

Bricker & Eckler LLP 100 South Third Street Columbus, OH 43215 Office: 614.227.2300 Fax: 614.227.2390 Dylan F. Borchers Direct Dial: 614.227.4914 dborchers@bricker.com www.bricker.com info@bricker.com

March 7, 2022

Via Electronic Filing

Ms. Tanowa Troupe Administration/Docketing Ohio Power Siting Board 180 East Broad Street, 11th Floor Columbus, Ohio 43215-3793

Re: Guernsey Power Station, LLC, OPSB Case Nos. 16-2443-EL-BGN, 18-0090-EL-BGA, 22-0033-EL-BGA, and 21-0182-EL-BGA

Dear Ms. Troupe:

On behalf of Guernsey Power Station LLC ("GPS"), attached for filing in the above referenced cases is GPS's February 28, 2022 letter that responds to comments provided to the Ohio Environmental Protection Agency letter of February 14, 2022.

If you have any questions please do not hesitate to contact me.

Sincerely,

Dylan F. Borchers

Attachment

cc: Robert Holderbaum (w/Attachment)

HALEY & ALDRICH, INC. 3 Bedford Farms Drive Bedford, NH 03110 603.391.3325

28 February 2022 File No. 134856-002

Ms. Carol Siegley Ohio Environmental Protection Agency Southeast District Office 2195 Front Street Logan, Ohio 43138-8637

Subject:Response to Application Comments – Water Quality Certification Modification
Guernsey Power Station
Ohio EPA Permit No. DSW 401175544

Dear Ms. Siegley:

On behalf of Guernsey Power Station LLC (GPS), this letter responds to comments provided in the Ohio Environmental Protection Agency (Ohio EPA) letter of 14 February 2022 with regard to the Guernsey Power Station (the Project). Responses are provided below, and – as requested – replacement pages are provided where changes to the application are necessary. Where this is the case, it has been so noted in the response.

ISSUES ASSOCIATED WITH COMMENTS RECEIVED DURING PUBLIC NOTICE PERIOD

Ohio EPA has requested input from GPS on two letters received by Ohio EPA during the public comment period, to which Ohio EPA indicates it will be providing formal responses. Ohio EPA specifically requested input on the following two items:

- Providing an accounting of the wetlands filled; and
- Addressing the comments regarding the laydown yard and private property to the north owned by Brent Ball.

The following information is provided in support of these issues. Comprehensive wetland investigations and permitting to account for all impacts to the Project site have occurred, and authorizations have been granted where appropriate, as further detailed below.

Guernsey Power Station Wetland Resources Formally Delineated

Formal delineation reports were prepared for the full Project site, including the laydown
property owned by Brent Ball. These were reviewed by the U.S. Army Corps of Engineers
(USACE) as a part of the individual permit process, and jurisdictional determinations were issued
to define the location, extent, and type of wetlands present. See Attachment A for the officially
determined wetland locations.

Ohio Environmental Protection Agency 28 February 2022 Page 2

Guernsey Power Station Wetland Avoidance and Minimization

- The Project was sited so that wetland impacts were completely avoided in the generating facility area itself and in the laydown area. Impacts were unavoidable for the electrical switchyard components, so wetlands permitting was necessary in this limited area of the Project.
- Use of the Brent Ball laydown property avoided encroachment into the wetlands, as affirmed by the USACE through the USACE jurisdictional determination. Please see Attachment B, Figure B-1, for an image of a publicly available 2021 aerial photograph on which the relevant wetland boundaries are shown, which illustrates the setback from the wetlands that has been maintained (using silt fencing) for Project work. Attachment B, Figure B-2, provides images taken via drone on February 15, 2022 that illustrate the same careful wetland avoidance.

Robust Individual Permit Review of Comprehensive Guernsey Power Station Wetland Impacts by USACE and Ohio EPA

- An individual permit that addressed all aspects of the Project was submitted to the USACE on July 5, 2017. Jurisdictional determinations were issued on October 23, 2017. The individual permit was issued by the USACE on February 21, 2018 that reflected the permanent discharge of material into approximately 3.07 acres of three wetlands and the temporary discharge of material into approximately 3.46 acres of three wetlands.
- An application for an individual water quality certification was submitted to Ohio EPA on November 17, 2017, following confirmation of the wetland resources at the site and reflecting the same impact information. Based on detailed review, a water quality certification was issued for the project on February 20, 2018. A total of 1.845 acres of wetland conversion was also authorized though this permit.
- A total of 12.1 wetland mitigation credits were purchased as mitigation for this impact from the Ohio Stream and Wetland Foundation.

Additional Review of Potential Guernsey Power Station Issues Associated with Stormwater and Floodplains

- As stormwater management features have been designed for the facility, appropriate filings have been made with Ohio EPA.
- Although projects under the purview of the Ohio Power Siting Board do not require local floodplain approval, GPS voluntarily coordinated with local authorities to obtain a permit for a small portion of incremental encroachment of floodplain within the Brent Ball laydown property from the Guernsey County Floodplain Administrator. Detailed analyses were completed internally for activities south of Wills Creek associated with the electrical equipment. These floodplain analyses and the Brent Ball laydown area approval are provided as Attachment C.

Adjustments in Wetland Impacts Associated with Guernsey Switching Station Electrical Components

• As a result of GPS' coordination with AEP regarding AEP's detailed design and construction requirements, it was determined that adjustments to the areas of wetland impact would be necessary in association with construction of the electrical components of the Project. All of these changes were associated with the electrical components of the Project and not the generating facility or laydown area. On May 20, 2020, requests for permit modifications were

Ohio Environmental Protection Agency 28 February 2022 Page 3

submitted to both the USACE and Ohio EPA to address these changes. Review of these requests resulted in issuance of a USACE Modification on August 17, 2020 and Modification of the Section 401 Water Quality Certification on August 10, 2020 authorizing in total 3.24 acres of permanent fill, 1.85 acres of forested conversion, and 2.86 acres of temporary impact.

- An additional 0.5 wetland credits were obtained from the federally approved Buffalo Fork Mitigation Bank within the Wills Creek watershed.
- As AEP evaluated its safety requirements associated with electric transmission line corridors, the need for additional conversion (but no additional fill) was identified. Because no additional wetland fill was required, the USACE confirmed that no modification of the 404 permit is necessary. Therefore, on September 28, 2021, the Applicant filed for a request for permit modification to reflect 0.8 acres of additional conversion of forested wetland to non-forested wetland.
- A total of 2 mitigation credits will be obtained for this additional impact. At the time the permit application was prepared, GPS could not identify any available credits directly in the Wills Creek watershed. Additional credits in the Wills Creek watershed have subsequently become available. As such, an updated reservation agreement for the purchase of 2 mitigation credits from The Nature Conservancy within the Wills Creek watershed is attached at Attachment D.

All wetland impacts at the site are described above. All impacts have been properly reviewed and permitted where needed by the appropriate jurisdictions, with all associated mitigation implemented. As addressed above and illustrated in the figures provided in Attachment B, all impacts to wetlands in the area of the Brent Ball laydown property have been avoided.

Use of Additional Private Property North of the Brent Ball Laydown Area

The Project's construction contractor, Gemma Power Systems (Gemma), coordinated with Brent Ball (the landowner of the laydown area) separately from the Project, for storage of topsoil for future replacement as well as other uses on Mr. Ball's property located north of the laydown area. Prior to use of this area, Gemma had the Brent Ball private property to the north delineated and has avoided use of any wetland or floodplain areas for their activities. Attachment E provides the wetland delineation, as well as documentation confirming that no wetland permit was required for an in-kind culvert replacement for access.

In addition to this wetland delineation and avoidance, Gemma obtained a Special Flood Hazard Area Development Permit associated with the replacement-in-kind of the culvert associated with the existing access to the Brett Ball private property (also provided in Attachment E). Finally, Attachment E provides a layout drawing further indicating that delineated wetlands and floodplain have been avoided in association with activities in this location.

MITIGATION PLAN

The Natural Conservancy has been contacted and a revised reservation letter is provided in Attachment D that confirms purchase of the mitigation credits from the Wills Creek watershed. The revised pages of the application that reflect this issue are also provided in Attachment D (incorporating the following information in the header: the project name, the Ohio EPA identification number, the revision date, and the revision number).

Ohio Environmental Protection Agency 28 February 2022 Page 4

Do not hesitate to let us know if you have questions with regard to this information. Thank you in advance for your efforts as we work through the permit modification process.

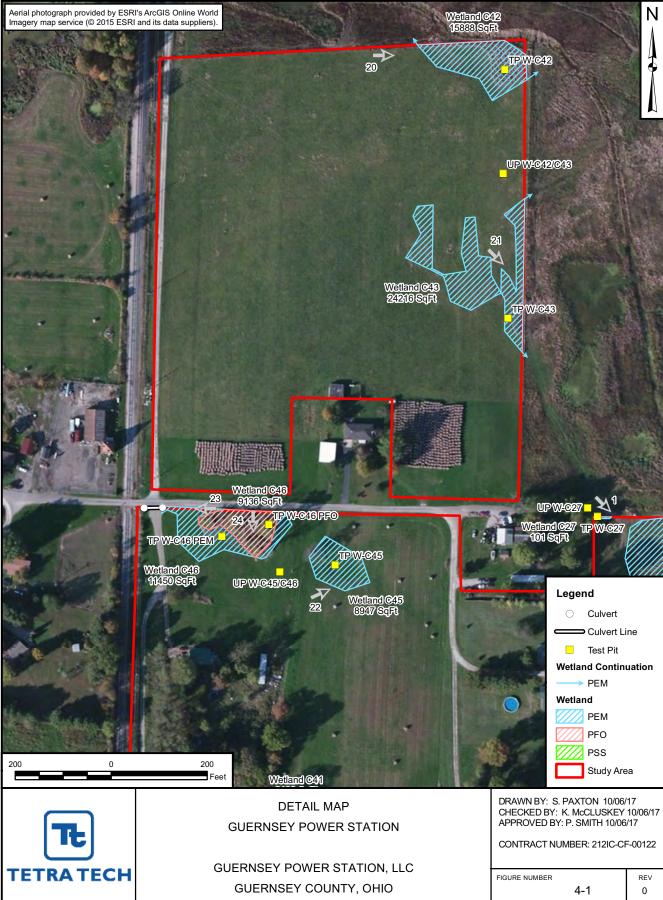
Sincerely yours,

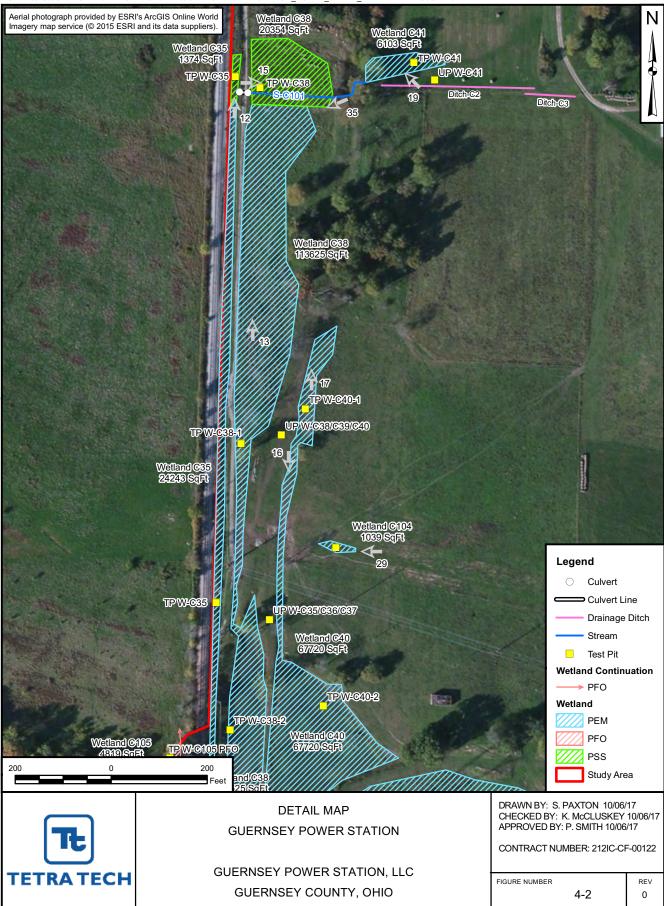
HALEY & ALDRICH, INC.

Lynn Gresock

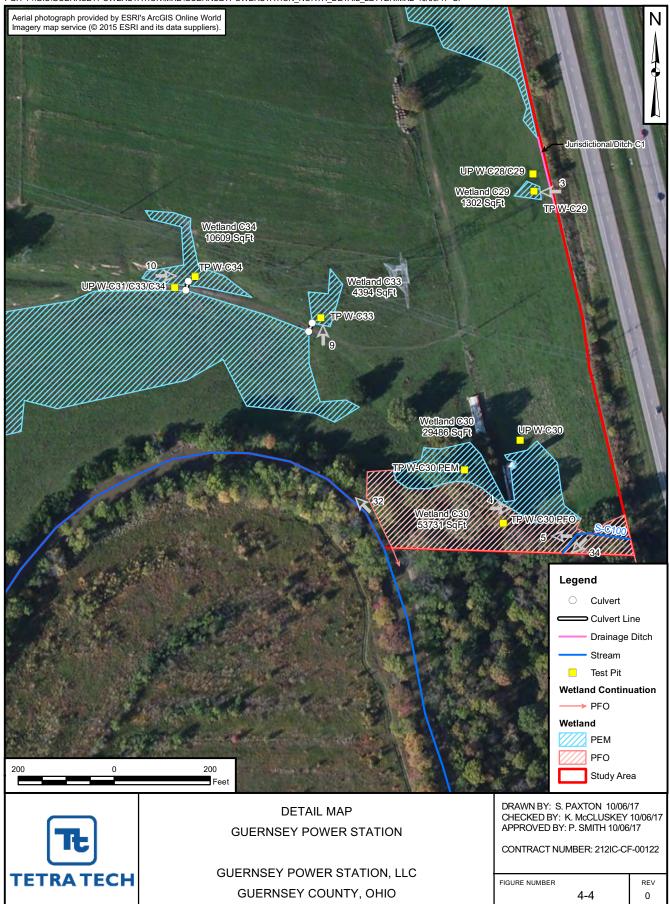
Lynn Gresock Principal Consultant

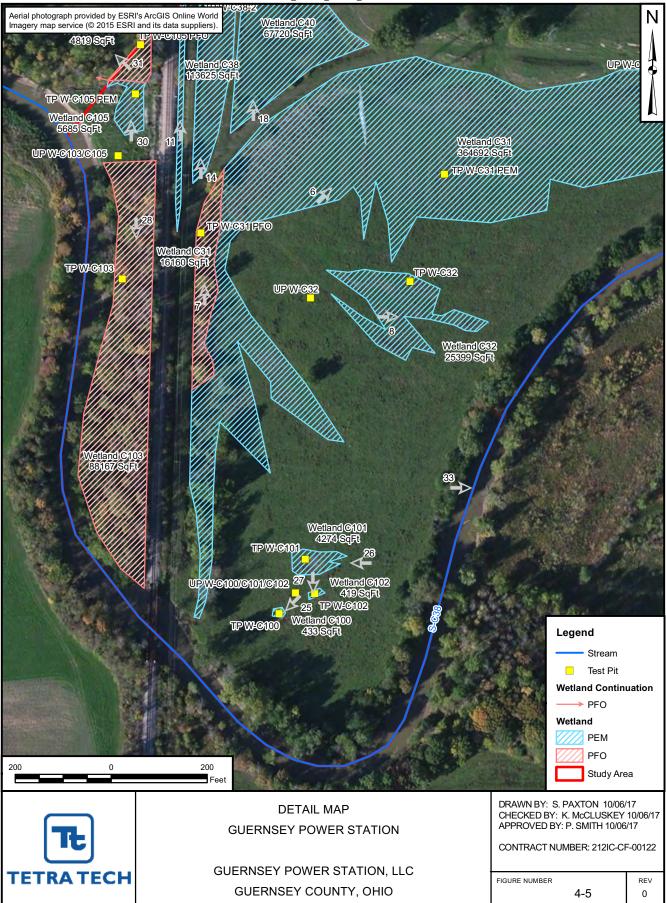
Attachments:

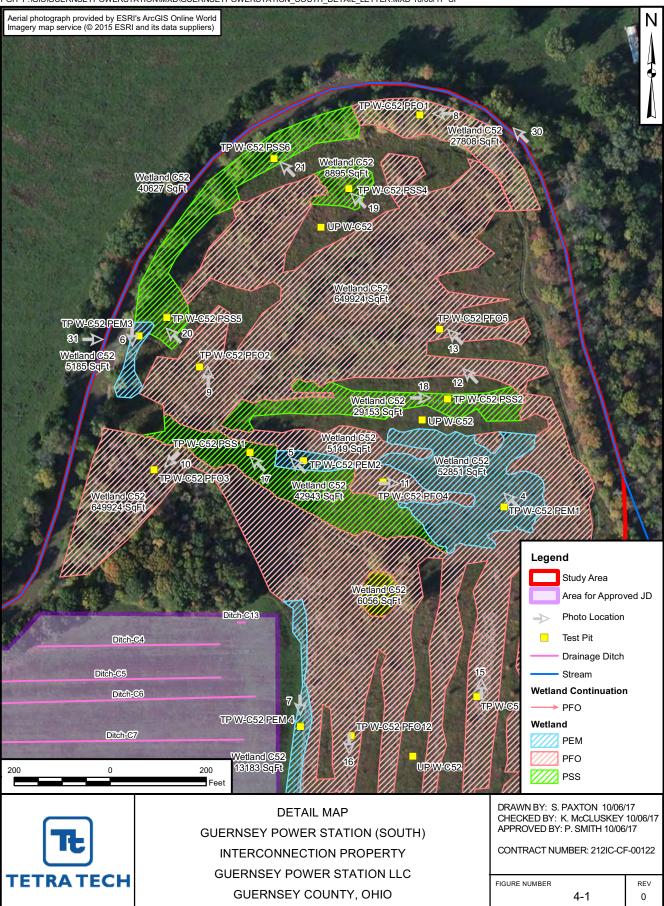

- Attachment A Guernsey Power Station Formally Delineated Wetlands
- Attachment B Guernsey Power Station Laydown Area
 - Figure B-1 GPS Laydown Area, Floodplain, and Delineated Wetlands (2021 Aerial)
 - Figure B-2 GPS Laydown Area (2022 Drone Photographs)
- Attachment C Guernsey Power Station Floodplain Documentation
 - Special Flood Hazard Area Development Permit GPS Laydown Area
 - Floodplain Development Permit Application GPS Laydown Area
 - Hydrology and Hydraulic Analysis GPS Switchyard Site
- Attachment D Updated Wetland Mitigation Credit Reservation Agreement
 - Reservation Agreement
 - Updated Application Pages
- Attachment E Brent Ball Private Property Documentation
 - Existing Environmental Conditions Map
 - Access Road Culvert Replacement Nationwide Permit 03 Maintenance
 - Special Flood Hazard Area Development Permit Culvert Replacement
 - Gemma Off-Site Fill Placement Plan

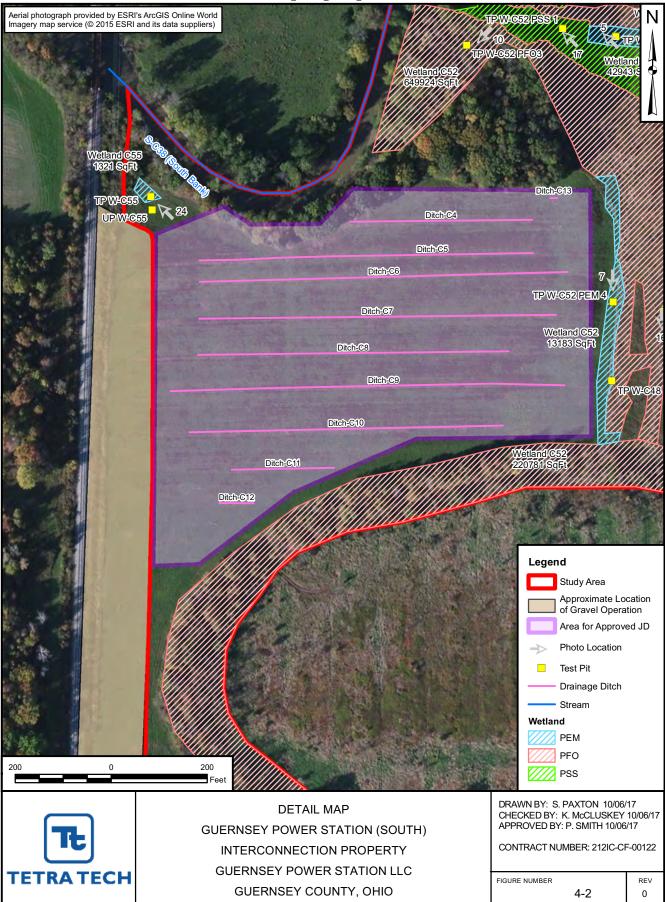

cc: GPS; Attn: M. Garber, T. Grace, J. Wanalista, and G. Conboy

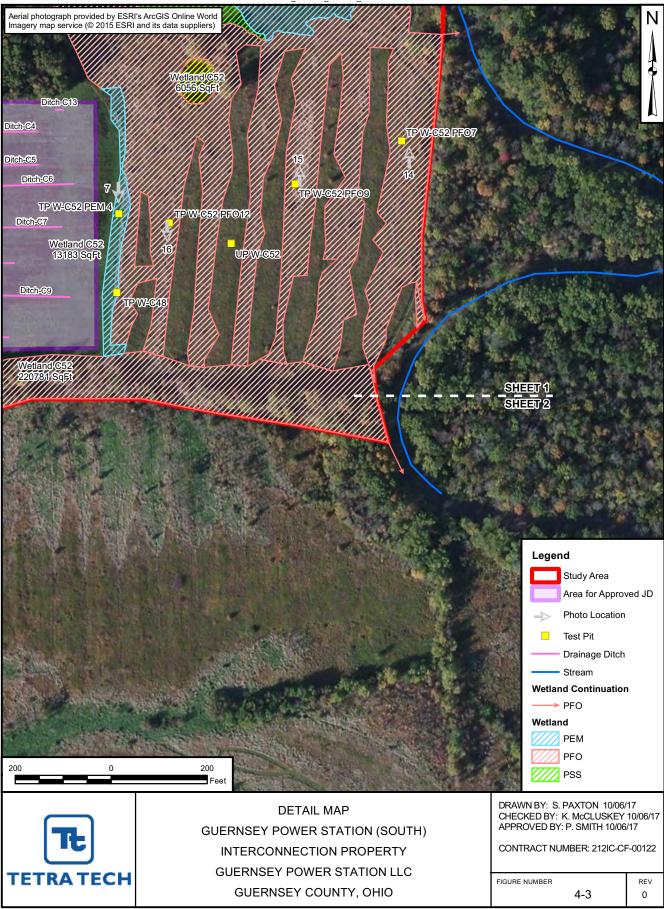
Attachment A – Guernsey Power Station Formally Delineated Wetlands

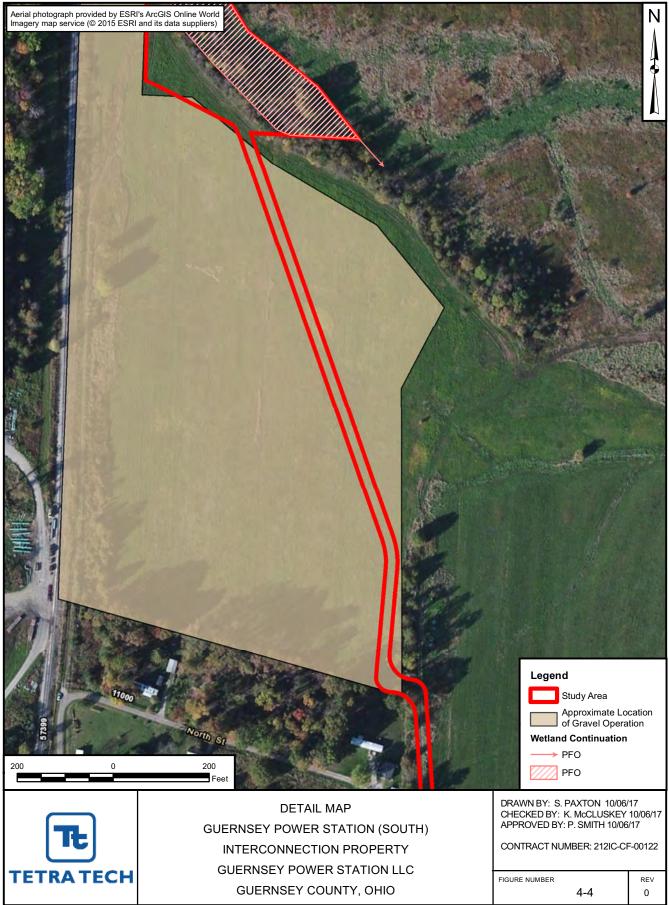


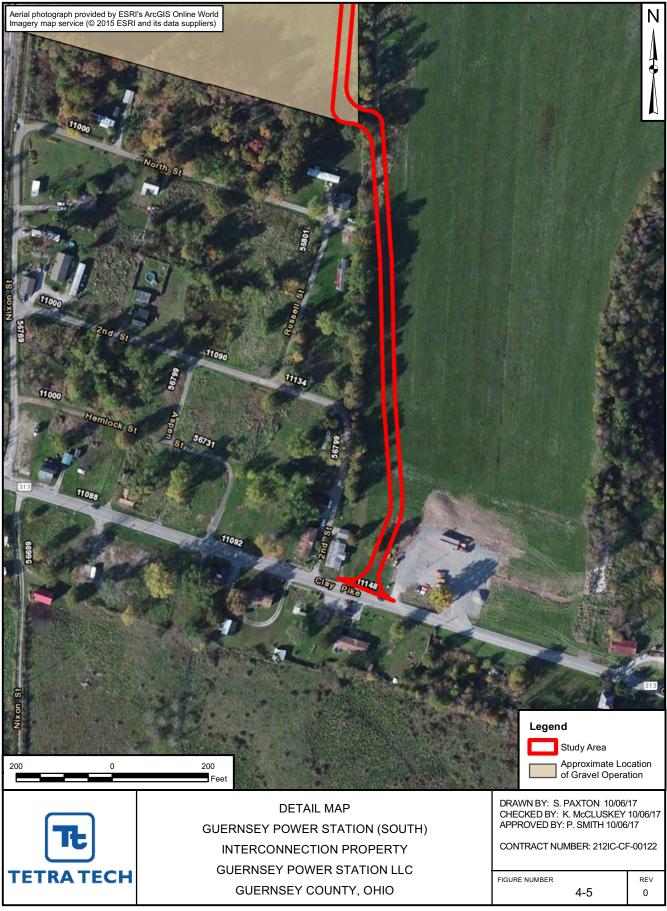


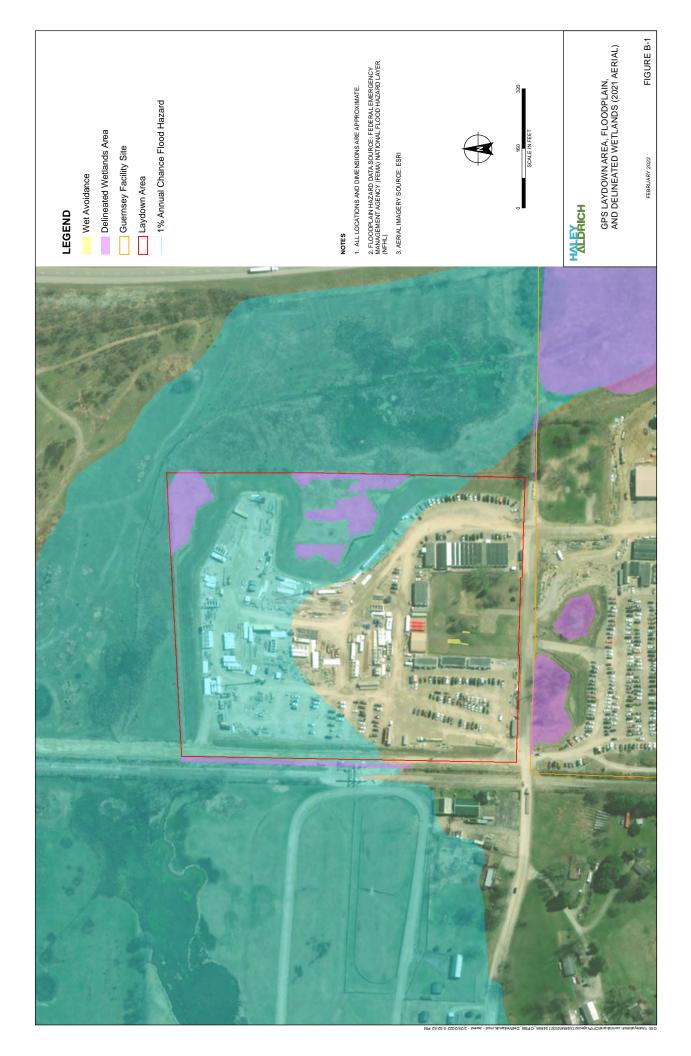












Attachment B – Guernsey Power Station Laydown Area

- Figure B1 GPS Laydown Area, Floodplain, and Delineated Wetlands (2021 Aerial)
- Figure B2 GPS Laydown Area (2022 Drone Photographs)

Attachment C – Guernsey Power Station Floodplain Documentation

- Special Flood Hazard Area Development Permit GPS Laydown Area
- Floodplain Development Permit Application GPS Laydown Area
- Hydrology and Hydraulic Analysis GPS Switchyard Site

Special Flood Hazard Area Development Permit – GPS Laydown Area

SPECIAL FLOOD HAZARD AREA DEVELOPMENT PERMIT

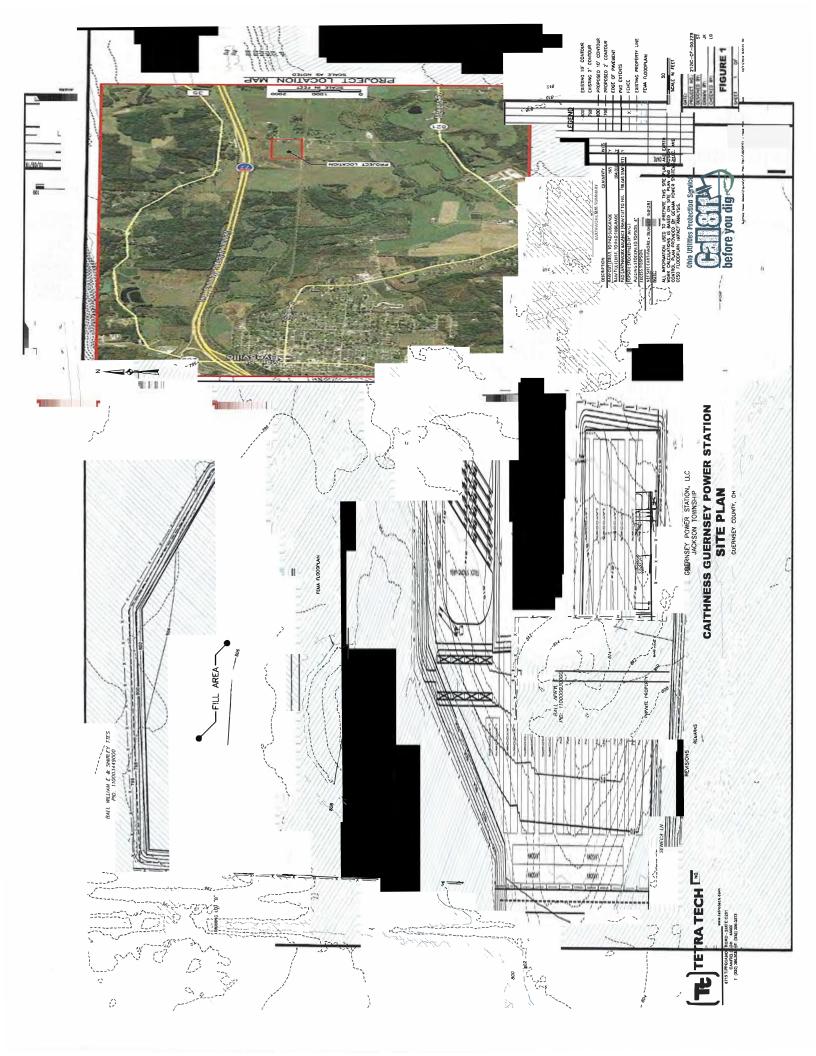
Guernsey Power Station

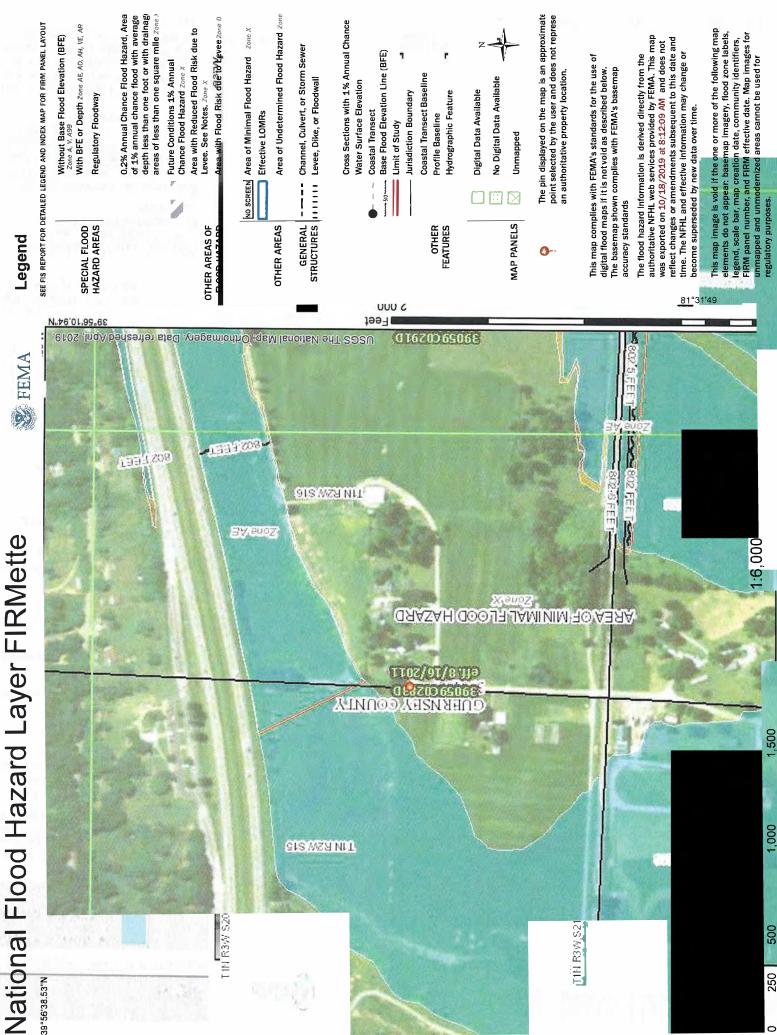
APPLICANT

Fill an area of parcel 110003449000 (11152 Seneca Ln., Byesville) to an elevation above the estimated flood elevation as per the attached map. The area will be graded to be used as a parking lot and construction laydown for the Guernsey Power Station. The proposed fill will have a minimal impact of 0.01 ft in the floodplain area.

ACTIVITY DESCRIPTION

- 1.0 Is the proposed development in:
 - ____an identified floodway
 - a flood hazard area where base flood elevations exist with no identified floodway
 - _____an area within the floodplain fringe
 - an approximate flood hazard area ZONE AO
- 2.0 The proposed development meets the Standards of Section <u>4.0</u> of the regulations.
- 4.0 Does the structure contain?: ____N/A __basement _____N/A _enclosed area other than basement below lowest floor
- 5.0 For structures located in approximate AO zones (no BFE available) the structure's lowest floor is Na feet above the highest grade adjacent to the structure.
- 6.0 The proposed development is in compliance with applicable floodplain standards. PERMIT ISSUED ON 10/17/2019
- 8.0 The proposed development is <u>exempt</u> from the floodplain standards per Section <u>NA</u> of the Flood Damage Reduction Resolution.


Administrator's Signature: _______ Beckner, Director of Emergency Management ______ Date: ______ Date: ______


9.0 The certified as-built elevation of the structure's lowest floor is N/A feet above msl.*

10.0 The certified as-built floodproofed elevation of the structure is N/A feet above msl.*

NOTE *Certification by registered engineer or land surveyor documenting these elevations is necessary if elevations are provided by applicant.

AS BUILT ELEVATIONS SHALL BE PROVIDED AND CERTIFIED BY A REGISTERED SURVEYOR

Floodplain Development Permit Application – GPS Laydown Area

October 16, 2019

Ms. Gerry Beckner Emergency Management Coordinator Guernsey County 627 Wheeling Avenue, Suite 302 Cambridge, Ohio 43725

SUBJECT: Floodplain Development Permit Application Guernsey Power Station Laydown Yard Valley Township, Guernsey County, Ohio Tetra Tech Project Number 212-C-CF-00273

Dear Ms. Beckner:

On behalf of Guernsey Power Station, Tetra Tech has prepared this follow-up to your recent correspondence on the issue of the Guernsey Power Station's need to obtain a floodplain permit from your office. Included with this correspondence is the Project's Floodplain Development Application and corresponding documentation.

Specifically, the Guernsey County EMA is requesting a floodplain permit for the Project's laydown yard. By way of background, the Project received a letter dated December 6, 2017 from the Guernsey County Engineer informing the Project that "major utility facilities that require permitting through the Ohio Power Siting Board are exempt from filing a Floodplain Development Permit." As a result, the County Engineer concluded, no permit application is required of the Project.

It is our understanding that the Guernsey County EMA's interpretation that the exemption of "major utility facilities" does not apply to the Project's laydown yard. However, the Project has interpreted the term to be inclusive of the laydown yard. The laydown yard was included as a necessary component of the Project in the application to the Ohio Power Siting Board and was fully evaluated and approved with the other Project's components by the Ohio Power Siting Board. In sum, it is the Project's interpretation that the laydown yard is jurisdictional to the Ohio Power Siting Board and is part and parcel to the meaning of "major utility facility."

Nonetheless, it is the Project's overriding objective to be cooperative and responsive to requests from county and local officials. As such, we respectfully submit the Project's Floodplain Development application. We appreciate the communications thus far on this matter, and please do not hesitate to let us know if you have any follow-up questions about the application.

Note that the proposed work within the floodplain is limited to fill from excess earthwork, with no proposed structures to be constructed. Based on the required Application Requirements, the following is a summary of the required items.

Application Form

The completed application form is presented in Attachment A.

Application Items

Item a: Site Plan

The proposed site plan is presented in Attachment B. The shows a scaled map with existing and proposed contours and a summary of the volume of fill material that will be placed in the floodplain. The map also indicates the boundary of the FEMA 100-year Floodplain.

Item b: Elevation of Existing Grade for Proposed Structures

No structures will be built in the floodplain. They will be used for parking and construction laydown.

Item c: Elevation of Structures

No structures will be constructed within the floodplain area.

Item d: Additional Information Requested by Floodplain Administrator

No additional information was requested by the Floodplain Administrator.

Item e: Technical Analysis

A technical analysis was conducted by CESO in April 2019 and included the proposed parking and laydown area. Based on the results of the study conducted by CESO, no significant impacts would result from the filling within the floodplain with a calculated impact of 0.01 feet, well below the 1-foot impact limit. A copy of the analysis is presented in Attachment C.

If you have any questions on the information provided, please feel free to contact me at 330-286-3683 or <u>larry.drane@tetratech.com</u>.

TETRA TECH, INC.

Sincerely,

me a. grane III

Lawrence A. Drane, III, P.G. Canfield Ohio Operations Manager

ATTACHMENT A APPLICATION FORM

SPECIAL FLOOD HAZARD AREA DEVELOPMENT PERMIT APPLICATION

Application is hereby made for FLOODPLAIN DEVELOPMENT PERMIT as required by the Flood Damage Reduction Resolution of the Guernsey County Commissioners for development in an identified flood hazard area. All activities shall be completed in accordance with the requirements of said Resolution. The development to be performed is described below and in attachments hereto. The applicant understands and agrees that:

- o This permit is issued on the conditions and facts described;
- Any permit may be repealed if conditions or facts change;

Brent Ball	Guernsey Power Station		
Owner's Name	Applicant		
12885 Ridgeview Rd, New Concord,	565 Fifth Ave., 29th Floor, NY, NY		
Address	Address		
740-255-1404	770-356-6700		
Phone #	Phone #		

DESCRIPTION OF WORK:

- 1. Location of proposed development site address: <u>11152 Seneca Ln. Bvesville. Ohio</u> Legal description: <u>Parcel 11000343800</u>
 - 2. Kind of development proposed (check all that apply):

new building	alteration	grading
residential	addition	watercourse alteration
🔳 non residential	accessory bldg.	
manufactured home	materials storage	remodeling
existing structure	filling	other

Describe activity: The area will be graded and a portion of the 100-year floodplain will be partially filled. The area will be used for parking and construction laydown for the Guernsey Power Station which is being constructed to the south of this area.

If the proposed construction is an alteration, remodeling, or expanding to an existing structure, indicate the cost of proposed construction: NA. What is the estimated market value of the existing structure? NA

I AGREE THAT ALL STATEMENTS IN AND ATTACHMENTS TO THIS APPLICATION ARE A TRUE DESCRIPTION OF THE EXISTING PROPERTY AND THE PROPOSED DEVELOPMENT ACTIVITY. I UNDERSTAND THE DEVELOPMENT REQUIREMENTS FOR SPECIAL FLOOD HAZARD AREA ACTIVITIES PER THE APPROPRIATE RESOLUTION AND AGREE TO ABIDE THERETO. I UNDERSTAND IT IS MY RESPONSIBILITY TO OBTAIN ALL APPLICABLE FEDERAL, STATE, AND LOCAL PERMITS.

for Guernsey Power Station

10/16/19

FLOODPLAIN DEVELOPMENT PERMIT REQUIREMENTS

Floodplain Development Permits

It shall be unlawful for any person to begin construction or other development activity including but not limited to filling; grading; construction; alteration, remodeling, or expanding any structure; or alteration of any watercourse wholly within, partially within or in contact with any identified special flood hazard area until a floodplain development permit is obtained from the Floodplain Administrator. Such floodplain development permit shall show that the proposed development activity is in conformity with the provisions of these regulations. No such permit shall be issued by the Floodplain Administrator until the requirements of these regulations have been met.

Application Required

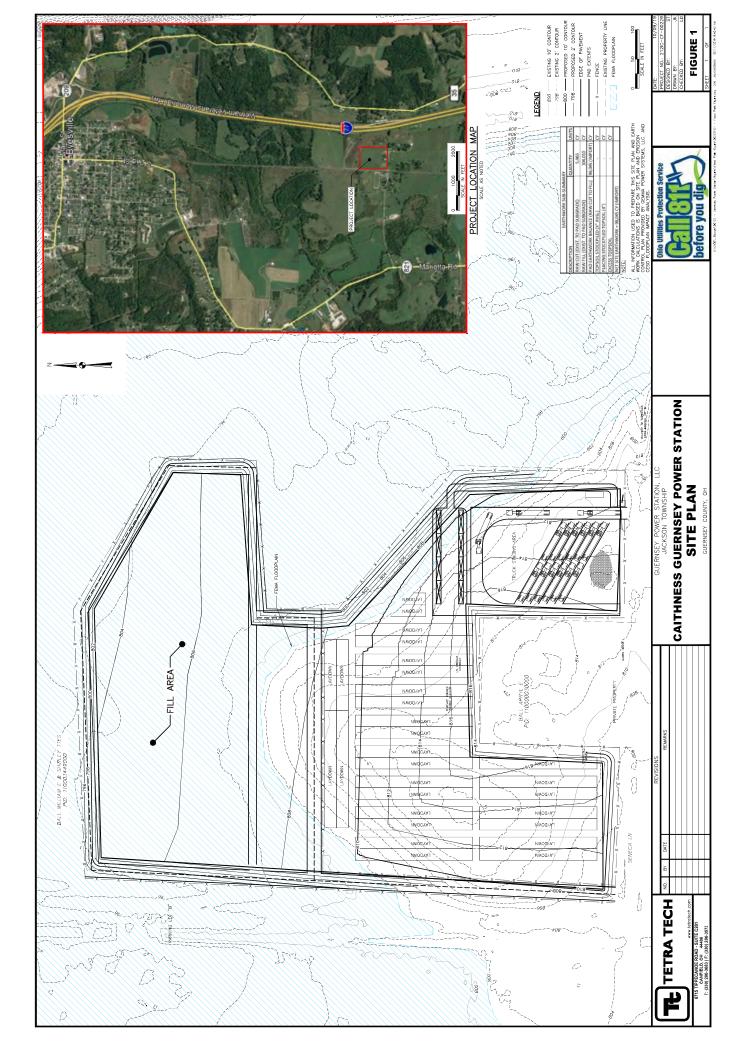
An application for a floodplain development permit shall be required for all development activities located wholly within, partially within, or in contact with an identified special flood hazard area. Such application shall be made by the owner of the property or his/her authorized agent, herin referred to as the applicant, prior to the actual commencement of such construction. Where it is unclear whether a development site is in a special flood hazard area, the Floodplain Administrator may require an application for a floodplain development permit to determine the development's location. All applications shall include, but not be limited to:

- a. Site plans drawn to scale showing the nature, location, dimensions, and topography of the area in question; the location of existing or proposed structures, fill, storage of materials, drainage facilities, and the location of the foregoing.
- b. Elevation of the existing, natural ground where structures are proposed.
- c. Elevation of the lowest floor, including basement, of all proposed structures.
- d. Such other material and information as may be requested by the Floodplain Administrator to determine conformance with, and provide enforcement of these regulations.
- e. Technical analyses conducted by the appropriate design professional registered in the State of Ohio and submitted with an application for a floodplain development permit when applicable:
 - 1. Floodproofing certification for non-residential floodproofed structure as required in Section 4.5.
 - 2. Certification that fully enclosed areas below the lowest floor of a structure not meeting the design requirements of Section 4.4 (E) are designed to automatically equalize hydrostatic flood forces.
 - 3. Description of any watercourse alteration or relocation that the flood carrying capacity of the watercourse will not be diminished, and maintenance assurances as required in Section 4.9 (C)
 - 4. A hydrologic and hydraulic analysis demonstrating that the cumulative effect of proposed development, when combined with all other existing and anticipated

development will not increase the water surface elevation of the base flood by more than one foot in special flood hazard areas where the Federal Emergency Management Agency has provided base flood elevations but no floodway as required by Section 4.0 (B)

- A hydrologic and hydraulic engineering analysis showing impact of any development of flood heights in an identified floodway as required by Section 4.9 (A).
- 6. Generation of base flood elevation(s) for subdivision and large-scale developments as required by Section 4.3.
- 7. The Floodplain Administrator shall review all floodplain development permit applications to assure that all necessary permits have been received from those federal, state or local governmental agencies from which prior approval is required. The applicant shall be responsible for obtaining such permits as required including permits issued by the U.S. Army Corps of Engineers under Section 10 of the Rivers and Harbors Act and Section 404 of the Clean Water Act, and the Ohio Environmental Protection Agency under Section 401 of the Clean Water Act.

Approval


Within thirty (30) days after the receipt of a complete application, the Floodplain Administrator shall either approve or disapprove the applications. If any application is approved, a floodplain development permit shall be issued. All floodplain development permits shall be conditional upon the commencement of work within one (1) year. A floodplain development permit shall expire on (1) year after issuance unless the permitted activity has been substantially begun and is thereafter pursued to completion.

Post-Construction Certifications Required

The following as-built certifications are required after a floodplain development permit has been issued:

- a. For new or substantially improved residential structures, or nonresidential structures that have been elevated, the applicant shall have a Federal Emergency Management Agency Elevation Certificate completed by a registered surveyor to record as-built elevation data. For elevated structures in Zone A and Zone AO areas without a base flood elevation, the elevation certificate may be completed by the property owner or owner's representative.
- b. For all development activities subject to the standards of Section 3.10 (A), a Letter of Map Revision.

ATTACHMENT B SITE PLAN

ATTACHMENT C TECHNICAL ANALYSIS

FLOODPLAIN IMPACT ANALYSIS

Gemma Power Systems, LLC Guernsey Power Station Byesville, Ohio <u>26 Apr</u>il 2019

Table of Contents

FLOODPLAIN IMPACT ANALYSIS

I.	Introduction	.1
II.	Area Studied	.1
III.	Engineering Approach	.2
IV.	Results	.2
۷.	Limitations	.3

APPENDICES

A.		Eirm	Mon	Panels
А.	FLIVIA	ГШШ	wap	r allels

- B. FEMA Flood Insurance Study 29059CV000A (August 16, 2011)
- C. Proposed Laydown Yard Plan
- D. HEC-RAS Output

FLOODPLAIN IMPACT ANALYSIS

I. Introduction

Gemma Power Systems, LLC is proposing new construction of a natural gas power plant (denoted as 'Project Area'), and associated construction Laydown Yard in Guernsey County, Ohio, south of the City of Byesville. The project is located at the eastern extent of Seneca Lane (Twp Rd 2360), with the primary Project Area being south of Seneca Lane, and the construction Laydown Yard located north of Seneca Lane.

Figure 1- Location Map

The proposed Laydown Yard will be constructed utilizing excess fill from the Project Area. Portions of the Laydown Yard fill area have been determined to be located within the 100-yr Floodplain (Refer to **Appendix A** for FEMA FIRM Maps of the area). The purpose of this analysis is to review the current floodplain information for the area, determine the current estimated Base Flood Elevation, and to analyze what impact, if any, the placement of fill for the Laydown Yard will have on the Base Flood Elevation.

II. Area Studied

The flooding source for the project area is Wills Creek, which flows from southeast to northwest in the vicinity of the project. A previous Flood Insurance Study for the area was performed and is on record with FEMA (Study No. 39059CV000A), however there is a gap in the limits of this study that leaves the project area with an undefined Base Flood Elevation. This previous study can be found in **Appendix B** of this report.

This impact analysis will study Wills Creek, beginning at the upstream limit of the previous study, which is Wills Creek crossing of the railroad track downstream of Clay Pike Rd, through the Project Area and Laydown Yard Area to the crossing of Seneca Ln; having a total of approximately 1.162 miles.

III. Engineering Approach

This impact analysis utilized information from the previous Flood Insurance Study, such as calculated flows through the area and downstream water surface elevation, and Ohio Geographically Referenced Information Program (OGRIP) statewide terrain model information to establish the current estimated Base Flood Elevation (BFE) for the project area. Calculations and analysis were performed utilizing US Army corps of Engineers Hydrologic Engineering Center's River Analysis System (HEC-RAS). Once the current estimated BFE was established, a second HEC-RAS analysis was ran with terrain models reflected of the proposed Laydown Yard fill placement. These Flood Elevation results was compared to determine what, if any, measurable effects the fill placement had on the BFE in the project vicinity. As a standard, impacts which do not raise the BFE by more than 1-ft are considered to be minor, and a de minimis situation which warrant no additional action.

IV. Results

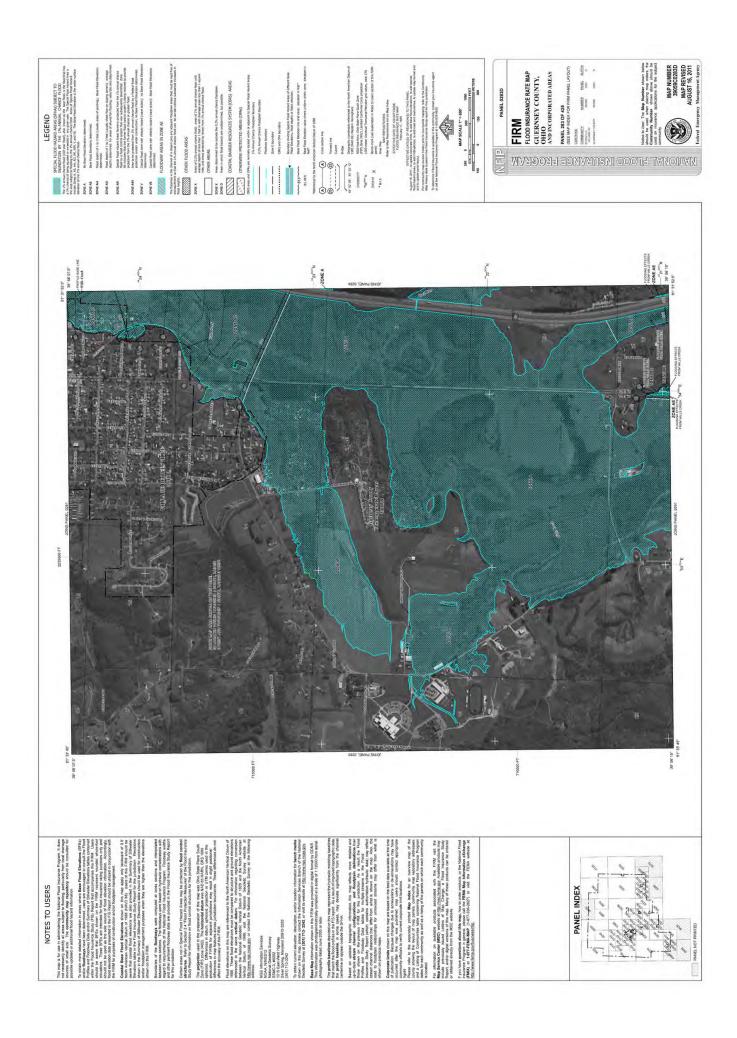
As noted in **Section III**, data and information to create the HEC-RAS model came from multiple sources. The primary information garnered from the previous Flood Insurance Study was the determination of the 100-yr flood event flow rate through the Project Area, and the downstream water surface elevation. In review of the Study, these values were determined to be 10,500.00 cfs and 802.00, respectively. These input parameter when run through the HEC-RAS model were able to produce a consistent floodplain limit and elevation with that reflected on the current FEMA FIRM Maps from the project area.

The proposed terrain model for the Laydown Yard was developed in coordination with Gemma Power based on their proposed lease area and anticipated earthwork export volumes from the primary Project Area. Based on feedback and coordination, the limits and grades for the Laydown Yard were finalized on April 9th. Refer to **Appendix C** for the conceptual plan of the proposed Laydown Yard.

The HEC-RAS results from the proposed terrain model with the identical flow and downstream water elevation parameters indicated that the effect of the proposed fill placement was minor, and within the target goal of less than one (1) foot of BFE increase. The below table contains a summary of the elevation changes based on stream cross section. Refer to *Appendix D* for detailed HEC-RAS output information.

River Sta. (mi.)	Total Flow, Q (cfs)	Exist. Water Surface Elev. (ft)	Prop. Water Surface Elev. (ft)	Elev. Difference (ft)
0.000	10,500	802.00	802.00	0.00
0.145	10,500	802.01	802.01	0.00
0.299	10,500	802.02	802.02	0.00
0.759	10,500	802.06	802.07	0.01
1.035	10,500	802.13	802.14	0.01
1.162	10,500	802.22	802.22	0.00

Table 4.1 HEC-RAS Output Summary




V. Limitations

The analyses and results reflected in this report are based on the accuracy of the data sources utilized. This information was neither field verified, re-calculated, or re-analyzed to verify their accuracy. Additionally, CESO does not purport that this analysis is the limit of obligation for development within a floodplain, and Gemma Power is solely responsible for any required permits from Federal, State, or Local agencies for their proposed development.

APPENDIX A FEMA FIRM MAP PANELS

APPENDIX B FEMA FLOOD INSURANCE STUDY 29059CV000A (AUGUST 16, 2011)

GUERNSEY COUNTY, OHIO

AND INCORPORATED AREAS

	COMMUNITY	
COMMUNITY NAME	NUMBER	
BYESVILLE, VILLAGE OF	390199	
CAMBRIDGE, CITY OF	390200	
CUMBERLAND, VILLAGE OF	390824	
*FAIRVIEW, VILLAGE OF	390922	Guernsey
GUERNSEY COUNTY (UNINCORPORATED AREAS)	390198	
LORE CITY, VILLAGE OF	390202	
*OLD WASHINGTON, VILLAGE OF	390996	
PLEASANT CITY, VILLAGE OF	390203	
QUAKER CITY, VILLAGE OF	390853	
SALESVILLE, VILLAGE OF	390856	
SENECAVILLE, VILLAGE OF	390858	
* No Special Flood Harand Amoo		my 14 1 74ms

* No Special Flood Hazard Areas

REVISED: August 16, 2011 Federal Emergency Management Agency

> FLOOD INSURANCE STUDY NUMBER 39059CV000A

INSURANCE STUDY USERS

Communities participating in the National Flood Insurance Program (NFIP) have established repositories of flood hazard data for floodplain management and flood insurance purposes. This Flood Insurance Study (FIS) report may not contain all data available within the Community Map Repository. It is advisable to contact the Community Map Repository for any additional data.

The Federal Emergency Management Agency (FEMA) may revise and republish part or all of this FIS at any time. In addition, FEMA may revise part of this FIS report by the Letter of Map Revision (LOMR) process, which does not involve republication or redistribution of the FIS report. Therefore, users should consult with community officials and check the Community Map Repository to obtain the most current FIS report components.

Selected Flood Insurance Rate Map panels for this community contain information that was previously shown separately on the corresponding Flood Boundary and Floodway Map panels (e.g., floodways, cross sections). In addition, former flood hazard zone designations have been changed as follows:

Old Zones A1 through A30 B C	<u>New Zone</u> AE X X
Initial Countywide FIS Effective Date:	February 17, 1989
Revised FIS Report Dates:	August 16, 2011

TABLES OF CONTENTS

		Page
1.0	INTRO	DDUCTION
	1.1 1.2	Purpose of Study
	1.3	Coordination
2.0	<u>AREA</u>	STUDIED
	2.1 2.2 2.3 2.4	Scope of Study3Community Description7Principal Flood Problems8Flood Protection Measures9
3.0	<u>ENGI</u>	NEERING METHODS
	3.1 3.2 3.3	Hydrologic Analyses10Hydraulic Analyses12Vertical Datum15
4.0	FLOO	DPLAIN MANAGEMENT APPLICATIONS16
	4.1 4.2	Floodplain Boundaries
5.0	INSUF	ANCE APPLICATIONS
6.0	FLOO	D INSURANCE RATE MAP
7.0	<u>OTHE</u>	<u>R STUDIES</u>
8.0	LOCA	TION OF DATA
9.0	BIBLI	OGRAPHY AND REFERENCES

TABLE OF CONTENTS (continued)

LIST OF TABLES

TABLE 1 – Guernsey County CCO Meetings	2
TABLE 2 – Limits of USGS/OEMA Incorporated Detailed Studies	3
TABLE 3 – Limits of Previous Detailed Studies	4
TABLE 4 – Streams Studied by Approximate Methods	5 - 6
TABLE 5 — Incorporated Letters of Map Change	6
TABLE 6 – Maximum Floods of Record.	9
TABLE 7 – Summary of Peak Discharges.	11
TABLE 8 – Manning's "n" Values	13
TABLE 9 – Overbank Manning's 'n' Values	14
TABLE 10 – Datum Conversion Calculation	15
TABLE 11 – Floodway Data Tables	
TABLE 12 – Community Map History	

LISTS OF FIGURES

FIGURE 1 – Floodway Schematic18

LIST OF EXHIBITS

Exhibit 1 – Flood Profiles

Buffalo Fork	Panel	01P
Buffalo Fork-Collins Fork	Panel	02P
Clear Fork	Panel	03P
Crooked Creek	Panels	04P - 05P
Hospital Tributary	Panel	06P
Leatherwood Creek	Panels	07P - 16P
Smith Creek	Panel	17P
Wills Creek at Kimbolton	Panel	18P
Wills Creek	Panels	19P – 26P
Wills Creek-Buffalo Creek	Panel	27P

PUBLISHED SEPARATELY

Flood Insurance Rate Map Index Flood Insurance Rate Maps

Page

Page

FLOOD INSURANCE STUDY

GUERNSEY COUNTY, OHIO AND INCORPORATED AREAS

1.0 INTRODUCTION

1.1 Purpose of Study

This Flood Insurance Study (FIS) revises and supersedes the FIS report and Flood Insurance Rates Maps (FIRMs) in the geographic area of Guernsey County, Ohio, including the Villages of Byesville, Cumberland, Fairview, Lore City, Old Washington, Pleasant City, Quaker City, Salesville and Senecaville, the City of Cambridge, and the unincorporated areas of Guernsey County (referred to collectively herein as Guernsey County), and aids in the administration of the National Flood Insurance Act of 1968 and the Flood Disaster Protection Act of 1973. Please note that in the Villages of Fairview and Old Washington, no special flood hazard areas (SFHAs) have been identified. The Village of Fairview is a multi-county community located in Belmont and Guernsey Counties. Please note that only the portion of the Village of Fairview that lies in Guernsey County is included in this FIS report. This study has developed flood-risk data for various areas of the community that will be used to establish actuarial flood insurance rates and to assist the community in its efforts to promote sound floodplain management. Minimum floodplain management requirements for participation in the National Flood Insurance Program (NFIP) are set forth in the Code of Federal Regulations at 44 CFR, 60.3.

In some states or communities, floodplain management criteria or regulations may exist that are more restrictive or comprehensive than the minimum Federal requirements. In such cases, the more restrictive criteria take precedence and the State (or other jurisdictional agency) will be able to explain them.

The Digital Flood Insurance Rate Map (DFIRM) and FIS Report for this countywide study have been produced in digital format. Flood hazard information was converted to meet the Federal Emergency Management Agency (FEMA) DFIRM database specifications and Geographic Information System (GIS) format requirements. The flood hazard information was created and is provided in a digital format so that it can be incorporated into a local GIS and be accessed more easily by the community.

1.2 Authority and Acknowledgments

The sources of authority for this 2009 Countywide FIS are the National Flood Insurance Act of 1968 and the Flood Disaster Protection Act of 1973.

Information on the authority and acknowledgments for each of the previously printed FIS reports and FIRMs for communities within Guernsey County was compiled and is shown below.

Previous Analyses

The hydrologic and hydraulic analyses for the previously effective FIS report for Guernsey County and its incorporated areas, dated February 17, 1989, were performed by Woolpert Consultants (the Study Contractor) for the FEMA, under Contract No. EMW 84-C 1616. This study was completed in January 1986 (Reference 1).

Current Analyses

The hydrologic and hydraulic analyses for Clear Fork at the Village of Birmingham, Wills Creek and Buffalo Creek at the Village of Pleasant City, Wills Creek at the Village of Derwent, Wills Creek at Kimbolton and Leatherwood Creek at the Village of Quaker City were performed by the U.S. Geological Survey (USGS) and the Ohio Emergency Management Agency (OEMA) (Reference 2). This work was completed in the Fall of 2008.

Additional approximate hydrologic and hydraulic analyses for this countywide FIS were performed by Stantec Consulting Services, Inc. (Stantec) for FEMA under Contract No. HSFE05-05-D-0026, Task Order No. HSFE05-08-J-0035. This work, which was completed in August 16, 2011, covered unprotected flooding sources affecting Guernsey County.

In addition to incorporating the existing countywide FIS for Guernsey County, this countywide FIS includes new approximate studies, redelineation of all other effective profiles and incorporation of approved Letters of Map Changes (LOMCs). The vertical datum was shifted to North American Vertical Datum of 1988 (NAVD88). The digital floodplain data was merged into a single, updated Digital FIRM. The DFIRM includes 2007 OSIP 1-foot digital orthophotography, five-foot contours, 1:24,000 political boundaries, road centerlines with street names, railroads with names, airports, rivers, lakes, streams, bridges and other hydraulic structures and elevation reference marks. All digital information is in projection NAD 1983 HARN State Plane Ohio South FIPS 3402 (feet).

1.3 Coordination

The purpose of an initial Consultation Coordination Officer's (CCO's) meeting is to discuss the scope of the FIS. A final CCO meeting is held to review the results of the study. The dates of the initial and final CCO meeting held for the previous FIS for Guernsey County and the incorporated communities within its boundaries are shown in Table 1 (Reference 1).

Table 1 - Guernsey County CCO Meetings

Community Name	Initial CCO Date	Final CCO Date
Guernsey County, OH		
and Incorporated Areas	April 5, 1984	February 16, 1988

The initial CCO meeting for this 2009 countywide FIS was held on June 13, 2007 and was attended by representatives of FEMA, the Ohio Department of Natural Resources (ODNR), the study contractor and other local participants.

The results of the study were reviewed at the final CCO meeting held on November 9, 2009, and attended by representatives of Guernsey County, and Incorporated Areas, ODNR, FEMA, and the study contractor. All problems raised at that meeting have been addressed.

2.0 AREA STUDIED

2.1 Scope of Study

This countywide FIS covers the geographic area of Guernsey County, Ohio, including the incorporated communities listed in Section 1.1 and unincorporated areas.

For this countywide FIS, no new detailed studies were performed. Flood data obtained from detailed studies performed by the USGS and OEMA in 2008 on portions of Clear Fork, Wills Creek, Buffalo Creek, and Leatherwood Creek were incorporated into this study as Zone AE floodplains, Table 2.

<u>Flooding Source</u> Clear Fork	<u>Limits of Previous Detailed Study</u> From a point approximately 180 feet downstream of Sligo Road to a point approximately 190 feet downstream of Birmingham Road (Birmingham/Guernsey County).
Wills Creek	From a point approximately 90 feet downstream of SR 541 to a point approximately 425 feet downstream of Main Street (Kimbolton/Guernsey County). From a point approximately 260 feet upstream of SR 313 to a point approximately 1.2 miles upstream of Seneca Lane (Derwent/Guernsey County).
Wills Creek/Buffalo Creek	From a point approximately 0.5 miles upstream of SR 146 to a point approximately 0.5 miles downstream of SR 146 (Pleasant City/Guernsey County).
Leatherwood Creek	From a point approximately 70 feet upstream of Eldon Road to a point approximately 1mile downstream of Eldon Road (Village of Quaker City and Guernsey County).

Table 2 - Limits of USGS/OEMA Incorporated Detailed Studies

Detailed studies in the February 17, 1989 countywide FIS for Guernsey County were redelineated for this countywide FIS. The flooding sources studied previously by detailed methods are shown in Table 3. The limits of the detailed studies are described from upstream to downstream (References 1).

<u>Flooding Source</u> Buffalo Fork - Collins Fork	<u>Limits of Previous Detailed Study</u> From a point approximately 865 feet upstream of State Road 83 to a point approximately 3,237 feet downstream of Perry's Den Road (Village of Cumberland and Guernsey County).
Crooked Creek	From a point approximately 1,050 feet downstream of State Road 723 to confluence with Wills Creek (City of Cambridge and Guernsey County).
Hospital Tributary	From a point approximately 280 feet downstream of I-77 to confluence with Wills Creek (Guernsey County).
Leatherwood Creek	From a point approximately 1 mile downstream of Eldon Road to a point approximately 233 feet downstream of Iron Horse Road (Village of Quaker City and Guernsey County). From the upstream corporate limit of the Village of Lore City to a point approximately 1.12 miles downstream of State Road 285 (Village of Lore City and Guernsey County). From a point approximately 2,361 feet upstream of Corduroy Road to confluence with Wills Creek (City of Cambridge and Guernsey County).
Smith Creek	From a point approximately 70 feet downstream of Francis Lane to confluence with Leatherwood Creek (Village of Quaker City)
Wills Creek	From a point approximately 1.1 miles upstream of State Road 209 to a point approximately 3,686 feet downstream of Wills Creek Valley Drive (City of Cambridge and Guernsey County).

Table 3 – Limits of Previous Detailed Studies

Approximate analyses are usually used to study areas having a low development potential or minimal flood hazards. Streams previously studied by approximate analyses are listed in Table 4.

Table 4 – Streams Studied by Approximate Methods

Atkinson Creek Beeham Run Beeham Run Tributary 1 Birds Run Birds Run Tributary 1 Birds Run Tributary 6 Birds Run Tributary 13 Birds Run Tributary 15 Bobs Run Brush Run Brushy Fork Brushy Fork Tributary 12 Brushy Fork Tributary 18 Brushy Fork Tributary 20 Buffalo Creek Buffalo Creek Tributary 3.4 Buffalo Fork **Buffalo Fork Tributary 1 Buffalo Fork Tributary 4** Chapman Run Chapman Run Tributary 1 Chapman Run Tributary 3.1 Chapman Run Tributary 4 Chapman Run Tributary 9 Chapman Run Tributary 12 Christian Creek Clear Fork Clear Fork Tributary 3 Collins Fork Craborchard Creek Crane Run Crooked Creek Crooked Creek Tributary 1 Crooked Creek Tributary 7 Crooked Creek Tributary 10 Crooked Creek Tributary 19 Crooked Creek Tributary 19.2 Crooked Creek Tributary 19.2.2 Dare Run Dry Run Flat Run Hawkins Run Hospital Tributary Tributary 4

Mud Run North Crooked Creek North Crooked Creek Tributary 3 North Crooked Creek Tributary 3.2 **Opossum Run** Peters Creek Peters Creek Tributary 2 Rannells Creek Rocky Fork Rocky Fork Tributary 3 Rocky Fork Tributary 6 Salt Fork Salt Fork Tributary 7 Salt Fork Tributary 11.3 Salt Fork Tributary 25 Salt Fork Tributary 26 Salt Fork Tributary 29 Salt Fork Tributary 32 Salt Fork Tributary 34 Salt Fork Tributary 38 Salt Fork Tributary 38.1 Salt Fork Tributary 38.2 Salt Fork Tributary 40 Salt Fork Tributary 48 Salt Fork Tributary 49 Salt Fork Tributary 51 Salt Fork Tributary 51.4 Sarchet Run Seneca Fork Wills Creek Seneca Fork Wills Creek Tributary 3.1 Seneca Fork Wills Creek Tributary 11 Seneca Fork Wills Creek Tributary 12 Seneca Fork Wills Creek Tributary 12.2 Seneca Fork Wills Creek Tributary 12.3 Shannon Run Skull Fork Skull Fork Tributary 1 Skull Fork Tributary 2 Skull Fork Tributary 4 Skull Fork Tributary 4.1 Skull Fork Tributary 4.2 Skull Fork Tributary 7 **Skull Fork Tributary 8**

Indian Camp Run	Smith Creek
Indian Camp Run Tributary 18	Sugartree Fork
Jackson Run	Sugartree Fork Tributary 9
Johnson Fork	Trail Run
Leatherwood Creek	Turkey Run
Leatherwood Creek Tributary 7	West Fork Duck Creek Tributary 10
Leatherwood Creek Tributary 13	Wills Creek
Leatherwood Creek Tributary 13.6	Wills Creek Tributary 1
Leatherwood Creek Tributary 13.7	Wills Creek Tributary 1.3
Leatherwood Creek Tributary 27	Wills Creek Tributary 1.4
Leatherwood Creek Tributary 29	Wills Creek Tributary 4
Leatherwood Creek Tributary 30	Wills Creek Tributary 6
Leatherwood Creek Tributary 31	Wills Creek Tributary 17
Leatherwood Creek Tributary 34	Wills Creek Tributary 21
Leatherwood Creek Tributary 35	Wills Creek Tributary 27
Leatherwood Creek Tributary 36	Wills Creek Tributary 39
Leatherwood Creek Tributary 41	Wills Creek Tributary 41
Mannon Run	Wills Creek Tributary 43
Mays Fork	Wills Creek Tributary 45
Miller Creek	Wolf Run
Millers Fork	Yoker Creek
Millers Fork Tributary 3	

Table 4 - Streams Studied by Approximate Methods (continued)

Lakes previously studied by approximate analyses are Piedmont Lake, Salt Fork Lake, Senecaville Lake, and Wills Creek Dam. These approximate streams were restudied as part of this FIS.

This countywide FIS also incorporates the determination of letters issued by the FEMA resulting in map revisions [Letter of Map Revision (LOMR)] and map amendments [Letter of Map Amendment (LOMA)], as shown in Table 5.

Community	Case No.	Flood Source(s)	Date Issued	Type
Guernsey County & City of Cambridge	06-05-BT86P	Wills Creek	Feb. 5, 2007	LOMR
Guernsey County & City of Cambridge	00-05-249P	Leatherwood Creek	Jul. 27, 2001	LOMR
Guernsey County & City of Cambridge	98-05-397P	Wills Creek	Apr. 23, 1999	LOMR

Table 5 - Incorporated Letters of Map Change

Letters of Map Amendment (LOMAs) incorporated in this study are summarized in the Summary of Map Actions (SOMA) included in the Technical Support Data Notebook (TSDN) associated with this FIS update. Copies of the SOMA may be obtained from the Community Map Repository. Copies of the TSDN may be obtained from FEMA.

2.2 Community Description

Guernsey County is in east-central Ohio and is bordered on the west by Muskingum County, on the northwest by Coshocton County, on the north by Tuscarawas County, on the northeast by Harrison County, on the east by Belmont County, and on the south by Noble County. Guernsey County is approximately 74 miles east of Columbus and 100 miles south of Cleveland, the major metropolitan areas in this area of Ohio. The largest community in Guernsey County is the City of Cambridge, the county seat. Guernsey County is served by U.S. Routes 22 and 40, and Interstates 70 and 77. The 2008 population of Guernsey County was reported to be 40,177, a 3.0 percent increase from the 1990 population of 39,024. Approximately one-third of the population lives within the City of Cambridge (Reference 3).

The terrain of the area ranges from nearly level in the stream floodplains to sloping and very steep in the uplands. The soils are somewhat poorly drained in the floodplains and well-drained to moderately well-drained in the uplands. These soils are underlain mostly by shale and sandstone with thin layers of limestone bedrock (Reference 4).

The land within Guernsey County is used mainly for forestry, mining, and agriculture. The area has deposits of coal, pottery clay, oil, and natural gas. Industries include stripmining, manufacture of plastic, pottery, glass and glassware, furniture, wood articles, kitchen utensils, spark plugs, small motors, and metal alloys. The agricultural region produces corn, wheat, and oats (Reference 5).

The climate of Guernsey County is typical of the Central Temperate Zone, with frequent and rapid changes in weather due to alternate invasions of continental polar and maritime tropical air masses. Monthly mean temperatures range from a low of 29 degrees Fahrenheit (°F) in January, to a high of 75 °F in July; the average annual precipitation is 39 inches (Reference 6).

All streams studied in this study are within the Muskingum River Basin. Wills Creek, which has a total drainage area of 853 square miles, flows in a northwesterly direction through the City of Cambridge to the Muskingum River and drains the major portion of Guernsey County. The average fall of the stream north of Cambridge is 0.8 foot per mile (Reference 5). Leatherwood Creek, a major tributary to Wills Creek with its confluence in Cambridge, flows in a westerly direction and drains the southeastern portion of Guernsey County. All other streams studied are tributaries to Wills Creek.

The Village of Byesville is located along Wills Creek in south-central Guernsey County. According to the US Census Bureau, the village has a total area of approximately 1.0 square mile and a 2008 population estimate of 2,515 (Reference 3).

The City of Cambridge is the county seat and is located around Wills Creek in central Guernsey County. According to the US Census Bureau, the city has a total area of approximately 5.0 square miles and a 2008 population estimate of 11,192 (Reference 3).

The Village of Cumberland is located along Buffalo Fork in southern Guernsey County. According to the US Census Bureau, the village has a total area of approximately 0.5 square miles and a 2008 population estimate of 389 (Reference 3).

The Village of Fairview is located in eastern Guernsey County and is a multi-county community and shares land area with Belmont County. According to the US Census Bureau, the village has a total area of approximately 0.4 square miles and a 2008 population estimate of 80 (Reference 3).

The Village of Lore City is located along Leatherwood Creek in south-central Guernsey County. According to the US Census Bureau, the village has a total area of approximately 0.3 square miles and a 2008 population estimate of 295 (Reference 3).

The Village of Old Washington is located at the head waters of Hawkins Run in central Guernsey County. According to the US Census Bureau, the village has a total area of approximately 1.0 square mile and a 2008 population estimate of 258 (Reference 3).

The Village of Pleasant City is located along Wills Creek in southern Guernsey County. According to the US Census Bureau, the village has a total area of approximately 0.2 square miles and a 2008 population estimate of 425 (Reference 3).

The Village of Quaker City is located along Leatherwood Creek in south-eastern Guernsey County. According to the US Census Bureau, the village has a total area of approximately 1.0 square mile and a 2008 population estimate of 546 (Reference 3).

The Village of Salesville is located along Leatherwood Creek in south-eastern Guernsey County. According to the US Census Bureau, the village has a total area of approximately 0.1 square miles and a 2008 population estimate of 149 (Reference 3).

The Village of Senecaville is located along Seneca Fork Wills Creek in south-central Guernsey County. According to the US Census Bureau, the village has a total area of approximately 0.5 square miles and a 2008 population estimate of 439 (Reference 3).

2.3 Principal Flood Problems

The principal flooding problems in Guernsey County is the periodic overflow of Wills Creek, Crooked Creek, Leatherwood Creek, Buffalo Creek, Collins Creek, and Smith Creek.

The history of flooding along the streams in the county indicates that flooding could occur during any season of the year. The majority of the major floods have occurred during January to March and have usually been the result of spring rains and/or rapid snowmelt. Major flooding events are noted in previous FISs to have occurred in 1907, 1913, 1935, 1945, 1963, 1964, and 1980. Of these, the Wills Creek flood of August 8, 1935, produced the highest stage and caused the most damage. According to the data obtained from the USGS gage at Cambridge, this flood had a peak discharge of 11,800 cubic feet per second (cfs) and an elevation of 797 feet North American Vertical Datum of 1988 (NAVD) (Reference 5).

In August 1980, a damaging flood occurred that affected four Ohio counties and resulted in a Presidential Disaster Declaration. While all of Guernsey County was affected, the areas hardest hit were Byesville, Cambridge, Lore City, and Quaker City. Based on highwater marks obtained by the USGS (Reference 7), the flood was estimated to have a frequency approximating a 50-year event. However, areas of Cambridge experienced elevations that approximated a 100-year flood because of constriction caused by several bridges within the city. The most recent significant flooding events occurred in 1998, 2004, and 2005 on Wills Creek and Leatherwood Creek. See TABLE 6 for the Maximum Floods of Record.

TABLE 6 — Maximum Floods of Record

F1.....

	Flow
Date	<u>(cfs)</u>
1935	11,800
1945	7,860
1963	8,500
1964	8,370
1980	7,860
1998	11,400
2004	9,110
2005	6,440
2004	10,100
2005	4,050
	1935 1945 1963 1964 1980 1998 2004 2005 2004

2.4 Flood Protection Measures

Flood flows on Seneca Fork are regulated by a dam operated and maintained by the USACE. Senecaville Lake, which is formed by the dam, controls a drainage area of 118 square miles and is used for flood control, recreation, and fish and wildlife enhancement. The dam closure was completed in September 1936 and the reservoir design peak flow is 9,100 cfs (Reference 8).

Flood flows on Salt Fork are regulated by a dam operated and maintained by the Ohio Department of Natural Resources (ODNR). Salt Fork Lake, which is formed by the dam, controls a drainage area of 160 square miles and is used for flood control, recreation, and fish and wildlife enhancement. The reservoir design peak flow is 28,903 cfs (Reference 9).

There were no other structural flood protection works that affect Guernsey County at the time of the 1989 FIS. Additional structural flood protection works have been utilized to prevent or reduce potential flooding damages subsequent to the 1989 FIS.

On Wills Creek and Leatherwood Creek, some levee construction has taken place, but areas not protected by a levee still see significant flooding during major floods. Nonstructural measures for flood protection are of state directives which require that all agencies comply with floodplain management criteria established by the Flood Disaster of 1973 (Reference 1).

3.0 ENGINEERING METHODS

For the flooding sources studied by detailed methods in the community, standard hydrologic and hydraulic study methods were used to determine the flood hazard data required for this study. Flood events of a magnitude that are expected to be equaled or exceeded once on the average during any 10-, 50-, 100- or 500-year period (recurrence interval) have been selected as having special significance for floodplain management and for flood insurance rates. These events, commonly termed the 10-, 50-, 100- and 500-year floods, have a 10-, 2-, 1- and 0.2-percent chance, respectively, of being equaled or exceeded during any year. Although the recurrence interval represents the long-term, average period between floods of a specific magnitude, rare flood increases when periods greater than one year are considered. For example, the risk of having a flood that equals or exceeds the 1-percent-annual-chance (100-year) flood in any 50-year period is approximately 40 percent (4 in 10); for any 90-year period, the risk increases to approximately 60 percent (6 in 10). The analyses reported herein reflect flooding potentials based on conditions existing in the community at the time of completion of this study. Maps and flood elevations will be amended periodically to reflect fluture changes.

3.1 Hydrologic Analyses

Hydrologic analyses were carried out to establish the peak discharge-frequency relationships for each riverine flooding source studied in detail affecting the community.

This countywide FIS report includes information from previously published FIS reports where stream were studied in detail. It also includes new information for streams studied by approximate methods and information from a 2008 USGS/OEMA study which was incorporated as part of this countywide study. Unless indicated otherwise, the information provided in this section was obtained from the previously published FIS reports for Guernsey County.

Detailed Studies

Peak discharges for Wills Creek and Leatherwood Creek (to river mile 5.5) are based on USACE gage records and reflect flow regulation by Senecaville Lake. Peak discharges for Wills Creek were computed by the USACE based on guidelines in Bulletin No. 17A (Reference 9).

Crooked Creek, Hospital Tributary, Collins Fork, Buffalo Fork and Leatherwood Creek (above river mile 20.6), all ungaged streams, were evaluated by the regression methods recommended for this region of Ohio by the ODNR (Reference 10). The mathematical model is based on data received from 46 gaging stations in the Ohio River drainage basin. Principal parameters include drainage areas, stream slopes, and mean annual precipitation.

Hydrologic analyses were carried out to establish peak discharge-frequency relationships for each flooding source studied by detailed methods affecting the community. Peak discharges for the 10-, 2-, 1- and 0.2-percent-annual-chance flooding events and the drainage area for each of the streams studied in detail are shown in Table 7.

Table 7 – Summary of Peak Discharges

		Peak I	Discharges	(cfs)	
	Drainage	<u>10%</u>	<u>2%</u>	<u>1%</u>	0.2%
	Area (Sq.	Annual	Annual	Annual	Annual
Flooding Source and Location	Miles)	Chance	Chance	Chance	Chance
Buffalo Creek					
At mouth	50^{1}	3,930	5,740	6,540	8,410
Buffalo Fork					
At Cambridge Street	28.7	3,060	5,230	6,340	9,300
Clear Fork					
At Birmingham Road	6.9^{1}	1,210	1,880	2,180	2,880
Collins Fork					
At Mouth	22.6	2,520	4,280	5,180	7,600
Crooked Creek					
At Mouth	61.8	3,680	5,610	6,550	8,800
Hospital Tributary					
At Mouth	2.7	582	1,040	1,270	1,960
Leatherwood Creek					
At Mouth	91.8	5,200	7,800	8,900	11,900
At Wintergreen Lane	60	3,990	6,260	7,380	10,000
Just downstream of confluence of					
Smith Creek	24.8	3,613	5,896	6,900	9,098
Upstream of confluence of Smith					
Creek	21.7	3,252	5,194	6,060	7,909
Below Eldon Road (above Unnamed	17.8^{1}	2,660	4,250	4,960	6,470
Tributary)					
Smith Creek					
At Mouth	3.1	742	978	1,103	1,419
Wills Creek					
At Kimbolton Main Street	666^{1}	14,900	19,700	21,700	26,400
At Campbell Avenue	406	6,800	9,800	11,100	14,500
Just upstream of confluence of					
Leatherwood Creek	314	6,400	9,400	10,600	14,050
Below Seneca Fork	275 ¹	7,140	9,790	10,950	13,750
Below confluence of Buffalo Creek					
and Buffalo Fork	121 ¹	6,260	8,880	10,000	12,700
Notes					

¹Drainage area and corresponding discharges taken from 2008 report <u>Floods of December 2004 and January 2005 in</u> <u>Ohio: FEMA Disaster Declaration 1580</u> (Reference 2).

Approximate Studies

Peak discharges for the 1-percent-annual-chance (100-year) storm event were determined at various locations throughout each of the approximate study reaches in Guernsey County. Hydrologic calculations were performed using regression equations presented in SIR 2006-5312 (Reference 11). The regression equations were developed using generalized least-squares (GLS) regression analyses on data from 305 gaging stations.

The equations were developed to estimate flood discharges on unregulated streams based on the total-contributing drainage area, channel slope determined from the 10-85 method, percentage of drainage area as open water and wetlands, and hydrologic regional factors. Additional information about the model development is contained in <u>Techniques for</u> <u>Estimating Flood Peak Discharges of Rural, Unregulated Streams in Ohio</u> by G.F. Koltun, 2003, United States Geological Survey (USGS) Water Resources Investigations Report (WRIR) 03-4164 (Reference 12).

Peak discharges were adjusted when needed to account for the influence of existing stream gages and dams on the approximate study reach.

Approximate methods were used to determine the 1-percent-annual-chance flood boundaries for Piedmont Lake, Salt Fork Lake, Senecaville Lake, and Wills Creek Dam. Flood information supplied by the ODNR and the USACE, Huntington District was used to confirm these flood boundaries.

3.2 Hydraulic Analyses

Analyses of the hydraulic characteristics of flooding from the sources studied were carried out to provide estimates of the elevations of floods of the selected recurrence intervals. Users should be aware that flood elevations shown on the FIRM represent rounded whole-foot elevations and may not exactly reflect the elevations shown on the Flood Profiles or in the Floodway Data Tables in the FIS report. Flood elevations shown on the FIRM are primarily intended for flood insurance rating purposes. For construction and/or floodplain management purposes, users are cautioned to use the flood elevation data presented in this FIS report in conjunction with the data shown on the FIRM.

This countywide FIS report includes information from previously published FIS reports as well as new information and hydraulic information from a 2008 USGS/OEMA study (Reference 2) which was incorporated as part of this countywide study. Unless indicated otherwise, the information provided in this section was obtained from the previously published FIS reports for Guernsey County.

Detailed Studies

Cross-sections for the backwater analyses were obtained from aerial photographs taken in April 1984 at a scale of 1:9600 (Reference 13). Additional floodplain cross-sections, below-water sections, and bridge data were obtained from field surveys. In addition, cross-sections were taken from field surveys obtained by the SCS.

Locations of selected cross-sections used in the hydraulic analyses are shown on the Flood Profiles (Exhibit 1). For stream segments for which a floodway was computed (Section 4.2), selected cross-section locations are also shown on the FIRM.

Detail-studied streams that were not restudied as part of this map update may include a "profile base line" on the maps. This "profile base line" provides a link to the flood profiles included in the FIS report. The detail-studied stream centerline may have been digitized or redelineated as part of this revision. The "profile base lines" for these streams were based on the best available data at the time of their study and are depicted as they were on the previous FIRMs. In some cases where improved topographic data was used

to redelineate floodplain boundaries, the "profile base line" may deviate significantly from the channel centerline or may be outside the SFHA.

Profiles for Wills Creek and the downstream portion of Leatherwood Creek were obtained from the SCS WSP-2 computer program (Reference 14).

Roughness coefficients (Manning's "n") were used to compute the hydraulic conveyance of each cross-section and to compute friction losses between adjacent sections. Roughness factors were chosen by engineering judgment and were based on field observations of streams and floodplains. Separate overbank and channel roughness values were selected for each stream reach. Roughness coefficients (Manning's "n") for water-surface computations of Leatherwood Creek were determined using computer modeling of the backwater curves to match the high-water marks of the September 1980 flood in Quaker City (Reference 7).

Table 8 shows the channel and overbank "n" values typical for early summer conditions for the flooding sources studied by detailed methods (Reference 1).

Flooding Source	Channel "n" Values	Overbank "n" Values
Buffalo Creek ¹	0.035 - 0.090	0.05 - 0.090
Buffalo Fork	0.075	0.100
Clear Fork ¹	0.040 - 0.046	0.040 - 0.064
Collins Fork	0.075	0.100
Crooked Creek	0.060 - 0.075	0.080 - 0.120
Hospital Tributary	0.045 - 0.090	0.045 - 0.055
Leatherwood Creek ¹	0.040 - 0.075	0.036 - 0.120
Smith Creek	0.050	0.060
Wills Creek ¹ Notes	0.035 – 0.090	0.050 - 0.090

Table 8 – Manning's "n" Values

¹Range includes Manning's n values taken from 2008 report <u>Floods of December 2004 and January 2005 in Ohio: FEMA</u> <u>Disaster Declaration 1580</u> (Reference 2).

Water-surface elevations for the floods of the selected recurrence intervals were computed using the HEC-2 step-backwater computer program (Reference 15). Starting water-surface elevations for the streams were based on slope area method.

Flood profiles were drawn showing the computed water-surface elevations to an accuracy of 0.5 foot for floods of the selected recurrence intervals. In cases where two or more profiles are close together, due to limitations of the profile scale, only the higher profile has been shown.

Approximate Studies

Approximate hydraulic analyses were performed using the USACE's Hydraulic Engineering Center River Analysis System (HEC-RAS) computer program (Version 4.0.0). A simplified HEC-RAS hydraulic model was created for each stream system. These models contain unsurveyed cross-sections with an average spacing of 1,800 feet apart. No structures (i.e. bridges or culverts) were included in the modeling.

Cross-section geometry data was created using a 2007 5-foot contour data derived from Light Detection and Ranging (LiDAR) dataset provided by the Ohio Geographically Referenced Information Program Ohio Statewide Imagery Program. The data is in HARN State Plane NAD83, Ohio South Zone 3402, with a vertical datum of NAVD88.

Overbank Manning's 'n' values were estimated from a 2001 National Land Cover Dataset (NLCD) of Ohio prepared by USGS. A field reconnaissance was not performed. Channel 'n' values were assumed to be 0.035. The overbank 'n' values were extracted to RAS directly from GIS using HECGeoRAS 4.1. Table 9 shows the Overbank Manning's 'n' values used for each corresponding landuse. These values were taken from Chow (1959) and McCuen (1998).

Landuse	Manning's 'n'
Developed-Open Space	0.04
Cultivated Crops	0.04
Grassland	0.05
Forest	0.10
Pasture/Hay	0.05
Developed-Low Intensity	0.05
Developed-Medium Intensity	0.06
Developed-High Intensity	0.08
Herbaceous Wetlands	0.08
Shrub/Scrub	0.05
Woody Wetlands	0.06
Barren land	0.03

Table 9- Overbank Manning's 'n' Values

The 1-percent-annual-chance flood discharges determined using the previously described hydrologic methods were used in the HEC-RAS models. Reach boundary conditions were selected in accordance with Guidelines and Specifications for Flood Hazard Mapping Partners, and were either known water surface elevations or normal depth measured from the downstream end of each stream.

The hydraulic analyses for this study are based only on the effects of unobstructed flow. The flood elevations as shown on the profiles (Exhibit 1) are, therefore, considered valid only if hydraulic structures remain unobstructed, operate properly and do not fail, and if channel and overbank conditions remain essentially the same as ascertained during this study. All elevations are referenced from North American Vertical Datum of 1988 (NAVD88); elevation reference marks used in the study are shown on the maps.

3.3 Vertical Datum

All FIS reports and FIRMs are referenced to a specific vertical datum. The vertical datum provides a starting point against which flood, ground and structure elevations can be referenced and compared. Until recently, the standard vertical datum in use for newly created or revised FIS reports and FIRMs was the National Geodetic Vertical Datum of 1929 (NGVD29). With the finalization of the NAVD88, many FIS reports and FIRMs are being prepared using NAVD88 as the referenced vertical datum.

Effective information for this countywide FIS report was converted from NGVD29 to NAVD88 based on data presented in Table 10. The average conversion of -0.7 foot (NGVD29 – 0.7 = NAVD88) was applied to convert all effective Base Flood Elevations (BFEs). Structure and ground elevations in the community must therefore be referenced to NAVD88. It is important to note that adjacent communities in other counties not presented in this countywide FIS may be referenced to NGVD29. This may result in differences in BFEs across the corporate limits between communities.

Point ID	Quadrangle Name	Quadrangle Corner	Latitude	Longitude	Difference
1	New Concord	SE	39.875	-81.625	-0.633 ft
2	Antrim	SE	40.000	-81.250	-0.633 ft
3	Old Washington	SE	40.000	-81.375	-0.663 ft
4	Cambridge	SE	40.000	-81.500	-0.692 ft
5	Bloomfield	SE	40.000	-81.625	-0.715 ft
6	Freeport	SE	40.125	-81.250	-0.627 ft
7	Birmingham	SE	40.125	-81.375	-0.666 ft
8	Kimbolton	SE	40.125	-81.500	-0.702 ft
9	Plainfield	SE	40.125	-81.625	-0.712 ft
10	Byesville	SE	39.875	-81.500	-0.620 ft
11	Otsego	SE	40.000	-81.750	-0.728 ft
12	Wills Creek	SE	40.125	-81.750	-0.715 ft
13	Newcomerstown	SE	40.250	-81.500	-0.682 ft
14	Fresno	SE	40.250	-81.625	-0.696 ft
			Average C	onversion:	-0.677 ft
			Range:		28ft - 0.620ft
			Max Offse		0.057ft

Table 10 – Datum Conversion Calculation

For more information on NAVD88, see the FEMA publication entitled *Converting the National Flood Insurance Program to the North American Vertical Datum of 1988*, or contact the Vertical Network Branch, National Geodetic Survey, Coast and Geodetic Survey, National Oceanic and Atmospheric Administration, Silver Spring, Maryland 20910 (http://www.ngs.noaa.gov).

Temporary vertical monuments are often established during the preparation of a flood hazard analysis for the purpose of establishing local vertical control. Although these monuments are not shown on the FIRM, they may be found in the TSDN associated with

this FIS report and FIRM for this community. Interested individuals may contact FEMA to access these data.

4.0 FLOODPLAIN MANAGEMENT APPLICATIONS

The NFIP encourages State and local governments to adopt sound floodplain management programs. Therefore, each FIS provides l-percent-annual-chance (100-year) flood elevations and delineations of the 1- and 0.2-percent-annual-chance (500-year) floodplain boundaries and l-percent-annual-chance floodway to assist communities in developing floodplain management measures. This information is presented on the FIRM and in many components of this FIS report, including Flood Profiles Floodway Data Tables. Users should reference the data presented in this FIS report as well as additional information that may be available at the local map repository before making flood elevation and/or floodplain boundary determinations.

4.1 Floodplain Boundaries

To provide a national standard without regional discrimination, the 1-percent-annualchance (100-year) flood has been adopted by FEMA as the base flood for floodplain management purposes. The 0.2-percent-annual-chance (500-year) flood is employed to indicate additional areas of flood risk in the community. For each stream studied by detailed methods, the 1- and 0.2-percent-annual-chance floodplain boundaries have been delineated using the flood elevations determined at each cross-section. Between crosssections, the boundaries were interpolated using topographic maps with a contour interval of five feet.

The 1- and 0.2-percent-annual-chance floodplain boundaries are shown on the FIRM. On this map, the 1-percent-annual-chance floodplain boundary corresponds to the boundary of the areas of special flood hazards (Zones A and AE) and the 0.2-percent-annual-chance floodplain boundary corresponds to the boundary of areas of moderate flood hazards. In cases where the 1- and 0.2-percent-annual-chance floodplain boundary has been shown. Small areas within the floodplain boundaries may lie above the flood elevations but cannot be shown due to limitations of the map scale and/or lack of detailed topographic data.

For the streams studied by approximate methods, only the 1-percent-annual-chance floodplain boundary is shown on the FIRM. The approximate 1-percent-annual-chance floodplain boundaries have been delineated using a contour interval of five feet.

These five foot contours were created in May 2007 from digital elevation models (DEMs) which were produced using LIDAR data. Accuracy of this data meets the National Map Accuracy Standards for five foot contour intervals (Reference 16).

4.2 Floodways

Encroachment on floodplains, such as structures and fill, reduces flood-carrying capacity, increases flood heights and velocities, and increases flood hazards in areas beyond the encroachment itself. One aspect of floodplain management involves balancing the economic gain from floodplain development against the resulting increase in flood hazard. For purposes of the NFIP, a floodway is used as a tool to assist local

communities in this aspect of floodplain management. Under this concept, the area of the l-percent-annual-chance floodplain is divided into a floodway and a floodway fringe. The floodway is the channel of a stream, plus any adjacent floodplain areas, that must be kept free of encroachment so that the l-percent-annual-chance flood can be carried without substantial increases in flood heights. Minimum Federal standards limit such increases to 1.0 foot, provided that hazardous velocities are not produced. The floodways in this study are presented to local agencies as minimum standards that can be adopted directly or that can be used as a basis for additional floodway studies.

The floodway presented in this 2009 FIS report and on the FIRM were directly obtained from the floodway data contained in the 1989 countywide FIS report they were computed for certain stream segments on the basis of equal conveyance reduction from each side of the floodplain. Floodway widths were computed at cross-sections. Between cross-sections, the floodway boundaries were interpolated. The results of the floodway computations have been tabulated for selected cross-sections and can be seen in Table 11. In cases where the floodway and l-percent-annual-chance floodplain boundaries are either closing together or collinear, only the floodway boundary has been shown.

A floodway has not been computed for the upper portion of Wills Creek which is consistent with previously published FIS reports. In areas where USGS/OEMA leverage data was incorporated, floodways also have not been computed (Reference 2). Along streams where floodways have not been computed, the community must ensure that the cumulative effect of development in the floodplain will not cause more than a 1.0-foot increase in the base flood elevations at any point within the community.

Because the floodway was not recalculated, there were areas where the previous floodway did not fit within the boundaries of the 1-percent-annual-chance floodplain. Therefore, in these areas, the floodway was reduced. Table 11 lists the water surface elevations with and without a floodway, the mean velocity in the floodway, and the location and area at each surveyed cross-section as determined by hydraulic methods. The width of the floodway depicted by the FIRM panels and the amount of reduction to fit the floodway inside the 1-percent-annual-chance floodplain, if necessary, is also listed.

Encroachment into areas subject to inundation by floodwaters having hazardous velocities aggravates the risk of flood damage and heightens potential flood hazards by further increasing velocities. A listing of stream velocities at selected cross-sections is provided in Table 11 "Floodway Data". In order to reduce the risk of property damage in areas where the stream velocities are high, the community may wish to restrict development in areas outside of the floodway.

The floodways in this report are recommended to local agencies as minimum standards that can be adopted or used as a basis for additional studies.

The area between the floodway and l-percent-annual-chance floodplain boundaries is termed the floodway fringe. The floodway fringe encompasses the portion of the floodplain that could be completely obstructed without increasing the water-surface elevation of the l-percent-annual-chance flood more than 1.0 foot at any point. Typical

relationships between the floodway and the floodway fringe and their significance to floodplain development are shown in Figure 1.

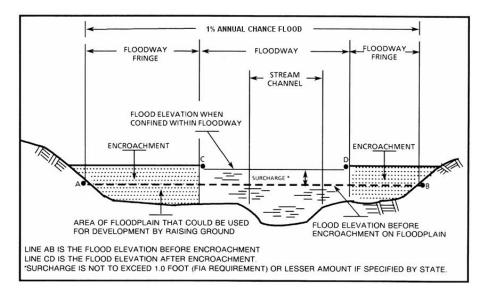


Figure 1 – Floodway Schematic

Q	INCREASE	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.9			RK
CHANCE FLOC ELEVATION VD)	WITH FLOODWAY	827.3 828.7 830.3 831.0 832.8 834.3 834.3 834.3 834.3 834.3 834.3 834.3 834.3 836.7 836.7		ATA	CLINS FO
1-PERCENT-ANNUAL-CHANCE FLOOD WATER SURFACE ELEVATION (FEET NAVD)	WITHOUT FLOODWAY	826.3 827.7 829.3 830.1 831.8 833.3 833.6 835.2 835.2 835.8 835.8		FLOODWAY DATA	RK - CO I
1-PERC W/	REGULATORY	826.3 827.7 829.3 830.1 831.8 833.3 833.6 833.6 835.2 835.8 835.8		FLOC	BUFFALO FORK - COLLINS FORK
	WIDTH REDUCED FROM PRIOR STUDY (FEET)				BUF
FLOODWAY	MEAN VELOCITY (FEET PER SECOND)	1.6 1.9 1.6 1.6 0.9 1.1 1.2 1.5		Х	
FLOC	SECTION AREA (SQUARE FEET)	4062 3472 4392 3355 69 87 69 87 69 87 69 87 8350 3507 3507		MENT AGENC	ALY, UH AREAS
	WIDTH (FEET)	1114 957 979 11441 11441 686 628 628		FEDERAL EMERGENCY MANAGEMENT AGENCY	GUEKNSEY COUNTY, OH AND INCORPORATED AREAS
SOURCE	DISTANCE ¹	37103 38301 39954 40461 41691 42129 42129 42129 4279 42979 42945 43945 44706		BRAL EMERGE	UEKINSE AND INCOI
FLOODING SOURCE	CROSS SECTION	Buffalo Fork A B C C E F F Collins Fork G H I	Feet above mouth	FEDI	* ق
	C	<u> </u>	ree	TAB	LE 11

QC	INCREASE	NA ² NA ² NA ² NA ² NA ²			
-CHANCE FLO E ELEVATION AVD)	WITH FLOODWAY	$\begin{array}{c} \mathbf{NA}^2\\ \mathbf{NA}^2\\ \mathbf{NA}^2\\ \mathbf{NA}^2\\ \mathbf{NA}^2\\ \mathbf{NA}^2\end{array}$		ATA	KΚ
1-PERCENT-ANNUAL-CHANCE FLOOD WATER SURFACE ELEVATION (FEET NAVD)	WITHOUT FLOODWAY	830.2 831.9 833.9 835.3 835.3 835.3 837.2 837.2		FLOODWAY DATA	CLEAR FORK
1-PERO W.	REGULATORY	830.2 831.9 833.1 835.3 835.3 837.2 837.2		FLO(CI
	WIDTH REDUCED FROM PRIOR STUDY (FEET)				
FLOODWAY	MEAN VELOCITY (FEET PER SECOND)	NA ² NA ² NA ² NA ² NA ²	am Road	X	
FLO	SECTION AREA (SQUARE FEET)	NA ² NA ² NA ² NA ² NA ² NA ²	m of Birmingh	MENT AGENC	VIY, UH DAREAS
	WIDTH (FEET)	NA ² NA ² NA ² NA ² NA ² NA ²	feet downstrea	FEDERAL EMERGENCY MANAGEMENT AGENCY	GUEKNSEY COUNTY, OH AND INCORPORATED AREAS
OURCE	DISTANCE ¹	24 262 734 1107 1512 2060 2615	roximately 182	ERAL EMERGE	UERNSE AND INCO
FLOODING SOURCE	CROSS SECTION	Clear Fork B F G	¹ Feet from a point approximately 182 feet downstream of Birmingham Road ² No data available	FEDI	ר ני
			1 Fe ϵ	TAB	LE 11

				Υ
Q	INCREASE	$\begin{array}{c} 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 0.4\\ 0.7\\ 0.6\\ 0.6\\ 0.6\\ 0.6\\ 0.6\\ 0.9\\ 0.9\\ 0.9\\ 0.9\\ 0.9\\ 0.9\\ 0.9\\ 0.9$		BUTAR
-CHANCE FLOC (ELEVATION (VD)	WITH FLOODWAY	791.4 792.4 793.0 793.9 793.9 793.9 796.0 800.4 803.1 796.1 786.0 786.0 786.0 786.0 786.0 786.0 789.0 793.7 793.7 793.7 795.5 795.5		ATA TAL TRI
1-PERCENT-ANNUAL-CHANCE FLOOD WATER SURFACE ELEVATION (FEET NAVD)	WITHOUT FLOODWAY	790.4 ² 791.4 ² 792.0 ² 792.9 ² 792.9 ² 792.9 ² 792.9 777.4 ² 785.2 ² 785.2 ² 785.2 ² 785.2 ² 789.4 792.9 793.9 793.9		FLOODWAY DATA REEK - HOSPITAL
1-PER(W/	REGULATORY	794.8 794.8 794.8 795.1 795.1 800.1 800.1 800.1 800.1 786.0 786.0 786.0 786.0 786.0 786.0 789.4 793.9 793.9 793.9		FLOODWAY DATA CROOKED CREEK - HOSPITAL TRIBUTARY
	WIDTH REDUCED FROM PRIOR STUDY (FEET)			CROOKF
FLOODWAY	MEAN VELOCITY (FEET PER SECOND)	1.8 1.2 1.5 1.5 1.6 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0		×
FLOC	SECTION AREA (SQUARE FEET)	3,634 5322 5322 5320 3200 3200 3207 4435 437 256 232 265 254 265 254 265 265 27 265 27 265 27 209 265 27 209 265 27 209	n Wills Creek	MENT AGENCY
	WIDTH (FEET)	290 224 226 224 224 330 349 349 351 51 200 54 55 113 113 113	vater effect fro	FEDERAL EMERGENCY MANAGEMENT AGENCY GUERNSEY COUNTY, OH AND INCORPORATED AREAS
JURCE	DISTANCE ¹	2200 6730 8980 11510 14228 18438 30031 34858 4955 5385 6485 7785 8395 8395 8395 9345 9345 9345	nsidering backv	eral emerge UERNSE ND INCOF
FLOODING SOURCE	CROSS SECTION	Crooked Creek A B C C C C G H H A A A A A A A B B C C C C C C C C C C C	² Elevations without considering backwater effect from Wills Creek	ede B
		- Fee	² Ele	TABLE 11

FLOODING SOURCE		FLO	FLOODWAY		I-PER W	1-PERCENT-ANNUAL-CHANCE FLOOD WATER SURFACE ELEVATION (FEET NAVD)	-CHANCE FLO E ELEVATION AVD)	00
CROSS SECTION DISTANCE ¹	CE ¹ WIDTH (FEET)	AREA (SQUARE FEET)	VELOCITY (FEET PER SECOND)	WIDTH REDUCED FROM PRIOR STUDY (FEET)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
Leatherwood Creek	000	7 1 0 0	Ċ			700 J ²		00
034		39/4	7.7		1.99/	700.0 ²	6.661	0.8
6502		06821	0.7		1.66/	798.9 700.0 ²	9.99/	0.8
7067		/008	1.3		1.66/	/ 98.9	6.66/	0.8
3907		2748	3.2		799.1	798.9^{4}	799.9	0.8
5174		8955	1.6		799.6	799.6	800.5	0.9
6178	534	9321	1.4		T.99.T	7.99.7	800.5	0.8
6970	475	5077	3.2		7.99.T	7.99.7	800.6	0.9
8026	541	9400	1.7		7.99.7	7.99.7	800.7	1.0
9926	1240	20837	0.8		799.8	799.8	800.8	1.0
12197	1143	18030	0.9		799.8	799.8	800.8	1.0
13939	1055	16757	0.5		800.5	800.5	801.4	0.9
19948	1879	27919	0.3		800.9	800.9	801.9	1.0
22250	1738	24692	0.4		800.9	800.9	801.9	1.0
23602	1619	20202	0.4		800.9	800.9	801.9	1.0
24895	1194	14369	0.6		801.0	801.0	802.0	1.0
26083		19251	0.5		801.0	801.0	802.0	1.0
56813	974	2829	2.6		812.7	812.7	813.7	1.0
57341	59	655	11.3		813.8	813.8	814.7	0.9
58714		1683	4.4		819.0	819.0	819.6	0.6
60403	1216	8347	0.8		819.5	819.5	820.1	0.6
61406	1354	8655	0.9		819.5	819.5	820.2	0.7
62299	1254	7771	0.9		819.6	819.6	820.4	0.8
62726	1111	1875	1.5		819.8	819.8	820.6	0.8
108889		3076	2.3		860.8	860.8	861.8	1.0
109465	5 455	3430	2.1		861.7	861.7	862.4	0.7
considering t	² Elevations without considering backwater effect from Wills Creek	om Wills Creek						
EDERAL EME)	FEDERAL EMERGENCY MANAGEMENT AGENCY	BMENT AGENC	X		FLOC	FLOODWAY DATA	ATA	
LIFPN	CLIFPNCEV COUNTV (UTV OH						
AND IN(AND INCORPORATED AREAS	D AREAS	_		LEATHI	LEATHERWOOD CREEK	CREEK	

	FLOODING SOURCE	JURCE		FLOC	FLOODWAY		1-PER W.	RCENT-ANNUAL-CHANCE FLC WATER SURFACE ELEVATION (FEET NAVD)	1-PERCENT-ANNUAL-CHANCE FLOOD WATER SURFACE ELEVATION (FEET NAVD)	QC	
	CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	WIDTH REDUCED FROM PRIOR STUDY (FEET)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE	
	Leatherwood Creek (continued) Z AB AC AC AC AC AC AC AI AI AN AN AN AN AN AN AN AN AN AN AN AN AN	111503 112754 113087 113568 114159 114618 114618 114618 115389 115389 119993 119993 119993 119993 119993 122237 122237 122237 122237 125257 125257	637 290 180 222 421 518 885 915 915 915 885 NA ² NA ² NA ² NA ² NA ² NA ² NA ²	4747 1971 1331 2063 3442 4181 5312 4477 8717 2950 6296 6296 6296 8717 872 8717 872 8717 872 872 872 872 872 872 872 872 872 87	1.4 3.2 3.1 3.1 1.5 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.4 NA ² 2 NA ² 2 NA ² 2 NA ² 2 NA ² 2 NA ² 2 NA ² 2 N	23 [°]	863.0 865.3 866.9 867.0 867.1 867.1 867.1 873.2 873.2 873.2 879.1 873.2 879.1 879.2 879.4 880.6 880.6 880.6	863.0 866.3 866.9 867.1 867.1 867.1 867.3 873.2 873.2 873.2 873.3 873.2 873.4 873.4 873.6 875.6	863.8 864.7 866.6 867.9 867.9 867.9 868.1 868.3 867.9 867.9 867.9 867.9 873.1 873.1 873.1 873.1 873.2 NA ² NA ²	0.8 0.3 0.5 0.9 1.0 1.0 0.7 NA ² NA ² NA ² NA ² NA ² NA ² NA ² NA ² NA ² NA ²	
¹ Fe ³ Nc ³ Se	¹ Feet above mouth ² No data available ³ See explanation in Section 4.2	ction 4.2									
TABL	FEDI	ERAL EMERG	FEDERAL EMERGENCY MANAGEMENT AGENCY GLIFTRNSFLY COUNTY, OH	MENT AGENCY	Ķ		FLOC	FLOODWAY DATA	ATA		
E 11		AND INCO	AND INCORPORATED AREAS	AREAS			LEATHI	LEATHERWOOD CREEK	CREEK		

Q	INCREASE	0.8 0.9 0.1 0.7 1.0 1.0 1.0			
CHANCE FLOO ELEVATION VD)	WITH FLOODWAY	865.7 866.8 868.8 870.7 871.9 871.9 873.5 874.9		ATA	EK
1-PERCENT-ANNUAL-CHANCE FLOOD WATER SURFACE ELEVATION (FEET NAVD)	WITHOUT FLOODWAY	865.6 ² 866.7 ² 869.7 ² 870.5 871.8 873.2 873.2		FLOODWAY DATA	SMITH CREEK
1-PERC W/	REGULATORY	868.8 869.3 869.3 870.5 873.2 873.2		FLOC	SM
	WIDTH REDUCED FROM PRIOR STUDY (FEET)				
FLOODWAY	MEAN VELOCITY (FEET PER SECOND)	2.3 7.2 3.0 3.0 3.9	Creek	Y	
FLO	SECTION AREA (SQUARE FEET)	483 190 153 200 373 373 286	a Leatherwood	MENT AGENC	VIY, UH DAREAS
	WIDTH (FEET)	93 32 25 111 80 80	flow effect fron	FEDERAL EMERGENCY MANAGEMENT AGENCY	GUEKNSEY COUNTY, OH AND INCORPORATED AREAS
OURCE	DISTANCE	568 1018 1333 1633 1847 2387 2827 3417 3417	nsidering over	ERAL EMERGE	UEKNSE AND INCO
FLOODING SOURCE	CROSS SECTION	Smith Creek A B F F H	Feet above mouth ² Elevations without considering overflow effect from Leatherwood Creek	FEDI	ֿ ל
			¹ Fee	TAB	LE 11

QC	INCREASE	NA ² NA ² NA ² NA ²			NC
-CHANCE FLOO E ELEVATION AVD)	WITH FLOODWAY	$\begin{array}{c} NA^2\\NA^2\\NA^2\\NA^2\\NA^2\\NA^2\end{array}$		ATA	IMBOLT
1-PERCENT-ANNUAL-CHANCE FLOOD WATER SURFACE ELEVATION (FEET NAVD)	WITHOUT FLOODWAY	775.9 775.9 776.5 776.7 777.2		FLOODWAY DATA	EK AT K
1-PER W	REGULATORY	775.9 775.9 776.5 777.2 777.2		FLOC	WILLS CREEK AT KIMBOLTON
	WIDTH REDUCED FROM PRIOR STUDY (FEET)		(t)		M
FLOODWAY	MEAN VELOCITY (FEET PER SECOND)	NA ² NA ² NA ² NA ² NA ²	Street (Main Street)	Y	
FLOO	SECTION AREA (SQUARE FEET)	NA ² NA ² NA ² NA ²		MENT AGENC	VIY, UH DAREAS
	WIDTH (FEET)	NA ² NA ² NA ² NA ² NA ²	feet downstrea	FEDERAL EMERGENCY MANAGEMENT AGENCY	GUEKNSEY COUNTY, OH AND INCORPORATED AREAS
OURCE	DISTANCE ¹	111 410 1181 1932 3150 4693	roximately 460	ERAL EMERGE	UERNSE AND INCOI
FLOODING SOURCE	CROSS SECTION	Wills Creek at Kimbolton A B C C F F	¹ Feet from a point approximately 460 feet downstream of Plum ² No data available	FEDI	` گ
			² No	TAB	LE 11

D	INCREASE		1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0					
-CHANCE FLOC (ELEVATION (VD)	WITH FLOODWAY		794.7	794.8	794.9	795.0	795.0	795.0	795.0	795.1	795.1	795.5	795.5	795.5	795.7	795.8	795.9	796.1	796.2	796.2	796.3	796.4	796.5	796.6	796.7	796.9	797.4			ATA	Ϋ́Υ,	EK
1-PERCENT-ANNUAL-CHANCE FLOOD WATER SURFACE ELEVATION (FEET NAVD)	WITHOUT FLOODWAY		793.7	793.8	793.9	794.0	794.0	794.0	794.0	794.1	794.1	794.5	794.5	794.5	794.7	794.8	794.9	795.1	795.2	795.2	795.3	795.4	795.5	795.6	795.7	795.9	796.4			FLOODWAY DATA		WILLS CREEK
1-PER(W.	REGULATORY		793.7	793.8	793.9	794.0	794.0	794.0	794.0	794.1	794.1	794.5	794.5	794.5	794.7	794.8	794.9	795.1	795.2	795.2	795.3	795.4	795.5	795.6	795.7	795.9	796.4		ы OO	FLOC		IW
	WIDTH REDUCED FROM PRIOR STUDY (FEET)																											Road	NOau			
FLOODWAY	MEAN VELOCITY (FEET PER SECOND)		1.0	0.8	1.0	0.9	0.6	0.8	1.6	2.1	3.3	0.1	0.6	1.2	1.2	1.0	1.0	1.4	1.0	1.0	1.8	2.1	1.9	1.4	1.7	2.4	1.7	Creek Valley	LICCK VALUE I	Y		
FLOO	SECTION AREA (SQUARE FEET)		12103	15727	11561	12870	18696	14377	7686	5662	3596	16064	21516	10188	9896	11863	10772	8120	10762	10528	6033	5356	5711	7741	6442	4575	6638	am from Wills		MENT AGENC	ITV OH	AREAS
	WIDTH (FEET)		582	923	600	755	1272	988	511	300	120	1086	1516	600	670	793	706	679	882	875	413	294	276	516	347	245	323	5 feet downstre	FEDERAL EMERGENCY MANAGEMENT AGENCY	NCY MANAGE	GUERNSEY COUNTY AND INCORPORATED ARI	
JURCE	DISTANCE		100	866	3573	4852	5961	6964	8020	9023	9868	10924	11822	12878	14514	16732	18633	21431	22435	23174	24652	26553	27873	28982	30038	31041	31516	oximately 3575		RAL EMERGEN		AND INCORPORATED AREAS
FLOODING SOURCE	CROSS SECTION	Wills Creek	А	В	С	D	Е	F	U	Н	Ι	J	K	L	Μ	N	0	Ρ	б	R	S	Т	D	Λ	M	X	Υ	Feet from a point approximately 3575 feet downstream from Wills Creek Valley Road		FEDE	じ	Ä
																												¹ Fe	, 	TAF	BL	E 11

																										_			
1-PERCENT-ANNUAL-CHANCE FLOOD WATER SURFACE ELEVATION (FEET NAVD)	INCREASE		1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.9	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.1			
	WITH FLOODWAY		798.2	798.2	798.3	798.3	798.5	798.5	798.6	1.961	7.98.7	798.8	799.3	799.4	799.7	800.0	800.0	800.1	800.1	800.1	800.1	800.1	800.2	800.2	800.2	800.2	ATA		EK
RCENT-ANNUAL-CHANCE FLC WATER SURFACE ELEVATION (FEET NAVD)	WITHOUT FLOODWAY		797.2	797.2	797.3	797.3	797.5	797.5	797.6	1.161 T TPT	L'L6L	797.8	798.3	798.4	798.7	799.0	799.1	799.1	799.1	799.1	799.1	1.66/	799.2	2.991	2.997	7.661	FLOODWAY DATA		WILLS CREEK
1-PER(W/	REGULATORY		797.2	797.2	797.3	797.3	797.5	797.5	797.6	1.161 T TPT	L'16L	797.8	798.3	798.4	798.7	799.0	799.1	799.1	799.1	799.1	799.1	1.667	799.2 200.2	2.66/	2.99/2 2.007	7.661	FLOC		WI
	WIDTH REDUCED FROM PRIOR STUDY (FEET)																									Road			
FLOODWAY	MEAN VELOCITY (FEET PER SECOND)		1.6	2.0	2.7	1.4	1.8	2.4	2.2	و.1 د د	2.4	3.3	3.7	2.1	2.8	2.1	3.3	3.8	0.7	0.3	0.3	1.0	0.6	0.0 0	0.3	U.2 Creek Valley I			
FLOC	SECTION AREA (SQUARE FEET)		7145	5482	4170	0662	6283	4618	5032	510C	4700	3352	3037	5274	4006	5397	3325	2951	15643	33864	38701	11029	17575	21944	33091	at the matter of	AENT AGENCY		AREAS
	WIDTH (FEET)		437	216	154	360	272	193	230	167	197	130	119	248	113	185	125	105	1030	1870	2276	/80	1026	14/8	2333	feet downstrea	NCY MANAGEN		r COUL
JURCE	DISTANCE ¹		32519	33602	33738	34869	35687	35832	36770	37862	38492	38993	39125	39653	42716	42857	43460	43575	44675	45361	46470	49268	50351	21616	52047	oximately 3575	FEDERAL EMERGENCY MANAGEMENT AGENCY	HU ALNIUJ AASNAAIIJ	ULTINGE I CUUINTT, U AND INCORPORATED AREAS
FLOODING SOURCE	CROSS SECTION	Wills Creek (continued)	Z	AA	AB	AC	AD	AE	AF	DA	AI	AJ	AK	AL	AM	AN	AO	AP	AQ	AR	AS	AT	AU	AV	AW	Feet from a point approximately 3575 feet downstream from Wills Creek Valley Road	FEDE		5
																										¹ Fe	TA	BI	LE 11

Q	INCREASE	$\begin{array}{c} NA^2\\ NA$		
CHANCE FLOG ELEVATION VD)	WITH FLOODWAY	NA ² NA ²	ATA	EK
1-PERCENT-ANNUAL-CHANCE FLOOD WATER SURFACE ELEVATION (FEET NAVD)	WITHOUT FLOODWAY	799.2 799.2 799.3 799.3 799.4 799.4 799.4 799.4 799.7 799.6 799.7 799.6 800.5 800.5 800.5 800.9 801.0 801.1 801.2 801.3 801.2	FLOODWAY DATA	WILLS CREEK
1-PERC W/	REGULATORY	799.2 799.3 799.3 799.3 799.4 799.4 799.4 799.6 799.6 799.6 799.6 799.6 799.6 799.6 799.6 800.5 800.5 800.9 801.0 801.1 801.2 801.3 801.2 801.3	FLOC	IM
	WIDTH REDUCED FROM PRIOR STUDY (FEET)	Soad		
FLOODWAY	MEAN VELOCITY (FEET PER SECOND)	$\begin{array}{c} NA^2\\ NA$	×	
FLOC	SECTION AREA (SQUARE FEET)	$\begin{tabular}{c} NA^2 \\ NA$	MENT AGENC	d IY, OH AREAS
	WIDTH (FEET)	NA^{2} N	FEDERAL EMERGENCY MANAGEMENT AGENCY	GUEKNSEY COUNTY, OH AND INCORPORATED AREAS
OURCE	DISTANCE ¹	56429 57772 57055 57055 57055 60366 60366 61226 62782 62782 63379 64472 62782 63379 64472 63379 64472 65870 67830 67630 67586 71214 71214 712190 77179 77779 77779 78791 80000	BRAL EMERGE	UEKNSE and incoi
FLOODING SOURCE	CROSS SECTION	Wills Creek (continued) 56429 NA ²	FEDF	5
		Fee No	TAB	LE 11

			_		
D	INCREASE	NA ² NA ²			JEK
-CHANCE FLOO E ELEVATION AVD)	WITH FLOODWAY	$\begin{array}{c} NA^2\\N^2\\\mathsf$		ATA	- BUFFALO CREEK
1-PERCENT-ANNUAL-CHANCE FLOOD WATER SURFACE ELEVATION (FEET NAVD)	WITHOUT FLOODWAY	802.9 802.8 802.6 802.5 803.3 803.4 803.4 803.4 803.2 804.6 805.2 805.9 805.9		FLOODWAY DATA	
1-PERO W.	REGULATORY	802.9 802.8 802.6 802.6 803.3 803.3 803.7 803.7 803.7 803.7 803.7 803.7 805.6 805.9		FLOC	WILLS CREEK
	WIDTH REDUCED FROM PRIOR STUDY (FEET)		Road		MII
FLOODWAY	MEAN VELOCITY (FEET PER SECOND)	NA ² NA ² NA ² NA ² NA ² NA ² NA ² NA ² NA ² NA ²	Feet from a point approximately 3575 feet downstream from Wills Creek Valley Road ² No data available	Y	
FLOO	SECTION AREA (SQUARE FEET)	NA ² NA ²		MENT AGENC	VIY, OH DAREAS
	WIDTH (FEET)	NA ² NA ²	5 feet downstre	NCY MANAGE	LY COUR RPORATEI
OURCE	DISTANCE ¹	100290 100394 104158 104158 109731 110042 121703 124020 124610 124610 124610 125671 124610 125671 127160	roximately 357	FEDERAL EMERGENCY MANAGEMENT AGENCY	GUEKNSEY COUNTY, OH AND INCORPORATED AREAS
FLOODING SOURCE	CROSS SECTION	Wills Creek (continued) BV BW BX BY BY BY CA CA CA CC CC CC CC CC CC CC CC CC CC	¹ Feet from a point app ¹ ² No data available	FEDE	5
			¹ Fe ⁻ Nc	TAB	LE 11

5.0 **INSURANCE APPLICATIONS**

For flood insurance rating purposes, flood insurance zone designations are assigned to a community based on the results of the engineering analyses. These zones are as follows:

Zone A

Zone A is the flood insurance risk zone that corresponds to the 1-percent-annual-chance floodplains that are determined in the FIS by approximate methods. Because detailed hydraulic analyses are not performed for such areas, no BFEs or base flood depths are shown within this zone.

Zone AE

Zone AE is the flood insurance risk zone that corresponds to the 1-percent-annual-chance floodplains that are determined in the FIS by detailed methods. In most instances, whole-foot BFEs derived from the detailed hydraulic analyses are shown at selected intervals within this zone.

Zone X

Zone X is the flood insurance risk zone that corresponds to areas outside the 0.2-percent-annualchance floodplain, areas within the 0.2-percent-annual-chance floodplain, areas of 1-percentannual-chance flooding where average depths are less than 1 foot, areas of 1-percent-annualchance flooding where the contributing drainage area is less that 1 square mile, and areas protected from the 1-percent-annual-chance flood by levees. No BFEs or base flood depths are shown within this zone.

6.0 FLOOD INSURANCE RATE MAP

The FIRM is designed for flood insurance and floodplain management applications.

For flood insurance applications, the map designates flood insurance risk zones described in Section 5.0 and, in the 1-percent-annual-chance floodplains that were studied by detailed methods, shows selected whole-foot BFEs or average depths. Insurance agents use the zones and BFEs in conjunction with information on structures and their contents to assign premium rates for flood insurance policies.

For floodplain management applications, the map shows by tints, screens and symbols, the 1- and 0.2-percent-annual-chance floodplains, floodways and the locations of selected cross-sections used in the hydraulic analyses and floodway computations.

The current FIRM presents flooding information for the entire geographic area of Guernsey County. Previously, separate FIRMs were prepared for each identified flood-prone incorporated community and the unincorporated areas of the county with identified special flood hazard areas. Historical data relating to the maps prepared for each community are presented in Table 11.

FIRM REVISION DATE(S)	August 16, 2011	August 16, 2011	August 16, 2011	None	August 16, 2011	August 16, 2011	None	August 16, 2011	August 16, 2011	August 16, 2011	August 16, 2011		IISTORY
FIRM EFFECTIVE DATE	February 17, 1989	March 18, 1986	February 17, 1989	N/A	February 17, 1989	February 17, 1989	N/A	January 5, 1979	February 17, 1989	February 17, 1989	February 17, 1989		COMMUNITY MAP HISTORY
FLOOD HAZARD BOUNDARY MAP REVISION DATE(S)	May 21, 1976	November 21, 1975	None	None	December 16, 1977	July 2, 1976	None	July 30, 1976	None	None	None		COMN
INITIAL IDENTIFICATION	March 29, 1974	May 31, 1974	September 15, 1978	N/A	March 21, 1975	August 30, 1974	N/A	August 23, 1974	September 29, 1978	February 17, 1989	October 6, 1978	q	EMENT AGENCY Y, OHIO) AREAS
COMMUNITY NAME	Byesville, Village of	Cambridge, City of	Cumberland, Village of	* Fairview, Village of	Guernsey County (Unincorporated Areas)	Lore City, Village of	* Old Washington, Village of	Pleasant City, Village of	Quaker City, Village of	Salesville, Village of	Senecaville, Village of	*No Special Flood Hazard Areas Identified	FEDERAL EMERGENCY MANAGEMENT AGENCY GUERNSEY COUNTY, OHIO AND INCORPORATED AREAS

7.0 OTHER STUDIES

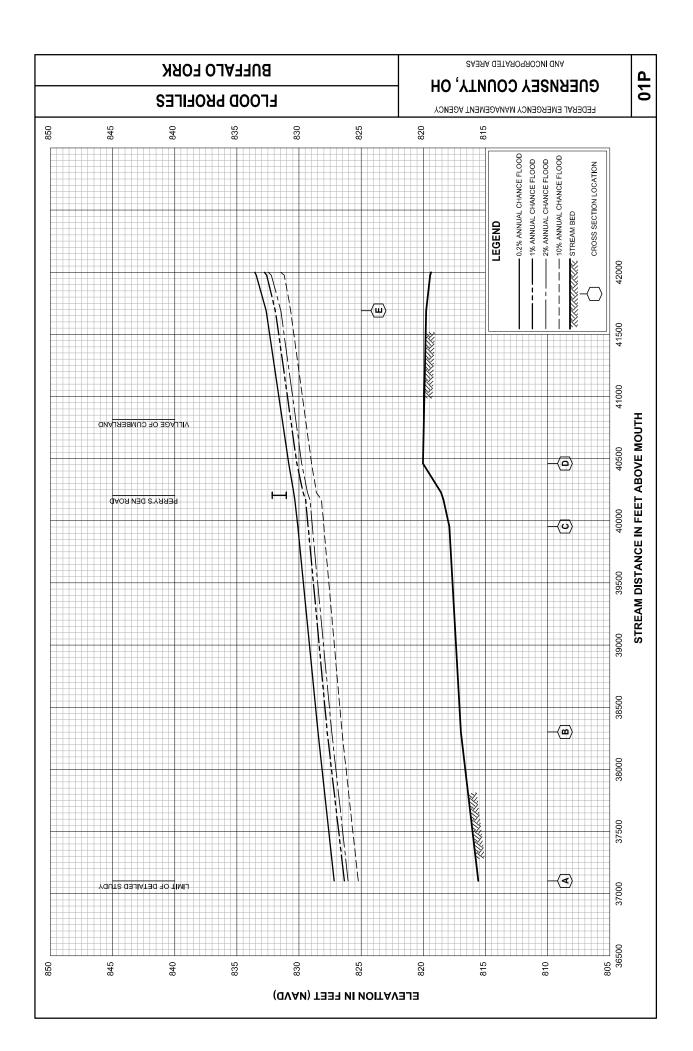
This FIS incorporates all previously published FISs and FIRMs for the areas within Guernsey County.

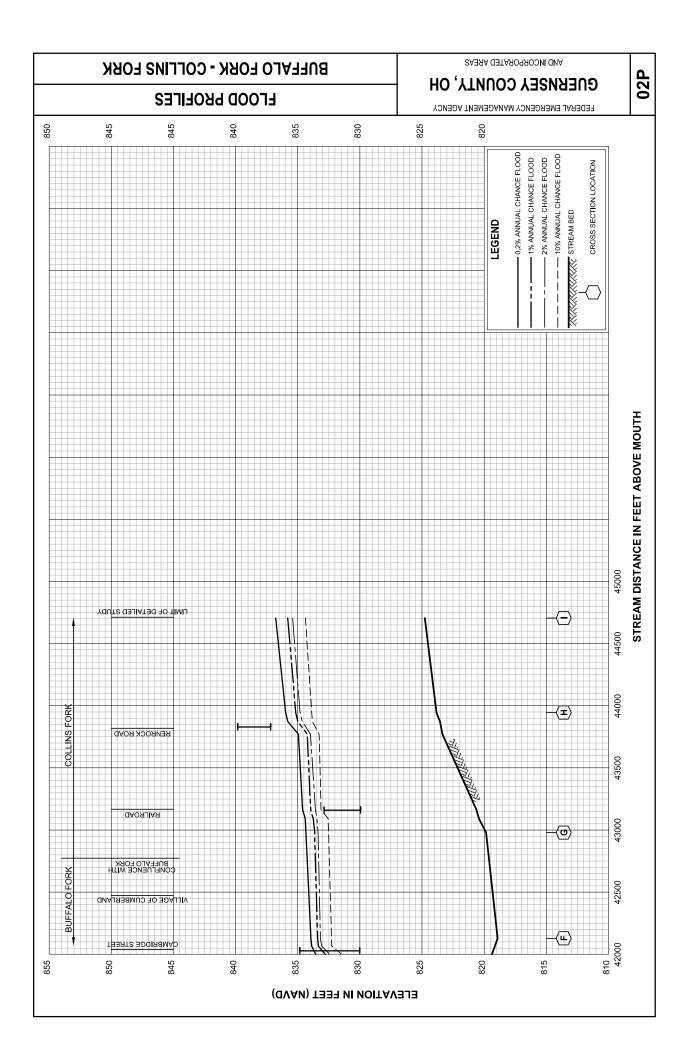
This FIS report supersedes all previous studies published on streams studied in this report and should be considered authoritative for purposes of the National Flood Insurance Program.

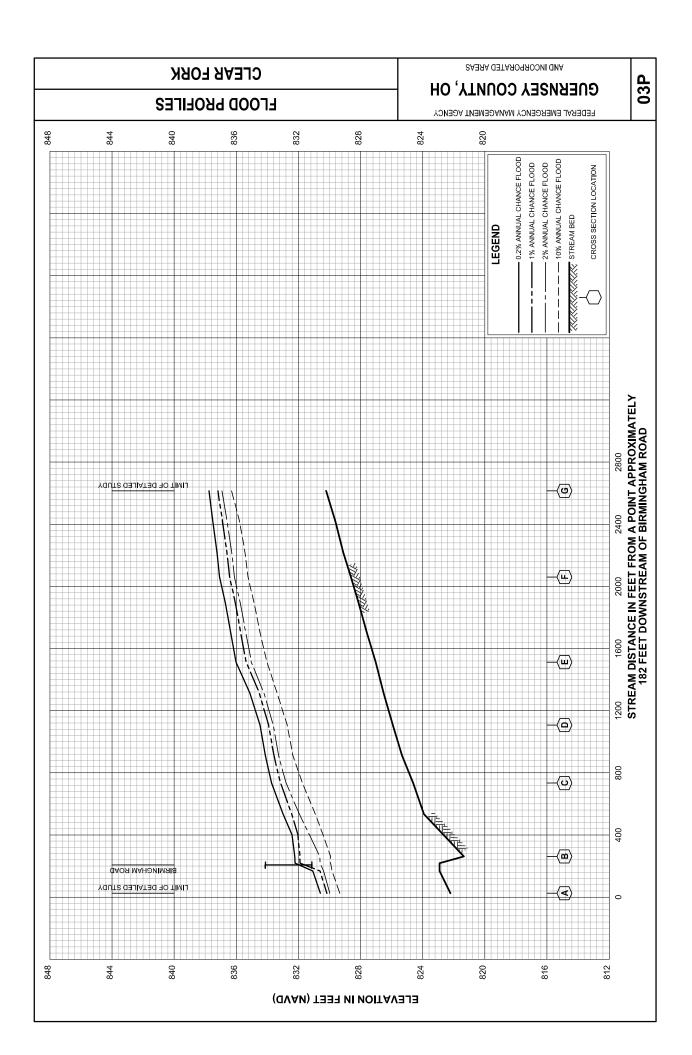
Countywide FIS reports and FIRMS are in progress or complete for Belmont County, Coshocton County, Harrison County, Muskingum County, Noble County, and Tuscarawas County. The results presented in this FIS report and on the FIRM for Guernsey County will be in agreement with the results of these studies.

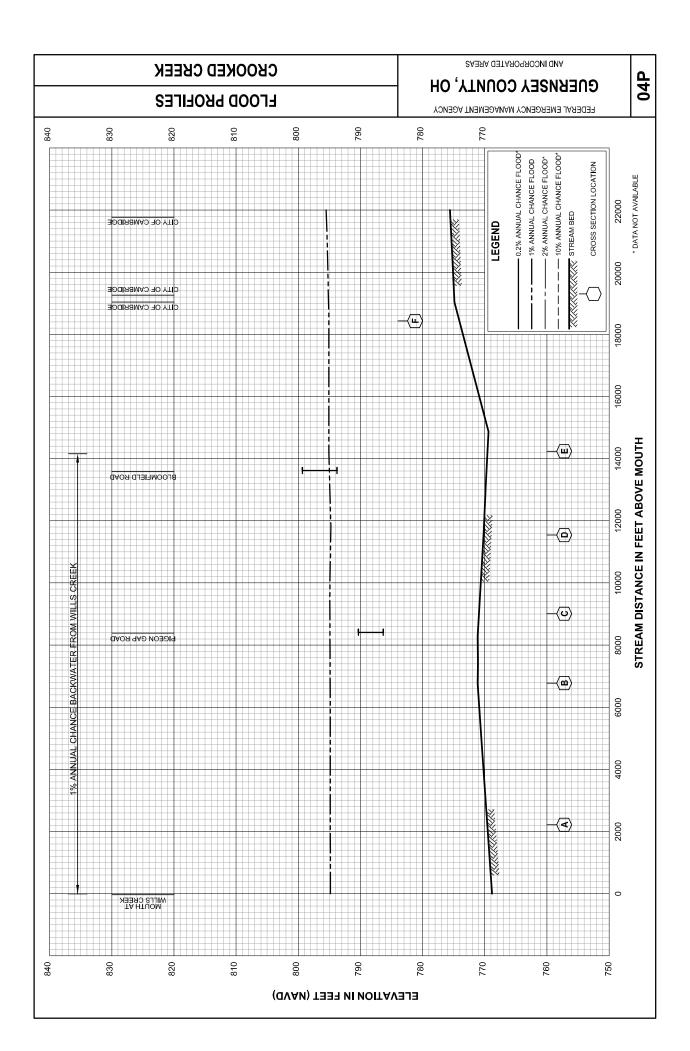
8.0 LOCATION OF DATA

Information concerning the pertinent data used in the preparation of this study can be obtained by contacting the Flood Insurance and Mitigation Division, Federal Emergency Management Agency, 536 South Clark Street, Sixth Floor, Chicago, Illinois 60605.

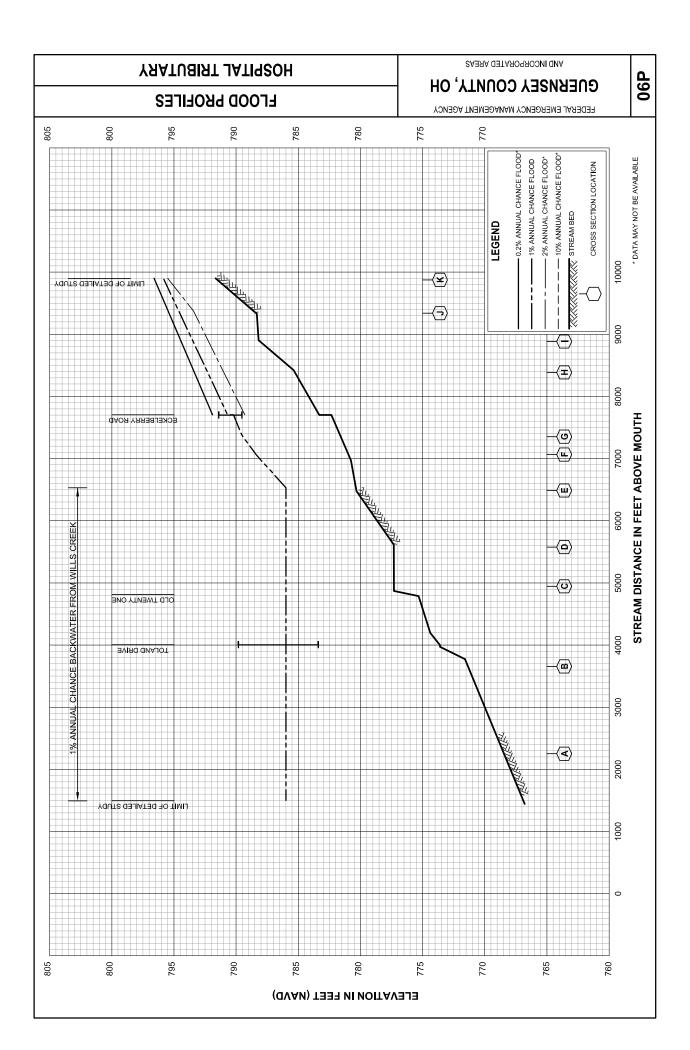

Future revisions may be made that do not result in the republishing of the FIS report. To ensure that any user is aware of all revisions, it is advisable to contact the map repository of flood hazard data located in the community.

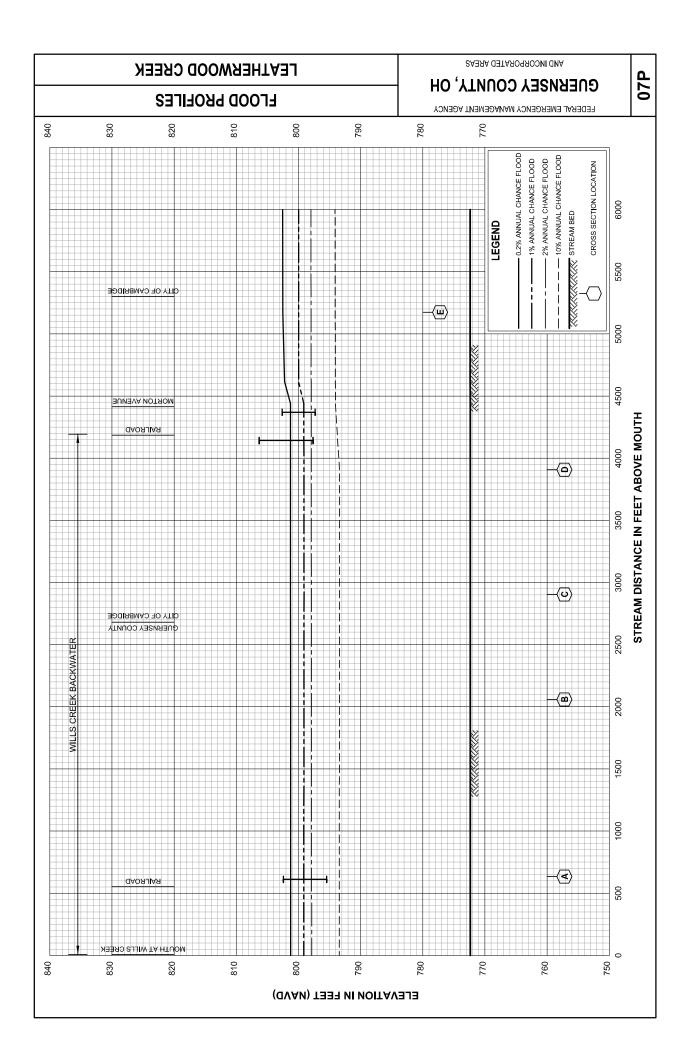

9.0 BIBLIOGRAPHY AND REFERENCES

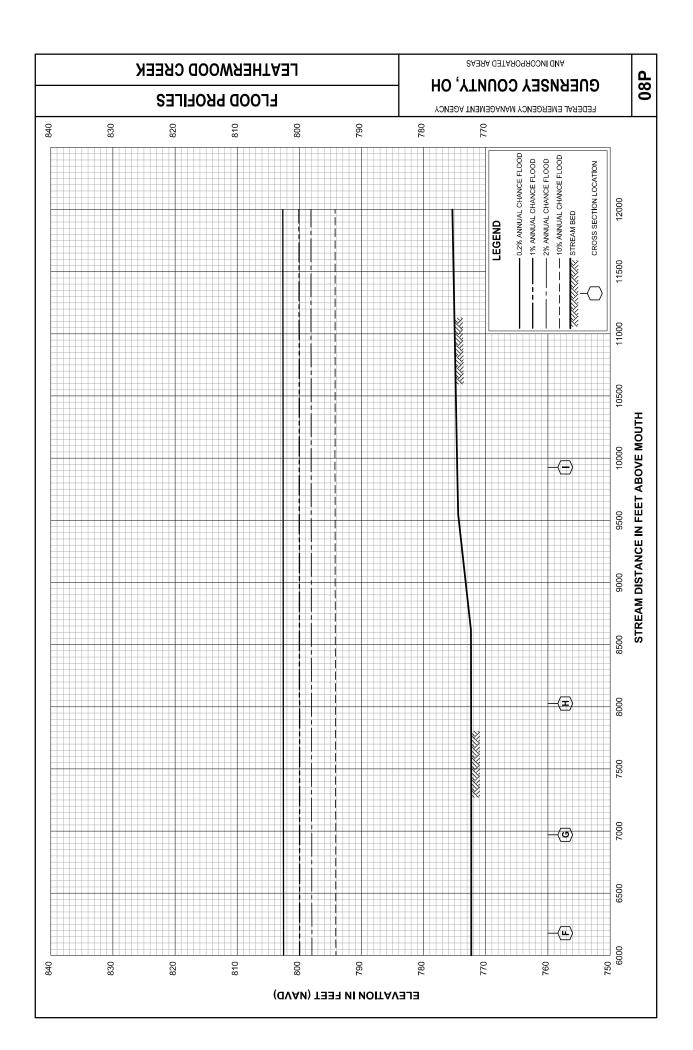

- 1. Federal Emergency Management Agency, <u>Flood Insurance Study, Guernsey County, Ohio</u> <u>and Incorporated Areas</u>, Washington, D.C., February 17, 1989.
- Ebner, A.D., Straub, D.E. and Lageman, J.D., 2008, <u>Floods of December 2004 and January</u> 2005 in Ohio: FEMA Disaster Declaration 1580, Ohio Emergency Management Agency (OEMA), OEMA 2008-1289.
- 3. U.S. Department of Commerce, Bureau of the Census, <u>2008 Census of Population, Number</u> <u>of Inhabitants, Ohio</u>, Washington, D.C., July 2008.
- 4. Ohio Department of Natural Resources, Division of Lands and Soil, <u>A General Soil Map of</u> <u>Guernsey County</u>, 1973.
- 5. U.S. Army Corps of Engineers, Huntington District, <u>Floodplain Information, Wills Creek</u>, <u>Leatherwood Creek</u>, and Crooked Creek in the Area of Cambridge and Byseville, Guernsey <u>County</u>, <u>Ohio</u>, December 1973.
- 6. U.S. Department of Commerce, National Oceanic and Atmospheric Administration, <u>Environmental Data Services, Climatological Data for Ohio</u>, Asheville, North Carolina, 1978.
- 7. U.S. Geological Survey, <u>Unpublished Highwater Marks of the September 1980 Flood in</u> <u>Quaker City, Ohio.</u>
- 8. U.S. Army Corps of Engineers, Huntington District, <u>Muskingum River Lakes, Ohio,</u> <u>Senecaville Lake, Condition Of Improvement</u>, September 1979.
- 9. Ohio Department of Natural Resources, Division of Water, <u>Dam Safety Inspection Report</u> <u>Salt Fork Lake Dam 0014-001</u>, June 2005.
- 10. U.S. Water Resources Council, Bulletin No. 17A, <u>Guidelines for Determining Flood Flow</u> <u>Frequency</u>, June 1977.
- 11. Ohio Department of Natural Resources, Division of Water, Bulletin No. 45, <u>Floods in Ohio</u>, <u>Magnitude and Frequency</u>, 1977.
- 12. Koltun, G.F., Kula, S.P. and Puskas, B.M., 2006, <u>A Stream flow Statistics (StreamStats) Web</u> <u>Application for Ohio</u>, USGS, Scientific Investigations Report (SIR) 2006-5312
- Koltun, G.F., 2003, <u>Techniques for Estimating Flood Peak Discharges of Rural, Unregulated</u> <u>Streams in Ohio</u>, United States Geological Survey (USGS) Water Resources Investigations Report (WRIR) 03-4164.
- 14. Woolpert Consultants, Aerial Photography, Scale 1:9600, May 1984.
- 15. U.S. Department of Agriculture, Soil Conservation Service, <u>WSP-2 Computer Program</u>, "Input and Output Listings, Wills Creek and Leatherwood Creek," Columbus, Ohio.
- 16. U.S. Army Corps of Engineers, Hydrologic Engineering Center, <u>HEC-2 Water Surface</u> <u>Profiles, Generalized Computer Program</u>, Davis, California, April 1984.

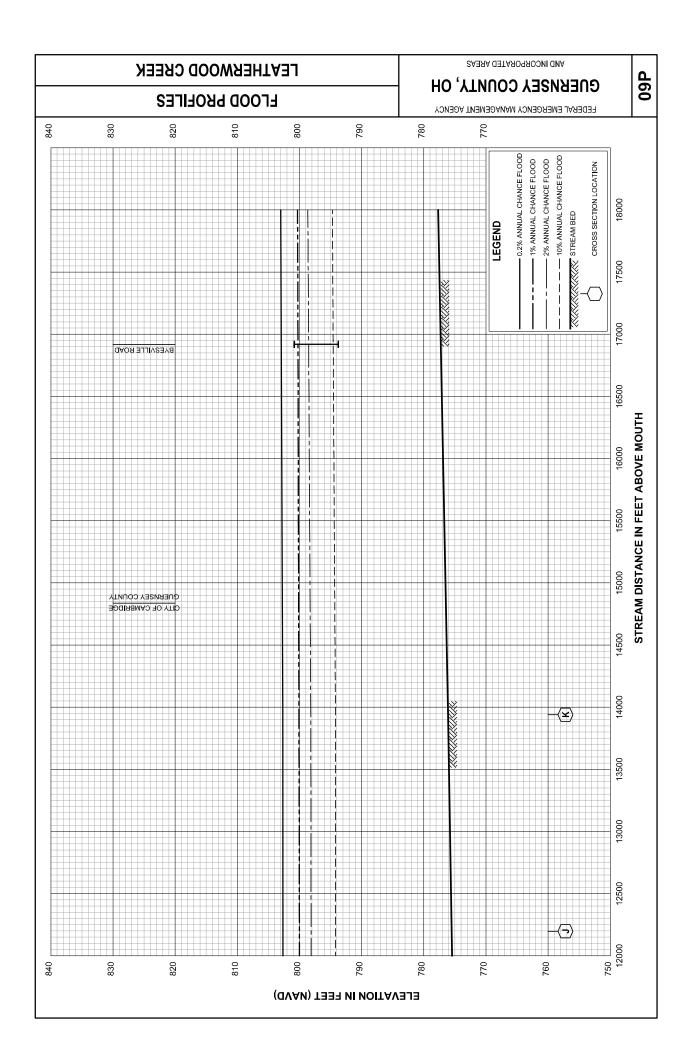

- 17. U.S. Geological Survey, National Mapping Division, <u>Standards for Digital Elevation Models</u>, Reston, VA, 1992.
- 18. U.S. Department of the Army, Corps of Engineers, <u>Hydrologic Engineering Center, River</u> <u>Analysis System, HEC-RAS</u>, Davis, California, May 2005.
- 19. Kucera and Associates, Inc., <u>Topographic Maps</u>, Scale 1:4800, Contour Interval 2-Feet: City of Cambridge, Ohio, April 1975.
- 20. Woolpert Consultants, <u>Work Maps</u>" Scale 1:4800, Contour Interval 4-Feet: Guernsey County, January 1986.
- 21. U.S. Department of Agriculture, Soil Conservation Service, <u>Watershed Plan and</u> Environmental Assessment for Wills Creek Watershed, Ohio, 1986.
- 22. Federal Emergency Management Agency, <u>Flood Insurance Study</u>, <u>Tuscarawas County</u>, <u>Unincorporated Areas</u>, <u>Ohio</u>, September 1987.
- 23. Federal Emergency Management Agency, <u>Flood Insurance Study, Coshocton County,</u> <u>Unincorporated -Areas, Ohio,</u> February 1987.
- 24. Federal Emergency Management Agency, <u>Flood Insurance Study, Muskingham County</u>, <u>Unincorporated Areas</u>, <u>Ohio</u>, June 1988.
- 25. U.S. Department of Housing and Urban Development, Federal Insurance Administration, <u>Flood Hazard Boundary Map</u>, Village of Byesville, Guernsey County, Ohio, May 1976.
- U.S. Department of Housing and Urban Development, Federal Insurance Administration, <u>Flood Hazard Boundary Map</u>, Village of Cumberland, Guernsey County, Ohio, September 1978.
- 27. U.S. Department of Housing and Urban Development, Federal Insurance Administration, <u>Flood Hazard Boundary Map</u>, Village of Lore City, Guernsey County, Ohio, July 1976.
- 28. Federal Emergency Management Agency, <u>Flood Hazard Boundary Map</u>, Village of Quaker City, Guernsey County, Ohio, October 1981.
- 29. U.S. Water Resources Council, Hydrology Committee, Bulletin No. 17, <u>Guidelines for</u> <u>Determining Flood Flow Frequency</u>, March 1976.
- Chow, Ven Te, <u>Open-Channel Hydraulics</u>, New York: McGraw-Hill Book Company, Inc. 1959.
- 31. U.S. Bureau of the Census, Population Estimates Program (PEP), <u>2008 Population Estimate</u>, <u>Guernsey County</u>, Ohio, Retrieved May 11, 2009, from <u>http://www.census.gov/</u>.
- 32. U.S. Department of Housing and Urban Development, <u>Federal Insurance Administration</u>, <u>Flood Insurance Rate Map</u>, <u>Village of Pleasant City</u>, <u>Guernsey County</u>, <u>Ohio</u>, January 1979.

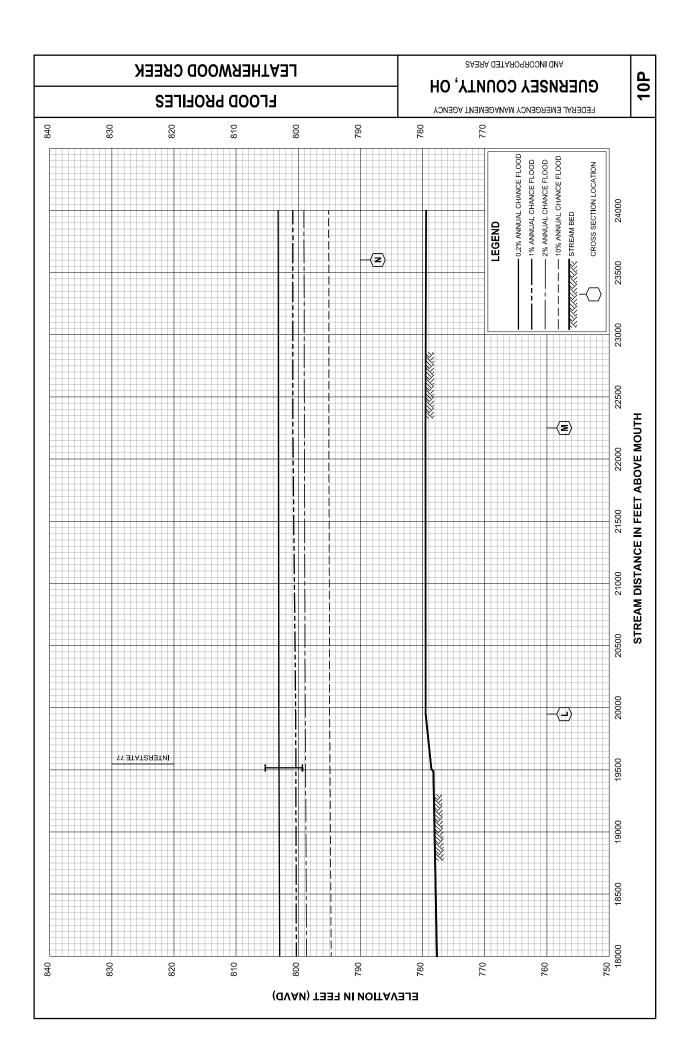
- U.S. Department of Housing and Urban Development, <u>Federal Insurance Administration</u> <u>Flood Hazard Boundary Map, Guernsey County, Unincorporated Areas, Ohio</u>, December 1977.
- 34. U.S. Department of Housing and Urban Development, <u>Federal Insurance Administration</u>, <u>Flood Hazard Boundary Map</u>, <u>Village of Senecaville</u>, <u>Guernsey County</u>, <u>Ohio</u>, October 1978.

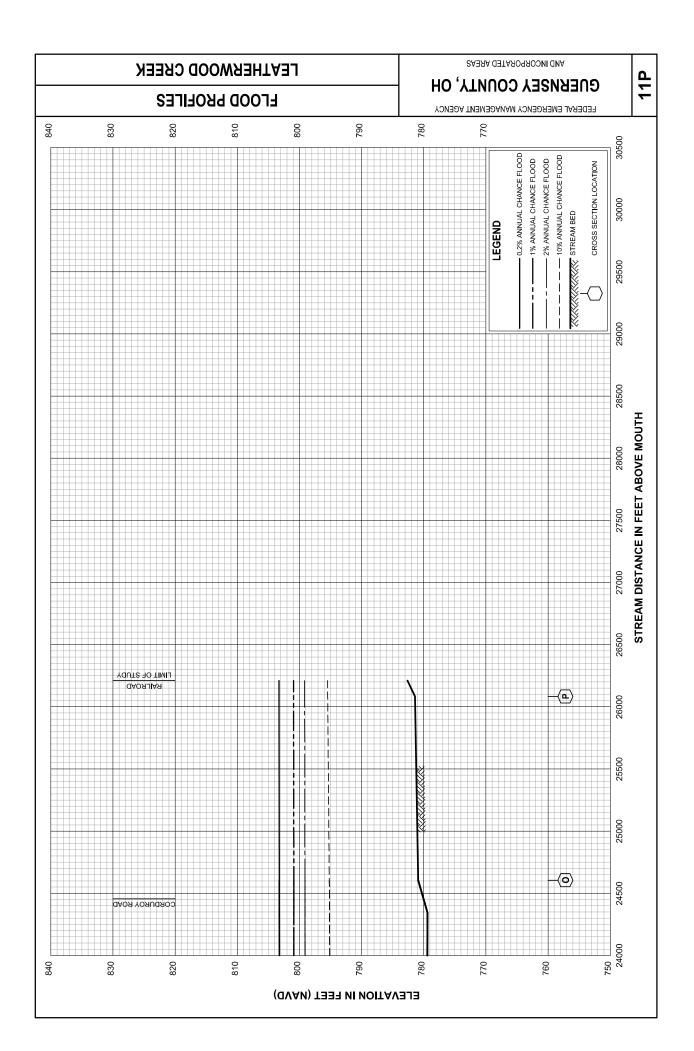


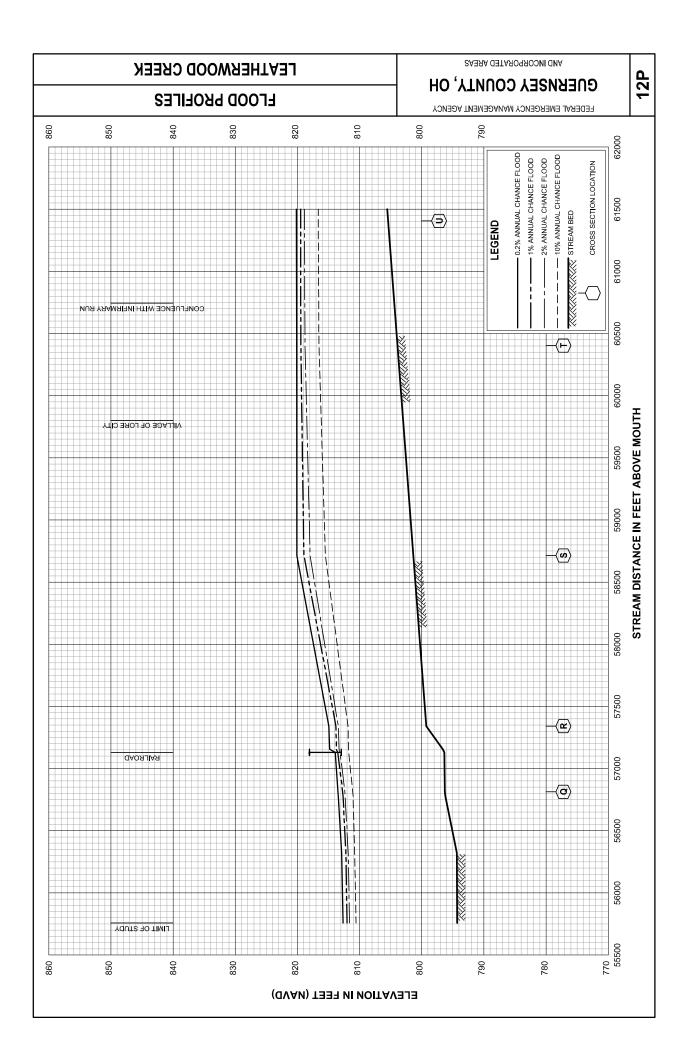


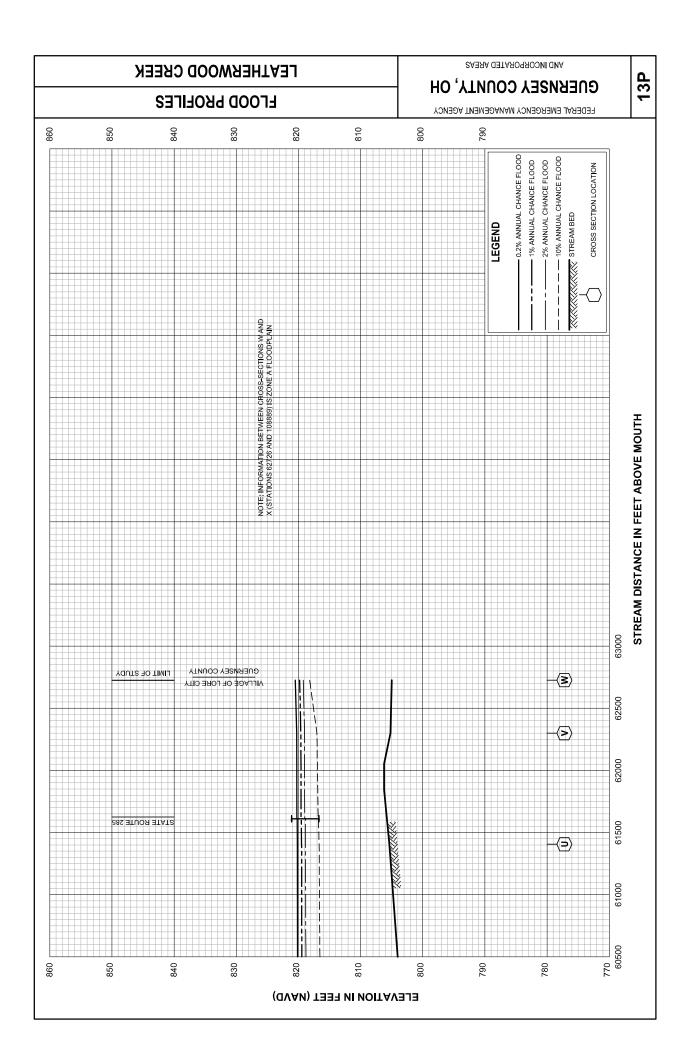


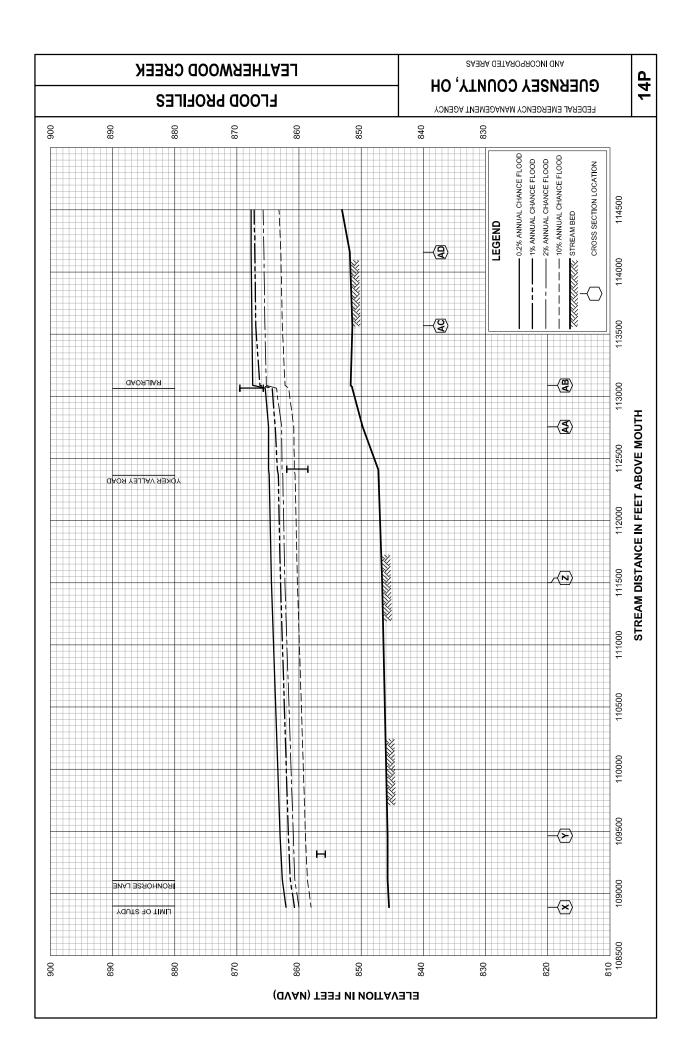


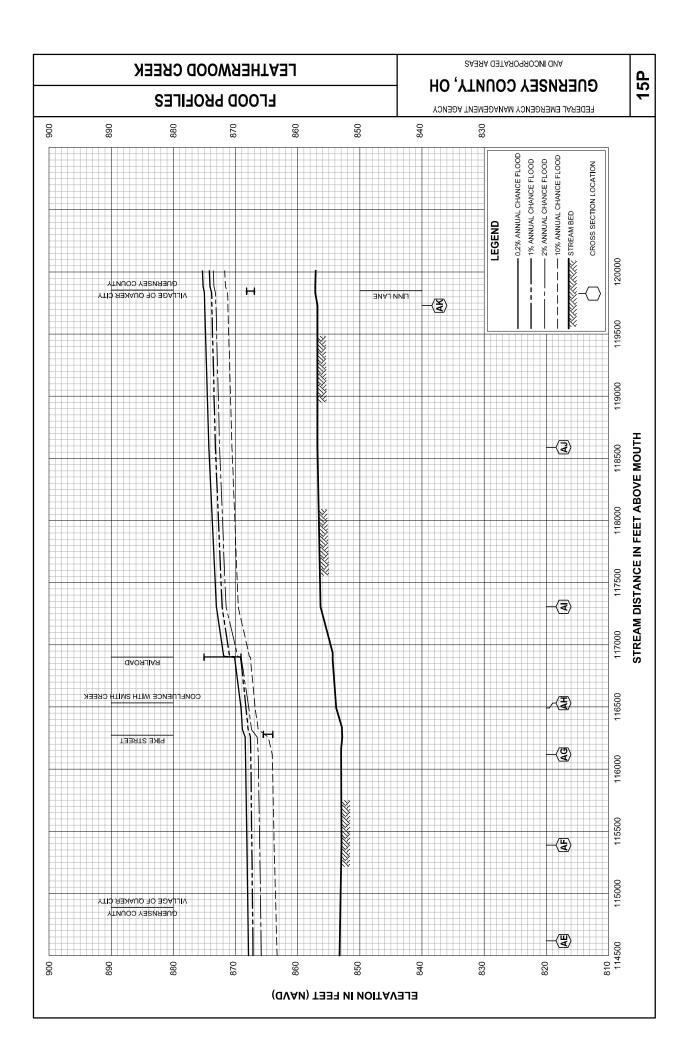


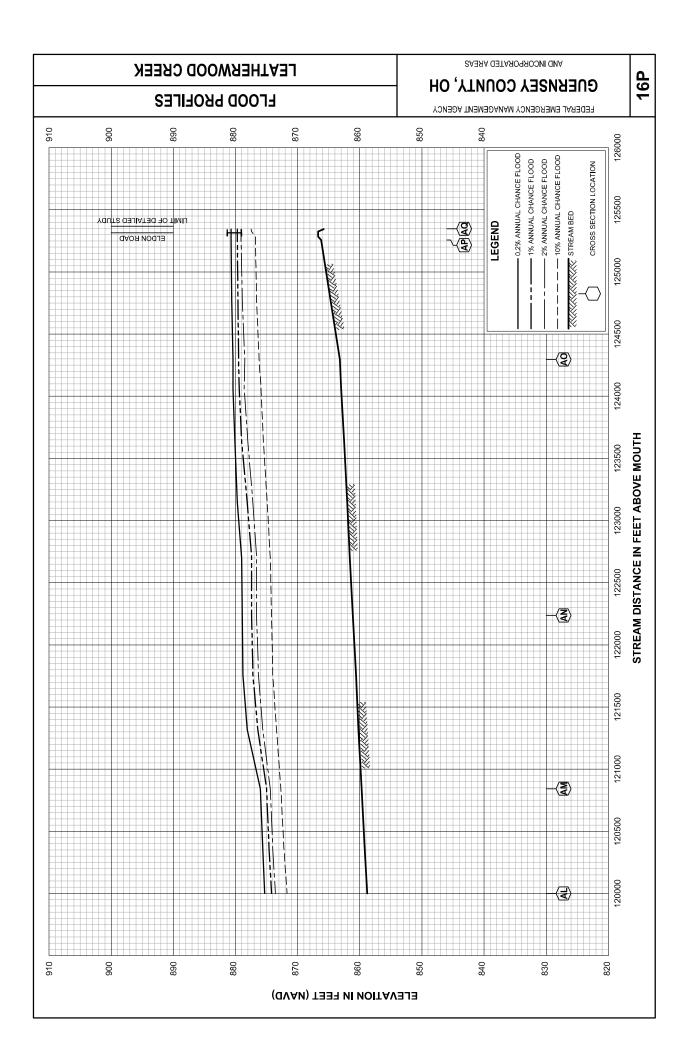


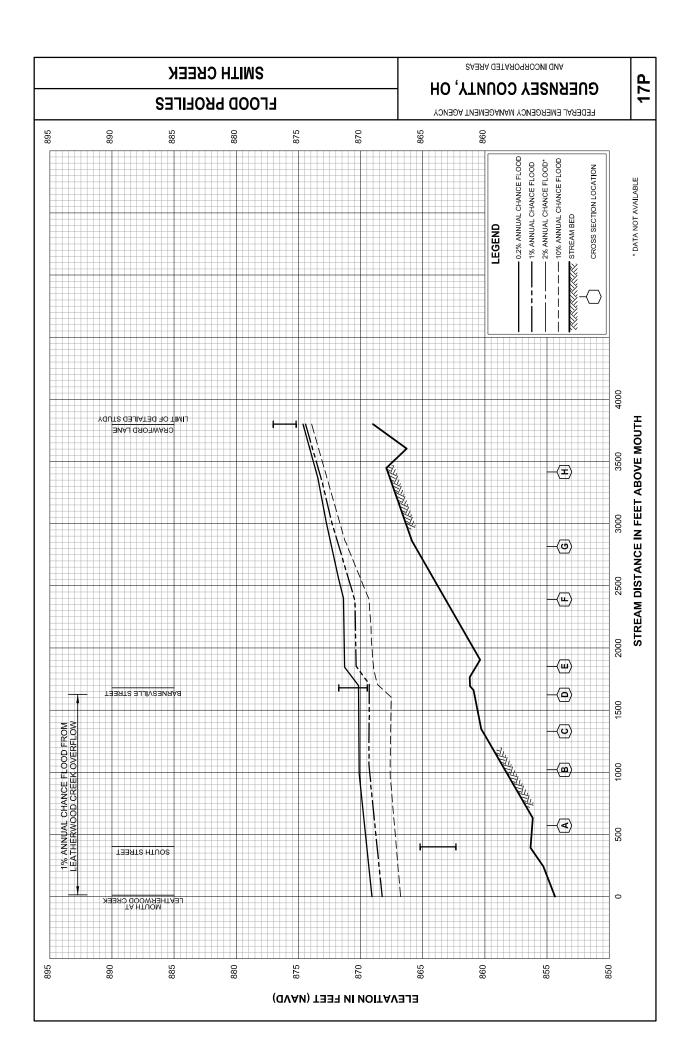


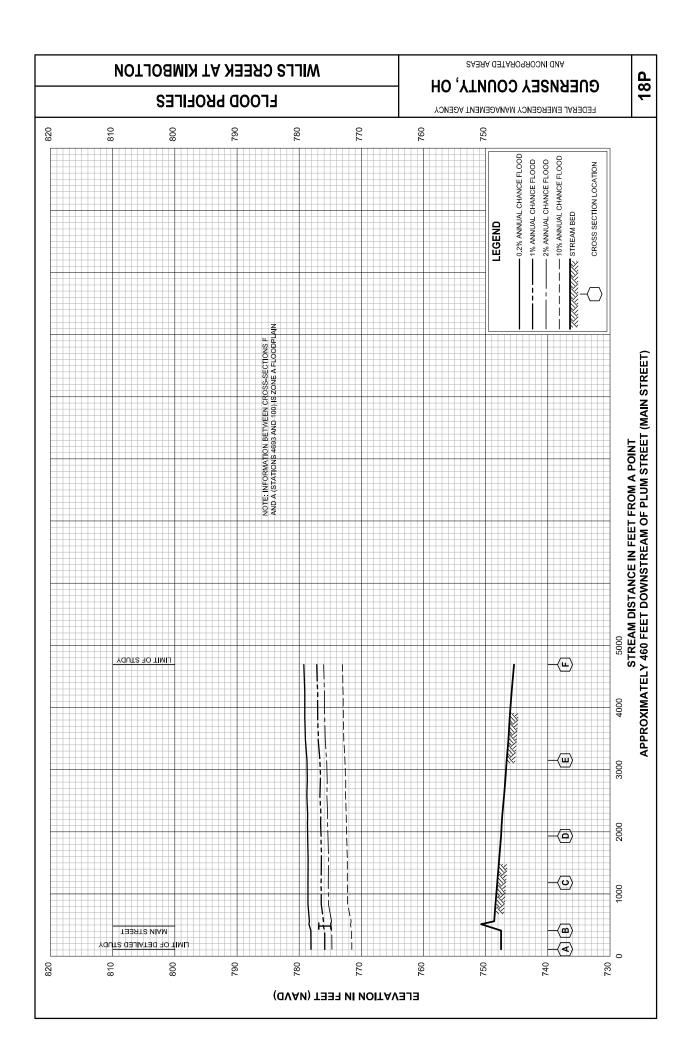


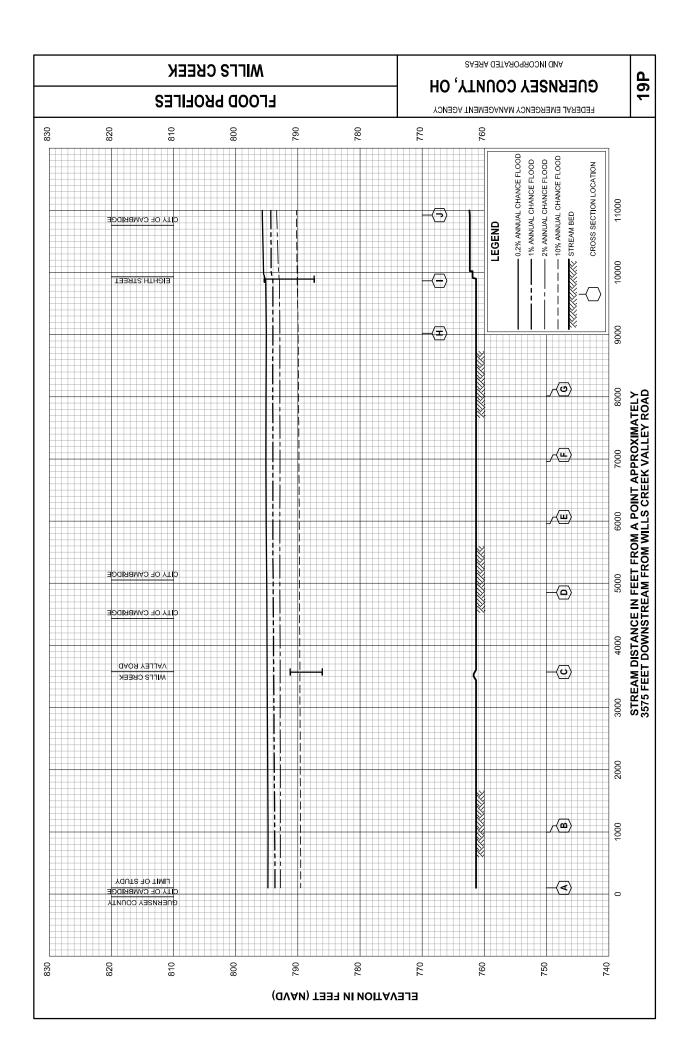


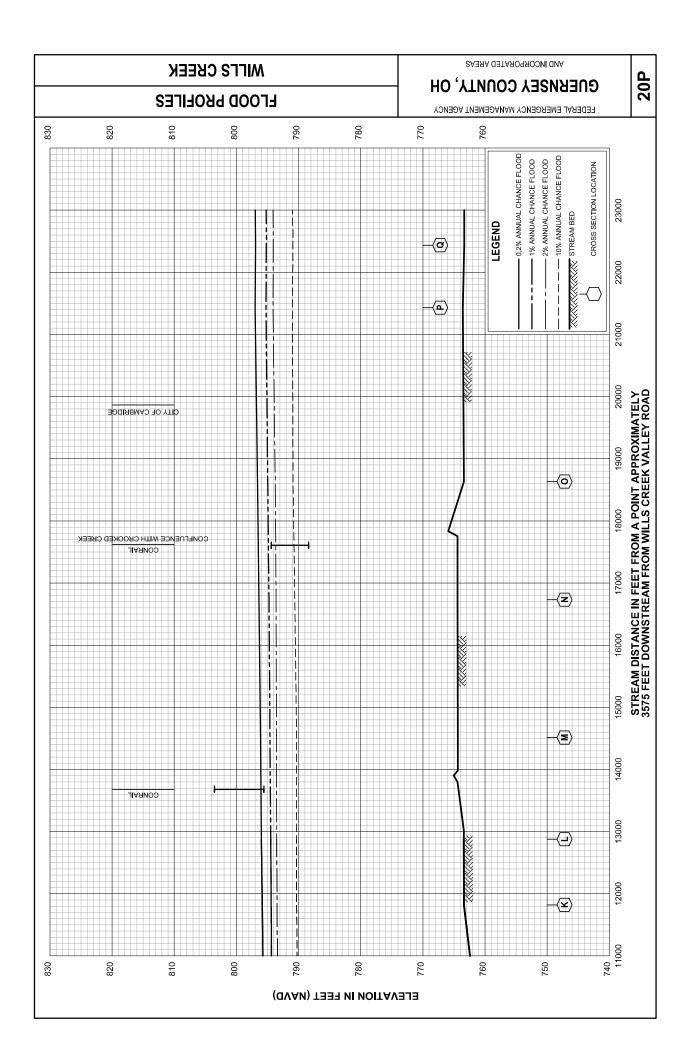


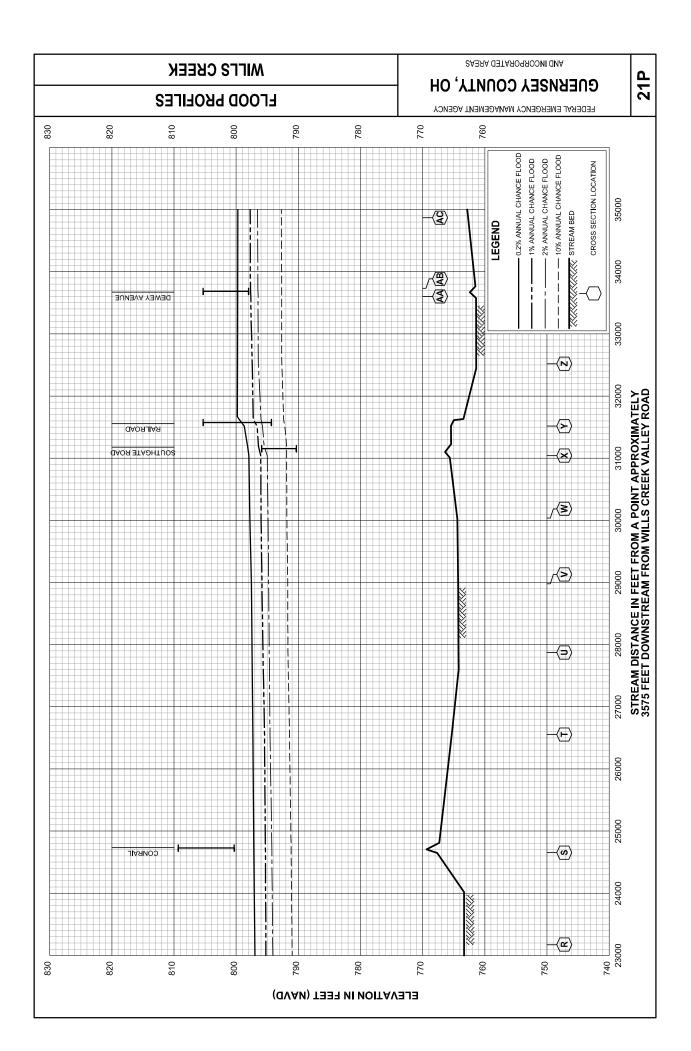


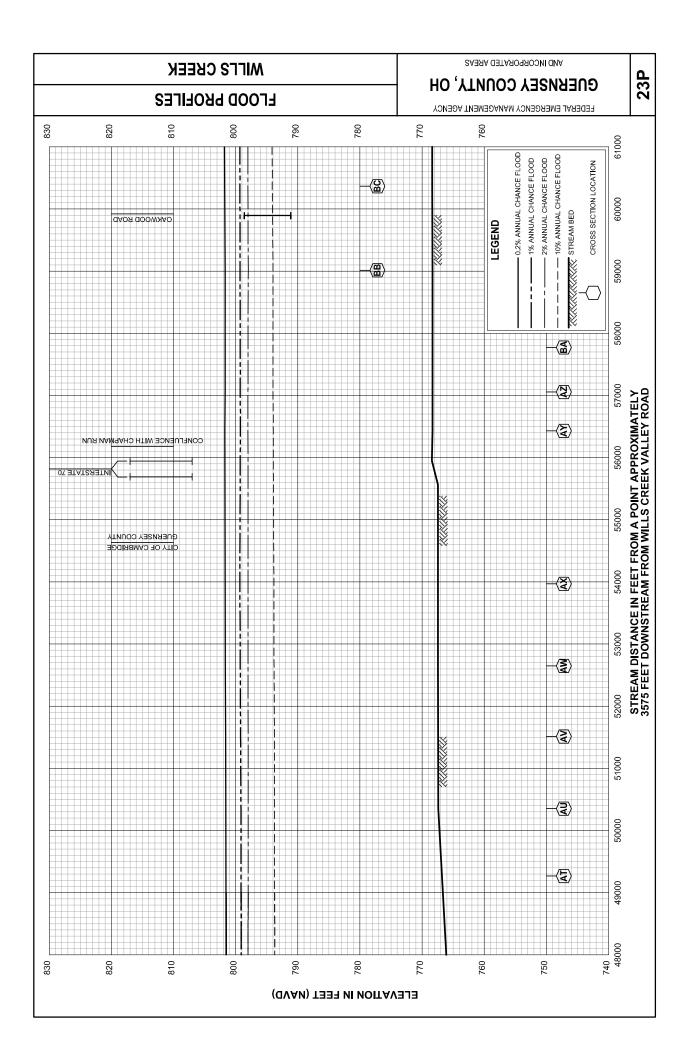


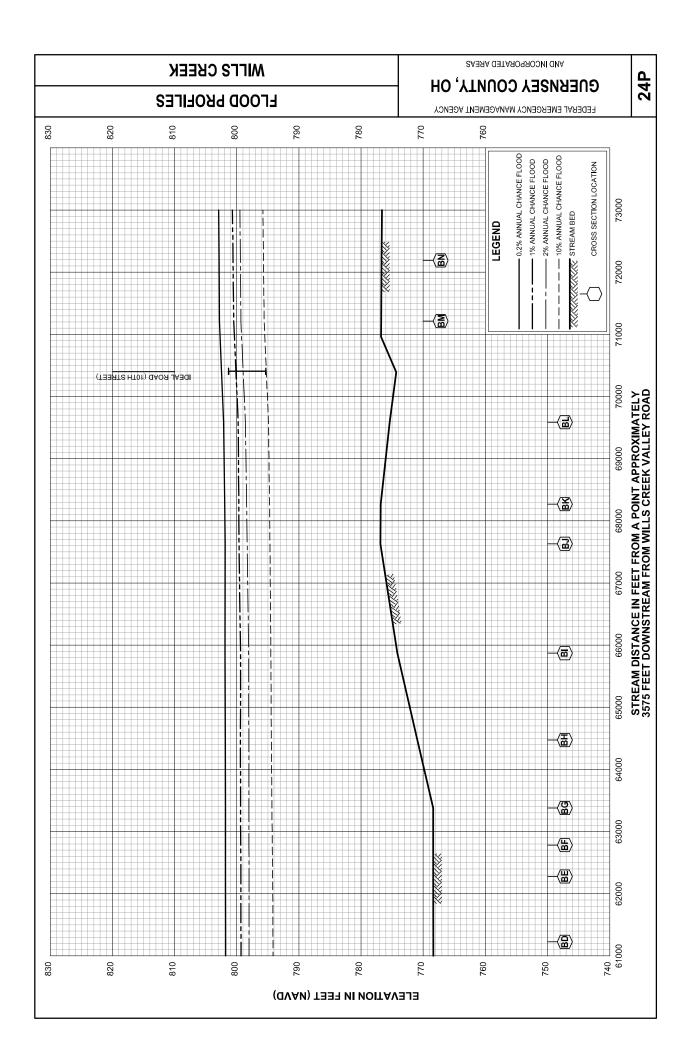


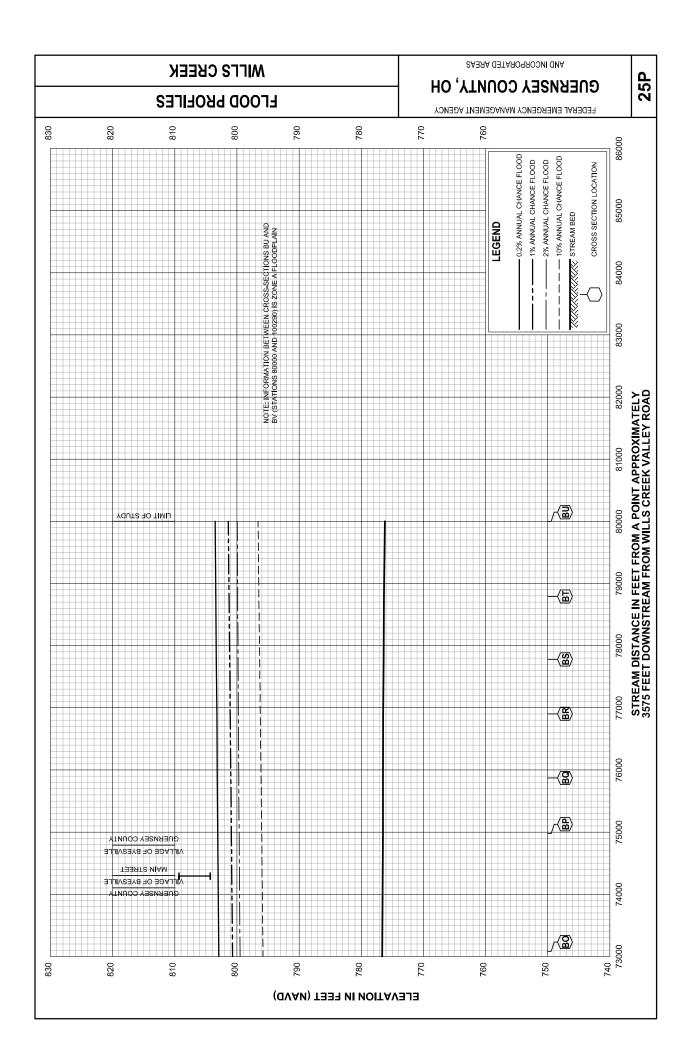


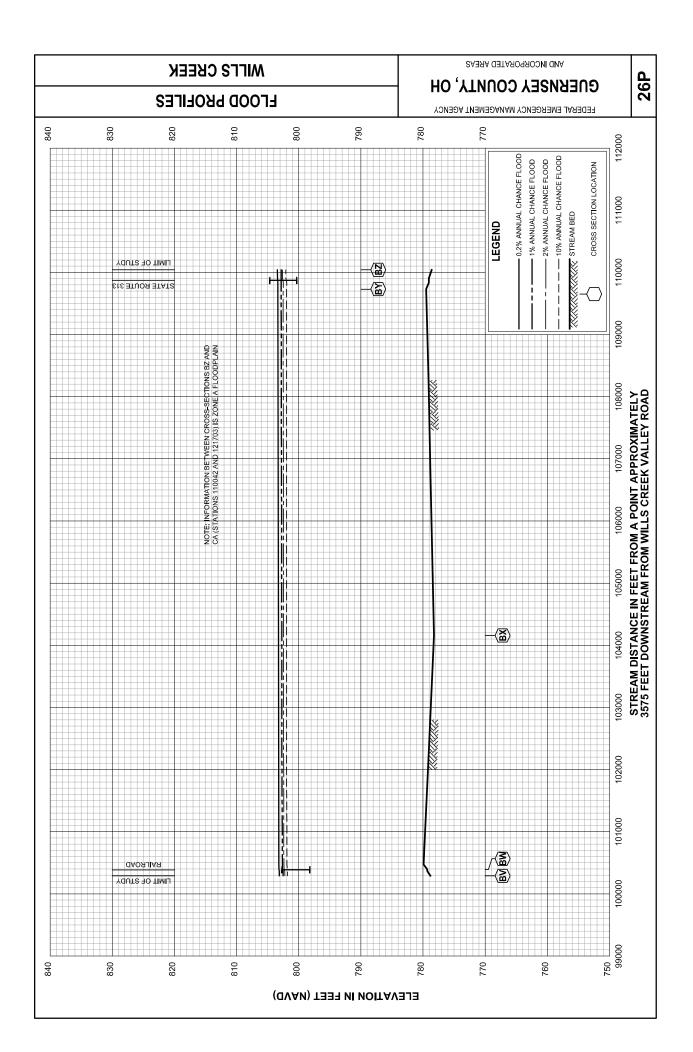


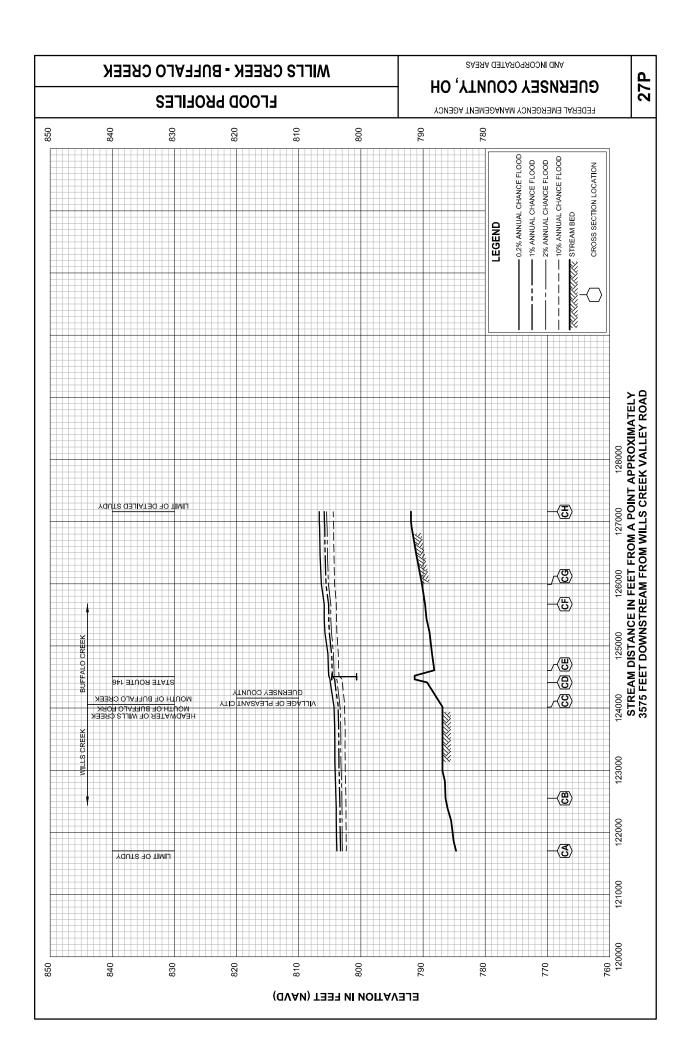


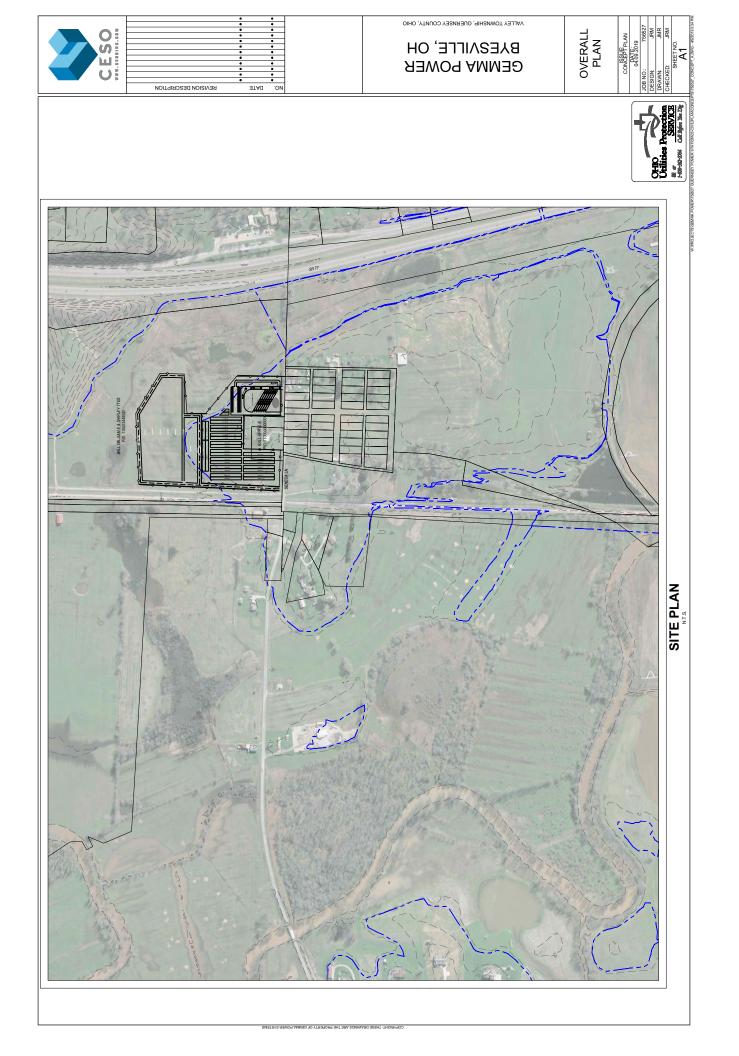


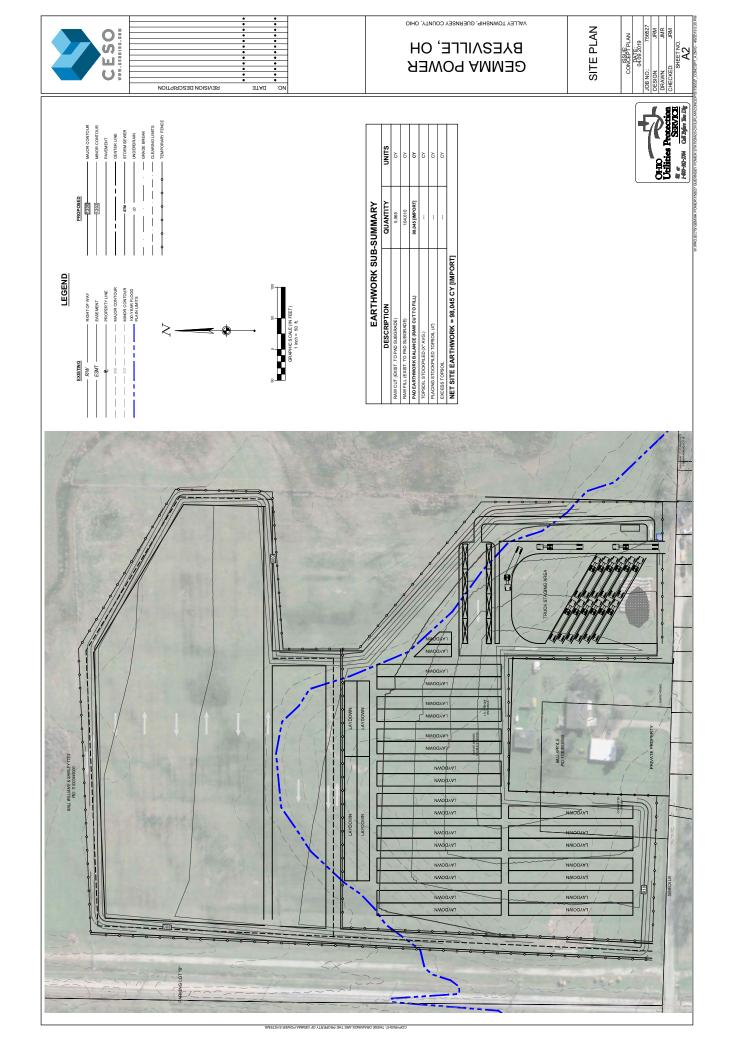


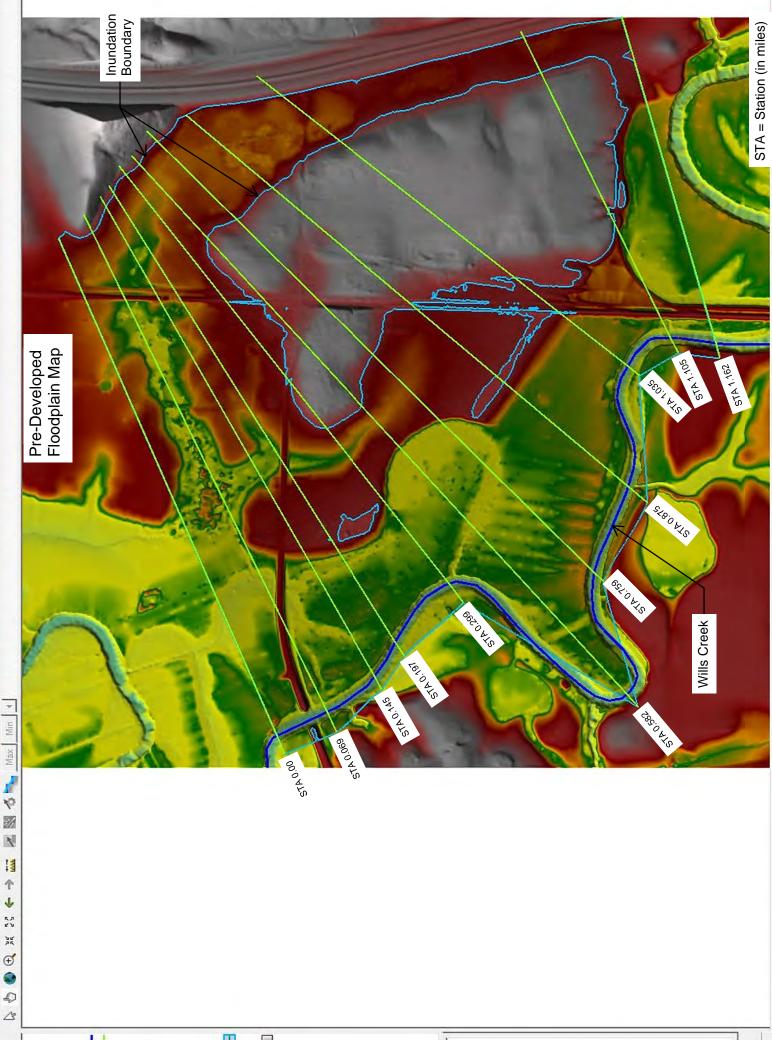


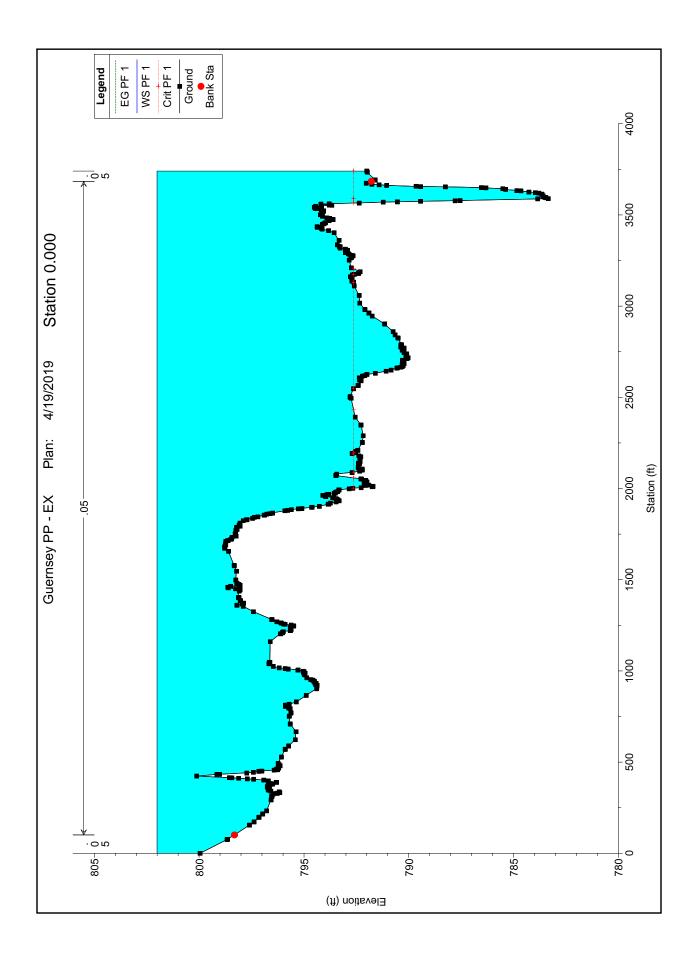


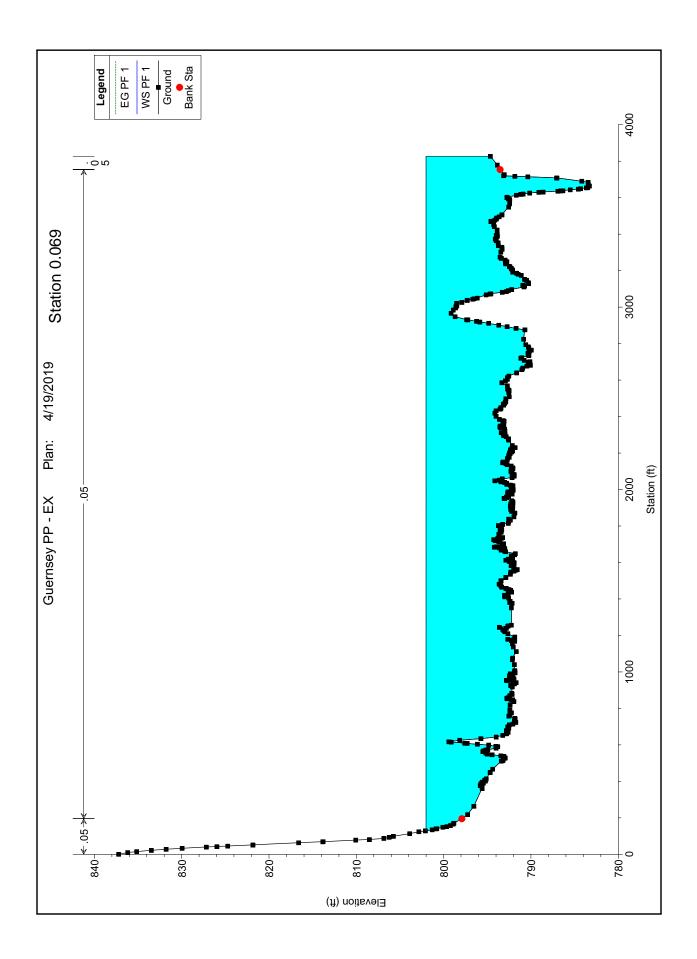


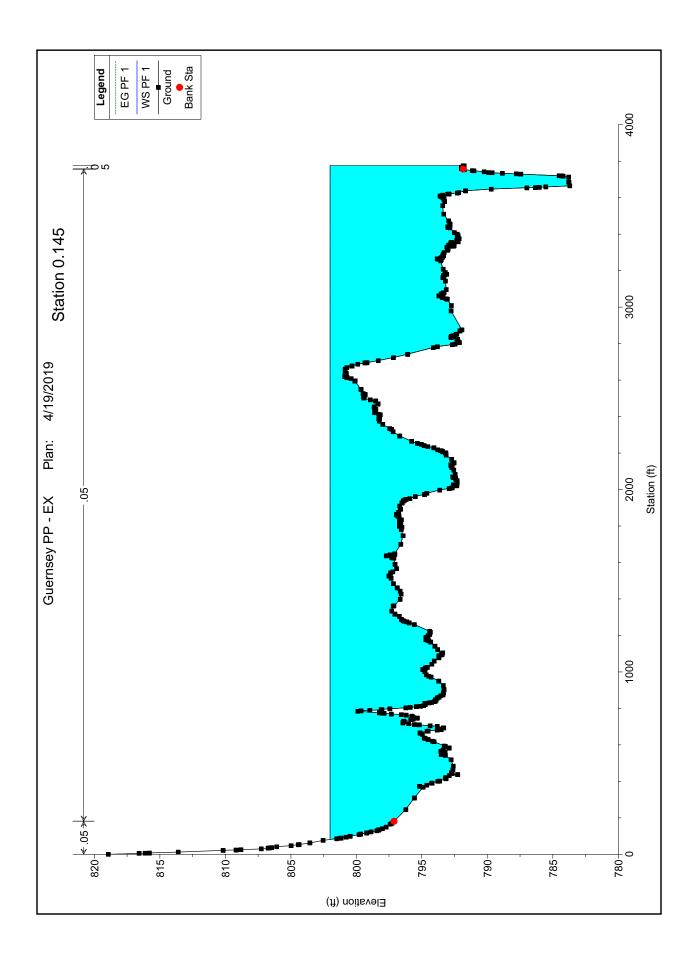


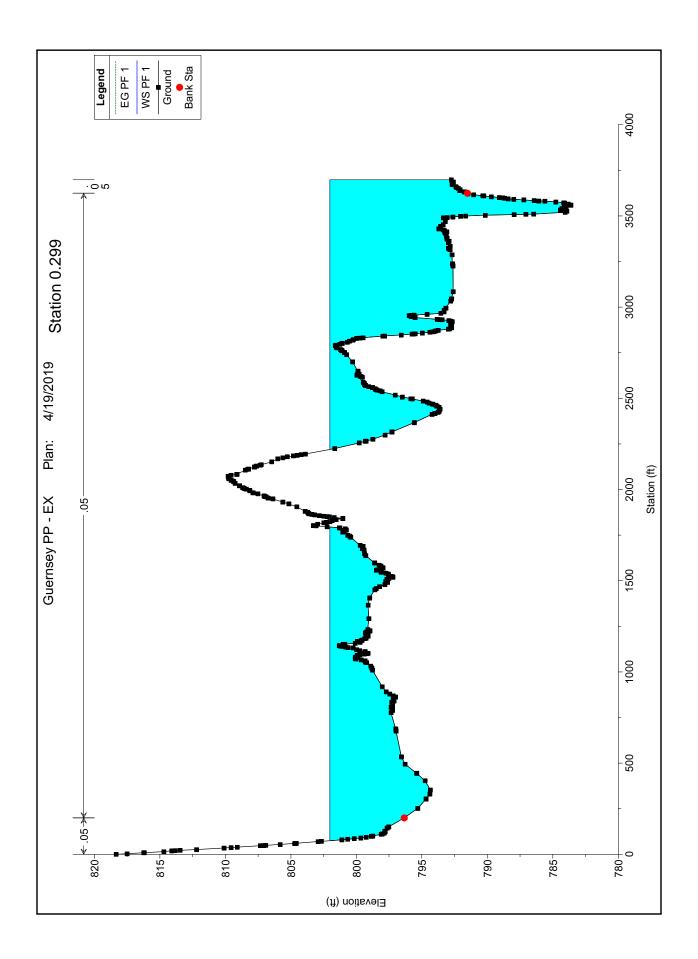


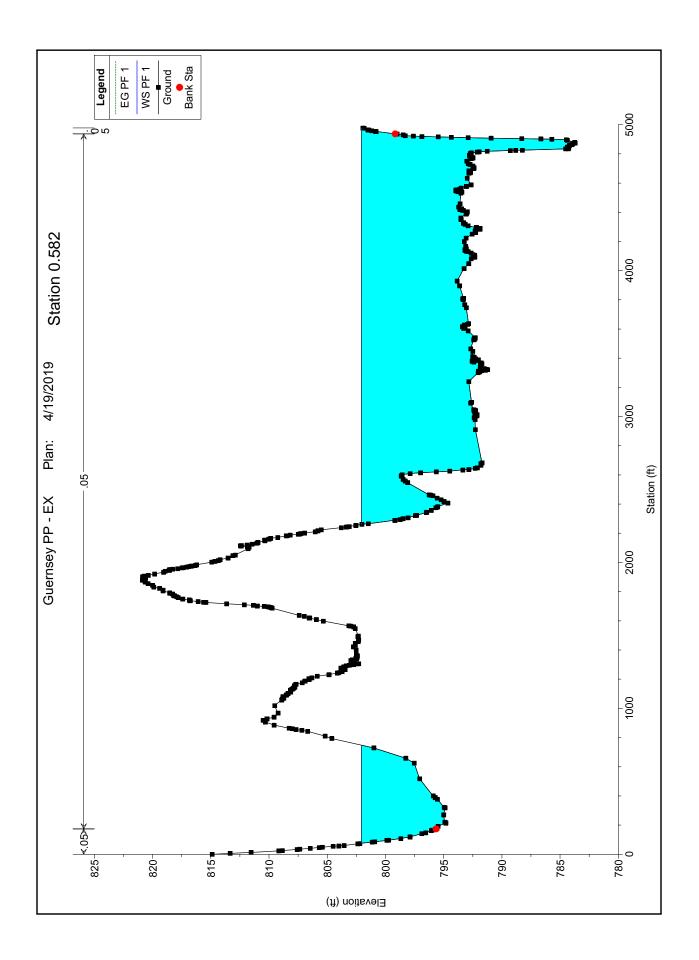

APPENDIX C PROPOSED LAYDOWN YARD PLAN

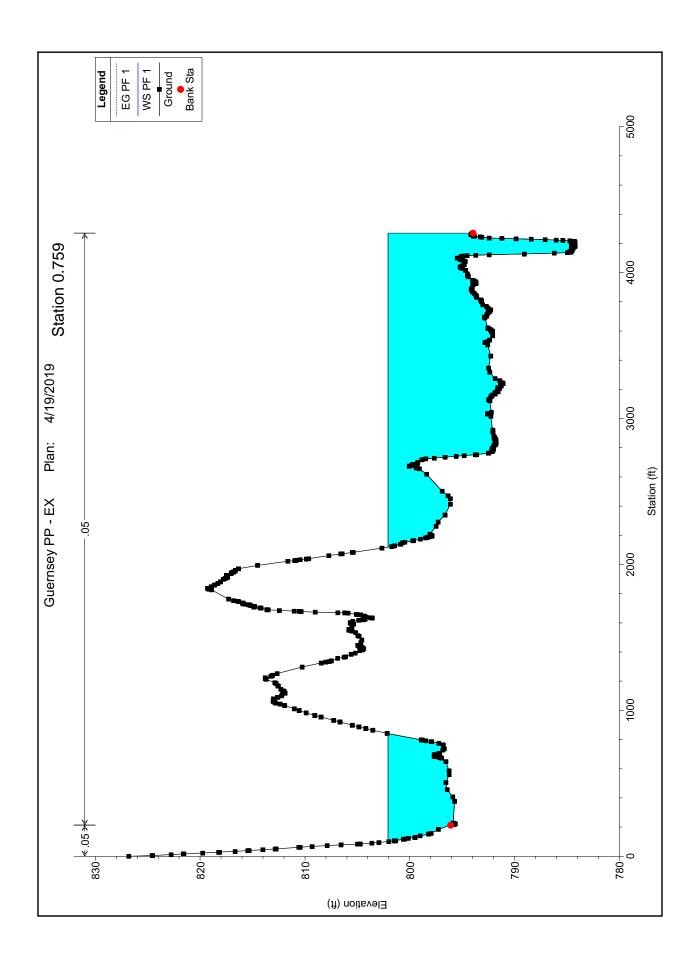


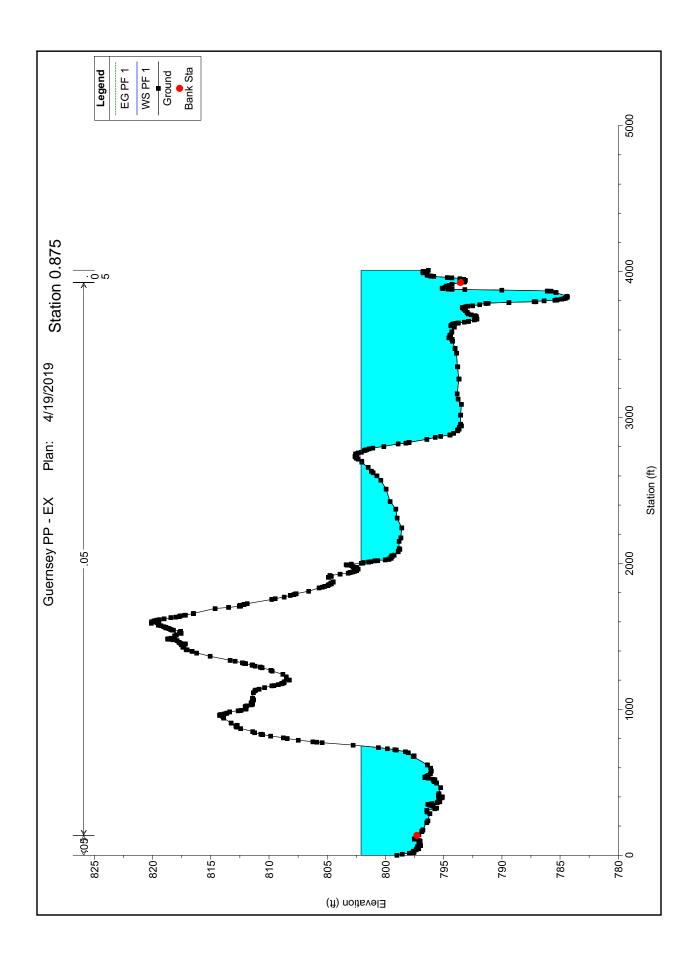


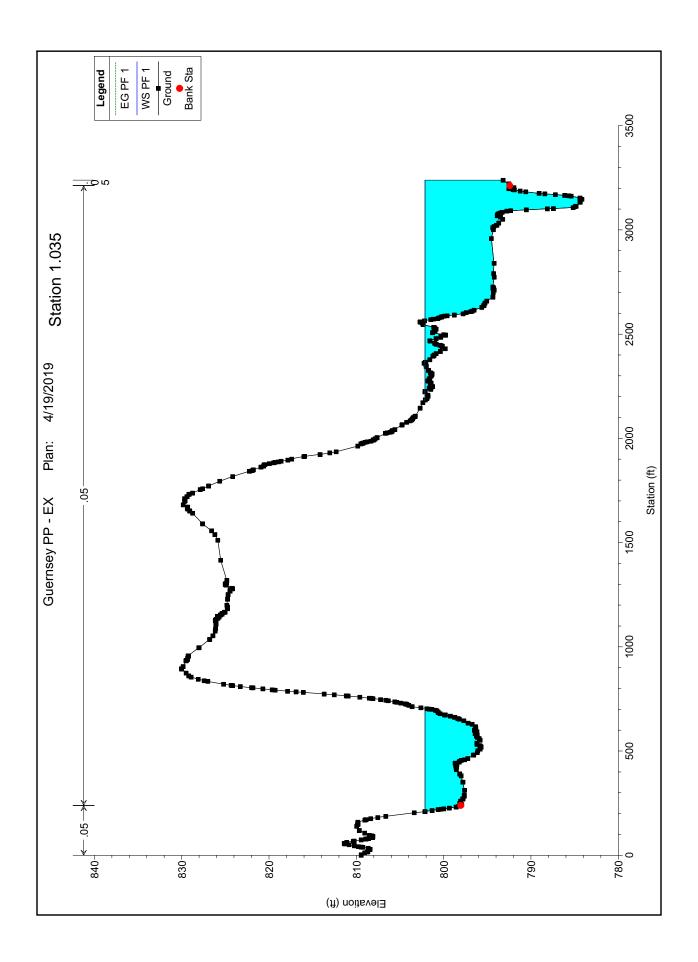

APPENDIX D HEC-RAS OUTPUT

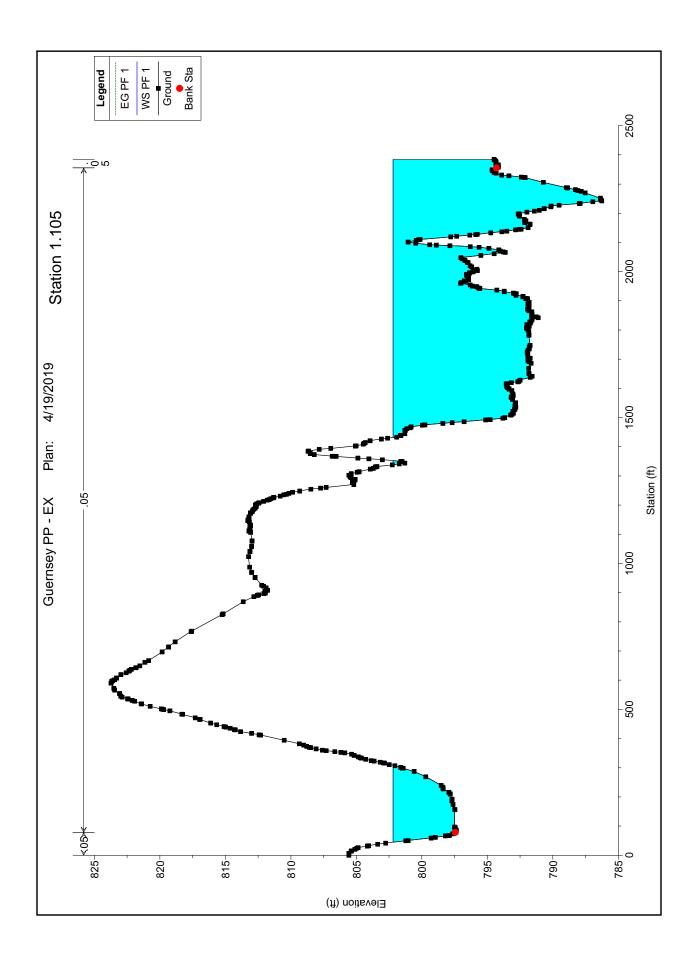

🜌 🐹 💰 🍆 Max Min 4 13 Ŷ * X X € ● Ð

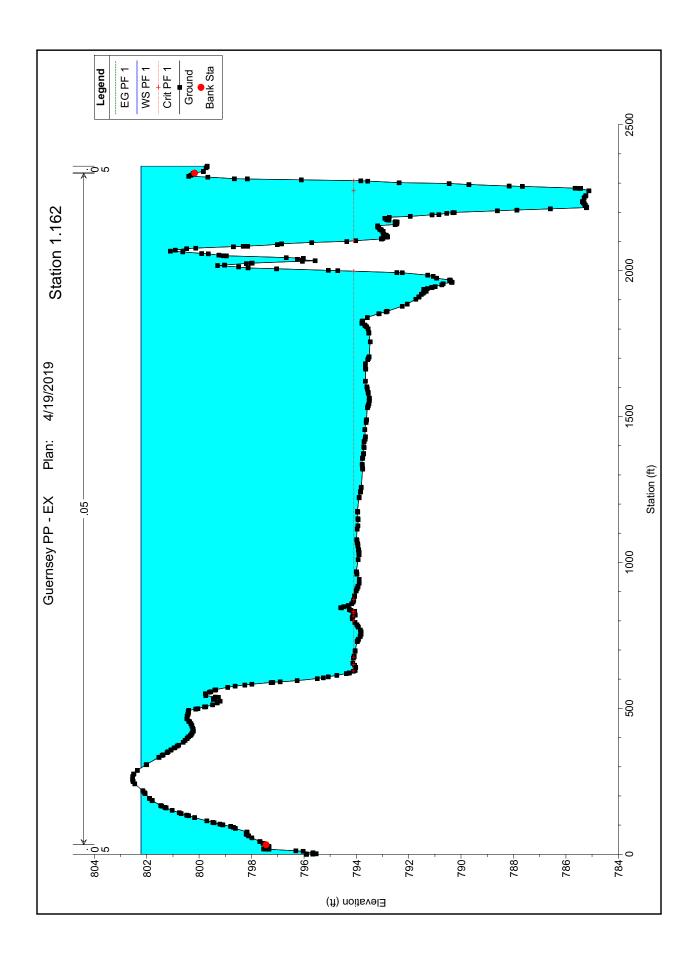


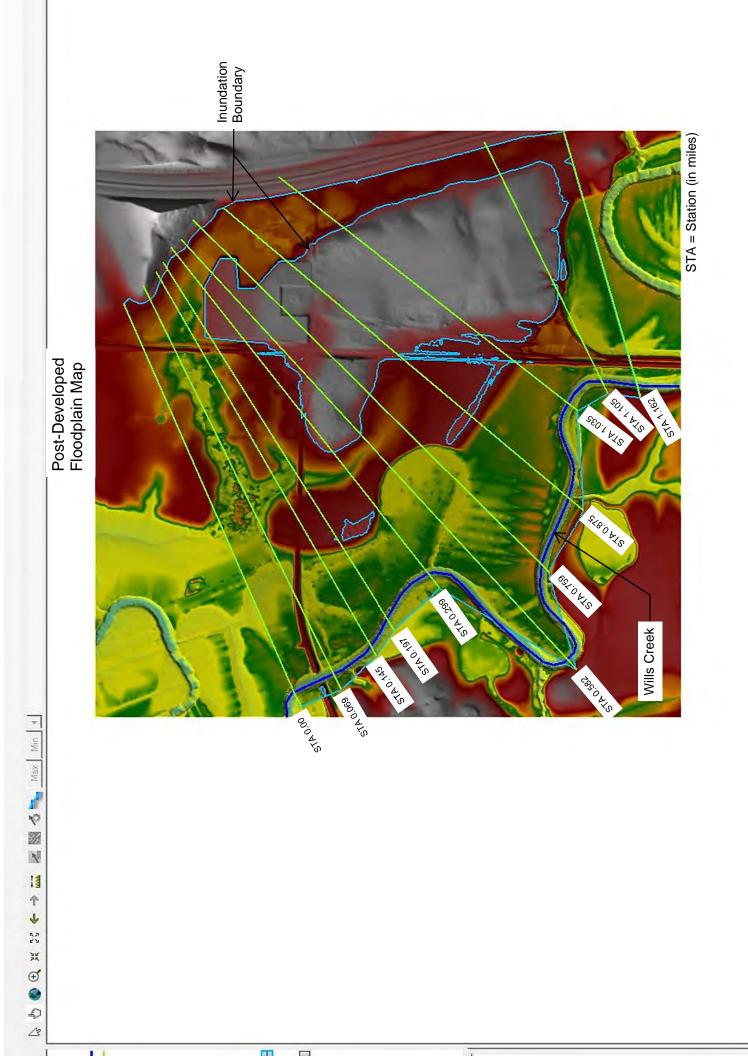


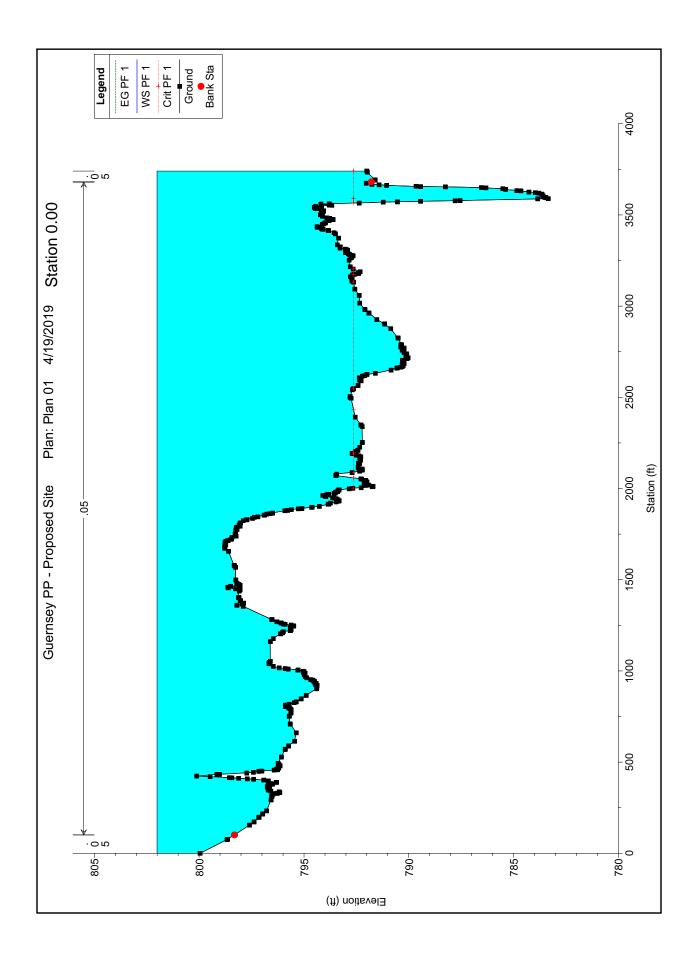


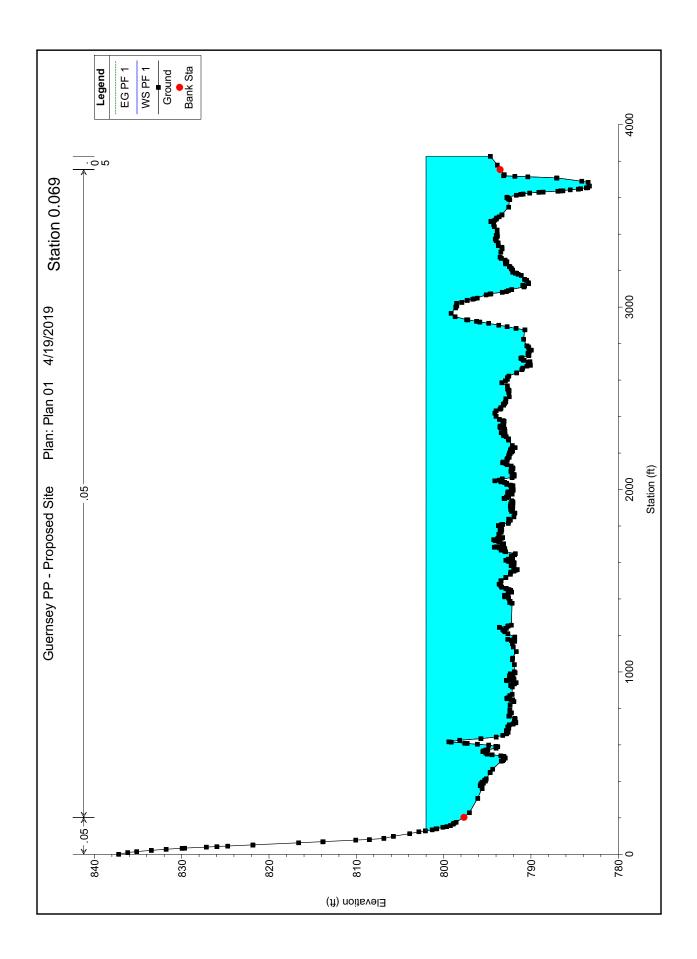


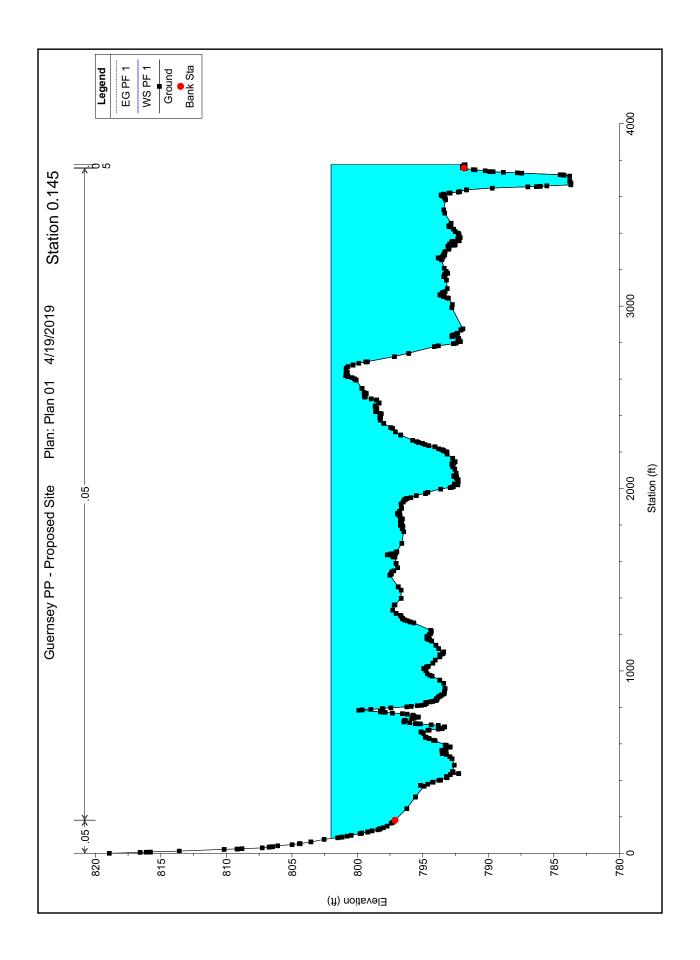


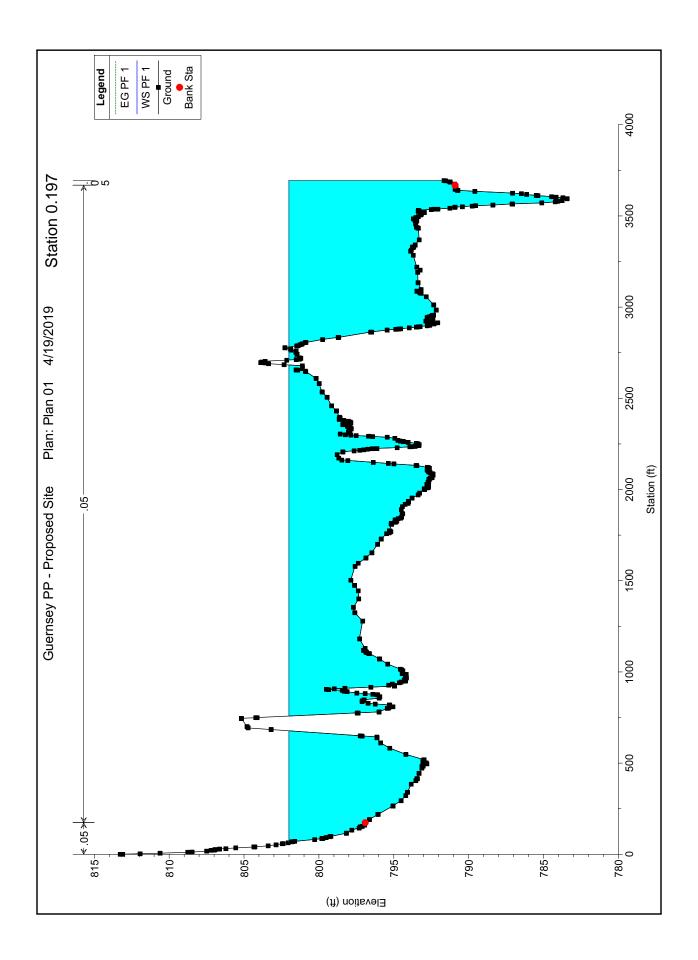


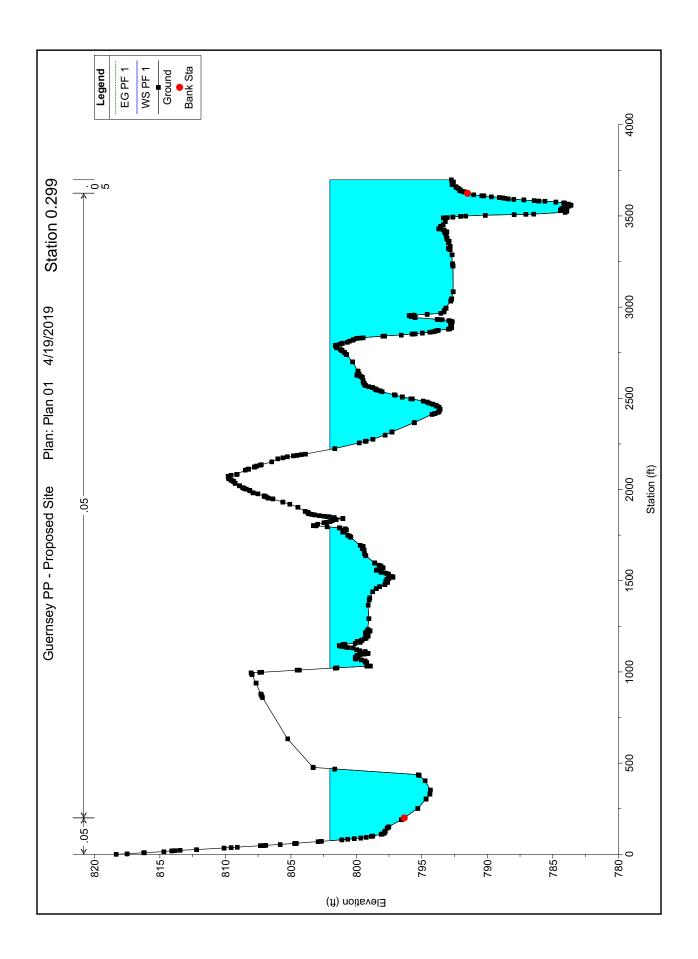


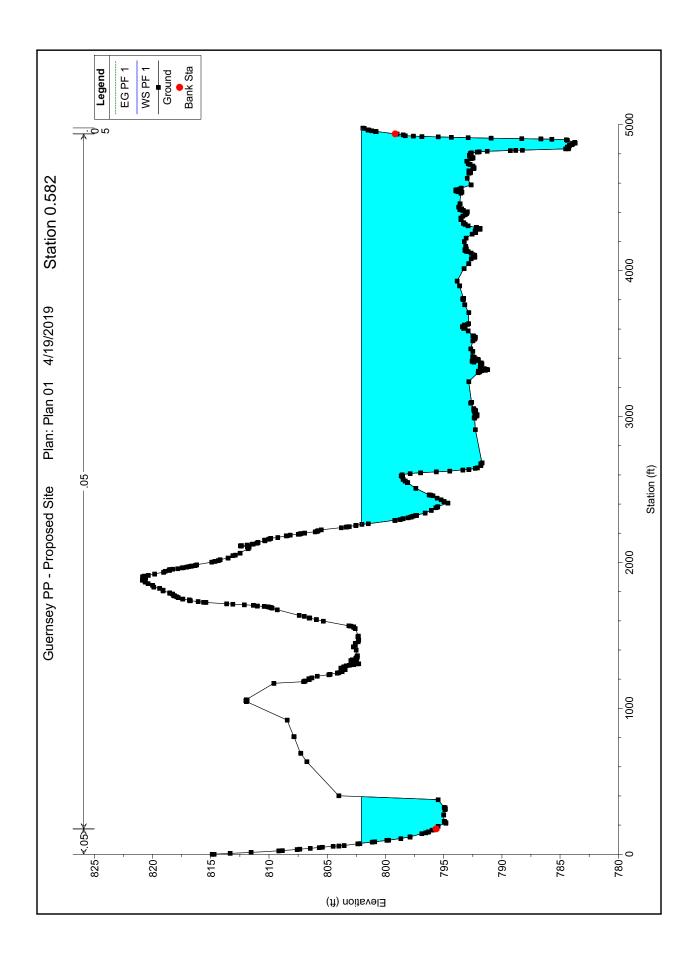




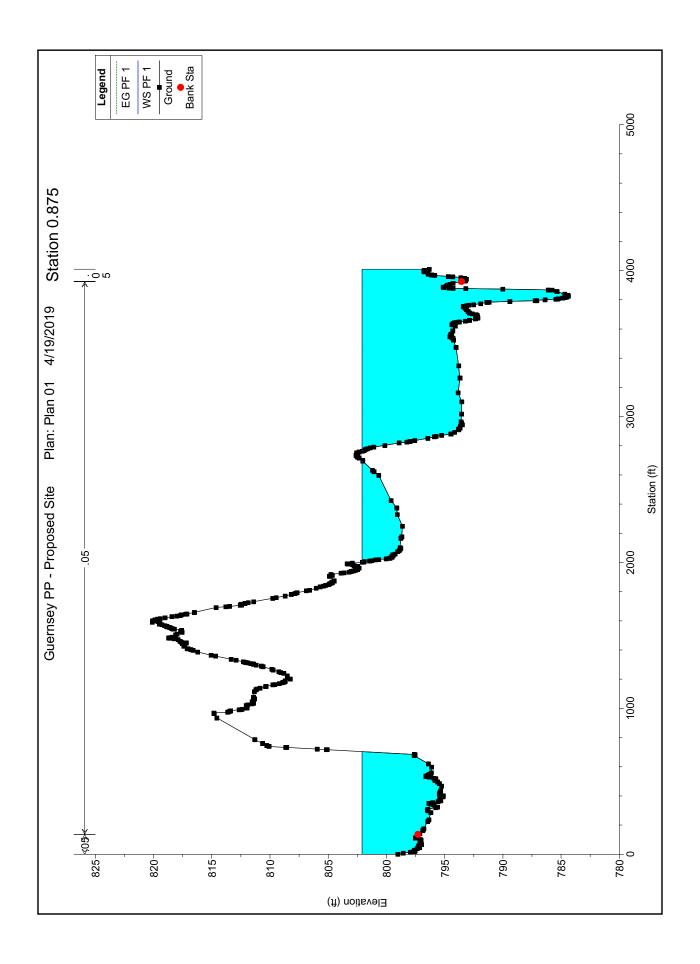


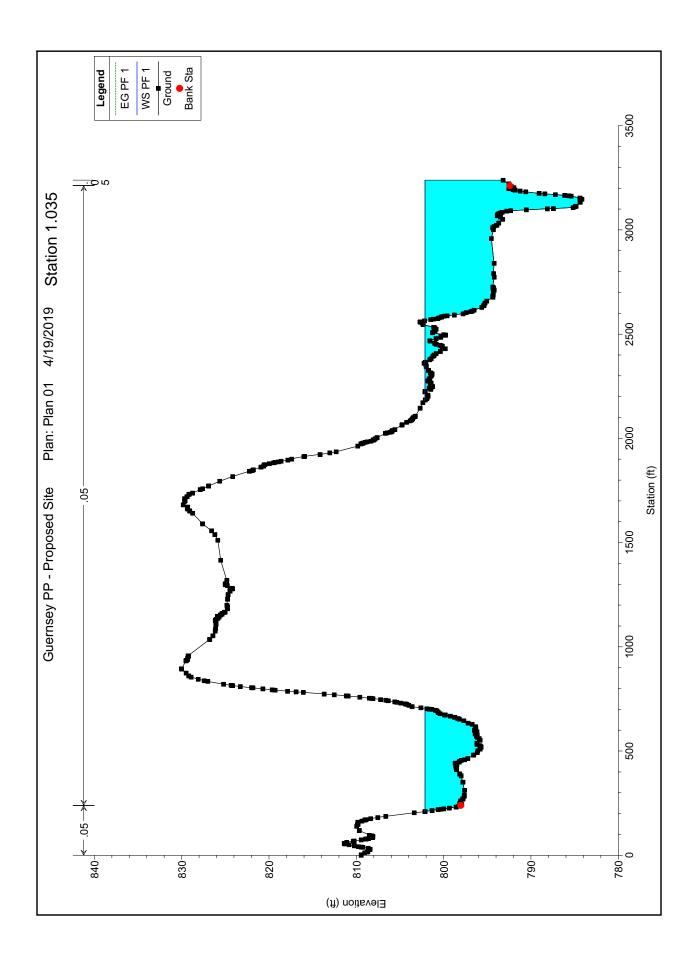


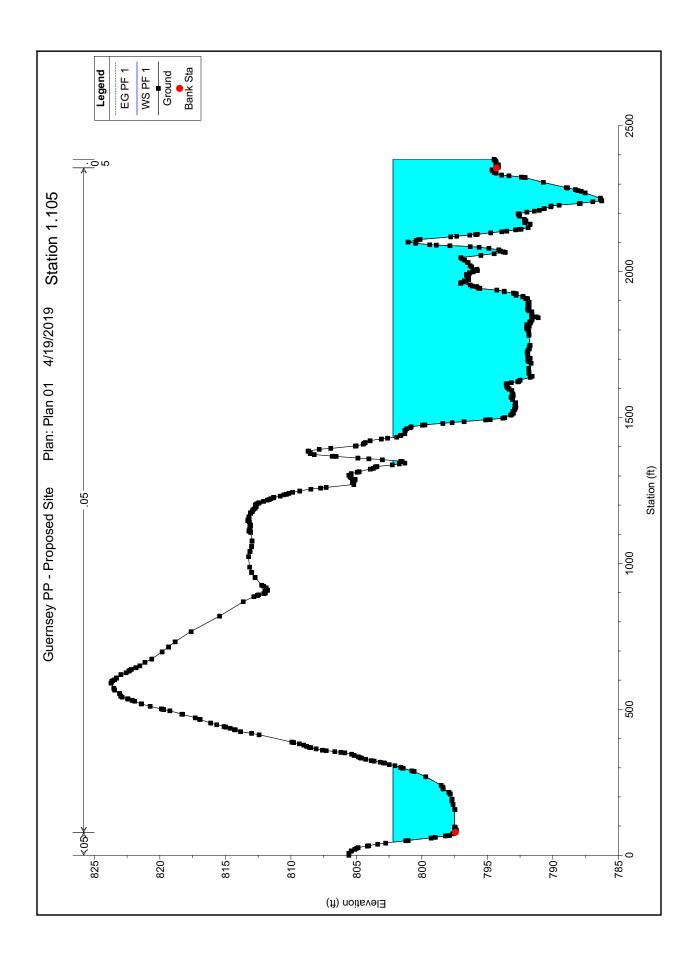


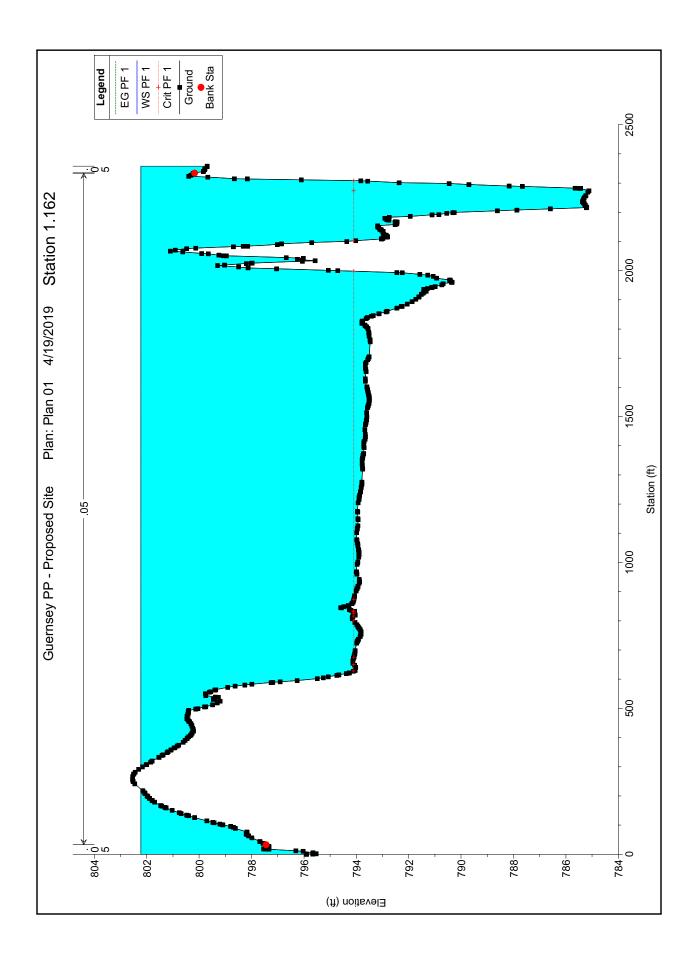












HEC-RAS Plan: planex River: Wills Reach: HEC-RAS Profile: PF 1

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
HEC-RAS	1.162	PF 1	10500.00	785.12	802.22	794.10	802.22	0.000033	0.64	16450.10	2284.59	0.04
HEC-RAS	1.105	PF 1	10500.00	786.27	802.19		802.21	0.000096	1.13	9352.57	1230.20	0.07
HEC-RAS	1.035	PF 1	10500.00	784.16	802.13		802.16	0.000185	1.26	8348.70	1518.31	0.09
HEC-RAS	0.875	PF 1	10500.00	784.37	802.08		802.08	0.000044	0.65	16195.93	2697.75	0.05
HEC-RAS	0.759	PF 1	10500.00	784.20	802.06		802.07	0.000018	0.49	21521.77	2892.03	0.03
HEC-RAS	0.582	PF 1	10500.00	783.70	802.05		802.05	0.000010	0.39	27339.27	3389.32	0.02
HEC-RAS	0.299	PF 1	10500.00	783.62	802.02		802.03	0.000038	0.58	18078.04	3223.29	0.04
HEC-RAS	0.197	PF 1	10500.00	783.41	802.01		802.01	0.000019	0.45	23248.27	3592.58	0.03
HEC-RAS	0.145	PF 1	10500.00	783.71	802.01		802.01	0.000013	0.40	26366.44	3694.88	0.03
HEC-RAS	0.069	PF 1	10500.00	783.31	802.00		802.01	0.00006	0.32	33088.75	3697.51	0.02
HEC-RAS	0.000	PF 1	10500.00	783.34	802.00	792.63	802.00	0.000011	0.38	28030.63	3740.37	0.02

HEC-RAS Plan: Plan 01 River: Wills Reach: HEC-RAS Profile: PF 1

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
HEC-RAS	1.162	PF 1	10500.00	785.12	802.22	794.10	802.23	0.000033	0.64	16466.26	2285.00	0.04
HEC-RAS	1.105	PF 1	10500.00	786.27	802.19		802.21	0.000095	1.13	9362.26	1230.43	0.07
HEC-RAS	1.035	PF 1	10500.00	784.16	802.14		802.16	0.000184	1.25	8361.21	1520.10	0.09
HEC-RAS	0.875	PF 1	10500.00	784.37	802.09		802.09	0.000044	0.66	16042.47	2652.51	0.05
HEC-RAS	0.759	PF 1	10500.00	784.20	802.07		802.07	0.000019	0.51	20882.57	2776.04	0.03
HEC-RAS	0.582	PF 1	10500.00	783.70	802.06		802.06	0.000011	0.41	25777.37	3036.74	0.02
HEC-RAS	0.299	PF 1	10500.00	783.62	802.02		802.03	0.000051	0.68	15329.20	2673.34	0.05
HEC-RAS	0.197	PF 1	10500.00	783.41	802.01		802.01	0.000020	0.47	22621.20	3512.19	0.03
HEC-RAS	0.145	PF 1	10500.00	783.70	802.01		802.01	0.000013	0.40	26368.03	3694.88	0.03
HEC-RAS	0.069	PF 1	10500.00	783.31	802.00		802.01	0.00006	0.32	33091.19	3697.51	0.02
HEC-RAS	0.000	PF 1	10500.00	783.34	802.00	792.63	802.00	0.000011	0.38	28028.94	3740.37	0.02

Hydrology and Hydraulic Analysis – GPS Switchyard Site Hydrology and Hydraulic Analysis

Guernsey Power Station LLC Guernsey 765KV Switchyard Hydrology & Hydraulic Studies

Issue Date: December 05, 2018 Issue Purpose: Client Use

55 East Monroe Street Chicago, IL 60603-5780 USA

Project No.: 13607-005

Calculation No.: GUE-WR-HH-001 Rev. 0B

	Cal		Calc. No.	GUE-WR-HH-001			
Sargent & Lundy	Flood Wave Runup an	rodynamic Force Analysis		Rev. 0B	Date:	12/05/2018	
	Safety-Related	х	Non-Safety Related		Page	2	of 64
Client Guernsey Power Station LLC			Prepared by M. Sale	hi		Date	12/052018
Project Guernsey 765KV Switchyard			Reviewed by N. Pate	1		Date	12/05/2018
Project No. 13607-005			Approved by M. Sale	hi		Date	12/05/2018

LEGAL NOTICE

This calculation ("Deliverable") was prepared by Sargent & Lundy, L.L.C. ("S&L"), expressly for the sole use of Guernsey Power Station LLC ("Client") in accordance with the agreement between S&L and Client. This Deliverable was prepared using the degree of skill and care ordinarily exercised by engineers practicing under similar circumstances. Client acknowledges: (1) S&L prepared this Deliverable subject to the particular scope limitations, budgetary and time constraints, and business objectives of the Client; (2) information and data provided by others may not have been independently verified by S&L; and (3) the information and data contained in this Deliverable are time sensitive and changes in the data, applicable codes, standards, and acceptable engineering practices may invalidate the findings of this Deliverable. Any use or reliance upon this Deliverable by third parties shall be at their sole risk.

Sargent & Lundy

ISSUE SUMMARY Form SOP-0402-07, Revision 12

		DESIGN CONTROL SUMMAR	RY			
CLIENT:	Guernsey Power Station LLC		UNIT NO.: N/	A PAGE NO.:	3	
PROJECT NAME:	Guernsey 765KV Switchyard	 Hydrology & Hydraulic St 	udies			
PROJECT NO .:	13607-005		S&L M	NUCLEAR QA PROGRAM		
CALC. NO:	GUE-WR-HH-001		PLICABLE 🗌 YES 🖾 NO			
TITLE:	Hydrology and Hydraulic Ana	alysis				
EQUIPMENT NO .:	N/A					
	IDENTIFICATION OF PAGES	ADDED/REVISED/SUPERSED	ED/VOIDED & REVIE	W METHOD		
Total Pages of 64				INPUTS/ ASSL	IMPTIONS	
				VERIFIED	K.	
					IED	
REVIEW METHOD:	Detailed			REV.:	0B	
STATUS:	PROVED SUPERSEDED BY (CALCULATION NO.		DATE FOR REV.:		
PREPARER: M. S	alehi C.Sala	li		DATE:	5 DEC 2018	
	1			DATE:	5 DEC 2018	
REVIEWER: N. P	tel N. Felel				O DEO LOIO	
	141803	ADDED/REVISED/SUPERSED	ED/VOIDED & REVIE	DATE:		
	141803	ADDED/REVISED/SUPERSED	ED/VOIDED & REVIE	DATE: W METHOD INPUTS/ ASSU	IMPTIONS	
APPROVER:	141803	ADDED/REVISED/SUPERSED	ED/VOIDED & REVIE	DATE: W METHOD INPUTS/ ASSU	IMPTIONS	
APPROVER:	IDENTIFICATION OF PAGES			DATE: W METHOD INPUTS/ ASSU VERIFIED UNVERIF REV.:	IMPTIONS	
APPROVER:	141803		ED/VOIDED & REVIE	DATE: W METHOD INPUTS/ ASSU VERIFIED UNVERIF	IMPTIONS	
APPROVER:	IDENTIFICATION OF PAGES			DATE: W METHOD INPUTS/ ASSU VERIFIED UNVERIF REV.: DATE FOR REV.:	IMPTIONS	
APPROVER:	IDENTIFICATION OF PAGES			DATE: W METHOD INPUTS/ ASSU VERIFIED UNVERIF REV.: DATE FOR REV.: DATE:	IMPTIONS	
APPROVER:	IDENTIFICATION OF PAGES			DATE: W METHOD INPUTS/ ASSU VERIFIED UNVERIF REV.: DATE FOR REV.: DATE: DATE: DATE: DATE:	IMPTIONS	
APPROVER:	IDENTIFICATION OF PAGES	CALCULATION NO.		DATE: W METHOD INPUTS/ ASSU VERIFIED UNVERIF REV.: DATE FOR REV.: DATE: DATE: DATE: DATE:	IMPTIONS	
APPROVER:	IDENTIFICATION OF PAGES	CALCULATION NO.		DATE: W METHOD INPUTS/ ASSU VERIFIED UNVERIF REV.: DATE FOR REV.: DATE: DATE: DATE: DATE:	IMPTIONS) IED	
APPROVER:	IDENTIFICATION OF PAGES	CALCULATION NO.		DATE: W METHOD INPUTS/ ASSU VERIFIED UNVERIF REV.: DATE FOR REV.: DATE: DATE: DATE: DATE: DATE:	IMPTIONS DED	
APPROVER:	IDENTIFICATION OF PAGES	CALCULATION NO.		DATE: W METHOD INPUTS/ ASSU VERIFIED UNVERIF REV.: DATE FOR REV.: DATE: DATE: DATE: DATE: DATE: DATE: DATE:		
APPROVER:	IDENTIFICATION OF PAGES	CALCULATION NO.		DATE: W METHOD INPUTS/ ASSU VERIFIED UNVERIF REV.: DATE FOR REV.: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE:		
APPROVER:	IDENTIFICATION OF PAGES	CALCULATION NO.		DATE: W METHOD INPUTS/ ASSU VERIFIED UNVERIF REV.: DATE FOR REV.: DATE: DATE: DATE: DATE: W METHOD INPUTS/ ASSU VERIFIED UNVERIF		
APPROVER:	IDENTIFICATION OF PAGES	CALCULATION NO.		DATE: W METHOD INPUTS/ ASSU VERIFIED UNVERIF REV.: DATE FOR REV.: DATE: DATE: DATE: DATE: W METHOD INPUTS/ ASSU VERIFIED UNVERIF		
APPROVER:	IDENTIFICATION OF PAGES	CALCULATION NO.		DATE: W METHOD INPUTS/ ASSU VERIFIED UNVERIF REV.: DATE FOR REV.: DATE: DATE: DATE: DATE: W METHOD INPUTS/ ASSU VERIFIED UNVERIF REV.: DATE FOR REV.:		

NOTE: PRINT AND SIGN IN THE SIGNATURE AREAS

	(Calculatic	Calc. No.	GUE-WR-HH-001	
Sargent & Lundy	Flood Wave Runup	and Hyd	rodynamic Force Analysis	Rev. 0B	Date: 12/05/2018
	Safety-Related	x	Non-Safety Related	Page	4 of 64
Client Guernsey Power St	Client Guernsey Power Station LLC				Date 12/052018
Project Guernsey 765KV Switchyard			Reviewed by N. Patel		Date 12/05/2018
Project No. 13607-005			Approved by M. Salehi		Date 12/05/2018

TABLE OF CONTENTS

1		PU	RPOSE AND SCOPE	6
2	•	ST	UDY INPUTS	6
	2.	.1	PROJECT LOCATION	6
	2.	2	WILLS CREEK	7
	2.	.3	DATUM	7
	2.	.4	PLANT DRAWINGS	7
	2.	.5	FEMA EFFECTIVE FLOOD HYDRAULIC FILES1	0
3	2	AS	SUMPTIONS1	2
4	!	ME	THODOLOGY AND ACCEPTANCE CRITERIA1	2
	4.	.1	EFFECTIVE FEMA HYDRAULIC MODEL1	3
	4.	.2	HYDRAULIC MODEL SCENARIOS1	3
	4.	.3	ACCEPTANCE CRITERIA1	3
5	5	CA	LCULATION AND RESULTS1	4
6	;	RE	FERENCES 1	5
7	,	AT	TACHMENTS1	6

	Cal	culatio	on Title:		Calc. No. GUE-WR-HH-001		
Sargent & Lundy	Flood Wave Runup and	d Hyd	rodynamic Force Anal	ysis	Rev. 0B	Date:	12/05/2018
	Safety-Related	х	Non-Safety Related	Page		5	of 64
Client Guernsey Power St	ation LLC	1	Prepared by N	M. Salehi		Date	12/052018
Project Guernsey 765KV S	Switchyard		Reviewed by N	N. Patel		Date	12/05/2018
Project No. 13607-005			Approved by N	M. Salehi		Date	12/05/2018

LIST OF TABLES

LIST OF FIGURES

Figure 1: Location of the Study Area in Regional Scale	8
Figure 2: Location of the Study Area in Local Scale	9
Figure 3: Wills Creek Flooding Extent (Blue Color) and Project Site (Red Rectangle)	. 10
Figure 4: HEC-RAS Cross Sections Covering Project Site	. 11

LIST OF ATTACHMENTS

Attachment 7.1	1% Annual Chance Flood Water Surface Elevations at Project Site	17
Attachment 7.2	Datum Conversion	21
Attachment 7.3	FEMA Engineering Library Correspondence	23
Attachment 7.4	Relevant Project Civil Drawings	35
Attachment 7.5	FEMA Model Results for Existing Condition	39
Attachment 7.6	FEMA Model Results for Proposed Condition	52

	C	Calculatio	n Title:] [Calc. No. GUE-WR-HH-001		
Sargent & Lundy	Flood Wave Runup a	and Hyd	rodynamic Force Analysis		Rev. 0B	Date:	12/05/2018
	Safety-Related	х	Non-Safety Related		Page	6	of 64
Client Guernsey Power St	tation LLC		Prepared by M. Saleh	i		Date	12/052018
Project Guernsey 765KV Switchyard			Reviewed by N. Patel			Date	12/05/2018
Project No. 13607-005			Approved by M. Salehi			Date	12/05/2018

1 PURPOSE AND SCOPE

Guernsey Power Station LLC (Client) is in the process of developing a 765KV switchyard (Project) in approximately 8 miles south of Cambridge, OH. The Project site is located in Guernsey County, Ohio and is subject to the permit requirements of the County Office of Floodplain Administration. In order to obtain a construction permit, it shall be proved that the Project construction will not cause significant rise to the 100-year FEMA flood elevations from the existing condition. The purpose of this summary report is to present the results of the analysis performed to support the maximum 1-foot rise condition for the 100-year flood elevations. Client has requested Sargent & Lundy L.L.C. (S&L) prepare the no-rise evaluation on their behalf.

Effective FEMA hydraulic models are used as per county guideline (Reference 6.1). The scopes of this evaluation are limited to modifying the existing effective FEMA model through adding Project details to account for the existing conditions. This summary report aids Guernsey County in understanding the approach that has been taken by S&L to document and demonstrate insignificant rise based on the addition of the Project.

2 STUDY INPUTS

2.1 PROJECT LOCATION

The area of this study is shown on regional and local scales in Figure 1 and Figure 2, respectively. Guernsey switchyard will be built on the west floodplain of the Wills Creek in an approximate straight line distance of 8 miles south of Cambridge, OH and 1 mile north of Buffalo, OH. Project site falls inside the Guernsey County, OH. The principal source of flooding in this county is the periodic overflow of several creeks including the Wills Creek (Reference 6.2).

		С	alculatio	on Title:		Calc. No.	Calc. No. GUE-WR-HH-001		
Sargent & Lundy		Flood Wave Runup a	nd Hyd	rodynamic Force	Analysis	Rev. 0B	Date: 12/05/2018 7 of 64 Date 12/05/2018 12/05/2018 Date 12/05/2018 12/05/2018		
		Safety-Related	x	Non-Safety Relate	ed	Page	7	of 64	
Client	Guernsey Power Sta	ation LLC		Prepared by	M. Salehi		Date	12/052018	
Project	Project Guernsey 765KV Switchyard			Reviewed by	ved by N. Patel		Date	Date 12/05/2018	
Project No. 13607-005			Approved by	M. Salehi		Date	12/05/2018		

2.2 WILLS CREEK

Analyses of the hydraulic characteristics of flooding from this creek were carried out by the Federal Emergency Management Agency (FEMA) to provide estimates of the elevations of floods of the selected recurrence intervals. Figure 3 (Reference 6.3) shows the extent of the 100-year flooding for the Wills Creek near the Project site. As presented in the figure, proposed switchyard will be located entirely inside the creek's floodplain, *but not the floodway*. Therefore, to protect the site against flooding, it is raised above the flood elevations and surrounded with a sheet pile type wall that acts as a retaining wall to keep the soil in place. Project site is located within segment of the Wills Creek that is identified as Cross Sections BZ, BY, BX, BW, and BV in Reference 6.2. The 100-year flood elevation at the Project site varies from is 802.9 feet based on North American Vertical Datum of 1988 (NAVD88) at BZ to 802.5 ft NAVD88 at BV (see Page 33 of Reference 6.2, Attachment 7.1).

2.3 DATUM

FEMA flood maps and drawings are in North American Vertical Datum of 1988 (NAVD88). The FEMA effective model files are in National Geodetic Vertical Datum of 1929 (NGVD29). The conversion between the two datum is shown as extracted from National Oceanic and Atmospheric Administration (NOAA) VERTCON tool (Attachment 7.2).

• Datum shift (NAVD 88 minus NGVD 29): -0.673 feet

2.4 PLANT DRAWINGS

Sargent & Lundy Civil Drawings (Reference 6.4, Attachment 7.4) were used as a basis for the relevant site elevations including the following.

• Top of the sheet pile wall: 806 ft NAVD88 (Reference 6.4, GUE-E17026, Page 3 of Attachment 7.4)

		Cal	lculatic	on Title:		Calc. No. GUE-WR-HH-001		
Sargent & Lundy		Flood Wave Runup an	d Hyd	rodynamic Force A	Analysis	Rev. 0B	Date: 12/05/2018 8 of 64 Date 12/05/2018 Date 12/05/2018	
		Safety-Related	х	Non-Safety Relate	n-Safety Related Page		8	of 64
Client	Guernsey Power St	ation LLC		Prepared by	M. Salehi		Date	12/052018
Project	Project Guernsey 765KV Switchyard			Reviewed by	N. Patel		Date	12/05/2018
Project No.	13607-005			Approved by	M. Salehi		Date	12/05/2018

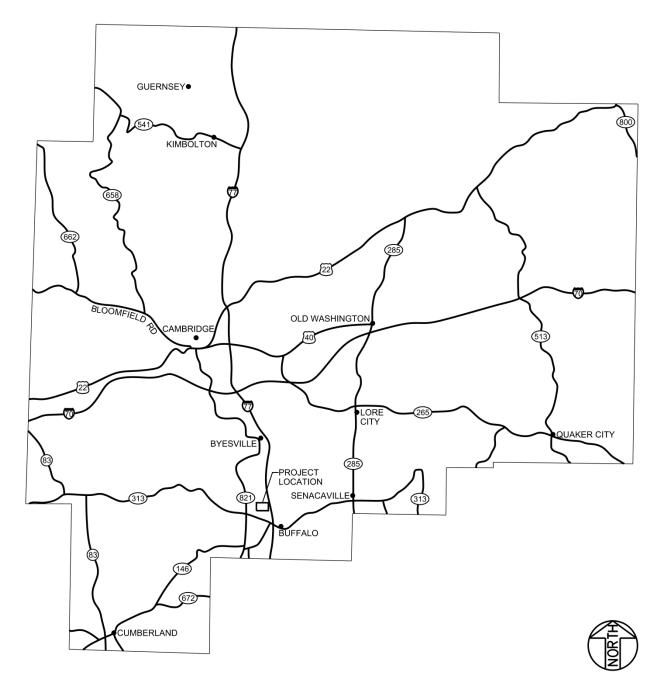


Figure 1: Location of the Study Area in Regional Scale

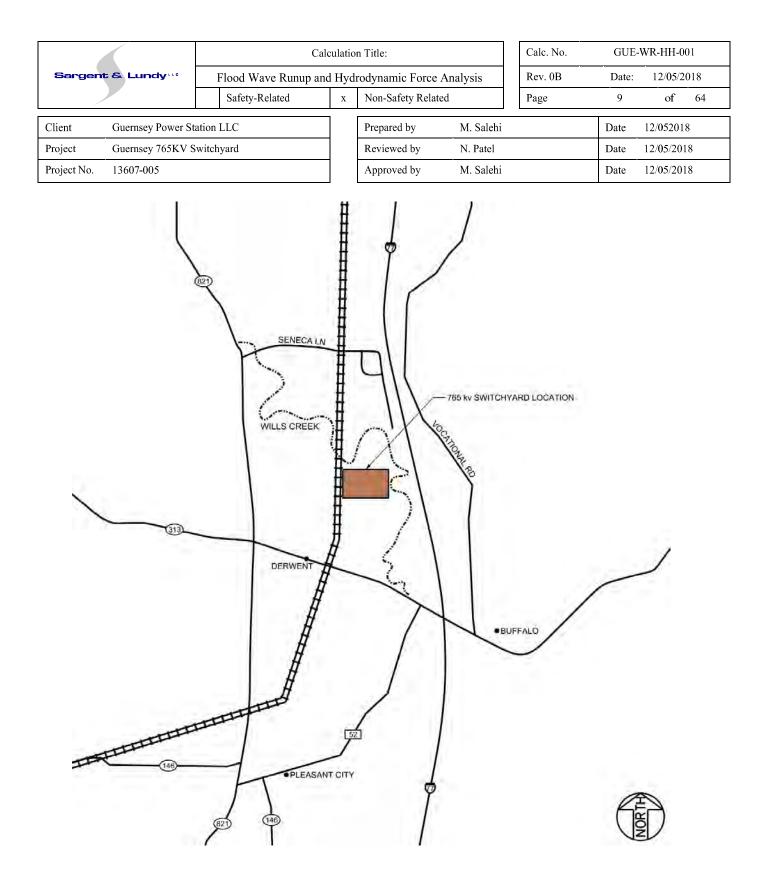


Figure 2: Location of the Study Area in Local Scale

Sargent & Lundy		Cal	culatio	on Title:		Calc. No. GUE-WR-HH-001		
		Flood Wave Runup and	d Hyd	lrodynamic Force An	alysis	Rev. 0B	Date:	12/05/2018
		Safety-Related	х	Non-Safety Related	Page		10	of 64
Client	Guernsey Power Sta	ation LLC	1	Prepared by	M. Salehi		Date	12/052018
Project	Guernsey 765KV S	witchyard		Reviewed by	N. Patel		Date	12/05/2018
Project No.	13607-005			Approved by	M. Salehi		Date	12/05/2018



Figure 3: Wills Creek Flooding Extent (Blue Color) and Project Site (Red Rectangle)

2.5 FEMA EFFECTIVE FLOOD HYDRAULIC FILES

S&L has received the following information from the FEMA Engineering Library (transmittal email is presented in Attachment 7.3):

- 1. 1985 Study
 - a. HEC2 pdf covering cross sections A-O
 - b. WSP2 pdf covering cross sections P-BU
- 2. Study 07-06-4849S covering cross sections BV-CC
 - a. HEC-RAS
 - b. Hydrology

	(Calculatio	on Title:		Calc. No. GUE-WR-HH-001		
Sargent & Lundy	Flood Wave Runup	and Hyd	rodynamic Force A	nalysis	Rev. 0B	Date:	12/05/2018
	Safety-Related	x	Non-Safety Related		Page	11	of 64
Client Guernsey Power St	ation LLC		Prepared by	M. Salehi		Date	12/052018
Project Guernsey 765KV S	witchyard		Reviewed by	N. Patel		Date	12/05/2018
Project No. 13607-005			Approved by	M. Salehi		Date	12/05/2018

- 3. LOMR 98-05-397P cross section AX
- 4. LOMR 06-05-BT86P cross section AK-AP
 - a. I am still working to locate the digital modeling for this LOMR. However the modeling is printed within the pdf here.
- 5. Topo maps

Digital files were comprised of many models with various labels. Investigation showed that the files located in the folder shown below covers the Plant area and S&L's model results match the effective FEMA flood maps. A complete list of electronic files received from FEMA Engineering Library is provided in Attachment 7.3. Figure 4 shows the overlay of FEMA flood model cross sections, project site, and aerial image of the study area.

\07-05-4849S_XS_BV_CC\Hydraulic Models\Guernsey_County_Approximate\Supplemental Information\Leverage_Studies\Guernsey_County\HEC-RAS\Derwent.

Figure 4: HEC-RAS Cross Sections Covering Project Site

	Ca	alculatic	on Title:		Calc. No. GUE-WR-HH-001		
Sargent & Lundy	Flood Wave Runup and	nd Hyd	rodynamic Force Analysis	F	Rev. 0B	Date:	12/05/2018
	Safety-Related	х	Non-Safety Related	Page		12	of 64
Client Guernsey Power St	ation LLC		Prepared by M. Salehi			Date	12/052018
Project Guernsey 765KV Switchyard			Reviewed by N. Patel	N. Patel		Date	12/05/2018
Project No. 13607-005			Approved by M. Salehi			Date	12/05/2018

3 ASSUMPTIONS

It is assumed that the models received from FEMA Engineering Library are the effective models. As necessary, other assumptions are made and justified throughout this document.

4 METHODOLOGY AND ACCEPTANCE CRITERIA

The hydraulics of the Wills Creek at a reach covering Project site is analyzed using HEC-RAS version 4.1.0 computer software (S&L validated and verified software no. 03.7.710-4.1) on computer #ZL10888. S&L employed the following methodology and steps to support a minimal impact determination of the 100-year flood level:

- 1) Requesting and receiving effective FEMA hydraulic model files from FEMA Engineering Library.
- 2) Identifying the portion of the models that cover Project site.
- 3) Running HEC-RAS Hydraulic models to compare the results with those provided in Reference 6.2. This step is essential to make sure that the models are matching the current effective FEMA flood elevations.
- 4) Inserting one additional cross sections into the model to cover the Plant eastern portion. This step is necessary to be able to model existing as well as proposed conditions. Implementing this additional cross section started with identifying the immediate cross section downstream of the Plant. This was done by investigating the FEMA reports and overlaying the existing FEMA model cross sections on top of the site aerial image (see Figure 4). Then the distances between existing and inserted cross section is measured in Google

Sargent & Lundy		Ca	lculatic	on Title:		Calc. No. GUE-WR-HH-001		
		Flood Wave Runup and	nd Hyd	rodynamic Force	Analysis	Rev. 0B	Date:	12/05/2018
		Safety-Related	х	Non-Safety Relate	afety Related Page		13	of 64
Client	Client Guernsey Power Station LLC			Prepared by		Date	12/052018	
Project	Project Guernsey 765KV Switchyard			Reviewed by	N. Patel		Date	12/05/2018
Project No. 13607-005			Approved by	M. Salehi		Date	12/05/2018	

Earth and then the HEC-RAS interpolation feature is used to add the cross section. Added cross section is modified as described in Section 4.2.

5) Running model and comparing the existing versus proposed condition.

4.1 EFFECTIVE FEMA HYDRAULIC MODEL

As noted earlier, Cross Sections BZ (identified as 10014 in FEMA Model) and BV (identified as 263 in FEMA Model) are located upstream and downstream of the Project site, respectively.

4.2 HYDRAULIC MODEL SCENARIOS

The goal in this study is to demonstrate that adding the proposed Project to the floodplain will not change the existing 100-year FEMA flood elevations by more than 1 foot as requested by County (Reference 6.1). Therefore, evaluating the net difference between the existing (current) and proposed conditions is the primary focus of this analysis. The following two scenarios are evaluated:

- 1) Effective FEMA hydraulic models with no change
- 2) Modified FEMA hydraulic model with the proposed raised Project site and road: the Plant area is modeled as a complete obstruction by raising the entire plant area to an elevation higher than 100-year effective flood levels. The access road is modeled by raising the cross sections that intersect the road to elevation 803.673 ft NGVD29 (after converting from NAVD88) as shown in Drawing GUE-E17032 (Reference 6.4).
 - 3) All other parameters remained unchanged from those received from FEMA.

4.3 ACCEPTANCE CRITERIA

The difference between the existing and proposed condition less than 1 foot is considered as acceptance criteria in this study.

	Ca	lculatic	n Title:		Calc. No. GUE-WR-HH-001		
Sargent & Lundy	Flood Wave Runup an	d Hyd	rodynamic Force Analysis		Rev. 0B	Date:	12/05/2018
	Safety-Related	х	Non-Safety Related		Page	14	of 64
Client Guernsey Power St	ation LLC		Prepared by M. Sale	hi		Date	12/052018
Project Guernsey 765KV Switchyard			Reviewed by N. Pate	1		Date	12/05/2018
Project No. 13607-005			Approved by M. Sale	hi		Date	12/05/2018

5 CALCULATION AND RESULTS

The two model scenarios were run, considering the design inputs and the methodology presented in Section 2 and Section 4, respectively. Model results for each scenario are included in Attachment 7.5 and Attachment 7.6, and a summary of the model results for the cross sections upstream and downstream of the Plant are presented in Table 1. The results indicate that there is only 0.03 feet rise in 100-year flood elevations between the FEMA model for the existing (current) condition and modified FEMA model that includes the proposed raise site. Therefore, constructing the proposed Project will not cause any noticeable 100-year flood level rise beyond existing (current) condition.

HEC-RAS Cross Section (FEMA Flood Maps)	HEC-RAS Cross Section FEMA Model [Current Effective Condition] Elev (ft NAVD88) ¹		Modified FEMA Model [Proposed Wall] Elev (ft NAVD88) ²	Difference (ft)
BZ	10014	802.90	802.90	0.0
BY	9704	802.80	802.80	0.0
BX	4131	802.70	802.72	0.02
BW	367	802.60	802.63	0.03
BV	263	802.50	802.52	0.02

Table 1: Hydraulic Model Result Summary

Note:

- 1) It should be noted that the FEMA hydraulic model showed 0.01 to 0.03 feet higher than those presented in Reference 6.2. This change considered insignificant.
- 2) Elevations are converted from NGVD29 (model) to NAVD88 using conversion shown in Section 2.3 (i.e. subtracting 0.673 from the model results).

Sargent & Lundy Flood Wave Runup and I		alculatio	on Title:	Calc. No.	GUE	-WR-HH-001		
		nd Hyd	rodynamic Force	Rev. 0B	Date:	12/05/2018		
	Safety-Related			Non-Safety Relate	ed	Page	15	of 64
Client	Guernsey Power Sta	ation LLC		Prepared by	M. Salehi		Date	12/052018
Project	Project Guernsey 765KV Switchyard			Reviewed by	N. Patel		Date	12/05/2018
Project No.	13607-005			Approved by	M. Salehi		Date	12/05/2018

6 REFERENCES

- 6.1 Guernsey County Commissioners, Special Purpose Flood Damage Reduction Resolution, Guernsey County, Ohio.
- 6.2 Flood Insurance Study, Guernsey County, Ohio and Incorporated Areas. Federal Emergency Management Agency, Flood Insurance Study Number 39059CV000A, August 16, 2011.
- 6.3 Flood Insurance Map, Guernsey County, Ohio and Incorporated Areas. Map Numbers 39059C0291D and 39059C0292D
- 6.4 Sargent & Lundy Civil Drawings. Guernsey 765KV Switchyard Site Work. Drawing Numbers GUE-E17010 to GUE-E17018; GUE-E17020 to GUE-E17022; GUE-E17025 to GUE-E17027; and GUE-E17030 to GUE-E17032.

Calc		lculatic	on Title:	Calc. No.	GUE	-WR-HH-001		
Sargent & Lundy " Flood Wave Runup and			d Hydrodynamic Force Analysis			Rev. 0B	Date:	12/05/2018
Safety-Related			х	Non-Safety Relate	ed	Page	16	of 64
Client	Guernsey Power St	ation LLC		Prepared by	M. Salehi		Date	12/052018
Project	Project Guernsey 765KV Switchyard			Reviewed by	N. Patel		Date	12/05/2018
Project No.	13607-005			Approved by	M. Salehi		Date	12/05/2018

7 ATTACHMENTS

Calcu		lculatic	n Title:	Calc. No.	GUE	-WR-HH-001		
Sargent & Lundy " Flood Wave Runup and			nd Hydrodynamic Force Analysis			Rev. 0B	Date:	12/05/2018
/	Safety-Related			Non-Safety Related		Page	17	of 64
Client	Guernsey Power St	ation LLC	7	Prepared by	M. Salehi		Date	12/052018
Project	Project Guernsey 765KV Switchyard			Reviewed by	N. Patel		Date	12/05/2018
Project No.	13607-005			Approved by	M. Salehi		Date	12/05/2018

Attachment 7.1 1% Annual Chance Flood Water Surface Elevations at Project Site

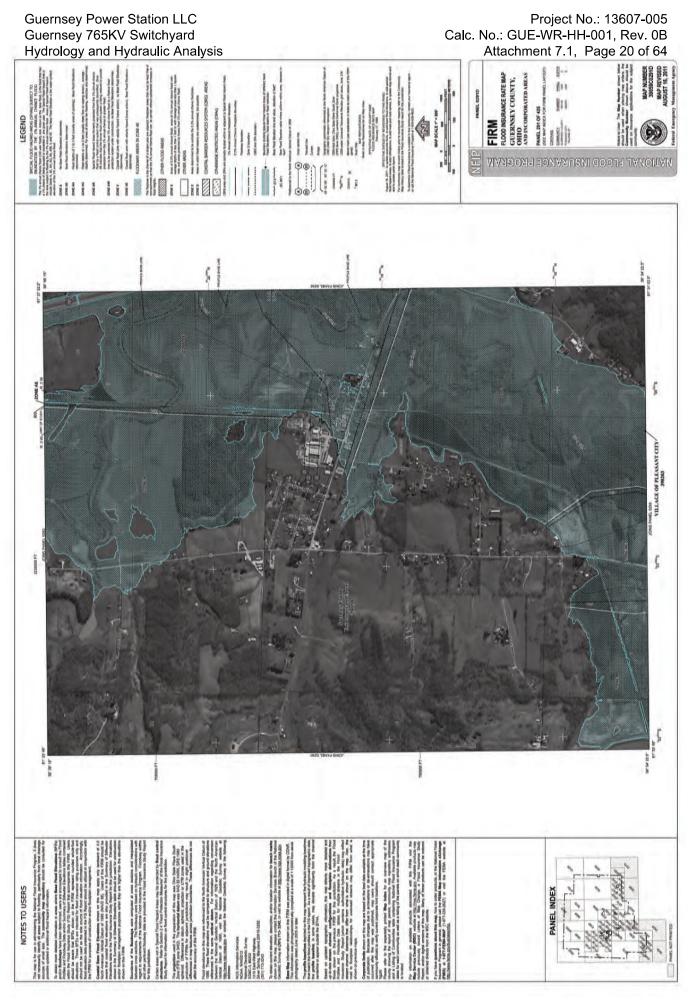
Project No.: 13607-005 Calc. No.: GUE-WR-HH-001, Rev. 0B Attachment 7.1, Page 18 of 64

GUERNSEY COUNTY, OHIO

AND INCORPORATED AREAS

COMMUNITY NAME BYESVILLE, VILLAGE OF CAMBRIDGE, CITY OF CUMBERLAND, VILLAGE OF *FAIRVIEW, VILLAGE OF GUERNSEY COUNTY (UNINCORPORATED AREAS) LORE CITY, VILLAGE OF *OLD WASHINGTON, VILLAGE OF PLEASANT CITY, VILLAGE OF QUAKER CITY, VILLAGE OF SALESVILLE, VILLAGE OF SENECAVILLE, VILLAGE OF	COMMUNITY NUMBER 390199 390200 390824 390922 390198 390202 390996 390203 390853 390856 390858	Guernsey County
* No Special Flood Hazard Areas	390838	

REVISED: August 16, 2011


Federal Emergency Management Agency

FLOOD INSURANCE STUDY NUMBER 39059CV000A

Guernsey 765KV Switchyard Hydrology and Hydraulic Analysis

Guernsey Power Station LLC

	,		Allachment 7.1, Page 19 of
0	INCREASE	NA ² NA ² NA ² NA ² NA ² NA ² NA ² NA ² NA ² NA ²	EK
1-PERCENT-ANNUAL-CHANCE FLOOD WATER SURFACE ELEVATION (FEET NAVD)	WITH FLOODWAY	NA ² NA ² NA ² NA ² NA ² NA ² NA ² NA ² NA ²	ALO CRF
KCEN I-ANNUAL-CHANCE FLC WATER SURFACE ELEVATION (FEET NAVD)	WITHOUT FLOODWAY	802.9 802.8 802.6 802.6 803.3 803.3 803.3 803.7 803.2 803.2 805.2 805.9 805.9	FLOODWAY DATA CREEK - BUFFALO
I-PEKC W/	REGULATORY	802.9 802.7 802.6 802.5 803.3 803.4 803.7 803.4 803.7 803.7 803.7 805.6 805.6	FLOODWAY DATA
	WIDTH REDUCED FROM PRIOR STUDY (FEET)		
FLOODWAY	MEAN VELOCITY (FEET PER SECOND)	NA ² NA ²	Creek Valley I
FLOC	SECTION AREA (SQUARE FEET)	NA ² NA ²	am from Wills MENT AGENCY TTY, OH
	WIDTH (FEET)	NA ² NA ²	t approximately 3575 feet downstream from Wills C EEDERAL EMERGENCY MANAGEMENT AGENCY FEDERAL EMERGENCY MANAGEMENT AGENCY AND INCORPORATED AREAS
DURCE	DISTANCE	100290 100394 104158 109731 110042 121703 122549 124020 124413 124413 124413 124610 125671 125671 125691 125691	toximately 357; RAL EMERGER UD INCOR
FLOODING SOURCE	CROSS SECTION	Wills Creek (continued) BV BX BX BX CA CA CA CA CC CC CC CC CC CC CC CC CC	¹ Feet from a point approximately 3575 feet downstream from Wills Creek Valley Road ² No data available FEDERAL EMERGENCY MANAGEMENT AGENCY FEDERAL EMERGENCY MANAGEMENT AGENCY AND INCORPORATED AREAS

Calcu Calcu Sargent & Lundy Flood Wave Runup and		alculatic	on Title:	Calc. No.	GUE	-WR-HH-001		
		nd Hyd	rodynamic Force	Rev. 0B	Date:	12/05/2018		
Safety-Related			x	Non-Safety Relate	ed	Page	21	of 64
Client	Guernsey Power St	ation LLC		Prepared by	M. Salehi		Date	12/052018
Project	Project Guernsey 765KV Switchyard			Reviewed by	N. Patel		Date	12/05/2018
Project No.	13607-005			Approved by	M. Salehi		Date	12/05/2018

Attachment 7.2 Datum Conversion

Questions concerning the VERTCON process may be mailed to <u>NGS</u>

Latitude: 39.929

Longitude: 081.536

NGVD 29 height: 802.00 ft

Datum shift(NAVD 88 minus NGVD 29): -0.673 feet

Converted to NAVD 88 height: 801.327 feet

Website: https://www.ngs.noaa.gov/cgi-bin/VERTCON/vert_con.prl

Calcu Calcu Sargent & Lundy Flood Wave Runup and		alculatic	on Title:	Calc. No.	GUE	-WR-HH-001		
		nd Hyd	rodynamic Force	Rev. 0B	Date:	12/05/2018		
Safety-Related			x	Non-Safety Relate	ed	Page	23	of 64
Client	Guernsey Power St	ation LLC		Prepared by	M. Salehi		Date	12/052018
Project	Project Guernsey 765KV Switchyard			Reviewed by	N. Patel		Date	12/05/2018
Project No.	13607-005			Approved by	M. Salehi		Date	12/05/2018

Attachment 7.3 FEMA Engineering Library Correspondence

SALEHI, MEHRDAD

From:	Hoover, Carrie <carrie.hoover@mbakerintl.com></carrie.hoover@mbakerintl.com>
Sent:	Friday, November 02, 2018 12:28 PM
То:	SALEHI, MEHRDAD
Cc:	SRONCE, ROBERT M
Subject:	RE: EXTERNAL: FW: FEMA Data Request

Mehrdad,

Through the link at the bottom of the email chain you can download the data I have located for Wills Creek in Guernsey County, OH. The 2011 FIS indicates that your stream was last studied in detail in 1985 and 2007 with 2 revising LOMRs. The zip includes the following:

- 1. 1985 Study
 - a. HEC2 pdf covering cross sections A-O
 - b. WSP2 pdf covering cross sections P-BU
- 2. Study 07-06-4849S covering cross sections BV-CC
 - a. HEC-RAS
 - b. Hydrology
- 3. LOMR 98-05-397P cross section AX
- 4. LOMR 06-05-BT86P cross section AK-AP
 - a. I am still working to locate the digital modeling for this LOMR. However the modeling is printed within the pdf here.
- 5. Topo maps

We are moving offices this week and it has slowed the search for that LOMR modeling but I hope to have an answer soon. But the modeling is also there in the pdf.

Please let me know if you need anything further.

Carrie Hoover

FEMA Engineering Library 3601 Eisenhower Ave. Suite 600 Alexandria VA 22304 571-357-6046

To retrieve the attachments referenced in this email, click on the secure link below. <u>https://eftp.mbakerintl.com/message/SmXfs1Xy0fSiuUQsqkotrK</u>				
Filename	Size			
B1905002_WillsCrk_OH.zip	182 MB			
This email or download link can be forwarded to anyone.				
The attachments are available until: Tuesday, 1 January.				

Volume in drive D is DATA Volume Serial Number is AE76-A7CF

Directory of D:\0t1483\Technical Info\Guernsey\6.0 FEMA Model Files

Directory of D:\0t1483\Technical Info\Guernsey\6.0 FEMA Model Files\07-05-4849S_XS_BV_CC

11/05/2018		<dir></dir>	
11/05/2018	07:46 AM	<dir></dir>	
08/03/2011	09:50 AM	17,005,626	Engineering_Analyses.pdf
11/05/2018	07:57 AM	<dir></dir>	General
11/05/2018		<dir></dir>	Hydraulic Models
11/05/2018	07:46 AM	<dir></dir>	Hydrology
	1 File(s)) 17,005,626	5 bytes

Directory of D:\0t1483\Technical Info\Guernsey\6.0 FEMA Model Files\07-05-4849S_XS_BV_CC\General

11/05/2018	07:57 AM	<dir></dir>		
11/05/2018	07:57 AM	<dir></dir>		
10/26/2018	11:28 AM		93,253 173538127R02_Hydraulic.pdf	
10/26/2018	11:28 AM		53,709 173538127R02_Hydra_letter.pdf	
10/26/2018			11,189 39059C_Hydraulics_metadata.xml	
10/26/2018	11:28 AM		449,063 Certification_stamped.pdf	
10/26/2018	11:28 AM		24,259 DraftSection3.2.pdf	
10/26/2018	11:28 AM		32,768 project_narrative.doc	
,,	6 File(s)		664,241 bytes	
	• •			

Directory of D:\0t1483\Technical Info\Guernsey\6.0 FEMA Model Files\07-05-4849S_XS_BV_CC\Hydraulic Models

11/05/2018	07:46 AM	<dir></dir>	
11/05/2018		<dir></dir>	
11/05/2018		<dir></dir>	Guernsey_County_Approximate
	0 File((s)	0 bytes

Directory of D:\0t1483\Technical Info\Guernsey\6.0 FEMA Model Files\07-05-4849S_XS_BV_CC\Hydraulic Models\Guernsey_County_Approximate

$\begin{array}{c} 11/05/2018\\ 11/05/2018\\ 11/05/2018\\ 11/05/2018\\ 11/05/2018\\ 11/05/2018\\ 11/05/2018\\ 11/05/2018\end{array}$	07:46 AM 07:46 AM 07:46 AM 07:46 AM 11:14 AM	<dir> <dir> <dir> <dir> <dir> <dir> <dir> <dir> (S)</dir></dir></dir></dir></dir></dir></dir></dir>	FWDT Profiles Simulations Spatial Files Supplemental Information 0 bytes
	0 FILE	(5)	U Dytes

Directory of D:\0t1483\Technical Info\Guernsey\6.0 FEMA Model Files\07-05-4849S_XS_BV_CC\Hydraulic Models\Guernsey_County_Approximate\FWDT Page 1

Guernsey Power Station LLC Guernsey 765KV Switchyard Hydrology and Hydraulic Analysis	Project No.: 13607-005 Calc. No.: GUE-WR-HH-001, Rev. 0B Attachment 7.3, Page 26 of 64
	Read Me.txt bytes
Directory of D:\0t1483\Technical Info\ Files\07-05-4849S_XS_BV_CC\Hydraulic Mo	Guernsey\6.0 FEMA Model dels\Guernsey_County_Approximate\Profiles
	Read Me.txt bytes
Directory of D:\0t1483\Technical Info\ Files\07-05-4849S_XS_BV_CC\Hydraulic Mo	Guernsey\6.0 FEMA Model dels\Guernsey_County_Approximate\Simulations
11/05/201807:46 AM7,952,27405/13/200908:01 AM780,80005/13/200908:01 AM2,98811/05/201809:58 AM891	GuernseyCoApprox.f01 GuernseyCoApprox.g01 GuernseyCoApprox.002 GuernseyCoApprox.p02 GuernseyCoApprox.prj GuernseyCoApprox.r02 bytes
Directory of D:\0t1483\Technical Info\ Files\07-05-4849S_XS_BV_CC\Hydraulic Mo Files	Guernsey\6.0 FEMA Model dels\Guernsey_County_Approximate\Spatial
11/05/2018 11:14 AM <dir> 11/05/2018 11:14 AM <dir> 10/26/2018 11:28 AM 26,312,704 1 File(s) 26,312,704</dir></dir>	Guernsey_County.mdb
Directory of D:\0t1483\Technical Info\ Files\07-05-4849S_XS_BV_CC\Hydraulic Mo Information	Guernsey\6.0 FEMA Model dels\Guernsey_County_Approximate\Supplemental
	guernsey_co_hec_ras_inputs.mdb Leverage_Studies bytes
Directory of D:\0t1483\Technical Info\ Files\07-05-4849S_XS_BV_CC\Hydraulic Mo Information\Leverage_Studies	Guernsey\6.0 FEMA Model dels\Guernsey_County_Approximate\Supplemental
	Guernsey_County bytes
Directory of D:\0t1483\Technical Info\ Files\07-05-4849S_XS_BV_CC\Hydraulic Mo Information\Leverage_Studies\Guernsey_C	dels\Guernsey_County_Approximate\Supplemental
11/05/2018 07:46 AM <dir></dir>	Documents GIS Page 2

11/05/201807:46 AM<DIR>HEC-RAS10/26/201811:28 AM3,683 readme.txt1 File(s)3,683 bytes

Directory of D:\0t1483\Technical Info\Guernsey\6.0 FEMA Model Files\07-05-4849S_XS_BV_CC\Hydraulic Models\Guernsey_County_Approximate\Supplemental Information\Leverage_Studies\Guernsey_County\Documents

11/05/2018	07:46 AM	<dir></dir>		
11/05/2018	07:46 AM	<dir></dir>		
10/26/2018	11:28 AM	17,745.	,540 OFR2008-1	289_1580.pdf
	1 File(s)) 17.745	5,540 bytes	

Directory of D:\0t1483\Technical Info\Guernsey\6.0 FEMA Model Files\07-05-4849S_XS_BV_CC\Hydraulic Models\Guernsey_County_Approximate\Supplemental Information\Leverage_Studies\Guernsey_County\GIS

$\begin{array}{c} 11/05/2018\\ 11/05/2018\\ 11/05/2018\\ 10/26/2018\\ 10/26/2018\\ 10/26/2018\\ 11/05/2018\\ 10/26/2018\\ 10/26/2018\\ 10/26/2018\\ 10/26/2018\\ 10/26/2018\end{array}$	07:46 AM 07:46 AM 11:28 AM 11:28 AM 11:28 AM 07:46 AM 11:28 AM 11:28 AM 11:28 AM	<dir> <dir> <dir> <dir></dir></dir></dir></dir>	Birmingham 540 BMs.dbf 380 bms.shp 180 bms.shx Derwent 75 guernsey_county.dl 7,164 guernsey_county.sl 108 guernsey county.sl	hp
				hp
11/05/2018	07:46 AM	<dir></dir>	Kimbolton	
11/05/2018	07:46 AM	<dir></dir>	Pleasant City	
11/05/2018	07:46 AM 6 File(<dir> s)</dir>	Quaker City 8,447 bytes	

Directory of D:\0t1483\Technical Info\Guernsey\6.0 FEMA Model Files\07-05-4849S_XS_BV_CC\Hydraulic Models\Guernsey_County_Approximate\Supplemental Information\Leverage_Studies\Guernsey_County\GIS\Birmingham

11/05/2018 11/05/2018 10/26/2018 10/26/2018 10/26/2018 10/26/2018 10/26/2018 10/26/2018 10/26/2018 10/26/2018 10/26/2018 10/26/2018 10/26/2018	07:46 AM 07:46 AM 11:28 AM	<dir> <dir></dir></dir>	1,660 108 18,850 128,468 1,380 2,122 1,948 236 84 2,596 116	 stream.dbf stream.shp stream.shx topo.dbf topo.shp topo.shx xscutlines.dbf xscutlines.shp xscutlines.shx zone10.dbf zone10.shp zone10.shx
	11:28 AM			
	11:28 AM		1,948	xscutlines.shp
	11:28 AM			
	11:28 AM		84	zone10.dbf
	11:28 AM		2,596	zone10.shp
· · · ·	-			
10/26/2018	11:28 AM		-	zone100.dbf
10/26/2018	11:28 AM			zone100.shp
10/26/2018	11:28 AM			zone100.shx
10/26/2018	11:28 AM		-	zone50.dbf
10/26/2018	11:28 AM			zone50.shp
10/26/2018	11:28 AM		-	zone50.shx
10/26/2018	11:28 AM		-	zone500.dbf
10/26/2018	11:28 AM			zone500.shp
10/26/2018	11:28 AM			zone500.shx
	21 File(s)	167,223	3 bytes

Directory of D:\0t1483\Technical Info\Guernsey\6.0 FEMA Model Files\07-05-4849S_XS_BV_CC\Hydraulic Models\Guernsey_County_Approximate\Supplemental Page 3

Information\Leverage_Studies\Guernsey_County\GIS\Derwent

11/05/2018	07:46 AM	<dir></dir>	
11/05/2018	07:46 AM	<dir></dir>	
10/26/2018	11:28 AM	389	stream.dbf
10/26/2018	11:28 AM	1,612	stream.shp
10/26/2018	11:28 AM	108	stream.shx
10/26/2018	11:28 AM	198,558	topo.dbf
10/26/2018	11:28 AM	4,361,764	topo.shp
10/26/2018	11:28 AM		topo.shx
10/26/2018	11:28 AM	3,266	xscutlines.dbf
10/26/2018	11:28 AM	4,788	xscutlines.shp
10/26/2018	11:28 AM		xscutlines.shx
10/26/2018	11:28 AM	256	zone10.dbf
10/26/2018	11:28 AM	5,576	zone10.shp
10/26/2018	11:28 AM	116	zone10.shx
10/26/2018	11:28 AM		zone100.dbf
10/26/2018	11:28 AM	5,464	zone100.shp
10/26/2018	11:28 AM		zone100.shx
10/26/2018	11:28 AM		zone50.dbf
10/26/2018	11:28 AM		zone50.shp
10/26/2018	11:28 AM		zone50.shx
10/26/2018	11:28 AM		zone500.dbf
10/26/2018	11:28 AM		zone500.shp
10/26/2018	11:28 AM		zone500.shx
	21 File(s)) 4,610,144	4 bytes

Directory of D:\0t1483\Technical Info\Guernsey\6.0 FEMA Model Files\07-05-4849S_XS_BV_CC\Hydraulic Models\Guernsey_County_Approximate\Supplemental Information\Leverage_Studies\Guernsey_County\GIS\Kimbolton

11/05/2018	07:46 AM	<dir></dir>	
11/05/2018	07:46 AM	<dir></dir>	
10/26/2018	11:28 AM	389	stream.dbf
10/26/2018	11:28 AM	572	stream.shp
10/26/2018	11:28 AM	108	stream.shx
10/26/2018	11:28 AM	394,849	topo.dbf
10/26/2018	11:28 AM	2,922,364	topo.shp
10/26/2018	11:28 AM	24,940	topo.shx
10/26/2018	11:28 AM	2,122	xscutlines.dbf
10/26/2018	11:28 AM	2,044	xscutlines.shp
10/26/2018	11:28 AM	236	xscutlines.shx
10/26/2018	11:28 AM		zone10.dbf
10/26/2018	11:28 AM	3,524	Zone10.shp
10/26/2018	11:28 AM	116	Zone10.shx
10/26/2018	11:28 AM	119	zone100.dbf
10/26/2018	11:28 AM	3,612	zone100.shp
10/26/2018	11:28 AM	108	Zone100.shx
10/26/2018	11:28 AM	119	Zone50.dbf
10/26/2018	11:28 AM	,	Zone50.shp
10/26/2018	11:28 AM		Zone50.shx
10/26/2018	11:28 AM		zone500.dbf
10/26/2018	11:28 AM		Zone500.shp
10/26/2018	11:28 AM		Zone500.shx
	21 File(s)	3,363,049	9 bytes

Directory of D:\0t1483\Technical Info\Guernsey\6.0 FEMA Model Files\07-05-4849S_XS_BV_CC\Hydraulic Models\Guernsey_County_Approximate\Supplemental Information\Leverage_Studies\Guernsey_County\GIS\Pleasant City

11/05/2018	07:46 AM	<dir></dir>		
11/05/2018	07:46 AM	<dir></dir>		
10/26/2018	11:28 AM		349	stream.dbf
				Page 4

$\begin{array}{ccccc} 10/26/2018 & 11:28\\ 10/26/2018 & 11.28\\ 10/26/2018 & 11.28\\ 10/26/2018 & 11.28\\ 10/26/2018 & 11$	AM 108 AM 75 AM 268 AM 108 AM 2,850 AM 2,850 AM 2,850 AM 2,92 AM 209 AM 209 AM 209 AM 108 AM 209 AM 108 AM 209 AM 108 AM 108 AM 108 AM 108 AM 108 AM 108 AM 108	<pre>stream.shp stream.shx trib.dbf trib.shp trib.shx xscutlines.dbf xscutlines.shp xscutlines.shx zone10.dbf zone10.shp zone100.shp zone100.shp zone50.dbf zone50.shp zone50.shp zone500.shp zone500.shp zone500.shp zone500.shx 8 bytes</pre>
---	---	---

Directory of D:\0t1483\Technical Info\Guernsey\6.0 FEMA Model Files\07-05-4849S_XS_BV_CC\Hydraulic Models\Guernsey_County_Approximate\Supplemental Information\Leverage_Studies\Guernsey_County\GIS\Quaker City

11/05/2018	07:46 AM	<dir></dir>	
11/05/2018	07:46 AM	<dir></dir>	
10/26/2018	11:28 AM		stream.dbf
10/26/2018	11:28 AM		stream.shp
10/26/2018	11:28 AM		stream.shx
10/26/2018	11:28 AM		topo.dbf
10/26/2018	11:28 AM	5,543,852	
10/26/2018	11:28 AM		topo.shx
10/26/2018	11:28 AM		xscutlines.dbf
10/26/2018	11:28 AM		xscutlines.shp
10/26/2018	11:28 AM		xscutlines.shx
10/26/2018	11:28 AM		zone10.dbf
10/26/2018	11:28 AM		zone10.shp
10/26/2018	11:28 AM		zone10.shx
10/26/2018	11:28 AM		zone100.dbf
10/26/2018	11:28 AM		zone100.shp
10/26/2018	11:28 AM		zone100.shx
10/26/2018	11:28 AM		zone50.dbf
10/26/2018	11:28 AM		zone50.shp
10/26/2018	11:28 AM		zone50.shx
10/26/2018	11:28 AM	-	zone500.dbf
10/26/2018	11:28 AM		zone500.shp
10/26/2018	11:28 AM		zone500.shx
	21 File(s)	5,812,171	L bytes

Directory of D:\0t1483\Technical Info\Guernsey\6.0 FEMA Model Files\07-05-4849S_XS_BV_CC\Hydraulic Models\Guernsey_County_Approximate\Supplemental Information\Leverage_Studies\Guernsey_County\HEC-RAS

11/05/2018		<dir></dir>	
11/05/2018	07:46 AM	<dir></dir>	
11/05/2018	07:46 AM	<dir></dir>	Derwent
11/05/2018	07:46 AM	<dir></dir>	Kimbolton
11/05/2018	07:46 AM	<dir></dir>	Pleasant City
	0 File(s)	0 bytes

Directory of D:\0t1483\Technical Info\Guernsey\6.0 FEMA Model Page 5

Files\07-05-4849S_XS_BV_CC\Hydraulic Models\Guernsey_County_Approximate\Supplemental	L
Information\Leverage_Studies\Guernsey_County\HEC-RAS\Derwent	
	L

11/05/2018	07:46 AM	<dir></dir>		
11/05/2018	07:46 AM	<dir></dir>		
11/05/2018	07:46 AM		826	wills.f01
11/05/2018	07:46 AM		45,695	wills.q01
10/26/2018	11:28 AM			wills.ŏ01
11/05/2018	07:46 AM			wills.p01
11/05/2018	07:46 AM		589	wills.prj
11/05/2018	07:46 AM			wills.r0ĭ
	6 File(s)	220,628	8 bytes

Directory of D:\0t1483\Technical Info\Guernsey\6.0 FEMA Model Files\07-05-4849S_XS_BV_CC\Hydraulic Models\Guernsey_County_Approximate\Supplemental Information\Leverage_Studies\Guernsey_County\HEC-RAS\Kimbolton

11/05/2018 07:46 AM 11/05/2018 07:46 AM 11/05/2018 07:46 AM 11/05/2018 07:46 AM 10/26/2018 11:28 AM 11/05/2018 07:46 AM 10/26/2018 11:28 AM 11/05/2018 07:46 AM 10/26/2018 11:28 AM 11/05/2018 07:46 AM	<dir></dir>	942 Kimbolton.f01 24,281 Kimbolton.g01 64,000 Kimbolton.001 1,275 Kimbolton.p01 124 Kimbolton.p01.comp_msgs.txt 631 Kimbolton.prj 25,085 Kimbolton.r01 116,338 bytes
---	-------------	---

Directory of D:\0t1483\Technical Info\Guernsey\6.0 FEMA Model Files\07-05-4849S_XS_BV_CC\Hydraulic Models\Guernsey_County_Approximate\Supplemental Information\Leverage_Studies\Guernsey_County\HEC-RAS\Pleasant City

11/05/2018 11/05/2018 11/05/2018 11/05/2018 10/26/2018 11/05/2018	11:28 AM 07:46 AM	<dir> <dir></dir></dir>	1,142 WillsBuffalo.f01 45,204 WillsBuffalo.g01 116,288 WillsBuffalo.001 1,289 WillsBuffalo.p01
11/05/2018 11/05/2018 11/05/2018	07:46 AM 07:46 AM 07:46 AM 6 File(s))	1,289 WillsBuffalo.poi 595 WillsBuffalo.prj 30,607 WillsBuffalo.r01 195,125 bytes

Directory of D:\0t1483\Technical Info\Guernsey\6.0 FEMA Model Files\07-05-4849S_XS_BV_CC\Hydrology

11/05/2018 11/05/2018 11/05/2018 11/05/2018 11/05/2018 11/05/2018	07:46 AM 07:46 AM 07:46 AM 07:46 AM	<dir> <dir> <dir> <dir> <dir> <dir> <dir> <dir>)</dir></dir></dir></dir></dir></dir></dir></dir>	General Hydrology Hydrology Hydrology O bytes	Databases
--	--	---	---	-----------

Directory of D:\0t1483\Technical Info\Guernsey\6.0 FEMA Model Files\07-05-4849S_XS_BV_CC\Hydrology\General

11/05/2018	07:46 AM	<dir></dir>	
11/05/2018	07:46 AM		
08/03/2011	09:53 AM	12,316,274	39059C_Hydrology.pdf
08/03/2011	09:53 AM	10,317	39059C_Hydrology_Metadata.xml
08/03/2011	09:53 AM	97,169	39059C_HYDRO_ITR.pdf
08/03/2011	09:53 AM		39059C_Hydro_letter.pdf
08/03/2011	09:53 AM		Certification of Work_stamped.pdf
		,	Page 6

5 File(s)

5) 12,976,702 bytes

Directory of D:\0t1483\Technical Info\Guernsey\6.0 FEMA Model Files\07-05-4849S_XS_BV_CC\Hydrology\Hydrology Data

0 File(s) 0 bytes

Directory of D:\0t1483\Technical Info\Guernsey\6.0 FEMA Model Files\07-05-4849S_XS_BV_CC\Hydrology\Hydrology Data\PeakFQ

11/05/2018	07:46 AM	<dir></dir>	
11/05/2018	07:46 AM	<dir></dir>	
08/03/2011	09:53 AM		29,666 03141500.BMP
11/05/2018	07:46 AM		22,480 03141500.PRT
08/03/2011	09:53 AM		5,244 03141500.txt
08/03/2011	09:53 AM		29,406 03141870.BMP
11/05/2018	07:46 AM		16,381 03141870.PRT
08/03/2011	09:53 AM		701 03141870.txt
08/03/2011	09:53 AM		30,754 03142000.ВМР
11/05/2018	07:46 AM		15,356 03142000.prt
08/03/2011	09:53 AM		5,513 03142000.txt
08/03/2011	09:53 AM		28,506 03142200.ВМР
11/05/2018	07:46 AM		16,661 03142200.PRT
08/03/2011	09:54 AM		987 03142200.txt
08/03/2011	09:54 AM		29,894 03142500.ВМР
11/05/2018	07:46 AM		9,438 03142500.prt
08/03/2011	09:54 AM		1,060 03142500.txt
	15 File(s)	242,047 bytes

Directory of D:\0t1483\Technical Info\Guernsey\6.0 FEMA Model Files\07-05-4849S_XS_BV_CC\Hydrology\Hydrology Data\StreamStats

11/05/2018 11/05/2018	07:46 AM 07:46 AM	<dir> <dir></dir></dir>	
08/03/2011	09:54 AM		SS_Flowpaths.dbf
11/05/2018	07:46 AM		SS_Flowpaths.prj
08/03/2011	09:54 AM		SS_Flowpaths.sbn
08/03/2011	09:54 AM		SS_Flowpaths.sbx
08/03/2011	09:54 AM		SS_Flowpaths shp
08/03/2011	09:54 AM		SS_Flowpaths.shp.xml
08/03/2011	09:54 AM		SS_Flowpaths.shx
08/03/2011	09:54 AM		SS_Points.dbf
08/03/2011	09:54 AM		SS_Points.prj
08/03/2011	09:54 AM		SS_Points.sbn
08/03/2011	09:54 AM		SS_Points.sbx
08/03/2011	09:54 AM	10,020	SS_Points.shp
08/03/2011	09:54 AM		SS_Points.shp.xml
08/03/2011	09:54 AM		SS_Points.shx
08/03/2011	09:54 AM		SS_Subbasins.dbf
08/03/2011	09:54 AM		SS_Subbasins.prj
08/03/2011	09:54 AM		SS_Subbasins.sbn
08/03/2011	09:54 AM		SS_Subbasins.sbx
08/03/2011	09:54 AM		SS_Subbasins.shp
08/03/2011	09:54 AM		SS_Subbasins.shp.xml
08/03/2011	09:54 AM		SS_Subbasins.shx
	21 File(s)) 9,535,833	3 bytes

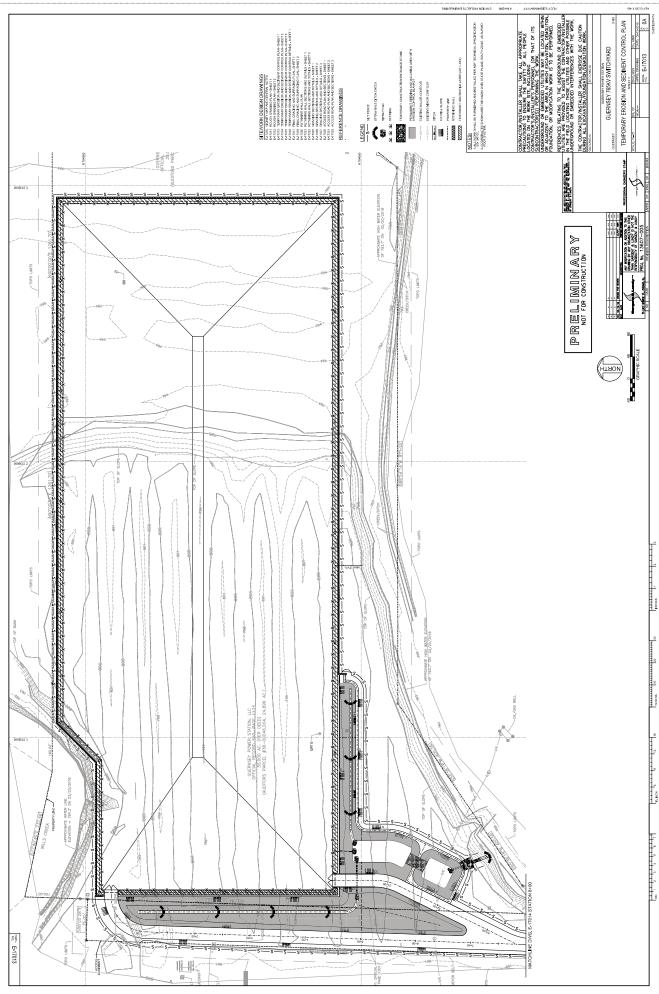
Directory of D:\0t1483\Technical Info\Guernsey\6.0 FEMA Model Files\07-05-4849S_XS_BV_CC\Hydrology\Hydrology Databases Page 7

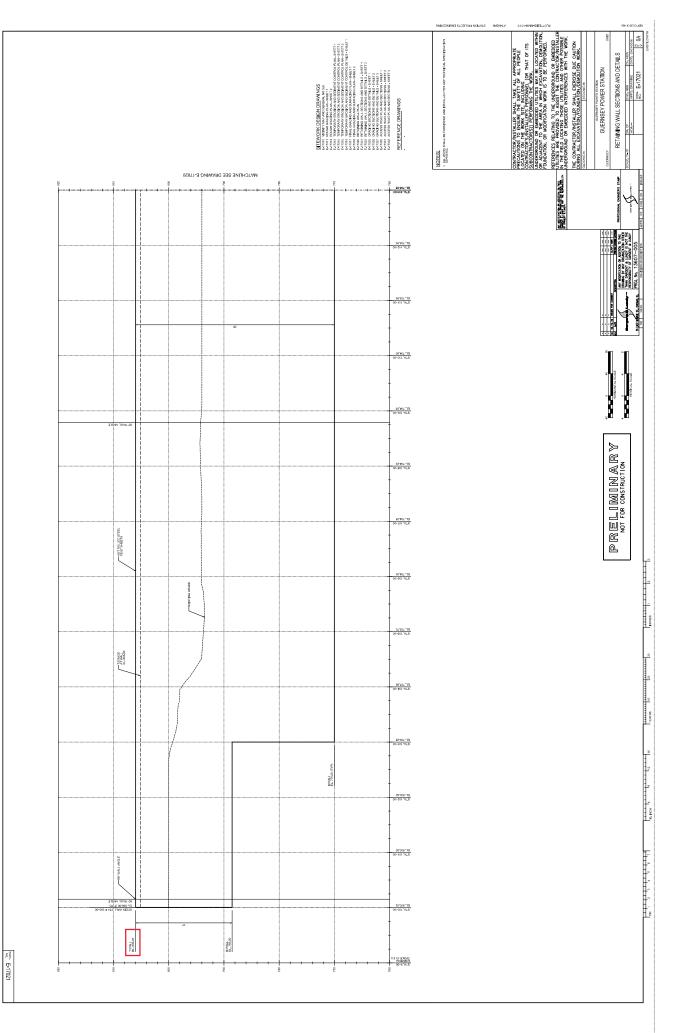
Guernsey Power Station LLC Guernsey 765KV Switchyard Hydrology and Hydraulic Analys	sis	Project No.: 13607-005 Calc. No.: GUE-WR-HH-001, Rev. 0B Attachment 7.3, Page 32 of 64
		Guernsey_County.mdb) bytes
Directory of D:\0t1483\T Files\07-05-4849S_XS_BV_C	Technical Info\ C\Hydrology\Hy	Guernsey∖6.0 FEMA Model ∕drology Models
11/05/2018 07:46 AM <	DIR> DIR> DIR> C	39059C 0 bytes
Directory of D:\0t1483\T Files\07-05-4849S_XS_BV_C	echnical Info\ C\Hydrology\Hy	Guernsey\6.0 FEMA Model /drology Models\39059C
11/05/2018 07:46 AM <		Spatial Files) bytes
Directory of D:\0t1483\T Files\07-05-4849S_XS_BV_C		\Guernsey\6.0 FEMA Model /drology Models\39059C\Spatial Files
11/05/2018 07:46 AM < 08/03/2011 09:54 AM	DIR> DIR> 17,489,920 17,489,920	Guernsey_County.mdb) bytes
Directory of D:\0t1483\T	echnical Info	Guernsey\6.0 FEMA Model Files\39059C0291D
	18,655,340 227,788	39059C0291D.pgw 39059C0291D.png READ-ME.pdf bytes
Directory of D:\0t1483\T 06-05-BT86P_XS_AK-AP	echnical Info\	Guernsey\6.0 FEMA Model Files\LOMR
· · · ·	5,008,117	06-05-BT86P-390198.pdf 06-05-BT86P.PDF Disk from 06-05-BT86P.pdf) bytes
Directory of D:\0t1483\T 98-05-397P_XS_AX	echnical Info	Guernsey\6.0 FEMA Model Files\LOMR
11/05/2018 07:46 AM < 10/26/2018 09:58 AM 11/05/2018 01:44 PM <	DIR>	98-05-397P_ltr.pdf ENG MAPS 2 bytes
Directory of D:\0t1483\T 98-05-397P_XS_AX\ENG	echnical Info\	Guernsey\6.0 FEMA Model Files\LOMR
11/05/2018 01:44 PM <	DIR>	Page 8

Guernsey Power Station LLC Project No : 13607-005 Calc. No.: GUE-WR-HH-001, Rev. 0B Guernsey 765KV Switchyard Hydrology and Hydraulic Analysis Attachment 7.3, Page 33 of 64 11/05/2018 11/05/2018 01:44 PM <DIR> 4,015,568 98-05-397P(1).pdf 15,475,349_98-05-397P(2).pdf 01:44 PM 10/24/2018 01:37 PM 2 File(s) 19,490,917 bytes Directory of D:\0t1483\Technical Info\Guernsey\6.0 FEMA Model Files\LOMR 98-05-397P_XS_AX\MAPS 11/05/2018 07:46 AM <DIR> 11/05/2018 10/24/2018 07:46 AM <DIR> 01:37 PM 1,003,858 98-05-397P0001.pdf 1,945,472 98-05-397P0002.pdf 1,270,552 98-05-397P0003.pdf 1,006,438 98-05-397P0004.pdf 658,057 98-05-397P0005.pdf 10/24/2018 01:37 PM 10/24/2018 01:37 PM 01:37 PM 01:37 PM 10/24/2018 10/24/2018 5 File(s) 5,884,377 bytes Directory of D:\0t1483\Technical Info\Guernsey\6.0 FEMA Model Files\topomap 11/05/2018 07:46 AM <DIR> 11/05/2018 10/24/2018 10/24/2018 07:46 AM <DIR> 01:18 PM 356,471 WILLS CREEK-A0002.pdf 972,909 WILLS CREEK-AA0028.pdf 567,585 WILLS CREEK-B0003.pdf 722,339 WILLS CREEK-C0004.pdf 01:18 PM 10/24/2018 10/24/2018 01:18 PM 01:18 PM 10/24/2018 697,181 WILLS CREEK-D0005.pdf 01:18 PM 10/24/2018 01:18 PM 917,837 WILLS CREEK-E0006.pdf 10/24/2018 10/24/2018 689,348 WILLS CREEK-F0007.pdf 808,341 WILLS CREEK-G0008.pdf 01:18 PM 01:18 PM 10/24/2018 10/24/2018 10/24/2018 705,333 WILLS CREEK-H0009.pdf 660,776 WILLS CREEK-I0010.pdf 01:18 PM 01:18 PM 01:18 PM 741,866 WILLS CREEK-J0011.pdf 10/24/2018 10/24/2018 646,352 WILLS CREEK-K0012.pdf 01:18 PM 679,674 WILLS CREEK-L0013.pdf 01:18 PM 10/24/2018 647,712 WILLS CREEK-M0014.pdf 01:18 PM 10/24/2018 1,105,797 WILLS CREEK-MYLAR0029.pdf 01:18 PM 1,574,393 WILLS CREEK-MYLAR20030.pdf 2,874,576 WILLS CREEK-MYLAR30031.pdf 640,291 WILLS CREEK-N0015.pdf 937,748 WILLS CREEK-00016.pdf 643,494 WILLS CREEK-P0017.pdf 10/24/2018 01:18 PM 10/24/2018 01:18 PM 10/24/2018 10/24/2018 10/24/2018 01:18 PM 01:18 PM 01:18 PM 10/24/2018 01:18 PM 646,701 WILLS CREEK-Q0018.pdf 10/24/2018 01:18 PM 925,633 WILLS CREEK-R0019.pdf 10/24/2018 01:18 PM 602,340 WILLS CREEK-S0020.pdf 10/24/2018 686,221 WILLS CREEK-T0021.pdf 01:18 PM 10/24/2018 1,078,642 WILLS CREEK-U0022.pdf 01:18 PM 10/24/2018 666,221 WILLS CREEK-V0023.pdf 01:18 PM 10/24/2018 01:18 PM 616,308 WILLS CREEK-W0024.pdf 10/24/2018 10/24/2018 762,053 WILLS CREEK-X0025.pdf 545,439 WILLS CREEK-Y0026.pdf 01:18 PM 01:18 PM 837,603 WILLS CREEK-Z0027.pdf 10/24/2018 01:18 PM 10/24/2018 640,113 WILLS CREEK0001.pdf 01:18 PM 31 File(s) 25,597,297 bytes Directory of D:\0t1483\Technical Info\Guernsey\6.0 FEMA Model Files\WILLS_CREEK_1985_HEC2_XS_A-0 11/05/2018 11/05/2018 07:46 AM <DIR> 07:46 AM <DIR> 2,595,531 wills creek A-P.pdf 2,595,531 bytes 10/24/2018 01:17 PM 1 File(s)

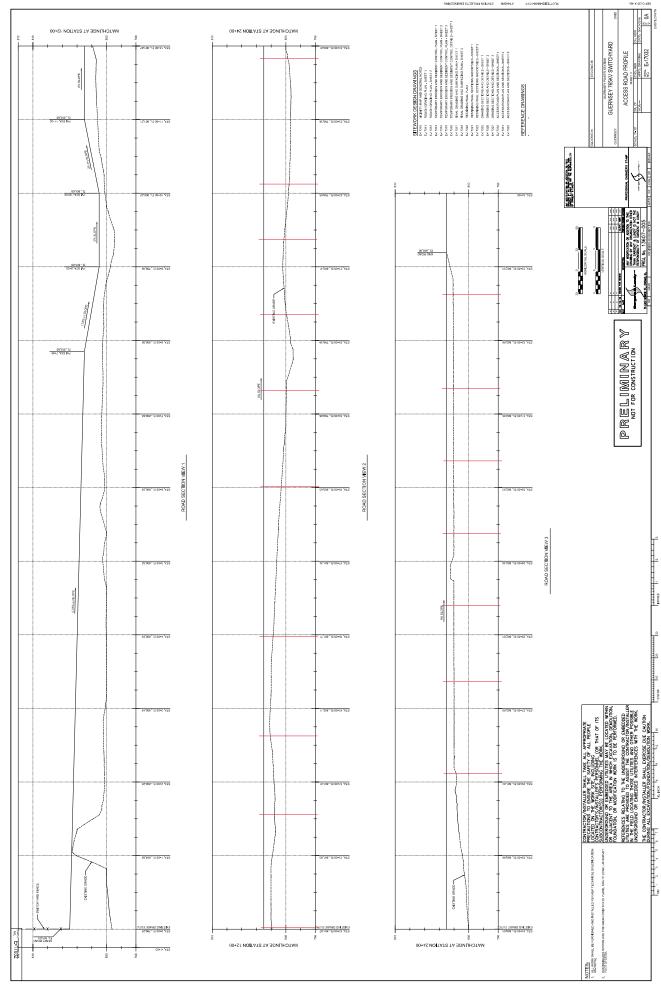
Directory of D:\0t1483\Technical Info\Guernsey\6.0 FEMA Model Page 9

Files\WILLS_CREEK_1985_WSP2_XS_P-BU


11/05/2018 11/05/2018 10/24/2018 10/24/2018	07:46 АМ 01:17 РМ	<dir> <dir> 9,659,223 24,264,310</dir></dir>	 WILLS_CREEK_BK THRU BU.pdf WILLS_CREEK_O THRU BJ.pdf
10/24/2010	2 File(s)		
	2 1110(3)	55,525,55	5 by ces
Total	Files Listed:		
	241 File(s)	251,624,33 194,692,952,0	2 bytes
	119 Dir(s)	194,692,952,0	64 bytes free

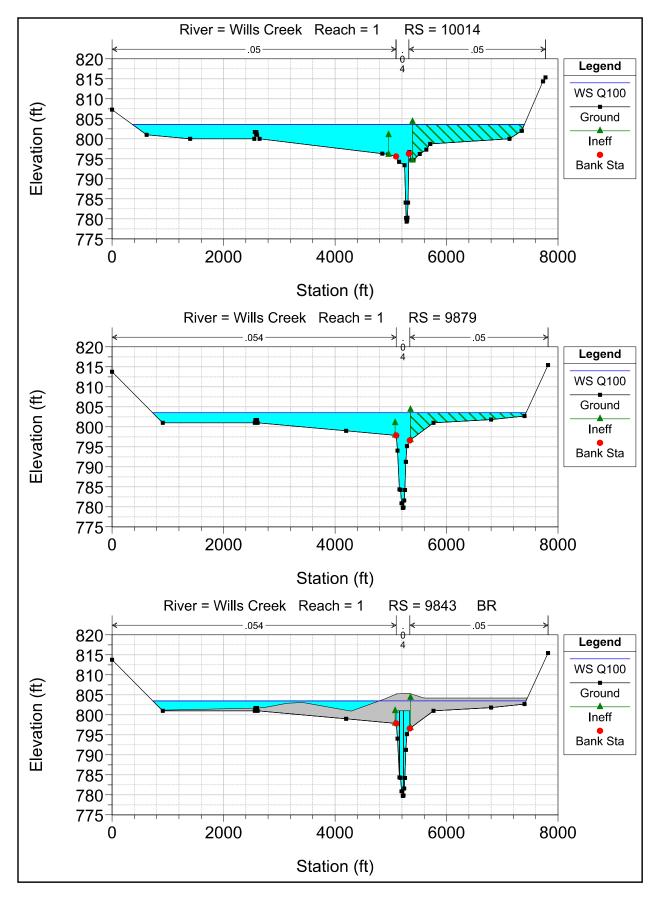

		C	alculatic	on Title:		Calc. No.	GUE	-WR-HH-001
Sargent	t & Lundy	Flood Wave Runup a	nd Hyd	rodynamic Force	Analysis	Rev. 0B	Date:	12/05/2018
/		Safety-Related	x	Non-Safety Relate	ed	Page	35	of 64
Client	Guernsey Power St	ation LLC		Prepared by	M. Salehi		Date	12/052018
Project	Guernsey 765KV S	witchyard		Reviewed by	N. Patel		Date	12/05/2018
Project No.	13607-005			Approved by	M. Salehi		Date	12/05/2018

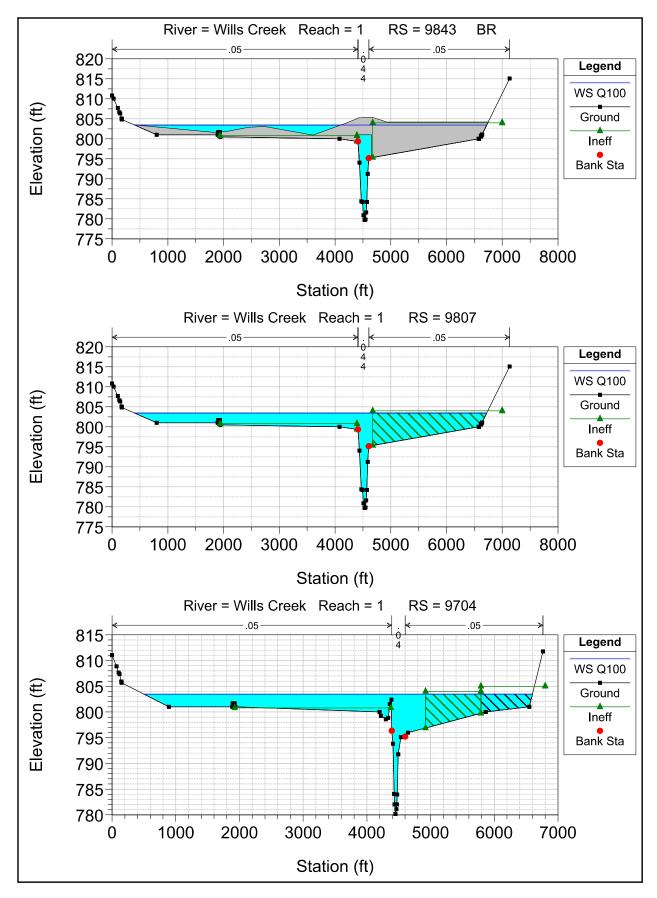
Attachment 7.4 Relevant Project Civil Drawings

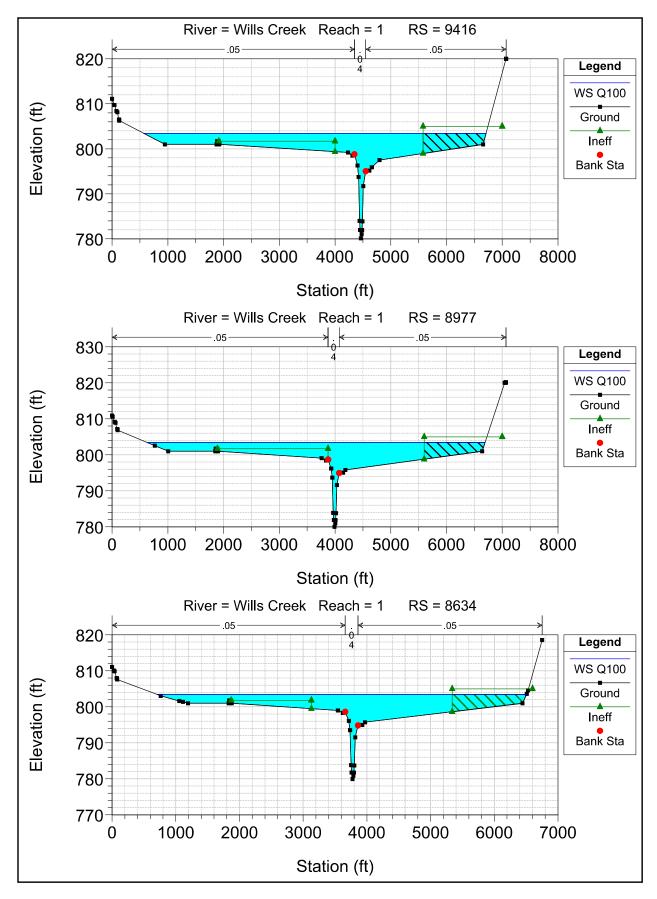


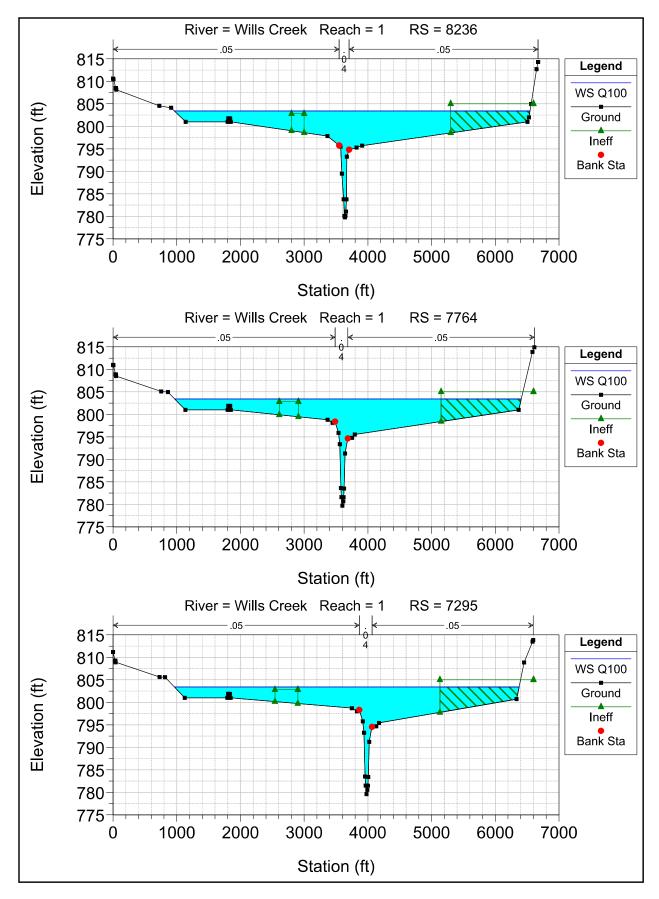
Project No.: 13607-005 Calc. No.: GUE-WR-HH-001, Rev. 0B Attachment 7.4, Page 36 of 64

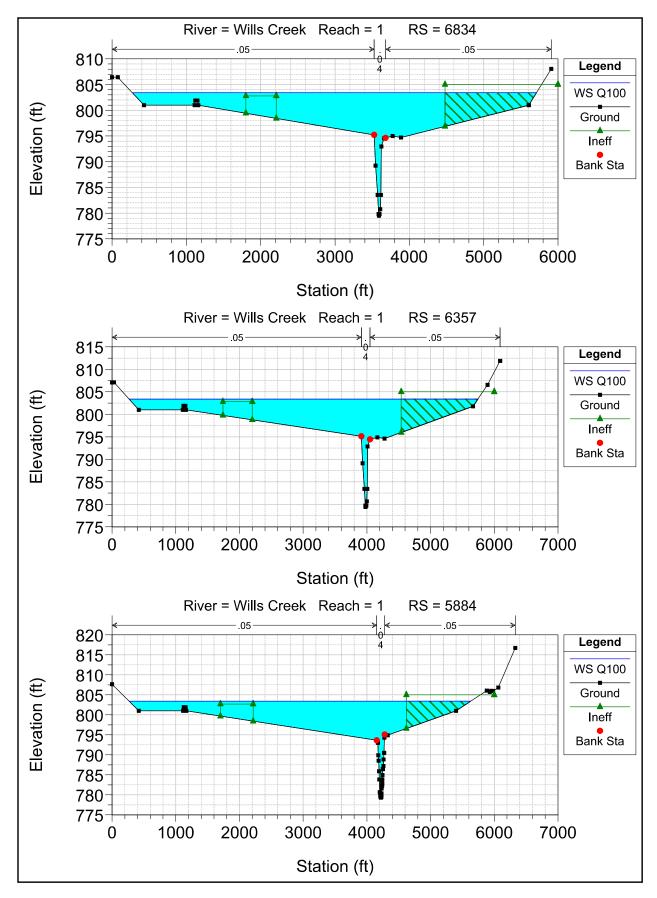
Project No.: 13607-005 Calc. No.: GUE-WR-HH-001, Rev. 0B Attachment 7.4, Page 38 of 64

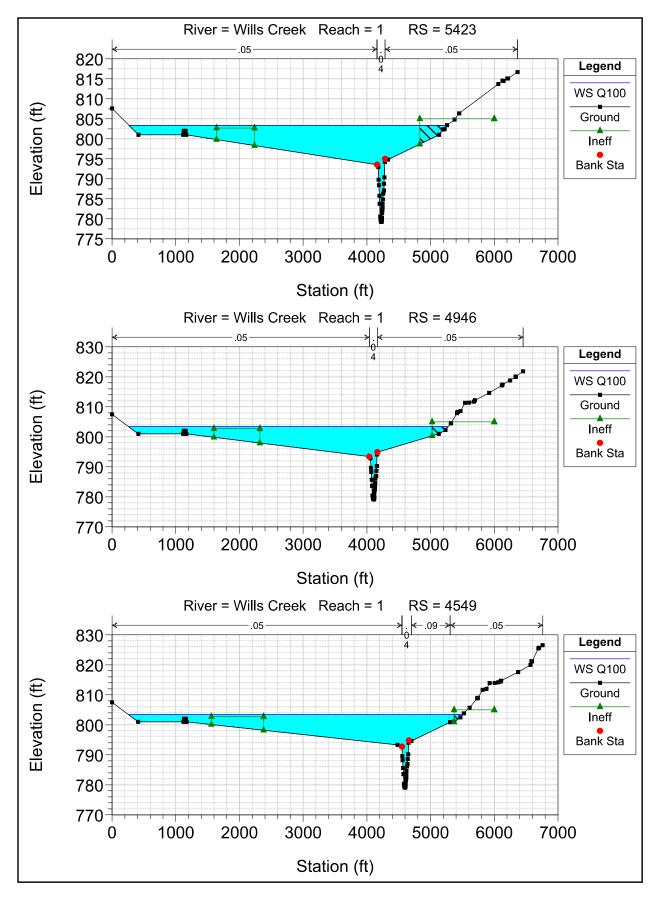


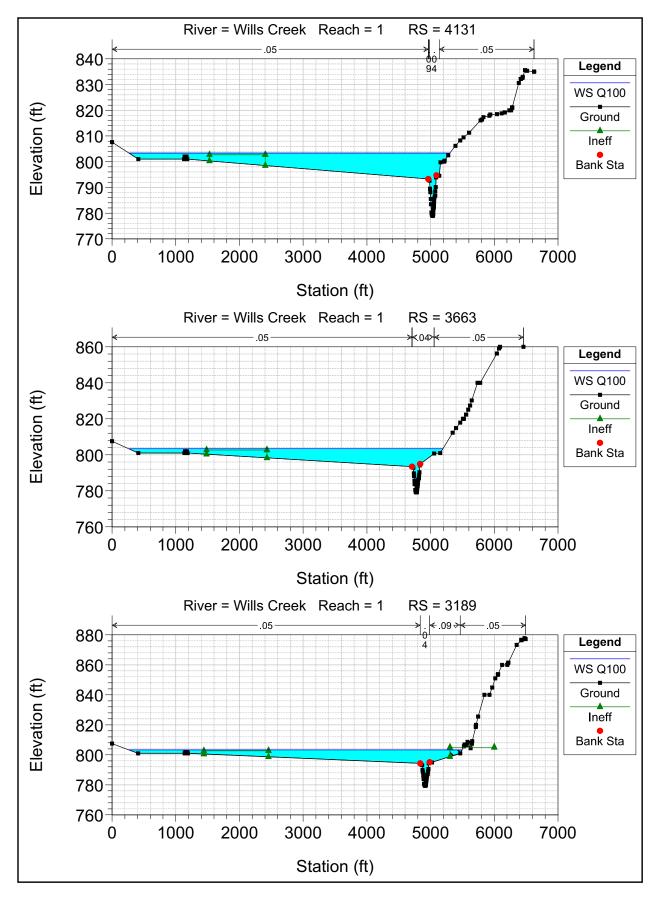

		C	alculatic	n Title:		Calc. No.	GUE	-WR-HH-001
Sargent	t & Lundy	Flood Wave Runup a	nd Hyd	rodynamic Force	Analysis	Rev. 0B	Date:	12/05/2018
/		Safety-Related	х	Non-Safety Relat	ed	Page	39	of 64
Client	Guernsey Power St	ation LLC		Prepared by	M. Salehi		Date	12/052018
Project	Guernsey 765KV S	witchyard		Reviewed by	N. Patel		Date	12/05/2018
Project No.	13607-005			Approved by	M. Salehi		Date	12/05/2018

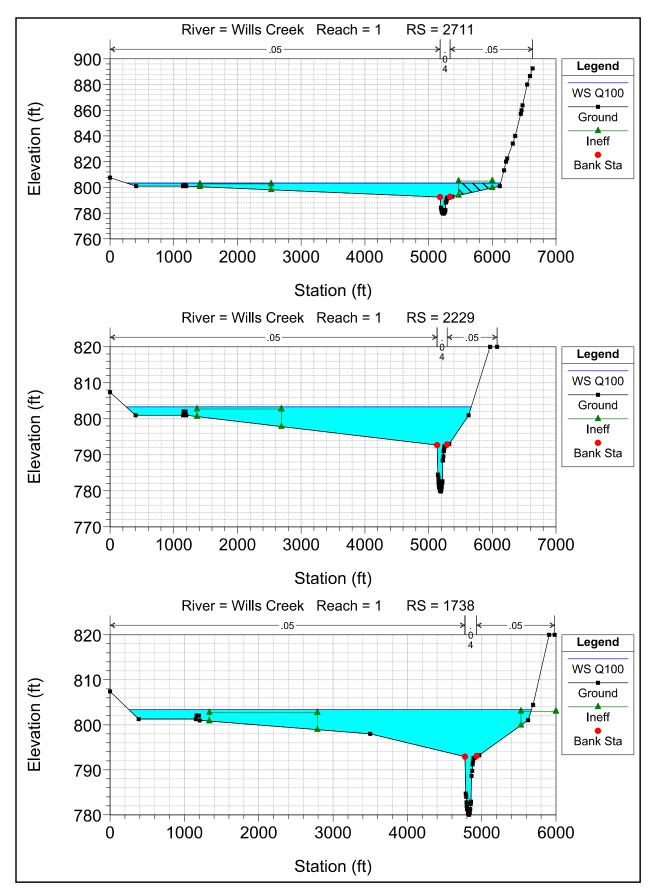

Attachment 7.5 FEMA Model Results for Existing Condition

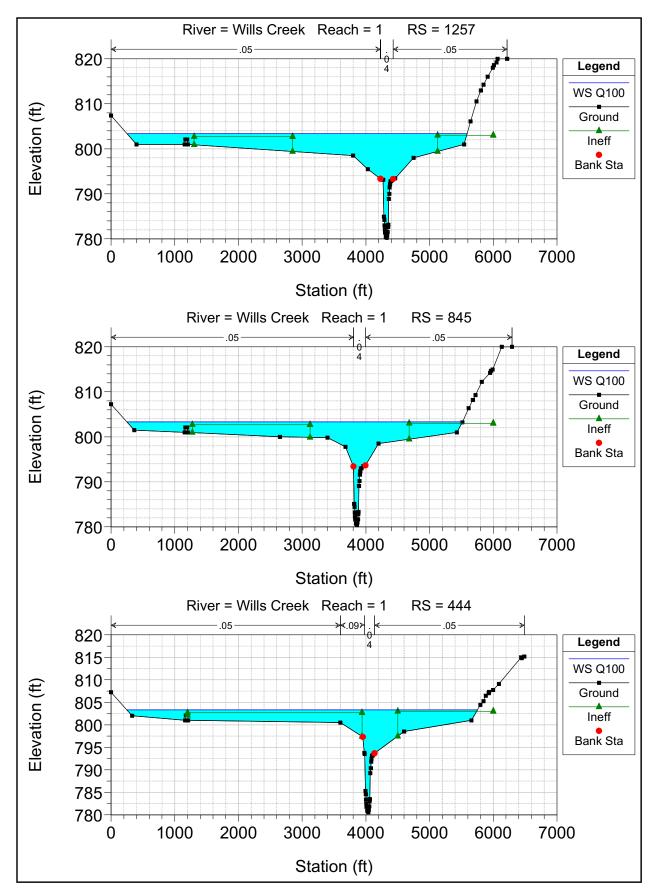

HEC-RAS Plan: P01 River: Wills Creek Reach: 1 Profile: Q100

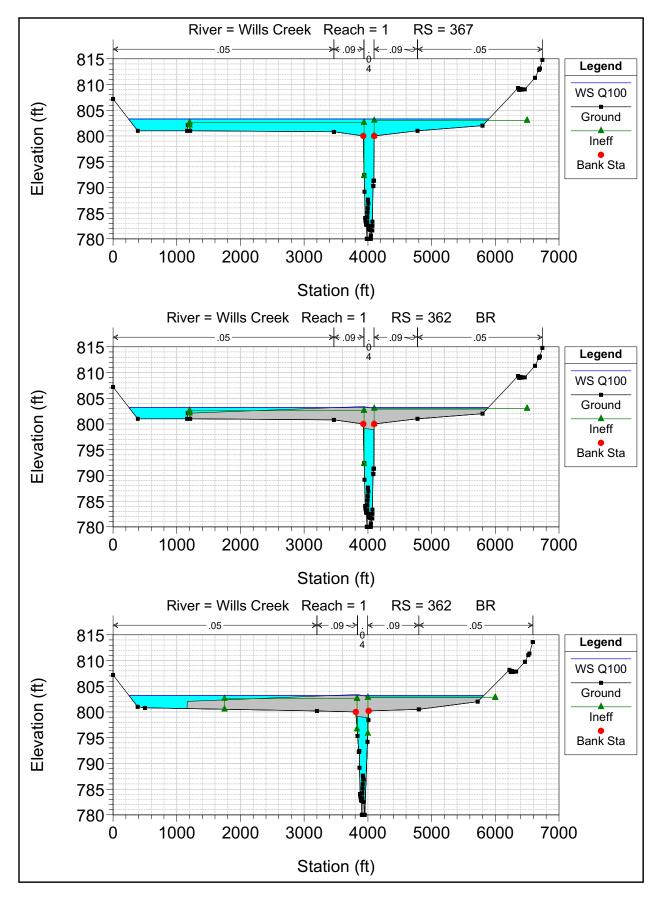

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
1	10014	Q100	10950.00	779.28	803.56	792.91	803.56	0.000021	0.90	24251.57	7029.74	0.04
1	9879	Q100	10950.00	779.73	803.54	789.04	803.55	0.000037	1.37	18496.05	6700.17	0.06
-	9843		Bridge									
1	9807	Q100	10950.00	779.73	803.46	789.06	803.48	0.000055	1.61	15222.16	6319.50	0.07
-	9704	Q100	10950.00	780.17	803.46	792.83	803.48	0.000060	1.55	15462.15	6098.69	0.08
1	9416	Q100	10950.00	780.10	803.45	792.76	803.46	0.000038	1.22	19571.30	6145.28	0.06
1	8977	Q100	10950.00	780.00	803.45	792.66	803.46	0.000028	1.04	21645.30	6065.69	0.05
1	8634	Q100	10950.00	779.90	803.44	792.55	803.45	0.000029	1.07	20634.07	5801.30	0.05
-	8236	Q100	10950.00	779.78	803.43	792.32	803.44	0.000024	1.04	21898.45	5582.98	0.05
7	7764	Q100	10950.00	779.71	803.42	792.36	803.43	0.000028	1.07	20108.78	5442.06	0.05
1	7295	Q100	10950.00	779.61	803.41	792.27	803.42	0.000031	1.13	19350.51	5411.00	0.06
1	6834	Q100	10950.00	779.50	803.40	792.06	803.41	0.000020	0.97	23050.41	5437.10	0.04
1	6357	Q100	10950.00	779.40	803.40	791.96	803.40	0.000020	1.02	22909.34	5476.00	0.05
7	5884	Q100	10950.00	779.30	803.39	791.59	803.40	0.000016	0.96	24892.47	5361.06	0.04
1	5423	Q100	10950.00	779.20	803.39	791.50	803.39	0.000015	0.92	26148.17	4993.46	0.04
7	4946	Q100	10950.00	779.10	803.38	791.39	803.39	0.000015	0.91	26807.12	5016.56	0.04
1	4549	Q100	10950.00	779.01	803.38	791.31	803.38	0.000013	0.91	29157.36	5243.21	0.04
1	4131	Q100	10950.00	778.91	803.38	791.22	803.38	0.000012	0.83	28726.65	5042.10	0.04
1	3663	Q100	10950.00	779.12	803.37	791.41	803.38	0.000014	0.89	27355.66	4931.36	0.04
1	3189	Q100	10950.00	779.34	803.37	791.65	803.37	0.000016	0.91	27299.08	5235.76	0.04
1	2711	Q100	10950.00	779.55	803.37	790.18	803.37	0.00000	0.71	32807.27	5870.35	0.03
1	2229	Q100	10950.00	779.77	803.37	790.40	803.37	0.00000	0.72	32657.69	5418.78	0.03
1	1738	Q100	10950.00	780.00	803.36	790.64	803.37	0.000013	0.86	27847.87	5415.81	0.04
1	1257	Q100	10950.00	780.21	803.36	790.84	803.36	0.000022	1.05	23259.54	5337.42	0.05
1	845	Q100	10950.00	780.40	803.34	791.05	803.35	0.000036	1.33	19612.60	5270.60	0.06
1	444	Q100	10950.00	780.59	803.33	791.23	803.34	0.000041	1.38	19337.68	5506.12	0.06
1	367	Q100	10950.00	780.00	803.30	788.94	803.33	0.000082	1.84	15678.93	5655.24	0.08
1	362		Bridge									
1	340	Q100	10950.00	780.00	803.22	790.54	803.24	0.000092	1.54	16705.74	5574.09	0.07
-	263	Q100	10950.00	779.46	803.19	789.01	803.22	0.000080	2.03	15120.88	5500.41	0.09

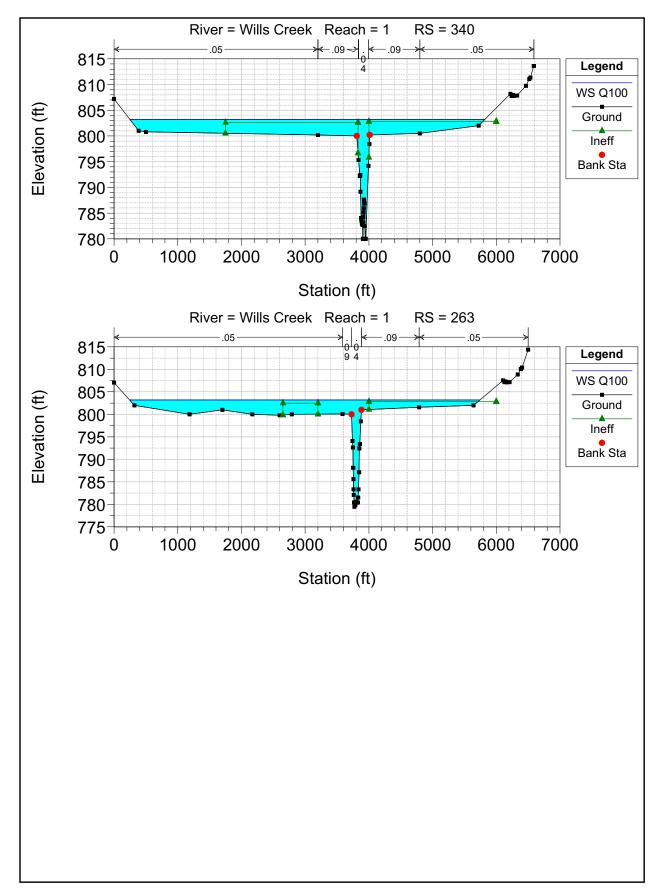


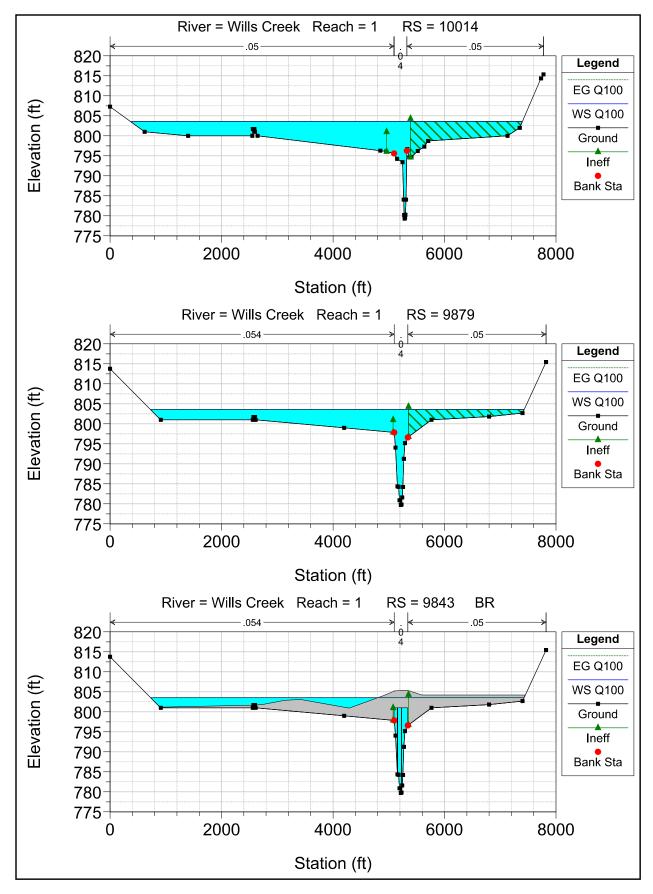


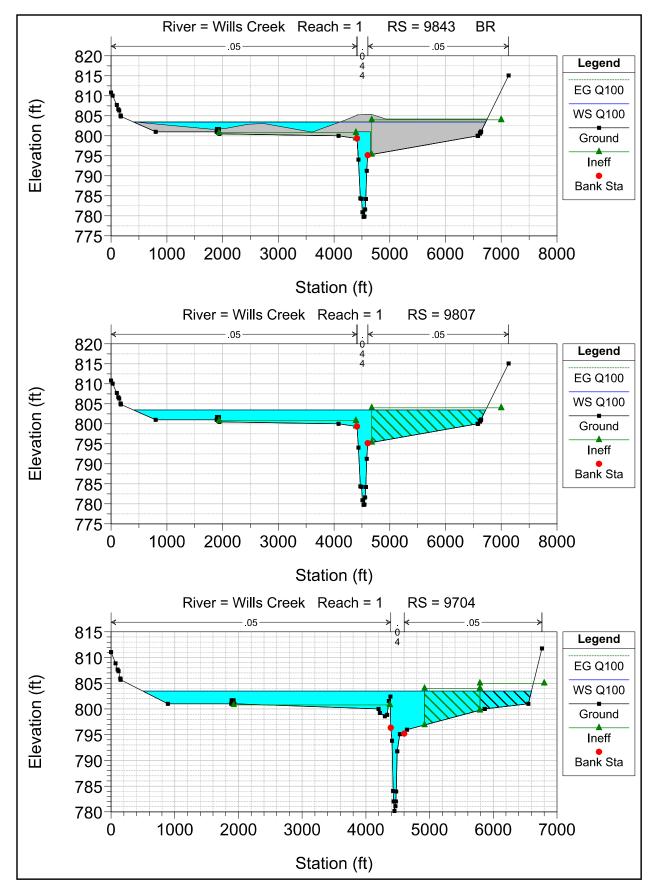


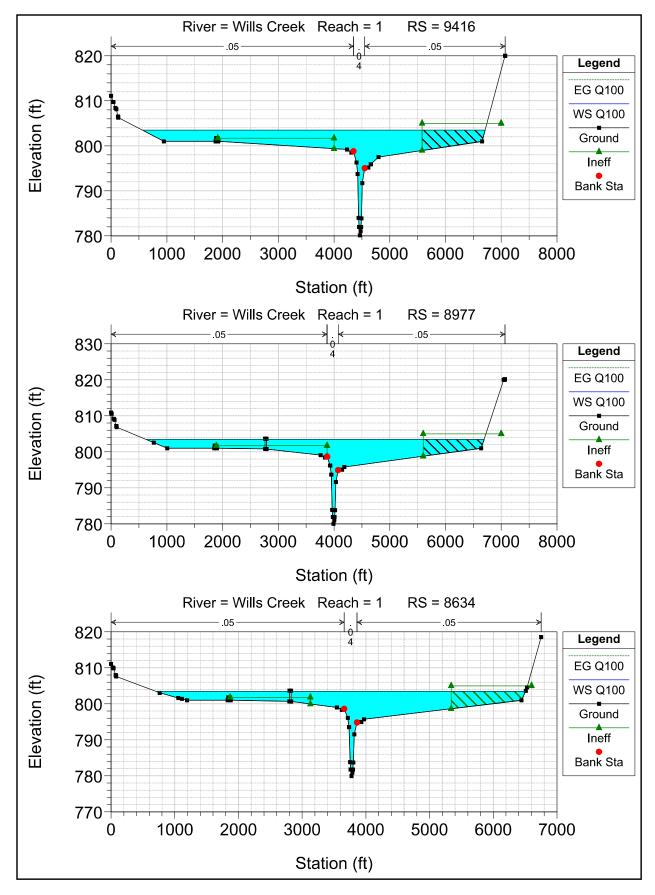


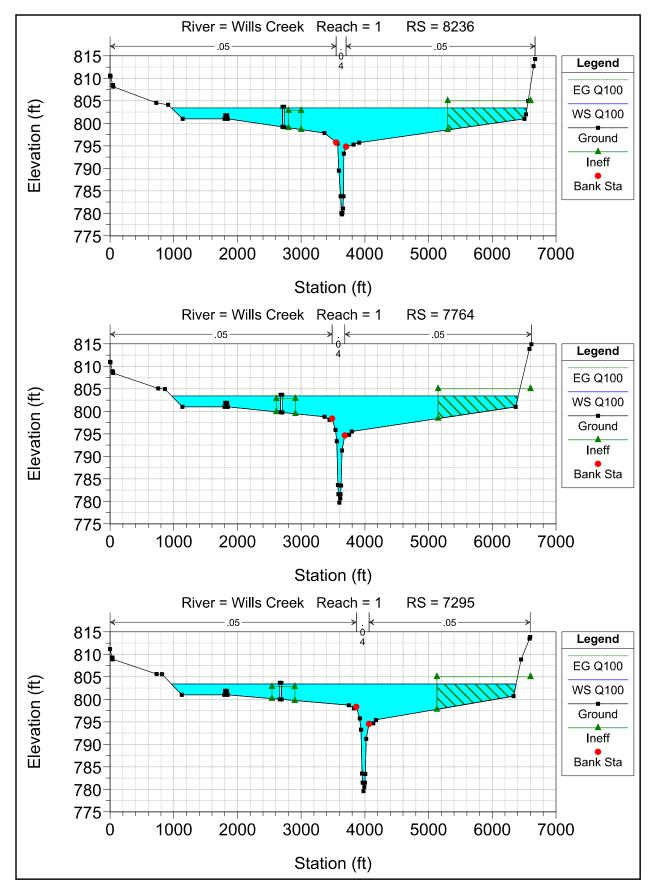


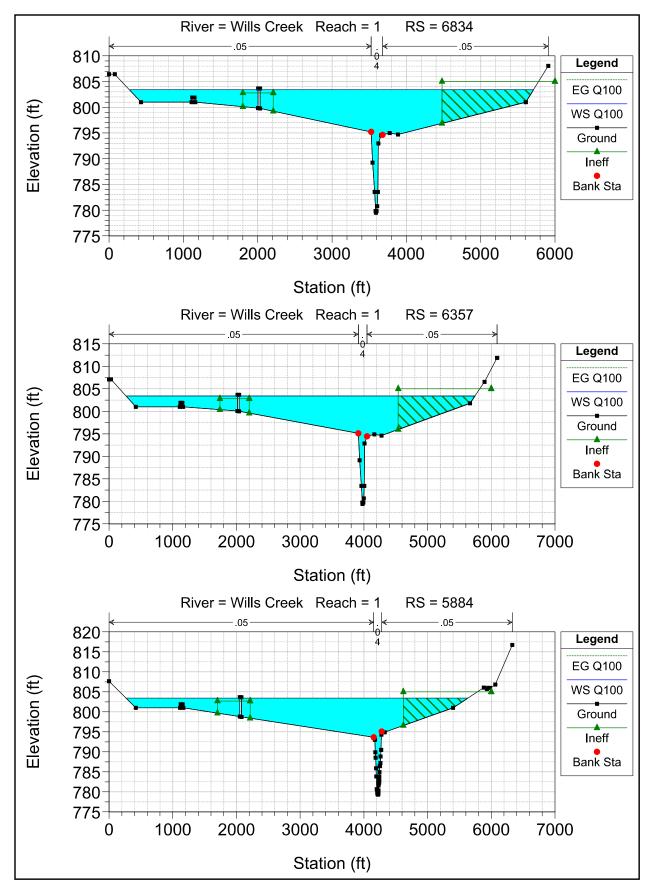


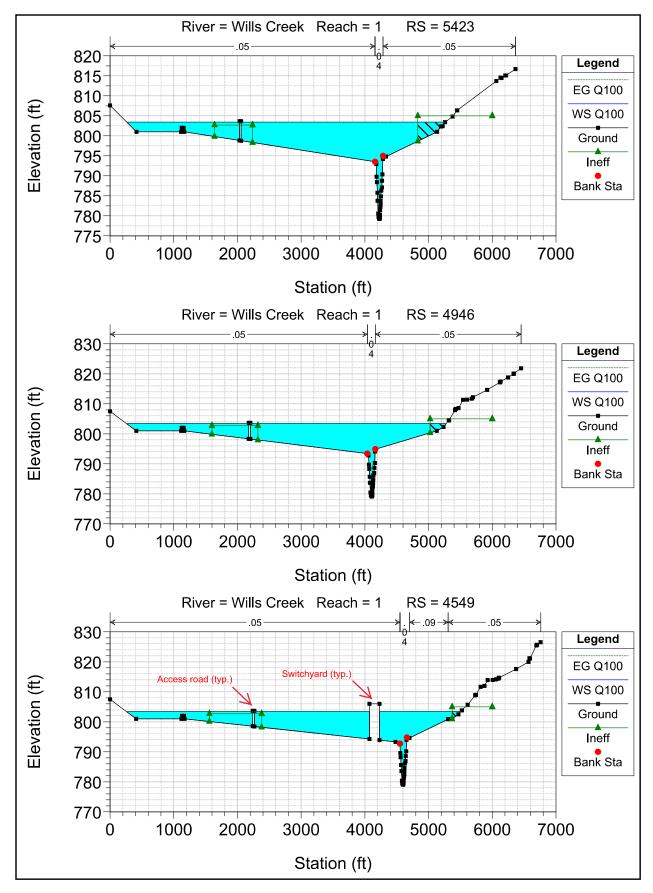


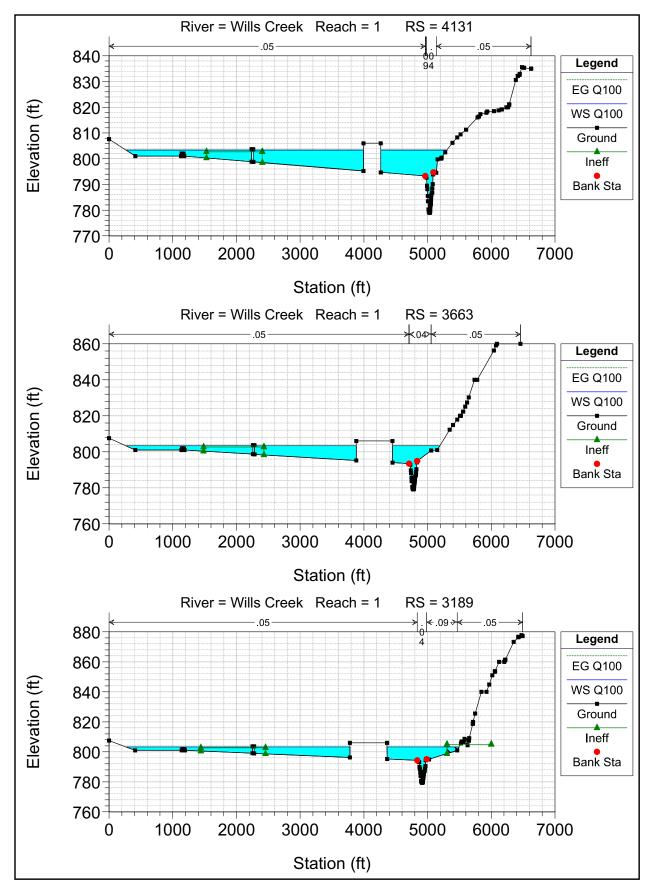


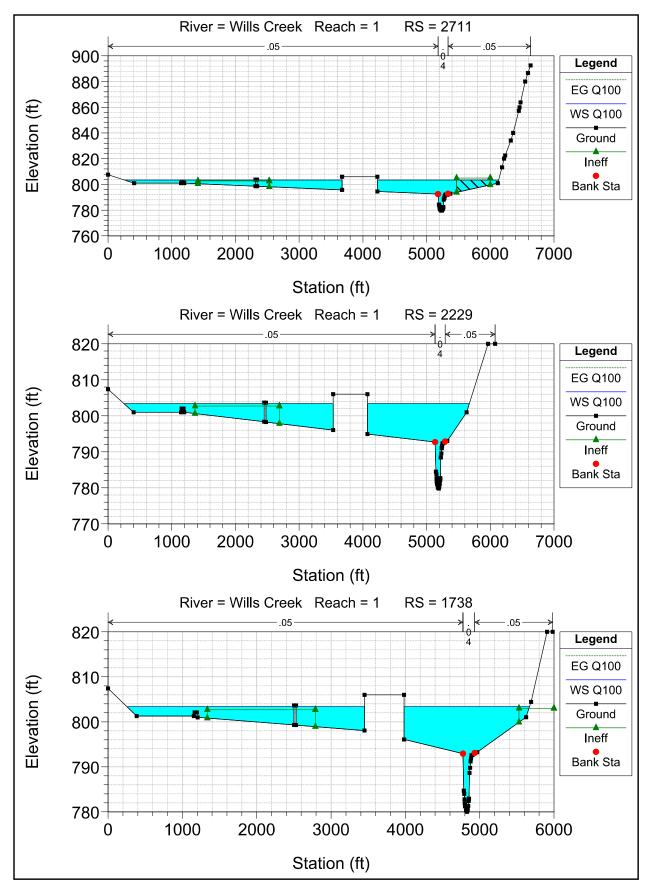

		Ca	lculatio	n Title:		-	Calc. No.	GUE	WR-HH-001
Sargent	t & Lundy	Flood Wave Runup an	d Hyd	rodynamic Force	Analysis]	Rev. 0B	Date:	12/05/2018
/		Safety-Related	х	Non-Safety Relate	ed	1	Page	52	of 64
Client	Guernsey Power St	ation LLC		Prepared by	M. Salehi			Date	12/052018
Project	Guernsey 765KV S	witchyard		Reviewed by	N. Patel			Date	12/05/2018
Project No.	13607-005			Approved by	M. Salehi			Date	12/05/2018

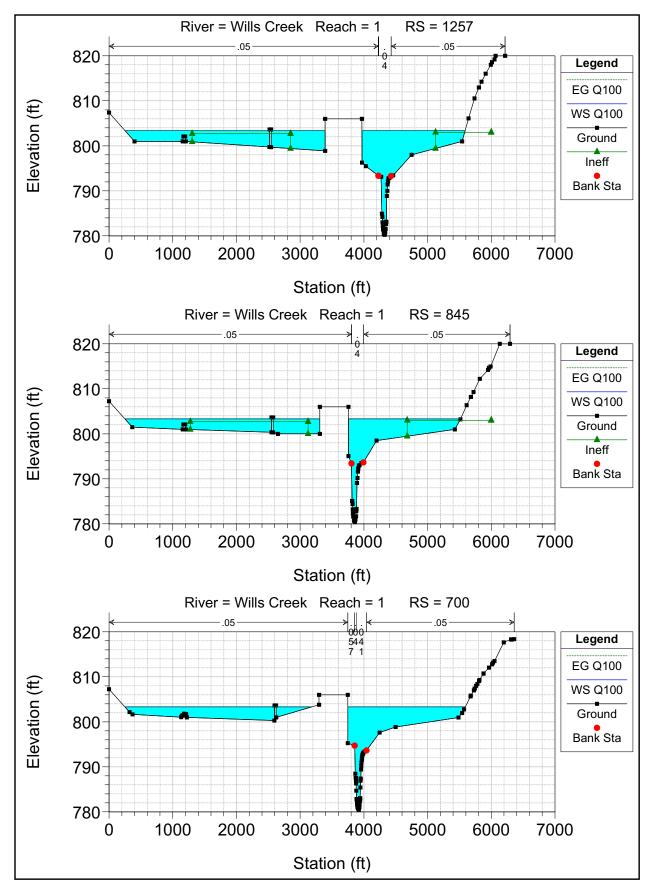

Attachment 7.6 FEMA Model Results for Proposed Condition

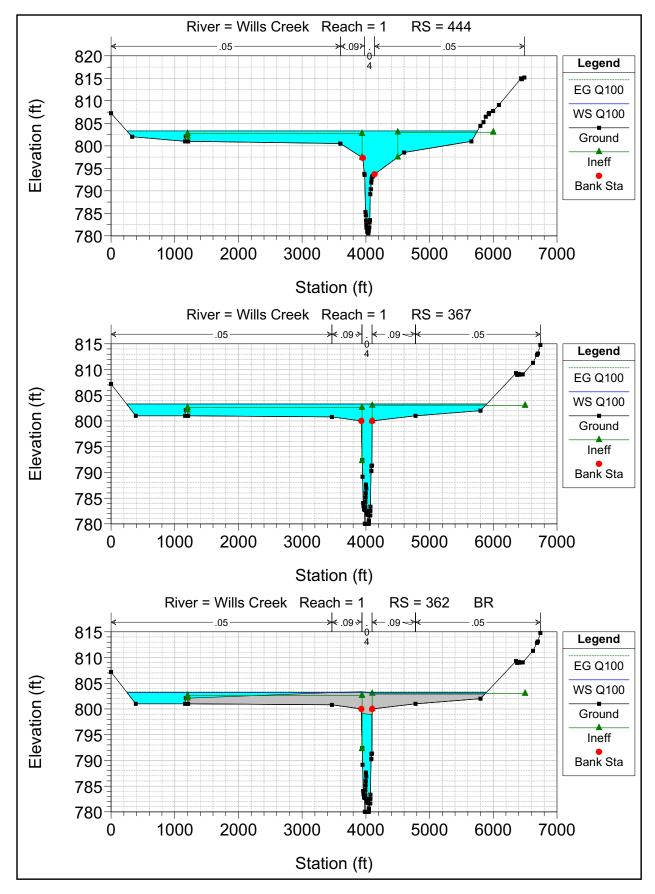

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
	10014	Q100	10950.00	779.28	803.57	792.91	803.58	0.000021	0.89	24316.55	7031.41	0.04
	9879	Q100	10950.00	779.73	803.55	789.04	803.57	0.000037	1.37	18556.77	6701.53	0.06
	9843		Bridge									
	9807	Q100	10950.00	779.73	803.48	789.06	803.50	0.000054	1.61	15282.68	6322.29	0.07
	9704	Q100	10950.00	780.17	803.47	792.83	803.49	0.000059	1.54	15524.74	6101.21	0.08
	9416	Q100	10950.00	780.10	803.47	792.76	803.48	0.000038	1.21	19642.64	6147.81	0.06
	8977	Q100	10950.00	780.00	803.46	792.66	803.47	0.000029	1.07	20981.84	6042.94	0.05
	8634	Q100	10950.00	779.90	803.46	792.55	803.46	0.000031	1.10	19947.78	5778.47	0.05
	8236	Q100	10950.00	779.78	803.45	792.32	803.45	0.000023	1.04	21842.21	5559.00	0.05
	7764	Q100	10950.00	779.71	803.44	792.36	803.44	0.000028	1.07	20066.80	5418.08	0.05
	7295	Q100	10950.00	779.61	803.43	792.27	803.44	0.000031	1.12	19318.77	5386.95	0.05
	6834	Q100	10950.00	779.50	803.42	792.06	803.42	0.000021	1.01	21932.45	5413.30	0.05
	6357	Q100	10950.00	779.40	803.41	791.96	803.42	0.000023	1.08	21616.04	5452.11	0.05
	5884	Q100	10950.00	779.30	803.40	791.59	803.41	0.000015	0.93	24826.07	5337.82	0.04
	5423	Q100	10950.00	779.20	803.40	791.50	803.40	0.000014	06.0	26079.54	4969.55	0.04
	4946	Q100	10950.00	779.10	803.39	791.39	803.40	0.000014	0.89	26733.58	4992.70	0.04
	4549	Q100	10950.00	779.01	803.39	791.31	803.39	0.000014	0.93	27621.11	5061.33	0.04
	4131	Q100	10950.00	778.91	803.39	791.22	803.39	0.000014	0.87	26380.56	4747.48	0.04
	3663	Q100	10950.00	779.12	803.38	791.41	803.39	0.000020	1.07	22279.71	4338.16	0.05
	3189	Q100	10950.00	779.34	803.38	791.65	803.38	0.000022	1.07	22745.82	4627.03	0.05
	2711	Q100	10950.00	779.55	803.38	790.18	803.38	0.000011	0.79	28141.23	5291.53	0.03
	2229	Q100	10950.00	779.77	803.37	790.40	803.38	0.000011	0.78	28340.24	4857.06	0.03
	1738	Q100	10950.00	780.00	803.37	790.64	803.37	0.000017	96.0	24453.45	4859.33	0.04
	1257	Q100	10950.00	780.21	803.36	790.84	803.37	0.000028	1.18	20259.59	4734.37	0.05
	845	Q100	10950.00	780.40	803.34	791.05	803.36	0.000046	1.50	17123.28	4796.01	0.07
	700	Q100	10950.00	780.46	803.34		803.35	0.000049	1.53	16300.39	4757.86	0.07
	444	Q100	10950.00	780.59	803.33	791.23	803.34	0.000041	1.38	19338.01	5506.13	0.06
	367	Q100	10950.00	780.00	803.30	788.94	803.33	0.000082	1.84	15679.27	5655.25	0.08
	362		Bridge									
	340	Q100	10950.00	780.00	803.22	790.54	803.24	0.000092	1.54	16706.08	5574.10	0.07
	76.2	0100	10950 00	779 46	802 10	780.01	803.23		с <u>о</u> с	16101 00	EEOO 12	

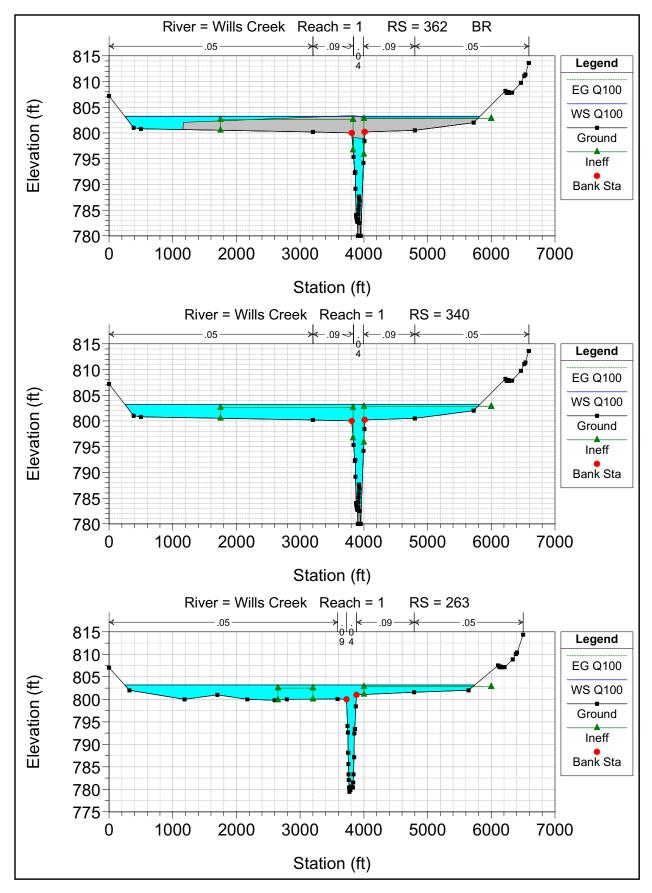












Attachment D – Updated Wetland Mitigation Credit Reservation Agreement

- Reservation Agreement
- Updated Application Pages

Reservation Agreement

The Nature Conservancy in Ohio 6375 Riverside Drive, Suite 100 Dublin, OH 43017-5045 Office: (614)717-2770 www.nature.org/ohio

Ohio Stream and Wetland In-Lieu Fee Mitigation Program LETTER OF CREDIT AVAILABILTY AND RESERVATION

February 14, 2022

Lynn Gresock Haley & Aldrich, Inc. 3 Bedford Farms Drive Bedford, NH 03110

Re: Guernsey Power Station

Dear Lynn:

This letter confirms that The Nature Conservancy has wetland mitigation credits available for Guernsey Power Station LLC. to purchase in the 05040005 8-digit HUC watershed (Wills Creek). TNC will reserve 2 forested wetland credits for the Purchaser in this watershed at a cost of \$51,000 per credit, for a period of 90 days from the date of this letter specifically for Guernsey Power Station project. After that time, the Purchaser may request an extension of this reservation, but there is no guarantee of availability beyond this date. If TNC approves the extension, a new Letter of Credit Availability and Reservation will be issued.

This letter does not document payment for impacts. The Conservancy does not assume liability for the above mentioned impacts through this correspondence.

When the applicant is ready to submit payment for the above-mentioned credits, please submit the completed Final Credit Request Form and Conflict of Interest Disclosure Form, along with the payment written out to "Ohio Water Development Authority". Mail both the forms and the check to the Ohio Water Development Authority, Attn: Meg Cline, P.O. Box 73514, Cleveland, OH 44193; and email scanned copies to dschenk@tnc.org.

Sincerely,

Kein Mc Could

Kevin McConnell Finance Manager

Updated Application Pages

Guernsey Power Station Ohio EPA Permit No. DSW 401175544 Revision Date 25 February 2022 Rev. 1 - page 2 of Mitigation attachment

- Chippewa North
- Red Stone Farm Mitigation Bank

Emails stating that no credits were available to meet Project needs at this time were received from all inquiries except Chippewa North and Tuscarawas Mitigation Bank. Several sources noted that they hoped to have additional certified credits soon. The email responses are provided in Attachment B. Given the lack of mitigation bank credits available, it was determined that ILF programs should be considered for Project mitigation.

In-Lieu Fee Mitigation

ILF programs identified through the two methods used to search the mitigation database included the Big Darby-Hellbranch ILF source managed by the Ohio Stream & Wetlands Foundation and The Nature Conservancy's Ohio Stream and Wetland In-Lieu Fee Mitigation Program.

Inquiries with the Ohio Stream & Wetland Foundation confirmed that, while their bank credits were sold out, ILF credits would be available. The specific location of its ILF credits was not known. The Natural Conservancy noted that, while they do not have wetland credits available in the Wills Creek watershed, they have wetland credit availability in the adjacent Tuscarawas watershed. They recommended consultation with Ohio EPA to confirm whether credits from this watershed would be acceptable. The email responses are provided in Attachment B.

Subsequently, Ohio EPA requested that The Nature Conservancy be reengaged to determine whether credits are available within the Wills Creek watershed. A copy of the resulting reservation agreement is provided in Attachment C.

Attachments

- Attachment A: RIBITS Mitigation Credit Search Results
- Attachment B: Outreach to Mitigation Banks and ILF Programs
- Attachment C: Reservation Agreement

Guernsey Power Station Ohio EPA Permit No. DSW 401175544 Revision Date 25 February 2022

Rev. 1

The Nature Conservancy in Ohio 6375 Riverside Drive, Suite 100 Dublin, OH 43017-5045 Office: (614)717-2770 www.nature.org/ohio

Ohio Stream and Wetland In-Lieu Fee Mitigation Program LETTER OF CREDIT AVAILABILTY AND RESERVATION

February 14, 2022

Lynn Gresock Haley & Aldrich, Inc. 3 Bedford Farms Drive Bedford, NH 03110

Re: Guernsey Power Station

Dear Lynn:

This letter confirms that The Nature Conservancy has wetland mitigation credits available for Guernsey Power Station LLC. to purchase in the 05040005 8-digit HUC watershed (Wills Creek). TNC will reserve 2 forested wetland credits for the Purchaser in this watershed at a cost of \$51,000 per credit, for a period of 90 days from the date of this letter specifically for Guernsey Power Station project. After that time, the Purchaser may request an extension of this reservation, but there is no guarantee of availability beyond this date. If TNC approves the extension, a new Letter of Credit Availability and Reservation will be issued.

This letter does not document payment for impacts. The Conservancy does not assume liability for the above mentioned impacts through this correspondence.

When the applicant is ready to submit payment for the above-mentioned credits, please submit the completed Final Credit Request Form and Conflict of Interest Disclosure Form, along with the payment written out to "Ohio Water Development Authority". Mail both the forms and the check to the Ohio Water Development Authority, Attn: Meg Cline, P.O. Box 73514, Cleveland, OH 44193; and email scanned copies to dschenk@tnc.org.

Sincerely,

Kein Mc Could

Kevin McConnell Finance Manager

Attachment E – Brent Ball Private Property Documentation

- Existing Environmental Conditions Map
- Access Road Culvert Replacement Nationwide Permit 03 – Maintenance
- Special Flood Hazard Area Development Permit Culvert Replacement
- Gemma Off-Site Fill Placement Plan

Existing Environmental Conditions Map

Cuernsey Power Station Existing Environmental Conditions Map Jackson Township, Guernsey County, Ohio

CESO

Date: 09/16/2019 By: Christian King Access Road Culvert Replacement – Nationwide Permit 03 – Maintenance

December 18, 2019

Gemma Power Systems, LLC 769 Hebron Avenue Glastonbury, CT 06033

RE: Nationwide Permit 03 – Maintenance Guernsey Power Station Access Road Culvert Replacement Project Byesville, Guernsey County, Ohio

CESO, Inc. is pleased to provide Gemma Power Systems with documentation for a non-reporting Nationwide Permit 03 (NWP-03) in support of the Guernsey Power Station Access Road Culvert Replacement project. The project proposes impact to one intermittent stream for the replacement of an existing culvert in Jackson Township, Guernsey County, Ohio.

The proposed project will not impact more than 0.1 acres of waterway and is within a 401 eligible area according to the Ohio EPA.

Should you have any questions or comments please feel free to contact me at <u>envgroup@cesoinc.com</u> or 412.504.0668.

Sincerely,

CESO, Inc.

Sara Krampe

Sara Krampe, PWS Environmental Project Manager

Gemma Power Systems, LLC Guernsey Power Station - Culvert Replacement Project Non-Reporting NWP-03

Attachments

Attachment 1: Application for Department of the Army Permit (ENG Form)

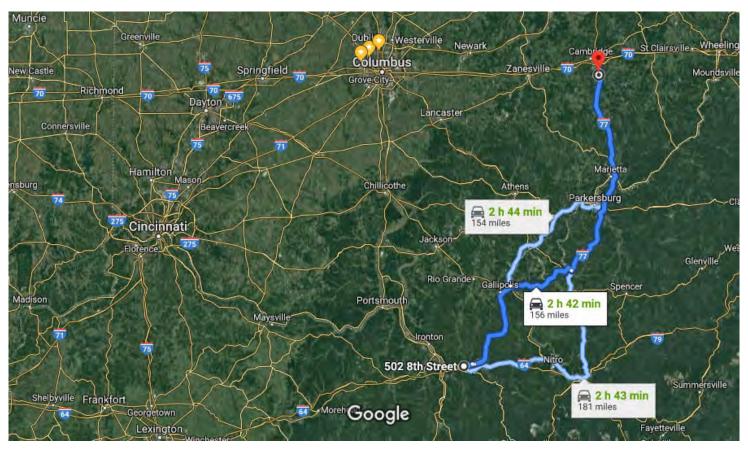
Appendices

Appendix A: Location Map

- Appendix B: Aquatic Resources Impact Exhibit, Impact Summary, and Photographs of Aquatic Features Proposed for Impact
- Appendix C: Minimization and Avoidance
- Appendix D: Natural Resources Technical Report

Appendix E: OHPO Map

Attachment 1: Application for Department of the Army Permit (ENG Form)


U.S. Army Corps of Engineers (USACE) Form Approved -				
APPLICATION FOR DEPARTN 33 CFR 325. The proponen	Fundamente Of			
for reviewing instructions, searching existing data sources, gather information. Send comments regarding the burden estimate or b at whs.mc-alex.esd.mbx.dd-dod-information-collections@mail.m	B Control Number 0710-0003, is estimated to average 11 hours per response, industring and maintaining the data needed, and completing and reviewing the collection urden reduction suggestions to the Department of Defense, Washington Headquar Respondents should be aware that notwithstanding any other provision of law, information if it does not display a currently valid OMB control number. PLEASE	on of arters Services, no person shall		
	PRIVACY ACT STATEMENT			
Section 103, 33 USC 1413; Regulatory Programs of the Corps of will be used in evaluating the application for a permit. Routine Us local government agencies, and the public and may be made av is voluntary, however, if information is not provided the permit ap reproducible copies which show the location and character of the and be submitted to the District Engineer having jurisdiction over	ean Water Act, Section 404, 33 USC 1344; Marine Protection, Research, and Sar Engineers; Final Rule 33 CFR 320-332. Principal Purpose: Information provided es: This information may be shared with the Department of Justice and other fed ailable as part of a public notice as required by Federal law. Submission of request plication cannot be evaluated nor can a permit be issued. One set of original draw proposed activity must be attached to this application (see sample drawings and the location of the proposed activity. An application that is not completed in full w intered into our permit tracking database and a SORN has been completed (SOR	on this form eral, state, and sted information vings or good I/or instructions) vill be returned.		
	se.gov/Privacy/SORNsIndex/DOD-wide-SORN-Article-View/Article/570115/a114			
(ITEMS 1	THRU 4 TO BE FILLED BY THE CORPS)			
1. APPLICATION NO. 2. FIELD OFFIC		COMPLETE		
(ITEMS E	ELOW TO BE FILLED BY APPLICANT)			
5. APPLICANT'S NAME	8. AUTHORIZED AGENT'S NAME AND TITLE (agent is not rec	uired)		
First - Alan Middle - Last - Smith	First - Sara Middle - Last - Kram	ре		
Company - Gemma Power Systems, LLC	Company - CESO, Inc.			
E-mail Address - alansmithe@gemmapower.com	E-mail Address - envgroup@cesoinc.com			
6. APPLICANT'S ADDRESS:	9. AGENT'S ADDRESS:			
Address- 769 Hebron Avenue	Address- 800 Bursca Drive, Suite 804			
City - Glastonbury State - CT Zip - 06033 Con		untry - USA		
7. APPLICANT'S PHONE NOS. WAREA CODE	10. AGENTS PHONE NOs WAREA CODE			
a, Residence b. Business c. Fax 860-659-0509	a Residence b Business c. Fax 412-504-0687			
ST	ATEMENT OF AUTHORIZATION			
11. I hereby authorize, <u>Sara Krampe</u> to act i supplemental information in support of this permit application	n my behalf as my agent in the processing of this application and to furnish, upon	request,		
SIGNATU	RE OF APPLICANT DATE			
NAME, LOCATION	AND DESCRIPTION OF PROJECT OR ACTIVITY			
12. PROJECT NAME OR TITLE (see instructions) Guernsey Power Plant Access Road Culvert Replacemen				
13. NAME OF WATERBODY, IF KNOWN (if applicable)	14. PROJECT STREET ADDRESS (if applicable)			
N/A	Address 11135 Seneca Lane			
15. LOCATION OF PROJECT				
Latitude: •N 39.945108 Longitude: •W -81.5382	44 City - Byesville State- OH Zip-	43723		
16. OTHER LOCATION DESCRIPTIONS, IF KNOWN (see instr	uctions)			
State Tax Parcel ID 110003449000 Mt	nicipality Jackson Township			
Section - Township - T1N	Range - R3W			

See Attached Directions 18. Nature of Activity (Description of project, inclu Gemma Power Systems, LLC proposes to re Guernsey County, Ohio. The proposed struc	place an existing culvert within an un	nnamed tributary of Wills Creek in Jackson Township, pipe (Class V). No permanent stream impacts are planned 4
Gemma Power Systems, LLC proposes to re	place an existing culvert within an un	named tributary of Wills Creek in Jackson Township, Dipe (Class V). No permanent stream impacts are planned 4
Gemma Power Systems, LLC proposes to re	place an existing culvert within an un	named tributary of Wills Creek in Jackson Township, Dipe (Class V). No permanent stream impacts are planned a
Gemma Power Systems, LLC proposes to re	place an existing culvert within an un	named tributary of Wills Creek in Jackson Township, bipe (Class V). No permanent stream impacts are planned a
Gemma Power Systems, LLC proposes to re	place an existing culvert within an un	named tributary of Wills Creek in Jackson Township, Dipe (Class V). No permanent stream impacts are planned a
Gemma Power Systems, LLC proposes to re	place an existing culvert within an un	nnamed tributary of Wills Creek in Jackson Township, bipe (Class V). No permanent stream impacts are planned a
Gemma Power Systems, LLC proposes to re	place an existing culvert within an un	named tributary of Wills Creek in Jackson Township, pipe (Class V). No permanent stream impacts are planned.
19. Project Purpose (Describe the reason or purp The project purpose is to replace a structural construction equipment and maintain region	ly deficient culvert located at the Gue	ernsey Power Station access road to accommodate large
USE BLOCK	S 20-23 IF DREDGED AND/OR FILL MAT	ERIAL IS TO BE DISCHARGED
20. Reason(s) for Discharge		
The replacement culvert will include 81 line structurally deficient culvert. No additional of		The replacement culvert will be the same size as the placement
21. Type(s) of Material Being Discharged and the	Amount of Each Type in Cubic Yards:	
Type Amount in Cubic Yards	Type Amount in Cubic Yards	Type Amount in Cubic Yards
N/A	N/A	N/A
22. Surface Area in Acres of Wetlands or Other W	aters Filled (see instructions)	
Acres		
or		
Linear Feet 0		
23. Description of Avoidance, Minimization, and C See Attached.	ompensation (see instructions)	

04 h Anu D Fire 61					
24. Is Any Portion of th	e Work Already Complete?	Yes No IF YES, DE	ESCRIBE THE COMPLE	ETED WORK	
25 Addresses of Adjoi	ning Property Owners, Lessee	s, Etc., Whose Property Adjo	pins the Waterbody (if mo	ore than can be entered here, please atta	ach a supplemental list)
a Address- 58379 Vo	ocational Road - 11000076	1000			
City - Senecaville		State - OH	4	Zip - 43780	
b. Address- Interstate	77 - State of Ohio - 11000	3027000			
City - Byesville		Stata OI	T	7: 42702	
Ony - Byesville		State - OF	1	Zip - 43723	
c. Address- 11111 Ser	neca Lane - 110000030000				
City - Byesville		State - OF	1	Zip - 43723	
			-		
d. Address- 38000001	3000				
City - Byesville		State - OF	I	Zip - 43723	
a Address 11000350	19000 Indonandance Dail	Werlind TD			
e Address- 11000330	8000 - Independence Rail	WORKS LID			
City - Byesville		State - OF	I	Zip - 43723	
26. List of Other Certific	cates or Approvals/Denials rec	eived from other Federal, Sta	ate, or Local Agencies f	or Work Described in This App	olication.
AGENCY	TYPE APPROVAL*	IDENTIFICATION NUMBER	DATE APPLIED	DATE APPROVED	DATE DENIED
N/A					
				·	
	-				
	ot restricted to zoning, building y made for permit or permits to		dia Abia analiantiana d		ble and beautions to
complete and accurate. applicant.	I further certify that I possess	the authority to undertake th	e work described hereir	n or am acting as the duly aut	norized agent of the
SIGNATUE	RE OF APPLICANT		CIONAT		DATE
	be signed by the person w	DATE ho desires to undertake tl		URE OF AGENT (applicant) or it may be sig	DATE ned by a duly
authorized agent if the	e statement in block 11 has	s been filled out and signe	ed.	(
18 U.S.C. Section 100	01 provides that: Whoever,	in any manner within the	jurisdiction of any de	partment or agency of the	United States
knowingly and willfully	y falsifies, conceals, or cove	ers up any trick, scheme,	or disguises a mater	ial fact or makes any false,	fictitious or frauduler
statements or entry, s	entations or makes or uses shall be fined not more than	sing laise whiling of docur \$10,000 or imprisoned n	ot more than five vea	o contain any faise, fictition ars or both.	us or traudulent

Google Maps

502 8th St, Huntington, WV 25701 to 39.9451080, Drive 156 miles, 2 h 42 min -81.5382440

Imagery ©2019 TerraMetrics, Map data ©2019 20 mi

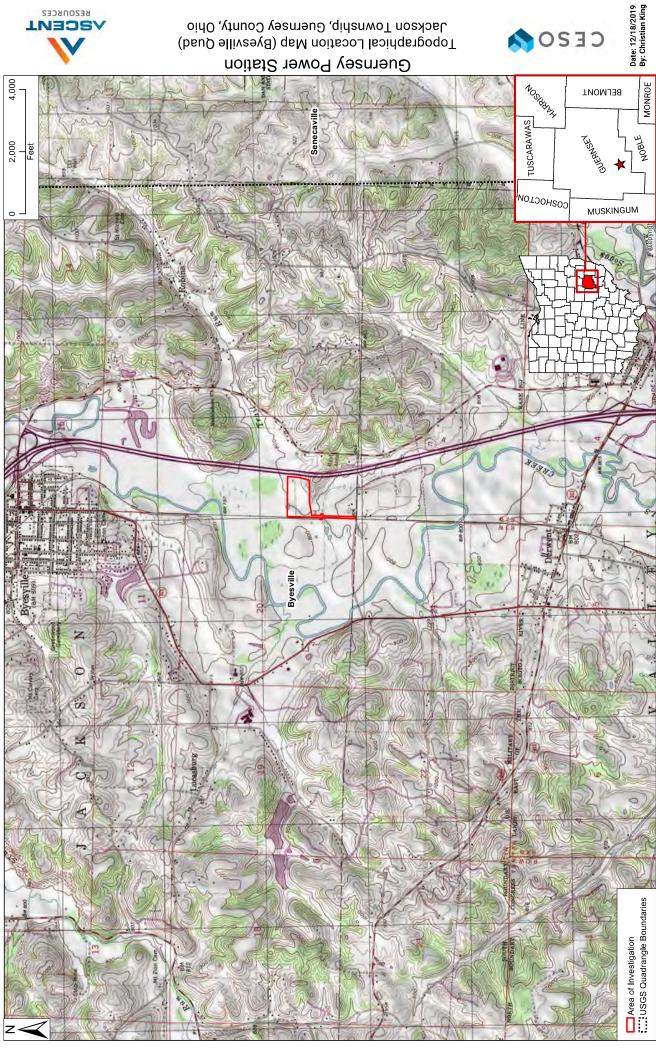
502 8th St

Huntington, WV 25701

Get on I-77 N/WV-2 N in Northern

		1 h 30 min	(71.6 mi)
1	1.	Head east on 5th Ave toward 9th St/Center Pass by Dairy Queen (on the left in 2.1 mi)	Plaza
4	2.	Turn left onto 31st St	— 2.8 mi
r	3.	Turn right onto 3rd Ave	— 0.2 mi — 0.2 mi
1	4.	Continue onto Bridge St	— 0.2 mi
1	5.	Continue onto 3rd Ave	— 0.5 mi
1	6.	Continue onto WV-2 N/Ohio River Rd Continue to follow WV-2 N	0.0111
			- 37.7 mi

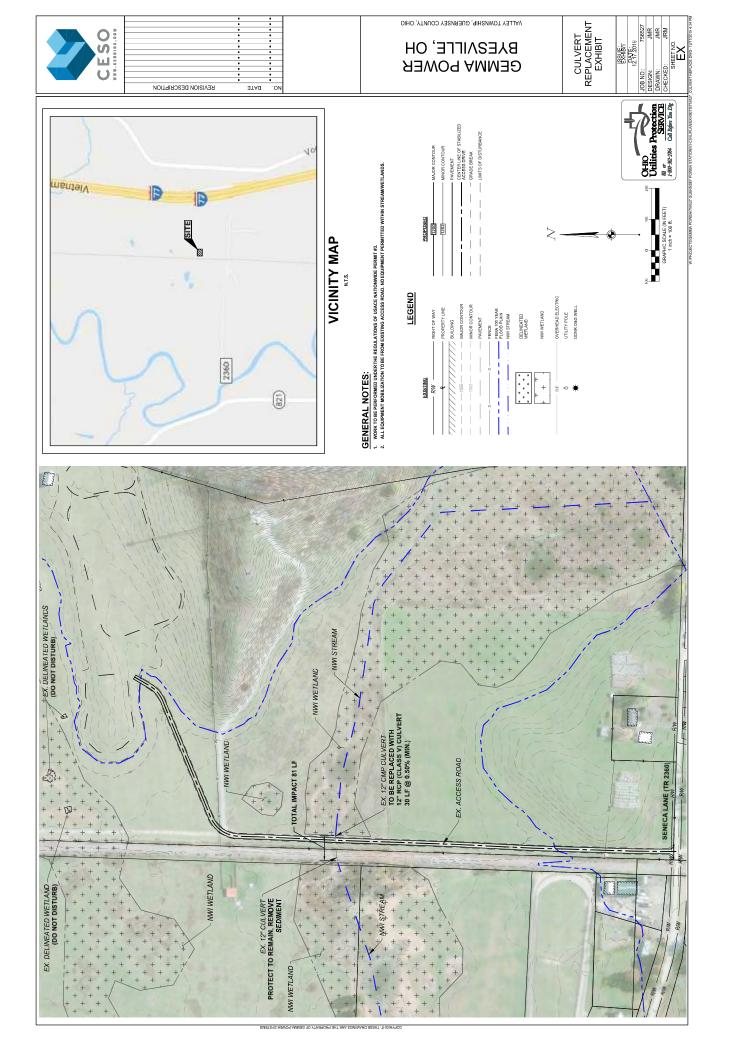
•	7.	Turn right toward 3rd St	
/ 1	8.	Slight right onto 3rd St	- 157 f
•	9.	Turn right onto WV-2 N/WV-62 S Continue to follow WV-2 N	0.3 m
	10.	Turn left to merge onto I-77 N/WV-2 N towa Parkersburg	29.2 m rd
			0.2 m
ve t	to I-	77 S in Jackson Township	0.2 m
	t o l- 11.	1 h 14 min (8 Merge onto I-77 N/WV-2 N Continue to follow I-77 N Entering Ohio	34.8 mi
		1 h 14 min (8 Merge onto I-77 N/WV-2 N Continue to follow I-77 N Entering Ohio	34.8 mi 82.4 m
	11.	1 h 14 min (8 Merge onto I-77 N/WV-2 N Continue to follow I-77 N Entering Ohio Take exit 41 for County Road 35 toward OH-	34.8 mi 82.4 m


— 1.8 mi

39.9451080, -81.5382440

These directions are for planning purposes only. You may find that construction projects, traffic, weather, or other events may cause conditions to differ from the map results, and you should plan your route accordingly. You must obey all signs or notices regarding your route. Gemma Power Systems, LLC Guernsey Power Station - Culvert Replacement Project Non-Reporting NWP-03

Appendix A: Location Map



RESOURCES

Topographical Location Map (Byesville Quad) Jackson Township, Guernsey County, Ohio

Appendix B: Aquatic Resources Impact Exhibit, Impact Summary, and Photographs of Aquatic Features Proposed for Impact

Temporary Intermittent Stream Impacts – 81 Linear Feet

1. Watercourse S-1 (Intermittent Channel)

- Impact Type: Culvert Replacement
 - \circ ~ Culvert Details: 12" diameter Class V reinforced concrete pipe
 - 30 total feet of pipe
- Stream Impact Amount: 81 feet of temporary intermittent stream impact, no permanent impact.

Photograph #	1
Date: 12-06-201	9
Description: View from the south looking north at the access road, flooded field and wetland area.	

Photograph # 2	
Date: 12-06-2019	F F
Description: View from the northwest looking southeast at the access road, flooded field and wetland area.	

Photograph # 3	
Date: 12-06-2019	CANAL & Branch And And
Description: View from the west looking east at the damaged culvert and stream within the AOI.	

Photograph #	4	A PROP		2		AX IT
Date:	12-06-2019	AND A CHART	201	See 2	-	
Description: Additional view of dat and stream within the	maged culvert e AOI.					

Photograph #	5	SX-	1.7 CA	
Date:	12-06-2019			
Description: View of the existin the railroad adjoin west.				

Photograph # 6	
Date: 12-06-2019	
Description:	The state of the second
View from the south looking north at the damaged culvert and flooding on the east side of the access road.	

Photograph # 7	
Date: 12-06-2019	
Description: Additional view from the south looking north at the flooded field and wetland area on the east side of the access road.	

Photograph #	8	
Date:	12-06-2019	
the flooded fiel	west looking east at d and wetland area e of the access road.	

Photograph #	9		a general second	
Date: 12	2-06-2019	K and	the Carlo and	
Description: Additional view from the w looking east at the flooded and wetland area on the ea of the access road.	l field			

Photograph # 1	
Date: 12-06-201	19
Description:	
View from the north looking south at the access road over the damaged culvert within the AOI.	

Gemma Power Systems, LLC Guernsey Power Station - Culvert Replacement Project Non-Reporting NWP-03

Appendix C: Minimization and Avoidance

AVOIDANCE AND MINIMIZATION (ENG Block 23)

This document provides a simplified alternatives analysis to demonstrate the avoidance and minimization measures taken for the proposed replacement of a culvert on the access road of Guernsey Power Station located in Jackson Township, Guernsey County, Ohio.

When developing power projects in the region, Gemma Power Systems must consider routes and haul roads that can carry equipment for construction and operational activities. Occasionally, stream crossings along the routes are discovered to be either structurally deficient or unsuitable to be utilized. Replacement of these culverts provide a reliable, efficient, and safe crossing for the Gemma Power Systems construction equipment and the travelling public, maintaining community and regional connectivity. Alternatives considered biological and physical impacts, technical feasibility, cost effectiveness, site safety, social and economic benefits and losses, environmental benefits and losses, and are described herein. Based on the available alternatives, Gemma Power Systems selected the on alignment build alternative with the least amount of impacts to streams, forested land, and private property. Gemma Power Systems considered several culvert replacement designs to reach required design criteria, limit impacts to the aquatic features on site, and also minimize impacts to private properties surrounding the crossing.

<u>Selected Replacement Plan – On Alignment - Preferred Alternative- Alternative #1</u>

Site design is restricted to the east and west by private property. Shifting the roadway and culvert in either direction would also have additional stream and wetland impacts. By using the existing roadway alignment and by reducing the proposed limits of disturbance, Gemma Power Systems was able to reduce impacts to the intermittent stream (S-1), avoid potential threatened & endangered species habitat impacts and to completely avoid impacts to private property owners.

New Culvert on New Alignment – Alternative #2

The new culvert on new alignment alternative was considered on either the east or west side of the existing culvert. As mentioned for the Alternative #1, the area for construction on this site is limited to the east and west, by private property. Shifts of the roadway and culvert placement in either direction would increase permanent and temporary impacts to aquatic features and other natural resources.

No-Build - Alternative #3

This alternative considers not replacing of the structure and performing minor rehabilitation efforts. Due to the existing condition of the culvert, the amount of rehabilitation effort needed would be financially unfeasible. This approach would have minimal stream impacts, but the culvert would still retain structural deficiencies making it unable to accommodate the necessary construction equipment and not maintain a safe and reliable stream crossing.

Alternative Number	Proposed Wetland Impacts (ac)		Proposed Stream Impacts (linear ft)	
	Temporary	Permanent	Temporary	Permanent
Alternative #1 (Preferred Alternative)	0	0	81	0
Alternative #2 (New Culvert on New Alignment)	0	0	40+	40+
Alternative #3 (Concept Plan)	0	0	0	0

Alternative Natural Resources Impact Summary

Avoidance, Minimization, and Compensatory Mitigation

The Preferred Alternative proposes 81 linear feet of temporary impacts to stream S-1. To reduce erosion and potential fill from entering other streams and wetlands on site, the project will implement erosion control methods consistent with the ODNR's Rainwater and Land Development- Ohio's Standards for Stormwater Management Land Development and Urban Stream Protection manual including the installation compost filter socks and silt fencing.

Gemma Power Systems has avoided and/or minimized impacts to aquatic features on site by reducing the originally proposed limits of disturbance for the project. Gemma Power Systems is minimizing impact to S-1 by installing the culvert using methods that reduce sedimentation in the stream flow. Gemma Power Systems is using the same size diameter culvert for the replacement as is currently present to ensure continued flow under high water conditions (during precipitation events). Gemma Power Systems will replace the culvert due to the damaged condition of the existing culvert and resulting flooding of private property.

Gemma Power Systems, LLC Guernsey Power Station - Culvert Replacement Project Non-Reporting NWP-03

Appendix D: Natural Resources Technical Report

Alan Smithe Gemma Power Systems, LLC 769 Hebron Avenue Glastonbury, CT 06033 AlanSmithe@gemmapower.com (860)659-0509, x1193

December 18, 2019

Re: Gemma Power Station –Culvert Replacement Stream and Wetland Field Review Results Byesville, Guernsey County, Ohio

Dear Mr. Smithe:

CESO, Inc. is pleased to provide this letter summarizing the results of thestream and wetland field review conducted on December 6, 2019 at the proposed culvert replacement project located in Byesville, Guernsey County, Ohio. The culvert is under a private drive located off of Seneca Lane (Township Road 2360). The area of investigation (AOI) included the immediate vicinity of the culvert. A Topographical Location Map is provided as Attachment 1 and an Existing Environmental Conditions Map is provided as Attachment 2.

METHODOLOGY

The AOI was investigated for aquatic resources such as streams and wetlands on December 6, 2019. Prior to the field investigation, published resource information pertaining to the AOI was gathered and reviewed. The information sources used to prepare this report include but were not limited to:

- U.S. Geological Survey (USGS) 7.5-minute quadrangle maps (Byesville, OH);
- United States Fish and Wildlife Service (USFWS) National Wetlands Inventory website (USFWS 2012);
- Aerial photography (1:2400) of the Project Vicinity (ESRI, ArcGIS, GoogleEarth)
- National Hydrology Dataset

This information was used to identify high probability wetland locations prior to the field investigation. Two NWI Wetlands, (PSS1/EM1C) were mapped within the AOI, and the aerial imagery displayed evidence of inundation within the AOI. The National Hydrology Dataset display an unnamed intermittent tributary to Wills Creek within the AOI. The NWI and NHD information is displayed on the Existing Environmental Conditions Map and the aerial photography is included in Attachment 3.

FIELD OBSERVATIONS

The culvert is under a private drive located off of Seneca Lane (Township Road 2360). The AOI consists of existing developed roadway, cow pasture, and an active railroad line. Due to the failed and collapsed culvert,

surface water was present on the eastern side of the roadway. CESO did not identify wetlands within the AOI at the culvert. Please note, due to the highwater conditions a formal delineation in the east was not conducted.

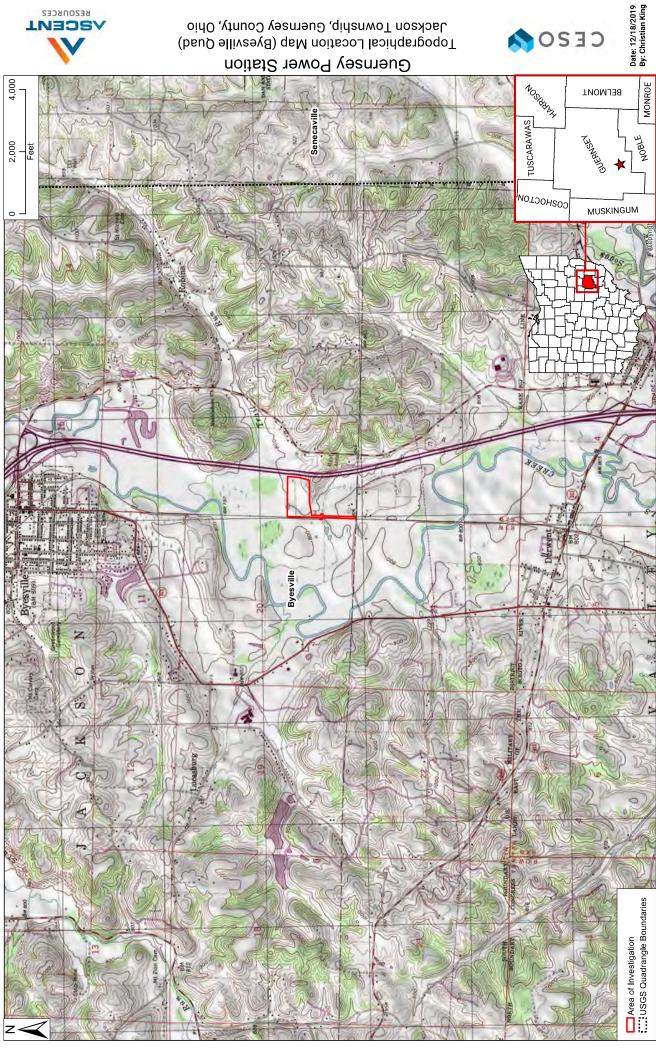
Attachment 2 includes the Existing Environmental Conditions Map which displays the AOI and the location of the culvert. Color photographs of the project area and the existing culvert are included as Attachment 4.

CONCLUSION

CESO, Inc. conducted a stream and wetland field review on December 6, 2019. One intermittent stream and no wetlands were identified. If all construction of the culvert replacement occurs from the existing road, no impacts to wetlands or streams are anticipated.

We appreciate the opportunity to be of service to you. If you have any questions regarding the information contained in this letter, please contact me at (412) 504-0687 or krampe@cesoinc.com

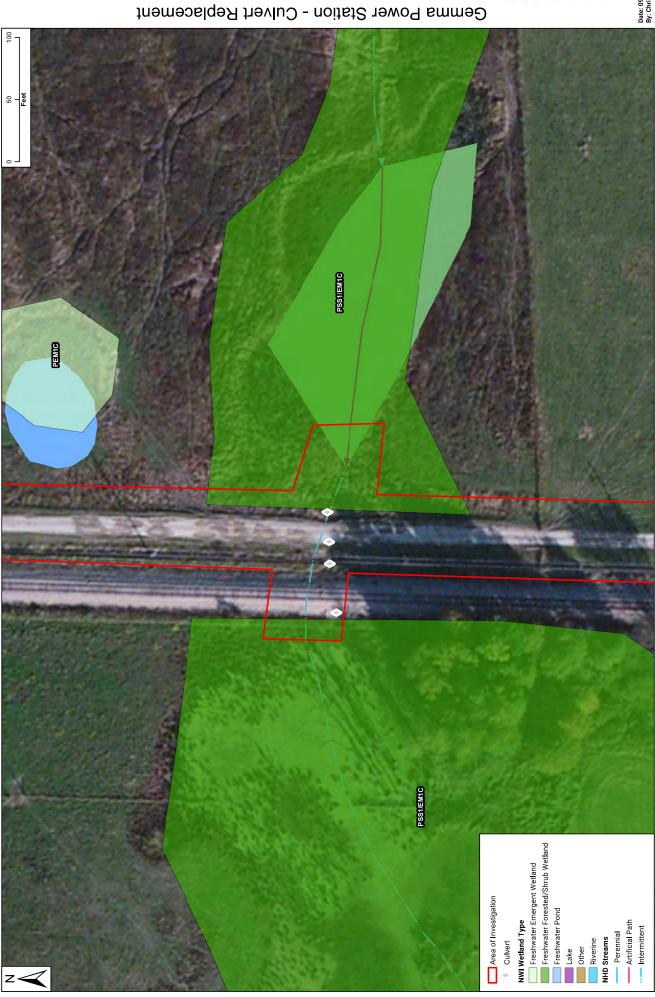
Sincerely, **CESO, Inc.**


Sara Krampe

Sara Krampe, PWS Environmental Project Manager

Attachment 1: Topographical Location Map Attachment 2: Existing Environmental Conditions Map Attachment 3: Aerial Photography Attachment 4: Site Photographs

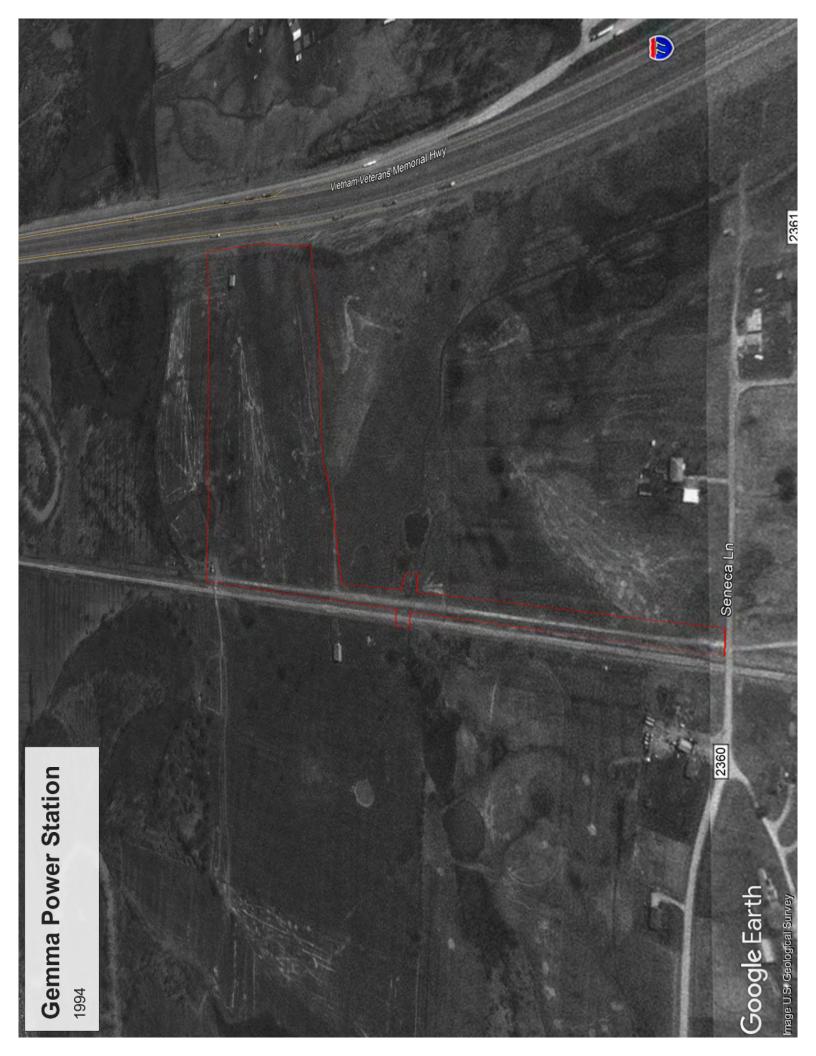
Attachment 1: Topographical Location Map



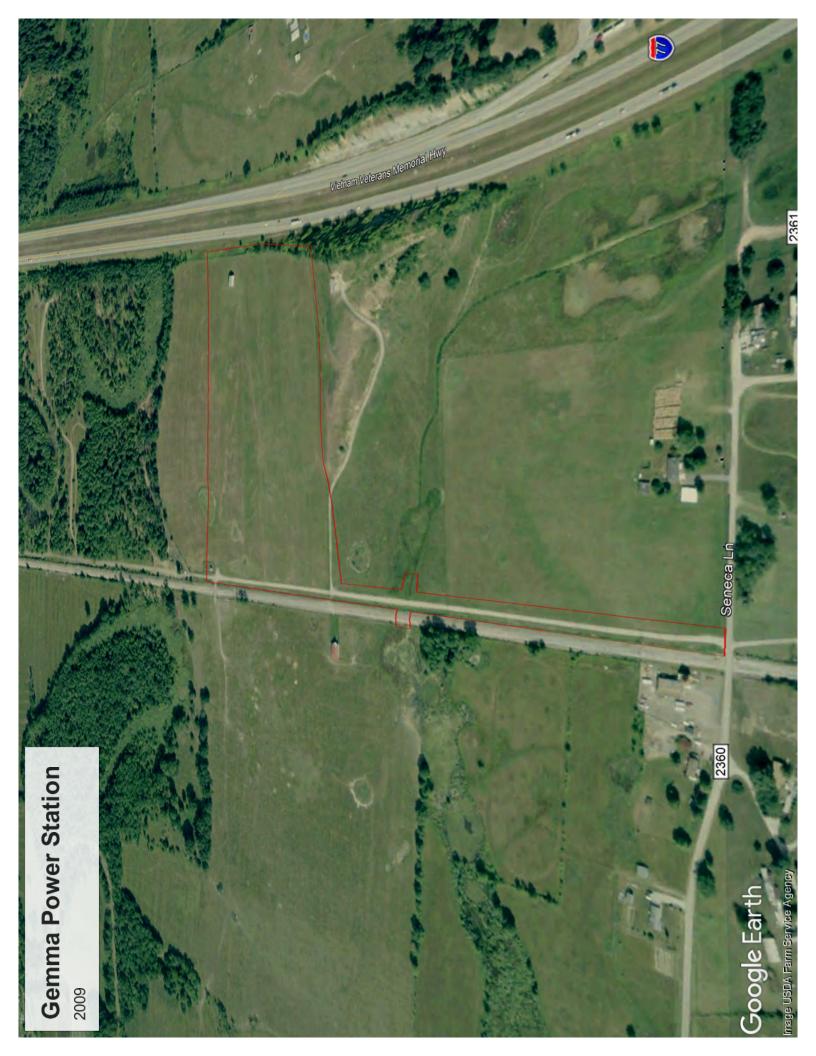
RESOURCES

Topographical Location Map (Byesville Quad) Jackson Township, Guernsey County, Ohio

Attachment 2: Existing Environmental Conditions Map


אד Power Station - Culvert Replacemer Existing Environmental Conditions Map אלאסח Township, Guernsey County, Ohio

Date: 09/16/2019 By: Christian King



Attachment 3: Aerial Photography

Attachment 4: Site Photographs

Photograph #	1
Date: 12-06-201	9
Description: View from the south looking north at the access road, flooded field and wetland area.	

Photograph # 2	
Date: 12-06-2019	F F
Description: View from the northwest looking southeast at the access road, flooded field and wetland area.	

Photograph #	3	Y	
Date: 12-06	5-2019		Contra la contra
Description: View from the west looking ea the damaged culvert and stre within the AOI.			

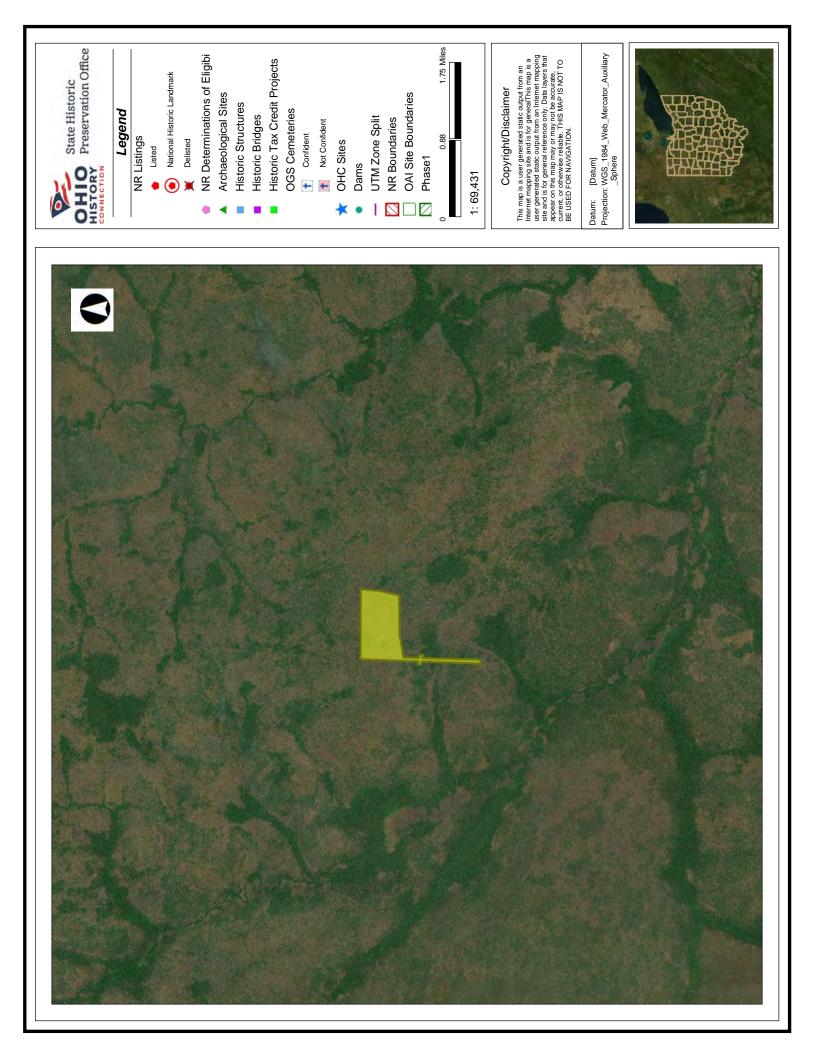
Photograph #	4	A PROP		2		AX 2
Date:	12-06-2019	AND A CHART	201	See 2	-	
Description: Additional view of dat and stream within the	maged culvert e AOI.					

Photograph #	5	SX-	1.7 CA	
Date:	12-06-2019			
Description: View of the existin the railroad adjoin west.				

Photograph # 6	
Date: 12-06-2019	
Description:	The state of the second
View from the south looking north at the damaged culvert and flooding on the east side of the access road.	

Photograph # 7	
Date: 12-06-2019	
Description: Additional view from the south looking north at the flooded field and wetland area on the east side of the access road.	

Photograph #	8	
Date:	12-06-2019	
the flooded fiel	west looking east at d and wetland area e of the access road.	


Photograph #	9		a general second	
Date: 12	2-06-2019	K and	the Carlo and	
Description: Additional view from the w looking east at the flooded and wetland area on the ea of the access road.	l field			

Photograph # 1	
Date: 12-06-201	
Description:	
View from the north looking south at the access road over the damaged culvert within the AOI.	

Gemma Power Systems, LLC Guernsey Power Station - Culvert Replacement Project Non-Reporting NWP-03

Appendix E: OHPO MAP

Special Flood Hazard Area Development Permit – Culvert Replacement

SPECIAL FLOOD HAZARD AREA DEVELOPMENT PERMIT

Alan Smithe on behalf of Ball, Willliam E & Shirley, ITES

APPLICANT

Replacement of structurally deficient 12" culvert pipe running under access road with new culvert pipe of the same diameter. Area must be returned to same elevation and contours as prior to any work. Applicant is responsible to provide photos of deficient pipe and replacement pipe to the Guernsey County Emergency Management Agency to be placed in permit file.

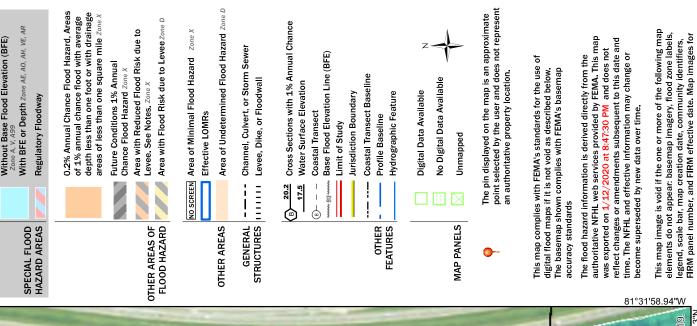
ACTIVITY DESCRIPTION

- 1.0 Is the proposed development in:
 - ___an identified floodway
 - a flood hazard area where base flood elevations exist with no identified floodway
 - X an area within the floodplain fringe
 - an approximate flood hazard area ZONE AO
- 2.0 The proposed development meets the Standards of Section <u>4.0</u> of the regulations.
- 3.0 Base flood elevation (100-year) at proposed site <u>N/A</u> feet m.s.l. Data source <u>Guernsey County Flood Insurance Rate Maps & Flood Insurance Study</u> Map effective date: <u>08/16/2011</u> Community Panel No. <u>39059C0283D</u>.
- 4.0 Does the structure contain?: <u>N/A basement</u> <u>N/A enclosed area other than basement below lowest floor</u>
- 5.0 For structures located in approximate AO zones (no BFE available) the structure's lowest floor is <u>N/A</u> feet above the highest grade adjacent to the structure.
- 6.0 The proposed development is in compliance with applicable floodplain standards. PERMIT ISSUED ON 1/10/2020
- 7.0 The proposed development is <u>not</u> in compliance with applicable floodplain standards. PERMIT DENIED ON <u>N/A</u> Reason: <u>N/A</u>
- 8.0 The proposed development is <u>exempt</u> from the floodplain standards per Section <u>N/A</u> of the Flood Damage Reduction Resolution.

Administrator's Signature: _______ Date: 01/10/20

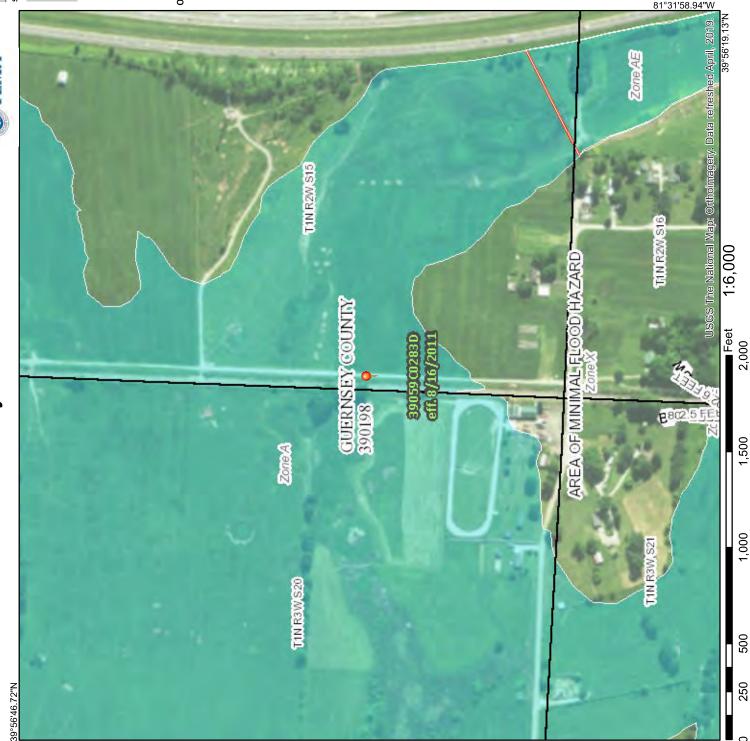
9.0 The certified as-built elevation of the structure's lowest floor is <u>N/A</u> feet above msl.*

10.0 The certified as-built floodproofed elevation of the structure is <u>N/A</u> feet above msl.*

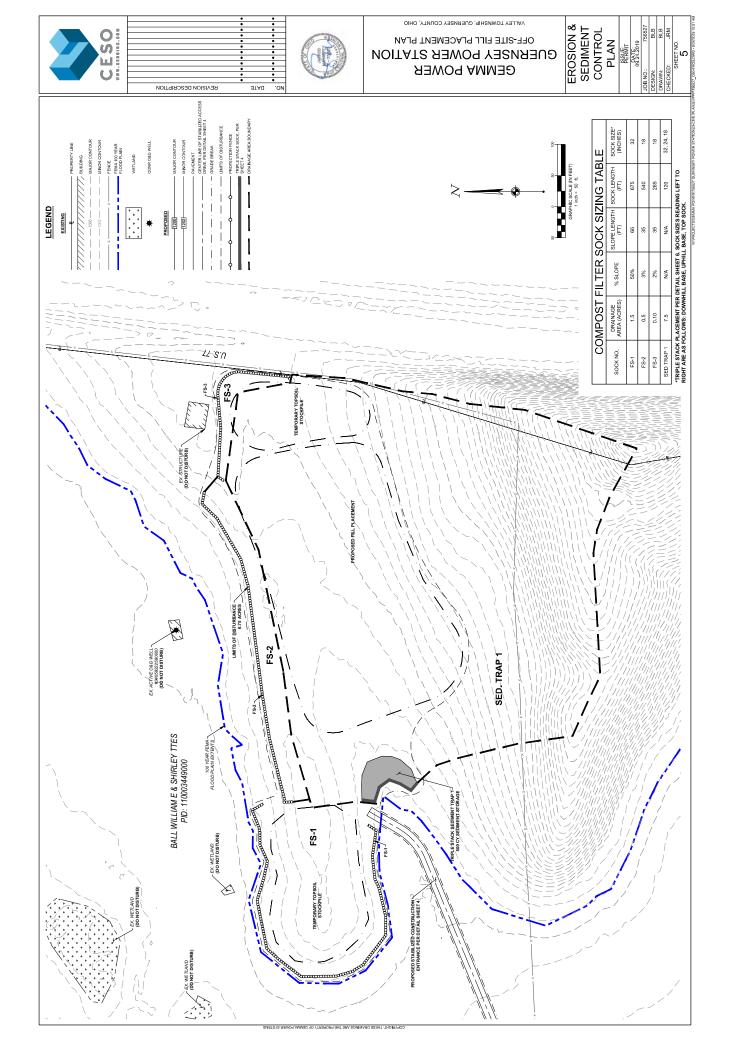

NOTE *Certification by registered engineer or land surveyor documenting these elevations is necessary if elevations are provided by applicant.

AS BUILT ELEVATIONS SHALL BE PROVIDED AND CERTIFIED BY A REGISTERED SURVEYOR

National Flood Hazard Layer FIRMette



SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT Without Base Flood Elevation (BFE) Legend


unmapped and unmodernized areas cannot be used for

regulatory purposes.

W"95.36.39"W

Gemma Off-Site Fill Placement Plan

This foregoing document was electronically filed with the Public Utilities

Commission of Ohio Docketing Information System on

3/7/2022 4:40:27 PM

in

Case No(s). 16-2443-EL-BGN, 18-0090-EL-BGA, 20-0033-EL-BGA, 21-0182-EL-BGA

Summary: Correspondence of Guernsey Power Station LLC Submitting Response to Comments Provided to the Ohio Environmental Protection Agency electronically filed by Teresa Orahood on behalf of Dylan F. Borchers