Clearview Solar I, LLC

Clearview Solar

Exhibit N

Preliminary Geotechnical Exploration Report

Case No. 20-1362-EL-BGN

PRELIMINARY GEOTECHNICAL EXPLORATION REPORT

CLEARVIEW SOLAR PROJECT CHAMPAIGN COUNTY, OHIO

PREPARED FOR:

CLEARVIEW SOLAR I, LLC 1105 NAVASOTA STREET AUSTIN, TEXAS 78702

PREPARED BY:

HULL & ASSOCIATES, LLC 6397 EMERALD PARKWAY, SUITE 200 DUBLIN, OHIO 43016

SEPTEMBER 2020

PRELIMINARY GEOTECHNICAL EXPLORATION REPORT

CLEARVIEW SOLAR PROJECT CHAMPAIGN COUNTY, OHIO

Hull Document No. ORR025.0002

Date of Report: September 30, 2020

Prepared for:

Clearview Solar I, LLC 1105 Navasota Street Austin, Texas 78702

Prepared by:

Hull & Associates, LLC 6397 Emerald Parkway, Suite 200 Dublin, Ohio 43016 (614) 793-8777

Sarah A. Aboulhosn, EIT Engineer II

Christopher M. Kokesh, PE Geotechnical Engineering Practice Leader

Copyright© 2020 by Hull & Associates, LLC. All rights reserved.

TABLE OF CONTENTS

1.0 EXECUTIVI	E SUMMARY	. 1
2.0 INTRODUC	TION AND PROJECT DESCRIPTION	. 3
2 1 Introdu	ction	З
	Description	
•		
	ORATION AND LABORATORY TESTING	
	xploration	
	tory Testing	
3.2.1	Moisture Content and Plasticity Characteristics	
3.2.2	Corrosion Testing Suite	
4.0 SITE COND	VITIONS	. 5
4.1 Site Lo	cation	.5
	JY	
	jic Hazards and Sensitive Areas	
4.4 Surface	Conditions	.5
4.5 Utilities		.6
4.6 Subsurf	ace Conditions	.6
4.6.1	Soil	.6
4.6.2	Bedrock	
4.6.3	Groundwater	.7
5.0 CONCLUS	ONS AND RECOMMENDATIONS	. 8
51 C	al Geotechnical Considerations	0
	Corrosion Protection	
5.1.1 5.1.2	Frost Depth	
5.1.2	Seismic Site Class	
5.1.4	Site Drainage	
5.1.5	Groundwater Control	
	ork	
5.2.1	Clearing and Grubbing	
5.2.2	Erosions and Sedimentation Control	
5.2.3	Subgrade Preparation	
5.2.4	Structural Fill	
5.2.5	Site Safety	
5.3 Solar P	V Panel Pile Foundations	1
5.3.1	Axial Pile Capacity	1
5.3.2	Lateral Capacity	1
5.3.3	Preliminary Geotechnical Design Parameters	1
5.3.4	Pile Load Testing	
- • •	/ Foundations	
5.4.1	Design Considerations	
5.4.2	Settlement Potential	
5.4.3	Construction Considerations	
	ade Slabs	
	Shaft Foundations	
5.6.1	Axial Design Parameters for Drilled Shafts	
5.6.2	Lateral Design Parameters for Drilled Shafts	5

5.7 Subgrade Chemical Stabilization	16
5.8 Additional Geotechnical Services	16
6.0 STANDARD OF CARE AND LIMITATIONS	18

LIST OF FIGURES

Figure 1Sife Pic	Figure 1	lSite	Plan
------------------	----------	-------	------

LIST OF APPENDICES

Appendix A	Field	Exploration
Appendix B	Laboratory	Test Results

1.0 EXECUTIVE SUMMARY

Hull & Associates, LLC (Hull) presents this Preliminary Geotechnical Exploration Report (Report) summarizing the results of our geotechnical engineering services for the proposed Clearview Solar Project located in Champaign County, Ohio (Site). This Report is provided to satisfy the requirements of the Ohio Power Sitting Board (OPSB) Rule 4906-4-08(A)(5)(c) of the Ohio Administrative Code (OAC).

The project, as currently envisioned, will be a utility-scale solar project on approximately 1,200 acres of agricultural land, consisting of solar fields with arrays of ground-mounted photovoltaic (PV) panels, an electrical substation, associated equipment assemblies, and private access roads.

Hull completed a geotechnical field investigation at the Site that included drilling and sampling 12 borings and laboratory testing on select soil samples considered representative of the Site for preliminary design purposes. The intent of the information and recommendations provided in this Report is for planning and preliminary foundation (e.g. pile foundations) design purposes, with the understanding that pile load tests and additional geotechnical explorations would be completed to support the final design for the project, as appropriate.

We conclude that the planned construction can be successfully completed from a geotechnical perspective, provided the considerations presented in this Report are incorporated into the project planning, design, and construction phases. A summary of key geotechnical considerations for the Site is provided below.

- The borings completed at the Site generally encountered medium stiff to very stiff clayey soils with variable sand and gravel and loose to medium dense clayey/silty sand with variable gravel down to termination depth of the borings. Topsoil or tilled soil (i.e., fill/modified land), with thicknesses ranging from about 6 inches to 3 feet were observed in the borings at the surface.
- Bedrock was not encountered in the borings; however, we anticipate that bedrock is on the order of 150 feet below the existing site grades, or deeper, based on the logs of several domestic water wells in the Site vicinity and available regional bedrock elevation mapping.
- Groundwater was encountered at depths ranging between 5 and 15 feet in four of the borings completed at the Site and interpreted to be seepage from a nearby ditch and/or perched groundwater. Consequently, the groundwater observed within these borings is likely not hydraulically connected to any potable use wells/production wells near the Site. Our review of geologic publications and publicly available water well logs indicates that the static water level (i.e. regional groundwater table) across the Site is in estimated to generally be deeper than 15 feet below the existing Site grades. Groundwater levels at the Site should be expected to fluctuate as a function of the season, precipitation, and other factors.
- The soils at the Site expected to be encountered during construction generally contain a high percentage of fines (silt and clay) and are generally highly moisture sensitive. Debris, cobbles, and boulders may be encountered within the soils at the Site, including encountering potential obstructions during pile installation.
- A design frost penetration depth of 40 inches is recommend for the Site.
- Pursuant to ASCE/SEI 7-10 and the International Building Code (IBC), Site Class D (for stiff soil) is recommended for seismic design at the Site.
- The risk for corrosion potential for uncoated galvanized steel and ductile iron pipe is considered low to moderate and the risk for corrosion potential for concrete is considered low based on the results of the laboratory corrosion testing. If ductile iron pipes, rebar, or other buried steel is to be placed

in or on the subgrade material, it is recommended that a polyethylene encasement, or an acceptable equivalent protective measure, be considered to mitigate against the corrosion potential of the subgrade soils at the Site.

- In our opinion, steel piles (e.g. W6 and W8 wide flange beam sections) will be a suitable foundation system to support the PV Panels at the Site.
- Shallow foundations are considered suitable support for electrical equipment at the substation and for lightly loaded structures throughout the Site. We recommend that shallow foundations bear on medium stiff to stiff clay/silty clay or medium dense clayey sand and may be designed for a maximum net allowable bearing pressure of 2,500 pounds per square foot (psf). We recommend individual column footings and continuous wall footings have minimum widths of 30 and 18 inches, respectively. We recommend that all exterior footings be founded a minimum of 40 inches below the lowest adjacent grade for frost protection.
- We recommend that on-grade slabs be founded on medium stiff or stiffer subgrade or structural fill over medium stiff or stiffer subgrade. Where slab-on-grade construction is planned in areas with soft subgrade conditions, overexcavation and replacement of unsuitable soils will likely be required. For planning purposes, Hull recommends a minimum 2-foot overexcavation and replacement with gravel be considered for "settlement sensitive" on-grade slabs to mitigate settlement potential.
- For structures/appurtenances within the substation which have large loads and/or are sensitive to movement that are supported on drilled shaft foundations, we recommended that each drilled shaft element be at least 1.5 feet in diameter. It is recommended that drilled shafts have a minimum shaft length of 10 feet or at least 3 times the shaft diameter, whichever is greater, and bear on native stiff (or stiffer) or dense (or denser) soils.

The preceding summary is presented for introductory purposes and should be used in conjunction with the preliminary recommendations presented in this Report. These and other geotechnical considerations are discussed further, and preliminary recommendations for the geotechnical aspects of the project are presented in the following sections of this Report.

2.0 INTRODUCTION AND PROJECT DESCRIPTION

2.1 Introduction

This Report presents the results of our geotechnical engineering services performed for the proposed Clearview Solar Project located in Adams Township, Champaign County, Ohio (Site). The Site is located approximately 35 miles north-northeast of Dayton, Ohio. The project location is shown relative to surrounding physical features on the Site Plan, Figure 1.

The purpose of our services is to evaluate the subsurface conditions at the Site as a basis for developing preliminary geotechnical recommendations for the design and construction of shallow and pile foundations support for the proposed solar photovoltaic (PV) panels and substation improvements at the Site. The borings completed as part of our geotechnical engineering services are considered to generally represent the subsurface conditions at the Site for preliminary design purposes. The intent of the information and recommendations provided in this Report is for planning and preliminary foundation design purposes, with the understanding that pile load tests and additional geotechnical explorations be completed to support the final design for project, as appropriate.

This Report is provided to satisfy the requirements of the Ohio Power Sitting Board (OPSB) Rule 4906-4-08(A)(5)(c) of the Ohio Administrative Code for providing the test boring logs and the following information to the board:

- Subsurface soil properties
- Static water level
- Rock quality description
- Percent recovery
- Depth and description of bedrock contact

2.2 Project Description

The project, as currently envisioned, will be a utility-scale solar project on approximately 1,200 acres of agricultural land, consisting of solar fields with arrays of ground-mounted photovoltaic (PV) panels, an electrical substation, associated equipment assemblies, and private access roads. We understand that the proposed solar PV Panels will be supported by driven steel piles (e.g., W6 and W8 wide flange beam sections). Proposed grading plans, panel locations, and foundation loads were not available at the time this Report was prepared, but it is anticipated that minimal site grading will be needed at for the Site development at the PV Panel locations, and minor grading and earthwork may be required at the substation area. It is also anticipated that uplift from winds and lateral loads are likely the controlling load forces for the design of the PV Panel foundations.

3.0 FIELD EXPLORATION AND LABORATORY TESTING

3.1 Field Exploration

Subsurface conditions at the Site were evaluated by drilling and sampling 12 borings, designated B20-01 through B20-12, on August 12 and August 13, 2020. The borings were advanced to depths ranging between 15 and 50 feet below the ground surface (bgs) with a track-mounted drill rig utilizing continuous-flight, hollow-stem augers.

The approximate locations of the borings are shown on the Site Plan, Figure 1. Details of the field exploration program and logs of the borings are presented in Appendix A.

3.2 Laboratory Testing

The soil samples obtained from the borings were sealed to reduce moisture loss, labeled for identification, and transported to Geotechnics, Inc.'s laboratory for further examination, testing, and classification. Representative soil samples were tested for the determination of moisture content, grain size distribution (sieve analysis), percent passing #200 by washing, plasticity characteristics (Atterberg limits), and corrosivity (soil pH, chlorides, sulfates, and minimum resistivity).

The laboratory testing was performed in general accordance with test methods of ASTM International or other applicable procedures. The laboratory test results are presented in Appendix B and presented on the boring logs in Appendix A at the representative samples depths, where appropriate.

3.2.1 Moisture Content and Plasticity Characteristics

Moisture content of tested soil samples as received by the laboratory ranged from 6.8 to 22.7 percent. Atterberg limit testing of select soil samples had liquid limits that ranged from 0 to 41 and plasticity indices that ranged from 0 to 18.

3.2.2 Corrosion Testing Suite

Corrosion testing suites were performed on composite samples from Borings B20-04 and B20-09 at depths from 1 to 5 feet bgs to determine the corrosion potential for pipes and reactivity potential for concrete structures below grade. The corrosion testing included soil pH, chlorides, sulfates, and minimum resistivity. The laboratory test results are summarized in Table 1.

Boring	Material Description	Sample Depth (feet)	рН	Chlorides (mg/kg)	Sulfates[1] (mg/kg)	Minimum Resistivity ^[2] (omh-cm)
B20-04	Lean Clay (CL)	1 to 5	8.12	11.63	56.3	5100
B20-09	Sandy Lean Clay (CL)	1 to 5	7.55	25.59	62.0	1800

Notes: ^[1] corrected for moisture.

 $\ensuremath{^{[2]}}$ resistivity at approx. in-situ moisture content.

4.0 SITE CONDITIONS

4.1 Site Location

The Site is located on approximately 1,200 acres of agricultural land in Adams Township, Champaign County, Ohio, about 35 miles north-northeast of Dayton. The Site is bounded to the north by Champaign-Logan Road, to the east by SR 235, to the south by Shanley Road, and to the west by Champaign Logan Shelby Road.

4.2 Geology

The Site is located within the Till Plains Section of the Central Lowlands Province, and locally lies within the Southern Ohio Loamy Till Plain physiographic region of Ohio. The Till Plain Region is characterized by a loamy till surface, end and recessional moraines, commonly associated with boulder belts, between relatively flat-lying ground moraine, cut by steep-valleyed large streams, and stream valleys filled with outwash and alternating between broad floodplains and narrows.

A review of geologic publications, including the Soil Survey of Champaign County (1971) and the Ohio Division of Geological Survey (1998), suggest that the surficial soils at the Site are mainly comprised of loamy, high-lime Wisconsinan-age till, outwash, and loess over Lower Paleozoic-age carbonite rocks, derived mainly from glacial deposits (i.e., mainly glacial till and glacial outwash). Further review also suggests that boulders may also be present at the Site.

Mapped bedrock elevations range from about 500 to 920 feet across the Site (approximately 150 to 600 feet below the existing site grades). The bedrock consists mainly of the Cincinnati Group (Upper Ordovician), which is predominantly comprised of gray and olive interbedded shale, limestone, and dolomite, laid down during the late Ordovician period (Bedrock Geologic Map of Ohio, 2006).

4.3 Geologic Hazards and Sensitive Areas

Based on review of geologic hazard maps (i.e., ODNR Mine Locator GIS system, USGS U.S. Landslide Inventory, ODNR Known and Probable Karst in Ohio Revised 2006), the Site is not located within areas mapped as active and abandoned surface or underground mines, landslides, or known and probable karst.

A review of published FEMA and ODNR Flood Maps indicates that there are no 100-year floodplain areas mapped within the Site.

4.4 Surface Conditions

The area in and surrounding the Site mostly consists of wooded and open, rural-residential, agricultural land and pastures with nominal forested patches. Indian Creek stream bisects the eastern portion of the Site and flows in a general south to north direction. Numerous roadside and agricultural ditches are also present at the Site.

The Site topography is relatively flat with elevations ranging from about 1072 feet to 1102 feet (NAVD88) The surficial soils generally consist of tilled soil (i.e., fill/modified land) or topsoil with thicknesses ranging from about 6 inches to 3 feet as observed in the borings completed as part of this study.

4.5 Utilities

Buried utilities are not anticipated within the undeveloped areas of the Site; however, utilities should be expected within the right-of-way corridors. We understand that there are drain tiles at the Site from active and previous agriculture operations and their locations should be verified during design and/or prior to construction.

4.6 Subsurface Conditions

The subsurface conditions at the Site were evaluated by completing 12 borings, B20-01 through B20-12. The logs of the borings are presented in Appendix A and their approximate locations are shown on the Site Plan, Figure 1.

Table 2 summarizes the approximate locations, existing ground surface elevations, groundwater depths observed during drilling, and the termination depths of each boring. The subsurface conditions encountered at the respective boring locations, including detailed descriptions of the subsurface materials, sample data, SPT results, groundwater conditions, and other pertinent information, are indicated on the boring logs presented in Appendix A.

		Ground Surface	Topsoil/Tilled	Observed Grou	ndwater/Seepage
Boring	Planned Use	Elevation (feet, NAVD88)	Soil Thickness (feet)	Depth (feet)	Elevation (feet, NAVD88)
B20-01	PV Panels	1078	0.8	5.0	1071
B20-02	PV Panels	1080	0.8		
B20-03	PV Panels	1089	3.0		
B20-04	PV Panels	1102	1.0		
B20-05	PV Panels	1098	0.8		
B20-06	PV Panels	1077	0.5	8.5	1068.5
B20-07	Substation	1072	1.6	15.0	1057
B20-08	Substation	1073	3.0	10.0	1063
B20-09	PV Panels	1084	1.0		
B20-10	PV Panels	1083	1.0		
B20-11	PV Panels	1082	1.0		
B20-12	PV Panels	1087	1.0		

Table 2 – Summary of Borings

Notes: Elevations for borings are approximate and estimated based on publicly available topographic mapping. Groundwater observations represent conditions at the time of or end of drilling.

-- Denotes parameter not observed.

4.6.1 Soil

At the ground surface, a 0.5- to 3.0-foot-thick topsoil or tilled soil (i.e. fill/modified land) layer was encountered in the borings. Below this surficial layer, the borings generally encountered medium stiff to very stiff clayey soils with variable sand and gravel and loose to medium dense clayey/silty sand with variable gravel down to termination depth of the borings.

4.6.2 Bedrock

Bedrock was not encountered in the borings; however, bedrock was encountered at approximately 180 feet bgs during installation of several domestic water wells in the general vicinity of the Site. Published mapped bedrock elevations show that bedrock is deeper than 150 feet bgs across the Site.

4.6.3 Groundwater

The presence and level of groundwater was observed during drilling in borings B20-01, B20-06, B20-07, and B20-08 at depths ranging from approximately 5 to 15 feet bgs. Groundwater was not observed in the other eight borings at the time of drilling. Notably, the four borings which did encounter groundwater were located close to a surface water ditch along the eastern portion of the Site and our groundwater observations made in these borings is interpreted to be seepage and/or perched groundwater. Consequently, the groundwater observed within these borings is likely not hydraulically connected to any potable use wells/production wells near the Site. Zones of groundwater seepage and/or notable moisture changes observed during drilling are noted in the boring logs in Appendix A.

Our review of geologic publications and publicly available water well logs (water well locations are shown on the Site Plan, Figure 1) indicates that the primary groundwater source for Site is a limestone aquifer at approximately 170 feet bgs with recent records (c.2008-2018) showing water wells completed at depths ranging from about 170 to 205 feet bgs in this limestone unit. Historical records (c.1940-1970) show multiple wells in the Site vicinity that were completed at depths ranging between about 20 to 80 feet bgs in gravel deposits closer to the ground surface. An estimated regional static groundwater table of Elev. 1085 ± 15 feet is associated with water wells completed in the consolidated (bedrock) aquifers in the Site vicinity. Accordingly, the static water level (i.e. regional groundwater table) across the Site is estimated to generally be in excess of 15 feet below the existing Site grades; however, we anticipate that groundwater levels will fluctuate as a function of the season, precipitation, and other factors.

5.0 CONCLUSIONS AND RECOMMENDATIONS

5.1 General Geotechnical Considerations

We conclude that the planned improvements can be successfully completed from a geotechnical perspective provided the considerations presented in this report are incorporated into the project planning and design.

5.1.1 Corrosion Protection

The risk for corrosion potential for uncoated galvanized steel and ductile iron pipe is considered low to moderate and the risk for corrosion potential for concrete is considered low based on the results of the laboratory corrosion testing. If ductile iron pipes, rebar, or other buried steel is to be placed in or on the subgrade material, it is recommended that a polyethylene encasement, or an acceptable equivalent protective measure, be considered to mitigate against the corrosion potential of the subgrade soils at the Site.

5.1.2 Frost Depth

A minimum design frost penetration depth of 40 inches is recommended for the Site, although applicable building codes should also be consulted for minimum design frost depths.

5.1.3 Seismic Site Class

Pursuant to ASCE/SEI 7-10 and the International Building Code (IBC), Site Class D (for stiff soil) is recommended for seismic design at the Site. All structures should be designed in accordance with the most current Ohio Building Code as well as local building codes, as appropriate.

5.1.4 Site Drainage

Adequate drainage should be established at the Site to minimize any increase in the moisture content of the subgrade material. Positive drainage of the Site should be created by gently sloping the surface away from the active construction equipment and towards drainage swales, ditches, and/or appropriate discharge locations. It should be noted that the subgrade soils are subject to shrinking and swelling due to changes in moisture content. Accordingly, the Client should be prepared to manage groundwater and surface water and remove soft material form foundation excavations.

5.1.5 Groundwater Control

The Client should be prepared to deal with groundwater seepage and/or surface water that may accumulate in excavations. Groundwater was encountered at depths ranging between 5 and 15 feet bgs in four of the borings completed at the Site and interpreted to be seepage from a nearby ditch and/or perched groundwater. As such, dewatering may be required during construction where excavations extend below these or other saturated zones. Fluctuations in groundwater zones should be expected to occur seasonally and due to variations in rainfall, construction activity, surface runoff, and other factors. Since such variations are anticipated, we recommend that design drawings and specifications accommodate such possibilities and that construction planning be based on the assumption that such variations can occur.

5.2 Earthwork

Earthwork is most efficiently accomplished using large, heavy-duty equipment, unimpeded by obstacles. Consequently, it is preferable to complete as much of this work as is possible prior to initiating other phases of construction, such as footing excavation and installation of underground utilities.

We anticipate that the soils observed in the explorations can be excavated with conventional grading equipment, such as track excavators or dozers. The Client should be prepared to deal with debris, cobbles, and boulders within the soils at the Site, including encountering obstructions during pile installation.

5.2.1 Clearing and Grubbing

Significant clearing and grubbing are not expected to be needed with the current improvements as planned, and these activities are expected to be limited to the removal of existing vegetation and tilled soil or topsoil in areas of proposed structural fill placement, foundation construction, planned equipment placement, and other construction activities.

Removal and demolition of existing structures/pavements should include removal of below-grade elements. Existing voids or new depressions created during site preparation should be cleaned of loose soil or debris and backfilled with structural fill. The work areas should be cleared of all surface and subsurface deleterious matter, including debris, trees, shrubs, and associated stumps and root wads, and should be stripped of any sod and organic soil. The woody debris should be removed from the Site for disposal.

Removal and/or relocation of any "to be abandoned" utilities (i.e., existing drain tiles) should also be performed prior to rough site grading activities. We do not anticipate buried utilities within the undeveloped areas of the Site; however, utilities should be expected the within right-of-way corridors and drain tile from previous agriculture operations should be clear prior to Site grading activities.

5.2.2 Erosions and Sedimentation Control

Potential sources or causes of erosion and sedimentation depend upon construction methods, slope length, and gradient, amount of soil exposed and/or disturbed, soil type, construction sequencing and weather. The project's impact on erosion-prone areas can be reduced by implementing an erosion and sedimentation control plan. Hull recommends the plan be designed in accordance with applicable township and/or county standards and incorporate the following basic planning principles:

- Scheduling grading and construction to reduce soil exposure;
- Retaining existing vegetation whenever feasible;
- Revegetating or mulching denuded areas;
- Directing runoff away from denuded areas;
- Minimizing the length and steepness of slopes with exposed soils;
- Decreasing runoff velocities;
- Confining sediment to the Site;
- Inspecting and maintaining control measures frequently;
- Covering soil stockpiles; and
- Implementing proper erosion control best management practices (BMPs).

5.2.3 Subgrade Preparation

We recommend that the exposed subgrade areas be evaluated prior to the placement of structural fill and/or foundation elements by proof-rolling to locate areas of loose, soft or pumping soils. Proof-rolling can be completed using heavy tire-mounted equipment or a loaded dump truck. If soft or pumping soils are observed, we recommend that unsuitable subgrade soils be recompacted or overexcavated and replaced with properly compacted structural fill.

Subgrade disturbance or deterioration could occur if the subgrade is wet and cannot be dried. If the subgrade deteriorates during proof-rolling or compaction, it may become necessary to modify the proof-rolling or compaction criteria or methods.

If deep pockets of soft or pumping soils are encountered, it may be possible to limit the depth of overexcavation by placing a geotextile for separation/soil stabilization on the overexcavated subgrade and covering the geotextile with structural fill. The geotextile will provide additional support by bridging over the soft material and will help reduce fines contamination into the structural fill. The need for geotextile fabric and overexcavation should be evaluated on a case-by-case basis.

5.2.4 Structural Fill

Materials used to construct roadways and embankments, placed to support structures, placed as backfill, or placed as drainage material, are classified as structural fill for the purpose of this Report.

On-Site Soils

The near surface on-site soils generally contain a high percentage of fines (silt and clay) and are generally highly moisture sensitive. On-site soils, with the exception of any topsoil or tilled soil, organic contaminated soil or other deleterious materials, may be used as structural fill, provided the material meets the requirements for structural fill.

Materials

Soils having slickensides, reclaimed asphalt concrete pavement, and/or slag are not considered suitable for use as structural fill. Soils having a maximum dry density of less than 100 pounds per cubic foot as determined by ASTM D698 (Standard Proctor) are also not considered suitable for use as structural fill. We recommend that rocks larger than 6 inches, slickenside material, and clay with a LL>50 be removed from structural fill material.

Placement and Compaction Criteria

Hull recommends that all structural fill be uniformly compacted to a firm, non-yielding condition to the specified density before placing subsequent lifts pursuant to the following compaction criteria:

- 1. 98 percent of maximum dry density as established by ASTM procedure D 698 (Standard Proctor), in all areas; and
- 2. 100 percent of maximum dry density as established by ASTM procedure D 698 in all areas subject to vehicular traffic loads.

For planning purposes, we recommend that that structural fill is placed in loose lifts not exceeding 8 inches at or near optimum moisture content (i.e. $\pm 3\%$). Actual lift thickness should be adjusted in the field based on the actual size and weight of the equipment used to ensure full depth compaction. Cohesive soils will best be compacted using a sheepsfoot compactor, while granular soils will be best compacted using a vibratory

smooth drum compactor. We recommend that monitoring the placement of structural fill be provided to ensure that required compaction criteria are being met, the proper materials are used for structural fill, and that the material is placed in appropriate lifts for the compaction equipment being used.

5.2.5 Site Safety

Site safety is the sole responsibility of the parties performing the work. All excavations must comply with applicable local, state, and federal safety regulations including the current Occupational Safety and Health Administration (OSHA) Excavation and Trench Safety Standards (29 CFR Part 1926).

5.3 Solar PV Panel Pile Foundations

It is anticipated that driven steel piles (e.g. W6 and W8 wide flange beam sections) will be suitable to support the PV Panels and racking at the Site. If other foundation systems (e.g., auger cast piles, helical piles, concrete, ballasted) are evaluated, consideration should be given to the installation methods, as groundwater seepage may be encountered above foundation embedment depths and standing water and poor surface water drainage conditions should be anticipated at the Site, especially if construction is completed during periods wet or inclement weather.

The following sections provide preliminary recommendations for sizing piles to support PV Panels at the Site.

5.3.1 Axial Pile Capacity

Hull recommends the piles be designed to consider skin friction only. An allowable skin friction coefficient (e.g., angle of friction between the soil and a steel pile/internal friction angle of the soil) of 0.67 can be assumed for preliminary design. Recommended preliminary pile design parameters are presented in Table 3.

5.3.2 Lateral Capacity

An Active Earth Pressure Coefficient (K_a) and Passive Earth Pressure Coefficient (K_p) of 0.59 and 1.7, respectively, is recommended for calculating the lateral earth pressures for preliminary pile design.

5.3.3 Preliminary Geotechnical Design Parameters

It is anticipated that uplift and lateral loads (e.g. wind) will likely the control the design rather than vertical loads from the dead weight of the PV Panels and racking. Table 3 presents recommended geotechnical soil parameters to be used for the preliminary design of driven steel piles (e.g. W6 and W8 wide flange beam sections) at each boring location. It is understood that pile load tests will be completed to support the final design.

Boring	Material		epth eet)	Total Unit Weight	Undrained Shear Strength	Friction Angle
		Тор	Bottom	(pcf)	(psf)	(deg)
	Modified Land	0	1	115	200	
B20-01	Stiff Clay	1	6.5	130	2,000	
	Medium Dense Sand	6.5	15	125		34
B 20.02	Modified Land	0	1	115	200	
B20-02	Stiff Clay	1	15	128	1,700	
	Modified Land	0	3	115	200	
B20-03	Medium Stiff Clay	3	6.5	125	1,200	
	Very Stiff Clay	6.5	15	132	3,700	
DOD 04	Modified Land	0	1	115	200	
B20-04	Medium Stiff Clay	1	15	127	1,300	
	Modified Land	0	1	115	200	
B20-05	Loose to Medium Dense Sand	1	12	122		33
	Medium Dense Sand	12	15	130		36
	Modified Land	0	1	115	200	
B20-06	Stiff Clay	1	5.5	128	1,625	
	Very Stiff to Hard Clay	5.5	15	130	4,000	
	Modified Land	0	1	115	200	
B20-07	Very Stiff to Hard Clay	1	15	130	4,000	
	Very Dense Sand	15	25	132		37
	Modified Land	0	3	115	200	
	Medium Stiff Clay	3	5.5	124	750	
B20-08	Stiff Clay	5.5	18.5	129	1,875	
	Very Stiff to Hard Clay	18.5	42	130	4,000	
	Loose Sand	42	50	120		32
	Modified Land	0	1	115	200	
B20-09	Stiff Clay	1	12	131	2,500	
	Medium Dense Sand	12	15	123		33
	Modified Land	0	1	115	200	
B20-10	Stiff Clay	1	11	130	2,250	
	Loose Sand	11	15	120		32
	Modified Land	0	1	115	200	
B20-11	Stiff Clay	1	12	130	2,000	
	Medium Dense Sand	12	15	123		33
	Modified Land	0	1	115	250	
D00 10	Medium Stiff Clay	1	5.5	125	1,000	
B20-12	Stiff Clay	5.5	13	132	2,250	
	Loose Sand	13	15	120		32

Table 3 – Preliminary PV Panel Pile Design Parameters

5.3.4 Pile Load Testing

Prior to installing service piles, Hull recommends static pile load testing be completed to evaluate pile embedment, pile installation production, axial capacity, lateral capacity, and a pile refusal protocol for the project. Lateral testing is typically accomplished using reaction piles, or an adequate dead load. Vertical and lateral pile load testing is typically accomplished using a hydraulic pull jack and a calibrated electronic load cell connected to the piles with chains and clamps.

Hull recommends that the pile load testing program includes the installation of W6x9 and/or W6X12 (or other appropriate section(s)) across the Site, with two test piles at each test location. Typically, test piles are advanced with a rubber-tracked Vermeer PD10 or equivalent pile driving equipment. The actual pile size and range of embedment depths should be determined once the racking model has been selected for the project. Hull recommends that the pile load testing commence following a minimum 72-hour setup period following the installation of the test piles. Lateral and axial (uplift) load testing should utilize portable testing apparatus rated to a 10 kips minimum capacity, or appropriately rated for the testing protocol.

5.4 Shallow Foundations

Shallow foundations are considered suitable support for electrical equipment at the substation and for lightly loaded structures throughout the Site. The Site near-surface conditions generally consist of medium stiff to stiff clay/silty clay or medium dense clayey sand. Some portions of the Site may require overexcavation or ground improvement for typical shallow foundations. Preliminary shallow foundation recommendations presented in the following sections are based on inferred soils profiles and should be verified and revised, as appropriate, during final design.

5.4.1 Design Considerations

Hull recommends that conventional strip or isolated spread foundations be founded on the undisturbed medium stiff or stiffer native clay/silt soils encountered in the borings completed at the Site. We recommend that individual column footings and continuous wall footings have minimum widths of 30 and 18 inches, respectively. We recommend that all exterior footings be founded a minimum of 40 inches below the lowest adjacent grade for frost protection; although, local building codes should be consulted for minimum footing depths below finished grade.

Footings bearing on native medium stiff or stiffer clay soils or medium dense or denser sand soils may be designed for a maximum net allowable bearing pressure of 2,500 pounds per square foot (psf), when the subgrade preparation and structural fill procedures outlined in other sections of this Report are followed. This allowable bearing capacity may be increased by one-third to account for short-term live loads such as induced wind or seismic forces. Interior footings in heated areas may be placed at a convenient depth below building floor slab level, provided they bear on suitable material.

Hull recommends that footings subgrades consisting of native loose or soft soils, as encountered near the ground surface in borings B20-05 and B20-08, for example, be overexcavated to a suitable subgrade of medium stiff (or stiffer) or medium dense (or denser) soils and backfilled with structural fill to support shallow foundations or otherwise designed using a reduced bearing capacity.

5.4.2 Settlement Potential

Total postconstruction settlement for shallow foundations founded on medium stiff (or stiffer soils), medium dense (or denser), or on structural fill extended to these soils, as recommended, is estimated to be less than 1-inch. Differential settlement between comparably loaded column footings or along a 25-foot section of continuous wall footing is estimated to be less than 1/2-inch. We expect that most the footing settlements will occur as loads are applied. Unsuitable subgrade conditions or loose, soft, or disturbed soils not removed from footing excavations prior to placing concrete could result in additional settlement.

5.4.3 Construction Considerations

Hull recommends that all footing excavations be cut to vertical side walls and flat bottoms with the bottoms being firm soil undisturbed by the method of excavation or softened by standing water and/or organic matter. Conventional backhoe type equipment may be used, except in the last few inches when hand excavation methods may be required. Before the placement of backfill or concrete, we recommend that accumulated water, organics, loose/soft soil and/or debris be removed from the excavations. Concrete placement should follow excavation and bearing surface inspection should be conducted as soon as practical.

5.5 On-Grade Slabs

Based on the subsurface conditions encountered in the borings, typical slab-on-grade construction is anticipated to be adequate for Site development. For slabs designed as a beam on an elastic foundation, a modulus of subgrade reaction of 100 pounds per cubic inch (pci) may be used for subgrade soils prepared as recommended (i.e. founded on medium stiff/dense subgrade or structural fill over medium stiff/dense subgrade).

Where slab-on-grade construction is planned in areas with soft subgrade conditions, as encountered in some of the borings, overexcavation and replacement of unsuitable soils will likely be required. For planning purposes, we recommend a minimum 2-foot overexcavation and replacement with gravel be considered for "settlement sensitive" on-grade slabs to mitigate settlement potential.

5.6 Drilled Shaft Foundations

It is anticipated that some of the structures/appurtenances within the substation which have large loads and/or are sensitive to movement will be supported on drilled shaft foundations. We recommend that each drilled shaft element be at least 1.5 feet in diameter. For preliminary design, we recommended that drilled shafts have a minimum shaft length of 10 feet or at least 3 times the shaft diameter, whichever is greater, and bear on native stiff (or stiffer) or dense (or denser) soils.

Hull recommends that drilled shaft design incorporate a factor of safety of 3.0 for end bearing and 2.5 for side resistance, when subjected to axial compression loading; a factor of safety of 3.0 is recommended for side resistance against uplift loading.

5.6.1 Axial Design Parameters for Drilled Shafts

Recommended soil parameters for preliminary analysis and design of drilled shafts to support axial loading at the substation are provided in Table 4.

Soil Layer	Soil Type	Top of Layer Depth	Bottom of Layer	Total Unit Weight	Undrained Shear Strength	Adhesion Factor	Friction Angle	Horiz. Stress	Deform. Modulus	Bea Capo Fac	acity
No.		(feet)	Depth (feet)	(pcf)	(psf)		(deg)	Coeff.	(ksi)	Nc	Nq
1	Modified Land	0	3	115	200	0.55				7	
2	Medium Stiff Clay	3	5.5	124	750	0.55				7	
3	Stiff Clay	5.5	18.5	129	1,875	0.55			1.5	7	
4	Very Stiff to Hard Clay	18.5	42	130	4,000	0.40			3.5	7	
5	Loose Sand	42	50	120			32	0.45	0.9		42

Table 4 – Axial Drilled Shaft Design Parameters (based on boring B20-08)

Notes:

1 The side resistance of the uppermost 2 feet of the soil should be ignored due to the potential for disturbance caused during drilling/construction. 2. Depths referenced from the ground surface.

5.6.2 Lateral Design Parameters for Drilled Shafts

Recommended preliminary soil parameters for lateral load analysis and design of drilled shafts at the substation using the computer program LPile for soil profile encountered in boring B20-08 are provided in Table 5.

Soil	Soil	Depth	(feet) ^[1]		Total Unit	Undraine d	Friction
Layer No.	Туре	Тор	Bottom	p-y Curve ^[2]	Weight (pcf) ^[3]	Cohesion (psf)	Angle (deg)
] [4]	Modified Land	0	3	Soft Clay (Matlock)	124	1,300	
2	Medium Stiff Clay	3	5.5	Stiff Clay w/o Free Water (Reese)	133	8,000	
3	Stiff Clay	5.5	18.5	Stiff Clay w/o Free Water (Reese)	133	5,900	
4	Very Stiff to Hard Clay	18.5	42	Stiff Clay w/o Free Water (Reese)	120		32
5	Loose Sand	42	50	Sand (Reese)	133	8,000	

Table 5 – Lateral Drilled Shaft Design Parameters for LPile (based on boring B20-08)

Notes:

^[1] Depths referenced from the ground surface.

^[2] Use LPile default input for Strain Factor (ɛ50) and k-value.

^[3] Input total unit weight above the groundwater table and effective unit weight below the groundwater table.

[4] The side resistance of the uppermost 2 feet of the soil should be ignored due to potential for disturbance caused during drilled shaft construction.

5.7 Subgrade Chemical Stabilization

The access roads and gravel equipment pads will be subjected to significant vehicle traffic and equipment loads during construction and operations of the solar arrays. As previously discussed, the near surface clayey subgrade soils are soft and poorly drained. To improve long-term stability of the subgrade, chemical stabilization (or modification) of the upper 12 inches may be necessary. If the subgrade is to be improved with chemical stabilization, we recommended that the type of chemical to be used (e.g., lime, quick lime, Portland cement), proposed spreading percentage rate, and pre-qualification testing that demonstrates the Site soils will achieve the designer's specified subgrade strength when mixed at the proposed spreading rate be reviewed and approved prior to construction. We recommend that testing be performed by a qualified testing laboratory on samples considered representative of the actual subgrade material that will be chemically stabilized. If the subgrade is chemically stabilized to a minimum of 12 inches, the gravel for equipment pads can potentially be reduced.

We recommend that the chemical stabilization work be performed when the air temperature is 40°F or above and when the soil is not frozen. Chemical stabilization work should not be performed during wet or inclement weather. The stabilization chemical should be uniformly spread on the subgrade using a mechanical spreader at the approved rate and at a constant slow rate of speed. Dusting should be minimized when spreading the chemical. Immediately after spreading the chemical, the chemical and soil should be mixed using a power-driven transverse type mixer until the chemical is thoroughly incorporated into the soil and is a uniform color, and the clod sizes are less than 1 inch, exclusive of aggregate pieces. Water should be uniformly distributed in sufficient quantity to hydrate the chemical and for proper compaction control. Compacting and shaping should be completed within 4 hours from the initial mixing.

We recommend that chemically modified subgrade be compacted using a vibratory footed roller weighting at least 10 tons to a minimum of 98 percent of the maximum dry density as established by moisture-density curves of mixed specimens based on Standard Proctor (ASTM D698) testing, Field One Point Method, or the maximum dry density obtained by a test section method. We recommend that final rolling of the subgrade surface be performed using a smooth drum roller; do not use vibration during the final rolling.

We recommend that chemically stabilized subgrade be allowed to cure for at least 3 days, but no more than 7 days, before placement of the overlying aggregate layer. If air temperatures are forecasted to be at or below freezing during the curing period, cover the completed chemically modified subgrade with the aggregate layer prior to freezing conditions for insulation and to minimize frost damage. Do not operate heavy equipment directly on the chemically stabilized subgrade until the aggregate layer can be placed. The aggregate layer should be placed in a manner that does not require equipment to operate directly on the chemically stabilized subgrade. Utilize track mounted equipment to the extent practical.

After the field curing period, we recommend the subgrade be proof-rolled to verify the chemical stabilization performs satisfactorily. Areas identified as "not properly stabilized" during the proof-roll should be repaired.

5.8 Additional Geotechnical Services

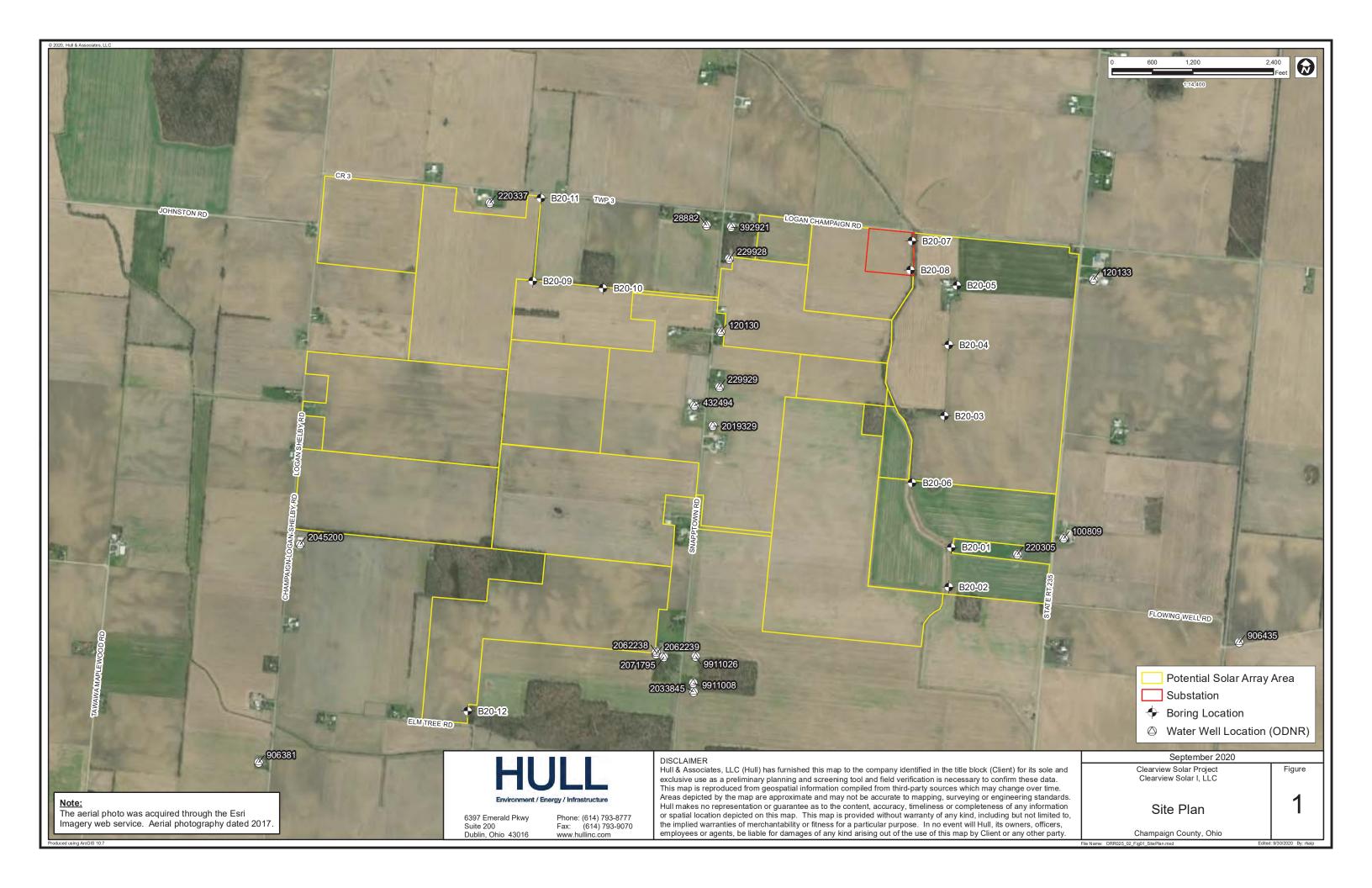
We recommend that sufficient monitoring, testing and consultation be provided by a geotechnical engineer during construction to confirm that the conditions encountered are consistent with those indicated by the explorations, to provide recommendations for design changes should the conditions revealed during the work

differ from those anticipated, and to evaluate whether or not earthwork activities are completed in accordance with our recommendations. It is our opinion that retaining Hull for construction observation for this project is the most effective method of managing the risks associated with unanticipated conditions. Hull cannot assume responsibility or liability for this report's recommendations if we do not perform construction observation.

Throughout this Report, recommendations are provided where we consider additional geotechnical services to be appropriate. These additional services are summarized below:

- The conclusions and recommendations provided in this report should be considered preliminary. Final geotechnical recommendation s should be provided based on the actual site development, structures, and layouts developed during the design phase.
- Additional subsurface explorations may be needed to better characterize subsurface conditions at the Site for final design.
- We recommend that the pile testing be completed once the Site development layout and a grading plan has been finalized and the racking model is selected, so that final design and construction recommendations can be developed for the PV Panel foundations. Prior to installing piles to support PV Piles at the Site, we recommend that static pile load testing be completed to evaluate pile embedment, pile installation production, axial capacity, lateral capacity, and to establish a pile refusal protocol for the project. The selection of test pile locations and monitoring of the test pile program should be completed under the supervision of a geotechnical engineer.
- We recommend that Hull be retained to review the project plans and specifications when complete to confirm that our design recommendations have been implemented as intended.
- During construction, a geotechnical engineer should observe earthwork, evaluate subgrades, and perform necessary tests during the placement and compaction of structural fill.

6.0 STANDARD OF CARE AND LIMITATIONS


Hull has prepared this Report for the sole use of Clearview Solar I, LLC for the Clearview Solar Project in Champaign County, Ohio. The contents thereof may not be used or relied upon by any other person or entity, without the express written consent and authorization of Clearview Solar I, LLC and Hull & Associates, LLC.

Within the limitations of scope, schedule and budget, our services have been executed in accordance with generally accepted practices in the field of geotechnical engineering in this area at the time this report was prepared. No warranty or other conditions, express or implied, should be understood.

Hull's interpretations of subsurface conditions are based on conditions observed from a limited number of borings and field observations. The field and laboratory data along with our professional judgement was applied to render an opinion about subsurface conditions throughout the site. The findings and conclusions presented in this report are based in part on the assumption that certain natural conditions will actually be encountered and not be altered during construction and that actual subsurface conditions may differ, sometimes significantly, from those indicated in this report. Our report, interpretations, conclusions, and recommendations should not be construed as a warranty of the subsurface conditions at the Site.

Our scope of services does not include, either specifically or by implication, an evaluation of past or present compliance with federal, state, or local environmental, or land use laws or regulations. It should be noted that no environmental or biological services were performed as part of this scope of work, and, as such, no recommendations relative to environmental and/or biological considerations are included in the report.

Our geotechnical recommendations are not intended to direct the procedures, methods, schedule, or management of the work site. Under no circumstance should the information presented in this Report be interpreted to imply Hull is assuming responsibility for job site safety.

APPENDIX A

FIELD EXPLORATION

GENERAL INFORMATION, DRILLING PROCEDURES AND LOGS OF BORINGS

Subsurface conditions at the Site were explored by drilling and sampling 12 borings, designated B20-01 through B20-12. The borings were completed to depths ranging between 15 and 50 feet below the ground surface (bgs). The drilling was performed by Envirocore, Inc. under subcontract to Hull on August 12 and August 13, 2020. The borings were drilled with a track-mounted Mobile B-57 drill rig utilizing 3¹/₄-inch inside diameter hollow-stem augers. The borings were continuously monitored by a geologist from our firm who examined and classified the soils encountered, obtained representative soil samples, observed groundwater conditions, and prepared a detailed log of each exploration.

The soils encountered in the borings were sampled at 2¹/₂- or 5-foot vertical intervals with a 2-inch outside diameter split-barrel standard penetration test (SPT) sampler. The samples were obtained by driving the sampler 18 inches into the soil with a 140-pound hammer free-falling 30 inches. The number of blows required for each 6 inches of penetration was recorded. The blow count ("N-value") of the soil was calculated as the number of blows required for the final 12 inches of penetration. This resistance, or N-value, provides a measure of the relative density of granular soils and the relative consistency of cohesive soils. Where very dense or hard soil conditions precluded driving the full 18 inches, the penetration resistance for the partial penetration was entered on the logs. The blow counts are shown on the boring logs at the respective sample depths. It should be noted that the SPT blow counts reported on the boring logs are uncorrected, field-recorded blow counts and have not been adjusted/corrected for field procedures, hammer efficiency, etc. Additionally, the SPT sampler is limited to the collection of material that is smaller than its nominal 1.4-inch inside diameter. Therefore, the presence of larger gravels, cobbles, and boulders noted on the boring logs is general inferred rather than through actual collection of these larger constituents by typical sampling procedures.

The boring logs included in this Appendix are based on our interpretation of the field and laboratory data and indicate the various types of soils encountered and therefore contain both factual and interpretative information and are not an exact copy of the field log. In the field and/or laboratory, all samples were described based on the visual-manual examination soil classification system in general accordance with ASTM D2488 or based on the laboratory test results in general accordance with ASTM D2487. The logs also indicate the depths at which these soils or their characteristics change, although the change may actually be gradual. If the change occurred between samples, it was interpreted. The densities noted on the boring logs are based on the blow count data obtained in the borings and judgment based on the conditions encountered.

The depth of water recorded on the boring logs were measured from the top of the existing ground surface to the top of the water level. The groundwater observations, or lack thereof, represent only conditions observed during or at the end of drilling, and may not represent the true static groundwater level because it can take hours or even days for the groundwater level observed in a borehole to reach equilibrium. Consequently, the groundwater observations shown on the boring logs only represent conditions at the time the readings were collected. Furthermore, the use of drilling fluids (e.g. mud) added to the boreholes can alter the observed groundwater levels or otherwise make observations of groundwater within the borehole not possible.

Although we believe that the borings have disclosed information generally representative of actual site conditions, it should be expected that between borings conditions may occur which are not precisely represented by any one of the borings. Soil deposition processes and natural geologic forces are such that soil and rock types and conditions may change in short vertical intervals and horizontal distances.

Soil samples obtained from the borings will be stored for a period of 6 months for future testing during the design phase of the project. After this period of time, they will be discarded, unless notified to the contrary by the Client.

DEFINITION OF TERMS USED TO DESCRIBE SUBSURFACE MATERIALS ON BORING LOGS

DESCRIPTION OF SOILS

The material descriptions of the soils on the boring logs are based on visual-manual examination (ASTM D2488), Standard Penetration Test (ASTM D1586) results, and the results of laboratory testing on selected soil samples. Soils are described as to color, moisture condition, density or consistency, and other pertinent properties, in that order. SAA indicates material can be described as "Same as Above", with any differences noted. Soil descriptions are according to the following criteria, with the principal constituent, written in capital letters.

Standard Penetration Test (ASTM D1586)

In the Standard Penetration Test (SPT), a 2.0-inch outside diameter, 1.375-inch inside diameter split-spoon sampler is driven 18 inches into soil with a 140-pound hammer dropped 30 inches. The sampler is normally driven in three successive 6-inch increments. The total number of blows required to drive the split spoon sampler over 12 inches of penetration during the second and third successive increments is the SPT "N-Value". Where very dense or hard soil conditions precluded driving the full 18 inches, the penetration resistance for the partial penetration was entered on the logs (e.g., 50/3 indicates 50 blows were recorded for a 3-inch penetration).

Sampling Method Abbreviations

Methods by which soil samples are collected for analysis are abbreviated as follows:

- AS Auger Sample (sample collected directly from auger flight)
- SPT Standard Penetration Test (1.375-inch I.D. Split Spoon)
- MC Modified California Sampler (2.4-inch I.D. Split Spoon)
- ST Shelby Tube Sample
- PS Piston Sample (Shelby Tube Sample)
- DP Direct Push Sample
- RC Rock Core

Density of Cohesionless Soils

Density of cohesionless soils (i.e. sand and gravel) is based upon SPT results as indicated below:

Density	SPT N-Value (blows per foot)
Very loose	0 to 4
Loose	4 to 10
Medium Dense	10 to 30
Dense	30 to 50
Very Dense	Over 50

Consistency of Cohesive Soils

Consistency of cohesive soils (i.e. silt and clay) is based on SPT results and unconfined compressive strength.

Consistency	SPT N-Value (blows per foot)	Unconfined Compressive Strength (tons per square foot)
Very soft	0 to 2	< 0.25
Soft	2 to 4	0.25 to 0.5
Medium stiff	4 to 8	0.5 to 1.0
Stiff	8 to 16	1.0 to 2.0
Very stiff	16 to 30	2.0 to4.0
Hard	Over 30	> 4.0

<u>Color</u>

Soil color is described in basic terms, such as brown, black, red, grey, and yellow. If the soil is a uniform color throughout, the term is single, modified by adjectives such as light and dark. If the predominant color is shaded by a secondary color, the secondary color precedes the primary color. If two major and distinct colors are swirled throughout the soil, the colors are modified by the term "mottled".

Component	Definitions by Grain Size (ASTM D653)			
Material	Definition		Size R	lange
Material	Derininon		Upper	Lower
Boulders	Material too large to pass through an opening 12 in. square.			12 inches
Cobbles	Material passing through a 12 in. square opening and retained on sieve.	the 3-inch	12 inches	3 inches
Connect	Material answing the 2 in since and actained on 1/ in (Ne. 4) since	Coarse	3 inches	³ ⁄ ₄ inches
Gravel	Material passing the 3 in. sieve and retained on $\frac{1}{4}$ in. (No. 4) sieve.	Fine	³ ⁄ ₄ inch	No. 4 (1⁄4 inch)
		Coarse	No. 4 (1/4 inch)	No. 10 (1/8 inch)
Sand	Material passing the No. 4 sieve and retained on the No. 200 Sieve.	Medium	No. 10 (1/8 inch)	No. 40 (1/32 inch)
		Fine	No. 40 (1/32 inch)	No. 200
Silt	Material passing the No. 200 sieve, which is usually non-plastic or ve plastic in character and exhibits little or no strength when air dried.	ery slightly	No. 200	
Clay	Material passing the No. 200 sieve, which can also be made to exhibi within a certain range of moisture contents and which exhibits con strength when air dried.	• •	No. 200	

Soil Constituents

Soil constituents may be stated in terms of percentages (by weight) of gravel, sand, and fines, as follows:

Trace	particles of a given size range present, but present at ${<}5\%$
Few	5 to 15%
<u>Little</u>	15 to 25%
<u>Some</u>	30 to 45%
<u>Mostly</u>	50 to 100%
Some	30 to 45%

Moisture Condition

Moisture condition may be written as dry, moist, or wet as described below:

Dry	Absence of moisture, dusty, dry to the touch
<u>Moist</u>	Damp but no visible moisture
Wet	Visible free water, usually soil below the water table

DESCRIPTION OF ROCK

Degree of Weathering

The following terms are used to describe the degree of weathering of the rock specimen relative to that of the comparable unweathered parent rock (relative strength/hardness should not be confused with degree of weathering.):

<u>Unweathered</u>	No evidence of any chemical or mechanical alternation of the rock mass. Mineral crystals have a bright
	appearance with no discoloration. Fractures show little or no staining on surfaces.
<u>Slightly Weathered</u>	<10% of rock volume altered. Slight discoloration of the surface w/minor alterations along open fractures.
Moderately Weathered	Portions of the rock mass are discolored as evident by a dull appearance. Surfaces may have a pitted
	appearance. Isolated zones of varying rock strengths due to alteration may be present. 10 to 15 percent
	of the rock volume presents alterations.
<u>Highly Weathered</u>	Entire rock mass appears discolored and dull. Some pockets of slightly to moderately weathered rock may
	be present and some areas of severely weathered materials may be present.
<u>Severely Weathered</u>	Majority of the rock mass reduced to a soil-like state with visible relict rock texture. Zones of more resistant
	rock may be present, but the material can generally be molded and crumbled by hand pressures.

Relative Strength/Hardness

The following terms are used to describe the relative strength/hardness of the bedrock:

<u>Very Weak</u>	Can be easily scratched by fingernail or knife. Pieces 1 inch (25 mm) or more in thickness can be broken by
	finger pressure.
<u>Weak</u>	Can be grooved or gouged readily by a knife or pick. Can be excavated in small fragments by moderate
	blows of a pick point. Small, thin pieces can be broken by finger pressure.
Moderately Strong	Can be scratched with a knife or pick. Grooves or gouges to 1/4 inch (6 mm) deep can be excavated by hand
	blows of a geologist's pick. Requires moderate hammer blows to detach specimen.
Strong	Can be scratched with a knife or pick only with difficulty. Requires hard hammer blows to detach specimen.
Very Strong	Cannot be scratched by a knife or sharp pick. Breaking of hand specimens requires hard repeated blows of
<u></u>	the geologist hammer.

Rock Quality Designation (RQD)

RQD is expressed in percent and is an indirect measure of rock soundness. It is obtained by summing the total length of all core pieces which are at least four inches long, and then dividing this sum by the total length of the core recovered.

		U	JL	Dublin, Office: (nerald Parkway, Suite 200 Dhio 43016 614) 793-8777 Ilinc.com				BO	RIN	GN	IUN	IBE		2 0-	
				frastructure				Class	nieur Celer	Ducia	- 4					
				v Solar I, LLC R ORR025					<u>view Solar</u> Champaigi			4				
				8/12/20	COMPLETED 8/12/20				1078 ft NA							
				ACTOR Envirocor		GROUNE										
F	RIG T		Nobile	Drill B-57	DRILLING METHOD 31/4-in ID HS	<u>sa</u> 🛛 a t	TIME OF	DRILI	LING 7.00) ft / E	lev 10 [.]	71.00	ft			
l	OGG	GED BY	′ <u>J.</u> C	onner	CHECKED BY S. Aboulhosn		END OF	DRILL	ING _5.00	ft / Ele	ev 107	′3.00 f	t			
0	COOF	RDINAT	'ES _4	40.258643°, -83.98	0969°	AF	TER DRI	LLING								
	o DEPTH (ft)	ELEVATION (ft)	GRAPHIC LOG		MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	LIMIT LIMIT			FINES CONTENT (%)
F	0			10 inches TILL	ED SOIL (Fill/Modified Land)											
-	-			LEAN CLAY, (CL) brown, moist, stiff, trace gravel		SPT 1	100	3-5-5 (10)	_		21.2	41	23	18	
PJ	-	1075		¥			SPT 2	67	7-7-7 (14)	-						
025.GI				SANDY LEAN	CLAY, (CL) gray, moist, stiff, trace	gravel										
ORR							SPT	67	3-7-8							
GINT/PROJECTS	-	1070			DED SAND WITH CLAY AND GRA to brown, wet, medium dense	AVEL,	3 SPT		(15)	-						
TSACTIVE/	10						4	100	(18)	_		12.2				12
20 16:27 - F:\CLIEN	-	1065														
.GDT - 9/23/2	- 15						SPT 5	100	9-9-9 (18)							
GEOTECH BH COLUMNS (WITH ELEVATION) - GINT STD US LAB 2014.GDT - 9/23/20 16:27 - F./CLIENTS/ACTIVE/GINT/PROJECTS/ORR025.GPJ				Bottom of bore	ehole at 15 feet.											

200		6397 Emerald Parkway, Suite 200 Dublin, Ohio 43016 Office: (614) 793-8777 www.hullinc.com				BO	RIN	GN	NUN	IBE		20-0 1 0	
CLIEN	T Clearview	Solar I, LLC	PROJE		Clear	view Solar	Proje	ct					
PROJ	ECT NUMBER		PROJE			Champaigr	n Cour	nty, Ol	Н				
DATE	STARTED 8	/12/20 COMPLETED 8/12/20	GROUN	D ELEVA		1080 ft NA	VD88						
DRILL	ING CONTRA	CTOR Envirocore, Inc.	GROUN	D WATER		LS:							
RIG T	YPE Mobile	3-57 Drill Rig DRILLING METHOD <u>31</u> /4-in ID HS	A A			LING N	lone C)bser\	/ed				
LOGG	ED BY J. Co	nner CHECKED BY S. Aboulhosn	A	T END OF	DRILL	.ING N	one O	bserv	ed				
COOF	RDINATES 4	0.257017°, -83.981072°	Α	FTER DRI	LLING								
				ш	%			Ŀ.				RG	Ę
Ξ	ELEVATION (ft) GRAPHIC LOG			SAMPLE TYPE NUMBER	X X V	JE) JE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)			, >	FINES CONTENT (%)
DEPTH (ft)	ELEVATION (ft) GRAPHIC LOG	MATERIAL DESCRIPTION		MBI	ZQD	BLOW COUNTS (N VALUE)	(ET)	DUI.	IEN	₽⊑		ēΥ	(%) (%)
	BLE GR			AMF	RECOVERY (RQD)	∎0́2		RY	NO NO	LIQUID	PLASTIC LIMIT	PLASTICITY INDEX	VES
0	1080			S	Ľ.		<u>م</u>		0		ш	4	
		10 inches TILLED SOIL (Fill/Modified Land)											
		SILTY CLAY (CL-ML), brown, moist, medium stiff t trace gravel	to stiff,	SPT		3-3-5	1						
					100	(8)							
L _							1						
							-						
				SPT 2	67	4-5-4 (9)			12.2	19	13	6	
5	1075					(0)	-						
				SPT	100	6-6-6							
2				3	100	(12)							
		LEAN CLAY, (CL) dark brown, moist, stiff, trace gr	ov ol]						
		LEAN CLAT, (CL) dark brown, moist, sun, trace gr	avei			0 5 5	1						
				SPT 4	100	3-5-5 (10)			14.2				
10	1070						-						
						4-5-5	1						
15	1065			SPT 5	100	(10)							
	1000 /////											. <u> </u>	
		Bottom of borehole at 15 feet.											

GEOTECH BH COLUMNS (WITH ELEVATION) - GINT STD US LAB 2014.GDT - 9/23/20 16:27 - F:\CL

	H	JL	Dublin, Office:	merald Parkway, Suite : Ohio 43016 (614) 793-8777	200				BO	RIN	GN	IUN	IBE		20- ∃ 1 0	
			rastructure	ullinc.com												
			Solar I, LLC						<u>view Solar</u>							
			R ORR025						Champaigr			1				
				_ COMPLETED _ 8/12/2					1089 ft NA	<u>VD88</u>						
			CTOR Enviroco				WATER									
				DRILLING METHOD					LING N							
				CHECKED BY S. A	boulhosn				.ING N	one O	bserve	ed				
		(IES _4)	0.263994°, -83.98	1440		AF	TER DRI	LLING		1	1	1				
DEPTH		GRAPHIC LOG		MATERIAL DESCRIP			SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)				FINES CONTENT (%)
-	+			LED SOIL (Fill/Modified			SPT 1	60	3-4-7 (11)	-						
- 5	108	5	trace gravel	I CLAY, (CL) brown, mo			SPT 2	67	3-4-3 (7)	-		19.4	-			
ROJECTS\ORR025	+		LEAN CLAY, gravel	(CL) brown, moist, stiff	to very stiff, trace	e	SPT 3	100	3-7-7 (14)	_		14.3	23	15	8	
	<u>108</u>						SPT 4	100	5-12-18 (30)	-						
4.GDT - 9/23/20 16:27 - F		5	SILTY CLAY	(CL-ML), gray, moist, ve	ery stiff, trace gra	avel	SPT 5	100	3-9-10 (19)	_						
GEOTECH BH COLUMNS (WITH ELEVATION) - GINT STD US LAB 2014.GDT - 9/23/20 16:27 - F.:CLIENTS/ACTIVE/GINT/PROJECTS/ORR025.GPJ			Bottom of bor	ehole at 15 feet.												

	H			Dublin,	merald Parkway, Suite 200 Ohio 43016 (614) 793-8777				BO	RIN	GN	IUN	IBE		320- E 1 0	
1	Environn	nent / Er	ergy / Inf		illinc.com											
	CLIEN		earview	/ Solar I, LLC		_ PROJ	ECT NAME	Clear	view Solar	Proje	ct					
	PROJ	ECT N	UMBEI	R ORR025		_ PROJ	ECT LOCAT		Champaigr	n Cour	nty, OF	4				
	DATE	STAR	TED _8	8/12/20	COMPLETED 8/12/20	_ GROL	JND ELEVAT		1102 ft NA	VD88						
	DRILL	ING C	ONTR/	ACTOR Enviroco	re, Inc.	_ GROL	JND WATER	LEVE	LS:							
		YPE	Mobile	Drill B-57	DRILLING METHOD 31/4-in ID H	ISA	AT TIME OF	DRIL	LING N	lone C	bserv	red				
					CHECKED BY S. Aboulhosn		AT END OF									
				0.266905°, -83.98			AFTER DRII									
┢						_							AT	FERBE	ERG	F
	o DEPTH (ft)	ELEVATION (ft)	GRAPHIC LOG		MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)			s 	FINES CONTENT (%)
-	-	1100			LED SOIL (Fill/Modified Land) (CL) brown, moist, medium stiff to a	stiff, trace	e SPT	67	5-2-4 (6)	_		17.4	-			
P	5						SPT 2	100	3-2-5 (7)	-		13.6	20	11	9	-
DJECTS\ORR025.GF	_	1095					SPT 3	100	4-4-4 (8)	-						
IENTS/ACTIVE/GINT/PRO				SILTY CLAY few sand, trac	(CL-ML), brown, moist, medium stil e gravel	ff to stiff,	SPT 4	93	2-3-5 (8)	-		11.9	19	13	6	-
20 16:27 - F:\Cl	-	1090		LEAN CLAY \ trace sand, (a	VITH GRAVEL, (CL) brown, moist, ssumed description - no recovery)	hard,										
GDT - 9/23/	- 15						SPT 5	0	23-41-38 (79)							
GEOTECH BH COLUMNS (WITH ELEVATION) - GINT STD US LAB 2014.GDT - 9/23/20 16:27 - F:/CLIENTS/ACTIVE/GINT/PROJECTS/ORR025.GPJ				Laboratory Co	ehole at 15 feet. nrosion Testing Suite performed or nple, Samples 1 and 2.	na										

H	1	JL	Dublin,	merald Parkway, Suite 200 Ohio 43016 (614) 793-8777				BO	RIN	GΝ		IBE		5 20- ∃ 1 C	
Envir	onment / E	nergy / Infr	www.h	ullinc.com											
CLI	ENT _C	learview	Solar I, LLC		PRO	JECT NAME	Clear	view Solar	Proje	ct					
PR	OJECT I	NUMBER	ORR025		PRO	JECT LOCAT		Champaig	n Cour	nty, O⊦	4				
DA	TE STAF	RTED 8	/12/20	COMPLETED <u>8/12/20</u>	GRO	UND ELEVA		1098 ft NA	VD88						
DRI	LLING (ONTRA	CTOR Enviroco	pre, Inc.	GRO	UND WATER	LEVE	LS:							
RIG		Mobile [Drill B-57	DRILLING METHOD 31/4-in ID HS	<u>SA</u>	AT TIME OF	DRIL	LING N	None C	bserv	ed				
LO	GGED B	Y _ J. Co	onner	CHECKED BY S. Aboulhosn		AT END OF	DRILL	.ING N	one O	bserve	ed				
co	ORDINA	TES _40).269332°, -83.98	30914°		AFTER DRI	LLING								
DEPTH	(II) ELEVATION (ft)	GRAPHIC LOG		MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	/ERY % QD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	AT Q_		Ş	FINES CONTENT (%)
0 DE		GRA				SAMPI	RECOVERY (RQD)	COU (N </td <td>POCK</td> <td>DRY U</td> <td>CONT</td> <td>LIQUID</td> <td>PLASTIC LIMIT</td> <td>PLASTICITY INDEX</td> <td>) FINES (</td>	POCK	DRY U	CONT	LIQUID	PLASTIC LIMIT	PLASTICITY INDEX) FINES (
-	+	-	CLAYEY SAM	LED SOIL (Fill/Modified Land)	um				-			-			
-	1095		dense, trace t	to few gravel		SPT 1	100	4-4-4 (8)	-		22.3	-			
5	-					SPT 2	47	5-5-6 (11)			12.1	21	11	10	45
ECTS\ORR025.	+					SPT 3	67	5-6-6 (12)							
	1090 					SPT 4	67	2-3-5 (8)	-						
6:27 - F:\CLIENTS\ACTIV) 							(-)	_						
- 9/23/20 16	+					SPT 5	67	4-12-14	-		10.2	-			43
	;					5	07	(26)			10.2				40
GEOTECH BH COLUMNS (WITH ELEVATION) - GINT STD US LAB 2014.GDT - 9/23/20 16:27 - F:(CLIENTS/ACTIVE/GINT)PROJECTS/ORR025.GPJ			Bottom of bor	rehole at 15 feet.											

H	L	IL	6397 Emerald Parkway, Suite 200 Dublin, Ohio 43016 Office: (614) 793-8777 www.hullinc.com				BO	RIN	G N	NUN	IBE			
						Clea	rview Solar	Proie	ct					
										4				
						_								
DRILL	ING C	ONTRA	ACTOR _Envirocore, Inc 0	GROUNE	WATER		ELS:							
RIG T		Nobile	Drill B-57 DRILLING METHOD <u>31/4-in ID HSA</u>											
LOGG	ED BY	Co	onner CHECKED BY S. Aboulhosn		END OF	DRILI	LING 11.5	0 ft / E	lev 10	065.50	ft			
COOR	DINAT	ES _4	0.261249°, -83.983112°	AF	TER DRI	LLING	i							
o DEPTH (ft)	ELEVATION (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)			3	FINES CONTENT (%)
				<u></u>										
	1075		gravel		SPT 1	67	3-5-4 (9)	-		20.6				85
					SPT 2	67	5-4-5 (9)	-		15.7				
5														
	1070		GRAVELLY LEAN CLAY, (CL) brown, moist to wet, v stiff to hard, trace sand	/ery	SPT 3	0	6-12-15 (27)	-						
 _ <u>10 _</u>			Σ		SPT 4	100	5-33-50/5 (83/11)	-						
	1065		Ţ											
 15					SPT 5	100	19-30-43 (73)	_						
			Bottom of borehole at 15 feet.											
	CLIEN PROJ DATE DRILL RIG T LOGG COOR HLd=0 5 		CLIENT <u>Clearview</u> PROJECT NUMBER DATE STARTED <u>C</u> DRILLING CONTRA RIG TYPE Mobile LOGGED BY J.C. COORDINATES <u>4</u> H(<u>(</u>)) 0 ULEVA 101 1075 5	Environment / Energy / Infrastructure Dublin, Ohio 43016 Office: (614) 793-8777 www.hullinc.com CLIENTClearview Solar I, LLCF PROJECT NUMBER_ORR025 DATE STARTEDA1220COMPLETEDA1220CO DRILLING CONTRACTORIncCO RIG TYPEMobile Drill B-57 DILLING METHODA4-In ID HSA LOGGED BY Conner CHECKED BY _S. Aboulhosn COORDINATESA0.261249°, -83.983112° MATERIAL DESCRIPTION	Environment / Energy / Infrastructure Dublin, Ohio 43016 Office: (614) 793-8777 www.hullinc.com CLIENT_Clearview Solar I, LLC PROJECT PROJECT NUMBER_ORR025 PROJECT DATE STARTED_8/12/20 COMPLETED_8/12/20 GROUND DRILLING CONTRACTOR_Envirocore, Inc. GROUND RIG TYPE_Mobile Drill B-57 DRILLING METHOD_3/J-in ID HSA ✓ AT LOGGED BY_J_Conner CHECKED BY_S. Aboulhosn ✓ AT COORDINATES_40.261249°, -83.983112° AF V MATERIAL DESCRIPTION ✓ AT 0 C 6 inches TILLED SOIL (Fill/Modified Land) LEAN CLAY, (CL) brown, moist, stiff, trace sand, trace 1075 GRAVELLY LEAN CLAY, (CL) brown, moist to wet, very stiff to hard, trace sand ✓ 10 GRAVELLY LEAN CLAY, (CL) brown, moist to wet, very stiff to hard, trace sand ✓ 10 GRAVELLY LEAN CLAY, (CL) brown, moist to wet, very stiff to hard, trace sand ✓ 10 GRAVELLY LEAN CLAY, (CL) brown, moist to wet, very stiff to hard, trace sand ✓	ENCOLLE Dublin, Ohio 43016 Office: (614) 793-8777 www.hullinc.com PROJECT NUMBER ORRO25 PROJECT LOCAT PROJECT NUMBER ORRO25 PROJECT LOCAT DATE STARTED 8/12/20 COMPLETED 8/12/20 GROUND ELEVAT DRILLING CONTRACTOR Envirocore, Inc. GROUND WATER RIG TYPE Mobile Drill B-57 DRILLING METHOD 3/2-in 1D HSA ✓ AT TIME OF LOGGED BY J. Conner CHECKED BY S. Aboulhosn ✓ AT END OF COORDINATES 40.261249°, -83.983112° AFTER DRI V E O 6 inches TILLED SOIL (Fill/Modified Land) LEAN CLAY, (CL) brown, moist, stiff, trace sand, trace gravel SPT 1 1075 GRAVELLY LEAN CLAY, (CL) brown, moist to wet, very stiff to hard, trace sand SPT 10 GRAVELLY LEAN CLAY, (CL) brown, moist to wet, very stiff to hard, trace sand SPT 10 Intrace sand SPT 10 In	ENCOLLE Dublin, Ohio 43016 Office: (614) 793-8777 www.hullinc.com CLIENT _Clearview Solar I, LLC PROJECT NAME _ Clear PROJECT NUMBER ORRO25 PROJECT NUMBER ORRO25 PROJECT LOCATION ORRO25 Date started &/12/20 COMPLETED &/12/20 DRILLING CONTRACTOR _Envirocore, Inc. GROUND WATER LEVE GROUND WATER LEVE ING TYPE _ Mobile Drill B-57 DRILLING CONTRACTOR _Envirocore, Inc. GROUND WATER LEVE GROUND WATER LEVE ING COORDINATES _40.261249°, -83.983112° COORDINATES _ 40.261249°, -83.983112° After DRILLING FE go MATERIAL DESCRIPTION Water Reverse Water Clear Cle	DUDING: Duding: Others: (14) 793-8777 WW.hullinc.com WW.hullinc.com CLIENT Clearview Solar I, LLC PROJECT NAME Clearview Solar I, LLC PROJECT NUMBER ORRO25 PROJECT LOCATION Champaign Date Started 8/12/20 GROUND ELEVATION Champaign Date Started 8/12/20 GROUND WATER LEVELS: RIG TYPE Nick Started 8/12/20 GROUND WATER LEVELS: RIG TYPE NG TYPE Mobile Drill B-57 ORILLING METHOD 3/2-10 TIME OF DRILLING 8.15 LOGGED BY J. Conner CHECKED BY S. Aboulhosn ¥ AT END OF DRILLING	Dublin, Ohio 43016 With Ullinc.com CULINT Clearview Solar I, LLC PROJECT NAME Clearview Solar Project PROJECT NUMBER ORRO25 PROJECT NAME Clearview Solar I, LLC PROJECT LOCATION Champaign Court GROUND ELEVATION 1077 NAVD88 Date STARTED #/1220 COMPLETED #/1220 GROUND WATER LEVELS RIG TYPE Mobile Drill B-S7 RIG TYPE Mobile Drill B-S7 DRILLING METHOD 3/4/in ID HSA COORDINATES 40.261249', -83.983112' AFTER DRILLING	Dublin, Ohio 43016 Office: (614) 79.894777 www.hullinc.com PROJECT NAME Clearview Solar Project CLIENT Clearview Solar I, LLC PROJECT NAME Clearview Solar Project PROJECT NUMBER ORR025 PROJECT UCATION Champaign County, OI DATE STARTED 8/12/20 GROUND ELEVATION 1077 ft NAVD88 DIRLING COMPLETED 8/12/20 GROUND WATER LEVELS: RIG TYPE Mobile Drill 8-57 DRILLING METHOD 33/4 in ID HSA ZAT END OF DRILLING 5.50 ft / Elev 10 LOGGED BY J. Conner CHECKED BY S. Aboulhosn COORDINATES 40.261249*, -83.983112* AFTER DRILLING AFTER DRILLING PULE O USG 6 inches TILLED SOIL (Fill/Modified Land) LOG LIO70 SPT 67 GRAVELLY LEAN CLAY, (CL) brown, moist to wet, very sliff to hard, trace sand SPT 100 SPT 100	Dublin, Ohio 43016 Orice: (611/93.93777 www.hullinc.com CILENT_Clearview Solar I, LLC PROJECT NAME_Clearview Solar Project PROJECT NUMBER_ORR025 ORR025 Date starts FD 8/1220 COMPLETED 8/1220 DRILLING CONTRACTOR Envirocore, Inc. GROUND ELEVATION 1077 ft NAVD88 DRILLING CONTRACTOR Envirocore, Inc. GROUND ELEVATION 1077 ft NAVD88 ORIGED BY COMPLETED 8/1220 COORDINATES ORIGINATES OCORDINATES OLE 10, 0000 USG USG OCORDINATES OLE 10, 0000 USG USG NOTE MATERIAL DESCRIPTION USG USG USG 0 USG 0	Dublin, Dhio 43016 Griffice: (641 793-8777 WWK.hullinc.com PROJECT NAME_Clearview Solar Project PROJECT NUMBER_ORRO25 PROJECT NAME_Clearview Solar Project PROJECT NUMBER_ORRO25 PROJECT LOCATION_Champaign County, OH Darte starter 041220 COMPLETED 041220 DRILLING CONTRACTOR_Emvironce, Inc. GROUND ELEVATION_1077 ft NAVD88 DRILLING CONTRACTOR_Emvironce, Inc. GROUND WATER LEVELS: RG TYPE_Mobile Daile B-57 CHECKED BY S. Aboulhosn COORDINATES_0426129'.83.983112' ATTER DRILLING 15.017 / Elev 1065.50 ft COORDINATES_0426129'.23.983112' ATTER DRILLING 15.017 / Elev 1065.50 ft CORDINATES_0426129'.23.983112' ATTER DRILLING 15.017 / Elev 1065.50 ft 1005 Britting 15.017 / Elev 10.017 / Elev 10.01	Dublin, Ohio 43016 Within Communications Photocommunications Pho	Dublin, Dhio 43016 Www.hullinc.com Dublin, Dhio 43016 Www.hullinc.com Cluent / Clear/ew Solar / LLC PROJECT NAME Clear/ew Solar / Project PROJECT MARE OROUGEN ORNO Common /

H	IL	JL	Dublin, Office: www.hu	merald Parkway, Suite 200 Ohio 43016 (614) 793-8777 illinc.com				BO	RIN	GN	IUN	IBE		20- ∃ 1 C	
			rastructure				Class	n dave Calan	Ducie	- 4					
			/ Solar I, LLC					rview Solar							
			R ORR025					Champaig			1				
				COMPLETED 8/13/20				1072 ft NA	VD88						
			ACTOR Enviroco									-			
				DRILLING METHOD <u>31/4-in</u>											
				CHECKED BY S. Aboulho				.ING <u>15.0</u>	0 ft / E	lev 10	057.00	ft			
C00	RDINAT	ES _4	10.271112°, -83.98	33343°	AF	TER DRI	LLING								
DEPTH (ft)	ELEVATION (ft)	GRAPHIC LOG		MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)				FINES CONTENT (%)
		0				SAN	RE		Q	DR	≥ö		РГ	LAS I	INE
-		<u>17 · 17 · 17</u>	20 inches TO	PSOIL											
	1070		SANDY SILT moist, very sti	Y CLAY WITH GRAVEL (CL-I ff to hard	ML), brown,	SPT 1	67	8-8-16 (24)	-		12.0				
5_	 					SPT 2	33	7-15-13 (28)	-						
ECTS/ORR025.G	1065					SPT 3	67	8-8-9 (17)	_		10.0	17	12	5	53
						SPT 4	73	9-14-21 (35)	-						
7 - F:\CLIENTSVAC	1060		SANDY SILT	CLAY (CL-ML), gray, moist,	, very stiff	_									
GDT - 9/23/20 16:2	+ -		•			SPT 5	100	6-8-12 (20)	_		8.1	18	12	6	-
	 		CLAYEY SAN dense	ID WITH GRAVEL, (SC) brow	vn, wet, very										
5 - 100 - 0 2 - 10						SPT 6	67	15-37-30 (67)			6.8				23
COLUMNS (WITH EL	1050														
сеотеснвно 25 52						SPT 7	27	19-28-34 (62)							

Н	IL	IL	6397 Er Dublin, Office: (www.hu	BORING NUMBER B20-08 PAGE 1 OF 2												
			rastructure													
CLIENT Clearview Solar I, LLC PROJECT NUMBER ORR025						PROJECT NAME Clearview Solar Project										
						PROJECT LOCATION Champaign County, OH										
					GROUND ELEVATION 1073 ft NAVD88 GROUND WATER LEVELS:											
			ACTOR Envirocor	-	GROUND WATER LEVELS: $\underline{\nabla}$ AT TIME OF DRILLING <u>10.00 ft / Elev 1063.00 ft</u>											
				_	V AT END OF DRILLING 10.00 ft / Elev 1063.00 ft											
			0.269926°, -83.98	CHECKED BY S. Aboulhosn		TER DRI					003.00	11				
			0.203320, -03.30	5402									FERBE	PC		
	z					SAMPLE TYPE NUMBER	%		Ľ.	DRY UNIT WT. (pcf)	ш%			3	FINES CONTENT (%)	
HL	ELEVATION (ft)	GRAPHIC LOG				BER	RECOVERY (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	÷ ا	MOISTURE CONTENT (%)		U	PLASTICITY INDEX	NU ()	
DEPTH (ft)	EV¤ (ft	LO		MATERIAL DESCRIPTION		IPLE	NOR NOR	NA NA	(ts	۲ و ۲	OIS]	LIQUID	STI MIT	E	000	
		G				SAN	REC	υz	DO	DR	₹Ö		PLASTIC LIMIT	EAS I	NË N	
0		<u>, 1, 1</u>	36 inches TOF											<u>م</u>	ш	
	L -	1/ . 1/		OOIE												
		<u></u>				SPT	67	3-2-4								
		<u>1/ × 1/</u>				1	07	(6)								
	1070			CLAY (CL-ML), brown, moist, soft	to	_										
			medium stiff, t	race gravel	10				1							
						SPT 2	67	2-2-2 (4)			17.6	25	18	7	58	
5									-							
1	Ļ _		LEAN CLAY, (CL) brown to gray, moist, stiff, trac	e gravel,											
NORF			trace sand			SPT	67	0-4-6			8.4					
ECTS						3	01	(10)			0.4					
I	1065			VITH GRAVEL, (CL) gray, moist, ha	ard trace	_										
NTN -			sand	VIIII OIXVEL, (CL) glay, moist, no	alu, trace	SPT		6-17-27	1							
	_		_				100	(44)								
10 NOT	+ -		Ţ						-							
ENTS																
::/CLI																
27-F	F															
	1060															
9/23/2	Ļ _					SPT		4-7-9	1							
 上员 15			SANDY LEAN trace gravel	CLAY, (CL) gray, moist, stiff to ver	ry stiff,	5	67	(16)			9.6					
014.0	+ -		5						1							
- 4B 2(- +															
USL																
STD	4055															
B	1055															
N	╞ -					SPT	400	5-10-16			44.0	<u></u>	10	_		
20						6	100	(26)			11.2	21	13	8	57	
	† -								1							
<u>- 1</u>	+ -															
SNN -	Ļ _															
OLUT	1050															
BHC	1050															
ECH	+ -					SPT	100	4-5-14								
GEOTECH BH COLUMNS (WITH ELEVATION) - GINT STD US LAB 2014.GDT - 9/23/20 16:27 - F:/CLIENTSACTIVE/GINT/PROJECTS/ORR025.GPJ						SPT 7	100	(19)								

(Continued Next Page)

6397 Emerald Parkway, Suite 200 Dublin, Ohio 43016 Office: (614) 793-8777 www.hullinc.com

BORING NUMBER B20-08

PAGE 2 OF 2

			Solar I, LLC	PROJECT		Clear	view Solar	Proje	ct					
PR	OJECT N	UMBEF	R I	PROJECT			Champaigr	n Cour	nty, O⊦	1				
HLAID 25		GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)				FINES CONTENT (%)
-			SANDY LEAN CLAY, (CL) gray, moist, stiff to very s trace gravel <i>(continued)</i> SAA, wet	tiff, 										
- 30 - 	 1040				SPT 8	100	6-12-22 (34)			10.7	20	12	8	57
GEOTECH BH COLUMNS (WITH ELEVATION) - GINT STD US LAB 2014.GDT - 9/23/20 16:27 - F:/CLIENTSACTIVE/GINT/PROJECTS/OFR026.GPJ	 1035				SPT 9	100	8-12-20 (32)							
DT - 9/23/20 16:27 - F:\CLIENTSM			SILTY SAND, (SM) brown, wet, loose, trace gravel		SPT 10	100	5-15-21 (36)			10.8	21	13	8	59
GINT STD US LAB 2014.GE					SPT 11	67	0-0-8 (8)			16.3	NP	NP	NP	48
ITH ELEVATION) - I	1025		POORLY GRADED SAND WITH GRAVEL, (SP) gra medium dense to dense SILT, (ML) gray, wet, hard, trace gravel	ıy, wet,	SPT 12	67	15-30-45 (75)							
GEOTECH BH COLUMNS (WI			Bottom of borehole at 50 feet.			<u> </u>		<u> </u>						

		L		Dublin, 0 Office: (www.hu	nerald Parkway, Suite 200 Dhio 43016 614) 793-8777 linc.com				B	ORIN	IG N	NUN	IBE		320- E 1 0	
				rastructure / Solar I, LLC		PRO	DJECT NAI	//E Cle	arview Sol	ar Proje	ct					
				R_ORR025			DJECT LO					Н				
	DATE	STAR	TED _8	3/13/20	COMPLETED 8/13/20	GRO	OUND ELE	VATION	1084 ft N	AVD88						
	DRILL	ING C	ONTRA	ACTOR Envirocor	e, Inc.	GR0		ER LE	ELS:							
					DRILLING METHOD 31/2		AT TIME	OF DR	LLING	None (Obser∖	/ed				
					CHECKED BY S. Aboul	lhosn	AT END	of Dri	LLING	None C	bserv	ed				
C	COOR	DINAT	ES _4	0.269208°, -84.00	3515°		AFTER I	RILLIN	G							
	o UEPIH (ft)	ELEVATION (ft)	GRAPHIC LOG		MATERIAL DESCRIPTION	N	SAMPLE TYPE	RECOVERY %		POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)			S ≻	FINES CONTENT (%)
Γ	-		1/ 3/1/	12 inches TOF	SOIL											
-	-			SANDY LEAN trace gravel	CLAY, (CL) brown, moist,	stiff to very stif		PT 67	5-6-8 (14)			19.7	-			
5.GPJ	5	1080						PT 10) 2-5-5 (10)			18.9	41	16	25	
ROJECTS\ORR02	-							PT 10) 7-8-8 (16)			11.1	22	14	8	65
	10	<u>1075</u>						PT 10) 5-7-7 (14)							
16:27 - F:\CLIE	-			SILTY SAND, gravel	(SM) brown, moist, mediur	m dense, trace										
GDT - 9/23	- 15	1070					s	PT 10) 1-5-7 (12)							
GEOTECH BH COLUMNS (WITH ELEVATION) - GINT STD US LAB 2014.GDT - 9/23/20 16:27 - F./CLIENTS/ACTIVE/GINT/PROJECTS/ORR026.GPJ				Borehole cave Laboratory Co	hole at 15 feet. in at 12 feet following auge rosion Testing Suite Perfo ple, Samples 1 and 2.	er removal. rmed on a										

г

Н	IL	IL	Dublin, Office:	merald Parkway, Suite 200 Ohio 43016 (614) 793-8777				BO	RIN	IG N	IUN	IBE		5 20- E 1 C	
Environ	ment / En	ergy / Infr	astructure WWW.ht	illinc.com											
			Solar I, LLC		_ PRO	JECT NAME	Clear	view Solar	Proje	ct					
PRO	JECT N	UMBEF	ORR025		_ PRO	JECT LOCAT		Champaigr	n Cour	nty, Ol	H				
DATE	STAR	TED _8	/13/20	COMPLETED <u>8/13/20</u>	_ GRO	OUND ELEVA		1083 ft NA	VD88						
DRIL	LING C	ONTRA	CTOR Enviroco	re, Inc.	_ GRO	OUND WATEF	R LEVE	LS:							
RIG T		Mobile I	Drill B-57	DRILLING METHOD 31/4-in ID I	HSA_	AT TIME O	DRIL	LING N	None C	Observ	/ed				
LOGO	GED BY		onner	CHECKED BY S. Aboulhosn	_	AT END OF	DRILL	.ING N	one O	bserve	ed				
COOF	RDINAT	ES _4	0.268960 , -83.99	99749°	_	AFTER DRI	LLING								
-	NO	<u>ں</u>				ЧРЕ R	% ∖.	с s	PEN.	WT.	RE ' (%)		FERBE	5	TENT
o DEPTH (ft)	ELEVATION (ft)	GRAPHIC LOG		MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY ((RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	LIQUID	PLASTIC LIMIT	PLASTICITY INDEX	FINES CONTENT (%)
				LED SOIL (Fill/Modified Land) I CLAY, (CL) brown to gray, moist,	medium				_						
	1080		stiff to stiff, tra	ice gravel	moduli	SPT 1	67	6-6-7 (13)	-		10.1				
5	 					SPT 2	67	7-7-8 (15)	-						
	 					SPT 3	100	4-2-4 (6)			12.3	23	15	8	
	1075					SPT 4	100	3-7-8 (15)	_						
	1070		SILTY SAND, gravel	(SM) brown to gray, moist, loose,	trace										
15						SPT 5	100	4-3-5 (8)							
				ehole at 15 feet. ⊱in at 11 feet following auger remo	oval.										

Н	IL	JL	Dublin, Office:	merald Parkway, Suite 200 Ohio 43016 (614) 793-8777 Illinc.com				BO	RIN	IG N	IUN	IBE		20- ∃ 1 C	
			rastructure Solar I, LLC		PROJ	ECT NAME	Clear	view Solar	· Proje	ct					
			ORR025		_						-				
DATE	STAR	TED _8	8/13/20	COMPLETED 8/13/20	GROU	ND ELEVA		1082 ft NA	VD88						
DRILI	LING C	ONTRA	CTOR Enviroco	re, Inc.	GROU		LEVE	LS:							
RIG T	YPE _[Mobile	Drill B-57	DRILLING METHOD 31/4-in ID	HSA	AT TIME OF		LING 1	None C	Observ	/ed				
				CHECKED BY S. Aboulhosn		AT END OF			lone O	bserve	ed				
COOF	RDINAT	ES _4	0.272594°, -84.00)3154°		AFTER DRI	LLING								
o DEPTH (ft)	ELEVATION (ft)	GRAPHIC LOG		MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	LIMIT			FINES CONTENT (%)
		<u>, </u>	12 inches TO	PSOIL											
	1080		LEAN CLAY W moist, stiff to w	VITH SAND, (CL) brown to yellow /ery stiff, few gravel	ish brown,	SPT 1	50	3-5-7 (12)	_		21.5	-			
5						SPT 2	67	3-5-5 (10)	_		22.7	32	17	15	75
	1075					SPT 3	13	2-6-5 (11)	_						
						SPT 4	100	4-8-9 (17)	-						
	1070		SILTY SAND, trace gravel	(SM) brown to gray, moist, mediu	m dense,										
						SPT 5	100	1-4-7 (11)			9.8	15	12	3	50
				ehole at 15 feet. e-in at 12 feet following auger remo	oval.										

Environ			6397 Emerald Parkway, Suite 200 Dublin, Ohio 43016 Office: (614) 793-8777 www.hullinc.com				BO	RIN	GN	IUN	IBE		2 0- E 1 0	
CLIE		arview	Solar I, LLC	PROJE	CT NAME	Clear	view Solar	Proje	ct					
PROJ		UMBER	ORR025	PROJE	CT LOCAT		Champaigr	n Cour	nty, O⊦	ł				
DATE	STAR	TED _8	COMPLETED 8/13/20	GROUI			1087 ft NA	VD88						
DRILI	ING C	ONTRA	CTOR _Envirocore, Inc.	GROUI	ND WATER	LEVE	LS:							
RIG T		Nobile	Drill B-57 DRILLING METHOD <u>31/4-in ID H</u>	<u>SA</u>	T TIME OF	DRIL	LING N	lone C	bserv	ed				
LOGO	GED BY		Onner CHECKED BY S. Aboulhosn	. 4	AT END OF	DRILL	.ING N	one O	bserve	ed				
COOF	RDINAT	ES _4	0.251617°, -84.006580°	4	AFTER DRI	LLING								
	Z				Ш	% ,			۷T.	Е (%)				ENT
o DEPTH (ft)	ELEVATION (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	LIQUID	PLASTIC LIMIT		FINES CONTENT (%)
			12 inches TILLED SOIL (Fill/Modified Land)											
	1085		LEAN CLAY WITH SAND, (CL) brown, moist, me trace gravel	dium stiff	, SPT	100	2-2-3 (5)			20.4	29	17	12	74
			SANDY LEAN CLAY, (CL) brown to gray, moist, r stiff to very stiff, trace gravel	nedium	-	100	1-2-4	_		14.7				
5					2	100	(6)	-		14.7				
	1080				SPT 3	100	3-7-11 (18)	-		11.1	22	14	8	63
					SPT	80	5-6-6	_		11.8				
10					4		(12)	_						
	1075													
			SILTY SAND, (SM) brown to gray, moist, loose		_			-						
					SPT 5	100	3-4-5 (9)							
	I	<u> </u>	Bottom of borehole at 15 feet. Borehole cave-in at 13 feet following auger remov	al.				1	I	I		I		

APPENDIX B

LABORATORY TEST RESULTS

6397 Emerald Parkway, Suite 200 Dublin, Ohio 43016 Office: (614) 793-8777 www.hullinc.com

SUMMARY OF LABORATORY RESULTS (ASTM D2487 / D2488)

PAGE 1 OF 1

I	MBER ORR02	5		1			PROJECT LOCATION Champaign County, OH
BORING	DEPTH (ft)	MC%	LL	PL	PI	%F	USCS Classification
B20-01	1.0 - 2.5	21.2	41	23	18		LEAN CLAY (CL)
B20-01	8.5 - 10.0	12.2				12	POORLY GRADED SAND with CLAY and GRAVEL (SP-SC)
B20-02	3.5 - 5.0	12.2	19	13	6		SILTY CLAY (CL-ML)
B20-02	8.5 - 10.0	14.2					LEAN CLAY (CL)
B20-03	3.5 - 5.0	19.4					SANDY LEAN CLAY (CL)
B20-03	6.0 - 7.5	14.3	23	15	8		LEAN CLAY (CL)
B20-04	1.0 - 2.5	17.4					LEAN CLAY (CL)
B20-04	3.5 - 5.0	13.6	20	11	9		LEAN CLAY (CL)
B20-04	8.5 - 10.0	11.9	19	13	6		SILTY CLAY (CL-ML)
B20-05	1.0 - 2.5	22.3					CLAYEY SAND (SC)
B20-05	3.5 - 5.0	12.1	21	11	10	45	CLAYEY SAND (SC)
B20-05	13.5 - 15.0	10.2				43	CLAYEY SAND (SC)
B20-06	1.0 - 2.5	20.6				85	LEAN CLAY (CL)
B20-06	3.5 - 5.0	15.7					LEAN CLAY (CL)
B20-07	1.0 - 2.5	12.0					SANDY SILTY CLAY with GRAVEL (CL-ML)
B20-07	6.0 - 7.5	10.0	17	12	5	53	SANDY SILTY CLAY with GRAVEL (CL-ML)
B20-07	13.5 - 15.0	8.1	18	12	6		SANDY SILTY CLAY (CL-ML)
B20-07	18.5 - 20.0	6.8				23	CLAYEY SAND with GRAVEL (SM)
B20-08	3.5 - 5.0	17.6	25	18	7	58	SANDY SILTY CLAY (CL-ML)
B20-08	6.0 - 7.5	8.4					LEAN CLAY (CL)
B20-08	13.5 - 15.0	9.6					SANDY LEAN CLAY (CL)
B20-08	18.5 - 20.0	11.2	21	13	8	57	SANDY LEAN CLAY (CL)
B20-08	28.5 - 30.0	10.7	20	12	8	57	SANDY LEAN CLAY (CL)
B20-08	38.5 - 40.0	10.8	21	13	8	59	SANDY LEAN CLAY (CL)
B20-08	43.5 - 45.0	16.3	NP	NP	NP	48	SILTY SAND (SM)
B20-09	1.0 - 2.5	19.7					SANDY LEAN CLAY (CL)
B20-09	3.5 - 5.0	18.9	41	16	25		SANDY LEAN CLAY (CL)
B20-09	6.0 - 7.5	11.1	22	14	8	65	SANDY LEAN CLAY (CL)
B20-10	1.0 - 2.5	10.1					SANDY LEAN CLAY (CL)
B20-10	6.0 - 7.5	12.3	23	15	8		SANDY LEAN CLAY (CL)
B20-11	1.0 - 2.5	21.5					LEAN CLAY with SAND (CL)
B20-11	3.5 - 5.0	22.7	32	17	15	75	LEAN CLAY with SAND (CL)
B20-11	13.5 - 15.0	9.8	15	12	3	50	SILTY SAND (SM)
B20-12	1.0 - 2.5	20.4	29	17	12	74	LEAN CLAY with SAND (CL)
B20-12	3.5 - 5.0	14.7					SANDY LEAN CLAY (CL)
B20-12	6.0 - 7.5	11.1	22	14	8	63	SANDY LEAN CLAY (CL)
	8.5 - 10.0	11.8					SANDY LEAN CLAY (CL)

ASTM D 2216-10

Client:	Hull & Associates, Inc.
Client Reference:	Clearview Solar ORR025
Project No.:	2020-438-001

Lab ID: Boring No.: Depth (ft): Sample No.:	001 B20-01 1.0-2.5' 1	002 B20-01 8.5-10.0' 4	003 B20-02 3.5-5.0' 2	004 B20-02 8.5-10.0' 4	005 B20-03 3.5-5.0' 2	
Tare Number Wt. of Tare & Wet Sample (g) Wt. of Tare & Dry Sample (g) Weight of Tare (g) Weight of Water (g) Weight of Dry Sample (g)	1522 494.75 434.29 148.60 60.46 285.69	574 865.49 804.82 308.12 60.67 496.70	1506 537.07 494.50 145.62 42.57 348.88	11 270.83 238.13 8.17 32.70 229.96	12 261.86 220.69 8.19 41.17 212.50	
Water Content (%)	21.2	12.2	12.2	14.2	19.4	
Lab ID Boring No. Depth (ft) Sample No. Tare Number Wt. of Tare & Wet Sample (g) Wt. of Tare & Dry Sample (g) Weight of Tare (g) Weight of Water (g) Weight of Dry Sample (g)	006 B20-03 6.0-7.5' 3 1470 498.08 454.06 146.50 44.02 307.56	007 B20-04 1.0-2.5' 1 C4 267.11 228.69 8.18 38.42 220.51	008 B20-04 3.5-5.0' 2 3508 28.57 26.11 8.04 2.46 18.07	009 B20-04 8.5-10.0' 4 1439 513.31 474.05 144.77 39.26 329.28	010 B20-05 1.0-2.5' 1 C3 197.58 163.09 8.18 34.49 154.91	
Water Content (%)	14.3	17.4	13.6	11.9	22.3	
Notes :						
Tested By JV	Date	8/28/20	Checked By	NC	Date	9/3/20

ASTM D 2216-10

Client:	Hull & Associates, Inc.
Client Reference:	Clearview Solar ORR025
Project No.:	2020-438-001

Lab ID: Boring No.: Depth (ft): Sample No.:	011 B20-05 3.5-5.0' 2	012 B20-05 13.5-15.0 5	013 B20-06 1.0-2.5' 1	014 B20-06 3.5-5.0' 2	015 B20-07 1.0-2.5' 1	
Tare Number Wt. of Tare & Wet Sample (g) Wt. of Tare & Dry Sample (g) Weight of Tare (g) Weight of Water (g) Weight of Dry Sample (g)	1519 497.58 459.68 147.58 37.90 312.10	1566 719.26 681.31 309.41 37.95 371.90	1482 417.02 370.95 147.64 46.07 223.31	E1 315.56 273.89 8.21 41.67 265.68	W2 242.24 217.11 8.21 25.13 208.90	
Water Content (%)	12.1	10.2	20.6	15.7	12.0	
Lab ID	016	017	018	019	020	
Boring No. Depth (ft)	B20-07 6.0-7.5'	B20-07 13.5-15.0'	B20-07 18.5-20.0'	B20-08 3.5-5.0'	B20-08 6.0-7.5'	
Sample No.	3	5	6	2	3	
Tare Number Wt. of Tare & Wet Sample (g) Wt. of Tare & Dry Sample (g) Weight of Tare (g) Weight of Water (g) Weight of Dry Sample (g)	1537 630.40 586.01 143.83 44.39 442.18	1490 436.50 414.72 144.60 21.78 270.12	1562 704.93 679.71 310.65 25.22 369.06	1545 411.56 372.03 147.42 39.53 224.61	W3 291.50 269.57 8.21 21.93 261.36	
Water Content (%)	10.0	8.1	6.8	17.6	8.4	
Notes :						
Tested By JV	Date	8/28/20	Checked By	NC	Date	9/3/20
page 1 of 1 DCN: CT-S1 DAT	E: 3/18/13 REVISION:	: 4				

ASTM D 2216-10

Client:	Hull & Associates, Inc.
Client Reference:	Clearview Solar ORR025
Project No.:	2020-438-001

Lab ID: Boring No.: Depth (ft): Sample No.:	021 B20-08 13.5-15.0' 5	022 B20-08 18.5-20.0' 6	023 B20-08 28.5-30.0' 8	024 B20-08 38.5-40.0' 10	025 B20-08 43.5-45.0' 11	
Tare Number Wt. of Tare & Wet Sample (g) Wt. of Tare & Dry Sample (g) Weight of Tare (g) Weight of Water (g) Weight of Dry Sample (g)	E3 281.31 257.36 8.22 23.95 249.14	1416 521.98 484.09 145.63 37.89 338.46	587 662.62 628.45 308.71 34.17 319.74	1563 828.54 777.40 304.73 51.14 472.67	588 707.13 651.30 308.60 55.83 342.70	
Water Content (%)	9.6	11.2	10.7	10.8	16.3	
Lab ID Boring No. Depth (ft) Sample No.	026 B20-09 1.0-2.5' 1	027 B20-09 3.5-5.0' 2	028 B20-09 6.0-7.5' 3	029 B20-10 1.0-2.5' 1	030 B20-10 6.0-7.5' 3	
Tare Number Wt. of Tare & Wet Sample (g) Wt. of Tare & Dry Sample (g) Weight of Tare (g) Weight of Water (g) Weight of Dry Sample (g)	4 385.84 336.84 88.30 49.00 248.54	3388 27.05 24.08 8.40 2.97 15.68	1570 676.30 639.20 306.34 37.10 332.86	12 416.41 386.36 87.58 30.05 298.78	33 358.77 321.11 15.48 37.66 305.63	
Water Content (%)	19.7	18.9	11.1	10.1	12.3	
Notes :						
Tested By JV	Date	8/28/20	Checked By	NC	Date	9/3/20
page 1 of 1 DCN: CT-S1 DA	TE: 3/18/13 REVISION:	4				

ASTM D 2216-10

Client:	Hull & Associates, Inc.
Client Reference:	Clearview Solar ORR025
Project No.:	2020-438-001

Lab ID:	031	032	033	034	035
Boring No.:	B20-11	B20-11	B20-11	B20-12	B20-12
Depth (ft):	1.0-2.5'	3.5-5.0'	13.5-15.0'	1.0-2.5'	3.5-5.0'
Sample No.:	1	2	5	1	2
Tare Number	8	44	21	22	7
Wt. of Tare & Wet Sample (g)	351.80	450.97	371.16	264.13	467.83
Wt. of Tare & Dry Sample (g)	305.07	370.27	339.16	221.66	418.99
Weight of Tare (g)	87.41	15.54	13.37	13.51	87.14
Weight of Water (g)	46.73	80.70	32.00	42.47	48.84
Weight of Dry Sample (g)	217.66	354.73	325.79	208.15	331.85
Water Content (%)	21.5	22.7	9.8	20.4	14.7

Lab ID	036	037
Boring No.	B20-12	B20-12
Depth (ft)	6.0-7.5'	8.5-10.0'
Sample No.	3	4
Tare Number	1565	6
Wt. of Tare & Wet Sample (g)	618.66	433.47
Wt. of Tare & Dry Sample (g)	587.78	396.78
Weight of Tare (g)	308.68	86.08
Weight of Water (g)	30.88	36.69
Weight of Dry Sample (g)	279.10	310.70
Water Content (%)	11.1	11.8

Notes :

Tested By

JV Date

8/28/20 Checked By

Date

NC

te 9/3/20

page 1 of 1

DCN: CT-S1 DATE: 3/18/13 REVISION: 4

ASTM D 1140-14

Client	Hull & Associates, Inc.
Client Reference	Clearview Solar ORR025
Project No.	2020-438-001

Lab Id.	011
Boring No.	B20-05
Depth (ft)	3.5-5.0'
Sample No.	2
Tare Number	1519
Wt. of Tare & WS (gm)	456.03
Wt. of Tare & DS (gm)	456.03
Wt. of Tare (gm)	147.58
Wt. of Water (gm)	0
Wt. of DS (gm)	308.45
Water Content (%)	0.0
Wt. of Washed Soil & Tare	315.96
Percent Passing #200	45.4

 Tested By
 D
 Date
 9/2/2020
 Checked By
 NC
 Date
 9/3/2020

page 1 of 1 DCN: CT-S54 DATE:::12/30/05 REI::45/30/05 REI::45/30/05/30/05 REI::45/30/05 REI::45/30/05/30/05/30/05/30/05/30/05/30

Client	Hull & Associates, Inc.
Client Reference	Clearview Solar ORR025
Project No.	2020-438-001

Lab Id. Boring No. Depth (ft) Sample No.	013 B20-06 1.0-2.5' 1
Tare Number	1482
Wt. of Tare & WS (gm)	375.10
Wt. of Tare & DS (gm)	375.10
Wt. of Tare (gm)	147.64
Wt. of Water (gm)	0
Wt. of DS (gm)	227.46
Water Content (%)	0.0
Wt. of Washed Soil & Tare	181.53
Percent Passing #200	85.1

	Tested By	D	Date	9/1/2020	Checked	Ву	Ν	С	Date		9/3	/2020
page 1 of 1		DCN: CT-S54 DAT	5E:::12/30/05 REMISIQ	N: 30 ects 2020 2020	38 ss	C ea	e oa O	01 2020	38 001 013	e ce t	ass 200	s heet1

Client	Hull & Associates, Inc.
Client Reference	Clearview Solar ORR025
Project No.	2020-438-001

Lab Id. Boring No. Depth (ft) Sample No.	016 B20-07 6.0-7.5' 3
Tare Number	1537
Wt. of Tare & WS (gm)	581.97
Wt. of Tare & DS (gm)	581.97
Wt. of Tare (gm)	143.83
Wt. of Water (gm)	0
Wt. of DS (gm)	438.14
Water Content (%)	0.0
Wt. of Washed Soil & Tare	350.20
Percent Passing #200	52.9

_	Tested By	D	Date	9/2/2020	Checked	Ву	NC	Date	9/3	/2020
page 1 of	1	DCN: CT-S54 DA	15E::12/30/05 REV(ISIQ	N: 30 ects 2020 2020	38 ss	C ea e	oa 001 2020	38 001 01	e ce t ass 200	s heet1

Client	Hull & Associates, Inc.
Client Reference	Clearview Solar ORR025
Project No.	2020-438-001

Lab Id. Boring No. Depth (ft) Sample No.	019 B20-08 3.5-5.0' 2
Tare Number	1545
Wt. of Tare & WS (gm)	369.45
Wt. of Tare & DS (gm)	369.45
Wt. of Tare (gm)	147.42
Wt. of Water (gm)	0
Wt. of DS (gm)	222.03
Water Content (%)	0.0
Wt. of Washed Soil & Tare	241.15
Percent Passing #200	57.8

	Tested By	D	Date	9/2/2020	Checked	Ву	NC	Date	9/3/2020
page 1 of	1	DCN: CT-S54 DA	TE:::12/30/05 REMISIQ	N: 30 ects 2020 2020	38 ss	C ea e	oa 001 202	0 38 001 019	e ce t ass 200 s heet1

Client	Hull & Associates, Inc.
Client Reference	Clearview Solar ORR025
Project No.	2020-438-001

Lab Id. Boring No. Depth (ft) Sample No.	022 B20-08 18.5-20.0' 6
Tare Number	1416
Wt. of Tare & WS (gm)	480.19
Wt. of Tare & DS (gm)	480.19
Wt. of Tare (gm)	145.63
Wt. of Water (gm)	0
Wt. of DS (gm)	334.56
Water Content (%)	0.0
Wt. of Washed Soil & Tare	288.67
Percent Passing #200	57.2

Те	sted By	D	Date	9/2/2020	Checked	l By	NC	Date	9/3/2	020
page 1 of 1	DC	N: CT-S54 DAT	5E::12/30/05 REMISION:	3 o ects 2020 2020	38 ss	Cea	e oa 001	2020 38 001 022	e ce t ass 200 s	heet1

ASTM D 1140-14

Client	Hull & Associates, Inc.
Client Reference	Clearview Solar ORR025
Project No.	2020-438-001

Lab Id. Boring No. Depth (ft) Sample No.	023 B20-08 28.5-30.0' 8
Tare Number	587
Wt. of Tare & WS (gm)	624.82
Wt. of Tare & DS (gm)	624.82
Wt. of Tare (gm)	308.71
Wt. of Water (gm)	0
Wt. of DS (gm)	316.11
Water Content (%)	0.0
Wt. of Washed Soil & Tare	444.48
Percent Passing #200	57.0

 Tested By
 D
 Date
 9/2/2020
 Checked By
 NC
 Date
 9/3/2020

 page 1 of 1
 DCN: CT-S54 DATE::12/30/05 RELIVISION: 30 ects 2020 2020
 38
 ss
 C ea
 e
 0 a 001 2020
 38 001 023
 e ce t ass 200 s
 hereit

Client	Hull & Associates, Inc.
Client Reference	Clearview Solar ORR025
Project No.	2020-438-001

Lab Id. Boring No. Depth (ft) Sample No.	024 B20-08 38.5-40.0' 10
Tare Number	1563
Wt. of Tare & WS (gm)	773.45
Wt. of Tare & DS (gm)	773.45
Wt. of Tare (gm)	304.73
Wt. of Water (gm)	0
Wt. of DS (gm)	468.72
Water Content (%)	0.0
Wt. of Washed Soil & Tare	498.82
Percent Passing #200	58.6

	Tested By	D	Date	9/2/2020	Checked	Ву	NC	Date	9/3	3/2020
page 1 of 1	1	DCN: CT-S54 DA	TE:::12/30/05 REMISIO	N: 30 ects 2020 2020	38 ss	C ea e	oa 001 2020	38 001 02	e ce t ass 200	s heet1

Client	Hull & Associates, Inc.
Client Reference	Clearview Solar ORR025
Project No.	2020-438-001

Lab Id. Boring No. Depth (ft) Sample No.	025 B20-08 43.5-45.0' 11
Tare Number	588
Wt. of Tare & WS (gm)	648.21
Wt. of Tare & DS (gm)	648.21
Wt. of Tare (gm)	308.60
Wt. of Water (gm)	0
Wt. of DS (gm)	339.61
Water Content (%)	0.0
Wt. of Washed Soil & Tare	485.67
Percent Passing #200	47.9

_	Tested By	D	Date	9/2/2020	Checked	Ву	NC	Date	9/3/202	20
page 1 of	1	DCN: CT-S54 DAT	5E::12/30/05 REMISIQ	N: 30 ects 2020 2020	38 ss	C ea e	oa 001 2020	38 001 02	e ce t ass 200 s hee	et1

ASTM D 1140-14

Client	Hull & Associates, Inc.
Client Reference	Clearview Solar ORR025
Project No.	2020-438-001

Lab Id. Boring No. Depth (ft) Sample No.	032 B20-11 3.5-5.0' 2
Tare Number	574
Wt. of Tare & WS (gm)	654.10
Wt. of Tare & DS (gm)	654.10
Wt. of Tare (gm)	308.04
Wt. of Water (gm)	0
Wt. of DS (gm)	346.06
Water Content (%)	0.0
Wt. of Washed Soil & Tare	393.09
Percent Passing #200	75.4

 Tested By
 D
 Date
 9/2/2020
 Checked By
 NC
 Date
 9/3/2020

 page 1 of 1
 DCN: CT-S54 DATE::12/30/05 RELIVISION: 30 ects 2020 2020
 38
 ss
 C ea
 e
 0 a 001 2020
 38 001 032
 e ce t ass 200 s
 hereit

Client	Hull & Associates, Inc.
Client Reference	Clearview Solar ORR025
Project No.	2020-438-001

Lab Id.	033
Boring No.	B20-11
Depth (ft)	13.5-15.0'
Sample No.	5
Tare Number	1562
Wt. of Tare & WS (gm)	631.37
Wt. of Tare & DS (gm)	631.37
Wt. of Tare (gm)	310.77
Wt. of Water (gm)	0
Wt. of DS (gm)	320.6
Water Content (%)	0.0
Wt. of Washed Soil & Tare	472.74
Percent Passing #200	49.5

	Tested By	D	Date	9/2/2020	Checke	d By		NC	Date		9/3	3/2020
page 1 of 1		DCN: CT-S54 DA	TE::12/30/05 REMISION	: 3 o ects 2020 2020	38 s	c ea	е	oa 001 2020	38 001 033	e ce t	ass 200	s heet1

Client	Hull & Associates, Inc.
Client Reference	Clearview Solar ORR025
Project No.	2020-438-001

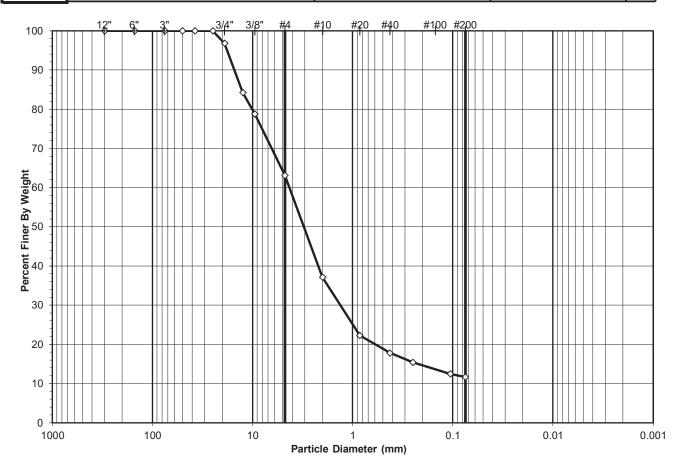
Lab Id. Boring No. Depth (ft) Sample No.	034 B20-12 1.0-2.5' 1
Tare Number	1566
Wt. of Tare & WS (gm)	512.52
Wt. of Tare & DS (gm)	512.52
Wt. of Tare (gm)	309.40
Wt. of Water (gm)	0
Wt. of DS (gm)	203.12
Water Content (%)	0.0
Wt. of Washed Soil & Tare	361.89
Percent Passing #200	74.2

	Tested By	, D	Date	9/3/2020	Checked	l By	NC	Date	9/3/20	020
page 1 of	1	DCN: CT-S54 DA	TE::12/30/05 REV/ISIQ	N: 30 ects 2020 2020	38 ss	C ea	e oa OO	1 2020 38 001 03	ecet ass 200 s h	heet1

Client	Hull & Associates, Inc.
Client Reference	Clearview Solar ORR025
Project No.	2020-438-001

Lab Id. Boring No. Depth (ft) Sample No.	036 B20-12 6.0-7.5' 3
Tare Number	1565
Wt. of Tare & WS (gm)	584.39
Wt. of Tare & DS (gm)	584.39
Wt. of Tare (gm)	308.68
Wt. of Water (gm)	0
Wt. of DS (gm)	275.71
Water Content (%)	0.0
Wt. of Washed Soil & Tare	411.41
Percent Passing #200	62.7

	Tested By	, D	Date	9/3/2020	Checked	l By	NC	Date	9/3/20	020
page 1 of	1	DCN: CT-S54 DA	TE::12/30/05 REV/ISIQ	N: 30 ects 2020 2020	38 ss	C ea	e oa OO	1 2020 38 001 03	ecet ass 200 s h	heet1


SIEVE ANALYSIS

ASTM D 422-63 (2007)

Client: Client Reference: Project No.: Lab ID: Hull & Associates, Inc. Clearview Solar ORR025 2020-438-001 2020-438-001-002 Boring No.: B20-01 Depth (ft): 8.5-10.0' Sample No.: 4 Soil Color: Brown

		SIEVE	HYDROMETER				
USCS	cobbles	gravel		silt and clay fraction	on		
USDA	cobbles	gravel		sand		silt	clay

Sieve Sizes (mm)		Percentage	
Greater Than #4	Gravel	36.93	
#4 To #200	Sand	51.37	
Finer Than #200	Silt & Clay	11.70	

USCS Symbol:

sp-sc, ASSUMED

USCS Classification: POORLY GRADED SAND WITH CLAY AND GRAVEL

page 1 of 2

WASH SIEVE ANALYSIS

ASTM D 422-63 (2007)

geotechnical & geosynthetic testing

Client:Hull & Associates, Inc.Client Reference:Clearview Solar ORR025Project No.:2020-438-001Lab ID:2020-438-001-002

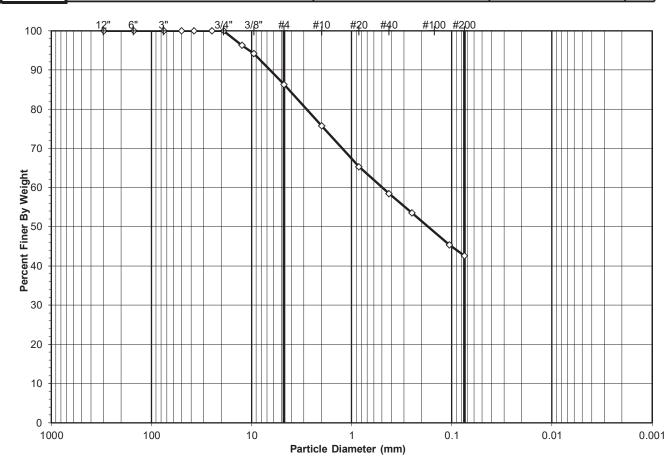
Boring No.:B20-01Depth (ft):8.5-10.0'Sample No.:4Soil Color:Brown

Moisture Content of Passing 3/4" M	aterial	Moisture Content of Retained 3/4" Material				
Tare No.:	574	Tare No.:	NA			
Wt. of Tare & Wet Sample (g):	865.49	Weight of Tare & Wet Sample (g):	NA			
Wt. of Tare & Dry Sample (g):	804.82	Weight of Tare & Dry Sample (g):	NA			
Weight of Tare (g):	308.12	Weight of Tare (g):	NA			
Weight of Water (g):	60.67	Weight of Water (g):	NA			
Weight of Dry Soil (g):	496.70	Weight of Dry Soil (g):	NA			
Moisture Content (%):	12.2	Moisture Content (%):	0.0			
Wet Weight of -3/4" Sample (g):	NA	Weight of the Dry Sample (g):	496.70			
Dry Weight of - 3/4" Sample (g)	480.75	Weight of Minus #200 Material (g):	58.11			
Wet Weight of +3/4" Sample (g)	15.95	Weight of Plus #200 Material (g):	438.59			
Dry Weight of + 3/4" Sample (g)	15.95					
Total Dry Weight of Sample (g):	496.70					

Sieve	Sieve	Weight of Soil		Percent	Accumulated	Percent	Accumulated
Size	Opening	Retained		Retained	Percent	Finer	Percent
					Retained		Finer
	(mm)	(g)		(%)	(%)	(%)	(%)
12"	300	0.00		0.00	0.00	100.00	100.00
6"	150	0.00		0.00	0.00	100.00	100.00
3"	75	0.00		0.00	0.00	100.00	100.00
2"	50	0.00	(*)	0.00	0.00	100.00	100.00
1 1/2"	37.5	0.00		0.00	0.00	100.00	100.00
1"	25.0	0.00		0.00	0.00	100.00	100.00
3/4"	19.0	15.95		3.21	3.21	96.79	96.79
1/2"	12.5	62.42		12.57	15.78	84.22	84.22
3/8"	9.50	27.15		5.47	21.24	78.76	78.76
#4	4.75	77.92		15.69	36.93	63.07	63.07
#10	2.00	128.76		25.92	62.85	37.15	37.15
#20	0.85	73.82	(**)	14.86	77.72	22.28	22.28
#40	0.425	22.23	. ,	4.48	82.19	17.81	17.81
#60	0.250	11.84		2.38	84.58	15.42	15.42
#140	0.106	14.55		2.93	87.51	12.49	12.49
#200	0.075	3.95		0.80	88.30	11.70	11.70
Pan	-	58.11		11.70	100.00	-	-

Notes : (*) The + 3/4" sieve analysis is based on the Total Dry Weight of the Sample (**) The - 3/4" sieve analysis is based on the Weight of the Dry Sample

Tested By	WDS	Date	9/1/20	Checked By	NC	Date	9/3/20
page 2 of 2		DCN: CT-S3TW	DATE: 8/19/19 RE	VISION: 0	S:Exce	el\Excel QA\Spre	adsheets\SieveHydJ.xls


SIEVE ANALYSIS

ASTM D 422-63 (2007)

Client: Client Reference: Project No.: Lab ID: Hull & Associates, Inc. Clearview Solar ORR025 2020-438-001 2020-438-001-012 Boring No.: B20-05 Depth (ft): 13.5-15.0' Sample No.: 5 Soil Color: Brown

		SIEVE	HYDROMETER			
USCS	cobbles	gravel	silt and clay fraction			
USDA	cobbles	gravel	sand	silt clay		

	USCS Summary		
Sieve Sizes (mm)	-	Percentage	
Greater Than #4	a e	13.70	
#4 To #200	a d	43.71	
Finer Than #200	t Cay	42.59	
USCS Symbol:			
sc, ASSUMED			
USCS Classification:			
CLAYEY SAND			

page 1 of 2

: ce ce peadsheets e e ydJ s

WASH SIEVE ANALYSIS

ASTM D 422-63 (2007)

2020-438-001-012

Boring No.: B20-05 Depth (ft): 13.5-15.0' Sample No.: 5 Soil Color: Brown

Moisture Content of Passing 3/4" M	aterial	Moisture Content of Retained 3/4" Material				
Tare No.:	1566	Tare No.:	NA			
Wt. of Tare & Wet Sample (g):	719.26	Weight of Tare & Wet Sample (g):	NA			
Wt. of Tare & Dry Sample (g):	681.31	Weight of Tare & Dry Sample (g):	NA			
Weight of Tare (g):	309.41	Weight of Tare (g):	NA			
Weight of Water (g):	37.95	Weight of Water (g):	NA			
Weight of Dry Soil (g):	371.90	Weight of Dry Soil (g):	NA			
Moisture Content (%):	10.2	Moisture Content (%):	0.0			
Wet Weight of -3/4" Sample (g):	NA	Weight of the Dry Sample (g):	371.90			
Dry Weight of - 3/4" Sample (g)	371.90	Weight of Minus #200 Material (g):	158.40			
Wet Weight of +3/4" Sample (g) Dry Weight of + 3/4" Sample (g) Total Dry Weight of Sample (g):	0.00 0.00 371.90	Weight of Plus #200 Material (g):	213.50			

Sieve	Sieve	Weight of Soil		Percent	Accumulated	Percent	Accumulated
Size	Opening	Retained		Retained	Percent	Finer	Percent
					Retained		Finer
	(mm)	(g)		(%)	(%)	(%)	(%)
12"	300	0.00		0.00	0.00	100.00	100.00
6"	150	0.00		0.00	0.00	100.00	100.00
3"	75	0.00		0.00	0.00	100.00	100.00
2"	50	0.00	(*)	0.00	0.00	100.00	100.00
1 1/2"	37.5	0.00		0.00	0.00	100.00	100.00
1"	25.0	0.00		0.00	0.00	100.00	100.00
3/4"	19.0	0.00		0.00	0.00	100.00	100.00
1/2"	12.5	13.77		3.70	3.70	96.30	96.30
3/8"	9.50	7.89		2.12	5.82	94.18	94.18
#4	4.75	29.29		7.88	13.70	86.30	86.30
#10	2.00	39.12		10.52	24.22	75.78	75.78
#20	0.85	38.82	(**)	10.44	34.66	65.34	65.34
#40	0.425	25.48	. ,	6.85	41.51	58.49	58.49
#60	0.250	18.40		4.95	46.46	53.54	53.54
#140	0.106	30.23		8.13	54.58	45.42	45.42
#200	0.075	10.50		2.82	57.41	42.59	42.59
Pan	-	158.40		42.59	100.00	-	-

Notes :

Client:

Lab ID:

The 3/ see a ayss s ased o the Tota Dy eight of the a pe

The 3/ seeaayss s ased o the eght of the Dy a pe

Tested By	WDS	Date	9/1/20	Checked By	NC	Date	9/3/20
page 2 of 2		DCN: CT-S3TW	DATE: 8/19/19 REV	/ISION: 0	: ce	се	peadsheets e e ydJ s

SIEVE ANALYSIS

ASTM D 422-63 (2007)

Client: Client Reference: Project No.: Lab ID: Hull & Associates, Inc. Clearview Solar ORR025 2020-438-001 2020-438-001-018 Boring No.: B20-07 Depth (ft): 18.5-20.0' Sample No.: 6 Soil Color: Brown

		SIEVE A	HYDROMETER	
USCS	cobbles	gravel	silt and clay fraction	
USDA	cobbles	gravel	sand	silt clay

	USCS Summary		
Sieve Sizes (mm)		Percentage	
Greater Than #4	аe	23.25	
#4 To #200	a d	54.18	
Finer Than #200	t Cay	22.57	

USCS Symbol:

sc, ASSUMED

USCS Classification:

CLAYEY SAND WITH GRAVEL

page 1 of 2

DCN: CT-S3TW DATE: 8/19/19 REVISION: 0

: ce ce peadsheets e e ydJ s

WASH SIEVE ANALYSIS

ASTM D 422-63 (2007)

Client:Hull & Associates, Inc.Client Reference:Clearview Solar ORR025Project No.:2020-438-001Lab ID:2020-438-001-018

Boring No.: B20-07 Depth (ft): 18.5-20.0' Sample No.: 6 Soil Color: Brown

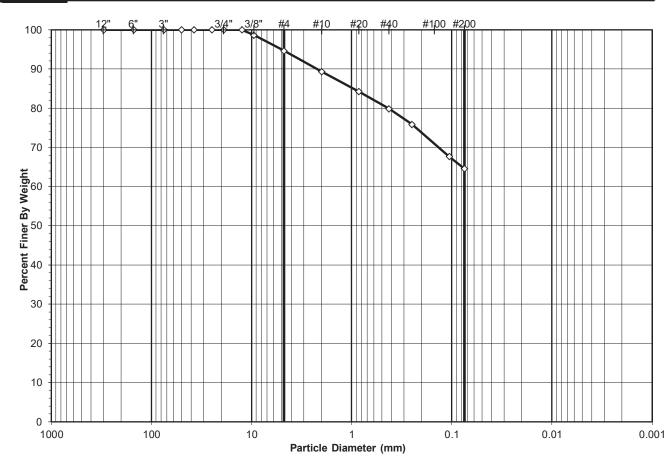
Moisture Content of Passing 3/4" M	aterial	Moisture Content of Retained 3/4" Material	
Tare No.:	1562	Tare No.:	NA
Wt. of Tare & Wet Sample (g):	704.93	Weight of Tare & Wet Sample (g):	NA
Wt. of Tare & Dry Sample (g):	679.71	Weight of Tare & Dry Sample (g):	NA
Weight of Tare (g):	310.65	Weight of Tare (g):	NA
Weight of Water (g):	25.22	Weight of Water (g):	NA
Weight of Dry Soil (g):	369.06	Weight of Dry Soil (g):	NA
Moisture Content (%):	6.8	Moisture Content (%):	0.0
Wet Weight of -3/4" Sample (g):	NA	Weight of the Dry Sample (g):	369.06
Dry Weight of - 3/4" Sample (g)	326.37	Weight of Minus #200 Material (g):	83.29
Wet Weight of +3/4" Sample (g)	42.69	Weight of Plus #200 Material (g):	285.77
Dry Weight of + 3/4" Sample (g)	42.69		
	, .		

Sieve	Sieve	Weight of Soil		Percent	Accumulated	Percent	Accumulated
Size	Opening	Retained		Retained	Percent	Finer	Percent
					Retained		Finer
	(mm)	(g)		(%)	(%)	(%)	(%)
12"	300	0.00		0.00	0.00	100.00	100.00
6"	150	0.00		0.00	0.00	100.00	100.00
3"	75	0.00		0.00	0.00	100.00	100.00
2"	50	0.00	(*)	0.00	0.00	100.00	100.00
1 1/2"	37.5	0.00		0.00	0.00	100.00	100.00
1"	25.0	42.69		11.57	11.57	88.43	88.43
3/4"	19.0	0.00		0.00	11.57	88.43	88.43
1/2"	12.5	20.91		5.67	17.23	82.77	82.77
3/8"	9.50	4.00		1.08	18.32	81.68	81.68
#4	4.75	18.20		4.93	23.25	76.75	76.75
#10	2.00	52.15		14.13	37.38	62.62	62.62
#20	0.85	54.97	(**)	14.89	52.27	47.73	47.73
#40	0.425	27.77		7.52	59.80	40.20	40.20
#60	0.250	19.74		5.35	65.15	34.85	34.85
#140	0.106	33.72		9.14	74.28	25.72	25.72
#200	0.075	11.62		3.15	77.43	22.57	22.57
Pan	-	83.29		22.57	100.00	-	-

Notes :

The 3/ see a ayss s ased o the Tota Dy eght of the a pe The 3/ see a ayss s ased o the eght of the Dy a pe

Tested By	WDS	Date	9/1/20	Checked By	NC	Date	9/3/20
page 2 of 2		DCN: CT-S3TW	DATE: 8/19/19 RE	EVISION: 0	: c	e ce	peadsheets e e ydJ s


SIEVE ANALYSIS

ASTM D 422-63 (2007)

Client: Client Reference: Project No.: Lab ID: Hull & Associates, Inc. Clearview Solar ORR025 2020-438-001 2020-438-001-028 Boring No.:B20-09Depth (ft):6.0-7.5'Sample No.:3Soil Color:Brown

		SIEVE A	HYDROMETER			
USCS	cobbles	gravel	sand	silt and clay fraction		
USDA	cobbles	gravel	sand	silt clay		

	USCS Summary		
Sieve Sizes (mm)	-	Percentage	
Greater Than #4	аe	5.37	
#4 To #200	a d	30.07	
Finer Than #200	t Cay	64.56	
	-		
USCS Symbol:			
CL, TESTED			
USCS Classification			
USCS Classification:			
SANDY LEAN CLAY			

page 1 of 2

: ce ce peadsheets e e ydJ s

WASH SIEVE ANALYSIS

geotechnical & geosynthetic testing

ASTM D 422-63 (2007)

Client:Hull & Associates, Inc.Client Reference:Clearview Solar ORR025Project No.:2020-438-001Lab ID:2020-438-001-028

Boring No.:B20-09Depth (ft):6.0-7.5'Sample No.:3Soil Color:Brown

Moisture Content of Passing 3/4" N	laterial	Moisture Content of Retained 3/4" Material	
Tare No.:	1570	Tare No.:	NA
Wt. of Tare & Wet Sample (g):	635.11	Weight of Tare & Wet Sample (g):	NA
Wt. of Tare & Dry Sample (g):	635.11	Weight of Tare & Dry Sample (g):	NA
Weight of Tare (g):	306.34	Weight of Tare (g):	NA
Weight of Water (g):	0.00	Weight of Water (g):	NA
Weight of Dry Soil (g):	328.77	Weight of Dry Soil (g):	NA
Moisture Content (%):	0.0	Moisture Content (%):	0.0
Wet Weight of -3/4" Sample (g):	NA	Weight of the Dry Sample (g):	328.77
Dry Weight of - 3/4" Sample (g)	328.77	Weight of Minus #200 Material (g):	212.24
Weight of +3/4" Sample (g)	0.00	Weight of Plus #200 Material (g):	116.53
	0.00	Weight of Flus #200 Material (g).	110.55
Dry Weight of + 3/4" Sample (g)	0.00		

Sieve	Sieve	Weight of Soil		Percent	Accumulated	Percent	Accumulated
Size	Opening	Retained		Retained	Percent	Finer	Percent
0120	opening	Retained		Retained	Retained	1 IIIOI	Finer
	(mm)	(g)		(%)	(%)	(%)	(%)
12"	300	0.00		0.00	0.00	100.00	100.00
6"	150	0.00		0.00	0.00	100.00	100.00
3"	75	0.00		0.00	0.00	100.00	100.00
2"	50	0.00	(*)	0.00	0.00	100.00	100.00
1 1/2"	37.5	0.00	()	0.00	0.00	100.00	100.00
1"	25.0	0.00		0.00	0.00	100.00	100.00
3/4"	19.0	0.00		0.00	0.00	100.00	100.00
1/2"	12.5	0.00		0.00	0.00	100.00	100.00
3/8"	9.50	4.45		1.35	1.35	98.65	98.65
#4	4.75	13.21		4.02	5.37	94.63	94.63
#10	2.00	17.48		5.32	10.69	89.31	89.31
#20	0.85	16.73	(**)	5.09	15.78	84.22	84.22
#40	0.425	14.39	. ,	4.38	20.15	79.85	79.85
#60	0.250	13.14		4.00	24.15	75.85	75.85
#140	0.106	26.90		8.18	32.33	67.67	67.67
#200	0.075	10.23		3.11	35.44	64.56	64.56
Pan	-	212.24		64.56	100.00	-	-

Notes :

The 3/ seeaaysss ased on the Tota Dy eght of the a pe The 3/ seeaaysss ased on the eght of the Dy a pe

Tes	ted By	WDS	Date	9/2/20	Checked By	NC	Date	9/3/20
page 2 of 2			DCN: CT-S3TW	DATE: 8/19/19 RE	VISION: 0	: c	e ce	peadsheets e e ydJ s

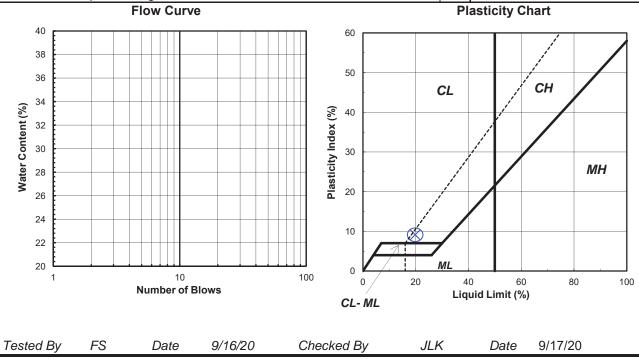
ASTM D 4318-17

Client Reference:ClearviewProject No.:2020-438-Lab ID:2020-438-	001-001 t s test e e s o t <u>H o ete A s s</u> ure Content 9 1522 494.75 434.29 148.60 60.5 285.7	D S SoilE ote sNo	teco e	1.0-2.5'	eve material, A c t o	vir dried)
Plastic Limit Test	1 2	Range		Test Resul	lts	
Tare Number:	13 14	U		Liquid Limit	(%):	41
Wt. of Tare & Wet Sample (g): Wt. of Tare & Dry Sample (g):	30.1628.8428.1626.94			Plastic Limit		23
Weight of Tare (g): Weight of Water (g):	19.34 18.58 2.0 1.9			Plasticity Ind		18
Weight of Dry Sample (g):	8.8 8.4					
Moisture Content (%): Note: The accepta e a ge of th Flow Curv		-0.1 ts s 1	.12	USCS Symbol		CL
		60	F			_
40 40 (%)		50	CL	CH		
Water Content (%)		40 40 (%) 30 20 20 40 40 40 40 40 40 40 40 40 40 40 40 40			MH	
25		10		7		
20			ML			
1 10 Number of	100 Blows	CL ML	20	40 60 quid Limit (%)	80	100
Tested By JV Date page 1 of 1 DCN: CTS4B, REV. 8, 5/22/18	9/2/20 Che	ecked By	NC	Date 9/	3/20 p eadsheets	t3ts

ASTM D 4318-17

Client Reference: Clearv Project No.: 2020-4	16-19 1506): 537.07 : 494.50 145.62 42.6 348.9	s o to s s 7 2	l Soil te sNo	teco e	3.5-5.0' : 2 : BROWN SIL (Minus No. 40 s	sieve material, sc t o	Air dried)
Plastic Limit Test	1	2	Range		Test Resu	ults	
Tare Number:	15	16	Ū		Liquid Limi	t (%):	19
Wt. of Tare & Wet Sample (g Wt. of Tare & Dry Sample (g)		31.96 30.38			Plastic Limi	it (%):	13
Weight of Tare (g): Weight of Water (g):		18.55 1.6			Plasticity In		6
Weight of Dry Sample (g):	10.6	11.8					
Moisture Content (%):	13.3	13.4	-0.1		USCS Symb	001:	CL-ML
Note: The accepta e a ge of Flow (Co te t	SS ().84 P	lasticity Cha	rt	
20			60	_	· · · · · · · · · · · · · · · · · · ·		
20			50	CL	, c	/	
02 mater Content (%)			40 40 (%) 30 30 20 20 20 20 20 20 20 20 20 20 20 20 20				
20 X			Dlasticity			MH	
20			10				
20				ML			
1	10 er of Blows	100	0 CL ML	20	40 60 quid Limit (%)	80	100
Tested By JV Da	te 9/2/20	Chec	ked By	NC	Date 9	9/3/20	
page 1 of 1 DCN: CTS4B, REV. 8, 5/22/1	8				: ce ce	p eadsheel	s t3ts

ASTM D 4318-17


Project No.: 2020-438-0 Lab ID: 2020-438-0 Note: T e USCS s o se t	Solar ORR025 101 101-006 t s test e e s of - o ete A re Content	o to ss	[Soil te sNo	teco e	6.0-7.5'	eve material, A sc t o	ir dried)
Plastic Limit Test	1	2	Range		Test Resu	lts	
Tare Number:	17	18	-		Liquid Limit	(%):	23
Wt. of Tare & Wet Sample (g): Wt. of Tare & Dry Sample (g):		9.58 8.25			Plastic Limit	t (%):	15
Weight of Tare (g): Weight of Water (g):		9.21 1.3			Plasticity Inc		8
Weight of Dry Sample (g):		9.0					CL
Moisture Content (%):		14.7	0.1	1.40	USCS Symbol	01.	CL
Note: The accepta e a ge of the Flow Curve		,o te t	SS	1.12 P	 lasticity Charl	t	
²⁵			60				7
24			-				
24			50	CL	CH	+	-
 23 23 23 23 23 23 24 25 22 			§ 40			\bigwedge	_
23	\otimes						
0 2 2			³⁰	/		MH	_
22 K			40 40 (%) 40 50 40 40 40 40 40 40 40 40 40 40 40 40 40				_
21			-				
21			10				-
20				ML			
1 10 Number of B	lows	100	CL ML		40 60 quid Limit (%)	80	100
Tested By JV Date	9/2/20	Chec	ked By	NC	Date 9/	/3/20	
page 1 of 1 DCN: CTS4B, REV. 8, 5/22/18					: ce ce	p eadsheets	t3ts

ASTM D 4318-17

Client Reference:ClearProject No.:2020-Lab ID:2020-	Hull & Associates, Inc. Clearview Solar ORR025 2020-438-001 2020-438-001-008			Boring No.: B20-04 Depth (ft): 3.5-5.0' Sample No.: 2 Soil Description: BROWN LEAN CLAY				
Note: The USCS symbol use	the minus No. 40 (Minus No. 40 sieve material, Air dried) graph page for the complete material description.							
As Received Mo	Liquid Limit Test							
ASTM D2216-19			1	2	3	М		
Tare Number:	35	80	314	221	618	U		
Wt. of Tare & Wet Sample (g	g): 28.	28.57		40.76	39.37	L		
Wt. of Tare & Dry Sample (g): 26.	26.11		37.42	36.04	Т		
Weight of Tare (g):	e (g): 8		20.32	20.18	19.34	I		
Weight of Water (g):	2.	2.5		3.3	3.3	Р		
Weight of Dry Sample (g):	y Sample (g): 18.1		17.1	17.2	16.7	0		
Was As Received MC Prese	rved: Ye	Yes				I I		
Moisture Content (%):	ture Content (%): 13.6		19.2	19.4	19.9	Ν		
Number of Blows:			32	26	20	Т		
Plastic Limit Test	1	2	Range		Test Results			
Tare Number:	247	503			Liquid Limit (%): 20		20	

Tare Number:	247	503			Liquid Limit (%):	20
Wt. of Tare & Wet Sample (g):	25.80	25.26				
Wt. of Tare & Dry Sample (g):	25.15	24.68			Plastic Limit (%):	11
Weight of Tare (g):	19.15	19.05				
Weight of Water (g):	0.7	0.6			Plasticity Index (%):	9
Weight of Dry Sample (g):	6.0	5.6				
					USCS Symbol:	CL
Moisture Content (%):	10.8	10.3	0.5		_	
Note: The acceptable range of the	e two Moistu	re Contents	is ±	1.12		

page 1 of 1 DCN: CTS4B, REV. 8, 5/22/18

S:\Excel\Excel QA\Spreadsheets\Limit 3Pt.xls

ASTM D 4318-17

Client: Hull & Associates, Inc. Client Reference: Clearview Solar ORR025 Project No.: 2020-438-001 Lab ID: 2020-438-001-009 Note: T e USCS s o se t t stest e e so t se e te Seet e See H o ete A ss As Received Moisture Content ASTM D2216-19 Tare Number: 1439 Wt. of Tare & Wet Sample (g): 513.31 Wt. of Tare & Wet Sample (g): 474.05 Weight of Tare (g): 144.77 Weight of Water (g): 39.3 Weight of Dry Sample (g): 329.3 Was As Received MC Preserved: Yes Moisture Content (%): 11.9 Number of Blows:		s o to s s 1 5 7 3	Boring No.: B20-04 Depth (ft): 8.5-10.0' Sample No.: 4 Soil Description: BROWN SILTY CLAY t e s No (Minus No. 40 sieve material, Air dried) <u>e o t e co</u> ete te esc to Liquid Limit Test 1 2 3 M 10 11 12 U 26.20 26.29 27.47 L 24.99 25.03 25.99 T 18.26 18.44 18.61 I 1.2 1.3 1.5 P 6.7 6.6 7.4 O I 18.0 19.1 20.1 N 30 24 19 T					
Plastic Limit Test		1	2	Range		Test Resu	ults	
Tare Number:		19	20	j .		Liquid Limi		19
Wt. of Tare & Wet Sample (g): Wt. of Tare & Dry Sample (g):		33.13 31.39	30.47 29.04			Plastic Lim		13
Weight of Tare (g): 1		18.47 1.7	18.23					6
Weight of Water (g): 1.7 1.4 Weight of Dry Sample (g): 12.9 10.8					Plasticity Index (%):			
Moisture Content (%) Note: The accepta e	a ge of the t	13.5 o ost e	13.2 Co te ts	0.2	0.84	USCS Symb		CL-ML
Flow Curve Plasticity Chart								
20 20 20 20 20 20 20 20 20 20	10 Number of Blow		100	60 50 40 30 20 10 0 0 CL ML		40 60 quid Limit (%)	H MH 80	100
Tested By JV		9/2/20	Chec	ked By	NC		9/3/20	
page 1 of 1 DCN: CTS4B, RE	/. 8, 5/22/18					: ce ce	p eadshee	is t3ts

ASTM D 4318-17

Project No.: 2020-438-00 Lab ID: 2020-438-00	olarORR025 01 01-011 stesteesoto oeteAss	Dep Sar Soil De ot e s No <u>e o t</u> 1 4 26.54 25.08	e co e	3.5-5.0'	Air dried)
Plastic Limit Test	1 2	Range		Test Results	
Tare Number:	15 16	_		Liquid Limit (%):	21
Wt. of Tare & Wet Sample (g): Wt. of Tare & Dry Sample (g):	28.9128.6527.9727.70			Plastic Limit (%):	11
Weight of Tare (g): Weight of Water (g):	19.30 18.56 0.9 0.9			Plasticity Index (%):	10
Weight of Dry Sample (g):	8.7 9.1			USCS Symbol:	CL
Moisture Content (%): Note: The accepta e a ge of the t	10.8 10.4	0.4 ts s 1.12	2	, , , , , , , , , , , , , , , , , , ,	
Flow Curve		13 3 1.12		lasticity Chart	
23		60			
23		50			
			CL	СН	
22 (%		40 (%)			
		30 IIII	مر ام		
22 (Source of the second secon	\otimes	Plasticity Index (%) 02 05 03 05 04 07		МН	
21		ŀ			
20			ML		
1 10 Number of Blo	100 Dws	0 2 CL ML	0 4	10 60 80 10 Limit (%)	100
Tested By JV Date	8/31/20 Che	cked By	NC	Date 9/3/20	
page 1 of 1 DCN: CTS4B, REV. 8, 5/22/18		5		: ce ce p eadsheet	ts t3ts

ASTM D 4318-17

Client: Client Reference: Project No.: Lab ID: Hull & Associates, Inc. Clearview Solar ORR025 2020-438-001 2020-438-001-013 Boring No.: Depth (ft): Sample No.: Color:

B20-06 1.0-2.5' 1 Brown (Mlnus No. 40 sieve material)

Insufficient Minus #40 Material to run Limits

Tested By

Date

Checked By

Date

/DCN: CT-S4C, DATE: 4/27/17, REVISION : 4e

S:\Excel\Excel QA\Spreadsheets\Limit NP.xls

ASTM D 4318-17

As Receiv	e See H red Moisture STM D2216-19 ample (g): mple (g): e (g): C Preserved:	lar ORR02 1 1-016 s test e e o ete A	e so to A <u>ss</u> it 37 .40 .01 .83 .4 2.2 s	Soil te sNo	o teco	6.0-7.5' : 3 :: BROWN SIL (Minus No. 40 s	ieve material sc t o	, Air dried)
Plastic Limit Tes	+	1	2	Range		Test Resu	lte	
Tare Number: Wt. of Tare & Wet Sa Wt. of Tare & Dry Sau Weight of Tare (g): Weight of Water (g): Weight of Dry Sample Moisture Content (%	mple (g): e (g):	17 29.63 28.39 18.49 1.2 9.9 12.5	18 30.49 29.25 19.21 1.2 10.0 12.4	0.2		Liquid Limit Plastic Limi Plasticity In USCS Symb	t (%): dex (%):	17 12 5 CL-ML
Note: The accepta e	e a ge of the t Flow Curve	o ost	e Co te t	SS	0.84 F	lasticity Char	rt	
40 38 36 34 32 30 28 26 24 26 24 20 1		NS	100	60 50 40 30 20 10 0 CL ML	CL CL ML 20	40 60 quid Limit (%)		100

ASTM D 4318-17

As Receiv	e See H red Moisture STM D2216-19 ample (g): mple (g): e (g): C Preserved:	lar ORR02 1 1-017 s test e e o ete A	esoto Ass 11 90 50 .72 .60 .8 9.1 s	Soil te sNo	o teco	13.5-15.0' : 5 : BROWN SIL (Minus No. 40 s	sieve material SC t O	Air dried)
Plastic Limit Tes	st	1	2	Range		Test Resu	ults	
Tare Number: Wt. of Tare & Wet Sa Wt. of Tare & Dry Sa Weight of Tare (g): Weight of Water (g): Weight of Dry Sample Moisture Content (%	mple (g): e (g): 6):	4 29.69 28.43 17.86 1.3 10.6 11.9	5 31.60 30.21 18.56 1.4 11.7 11.9	0.0		Liquid Limi Plastic Lim Plasticity In USCS Symb	it (%): idex (%):	18 12 6 CL-ML
Note: The accepta	e a ge of the t Flow Curve	o ost	e Co te t	S S	0.84 F	Plasticity Cha	rt	
40 38 36 34 32 30 28 26 24 22 20 1		WS	100	60 50 40 30 20 10 0 CL ML	CL ML 20		H MH 80	100

ASTM D 4318-17

Client Reference:CProject No.:2Lab ID:2Note: T e USCS sos e e teSeet e SAs Received	<u>See Hood</u> Moisture Co 1 D2216-19 ple (g): le (g): g):	RR025 steesoto eteAss	E S Soil I te sNo	teco e	3.5-5.0' 2 BROWN SILT	re material, Air dried) t o
Plastic Limit Test	1	2	Range		Test Result	S
Tare Number: Wt. of Tare & Wet Samp Wt. of Tare & Dry Samp Weight of Tare (g): Weight of Water (g): Weight of Dry Sample (g	le (g): 30.2 18.4 2.1	30 29.36 22 27.71 48 18.23 1.7			Liquid Limit (⁴ Plastic Limit (Plasticity Inde USCS Symbol	%): 18 ex (%): 7
Moisture Content (%): Note: The accepta e a	17. geofthet o		0.3 ts s 0	.84		
F	low Curve		<u> </u>		lasticity Chart	
28 27 26 25 24 23 22 21 20 1		100	60 50 40 30 20 40 40 20 50 40 40 20 50 40 40 50 40 50 50 40 50 40 50 50 50 40 50 50 50 50 50 50 50 50 50 50 50 50 50		CH CH 40 60 Juid Limit (%)	MH 80 100
Tested ByJVpage 1 of 1DCN: CTS4B, REV. 8	Date 8/31/ 8, 5/22/18	20 Cheo	cked By	NC	Date 9/3	p eadsheets t 3 t s

ASTM D 4318-17

Client Reference: Clearvie Project No.: 2020-43	88-001-022 t t s test e e s o <u>H o ete A</u> sture Content 5-19 1416 521.98 484.09 145.63 37.9 338.5	tote s	s No e o t e co Liq 38 24.95 23.58	18.5-20.0' b.: 6 n: BROWN LEAI	ve material, Air dried) c t o
Number of Blows:		27	21	16	Т
Plastic Limit Test	1	2 Range	e	Test Result	ts
Tare Number:		41		Liquid Limit ((%): 21
Wt. of Tare & Wet Sample (g): Wt. of Tare & Dry Sample (g):		7.89 6.81		Plastic Limit	(%): 13
Weight of Tare (g): Weight of Water (g):		3.14 I.1		Plasticity Ind	ex (%): 8
Weight of Dry Sample (g):		3.7			
Moisture Content (%): Note: The accepta e a ge of		2.5 0.2	1.12	USCS Symbo	l: CL
Flow Cu		5 16 13 3		Plasticity Chart	
		60			
23		50			
			CL	CH	
© 22		₩ % 40 ×			
9 22					
22 (%) 22 22 22 22 22 22 22 22 22 22 22 22 22		40 (%) 40			MH
> 21					
21		10			
20			ML		
1 1 Number	0 of Blows	100 0 CL ML	20 L	40 60 .iquid Limit (%)	80 100
	0/04/25	o		_	
Tested By JV Date	8/31/20	Checked By	NC	Date 9/3	3/20

ASTM D 4318-17

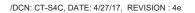
Number of Blows:312317TPlastic Limit Test12RangeTest ResultsTare Number:4243Liquid Limit (%):Wt. of Tare & Wet Sample (g):27.7630.90Plastic Limit (%):Wt. of Tare & Dry Sample (g):26.7029.57Plastic Limit (%):Weight of Tare (g):18.1218.90Plastic Limit (%):Weight of Water (g):1.11.3Plasticity Index (%):Weight of Dry Sample (g):8.610.7USCS Symbol:Moisture Content (%):12.412.5-0.1Note: The accepta e a ge of the t o ost e Co te ts s1.12Plasticity Chart	
Tare Number: 42 43 Wt. of Tare & Wet Sample (g): 27.76 30.90 Wt. of Tare & Dry Sample (g): 26.70 29.57 Weight of Tare (g): 18.12 18.90 Weight of Water (g): 1.1 1.3 Weight of Dry Sample (g): 8.6 10.7 Moisture Content (%): 12.4 12.5 -0.1 Note: The accepta e a ge of the t o ost e Co te ts s 1.12	
Wt. of Tare & Wet Sample (g): 27.76 30.90 Wt. of Tare & Dry Sample (g): 26.70 29.57 Weight of Tare (g): 18.12 18.90 Weight of Water (g): 1.1 1.3 Weight of Dry Sample (g): 8.6 10.7 Moisture Content (%): 12.4 12.5 -0.1 Note: The accepta e a ge of the t o ost e Co te ts s 1.12	
Wt. of Tare & Dry Sample (g):26.7029.57Plastic Limit (%):Weight of Tare (g):18.1218.90Plastic Limit (%):Weight of Water (g):1.11.3Plasticity Index (%):Weight of Dry Sample (g):8.610.7USCS Symbol:Moisture Content (%):12.412.5-0.1Note: The accepta e a ge of the t o ost e Co te ts s1.121.12	20
Weight of Water (g):1.11.3Plasticity Index (%):Weight of Dry Sample (g):8.610.7USCS Symbol:Moisture Content (%):12.412.5-0.1Note: The accepta e a ge of the t o ost e Co te ts s1.12USCS Symbol:	12
Moisture Content (%):12.412.5-0.1USCS Symbol:Note: The acceptate a ge of the too ost e Coste ts s1.12	8
Note: The accepta e a ge of the t o ost e Co te ts s 1.12	CL
	7
22 50 CL / CH	
MH	_
21 MH	
	_
	1
	100
Number of Blows CL ML CL ML	100
Tested By JV Date 8/31/20 Checked By NC Date 9/3/20 page 1 of 1 DCN: CTS4B, REV. 8, 5/22/18 : ce ce p eadsheets	

ASTM D 4318-17

AST Tare Number: Wt. of Tare & Wet Sar Wt. of Tare & Dry San Weight of Tare (g): Weight of Water (g): Weight of Dry Sample Was As Received MC	2020-438-001 2020-438-001 o se t t See H ed Moisture ™ D2216-19 mple (g): mple (g): (g): Preserved:	-024 s test e e o ete A Conten 156 828.3 777.4 304.5 51. 472 Yes	so to ss t 3 54 40 73 1 .7 s	Soil t e s No e o 1 24 25.54 24.42 18.69 1.1 5.7	t e co Liqu 25 27.10 25.81 19.62 1.3 6.2	: BROWN LEA (Minus No. 40 si ete te es Jid Limit Te 3 26 27.98 26.47 19.67 1.5 6.8	eve material, , sc t o st U L T I P O I	Air dried)
Moisture Content (%) Number of Blows:):	10.3	5	19.5 35	20.8 24	22.2 15	N T	
		4	0				-	
Plastic Limit Test		1	2	Range		Test Resu	lts	
Tare Number:		44	45			Liquid Limit	(%):	21
Wt. of Tare & Wet Sar Wt. of Tare & Dry San		29.97 28.62	30.39 28.96			Plastic Limit	t (%):	13
Weight of Tare (g): Weight of Water (g):		18.20 1.4	17.76 1.4			Plasticity Inc	dex (%):	8
Weight of Dry Sample	(g):	10.4	11.2				_	
Moisture Content (%)):	13.0	12.8	0.2		USCS Symb	ol:	CL
Note: The accepta e		o ost e	e Cotet	S S	1.12			
	Flow Curve				Р	lasticity Char	t	
23 22 22 22 22 22 21 21 21 21 21			100	60 50 40 30 20 10 0 0 0		40 60 quid Limit (%)	H MH 80	100
1	Number of Blov					• • • • •		
	Number of Blov			CL ML		,		

ASTM D 4318-17

Client: Client Reference: Project No.: Lab ID: Hull & Associates, Inc. Clearview ORR025 2020-438-001 2020-438-001-025 Boring No.: Depth (ft): Sample No.: Color:


B20-08 43.5-45.0' 11 Brown (MInus No. 40 sieve material)

As Received Water Content

Tare Number	588
Wt. of Tare & Wet Sample (g)	707.13
Wt. of Tare & Dry Sample (g)	651.30
Weight of Tare (g)	308.60
Weight of Water (g)	55.83
Weight of Dry Sample (g)	342.70

Water Content (%) 16.3

NON - PLASTIC MATERIAL

: ce ce peadsheets t N s

Plasticity Index (%):

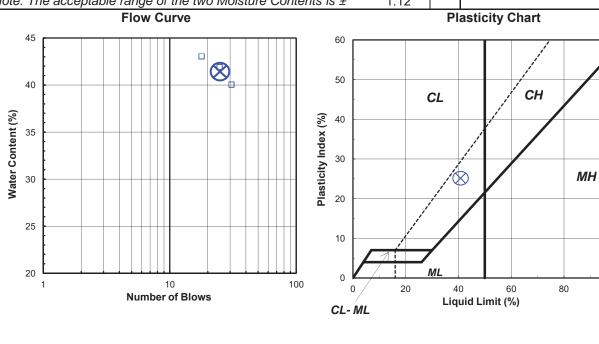
USCS Symbol:

25

CL

100

ATTERBERG LIMITS


ASTM D 4318-17

Client: Client Reference: Project No.: Lab ID:	Hull & Assoc Clearview So 2020-438-00 2020-438-00	olar ORR0)1	25	:	Depth (ft Sample l	lo.: B20-09 :): 3.5-5.0' No.: 2 tion: BROWN LE	AN CLAY	
Note: The USCS sym			-					l, Air dried)
sieve material. See the				graph page fo		-	-	
As Receiv	/ed Moistur	e Contei	nt			iquid Limit To	est	
AS	STM D2216-19			1	2	3	Μ	
Tare Number:		33	88	323	621	237	U	
Wt. of Tare & Wet Sa	ample (g):	27.	05	40.45	39.63	3 38.82	L	
Wt. of Tare & Dry Sa		24.	08	34.73	33.69	32.79	т	
Weight of Tare (g):	. (0)	8.4	40	20.43	19.50) 18.77	I I	
Weight of Water (g):		3.	0	5.7	5.9	6.0	Р	
Weight of Dry Sample	e (g):	15	.7	14.3	14.2	14.0	0	
Was As Received M	C Preserved:	Ye	es				I I	
Moisture Content (%	6):	18	.9	40.0	41.9	43.0	Ν	
Number of Blows:				31	25	18	Т	
Plastic Limit Tes	t	1	2	Range		Test Res	ults	
Tare Number: Wt. of Tare & Wet Sa	ample (a).	333 25.52	307 25.50			Liquid Lim	it (%):	41
Wt. of Tare & Dry Sa Weight of Tare (g):		24.68 19.47	24.64 19.41			Plastic Lim	it (%):	16

Weight of Dry Sample (g):5.25.2Moisture Content (%):16.116.4-0.3Note: The acceptable range of the two Moisture Contents is \pm 1.12

0.8

Weight of Water (g):

0.9

 Tested By
 FS
 Date
 9/16/20
 Checked By
 JLK
 Date
 9/17/20

 page 1 of 1
 DCN: CTS4B, REV. 8, 5/22/18
 S:\Excel\Excel QA\Spreadsheets\Limit 3Pt.xls

544 Braddock Avenue • East Pittsburgh, PA 15112 • Phone (412) 823-7600 • Fax (412) 823-8999 • www.geotechnics.net

ASTM D 4318-17

Client Reference:ClearviewProject No.:2020-438-Lab ID:2020-438-Note: T e USCS so se t	001-028 t s test e e s o H o ete A s s ure Content 0 1570 676.30 639.20 306.34 37.1 332.9	Depth Samp Soil Desc to t e s No <u>e o t e c</u> 1 1 25.19 25 23.76 24 17.06 18 1.4 1 6.7 5 21.3 2	ole No.: 3 ription: BROWN LEA (Minus No. 40 sid	eve material, Air dried) c t o
Plastic Limit Test	1 2	Range	Test Resu	lts
Tare Number: Wt. of Tare & Wet Sample (g): Wt. of Tare & Dry Sample (g): Weight of Tare (g): Weight of Water (g): Weight of Dry Sample (g):	131429.6629.7028.4128.3319.3418.581.31.49.19.8	itango	Liquid Limit Plastic Limit Plasticity Inc	(%): 22 : (%): 14 dex (%): 8
Moisture Content (%): Note: The accepta e a ge of the	13.8 14.1	-0.3 ts s 1.12		
Flow Curv		1.12	Plasticity Chart]
24 23 23 22 21 21 21 21 21 21 21 21 21	100	60 50 40 30 20 0 20 CL ML	CL CF	MH 80 100
Tested ByJVDatepage 1 of 1DCN: CTS4B, REV. 8, 5/22/18	8/31/20 Ch	ecked By N	NC Date 9/ : ce ce	3/20 p eadsheets t 3 t s

ASTM D 4318-17

Client Reference: Clearvie Project No.: 2020-43	8-001-030 t t s test e e s o <u>H o ete A</u> sture Content -19 33 358.77 321.11 15.48 37.7 305.6	to t e s s 1 6 25.9 24.6 18.6 1.3 5.9 21.7 35	Depth (ft): Sample N Soil Descriptions s No <u>e o t e co</u> Lio 2 7 1 26.97 2 25.48 8 18.94 1.5 6.5	o.: 3 on: BROWN LEA	eve material, Air drie c t o	d)
Plastic Limit Test	1	2 Rang	ge	Test Resul	lts	
Tare Number:	9 1	10		Liquid Limit	(%): 23	;
Wt. of Tare & Wet Sample (g): Wt. of Tare & Dry Sample (g):		.21).53		Plastic Limit	(%): 15	
Weight of Tare (g): Weight of Water (g):	18.70 18	8.26 .7		Plasticity Inc		
Weight of Dry Sample (g):		1.3		-		
Moisture Content (%): Note: The accepta e a ge of		4.9 0.0 te ts s	1.12	USCS Symbo	ol: CL	
Flow Cu	rve			Plasticity Chart	:	
24 24 23 23 22 22 21 21 21 20 1 1 1 1 1 1 1 1 1 1 1		60 50 50 (%) 40 30 10 100 0 CL W	CL CL ML 20	40 60 Liquid Limit (%)	MH 80 100	
Tested ByJVDatepage 1 of 1DCN: CTS4B, REV. 8, 5/22/18	9/3/20	Checked By	NC	Date 9/ : ce ce	4/20 p eadsheets t 3	t s

ASTM D 4318-17

Client Reference:Clearview SProject No.:2020-438-0Lab ID:2020-438-0Note: T e USCS so se t	001-032 t stest e e so t H o ete A ss re Content 44 450.97 370.27 15.54 80.7 354.7	De Sa	е со е	3.5-5.0'	
Plastic Limit Test	1 2	Range		Test Results	
Tare Number:	46 47	U		Liquid Limit (%):	32
Wt. of Tare & Wet Sample (g): Wt. of Tare & Dry Sample (g):	27.97 29.36 26.68 27.76			Plastic Limit (%):	17
Weight of Tare (g): Weight of Water (g):	19.03 18.30 1.3 1.6			Plasticity Index (%):	15
Weight of Dry Sample (g):	7.7 9.5				
Moisture Content (%): Note: The accepta e a ge of the Flow Curve		-0.1 ts s 1.1		USCS Symbol:	CL
		60	F		
34		50		СН	4
32 30 26 26		40 (%) 30 20 20 20 20 20 20 20 20 20 20 20 20 20	CL		
28 28		it ³⁰			
26 A A A A A A A A A A A A A A A A A A A		20 astic		M	Η
24		-	$ \otimes $		
22			ML		
1 10 Number of E	100 Slows			40 60 80 Juid Limit (%)	100
Tested By JV Date page 1 of 1 DCN: CTS4B, REV. 8, 5/22/18	8/31/20 Ch	ecked By	NC	Date 9/3/20	eets t3ts

ASTM D 4318-17

ASTM D 4318-17

	e See H ed Moisture TM D2216-19 mple (g): mple (g): e (g): C Preserved:	arORR025 - -034 stesteeso oeteAs	to t	Soil te sNo	teco e	1.0-2.5' : 1 : BROWN LEA (Minus No. 40 s	sieve material, A SC t O	\ir dried)
Plastic Limit Test	t	1 2)	Range		Test Resu	ılts	
Tare Number:		13 14	4	Ŭ		Liquid Limi	t (%):	29
Wt. of Tare & Wet Sa Wt. of Tare & Dry Sar		32.99 31. ⁴ 31.03 29.4				Plastic Limi		17
Weight of Tare (g): Weight of Water (g):	iipie (g).	19.34 18.9 2.0 1.8	58					12
Weight of Dry Sample	e (g):	11.7 10.				Plasticity In		
Moisture Content (% Note: The accepta e	a ge of the t	16.8 16 . o ost e Co		0.3	1.12	USCS Symb		CL
22	Flow Curve				Р	lasticity Chai	rt	
32 30 28 26 24 22 20 1	10 Number of Blov		100	60 50 40 30 20 10 0 CL ML		40 60 quid Limit (%)	H MH	100
Tested By JV page 1 of 1 DCN: CTS4B, RE	Date EV. 8, 5/22/18	9/1/20 (Chec	ked By	NC	Date 9 : ce ce	p eadsheets	t3ts

ASTM D 4318-17

pH OF SOILS

AASHTO T 289-91 (2013)

Client:	Hull & Associates, Inc.
Client Reference:	Clearview Solar ORR025
Project No.:	2020-438-001

Lab ID:	008
Boring No.:	B20-04
Depth (ft):	1.0-5.0'
Sample No.:	2
Drying Tare No.:	9
Testing Tare No.:	P
Temperature (°C):	21.3
pH of Sample:	8.12

Meter Calibration (as used each day)			
Buffer	Meter	Meter	
pН	Reading	Model	
4.00 7.00 10.00	4.00 7.03 10.04	ORION 720A	

Tested By JAM Date 9/17/20 Checked By JLK Date 9/18/20

DCN: CT-S36B DATE 6/5/14 REVISION: 1

S:\Excel\Excel QA\Spreadsheets\pH T289.xls

pH OF SOILS

AASHTO T 289-91 (2013)

Client:	Hull & Associates, Inc.
Client Reference:	Clearview Solar ORR025
Project No.:	2020-438-001

Lab ID:	027
Boring No.:	B20-09
Depth (ft):	1.0-5.0'
Sample No.:	2
Drying Tare No.:	22
Testing Tare No.:	G
Temperature (°C):	21.3
pH of Sample:	7.55

Meter Calibration (as used each day)				
Buffer	Meter	Meter		
рН	Reading	Model		
4.00 7.00 10.00	4.00 7.03 10.04	ORION 720A		

Tested By JAM Date 9/17/20 Checked By JLK Date 9/18/20

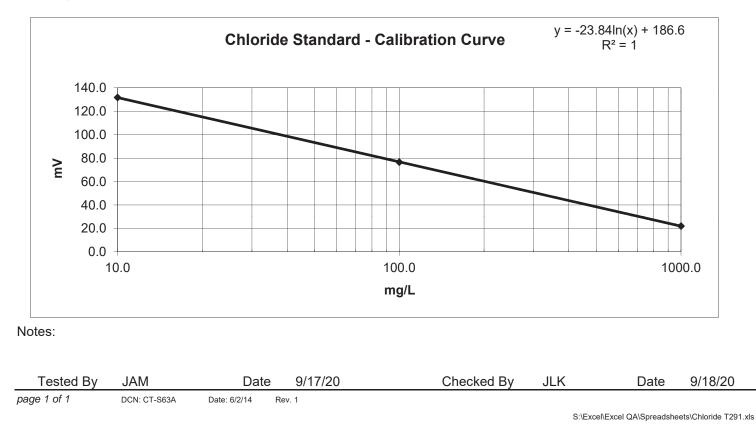
DCN: CT-S36B DATE 6/5/14 REVISION: 1

S:\Excel\Excel QA\Spreadsheets\pH T289.xls

CHLORIDE ION CONTENT IN SOILS

AASHTO T 291 - 94 (2004) (Method B)

Client:Hull & Associates, Inc.Boring No.:B20-04Client Reference:Clearview Solar ORR025Depth (ft):1.0-5.0'Project No.:2020-438-001Sample No.:2Lab ID:2020-438-001-008Description:Brown Clay(-# 10 Sieve material)


CHLORIDE STANDARD: CALIBRATION CURVE

STANDARI	0	M <u>ILLIVOL</u> TS (mV)
10.0	mg/L	131.8
100.0	mg/L	76.6
1000.0	mg/L	22.0

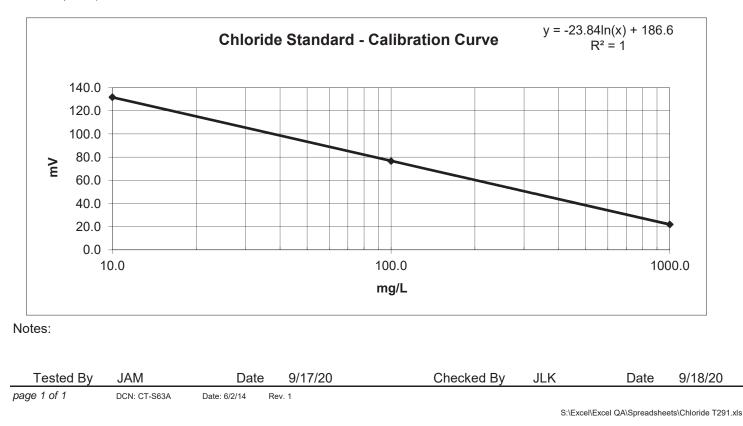
MEASUREMENT OF CHLORIDES

Sample Weight (g):	100.0	CONCENTRATION	CONCENTRATION
Water added to Sample (ml):	100.0	(mg/L)	(mg/kg)
Size of Sample Aliquot (ml):	25.0		
Sample Reading (mV):	128.1	11.63	11.63

Notes: 1) Samples and standards were buffered by the addition of an equal volume of the 0.2 M KNO₃ solution (1:1 volume). 2) Samples were dried for a minimum of 12 hours at $110^{+}/_{-}5^{\circ}C$.

CHLORIDE ION CONTENT IN SOILS

AASHTO T 291 - 94 (2004) (Method B)


CHLORIDE STANDARD: CALIBRATION CURVE

<u>STANDAR</u>	D	M <u>ILLIVOL</u> TS (mV)
10.0	mg/L	131.8
100.0	mg/L	76.6
1000.0	mg/L	22.0

MEASUREMENT OF CHLORIDES

Sample Weight (g): 100.0	CONCENTRATION	CONCENTRATION
Water added to Sample (ml): 100.0	(mg/L)	(mg/kg)
Size of Sample Aliquot (ml): 25.0		
Sample Reading (mV): 109.3	25.59	25.59

Notes: 1) Samples and standards were buffered by the addition of an equal volume of the 0.2 M KNO₃ solution (1:1 volume). 2) Samples were dried for a minimum of 12 hours at $110^{+}/_{-}5^{\circ}C$.

Water-Soluble Sulfate Ion Content in Soil AASHTO T 290-95 (2012)

	Client Reference:Clearview Solar ORR025Project No.:2020-438-001			Boring No.: B20-04 Depth (ft): 1.0-5.0' Sample No.: 2 Soil Description: Brown Clay				
	Sul	fate Standar	d - Calibrati	ion Curve S	Spectrophotor	neter Read	ings	
0.0	4.0	10.0	Sulfate Ion 20.0	Concentra 30.0	ations (mg/L) 40.0	60.0	80.0	100.0
Underrange	Underrange		Spectropho 25	tometer Re 44	adings (FAU) 71	139	210	287
	Measurement of Barium Chloride Turbidity (Sample contains 5.0 mL NaCl solution and 0.3 g BaCl ₂ ·2H ₂ O)							
Size of S Sa	Ided to Sa Sample Al mple Read Samp	Weight (g): imple (mL): iquot (mL): ding (FAU): ole Diluted: Added (ml):	100.0 300.0 50.0 18 No		Weight of	Ta Fare & Wet 5 Tare & Dry 5 Weight Weight of Sight of Dry 5	Sample (g): of Tare (g): f Water (g):	Content 903 210.41 210.30 109.33 0.11 100.97 0.11
Sample Sulfate Ion Concentration:18.73Sample Sulfate Ion Content:56.2Sample Sulfate Ion Content:56.3			56.2	mg/L SO₄ (ppm) mg/Kg SO₄ (not corrected for moisture) mg/Kg SO4 (corrected for moisture)				
400 350 300 250 200 150	0 0 0 0 0		HTO T 29 48x - 41.093	0-95 Cali	bration Cur	ve		

50 0 20.0 40.0 80.0 0.0 60.0 100.0 mg/L SO₄ (ppm) Tested by: JAM Date: 9/17/20 Checked by: JLK Date: 9/18/20 DCN: CT-S87 DATE: 3/5/2020 REV: 1 S:\Excel\Excel QA\Spreadsheets\Sulfate T290

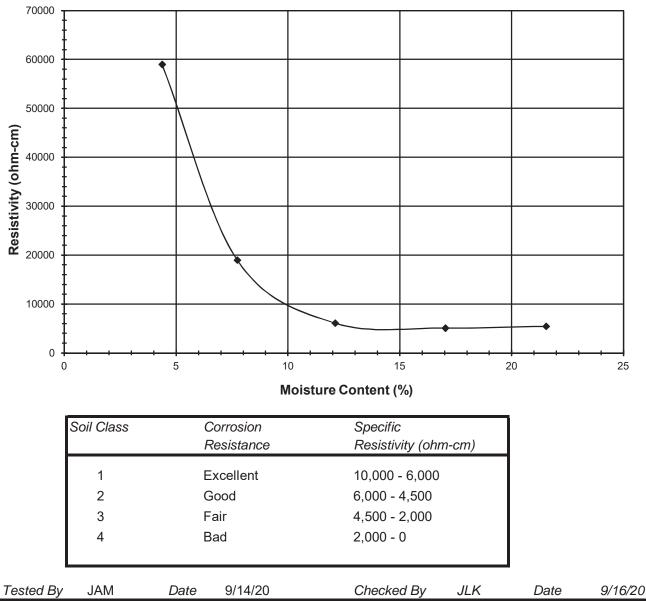
100

Water-Soluble Sulfate Ion Content in Soil AASHTO T 290-95 (2012)

Client: Client Refer Project No.: Lab ID:				Boring No.: B20-09 Depth (ft): 1.0-5.0' Sample No.: 2 Soil Description: Brown Clay				
	Sul	fate Standar	d - Calibrati	ion Curve S	Spectrophoton	neter Read	ings	
0.0	4.0	10.0	Sulfate Ion 20.0	Concentra 30.0	itions (mg/L) 40.0	60.0	80.0	100.0
Underrange	Underrange		Spectropho 25	tometer Re 44	adings (FAU) 71	139	210	287
Measurement of Barium Chloride Turbidity (Sample contains 5.0 mL NaCl solution and 0.3 g BaCl ₂ ·2H ₂ O)								
Size of S Sar	ded to Sa Sample Al mple Read Samp	Weight (g): mple (mL): iquot (mL): ding (FAU): ole Diluted: Added (ml):	100.0 300.0 50.0 24 No		-	Ta are & Wet S Tare & Dry S Weight Weight of ight of Dry S	Sample (g): of Tare (g): Water (g):	<u>544</u> 183.11 182.94 82.65 0.17 100.29 0.17
Sample Sulfate Ion Concentration:20.63Sample Sulfate Ion Content:61.9Sample Sulfate Ion Content:62.0			mg/L SO₄ (ppm) mg/Kg SO₄ (not corrected for moisture) mg/Kg SO4 (corrected for moisture)					
400 350 300 250 200 150)		HTO T 29 48x - 41.093	0-95 Cali	bration Cur	ve		

100 50 0 20.0 40.0 0.0 60.0 80.0 100.0 mg/L SO₄ (ppm) Tested by: JAM Date: 9/17/20 Checked by: JLK Date: 9/18/20 DCN: CT-S87 DATE: 3/5/2020 REV: 1 S:\Excel\Excel QA\Spreadsheets\Sulfate T290

Minimum Resistivity


AASHTO T288-12

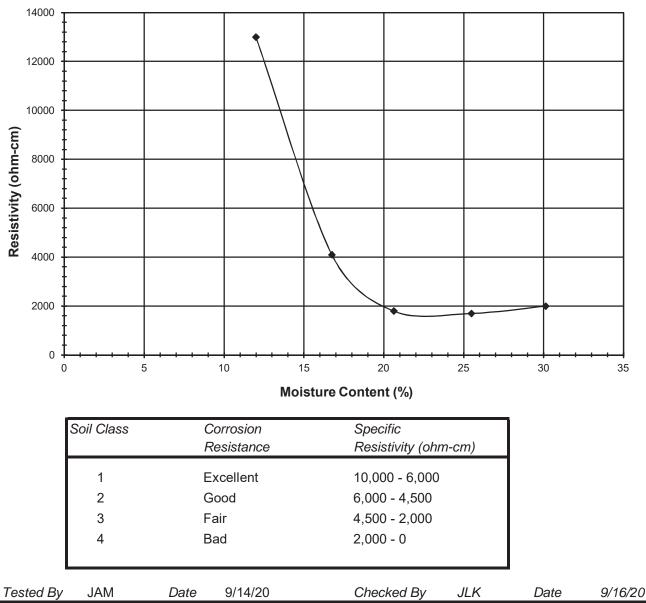
S:\Excel\Excel\Spreadsheets\Resistivity 4Pin.xls

Client: Client Reference: Project No.: Lab ID:	Hull & Associates, Inc. Clearview Solar ORR025 2020-438-001 2020-438-001-008			Boring No.: B20-04 Depth (ft): 1.0-5.0' Sample No.: 2 Visual Description: Brown Clay (- #10 Sieve material)			
Tare No.:		241	270	394	256	267	
Tare & Wet Specimen (g):		29.22	20.39	23.37	33.99	32.76	
Tare & Dry Specimen (g):		28.77	19.76	22.36	32.60	30.80	
Tare Weight (g):		18.48	11.61	14.02	24.44	21.70	
Moisture Content ('		4.4	7.7	12.1	17.0	21.5	
Resistance (ohm):		59000	19000	6100	5100	5450	
Resistivity (ohm-cn		59000	19000	6100	5100	5450	

Note: The ratio of Miller Box area versus distance between electrodes is equal to 1.

DCN: CT-S56, Date: 4/23/04, Revision: 1

Minimum Resistivity


AASHTO T288-12

S:\Excel\Excel\Spreadsheets\Resistivity 4Pin.xls

Client: Client Reference: Project No.: Lab ID:	Hull & Associates, Inc. Clearview Solar ORR025 2020-438-001 2020-438-001-027			Boring No.: B20-09 Depth (ft): 1.0-2.5' & 3.5-5.0' Sample No.: 1 & 2 Visual Description: Brown Clay (- #10 Sieve material)			
Tare No.:		228	290	158	511	139	
Tare & Wet Specime		26.83	27.89	25.74	28.23	55.22	
Tare & Dry Specime		25.96	26.79	24.33	26.22	46.99	
Tare Weight (g):		18.70	20.22	17.49	18.33	19.67	
Moisture Content (%		12.0	16.7	20.6	25.5	30.1	
Resistance (ohm):		13000	4100	1800	1700	2000	
Resistivity (ohm-cn		13000	4100	1800	1700	2000	

Note: The ratio of Miller Box area versus distance between electrodes is equal to 1.

DCN: CT-S56, Date: 4/23/04, Revision: 1

This foregoing document was electronically filed with the Public Utilities

Commission of Ohio Docketing Information System on

12/17/2020 6:40:56 PM

in

Case No(s). 20-1362-EL-BGN

Summary: Application - Part 18 of 31 Ex. N Preliminary Geotechnical Exploration Report electronically filed by Christine M.T. Pirik on behalf of Clearview Solar I, LLC