BEFORE

THE PUBLIC UTILITIES COMMISSION OF OHIO
In the Matter of the Application of Aqua Ohio, Inc. and Aqua Ohio Wastewater, Inc. to Increase Its Rates and Charges for its Waterworks Service And Wastewater Service

Case No. 21-0595-WW-AIR
Case No. 21-0596-ST-AIR

DIRECT TESTIMONY

OF
DYLAN W. D'ASCENDIS, CRRA, CVA PARTNER SCOTTMADDEN, INC.
_ Management policies, practice and organization
_ Operating income
_ Rate base
_ Allocations

X Rate of return
_ Rates and tariffs
_ Other

TABLE OF CONTENTS

Page
I. INTRODUCTION 1
A. WITNESS IDENTIFICATION 1
B. BACKGROUND AND QUALIFICATIONS 1
II. PURPOSE OF TESTIMONY 2
III. SUMMARY 3
IV. GENERAL PRINCIPLES 5
A. BUSINESS RISK. 6
B. FINANCIAL RISK 8
V. AQUA OH AND THE UTILITY PROXY GROUP 9
VI. CAPITAL STRUCTURE 11
VII. COMMON EQUITY COST RATE MODELS 12
A. DISCOUNTED CASH FLOW MODEL 13
B. THE RISK PREMIUM MODEL 15
C. THE CAPITAL ASSET PRICING MODEL 26
D. COMMON EQUITY COST RATES FOR A PROXY GROUP OF DOMESTIC, NON-PRICE REGULATED COMPANIES BASED ON THE DCF, RPM, AND CAPM 32
VIII. CONCLUSION OF COMMON EQUITY COST RATE BEFORE ADJUSTMENT 35
IX. ADJUSTMENTS TO THE COMMON EQUITY COST RATE 36
A. SIZE ADJUSTMENT 36
B. FLOTATION COST ADJUSTMENT. 41
X. CONCLUSION 44

I. INTRODUCTION

A. WITNESS IDENTIFICATION

Q1. Please state your name and business address.

A. My name is Dylan W. D'Ascendis. My business address is 3000 Atrium Way, Suite 241, Mount Laurel, NJ 08054.

Q2. By whom are you employed and in what capacity?
A. I am a Partner at ScottMadden, Inc.

B. BACKGROUND AND QUALIFICATIONS

Q3. Please summarize your professional experience and educational background.
A. I have offered expert testimony on behalf of investor-owned utilities in over 25 state regulatory commissions in the United States, the Federal Energy Regulatory Commission, the Alberta Utility Commission, and one American Arbitration Association panel on issues including, but not limited to, common equity cost rate, rate of return, valuation, capital structure, class cost of service, and rate design.

On behalf of the American Gas Association ("AGA"), I calculate the AGA Gas Index, which serves as the benchmark against which the performance of the American Gas Index Fund ("AGIF") is measured on a monthly basis. The AGA Gas Index and AGIF are a market capitalization weighted index and mutual fund, respectively, comprised of the common stocks of the publicly traded corporate members of the AGA.

I am a member of the Society of Utility and Regulatory Financial Analysts ("SURFA"). In 2011, I was awarded the professional designation "Certified Rate of Return Analyst" by SURFA, which is based on education, experience, and the successful completion of a comprehensive written examination.

I am also a member of the National Association of Certified Valuation Analysts ("NACVA") and was awarded the professional designation "Certified Valuation Analyst" by the NACVA in 2015.

I am a graduate of the University of Pennsylvania, where I received a Bachelor of Arts degree in Economic History. I have also received a Master of Business Administration with high honors and concentrations in Finance and International Business from Rutgers University.

The details of my educational background and expert witness appearances are included in Appendix A.

II. PURPOSE OF TESTIMONY

Q4. What is the purpose of your testimony in this proceeding?
A. The purpose of my testimony is to present evidence on behalf of Aqua Ohio, Inc. ("Aqua OH " or the "Company") about the appropriate capital structure and corresponding cost rates the Company should be given the opportunity to earn on its jurisdictional rate base.

Q5. Have you prepared an Exhibit in support of your recommendation?

A. Yes. I prepared an exhibit, which contains Schedules DWD-1 through DWD-9, and has been prepared by me or under my direct supervision and control.

Q6. What is your recommended cost of capital for Aqua $\mathbf{O H}$?

A. I recommend the Public Utilities Commission of Ohio ("PUCO" or the "Commission") authorize the Company the opportunity to earn an overall rate of return of 7.42% based on the expected capital structure of Aqua OH as of December 31, 2021. The ratemaking capital structure consists of 48.11% long-term debt at an embedded cost rate of 3.82% and
51.89% common equity at my recommended common equity cost rate of 10.75%. The overall rate of return is summarized on page 1 of Schedule DWD-1 and in Table 1 below:

Table 1: Summary of Overall Rate of Return

Type of Capital	$\underline{\text { Ratios }}$		Cost Rate
Long-Term Debt	$\underline{48.11 \%}$		3.82%
Weighted Cost Rate			
Common Equity	$\underline{51.89 \%}$		10.75%
	$\underline{1.84 \%}$		
Total	$\underline{100.00 \%}$		$\underline{5.58 \%}$
			$\underline{7.42 \%}$

III. SUMMARY

Q7. Please summarize your recommended common equity cost rate.
A. My recommended common equity cost rate of 10.75% is summarized on page 2 of Schedule DWD-1. I have assessed the market-based common equity cost rates of companies of relatively similar, but not necessarily identical, risk to Aqua OH . Using companies of relatively comparable risk as proxies is consistent with the principles of fair rate of return established in the Hope ${ }^{1}$ and Bluefield ${ }^{2}$ cases. No proxy group can be identical in risk to any single company, so there must be an evaluation of relative risk between the company and the proxy group to see if it is appropriate to make adjustments to the proxy group's indicated rate of return.

My recommendation results from the application of several cost of common equity models, specifically the Discounted Cash Flow ("DCF") model, the Risk Premium Model ("RPM"), and the Capital Asset Pricing Model ("CAPM"), to the market data of a proxy group of eight water companies ("Utility Proxy Group") whose selection criteria will be discussed below. In addition, I also applied the DCF, RPM, and CAPM to a proxy group

[^0]of domestic, non-price regulated companies comparable in total risk to the Utility Proxy Group ("Non-Price Regulated Proxy Group").

The results derived from each are as follows:

Table 2: Summary of Common Equity Cost Rate

Discounted Cash Flow Model	8.63%
Risk Premium Model	11.11%
Capital Asset Pricing Model	10.45%
Market Models Applied to Comparable Risk, Non-	$\underline{10.87 \%}$
Price Regulated Companies	$10.27 \%-10.66 \%$
Indicated Range of Common Equity Cost Rates Before Adjustments for Company-Specific Risk 0.25% Size Adjustment $\underline{10.57 \%-10.96 \%}$ Flotation Cost Adjustment $\underline{\underline{10.75 \%}}$ Indicated Range of Common Equity Cost Rates after Adjustment Recommended Cost of Common Equity $\|$	

After analyzing the indicated common equity cost rates derived through these models, the indicated range of common equity cost rates applicable to the Utility Proxy Group is between 10.27% and 10.66%. This range is set by using the average model result (10.27%) and the median model result (10.66%).

The indicated range of common equity cost rates applicable to the Utility Proxy Group was then adjusted upward by 0.25% to reflect Aqua OH's smaller size relative to the Utility Proxy Group and by 0.05% to reflect flotation costs. These adjustments result in a Company-specific range of common equity cost rates between 10.57% and 10.96%.

From this range of results, I recommend the Commission consider a common equity cost rate of 10.75%, or the approximate midpoint, for use in setting rates for the Company.

IV. GENERAL PRINCIPLES

Q8. What general principles have you considered in arriving at your recommended common equity cost rate of $\mathbf{1 0 . 7 5 \%}$?
A. In unregulated industries, the competition of the marketplace is the principal determinant of the price of products or services. For regulated public utilities, regulation must act as a substitute for marketplace competition. Assuring that the utility can fulfill its obligations to the public, while providing safe and reliable service at all times, requires a level of earnings sufficient to maintain the integrity of presently invested capital. Sufficient earnings also permit the attraction of needed new capital at a reasonable cost, for which the utility must compete with other firms of comparable risk, consistent with the fair rate of return standards established by the U.S. Supreme Court in the previously cited Hope and Bluefield decisions. Consequently, marketplace data must be relied on in assessing a common equity cost rate appropriate for ratemaking purposes. Just as the use of the market data for the Utility Proxy Group adds reliability to the informed expert's judgment used in arriving at a recommended common equity cost rate, the use of multiple generally accepted common equity cost rate models also adds reliability and accuracy when arriving at a recommended common equity cost rate.

A. BUSINESS RISK

Q9. Please define business risk and explain why it is important to the determination of a fair rate of return.
A. Business risk is the riskiness of a company's common stock without the use of debt and/or preferred capital. Examples of such general business risks faced by all utilities (i.e., electric, natural gas distribution, and water) include size, the quality of management, the regulatory environment in which utilities operate, customer mix and concentration of customers, service territory growth, and capital intensity. All of these have a direct bearing on earnings.

Consistent with the basic financial principle of risk and return, business risk is important to the determination of a fair rate of return, because the higher the level of risk, the higher the rate of return investors demand.

Q10. What business risks do the water and wastewater industries face in general?

A. Water and wastewater utilities have an ever-increasing responsibility to be stewards of the environment from which water supplies are drawn in order to preserve and protect essential natural resources of the United States. This increased environmental stewardship is a direct result of compliance with the Safe Drinking Water Act, as well as a response to continuous monitoring by the Environmental Protection Agency ("EPA") and state and local governments, of the water supply for potential contaminants and their resultant regulations. This, plus aging infrastructure, necessitate additional capital investment in the distribution and treatment of water, exacerbating the pressure on free cash flows arising from increased capital expenditures for infrastructure repair and replacement. The significant amount of capital investment and, hence, high capital intensity, is a major risk factor for the water and wastewater utility industry.

Value Line Investment Survey ("Value Line") observes the following about the water utility industry:

Following years and years of underinvestment, the nation found itself with an aging water infrastructure that is in poor condition. Many pipelines were installed 50 to 75 years ago. Badly in need of replacement, water utilities have been spending heavily to replace old assets. This high level of expenditures will have to be maintained for decades.

As we have highlighted in the past, one of the most significant factors in determining the profitability of a utility is the regulatory climate where it operates. Fortunately for the Water Utility Industry, state authorities and water utilities both realize what needs to be done and are working constructively to address the issues. Regulators agree that the outlays being made to upgrade the country's infrastructure are required, so they are allowing fair return on investment to be made. Having a positive relationship may seem reasonable, but this is not the case for gas and electric utilities. Conflicts are not unusual. ${ }^{3}$

The water and wastewater industry also experiences low depreciation rates. Depreciation rates are one of the principal sources of internal cash flows for all utilities (through a utility's depreciation expense) and are vital for a company to fund ongoing replacements and repairs of water and wastewater systems. Water / wastewater utility assets have long lives, and therefore have long capital recovery periods. As such, they face greater risk due to inflation, which results in a higher replacement cost per dollar of net plant.

Substantial capital expenditures, as noted by Value Line, will require significant financing. The three sources of financing typically used are debt, equity (common and preferred), and cash flow. All three are intricately linked to the opportunity to earn a

[^1]sufficient rate of return as well as the ability to achieve that return. Consistent with Hope and Bluefield, the return must be sufficient to maintain credit quality as well as enable the attraction of necessary new capital, be it debt or equity capital. If unable to raise debt or equity capital, the utility must turn to either retained earnings or free cash flow, ${ }^{4}$ both of which are directly linked to earning a sufficient rate of return. The level of free cash flow represents a utility's ability to meet the needs of its debt and equity holders. If either retained earnings or free cash flow is inadequate, it will be nearly impossible for the utility to attract the needed capital for new infrastructure investment necessary to ensure quality service to its customers. An insufficient rate of return can be financially devastating for utilities as well as a public safety issue for their customers.

The water and wastewater utility industry's high degree of capital intensity and low depreciation rates, coupled with the need for substantial infrastructure capital spending, require regulatory support in the form of adequate and timely rate relief, and in particular, a sufficient authorized return on common equity, so that the industry can successfully meet the challenges it faces.

B. FINANCIAL RISK

Q11. Please define financial risk and explain why it is important to the determination of a fair rate of return.

A. Financial risk is the additional risk created by the introduction of debt and preferred stock into the capital structure. The higher the proportion of debt and preferred stock in the capital structure, the higher the financial risk (i.e., likelihood of default). Therefore,

[^2]consistent with the basic financial principle of risk and return, investors demand a higher common equity return as compensation for bearing higher default risk.

Q12. Can bond and credit ratings be a proxy for the combined business and financial risk

 (i.e., investment risk of an enterprise)?A. Yes, similar bond ratings/issuer credit ratings reflect, and are representative of, similar combined business and financial risks (i.e., total risk) faced by bond investors. ${ }^{5}$ Although specific business or financial risks may differ between companies, the same bond/credit rating indicates that the combined risks are roughly similar, albeit not necessarily equal, as the purpose of the bond/credit rating process is to assess credit quality or credit risk, and not common equity risk.

Q13. That being said, do rating agencies reflect company size in their bond ratings?
A. No. Neither S\&P nor Moody's have minimum company size requirements for any given rating level. This means, all else being equal, a relative size analysis needs to be conducted for companies with similar bond ratings.

v. AQUA OH AND THE UTILITY PROXY GROUP

Q14. Are you familiar with the operations of Aqua $\mathbf{O H}$?
A. Yes. Aqua OH is a subsidiary of Essential Utilities, Inc. ("Essential"). The Company serves approximately 157,486 customers in Ohio. Aqua OH's common stock is not publicly traded.

5 Risk distinctions within S\&P's bond rating categories are recognized by a plus or minus, i.e., within the A category, an S\&P rating can be at A+, A, or A-. Similarly, risk distinctions for Moody's ratings are distinguished by numerical rating gradations, i.e., within the A category, a Moody's rating can be A1, A2 and A3.

Q15. Please explain how you chose your Utility Proxy Group.
A. The basis of selection for the Utility Proxy Group was to select those companies which meet the following criteria:
(i) They are included in the Water Utility Group of Value Line's Standard Edition or Small \& Midcap Edition (April 9, 2021);
(ii) They have 70% or greater of 2020 total operating income and 70% or greater of 2020 total assets attributable to regulated water operations;
(iii) At the time of preparation of this testimony, they had not publicly announced that they were involved in any major merger or acquisition activity (i.e., one publicly traded utility merging with or acquiring another);
(iv) They have not cut or omitted their common dividends during the five years ending 2020 or through the time of the preparation of this testimony;
(v) They have Value Line and Bloomberg Professional Services ("Bloomberg") adjusted betas;
(vi) They have a positive Value Line five-year dividends per share ("DPS") growth rate projection; and
(vii) They have Value Line, Zacks, Yahoo! Finance, or Bloomberg consensus five-year earnings per share ("EPS") growth rate projections.

The following eight companies met these criteria: American States Water Co., American Water Works Co., Inc., Artesian Resources Corporation, California Water Service Group, Global Water Resources, Inc., Middlesex Water Co., SJW Corp., and The York Water Co.

Q16. Please describe Schedule DWD-2, page 1.

A. Page 1 of Schedule DWD-2 contains comparative capitalization and financial statistics for the Utility Proxy Group identified above for the years 2016 to 2020. During the five-year period ending 2020, the historically achieved earnings rate on book common equity for the group averaged 10.23%. The average common equity ratio based on total permanent capital (excluding short-term debt) was 49.39%, and the average dividend payout ratio was 58.61%.

Total debt to earnings before interest, taxes, depreciation, and amortization for the years 2016 to 2020 ranges between $3.73 x$ and $5.32 x$, with an average of $4.44 x$. Funds from operations to total debt range from 12.38% to 23.06%, with an average of 18.33%.

VI. CAPITAL STRUCTURE

Q17. What capital structure ratios do you recommend be employed in developing an overall fair rate of return appropriate for the Company?
A. I recommend the use of Aqua OH 's actual expected capital structure for the test year ending December 31, 2021, which consists of 48.11% long-term debt and 51.89% common equity as shown on page 1 of Schedule DWD-1.

Q18. How does Aqua OH 's ratemaking common equity ratio of 51.89% compare with the equity ratios maintained by the companies in your Utility Proxy Group?
A. Aqua OH 's ratemaking common equity ratio of 51.89% is reasonable and consistent with the range of common equity ratios maintained, on average, by the companies in the Utility Proxy Group on which I base my recommended common equity cost rate. As shown on page 2 of Schedule DWD-2, the common equity ratios of the Utility Proxy Group range from 21.91% to 59.28% in 2020.

Q19. What long-term debt cost rate is most appropriate for Aqua $\mathbf{O H}$ in this proceeding?
A. Aqua OH^{\prime} 's actual expected long-term debt cost rate on December 31, 2021 of 3.82% is reasonable and appropriate as Aqua OH's cost of long-term debt in this proceeding.

VII. COMMON EQUITY COST RATE MODELS

Q20. Is it important that cost of common equity models be market based?

A. Yes. A public utility must compete for equity in capital markets along with all other companies of comparable risk, which includes non-utilities. The cost of common equity is thus determined based on equity market expectations for the returns of those comparable risk companies. If individual investors are choosing to invest their capital among companies of comparable risk, they will choose a company providing a higher return over a company providing a lower return.

Q21. Are your cost of common equity models market-based models?

A. Yes. The DCF model is market-based because market prices are used in developing the dividend yield component of the model. The RPM is market-based because the bond ratings and expected bond yields used in the application of the RPM reflect the market's assessment of bond/credit risk. In addition, the use of Beta coefficients (β) to determine the equity risk premium reflects the market's assessment of market/systematic risk, since Beta coefficients are derived from regression analyses of market prices. The Predictive Risk Premium Model ("PRPM") uses monthly market returns in addition to expectations of the risk-free rate. The CAPM is market-based for many of the same reasons that the RPM is market-based (i.e., the use of expected bond yields and Beta coefficients). Selection of the comparable risk non-price regulated companies is market-based because
it is based on statistics which result from regression analyses of market prices and reflect the market's assessment of total risk.

A. DISCOUNTED CASH FLOW MODEL

Q22. What is the theoretical basis of the DCF model?

A. The theory underlying the DCF model is that the present value of an expected future stream of net cash flows during the investment holding period can be determined by discounting those cash flows at the cost of capital, or the investors' capitalization rate. DCF theory indicates that an investor buys a stock for an expected total return rate, which is derived from cash flows received in the form of dividends plus appreciation in market price (the expected growth rate). Mathematically, the dividend yield on market price plus a growth rate equals the capitalization rate, i.e., the total common equity return rate expected by investors.

Q23. Which version of the DCF model did you use?

A. I used the single-stage constant growth DCF model.

Q24. Please describe the dividend yield you used in your application of the DCF model.
A. The unadjusted dividend yields are based on the proxy companies' dividends as of April 5, 2021, divided by the average of closing market prices for the 60 trading days ending April 5, 2021. ${ }^{6}$

Q25. Please explain your adjustment to the dividend yield.

A. Because dividends are paid periodically (quarterly), as opposed to continuously (daily), an adjustment must be made to the dividend yield. This is often referred to as the discrete, or the Gordon Periodic, version of the DCF model.

6 See, Schedule DWD-3, page 1, Column 1.

DCF theory calls for the use of the full growth rate, or D_{1}, in calculating the dividend yield component of the model. Since the various companies in the Utility Proxy Group increase their quarterly dividend at various times during the year, a reasonable assumption is to reflect one-half the annual dividend growth rate in the dividend yield component, or $\mathrm{D}_{1 / 2}$. Because the dividend should be representative of the next 12-month period, my adjustment is a conservative approach that does not overstate the dividend yield. Therefore, the actual average dividend yields in Column 1 on page 1 of Schedule DWD-3 have been adjusted upward to reflect one-half the average projected growth rate shown in Column 6.

Q26. Please explain the basis of the growth rates you applied to the Utility Proxy Group in your DCF model.
A. Investors with more limited resources than institutional investors are likely to rely on widely available financial information services, such as Value Line, Zacks, Yahoo! Finance, and Bloomberg. Investors realize that analysts have significant insight into the dynamics of the industries and individual companies they analyze, as well as companies' abilities to effectively manage the effects of changing laws and regulations, and everchanging economic and market conditions. For these reasons, I used analysts' five-year forecasts of EPS growth in my DCF analysis.

Over the long run, there can be no growth in DPS without growth in EPS. Security analysts' earnings expectations have a more significant influence on market prices than dividend expectations. Thus, the use of earnings growth rates in a DCF analysis provides a better match between investors' market price appreciation expectations and the growth rate component of the DCF.

Q27. Please summarize the DCF model results.

A. As shown on page 1 of Schedule DWD-3, the mean result of the application of the singlestage DCF model is 9.11%, the median result is 8.14%, and the average of the two is 8.63% for the Utility Proxy Group. In arriving at a conclusion for the DCF-indicated common equity cost rate for the Utility Proxy Group, I have relied on an average of the mean and the median results of the DCF. This approach takes into consideration all the proxy companies' results, while mitigating the high and low outliers of those individual results.

B. THE RISK PREMIUM MODEL

Q28. Please describe the theoretical basis of the RPM.

A. The RPM is based on the fundamental financial principle of risk and return, namely, that investors require greater returns for bearing greater risk. The RPM recognizes that common equity capital has greater investment risk than debt capital, as common equity shareholders are behind debt holders in any claim on a company's assets and earnings. As a result, investors require higher returns from common stocks than from investment in bonds, to compensate them for bearing the additional risk.

While it is possible to directly observe bond returns and yields, investors' required common equity return cannot be directly determined or observed. According to RPM theory, one can estimate a common equity risk premium over bonds (either historically or prospectively) and use that premium to derive a cost rate of common equity. The cost of common equity equals the expected cost rate for long-term debt capital, plus a risk premium over that cost rate, to compensate common shareholders for the added risk of being unsecured and last-in-line for any claim on the corporation's assets and earnings in the event of a liquidation.

Q29. Please explain how you derived your indicated cost of common equity based on the RPM.
A. I relied on the results of the application of two risk premium methods. The first method is the PRPM, while the second method is a risk premium model using a total market approach.

Q30. Please explain the PRPM.

A. The PRPM, published in the Journal of Regulatory Economics and The Electricity Journal 7, was developed from the work of Robert F. Engle, who shared the Nobel Prize in Economics in 2003 "for methods of analyzing economic time series with time-varying volatility ("ARCH")". ${ }^{8}$ Engle found that volatility changes over time and is related from one period to the next, especially in financial markets. Engle discovered that the volatility in prices and returns clusters over time and is therefore highly predictable and can be used to predict future levels of risk and risk premiums.

The PRPM estimates the risk / return relationship directly, as the predicted equity risk premium is generated by the prediction of volatility or risk. The PRPM is not based on an estimate of investor behavior, but rather on the evaluation of the results of that behavior (i.e., the variance of historical equity risk premiums).

The inputs to the model are the historical returns on the common shares of each company in the Utility Proxy Group minus the historical monthly yield on long-term U.S. Treasury securities through March 2021. Using a generalized form of ARCH, known as GARCH, I calculated each Utility Proxy Group company's projected equity risk premium

7 Autoregressive conditional heteroscedasticity. See "A New Approach for Estimating the Equity Risk Premium for Public Utilities", Pauline M. Ahern, Frank J. Hanley and Richard A. Michelfelder, The Journal of Regulatory Economics (December 2011), 40:261-278 and "Comparative Evaluation of the Predictive Risk Premium Model, the Discounted Cash Flow Model and the Capital Asset Pricing Model for Estimating the Cost of Common Equity", Richard A. Michelfelder, Pauline M. Ahern, Dylan W. D’Ascendis, and Frank J. Hanley, The Electricity Journal (May 2013), 84-89.
8
using Eviews ${ }^{\ominus}$ statistical software. When the GARCH Model is applied to the historical return data, it produces a predicted GARCH variance series ${ }^{9}$ and a GARCH coefficient ${ }^{10}$. Multiplying the predicted monthly variance by the GARCH coefficient, then annualizing it^{11}, produces the predicted annual equity risk premium. I then added the forecasted $30-$ year U.S. Treasury Bond yield, $2.73 \%^{12}$, to each company's PRPM-derived equity risk premium to arrive at an indicated cost of common equity. The 30 -year Treasury yield is a consensus forecast derived from the Blue Chip Financial Forecasts ("Blue Chip") ${ }^{13}$. The mean PRPM indicated common equity cost rate for the Utility Proxy Group is 12.72%, the median is 11.53%, and the average of the two is 12.13%. Consistent with my reliance on the average of the median and mean results of the DCF, I relied on the average of the mean and median results of the Utility Proxy Group PRPM to calculate a cost of common equity rate of 12.13%.

Q31. Please explain the total market approach RPM.

A. The total market approach RPM adds a prospective public utility bond yield to an average of: 1) an equity risk premium that is derived from a beta-adjusted total market equity risk premium; and 2) an equity risk premium based on the S\&P Utilities Index.

Q32. Please explain the basis of the expected bond yield of 3.91% applicable to the Utility Proxy Group.
A. The first step in the total market approach RPM analysis is to determine the expected bond yield. Because both ratemaking and the cost of capital, including common equity cost rate,

[^3]are prospective in nature, a prospective yield on similarly-rated long-term debt is essential. I rely on a consensus forecast of about 50 economists of the expected yield on Aaa-rated corporate bonds for the six calendar quarters ending with the third calendar quarter of 2022, and the long-term projections for 2022 to 2026, and 2027 to 2031 from Blue Chip. As shown on Line No. 1 of page 3 of Schedule DWD-4, the average expected yield on Moody's Aaa-rated corporate bonds is 3.44%. In order to derive an expected yield on A2rated public utility bonds, I make an upward adjustment of 0.42%, which represents a recent spread between Aaa-rated corporate bonds and A2-rated public utility bonds, in order to adjust the expected Aaa-rated corporate bond yield to an equivalent Moody's A2rated public utility bond. ${ }^{14}$ Adding that recent 0.42% spread to the expected Aaa-rated corporate bond yield of 3.44% results in an expected A2-rated public utility bond of 3.86%.

Since the Utility Proxy Group's average Moody's long-term issuer rating is A2/A3, another adjustment to the expected A2-rated public utility bond yield is needed to reflect the difference in bond ratings. An upward adjustment of 0.05%, which represents onesixth of a recent spread between A2- and Baa2-rated public utility bond yields, is necessary to make the A2-rated prospective bond yield applicable to an A2/A3-rated public utility bond. ${ }^{15}$ Adding the 0.05% to the 3.86% prospective A2-rated public utility bond yield results in a 3.91% expected bond yield for the Utility Proxy Group.

14 As shown on Line No. 2 and explained in Note 2 of page 3 of Schedule DWD-4.
15 As shown on Line 4 and explained in note 3, page 3 of Schedule DWD-4. Moody's does not provide public utility bond yields for A2/A3-rated bonds. As such, it was necessary to estimate the difference between A2-rated and A2/A3-rated public utility bonds. Because there are three steps between Baa2 and A2 (Baa2 to Baa1, Baa1 to A3, and A3 to A2) I assumed an adjustment of onesixth of the difference between the A2-rated and Baa2-rated public utility bond yield was appropriate.

Table 3: Summary of the Calculation of the Utility Proxy Group Projected Bond $\underline{\text { Yield }}{ }^{16}$

Prospective Yield on Moody's Aaa-Rated Corporate Bonds (Blue Chip)	3.44%
Adjustment to Reflect Yield Spread Between Moody's Aaa-Rated Corporate Bonds and Moody's A2-Rated Utility Bonds	0.42%
Adjustment to Reflect the Utility Proxy Group's Average Moody's Bond Rating of A2/A3	$\underline{0.05 \%}$
Prospective Bond Yield Applicable to the Utility Proxy Group	$\underline{\underline{3.91 \%}}$

To develop the indicated ROE using the total market approach RPM, this prospective bond yield is then added to the average of the three different equity risk premiums described below.

Q33. Please explain how the beta-derived equity risk premium is determined.

A. The components of the beta-derived risk premium model are: 1) an expected market equity risk premium over corporate bonds, and 2) the Beta coefficient. The derivation of the betaderived equity risk premium that I applied to the Utility Proxy Group is shown on Lines 1 through 9 of page 8 of Schedule DWD-4. The total beta-derived equity risk premium I applied was based on an average of: 1) Ibbotson-based equity risk premiums; 2) Value Line-based equity risk premiums; and 3) Bloomberg-based equity risk premium. Each of these is described in turn.

Q34. How did you derive a market equity risk premium based on long-term historical data?
A. To derive a historical market equity risk premium, I used the most recent holding period returns for the large company common stocks from the Stocks, Bonds, Bills, and Inflation

16 As shown on page 3 of Attachment DWD-4.
("SBBI") 2021 Yearbook ("SBBI - 2021") ${ }^{17}$ less the average historical yield on Moody's Aaa/Aa-rated corporate bonds for the period 1928 to 2020. The use of holding period returns over a very long period of time is appropriate because it is consistent with the longterm investment horizon presumed by investing in a going concern, i.e., a company expected to operate in perpetuity.

SBBI's long-term arithmetic mean monthly total return rate on large company common stocks was 11.94% and the long-term arithmetic mean monthly yield on Moody's Aaa/Aa-rated corporate bonds was 6.02% from 1928 to $2020 .{ }^{18}$ As shown on Line 1 of page 8 of Schedule DWD-4, subtracting the mean monthly bond yield from the total return on large company stocks results in a long-term historical equity risk premium of 5.92\%.

I used the arithmetic mean monthly total return rates for the large company stocks and yields (income returns) for the Moody's Aaa/Aa-rated corporate bonds, because they are appropriate for the purpose of estimating the cost of capital as noted in $\underline{\mathrm{SBBI}-2021 .{ }^{19}}$ The use of the arithmetic mean return rates and yields is appropriate because historical total returns and equity risk premiums provide insight into the variance and standard deviation of returns needed by investors in estimating future risk when making a current investment. If investors relied on the geometric mean of historical equity risk premiums, they would have no insight into the potential variance of future returns because the geometric mean relates to the change over many periods to a constant rate of change, thereby obviating the year-to-year fluctuations, or variance, which is critical to risk analysis.

[^4]Q35. Please explain the derivation of the regression-based market equity risk premium.
A. To derive the regression analysis-derived market equity risk premium of 8.83%, shown on Line 2 of page 8 of Schedule DWD-4, I used the same monthly annualized total returns on large company common stocks relative to the monthly annualized yields on Moody's Aaa/Aa-rated corporate bonds as mentioned above. The relationship between interest rates and the market equity risk premium was modeled using the observed monthly market equity risk premium as the dependent variable, and the monthly yield on Moody's Aaa/Aarated corporate bonds as the independent variable. I used a linear Ordinary Least Squares ("OLS") regression, in which the market equity risk premium is expressed as a function of the Moody's Aaa/Aa-rated corporate bonds yield:

$$
\mathrm{RP}=\alpha+\beta\left(\mathrm{R}_{\mathrm{Aaa} / \mathrm{Aa}}\right)
$$

Q36. Please explain the derivation of a PRPM equity risk premium.

A. I used the same PRPM approach described previously to develop another equity risk premium estimate. The inputs to the model are the historical monthly returns on large company common stocks minus the monthly yields on Aaa/Aa-rated corporate bonds during the period from January 1928 through March 2021. ${ }^{20}$ Using the previously discussed generalized form of ARCH , known as GARCH, the projected equity risk premium is determined using Eviews ${ }^{\ominus}$ statistical software. The resulting PRPM predicted market equity risk premium is $9.40 \% .^{21}$

[^5]Q37. Please explain the derivation of a projected equity risk premium based on Value Line data for your RPM analysis.
A. As noted previously, because both ratemaking and the cost of capital are prospective, a prospective market equity risk premium is needed. The derivation of the forecasted or prospective market equity risk premium can be found in note 4 on page 9 of Schedule DWD-4. Consistent with my calculation of the dividend yield component in my DCF analysis, this prospective market equity risk premium is derived from an average of the three to five-year median market price appreciation potential by Value Line for the 13 weeks ending April 9, 2021, plus an average of the median estimated dividend yield for the common stocks of the 1,700 firms covered in Value Line's Standard Edition. ${ }^{22}$

The average median expected price appreciation is 29%, which translates to an 6.57% annual appreciation, and when added to the average of Value Line's median expected dividend yields of 1.88%, equates to a forecasted annual total return rate on the market of 8.45%. The forecasted Aaa-rated bond yield of 3.44% is deducted from the total market return of 8.45%, resulting in an equity risk premium of 5.01%, shown on page 8 , Line 4 of Schedule DWD-4.

Q38. Please explain the derivation of an equity risk premium based on the S\&P 500 companies.
A. Using data from Value Line, I calculated an expected total return on the S\&P 500 using expected dividend yields and long-term growth estimates as a proxy for capital appreciation. The expected total return for the S\&P 500 is 14.16%. Subtracting the

22 As explained in detail in page 2, note 1 of Schedule DWD-5.
prospective yield on Aaa-rated Corporate bonds of 3.44% results in a 10.72% projected equity risk premium.

Q39. Please explain the derivation of an equity risk premium based on Bloomberg data.
A. Using data from Bloomberg, I calculated an expected total return on the S\&P 500 using expected dividend yields and long-term growth estimates as a proxy for capital appreciation, identical to the method described above. The expected total return for the S\&P 500 is 15.81%. Subtracting the prospective yield on Aaa-rated Corporate bonds of 3.44% results in a 12.37% projected equity risk premium.

Q40. What is your conclusion of a beta-derived equity risk premium for use in your RPM analysis?
A. I gave equal weight to the six equity risk premiums in arriving at my conclusion of $8.71 \% .^{23}$

Table 4: Summary of the Calculation of the Equity Risk Premium Using Total $\underline{\text { Market Returns }{ }^{24}}$

Historical Spread Between Total Returns of Large Stocks and Aaa and Aa2-Rated Corporate Bond Yields (1928 - 2020)	5.92%
Regression Analysis on Historical Data	8.83%
PRPM Analysis on Historical Data	9.40%
Prospective Equity Risk Premium using Total Market Returns from Value Line Summary \& Index less Projected Aaa Corporate Bond Yields	5.01%
Prospective Equity Risk Premium using Measures of Capital Appreciation and Income Returns from Value Line for the S\&P 500 less Projected Aaa Corporate Bond Yields	10.72%
Prospective Equity Risk Premium using Measures of Capital Appreciation and Income Returns from Bloomberg Professional Services for the S\&P 500 less Projected Aaa Corporate Bond Yields	$\underline{12.37 \%}$
Average	$\underline{\underline{8.71 \%}}$

[^6]After calculating the average market equity risk premium of 8.71%, I adjusted it by beta to account for the risk of the Utility Proxy Group. As discussed below, the Beta coefficient is a meaningful measure of prospective relative risk to the market as a whole and is a logical means by which to allocate a company's, or proxy group's, share of the market's total equity risk premium relative to corporate bond yields. As shown on page 1 of Schedule DWD-5, the average of the mean and median Beta coefficient for the Utility Proxy Group is 0.78 . Multiplying the Beta coefficient of the Utility Proxy Group of 0.78 by the market equity risk premium of 8.71% results in a beta-adjusted equity risk premium of 6.79% for the Utility Proxy Group.

Q41. How did you derive the equity risk premium based on the $S \& P$ Utility Index and Moody's A-rated public utility bonds?
A. I estimated three equity risk premiums based on S\&P Utility Index holding returns, and two equity risk premiums based on the expected returns of the S\&P Utilities Index, using Value Line and Bloomberg data, respectively. Turning first to the S\&P Utility Index holding period returns, I derived a long-term monthly arithmetic mean equity risk premium between the S\&P Utility Index total returns of 10.65% and monthly A-rated public utility bond yields of 6.49% from 1928 to 2020 , to arrive at an equity risk premium of $4.16 \% .{ }^{25}$ I then used the same historical data to derive an equity risk premium of 6.45% based on a regression of the monthly equity risk premiums. The final $S \& P$ Utility Index holding period equity risk premium involved applying the PRPM using the historical monthly equity risk premiums from January 1928 to March 2021 to arrive at a PRPM-derived equity risk premium of 4.77% for the S\&P Utility Index.

25 As shown on Line No. 1 on page 12 of Schedule DWD-4.

I then derived expected total returns on the S\&P Utilities Index of 10.54% and 9.56% using data from Value Line and Bloomberg, respectively, and subtracted the prospective A2-rated public utility bond yield $\left(3.86 \%{ }^{26}\right)$, which results in risk premiums of 6.68% and 5.70%, respectively. As with the market equity risk premiums, I averaged each risk premium to arrive at my utility-specific equity risk premium of 5.55%.

Table 5: Summary of the Calculation of the Equity Risk Premium Using S\&P Utility Index Holding Returns ${ }^{27}$

Historical Spread Between Total Returns of the S\&P Utilities Index and A2-Rated Utility Bond Yields $(1928-2020)$	4.16%
Regression Analysis on Historical Data	6.45%
PRPM Analysis on Historical Data	4.77%
Prospective Equity Risk Premium using Measures of Capital Appreciation and Income Returns from Value Line for the S\&P Utilities Index less Projected A2 Utility Bond Yields	6.68%
Prospective Equity Risk Premium using Measures of Capital Appreciation and Income Returns from Bloomberg Professional Services for the S\&P Utilities Index less Projected A2 Utility Bond Yields	$\underline{5.70 \%}$
Average	$\underline{\underline{5.55 \%}}$

Q42. What is your conclusion of an equity risk premium for use in your total market approach RPM analysis?
 A. The equity risk premium I applied to the Utility Proxy Group is 6.17%, which is the average of the beta-derived and the S\&P utility equity risk premiums of 6.79% and 5.55%, respectively. ${ }^{28}$

[^7]Q43. What is the indicated RPM common equity cost rate based on the total market approach?
A. As shown on Line No. 7 of Schedule DWD-4, page 3, I calculated a common equity cost rate of 10.08% for the Utility Proxy Group based on the total market approach of the RPM.

Table 6: Summary of the Total Market Return Risk Premium Model ${ }^{29}$

Prospective Moody's A2/A3-Rated Utility Bond Applicable to the Utility Proxy Group	3.91%
Prospective Equity Risk Premium	$\underline{6.17 \%}$
Indicated Cost of Common Equity	$\underline{\underline{0.08 \%}}$

Q44. What are the results of your application of the PRPM and the total market approach RPM?
A. As shown on page 1 of Schedule DWD-4, the indicated RPM-derived common equity cost rate is 11.11%, which gives equal weight to the PRPM (12.13\%) and the adjusted market approach results (10.08\%).

C. THE CAPITAL ASSET PRICING MODEL

Q45. Please explain the theoretical basis of the CAPM.

A. CAPM theory defines risk as the co-variability of a security's returns with the market's returns as measured by the Beta coefficient (β). A Beta coefficient less than 1.0 indicates lower variability than the market as a whole, while a Beta coefficient greater than 1.0 indicates greater variability than the market.

The CAPM assumes that all other risk (i.e., all non-market or unsystematic risk) can be eliminated through diversification. The risk that cannot be eliminated through diversification is called market, or systematic, risk. In addition, the CAPM presumes that
investors require compensation only for systematic risk, which is the result of macroeconomic and other events that affect the returns on all assets. The model is applied by adding a risk-free rate of return to a market risk premium, which is adjusted proportionately to reflect the systematic risk of the individual security relative to the total market as measured by the Beta coefficient. The traditional CAPM model is expressed as:

	R_{s}
Where: R_{s}	$=\quad \mathrm{R}_{\mathrm{f}}+\beta\left(\mathrm{R}_{\mathrm{m}}-\mathrm{R}_{\mathrm{f}}\right)$
R_{f}	$=$ Return rate on the common stock;
R_{m}	$=\quad$ Risk-free rate of return;
β	$=$Adjusted Beta coefficient (volatility of the security relative to the market as a whole).

Numerous tests of the CAPM have measured the extent to which security returns and Beta coefficients are related as predicted by the CAPM, confirming its validity. The empirical CAPM ("ECAPM") reflects the reality that while the results of these tests support the notion that the Beta coefficient is related to security returns, the empirical Security Market Line ("SML") described by the CAPM formula is not as steeply sloped as the predicted SML. ${ }^{30}$ The ECAPM reflects this empirical reality. Fama and French clearly state regarding Figure 2, below, that " $[t]$ he returns on the low beta portfolios are too high, and the returns on the high beta portfolios are too low." ${ }^{31}$

Figure 2 http://pubs.aeaweb.org/doi/pdfplus/10.1257/0895330042162430
Average Annualized Monthly Return versus Beta for Value Weight Portfolios
Formed on Prior Beta, 1928-2003

In addition, Morin observes that while the results of these tests support the notion that beta is related to security returns, the empirical SML described by the CAPM formula is not as steeply sloped as the predicted SML. Morin states:

With few exceptions, the empirical studies agree that ... low-beta securities earn returns somewhat higher than the CAPM would predict, and high-beta securities earn less than predicted. ${ }^{32}$

$$
* \quad * \quad *
$$

Therefore, the empirical evidence suggests that the expected return on a security is related to its risk by the following approximation:

$$
K=R_{F}+x \beta\left(R_{M}-R_{F}\right)+(1-x) \beta\left(R_{M}-R_{F}\right)
$$

[^8]where x is a fraction to be determined empirically. The value of x that best explains the observed relationship [is] Return $=0.0829+0.0520 \beta$ is between 0.25 and 0.30 . If $x=0.25$, the equation becomes:
$$
\mathrm{K}=\mathrm{R}_{\mathrm{F}}+0.25\left(\mathrm{R}_{\mathrm{M}}-\mathrm{R}_{\mathrm{F}}\right)+0.75 \beta\left(\mathrm{R}_{\mathrm{M}}-\mathrm{R}_{\mathrm{F}}\right)^{33}
$$

Fama and French provide similar support for the ECAPM when they state:
The early tests firmly reject the Sharpe-Lintner version of the CAPM. There is a positive relation between beta and average return, but it is too 'flat.'... The regressions consistently find that the intercept is greater than the average risk-free rate... and the coefficient on beta is less than the average excess market return... This is true in the early tests... as well as in more recent cross-section regressions tests, like Fama and French (1992). ${ }^{34}$

Finally, Fama and French further note:
Confirming earlier evidence, the relation between beta and average return for the ten portfolios is much flatter than the Sharpe-Linter CAPM predicts. The returns on low beta portfolios are too high, and the returns on the high beta portfolios are too low. For example, the predicted return on the portfolio with the lowest beta is 8.3 percent per year; the actual return as 11.1 percent. The predicted return on the portfolio with the highest beta is 16.8 percent per year; the actual is 13.7 percent. ${ }^{35}$

Clearly, the justification from Morin, Fama, and French along with their reviews of other academic research on the CAPM, validate the use of the ECAPM. In view of theory and practical research, I have applied both the traditional CAPM and the ECAPM to the companies in the Utility Proxy Group and averaged the results.

Q46. What Beta coefficients did you use in your CAPM analysis?

A. With respect to the Beta coefficient, I considered two methods of calculation: 1) the average of the Beta coefficients of the Utility Proxy Group companies reported by Bloomberg Professional Services; and 2) the average of the Beta coefficients of the Utility Proxy Group companies as reported by Value Line. While both of those services adjust

[^9]their calculated (or "raw") Beta coefficients to reflect the tendency of the Beta coefficient to regress to the market mean of 1.00 , Value Line calculates the Beta coefficient over a five-year period, while Bloomberg's calculation is based on two years of data.

Q47. Please describe your selection of a risk-free rate of return.

A. As shown in Column 5 on page 1 of Schedule DWD-5, the risk-free rate adopted for both applications of the CAPM is 2.73%. This risk-free rate of 2.73% is based on the average of the Blue Chip consensus forecast of the expected yields on 30-year U.S. Treasury bonds for the six quarters ending with the third calendar quarter of 2022, and long-term projections for the years 2022 to 2026 and 2027 to 2031.

Q48. Why is the yield on long-term U.S. Treasury bonds appropriate for use as the riskfree rate?
A. The yield on long-term U.S. Treasury Bonds is almost risk-free, and its term is consistent with the long-term cost of capital to public utilities measured by the yields on A2-rated public utility bonds, the long-term investment horizon inherent in utilities' common stocks, and the long-term life of the jurisdictional rate base to which the allowed fair rate of return (i.e., cost of capital) will be applied. In contrast, short-term U.S. Treasury yields are more volatile and largely a function of Federal Reserve monetary policy.

Q49. Please explain the estimation of the expected risk premium for the market used in your CAPM analyses.
A. The basis of the market risk premium is explained in detail in note 1 on page 2 of Schedule DWD-5. As discussed previously, the market risk premium is derived from an average of:
(i) Ibbotson-based market risk premiums;
(ii) Value Line data-based market risk premiums; and
(iii) Bloomberg data-based market risk premiums.

The long-term income return on U.S. Government Securities of 5.05% was deducted from the SBBI-2021 monthly historical total market return of 12.20%, which results in an historical market equity risk premium of $7.15 \% .{ }^{36}$ I applied a linear OLS regression to the monthly annualized historical returns on the $\mathrm{S} \& \mathrm{P} 500$ relative to historical yields on long-term U.S. Government Securities from SBBI - 2021. That regression analysis yielded a market equity risk premium of 9.54%. The PRPM market equity risk premium is 10.46% and is derived using the PRPM relative to the yields on long-term U.S. Treasury securities from January 1926 through March 2021.

The Value Line-derived forecasted total market equity risk premium is derived by deducting the forecasted risk-free rate of 2.73%, discussed above, from the Value Line projected total annual market return of 8.45%, resulting in a forecasted total market equity risk premium of 5.72%. The $\mathrm{S} \& \mathrm{P} 500$ projected market equity risk premium using Value Line data is derived by subtracting the projected risk-free rate of 2.73% from the projected total return of the $\mathrm{S} \& \mathrm{P} 500$ of 14.16%. The resulting market equity risk premium is 11.43%.

The S\&P 500 projected market equity risk premium using Bloomberg data is derived by subtracting the projected risk-free rate of 2.73% from the projected total return of the $\mathrm{S} \& \mathrm{P} 500$ of 15.81%. The resulting market equity risk premium is 13.08%.

These six market risk premiums, when averaged, result in an average total market equity risk premium of 9.56%.

Table 7: Summary of the Calculation of the Market Risk Premium for use in the CAPM ${ }^{37}$

[^10]| Historical Spread Between Total Returns of Large
 Stocks and Long-Term Government Bond Yields
 $(1926-2020)$ | 7.15% |
| :--- | ---: |
| Regression Analysis on Historical Data | 9.54% |
| PRPM Analysis on Historical Data | 10.46% |
| Prospective Equity Risk Premium using Total Market
 Returns from Value Line Summary \& Index less
 Projected 30-Year Treasury Bond Yields | 5.72% |
| Prospective Equity Risk Premium using Measures of
 Capital Appreciation and Income Returns from Value | 11.43% |
| Line for the S\&P 500 less Projected 30-Year Treasury
 Bond Yields | $\underline{\underline{\text { Prospective Equity Risk Premium using Measures of }}}$Capital Appreciation and Income Returns from
 Bloomberg Professional Services for the S\&P 500
 less Projected 30-Year Treasury Bond Yields |
| Average | $\underline{\underline{9.56 \%}}$ |

Q50. What are the results of your application of the traditional and empirical CAPM to the Utility Proxy Group?
A. As shown on page 1 of Schedule DWD-5, the mean result of my CAPM/ECAPM analysis is 10.45%, the median is 10.45%, and the average of the two is 10.45%. Consistent with my reliance on the average of mean and median DCF results discussed above, the indicated common equity cost rate using the CAPM/ECAPM is 10.45%.

D. COMMON EQUITY COST RATES FOR A PROXY GROUP OF DOMESTIC, NON-PRICE REGULATED COMPANIES BASED ON THE DCF, RPM, AND CAPM

Q51. Why did you also consider a proxy group of domestic, non-price regulated companies?
A. In the Hope and Bluefield cases, the U.S. Supreme Court did not specify that comparable risk companies had to be utilities. Since the purpose of rate regulation is to be a substitute for the competition of the marketplace, non-price regulated firms operating in the competitive marketplace make an excellent proxy if they are comparable in total risk to the Utility Proxy Group being used to estimate the cost of common equity. The selection of
such domestic, non-price regulated competitive firms theoretically and empirically results in a proxy group which is comparable in total risk to the Utility Proxy Group.

Q52. How did you select non-price regulated companies that are comparable in total risk to the Utility Proxy Group?
A. In order to select a proxy group of domestic, non-price regulated companies similar in total risk to the Utility Proxy Group, I relied on the Beta coefficients and related statistics derived from Value Line regression analyses of weekly market prices over the most recent 260 weeks (i.e., five years). Using these selection criteria resulted in a proxy group of 20 domestic, non-price regulated firms comparable in total risk to the Utility Proxy Group. Total risk is the sum of non-diversifiable market risk and diversifiable company-specific risks. The criteria used in the selection of the domestic, non-price regulated firms was:
(i) They must be covered by Value Line Investment Survey (Standard Edition);
(ii) They must be domestic, non-price regulated companies, i.e., non-utilities;
(iii) Their Beta coefficients must lie within plus or minus two standard deviations of the average unadjusted Beta coefficient of the Utility Proxy Group; and
(iv) The residual standard errors of the Value Line regressions which gave rise to the unadjusted Beta coefficients must lie within plus or minus two standard deviations of the average residual standard error of the Utility Proxy Group.

Beta coefficients are a measure of market or systematic risk, which is not diversifiable. The residual standard errors of the regressions were used to measure each firm's company-specific, diversifiable risk. Companies that have similar Beta coefficients and similar residual standard errors resulting from the same regression analyses have similar total investment risk.

Q53. Have you prepared a schedule which shows the data from which you selected the 20 domestic, non-price regulated companies that are comparable in total risk to the Utility Proxy Group?
A. Yes, the basis of my selection, and both proxy groups' regression statistics, are shown in Schedule DWD-6.

Q54. Did you calculate common equity cost rates using the DCF, RPM, and CAPM for the Non-Price Regulated Proxy Group?
A. Yes. Because the DCF, RPM, and CAPM have been applied in an identical manner as described above, I will not repeat the details of the rationale and application of each model. One exception is in the application of the RPM, where I did not use public utility-specific equity risk premiums, nor did I apply the PRPM to the individual companies.

Page 2 of Schedule DWD-7 contains the derivation of the DCF cost rates. As shown, the indicated common equity cost rate using the DCF for the Non-Price Regulated Proxy Group comparable in total risk to the Utility Proxy Group, is 11.51%.

Pages 3 through 5 of DWD-7 contain the data and calculations that support the 10.85% RPM cost rate. As shown on Line No. 1 of page 3 of Schedule DWD-7, the consensus prospective yield on Moody's Baa-rated corporate bonds for the six quarters ending in the third quarter of 2022, and for the years 2022 to 2026 and 2027 to 2031, is $4.36 \% .^{38}$ Because the Non-Price Regulated Proxy Group has an average Moody's bond rating of Baa1, a downward adjustment of 0.13% to the prospective Baa2-rated bond yield is necessary to reflect the difference in bond ratings. ${ }^{39}$ Subtracting 0.13% from the prospective Baa2-rated bond yield of 4.36% is 4.23%.

[^11]When the beta-adjusted risk premium of $6.62 \%{ }^{40}$ relative to the Non-Price Regulated Proxy Group is added to the prospective Baa1-rated corporate bond yield of 4.23%, the indicated RPM cost rate is 10.85%.

Page 6 contains the inputs and calculations that support my indicated CAPM/ECAPM cost rate of 10.30%.

Q55. What is the cost rate of common equity based on the Non-Price Regulated Proxy Group comparable in total risk to the Utility Proxy Group?
A. As shown on page 1 of Schedule DWD-7, the results of the DCF, RPM, and CAPM applied to the Non-Price Regulated Proxy Group comparable in total risk to the Utility Proxy Group are $11.51 \%, 10.85 \%$, and 10.30%, respectively. The average of the mean and median of these models is 10.87%, which I used as the indicated common equity cost rate for the Non-Price Regulated Proxy Group.

VIII. CONCLUSION OF COMMON EQUITY COST RATE BEFORE ADJUSTMENT

Q56. What is the indicated range of common equity cost rates before adjustments?
A. Based on the results of the application of multiple cost of common equity models to the Utility Proxy Group, my recommended range of ROEs attributable to the Utility Proxy Group is between 10.27% (average of all model results) and 10.66% (median of model results).

I used multiple cost of common equity models as primary tools in arriving at my recommended common equity cost rate, because no single model is so inherently precise that it can be relied on solely to the exclusion of other theoretically sound models. The use of multiple models adds reliability to the estimation of the common equity cost rate, and
$40 \quad$ Derived on page 5 of Schedule DWD-7.
the prudence of using multiple cost of common equity models is supported in both the financial literature and regulatory precedent.

As discussed previously, after determining the indicated range of ROE attributable to a comparable group, there must be an evaluation of relative risk between that group and the target company to determine whether it is appropriate to apply adjustments to the comparable group's indicated ROE to better reflect the target company's specific risks.

IX. ADJUSTMENTS TO THE COMMON EQUITY COST RATE

A. SIZE ADJUSTMENT

Q57. Does Aqua OH's smaller size compared with the Utility Proxy Group increase its business risk?
A. Yes. Aqua OH's smaller size relative to the Utility Proxy Group companies indicates greater relative business risk for the Company because, all else being equal, size has a material bearing on risk.

Size affects business risk because smaller companies generally are less able to cope with significant events that affect sales, revenues, and earnings. For example, smaller companies face more risk exposure to business cycles and economic conditions, both nationally and locally. Additionally, the loss of revenues from a few larger customers would have a greater effect on a small company than on a bigger company with a larger, more diverse, customer base.

As further evidence illustrates that smaller firms are riskier, investors generally demand greater returns from smaller firms to compensate for less marketability and liquidity of their securities. Duff \& Phelps' 2020 Valuation Handbook - U.S. Guide to Cost of Capital ("D\&P - 2020") discusses the nature of the small-size phenomenon,
providing an indication of the magnitude of the size premium based on several measures of size. In discussing "Size as a Predictor of Equity Premiums," D\&P - 2020 states:

The size effect is based on the empirical observation that companies of smaller size are associated with greater risk and, therefore, have greater cost of capital [sic]. The "size" of a company is one of the most important risk elements to consider when developing cost of equity capital estimates for use in valuing a business simply because size has been shown to be a predictor of equity returns. In other words, there is a significant (negative) relationship between size and historical equity returns - as size decreases, returns tend to increase, and vice versa. (footnote omitted) (emphasis in original) ${ }^{41}$

Furthermore, in "The Capital Asset Pricing Model: Theory and Evidence," Fama and French note size is indeed a risk factor which must be reflected when estimating the cost of common equity. On page 38 , they note:
. . . the higher average returns on small stocks and high book-to-market stocks reflect unidentified state variables that produce undiversifiable risks (covariances) in returns not captured in the market return and are priced separately from market betas. ${ }^{42}$

Based on this evidence, Fama and French proposed their three-factor model which includes a size variable in recognition of the effect size has on the cost of common equity.

Also, it is a basic financial principle that the use of funds invested, and not the source of funds, is what gives rise to the risk of any investment. ${ }^{43}$ Eugene Brigham, a wellknown authority, states:

A number of researchers have observed that portfolios of small-firms (sic) have earned consistently higher average returns than those of large-firm stocks; this is called the "small-firm effect." On the surface, it would seem to be advantageous to the small firms to provide average returns in a stock market that are higher than those of larger firms. In reality, it is bad news for the small firm; what the small-firm effect means is that the capital

[^12]market demands higher returns on stocks of small firms than on otherwise similar stocks of the large firms. (emphasis added) ${ }^{44}$

Consistent with the financial principle of risk and return discussed above, increased relative risk due to small size must be considered in the allowed rate of return on common equity. Therefore, the Commission's authorization of a cost rate of common equity in this proceeding must appropriately reflect the unique risks of Aqua OH , including its small size, which is justified and supported above by evidence in the financial literature.

Q58. Should the Commission consider Aqua OH as a stand-alone company?

A. Yes, it should. Because it is Aqua OHs rate base to which the overall rates of return set forth in this proceeding will be applied, they should be evaluated as a stand-alone entity. To do otherwise would be discriminatory, confiscatory, and inaccurate. It is also a basic financial precept that the use of the funds invested give rise to the risk of the investment. As Brealey and Myers state:

The true cost of capital depends on the use to which the capital is put.

Each project should be evaluated at its own opportunity cost of capital; the true cost of capital depends on the use to which the capital is put. (italics and bold in original) ${ }^{45}$

Morin confirms Brealey and Myers when he states:
Financial theory clearly establishes that the cost of equity is the riskadjusted opportunity cost of the investors and not the cost of the specific capital sources employed by the investors. The true cost of capital depends on the use to which the capital is put and not on its source. The Hope and Bluefield doctrines have made clear that the relevant considerations in calculating a company's cost of capital are the alternatives available to

44 Eugene F. Brigham, Fundamentals of Financial Management, Fifth Edition (The Dryden Press, 1989), at 623.

Richard A. Brealey and Stewart C. Myers, Principles of Corporate Finance, McGraw-Hill, Third Edition, 1988, at pp. 173, 198.
investors and the returns and risks associated with those alternatives. ${ }^{46}$
Additionally, Levy and Sarnat state:
The firm's cost of capital is the discount rate employed to discount the firm's average cash flow, hence obtaining the value of the firm. It is also the weighted average cost of capital, as we shall see below. The weighted average cost of capital should be employed for project evaluation... only in cases where the risk profile of the new projects is a "carbon copy" of the risk profile of the firm ${ }^{47}$

Although Levy and Sarnat discuss a project's cost of capital relative to a firm's cost of capital, these principles apply equally to the use of a proxy group-based cost of capital. Each company must be viewed on its own merits, regardless of the source of its equity capital. As Bluefield clearly states:

A public utility is entitled to such rates as will permit it to earn a return on the value of the property which it employs for the convenience of the public equal to that generally being made at the same time and in the same general part of the country on investments in other business undertakings which are attended by corresponding risks and uncertainties; ${ }^{48}$

In other words, it is the "risks and uncertainties" surrounding the property employed for the "convenience of the public" which determines the appropriate level of rates. In this proceeding, the property employed "for the convenience of the public" is the rate base of Aqua OH . Thus, it is only the risk of investment in Aqua OH that is relevant to the determination of the cost of common equity to be applied to the common equity-financed portion of that rate base.

In addition, in the Fama and French article previously cited, the authors ${ }^{49}$ proposed that their three-factor model include the SMB (Small Minus Big) factor, which indicates

[^13]that small capitalization firms are more risky than large capitalization firms, confirming that size is a risk factor which must be taken into account in estimating the cost of common equity.

Consistent with the financial principle of risk and return discussed previously, and the stand-alone nature of ratemaking, an upward adjustment must be applied to the indicated cost of common equity derived from the cost of equity models of the proxy groups used in this proceeding.

Q59. Is there a way to quantify a relative risk adjustment due to Aqua $\mathbf{O H}$'s small size relative to the Utility Proxy Group?
A. Yes. The Company has greater relative risk than the average company in the Utility Proxy Group because of its smaller size compared with the group, as measured by an estimated market capitalization of common equity for Aqua OH (whose common stock is not publicly traded).

Table 8: Size as Measured by Market Capitalization for the Company and the Utility Proxy Group

	Market Capitalization* (\$ Millions)	Times Greater Than the Company
Aqua OH	$\$ 447.841$	
Utility Proxy Group Median	$\$ 1,610.897$	3.6 x
*From page 1 of Schedule DWD-8.		

The Company's estimated market capitalization was at $\$ 447.841$ million as of April 5, 2021, compared with the median market capitalization of the Utility Proxy Group of $\$ 1.6$ billion as of April 5, 2021. The Utility Proxy Group's market capitalization is 3.6 times the size of Aqua OH 's estimated market capitalization.

As a result, it is necessary to upwardly adjust the indicated range of common equity cost rates to reflect Aqua OH's greater risk due to its smaller relative size. The determination is based on the size premiums for portfolios of New York Stock Exchange, American Stock Exchange, and NASDAQ listed companies ranked by deciles for the 1926 to 2020 period. The average size premium for the Utility Proxy Group with a market capitalization of $\$ 1.6$ billion falls in the $6^{\text {th }}$ decile, while Aqua OH 's market capitalization of $\$ 447.841$ million places the Company in the $9^{\text {th }}$ decile. The size premium spread between the $6^{\text {th }}$ decile and the $9^{\text {th }}$ decile is 0.92%. Even though a 0.92% upward size adjustment is indicated, I apply a size premium of 0.25% to Aqua OH's indicated range of common equity cost rates.

Q60. Since Aqua OH is a wholly-owned subsidiary of Essential, why is the size of Essential not more appropriate to use when determining the size adjustment?
A. As discussed above, the return derived in this proceeding will not apply to Essential as a whole, but only Aqua OH. Essential is the sum of its constituent parts, including those constituent parts' returns on common equity. Potential investors in Essential are aware that it is a combination of operations in each state, and that each state's operations experience the operating risks specific to their jurisdiction. The market's expectation of Essential's return is commensurate with the realities of its composite operations in each of the states in which it operates.

B. FLOTATION COST ADJUSTMENT

Q61. What are flotation costs?

A. Flotation costs are those costs associated with the sale of new issuances of common stock. They include market pressure and the essential costs of issuance, (e.g., underwriting fees and out-of-pocket costs for printing, legal, registration, etc.).

Q62. Why is it important to recognize flotation costs in the allowed common equity cost rate?
A. It is important because there is no other mechanism in the ratemaking paradigm with which such costs can be recovered. Because these costs are real and legitimate, recovery of these costs should be permitted. As noted by Morin:

The costs of issuing these securities are just as real as operating and maintenance expenses or costs incurred to build utility plants, and fair regulatory treatment must permit recovery of these costs....

The simple fact of the matter is that common equity capital is not free....[Flotation costs] must be recovered through a rate of return adjustment ${ }^{50}$

Q63. Should flotation costs be recognized only when there was an issuance during the test year or there is an imminent post-test year issuance of additional common stock?
A. No. As noted above, there is no mechanism to recapture such costs in the ratemaking paradigm other than an adjustment to the allowed common equity cost rate. Flotation costs are charged to capital accounts and are not expensed on a utility's income statement. As such, flotation costs are analogous to capital investments reflected on the balance sheet. Recovery of capital investments relates to the expected useful lives of the investment. Since common equity has a very long and indefinite life (assumed to be infinity in the standard regulatory DCF model), flotation costs should be recovered through an adjustment to common equity cost rate even when there has not been an issuance during the test year or in the absence of an expected imminent issuance of additional shares of common stock. Historical flotation costs are a permanent loss of investment to the utility and should be accounted for. When any company, including a utility, issues common stock, flotation

[^14]costs are incurred for legal, accounting, printing fees and the like. For each dollar of issuing market price, a small percentage is expensed and is permanently unavailable for investment in utility rate base. Since these expenses are charged to capital accounts and not expensed on the income statement, the only way to restore the full value of that dollar of issuing price with an assumed investor required return of 10% is for the net investment, $\$ 0.95$, to earn more than 10% to net back to the investor a fair return on that dollar. In other words, if a company issues stock at $\$ 1.00$ with 5% in flotation costs, it will net $\$ 0.95$ in investment. Assuming the investor in that stock requires a 10% return on his or her invested $\$ 1.00$ (i.e., a return of \$0.10), the company needs to earn approximately 10.5% on its invested $\$ 0.95$ to receive a $\$ 0.10$ return.

Q64. Do the common equity cost rate models you have used already reflect investors' anticipation of flotation costs?
A. No. All of these models assume no transaction costs. The literature is quite clear that these costs are not reflected in market prices paid for common stocks. For example, Brigham and Daves confirm this and provide the methodology utilized to calculate the flotation adjustment. ${ }^{51}$ In addition, Morin confirms the need for such an adjustment even when no new equity issuance is imminent. ${ }^{52}$ Consequently, it is proper to include a flotation cost adjustment when using cost of common equity models to estimate the common equity cost rate.
$51 \quad$ Brigham and Daves 342.
52 Morin 327-30.

Q65. How did you calculate the flotation cost allowance?

A. I modified the DCF calculation to provide a dividend yield that would reimburse investors for issuance costs in accordance with the method cited in literature by Brigham and Daves as well as Morin. The flotation cost adjustment recognizes the costs of issuing equity that were incurred by Essential since January 2019. Based upon the issuance costs shown on page 1 of Schedule DWD-9, an adjustment of 0.05% is required to reflect the flotation costs applicable to the Utility Proxy Group.

Q66. What is the indicated cost of common equity after adjustments for size and flotation costs?
A. After applying the 0.25% upward adjustment for Aqua OH's smaller size and the 0.05% flotation cost adjustment to the indicated range of equity cost rates between 10.27% and 10.66% applicable to the Utility Proxy Group, an adjusted range of common equity cost rates between 10.57% and 10.96% applicable to Aqua OH results. From that range, I recommend the Commission approve an ROE of 10.75%.

X. CONCLUSION

Q67. What is your recommended return on investor-supplied capital for Aqua OH ?
A. Given the expected actual capital structure ending December 31, 2021 which consists of 48.11% long-term debt at an embedded debt cost rate of 3.82% and 51.89% common equity at my recommended ROE of 10.75%, I conclude that an appropriate return on investorsupplied capital for the Company is 7.42%. A common equity cost rate of 10.75% is consistent with the Hope and Bluefield standard of a just and reasonable return which ensures the integrity of presently invested capital and enables the attraction of needed new capital on reasonable terms. It also ensures that Aqua OH will be able to continue
providing safe, adequate, and reliable service to the benefit of its customers. Thus, it balances the interests of both customers and the Company.

Q68. In your opinion, is your proposed common equity cost rate of $\mathbf{1 0 . 7 5 \%}$ fair and reasonable to Aqua $\mathbf{O H}$, its shareholders, and its customers?
A. Yes, it is.

Q69. Does this conclude your direct testimony?
A. Yes, it does.

CERTIFICATE OF SERVICE

I hereby certify that a copy of the Direct Testimony of Dylan W. D'Ascendis, CRRA, CVA Partner Scottmadden, Inc. was served by electronic mail to the following persons on this 12th of July, 2021:

John Jones
Chief, Public Utilities Section
Office of Ohio Attorney General
30 East Broad Street, 16th Floor
Columbus, Ohio 43215
John.Jones @ OhioAttorneyGeneral.gov
Amy Botschner O'Brien
Ambrosia E. Wilson
Ohio Consumers' Counsel
65 E. State Street, 7th Fl.
Columbus, Ohio 43215
Amy.botschner.obrien@occ.ohio.gov
Ambrosia.wilson@occ.ohio.gov
/s Christopher L. Miller
Christopher L. Miller
One of the Attorneys for Aqua Ohio, Inc. and Aqua
Ohio Wastewater, Inc.

Summary

Dylan is an experienced consultant and a Certified Rate of Return Analyst (CRRA) and Certified Valuation Analyst (CVA). He has served as a consultant for investor-owned and municipal utilities and authorities for 13 years. Dylan has extensive experience in rate of return analyses, class cost of service, rate design, and valuation for regulated public utilities. He has testified as an expert witness in the subjects of rate of return, cost of service, rate design, and valuation before 30 regulatory commissions in the U.S., one Canadian province, and an American Arbitration Association panel.

He also maintains the benchmark index against which the Hennessy Gas Utility Mutual Fund performance is measured.

Areas of Specialization

\square	Regulation and Rates	Financial Modeling	\square
Utilities	Valuation	Rate of Return	
Mutual Fund Benchmarking	\square	Regulatory Strategy	\square
Cost of Service			
Capital Market Risk	\square	Rate Case Support	

Recent Expert Testimony Submission/Appearances

Jurisdiction

- Massachusetts Department of Public Utilities
- New Jersey Board of Public Utilities
- Hawaii Public Utilities Commission
- South Carolina Public Service Commission
- American Arbitration Association

Topic

Rate of Return
Rate of Return
Cost of Service, Rate Design
Return on Common Equity
Valuation

Recent Assignments

- Provided expert testimony on the cost of capital for ratemaking purposes before numerous state utility regulatory agencies
- Maintains the benchmark index against which the Hennessy Gas Utility Mutual Fund performance is measured
- Sponsored valuation testimony for a large municipal water company in front of an American Arbitration Association Board to justify the reasonability of their lease payments to the City
- Co-authored a valuation report on behalf of a large investor-owned utility company in response to a new state regulation which allowed the appraised value of acquired assets into rate base

Recent Publications and Speeches

- Co-Author of: "Decoupling, Risk Impacts and the Cost of Capital", co-authored with Richard A. Michelfelder, Ph.D., Rutgers University and Pauline M. Ahern. The Electricity Journal, March, 2020.
- Co-Author of: "Decoupling Impact and Public Utility Conservation Investment", co-authored with Richard A. Michelfelder, Ph.D., Rutgers University and Pauline M. Ahern. Energy Policy Journal, 130 (2019), 311-319.

■ "Establishing Alternative Proxy Groups", before the Society of Utility and Regulatory Financial Analysts: 51st Financial Forum, April 4, 2019, New Orleans, LA.
■ "Past is Prologue: Future Test Year", Presentation before the National Association of Water Companies 2017 Southeast Water Infrastructure Summit, May 2, 2017, Savannah, GA.

- Co-author of: "Comparative Evaluation of the Predictive Risk Premium Model ${ }^{T M}$, the Discounted Cash Flow Model and the Capital Asset Pricing Model", co-authored with Richard A. Michelfelder, Ph.D., Rutgers University, Pauline M. Ahern, and Frank J. Hanley, The Electricity Journal, May, 2013.
- "Decoupling: Impact on the Risk and Cost of Common Equity of Public Utility Stocks", before the Society of Utility and Regulatory Financial Analysts: 45th Financial Forum, April 17-18, 2013, Indianapolis, IN.

SPONSOR	Date	CASE/APPLICANT	Docket No.	SUBJECT
Regulatory Commission of Alaska				
Alaska Power Company	09/20	Alaska Power Company; Goat Lake Hydro, Inc.; BBL Hydro, Inc.	Tariff Nos. TA886-2; TA6-521; TA4-573	Capital Structure
Alaska Power Company	07/16	Alaska Power Company	Docket No. TA857-2	Rate of Return
Alberta Utilities Commission				
AltaLink, L.P., and EPCOR Distribution \& Transmission, Inc.	01/20	AltaLink, L.P., and EPCOR Distribution \& Transmission, Inc.	2021 Generic Cost of Capital, Proceeding ID. 24110	Rate of Return
Arizona Corporation Commission				
EPCOR Water Arizona, Inc.	06/20	EPCOR Water Arizona, Inc.	Docket No. WS-01303A-200177	Rate of Return
Arizona Water Company	12/19	Arizona Water Company - Western Group	Docket No. W-01445A-19- 0278	Rate of Return
Arizona Water Company	08/18	Arizona Water Company - Northern Group	Docket No. W-01445A-180164	Rate of Return
Colorado Public Utilities Commission				
Summit Utilities, Inc.	04/18	Colorado Natural Gas Company	Docket No. 18AL-0305G	Rate of Return
Atmos Energy Corporation	06/17	Atmos Energy Corporation	Docket No. 17AL-0429G	Rate of Return
Delaware Public Service Commission				
Delmarva Power \& Light Co.	11/20	Delmarva Power \& Light Co.	Docket No. 20-0149 (Electric)	Return on Equity
Delmarva Power \& Light Co.	10/20	Delmarva Power \& Light Co.	Docket No. 20-0150 (Gas)	Return on Equity
Tidewater Utilities, Inc.	11/13	Tidewater Utilities, Inc.	Docket No. 13-466	Capital Structure
Public Service Commission of the District of Columbia				
Washington Gas Light Company	09/20	Washington Gas Light Company	Formal Case No. 1162	Rate of Return
Federal Energy Regulatory Commission				
LS Power Grid California, LLC	10/20	LS Power Grid California, LLC	Docket No. ER21-195-000	Rate of Return
Florida Public Service Commission				
Tampa Electric Company	04/21	Tampa Electric Company	Docket No. 20210034-EI	Return on Equity
Peoples Gas System	09/20	Peoples Gas System	Docket No. 20200051-GU	Rate of Return
Utilities, Inc. of Florida	06/20	Utilities, Inc. of Florida	Docket No. 20200139-WS	Rate of Return
Hawaii Public Utilities Commission				
Launiupoko Irrigation Company, Inc.	12/20	Launiupoko Irrigation Company, Inc.	Docket No. 2020-0217 / Transferred to 2020-0089	Capital Structure
Lanai Water Company, Inc.	12/19	Lanai Water Company, Inc.	Docket No. 2019-0386	Cost of Service / Rate Design
Manele Water Resources, LLC	08/19	Manele Water Resources, LLC	Docket No. 2019-0311	Cost of Service / Rate Design
Kaupulehu Water Company	02/18	Kaupulehu Water Company	Docket No. 2016-0363	Rate of Return
Aqua Engineers, LLC	05/17	Puhi Sewer \& Water Company	Docket No. 2017-0118	Cost of Service / Rate Design
Hawaii Resources, Inc.	09/16	Laie Water Company	Docket No. 2016-0229	Cost of Service / Rate Design
Illinois Commerce Commission				
Utility Services of Illinois, Inc.	02/21	Utility Services of Illinois, Inc.	Docket No. 21-0198	Rate of Return

SpONSOR	Date	CASE/APPLICANT	Docket No.	SUBJECT
Ameren Illinois Company d/b/a Ameren Illinois	07/20	Ameren Illinois Company d/b/a Ameren Illinois	Docket No. 20-0308	Return on Equity
Utility Services of Illinois, Inc.	11/17	Utility Services of Illinois, Inc.	Docket No. 17-1106	Cost of Service / Rate Design
Aqua Illinois, Inc.	04/17	Aqua Illinois, Inc.	Docket No. 17-0259	Rate of Return
Utility Services of Illinois, Inc.	04/15	Utility Services of Illinois, Inc.	Docket No. 14-0741	Rate of Return
Indiana Utility Regulatory Commission				
Aqua Indiana, Inc.	03/16	Aqua Indiana, Inc. Aboite Wastewater Division	Docket No. 44752	Rate of Return
Twin Lakes, Utilities, Inc.	08/13	Twin Lakes, Utilities, Inc.	Docket No. 44388	Rate of Return
Kansas Corporation Commission				
Atmos Energy	07/19	Atmos Energy	19-ATMG-525-RTS	Rate of Return
Kentucky Public Service Commission				
Bluegrass Water Utility Operating Company	10/20	Bluegrass Water Utility Operating Company	2020-00290	Return on Equity
Louisiana Public Service Commission				
Southwestern Electric Power Company	12/20	Southwestern Electric Power Company	Docket No. U-35441	Return on Equity
Atmos Energy	04/20	Atmos Energy	Docket No. U-35535	Rate of Return
Louisiana Water Service, Inc.	06/13	Louisiana Water Service, Inc.	Docket No. U-32848	Rate of Return
Maryland Public Service Commission				
Washington Gas Light Company	08/20	Washington Gas Light Company	Case No. 9651	Rate of Return
FirstEnergy, Inc.	08/18	Potomac Edison Company	Case No. 9490	Rate of Return
Massachusetts Department of Public Utilities				
Unitil Corporation	12/19	Fitchburg Gas \& Electric Co. (Elec.)	D.P.U. 19-130	Rate of Return
Unitil Corporation	12/19	Fitchburg Gas \& Electric Co. (Gas)	D.P.U. 19-131	Rate of Return
Liberty Utilities	07/15	Liberty Utilities d/b/a New England Natural Gas Company	Docket No. 15-75	Rate of Return
Minnesota Public Utilities Commission				
Northern States Power Company	11/20	Northern States Power Company	Docket No. E002/GR-20-723	Rate of Return
Mississippi Public Service Commission				
Atmos Energy	03/19	Atmos Energy	Docket No. 2015-UN-049	Capital Structure
Atmos Energy	07/18	Atmos Energy	Docket No. 2015-UN-049	Capital Structure
Missouri Public Service Commission				
Spire Missouri, Inc.	12/20	Spire Missouri, Inc.	Case No. GR-2021-0108	Return on Equity
Indian Hills Utility Operating Company, Inc.	10/17	Indian Hills Utility Operating Company, Inc.	Case No. SR-2017-0259	Rate of Return
Raccoon Creek Utility Operating Company, Inc.	09/16	Raccoon Creek Utility Operating Company, Inc.	Docket No. SR-2016-0202	Rate of Return
Public Utilities Commission of Nevada				
Southwest Gas Corporation	08/20	Southwest Gas Corporation	Docket No. 20-02023	Return on Equity
New Hampshire Public Utilities Commission				

SPONSOR	Date	Case/Applicant	Docket No.	SUBJECT
Aquarion Water Company of New Hampshire, Inc.	12/20	Aquarion Water Company of New Hampshire, Inc.	Docket No. DW 20-184	Rate of Return
New Jersey Board of Public Utilities				
Atlantic City Electric Company	12/20	Atlantic City Electric Company	Docket No. ER20120746	Return on Equity
FirstEnergy	02/20	Jersey Central Power \& Light Co.	Docket No. ER20020146	Rate of Return
Aqua New Jersey, Inc.	12/18	Aqua New Jersey, Inc.	Docket No. WR18121351	Rate of Return
Middlesex Water Company	10/17	Middlesex Water Company	Docket No. WR17101049	Rate of Return
Middlesex Water Company	03/15	Middlesex Water Company	Docket No. WR15030391	Rate of Return
The Atlantic City Sewerage Company	10/14	The Atlantic City Sewerage Company	Docket No. WR14101263	Cost of Service / Rate Design
Middlesex Water Company	11/13	Middlesex Water Company	Docket No. WR1311059	Capital Structure
New Mexico Public Regulation Commission				
Southwestern Public Service Company	01/21	Southwestern Public Service Company	Case No. 20-00238-UT	Return on Equity
North Carolina Utilities Commission				
Piedmont Natural Gas Co.lnc.	03/21	Piedmont Natural Gas Co., Inc.	Docket No. G-9, Sub 781	Return on Equity
Duke Energy Carolinas, LLC	07/20	Duke Energy Carolinas, LLC	Docket No. E-7, Sub 1214	Return on Equity
Duke Energy Progress, LLC	07/20	Duke Energy Progress, LLC	Docket No. E-2, Sub 1219	Return on Equity
Aqua North Carolina, Inc.	12/19	Aqua North Carolina, Inc.	Docket No. W-218 Sub 526	Rate of Return
Carolina Water Service, Inc.	06/19	Carolina Water Service, Inc.	Docket No. W-354 Sub 364	Rate of Return
Carolina Water Service, Inc.	09/18	Carolina Water Service, Inc.	Docket No. W-354 Sub 360	Rate of Return
Aqua North Carolina, Inc.	07/18	Aqua North Carolina, Inc.	Docket No. W-218 Sub 497	Rate of Return
North Dakota Public Service Commission				
Northern States Power Company	11/20	Northern States Power Company	Case No. PU-20-441	Rate of Return
Public Utilities Commission of Ohio				
Aqua Ohio, Inc.	05/16	Aqua Ohio, Inc.	Docket No. 16-0907-WW-AIR	Rate of Return
Pennsylvania Public Utility Commission				
Valley Energy, Inc.	07/19	C\&T Enterprises	Docket No. R-2019-3008209	Rate of Return
Wellsboro Electric Company	07/19	C\&T Enterprises	Docket No. R-2019-3008208	Rate of Return
Citizens' Electric Company of Lewisburg	07/19	C\&T Enterprises	Docket No. R-2019-3008212	Rate of Return
Steelton Borough Authority	01/19	Steelton Borough Authority	Docket No. A-2019-3006880	Valuation
Mahoning Township, PA	08/18	Mahoning Township, PA	Docket No. A-2018-3003519	Valuation
SUEZ Water Pennsylvania Inc.	04/18	SUEZ Water Pennsylvania Inc.	Docket No. R-2018-000834	Rate of Return
Columbia Water Company	09/17	Columbia Water Company	Docket No. R-2017-2598203	Rate of Return
Veolia Energy Philadelphia, Inc.	06/17	Veolia Energy Philadelphia, Inc.	Docket No. R-2017-2593142	Rate of Return
Emporium Water Company	07/14	Emporium Water Company	Docket No. R-2014-2402324	Rate of Return
Columbia Water Company	07/13	Columbia Water Company	Docket No. R-2013-2360798	Rate of Return
Penn Estates Utilities, Inc.	12/11	Penn Estates, Utilities, Inc.	Docket No. R-2011-2255159	Capital Structure / Long-Term Debt Cost Rate

SPONSOR	Date	Case/Applicant	Docket No.	SUBJECT
South Carolina Public Service Commission				
Blue Granite Water Co.	12/19	Blue Granite Water Company	Docket No. 2019-292-WS	Rate of Return
Carolina Water Service, Inc.	02/18	Carolina Water Service, Inc.	Docket No. 2017-292-WS	Rate of Return
Carolina Water Service, Inc.	06/15	Carolina Water Service, Inc.	Docket No. 2015-199-WS	Rate of Return
Carolina Water Service, Inc.	11/13	Carolina Water Service, Inc.	Docket No. 2013-275-WS	Rate of Return
United Utility Companies, Inc.	09/13	United Utility Companies, Inc.	Docket No. 2013-199-WS	Rate of Return
Utility Services of South Carolina, Inc.	09/13	Utility Services of South Carolina, Inc.	Docket No. 2013-201-WS	Rate of Return
Tega Cay Water Services, Inc.	11/12	Tega Cay Water Services, Inc.	Docket No. 2012-177-WS	Capital Structure
Tennessee Public Utility Commission				
Piedmont Natural Gas Company	07/20	Piedmont Natural Gas Company	Docket No. 20-00086	Return on Equity
Public Utility Commission of Texas				
Southwestern Public Service Company	02/21	Southwestern Public Service Company	Docket No. 51802	Return on Equity
Southwestern Electric Power Company	10/20	Southwestern Electric Power Company	Docket No. 51415	Rate of Return
Virginia State Corporation Commission				
Virginia Natural Gas, Inc.	04/21	Virginia Natural Gas, Inc.	PUR-2020-00095	Return on Equity
Massanutten Public Service Corporation	12/20	Massanutten Public Service Corporation	PUE-2020-00039	Return on Equity
Aqua Virginia, Inc.	07/20	Aqua Virginia, Inc.	PUR-2020-00106	Rate of Return
WGL Holdings, Inc.	07/18	Washington Gas Light Company	PUR-2018-00080	Rate of Return
Atmos Energy Corporation	05/18	Atmos Energy Corporation	PUR-2018-00014	Rate of Return
Aqua Virginia, Inc.	07/17	Aqua Virginia, Inc.	PUR-2017-00082	Rate of Return
Massanutten Public Service Corp.	08/14	Massanutten Public Service Corp.	PUE-2014-00035	Rate of Return / Rate Design

Basis of Selection for the Non-Price Regulated Companies Comparable in Total Risk to the Proxy Group of Eight Water Companies DWD-6
Cost of Common Equity Models Applied to the Comparable Risk Non-Price Regulated Companies DWD-7
Estimated Market Capitalization for Aqua Ohio, Inc.and the Proxy Group of Eight Water CompaniesDWD-8
Derivation of Flotation Cost Adjustment DWD-9

Aqua Ohio, Inc. Recommended Capital Structure and Cost Rates
for Ratemaking Purposes
at December 31, 2021

Type Of Capital	Ratios (1)	Cost Rate		Weighted Cost Rate
Long-Term Debt	48.11\%	3.82\%	(1)	1.84\%
Common Equity	51.89\%	10.75\%	(2)	5.58\%
Total	100.00\%			7.42\%

Notes:
(1) Company-provided.
(2) From page 2 of this Schedule.

Aqua Ohio, Inc.
Brief Summary of Common Equity Cost Rate

Line No.	Principal Methods	Proxy Group of Eight Water Companies
1.	Discounted Cash Flow Model (DCF) (1)	8.63\%
2.	Risk Premium Model (RPM) (2)	11.11\%
3.	Capital Asset Pricing Model (CAPM) (3)	10.45\%
4.	Market Models Applied to Comparable Risk, Non-Price Regulated Companies (4)	10.87\%
5.	Indicated Common Equity Cost Rate before Adjustment for Unique Risk	10.27\%-10.66\%
6.	Business Risk Adjustment (5)	0.25\%
7.	Flotation Cost Adjustment (6)	0.05\%
8.	Indicated Common Equity Cost Rate after Adjustment	10.57\%-10.96\%
9.	Recommended Common Equity Cost Rate	10.75\%

Notes: (1) From Schedule DWD-3.
(2) From page 1 of Schedule DWD-4.
(3) From page 1 of Schedule DWD-5.
(4) From page 1 of Schedule DWD-7.
(5) Business risk adjustment to reflect Aqua OH's unique risk compared to the Utility Proxy Group as detailed in the accompanying direct testimony.
(6) From page 1 of Schedule DWD-9.

Capital Structure Based upon Total Permanent Capital for the

Proxy Group of Eight Water Companies
2016-2020, Inclusive
American States Water Company
Long-Term Debt
Preferred Stock
Common Equity
\quad Total Capital
American Water Works Company, Inc.
Long-Term Debt
Preferred Stock
Common Equity
\quad Total Capital

$\underline{2020}$	$\underline{2019}$	$\underline{2018}$	$\underline{2017}$	$\underline{2016}$	5 YEAR AVERAGE
40.72 \%	31.87 \%	36.54 \%	37.75 \%	39.40 \%	37.26 \%
0.00	0.00	0.00	0.00	0.00	0.00
59.28	68.13	63.46	62.25	60.60	62.74
100.00 \%	100.00 \%	100.00 \%	100.00 \%	100.00 \%	100.00 \%

59.93 \%	58.59 \%	56.55 \%	55.81 \%	54.74 \%	57.12 \%
0.02	0.03	0.05	0.07	0.09	0.05
40.05	41.38	43.40	44.12	45.17	42.83
100.00 \%	100.00 \%	100.00 \%	100.00 \%	100.00 \%	100.00

Long-Term Debt	45.96 \%	47.65 \%	43.42 \%	42.17 \%	42.71 \%	44.38 \%
Preferred Stock	0.00	0.00	0.00	0.00	0.00	0.00
Common Equity	54.04	52.35	56.58	57.83	57.29	55.62
Total Capital	100.00 \%	100.00 \%	100.00 \%	100.00 \%	100.00 \%	100.00 \%

California Water Service Group						
Long-Term Debt	46.04 \%	50.90 \%	52.74 \%	43.40 \%	45.83 \%	47.78 \%
Preferred Stock	0.00	0.00	0.00	0.00	0.00	0.00
Common Equity	53.96	49.10	47.26	56.60	54.17	52.22
Total Capital	100.00 \%	100.00 \%	100.00 \%	100.00 \%	100.00 \%	100.00 \%

Global Water Resources, Inc.
Long-Term Debt
Preferred Stock
Common Equity
Total Capital

Middlesex Water Company
Long-Term Debt
Preferred Stock
Common Equity
Total Capital

SJW Group
Long-Term Debt
Preferred Stock
Common Equity
Total Capital

The York Water Company
Long-Term Debt
Preferred Stock
Common Equity
Total Capital

78.09 \%	82.31 \%	80.43 \%	88.50 \%	88.27 \%	83.52 \%
0.00	0.00	0.00	0.00	0.00	0.00
21.91	17.69	19.57	11.50	11.73	16.48
100.00 \%	100.00 \%	100.00 \%	100.00 \%	100.00 \%	100.00 \%

44.61 \%	42.20 \%	38.94 \%	38.65 \%	38.91 \%	40.66 \%
0.33	0.37	0.59	0.64	0.68	0.52
55.06	57.43	60.47	60.71	60.41	58.82
100.00 \%	100.00 \%	100.00 \%	100.00 \%	100.00 \%	100.00

59.79 \%	59.05 \%	32.67 \%	48.20 \%	50.69 \%	50.08 \%
0.00	0.00	0.00	0.00	0.00	0.00
40.21	40.95	67.33	51.80	49.31	49.92
100.00 \%	100.00 \%	100.00 \%	100.00 \%	100.00 \%	100.00 \%

46.31 \%	42.95 \%	42.52 \%	43.02 \%	42.60 \%	43.48 \%
0.00	0.00	0.00	0.00	0.00	0.00
53.69	57.05	57.48	56.98	57.40	56.52
100.00 \%	100.00 \%	100.00 \%	100.00 \%	100.00 \%	100.00 \%

Proxy Group of Eight Water Companies
Long-Term Debt
Preferred Stock

Common Equity
Total Capital

52.68 \%	51.94 \%	47.98 \%	49.69 \%	50.39 \%	50.54 \%
0.04	0.05	0.08	0.09	0.10	0.07
47.28	48.01	51.94	50.22	49.51	49.39
100.00 \%	100.00 \%	100.00 \%	100.00 \%	100.00 \%	100.00 \%

Source of Information
Annual Forms 10-K
Aqua Ohio, Inc.
Indicated Common Equity Cost Rate Using the Discounted Cash Flow Model for the
Proxy Group of Eight Water Companies
$\underset{\sim}{\infty}$
 Σ

 $[5]$

Bloomberg
Projected Five
Year Growth
in EPS ơ
8
0

픈

NA= Not Available

(1) Indicated dividend at 04/05/2021 divided by the average closing price of the last 60 trading days ending 04/05/2021 for each company.

(2) From pages 2 through 9 of this Schedule.

(3) Average of columns 2 through 5 excluding negative growth rates.
(4) This reflects a growth rate component equal to one-half the conclu
This reflects a growth rate component equal to one-half the conclusion of growth rate (from column 6) x column 1 to
reflect the periodic payment of dividends (Gordon Model) as opposed to the continuous payment. Thus, for American
States Water Company, $1.74 \% \times(1+(1 / 2 \times 5.70 \%))=1.79 \%$. States Water Company, $1.74 \% \times(1+(1 / 2 \times 5.70 \%))=1.79 \%$. (5) Column $6+$ column 7.
Value Line Investment Survey www.zacks.com Downloaded on 04/05/2021 Bloomberg Professional Services
$\ddot{0}$
$\stackrel{0}{0}$
$\underset{z}{0}$
Proxy Group of Eight Water
Companies
American States Water Company
American Water Works Company, Inc.
Artesian Resources Corporation
California Water Service Group
Global Water Resources, Inc.
Middlesex Water Company
SJW Group
The York Water Company

(\$MILL.)			
Cash Assets	7.1	1.3	36.7
Accts Receivable	23.4	20.9	29.2
Other	101.0	100.3	91.2
Current Assets	131.5	122.5	157.1
Accts Payable	59.5	55.6	63.8
Debt Due	40.3	5.3	.4
Other	46.8	55.1	54.4
Current Liab.	146.6	116.0	118.6

						Shares of American States Water have not performed well lately. Over the
						not performed well lately. Over the past three-month period, the price of the
Rev						stock has declined about 2\%. By com-
Earn						parison, the S\&P 500 Index has increased
Divid						7%, a difference of nearly 900 basis points. Meanwhile, a major rate case is pending. California is a state where water util-
Book						
	QUARTERLY REVENUES ($\$$ mill					
						ities file a petition to raise prices once
		106.9	124.2	1110		ery three years. Last summer, the Gold-
	101.7	24.7	4.5	.		States Water Company (GSWC)
2020	109.1	21.3	33.6	4.2	488.2	ted the papers for rate hikes
20	115	125	145	120	505	over the years 202
2022	118	127	148	122	,	
			嗗			te this year, at the earliest. Our
						nings assumptions are based
2018	29	. 44	62	. 37	1.72	able ruling, as relat
2019	35	72	76	45	2.28	gulators has been mostly positive. An
		69	72	5	2.33	nexpectedly harsh decision would
		. 6	75	. 53		
	48	. 72	78	. 57		Earnings should advance at a decent clip both this year and next. The company's year-over-year share net will likely
$\begin{array}{\|c} \text { Cal- } \\ \text { endar } \end{array}$	Y DIVIDENDS					
	Mar	Jun. 30	ep. 30	Dec. 31		
	. 24	242	255	55	99	increase 3\% in 2021. (U)
	. 255	255	275	275		e earnings growth slow in the yea
2019	. 275	. 27	. 305	. 305	1.16	re new rates are determined.) In 2022,
2020	.					,
202	. 335					

water \& wastewater services to U.S. military bases through its ASUS subsidiary. Sold Chaparral City Wtr. of AZ. (6/11). Employs 841. BlackRock, Inc. owns 15.9% of out. shares; Vanguard, 11.9\%; off. \& dir. 1.0\%. (4/20 Proxy). Chairman: Lloyd Ross. Pres. \& CEO: Robert Sprowls. Inc: CA. Address: 630 East Foothill Blvd., San Dimas, CA 91773. Tel: 909-394-3600. Internet: www.aswater.com.

climb 6%.

Dividend growth prospects seem to be somewhat brighter. At the company's August board meeting, we think the distribution per share will be raised $\$ 0.03$, a 9% increase. This is near the very high end of the range for water utilities.
The company's nonregulated operations offer some potential upside. Through its ASUS business, the company operates water systems at U.S. Army installations. ASUS has been reasonably successful in winning its share of the many contracts the military has put out for bid. With more privatizations of these facilities planned, this segment could provide higher-margined revenues. That's because returns here are not capped, so there isn't a limit on profitability.
These neutrally ranked shares do not have appeal, at this time. Despite lagging the market, AWR is only ranked to perform in line with the major indexes in the year ahead. Moreover, over the pull to 2024-2026, total return potential is wellbelow the Value Line median, as the equity is already in its Target Price Range. James A. Flood

April 9, 2021

[^15]

(\$MILL.)			
Cash Assets	158	91	576
Accts Receivable	301	294	321
Other	322	900	1009
Current Assets	781	1285	1906
Accts Payable	175	203	189
Debt Due	1035	814	1611
Other	884	1028	1081
Current Liab.	2094	2045	2881

ANNUAL RATES of change (per sh) Revenues "Cash Flow" Earnings Dividends Book Value		Past 10 Yrs.	Past Est'd '18-'20 5 Yrs. to ' $24-26$					
		3.0\%	$\begin{array}{lll}\text { \% } & 3.5 \% & 4.5 \% \\ 7.0 \% & 6.5 \%\end{array}$					
		8.0\%						
		10.5\%	\% 8.0\%		8.5\%			
		11.0\%	\% 11.5\%		8.5\%			
		3.5\%	- 4.5\%		5.0\%			
Cal-	QUARTERLY REVENUES (\$ mill.) Mar. 31 Jun. 30 Sep. 30 Dec. 31				Full Year			
endar								
2018	761	853	976	850	3440			
2019	813	882	1013	902	3610			
2020	844	931	1079	923	3777			
2021	880	995	1140	995	4010			
2022	935	1055	1200	1050	4240			
Calendar					Full Year			
	Mar. 31 Jun. 30 Sep. 30 Dec. 31							
2018	. 59	. 91	1.03	. 62	3.15			
2019	. 62	. 94	1.33	. 54	3.43			
2020	. 68	. 97	1.46	. 80	3.91			
2021	. 73	1.05	1.60	. 87	4.25			
2022	. 80	1.15	1.70	. 95	4.60			
al-	QUART	ERLY DIVID	DENDS	D	Full			
endar	Mar. 31	Jun. 30	Sep. 30	Dec. 31	Year			
2017	. 375	. 415	. 415	. 415	1.62			
2018	. 415	. 455	. 455	. 455	1.78			
2019	. 455	. 50	. 50	. 50	1.96			
2020	. 50	. 55	. 55	. 55	2.15			
2021	. 55							

BUSINESS: American Water Works Company, Inc. is the largest investor-owned water and wastewater utility in the U.S., providing services to approximately 15 million people in 46 states. Nonregulated business assists municipalities and military bases with the maintenance and upkeep as well. Regulated operations made up 86% of 2020 revenues. New Jersey is its largest market accounting
American Water Works completed another very successful year in 2020. Due in part to a strong fourth quarter, the water utility managed to post an impressive 14% share-earnings increase over 2019. One of the most attractive qualities about this industry is that the demand for water is relatively inelastic. Hence, the pandemic has had no real impact on the company.
The earnings picture remains bright. American Water has an aggressive acquisition policy (more below). This, plus solid cost controls, an expanding rate base, and the stable need for water, should ensure solid yearly earnings per share increases for the foreseeable future. We think the company's share net will rise 8% both this year and in 2022. Through 2024 to 2026, we estimate growth here should be in the $7 \%-10 \%$ range, a much higher rate than the typical utility.
The company ought to continue to following what has been a successful strategy. Management has been acquiring small, independent water districts for many years. Indeed, in 2020, 23 such purchases were made. Domestically, there are
for 24.5% of regulated revenues; Pennsylvania, 22.5%; Missouri, 10.6%. Has 6,800 employees. The Vanguard Grp, owns 11.7% of outstanding shares; BlackRock, Inc., 8.1%; officers \& directors, less than 1.0%. ($3 / 21$ Proxy). President \& CEO: Susan N. Story. Chairman: George MacKenzie. Address: 1 Water Street, Camden, NJ 08102. Tel.: 856-346-8200. Internet: www.amwater.com.
literally thousands of these undersized water entities that are run by local municipalities. Often they are inefficient and undercapitalized. American Water can merge these operations into its existing business and attain significant economies of scale. As a result, the utility's margins should continue to widen annually as long as this policy is in place.
Capital expenditures are large, but manageable. Like others in the group, the company is spending heavily to upgrade its pipelines and other assets. Also, most of the acquisitions require investment to ensure that they are in compliance with federal mandates. Over the past 10 years, capital outlays have totaled $\$ 28$ billion. Out to mid-decade, annual outlays may average $\$ 2.2$ billion to $\$ 2.5$ billion. The balance sheet will likely handle this without deteriorating much.
These shares are timely. Since our January report, the equity has underperformed the market indexes by about 750 basis points. Thus, the premium investors usually have to pay for this industry standout has declined to some degree.
James A. Flood
April 9, 2021

[^16]

Note: No analyst estimates available.

BUSINESS: Artesian Resources Corp. operates as the parent holding company of five regulated public utilities: Artesian Water Company, Inc., Artesian Water Pennsylvania, Inc., Artesian Water Maryland, Inc., Artesian Wastewater Management, Inc., and Artesian Wastewater Maryland, Inc.; and three non-regulated subsidiaries: Artesian Utility Development, Inc., Artesian Development Corp., and Artesian Storm Water Services, Inc. Its principal subsidiary, Artesian Water Company, Inc., distributes and sells water, including water for public and private fire protection, to residential, commercial, industrial, municipal, and utility customers in Delaware, Maryland, and Pennsylvania. It provides wastewater services to customers in Delaware. In addition, it provides contract water and wastewater operations, and water, sewer and internal Service Line Protection Plans. Artesian Water produced approximately 86% of 2020 consolidated operating revenues. Has 235 employees. Chairman, C.E.O. \& President: Dian C. Taylor Address: 664 Churchmans Rd., Newark, DE 19702. Tel.: (302) 453-6900. Internet: www.artesianresources.com.

April 9, 2021

TOTAL SHAREHOLDER RETURN

Dividends plus appreciation as of 2/28/2021

3 Mos.	$\mathbf{6}$ Mos.	$\mathbf{1}$ Yr.	$\mathbf{3}$ Yrs.	$\mathbf{5}$ Yrs.
0.73%	6.58%	10.82%	20.40%	49.21%

© 2021 Value Line, Inc. All rights reserved. Factual material is obtained from sources believed to be reliable and is provided without warranties of any kind. of it may be reproduced, resold, stored or transmitted in any printed, electronic or other form, or used for generating or marketing any printed or electronic publication, senvice or product

CH	15	N		$\underline{\square}$	NYS	CWT		$\begin{aligned} & \text { CENT } \\ & \text { ICE } \end{aligned}$	$6,1$	P／E RATIO	31	（Trailin	$\begin{aligned} & \text { ing: } 29.0 \\ & \text { an: } 24.0 \end{aligned}$	$\begin{aligned} & \text { RELATIV } \\ & \text { P/E RATI } \end{aligned}$	1.4	DIV＇D YLD	1.6	0	$\begin{aligned} & \text { ALU } \\ & \text { LINE } \end{aligned}$			
			19／21	High： Low：	$\begin{aligned} & \hline 19.8 \\ & 16.9 \\ & \hline \end{aligned}$	$\begin{aligned} & 19.4 \\ & 167 \end{aligned}$	19.3 16.8	$\begin{aligned} & 23.4 \\ & 18.4 \end{aligned}$	26.4	$\begin{aligned} & 26.0 \\ & 19.5 \end{aligned}$	$\begin{aligned} & 36.8 \\ & 22.5 \end{aligned}$	$\begin{aligned} & 46.2 \\ & 32.4 \end{aligned}$	$\begin{aligned} & 49.1 \\ & 35.3 \end{aligned}$	$\begin{aligned} & 57.5 \\ & 44.6 \end{aligned}$	$\begin{aligned} & 57.4 \\ & 39.7 \end{aligned}$	$\begin{aligned} & 60.5 \\ & 51.8 \end{aligned}$			Target 2024	$\begin{aligned} & \text { Price } \\ & 2025 \end{aligned}$	Range 2026	
SAFET		Lowered 7		LEGEN	S																-120	
		Lowered			by	spsh															－100	
TE		were		$\ldots{ }_{R e}^{d i n}$	ve Pric	Strength															－80	
BETA	（1．00	arket）		$2 \text {-for- } 1 \mathrm{spl}$	$6 / 11$										，＇						64	
18－Mon	nth Targ	Price	Range	Sha	a	recter									白的，						48	
Low－High	h Mid	int (\%	Mid）								川世	$l^{\prime \prime \prime \prime \prime}$	1,171	，							48 -32	
\| \$43-\$81	$\$ 62$	10\%)									足										-32 -24	
								＂川11	$1^{1 \prime \prime}$	111											－20	
			n'l Total		ハ1＇	＇II	ハ＇י＂	，11													－16	
High	Price 65	ain 5\％）	Return 6\％												＊＊						－12	
High Low	$\begin{aligned} & 65 \\ & 45 \end{aligned}$	15\%)	$\begin{gathered} 6 \% \\ -3 \% \end{gathered}$								＊＊	＊＊＊＊＊										
Institut	tional D	ecision																	THIS	L ARITH．＊		
	2 Q2020	3 Q2020	4 Q 2020	Percent															STOCK 16.6	INDEX 50.1		
to Buy to Sell	109 107	101	122 91	shares traded														1 yr. 3 yr.	16.6 51.7	50.1 45.4		
Hld＇s（000）	35580	36492	37534						14			｜l｜$\\|$						5 yr ．	142.7	108.8		
2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	${ }^{\text {© V VA }}$	JE LINE PU	J．LLC	24－26	
8.72	8.10	8.88	9.90	10.82	11.05	12.00	13.34	12.23	12.50	12.29	12.70	13.89	14.53	14.72	15.78	16.00	15.95	Reve	s per sh		16.30	
1.52	1.36	1.56	1.86	1.93	1.93	2.07	2.32	2.21	2.47	2.22	2.34	3.00	3.11	3.14	3.88	3.45	3.55	＂Cas	ow＂per s		3.75	
． 74	． 67	． 75	． 95	． 98	． 91	． 86	1.02	1.02	1.19	． 94	1.01	1.40	1.36	1.31	1.97	1.90	2.00	Earn	per sh A		2.25	
． 57	． 58	． 58	． 59	． 59	． 60	． 62	． 63	． 64	． 65	． 67	． 69	． 72	． 75	． 79	． 85	． 92	． 98	Div＇d	cl＇d per sh	${ }^{\text {B }}$－	1.15	
2.01	2.14	1.84	2.41	2.66	2.97	2.83	3.04	2.58	2.76	3.69	4.77	5.40	5.65	5.64	5.93	5.25	5.50	Cap＇	ending p		5.85	
7.90	9.07	9.25	9.72	10.13	10.45	10.76	11.28	12.54	13.11	13.41	13.75	14.44	15.19	16.07	18.30	18.35	18.25	Book	lue per sh		19.80	
36.78	41.31	41.33	41.45	41.53	41.67	41.82	41.98	47.74	47.81	47.88	47.97	48.01	48.07	48.53	50.33	51.00	52.00	Comm	Shs Ou	＇g D	53.00	
24.9	29.2	26.1	19.8	19.7	20.3	21.3	17.9	20.1	19.7	24.8	29.6	26.9	30.3	39.3	24.9	Bold figu	ures are	Avg	＇I P／E Ra		24.0	
1.33	1.58	1.39	1.19	1.31	1.29	1.34	1.14	1.13	1.04	1.25	1.55	1.35	1.64	2.09	1.29	Value	Line	Relativ	P／E Ratio		1.30	
3．1\％	2．9\％	3．0\％	3．1\％	3．1\％	3．2\％	3．4\％	3．5\％	3．1\％	2．8\％	2．9\％	2．3\％	1．9\％	1．8\％	1．5\％	1．7\％	estim	ates	Avg An	＇I Div＇d Yie		2．1\％	
CAPITAL STRUCTURE as of 12／31／20 Total Debt $\$ 1156.2$ mill．Due in 5 Yrs $\$ 357.0$ mill． LT Debt $\$ 781.1$ mill．LT Interest $\$ 40.0$ mill． （Total interest coverage： 5.2 x ）（ 46% of Cap＇l）						501.8	560.0	584.1	597.5	588.4	609.4	666.9	698.2	714.6	794.3	815	830	Reve	（\＄mill）${ }^{\text {E }}$		865	
						36.1	42.6	47.3	56.7	45.0	48.7	67.2	65.6	63.1	96.8	97.0	105	Net Pro	（\＄mill）		120	
						40．5\％	37．5\％	30．3\％	33．0\％	36．0\％	35．5\％	30．1\％	24．5\％	19．1\％	11．1\％	21．0\％	21．0\％	Incom	Tax Rate		21．0\％	
						7．6\％	8．0\％	4．3\％	2．7\％	4．3\％	6．1\％	3．5\％	3．1\％	5．8\％	3．3\％	5．0\％	5．0\％	AFUDC	\％to Net	ofit	5．0\％	
Pension Assets－12／20 \＄716．8 mill．						51．7\％	47．8\％	41．6\％	40．1\％	44．4\％	44．6\％	42．7\％	49．3\％	50．2\％	45．9\％	44．5\％	43．5\％	Long	m Debt R		38．0\％	
			blig．\＄83	33.9 mill．		48．3\％	52．2\％	58．4\％	59．9\％	55．6\％	55．4\％	57．3\％	50．7\％	49．8\％	54．1\％	55．5\％	56．5\％	Comm	Equity R		62．0\％	
Pfd Stock None						931.5	908.2	1024.9	1045.9	1154.4	1191.2	1209.3	1440.2	1566.7	1702.4	1685	1675	Total	pital（\＄mil）		1700	
Common Stock 50，330，000 shs．						1381.1	1457.1	1515.8	1590.4	1701.8	1859.3	2048.0	2232.7	2406.4	2650.6	2675	2700	Net P	（\＄mill）		2850	
						5．5\％	6．3\％	6．0\％	6．3\％	5．2\％	5．5\％	7．1\％	5．9\％	5．5\％	7．0\％	6．5\％	7．0\％	Retur	n Total Ca		8．0\％	
						8．0\％	9．0\％	7．9\％	9．1\％	7．0\％	7．4\％	9．7\％	9．0\％	8．1\％	10．5\％	10．5\％	11．0\％	Return	n Shr．Equ		11．5\％	
						8．0\％	9．0\％	7．9\％	9．1\％	7．0\％	7．4\％	9．7\％	9．0\％	8．1\％	10．5\％	10．5\％	11．0\％	Return	n Com Eq	quity	11．5\％	
MARKET CAP： $\mathbf{\$ 2 . 8}$ billion（Mid Cap）						$\begin{gathered} 2.3 \% \\ 71 \% \end{gathered}$	$\begin{gathered} \hline 3.4 \% \\ 62 \% \end{gathered}$	$\begin{gathered} \hline 3.4 \% \\ 56 \% \end{gathered}$	$\begin{gathered} \hline 4.1 \% \\ 55 \% \end{gathered}$	$\begin{gathered} 2.0 \% \\ 71 \% \end{gathered}$	$\begin{gathered} \hline 2.4 \% \\ 68 \% \end{gathered}$	$\begin{gathered} 4.7 \% \\ 51 \% \end{gathered}$	$\begin{gathered} 4.0 \% \\ 55 \% \end{gathered}$	$\begin{gathered} 3.2 \% \\ 60 \% \end{gathered}$	$\begin{gathered} 6.0 \% \\ 43 \% \end{gathered}$	$\begin{array}{r} 5.5 \% \\ 48 \% \end{array}$	$\begin{array}{r} 5.5 \% \\ 49 \% \end{array}$	Retained to Com Eq All Div＇ds to Net Prof			5．5\％	
CURRENT POSITION （SMILL．）			2018	2019 12／31／20																	51\％	

（\＄MILL．）			
Cash Assets	47.2	42.7	44.6
Other	141.5	142.0	221.4
	188.7	184.7	266.0
Current Assets	95.6	108.5	131.7
Accts Payable	170.0	197.0	375.1
Debt Due	55.6	53.2	81.9
Other	321.2	358.7	588.7

ANNUAL RATES Pastof change（per sh）${ }^{\text {a }}$ Y			Past Est＇d＇18－＇20$5 \text { Yrs. to '24-26 }$		
Revenues		3．5\％	$\begin{array}{ll}4.0 \% & 1.5 \% \\ 8.0 \% & 2.0 \%\end{array}$		
＂Cash Flow＂ Earnings		6．0\％			
		5．0\％	8．0\％		2．0\％
Earnings		$3.0 \%$$5.0 \%$	5．0\％		6．5\％
DividendsBook Value					
Cal－ endar	QUARTERLY REVENUES（\＄mill．）${ }^{\text {E }}$				Full Year
	Mar． 31	Jun． 30	Sep． 30	Dec． 31	
2018	134.6	174.9	221.3	167.4	698.2
2019	126.1	179.0	232.6	176.9	714.6
2020	125.6	175.5	304.1	189.1	794.3
2021	155	205	255	200	815
2022	160	205	260	205	830
Cal－ endar	EARNINGS PER SHARE A				Full Year
	Mar． 31	Jun． 30	Sep． 30	Dec． 31	
2018	d． 02	． 31	． 75	32	1.36
2019	d． 16	． 35	． 88	． 24	1.31
2020	d． 42	． 11	1.94	． 31	1.97
2021	． 08	． 45	． 95	． 42	1.90
2022	． 10	． 45	1.00	． 45	2.00
Cal－ endar	QUARTERLY DIVIDENDS PAID ${ }^{\text {B }}$				Full
	Mar． 31	Jun． 30	Sep． 30	Dec． 31	Year
2017	． 18	． 18	． 18	． 18	． 72
2018	． 1875	． 1875	． 1875	． 1875	． 75
2019	． 1975	． 1975	． 1975	． 1975	． 79
2020	． 2125	． 2125	． 2125	． 2125	． 85
2021	． 230				

| （A）Basic EPS．Excl．nonrecurring gain（loss）： | $\begin{array}{l}\text { available．} \\ \text {（C）Incl．intangible assets．In＇} 20: \$ 27.6 \text { mill．}\end{array}$ |
| :--- | :--- | （B）Dividends historically paid in late Feb．，

BUSINESS：California Water Service Group provides regulated and nonregulated water service to 492，600 customers in 100 com－ munities in the state of California．Accounts for about 94\％of total customers．Also operates in Washington，New Mexico，and Hawaii． Main service areas：San Francisco Bay area，Sacramento Valley， Salinas Valley，San Joaquin Valley \＆parts of Los Angeles．Ac－ California Water Service Group reported solid financial results to wrap up 2020．The West Coast water service provider generated revenues of $\$ 189$ million in the December period，or a 7% annual increase，thanks largely to rate hikes associated with the recently ap－ proved general rate case．Meanwhile， fourth－quarter share profits of $\$ 0.31$ ， which were also buoyed by benefits from the general rate case decision，specifically
higher operating income and lower taxes， logged a healthy 29% advance compared to the year－earlier tally．
California Water is on a buying spree． The company＇s subsidiary，Hawaii Water Service，announced that it has received ap－ proval to acquire the assets of Kapalua Water and Kapalua Waste Treatment Company，which will add roughly 1,000 service connections in the area．In addi－ tion，a deal has been inked to purchase the water system assets of Skylanda Mutual Water Company．Pending regulatory ap－ proval，the transaction，which would add almost 19,000 service connection in Cali－ fornia，is expected to be finalized early
next year．Overall，tuck－in acquisitions
quired Rio Grande Corp；West Hawaii Utilities（9／08）．Revenue breakdown，＇20：residential， 70% ；business， 18% ；industrial， 4% ； public authorities， 5% ；other 3% ．Off．and dir．own 1% of common stock（4／20 proxy）．Has 1，184 employees．Pres．and CEO：Martin A．Kropelnicki．Inc．：DE．Addr．： 1720 North First St．，San Jose，CA 95112－4598．Tel．：408－367－8200．Internet：www．calwatergroup．com．
will probably be a staple in the company＇s long－term growth strategy．
The company is in the early innings of a massive infrastructure improve－ ment program．Indeed，management is taking an aggressive approach to upgrad－ ing and revamping its aging water delivery，transportation，and treatment facilities．For this year，its capital spend－ ing budget for infrastructure－related projects is approximately $\$ 285$ million． Over the pull to 2025，the company is like－ ly to invest upwards of $\$ 700$ million．Last－ ly，California Water has already been given the green light by the California Public Utilities Commission to tap the debt and equity markets．
We continue to like this issue for sub－ scribers with a short－term investment horizon．The stock has been raised one notch on our Timeliness Ranking Scale，to 1 （Highest）and，thus is slated to outpace the broader market averages over the com－ ing six to 12 months．On the other hand， buy－and－hold accounts should turn the page，as total return potential out to 2024－ 2026 is unenticing at recent levels． Nicholas P．Patrikis

April 9， 2021

${ }^{\mathbf{A}}$ No. of analysts changing earn. est. in last 29 days: 0 up, 0 down, consensus 5 -year earnings growth 15.0% per year. ${ }^{\mathbf{B}}$ Based upon one analyst's estimate. $\mathbf{C}_{\text {Based }}$ upon one analyst's estimate.

ANNUAL RATES						ASSETS (Smill.)	2018	2019	12/31/20			
of change (per share)			5 Yrs .	1 Yr .		Cash Assets	12.8	7.5	18.0			
Sales			--	4.0\%		Receivables	1.5	1.6	2.1			
"Cash Flow"			--			Inventory	. 0	. 0	. 0			
Earnings			--	-50.0\%		Other	3.0	3.2	3.4			
Dividend			--	1.0\%		Current Assets	17.3	12.3	23.5			
Book Value			--	24.5\%								
Fiscal Year	QUARTERLY SALES (\$mill.)				Full Year	Property, Plant \& Equip, at cost	312.1	326.3	340.2			
	$1 Q$	2Q	3Q	4Q								
12/31/18	7.4	10.8	9.0	8.3	35.5	Net Property	227.1	233.6	238.9			
12/31/19	7.7	9.2	9.9		35.5	Other	18.1	20.2	21.0			
$\begin{array}{\|l\|} \hline 12 / 31 / 20 \\ 12 / 31 / 21 \end{array}$	8.2	9.9	10.8	9.7	38.6	Total Assets	262.5	266.1	283.4			
Fiscal Year	EARNINGS PER SHARE				Full Year	LIABILITIES (\$mill.)						
	$1 Q$	2Q	3Q	4Q		Accts Payable Debt Due Other	. 0	1.0 .1	. 2.0			
12/31/17	--	. 02	. 06	15	. 23		9.0	9.0	9.9			
12/31/18	. 02	. 10	. 03	--	. 15	Current Liab	9.6	10.1	12.4			
12/31/19	. 02	. 04	. 05	$\begin{aligned} & \text { d. } 01 \\ & \text { d. } 01 \end{aligned}$. 10							
12/31/20	. 02	d. 01	. 05									
12/31/21	d. 01	. 04	. 06			LONG-TERM DEBT AND EQUITY as of $12 / 31 / 20$						
Calendar	QUARTERLY DIVIDENDS PAID				Full Year							
	1Q	2Q	3Q	4Q		Total Debt $\$ 114.7$ mill. Due in 5 Yrs. $\$ 17.4$ mill.						
2018	. 071	. 071	. 071	. 071	. 28	LT Debt $\$ 112.7$ mill. Including Cap. Leases $\$.1 \mathrm{mi}$						
2019	. 072	. 072	. 072	.072.072	$\begin{aligned} & .29 \\ & .29 \end{aligned}$							
2020	. 073	. 072	. 073			Leases, Uncapitalized Annual rentals None						
2021	. 073											
INSTITUTIONAL DECISIONS						Pension Liability None in '20 vs. None in '19						
	2Q'20		3Q'20	4Q'20		Pfd Stock None		Pfd Div'd Paid None				
to Buy		33	18		26	Common Stock 22,588,000 shares		(22\% of Cap'l)				
to Sell		22	33		21							
Hld's(000)		8849	7844		595							

BUSINESS: Global Water Resources, Inc. is a water resource management company that owns, operates, and manages 16 water, wastewater, and recycled water utilities in strategically located communities, principally in metropolitan Phoenix, Arizona. It seeks to deploy its integrated approach, Total Water Management, a term used to mean managing the entire water cycle by owning and operating the water, wastewater, and recycled water utilities within the same geographic areas in order to both conserve water and maximize its total economic and social value. The company uses Total Water Management to promote sustainable communities in areas where growth outpaces the existing potable water supply. Global Water recycles nearly one billion gallons of water annually. In February 2021, Global Water agreed to acquire two small water utility companies, Twin Hawks Utility, Inc. and Rincon Water Company. The acquisitions will add approximately 93 water connections. Has 79 employees. Chairman, C.E.O. \& President: Ron L. Fleming Address: 21410 N. 19th Avenue \#220, Phoenix, AZ 85027. Tel.: (480) 360-7775. Internet: www.gwresources.com.
E.B.

April 9, 2021

TOTAL SHAREHOLDER RETURN

Dividends plus appreciation as of 2/28/2021

| 3 | Mos. | $\mathbf{6}$ Mos. | 1 Yr. | $\mathbf{3}$ Yrs. |
| :---: | :---: | :---: | :---: | :---: | 5 Yrs.

© 2021 Value Line, Inc. All rights reserved. Factual material is obtained from sources believed to be reliable and is provided without warranties of any kind. of it may be reproduced, resold, stored or transmitted in any printed, electronic or other form, or used for generating or marketing any printed or electronic publication, service or product

MODL ESEX WATER NDQ－MSEX				TER	NDQ-MSEX		RECENT PRICE		80.66	$\begin{array}{ll} \text { P/E } & 36.7\left(\begin{array}{l} \text { Trailing: } 37.0 \\ \text { RATIO } \\ \text { Median: } 23.0 \end{array}\right) \end{array}$				$\begin{aligned} & \text { RELATIVE } 1.68 \\ & \text { P/E RATIO } 1.68 \end{aligned}$		$\text { DIV'D } \quad 1.4 \%$			$\begin{aligned} & \text { VALUE } \\ & \text { LINE } \end{aligned}$			
				High： Low：	$\begin{array}{r} 19.3 \\ 14.7 \\ \hline \end{array}$	$\begin{aligned} & \hline 19.4 \\ & 16.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 19.6 \\ & 17.5 \end{aligned}$	$\begin{aligned} & 22.5 \\ & 18.6 \end{aligned}$	$\begin{aligned} & 23.7 \\ & 19.1 \end{aligned}$	$\begin{aligned} & 28.0 \\ & 21.2 \end{aligned}$	$\begin{aligned} & 44.5 \\ & 25.0 \end{aligned}$			$\begin{aligned} & 67.7 \\ & 51.0 \end{aligned}$		$\begin{aligned} & 85.9 \\ & 67.1 \end{aligned}$			$\begin{array}{\|l\|} \hline \text { Target Pri } \\ 2024 \mid 20 \end{array}$	Range 2026		
				LEGENDS 1．20 x Dividends p sh divided by \ldots Iterest Rate Options：Yelative Price Strength Shaded area indicates recession																		
																－100						
																80						
				Options：Yes Shaded area indicates recession																64		
$\begin{array}{ll} \hline \text { 18-Month Target Price Range } \\ \text { Low-High } & \text { Midpoint (\% to Mid) } \\ \$ 58-\$ 106 & \$ 82(0 \%) \end{array}$														碞						48		
												11י｜										
																				24		
								，1min	，1以い											－24		
			Total		｜m＇${ }^{1}$	，\｜														－16		
	rice		turn	II＂	年															－12		
$\begin{array}{\|l\|l} \text { High } \\ \text { Low } \end{array}$	75	50\%									\because	\cdots						\％TOT．RETURN $2 / 21-8$				
Institut	ional D	ecision																				
	20220	30220	40220																STOCK IND			
to Buy	68	52	67	shares															$\begin{array}{rr}17.2 & 50.1 \\ 103.1 & 45.4 \\ 188\end{array}$			
to Sell Hld＇s (000)	$\begin{array}{r} 55 \\ 10359 \\ \hline \end{array}$	69 10357		traded			｜杖	川1											$\begin{array}{lr}103.1 & 45.4 \\ 168.7 & 108.8\end{array}$			
2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	© VALUE LINE PUB．LLC 24－26				
6.44	6.16	6.50	6.79	6.75	6.60	6.50	6.98	7.19	7.26	7.77	8.16	8.00	8.42	7.72	8.10	8.45	8.70	Revenues per sh ＂Cash Flow＂per sh Earnings per sh A Div＇d Decl＇d per sh ${ }^{\text {Bn }}$		9.15		
1.33	1.33	1.49	1.53	1.40	1.55	1.46	1.56	1.72	1.84	1.97	2.17	2.24	2.89	2.90	3.25	3.15	3.25			3.70		
． 71	． 82	． 87	． 89	． 72	． 96	． 84	． 90	1.03	1.13	1.22	1.38	1.38	1.96	2.01	2.18	2.25	2.35			2.70		
． 67	． 68	． 69	． 70	． 71	． 72	． 73	． 74	． 75	． 76	． 78	． 81	． 86	． 91	． 98	1.04	1.10	1.15			1.35		
2.18	2.31	1.66	2.12	1.49	1.90	1.50	1.36	1.26	1.40	1.59	2.91	3.08	4.40	5.11	6.04	5.50	5.50	Cap＇ISpending per sh Book Value per sh		6.25		
8.26	9.52	10.05	10.03	10.33	11.13	11.27	11.48	11.82	12.24	12.74	13.40	14.02	15.17	18.57	19.81	19.45	19.60			20.85		
11.58	13.17	13.25	13.40	13.52	15.57	15.70	15.82	15.96	16.12	16.23	16.30	16.35	16.40	17.43	17.47	17.75	17.85	Commo	Shs Outst＇g ${ }^{\text {c }}$	18.00		
27.4	22.7	21.6	19.8	21.0	17.8	21.7	20.8	19.7	18.5	19.1	25.6	28.4	22.2	29.7	30.1	Bold figures are Value Line estimates		Avg Ann＇I P／E Ratio Relative P／E Ratio Avg Ann＇I Div＇d Yield		24.0		
1.46	1.23	1.15	1.19	1.40	1.13	1.36	1.32	1.11	． 97	． 96	1.34	1.43	1.20	1.58	1.56			1.30				
3．5\％	3．7\％	3．7\％	4．0\％	4．7\％	4．2\％	4．0\％	4．0\％	3．7\％	3．7\％	3．3\％	2．3\％	2．2\％	2．1\％	1．6\％	1．6\％			2．1\％				
CAPITAL STRUCTURE as of $12 / 31 / 20$ Total Debt $\$ 282.5$ mill．Due in 5 Yrs $\$ 43.7$ mill． LT Debt $\$ 273.2$ mill．LT Interest $\$ 7.5$ mill． （Total interest coverage： 7.3 x ） （44\％of Cap＇l）						102.1	110.4	114.8	117.1	126.0	132.9	130.8	138.1	134.6	141.6	150	155			Reven	（\＄mill）	165
						13.4	14.4	16.6	18.4	20.0	22.7	22.8	32.5	33.9	38.4	40.0	42.0			Net Pr	it（\＄mill）	49.0
						32．7\％	33．9\％	34．1\％	35．0\％	34．5\％	34．0\％	32．7\％	2．8\％	2．8\％	2．8\％	21．0\％	21．0\％	Income	Tax Rate	21．0\％		
						6．1\％	3．4\％	1．9\％	1．7\％	1．9\％	2．7\％	3．1\％	1．4\％	3．4\％	3．9\％	2．5\％	2．5\％	AFUDC	\％to Net Profit	2．5\％		
						42．3\％	41．5\％	40．4\％	40．5\％	39．4\％	37．9\％	37．5\％	37．8\％	41．5\％	44．0\％	42．5\％	41．5\％	Long－T	m Debt Ratio	40．0\％		
Pension	Assets－	2／20 \＄	． 9 mill			56．6\％	57．4\％	58．7\％	58．8\％	59．8\％	61．5\％	61．8\％	61．6\％	58．2\％	55．7\％	57．0\％	58．0\％	Commo	Equity Ratio	60．0\％		
			blig．\＄1	15.9 mill．		312.5	316.5	321.4	335.8	345.4	355.4	370.7	404.1	556.7	621.5	610	600	Total C	pital（\＄mill）	630		
			＇d：\＄． 1			422.2	435.2	446.5	465.4	481.9	517.8	557.2	618.5	705.7	796.6	800	815	Net Pla	（\＄mill）	835		
Comm	Stock	473，000	0 shs．			5．2\％	5．4\％	5．9\％	6．3\％	6．6\％	7．1\％	6．9\％	8．9\％	6．7\％	6．8\％	7．0\％	7．5\％	Return	n Total Cap＇l	8．0\％		
						7．5\％	7．8\％	8．7\％	9．2\％	9．6\％	10．3\％	9．8\％	12．9\％	10．4\％	11．0\％	11．5\％	12．0\％	Return	oshr．Equity	13．0\％		
						7．5\％	7．8\％	8．7\％	9．3\％	9．6\％	10．3\％	9．9\％	13．0\％	10．4\％	11．1\％	11．5\％	12．0\％	Return	O Com Equity	13．0\％		
						1．0\％	1．4\％	2．4\％	3．1\％	3．5\％	4．3\％	3．8\％	7．0\％	5．4\％	5．8\％	6．0\％	6．0\％	Reta	to Com Eq	6．5\％		
MARKE	CAP：	1.4 billion	（Mid－C	ap）		87\％	83\％	73\％	67\％	63\％	58\％	62\％	46\％	48\％	48\％	49\％	49\％	All Div＇	s to Net Prof	50\％		

CURRENT POSITION （\＄MILL．）	2018	2019	12／31／20
Cash Assets	3.7	2.2	4.5
Other	27.1	26.9	29.6
Current Assets	30.8	29.1	34.1
Accts Payable	19.3	23.3	30.4
Debt Due	55.8	27.2	9.3
Other	19.3	14.5	17.1
Current Liab．	94.4	65.0	56.8

ANNUAL RATES	Past	Past	
Est＇d＇18＇20			
of change（per sh）	10 Yrs．	5 Yrs．	to＇24－26
Revenues	2.0%	2.0%	2.0%
＂Cash Flow＂	7.5%	10.5%	3.5%
Earnings	9.0%	12.5%	4.5%
Dividends	3.0%	5.0%	5.5%
Book Value	5.5%	8.0%	2.5%

Cal－ endar		5．5\％		\％	，
	QUARTERLY REVENUES（\＄mill．） Mar． 31 Jun． 30 Sep． 30 Dec． 31				Full Year
2018	31.2	34.9	38.7	33.3	138.1
2019	30.7	33.4	37.8	32.7	134.6
2020	31.8	35.3	39.9	34.6	141.6
2021	33.0	37.0	44.0	36.0	150
2022	34.0	38.0	45.0	38.0	155
$\begin{gathered} \text { Cal- } \\ \text { andar } \end{gathered}$ endar	EARNINGS PER SHARE AMar． 31 Jun． 30 Sep． 30 Dec． 31				Full Year
2018	． 27	． 52	． 74	． 43	1.96
2019	． 39	． 49	． 66	． 46	2.01
2020	． 44	． 55	． 72	． 47	2.18
2021	． 45	． 55	． 73	． 52	2.25
2022	． 47	． 57	． 76	． 55	2.35
al－	QUARTERLY DIVIDENDS PAID Bı				Full
endar	Mar． 31	Jun． 30	Sep． 30	Dec． 31	Year
2017	． 21125	． 21125	． 21125	． 22375	86
2018	． 22375	． 22375	． 22375	． 24	． 91
2019	． 24	． 24	． 24	． 2562	98
2020	． 2562	． 2562	． 2562	． 2725	1.04
2021	． 2725				

BUSINESS：Middlesex Water Company engages in the ownership and operation of regulated water utility systems in New Jersey，Del－ aware，and Pennsylvania．It also operates water and wastewater systems under contract on behalf of municipal and private clients in NJ and DE．Its Middlesex System provides water services to 61,000 retail customers，primarily in Middlesex County，New Jersey．In
Shares of Middlesex Water continue to march higher．The equity established yet another all－time high in early Febru－ ary，but has since retracted modestly to slightly above $\$ 80$ per share．Still，the stock is up about 10% in price since our early－January review，keeping intact its enviable multiyear price ascent．Based on our Timeliness ranking scale，MSEX shares are slated to outperform（1：High－ 6 est）the broader market over the coming six to 12 months．Thus，they may pique the interest of near－term accounts．
The stage is set for respectable top－ and bottom－line growth this year．Fa－ vorable operating trends，which were evi－ dent in the fourth quarter，are likely to persist over the near－to intermediate－ terms．These include increased residential and wholesale water consumption owing to more people staying at home and greater handwashing frequency，as well as an ex－ panding customer base in its Delaware water system．A recently inked contract with Highland Park in its New Jersey sys－ tem is a positive，too．Adding it all up，rev－ enues are poised to expand 6% ，to $\$ 150$

2020，the Middlesex System accounted for 59% of operating reve－ nues．At 12／31／20，the company had 348 employees．Incorporated： NJ．President，CEO，and Chairman：Dennis W．Doll．Officers \＆ directors own 3.1% of the com．stock；BlackRock Inst．Trust Co．， 7.7%（4／20 proxy）．Add．： 485 C Route 1 South，Suite 400，Iselin，NJ 08830．Tel．：732－634－1500．Int．：www．middlesexwater．com．
a 3% earnings advance，to $\$ 2.25$ per share． From a financial perspective，the com－ pany ought to be a stable performer over the pull to mid－decade．Modest revenue and earnings growth is likely on tap for 2022．Meanwhile，significant infra－ structure spending may well overflow into the 3－to 5－year time frame．Management has laid out a budget of nearly $\$ 300$ mil－ lion through its Water For Tomorrow pro－ gram，which aims to upgrade watermains， piping，and wastewater treatment facilities．Most recently，the company an－ nounced a $\$ 10$ million investment to im－ prove its drinking water infrastructure in New Jersey．Overall，aggressive spending ought to eventually curb unnecessary op－ erating costs，and may well facilitate addi－ tional rate hikes going forward．
Shares of Middlesex Water are cur－ rently trading beyond the upper end of our 3－to 5－year Target Price para－ meters．This is so even after modestly lift－ ing our P／E multiple to 24x．All in all，sub－ scribers with an investment horizon of 18 months or longer can find more－attractive options elsewhere，at this juncture．
Nicholas P．Patrikis
April 9， 2021

early May．

(SMILL.)			
Cash Assets	420.7	17.9	9.3
Accts Receivable	19.2	36.3	58.1
Other	62.8	67.8	59.9
Current Assets	502.7	122.0	127.3
Accts Payable	24.9	34.9	34.2
Debt Due		22.3	76.2
Other	139.1	177.4	240.4
Current Liab.	164.0	234.6	350.8

with Connecticut Water (10/19) which provides service to approx. 138,000 connections with a total population of 450,000 people. Has 361 employees. Officers and directors own 8.3% of outstanding shares (3/21 proxy). Chairman \& CEO: Eric Thornburg. Incorporated: California. Address: 110 West Taylor Street, San Jose, CA 95110. Telephone: (408) 279-7800. Internet: www.sjwater.com.
include paying down outstanding obligations, various capital expenditures, and general corporate purposes.
The long-term growth narrative remains largely unaltered. Increased residential and wholesale water consumption, alongside periodic rate hikes, ought to keep revenues moving in the right direction. SJW Group's diverse geographical footprint is advantageous, and should expand further down the road. From an operational standpoint, robust capital spending on infrastructure upgrades ought to boost efficiency, as much of these costs can eventually be passed along to the consumer.
Unranked SJW shares are a bit more appealing for patient accounts following their recent step back in price. At recent levels, capital appreciation potential out to mid-decade is slightly above average, thus presenting a decent entry point for interested subscribers to start building a position. What's more, the dividend yield is now comfortably above the Value Line median, and ranks among the top payers in the Water Utilities Industry. Nicholas P. Patrikis

April 9, 2021

[^17]© 2021 Value Line, Inc. All rights reserved. Factual material is obtained from sources believed to be reliable and is provided without warranties of any kind.
THE PUBLISHER IS NOT RESPONSIBLE FOR ANY ERRORS OR OMISSIONS HEREIN. This publication is strictly for subscriber's own, non-commercial, internal use. No part of it may be reproduced, resold, stored or transmitted in any printed, electronic or other form, or used for generating or marketing any printed or electronic publication, service or product

To subscribe call 1-800-VALUELINE

Cash Assets

 Accounts Receivable InventOther
Current Assets
Accts Payable Debt Due Other

Accts Payable	3.0	3.4	6.5
Debt Due	1.0	6.5	
Other	6.8	5.3	5.5
Current Liab.	10.8	15.2	12.0

ANNUAL RATES Past Past Est'd '17-'19 of change (per sh) 10 Yrs. 5 Yrs. to '24-26 Revenues "Cash Flow" Earnings Dividends

--	--	5.
4.8	4.4	45.2
. 9	1.0	01.0
3.3	4.0	05.1
9.0	9.4	$4 \quad 16.3$
3.0	3.4	46.5
1.0	6.5	5
6.8	5.3	35
10.8	15.2	212.0
Past	Past Est'd '17-'19	
Yrs.	5 Yrs.	to '24-26
3.0\%	2.5\%	4.0\%
6.0\%	5.5\%	6.5\%
6.0\%	6.0\%	6.5\%
3.0\%	4.0\%	6.0\%
4.5\%	4.0\%	4.0\%

Cal- endar	QUARTERLY REVENUES (\$ mill.) Mar.31			Full Jun. 30	
2018	11.6	12.0	12.7	12.1	48.4
2019	11.8	13.0	13.7	13.1	51.6
2020	12.9	13.3	14.3	13.4	53.9
2021	13.0	13.5	14.5	13.5	54.5
2022	13.5	13.7	15.0	13.8	56.0
Cal-	EARNINGS PER SHARE A				
endar	Mar.31 Jun. 30 Sep. 30	Dec. 31	Full		
Year					
2018	.20	.26	.29	.29	1.04
2019	.22	.28	.35	.26	1.11
2020	.31	.32	.36	.28	1.27
2021	.28	.35	.37	.35	1.35
2022	.30	.36	.38	.36	1.40
Cal-	QUARTERLY DIVIDENDS PAID B	Full			
endar	Mar.31	Jun.30	Sep.30	Dec.31	Year
2017	.1602	.1602	.1602	.1666	.647
2018	.1666	.1666	.1666	.1733	.673
2019	.1733	.1733	.1733	.1802	.70
2020	.1802	.1802	.1802	.1874	.73
2021	.1874				

BUSINESS: The York Water Company is the oldest investor-owned regulated water utility in the United States. It has operated continuously since 1816. As of December 31, 2020, the company's average daily availability was 35.6 million gallons and its service territory had an estimated population of 202,000. Has more than 72,600 customers. Residential customers accounted for 66% of 2020 reve-
York Water delivered decent top- and bottom-line results to conclude 2020. In the December period, revenues of $\$ 13.4$ million rose 2%, year over year, while earnings of $\$ 0.28$ advanced 8%. For the full year, the regulated water utility benefited from rate increases, higher residential water consumption due to more people staying at home, and strong customer base expansion. Capital investment was robust in 2020 , as the company spent more than $\$ 30$ million on infrastructure upgrades such as standpipe replacements and raw water pumping station and wastewater treatment improvements.
Our preliminary 2022 financial projections suggest modest expansion is likely to persist. For the current year, we are maintaining our revenue call of $\$ 54.5$ million, but are adding a nickel to our earnings forecast, to $\$ 1.35$ per share. For next year, we anticipate low singledigit top- and bottom-line growth of 3% and 4%, respectively.
The long-term outlook is bright, as well. Water consumption ought to remain stable, and possibly trend higher, as York's customer base expands further. In
nues; commercial and industrial (26\%); other (8%). It also provides sewer billing services. Incorporated: PA. York had 108 full-time employees at 12/31/20. President/Chief Executive Officer: J.T. Hand. Officers/directors own 1.3% of the common stock ($3 / 21$ proxy). Address: 130 East Market Street, York, Pennsylvania 17401. Telephone: (717) 845-3601. Internet: www.yorkwater.com.
addition, the company is likely to keep its foot on the gas in terms of capital investments, as its aging infrastructure demands increased attention. This ought to precipitate periodic rate hikes, which help to alleviate some of these expenses. The stock is trading around recently minted all-time high territory. Underpinning the investment community's notable enthusiasm of late, in our view, is a combination of strong quarterly operating performances and a broad-based flight-to-safety approach amidst an uncertain, albeit improving economic backdrop. York Water is indeed a noncyclical, conservative security, as its water utility operations stand at the core of everyday life, and are largely immune to economic shocks.
We do not recommend starting a position at the recent quotation. On the contrary, committed investors may want to consider locking in some profits following the multiyear price ascent. Moreover, the equity is pegged as a year-ahead market performer, and offers limited price upside over the pull to 2024-2026. The dividend yield leaves much to be desired, too.
Nicholas P. Patrikis
April 9, 2021

early May.

(B) Dividends historically paid in late February,

June, September, and December.
© 2021 Value Line, Inc. All rights reserved. Factual material is obtained from sources believed to be reliable and is provided without warranties of any kind. of it may be reproduced, resold, stored or transmitted in any printed, electronic or other form, or used for generating or marketing any printed or electronic publication, service or product.

Aqua Ohio, Inc.
Summary of Risk Premium Models for the Proxy Group of Eight Water Companies

Proxy Group of
Eight Water
Companies

Predictive Risk
Premium Model
(PRPM) (1)
12.13 \%

Risk Premium Using
an Adjusted Total
Market Approach (2)
10.08 \%

Average $\xlongequal{11.11} \%$
Notes:
(1) From page 2 of this Schedule.
(2) From page 3 of this Schedule.
Derived by the Predictive Risk Premium Model (1)
$\sqrt{6}$

12.72%

11.53%
$\stackrel{\rightharpoonup}{\circ}$
$\stackrel{\rightharpoonup}{\mathrm{N}}$
$\stackrel{7}{\mathrm{~N}}$
σ

ミ			त̊	
\bigcirc		 		
$\stackrel{\square}{\square}$				

[^18]Proxy Group of Eight Water Companies

[^19]Aqua Ohio, Inc.
Indicated Common Equity Cost Rate Through Use of a Risk Premium Model Using an Adjusted Total Market Approach

Line No.		Proxy Group of Eight Water Companies
1.	Prospective Yield on Aaa Rated Corporate Bonds (1)	3.44 \%
2.	Adjustment to Reflect Yield Spread Between Aaa Rated Corporate Bonds and A2 Rated Public Utility Bonds	0.42 (2)
3.	Adjusted Prospective Yield on A2 Rated Public Utility Bonds	3.86 \%
4.	Adjustment to Reflect Bond Rating Difference of Proxy Group	0.05 (3)
5.	Adjusted Prospective Bond Yield	3.91 \%
6.	Equity Risk Premium (4)	6.17
7.	Risk Premium Derived Common Equity Cost Rate	10.08 \%

Notes: (1) Consensus forecast of Moody's Aaa Rated Corporate bonds from Blue Chip Financial Forecasts (see pages 10 and 11 of this Schedule).
(2) The average yield spread of A2 rated public utility bonds over Aaa rated corporate bonds of 0.42% from page 4 of this Schedule.
(3) Adjustment to reflect the A2/A3 Moody's LT issuer rating of the Utility Proxy Group as shown on page 5 of this Schedule. The 0.05% upward adjustment is derived by taking $1 / 6$ of the spread between A2 and Baa2 Public Utility Bonds $(1 / 6 * 0.27 \%=0.05 \%)$ as derived from page 4 of this Schedule.
(4) From page 7 of this Schedule.

Aqua Ohio, Inc.
Interest Rates and Bond Spreads for Moody's Corporate and Public Utility Bonds

Selected Bond Yields

Selected Bond Spreads

A2 Rated Public Utility Bonds Over Aaa Rated Corporate Bonds:

$$
0.42 \%(1)
$$

Baa2 Rated Public Utility Bonds Over A2 Rated Public Utility Bonds:

$$
0.27 \%(2)
$$

Notes:
(1) Column [2] - Column [1].
(2) Column [3] - Column [2].

Source of Information:
Bloomberg Professional Service

Aqua Ohio, Inc.
Comparison of Long-Term Issuer Ratings for Proxy Group of Eight Water Companies

Numerical Assignment for Moody's and Standard \& Poor's Bond Ratings

Moody's Bond Rating	Numerical Bond Weighting	 Poor's Bond Rating
Aaa	1	AAA
Aa1	2	AA+
Aa2	3	AA
Aa3	4	AA-
A1	5	$\mathrm{~A}+$
A2	6	A
A3	7	$\mathrm{~A}-$
Baa1	8	$\mathrm{BBB}+$
Baa2	9	BBB
Baa3	10	$\mathrm{BBB}-$
Ba1		
Ba2	11	$\mathrm{BB}+$
Ba3	12	BB
B1	13	$\mathrm{BB}-$
B2	14	$\mathrm{~B}+$
B3	15	B
	16	$\mathrm{~B}-$

Aqua Ohio, Inc.
Judgment of Equity Risk Premium for the Proxy Group of Eight Water Companies

Line No.		Proxy Group of Eight Water Companies
1.	Calculated equity risk premium based on the total market using the beta approach (1)	6.79 \%
2.	Mean equity risk premium based on a study using the holding period returns of public utilities with A2 rated bonds (2)	5.55
3.	Average equity risk premium	6.17 \%

Notes: (1) From page 8 of this Schedule.
(2) From page 12 of this Schedule.

Aqua Ohio, Inc.
Derivation of Equity Risk Premium Based on the Total Market Approach
Using the Beta for the
Proxy Group of Eight Water Companies

Line No.	Equity Risk Premium Measure	Proxy Group of Eight Water Companies
Ibbotson-Based Equity Risk Premiums:		
1.	Ibbotson Equity Risk Premium (1)	5.92 \%
2.	Regression on Ibbotson Risk Premium Data (2)	8.83
3.	Ibbotson Equity Risk Premium based on PRPM (3)	9.40
4.	Equity Risk Premium Based on Value Line Summary and Index (4)	5.01
5.	Equity Risk Premium Based on Value Line S\&P 500 Companies (5)	10.72
6.	Equity Risk Premium Based on Bloomberg S\&P 500 Companies (6)	12.37
7.	Conclusion of Equity Risk Premium	8.71 \%
8.	Adjusted Beta (7)	0.78
9.	Forecasted Equity Risk Premium	6.79 \%

Notes provided on page 9 of this Schedule.

Aqua Ohio, Inc.
Derivation of Equity Risk Premium Based on the Total Market Approach
Using the Beta for the
Proxy Group of Eight Water Companies
Notes:
(1) Based on the arithmetic mean historical monthly returns on large company common stocks from Ibbotson® SBBI® 2021 Market Report minus the arithmetic mean monthly yield of Moody's average Aaa and Aa2 corporate bonds from 1928-2020.
(2) This equity risk premium is based on a regression of the monthly equity risk premiums of large company common stocks relative to Moody's average Aaa and Aa2 rated corporate bond yields from 1928-2020 referenced in Note 1 above.
(3) The Predictive Risk Premium Model (PRPM) is discussed in the accompanying direct testimony. The Ibbotson equity risk premium based on the PRPM is derived by applying the PRPM to the monthly risk premiums between Ibbotson large company common stock monthly returns and average Aaa and Aa2 corporate monthly bond yields, from January 1928 through March 2021.
(4) The equity risk premium based on the Value Line Summary and Index is derived by subtracting the average consensus forecast of Aaa corporate bonds of 3.44% (from page 3 of this Schedule) from the projected 3-5 year total annual market return of 8.45\% (described fully in note 1 on page 2 of Schedule DWD-5).
(5) Using data from Value Line for the S\&P 500, an expected total return of 14.16% was derived based upon expected dividend yields and long-term earnings growth estimates as a proxy for capital appreciation. Subtracting the average consensus forecast of Aaa corporate bonds of 3.44% results in an expected equity risk premium of 10.72%.
(6) Using data from the Bloomberg Professional Service for the S\&P 500, an expected total return of 15.81% was derived based upon expected dividend yields and long-term earnings growth estimates as a proxy for capital appreciation. Subtracting the average consensus forecast of Aaa corporate bonds of 3.44% results in an expected equity risk premium of 12.37%.
(7) Average of mean and median beta from Schedule DWD-5.

Sources of Information:
Stocks, Bonds, Bills, and Inflation - 2021 SBBI Yearbook, John Wiley \& Sons, Inc. Industrial Manual and Mergent Bond Record Monthly Update.
Value Line Summary and Index
Blue Chip Financial Forecasts, April 1, 2021 and December 1, 2020
Bloomberg Professional Service

Consensus Forecasts of U.S. Interest Rates and Key Assumptions

Interest Rates	-------------------------------------Hverage For Week Ending--- Latest Qtr								Consensus Forecasts-Quarterly Avg.					
									$\begin{gathered} \text { 2Q } \\ 2021 \end{gathered}$	$\begin{gathered} 3 Q \\ \mathbf{2 0 2 1} \\ \hline \end{gathered}$	$\begin{gathered} 4 Q \\ 2021 \\ \hline \end{gathered}$	$\begin{gathered} 1 Q \\ 2022 \end{gathered}$	$\begin{gathered} 2 Q \\ 2022 \\ \hline \end{gathered}$	$\begin{gathered} 3 Q \\ 2022 \\ \hline \end{gathered}$
	$\begin{aligned} & ------ \text { Av } \\ & \text { Mar } 26 \end{aligned}$	Mar 19	Mar 12	Mar 5	Feb	Jan	Dec	1Q 2021*						
Federal Funds Rate	0.07	0.07	0.07	0.07	0.08	0.09	0.09	0.08	0.1	0.1	0.1	0.1	0.1	0.1
Prime Rate	3.25	3.25	3.25	3.25	3.25	3.25	3.25	3.25	3.3	3.3	3.3	3.3	3.3	3.3
LIBOR, 3-mo.	0.20	0.19	0.18	0.18	0.19	0.22	0.23	0.20	0.2	0.3	0.3	0.3	0.3	0.3
Commercial Paper, 1-mo.	0.07	0.07	0.07	0.06	0.06	0.08	0.09	0.07	0.1	0.1	0.1	0.1	0.2	0.2
Treasury bill, 3-mo.	0.02	0.02	0.04	0.04	0.04	0.08	0.09	0.05	0.1	0.1	0.1	0.1	0.1	0.2
Treasury bill, 6-mo.	0.04	0.05	0.06	0.07	0.06	0.09	0.09	0.07	0.1	0.1	0.1	0.1	0.2	0.2
Treasury bill, 1 yr.	0.07	0.07	0.09	0.08	0.07	0.10	0.10	0.08	0.1	0.2	0.2	0.2	0.3	0.3
Treasury note, 2 yr .	0.14	0.15	0.16	0.14	0.12	0.13	0.14	0.13	0.2	0.3	0.3	0.4	0.4	0.5
Treasury note, 5 yr .	0.84	0.85	0.82	0.73	0.54	0.45	0.39	0.61	0.8	0.9	1.0	1.1	1.1	1.2
Treasury note, 10 yr .	1.65	1.66	1.57	1.49	1.26	1.08	0.93	1.32	1.6	1.7	1.8	1.9	2.0	2.0
Treasury note, 30 yr .	2.35	2.41	2.30	2.25	2.04	1.82	1.67	2.08	2.4	2.5	2.5	2.6	2.7	2.7
Corporate Aaa bond	3.15	3.23	3.13	3.06	2.84	2.64	2.52	2.88	3.0	3.1	3.2	3.3	3.4	3.4
Corporate Baa bond	3.63	3.71	3.62	3.52	3.30	3.14	3.03	3.36	3.9	4.0	4.1	4.2	4.3	4.4
State \& Local bonds	2.75	2.74	2.72	2.77	2.63	2.65	2.70	2.68	2.7	2.9	3.0	3.0	3.1	3.2
Home mortgage rate	3.17	3.09	3.05	3.02	2.81	2.74	2.68	2.88	3.2	3.3	3.4	3.5	3.6	3.7
				-Histor					Consensus Forecasts-Quarterly					
	2Q	3Q	4Q	1Q	2Q	3Q	4Q	1Q	2 Q	3Q	4Q	$1 Q$	2Q	3Q
Key Assumptions	$\underline{2019}$	$\underline{2019}$	$\underline{2019}$	$\underline{2020}$	$\underline{2020}$	$\underline{2020}$	$\underline{2020}$	2021**	$\underline{2021}$	2021	2021	2022	$\underline{2022}$	$\underline{2022}$
Fed's AFE \$ Index	110.4	110.6	110.5	111.4	112.4	107.3	105.2	103.4	104.0	103.9	103.9	103.6	103.5	103.4
Real GDP	1.5	2.6	2.4	-5.0	-31.4	33.4	4.3	4.3	8.1	6.9	4.8	3.5	3.0	2.7
GDP Price Index	2.5	1.5	1.4	1.4	-1.8	3.5	2.0	2.2	2.1	2.1	2.0	1.9	2.1	2.2
Consumer Price Index	3.5	1.3	2.6	1.0	-3.1	4.7	2.4	2.8	2.4	2.1	2.0	2.0	2.1	2.2
PCE Price Index	2.5	1.4	1.5	1.3	-1.6	3.7	1.5	2.7	2.2	2.0	1.9	1.9	2.0	2.1

Forecasts for interest rates and the Federal Reserve's Major Currency Index represent averages for the quarter. Forecasts for Real GDP, GDP Price Index and Consumer Price Index are seasonally-adjusted annual rates of change (saar). Individual panel members' forecasts are on pages 4 through 9. Historical data: Treasury rates from the Federal Reserve Board's H.15; AAA-AA and A-BBB corporate bond yields from Bank of America-Merrill Lynch and are 15+ years, yield to maturity; State and local bond yields from Bank of America-Merrill Lynch, A-rated, yield to maturity; Mortgage rates from Freddie Mac, 30-year, fixed; LIBOR quotes from Intercontinental Exchange. All interest rate data are sourced from Haver Analytics. Historical data for Fed's Major Currency Index are from FRSR H.10. Historical data for Real GDP and GDP Chained Price Index are from the Bureau of Economic Analysis (BEA). Consumer Price Index (CPI) history is from the Department of Labor's Bureau of Labor Statistics (BLS). *Interest rate data for 1Q 2021 based on historical data through the week ended March 26. **Data for 1Q 2021 for the Fed's AFE \$ Index based on data through the week ended March 26. Figures for 1Q 2021 Real GDP, GDP Chained Price Index and CPI and PCE Price Index are consensus forecasts from the March 2021 survey.

Long-Range Survey:

The table below contains the results of our twice-annual long-range CONSENSUS survey. There are also Top 10 and Bottom 10 averages for each variable. Shown are consensus estimates for the years 2022 through 2026 and averages for the five-year periods 2022-2026 and 2027-2031. Apply these projections cautiously. Few if any economic, demographic and political forces can be evaluated accurately over such long time spans.

				Average For The Year -		2026	Five-Year Averages	
		2022	2023	2024	2025		2022-2026	2027-2031
1. Federal Funds Rate	consensus	0.1	0.3	0.7	1.2	1.5	0.8	1.8
	Top 10 Average	0.2	0.7	1.4	2.0	2.4	1.3	2.5
	Bottom 10 Average	0.1	0.1	0.2	0.4	0.6	0.3	1.2
2. Prime Rate	CONSENSUS	3.3	3.5	3.9	4.3	4.6	3.9	4.9
	Top 10 Average	3.4	3.7	4.4	5.0	5.4	4.4	5.4
	Bottom 10 Average	3.2	3.2	3.3	3.5	3.8	3.4	4.5
3. LIBOR, 3-Mo.	consensus	0.4	0.6	1.1	1.5	1.8	1.1	2.2
	Top 10 Average	0.5	1.0	1.7	2.2	2.6	1.6	2.7
	Bottom 10 Average	0.3	0.3	0.5	0.8	1.1	0.6	1.6
4. Commercial Paper, 1-Mo	consensus	0.3	0.7	1.2	1.6	1.9	1.1	2.1
	Top 10 Average	0.4	0.9	1.6	2.1	2.4	1.5	2.5
	Bottom 10 Average	0.2	0.4	0.8	1.2	1.5	0.8	1.7
5. Treasury Bill Yield, 3-Mo	consensus	0.2	0.4	0.8	1.2	1.5	0.8	1.9
	Top 10 Average	0.3	0.7	1.5	2.0	2.4	1.4	2.5
	Bottom 10 Average	0.1	0.1	0.2	0.5	0.7	0.3	1.3
6. Treasury Bill Yield, 6-Mo	CONSENSUS	0.2	0.5	0.9	1.3	1.6	0.9	2.0
	Top 10 Average	0.3	0.8	1.6	2.1	2.5	1.5	2.6
	Bottom 10 Average	0.1	0.2	0.3	0.5	0.8	0.4	1.4
7. Treasury Bill Yield, 1-Yr	CONSENSUS	0.3	0.6	1.0	1.4	1.8	1.0	2.1
	Top 10 Average	0.5	1.0	1.7	2.3	2.6	1.6	2.7
	Bottom 10 Average	0.2	0.3	0.4	0.7	0.9	0.5	1.6
8. Treasury Note Yield, 2-Yr	consensus	0.4	0.8	1.2	1.6	1.9	1.2	2.3
	Top 10 Average	0.7	1.2	1.9	2.4	2.8	1.8	2.9
	Bottom 10 Average	0.2	0.3	0.6	0.8	1.1	0.6	1.7
9. Treasury Note Yield, 5-Yr	consensus	0.8	1.2	1.6	2.0	2.3	1.5	2.5
	Top 10 Average	1.1	1.6	2.3	2.8	3.1	2.1	3.1
	Bottom 10 Average	0.5	0.7	1.0	1.2	1.4	1.0	1.9
10. Treasury Note Yield, 10-Yr	consensus	1.3	1.7	2.0	2.4	2.6	2.0	2.8
	Top 10 Average	1.7	2.2	2.7	3.1	3.4	2.6	3.5
	Bottom 10 Average	0.9	1.2	1.4	1.7	1.8	1.4	2.2
11. Treasury Bond Yield, 30-Yr	consensus	2.1	2.4	2.8	3.1	3.4	2.8	3.6
	Top 10 Average	2.5	3.0	3.5	4.0	4.2	3.4	4.3
	Bottom 10 Average	1.6	1.9	2.2	2.4	2.6	2.1	2.9
12. Corporate Aaa Bond Yield	consensus	2.8	3.2	3.6	4.0	4.2	3.6	4.5
	Top 10 Average	3.1	3.6	4.2	4.6	4.9	4.1	5.0
	Bottom 10 Average	2.4	2.8	3.0	3.3	3.6	3.0	3.9
13. Corporate Baa Bond Yield	consensus	3.9	4.3	4.7	5.0	5.2	4.6	5.4
	Top 10 Average	4.3	4.7	5.2	5.6	5.9	5.1	6.0
	Bottom 10 Average	3.5	3.9	4.1	4.3	4.5	4.1	4.9
14. State \& Local Bonds Yield	CONSENSUS	2.8	3.1	3.4	3.6	3.8	3.3	3.9
	Top 10 Average	3.1	3.5	3.8	4.1	4.3	3.8	4.3
	Bottom 10 Average	2.5	2.8	2.9	3.2	3.4	2.9	3.6
15. Home Mortgage Rate	CONSENSUS	3.2	3.5	3.9	4.2	4.5	3.9	4.7
	Top 10 Average	3.5	3.9	4.4	4.9	5.2	4.4	5.2
	Bottom 10 Average	2.9	3.2	3.4	3.6	3.8	3.4	4.2
A. Fed's AFE Nominal \$ Index	CONSENSUS	107.2	107.0	106.5	106.4	106.6	106.7	106.7
	Top 10 Average	109.0	108.9	108.8	108.9	109.5	109.0	110.2
	Bottom 10 Average	105.4	105.2	104.4	103.8	103.7	104.5	103.0
			----- Y	r-Year,	- -------		Five-Yea	verages
		2022	2023	2024	2025	2026	2022-2026	2027-2031
B. Real GDP	CONSENSUS	3.2	2.5	2.3	2.2	2.1	2.4	2.1
	Top 10 Average	3.8	3.0	2.6	2.5	2.4	2.9	2.4
	Bottom 10 Average	2.6	2.1	1.9	1.9	1.8	2.1	1.8
C. GDP Chained Price Index	CONSENSUS	1.9	2.0	2.1	2.1	2.1	2.0	2.1
	Top 10 Average	2.2	2.3	2.3	2.3	2.3	2.3	2.3
	Bottom 10 Average	1.7	1.8	1.9	1.9	1.9	1.8	1.9
D. Consumer Price Index	consensus	2.1	2.2	2.2	2.1	2.2	2.1	2.2
	Top 10 Average	2.4	2.4	2.4	2.4	2.4	2.4	2.4
	Bottom 10 Average	1.8	1.9	1.9	1.9	1.9	1.9	1.9
E. PCE Price Index	consensus	1.9	2.0	2.1	2.1	2.1	2.0	2.1
	Top 10 Average	2.2	2.2	2.2	2.2	2.3	2.2	2.4
	Bottom 10 Average	1.7	1.8	1.9	1.9	1.9	1.8	1.9

Aqua Ohio, Inc.
Derivation of Mean Equity Risk Premium Based Studies
Using Holding Period Returns and
Projected Market Appreciation of the S\&P Utility Index
Line No. $\left.\begin{array}{c}\text { Implied Equity Risk } \\ \text { Premium }\end{array}\right]$

Equity Risk Premium based on S\&P Utility Index
Holding Period Returns (1):

1.	Historical Equity Risk Premium	4.16%
2.	Regression of Historical Equity Risk Premium (2)	6.45
3.	Forecasted Equity Risk Premium Based on PRPM (3)	4.77
4.	Forecasted Equity Risk Premium based on Projected Total Return on the S\&P Utilities Index (Value Line Data) (4)	6.68
5.	Forecasted Equity Risk Premium based on Projected Total Return on the S\&P Utilities Index (Bloomberg Data) (5)	

Index (Bloomberg Data) (5)
5.70

Average Equity Risk Premium (6)

Notes: (1) Based on S\&P Public Utility Index monthly total returns and Moody's Public Utility Bond average monthly yields from 1928-2020. Holding period returns are calculated based upon income received (dividends and interest) plus the relative change in the market value of a security over a one-year holding period.
(2) This equity risk premium is based on a regression of the monthly equity risk premiums of the S\&P Utility Index relative to Moody's A2 rated public utility bond yields from 1928-2020 referenced in note 1 above.
(3) The Predictive Risk Premium Model (PRPM) is applied to the risk premium of the monthly total returns of the S\&P Utility Index and the monthly yields on Moody's A2 rated public utility bonds from January 1928 - March 2021.
(4) Using data from Value Line for the S\&P Utilities Index, an expected return of 10.54% was derived based on expected dividend yields and long-term growth estimates as a proxy for market appreciation. Subtracting the expected A2 rated public utility bond yield of 3.86%, calculated on line 3 of page 3 of this Schedule results in an equity risk premium of 6.68%. ($10.54 \%-3.86 \%=6.68 \%$)
(5) Using data from Bloomberg Professional Service for the S\&P Utilities Index, an expected return of 9.56% was derived based on expected dividend yields and longterm growth estimates as a proxy for market appreciation. Subtracting the expected A2 rated public utility bond yield of 3.86%, calculated on line 3 of page 3 of this Schedule results in an equity risk premium of 5.70%. $(9.56 \%-3.86 \%=$ 5.70\%)
(6) Average of lines 1 through 5.
Indicated Common Equity Cost Rate Through Use
of the Traditional Capital Asset Pricing Model (CAPM) and Empirical Capital Asset Pricing Model (ECAPM)

Proxy Group of Eight Water
Companies
American States Water Company
American Water Works Company, Inc.
Artesian Resources Corporation
California Water Service Group
Global Water Resources, Inc.
Middlesex Water Company
SJW Group
The York Water Company
Mean
Average of Mean and Median
Notes on page 2 of this Schedule.

Notes:
(1) The market risk premium (MRP) is derived by using six different measures from three sources: Ibbotson, Value Line, and Bloomberg as illustrated below:

Historical Data MRP Estimates:
Measure 1: Ibbotson Arithmetic Mean MRP (1926-2020)
$\begin{array}{lr}\text { Arithmetic Mean Monthly Returns for Large Stocks 1926-2020: } & 12.20 \% \\ \text { Arithmetic Mean Income Returns on Long-Term Government Bonds: } & 5.05\end{array}$
Arithmetic Mean Income Returns on Long-Term Government Bonds:
5.05

MRP based on Ibbotson Historical Data:
7.15 \%

Measure 2: Application of a Regression Analysis to Ibbotson Historical Data (1926-2020)
9.54%
Measure 3: Application of the PRPM to Ibbotson Historical Data:
(January 1926 - March 2021)
10.46%

Value Line MRP Estimates:
Measure 4: Value Line Projected MRP (Thirteen weeks ending April 09, 2021)
$\begin{array}{ll}\text { Total projected return on the market 3-5 years hence*: } & 8.45 \%\end{array}$
Projected Risk-Free Rate (see note 2):
MRP based on Value Line Summary \& Index:
2.73
*Forcasted 3-5 year capital appreciation plus expected dividend yield
Measure 5: Value Line Projected Return on the Market based on the S\&P 500

Total return on the Market based on the S\&P 500:	14.16%
Projected Risk-Free Rate (see note 2):	2.73
MRP based on Value Line data	11.43%

Measure 6: Bloomberg Projected MRP
Total return on the Market based on the S\&P 500: $\quad 15.81 \%$
Projected Risk-Free Rate (see note 2):

MRP based on Bloomberg data	$\frac{2.73}{13.08} \%$ Average of Value Line, Ibbotson, and Bloomberg MRP: 9.56$\%$

(2) For reasons explained in the direct testimony, the appropriate risk-free rate for cost of capital purposes is the average forecast of 30 year Treasury Bonds per the consensus of nearly 50 economists reported in Blue Chip Financial Forecasts. (See pages 10-11 of Schedule DWD-4.) The projection of the risk-free rate is illustrated below:

Second Quarter 2021	2.40%
Third Quarter 2021	2.50
Fourth Quarter 2021	2.50
First Quarter 2022	2.60
Second Quarter 2022	2.70
Third Quarter 2022	2.70
2022-2026	2.80
2027-2031	3.60
	$=$2.73

(3) Average of Column 6 and Column 7.

Sources of Information:
Value Line Summary and Index
Blue Chip Financial Forecasts, April 1, 2021 and December 1, 2020
Stocks, Bonds, Bills, and Inflation - 2021 SBBI Yearbook, John Wiley \& Sons, Inc.
Bloomberg Professional Services

Aqua Ohio, Inc. Basis of Selection of the Group of Non-Price Regulated Companies Comparable in Total Risk to the Utility Proxy Group

The criteria for selection of the proxy group of twenty non-price regulated companies was that the non-price regulated companies be domestic and reported in Value Line Investment Survey (Standard Edition).

The Non-Price Regulated Proxy Group were then selected based on the unadjusted beta range of $0.43-0.75$ and residual standard error of the regression range of 3.0062-3.5854 of the Utility Proxy Group.

These ranges are based upon plus or minus two standard deviations of the unadjusted beta and standard error of the regression. Plus or minus two standard deviations captures 95.50% of the distribution of unadjusted betas and residual standard errors of the regression.

The standard deviation of the Utility Proxy Group's residual standard error of the regression is 0.1448 . The standard deviation of the standard error of the regression is calculated as follows:

Standard Deviation of the Std. Err. of the Regr. = Standard Error of the Regression $\sqrt{2 N}$
where: $N=\quad$ number of observations. Since Value Line betas are derived from weekly price change observations over a period of five years, $\mathrm{N}=259$

$$
\text { Thus, } 0.1448=\frac{3.2958}{\sqrt{518}}=\frac{3.2958}{22.7596}
$$

Aqua Ohio, Inc.
Basis of Selection of Comparable Risk Domestic Non-Price Regulated Companies

| $[4]$ | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: |
| | [1] | [2] | | |

Aqua Ohio, Inc.
Proxy Group of Non-Price Regulated Companies
Comparable in Total Risk to the
Proxy Group of Eight Water Companies

	[1]	[2]	[3]	[4]
Proxy Group of Twenty Non-Price Regulated Companies	$\begin{gathered} \text { VL Adjusted } \\ \text { Beta } \\ \hline \end{gathered}$	$\begin{gathered} \text { Unadjusted } \\ \text { Beta } \\ \hline \end{gathered}$	Residual Standard Error of the Regression	Standard Deviation of Beta
Adobe, Inc.	0.75	0.61	3.2593	0.0813
Balchem Corporation	0.70	0.54	3.5216	0.0879
Bio-Rad Labs	0.75	0.58	3.2201	0.0804
CSG Systems Int'l	0.75	0.60	3.1995	0.0798
Citrix Sys.	0.70	0.47	3.4840	0.0869
Dollar General Corporation	0.65	0.46	3.1921	0.0797
Ennis, Inc.	0.80	0.66	3.3410	0.0834
Heartland Express	0.70	0.54	3.0069	0.0750
Intel Corp.	0.80	0.67	3.5783	0.0893
Keysight Technologies	0.85	0.73	3.5026	0.0874
Lancaster Colony Corp.	0.70	0.50	3.0103	0.0751
Lilly (Eli)	0.75	0.59	3.0669	0.0765
Smucker (J.M.)	0.65	0.45	3.0463	0.0760
Schneider National, Inc.	0.80	0.65	3.4534	0.0894
Bio-Techne Corp.	0.80	0.67	3.2475	0.0810
Tyler Technologies	0.75	0.56	3.2350	0.0807
United Parcel Serv.	0.80	0.63	3.0112	0.0751
Walgreens Boots Alliance	0.85	0.71	3.4851	0.0870
Werner Enterprises	0.75	0.58	3.3887	0.0846
West Pharmaceutical Services Inc	0.85	0.70	3.1887	0.0796
Average	0.76	0.60	3.2719	0.0818
Proxy Group of Eight Water				
Companies	0.75	0.59	3.2958	0.0824

Source of Information:
Valueline Proprietary Database, March 2021

Aqua Ohio, Inc.
Summary of Cost of Equity Models Applied to Proxy Group of Twenty Non-Price Regulated Companies Comparable in Total Risk to the Proxy Group of Eight Water Companies

Principal Methods		Proxy Group of Twenty NonPrice Regulated Companies
Discounted Cash Flow Model (DCF) (1)		11.51 \%
Risk Premium Model (RPM) (2)		10.85
Capital Asset Pricing Model (CAPM) (3)		10.30
	Mean	10.89 \%
	Median	10.85 \%
	Average of Mean and Median	10.87 \%

Notes:
(1) From page 2 of this Schedule.
(2) From page 3 of this Schedule.
(3) From page 6 of this Schedule.
DCF Results for the Proxy Group of Non-Price-Regulated Companies Comparable in Total Risk to the

$\underset{\sim}{\infty}$		
Σ		ஃ゚

Aqua Ohio, Inc.				
CF Results for the Proxy Group of Non-Price-Regulated Companies Comparable in Total Risk to the Proxy Group of Eight Water Companies				
[2]	[3]	[4]	[5]	[6]
Value Line Projected Five Year Growth in EPS	Zack's Five Year Projected Growth Rate in EPS	Yahoo! Finance Projected Five Year Growth in EPS	Bloomberg Projected Five Year Growth in EPS	Average Projected Five Year Growth Rate in EPS
14.00 \%	19.00 \%	17.80 \%	17.27 \%	17.02 \%
13.50	NA	24.00	7.93	15.14
11.50	NA	17.80	28.75	19.35
10.00	NA	NMF	NA	10.00
9.00	5.30	10.70	9.60	8.65
13.00	10.80	13.57	10.57	11.99
3.00	NA	5.00	NA	4.00
10.00	NA	12.50	NA	11.25
7.00	7.50	5.43	5.24	6.29
17.00	10.40	12.41	10.41	12.56
6.50	NA	3.00	NA	4.75
9.00	12.20	11.60	NA	10.93
2.50	1.60	NMF	1.65	1.92
2.50	14.00	15.25	14.48	11.56
12.50	15.00	15.00	19.03	15.38
10.50	15.00	10.00	20.15	13.91
8.00	8.70	10.06	8.04	8.70
6.00	6.80	3.63	4.74	5.29
9.50	10.00	11.34	9.52	10.09
17.00	22.60	22.60	17.21	19.85

[^20](1) The application of the DCF model to the domestic, non-price regluated comparable risk companies is identical to the application of the DCF to the utility proxy group. The projected growth rate in EPS, which is calculated by averaging the 5 year projected growth in EPS provided by Value Line, Bloomberg, www.zacks.com, and www.yahoo.com (excluding any negative growth rates) and then adding that growth rate to the adjusted dividend yield.

Value Line Investment Survey www.zacks.com Downloaded on 04/05/2021 Bloomberg Professional Services

Aqua Ohio, Inc.
Indicated Common Equity Cost Rate
Through Use of a Risk Premium Model
Using an Adjusted Total Market Approach

$\underline{\text { Line No. }}$		Proxy Group of Twenty Non-Price Regulated Companies
1.	Prospective Yield on Baa2 Rated Corporate Bonds (1)	4.36 \%
2.	Adjustment to Reflect Proxy Group Bond Rating (2)	(0.13)
3.	Prospective Bond Yield Applicable to the Non-Price Regulated Proxy Group	4.23
4.	Equity Risk Premium (3)	6.62
5.	Risk Premium Derived Common Equity Cost Rate	10.85 \%

Notes: (1) Average forecast of Baa2 corporate bonds based upon the consensus of nearly 50 economists reported in Blue Chip Financial Forecasts dated April 1, 2021 and December 1, 2020 (see pages 10 and 11 of Schedule DWD-4). The estimates are detailed below.

Second Quarter 2021	3.90%
Third Quarter 2021	4.00
Fourth Quarter 2021	4.10
First Quarter 2022	4.20
Second Quarter 2022	4.30
Third Quarter 2022	4.40
2022-2026	4.60
2027-2031	5.40
Average	

(2) To reflect the Baa1 average rating of the Non-Price Regulated Proxy Group, the prosepctive yield on Baa2 corporate bonds must be adjusted downward by $1 / 3$ of the spread between A2 and Baa2 corporate bond yields as shown below:

	A2 Corp. Bond Yield	Baa2 Corp. Bond Yield	Spread	
Mar-2021	3.37	$\%$	3.74	0.37
Feb-2021	3.03	3.42	0.39	
Jan-2021	2.84	3.24	0.40	
	Average yield spread		0.39	

(3) From page 5 of this Schedule.

Aqua Ohio, Inc.
Comparison of Long-Term Issuer Ratings for the
Proxy Group of Twenty Non-Price Regulated Companies of Comparable risk to the Proxy Group of Eight Water Companies

Moody's
Long-Term Issuer Rating
April 2021

Standard \& Poor's
Long-Term Issuer Rating
April 2021

Proxy Group of Twenty NonPrice Regulated Companies	Long- Term Issuer Rating	Numerical Weighting (1)	Long-Term Issuer Rating	$\begin{gathered} \text { Numerical } \\ \text { Weighting (1) } \end{gathered}$
Adobe, Inc.	A2	6.0	A	6.0
Balchem Corporation	NA	--	NA	--
Bio-Rad Labs	Baa2	9.0	BBB	9.0
CSG Systems Int'l	NA	--	BB+	11.0
Citrix Sys.	Baa3	10.0	BBB	9.0
Dollar General Corporation	Baa2	9.0	BBB	9.0
Ennis, Inc.	NA	--	NA	--
Heartland Express	NA	--	NA	--
Intel Corp.	A1	5.0	A+	5.0
Keysight Technologies	Baa2	9.0	BBB	9.0
Lancaster Colony Corp.	NA	--	NA	--
Lilly (Eli)	A2	6.0	A+	5.0
Smucker (J.M.)	Baa2	9.0	BBB	9.0
Schneider National, Inc.	NA	--	NA	--
Bio-Techne Corp.	NA	--	NA	--
Tyler Technologies	NA	--	NA	--
United Parcel Serv.	A2	6.0	A-	7.0
Walgreens Boots Alliance	Baa2	9.0	BBB	9.0
Werner Enterprises	NA	--	NA	--
West Pharmaceutical Services Inc	NA	--	NA	--
Average	Baa1	7.8	BBB+	8.0

Notes:
(1) From page 6 of Schedule DWD-4.

Source of Information:
Bloomberg Professional Services

Aqua Ohio, Inc.
Derivation of Equity Risk Premium Based on the Total Market Approach
Using the Beta for
Proxy Group of Twenty Non-Price Regulated Companies of Comparable risk to the Proxy Group of Eight Water Companies
$\left.\begin{array}{cll}\text { Line No. } & \text { Equity Risk Premium Measure } & \begin{array}{c}\text { Proxy Group of } \\ \text { Twenty Non-Price } \\ \text { Regulated }\end{array} \\ \text { Companies }\end{array}\right]$

Notes:
(1) From note 1 of page 9 of Schedule DWD-4.
(2) From note 2 of page 9 of Schedule DWD-4.
(3) From note 3 of page 9 of Schedule DWD-4.
(4) From note 4 of page 9 of Schedule DWD-4.
(5) From note 5 of page 9 of Schedule DWD-4.
(6) From note 6 of page 9 of Schedule DWD-4.
(7) Average of mean and median beta from page 6 of this Schedule.

Sources of Information:
Stocks, Bonds, Bills, and Inflation - 2021 SBBI Yearbook, John Wiley \& Sons, Inc.
Value Line Summary and Index
Blue Chip Financial Forecasts, April 1, 2021 and December 1, 2020
Bloomberg Professional Services
Aqua Ohio, Inc.
Traditional CAPM and ECAPM Results for the Proxy Group of Non-Price-Regulated Companies Comparable in Total Risk to the

Proxy Group of Twenty Non-Price Regulated Companies	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]
	Value Line Adjusted Beta	Bloomberg Beta	Average Beta	Market Risk Premium (1)	Risk-Free Rate (2)	Traditional CAPM Cost Rate	ECAPM Cost Rate	Indicated Common Equity Cost Rate (3)
Adobe, Inc.	0.75	0.87	0.81	9.57 \%	2.73 \%	10.48 \%	10.93 \%	10.70 \%
Balchem Corporation	0.70	0.73	0.72	9.57	2.73	9.62	10.29	9.95
Bio-Rad Labs	0.75	0.70	0.72	9.57	2.73	9.62	10.29	9.95
CSG Systems Int'l	0.75	0.91	0.83	9.57	2.73	10.67	11.08	10.87
Citrix Sys.	0.70	0.61	0.66	9.57	2.73	9.04	9.86	9.45
Dollar General Corporation	0.70	0.67	0.69	9.57	2.73	9.33	10.07	9.70
Ennis, Inc.	0.80	0.82	0.81	9.57	2.73	10.48	10.93	10.70
Heartland Express	0.70	0.76	0.73	9.57	2.73	9.71	10.36	10.04
Intel Corp.	0.80	0.96	0.88	9.57	2.73	11.15	11.43	11.29
Keysight Technologies	0.85	0.79	0.82	9.57	2.73	10.57	11.00	10.79
Lancaster Colony Corp.	0.70	0.71	0.71	9.57	2.73	9.52	10.21	9.87
Lilly (Eli)	0.75	0.73	0.74	9.57	2.73	9.81	10.43	10.12
Smucker (J.M.)	0.70	0.50	0.60	9.57	2.73	8.47	9.43	8.95
Schneider National, Inc.	0.80	0.72	0.76	9.57	2.73	10.00	10.57	10.29
Bio-Techne Corp.	0.80	0.92	0.86	9.57	2.73	10.96	11.29	11.12
Tyler Technologies	0.75	0.75	0.75	9.57	2.73	9.90	10.50	10.20
United Parcel Serv.	0.80	0.85	0.83	9.57	2.73	10.67	11.08	10.87
Walgreens Boots Alliance	0.75	0.80	0.78	9.57	2.73	10.19	10.72	10.45
Werner Enterprises	0.75	0.78	0.76	9.57	2.73	10.00	10.57	10.29
West Pharmaceutical Services Inc	0.85	0.76	0.80	9.57	2.73	10.38	10.86	10.62
Mean			0.76			10.11 \%	10.66 \%	10.31 \%
Median			0.76			10.00 \%	10.57 \%	10.29 \%
Average of Mean and Median			0.76			10.06 \%	10.62 \%	10.30 \%
	From Sched From Sched Average of	DWD-5, note DWD-5, note M and ECAPM						

Aqua Ohio, Inc.
Derivation of Investment Risk Adjustment Based upon
Ibbotson Associates' Size Premia for the Decile Portfolios of the NYSE/AMEX/NASDAQ

Aqua Ohio, Inc.

Source of Information: Company SEC filed documents

This foregoing document was electronically filed with the Public Utilities

Commission of Ohio Docketing Information System on

7/12/2021 5:13:09 PM
in

Case No(s). 21-0595-WW-AIR

Summary: Testimony of Dylan W. D'Ascendis, CRRA, CVA electronically filed by Ms. Nicole R Woods on behalf of Aqua Ohio, Inc.

[^0]: 1 Federal Power Commission v. Hope Natural Gas Co., 320 U.S. 591 (1944). ("Hope") Bluefield Water Works Improvement Co. v. Public Serv. Comm'n, 262 U.S. 679 (1922). ("Bluefield")

[^1]: 3 Value Line Investment Survey, April 9, 2021.

[^2]: 4 Free Cash Flow = Operating Cash Flow (Funds From Operations) minus Capital Expenditures.

[^3]: $9 \quad$ Illustrated on Columns 1 and 2 of page 2 of Schedule DWD-4.
 10 Illustrated on Column 4 of page 2 of Schedule DWD-4.
 11 Annualized Return = (1+Monthly Return $)^{\wedge} 12-1$.
 12 See, Column 6 of page 2 of Schedule DWD-4.
 13 Blue Chip Financial Forecasts, December 1, 2020 at p. 14 and April 1, 2021 at p. 2.

[^4]: 17 SBBI Appendix A Tables: Morningstar Stocks, Bonds, Bills, \& Inflation 1926-2020.
 18
 19

 As explained in Note 1 on page 9 of Schedule DWD-4.
 SBBI-2021, at 10-22-10-23.

[^5]: 20 Data from January 1928-December 2020 is from SBBI-2021. Data from January - March 2021 is from Bloomberg Professional Services. Shown on Line No. 3 on page 8 of Schedule DWD-4.

[^6]: 23
 24
 See, Line No. 7 on page 8 of Schedule DWD-4. As shown on page 8 of Attachment DWD-4.

[^7]: 26 Derived on Line No. 3 of page 3 of Schedule DWD-4.
 27 As shown on page 12 of Attachment DWD-4.
 28 As shown on page 7 of Schedule DWD-4.

[^8]: 32 Morin, at 175.

[^9]: 33 Morin, at 190.
 Fama \& French, at 32.
 lbid., at 33.

[^10]: 36 SBBI - 2021, at Appendix A-1 (1) through A-1 (3) and Appendix A-7 (19) through A-7 (21). 37 As shown on page 2 of Schedule DWD-5.

[^11]: 38
 Blue Chip Financial Forecasts, December 1, 2020, at p. 14 and April 1, 2021, at p. 2. As demonstrated on Schedule DWD-7, page 3, note 2.

[^12]: 41
 42
 43
 Duff \& Phelps 2020 Valuation Handbook - U.S. Guide to Cost of Capital, Wiley 2018, at 4-1. Fama \& French, at 25-43.
 Richard A. Brealey and Stewart C. Myers, Principles of Corporate Finance (McGraw-Hill Book Company, 1996), at 204-205, 229.

[^13]: $46 \quad$ Morin, at 523.
 47 Haim Levy \& Marshall Sarnat, Capital Investment and Financial Decisions, Prentice/Hall International, 1986, at 465.
 Bluefield, at 6.
 Fama \& French, at 39.

[^14]: 50 Morin 321.

[^15]: (A) Primary earnings. Excludes nonrecurring \quad (B) Dividends historically paid in early March, (C) In millions, adjusted for split gains/(losses): '05, 13c; '06, 3¢; '08, (14¢); '10, June, September, and December. - Div'd rein- (D) Includes intangibles. As of 12/31/20; \$1.1 (23c); '11, 10c. Next earnings report due mid- vestment plan available. May.
 © 2021 Value Line, Inc. All rights reserved. Factual material is obtained from sources believed to be reliable and is provided without warranties of any kind.
 THE PUBLISHER IS NOT RESPONSIBLE FOR ANY ERRORS OR OMISSIONS HEREIN. This publication is strictly for subscriber's of it may be reproduced, resold, stored or transmitted in any printed, electronic or other form, or used for generating or marketing any printed or electronic publication, senice or product

[^16]: | (A) Diluted earnings. Excludes nonrecur. | ings report due mid-May. | $12 / 31 / 20: \$ 1.559$ billion, $\$ 8.59 /$ share. |
 | :--- | :--- | :--- |
 | losses: '00, $\$ 4.62 ;$; $09, \$ 2.63 ;$; $111, \$ 0.07$. Disc. | | |
 | (B) $)$ Dividends paid in March, June, September, | (E) Pro forma numbers for '06 \& 07. | |

 $\begin{array}{ll}\text { losses: '08, } \$ 4.62 \text {; '09, } \$ 2.63 ; \text { '11, } \$ 0.07 \text {. Disc. } & \text { (B) Dividends paid in March, June, September, } \\ \text { oper.: '06, }(\$ 0.04) \text {; '11, } \$ 0.03 \text {; '12, (} \$ 0.10 \text {); } \\ \text { and }\end{array}$ 13,(\$0.01). GAAP used as of 2014. Next earn- (C) In millions. (D) Includes intangibles. On
 © 2021 Value Line, Inc. All rights reserved. Factual material is obtained from sources believed to be reliable and is provided without warranties of any kind.
 THE PUBLISHER IS NOT RESPONSIBLE FOR ANY ERRORS OR OMISSIONS HEREIN. This publication is strictly for subscriber's
 of it may be reproduced, resold, stored or transmitted in any printed, electronic or other form, or used for generating or marketing any printed or electronic publication, service or product
 Company's Financial Strength
 Stock's Price Stability
 Price Growth Persistence
 Prarnings Predictability
 To subscribe call 1-800-vaLUELINE

[^17]: | (A) Diluted earnings. Excludes nonrecurring | may not add due to rounding. | (C) In millions. |
 | :--- | :--- | :--- | :--- |
 | losses: $05, \$ 1.09 ;$; $06, \$ 16.36 ; ' 08, \$ 1.22 ; ' 10$, | (B) Dividends historically paid in early March, | |
 | (D) Paid | | | $\$ 0.46$. GAAP accounting as of 2013. Next June, September, and December. - Div'd rein-

 (D) Paid special dividend of $\$ 0.17$ per share on earnings report due early May. Quarterly egs. vestment plan available.
 (E) Suspended due to recent CTWS merger.

[^18]: NMF = Not Meaningful Figure
 The Predictive Risk Premium Model uses historical data to generate a predicted variance and a GARCH coefficient. The historical data used are the equity risk premiums for the first available trading month as reported by Bloomberg Professional Service.
 $\left(1+(\text { Column [3] } * \text { Column [4]) })^{\wedge 12}\right)-1$.
 Column [5] + Column [6].

 | $\ddot{0} \Xi$ |
 | :--- |
 | |

 ® © 刃

[^19]: American States Water Company American Water Works Company, Inc. Artesian Resources Corporation California Water Service Group Global Water Resources, Inc. Middlesex Water Company

 SJW Group

[^20]: Proxy Group of Twenty Non-Price
 Regulated Companies
 Adobe, Inc.
 Balchem Corporation
 Bio-Rad Labs
 CSG Systems Int'l
 Citrix Sys.
 Dollar General Corporation
 Ennis, Inc.
 Heartland Express
 Intel Corp.
 Keysight Technologies
 Lancaster Colony Corp.
 Lilly (Eli)
 Smucker (J.M.)
 Schneider National, Inc.
 BioTechne Corp.
 Tyler Technologies
 United Parcel Serv.
 Walgreens Boots Alliance
 Werner Enterprises
 West Pharmaceutical Services Inc

