis of the structural properties of the subgrade determined that subgrade soils under Project roads had an average 15th-percentile MR value of 3.9 ksi. In our experience, subgrade MR values less than 4 ksi risk subgrade support issues during truck hauling.

5.3 Structural properties of road surface layers

We anticipate that the structural capacity of the road surfacing will vary with changes in subgrade support and surfacing thickness. Additional variation may occur due to pavement condition.

- The paved sections have an average 15th-percentile SN of 1.8 inches, with minimum and maximum SN of 1.2 and 2.4 inches, respectively. A typical SN for low-volume roads ranges from 2 to 4 inches.
- The paved sections in the Project have an average 15th-percentile axle load capacity of 5.4 to 10+ tons/axle. The axle load rating accounts for the combined structural capacity of the pavement and foundation.

5.4 Suitability of roads as haul routes

We judge that some of the paved road sections with poor subgrade support and/or thin surfacing should be improved prior to Project construction. Furthermore, sections with a poor surface condition should receive surface repairs to reduce the risk of rapid progression of surface distress under haul

Pre-construction Road Evaluation **Fox Squirrel Solar Project,** Madison County, OH August 15, 2022 AET Report No. P-0013315A

traffic. All road sections will require regular maintenance activities during Project construction.

Our estimation of future needs considers surface condition rating, estimated structural capacity, and preliminary estimates of haul traffic for the tested, evaluated roads. More information on the use of the selected paved road sections as haul routes and structural improvements (where appropriate) is discussed in AET Report No. P-0013315B.

6.0 TEST STANDARDS

When we refer to a test standard (e.g., ASTM, AASHTO) in this report, we mean that our services were performed in general accordance with that standard. Compliance with any other standards referenced within the specified standard is neither inferred nor implied.

7.0 LIMITATIONS

Within the limitations of scope, budget, and schedule, we have endeavored to provide our services according to generally accepted geotechnical engineering practices at present time and this location. Other than this, no warranty, express or implied, is intended. Important information regarding risk management and proper use of this report is given in Appendix E, "Geotechnical Report Limitations and Guidelines for Use."

Pre-construction Road Evaluation **Fox Squirrel Solar Project**, Madison County, OH August 15, 2022 AET Report No. P-0013315A

Figures and Tables

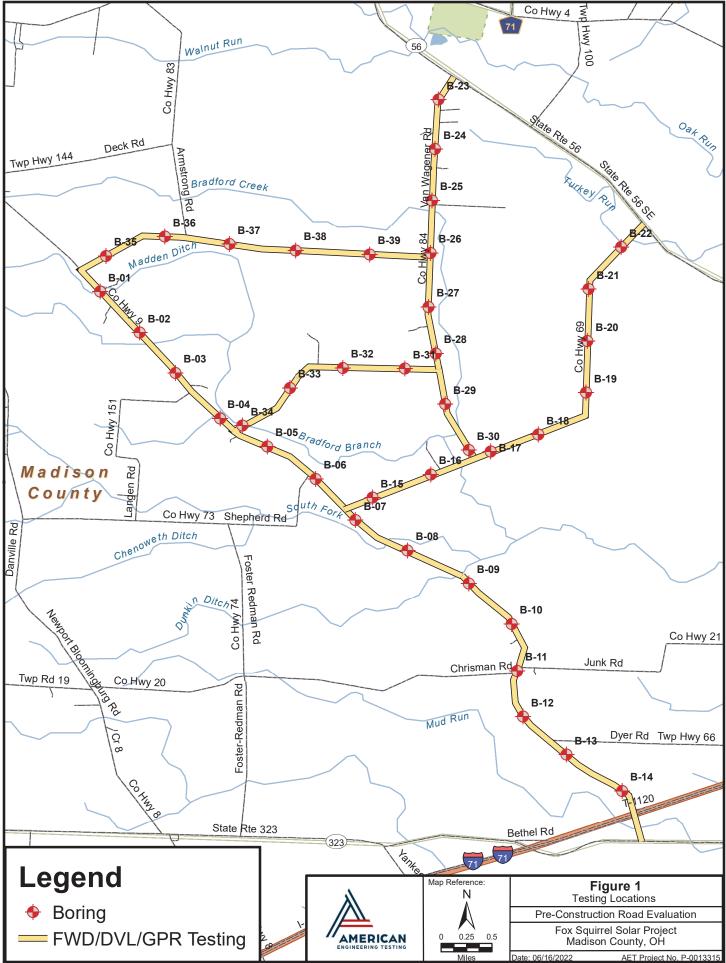
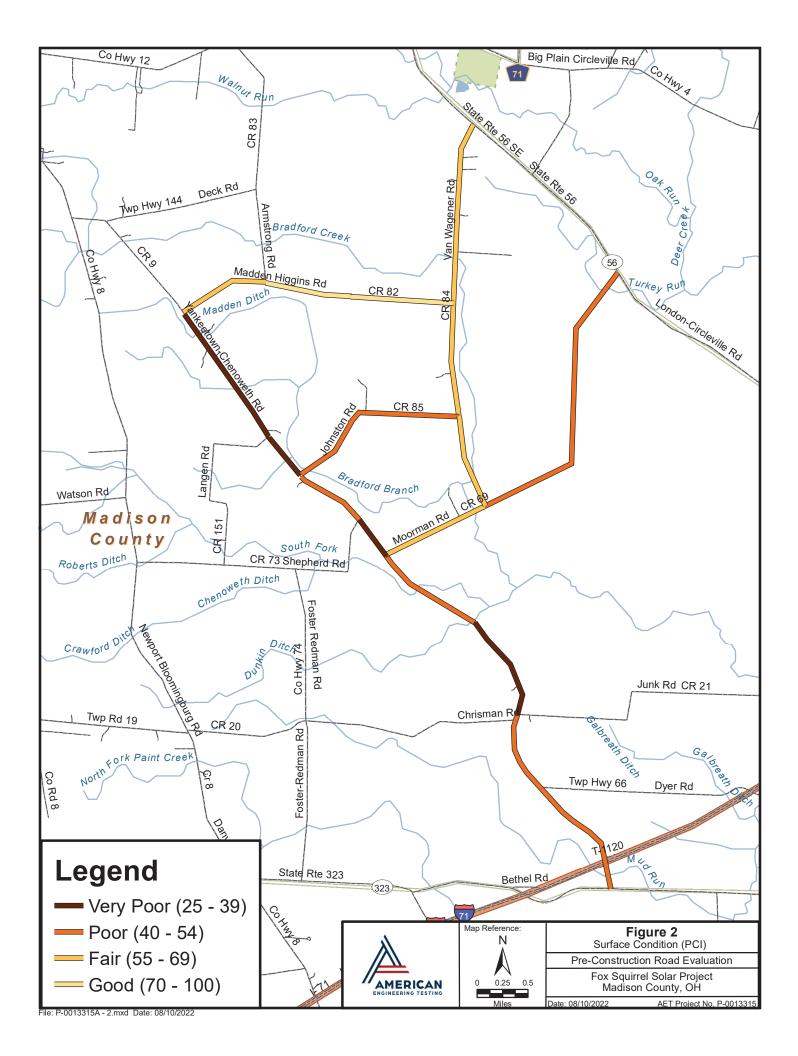

Figure 1 – Testing Locations

Figure 2 – Surface Condition


Figure 3 – Surface Thickness

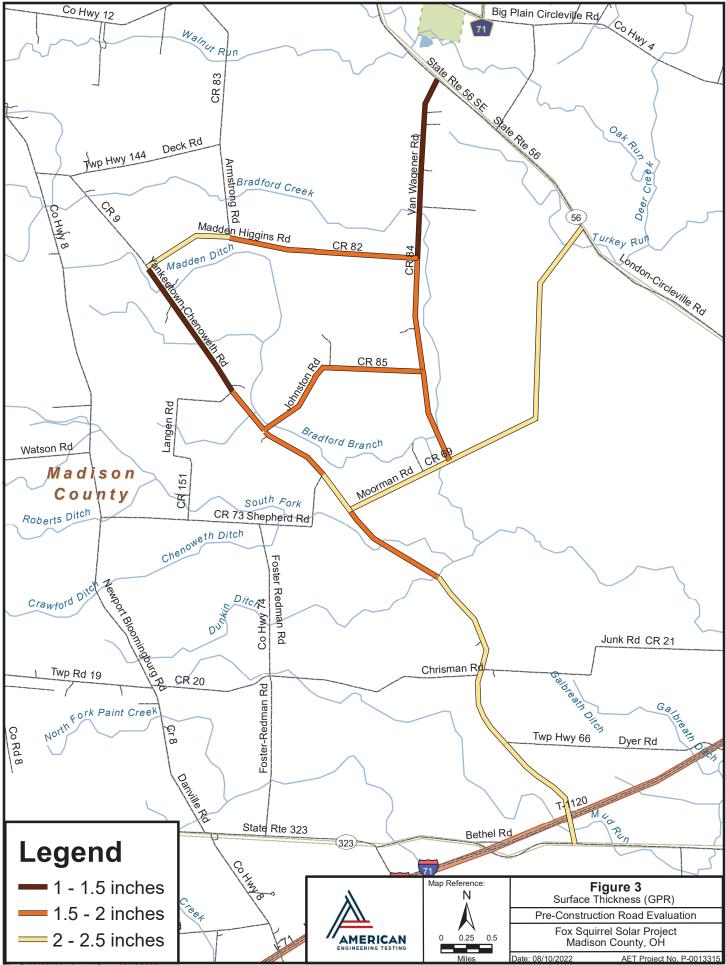
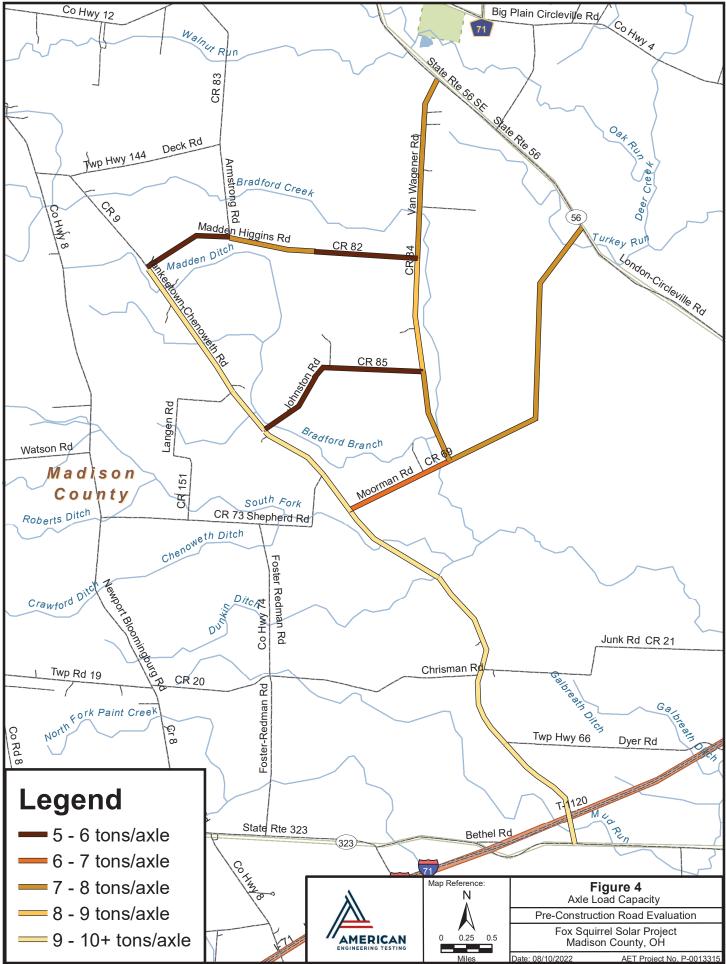
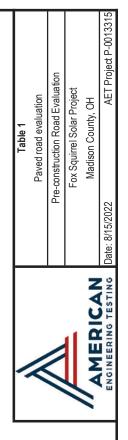

Figure 4 – Axle Load Capacity

Table 1 – Summary of evaluation results for paved Project roads



File: P-0013315A - 1.mxd Date: 06/16/2022



File: P-0013315A - 3.mxd Date: 08/10/2022

File: P-0013315A - 4.mxd Date: 08/10/2022

Section ID	Road	From	To	Length (mi)	Type	PCI	Surface Thickness (in)*	Base Thickness (in)*	Subgrade MR*	Structural Number (in)*	Axle Load Capacity (ton/axle)*
S01	CR 9	SR 323	Dyer Rd	1.3	ВР	41	2.4	12.0	4.3	2.3	10+
S02	CR 9	Dyer Rd	CR 21	0.8	ВР	43	2.2	12.6	3.8	2.3	10+
S03	CR 9	CR 21	1.1 mi N	1.1	ВР	38	2.5	12.1	4.0	2.2	10+
S04	CR 9	1.1 mi S	CR 69	1.2	ВР	41	1.8	12.8	3.8	2.4	1)+
S05	CR 9	CR 69	CR 73	0.4	ВР	39	2.5	11.2	3.9	2.2	10+
S06	CR 9	CR 73	CR 85	0.7	ВР	40	1.7	12.3	4.7	2.1	10+
S07	CR 9	CR 85	CR 151	0.5	ВР	37	1.6	13.0	4.0	2.2	10+
S08	CR 9	CR 151	CR 82	1.5	ВР	37	1.5	13.8	4.0	2.2	10+
809	CR 84	CR 69	CR 85	0.9	ВР	69	1.7	9.2	4.1	1.3	7.6
S10	CR 84	CR 85	CR 82	1.1	ВР	68	1.6	14.2	4.0	1.9	8.5
S11	CR 84	CR 82	SR 56	1.8	ВР	68	1.4	15.9	4.0	2.0	7.4
S12	CR 69	CR 9	CR 84	1.1	ВР	63	2.3	10.2	2.0	1.4	7.0
S13	CR 69	CR 84	SR 56	3.0	ВР	52	2.1	11.9	3.2	1.8	7.7
S14	CR 85	CR 9	CR 85	1.9	ВР	53	1.7	9.6	2.8	1.3	5.8
S15	CR 82	CR 9	CR 83	0.9	ВР	67	2.1	8.2	3.8	1.2	5.4
S16	CR 82	CR 83	0.85 mi E	0.9	ВР	72	1.9	7.8	3.1	1.2	7.4
S17	CR 82	1.0 mi W	CR 84	1.0	ВР	73	1.9	9.4	3.1	1.4	5.8

* - 15th Percentile Values

Pre-construction Road Evaluation **Fox Squirrel Solar Project,** Madison County, OH August 15, 2022 AET Report No. P-0013315A

Appendix A

Geotechnical Field Exploration and Testing Boring Log Notes AASHTO Soil Classification System Unified Soil Classification System Subsurface Boring Logs Summary of Laboratory Results Atterberg Limits Results AASHTO Gradation Curves Organic Content Test

A.1 FIELD EXPLORATION

The subsurface conditions at the site were explored by drilling and sampling thrity-nine (39) direct push soil borings on the county roads. The locations of the borings appear on Figure 1, preceding the Subsurface Boring Logs in this appendix.

A.2 SAMPLING METHODS

A.2.1 Direct Push Samples (DP)

Sample types described as "DP" on the boring logs are continuous core samples collected by the direct push method. The method consists of a 2.125 inch OD outer casing with an inner 1.5-inch ID plastic tube driven continuously into the ground.

A.2.2 Sampling Limitations

Unless observed in a sample, contacts between soil layers are estimated based on the spacing of samples and the action of drilling tools. Cobbles, boulders, and other large objects generally cannot be recovered from test borings, and they may be present in the ground even if they are not noted on the boring logs.

Determining the thickness of "topsoil" layers is usually limited, due to variations in topsoil definition, sample recovery, and other factors. Visual-manual description often relies on color for determination, and transitioning changes can account for significant variation in thickness judgment. Accordingly, the topsoil thickness presented on the logs should not be the sole basis for calculating topsoil stripping depths and volumes. If more accurate information is needed relating to thickness and topsoil quality definition, alternate methods of sample retrieval and testing should be employed.

A.3 CLASSIFICATION METHODS

Soil descriptions shown on the boring logs are based on the Unified Soil Classification (USC) system. The USC system is described in ASTM: D2487 and D2488. Where laboratory classification tests (sieve analysis or Atterberg Limits) have been performed, accurate classifications per ASTM: D2487 are possible. Otherwise, soil descriptions shown on the boring logs are visual-manual judgments. Charts are attached which provide information on the USC system, the descriptive terminology, and the symbols used on the boring logs.

Visual-manual judgment of the AASHTO Soil Group is also noted as a part of the soil description. A chart presenting details of the AASHTO Soil Classification System is also attached.

The boring logs include descriptions of apparent geology. The geologic depositional origin of each soil layer is interpreted primarily by observation of the soil samples, which can be limited. Observations of the surrounding topography, vegetation, and development can sometimes aid this judgment.

A.4 WATER LEVEL MEASUREMENTS

The ground water level measurements are shown at the bottom of the boring logs. The following information appears under "Water Level Measurements" on the logs:

- Date and Time of measurement
- Sampled Depth: lowest depth of soil sampling at the time of measurement
- Casing Depth: depth to bottom of casing or hollow-stem auger at time of measurement
- Cave-in Depth: depth at which measuring tape stops in the borehole
- Water Level: depth in the borehole where free water is encountered
- Drilling Fluid Level: same as Water Level, except that the liquid in the borehole is drilling fluid

The true location of the water table at the boring locations may be different than the water levels measured in the boreholes. This is possible because there are several factors that can affect the water level measurements in the borehole. Some of these factors include: permeability of each soil layer in profile, presence of perched water, amount of time between water level readings, presence of drilling fluid, weather conditions, and use of borehole casing.

Appendix A Geotechnical Field Exploration and Testing AET Report No. P-0013315A

A.5 LABORATORY TEST METHODS

A.5.1 Water Content Tests

Conducted per AET Procedure 01-LAB-010, which is performed in general accordance with ASTM: D2216 and AASHTO: T265.

A.5.2 Atterberg Limits Tests

Conducted per AET Procedure 01-LAB-030, which is performed in general accordance with ASTM: D4318 and AASHTO: T89, T90.

A.5.3 Sieve Analysis of Soils (thru #200 Sieves)

Conducted per AET Procedure 01-LAB-040, which is performed in general conformance with ASTM: D6913, Method A.

A.6 TEST STANDARD LIMITATIONS

Field and laboratory testing is done in general conformance with the described procedures. Compliance with any other standards referenced within the specified standard is neither inferred nor implied.

A.7 SAMPLE STORAGE

Unless notified to do otherwise, we routinely retain representative samples of the soils recovered from the borings for a period of 30 days.

BORING LOG NOTES

DRILLING AND SAMPLING SYMBOLS

Symbol Definition

B,H,N:	Size of flush-joint casing	С
CA:	Crew Assistant (initials)	D
CAS:	Pipe casing, number indicates nominal diameter in	D
	inches	E
CC:	Crew Chief (initials)	Н
COT:	Clean-out tube	L
DC:	Drive casing; number indicates diameter in inches	Ĺ
DM:	Drilling mud or bentonite slurry	0
DR:	Driller (initials)	P
DS:	Disturbed sample from auger flights	1
FA:	Flight auger; number indicates outside diameter in	P
1 / 1.	inches	
HA:	Hand auger; number indicates outside diameter	q,
HSA:	Hollow stem auger; number indicates inside diameter	q
110/11.	in inches	q, R
LG:	Field logger (initials)	R
MC:	Column used to describe moisture condition of	K
MC.	samples and for the ground water level symbols	
N (BPF):	Standard penetration resistance (N-value) in blows per	S
II (DII).	foot (see notes)	T
NQ:	NQ wireline core barrel	v
PQ:	PQ wireline core barrel	v
RD:	Rotary drilling with fluid and roller or drag bit	W
REC:	In split-spoon (see notes) and thin-walled tube	%
nebo.	sampling, the recovered length (in inches) of sample.	70
	In rock coring, the length of core recovered	
	(expressed as percent of the total core run). Zero	
	indicates no sample recovered.	Т
REV:	Revert drilling fluid	a
SS:	Standard split-spoon sampler (steel; 1 ³ / ₈ " is inside	in
	diameter; 2" outside diameter); unless indicated	d
	otherwise	
SU	Spin-up sample from hollow stem auger	p ir
TW:	Thin-walled tube; number indicates inside diameter	F
1	in inches	n
WASH:	Sample of material obtained by screening returning	п
	rotary drilling fluid or by which has collected inside	Т
	the borehole after "falling" through drilling fluid	
WH:		C
	Sampler advanced by static weight of drill rod and 140-pound hammer	c th
WR:		
94mm:	Sampler advanced by static weight of drill rod 94 millimeter wireline core barrel	A
▼.	Water level directly measured in boring	re
_	main for anothy measured in boring	e

 ∇ : Estimated water level based solely on sample appearance

TEST SYMBOLS

Symbol Definition

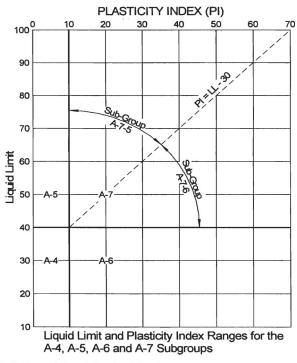
CONS:	One-dimensional consolidation test
DEN:	Dry density, pcf
DST:	Direct shear test
E:	Pressuremeter Modulus, tsf
HYD:	Hydrometer analysis
LL:	Liquid Limit, %
LP:	Pressuremeter Limit Pressure, tsf
OC:	Organic Content, %
PERM:	Coefficient of permeability (K) test; F - Field;
	L - Laboratory
PL:	Plastic Limit, %
q _p :	Pocket Penetrometer strength, tsf (approximate)
q _c :	Static cone bearing pressure, tsf
q _u :	Unconfined compressive strength, psf
R:	Electrical Resistivity, ohm-cms
RQD:	Rock Quality Designation of Rock Core, in percent
	(aggregate length of core pieces 4" or more in length
	as a percent of total core run)
SA:	Sieve analysis
TRX:	Triaxial compression test
VSR:	Vane shear strength, remoulded (field), psf
VSU:	Vane shear strength, undisturbed (field), psf
WC:	Water content, as percent of dry weight
%-200:	Percent of material finer than #200 sieve

STANDARD PENETRATION TEST NOTES

The standard penetration test consists of driving the sampler with a 140 pound hammer and counting the number of blows applied in each of three 6" increments of penetration. If the sampler is driven less than 18" (usually in highly resistant material), permitted in ASTM:D1586, the blows for each complete 6" increment and for each partial increment is on the boring log. For partial increments, the number of blows is shown to the nearest 0.1' below the slash.

The length of sample recovered, as shown on the "REC" column, may be greater than the distance indicated in the N column. The disparity is because the N-value is recorded below the initial 6" set (unless partial penetration defined in ASTM:D1586 is encountered) whereas the length of sample recovered is for the entire sampler drive (which may even extend more than 18").

AASHTO SOIL CLASSIFICATION SYSTEM


Classification of Soils and Soil-Aggregate Mixtures

	Granular Materials Silt-Clay Materials													
			Gra	nular Mate	rials				Silt-Clay	Materials				
General Classification		(3	5% or less	passing N	lo. 200 sie	ve)		(More that	n 35% pas	ssing No. 2	200 sieve)			
	A	-1			A	-2					A-7			
Group Classification	A-1-a	A-1-b	A-3	A-2-4	A-2-5	A-2-6	A-2-7	A-4	A-5	A-6	A-7-5			
	A-1-a	A-1-0	A-3	A-2-4	A-2-0	A-2-0	A-2-1				A-7-6			
Sieve Analysis, Percent passing:														
No. 10 (2.00 mm)	50 max.													
No. 40 (0.425 mm)	30 max.	50 max.	51 min.											
No. 200 (0.075 mm)	15 max.	25 max.	10 max.	35 max.	35 max.	35 max.	35 max.	36 min.	36 min.	36 min.	36 min.			
Characteristics of Fraction Passing No. 40 (0.425 mm)														
Liquid limit				40 max.	41 min.	40 max.	41 min.	40 max.	41 min.	40 max.	41 min.			
Plasticity index	6 n	nax.	N.P.	10 max.	10 max.	11 min.	11 min.	10 max.	10 max.	11 min.	11 min.			
Usual Types of Significant Constituent Materials	Stone Fragments, Gravel and Sand		Fine Sand	Silty	or Clayey (Gravel and	I Sand	Silty	Soils	Claye	y Soils			
General Ratings as Subgrade			Exc	cellent to G	Good				Fair to	Poor				

AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS

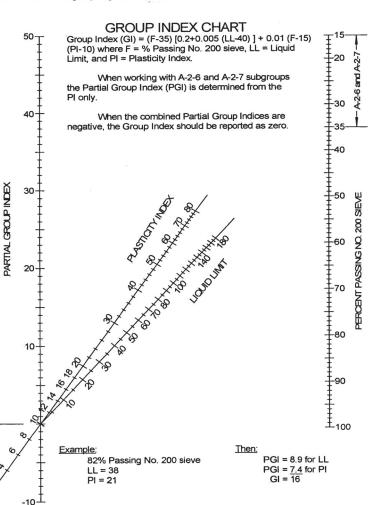
The placing of A-3 before A-2 is necessary in the "left to right elimination process" and does not indicate superiority of A-3 over A-2.

Plasticity index of A-7-5 subgroup is equal to or less than LL minus 30. Plasticity index of A-7-6 subgroup is greater than LL minus 30.

Definitions of Gravel, Sand and Silt-Clay

The terms "gravel", "coarse sand", "fine sand" and "silt-clay", as determinable from the minimum test data required in this classification arrangement and as used in subsequent word descriptions are defined as follows:

GRAVEL - Material passing sieve with 3-in. square openings and retained on the No. 10 sieve.


 COARSE SAND - Material passing the No. 10 sieve and retained on the No. 40 sieve.

 $\mathsf{FINE}\ \mathsf{SAND}\ \mathsf{-}\ \mathsf{Material}\ \mathsf{passing}\ \mathsf{the}\ \mathsf{No}.\ 40\ \mathsf{sieve}\ \mathsf{and}\ \mathsf{retained}\ \mathsf{on}\ \mathsf{the}\ \mathsf{No}.\ 200\ \mathsf{sieve}.$

COMBINED SILT AND CLAY - Material passing the No. 200 sieve

BOULDERS (retained on 3-in. sieve) should be excluded from the portion of the sample to which the classification is applied, but the percentage of such material, if any, in the sample should be recorded.

The term "silty" is applied to fine material having plasticity index of 10 or less and the term "clayey" is applied to fine material having plasticity index of 11 or greater.

UNIFIED SOIL CLASSIFICATION SYSTEM ASTM Designations: D 2487, D2488

AMERICAN ENGINEERING C.

significantly affect soil properties.

		ASI M Desi	gnations:	D 2487, D24	188		TESTING, INC.
						Soil Classification	Notes
Criteria Io	or Assigning Group Sy		-	•	Group Symbol	Group Name ¹	^B ^A Based on the material passing the 3-in (75-mm) sieve.
Coarse-Grained Soils More	Gravels More than 50% coarse	Clean Gravels Less than 5%	Cu≥4 and		GW	Well graded gravel	
than 50% retained on	fraction retained on No. 4 sieve	fines ^C	Cu<4 and/	/or 1>Cc>3 ^E	GP	Poorly graded grav	vel ^F boulders, or both, add with coords of cGravels with 5 to 12% fines require dual
No. 200 sieve	011 140. 4 31040	Gravels with Fines more	Fines class	sify as ML or MH	GM	Silty gravel ^{F.G.H}	symbols:
		than 12% fines ^C	Fines class	sify as CL or CH	GC	Clayey gravel ^{F.G.H}	GW-GM well-graded gravel with silt GW-GC well-graded gravel with clay
	Sands 50% or	Clean Sands	Cu≥6 and	I≤Cc≤3 ^E	SW	Well-graded sand ^r	GP-GM poorly graded gravel with silt GP-GC poorly graded gravel with clay
	more of coarse fraction passes	Less than 5% fines ^D	Cu<6 and/	for 1>Cc>3 ^E	SP	Poorly-graded sand	^D Sands with 5 to 12% fines require dual
	No. 4 sieve	Sands with	Fines class	sify as ML or MH		Silty sand ^{G.H.I}	SW-SM well-graded sand with silt SW-SC well-graded sand with clay
		Fines more than 12% fines ^D		sify as CL or CH		Clayey sand	SP-SM poorly graded sand with silt
Fine-Grained	Silts and Clays	inorganic	PI>7 and p	olots on or above	SC CL	Lean clay	SP-SC poorly graded sand with clay
Soils 50% or more passes	Liquid limit less than 50		"A" line ^J PI<4 or plo	ots below	ML	Silt ^{KLM}	$E_{Cu} = D_{60} / D_{10}, \qquad Cc = \frac{(D_{30})^2}{2}$
the No. 200 sieve		organic	"A" line ¹	_		Organic clay	D ₁₀ x D ₆₀
(see Plasticity		Olganic	Liquid lim Liquid lim	<u>it-oven dried</u> <0.75 it – not dried	5 OL	Organic clay	^F If soil contains \geq 15% sand, add "with sand" to group name.
Chart below)			-			-	^G If fines classify as CL-ML, use dual
	Silts and Clays Liquid limit 50	inorganic		or above "A" line		Fat clay ^{KLM}	symbol GC-GM, or SC-SM. ^H If fines are organic, add "with organic
	or more		PI plots be	low "A" line	МН	Elastic silt ^{KLM}	fines" to group name. ¹ If soil contains ≥15% gravel, add "with
	-	organic	Liquid limi	it-oven dried <0.75	5 OH	Organic clay	gravel" to group name. If Atterberg limits plot is hatched area,
			-	it – not dried		Organic silt ^{K.L.M.Q}	soils is a CL-ML silty clay. KIf soil contains 15 to 29% plus No. 200
Highly organic soil				organic matter, nd organic in odo		Peat ^R	add "with sand" or "with gravel",
			60 m	_			whichever is predominant. ^L If soil contains ≥30% plus No. 200,
Sirven Opening (# 3.2116 36.34	SIEVE ANALYSIS (m)			cation of fine-grained soils and diffaction of coarse-grained so	d ols		predominantly sand, add "sandy" to group name.
100		0	50 - Equation of Horizontal a	I*A*-line at PI = 4 to L1. = 25.5.	iz unt		^M If soil contains ≥30% plus No. 200, predominantly gravel, add "gravelly"
у ^{во}			then PI = 1 40 - Equation of	0.73 (LL-20)	UH OH	·F-UME	to group name. NPI>4 and plots on or above "A" line.
PERCENT PASSING	Dec = 15mm		Vertical at L 5 30 -	LL = 16 to PI = 7. 0.9 (LL-8)	$\langle \alpha \rangle$		OPI<4 or plots below "A" line. PI plots on or above "A" line.
			2 20-		24		^Q Pl plots below "A" line.
للل الله الله الله الله الله الله الله	Dx = 2.5mm	80		due de la	МНа	or OH	Fiber Content description shown below.
	+++++++++++++++++++++++++++++++++++++++	D.e = 0.075mm		MUZZZZ ML or	r OL		
		100	0 10	16 20 30 40	0 50 60 7	70 80 90 100	
$C_{a} = \frac{D_{a}}{D_{bc}} = \frac{15}{0.075} = 2$		i.6			UQUID LIMIT (LL) Plasticity Chart		· · ·
			LOGY NOTE	ES USED BY AE		ENTIFICATION AN	D DESCRIPTION
	Grain Size		Gravel Per	rcentages	Consistency	y of Plastic Soils	Relative Density of Non-Plastic Soils
Term	<u>Particle Si</u>		<u>rerm</u>	Percent	Term	<u>N-Value, BPF</u>	Term <u>N-Value, BPF</u>
Boulders Cobbles	Over 12 3" to 12		Little Gravel th Gravel	3% - 14% 15% - 29%	Very Soft Soft	less than 2 2 - 4	Very Loose 0 - 4 Loose 5 - 10
Gravel	#4 sieve t	to 3" Gra	avelly	30% - 50%	Firm	5 - 8	Medium Dense 11 - 30
Sand Fines (silt & cla	#200 to #4 ay) Pass #200 s				Stiff Very Stiff	9 - 15 16 - 30	Dense 31 - 50 Very Dense Greater than 50
Mois	sture/Frost Condition		Layering	z <u>Notes</u>	Hard Peat D	Greater than 30 Description	Organic Description (if no lab tests)
D (Dry):	(MC Column) Absense of moisture,	dusty, dry to					Soils are described as <u>organic</u> , if soil is not peat and is judged to have sufficient organic fines
	touch.	Lan	ninations: Lay ½"	yers less than ' thick of	Term	Fiber Content (Visual Estimate)	content to influence the Liquid Limit properties.
M (Moist):	Damp, although free visible. Soil may stil	ll have a high	dif	ffering material color.	Fibric Peat:	Greater than 67%	<u>Slightly organic</u> used for borderline cases. <u>Root Inclusions</u>
W (Wet/	water content (over " Free water visible inte	tended to			Hemic Peat:	33 - 67%	With roots: Judged to have sufficient quantity of roots to influence the soil
Waterbearing):	describe non-plastic s Waterbearing usually	sons.	gre	ockets or layers eater than ½"	Sapric Peat:	Less than 33%	properties. Trace roots: Small roots present, but not judged
F (Frozen):	sands and sand with s			ck of differing aterial or color.			to be in sufficient quantity to

01CLS021 (07/08)

Soil frozen

F (Frozen):

AMERICAN ENGINEERING TESTING, INC.

AET JO	OB NO: P-0013315					LC	OG OF	BO	RING N	0	B	-01 (p. 1 o	f 1)	
PROJE	ECT: Fox Squirrel Sola	ar Project	; Madison	Count	y, OH										
SURFA	CE ELEVATION:		LATITUDI	E:3	9.8094316		LON	I GI	TUDE:	-83	.4342	4428			
DEPTH	MATERIAL D	DESCRIPTIC	N		GEOLOGY	N	MC	S	AMPLE TYPE	REC	FIELI) & LA	BORAT	ORY	FESTS
IN FEET						1	INIC		ТҮРЕ	IN.	WC	DEN	LL	PL	% -#200
	1.75" Bituminous pavemer 8.25" Deteriorated bitumin		:_1		FILL										
	8.25 Deteriorated bitumin	ious materi	181												
1 -	8" FILL, mostly silty sand (A-1-b)	with grave	el, brown								16				
2 -	LEAN CLAY WITH SAN	D, brown ((CL) (A-6)		FINE ALLUVIUM				DP	38					
3 -	LEAN CLAY, brown, a lit laminations of silt around	tle light br 27" (CL) (rown, A-7-6)												
4 -	END OF BORING														
CORP WLAT-LONG P-0013315.6PJ AET+CPT+WELL.GDT 8/10/22 BUOD TUDO TUDO TUDO TUDO															
DE	PTH: DRILLING METHOD			WAT	ER LEVEL MEA	SURE	EMENT	ГS				1	NOTE:	REFE	R TO
Õ d	0.4' Direct Push DATE TIME			SAMPI DEPT	ED CASING H DEPTH	CAU	/E-IN PTH	FI	DRILLIN LUID LE	IG VFI	WATE LEVE		THE A		
	0-4' Direct Push							1 1					SHEET		
													XPLA		
	NG (21/22							\vdash					ERMIN		
	PLETED: 6/21/22													IS LOO	
DR: A	H LG: ML Rig: 441														

	AET JO	DB NO: P-0013315					LC	OG OF	BORING N	0.	B	-02 (p. 1 o	f 1)	
	PROJE	CT: Fox Squirrel Sola	ar Project	; Madisor	n Count	y, OH									
	SURFA	CE ELEVATION:		LATITUI	DE: 39	9.80357966	_	LON	IGITUDE:	-83	.4286	5882			
	DEPTH	MATERIAL D	DESCRIPTIC	N		GEOLOGY	N	MC	SAMPLE TYPE	REC IN.	FIELI) & LA	BORAT	ORY	TESTS
	IN FEET		LUCIAI IIC				IN	IVIC	TYPE	IN.	WC	DEN	LL	PL	%-#200
	1	1" Bituminous pavement 3.5" Deteriorated bitumino 7.5" FILL, mostly silty san brown (A-2-4) LEAN CLAY, gray to brow	id, a little g	gravel,		FILL FINE ALLUVIUM	-		CORE	39	7 18				26
	3 -	LEAN CLAY WITH SAN brown (CL) (A-6)	D, a little ;	gravel,											
	4 -	END OF BORING													
CORP W-LAT-LONG P-0013315.GPJ AET+CPT+WELL.GDT 8/10/22															
0133	DEF	PTH: DRILLING METHOD		1		ER LEVEL MEA							NOTE:	REFE	R TO
D-C		0-4' Direct Push	DATE	TIME	SAMPI DEPT	LED CASING H DEPTH	CAV DE	VE-IN PTH	DRILLIN FLUID LE	NG VEL	WATE LEVE	ER IL	THE A	TTAC	HED
Nol		· · · · · · · · · · · · · · · · · · ·											SHEET	'S FOR	AN
M-LAT										-+		Ē	EXPLA	NATIO	N OF
ORP	BORIN	IG LETED: 6/21/22										T	ERMIN	IOLOC	Y ON
AET_C	DR: A												TH	IS LOO	ũ
٩L	DR. A	11 10. 1711 Nig. 771	1		1		I								B 0.60

PROJECT: Fox Squirrel Solar Project: Madison County, OH SURFACE FLEVATION:		AET JO	B NO:	P-0013315					LC	OG OF	BO	RING N	0	B	-03 ((p. 1 o	f 1)	
DIPPH PET MATERIAL DESCRIPTION GEOLOGY N MC SAMPLE TYPE REC RS FILL & LABORATORY TESTS WC DEN LL PL %~20 2.75" Bituminous pavement 6.25" Deteriorated bituminous material FILL Image: Construction of the second s		PROJEC	CT:	Fox Squirrel Sola	nr Project;	; Madison												
2.75" Bituminous pavement 6.25" Deteriorated bituminous material 1 - 6" FILL, mostly silty sand with gravel, brown (A-1-b) LEAN CLAY, gray to brown (CL) (A-6) 2 - LEAN CLAY, brown (CL) (A-7-6) 3 - 4 END OF BORING 1 END OF BORING			CE ELEV.	ATION:		LATITUD	E: <u>3</u>	9.79783498		LON	NGI	TUDE:	-83	.4235	1316			
2.75° Bituminous pavement 6.25° Deteriorated bituminous material 1 - 6° FILL, mostly silty sand with gravel, brown (A-1-b) LEAN CLAY, gray to brown (CL) (A-6) 2 - LEAN CLAY, brown (CL) (A-7-6) 3 - 4 END OF BORING		DEPTH IN		MATERIAL D	DESCRIPTIC	N		GEOLOGY	N	MC	SĄ	AMPLE	REC		1	1	1	
6.25" Deteriorated bituminous material 0" FILL, mostly silty sand with gravel, brown (A-1-b) LEAN CLAY, gray to brown (CL) (A-6) FINE ALLUVIUM DP 41 END OF BORING		FEET	2 75 11		- 4			ГПІ					11 N.	WC	DEN	LL	PL	%- #200
1 - 6" FILL, mostly silty sand with gravel, brown (A1-b) FINE ALLUVIUM 1 - - - 2 - - - 4 END OF BORING - -						ial												
1 (A1-b) IEAN CLAY, gray to brown (CL) (A-6) FINE 2 IEAN CLAY, brown (CL) (A-7-6) DP 41 25 3 IEAN OF BORING IEAN OF BORING IEAN OF BORING IEAN OF BORING 4 END OF BORING IEAN OF BORING IEAN OF BORING IEAN OF BORING IEAN OF BORING DEPTH: DRILLING METHOD WATER LEVEL MEASUREMENTS NOTE: REFER TO THE ATTACHED SUBJECT TO THE ATTACHED SUBJECT OF PUBLIC LEVEL NOTE: REFER TO THE ATTACHED SUBJECT OF PUBLIC LEVEL 000000000000000000000000000000000000																		
2 - LEAN CLAY, brown (CL) (A-7-6) 3 - - 4 END OF BORING		1 —	(A-1-b))														
2 - LEAN CLAY, brown (CL) (A-7-6) 3 - HOD OF BORING			LEAN	CLAY, gray to brow	wn (CL) (A	A-6)		FINE ALLUVIUM										
LEAN CLAY, brown (CL) (A-7-6) 3 - 4 END OF BORING																		
3 - 4 END OF BORING		2 -										DP	41	25				
4 END OF BORING			LEAN	CLAY, brown (CL)) (A-7-6)													
4 END OF BORING																		
		3 —																
		4																
Total integration of the second se		4 —	END	OF BORING														
Total																		
Total and the second																		
OUT THE DEPTH: DRILLING METHOD WATER LEVEL MEASUREMENTS NOTE: REFER TO 0-4' Direct Push DATE TIME SAMPLED CASING CAVE-IN DRILLING WATER Heat Trached 000000000000000000000000000000000000																		
Total and the second																		
TOP																		
Total and the second of the																		
Total Sector 100 Time SAMPLED CASING CAVE-IN DEPTH: DRILLING METHOD NOTE: REFER TO 0-4' Direct Push DATE TIME SAMPLED CASING CAVE-IN DIRILLING WATER 0-4' Direct Push DATE TIME SAMPLED CASING CAVE-IN DIRILLING WATER 0-4' Direct Push DATE TIME SAMPLED CASING CAVE-IN DIRILLING WATER 0-60 DIRECT Push DATE TIME SAMPLED CASING CAVE-IN DIRILLING WATER 0-60 DIRECT Push DATE TIME SAMPLED CASING CAVE-IN DIRILLING WATER 0-70 DIRECT Push DATE TIME SAMPLED CASING CAVE-IN DIRILLING WATER 0-70 DIRECT Push DATE TIME SAMPLED CASING CAVE-IN DIRILLING SHEETS FOR AN 0-70 DIRECT 0-70 0-70 0-70 0-70 0-70 0-70 0-70 0-70 0-70																		
Total and the second of the																		
TOTAL OF THE OFFICE OF THE OFFICE OF THE ASTRECT O																		
0010000000000000000000000000000000000																		
OUT OF THE ATTACHED OUT OF THE OFFICE OF COMPLETED: OLA' Direct Push DATE TIME SAMPLED CASING DEPTH Direct Push DATE TIME SAMPLED CASING CAVE-IN DRILLING WATER LEVEL MEASUREMENTS NOTE: REFER TO THE ATTACHED SEGNING Image: Completed: GOUNDEETED: 6/21/22	21																	
DEPTH: DRILLING METHOD VATER EVEL MEASUREMENTS NOTE: REFER TO 0-4' Direct Push DATE TIME SAMPLED CASING CAVE-IN DRILLING WATER He ATTACHED 0-4' Direct Push DATE TIME SAMPLED CASING CAVE-IN DRILLING WATER He ATTACHED 0-4' Direct Push DATE TIME SAMPLED CASING CAVE-IN DRILLING WATER He ATTACHED 0-4' Direct Push DATE TIME SAMPLED CASING CAVE-IN DRILLING WATER He ATTACHED 0-4' Direct Push DATE TIME SAMPLED CASING CAVE-IN DRILLING WATER He ATTACHED 0-4' Direct Push DATE III III IIII IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	8/10/2																	
DEPTH: DRILLING METHOD WATER LEVEL MEASUREMENTS NOTE: REFER TO 0-4' Direct Push DATE TIME SAMPLED DEPTH CASING DEPTH DRILLING WATER LEVEL MEASUREMENTS NOTE: REFER TO 0-4' Direct Push DATE TIME SAMPLED DEPTH CASING DEPTH DRILLING DEPTH WATER LEVEL NOTE: REFER TO 0-4' Direct Push DATE TIME SAMPLED DEPTH CASING DEPTH DRILLING DEPTH WATER LEVEL NOTE: REFER TO 0-4' Direct Push DATE TIME SAMPLED DEPTH CASING DEPTH DRILLING DEPTH BORING EXPLANATION OF BORING COMPLETED: 6/21/22 Image: Complete Depth	GDT																	
Horizon Construction Image: SampleD Sector Sect	WELL																	
DEPTH: DRILLING METHOD WATER EVEL MEASUREMENTS NOTE: REFER TO 0-4' Direct Push DATE TIME SAMPLED DEPTH CASING DEPTH DRILLING WATER NOTE: REFER TO 0-4' Direct Push DATE TIME SAMPLED DEPTH CASING DEPTH DRILLING WATER NOTE: REFER TO 0-4' Direct Push DATE TIME SAMPLED DEPTH CASING DEPTH DRILLING WATER NOTE: REFER TO 0-4' Direct Push DATE TIME SAMPLED DEPTH CASING DEPTH DRILLING WATER SHEETS FOR AN 0-10 0-2 0-3	CPT+																	
Open to the second of the second open to the second o	AET+																	
DEPTH: DRILLING METHOD WATER LEVEL MEASUREMENTS NOTE: REFER TO 0-4' Direct Push DATE TIME SAMPLED DEPTH CASING DEPTH DRILLING KLING WATER LEVEL NOTE: REFER TO 0-4' Direct Push DATE TIME SAMPLED DEPTH CASING DEPTH DEPTH DRILLING KLING WATER LEVEL NOTE: REFER TO 0-4' Direct Push DATE TIME SAMPLED DEPTH CASING DEPTH DEPTH DRILLING KLING WATER LEVEL SHEETS FOR AN BORING GOMPLETED: 6/21/22 Image: Complete Compl	5.GPJ																	
0-4' Direct Push DATE TIME SAMPLED DEPTH CASING DEPTH DRILLING FLUID LEVEL WATER LEVEL THE ATTACHED SHEETS FOR AN 0-4' Direct Push DATE TIME SAMPLED DEPTH DEPTH DEPTH DRILLING FLUID LEVEL WATER LEVEL THE ATTACHED SHEETS FOR AN 8 BORING COMPLETED: 6/21/22 Image: Complete Depth Image: Complete Deph Image: Complete Depth <td>01331</td> <td>DEP</td> <td>TH: D</td> <td>RILLING METHOD</td> <td></td> <td></td> <td>WAT</td> <td>ER LEVEL MEA</td> <td>ASURE</td> <td>EMENT</td> <td>ГS</td> <td></td> <td></td> <td></td> <td></td> <td>NOTE:</td> <td>REFE</td> <td>R TO</td>	01331	DEP	TH: D	RILLING METHOD			WAT	ER LEVEL MEA	ASURE	EMENT	ГS					NOTE:	REFE	R TO
BORING COMPLETED: 6/21/22 Completed	0-9 0-0	(0-4' Direct Push DATE TIME				SAMPI DEPT	LED CASING TH DEPTH	CAV	/E-IN PTH	FI	DRILLIN LUID LE	NG VEL	WATI LEVF	ER	THE A	TTAC	HED
BORING BORING EXPLANATION OF BORING COMPLETED: 6/21/22	I-LON		0 Y Direct Tush							-	\vdash		-			SHEET	IS FOI	R AN
BORING S COMPLETED: 6/21/22 TERMINOLOGY ON	W-LAJ														I	EXPLA	NATIO	ON OF
	ORP	BORIN COMPI	ig Leted:	6/21/22											T	ERMIN	IOLOG	GY ON
THIS LOG	AET_C															TH	IS LO	G

	AET JO	B NO: P-001331	5				LC	OG OF	BO	RING N	0.	B	6-04 (p. 1 o	f 1)	
	PROJEC	T: Fox Squirrel So	lar Project	; Madison												
	SURFAC	CE ELEVATION:		LATITUD	DE: 3	9.79134208		LON	١GI	TUDE:	-83	.4171	3335			
	DEPTH IN FEET	MATERIAL	DESCRIPTIO	DN		GEOLOGY	N	MC	SĄ	AMPLE TYPE	REC IN.		D&LA			1
	FËET									IYPE	IN.	WC	DEN	LL	PL	%- #200
		2.25" Bituminous pavem 8.75" Deteriorated bitum		ial		FILL										
		8.75 Deteriorated oftun	mous mater	141												
	1 -	6.5" FILL, mostly silty sa (A-1-b)	and with gra	ivel, brown	L											
		LEAN CLAY, brown, a	little gravich	hrown		FINE	-									
	2 —	(CL) (A-6)	intric grayisi	I DIOWII		ALLUVIUM				DP	40	20				
		LEAN CLAY, a little gra (A-7-6)	avel, brown	(CL)												
	3 —															
	4 —								Ш							
		END OF BORING														
0/22																
T 8/1																
-L.GD																
HWE																
F+CP1																
JAE																
15.GP																
CORP W-LAT-LONG P-0013315.GPJ AET+CPT+WELL.GDT 8/10/22	DEP	TH: DRILLING METHOD		1		ER LEVEL MEA			ГS				1	NOTE:	REFE	R TO
J P C	ſ)-4' Direct Push	DATE	TIME	SAMPI DEPT	LED CASING H DEPTH	CAV DE	VE-IN PTH	FI	DRILLIN JUID LE	NG VEL	WATH LEVE	ER	THE A	TTAC	HED
-LON														SHEET	TS FOF	R AN
N-LAT									+				E	XPLA	NATIC	N OF
ORP	BORIN COMPI	G LETED: 6/21/22											T	ERMIN	IOLOC	GY ON
AET_CO	DR: A										-+			TH	IS LOO	3
₹l	DR. A	L LO. 1711 Mg. 441					I		1							

	AET JO	B NO: P-0013315					LC	OG OF	BO	RING N	0	B	-05 (p. 1 o	f 1)	
	PROJEC	T: Fox Squirrel Sola	r Project	; Madison	Count	y, OH										
	SURFA	CE ELEVATION:		LATITUDI	E: <u>3</u>	9.78730704		LON	I GI	TUDE:	-83	.4104	0854			
	DEPTH	MATERIAL D	DESCRIPTIC	N		GEOLOGY	N	MC	S	AMPLE TYPE	REC IN.	FIELI) & LA	BORAT	ORY	FESTS
	IN FEET						1	INIC		ТҮРЕ	IN.	WC	DEN	LL	PL	%- #200
		1.75" Bituminous pavemer 8.25" Deteriorated bitumin		4	/	FILL										
		8.25 Deteriorated ofturinin	ious paven	lent												
	1 —	7.5" FILL, mostly silty san (A-1-b)	d with gra	vel, brown												
	2 —	LEAN CLAY WITH SAN brownish gray and brown (D, a little ((CL) (A-6)	gravel,		FINE ALLUVIUM	-			DP	42	21				
	3 —	LEAN CLAY, a little grav (A-7-6)	el, brown ((CL)												
	4 —	END OF BORING														
CORP W-LAT-LONG P-0013315.GPJ AET+CPT+WELL.GDT 8/10/22																
113315	DEP	TH: DRILLING METHOD			WAT	ER LEVEL MEA	SURE	EMENT	٢S	1		1	ר ו	NOTE:	REFE	R TO
P-0C		0-4' Direct Push DATE TIME			SAMPI DEPT	ED CASING H DEPTH	CAU	/E-IN PTH	FI	DRILLIN LUID LE	IG VEI	WATE LEVE		THE A		
-LONG	(0-4 Direct Push						1				LL V L		SHEET		
V-LAT									\vdash					XPLA		
NRP V	BORIN	G											T	ERMIN	OLOC	GY ON
AET_CC		LETED: 6/21/22 H LC: ML Pig: 441							$\left \right $				-	TH	IS LOO	Ĵ
٦F	DR: A	H LG: ML Rig: 441														

	AET JO	B NO: P-0013315					LC	OG OF	BOI	RING NO	D	B	-06 ((p. 1 o	f 1)	
	PROJEC	T: Fox Squirrel Sola	r Project	; Madison	Count	y, OH										
	SURFAC	CE ELEVATION:		LATITUDI	E: <u>39</u>	9.78268155		LON	IGI.	FUDE:	-83	.4035	2625			
	DEPTH IN FEET	MATERIAL D	FSCRIPTIC	N		GEOLOGY	N	MC	SA	MPLE YPE	REC	FIELI) & LA	BORAT	FORY '	TESTS
	FEET							WIC	Г	TYPE	IN.	WC	DEN	LL	PL	%- #200
		2.5" Bituminous pavement				FILL				CORE						
		3" Deteriorated bituminous 6.25" FILL, mostly silty sa		aravel												
		brown (A-2-4)	inu, a intile	giavei,												
	1 —	LEAN CLAY, grayish bro	wn and bro	own (CL)		FINE										
		(A-7-6)				ALLUVIUM						18				
												10				
	2 -															
										DP	38					
	3 —	LEAN CLAY WITH SAN	D light br	own (CL)												
		(A-7-6) (possible claystone	e)	own (CL)												
	4 —															
		END OF BORING														
52																
8/10/																
GDT																
WELL																
CPT+																
AET+																
CORP W-LAT-LONG P-0013315.GPJ AET+CPT+WELL.GDT 8/10/22																
3315.	DEP	TH: DRILLING METHOD			WATI	ER LEVEL MEA	L SURF	EMEN1	⊥⊥ [S						DEFE	
P-001	201		DATE			1			-	ORILLIN	IG	WATE		NOTE:		
DNG	(D-4' Direct Push	DATE	TIME	SAMPI DEPT	ED CASING H DEPTH	DE	/E-IN PTH	FĹ	DRILLIN UID LEV	VEL	WATE LEVE	L	THE A		
AT-L(SHEET		
Ч-М-Г	DODBI	C							_					EXPLA		
	BORIN COMPI	LETED: 6/21/22											T	ERMIN		
ÅE	DR: A	H LG: ML Rig: 441												TH	IS LO	G

	AET JO	B NO: P-0013315					LC	OG OF	BO	RING N	0	B	-07 (p. 1 o	f 1)	
	PROJEC	T: Fox Squirrel Sola	ar Project	; Madison		•										
		CE ELEVATION:		LATITUD	E:3	9.77681292		LON	IGI	TUDE:	-83	.3978	2745			
	DEPTH IN FEET	MATERIAL D	DESCRIPTIC	DN		GEOLOGY	N	MC	SĄ	AMPLE TYPE	REC IN.		1	BORAT		-
	FEET					TH I					11N.	WC	DEN	LL	PL	%-#200
		-1.75" Bituminous pavemer 7.25" Deteriorated bitumin		ial	-/	FILL										
	1 —	5" FILL, mostly gravelly st brown (A-1-b)										22				
		LEAN CLAY, brown and	dark brown	n (CL)		FINE ALLUVIUM										
		(A-6)														
	2 —									DP	35					
	3 —															
	4 —	END OF BORING														
0/22																
DT 8/1																
ELL.GI																
T+WE																
ET+CF																
AET_CORP W-LAT-LONG P-0013315.GPJ AET+CPT+WELL.GDT 8/10/22																
3315.G	תות	TH: DRILLING METHOD			WAT	ER LEVEL MEA										
P-0016	DEP	III. DAILLING METHOD					-			DRILLIN	JG	WATE		NOTE:		
SNG	(0-4' Direct Push DATE TIME			SAMPI DEPT	ED CASING H DEPTH	DE	/E-IN PTH	FÍ	DRILLIN LUID LE	VEL	WATE LEVE		THE A		
-AT-LC														SHEET		
Т-М-Ц	BUDIN	BORING COMPLETED: 6/21/22												EXPLA		
COR													T	ERMIN		
AET	DR: A	H LG: ML Rig: 441													IS LOO	j D 0 C 0

AET JO	B NO: P-0013315					LC	OG OF	BO	RING N	0	B	6-08 (p. 1 o	f 1)	
PROJEC	T: Fox Squirrel Sola	r Project	; Madison		•										
	CE ELEVATION:		LATITUD	E:	9.77246164		LOI	VGI	TUDE:	-83	.3903	8057			
DEPTH IN FEET	MATERIAL D	DESCRIPTIC	DN		GEOLOGY	N	MC	S	AMPLE TYPE	REC		1	BORAT		1
FEET									IYPE	IN.	WC	DEN	LL	PL	%- #200
	2" Bituminous pavement 8" Deteriorated bituminous	material			FILL										
		s material													
1 -	3" FILL, mostly silty sand,	brown (A	-2-4)												
1	3" FILL, mostly sand with			n							15				
	\(A-1-b) ORGANIC CLAY, black (A_8)		SWAMP DEPOSIT										
	ORDANIC CLAT, DIACK (h-0)		DEFOSIT					10					
2 -									DP	42					
											20		40	25	
3 -											26		49	25	
4 -	END OF BORING														
0															
8/10/2:															
SDT 8															
ELL.O															
PT+V															
C+L															
CORP W-LAT-LONG P-0013315.GPJ AET+CPT+WELL.GDT 8/10/22 MUDO MUDO 															
335.0				117 A TT		SIDT		<u>ר</u> פ							
E DEP	TH: DRILLING METHOD	_			ER LEVEL MEA			-	ע ז וואט	JG	WATI		NOTE:		
SNG (0-4' Direct Push	DATE	TIME	SAMPL DEPT	ED CASING H DEPTH	DE	/E-IN PTH	FI	DRILLIN LUID LE	VEL	WATE LEVE		THE A		
AT-LC													SHEET		
7-M													EXPLA		
BORIN COMPI	G LETED: 6/21/22											Т	ERMIN		
DR: A	H LG: ML Rig: 441												TH	IS LOO	J

AET JO	B NO: P-0013315				LC	OG OF	BO	RING N	0	B	-09 (p. 1 of	f 1)		
PROJEC	T: Fox Squirrel Sola	r Project;	Madison		-										
	CE ELEVATION:		LATITUDE	:	9.76776793		LON	VGI	TUDE:	-83	.3816				
DEPTH IN FEET	MATERIAL D	ESCRIPTIO	N		GEOLOGY	N	MC	SĄ	AMPLE TYPE	REC IN.		1	BORAT		
FEET	2.05%					_				11N.	WC	DEN	LL	PL	%-#200
-	3.25" Bituminous pavemer 6.75" Deteriorated bitumin		ent	_	FILL										
	0.75 Deteriorated ortainin	ous paven	lent												
1	10" FILL, mostly silty sand (A-2-4)	l with grav	vel, brown												
2 —	LEAN CLAY WITH SAN	D, brown (CL) (A-6)		FINE ALLUVIUM				DP	41	18				
3 —															
4 —	END OF BORING														
DED	TH: DRILLING METHOD			WAT	ER LEVEL MI	TASIDE									
			TDAT					1	DRILLIN	IG	WATE		NOTE:		
(0-4' Direct Push DATE		TIME	SAMPI DEPT	ED CASINC H DEPTH	DE	/E-IN PTH	FÍ	DRILLIN LUID LE	VĒL	WATE LEVE		THE A SHEET		
						_		-					SHEET XPLAI		
BORIN	G				_	_							ERMIN		
	G LETED: 6/21/22					_						1.		IS LOC	I
DR: A	H LG: ML Rig: 441														

AET JO	B NO: P-0013315					LO	GOF	BO	RING N	0	B	-10 (p. 1 o	f 1)		
PROJEC	T: Fox Squirrel Sola	r Project;	Madison		•											
	CE ELEVATION:		LATITUDE	:	9.762	200901		LON	JGI	TUDE:	-83	.3754				
DEPTH IN FEET	MATERIAL D	ESCRIPTIO	N		GE	OLOGY	N	MC	SĄ	AMPLE TYPE	REC IN.		1	BORAT		
FEET	2.75" Ditamin and national	4			FILL						11 %.	WC	DEN	LL	PL	%-#200
-	2.75" Bituminous pavemen 7" Deteriorated bituminous					_										
		1														
1 -	7.75" FILL, mostly silty sat (A-1-b)	nd with gr	avel, brown		-											
-	LEAN CLAY, brown (CL)	(A-7-6)			FINI ALL	e UVIUM						24				
2 —	LEAN CLAY, grayish brow	wn (CL) (A	4-6)							DP	44					
3 —																
	LEAN CLAY WITH SAN brown (CL) (A-6) (possible	D, light bree claystone	own and													
4 —	4 END OF BORING															
DEP	TH: DRILLING METHOD			WAT	L ER LF	EVEL MEA	SURF	MEN7	I IS						DEFE	
						CASING DEPTH	CAV			DRILLIN LUID LE	NG.	WATE LEVE		NOTE: THE A		
0	0-4' Direct Push DATE TIME			SAMPI DEPT	H	DEPTH	DEI	ΥΉ	F1	LUID LE	VEL	LEVE		SHEET		
														EXPLA		
BORIN	ORING OMPLETED: 6/21/22								-					ERMIN		
														TH	IS LOO	-
DR: A	LI LO: IVIL Kig: 441															

AET JO	AET JOB NO: P-0013315						LOO	GOF	BO	RING N	0	В	-11 (j	p. 1 of	f 1)	
PROJEC	T: Fox Squirrel Sola	r Project;	Madison	Count	y, OH											
SURFAC	CE ELEVATION:		LATITUDE	:3	9.755286	53		LON	IGI	TUDE:	-83	.3747	2434			
DEPTH IN	MATERIAL D	DESCRIPTIO	N		GEOLO	GY	N	MC	SĄ	MPLE FYPE	REC) & LAI			
IN FEET										IYPE	IN.	WC	DEN	LL	PL	%-#200
	2.5" Bituminous pavement 6.5" Deteriorated bitumino		1		FILL											
		us materia														
1 —	8.75" FILL, mostly silty sa (A-1-b)	nd with gr	avel, brown													
	LEAN CLAY, brown (CL)	(A-6)			FINE ALLUVIU	Л						21				
2 —										DP	38					
	LEAN CLAY WITH SAN brown (CL) (A-7-6)	D, a little g	gravel,													
3 —																
4 —	END OF BORING															
DEP	TH: DRILLING METHOD				ER LEVEL						-			NOTE:	REFE	r to
()-4' Direct Push	DATE	TIME	SAMPI DEPT	ED CASI H DEP	NG TH	CAVI DEP	E-IN TH	FL	ORILLIN UID LE	₩G VEL	WATE LEVE	L ,	THE A	ITACI	HED
														SHEET		
DODT														XPLAN		
BORIN COMPI	G LETED: 6/21/22												TI	ERMIN		
DR: A	H LG: ML Rig: 441														S LOC	j D 0 (0

	AET JO	B NO: P-0013315					LC	OG OF	BORING N	Ю	B	8-12 (p. 1 o	f 1)	
	PROJEC	T: Fox Squirrel Sola	ar Project	; Madison		•									
	SURFAC	CE ELEVATION:		LATITUD	E: 39	9.74876402		LON	GITUDE:	-83	.3738	9379			
	DEPTH IN FEET	MATERIAL D	DESCRIPTIC	N		GEOLOGY	N	MC	SAMPLE TYPE	REC IN.	FIELI	D&LA	BORA	FORY	TESTS
	FEET						14	WIC	TYPE	IN.	WC	DEN	LL	PL	%- #200
	-	2.5" Bituminous pavement			_	FILL			CORE						
	-	3" Deteriorated bituminous 9" FILL, mostly silty sand		1 1											
	1 —	(A-1-b)	with grave	ei, drown											
	-	LEAN CLAY, brown (CL)) (A-7-6)			FINE ALLUVIUM					23				
	2 -	LEAN CLAY, grayish bro (A-6)	wn to brow	vn (CL)					DP	36					
	3 —														
	4 —	END OF BORING													
AET_CORP W-LAT-LONG P-0013315.GPJ AET+CPT+WELL.GDT 8/10/22															
3315.(DEP	TH: DRILLING METHOD			WAT	ER LEVEL MEA	SURF	L MEN1	I TS					DEFE	
P-001	2.21		DATE	TDAE	SAMPI			/E-IN PTH	DRILLII FLUID LE	NG	WATI LEVE		NOTE:		
DNG		-4' Direct Push	DATE	TIME	DEPT	H DEPTH	DE	PTH	FLUID LE	VEL	LEVE		THE A		
AT-L(SHEET		
N-L												E	EXPLA	NATIO	ON OF
SORP	BORIN COMPI	G LETED: 6/21/22										T	ERMIN	IOLO	GY ON
AET	DR: A												TH	IS LO	G

AET JOB NO: P-0013315						LO	GOF	BOR	ING NO	0	B	-13 (p. 1 o	f 1)	
PROJEC	T: Fox Squirrel Sola	r Project;	; Madison		•										
	CE ELEVATION:		LATITUD	DE: 39	9.74328879		LON	IGIT	UDE:	-83	.3677				
DEPTH IN FEET	MATERIAL D	DESCRIPTIO	N		GEOLOGY	N	MC	SAN	MPLE YPE	REC IN.			BORAT		
FEET	2.75" D:+	- 4			FILL				IIL	11 N .	WC	DEN	LL	PL	%- #200
-	2.75" Bituminous pavemer 6.75" Deteriorated bitumin		al		FILL										
1 -	6" FILL, mostly silty sand (A-1-b)	-	el, brown												
	LEAN CLAY, brown (CL)	(A-6)			FINE ALLUVIUM										
2 —									DP	42					
-	LEAN CLAY WITH SAN brown to dark brown (CL)	D, dark gra (A-7-6)	ayish												
3 —															
5											21		33	17	80
4 —								Ш							
	END OF BORING														
DEP	TH: DRILLING METHOD			1	ER LEVEL MEA				חוות		1 17 A TT		NOTE:		
0	0-4' Direct Push DATE TIM				ED CASING H DEPTH	DE	'E-IN PTH	FLU	RILLIN ЛD LE	VEL	WATE LEVE		THE A		
													SHEET		
DODINI	c												EXPLA		
COMPL	G LETED: 6/21/22											T	ERMIN		
DR: A	H LG: ML Rig: 441												IH	IS LOO	j D 0 (0

1	AET JO	B NO:	P-0013315					LO	OG OF	BO	RING N	0	B	-14 ((p. 1 o	f 1)	
1	PROJEC	CT:	Fox Squirrel Sola	nr Project;	; Madison		•										
5	SURFAC	CE ELEV.	ATION:		LATITUDE	: <u>3</u>	9.73815997		LON	NGI	TUDE:	-83	.3597	5495			
D	EPTH IN		MATERIAL I	DESCRIPTIO	N		GEOLOGY	N	MC	SĄ	AMPLE TYPE	REC IN.	-	1	BORAT	1	1
F	IN FEET		• •					_				IIN.	WC	DEN	LL	PL	%-#200
	-		ituminous pavement eriorated bituminous				FILL										
	1 -	8.5" F (A-1-t	ILL, mostly silty san	d with gra	vel, brown												
	1	(A-1-0	<i>')</i>														
		LEAN	CLAY WITH SAN	D, brown,	lens of silt		FINE ALLUVIUM										
	2 -	with s	and around 26" (CL)) (A-6)			ALLUVIUM				DP	40	17				
	2											-10	1/				
	ľ		CLAY, a little grav	el, brown ((CL)												
	3 —	(A-7-6))														
	3 –																
	4																
	4 -	END	OF BORING							—							
10/22																	
DT 8/																	
ELL.G																	
T+WB																	
1+CF																	
PJ A																	
AET_CORP W.LAT-LONG P-0013315.GPJ AET+CPT+WELL.GDT 8/10/22	DEP																
-0013	DEP	1H: L	DRILLING METHOD				ER LEVEL ME			-	איז זוסרו	JG	W 1		NOTE:		
SNG F	0)-4' I	Direct Push	DATE	TIME	SAMPI DEPT	ED CASING H DEPTH	DE	VE-IN PTH	FÍ	DRILLIN LUID LE	VEL	WATE LEVE	L	THE A		
AT-LC															SHEET		
	DOBBY	C													EXPLA		
COR	COMPI	G LETED:	6/21/22											T	ERMIN		
AET	DR: A	H LG:	ML Rig: 441												TH	IS LO	ť

	AET JO	B NO: P-0013315				LC	OG OF	BO	RING N	0	B	-15 (p. 1 o	f 1)		
	PROJEC	T: Fox Squirrel Sola	r Project;	; Madison (Count	y, OH										
	SURFAC	CE ELEVATION:		LATITUDE	:3	9.78001397		LON	I GI	TUDE:	-83	.3953	9168			
	DEPTH IN FEET	MATERIAL D	DESCRIPTIC	N		GEOLOGY	N	MC	S	AMPLE TYPE	REC	FIELI) & LA	BORAT	ORY	FESTS
	FËET						1			TYPE	IN.	WC	DEN	LL	PL	%-#200
		2" Bituminous pavement 6" Deteriorated bituminous	matorial		\square	FILL										
	-	7.75" FILL, mostly silty sa		avel brown												
	1 —	(A-1-b)	na with gi	avei, brown												
	-	LEAN CLAY, brown and (A, C)	dark brown	n (CL)		FINE ALLUVIUM	1					18				
		(A-6)				ALLOVION						10				
	2 —									DP	40					
		LEAN CLAY, brown (CL)	(A-7-6)													
	3 —															
	4 —	END OF BORING							μ							
0/22																
T 8/1(
LL.GD																
L+WE																
T+CP																
J AE																
315.GF		1														
CORP W-LAT-LONG P-0013315.GPJ AET+CPT+WELL.GDT 8/10/22	DEP	TH: DRILLING METHOD				ER LEVEL MEA			-					NOTE:		
Ч ВИ		-4' Direct Push	DATE	TIME	SAMPI DEPT	ED CASING H DEPTH		/E-IN PTH	FI	DRILLIN LUID LE	NG VEL	WATE LEVE	ER EL	THE A	TTAC	HED
JT-LO														SHEET		
													H	EXPLA	NATIC	ON OF
CORF	BORIN COMPI	G LETED: 6/21/22											T	ERMIN		
AET	DR: A	H LG: ML Rig: 441												TH	IS LOO	Ĵ

	AET JO	B NO: P-0013315				LC	OG OF	BO	RING N	0	B	8-16 (p. 1 o	f 1)		
	PROJEC	T: Fox Squirrel Sola	r Project	; Madison	Count	y, OH										
	SURFA	CE ELEVATION:		LATITUDI	E:3	9.78333278		LON	١GI	TUDE:	-83	.3870	6208			
	DEPTH IN FEET	MATERIAL I	DESCRIPTIC	N		GEOLOGY	N	MC	SĄ	AMPLE TYPE	REC IN.		1	BORAT		1
	FEET	1.05" D'									11N.	WC	DEN	LL	PL	%- #200
	1 -	1.25" Bituminous pavemen 1.75" Deteriorated bitumin 10" FILL, mostly silty sand (A-1-b)	ious pavem			FILL				CORE						
	Ĩ	LEAN CLAY, brown and (A-6)		. ,		FINE ALLUVIUM										
	2 —	LEAN CLAY WITH SAN (A-6)	D, light br	own (CL)						DP	41	26				
	3 —	LEAN CLAY WITH SAN brown (CL) (A-7-6)	D, a little ş	gravel,						DP	41					
	4 —	END OF BORING														
CORP W-LAT-LONG P-0013315.GPJ AET+CPT+WELL.GDT 8/10/22																
13315.	DEF	PTH: DRILLING METHOD			WAT	ER LEVEL MEA	L SURE	L EMENT	ГS			I		NOTE:	REE	R TO
ONG P-00		0-4' Direct Push	DATE	TIME	SAMPI DEPT	ED CASING H DEPTH	CAV DE	/E-IN PTH	FI	DRILLIN JUID LE	JG VEL	WATE LEVE	ER EL	THE A	TTAC	HED
LAT-L														SHEET EXPLAI		
RP W-	BORIN	G												ERMIN		
S F		G LETED: 6/21/22							-				1		IS LOC	
AET	DR: A	H LG: ML Rig: 441												111	-~ 100	-

AE	ET JOB	NO: P-0013315					LC	OG OF	BO	RING N	0	B	8-17 (p. 1 o	f 1)	
PR	ROJECT	Fox Squirrel Sola	r Project	; Madison		•										
		E ELEVATION:		LATITUD	E:	9.78661202		LON	NGI	TUDE:	-83	.3785				
DEP	PTH N ET	MATERIAL D	ESCRIPTIC	DN		GEOLOGY	N	MC	SĄ	AMPLE TYPE	REC		1	BORAT		1
FEI											IN.	WC	DEN	LL	PL	%-#200
		2" Bituminous pavement 4.5" Deteriorated bitumino	us materia	1		FILL										
		9.5" FILL, mostly silty san														
	1 -	and dark brown (A-1-b)	C													
		LEAN CLAY, brown to gr (A-6)	•			FINE ALLUVIUM	-									
	2 - 3 -	LEAN CLAY, slightly org brown (CL) (A-7-6)	anic, dark	grayish						DP	44	30				
	4 —	END OF BORING														
		LIND OF DOKING														
5																
8/10/2																
GDT																
MELL																
CPT+																
AET+																
.GPJ																
CORP WLAT-LONG P-0013315.GPJ AET+CPT+WELL.GDT 8/10/22	DEPT	H: DRILLING METHOD			WAT	ER LEVEL MEA	SURE	EMENT	ГS			I	L,	NOTE:	REE	
P-00		41 DL 12 T	DATE	TIME	SAMPI DEPT	ED CASING H DEPTH	CAN	/E-IN PTH]	DRILLIN JUID LE	NG VET	WAT	ER	THE A		
LONG	0-4' Direct Push				DEPI	n DEPIH	DE	rıH	FL	JOID LE	VEL	LEVE	<u>, L</u>	SHEET		
-LAT									-					EXPLA		
≥ BC	ORING								-					ERMIN		
	OMPLE	ETED: 6/21/22							-				1		IS LO	
H J	r: AH	LG: ML Rig: 441												111	10 LO	

	AET JO	B NO: P-00133	515				LC	OG OF	BO	RING N	0	B	8-18 (p. 1 o	f 1)	
	PROJEC	T: Fox Squirrel S	olar Project	; Madisor		•										
	SURFAC	CE ELEVATION:		LATITUI	DE:39	0.78997818		LON	I GI	TUDE:	-83	.3699	8883			
	DEPTH IN FEET	MATERIA	L DESCRIPTIO	N		GEOLOGY	N	MC	SA	AMPLE TYPE	REC IN.	FIELI) & LA	BORAT	ORY	FESTS
	FEET						IN	WIC		ГҮРЕ	IN.	WC	DEN	LL	PL	%- #200
		<u>1.5" Bituminous pavem</u>		• •	_/	FILL										
		4.75" Deteriorated bitur														
		10.25" FILL, mostly silbrown (A-1-b)	ty sand with g	gravel,												
	1 —											23				
		LEAN CLAY, brown an	nd dark brow	p(CI)		FINE	-									
		(A-7-6)	IIU UAIK DIOW			ALLUVIUM										
	2 –	ORGANIC CLAY, blac	:k (OL/OH) (A-8)		SWAMP	-			DP	38					
			. , ,	,		DEPOSIT										
												37				
	3 —															
	5															
	4 —	END OF BORING														
0/22																
T 8/1																
Ľ.GD																
-WEL																
CPT+																
AET+																
GPJ																
CORP W-LAT-LONG P-0013315.GPJ AET+CPT+WELL.GDT 8/10/22	DEP	TH: DRILLING METHOE)		WAT	ER LEVEL MEA	L SURF	EMENT	L FS		I	1	L,		DEEE	
P-001				TRAC					-	DRILLIN	١G	WATI		NOTE:		
g	(D-4' Direct Push	DATE	TIME	SAMPI DEPT	ED CASING H DEPTH	DE	/E-IN PTH	FL	DRILLIN LUID LE	VEL	WATI LEVE		THE A		
AT-LC														SHEET		
-F		~~												EXPLA		
CORF	BORIN COMPI	G LETED: 6/21/22											Т	ERMIN		
JET	DR: A	H LG: ML Rig: 441												TH	IS LOO	3

AET JO	OB NO: P-0013315					LC	OG OF	BORIN	G NO.	E	B-19 (p. 1 o	f 1)	
PROJE	ECT: Fox Squirrel Sola	ar Project	; Madison		•									
	ACE ELEVATION:		LATITUD	E:	9.79499302		LON	IGITUI	DE: -8	3.3649				
DEPTH IN FEET	MATERIAL I	DESCRIPTIC	N		GEOLOGY	N	MC	SAMP TYP	LE REC E IN.	/	D & LA			
FEET										WC	DEN	LL	PL	%- #200
1 -	1" Bituminous pavement 3" Deteriorated bituminou 11" FILL, mostly silty sand (A-1-b)	s pavement d with grav	t vel, brown		FILL			CO	KE	9				28
	LEAN CLAY, brown, a lit (A-7-6)				FINE ALLUVIUM									
2 -	(CL) (A-7-6)	anic, dark	brown					D	P 39	28				
4 -	END OF BORING													
CORP W-LAT-LONG P-0013315.GPJ AET+CPT+WELL.GDT 8/10/22 GORP W-LAT-LONG P-0013315.GPJ AET+CPT+WELL.GDT 8/10/22 GORP W-LAT-LONG P-0013315.GPJ AET+CPT+WELL.GDT 8/10/22														
DE	EPTH: DRILLING METHOD			WAT	ER LEVEL MEA	SURE	EMENT	S			1	NOTE:	REFE	R TO
AT-LONG P-0	0-4' Direct Push	DATE	TIME	SAMPI DEPT	ED CASING H DEPTH	CAV DE	/E-IN PTH	DRI FLUIE	LLING LEVEL	WAT LEVI		THE A SHEET		
M-L/												EXPLA		
BORI COMI	NG PLETED: 6/21/22										T	ERMIN		
DR: A	AH LG: ML Rig: 441												IS LOO	3

AET JO	PB NO: P-0013315					LC	OG OF	BORING N	NO	B	-20	(p. 1 o	f 1)	
PROJE	CT: Fox Squirrel Sola	ar Project	; Madison		•									
	CE ELEVATION:		LATITUDE	:3	9.8023179		LON	GITUDE:	-83	8.3647				
DEPTH IN FEET	MATERIAL I	DESCRIPTIC	DN		GEOLOGY	N	MC	SAMPLE TYPE	REC IN.		1	BORAT		
FEET	2" Ditamin and a arrange				FILL					WC	DEN	LL	PL	%- #200
1 -	2" Bituminous pavement 3" Deteriorated bituminou 14.5" FILL, mostly silty sa (A-1-b)		avel, brown		FILL									
2 —	LEAN CLAY, brown to da (A-7-6)	ark brown	(CL)		FINE ALLUVIUM	_		DP	42	23				
3 –	ORGANIC CLAY, black ((OL/OH) (/	A-8)		SWAMP DEPOSIT					31				
4	END OF BORING													
DEF	PTH: DRILLING METHOD			WAT	ER LEVEL MEA	SURE	EMENT	rs				NOTE:	REFE	R TO
	0-4' Direct Push	DATE	TIME	SAMPL DEPT	ED CASING H DEPTH	CAV DE	/E-IN PTH	DRILLI FLUID LI	NG EVEL	WATE LEVE		THE A		
												SHEET	TS FOF	R AN
												EXPLA	NATIC	ON OF
BORIN COMP	IG LETED: 6/21/22										1	TERMIN		
DR: A	H LG: ML Rig: 441												IS LOO	
03/2011													01-DF	IR-060

	AET JOI	B NO: P-0013	315				LC	OG OF	BOR	ING NO	0	В	8-21 (p. 1 o	f 1)	
	PROJEC	T: Fox Squirrel	Solar Project	; Madison												
		E ELEVATION:		LATITUD	E:	9.80979865		LON	IGIT	UDE:	-83	3.3645				
D	EPTH IN FEET	MATERL	AL DESCRIPTIO	DN		GEOLOGY	N	MC	SAI	MPLE YPE	REC IN.		D & LA	1		
	FEET	211 D:				EIL I				IIL	119.	WC	DEN	LL	PL	%-#200
	1 —	2" Bituminous paveme 3" Deteriorated bitumin 13.5" FILL, mostly silt (A-1-b)	nous material	avel, brown	1	FILL										
	2 —	LEAN CLAY, slightly (CL) (A-7-6)	organic, dark	brown		FINE ALLUVIUM OR TOPSOIL	_			DP	39	23				
	3 —	LEAN CLAY, brown (CL) (A-7-6)			FINE ALLUVIUM	-									
	4 —	END OF BORING														
CORP W-LAT-LONG P-0013315.GPJ AET+CPT+WELL.GDT 8/10/22																
013315.	DEP	TH: DRILLING METHO	D		WAT	L ER LEVEL MEA	SURE	EMENT	ГS			I		NOTE:	REFF	R TO
D00			DATE	TIME	SAMPI DEPT	LED CASING TH DEPTH	CAV	/E-IN PTH	D	RILLIN JID LE	IG	WATH LEVE	ER	THE A		
-FONG	0-4' Direct Push		DEPI			111		JID LE	VEL	LEVE		SHEET				
V-LAT.									-		\rightarrow			XPLA	NATIC	ON OF
ORP V	BORING	G ETED: 6/21/22									+		T	ERMIN	IOLOC	GY ON
	COMPL DR: A										+			TH	IS LO	5
₹L		LO. MIL NIG. 771		1			1		1							

	AET JO	B NO: P-0013315					LC	OG OF	BO	RING N	0	B	8-22 ((p. 1 o	f 1)	
	PROJEC	T: Fox Squirrel Sola	ar Project	; Madison	Count	ty, OH										
	SURFAC	CE ELEVATION:		LATITUDI	E:3	9.81578818		LON	NGI	TUDE:	-83	.3598	9687			
	DEPTH IN FEET	MATERIAL I	DESCRIPTIC	N		GEOLOGY	N	MC	S	AMPLE TYPE	REC	FIELI	D&LA	BORA	FORY '	TESTS
	FEET		JESCKII IIC					MC	'	ТҮРЕ	IN.	WC	DEN	LL	PL	%- #200
		2" Bituminous pavement				FILL										
		4" Deteriorated bituminou				-										
		11" FILL, mostly silty san (A-1-b)	d with grav	vel, brown												
	1 —	(1110)														
						1										
		LEAN CLAY WITH SAN brown (CL) (A-6)	D, a little	gravel,		TILL OR FINE										
	2 —					ALLUVIUM				DP	37	18				
		LEAN CLAY, brown and	dark brown	(CI)		FINE	-									
		(A-6)	uark brown	I(CL)		ALLUVIUM										
	3 —															
	4 —	END OF BORING							μ							
		END OF DOKING														
0/22																
8/10																
GDI																
VELL																
/+L4																
ET+C																
AET_CORP W-LAT-LONG P-0013315.GPJ AET+CPT+WELL.GDT 8/10/22																
315.G	DDD															
-0013	DEP	TH: DRILLING METHOD				ER LEVEL MEA			-		IC	3374 (197		NOTE:	REFE	R TO
β	()-4' Direct Push	DATE	TIME	SAMPI DEPT	LED CASING TH DEPTH		/E-IN PTH	FÍ	DRILLIN LUID LE	VEL	WATI LEVE	ER	THE A	TTAC	HED
٥Ì		0-4 Direct i usii												SHEET	ГS FOF	R AN
-LAJ									\vdash					EXPLA	NATIC	ON OF
2 AB	BORIN	G LETED: 6/21/22							\vdash				Т	ERMIN	JOLOG	GY ON
Ъ Ч									-						IS LO	
٩L	DR: A	H LG: ML Rig: 441												111		-

AET JO	B NO: P-0013315					LC	OG OF	BOF	RING N	0	B	8-23 (p. 1 o	f 1)	
PROJEC	T: Fox Squirrel Sola	r Project	; Madison		•										
	CE ELEVATION:		LATITUD	E:	9.83682918		LON	NGIT	TUDE:	-83	.3859				
DEPTH IN FEET	MATERIAL D	DESCRIPTIC	DN		GEOLOGY	N	MC	SA	MPLE YPE	REC IN.		1	BORAT		1
FEET	$_{\rm l.5"}$ Bituminous pavement				FILL				IIL	Шч.	WC	DEN	LL	PL	%-#200
	5.5" Deteriorated bitumino		ıl	-/	LILL										
	9" FILL, mostly silty sand	with grave	el, brown												
1	(A-1-b)														
	LEAN CLAY, brown, a lit	tle grav (C	CL) (A-6)		FINE	-									
	,,	8 <u>)</u> (-	_)()		ALLUVIUM										
2 -									DP	36	25				
	LEAN CLAY, brown (CL)) (A-7-6)													
		. ,													
3 -															
4	END OF BORING														
N															
8/10/2:															
GDT															
WELL.															
CPT+															
AET+															
CORP W-LAT-LONG P-0013315.GPJ AET+CPT+WELL.GDT 8/10/22 IdWOO AET IdWOO AET+CPT+WELL.GDT 8/10/22															
DEP	TH: DRILLING METHOD			WAT	ER LEVEL MEA	SURF	EMENT	ГS				1	NOTE:	REFE	R TO
0-4 0	0-4' Direct Push DATE TIME			SAMPI DEPT	ED CASING H DEPTH	CAV	/E-IN PTH	D FLI	ORILLIN UID LE	NG VEL	WATE LEVE	ER	THE A	TTAC	HED
NO L	0-4 Direct rusii												SHEET	TS FOF	R AN
M-LA1												E	XPLA	NATIC	N OF
BORIN COMPI	G LETED: 6/21/22											T	ERMIN	IOLOC	GY ON
DR: A													TH	IS LOO	Ĵ

AET JO	B NO: P-0013315	5				LC	OG OF	BOR	RING NO	D	B	-24 (p. 1 o	f 1)	
PROJE	T: Fox Squirrel Sol	ar Project	; Madisor		•										
	CE ELEVATION:		LATITUI	DE: 39	9.82974546		LON	VGIT	UDE:	-83	8.3864				
DEPTH IN FEET	MATERIAL	DESCRIPTIC	DN		GEOLOGY	N	MC	SA	MPLE YPE	REC IN.) & LA			1
FEET	- 1 25" Chin and								CORE	11.1	WC	DEN	LL	PL	%-#200
	1.25" Chip seal 9.75" FILL, mostly clayey sand and gravel, brown (A	sand, a litt A-2-6)	le silty		FILL										
1 -	LEAN CLAY WITH SAN (CL) (A-7-6)	D, grayish	brown		FINE ALLUVIUM	-					23		42	19	74
2	LEAN CLAY, grayish bro	own (CL) (A	A-7-6)						DP	44	23				
4 -	END OF BORING														
CORP WLAT-LONG P-0013315.GPJ AET+CPT+WELL.GDT 8/10/22 Hand MCD															
13315.0 DEF	TH: DRILLING METHOD			WAT	ER LEVEL MEA	L SURE	L Ement	⊥⊥ rs						DEFE	
		DATE	TIME	SAMPI			/E-IN PTH	-	RILLIN JID LE	G	WATE LEVE		NOTE: THE A		
	0-4' Direct Push			DEPT	H DEPTH	DE	РЛН	FLU	UID LE'	VEL	LEVE		SHEET		
/-LAT-													XPLA		
	G (121/22												ERMIN		
	LETED: 6/21/22													IS LOO	
DR: A	H LG: ML Rig: 441														

	AET JO	B NO: P-0013315					Ι	LOG OF	BC	RING N	0	В	-25 (p. 1 o	f 1)	
	PROJEC	T: Fox Squirrel Sola	ar Project	; Madison	Count	y, OH										
	SURFAC	CE ELEVATION:		LATITUDE	3	9.82243095	5	LO	NG	ITUDE:	-83	.3868	6739			
	DEPTH IN FEET	MATERIAL D	DESCRIPTIC	N		GEOLOGY	ζ N	MC	S	AMPLE TYPE	REC	FIELI) & LA	BORAT	ORY	TESTS
	FEET							IVIC		TYPE	IN.	WC	DEN	LL	PL	%- #200
		1.5" Bituminous pavement				FILL										
		5" Deteriorated bituminous		4	_											
		11.5" FILL, mostly sand v gravel, light brown and br	own (A-1·	a -b)												
	1 —															
			D 1	(CI)(A(C))		FINE						20				
		LEAN CLAY WITH SAN	D, brown ((CL) (A-0)		ALLUVIUN	Л									
	2 -	LEAN CLAY WITH SAN	D, a little	gravel,						DP						
		brown (CL) (A-7-6)	· · ·	, ,												
	3 —															
	4 —	END OF BORING							Ш							
10/22																
DT 8/																
ILL.GI																
T+WE																
T+CP																
N AE																
15.GF																
00133	DEP	DEPTH: DRILLING METHOD			ER LEVEL M			-					NOTE:	REFE	R TO	
CORP W-LAT-LONG P-0013315.GPJ AET+CPT+WELL.GDT 8/10/22	(0-4' Direct Push DATE TIME S		SAMPI DEPT	ED CASIN H DEPTH	G CA	AVE-IN DEPTH	FI	DRILLIN LUID LE	NG VEL	WATI LEVE	ER EL	THE A	TTAC	HED	
6 L		0-4 Direct i usii						\top					SHEET	TS FOI	R AN	
A-LA									\top				E	EXPLA	NATIO	ON OF
SORP	BORIN COMPI	G Leted: 6/21/22							\top				T	ERMIN	IOLOG	GY ON
AET		COMPLETED: 6/21/22 DR: AH LG: ML Rig: 441							\square					TH	IS LO	G
₹L		iug	1	1			1		1							

AET JO	B NO: P-0013315			_	_		LO	GOF	BO	RING N	0	B	-26 (p. 1 o	f 1)]
PROJEC	T: Fox Squirrel Sola	r Project;	; Madison		•											
	CE ELEVATION:		LATITUD	E:	9.81	495421		LON	JGI	TUDE:	-83	.3871				
DEPTH IN FEET	MATERIAL D	DESCRIPTIO	N		GI	EOLOGY	N	MC	SĄ	AMPLE TYPE	REC IN.			BORAT		
FEET	1 54 0 1				FIL	T					11N.	WC	DEN	LL	PL	%-#200
	1.5" Bituminous pavement 4.5" Deteriorated bitumino		1	-/	FIL	L										
	5" FILL, mostly silty sand				-											
1 —	_brown (A-1-b) FILL, mostly lean clay, a li	ittle elever	cond and		-											
	gravel, brown, dark brown	and gray ((A-6)													
2 —										DP	44	28				
	LEAN CLAY, slightly org	anic dark	brown		TO	PSOIL OR										
	(CL) (A-7-6)	unit, uunit	or o mi		FIN											
3 —					ALI											
4 —																
	END OF BORING															
DEP	TH: DRILLING METHOD		1		EVEL MEA								NOTE:	REFE	r to	
0-4' Direct Push DATE TIME					LED H	CASING DEPTH	CAV DEI	'E-IN PTH	FL	DRILLIN LUID LE	NG VEL	WATE LEVE	LR	THE A	TTAC	HED
														SHEET		
P = = =	~													XPLA		
BORIN COMPI	G LETED: 6/21/22												T	ERMIN		
DR: A	H LG: ML Rig: 441													TH	IS LOO	ĩ

AET	JOB NO:	P-0013315					LC	OG OF	BO	RING NO	0	B	-27 (p. 1 o	f 1)	
PRO	JECT:	Fox Squirrel Sola	r Project	; Madison		•										
SUR	FACE EL	EVATION:		LATITUDE	3	9.80722971		LON	I GI	TUDE:	-83	.3874				
DEPT IN FEET	Н	MATERIAL D	DESCRIPTIC	N		GEOLOGY	N	MC	SĄ	MPLE FYPE	REC IN.		1	BORAT	1	1
FEET						DH I				LIFE	11 N .	WC	DEN	LL	PL	%- #200
1	<u>3" I</u> 10.	' Bituminous pavement Deteriorated bituminous 5" FILL, mostly silty sa 1-b)	s material	avel, brown		FILL										
	(A-	AN CLAY, brown and 7-6)	dark browi	n (CL)		FINE ALLUVIUM	-				10	29				
2	LEA	AN CLAY, dark grayis	h brown (C	CL) (A-7-6)						DP	40					
3	3 —															
4		D OF BORING				1										
CORP W-LAT-LONG P-0013315.GPJ AET+CPT+WELL.GDT 8/10/22																
J 3315	DEPTH:	DRILLING METHOD			WAT	ER LEVEL MEA	SURE	EMENT	ГS			1	ר ו	NOTE:	REFF	R TO
T-LONG P-0(0-4'	Direct Push	DATE	TIME	SAMPI DEPT	LED CASING H DEPTH	CAV DE	/E-IN PTH	I FL	ORILLIN JUID LE	IG VEL	WATE LEVE	ER EL	THE A	TTAC	HED
M-LA													E	XPLA	NATIO	ON OF
BOH CON	BORING COMPLETED: 6/21/22												T	ERMIN	IOLOG	GY ON
	DR: AH LG: ML Rig: 441													TH	IS LO	G

	AET JO	B NO: P-0013315					LC	OG OF	BO	RING N	0	В	3-28 (p. 1 o	f 1)	
	PROJEC	T: Fox Squirrel Sola	r Project	; Madison	Count	y, OH										
	SURFAC	CE ELEVATION:		LATITUDE	E:3	9.80058328		LON	lGl	TUDE:	-83	.3863	3168			
	DEPTH IN FEET	MATERIAL D	DESCRIPTIC	N		GEOLOGY	N	MC	S	AMPLE TYPE	REC	FIELI) & LA	BORAT	TORY '	TESTS
	FEET							IVIC		TYPE	IN.	WC	DEN	LL	PL	%-#200
	-	2.25" Bituminous pavemer		. 1		FILL										
	-	4.75" Deteriorated bitumin														
	1 -	7.5" FILL, mostly silty san (A-1-b)	d with gra	vel, brown												
	-	LEAN CLAY, brown and (A-6)	dark browi	n (CL)		FINE ALLUVIUM										
	2 -	LEAN CLAY, dark brown (A-7-6)	to brown	(CL)						DP	42	33				
	4 —															
		END OF BORING														
CORP W-LAT-LONG P-0013315.GPJ AET+CPT+WELL.GDT 8/10/22																
3315.GPJ AET+CF	DEP	TH: DRILLING METHOD			WAT	ER LEVEL MEA	SUBB	MENT								
-1001	DEP	III. DKILLING WEIHOD							-	DRILLIN	JG	WATI		NOTE:		
- DX L	0	-4' Direct Push	DATE	TIME	SAMPI DEPT	ED CASING H DEPTH	DE	/E-IN PTH	FÍ	DRILLIN LUID LE	VEL	WATE LEVE		THE A		
AT-LC														SHEET		
٦۲	D = T =													XPLA		
CORF	BORIN	BORING COMPLETED: 6/21/22											Т	ERMIN		
AET	DR: A	H LG: ML Rig: 441													IS LOO	J

	AET JO	B NO: P-0013315					LC	OG OF	BO	RING N	0	B	-29 (p. 1 o	f 1)	
	PROJEC	T: Fox Squirrel Sola	ar Project;	, Madison	Count	y, OH										
	SURFAG	CE ELEVATION:		LATITUD	E:	9.79332195		LON	١GI	TUDE:	-83	.3850	2573			
	DEPTH	MATERIAL D	DESCRIPTIC	N		GEOLOGY	N	MC	SA	AMPLE TYPE	REC IN.	FIELI	0 & LA	BORA	ORY	TESTS
	IN FEET						1	wie			IN.	WC	DEN	LL	PL	%- #200
	1 —	2.5" Bituminous pavement 1.5" Deteriorated bitumino 6" FILL, mostly silty sand brown (A-1-b) LEAN CLAY WITH SAN (CL) (A-6) (possible fill)	ous paveme with grave	el, light		FILL FINE ALLUVIUM OR FILL	-			CORE						
	2 —	LEAN CLAY, light brown sandy silt around 17" (CL)	to brown, (A-7-6)	lens of		FINE ALLUVIUM				DP	40	22				
	3 — 4 —															
CORP W-LAT-LONG P-0013315.GPJ AET+CPT+WELL.GDT 8/10/22		END OF BORING														
01331	DEP	TH: DRILLING METHOD		1	WAT	ER LEVEL MEA	SURF	EMENI	ΓS					NOTE:	REFE	ER TO
G P-0	(0-4' Direct Push	DATE	TIME	SAMPL DEPT	ED CASING H DEPTH	CAV	VE-IN PTH	FI	DRILLIN JUID LE	JG VEL	WATI LEVE	ER	THE A	TTAC	HED
NOT-1								-	\vdash					SHEET	S FO	R AN
W-LAJ													E E	XPLA	NATIO	ON OF
ORP	BORIN	G LETED: 6/21/22											T	ERMIN	IOLO	GY ON
AET_C	DR: A										-+			TH	IS LO	G
41	DR: A	II LU. IVIL NIS: 441							1							

	AET JO	B NO:	P-0013315					L	OG OF	BO	RING N	0.	B	8-30 (p. 1 o	f 1)	
	PROJEC	CT: Fo	x Squirrel Sola	ar Project	; Madison		•										
		CE ELEVATIO	N:		LATITUD	E: 39	9.78680432		LON	VGI	TUDE:	-83	.3816				
	DEPTH IN FEET		MATERIAL I	DESCRIPTIC	DN		GEOLOGY	N	MC	SĄ	AMPLE TYPE	REC IN.	-	D & LA			
	FEET	1.5" Diterre	•				FILI					ШΝ.	WC	DEN	LL	PL	%- #200
			inous pavement		ıl		FILL										
			ostly silty sand														
	1 -	huarra (A 1	b)				FINE	_									
		brown and	AY WITH SAN gray (CL) (A-6	D, a little g) (possible	gravel, fill)		ALLUVIUM										
		LEAN CLA	AY, brown and	gray mottle	ed (CL)		OR FILL FINE										
	2 —	(A-7-6)					ALLUVIUM				DP	41	22				
	3 —																
	-																
	4 —																
		END OF E	BORING														
3/10/2:																	
GDT 8																	
VELL.(
V+T4																	
AET+C																	
GPJ ,																	
13315.	DEP	TH: DRILL	ING METHOD			WAT	ER LEVEL MI	EASUR	 EMEN]	ГS		<u> </u>	<u> </u>	L,	NOTE:	DEEE	
CORP W-LAT-LONG P-0013315.GPJ AET+CPT+WELL.GDT 8/10/22				DATE	TIME	SAMPL DEPT			VE-IN EPTH	1	DRILLIN JUID LE	NG.	WATI LEVE		THE A		
ONG	(0-4' Direc	t Push	DAIL		DEPT	H DEPTH		SPTH	FI	LUID LE	VEL	LEVE		SHEET		
-LAT-L															XPLA		
RP V.	BORIN	G								-					ERMIN		
Ĩ ₽		G LETED: 6/21								-				1		IS LOC	
AET	DR: A	H LG: ML	Rig: 441												111	10 LO	

	AET JO	B NO: P-0013315					LC	OG OF	BO	RING N	0	B	-31 (p. 1 o	f 1)	
	PROJEC	T: Fox Squirrel Sola	r Project	; Madison	Count	y, OH										
	SURFAC	CE ELEVATION:		LATITUDI	E: <u>39</u>	9.79842869		LON	IGI	TUDE:	-83	.3907	7985			
	DEPTH	MATERIAL D	ESCRIPTIC	N		GEOLOGY	N	MC	S	AMPLE TYPE	REC	FIELI	0 & LA	BORAT	ORY	FESTS
	IN FEET						1	wie		ГҮРЕ	IN.	WC	DEN	LL	PL	%- #200
	1 —	2" Bituminous pavement 2.25" Deteriorated bitumin 10" FILL, mostly silty sand brown and brown (A-1-b)				FILL										
		LEAN CLAY WITH SAN brown and gray (CL) (A-6)) (possible	fill)		FINE ALLUVIUM OR FILL				DB	20	29				
	2	LEAN CLAY, slightly org brown (CL) (A-7-6)				TOPSOIL OR FINE ALLUVIUM				DP	39					
	3 — 4 —	LEAN CLAY, dark brown (A-7-6) END OF BORING	, a little br	own (CL)		FINE ALLUVIUM										
CORP W-LAT-LONG P-0013315.GPJ AET+CPT+WELL.GDT 8/10/22																
315.GPJ AET+CI							CLIDI									
-0013	DEP	TH: DRILLING METHOD				ER LEVEL MEA			-	איז דומרו	IC	M/ATT	7D	NOTE:		
NG F	()-4' Direct Push	DATE	TIME	SAMPL DEPT	ED CASING H DEPTH	DE	/E-IN PTH	FÍ	DRILLIN LUID LE	VEL	WATE LEVE	L	THE A		
AT-LC														SHEET		
N-L	DOPT													XPLA		
	BORIN COMPI	G Leted: 6/21/22											T	ERMIN		
AET	DR: A	H LG: ML Rig: 441												TH	IS LOO	j D 0 (0

AET .	JOB NO:	P-0013315					LC	GOF	BO	RING N	0	B	-32 (p. 1 o	f 1)	
PROJ	ECT:	Fox Squirrel Sola	r Project	; Madison		•										
		ATION:		LATITUD	E:	9.79856022		LON	I GI	TUDE:	-83	.3996				
DEPTH IN FEET	H	MATERIAL D	DESCRIPTIC	N		GEOLOGY	N	MC	SĄ	AMPLE FYPE	REC IN.			BORAT		1
FEET			- 4							CORE	11 %.	WC	DEN	LL	PL	%-#200
1	0.75" 11.5" brown	Bituminous pavemer Deteriorated bitumin FILL, mostly silty sa and brown (A-1-b)	ous pavem nd with gr	avel, light		FILL FINE ALLUVIUM	-			CORE		31				
2	_	ed (CH) (A-7-6)				ALLOVIOW				DP	38	28		54	22	87
4	END	OF BORING														
AET_CORP W.LAT-LONG P-0013315.GPJ AET+CPT+WELL.GDT 8/10/22 WOOD UU UU UU																
I 13315	EPTH: I	DRILLING METHOD			WAT	ER LEVEL MEA	SURF	MENT	г ГS		L	I		NOTE:	REFE	R TO
	0-4'	Direct Push	DATE	TIME	SAMPL DEPT	ED CASING H DEPTH	CAV	/E-IN PTH	I FL	DRILLIN JUID LE	JG VEL	WATE LEVE	ER	THE A SHEET	TTAC	HED
W-LAT													- I	EXPLA	NATIO	ON OF
BOR COM	ING IPLETED:	6/21/22											Т	ERMIN		
DR:		ML Rig: 441												TH	IS LO	G

AET JOE		DB NO: P-0013315							LOG OF BORING NO. B-						33 (p. 1 of 1)			
	PROJEC	CT:	Fox Squirrel Sola		•													
SURFACE ELEVATION: LATITUDE					E: 39	9.79567209	LONGITUDE:				-83.40717798							
DEPTH IN FEET		MATERIAL I		DESCRIPTION			GEOLOGY	N	MC	SAMPLE TYPE		REC IN.	FIELD & LABORATORY TH					
	FEET	1.5" Bituminous pavement										IIN.	WC	DEN	LL	PL	%-#200	
	1 2	$\frac{1.5" \text{ D}}{6" \text{ FII}}$ $\frac{(\text{A-1-l})}{\text{FILL}}$ $\frac{1.5" \text{ D}}{6" \text{ FII}}$	Deteriorated bitumino (L, mostly silty sand (D) (mostly lean clay, a l (ark brown and brown (CLAY, dark brown	bus materia with grave ittle gravel n (A-6)	el, brown and sandy		FILL FINE ALLUVIUM	-			DP	34	24					
	3 - 4 -																	
	4 -	END	OF BORING															
CORP W-LAT-LONG P-0013315.GPJ AET+CPT+WELL.GDT 8/10/22																		
01331	DEPTH: DRILLING METHOD					ER LEVEL MEA							1	NOTE: REFER TO				
D-C	0-4' Direct Push			DATE TIME SA		SAMPL DEPT	ED CASING H DEPTH	CAV DE	/E-IN PTH	DRILLING FLUID LEV		JG VEL	WATE LEVE	ER IL	THE A	ATTACHED		
NOT-1		U-4 DIFECT FUSI													SHEETS FOR AN			
W-LA														Ē	EXPLANATION OF		N OF	
NORP	BORING COMPLETED: 6/21/22													T	ERMIN	OLOC	Y ON	
AET		DR: AH LG: ML Rig: 441													TH	IS LOO	ĩ	

AET JC	B NO: P-	-0013315						LO	GOF	BO	RING N	0	B	3-34 (p. 1 o	f 1)	
PROJE	CT: Fox Squ	irrel Solar Pro	oject	; Madison		•											
	CE ELEVATION:			LATITUDI	E:	9.7902930	57	_	LON	IGI	TUDE:	-83	.4139	5649			
DEPTH IN FEET	M	ATERIAL DESCR	IPTIC	DN		GEOLOG	GY	N	MC	SĄ	AMPLE TYPE	REC		D & LA			
FEET												IN.	WC	DEN	LL	PL	%- #200
1 -	2" Bituminous pa 1.75" Deteriorate 6" FILL, mostly brown (A-1-b) FILL, mixture of little silty sand an	ed bituminous n sand with silt a clayey sand an	nd gi d lea	ravel, light		FILL							15				
2 -	brown (A-6) LEAN CLAY W brown (CL) (A-6	ITH SAND, a l				FINE ALLUVIU OR FILL	Л				DP	38	36				
3 -	ORGANIC CLA	Y, black (OL/C	PH) (A	A-8)		SWAMP DEPOSIT											
- 4 CORP WLAT-LONG P-0013315,GPJ AET+CPT+WELLGDT 8/10/22 MINO2 MINO2	END OF BORI	NG															
13315 DEI	PTH: DRILLING M	IETHOD			WAT	ER LEVEL	MEA	SURE	MENT	ſS	1	1	1	ז	NOTE:	REFE	R TO
0- 0-		DA	TE	TIME	SAMPL DEPT	ED CASI H DEP	NG TH	CAV DEI	E-IN PTH	[] FI	DRILLIN JUID LE	NG VEL	WATE LEVE	ER	THE A		
	0-4' Direct Pusl	1					1						νL ¥ L		SHEET	S FOF	AN
										$\left \right $		\rightarrow		- F	XPLA	NATIC	N OF
BORIN	IG LETED: 6/21/22									-				T	ERMIN	IOLOC	Y ON
DR: A		441													TH	IS LOO	Ĵ
۰ <u>۱</u>	nug.									1							

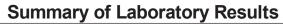
01-DHR-060

AET JO	B NO: P-0013315					LC	OG OF	BORI	NG NO	D	B	-35 (p. 1 of	f 1)	
PROJEC	T: Fox Squirrel Sola	r Project;	; Madison		•										
	CE ELEVATION:		LATITUDE	: <u>3</u>	9.81451872		LON	IGITU	JDE:	-83	.4334				
DEPTH IN FEET	MATERIAL D	ESCRIPTIO	N		GEOLOGY	N	MC	SAM	IPLE PE	REC IN.) & LA			
FEET	_2" Bituminous pavement				FILL				112	114.	WC	DEN	LL	PL	%-#200
	5.5" Deteriorated bitumino	us paveme	ent		TILL										
1 —	FILL, mostly lean clay with brown and dark brown (A-	h sand, a li 7-6)	ittle gravel,												
	LEAN CLAY, dark brown	(CL) (A-6))		FINE ALLUVIUM						24				
2 —	LEAN CLAY, brown, a lit (A-7-6)	tle gray mo	ottled (CL)						DP	37					
3 —															
4 —	END OF BORING														
DEP	TH: DRILLING METHOD			WAT	ER LEVEL ME	ASURE	EMENT	г. ГS			I	ר א	NOTE:	REFE	R TO
()-4' Direct Push	DATE	TIME	SAMPI DEPT	LED CASING H DEPTH	CAV DE	/E-IN PTH	DR FLUI	RILLIN ID LEV	IG VEL	WATE LEVE	ER L	THE A' SHEET	TTAC	HED
													SHEE I XPLAI		
BORIN	G LETED: 6/21/22												ERMIN		
														IS LOO	
DR: A	H LG: ML Rig: 441														

	AET JO	B NO: P-0013315			_			LO	GOF	BO	RING N	0	B	-36 (p. 1 o	f 1)	
	PROJEC	T: Fox Squirrel Sola	ar Project	; Madison	Coun	ty, OH											
	SURFAC	CE ELEVATION:		LATITUDE	B: <u>3</u>	9.8172720	2	_	LON	JGI	TUDE:	-83	.4250	1884			
	DEPTH IN FEET	MATERIAL D	NESCRIPTIC	N		GEOLOG	v	N	MC	SA	AMPLE TYPE	REC	FIELI) & LA	BORAT	ORY	FESTS
	FEET	WATENALL	JESCKII IIC			GLOLOG		IN	WIC	,	ГҮРЕ	IN.	WC	DEN	LL	PL	%- #200
		2" Bituminous pavement			\square	FILL											
		4" Deteriorated bituminous				-											
		4.5" FILL, mostly silty san $(A-1-b)$	d with gra	vel, brown													1
	1 -	LEAN CLAY, dark grayis	h brown ,a	little	- ////	FINE											
		brown, lens of silty sand an	round 15"	(CL)		ALLUVIU OR FILL	M										
		<u>(A-7-6) (possible fill)</u> LEAN CLAY, dark grayis	h brown to	oray (CL)		FINE											
	2 -	(A-7-6)		, gruy (CL)		ALLUVIU	M				DP	43	25				
	2											-13					
	3 —	LEAN CLAY, brown and	dark brown	n mottled													
		(CL) (A-7-6)															
	4 —																
		END OF BORING															
0/22																	
8/10																	
GDT																	
VELL																	
HT+																	
)+T=/																	
1 Ldi																	
CORP W-LAT-LONG P-0013315.GPJ AET+CPT+WELL.GDT 8/10/22					XX7 4 77			ייתווי									
-0013	DEP	TH: DRILLING METHOD				ER LEVEL				-			117.4		NOTE:	REFE	R TO
ц Д	()-4' Direct Push	DATE	TIME	SAMP DEP	LED CASIN TH DEPT	NG TH	CAV DEI	E-IN PTH	FL	DRILLIN LUID LE	VEL	WATE LEVE	LR L	THE A	TTAC	HED
1-LO															SHEET	'S FOF	AN
V-LAT							+							E E	XPLA	NATIC	N OF
V AN	BORIN	G ()1/22													ERMIN	OLOC	Y ON
	COMPI									-						IS LOO	
AET	DR: A	H LG: ML Rig: 441													111		-

01-DHR-060

	AET JO	B NO: P-0013315					LC	GOF	BORING N	O	B	-37 (p. 1 o	f 1)	
	PROJEC	T: Fox Squirrel Sola	ar Project	; Madison	Count	y, OH									
	SURFAC	CE ELEVATION:		LATITUD	E: 39	9.81615655		LON	IGITUDE:	-83	.4158	0997			
Γ	DEPTH			N T		GEOLOGY			SAMPLE	REC	FIELI) & LA	BORAT	TORY 7	FESTS
	IN FEET	MATERIAL I	DESCRIPTIC	NN		GEOLOGY	N	MC	SAMPLE TYPE	IN.	WC	DEN	LL	PL	%- #200
		2" Bituminous pavement				-			CORE						
		4" Deteriorated bituminou				-									Í
	1	6" FILL, mostly silty sand (A-1-b)				FILL									
	1 —	LEAN CLAY WITH SAN brownish gray to brown (C	D, a little g CL) (A-6)	gravel,		FINE ALLUVIUM	-				22				
	2 —	LEAN CLAY, a little grav (A-7-6)							DP	40					
	3 -	SANDY LEAN CLAY, a (CL) (A-6)	little grave	l, brown		TILL					25				79
AET_CORP W-LAT-LONG P-0013315.GPJ AET+CPT+WELL.GDT 8/10/22															
5.GPJ AE															
01331	DEP	TH: DRILLING METHOD			WAT	ER LEVEL MEA	SURE	MENT	ſS			1	NOTE:	REFE	R TO
0-1 0-1	ſ	1 Dinast Duch	DATE	TIME	SAMPI DEPT	LED CASING TH DEPTH	CAU	/E-IN PTH	DRILLI FLUID LE	NG VEL	WATE LEVE	ER	THE A	TTAC	HED
LON	(0-4' Direct Push							- 2010 01				SHEET	IS FOF	R AN
Ļ													EXPLA		
Ϋ́Ε	BORIN	G											ERMIN		
ő	COMPI	G LETED: 6/21/22													
AET	DR: A	H LG: ML Rig: 441											TH	IS LOO	Ĺ


AET JO	B NO: P-0013315					LO	G OF	BO	RING N	0	B	-38 (p. 1 of	f 1)	
PROJEC	T: Fox Squirrel Sola	r Project;	; Madison		•										
	CE ELEVATION:		LATITUD	E:	9.81530111		LON	١GI	TUDE:	-83	.4063				
DEPTH IN FEET	MATERIAL D	ESCRIPTIO	N		GEOLOGY	N	MC	SĄ	AMPLE TYPE	REC IN.			BORAT		
FEET	011 D									11N.	WC	DEN	LL	PL	%-#200
	2" Bituminous pavement 4" Deteriorated bituminous	material			FILL										
	5.75" FILL, mostly silty sa		avel, dark												
1 -	brown to brown (A-1-b)					-									
1	LEAN CLAY, dark grayisl (CL) (A-7-6)	n brown to	brown		FINE ALLUVIUM										
											33				
2 —									DP	39					
2										57					
3 —															
5															
4 —															
т	END OF BORING														
DEP	TH: DRILLING METHOD			WAT	ER LEVEL MEA	SURE	L MENT	ГS				<u>بر</u>	NOTE:	BEEE	
		DATE	TIME	SAMPI DEPT	ED CASING H DEPTH	CAV	/E-IN PTH		DRILLIN LUID LE	IG	WATE LEVE		THE A		
()-4' Direct Push	21112		DEPT	H DEPTH	DE	гIН	FL	LUID LE	VEL	LEVE		SHEET		
								\vdash					XPLA		
BORIN	G LETED: 6/21/22												ERMIN		
												-		IS LOO	
DR: A	H LG: ML Rig: 441														

AET JO	P-001331	5				LO	G OF	BORING N	íO	B	-39 (p. 1 of	f 1)	
PROJEC	T: Fox Squirrel Sol	ar Project;	; Madison		•									
	CE ELEVATION:		LATITUE	DE:3	9.81472229		LON	IGITUDE:	-83	.3958				
DEPTH IN FEET	MATERIAL	DESCRIPTIO	N		GEOLOGY	N	MC	SAMPLE TYPE	REC IN.	-) & LA			
FEET					EH I				11N.	WC	DEN	LL	PL	%-#200
	2" Bituminous pavement 3.25" Deteriorated bitumi	nous materi	al		FILL									
	9.75" FILL, mostly silty s	and with gr												
1 -	brown and brown (A-1-b)	1												
	LEAN CLAY, dark brow	n to dark br	ownish		FINE	-								
	gray (CL) (A-7-6)		e willou		ALLUVIUM					24				
2 -								DP	39					
3 —														
4 —														
	END OF BORING													
DEP	PTH: DRILLING METHOD			WAT	ER LEVEL MEA	SIDE	MENT	 						
	III. DRILLING METHOD		TP (F	1					NG	WATE		NOTE:		
(0-4' Direct Push	DATE	TIME	SAMPI DEPT	ED CASING H DEPTH	DE	/E-IN PTH	DRILLII FLUID LE	VEL	WATE LEVE		THE A' SHEET		
												SHEET XPLAN		
BORIN	G											ERMIN		
	G LETED: 6/21/22												IS LOC	
DR: A	H LG: ML Rig: 441													

01-DHR-060

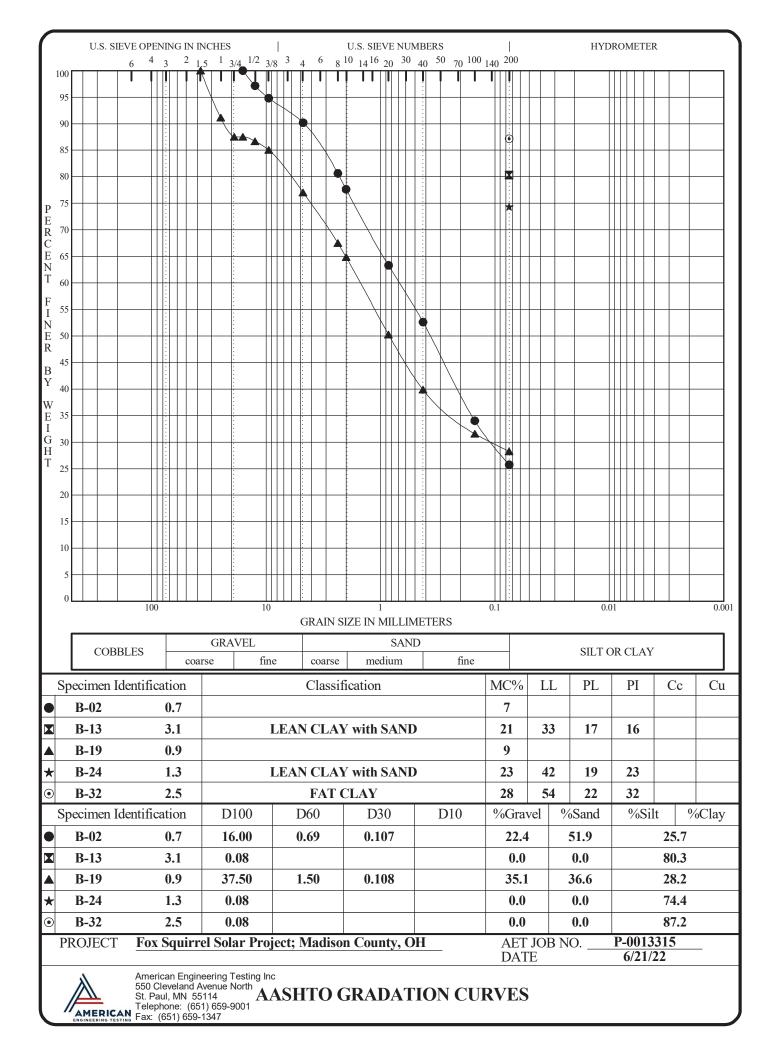
	1	1		1	1					Sheet	: 1 of 2
Borehole	Depth	Liquid Limit	Plastic Limit	Plasticity Index	Maximum Size (mm)	%<#200 Sieve	Class- ification	Water Content (%)	Dry Density (pcf)	Satur- ation (%)	Void Ratio
B-01	1.0							16.4			
B-02	0.7				16	26		7.3			
B-02	1.0							18.2			
B-03	2.0							25.0			
B-04	2.0							19.5			
B-05	1.5							21.2			
B-06	1.5							17.5			
B-07	1.0							21.6			
B-08	1.1							14.6			
B-08	2.9	49	25	24				25.6			
B-09	2.0							18.2			
B-10	1.5							24.1			
B-11	1.5							20.9			
B-12	1.5							23.0			
B-13	3.1	33	17	16	0.075	80	CL	20.6			
B-14	2.0							16.7			
B-15	1.5							18.0			
B-16	2.0							25.6			
B-17	2.0							29.5			
B-18	1.0							22.7			
B-18	2.5							36.5			
B-19	0.9				37.5	28		9.1			
B-19	2.0							28.2			
B-20	1.5							23.3			
B-20	3.0							31.0			
B-21	2.0							23.2			
B-22	2.0							18.3			
B-23	2.0							25.3			
B-24	1.3	42	19	23	0.075	74	CL	22.6			
B-24	2.0							22.7			
B-25	1.5							19.8			
B-26	2.0							27.6			
B-27	1.5							29.4			
B-28	2.0							32.8			
B-29	1.5							21.6			
B-30	2.0							21.5			
B-31	1.5							29.1			
B-32	1.0							31.3			
B-32	2.5	54	22	32	0.075	87	СН	28.0			
B-33	1.0							24.2			
B-34	1.0							14.7			
B-34	2.0							35.6			

Project: Fox Squirrel Solar Project

Location: Madison County, OH

Number: P-0013315

US LAB SUMMARY P-0013315.GPJ AET CORP.GDT


										Sheet	t 2 of 2
Borehole	Depth	Liquid Limit	Plastic Limit	Plasticity Index	Maximum Size (mm)	%<#200 Sieve	Class- ification	Water Content (%)	Dry Density (pcf)	Satur- ation (%)	Void Ratio
B-35	1.5							23.8			
B-36	2.0							25.0			
B-37	1.0							22.2			
B-37	3.1				0.075	79		25.5			
B-38	1.5							33.2			
B-39	1.5							24.2			

Summary of Laboratory Results

Project: Fox Squirrel Solar Project Location: Madison County, OH Number: P-0013315

50					CL	CH				
50										
40										
30—					_	*				
					•					
20					\land					
	L-ML			6	ML)	(MH)				
						\bigcirc				100
0		20		40	LIQU	JID LIMIT	60 (LL)	80		100
	Specimen Id	entification	LL	PL	PI	Fines	Classification			
•	B-08 B-13	2.9' 3.1'	49 33	25 17	24	80.3	LEAN CLAY			
	B-13 B-24	1.3'	42	17	23	74.4	LEAN CLAY			
*	B-32	2.5'	54	22	32	87.2	FAT CLAY			
$\left \right $										
CT	For Samin	rel Solar Proj	oct. M	adisor	Cour				[<u> </u>	P-0013315
νı	rox squir	rei solar Proj	cet, M	au150fl	Coun	iy, OH		AET JOB N DATE	U	<u>6/21/22</u>

		U.S	S. SI	EVE																J.S. S														Н	IYD	RC	ЭM	ETI	ER				
100				6	4	3	;	2	1.5	1	3/4	4 1/	2 3	/8	3	4			1) 14 ¹			30	40	0 50	70	100	140	20	00	, ,					T T	-		_	_			7
95				I						Ľ	-						'									I	1	1															
																			-																								
90																			-																								
85															Ħ				ł				1																	+			1
80					+		+	+					-	┼┼	\mathbb{H}		┢	\vdash	+				+					_			$\left \right $	+					+	$\left \right $	-	+			-
P 75		_	_		+		$\left \right $	+	-	-			_	\parallel	H		\vdash	-	-				+			_		_		$\left \right $	$\left \right $	+					+	$\left \right $	_	+	_		-
E R ⁷⁰															\square				-				_																				_
C E 65																																											
N																																											
F																			-																								
I 55 N					+		\square	+			•				Ħ		\vdash	$\left \right $	ł				╈									+					+						
E 50 R			_		+		+	+		-	•			+	+	:	\vdash						+			-					+	-						$\left \right $		+	+		-
к В ⁴⁵		-					\parallel	+			:			\parallel	\parallel	:	-						+		$\left \right $	-				\parallel	\parallel	_				+	+	\parallel	_	_			-
У 40																:			-																								
W E 35																			•																								
I																																											
Н							Ħ								Ħ		T						1																	1			1
T 25					+		+	+						┼┼	Ħ		┢	\vdash					╈									+					+	$\left \right $		-			
20					+		+	+		-	•••••••••••••••••••••••••••••••••••••••		_	+	\mathbb{H}		\vdash	-	-				+			-		_		\square	$\left \right $	+					+	$\left \right $	_	+	-		-
15					_			_			• • •				\parallel								_	:		_						_								_	_		-
10																			-																								
5																																											
5																			-																								
0					100)							10)		G	DA		212	ZE IN	1 M	<u>т</u>			TED	с ¹		0.	1						0.0)1						0	.001
										GR	Δ٦	/EL					KA		512	LE IIN	IVI		AN		IEK	3																	٦
		C	OB	BLES	S			co	ars				fir	ne			coa	arse		m	edi					fi	ne		_					SIL	ТC	DR	CI	LA	Y				
Sp	ec	ime	en I	dent	ific	cat	tio	n						_	_	(Cla	ssi	fic	catio	n	_						Ν	4C	%]	LL		PI			Р	ΡI	Τ	Сс	;	С	u u
		-37					3.1																						25														
Sp	ec	im	en I	dent	ific	cat	tio	n		Ι	D1	00				D	50			Γ)3()			D	010		0	%C	ira	vel		%	Sano	1		%	ωS	ilt		%	Cla	у
•	B	-37	,				3.1				0.0)8																	(0.0			(0.0						78.	8		
									_																																		
\vdash																			_																								
			OT		For		10-			0	Ja	<u>и</u> П			ot.	76./	[a]	lie		Car		f			ſ				A .	Dт			NC			P	0	<u>01</u>	32	15			
Pł	ςŪ	υE	СТ	1	r OX		qt	ur.	re	1 3(na	r f	ro	je	ct;	11	140	115(n	Соі	111	ιy,	, U	Л	L				A D	сі АТ	E	лŊ	NC	<i>.</i> _		ľ	<u>-0</u> 6/	21	<u>33</u> /22	12		_	
	x	1		A	me	rica	an E	Engi	ine	ering	I Te	estin	g In	IC																													
	Æ	//		S T N F	St. P	aul	, M	N 5	551 551	14 650)-90	001	A	A	S	H	Г()(G	RA	D	A	Γ	ľ	ON		CU	R	VI	ES													
"		ME	RIC	AN F	ax:	(6	51)	659	9-13	347																																	

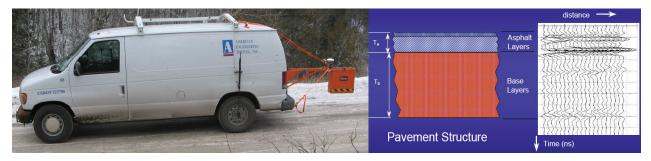
TEST FOR MOISTURE, ASH AND ORGANIC MATTER OF PEAT AND OTHER ORGANIC SOILS ASTM D2974, Test Method C

AET Project # :	P-001331		Client:	
Project Name :	Fox Squir	rel So	lar Project PM : M. Anderson	
Date Tested :	August 3,	2022	Tested By : B. Pomroy	
Drying time 16hr.	@ 105 ±°C lg	gnition	oven set @ 440° C	
Boring# :	B-08	А	Mass of the as-received test specimen (g) (pan & sample)	200.51
Sample # :		В	Mass of the oven-dried specimen (g) (Pan & sample)	178.18
Depth :	22" - 4'	С	Moisture content(%)- ((A-B)X100)/B	30.77
Blows :		D	Mass of ash (g) Pan & sample)	173.53
Soil Type :		E	Ash content(%) = $(D*100)/B$	93.59
Notes:		F	Pan wieght (g)	105.60
			ORGANIC MATTER (%) = 100-E	6.4
Boring# :		А	Mass of the as-received test specimen (g) (pan & sample)	
Sample # :		В	Mass of the oven-dried specimen (g) (Pan & sample)	
Depth :		С	Moisture content(%)- ((A-B)X100)/B	
Blows :		D	Mass of ash (g) Pan & sample)	
Soil Type :		E	Ash content(%) = $(D*100)/B$	
		F	Pan wieght (g)	
			ORGANIC MATTER (%) = 100-E	
Boring# :		А	Mass of the as-received test specimen (g) (pan & sample)	
Sample # :		В	Mass of the oven-dried specimen (g) (Pan & sample)	
Depth :		С	Moisture content(%)- ((A-B)X100)/B	
Blows :		D	Mass of ash (g) Pan & sample)	
Soil Type :		Е	Ash content(%) = $(D*100)/B$	
		F	Pan wieght (g)	
			ORGANIC MATTER (%) = 100-E	
Boring# :		А	Mass of the as-received test specimen (g) (pan & sample)	
Sample # :		В	Mass of the oven-dried specimen (g) (Pan & sample)	
Depth :		С	Moisture content(%)- ((A-B)X100)/B	
Blows :		D	Mass of ash (g) Pan & sample)	
Soil Type :		Е	Ash content(%) = $(D*100)/B$	
		F	Pan wieght (g)	
			ORGANIC MATTER (%) = 100-E	
Reviewed By : Date :			-	

Pre-construction Road Evaluation **Fox Squirrel Solar Project**, Madison County, OH August 15, 2022 AET Report No. P-0013315A

Appendix B

Ground Penetrating Radar Field Exploration and Testing GPR Results Plot


B.1 FIELD EXPLORATION

The pavement structural conditions at the site were evaluated nondestructively using Ground Penetrating Radar (GPR). The description of the equipment precedes the GPR Data and Analysis Results in this appendix.

B.2 EQUIPMENT DESCRIPTION

B.2.1 GSSI GPR Test System

The GPR test system owned by AET is a GSSI Roadscan System that consists of a bumper-mounted, 2 GHz aircoupled antenna and a SIR-20 control and data acquisition processor, featuring dual channels. The GPR processor, including a SIR-20 data acquisition system, wheel-mounted DMI (Distance Measuring Instrument), and a tough book with the SIR-20 Field Program constitutes the newest, most sophisticated GSSI Test System, which fulfills or exceeds all requirements to meet ASTM-4748, ASTM D-6087 Standards. Figure B1 provides a view of this equipment.

Figure B1 GSSI 2 GHz air-coupled GPR Test System

The GPR antenna emits a high frequency electromagnetic wave into the material under investigation. The reflected energy caused by changes in the electromagnetic properties within the material is detected by a receiver antenna and recorded for subsequent analysis. The 2 GHz air-coupled GPR is capable of collecting radar waveforms at more than 100 signals per second, allows for data to be collected at driving speeds along the longitudinal dimension of the pavements or bridge decks with the antennas fixed at the rear or in front of the vehicle.

The antenna used for Roadscan is the Horn antenna Model 4105 (2 GHz). The 2 GHz antenna is the current antenna of choice for road survey because it combines excellent resolution with reasonable depth penetration (18-24 inches in pavement materials). The data collection is performed at normal driving speeds (45-55 mph), requiring no lane closures nor causing traffic congestion. At this peed the 2 GHz antenna is capable of collecting data at 1-foot interval (1 scan/foot).

The data were collected at a rate of about 1 vertical scans per foot. Each vertical scan consisted of 512 samples and the record length in time of each scan was 12 nanoseconds. Filters used during acquisition were 300 MHz high pass and 5,000 MHz low pass.

In a GPR test, the antenna is moved continuously across the test surface and the control unit collects data at a specified distance increment. In this way, the data collection rate is independent of the scan rate. Alternatively, scanning can be performed at a constant rate of time, regardless of the scan distance. Single point scans can be performed as well. Data is reviewed on-screen and in the field to identify reflections and ensure proper data collection parameters.

Field testing is performed in accordance with the standard ASTM procedures as described in ASTM D 4695-96, "Standard Guide for General Pavement Deflection Measurements".

B.2.2 System Calibrations

Horn antenna processing is used to get the velocity of the radar energy in the material by comparing the reflection strengths (amplitudes) from a pavement layer interface with a perfect reflector (a metal plate). The calibration scan is obtained with the horn antenna placed over a metal plate at the same elevation as a scan obtained over pavement.

Appendix B Ground Penetrating Radar Field Exploration and Testing AET Project No. P-0013315A

The same setting for data collection is used for metal plate calibration. Fifteen seconds are need for jumping up and down on the vehicle's bumper to collect the full range of motion for the vehicle's shocks. The filename of raw calibration file is recorded.

Survey wheel is calibrated by laying out a long distance (> 50 feet) with tape measure.

B.2.3 Linear Distance and Spatial Reference System

Distance measuring instrument (DMI) is a trailer mounted two phase encoder system. When DMI is connected to the SIR-20 it provides for automatic display and recording distance information in both English and metric units with a 1 foot (0.3 meters) resolution and four percent accuracy when calibrated using provided procedure in the Field Program.

Spatial reference system is a Trimble ProXH Global Positioning System (GPS) that consists of fully integrated receiver, antenna and battery unit with Trimble's new H-StarTM technology to provide subfoot (30 cm) post processed accuracy. The External Patch antenna is added to the ProXH receiver for the position of the loading plate. The External Patch antenna can be conveniently elevated with the optional baseball cap to prevent any signal blockage.

B.2.4 Camera Monitoring System

A battery operated independent DC-1908E multi-functional digital camera with a SD card is used for easy positioning of the loading plate or of the pavement surface condition at the testing locations.

B.3 SAMPLING METHODS

At the project level, the testing interval is set at 12 scans per foot in the Outside Wheel Path (OWP) = $2.5 \text{ ft} \pm 0.25 \text{ ft}$ (0.76 m \pm 0.08 m) for nominal 12 ft (3.7 m) wide lanes at a survey speed of approximately 10 mph. Where a divided roadbed exists, surveys will be taken in both directions if the project will include improvements in both directions. If there is more than one lane in one direction the surveys will be taken in the outer driving lane (truck lane) versus the passing lane of the highway. GPR tests are performed at a constant lateral offset down the test section. When GPR tests are performed on bridge decks, multiple survey lines are followed transversely at 2-foot spacing between survey lines.

At the network level, GPR tests on one scan per foot are set to be able to collect data on pavements at driving speeds, without statistically compromising the quality of the data collected. If GPR tests are for the in situ characterization of material GPR data will be collected at two scan per foot at slower driving speeds.

B.4 QUALITY CONTROL (QC) AND QUALITY ASSURANCE (QA)

Beside the daily metal plate calibration the DMI is also calibrated monthly by driving the vehicle over a known distance to calculate the distance scale factor. The GPR will be monitored in real time in the data collection vehicle to minimize data errors. The GPR units will be identified with a unique number and that number will accompany all data reported from that unit as required in the QC/QA plan.

Scheduled preventive maintenance ensures proper equipment operation and helps identify potential problems that can be corrected to avoid poor quality or missing data that results if the equipment malfunctions while on site. The routine and major maintenance procedures established by the LTPP are adopted and any maintenance has been done at the end of the day after the testing is complete and become part of the routine performed at the end of each test/travel day and on days when no other work is scheduled.

To insure quality data, the GPR assessments only took place on dry pavement surfaces, and data was collected in each wheel path.

B.5 DATA ANALYSIS METHODS

B.5.1 Data Editing

Field acquisition is seldom so routine that no errors, omissions or data redundancy occur. Data editing encompasses issues such as data re-organization, data file merging, data header or background information updates, repositioning and inclusion of elevation information with the data.

B.5.2 Basic Processing

Basic data processing addresses some of the fundamental manipulations applied to data to make a more acceptable product for initial interpretation and data evaluation. In most instances this type of processing is already applied in real-time to generate the real-time display. The advantage of post survey processing is that the basic processing can be done more systematically and non-causal operators to remove or enhance certain features can be applied.

The Reflection Picking procedure is used to eliminate unwanted noise, detects significant reflections, and records the corresponding time and depth. It uses antenna calibration file data to calculate the radar signal velocity within the pavement.

B.5.3 Advance Processing

Advanced data processing addresses the types of processing which require a certain amount of operator bias to be applied and which will result in data which are significantly different from the raw information which were input to the processing.

B.5.4 Data Interpretation

The EZ Tracker Layer Interpretation procedure uses the output from the first step to map structural layers and calculate the corresponding velocities and depths.

B.6 TEST LIMITATIONS

B.6.1 Test Methods

The data derived through the testing program have been used to develop our opinions about the pavement conditions at your site. However, because no testing program can reveal totally what is in the subsurface, conditions between test locations and at other times, may differ from conditions described in this report. The testing we conducted identified pavement conditions. Depending on the sampling methods and sampling frequency, every location may not be tested, and some anomalies which are present in the pavement may not be noted on the testing results. If conditions encountered during construction differ from those indicated by our testing, it may be necessary to alter our conclusions and recommendations, or to modify construction procedures, and the cost of construction may be affected.

B.6.2 Test Standards

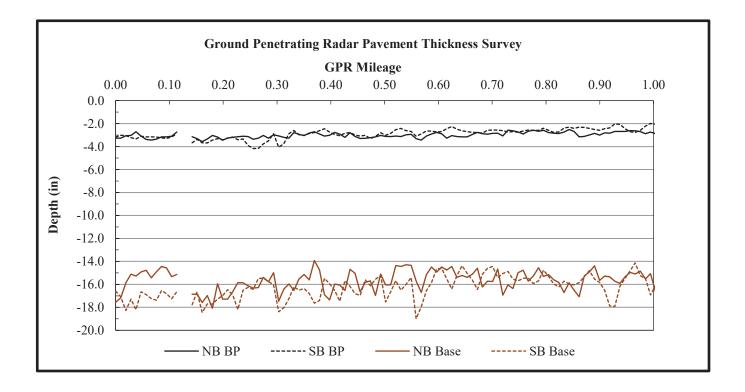
Pavement testing is done in general conformance with the described procedures. Compliance with any other standards referenced within the specified standard is neither inferred nor implied.

B.7 SUPPORTING TEST METHODS

B.7.1 Falling Weight Deflectometer (FWD)

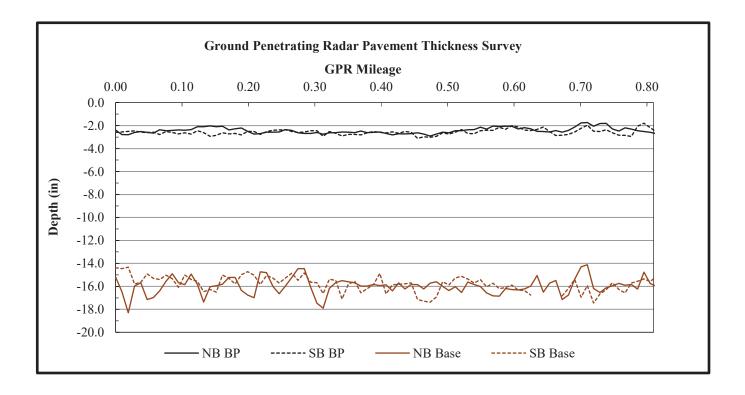
If the pavement layer moduli and subgrade soil strength are desired the deflection data are collected using a Dynatest 8000 FWD Test System that consists of a Dynatest 8002 trailer and a third generation control and data acquisition unit developed in 2003, called the Dynatest Compact15, featuring fifteen (15) deflection channels. The new generation FWD, including a Compact15 System and a standard PC with the FwdWin field Program constitutes the newest, most sophisticated Dynatest FWD Test System, which fulfills or exceeds all requirements to meet ASTM-4694, ASTM D-4695 Standards. The system provides continuous data at pre-set spacing.

B.7.2 Soil Boring/Coring Field Exploration

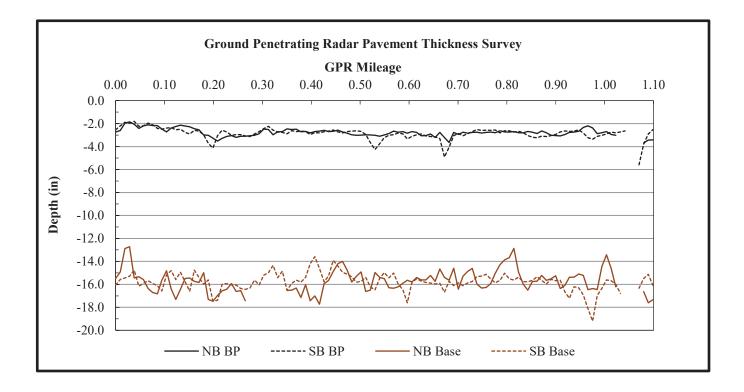

If both pavement thicknesses and subgrade soil types and conditions are desired the shallow coring/boring and sampling is used. The limited number of coring/boring is necessary to verify the GPR layer thickness data.

B.7.3 Pavement Surface Condition Survey

The type and severity of pavement distress influence the deflection response for a pavement. Therefore, GPR operators record any distress located from about 1 ft (0.3 m) in front of vehicle to about 30 ft (9 m) ahead. This information is recorded in the FWD file using the comment line in the field program immediately following the test.

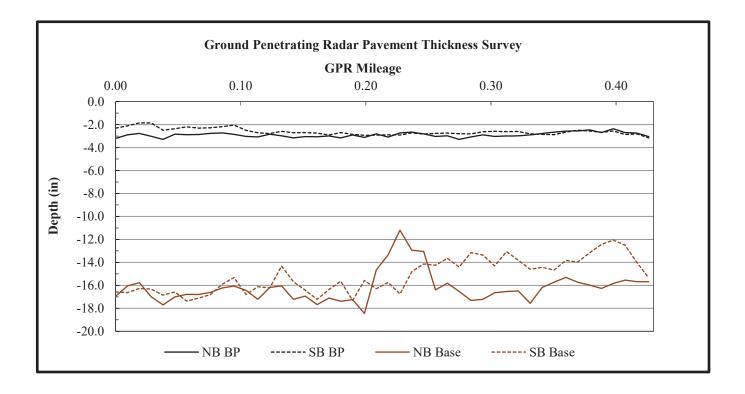


	GENE	RAL INF	ORMATIC	DN: GRO	UND PEN	ETRATIN	G RADAR	Ł
Ducioate	For Squimo	l Solar OU			Date:	7/22/22		
Project:	Fox Squirre	i Solar, Оп				,		
AET Job No.:	P-0013315			,	Fest Date:	6/16/22		
Road:	CR 9			Sect	ion/Grid:	S01		
From:	US 71				To:	Dyer Rd		
			SUMI	MARY ST	ATISTIC	S		
			SUMI	MARY ST	ATISTIC	S	Units:	inches
		N		MARY ST		-	Units: B	inches
Laye	- Average	N CV		MARY ST	ATISTIC	-		inches Min.
Laye	- Average 2.9	I	В			S	B	

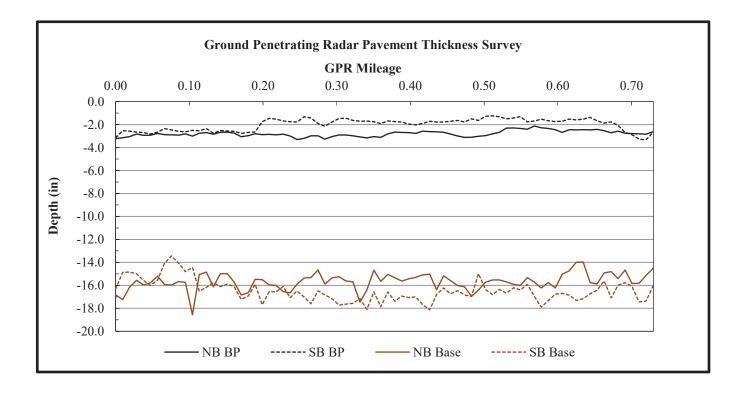


	GENI	ERAL INF	ORMATI	ON: GRO	UND PEN	ETRATIN	G RADAR	2
Project:	Fox Squirre	l Solar OH			Date:	7/22/22		
AET Job No.:	1	1 501ai, 011		r	Date:	6/16/22		
Road:					tion/Grid:	S02		
From:				~~~~	То:			
	5							
			SUM	MARY ST	ATISTIC	S		
							Units:	inches
		N	B			S	B	
Laye	r Average	CV	15th	Min.	Average	CV	15th	Min.
BP	2.4	11%	2.1	1.7	2.6	9%	2.4	1.8
Base	13.5	6%	12.9	11.8	12.5	27%	12.4	-2.9

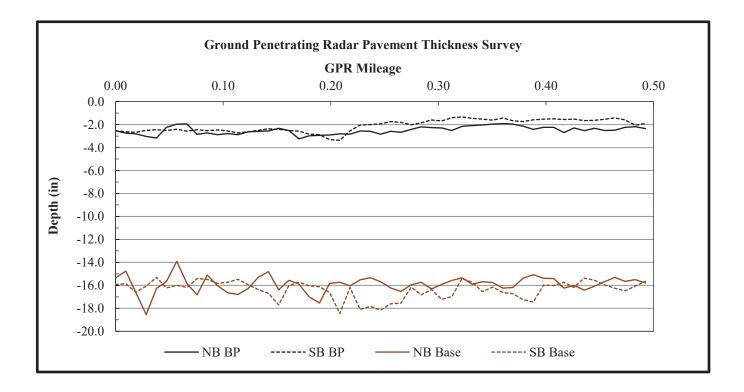
	GENE	ERAL INF	ORMATI	ON: GRO	UND PEN	ETRATIN	G RADAR	Ł
Project:	Fox Squirre	l Solar, OH			Date:	7/22/22		
ET Job No.:	P-0013315			r	Fest Date:	6/16/22		
Road:					tion/Grid:	S03		
From:	CR 21				To:	1.1 mi N		
			SUM	MARY S1	TATISTIC	S		
							Units:	inches
		N	B			S	B	
Layer	Average	CV	15th	Min.	Average	CV	15th	Min.
BP	2.8	12%	2.5	1.9	2.9	18%	2.5	1.8



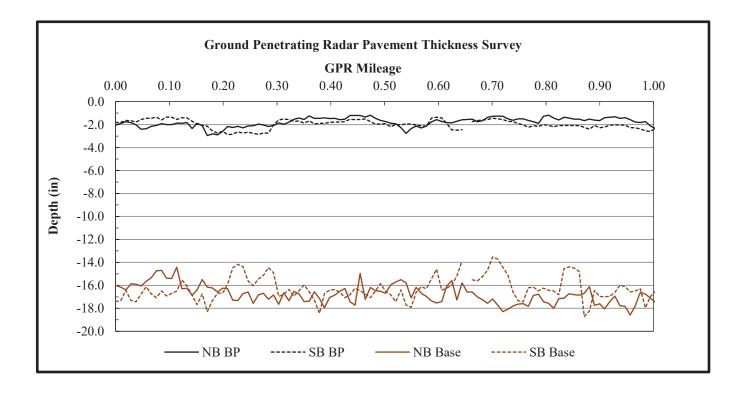
	GENI	ERAL INF	ORMATI	ON: GRO	UND PEN	ETRATIN		Ł	
D		1.0.1.011			D (= /22 /22			
Project:	Fox Squirre	el Solar, OH			Date:	7/22/22			
AET Job No.:	P-0013315]	Fest Date:	6/16/22			
Road:					ion/Grid:	S04			
From:	1.1 mi S				To:	CR 69			
			SUM	MARY ST	ATISTIC	S			
							Units:	inches	
		Ν	В		SB				
Laver	Average	CV	15th	Min.	Average	CV	15th	Min.	
BP	2.6	21%	2.0	1.6	2.2	19%	1.7	1.4	



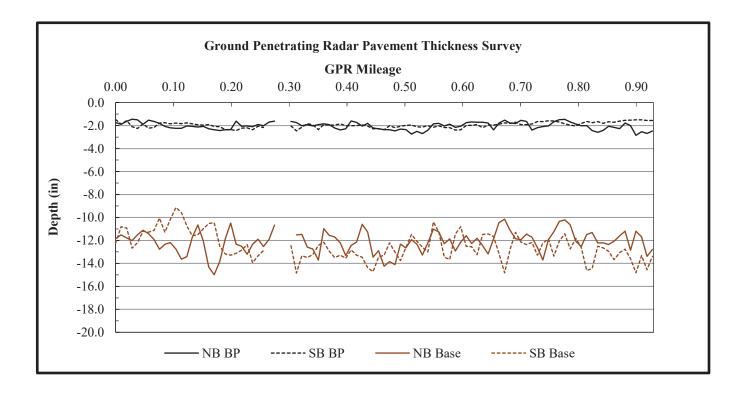
	GENI	ERAL INF	ORMATI	ON: GRO	UND PEN	ETRATIN	G RADAR	2
Project:	Fox Squirre	l Solar, OH			Date:	7/22/22		
AET Job No.:	P-0013315	1 501ai, 011		1	Fest Date:	6/16/22		
Road:	CR 9			Sect	tion/Grid:	S05		
From:	CR 69				To:	CR 73		
			SUM	MARY ST	ATISTIC	S		
							Units:	inches
		Ň	B			S	B	
Layer	Average	CV	15th	Min.	Average	CV	15th	Min.
BP	2.9	7%	2.7	2.4	2.6	11%	2.3	1.9
	13.3	10%	12.8	8.5	12.6	13%	10.9	9.5



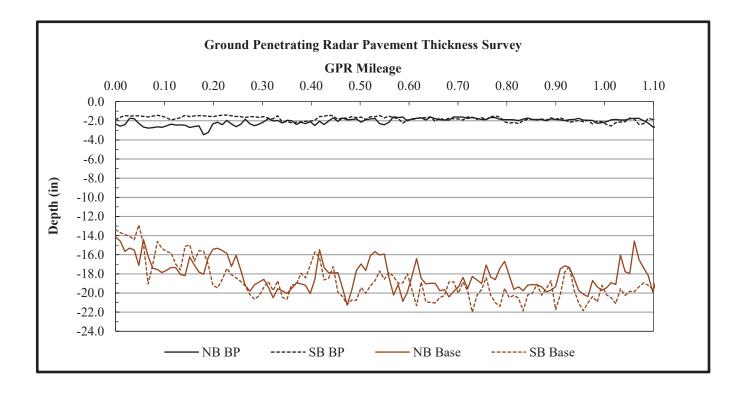
	GENE		ORMATIC	DN: GROU	JND PEN	ETRATIN	G RADAR	2
					-	- / /		
Project:	Fox Squirrel	Solar, OH			Date:	7/22/22		
AET Job No.:	P-0013315			Т	est Date:	6/16/22		
Road:					ion/Grid:	S06		
From:	CR 73				To:	CR 85		
			SUM	MARY ST	ATISTIC	S		
							TT •4	• •
							Units:	inches
		N	B			S	Units:	inches
Layer	Average	N CV	B 15th	Min.	Average	S CV		Min.
Layer BP	Average 2.8			Min. 2.1	Average 2.0	1	B	



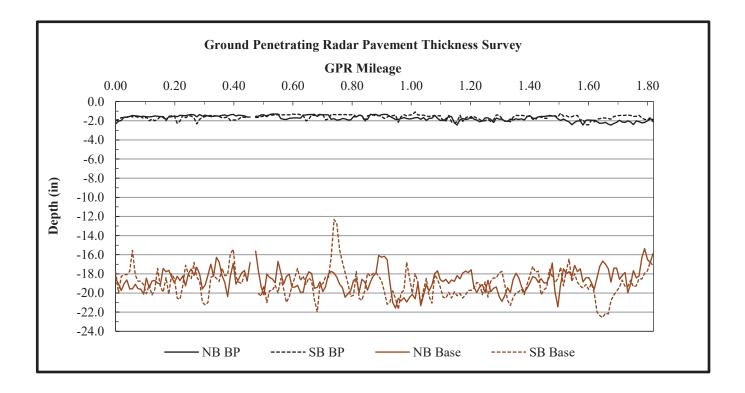
	GENE	ERAL INF	ORMATI	ON: GRO	UND PEN	ETRATIN	G RADAR	2	
Project:	East Sauima	l Salan OII			Date:	7/22/22			
	Fox Squirre			-					
AET Job No.:	P-0013315				Fest Date:	6/16/22			
Road:	CR 9			Sect	ion/Grid:	S07			
From:	CR 85				To:	CR 151			
			SUM	MARY ST	ATISTIC	S			
							Units:	inches	
		Ň	B		SB				
Layer	Average	CV	15th	Min.	Average	CV	15th	Min.	
BP	2.5	13%	2.1	1.9	2.1	25%	1.5	1.3	
Base	13.4	5%	12.8	12.0	14.3	7%	13.2	12.8	



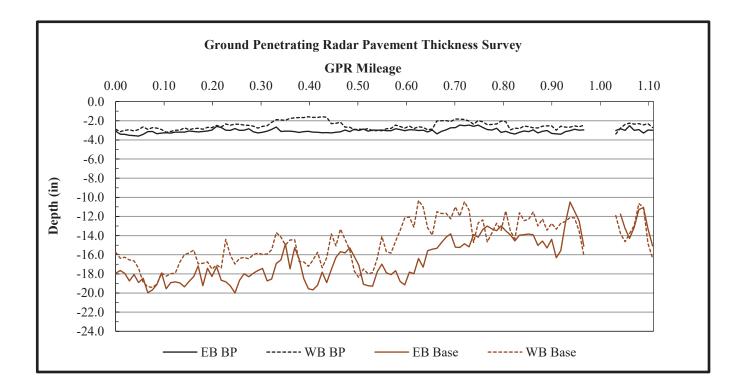
	GENE	RAL INF	ORMATI	ON: GRO	UND PEN	IETRATIN	G RADAR	2	
Project:	Fox Squirre	Solar OH			Date:	7/22/22			
0	-	1 50141, 011		r					
AET Job No.:					Fest Date:	6/16/22			
Road:	CR 9			Sect	tion/Grid:	S08			
From:	CR 151				To:	CR 82			
			SUM	MARY ST	ATISTIC	S			
							Units:	inches	
		Ν	В		SB				
						CIV	150		
Layer	· Average	CV	15th	Min.	Average	CV	15th	Min.	
Layer BP	• Average	CV 21%	15th 1.5	Min. 1.2	Average1.9	19%	15th 1.5	1.3	



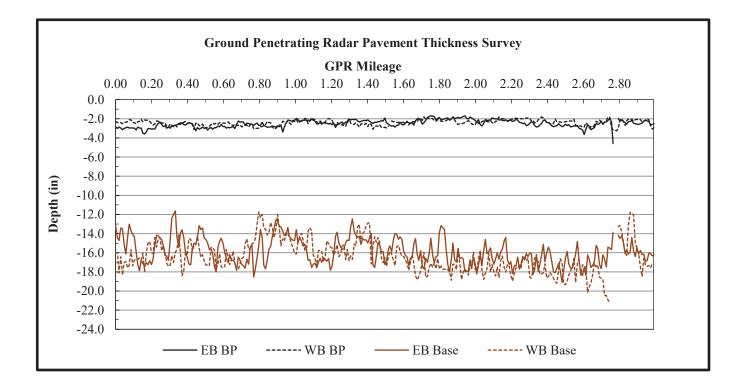
		GENE	RAL INF	ORMATIC	DN: GRO	UND PEN	IETRATIN	G RADAR	R	
р.	4 F	а :	1.0.1 .011			D (7/22/22			
Projec	t: Fo	ox Squirre	l Solar, OH			Date:	7/22/22			
AET Job No	.: Р-					Test Date:	6/16/22			
Road	d: C	CR 84 Sect				ion/Grid:	S09			
Fron	n: C	CR 69				To:	CR 85			
				SUMI	MARY ST	ATISTIC	S			
								Units:	inches	
			Ν	В		SB				
Lay	yer _	Average	CV	15th	Min.	Average	CV	15th	Min.	
	ъ _	2.0	16%	1.7	1.4	1.9	13%	1.7	1.5	
B	r	2.0	1070	117						



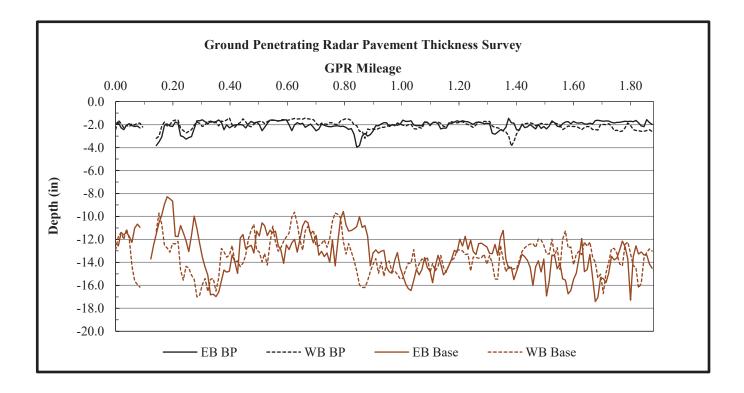
		GENE	RAL INF	ORMATI	ON: GRO	UND PEN	ETRATIN	G RADAR	2	
D	~ 4 .	E 6	1 C - 1 OU			Data	7/22/22			
Projec		Fox Squirre	i Solar, OH			Date:				
AET Job No	0.:	P-0013315]	Fest Date:	6/16/22			
Roa	d:					ion/Grid:	S10			
From	m:	CR 85				To:	CR 82			
				SUM	MARY ST	ATISTIC	S			
								Units:	inches	
			Ν	В		SB				
La	yer	Average	CV	15th	Min.	Average	CV	15th	Min.	
	BP	2.1	17%	1.8	1.6	1.8	15%	1.5	1.4	
В										



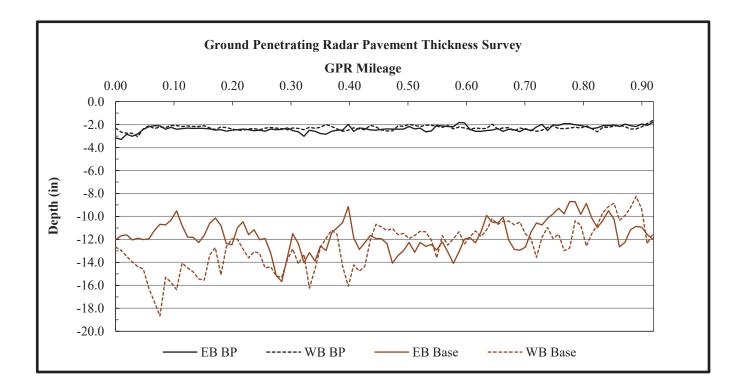
	GEN		ORMATI	ON: GRO	UND PEN	IETRATIN		2
Ducient	For Sauim	Solar OII			Data	7/22/22		
Project	1	solar, Оп			Date:			
AET Job No.	P-0013315			- -	Fest Date:	6/16/22		
Road	CR 84					S11		
From	CR 82				To:	SR 56		
			SUM	MARY ST	ATISTIC	S		
							Units:	inches
		N	В			S	SB	
Lay	r Average	CV	15th	Min.	Average	CV	15th	Min.
	1.7	17%	1.4	1.3	1.6	16%	1.4	1.1
BP								



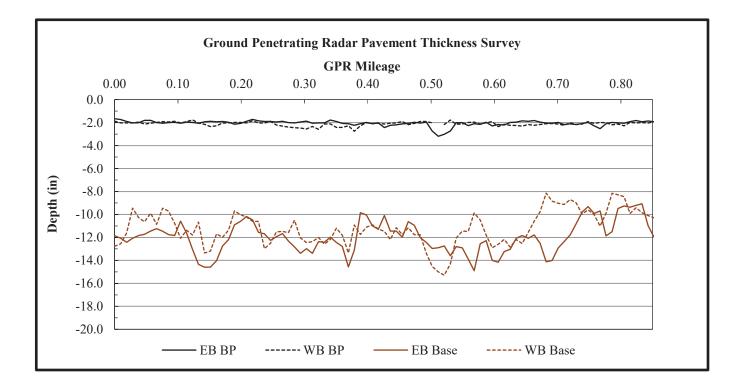
	GENI	ERAL INF	ORMATI	ON: GRO	UND PEN	ETRATIN	IG RADAR	2
D	E G '	10.1 011			Deter	7/22/22		
Project:	Fox Squirre	el Solar, OH			Date:	7/22/22		
AET Job No.:	P-0013315			1	Fest Date:	6/16/22		
Road:	CR 69					S12		
From:	CR 9				To:	CR 84		
			SUM	MARY ST	ATISTIC	S		
							Units:	inches
		E	В			V	VB	
Layer	Average	CV	15th	Min.	Average	CV	15th	Min.
BP	3.1	8%	2.9	2.5	2.5	17%	2.0	1.6
Dr								



	GENE	ERAL INF	ORMATI	ON: GRO	UND PEN	ETRATIN	IG RADAF	2
Project:	Fox Squirre	l Solar OH			Date:	7/22/22		
AET Job No.:	•			r	Test Date:	6/16/22		
Road:	CR 69			Sect	tion/Grid:	S13		
From:	CR 84				To:	SR 56		
			SUM	MARY S1	TATISTIC	S		
							Units:	inches
		E	В			v	VB	
Layer	Average	CV	15th	Min.	Average	CV	15th	Min.
BP	2.5	16%	2.1	1.7	2.4	13%	2.1	1.8
Base	13.4	11%	11.7	9.0	14.1	13%	12.1	8.8



	GENE	RAL INFO	ORMATIC	DN: GRO	UND PEN	ETRATIN	G RADAF	Ł
D • 4					D (7/22/22		
Project:	Fox Squirrel	Solar, OH			Date:	7/22/22		
ET Job No.:	P-0013315]	Fest Date:	6/16/22		
Road:	CR 85			Sect	tion/Grid:	S14		
From:	CR 9				To:	CR 85		
			SUMI	MARY ST	ATISTIC	S		
							Units:	inches
		EI	8			W	Units: VB	inches
Layer	Average	EI CV	3 15th	Min.	Average	W CV		Min.
Layer BP	Average 2.1			Min. 1.5	Average 2.1		VB	



	GEN	ERAL INF	ORMATI	ON: GRO	UND PEN	ETRATIN		2		
Project:	Fox Squirre	el Solar, OH			Date:	7/22/22				
AET Job No.:	1	-		r	Date:	6/16/22				
Road:					tion/Grid:	S15				
From:				Sec	To:	CR 83				
110111.	CR)				10.	CR 05				
			SUM	MARY ST		S				
							Units:	inches		
		E	В		WB					
Laye	r Average	CV	15th	Min.	Average	CV	15th	Min.		
BP	2.4	12%	2.1	1.8	2.3	9%	2.1	1.6		
		14%	7.9	6.7	10.3	19%	8.3	5.9		

	GEN	ERAL INF	ORMATI	ON: GRO	UND PEN	ETRATIN	IG RADAF	z			
Project	Fox Squirre	el Solar. OH			Date:	7/22/22					
AET Job No.:	-	,		r -	Test Date:	6/16/22					
Road	CR 82			Sect	tion/Grid:	S16					
From	CR 83				To:	0.85 mi E					
						_					
			SUM	MARY S1	TATISTIC	S					
		E	R			Units: inches WB					
Layo	r Average	CV	15th	Min.	Average	CV	15th	Min.			
BP	2.0	12%	1.9	1.7	2.1	9%	1.9	1.8			
Bas	9.9	14%	8.5	7.1	9.1	17%	7.7	6.0			

	GENI		ORMATI	ON: GRO	UND PEN	ETRATIN		R	
Project:	Fox Squirre	l Solar, OH			Date:	7/22/22			
AET Job No.:	P-0013315			7		6/16/22			
	CR 82			-	ion/Grid:				
From:	1.0 mi W			~~~~	То:				
			SUM	MARY ST		S			
							Units:	inches	
		F	B		WB				
Layer	Average	CV	15th	Min.	Average	CV	15th	Min.	
BP	2.0	10%	1.8	1.6	2.0	8%	1.9	1.8	
Base	13.8	16%	11.0	8.2	12.3	26%	8.2	6.5	

Pre-construction Road Evaluation **Fox Squirrel Solar Project**, Madison County, OH August 15, 2022 AET Report No. P-0013315A

Appendix C

Falling Weight Deflectometer Field Exploration and Testing FWD Data and Analysis Results Sheet

Appendix C Falling Weight Deflectometer Field Exploration and Testing Report No. P-0013315A

C.1 PAVEMENT TESTING

The pavement structural conditions at the site were evaluated nondestructively using Falling Weight Deflectometer (FWD). The testing locations appear in Figure 1, preceding Appendix A in this report.

C.2 EQUIPMENT DESCRIPTION

C.2.1 Dynatest 8000 FWD Test System

The FWD owned by AET is a Dynatest 8000 FWD Test System that consists of a Dynatest 8002 trailer and a third generation control and data acquisition unit developed in 2003, called the Dynatest Compact15, featuring fifteen (15) deflection channels. The new generation FWD, including a Compact15 System and a standard PC with the FwdWin field Program constitutes the newest, most sophisticated Dynatest FWD Test System, which fulfills or exceeds all requirements to meet ASTM-4694, ASTM D-4695 Standards. Figure C1 provides a view of this equipment.

Figure C1 Dynatest 8002 FWD Test System

The FWD imposes a dynamic impulse load onto the pavement surface through a load plate. Total pulse is an approximately half sine shape with a total duration typically between 25 to 30 ms. The FWD is capable of applying a variety of loads to the pavement ranging from 1,500 lbf (7 kN) to 27,000 ibf (120 kN) by dropping a variable weight mass from different heights to a standard, 11.8-inch (300-mm) diameter rigid plate.

The drop weights and the buffers are constructed so that the falling weight buffer subassembly may be quickly and conveniently changed between falling masses of 440 lbm (200 kg) for highways and 770 lbm (350 kg) for airports. With the 440 lbm (200 kg) package for highways three drop heights are used with the target load of 6,000 lbf (27 kN) at drop height 1, 9,000 lbf (40 kN) at drop height 2, and 12,000 lbf at drop height 3 (53 kN). The drop sequence consists of two seating drops from drop height 3 and 2 repeat measurements at drop height 1 and 1 measurement at drop height 2 for flexible pavements and 2 repeat measurements at drop height 3 for rigid pavements. The data from the seating drops is not stored.

The FWD is equipped with a load cell to measure the applied forces and nine geophones or deflectors to measure deflections up to 100 mils (2.5 mm). The load cell is capable of accurately measuring the force that is applied perpendicular to the loading plate with a resolution of 0.15 psi (1 kPa) or better. The force is expressed in terms of pressure, as a function of loading plate size.

Nine deflectors at the offsets listed in the following table in the Long Term Performance Program (LTPP) configuration are capable of measuring electronically discrete deflections per test, together with nine (9) separate deflection measuring channels for recording of the data. One (1) of the deflectors measures the deflection of the pavement surface through the center of the loading plate, while seven (7) deflectors are capable of being positioned behind the loading plate along the housing bar, up to a distance of 5 ft (2.5 m) from the center of the loading plate and one (1) being positioned in front of the loading plate along the bar.

Deflector	D1	D2	D3	D4	D5	D6	D 7	D8	D9
Offset (in.)	0	8	12	18	24	36	48	60	72

Field testing is performed in accordance with the standard ASTM procedures as described in ASTM D 4695-96, "Standard Guide for General Pavement Deflection Measurements" and the calibration of our equipment is verified each year at the Long Term Pavement Performance Calibration Center in Maplewood, MN.

C.2.2 Linear Distance and Spatial Reference System

Distance measuring instrument (DMI) is a trailer mounted two phase encoder system. When DMI is connected to the Compact15 it provides for automatic display and recording distance information in both English and metric units with a 1 foot (0.3 meters) resolution and four percent accuracy when calibrated using provided procedure in the Field Program.

Spatial reference system is a Trimble ProXH Global Positioning System (GPS) that consists of fully integrated receiver, antenna and battery unit with Trimble's new H-StarTM technology to provide subfoot (30 cm) post-processed accuracy. The External Patch antenna is added to the ProXH receiver for the position of the loading plate. The External Patch antenna can be conveniently elevated with the optional baseball cap to prevent any signal blockage.

C.2.3 Air and Pavement Temperature Measuring System

A temperature monitoring probe, for automatic recording of air temperature, is an electronic (integrated circuit) sensing element in a stainless steel probe. The probe mounts on the FWD unit in a special holder with air circulation and connects to the Compact15. A non-contact Infra-Red (IR) Temperature Transmitter, for automatic recording of pavement surface temperature only, features an integrated IR-detector and digital electronics in a weather proof enclosure. The IR transmitter mounts on the FWD unit in a special holder with air circulation and connects to the Compact15. Both probe and IR transmitter have a resolution of 0.9 °F (0.5 °C) and accuracy within $\pm 1.8^{\circ}$ F (1 °C) in the 0 to 158 °F (-18 to +70°C) range when calibrated using provided procedure.

C.2.4 Camera Monitoring System

A battery operated independent DC-1908E multi-functional digital camera with a SD card is used for easy positioning of the loading plate or of the pavement surface condition at the testing locations.

C.3 SAMPLING METHODS

At the project level, the testing interval is set at 0.1 mi. (maximum) or 10 locations per uniform section in the Outside Wheel Path $(OWP) = 2.5 \text{ ft} \pm 0.25 \text{ ft} (0.76 \text{ m} \pm 0.08 \text{ m})$ for nominal 12 ft (3.7 m) wide lanes. Where a divided roadbed exists, surveys will be taken in both directions if the project will include improvements in both directions. If there is more than one lane in one direction the surveys will be taken in the outer driving lane (truck lane) versus the passing lane of the highway. FWD tests are performed at a constant lateral offset down the test section.

At the network level, FWD tests on 20% mileage or three tests per mile are set with two deflection basins collected at only one load level, without statistically compromising the quality of the data collected. If FWD tests are for the in situ characterization of material stress sensitivity FWD data will be collected at multiple load levels.

C.4 QUALITY CONTROL (QC) AND QUALITY ASSURANCE (QA)

Beside the annual reference calibration the relative calibration of the FWD deflection sensors is conducted monthly but not to exceed 6 weeks during the months in which the FWD unit is continually testing. The DMI is also calibrated monthly by driving the vehicle over a known distance to calculate the distance scale factor. The accuracy of the FWD air temperature and infra-red (IR) sensors are checked on a monthly basis or more frequently if the FWD operator observes "suspicious" temperature readings.

Some care in the placement of the load plate and sensors is taken by the survey crew, especially where the highway surface is rutted or cracked to ensure that the load plate lays on a flat surface and that the load plate and all geophones lie on the same side of any visible cracks. Liberal use of comments placed in the FWD data file at the time of data collection is required. Comments pertaining to proximity to reference markers, bridge abutments, patches, cracks, etc., are all important documentation for the individual evaluating the data.

Scheduled preventive maintenance ensures proper equipment operation and helps identify potential problems that can be corrected to avoid poor quality or missing data that results if the equipment malfunctions while on site. The routine and major maintenance procedures established by the LTPP are adopted and any maintenance has been done at the end of the day after the testing is complete and become part of the routine performed at the end of each test/travel day and on days when no other work is scheduled.

C.5 DATA ANALYSIS METHODS

C.5.1 Inputs

The two-way AADT and HCADT are required to calculate the ESALs. The state average truck percent and truck type distribution are used when HCADT is not provided. The as-built pavement information (layer type, thickness, and construction year) are required and if not provided, GPR and/or coring and boring is needed.

Appendix C Falling Weight Deflectometer Field Exploration and Testing Report No. P-0013315A

C.5.2 Adjustments

Temperature adjustment to the deflections measured on bituminous pavements is determined from the temperature predicted at the middle depth of the pavement using the LTPP BELLS3 model that uses the pavement surface temperature and previous day mean air temperature. The predicted middle depth temperature and the standard temperature of 80 degrees Fahrenheit are used to calculate the temperature adjustment factor for deflection data analysis. Seasonal adjustment developed by Mn/DOT is also used.

C.5.3 Methods

For bituminous pavements, the deflection data were analyzed using the MnDOT method for determining the in-place (effective) subgrade and pavement strength, as well as allowable axle loads for a roadway (Investigation 603) revised in 1983 and automated with spreadsheet format in 2008. The MnDOT method uses Hogg Model for estimating the subgrade modulus and the Effective GE Equation (Investigation 603) for estimating the effective GE of pavements. The MnDOT method also uses the TONN method for estimating Spring Load Capacity and Required Overlay, as described in the MnDOT publication "Estimated Spring Load-Carrying Capacity".

For gravel roads, the deflection data were analyzed using the American Association of State Highway and Transportation Officials' (AASHTO) method for determining the in-place (effective) subgrade and pavement strength, as well as allowable axle loads for a roadway as in the AASHTO Guide for Design of Pavement Structures, 1993.

For concrete pavements, the deflection data were analyzed using the FAA methods for determining the modulus of subgrade reaction (k-value), effective elastic modulus of concrete slabs, load transfer efficiency (LTE) on approach and leave slabs of a joint, slab support conditions (void analysis) and impulse stiffness modulus ratio (durability analysis) as in the FAA AC 150/5370-11A, Use of Nondestructive Testing Devices in the Evaluation of Airport Pavement, 2004.

C.6 TEST LIMITATIONS

C.6.1 Test Methods

The data derived through the testing program have been used to develop our opinions about the pavement conditions at your site. However, because no testing program can reveal totally what is in the subsurface, conditions between test locations and at other times, may differ from conditions described in this report. The testing we conducted identified pavement conditions only at those points where we measured pavement surface temperature, deflections, and observed pavement surface conditions. Depending on the sampling methods and sampling frequency, every location may not be tested, and some anomalies which are present in the pavement may not be noted on the testing results. If conditions encountered during construction differ from those indicated by our testing, it may be necessary to alter our conclusions and recommendations, or to modify construction procedures, and the cost of construction may be affected.

C.6.2 Test Standards

Pavement testing is done in general conformance with the described procedures. Compliance with any other standards referenced within the specified standard is neither inferred nor implied.

C.7 SUPPORTING TEST METHODS

C.7.1 GSSI Ground Penetrating Radar (GPR)

If the as-built pavement layer thicknesses are not available the thickness data are collected using a bumper-mounted, air-coupled 2-GHz radar unit from GSSI (RoadScan system) that consists of a SIR-20 dual channel data acquisition system, wheel-mounted DMI, ProXH GPS, air-launched (horn) antenna, horn antenna vehicle mounting kit, RADAN software with the Road Structure Module, and system accessories. The system provides continuous data at 1-ft spacing while traveling at highway speed.

C.7.2 Soil Boring/Coring Field Exploration

If both pavement thicknesses and subgrade soil types and conditions are desired the shallow coring/boring and sampling is used. The limited number of coring/boring is necessary to verify the GPR layer thickness data.

C.7.3 Pavement Surface Condition Survey

The type and severity of pavement distress influence the deflection response for a pavement. Therefore, FWD operators record any distress located from about 1 ft (0.3 m) in front of deflector D8 to about 3 ft (0.9 m) behind the load plate. This information is recorded in the FWD file using the comment line in the field program immediately following the test.

550 Cleveland Avenue North St. Paul, Minnesota 55114 Phone: (651) 659-9001 Fax: (651) 659-1379

AET Project No. P-0013315 County: Madison Test Date: Jun 15, 2022 Section: S01 Roadway: CR 9 From: SR 323 To: Dyer Rd

Prev. Day's Avg. Air Temp.: 78 °F Total AC: 2.9 in. Daily ESALs: 8.8 PCI: 41 Haul ESALs: 0 Soil Type: P Draught Adjustment Factor: 1.00 Seasonal Correction Factor: 1.00

Design Period: 10 Years Projection Factor: 1.1 Growth Factor: 10.46 10-year Design ESALs: 33,715 Design Period: 20 Years Projection Factor: 1.2 Growth Factor: 22.02 20-year Design ESALs: 70,955

															Effectiv Mr	e Values SN	Overlay Thickness	Axle S Capacity	
Station	Drop	Time	Air °F	Bit °F	Load	D1	D2	D3	D4	D4	D6	D7	D8	D9	ksi	inches	inches	tons/axle	Comments
0.0																			CountyHwy9,IC,StateHwy323,NB"
0.0																			75PavementTemp,80Sunny"
0.0	1	6:52	80.6	80.3	5435	21.2	16.3	13.3	10.7	7.8	4.1	2.1	1.2	0.9	4.3	2.7	0.0	15.9	
0.0	2	6:52	80.6	80.3	5523	21.3	16.4	13.4	10.8	7.8	4.2	2.1	1.3	1.0	4.3	2.7	0.0	16.0	
0.0	3 4	6:52	80.6 80.6	80.3 80.3	8639 8530	34.4 34.5	27.2 26.5	22.5 22.7	18.0 17.9	13.2	7.1	3.6	2.2	1.6	3.9	2.8	0.0 0.0	15.6	
0.0	4	6:52 6:53	82.4	80.5 79.6	6048	54.5 11.0	7.8	6.1	4.6	13.4 3.2	7.2 1.5	3.7 0.7	2.2 0.4	1.6 0.3	3.9 13.3	2.8 3.2	0.0	15.4 29.3	
0.1	2	6:53	82.4	79.6	6135	11.0	7.9	6.1	4.6	3.2	1.5	0.7	0.4	0.3	13.3	3.2	0.0	29.6	
0.1	3	6:53	82.4	79.6	9678	18.3	13.6	10.6	8.2	5.7	2.7	1.3	0.8	0.6	11.4	3.3	0.0	28.5	
0.1	4	6:53	82.4	79.6	9777	18.4	14.0	10.8	8.3	5.8	2.8	1.4	0.8	0.6	11.4	3.3	0.0	28.5	
0.1																			CountyHwy9,J-,START,NB"
0.1																			CountyHwy9,J-,END,NB"
0.2	1	6:55	82.4	81.9	5271	21.2	15.1	11.0	7.2	4.8	2.4	1.4	1.0	0.9	7.1	2.3	0.0	15.4	
0.2	2 3	6:55 6:55	82.4 82.4	81.9 81.9	5238 8585	21.0 33.3	15.0 25.1	11.1 18.3	7.2 12.2	4.8 8.5	2.4 4.3	1.4 2.4	1.0 1.8	0.9 1.5	7.0 6.5	2.3 2.4	0.0 0.0	15.5 15.9	
0.2	4	6:55	82.4	81.9	8385	34.1	25.3	18.7	12.2	8.6	4.3	2.4	1.8	1.5	6.5	2.4	0.0	15.9	
0.2	-	0.55	02.4	01.9	8700	54.1	20.0	10.7	12.4	0.0	4.5	2.5	1.0	1.5	0.5	2.4	0.0	15.7	CountyHwy9,J-,START,NB"
0.3																			CountyHwy9,IC,I-71,NB" CountyHwy9,J-,END,NB"
0.3	1	6:58	82.4	82.1	6069	18.3	12.7	9.9	7.3	5.0	2.3	1.4	1.2	1.0	8.4	2.7	0.0	19.8	5 5.7 7 7
0.3	2	6:58	82.4	82.1	6048	18.0	12.6	9.8	7.3	4.9	2.3	1.4	1.2	1.0	8.6	2.7	0.0	19.9	
0.3	3	6:58	82.4	82.1	9667	29.4	21.3	16.6	12.5	8.6	3.9	2.3	2.1	1.7	8.0	2.7	0.0	19.6	
0.3	4	6:58	82.4	82.1	9558	29.1	21.2	16.5	12.5	8.6	3.9	2.3	2.1	1.7	7.9	2.7	0.0	19.6	
0.4	1	6:59	84.2	82.0	0:00	15.2	12	10.2	8.2	6.1	3.6	2.2	1.6	1.3	5.4	3.4	0.0	22.8	
0.4 0.4	2 3	6:59 6:59	84.2 84.2	82.0 82.0	6026 9558	15.3 24.1	12.4 19.8	10.1 16.3	8.3 13.3	6.2 10.1	3.6 5.9	2.3 3.7	1.6 2.7	1.3 2.2	5.4 5.3	3.4 3.5	0.0 0.0	22.9 23.0	
0.4	3 4	6:59	84.2 84.2	82.0	9558 9591	24.1 24.1	20.0	16.5	13.4	10.1	5.9 5.9	3.8	2.7	2.2	5.2	3.5	0.0	23.0	
0.4	1	7:00	84.2	81.0	5862	18.1	13.5	10.5	8.2	6.0	3.4	1.9	1.2	0.8	5.6	2.9	0.0	19.4	
0.5	2	7:00	84.2	81.0	5905	18.0	13.4	10.7	8.2	6.1	3.4	1.9	1.2	0.9	5.6	3.0	0.0	19.6	
0.5	3	7:00	84.2	81.0	9416	29.4	22.3	17.8	13.9	10.3	5.8	3.3	2.0	1.5	5.2	3.0	0.0	19.2	
0.5	4	7:00	84.2	81.0	9416	29.3	22.4	17.9	14.0	10.4	5.9	3.3	2.0	1.5	5.2	3.0	0.0	19.3	
0.5																			CountyHwy9,B-,B-14,SB"
0.6	1	7:02	84.2	81.7	5588	28.8	21.5	16.4	11.7	7.6	3.3	1.8	1.2	0.9	5.5	2.1	0.0	12.4	
0.6	2	7:02	84.2	81.7	5610	28.7	21.5	16.4	11.8	7.6	3.3	1.8	1.2	0.9	5.5	2.1	0.0	12.5	
0.6 0.6	3 4	7:02 7:02	84.2 84.2	81.7 81.7	8836 8749	45.6 45.5	34.4 33.2	27.0 27.1	19.9 20.0	13.2 13.2	5.7 5.7	3.0 3.0	2.0 1.9	1.5 1.5	5.0 5.0	2.2 2.2	0.1 0.1	12.4 12.3	
0.0	4	7:02	84.2	81.8	0:00	23.2	18	13.5	9.8	6.7	3.4	1.9	1.9	1.5	5.5	2.2	0.0	12.3	
0.7	2	7:03	84.2	81.8	5730	23.2	17.7	13.4	9.8	6.7	3.4	2.0	1.4	1.0	5.4	2.5	0.0	15.4	
0.7	3	7:03	84.2	81.8	9055	36.5	28.8	21.7	16.3	11.4	5.8	3.3	2.3	1.9	5.1	2.5	0.0	15.5	
0.7	4	7:03	84.2	81.8	9033	36.5	28.9	22.0	16.4	11.4	5.8	3.3	2.3	1.9	5.1	2.5	0.0	15.4	
0.8	1	7:04	84.2	81.7	5895	22.4	17.1	14.1	10.9	7.8	4.2	2.2	1.4	1.0	4.5	2.7	0.0	16.3	
0.8	2	7:04	84.2	81.7	5862	22.0	16.9	13.8	10.7	7.7	4.2	2.2	1.4	1.0	4.5	2.8	0.0	16.4	
0.8	3	7:04	84.2	81.7	9405	35.8	27.9	23.0	18.1	13.2	7.2	3.9	2.5	1.8	4.2	2.8	0.0	16.3	
0.8	4	7:04	84.2	81.7	9427	36.0	28.1	23.1	18.3	13.4	7.3	3.9	2.5	1.9	4.2	2.8	0.0	16.2	
0.9 0.9	1 2	7:05	84.2 84.2	81.6 81.6	5785 5807	26.2 26.2	19.6 19.7	15.5 15.5	11.1 11.1	7.6	3.9	2.4	1.8	1.4	4.8	2.4 2.4	0.0	13.9	
0.9	3	7:05 7:05	84.2	81.6	9219	42.3	32.6	25.5	18.6	7.7 13.0	3.9 6.6	2.4 4.0	1.8 2.9	1.4 2.3	4.8 4.6	2.4	0.0	14.0 13.8	
0.9	4	7:05	84.2	81.6	9219	42.4	32.8	26.0	18.8	13.1	6.6	4.0	2.9	2.3	4.5	2.4	0.0	13.7	
1.0	1	7:06	84.2	81.8	5916	21.0	16.4	13.4	10.3	7.6	4.2	2.5	1.7	1.3	4.6	2.9	0.0	17.3	
1.0	2	7:06	84.2	81.8	5916	20.8	16.3	13.3	10.3	7.5	4.2	2.5	1.7	1.3	4.6	2.9	0.0	17.4	
1.0	3	7:06	84.2	81.8	9416	34.3	27.1	21.9	17.3	12.8	7.0	4.2	2.9	2.2	4.3	2.9	0.0	16.9	
1.0	4	7:06	84.2	81.8	9438	34.4	27.3	22.1	17.4	12.9	7.1	4.2	2.9	2.2	4.3	2.9	0.0	16.9	
1.1	1	7:07	84.2	81.8	5632	23.1	18.1	14.2	10.6	7.4	3.8	2.1	1.3	1.0	4.8	2.5	0.0	15.2	
1.1	2	7:07	84.2	81.8	5643	22.9	18.0	14.3	10.6	7.4	3.8	2.1	1.3	1.0	4.8	2.6	0.0	15.3	
1.1	3	7:07	84.2	81.8	9121	38.1	30.3	24.0	18.0	12.9	6.5	3.5	2.3	1.8	4.5	2.6	0.0	15.0	
1.1	4	7:07	84.2	81.8	9066	37.9	30.0	23.8	18.0	12.9	6.5	3.5	2.3	1.8	4.5	2.6	0.0	15.0	Countrillund D. D. 12 MD
1.1 1.2	1	7:09	84.2	82.1	5588	28.1	21.2	16.6	12.0	7.8	4.1	2.7	1.9	1.5	4.4	2.3	0.1	12.7	CountyHwy9,B-,B-13,NB"
1.2	2	7:09	84.2	82.1	5588	27.7	21.2	16.5	12.0	7.8	4.1	2.7	1.9	1.5	4.4	2.3	0.1	12.7	
1.2	3	7:09	84.2	82.1	8891	44.4	34.4	26.9	19.8	13.0	6.7	4.4	3.2	2.6	4.3	2.3	0.1	12.9	
1.2	4	7:09	84.2	82.1	8847	44.5	34.5	27.0	19.9	13.1	6.8	4.4	3.2	2.7	4.2	2.3	0.1	12.7	
1.3																			CountyHwy9,IC,DyerRd,NB"

Fax: (651) 659-1379

Prev. Day's Avg. Air Temp.: 81 °F Total AC: 2.4 in. Daily ESALs: 8.8 PCI: 43 Haul ESALs: 0 Soil Type: P Draught Adjustment Factor: 1.00 Seasonal Correction Factor: 1.00

County: Madison Test Date: Jun 15, 2022 Section: S02

AET Project No. P-0013315

Roadway: CR 9 From: Dyer Rd To: CR 21

PCI: 43 Haul ES Soil Typ Draught		ent Fact							Growth 10-year Design I Projecti Growth 20-year	Design H Period: 2 on Facto Factor:	ESALs: 3 20 Years or: 1.2 22.02	1							
															Effectiv	e Values	Overlay	Axle	
															Mr	SN		Capacity	
Station	Drop	Time	Air °F	Bit °F	Load	D1	D2	D3	D4	D4	D6	D7	D8	D9	ksi	inches	inches	tons/axle	Comments
1.3		- 10	04.2	02.0	5007		10.0	15.4	11.0	0.5	10	2.0	1.0		2.0	2.6	0.0	14.2	CountyHwy9,IC,DyerRd,NB"
1.3 1.3	1 2	7:10	84.2	82.8 82.8	5807 5829	25.7	19.2	15.4	11.8	8.5 8.6	4.9 4.9	2.8 2.8	1.8 1.8	1.3 1.4	3.8 3.8	2.6	0.0 0.0	14.3 14.5	
1.3	2	7:10 7:10	84.2 84.2	82.8	5829 9263	25.5 41.3	19.2 31.8	15.6 25.7	11.8 19.8	8.0 14.6	4.9 8.3	2.8 4.7	3.0	2.3	3.8	2.6 2.7	0.0	14.5	
1.3	4	7:10	84.2	82.8	9203	41.3	32.0	25.9	19.8	14.6	8.3	4.7	3.1	2.3	3.6	2.7	0.0	14.2	
1.5	1	7:11	84.2	82.1	5785	21.6	17.8	15.4	11.8	8.9	5.0	3.1	2.1	1.6	3.7	3.0	0.0	14.2	
1.4	2	7:11	84.2	82.1	5829	21.6	17.8	15.3	11.8	8.9	5	3	2.1	2	4	3	0.0	17	
1.4	3	7:11	84.2	82.1	9339	35.1	29.3	25.0	19.5	14.8	8.4	5.1	3.5	2.7	3.6	3.0	0.0	16.5	
1.4	4	7:11	84.2	82.1	9339	35.2	29.4	25.1	19.6	14.9	8.4	5.2	3.6	2.7	3.6	3.0	0.0	16.5	
1.5	1	7:13	84.2	81.7	6037	18.6	14.6	12.0	9.8	7.2	3.8	2.1	1.3	0.9	5.1	3.1	0.0	19.6	
1.5	2	7:13	84.2	81.7	6026	18.4	14.5	11.9	9.8	7.2	3.8	2.2	1.3	0.9	5.1	3.1	0.0	19.7	
1.5	3	7:13	84.2	81.7	9536	30.2	24.5	20.3	16.5	12.4	6.6	3.6	2.3	1.7	4.7	3.1	0.0	19.1	
1.5	4	7:13	84.2	81.7	9536	30.3	24.6	20.5	16.6	12.4	6.6	3.7	2.3	1.6	4.7	3.1	0.0	19.1	
1.6	1	7:14	84.2	82.0	5873	18.8	13.6	10.8	8.1	5.8	2.9	1.4	0.9	0.7	6.6	2.8	0.0	18.9	
1.6	2	7:14	84.2	82.0	5829	18.5	13.5	10.8	8.1	5.8	2.9	1.4	0.9	0.7	6.5	2.8	0.0	19.0	
1.6	3	7:14	84.2	82.0	9405	30.9	23.0	18.0	14.0	10.1	5.1	2.6	1.6	1.3	5.9	2.8	0.0	18.5	
1.6	4	7:14	84.2	82.0	9438	31.0	23.0	18.1	14.1	10.2	5.2	2.6	1.6	1.3	5.9	2.8	0.0	18.5	
1.6																			CountyHwy9,B-,B-12,SB"
1.7	1	7:15	86.0	82.0	5752	24.7	18.7	14.4	10.3	6.4	2.7	1.5	1.0	0.8	6.8	2.3	0.0	14.6	
1.7	2	7:15	86.0	82.0	5752	24.5	18.6	14.4	10.3	6.4	2.8	1.5	1.0	0.8	6.8	2.3	0.0	14.7	
1.7 1.7	3	7:15	86.0	82.0	9175	40.4	31.2	23.9	17.7	11.4	4.8	2.6	1.7	1.4	6.1	2.3	0.0 0.0	14.3	
1.7	4	7:15 7:17	86.0 86.0	82.0 82.9	9219 5818	40.6 23.1	31.4 18.4	24.2 14.7	17.9 10.9	11.5 7.3	4.9 2.7	2.6 1.3	1.7 0.9	1.4 0.7	6.1 7.1	2.3 2.4	0.0	14.3 15.7	
1.8	2	7:17	86.0	82.9	5840	23.0	18.4	14.7	11.0	7.3	2.7	1.3	0.9	0.7	7.0	2.4	0.0	15.7	
1.8	3	7:17	86.0	82.9	9383	38.4	31.3	24.6	18.9	12.9	4.9	2.4	1.5	1.3	6.2	2.4	0.0	15.3	
1.8	4	7:17	86.0	82.9	9350	38.4	31.3	24.8	19.0	13.0	5.0	2.4	1.5	1.3	6.1	2.4	0.0	15.3	
1.9	1	7:18	86.0	82.2	5807	22.4	17.0	13.5	10.0	7.1	3.8	2.0	1.3	1.0	5.0	2.6	0.0	16.1	
1.9	2	7:18	86.0	82.2	5829	22.2	16.9	13.5	10.1	7.1	3.8	2.1	1.3	1.0	5.0	2.7	0.0	16.3	
1.9	3	7:18	86.0	82.2	9350	36.1	28.2	22.3	17.1	12.3	6.6	3.6	2.3	1.7	4.6	2.7	0.0	16.1	
1.9	4	7:18	86.0	82.2	9339	36.2	28.3	22.5	17.2	12.4	6.6	3.7	2.3	1.7	4.6	2.7	0.0	16.1	
2.0	1	7:19	86.0	82.6	5282	30.1	22.8	16.5	11.2	6.6	1.8	1.0	0.8	0.7	9.4	1.9	0.0	11.3	
2.0	2	7:19	86.0	82.6	5282	29.7	22.6	16.5	11.1	6.6	1.8	1.0	0.8	0.7	9.3	1.9	0.0	11.5	
2.0	3	7:19	86.0	82.6	8530	48.2	38.0	27.4	19.5	12.0	3.3	1.9	1.4	1.2	8.4	1.9	0.0	11.4	
2.0	4	7:19	86.0	82.6	8563	48.6	38.0	27.8	19.5	11.9	3.4	1.8	1.4	1.2	8.2	1.9	0.0	11.4	
2.1																			CountyHwy9,IC,ChrismanRd,NB"
2.1																			CountyHwy9,B-,B-11,NB"
2.1	1	7:21	86.0	82.4	5720	26.5	20.1	15.0	10.6	7.0	3.3	1.8	1.2	1.0	5.7	2.3	0.0	13.7	
2.1	2	7:21	86.0	82.4	5687	26.1	19.9	14.9	10.5	7.0	3.3	1.8	1.1	1.0	5.7	2.3	0.0	13.8	
2.1 2.1	3 4	7:21 7:21	86.0 86.0	82.4 82.4	9099 9099	41.8 41.8	32.7 32.7	24.4 24.5	17.9 17.9	12.0 12.0	5.6 5.7	3.1 3.1	2.0 2.0	1.8 1.8	5.2 5.2	2.3 2.3	0.0	13.8 13.8	
2.1	4	/:21	80.0	02.4	9099	41.0	34.1	24.3	17.9	12.0	5.7	3.1	2.0	1.0	3.2	2.3	0.0	13.0	CountyHwy9,IC,JunkRd,NB"

Design Period: 10 Years Projection Factor: 1.1

Growth Factor: 10.46

St. Paul, Minnesota 55114 Phone: (651) 659-9001 Fax: (651) 659-1379 AET Project No. P-0013315 County: Madison Test Date: Jun 15, 2022 Section: S03 Roadway: CR 9 From: CR 21 To: 1.1 mi N

Prev. Day's Avg. Air Temp.: 81 °F Total AC: 2.8 in. Daily ESALs: 8.8 PCI: 38 Haul ESALs: 0 Soil Type: P Draught Adjustment Factor: 1.00 Seasonal Correction Factor: 1.00

															Effectiv Mr	e Values SN	Overlay Thickness	Axle Capacity	
Station	Drop	Time	Air °F	Bit °F	Load	D1	D2	D3	D4	D4	D6	D7	D8	D9	ksi	inches	inches	tons/axle	Comments
2.1																			CountyHwy9,IC,JunkRd,NB"
2.2	1	7:22	86.0	82.7	5577	26.3	20.8	17.0	12.6	8.8	3.7	1.6	1.1	0.9	4.9	2.3	0.0	13.5	
2.2	2	7:22	86.0	82.7	5610	26.3	20.8	16.9	12.6	8.8	3.7	1.6	1.1	0.9	4.9	2.3	0.0	13.6	
2.2	3	7:22	86.0	82.7	9088	43.8	35.3	28.3	21.7	15.3	6.5	2.8	1.9	1.6	4.5	2.4	0.0	13.2	
2.2	4	7:22	86.0	82.7	9121	44.1	35.6	28.8	22.0	15.5	6.6	2.8	1.9	1.7	4.5	2.4	0.0	13.2	
2.3	1	7:24	86.0	82.1	5326	29.5	23.6	18.7	13.5	8.6	4.1	2.0	1.2	0.9	4.2	2.2	0.4	11.7	
2.3	2	7:24	86.0	82.1	5315	29.1	23.4	18.7	13.5	8.6	4.1	2.0	1.2	0.9	4.2	2.2	0.4	11.8	
2.3	3	7:24	86.0	82.1	8475	46.2	37.3	29.6	22.2	14.6	6.9	3.2	2.0	1.6	4.0	2.3	0.4	11.9	
2.3	4	7:24	86.0	82.1	8497	46.6	37.5	30.1	22.6	14.8	7.0	3.3	2.1	1.7	3.9	2.3	0.4	11.8	
2.4	1	7:25	86.0	82.2	5577	19.9	19.0	18.0	12.0	8.7	3.5	2.3	1.6	1.2	5.2	2.8	0.0	17.3	
2.4	2	7:25	86.0	82.2	5555	19.8	18.9	18.0	12.0	8.7	3.5	2.3	1.6	1.1	5.1	2.8	0.0	17.3	
2.4	3	7:25	86.0	82.2	8978	32.2	31.0	28.7	20.3	14.9	5.9	4.0	2.6	1.9	4.9	2.8	0.0	17.2	
2.4 2.5	4	7:25	86.0	82.2 82.5	8902 5632	32.3 21.6	31.2 16.9	28.7 14.6	20.4 11.3	14.9	5.9	4.0	2.7	2.0	4.8 3.4	2.8 3.0	0.0	17.0 16.2	
	2	7:26	86.0	82.5 82.5						8.7	5.3	3.3 3.3	2.2 2.2	1.8 1.8					
2.5 2.5	3	7:26 7:26	86.0 86.0	82.5 82.5	5643 9099	21.4 34.4	16.8 27.7	14.5 23.3	11.3 18.6	8.7 14.4	5.3 8.7	5.5 5.4	3.7	3.0	3.5 3.4	3.0 3.1	0.0	16.4 16.4	
2.5	4	7:26	86.0	82.5	9099	34.5	27.8	23.3	18.8	14.4	8.8	5.5	3.7	3.0	3.4	3.1	0.0	16.4	
2.5	4	7.20	80.0	82.5	9088	54.5	27.0	23.4	10.0	14.5	0.0	5.5	3.7	5.0	3.4	5.1	0.0	10.4	CountyHwy9,B-,B-10,SB"
2.6	1	7:28	86.0	82.0	5698	16.0	13.1	11.5	9.1	7.1	4.2	2.6	1.7	1.3	4.4	3.4	0.0	21.2	County110,99,8 ,8 10,88
2.6	2	7:28	86.0	82.0	5698	15.9	13.0	11.5	9.1	7.0	4.2	2.5	1.7	1.3	4.4	3.5	0.0	21.2	
2.6	3	7:28	86.0	82.0	9164	25.9	21.4	18.9	14.9	11.6	6.8	4.2	2.8	2.2	4.4	3.5	0.0	21.0	
2.6	4	7:28	86.0	82.0	9153	25.8	21.4	18.4	15.0	11.6	6.8	4.2	2.8	2.1	4.3	3.5	0.0	21.1	
2.7	1	7:30	86.0	82.1	5512	34.7	24.0	18.5	12.1	7.8	3.0	1.9	1.4	1.1	5.9	1.9	0.5	10.3	
2.7	2	7:30	86.0	82.1	5523	34.4	23.8	18.3	12.0	7.8	3.0	1.9	1.4	1.1	5.9	1.9	0.4	10.5	
2.7	3	7:30	86.0	82.1	8771	53.7	38.8	29.8	20.8	13.5	5.2	3.1	2.4	1.9	5.5	2.0	0.5	10.6	
2.7	4	7:30	86.0	82.1	8727	53.7	38.8	29.8	20.8	13.5	5.2	3.1	2.4	1.9	5.4	1.9	0.5	10.6	
2.8	1	7:31	86.0	82.2	5632	16.3	12.5	10.6	8.3	6.2	3.6	2.1	1.4	1.0	5.1	3.2	0.0	20.6	
2.8	2	7:31	86.0	82.2	5643	16.2	12.3	10.5	8.2	6.2	3.5	2.1	1.4	1.0	5.2	3.2	0.0	20.8	
2.8	3	7:31	86.0	82.2	9077	26.6	21.0	17.3	14.0	10.6	6.0	3.6	2.3	1.8	4.9	3.2	0.0	20.4	
2.8	4	7:31	86.0	82.2	9066	26.5	20.9	17.3	14.0	10.6	6.0	3.6	2.3	1.8	4.9	3.2	0.0	20.4	
2.9	1	7:32	86.0	82.3	5741	15.4	12.2	10.0	7.8	5.6	2.7	1.4	0.8	0.6	6.9	3.0	0.0	21.9	
2.9	2	7:32	86.0	82.3	5774	15.4	12.3	10.1	7.8	5.7	2.7	1.4	0.8	0.6	6.8	3.1	0.0	22.0	
2.9	3	7:32	86.0	82.3	9307	25.9	20.9	17.1	13.5	9.8	4.8	2.5	1.5	1.2	6.3	3.1	0.0	21.3	
2.9	4	7:32	86.0	82.3	9274	25.8	21.0	17.2	13.5	9.9	4.8	2.5	1.5	1.2	6.2	3.1	0.0	21.3	
3.0	1	7:33	86.0	82.1	5884	19.9	14.1	10.8	8.1	5.7	2.7	1.3	0.9	0.6	7.2	2.6	0.0	18.0	
3.0	2	7:33	86.0	82.1	5895	19.7	14.0	10.8	8.1	5.7	2.7	1.3	0.8	0.6	7.2	2.6	0.0	18.1	
3.0	3	7:33	86.0	82.1	9427	32.3	23.7	18.1	14.0	10.0	4.7	2.3	1.5	1.1	6.4	2.6	0.0	17.8	
3.0 3.1	4	7:33 7:35	86.0 86.0	82.1 82.4	9383 5315	32.2 18.4	23.7 8.9	18.1 6.6	14.0 5.3	10.0 3.8	4.8 2.0	2.3 1.1	1.5 0.7	1.1 0.6	6.4 8.7	2.7 2.4	0.0	17.8 17.6	
3.1	2	7:35		82.4	5326	18.4		6.7	5.3	3.8	2.0	1.1	0.7	0.6	8.5	2.4	0.0	17.0	
3.1	3	7:35	86.0 86.0	82.4 82.4	5326 8432	29.1	8.6 15.1	0.7	5.5 9.5	5.8 6.8	3.6	2.1	1.1	1.0	8.5 7.5	2.5	0.0	17.7	
3.1	4	7:35	86.0	82.4	8432	32.7	15.1	11.5	9.5 9.4	6.8	8.5	2.0	1.1	1.0	3.2	3.1	0.0	16.1	
3.1	-1	,.55	30.0	02.4	0452	32.1	13.7	11.7	2.4	0.0	0.0	2.0	1.4	1.0	3.2	5.1	0.0	10.1	CountyHwy9,B-,B-09,SB"
3.2																			CountyHwy9,J-,START,NB"

St. Paul, Minnesota 55114 Phone: (651) 659-9001 Fax: (651) 659-1379 AET Project No. P-0013315 County: Madison Test Date: Jun 15, 2022 Section: S04 Roadway: CR 9 From: 1.1 mi S To: CR 69

Prev. Day's Avg. Air Temp.: 81 °F Total AC: 2.6 in. Daily ESALs: 8.8 PCI: 41 Haul ESALs: 0 Soil Type: P Draught Adjustment Factor: 1.00 Seasonal Correction Factor: 1.00

															Effectiv Mr	e Values SN	Overlay Thickness	Axle Capacity	
Station	Drop	Time	Air °F	Bit °F	Load	D1	D2	D3	D4	D4	D6	D7	D8	D9	ksi	inches	inches	tons/axle	Comments
3.2																			CountyHwy9,J-,END,NB"
3.2	1	7:37	86.0	82.6	5643	7.9	6.0	5.5	4.6	3.9	3.0	2.3	1.8	1.4	6.2	5.3	0.0	36.6	
3.2	2	7:37	86.0	82.6	5709	7.8	6.1	5.5	4.6	3.9	3.0	2.3	1.8	1.5	6.2	5.3	0.0	36.9	
3.2	3	7:37	86.0	82.6	9307	12.8	10.0	9.1	7.6	6.4	4.8	3.7	2.9	2.3	6.2	5.3	0.0	37.0	
3.2	4	7:37	86.0	82.6	9285	12.7	10.0	9.0	7.6	6.5	4.8	3.7	2.9	2.3	6.2	5.3	0.0	37.0	
3.3	1	7:38	87.8	83.4	5621	21.7	16.5	13.3	10.1	7.1	3.4	1.7	1.2	0.6	5.4	2.7	0.0	16.1	
3.3	2	7:38	87.8	83.4	5676	21.7	16.6	13.3	10.1	7.2	3.5	1.8	1.2	0.7	5.3	2.7	0.0	16.3	
3.3	3	7:38	87.8	83.4	9153	35.9	28.3	22.6	17.6	12.7	6.2	3.1	2.0	1.5	4.8	2.7	0.0	15.9	
3.3	4	7:38	87.8	83.4	9208	36.1	28.6	23.2	17.8	12.8	6.3	3.2	2.1	1.5	4.7	2.7	0.0	15.9	
3.4	1	7:40	87.8	82.5	5370	21.1	15.8	11.9	8.3	5.2	2.1	0.9	0.6	0.6	8.2	2.4	0.0	15.8	
3.4	2	7:40	87.8	82.5	5370	20.9	15.6	11.7	8.3	5.2	2.1	0.9	0.6	0.6	8.2	2.4	0.0	15.9	
3.4 3.4	3 4	7:40 7:40	87.8 87.8	82.5 82.5	8771 8694	35.6 35.6	26.8 26.9	20.0 20.1	14.6 14.7	9.3 9.4	3.8 3.8	1.7 1.7	1.2 1.2	1.0 1.0	7.5 7.4	2.4 2.4	0.0	15.4 15.2	
3.4	4	7:40	87.8	82.9	5282	23.0	19.2	16.5	14.7	9.4	5.8 4.8	2.8	1.2	1.0	3.6	2.4	0.0	13.2	
3.5	2	7:41	87.8	82.9	5271	23.0	19.2	16.4	12.4	8.9	4.7	2.8	1.8	1.4	3.6	2.8	0.0	14.5	
3.5	3	7:41	87.8	82.9	8716	38.0	32.1	26.7	20.9	15.1	8.0	4.6	3.3	2.5	3.5	2.8	0.0	14.5	
3.5	4	7:41	87.8	82.9	8716	38.1	32.1	26.7	20.9	15.2	8.1	4.6	3.3	2.6	3.5	2.8	0.0	14.5	
3.6	1	7:42	87.8	82.7	5555	19.8	16.2	13.3	9.7	6.5	2.6	1.2	0.7	0.6	6.8	2.6	0.0	17.3	
3.6	2	7:42	87.8	82.7	5588	19.6	16.1	13.2	9.7	6.5	2.7	1.2	0.7	0.6	6.8	2.7	0.0	17.5	
3.6	3	7:42	87.8	82.7	8989	33.4	27.7	22.2	16.8	11.4	4.8	2.2	1.3	1.0	6.1	2.6	0.0	16.6	
3.6	4	7:42	87.8	82.7	9011	33.7	27.9	22.5	17.0	11.4	4.8	2.2	1.3	1.0	6.1	2.6	0.0	16.6	
3.7																			CountyHwy9,B-,B-08,NB"
3.7	1	7:43	87.8	83.0	5206	26.3	21.0	17.3	12.7	8.9	4.4	2.6	1.9	1.5	3.8	2.5	0.0	12.7	
3.7	2	7:43	87.8	83.0	5238	26.2	21.0	17.3	12.7	8.9	4.5	2.6	1.9	1.5	3.8	2.5	0.0	12.8	
3.7	3	7:43	87.8	83.0	8497	42.2	34.3	27.5	21.1	15.0	7.5	4.3	3.2	2.7	3.7	2.5	0.0	12.9	
3.7	4	7:43	87.8	83.0	8388	42.1	34.3	27.6	21.1	15.1	7.5	4.3	3.2	2.7	3.6	2.5	0.0	12.8	
3.8	1	7:45	87.8	82.9	5632	14.1	11.3	9.5	7.6	5.8	3.2	1.9	1.2	0.9	5.7	3.5	0.0	23.3	
3.8	2	7:45	87.8	82.9	5676	14.1	11.4	9.6	7.6	5.8	3.3	2.0	1.2	0.9	5.7	3.5	0.0	23.4	
3.8	3	7:45	87.8	82.9	9339	23.8	19.3	15.9	13.0	10.0	5.6	3.3	2.1	1.5	5.4	3.5	0.0	23.0	
3.8	4	7:45	87.8	82.9	9350	23.7	19.4	15.8	13.0	10.0	5.7	3.3	2.1	1.5	5.4	3.5	0.0	23.0	
3.9																			CountyHwy9,J-,START,NB"
3.9																			CountyHwy9,J-,END,NB"
3.9	1	7:46	87.8	83.4	5927	11.4	9.1	7.7	5.9	4.5	2.8	1.9	1.3	1.0	6.8	4.0	0.0	28.8	
3.9	2	7:46	87.8	83.4	5938	11.2	9.0	7.7	5.8	4.5	2.8	1.9	1.3	1.0	6.9	4.0	0.0	29.1	
3.9	3	7:46	87.8	83.4	0:00	18.1	14.8	12.4	9.7	7.5	4.7	3.2	2.2	1.7	6.7	4.1	0.0	29.3	
3.9	4	7:46	87.8	83.4	9591	18.0	14.7	12.4	9.7	7.5	4.7	3.2	2.2	1.7	6.6	4.1	0.0	29.3	
4.0	1	7:47	89.6	84.4	0:00	27.0	21.2	16.0	11.2	7.1	2.6	1.2	0.8	0.7	7.0	2.2	0.0	13.4	
4.0	2	7:47	89.6	84.4	5654	26.7	21.0	15.8	11.2	7.1	2.6	1.2	0.8	0.7	7.0	2.2	0.0	13.5	
4.0	3	7:47	89.6	84.4	9077	43.8	35.0	26.2	19.3	12.5	4.8	2.1	1.5	1.3	6.2	2.3 2.3	0.0	13.3	
4.0 4.1	4	7:47 7:49	89.6 87.8	84.4 84.6	9088 5643	44.0 25.2	35.4 19.1	26.6 14.5	19.5 10.2	12.7 6.8	4.8 3.3	2.2 1.9	1.5 1.4	1.3 1.1	6.1 5.6	2.3	0.0	13.2 14.2	
4.1	2	7:49	87.8 87.8	84.6 84.6	5643 5687	25.2	19.1	14.5	10.2	6.8	3.3 3.3	1.9	1.4	1.1	5.6	2.4	0.0	14.2	
4.1	3	7:49	87.8	84.6	9132	41.0	31.7	23.9	17.6	11.8	5.7	3.3	2.4	1.1	5.2	2.4	0.0	14.4	
4.1	4	7:49	87.8	84.6	9077	41.0	31.8	23.9	17.8	11.0	5.7	3.3	2.4	1.9	5.2	2.5	0.0	14.1	
4.2	1	7:50	87.8	84.7	5698	15.3	13.4	11.5	9.4	7.2	4.1	1.9	1.1	0.9	4.6	3.6	0.0	22.1	
4.2	2	7:50	87.8	84.7	5687	15.2	13.3	11.4	9.4	7.2	4.0	1.9	1.1	0.9	4.6	3.6	0.0	22.1	
4.2	3	7:50	87.8	84.7	9296	26.2	23.0	19.4	16.4	12.7	7.1	3.4	2.0	1.6	4.2	3.6	0.0	21.2	
4.2	4	7:50	87.8	84.7	9328	26.4	23.1	19.6	16.5	12.8	7.2	3.5	2.0	1.6	4.2	3.6	0.0	21.2	
4.2		1.50	07.0	01.7	<i>y</i> 520	20.1	20.1	19.0	10.5	12.0	7.2	515	2.0	1.0		510	0.0	21.2	CountyHwy9,B-,B-07,SB"
4.3	1	7:51	87.8	84.7	5752	12.8	9.9	8.0	6.2	4.4	2.2	1.1	0.7	0.5	8.5	3.3	0.0	25.7	ý ý, j. j. origina
4.3	2	7:51	87.8	84.7	5807	12.7	9.9	8.0	6.2	4.4	2.2	1.1	0.7	0.5	8.6	3.4	0.0	26.1	
4.3	3	7:51	87.8	84.7	9438	21.6	16.9	13.6	10.8	7.8	3.9	2.0	1.2	1.0	7.8	3.4	0.0	25.2	
4.3	4	7:51	87.8	84.7	9383	21.4	16.9	13.6	10.8	7.8	4.0	2.0	1.2	0.9	7.7	3.4	0.0	25.2	
4.4																			CountyHwy9,IC,MoormanRd,NB"

550 Cleveland Avenue North St. Paul, Minnesota 55114 Phone: (651) 659-9001 Fax: (651) 659-1379 AET Project No. P-0013315 County: Madison Test Date: Jun 15, 2022 Section: 805 Roadway: CR 9 From: CR 69 To: CR 73

Prev. Day's Avg. Air Temp.: 81 °F Total AC: 2.9 in. Daily ESALs: 7.8 PCI: 39 Haul ESALs: 0 Soil Type: P Draught Adjustment Factor: 1.00 Seasonal Correction Factor: 1.00

															Effectiv	e Values	Overlay	Axle	
															Mr	SN	Thickness	Capacity	
Station	Drop	Time	Air °F	Bit °F	Load	D1	D2	D3	D4	D4	D6	D7	D8	D9	ksi	inches	inches	tons/axle	Comments
4.4																			CountyHwy9,IC,MoormanRd,NB"
4.4	1	7:53	87.8	85.2	5293	32.1	19.7	15.7	11.4	7.9	4.3	2.8	2.1	1.7	3.9	2.2	0.5	10.8	
4.4	2	7:53	87.8	85.2	5282	31.8	19.5	15.6	11.3	7.9	4.4	2.8	2.1	1.6	3.9	2.2	0.5	10.9	
4.4	3	7:53	87.8	85.2	8410	50.5	32.6	25.6	19.4	13.8	7.4	4.8	3.6	2.9	3.7	2.2	0.5	10.9	
4.4	4	7:53	87.8	85.2	8344	50.5	31.8	25.6	19.2	13.6	7.3	4.7	3.5	2.8	3.7	2.2	0.6	10.8	
4.5	1	7:54	89.6	85.3	5785	17.0	13.5	11.5	9.0	6.8	4.1	2.5	1.6	1.2	4.6	3.4	0.0	20.5	
4.5	2	7:54	89.6	85.3	5807	17.0	13.6	11.4	9.0	6.8	4.1	2.5	1.6	1.2	4.6	3.4	0.0	20.6	
4.5	3	7:54	89.6	85.3	9317	27.9	22.6	18.6	15.1	11.6	7.0	4.2	2.7	2.1	4.3	3.4	0.0	20.2	
4.5	4	7:54	89.6	85.3	9307	28.0	22.7	18.7	15.2	11.7	7.0	4.2	2.7	2.1	4.3	3.4	0.0	20.1	
4.6	1	7:55	89.6	85.7	5698	17.8	13.2	9.8	7.3	4.2	2.1	1.1	0.7	0.6	8.9	2.7	0.0	19.5	
4.6	2	7:55	89.6	85.7	5730	17.6	13.1	9.8	7.3	4.2	2.1	1.1	0.7	0.6	9.0	2.7	0.0	19.8	
4.6	3	7:55	89.6	85.7	9241	29.3	22.1	16.4	12.7	7.5	3.8	2.0	1.4	1.1	8.0	2.7	0.0	19.3	
4.6	4	7:55	89.6	85.7	9252	29.4	22.1	16.5	12.7	7.5	3.8	2.0	1.4	1.1	8.0	2.7	0.0	19.2	
4.7	1	7:57	89.6	85.3	5490	19.5	15.2	12.3	8.8	6.0	2.5	1.3	0.7	0.7	7.0	2.6	0.0	17.4	
4.7	2	7:57	89.6	85.3	5512	19.4	15.1	12.2	8.8	5.9	2.6	1.3	0.7	0.7	7.0	2.6	0.0	17.6	
4.7	3	7:57	89.6	85.3	9121	33.1	26.0	20.6	15.5	10.7	4.8	2.3	1.5	1.3	6.2	2.7	0.0	17.1	
4.7	4	7:57	89.6	85.3	9153	33.3	26.0	20.7	15.6	10.7	4.8	2.3	1.5	1.3	6.2	2.7	0.0	17.1	
4.7 4.8																			CountyHwy9,B-,B-06,NB" CountyHwy9,IC,ShepherdRd,NB"

St. Paul, Minnesota 55114 Phone: (651) 659-9001 Fax: (651) 659-1379 AET Project No. P-0013315 County: Madison Test Date: Jun 15, 2022 Section: S06 Roadway: CR 9 From: CR 73 To: CR 85

Prev. Day's Avg. Air Temp.: 81 °F Total AC: 2.8 in. Daily ESALs: 7.8 PCI: 40 Haul ESALs: 0 Soil Type: P Draught Adjustment Factor: 1.00 Seasonal Correction Factor: 1.00

															Effectiv Mr	e Values SN	Overlay Thickness	Axle Capacity	
Station	Drop	Time	Air °F	Bit °F	Load	D1	D2	D3	D4	D4	D6	D7	D8	D9	ksi	inches	inches	tons/axle	Comments
4.8																			CountyHwy9,IC,ShepherdRd,NB"
4.8	1	7:58	89.6	86.0	5643	9.5	8.5	7.9	6.8	5.6	3.7	2.1	1.5	1.0	5.0	5.0	0.0	32.1	
4.8	2	7:58	89.6	86.0	5643	9.5	8.5	7.9	6.8	5.6	3.7	2.1	1.5	1.0	5.0	4.9	0.0	32.0	
4.8	3	7:58	89.6	86.0	9296	16.1	14.4	12.9	11.4	9.5	6.2	3.4	2.5	1.8	4.8	4.9	0.0	31.5	
4.8	4	7:58	89.6	86.0	9241	16.1	14.4	12.9	11.4	9.5	6.2	3.5	2.5	1.7	4.8	4.9	0.0	31.3	
4.9	1	7:59	89.6	85.6	0:00	19.6	16	9.6	7.2	4.9	2.3	1.1	0.7	0.6	7.9	2.5	0.0	18.0	
4.9	2	7:59	89.6	85.6	5730	19.4	16.1	9.6	7.2	4.9	2.3	1.1	0.7	0.6	7.9	2.5	0.0	18.2	
4.9	3	7:59	89.6	85.6	9230	32.3	26.6	16.6	12.8	8.9	4.3	2.1	1.4	1.0	7.0	2.6	0.0	17.7	
4.9	4	7:59	89.6	85.6	9219	32.3	26.7	16.7	12.9	8.9	4.3	2.2	1.4	1.0	6.9	2.6	0.0	17.6	
5.0	1	8:01	89.6	87.0	5566	33.2	25.5	20.7	14.5	7.9	3.7	1.8	1.4	1.2	4.8	2.0	0.4	11.0	
5.0	2	8:01	89.6	87.0	5588	32.7	25.2	20.5	14.4	7.9	3.7	1.8	1.4	1.2	4.8	2.1	0.3	11.2	
5.0	3	8:01	89.6	87.0	8968	52.6	40.5	32.3	23.5	13.3	6.4	3.3	2.4	2.0	4.5	2.1	0.4	11.2	
5.0	4	8:01	89.6	87.0	8946	52.4	40.8	32.6	23.8	13.5	6.5	3.4	2.5	2.0	4.5	2.1	0.4	11.2	
5.1	1	8:02	91.4	86.5	5818	29.4	21.8	17.2	11.9	7.9	4.0	2.4	1.8	1.4	4.7	2.3	0.0	12.8	
5.1	2	8:02	91.4	86.5	5807	28.9	21.5	17.0	11.9	7.9	4.0	2.4	1.8	1.4	4.7	2.3	0.0	13.0	
5.1	3	8:02	91.4	86.5	9274	46.5	35.2	27.6	20.0	13.5	6.8	4.0	3.0	2.3	4.4	2.3	0.0	12.9	
5.1	4	8:02	91.4	86.5	9252	46.5	35.2	27.6	20.1	13.6	6.8	4.1	3.1	2.3	4.4	2.3	0.0	12.8	
5.2	1	8:03	89.6	85.7	5752	21.2	15.6	11.9	8.4	5.6	2.7	1.5	0.9	0.7	6.9	2.5	0.0	16.9	
5.2	2	8:03	89.6	85.7	5752	20.9	15.4	11.8	8.3	5.6	2.7	1.5	0.9	0.7	6.9	2.5	0.0	17.1	
5.2	3	8:03	89.6	85.7	9307	33.9	25.5	19.4	14.2	9.6	4.7	2.6	1.6	1.3	6.4	2.6	0.0	17.1	
5.2	4	8:03	89.6	85.7	9350	33.9	25.6	19.5	14.3	9.7	4.8	2.6	1.6	1.3	6.3	2.6	0.0	17.2	
5.2																			CountyHwy9,B-,B-05,SB"
5.3	1	8:05	89.6	85.9	5916	24.5	17.5	13.0	9.3	6.1	2.5	1.3	0.9	0.8	7.6	2.3	0.0	15.3	
5.3	2	8:05	89.6	85.9	5905	24.1	17.3	12.8	9.2	6.1	2.5	1.2	0.9	0.8	7.7	2.3	0.0	15.5	
5.3	3	8:05	89.6	85.9	9339	39.7	29.5	21.9	16.1	10.7	4.5	2.2	1.7	1.4	6.8	2.3	0.0	14.9	
5.3	4	8:05	89.6	85.9	9350	39.8	29.6	22.1	16.2	10.8	4.5	2.2	1.7	1.4	6.7	2.3	0.0	14.9	
5.4	1	8:06	91.4	85.7	5599	26.4	16.7	12.4	8.6	5.5	2.5	1.5	1.2	1.0	7.4	2.1	0.0	13.6	
5.4	2	8:06	91.4	85.7	5555	26.0	16.6	12.3	8.5	5.5	2.4	1.5	1.2	0.9	7.4	2.1	0.0	13.7	
5.4	3	8:06	91.4	85.7	8793	42.6	28.5	21.2	15.3	9.9	4.3	2.5	2.1	1.7	6.6	2.2	0.0	13.3	
5.4	4	8:06	91.4	85.7	8749	42.8	28.0	21.3	15.4	10.0	4.3	2.6	2.1	1.8	6.5	2.1	0.0	13.1	
5.5	1	8:07	91.4	86.6	5523	35.4	24.2	18.2	12.6	7.9	3.4	2.1	1.5	1.3	5.2	1.9	0.5	10.3	
5.5	2	8:07	91.4	86.6	5490	34.6	24.0	18.2	12.4	7.9	3.4	2.2	1.5	1.3	5.2	2.0	0.5	10.5	
5.5	3	8:07	91.4	86.6	8705	54.7	39.5	29.6	21.3	13.8	5.9	3.8	2.7	2.3	4.8	2.0	0.5	10.5	
5.5	4	8:07	91.4	86.6	8629	54.5	39.6	29.8	21.5	13.9	5.9	3.8	2.7	2.2	4.7	2.0	0.6	10.4	
5.5																			CountyHwy9,IC,JohnstonRd,NB"

St. Paul, Minnesota 55114 Phone: (651) 659-9001 Fax: (651) 659-1379 AET Project No. P-0013315 County: Madison Test Date: Jun 15, 2022 Section: 807 Roadway: CR 9 From: CR 85 To: CR 151

Prev. Day's Avg. Air Temp.: 81 °F Total AC: 2.5 in. Daily ESALs: 7.8 PCI: 37 Haul ESALs: 0 Soil Type: P Draught Adjustment Factor: 1.00 Seasonal Correction Factor: 1.00

																ve Values	Overlay	Axle	
Station	Drop	Time	Air °F	Bit °F	Load	D1	D2	D3	D4	D4	D6	D7	D8	D9	Mr ksi	SN inches	Thickness inches	Capacity tons/axle	Comments
5.5	Drop	THIC	7411 1	DR 1	Loau	DI	D2	05	D4	D4	50	D7	50	D)	R31	menes	menes	tons/axic	CountyHwy9,IC,JohnstonRd,NB"
5.6	1	8:09	91.4	86.5	5807	18.4	16.4	14.2	8.1	5.7	2.8	1.6	1.1	0.9	6.7	2.8	0.0	19.3	Countyriwy), ic, soniistonicu, vis
5.6	2	8:09	91.4	86.5	5818	18.3	16.3	14.3	8.0	5.7	2.8	1.6	1.1	0.9	6.8	2.8	0.0	19.4	
5.6	3	8:09	91.4	86.5	9252	30.1	26.7	23.2	14.2	10.0	4.9	2.7	2.0	1.6	6.1	2.8	0.0	18.8	
5.6	4	8:09	91.4	86.5	9285	30.2	26.7	24.0	14.2	10.1	5.0	2.8	2.0	1.7	6.1	2.8	0.0	18.8	
5.7																			CountyHwy9,B-,B-04,NB"
5.7	1	8:10	91.4	86.3	5840	22.1	15.5	11.7	8.5	5.4	2.4	1.1	0.7	0.6	8.0	2.4	0.0	16.5	
5.7	2	8:10	91.4	86.3	5862	22.0	15.5	11.8	8.5	5.5	2.4	1.1	0.7	0.6	8.0	2.4	0.0	16.7	
5.7	3	8:10	91.4	86.3	9317	35.9	26.3	20.1	14.8	9.8	4.3	2.1	1.4	1.1	7.1	2.4	0.0	16.3	
5.7	4	8:10	91.4	86.3	9307	35.8	26.3	20.2	14.8	9.8	4.3	2.1	1.4	1.1	7.0	2.4	0.0	16.3	
5.7																			CountyHwy9,J-,START,NB"
5.7																			CountyHwy9,J-,END,NB"
5.8	1	8:12	91.4	87.2	5698	30.8	21.9	17.2	12.0	8.1	4.0	2.3	1.7	1.3	4.6	2.2	0.1	12.1	
5.8	2	8:12	91.4	87.2	5720	30.5	21.9	17.2	12.0	8.1	4.1	2.3	1.7	1.3	4.6	2.2	0.1	12.2	
5.8	3	8:12	91.4	87.2	9022	48.7	35.8	28.6	20.2	13.8	6.7	3.9	2.8	2.3	4.3	2.2	0.2	12.1	
5.8	4	8:12	91.4	87.2	8946	48.7	35.7	28.8	20.3	13.8	6.8	3.9	2.8	2.3	4.3	2.2	0.2	12.0	
5.9	1	8:13	91.4	88.3	5293	33.2	24.7	19.1	13.2	8.8	4.3	2.7	2.0	1.6	4.0	2.1	0.7	10.5	
5.9	2	8:13	91.4	88.3	5370	32.9	24.5	19.0	13.2	8.9	4.3	2.7	2.0	1.6	4.0	2.1	0.6	10.7	
5.9	3	8:13	91.4	88.3	8585	51.7	39.7	30.5	21.9	15.0	7.2	4.5	3.5	2.8	3.8	2.2	0.6	10.9	
5.9	4	8:13	91.4	88.3	8683	51.8	40.0	30.8	22.1	15.1	7.3	4.5	3.5	2.8	3.8	2.2	0.6	11.0	
6.0	1	8:14	91.4	87.8	5840	21.2	15.5	12.3	9.2	6.3	3.0	1.5	1.0	0.8	6.4	2.6	0.0	17.2	
6.0	2	8:14	91.4	87.8	5818	20.9	15.4	12.3	9.2	6.3	3.0	1.5	1.0	0.8	6.3	2.6	0.0	17.4	
6.0	3	8:14	91.4	87.8	9328	34.6	26.2	20.5	15.9	11.1	5.3	2.7	1.7	1.4	5.7	2.6	0.0	16.9	
6.0	4	8:14	91.4	87.8	9307	34.5	26.1	20.6	15.9	11.1	5.3	2.6	1.7	1.4	5.7	2.6	0.0	16.9	
6.0																			CountyHwy9,IC,LangenRd,NB"

St. Paul, Minnesota 55114 Phone: (651) 659-9001 Fax: (651) 659-1379 AET Project No. P-0013315 County: Madison Test Date: Jun 15, 2022 Section: S08 Roadway: CR 9 From: CR 151 To: CR 82

Prev. Day's Avg. Air Temp.: 81 °F Total AC: 1.8 in. Daily ESALs: 7.8 PCI: 37 Haul ESALs: 0 Soil Type: P Draught Adjustment Factor: 1.00 Seasonal Correction Factor: 1.00

															Effectiv Mr	e Values SN	Overlay Thickness	Axle Capacity	
Station	Drop	Time	Air °F	Bit °F	Load	D1	D2	D3	D4	D4	D6	D7	D8	D9	ksi	inches	inches	tons/axle	
6.0 6.1	1	8:16	91.4	88.0	5632	23.1	17.2	13.6	10.4	7.5	4.0	2.4	1.6	1.2	4.6	2.7	0.0	15.4	CountyHwy9,IC,LangenRd,NB"
6.1	2	8:16	91.4	88.0	5665	22.8	17.2	13.6	10.4	7.5	4.0	2.4	1.6	1.2	4.6	2.7	0.0	15.4	
6.1	3	8:16	91.4	88.0	9022	36.9	28.4	22.1	17.5	12.8	6.7	4.0	2.6	2.1	4.4	2.7	0.0	15.4	
6.1	4	8:16	91.4	88.0	9033	36.9	28.6	22.3	17.6	12.9	6.7	4.0	2.6	2.1	4.3	2.7	0.0	15.4	
6.2	1	8:17	91.4	88.0	5577	25.6	17.1	13.8	10.5	7.7	4.3	2.5	1.7	1.3	4.2	2.6	0.0	13.9	
6.2 6.2	2 3	8:17 8:17	91.4 91.4	88.0 88.0	5599 9011	25.3 40.7	17.1 28.6	13.8 22.9	10.5 18.0	7.7 13.3	4.3 7.2	2.5 4.2	1.7 2.8	1.3 2.1	4.3 4.0	2.6 2.6	0.0	14.1 14.1	
6.2	4	8:17	91.4	88.0	8978	40.7	28.8	23.1	17.9	12.9	7.2	4.2	2.0	2.1	4.0	2.6	0.0	14.1	
6.3																			CountyHwy9,B-,B-03,SB"
6.3	1	8:18	91.4	87.6	5577	24.8	16.0	11.1	7.3	4.1	1.5	0.7	0.5	0.4	12.1	2.1	0.0	14.4	
6.3	2	8:18	91.4	87.6	5610	24.6	16.0	11.1	7.4	4.2	1.5	0.7	0.5	0.4	12.0	2.2	0.0	14.5	
6.3	3 4	8:18	91.4	87.6	8989	41.4	28.2	19.6	13.7	8.0	2.9	1.3	1.0	0.9	9.9 9.9	2.2 2.2	0.0 0.0	13.9	
6.3 6.4	4	8:18 8:20	91.4 91.4	87.6 88.2	8957 5654	41.3 31.5	28.3 24.3	19.7 18.1	13.7 11.7	8.0 6.1	2.9 1.9	1.3 1.0	1.0 0.6	0.9 0.6	9.9 9.9	2.2	0.0	13.9 11.8	
6.4	2	8:20	91.4	88.2	5698	31.4	24.2	18.1	11.8	6.1	1.9	1.0	0.6	0.6	9.8	2.0	0.0	11.9	
6.4	3	8:20	91.4	88.2	9110	51.4	40.5	30.1	20.5	11.2	3.6	1.9	1.2	1.1	8.2	2.0	0.0	11.6	
6.4	4	8:20	91.4	88.2	9121	51.7	40.9	30.5	20.9	11.4	3.7	2.0	1.2	1.1	8.1	2.0	0.0	11.6	
6.5	1	8:21	91.4	88.3	5654	34.8	22.3	15.1	8.4	4.1	1.4	0.8	0.6	0.5	13.6	1.8	0.0	10.8	
6.5	2	8:21	91.4	88.3	5632	34.2	22.2	15.0	8.4	4.1	1.4	0.8	0.6	0.6	13.5	1.8	0.0	10.9	
6.5 6.5	3 4	8:21 8:21	91.4 91.4	88.3 88.3	8957 9000	54.9 55.1	37.9 38.3	25.9 26.2	15.7 16.0	8.1 8.2	2.5 2.6	1.6 1.5	1.1 1.1	1.0 1.0	11.4 11.3	1.9 1.9	0.0 0.0	10.8 10.8	
6.6	1	8:22	93.2	88.6	5916	18.0	14.6	12.6	10.0	7.7	4.4	2.8	1.9	1.4	4.3	3.3	0.0	19.9	
6.6	2	8:22	93.2	88.6	5927	17.8	14.5	12.6	10.0	7.6	4.4	2.8	1.9	1.4	4.3	3.4	0.0	20.1	
6.6	3	8:22	93.2	88.6	9416	28.8	23.7	20.3	16.5	12.7	7.3	4.5	3.1	2.4	4.2	3.4	0.0	19.8	
6.6	4	8:22	93.2	88.6	9416	28.8	23.7	20.3	16.5	12.8	7.4	4.6	3.1	2.4	4.1	3.4	0.0	19.8	
6.7	1	8:23	93.2	88.7	5490	18.7	13.5	10.8	8.4	6.2	3.3	1.7	0.9	0.6	5.5	2.9	0.0	18.1	
6.7 6.7	2	8:23 8:23	93.2 93.2	88.7 88.7	5512 8858	18.7 30.9	13.5 23.0	10.8 18.1	8.4 14.7	6.2 10.9	3.3 5.8	1.7 3.1	0.9 1.6	0.6 1.2	5.5 4.9	2.9 2.9	0.0	18.2 17.8	
6.7	4	8:23	93.2	88.7	8782	30.9	22.7	18.1	14.7	10.9	5.8	3.3	1.6	1.2	4.9	2.9	0.0	17.6	
6.8																			CountyHwy9,B-,B-02,NB"
6.8	1	8:25	93.2	87.2	5730	35.8	26.9	21.0	14.7	9.8	4.7	2.7	2.0	1.6	3.9	2.2	0.6	10.5	
6.8	2	8:25	93.2	87.2	5698	35.2	26.6	20.8	14.6	9.8	4.7	2.7	2.0	1.6	3.9	2.2	0.5	10.6	
6.8	3	8:25	93.2	87.2	9044	55.8	43.3	33.5	24.4	16.6	7.8	4.5	3.4	2.8	3.7	2.2	0.6	10.6	
6.8 6.9	4	8:25 8:26	93.2 93.2	87.2 87.6	9066 5851	56.0 26.4	43.7 18.4	34.0 13.3	24.7 9.0	16.8 5.5	7.9 2.1	4.6 0.9	3.4 0.7	2.8 0.6	3.7 8.9	2.2 2.2	0.6 0.0	10.6 14.2	
6.9	2	8:26	93.2 93.2	87.6	5851	25.9	18.3	13.5	9.0 9.0	5.6	2.1	1.0	0.7	0.6	8.8	2.2	0.0	14.2	
6.9	3	8:26	93.2	87.6	0:00	42.2	30.7	22.0	15.8	10.1	3.9	1.8	1.3	1.1	7.7	2.3	0.0	14.1	
6.9	4	8:26	93.2	87.6	9317	42.1	30.8	22.2	15.9	10.1	3.9	1.8	1.3	1.1	7.7	2.3	0.0	14.1	
7.0	1	8:27	93.2	82.7	0:00	21.1	14.2	9.8	6.6	3.9	1.3	0.6	0.4	0.3	14.1	2.3	0.0	16.9	
7.0	2	8:27	93.2	82.7	5807	20.9	14.1	9.9	6.6	3.9	1.3	0.6	0.3	0.2	14.7	2.3	0.0	17.0	
7.0 7.0	3 4	8:27 8:27	93.2 93.2	82.7 82.7	9383	35.0	24.6	17.8 17.9	12.2 12.3	7.5	2.7 2.7	1.2	0.9	0.8 0.8	11.3 11.2	2.3 2.3	0.0 0.0	16.5 16.5	
7.0	4	8:27	93.2 93.2	87.8	9361 5730	35.0 29.5	24.7 20.0	15.7	12.5	7.6 7.8	3.7	2.1	0.9 1.4	1.1	5.0	2.3	0.0	12.6	
7.1	2	8:28	93.2	87.8	5709	29.0	19.9	15.6	11.5	7.8	3.7	2.1	1.4	1.1	5.0	2.3	0.0	12.7	
7.1	3	8:28	93.2	87.8	9121	46.3	33.0	25.5	19.5	13.5	6.4	3.5	2.4	2.0	4.6	2.4	0.0	12.7	
7.1	4	8:28	93.2	87.8	9132	46.3	33.1	25.7	19.6	13.6	6.5	3.6	2.5	2.0	4.6	2.4	0.0	12.7	
7.2	1	8:30	93.2	89.1	5763	31.6	24.0	19.3	12.9	8.5	3.9	2.5	1.8	1.5	4.8	2.2	0.0	11.9	
7.2 7.2	2 3	8:30 8:30	93.2 93.2	89.1 89.1	5796 9153	31.4 49.8	23.9 39.1	19.2 30.7	12.9 21.8	8.5 14.4	3.9 6.6	2.5 4.1	1.8 3.1	1.5 2.5	4.8 4.5	2.2 2.3	0.0	12.0 12.0	
7.2	4	8:30	93.2 93.2	89.1	9133	49.8	39.1	31.0	21.8	14.4	6.7	4.1	3.1	2.5	4.5	2.3	0.0	12.0	
7.3		0.50	<i>,,,</i> ,	0,	<i></i>		5715	5110	22.0	1 11.5	0.7		5.1	2.0		2.0	0.0	,	CountyHwy9,B-,B-01,SB"
7.3																			Culvert"
7.3	1	8:32	93.2	88.4	5949	11.5	9.8	8.8	7.4	6.0	3.7	2.2	1.4	0.9	5.2	4.4	0.0	28.9	
7.3	2	8:32	93.2	88.4	5895	11.5	9.7	8.7	7.3	5.9	3.7	2.2	1.4	0.9	5.2	4.4	0.0	28.7	
7.3	3 4	8:32	93.2	88.4	9514	18.8	16.2	14.1	12.3 12.4	10.0	6.3	3.7	2.3 2.3	1.6	4.9 4.9	4.4	0.0	28.4	
7.3 7.4	4	8:32 8:33	93.2 93.2	88.4 88.6	9536 5643	18.9 28.8	16.3 21.3	14.3 17.3	12.4	10.0 9.1	6.3 4.6	3.8 2.8	2.3	1.6 1.6	4.9 4.0	4.4 2.4	0.0 0.0	28.4 12.7	
7.4	2	8:33	93.2	88.6	5687	28.6	21.5	17.3	12.9	9.2	4.6	2.8	2.0	1.5	4.0	2.4	0.0	12.7	
7.4	3	8:33	93.2	88.6	9033	45.7	35.5	28.1	21.6	15.6	7.6	4.5	3.3	2.6	3.9	2.5	0.0	12.7	
7.4	4	8:33	93.2	88.6	9000	45.8	35.4	28.3	21.6	15.6	7.6	4.5	3.4	2.6	3.9	2.5	0.0	12.7	
7.5	1	8:34	93.2	89.0	5840	24.0	14.9	10.6	7.1	4.5	1.8	0.9	0.6	0.5	10.3	2.3	0.0	15.5	
7.5	2.000	8:34	93.200	89.0	0:00	23.6	15	10.7	7.1	4.5	1.8	0.9	0.6	0.5	10.3	2.3	0.0	15.8	
7.5 7.5	3.000 4.000	8:34 8:34	93.200 93.200	89.0 89.0	0:00 0:00	38.3 38.4	26 26	18.5 18.7	12.9 13.0	8.3 8.4	3.3 3.4	1.6 1.7	1.1 1.2	0.9 1.0	9.0 8.8	2.3 2.3	0.0 0.0	15.4 15.4	
7.5	4.000	0.54	75.200	07.0	0.00	50.4	20	10.7	15.0	0.4	5.4	1./	1.2	1.0	0.0	2.3	0.0	10.7	93.2PavementTemp,80Sunny"
7.5																			CountyHwy9,IC,MaddenHiggins,NB"

															Effective	Values	Overlay	Axle	
															Mr	SN	Thickness	Capacity	
Station	Drop	Time	Air °F	Bit °F	Load	D1	D2	D3	D4	D4	D6	D7	D8	D9	ksi	inches	inches	tons/axle	Comments
-																			END"

550 Cleveland Avenue North St. Paul, Minnesota 55114 Phone: (651) 659-9001 Fax: (651) 659-1379

Prev. Day's Avg. Air Temp.: 78 °F Total AC: 1.9 in. Daily ESALs: 6.4 PCI: 69 Haul ESALs: 0 Soil Type: P Draught Adjustment Factor: 1.00 Seasonal Correction Factor: 1.00

Design Period: 10 Years Projection Factor: 1.1 Growth Factor: 10.46 10-year Design ESALs: 24,476 Design Period: 20 Years Projection Factor: 1.2 Growth Factor: 22.02 20-year Design ESALs: 51,510

															Effectiv Mr	ve Values SN	Overlay Thickness	Axle Capacity	
Station	Drop	Time	Air °F	Bit °F	Load	D1	D2	D3	D4	D4	D6	D7	D8	D9	ksi	inches	inches	tons/axle	Comments
3.0	p																		VanWagenerRd,IC,JohnstonRd,SB"
3.0	1	16:21	111.2	106.6	5020	40.7	29.7	22.5	14.6	9.3	3.9	2.3	1.7	1.3	4.1	1.5	1.8	8.4	
3.0	2	16:21	111.2	106.6	5031	40.6	29.8	22.5	14.7	9.4	4.0	2.3	1.7	1.3	4.1	1.5	1.8	8.4	
3.0	3	16:21	111.2	106.6	8005	62.6	47.4	36.4	24.2	15.8	6.6	3.8	2.8	2.3	3.9	1.5	1.8	8.6	
3.0	4	16:21	111.2	106.6	7961	63.2	47.7	36.5	24.4	15.9	6.7	3.9	2.9	2.3	3.9	1.5	1.9	8.5	
3.1	1	16:22	111.2	106.5	5162	47.0	37.0	28.8	18.8	11.8	5.5	3.5	2.5	1.9	3.0	1.5	2.5	7.3	
3.1	2	16:22	111.2	106.5	5184	46.7	36.9	28.9	18.9	11.9	5.6	3.5	2.5	1.9	3.0	1.5	2.5	7.4	
3.1	3	16:22	111.2	106.5	8300	74.5	61.2	48.7	32.4	20.5	9.3	6.1	4.3	3.4	2.9	1.5	2.5	7.4	
3.1	4	16:22	111.2	106.5	8246	75.0	62.2	49.3	32.9	20.8	9.4	6.1	4.4	3.5	2.8	1.5	2.6	7.3	
3.2	1	16:24	111.2	105.2	5249	47.5	32.7	21.3	11.1	4.8	2.0	1.7	0.8	0.7	8.7	1.2	1.1	8.0	
3.2 3.2	2	16:24 16:24	111.2 111.2	105.2 105.2	5206 8289	47.0 72.1	32.2 52.5	20.9 36.2	10.9 19.9	4.8 9.1	2.0 2.9	1.8 2.5	0.8 1.5	0.7 1.2	8.6 9.2	1.2 1.3	1.1 0.9	8.0 8.4	
3.2	4	16:24	111.2	105.2	8289	72.1	52.0	36.4	19.9	9.1	2.9	2.5	1.5	1.2	9.2	1.3	1.0	8.3	
3.3	1	16:24	111.2	105.2	5173	42.2	31.1	21.8	11.8	5.6	1.6	1.0	0.9	0.8	10.7	1.3	0.7	9.1	
3.3	2	16:25	111.2	106.2	5216	41.9	31.1	21.8	11.8	5.8	1.6	1.0	0.9	0.8	10.7	1.3	0.6	9.2	
3.3	3	16:25	111.2	106.2	8311	63.6	50.3	35.2	20.2	10.1	2.9	1.8	1.5	1.5	9.3	1.3	0.7	9.5	
3.3	4	16:25	111.2	106.2	8322	63.7	51.0	35.5	20.5	10.1	2.9	1.8	1.5	1.5	9.2	1.3	0.7	9.5	
3.3																			VanWagenerRd,B-,B-29,SB"
3.4	1	16:27	111.2	106.7	5195	52.1	38.8	27.0	16.0	7.5	1.9	1.7	0.7	0.6	8.9	1.2	1.2	7.3	
3.4	2	16:27	111.2	106.7	5206	51.0	38.3	27.5	15.8	7.4	1.9	1.7	0.6	0.6	8.7	1.2	1.2	7.5	
3.4	3	16:27	111.2	106.7	8257	79.6	61.5	45.0	27.0	13.3	3.0	2.4	1.3	1.1	8.8	1.2	1.1	7.6	
3.4	4	16:27	111.2	106.7	8333	79.9	62.2	45.6	27.3	13.7	3.2	2.6	1.4	1.1	8.5	1.2	1.2	7.6	
3.5	1	16:28	109.4	109.8	5490	31.9	23.2	16.7	11.2	6.8	2.8	1.6	1.0	0.9	6.4	1.7	0.6	12.0	
3.5	2	16:28	109.4	109.8	5545	31.8	23.4	16.8	11.3	6.9	2.8	1.6	1.1	0.9	6.4	1.7	0.5	12.1	
3.5	3	16:28	109.4	109.8	8771	49.5	37.8	27.4	19.3	11.8	4.9	2.7	1.9	1.7	5.8	1.7	0.6	12.1	
3.5 3.6	4	16:28	109.4	109.8	8793	49.8	38.3	27.8	19.6	11.9	5.0	2.7	2.0	1.7	5.7	1.7	0.6	12.1	VanWagenerRd,J-,START,SB"
3.6																			VanWagenerRd,J-,END,SB"
3.6	1	16:29	109.4	110.3	5293	24.1	17.3	14.4	10.1	7.1	3.8	2.6	1.6	1.0	4.5	2.2	0.1	14.4	van wagenen (d.,s-,E1(D,SD
3.6	2	16:29	109.4	110.3	5293	24.0	17.2	14.4	10.1	7.1	3.9	2.5	1.7	1.1	4.4	2.2	0.1	14.4	
3.6	3	16:29	109.4	110.3	8541	38.6	28.8	22.5	17.2	12.3	6.7	4.4	3.0	2.3	4.1	2.2	0.1	14.4	
3.6	4	16:29	109.4	110.3	8410	38.5	28.6	22.1	17.1	12.2	6.6	4.4	2.9	2.3	4.1	2.2	0.1	14.2	
3.7	1	16:30	109.4	104.3	5009	43.6	31.0	21.8	13.1	8.0	3.4	2.2	1.5	1.2	4.8	1.4	1.8	7.9	
3.7	2	16:30	109.4	104.3	5031	43.2	30.8	21.7	13.1	8.1	3.4	2.2	1.5	1.2	4.8	1.4	1.8	8.0	
3.7	3	16:30	109.4	104.3	8016	66.5	49.8	34.9	22.6	14.1	5.8	3.7	2.8	2.1	4.5	1.4	1.8	8.3	
3.7	4	16:30	109.4	104.3	7929	66.9	49.2	35.1	22.8	14.1	5.7	3.6	2.4	2.1	4.5	1.4	1.8	8.1	
3.8	1	16:32	109.4	108.4	5282	40.1	29.9	21.2	12.8	7.2	2.7	1.5	1.2	1.0	6.5	1.4	1.2	9.3	
3.8	2	16:32	109.4	108.4	5282	39.8	29.7	21.1	12.9	7.2	2.7	1.5	1.2	1.0	6.4	1.4	1.1	9.4	
3.8	3	16:32	109.4	108.4	8443	61.5	46.9	33.7	21.9	12.5	4.7	2.7	2.1	1.7	5.8	1.5	1.2	9.6	
3.8	4	16:32	109.4	108.4	8432	61.0	47.0	34.1	22.3	12.7	4.8	2.7	2.1	1.7	5.7	1.5	1.2	9.6	VWD-LD_D_20 ND"
3.8 3.9	1	16:33	109.4	109.3	5632	35.3	23.6	15.1	9.7	5.9	2.4	1.4	0.9	0.8	7.6	1.6	0.6	11.3	VanWagenerRd,B-,B-30,NB"
3.9	2	16:33	109.4	109.3	5654	34.6	23.4	15.1	9.7	6.0	2.4	1.4	0.9	0.8	7.5	1.6	0.5	11.5	
3.9	3	16:33	109.4	109.3	8989	53.6	38.2	25.0	16.7	10.6	4.3	2.5	1.8	1.4	6.8	1.6	0.6	11.7	
3.9	4	16:33	109.4	109.3	8978	53.1	38.4	25.1	16.9	10.7	4.3	2.5	1.8	1.4	6.8	1.6	0.6	11.8	
3.9																			127.0PavementTemp,98Sunny"
3.9																			VanWagenerRd,IC,MoormanRd,SB"
3.9																			END"

550 Cleveland Avenue North St. Paul, Minnesota 55114 Phone: (651) 659-9001 Fax: (651) 659-1379 AET Project No. P-0013315 County: Madison Test Date: Jun 14, 2022 Section: S10 Roadway: CR 84 From: CR 85 To: CR 82

Effective Values Overlay Axle

Prev. Day's Avg. Air Temp.: 78 °F Total AC: 1.8 in. Daily ESALs: 6.4 PCI: 68 Haul ESALs: 0 Soil Type: P Draught Adjustment Factor: 1.00 Seasonal Correction Factor: 1.00

															Mr	SN	Thickness	Capacity	
Station	Drop	Time	Air °F	Bit °F	Load	D1	D2	D3	D4	D4	D6	D7	D8	D9	ksi	inches	inches	tons/axle	Comments
1.8																		VanW	agenerRd,IC,MaddenHigginsRd,SB"
1.9	1	16:06	113.0	108.4	5293	46.9	32.8	21.7	11.6	5.4	1.8	1.1	0.9	0.7	9.3	1.9	0.0	8.3	
1.9	2	16:06	113.0	108.4	5326	46.4	32.6	21.5	11.6	5.4	1.9	1.1	0.9	0.7	9.3	1.9	0.0	8.4	
1.9	3	16:06	113.0	108.4	8432	71.2	52.5	36.0	20.6	10.2	3.4	2.0	1.5	1.2	8.0	1.9	0.0	8.5	
1.9	4	16:06	113.0	108.4	8410	71.7	53.0	36.7	20.7	10.3	3.4	2.1	1.5	1.2	8.0	1.9	0.0	8.5	
2.0	1	16:08	113.0	109.3	5479	36.2	26.1	19.1	12.6	7.7	3.2	1.9	1.4	1.1	5.5	2.2	0.0	10.4	
2.0	2	16:08	113.0	109.3	5512	36.2	26.2	19.4	12.7	7.6	3.3	1.9	1.4	1.1	5.5	2.2	0.0	10.4	
2.0	3	16:08	113.0	109.3	8814	57.9	43.1	32.6	21.8	13.3	5.7	3.4	2.5	2.0	5.0	2.2	0.0	10.3	
2.0	4	16:08	113.0	109.3	8814	58.5	43.8	33.3	22.1	13.5	5.7	3.4	2.5	2.0	5.0	2.2	0.0	10.2	
2.1	1	16:09	113.0	107.8	5512	27.7	19.6	14.3	8.7	5.1	1.9	1.1	0.8	0.6	9.2	2.4	0.0	13.9	
2.1	2	16:09	113.0	107.8	5468	27.3	19.3	14.2	8.5	5.0	1.9	1.1	0.7	0.6	9.3	2.4	0.0	14.0	
2.1	3	16:09	113.0	107.8	8803	42.5	31.6	23.8	14.9	9.1	3.5	2.0	1.2	1.1	8.2	2.5	0.0	14.3	
2.1	4	16:09	113.0	107.8	8793	42.7	31.6	24.1	15.0	9.2	3.5	2.0	2.5	1.1	8.2	2.5	0.0	14.2	
2.2	1	16:10	113.0	109.7	5238	28.2	18.1	14.6	10.6	7.3	3.8	2.2	1.5	1.1	4.5	2.5	0.0	12.3	
2.2	2	16:10	113.0	109.7	5315	27.7	18.1	14.6	10.6	7.4	3.8	2.2	1.5	1.1	4.6	2.6	0.0	12.7	
2.2	3	16:10	113.0	109.7	8585	44.4	30.0	23.7	17.8	12.4	6.4	3.7	2.5	2.0	4.4	2.6	0.0	12.7	
2.2	4	16:10	113.0	109.7	8596	44.2	30.1	24.6	17.9	12.4	6.4	3.7	2.5	1.9	4.3	2.6	0.0	12.8	
2.3	1	16:11	113.0	108.5	5370	36.1	27.2	18.8	12.7	7.9	3.3	2.1	1.4	1.2	5.2	2.2	0.0	10.2	
2.3	2	16:11	113.0	108.5	5402	36.1	27.3	19.2	12.8	8.0	3.3	2.0	1.5	1.2	5.3	2.2	0.0	10.2	
2.3	3	16:11	113.0	108.5	8552	55.6	43.8	32.2	21.5	13.7	5.9	3.7	2.6	2.2	4.7	2.3	0.0	10.4	
2.3	4	16:11	113.0	108.5	8552	56.1	44.3	32.9	21.9	13.9	5.9	3.7	2.7	2.2	4.7	2.3	0.0	10.3	
2.3																			VanWagenerRd,B-,B-27,SB"
2.4	1	16:13	113.0	109.0	5632	31.3	23.9	18.3	12.5	8.3	4.2	2.5	1.7	1.3	4.3	2.5	0.0	11.9	
2.4	2	16:13	113.0	109.0	5610	30.9	23.7	18.1	12.4	8.3	4.2	2.5	1.7	1.3	4.3	2.5	0.0	12.0	
2.4	3	16:13	113.0	109.0	8989	49.3	38.9	28.9	21.1	14.4	7.2	4.3	2.9	2.2	4.1	2.5	0.0	12.0	
2.4	4	16:13	113.0	109.0	8968	49.3	39.0	29.0	21.2	14.4	7.2	4.3	2.9	2.3	4.0	2.5	0.0	11.9	
2.5	1	16:14	113.0	108.3	5479	44.9	33.8	24.0	14.3	7.5	2.3	1.5	1.1	0.8	7.7	1.9	0.0	8.7	
2.5	2	16:14	113.0	108.3	5523	44.9	33.8	24.1	14.4	7.6	2.4	1.5	1.1	1.0	7.6	2.0	0.0	8.8	
2.5	3	16:14	113.0	108.3	8694	68.7	53.5	38.4	24.5	13.4	4.2	2.5	2.0	1.5	6.7	2.0	0.0	8.9	
2.5	4	16:14	113.0	108.3	8683	68.7	53.5	38.7	24.8	13.5	4.3	2.5	1.9	1.5	6.6	2.0	0.0	8.9	
2.6	1	16:15	111.2	107.5	5359	46.5	35.2	25.9	17.2	10.8	5.3	3.6	2.7	2.1	3.2	2.0	1.1	7.7	
2.6	2	16:15	111.2	107.5	5326	45.6	34.7	25.7	17.0	10.7	5.3	3.6	2.7	2.1	3.2	2.0	1.0	7.8	
2.6	3	16:15	111.2	107.5	8519	71.0	56.3	41.3	28.9	18.6	8.9	6.1	4.6	3.5	3.1	2.1	1.0	7.9	
2.6	4	16:15	111.2	107.5	8497	71.1	56.7	41.8	29.2	18.8	8.9	6.1	4.6	3.5	3.1	2.1	1.1	7.9	
2.6																			VanWagenerRd,J-,START,SB"
2.6																			VanWagenerRd,J-,END,SB"
2.7	1	16:17	111.2	106.4	5348	46.8	35.8	23.6	13.2	5.8	1.0	0.7	0.6	0.6	16.7	1.8	0.0	8.8	
2.7	2	16:17	111.2	106.4	5337	46.3	35.5	23.4	13.2	5.8	1.1	0.7	0.6	0.6	16.0	1.9	0.0	8.8	
2.7	3	16:17	111.2	106.4	8454	73.0	57.9	38.7	23.4	10.7	2.1	1.4	1.2	1.0	13.2	1.9	0.0	8.7	
2.7	4	16:17	111.2	106.4	8366	73.4	58.4	39.3	23.7	10.9	2.2	1.4	1.2	1.0	12.6	1.9	0.0	8.5	
2.8	1	16:18	111.2	107.3	5577	32.9	24.7	19.6	13.8	9.1	4.3	2.3	1.6	1.2	4.2	2.4	0.0	11.2	
2.8	2	16:18	111.2	107.3	5632	32.8	24.7	19.6	13.9	9.1	4.3	2.4	1.6	1.2	4.2	2.4	0.0	11.4	
2.8	3	16:18	111.2	107.3	8935	52.1	40.5	32.7	23.5	15.5	7.3	4.0	2.7	2.2	4.0	2.5	0.0	11.3	
2.8	4	16:18	111.2	107.3	8869	52.2	40.7	33.2	23.6	15.6	7.3	4.0	2.7	2.2	3.9	2.4	0.0	11.2	
2.8																			VanWagenerRd,B-,B-28,NB"
2.9	1	16:20	111.2	107.2	5490	36.1	27.6	21.3	13.6	8.0	3.0	1.4	1.0	0.9	5.9	2.2	0.0	10.5	
2.9	2	16:20	111.2	107.2	5523	35.8	27.5	21.3	13.6	8.1	3.0	1.5	1.0	0.9	5.9	2.2	0.0	10.6	
2.9	3	16:20	111.2	107.2	8782	56.7	44.8	35.6	23.3	14.2	5.2	2.5	1.8	1.6	5.5	2.2	0.0	10.6	
2.9	4	16:20	111.2	107.2	8803	56.8	45.1	36.0	23.6	14.4	5.3	2.5	1.8	1.6	5.4	2.2	0.0	10.6	
3.0																			VanWagenerRd,IC,JohnstonRd,SB'

St. Paul, Minnesota 55114 Phone: (651) 659-9001 Fax: (651) 659-1379 AET Project No. P-0013315 County: Madison Test Date: Jun 14, 2022 Section: S11 Roadway: CR 84 From: CR 82 To: SR 56

Prev. Day's Avg. Air Temp.: 78 °F Total AC: 1.6 in. Daily ESALs: 12.9 PCI: 68 Haul ESALs: 0 Soil Type: P Draught Adjustment Factor: 1.00 Seasonal Correction Factor: 1.00

															Effectiv Mr	ve Values SN	Overlay Thickness	Axle Capacity	
Station	Drop	Time	Air °F	Bit °F	Load	D1	D2	D3	D4	D4	D6	D7	D8	D9	ksi	inches	inches	tons/axle	Comments
0.0 0.0 0.0																			START" VanWagenerRd,IC,StHwy56,SB" 116.4PavementTemp,98Sunny"
0.0	1	15:27	105.8	111.7	5654	26.0	18.0	13.6	9.1	5.7	2.9	1.7	1.3	0.9	6.3	2.6	0.0	14.4	
0.0 0.0	2 3	15:27 15:27	105.8 105.8	111.7 111.7	5643 9099	25.4 40.2	17.7 28.9	13.3 21.7	9.0 15.7	5.6 10.0	2.9 5.2	1.7 3.1	1.2 2.2	1.0 1.8	6.3 5.7	2.6 2.7	0.0 0.0	14.7 14.8	
0.0	4	15:27	105.8	111.7	9153	40.2	29.1	21.9	15.8	10.0	5.2	3.1	2.2	1.8	5.7	2.7	0.0	14.8	
0.1	1	15:28	105.8	111.0	5577	32.1	23.1	19.2	12.9	8.1	3.7	2.0	1.4	1.1	4.8	2.4	0.0	11.5	
0.1	2	15:28	105.8	111.0	5599	31.9	23.0	19.0	13.0	8.1	3.7	2.0	1.4	1.1	4.9	2.4	0.0	11.6	
0.1	3	15:28	105.8	111.0	8891	48.7	35.3	29.7	21.6	13.9	6.2	3.4	2.3	1.9	4.6	2.5	0.0	12.0	
0.1	4	15:28	105.8	111.0	8913	48.9	35.1	30.2	21.9	14.1	6.3	3.3	2.3	1.9	4.6	2.5	0.0	11.9	
0.2	1 2	15:29 15:29	107.6 107.6	112.4 112.4	5741 5720	29.0 28.6	21.6 21.3	16.1 15.9	10.9 10.8	7.0 7.0	3.2 3.3	1.9 1.9	1.3 1.3	1.0 1.0	5.7 5.7	2.5 2.5	0.0 0.0	13.2 13.3	
0.2	3	15:29	107.6	112.4	9121	43.5	32.6	25.0	18.1	11.9	5.7	3.2	2.3	1.7	5.2	2.6	0.0	13.7	
0.2	4	15:29	107.6	112.4	9132	43.4	32.1	25.8	18.1	12.0	5.6	3.2	2.3	1.7	5.3	2.6	0.0	13.8	
0.3																			VanWagenerRd,B-,B-23,SB"
0.3	1	15:31	107.6	111.7	5304	20.9	15.3	11.9	8.4	5.7	2.8	1.5	1.0	0.8	6.2	2.8	0.0	16.6	
0.3	2	15:31	107.6	111.7	5249	20.7	15.1	11.9	8.3	5.7	2.8	1.5	1.0	0.8	6.1	2.8	0.0	16.5	
0.3	3 4	15:31 15:31	107.6 107.6	111.7 111.7	8607 8650	32.9 32.9	24.2 24.0	20.3 20.5	14.4 14.6	10.0 10.1	4.9 4.9	2.7 2.7	1.7 1.8	1.3 1.4	5.7 5.7	2.9 2.9	0.0 0.0	16.8 16.9	
0.3 0.4	4	15:31	107.6	115.1	5249	39.3	24.0	20.5	14.0	7.5	3.0	1.7	1.8	1.4	5.8	2.9	0.0	9.2	
0.4	2	15:32	107.6	115.1	5216	38.7	28.5	21.1	13.1	7.4	2.9	1.7	1.3	1.1	5.8	2.1	0.4	9.3	
0.4	3	15:32	107.6	115.1	8388	62.3	45.3	35.7	23.1	13.4	4.9	2.9	2.2	1.9	5.5	2.1	0.5	9.2	
0.4	4	15:32	107.6	115.1	8366	62.8	45.0	36.3	23.2	13.6	4.9	3.0	2.2	1.9	5.5	2.1	0.5	9.1	
0.4			100.4			10.5									5.0				VanWagenerRd,J-,START,SB" VanWagenerRd,J-,END,SB"
0.5 0.5	1 2	15:33 15:33	109.4 109.4	111.1 111.1	5271 5293	40.6 40.1	27.4 27.2	19.1 19.0	11.8 11.9	7.1 7.2	2.9 2.9	1.6 1.6	1.0 1.0	0.8 0.8	5.9 5.9	2.0 2.1	0.4 0.4	8.9 9.1	
0.5	3	15:33	109.4	111.1	8377	62.7	44.8	32.7	20.8	12.5	5.1	2.7	1.7	1.5	5.4	2.1	0.4	9.1	
0.5	4	15:33	109.4	111.1	8322	63.0	44.6	32.8	20.9	12.5	5.1	2.7	1.7	1.5	5.3	2.1	0.6	9.0	
0.6	1	15:42	113.0	112.1	5348	28.2	17.8	13.0	8.0	5.1	2.5	1.3	0.9	0.7	7.1	2.4	0.0	12.9	
0.6	2	15:42	113.0	112.1	5402	27.6	17.7	13.0	8.0	5.1	2.4	1.3	0.9	0.7	7.2	2.4	0.0	13.3	
0.6	3	15:42	113.0	112.1	8563	42.3	26.3	21.3	13.5	8.8	4.2	2.3	1.5	1.2	6.6	2.5	0.0	13.6	
0.6 0.7	4	15:42 15:48	113.0 114.8	112.1 111.0	8508 5446	42.2 38.8	26.0 29.0	21.6 20.8	13.6 13.2	8.9 8.4	4.2 3.4	2.3 1.8	1.6 1.2	1.2 1.0	6.5 5.1	2.5 2.1	0.0	13.5 9.5	
0.7	2	15:48	114.8	111.0	5479	38.5	29.0	20.8	13.2	8.4	3.4	1.8	1.2	1.0	5.2	2.1	0.4	9.6	
0.7	3	15:48	114.8	111.0	8782	60.6	47.0	35.2	23.2	14.9	6.0	3.2	2.2	1.8	4.7	2.2	0.5	9.7	
0.7	4	15:48	114.8	111.0	8803	61.0	47.4	36.2	23.5	15.1	6.1	3.3	2.3	1.8	4.7	2.2	0.6	9.6	
0.8																			VanWagenerRd,B-,B-24,NB"
0.8	1	15:50	116.6	109.3	5523	30.2	20.0	14.0	8.6	4.8	2.2	1.4	1.0	0.7	8.0	2.3	0.0	12.6	
0.8 0.8	2 3	15:50 15:50	116.6 116.6	109.3 109.3	5555 8869	30.1 46.2	20.1 32.9	14.2 24.1	8.6 15.2	4.9 8.9	2.2 4.0	1.4 2.5	1.0 1.7	0.7 1.3	8.0 7.2	2.3 2.4	0.0	12.7 13.1	
0.8	4	15:50	116.6	109.3	8847	46.2	32.6	24.4	15.2	8.9	4.0	2.5	1.8	1.3	7.2	2.4	0.0	13.0	
0.9	1	15:52	114.8	110.4	5304	28.4	21.7	16.3	11.0	7.3	4.1	2.6	1.8	1.3	4.2	2.5	0.0	12.1	
0.9	2	15:52	114.8	110.4	5381	28.3	21.6	16.2	11.0	7.3	4.2	2.6	1.8	1.3	4.2	2.6	0.0	12.3	
0.9	3	15:52	114.8	110.4	8661	43.0	33.9	26.3	18.3	12.4	6.9	4.3	3.0	2.2	4.1	2.7	0.0	12.9	
0.9	4	15:52	114.8	110.4	8661	43.6 25.1	34.2	26.5	18.4	12.5 5.4	7.0	4.4	3.0	2.2	4.0	2.6	0.0	12.7	
1.0 1.0	1 2	15:53 15:53	114.8 114.8	111.5 111.5	5730 5720	23.1	17.9 17.6	12.8 12.7	8.3 8.2	5.3	3.0 3.0	1.9 1.9	1.3 1.3	1.0 1.0	6.3 6.3	2.7 2.7	0.0 0.0	15.1 15.2	
1.0	3	15:53	114.8	111.5	9186	38.0	28.4	21.3	14.3	9.5	5.1	3.2	2.3	1.8	5.8	2.8	0.0	15.7	
1.0	4	15:53	114.8	111.5	9208	37.9	28.3	21.4	14.4	9.6	5.1	3.2	2.3	1.8	5.8	2.8	0.0	15.8	
1.1	1	15:54	114.8	110.0	5643	35.8	26.6	19.2	12.4	8.2	4.1	2.6	1.8	1.4	4.4	2.3	0.4	10.4	
1.1	2	15:54	114.8	110.0	5643	35.5	26.5	19.0	12.4	8.3	4.2	2.7	1.8	1.4	4.3	2.3	0.4	10.5	
1.1 1.1	3 4	15:54 15:54	114.8 114.8	110.0 110.0	8946 8968	54.9 55.1	42.6 42.6	31.8 32.1	21.3 21.5	14.3 14.4	7.0 7.1	4.4 4.4	3.2 3.2	2.6 2.6	4.1 4.1	2.4 2.4	0.4 0.4	10.7 10.6	
1.1	1	15:55	114.0	109.5	5293	53.2	36.2	24.7	13.9	8.3	4.0	2.6	1.9	1.5	4.3	1.8	1.6	6.7	
1.2	2	15:55	113.0	109.5	5315	52.5	36.0	24.7	13.8	8.4	4.0	2.7	2.0	1.5	4.3	1.9	1.5	6.8	
1.2	3	15:55	113.0	109.5	8388	79.2	55.9	41.6	24.0	14.6	6.8	4.5	3.4	2.6	4.0	1.9	1.6	7.1	
1.2	4	15:55	113.0	109.5	8399	79.5	54.1	41.8	24.2	14.5	6.8	4.5	3.4	2.7	4.0	1.9	1.6	7.1	
1.3																			VanWagenerRd,B-,B-25,SB"
1.3	1	15:57	113.0	109.0	5501	37.8	27.6	19.3	11.3	6.5	2.4	1.5	1.1	0.9	7.3	2.1	0.0	10.1	
1.3 1.3	2 3	15:57 15:57	113.0 113.0	109.0 109.0	5512 8760	37.6 58.7	27.4 44.3	19.2 33.1	11.3 20.3	6.5 11.8	2.4 4.4	1.5 2.7	1.1 2.0	0.9 1.6	7.4 6.5	2.1 2.2	0.0 0.0	10.2 10.2	
1.3	4	15:57	113.0	109.0	8749	58.9	42.3	33.0	20.4	11.9	4.4	2.7	2.0	1.6	6.5	2.2	0.0	10.2	
1.4																			VanWagenerRd,J-,START,SB"
1.4										_									VanWagenerRd,J-,END,SB"
1.4	1	15:59	113.0	109.6	5381	43.6	30.9	22.2	14.3	9.1	4.6	2.9	1.9	1.5	3.8	2.1	1.3	8.2	

	Axle	Overlay	Values	Effectiv															
	Capacity	Thickness	SN	Mr															
Comments	tons/axle	inches	inches	ksi	D9	D8	D7	D6	D4	D4	D3	D2	D1	Load	Bit °F	Air °F	Time	Drop	Station
	8.3	1.3	2.1	3.8	1.5	1.9	2.9	4.6	9.1	14.3	22.1	30.7	43.0	5402	109.6	113.0	15:59	2	1.4
	8.4	1.3	2.1	3.7	2.5	3.2	4.8	7.5	15.6	24.3	37.0	50.0	67.0	8541	109.6	113.0	15:59	3	1.4
	8.3	1.4	2.1	3.6	2.5	3.3	4.8	7.6	15.7	24.5	37.3	50.2	67.1	8443	109.6	113.0	15:59	4	1.4
	7.2	1.4	1.9	4.4	1.4	1.7	2.5	3.7	7.6	12.8	21.3	30.4	47.5	5041	109.1	113.0	16:00	1	1.5
	7.3	1.4	1.9	4.4	1.4	1.7	2.5	3.7	7.6	12.8	21.3	30.2	46.9	5041	109.1	113.0	16:00	2	1.5
	7.3	1.5	1.9	4.1	2.4	2.9	4.3	6.3	13.3	22.3	36.5	51.0	73.8	8027	109.1	113.0	16:00	3	1.5
	7.4	1.4	1.9	4.1	2.3	2.4	4.1	6.4	13.7	22.8	37.3	53.2	74.0	8125	109.1	113.0	16:00	4	1.5
	7.6	1.4	2.0	4.0	1.2	1.8	2.6	4.4	9.3	15.9	25.7	36.5	47.8	5435	110.0	113.0	16:01	1	1.6
	7.7	1.4	2.0	3.9	1.5	1.8	2.7	4.5	9.4	15.9	25.6	36.2	47.3	5457	110.0	113.0	16:01	2	1.6
	7.7	1.5	2.0	3.7	2.5	3.2	4.4	7.6	16.0	27.2	42.6	58.8	74.1	8618	110.0	113.0	16:01	3	1.6
	7.7	1.5	2.0	3.6	2.5	3.2	4.4	7.7	16.3	27.5	43.2	59	74.5	8639	110.0	113.0	16:01	4	1.6
	10.6	0.0	2.2	5.9	0.8	1.0	1.5	2.9	6.9	11.4	18.0	24	34.0	5337	109.2	113.0	16:02	1	1.7
	10.8	0.0	2.2	5.8	0.8	1.0	1.6	3.0	7.0	11.5	18.0	24	33.7	5370	109.2	113.0	16:02	2	1.7
	10.9	0.1	2.3	5.3	1.5	1.8	2.7	5.3	12.4	20.1	29.1	40	53.3	8650	109.2	113.0	16:02	3	1.7
	10.7	0.2	2.3	5.2	1.5	1.8	2.7	5.3	12.6	20.3	29.5	40	53.6	8552	109.2	113.0	16:02	4	1.7
VanWagenerRd,B-,B-26,NB"																			1.8
	6.9	1.9	1.9	3.4	1.6	2.1	3.0	4.8	10.1	17.6	28.0	39	48.4	5063	109.3	113.0	16:04	1	1.8
	7.0	1.9	1.9	3.4	1.6	2.1	3.0	4.8	10.0	17.4	27.8	39	47.7	5041	109.3	113.0	16:04	2	1.8
	7.0	2.0	1.9	3.2	2.8	3.6	5.0	8.2	17.7	30.3	45.4	63	76.0	8093	109.3	113.0	16:04	3	1.8
	6.9	2.0	1.9	3.2	2.8	3.6	5.1	8.2	18.0	30.8	46.8	64	77.0	8082	109.3	113.0	16:04	4	1.8
anWagenerRd,IC,MaddenHigginsRd,SB	1																		1.8

Effective Values Overlay Axle

Prev. Day's Avg. Air Temp.: 78 °F Total AC: 2.5 in. Daily ESALs: 5.3 PCI: 63 Haul ESALs: 0 Soil Type: P Draught Adjustment Factor: 1.00 Seasonal Correction Factor: 1.00

Design Period: 10 Years Projection Factor: 1.1 Growth Factor: 10.46 10-year Design ESALs: 20,424 Design Period: 20 Years Projection Factor: 1.2 Growth Factor: 22.02 20-year Design ESALs: 42,982

															Mr	SN	Thickness	Canacity	
Station	Drop	Time	Air °F	Bit °F	Load	D1	D2	D3	D4	D4	D6	D7	D8	D9	ksi	inches	inches	tons/axle	Comments
3.0	Drop	Time		DR I	Louu					21	20	57	50	57	1671	meneo	menes	tons/unic	MoormanRd,IC,VanWagenerRd,WB"
3.0	1	17:25	107.6	106.8	5676	18.4	12.1	8.3	5.1	3.0	1.3	0.7	0.5	0.4	14.7	2.4	0.0	22.2	moormaintaire, raintagenerra, r B
3.0	2	17:25	107.6	106.8	5741	18.4	12.3	8.4	5.2	3.0	1.3	0.7	0.5	0.4	14.8	2.4	0.0	22.4	
3.0	3	17:25	107.6	106.8	9274	30.0	20.8	14.3	9.4	5.6	2.3	1.3	1.0	0.8	12.8	2.4	0.0	21.9	
3.0	4	17:25	107.6	106.8	9317	29.9	20.9	14.3	9.4	5.7	2.4	1.3	1.0	0.8	12.8	2.5	0.0	22.1	
3.1																			MoormanRd,J-,END,WB"
3.2	1	17:27	107.6	98.3	5370	18.1	12.2	9.6	6.8	5.0	3.3	2.3	1.7	1.3	5.3	2.8	0.0	19.2	
3.2	2	17:27	107.6	98.3	5424	18.1	12.2	9.6	6.9	5.0	3.3	2.3	1.7	1.3	5.4	2.8	0.0	19.3	
3.2	3	17:27	107.6	98.3	8782	28.0	19.9	15.4	11.7	8.5	5.5	3.8	2.8	2.1	5.2	3.0	0.0	20.0	
3.2	4	17:27	107.6	98.3	8771	28.0	19.9	15.4	11.7	8.6	5.5	3.8	2.8	2.1	5.1	3.0	0.0	20.0	
3.2 3.2	1 2	17:28 17:28	107.6 107.6	99.5 99.5	5687 5643	22.4 21.8	16.2 15.9	11.7 11.5	7.6 7.5	4.8 4.8	2.3 2.3	1.3 1.3	0.9 0.9	0.7 0.7	8.0 8.0	2.3 2.3	0.0 0.0	17.2 17.5	
3.2	3	17:28	107.6	99.5 99.5	9153	35.8	26.8	19.3	13.4	4.8	4.2	2.3	1.6	1.3	7.1	2.3	0.0	17.2	
3.2	4	17:28	107.6	99.5	9208	35.8	20.8	19.5	13.4	8.9	4.2	2.3	1.6	1.3	7.1	2.4	0.0	17.2	
3.3	1	17:29	107.0	106.2	5315	35.3	24.9	15.7	10.8	6.8	3.1	1.6	1.1	0.9	5.6	1.8	0.3	10.7	
3.3	2	17:29	105.8	106.2	5337	34.6	24.4	15.7	10.7	6.8	3.1	1.6	1.1	0.9	5.7	1.9	0.2	10.9	
3.3	3	17:29	105.8	106.2	8607	55.2	40.4	26.9	18.9	11.8	5.6	3.0	2.1	1.7	5.0	1.9	0.3	10.9	
3.3	4	17:29	105.8	106.2	8672	55.3	40.6	27.8	19.1	11.9	5.7	3.0	2.1	1.8	5.0	1.9	0.3	11.0	
3.4																			MoormanRd,B-,B-16,WB"
3.4	1	17:31	105.8	107.3	5315	36.2	22.2	14.9	9.0	5.0	2.1	1.2	0.9	0.8	8.3	1.7	0.0	10.9	
3.4	2	17:31	105.8	107.3	5370	36.2	22.6	15.2	9.2	5.1	2.1	1.2	0.9	0.8	8.2	1.7	0.0	10.9	
3.4	3	17:31	105.8	107.3	8541	56.9	37.9	25.8	16.6	9.3	3.8	2.3	1.7	1.4	7.2	1.8	0.0	10.9	
3.4	4	17:31	105.8	107.3	8552	57.1	37.1	26.1	16.8	9.4	3.9	2.3	1.7	1.4	7.1	1.8	0.0	10.9	
3.5	1	17:32	105.8	105.7	5315	64.6	44.0	28.4	16.0	8.2	3.0	1.9	1.4	1.1	5.8	1.3	1.4	6.0	
3.5	2	17:32	105.8	105.7	5326	63.7	43.8	28.4	16.0	8.2	3.0	1.9	1.4	1.1	5.7	1.4	1.4	6.1	
3.5	3	17:32	105.8	105.7	8399	97.6	68.3	46.9	28.5	14.7	5.4	3.4	2.5	2.0	5.1	1.4	1.5	6.2	
3.5	4	17:32	105.8	105.7	8366	97.5	67.5	47.2	28.7	14.7	5.4	3.4	2.5	2.0	5.0	1.4	1.5	6.2	
3.6 3.6	1 2	17:33 17:33	105.8 105.8	105.4 105.4	5195 5206	49.2 48.7	35.1 35	23.8 23.7	13.7 13.7	7.4 7.4	3.3 3.3	2.4 2.4	1.8 1.8	1.6 1.6	5.1 5.1	1.5 1.6	1.2	7.6 7.7	
3.6	3	17:33	105.8	105.4	8257	46.7 75.3	56.9	38.1	23.9	12.8	5.5	4.0	3.0	2.8	4.9	1.6	1.1	7.8	
3.6	4	17:33	105.8	105.4	8235	75.5	57.0	38.6	23.9	12.0	5.5	4.0	3.1	2.0	4.9	1.6	1.1	7.8	
3.7	1	17:34	105.8	104.5	5370	50.6	36.5	25.3	15.4	8.7	3.7	2.3	1.6	1.3	4.7	1.6	1.3	7.6	
3.7	2	17:34	105.8	104.5	5413	50.3	36.5	25.4	15.5	8.8	3.7	2.3	1.6	1.3	4.8	1.6	1.2	7.7	
3.7	3	17:34	105.8	104.5	8530	80.4	60.6	41.9	27.2	15.3	6.3	3.9	2.9	2.3	4.4	1.6	1.4	7.5	
3.7	4	17:34	105.8	104.5	8464	80.4	60.4	42.1	27.2	15.3	6.4	3.9	2.9	2.3	4.3	1.6	1.4	7.5	
3.8	1	17:35	105.8	104.7	5468	49.0	33.8	20.6	10.4	4.3	1.0	0.6	0.6	0.5	17.7	1.4	0.0	8.9	
3.8	2	17:35	105.8	104.7	5512	48.5	33.8	20.7	10.5	4.4	1.0	0.6	0.6	0.5	17.9	1.5	0.0	9.0	
3.8	3	17:35	105.8	104.7	8683	74.4	55.1	34.6	19.7	8.5	2.0	1.2	1.1	0.9	14.1	1.5	0.0	9.1	
3.8	4	17:35	105.8	104.7	8683	74.3	55.4	35.0	19.9	8.6	2.0	1.3	1.1	0.9	13.9	1.5	0.0	9.1	
3.9																			MoormanRd,B-,B-15,EB"
3.9	1	17:37	107.6	104.3	5271	45.3	31.6	20.6	11.7	5.5	1.5	1.1	1.0	0.9	11.5	1.5	0.0	8.9	
3.9	2	17:37	107.6	104.3	5304	45.3	32	20.7	11.8	5.6	1.5	1.1	1.0	0.9	11.2	1.5	0.0	8.9	
3.9	3	17:37	107.6	104.3	8432	69.9	50.8	34.0	20.7	9.8	2.8	2.0	1.9	1.6	9.8	1.5	0.1 0.1	9.0 9.1	
3.9 4.0	4	17:37 17:38	107.6 107.6	104.3 105.3	8486 5282	70.1 59.4	51.4 40.9	34.3 27.0	21.0 13.9	9.9 6.6	2.8 2.3	2.1 1.6	1.9 1.3	1.6 1.0	9.8 7.3	1.5 1.4	0.1	6.6	
4.0	2	17:38	107.6	105.3	5326	58.8	40.9	27.0	13.9	6.6	2.3	1.7	1.3	1.0	7.2	1.4	0.9	6.7	
4.0	3	17:38	107.6	105.3	8432	89.0	63.1	43.6	24.9	11.8	4.4	3.0	2.3	1.8	6.2	1.4	1.1	7.0	
4.0	4	17:38	107.6	105.3	8421	89.0	61.5	44.0	25.2	11.9	4.4	3.1	2.3	1.8	6.2	1.4	1.1	6.9	
4.1	1	17:40	107.6	105.0	5490	46.3	31.6	20.1	11.7	6.6	2.1	1.2	0.8	0.8	8.6	1.5	0.3	8.8	
4.1	2	17:40	107.6	105.0	5501	45.9	31.4	20.5	11.7	6.6	2.0	1.2	0.9	0.8	8.7	1.6	0.2	8.9	
4.1	3	17:40	107.6	105.0	8793	71.0	51.2	34.8	21.0	11.5	3.9	2.3	1.7	1.4	7.3	1.6	0.4	9.1	
4.1	4	17:40	107.6	105.0	8782	71.0	51.5	35.8	21.2	11.5	3.9	2.3	1.7	1.4	7.3	1.6	0.4	9.1	
4.1																			116.7PavementTemp,97Sunny"
4.1																			MoormanRd,IC,CountyRd9,WB"
4.1																			END"

Prev. Day's Avg. Air Temp.: 78 °F	
Total AC: 2.4 in.	
Daily ESALs: 5.6	
PCI: 52	
Haul ESALs: 0	
Soil Type: P	
Draught Adjustment Factor: 1.00	
Seasonal Correction Factor: 1.00	

															Effecti Mr	ve Values SN	Overlay Thickness	Axle Capacity	
Station	Drop	Time	Air °F	Bit °F	Load	D1	D2	D3	D4	D4	D6	D7	D8	D9	ksi	inches	inches	tons/axle	Comments
0.0																			START"
0.0																			MoormanRd,IC,StHwy56,WB" 118.7PavementTemp,97Sunny"
0.0	1	16:47	105.8	107.3	5512	40.7	28.0	19.2	11.6	6.7	3.3	2.0	1.5	1.2	5.5	1.9	0.2	9.6	118./1 avenient1emp,9/Sunny
0.0	2	16:47	105.8	107.3	5501	39.8	27.7	19.4	11.5	6.7	3.3	2.0	1.5	1.2	5.5	1.9	0.2	9.8	
0.0	3	16:47	105.8	107.3	8847	61.8	44.5	32.2	20.1	12.1	5.7	3.6	2.7	2.1	5.1	2.0	0.2	10.1	
0.0	4	16:47	105.8	107.3	8858	61.7	44.9	32.8	20.3	12.2	5.7	3.7	2.7	2.2	5.0	2.0	0.2	10.1	
0.1 0.1	1 2	16:48 16:48	105.8 105.8	107.1 107.1	5523 5545	29.1 29.0	22 22.0	17.1 16.9	12.3 12.3	8.4 8.4	4.4 4.4	2.7 2.7	1.9 1.9	1.4 1.4	4.1 4.1	2.4 2.4	0.0	12.8 12.9	
0.1	3	16:48	105.8	107.1	8957	46.4	35.2	28.0	20.8	14.6	7.6	4.6	3.3	2.6	3.8	2.4	0.0	12.9	
0.1	4	16:48	105.8	107.1	8880	46.4	34.7	28.1	20.9	14.6	7.7	4.6	3.3	2.6	3.8	2.5	0.0	12.8	
0.2	1	16:50	105.8	108.5	5730	15.1	10.0	7.6	5.7	4.3	2.9	2.1	1.6	1.4	6.5	3.4	0.0	24.4	
0.2	2	16:50	105.8	108.5	5730	14.9	10.0	7.5	5.7	4.3	2.9	2.1	1.6	1.4	6.5	3.4	0.0	24.7	
0.2 0.2	3 4	16:50	105.8	108.5	9186 9164	23.9 23.9	16.5	12.4	9.6 9.6	7.2 7.2	4.7 4.7	3.3 3.4	2.6 2.6	2.2 2.2	6.3 6.3	3.5 3.5	0.0	24.7 24.7	
0.2	4	16:50	105.8	108.5	9164	23.9	16.5	12.6	9.6	1.2	4./	3.4	2.0	2.2	0.5	3.3	0.0	24.7	MoormanRd,J-,START,WB"
0.2																			MoormanRd,J-,END,WB" MoormanRd,B-,B-22,EB"
0.3	2	16:52	107.6	106.9	5512	25.3	19.6	15.3	10.8	7.4	4.2	2.8	1.9	1.5	4.2	2.6	0.0	14.5	
0.3	3	16:52	107.6	106.9	8913	40.3	31.9	25.3	18.3	12.8	7.1	4.7	3.3	2.5	4.1	2.7	0.0	14.7	
0.3	4	16:52	107.6	106.9	8869	40.6	32.1	25.5	18.5	12.9	7.2	4.7	3.3	2.5	4.0	2.7	0.0	14.5	
0.4	1	16:54	107.6	109.1	5643	27.0	20.1	14.5	9.7	6.7	3.7	2.2	1.5	1.0	5.0	2.5	0.0	14.3	
0.4 0.4	2	16:54 16:54	107.6 107.6	109.1 109.1	5654 9066	26.7 43.2	20.0 33.2	14.5 24.5	9.7 16.8	6.7 11.7	3.7 6.4	2.3 3.9	1.5 2.5	1.0 1.8	5.0 4.6	2.5 2.5	0.0	14.4 14.2	
0.4	4	16:54	107.6	109.1	9066	43.2	33.3	24.9	17.0	11.8	6.4	3.9	2.6	1.8	4.6	2.5	0.0	14.2	
0.5	1	16:55	107.6	107.3	5523	42.3	28.0	19.0	11.7	7.1	2.6	1.4	1.1	0.9	6.9	1.8	0.0	9.5	
0.5	2	16:55	107.6	107.3	5566	41.6	28.0	19.0	11.7	7.1	2.6	1.4	1.0	0.9	6.9	1.9	0.0	9.7	
0.5	3	16:55	107.6	107.3	8847	64.3	45.1	32.1	20.6	12.6	4.9	2.7	2.0	1.5	5.9	1.9	0.1	9.8	
0.5	4	16:55	107.6	107.3	8869	64.1	45.1	32.3	20.7	12.7	4.9	2.7	2.0	1.6	5.8	1.9	0.1	9.9	
0.6 0.6	1 2	16:56 16:56	109.4 109.4	108.2 108.2	5512 5545	42.5 41.8	29.0 28.9	20.5 20.1	12.8 12.8	8.6 8.7	4.5 4.5	2.8 2.8	2.0 2.0	1.6 1.6	4.0 4.0	1.9 2.0	0.7 0.7	9.0 9.2	
0.6	3	16:56	109.4	108.2	8793	64.0	46.2	33.2	21.9	14.5	7.7	4.8	3.3	2.7	3.7	2.0	0.7	9.5	
0.6	4	16:56	109.4	108.2	8836	63.9	46.5	34.1	22.2	14.6	7.8	4.8	3.4	2.8	3.7	2.0	0.7	9.5	
0.7	1	16:57	109.4	107.8	5665	24.1	16.6	11.8	7.8	5.2	2.8	1.7	1.2	0.9	6.7	2.5	0.0	16.3	
0.7	2	16:57	109.4	107.8	5709	23.9	16.6	11.8	7.8	5.3	2.8	1.7	1.2	0.9	6.7	2.5	0.0	16.4	
0.7	3	16:57	109.4	107.8	9121	37.9	27.2	19.3	13.4	9.1	4.8	3.0	2.1	1.7	6.2	2.6	0.0	16.4	
0.7 0.8	4	16:57	109.4	107.8	9132	37.9	27.3	19.9	13.5	9.2	4.8	3.0	2.2	1.7	6.1	2.6	0.0	16.4	MoormanRd,B-,B-21,WB"
0.8	1	16:58	109.4	108.9	5610	36.3	23.8	17.0	10.5	6.3	3.2	1.6	1.2	0.9	5.7	2.0	0.0	11.0	woormaniku,b=,b=21,wb
0.8	2	16:58	109.4	108.9	5654	35.6	23.8	17.1	10.5	6.4	3.2	1.6	1.2	0.9	5.7	2.1	0.0	11.2	
0.8	3	16:58	109.4	108.9	9000	54.4	37.8	27.0	17.9	11.2	5.6	3.0	2.3	1.7	5.3	2.1	0.0	11.6	
0.8	4	16:58	109.4	108.9	9044	54.4	38	27.3	18.2	11.4	5.6	3.1	2.3	1.8	5.2	2.2	0.0	11.6	
0.9	1	16:59	109.4	109.2	5370	47.1	34.0	24.6	16.1	10.2	5.1	2.4	1.6	1.3	3.4	1.9	1.2	7.9	
0.9 0.9	2	16:59 16:59	109.4 109.4	109.2 109.2	5424 8552	46.7 72.7	34.0 54.8	24.5 39.2	16.1 27.2	10.4 17.9	5.1 8.8	2.4 4.1	1.6 2.8	1.2 2.2	3.4 3.2	1.9 1.9	1.2	8.0 8.1	
0.9	4	16:59	109.4	109.2	8530	72.7	55.0	39.8	27.5	18.2	8.8	4.1	2.8	2.2	3.1	1.9	1.3	8.1	
1.0	1	17:00	109.4	110.3	5424	43.9	30.5	20.4	12.9	8.3	4.6	2.7	1.8	1.4	3.8	1.9	0.9	8.6	
1.0	2	17:00	109.4	110.3	5435	43.1	30.1	20.0	12.8	8.1	4.7	2.7	1.8	1.4	3.8	1.9	0.9	8.8	
1.0	3	17:00	109.4	110.3	8683	67.9	48.8	34.0	22.5	14.3	8.0	4.6	3.2	2.5	3.5	2.0	0.9	8.8	
1.0	4	17:00	109.4	110.3	8639	68.0	48.7	34.8	22.7	14.4	8.0	4.6	3.2	2.5	3.5	2.0	0.9	8.8	
1.1 1.1	1 2	17:01 17:01	109.4 109.4	107.5 107.5	5599 5632	28.1 28.0	19.8 19.8	14.8 14.7	10.1 10.1	6.8 6.9	3.3 3.3	2.0 2.0	1.3 1.4	1.0 1.0	5.5 5.5	2.4 2.4	0.0	13.8 13.9	
1.1	3	17:01	109.4	107.5	8968	43.2	32.2	24.5	17.3	12.1	5.9	3.5	2.3	1.8	4.9	2.4	0.0	13.9	
1.1	4	17:01	109.4	107.5	8902	43.4	32.3	24.6	17.4	12.2	5.9	3.5	2.4	1.8	4.9	2.5	0.0	14.0	
1.2	1	17:03	111.2	107.4	4932	45.3	31	23.2	14.6	7.5	3.0	1.7	1.3	1.0	5.4	1.7	0.7	7.8	
1.2	2	17:03	111.2	107.4	4921	44.7	30.6	23.1	14.6	7.5	3.0	1.7	1.3	1.0	5.4	1.7	0.7	7.9	
1.2	3	17:03	111.2	107.4	7907	67.1	46.3	37.8	24.6	13.1	5.3	3.0	2.3	1.8	4.8	1.8	0.7	8.4	
1.2	4	17:03 17:04	111.2 111.2	107.4 106.7	7830 5052	66.8 45.6	45.2 34.3	39.2 26.0	24.6 18.3	13.1 12.5	5.4 6.8	3.0 4.5	2.3 3.4	1.7 2.6	4.7 2.4	1.8 1.9	0.8	8.3 7.5	
1.3	2	17:04	111.2	106.7	5052 5074	45.6 45.3	34.3 34.0	26.0	18.3	12.5	6.8	4.5 4.6	3.4 3.4	2.6	2.4	2.0	1.8	7.5	
1.3	3	17:04	111.2	106.7	8082	69.6	55.0	43.2	30.5	21.0	11.1	7.3	5.5	4.3	2.4	2.0	1.7	7.8	
1.3	4	17:04	111.2	106.7	8071	69.8	55.1	44.2	30.7	21.1	11.2	7.4	5.5	4.4	2.3	2.0	1.7	7.7	
1.3																			MoormanRd,B-,B-20,EB"
1.4	1	17:05	111.2	106.1	5118	42.3	33.2	23.8	14.1	8.1	3.3	1.9	1.5	1.0	5.0	1.8	0.6	8.6	
1.4 1.4	2	17:05 17:05	111.2 111.2	106.1 106.1	5184 8213	42.3 64.4	33.2 51.8	23.7 37.7	14.3 24.1	8.2 14.4	3.3 5.9	2.0 3.2	1.5 2.5	1.0 1.9	5.0 4.5	1.8 1.9	0.6 0.6	8.7 8.9	
1.4	4	17:05	111.2	106.1	8322	64.6	52.2	39.1	24.1	14.4	5.9	3.2	2.5	1.9	4.5	1.9	0.6	8.9 9.0	
	•							- /									5.0		

	Axle Capacity	Overlay Thickness	Values SN	Effective Mr															
Comments	tons/axle	inches	inches	ksi	D9	D8	D7	D6	D4	D4	D3	D2	D1	Load	Bit °F	Air °F	Time	Drop	tation
MoormanRd,J-,START,WB" MoormanRd,J-,END,WB"																			1.5 1.5
	11.1	0.0	2.0	7.2	0.6	0.8	1.3	2.4	6.0	11.0	18.4	26.0	35.0	5391	106.3	111.2	17:07	1	1.5
	11.2	0.0	2.0	7.2	0.6	0.8	1.3	2.5	6.1	11.1	18.5	26.0	34.9	5435	106.3	111.2	17:07	2	1.5
	11.4	0.0	2.0	6.5	1.1	1.5	2.3	4.4	11.3	19.5	30.0	41.7	55.0	8803	106.3	111.2	17:07	3	1.5
	11.3 10.1	0.0 0.2	2.0 2.0	6.3 4.9	1.1 1.1	1.5 1.4	2.3 2.1	4.5 3.6	11.4 7.6	19.8 12.4	30.2 20.0	42.1 27.3	55.0 37.4	8727 5424	106.3 106.0	111.2 111.2	17:07 17:08	4	1.5 1.6
	10.1	0.2	2.0	4.9	1.1	1.4	2.1	3.6	7.6	12.4	19.9	27.2	37.0	5446	106.0	111.2	17:08	2	1.6
	10.5	0.2	2.1	4.5	2.0	2.5	3.7	6.4	13.4	21.3	31.7	44.0	57.8	8793	106.0	111.2	17:08	3	1.6
	10.4	0.2	2.1	4.4	2.0	2.6	3.7	6.4	13.4	21.4	31.9	44.1	58.0	8749	106.0	111.2	17:08	4	1.6
	10.2	0.0	1.9	7.8	0.8	1.3	1.5	2.4	5.8	10.6	17.8	27.5	40.8	5665	106.5	111.2	17:09	1	1.7
	10.4	0.0	1.9	7.8	0.8	1.3	1.5	2.4	5.7	10.5	17.6	27.3	40.0	5709	106.5	111.2	17:09	2	1.7
	10.6	0.0	1.9	6.8	1.4	2.2	2.6	4.3	10.6	18.7	29.0	44.0	61.0	8946	106.5	111.2	17:09	3	1.7
	10.5	0.0	1.9	6.7	1.4	2.3	2.7	4.3	10.7	18.9	29.3	44.4	61.1	8968	106.5	111.2	17:09	4	1.7
	8.5 8.7	0.6 0.5	1.8 1.8	5.1 5.1	0.9 0.9	1.0 1.0	1.7 1.7	3.3 3.3	7.9 7.9	12.9 13.0	20.7 20.8	31.7 31.7	43.7 43.3	5249 5282	105.9 105.9	111.2 111.2	17:10 17:10	1 2	1.8 1.8
	8.8	0.6	1.9	4.6	1.6	1.9	2.9	5.8	14.2	23.4	35.0	52.0	66.8	8355	105.9	111.2	17:10	3	1.8
	8.8	0.6	1.9	4.6	1.6	2.0	3.0	5.9	14.4	23.6	35.3	52	66.5	8355	105.9	111.2	17:10	4	1.8
MoormanRd,B-,B-19,																			1.8
	9.3	0.7	2.0	3.9	1.5	2.0	2.7	4.2	8.1	12.6	19.2	27.1	36.9	4987	104.6	109.4	17:12	1	1.9
	9.4	0.6	2.0	3.9	1.5	2.0	2.7	4.2	8.1	12.6	19.2	27.1	36.5	4976	104.6	109.4	17:12	2	1.9
	9.6	0.6	2.1	3.7	2.5	3.4	4.5	7.1	14.2	21.8	31.7	44.9	57.5	8104	104.6	109.4	17:12	3	1.9
	9.7	0.6	2.1	3.7	2.5	3.4	4.6	7.2	14.4	22.1	32.3	45.5	58.0	8268	104.6	109.4	17:12	4	1.9
	12.6 12.8	0.0 0.0	2.1 2.1	7.2 7.2	0.7 0.7	0.9 0.9	1.3 1.3	2.5 2.5	5.8 5.7	9.8 9.8	16.0 15.9	23.0 22.7	31.3 30.8	5555 5555	105.0 105.0	109.4 109.4	17:13 17:13	1 2	2.0 2.0
	12.9	0.0	2.2	6.3	1.3	1.6	2.4	4.5	10.3	16.9	25.7	36.5	48.1	8880	105.0	109.4	17:13	3	2.0
	12.8	0.0	2.2	6.3	1.3	1.6	2.4	4.6	10.4	17.1	25.9	35.6	48.4	8880	105.0	109.4	17:13	4	2.0
	11.6	0.0	2.1	6.6	0.8	1.0	1.4	2.6	6.3	10.1	16.0	23.9	33.0	5381	106.3	109.4	17:14	1	2.1
	11.8	0.0	2.1	6.5	0.9	1.0	1.4	2.7	6.3	10.2	15.9	23.7	32.6	5402	106.3	109.4	17:14	2	2.1
	11.8	0.0	2.1	5.8	1.5	1.9	2.5	4.8	11.3	17.8	26.6	38.5	51.0	8607	106.3	109.4	17:14	3	2.1
	11.8	0.0	2.1	5.8	1.5	1.9	2.6	4.8	11.3	17.8	26.5	38.4	50.8	8552	106.3	109.4	17:14	4	2.1
	6.6	1.9	1.7	2.8	2.0	2.6	3.7	5.9	11.4	18.3	30.0	39.6	53.4	5129	104.5	107.6	17:15	1	2.2
	6.7 6.9	1.9 1.9	1.8 1.8	2.8 2.7	2.0 3.5	2.6 4.5	3.7 6.2	5.9 9.9	11.3 19.7	18.2 31.2	29.7 48.6	39.1 61.8	52.4 80.5	5107 8125	104.5 104.5	107.6 107.6	17:15 17:15	2 3	2.2 2.2
	6.8	1.9	1.8	2.7	3.5	4.5	6.2	9.9	19.9	31.5	49.5	60.7	80.7	8104	104.5	107.6	17:15	4	2.2
	7.2	1.4	1.7	3.6	1.5	2.0	3.1	4.7	9.7	16.2	25.8	37.0	49.9	5173	104.5	107.6	17:16	1	2.3
	7.3	1.4	1.8	3.6	1.6	2.1	3.1	4.7	9.8	16.4	25.9	37.0	49.6	5206	104.5	107.6	17:16	2	2.3
	7.6	1.4	1.8	3.4	2.7	3.5	5.2	8.0	17.1	28.2	41.3	57.7	75.5	8279	104.5	107.6	17:16	3	2.3
	7.5	1.4	1.8	3.3	2.7	3.5	5.2	8.0	17.2	28.3	41.8	57.9	75.5	8257	104.5	107.6	17:16	4	2.3
MoormanRd,B-,B-18,WB"																			2.3
	7.4	1.5	1.8	3.1	1.8	2.3	3.3	5.3	10.7	17.0	26.8	36.0	47.7	5151	104.7	107.6	17:18	1	2.4
	7.5	1.5	1.8 1.9	3.1	1.8	2.3 3.9	3.3 5.5	5.4 9.0	10.8	17.1 29.4	27.0	36.0 58.3	47.6	5184	104.7	107.6	17:18	2 3	2.4
	7.5 7.5	1.5 1.6	1.9	3.0 2.9	3.2 3.2	3.9	5.5 5.5	9.0 9.0	18.6 18.8	29.4 29.6	44.5 45.1	58.5 58.1	74.2 74.2	8180 8147	104.7 104.7	107.6 107.6	17:18 17:18	4	2.4 2.4
	9.8	0.1	1.9	5.8	0.9	1.1	1.6	3.0	7.5	11.4	17.0	25.4	39.6	5446	104.7	107.6	17:19	1	2.5
	10.0	0.1	1.9	5.8	0.9	1.1	1.7	3.0	7.6	11.3	16.9	25.1	38.9	5490	104.7	107.6	17:19	2	2.5
	10.1	0.1	2.0	5.2	1.8	2.0	2.9	5.4	13.0	19.1	29.3	41.5	60.3	8683	104.7	107.6	17:19	3	2.5
	10.1	0.1	2.0	5.2	1.8	2.0	3.0	5.4	13.0	19.3	29.3	41.8	60.3	8705	104.7	107.6	17:19	4	2.5
	9.2	0.8	2.0	3.7	1.5	2.0	2.8	4.7	9.5	15.0	23.1	30.1	40.0	5370	99.7	107.6	17:20	1	2.6
	9.2	0.7	2.0	3.7	1.5	1.9	2.8	4.8	9.5	15.0	22.8	30.0	39.6	5381	99.7	107.6	17:20	2	2.6
	9.3 9.2	0.8 0.8	2.1 2.1	3.4 3.4	2.7 2.7	3.3 3.3	4.8 4.8	8.2 8.3	16.5 16.8	25.6 25.9	37.3 38.2	49.0 49.7	62.8 63.2	8574 8585	99.7 99.7	107.6 107.6	17:20 17:20	3 4	2.6 2.6
	9.2	0.8	2.1	3.4 7.7	2.7 0.7	5.5 0.9	4.8	8.3 2.3	5.0	25.9 7.7	38.2 12.0	49.7	03.2 29.4	8585 5566	99.7 105.4	107.6	17:20	4	2.6
	13.4	0.0	2.2	7.7	0.8	0.9	1.3	2.3	5.0	7.7	12.0	17.8	28.6	5566	105.4	107.6	17:21	2	2.7
	13.9	0.0	2.3	6.8	1.4	1.6	2.4	4.3	9.1	13.7	20.3	29.8	44.9	8946	105.4	107.6	17:21	3	2.7
	14.0	0.0	2.3	6.8	1.4	1.7	2.4	4.3	9.2	13.9	20.5	30.0	44.8	8957	105.4	107.6	17:21	4	2.7
	6.6	1.9	1.7	2.9	2.0	2.6	3.5	5.4	10.6	17.5	28.0	38.9	51.5	4910	104.5	107.6	17:22	1	2.8
	6.6	1.9	1.7	2.9	2.0	2.6	3.5	5.4	10.6	17.4	27.7	38.5	50.9	4888	104.5	107.6	17:22	2	2.8
	6.8	1.9	1.8	2.8	3.4	4.3	5.9	9.1	18.0	29.8	45.0	61.2	79.3	7830	104.5	107.6	17:22	3	2.8
M DID DIATE	6.8	1.9	1.8	2.8	3.5	4.4	6.0	9.3	18.3	30.3	45.7	61.2	79.6	7950	104.5	107.6	17:22	4	2.8
MoormanRd,B-,B-17,EB"	0.0	1.0	2.0	2.4	1.0	2.2		e 1	0.0	16.1	22.2	21.6	42.4	6424	105.7	107.6	17.24	1	2.9
	8.8 8.8	1.0 0.9	2.0 2.0	3.4 3.4	1.8 1.7	2.3 2.3	3.3 3.3	5.1 5.1	9.9 9.8	15.1 15.0	23.3 23.2	31.5 31.2	42.4 42.0	5424 5413	105.7 105.7	107.6 107.6	17:24 17:24	1 2	2.9 2.9
	8.9	1.0	2.0	3.4	3.0	3.8	5.5	8.6	9.8	25.7	38.2	51.2	42.0 65.9	8607	105.7	107.6	17:24	3	2.9
	8.8	1.0	2.0	3.2	3.0	3.9	5.5	8.7	16.7	26.0	38.6	52.0	66.6	8585	105.7	107.6	17:24	4	2.9

Prev. Day's Avg. Air Temp.: 78 °F Total AC: 2.1 in. Daily ESALs: 5.0 PCI: 53 Haul ESALs: 0 Soil Type: P Draught Adjustment Factor: 1.00 Seasonal Correction Factor: 1.00

															Effectiv Mr	ve Values SN	Overlay Thickness	Axle Capacity	
Station	Drop	Time	Air °F	Bit °F	Load	D1	D2	D3	D4	D4	D6	D7	D8	D9	ksi	inches	inches	tons/axle	Comments
0.0 0.0																			START" 123.9PavementTemp,97Sunny"
0.0 0.0	1	14:45	102.2	112.9	5085	54.4	36.2	23.2	13.6	7.4	2.5	1.6	1.2	0.9	6.5	1.3	1.3	6.9	JohnstonRd,IC,CountyHwy9,EB"
0.0 0.0	2 3	14:45 14:45	102.2 102.2	112.9 112.9	5118 8147	53.4 83.2	35.9 59.6	23.4 39.9	13.6 24.1	7.5 13.3	2.5 4.5	1.6 2.8	1.2 2.1	0.9 1.5	6.5 5.9	1.3 1.3	1.3 1.4	7.0 7.1	
0.0	4	14:45	102.2	112.9	8027	83.3	60.2	41.7	24.1	13.4	4.6	2.8	2.1	1.5	5.7	1.3	1.4	7.0	
0.1 0.1 0.2																			JohnstonRd,B-,B-34,EB" JohnstonRd,J-,START,EB" JohnstonRd,J-,END,EB" BridgeAt.001"
0.2	1	14:48	102.2	113.0	5490	22.6	13.7	8.1	4.9	3.0	1.3	0.8	0.6	0.4	13.9	1.9	0.0	17.9	
0.2	2 3	14:48 14:48	102.2 102.2	113.0 113.0	5523 8902	22.2 36.3	13.6 23.2	8.2 13.9	4.9 8.9	3.0 5.4	1.3 2.3	0.8 1.4	0.6 1.0	0.4 0.8	13.9 12.7	1.9 1.9	0.0 0.0	18.3 17.9	
0.2	4	14:48	102.2	113.0	8913	36.2	23.4	14.1	9.1	5.5	2.3	1.4	1.0	0.7	12.8	1.9	0.0	18.0	
0.2	1	14:49	102.2	112.0	5457	42.9	29.4	18.0	9.8	4.8	1.9	1.2	0.9	0.8	9.5	1.4	0.4	9.5	
0.2	2	14:49	102.2	112.0	5490	42.5	29.3	18.8	9.9	4.8	1.9	1.2	0.9	0.8	9.4 8.3	1.4	0.4	9.6	
0.2	3 1	14:49 14:50	102.2 102.2	112.0 113.1	8618 5545	65.2 46.6	47.0 31.4	32.5 19.4	18.4 9.0	9.0 3.4	3.3 1.9	2.2 1.8	1.6 0.6	1.3 0.5	8.5 9.4	1.5 1.4	0.5 0.5	9.7 9.0	
0.3	2	14:50	102.2	113.1	5523	45.8	30.9	19.4	8.9	3.4	1.9	1.8	0.6	0.5	9.4	1.4	0.5	9.1	
0.3	3	14:50	102.2	113.1	8694	71.3	50.2	33.9	16.8	6.7	3.6	2.4	1.2	1.0	7.8	1.4	0.7	9.0	
0.3 0.4	4	14:50 14:51	102.2 102.2	113.1 111.7	8683 5206	71.4 49.5	50.5 34.9	34.6 24.4	17.0 15.7	6.9 9.9	3.7 5.4	2.5 3.3	1.2 2.3	1.0 1.8	7.6 3.1	1.4 1.5	0.7 2.2	9.0 7.1	
0.4	2	14:51	102.2	111.7	5151	49.0	34.7	24.4	15.7	10.0	5.4	3.3	2.3	1.0	3.1	1.5	2.2	7.1	
0.4	3	14:51	102.2	111.7	8257	76.9	57.1	41.5	26.8	16.9	9.1	5.6	4.0	3.2	3.0	1.5	2.2	7.2	
0.4	4	14:51	102.2	111.7	8300	76.8	57.4	41.9	27.2	17.0	9.1	5.7	4.1	3.3	3.0	1.5	2.2	7.3	
0.5 0.5	1 2	14:53 14:53	102.2 102.2	112.7 112.7	4506 4506	82.8 81.7	52.5 51.2	36.4 36.4	19.2 19.2	10.8 10.8	5.0 5.2	3.2 3.3	2.2 2.2	1.6 1.7	2.9 2.8	1.0 1.1	3.4 3.4	3.8 3.8	
0.5	3	14:53	102.2	112.7	7087	112.0	80.4	63.5	35.4	17.8	8.1	5.2	3.6	2.9	2.8	1.1	3.2	4.4	
0.5	4	14:53	102.2	112.7	7076	118.1	85.1	64.2	35.6	17.9	8.1	5.1	3.5	3.1	2.8	1.1	3.3	4.1	
0.6 0.6	1 2	14:54 14:54	104.0 104.0	111.8 111.8	5238 5293	69.6 69.5	50.5 50.7	33.6 34.4	18.3 18.7	9.8 10.0	3.6 3.7	2.6 2.7	1.9 2.0	1.7 1.7	4.7 4.7	1.2 1.2	2.1 2.1	5.4 5.5	
0.6	3	14:54	104.0	111.8	8279	101.0	74.8	56.2	32.7	17.1	6.0	4.4	3.2	2.9	4.4	1.2	2.1	5.8	
0.6 0.6	4	14:54	104.0	111.8	8289	101.4	74.4	57.3	33.2	17.5	6.2	4.5	3.3	3.0	4.3	1.2	2.1	5.8	JohnstonRd,B-,B-33,WB"
0.7	1	14:56	100.4	111.8	5184	72.3	52.2	32.5	13.4	5.1	1.7	1.2	0.8	0.6	9.9	1.1	1.1	5.5	
0.7 0.7	2 3	14:56 14:56	100.4 100.4	111.8 111.8	5184 8115	70.8 104.2	51.5 78.6	32.2 54.9	13.4 25.2	5.1 9.3	1.7 3.3	1.2 2.1	0.9 1.4	0.7 1.1	9.9 7.9	1.1 1.1	1.1 1.3	5.7 5.9	
0.7	4	14:56	100.4	111.8	8136	104.6	79.0	55.6	25.5	9.4	3.3	2.2	1.5	1.1	7.9	1.1	1.3	5.9	
0.8	1	14:57	100.4	113.1	5271	54.4	40.6	29.0	18.4	11.8	6.1	3.8	2.8	2.4	2.8	1.5	2.5	6.5	
0.8 0.8	2 3	14:57 14:57	100.4 100.4	113.1 113.1	5249 8333	53.8 81.3	40.0 61	28.6 47.5	18.2 31.1	11.9 19.6	6.1 10.1	3.8 6.4	2.8 4.7	2.3 4.3	2.8 2.7	1.5 1.5	2.5 2.4	6.6 6.9	
0.8	4	14:57	100.4	113.1	8268	81.8	59.8	47.8	31.3	19.6	10.1	6.4	4.7	4.3	2.6	1.5	2.5	6.8	
0.9	1	14:58	100.4	111.8	5468	45.7	33.8	25.0	17.2	11.5	7.0	4.3	2.9	2.2	2.5	1.7	2.1	7.9	
0.9	2	14:58	100.4	111.8	5512	45.3	33.6	25.2	17.2	11.5	6.9	4.3	2.9	2.1	2.6	1.7	2.0	8.1	
0.9 0.9	3 4	14:58 14:58	100.4 100.4	111.8 111.8	8661 8694	69.6 70.2	53.4 54.2	40.9 41.9	28.7 29.1	19.3 19.6	11.6 11.7	7.0 7.1	4.8 4.8	3.8 3.8	2.4 2.4	1.8 1.8	2.0 2.1	8.2 8.1	
1.0	1	14:59	102.2	110.6	5348	42.9	30.4	21.2	14.1	9.7	5.2	3.2	2.2	1.6	3.3	1.7	1.7	8.4	
1.0	2	14:59	102.2	110.6	5359	42.6	30.2	21.2	14.1	9.8	5.3	3.2	2.2	1.7	3.3	1.7	1.7	8.5	
1.0 1.0	3 4	14:59 14:59	102.2 102.2	110.6 110.6	8464 8464	64.5 64.7	48.3 47.9	34.5 34.8	23.9 24.3	17.0 17.2	8.7 8.8	5.2 5.3	3.7 3.7	2.8 2.8	3.2 3.1	1.7 1.7	1.6 1.6	8.8 8.8	
1.1	1	15:00	102.2	110.9	5457	39.3	28.6	19.9	12.8	8.2	4.4	2.6	1.8	1.4	4.0	1.7	1.2	9.5	
1.1	2	15:00	102.2	110.9	5490	39.2	28.6	20.0	12.9	8.4	4.5	2.7	1.8	1.5	4.0	1.7	1.2	9.5	
1.1 1.1	3 4	15:00	102.2 102.2	110.9 110.9	8672 8618	60.9	46.6 46	32.8 33.3	22.2 22.5	14.5 14.7	7.5 7.7	4.5	3.1 3.1	2.5 2.5	3.7 3.7	1.8 1.8	1.2	9.6 9.5	
1.1	4	15:00				61.0						4.6							JohnstonRd,B-,B-32,EB"
1.2	2	15:02 15:02	104.0 104.0	109.8 109.8	5271 5227	57.3 56.3	40.3 39.8	27.6 27.4	17.2 17.1	11.3 11.1	5.6 5.7	3.5 3.5	2.4 2.4	1.9 1.9	3.0 3.0	1.4 1.4	2.5 2.5	6.3 6.3	
1.2	3	15:02	104.0	109.8	8268	84.9	61.2	44.7	29.9	19.3	9.4	5.9	4.0	3.2	2.8	1.5	2.5	6.6	
1.2	4	15:02	104.0	109.8	8224	85.2	58.5	45.1	30.2	19.5	9.5	5.9	4.0	3.2	2.8	1.5	2.5	6.5	
1.3 1.3	1 2	15:03 15:03	104.0 104.0	110.2 110.2	5512 5545	40.9 40.8	30.5 30.3	21.4 21.8	13.7 13.8	8.1 8.2	4.3 4.3	2.6 2.6	1.8 1.9	1.5 1.5	4.2 4.1	1.7 1.7	1.2	9.2 9.3	
1.3	3	15:03	104.0	110.2	8705	40.8 63.0	48.7	36.2	23.8	0.2 14.5	4.5 7.3	4.3	3.1	2.5	3.9	1.7	1.2	9.3 9.4	
1.3	4	15:03	104.0	110.2	8694	63.6	48.1	36.8	24.1	14.6	7.3	4.4	3.1	2.5	3.8	1.7	1.3	9.3	
1.4 1.4						26.5	26.7					a -	a -				<i>.</i> -		JohnstonRd,J-,START,EB" JohnstonRd,J-,END,EB"
1.4	1	15:05	104.0	111.4	5599	30.1	20.3	15.0	10.8	7.8	4.5	2.8	2.0	1.4	4.1	2.1	0.3	12.4	

															Effectiv Mr	ve Values SN	Overlay	Axle	
Station	Drop	Time	Air °F	Bit °F	Load	D1	D2	D3	D4	D4	D6	D7	D8	D9	ksi	inches	Thickness inches	Capacity tons/axle	Comments
1.4	2	15:05	104.0	111.4	5643	29.8	20.3	15.1	10.8	7.8	4.5	2.8	2.0	1.5	4.0	2.1	0.3	12.6	
1.4	3	15:05	104.0	111.4	8935	45.8	32.7	24.9	18.0	13.1	7.3	4.6	3.3	2.4	3.9	2.1	0.2	12.9	
1.4	4	15:05	104.0	111.4	8858	45.5	32.6	24.9	18.0	13.1	7.4	4.6	3.3	2.5	3.9	2.2	0.2	12.9	
1.5	1	15:06	105.8	110.9	5402	47.5	34.8	22.9	12.3	6.3	2.6	1.6	1.2	0.9	6.7	1.4	1.0	8.2	
1.5	2	15:06	105.8	110.9	5424	47.2	34.8	23.5	12.4	6.3	2.7	1.6	1.2	0.9	6.6	1.4	1.0	8.3	
1.5	3	15:06	105.8	110.9	8574	69.6	53.4	37.5	21.3	10.9	4.9	2.8	2.1	1.6	5.7	1.5	1.1	8.8	
1.5	4	15:06	105.8	110.9	8618	70.0	53.8	38.3	21.7	10.8	5.0	2.9	2.1	1.6	5.6	1.5	1.1	8.7	
1.6	1	15:07	105.8	111.5	5085	47.2	33.7	23.1	13.1	7.3	3.9	1.9	1.5	1.3	4.2	1.4	1.7	7.5	
1.6	2	15:07	105.8	111.5	5118	46.8	33.6	23.2	13.3	7.2	4.1	1.9	1.5	1.3	4.1	1.5	1.7	7.6	
1.6	3	15:07	105.8	111.5	8169	69.9	51.7	38.6	23.4	13.1	6.8	3.3	2.6	2.2	3.9	1.5	1.6	8.0	
1.6	4	15:07	105.8	111.5	8136	69.6	50.3	39.0	23.6	13.2	6.8	3.3	2.6	2.2	3.9	1.5	1.6	8.1	
1.6																			JohnstonRd,B-,B-31,WB"
1.7	1	15:10	105.8	111.9	5359	51.4	36.7	24.6	12.3	5.2	2.4	1.5	1.1	0.9	7.2	1.3	1.0	7.7	
1.7	2	15:10	105.8	111.9	5413	50.6	36.3	24.6	12.4	5.2	2.5	1.5	1.1	0.9	7.1	1.3	1.0	7.9	
1.7	3	15:10	105.8	111.9	8530	74.9	56.8	40.5	22.0	9.4	4.6	2.7	1.9	1.5	6.0	1.4	1.1	8.2	
1.7	4	15:10	105.8	111.9	8563	74.5	56.8	40.8	22.1	9.5	4.8	2.8	1.9	1.5	5.8	1.4	1.2	8.2	
1.8	1	15:11	107.6	111.8	4856	64.2	45.3	30.0	16.2	8.6	5.6	2.6	1.9	1.6	2.8	1.3	3.0	5.2	
1.8	2	15:11	107.6	111.8	4888	63.3	44	30.9	16.3	8.6	5.6	2.7	1.9	1.6	2.8	1.3	2.9	5.3	
1.8	3	15:11	107.6	111.8	7710	93.4	67.3	50.6	28.9	15.6	9.3	4.4	3.0	2.8	2.7	1.3	2.9	5.6	
1.8	4	15:11	107.6	111.8	7710	93.7	66.0	51.4	29.1	15.6	8.9	4.5	3.0	2.9	2.8	1.3	2.8	5.6	
1.9	1	15:13	107.6	112.0	5534	28.6	20.9	15.3	9.7	6.0	2.5	1.4	1.0	0.8	7.1	1.9	0.0	13.6	
1.9	2	15:13	107.6	112.0	5588	28.5	20.9	15.3	9.7	5.9	2.5	1.4	0.9	0.9	7.2	1.9	0.0	13.8	
1.9	3	15:13	107.6	112.0	8913	45.2	34.7	26.0	17.0	10.6	4.4	2.5	1.7	1.5	6.6	1.9	0.0	13.7	
1.9	4	15:13	107.6	112.0	8891	45.2	34.6	26.1	17.0	10.7	4.4	2.5	1.7	1.5	6.5	1.9	0.0	13.7	
1.9																			128.8PavementTemp,97Sunny"
1.9 1.9																			JohnstonRd,IC,VanWagenerRd,EB" END"

AET Project No. P-0013315 County: Madison Test Date: Jun 14, 2022 Section: S15 Roadway: CR 82 From: CR 9 To: CR 83

Effective Values Overlay Axle

Prev. Day's Avg. Air Temp.: 78 °F
Total AC: 2.3 in.
Daily ESALs: 5.0
PCI: 67
Haul ESALs: 0
Soil Type: P
Draught Adjustment Factor: 1.00
Seasonal Correction Factor: 1.00

															Mr	SN	Thickness	Capacity	
Station	Drop	Time	Air °F	Bit °F	Load	D1	D2	D3	D4	D4	D6	D7	D8	D9	ksi	inches	inches	tons/axle	Comments
1.9																			MaddenHiggins,IC,ArmstrongRd,WB"
1.9	1	14:23	105.8	110.6	5413	42.0	29.1	21.2	12.1	5.8	2.0	1.1	0.9	0.7	9.0	1.4	0.6	9.6	
1.9	2	14:23	105.8	110.6	5435	41.0	28.6	20.9	11.9	5.8	2.0	1.1	0.9	0.7	8.9	1.4	0.5	9.8	
1.9 1.9	3 4	14:23 14:23	105.8 105.8	110.6 110.6	8760 8782	64.3 64.0	46.3 46.3	34.7 35.2	20.9 20.9	10.8 10.8	3.6 3.6	2.1 2.1	1.6 1.6	1.3 1.3	8.0 8.0	1.4 1.4	0.6 0.6	10.0 10.1	
2.0	1	14:23	105.8	118.7	4998	45.8	34.1	24.0	14.4	7.7	3.0	1.7	1.0	1.0	5.3	1.4	1.4	8.0	
2.0	2	14:24	104.0	118.7	5020	45.5	34.0	24.5	14.5	7.8	3.1	1.7	1.3	1.0	5.3	1.4	1.4	8.0	
2.0	3	14:24	104.0	118.7	8082	69.8	53.8	40.7	24.8	13.6	5.4	3.1	2.3	1.8	4.8	1.4	1.5	8.3	
2.0	4	14:24	104.0	118.7	8115	69.6	54.2	41.5	25.1	13.9	5.6	3.2	2.3	1.9	4.7	1.4	1.5	8.4	
2.1																			MaddenHiggins,B-,B-36,WB"
2.1 2.1	2	14:25	105.8 105.8	120.0	4965 7896	60.2 92.4	43.8 70.8	31.6	18.4	10.2	4.1	2.5	1.9	1.5 2.5	4.0	1.2	2.3	5.9	
2.1	4	14:25 14:25	105.8	120.0 120.0	7950	92.4 92.3	70.8	52.5 53.0	31.5 31.7	17.8 18.0	6.8 6.8	4.3 4.3	3.2 3.2	2.5	3.8 3.8	1.3 1.3	2.3 2.3	6.1 6.1	
2.1	1	14:25	105.0	117.3	5085	47.9	35.6	25.8	15.2	7.7	2.4	1.7	1.1	0.9	7.0	1.3	1.1	8.0	
2.2	2	14:26	104.0	117.3	5129	47.7	35.6	26.0	15.3	7.8	2.5	1.8	1.1	0.9	6.8	1.3	1.2	8.0	
2.2	3	14:26	104.0	117.3	8093	71.1	55.0	41.6	25.2	13.3	4.2	3.0	2.1	1.6	6.3	1.4	1.2	8.4	
2.2	4	14:26	104.0	117.3	8158	71.2	55.3	41.8	25.5	13.5	4.2	2.9	2.1	1.6	6.3	1.4	1.1	8.5	
2.3	1	14:27	104.0	117.3	5052	59.7	42.9	26.8	11.9	3.6	2.4	1.6	0.6	0.5	6.7	1.2	1.5	6.4	
2.3	2	14:27	104.0	117.3	5085	58.4	42.4	27.5	11.9	3.7	2.5	1.6	0.6	0.5	6.6	1.2	1.5	6.6	
2.3 2.3	4	14:27 14:27	104.0 104.0	117.3 117.3	8049 8060	86.3 86.1	69.1 68.4	45.9 47.7	22.1 22.4	7.9 8.1	4.0 4.1	3.2 3.3	2.2 2.2	0.9 0.9	6.5 6.3	1.2 1.2	1.4 1.5	7.0 7.0	
2.5	1	14:30	105.8	115.4	5162	52.8	31.6	18.8	9.7	3.4	2.2	0.7	0.8	0.6	7.6	1.2	1.2	7.4	
2.4	2	14:30	105.8	115.4	5238	52.1	31.6	19.0	9.9	3.7	2.2	0.8	0.7	0.6	7.8	1.2	1.1	7.6	
2.4	3	14:30	105.8	115.4	8235	77.3	50.9	32.2	17.9	7.1	4.1	1.5	1.3	1.0	6.5	1.3	1.2	7.9	
2.4	4	14:30	105.8	115.4	8235	77.1	50.4	32.3	18.1	7.2	4.1	1.6	1.4	1.0	6.4	1.3	1.2	7.9	
2.5	1	14:31	105.8	115.1	5041	58.5	39.3	26.9	15.4	8.6	4.2	3.0	2.3	1.7	3.9	1.2	2.3	6.1	
2.5	2	14:31	105.8	115.1	5074 7994	57.5	38.9	26.9	15.4	8.6	4.2	2.9	2.2	1.7	3.9	1.3	2.2	6.3	
2.5 2.5	3 4	14:31 14:31	105.8 105.8	115.1 115.1	7994	89.9 90.5	64.8 64.3	46.2 46.5	27.1 27.2	14.9 15.0	7.0 7.1	4.9 5.0	3.7 3.8	3.0 3.0	3.7 3.6	1.3	2.3 2.4	6.3 6.2	
2.6		11.51	100.0		1712	2012	0115	10.5	27.2	10.0	/	510	5.0	510	510	110	2.1	0.2	MaddenHiggins,B-,B-35,EB"
2.6	1	14:33	105.8	116.6	5074	72.3	47.6	29.1	15.8	8.0	3.7	2.6	1.9	1.5	4.4	1.1	2.4	5.1	
2.6	2	14:33	105.8	116.6	5107	71.3	47.8	29.4	15.9	8.2	3.8	2.7	1.9	1.6	4.3	1.1	2.4	5.2	
2.6	3	14:33	105.8	116.6	7940	106.3	74.8	48.3	27.5	14.0	6.4	4.3	3.1	2.6	4.0	1.1	2.5	5.4	
2.6	4	14:33	105.8	116.6	7929	105.8	73	50.1	27.9	14.1	6.3	4.3	3.1	2.6	4.0	1.1	2.5	5.4	
2.7 2.7	1	14:34 14:34	105.8 105.8	116.0 116.0	5107 5184	70.9 70.4	48.9 49.0	30.5 31.6	16.5 16.9	8.4 8.7	4.4 4.5	3.2 3.2	2.3 2.3	1.8 1.8	3.8 3.7	1.1 1.1	2.6 2.6	5.1 5.2	
2.7	3	14:34	105.8	116.0	8060	106.0	49.0 77.2	52.8	29.4	15.1	4.5	5.2	4.0	3.1	3.6	1.1	2.6	5.4	
2.7	4	14:34	105.8	116.0	8038	106.4	78.7	54.7	29.7	15.3	7.2	5.4	4.0	3.1	3.6	1.2	2.6	5.4	
2.8	1	14:35	105.8	115.8	4823	63.0	43.4	30.3	17.5	8.4	3.7	2.8	2.2	2.0	4.2	1.2	2.4	5.5	
2.8	2	14:35	105.8	115.8	4899	62.6	42.8	30.9	17.6	8.5	3.8	2.9	2.3	1.9	4.2	1.2	2.3	5.6	
2.8	3	14:35	105.8	115.8	7710	95.3	65.0	51.3	30.5	15.1	6.2	4.8	3.8	3.2	4.0	1.2	2.3	5.8	
2.8	4	14:35	105.8	115.8	7896	95.8	63.2	52.9	30.9	15.4	6.3	4.9	3.8	3.2	4.1	1.2	2.3	5.9	
2.8 2.8 2.8																			MaddenHiggins,IC,CountyHwy9,EB" 124.1PavementTemp,91Sunny" END"

AET Project No. P-0013315 County: Madison Test Date: Jun 14, 2022 Section: S16 Roadway: CR 82 From: CR 83 To: 0.85 mi E

Prev. Day's Avg. Air Temp.: 78 °F
Total AC: 2.1 in.
Daily ESALs: 5.0
PCI: 72
Haul ESALs: 0
Soil Type: P
Draught Adjustment Factor: 1.00
Seasonal Correction Factor: 1.00

															Effectiv Mr	e Values SN	Overlay Thickness	Axle	
Station	Drop	Time	Air °F	Bit °F	Load	D1	D2	D3	D4	D4	D6	D7	D8	D9	ksi	inches	inches	tons/axle	Comments
1.0	2. op																		MaddenHiggins,B-,B-38,WB"
1.1	1	13:06	100.4	110.3	5206	47.5	32.8	24.0	14.3	9.2	5.1	3.3	2.4	1.8	3.3	1.4	2.4	7.5	
1.1	2	13:06	100.4	110.3	5238	47.0	32.7	24.0	14.3	9.1	5.2	3.4	2.4	1.9	3.3	1.4	2.3	7.6	
1.1	3	13:06	100.4	110.3	8289	71.7	53	39.9	24.4	15.4	8.4	5.5	4.0	3.2	3.2	1.4	2.3	7.8	
1.1	4	13:06	100.4	110.3	8235	71.8	52.3	40.2	24.6	15.5	8.4	5.6	4.1	3.2	3.2	1.4	2.3	7.8	
1.2	1	13:07	100.4	111.3	5249	54.5	39.0	27.9	17.4	10.6	5.2	3.4	2.4	1.8	3.3	1.3	2.6	6.6	
1.2	2	13:07	100.4	111.3	5293	54.0	38.7	28.0	17.4	10.7	5.3	3.4	2.5	1.9	3.3	1.3	2.6	6.7	
1.2	3	13:07	100.4	111.3	8289	83.6	63.1	47.0	29.6	17.9	8.5	5.7	4.1	3.3	3.1	1.3	2.6	6.8	
1.2	4	13:07	100.4	111.3	8235	83.8	63.3	47.5	29.9	18.0	8.6	5.7	4.1	3.3	3.1	1.3	2.7	6.7	
1.3	1	13:08	100.4	110.1	5118	39.4	29.8	22.8	15.9	10.1	5.2	3.2	2.3	1.7	3.2	1.6	2.0	8.7	
1.3	2	13:08	100.4	110.1	5074	39.2	29.7	23.1	15.9	10.1	5.3	3.3	2.3	1.7	3.1	1.6	2.0	8.7	
1.3	3	13:08	100.4	110.1	8082	60.5	47.4	37.6	26.5	17.1	8.8	5.4	3.9	3.1	3.0	1.6	2.0	8.9	
1.3	4	13:08	100.4	110.1	8082	60.6	47.7	38.1	26.6	17.2	8.9	5.4	3.9	3.0	2.9	1.6	2.0	8.9	
1.4																			MaddenHiggins, J-, START, WB"
1.4	1	14:15	104.0	116.2	5249	48.2	36.5	27.7	17.4	10.5	5.3	3.2	2.2	1.6	3.2	1.4	2.4	7.4	
1.4	2	14:15	104.0	116.2	5293	47.7	36.5	27.7	17.5	10.6	5.2	3.1	2.3	1.6	3.3	1.4	2.3	7.6	
1.4	3	14:15	104.0	116.2	8399	72.9	56.9	44.6	29.2	17.8	8.9	5.4	3.7	2.9	3.1	1.4	2.3	7.8	
1.4	4	14:15	104.0	116.2	8399	72.8	57.6	45.4	29.5	18.1	8.9	5.3	3.8	2.9	3.1	1.4	2.3	7.8	
1.5	1	14:16	104.0	115.8	5031	45.4	32.2	19.1	9.0	3.3	2.6	1.5	1.5	0.4	6.3	1.2	1.5	8.1	
1.5	2	14:16	104.0	115.8	5140	45.1	32.2	19.5	9.1	3.4	2.6	1.5	1.5	0.5	6.4	1.2	1.5	8.3	
1.5	3	14:16	104.0	115.8	8115	68.7	51.7	32.8	16.7	6.3	4.3	2.9	2.9	0.8	6.1	1.3	1.5	8.5	
1.5	4	14:16	104.0	115.8	8071	68.5	51.0	32.8	16.7	6.3	4.4	3.0	2.9	0.9	6.0	1.3	1.5	8.5	
1.6																			MaddenHiggins,B-,B-37,EB"
1.6	1	14:18	104.0	117.2	5052	46.4	30.5	20.0	10.1	4.8	2.1	0.8	0.6	0.4	7.7	1.2	1.3	8.1	
1.6	2	14:18	104.0	117.2	5216	46.4	30.8	20.4	10.4	4.9	2.2	0.9	0.7	0.5	7.7	1.2	1.3	8.4	
1.6	3	14:18	104.0	117.2	8311	70.6	49.2	34.7	18.9	8.7	4.2	1.5	1.2	0.8	6.4	1.2	1.4	8.6	
1.6	4	14:18	104.0	117.2	8289	69.9	49.1	34.8	19.0	8.8	4.3	1.6	1.2	0.8	6.3	1.3	1.4	8.6	
1.7	1	14:19	105.8	119.0	5446	45.2	31.1	21.9	12.9	7.5	3.5	2.1	1.6	1.2	5.1	1.3	1.6	8.6	
1.7	2	14:19	105.8	119.0	5490	44.9	31.2	22.2	13.0	7.5	3.6	2.2	1.6	1.3	4.9	1.3	1.6	8.7	
1.7	3	14:19	105.8	119.0	8650	69.4	49.5	36.5	22.3	12.9	6.1	3.8	2.8	2.2	4.6	1.4	1.7	8.7	
1.7	4	14:19	105.8	119.0	8650	69.3	49.4	36.9	22.5	13.0	6.2	3.8	2.8	2.3	4.6	1.4	1.7	8.8	
1.8	1	14:20	104.0	118.3	5446	46.6	32.5	22.0	13.4	7.8	3.1	1.7	1.2	0.9	5.8	1.3	1.5	8.5	
1.8	2	14:20	104.0	118.3	5468	45.9	32.3	22.1	13.4	7.9	3.1	1.8	1.3	1.0	5.8	1.3	1.5	8.6	
1.8	3	14:20	104.0	118.3	8639	69.8	51.6	37.3	23.1	13.6	5.4	3.2	2.3	1.7	5.2	1.3	1.6	8.8	
1.8	4	14:20	104.0	118.3	8694	70.2	52.0	37.8	23.5	13.8	5.5	3.2	2.3	1.7	5.1	1.3	1.6	8.8	
1.9																			MaddenHiggins,IC,ArmstrongRd,WB"

St. Paul, Minnesota 55114 Phone: (651) 659-9001 Fax: (651) 659-1379 AET Project No. P-0013315 County: Madison Test Date: Jun 14, 2022 Section: S17 Roadway: CR 82 From: 1.0 mi W To: CR 84

Prev. Day's Avg. Air Temp.: 78 °F Total AC: 2.0 in. Daily ESALs: 5.0 PCI: 73 Haul ESALs: 0 Soil Type: P Draught Adjustment Factor: 1.00 Seasonal Correction Factor: 1.00 Design Period: 10 Years Projection Factor: 1.1 Growth Factor: 10.46 10-year Design ESALs: 19,093 Design Period: 20 Years Projection Factor: 1.2 Growth Factor: 22.02 20-year Design ESALs: 40,182

Effective Values Overlay Axle

															Mr	SN	Thickness	Canacity	
Station	Drop	Time	Air °F	Bit °F	Load	D1	D2	D3	D4	D4	D6	D 7	D8	D9	ksi	inches	inches	tons/axle	Comments
0.0	Drop	THIC	7411 1	Dit 1	Load	DI	102	05	D4	104	00	Di	100	D 7	R31	menes	menes	tons/axie	START"
0.0																			MaddenHigginsRd,IC,VanWagenerRd,WB"
0.0	1	12:50	105.8	109.8	5468	54.5	35.9	24.5	14.8	8.0	3.3	2.1	1.5	1.2	5.4	1.4	1.3	7.1	wadden nggnisted, e, van wagener ted, wib
0.0	2	12:50	105.8	109.8	5501	53.9	35.9	25.9	15.0	8.1	3.3	2.1	1.4	1.2	5.4	1.4	1.3	7.2	
0.0	3	12:50	105.8	109.8	8574	81.8	58.5	43.5	26.0	14.0	5.5	3.5	2.5	1.9	5.1	1.5	1.3	7.3	
0.0	4	12:50	105.8	109.8	8563	81.8	58.9	43.9	26.2	14.1	5.5	3.5	1.6	1.9	5.1	1.5	1.3	7.3	
0.1	1	12:51	104.0	108.8	5216	54.5	40.1	26.9	17.6	10.8	5.0	3.0	2.1	1.7	3.4	1.5	2.0	6.5	
0.1	2	12:51	104.0	108.8	5249	53.8	39.6	27.7	17.5	10.8	5.0	3.0	2.1	1.7	3.4	1.5	2.0	6.7	
0.1	3	12:51	104.0	108.8	8246	83.4	63.5	46.0	29.5	17.7	8.0	4.8	3.5	2.8	3.3	1.5	2.0	6.7	
0.1	4	12:51	104.0	108.8	8213	83.5	63.9	46.6	29.7	17.8	8.1	4.8	3.5	2.9	3.3	1.5	2.0	6.7	
0.2	1	12:52	104.0	109.4	4987	57.7	41.1	26.3	16.1	8.4	3.3	2.2	1.4	1.2	4.9	1.3	1.7	6.1	
0.2	2	12:52	104.0	109.4	5052	57.3	41.1	27.8	16.3	8.5	3.3	2.3	1.4	1.2	4.9	1.3	1.6	6.2	
0.2	3	12:52	104.0	109.4	7940	88.4	66.5	46.8	27.9	14.6	5.4	3.7	2.3	2.0	4.7	1.4	1.7	6.3	
0.2	4	12:52	104.0	109.4	7940	89.0	67.0	47.8	28.4	14.8	5.5	3.8	2.3	2.0	4.7	1.4	1.7	6.3	
0.3	1	12:54	104.0	110.7	5304	54.8	40.0	29.4	18.8	11.7	5.6	3.3	2.4	1.8	3.1	1.5	2.2	6.6	
0.3	2	12:54	104.0	110.7	5326	54.4	39.6	29.3	18.8	11.7	5.7	3.3	2.4	1.8	3.1	1.5	2.2	6.6	
0.3	3	12:54	104.0	110.7	8344	83.9	64.3	48.6	31.7	19.8	9.1	5.5	3.9	3.0	3.0	1.5	2.2	6.7	
0.3	4	12:54	104.0	110.7	8322	84.5	64.5	49.8	31.9	19.9	9.2	5.6	3.9	3.0	2.9	1.5	2.2	6.6	
0.4	1	12:55	104.0	109.3	5326	58.4	41.1	29.5	18.1	10.8	4.8	3.0	2.2	1.8	3.6	1.4	2.1	6.3	
0.4	2	12:55	104.0	109.3	5326	57.5	40.6	29.4	18.0	10.8	4.8	3.0	2.2	1.8	3.6	1.4	2.0	6.4	
0.4	3	12:55	104.0	109.3	8289	86.6	64.7	47.7	30.2	18.2	8.0	4.8	3.5	2.7	3.4	1.5	2.1	6.5	
0.4	4	12:55	104.0	109.3	8246	86.4	64.6	47.9	30.3	18.1	8.0	4.8	3.5	2.8	3.3	1.5	2.1	6.5	
0.4																			130.2PavementTemp,91Sunny"
0.5																			MaddenHiggins,B-,B-39,EB"
0.5	1	12:57	102.2	109.4	5490	45.3	33	24.9	14.7	8.1	3.6	2.2	1.9	1.1	4.9	1.6	1.1	8.4	
0.5	2	12:57	102.2	109.4	5512	44.5	32.5	24.7	14.7	8.1	3.8	2.3	1.7	1.1	4.7	1.6	1.1	8.5	
0.5 0.5	3 4	12:57 12:57	102.2 102.2	109.4 109.4	8585	68.5	52.1 52.8	41.2	25.1 25.5	14.4 14.6	6.7	3.7	2.9 2.9	1.9	4.1	1.7	1.2	8.6	
0.5	4	12:57	102.2	109.4	8639 5085	68.8	33.4	41.7 24.4	25.5 15.7	14.0	6.9 5.0	3.7 3.2	2.9	1.9	4.1 3.3	1.7 1.6	1.2	8.6 7.2	
0.6	2	12:59	102.2	109.3	5173	47.5 46.8	33.3	24.4	15.7	10.1	5.1	3.2	2.3	1.7 1.7	3.3	1.6	1.9	7.5	
0.6	3	12:59	102.2	109.3	8202	73.5	55.2	41.2	26.9	17.0	8.1	5.2	3.6	2.9	3.3	1.6	1.8	7.5	
0.6	4	12:59	102.2	109.3	8279	73.7	55.7	42.0	27.2	17.3	8.2	5.2	3.7	3.1	3.3	1.6	1.8	7.6	
0.7	1	13:00	102.2	110.1	5337	40.6	30.1	22.3	14.2	9.3	4.7	3.1	2.1	1.7	3.7	1.8	1.2	8.9	
0.7	2	13:00	102.2	110.1	5326	40.1	29.9	22.2	14.2	9.3	4.7	3.1	2.1	1.7	3.7	1.8	1.2	8.9	
0.7	3	13:00	102.2	110.1	8432	62.0	47.8	37.1	24.0	15.9	7.8	5.1	3.5	2.7	3.5	1.8	1.2	9.1	
0.7	4	13:00	102.2	110.1	8497	62.4	48.6	37.7	24.5	16.2	8.0	5.1	3.6	2.7	3.4	1.8	1.2	9.1	
0.8	1	13:01	102.2	110.4	5216	73.0	55.5	39.4	23.3	12.6	5.4	3.3	2.3	1.8	3.1	1.3	2.7	4.9	
0.8	2	13:01	102.2	110.4	5184	71.1	54	38.8	23.0	12.5	5.4	3.3	2.3	1.8	3.1	1.3	2.7	5.0	
0.8	3	13:01	102.2	110.4	8049	107.5	85.7	63.2	38.6	20.5	8.7	5.2	3.8	3.0	3.0	1.3	2.7	5.1	
0.8	4	13:01	102.2	110.4	8027	107.8	86.3	64.1	38.8	20.7	8.7	5.3	3.8	3.0	3.0	1.3	2.7	5.1	
0.9	1	13:03	100.4	110.6	5151	56.0	42.8	32.1	19.5	10.8	4.9	3.2	2.3	1.8	3.4	1.4	2.1	6.3	
0.9	2	13:03	100.4	110.6	5195	55.6	42.7	32.2	19.6	10.9	4.9	3.2	2.3	1.8	3.4	1.5	2.1	6.4	
0.9	3	13:03	100.4	110.6	8147	85.9	68.4	52.7	33.2	18.7	8.0	5.2	3.8	3.1	3.3	1.5	2.1	6.5	
0.9	4	13:03	100.4	110.6	8125	86.3	68.8	53.1	33.8	18.8	8.0	5.2	3.9	3.1	3.3	1.5	2.1	6.4	
1.0	1	13:04	100.4	110.9	5260	63.6	46.1	33.0	19.9	11.7	5.3	3.4	2.4	2.1	3.2	1.4	2.4	5.7	
1.0	2	13:04	100.4	110.9	5282	62.8	45.8	33.2	19.9	11.8	5.4	3.5	2.5	2.1	3.2	1.4	2.4	5.7	
1.0	3	13:04	100.4	110.9	8213	95.6	72.9	54.4	33.3	19.1	8.7	5.6	4.1	3.5	3.1	1.4	2.4	5.8	
1.0	4	13:04	100.4	110.9	8235	96.3	73.0	55.2	33.7	19.3	8.8	5.7	4.2	3.6	3.0	1.4	2.4	5.8	

Pre-construction Road Evaluation **Fox Squirrel Solar Project**, Madison County, OH August 15, 2022 AET Report No. P-0013315A

Appendix D

Pavement Condition Index Field Exploration and Testing Distresses Data and Pavement Rating Results Sheet

D.1 FIELD WORK

The pavement surface conditions at the site were evaluated nondestructively using Digital Video Log (DVL) and Pavement Condition Index (PCI). The description of the equipment precedes the photos of Structures in this appendix.

D.2 EQUIPMENT DESCRIPTION

D.2.1 MicroPAVER[™] PMS System

MicroPAVERTM -- The Pavement Maintenance Management (PMS) System -- originally was developed in the late 1970s to help the Department of Defense (DOD) manage M&R for its vast inventory of pavements. It uses inspection data and a pavement condition index (PCITM) rating from zero (failed) to 100 (excellent) for consistently describing a pavement's condition and for predicting its M&R needs many years into the future. The PCITM for airports became an ASTM standard in 1993 (D5340). The PCITM for roads and parking lots became an ASTM standard in 1999 (D6433). Figure A1 provides a view of this equipment.

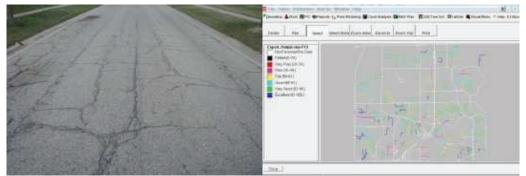


Figure A1 MicroPAVER[™] PMS System

External indicators of pavement deterioration caused by loading, environmental factors, construction deficiencies, or a combination thereof. Typical distresses are cracks, rutting, and weathering of the pavement surface. Distress types and severity levels detailed in Inspection Manual must be used to obtain an accurate PCI value.

- A battery operated independent DC-1908E multi-functional digital camera with a SD card is used for easy positioning of the loading plate or of the pavement surface condition at the testing locations.
- Hand Odometer Wheel that reads to the nearest 0.1 ft. (30 mm).
- Straightedge or String Line, (AC only), 10 ft. (3 m).
 Scale, 12 in. (300 mm) that reads to 1/8 in. (3 mm) or better. Additional 12-in. (300 mm) ruler or straightedge is needed to measure faulting in PCC pavements.
- Layout Plan, for network to be inspected.

D.2.2 PCI Calibrations

Since the collection of the pavement distress data is such a critical component of any PMS implementation or update, AET has in place the PCI calibration as a quality control.

The PCI raters undergo internal calibrations every two months. This calibration exercise is conducted by our chief inspector and/or quality control engineer and is performed to ensure that the ratings of pavement distresses are consistent among the crews and in accordance with the ASTM D6344.

Survey wheel is calibrated by laying out a long distance (> 50 feet) with tape measure.

D.2.3 Linear Distance and Spatial Reference System

Distance measuring instrument (DMI) is a trailer mounted two phase encoder system. When DMI is connected to the HD Camera it provides for automatic display and recording distance information in both English and metric units with a 1 foot (0.3 meters) resolution and four percent accuracy when calibrated using provided procedure in the Field Program.

Appendix D Pavement Condition Survey Report No. P-0013315A

Spatial reference system is a Trimble ProXRT Global Positioning System (GPS) that consists of fully integrated receiver, antenna and battery unit with Trimble's new H-Star[™] technology to provide sub foot (30 cm) post processed accuracy. The External Patch antenna is added to the ProXH receiver for the position of the loading plate. The External Patch antenna can be conveniently elevated with the optional baseball cap to prevent any signal blockage.

D.3 TRAFFIC CONTROL

Traffic control during the PCI data collection operation will be maintained in compliance with The Minnesota Manual on Uniform Traffic Control Devices (MN MUTCD) and part VI, "Field Manual for Temporary Traffic Control Zone Layouts," as shown in Appendix D. The PCI operation will be mobile in nature and will be moderately disruptive to traffic.

D.4 QUALITY CONTROL (QC) AND QUALITY ASSURANCE (QA)

Beside the daily metal plate calibration, the DMI is also calibrated monthly by driving the vehicle over a known distance to calculate the distance scale factor. The HD video camera will be monitored in real time in the data collection vehicle to minimize data errors. The HD video cameras will be identified with a unique number and that number will accompany all data reported from that unit as required in the QC/QA plan.

Scheduled preventive maintenance ensures proper equipment operation and helps identify potential problems that can be corrected to avoid poor quality or missing data that results if the equipment malfunctions while on site. The routine and major maintenance procedures established by AET are adopted and any maintenance has been done at the end of the day after the testing is complete and become part of the routine performed at the end of each test/travel day and on days when no other work is scheduled.

To insure quality data, the PCI assessments only took place in day light, and data was collected in one lane.

D.5 DATA ANALYSIS METHODS

D.5.1 Data Editing

Field acquisition is seldom so routine that no errors, omissions or data redundancy occur. Data editing encompasses issues such as video editing, video file merging, video log header or background information updates, repositioning and inclusion of elevation information with the video.

D.5.2 Sampling Methods

The sampling rate is set at 10 percent in on lane (OWP) = 500 ft. \pm 50 ft. (23.6 m \pm 2.4 m) for nominal 12 ft. (3.7 m) wide lanes at a survey speed of approximately 30 mph. Where a divided roadbed exists, surveys will be taken in both directions if the project will include improvements in both directions. If there is more than one lane in one direction the surveys will be taken in the outer driving lane (truck lane) versus the passing lane of the highway.

Basic data processing addresses some of the fundamental manipulations applied to data to make a more acceptable product for initial interpretation and data evaluation. In most instances this type of processing is already applied in real-time to generate the real-time display. The advantage of post survey processing is that the basic processing can be done more systematically and non-causal operators to remove or enhance certain features can be applied.

D.5.3 Advance Processing

Advanced data processing addresses the types of processing which require a certain amount of operator bias to be applied and which

will result in data which are significantly different from the raw information which were input to the processing.

D.6 TEST LIMITATIONS

D.6.1 Test Methods

The data derived through the testing program have been used to develop our opinions about the pavement conditions at your site. However, because no testing program can reveal totally what is in the subsurface, conditions between test locations and at other times, may differ from conditions described in this report. The testing we conducted identified pavement conditions only at those areas where we observed pavement surface conditions. Depending on the sampling methods and sampling frequency, every location may not be rated, and some anomalies which are present in the pavement may not be noted on the testing results. If conditions encountered during construction differ from those indicated by our testing, it may be necessary to alter our conclusions and recommendations, or to modify construction procedures, and the cost of construction may be affected.

D.6.2 Test Standards

Pavement testing is done in general conformance with the described procedures. Compliance with any other standards referenced within the specified standard is neither inferred nor implied.

D.7 SUPPORTING TEST METHODS

D.7.1 Falling Weight Deflectometer (FWD)

If the pavement layer moduli and subgrade soil strength are desired the deflection data are collected using a Dynatest 8000 FWD Test System that consists of a Dynatest 8002 trailer and a third-generation control and data acquisition unit developed in 2003, called the Dynatest Compact15, featuring fifteen (15) deflection channels. The new generation FWD, including a Compact15 System and a standard PC with the FwdWin field Program constitutes the newest, most sophisticated Dynatest FWD Test System, which fulfills or exceeds all requirements to meet ASTM-4694 and ASTM D-4695 Standards. The system provides continuous data at pre-set spacing.

D.7.2 Ground Penetrating Radar

If the pavement layer thicknesses are desired the thickness data are collected using a GSSI air-coupled 2 GHz Test System that consists of a bumper-mounted, 2 GHz air-coupled antenna and a SIR-20 control and data acquisition processor, featuring dual channels. The GPR processor, including a SIR-20 data acquisition system, wheel-mounted DMI (Distance Measuring Instrument), and a tough book with the SIR-20 Field Program constitutes the newest, most sophisticated GSSI Test System, which fulfills or exceeds all requirements to meet ASTM-4748 and ASTM D-6087 Standards. The antenna used for Roadscan is the Horn Antenna Model 4105 (2 GHz). The 2 GHz antenna is the current antenna of choice for road survey because it combines excellent resolution with reasonable depth penetration (18-24 inches in pavement materials). The data collection is performed at normal driving speeds (45-55 mph), requiring no lane closures nor causing traffic congestion. At this peed the 2 GHz antenna can collect data at 1-foot interval (1 scan/foot).

D.7.2 Soil Boring/Coring Field Exploration

If both pavement thicknesses and subgrade soil types and conditions are desired the shallow coring/boring and sampling is used. The limited number of coring/boring is necessary to verify the GPR layer thickness data.

550 Cleveland Avenue North St. Paul, Minnesota 55114 Phone: (651) 659-9001 Fax: (651) 659-1379

D • (GENERAL INF	ORMATION: PAVEMENT C	ONDITION INDEX
Project:	Fox Squirrel Solar, OH	Date:	7/22/22
Г Job No.:	P-0013315	Test Date:	6/16/22
Road:	CR 9	Section/Grid:	S01
From:	US 71	То:	Dyer Rd
		SUMMARY DISTRESSE	5
	Total Samples	23	PCI 41
	Sample #	4	
	Sample Size	6000	
	Sample Length	600	
	r		
			LATT 39/735819 LONG +83/358368 DIST (H) 2479-90

550 Cleveland Avenue North

St. Paul, Minnesota 55114

Phone: (651) 659-9001

Fax: (651) 659-1379

	GENE	ERAL INFO	ORMATIC	ON: PAVE	MENT CO	NDITION	INDEX
Job No.: P Road: C	ox Squirrel -0013315 R 9 /S 71	Solar, OH			Date: est Date: on/Grid: To:	7/22/22 6/16/22 S01 Dyer Rd	
			SUMM	ARY DIST	RESSES		
Т	otal Samp	les		23		PCI	41
	Sample #			4			
	Sample Size		6	000			
Sa	ample Len	gth	6	500			
Distr	esses			Dist	esses		
		Low	Distresse			Low	1
(1) Alligator	Med		(11) Patch/Ut Cut		Med	1%	
	guior	High		()		High	
		Low					
(2) Bleeding	eding	Med		- (12) Polished - Aggregate		N/A	
	8	High					
		Low				Low	
	(3) Block Cracking	Med		(13) Pothole	Med		
Cracking	High				High		
		Low		(14) RR Crossing		Low	
(4) Bum	ps/Sags	Med			Crossing	Med	
		High				High	
		Low				Low	
(5) Corr	ugations	Med		(15) R	utting	Med	
		High		1		High	
		Low				Low	
(6) Dep	ression	Med		(16) S	hoving	Med	
		High				High	
(7) E	daa	Low		(17) 61	nnagas	Low	
(7) E Crac		Med	10%	(17) Sli Crat	ppages king	Med	
Crac	Killg	High		Crac	Allig	High	
(8) J		Low				Low	
Refle		Med		(18)	Swell	Med	
Crac		High				High	
(9) 1		Low				Med	
Shou		Med		(19) R	aveling		
Dr	1	High	120/	—		High	
(10) L		Low Med	13% 10%	(20) We	athering	Low Med	100%
Crac	king	High	2%			High	10070

550 Cleveland Avenue North St. Paul, Minnesota 55114 Phone: (651) 659-9001 Fax: (651) 659-1379

Project:	GENERAL INF	ORMATION: PAVEMENT C	ONDITION INDEX
	Fox Squirrel Solar, OH	Date:	7/22/22
T Job No.:	P-0013315	Test Date:	6/16/22
Road:	CR 9	Section/Grid:	S02
From:	Dyer Rd	To:	CR 21
		SUMMARY DISTRESSES	5
	Total Samples	14	PCI 43
	Sample #	2	
	Sample Size	6000	
	Sample Length	600	

550 Cleveland Avenue North

St. Paul, Minnesota 55114

Phone: (651) 659-9001

Fax: (651) 659-1379

	GENE	RAL INFO	ORMATI	ON: PAVE	MENT CO	NDITION	I INDEX
Job No.: 1 Road: (Fox Squirrel S 2-0013315 CR 9 Dyer Rd	Solar, OH			Date: est Date: on/Grid: To:	7/22/22 6/16/22 S02 CR 21	
			SUMM	IARY DIST	RESSES		
, , , , , , , , , , , , , , , , , , ,	Fotal Samp	los		14	1	PCI	43
	Sample #			2		ICI	43
	<u>^</u>			-			
	Sample Siz			000 500			
	ample Len	gtn	(000			
Dist	resses			Distr	esses		
	T I	Low	8%			Low	
(1) Alligator	Med		(11) Patch/Ut Cut	Med			
	~ F	High			High		
		Low					
(2) Bleeding	eeding	Med		- (12) Polished		N/A	
	Ű	High		Aggregate			
		Low				Low	
(3) Block Cracking	Med		(13) Pothole	Med			
	High			High			
		Low		(14) RR Crossing		Low	
(4) Bur	nps/Sags	Med			Crossing	Med	
(-) =	P	High				High	
		Low				Low	
(5) Corr	rugations	Med		(15) R	utting	Med	
(0) 001	ugutions	High		(10)1	5	High	
		Low				Low	
(6) De	pression	Med		(16) \$	hoving	Med	
	p1 0351011	High		- (10) 5	loving	High	
 		Low	2%	<u> </u>		Low	
	Edge	Med	8%		ppages	Med	
Cra	cking	High	070	Crac	king	High	
(0)	Loint	Low				Low	
	Joint ection	Med		(10)	Swell	Med	
	cking	High		(10)	SWEII		
	Lane	Low				High	
	ulder	Med		(19) R	aveling	Med	
	rop	High		(17) K		High	
	L&T -	Low	5%			Low	
	cking	Med	9%	(20) We	athering	Med	100%
Cra	CKIIIg	High				High	

550 Cleveland Avenue North St. Paul, Minnesota 55114 Phone: (651) 659-9001 Fax: (651) 659-1379

	GENERAL INF	ORMATION: PAVEMENT O	ONDITION INDEX
Project:	Fox Squirrel Solar, OH	Date:	7/22/22
f Job No.:	P-0013315	Test Date:	6/16/22
Road:	CR 9	Section/Grid:	S03
From:	CR 21	То:	1.1 mi N
		SUMMARY DISTRESSE	S
	Total Samples	19	PCI 38
	Sample #	2	rci 30
	Sample Size	6000	
	Sample Length	600	
	r8		
particular and a second		A second se	Lonia -83/373962 DIST (H) 12249-92

550 Cleveland Avenue North

St. Paul, Minnesota 55114

Phone: (651) 659-9001

Fax: (651) 659-1379

	GENE	ERAL INFO	ORMATIO	ON: PAVEMENT C	ONDITION	INDEX
Г Job No.: Road:	ob No.: P-0013315 Road: CR 9			Date: Test Date: Section/Grid: To:	7/22/22 6/16/22 S03 1.1 mi N	
			SUMM	ARY DISTRESSES	3	
	Total Samp	les		19	PCI	38
	Sample #			2		
	Sample Siz			000		
	Sample Len	gth	6	500		
Dis	tresses			Distresses	٦	
		Low			Low	
(1) Alligator	Med	4%	(11) Patch/Ut Cut	Med		
	Ũ	High			High	
(2) Bleeding		Low		(12) D. P. I. J		
	Med		(12) Polished Aggregate	N/A		
		High		Aggregate		
(3) Block Cracking	Low		(13) Pothole	Low		
	Med			Med		
	High			High		
		Low		(14) RR Crossing	Low	
(4) Bu	mps/Sags	Med			Med	
		High			High	
		Low			Low	
(5) Cor	rugations	Med		(15) Rutting	Med	
		High			High	
		Low			Low	
(6) De	epression	Med		(16) Shoving	Med	
		High	40.4		High	
(7)	Edge	Low	4%	(17) Slippages	Low	
	acking	Med	7%	Cracking	Med	
(0)	LaterA	High		-	High	
	Joint lection	Low		(19) S11	Low	
	acking	Med High		(18) Swell	Med	
	Lane	Low			High	
	oulder	Med		(19) Raveling	Med	
	Drop	High		(12) 100,000	High	
	L&T	Low	4%	1	Low	
	acking	Med	9%	(20) Weathering	Med	100%
		High			High	

550 Cleveland Avenue North St. Paul, Minnesota 55114 Phone: (651) 659-9001 Fax: (651) 659-1379

ox Squirrel Solar, OH 0013315 R 9 1 mi S otal Samples Sample # Sample Size mple Length		t Date: n/Grid: To:	7/22/22 6/16/22 S04 CR 69	41	
0013315 R 9 1 mi S Dtal Samples Sample # Sample Size	Section SUMMARY DISTR 19 2 6000	n/Grid: To:	S04 CR 69	41	
1 mi S otal Samples Sample # Sample Size	SUMMARY DISTR 19 2 6000	To:	CR 69	41	
otal Samples Sample # Sample Size	19 2 6000			41	
Sample # Sample Size	19 2 6000	RESSES	PCI	41	
Sample # Sample Size	2 6000		PCI	41	
Sample # Sample Size	2 6000		PCI	41	
Sample Size	6000				
mple Length	600				
				LONG -83.3	

550 Cleveland Avenue North

St. Paul, Minnesota 55114

Phone: (651) 659-9001

Fax: (651) 659-1379

GEI	IERAL INF	ORMATI	ON: PAVEM	ENT CO	NDITION	INDEX
	1.9.1				- 10.0 10.0	
Project: Fox Squirre Job No.: P-0013315	el Solar, OH		Tos	Date: Date:	7/22/22 6/16/22	
Road: CR 9			Section		S04	
From: 1.1 mi S			Section	To:	CR 69	
		SUMM	IARY DISTR	ESSES		
Total San	nles		19		PCI	41
Sample #			2		101	
Sample S		6	000			
Sample Le			500			
1	8					
Distresses]		Distres	ses		
	Low	4%			Low	
(1) Alligator	Med	3%	(11) Patch	Ut Cut	Med	1%
	High				High	
(2) Bleeding	Low		(12) Poli	shad		
	Med		- Aggreg	N/A		
	High		Aggreg	alt		
(3) Block Cracking	Low		(13) Potho		Low	
	Med			hole	Med	
	High				High	
	Low				Low	
(4) Bumps/Sags	Med		(14) RR Cr	rossing	Med	
	High				High	
	Low				Low	
(5) Corrugations	Med		(15) Ru	ting	Med	
	High				High	
	Low				Low	
(6) Depression	Med		(16) Sho	ving	Med	
	High			3	High	
	Low	4%			Low	
(7) Edge	Med	6%	(17) Slip	-	Med	
Cracking	High		- Crack	ng	High	
(8) Joint	Low		1		Low	
Reflection	Med		(18) Sv	vell	Med	
Cracking	High		(10) 51		High	
(9) Lane	Low		<u> </u>			
Shoulder	Med		(19) Rav	eling	Med	
Drop	High				High	
(10) L & T	Low	13%			Low	
Cracking	Med	1%	(20) Weat	hering	Med	100%
Cracking	High				High	

550 Cleveland Avenue North St. Paul, Minnesota 55114 Phone: (651) 659-9001 Fax: (651) 659-1379

	GENERAL INF	ORMATION: PAVEMENT	CONDITI		
Project:	Fox Squirrel Solar, OH	Date	7/22/22		
Job No.:	P-0013315	Test Date:	6/16/22		
Road:	CR 9	Section/Grid:	S05		
From:	CR 69	To:	CR 73		
		SUMMARY DISTRESS	S		
	Total Samples	8	PC	[39	
-	Sample #	2	IC	57	
	Sample Size	6000			
	Sample Length	600			
L	r				
					the f

550 Cleveland Avenue North

St. Paul, Minnesota 55114

Phone: (651) 659-9001

Fax: (651) 659-1379

	GENI	ERAL INFO	ORMATI	ON: PAVEMENT CO	NDITION	INDEX
ob No.: P- Road: C	ox Squirrel 0013315 R 9 R 69	Solar, OH		Date: Test Date: Section/Grid: To:	7/22/22 6/16/22 S05 CR 73	
			SUMM	IARY DISTRESSES		
T	otal Samp			8	PCI	39
	Sample #			2		
	Sample Siz			000		
Sa	mple Len	gth	6	500		
Distr	esses			Distresses	1	
	İ	Low	9%	1	Low	
(1) Alligator	Med		(11) Patch/Ut Cut	Med		
	-	High		1	High	
		Low				
(2) Bleeding	Med		(12) Polished Aggregate	N/A		
		High		Aggregate		
(3) Block Cracking	Low		(13) Pothole	Low		
	Med			Med		
	High			High		
	Low			Low		
(4) Bum	ps/Sags	Med		(14) RR Crossing	Med	
		High			High	
		Low			Low	
(5) Corru	ugations	Med		(15) Rutting	Med	
		High			High	
		Low			Low	
(6) Dep	ression	Med		(16) Shoving	Med	
		High			High	
(7) E	dae	Low	8%	(17) Slippages	Low	
Crac		Med	2%	Cracking	Med	
Crac	·····8	High		Cracking	High	
(8) J		Low			Low	
Refle		Med		(18) Swell	Med	
Crac		High			High	
(9) L		Low		(10) D	Med	
Shou		Med		(19) Raveling		
Dro		High Low	11%		High Low	
(10) L		Med	11%	(20) Weathering	Med	100%
Crac	king	High	1%		High	

		ORMATION: PAVEMENT	CONDITIO	N INDEX
Project:	Fox Squirrel Solar, OH	Date	7/22/22	
Job No.:	P-0013315	Test Date:	6/16/22	
Road:	CR 9	Section/Grid:	S06	
From:	CR 73	To:	CR 85	
		SUMMARY DISTRESS	S	
	Total Samples	13	PCI	40
	Sample #	2		
	Sample Size	6000		
	Sample Length	600		
				29724707 LONG - 83 405904 DIST (F) 26205 81

550 Cleveland Avenue North

St. Paul, Minnesota 55114

Phone: (651) 659-9001

	GENE	ERAL INFO	ORMATIC	DN: PAVE	MENT CO	NDITION	INDEX
Job No.: P-(Road: CR	x Squirrel 0013315 9 73	Solar, OH			est Date: on/Grid:	7/22/22 6/16/22 S06 CR 85	
			SUMM	ARY DIST	RESSES		
To	tal Samp	les		13	1	PCI	40
	Sample #	ł		2			
	ample Siz		6	000			
	Sample Length		600				
Distre	5565			Dist	esses	ľ	
Distre	5565	Low	14%	Disti	-55-55	Low	
(1) Allig	ator	Med	1-170	(11) Pote	h/Ut Cut	Med	
(1) Allig		High		(11)1 au	morcut	High	
		Low				mgn	
(2) Blee	ding	Med		(12) Polished Aggregate		N/A	
(2) Bitt	Jung	High				10/11	
		Low				Low	
(3) Bl		Med		(13) Pothole		Med	
Crack	ing	High				High	
		Low		<u> </u>		Low	
(4) Bump	s/Sags	Med		(14) RR	Crossing	Med	
(-) =		High		(High	
		Low				Low	
(5) Corru	gations	Med		(15) Rutting		Med	
(-)		High				High	
		Low				Low	
(6) Depr	ession	Med		(16) Shoving		Med	
() - r -	F	High		1	8	High	
		Low	8%	(17)		Low	
(7) Eo		Med	2%		ppages	Med	
Crack	ıng	High		Cra	king	High	
(8) Jo	int	Low				Low	
Reflec		Med		(18)	Swell	Med	
Crack		High		1 `´		High	
(9) La		Low		<u> </u>		Med	10%
Shoul		Med		(19) R	aveling		10%
Dro	р	High		L		High	
(10) L	&Т	Low	5%		o.4h o	Low	1000/
Crack		Med High	6%	(20) We	athering	Med High	100%

Project: Fox Squirrel Solar, OH De T Job No: P-0013315 Test De Road: CR 9 Section/Ge From: CR 85 Summary Distretes 1 Sample # 2 Sample Size 6000 Sample Length 600	e: 6/16/22 d: S07 o: CR 151	
T Job No.: P-0013315 Test Da Road: CR 9 Section/Ga From: CR 85 SUMMARY DISTRES Total Samples 9 Sample # 2 Sample Size 6000	d: S07 o: CR 151	
Total Samples 9 Sample # 2 Sample Size 6000	o: CR 151	
SUMMARY DISTRESTotal Samples9Sample #2Sample Size6000	SES	
Total Samples9Sample #2Sample Size6000		
Total Samples9Sample #2Sample Size6000		
Sample #2Sample Size6000	PCI 37	
Sample #2Sample Size6000		
Sample Length 600		

550 Cleveland Avenue North

St. Paul, Minnesota 55114

Phone: (651) 659-9001

	GENE	ERAL INFO	ORMATI	ON: PAVEN	IENT CO	NDITION	INDEX
T Job No.: Road:	Fox Squirrel S P-0013315 CR 9 CR 85	Solar, OH			Date: st Date: n/Grid: To:	7/22/22 6/16/22 S07 CR 151	
			SUMM	IARY DISTI	RESSES		
,	Fotal Samp	les		9		PCI	37
	Sample #			2			
	Sample Siz	ze	6	000			
\$	Sample Length		600				
Dist	resses			Distre	sses	1	
2.150		Low	6%	2		Low	
(1) A	lligator	Med	1%	(11) Patch	/Ut Cut	Med	
	g	High				High	
		Low					
(2) B	leeding	Med		(12) Pol		N/A	
		High		Aggregate			
		Low				Low	
	Block	Med		(13) Pothole	Med		
Cra	cking	High				High	
		Low				Low	
(4) Bur	nps/Sags	Med		(14) RR C	crossing	Med	
		High				High	
		Low				Low	
(5) Cor	rugations	Med		(15) Rutting		Med	
		High				High	
		Low				Low	
(6) De	pression	Med		(16) Shoving		Med	
		High				High	
(7)	Edge	Low	3%	(17) Slin	nages	Low	
	cking	Med	6%	(17) Slippages Cracking		Med	
	-	High		Crath	5	High	
	Joint	Low				Low	
	ection	Med		(18) S	well	Med	
	cking	High				High	
	Lane	Low		(10) F		Med	10%
	ulder	Med High		(19) Ra	veling	High	
	rop	Low	5%	<u> </u>		Low	
	L&T	Med	5%	(20) Wea	thering	Med	100%
Cra	cking	High			8	High	

	GENERAL INF	ORMATION: PAVEMENT	COI	IDITIO	N INDEX
Project:	Fox Squirrel Solar, OH	Date	: 7	/22/22	
Job No.:	P-0013315	Test Date	: (/16/22	
Road:	CR 9	Section/Grid	: 5	808	
From:	CR 151	Тс	: (CR 82	
		SUMMARY DISTRESS	ES		
	Total Samples	34	Г	PCI	28
	Sample #	2	L	ICI	20
	Sample Size	6000			
	Sample Length	600			
	. 0				
					DIST (H) 32780 02

550 Cleveland Avenue North

St. Paul, Minnesota 55114

Phone: (651) 659-9001

GE	NERAL INF	ORMATI	ON: PAVE	MENT CO	NDITION	INDEX
Project: Fox Squin Job No.: P-001331 Road: CR 9 From: CR 151	rel Solar, OH 5			Date: est Date: on/Grid: To:	7/22/22 6/16/22 S08 CR 82	
		SUMM	IARY DIST	RESSES		
				l		-
Total Sa	-	-	34		PCI	28
Samp			2			
Sample			000			
Sample I	Length	(500			
Distresses			Distr	esses	1	
	Low	4%	2.50		Low	
(1) Alligator	Med	2%	(11) Pate	h/Ut Cut	Med	
(1) 1111guvor	High		(11)1 w		High	
	Low					
(2) Bleeding	Med		(12) Po		N/A	
	High		- Aggregate			
	Low				Low	
(3) Block	Med		(13) Pothole		Med	
Cracking	High				High	
	Low				Low	
(4) Bumps/Sag	Med		(14) RR	Crossing	Med	
	High				High	
	Low				Low	
(5) Corrugation	s Med		(15) Rutting		Med	
	High				High	
	Low				Low	
(6) Depression	Med		(16) Shoving		Med	
_	High				High	
(7) Edge	Low	3%	(17) 61		Low	
(7) Edge Cracking	Med	7%	(17) Sli Crac		Med	
Cracking	High			Killy	High	
(8) Joint	Low				Low	
Reflection	Med		(18)	Swell	Med	
Cracking	High				High	
(9) Lane	Low				Med	10%
Shoulder	Med		(19) R	aveling		1070
Drop	High	70/			High	
(10) L & T	Low Med	7% 6%	(20) We	athering	Low Med	100%
Cracking	High	1%	(20) 110	athti mg	High	10070

	GENERAL INF	ORMATION: PAVEMENT C	ONDITION INDEX
Project:	Fox Squirrel Solar, OH	Date:	7/22/22
Job No.:	P-0013315	Test Date:	6/16/22
Road:	CR 9	Section/Grid:	S08
From:	CR 151	To:	CR 82
		SUMMARY DISTRESSE	8
	Total Samples	34	PCI 46
	Sample #	14	
	Sample Size	6000	
	Sample Length	600	
			DIST (H) 39260.12

550 Cleveland Avenue North

St. Paul, Minnesota 55114

Phone: (651) 659-9001

	GENI	ERAL INF	ORMATIO	ON: PAVEMENT O	ONDITIO	INDEX
T Job No.: P Road: C	Fox Squirrel 2-0013315 CR 9 CR 151	Solar, OH		Date: Test Date: Section/Grid: To:	7/22/22 6/16/22 S08 CR 82	
			SUMM	ARY DISTRESSE	S	
	1410	,			DCI	46
1	otal Samp Sample #			34 14	PCI	46
	Sample Si			000		
	Sample Length			000		
	ample Len	gtii		00		
Distr	esses			Distresses	٦	
		Low			Low	
(1) Al	ligator	Med		(11) Patch/Ut Cu	t Med	
	Ĩ	High			High	
		Low		(12) D.P.J		
(2) Bl	eeding	Med		(12) Polished	N/A	
	ſ	High		Aggregate		
(2) 1		Low			Low	
	Block	Med	5%	(13) Pothole	Med	
Crac	king	High			High	
		Low			Low	
(4) Bun	nps/Sags	Med		(14) RR Crossing	g Med	
		High			High	
		Low			Low	
(5) Corr	ugations	Med		(15) Rutting	Med	
		High			High	
	T	Low			Low	
(6) Dep	ression	Med		(16) Shoving	Med	
		High		L	High	
(7) 1	Edge	Low		(17) Slippages	Low	
	cking	Med	10%	- Cracking	Med	
	Ű	High		g	High	
	loint	Low		-	Low	
	ection	Med		(18) Swell	Med	
	cking	High		L	High	
	Lane Ilder	Low		(10) Darralis -	Med	
		Med High		(19) Raveling	High	
	op	Low	7%		Low	
	_ & Т	Med	12%	(20) Weathering		100%
Crac	cking	High	1%	1	High	

Project:		ORMATION: PAVEMENT C	
i i ojeci:	Fox Squirrel Solar, OH	Date:	7/22/22
Job No.:	P-0013315	Test Date:	6/16/22
Road:	CR 84	Section/Grid:	S09
From:	CR 69	To:	CR 85
		SUMMARY DISTRESSES	8
	Total Samplas	13	DCI (0
-	Total Samples Sample #	2	PCI 69
	Sample Size	6000	
	Sample Length	750	
	Sample Length	750	
			LAT 39.787589 LONG -83.382122 DIST (#) 870.80

550 Cleveland Avenue North

St. Paul, Minnesota 55114

Phone: (651) 659-9001

	GENI	ERAL INF	ORMATIC	ON: PAVEMENT CO	DNDITION	INDEX
Project:	Fox Squirrel	Solar, OH		Date:	7/22/22	
T Job No.: P-0013315 Road: CR 84 From: CR 69				Test Date:	6/16/22	
					S09	
From:	CR 69				CR 85	
			SUMM	ARY DISTRESSES		
	Total Samp	oles		13	PCI	69
	Sample #			2		
	Sample Si		6	000		
5	Sample Length		7	/50		
			-		1	
Dist	tresses	T		Distresses	Ţ	
(1) Alligator		Low			Low	
		Med		(11) Patch/Ut Cut	Med	
		High			High	
		Low		(12) Polished		
(2) B	leeding	Med		Aggregate	N/A	
		High		88 8		
(3)	Block	Low Med			Low	
	(3) Block Cracking			(13) Pothole	Med	
	8	High			High	
		Low			Low	
(4) Bu	mps/Sags	Med		(14) RR Crossing	Med	
		High			High	
		Low			Low	
(5) Cor	rugations	Med		(15) Rutting	Med	
		High			High	
		Low			Low	
(6) De	pression	Med		(16) Shoving	Med	
		High			High	
(7)	Edge	Low	11%	(17) Slippages	Low	
	cking	Med		Cracking	Med	
	55	High		Cracking	High	
	Joint	Low			Low	
	ection	Med		(18) Swell	Med	
	icking	High			High	
	Lane	Low		(10) D	Med	
	ulder	Med		(19) Raveling		
	rop	High Low	18%		High L ow	
	L & T	Med	18%0	(20) Weathering	Low Med	100%
Cra	icking	High		(20) weather mg	High	10070

Projeci: Fox Squirrel Solar, OH: Test Pate: 7/22/22 Tob No: P-0013315 Test Date: 6/16/22 Raai: CR 84 Section/Grid: S10 From: CR 85 To: CR 82 SUMMARY DISTRESSES 1 16 6 Sample # 2 6000 Sample Length 750 6	T Job No.: P-0013315 Test Date: 6/16/22 Road: CR 84 Section/Grid: S10 From: CR 85 To: CR 82 SUMMARY DISTRESSES 1 16 1 Sample # 2 6000 Sample Size 6000 Sample Length 750				
T Job No.: P-0013315 Test Date: 6/16/22 Road: CR 84 Section/Grid: S10 From: CR 85 To: CR 82 SUMMARY DISTRESSES 1 16 10 Sample # 2 6000 6000 Sample Size 6000 6000 6000 Sample Length 750 750 10	T Job No.: P-0013315 Test Date: 6/16/22 Road: CR 84 Section/Grid: S10 From: CR 85 To: CR 82 SUMMARY DISTRESSES 1 16 1 Sample # 2 6000 Sample Size 6000 Sample Length 750	Project:	Fox Squirrel Solar, OH	Date:	7/22/22
From: CR 85 To: CR 82 Summary Distresses Total Samples 16 Sample Size 6000 Sample Length 750	From: CR 85 To: CR 82 Summary Distresses Total Samples 16 Sample fize 6000 Sample Length 750	Job No.:	P-0013315	Test Date:	6/16/22
Summary distresses Total Samples 16 Sample Size 6000 Sample Length 750	Summary Distresses Total Samples 16 Sample # 2 Sample Size 6000 Sample Length 750	Road:	CR 84	Section/Grid:	S10
Total Samples 16 Sample # 2 Sample Size 6000 Sample Length 750	Total Samples 16 Sample # 2 Sample Size 6000 Sample Length 750	From:	CR 85	То:	CR 82
Total Samples 16 Sample # 2 Sample Size 6000 Sample Length 750	Total Samples 16 Sample # 2 Sample Size 6000 Sample Length 750			ÉLIMMADY DIÉTDEÉÉE	e
Sample # 2 Sample Size 6000 Sample Length 750	Sample # 2 Sample Size 6000 Sample Length 750			SUMMART DISTRESSE	3
Sample Size 6000 Sample Length 750	Sample Size 6000 Sample Length 750		Total Samples	16	PCI 68
Sample Length 750	Sample Length 750		Sample #	2	
			Sample Size	6000	
LAT 39 800404 LONG - 83 386335	LAT 39,800404 LONG -83,386335		Sample Length	750	
LAT 39 800404 LONG - 83 386335	LAT 39,800404 LONG -83,386335				
			2.110 - 11.12 - 2.12		LAT 39.800404
					LAT 39.800404 LONG -83.386335

550 Cleveland Avenue North

St. Paul, Minnesota 55114

Phone: (651) 659-9001

	GENI	ERAL INF	ORMATI	ON: PAVE	MENT CO	NDITION	I INDEX
Job No.: Road:	Fox Squirrel P-0013315 CR 84 CR 85	Solar, OH			Date: est Date: on/Grid: To:	7/22/22 6/16/22 S10 CR 82	
			SUMN	ARY DIST	RESSES		
	Total Samp	les		16		PCI	68
	Sample #			2			
	Sample Size Sample Length		6	000			
			750				
		8				-	
Dis	tresses			Distr	esses	ļ	
	ļ	Low		-		Low	
(1) Alligator		Med		(11) Patc	h/Ut Cut	Med	
		High				High	
		Low	5%	(12) Po	lished		
(2) B	leeding	Med		- Aggr		N/A	
		High			-8		
(3)	Block	Low		(13) Pothole		Low	
	acking	Med				Med	
	, see all a second s	High				High	
		Low		-		Low	
(4) Bu	mps/Sags	Med		(14) RR	Crossing	Med	
		High				High	
		Low		_		Low	
(5) Cor	rugations	Med		(15) Rutting		Med	
		High				High	
	ļ	Low		-		Low	
(6) De	epression	Med		(16) Shoving		Med	
		High		_		High	
(7)	Edge	Low	5%	(17) Sli	ppages	Low	
	acking	Med	5%	- Crac		Med	
	-	High			8	High	
	Joint	Low		-		Low	
	lection	Med		(18)	Swell	Med	
	acking	High				High	
	Lane	Low		(10) B	walke -	Med	
	oulder	Med High		(19) Ra	ivening	High	
)rop	Low	6%			Low	
	L & T	Med	1%	(20) We	athering	Med	100%
Cra	acking	High		ヿ `´	0	High	

Project: Fox Squirrel Solar, OH ob No.: P-0013315 Road: CR 84 From: CR 82 Total Samples Sample # Sample Size Sample Length	Date: Test Date: Section/Grid: To: SUMMARY DISTRESSE	6/16/22 S11 SR 56
Road: CR 84 From: CR 82 Total Samples Sample # Sample Size	Section/Grid: To: SUMMARY DISTRESSE 2 6000	SR 56
From: CR 82 Total Samples Sample # Sample Size	To: SUMMARY DISTRESSE 2 6000	SR 56
Total Samples Sample # Sample Size	26 2 6000 6000	S
Sample # Sample Size	26 2 6000	
Sample # Sample Size	26 2 6000	
Sample # Sample Size	2 6000	PCI 70
Sample Size	6000	
Sample Length	I I	
	750	

550 Cleveland Avenue North

St. Paul, Minnesota 55114

Phone: (651) 659-9001

GEN	ERAL INF	ORMATIO	ON: PAVE	MENT CO	DNDITION	INDEX
Project: Fox Squirred Job No.: P-0013315 Road: CR 84 From: CR 82	Solar, OH			Date: est Date: on/Grid: To:	7/22/22 6/16/22 S11 SR 56	
		SUMM	IARY DIST	RESSES		
Tatal Same			2(DCI	70
Total Sam			26		PCI	70
Sample			2			
Sample S		<u> 6000 </u>				
Sample Le	Sample Length					
Distresses			Distr	esses	1	
	Low				Low	
(1) Alligator	Med		(11) Patch/Ut C	h/Ut Cut	Med	
	High				High	
	Low	10%	(10) D			
(2) Bleeding	Med		- (12) Polished Aggregate		N/A	
	High		Aggregate			
(2) DL L	Low		(13) Pothole		Low	
(3) Block	Med			othole	Med	
Cracking	High				High	
	Low		(14) RR Ci		Low	
(4) Bumps/Sags	Med			Crossing	Med	
	High				High	
	Low				Low	
(5) Corrugations	Med		(15) Rutting	utting	Med	
	High				High	
	Low				Low	
(6) Depression	Med		(16) SI	noving	Med	
	High				High	
(7) Edge	Low	4%	(17) Sli	nnages	Low	
Cracking	Med	7%	- Crac		Med	
	High		Crac	5	High	
(8) Joint	Low				Low	
Reflection	Med		(18)	Swell	Med	
Cracking	High				High	
(9) Lane	Low		(10) -		Med	
Shoulder	Med High		(19) Ra	iveling		
Drop	Low	2%	<u> </u>		High Low	
(10) L & T	Med	270	(20) We	athering	Med	100%
Cracking	High			ð	High	

Project:	CENERAL INI	ORMATION: PAVEMENT C	ONDITION INDEX
	Fox Squirrel Solar, OH	Date:	7/22/22
Job No.:		Test Date:	6/16/22
Road:	CR 84	Section/Grid:	S11
From:	CR 82	To:	SR 56
		SUMMARY DISTRESSES	5
	Total Samples	26	PCI 65
	Sample #	12	
	Sample Size	6000	
	Sample Length	750	
	Sumpre Zengen		
			LT 3930852 LNG 43336631 DT (M) 16890 70

550 Cleveland Avenue North

St. Paul, Minnesota 55114

Phone: (651) 659-9001

GEN	ERAL INF	ORMATI	ON: PAVEMENT CO	ONDITION	INDEX
Project: Fox Squirrel Job No.: P-0013315 Road: CR 84 From: CR 82	Solar, OH		Date: Test Date: Section/Grid: To:	7/22/22 6/16/22 S11 SR 56	
		SUMM	IARY DISTRESSES	i	
Total Sam			26	PCI	65
Sample			12		
Sample Si			000		
Sample Length		7	750		
Distresses			Distresses	ו	
	Low			Low	
(1) Alligator	Med		(11) Patch/Ut Cut	Med	
() 8	High			High	
	Low	10%	(12) Polished		
(2) Bleeding	Med			N/A	
., .,	High		Aggregate		
	Low		(13) Pothole	Low	
(3) Block	Med			Med	
Cracking	High			High	
	Low		(14) RR Crossing	Low	
(4) Bumps/Sags	Med			Med	
	High			High	
	Low		(15) Rutting	Low	
(5) Corrugations	Med			Med	
	High			High	
	Low		1	Low	
(6) Depression	Med		(16) Shoving	Med	
	High			High	
(7) E I	Low	3%	(17) 61	Low	
(7) Edge Cracking	Med	8%	(17) Slippages	Med	
Cracking	High		- Cracking	High	
(8) Joint	Low			Low	
Reflection	Med		(18) Swell	Med	
Cracking	High			High	
(9) Lane	Low			Med	
Shoulder	Med		(19) Raveling		
Drop	High	70/		High	
(10) L & T	Low Med	7%	(20) Weathering	Low Med	100%
Cracking	High		(20) weathering	High	100%

	GENERAL INF	ORMATION: PAVEMENT C	
Project:	Fox Squirrel Solar, OH	Date:	7/22/22
Г Job No.:	P-0013315	Test Date:	6/16/22
Road:	CR 69	Section/Grid:	S12
From:	CR 9	To:	CR 84
			•
		SUMMARY DISTRESSE	5
	Total Samples	31	PCI 63
	Sample #	2	
	Sample Size	6000	
	Sample Length	375	
I			
			DIST (H) 22180.44

550 Cleveland Avenue North

St. Paul, Minnesota 55114

Phone: (651) 659-9001

Fax: (651) 659-1379

GENE	RAL INF	ORMATIC	DN: PAVEMENT CO	NDITION	I INDEX
roject: Fox Squirrel b No.: P-0013315 Road: CR 69 From: CR 9	Solar, OH		Test Date: Section/Grid:	7/22/22 6/16/22 S12 CR 84	
		SUMM	ARY DISTRESSES		
Total Samp			31	PCI	63
Sample #			2		
Sample Siz			000		
Sample Len	gth	3	75		
Distresses			Distresses		
	Low			Low	
(1) Alligator	Med		(11) Patch/Ut Cut	Med	
(-)g	High		()	High	
	Low	5%			
(2) Bleeding	Med		(12) Polished	N/A	
	High		Aggregate		
(3) Block Cracking	Low		(13) Pothole	Low	
	Med			Med	
Cracking	High			High	
	Low		(14) RR Crossing	Low	
(4) Bumps/Sags	Med			Med	
	High			High	
	Low			Low	
(5) Corrugations	Med		(15) Rutting	Med	
	High			High	
	Low			Low	
(6) Depression	Med		(16) Shoving	Med	
	High			High	
(7) Edge	Low		(17) Slimona	Low	
(7) Edge Cracking	Med	12%	(17) Slippages Cracking	Med	
Cracking	High	1%	Cracking	High	
(8) Joint	Low			Low	
Reflection	Med		(18) Swell	Med	
Cracking	High			High	
(9) Lane	Low			Med	
Shoulder	Med		(19) Raveling		
Drop	High Low	3%		High Low	
(10) L & T	Med	3% 1%	(20) Weathering	Med	100%
Cracking	High	170	(20) Weathering	High	10070

	GENERAL INF	ORMATION: PAVEMENT	
Project:	Fox Squirrel Solar, OH	Date	: 7/22/22
Job No.:	P-0013315	Test Date:	6/16/22
Road:	CR 69	Section/Grid:	: S13
From:	CR 84	To:	: SR 56
			20
		SUMMARY DISTRESSE	29
	Total Samples	106	PCI 55
	Sample #	2	
	Sample Size	6000	
	Sample Length	375	
			Distrien 28075.42

550 Cleveland Avenue North

St. Paul, Minnesota 55114

Phone: (651) 659-9001

GI	NERAL INF	ORMATIC	ON: PAVEN	IENT CO	NDITION	INDEX	
roject: Fox Squi b No.: P-001331 Road: CR 69 From: CR 84	rel Solar, OH 5			st Date: n/Grid:	7/22/22 6/16/22 S13 SR 56		
		GUMM					
		SOMM	ARY DIST	KE99E9			
Total Sa	mples	1	06		PCI	55	1
Samp	le #		2	•		Э	
Sample	Size	6	000				
Sample	Length	3	575				
Distresses	-		Distre	66.06			
Distresses	Low		Distre	.3303	Low		1
(1) Alligator	Med		(11) Patch/Ut Cut		Med		
(1) Alligator	High				High		
	Low		<u> </u>				
(2) Bleeding	Med		(12) Polished	N/A			
(2) bleeding	High		Aggregate		14/24		
	Low		-		Low		
(3) Block	Med		(13) Pothole	Med			
(3) Block Cracking	High			High			
	Low				Low		
(4) Rumns/Sag			(14) RR (rossing	Med		
(4) Bumps/Sags	High		(14) KK Crossing	lossing	High		
	Low				Low		
(5) Corrugation			(15) Ri	(15) Rutting	Med		
(c) corrugation	High		(10) I	g	High		
	Low		<u> </u>		Low		1
(6) Depression			(16) Sh	oving	Med		1
(-) =	High		(10) 51		High		1
	Low				Low		1
(7) Edge	Med	13%	(17) Slip		Med		1
Cracking	High		Cracl	ang	High		1
(8) Joint	Low				Low		1
Reflection	Med		(18) S	well	Med		1
Cracking	High		1		High		1
(9) Lane	Low				Med		1
Shoulder	Med		(19) Ra	veling			
Drop	High	(0)	L		High		
(10) L & T	Low Med	6% 7%	(20) Wea	thoring	Low Med	100%	
Cracking	High	/ 70	(20) wea	incing	High	10070	

Project: Fox Squirrel Solar, OH. Date: 7/22/2 f Job No: P-0013315 Test Date: 6/16/22 Read: CR 69 Section/Grid: S13 From: CR 84 To: SR 56 SUMMARY DISTRESSES Total Samples 106 Sample # 12 Sample Size 6000 Sample Length 375
Job No.: P-0013315 Test Date: 6/16/22 Road: CR 69 Section/Grid: S13 From: CR 84 To: SR 56 SUMMARY DISTRESSES Total Samples 106 Sample # 12 Sample Size 6000 Sample Length 375
From: CR 84 To: SR 56 SUMMARY DISTRESSES
Summary Distresses Total Samples Sample Size G000 Sample Length 375
Total Samples 106 Sample # 12 Sample Size 6000 Sample Length 375
Total Samples 106 Sample # 12 Sample Size 6000 Sample Length 375
Sample # 12 Sample Size 6000 Sample Length 375
Sample Size 6000 Sample Length 375
Sample Length 375
LAT 39.7875 LONG -83.3761

550 Cleveland Avenue North

St. Paul, Minnesota 55114

Phone: (651) 659-9001

0	BENERAL INF	ORMATIO	ON: PAVE	MENT CO	DNDITION	I INDEX
Project: Fox Squeet Job No.: P-0013. Road: CR 69 From: CR 84	uirrel Solar, OH 315			Date: est Date: on/Grid: To:	7/22/22 6/16/22 S13 SR 56	
		SUMM	ARY DIST	RESSES		
		1 4	0.6		DCI	
	Samples		06		PCI	66
	ple #		12			
	le Size	-	000			
Sample	e Length	3	375			
Distresses			Distr	esses	1	
	Low				Low	
(1) Alligato	r Med		(11) Patch/Ut Cut		Med	
	High				High	
	Low					
(2) Bleeding	m Med		(12) Polished	N/A		
	High		Aggregate			
	Low				Low	
(3) Block	Med		(13) P	(13) Pothole	Med	
Cracking	High				High	
	Low				Low	
(4) Bumps/Sa			(14) RR Crossi	Crossing	Med	
(-) = F ~~~~	High				High	
	Low				Low	
(5) Corrugati			(15) R	uttino	Med	
(c) corrugue	High		(10) R		High	
	Low		<u> </u>		Low	
(6) Depressi			(16) Sh	noving	Med	
(c) Depression	High		(10) 51	<u></u>	High	
—	Low				Low	
(7) Edge	Med	13%	(17) Slij		Med	
Cracking	High	1070	Crac	king	High	
(8) Joint	Low		<u> </u>		Low	
Reflection			(18) \$	Swell	Med	
Cracking	High		(10)		High	
(9) Lane	Low		<u> </u>		1	
Shoulder	Med		(19) Ra	veling	Med	
Drop	High			8	High	
(10) L & T	Low	5%			Low	
Cracking	Med	1%	(20) Wea	athering	Med	100%
Cracking	High				High	

		ORMATION: PAVEMENT C	
Project:	Fox Squirrel Solar, OH	Date:	7/22/22
Job No.:	P-0013315	Test Date:	6/16/22
Road:	CR 69	Section/Grid:	S13
From:	CR 84	To:	SR 56
		SUMMARY DISTRESSE	8
		SUMMART DISTRESSE	9
	Total Samples	106	PCI 34
	Sample #	22	
	Sample Size	6000	
	Sample Length	375	
	at 16080+		
	And the		
10000	- Company - Comp		
			LAT 39.796744 LONIG -83/364895 DIST (H) 28635 90
			LONG -83.364895

550 Cleveland Avenue North

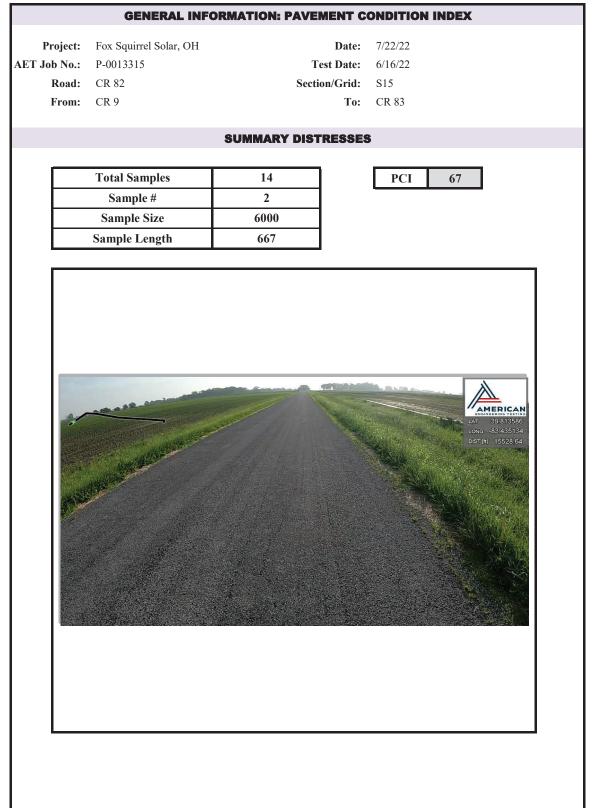
St. Paul, Minnesota 55114

Phone: (651) 659-9001

GEI	IERAL INF	ORMATIO	ON: PAVEMENT CO	NDITION	INDEX	
	1.9.1			- 100 100		
Project: Fox Squirre Job No.: P-0013315	el Solar, OH		Date: Test Date:	7/22/22 6/16/22		
Road: CR 69			Section/Grid:	S13		
From: CR 84			To:	SR 56		
		SUMM	ARY DISTRESSES			
			0.6			
Total San			06	PCI	34	
Sample			22			
Sample			000			
Sample Lo	ength	3	875			
Distances	7		Distances	1		
Distresses	т		Distresses	T		
(1) All	Low Med	407		Low Med		
(1) Alligator		4%	(11) Patch/Ut Cut			
	High			High		
	Low		(12) Polished Aggregate			
(2) Bleeding	Med			N/A		
	High					
(3) Block	Low		(13) Pothole	Low		
Cracking	Med			Med		
	High			High		
	Low			Low		
(4) Bumps/Sags	Med		(14) RR Crossing	Med		
	High			High		
	Low			Low		
(5) Corrugations			(15) Rutting	Med		
	High			High		
	Low			Low		
(6) Depression	Med		(16) Shoving	Med		
	High			High		
(7) Edge	Low		(17) Slinnager	Low		
(7) Edge Cracking	Med	13%	(17) Slippages	Med		
Cracking	High		Cracking	High		
(8) Joint	Low			Low		
Reflection	Med		(18) Swell	Med		
Cracking	High			High		
(9) Lane	Low			Med		
Shoulder	Med		(19) Raveling			
Drop	High			High		
(10) L & T	Low Med	9%	(20) Weatharing -	Low	1000/	
Cracking	High	4% 2%	(20) Weathering	Med High	100%	

				ONDITIO		
Project:	Fox Squirrel Solar, OH	Da	te:	7/22/22		
Job No.:	P-0013315	Test Da	te:	6/16/22		
Road:	CR 85	Section/Gr	id:	S14		
From:	CR 9]	0:	CR 85		
		SUMMARY DISTRES	SES	3		
						_
	Total Samples	46		PCI	53	
	Sample #	2				
	Sample Size	6000				
	Sample Length	429				
			1			
	A A A A A A A A A A A A A A A A A A A					
				1		
				1	Le	AMERICAN NT 39.790223 NG -83.414115 ST (H) 10449.97
				1	Le	ONG -83.414115
				1	Le	ONG -83.414115
The second se					Le	ONG -83.414115
					Le	ONG -83.414115
					Le	ONG -83.414115
					Le	ONG -83.414115
					Le	ONG -83.414115
					Le	ONG -83.414115
					Le	ONG -83.414115
					Le	ONG -83.414115
					Le	ONG -83.414115
					Le	ONG -83.414115
					Le	ONG -83.414115

550 Cleveland Avenue North


St. Paul, Minnesota 55114

Phone: (651) 659-9001

GE	NERAL INF	ORMATI	ON: PAVEMENT CO	DNDITION	INDEX
Project: Fox Squir Job No.: P-001331: Road: CR 85 From: CR 9	rel Solar, OH 5		Date: Test Date: Section/Grid: To:	7/22/22 6/16/22 S14 CR 85	
		SUMN	IARY DISTRESSES	;	
Total So			46	PCI	53
Total Sa Sampl	-		2	PU	55
Sample		6	2000		
Sample I			429		
Sample	Aligtii		+29		
Distresses			Distresses	ר	
	Low			Low	
(1) Alligator	Med	1%	(11) Patch/Ut Cut	Med	
	High			High	
	Low				
(2) Bleeding	Med		(12) Polished	N/A	
	High		- Aggregate		
	Low			Low	
(3) Block	Med		(13) Pothole	Med	
Cracking	High			High	
	Low			Low	
(4) Bumps/Sags	Med		(14) RR Crossing	Med	
	High			High	
	Low			Low	14%
(5) Corrugation	s Med		(15) Rutting	Med	
	High			High	
	Low			Low	
(6) Depression	epression Med (1	(16) Shoving	Med		
_	High			High	
(7) Ed.	Low	1%	(17) Slimona	Low	
(7) Edge Cracking	Med	1%	 (17) Slippages Cracking 	Med	
Cracking	High		Cracking	High	
(8) Joint	Low			Low	
Reflection	Med		(18) Swell	Med	
Cracking	High			High	
(9) Lane	Low			Med	1%
Shoulder	Med		(19) Raveling		170
Drop	High	10/		High	
(10) L & T	Low Med	1% 1%	(20) Weathering	Low Med	100%
Cracking	High	170	(20) weathering	High	10070

550 Cleveland Avenue North

St. Paul, Minnesota 55114


Phone: (651) 659-9001

Fax: (651) 659-1379

GENE	ERAL INFO	ORMATIC	DN: PAVEMENT CO	NDITION	INDEX
oject: Fox Squirrel No.: P-0013315	Solar, OH			7/22/22 6/16/22	
coad: CR 82				S15	
rom: CR 9				CR 83	
		SUMM	ARY DISTRESSES		
Total Samp			14	PCI	67
Sample #			2		
Sample Siz			000		
Sample Len	gth	6	67		
Distresses			Distresses		
i	Low			Low	
(1) Alligator	Med		(11) Patch/Ut Cut	Med	
	High		l`´	High	
	Low				
(2) Bleeding	Med		(12) Polished	N/A	
()	High		Aggregate		
	Low			Low	
(3) Block	Med		(13) Pothole	Med	
Cracking	High		, , ,	High	
	Low			Low	
(4) Bumps/Sags	Med		(14) RR Crossing	Med	
	High		, , , , , , , , , , , , , , , , , , ,	High	
	Low			Low	
(5) Corrugations	Med		(15) Rutting	Med	
, c	High			High	
	Low			Low	
(6) Depression	Med		(16) Shoving	Med	
	High			High	
	Low	5%		Low	
(7) Edge	Med	1%	(17) Slippages	Med	
Cracking	High		Cracking	High	
(8) Joint	Low			Low	
Reflection	Med		(18) Swell	Med	
Cracking	High			High	
(9) Lane	Low		j	Med	
Shoulder	Med		(19) Raveling		
Drop	High	0.107		High	
(10) L & T	Low	24%	(20) Weathering	Low	1000/
Cracking	Med High		(20) weathering	Med High	100%

550 Cleveland Avenue North

St. Paul, Minnesota 55114

Phone: (651) 659-9001

G	ENERAL INFO	ORMATIC	ON: PAVE	MENT CO	NDITION	INDEX
Project: Fox Squi Job No.: P-00133 Road: CR 82 From: CR 83	rrel Solar, OH 5			Date: est Date: on/Grid: To:	7/22/22 6/16/22 S16 0.85 mi E	
		SUMM	IARY DIST	RESSES		
			1.4		DCI	70
Total Sa	<u>^</u>		14 2		PCI	72
Samp						
Sample Sample			000 567			
Sample	Length	C.	007			
Distresses			Distr	esses	ו	
	Low				Low	
(1) Alligator	Med		(11) Patc	h/Ut Cut	Med	
	High				High	
	Low		(12) D	12.1		
(2) Bleeding	Med		(12) Po		N/A	
	High		Aggregate			
(2) DL L	Low				Low	
(3) Block Creaking	Med		(13) Pothole	othole	Med	
Cracking	High		1		High	
	Low		(14) RR Cro		Low	
(4) Bumps/Sag	s Med			Crossing	Med	
	High				High	
	Low				Low	
(5) Corrugatio	ns Med		(15) Rutting		Med	
	High				High	
	Low				Low	
(6) Depression	n Med		(16) SI	noving	Med	
	High				High	
(7) Edge	Low	1%	(17) 61:	nnagas	Low	
(7) Edge Cracking	Med		(17) Sli Crac		Med	
	High		Crac	Milg	High	
(8) Joint	Low				Low	
Reflection	Med		(18) S	Swell	Med	
Cracking	High				High	
(9) Lane	Low				Med	
Shoulder	Med		(19) Ra	weling		
Drop	High	150/			High	
(10) L & T	Low Med	15%	(20) We	athering	Low Med	100%
Cracking	High				High	10070

	GENERAL INF	ORMATION: PAVEMENT	C	CONDITION INDEX
Project:	Fox Squirrel Solar, OH	Date	e:	7/22/22
AET Job No.:	P-0013315	Test Date	e:	6/16/22
Road:	CR 82	Section/Grid	1:	
From:	1.0 mi W	Те):	CR 84
		SUMMARY DISTRESS	E	e
		SUMMART DISTRESS		
	Total Samples	30		PCI 73
	Sample #	2		
	Sample Size	6000		
	Sample Length	667		

550 Cleveland Avenue North

St. Paul, Minnesota 55114

Phone: (651) 659-9001

	GENE	RAL INF	ORMATI	ON: PAVE	MENT CO	NDITION	INDEX	
Job No.: P-	ox Squirrel 0013315 R 82	Solar, OH			Date: est Date: on/Grid:	7/22/22 6/16/22 S17		
	0 mi W				To:	CR 84		
			SIIMM	IARY DIST	DEGGEG			
			30	IANI DIGI	REJJEJ			
Te	otal Samp	les		30		PCI	73	
	Sample #			2	l			
S	ample Siz	ze	6	000				
Sa	mple Len	gth	667					
Distre	esses			Distr	esses			
		Low		_		Low		
(1) Alli	gator	Med		(11) Patch/Ut Cut		Med		
		High				High		
		Low	5%	(12) Polished				
(2) Ble	eding	Med		- (12) F (Aggr		N/A		
		High		Aggi	igati			
(2) DI	l-	Low				Low		
(3) Bl		Med		(13) Pothole	othole	Med		
Crack	ang	High	1			High		
		Low				Low		
(4) Bum	ps/Sags	Med		(14) RR Crossing	Crossing	Med		
		High			-	High		
		Low				Low		
(5) Corru	gations	Med		(15) Rutting	Med			
	Č	High				High		
		Low				Low		
(6) Depr	ession	Med		Med				
() - F -	î F	High		(High		
	_	Low	1%			Low		
(7) E		Med		(17) Slippages Cracking		Med		
Crack	king	High			king	High		
(8) Jo	oint	Low				Low		
Reflec		Med		(18)	Swell	Med		
Cracl		High			High			
(9) La		Low						
Shoul		Med		(19) Ra	veling	Med		
Dro	p	High			-	High		
(10) L	&т	Low	12%			Low		
Cracl		Med		(20) We	athering	Med	100%	
		High				High		

Pre-construction Road Evaluation **Fox Squirrel Solar Project**, Madison County, OH August 15, 2022 AET Report No. P-0013315A

Appendix E

Geotechnical Report Limitations and Guidelines for Use

E.1 REFERENCE

This appendix provides information to help you manage your risks relating to subsurface problems which are caused by construction delays, cost overruns, claims, and disputes. This information was developed and provided by GBA¹, of which, we are a member firm.

E.2 RISK MANAGEMENT INFORMATION

E.2.1 Geotechnical Services are Performed for Specific Purposes, Persons, and Projects

Geotechnical engineers structure their services to meet the specific needs of their clients. A geotechnical engineering study conducted for a civil engineer may not fulfill the needs of a construction contractor or even another civil engineer. Because each geotechnical engineering study is unique, each geotechnical engineering report is unique, prepared solely for the client. No one except you should rely on your geotechnical engineering report without first conferring with the geotechnical engineer who prepared it. And no one, not even you, should apply the report for any purpose or project except the one originally contemplated.

E.2.2 Read the Full Report

Serious problems have occurred because those relying on a geotechnical engineering report did not read it all. Do not rely on an executive summary. Do not read selected elements only.

E.2.3 A Geotechnical Engineering Report is Based on A Unique Set of Project-Specific Factors

Geotechnical engineers consider a few unique, project-specific factors when establishing the scope of a study. Typically, factors include: the client's goals, objectives, and risk management preferences; the general nature of the structure involved, its size, and configuration; the location of the structure on the site; and other planned or existing site improvements, such as access roads, parking lots, and underground utilities. Unless the geotechnical engineer who conducted the study specifically indicates otherwise, do not rely on a geotechnical engineering report that was:

- not prepared for you,
- not prepared for your project,
- not prepared for the specific site explored, or
- completed before important project changes were made.

Typical changes that can erode the reliability of an existing geotechnical engineering report include those that affect:

- the function of the proposed structure, as when it's changed from a parking garage to an office building, or from a light industrial plant to a refrigerated warehouse,
- elevation, configuration, location, orientation, or weight of the proposed structure,
- composition of the design team, or
- project ownership.

As a rule, always inform your geotechnical engineer of project changes, even minor ones, and request an assessment of their impact. Geotechnical engineers cannot accept responsibility or liability for problems that occur because their reports do not consider developments of which they were not informed.

E.2.4 Subsurface Conditions Can Change

A geotechnical engineering report is based on conditions that existed at the time the study was performed. Do not rely on a geotechnical engineering report whose adequacy may have been affected by: the passage of time; by man-made events, such as construction on or adjacent to the site; or by natural events, such as floods, earthquakes, or groundwater fluctuations. Always contact the geotechnical engineer before applying the report to determine if it is still reliable. A minor amount of additional testing or analysis could prevent major problems.

¹Geoprofessional Business Association, 15800 Crabbs Branch Way, Suite 300, Rockville, MD 20855Telephone: 301/565-2733: www.geoprofessional.org

Appendix E Geotechnical Report Limitations and Guidelines for Use Report No. P-0013315A

E.2.5 Most Geotechnical Findings Are Professional Opinions

Site exploration identified subsurface conditions only at those points where subsurface tests are conducted or samples are taken. Geotechnical engineers review field and laboratory data and then apply their professional judgment to render an opinion about subsurface conditions throughout the site. Actual subsurface conditions may differ, sometimes significantly, from those indicated in your report. Retaining the geotechnical engineer who developed your report to provide construction observation is the most effective method of managing the risks associated with unanticipated conditions.

E.2.6 A Geotechnical Engineering Report Is Subject to Misinterpretation

Other design team members' misinterpretation of geotechnical engineering reports has resulted in costly problems. Lower that risk by having your geotechnical engineer confer with appropriate members of the design team after submitting the report. Also retain your geotechnical engineer to review pertinent elements of the design team's plans and specifications. Contractors can also misinterpret a geotechnical engineering report. Reduce that risk by having your geotechnical engineer participate in prebid and preconstruction conferences, and by providing construction observation.

E.2.7 Do Not Redraw the Engineer's Logs

Geotechnical engineers prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in a geotechnical engineering report should never be redrawn for inclusion in architectural or other design drawings. Only photographic or electronic reproduction is acceptable, but recognizes that separating logs from the report can elevate risk.

E.2.8 Give Contractors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can make contractors liable for unanticipated subsurface conditions by limiting what they provide for bid preparation. To help prevent costly problems, give contractors the complete geotechnical engineering report, but preface it with a clearly written letter of transmittal. In the letter, advise contractors that the report was not prepared for purposes of bid development and that the report's accuracy is limited; encourage them to confer with the geotechnical engineer who prepared the report (a modest fee may be required) and/or to conduct additional study to obtain the specific types of information they need or prefer. A prebid conference can also be valuable. Be sure contractors having sufficient time to perform additional study. Only then might you be able to give contractors the best information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions.

E.2.9 Read Responsibility Provisions Closely

Some clients, design professionals, and contractors do not recognize that geotechnical engineering is far less exact than other engineering disciplines. This lack of understanding has created unrealistic expectations that have led to disappointments, claims, and disputes. To help reduce the risk of such outcomes, geotechnical engineers commonly include a variety of explanatory provisions in their report. Sometimes labeled "limitations" many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. Read these provisions closely. Ask questions. Your geotechnical engineer should respond fully and frankly.

E.2.10 Geoenvironmental Concerns Are Not Covered

The equipment, techniques, and personnel used to perform a geoenvironmental study differ significantly from those used to perform a geotechnical study. For that reason, a geotechnical engineering report does not usually relate any geoenvironmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. Unanticipated environmental problems have led to numerous project failures. If you have not yet obtained your own geoenvironmental information, ask your geotechnical consultant for risk management guidance. Do not rely on an environmental report prepared for someone else.

Fox Squirrel Solar, LLC Case No. 20-931-EL-BGN Case No. 21-1031-EL-BGA

Attachment 4 Pre-Construction Road Improvements

American Engineering Testing, Inc.

August 15, 2022

Building Technology

Petrography/Chemistry

PRE-CONSTRUCTION ROAD

Fox Squirrel Solar Project Madison County, Ohio

AET Report No. P-0013315B

Date: August 15, 2022

Prepared for:

Barr Engineering Co. 4300 MarketPointe Drive, Suite 200 Minneapolis, MN 55435

American Engineering Testing

550 Cleveland Avenue North St. Paul, MN 55114-1804 TeamAET.com • 800.792.6364 August 15, 2022

Barr Engineering Co. 4300 MarketPointe Drive, Suite 200 Minneapolis, MN 55435

Attn: Mr. Cristian Diaz

RE: Pre-construction Road Improvements Fox Squirrel Solar Project Madison County, Ohio AET Project No. P-0013315

Dear Mr. Diaz:

American Engineering Testing, Inc. (AET) is pleased to this report describing recommended structural improvements for proposed haul roads within the Fox Squirrel Solar Project in Madison County, Ohio. These recommendations are based on our previous evaluation report and our understanding of delivery flow plans for construction.

Sincerely, **American Engineering Testing, Inc.**

Chunhua Han, Ph.D. **Principal Engineer, Pavement Division** E-mail: chan@amengtest.com Phone: (651) 603-6631, Fax: (651) 659-1347

SIGNATURE PAGE

Prepared for

Prepared by


Barr Engineering Co. 4300 MarketPointe Drive, Suite 200 Minneapolis, MN 55435

Attn: Mr. Cristian Diaz

American Engineering Testing, Inc. 550 Cleveland Avenue North St. Paul, MN 55114 (651) 659-9001

Project Manager

Chunhua Han, Ph.D. Principal Engineer, Pavement Division

Derek Tompkins, PK**.D.**, **P.E**. Principal Civil Engineer

Copyright $\ensuremath{\mathbb{C}}$ 2022 American Engineering Testing, Inc. All Rights Reserved

Unauthorized use or copying of this document is strictly prohibited by anyone other than the client for the specific project.

TABLE OF CONTENTS

1.0		INT	RODUCTION	<u>age</u> 1
2.0	,	SC	OPE OF SERVICES	1
3.0		PR	OJECT INFORMATION	1
	3.1	1	Project locations and roads	1
	3.2	2	Conventional traffic on Project roads	1
	3.3	3	Anticipated traffic due to construction	2
4.0		SUI	BSURFACE EXPLORATION, ROAD TESTING, AND RESULTS	3
	4.1	1	Subsurface conditions	3
	4.2	2	Surface course thickness (ground penetrating radar)	3
	4.3	3	Pavement strength (falling weight deflectometer)	3
	4.4	1	Road condition	4
5.0		RE	COMMENDED ROAD IMPROVEMENTS	4
	5.1	1	Anticipated traffic loads and haul routes	4
	5.2	2	Recommended improvements to Project roads	5
	5.3	3	Special engineering concerns for road improvement	5
6.0		TES	ST STANDARDS	6
7.0		LIM	IITATIONS	6

FIGURES AND TABLES

APPENDIX A – Geotechnical Report Limitations and Guidelines for Use

1.0 INTRODUCTION

Barr Engineering Company ("Barr") has retained American Engineering Testing, Inc. (AET) to test and evaluate public roads for use as haul routes for the construction of the Fox Squirrel Solar Project ("Project") in Madison County, Ohio. AET performed geotechnical exploration and nondestructive pavement testing along Project roads selected by Barr for evaluation. This report (AET Report P-0013315B) recommends structural improvements to Project roads to bear estimated construction traffic. Our recommendations are based on geotechnical exploration, nondestructive road testing, and engineering evaluation of Project roads, which is summarized here but described in full detail in AET Report P-0013315A.

2.0 SCOPE OF SERVICES

The authorized scope consists of the following services, which were outlined in Barr Work Order 1, dated 5/19/22.

- Direct push soil sampling (referred to as "soil borings") along the Project roads to 4 feet in depth.
- Falling weight deflectometer (FWD) testing of the Project roads
- Ground penetrating radar (GPR) testing on the Project roads
- Digital video logging (DVL) of Project roads using a digital video camera
- Engineering evaluation of the Project roads using DVL, GPR, FWD, and soil boring data to (a) assess ability of the roads to sustain solar farm construction loads and (b) identify preconstruction road sections that are susceptible to significant damage
- Production of the report summarizing surface and structural evaluations of Project roads and providing road improvements to Project roads to bear haul traffic

These services are exclusively intended to evaluate the Project roads. The scope is not intended to explore for the presence or extent of environmental contamination in the soil or groundwater. Specific details on test procedures, test results, and analysis performed are described in the sections below and in appendices to this report.

3.0 PROJECT INFORMATION

3.1 **Project locations and roads**

The Project is located within approximately 4,250 acres of privately-owned agricultural land north of the City of Chenoweth in Madison County, Ohio (Figure 1). The project area is generally situated west of Ohio State Route SR-56, north of United States Route US-71, south of County Road CR-144, and east of CR-8, as shown in the figures attached to this report.

3.2 Conventional traffic on Project roads

To understand conventional (design) traffic for roads within the Project area, we consulted recent traffic

information from the Ohio Department of Transportation (ODOT). The following items describe our understanding of traffic on Project roads based on the ODOT Traffic Monitoring Management System¹.

- The 2021 annual average daily traffic (AADT) for US highways (US) within the Project was 40,668 vehicles with 13 percent truck traffic.
- The 2021 annual average daily traffic (AADT) for state routes (SR) within the Project was 1,761 vehicles with 30 percent truck traffic.
- The 2019 AADT for CR roads within the Project was 25 to 303 vehicles.
- Truck traffic volumes were not available for county roads (CR) within the Project. Therefore, we have assumed a minimum AADT of 126 and 12 percent truck traffic for these Project roads.

3.3 Anticipated traffic due to construction

Barr provided a site layout plan dated 7/11/22 and truck traffic counts in e-mail correspondence as recent as 8/4/22. The provided plans and traffic counts describe the haul routes and estimated truck traffic required to construct the site and install solar panels at the Project. Important items regarding traffic and planning are as follows.

- We understand that delivery plans include optional routes for hauling construction materials along the public roads, as material deliveries for Project construction were not final as of the issuance date of this report.
- All materials deliveries for Project construction will originate from US-71 and/or SR-56.
- We assume (based on routing of transformers and the site layout plan) that the proposed substation is located south of CR-85 between CR-9 and CR-84.
- Unloaded trucks are assumed to exit the Project site along the same route used for entry.

We have assumed that Barr used the delivery flow plan (Figure 1) to estimate the cumulative equivalent single axle load (ESAL) applications due to construction-related traffic. Figure 1 ("Delivery Flow Plans"), Figure 2 ("Haul ESALs"), and Tables 1-2, appended to this report, summarize our understanding of the site layout plan and delivery routes based on the documents provided by Barr. The following items summarize the calculations and information in the appended Tables 1-2.

- Table 1 ("Cumulative Truck Counts") outlines the cumulative truck counts per road section necessary to haul the required materials and equipment to construct the project. Unloaded trucks are not considered in the hauling equipment requirements because the Project will require two-way traffic and our analysis presumes the loaded truck route.
- Table 2 ("Truck ESAL Factor and Cumulative ESALs") provides the ESAL calculations per Project road section based on information provided by Barr. We assume that calculations consider routes and directions when estimating haul traffic loads.

The Project construction traffic information is an integral part of our engineering review. It is important that you contact AET if (A) there are changes to Project features affecting the delivery flow plans or (B)

¹ Ohio Department of Transportation (2022). Traffic Monitoring Management System. Available from <u>https://odot.public.ms2soft.com/tcds/tsearch.asp?loc=odott.com</u>)

you have concerns about the traffic volume estimates based on the delivery flow plans. Either case may warrant modifications to the recommendations for pre-construction road improvements.

4.0 SUBSURFACE EXPLORATION, ROAD TESTING, AND RESULTS

To facilitate testing, condition rating, and analysis, AET allocated the Project roads (totaling 20.6 centerline miles) into 17 sections according to road type, road condition, and anticipated construction traffic. Tests and test results on Project roads are described in the subsections below and summarized in the appended Table 1. We encountered roads surfaced with a combination of seal treatments and bituminous wearing course, or "bituminous pavement" (BP). Our classification of the road sections follows basic pavement engineering principles to help us organize field/lab activities, analysis, and evaluation. These general classifications are not intended to conflict with or replace state agency road classifications, which rely on as-built information, road histories, agency material classifications, and other matters whose review are beyond the scope described in Section 2.

4.1 Subsurface conditions

Our analysis of 39 soil borings – taken to a depth of approximately 4-feet – determined that the materials in the upper subgrade zone on selected Project roads were predominately lean clays meeting the A-6 or A-7-6 soil classifications according to methods established by the Association of State Highway and Transportation Officials (AASHTO).

4.2 Surface course thickness (ground penetrating radar)

AET performed GPR testing on approximately 40.6 lane miles of Project roads on 6/14/2022. Our analysis of collected GPR data resulted in estimated thickness of layers in the selected Project road sections. We summarize this information using a 15th-percentile value, which is a statistical measure that represents the thickness value that is exceeded by 85 percent of sampled thickness data for a given section.

- The thickness of composite paved surfacing ranged from 1.4 to 2.5 inches.
- The thickness of composite base (deteriorated pavement and aggregate base) ranged from 7.8 to 15.9 inches.

The intact pavements on roads overlaid severely deteriorated, preexisting bituminous pavements. Our GPR analysis attempted to distinguish the intact pavement from a layer consisting of the underlying deteriorated pavement and aggregate base

4.3 Pavement strength (falling weight deflectometer)

Deflection testing was performed on 20.3 centerline miles of Project roads on 6/14 and 6/15/22, using a Dynatest 8002 falling weight deflectometer (FWD). Locations of FWD tests are indicated in Figure 1. Collected FWD data – along with information described in the sections above – are used to estimate the elastic stiffness of pavement layers using backcalculation analysis according to the method in the AASHTO *Guide for Design of Pavement Structures* (1993). This method also accounts for allowable

axle loads for a roadway. Our backcalculation results were used to estimate the effective subgrade resilient modulus (MR), the AASHTO structural number (SN), and structural capacity of all Project roads. As with GPR-based thickness analysis results, the results of backcalculation analysis of collected Project FWD data are summarized below (and in Table 1) using 15th-percentile values.

- The subgrade MR for all sections ranged from 2.8 to 5.0 ksi.
- The SN value for all sections ranged from 1.2 to 2.4 inches.
- The axle load capacity rating of all sections ranged from 5.4 to 10+ tons/axle

4.4 Road condition

We used DVL data to perform road condition ratings in general accordance with ASTM D6433. This procedure results in a pavement condition index (PCI) that describes road condition on a scale of 0 to 100, where the index corresponds to qualitative descriptions of pavement condition: "Good" 70-100; "Fair" 55-69; "Poor" 40-54; "Very Poor" 25-39; "Serious" 10-24; and "Failed" 0-9. We rated the sections an average PCI of 53 ("Poor"). The predominant distresses encountered were longitudinal/transverse and edge cracking.

5.0 RECOMMENDED ROAD IMPROVEMENTS

Barr selected all seventeen (17) evaluated sections to be used as haul roads in the most recent construction delivery flow plans provided to AET.

- All recommended structural improvements are based on our analysis using the AASHTO *Guide for Design of Pavement Structures* (1993). Our recommendations assume 15th-percentile estimates of layer thicknesses and reliability levels of 85 percent.
- Information regarding risk management and proper use of this evaluation is given in Appendix A, "Geotechnical Report Limitations and Guidelines for Use."
- In addition to structural improvements, we also recommend that all sections receive regular maintenance during and after construction. AET recommends that both pre-construction improvements and intra-construction maintenance strategies are implemented, otherwise additional costs may be incurred to repair roadways after construction.

Our recommendations for pre-construction improvements to the seventeen (17) selected sections are summarized in Table 3. Figure 3, appended to this report, provides additional details on recommendations by section.

5.1 Anticipated traffic loads and haul routes

Figure 2 indicates the anticipated construction traffic (in Haul ESALs) for each section evaluated. Table 3 reports the proportion of Haul ESALs to 20-year Design ESALs for each section. AET has adopted Barr estimates of Haul ESALs by section (Figure 1). The Haul-to-Design ESALs estimate is expressed as a percentage. When it exceeds 100 percent for a given section, it is reasonable to expect that haul ESALs will contribute to accelerated damage in that section.

5.2 Recommended improvements to Project roads

Project road sections should be improved prior to project delivery according to the recommendations of Table 3. Those recommendations are summarized below.

- Four (4) sections do not require structural improvements or immediate repair to bear planned haul traffic.
- Eight (8) sections, totaling 7.5 miles, should be repaired before construction traffic to improve their ability to bear haul trucks and reduce the potential for safety hazards during construction hauling.
- Three (3) sections, totaling 2.8 miles, should be improved with a single chip seal.
- Two (2) sections, totaling 4.9 miles, should be improved with a 2-inch bituminous overlay. Prior to being overlaid, distressed portions of the sections should be repaired to avoid premature failures in the new overlay under haul traffic.

In addition to the improvements recommended above, all sections should be monitored and maintained regularly during construction to minimize later post-construction repair/rehabilitation needs.

5.3 Special engineering concerns for road improvement

As noted above, the sections will require regular maintenance, emergency repairs, and/or appropriate construction timing to function adequately as haul roads. These concepts are described in the paragraphs below.

<u>Local improvements and immediate repairs on paved roads</u>. During construction traffic, the responsible party may elect to repair distressed portions of sections to improve their function as haul roads and reduce the potential for safety hazards during hauling. Smaller repairs may include shallow surface patching of minor rutting or alligator cracking or routing and filing to arrest high severity cracking. Larger repairs should consist of patching potholes and rutting and/or milling/patching of widespread alligator cracking. In extreme cases, full-depth repair (both the aggregate base and surfacing) may be required.

<u>Single chip seal on paved roads</u>. Single chip seal improvements should be performed in accordance with construction and materials specifications as outlined in Section 552 of the ODOT *Pavement Design Manual*, published January 1, 2022.

<u>Bituminous overlay on paved roads</u>. Locally distressed portions of the pavement should be repaired prior to overlay. Bituminous overlay improvements should meet ODOT requirements for an asphalt overlay. For more information on overlay improvements, please consult Section 400 of ODOT's *Pavement Design Manual* (published January 1, 2022) regarding materials and observe state/local pavement rehabilitation methods for overlay construction.

<u>Construction timing and maintenance</u>. If possible, plan hauling to avoid the early spring and otherwise saturated conditions (1 to 2 days following heavy rain events that result in standing water on the road surface for more than 24 hours). If hauling occurs during prolonged wet periods, or in the fall during the

harvest period when farm hauling, the pavement may experience additional damage that warrants intraconstruction maintenance.

6.0 TEST STANDARDS

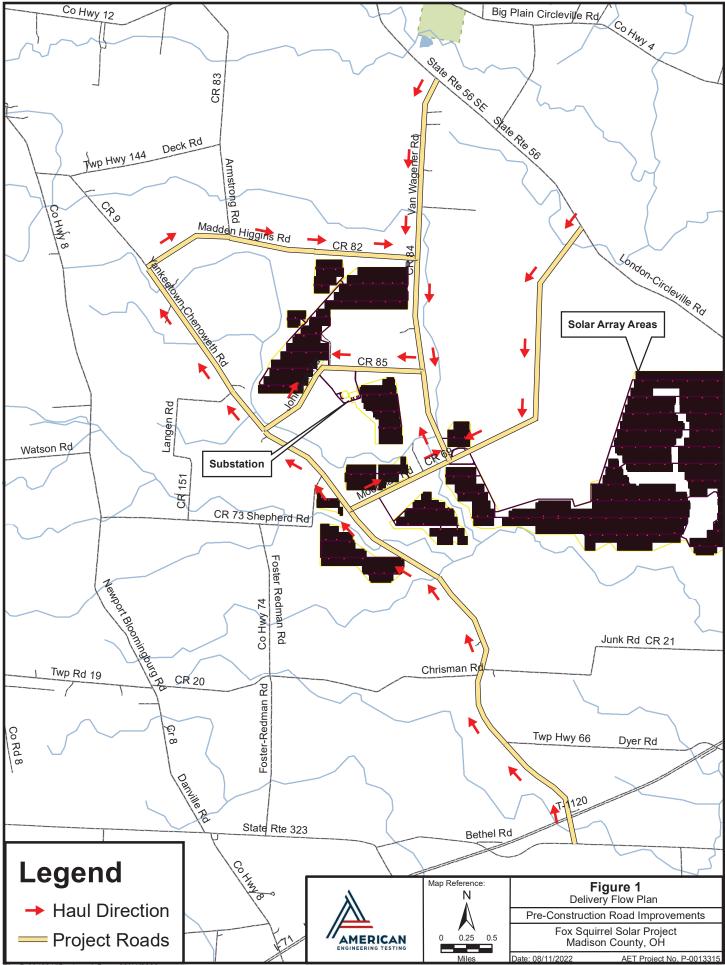
When we refer to a test standard (e.g., ASTM, AASHTO) in this report, we mean that our services were performed in general accordance with that standard. Compliance with any other standards referenced within the specified standard is neither inferred nor implied.

7.0 LIMITATIONS

Within the limitations of scope, budget, and schedule, we have endeavored to provide our services according to generally accepted geotechnical engineering practices at present time and this location. Other than this, no warranty, express or implied, is intended. Important information regarding risk management and proper use of this report is given in Appendix A, "Geotechnical Report Limitations and Guidelines for Use."

Figures and Tables

Figure 1 – Delivery Flow Plan


Figure 2 – Haul ESALs

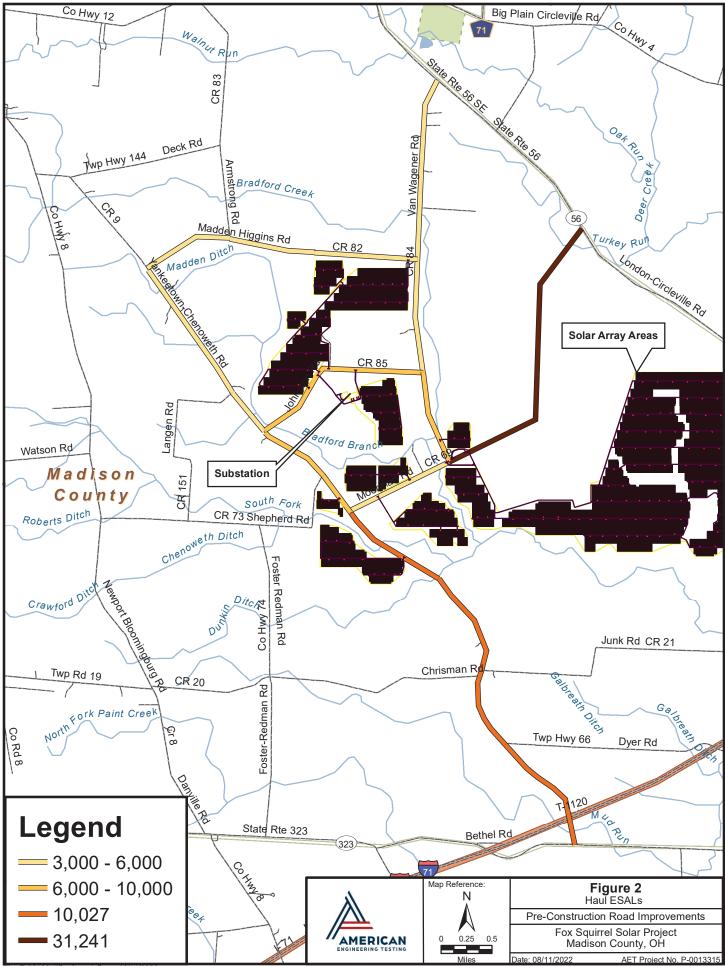

Figure 3 – Recommended Road Improvements

Table 1 – Cumulative Truck Counts

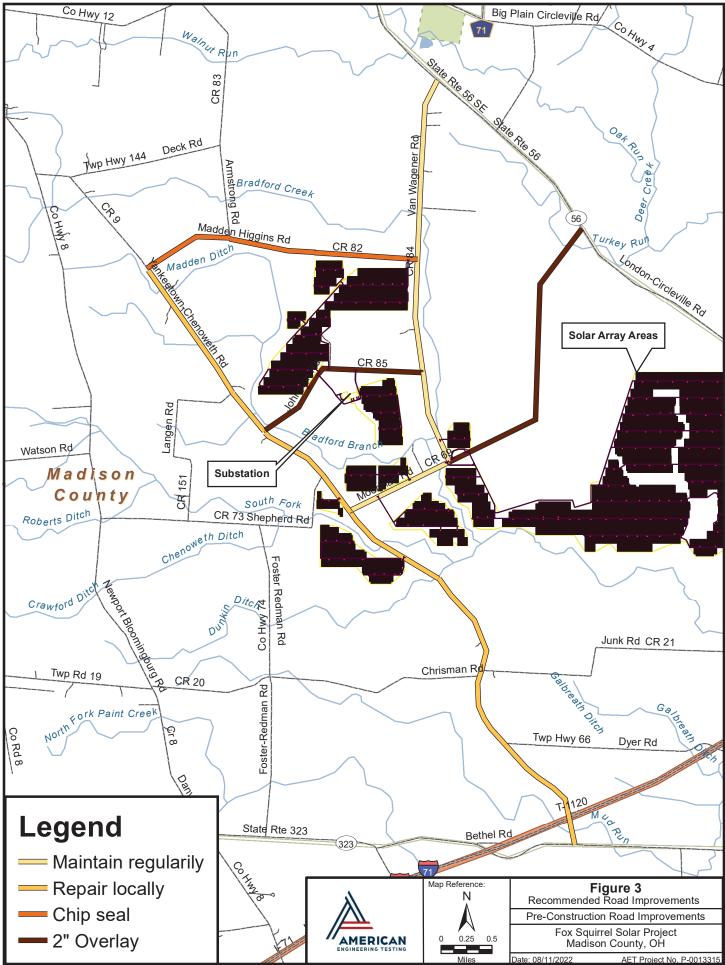

Table 2 – Cumulative Loaded Traffic Counts and ESAL

Table 3 – Summary of Recommended Road Improvements for Paved Roads

File: P-0013315B - 3.mxd Date: 08/11/2022

File: P-0013315B - 3.mxd Date: 08/11/2022

TE WATER TRANSFORMER MISCELLANEOUS	2,132 2 305	4,359 2,132 2 305 9,177 4,500 2,000 2,000 2,000 0,177	2 2 203 2,122 2 202 202 2,122	203 203 203 203 203 203 203 203 203 203	201 2 12 2 202 2 12 202	CDC 7 7CT/7					
STEEL	427	427	724	724	724	421					
CONCRETE	61	61	10	01	01	10					
EQUIPMENT	1,891	1,891	1 201	1 201	1 801	T,031		IRUCK 2000 GALLONS	IRANSFORMER DELIVERIES	TOTAT	IUIAL
SOADS	2.23 mi E	0.5 mi S	0.76 mi F	Gata Gata	J 16 mi M	1.10 ml N		WALER	IRANS	INISCEL	
BETWEEN ROADS	╅	I-15	70		Gota Gota	Calc					
ROAD	Ute Rd	Valley of Fire Rd	South Access Va	South Access Pd		IdIIII Access Kd		ND RACKING SYSTEN	TRUCK 10 CY LOAD	DI MP TRICK 22 TON LOAD	
AET Report ID		S02A Va						MODULES AI	CONCRETE	PLAI BEU I	INION
Access Road	North Access	South Access	h Access	South Access	South Access	III ACCESS	L				

⁻ile: P-0010023T - 1.mxd Date: 05/05/2022

		1		TOTAL	18,624	18,624	18,624	18,624	18,624	18,624
MISCELLANEOUS	2.4			MISCELLANEOUS	741	741	741	741	741	741
TRANSFORMER	55.0			TRANSFORMER	110	110	110	110	110	110
WATER	1.3			WATER	2,814	2,814	2,814	2,814	2,814	2,814
AGGREGATE	2.1			AGGREGATE	9,197	9,197	9,197	9,197	9,197	9,197
STEEL	2.4			STEEL	1,038	1,038	1,038	1,038	1,038	1,038
CONCRETE	2.1			CONCRETE	129	129	129	129	129	129
EQUIPMENT	2.4			EQUIPMENT	4,595	4,595	4,595	4,595	4,595	4,595
	ESAL Factor			VEEN ROADS	2.23 mi E	0.5 mi S	South Access	0.26 mi E	Gate	1.16 mi N
				IJEAWTEE	I-15	I-15	0.34 mi N	Valley of Fire Rd	1 1.96 mi W	Cate Cate
			Y ITEM	ROAD	Ute Rd	Valley of Fire R	Valley of Fire R	South Access Valley of Fir	South Access Re	andfill Access F
			UMBER OF ESALS BY DELIVERY ITEM	AET Report ID	S01	S02A	S02B	S03A	S03B	S04
			NUMBER OF ESA	Access Road	North Access	South Access	South Access	South Access	South Access	South Access

		Table 2
~	Truck ESAL Fac	Truck ESAL Factor and Cumulative ESALs
	Pre-Constructi	Pre-Construction Road Improvements
	Chuckw	Chuckwalla Solar Project
AMERICAN ENGINEERING TESTING	Clark	Clark County, Nevada
	Date: 05/05/2022	AFT Project No P-0010023

File: P-0010023T - 2.mxd Date: 05/05/2022

U pgrades*	Ľ	۲	۲	۲	۲	۲	۲	۲	z	z	z	z	OL	OL	CS	CS	cs
Haul-to- Design ESALs	14%	14%	14%	14%	10%	10%	8%	8%	18%	10%	5%	%6	%69	22%	13%	13%	13%
Ton Rating (ton/axle)^	10+	10+	10+	10+	10+	10+	10+	10+	7.6	8.5	7.4	7.0	7.7	5.8	5.4	7.4	5.8
Base Thickness (in)^	12.0	12.6	12.1	12.8	11.2	12.3	13.0	13.8	9.2	14.2	15.9	10.2	11.9	9.6	8.2	7.8	9.4
Surface Thickness (in)^	2.4	2.2	2.5	1.8	2.5	1.7	1.6	1.5	1.7	1.6	1.4	2.3	2.1	1.7	2.1	1.9	1.9
PCI	41	43	38	41	39	40	37	37	69	68	68	63	52	53	67	72	73
Type	ВР	ВР	ВР	ВР	ВР	ВР	ВР	ВР	ВР	ВР	ВР	ВР	ВР	ВР	ВР	ВР	ВР
Length (mi)	1.3	0.8	1.1	1.2	0.4	0.7	0.5	1.5	0.9	1.1	1.8	1.1	3.0	1.9	0.9	0.9	1.0
To	Dyer Rd	CR 21	1.1 mi N	CR 69	CR 73	CR 85	CR 151	CR 82	CR 85	CR 82	SR 56	CR 84	SR 56	CR 84	CR 83	0.85 mi E	CR 84
From	SR 323	Dyer Rd	CR 21	1.1 mi S	CR 69	CR 73	CR 85	CR 151	CR 69	CR 85	CR 82	CR 9	CR 84	CR 9	CR 9	CR 83	1.0 mi W
Road	CR 9	CR 9	CR 9	CR 9	CR 9	CR 9	CR 9	CR 9	CR 84	CR 84	CR 84	CR 69	CR 69	CR 85	CR 82	CR 82	CR 82
Section ID	S01	S02	S03	S04	S05	S06	S07	S08	809	S10	S11	S12	S13	S14	S15	S16	S17

* N - No improvements or immediate repairs required; R - Repair locally prior to construction; OL
 - 2" Hot-mix asphalt overlay; CS - Chip seal; All Project roads should be regularly monitored and maintained during construction

^ 15th Percentile Values

 Table 3

 Recommended road improvements

Pre-construction Road Improvements

Fox Squirrel Solar Project Madison County, OH AET Project P-0013315

Appendix A

Geotechnical Report Limitations and Guidelines for Use

A.1 REFERENCE

This appendix provides information to help you manage your risks relating to subsurface problems which are caused by construction delays, cost overruns, claims, and disputes. This information was developed and provided by GBA¹, of which, we are a member firm.

A.2 RISK MANAGEMENT INFORMATION

A.2.1 Geotechnical Services are Performed for Specific Purposes, Persons, and Projects

Geotechnical engineers structure their services to meet the specific needs of their clients. A geotechnical engineering study conducted for a civil engineer may not fulfill the needs of a construction contractor or even another civil engineer. Because each geotechnical engineering study is unique, each geotechnical engineering report is unique, prepared solely for the client. No one except you should rely on your geotechnical engineering report without first conferring with the geotechnical engineer who prepared it. And no one, not even you, should apply the report for any purpose or project except the one originally contemplated.

A.2.2 Read the Full Report

Serious problems have occurred because those relying on a geotechnical engineering report did not read it all. Do not rely on an executive summary. Do not read selected elements only.

A.2.3 A Geotechnical Engineering Report is Based on A Unique Set of Project-Specific Factors

Geotechnical engineers consider a few unique, project-specific factors when establishing the scope of a study. Typically, factors include: the client's goals, objectives, and risk management preferences; the general nature of the structure involved, its size, and configuration; the location of the structure on the site; and other planned or existing site improvements, such as access roads, parking lots, and underground utilities. Unless the geotechnical engineer who conducted the study specifically indicates otherwise, do not rely on a geotechnical engineering report that was:

- not prepared for you,
- not prepared for your project,
- not prepared for the specific site explored, or
- completed before important project changes were made.

Typical changes that can erode the reliability of an existing geotechnical engineering report include those that affect:

- the function of the proposed structure, as when it's changed from a parking garage to an office building, or from a light industrial plant to a refrigerated warehouse,
- elevation, configuration, location, orientation, or weight of the proposed structure,
- composition of the design team, or
- project ownership.

As a rule, always inform your geotechnical engineer of project changes, even minor ones, and request an assessment of their impact. Geotechnical engineers cannot accept responsibility or liability for problems that occur because their reports do not consider developments of which they were not informed.

A.2.4 Subsurface Conditions Can Change

A geotechnical engineering report is based on conditions that existed at the time the study was performed. Do not rely on a geotechnical engineering report whose adequacy may have been affected by: the passage of time; by man-made events, such as construction on or adjacent to the site; or by natural events, such as floods, earthquakes, or groundwater fluctuations. Always contact the geotechnical engineer before applying the report to determine if it is still reliable. A minor amount of additional testing or analysis could prevent major problems.

¹Geoprofessional Business Association, 15800 Crabbs Branch Way, Suite 300, Rockville, MD 20855Telephone: 301/565-2733: www.geoprofessional.org

Appendix A Geotechnical Report Limitations and Guidelines for Use Report No. P-0013315B

A.2.5 Most Geotechnical Findings Are Professional Opinions

Site exploration identified subsurface conditions only at those points where subsurface tests are conducted or samples are taken. Geotechnical engineers review field and laboratory data and then apply their professional judgment to render an opinion about subsurface conditions throughout the site. Actual subsurface conditions may differ, sometimes significantly, from those indicated in your report. Retaining the geotechnical engineer who developed your report to provide construction observation is the most effective method of managing the risks associated with unanticipated conditions.

A.2.6 A Geotechnical Engineering Report Is Subject to Misinterpretation

Other design team members' misinterpretation of geotechnical engineering reports has resulted in costly problems. Lower that risk by having your geotechnical engineer confer with appropriate members of the design team after submitting the report. Also retain your geotechnical engineer to review pertinent elements of the design team's plans and specifications. Contractors can also misinterpret a geotechnical engineering report. Reduce that risk by having your geotechnical engineer participate in prebid and preconstruction conferences, and by providing construction observation.

A.2.7 Do Not Redraw the Engineer's Logs

Geotechnical engineers prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in a geotechnical engineering report should never be redrawn for inclusion in architectural or other design drawings. Only photographic or electronic reproduction is acceptable, but recognizes that separating logs from the report can elevate risk.

A.2.8 Give Contractors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can make contractors liable for unanticipated subsurface conditions by limiting what they provide for bid preparation. To help prevent costly problems, give contractors the complete geotechnical engineering report, but preface it with a clearly written letter of transmittal. In the letter, advise contractors that the report was not prepared for purposes of bid development and that the report's accuracy is limited; encourage them to confer with the geotechnical engineer who prepared the report (a modest fee may be required) and/or to conduct additional study to obtain the specific types of information they need or prefer. A prebid conference can also be valuable. Be sure contractors having sufficient time to perform additional study. Only then might you be able to give contractors the best information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions.

A.2.9 Read Responsibility Provisions Closely

Some clients, design professionals, and contractors do not recognize that geotechnical engineering is far less exact than other engineering disciplines. This lack of understanding has created unrealistic expectations that have led to disappointments, claims, and disputes. To help reduce the risk of such outcomes, geotechnical engineers commonly include a variety of explanatory provisions in their report. Sometimes labeled "limitations" many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. Read these provisions closely. Ask questions. Your geotechnical engineer should respond fully and frankly.

A.2.10 Geoenvironmental Concerns Are Not Covered

The equipment, techniques, and personnel used to perform a geoenvironmental study differ significantly from those used to perform a geotechnical study. For that reason, a geotechnical engineering report does not usually relate any geoenvironmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. Unanticipated environmental problems have led to numerous project failures. If you have not yet obtained your own geoenvironmental information, ask your geotechnical consultant for risk management guidance. Do not rely on an environmental report prepared for someone else.

Fox Squirrel Solar, LLC Case No. 20-931-EL-BGN Case No. 21-1031-EL-BGA

Attachment 5 Driveway Permits

From:	Levin Hutson <levin.hutson@madison.oh.gov></levin.hutson@madison.oh.gov>
Sent:	Thursday, August 4, 2022 4:18 PM
То:	Carter Kasuske; Dominic Nelson
Cc:	Bryan Dhume; oakrunfo@gmail.com
Subject:	Driveway Permits
Attachments:	Blattner Energy 08042022 B.pdf; Blattner Energy 08042022 C.pdf; Blattner Energy 08042022 E.pdf; Blattner Energy 08042022 - G.pdf

CAUTION: This email message was sent from an EXTERNAL sender. Please DO NOT open attachments or click links from unknown senders or unexpected email.

8/4/22

Carter Kasuke Blattner Energy 392 County Road 50 Avon MN 56301

Carter,

Please find attached copies of 4 driveway permits on Moorman Rd. for the Fox Squirrel Solar project. Please contact me if you or your contractor have any questions, or if I can be of any assistance.

Levin Hutson Utilites and Permits Coordinator Madison County Engineers Office

825 US 42 NE London, OH 43140 740-852-9404 (office) 614-623-6563 (cell) Levin.Hutson@madison.oh.gov

Office Hours: **APRIL THRU OCTOBER (SUMMER HOURS)** Monday through Thursday 7:00 A.M. to 5:00 P.M. CLOSED Friday

NOVEMBER THRU MARCH (WINTER HOURS) Monday through Friday 7:30 A.M. to 3:30 P.M.

Pri		

Madison County Engineer's Office	825 US 42 NE,
Driveway Permit Form	London, Ohio (740)852-9404

ondon, Ohio 43140	
740)852-9404	

40		
	Permit Number	08042022 - B

Name	Blatti	ner Energy								Date	8/4/22
Address	392	County Road. 50									
City	Avon			State	MN	Zip Co	ode 56	310			
Phone Nun	nber		+1 (320) 241-8322	2							
email cka	asuske	@blattnerenergy.c	om								
		[
Location		North side of Moorn	nan Rd. , 215' East of Var	n -Wagor	ier Rd.						
								_			
Driveway T	Type	Business	Driveway	v Type 2	New					mmended ile Size	-0-
		r) r						F		
Pre-Constr Date	uction	8/4/22	Inspection Date				Pre-Co Ins	nstruct pector	ion L	evin Hutso.	n
			Call to sched	ule insp	ection	2 days p	prior to i	installa	tion		
Required Ma		of the pavement, the	at this location. Excavat e full width of the drivev e topped with crushed s	vay, radio	oused in	as per p	lan to th				
Post-Cons Da ^r		on				F	Post-Co Insp	nstruct bector	ion		
			PASSED					FA	ILED		
		You mu	ist call "OUPS" one cal	l service	2 work	days p	rior to a	ny wor	k in tl	ne R.O.W.	
Comme	nts	Note* Appropriate a constructoin	advanced warning of the	e "Road F	Edge Dro	poff" is t	to be po	sted to i	nform	n the public c	of the hazard during thi

Print Form	Ρ	ri	n	t	F	0	r	r	r
------------	---	----	---	---	---	---	---	---	---

Madison County Engineer's Office	825 US 42 NE,
	London, Ohio
Driveway Permit Form	(740)852-9404

London, Ohio 43140
(740)852-9404

3140	
	Permit Number

08042022 - C

Name	Blattne	er Energy									Da	ate	8/4/22
Address	392 Cc	ounty Rd. 50											_
City	Avon				State	MN	Zip Co	ode	56310				
Phone Num	ber [+1	(320) 241-832	2								
email ckas	suske@	blattnerenergy.co	om										
													_
Location	2	outh side of Moorm	han Rd.	, 100' West of Va	ın-Wagor	ier Rd.							
Driveway Ty	/pe E	Business		Drivewa	y Type 2	New				Red	commeno Tile Size		12" X 128'
Pre-Construe Date	iction 8	3/4/22	Ins	pection Date				Pre	-Consti Inspec	ruction tor	Levin Hu	itson	1
				Call to schee	dule insp	ection	2 days p	orior	to insta	allation			
Required Mat	۷ terials lı د	Vay line. nstall 128' of 12" reir	nforced	l concrete pipe,	installed	at an e	levation t	o ac	cept sur	face wa	ter into th	e eas	bmitted, to the Right of tend, with the flowlin one or crushed gravel
Post-Const Date		n					I		-Constr Inspect				
			PASS	ED						FAILE	D		
		You mu	st call '	"OUPS" one ca	ll service	2 wor	k days p	rior	to any v	vork in	the R.O.\	N.	
Comment		Note* Appropriate a construction.	dvance	d warning of th	e "Road E	dge Dr	opoff" is t	o be	posted	to infor	m the put	blic of	the hazard during th

Pri		

Madison County Engineer's Office	825 US 42 NE,
, ,	London, Ohio
Driveway Permit Form	(740)852-9404

London, Ohio 4314	0
(740)852-9404	

Permit Number	08042022 - E

Name	Blattner Energy								Date	8/4/22
Address	392 County Roa	d 50								
City	Avon			State	MN	Zip Co	de 563	10		
Phone Nun	nber	+1 (3	20) 241-8322	2						
email cka	asuske@blattnere	nergy.com								
Location	South side o	of Moorman rd. 11	40' East of Var	ו - Wagor	er Rd.					
Driveway T	ype Business		Driveway	/ Type 2	New			Ree	commended Tile Size	12" X 130'
Pre-Constru Date	18/4/77	Inspe	ection Date				Pre-Con Insp	struction ector	Levin Hutso	n
			Call to schec	lule insp	ection	2 days p	rior to in	stallatior	ו	
Required Ma	submitted. aterials Install 130' o	erm and shoulder a of 12" N-12 Double d stone or crushed	ewall plastic til	e, set to f						ine as per plan . 10" of #2 stone covered
Post-Cons Dat						Ρ	ost-Con Inspe	struction		
		PASSED	D					FAILE	D	
		You must call "O	UPS" one ca	ll service	2 worl	c days pr	ior to an	y work in	the R.O.W.	
Comme	ntc									lic of the hazard during

Pri		

Madison County Engineer's Office	825 US 42 NE,
	London, Ohio
Driveway Permit Form	(740)852-9404

on, Ohio 4 0)852-9404

43140	
	Permit Number

Drive	way	Permit Form		(74	10)852-9	404		Perm	nit Nur	nber	080	42022 -	G
Name	Blattr	ner Energy										Date	8/4/22
Address	392 C	ounty Road 50											
City	Avon				State	MN	Zip Co	de 5	6301				
Phone Nu	mber		+1	(320) 241-8322	2								
email ck	asuske	@blattnerenergy.c	om										
Location		North side of Moorn	nan Rd.	1141' East of Va	n-Wagon	er Rd.							
Driveway ⁻	Гуре	Business		Driveway	y Type 2	New					omm Tile S	iended Size	12" X 130'
Pre-Constr Date	ruction	8/4/2022	Insp	pection Date				Pre-0	Constru nspect	uction or	Levir	n Hutso	n
				Call to sched	aule insp	ection	2 days p	orior to	o insta	liation			
Required M	aterials	Excavate berm and s submitted. Install 130' of N-12 E with crushed stone o	oublew	all plastic tile, s	et to flow								ine as per plan ' of #2 stone covered
Post-Con Da		on					F		Constru specto				
			PASS	ED				ļ		FAILE	D		
		You mu	st call "	OUPS" one ca	ll service	2 worl	a days pr	rior to	any w	ork in	the F	R.O.W.	

Tim Burgener

From:	Levin Hutson <levin.hutson@madison.oh.gov></levin.hutson@madison.oh.gov>
Sent:	Wednesday, September 14, 2022 5:07 PM
То:	Carter Kasuske; david.warner@edf-re.com; Dominic Nelson
Cc:	Charles Duvall; Rob Slane; Bryan Dhume
Subject:	Substation driveway permit
Attachments:	Blattner Energy 09142022 B.pdf

CAUTION: This email message was sent from an EXTERNAL sender. Please DO NOT open attachments or click links from unknown senders or unexpected email.

9/14/22 Carter Kasuske, Dominic Nelson, David Warner

Gentlemen,

As per the direction of the board of County Commissioners, 9/13/22 Please find attached a copy of the "Temporary" permit # 09142022 – B, allowing the installation of the driveway for the power substation on Johnston Rd.

The Commissioners authorized two on Johnson Rd., however I am not sure which of the other driveways on Johnson Rd. you would prefer to have the second temporary permit for.

I should be able to issue the second permit tomorrow after confirming its location.

Levin Hutson Utilites and Permits Coordinator Madison County Engineers Office

825 US 42 NE London, OH 43140 740-852-9404 (office) 614-623-6563 (cell) Levin.Hutson@madison.oh.gov

Office Hours: **APRIL THRU OCTOBER (SUMMER HOURS)** Monday through Thursday 7:00 A.M. to 5:00 P.M. CLOSED Friday

NOVEMBER THRU MARCH (WINTER HOURS) Monday through Friday 7:30 A.M. to 3:30 P.M.

|--|

Madison County Engineer's Office	825 US
	Londo
Driveway Permit Form	(740)85

825 US 42 NE, London, Ohio 43140 (740)852-9404

10		
	Permit Number	09142022 - B

Name	Blattr	er Energy							Date	9/14/22
Address	392 C	ounty Road 50								
City	Avon			State	MN	Zip Cod	e 56	310		
Phone Num	ber	+	1 (320) 241-8322	2						
email ckas	suske	<pre>@blattnerenergy.com</pre>								
Location		South side of Johnston Ro	l. approximately 1	200' West	of add	ress 3700 J	ohnst	on Rd.		
Driveway Ty	ype	Business	Driveway	y Type 2	New				ommended īle Size	24" X 100'
Pre-Constru Date	iction	9/14/22 Ir	spection Date					-1	evin Hutso.	n
Required Mat	terials	Excavate 12" deep, by 100 N-12 Double Wall Plastic t choice.								
Post-Const Date			SED			Ро		onstruc pector		
			ll "OUPS" one ca	ll service	2 work	days pric	or to a			
Commen		Note * Appropriate adva construction.							DN DRIVEWA	

Tim Burgener

From:	Levin Hutson <levin.hutson@madison.oh.gov></levin.hutson@madison.oh.gov>
Sent:	Thursday, September 15, 2022 2:25 PM
То:	Carter Kasuske; david.warner@edf-re.com; Dominic Nelson
Cc:	Charles Duvall; Rob Slane; Bryan Dhume
Subject:	Substation Driveway permit
Attachments:	Blattner Energy 09152022 D.pdf

CAUTION: This email message was sent from an EXTERNAL sender. Please DO NOT open attachments or click links from unknown senders or unexpected email.

9/15/22

Carter kasuske, Dominic Nelson, David Warner,

Gentlemen,

As per the direction of the board of County Commissioners, 9/13/22 Please find attached a copy of the "Temporary" permit # 09152022 - D, allowing the installation of a secondary driveway for the power substation on Johnston Rd. West - South/West from the primary substation driveway.

Levin Hutson Utilites and Permits Coordinator Madison County Engineers Office

825 US 42 NE London, OH 43140 740-852-9404 (office) 614-623-6563 (cell) Levin.Hutson@madison.oh.gov

Office Hours: **APRIL THRU OCTOBER (SUMMER HOURS)** Monday through Thursday 7:00 A.M. to 5:00 P.M. CLOSED Friday

NOVEMBER THRU MARCH (WINTER HOURS) Monday through Friday 7:30 A.M. to 3:30 P.M.

	Pı	rir	۱t	F	0	r	m
--	----	-----	----	---	---	---	---

Madison County Engineer's Office	825 US
	Londor
Driveway Permit Form	(740)85

825 US 42 NE, London, Ohio 43140 (740)852-9404

3140		
	Permit Number	09152022 - D

Name	Blattr	ner Energy							Date	9/15/22
Address	392 C	2 County Rd. 50								
City	Avor	1		State	MN	Zip Cod	e 563	10		
Phone Num	nber	+	1 (320) 241-8322	2						
email cka	suske	@blattnerenergy.com								_
Location		S/E side of Johnston Rd., a	across the road an	d 700' +/	- W, S/V	/ from add	ress 322	0 Johnsto	n Rd.	
Driveway Ty	уре	Business	Driveway	r Type 2	New			Rec	commended Tile Size	80' X15"
Pre-Constru Date	uction	9/14/22 In	spection Date Call to sched	lule insp	ection		Insp	struction ector stallatior	Levin Hutsor	1
Required Materia		Excavate 12" deep, by 80' Install 80' of 15" reinforceo road ditch to allow for flov Backfill using #2 stone top	l concrete pipe or vline at or slightly	n a unifor below ex	m grade kisting c	to flow su	rface wa			
Post-Cons Dat			SED			Po	ost-Con Inspe	struction ector FAILE		
You must call "OUPS" one call service 2 work days prior to any work in the R.O.W.										
Commer	nts	TEI Note* Appropriate advar construction	MPERARY PERMIT							

This foregoing document was electronically filed with the Public Utilities

Commission of Ohio Docketing Information System on

9/22/2022 3:47:40 PM

in

Case No(s). 20-0931-EL-BGN, 21-1031-EL-BGA

Summary: Notice - Compliance with Condition 30 and 8 – Transportation Plans and Permits electronically filed by Christine M.T. Pirik on behalf of Fox Squirrel Solar, LLC