Exhibit J

Viewshed Analysis, Aesthetic Resources Inventory, and Glare Analysis

Cardno

January 2021

Visual Resource Assessment and Mitigation Plan

Pleasant Prairie Solar Energy Project
January 2021

Document Information

Prepared for	Pleasant Prairie Solar Energy LLC
Project Name	Pleasant Prairie Solar Energy Project Visual Resource Assessment and Mitigation Plan
Project Number	E320201701
Project Manager	Ryan Rupprecht Date
January 2021	

Prepared for:

Pleasant Prairie Solar Energy LLC

One South Wacker Drive, Suite 1800, Chicago, IL 60606

Prepared by:

Cardno
121 Continental Drive, Suite 308, Newark DE 19713

Table of Contents

1 Introduction 1-1
1.1 Purpose of the Investigation 1-1
1.2 Project Location and Description 1-3
1.2.1 Visual Study Area. 1-3
1.2.2 Landscape Character 1-6
1.2.3 Distance Zones 1-8
2 Methodology 2-1
2.1 Viewshed Analysis 2-1
2.1.1 PV Array Viewshed Analysis 2-1
2.1.2 Visually Sensitive Resources 2-2
2.1.3 Field Verification 2-2
2.1.4 Visual Simulation Methodology 2-2
3 Results 3-1
3.1 Viewshed Analysis 3-1
3.1.1 PV Array Viewshed Analysis 3-1
3.1.2 Visibility Results from Visually Sensitive Resources 3-3
3.1.3 Field Verification Results 3-7
3.2 Visual Simulations 3-7
3.2.1 Viewpoint 2 Visual Simulation 3-9
3.2.2 Viewpoint 3 Visual Simulation 3-11
3.2.3 Viewpoint 6 Visual Simulation 3-13
3.2.4 Viewpoint 10 Visual Simulation 3-15
3.3 Reflectivity and Glare 3-17
4 Conclusions. 4-1
4.1 Visual Resource Assessment Summary 4-1
4.2 Mitigation 4-1
5 References 5-1

Appendices

Appendix A Viewpoint Location Map and Photolog
Appendix B Glare Analysis Report
Appendix C Visual Simulations
Appendix D Visual Sensitive Resource Analysis

Figures

Figure 1-1 Project location Map 1-2
Figure 1-2 Preliminary Project Layout Map 1-4
Figure 1-3 Visual Study Area Map 1-5
Figure 1-4 Land Cover within the Visual Study Area 1-7
Figure 3-1 Viewshed Analysis - PV Panel (5-mile radius) 3-2
Figure 3-2 Location of Visually Sensitive Resources 3-5
Figure 3-3 Location of Visually Sensitive Resource 3-6
Figure 3-4 Visual Simulation Viewpoint Map 3-8
Figure 3-5 Viewpoint 2 - Simulated Time-Lapse 3-10
Figure 3-6 Viewpoint 3 - Simulated Time-Lapse 3-12
Figure 3-7 Viewpoint 6 - Simulated Time-Lapse 3-14
Figure 3-8 Viewpoint 10 - Simulated Time-Lapse 3-16
Tables
Table 1-1
Landscape Types within the Visual Study Area. 1-6
Table 1-2 Distance Zones by Landscape Type 1-9
Table 3-1 PV Array Viewshed Analysis Results Summary 3-1
Table 3-2 Landscape Types Viewshed Analysis Results Summary 3-3
Table 3-3 Visually Sensitive Resources in the DSM Viewshed 3-3

Acronyms

AC Alternating Current
ATCT Air Traffic Control Tower
BLM Bureau of Land Management
DSM Digital Surface Model
FAA Federal Aviation Administration
GPS Global Positioning System
LT Landscape Type
MW Megawatt
NHL National Historic Landmarks
NLCD National Land Cover Database
NRHP National Register of Historic Places
OAC Ohio Administrative Code
OGS Ohio Genealogical Society
OSIP Ohio Statewide Imagery Program
PV Photovoltaic
SRHP Sate Register of Historic Places
USDOT U.S. Department of Transportation
USFS U.S. Forest Service
USGS U.S. Geological Survey
VRA Visual Resource Assessment
VSA Visual Study Area
VSR Visually Sensitive Resource

1 Introduction

1.1 Purpose of the Investigation

On behalf of Pleasant Prairie Solar Energy, LLC (Pleasant Prairie), Cardno, Inc. (Cardno) has prepared this Visual Resource Assessment (VRA) for the proposed 250 megawatt (MW) Pleasant Prairie Solar Energy Project (the Project), proposed for construction in the within the townships of Pleasant and Prairie, in Franklin County, Ohio (Figure 1-1).
This report has been prepared to satisfy those portions of the requirements of Ohio Administrative Code (OAC) 4906-04-08(D) that relate to the identification of Visually Sensitive Resources (VSRs), project visibility, and potential visual impacts resulting from construction of the proposed solar-powered electric generation facility.

Recognizing the requirements of 4906-4-08(D) of the OAC, this VRA will:
> Describe the visible components of the proposed Project.
> Define the visual character of the Visual Study Area (VSA).
> Inventory and evaluate the existing VSRs within the VSA.
> Evaluate the potential visibility of the Project within the VSA.
$>$ Create photographic simulations of the proposed Project from select locations.
> Assess the visual impacts associated with the proposal.
$>$ Describe measures proposed to minimize visual impact.
This VRA was prepared by Cardno in accordance with the policies, procedures, and guidelines contained in established visual resource assessment methodologies.

1.2 Project Location and Description

The Project is located approximately 10 miles west of the Columbus city center, within the townships of Pleasant and Prairie, in Franklin County, Ohio. It is bisected by Alkire Road running east and west, and bounded by County Road 140 to the west, US 40 to the north, and County Road 135 to the south. The proposed Project Area comprises 2,210.5 acres of privately owned lands; however, only 1,733 acres are anticipated to be occupied by permanent project components. Additionally, a potential 140.7 acre transmission line corridor and substation site lying north of US 40 has been included in the analysis of this visual resource assessment, although it will be permitted under a separate application.

The proposed Project is a solar-powered electric generation facility with a generating capacity of up to 250 MW. The Project will use arrays of ground-mounted photovoltaic (PV) modules, commonly known as solar panels, to generate renewable electricity for the Ohio bulk power transmission system to serve the needs of electric utilities and their customers. Solar panels will be affixed to metal racking system mounted on piles that will be driven or screwed into the ground in rows or arrays. The arrays generally will follow the existing topography of the Project Area with minimal grading or alteration of existing contours. Arrays will be grouped in separate, contiguous clusters, each of which will be fenced and gated for equipment security and public safety.

The PV arrays currently proposed for the Project will include a single-axis tracking style racking system. Using this system, the arrays will be oriented in a roughly north-south direction and equipped to rotate the panels from east to west so as to attempt to maintain a 90 degree angle relative to the direction of sunlight. Tracking arrays will face east at sunrise, rotate throughout the day, and end up facing west at sunset. The panel arrays will be connected to inverters which will convert the direct current (DC) generated by the solar panels to alternating current (AC), and then to a series of above- ground and below-ground interconnection cables that will deliver the electricity to a new substation, which will step-up the voltage in order to allow connection to the regional electrical grid. Associated support facilities include gravel access roads and meteorological stations within the arrays. The preliminary location of the proposed Project components is illustrated in Figure 1-2.

1.2.1 Visual Study Area

OAC 4906-4-08(D) requires that visual impacts to recreational, scenic, and historic resources from a proposed generating facility be evaluated within a 10 mile radius. However, based on the low profile of the proposed equipment, and the results of the visibility analysis presented herein, it was determined that 10 miles would be an excessive study area for this Project. To define an appropriately sized VSA, a viewshed analysis was conducted (using lidar data) to better understand the Project's area of potential effect. This viewshed analysis indicated that areas of potential Project visibility do not extend beyond 5 miles, with only discrete corridors and pockets of visibility extending beyond 0.5 mile from the Project. As such it was determined that a 5 -mile radius around the Project would be a sufficient VSA for the purposes of this study. The VSA encompasses a total of approximately 42.6 square miles, including portions of the Franklin County townships of Pleasant, Prairie, Brown, Norwich, Franklin and Jackson, and the Madison County townships of Jefferson and Fairfield. The location and extent of the VSA is illustrated in Figure 1-3.

1.2.2 Landscape Character

Definition of landscape character within a given VSA provides a useful framework for the analysis of a facility's potential visual effects. The USGS National Land Cover Database (NLCD) was used to help define the character and location of various landscape types (LTs) within the VSA. These LTs were categorized based on the similarity of various features, including landform, vegetation, and/or land use patterns per the 2016 NLCD Database Legend (NLCD 2016). The LTs defined within the VSA are presented in Table 1.1 and Figure 1-4.

Table 1-1 Landscape Types within the Visual Study Area

Landscape Type	Total Area of LT within the Visual Study Area (acres)	Percent of Total Area within Visual Study Area
Planted/Cultivated	$55,347.79$	54.94%
Developed	$33,034.27$	32.79%
Forest	$10,752.82$	10.67%
Open Water	665.55	0.66%
Grassland/Herbaceous	363.00	0.36%
Wetlands	322.17	0.32%
Barren Land	202.03	0.20%
Shrubland	52.04	0.05%
Total	$\mathbf{1 0 0 , 7 3 9 . 6 6}$	$\mathbf{1 0 0 . 0} \%$

The Project components are proposed to be built within the Planted/Cultivated LT, which makes up 54.94% of VSA. Because agricultural land typically lacks mature vegetation or other screening structures, this LT offers the greatest opportunities for views of PV panels from within the Project and its surrounding vicinity. The Developed LT makes up 32.79% of the VSA and includes the cities of Columbus, Grove City, and Hilliard, as well as the villages of Harrisburg, Orient, Urbancrest, and West Jefferson. The Developed LT typically provides limited outward views due to the presence of buildings and closely situated houses, landscaped yards/planted vegetation, utility poles, and other visual clutter the Forest LT, makes up 10.67% of the VSA, and includes the Battelle Darby Creek Metro Park. By its very nature, views from within the Forest LT are typically limited by the presence of dense vegetation. The Open Water and Wetlands LTs are scattered throughout the VSA and collectively make up only 0.98% of the land area. These LTs are often associated with river or stream corridors, the most notable being Big Darby Creek, where long distance views are typically limited due to the presence of tree-lined riverbanks and adjacent forested slopes.

1.2.3 Distance Zones

Distance zones are typically defined in visual studies to divide the VSA into distinct classifications based on the various levels of landscape detail that can be perceived by a viewer. Four distinct distance zones were developed for this purpose. To define these zones, Cardno consulted several well-established agency protocols, including those published by the U.S. Forest Service (USFS), Bureau of Land Management (BLM), and U.S. Department of Transportation (USDOT), to determine the appropriate extent of each distance zone. It is important to note that the distance zones recommended by each of these protocols was considered in the context of this VSA. For example, the BLM recommends a combined foreground-middle ground zone extending from 0 to 5 miles. While this may be appropriate in a western landscape with frequent, unscreened views over very long distances, it does not translate to eastern landscapes where views are often contained within 1.0 mile of the viewer. Conversely, the USFS (1995) suggests the foreground be defined as an area extending 0.5 mile from the viewer. Due to the characteristics of the specific landscape being evaluated in this VRA, Cardno defined distance zones within the VSA (as measured from the proposed Project) as follows:
> Near-Foreground: 0 to 0.5 mile. At this distance, a viewer is able to perceive details of an object with clarity. Surface textures, small features, and the full intensity and value of color can be seen on foreground objects.
> Foreground: 0.5 to 1.5 miles. At this distance, elements in the landscape tend to retain visual prominence, but detailed textures become less distinct. Larger scale landscape elements remain as a series of recognizable and distinguishable landscape patterns, colors, and textures.
> Middle ground: 1.5 to 4.0 miles. The middle ground is usually the predominant distance at which landscapes are seen. At these distances a viewer can perceive individual structures and trees but not in great detail. This is the zone where the parts of the landscape start to join together; individual hills become a range, individual trees merge into a forest, and buildings appear as simple geometric forms. Colors will be distinguishable but subdued by a bluish cast and softer tones than those in the foreground. Contrast in texture between landscape elements will also be reduced.
> Background: Over 4.0 miles. The background defines the broader regional landscape within which a view occurs. Within this distance zone, the landscape is simplified; only broad landforms are discernable, and atmospheric conditions often render the landscape an overall bluish color. Texture has generally disappeared and color has flattened, but large patterns of vegetation are discernable. Silhouettes of one land mass set against another and/or the skyline are often the dominant visual characteristics in the background. The background contributes to scenic quality by providing a softened backdrop for foreground and middle ground features, an attractive vista, or a distant focal point.

The area of each LT falling within each distance zone in the VSA is summarized in Table 1.2. As shown in this table, the distribution of LTs within the individual distance zones is relatively uniform. However, due to the positioning of the PV arrays in open agricultural land, approximately 84.8% of the near-foreground distance zone consists of the Pasture and Cropland LT, while 10.8% is included in the Forest LT. The Pasture and Cropland and Forest LTs make up an average of approximately 78% of the distance zones. Also of note, the Developed LT only makes up an average of approximately 5% across all distance zones within the VSA.

Table 1-2 Distance Zones by Landscape Type

Common Name	Total Area (acres) and Percent of Landscape Type			
	Near-Foreground (0 - 0.5 mile)	Foreground (0.5-1.5 miles)	Middle Ground (1.5-4.0 miles)	Background (>4.0miles)
Planted/Cultivated	$\begin{aligned} & 7,644.70 \\ & (86.45 \%) \end{aligned}$	$\begin{aligned} & 7,804.89 \\ & (56.99 \%) \end{aligned}$	$\begin{aligned} & 25,736.63 \\ & (50.51 \%) \end{aligned}$	$\begin{aligned} & 14,161.57 \\ & (51.96 \%) \end{aligned}$
Developed	$\begin{aligned} & \hline 816.58 \\ & (9.23 \%) \end{aligned}$	$\begin{aligned} & 3,690.15 \\ & (26.95 \%) \end{aligned}$	$\begin{aligned} & 17,706.51 \\ & (34.75 \%) \end{aligned}$	$\begin{aligned} & 10,821.03 \\ & (39.71 \%) \end{aligned}$
Forest	$\begin{aligned} & 263.41 \\ & (2.98 \%) \end{aligned}$	$\begin{aligned} & 1,933.60 \\ & (14.12 \%) \end{aligned}$	$\begin{aligned} & 6,781.92 \\ & (13.31 \%) \end{aligned}$	$\begin{aligned} & 1,773.89 \\ & (6.51 \%) \end{aligned}$
Open Water	$\begin{aligned} & 39.09 \\ & (0.44 \%) \end{aligned}$	$\begin{aligned} & 106.83 \\ & (0.78 \%) \end{aligned}$	$\begin{aligned} & 339.01 \\ & (0.67 \%) \end{aligned}$	$\begin{aligned} & 180.61 \\ & (0.66 \%) \end{aligned}$
Grassland/Herbaceou s	$\begin{aligned} & 45.22 \\ & (0.51 \%) \end{aligned}$	$\begin{aligned} & 83.60 \\ & (0.61 \%) \end{aligned}$	$\begin{aligned} & 177.58 \\ & (0.35 \%) \end{aligned}$	$\begin{aligned} & 56.59 \\ & (0.21 \%) \end{aligned}$
Wetlands	$\begin{aligned} & 19.80 \\ & (0.22 \%) \end{aligned}$	$\begin{aligned} & 67.37 \\ & (0.49 \%) \end{aligned}$	$\begin{aligned} & 171.29 \\ & (0.34 \%) \end{aligned}$	$\begin{aligned} & 63.70 \\ & (0.23 \%) \end{aligned}$
Barren Land	$\begin{aligned} & 2.45 \\ & (0.03 \%) \end{aligned}$	$\begin{aligned} & \hline 0.67 \\ & (0.004 \%) \end{aligned}$	$\begin{aligned} & 19.89 \\ & (0.04 \%) \end{aligned}$	$\begin{aligned} & \hline 179.03 \\ & (0.66 \%) \end{aligned}$
Shrubland	$\begin{aligned} & 11.34 \\ & (0.13 \%) \end{aligned}$	$\begin{aligned} & 7.56 \\ & (0.06 \%) \end{aligned}$	$\begin{aligned} & \hline 17.39 \\ & (0.03 \%) \end{aligned}$	$\begin{aligned} & 15.75 \\ & (0.06 \%) \end{aligned}$
Total Distance Zone Area	8,842.60	13,694.67	50,950.21	27,252.18

2 Methodology

2.1 Viewshed Analysis

2.1.1 PV Array Viewshed Analysis

A viewshed analysis for the proposed solar panels was prepared using 1) a digital surface model (DSM) derived from the Ohio Statewide Imagery Program's (OSIP) 2007 lidar data for Pickaway and Ross counties; 2) sample points representing solar panel locations; 3) an assumed maximum solar panel height of 15 feet at times of maximum tracking angles; 4) an assumed viewer height of 6 feet; and 5) Esri ArcGIS® software with the Spatial Analyst extension. Because the specific layout of solar panels is in the preliminary design phase, sample points representing solar panels were placed 300 feet apart in a grid pattern throughout all proposed array locations within the Project Area.

The viewshed analysis provided in this study was conducted to incorporate the screening effects of topography, structures, and vegetation by using the OSIP 2007 lidar data. A viewshed analysis based on topography alone is not provided because the results of such an analysis do not accurately represent conditions within the VSA. A DSM of the VSA was created from the lidar data, which include the elevations of buildings, trees, and other objects large enough to be resolved by lidar technology. Transmission lines that were included in these lidar data were removed from the resulting DSM, and road centerlines were buffered 50 feet to remove roadside hedgerows and utility lines. Lidar data for these narrow, vertical landscape features can be interpreted by the software as solid walls and are thus removed from the DSM to avoid introducing artificial screening features into the analysis. Areas within the PV array fence lines were cleared of any vegetation, as were small woodlots and hedgerows that will be cleared during construction of the Project to reflect the bare-earth elevation in these locations. This modified DSM was then used as a base layer for the viewshed analysis. Once the viewshed analysis was completed, a conditional statement was used within ArcGIS® to set solar panel visibility to zero in locations where the DSM elevation exceeded the bare-earth elevation by 6 feet or more, indicating the presence of vegetation or structures that exceed viewer height. This was done for two reasons; 1) in locations where trees or structures are present in the DSM, the viewshed would reflect visibility from the vantage point of standing on the tree top or building roof, which is not the intent of this analysis, and 2) to reflect the fact that ground-level vantage points within buildings or areas of vegetation exceeding 6 feet in height will generally be screened from views of the Project.
Because it accounts for the screening provided by structures and trees, the DSM viewshed analysis is a very accurate representation of Project visibility. However, it is worth noting that because certain characteristics of the Project and the VSA that may serve to restrict visibility (e.g., color, distance from viewer, and atmospheric/weather conditions) are not taken into consideration in the viewshed analyses, being located within the DSM viewshed does not necessarily equate to actual Project visibility. Although the proposed substation and interconnection structures will result in some minimal visual impacts in their immediate vicinity, their location is adjacent to an existing overhead power line corridor, with a footprint considerably smaller than the proposed solar panels. For these reasons, a viewshed analysis was not conducted within the VSA for these structures.

2.1.2 Visually Sensitive Resources

VSRs within the VSA were identified per the requirements of OAC 4906-04-08(D). Below are the potential VSR categories that may be present within the VSA. In addition, Cardno identified other aesthetic resources based on the type/classification and/or intensity of use they receive. The categories of VSRs that would typically be required for consideration in a VRA include the following:
> Properties of Historic Significance: National Historic Landmarks, National or State Historic Sites, Sites listed on National or State Registers of Historic Places (NRHP, SRHP); Sites Eligible for Listing on the NRHP or SRHP; National or State Historic Sites, Ohio Historic Structures, Historic Bridges, Ohio Genealogical Society (OGS) Cemeteries, and Ohio Historic State Markers.
> Designated Scenic Resources: Rivers Designated as National or State Wild, Scenic, or Recreational; Sites, Areas, Lakes, Reservoirs or Highways Designated or Eligible for Designation as Scenic; Other Designated Scenic Resources.
> Public Lands and Recreational Resources: National Parks, Recreation Areas, Seashores, and/or Forests; National Natural Landmarks; National Wildlife Refuges; Heritage Areas; State Parks; State Nature Preserves or Wildlife Areas; State Forests; State Fishing/Waterway Access Sites; Other State Lands, Designated Trails; Local Parks and Recreation Areas; Publicly Accessible Conservation Lands/Easements; Rivers and Streams with Public Fishing Rights Easements; Named Lakes, Ponds, and Reservoirs.
> High-Use Public Areas: State, US, and Interstate Highways, Schools, Cities, and Villages.

2.1.3 Field Verification

Cardno conducted a site visit to the VSA on December 23, 2020. The purpose of this field review was to verify the potential visibility of the Project as suggested by the viewshed analysis, to document the visual character of the various LTs within the VSA, identify the type and extent of existing visual screening, and obtain photographs for subsequent use in the development of visual simulations. During the site visit, Cardno staff members drove public roads and visited public vantage points within the VSA, and obtained photographs from 12 individual viewpoints. Global positioning system (GPS) points, focal length parameters, and times were documented electronically. A viewpoint location map and photo log are included in Appendix A.

2.1.4 Visual Simulation Methodology

Visual simulations of the proposed Project were developed by constructing a three-dimensional (3D) computer model of the proposed solar PV arrays and full Project layout based on specifications, dimensions, and locations provided by Pleasant Prairie. Exact camera specifications used to take selected viewpoint photographs were replicated in the 3D model. This was accomplished by positioning the 3D camera in the same real-world coordinate system as the Project model using GPS coordinates collected at each photo location. The camera was then aligned and the camera's target position (view direction) adjusted until the modeled 3D elements aligned exactly with the elements in the photograph.. Next, a translucent copy of the camera view with obstructions was placed on top of the image in order for the rendered objects to be placed correctly using the appropriate perspective and scales.

At viewpoints where mitigation plantings are proposed, vegetative screening is included in the simulations and represented at a height that would be achieved approximately 5-7 years after installation. Vegetative screening was illustrated based on the following screening applications that may be required across the Project perimeter. Greater detail of Module composition can be found within the Pleasant Prairie landscape mitigation plan.
> Module 1 - Native Grasses Habitat (herbaceous plant material): establishes a visual and ecological buffer along the Project perimeter in areas where visibility of PV panels is generally low, such as back of fields, or in areas where potential visibility is higher, but prolonged viewership is uncommon.
> Module 2 - Vertical Softening (small to medium shrubs and trees): for use in areas of high viewership and visibility potential, but low stationary (residential or recreational) activity occurs.
> Module 3 -Adjacent Resource (Large Trees and shrubs): Provides the highest level of screening, for use in areas where stationary adjacent uses and non-participating viewers could be impacted by the installation of Project components.

3 Results

3.1 Viewshed Analysis

3.1.1 PV Array Viewshed Analysis

Potential visibility of the proposed solar panels, as indicated by the DSM viewshed analysis, is illustrated in Figure 3-1 and summarized in Table 3-1. As indicated by this analysis, the Project will be screened from approximately 89.9% of the VSA by intervening landforms, vegetation, and structures.

Table 3-1 PV Array Viewshed Analysis Results Summary

		Distance from Project			
		Near-Foreground	Foreground	Middle Ground	Background
Analysis	VSA	$0.0 .5 \mathrm{Mile}^{2}$	$\mathbf{0 . 5 - 1 . 5 ~ M i l e}$	$\mathbf{1 . 5 - 4 . 0 \mathrm { Mile }}$	$4.0-5.0$ Mile
Total Area	$157.4 \mathrm{mi}^{2}$	$13.8 \mathrm{mi}^{2}$	$21.4 \mathrm{mi}^{2}$	$79.6 \mathrm{mi}^{2}$	$42.6 \mathrm{mi}^{2}$
DSM	$15.9 \mathrm{mi}^{2}$	$8.7 \mathrm{mi}^{2}$	$2.2 \mathrm{mi}^{2}$	$2.9 \mathrm{mi}^{2}$	$2.1 \mathrm{mi}^{2}$
Viewshed Visibility	(10.1%)	(63.0%)	(10.3%)	(3.6%)	(4.9%)

The majority of Project visibility is concentrated within the near-foreground distance zone, with 63.0% of the area out to 0.5 mile from the Project Area indicated as having potential views of some portion of the Project. Views from areas beyond the near-foreground and into the foreground distance zone (0.5 to 1.5 miles) are better screened, with only 10.3% of the foreground distance zone indicated as having the potential for views of the PV arrays. The DSM viewshed analysis indicates that potential Project visibility is further reduced at distances beyond the foreground. Approximately 96.4% of the VSA is screened from view of the PV arrays in the middle ground (1.5 to 4 miles) and 95.1% in the background ($4-5$ miles).

The topography and vegetation associated with Big Darby Creek, as well as the developed areas within the VSA play a significant role in reducing potential PV array visibility within the VSA. Big Darby Creek Flows south into the VSA along the eastern boundary of West Jefferson, through Batelle Darby Creek Metro Park, and continues southward to its confluence with the Scioto River 17 miles outside of the VSA. Developed areas within Columbus comprise a large of the VSA to the east. Due to the orientation of Big Darby Creek and the developed areas within the VSA, areas of potential visibility are concentrated in the near-foreground distance zone, on level open ground between Big Darby Creek and Columbus. Areas outside the near-foreground distance zone are generally well screened by topography, vegetation, or various development. A few additional locations of potential visibility are present in the distance zones beyond the near-foreground zone. These areas are discrete corridors of visibility that result from breaks in the forest vegetation combined with slight topographic elevation. Due to the limited portion of the Project that would be visible, and the distance from the Project, it is unlikely that Project visibility within these narrow corridors or elevated viewpoints would be readily noticeable to a casual viewer.

It should be noted that the viewshed analysis treats all structures and vegetation as if they were opaque, and therefore, small woodlots and hedgerows are assumed to fully block views of the Project. In leaf-on conditions, this likely will be the case, but, during leaf-off conditions, narrow or sparsely forested hedgerows and woodlots may not provide enough screening to fully obscure views of the Project. However, some level of partial screening will still be provided by tree trunks and branches in these locations, even under leaf-off conditions. It is also important to note that the lidar data used in this analysis are from 2007, and therefore the analysis does not reflect any changes that have occurred since that time. However, based on review of recent aerial photography and in-field analysis, the lidar data appear to accurately reflect current vegetative screening conditions within the VSA. Figure 3-1 of the DSM viewshed analysis for a 5 -mile radius illustrates, visibility beyond a 0.5 -mile radius will be primarily limited to a corridor of agricultural fields at higher elevations to the west.

Potential PV panel visibility within the various LTs, as predicted by the DSM viewshed analysis, is summarized in Table 3-2 and discussed below.

Table 3-2 Landscape Types Viewshed Analysis Results Summary

Analysis	VSA	Planted/ Cultivated	Landscape Types						
			Developed	Forest	Open Water	Barren	Grassland/ Herbaceous	Wetlands	Shrubland
Total Area	$\begin{aligned} & 157.4 \\ & \mathrm{mi}^{2} \end{aligned}$	$86.5 \mathrm{mi}^{2}$	51.6 mi ${ }^{2}$	16.8 mi ${ }^{2}$	$1.0 \mathrm{mi}^{2}$	$0.32 \mathrm{mi}^{2}$	0.6 mi ${ }^{2}$	$0.5 \mathrm{mi}^{2}$	0.1 mi ${ }^{2}$
DSM Viewshed Visibility	$\begin{aligned} & 15.9 \mathrm{mi}^{2} \\ & (10.1 \%) \end{aligned}$	$\begin{aligned} & 14.5 \mathrm{mi}^{2} \\ & (9.21 \%) \end{aligned}$	$\begin{aligned} & 1.1 \mathrm{mi}^{2} \\ & (0.70 \%) \end{aligned}$	$\begin{aligned} & 0.2 \mathrm{mi}^{2} \\ & (0.13 \%) \end{aligned}$	$\begin{aligned} & 0.05 \mathrm{mi}^{2} \\ & (0.03 \%) \end{aligned}$	$\begin{aligned} & 0.04 \mathrm{mi}^{2} \\ & (0.03 \%) \end{aligned}$	$\begin{aligned} & 0.03 \mathrm{mi}^{2} \\ & (0.02 \%) \end{aligned}$	$\begin{aligned} & 0.02 \mathrm{mi}^{2} \\ & (0.01 \%) \end{aligned}$	$\begin{aligned} & 0.01 \mathrm{mi}^{2} \\ & (0.01 \%) \end{aligned}$

The greatest potential for visibility of the proposed solar arrays is indicated within the Planted/Cultivated LT. The DSM viewshed indicates that 9.21% of the total VSA could potentially offer views of the proposed PV panels from this LT. Visibility within the Planted/Cultivated LT is most heavily concentrated in the near-foreground distance zone, within open agricultural fields.
The potential for solar array visibility within the Developed LT is indicated in approximately 0.70% of the total VSA. The portions of this LT that may have views of the proposed PV panels are concentrated in the foreground and middle distance zones, primarily at the edges of various development where open and agricultural fields allow for a relatively unbroken viewshed.
The potential for solar array visibility within the Forested LT is indicated in approximately 0.13% of the total VSA. Visibility may occur in small breaks or clearings in the forest vegetation, but the occurrence of these areas is generally limited. Visibility within this zone occurs most frequently along the forest edges where abutting open fields provide opportunities for outward views. However, there will be little to no PV panel visibility from the majority of the forested areas, particularly during the growing season.
The LTs with the least amount of potential solar array visibility are the Open Water (0.03%), Barren (0.03%), Herbaceous/Grassland (0.02%), Wetlands (0.01%), and Shrubland (0.01%). These LTs comprise 0.1% of the total VSA and their visibility varies considerably based on proximity to the Project, elevation, and orientation.

3.1.2 Visibility Results from Visually Sensitive Resources

As indicated in Table 3-3, the DSM viewshed analysis suggests that 20 of the 122 VSRs identified within the VSA (16.4\%) may have some level of PV array visibility. The locations of mapped VSRs within the VSA are illustrated in Figure 3-2. Additionally per OAC 4906-4-08(D)(1), Figure 3-3 shows resources out to 10 miles.

Table 3-3 Visually Sensitive Resources in the DSM Viewshed

	Total Number of Resources within the Visual Study Area	Total Number of Resources with Visibility
Visually Sensitive Resources	Total 11	Total 3
Properties of Historic Significance	0	0
National Historic Landmarks (NHL)	1	0
Sites Listed on National or State Registers of Historic Places (NRHP/SRHP)	17	5
Sites Eligible for Listing on NRHP or SRHP	0	0
National/State Historic Sites		

Visually Sensitive Resources	Total Number of Resources within the Visual Study Area	Total Number of Resources with Visibility
Ohio Historic Structures	0	0
Historic Bridges	1	0
OGS Cemeteries	9	3
Ohio Historic State Markers	0	0
Designated Scenic Resources	Total 5	Total 1
Rivers Designated as National or State Wild, Scenic or Recreational	2	0
Sites, Areas, Lakes, Reservoirs or Highways Designated or Eligible for Designation as Scenic ([ECL Article 49Title 1] or equivalent)	1	1
Scenic Areas of Statewide Significance [Article 42 of Executive Law]	2	0
Other Designated Scenic Resources (Easements, Roads, Districts, and Overlooks)	0	0
Public Lands and Recreational Resources	Total 36	Total 6
National Parks, Recreation Areas, Seashores, and/or Forests [16 U.S.C. 1c]	0	0
National Natural Landmarks [36 CFR Part 62]	0	0
National Wildlife Refuges [16 U.S.C. 668dd]	0	0
Heritage Areas [Parks, Recreation and Historic Preservation Law Section 35.15]	0	0
State Parks (Parks, Recreation and Historic Preservation Law Section 3.09)	0	0
State Nature and Historic Preserve Areas [Section 4 of Article XIV of the State Constitution]	0	0
Wildlife Areas	0	0
State Forest	0	0
Other State Lands	0	0
Designated Trails	0	0
Local Parks and Recreation Areas	27	3
Publicly Accessible Conservation Lands/Easements	6	3
Named Lakes, Ponds, and Reservoirs	3	0
High-Use Public Areas	Total 53	Total 5
State, US, and Interstate Highways	10	3
Cities, Villages,	7	2
Schools	36	0
Resources Identified by Stakeholders	Total 0	Total 0
Total Number of Visually Sensitive Resources in the VSA	122	20

Figure 3-2 Location of Visually Sensitive Resources

3.1.3 Field Verification Results

Field verification generally confirmed the results of the DSM viewshed analysis. Project visibility was largely restricted to areas adjacent to the Project Area where public roads are bordered by open agricultural fields. Field review also confirmed that existing topography, as well as mature vegetation associated with Big Darby Creek, Hellbranch Run, various woodlots, and hedgerows will the screen Project from more distant portions of the VSA (beyond a half mile). Field review of the isolated areas of more distant visibility confirmed that discerning the proposed Project will be a much greater challenge than suggested by the viewshed analysis due to vegetative screening and the effects of distance. During the growing season, visibility of the Project from residences and roadways may also be limited by the growth of cultivated crops in the foreground agricultural fields. The combination of relatively low panel height, along with existing hedgerows, gently rolling topographic relief, and the atmospheric effects of distance, will limit visibility of the Project from the majority of the VSA.

3.2 Visual Simulations

Visual simulations from four representative locations were produced in order to illustrate the appearance of the Project and to evaluate its potential visual impact on the existing landscape and viewers within the VSA. The visual simulations were also intended to illustrate the time-lapse from the Project Area's existing conditions, to initial construction of Project components, to the establishment of proscribed plantings in 5-7 years. The locations of the viewpoints selected for the production of visual simulations are illustrated in Figure 3-4. The visual simulations and a discussion of the potential visual effects associated with the Project are summarized below. Full size images are presented in Appendix C.

3.2.1 Viewpoint 2 Visual Simulation

Viewpoint 2 Existing Conditions

Viewpoint 2 is situated along US 40, facing southeast towards a fenced agricultural field. This viewpoint is located approximately 3.50 miles from the community of Lincoln Village. The existing conditions in this view show the rural field that extends from the foreground to the background of the visual. The agricultural field is surrounded by small, forested patches of land as seen in the background of this visual. Along the left side of the image a building is located 0.15 mile away. The white barn inspired fence surrounding the field adds to the rustic character of the area.

Viewpoint 2 Proposed Project

With the addition of the proposed Project, panel arrays and associated fencing line up along the soft rolling hill in the background of the visual, with subtle visibility due to their distance from the roadside. In the visual foreground, the proposed substation can be seen approximately 0.07 mile from the viewpoint location.

Viewpoint 2 Proposed Project with Mitigation

With proposed mitigation plantings placed and established 5-7 years following installation, the area comprising the proposed substation is surrounded by large deciduous and evergreen trees, and the panel arrays are surrounded by a variety of small to medium trees and shrubbery, as well as herbaceous pollinator vegetation. Although views of the substation and panel arrays remain available through gaps in the vegetation, the duration of these views will be limited for drivers passing the Project along US 40.

Figure 3-5 Viewpoint 2 - Simulated Time-Lapse

3.2.2 Viewpoint 3 Visual Simulation

Viewpoint 3 Existing Conditions

Viewpoint 3 is situated along CR 12 (Murnan Road) positioned south west of the community of New Rome and facing southwest. The existing conditions in this view show the large open field that extends from the foreground to the background of the visual. Forested patches approximately 1.15 miles away can be seen in the background. A tree line in the center of the visual provides pre-existing screening for an adjacent residence from the field.

Viewpoint 3 Proposed Project

With the addition of the proposed Project, panel arrays and an associated fence line can be can be viewed within the field along the right side of the visualization. These panels are located approximately 198 feet from the roadside viewpoint.

Viewpoint 3 Proposed Project with Mitigation

With proposed mitigation plantings placed and established 5-7 years following installation, the area comprising the proposed panel arrays is surrounded by a variety of herbaceous pollinator vegetation. Although views of the panel arrays remain available, the duration of these views will be limited for drivers passing along CR 12. For this reason, the plantings are intended to provide a visual ecological buffer, which offers seasonal color variety and habitat for local pollinators, rather than visual screening.

Figure 3-6 Viewpoint 3 - Simulated Time-Lapse

3.2.3 Viewpoint 6 Visual Simulation

Viewpoint 6 Existing Conditions

Viewpoint 6 is situated along CR 11 (Alkire Rd) near community of Galloway, facing east. The existing conditions in this view show an open plowed field with a small roadside ditch surrounded by herbaceous vegetation in the foreground. The background of the visual contains a tree line that serves as a preexisting screen for an adjacent residence from the field. Further in the background, forest vegetation screens additional residences from the field and future Project.

Viewpoint 6 Proposed Project

With the addition of the proposed Project, panel arrays and associated fence line can be viewed within the field on the right side of the visual. These panels represent the closest view of the Project from this roadway segment, at approximately 95 feet away from the viewpoint location.

Viewpoint 6 Proposed Project with Mitigation

With proposed mitigation plantings placed and established 5-7 years following installation, the area comprising the proposed panel arrays is surrounded by a variety of herbaceous pollinator vegetation and small to medium shrubbery. Although views of the panel arrays remain available, the duration of these views will be limited for drivers passing along CR 11. Additionally, stationary views of the Project by adjacent residences, both in the visual background and across CR 11, are already screened by existing vegetation. For this reason, the plantings are intended to interrupt the horizontal lines of the Project components, allowing them to blend into the vegetated background.

Figure 3-7 Viewpoint 6 - Simulated Time-Lapse

3.2.4 Viewpoint 10 Visual Simulation

Viewpoint 10 Existing Conditions

Viewpoint 10 is situated along CR 135 (Kropp Rd) facing northwest. The existing conditions in this view show a large open field with a small rolling hill heading to the west. The area as no tall vegetation in it and is lined with heavy shrubs and grasses. Directly in the center of the image is one building located 0.13 mile away from the viewpoint. The field is backed by a very thin line of trees far in the distance, the vegetation begins to thicken closer to the left side. The trees along the left side of the image are masking the few buildings located in them.

Viewpoint 10 Proposed Project

With the addition of the proposed Project, panel arrays and associated fence line can be viewed within the field on the right side of the visual. These panels are located approximately 480 feet from the roadside viewpoint.

Viewpoint 10 Proposed Project with Mitigation

With proposed mitigation plantings placed and established 5-7 years following installation, the area comprising the proposed panel arrays is surrounded by a variety of herbaceous pollinator vegetation and small to medium shrubbery. Although views of the panel arrays remain available, the duration of these views will be limited for drivers passing along CR 135. Additionally, stationary views of the Project by adjacent residences, both in the visual background and across CR 135, are already screened by existing vegetation. For this reason, the plantings are intended to interrupt the horizontal lines of the Project components, and blend with existing hedgerow screening.

Figure 3-8 Viewpoint 10 - Simulated Time-Lapse

3.3 Reflectivity and Glare

A glare analysis was conducted using the Forge Solar Glare Gauge model developed by the Department of Energy's Sandia National Laboratory. Potential glare from the Project was evaluated on sensitive observer locations related to the Dan Darby Airport (750A) which lies within the Project Area, and Bolton Field Airport (TZR) which lies 1.7 miles to the southeast. The analysis focused on potential glare effects on aircraft within a 2-mile flight path of Dan Darby Airport, which is located within the Project Area, and in relation to various route receptors associated with the Bolton Field Airport flight paths and Air Traffic Control Tower (ATCT). It should be noted that the Dan Darby Airport will no longer receive air traffic, as it will be decommissioned as part of this Project. Additionally, the abandoned Columbus Southwest Airport (O4I) which lies within the Project Area will be decommissioned.

Based on the 2013 U.S. Federal Aviation Administration Interim Policy 78 FR 63276, solar energy farms located on airport property must meet the following criteria in regards to glare analysis:
> No "yellow" glare (potential for after-image) for any flight path from threshold to 2 miles
> No glare of any kind for Air Traffic Control Tower(s) ("ATCT") at cab height.
> Default analysis and observer characteristics (see list below)
Based on the current design and layout of the Project, the Glare Gauge modeling predicted that no glare impacts to air traffic in regards to the above criteria will occur as a result of the Project. Although some level of glare may be experienced at the Bolton Field ATCT, the Project is not subject to the FAA ocular hazard standards as they relate to Bolton Field, as the Project is not located within the Airport property. As the Project design process progresses, additional studies on potential glare will be conducted, and Pleasant Prairie will continue to coordinate with the FAA through the FAA determination process that is currently underway. The full glare analysis report is included as Appendix B.

4 Conclusions

4.1 Visual Resource Assessment Summary

Based on the analyses provided above, the following conclusions can be drawn regarding the visibility and visual effect of the proposed Pleasant Prairie Solar Project.

The PV array viewshed analysis indicates that the proposed solar arrays will be screened from view in approximately 89.9% of the 5 -mile radius VSA. Visibility is concentrated within the Project Area itself, and the open fields located in the vicinity of the Project. The viewshed analysis also suggests that panel visibility substantially diminishes beyond the near-foreground distance zone (0.5 mile).

PV array viewshed analysis of the 122 identified VSRs within the VSA indicates that 20 (16.4\%) have potential Project visibility. Viewshed results suggest that views from VSRs will generally be small and/or include only a limited number of Project components.

Field review generally confirmed the results of the viewshed analysis. Beyond 0.5 mile, screening provided by topography and hedgerows, in combination with the low height of the solar panels, will significantly limit Project visibility.

As illustrated in the visual simulations, the Project will result in varying levels of visual impact when viewed from its surrounding vicinity. The Project will install structures that will alter the scenic quality and/or existing agricultural character of the landscape. However, Project visibility and potential visual impact will diminish rapidly at greater distances. For this reason, it is anticipated that the impacts will be localized to a limited number of areas adjacent to the Project. Additionally, these impacts will likely be mitigated to some degree by the presence of seasonal crops in actively farmed fields.

Glare from the proposed Project will not have an adverse impact on air traffic or airports within the Project Area.

4.2 Mitigation

Pleasant Prairie proposes to conduct perimeter plantings to achieve screening and soften views of constructed PV panels. The conceptual mitigation developed for this Project is based on the assumption that 100% screening is not necessary, and that introduction of native vegetation in clumps and hedgerows will adequately mimic the existing screening observed throughout the vicinity of the Project Area. Per the requirements of $4906-4-08(\mathrm{D})$ of the OAC, the visual simulations illustrate how the proposed planting modules will minimize potential visual impacts created by the installation of the PV panels. Although the mitigation represented in the visual simulations is conceptual at this time, and planting composition may be adjusted, the design goals and approach will not change. Additional details can be found in the Pleasant Prairie landscape mitigation plan.

5 References

MRLC (Multi-Resolution Land Characteristics Consortium). 2018. National Land Cover Database 2016 (NLCD 2016). Multi-Resolution Land Characteristics Consortium (MRLC). Accessed November 2020. Available at: https://www.mrlc.gov/data/nlcd-2011-land-cover-conus-0.

National Park Service (NPS). 2016. National Historic Landmarks. Accessed December 2020. Available at: https://www.nps.gov/subjects/nationalhistoriclandmarks/list-of-nhls-by-state.htm\#onthisPage-35

National Park Service (NPS). 2018. National Natural Landmarks by State: Ohio. Accessed December 2020. Available at: https://www.nps.gov/subjects/nnlandmarks/state.htm?State=OH

National Park Service (NPS). 2019. National Scenic Trails. Accessed December 2020. Available at: https://www.nps.gov/subjects/nationaltrailssystem/national-scenictrails.htm

Ohio Department of Natural Resources (ODNR). 2016. ODNR Statewide GIS Information. Accessed December 2020. Available at: https://apps.ohiodnr.gov/gims/response.asp? county=Statewide\&category=Select\&Submit1=SELECT

Ohio Department of Transportation (ODOT). 2018. Assets and Environmental Shapefiles. Accessed December 2020. Available at: https://gis.dot.state.oh.us/tims/Data/Download

Ohio History Connection. 2020. Online Mapping System. Accessed December 2020. Available at: https://www.ohiohistory.org/preserve/state-historic-preservation-office/mapping

United Sates Census Bureau (USCB). 2013. TIGER/Line Shapefile, Ohio State. Accessed December 2020. Available at: https://catalog.data.gov/dataset/tiger-line-shapefile-2013-state-ohio-current-place

United States Forest Service (USFS). 2013a. Find National Forests and Grasslands. Accessed December 2020. Available at: http://www.fs.fed.us/recreation/map/finder.shtml

United States Forest Service (USFS). 2013b. Other Congressionally Designated Areas. Accessed December 2020. Available at: https://www.fs.fed.us/recreation/programs/cda/special-areas.shtml

United States Fish and Wildlife Service (USFWS). 2018. National Wildlife Refuge Locator. Accessed December 2020. Available at: http://www.fws.gov/refuges/refugeLocatorMaps/index.html

United States Geological Survey (USGS). 2018. National Hydrography Dataset Waterbody data. The National Map. Accessed December 2020. Available at: https://viewer.nationalmap.gov/advancedviewer/.

Visual Resource Assessment and Mitigation Plan
Pleasant Prairie Solar Energy Project

APPENDIX A
 VIEWPOINT LOCATION MAP AND PHOTOLOG

| Pleasant Prairie Viewpoint Photolog | Viewpoint 1
 Direction Facing
 Southeast
 Location |
| :--- | :--- | :--- |
| 39.94868858, -83.21343214
 Caption/Description
 View from US 40 in the township of Prairie,
 Franklin County. 155 feet from the nearest
 proposed PV panel, in the Near-
 Foreground distance zone. | |

| Pleasant Prairie Viewpoint Photolog | Viewpoint 4 |
| :--- | :--- | :--- |
| Direction Facing
 Southwest
 Location | |
| 39.92589883, -83.18352864
 Caption/Description
 View from CR 35 (Alton Rd) in the
 township of Prairie, Franklin County. 599
 feet from the nearest proposed PV panel,
 in the Near-Foreground distance zone. | |

| Pleasant Prairie Viewpoint Photolog | Viewpoint 7
 Direction Facing |
| :--- | :--- | :--- |
| Northeast
 Location | |
| 39.89459183, -83.18316469
 Caption/Description
 View from TR 293 (Johnson Rd) in the
 township of Pleasant, Franklin County. 918
 feet from the nearest proposed PV panel,
 in the Near-Foreground distance zone. | |

Pleasant Prairie Viewpoint Photolog	Viewpoint 10 Direction Facing North Location		
39.87535339, -83.17823864 Caption/Description View from CR 135 (Kropp Rd) in the township of Pleasant, Franklin County. 823 feet from the nearest proposed PV panel, in the Near-Foreground distance zone.			Viewpoint 11
:---			

Visual Resource Assessment and Mitigation Plan
Pleasant Prairie Solar Energy Project

APPENDIX B

GLARE ANALYSIS REPORT

FORGESOLAR GLARE ANALYSIS

Project: Pleasant Prairie-OH

Proposed 250 MW solar facility near regional airport
Site configuration: Pleasant Prairie-OH Array
Analysis conducted by Paul Thienpont (pthienpont@invenergyllc.com) at 20:40 on 03 Dec, 2020.

U.S. FAA 2013 Policy Adherence

The following table summarizes the policy adherence of the glare analysis based on the 2013 U.S. Federal Aviation Administration Interim Policy 78 FR 63276. This policy requires the following criteria be met for solar energy systems on airport property:

- No "yellow" glare (potential for after-image) for any flight path from threshold to 2 miles
- No glare of any kind for Air Traffic Control Tower(s) ("ATCT") at cab height.
- Default analysis and observer characteristics (see list below)

ForgeSolar does not represent or speak officially for the FAA and cannot approve or deny projects. Results are informational only.

COMPONENT	STATUS	DESCRIPTION
Analysis parameters	PASS	Analysis time interval and eye characteristics used are acceptable
2-mile flight path(s)	PASS	Flight path receptor(s) do not receive yellow glare
ATCT(s)	FAIL	Receptor(s) marked as ATCT receive green and/or yellow glare

Default glare analysis parameters and observer eye characteristics (for reference only):

- Analysis time interval: 1 minute
- Ocular transmission coefficient: 0.5
- Pupil diameter: 0.002 meters
- Eye focal length: 0.017 meters
- Sun subtended angle: 9.3 milliradians

SITE CONFIGURATION

Analysis Parameters
DNI: peaks at $900.0 \mathrm{~W} / \mathrm{m}^{\wedge} 2$
Time interval: 1 min
Ocular transmission
coefficient: 0.5

Pupil diameter: 0.002 m
Eye focal length: 0.017 m
Sun subtended angle: 9.3
mrad
Site Config ID: 46481.8393

PV Array(s)

Name: PV array 1
Axis tracking: Single-axis rotation
Tracking axis orientation: 180.0°
Tracking axis tilt: 0.0°
Tracking axis panel offset: 0.0°
Max tracking angle: 60.0°
Resting angle: 0.0°
Rated power: -
Panel material: Light textured glass with AR coating
Reflectivity: Vary with sun
Slope error: correlate with material

Vertex	Latitude $\left(^{\circ}\right.$)	Longitude ${ }^{\circ}{ }^{\circ}$)	Ground elevation (ft)	Height above ground (ft)	Total elevation (ft)
1	39.948272	-83.217589	929.94	15.00	944.94
2	39.949282	-83.192410	915.80	15.00	930.81
3	39.947111	-83.187936	914.98	15.00	929.98
4	39.938751	-83.188615	920.43	15.00	935.43
5	39.938833	-83.193250	922.35	15.00	937.35
6	39.933305	-83.192134	924.08	15.00	939.08
7	39.927151	-83.192241	919.76	15.00	934.76
8	39.926739	-83.184774	912.55	15.00	927.55
9	39.922568	-83.184954	899.76	15.00	914.76
10	39.922469	-83.186606	904.86	15.00	919.86
11	39.917794	-83.195339	920.82	15.00	935.82
12	39.931271	-83.207420	925.09	15.00	940.09
13	39.935944	-83.208107	925.08	15.00	940.08
14	39.935659	-83.215248	927.67		942.68

Name: PV array 2
Axis tracking: Single-axis rotation
Tracking axis orientation: 180.0°
Tracking axis tilt: 0.0°
Tracking axis panel offset: 0.0°
Max tracking angle: 60.0°
Resting angle: 0.0°
Rated power: -
Panel material: Light textured glass with AR coating
Reflectivity: Vary with sun
Slope error: correlate with material

Vertex	Latitude (${ }^{\circ}$)	Longitude (${ }^{\circ}$)	Ground elevation (ft)	Height above ground (ft)	Total elevation (ft)
1	39.914758	-83.183545	912.10	15.00	927.10
2	39.911548	-83.183653	912.92	15.00	927.92
3	39.911960	-83.176078	893.61	15.00	908.61
4	39.907894	-83.176293	901.20	15.00	916.20
5	39.906462	-83.177301	909.71	15.00	924.71
6	39.901588	-83.186139	912.56	15.00	927.56
7	39.907975	-83.191903	920.18	15.00	935.18
8	39.909736	-83.192697	923.59	15.00	938.59

Name: PV array 3
Axis tracking: Single-axis rotation
Tracking axis orientation: 180.0°
Tracking axis tilt: 0.0°
Tracking axis panel offset: 0.0°
Max tracking angle: 60.0°
Resting angle: 0.0°
Rated power: -
Panel material: Light textured glass with AR coating
Reflectivity: Vary with sun
Slope error: correlate with material

Vertex	Latitude (${ }^{\circ}$)	Longitude (${ }^{\circ}$)	Ground elevation (ft)	Height above ground (ft)	Total elevation (ft)
1	39.905902	-83.176131	907.24	15.00	922.24
2	39.905902	-83.174639	906.43	15.00	921.43
3	39.904354	-83.174618	904.13	15.00	919.13
4	39.904321	-83.173384	902.80	15.00	917.80
5	39.902420	-83.173663	906.69	15.00	921.69
6	39.902330	-83.169243	899.02	15.00	914.02
7	39.891779	-83.169488	895.71	15.00	910.71
8	39.891904	-83.175451	903.06	15.00	918.06
9	39.875372	-83.176459	888.86	15.00	903.86
10	39.875537	-83.180493	898.25	15.00	913.25
11	39.879983	-83.180279	902.45	15.00	917.45
12	39.880181	-83.182961	903.84	15.00	918.84
13	39.887136	-83.182715	907.56	15.00	922.56
14	39.887416	-83.191080	913.57	15.00	928.57
15	39.892311	-83.190959	918.20	15.00	933.20
16	39.892163	-83.183278	912.77	15.00	927.77
17	39.899061	-83.182956	910.69	15.00	925.69
18	39.900509	-83.183557	909.91	15.00	924.91
19	39.900970	-83.181454	911.07	15.00	926.07
20	39.903192	-83.182419	912.29	910.24	927.29
21	39.905183	-83.178849			925.25

Flight Path Receptor(s)

Discrete Observation Receptors

Name	ID	Latitude $\left({ }^{\circ}\right)$	Longitude $\left(^{\circ}\right)$	Elevation (ft)	Height (ft)
1-ATCT	1	39.904929	-83.137564	910.79	30.00
OP 2	2	39.937025	-83.192005	924.82	6.00
OP 3	3	39.928074	-83.189301	920.39	6.00
OP 4	4	39.924491	-83.183379	913.02	6.00
OP 5	5	39.911994	-83.183111	915.35	6.00
OP 6	6	39.903220	-83.170079	898.16	6.00
OP 7	7	39.891499	-83.172568	903.85	6.00
OP 8	8	39.943791	-83.217277	927.81	6.00

Map image of 1-ATCT

Route Receptor(s)

Name: Route 1
Path type: Two-way
Observer view angle: 50.0°

Note: Route receptors are excluded from this FAA policy review. Use the 2-mile flight path receptor to simulate flight paths according to FAA guidelines.

Vertex	Latitude (${ }^{\circ}$)	Longitude (${ }^{\circ}$)	Ground elevation (ft)	Height above ground (ft)	Total elevation (ft)
1	39.950214	-83.175665	909.29	6.00	915.29
2	39.947985	-83.228242	928.15	6.00	934.15

GLARE ANALYSIS RESULTS

Summary of Glare

PV Array Name	Tilt	Orient	"Green" Glare	"Yellow" Glare	Energy
	$\left.\mathbf{}^{\circ}\right)$	$\left({ }^{\circ}\right)$	min	min	kWh
PV array 1	SA tracking	SA tracking	55	265	-
PV array 2	SA tracking	SA tracking	835	0	-
PV array 3	SA tracking	SA tracking	1,175	803	-

Total annual glare received by each receptor

Receptor	Annual Green Glare (min)	Annual Yellow Glare (min)
FP 1	0	0
FP 2	1439	0
1-ATCT	626	1068
OP 2	0	0
OP 3	0	0
OP 4	0	0
OP 5	0	0
OP 6	0	0
OP 7	0	0
OP 8	0	0
Route 1	0	0

Results for: PV array 1

Receptor	Green Glare (min)	Yellow Glare (min)
FP 1	0	0
FP 2	0	0
1-ATCT	55	265
OP 2	0	0
OP 3	0	0
OP 4	0	0
OP 5	0	0

Receptor	Green Glare (min)	Yellow Glare (min)
OP 6	0	0
OP 7	0	0
OP 8	0	0
Route 1	0	0

Flight Path: FP 1

0 minutes of yellow glare
0 minutes of green glare

Flight Path: FP 2

0 minutes of yellow glare
0 minutes of green glare

Point Receptor: 1-ATCT

265 minutes of yellow glare
55 minutes of green glare

Point Receptor: OP 2

0 minutes of yellow glare
0 minutes of green glare

Point Receptor: OP 3

0 minutes of yellow glare
0 minutes of green glare

Point Receptor: OP 4

0 minutes of yellow glare
0 minutes of green glare

Point Receptor: OP 5

0 minutes of yellow glare
0 minutes of green glare

Point Receptor: OP 6

0 minutes of yellow glare
0 minutes of green glare

Point Receptor: OP 7
0 minutes of yellow glare
0 minutes of green glare

Point Receptor: OP 8

0 minutes of yellow glare
0 minutes of green glare

Route: Route 1

0 minutes of yellow glare
0 minutes of green glare

Results for: PV array 2

Receptor	Green Glare (min)	Yellow Glare (min)
FP 1	0	0
FP 2	473	0
1-ATCT	362	0
OP 2	0	0
OP 3	0	0
OP 4	0	0
OP 5	0	0
OP 6	0	0
OP 7	0	0
OP 8	0	0
Route 1	0	0

Flight Path: FP 1

0 minutes of yellow glare
0 minutes of green glare

Flight Path: FP 2

0 minutes of yellow glare
473 minutes of green glare

Point Receptor: 1-ATCT

0 minutes of yellow glare
362 minutes of green glare

Point Receptor: OP 2

0 minutes of yellow glare
0 minutes of green glare

Point Receptor: OP 3

0 minutes of yellow glare
0 minutes of green glare

Point Receptor: OP 4

0 minutes of yellow glare
0 minutes of green glare

Point Receptor: OP 5

0 minutes of yellow glare
0 minutes of green glare

Point Receptor: OP 6

0 minutes of yellow glare
0 minutes of green glare

Point Receptor: OP 7

0 minutes of yellow glare
0 minutes of green glare

Point Receptor: OP 8

0 minutes of yellow glare
0 minutes of green glare

Route: Route 1

0 minutes of yellow glare
0 minutes of green glare

Results for: PV array 3

Receptor	Green Glare (min)	Yellow Glare (min)
FP 1	0	0
FP 2	966	0
1-ATCT	209	803
OP 2	0	0
OP 3	0	0
OP 4	0	0
OP 5	0	0
OP 6	0	0
OP 7	0	0
OP 8	0	0
Route 1	0	0

Flight Path: FP 1

0 minutes of yellow glare
0 minutes of green glare

Flight Path: FP 2

0 minutes of yellow glare
966 minutes of green glare

Point Receptor: 1-ATCT
803 minutes of yellow glare
209 minutes of green glare

Point Receptor: OP 2

0 minutes of yellow glare
0 minutes of green glare

Point Receptor: OP 3

0 minutes of yellow glare
0 minutes of green glare

Point Receptor: OP 4

0 minutes of yellow glare
0 minutes of green glare

Point Receptor: OP 5

0 minutes of yellow glare
0 minutes of green glare

Point Receptor: OP 6

0 minutes of yellow glare
0 minutes of green glare

Point Receptor: OP 7

0 minutes of yellow glare
0 minutes of green glare

Point Receptor: OP 8

0 minutes of yellow glare
0 minutes of green glare

Route: Route 1

0 minutes of yellow glare
0 minutes of green glare

Assumptions

"Green" glare is glare with low potential to cause an after-image (flash blindness) when observed prior to a typical blink response time. "Yellow" glare is glare with potential to cause an after-image (flash blindness) when observed prior to a typical blink response time Times associated with glare are denoted in Standard time. For Daylight Savings, add one hour.
Glare analyses do not account for physical obstructions between reflectors and receptors. This includes buildings, tree cover and geographic obstructions.

Several calculations utilize the PV array centroid, rather than the actual glare spot location, due to algorithm limitations. This may affect results for large PV footprints. Additional analyses of array sub-sections can provide additional information on expected glare.
The subtended source angle (glare spot size) is constrained by the PV array footprint size. Partitioning large arrays into smaller sections will reduce the maximum potential subtended angle, potentially impacting results if actual glare spots are larger than the sub-array size.
Additional analyses of the combined area of adjacent sub-arrays can provide more information on potential glare hazards. (See previous point on related limitations.)
Glare locations displayed on receptor plots are approximate. Actual glare-spot locations may differ
Glare vector plots are simplified representations of analysis data. Actual glare emanations and results may differ.
The glare hazard determination relies on several approximations including observer eye characteristics, angle of view, and typical blink response time. Actual results and glare occurrence may differ.

Hazard zone boundaries shown in the Glare Hazard plot are an approximation and visual aid based on aggregated research data. Actual ocular impact outcomes encompass a continuous, not discrete, spectrum.
Refer to the Help page at www.forgesolar.com/help/ for assumptions and limitations not listed here.

Visual Resource Assessment and Mitigation Plan
 Pleasant Prairie Solar Energy Project

APPENDIX

VISUAL SIMULATIONS

US Route 40 | Prairie

Viewpoint Information

Viewpoint ID: 2

County: Franklin
Township: Prairie
Location: US 40
Coordinates:
Direction of View: Southeast
Distance to Project: 0.07 mile
Distance Zone: Near-Foreground

Visual Resources

Landscape Type: Farmland User Group: Resident

Photograph Information

Date Taken: August 1, 2019
Time: 4:00 PM
Camera: Insta 360, 8k 360 View
Resolution: 1024×768 pixels
Lens Focal Length: 8 mm 3.5
Camera Elevation: 8.2 feet

Project Information
Racking Type: Single Axis Tracker
Max Panel Height: 15 feet
Total Buildable Area: TBC acres

Pleasant Prairie Solar

Pleasant and Prairie Townships
Franklin County, Ohio
Visual Resource Assessment | Appendix C, US Route 40 in the Township of Prairie - Context Sheet
Sheet 1 of 16

Pleasant Prairie Solar
Pleasant and Prairie Townships
Franklin County, Ohio
Visual Resource Assessment | Appendix C, US Route 40 in the Township of Prairie - Existing Conditions

Pleasant Prairie Solar
Pleasant and Prairie Townships
Franklin County, Ohio
Visual Resource Assessment | Appendix C, US Route 40 in the Township of Prairie - Visual Simulation

Pleasant Prairie Solar
Pleasant and Prairie Townships
Franklin County, Ohio
Visual Resource Assessment \| Appendix C, US Route 40 in the Township of Prairie - Visual Simulation - 5-7 Year Mitigation

County Road 12| Prairie

Viewpoint Information
Viewpoint ID: 3
County: Franklin
Township: Prairie
Location: CR 12
Coordinates: 39.932281, -83.191987
Direction of View: Southwest
Distance to Project: 0.037 mile
Distance Zone: Near-Foreground

Visual Resources
Landscape Type: Farmland User Group: Resident

Photograph Information
Date Taken: July 1, 2019
Time: 2:00 PM
Camera: Insta 360, 8k 360 View
Resolution: 1024×768 pixels
Lens Focal Length: 8 mm 3.5
Camera Elevation: 8.2 feet

Project Information
Racking Type: Single Axis Tracker
Max Panel Height: 15 feet
Total Buildable Area: TBC acres

Pleasant Prairie Solar
Pleasant and Prairie Townships
Franklin County, Ohio
Visual Resource Assessment | Appendix C, County Road 12 in the Township of Prairie - Context Sheet
Sheet 5 of 16

Pleasant Prairie Solar
Pleasant and Prairie Townships
Franklin County, Ohio
Visual Resource Assessment | Appendix C, County Road 12 in the Township of Prairie - Existing Conditions
Sheet 6 of 16

Pleasant Prairie Solar

Pleasant and Prairie Townships
Franklin County, Ohio
Visual Resource Assessment | Appendix C, County Road 12 in the Township of Prairie - Visual Simulation
Sheet 7 of 16

Pleasant Prairie Solar
Pleasant and Prairie Townships
Franklin County, Ohio
Visual Resource Assessment | Appendix C, County Road 12 in the Township of Prairie - Visual Simulation - 5-7 Year Mitigation
Sheet 8 of 16

County Road 11| Prairie

Viewpoint Information
Viewpoint ID: 6
County: Franklin
Township: Prairie
Location: CR 11
Coordinates: 39.904513, -83.180069
Direction of View: East
Distance to Project: 0.031 mile
Distance Zone: Near-Foreground

Visual Resources
Landscape Type: Farmland User Group: Resident

Photograph Information
Date Taken: July 1, 2019
Time: 1:00 PM
Camera: Insta 360, 8 k 360 View
Resolution: 1024×768 pixels
Lens Focal Length: 8 mm 3.5
Camera Elevation: 8.2 feet

Project Information
Racking Type: Single Axis Tracker
Max Panel Height: 15 feet
Total Buildable Area: TBC acres

Pleasant Prairie Solar

Pleasant and Prairie Townships
Franklin County, Ohio
Visual Resource Assessment | Appendix C, County Road 11 in the Township of Prairie - Context Sheet
Sheet 9 of 16

Pleasant Prairie Solar
Pleasant and Prairie Townships
Franklin County, Ohio
Visual Resource Assessment | Appendix C, County Road 11 in the Township of Prairie - Existing Conditions

Pleasant Prairie Solar

Pleasant and Prairie Townships
Franklin County, Ohio
Visual Resource Assessment | Appendix C, County Road 11 in the Township of Prairie - Visual Simulation
C Cardno
Sheet 11 of 16

Pleasant Prairie Solar
Pleasant and Prairie Townships
Franklin County, Ohio
Visual Resource Assessment | Appendix C, County Road 11 in the Township of Prairie - Visual Simulation - 5-7 Year Mitigation

County Road 135|Pleasant

Viewpoint Information
Viewpoint ID: 10
County: Franklin
Township: Prairie
Location: CR 135
Coordinates: 39.875353, -83.178238
Direction of View: Northwest
Distance to Project: 0.09 mile
Distance Zone: Near-Foreground

Visual Resources
Landscape Type: Farmland
User Group: Resident

Photograph Information

Date Taken: September 1, 2019
Time: 10:00 AM
Camera: Insta 360, 8k 360 View
Resolution: 1024×768 pixels
Lens Focal Length: 8 mm 3.5
Camera Elevation: 8.2 feet

Project Information
Racking Type: Single Axis Tracker
Max Panel Height: 15 feet
Total Buildable Area: TBC acres

Pleasant Prairie Solar

Pleasant and Prairie Townships
Franklin County, Ohio
Visual Resource Assessment | Appendix C, County Road 135 in the Township of Pleasant - Context Sheet
Sheet 13 of 16

Pleasant Prairie Solar
Pleasant and Prairie Townships
Franklin County, Ohio
Visual Resource Assessment | Appendix C, County Road 135 in the Township of Pleasant - Existing Conditions
Sheet 14 of 16

Pleasant Prairie Solar

Pleasant and Prairie Townships
Franklin County, Ohio
Visual Resource Assessment | Appendix C, County Road 135 in the Township of Pleasant - Visual Simulation
() Cardno

Sheet 15 of 16

Pleasant Prairie Solar
Pleasant and Prairie Townships
Franklin County, Ohio
Visual Resource Assessment | Appendix C, County Road 135 in the Township of Pleasant - Visual Simulation - 5-7 Year Mitigation
Sheet 16 of 16

Visual Resource Assessment and Mitigation Plan
Pleasant Prairie Solar Energy Project

APPENDIX

VISUALLY SENSITIVE RESOURCE ANALYSIS

Visually Sensitive Resources	Location		Distance	Project Visibility (Viewshed Results)
	Township	County	Miles from Nearest PV Array	+ Visible - Not Visible +/- Partially Visible
				DSM Viewshed (Topography, Structures, Vegetation)
Properties of Historic Significance				
National Historic Landmarks (NHL)				
None within VSA.				
Sites Listed on National or State Registers of Historic Places (NRHP/SRHP)				
Grant, A. G., Homestead	Jackson	Franklin	4.58	-
Sites Eligible for Listing on NRHP or SRHP				
Thorn Apple Country Club \& Golf Course	Prairie	Franklin	1.89	-
Ingalls Farmhouse	Prairie	Franklin	0.86	-
Seaman Store	Prairie	Franklin	0.78	-
Thompson Farmstead	Prairie	Franklin	0.42	+
O'Harra Farmstead	Prairie	Franklin	0.16	+
Kuntz Farmstead	Prairie	Franklin	0.09	+
Myers House	Pleasant	Franklin	0.99	-
Emmalhainz Farmstead	Pleasant	Franklin	0.91	+
Reibel Farmstead	Pleasant	Franklin	0.32	+
Reibel Farmstead	Prairie	Franklin	0.77	-
Courtright House	Prairie	Franklin	0.75	-
Fulton Bros Store	Prairie	Franklin	0.74	-
Peters House	Prairie	Franklin	0.74	-
Byrum House	Prairie	Franklin	0.68	-
Clay House	Prairie	Franklin	0.55	-
Clover Cemetery	Prairie	Franklin	1.50	-
Darby Dan Horse Farm	Prairie	Franklin	0.40	-
National/State Historic Sites				
None within VSA.				
Ohio Historic Structures				
None within VSA.				
Historic Bridges				
Orient Bridge (SR 762 at Big Darby Creek, bypassed)	Darby	Pickaway	5.00	-
OGS Cemeteries				
Alton Cemetery	Prairie	Franklin	1.10	+/-
Chenoweth Cemetery	Pleasant	Franklin	3.71	
Clime Cemetery	Franklin	Franklin	4.16	-
Clover Cemetery	Prairie	Franklin	1.48	-
Galloway Cemetery	Prairie	Franklin	0.59	+/-
Gundy Cemetery	Pleasant	Franklin	0.99	-
Hampton Cemetery	Jefferson	Madison	2.70	-
Oak Grove Cemetery	Pleasant	Franklin	1.08	-
Sunset Cemetery	Prairie	Franklin	0.02	+/-
Ohio Historic State Markers				
None within VSA.				
Designated Scenic Resources				
Rivers Designated as National or State Wild, Scenic or Recreational				
Big Darby Creek Scenic River	Jefferson, Brown, Prairie, Pleasant, Darby, Scioto	Madison, Franklin, Pickaway	1.31	-
Little Darby Creek Scenic River	Jefferson, Brown, Prairie, Pleasant, Darby, Scioto	Madison, Franklin, Pickaway	1.31	-
Sites, Areas, Lakes, Reservoirs or Highways Designated or Eligible for Designation as Scenic ([ECL Article 49 Title 1] or equivalent)				

Visually Sensitive Resources	Location		Distance	Project Visibility (Viewshed Results)
		County	Miles from Nearest PV Array	+ Visible - Not Visible +/- Partially Visible
				DSM Viewshed (Topography, Structures, Vegetation)
Historic National Road (US 40)	Jefferson, Prairie, Franklin	Madison, Franklin	0.02	+/-
Scenic Areas of Statewide Significance [Article 42 of Executive Law]				
Big Darby Creek Scenic River Area	Jefferson, Brown	Madison, Franklin	2.72	-
Little Darby Creek Scenic River Area	Jefferson	Madison	2.11	-
Other Designated Scenic Resources (Easements, Roads, Districts, and Overlooks)				
None within VSA.				
Public Lands and Recreational Resources				
National Parks, Recreation Areas, Seashores, and/or Forests [16U.S.C. 1c]				
None within VSA.				
National Natural Landmarks [36 CFR Part 62]				
None within VSA.				
National Wildlife Refuges [16 U.S.C. 668dd]				
None within VSA.				
Heritage Areas [Parks, Recreation and Historic Preservation Law Section 35.15]				
None within VSA.				
State Parks [Parks, Recreation and Historic Preservation Law Section 3.09]				
None within VSA.				
State Nature and Historic Preserve Areas [Section 4 of Article XIV of the State Constitution]				
None within VSA.				
Wildlife Areas				
None within VSA.				
State Forest				
None within VSA.				
Other State Lands				
None within VSA.				
Designated Trails				
None within VSA.				
Local Parks and Recreation Areas				
Converse Park	Jefferson	Madison	3.38	+/-
Battelle Darby Creek Metro Park	Pleasant, Prairie	Franklin	2.13	+/-
Tinapple Park	Norwich	Franklin	4.74	-
Westwood Memorial Park	Jefferson	Madison	3.79	-
Garrette Park	Jefferson	Madison	2.69	+/-
Municipal Park and Pool	Norwich	Franklin	5.37	-
Hilliard Soccer Complex	Norwich	Franklin	5.55	-
Battelle Darby Creek Metro Park	Pleasant	Franklin	2.13	-
Crosscreek Park	Norwich	Franklin	5.09	-
Big Run Park	Franklin, Jackson	Franklin	3.42	-
Redick Park	Franklin	Franklin	5.42	-
North Franklin Elementary	Franklin	Franklin	5.92	-
Westmoor Park	Franklin	Franklin	5.58	-
Evans Park	Jackson	Franklin	4.82	-
Murfin Field	Jackson	Franklin	4.69	-
Westgrove Park	Jackson	Franklin	3.15	-
Fryer Park	Jackson	Franklin	0.00	-
Stephens Drive Park	Franklin	Franklin	4.82	-
Beacon Fields	Norwich	Franklin	6.11	-

Visually Sensitive Resources	Location		Distance	Project Visibility (Viewshed Results)
	Township	County	Miles from Nearest PV Array	+ Visible - Not Visible +/- Partially Visible
				DSM Viewshed (Topography, Structures, Vegetation)
Conklin Park	Norwich	Franklin	5.56	-
Westgate Park	Franklin	Franklin	5.12	-
Green Countrie Park	Prairie	Franklin	1.98	-
Georgian Heights Park	Franklin	Franklin	3.58	-
Riverbend Park	Franklin	Franklin	4.58	-
Alt Field	Norwich	Franklin	5.98	-
Scioto Woods Park	Franklin	Franklin	5.46	-
Windsor Park	Jackson	Franklin	4.18	-
Publicly Accessible Conservation Lands/Easements				
Johnson Road Riparian Protection Area	Prairie	Franklin	0.46	+/-
Hellbranch Run Riparian Corridor Protection	Prairie	Franklin	0.12	+/-
Wetlands Reserve Program (WRP)	Prairie	Franklin	3.85	+/-
Wetlands Reserve Program (WRP)	Jefferson	Madison	3.85	-
Wetlands Reserve Program (WRP)	Pleasant	Franklin	3.85	-
Wetlands Reserve Program (WRP)	Jefferson	Madison	3.85	-
Named Lakes, Ponds, and Reservoirs				
Silver Creek Reservoir	Jefferson	Madison	2.01	-
Timber Lake	Pleasant	Franklin	3.35	-
Lake Forest	Jefferson	Madison	4.29	-
High-Use Public Areas				
State, US, and Interstate Highways				
State Route 3	Darby, Pleasant, Jackson	Franklin, Pickaway	4.15	-
Interstate Route 70	Jefferson, Brown, Norwich, Franklin	Madison, Franklin	2.07	+/-
U.S. Route 40	Jefferson, Prairie, Franklin	Madison, Franklin	0.02	+/-
U.S. Route 62	Darby, Pleasant, Jackon	Franklin, Pickaway	4.15	-
State Route 762	Darby, Scioto	Pickaway	4.83	-
Interstate Route 71	Darby, Pleasant, Jackson	Franklin, Pickaway	3.78	-
State Route 665	Fairfield, Pleasant, Jackson	Madison, Franklin	1.57	+/-
Interstate Route 270	Norwhich, Franklin, Jackson	Franklin	3.66	-
State Route 142	Jefferson	Madison	2.52	-
State Route 29	Jefferson	Madison	6.17	-
Cities, Villages,				
Harrisburg(Village) (Village)	Pleasant, Darby	Franklin, Pickaway	4.34	-
Orient(Village) (Village)	Pleasant, Scioto	Franklin, Pickaway	4.87	-
Columbus (City)	Norwich, Franklin, Pleasant, Jackson, Prairie	Franklin	0.37	+/-
Urbancrest(Village) (Village)	Jackson	Franklin	3.99	-
West Jefferson(Village) (Village)	Jefferson, Brown, Prairie	Madison, Franklin	1.07	+/-
Grove City (City)	Pleasant, Jackson	Franklin	2.66	-

Visually Sensitive Resources	Location		Distance	Project Visibility (Viewshed Results)
			Miles from Nearest PV Array	+ Visible - Not Visible +/- Partially Visible
				DSM Viewshed (Topography, Structures, Vegetation)
Hilliard (City)	Brown, Norwich	Franklin	3.48	-
Schools				
Norwood Elementary School	Jefferson	Madison	4.05	-
Lilly Chapel School (historical)	Fairfield	Madison	4.89	-
West Jefferson High School	Jefferson	Madison	3.25	-
Brown Elementary School	Brown	Franklin	3.02	-
Hilliard Bradley High School	Brown	Franklin	3.36	-
Darbydale Elementary School	Pleasant	Franklin	1.61	-
Pleasant View High School	Pleasant	Franklin	0.32	-
Pennsylvania School (historical)	Pleasant	Franklin	1.53	-
Alton-Hall Elementary School	Prairie	Franklin	0.53	-
Harrisburg Elementary School	Pleasant	Franklin	4.62	-
Horizon Elementary School	Norwhich	Franklin	1.82	-
Scioto Darby Elementary School	Norwhich	Franklin	4.88	-
Pisgah School (historical)	Pleasant	Franklin	2.15	-
Hilliard Crossing Elementary School	Norwhich	Franklin	4.32	-
Westland High School	Prairie	Franklin	1.71	-
Miller School (historical)	Pleasant	Franklin	4.05	-
Norton Junior High School	Prairie	Franklin	2.12	-
Saint Cecelia School	Prairie	Franklin	2.28	-
Prairie-Norton Elementary School	Prairie	Franklin	2.14	-
Prairie-Lincoln Elementary School	Prairie	Franklin	2.50	-
Stiles Elementary School	Prairie	Franklin	2.99	-
Georgian Heights School	Franklin	Franklin	4.08	-
Eakin Elementary School	Franklin	Franklin	4.41	-
Wedgewood Middle School	Franklin	Franklin	4.46	-
West Franklin Elementary School	Franklin	Franklin	4.53	-
Columbus Preparatory Academy	Franklin	Franklin	4.83	-
The Villa Madonna School (historical)	Franklin	Franklin	4.85	-
Franklin Heights High School	Franklin	Franklin	4.63	-
Kingston School	Jackson	Franklin	4.40	-
Park Street Middle School	Jackson	Franklin	4.44	-
Our Lady of Perpetual Help School	Jackson	Franklin	4.41	-
Sommer Elementary School	Jackson	Franklin	4.64	-
Southwestern Technical School	Jackson	Franklin	4.76	-
Westside Christian Academy	Franklin	Franklin	5.19	-
Richard Avenue Elementary School	Jackson	Franklin	4.77	-
Brookpark Junior High School	Jackson	Franklin	4.93	-

This foregoing document was electronically filed with the Public Utilities

Commission of Ohio Docketing Information System on

2/19/2021 12:39:42 PM
in

Case No(s). 20-1679-EL-BGN

Summary: Application - 13 of 25 (Exhibit J - Viewshed Analysis, Aesthetic Resources Inventory, and Glare Analysis) electronically filed by Christine M.T. Pirik on behalf of Pleasant Prairie Solar Energy LLC

