EXHIBIT A

Manufacturer's Equipment Specifications

Palomino Solar Energy Project Case No. 21-0041-EL-BGN

THE

TALIMAX ${ }^{\text {® pus }}$

 FRAMED 144 HALF-CELL MODULE
144-Cell

MONOCRYSTALLINE MODULE

385-400W

POWER OUTPUT RANGE
19.7\%

MAXIMUM EFFICIENCY

0~+5W

POSITIVE POWER TOLERANCE

Founded in 1997, Trina Solar is the world's leading comprehensive solutions provider for solar energy. we believe ciose cooperation with our partners is critical to success. Trina Solar now distributes its PV products to over 60 countries all over the world. Trina is able to provide exceptional service to each customer in each market and supplement our innovative, reliable products with the backing of Trina as a strong, bankable partner. We are committed to building strategic, mutually beneficial collaboration with installers, developers, distributors and other partners.

Comprehensive Products
And System Certificates
IEC61215/UL1703/IEC61730/IEC61701/IEC62716 ISO 9001: Quality Management System ISO 14001: Environmental Management System ISO14064: Greenhouse gases Emissions Verification OHSAS 18001: Occupation Health and Safety Management System

Trinasolar

Increased value

- Reduce BOS cost with high power bin and 1500 V system voltage
- Low thermal coefficients for greater energy production at higher temperature

Half-cell design brings higher efficiency

- New cell string layout and split J-box location to reduce the energy loss caused by inter-row shading
- Integrated LRF(Light Redirecting Film) to enhance power, specially for ground-mount applications
- Lower cell connection power losses due to half-cell layout (144 monocrystalline)

Highly reliable due to stringent quality control

-Over 30 in-house tests (UV, TC, HF etc)

- Increased module robustness to minimize micro-cracks
- PID resistant and free of snail trails
- Internal test requirement of Trina more stringent than certification authority

Certified to withstand the most challenging environmental conditions

-2400 Pa negative load
-5400 Pa positive load

LINEAR PERFORMANCE WARRANTY

DIMENSIONS OF PV MODULE(mm)

Back View(Poortrait)

Back View(Landscape)

P-V CURVES OF PV MODULE(390W)

ELECTRICAL DATA (STC)				
Peak Power Watts-Pmax (Wp)*	385	390	395	400
Power Output Tolerance-Pmax (W)	$0 \sim+5$			
Maximum Power Voltage-VMPP (V)	40.1	40.5	40.8	41.1
Maximum Power Current-Impp (A)	9.61	9.64	9.69	9.74
Open Circuit Voltage-Voc (V)	48.5	49.7	50.1	50.4
Short Circuit Current-Isc (A)	10.03	10.08	10.13	10.18
Module Efficiency η_{m} (\%)	18.9	19.2	19.4	19.7

STC: Irradiance $1000 \mathrm{~W} / \mathrm{m}^{2}$, Cell Temperature $25^{\circ} \mathrm{C}$, Air Mass AM1.5. *Measurement tolerance: $\pm 3 \%$.

ELECTRICAL DATA (NMOT)

Maximum Power-PMAx (Wp)	291	295	298	302
Maximum Power Voltage-VMPP (V)	37.9	38.4	38.7	38.9
Maximum Power Current-IMPP (A)	7.66	7.68	7.71	7.76
Open Circuit Voltage-Voc (V)	45.6	46.8	47.2	47.4
Short Circuit Current-Is (A)	8.09	8.13	8.17	8.21

NMOT: Irradiance at $800 \mathrm{~W} / \mathrm{m}^{2}$, Ambient Temperature $20^{\circ} \mathrm{C}$, Wind Speed $1 \mathrm{~m} / \mathrm{s}$.

MECHANICAL DATA

Solar Cells	Monocrystalline $158.75 \times 158.75 \mathrm{~mm}$
Cell Orientation	144 cells (6×24)
Module Dimensions	$2024 \times 1004 \times 35 \mathrm{~mm}$ ($79.69 \times 39.53 \times 1.38$ inches)
Weight	22.8 kg (50.3 lb)
Glass	3.2 mm (0.13 inches), High Transmission, AR Coated Heat Strengthened Glass
Encapsulant Material	EVA
Backsheet	White
Frame	35 mm (1.38 inches) Anodized Aluminium Alloy w/ 400 m Mounting Holes
J-Box	IP 68 rated
Cables	Photovoltaic Technology Cable $4.0 \mathrm{~mm}^{2}$ (0.006 inches 2), Portrait: N 140 mm/P 285 mm(5.51/11.22 inches) Landscape: N 1400 mm /P 1400 mm (55.12/55.12 inches)
Connector	Trina TS4

TEMPERATURE RATINGS		MAXIMUM RATINGS	
NMOT(Nominal Module OperatingTemperature)	$41^{\circ} \mathrm{C}\left(\pm 3^{\circ} \mathrm{C}\right)$	Operational Temperature	$-40 \sim+85^{\circ} \mathrm{C}$
Temperature Coefficient of Pmax	-0.37\%/ ${ }^{\circ} \mathrm{C}$	Maximum System Voltage	1500 V DC (IEC)
Temperature Coefficient of Voc	- $0.29 \% /{ }^{\circ} \mathrm{C}$		1500 V DC (UL)
Temperature Coefficient of Isc	0.05\%/ ${ }^{\circ} \mathrm{C}$	Max Series Fuse Rating	20A
(DO NOT connect Fuse in Combiner Box with two or more strings in parallel connection)			
WARRANTY		PACKAGING CONFIGURATION	
10 year Product Workmanship Warranty		Modules per box: 30 pieces	
25 year Linear Power Warranty		Modules per 40' container: 660 pieces	

(Please refer to product warranty for details)

BiHiKu7

BIFACIAL MONO PERC
575 W ~ 600 W
CS7L-575|580|585|590|595|600MB-AG

MORE POWER

Module power up to 600 W
Module efficiency up to 21.2 \%

Up to 8.9 \% lower LCOE
Up to 4.6 \% lower system cost

Comprehensive LID / LeTID mitigation technology, up to 50\% lower degradation

Compatible with mainstream trackers, cost effective product for utility power plant

Better shading tolerance

MORE RELIABLE

$40^{\circ} \mathrm{C}$ lower hot spot temperature, greatly reduce module failure rate

Minimizes micro-crack impacts

Heavy snow load up to 5400 Pa, wind load up to 2400 Pa*

12 Enhanced Product Warranty on Materials and Workmanship*

30
Linear Power Performance Warranty*
$1^{\text {st }}$ year power degradation no more than 2\%
Subsequent annual power degradation no more than 0.45\%
*According to the applicable Canadian Solar Limited Warranty Statement.

MANAGEMENT SYSTEM CERTIFICATES*

ISO 9001:2015 / Quality management system
ISO 14001:2015 / Standards for environmental management system ISO 45001: 2018 / International standards for occupational health \& safety

PRODUCT CERTIFICATES*

IEC 61215 / IEC 61730 / INMETRO / UKCA
UL 61730 / IEC 61701 / IEC 62716 / IEC 60068-2-68 Take-e-way

* The specific certificates applicable to different module types and markets will vary, and therefore not all of the certifications listed herein will simultaneously apply to the products you order or use. Please contact your local Canadian Solar sales representative to confirm the specific certificates available for your Product and applicable in the regions in which the products will be used.

CSI Solar Co., Ltd. is committed to providing high quality solar products, solar system solutions and services to customers around the world. Canadian Solar was recognized as the No. 1 module supplier for quality and performance/price ratio in the IHS Module Customer Insight Survey, and is a leading PV project developer and manufacturer of solar modules, with over 55 GW deployed around the world since 2001.

[^0]ENGINEERING DRAWING (mm)

CS7L-580MB-AG / I-V CURVES

ELECTRICAL DATA \| NMOT*

	Nominal Max. Power $($ Pmax)	Opt. Operating Voltage $(V m p)$	Opt. Operating Current (Imp)	Open Circuit Voltage $($ Voc)	Short Circuit Current $($ Isc)
CS7L-575MB-AG	431 W	31.8 V	13.56 A	38.1 V	14.69 A
CS7L-580MB-AG	435 W	32.0 V	13.60 A	38.3 V	14.73 A
CS7L-585MB-AG	439 W	32.2 V	13.64 A	38.5 V	14.77 A
CS7L-590MB-AG	442 W	32.3 V	13.70 A	38.7 V	14.80 A
CS7L-595MB-AG	446 W	32.5 V	13.73 A	38.8 V	14.85 A
CS7L-600MB-AG	450 W	32.7 V	13.77 A	39.0 V	14.89 A

* Under Nominal Module Operating Temperature (NMOT), irradiance of $800 \mathrm{~W} / \mathrm{m}^{2}$. spectrum $A M 1.5$, ambient temperature $20^{\circ} \mathrm{C}$, wind speed $1 \mathrm{~m} / \mathrm{s}$.

MECHANICAL DATA

Specification	Data
Cell Type	Mono-crystalline
Cell Arrangement	120 [2 $\times(10 \times 6)$]
Dimensions	$2172 \times 1303 \times 35 \mathrm{~mm}(85.5 \times 51.3 \times 1.38 \mathrm{in})$
Weight	34.6 kg (76.3 lbs)
Front / Back Glass	2.0 mm heat strengthened glass
Frame	Anodized aluminium alloy
J-Box	IP68, 3 diodes
Cable	4.0 mm² (IEC), 10 AWG (UL)
Cable Length (Including Connector)	$460 \mathrm{~mm}(18.1 \mathrm{in})(+) / 340 \mathrm{~mm}$ (13.4 in) (-) (supply additional jumper cable: 2 lines / Pallet) or customized length*
Connector	T4 series or MC4-EVO2
Per Pallet	31 pieces
Per Container (40' HQ)	527 pieces
* For detailed information, please contact your local Canadian Solar sales and technical representatives.	

TEMPERATURE CHARACTERISTICS

Specification	Data
Temperature Coefficient (Pmax)	$-0.34 \% /{ }^{\circ} \mathrm{C}$
Temperature Coefficient (Voc)	$-0.26 \% /{ }^{\circ} \mathrm{C}$
Temperature Coefficient (Isc)	$0.05 \% /{ }^{\circ} \mathrm{C}$
Nominal Module Operating Temperature	$41 \pm 3{ }^{\circ} \mathrm{C}$

PARTNER SECTION

al products due to the on-going innovation and product enhancement. CSI Solar Co., Ltd. reserves the right to make necessary adjustment to the information described herein at any time without further notice.
Please be kindly advised that PV modules should be handled and installed by qualified people who have professional skills and please carefully read the safety and installation instructions before using our PV modules.

First Solar Series 6 ${ }^{\text {TM }}$

First Solar.
NEXT GENERATION THIN FILM SOLAR TECHNOLOGY

HIGH-POWER PV MODULES

First Solar Series $6^{\text {TM }}$ photovoltaic (PV) module sets a new industry benchmark for reliable energy production, optimized design and environmental performance. Series 6 modules are optimized for every stage of your application, significantly reducing balance of system, shipping, and operating costs.

MORE ENERGY PER MODULE

- More watts per connection and per lift (420+ watts) than 72-cell silicon modules
- With superior temperature coefficient, spectral response and shading behavior, Series 6 modules generate up to 8% more energy per watt than conventional crystalline silicon solar modules
- Anti-reflective coated glass enhances energy production

420-450 Watts 17\%+ Efficiency

INDUSTRY-LEADING MODULE WARRANTY ${ }^{1}$
$\mathbf{9 8 \%}$ warranty start point
0.5% …animana
DEGRADATION RATE

- 25-Year Linear Performance Warranty
- 10-Year Limited Product Warranty

INNOVATIVE MODULE DESIGN

- Under-mount frame allows for simple and fast installation
- SpeedSlots ${ }^{T M}$ combine the robustness of bottom mounting with the speed of top clamping while utilizing fewer fasteners
- Dual junction box optimizes module-to-module connections
- Under-mount frame provides the cleaning and snowshedding benefits of a frameless module, protects edges against breakage and enables horizontal stacking

PROVEN LONG-TERM RELIABILITY

- Manufactured using methods and process adapted from Series 4 modules - the most tested solar modules in the industry
- Independently tested and certified for reliable performance that exceeds IEC standards in high temperature, high humidity, extreme desert and coastal applications
- Inherently immune to power loss due to cell-cracking typically seen in extreme weather events such as hail or strong winds
- Durable glass/glass construction with market-leading 75mm hail impact certification

BEST ENVIRONMENTAL PROFILE

- Fastest energy payback time and smallest carbon and water footprint in the industry
- Global PV collection and recycling services available through First Solar or customer-selected third-party

NOMINAL VALUES		$\begin{aligned} & \text { FS-6420 } \\ & \text { FS-6420A } \end{aligned}$	$\begin{aligned} & \text { FS-6425 } \\ & \text { FS-6425A } \end{aligned}$	$\begin{aligned} & \text { FS-6430 } \\ & \text { FS-6430A } \end{aligned}$	$\begin{aligned} & \text { FS-6435 } \\ & \text { FS-6435A } \end{aligned}$	$\begin{aligned} & \text { FS-6440 } \\ & \text { FS-6440A } \end{aligned}$	$\begin{aligned} & \text { FS-6445 } \\ & \text { FS-6445A } \end{aligned}$	$\begin{aligned} & \text { FS-6450 } \\ & \text { FS-6450A } \end{aligned}$
Nominal Power ${ }^{3}(-0 /+5 \%)$	$\mathrm{P}_{\text {max }}(\mathrm{W})$	420.0	425.0	430.0	435.0	440.0	445.0	450.0
Efficiency (\%)	\%	17.0	17.2	17.4	17.6	17.8	18.0	18.2
Voltage at $\mathrm{P}_{\text {MAX }}$	$\mathrm{V}_{\text {MAX }}(\mathrm{V})$	180.4	181.5	182.6	183.6	184.7	185.7	186.8
Current at $\mathrm{P}_{\text {MAX }}$	$\mathrm{I}_{\text {MAX }}(\mathrm{A})$	2.33	2.34	2.36	2.37	2.38	2.40	2.41
Open Circuit Voltage	$\mathrm{V}_{\text {OC }}(\mathrm{V}$)	218.5	218.9	219.2	219.6	220.0	220.4	221.1
Short Circuit Current	Isc (A)	2.54	2.54	2.54	2.55	2.55	2.56	2.57
Maximum System Voltage	$\mathrm{V}_{\text {SYS }}(\mathrm{V})$	$1500{ }^{5}$						
Limiting Reverse Current	$\mathrm{I}_{\mathrm{R}}(\mathrm{A})$	5.0						
Maximum Series Fuse	$I_{\text {CF }}(\mathrm{A})$	5.0						

CERTIFICATIONS AND TESTS	
IEC	
61215:2016 \& 61730-1:2016 ${ }^{5}$, CE 61701 Salt Mist Corrosion 60068-2-68 Dust and Sand Resistance	
UL	
UL 1703 1500V Listed ${ }^{5}$	
REGIONAL CERTIFICATIONS	
MCS	SII
InMetro ${ }^{4}$	FSEC
BIS ${ }^{4}$	MyHijau

Nominal Power	$\mathrm{P}_{\text {max }}$ (W)	317.2	320.9	324.7	328.5	332.4	336.0	339.9
Voltage at $\mathrm{P}_{\text {max }}$	$\mathrm{V}_{\text {MAX }}(\mathrm{V})$	168.7	169.8	170.9	172.0	173.1	174.1	175.2
Current at $\mathrm{P}_{\text {max }}$	$\mathrm{I}_{\text {MAX }}(\mathrm{A})$	1.88	1.89	1.90	1.91	1.92	1.93	1.94
Open Circuit Voltage	$\mathrm{V}_{\text {oc }}(\mathrm{V})$	206.3	206.6	207.0	207.3	207.7	208.0	208.8
Short Circuit Current	Isc (A)	2.04	2.05	2.05	2.06	2.06	2.06	2.07

TEMPERATURE CHARACTERISTICS		
Module Operating Temperature Range	$\left({ }^{\circ} \mathrm{C}\right)$	-40 to +85
Temperature Coefficient of $\mathrm{P}_{\text {MAx }}$	$\mathrm{T}_{\mathrm{K}}\left(\mathrm{P}_{\text {MAX }}\right)$	$-0.32 \% /{ }^{\circ} \mathrm{C}\left[\right.$ Temperature Range: $25^{\circ} \mathrm{C}$ to $\left.75^{\circ} \mathrm{C}\right]$
Temperature Coefficient of $\mathrm{V}_{\text {oc }}$	$\mathrm{T}_{\mathrm{K}}\left(\mathrm{V}_{\text {oc }}\right)$	$-0.28 \% /{ }^{\circ} \mathrm{C}$
Temperature Coefficient of I_{SC}	$\mathrm{T}_{\mathrm{K}}\left(\mathrm{I}_{\mathrm{Sc}}\right)$	$+0.04 \% /{ }^{\circ} \mathrm{C}$

EXTENDED DURABILITY TESTS
ANSI/CAN/CSA-C450-18 Long-Term Sequential
Thresher Test
PID Resistant
QUALITY \& EHS
ISO 9001:2015
ISO 14001:2015
ISO 45001:2018

MECHANICAL DESCRIPTION	
Length	2009 mm
Width	1232 mm
Thickness	49 mm
Area	$2.47 \mathrm{~m}^{2}$
Module Weight	34.5 kg
Leadwire ${ }^{6}$	$2.5 \mathrm{~mm}^{2}, 720 \mathrm{~mm}(+)$ \& Bulkhead (-)
Connectors	MC4-EVO 2 or alternate
Bypass Diode	N/A
Cell Type	Thin film CdTe semiconductor, up to 264 cells
Frame Material	Heat strengthened
Front Glass	Series 6ATM includes anti-reflective coating
Back Glass	Heat strengthened
Encapsulation	Laminate material with edge seal
Frame to Glass Adhesive	Silicone
Load Rating	2400 Pa

MECHANICAL DRAWING

PACKAGING INFORMATION			
Modules Per Pallet	27	Pallet Dimensions $(L \times W \times H)$	$2200 \times 1300 \times 1164 \mathrm{~mm}$ $(86 \times 51 \times 45.8 \mathrm{in})$
Pallet Weight	1032 kg	Pallets per 40' Container	18

Install in portrait only
1 Limited power output and product warranties subject to warranty terms and conditions
2 All ratings $\pm 10 \%$, unless specified otherwise. Specifications are subject to change
3 Measurement uncertainty applies
4 Testing Certifications/Listings pending
5 IEC 61730-1: 2016 Class II | ULC 1703 1000V listed
6 Leadwire length from junction box exit to connector mating surface
7 1000Pa tentative design load rating for 1940mm mounting slots. Higher loads may be acceptable, subject to testing

Disclaimer

The information included in this Module Datasheet is subject to change without notice and is provided for informational purposes only. No contractual rights are established or should be inferred because of user's reliance on the information contained in this Module Datasheet. Please refer to the appropriate Module User Guide and Module Product Specification document for more detailed technical information regarding module performance, installation and use.
The First Solar logo, First Solar ${ }^{T M}$, and all products denoted with are registered trademarks, and those denoted with a ${ }^{T M}$ are trademarks of First Solar, Inc.

SG3425/3600UD-MV

Turnkey Station for North America 1500 Vdc System - MV Transformer Integrated

HIGH YIELD

- Advanced three-level technology, max. efficiency 98.9\%
- Full power operation at $45^{\circ} \mathrm{C}\left(113^{\circ} \mathrm{F}\right)$
- Effective cooling, wide operation temperature
- Max. DC/AC ratio up to 2.0

SAVED INVESTMENT

- Low transportation and installation cost due to 20 -foot container size design
- DC 1500 V system, low system cost
- Integrated MV transformer and LV auxiliary power supply
- Q at night optional

EASY O\&M

- Integrated current, voltage and MV parameters monitoring function for onlione analysis and trouble shooting
- Modular design, easy for maintenance

GRID SUPPORT

- Compliance with standards:UL 1741,UL 1741 SA, IEEE 1547, Rule 21 and NEC code
- Low / High voltage ride through (L/HVRT), L/HFRT, soft start / stop
- Active \& reactive power control and power ramp rate control

Type designation	SG3425UD-MV	SG3600UD-MV
Input (DC)		
Max. PV input voltage	1500V	
Min. PV input voltage / Startup input voltage	875 V / 915 V	$915 \mathrm{~V} / 955 \mathrm{~V}$
Available DC fuse sizes	250A, 315A, 400A, 450A, 500A	
MPP voltage range for nominal power	875-1300 V	915-1300 V
No. of independent MPP inputs	1	
No. of DC inputs	20 (optional: 22 / 24 / 26 / 28)	
Max. DC short-circuit current	10000 A	
PV array configuration	Negative grounding or floating	
Output (AC)		
AC output power	3425 kVA @ $45^{\circ} \mathrm{C}\left(113{ }^{\circ} \mathrm{F}\right)$,	kVA @ $45^{\circ} \mathrm{C}\left(113^{\circ} \mathrm{F}\right)$,
	3083 kVA @ $50{ }^{\circ} \mathrm{C}\left(122{ }^{\circ} \mathrm{F}\right)$	kVA @ $50{ }^{\circ} \mathrm{C}\left(122{ }^{\circ} \mathrm{F}\right)$
Nominal grid frequency / Grid frequency range	$50 \mathrm{~Hz} / 45-55 \mathrm{~Hz}, 60 \mathrm{~Hz} / 50-65 \mathrm{~Hz}$	
THD	$<3 \%$ (at nominal power)	
DC current injection	< 0.5 \% In	
Efficiency		
Inverter Max. efficiency	98.9 \%	
Inverter CEC efficiency	98.5 \%	
Transformer		
Transformer rated power	3425 kVA	3600 kVA
Transformer max. power	3425 kVA	3600 kVA
LV / MV voltage	$0.6 \mathrm{kV} /(12-35) \mathrm{kV}$	0.63 kV / (12-35) kV
Transformer vector	Dy1 or Dy71	
Transformer cooling type	ONAN (Optional: KNAN)	
Protection		
DC input protection	Load break switch + fuse	
Inverter output protection	Circuit breaker	
AC MV output protection	Load break switch + fuse	
Overvoltage protection	DC Type II / AC Type II	
Grid monitoring / Ground fault monitoring	Yes / Yes	
Insulation monitoring	Yes	
Overheat protection	Yes	
General Data		
Dimensions (W * H *)	6058 * 2896 * $2438 \mathrm{~mm} \mathrm{238.5}{ }^{\text {" * 114.0' * 96.0' }}$	
Weight	18000 kg 39683.2 lbs	
Degree of protection	NEMA 4X (Electronic for Inverter) / NEMA 3R (Others)	
Auxiliary power supply	$5 \mathrm{kVA}, 120 \mathrm{Vac} / 240 \mathrm{Vac} ;$ Optional: $30 \mathrm{kVA}, 480 \mathrm{Vac} / 277 \mathrm{Vac}$	
Operating ambient temperature range	-35 to $60^{\circ} \mathrm{C}$ ($>45^{\circ} \mathrm{C}$ derating) / optional: -40 to $60^{\circ} \mathrm{C}$ (> $45^{\circ} \mathrm{C}$ derating) -22 to $140{ }^{\circ} \mathrm{F}$ ($>113^{\circ} \mathrm{F}$ derating) / optional: -40 to $140{ }^{\circ} \mathrm{F}$ (> $113^{\circ} \mathrm{F}$ derating)	
Allowable relative humidity range	0-100\%	
Cooling method	Temperature controlled forced air cooling	
Max. operating altitude	1000 m (Standard) / > 1000 m (Customized) (3280.8 ft (standard) / > 3280.8 ft (Customized))	
DC-Coupled storage interface	Optional	
Charging power from the grid	Optional	
Communication	Standard: RS485, Ethernet; Optional: optical fiber	
Compliance	UL 1741, IEEE 1547, UL1741 SA, NEC 2017, CSA C22.2 No.107.1-01	
Grid support	Q at night function (optional), L/HVRT, L/HFRT, Active \& reactive power control and power ramp rate control, Volt-var, Frequency-watt	

Efficient

- Up to 4 inverters can be transported in one standard shipping container
- Overdimensioning up to 150% is possible
- Full power at ambient temperatures of up to $35^{\circ} \mathrm{C}$

Robust

- Intelligent air cooling system OptiCool for efficient cooling
- Suitable for outdoor use in all climatic ambient conditions worldwide

Flexible

- Conforms to all known grid requirements worldwide
- Q on demand
- Available as a single device or turnkey solution, including medium-voltage block

Easy to Use

- Improved DC connection area
- Connection area for customer equipment
- Integrated voltage support for internal and external loads

SUNNY CENTRAL
 4000 UP-US / 4200 UP-US / 4400 UP-US / 4600 UP-US

The new Sunny Central: more power per cubic meter

With an output of up to 4600 kVA and system voltages of 1500 V DC, the SMA central inverter allows for more efficient system design and a reduction in specific costs for PV power plants. A separate voltage supply and additional space are available for the installation of customer equipment. True 1500 V technology and the intelligent cooling system OptiCool ensure smooth operation even in extreme ambient temperature as well as a long service life of 25 years.

SUNNY CENTRAL 4000 UP-US / 4200 UP-US

at	
Input (DC)	
MPP voltage range V_{DC} (at $25^{\circ} \mathrm{C} /$ at $50^{\circ} \mathrm{C}$)	
Min. input voltage $\mathrm{V}_{\mathrm{DC}, \text { min }} /$ Start voltage $\mathrm{V}_{\mathrm{DC} \text {, Start }}$	
Max. input voltage $\mathrm{V}_{\mathrm{DC}, \text { max }}$	
Max. input current $I_{\text {DC, max }}$	
Max. short-circuit current $\mathrm{I}_{\mathrm{DC}, \mathrm{sc}}$	
Number of DC inputs	
Number of DC inputs with optional DC coupling of battery	
Max. number of DC cables per DC input (for each polarity)	
Integrated zone monitoring	
Available PV fuse sizes (per input)	
Available battery fuse size (per input)	
Output (AC)	
Nominal AC power at $\cos \varphi=1$ (at $35^{\circ} \mathrm{C} /$ at $50^{\circ} \mathrm{C}$)	
Nominal AC power at $\cos \varphi=0.8$ (at $35^{\circ} \mathrm{C} /$ at $50^{\circ} \mathrm{C}$)	
Nominal AC current $\mathrm{I}_{\text {AC, nom }}\left(\right.$ at $35^{\circ} \mathrm{C} /$ at $50^{\circ} \mathrm{C}$)	
Max. total harmonic distortion	
Nominal AC voltage / nominal AC voltage range ${ }^{1 / 8)}$	
$A C$ power frequency / range	
	Min. short-circuit ratio at the AC terminals ${ }^{9 /}$
	Power factor at rated power / displacement power factor adjustable ${ }^{8 / 10)}$

Efficiency

Max. efficiency ${ }^{21}$ / European efficiency ${ }^{21}$ / CEC efficiency ${ }^{31}$

Protective Devices

Input-side disconnection point
Output-side disconnection point
DC overvoltage protection
AC overvoltage protection (optional)
Lightning protection (according to IEC 62305-1)
Ground-fault monitoring / remote ground-fault monitoring
Insulation monitoring
Degree of protection
General Data
Dimensions (W / H / D)
Weight
Self-consumption (max. ${ }^{4)}$ / partial load ${ }^{5}$ / average 6)
Self-consumption (standby)
Internal auxiliary power supply
Operating temperature range ${ }^{8)}$
Noise emission ${ }^{71}$
Temperature range (standby)
Temperature range (storage)
Max. permissible value for relative humidity (condensing / non-condensing)
Maximum operating altitude above $\mathrm{MSL}^{81} 1000 \mathrm{~m} / 2000 \mathrm{~m}$
Fresh air consumption
Features
DC connection
AC connection
Communication
Communication with SMA string monitor (transmission medium)
Enclosure / roof color
Supply transformer for external loads
Standards and directives complied with

EMC standards

Quality standards and directives complied with

- Standard features ○ Optional

[^1]7) Sound pressure level at a distance of 10 m
8) Values apply only to inverters. Permissible values for SMA MV solutions from SMA can be found in the corresponding data sheets.
9) A short-circuit ratio of <2 requires a special approval from SMA
10) Depending on the $D C$ voltage
11) Nominal power at $35^{\circ} \mathrm{C}$ max DC voltage of 1050 V

SUNNY CENTRAL 4400 UP-US / 4600 UP-US

Technical data	SC 4400 UP-US	SC 4600 UP-US
Input (DC)		
MPP voltage range $\mathrm{V}_{\text {DC }}\left(\right.$ at $25^{\circ} \mathrm{C} /$ at $\left.50^{\circ} \mathrm{C}\right)$	962 to $1325 \mathrm{~V} / 1050 \mathrm{~V}$	1003 to $1325 \mathrm{~V} / 1050 \mathrm{~V}$
Min. input voltage $\mathrm{V}_{\mathrm{DC}, \text { min }} /$ Start voltage $\mathrm{V}_{\mathrm{DC}, \text { Start }}$	$934 \mathrm{~V} / 1112 \mathrm{~V}$	$976 \mathrm{~V} / 1153 \mathrm{~V}$
Max. input voltage $\mathrm{V}_{\mathrm{DC} \text {, max }}$	1500 V	1500 V
Max. input current $\mathrm{I}_{\mathrm{DC}, \text { max }}$	4750 A	4750 A
Max. short-circuit current $\mathrm{I}_{\mathrm{DC}, \mathrm{sc}}$	6400 A	6400 A
Number of DC inputs	24 double pole fused (32 single pole fused)	
Number of DC inputs with optional DC coupling of battery	18 double pole fused (36 single pole fused) for $\mathrm{PV}, 6$ double pole fused for batteries	
Max. number of DC cables per DC input (for each polarity)	$2 \times 800 \mathrm{kcmil}, 2 \times 400 \mathrm{~mm}^{2}$	
Integrated zone monitoring	\bigcirc	
Available PV fuse sizes (per input)	200 A, 250 A, 315 A, 350 A, $400 \mathrm{~A}, 450 \mathrm{~A}, 500 \mathrm{~A}$	
Available battery fuse size (per input)	750 A	
Output (AC)		
Nominal AC power at $\cos \varphi=1$ (at $35^{\circ} \mathrm{C} /$ at $50^{\circ} \mathrm{C}$)	4400 kVA ${ }^{11}$ / 3960 kVA	$4600 \mathrm{kVA}^{(1)} / 4140 \mathrm{kVA}$
Nominal AC power at $\cos \varphi=0.8$ (at $35^{\circ} \mathrm{C} /$ at $50^{\circ} \mathrm{C}$)	3520 kW ${ }^{111} / 3168$ kW	$3680 \mathrm{~kW}^{111} / 3312 \mathrm{~kW}$
Nominal AC current $\mathrm{I}_{\text {AC, nom }}\left(\right.$ at $35^{\circ} \mathrm{C} /$ at $50^{\circ} \mathrm{C}$)	3850 A / 3465 A	3850 A / 3465 A
Max. total harmonic distortion	< 3% at nominal power	$<3 \%$ at nominal power
Nominal AC voltage / nominal AC voltage range ${ }^{1 / 8)}$	$660 \mathrm{~V} / 528 \mathrm{~V}$ to 759 V	$690 \mathrm{~V} / 552 \mathrm{~V}$ to 759 V
AC power frequency / range	$50 \mathrm{~Hz} / 47 \mathrm{~Hz}$ to 53 Hz $60 \mathrm{~Hz} / 57 \mathrm{~Hz}$ to 63 Hz	
Min. short-circuit ratio at the AC terminals ${ }^{9 /}$	>2	
Power factor at rated power / displacement power factor adjustable ${ }^{88101}$	1 / 0.8 overexcited to 0.8 underexcited	
Efficiency		
Max. efficiency ${ }^{2 /}$ / European efficiency ${ }^{2 /}$ / CEC efficiency ${ }^{3 /}$	98.7\% / 98.6\% / 98.5\%	98.7\% / 98.6\% / 98.5\%
Protective Devices		
Input-side disconnection point	DC load break switch	
Output-side disconnection point	AC circuit breaker	
DC overvoltage protection	Surge arrester, type I	
AC overvoltage protection (optional)	Surge arrester, class I	
Lightning protection (according to IEC 62305-1)	Lightning Protection Level III	
Ground-fault monitoring / remote ground-fault monitoring	$0 / 0$	
Insulation monitoring	\bigcirc	
Degree of protection	NEMA 3R	
General Data		
Dimensions (W / H / D)	2780 / 2318 / 1588 mm (109.4 / 91.3 / 62.5 inch)	
Weight	$<3700 \mathrm{~kg} /<8158 \mathrm{lb}$	
Self-consumption (max. ${ }^{4}$ / partial load 5 / average 6)	<8100 W / < $1800 \mathrm{~W} /<2000 \mathrm{~W}$	
Self-consumption (standby)	<370 W	
Internal auxiliary power supply	- Integrated 8.4 kVA transformer	
Operating temperature range ${ }^{8 /}$	$-25^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C} /-13^{\circ} \mathrm{F}$ to $140^{\circ} \mathrm{F}$	
Noise emission ${ }^{7 /}$	$67.0 \mathrm{~dB}(\mathrm{~A})^{*}$	
Temperature range (standby)	$-40^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C} /-40^{\circ} \mathrm{F}$ to $140^{\circ} \mathrm{F}$	
Temperature range (storage)	$-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C} /-40^{\circ} \mathrm{F}$ to $158^{\circ} \mathrm{F}$	
Max. permissible value for relative humidity (condensing / non-condensing)	95\% to 100\% (2 month/year) / 0\% to 95\%	
Maximum operating altitude above MSL ${ }^{81} 1000 \mathrm{~m} / 2000 \mathrm{~m}$	- / O (earlier temperature-dependent derating)	
Fresh air consumption	$6500 \mathrm{~m}^{3} / \mathrm{h}$	
Features		
DC connection	Terminal lug on each input (without fuse)	
AC connection	With busbar system (three busbars, one per line conductor)	
Communication	Ethernet, Modbus Master, Modbus Slave	
Communication with SMA string monitor (transmission medium)	Modbus TCP / Ethernet (FO MM, Cat-5)	
Enclosure / roof color	RAL 9016 / RAL 7004	
Supply transformer for external loads	- (2.5 kVA)	
Standards and directives complied with	UL 62109-1, UL 1741 (Chapter 31, CDR 6I), UL 1741-SA, UL 1998 IEEE 1547, MIL-STD-810G	
EMC standards	FCC Part 15 Class A	
Quality standards and directives complied with	VDI/VDE 2862 page 2, DIN EN ISO 9001	
- Standard features ○ Optional		
1) At nominal $A C$ voltage, nominal $A C$ power decreases in the same proportion	7) Sound pressure level at a distanc	
2) Efficiency measured without internal power supply	8) Values apply only to inverters. Pe	for SMA MV solutions from
3) Efficiency measured with internal power supply	SMA can be found in the corresp	eets.
4) Self-consumption at rated operation	9) A short-circuit ratio of <2 require	roval from SMA
5) Self-consumption at $<75 \% \mathrm{Pn}$ at $25^{\circ} \mathrm{C}$	0) Depending on the DC voltage	
6) Self-consumption averaged out from 5% to 100% Pn at $25^{\circ} \mathrm{C}$	1) Nominal power at $35^{\circ} \mathrm{C}$ max DC	50 V

TEMPERATURE BEHAVIOR (at 1000 m)

Solar Ware Ninja™

Multiple Configurations for Maximum Flexibility

TMEIC's Solar Ware Ninja is the latest evolution of the highly successful Solar Ware family of inverters, joining over 30GW of TMEIC's globally installed photovoltaic inverters. Continuing the legacy of high efficiency, cutting-edge features, and unmatched reliability, the new Ninja modular inverter system is the culmination of input from utilities, developers, and technicians.
The Ninja is a global product, performing the duties of both generation and energy storage. The modular system introduces multiple layers of flexibility to allow designers an almost unlimited number of options for every project. The advanced controls system is packed with features to meet not only today's smart inverter requirements, but also new requirements as they are introduced. Like the award-winning Samurai series of inverters, the Ninja utilizes the same highly reliable IGBT based power conversion system.

Customizable Block

Up to 6 Ninja units on the same skid. Able to combine PV and ESS inverters in the same lineup. A skid controller will manage output of the Ninja power station.

- Fully Modular design means:
- Completely independent inverters for increased availability
- Individual MPPT for greater energy yield
- Latest generation of Smart Inverter controls platform
- 800kW-5280kW integrated skid sizes
- DC Zone monitoring is standard
- UL or IEC certified global design
- PV or Energy Storage (bi-directional)
- Outdoor rated enclosure

TMEIC is Bankable

- Stable, with multi billion \$USD revenue
- Diversified, with decades of power electronics
experience in a variety of heavy industries, including metals, oil \& gas, mining, and container cranes industries
- Manufacturing in the US and several other locations

TMEIC is Reliable

- Over 30GW of PV and ESS inverters globally
- Own exclusive use of Mitsubishi Electric's 3 level NPS technology
- Industry leading fleet availability

TMEIC is Support

- Interconnect Application and Modeling Support
- 24/7 US based hot line
- Over 30 years PV inverter manufacturing and R\&D experience
- Comprehensive customer training programs
- Authorized Service Provider program available

		PV－PCS			ESS－PCS			
Type		PVU－L0800GR	PVU－L0840GR	PVU－L0880GR	BSU－L0640GR	BSU－L0800GR	BSU－L0840GR	
Output side（AC）	Rated Power＠25 ${ }^{\circ} \mathrm{C}$	800kW	840kW	880kW	640kW	800 kW	840kW	
	Rated Power＠50 ${ }^{\circ} \mathrm{C}$	730 kW	765 kW	800kW	550 kW	730 kW	765 kW	
	Rated Voltage	600V＋10\％，－12\％	$630 \mathrm{~V}+10 \%$ ，-12%	$660 \mathrm{~V}+10 \%$ ，-12%	480VAC	600VAC	630VAC	
	Rated Frequency	$50 \mathrm{~Hz} / 60 \mathrm{~Hz}(+0.5 \mathrm{~Hz},-0.7 \mathrm{~Hz})$						
	Rated Power Factor	＞0．99						
	Reactive Capability	$\pm 421 \mathrm{kVAR}$	$\pm 442 \mathrm{kVAR}$	$\pm 464 \mathrm{kVAR}$	$\pm 448 \mathrm{kVAR}$	± 560 kVAR	± 588 kVAR	
	Rated Current	702 Arms＠ $50{ }^{\circ} \mathrm{C}$						
	Maxium Current	770 Arms＠ $25^{\circ} \mathrm{C}$						
	Maximum Efficiency	98．72\％＊	98．72\％	98．72\％＊	98．72\％＊	98．72\％＊	98．72\％＊	
	CEC Efficiency	98\％＊	98\％	98\％＊	98\％＊	98\％＊	98\％＊	
Input side （DC）	Maximum Voltage	1500 Vdc						
	MPPT Operation Range	875－1300VDC	915－1300VDC	960－1300VDC	710－1100VDC	875－1300VDC	915－1300VDC	
Environ． Conditions	Ingress Protection Ratings	NEMA3R						
	Installation	Outdoor						
	Ambient Temperature Range	-25° to $50^{\circ} \mathrm{C}$						
	Maximum Altitude	＞2000 m power derating（Max．4000m）						
Protective Functions	Input（DC）Side	DC Protection：Input Fuses，Ground Fault Detection，DC Reverse Current，Over Voltage，Over Current						
	Grid（AC）Side	AC Protection：Disconnect Switch and Fuse，Anti－islanding，Over／Under Voltage，Over／Under Frequency，Over Current						
	Grid Assistance	Reactive／Active Power Control，Power Factor Control，Fault Ride Through（optional）						
Harmonic Distortion of AC Current		$\leq 3 \%$ THD（at rated power）			$\leq 5 \%$ THD（at rated power）			
Communication		Modbus／TCP						
Fault Analysis		Fault Event Log，Waveform Acquisition via memory card						
Compliance		UL1741，UL174SA／IEEE1547／NEC2017／IEC62109－1，2／IEC61000－6－2，4／IEC61727，IEC62116／IEC61400，BDEW／IEC61683／IEC60068						
Cooling Method		Heat Pipes and Forced Air Cooling						
Number of Inputs		Standard 6 inputs for PV（maximum 8 per inverter）			1 per Inverter			
Standard Control Power Supply		Control Power Supply from Inverter output and Capacitor backup circuit（3 sec．compensation）						
Short Circuit Withstand Current		AC side－65kA；DC side－ 30 kA			AC side -65 kA ；DC side－100kA			
Weight		＜1000kgs						
Dimensions（ $\mathrm{H} \times \mathrm{W} \times \mathrm{D}$ ）		$1100 \times 1100 \times 1900 \mathrm{~mm}(\mathrm{~L} \times \mathrm{W} \times \mathrm{H})$						
Floor Space		1875.5 sq．in．（ $1.21 \mathrm{~m}^{2}$ ）						
Color Note：Standard configuration not limited configur		Cabinet：Munsell N7．0，Roof：Munsell N4．5						
		Note：Standard configuration not limited configuration．Contact TMEIC for detailed information． ＊Preliminary specification						

O

NX Horizon

Smart Solar Tracking System

Serving as the backbone on over 35 gigawatts of solar power plants around the world, the NX Horizon ${ }^{\text {TM }}$ smart solar tracker system combines best-in-class hardware and software to help EPCs and asset owners maximize performance and minimize operational costs.

Flexible and Resilient by Design

With its self-aligning module rails and vibration-proof fasteners, NX Horizon can be easily and rapidly installed. The self-powered, decentralized architecture allows each row to be commissioned in advance of site power, and is designed to withstand high winds and other adverse weather conditions. On a recent 838 megawatt project in Villanueva, Mexico, these design features allowed for the project to go online nine months ahead of schedule.

TrueCapture and Bifacial Enabled

Incorporating the most promising innovations in utility scale solar, NX Horizon with TrueCapture ${ }^{\text {TM }}$ smart control system can add additional energy production by up to six percent. Further unlocking the advantages of independent-row architecture and the data collected from thousands of sensors across its built-in wireless network, the software continuously optimizes the tracking algorithm of each row in response to site terrain and changing weather conditions. NX Horizon can also be paired with bifacial PV module technology, which can provide even more energy harvest and performance. With bifacial technology, NX Horizon outperforms conventional tracking systems with over 1\% more annual energy.

Quality and Reliability from Day One

Quality and reliability are designed and tested into every NX Horizon component and system across our supply chain and manufacturing operations. Nextracker is the leader in dynamic wind analysis and safety stowing, delivering major benefits in uptime and long-term durability NX Horizon is certified to UL 2703 and UL 3703 standards, underscoring Nextracker's commitment to safety, reliability and quality.

Features and Benefits

5 years in a row
Global Market Share Leader (2015-18)
35 GW
Delivered on 5 Continents

Best-in Class

Software Ecosystem and Global Services

Using TrueCapture Smart Control System

Single-Axis Tracker

MAIN FEATURES		
Tracking System	Horizontal Single-Axis with independent rows	
Tracking Range	$\pm 55^{\circ}$ Optional: $\pm 60^{\circ}$	
Drive System	Enclosed Slewing Drive, DC Motor	
Power Supply	Dedicated Panel	
	Optional: 120/240 Vac or 24 Vdc power-cable	
Tracking Algorithm	Astronomical with TeamTrack® Backtracking	
Communication		
Open Thread	Full Wireless	
	Optional: RS-485 Full Wired RS-485 cable not included in Soltec scope	
Wind Resistance	Per Local Codes	
Land Use Features		
Independent Rows	YES	
Slope North-South	3\% Optional: up to 15\%	
Slope East-West	10\% (4\% under the tracker)	
Ground Coverage Ratio	Configurable. Typical range: 30-50\%	
Foundation	Driven Pile \| Ground Screw	Concrete
Temperature Range		
Standard	$-4^{\circ} \mathrm{F}$ to $+131^{\circ} \mathrm{F} \mid-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$	
Extended	$-40^{\circ} \mathrm{F}$ to $+131^{\circ} \mathrm{F} \mid-40^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$	
Availability	>99\%	
Modules	Bifacial	

SPAIN / Headquarters
Pol. Ind. La Serreta Gabriel Campillo, s/n, 30500 Molina de Segura, Murcia, Spain info@soltec.com +34 968603153

MADRID
Núñez de Balboa 33, 1² A 28001 Madrid
emea@soltec.com +34 914497203

UNITED STATES usa@soltec.com +15104409200

BRAZIL
brasil@soltec.com
+55 07130264900

MEXICO
mexico@soltec.com
+5215555573144
CHILE
chile@soltec.com
+56225738559
PERU
peru@soltec.com
+5114227279
INDIA
india@soltec.com
+91 1244568202
MODULE CONFIGURATIONS Approximate Dimentions

	Length	Height	Width		Length	Height	Width
2×27	$\begin{aligned} & 28.1 \mathrm{~m} \\ & \left(92^{\prime} 3^{\prime \prime}\right) \end{aligned}$	4.21 m (13' 10")	4.17 m (13' 8")	2×40.5	$42.4 \mathrm{~m}$ (139' 3")	4.21 m (13' 10")	$\begin{aligned} & 4.17 \mathrm{~m} \\ & \left(13^{\prime} 8^{\prime \prime}\right) \end{aligned}$
2×28	$\begin{gathered} 29.6 \mathrm{~m} \\ \left(97^{\prime} 1^{\prime \prime}\right) \end{gathered}$			2×42	$\begin{gathered} 44 \mathrm{~m} \\ \left(144^{\prime} 4^{\prime \prime}\right) \end{gathered}$		

SERVICES

Pull Test Plan
Factory Support Plan
Onsite Advisory Plan
Construction Plan

MAINTENANCE ADVANTAGES

Self-lubricating Bearings
Face to Face Cleaning Mode
2x Wider Aisles

Commissioning Plan
Operation \& Maintenance Plan
Tracker Monitoring System Plan
Solmate Customer Care

WARRANTY

Structure	10 years (extendable)
Motor	5 years (extendable)
Electronics	5 years (extendable)

AUSTRALIA
australia@soltec.com
+61292758806
CHINA
china@soltec.com
+862166285799
ARGENTINA
argentina@soltec.com
+54 91148891476
EGYPT
egypt@soltec.com

B\&V Bankability report DNV GL Technology Review available
RWDI WIND TUNNEL TESTED
2 year background industrial operation

This foregoing document was electronically filed with the Public Utilities

Commission of Ohio Docketing Information System on

10/20/2021 12:05:19 PM
in

Case No(s). 21-0041-EL-BGN

Summary: Exhibit PUBLIC Exhibit A (Manufacturer's Equipment Specifications) electronically filed by Ina Avalon on behalf of Palomino Solar, LLC

[^0]: * For detailed information, please refer to the Installation Manual.

[^1]: 1) At nominal $A C$ voltage, nominal $A C$ power decreases in the same proportion
 2) Efficiency measured without internal power supply
 3) Efficiency measured with internal power supply
 4) Self-consumption at rated operation
 5) Self-consumption at $<75 \% \mathrm{Pn}$ at $25^{\circ} \mathrm{C}$
 6) Self-consumption averaged out from 5% to 100% Pn at $25^{\circ} \mathrm{C}$
