BEFORE THE OHIO POWER SITING BOARD

In the Matter of the Application of Firelands Wind,)	
LLC for a Certificate of Environmental Compatibility)	
and Public Need to Construct a Wind-Powered)	Case No: 18-1607-EL-BGN
Electric Generation Facility in Huron and Erie)	
Counties, Ohio.)	

DIRECT TESTIMONY OF

Alfred Williams Geotechnical Department Manager Beyond Engineering & Testing, LLC

on behalf of Firelands Wind, LLC

September 11, 2020

/s/ Christine M.T. Pirik
Christine M.T. Pirik (0029759)
(Counsel of Record)
Terrence O'Donnell (0074213)
William Vorys (0093479)
Jonathan R. Secrest (0075445)
Madeline Fleisher (0091862)
DICKINSON WRIGHT PLLC
150 East Gay Street, Suite 2400
Columbus, Ohio 43215
(614) 591-5461

James M. Lynch (PHV 21869-2020) Adam N. Tabor (PHV 21870-2020) K&L Gates LLP 925 Fourth Avenue, Ste. 2900 Seattle, Washington 98104 (206) 370-7652

1 1. Please state your name, current title, and business address.

2 My name is Alfred Williams, Geotechnical Engineer, 3801 Doris Lane, Round Rock, 3 Texas 78644

2. Please summarize your educational background and professional experience.

I received my Bachelor of Science in Civil Engineering from the Georgia Institute of Technology. I worked at RRC Power & Energy ("RRC"), LLC from April 2012 to February 2020. Currently, I am a Geotechnical Department Manager at Beyond Engineering & Testing, LLC. Beyond Engineering & Testing, LLC is an engineering consultant firm that provides geotechnical engineering and laboratory testing services to RRC. My duties, as a Geotechnical Engineer while at RRC, mainly consisted of managing crew/field personnel to conduct subsurface explorations, assigning and assessing laboratory tests to characterize properties of soil and bedrock, assess geohazards and groundwater conditions that pose a risk to structures, bearing capacity and settlement analysis of shallow foundations for wind turbine design and bearing capacity and settlement analysis of shallow foundations and skin friction and axial capacity of deep foundations at ancillary structure locations.

I have worked on numerous utility-scale wind project throughout the United States. Of these projects, many of them contained geohazards, such as flooding, expansive/collapsible soils, seismic activity or development of karst features, which required analysis to ensure the stability of the proposed structure. I received my initial Professional Engineer License in the State of Texas, and I am currently licensed in the states of Nebraska, Ohio, Pennsylvania, South Dakota, Texas, and Wyoming. My resume is attached as Attachment AW-1.

3. On whose behalf are you offering testimony?

I am testifying on behalf of the Applicant in the case, Firelands Wind, LLC ("Applicant" or "Firelands"), which is seeking to develop the proposed Emerson Creek Wind Farm ("Project").

4. What is the purpose of your testimony?

The purpose of my testimony is to describe the information presented in the Groundwater, Hydrogeological, and Geotechnical Report, which was prepared by Hull & Associates, Inc. ("Hull Report"), and is Exhibit E to the Application for Certificate of Environmental Compatibility and Public Need filed on January 31, 2019 ("Application"). In addition, I am testifying with regard to the Geotechnical Report dated April 29, 2020 that was prepared by RRC ("RRC Report") and is Attachment AW-2 to my testimony. I am prepared to testify generally regarding groundwater, geologic, geotechnical conditions and construction recommendations as they may pertain to the Project. My testimony, together with the other witnesses for Firelands testifying in this case, supports the Ohio Power Siting Board's ("Board's") adoption of the Joint Stipulation and Recommendation ("Stipulation"), which was filed in this docket on September 11, 2020, and is being offered in this proceeding as Joint Exhibit 1.

5. Please describe the history of your involvement with the Project.

RRC was authorized by Apex Clean Energy Management, LLC ("Apex") to perform a geotechnical subsurface exploration and geotechnical engineering evaluation for the Project. The purpose of the geotechnical engineering study was to explore and evaluate subsurface conditions at the proposed building sites, geological/geotechnical risk hazard assessments and develop geotechnical design and construction recommendations for the Project. The subsurface exploration program consisted of geotechnical borings at most of the proposed wind turbine sites, temporary standpipe piezometers to obtain periodic groundwater levels and laboratory testing program to characterize properties of soil and bedrock encountered at the Project site.

6. Please describe the requirements set forth in the rule of the Board and the documentation provided by Firelands in response to the requirements.

- In accordance with Ohio Administrative Code ("O.A.C.") Rule 4906-04-08, Firelands submitted the following information:
 - An evaluation of the impact to public and private water supplies due to construction and operation of the proposed facility.

- An evaluation of the impact to public and private water supplies due to pollution control
 equipment failures.
 - Existing maps of aquifers, water wells, and drinking water source protection areas that may be directly affected by the proposed facility.
 - How construction and operation of the facility will comply with any drinking water source protection plans near the Project area.
 - An analysis of the prospects of floods for the area, including the probability of occurrences and likely consequences of various flood stages, and plans to mitigate any likely adverse consequences.
 - A description of the suitability of the site geology and plans to remedy any inadequacies.
 - A description of the suitability of soil for grading, compaction, and drainage, and plans to remedy any inadequacies and restore the soils during post-construction reclamation.
 - A description of plans for the test borings, including closure plans for such borings and a timeline for providing the test boring logs and the following information to the Board:

 (i) subsurface soil properties;
 (ii) static water level;
 (iii) rock quality description;
 (iv) percent recovery;
 and
 (v) depth and description of bedrock contact.

The Hull Report and the RRC Report address each of these requirements set forth within the Board's rules.

7. What is the role of you and your firm in regards to the RRC Report?

RRC was authorized by Apex to perform a geotechnical study including a subsurface exploration program and provide geotechnical design and construction recommendations at the Project. The subsurface exploration program consisted of geotechnical borings at each of the proposed wind turbine sites, with the exception of Turbine Nos. 2, 5, 38, 55, 84, 85, and 86. Temporary standpipe pipe piezometers were also installed at turbine sites, in order to facilitate periodic groundwater measurements. The RRC Report provides geotechnical design and construction recommendations including,

• A description of the suitability of the site geology and plans to remedy any inadequacies.

- A description of the suitability of soil for grading, compaction, and drainage, and plans to remedy any inadequacies and restore the soils during post-construction reclamation.
- A description of plans for the test borings, including closure plans for such borings and a timeline for providing the test boring logs and the following information to the Board:
 (i) subsurface soil properties; (ii) static water level; (iii) rock quality description; (iv) percent recovery; and (v) depth and description of bedrock contact.

8. What work have you performed on this Project?

I oversaw the subsurface exploration and geotechnical engineering evaluation for the Project. I reviewed the findings and results of the investigations and developed geotechnical design and construction recommendations for the Project.

9. Please generally summarize the findings of the RRC Report.

Based on the findings and results of the subsurface exploration, the site is suitable for the proposed construction. Soils were encountered in each of the geotechnical borings and extended to the top of bedrock, which was encountered at depths in the range of 2 to 49 feet below existing site grade. Bedrock at the Project site mainly consisted of shale and limestone from the Ohio Shale, Prout Limestone, Delaware Limestone, and Columbus Limestone formations.

Portions of the Project lie within areas where there may be a potential for karst features to develop. Karst is a type of topography that forms over soluble bedrock such as limestone, dolomite or evaporites, such as gypsum. The development of karst is a process due to the movement of water. Water percolates through soil towards soluble bedrock and becomes more acidic as is absorbs more carbon dioxide, which leads to a carbonic acid solution. Eventually water will encounter fractures and fissures which allow water to move through the bedrock mass. Due to the increased acidity of the water, a chemical reaction occurs between the water and carbonate bedrock, which leads to dissolution of the carbonate bedrock, specifically calcium carbonate. This dissolution of carbonate bedrock leads to the development of fissures, tubes and eventually caves.

Overtime, the dissolution of carbonate bedrock may create a complex network of conduits for water movement and storage. Surface water will continue to infiltrate through the soil above the bedrock mass, and as the water moves through the soil sediment may be transported into this network of conduits. Overtime, as more of the soil sediment is transported into the bedrock mass, cavities may form within the soil mass at or above the bedrock interface or channels may form within the soil mass. Since soils have very little tensile strength, eventually the soil mass above the cavity will experience settlement or a potential collapse, depending on the size of the void. This land subsidence when caused by development of karst is typically called sinkholes. Areas that are prone to karst development can be identified by the presence of sinkholes, throats, and springs. From an engineering standpoint it is important to ensure buildings or structures do not experience settlements that may lead to failure or serviceability concerns.

Most of the proposed turbine sites are located in the Ohio Shale Formation, which is not prone to karst development. However, in the northwestern portion of the Project site underlying bedrock formations consist of limestone, such as the Prout Limestone, Delaware Limestone and Columbus Limestone formations. Limestone is a type of carbonate bedrock and may be susceptible to karst features such as voids and other solution cavities. At the Project site, the Columbus Limestone is known for its susceptibility to karst development. The aforementioned karst formations occurring within 20 feet below the ground surface have a high probability of occurring. These formations when occurring at 20 to 100 feet below the ground surface, depending on size and depth, the probability can be considered as low to moderate. The probability of occurring can be reduced by performing remedial measures such as bedrock grouting.

Turbine sites that are located within the Ohio Shale Formation are found to have a low probability to karst development. Turbine sites that are located within the Prout Limestone, Delaware Limestone, and Columbus Limestone formations have a low to high risk of karst development. Based on the geotechnical investigations, potential solution cavities within bedrock were encountered during the drilling activities, such as Turbine Nos. 24 and 42. In addition, based on available geologic maps and literature, Turbine Nos. 73 and 74 are

near mapped karst features. At sites where the karst hazard assessment indicated a moderate to high probability associated with karst development, RRC recommends additional testing/investigations, such as Electrical Imaging or Void Assessment. At sites where karst features are identified, RRC recommends bedrock grouting to remediate the karst features encountered in limestone bedrock formations. The purpose of bedrock grouting is to reduce the movement of water in soluble bedrock, preventing possible land subsidence to occur. Since sites are situated at higher elevations, compared to surrounding land, bedrock grouting is not anticipated to induce flooding of surrounding areas. It is RRC's opinion that once the remedial measures are performed the risk of karst development is anticipated to be low.

10. What degree of confidence do you have in the RRC Report?

I have a high degree of scientific certainty in the findings and recommendations in the RRC Report. This conclusion stems from:

- 1. The detailed subsurface exploration program completed at the project site, and review of the Logs of Boring and field and laboratory test results obtained from the geotechnical investigations.
- 2. Review of available geologic maps and literature within the Project area.
- 3. RRC's experience with design and construction of wind projects with similar geological conditions of karst development and geotechnical conditions in this region and across the United States. RRC has implemented void assessment and mitigation measures in other wind projects with successful outcomes.

11. Please explain what, if any, additional testing needs to be performed prior to construction.

Based on review of Logs of Boring and geologic maps and literature, a moderate to high probability of karst development was identified at Turbine Nos. 24, 25, 26, 43, 73, 74 and 75. At these sites, RRC recommends to perform additional subsurface investigations, such as Electrical Imaging, or remediate potential solution cavities encountered during drilling activities with additional void assessments and grouting. The purpose of Electrical Imaging is to assess the presence of solution cavities within the bedrock mass, which would

1		indicate a potential of karst development. If results of the Electrical Imaging indicate there
2		is not a presence of solution cavities or karst development, the probability of karst
3		development can be considered low and remedial measures such as bedrock grouting will
4		not be required. RRC's opinion that once the remedial measures are performed the
5		probability of karst development is anticipated to be low.
6		
7	12.	Do the Board's rules require that a final geotechnical report be prepared before
8		construction begins?
9		Yes. O.A.C. Rule 4906-4-09(A)(2)(b)(i) requires that Firelands submit a fully detailed
10		geotechnical exploration and evaluation 60 days before the preconstruction conference.
11		This final report will address whether proposed turbine locations are located above karst
12		formations and whether potential mitigation measures are recommended.
13		
14	13.	Have you reviewed the Stipulation that was filed in this docket on September 11,
15		2020?
16		Yes.
17		
18	14.	Is it your opinion that Condition 2 laid out in the Stipulation requires the Applicant
19		to comply with O.A.C. Rule 4906-4-09(A)(2)(b)(i)?
20		Yes.
21		
22	15.	Are your opinions and conclusions in your testimony made with a reasonable degree
23		of scientific certainty?
24		Yes.
25		
26	16.	Does this conclude your testimony?
27		Yes. However, I reserve the right to update this testimony to respond to any further
28		testimony, reports, and/or evidence submitted in this case.

CERTIFICATE OF SERVICE

The Ohio Power Siting Board's e-filing system will electronically serve notice of the filing of this document on the parties referenced in the service list of the docket card who have electronically subscribed to these cases. In addition, the undersigned certifies that a copy of the foregoing document is also being served upon the persons below this 11th day of September, 2020.

/s/ Christine M.T. Pirik
Christine M.T. Pirik (0029759)

Counsel/Intervenors via email:

werner.margard@ohioattorneygeneral.gov brett.kravitz@ohioattornevgeneral.gov katherine.walker@ohioattorneygeneral.gov norwichtwp1339@gmail.com richardwiles@willard-oh.com rstrickler@huroncountyohprosecutor.com jstephens@huroncountyohprosecutor.com ggross@eriecounty.oh.gov heather@hnattys.com jvankley@vankleywalker.com pileppla@leplaw.com michael.gerrard@arnoldporter.com hwa2108@columbia.edu missyeb3@gmail.com baanc@aol.com r ladd@frontier.com

Administrative Law Judges via email:

jay.agranoff@puco.ohio.gov michael.williams@puco.ohio.gov

4816-1289-0546 v7 [59714-18]

Attachment AW-1

Resume

Alfred Williams Geotechnical Group Manager

Education

 Bachelor of Science, Civil Engineering, Georgia Institute of Technology, Atlanta, GA

PE Registration

- Minnesota
- Nebraska
- Ohio
- Pennsylvania
- South Carolina
- South Dakota
- Texas
- Wyoming

Alfred Williams has over 7 years of experience in geotechnical engineering and project management involving wind and solar energy projects. He has been active for the past 7 years in the wind industry providing geotechnical recommendations for the design of wind turbine generator and ancillary structure foundations. His responsibilities include engineering analysis, project management of numerous projects and developing proposals for geotechnical engineering services of wind energy projects. He is proficient in field site investigations, geotechnical site characterization, bearing capacity and settlement analysis of shallow and deep foundations and pavement analysis.

Project Experience

- <u>Turtle Creek Wind Project St. Ansgar, IA:</u> This 193 MW project consisted of construction of 56 wind turbine generators. Duties included managing field subsurface exploration, performing subsurface characterization, analyzing field and laboratory data, performing risk assessment due to voids and karst formations and recommending mitigation measures, generating geotechnical calculations and writing the geotechnical report.
- Pegasus Wind Project Caro, MI: This 150 MW project consisted of construction of 60 wind turbine generators. Duties included managing field subsurface exploration, reviewing and interpreting CPT data for bearing capacity and settlement analyses of wind turbine foundations, providing technical input of selection of confirmation SPT borings and MASW seismic survey locations, and writing the geotechnical report.
- Blue Summit II Wind Project Vernon, TX: This 100 MW project consisted of construction of 41 wind turbine generators. Duties included managing field subsurface exploration, performing subsurface characterization, analysis of field and laboratory data, generating geotechnical calculations and writing geotechnical reports.
- Minco IV and V Wind Projects Hinton, OK: This 350 MW project consisted of construction of 172 wind turbine generators. Duties included managing field subsurface exploration, performing subsurface characterization, analysis of field and laboratory data, generating geotechnical calculations and writing geotechnical reports.

Alfred WilliamsGeotechnical Group Manager

Industry Tenure

Beyond Engineering and Testing: Geotechnical Group Manager (2020-Current)

RRC Power & Energy: Geotechnical Engineer (2012-2020)

RRC Power & Energy: Construction Materials Testing Technician (2012-2013)

Attachment AW-2

April 2020 Geotechnical Report

Geotechnical Report

EMERSON CREEK WIND PROJECT ERIE AND HURON COUNTIES, OHIO

Prepared By:

3801 Doris Lane Round Rock, TX 78664

512.992.2087 | www.RRCcompanies.com

April 29, 2020 RRC Project No. MD1901007

3801 Doris Lane Round Rock, TX 78664 512.992.2087

April 29, 2020

Apex Clean Energy Management, LLC 310 Fourth Street NE, Suite 200 Charlottesville, VA 22902

Attn: Mr. Dylan Fraser

Re: Geotechnical Report

Emerson Creek Wind Project Erie and Huron Counties, Ohio RRC Project No. MD1901007

Dear Mr. Fraser:

RRC Power & Energy, LLC (RRC) has completed the authorized subsurface exploration and geotechnical engineering evaluation for the proposed Emerson Creek Wind Project. The purpose of the geotechnical engineering study was to explore and evaluate subsurface conditions at selected locations across the site, and to develop geotechnical design and construction recommendations for the project. The attached report contains:

- A description of our findings from the field exploration and laboratory testing program;
- Our engineering interpretation of the results with respect to the project characteristics;
 and
- Our geotechnical site development and foundation design recommendations for the planned project.

We appreciate the opportunity to be of service to Apex Clean Energy Management, LLC. We are prepared to provide construction materials testing services during the construction phase of the project. Please call us if you have any questions concerning this report or any of our services.

Respectfully submitted,

RRC Power & Energy, LLC (RRC)

Yuqing "Jeffrey" Liu, EIT Geotechnical Engineer

GEOTECHNICAL REPORT

EMERSON CREEK WIND PROJECT ERIE AND HURON COUNTIES, OHIO

prepared for

APEX CLEAN ENERGY MANAGEMENT, LLC CHARLOTTESVILLE, VIRGINIA

Revision	Date	Description		
	8/2/2019	Draft V1		
	2/7/2020	Draft V2		
0	3/6/2020	Final Submittal		
1	4/29/2020	Revision.1:		

Prepared by

Yuqing "Jeffrey" Liu, EIT Geotechnical Engineer Reviewed by

Alfred Williams, P.E. (OH) Geotechnical Engineer

4/29/2020

minimum minimum

Checked by

Rohit Rai Pant, Ph.D., P.E. (LA) Geotechnical Group Manager

April 29, 2020 Project No. MD1901007

UNAUTHORIZED USE OR COPYING OF THIS DOCUMENT IS STRICTLY PROHIBITED BY ANYONE OTHER THAN THE CLIENT FOR THE SPECIFIC PROJECT.

TABLE OF CONTENTS

		P	age
1.0	INTRO	DDUCTION	1
		OSED CONSTRUCTION	
3.0		EXPLORATION	
	3.1	Field Exploration and Testing	
	3.2	Laboratory Analysis	
4.0	SUBS	URFACE CONDITIONS	5
	4.1	Geology	
	4.2	Subsurface Stratigraphy	
	4.3	Laboratory Test Results	
	4.4	Groundwater Conditions	
	4.5	Geophysical Properties	
	4.6	Rho Thermal Resistivity Surveys	
	4.7	Preliminary Geohazard Assessment	
5.0	GEOT	ECHNICAL RECOMMENDATIONS	.14
	5.1	General	.14
	5.2	Turbine Gravity Foundation System	
	5.3	Substation and O&M Building Shallow Foundation System	
	5.4	Substation Deep Foundation Systems	
	5.5	Lateral Earth Pressures	
	5.6	Seismic Considerations	
6.0	FOUN	DATION CONSTRUCTION CRITERIA	.23
	6.1	Site Preparation	.23
	6.2	On-Site Excavated Materials as Overburden Backfill	.23
	6.3	Structural Fill Specifications	
	6.4	Reuse of On-site Materials as Structural Fill Below Foundation	.25
	6.5	Shallow Foundation Construction	
	6.6	Drilled Pier Foundation Construction	
	6.7	Open Excavations	
	6.8	Corrosivity	
	6.9	Drainage and Construction Dewatering	
	6.10	Foundation Excavation and Rippability	
	6.11	Access Roadways and Crane Pads Design and Construction Recommendations .	
	6.12	Foundation Grout and Compaction Injection	
	6.13	Permanent Slope Configuration	
7.0	LIMIT	ATIONS	.34
2 A	DEEE	PENCES	35

APPENDICES

APPENDIX A

Table A1: Summary of Foundation Design Net Allowable Bearing Pressure and Design Groundwater Recommendations

Table A2: Summary of Geographic Coordinates and Subsurface Exploration

Table A3: Well Log Information Obtained from the Ohio Department of Natural Resources

Table A4: Summary of Utility Locate Tickets (Ohio 811)

Figure 1: Site Location Map

Figure 2: WTG Boring Locations on a Topographic Map

Figure 3: Substation and O&M Building Boring Locations Map

Figure 4: MASW Survey Locations Map

Figure 5: Electrical Resistivity (ER) Testing Locations Map

Figure 6: Thermal Resistivity (TR) Testing Locations Map

Figure 7: Site Vicinity Geologic Map

Figure 8: Site Vicinity Bedrock Geologic Map

Figure 9: Site Vicinity Karst Map

Figure 10: Well Locations Obtained from the Ohio Department of Natural Resources

Figure 11: Weighted Average Shear Wave Velocity at Selected WTG Sites

Figure 12: Recommended Electrical Imaging Testing at Selected WTG Sites

Figure 13: Recommended Void Assessment and Grouting at Selected WTG Sites

Boring Log Key Logs of Boring

APPENDIX B

Maximum Dry Density - Optimum Moisture Content Relationships - ASTM D698

Unconsolidated-Undrained Triaxial Test Results – ASTM D2850

Uniaxial Compressive Strength Test Results – ASTM D7012

Uniaxial Compressive Strength of Intact Rock Cores Test Results – ASTM D7012

One-Dimensional Consolidation Test Results – ASTM D2435

Minimum Soil Box Resistivity and pH Test Results - ASTM G51 and ASTM G187

Chloride and Sulfate Test Results – AASHTO T291 and ASTM C1580

Laboratory CBR (California Bearing Ratio) Test Results – ASTM D1883

Grain Size Distribution Test Results - ASTM D6913

Summary of Laboratory Results

APPENDIX C

MASW Survey Results
Electrical Resistivity Survey Results
Thermal Resistivity Test Report

APPENDIX D

Deep Foundation Recommendations for Substation

GEOTECHNICAL REPORT

EMERSON CREEK WIND PROJECT ERIE AND HURON COUNTIES, OHIO

1.0 INTRODUCTION

RRC has completed the authorized final subsurface exploration and geotechnical engineering evaluation for the proposed Emerson Creek Wind Project. The site is located within Erie and Huron Counties near Bellevue, Ohio. The approximate location of the project site is shown in Figure 1, Site Location Map, within Appendix A.

The purpose of this investigation was to:

- Explore subsurface soil, bedrock and groundwater conditions;
- Conduct field and laboratory testing to characterize the subsurface soil and bedrock properties at selected locations across the site; and
- Provide geotechnical engineering parameters for the design of foundation systems and access roadways.

The recommendations contained in this report are based upon results of field and laboratory testing, engineering analyses, experience with similar soil and bedrock conditions, and our understanding of the proposed project.

As part of the scope of work for the final phase site investigation, RRC performed 1-D Multi-Channel Analysis of Surface Waves (MASW) and Electrical Resistivity surveys at designated locations across the project site. RRC collected shallow soil samples from selected locations within the project site and transported the samples to RRC's laboratory and Geotherm, USA to obtain the relationships of the maximum dry density with the optimum moisture content, California Bearing Ratio (CBR) testing and thermal resistivity testing.

Our recommendations contained herein are also based on in-situ geophysical survey results, interpretation of published geological maps, and groundwater level data collected from published well logs.

2.0 PROPOSED CONSTRUCTION

We understand this phase of this project will consist of the construction of approximately 300 MW of wind power provided by about 52 to 71 unspecified wind turbine generators (WTG's) and associated facilities, which will be selected from the locations included within the turbine layout used in this study. Anticipated unfactored loads for WTG's are not available during the preparation of this geotechnical report.

The WTG's are anticipated to be supported on gravity foundation systems with an anticipated embedment depth of about 12 feet below the finished grade. We have assumed the finished turbine pad grade is at or slightly above the existing ground surface. Private-access roadways will most likely be surfaced with imported road-base materials from nearby quarry pits to support construction and vehicular traffic loads during and after construction.

3.0 SITE EXPLORATION

The final subsurface exploration program at the project site was conducted and consisted of drilling conventional geotechnical borings at 80 proposed WTG locations, substation location and O&M Building location. A total of 7 proposed WTG locations are currently on hold per Client's request. In addition, a total of 5 test pits were excavated to perform in-situ Thermal Resistivity testing by Geotherm, and bulk soil samples were collected at depths of about 2 to 4 feet for Thermal Resistivity (TR) tests at locations provided by Apex Clean Energy Management, LLC.

Figure 2 within Appendix A shows WTG Boring Locations on a Topographic Map. Figure 3 within Appendix A shows Substation and O&M Building boring locations drilled as part of the site investigation. Figure 4 shows the MASW survey locations. Figure 5 shows the Electrical Resistivity testing locations. Figure 6 shows the Thermal Resistivity testing locations.

Engineering properties of the subsurface materials were assessed through laboratory testing on selected soil and bedrock samples. The following section describes our site exploration program in detail.

3.1 Field Exploration and Testing

A summary of geographic latitude and longitude coordinates and depth of each boring drilled as part of this subsurface exploration program is presented in Table A2 within Appendix A.

The borings were advanced with two track-mounted drill rigs utilizing continuous flight hollow stem augers to a depth of practical auger refusal. Disturbed samples were obtained using Standard Penetration Test (SPT) samplers. Representative bulk samples of the subgrade materials were also obtained from selected locations for maximum dry density-optimum moisture content relationships, laboratory thermal resistivity testing and CBR testing.

Disturbed samples were obtained using Standard Penetration Test (SPT) samplers. Penetration resistance values were recorded using methods based on the standard penetration test (SPT), in accordance with ASTM D1586: Standard Test Method for Standard Penetration Test (SPT) and Split-Barrel Sampling of Soils. This test consists of driving the sampler into the ground utilizing a 140-pound hammer with a free-falling distance of 30 inches. The number of blows required to advance the sampler 18 inches is counted and recorded, with the sum of the blows to drive the last 12 inches. The sum of the blows driving the sampler for the last 12 inches was referred to as the standard penetration resistance value (N-value) for SPT samplers.

Results of the field tests are shown on the logs of boring under the "Field Data" column and are preceded by the letter "N". Subsurface materials were collected from the SPT samplers in the field, visually classified, placed in plastic bags, and labeled as to location and depth. All SPT samples were arranged in core boxes and transported to the laboratory for further analysis.

NX coring techniques, with a 2-inch inside diameter NX wire-line core barrels, were utilized to advance the borings from a depth of practical auger refusal to the full depth of exploration. The rock-like materials were qualitatively evaluated using the Rock Quality Designation (RQD) index system. The RQD is a modified core recovery percentage in which all of the pieces of sound core greater than 4 inches long are summed and divided by the length of the core run (generally 5 to 10 feet). The RQD values are shown on the logs of boring under the "Field Data" column. Core run intervals are typically 60 to 120 inches in length and are delineated on the logs of boring. The RQD values are categorized according to Table 3.1.1 presented below in accordance with ASTM D6032. All rock core samples were arranged in core boxes and transported to the laboratory for further analysis.

Table 3.1.1 Rock Quality Designation

RQD (%)	Rock Quality
0 – 25	Very Poor
25 – 50	Poor
50 – 75	Fair
75 – 90	Good
90 – 100	Excellent

Soils were classified in general accordance with the Unified Soil Classification System (USCS); ASTM D2488: Standard Practice for Description and Identification of Soils (Visual-Manual Procedure). The soil and bedrock classification symbols appear on the logs of boring and are briefly described in Appendix A. Bedrock materials were classified in general accordance with the general notes for rock classification included as part of ASTM D5878: Standard Guides for Using Rock-Mass Classification Systems for Engineering Purposes. Bedrock percent recovery and rock quality designation (RQD) were recorded in accordance with ASTM D6032: Standard Test Method for Determining Rock Quality Designation (RQD) of Rock Core.

Field logs were prepared for each boring at the time of drilling by RRC's field geologist and field engineer. The project engineer and geologist reviewed each field logs of boring and the soil and bedrock samples, and appropriate modifications were made if necessary.

The field logs of boring contain visual classification of the materials encountered during drilling as well as the interpretation of the subsurface conditions between samples. Final logs of boring, included in Appendix A, represent our interpretation of the field logs of boring and necessary modifications based on laboratory testing performed on select samples. The final logs of boring

describe the materials encountered, their approximate thickness, and the various depths at which the samples were obtained.

The field testing and sampling were conducted in general accordance with the requirements of the following:

- ASTM D1586: Standard Test Method for Standard Penetration Test (SPT) and Split-Barrel Sampling of Soils;
- ASTM D6032: Standard Test Method for Determining Rock Quality Designation (RQD) of Rock Core; and
- Locally accepted practices in this area.

During the field operations, the borings were observed for groundwater levels and noted at the top of the logs of boring. Following the completion of the drilling operations, the borings were backfilled in accordance with the state regulations.

3.2 Laboratory Analysis

The soil/bedrock samples were returned to the laboratory, examined by the project engineer and geologist, and applicable laboratory testing was assigned on selected soil/bedrock samples. Laboratory testing was performed in general accordance with ASTM and locally accepted practices. The following laboratory methods of analyses were generally utilized, where sample quality allowed:

- Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System): ASTM D2487;
- Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass: ASTM D2216;
- Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils: ASTM D4318;
- Standard Test Methods for Amount of Material in Soils Finer than No. 200 (75-μm)
 Sieve: ASTM D1140;
- Standard Test Method for Particle-Size Analysis of Soils: ASTM D6913;
- Standard Test Method for Compressive Strength and Elastic Moduli of Intact Rock Core Specimens under Varying States of Stress and Temperatures: ASTM D7012;
- Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort: ASTM D698;
- Standard Test Methods for California Bearing Ratio (CBR) of Laboratory-Compacted Soils: ASTM D1883;
- Standard Test Method for Measurement of Soil Resistivity Using the Two-Electrode Soil Box Method: ASTM G187;
- Standard Test Method for Measuring pH of Soil for Use in Corrosion Testing: ASTM G51;
- Standard Test Method for Water-Soluble Sulfate in Soil: ASTM C1580; and

 Standard Method of Test for Determining Water-Soluble Chloride Content in Soil: AASHTO T291.

4.0 SUBSURFACE CONDITIONS

4.1 Geology

The geologic interpretations contained herein are based on available geological maps and literature, and review of the logs of excavation as part of this study. Sedimentary rock from the Devonian Period constitutes the bedrock geology across project site. Shale and Limestone are the major rock types found within the rock formations locally. Overlying the area bedrock are glacial till deposits from the Quaternary Period. The Geologic map of the Lorain and Put-in-Bay 30' x 60' quadrangle and Quaternary geologic map of the Lake Erie 4° x 6° quadrangle, United States (References 1 and 2), indicate that the subsurface materials on the site consist of the following geologic units of the listed geologic time periods.

Quaternary Period

• Clayey Till (tca): Yellowish-brown, pale-brown, brown, or grayish-brown to gray calcareous silty clay loam and clay loam, locally overlain by peat or swamp deposits. Generally 6 to 30 feet thick. Consists of both ground moraine and end moraine glacial deposits.

Devonian Period

- **Shale** (Sh): Ohio Shale, black to brown, silty, carboniferous, fissile parted shale with gray to green soft clay shale beds.
- Shale with minor Limestone (S-L): Prout Limestone, Plum Brook Shale, and Olentangy Shale. The Prout Limestone is hard, siliceous, gray to brown limestone 3 to 10 feet thick and underlain by the Plum Brook Shale which is a gray to green, soft, fossiliferous and calcareous clay shale 50 to 80 feet thick. South of the Plum Brook is the Olentangy Shale which is a greenish-gray, calcareous, slightly fossiliferous clay shale.
- Limestone (Ls): Delaware and Columbus Limestones. Delaware Limestone is medium brown, fine to medium crystalline, fossiliferous and cherty with thin shale layers. Columbus Limestone is light to medium gray to brown, fine to coarse crystalline, fossiliferous and cherty. The lower portion of the Columbus is light brown to gray, dolomitic, massively bedded and contains quartz grains in the basal ten feet. Combined the Delaware and Columbus Limestones are 200 feet thick.

Figure 7 and 8 in Appendix A shows the project boundaries approximately plotted on geologic and bedrock geologic maps.

Based on the available geologic maps and studies, WTG foundation sites in the northwestern portion of the project site are located within an area where carbonate rocks (limestone) are present and may be susceptible to karst features such as voids and other solution cavities. Karst features typically occur in limestone, dolomite, or dolomitic limestone bedrock, as well as

evaporite deposits such as gypsum. Figure 9 within Appendix A depicts the project boundaries in conjunction with mapped karst zones near the project site.

4.2 Subsurface Stratigraphy

As indicated on the logs of boring for locations drilled as part of this study, native soils were encountered approximately beneath 0 to 18 inches of the topsoil and extended to the top of the bedrock at depths ranging from approximately 2 to 49 feet below the existing ground surface or extended to the full depth of exploration. The native soils generally consisted of the following:

- Soft to hard lean to fat clay with varying amounts of silt, sand and gravel;
- Loose to very dense sand with varying amounts of clay, silt and gravel;
- Medium dense to very dense gravel with varying amounts of clay, silt and sand.

Limestone and Shale are the predominant types of bedrock encountered across the site. When encountered, the limestone/shale bedrock extended to the full depth of exploration. Some limestone formations exhibited potential open voids or fissures within the bedrock matrix such as WTG sites T-24 and T-43. The limestone/shale bedrock materials encountered in the borings were very hard based upon SPT N Values.

The limestone/shale bedrock encountered in the borings varied from soft to hard in rock hardness. Some limestone/shale formations exhibited slightly to highly weathered seams and layers. Fractures in the limestone were noted to be filled with clay or sand at some locations. In addition, the limestone bedrock encountered exhibited vuggy characteristics. The bedrock materials ranged from Very Poor to Excellent in terms of Rock Quality.

It should be noted loss of drilling fluids and/or potential voids were observed within the limestone in some of borings. The potential voids observed were based on core barrel drops, sudden loss of drilling fluid circulation and poor core recovery as observed by the drillers, field engineer and field geologist during the coring operations. Sudden loss of fluid circulation may indicate the presence of open voids and/or fractures within the limestone. These WTG locations are summarized in Table A1 within Appendix A.

The above descriptions are general and depth ranges shown on the logs of boring are approximate because boundaries between different strata are seldom clear and abrupt in the field. In addition, the lines separating major strata types do not necessarily represent distinct lines of demarcation of the various strata. Detailed logs of boring for locations drilled as part of this study, which present the stratum descriptions, types of sampling used and laboratory test data, are presented in Appendix A. The Boring Log Key, defining the terms and descriptive symbols used on each log of boring, is also presented in Appendix A.

4.3 Laboratory Test Results

Standard Proctor tests were performed to obtain the maximum dry unit weight and optimum moisture content in accordance with ASTM D698 on representative bulk soil samples collected

at selected locations as part of this study. A summary of the test results is presented in Table 4.3.1.

Table 4.3.1 Summary of Standard Proctor Test Results

Sample Location	Depth (feet)	Material Type	Liquid Limit (%)	Plasticity Index (%)	Maximum Dry Unit Weight (pcf)	Optimum Moisture Content (%)
TR-1 (T-63)	2 to 4	СН	51	31	102.9	21.0
TR-2 (T-48)	2 to 4	CL	41	22	107.0	18.3
TR-3	2 to 4	CL	37	18	107.4	18.0
TR-4 (T-08)	2 to 4	CL	27	11	113.1	14.5
TR-5 (SUB)	2 to 4	CL	46	27	101.1	20.3

Notes: % = percent; pcf = pounds per cubic foot; CL = Lean Clay; CH = Fat Clay.

Results of Unconsolidated-Undrained (UU) Triaxial tests performed, in accordance with ASTM D2850, on undisturbed soil samples from selected boring locations are summarized in Table 4.3.2.

Table 4.3.2 Summary of Unconsolidated-Undrained Triaxial Test Results

Tuble 4.0.2 Gammary of Ghoomsondated Ondramed Thaxial Test Results								
Boring No.	Depth (feet)	Material Type	Confining Pressure (psi)	In-Situ Dry Unit Weight (pcf)	In-Situ Moisture Content (%)	Undrained Shear Strength, Su (psf)		
T-58	12	CL	9.5	120.9	14.7	2,050		
T-66	24	CL	19.0	116.6	17.2	2,770		
T-82	24	CL	19.0	110.3	20.7	1,480		
T-83	21	CL	16.0	115.0	18.4	1,460		

Notes: pcf = pounds per cubic foot; % = percent; CL = Lean Clay.

Results of Unconfined Compressive Strength (UC) tests performed, in accordance with ASTM D2166, on undisturbed soil samples are summarized in Table 4.3.3.

Table 4.3.3 Summary of Unconfined Compressive Strength Test Results

Sample	Depth	Material	In-situ Dry Unit	In-situ Moisture	Unconfined Compressive
Location	(feet)	Туре	Weight (pcf)	Content (%)	Strength, q _u (psf)
T-65	24	CL	120.8	14.8	9,040
T-70	34	CL	120.7	15.4	7,320

Notes: pcf = pounds per cubic foot; % = percent; psf = pounds per square foot; CL = Lean Clay.

Results of rock core compressive strength testing performed in accordance with ASTM D7012 on selected rock core samples will be summarized in Table 4.3.4.

Table 4.3.4 Summary of Rock Core Compressive Strength Test Results

Sample Location	Depth (feet)	Material Type	Unit Weight (pcf)	Compressive Strength of Rock Cores, qu (tsf)
T-01	8	LIMESTONE	168.4	1,065
T-07	17	LIMESTONE	165.3	1,099
T-20B	15	LIMESTONE	165.7	923
T-30	21	SHALE	163.0	357
T-34	12.5	LIMESTONE	164.3	849
T-36	16	SHALE	148.2	922
T-43	16	LIMESTONE	174.7	1,092
T-45B	29	SHALE	153.7	734
T-75	13	LIMESTONE	182.7	1,613
T-87	12.5	LIMESTONE	168.3	784

One-dimensional consolidation tests were performed in accordance with ASTM D2435, on selected relatively undisturbed soil samples. Results of these tests are summarized in Table 4.3.5.

Table 4.3.5 Summary of 1-D Consolidation Test Results

Sample Location	Depth (feet)	Material Type	σ' _{vo} (psf)	p'c (psf)	C _c	C r	e _o	OCR
T-66	24	CL	2,074	4,200	0.103	0.015	0.479	2.0
T-82	24	CL	2,260	2,300	0.097	0.013	0.495	1.0

Notes: psf = pounds per square foot; σ'_{vo} = estimated in-situ Effective Vertical Stress; ρ'_c = Preconsolidation Pressure; C_c = Compression Index; C_r = Recompression Index; e_o = Initial Void Ratio; OCR = Over-consolidation Ratio; CL = Lean Clay.

Results of water-soluble sulfate and chloride testing performed in accordance with ASTM C1580 and AASHTO T-290 on shallow soil samples from selected borings will be summarized in Table 4.3.6.

Table 4.3.6 Summary of Sulfate and Chloride Contents

Sample Location	Depth (feet)	Material Type	Chloride Contents (% by weight)	Sulfate Contents (% by weight)
T-06	4	CL	ND	0.0021
T-26	4	CL	ND	0.0022
T-45A	1	CL	ND	0.0111
T-54	4	CL	0.0014	0.0136
T-66	4	CL	ND	0.0048
SUB-1	4	CL	ND	0.0081

Notes: % = percent; ND = Not Detected; CL = Lean Clay.

Results of Minimum Resistivity and pH testing performed in accordance with ASTM G187 and ASTM G51 respectively on shallow soil samples from selected borings will be summarized in Table 4.3.7.

Table 4.3.7 Summary of Minimum Resistivity and pH Test Results

Sample Location	Depth (feet)	Material Type	Minimum Resistivity(ohm-cm)	рН
T-06	1	CL	1,830	7.5
T-26	1	CL	1,480	7.4
T-45A	4	CL	2,290	7.6
T-54	1	CL	1,370	7.7
T-66	1	CL	2,030	7.4
SUB-1	1	CL	2,660	6.8

Notes: CL = Lean Clay.

Laboratory CBR tests were performed on shallow soil subgrade samples. A summary of the CBR test results along with the design dry unit weight values (at 95% of the maximum dry density as determined by ASTM D698 at the optimum moisture content) is presented in Table 4.3.8.

Table 4.3.8 Summary of CBR Test Results

Sample Location	Depth (feet)	Material Type	Design Dry Unit Weight (pcf)	CBR at 95% Compaction (%)
T-63	2 to 4	CH	97.8	1.7
T-08	2 to 4	CL	107.4	1.3

Notes: pcf = pounds per cubic foot; % = percent; CH = Fat Clay; CL = Lean Clay.

Graphical test results of laboratory testing completed as part of this study along with the summary of laboratory testing are presented in Appendix B.

4.4 Groundwater Conditions

For foundation design purposes, the groundwater can be assumed to be 0 to 2 feet below the ground surface for investigated WTG locations, recommended design groundwater level for each turbine site was shown in the Table A1 within Appendix A. The design groundwater levels, which RRC recommends at investigated turbine sites in Table A1, are for turbine foundation structural design purposes only, and incorporate about 2 feet of buffer for seasonal groundwater variations; those design groundwater levels should not be relied on to characterize the groundwater condition for the purpose of construction dewatering.

Groundwater was encountered between 4 to 52 feet during drilling prior to rock coring. As part of the rock coring operations, water was introduced into the borehole at a majority of the WTG locations to facilitate wet rotary rock coring drilling methods. The introduction of water inhibits groundwater level measurements during and immediately after drilling. Upon completion of the

drilling operations, the borings were backfilled in accordance with the state of Ohio and local regulations; therefore, subsequent groundwater measurements are not available.

RRC installed temporary standpipe piezometers at each investigated WTG location due to the presence of shallow groundwater. Groundwater table (GWT) in the 80 installed piezometers was measured at depths ranging from about 0.3 to deeper than 13 feet below existing site grade during the monitoring periods. Summary of groundwater levels measured in the piezometers are presented in the Table A1 within Appendix A. These readings are initial readings and may not reflect the final groundwater level after equilibrium.

Based upon review of published well logs in Erie and Huron Counties, Ohio, available from Reference 4 (Ohio Department of Natural Resources), within the project site, static groundwater levels were reported to be between 2 and 90 feet below the ground surface at well locations summarized in Table A3 within Appendix A. The shallowest groundwater level was recorded at about 2 feet below the ground surface at Well No. 901470 located within project area. The well locations shown on Table A3 are plotted on Figure 10, Well Locations Obtained from the Ohio Department of Natural Resources), within Appendix A.

It should be noted the water wells were installed to deep aquifers below typical turbine foundation depth and indicate piezometric or static groundwater level within those deep aquifers only. The static water levels from the deep wells do not always provide useful groundwater information for shallow aquifers or perched water tables near turbine foundation depths that should be considered in turbine foundation design. Based upon the information obtained from the borings drilled as part of this study and a review of well log records, it is our opinion that static groundwater level should have an impact on shallow gravity foundation system design and construction at the locations drilled as part of this study.

It is imperative to note that the short-term groundwater level observations performed as part of this study are not an accurate evaluation of groundwater levels at the project site, and this report should not be interpreted as a comprehensive groundwater study. The observations during this investigation may also not represent conditions at the time of construction and it should be understood the presence of groundwater may have influences on certain construction activities and long-term performance of foundations and roadways. Groundwater levels are highly dependent on climatic and hydrologic conditions before and after construction, the site development including irrigation demands, drainage and other factors. If a detailed groundwater study is desired, a groundwater hydrologist should be retained to provide these services.

4.5 Geophysical Properties

RRC performed 1-D MASW surveys and electrical resistivity (ER) tests at selected turbine and substation locations during the second mobilization, which was on January, 2020. The purpose of MASW surveys is to obtain shear wave velocity (V_s) profiles at selected WTG locations. The MASW survey methodologies and results are discussed in Section 4.5.1. The Electrical Resistivity survey methodologies are presented in Section 4.5.2.

4.5.1 MASW Survey

The Multi-Channel-Analysis-of-Surface-Waves (MASW) method is a non-intrusive/non-destructive technique which uses the nature of the Rayleigh waves to evaluate engineering and geotechnical properties (stiffness) of subsurface materials. Rayleigh waves of different wavelengths (or frequencies) travel at different velocities when they propagate along the surface of a layered system (material properties vary with depth). This property is called dispersion. In other words, the velocity of Rayleigh wave is dependent on the wavelength in the non-homogeneous system. Also, Rayleigh waves of different wavelengths travel/sample within different depth ranges (usually, waves of shorter wavelengths travel within shallower depth ranges).

Typically, for 1-D MASW survey, a linear array composed of twenty-four 4.5 Hz geophones with 5-foot equal spacing between each pair is laid out in the selected locations. Total length of the array is approximately 115 feet. A 16-pound sledge hammer is employed as the seismic source to generate a desired frequency (wavelength) range of the seismic waves by striking on a plate (placed 10, 25 and 40 feet away from the first geophone) aligned within the geophone array. Seismic data are collected using the data recording device and processed using SurfSeis 4.0.4 computer software developed by Kansas Geological Survey (KGS).

The processed shear wave velocities are used to determine certain soil characteristics based on simple equations. For example, the soil shear modulus can be calculated using the following equation:

$$G = \rho V_S^2$$

where:

G= Shear Modulus (psf); ρ = Mass density (pcf/(ft/sec.²)); and

 V_s = Shear wave velocity (ft/sec.)

Young's Modulus, *E*, can also be calculated from the shear wave velocity data using the following equation:

$$E = 2G(1+v)$$

where:

E = Young's Modulus (psf); and

v = Poisson's Ratio.

The weighted average is calculated based on the following formula based on the 2015 International Building Code (IBC) (Reference 5):

$$\overline{V_S} = \frac{\sum_{i}^{n} d_i}{\sum_{i}^{n} \frac{d_i}{V_{Si}}}$$

Where:

 d_i = Thickness of any layer between 0 and 100 feet; and

 V_{si} = Shear wave velocity of a layer.

Figure 11 within Appendix A show weighted average of measured shear wave velocity at the project site for the selected turbine locations where MASW was conducted. Note that the measured shear wave velocity using MASW may not be available up to 100 feet. In the case where measured shear wave velocity is available for less than 100 feet, the weighted shear wave velocity is calculated based on available depths.

To determine the rotational stiffness of the underlying soil and bedrock, the parameters outlined in Table 4.5.1.1 can be used in the computation of the elastic and shear moduli when shear wave velocities are determined by geophysical methods.

Table 4.5.1.1 Recommended Soil and Bedrock Parameters

		Average Total Unit Weight
Soil/ Material Type	Poisson's Ratio	(pcf)
Soft to Medium Stiff Clay Soils	0.30 ⁽¹⁾	115 ⁽¹⁾
Stiff to Hard Clay Soils	0.30 ⁽¹⁾	120 ⁽¹⁾
Loose to Medium Dense Sand and Silt Soils	0.35 ⁽¹⁾	115 ⁽¹⁾
Dense to Very Dense Sand and Silt Soils	0.35 ⁽¹⁾	120 ⁽¹⁾
Limestone/Shale Bedrock	0.30	150
Structural Fill Materials (minimum 5 feet thick)	0.35	120

Note: (1) Based on Reference 6 (see page 123 for Poisson's ratio and page 163 for unit weight).

Computed parameters from the MASW surveys represent soil behavior at small strain; appropriate reduction factor should be used by the foundation designer to determine the rotational stiffness of the foundation system for large strain case.

Results of the MASW surveys are presented within Appendix C of this report.

4.5.2 Electrical Resistivity Survey

RRC performed electrical resistivity surveys at selected locations during the second mobilization, which was on January 2020. The electrical resistivity testing was conducted utilizing a digital ground resistance tester using the Wenner 4-pin array method. The tests were performed using 2 perpendicular array arrangements at 'a' spacing ranging from 2 to 60 feet at

selected WTG locations and from 2 to 200 feet at the proposed Substation site. It shall be considered by designer as these surveys were performed when ground was partially frozen, additional tests may be needed for design purposes.

Results of the electrical resistivity testing are presented in Appendix C.

Interpretation of the electrical resistivity survey is beyond the scope of this study and should be performed by the design team.

4.6 Rho Thermal Resistivity Surveys

In-situ thermal resistivity testing was performed by Geotherm USA, at a total of 5 selected locations. Bulk samples of native soil samples were collected at locations shown in Figure 6 within Appendix A for laboratory thermal resistivity testing in accordance with IEEE Standard. Thermal resistivity tests were performed on remolded soil samples obtained at depths ranging from 2 to 4 feet below existing site grade. The disturbed soil samples were remolded to 92% of their respective maximum dry density as determined by ASTM D698 at "as-received" moisture content prior to the thermal resistivity testing. Thermal resistivity values were then tested with samples at a series of moisture contents from "as-received" moisture content to 0% moisture content to provide a thermal resistivity dry-out curve. Results of thermal resistivity tests are presented within Appendix C.

Interpretation of the field and laboratory thermal resistivity tests results is beyond the scope of this study and should be performed by the design team.

4.7 Preliminary Geohazard Assessment

4.7.1 Flood Hazard

Based on Federal Emergency Management Agency (FEMA) maps, topographic maps and aerial imagery, it appears that the proposed turbine locations can be considered a low risk to flood hazard. FEMA flood hazard maps indicate the sites investigated as part of this study are in an area identified as Zone X. Areas identified as Zone X are considered as 0.2% or less annual chance flood event, or areas of minimal flood hazard.

4.7.2 Expansive Soils

Based upon review of the logs of boring and available geological maps and literature expansive soils are not expected to be encountered within the majority of project site and can be considered as a low risk.

4.7.3 Frost Penetration Depth

According to USACE EM 1110-1-1905 (Reference 7), the average frost penetration depth is approximately 3.5 feet below finished site grade for the project site.

4.7.4 Karst Potential

Water soluble rocks located near, or exposed at, the surface have the potential for the development of karst and dissolution features. Rocks, or mineral deposits, such as limestone, dolomite, gypsum/anhydrite and salt are all soluble to groundwater. The aforementioned formations within 20 feet below the ground surface have a high risk potential, while remain problematic when encountered at 20 to 100 feet below the ground surface.

Based upon review of the logs of boring and available geological maps and literature, karst potential is considered low to high. For sites classified as moderate to high, as shown in Table A1 within Appendix A, RRC recommends performing void assessment and mitigation prior to construction. Geophysical study such as Electrical Imaging (EI) may also be considered to further assess risk for karst/sinkhole features within foundation footprint, particularly at sites deemed as Moderate Risk, to confirm if further void mitigation using pilot holes is necessary. Once the high-risk sites are identified and remedial measures are implemented during construction, the risk to foundation support can be considered low.

4.7.5 Slope Stability

Based on existing site topography and RRC's observations during geotechnical field exploration, the investigated WTG sites are setback a sufficient distance away from the escarpment edges and crests of slopes; therefore, slope stability is not anticipated to be a major concern for this project site, assuming minimum site grading occurs during construction phase.

4.7.6 Seismicity

The state of Ohio as a whole is a region with relatively low seismicity. The peak horizontal ground accelerations near the project site were computed to be 0.063g for Site Class D. In addition, based on 2015 IBC, the Seismic Design Category is "A" for the project site. Therefore, the risk of seismic hazard is considered very low at the project site.

5.0 GEOTECHNICAL RECOMMENDATIONS

5.1 General

The turbine sites drilled as part of this study appear suitable for the proposed construction. A summary of anticipated conditions that will require attention for the design and construction is presented below:

• Each log of boring was carefully reviewed for the presence of soft to medium stiff clays, loose sand layer(s) and/or non-competent materials below and near anticipated foundation bearing elevation. Net allowable bearing capacity at WTG sites are outlined in the Table A1, Summary of Foundation Design Net Allowable Bearing Pressure and Design Groundwater Recommendations, within Appendix A. The subgrade soils and bedrock at anticipated bearing elevation for majority of the turbine locations drilled as part of this study are generally suitable for support of shallow gravity foundations without modifications. However, if soft to medium stiff clays, loose sand layer(s) or non-

competent materials are encountered below or near anticipated foundation bearing elevation during foundation excavations, these materials should be over-excavated to a competent soil or bedrock layer. The removed materials may be re-compacted or replaced with on-site suitable materials or structural fill meeting the requirements outlined in subsequent sections of this report. Excavations should be observed by a qualified representative of the geotechnical engineer prior to backfilling to assess the suitability of the foundation soils and to verify the over-excavation depths. In some cases, additional over-excavation may be necessary.

Replacement materials should be compacted to a minimum of 97% of the maximum dry density as determined by ASTM D698 and moisture conditioned to within 2% of optimum moisture content. The over-excavated area should extend a minimum of 2 feet beyond the edges of the foundation and then downward at a 1H:1V slope to the required over-excavation depth. The foundation excavations should be sloped and/or shored in accordance with OHSA regulations as required.

• The north section of project site is mapped in an area where carbonate rocks, such as limestone, are located near the ground surface. Carbonate rocks are susceptible to solution cavities or karst features. Dissolution features were observed within rock core samples at some of the boring locations. Water loss during rock core and/or what appear to be potential voids were also encountered in some of the turbine borings (T-24 and T-43) at the time of our field exploration. The water loss during rock core in some of the borings appears to be the results of the highly fractured and/or porous and vuggy nature of the limestone bedrock in this area.

There is a risk associated with constructing foundations in areas where karst is mapped. Additional investigations such seismic refraction, electrical imaging combined with exploratory bore holes are methods generally utilized to further investigate karst features. Based on the exploratory boreholes, RRC has identified the risk as low to high at this project site. Recommendations for electrical imaging and void assessment with grouting are included within Table A1 in Appendix A. Recommended turbine locations for additional assessment are shown on Figures 12 and 13, within Appendix A. It is our understanding that further void assessment and void mitigation using pilot holes will be performed by the contractor during construction phase. Depending on the results of the additional investigation, mitigation and the determination of a geotechnical engineer, these turbines may be built safely at these locations.

• Based on results of soil/bedrock borings, the presence of voids can be further verified by drilling pilot holes to minimum depths of about 15 to 30 feet below existing site grade prior to implementing a grouting program at selected problematic sites. The pilot holes should be drilled by a qualified contractor using an air percussion drill rig equipment or similar in a pre-determined pattern. Pressure grouting to depths of about 20 to 30 feet below existing site grade will be required for boreholes where voids are verified.

• The pilot boreholes should be drilled by a qualified contractor using a percussion drill rig equipment or similar in a pattern as described in Section 6.12 of this report.

Pilot borehole observations should be made by a qualified representative of the geotechnical engineer. Voids can be detected by observation of sudden pressure drop while drilling pilot boreholes. Approximate void depths and thickness should be documented during assessment using pilot boreholes; and if voids are encountered, additional pilot boreholes should be drilled as outlined in Section 6.12. Gravity and or pressure grouting to a required depth below foundation bearing elevation will be required for boreholes where voids are encountered and documented. Recommendations for gravity fed or pressure grouting are included in the Pressure Grout Injection section of this report.

• It is anticipated excavations may be advanced with conventional earth moving equipment where native soils extend below foundation bearing elevations. The use of heavy-duty excavation equipment such as hydraulic rock hammer along with blasting to advance foundation excavations will most likely be required where hard bedrock is encountered at shallow depths. If blasting is utilized, the blasting contractors should have sufficient experience with blasting of limestone bedrock in this area. The limestone in this area may contain variable amounts of solution cavities and differing degrees of fracturing, with shale being interbedded with limestone in some areas.

Excavation contractors and/or underground utility installers should consider performing test pits or probing tests to evaluate proper means and methods for advancing excavations. Potential caving/sloughing within narrow and shallow utility trenches may require sidewalls of trenches to be sloped in order to install utilities. Excavated trench bottoms should be thoroughly cleaned prior to cable placement and backfilling.

• In areas where a combination of soil or bedrock are exposed at foundation bearing elevation, the soil subgrade should be over-excavated to competent bedrock and replaced with either lean concrete having a minimum 28-day compressive strength of 1,000 psi or compacted structural fill.

It is crucial to maintain a uniform foundation subgrade support below the turbine foundation to reduce the potential of excessive differential foundation settlement. If compacted structural fill is used below the turbine foundation, the thickness of structural fill below the turbine foundation shall be a minimum of 6 inches, and the structural fill thickness shall be kept as uniform as possible with no abrupt thickness change.

 To bring the turbine pads to construction grade, as well as for the construction of the proposed access roadways, the proposed project site may require grading operations within some areas. The extent and location of the site grading is unknown at this time.

The Geotechnical Engineer of Record shall be retained to review the civil drawings and cross-sections for each of the turbine pads and critical areas along the proposed roadways once they become available if significant grading is planned. This will allow us to be able to further assess the need for additional studies such as slope stability analyses. However, we anticipate the majority of turbine foundations will bear on bedrock or other strong geo-materials with minimal slope stability concerns provided measures outlined in this report are implemented.

• WTG foundations located adjacent to natural or man-made slopes should be setback laterally from the top of the slope. The minimum setback distance should be 25 feet from the edge of foundation to the crest of any natural or man-made slopes. Proper drainage measures should be taken to reduce the impacts from water to man-made cut and fill slopes as well as all undisturbed natural slopes.

It is imperative that a qualified representative of the geotechnical engineer observe each foundation excavation at the time of excavation to verify exposed foundation soil and bedrock bearing conditions and to assess the need and limits of removal and replacement.

Detailed foundation design and construction recommendations are outlined in subsequent sections of this report. The geotechnical recommendations presented in this report, including but not limited to foundation bearing capacity values, anticipated ground improvement depths and estimated foundation settlements, deep foundation design soil parameters and lateral deflection analysis parameters, are based on assumed or anticipated finished site grade, foundation type/size/depth and foundation bearing pressure. RRC's geotechnical recommendations presented in this report should be verified when information on the foundation design and site grading become available.

Detailed foundation design and construction recommendations are outlined in subsequent sections of this report.

5.2 Turbine Gravity Foundation System

The use of gravity foundation systems for support of the WTG's is considered acceptable. Bearing capacity and settlement calculations were performed in general accordance with methodologies outlined in the 2nd Edition of "Guidelines for Design of Wind Turbines" (Reference 9) and generally accepted standard of care and practice along with experience with similar soil conditions in this type of geological setting. Detailed discussions of bearing capacity and settlement for WTG bearing on native soils and bedrock are outlined in the following subsections.

5.2.1 Bearing Capacity and Settlement of Gravity Foundation System

Net allowable bearing pressures presented in Table A1 in Appendix A can be used in the structural design for foundation bearing directly on native soils and bedrock provided the remedial measures outlined in Section 5.1 and in Table A1 within Appendix A are followed.

Information obtained from ODNR Division of Geological Survey was also to determine recommendations for additional assessment and remedial measures of potential karstic areas, which are included within Table A1 in Appendix A. Recommended electrical imaging testing locations map is shown as Figure 12 within Appendix A, and recommended void assessment and grouting locations map is shown as Figure 13 within Appendix A.

Based upon anticipated structural loading, the total settlement is estimated to be on the order of 1.0 inch or less under normal operating loading condition. The estimated differential settlement across the foundation diameter is anticipated to be less than 0.3% under both dead load and normal operating loading conditions.

Table 5.2.1.1 presents a summary of design parameters for on-site soil/bedrock and structural fill materials required for the foundation design.

Table 5.2.1.1 Recommended Soil and Bedrock Design Parameters

Soil/ Material Type	Friction Coefficient (1)	Modulus of Subgrade Reaction, $k_s^{(2)}$ (pci)
Loose Sand	0.40	50
Medium Dense Sand	0.45	100
Dense to Very Dense Sand Soils	0.45	150
Soft to medium Stiff Clay	0.35	40
Stiff to Hard Clay and Silt Soils	0.35	75
Limestone/Shale Bedrock	0.50	150

Note: (1) If necessary, lateral passive earth pressures can be considered to develop additional resistance. The coefficient of base friction should be reduced to 0.30 when used in conjunction with passive pressure.

(2) For 1-ft. X 1-ft. Plate.

The use of on-site clay, sand or gravel, and well-graded processed limestone/shale bedrock as backfill against foundations is considered acceptable provided the materials are properly processed and placed. Overburden backfill over foundations should be compacted to a minimum of 95% of the maximum dry density as determined by ASTM D698 to reduce the potential of erosion and/or scour events. Recommendations for use of on-site materials, borrow material or structural fill are discussed further in subsequent sections within this report.

5.3 Substation and O&M Building Shallow Foundation System

The finished site grade at the proposed Substation and O&M Building location is not available during preparation of this report, and we have assumed the finished grade is at or slightly above the existing ground surface. Clay soils with varying amounts of sand and silt were encountered at or near foundation bearing elevation in the borings drilled within the footprint of the Substation and O&M Building locations. The clay soils encountered at the anticipated foundation bearing elevation drilled as part of this study are considered stiff to hard in terms of consistency. In areas where clay soils are encountered beneath shallow foundation bearing elevation, small lightly loaded structures within these facilities may utilize continuous or pad footings bearing on native soils or newly placed engineered fill materials.

The footing should have a minimum embedment of 3.5 feet below finished site grade for confinement and frost penetration. A minimum width of 18 inches for strip footings and a minimum of 24 inches for spread footings are recommended.

For reinforced concrete slabs bearing at finished grade, we recommend over-excavation of foundation subgrade soils to a minimum of 3.5 feet below the finished grade. Within the frost depth (about 0 to 3.5 feet), the native soils should be replaced with non-frost susceptible fill material or flowable fill (controlled low strength material) having compressive strength of at least 150 psi. The non-frost susceptible fill material, consisting of granular materials which have less than 5% passing a No. 200 Sieve, should be moisture conditioned within 2% of optimum moisture content and should be compacted to a minimum of 97% of the maximum dry density as determined by ASTM D698. Other alternatives such as thermal insulation may be used to protect against frost and the contractor or designer of thermal insulation shall be responsible for compliance with local building codes. A net allowable bearing pressure 1,000 psf can be used for reinforced concrete slabs bearing at finished graded provided the above design guidelines are followed.

For shallow foundation systems, net allowable bearing pressures, which include a factor of safety of 3, outlined in Table 5.3.1 and Table 5.3.2 can be used for the Substation and O&M Building structure locations. Anticipated settlement of the foundations under service loads will be on the order of about 1.0 inches or less.

Table 5.3.1 Recommended Soil Parameters for Structural Design of Footing and Mat Foundations at Substation Location

Parameter	Design Value at Substation Location
Design Groundwater Depth, ft	>10
Average Unit Weight, pcf	115
Modulus of Subgrade Reaction, pci	45*
Undrained Shear Strength, psf	1,000
Friction Coefficient at Foundation Base	0.35
Net allowable bearing pressure for Strip or Continuous Footings (psf) width 1.5 feet or larger	2,000
Net allowable bearing pressure for Square or Pad Footings (psf) width 2 feet or larger	2,500

Notes: pcf = pounds per cubic foot; psf = pounds per square foot; pci = pounds per cubic inch.

^{*} For a 1 ft. x 1 ft. Plate.

Table 5.3.2 Recommended Soil Parameters for Structural Design of Footing and Mat Foundations at O&M Building Location

Parameter	Design Value at O&M Building Location
Design Groundwater Depth, ft	7.5
Average Unit Weight, pcf	115
Modulus of Subgrade Reaction, pci	35*
Undrained Shear Strength, psf	650
Friction Coefficient at Foundation Base	0.35
Net allowable bearing pressure for Strip or Continuous Footings (psf) width 1.5 feet or larger	1,250
Net allowable bearing pressure for Square or Pad Footings (psf) width 2 feet or larger	1,500

Notes: pcf = pounds per cubic foot; psf = pounds per square foot; pci = pounds per cubic inch.

It is recommended that a qualified representative of a geotechnical engineer observe shallow foundation excavations in this area to assess the need for any over-excavation and recompaction and/or replacement.

For structural design of the footings and mat foundations, the parameters outlined in Table 5.3.1 and Table 5.3.2 can be used. Other design and construction recommendations are outlined in the ACI design Manual should be followed. It is imperative that proper drainage be maintained during construction and throughout the life of the substation structures to provide for adequate shallow foundation performance.

5.4 Substation Deep Foundation Systems

Structure elements with heavy axial loads and/or large overturning moments may utilize drilled pier foundations. Pier lengths will likely be dictated by overturning resistance. Allowable end bearing pressures and allowable skin friction values at the substation location are presented in Appendix D.

Allowable end bearing pressures and allowable skin frictions utilize a factor of safety of 3 and 2.5, respectively. Skin friction values should be reduced by 25% when calculating pull-out resistance. Settlement associated with drilled piers is anticipated to be on the order of about $\frac{1}{2}$ to 1 inch. For proper installation of steel rebar and concrete piers should have a minimum diameter of $\frac{1}{2}$ feet. The length of the drilled piers should be determined by the structural engineer to satisfy axial and lateral loading.

It is imperative that the design provides positive drainage away from the foundations during construction and throughout the life of the structure.

Lateral load analysis may be performed using the LPILE computer program. LPILE uses a p-y curve finite difference technique for predicting the soil-structure interaction and response. Based on our interpretation of the subsurface strata and the results of the field and laboratory

^{*} For a 1 ft. x 1 ft. Plate.

tests, the parameters outlined within Appendix D may be used to evaluate drilled piers under lateral loads.

Vertical steel reinforcement to resist tensile loads caused by uplift forces should extend the full length of the pier shaft. Additional reinforcement required by structural demands for axial compressive loads, lateral loads, or minimum reinforcement required by design codes should be satisfied.

5.5 Lateral Earth Pressures

Lateral earth pressures will apply in strata where soils are the main constituent. The turbine will be designed to resist all lateral movements; therefore, the "at rest" lateral earth pressure will develop. Where the design includes restrained elements, the following "at rest" equivalent fluid pressures are recommended as shown in Table 5.5.1.

Table 5.5.1 Recommended Equivalent Fluid Pressures for "At Rest" Lateral Earth Pressures

Material Type	"At Rest" Coefficient of Lateral Earth Pressure, Ko	Equivalent Fluid Pressure for "At Rest" Lateral Earth Pressure (psf/ft)
Clay Soils	0.59	71.0
Sand Soils	0.47	56.0
Limestone/Shale Bedrock	0.29	44.0

Passive and active earth pressure resistance will only mobilize after significant movement of the foundation. The passive case occurs where a structural element tends to move into the soil mass. The active case occurs when the element tends to move away from the soil mass. Both cases are applicable for unrestrained foundation elements.

For soils above any free water surface, recommended equivalent fluid pressures for unrestrained foundation elements when using on-site soils as backfill are shown on Table 5.5.2 and Table 5.5.3 for active and passive lateral earth pressures, respectively.

Table 5.5.2 Recommended Equivalent Fluid Pressures for Active Lateral Earth Pressures

Material Type	Active Coefficient of Lateral Earth Pressure, Ka	Equivalent Fluid Pressure for Active Lateral Earth Pressure (psf/ft)
Clay Soils	0.42	50.0
Sand Soils	0.31	37.0
Limestone/Shale Bedrock	0.17	25.0

Table 5.5.3 Recommended Equivalent Fluid Pressures for Passive Lateral Earth Pressures

Material Type	Passive Coefficient of Lateral Earth Pressure, Kp	Equivalent Fluid Pressure for Passive Lateral Earth Pressure (psf/ft)
Clay Soils	2.37	285.0
Sand Soils	3.25	390.0
Limestone/Shale Bedrock	5.83	875.0

The equivalent pressures listed above are based on an average total unit weight of 120 pcf for on-site clay and sand soils, and 150 pcf for bedrock. For soils below the free water surface, hydrostatic pressure should be added to the lateral earth pressure, and the equivalent fluid pressures should be calculated using the effective unit weights (the above total unit weight minus 62.4 pcf) multiplied by the appropriate earth pressure coefficient (Ko, Ka, & Kp). The above earth pressure values do not include safety factors. Surcharge loads should also be considered where appropriate. The values apply only to cases where the ground surface is level. We should be contacted to provide suitable values for cases where the ground surface is sloped.

5.6 Seismic Considerations

For structural designs based upon the 2015 International Building Code (IBC) (Reference 5), Site Class D should be used for WTG sites as part of this project. The Mapped Spectral Response Acceleration for the 1 second (S_1) and short periods (S_2) were computed using the U.S. Seismic Design Maps Web-based application Program developed by the United States Geological Survey (USGS) (Reference 8). Table 5.6.1 summarizes recommended seismic parameters to be used in the design.

Table 5.6.1 Recommended Seismic Parameters

Parameter	Recommended Calculated Value
S _S – Mapped Spectral Response Acceleration at Short Period (0.2-Second)	0.129
S ₁ – Mapped Spectral Response Acceleration at 1-Second Period	0.056
Fa (Site Coefficient) – Site Class D	1.6
F _√ (Site Coefficient) – Site Class D	2.4

6.0 FOUNDATION CONSTRUCTION CRITERIA

6.1 Site Preparation

Prior to construction, we recommend adequate positive drainage be provided to maintain a relatively dry condition in the area of proposed construction. This will be very important if any work is attempted during periods of prolonged rainfall. Ponding of water in the areas of construction should be avoided. Winter conditions can also impact the construction process. Newly placed fill should not be placed on frozen subgrade and frozen material should not be used for fill.

Site preparation should begin by removing surface vegetation, organic topsoil, and major root systems within the foundation areas. Deleterious materials should be placed in non-structural areas or removed from the site. During excavation of the turbine foundations, every effort should be made to avoid disturbing the subgrade materials at the planned foundation bearing elevation. When the subgrade is disturbed, the resulting surface should be re-compacted to achieve a minimum compaction of 97% of the maximum dry density as determined by ASTM D698 and moisture conditioned within 2% of optimum moisture content. In areas where removal of the subgrade materials is required, proper slopes meeting federal, and state OSHA requirements should be maintained. The base of each foundation excavation should be observed by a geotechnical engineer or a qualified representative prior to foundation installation.

6.2 On-Site Excavated Materials as Overburden Backfill

The use of on-site clay, sand, gravel and processed bedrock material is considered acceptable as overburden backfill materials placed above and against the sides of turbine foundations provided the materials are properly processed and placed. The backfill materials should be free of organics, roots and deleterious materials, and approved by the on-site geotechnical representative prior to use. Excavated bedrock shall be processed to a maximum size of 6 inches or smaller prior to use within the overburden backfill matrix. During excavation and grading, proposed backfill material not immediately placed and compacted shall be stockpiled and protected from moisture by sealing the surface with light compaction.

Based on our experience with these types of materials and results of maximum dry density-optimum moisture content relationships performed as part of this study (ASTM D698), anticipated overburden backfill densities are outlined in Table 6.2.1.

Table 6.2.1 Overburden Backfill Density Range Requirement

	Dry Backfill Unit	Moist Backfill Unit Weight Range,
Soil/ Material Type	Weight Range, γ _d (pcf)	γ _{total} (pcf)
Processed Bedrock with Soil Mixture*	110-130	115-140
On-site Lean Clay soils	95-115	105-135

Note: pcf= pounds per cubic foot; *estimated

The backfill materials should be placed in thin, loose lifts not exceeding 12 inches prior to compacting. Each lift of backfill material should be compacted, moisture conditioned properly, and tested to meet the minimum and maximum dry and moist unit weight values specified in the foundation design drawing. In addition, each lift of backfill material over turbine foundations should be compacted to dry densities of at least 95% of the maximum dry density as determined by ASTM D698, to reduce the potential of erosion and fill settlement. The top surface of the backfill should be kept with sufficient drainage slope (minimum 2% gradient) to allow surface water runoff during construction.

In areas where granular materials or properly processed limestone bedrock are used for the overburden backfill, consideration could be given to use a minimum of 12-inch cap using clay soils on top of overburden backfill zone to reduce any surface water infiltration. The clay cap should be extended a minimum of 5 feet beyond the turbine foundation perimeter.

In areas where structural elements such as transformer pads are supported on overburden backfill materials or where crane pads are extended to the overburden backfill zone, we recommend the overburden backfill below the transformer pads or crane pads follow the general foundation overburden backfill requirements outlined above, as well as specific specifications from the pad designer to satisfy both bearing capacity and settlement requirement of the pad design. As a general guideline, RRC suggests a minimum 3 feet (in thickness) of the overburden backfill below the transformer pads or crane pads be compacted to a minimum of 97% of the maximum dry density as determined by ASTM D698 and moisture conditioned within 2% of optimum moisture content; the suggested backfill compaction should extend a minimum lateral distance of 1 foot beyond the edges of the crane/transformer pad and then downward at a slope of 1:1 (H:V) below the foundation elevation.

6.3 Structural Fill Specifications

Structural fill material beneath foundations, where required, should consist of a non-expansive, well-graded material with sufficient binder for compaction purposes and recommended to meet the Ohio Department of Transportation Type 2 or better. As a guide, structural fill meeting the following specifications is recommended:

	Percent Finer by Weight
1 "	100
3/4 "	100
3/8 "	80-100
No. 4 Sieve	60-100
No. 8 Sieve	45-95
No. 50 Sieve0	7-55
No. 200 Sieve	0-15
Maximum Plasticity Index	6
Maximum Liquid Limit	25
Percent of wear, Los Angeles test, maximum.	50%

Structural fill should be placed in lifts having a maximum loose lift thickness of 12 inches and should be compacted to a minimum of 95% per ASTM D 1557 or a minimum of 97% per ASTM D 698. The structural fill should be moisture conditioned within 2% of optimum moisture content.

6.4 Reuse of On-site Materials as Structural Fill Below Foundation

Modification of unsuitable foundation soils shall consist of over-excavation and replacement with any of the following materials:

- 1. On-site lean clay and sand/gravel soils may be reused beneath the foundation with approval of the proposed material by a geotechnical engineer.
 - i. On-site material used beneath the foundation shall have a maximum plasticity index of 12 and a maximum liquid limit of 40.
 - ii. These reused materials shall be compacted to a minimum of 97% of the maximum dry density as determined by ASTM D698 or 95% as determined by ASTM D1557 and shall be moisture conditioned within 2% of optimum moisture content.
- 2. Borrow lean clay and sand/gravel soils may be used beneath the foundation with approval of the proposed material by a geotechnical engineer. Borrow material shall meet the requirements outlined in the items (i) and (ii) above.
- 3. Structural fill meeting the criteria shown in Section 6.3 of this report.

6.5 Shallow Foundation Construction

The following construction criteria and general guidance should be observed during foundation construction:

- All foundation excavations should be observed by a Geotechnical Engineer or a qualified representative to assess proper bearing materials are present at foundation bearing elevation in accordance with the recommendations given herein, and to assess the need for densification of the subgrade materials.
- Special care should be taken to protect the exposed soils from being disturbed, freezing or drying out prior to the placement of structural fill.
- The foundation contactor should determine proper excavation means and methods. The foundation excavation should be sloped sufficiently to create internal sumps for runoff collection and removal. Foundation excavations subject to rainfall and possible deterioration from accumulated water should be protected using a protective "mud-slab" (concrete) not less than 2 inches in thickness. If surface runoff water or groundwater

seepage accumulates at the bottom of the foundation excavation, it should be collected and removed and not allowed to adversely affect the quality of the bearing surface.

- The foundation excavations should be checked for size and cleaned of loose material and debris prior to the placement of reinforcing steel. Precautions should be taken during the placement of reinforcement and concrete to prevent the loose excavated material from falling into the excavation. A proof-roll of the excavation subgrade should be performed with a fully-loaded front-end loader or a similar equipment to assess the need for any shallow remedial measures. If excessive deflection or soft areas are observed while performing the proof-roll operations, the remedial measures outlined in previous sections of this report should be followed, if applicable. The proof-roll operations should be observed by a qualified representative of the geotechnical engineer. In addition, Static or Dynamic Cone Penetrometer (depending on the subgrade materials exposed at foundation bearing elevation) should be conducted to verify foundation design bearing pressures are met.
- Prior to the placement of concrete, water or frozen ground if present must be removed from the foundation excavation.
- Prompt placement of concrete in the excavation as it is completed, cleaned, and observed is strongly recommended.

6.6 Drilled Pier Foundation Construction

The following items are important for the successful completion of drilled pier foundations:

- A Geotechnical Engineer or his representative should observe all pier excavations. This
 pier inspection is to verify proper depth, bearing stratum, soil conditions and to record
 other observations regarding the pier construction.
- The pier excavations shall be checked for size and to determine that free water (for dry pier excavation) and loose material have been removed prior to the placement of concrete. Precautions should be taken during the placement of the pier reinforcement and concrete to prevent the loose excavated material from falling into the excavation.
- Prompt placement of concrete in the excavation as it is completed, cleaned, and inspected is strongly recommended. Under no circumstances should a pier/shaft be drilled that cannot be filled with concrete before the end of the workday.
- The reinforcement steel cage placed in the shaft should be designed to be stable and centered during the placement of concrete.

- We recommend that the construction contract include a budget for temporary casing and/or slurry drilling, in case the sloughing of sands or entry of water prevents the proper construction of the piers.
- Drilled pier/shaft construction should follow applicable industry standard. Means and methods of construction shall be determined by the design/build contractor.

6.7 Open Excavations

Temporary construction slopes and/or permanent embankment slopes should be protected from surface runoff water. Site grading should be designed to allow drainage at planned areas where erosion protection is provided, instead of allowing surface water to flow down unprotected slopes.

Surcharge loads, either static or dynamic, should not be applied to an excavation slope. Construction equipment should be prevented from traveling along or near the top of the excavation slope. Monitoring of temporary slopes, trenches, and dewatering during construction should be undertaken by the contractor to detect early warnings of movement within slopes, structures, pavements, etc.

In all cases of excavations, sloped excavations and trench shields are recommended for excavations greater than 4 feet in depth. OSHA and applicable state and local standards should be observed and followed. Site safety is the responsibility of the contractor.

6.8 Corrosivity

Water-soluble sulfate and chloride testing results, shown in Section 4.3 of the report, indicated the surficial soils exhibit "Negligible" (S0) sulfate contents and "non-aggressive to aggressive" chloride content. The use of Type I cement should be considered for all at grade and below ground concrete at majority of the structures within the project area. However, if there is minimal cost differential, the use of Type II cement could be considered for higher sulfate resistance. Foundation concrete should be designed in accordance with Chapter 4 of ACI 318: Building Code Requirements for Structural Concrete and Commentary.

Minimum resistivity and pH testing results, shown in Section 4.3 of the report, indicated the surficial soils exhibit "Corrosive" to "Moderately Corrosive" characteristics for majority sites as shown in Table 6.8.1 based on Reference 10. Cathodic protection for buried metal pipe should be designed by a qualified corrosion engineer, if required.

Table 6.8.1 Effect of Resistivity on Corrosion

Aggressiveness Very Corrosive	Resistivity in ohm-cm < 700
Corrosive	700 – 2,000
Moderately Corrosive	2,000 – 5,000
Mildly Corrosive	5,000 – 10,000
Non-Corrosive	> 10,000

6.9 Drainage and Construction Dewatering

Proper drainage should be provided away from the foundation elements during all phases of construction and post-construction grading. Proper drainage is essential to the long-term stability of the structures. Ponding of water near the foundation elements from improper drainage should not be permitted.

Based on the available groundwater information, shallow groundwater shall be considered as a concern for the turbine foundation excavation dewatering at the proposed project site. If shallow perched water is present at turbine sites where clay soils are exposed within the turbine foundation excavation depths, we anticipate the groundwater re-charge rate may be slow enough to conduct excavation dewatering with conventional sumps and "trash" pumps.

6.10 Foundation Excavation and Rippability

Seismic Velocity (seismic p-wave velocity) is indication of hardness and fracture density of the rock, which in turn can be correlated to rippability of bedrock material. MASW surveys will be performed when site access is available, then p-wave velocity of the bedrock material within shallow foundation embedment depth can be estimated, which will be included in the final report. Generally, seismic p-wave velocities less than 3,000 feet per second indicate native soil or heavily weathered bedrock materials. On the other hand, p-wave velocities larger than 10,000 feet per second indicate non-weathered bedrock materials. Limestone/Shale rocks with p-wave velocity less than 6,000 feet per second can be ripped using CAT Multi- or Single Shank No. 8 Series D Ripper or equivalent (Reference 11). For higher p-wave velocity (greater than 7,500 feet per second), larger equipment (D9R, D10R or D11R) may be required.

It should be noted that rippability using p-wave velocity is only one of the various aspects for rippability of the bedrock. Proper equipment selection and sound ripping techniques are critical to effective and economic ripping. The ripping contractor/operator, familiar with local geology, shall be consulted for further evaluation. In addition to p-wave velocity, other features such as degree of weathering, joints, discontinuities and other structural features also influence rippability. In some cases uses of hydraulic rock hammer or blasting may be required to facilitate efficient ripping and removal of bedrock. Means and methods for foundation excavation should be determined by construction contractor.

6.11 Access Roadways and Crane Pads Design and Construction Recommendations

Access Roadways: It is our understanding that private access roadways will be built for construction and maintenance purposes. Traffic volumes during construction are anticipated to be frequent with heavy equipment utilizing the access roadways. Following the construction period, the traffic volumes will be light and vehicles accessing the roadways will generally consist of pickup trucks and occasional single and multi- unit truck traffic. The section thickness design should be based upon the methodology outlined by the American Association of State Highways and Transportation Officials (AASHTO) for design of aggregate-surfaced roadways (Reference 12).

The surficial materials encountered within a majority of the borings indicated native soils consisting of clay and sand soils with varying amounts of silt and gravel. The sand soils are generally considered to be a moderate material in terms of supporting vehicular and construction traffic as defined by AASHTO when used for support of pavement structures, while the clay soils are generally considered as poor material to support pavement structures.

Laboratory CBR testing indicated the subgrade soils for the private access roadways when compacted to about 95% of the maximum dry density as determined by ASTM D698 at optimum moisture content have CBR value ranging from 1.3 to 1.7%. The access roadways actual pavement thickness should be determined by the design/build contractor, keeping in mind the frequency, duration and requirements of the turbine manufacturer.

Prior to the placement of the aggregate base materials along access roadway alignments, stripping and removal of existing vegetation and other deleterious materials from the proposed roadway alignment should be performed. Topsoil and organics could be up to about 30 inches or more in thickness in some areas and should not be allowed for use in structural areas or along roadway alignments. The subgrade along access roadways should be scarified to a minimum depth of 12 inches; moisture conditioned within 2 percent of the optimum moisture content and re-compacted to a minimum of 95% of the maximum dry density as determined in accordance with ASTM D698. The exposed subgrade should then be proof-rolled prior to the placement of the aggregate base course materials to assess the presence of soft areas and the need for remedial measures, if any. In areas where bedrock is encountered at the surface, proof roll is not necessary. In areas where excessive "pumping" of the subgrade is observed, consideration should be given to placing geogrid (Tensar Biaxial Type 2 or equivalent) on top of geotextile (Mirafi HP 570 or equivalent) above the exposed subgrade soils, otherwise removal of unsuitable soils in these areas and re-compaction and/or replacement with granular soils will be required. Aggregate base materials should be compacted to a minimum of 95% of ASTM D1557 or a minimum of 98% of ASTM D698 and within 2% of the optimum moisture content. Consideration could be also be given to performing a cement or lime mix design to stabilize the subgrade soils supporting pavement structures as an alternative. Aggregate base thickness for stabilized access roadway sections could be reduced.

Crane Pads: Based upon review of logs of boring for the turbine sites completed as part of this study stiff to hard clay soils and medium dense to very dense sand soils are expected to be encountered below topsoil at the majority of the crane pads areas adjacent to WTG sites. To improve the performance of the subgrade soils supporting crane pads, we recommend the exposed subgrade (after stripping and removal of organic soils, vegetation and other deleterious materials) be scarified and reworked to a depth of 12 inches below existing site grade. The reworked area should extend a minimum horizontal distance of 3 feet beyond the edges of the crane pads. Reworked on-site subgrade soils should be compacted to a minimum of 97% of the maximum dry density within 2% of optimum moisture content per ASTM D698. In areas where bedrock is encountered at the surface, scarification and reworking are not required.

We recommend the compacted subgrade be tested by proof-rolling. A fully loaded 40,000 lbs., double-axle water-truck or equivalent should be used for proof-roll tests. The subgrade soil should not deflect more than 1-inch under the imposed loads. If higher deflections are observed, the subgrade soil should be over-excavated to suitable material and replaced with a properly compacted material in accordance with Section 6.3 or Section 6.4 of this report. In addition, consideration should be given to the use of either Static or Dynamic Cone Penetrometer (depending on the subgrade materials exposed at foundation bearing elevation) as an added measure to verify design bearing pressures and the need for any remedial measures.

Once a suitable subgrade condition has been achieved, a structural gravel pad should be placed to a thickness of approximately 18 inches. The crushed stone or aggregate base should conform to the requirements of the Section 6.3 of this report or better. The base material should be compacted to a minimum of 98% of the maximum dry density and within 2% of optimum moisture content as determined in accordance with ASTM D698. Crane pads constructed as recommended above are anticipated to have an allowable bearing capacity of about 3,000 to 5,500 psf at finished crane pad level. For bearing loads in excess of this amount, load distribution mats should be utilized so that the bearing capacity is not exceeded. Composite mats are capable of widely distributing the crane loads to the underlying soils for crane pads. The type and number of layers of these composite mats should be determined by the contractor and/or manufacturer to assure proper performance of the crane pads.

As existing sinkholes within project site are reported by ODNR data summary, proposed crane pads and crane walks shall not be constructed at or near reported sinkholes. Additional investigation, such as Electrical Imaging (EI), is recommended in order to lower the risk of potential sinkholes or other potential karst features near the proposed crane walk sections.

General Considerations: It is imperative that proper drainage of the subgrade be provided in the construction of the roadways and crane pads to enhance their performance. Post-construction proof rolling of the subgrade materials should be performed prior to re-opening the roadways for traffic after periods of heavy rainfall/snow melt to assess stability of the roadway and the need for remedial measures. The proof-roll should be accomplished with a fully loaded

water truck or similar heavy equipment. Areas where remedial measures are required should be re-worked and corrected prior to acceptance. It is also imperative that periodic inspection of the access roadways be performed following periods of rainfall or snowmelt to assess the condition of the roads and the need for remedial measures.

6.12 Foundation Grout and Compaction Injection

Based on our experience with pressure grouting for several wind farm projects, guidelines for void assessment and a remedial grouting program are discussed here in this section. The gravity-fed and/or pressure grouting should be performed by a qualified contractor experienced with grouting methods and techniques. Final void assessment configuration, grout mix design parameters and grouting procedures and/or means and methods shall be determined by the qualified design/built contractor. Following grouting means and methods determined by the qualified design/built contractor, this practice can be considered as a safe process which has been used for remediation purposes on previous projects. The effect of grouting for unintentional surface flooding can be considered as low.

Pilot holes for the pressure grouting program may be placed in accordance with the pattern indicated on Figure 6.12.1. Boreholes 1 through 9 should be drilled first. If any void or anomalies are encountered, the adjacent 3 pilot holes will need to be drilled. If no voids or anomalies are encountered within pilot holes 1 through 9, no additional pilot holes need to be drilled. All pilot holes shall be drilled to the minimum required depth as presented in Table A1 within Appendix A.

The following procedure should be followed during the pilot hole drilling operations:

- The locations of probe holes shall be marked on the ground surface under the footprint of the proposed foundation according to the patterns.
- Probing operations shall be observed/monitored by the driller and the field engineer or his/her representative. Changes in air pressure, downward rod resistance, color of cuttings, and sudden drops of steel rods or drilling tools shall be recorded.
- The drilling rig shall be equipped with reasonably accurate tools to measure the rate of advancement of the probe and vertical rod drops if they occur.
- A void shall be defined as a minimum rod drop of 3 inches.
- All probe holes shall be advanced below the bottom of foundation to the minimum depths outlined. Probes indicating existence of voids shall be pressure grouted per the procedure outlined below.

Figure 6.12.1 Recommended Pilot Hole Placement for Pressure Grout Injection.

After void assessment, pilot holes indicating existence of voids or anomalies shall be pressure grouted per the procedure outlined below; pilot holes where no voids or anomalies are detected may be filled via gravity-fed grouting. The geotechnical engineer shall be retained to oversee the pilot hole drilling program and make site-specific adjustments to the drilling or grouting program as required. The gravity grouting or pressure grouting should be performed by an experienced, qualified grouting contractor. Grout mix design, grout pump pressure/rate, and grouting equipment/procedures shall be submitted by the contractor to the geotechnical engineer and structural engineer for review and approval, prior to mobilization of the grouting contractor. The cement grout mix should be sufficiently fluid to allow proper placement while providing a minimum compressive strength of 150 psi at 28 days.

The following provides a general guideline for gravity grouting:

- Cement grout shall be adequately mixed and free of lumps prior to placement.
- The grout should be placed by gravity through a funnel attached to a grout pipe or tremie. Grout shall be placed from the bottom of the pilot holes, upward to the surface in one continuous operation. The bottom end of the grout pipe should be kept full of grout and remain submerged in grout during the operation. The grout pipe is gradually withdrawn as the grout fills the hole.
- Grouting start time, end time, and volume of grout placed shall be recorded. Grouting should continue until the pilot hole has been filled to the foundation bearing elevation.
- Pouring grout directly into the pilot holes from the surface is not allowed since it may result

in bridging and prevent the grout from reaching the bottom. Grouting at each probe hole should be completed within the same work shift.

The following provides a general guideline for pressure grouting:

- The casing/nozzle shall be lowered to approximately one to two feet above the bottom of the pilot hole. The packer rod shall then inflate to seal the opening.
- The grout shall be pumped through the hose and packer rod until practical grouting refusal. Grouting start time, end time, pump pressure and volume of grout pumped for each interval shall be recorded. Practical grouting refusal is determined by monitoring the pressure below the packer or by monitoring the grout pumping rate.
- After a practical grouting refusal has been achieved, the grout casing/nozzle shall be
 raised at 5-foot interval or to a depth where potential voids or dissolution matrix are
 observed during the void assessment. The pressure grouting should continue until the
 pilot hole has been filled to the foundation bearing elevation.
- Pressure grouting requires a continuous injection process for each probe hole; grouting at each probe hole should be completed within the same work shift.

Following the completion of grouting, the pilot holes shall be monitored for a minimum of 15 minutes for grout loss. If needed, grout shall be added and the hole shall be monitored for a minimum of 15 minutes. Monitoring and replenishing the grout shall continue until there is no grout loss. Pilot hole grouting at each turbine site should be staggered in a way that current hole grouting operation has as large distance as possible (hence less disturbance) to newly placed fresh grout holes. If grout is observed entering an adjacent hole, the current hole will continue to be filled with grout and the adjacent hole will be re-drilled, and re-grouted.

The Contractor should develop a foundation void assessment and grouting plan and submit to the Geotechnical and Structural Engineer of Record for approval. The submittal should include proposed drilling/grouting equipment, procedure and material as well as grout mix design. The geotechnical engineer shall be retained to oversee the grouting program and make site-specific adjustments to the grouting program as required. If excessive grout intake is encountered in certain pilot holes, additional pilot holes may need to be drilled and grouted.

6.13 Permanent Slope Configuration

In general, the following slope configurations outlined in Table 6.13.1 should be followed for cut slopes based upon material types.

Table 6.13.1 Permanent Cut Slope Configurations

Material Type	Maximum Slope Configuration (Horizontal:Vertical)
On-site Soils	3:1
Bedrock	0.75:1

The outlined configuration should be further evaluated prior to construction to assure stability throughout the life of the structure. The grading plans should provide for mid-height benches to aid in diverting surface water flow from the embankment's face if the slope height exceeds 15 feet. The face of the cut slopes should be observed by a qualified geologist to assess the need for any slope configuration modifications or the use of reinforcing measures.

Proper drainage should be provided away from the foundation elements during all phases of construction and post-construction grading. Proper drainage is essential to the long-term stability of the structure. Ponding of water near the foundation elements from improper drainage should not be permitted.

7.0 LIMITATIONS

Recommendations contained in this report are based on our field observations and subsurface explorations, limited laboratory tests, and our present knowledge of the proposed construction. It is likely soil conditions will vary between or beyond the points explored. If soil conditions are encountered during construction that differ from those described herein, we should be notified immediately in order to provide supplemental recommendations (if needed). If the scope of the proposed construction, including the proposed loads or structural locations, changes from those described in this report, our data should also be reviewed.

We have prepared this report in substantial accordance with the generally accepted geotechnical engineering practice as it exists in the site area at the time of our study. No warranty is expressed or implied. The recommendations provided in this report are based on the assumption RRC will conduct an adequate program of tests and observations during the construction phase in order to evaluate compliance with our recommendations.

This report may be used only by the client and only for the purposes stated, within three years from its issuance. Land use, site conditions (both on site and off site) or other factors may change over time, and additional work may be required with the passage of time. Any party other than the client, or the client's design team members for this particular project, who wishes to use this report shall notify RRC of such intended use. Based on the intended use of the report, RRC may require that additional work be performed and that an updated report be issued. Non-compliance with any of these requirements by the client or anyone else will release RRC from any liability resulting from the use of this report by any unauthorized party.

Other standards or documents referenced in any given standard cited in this report, or otherwise relied upon by the authors of this report, are only mentioned in the given standard; they are not incorporated into it or "included by reference," as that latter term is used relative to contracts or other matters of law.

8.0 REFERENCES

- 1. Pavey, R.R., Larsen, G.E., Swinford, E.M., and Vorbau, K.E., 2005, Surficial geology of the Lorain and Put-in-Bay 30 X 60-minute quadrangles: Ohio Division of Geological Survey Map SG-2 Lorain/Put0in-Bay, scale 1:100,000
- 2. Fullerton, D.S., Cowan, W.R., Sevon, W.D., Goldthwait, R.P., Farrand, W.R., Muller, E.H., Behling, R.E., Stravers, J.A., 1991, Quaternary geologic map of the Lake Erie 4° x 6° quadrangle, United States and Canada: U.S. Geological Survey, Miscellaneous Investigations Series Map I-1420(NK-17), scale: 1:1,000,000
- 3. ODNR Division of Geological Survey, "Sinkholes and Karst Geology in Ohio", http://geosurvey.ohiodnr.gov/geologic-hazards/karst-geology/karst-mapping
- 4. Ohio Department of Natural Resources, 2016, Water Well Log and Drilling Reports, Ohio Department of Natural Resources Division of Soil and Water, accessed June 18th, 2019 at: http://www.ohiodnr.gov/water/maptechs/wellogs/
- 5. International Building Code (IBC) 2015, International Code Council.
- 6. Bowles, J. E. (1996), "Foundation Analysis and Design," Fifth Edition, McGraw-Hill Companies, Inc.
- 7. U.S. Army Corps of Engineers, Engineering Manual 1110-1-1905, "Bearing Capacity of Soils," Washington DC, 1992.
- "U.S. 8. USGS Earthquake Hazards Program, Seismic Design Maps", http://earthquake.usgs.gov/designmaps/us/application.php
- 9. RisØ National Laboratory, Guidelines for Design of Wind Turbines, 2nd Edition, Det Norske Veritas, Copenhagen, 2002.
- 10. U.S. Department of Transportation, Federal Highway Administration, "Corrosion/Degradation of Soil Reinforcements for Mechanically Stabilized Earth Walls and Reinforced Soil Slopes," Publication No. FHWA-NHI-00-044, September, 2000.
- 11. Caterpillar Performance Handbook, Edition 12, February 2000.
- 12. AASHTO Guide for Design of Pavement Structures, Washington, D.C., 1993.

3801 Doris Lane Round Rock, TX 78664 512.992.2087

APPENDIX A

Emerson Creek Wind Project - Erie and Huron Counties, Ohio Geotechnical Report - Appendix A

ĕ
ė
æ
ö
ç
96
2
5
္ပ
ĕ
œ
ř
ate
⋛
2
mo
Q
2
į
S
Des
7
ž
an
Ф
essur
Š
S
~
Ā
g
ing
ing
earing
Bearing I
Bearing I
Bearing
Bearing I
wable Bearing
wable Bearing
owable Bearing
et Allowable Bearing
wable Bearing
et Allowable Bearing
yn Net Allowable Bearing
et Allowable Bearing
esign Net Allowable Bearing
yn Net Allowable Bearing
on Design Net Allowable Bearing
on Design Net Allowable Bearing
on Design Net Allowable Bearing
idation Design Net Allowable Bearing
on Design Net Allowable Bearing
oundation Design Net Allowable Bearing
Foundation Design Net Allowable Bearing
oundation Design Net Allowable Bearing
Foundation Design Net Allowable Bearing
Foundation Design Net Allowable Bearing
Foundation Design Net Allowable Bearing
Foundation Design Net Allowable Bearing
Foundation Design Net Allowable Bearing
Foundation Design Net Allowable Bearing
- Summary of Foundation Design Net Allowable Bearing
- Summary of Foundation Design Net Allowable Bearing
- Summary of Foundation Design Net Allowable Bearing
- Summary of Foundation Design Net Allowable Bearing
1 - Summary of Foundation Design Net Allowable Bearing

Procession Pro	anie A i - Suii	Summary of rot	or roundation Design	I WELL AIR	Net Allowable bearing	amesall	and Design G	oroundwater ned	ial line	dations					
1,19,19, 1,19,19,19, 1,19,19,19, 1,19,19,19, 1,19,19,19, 1,19,19,19, 1,19,19,19, 1,19,19,19, 1,19,19,19, 1,19,19,19, 1,19,19,19, 1,19,19,19,19,19,19,19,19,19,19,19,19,19	Boring ID (FIR LAY 057)	Latitude		Groundwater During Drilling	Groundwater Immediately After Drilling	Piezometer GWL affer	Piezometer GWL on December 2019	Piezometer GWL on January 2020	Piezometer GWL on ebruary 2020	Recommended Design Groundwater	Net Allowable Bearing Capacity (qnet all) Under Normal Operating Load Conditions Based on Foundation Bearing		Depth of Potential Voids Encountered within Borehole		
Current Curr	T1	41.337091	_	(ft.) NE	(ft.) NA	installation (ft.) NE	(ft.) 	(ft.)	(ft.) 0.7	Depth (ft.) 0.0	Elevation of 12 ft. (bgs, psf) 6,000	Recommendations for Soil Improvement	(ft, bgs) NO	Assessment	Void Assessm
1,11,11,11,11,11,11,11,11,11,11,11,11,1		41.334851		4.0	ΑN	8.5			2.5		000'9	:	ON	ГОМ	
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,		41.327524	-82.684174	19.0	NA	9:6	-	1.6	1.4	0:0	6,000		ON	ТОМ	
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,		41.318510	-82.797720	W :	AN :	¥ :			5.3	2.0	000'9	,	ON :	row	
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,		41.318050	-82.783112	쀧쀧	A A	뷛쒿			3.8	0.0	6,000	1 1	NO NO	LOW	
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,		41.314163	-82.787932	빙	A S	B :	1		1 6	2.0	5,000		ON S	row	
1,1500001 1,15000001 1,15000001 1,15000001 1,15000001 1,15000001 1,15000001 1,15000001 1,1500000		41.309756	-82.784857	2 2	Y X	2 2	1 1		2.0	0.0	5,000	1 1	9 S	MO	
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,		41.305617	-82.787640	l B	A N	N N	1		4.7	2.0	000'9	1	ON	LOW	
1,1900.000 2,200.0000 77 77 77 77 77 77		41.305128	-82.781567	a t	¥ ¤	<u> </u>		- 0%	1.2	0.0	6,000	1	ON ON	MO C	
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,		41.303059	-82.688400	7.5	13.5	Z Z	1	1.6	3 1	0.0	6,000	1	ON O	LOW	
1, 12,0000 2, 27,74502 17, 10		41.301861	-82.683923	7.0	36	NE CO	1	0.8	1.2	0.0	000'9	1	ON ON	LOW	
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,		41.294908	-82.754023	7.0	24	NE NE	1 1	0.0	3.7	1.0	6,000	1	ON ON	Pow	
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,		41.295016	-82.737826	2	AN S	2	1	8.5	4.1	2.0	000'9	1	ON S	TOW	
1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1		41.286773	-82.755319	NA O	¥ ×	ш Z	1 1	4.7	c:+ -	0.0	000'9	1 1	NO NO	LOW	
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,		41.284045	-82.736863	41	¥ :	Ш I	1	2.8	3.1	1.0	4,500	-	ON C	row	
41,250209 42,0144694 41,5 NA NR - - - 1,1 0.0 4,000 41,250209 42,024469 41,2 NA NR NA - 1,2 1,0 0.0 6,000 41,24740 42,74460 <		41.263784	-82.757024	2 2	Y Y	2 2		2.7	2.0	0.0	6,000		11 to 13	HIGH	ò
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,		41.256898	-82.811454	4.5	A N	N N	1		1.4	0.0	4,500	-	ON	HBH	Perform void assessment and/or bedrock
41 (2015) 41 (2015) <t< th=""><th></th><th>41.255529</th><th>-82.804800</th><th>15 NF</th><th>ĕ ¤</th><th>m 4</th><th></th><th>3.4</th><th>3.5</th><th>1.0</th><th>6,000</th><th></th><th>ON ON</th><th>MODERATE</th><th>Perform E</th></t<>		41.255529	-82.804800	15 NF	ĕ ¤	m 4		3.4	3.5	1.0	6,000		ON ON	MODERATE	Perform E
1, 12, 2009 4, 27, 1962 7 NA 9, 2 2 2 2 2 2 2 2 2 2		41.247445	-82.755309	12	X X	NA N		2.1	1.6	0.0	000'9	1	ON ON	NO I	
1, 12, 2017 1, 12, 2017 1, 14 N N 1, 14 1,		41.246008	-82.796827	7	AN	9.2		1.5	9.0	0.0	9'000		ON	row	
1412-10519 4227-1046-9 1		41.244491	-82.771245	7	NA 14	A A		4.2	3.0	0.0	6,000	1 1	ON CA	NON	
1,1,2019.09 1,2,2014.09 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,		41.242334	-82.797954	- 6	Y A	10.4		4.1	1.5	0.0	000'9	1	ON NO	row	
1,12,2017 1,12	T33	41.241983	-82.744461	4	¥.	AN.	1	3.4	3.0	1.0	4,500		ON	TOW	
14729901 42709900 NE		41.240369	-82.832115	AN 4	Y Y	E A		- 28	2.2	0.0	6,000	1 1	0 S	NON	
41,25601, 42,25606, N. H. N. H		41.238015	-82.750999	NE	NA	NA		3.4	2.1	0.0	4,500	1	ON	LOW	
1, 12, 2004 8, 20, 20, 40, 50 1, 10 1,		41.235902	-82.826303	핃	ΨŽ	W.	:		2.2	0:0	6,000		ON	row	
1,100 1,20	T39	41.229091	-82.804853	12	NA	7.3	-	-	2.5	0.0	4,500	-	ON	LOW	
41,100802 42,77593 N. H. N. H. H. N. H.	T40	41.207509	-82.781587	6	AN :	7.7		-	1.5	0.0	6,000		ON	TOW	
4.189212 425 20190 NR NR - - 1.3 0.0 6,000 4.182812 425 27 47 13 10 14 NA NR - - 1.0 4,000 4.1185120 427 17 10 10 42 17 10 10 42 17 10 10 42 17 10 10 42 10 10 4,000 4.1185120 42 27 10 10 42 17 10 10 42 17 10 10 42 17 10 10 42 10 10 42 10 10 4.1185120 42 27 10 10 42 10 10 42 10 10 42 10 10 42 10 10 43 10 10 4.1185120 42 27 10 10 42 10 10 42 10 10 42 10 10 43 10 10 43 10 10 4.1185120 42 27 10 10 42 10 10 42 10 10 42 10 10 43 10 10 43 10 10 43 10 10 4.1185120 42 27 10 10 42 10 10 42 10 10 42 10 10 43 10 10 43 10 10 43 10 10 43 10 10 4.1185120 42 27 10 10 42 10 10 42 10 10 43 10 10 43 10 10 43 10 10 43 10 10 43 10 10 4.11851	T41 T42	41.200363	-82.777263	- E	Y X	1.7 NE	2.7	2.3	8: 1	0.0	6,000	1 1	0 S	NO TOW	
41155022 26.7775036 14		41.198112	-82.831090	NE	NA	NE	-	-	1.3	0.0	6,000		17 to 18	HIGH	Perform void assessment and/or bedrock
411.68120 42.281886		41.192592	-82.774713	14 N	ĕ Z	및 I	1	1.5	1 00	0.0	4,000	1	ON ON	LOW	
4/176828 26.2826454 NE NA NE - 0.9 0.0 4,000 4/154788 26.282454 NE 3.1 NA 1.9 0.0 4,000 4/154786 28.282546 NE NA 1.9 0.0 4,000 4/15826 28.28256 19 NA 13 2.8 1.6 0.0 4,000 4/15826 28.282567 19 NA 13 2.8 1.6 0.0 4,000 4/15824 28.282567 19 NA NE 1.9 1.0 4,000 4/13824 28.282567 19 NA NE 1.0 0.0 3,000 4/13824 28.282567 19 NA NE 1.9 1.0 4,000 4/13824 28.282567 19 NA NE 1.0 0.0 3,000 4/13824 NA		41.181870	-82.781886	6	¥ ×	y y			3.1	0.1	5,000	1 1	ON ON	LOW	
		41.176582	-82.829454	NE	NA	NE	-	-	6.0	0.0	4,000	1	ON	LOW	
41160268 82822230 9 4 6.5 NA 19 0.0 4,000 41148936 82822520 9 4 6.5 NA 19 0.0 4,000 41148936 82821776 19 NA 13 2.8 1.5 0.0 4,000 41148936 82826767 19 NA 13 2.8 1.5 0.0 4,000 41148924 4.828267 19 NA NE 1.9 1.0 4,000 41148727 4.828268 8.214465 2.4 NA NE 1.6 0.0 3,500 41148727 4.828268 NB NA NB 1.6 0.0 3,500 41148727 4.828268 NB NA NB 1.6 0.0 3,500 41148727 4.828268 NB NA NB 1.6 0.0 4,000 <		41.154781	-82.811484	빌	31	W W	ĕ		2.9	0.0	4,000	1	ON ON	MO -	
411413826 82828766 14 NA 3 NA - 30 10 4,000 41143826 82828766 19 NA 13 NA 13 0 - 15 0 4,000 41138726 82828567 19 NA NB - 19 17 0 4,000 41138726 82828568 19 NA NB - - 17 0 4,000 41138709 82282668 19 NA NB - - 16 0 3,000 41138709 82282668 18 NA NB - - 16 0 3,000 41138702 82282668 22 NB NB - - 16 0 3,000 41138702 82282677 NB NA NB - - 17 0 0 3,000 41138702 82282688 82 A NB -<		41.150265	-82.822230	6	4	6.5	Ā	1	6.1	0.0	4,000	-	ON.	NON	
41,13925 -2,52,526/5 19 NA N S -2,8 - -15 0.0 4,000 41,13942 -2,52,526/5 19 NA NE - - 1,5 0.0 3,000 41,13942 -2,23,526/5 19 NA NE - - 1,5 0.0 3,000 41,13042 -2,73,749 -2,73,465 24 NA NE - - 1,6 0.0 3,500 41,13072 -2,73,465 24 NA NE - - 1,6 0.0 3,500 41,13072 -2,74,472 -2,74,472 NE NA NE - - 1,6 0.0 3,500 41,13082 -2,74,472 NE NA NE - - 1,7 0.0 3,500 41,13082 -2,74,472 NE NA NE - - 1,7 0.0 3,500 41,13082 -2,74,472 NE NA <th></th> <th>41.148395</th> <th>-82.811766</th> <th>14</th> <th>AN :</th> <th>3</th> <th>AN</th> <th>-</th> <th>3.0</th> <th>1.0</th> <th>4,000</th> <th></th> <th>ON</th> <th>MO1</th> <th></th>		41.148395	-82.811766	14	AN :	3	AN	-	3.0	1.0	4,000		ON	MO1	
41,139642 82,770782 44 NA NE - - 17 0.0 3,500 41,130824 82,770782 24 NA NE - - 16 0.0 3,500 41,130824 82,286618 NE NA 13 3.9 - 16 0.0 2,500 41,130820 42,22067 NE NA 50 - 16 0.0 2,500 41,130820 42,22067 NE NA 65 - - 17 0.0 4,000 41,130820 42,22067 NE NA 65 - - 17 0.0 4,000 41,130820 42,22067 NE NA NE - 1,1 0.0 4,000 41,10965 42,22067 4,00 NA NE - 1,1 1,0 0.0 4,00 41,00654 42,2206 4,0 NE - 1,1 1,0 0 4,00 <th></th> <th>41.138732</th> <th>-82.832667</th> <th>9 6</th> <th>ž ž</th> <th>N 13</th> <th>2.8</th> <th>1.9</th> <th>υ <u>ε</u></th> <th>0.0</th> <th>3,000</th> <th>: 1</th> <th>0 N</th> <th>LOW</th> <th></th>		41.138732	-82.832667	9 6	ž ž	N 13	2.8	1.9	υ <u>ε</u>	0.0	3,000	: 1	0 N	LOW	
41137859 22778782 AL NA NE 16 0.0 4,000 41137826 42,2761465 24 NA 13 39 16 0.0 4,000 4113626 42,226618 NE A NE 16 0.0 4,000 4113626 42,22672 RE NA 65 17 0.0 4,000 4113626 42,24427 NE NA 65 17 0.0 4,000 4113626 42,4427 NE NA 65 17 0.0 4,000 4113626 42,4427 NE NA NE 17 0.0 4,000 4113626 42,4427 NE NA NE 17 0.0 4,000 4113627 42,4227 47 NA NE 17 0.0 4,000 4113627		41.139042	-82.770782	44	AN	N.			1.7	0.0	3,500		ON	LOW	
41.136254 -62.826616 NA 13 39 - 16 0.0 4,000 41.136702 -82.826616 NE NA 13 39 - 16 0.0 4,000 41.13670 -82.826616 NE NA 50 - - 0.0 4,000 41.13686 -82.22057 NE NA NB - - 17 0.0 4,000 41.10684 -82.74422 NE NA NB - - 17 0.0 4,000 41.10684 -82.74422 NE NA NE 1.3 - 14 0.0 4,000 41.10684 -82.74422 NE NA NE 1.3 - 14 0.0 4,000 41.106850 -82.74422 NE NA NE 1.3 - 1.4 0.0 4,000 41.106864 -82.74429 NE NA NE 1.3 1.4 0.0 <td< td=""><td>T55 T56</td><td></td><td>-82.776792</td><td>24</td><td>4 N</td><td>ШХ</td><td></td><td></td><td>9,</td><td>0</td><td>3 500</td><td></td><td>QN</td><td>MC-</td><td></td></td<>	T55 T56		-82.776792	24	4 N	ШХ			9,	0	3 500		QN	MC-	
41102020 82 220507 NE NE - 21 0.0 2,500 41105020 82 220507 NE NA 5.0 NE - 0.7 0.0 4,000 41115896 82 244422 NE NA NE NA 0.0 - 4,000 41113884 -82 24422 NE NA NE 1.3 - 1.0 0.0 4,000 41108614 -82 24429 NE NA NE 1.3 - 1.0 0.0 4,000 41108617 -82 2761 4.7 NA NE - 1.1 1.0 0.0 4,000 41108617 -82 27661 4.7 NA NE - 1.1 0.0 4,000 41108627 -82 287681 NE NA NE - 1.2 0.0 4,000 41108627 -82 287685 NE NA NE - 1.2 0.0 4,000 4108776		41.136254	-82.825618	. NE	. AN	13	3.9	-	1.6	0.0	4,000	1	ON	LOW	
1116596 62744422 NE		41.132702	-82.769033	24 NE	23	E C	쀨		2.1	0.0	2,500	1	0 S	MO	
411103843		41.115596	-82.744422	N N	S B	NE S	9.0		1.6	0.0	4,000		ON	LOW	
41.10964		41.113883	-82.809371	E S	AN S	6.5	1 5	1	0,1	0.0	3,500	-	ON S	MOT	
41,096514 42,227861 47 24 NE 18 - 18 0.0 4,000 41,096579 42,208665 NE NE - 16 2.2 0.0 4,000 41,096579 42,208665 NE NA NE - 15 15 0.0 4,000 41,096787 42,70664 NE NA NE - 63 - 2.0 3,500 41,097687 42,706834 NE NA NE - 17 10 0.0 2,500 41,097687 42,70699 NE NA NE - 17 10 0.0 2,500 41,097687 42,70099 NE NA NE - 42 2 0.0 2,500 41,30969 NE NA NE - 42 2 0.0 6,000 41,30969 NE NA NE - 25 13 0.0 6,000		41.107601	-82.744297	14	04 N	ш Ш	5 1	1 =====================================	4.0	0:0	3,000	1 1	N N	LOW	
41096579 422060805 NE NE NE 15 15 10 10 10 10 10 10		41.098514	-82.827851	47	24	NE	1.8	1	1.8	0.0	4,000	1	ON	LOW	
41.094725		41.096579	-82.806805	NE	W S	및 및	1	1.6	2.2	0.0	4,000	Borform Door Soil Immorrant to 24 foot	ON ON	LOW	
4109272 82.877477 NE NA NE		41.094265	-82.770634	2 8	Y Y	y W		6.3	3 1	2.0	3,500	Perform Deep Soil Improvement to 29 feet	0N	LOW	
41.087862 28.2 28894 NE - - - 0.0 41.08815 -82 278934 NE NA NE - 1.9 0.0 41.08176 -82 777013 14 NA NE - 1.9 0.0 41.30842 -82 81599 NE NA NE - 2.2 1.9 0.0 41.307049 -82 81599 NE NA NE - 2.4 1.2.7 1.0 41.307049 -82 810313 7 NA NE - - - 1.3 0.0 41.19745 -82 800113 7 NA NE - - 1.3 0.0 41.19746 -82.776172 NE NA NE - - - 0.0 41.13770 -8.822198 NE NA 1.4 - - 1.2 0.0 41.13770 -8.822198 NE NA 1.4 - - 1.2		41.092712	-82.777417	J.	AN:	E S		1.7	1.0	0.0	2,500		ON	TOW	
41087076 -82777013 14 NA NE 22 1:9 0.0 41371416 -82730099 NE NA NE 42 2.3 0.0 41309642 -82 815699 NE NA NE 2.4 1.27 1.0 41307049 -82 8103913 7 NA NE 2.4 12.7 1.0 41137831 -82 58 03013 7 NA NE 1.3 0.0 41137831 -82 58 23198 NE NA NE 1.3 0.0 41137830 -82 882318 NE NA 11.4 1.2 0.0 41 113709 -82 882318 NE NA 11.4 1.2 0.0		41.088115	-82.788934	39 NE	Y X	2 2		13	1 9,	0.0	3.000	1 1	02 02 02 02	NON COM	
41.307446 48.2759099 NE NA NE - 42.2 2.3 0.0 41.30842 42.815969 NE NA NE - 24 12.7 1.0 41.307049 42.821787 NE NA NE - 2.4 12.7 1.0 41.187531 42.821787 NA NE - - 1.3 0.0 41.18746 42.75530 NE NA NE - 0.0 0.0 41.18746 42.75767 A6.75767 A7.7777 A7.77000 A7.77000 A7.77000		41.087076	-82.777013	14	NA	NE		2.2	1.9	0.0	4,000		ON	LOW	
1.100042		41.317416	-82.790099	¥ ½	ĕ Ş	및 I	1	4.2	2.3	0.0	000'9	1	ON ON	LOW	I brieford Droefing
47,266566 48,260313 7 NA NE		41.307049	-62.013909	y y	¥ X	Z Z	: :	2.4	12.7	1.0	6,000	1 1	NO NO	MODERATE	Perform Electrical II
41:197436		41.260506	-82.803113	7	AN	R	1	1	1.3	0.0	000'9	1	ON	HIGH	Perform void assessment and/or bedrock
41.133744 -0.22.17017 NE NA 11.4 -1.0 -0.0		41.197831	-82.755836	4 7	₹ Z	빌	1 5	0.3	2.5	0.0	6,000	1	ON ON	LOW	
41410807 -82740771 40 30 NE 13 18 00		41.13708	-82.76172	y y	žž	11.4	4.2	9. 1	1 27	0:0	000'9	1 1	0 N	NO NO	
20 CT		41.110892	-82.740271	40	30	Ш	1.3		1.8	0.0	4,000	1	ON	LOW	
41062564 -8282494 NE NE 18 00		41.065264	-82.824944	Ne de	E S	Y Y	1.8	1 7	1 8	0.0	4,000		ON S	LOW	
41.036940 -82.82719 29 16 1E 9.5 1.9 - 0.0		41.049640	-82.827139	29	16	Z Z	9.5	1.9	2 -	0.0	3,250	-	ON	LOW	

Emerson Creek Wind Project - Erie and Huron Counties, Ohio Geotechnical Report - Appendix A

Table A2 - Summary of Subsurface Exploration and Geographic Coordinates

Boring ID	Latitude	Longitude	MASW	Electrical Resistivty Survey	Thermal Resistivity Testing	Drilling/Test Date	Auger (ft)	Air Rotary (ft)	Rock Core (ft)	Total Depth (ft)	Rab
T1	41.337091	-82.797344				4/17/19	4.0	0.0	20.0	24.0	Poor
Т2	41.334851	-82.770474									
Т3	41.331470	-82.687070				4/2/19	19.0	0.0	0.0	19.0	∀ N
T4	41.327524	-82.684174				4/3/19	25.0	0.0	0.0	25.0	ΝΑ
T5	41.327437	-82.680044				01/00/1	007		47.0	0.20	7000
0	41.318310	-82.191120				4/22/13	0.01	0.0	0.71	0.12	noop
T7	41.318050	-82.783112				4/23/19	7.0	0.0	20.0	27.0	Poor
Т8	41.316612	-82.776072				4/23/19	8.0	0.0	20.0	28.0	Poor
L 19	41.314163	-82.787932				4/24/19	13.0	0.0	15.0	28.0	Good
T10	41.311303	-82.784857				4/24/19	21.0	0.0	4.0	25.0	NA
T11	41.309756	-82.799754				4/22/19	14.0	0.0	14.0	28.0	Good
T12	41.305617	-82.787640				4/25/19	8.0	0.0	20.0	28.0	Good
T13	41.305128	-82.781567				4/25/19	21.0	0.0	10.0	31.0	Good
T14	41.303804	-82.696969				4/2/19	30.5	0.0	0.0	30.5	ΑN
T15	41.303059	-82.688400	×	×		4/1/19	29.0	0.0	0.0	29.0	ΑN
T16	41.301861	-82.683923				4/1/19	40.0	0.0	0.0	40.0	NA
T17	41.297773	-82.741589				5/22/19	28.0	0.0	10.0	38.0	NA
T18	41.294908	-82.754023				4/3/19	48.0	0.0	0.0	48.0	ΝΑ
T19	41.295016	-82.737826				5/23/19	48.0	0.0	0.0	48.0	AN
T20	41.291780	-82.735204				5/24/19	4.0	0.0	28.0	32.0	Poor
T21	41.286773	-82.755319				4/16/19	10.0	0.0	20.0	30.0	Poor
T22	41.284045	-82.736863				4/4/19	19.0	0.0	0.0	19.0	NA
T23	41.263784	-82.757024				4/16/19	10.0	0.0	15.0	25.0	Very Poor
T24	41.261475	-82.809764				4/28/19	5.0	0.0	23.0	28.0	Very Poor
T25	41.256898	-82.811454				4/27/19	16.0	0.0	15.0	31.0	Fair
T26	41.255529	-82.804800				4/29/19	30.0	0.0	0.0	30.0	AN
T27	41.247740	-82.775587				4/17/19	7.0	0.0	18.0	25.0	Very Poor
T28	41.247445	-82.755309				4/22/19	16.0	0.0	8.0	24.0	Very Poor
T29	41.246008	-82.796827				5/20/19	31.0	0.0	0.0	31.0	NA
T30	41.244491	-82.771245				4/18/19	10.0	0.0	20.0	30.0	Very Poor
T31	41.244309	-82.752195				4/25/19	25.0	0.0	0.0	25.0	NA
Т32	41.242334	-82.797954				5/20/19	31.0	0.0	0.0	31.0	NA
Т33	41.241983	-82.744461				4/23/19	19.5	0.0	0.0	19.5	NA
T34	41.240369	-82.832115				5/22/19	2.0	0.0	25.0	27.0	Poor
T35	41.238171	-82.771065				4/23/19	7.0	0.0	12.0	19.0	Very Poor
T36	41.238015	-82.750999				4/26/19	12.0	0.0	8.0	20.0	Poor
T37	41.235902	-82.826303				61/1/9	5.0	0.0	23.0	28.0	Fair
T38	41.234841	-82.833897									
T39	41.229091	-82.804853				5/25/19	26.0	0.0	0.0	26.0	AN
T40	41.207509	-82.781587				4/5/19	18.5	0.0	0.0	18.5	NA
T41	41.203875	-82.781489				4/5/19	10.0	0.0	20.0	30.0	Poor
T40	44 000000	000555	,	>		40/00/00	400	0.40	0	000	AIA

Emerson Creek Wind Project - Erie and Huron Counties, Ohio Geotechnical Report - Appendix A

Table A2 - Summary of Subsurface Exploration and Geographic Coordinates

	,											ľ
Boring ID	Latitude	Longitude	MASW	Electrical Resistivty Survey	Thermal Resistivity Testing	Drilling/Test Date	Auger (ft)	Air Rotary (ft)	Rock Core	Total Depth (ft)	RQD	Gr
T55	41.137589	-82.776792										
T56	41.137179	-82.791465				5/14/19	39.5	0.0	0.0	39.5	NA	
T57	41.136254	-82.825618				12/17/19	25.0	15.0	0.0	40.0	NA	
T58	41.132702	-82.769033				12/18/19	54.0	0.0	0.0	54.0	NA	
T59	41.130820	-82.822057				5/12/19	28.0	0.0	0.0	28.0	NA	
T60	41.115596	-82.744422				12/12/19	35.0	0.0	0.0	35.0	NA	
T61	41.113883	-82.809371				5/12/19	48.0	0.0	0.0	48.0	NA	
T62	41.110964	-82.744297				12/11/19	54.0	0.0	0.0	54.0	NA	
T63	41.107601	-82.807071				5/8/19	55.0	0.0	0.0	55.0	ΑN	
T64	41.098514	-82.827851				12/8/19	47.0	0.0	0.0	47.0	NA	
T65	41.096579	-82.806805				5/10/19	55.0	0.0	0.0	55.0	NA	
T66	41.095647	-82.763703				5/3/19	55.5	0.0	0.0	52.5	NA	
T67	41.094265	-82.770634	×	×		5/2/19	55.5	0.0	0.0	52.5	NA	
T68	41.092712	-82.777417				5/8/19	55.5	0.0	0.0	52.5	NA	
T69	41.091692	-82.788934				5/7/19	55.5	0.0	0.0	52.5	NA	
T70	41.088115	-82.817980				5/11/19	55.5	0.0	0.0	52.5	NA	
T71	41.087076	-82.777013				5/6/19	55.5	0.0	0.0	55.5	NA	
T72	41.317416	-82.790099				4/23/19	8.0	0.0	20.0	28.0	Fair	
T73	41.309842	-82.815969				4/18/19	8.0	0.0	15.0	23.0	Fair	
T74	41.307049	-82.817887				4/18/19	11.0	0.0	15.0	26.0	Fair	
T75	41.260506	-82.803113				4/28/19	13.0	0.0	15.0	28.0	Poor	
T76	41.197831	-82.755836				4/9/19	44.5	0.0	0.0	44.5	NA	
T77	41.197446	-82.776172				12/19/19	19.0	20.0	0.0	39.0	NA	
T78	41.133708	-82.823198				5/14/19	29.5	0.0	0.0	29.5	NA	
T79	41.110892	-82.740271				12/11/19	55.5	0.0	0.0	52.5	NA	
T80	41.065264	-82.824944	×			12/6/19	55.5	0.0	0.0	52.5	NA	
T81	41.058500	-82.824749				12/6/19	55.5	0.0	0.0	52.5	NA	
Т82	41.049640	-82.827139				12/8/19	55.5	0.0	0.0	55.5	NA	
Т83	41.048849	-82.823246				12/7/19	55.5	0.0	0.0	55.5	NA	
T84	41.329691	-82.741715										
T85	41.329173	-82.753069										
T86	41.327917	-82.736451										
T87	41.241977	-82.827098				5/21/19	7.0	0.0	23.0	30.0	Poor	
TR-1 (T63)	41.107602	-82.807065			×							
TR-2 (T48)	41.154774	-82.811374			×							
TR-3	41.209883	-82.788517			×							
TR-4 (T8)	41.316613	-82.776070			×							
TR-5 (SUB)	41.268924	-82.765749			×							
SUB-1	41.268959	-82.764984		×		4/28/19	10.0	0.0	10.0	20.0	Very Poor	
SUB-2	41.268962	-82.763493				4/28/19	6.5	0.0	0.0	6.5	NA	
SUB-3	41.269448	-82.763495				4/28/19	6.5	0.0	0.0	6.5	NA	
0110	44 000444	00 704000				4 100/40	7.0	0	0 0	2.0	AIA	

Table A3: Well Log Information Obtained from Ohio Division of Water Resources (Reference 3)

1 abic 1 to 1 E by 11 III		חווס בונוסוסוו כו נומנסו	2 0010101011				
Well Number (Ohio Division of Water Resources)	Latitude (NAD83)	Longitude (NAD83)	Elevation (feet above sea level)	Total Well Depth (feet below Elevation)	Aquifer Type	Static Water Level (feet below Elevation)	Date Measured (MM/DD/YYYY)
984232	41.30517	-82.82758	689	135	LIMESTONE	25	07/15/2008
984229	41.33978	-82.76012	758	150	LIMESTONE	17	06/30/2008
984228	41.30135	-82.79292	714	150	LIMESTONE	21	06/25/2009
1010305	41.35133	-82.82367	929	120	LIMESTONE	80	11/04/2008
984231	41.3375	-82.80008	705	150	LIMESTONE	24	07/07/2008
984230	41.31848	-82.77013	723	150	LIMESTONE	15	07/02/2008
901470	41.35767	-82.74134	NA	34	ROCK	2	10/02/2000
2048717	41.104242	-82.759795	NA	62	CLAY	29	07/30/2014
923274	41.20637	-82.8219	NA	120	LIMESTONE	36	11/03/2000
2039555	41.2855	-82.825833	822	200	LIMESTONE	80	09/10/2012
2063967	41.280267	-82.832767	781	155	LIMESTONE	75	08/09/2017
2063968	41.281133	-82.830417	734	155	LIMESTONE	20	08/11/2017
2063969	41.280867	-82.8337	962	175	LIMESTONE	80	08/14/2017
2071987	41.2871	-82.833967	577	215	LIMESTONE	08	01/23/2019
2022084	41.08271	-82.75841	895	89	GRAVEL	22	04/23/2009
962332	41.08287	-82.78278	NA	120	SHALE	15	05/28/2003
2068615	41.277867	-82.82875	737	215	LIMESTONE	45	06/28/2018
946817	41.2816	-82.8302	757	140	LIMESTONE	70	05/17/2003
2070373	41.266767	-82.830883	781	175	LIMESTONE	90	08/27/2018
2048941	41.272867	-82.8389	748	120	LIMESTONE	70	08/14/2014
2012854	41.27195	-82.8387	NA	31	LIMESTONE	30	08/17/2007
2012877	41.271983	-82.83875	NA	41	LIMESTONE	30	08/16/2007
2012879	41.271833	-82.838667	NA	37	LIMESTONE	33	08/15/2007
2012880	41.27195	-82.838633	NA	41	LIMESTONE	30	08/18/2007
2027295	41.272333	-82.839017	NA	37	LIMESTONE	25	05/18/2010
2027300	41.27285	-82.839433	NA	38	LIMESTONE	30	05/19/2010
2027303	41.27205	-82.83925	NA	37	LIMESTONE	30	05/18/2010
2031690	41.271767	-82.838967	NA	38	LIMESTONE	37	01/31/2011
2031691	41.271883	-82.839333	NA	42	LIMESTONE	37	01/31/2011
2070408	41.281133	-82.833300	791	195	LIMESTONE	75	09/26/2018
2070409	41.281167	-82.831967	780	215	LIMESTONE	70	09/25/2018
910925	41.089580	-82.741640	NA	87	CLAY & SHALE	25	06/28/2000
2064530	41.179957	-82.813109	NA	160	LIMESTONE	26	09/13/2017
954233	41.115410	-82.760140	NA	09	SHALE	13	10/07/2002
2045511	41.106681	-82.785501	NA	56	SHALE	20	10/28/2013

Table A4 - Summary of Utility Locate Tickets (Ohio 811)

		J		
Paring ID	Latituda	Lamaituda		
Boring ID	Latitude	Longitude	Ticket Number	Remarks
T1	41.337091	-82.797344	B908001045	rtomanto
T2	41.334851	-82.770474		ON HOLD
Т3	41.331470	-82.687070	B908001062	
T4	41.327524	-82.684174	B908001074	
T 5	41.327437	-82.680044		ON HOLD
T6	41.318510	-82.797720	B908001080	
T7	41.318050	-82.783112	B908001083	
T8	41.316612	-82.776072	B908001089	
Т9	41.314163	-82.787932	B908001107	
T10	41.311303	-82.784857	B908001113	
T11	41.309756	-82.799754	B908001122	
T12	41.305617	-82.787640	B908001133	
T13	41.305128	-82.781567	B908001136	
T14	41.303804	-82.696969	B908001144	
T15	41.303059	-82.688400	B908001153	
T16	41.301861	-82.683923	B908001158	
T17	41.297773	-82.741589	B908001166	
T18	41.294908	-82.754023	B908001168	
T19	41.295016	-82.737826	B908001173	
T20	41.291780	-82.735204	B908001177	
T21	41.286773	-82.755319	A908501854	
T22	41.284045	-82.736863	A908501888	
T23	41.263784	-82.757024	A908501919	
T24	41.261475	-82.809764	A908501961	
T25	41.256898	-82.811454	A908501977	
T26	41.255529	-82.804800	A908501989	
T27	41.247740	-82.775587	A908502000	
T28	41.247445	-82.755309	A908502016	
T29	41.246008	-82.796827	A908502022	
T30	41.244491	-82.771245	A908502034	
T31	41.244309	-82.752195	A908502044	
T32	41.242334	-82.797954	A908502056	
T33	41.241983	-82.744461	A908502068	
T34	41.240369	-82.832115	A908502084	
T35	41.238171	-82.771065	A908502110	
T36	41.238015	-82.750999	A908502115	
T37	41.235902	-82.826303	A908502127	
T38	41.234841	-82.833897		ON HOLD
T39	41.229091	-82.804853	A908502151	
T40	41.207509	-82.781587	A908502166	
T41	41.203875	-82.781489	A908502176	
T42	41.200363	-82.777263	B933001192	
T43	41.198112	-82.831090	A908502202	
T44	41.192592	-82.774713	A908502251	
T45	41.187731	-82.775036	A908503485	
T46	41.181870	-82.781886	A908503501	
T47	41.176582	-82.829454	A908503514	
T48	41.154781	-82.811484	B933001195	
T49	41.151717	-82.781455	A908503542	
T50	41.150265	-82.822230	B933001199	
T51	41.148395	-82.811766	B933001202	
T52	41.141995	-82.832667	B933001205	

Table A4 - Summary of Utility Locate Tickets (Ohio 811)

Boring ID	Latitude	Longitude		
			Ticket Number	Remarks
T53	41.138732	-82.832555	A908503587	
T54	41.139042	-82.770782	A908503603	
T55	41.137589	-82.776792		ON HOLD
T56	41.137179	-82.791465	B908700558	
T57	41.136254	-82.825618	B933001208	
T58	41.132702	-82.769033	B933001211	
T59	41.130820	-82.822057	B908700566	
T60	41.115596	-82.744422	B933001213	
T61	41.113883	-82.809371	B908700585	
T62	41.110964	-82.744297	B933001217	
T63	41.107601	-82.807071	B908700597	
T64	41.098514	-82.827851	B933001220	
T65	41.096579	-82.806805	B908700610	
T66	41.095647	-82.763703	B908700614	
T67	41.094265	-82.770634	B908700618	
T68	41.092712	-82.777417	B908700624	
T69	41.091692	-82.788934	B908700647	
T70	41.088115	-82.817980	B908700652	
T71	41.087076	-82.777013	B908700657	
T72	41.317416	-82.790099	B908001181	
T73	41.309842	-82.815969	B908001186	
T74	41.307049	-82.817887	B908001194	
T75	41.260506	-82.803113	B908700665	
T76	41.197831	-82.755836	B908700670	
T77	41.197446	-82.776172	B933001222	
T78	41.133708	-82.823198	B908700678	
T79	41.110892	-82.740271	B933001223	
T80	41.065264	-82.824944	B933001225	
T81	41.058500	-82.824749	B933001228	
T82	41.049640	-82.827139	B933001230	
T83	41.048849	-82.823246	B933001235	
T84	41.329691	-82.741715		ON HOLD
T85	41.329173	-82.753069		ON HOLD
T86	41.327917	-82.736451		ON HOLD
T87	41.241977	-82.827098	B908700706	

Figure 11 – Weighted Average Shear Wave Velocity at Selected WTG Sites

BORING LOG KEY

	FIE	LD	DATA			LA	BO	RATO	RY DA	ATA			DRILLING METHOD(S):
SOIL SYMBOL	ОЕРТН (FT)	SAMPLES	N: BLOWS/FT P: TonS/SQ FT T: BLOWS R: % RQD: %	MOISTURE CONTENT (%)	LIQUID LIMIT	PLASTIC LIMIT STAN	PLASTICITY INDEX	DRY DENSITY POUNDS/CU.FT	COMPRESSIVE STRENGTH (TONS/SQ FT)	FAILURE STRAIN (%)	CONFINING PRESSURE (POUNDS/SQ IN)	MINUS NO. 200 SIEVE (%)	GROUNDWATER INFORMATION: Subsurface water was not encountered either during or upon completion of the drilling operations. SURFACE ELEVATION: ft.
S	- 10	\sigma		1977	LL SH TUI	PL BE SAN	PI	0.5	000	ŭ.	0₽	Σ	DESCRIPTION OF STRATUM
	5 - 10 -	XI X	N = 50 (SPT) N = 40 (Modi AUG T = 100/2.5* (ICP Blow Count)	fied C. ER CU 7 - INI Z - W.	TIAL GR	pler) BS DUNDW/	77500000	SERVATIOI DF DRILLI	NG, OR AS	SHOWN			TESTING SYMBOLS DEFINITIONS N - STANDARD PENETRATION TEST RESISTANCE P - POCKET PENETROMETER RESISTANCE T - TXDOT COME PENETRATION RESISTANCE R - ROCK CORE RECOVERY RQD - ROCK QUALITY DESIGNATION

TYPICAL SOIL AND ROCK SYMBOLS (USCS CLASSIFICATION)

	Lean Clay (CL)		Poorly-Graded Sand (SP)		Claystone
	Fat Clay (CH)	* * * * * * * * * * * * * * * * * * *	Well-Graded Sand (SW)		BASALT
	Silt (ML)	000	Poorly-Graded Gravel (GP)		Limestone
\blacksquare	Elastic Silt (MH)	: *	Well-Graded Gravel (GW)		Sandstone
	Silty Sand (SM)		Clayey Gravel (GC)	× × × × × × × × × × × × × × × × × × ×	Siltstone
	Clayey Sand (SC)		Silty Gravel (GM)		Fill Material
	Silty, Clayey Sand (SC-SM)		Silty Clay (CL-ML)		Shale

DEGREE OF WEATHERING

- 1) Unweathered: No evidence of any chemical or mechanical alteration.
- 2) Slightly weathered: Slight discoloration on surface, slight alteration along discontinuities, less than 10% of the rock volume altered.
- 3) Moderately weathered: Discoloring evident, surface pitted and altered with alteration penetrating well below rock surfaces, weathering "halos" evident, 10% to 50% of the rock
- 4) Highly weathered: Entire mass discolored, alteration pervading nearly all of the rock with some pockets of slightly weathered rock noticeable, some minerals leached away.
- 5) Decomposed: rock reduced to a soil with relicit rock texture, generally molded and crumbled by hand.

SOIL STRUCTURE

Calcareous...... Containing calcium carbonate Slickensided...... The presence of planes of weakness having a slick and glossy appearance Interbedded...... Alternating layers of varying material

RRC Power & Energy, LLC 3801 Doris Lane Round Rock, TX 78664 Telephone: (512) 992-2087 Fax: (512) 251-2518 CLIENT: Apex Clean Energy, Inc PROJECT: **Emerson Creek Wind Project** Erie and Huron Counties, OH LOCATION:

NUMBER: MD1901007

L					1 42	λ. (Ο	12)		2010					DATE(S) DRILLED: 4/17/2019
		FIEL	D DATA				L	ΑВО	RATO	RY DA	ΛTΑ			DRILLING METHOD(S):
					(%)		ERBE IMITS	S			(%	SE SE	(%)	Hollow Stem Auger: 0 to 4 ft.; NX Wet Rock Coring: 4 to 24 ft.
IOav	i E		S //FT SQ FT		MOISTURE CONTENT (%)	LIQUID LIMIT	PLASTIC LIMIT	PLASTICITY INDEX	ISITY /CU.FT	SSIVE TH 2. FT)	STRAIN AT FAILURE (%)	CONFINING PRESSURE (POUNDS/SQ IN)	MINUS NO. 200 SIEVE (%)	GROUNDWATER INFORMATION: No groundwater encountered during drilling prior to the introduction of drilling fluid
IOAMXS IIOS	DEDTH (ET)		SAMPLES N: BLOWS/FT P: TONS/SQ FT T: BLOWS	3QD: %	MOISTUF	F LIQUI	구 PLAS	⊡ PLAS	DRY DENSITY POUNDS/CU.FT	COMPRESSIVE STRENGTH (TONS/SQ. FT)	STRAIN A	CONFINIT	MINUS N	SURFACE ELEVATION (FT): DESCRIPTION OF STRATUM
77		_	07/ 24 F		_		-			0000			_	\3 in. Topsoil
		-	N = 50/1		32									LEAN CLAY (CL), with Sand, with Gravel, dark brown, hard, dry to moist
	1	5 -	R = 50/3											SILTY GRAVEL (GM), gray, very dense, fine to coarse grained, subangular to subrounded
	士 士 -	- - 10 -	RQD = 2	25					168*	1064.88		0.0		LIMESTONE, gray, fine grained, slightly to moderately weathered, weak to moderately strong rock
7.GPJ	- - - - - - - - - - -	-	R = 99 RQD = 2	25										
- MD1901007	-{	15 - -	R = 100 RQD = 6	62										
	$\stackrel{+}{\downarrow}$ ₂	- 20 -	H											
ERSON C	<u> </u>	-	R = 96 RQD = 8	30										
901007\EN														Total Depth = 24 ft.
EK - MD1														
SON CRE														
19\EMER														
JECTS\20														
SINT/PRO														
0:02 - G:\(
- 2/5/20 20														
LO1.GDT														
OG A GNN														
- FOG - L(NDARD PE							E				REMARKS:
RENEWABLE LOG - LOG A GNNL01.GDT - 2/5/20 20:02 - G:\GINT\PROJECTS\2019\EMBRSON CREEK - MD1901007\EMBRSON CREEK 	T - ' R -	TXD(ROC	KET PENE OT CONE F K CORE R OCK QUAL	ECC	ETRA OVER	ATION RY	N RES	SISTA						GPS COORDINATES: Lat. 41.337091, Long82.797344 *Denotes Total Unit Weight

RRC Power & Energy, LLC 3801 Doris Lane Round Rock, TX 78664 Telephone: (512) 992-2087 Fax: (512) 251-2518 CLIENT: Apex Clean Energy, Inc PROJECT: **Emerson Creek Wind Project** Erie and Huron Counties, OH LOCATION:

				ı u	λ. (Ο	12)	201-	2010					DATE(S) DRILLED: 4/2/2019
	FI	ELI	D DATA			L	٩ВО	RATO	RY DA	λTΑ			DRILLING METHOD(S):
						ERBI							Hollow Stem Auger
				(%)	L	<u>-IMIT:</u>				(%	문	(%)	
				MOISTURE CONTENT (%)		_	PLASTICITY INDEX			STRAIN AT FAILURE (%)	CONFINING PRESSURE (POUNDS/SQ IN)	MINUS NO. 200 SIEVE (%)	GROUNDWATER INFORMATION:
				NO.	ΗMI	IM.	<u> </u>	Υ	ر ت (د	AILU	PRES IN)	S 00	No groundwater encountered during or immediately after drilling
MBO	l E	၂ တ	14 08 00 F 14 08 00	REO		TIC	TICI	VSIT	SSI TH Q. F.	Δ F	NG F S/SC	0.2	
l ks	DEРТН (FT)	SAMPLES	%:	STU	LIQUID LIMIT	PLASTIC LIMIT	LAS	DEN	IPRE ENG VS/S	AN.	IFIN	N SC	SURFACE ELEVATION (FT):
SOIL SYMBOL	DEP	SAN	N: BLOWS/FT P: TONS/SQ FT T: BLOWS R: % RQD: %	MO	LL	PL	PI	DRY DENSITY POUNDS/CU.FT	COMPRESSIVE STRENGTH (TONS/SQ. FT)	STR	CON (POI	N	DESCRIPTION OF STRATUM
, 1	}	+											10 in. Topsoil
	1	<u> </u>	N = 7	40									LEAN CLAY (CL), with Sand, light brown to light gray, medium stiff, moist
	5	$\frac{1}{\lambda}$	N = 65	10									SHALE, dark gray, hard to very hard, moist to wet
	₽ ĭ	+											
	F	$ \!$	N = 50/1"										
	10	\downarrow	N = 50/1"	4									Grading dry to moist
, <u> </u>	‡	+											
07.GP	<u>‡</u>	*	N = 50/1"										
MD1901007	15	<u> </u>	N = 50/1"										
ME I	}	+											
	F		N = 50/1"										
N CR													Auger Refusal = 19.5 ft.
RSOI													
EME													
1007													
ID190													
χ. Σ													
SI SI													
NON													
MER													
19/EI													
rs/20													
PRC													
GINT													
ė.													
20:02													
5/20													
T - 2/													
1.GD													
NNLO													
A G													
RENEWABLE LOG - LOG A GNNL01.GDT - 2/5/20 20:02 - G:\GINT\PROJECTS\2019\EMERSON CREEK - MD1901007\EMERSON CREEK													
9	J. ~				1041-	TEST	DEC	OTANIC	<u> </u>				DEMARKS
BLE I	P - P0	OCK	DARD PENE ET PENETRO	OMET	ER F	RESIS	TAN	CE	, ⊏				REMARKS: GPS COORDINATES: Lat. 41.331470, Long82.687070
EWA			CONE PEN			N RES	SISTA	NCE					Auger refusal at 7 ft.; offset 32 ft. north of stake, drill to 19.5 ft.
REN			CK QUALITY			1OITA	١						

RRC Power & Energy, LLC 3801 Doris Lane Round Rock, TX 78664 Telephone: (512) 992-2087 Fax: (512) 251-2518 CLIENT: Apex Clean Energy, Inc PROJECT: **Emerson Creek Wind Project** LOCATION: Erie and Huron Counties, OH

NUMBER: MD1901007

DATE(S) DRILLED: 4/3/2019

						(-								DATE(S) DRILLED: 4/3/2019
		FIE	ELD	DATA			L/	ΑВО	RATO	RY DA	ΛTΑ			DRILLING METHOD(S):
							ERBE							Hollow Stem Auger
					(%)	L	IMITS	S			<u></u>	ш	(%)	
					ΙN)EX			М) N	VE	CDOLINDWATED INFORMATION.
					N N	⊨	Ψ	PLASTICITY INDEX	_		LUR	S (Z	SIE	GROUNDWATER INFORMATION: Groundwater encountered at 19 ft. during drilling and not measured
5	2			 - 	8	M	CLI	CE	ITY U.F	SIVE T FT)	ΕĀ	R S	200	Groundwater encountered at 19 it. during drilling and not measured immediately after drilling
		FT)	ES	VS/F S/SQ VS	URE	LIQUID LIMIT	PLASTIC LIMIT	\STI	ENS S/C	SQ.	۱A۲	DS/SQ	Š.	, ,
Canny	<u>ا</u> ا	БЕРТН (FT)	SAMPLES	N: BLOWS/FT P: TONS/SQ FT T: BLOWS R: % RQD: %	MOISTURE CONTENT (%)	Ρ	PL		DRY DENSITY POUNDS/CU.FT	COMPRESSIVE STRENGTH (TONS/SQ. FT)	STRAIN AT FAILURE (%)	CONFINING PRESSURE (POUNDS/SQ IN)	MINUS NO. 200 SIEVE (%)	SURFACE ELEVATION (FT):
		吕	∖&	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ĕ	LL	PL	PI	DR PO	SPE	ST	85	Ī	DESCRIPTION OF STRATUM
	***		$\frac{1}{M}$	N = 7	30									10 in. Topsoil
	1		7	IN - 7	30									LEAN CLAY (CL), trace Sand, light brown, medium stiff, dry to moist
É	#	5	$\frac{1}{M}$	N = 50/1"										SHALE, dark gray, hard, dry to moist
	₹	Ü												
	₽		-X	N = 50/1"	3									
	⇟	10	\forall	N = 25/0"										
, <u> </u>	⇟	-	\prod											
7.GP.	₽		-X	N = 50/1"										
0100	▋	15	$\overline{\mathbb{A}}$	N = 50/1"	2									
MD1901007	▋		1											
	⇟		\perp	Z	z									
CREEK	₽	20	-M	N = 50/1"										
NO NO	⇟		11											
MER	▋		-	N = 25/0" /-										
S\2019\EMERSON CREEK - MD1901007\EMERSON				14 - 20/0										Auger Refusal = 24 ft.
9010														Auger Neiusar – 24 ft.
MD1														
Ä														
CRE														
SSON														
ME														
019\E														
SZEC														
PRC														
E I														
20:02														
3/20 5														
- 2/6														
GD.														
NE01														
y GN														
90														
RENEWABLE LOG - LOG A GNNL01.GDT - 2/6/20 20:02 - G:\GINT\PROJECT 														
ELO				ARD PENET						E				REMARKS:
VABL				ET PENETRO CONE PEN										GPS COORDINATES: Lat. 41.327524, Long82.684174
ine.	R	- RO	CK	CORE RECO	OVEF	RY								
ឌ∟	r	.QD -	ĸυ	CK QUALITY	י טבט	אוטונ	ATTON	N						

RRC Power & Energy, LLC 3801 Doris Lane Round Rock, TX 78664 Telephone: (512) 992-2087 Fax: (512) 251-2518 CLIENT: Apex Clean Energy, Inc PROJECT: **Emerson Creek Wind Project** LOCATION: Erie and Huron Counties, OH

L					ıa	7. (3	12)	201-	2010					DATE(S) DRILLED: 4/22/2019
		FIE	LC	DATA			L	ΑВО	RATO	RY DA	ATA			DRILLING METHOD(S):
					(%)		ERBI				(9	111	(%)	Hollow Stem Auger: 0 to 10 ft.; NX Wet Rock Coring: 10 to 27 ft.
	SOIL SYMBOL	FT)	S	N. BLOWS/FT P: TONS/SQ FT T: BLOWS R: % RQD: %	MOISTURE CONTENT (%)	LIQUID LIMIT	PLASTIC LIMIT	PLASTICITY INDEX	DRY DENSITY POUNDS/CU.FT	COMPRESSIVE STRENGTH (TONS/SQ. FT)	STRAIN AT FAILURE (%)	CONFINING PRESSURE (POUNDS/SQ IN)	MINUS NO. 200 SIEVE (%)	GROUNDWATER INFORMATION: No groundwater encountered prior to the introduction of drilling fluid
	S	БЕРТН (FT)	SAMPLES	% :0 S/S/S S/S/S S/O/S S/O/S S/O/S	ISTU	ΠØΠ	PLAS	PLAS	, DEN JNDS	APRE ENG NS/S	AIN,	N N N	N SN	SURFACE ELEVATION (FT):
	SO	DEF	SAN	S G H S S S S S S S S S S S S S S S S S	MO	LL	PL	PI	DR) POL	STS OF	STR	98	Ν	DESCRIPTION OF STRATUM
			$\frac{1}{\sqrt{1}}$	N = 7	17									\1 in. Topsoil
		5	\Box	N = 15	13									LEAN CLAY (CL), with Sand, gray to brown, medium stiff to hard, dry to moist
			Н	N = 41	12									Grading gray
	4	10		N = 50/4"										LIMESTONE, gray, fine grained, slightly weathered, weak to
- MD1901007.GPJ		15		R = 100 RQD = 23 R = 98 RQD = 75										moderately strong rock
		20	- - - - - - - - -	R = 97 RQD = 90										
G:\GINT\PROJECTS\2019\EMERSON CREEK - MD1901007\EMERSON CREEK		25		R = 100 RQD = 100										
EEK - MD1														Total Depth = 27 ft.
ERSON CE														
rS\2019\EM														
TAPROJECT														
32 - G:\GIN														
2/5/20 20:0														
VL01.GDT -														
- LOG A GNI														
RENEWABLE LOG - LOG A GNNL01.GDT - 2/5/20 20:02 -	F T F	? - PO(- TXE ? - RO	CKE OOT CK	DARD PENE ET PENETRO CONE PEN CORE RECO	OMET ETRA OVEF	ER F ATION RY	RESIS N RES	TAN(SISTA	CE	<u> </u>				REMARKS: GPS COORDINATES: Lat. 41.318510, Long82.797720

RRC Power & Energy, LLC 3801 Doris Lane Round Rock, TX 78664 Telephone: (512) 992-2087 Fax: (512) 251-2518 CLIENT: Apex Clean Energy, Inc PROJECT: **Emerson Creek Wind Project** Erie and Huron Counties, OH LOCATION:

NUMBER: MD1901007

					ıa	x. (J	12)	231-	-2010					DATE(S) DRILLED: 4/23/0219
		FIE	LD	DATA			L	4ВО	RATO	DRY DA	ATA			DRILLING METHOD(S):
							ERBI							Hollow Stem Auger: 0 to 7 ft.; NX Wet Rock Coring: 7 to 27 ft.
				_	MOISTURE CONTENT (%)			PLASTICITY INDEX	> E.	VE T)	STRAIN AT FAILURE (%)	PRESSURE NIN)	200 SIEVE (%)	GROUNDWATER INFORMATION: No groundwater encountered prior to the introduction of drilling fluid
IOMNS IIOS		БЕРТН (FT)	SAMPLES	N: BLOWS/FT P: TONS/SQ FT T: BLOWS R: % RQD: %	10ISTURE (- LIQUID LIMIT	PLASTIC LIMIT	型 PLASTICI	DRY DENSITY POUNDS/CU.FT	COMPRESSIVE STRENGTH (TONS/SQ. FT)	TRAIN AT F	CONFINING PRESSURE (POUNDS/SQ IN)	MINUS NO. 2	SURFACE ELEVATION (FT):
777	7/	Δ	\ <u>\</u>	/ Z L F K K	2	LL	PL	PI		Owc	S	0.6	Δ	DESCRIPTION OF STRATUM \[\(\) 2 in. Topsoil \(\)
			X	N = 5	19									LEAN CLAY (CL), trace Sand and Gravel, brown, medium stiff, dry to moist
		5	X	N = 50/4"	13									CLAYEY GRAVEL (GC), brown, very dense, moist, coarse grained, subangular to subrounded
		10		R = 88.3 RQD = 15										LIMESTONE, fine to medium grained, moderately weathered, weak to moderately strong rock
- MD1901007.GPJ	 	15		R = 100 RQD = 45										
RSON CREEK	-	20		R = 100 RQD = 91					165*	1098.72		0.0		Grading slightly to moderately weathered
1901007\EME	 	25		R = 100 RQD = 87										
CREEK - MC														Total Depth = 27 ft.
MERSON														
CTS/2019/E														
NT/PROJE														
:02 - G:\GII														
- 2/5/20 20														
NL01.GDT														
- LOG A GN														
RENEWABLE LOG - LOG A GNNL01.GDT - 2/5/20 20:02 - G:\GINT\PROJECTS\2019\EMERSON CREEK - MD1901007\EMERSON CREEK	P T R	- PO(- TXD - RO(OKE OT CK	ARD PENET T PENETRO CONE PEN CORE RECO	OMET IETRA OVEF	ER F ATION RY	RESIS N RES	STAN(SISTA	CE	E				REMARKS: GPS COORDINATES: Lat. 41.318050, Long82.783112 *Denotes Total Unit Weight

RRC Power & Energy, LLC 3801 Doris Lane Round Rock, TX 78664 Telephone: (512) 992-2087 Fax: (512) 251-2518 CLIENT: Apex Clean Energy, Inc PROJECT: **Emerson Creek Wind Project** LOCATION: Erie and Huron Counties, OH

					га	х. (э	12).	251-	2518					DATE(S) DRILLED: 4/23/2019
		FIE	LD	DATA			L	4BO	RATO	DRY DA	AΤΑ			DRILLING METHOD(S):
Ī					(%)	ATT L	ERBI	S			(%	Щ.	(%)	Hollow Stem Auger: 0 to 8 ft.; NX Wet Rock Coring: 8 to 28 ft.
	SOIL SYMBOL	DЕРТН (FT)	SAMPLES	N: BLOWS/FT P: TONS/SQ FT T: BLOWS R: % RQD: %	MOISTURE CONTENT (%)	LIQUID LIMIT	PLASTIC LIMIT	PLASTICITY INDEX	DRY DENSITY POUNDS/CU.FT	COMPRESSIVE STRENGTH (TONS/SQ. FT)	STRAIN AT FAILURE (%)	CONFINING PRESSURE (POUNDS/SQ IN)	MINUS NO. 200 SIEVE (%)	GROUNDWATER INFORMATION: No groundwater encountered prior to the introduction of drilling fluid SURFACE ELEVATION (FT):
	SOIL	DEP	SAM	N: BL T: BL RQD	MO	LL	PL	PI	POU	STR (TON	STR	NO JO	N N	DESCRIPTION OF STRATUM
		5	\prod	N = 6 N = 12	18									\[1 in. Topsoil \\ LEAN CLAY (CL), with Sand and Gravel, light reddish brown, medium stiff to hard, dry to moist
			$\frac{1}{M}$	N = 50/3"	11									_ Grading gray
.GPJ		10	1	R = 87.5 RQD = 15										LIMESTONE, gray, fine grained, slightly weathered, weak to moderately strong rock
- MD1901007		15	- - - - - -	R = 100 RQD = 40										Grading fresh to slightly weathered
RSON CREEK		20	- - - - - -	R = 100 RQD = 96										
01901007\EME		25		R = 100 RQD = 95										
RENEWABLE LOG - LOG A GNNL01.GDT - 2/5/20 20:02 - G:\GINT\PROJECTS\2019\EMERSON CREEK - MD1901007\EMERSON CREEK														Total Depth = 28 ft.
RENEWABLE LOG	F 7 F	P - PO T - TXE R - RO	CKE OOT CK	ARD PENET T PENETRO CONE PEN CORE RECO	OMET IETRA OVER	TER F ATION RY	RESIS N RES	STANG	CE	I CE				REMARKS: GPS COORDINATES: Lat. 41.316612, Long82.776072

RRC Power & Energy, LLC 3801 Doris Lane Round Rock, TX 78664 Telephone: (512) 992-2087 Fax: (512) 251-2518 CLIENT: Apex Clean Energy, Inc PROJECT: **Emerson Creek Wind Project** LOCATION: Erie and Huron Counties, OH

					га	x. (ɔ	12)	251-	2518					DATE(S) DRILLED: 4/24/2019
		FIE	LD	DATA			L	ABO	RATO	RY DA	λTΑ			DRILLING METHOD(S):
					(%)	ATT L	ERBI	S			(%	Щ	(%)	Hollow Stem Auger: 0 to 13 ft.; NX Wet Rock Coring: 13 to 28 ft.
IOGWAN IION	JIL STIMBOL	ОЕРТН (FT)	SAMPLES	N. BLOWS/FT P. TONS/SQ FT T. BLOWS R: % RQD: %	MOISTURE CONTENT (%)	LIQUID LIMIT	PLASTIC LIMIT	PLASTICITY INDEX	DRY DENSITY POUNDS/CU.FT	COMPRESSIVE STRENGTH (TONS/SQ. FT)	STRAIN AT FAILURE (%)	CONFINING PRESSURE (POUNDS/SQ IN)	MINUS NO. 200 SIEVE (%)	GROUNDWATER INFORMATION: No groundwater encountered prior to the introduction of drilling fluid SURFACE ELEVATION (FT):
) }	6 221	<u> </u>	\\gamma_{\delta}/	, <u> </u>	Ž	LL	PL	PI	PC	222	S	86	Σ	DESCRIPTION OF STRATUM \[\bar{3} \text{ in. Topsoil} \]
		5		N = 6 N = 18 N = 23 N = 23	17 13 10	24	16	8					72	LEAN CLAY (CL), with Sand, light reddish brown, medium stiff to hard, dry to moist Grading grayish brown
G A				N = 50/2"										_ Grading gray
- MD1901007.0		15	1	R = 99 RQD = 70										LIMESTONE, gray, fine grained, slightly weathered, weak to moderately strong rock
		20	- - -	R = 98 RQD = 92										
	# # #	25		R = 94 RQD = 81										
CREEK - MD														Total Depth = 28 ft.
9\EMERSON														
DJECTS/2018														
- 2/5/20 20:03 - G:\GINT\PROJECTS														
/5/20 20:03 -														
NL01.GDT - 2														
- LOG A GN														
RENEWABLE LOG - LOG A GNNL01.GDT	P - T - R -	POC TXD ROC	OKE OT OK (ARD PENET T PENETRO CONE PEN CORE RECO CK QUALITY	OMET ETRA OVER	TER F ATION RY	RESIS N RES	TANG SISTA	CE	i <u> </u>		I		REMARKS: GPS COORDINATES: Lat. 41.314163, Long82.787932

RRC Power & Energy, LLC 3801 Doris Lane Round Rock, TX 78664 Telephone: (512) 992-2087 Fax: (512) 251-2518 CLIENT: Apex Clean Energy, Inc PROJECT: **Emerson Creek Wind Project** LOCATION: Erie and Huron Counties, OH

					га	х. (э	12)	251-	2518					DATE(S) DRILLED: 4/24/2019
Ī		FIE	LC	DATA			L	ABO	RATO	RY DA	λTΑ			DRILLING METHOD(S):
Ī						ATT	ERBI	ERG						Hollow Stem Auger
	SOIL SYMBOL	DEPTH (FT)	SAMPLES	N. BLOWS/FT P: TONS/SQ FT T: BLOWS R: % RQD: %	MOISTURE CONTENT (%)	Т LIQUID LIMIT	PLASTIC LIMIT	□ PLASTICITY INDEX	DRY DENSITY POUNDS/CU.FT	COMPRESSIVE STRENGTH (TONS/SQ. FT)	STRAIN AT FAILURE (%)	CONFINING PRESSURE (POUNDS/SQ IN)	MINUS NO. 200 SIEVE (%)	GROUNDWATER INFORMATION: No groundwater encountered during or immediately after drilling SURFACE ELEVATION (FT): DESCRIPTION OF STRATUM
			$\frac{1}{4}$	N = 6										∖3 in. Topsoil
		5 - 5		N = 8 N = 21	15 15									LEAN CLAY (CL), with Sand, brown, medium stiff to hard, dry to moist Grading trace Gravel
			\Box	N = 41	9									
_		10	\mathcal{H}	11 - 41										
MD1901007.GP.		- - - 15 -		N = 31 R = 100 RQD = 92										WEATHERED SHALE, gray, fine to coarse grained, moderately weathered, weak rock, compacted conglomerate looking material WEATHERED SHALE, dark gray, very hard, dry to moist
ERSON CREEK -		20	-	N = 71/8"	17									
07\EM		25	\times	N = 50/2"										
RENEWABLE LOG - LOG A GNNL01.GDT - 2/5/20 20:03 - G:\GINT\PROJECTS\2019\EMERSON CREEK - MD1901007\EMERSON														Total depth = 25 ft.
RENEWABLE LC	<u>-</u> -	P - PO F - TXE R - RO	CKE OOT CK	DARD PENET ET PENETRO CONE PEN CORE RECO CK QUALITY	OMET ETRA	TER F ATION RY	RESIS N RES	TANG SISTA	CE	E				REMARKS: GPS COORDINATES: Lat. 41.311303, Long82.784857

RRC Power & Energy, LLC 3801 Doris Lane Round Rock, TX 78664 Telephone: (512) 992-2087 Fax: (512) 251-2518 CLIENT: Apex Clean Energy, Inc PROJECT: **Emerson Creek Wind Project** LOCATION: Erie and Huron Counties, OH

					Fa	x: (5	12) :	251-	2518					DATE(S) DRILLED: 4/22/2019
		FIE	LD	DATA			L/	ABO	RATO	ORY DA	ATA			DRILLING METHOD(S):
					(%)	ATT L	ERBE	S I			(%)	ш	(%)	Hollow Stem Auger: 0 to 14 ft.; NX Wet Rock Coring: 14 to 28 ft.
I COMPAGE II CO	OIL STMBOL	ОЕРТН (FT)	SAMPLES	N: BLOWS/FT P: TONS/SQ FT T: BLOWS R: % RQD: %	MOISTURE CONTENT (%)	F LIQUID LIMIT	PLASTIC LIMIT	PLASTICITY INDEX	DRY DENSITY POUNDS/CU.FT	COMPRESSIVE STRENGTH (TONS/SQ. FT)	STRAIN AT FAILURE (%)	CONFINING PRESSURE (POUNDS/SQ IN)	MINUS NO. 200 SIEVE (%)	GROUNDWATER INFORMATION: No groundwater encountered prior to the introduction of drilling fluid SURFACE ELEVATION (FT):
	, //-		Н			LL	PL	PI		080	S	0 5	2	DESCRIPTION OF STRATUM \[\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
			X	N = 7	21									LEAN CLAY (CL), trace Sand, brown, medium stiff, dry to moist
		5	X	N = 8	18									
			\forall	N = 30										CLAYEY SAND (SC), brown, medium dense to dense, moist, fine to medium grained
		10	$\overline{\mathbb{A}}$	N = 34										
GP.			$\frac{1}{2}$	N = 66/10"	12									FAT CLAY (CH), trace Sand, brown, hard, dry to moist
- MD1901007.		15		R = 97 RQD = 78										LIMESTONE, gray, fine grained, slightly weathered, weak to moderately strong rock
RSON CREEK		20		R = 98 RQD = 92										
- MD1901007/EMERSON CREEK	<u> </u>	25	- - - -	R = 100 RQD = 95										
REEK - MD														Total Depth = 28 ft.
2019\EMERSON CREEK														
NT/PROJEC														
:03 - G:\GIN														
- 2/5/20 20														
NL01.GDT														
LOG A GN														
RENEWABLE LOG - LOG A GNNL01.GDT - 2/5/20 20:03 - G:\GINTPROJECTS\	P T R	- POO - TXD - ROO	CKE OOT CK	ARD PENE T PENETRO CONE PEN CORE RECO	OMET IETRA OVEF	ER F ATION RY	RESIS N RES	TAN(SISTA	CE	E				REMARKS: GPS COORDINATES: Lat. 41.309756, Long82.799754

RRC Power & Energy, LLC 3801 Doris Lane Round Rock, TX 78664 Telephone: (512) 992-2087 Fax: (512) 251-2518 CLIENT: Apex Clean Energy, Inc PROJECT: **Emerson Creek Wind Project** LOCATION: Erie and Huron Counties, OH

					ı a	. (5	12)	201-	2010					DATE(S) DRILLED: 4/25/2019
		FIE	LD	DATA			LA	ΑВО	RATO	RY DA	ATA			DRILLING METHOD(S):
					VT (%)		ERBE	S I			(%)	JRE	/E (%)	Hollow Stem Auger: 0 to 8 ft.; NX Wet Rock Coring: 8 to 28 ft.
	30L			F E	MOISTURE CONTENT (%)	LIMIT	PLASTIC LIMIT	PLASTICITY INDEX	ITY SU.FT	SIVE - FT)	STRAIN AT FAILURE (%)	CONFINING PRESSURE (POUNDS/SQ IN)	MINUS NO. 200 SIEVE (%)	GROUNDWATER INFORMATION: No groundwater encountered prior to the introduction of drilling fluid
	SOIL SYMBOL	БЕРТН (FT)	SAMPLES	N: BLOWS/FT P: TONS/SQ FT T: BLOWS R: % RQD: %	OISTURE	- LIQUID LIMIT	구 PLASTI	⊒ PLASTI	DRY DENSITY POUNDS/CU.FT	COMPRESSIVE STRENGTH (TONS/SQ. FT)	TRAIN AT	ONFINING OUNDS/	ON SONII	SURFACE ELEVATION (FT):
	ν 777		\o	/ Z L L K K	2	LL	PL	PI		Owc	S	0.6	2	DESCRIPTION OF STRATUM \[\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
		5	\mathbb{I}	N = 6 N = 11	21									LEAN CLAY (CL), with Sand, brown, medium stiff to hard, dry to moist
		10	1	N = 50/2" R = 92	_16_									LIMESTONE, gray, fine grained, slightly weathered, weak to moderately strong rock
- MD1901007.GPJ		15		RQD = 53 R = 96										Grading moderately weathered
				RQD = 75										
G:\GINT\PROJECTS\2019\EMERSON CREEK - MD1901007\EMERSON CREEK		20	- - - - -	R = 99 RQD = 97										
D1901007\EN		25		R = 100 RQD = 92										
CREEK - M														Total Depth = 28 ft.
EMERSON														
JECTS\2019														
:\GINT\PRO														
20 20:03 - G														
11.GDT - 2/5/.														
OG A GNNLC														
RENEWABLE LOG - LOG A GNNL01.GDT - 2/5/20 20:03 -	F 7 F	- PO(- TXE R - RO	CKE OOT CK	ARD PENET T PENETRO CONE PEN CORE RECO	OMET ETRA OVER	ER F ATION RY	RESIS N RES	TAN(SISTA	CE	E				REMARKS: GPS COORDINATES: Lat. 41.305617, Long82.787640

RRC Power & Energy, LLC 3801 Doris Lane Round Rock, TX 78664 Telephone: (512) 992-2087 Fax: (512) 251-2518 CLIENT: Apex Clean Energy, Inc PROJECT: **Emerson Creek Wind Project** LOCATION: Erie and Huron Counties, OH

				га	x. (ɔ	12)	251-	2518					DATE(S) DRILLED: 4/25/2019
	FIE	ELD	DATA			L	4BO	RATO	DRY DA	λTΑ			DRILLING METHOD(S):
				(%)	ATT L	ERBI	ERG S			<u>(</u>		(%)	Hollow Stem Auger: 0 to 21 ft.; NX Wet Rock Coring: 21 to 31 ft.
SOIL SYMBOL	DЕРТН (FT)	SAMPLES	N: BLOWS/FT P: TONS/SQ FT T: BLOWS R: % RQD: %	MOISTURE CONTENT (%)	Г СПО ПОПТ	PLASTIC LIMIT	PLASTICITY INDEX	DRY DENSITY POUNDS/CU.FT	COMPRESSIVE STRENGTH (TONS/SQ. FT)	STRAIN AT FAILURE (%)	CONFINING PRESSURE (POUNDS/SQ IN)	MINUS NO. 200 SIEVE (%)	GROUNDWATER INFORMATION: No groundwater encountered prior to the introduction of drilling fluid SURFACE ELEVATION (FT): DESCRIPTION OF STRATUM
		Н		_		' -	' '		000	0)	00	_	\1 in. Topsoil
	- - - 5		N = 5 N = 6	28									FAT CLAY (CH), trace Sand, brown, medium stiff, dry to moist
	- -		N = 12	19									LEAN CLAY (CL), with Sand, brown, stiff, dry to moist
	- - 10	\Box	N = 51	11									SHALE, gray, hard, dry to moist
	- - -												
	-	\Box	N = 93/7"										
	- 15 - -	-X	N = 50/4"	16									
	- - - 20	- X	N = 50/5"										
	- - - - 25		R = 100 RQD = 88										LIMESTONE, gray, fine grained, slightly weathered, weak to moderately strong rock
	- - - - 30	- - -	R = 100 RQD = 92										
	-												Total Depth = 31 ft.
N F F													
I F	P - PO T - TXE	CKE	ARD PENET T PENETRO CONE PEN	OMET ETRA	TER F	RESIS	STANG	CE	E E		1		REMARKS: GPS COORDINATES: Lat. 41.305128, Long82.781567
F	r - TXE R - RO	OOT CK		ETR/	ATION YS	N RES	SISTA						G1 G G G G G G G G G G G G G G G G G G

RRC Power & Energy, LLC 3801 Doris Lane Round Rock, TX 78664 Telephone: (512) 992-2087 Fax: (512) 251-2518

CLIENT: Apex Clean Energy, Inc **Emerson Creek Wind Project** PROJECT: LOCATION: Erie and Huron Counties, OH

				Га	х. (Э	12)	251-	-2010					DATE(S) DRILLED: 4/2/2019
	FIE	LD	DATA			L	4ВО	RATO	DRY DA	ATA			DRILLING METHOD(S):
				(%)	ATT	ERBI	S			(%)	Ш	(%)	Hollow Stem Auger
SOIL SYMBOL	ОЕРТН (FT)	SAMPLES	N: BLOWS/FT P: TONS/SQ FT T: BLOWS R: % RQD: %	MOISTURE CONTENT (%)	F LIQUID LIMIT	PLASTIC LIMIT	PLASTICITY INDEX	DRY DENSITY POUNDS/CU.FT	COMPRESSIVE STRENGTH (TONS/SQ. FT)	STRAIN AT FAILURE (%)	CONFINING PRESSURE (POUNDS/SQ IN)	MINUS NO. 200 SIEVE (%)	GROUNDWATER INFORMATION: Groundwater encountered at 11.5 ft. during drilling and not measured immediately after drilling SURFACE ELEVATION (FT): DESCRIPTION OF STRATUM
X 1,;	_	\forall											10 in. Topsoil
	- - - 5	\exists	N = 8 N = 5	22									LEAN CLAY (CL), trace Sand, light brown, medium stiff, moist
	-	\forall	N = 75/9"	26									SHALE, dark gray, very hard, wet
	- 10	\Box	N = 50/2"	7									
	-	\forall	N = 50/2"	¥-									Grading dry to moist, interbedded with occasional Clay seams
	- - 15 -		N = 50/2"										
	- 20		N = 50/4"	13									
	- - - 25 -	-X	N = 50/5"										
	- - - 30	-	N = 50/3"										
													Auger Refusal at 30.5 ft.
	P - PO	CKE	ARD PENE T PENETRO CONE PEN	OME	ΓER F	RESIS	STANG	CE	E E				REMARKS: GPS COORDINATES: Lat. 41.303804, Long82.696969
	R - RO	CK	CORE REC	OVEF	RY								

RRC Power & Energy, LLC 3801 Doris Lane Round Rock, TX 78664 Telephone: (512) 992-2087 Fax: (512) 251-2518 CLIENT: Apex Clean Energy, Inc PROJECT: **Emerson Creek Wind Project** LOCATION: Erie and Huron Counties, OH

				ıa	х. (Э	12)	231-	2010					DATE(S) DRILLED: 4/1/2019
	FI	ELD	DATA			L	ΑВО	RATO	RY DA	ATA			DRILLING METHOD(S):
						ERBI							Hollow Stem Auger
007EMERSON CREEK - MD1901007.GPJ	5 10 25 25		N = 23 S N = 50/5" N = 50/4" N = 50/4" N = 50/4" N = 50/4" N = 50/4"	16 15 10		P PLASTIC LIMIT		DRY DENSITY POUNDS/CU.FT	COMPRESSIVE STRENGTH (TONS/SQ. FT)	STRAIN AT FAILURE (%)	CONFINING PRESSURE (POUNDS/SQ IN)	MINUS NO. 200 SIEVE (%)	GROUNDWATER INFORMATION: Groundwater encountered at 2.5 ft. during drilling and measured at 13.5 ft. immediately after drilling SURFACE ELEVATION (FT): DESCRIPTION OF STRATUM 10 in. Topsoil LEAN CLAY (CL), with Sand, dark brown, very stiff, moist SHALE, gray, very hard, moist to wet Grading light gray Grading gray
RENEWABLE LOG - LOG A GNNL01.GDT - 2/5/20 20:03 - G:\GINT\PROJECTS\2019\EMERSON CREEK - MD1901007\EMERSON													Auger Refusal at 29 ft.
RENEWABLE L	P - PC T - TX R - RC	OCKE DOT OCK	DARD PENET ET PENETRO CONE PEN CORE RECO	OMET IETRA OVEF	TER F ATION RY	RESIS N RES	TAN(SISTA	CE	E ———				REMARKS: GPS COORDINATES: Lat. 41.303059, Long82.688400

RRC Power & Energy, LLC 3801 Doris Lane Round Rock, TX 78664 Telephone: (512) 992-2087 Fax: (512) 251-2518

CLIENT: Apex Clean Energy, Inc PROJECT: **Emerson Creek Wind Project** LOCATION: Erie and Huron Counties, OH

				Fa	x: (5	12)	251-	2518					DATE(S) DRILLED: 4/1/2019
	FI	EL	D DATA			L/	ABO	RATO	RY DA	λTΑ			DRILLING METHOD(S):
					ATT	ERBE	ERG						Hollow Stem Auger
SOIL SYMBOL	DEPTH (FT)	SAMPLES	N: BLOWS/FT P: TONS/SQ FT T: BLOWS R: % ROD: %	MOISTURE CONTENT (%)	F LIQUID LIMIT	PLASTIC LIMIT	PLASTICITY INDEX	DRY DENSITY POUNDS/CU.FT	COMPRESSIVE STRENGTH (TONS/SQ. FT)	STRAIN AT FAILURE (%)	CONFINING PRESSURE (POUNDS/SQ IN)	MINUS NO. 200 SIEVE (%)	GROUNDWATER INFORMATION: Groundwater encountered at 7 ft. during drilling and measured at 36 ft. immediately after drilling SURFACE ELEVATION (FT): DESCRIPTION OF STRATUM
		+											√6 in. Topsoil
	5	X		24 16									FAT CLAY (CH), with Sand, dark brown, medium stiff to stiff, dry to moist Grading trace Gravel
	<u> </u>	1	N = 50/3"	Ī									SHALE, dark brown hard, dry to moist
	10	1	N = 50/2"	11									Grading dark gray
GB	<u> </u>	\downarrow	N = 50/2"										
	15	$\frac{1}{\sqrt{2}}$	N = 50/1"										
MD1901007	‡	1											
CREEK - I	20	<u> </u>	N = 50/4"										
MD1901007/EMERSON	25	- <u>X</u>	N = 50/2"										
CREEK - MD1	30	- <u>X</u>	N = 50/3"	5									
EMERSON	35	<u> </u>	N = 50/3"	X									
(2019)		-	N = 50/3"	Ī									
PROJEC			11 00/0										Auger Refusal = 39.5 ft.
- G:\GINT													
/20 20:03													
GDT - 2/5													
GNNL01.													
-LOG A (
RENEWABLE LOG - LOG A GNNL01.GDT - 2/5/20 20:03 - G:\GINT\PROJECTS'	P - P0 T - TX R - R0	DCK (DO) DCK	LOARD PENE ET PENETR CONE PEI CORE REC OCK QUALIT	OMETRA NETRA OVER	TER F ATION RY	RESIS N RES	TANG SISTA	CE	<u> </u>				REMARKS: GPS COORDINATES: Lat. 41.301861, Long82.683923

RRC Power & Energy, LLC 3801 Doris Lane Round Rock, TX 78664 Telephone: (512) 992-2087 Fax: (512) 251-2518 CLIENT: Apex Clean Energy, Inc PROJECT: **Emerson Creek Wind Project** LOCATION: Erie and Huron Counties, OH

NUMBER: MD1901007

					Fa	x: (5	12) :	251-	2518					DATE(S) DRILLED: 5/22/2019 - 5/23/2019
		FIE	LC	DATA			L	ABO	RATO	ORY DA	ATA			DRILLING METHOD(S):
					(%)		ERBE IMITS	S			(%)	뿠	(%)	Hollow Stem Auger: 0 to 11 ft., 19 to 38 ft.; NX Wet Rock Coring: 11 to 19 ft.
I COMPANY II CO	IL STMBOL	DЕРТН (FT)	SAMPLES	N: BLOWS/FT P: TONS/SQ FT T: BLOWS R: % RQD: %	MOISTURE CONTENT (%)	LIQUID LIMIT	PLASTIC LIMIT	PLASTICITY INDEX	DRY DENSITY POUNDS/CU.FT	COMPRESSIVE STRENGTH (TONS/SQ. FT)	STRAIN AT FAILURE (%)	CONFINING PRESSURE (POUNDS/SQ IN)	MINUS NO. 200 SIEVE (%)	GROUNDWATER INFORMATION: Groundwater encountered at 7 ft. during drilling prior to the introduction of drilling fluid SURFACE ELEVATION (FT):
27	22	吕	\ <u></u>	S.G. S.G.	Σ	LL	PL	PI	DR PO	ST)	STI	88	Σ	DESCRIPTION OF STRATUM
			\Box	N = 4										\\\1 in. Topsoil \\\\LEAN CLAY (CL), with Sand, brown, soft to hard, dry to moist
		5	-X - - -	N = 2 P = N/A*	26									
		10	$\overline{\mathbb{X}}$	N = 93/10"	14									Grading trace Gravel
1007.GPJ		15		R = 7 RQD = 0										LIMESTONE, gray, fine grained, moderately weathered, weak to moderately strong rock
EK - MD1901007		15		R = 3 RQD = 0										
ON CREEK		20	$\frac{1}{2}$	N = 41										SHALE, brown, medium hard, dry to moist, with occasional Gravel
MD1901007\EMERSO		25	-X -X	N = 44	11	28	18	10					65	
CREEK - MD1		30	-X	N = 94/9"										Grading grayish black, moist
2019\EMERSON (35	- -X -	N = 50/4"										
OJECTS/20														Auger Refusal at 38 ft.
::\GINT\PR														
20 20:03 - G														
.GDT - 2/5/2														
A GNNL01.														
3-LOG,														
RENEWABLE LOG - LOG A GNNL01.GDT - 2/5/20 20:03 - G.\GINT\PROJECTS\	P T R	- PO(- TXE - RO	CKE OOT CK	OARD PENET ET PENETRO CONE PEN CORE RECO	OMET IETRA OVEF	ER F ATION RY	RESIS NRES	TANG SISTA	CE	E		ı		REMARKS: GPS COORDINATES: Lat. 41.297773, Long82.741589 *No Recovery

T - TXDOT CONE PENETRATION RESISTANCE R - ROCK CORE RECOVERY RQD - ROCK QUALITY DESIGNATION

RRC Power & Energy, LLC 3801 Doris Lane Round Rock, TX 78664 Telephone: (512) 992-2087 Fax: (512) 251-2518 CLIENT: Apex Clean Energy, Inc PROJECT: **Emerson Creek Wind Project** LOCATION: Erie and Huron Counties, OH

				га	X. (S	12)	201-	2010					DATE(S) DRILLED: 4/3/2019 - 4/4/2019
	FIE	ELD	DATA			L/	ABO	RATC	RY DA	ATA			DRILLING METHOD(S):
				NTENT (%)	L	ERBE IMITS	S	_		LURE (%)	(ESSURE	SIEVE (%)	Hollow Stem Auger GROUNDWATER INFORMATION: Groundwater encountered at 7 ft. during drilling and measured at 24
SOIL SYMBOL	ОЕРТН (FT)	SAMPLES	N: BLOWS/FT P: TONS/SQ FT T: BLOWS R: % RQD: %	MOISTURE CONTENT (%)	- LIQUID LIMIT	PLASTIC LIMIT	PLASTICITY INDEX	DRY DENSITY POUNDS/CU.FT	COMPRESSIVE STRENGTH (TONS/SQ. FT)	STRAIN AT FAILURE (%)	CONFINING PRESSURE (POUNDS/SQ IN)	MINUS NO. 200 SIEVE (%)	ft. immediately after drilling SURFACE ELEVATION (FT):
.74.1 ^{3/} .		\o	/ Z T H K K	2	LL	PL	PI		000	S	0.6	2	DESCRIPTION OF STRATUM 10 in. Topsoil
	E	$\frac{1}{4}$	N = 7										LEAN CLAY (CL), trace Sand, light brown, medium stiff to stiff, wet
	- - 5 -	\Box		14									
	-	\exists	N = 23										WEATHERED SHALE, gray, hard, dry to moist
	- 10	X	N = 48	6									
- MD1901007.GPJ	- - - 15	\exists	N = 81 N = 79	10									SHALE, gray, hard, dry to moist
- X - MD190	- - -												
SON CRE	- 20 - -	-X -	N = 96/8"										
MOTOPEMERSON CREEK - MOTOPONEMERSON CREEK	- - 25 -		N = 50/3"	¥									
CKEEK - MD	- - 30 -		N = 50/2"										
019/EMERSON	- - 35 -		N = 50/5"	16									
л <u> </u>	- - 40 - -		N = 50/5"										
20:03 - G:\GIN	_	×	N = 50/2"										Auger Refusal = 44.5 ft.
NABLE LOG - LOG A GNNLOT.GDT - 2/5/20 20:03 - 6;4cin 1/FGJECT													
SLE LOG - LOG &	N - ST. P - PO	AND CKF	ARD PENE	TRAT	ION TER F	TEST RESIS	RESI	STANC	Œ				REMARKS: GPS COORDINATES: Lat. 41.294908, Long82.754023
₹			CONE PEN										

RRC Power & Energy, LLC 3801 Doris Lane Round Rock, TX 78664 Telephone: (512) 992-2087 Fax: (512) 251-2518 CLIENT: Apex Clean Energy, Inc
PROJECT: Emerson Creek Wind Project
LOCATION: Erie and Huron Counties, OH

				л. (О	12)	201	2518					DATE(S) DRILLED: 5/23/2019
FIE	LC	DATA			L/	\BO	RATO	RY DA	λTΑ			DRILLING METHOD(S):
			(%)	ATT	ERBE	S			(%)	щ	(%)	Hollow Stem Auger
ЕРТН (FT)	AMPLES	BLOWS/FT TONS/SQ FT BLOWS % 2D: %	OISTURE CONTENT	LIQUID LIMIT	PLASTIC LIMIT		RY DENSITY DUNDS/CU.FT	OMPRESSIVE TRENGTH ONS/SQ. FT)	RAIN AT FAILURE (9	ONFINING PRESSUR OUNDS/SQ IN)	200 SIEVE	GROUNDWATER INFORMATION: No groundwater encountered during or immediately after drilling SURFACE ELEVATION (FT):
	\% 	/ z c :: c c	Σ	LL	PL	PI	<u> </u>	SEF	ပ်	8€	M	DESCRIPTION OF STRATUM
- - - - - 5			17									LEAN CLAY (CL), with Sand, brown, medium stiff to very stiff, dry to moist
-	$\frac{1}{M}$	N = 20	15									WEATHERED SHALE, dark gray, hard, dry to moist
-	\exists		13									WEATHERED OF MEE, daily gray, flaid, dry to fliost
10	$\uparrow \uparrow$	N – 33										
F	$\overline{\mathbb{A}}$	N = 51	9									
15	$\overline{\mathbb{A}}$	N = 38										SANDY LEAN CLAY, trace Gravel, dark gray, hard, dry to moist
- - - 20	-X	N = 63/12"										
- - - 25 -	- - X	N = 63	9									
- - 30 -		N = 66										
25	$\frac{1}{M}$	N = 69										SHALE, gray, hard, dry to moist
55	\mathcal{H}											
- - - 40	-X	N = 50/4"										
- - - 45 -	- X	N = 50/4"										
-												Auger Refusal at 48 ft.
N CT	٦٢١	ADD DEVIC	грлт	1001	FEST	DEGI	STANG	<u> </u>				DEMARKS
P - PO T - TXE R - RO	CKE OOT CK	T PENETRO CONE PEN CORE RECO	OMET ETRA	FER F ATION RY	RESIS N RES	TANC SISTA	Œ	<i>,</i> ⊑				REMARKS: GPS COORDINATES: Lat. 41.295016, Long82.737826
	(L1) HIDED TO STATE T	SAMPLES N - STOCKE N - STOCKE R - STOCKE R - STOCKE N - STOCKE N - STOCKE R - STOCKE N - STOCK	N = 8 N = 20 N = 39 N = 35 N = 51 N = 51 N = 63 N = 63 N = 63 N = 66 N = 69 N = 50/4" N = 50/4" N = 50/4" N = 50/4"	(%) LINDIAN (%) LI	ATT	ATTERBE LIMIT LI	ATTERBERG LIMITS ATTERBERG LIMITS Xambries (%) Indidition N = 8 17 N = 8 17 N = 80 N = 80 N = 35 N = 51 N = 35 N = 51 N = 35 N = 63 N = 63 N = 66 N = 69 N = 69 N = 50/4" N = 50/4"	ATTERBERG ATTE	ATTERBERG ATTE	ATTERBERG ALIMITS AL	ATTERBERG	ATTERBERG CONFINING CONF

RRC Power & Energy, LLC 3801 Doris Lane Round Rock, TX 78664 Telephone: (512) 992-2087 Fax: (512) 251-2518 CLIENT: Apex Clean Energy, Inc PROJECT: **Emerson Creek Wind Project** Erie and Huron Counties, OH LOCATION:

					ıa	. (3	12)	201-	2010					DATE(S) DRILLED: 5/24/2019
		FIE	LD	DATA			L	4BO	RATO	RY DA	ATA			DRILLING METHOD(S):
					ENT (%)		ERBI IMIT	S 			KE (%)	SURE	EVE (%)	Hollow Stem Auger: 0 to 4 ft.; NX Wet Rock Coring: 4 to 32 ft. GROUNDWATER INFORMATION:
I Camyo	MBOL	(FT)	ES	N: BLOWS/FT P: TONS/SQ FT T: BLOWS R: % RQD: %	MOISTURE CONTENT (%)	LIQUID LIMIT	PLASTIC LIMIT	PLASTICITY INDEX	DRY DENSITY POUNDS/CU.FT	COMPRESSIVE STRENGTH (TONS/SQ. FT)	STRAIN AT FAILURE (%)	CONFINING PRESSURE (POUNDS/SQ IN)	MINUS NO. 200 SIEVE (%)	No groundwater encountered during drilling prior to the introduction of drilling fluid
6) - -	ОЕРТН (FT)	SAMPLES	BLOW TONS BLOW %	OIST				3Y DE SUND	OMPF TREN	RAIN	OUNI	NUS	SURFACE ELEVATION (FT):
77	27	<u> </u>	\ბ/	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ž	LL	PL	PI	PC PC	SEE	S	86	Σ	DESCRIPTION OF STRATUM
			\forall	N = 16	21									\[2 in. Topsoil \] SANDY LEAN CLAY (CL), brown, very stiff, dry to moist
	4			N = 50/2" (
	+	5	11	N = 50/3" / R = 46 RQD = 25	4									\LIMESTONE, brown, very hard, dry to moist LIMESTONE, light brown, fine grained, slightly to moderately weathered, weak to moderately strong rock
		10		R = 73 RQD = 36										
- MD1901007.GPJ	† 	15	- - - -	R = 68 RQD = 12					166*	923.04		0.0		
	-	20	- - - -	R = 94 RQD = 23										
EMERSO	-	25	4	R = 83 RQD = 25 R = 100										
D1901007	-	20	$\frac{1}{1}$	RQD = 44										
REEK - M	1	30	1	R = 92 RQD = 33										
MERSON C														Total Depth = 32 ft.
S\2019\EN														
PROJECT														
G:\GINT\F														
5/20 20:03 -														
1.GDT - 2/£														
A GNNL0														
00-100								DE 5						
RENEWABLE LOG - LOG A GNNL01.GDT - 2/5/20 20:03 - G:\GiNT\PROJECTS\2019\EMERSON CREEK - MD1901007\EMERSON CREEK	P T R	- PO(- TXE - RO	CKE OOT CK (ARD PENET T PENETRO CONE PEN CORE RECO	OMET ETRA OVEF	ER F ATION RY	RESIS N RES	STAN(SISTA	CE	<i>-</i>				REMARKS: GPS COORDINATES: Lat. 41.291780, Long82.735204 Auger refusal at 9 ft.; Offset and drill to 32 ft. *Denotes Total Unit Weight.

RRC Power & Energy, LLC 3801 Doris Lane Round Rock, TX 78664 Telephone: (512) 992-2087 Fax: (512) 251-2518 CLIENT: Apex Clean Energy, Inc PROJECT: **Emerson Creek Wind Project** Erie and Huron Counties, OH LOCATION:

NUMBER: MD1901007

				1 6	ix. (J	112)	231-	-2010					DATE(S) DRILLED: 4/4/2019 - 4/6/2019
	F	FIEL	D DATA			L/	4ВО	RATO	DRY DA	ATA			DRILLING METHOD(S):
				(%)		ERBI	S 			(9)	ш	(%)	Hollow Stem Auger: 0 to 10 ft.; NX Wet Rock Coring: 10 to 30 ft.
IOMMAS IIOS	DEPTH (FT)		SAMPLES N: BLOWS/FT P: TONS/SQ FT T: BLOWS R: % R: %	MOISTURE CONTENT (%)	LIQUID LIMIT	PLASTIC LIMIT	PLASTICITY INDEX	DRY DENSITY POUNDS/CU.FT	COMPRESSIVE STRENGTH (TONS/SQ. FT)	STRAIN AT FAILURE (%)	CONFINING PRESSURE (POUNDS/SQ IN)	MINUS NO. 200 SIEVE (%)	GROUNDWATER INFORMATION: Groundwater encountered at 5 ft. during drilling prior to the introduction of drilling fluid SURFACE ELEVATION (FT):
=		į (SAM S. F. B. C. S.	MOIS	LL	PL	PI	2RY 20UI	STRE TON	STR/	NS No.	MIN	DESCRIPTION OF STRATUM
; <u>1</u>	<u>, </u>	_	07/24-40			-			00,0	0,		_	10 in. Topsoil
		-	N = 5	24									LEAN CLAY (CL), with Sand, light gray to brown, medium stiff, moist
	} 5	5 -	N = 53	#									SHALE, dark gray, hard to very hard, moist to wet
		-	N = 50/2"										Grading dry to moist
1007.GPJ	异 10 丁 丁 丁 丁 1:	-	N = 50/1" R = 100 RQD = 48										LIMESTONE, gray, fine grained, moderately weathered, weak rock, vertical fracture from 12 to 13 ft.
REEK - MD1901007		-	R = 42 RQD = 23										
D7/EMERSON (]-]-]- 2:	- - - 5 -	R = 100 RQD = 42										Grading highly weathered
A - MD190100]]-]- 3(- - - 0 -	R = 100 RQD = 42										
SON CREE		Š											Total depth = 30 ft.
1/2019\EMEI													
PROJECTS													
3 - G:\GINT\													
2/5/20 20:03													
L01.GDT - :													
- LOG A GNN													
RENEWABLE LOG - LOG A GNNL01.GDT - 2/5/20 20:03 - G:\GINT\PROJECTS\2019\EMERSON CREEK - MD1901007\EMERSON CREEK	P - F T - T R - F	POC FXD(ROC	NDARD PENI KET PENETF OT CONE PE K CORE REC	ROME NETR COVE	TER F ATIOI RY	RESIS N RES	STANG	CE	L E				REMARKS: GPS COORDINATES: Lat. 41.286773, Long82.755319 Auger refusal at 10 ft.; offset 30 ft. east of stake for coring.

RRC Power & Energy, LLC 3801 Doris Lane Round Rock, TX 78664 Telephone: (512) 992-2087 Fax: (512) 251-2518

CLIENT: Apex Clean Energy, Inc PROJECT: **Emerson Creek Wind Project** LOCATION: Erie and Huron Counties, OH

					Fа	X: (5	12)	251-	2518					DATE(S) DRILLED: 4/4/2019
		FIE	LC	DATA			L/	ABO	RATO	RY DA	λTΑ			DRILLING METHOD(S):
F							ERBE							Hollow Stem Auger
	SOIL SYMBOL	ОЕРТН (FT)	SAMPLES	N: BLOWS/FT P: TONS/SQ FT T: BLOWS R: % RQD: %	MOISTURE CONTENT (%)	F LIQUID LIMIT	PLASTIC LIMIT	☐ PLASTICITY INDEX	DRY DENSITY POUNDS/CU.FT	COMPRESSIVE STRENGTH (TONS/SQ. FT)	STRAIN AT FAILURE (%)	CONFINING PRESSURE (POUNDS/SQ IN)	MINUS NO. 200 SIEVE (%)	GROUNDWATER INFORMATION: Groundwater encountered at 14 ft. during drilling and not measured immediately after drilling SURFACE ELEVATION (FT): DESCRIPTION OF STRATUM
	7//		\forall		0.4									_ 10 in. Topsoil
			Ä	N = 7	24									LEAN CLAY (CL), trace Sand, dark brown, medium stiff to hard, wet
		5	X	N = 8	17									Grading trace Sand, brown, dry to moist
			\forall	N = 27										Grading dark grayish brown
		10		N = 39	30									
2			$\frac{1}{4}$	N = 38										
007.GP	4		H	N = 50/5"	12									SHALE, dark gray, hard, dry to moist
MD1901007	▋	15	-											orn tee, dank gray, hard, dry to moist
· F	葶		7											
RENEWABLE LOG - LOG A GNNL01.GDT - 2/5/20 20:03 - G:\GINT\PROJECTS\2019\EMERSON CREEK - MD1901007\EMERSON CREEK I II														Auger Refusal at 19 ft.
RENEWABLE LC	F T F	? - PO(- TXE ? - RO	CKE OOT CK	ARD PENET T PENETRO CONE PEN CORE RECO	OMET IETRA OVEF	TER F ATION RY	RESIS N RES	TANG SISTA	CE	DE				REMARKS: GPS COORDINATES: Lat. 41.284045, Long82.736863

RRC Power & Energy, LLC 3801 Doris Lane Round Rock, TX 78664 Telephone: (512) 992-2087 Fax: (512) 251-2518 CLIENT: Apex Clean Energy, Inc PROJECT: **Emerson Creek Wind Project** LOCATION: Erie and Huron Counties, OH

Ĺ					ıa	x. (J	12).	231-	2010					DATE(S) DRILLED: 4/16/2019
		FIE	LD	DATA			LA	ΑВО	RATC	RY DA	ATA			DRILLING METHOD(S):
	SOIL SYMBOL	DEPTH (FT)	SAMPLES	N. BLOWS/FT P. TONS/SQ FT I. BLOWS R: % R2% RQD: %	MOISTURE CONTENT (%)		PLASTIC LIMIT HERE	ERG	DRY DENSITY POUNDS/CU.FT	COMPRESSIVE STRENGTH (TONS/SQ. FT)	STRAIN AT FAILURE (%)	CONFINING PRESSURE (POUNDS/SQ IN)	MINUS NO. 200 SIEVE (%)	Hollow Stem Auger: 0 to 8 ft.; NX Wet Rock Coring: 8 to 23 ft. GROUNDWATER INFORMATION: No groundwater encountered during drilling prior to the introduction of drilling fluid SURFACE ELEVATION (FT):
Ļ	os	DE	\&	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	M	LL	PL	PI	DR PO	SES	STI	88	M	DESCRIPTION OF STRATUM
			\forall	N = 5	25									10 in. Topsoil LEAN CLAY (CL), trace Sand, brown, medium stiff to stiff, wet
		5		N = 26										Grading with Sand, dark gray, dry to moist
	#		X	N = 50/4"	6									SHALE, gray, hard, dry to moist
7.GPJ		10		R = 60 RQD = 0										SHALE, gray, very fine grained slight to moderately weathered, very weak to weak rock
EK - MD1901007		15		R = 93 RQD = 0										
MERSON CREEK		20		R = 100 RQD = 0										
D1901007\E		25		R = 100 RQD = 67										
RENEWABLE LOG - LOG A GNNL01.GDT - 2/5/20 20:03 - G:\GINT\PROJECTS\2019\EMERSON CREEK - MD1901007\EM 														Total Depth = 28 ft.
RENEWABLE LO	F T	? - PO(? - TXE ? - RO	CKE OOT CK	ARD PENET T PENETRO CONE PEN CORE RECO	OMET IETRA OVEF	ER F ATION RY	RESIS NRES	TAN(SISTA	CE	E ————				REMARKS: GPS COORDINATES: Lat. 41.263784, Long82.757024

RRC Power & Energy, LLC 3801 Doris Lane Round Rock, TX 78664 Telephone: (512) 992-2087 Fax: (512) 251-2518 CLIENT: Apex Clean Energy, Inc PROJECT: **Emerson Creek Wind Project** LOCATION: Erie and Huron Counties, OH

FIELD DA	ТΔ									DATE(S) DRILLED: 4/27/2019 - 4/28/2019
	17		LA	BOF	RATC	RY DA	ΛTΑ			DRILLING METHOD(S):
	(%)		ERBE					111	(%)	Hollow Stem Auger: 0 to 5 ft.; NX Wet Rock Coring: 5 to 28 ft.
SOIL SYMBOL DEPTH (FT) SAMPLES N: BLOWS/FT P: TONS/SQ FT	T: BLOWS R: % RQD: % MOISTURE CONTENT (%)	LIQUID LIMIT	PLASTIC LIMIT	PLASTICITY INDEX	DRY DENSITY POUNDS/CU.FT	COMPRESSIVE STRENGTH (TONS/SQ. FT)	STRAIN AT FAILURE (%)	CONFINING PRESSURE (POUNDS/SQ IN)	MINUS NO. 200 SIEVE (%)	GROUNDWATER INFORMATION: No groundwater encountered during drilling prior to the introduction of drilling fluid
SOIL SYMB(DEPTH (FT)	SLOW ND: % DISTU				RY DE	MPR RENC	RAIN	NFIN	NUS	SURFACE ELEVATION (FT):
S G AS		LL	PL	PI	PC	SPS	ST	88	Σ	DESCRIPTION OF STRATUM
N = 5	5 15									\(\begin{align*} \lambda & \text{in. Topsoil} & \text{SANDY LEAN CLAY (CL), brown, medium stiff, moist} \end{align*}
5 N=5	33									CLAYEY GRAVEL (GC), brown, very dense, moist, coarse \frac{1}{\grained, subangular to subrounded}
RQD										LIMESTONE, gray, fine to medium grained, moderately to highly weathered, moderately strong rock
10 - R = 6 RQD										Potential void from 11 to 13 ft.
15 - R=9	98 = 27									
	- 21									SHALE, gray, fine grained, highly weathered, weak rock
20 - R = 9 RQD	95 = 13									
. 1lb - /	00 = 67									
2019/EMERSON CREEK - MD1901007										Total Depth = 28 ft.
RSON CR										
2019\EME										
GINTAPR										
0:03 - 6:)										
- 2/5/20 20:03 - G:\GINT\PROJECTS										
L01.GDT										
O A GNNI										
06-10						_				
N - STANDARD P - POCKET PE T - TXDOT CON R - ROCK COR RQD - ROCK Q	NETROME IE PENETR E RECOVEI	TER R ATION RY	ESIS ⁻ I RES	TANC ISTAI	E	E				REMARKS: GPS COORDINATES: Lat. 41.261475, Long82.809764

RRC Power & Energy, LLC 3801 Doris Lane Round Rock, TX 78664 Telephone: (512) 992-2087 Fax: (512) 251-2518 CLIENT: Apex Clean Energy, Inc PROJECT: **Emerson Creek Wind Project** LOCATION: Erie and Huron Counties, OH

				га	X. (S	12).	201-	2518				DATE(S) DRILLED: 4/27/2019	
	FIE	ELD	DATA			L/	ABO	RATO	RY DA	ATA			DRILLING METHOD(S):
				(%)	ATT L	ERBE IMITS	S 			(%)	ш	(%)	Hollow Stem Auger: 0 to 16 ft.; NX Wet Rock Coring: 16 to 31 ft.
SOIL SYMBOL	DEРТН (FT)	SAMPLES	N: BLOWS/FT P: TONS/SQ FT T: BLOWS R: % RQD: %	MOISTURE CONTENT (%)	F LIQUID LIMIT	PLASTIC LIMIT	PLASTICITY INDEX	DRY DENSITY POUNDS/CU.FT	COMPRESSIVE STRENGTH (TONS/SQ. FT)	STRAIN AT FAILURE (%)	CONFINING PRESSURE (POUNDS/SQ IN)	MINUS NO. 200 SIEVE (%)	GROUNDWATER INFORMATION: Groundwater encountered at 4.5 ft. during drilling prior to the introduction of drilling fluid SURFACE ELEVATION (FT): DESCRIPTION OF STRATUM
7///		\mathcal{H}		_		1 -	' '		0000	0)		_	\1 in. Topsoil
	-	X	N = 6	18									SANDY LEAN CLAY (CL), brown, medium stiff, moist to wet
	- - 5	X	N = 7	Z									CLAYEY SAND (SC), brown, very loose to very dense, moist to wet, fine to coarse grained
	F	$\overline{\mathbb{A}}$	N = 2										
	10		N = 50/4"	17									
	-	Ħ	N = 50/2"										
- MD1901000	15	$\frac{1}{4}$	N = 25/0"										
	- - - 20	- - -	R = 84 RQD = 55										LIMESTONE, gray, fine grained, slightly to moderately weathered, weak to moderately strong rock, slightly vuggy
2019\EMERSON CREEK - MD1901007\EMERSON CREEK	- - - - 25	- - - -	R = 99 RQD = 79										
EK - MD19010	- - - 30	- - -	R = 96 RQD = 83										
RSON CREE	-												Total Depth = 31 ft.
\$\2019\EME													
PROJECT													
- G:\GINT\													
/5/20 20:03													
.01.GDT - 2													
RENEWABLE LOG - LOG A GNNL01.GDT - 2/5/20 20:03 - G:\GiNT\PROJECTS													
)7-90-F	 N - ST/		ARD PENE	TRAT	ION T	EST	RESI	STANC	E				REMARKS:
ENEWABLE	T - TXI R - RO	OOT CK	T PENETRO CONE PEN CORE RECO CK QUALITY	ETR/ OVEF	ATIOI YS	N RES	SISTA						GPS COORDINATES: Lat. 41.256898, Long82.811454

RRC Power & Energy, LLC 3801 Doris Lane Round Rock, TX 78664 Telephone: (512) 992-2087 Fax: (512) 251-2518 CLIENT: Apex Clean Energy, Inc PROJECT: **Emerson Creek Wind Project** LOCATION: Erie and Huron Counties, OH

					Fa	x: (5	12)	251-	2518				DATE(S) DRILLED: 4/29/2019	
		FIE	LD	DATA			L/	ABO	RATC	RY DA	ATA			DRILLING METHOD(S):
F							ERBE							Hollow Stem Auger
	SOIL SYMBOL	DЕРТН (FT)	SAMPLES	N: BLOWS/FT P: TONS/SQ FT T: BLOWS R: % RQD: %	MOISTURE CONTENT (%)	T LIQUID LIMIT	PLASTIC LIMIT	PLASTICITY INDEX	DRY DENSITY POUNDS/CU.FT	COMPRESSIVE STRENGTH (TONS/SQ. FT)	STRAIN AT FAILURE (%)	CONFINING PRESSURE (POUNDS/SQ IN)	MINUS NO. 200 SIEVE (%)	GROUNDWATER INFORMATION: Groundwater encountered at 15 ft. during drilling and not measured immediately after drilling SURFACE ELEVATION (FT):
	'n '777		H		2	LL	PL	PI		Owc	S	0 €	2	DESCRIPTION OF STRATUM \[\] 3 in. Topsoil \[/ \]
		5	\Box	N = 5 N = 11	31									LEAN CLAY (CL), with Sand, brown to gray, medium stiff to stiff, moist
	#		\forall	N = 50/5"										SHALE, dark brown to gray, very hard, dry to moist
MD1901007.GPJ		10 15		N = 50/3" N = 50/4" N = 50/5"	<u>Z</u> 5									
CREEK -		20	- - - -	N = 50/2"										
- MD1901007/EMERSON		25		N = 50/2"										
A - MD	₽	30	$\frac{1}{2}$	N = 50/2"										
RENEWABLE LOG - LOG A GNNL01.GDT - 2/5/20 20:03 - G:\GINT\PROJECTS\2019\EMERSON CREEK 		30		11 - 30/2										Auger Refusal at 31 ft.
RENEWABLE LO	P T R	- PO - TXE :- RO	CKE OOT CK	ARD PENET T PENETRO CONE PEN CORE RECO	OMET ETRA	TER F ATION RY	RESIS N RES	STANC SISTA	CE	E				REMARKS: GPS COORDINATES: Lat. 41.255529, Long82.804800

RRC Power & Energy, LLC 3801 Doris Lane Round Rock, TX 78664 Telephone: (512) 992-2087 Fax: (512) 251-2518 CLIENT: Apex Clean Energy, Inc PROJECT: **Emerson Creek Wind Project** LOCATION: Erie and Huron Counties, OH

					га	х. (э	12).	251-	2518				DATE(S) DRILLED: 4/17/2019	
		FIE	LD	DATA			L	ABO	RATC	RY DA	λTΑ			DRILLING METHOD(S):
						ATT	ERBE	ERG						Hollow Stem Auger: 0 to 7 ft.; NX Wet Rock Coring: 7 to 27 ft.
CREEK - MD1901007.GPJ	SOIL SYMBOL	5 10 15 20		N = 46 N = 50/5" R = 0 RQD = 0 R = 100 RQD = 0 R = 100 RQD = 0	D MOISTURE CONTENT (%)	ATT LIGNID CIWIL	ERBIT: IMIT PLASTIC LIMIT	D PLASTICITY INDEX S	DRY DENSITY POUNDS/CU.FT	COMPRESSIVE STRENGTH (TONS/SQ. FT)	STRAIN AT FAILURE (%)	CONFINING PRESSURE (POUNDS/SQ IN)	MINUS NO. 200 SIEVE (%)	GROUNDWATER INFORMATION: No groundwater encountered during drilling prior to the introduction of drilling fluid SURFACE ELEVATION (FT): DESCRIPTION OF STRATUM LEAN CLAY (CL), with Sand, brown, soft, moist to wet WEATHERED SHALE, dark gray, hard, dry to moist SHALE, gray, fine grained, moderately to highly weathered, very weak rock
ERSON		25	1	RQD = 26 R = 100										
701007	▋	25	1	RQD = 11										
RENEWABLE LOG - LOG A GNNL01.GDT - 2/5/20 20:03 - G:\GINT\PROJECTS\2019\EMERSON CREEK - MD1991007\EM 		ı - STA	AND	ARD PENE	TRAT	TION -	rest	RES	STANC	汪				Total Depth = 27 ft. REMARKS:
RENEWABLE	P T R	- PO(- TXE ! - RO(CKE OOT CK	T PENETRO CONE PEN CORE RECO CK QUALITY	OMET IETRA OVER	TER F ATION RY	RESIS N RES	TANG SISTA	CE					GPS COORDINATES: Lat. 41.247740, Long82.775587

RRC Power & Energy, LLC 3801 Doris Lane Round Rock, TX 78664 Telephone: (512) 992-2087 Fax: (512) 251-2518 CLIENT: Apex Clean Energy, Inc PROJECT: **Emerson Creek Wind Project** LOCATION: Erie and Huron Counties, OH

		FIELD DATA LABORATORY DATA												DATE(S) DRILLED: 4/22/2019
	F	FIEL	D	DATA			L	ΑВО	RATO	RY DA	ATA			DRILLING METHOD(S):
					(%)		ERBE IMITS	S			(%)	쀴	(%)	Hollow Stem Auger: 0 to 16 ft.; NX Wet Rock Coring: 16 to 24 ft.
Camyo	DEPTH (FT)		LES	N: BLOWS/FT P: TONS/SQ FT T: BLOWS R: % RQD: %	MOISTURE CONTENT (%)	LIQUID LIMIT	PLASTIC LIMIT	PLASTICITY INDEX	DRY DENSITY POUNDS/CU.FT	COMPRESSIVE STRENGTH (TONS/SQ. FT)	STRAIN AT FAILURE (%)	CONFINING PRESSURE (POUNDS/SQ IN)	MINUS NO. 200 SIEVE (%)	GROUNDWATER INFORMATION: Groundwater encountered at 12 ft. during drilling prior to the introduction of drilling fluid
		: ; (SAMPLES	BLO BLO OD: %	SIOIS				RY D OUN	OMP TREP ONS	TRAI	NO N	SONII	SURFACE ELEVATION (FT):
<u> </u>) <u> </u>		ഗ <u>്</u> /	20.1.8.8	Σ	LL	PL	PI		0.0C	O	O.F.	Σ	DESCRIPTION OF STRATUM 8 in. Topsoil
	5	-		N = 4 N = 4	19 21									LEAN CLAY (CL), trace Sand, brown, soft to stiff, moist Grading gray
		-	XI	N = 10										
	11	0]	1	N = 11	9 7	25	15	10					90	
7.GP.	ŧ		1	N = 58	13									WEATHERED SHALE, dark gray, hard, dry to moist
901007	} 1!	5		N = 69/10" N = 50/1"	11									SHALE, dark gray, hard, wet
- MD1			F	R = 74 RQD = 0										SHALE, gray, very fine grained slight to moderately weathered, very weak to weak rock
ERSON CREEK	20	0 -		R = 95 RQD = 16										
0.20:03 - G.\GINTIPROJECTS\2019\EMERSON CREEK - MD1901007\EMERSON														Total Depth = 24 ft.
RENEWABLE LOG - LOG A GNNL01.GDT - 2/5/20 20:03 -	P - F T - T R - F	POC FXD(ROC	KE OT K (ARD PENET T PENETRO CONE PEN CORE RECO K QUALITY	OMET ETRA OVER	ER F ATION RY	RESIS N RES	TANG SISTA	CE	Œ				REMARKS: GPS COORDINATES: Lat. 41.247445, Long82.755309

RRC Power & Energy, LLC 3801 Doris Lane Round Rock, TX 78664 Telephone: (512) 992-2087 Fax: (512) 251-2518 CLIENT: Apex Clean Energy, Inc PROJECT: **Emerson Creek Wind Project** LOCATION: Erie and Huron Counties, OH

		Fax. (512) 251-2516												DATE(S) DRILLED: 5/21/2019
	F	FIEI	_D	DATA			L	٩ВО	RATC	RY DA	ATA			DRILLING METHOD(S):
					(%) TN		ERBI IMIT:	S			(%)	URE	/E (%)	Hollow Stem Auger
SOII SYMBOI		(1)	S	N: BLOWS/FT P: TONS/SQ FT T: BLOWS R: % RQD: %	MOISTURE CONTENT (%)	LIQUID LIMIT	PLASTIC LIMIT	PLASTICITY INDEX	DRY DENSITY POUNDS/CU.FT	COMPRESSIVE STRENGTH (TONS/SQ. FT)	STRAIN AT FAILURE (%)	CONFINING PRESSURE (POUNDS/SQ IN)	MINUS NO. 200 SIEVE (%)	GROUNDWATER INFORMATION: Groundwater encountered at 7 ft. during drilling and not measured immediately after drilling
S	DEPTH (FT)		SAMPLES	S/SNC S/SNC S/SNC S/SNC	ISTUI	LIQUI	PLAS	PLAS	, DEN JNDS	APRE ENG NS/S	AIN/	NEN D	N SN	SURFACE ELEVATION (FT):
SO		ļ \	\S/		МО	LL	PL	PI	DRY POL	STR	STR	50	Σ	DESCRIPTION OF STRATUM
		-		N = 7										\\ 2 in. Topsoil
	*	-		N = 24	25									SANDY LEAN CLAY (CL), brown, medium stiff to very stiff, dry to moist
	4	-	M.	V = 74/11"	<u> </u>									SHALE, olive gray to gray, very hard, dry to moist
	1	- 10 -	Ħ	N = 50/6"	16									
, E	∄ ′	- -												
77.GP.	ł	-	Ħ	N = 50/6"										
- MD1901007	1	15 - - -	1	N = 50/2"										
ON CREEK	2	- 20 - -	1	N = 50/3"	17									
1007\EMERS	2	- 25 -	1	N = 50/4"										
EK - MD190	3	- - 30 -	Χr	N = 50/3"										
ERSON CRE														Auger Refusal at 31 ft.
S\2019\EMI														
\PROJECT														
3 - G:\GINT														
- 2/5/20 20:C														
NL01.GDT.														
-LOG A GN														
RENEWABLE LOG - LOG A GNNL01.GDT - 2/5/20 20:03 - G:\GINT\PROJECTS\2019\EMERSON CREEK - MD1901007\EMERSON	P - F T - T R - I	POC TXD(ROC	KE OT (ARD PENET T PENETRO CONE PEN CORE RECO CK QUALITY	OMET ETRA OVER	ER F ATION RY	RESIS N RES	TAN(SISTA	CE	L				REMARKS: GPS COORDINATES: Lat. 41.246008, Long82.796827

RRC Power & Energy, LLC 3801 Doris Lane Round Rock, TX 78664 Telephone: (512) 992-2087 Fax: (512) 251-2518 CLIENT: Apex Clean Energy, Inc PROJECT: **Emerson Creek Wind Project** LOCATION: Erie and Huron Counties, OH

NUMBER: MD1901007

DATE(S) DRILLED: 4/18/2019

					(-	,							DATE(S) DRILLED: 4/18/2019
	FIE	ELD	DATA			L	4 BO	RATC	RY DA	ATA			DRILLING METHOD(S):
SOIL SYMBOL	FIE (FT) 10	SAMPLES	N = 5 N = 45 N = 50/1"	6 MOISTURE CONTENT (%)	ATT	ERBERIC FIMIT	ABO ERG		COMPRESSIVE STRENGTH TONS/SQ. FT)	STRAIN AT FAILURE (%)	CONFINING PRESSURE (POUNDS/SQ IN)	MINUS NO. 200 SIEVE (%)	DRILLING METHOD(S): Hollow Stem Auger: 0 to 10 ft.; NX Wet Rock Coring: 10 to 30 ft. GROUNDWATER INFORMATION: Groundwater encountered at 7 ft. during drilling prior to the introduction of drilling fluid SURFACE ELEVATION (FT): DESCRIPTION OF STRATUM 8 in. Topsoil SANDY LEAN CLAY (CL), brown, medium stiff, moist LEAN CLAY (CL), with Sand, brown, stiff, dry to moist WEATHERED SHALE, dark gray, hard, dry to moist SHALE, gray, very fine grained, slight to moderately weathered,
K - MD1901007/EMERSON CREEK - MD1901007, GPJ	- 15 - 20 - 25 - 30		R = 80 RQD = 0 R = 80 RQD = 7 R = 100 RQD = 29 R = 100 RQD = 22					163*	357.12		0.0		very weak rock to weak rock
	P-PO	CKE	OARD PENE	OMET	ΓER F	RESIS	TAN	CE	Æ				REMARKS: GPS COORDINATES: Lat. 41.244491, Long82.771245
RENEWA	R-RO	CK	CONE PEN CORE RECC CK QUALITY	OVEF	RY			NCE					*Denotes Total Unit Weight

P - POCKET PENETROMETER RESISTANCE T - TXDOT CONE PENETRATION RESISTANCE R - ROCK CORE RECOVERY

RQD - ROCK QUALITY DESIGNATION

RRC Power & Energy, LLC 3801 Doris Lane Round Rock, TX 78664 Telephone: (512) 992-2087 Fax: (512) 251-2518 CLIENT: Apex Clean Energy, Inc PROJECT: **Emerson Creek Wind Project** LOCATION: Erie and Huron Counties, OH

				га	x. (၁	112).	251-	2518				DATE(S) DRILLED: 4/25/2019	
	FIE	LC	DATA			L	4BO	RATO	DRY DA	λTΑ			DRILLING METHOD(S):
SOIL SYMBOL	DЕРТН (FT)	SAMPLES	N: BLOWS/FT P: TONS/SQ FT T: BLOWS R: % RQD: %	MOISTURE CONTENT (%)		PLASTIC LIMIT IMIT		DRY DENSITY POUNDS/CU.FT	COMPRESSIVE STRENGTH (TONS/SQ. FT)	STRAIN AT FAILURE (%)	CONFINING PRESSURE (POUNDS/SQ IN)	MINUS NO. 200 SIEVE (%)	Hollow Stem Auger GROUNDWATER INFORMATION: Groundwater encountered at 7 ft. during drilling and measured at 1 ft. immediately after drilling SURFACE ELEVATION (FT): DESCRIPTION OF STRATUM
		Ħ	N = 5										8 in. Topsoil SANDY LEAN CLAY (CL), brown, soft to very stiff, dry to moist
	- - - 5 -		N = 2 $N = 28$	20									SANDY LEAN CLAY (CL), brown, soit to very still, dry to moist
	. 10	\Box	N = 19	9									WEATHERED SHALE, dark gray, very stiff to hard, dry to moist
▋			N = 58										
	. 15	\Box	N = 34	20									CLAYEY SAND (SC), brown, medium dense to dense, wet, fine to medium grained
	- 20 -	-X	N = 24										
7.7.2	-	X	N = 50/4"	13/									SHALE, dark gray, hard, dry to moist
													Auger Refusal = 24.5 ft.
F	P - PO	CKE	ARD PENE T PENETRO CONE PEN	OME	TER F	RESIS	TANG	CE	E E				REMARKS: GPS COORDINATES: Lat. 41.244309, Long82.752195

RRC Power & Energy, LLC 3801 Doris Lane Round Rock, TX 78664 Telephone: (512) 992-2087 Fax: (512) 251-2518 CLIENT: Apex Clean Energy, Inc PROJECT: **Emerson Creek Wind Project** LOCATION: Erie and Huron Counties, OH

L		Fax. (512) 251-2516												DATE(S) DRILLED: 5/20/2019
		FIE	ELD	DATA			L	4BO	RATC	RY DA	ATA			DRILLING METHOD(S):
	OL	(FT	MOISTURE CONTENT (%)	L	ERBI		ITY U.FT	SIVE 1 FT)	STRAIN AT FAILURE (%)	CONFINING PRESSURE (POUNDS/SQ IN)	MINUS NO. 200 SIEVE (%)	Hollow Stem Auger GROUNDWATER INFORMATION: Groundwater encountered at 9 ft. during drilling and not measured immediately after drilling
	SOIL SYMBOL	DEPTH (FT)	SAMPLES	N: BLOWS/FT P: TONS/SQ FT T: BLOWS R: % RQD: %	MOISTURE	Г СПОПР СІМІТ	구 PLASTIC LIMIT	⊡ PLASTI	DRY DENSITY POUNDS/CU.FT	COMPRESSIVE STRENGTH (TONS/SQ. FT)	STRAIN AT	CONFINING (POUNDS/S	MINUS NO.	SURFACE ELEVATION (FT): DESCRIPTION OF STRATUM
			\exists											∖3 in. Topsoil /
		5		N = 9 N = 21	11									LEAN CLAY (CL), trace Sand, brown, stiff to very stiff, dry to moist Grading moist
		10	\perp	N = 12 N = 50/3"	12 7									SHALE, gray, very hard, moist to wet
- MD1901007.GPJ		15	Д	N = 50/3" N = 50/4"										
AERSON CREEK		20		N = 50/4"	7									Grading light olive gray, dry to moist
- MD1901007\EM		25		N = 50/5"										
RSON CREEK		30		N = 50/2"										Auger Refusal at 31 ft.
CTS\2019\EME														
GINT/PROJE														
5/20 20:03 - G														
INL01.GDT - 2,														
G-LOGAGN														
RENEWABLE LOG - LOG A GNNL01.GDT - 2/5/20 20:03 - G:\GINT\PROJECTS\2019\EMERSON CREEK	P T R	- PO - TXI - RO	CKE OOT CK	OARD PENET ET PENETRO CONE PEN CORE RECO	OMET IETRA OVEF	ER F ATION RY	RESIS N RES	STAN(SISTA	CE	CE				REMARKS: GPS COORDINATES: Lat. 41.242334, Long82.797954

RRC Power & Energy, LLC 3801 Doris Lane Round Rock, TX 78664 Telephone: (512) 992-2087 Fax: (512) 251-2518 CLIENT: Apex Clean Energy, Inc PROJECT: **Emerson Creek Wind Project** LOCATION: Erie and Huron Counties, OH

NUMBER: MD1901007

N - STANDARD PENETRATION TEST RESISTANCE

P - POCKET PENETROMETER RESISTANCE

T - TXDOT CONE PENETRATION RESISTANCE R - ROCK CORE RECOVERY

RQD - ROCK QUALITY DESIGNATION

REMARKS: GPS COORDINATES: Lat. 41.241983, Long. -82.744461

RRC Power & Energy, LLC 3801 Doris Lane Round Rock, TX 78664 Telephone: (512) 992-2087 Fax: (512) 251-2518

CLIENT: Apex Clean Energy, Inc PROJECT: **Emerson Creek Wind Project** Erie and Huron Counties, OH LOCATION:

NUMBER: MD1901007

ATTERBERG LIMITS (%) SSROUND ATTERBERG (%) SSROUND ATTERBERG (%) GROUND	METHOD(S): m Auger: 0 to 2 ft.; NX Wet Rock Coring: 2 to 27 ft. WATER INFORMATION: water encountered prior to the introduction of drilling fluid
TIMITS (%) LE (%) CROUND	WATER INFORMATION:
ONTENDO ONTEND	
	water encountered prior to the introduction of drilling had
SOIL SYMBOL DEPTH (FT) SAMPLES N: BLOWS/FT T: BLOWS/FT	E ELEVATION (FT):
	DESCRIPTION OF STRATUM
\2 in. Topso	
	NE, light brown, dry to moist NE, light brown, fine grained, slightly to moderately, weak to moderately strong rock
R = 82 RQD = 43	
R = 88 RQD = 28	
R = 87 RQD = 8	
R = 85 RQD = 68	
[일	h = 27 ft.
MER SC	
3/2019/6	
OPECTS	
Administration of the state of	
502	
572	
NL01.6	
N. STANDARD DENISTRATION TEST DESIGNATION	0.
	S: RDINATES: Lat. 41.240369, Long82.832115 al Unit Weight

RRC Power & Energy, LLC 3801 Doris Lane Round Rock, TX 78664 Telephone: (512) 992-2087 Fax: (512) 251-2518 CLIENT: Apex Clean Energy, Inc PROJECT: **Emerson Creek Wind Project** LOCATION: Erie and Huron Counties, OH

					га	х. (э	12)	ZD 1-	2518					DATE(S) DRILLED: 4/23/2019
Г		FIE	LD	DATA			L	4BO	RATO	RY DA	λTΑ			DRILLING METHOD(S):
F						ATT	ERBI	ERG						Hollow Stem Auger: 0 to 8 ft.; NX Wet Rock Coring: 8 to 20 ft.
					MOISTURE CONTENT (%)	L	<u>IMIT:</u> ⊢				JRE (%)	SSURE	IEVE (%)	GROUNDWATER INFORMATION:
I COMMAND II CO	MBOL	(FT)	S	N. BLOWS/FT P: TONS/SQ FT T: BLOWS R: % RQD: %	JRE CON	LIQUID LIMIT	PLASTIC LIMIT	PLASTICITY INDEX	DRY DENSITY POUNDS/CU.FT	COMPRESSIVE STRENGTH (TONS/SQ. FT)	STRAIN AT FAILURE (%)	CONFINING PRESSURE (POUNDS/SQ IN)	MINUS NO. 200 SIEVE (%)	Groundwater encountered at 4 ft. during drilling prior to the introduction of drilling fluid
5	2	ОЕРТН (FT)	SAMPLES	LOW CONS/ CONs/ CONs/ CONs/ CONs/ CONs/ CONs/ CONs/ COns/ Co	ISTL	LIQL	PLA	PLA	ND.	MPR SENC NS/S	X N N	N S	IUS I	SURFACE ELEVATION (FT):
2		DEF	\&/		MO	LL	PL	PI	PO	S S S S S S S S S S S S S S S S S S S	STF	98	MIN	DESCRIPTION OF STRATUM
	<u>';</u>		\forall											√8 in. Topsoil
			Ä	N = 6	24									SANDY LEAN CLAY (CL), brown, medium stiff, moist
		5	\forall	N = 6	17									LEAN CLAY (CL), trace Sand, brown, medium stiff, moist
		Ü		7	Z									
	4		\mathbf{A}	N = 50/2" R = 67	_16_									SHALE, gray, very fine grained, slight to moderately weathered,
	∄	10	\mathbb{H}	RQD = 0										very weak to weak rock
7	⇟		11	R = 100										
07.GP.	⇟		11	RQD = 0										
MD1901007	▋	15	Ħ											
- MD	ŧ		Ш	R = 100 RQD = 18										
EK.	₹		11	KQD = 18										
2019 EMERSON CREEK - MD1901007\EMERSON CREEK	T	20	П											Total Depth = 20 ft.
RSO														Total Deptit – 20 It.
\EME														
1007														
10190														
X - >														
HE HE														
NON														
MERS														
19/EN														
.S\20														
JECT														
- 2/5/20 20:03 - G:\GINT\PROJECTS														
LNIS														
9:9														
0:03														
750 2														
- 2/2														
GD.														
INL01														
A GN														
106														
- 9C			Ш											
RENEWABLE LOG - LOG A GNNL01.GDT				ARD PENET						Æ				REMARKS:
WAB	Т	- TXE	OT	CONE PEN	IETR/	OITA								GPS COORDINATES: Lat. 41.238171, Long82.771065
ENE				CORE REC CK QUALIT			1OITA	٧						
<u>ـــا</u>						,								

RRC Power & Energy, LLC 3801 Doris Lane Round Rock, TX 78664 Telephone: (512) 992-2087 Fax: (512) 251-2518

CLIENT: Apex Clean Energy, Inc PROJECT: **Emerson Creek Wind Project** Erie and Huron Counties, OH LOCATION:

NUMBER: MD1901007

					га	х. (э	12).	251-	2518				DATE(S) DRILLED: 4/29/2019	
		FIE	ELD	DATA			LA	ABO	RATC	RY DA	λTΑ			DRILLING METHOD(S):
					(%)	ATT L	ERBE IMIT	S			(%	m	(%)	Hollow Stem Auger: 0 to 12 ft.; NX Wet Rock Coring: 12 to 20 ft.
	SOIL SYMBOL	DEPTH (FT)	SAMPLES	N: BLOWS/FT P: TONS/SQ FT T: BLOWS R: % RQD: %	MOISTURE CONTENT (%)	LIQUID LIMIT	PLASTIC LIMIT	PLASTICITY INDEX	DRY DENSITY POUNDS/CU.FT	COMPRESSIVE STRENGTH (TONS/SQ. FT)	STRAIN AT FAILURE (%)	CONFINING PRESSURE (POUNDS/SQ IN)	MINUS NO. 200 SIEVE (%)	GROUNDWATER INFORMATION: No groundwater encountered prior to the introduction of drilling fluid SURFACE ELEVATION (FT):
1	SS	<u> </u>	\%	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ž	LL	PL	PI	P. P.	SEE	ST	8€	Σ	DESCRIPTION OF STRATUM
***************************************		5		N = 7 N = 2	25 23									- 8 in. Topsoil LEAN CLAY (CL), trade Sand, brown, soft to hard, dry to moist
		10	H	N = 23 N = 19	17									Grading gray
901007.GPJ		15	41	N = 50/3" R = 72 RQD = 24					140*	004.00		0.0		SHALE, gray, very fine grained, slightly weathered, very weak rock
- MD		20	-	R = 100 RQD = 75					148*	921.60		0.0		
RENEWABLE LOG - LOG A GNNL01.GDT - 2/5/20 20:03 - G:\GINT\PROJECTS\2019\EMERSON CREEK - MD1901007\EMERSON CREEK 														Total Depth = 20 ft.
RENEWABLE LO	F 1 F	P - PO - TXE R - RO	CKE OOT CK	DARD PENET ET PENETRO CONE PEN CORE RECO	OMET ETRA	TER F ATION RY	RESIS N RES	STANC SISTA	CE	CE .				REMARKS: GPS COORDINATES: Lat. 41.238015, Long82.750999 *Denotes Total Unit Weight

RRC Power & Energy, LLC 3801 Doris Lane Round Rock, TX 78664 Telephone: (512) 992-2087 Fax: (512) 251-2518 CLIENT: Apex Clean Energy, Inc PROJECT: **Emerson Creek Wind Project** LOCATION: Erie and Huron Counties, OH

				Fa	X: (5	12)	251-	2518					DATE(S) DRILLED: 4/30/2019 - 5/1/2019
	FI	ELC	DATA			L	ABO	RATO	RY DA	λΤΑ			DRILLING METHOD(S):
				(%)		ERBI	S I			(%)	щ	(%)	Hollow Stem Auger: 0 to 5 ft.; NX Wet Rock Coring: 5 to 28 ft.
SOIL SYMBOL	ОЕРТН (FT)	SAMPLES	N. BLOWS/FT P: TONS/SQ FT T: BLOWS R: % RQD: %	MOISTURE CONTENT (%)	LIQUID LIMIT	PLASTIC LIMIT	PLASTICITY INDEX	DRY DENSITY POUNDS/CU.FT	COMPRESSIVE STRENGTH (TONS/SQ. FT)	STRAIN AT FAILURE (%)	CONFINING PRESSURE (POUNDS/SQ IN)	MINUS NO. 200 SIEVE (%)	GROUNDWATER INFORMATION: No groundwater encountered prior to the introduction of drilling fluid
Soll	DEPT	SAME	R: BLC	MOIS		PL	 PI	DRY Poul	STRE TON	STRA	POON	MINU	SURFACE ELEVATION (FT): DESCRIPTION OF STRATUM
7//	 -	\perp				-			0 0, 0				\2 in. Topsoil
	1	-X	N = 11	17									LEAN CLAY (CL), trace Sand, brown, stiff, moist
	5 T	-	N = 50/2" R = 79	1									SILTY GRAVEL (GM), gray, very dense, dry to moist, fine to coarse grained, subangular to subrounded
]]]- 10	- - -	RQD = 0 R = 98										LIMESTONE, gray, fine grained, slightly to moderately weathered, weak to moderately strong rock
GPJ] 	- - -	RQD = 32										
- MD1901007	15	-	R = 97 RQD = 61										Grading fresh to slightly weathered
	‡	\dagger											Grading with occasional calcareous nodules
SON CR	‡ 20 ‡	-	R = 100 RQD = 66										
- MD1901007/EMERSON CREEK]- - 25]-	-	R = 97 RQD = 89										
SEEK - MD													Total Depth = 28 ft.
2019\EMERSON CREEK													
ROJECTS													
G:\GINT\P													
0 20:03 - 0													
3DT - 2/5/2													
SNNL01.G													
-LOGAC													
RENEWABLE LOG - LOG A GNNL01.GDT - 2/5/20 20:03 - G:\GINTIPROJECTS'	P - PC T - TX R - RC	DCKE DOT DCK	DARD PENE ET PENETRO CONE PEN CORE RECO	OMET IETRA OVEF	TER F ATION RY	RESIS N RES	STANG	CE	L		<u> </u>		REMARKS: GPS COORDINATES: Lat. 41.235902, Long82.826303

RRC Power & Energy, LLC 3801 Doris Lane Round Rock, TX 78664 Telephone: (512) 992-2087 Fax: (512) 251-2518 CLIENT: Apex Clean Energy, Inc PROJECT: **Emerson Creek Wind Project** LOCATION: Erie and Huron Counties, OH

					Fa	x: (5	12)	251-	2518					DATE(S) DRILLED: 5/25/2019
		FIE	ELC	DATA			L	AΒO	RATC	RY DA	λTΑ			DRILLING METHOD(S):
Ī							ERBE							Hollow Stem Auger
	SOIL SYMBOL	ОЕРТН (FT)	SAMPLES	N. BLOWS/FT P: TONS/SQ FT T: BLOWS R: % RQD: %	MOISTURE CONTENT (%)	F LIQUID LIMIT	PLASTIC LIMIT	PLASTICITY INDEX	DRY DENSITY POUNDS/CU.FT	COMPRESSIVE STRENGTH (TONS/SQ. FT)	STRAIN AT FAILURE (%)	CONFINING PRESSURE (POUNDS/SQ IN)	MINUS NO. 200 SIEVE (%)	GROUNDWATER INFORMATION: Groundwater encountered at 12 ft. during drilling and not measured immediately after drilling SURFACE ELEVATION (FT): DESCRIPTION OF STRATUM
			Н							0 0,0		0.0	_	\1 ft. Topsoil
			Ä	N = 7										LEAN CLAY (CL), trace Sand, brown, medium stiff to stiff, dry to moist
		5	\blacksquare	N = 10	15									Grading with Sand
			$\frac{1}{M}$	N = 9										Grading grayish black
	4		\Box	N = 20	15									SHALE, grayish black, firm to very hard, dry to moist, dry to moist
	=	10		14 – 20 <u>5</u>	Ţ .ö									
77.GP.			H	N = 55	Ī									
MD1901007	▋	15	$\frac{1}{4}$	N = 50/6"	17									
∴∴E	▋		1											
CREEK		20	\forall	N = 50/1"										
	▋		\Box											
MER				N. 50/0#										
2019\EMERSON CREEK - MD1901007\EMERSON	=	25	$\frac{1}{4}$	N = 50/3"										
10190														Auger Refusal at 26 ft.
EK - N														
I CRE														
RSON														
9\EME														
JECT														
TIPRO														
:\GIN														
:03 - G														
20 20														
r - 2/5/														
1.GD														
NNC														
JG A G														
RENEWABLE LOG - LOG A GNNL01.GDT - 2/5/20 20:03 - G:\GINT\PROJECTS\]													
ie Lo				ARD PENE T PENETRO						E				REMARKS: GPS COORDINATES: Lat. 41.229091, Long82.804853
EWAB	٦	- TXE	TOC	CONE PEN	IETR/	OITA								Of 0 0001/DilyATE0. Lat. 41.223031, Long02.004033
REN				CK QUALIT			OITA	1						

RRC Power & Energy, LLC 3801 Doris Lane Round Rock, TX 78664 Telephone: (512) 992-2087 Fax: (512) 251-2518 CLIENT: Apex Clean Energy, Inc PROJECT: **Emerson Creek Wind Project** Erie and Huron Counties, OH LOCATION:

					ıa	x. (J	12)	231-	-2010					DATE(S) DRILLED: 4/5/2019
		FIE	LD	DATA			LA	4BO	RATO	RY DA	AΤΑ			DRILLING METHOD(S):
					(%)		ERBI	S			(%)	ш	(%)	Hollow Stem Auger
					MOISTURE CONTENT (%)	⊢	LIM	PLASTICITY INDEX	_		STRAIN AT FAILURE (%)	CONFINING PRESSURE (POUNDS/SQ IN)	MINUS NO. 200 SIEVE (%)	GROUNDWATER INFORMATION:
1	SOIL SYMBOL	Œ	S	N: BLOWS/FT P: TONS/SQ FT T: BLOWS R: % RQD: %	IRE CO	LIQUID LIMIT	PLASTIC LIMIT	STICITY	DRY DENSITY POUNDS/CU.FT	COMPRESSIVE STRENGTH (TONS/SQ. FT)	AT FAII	ING PR S/SQ IN	4O. 200	Groundwater encountered at 9 ft. during drilling and not measured immediately after drilling
	S.Y	БЕРТН (FT)	SAMPLES	SLOW!	USTU	LIQU	PLA	PLA	Y DE	MPRI RENG NS/S	ZAIN	NFIN	NS N	SURFACE ELEVATION (FT):
0	22	DE	\8	X Y : X X X X X X X X X X X X X X X X X X	M	LL	PL	PI	R O	SEE	STI	88	M	DESCRIPTION OF STRATUM
			$\frac{1}{2}$	N = 9	20									10 in. Topsoil LEAN CLAY (CL), trace Sand, brown, medium stiff, dry to moist
		5		N = 10	18									EE/W SEAT (SE), trace Sand, brown, mediam san, dry to moist
	4			N = 50/5"	11									SHALE, gray, hard, dry to moist
	▋	10	$\sqrt{}$	N = 50/1"	¥ 									
GPJ	⇟		\forall	N = 50/1"										
	▋	15	H	N = 50/1"										
- MD1901007	▋													
RENEWABLE LOG - LOG A GNNL01.GDT - 2/5/20 20:03 - G:\GINT\PROJECTS\2019\EMERSON CREEK - MD1901007\EMERSON CREEK - 	7													Auger Refusal at 18.5 ft.
ERSON														
007\EME														
1D19010														
EEK - N														
SONCR														
EMERS														
S\2019\														
OJECT														
INT\PR														
3 - G:\G														
20 20:03														
T - 2/5/2														
.01.GD														
A GNNL														
-L0G /														
E LOG				ARD PENET						E E				REMARKS:
EWABL	Т	- TXE	TOC	ET PENETRO CONE PEN CORE RECO	IETR/	10IT								GPS COORDINATES: Lat. 41.207509, Long82.781587 Auger refusal at 15 ft.; offset, auger refusal at 18.5 ft.
REN				CK QUALITY			1OITA	٧						

P - POCKET PENETROMETER RESISTANCE T - TXDOT CONE PENETRATION RESISTANCE R - ROCK CORE RECOVERY

RQD - ROCK QUALITY DESIGNATION

RRC Power & Energy, LLC 3801 Doris Lane Round Rock, TX 78664 Telephone: (512) 992-2087 Fax: (512) 251-2518 CLIENT: Apex Clean Energy, Inc PROJECT: **Emerson Creek Wind Project** Erie and Huron Counties, OH LOCATION:

NUMBER: MD1901007

Auger refusal at 11 ft.; offset and drill to 30 ft.

				га	ix. (S	12).	201-	2010					DATE(S) DRILLED: 4/5/2019
	FIE	LD	DATA			LA	ΑВО	RATO	DRY DA	ATA			DRILLING METHOD(S):
SOIL SYMBOL	DЕРТН (FT)	SAMPLES	N: BLOWS/FT P: TONS/SQ FT T: BLOWS R: % RQD: %	MOISTURE CONTENT (%)		PLASTIC LIMIT HE BE		DRY DENSITY POUNDS/CU.FT	COMPRESSIVE STRENGTH (TONS/SQ. FT)	STRAIN AT FAILURE (%)	CONFINING PRESSURE (POUNDS/SQ IN)	MINUS NO. 200 SIEVE (%)	Hollow Stem Auger: 0 to 11 ft.; NX Wet Rock Coring: 11 to 30 ft. GROUNDWATER INFORMATION: Groundwater encountered at 7 ft. during drilling prior to the introduction of drilling fluid SURFACE ELEVATION (FT): DESCRIPTION OF STRATUM
\ 1,,·		Ħ				-			00,0			_	10 in. Topsoil
	- - - - 5 -		N = 7 N = 21	13									LEAN CLAY (CL), trace Sand, light brown, medium stiff to very stiff, moist to wet
	_	Щ	N = 76/8"	1,1									SHALE, dark brown, very hard, moist
	- 10 - -	\prod	N = 50/3" R = 100 RQD = 0	11									SHALE, gray, very fine grained, slightly to moderately weathered, very weak to weak rock
	- 15 - - -		R = 98 RQD = 33										
	- 20 - - -	- - - - -	R = 92 RQD = 78										
	- 25 - - - - - 30		R = 100 RQD = 88										
	30												Total Depth = 30 ft.
	P - PO	CKE	ARD PENE T PENETRO CONE PEN	OME	TER F	RESIS	TANG	Œ	<u> </u> E				REMARKS: GPS COORDINATES: Lat. 41.203875, Long82.781489 Auger refusal at 11 ft.: offset and drill to 30 ft.

RQD - ROCK QUALITY DESIGNATION

RRC Power & Energy, LLC 3801 Doris Lane Round Rock, TX 78664 Telephone: (512) 992-2087 Fax: (512) 251-2518 CLIENT: Apex Clean Energy, Inc
PROJECT: Emerson Creek Wind Project
LOCATION: Erie and Huron Counties, OH

				Fa	x: (5	12)	251-	2518					DATE(S) DRILLED: 12/19/2019 - 12/20/2020
	FIE	ELC	DATA			L/	4BO	RATO	DRY DA	ATA			DRILLING METHOD(S):
				(%)		ERBI				(0		(%)	Hollow Stem Auger: 0 to 12 ft.; Mud Rotary: 12 to 39 ft.
SOIL SYMBOL	ОЕРТН (FT)	SAMPLES	N. BLOWS/FT P: TONS/SQ FT T: BLOWS R: % RQD: %	MOISTURE CONTENT (%)	LIQUID LIMIT	PLASTIC LIMIT	PLASTICITY INDEX	DRY DENSITY POUNDS/CU.FT	COMPRESSIVE STRENGTH (TONS/SQ. FT)	STRAIN AT FAILURE (%)	CONFINING PRESSURE (POUNDS/SQ IN)	MINUS NO. 200 SIEVE (%)	GROUNDWATER INFORMATION: No groundwater encountered prior to the introduction of drilling fluid SURFACE ELEVATION (FT):
	ä	\% 	/ ፷፱፫፰៥	Ž	LL	PL	PI	<u> </u>	SPE	ST	86	₹	DESCRIPTION OF STRATUM 10 in. Topsoil
		\overline{A}	N = 4										FAT CLAY (CH), trace Sand, brown, soft to hard, dry to moist
	- - 5		N = 8	29									
	- - - 10	\Box	N = 83/11" N = 50/5"										Grading black to gray
		\forall	N = 50/3"	20									
	- - 15 -		N = 50/6"	26									POORLY GRADED SAND (SP), black, very dense, moist to wet, fine to medium grained
	- - - 20	-X	N = 25/0"										
	- - - 25	-X	N = 25/0"										
	- - - 30 -	- - X	N = 25/0"										
	- - - 35 -	- - X	N = 25/0"										
	_	-	N = 25/0" /										∖SHALE, olive gray, very hard, wet /
													Total Depth = 39 ft.
	P - PC T - TXI R - RC	OCKE DOT OCK	DARD PENE T PENETRO CONE PEN CORE REC	OMET IETRA OVEF	TER F ATIOI RY	RESIS N RES	STAN(SISTA	CE) DE			L	REMARKS: GPS COORDINATES: Lat. 41.200363, Long82.777263

RRC Power & Energy, LLC 3801 Doris Lane Round Rock, TX 78664 Telephone: (512) 992-2087 Fax: (512) 251-2518

CLIENT: Apex Clean Energy, Inc PROJECT: **Emerson Creek Wind Project** Erie and Huron Counties, OH LOCATION:

NUMBER: MD1901007

					га	х. (э	12).	251-	2518					DATE(S) DRILLED: 4/29/2019
		FIE	LD	DATA			L	4BO	RATC	RY DA	ΛTΑ			DRILLING METHOD(S):
					L (%)	ATT L	ERBI	S 			(%)	RE	(%) =	Hollow Stem Auger: 0 to 9 ft.; NX Wet Rock Coring: 9 to 20 ft.
I COM > 0		DЕРТН (FT)	LES	N. BLOWS/FT P: TONS/SQ FT T: BLOWS R: % RQD: %	MOISTURE CONTENT (%)	LIQUID LIMIT	PLASTIC LIMIT	PLASTICITY INDEX	DRY DENSITY POUNDS/CU.FT	COMPRESSIVE STRENGTH (TONS/SQ. FT)	STRAIN AT FAILURE (%)	CONFINING PRESSURE (POUNDS/SQ IN)	MINUS NO. 200 SIEVE (%)	GROUNDWATER INFORMATION: No groundwater encountered prior to the introduction of drilling fluid
5		DEPT	SAMPLES	A: BLC 7: BLO 7: BLO 8: %	MOIS	LL	PL	PI □	DRY E	STRE	STRA	POUR	NIN	SURFACE ELEVATION (FT): DESCRIPTION OF STRATUM
			H		_		' -	' '		0000	- 0)		_	\2 in. Topsoil
		5	\Box	N = 8 N = 35	19									LEAN CLAY (CL), trace Sand, brown, medium stiff to hard, moist
			R	N = 18 N = 50/2"										SANDY LEAN CLAY (CL), brown, trace Gravel, medium dense to very dense, dry to moist
07.GPJ	<u> </u>	10	11	R = 67 RQD = 33 R = 98 RQD = 13										LIMESTONE, fine grained, moderately weathered, weak to moderately strong rock, vertical fracture from 9.5 to 10 ft.
REEK - MD1901007	\ \ \ \ \ \ \	15	#1 - - - -	R = 35 RQD = 16					175*	1092.24		0.0		Potential void from 17 to 18 ft.
		20												Total Depth = 20 ft.
. MD1901007														
ON CREEK														
2019\EMERS														
PROJECTS\														
3 - G:\GINT\														
- 2/5/20 20:0														
NNL01.GDT														
3 - LOG A GI														
RENEWABLE LOG - LOG A GNNL01.GDT - 2/5/20 20:03 - G./GINT/PROJECTS'	P - T - R -	- PO0 - TXD - RO0	OKE OT OK	ARD PENET T PENETRO CONE PEN CORE RECO	OMET IETRA OVEF	TER F ATION RY	RESIS N RES	STAN(SISTA	CE	E				REMARKS: GPS COORDINATES: Lat. 41.198112, Long82.831090 *Denotes Total Unit Weight

RRC Power & Energy, LLC 3801 Doris Lane Round Rock, TX 78664 Telephone: (512) 992-2087 Fax: (512) 251-2518 CLIENT: Apex Clean Energy, Inc PROJECT: **Emerson Creek Wind Project** LOCATION: Erie and Huron Counties, OH

NUMBER: MD1901007

DATE(S) DRILLED: 4/6/2019

					(-	,							DATE(S) DRILLED: 4/6/2019
	FI	EL	D DATA			L	ABO	RATC	RY DA	ATA			DRILLING METHOD(S):
SOIL SYMBOL		SAMPLES	N. BLOWS/FT P: TONS/SQ FT T: BLOWS R: % RQD: %	The Moisture Content (%)		ERBETINITE PLASTIC LIMIT	ERG	DRY DENSITY POUNDS/CU.FT	COMPRESSIVE STRENGTH A CTONS/SQ.FT)	STRAIN AT FAILURE (%)	CONFINING PRESSURE (POUNDS/SQ IN)	MINUS NO. 200 SIEVE (%)	
1901007.GPJ	10		N = 26 N = 16 N = 98/9" N = 50/3"	10									WEATHERED SHALE, gray, stiff to hard, dry to moist
CREEK - MD1901007\EMBRSON CREEK - MD1	20 25 30		R = 82 RQD = 38 R = 70 RQD = 53 R = 58 RQD = 17										SHALE, dark gary, fine grained, slightly to moderately weathered, very weak to weak rock
RENEWABLE LOG - LOG A GNNL01.GDT - 2/5/20 20:03 - G:\GINT\PROJECTS\2019\EMERSON CR		1											Total Depth = 33 ft.
RENEWABLE LOG - LO	P - P(T - TX R - R(DCKI (DOT DCK	DARD PENE ET PENETRO T CONE PEN CORE RECO CK QUALITY	OMET IETRA OVEF	TER F ATION RY	RESIS N RES	STANG SISTA	CE) CE				REMARKS: GPS COORDINATES: Lat. 41.192592, Long82.774713

CLIENT: Apex Clean Energy, Inc PROJECT: **Emerson Creek Wind Project** LOCATION: Erie and Huron Counties, OH

NUMBER: MD1901007

				га	x: (5	12)	Z5 I-	-2518					DATE(S) DRILLED: 4/6/2019
	FIE	ELD	DATA			L	4BO	RATO	DRY DA	ATA			DRILLING METHOD(S):
SOIL SYMBOL	DЕРТН (FT)	SAMPLES	N. BLOWS/FT P: TONS/SQ FT P: TBLOWS R: % RQD: %	MOISTURE CONTENT (%)	TI LIQUID LIMIT	ERBI IMIT PLASTIC LIMIT	G PLASTICITY INDEX B	DRY DENSITY POUNDS/CU.FT	COMPRESSIVE STRENGTH (TONS/SQ. FT)	STRAIN AT FAILURE (%)	CONFINING PRESSURE (POUNDS/SQ IN)	MINUS NO. 200 SIEVE (%)	Hollow Stem Auger GROUNDWATER INFORMATION: No groundwater encountered during or immediately after drilling SURFACE ELEVATION (FT): DESCRIPTION OF STRATUM
	5		N = 10 N = 17	20 15									
	10	Ħ	N = 30 N = 35	11									SANDY LEAN CLAY (CL), light brown, vert stiff to hard, dry to moist
	1	H	N = 60 N = 50/6"										SHALE, dark gray, hard to very hard, dry to moist
FLOG - LOG A GINNLOTT. 601 - 2/3/20 20/30 - 6./GINT PROJECT OLG SIGNERACION CREEN - MD 1901/07/EMERGOON CREEN - MD													Auger Refusal at 15 ft.

N - STANDARD PENETRATION TEST RESISTANCE

P - POCKET PENETROMETER RESISTANCE

T - TXDOT CONE PENETRATION RESISTANCE R - ROCK CORE RECOVERY

RQD - ROCK QUALITY DESIGNATION

REMARKS: GPS COORDINATES: Lat. 41.187731, Long. -82.775036

RRC Power & Energy, LLC 3801 Doris Lane Round Rock, TX 78664 Telephone: (512) 992-2087 Fax: (512) 251-2518 CLIENT: Apex Clean Energy, Inc PROJECT: **Emerson Creek Wind Project** LOCATION: Erie and Huron Counties, OH

NUMBER: MD1901007

					га	х. (э	12).	201-	2518					DATE(S) DRILLED: 4/6/2019 - 4/7/2019
		FIE	LD	DATA			LA	ABO	RATO	RY DA	λTΑ			DRILLING METHOD(S):
							ERBE							Hollow Stem Auger: 0 to 22 ft.; NX Wet Rock Coring: 22 to 37 ft.
	SOIL SYMBOL	БЕРТН (FT)	SAMPLES	N: BLOWS/FT P: TONS/SQ FT T: BLOWS R: % RQD: %	MOISTURE CONTENT (%)	F LIQUID LIMIT	구 PLASTIC LIMIT	PLASTICITY INDEX	DRY DENSITY POUNDS/CU.FT	COMPRESSIVE STRENGTH (TONS/SQ. FT)	STRAIN AT FAILURE (%)	CONFINING PRESSURE (POUNDS/SQ IN)	MINUS NO. 200 SIEVE (%)	GROUNDWATER INFORMATION: No groundwater encountered prior to the introduction of drilling fluid SURFACE ELEVATION (FT): DESCRIPTION OF STRATUM
┢	<i>o</i> ,		1	/ 24 - 44		LL	FL	FI		0000	0)	00		Undifferentiated Overburden. Refer to T-45a for detailed soil
CREEK - MD1901007.GPJ		5 10 15												description.
CREEK		20	\forall	N = 50/1"										SHALE, dark brown, very hard, dry to moist
901007\EMERSON		25		R = 93 RQD = 75										SHALE, dark gray, fine grained, slightly to moderately weathered, very weak rock
CREEK - MD190		30		R = 95 RQD = 83					154*	734.40		0.0		
9\EMERSON		35		R = 100 RQD = 92										
RENEWABLE LOG - LOG A GNNL01.GDT - 2/5/20 20:03 - G:\GINT\PROJECTS\2019\ 														Total Depth = 37 ft.
RENEWABLE LC	F T F	? - PO(- TXE ? - RO(CKE OOT CK	ARD PENET T PENETRO CONE PEN CORE RECO	OMET ETRA OVEF	TER F ATION RY	RESIS N RES	STANC SISTA	CE	E				REMARKS: GPS COORDINATES: Lat. 41.187731, Long82.775036 *Denotes Total Unit Weight

RRC Power & Energy, LLC 3801 Doris Lane Round Rock, TX 78664 Telephone: (512) 992-2087 Fax: (512) 251-2518 CLIENT: Apex Clean Energy, Inc PROJECT: **Emerson Creek Wind Project** LOCATION: Erie and Huron Counties, OH

FIELD DATA LABORATORY DATA DRILLING METHOD(S): Hollow Stem Auger: 0 to 23 ft; NX Wet Rock Coring: 23 to 33 ft. Control of the Introduction of drilling fluid Control of						ıa	λ. (Ο	12).	201-	-2010					DATE(S) DRILLED: 4/8/2019
TOTAL DEPTH AND STATE AND			FIE	LD	DATA			LA	٩во	RATO	RY DA	ATA			` '
GROUNDWATER INFORMATION: Groundwater encountered at 9 ft. during drilling prior to the introduction of drilling fluid SURFACE ELEVATION (FT): DESCRIPTION OF STRATUM 10 N = 38 N = 38 N = 40 17 N = 92/T* SHALE, light gray, very fine grained, slightly to moderately weathered, very weak to weak rock SHALE, light gray, very fine grained, slightly to moderately weathered, very weak to weak rock Total Depth = 33 ft.						_								_	Hollow Stem Auger: 0 to 23 ft.; NX Wet Rock Coring: 23 to 33 ft.
N = 2 39 LEAN CLAY (CL), with Sand, light brown, soft, dry to moist SHALE, dark brown, weathered to very hard, moist to wet N = 34						(%) T		.IIVII I S				(%)	묎	(%) Ξ	
10 in. Topsoil LEAN CLAY (CL), with Sand, light brown, soft, dry to moist 5						L. LEN.		±	NDE			JRE	SSU	SIEVE	GROUNDWATER INFORMATION:
10 in. Topsoil LEAN CLAY (CL), with Sand, light brown, soft, dry to moist 5		۱۲			 -	NOS	TIMI:	MIT:	<u> </u>	논변	IVE (F.	-AILL	PRE O IN)	S 007	Groundwater encountered at 9 ft. during drilling prior to the
10 in. Topsoil LEAN CLAY (CL), with Sand, light brown, soft, dry to moist 5		L MB((FT)	ES	/S/FT /SQ F /S	JRE		STIC	STIC	NSI S/CL	SC. F	AT F	JING JS/S(NO.	Introduction of ariting fluid
10 in. Topsoil LEAN CLAY (CL), with Sand, light brown, soft, dry to moist 5	6	S	PTH	MPL	3LOW SLOW SLOW D: %	JIST	ΙΘΙ	PLA		Z S S S S S S S S S S S S S S S S S S S	MPF REN	RAIN	NFIN	SUN	SURFACE ELEVATION (FT):
SHALE, light gray, very fine grained, slightly to moderately weathered, weak to moderately strong rock R = 50 RQD = 37	5	2	핌	\&\	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ĭ	LL	PL	PI	PO PO	SPE	ST	S.F.	M	
SHALE, dark brown, weathered to very hard, moist to wet N = 34				$\frac{1}{M}$	N = 2	39									
N = 34				+											
N = 51 N = 38 N = 40 N = 92/7" 20 N = 92/7" SHALE, light gray, very fine grained, slightly to moderately weathered, very weak to weak rock LIMESTONE, light gray, fine grained, slightly weathered, weak to moderately strong rock SHALE, gray, very fine grained, slightly weathered, weak to moderately strong rock SHALE, gray, very fine grained, slightly to moderately weathered, very weak to weak rock Total Depth = 33 ft.		₹	5	$\overline{\mathbb{A}}$	N = 17										SHALE, dark brown, weathered to very hard, moist to wet
N = 38 N = 40 N = 92/7" N = 92/7" N = 93 RaD = 56 RaD = 37 N = 50 RaD = 37 N = 50 Rad = 33 ft.		▋		$\frac{1}{4}$	N = 24 7	7 10									
N = 38 N = 40 17 N = 92/7" SHALE, light gray, very fine grained, slightly to moderately weathered, very weak to weak rock LIMESTONE, light gray, fine grained, slightly weathered, weak to moderately strong rock SHALE, gray, very fine grained, slightly to moderately weathered, very weak to weak rock Total Depth = 33 ft.		▋		\square		¥ 10									
SHALE, light gray, very fine grained, slightly to moderately weathered, very weak to weak rock R = 93 ROD = 56 R = 50 RQD = 37 SHALE, light gray, very fine grained, slightly to moderately weathered, very weak to weak rock SHALE, gray, very fine grained, slightly weathered, weak to moderately strong rock SHALE, gray, very fine grained, slightly to moderately weathered, very weak to weak rock Total Depth = 33 ft.		書	10	A	IN = 5T										
SHALE, light gray, very fine grained, slightly to moderately weathered, very weak to weak rock LIMESTONE, light gray, fine grained, slightly weathered, weak to moderately strong rock SHALE, gray, very fine grained, slightly weathered, weak to moderately strong rock SHALE, gray, very fine grained, slightly to moderately weathered, wery weak to weak rock Total Depth = 33 ft.	GPJ	⇟		\forall	N = 38										
SHALE, light gray, very fine grained, slightly to moderately weathered, very weak to weak rock LIMESTONE, light gray, fine grained, slightly weathered, weak to moderately strong rock SHALE, gray, very fine grained, slightly weathered, weak to moderately strong rock SHALE, gray, very fine grained, slightly to moderately weathered, wery weak to weak rock Total Depth = 33 ft.	1007.	⇟	15		N = 40	17									
SHALE, light gray, very fine grained, slightly to moderately weathered, very weak to weak rock LIMESTONE, light gray, fine grained, slightly weathered, weak to moderately strong rock SHALE, gray, very fine grained, slightly weathered, weak to moderately strong rock SHALE, gray, very fine grained, slightly weathered, weak to moderately strong rock SHALE, gray, very fine grained, slightly to moderately weathered, very weak to weak rock Total Depth = 33 ft.	10190	₫		\prod											
SHALE, light gray, very fine grained, slightly to moderately weathered, very weak to weak rock LIMESTONE, light gray, fine grained, slightly weathered, weak to moderately strong rock SHALE, gray, very fine grained, slightly to moderately weathered, very weak to weak rock Total Depth = 33 ft.		₫													
SHALE, light gray, very fine grained, slightly to moderately weathered, very weak to weak rock LIMESTONE, light gray, fine grained, slightly weathered, weak to moderately strong rock SHALE, gray, very fine grained, slightly to moderately weathered, very weak to weak rock Total Depth = 33 ft.	SRE	틝	20	$\overline{\mathbb{A}}$	N = 92/7"										
weathered, very weak to weak rock Climestone Climest	NOS	┋		7											
R = 93 RQD = 56 R = 50 RQD = 37	MER	▋		Ŧ											SHALE, light gray, very fine grained, slightly to moderately
SHALE, gray, very fine grained, slightly to moderately weathered, very weak to weak rock Total Depth = 33 ft.	007	⇟	25	#	R = 93 _										
R = 50 RQD = 37 Very weak to weak rock Total Depth = 33 ft.	71901	⇟		#	RQD = 56										\moderately strong rock
RQD = 37 Total Depth = 33 ft.	· -	⇟	30	1	R = 50										
Total Depth = 33 ft.	NEE NEE	⇟													, 10. J. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10
N - STANDARD PENETRATION TEST RESISTANCE P - POCKET PENETROMETER RESISTANCE T - TXDOT CONE PENETRATION RESISTANCE R - ROCK CORE RECOVERY RQD - ROCK QUALITY DESIGNATION Total Depth = 33 ft. REMARKS: GPS COORDINATES: Lat. 41.181870, Long82.781886	NOS	₹		₩											
N - STANDARD PENETRATION TEST RESISTANCE P - POCKET PENETROMETER RESISTANCE T - TXDOT CONE PENETRATION RESISTANCE R - ROCK CORE RECOVERY RQD - ROCK QUALITY DESIGNATION REMARKS: GPS COORDINATES: Lat. 41.181870, Long82.781886	MER														Total Depth = 33 ft.
N - STANDARD PENETRATION TEST RESISTANCE P - POCKET PENETROMETER RESISTANCE T - TXDOT CONE PENETRATION RESISTANCE R - ROCK CORE PENETRATION RESISTANCE R - ROCK CORE PENETRATION RESISTANCE R - ROCK CORE RECOVERY RQD - ROCK QUALITY DESIGNATION REMARKS: GPS COORDINATES: Lat. 41.181870, Long82.781886	019\E														
N - STANDARD PENETRATION TEST RESISTANCE P - POCKET PENETROMETER RESISTANCE T - TXDOT CONE PENETRATION RESISTANCE R - ROCK CORE RECOVERY RQD - ROCK QUALITY DESIGNATION REMARKS: GPS COORDINATES: Lat. 41.181870, Long82.781886	TS\2														
N - STANDARD PENETRATION TEST RESISTANCE P - POCKET PENETROMETER RESISTANCE T - TXDOT CONE PENETRATION RESISTANCE R - ROCK CORE RECOVERY RQD - ROCK QUALITY DESIGNATION REMARKS: GPS COORDINATES: Lat. 41.181870, Long82.781886	OJEC														
N - STANDARD PENETRATION TEST RESISTANCE P - POCKET PENETROMETER RESISTANCE T - TXDOT CONE PENETRATION RESISTANCE R - ROCK CORE RECOVERY RQD - ROCK QUALITY DESIGNATION REMARKS: GPS COORDINATES: Lat. 41.181870, Long82.781886	ITIPR														
N - STANDARD PENETRATION TEST RESISTANCE P - POCKET PENETROMETER RESISTANCE T - TXDOT CONE PENETRATION RESISTANCE R - ROCK CORE RECOVERY RQD - ROCK QUALITY DESIGNATION REMARKS: GPS COORDINATES: Lat. 41.181870, Long82.781886	:\GIN														
N - STANDARD PENETRATION TEST RESISTANCE P - POCKET PENETROMETER RESISTANCE T - TXDOT CONE PENETRATION RESISTANCE R - ROCK CORE RECOVERY RQD - ROCK QUALITY DESIGNATION REMARKS: GPS COORDINATES: Lat. 41.181870, Long82.781886	03 - 6														
N - STANDARD PENETRATION TEST RESISTANCE P - POCKET PENETROMETER RESISTANCE T - TXDOT CONE PENETRATION RESISTANCE R - ROCK CORE RECOVERY RQD - ROCK QUALITY DESIGNATION REMARKS: GPS COORDINATES: Lat. 41.181870, Long82.781886 GPS COORDINATES: Lat. 41.181870, Long82.781886	0 20:														
N - STANDARD PENETRATION TEST RESISTANCE P - POCKET PENETROMETER RESISTANCE T - TXDOT CONE PENETRATION RESISTANCE R - ROCK CORE RECOVERY RQD - ROCK QUALITY DESIGNATION REMARKS: GPS COORDINATES: Lat. 41.181870, Long82.781886	2/5/2														
N - STANDARD PENETRATION TEST RESISTANCE P - POCKET PENETROMETER RESISTANCE T - TXDOT CONE PENETRATION RESISTANCE R - ROCK CORE RECOVERY RQD - ROCK QUALITY DESIGNATION REMARKS: GPS COORDINATES: Lat. 41.181870, Long82.781886	3DT -														
N - STANDARD PENETRATION TEST RESISTANCE P - POCKET PENETROMETER RESISTANCE T - TXDOT CONE PENETRATION RESISTANCE R - ROCK CORE RECOVERY RQD - ROCK QUALITY DESIGNATION REMARKS: GPS COORDINATES: Lat. 41.181870, Long82.781886	NL01.(
N - STANDARD PENETRATION TEST RESISTANCE P - POCKET PENETROMETER RESISTANCE T - TXDOT CONE PENETRATION RESISTANCE R - ROCK CORE RECOVERY RQD - ROCK QUALITY DESIGNATION REMARKS: GPS COORDINATES: Lat. 41.181870, Long82.781886	GNN														
N - STANDARD PENETRATION TEST RESISTANCE P - POCKET PENETROMETER RESISTANCE T - TXDOT CONE PENETRATION RESISTANCE R - ROCK CORE RECOVERY RQD - ROCK QUALITY DESIGNATION REMARKS: GPS COORDINATES: Lat. 41.181870, Long82.781886	7 900														
N - STANDARD PENETRATION TEST RESISTANCE P - POCKET PENETROMETER RESISTANCE T - TXDOT CONE PENETRATION RESISTANCE R - ROCK CORE RECOVERY RQD - ROCK QUALITY DESIGNATION REMARKS: GPS COORDINATES: Lat. 41.181870, Long82.781886	1-92														
T - TXDOT CONE PENETRATION RESISTANCE R - ROCK CORE RECOVERY RQD - ROCK QUALITY DESIGNATION) - 										Æ				REMARKS:
RQD - ROCK QUALITY DESIGNATION	WAB	Т	- TXE	OOT	CONE PEN	IETR/	10IT								31 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
	RENE							ATION	٧						

RRC Power & Energy, LLC 3801 Doris Lane Round Rock, TX 78664 Telephone: (512) 992-2087 Fax: (512) 251-2518

CLIENT: Apex Clean Energy, Inc PROJECT: **Emerson Creek Wind Project** LOCATION: Erie and Huron Counties, OH

					Fa	x: (5	12)	251-	-2518					DATE(S) DRILLED: 4/29/2019
İ		FIE	ELE	DATA			L/	ABO	RATO	DRY DA	ATA			DRILLING METHOD(S):
ŀ					(9)		ERBI	ERG					(9)	Hollow Stem Auger: 0 to 15 ft.; NX Wet Rock Coring: 15 to 25 ft.
	SOIL SYMBOL	DЕРТН (FT)	SAMPLES	N. BLOWS/FT P: TONS/SQ FT T: BLOWS R: % RQD: %	MOISTURE CONTENT (%)	LIQUID LIMIT	PLASTIC LIMIT	PLASTICITY INDEX	DRY DENSITY POUNDS/CU.FT	COMPRESSIVE STRENGTH (TONS/SQ. FT)	STRAIN AT FAILURE (%)	CONFINING PRESSURE (POUNDS/SQ IN)	MINUS NO. 200 SIEVE (%)	GROUNDWATER INFORMATION: No groundwater encountered prior to the introduction of drilling fluid SURFACE ELEVATION (FT):
	ις Έντη	<u> </u>	\ <u>\</u>	/ zā:: & k	Σ	LL	PL	PI	27	SSF	ဟ	<u>ö</u> <u> </u>	Σ	DESCRIPTION OF STRATUM \[\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
			Ī	N = 11 N = 14	14									LEAN CLAY (CL), with Sand, brown, stiff to hard, moist
		5	<u> </u>	N = 26 N = 17	13									Grading gray
GPJ			X	N = 35	9									
1007.		15		N = 50/6"								SHALE, gray, hard, dry to moist		
EK - MD190				R = 88 RQD = 27										SHALE, gray, very fine grained, slightly to moderately weathered, very weak to weak rock
ERSON CRE		20	-	R = 98 RQD = 78										
901007\EM		25												Total Depth = 25 ft.
RENEWABLE LOG - LOG A GNNL01.GDT - 2/5/20 20:03 - G:\GINT\PROJECTS\2019\EMERSON CREEK - MD1901007\EMERS														
RENEWABLE LO	F 7 F	P - PO T - TXE R - RO	CKE DOT CK	DARD PENE ET PENETRO CONE PEN CORE RECO	OMET IETRA OVEF	TER F ATION RY	RESIS N RES	STAN(SISTA	CE	ČE .				REMARKS: GPS COORDINATES: Lat. 41.176582, Long82.829454

CLIENT: Apex Clean Energy, Inc
PROJECT: Emerson Creek Wind Project
LOCATION: Erie and Huron Counties, OH

					Fa	x: (5	12) :	251-	2518					DATE(S) DRILLED: 12/18/2019
		FIE	LD	DATA			LA	ABO	RATO	DRY DA	λTΑ			DRILLING METHOD(S):
					(%)	ATT L	ERBE	S			(%)	щ	(%)	Hollow Stem Auger
SOII SYMBOI	0011 (CT)	DEPTH (FT)	SAMPLES	N: BLOWS/FT P: TONS/SQ FT T: BLOWS R: % RQD: %	MOISTURE CONTENT (%)	F LIQUID LIMIT	구 PLASTIC LIMIT	☑ PLASTICITY INDEX	DRY DENSITY POUNDS/CU.FT	COMPRESSIVE STRENGTH (TONS/SQ. FT)	STRAIN AT FAILURE (%)	CONFINING PRESSURE (POUNDS/SQ IN)	MINUS NO. 200 SIEVE	GROUNDWATER INFORMATION: Groundwater not encountered during drilling and measured at 31 ft. immediately after drilling SURFACE ELEVATION (FT): DESCRIPTION OF STRATUM
														∖2 in. Topsoil
		5 ·		N = 23 N = 20	16									LEAN CLAY (CL), trace Sand, brown, very stiff to hard, dry to moist
		10 -	\Box	N = 26 N = 21	14									Grading with Sand, gray
P.			X	N = 24										Trace Gravel at 12 ft.
- MD1901007.GPJ	<i>'</i>	15 ·	X	N = 31										
	2	20 -		N = 44	18									SANDY LEAN CLAY (CL), trace Gravel, gray, moist, hard
2019)EMERSON CREEK - MD1901007/EMERSON CREEK	2	25 ·	- - X	N = 39										
CREEK - MC	3 3	30 ·	X	N = 96/11"	7									SHALE, gray, very hard, dry to moist
9/EMERSON (3	35 -	X	N = 50/3"										
			- *	N = 50/3"										Auger Refusal at 39 ft.
3 - G:\GINT\P														
- 2/5/20 20:0														
NNL01.GDT														
3 - LOG A G														
RENEWABLE LOG - LOG A GNNL01.GDT - 2/5/20 20:03 - G:\GINT\PROJECTS\	P - T - ' R -	POC TXD ROC	OKE OT CK (ARD PENET T PENETRO CONE PEN CORE RECO	OMET ETRA OVEF	TER F ATION RY	RESIS N RES	TANG	CE	E				REMARKS: GPS COORDINATES: Lat. 41.154781, Long82.811484

T - TXDOT CONE PENETRATION RESISTANCE R - ROCK CORE RECOVERY RQD - ROCK QUALITY DESIGNATION

RRC Power & Energy, LLC 3801 Doris Lane Round Rock, TX 78664 Telephone: (512) 992-2087 Fax: (512) 251-2518 CLIENT: Apex Clean Energy, Inc PROJECT: **Emerson Creek Wind Project** LOCATION: Erie and Huron Counties, OH

				Г	1X. (C) (2)	201-	-2010					DATE(S) DRILLED: 5/25/2019
	FIE	ELD	DATA			L/	4BO	RATO	DRY DA	ΑTA			DRILLING METHOD(S):
				L (%)	AT	TERBI LIMIT	S 			(%)	RE	E (%)	1 Hollow Stem Auger
BOL	(F		2 FT	MOISTURE CONTENT (%)	LIQUID LIMIT	PLASTIC LIMIT	PLASTICITY INDEX	SITY CU.FT	SSIVE TH 2. FT)	STRAIN AT FAILURE (%)	CONFINING PRESSURE (POUNDS/SQ IN)	MINUS NO. 200 SIEVE (%)	GROUNDWATER INFORMATION: No groundwater encountered during or immediately after drilling
SOIL SYMBOL	ОЕРТН (FT)	SAMPLES	N: BLOWS/FT P: TONS/SQ FT T: BLOWS R: %	du: % 10ISTUR				DRY DENSITY POUNDS/CU.FT	COMPRESSIVE STRENGTH (TONS/SQ. FT)	TRAIN A	ONFININ	INUS NO	SURFACE ELEVATION (FT):
S V///		\o	/ Ż&;;&;	ž ≥	LL	PL	PI		OWF	.S	0.6	Σ	DESCRIPTION OF STRATUM \[\
	-	\mathbb{A}	N = 13										LEAN CLAY (CL), with Sand, brown, stiff to very stiff, dry to moist
	- - 5		N = 14	13									Grading trace Sand
	- -		N = 18										
	- 10	$\overline{\mathbb{A}}$	N = 28	16									
			N = 21										WEATHERED SHALE, gray, very stiff, dry to moist
79.7001061 GW-	- - 15	\Box	N = 18	13									
	-												
	-		N - 47										SHALE, gray, weathered to very hard, dry to moist
	- 20 -	\uparrow	N = 47										STALE, gray, weathered to very flard, dry to filost
	-	1											
	25	\mathbb{X}	N = 50/4"										
	E]											
	- - 30	$\frac{1}{2}$	N = 50/2"										
	-		==/==										
	- 35 -	A	N = 50/2"										
WABLE LOG * GWALOT.ODT * 2/3/20 20.03 - G. GMATTA TOJECT DIZOTALITATION CREEK - MID 190 TOTALITATION CREEK	_												Auger Refusal at 37 ft.
ACOS ACOS ACOS ACOS ACOS ACOS ACOS ACOS													
9													
20.02													
02/07/20													
NEO I.Y													
5													
- [2													
3] N - ST	∐ ⊇NA	ARD PEN	 ETRA	TION	L TEST	 RESI	I ISTANC	L CE				REMARKS:
	P - PO	CKE	T PENET	ROME	TER I	RESIS	STANG	CE					GPS COORDINATES: Lat. 41.151717, Long82.781455

RRC Power & Energy, LLC 3801 Doris Lane Round Rock, TX 78664 Telephone: (512) 992-2087 Fax: (512) 251-2518 CLIENT: Apex Clean Energy, Inc PROJECT: **Emerson Creek Wind Project** LOCATION: Erie and Huron Counties, OH

					Fa	x: (5	12)	251-	2518					DATE(S) DRILLED: 12/12/2019
		FIE	LD	DATA			L/	ABO	RATO	RY DA	λTΑ			DRILLING METHOD(S):
					(%)		ERBE				(9)	ш	(%)	Hollow Stem Auger
IOGWAS IIOS		DЕРТН (FT)	SAMPLES	N: BLOWS/FT P: TONS/SQ FT T: BLOWS R: % RQD: %	MOISTURE CONTENT (%)	F LIQUID LIMIT	PLASTIC LIMIT	☑ PLASTICITY INDEX	DRY DENSITY POUNDS/CU.FT	COMPRESSIVE STRENGTH (TONS/SQ. FT)	STRAIN AT FAILURE (%)	CONFINING PRESSURE (POUNDS/SQ IN)	MINUS NO. 200 SIEVE (%)	GROUNDWATER INFORMATION: Groundwater encountered at 9 ft. during drilling and measured at 4 ft. immediately after drilling SURFACE ELEVATION (FT): DESCRIPTION OF STRATUM
		_	\mathcal{H}	N = 24	16					00,0				∖2 in. Topsoil
		5	\Box	N = 24 N = 24	<u> </u>									LEAN CLAY (CL), with Sand, brown, very stiff to hard, dry to moist Grading trace Sand
			$\frac{1}{\sqrt{2}}$	N = 25 _	17									Grading with Sand, trace Gravel, brown to black
		10	Ц	N = 32	Z '′									Grading gray
2		10	\Box		47									Grading moist to wet
007.G	4	15	H	N = 23 N = 52	17 14									SHALE, gray, hard to very hard, moist to wet
MD1901007		13		02										, , , , , , , , , , , , , , , , , , , ,
CREEK -		20	- - - - -	N = 50/2"										
MD1901007\EMERSON		25	-X	N = 50/3"										
CREEK - MD19		30	- X	N = 25/0"										
ERSON C			×	N = 50/4"										Auger Refusal at 33 ft.
2019\EMERSON														
\GINT\PR														
20:03 - G														
T - 2/5/20														
INL01.GD														
LOG A GN														
RENEWABLE LOG - LOG A GNNL01.GDT - 2/5/20 20:03 - G\GINT\PROJECTS\ 	P T	- PO(- TXE	CKE	ARD PENETRO T PENETRO CONE PEN	OMET IETRA	TER F	RESIS	TANG	CE	E				REMARKS: GPS COORDINATES: Lat. 41.150265, Long82.822230
REN				CORE RECO			1OITA	١						

RRC Power & Energy, LLC 3801 Doris Lane Round Rock, TX 78664 Telephone: (512) 992-2087 Fax: (512) 251-2518

CLIENT: Apex Clean Energy, Inc **Emerson Creek Wind Project** PROJECT: Erie and Huron Counties, OH LOCATION:

				1 0	ix. (S	, 12) .	201-	-2010					DATE(S) DRILLED: 12/13/2019
	FIE	ELC	DATA			LA	ΑВО	RATO	DRY DA	ATA			DRILLING METHOD(S):
				(%)	ATT L	ERBE	S			(%	щ	(%)	Hollow Stem Auger: 0 to 22.5 ft.; Mud Rotary: 22.5 to 39.5 ft.
SOIL SYMBOL	ОЕРТН (FT)	SAMPLES	N: BLOWS/FT P: TONS/SQ FT T: BLOWS R: % RQD: %	MOISTURE CONTENT (%)	Н СПОПР СІМІТ	PLASTIC LIMIT	PLASTICITY INDEX	DRY DENSITY POUNDS/CU.FT	COMPRESSIVE STRENGTH (TONS/SQ. FT)	STRAIN AT FAILURE (%)	CONFINING PRESSURE (POUNDS/SQ IN)	MINUS NO. 200 SIEVE (%)	GROUNDWATER INFORMATION: Groundwater encountered at 14 ft. during drilling prior to the introduction of drilling fluid SURFACE ELEVATION (FT): DESCRIPTION OF STRATUM
	1	$\frac{1}{}$	N = 25										∖2 in. Topsoil /
	5	\Box	N = 19	16									LEAN CLAY (CL), trace Sand, brown, very stiff to hard, dry to moist; trace Lignite at 1 ft.
	10	Д	N = 30 N = 33	15									
007.GFJ		\perp	N = 19 N = 27	14 ¥	27	16	11					67	SANDY LEAN CLAY (CL), gray, very stiff, dry to moist
- MDIBUI	15	1	IN - 21										
SON CREE	20	-X -	N = 50/4"	11									SHALE, olive gray, very hard, dry to moist
30 100 VEIMER	25		N = 50/2"										
CKEEK - MO	30	-X	N = 50/5"										
S)EMERSON	35	- - - - -	N = 50/4"										
XOJECI SVZUI	-	-	N = 50/3"										Total Depth = 39.5 ft.
4 NIS):50 -													
2/5/20 20:03													
NL01.GDI -													
G - LOG A GI													
RENEWABLE LOG - LOG A GNNL01.GDT - 2/5/20 20:03 - G:/GINTPROJECT/5/2019/EMERSON CREEK - MD1901007/EMERSON CREEK - MD1901007/GPJ	P - PO T - TXI R - RC	CKE DOT OCK	DARD PENE T PENETRO CONE PEN CORE RECO	OMET IETRA OVEF	TER F ATIOI RY	RESIS N RES	STANC SISTA	CE	Ë		•		REMARKS: GPS COORDINATES: Lat. 41.148395, Long82.811766

RRC Power & Energy, LLC 3801 Doris Lane Round Rock, TX 78664 Telephone: (512) 992-2087 Fax: (512) 251-2518

CLIENT: Apex Clean Energy, Inc PROJECT: **Emerson Creek Wind Project** LOCATION: Erie and Huron Counties, OH

39 ft.
prior to the
М
/
ery stiff, dry to
hard, dry to moist
nara, ary to moloc
lense, dry to
o moist, fine to
.832667

RRC Power & Energy, LLC 3801 Doris Lane Round Rock, TX 78664 Telephone: (512) 992-2087 Fax: (512) 251-2518 CLIENT: Apex Clean Energy, Inc PROJECT: **Emerson Creek Wind Project** LOCATION: Erie and Huron Counties, OH

					га	x. (5	12)	251-	2518					DATE(S) DRILLED: 5/30/2019
	F	IEL	.D [DATA			L	ABO	RATC	RY DA	λTΑ			DRILLING METHOD(S):
					(ATT L	ERBI	ERG S						Hollow Stem Auger
SOIL SYMBOL	DEPTH (FT)	OL IONA	SAMPLES	N: BLOWS/FT P: BLOWS F: % R: % RQD: %	MOISTURE CONTENT (%)	Г ПООІВ LІМІТ	PLASTIC LIMIT	PLASTICITY INDEX	DRY DENSITY POUNDS/CU.FT	COMPRESSIVE STRENGTH (TONS/SQ. FT)	STRAIN AT FAILURE (%)	CONFINING PRESSURE (POUNDS/SQ IN)	MINUS NO. 200 SIEVE (%)	GROUNDWATER INFORMATION: Groundwater encountered at 19 ft. during drilling and not measured immediately after drilling SURFACE ELEVATION (FT): DESCRIPTION OF STRATUM
7//		\rightarrow			_	LL	F.L.	FI		0000	0)	00		\1 in. Topsoil
	5	-	N	= 8 = 13	23									LEAN CLAY (CL), trace Sand, brown, medium stiff to very stiff, dry to moist
		7	N	= 17	12									Grading with Sand
	10) }	N	= 28										
	4	1	N	= 23										WEATHERED SHALE, brownish gray, stiff to very stiff, dry to
MD1901007.	15	5 -2	N	= 11	14									moist
ERSON CREEK	20) 	N	= 50/4"	19									SHALE, dark gray, hard, dry to moist
	25	5 7	N	= 50/5"										
X MD	30	$\frac{1}{2}$	N	= 50/4"										
JECTS\2019\EMERSON CREEK - MD1901007\														Auger Refusal at 31 ft.
- 2/5/20 20:03 - G:\GINT\PROJECTS\														
A GNNL01.GDT - 2/5.														
9-L0G														
RENEWABLE LOG - LOG A GNNL01.GDT	P - P(T - T) R - R	OCK XDC ROCK	KET OT C K CO	RD PENET PENETRO ONE PEN ORE RECO	OMET ETRA	ER R ATION RY	RESIS N RES	TANG SISTA	CE	E				REMARKS: GPS COORDINATES: Lat. 41.138732, Long82.832555

CLIENT: Apex Clean Energy, Inc
PROJECT: Emerson Creek Wind Project
LOCATION: Erie and Huron Counties, OH

					Fa	x: (5	12)	251-	2518					DATE(S) DRILLED: 5/15/2019
Г		FIE	LD	DATA			L	ABO	RATO	DRY DA	λTΑ			DRILLING METHOD(S):
					۲ (%)	ATT L	ERBI	S			(%)	- R	(%)	Hollow Stem Auger
IOBWAS IIOS		H (FT)	ES	N. BLOWS/FT P: TONS/SQ FT T: BLOWS R: % RQD: %	MOISTURE CONTENT (%)	LIQUID LIMIT	PLASTIC LIMIT	PLASTICITY INDEX	DRY DENSITY POUNDS/CU.FT	COMPRESSIVE STRENGTH (TONS/SQ. FT)	STRAIN AT FAILURE (%)	CONFINING PRESSURE (POUNDS/SQ IN)	NO. 200 SIEVE (%)	GROUNDWATER INFORMATION: No groundwater encountered during or immediately after drilling
] 2		DEPTH (FT)	SAMPLES	: BLO': 10N: 10N: 10N: 10N: 10N: 10N: 10N: 10N	IOIST		PL	PI ☐	NN D	COMP	TRAI	POUN	MINUS NO.	SURFACE ELEVATION (FT):
) }	7		Ħ				PL	FI		000	0)	05	2	DESCRIPTION OF STRATUM \[4 \text{ in. Topsoil} \]
			X	N = 13	19									LEAN CLAY (CL), with Sand, brown, stiff to very stiff, moist
		5	X	N = 21	16									
			$\overline{\mathbb{A}}$	N = 18										
		10	\mathbb{A}	N = 18	17									
GP.			\forall	N = 16										
- MD1901007.GPJ		15		N = 21	13									Grading trace Sand and Gravel, gray
MD19			11											
ON CREEK -		20	-X	N = 33										
1007\EMERSC		25	-X	N = 18	10									
2019/EMERSON CREEK - MD1901007/EMERSON CREEK		30	- - X	N = 25										
S C			-											
19\EMERS		35	-X -	N = 39										SANDY LEAN CLAY (CL), trace Gravel, dark gray, hard, dry to moist
		40	- X	N = 36										
3 - G:\GINT\PR(45	- - - X	N = 50/1"										
DT - 2/5/20 20:C	4													Auger Refusal at 48 ft.
G A GNNL01.G														
0-F0														
RENEWABLE LOG - LOG A GNNL01,GDT - 2/5/20 20:03 - G;\Gintippojects	P · T · R ·	- PO(- TXE - RO(OKE OT CK	ARD PENET T PENETRO CONE PEN CORE RECO	OMET ETRA	TER F ATIOI RY	RESIS N RES	TANG SISTA	CE	DE .				REMARKS: GPS COORDINATES: Lat. 41.139042, Long82.770782

RRC Power & Energy, LLC 3801 Doris Lane Round Rock, TX 78664 Telephone: (512) 992-2087 Fax: (512) 251-2518

CLIENT: Apex Clean Energy, Inc PROJECT: **Emerson Creek Wind Project** LOCATION: Erie and Huron Counties, OH

					Fa	x: (5	12)	251-	2518					DATE(S) DRILLED: 5/14/2019
Ī		FIE	LC	DATA			L	ABO	RATO	DRY DA	ATA			DRILLING METHOD(S):
					(%)	ATT L	ERBI	S			(%)	Щ	(%)	Hollow Stem Auger
	SOIL SYMBOL	DEPTH (FT)	SAMPLES	N. BLOWS/FT P: TONS/SQ FT T: BLOWS R: % RQD: %	MOISTURE CONTENT (%)	Г LIQUID LIMIT	PLASTIC LIMIT	☐ PLASTICITY INDEX	DRY DENSITY POUNDS/CU.FT	COMPRESSIVE STRENGTH (TONS/SQ. FT)	STRAIN AT FAILURE (%)	CONFINING PRESSURE (POUNDS/SQ IN)	MINUS NO. 200 SIEVE (%)	GROUNDWATER INFORMATION: No groundwater encountered during or immediately after drilling SURFACE ELEVATION (FT):
	ς ///		Н		2	LL	PL	PI		080	S	0 &	2	DESCRIPTION OF STRATUM \[\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
			\Box	N = 21										LEAN CLAY (CL), trace Sand and Gravel, brown, very stiff to hard, dry to moist
		5		N = 23										
		10	Д	N = 25 N = 33	15									
.GPJ		10	\prod	N = 14	15									
- MD1901007.0		15	\Box	N = 21										
		20	-X	N = 27	11									
- MD1901007\EMERSON CREEK		25	-X	N = 46										Grading with Sand
EMERSON CREEK - MD		30	-X	N = 50/4"	13									Grading moist
MERSO		35		N = 50/3"										SHALE, dark gray, hard, moist
JECTS\2019\		40	- - - - - -	N = 50/1.5"										
:0 20:03 - G:\GINT														Auger Refusal at 43 ft.
RENEWABLE LOG - LOG A GNNL01.GDT - 2/5/20 20:03 - G:\GINTPRO.														
0G - LOG A G														
RENEWABLE L	F T F	- PO - TXE R - RO	CKE OOT CK	DARD PENET ET PENETRO CONE PEN CORE RECO CK QUALITY	OMET ETRA OVER	FER F ATION RY	RESIS N RES	STANG	CE	Œ ———				REMARKS: GPS COORDINATES: Lat. 41.137179, Long82.791465

RRC Power & Energy, LLC 3801 Doris Lane Round Rock, TX 78664 Telephone: (512) 992-2087 Fax: (512) 251-2518

CLIENT: Apex Clean Energy, Inc PROJECT: **Emerson Creek Wind Project** LOCATION: Erie and Huron Counties, OH

L					. u	<i>.</i> (0	,		2010					DATE(S) DRILLED: 12/17/2019
		FIE	ELC	DATA			L	ABO	RATO	RY DA	ΛTΑ			DRILLING METHOD(S):
					(%).		ERBI	S			(%	ı,	(%)	Hollow Stem Auger: 0 to 24.5 ft.; Mud Rotary: 24.5 to 39 ft.
					NTENT	 -	_ LIM	, INDE	,		URE (ESSUR ()	SIEVE	GROUNDWATER INFORMATION:
	SOIL SYMBOL	(FT)	Si	N: BLOWS/FT P: TONS/SQ FT T: BLOWS R: % RQD: %	MOISTURE CONTENT	LIQUID LIMIT	PLASTIC LIMIT	PLASTICITY INDEX	DRY DENSITY POUNDS/CU.FT	COMPRESSIVE STRENGTH (TONS/SQ. FT)	STRAIN AT FAILURE (%)	CONFINING PRESSURE (POUNDS/SQ IN)	MINUS NO. 200 SIEVE (%)	Groundwater not encountered during drilling prior to the introduction of drilling fluid
	S\	БЕРТН (FT)	SAMPLES	SLOW SLOWS/ SLOWS/ SLOWS/	JISTU	LIQL	PLA	PLA	Y DE UNDS	MPR RENG NS/S	ZAIN	NFIN	I SN	SURFACE ELEVATION (FT):
	os	DE	\&	S. S. E. S.	MC	LL	PL	PI	DR PO	SEE	STI	85	¥	DESCRIPTION OF STRATUM
			$\frac{1}{\lambda}$	N = 18	22									\[\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
														moist
		5	<u> </u>	N = 28										Grading with Sand
			\forall	N = 35	16									
		10	$\overline{\mathbb{X}}$	N = 41										
2				N. 04	45									Grading trace Gravel
007.G			$\frac{1}{2}$	N = 31 N = 73	15									SANDY LEAN CLAY (CL), brown, hard, dry to moist
21901		15	7	N - 73										OAND I EEAN OLAT (OL), BIOWII, Haid, dry to moist
¥.			-											
901007/EMERSON CREEK		20	-X	N = 50/6"	9									LEAN CLAY (CL), trace Sand and Gravel, dark gray, hard, dry to moist
MERS														
007/EN		25	$\frac{1}{4}$	N = 50/4"										Grading with Sand, dark brown
			1											
A MD	#	30	$\frac{1}{2}$	N = 25/0"										SHALE, dark gray, very hard, dry to moist
CREEK	⇟		1											
ERSON	≢			N. 05/08										
EMER	₽	35	*	N = 25/0"										
/2019/	₫		1											
ECTS	┪			N = 25/0"										Total Donth = 20 ft
PROJ														Total Depth = 39 ft.
GINT														
.0 20:C														
- 2/5/2														
GDT.														
INL01														
A GN														
-L06														
RENEWABLE LOG - LOG A GNNL01.GDT - 2/5/20 20:04 - G:\GINT\PROJECT		۱ - ST/	LL AND	DARD PENET	ΓRAT	ION T	L ΓEST	RESI	STANC	E				REMARKS:
VABLE	F	- PO	CKE	T PENETRO	OMET	ER F	RESIS	TAN	CE					GPS COORDINATES: Lat. 41.136254, Long82.825618
ENEV	F	R - RO	CK	CORE RECO	OVEF	RY								
α∟		. ~ _						•						

RQD - ROCK QUALITY DESIGNATION

RRC Power & Energy, LLC 3801 Doris Lane Round Rock, TX 78664 Telephone: (512) 992-2087 Fax: (512) 251-2518 CLIENT: Apex Clean Energy, Inc
PROJECT: Emerson Creek Wind Project
LOCATION: Erie and Huron Counties, OH

				Fa	ıx: (5	12).	251-	2518					DATE(S) DRILLED: 12/18/2019
	FIE	ELC	DATA			L	ABO	RATO	DRY DA	ATA			DRILLING METHOD(S):
				(%)		ERBI				_		(%)	Hollow Stem Auger
SOIL SYMBOL	ОЕРТН (FT)	SAMPLES	N. BLOWS/FT P: TONS/SQ FT T: BLOWS R: % ROD: %	MOISTURE CONTENT (%)	Т LIQUID LIMIT	PLASTIC LIMIT	☐ PLASTICITY INDEX	DRY DENSITY POUNDS/CU.FT	COMPRESSIVE STRENGTH (TONS/SQ. FT)	STRAIN AT FAILURE (%)	CONFINING PRESSURE (POUNDS/SQ IN)	MINUS NO. 200 SIEVE (%)	GROUNDWATER INFORMATION: Groundwater encountered at 24 ft. during drilling and measured at 23 ft. immediately after drilling SURFACE ELEVATION (FT): DESCRIPTION OF STRATUM
	-		N = 6	23									∖3 in. Topsoil
	1		N - 0	23									LEAN CLAY (CL), trace Sand, light brown, medium stiff to hard, dry to moist
	5	$\frac{1}{2}$	N = 9	21									
	1	$\frac{1}{\lambda}$	N = 19										Grading with Sand
	10		N = 11	13									Grading trace Sand
≈ ///													
00.70 00.70	-		P = 4.25 N = 9	15 17	29	15	14	121	2.05	15.0	9.5	80	
290	15	7	N – 9	''									
2019/EMERSON CREEK - MD1901/007/EMERSON CREEK - MD1901/007 GP.	20	-X -X	N = 11 P = 3.5	15									
EMER	25	X	N = 25	₹									SANDY LEAN CLAY (CL), gray, very stiff to hard, moist to wet
0000	25	7	N - 25										6, 11, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
I CREEK - MD190	30	-X	N = 32										
SS ///	25	$\frac{1}{}$	N = 39										LEAN CLAY (CL), with Sand, gray, hard, moist to wet
	35	1	14 00										,,,,, g.o.y,,
	1												
	40	X	N = 46	11									SHALE, dark gray, medium hard to very hard, moist
A L	-	-											
G:\GINT\PROJECTS	- - 45	$\overline{\mathbb{X}}$	N = 25/0"										
	-	-											
- 2/5/20 20:04	50	$\frac{1}{}$	N = 50/3"										Grading gray
	1 50		00/0										
L01.G	-		N = 25/0" /										
CONN			14 - 2310										Total Depth = 54 ft.
ENEWABLE LOG - LOG A GNNL01.GDT													•
ģ	N 07	ال	VADD DEVI	TDAT	101	TEST	DEC	CTANG)E				DEMARKS.
ABLE	P-PO	CKE	DARD PENE ET PENETR	OME.	TER F	RESIS	TANG	CE	∠ ⊏				REMARKS: GPS COORDINATES: Lat. 41.132702, Long82.769033
ENEW.	R-RO	CK	CONE PEN CORE REC	OVE	₹Y			NVCE					

RRC Power & Energy, LLC 3801 Doris Lane Round Rock, TX 78664 Telephone: (512) 992-2087 Fax: (512) 251-2518 CLIENT: Apex Clean Energy, Inc PROJECT: **Emerson Creek Wind Project** LOCATION: Erie and Huron Counties, OH

					гах	(ɔ	12) .	201-	2518					DATE(S) DRILLED: 5/12/2019
	F	IEL	D DATA				L/	AΒO	RATC	RY DA	λTΑ			DRILLING METHOD(S):
						ATŢI	ERBE	ERG						Hollow Stem Auger
IOS A	DEPTH (FT)	1	N = 13 N = 20	RQD: %	MOISTURE CONTENT (%)	T LIQUID LIMIT	PLASTIC LIMIT	D PLASTICITY INDEX	DRY DENSITY POUNDS/CU.FT	COMPRESSIVE STRENGTH (TONS/SQ. FT)	STRAIN AT FAILURE (%)	CONFINING PRESSURE (POUNDS/SQ IN)	MINUS NO. 200 SIEVE (%)	GROUNDWATER INFORMATION: Groundwater not encountered during drilling and measured at 5 ft. immediately after drilling and at 8.5 ft. 24 hours after drilling SURFACE ELEVATION (FT): DESCRIPTION OF STRATUM 6 in. Topsoil LEAN CLAY (CL), with Sand, brown, stiff to very stiff Grading trace Sand
		#	N = 20	4	15									SANDY LEAN CLAY (CL), brown, very stiff, dry to moist
	10) ‡	N = 27		12									LEAN CLAY (CL), with Sand, gray, very stiff, dry to moist
GP.		1	N = 21											Grading trace Sand
901007	15	5 ‡	N = 44											SHALE, dark gray, medium hard to very hard, moist
MD18	-	7												
CREEK -	20	$\frac{1}{2}$	N = 50/2	"										
ERSON		-												
ME	25	5 - 2	N = 50/2	" 1	19									
L01.GDT - 2/5/20 20:04 - G:\GINT\PROJECTS\2019\EMERSON CREEK - MD1901007\ 														Auger Refusal at 28 ft.
RENEWABLE LOG - LOG A GNNL01.GDT	P - P T - T R - F	OCK XDO XOCK	DARD PEI (ET PENET T CONE P (CORE RE DCK QUAL	TROM ENET	/ETE TRA /ER`	ER R TION Y	ESIS I RES	TANG SISTA	CE	EE				REMARKS: GPS COORDINATES: Lat. 41.130820, Long82.822057

RRC Power & Energy, LLC 3801 Doris Lane Round Rock, TX 78664 Telephone: (512) 992-2087 Fax: (512) 251-2518 CLIENT: Apex Clean Energy, Inc PROJECT: **Emerson Creek Wind Project** LOCATION: Erie and Huron Counties, OH

					га	х. (э	12)	251-	2518					DATE(S) DRILLED: 12/12/2019
		FIE	LD	DATA			L	4BO	RATO	DRY DA	λTΑ			DRILLING METHOD(S):
					(%)		ERBI	S			(%)	ш	(%)	Hollow Stem Auger
	SOIL STMBOL	DЕРТН (FT)	SAMPLES	N: BLOWS/FT P: TONS/SQ FT T: BLOWS R: % RQD: %	MOISTURE CONTENT (%)	LIQUID LIMIT	PLASTIC LIMIT	PLASTICITY INDEX	DRY DENSITY POUNDS/CU.FT	COMPRESSIVE STRENGTH (TONS/SQ. FT)	STRAIN AT FAILURE (%)	CONFINING PRESSURE (POUNDS/SQ IN)	MINUS NO. 200 SIEVE (%)	GROUNDWATER INFORMATION: No groundwater encountered during or immediately after drilling SURFACE ELEVATION (FT):
[3	0		\S	S G I S S S S S S S S S S S S S S S S S	M	LL	PL	PI	R S	SPS CF	STF	85	¥	DESCRIPTION OF STRATUM
		5		N = 19 N = 17	17									\(\)3 in. Topsoil \(\) LEAN CLAY (CL), trace Sand, light brown, very stiff to hard, dry to moist
		10	H	N = 33 N = 36	17									
GPJ				N = 18	16									FAT CLAY (CH), trace Sand, light brown, stiff to very stiff, dry to
- MD1901007.		15		P = 2.0										moist
SON CREEK		20		N = 30										
2019\chineson CREEK - MD1901007\chineson CRE		25		N = 25	19									SILT (ML), trace Sand, gray, very stiff, moist
CREEK - MD1		30		N = 20										
SSON				N = 50/3"										LEAN CLAY (CL), gray, hard, moist
RENEWABLE LOG - LOG A GNNL01.GDT - 2/5/20.20:04 - G;\GINT\PROJECTS\2019\EMBF 		35		N = 50/3"/										SHALE, gray, very hard, moist Auger Refusal at 35 ft.
RENEWABLE LOG	P T R	- PO - TXE - RO	CKE OOT CK	ARD PENET T PENETRO CONE PEN CORE RECO	OMET IETRA OVER	TER F ATION RY	RESIS N RES	STANG	CE	i			l	REMARKS: GPS COORDINATES: Lat. 41.115596, Long82.744422

CLIENT: Apex Clean Energy, Inc
PROJECT: Emerson Creek Wind Project
LOCATION: Erie and Huron Counties, OH

				Fa	x: (5	12) :	251-	2518					DATE(S) DRILLED: 5/11/2019
	FIE	ELC	DATA			L/	ABO	RATO	DRY DA	λTΑ			DRILLING METHOD(S):
				(%)	ATT L	ERBE	ERG S			<u> </u>		(%)	Hollow Stem Auger
SOIL SYMBOL	ОЕРТН (FT)	SAMPLES	N: BLOWS/FT P: TONS/SQ FT T: BLOWS R: % RQD: %	MOISTURE CONTENT (%)	F LIQUID LIMIT	PLASTIC LIMIT	□ PLASTICITY INDEX	DRY DENSITY POUNDS/CU.FT	COMPRESSIVE STRENGTH (TONS/SQ. FT)	STRAIN AT FAILURE (%)	CONFINING PRESSURE (POUNDS/SQ IN)	MINUS NO. 200 SIEVE (%)	GROUNDWATER INFORMATION: Groundwater not encountered during drilling or immediately after drilling and measured at 6.5 ft. 24 hours after drilling SURFACE ELEVATION (FT): DESCRIPTION OF STRATUM
		$\overline{\lambda}$	N = 14										\2 in. Topsoil LEAN CLAY (CL), with Sand, brown, stiff to very stiff, dry to moist
	5		N = 25										LEAN CEAT (CE), with Sand, brown, suit to very suit, dry to moist
		\forall	N = 24	¥-									
	10		N = 15	16	31	16	15					74	
G ///			N = 16										Grading grayish brown
- MD1901007.GPJ	15		N = 15										
MD /													
N CREEK	20	X	N = 19										
2019/EMERSON CREEK - MD1901007/EMERSON CREEK	25	-X	N = 19	19									
CREEK - MD18	30	-X	N = 25										
19/EMERSON	35	- - X	N = 15										
	40	- - X	N = 35										
- G:\GINT\PROJECTS	45	 	N = 74										SHALE, dark gray, hard, moist
RENEWABLE LOG - LOG A GNNL01.GDT - 2/5/20 20:04		-											Auger Refusal at 48 ft.
RENEWABLE LOG - LOG	P - PO T - TXI R - RC	CKE DOT OCK	DARD PENE ET PENETRO CONE PEN CORE REC CK QUALIT	OMET IETRA OVEF	TER F ATION RY	RESIS N RES	TANC SISTA	Œ	DE				REMARKS: GPS COORDINATES: Lat. 41.113883, Long82.809371

CLIENT: Apex Clean Energy, Inc
PROJECT: Emerson Creek Wind Project
LOCATION: Erie and Huron Counties, OH

				Fa	ıx: (5	512)	251-	2518					DATE(S) DRILLED: 12/11/2019
	FI	ELC	D DATA			L/	4BO	RATO	DRY DA	TΑ			DRILLING METHOD(S):
						TERBI							Hollow Stem Auger
SOIL SYMBOL	ОЕРТН (FT)	SAMPLES	N. BLOWS/FT P: TONS/SQ FT P: BLOWS R: % RQD: %	MOISTURE CONTENT (%)	F LIQUID LIMIT	PLASTIC LIMIT	D PLASTICITY INDEX	DRY DENSITY POUNDS/CU.FT	COMPRESSIVE STRENGTH (TONS/SQ. FT)	STRAIN AT FAILURE (%)	CONFINING PRESSURE (POUNDS/SQ IN)	MINUS NO. 200 SIEVE (%)	GROUNDWATER INFORMATION: Groundwater encountered at 52 ft. during drilling and measured at 40 ft. immediately after drilling SURFACE ELEVATION (FT): DESCRIPTION OF STRATUM
		1	N = 18	16									\(\) 3 in. Topsoil \(\) LEAN CLAY (CL), trace Sand and Gravel, light brown, very stiff to
	5		N = 21										hard, dry to moist
	1	\pm	N = 28	15									Grading iron stained
	10	<u> </u>	N = 30										Iron stains grade out
G ///		\downarrow	N = 32	15									
901007	15	<u> </u>	N = 39										
SON CREEK - MD1	20	-X	N = 19	16									
D1901007/EMER	25	-	P = 4.5										
OREEK - M	30	<u> </u>	N = 14	28								96	SILT (ML), trace Sand, brown, stiff to very stiff, moist to wet
019\EMERSON (- - - 35 -		N = 18										Trace Gravel at 34 ft.
VPROJECTS/2	40		N = 82	Y									CLAYEY SAND (SC), dark gray, very dense, dry to moist, fine to medium grained
- G:\Gin	45	 	N = 45										LEAN CLAY (CL), with Sand, dark gray, hard, dry to moist
RENEWABLE LOG - LOG A GINILO1 GDT - 2/5/20 20:04 - G./GINTPROJECTS/2019/EMERSON CREEK - MD1901007/GPJ	50		N = 51	Z									√Grading trace Sand and Gravel, gray, moist to wet
LOG A GN													Total Depth = 54.5 ft.
RENEWABLE LOG -	P - PC T - TX R - RC	DCKI DOT DCK	DARD PENE ET PENETRO T CONE PEN CORE RECOCK QUALIT	OMET IETRA OVEF	TER F ATIOI RY	RESIS N RES	STAN(SISTA	CE	E				REMARKS: GPS COORDINATES: Lat. 41.110964, Long82.744297

RQD - ROCK QUALITY DESIGNATION

RRC Power & Energy, LLC 3801 Doris Lane Round Rock, TX 78664 Telephone: (512) 992-2087 Fax: (512) 251-2518 CLIENT: Apex Clean Energy, Inc
PROJECT: Emerson Creek Wind Project
LOCATION: Erie and Huron Counties, OH

				Fa	X: (5	12)	251-	-2518					DATE(S) DRILLED: 5/8/2019
	FIE	LC	DATA					RATO	DRY DA	AΤΑ			DRILLING METHOD(S):
SOIL SYMBOL	DЕРТН (FT)	SAMPLES	N: BLOWS/FT P: TONS/SQ FT T: BLOWS R: R: ROD: %	MOISTURE CONTENT (%)		PLASTIC LIMIT THE		DRY DENSITY POUNDS/CU.FT	COMPRESSIVE STRENGTH (TONS/SQ. FT)	STRAIN AT FAILURE (%)	CONFINING PRESSURE (POUNDS/SQ IN)	MINUS NO. 200 SIEVE (%)	Hollow Stem Auger GROUNDWATER INFORMATION: No groundwater encountered during or immediately after drilling SURFACE ELEVATION (FT):
SOII	DEF	SAN	N: BI 7: BI 7: BI 8: ROD	ЮМ	LL	PL	PI	DRY POL	STR (TOI	STR	OP)	Z	DESCRIPTION OF STRATUM
	- - - - 5		N = 10 N = 21										\[\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	- - - - 10	Н	N = 21 N = 24	17									
	- - - 15 -	H	N = 18 N = 12										
	- - 20 - -	-X	N = 13	17									Grading to dark brown
	- - 25 - - -	-	N = 16										
	- 30 - - - - - 35		N = 22 N = 25										Grading with Sand, gray, dry to moist
	-												
	- - 40 - -	-X	N = 39	15								9	POORLY GRADED SAND (SP), gray to black, dense, wet, fine to coarse grained
	- - 45 - -	-X	N = 56										LEAN CLAY (CL), trace Sand and Gravel, gray, hard, moist to wet
	- - 50 - - -	-	N = 41 N = 50/5"										Gravel grades out
<i>(///)</i>	- 55		IN - 20/2"										Total Depth = 55 ft.
	P - PO T - TXI R - RO	CKE OOT CK	ARD PENET T PENETRO CONE PEN CORE RECO	OMET ETRA OVEF	TER F ATIOI RY	RESIS N RES	STANG SISTA	CE	CE				REMARKS: GPS COORDINATES: Lat. 41.107601, Long82.807071

R - ROCK CORE RECOVERY RQD - ROCK QUALITY DESIGNATION

RRC Power & Energy, LLC 3801 Doris Lane Round Rock, TX 78664 Telephone: (512) 992-2087 Fax: (512) 251-2518 CLIENT: Apex Clean Energy, Inc
PROJECT: Emerson Creek Wind Project
LOCATION: Erie and Huron Counties, OH

				Fa	x: (5	512)	251-	-2518					DATE(S) DRILLED: 12/8/2019
	FI	ELC	DATA			L/	4BO	RATO	DRY DA	λΤΑ			DRILLING METHOD(S):
						ERBI						_	Hollow Stem Auger
SOIL SYMBOL	DEPTH (FT)	SAMPLES	N. BLOWS/FT P. TONS/SQ FT T. BLOWS R.P. W. RQD: %	MOISTURE CONTENT (%)	F LIQUID LIMIT	PLASTIC LIMIT	PLASTICITY INDEX	DRY DENSITY POUNDS/CU.FT	COMPRESSIVE STRENGTH (TONS/SQ. FT)	STRAIN AT FAILURE (%)	CONFINING PRESSURE (POUNDS/SQ IN)	MINUS NO. 200 SIEVE (%)	GROUNDWATER INFORMATION: Groundwater encountered at 47 ft. during drilling and measured at 24 ft. immediately after drilling SURFACE ELEVATION (FT): DESCRIPTION OF STRATUM
			N = 18										∖2 in. Topsoil
	5			16									LEAN CLAY (CL), trace Sand, light brown, very stiff to hard, dry to moist
		- X	N = 34										Grading trace Gravel
Z //	10	-X	N = 34 N = 33	16									
1901007.G	15		N = 21	16									Grading gray
Ä.			P = 4.0										
ON CREE	20	-X	N = 24										
2019/EMERSON CREEK - MD1901007/EMERSON CREEK - MD1901007 GPJ	25	- - - - -	N = 21	19									
REEK - MD19	30	- -X	N = 25										
EMERSON C	35	-X	N = 31										
ンレノ	40	-X	N = 87										SANDY LEAN CLAY (CL), trace Gravel, hard, dry to moist
S:\GINT\PRO	45	-X	N = 50/4"										
95	4		N = 50/4" /	\									SHALE dark gray very hard, dry to mojet
EWABLE LOG - LOG A GNNL01.GDT - 2/5/20 20:04 - G:\GINT\PROJECTS			IN — 3U/4 /										∖SHALE, dark gray, very hard, dry to moist Auger Refusal at 47 ft.
EWABLE LOG	P - PO T - TX	OCKE (DOT	DARD PENE T PENETR CONE PEN	OME ^T	TER F ATIOI	RESIS	STAN	CE	L CE		<u> </u>	<u> </u>	REMARKS: GPS COORDINATES: Lat. 41.098514, Long82.827851

CLIENT: Apex Clean Energy, Inc
PROJECT: Emerson Creek Wind Project
LOCATION: Erie and Huron Counties, OH

				Fa	x: (5	12)	251-	·2518					DATE(S) DRILLED: 5/9/2019 - 5/10/2019
	EII	=1 Г	DATA			1.7	\B()	DATC	DRY DA	\TA			DRILLING METHOD(S):
-	' "			<u> </u>	ATT	ERBE		11/1/1	JINI DE	17			Hollow Stem Auger
				(%)	Ĺ	IMIT	S			<u></u>		(%	
				MOISTURE CONTENT (%)			DEX			STRAIN AT FAILURE (%)	CONFINING PRESSURE (POUNDS/SQ IN)	MINUS NO. 200 SIEVE (%)	GROUNDWATER INFORMATION:
				NE	<u>⊨</u>	IMI	Ī ≻	<u> </u>	ш	ILGR.	SES(S)) SIE	No groundwater encountered during or immediately after drilling
BOL	F		FG	 Ы	C	10L	ICIT	SITY CU.F	SSIV TH	_ FA	IG PF). 20(The groundwater encountered during or immodately diter driming
SYM	H.	JLES	SWS/SWS/	TUR	LIQUID LIMIT	PLASTIC LIMIT	PLASTICITY INDEX	DEN:	PRE(NGT S/SC	Z Y	NNIF	S NC	CLIDEACE ELEVATION (ET).
SOIL SYMBOL	DEРТН (FT)	SAMPLES	N: BLOWS/FT P: TONS/SQ FT T: BLOWS R: % RQD: %	MOIS	LL	PL	PI	DRY DENSITY POUNDS/CU.FT	COMPRESSIVE STRENGTH (TONS/SQ. FT)	STRA	Poor) NIN	SURFACE ELEVATION (FT): DESCRIPTION OF STRATUM
	_	\exists							0 0, 0	•	-	_	∖2 in. Topsoil
	-	<u> </u>	N = 12	16									LEAN CLAY (CL), with Sand, brown, stiff to hard, dry to moist
	5	\forall	N = 21										
	-	-X	N = 20										
	10	-X	N = 17	17									Grading trace Sand
<u>را// ي</u>	-	$\frac{1}{}$	N = 24										
0.70	f	$\frac{1}{\lambda}$	N = 23	17									
- MD1901007.GPJ	15	7	N - 23	''									
₹///	-	1											
	20	$\overline{\mathbb{X}}$	N = 22										
S ///	-	1											
MERS	‡												
	25	1	N = 1.5	15				121	4.52	10.0	0.0		
<u></u>	1	-											
₹///	- 30	$\frac{1}{\lambda}$	N = 24										Grading grayish brown, wet
019)EMERSON CREEK - MD1901007/EMERSON CREEK													
S S	Ł												
MERS	35	-X	N = 58										
19E	F	-											
	F	$\frac{1}{}$	N = 47										
	40	7	N - 47										
	-	1											
9	45	\pm	N = 30										
9	-	-											
% % %	‡	\downarrow	N. 50/0"										SHALE dark grov hard maint
[- 2/5 ₁	- 50 -	A	N = 50/6"										SHALE, dark gray, hard, moist
1.GD	<u> </u>	1											
	55	$ \mid $	N = 50/4"										
S A G													Total Depth = 55 ft.
ĬΓ													
RENEWABLE LOG - LOG A GINILO1 GGT - 2/5/20 20:04 - G/GINTPROJECTS/2	J N - ST	∐ ANE	ARD PENE	L TRAT	ION :	L TEST	RESI	STANC	L				REMARKS:
ABLE	P-PC	CKE	T PENETRO CONE PEN	OME.	TER F	RESIS	TANG	CE	_				GPS COORDINATES: Lat. 41.096579, Long82.806805
NEW	R-RC	CK	CORE REC	OVEF	RY			V OL					
# 	KUD -	KΟ	CK QUALIT	r DES	SIGN/	AHON	N						

T - TXDOT CONE PENETRATION RESISTANCE R - ROCK CORE RECOVERY RQD - ROCK QUALITY DESIGNATION

RRC Power & Energy, LLC 3801 Doris Lane Round Rock, TX 78664 Telephone: (512) 992-2087 Fax: (512) 251-2518

CLIENT: Apex Clean Energy, Inc PROJECT: **Emerson Creek Wind Project** LOCATION: Erie and Huron Counties, OH

					`			-2010					DATE(S) DRILLED: 5/3/2019
FI	EL	D	DATA					RATO	DRY DA	ATA			DRILLING METHOD(S): Hollow Stem Auger
DEPTH (FT)	SAMDIES	SAIMIPLES	N: BLOWS/FT P: TONS/SQ FT P: BLOWS R: % RQD: %	MOISTURE CONTENT (%)	T LIQUID LIMIT	PLASTIC LIMIT IMEN	PLASTICITY INDEX 9	DRY DENSITY POUNDS/CU.FT	COMPRESSIVE STRENGTH (TONS/SQ. FT)	STRAIN AT FAILURE (%)	CONFINING PRESSURE (POUNDS/SQ IN)	MINUS NO. 200 SIEVE (%)	GROUNDWATER INFORMATION: Groundwater encountered at 13 ft. during drilling and not measure immediately after drilling SURFACE ELEVATION (FT): DESCRIPTION OF STRATUM
5	ſ	\ \ \	N = 6 N = 17 N = 15	22 20									\2 in. Topsoil SANDY LEAN CLAY (CL), light brown, medium stiff to very stiff, dry to moist
10			N = 26 N = 17 \bar{2} N = 15	₹ 18 14									LEAN CLAY (CL), trace Sand and Gravel, dark brown, soft to hard, dry to moist
20			N = 5 P = 2.25	18	31	16 17	15 12	117	2.77	14.9	19.0	77 91	Gravel grades out; grading with Sand Grading trace Sand
30	-	\ \	N = 4	23									Wet from 29 to 34 ft.
35			N = 17 N = 34										
45	-		N = 20										
50			N = 32 N = 18										Total Depth = 55.5 ft.

CLIENT: Apex Clean Energy, Inc PROJECT: Emerson Creek Wind Project LOCATION: Erie and Huron Counties, OH

					ıa	х. (З	12).	231-	2010					DATE(S) DRILLED: 5/2/2019
		FIE	LC	DATA			L/	٩ВО	RATO	RY DA	ATA			DRILLING METHOD(S):
					ENT (%)		ERBE	S			(%)	SURE	200 SIEVE (%)	Hollow Stem Auger GROUNDWATER INFORMATION:
I Carry	IMBOL	(FT)	ES	N. BLOWS/FT P: TONS/SQ FT T: BLOWS R: % RQD: %	MOISTURE CONTENT (%)	LIQUID LIMIT	PLASTIC LIMIT	PLASTICITY INDEX	DRY DENSITY POUNDS/CU.FT	COMPRESSIVE STRENGTH (TONS/SQ. FT)	STRAIN AT FAILURE (%)	CONFINING PRESSURE (POUNDS/SQ IN)	NO. 200 SIE	No groundwater encountered during or immediately after drilling
ة ا	715.0	ОЕРТН (FT)	SAMPLES	BLOV TONS BLOW % 2D: %	OIST				3Y DE	OMPF TREN ONS/	IRAIN	IENO NNO	MINUS NO.	SURFACE ELEVATION (FT):
\ \frac{2}{2\frac{1}{2}}	ก์ วว	<u> </u>	\% 	/ zā:: & x	Σ	LL	PL	PI	P. P.	SSF	ဟ	<u>გ</u>	Σ	DESCRIPTION OF STRATUM
		5	\Box	N = 7 N = 18										LEAN CLAY (CL), with Sand, brown, medium stiff to very stiff, moist
			$\frac{1}{M}$	N = 28										Grading trace Sand, dry to moist
		10	Н	N = 23										
.GPJ				N = 21										Grading gray
MD1901007		15	X	N = 12										
007/EMERSON CREEK - I		20		N = 6	14									
1901007\EME		25		N = 6	19									CLAYEY SAND (SC), olive brown, loose, dry to moist, fine grained
CREEK - MD		30		N = 15										LEAN CLAY (CL), trace Sand, dark gray, stiff to hard, dry to moist
9/EMERSON		35	-X	N = 25										Grading trace Gravel
ROJECTS/201		40	- - X	N = 20										
04 - G:\GINT\PROJECT		45	- X	N = 32										
GDT - 2/5/20 20:04		50	- -X -	N = 26										CLAYEY SAND (SC), dark gray, medium dense, moist, fine grained
		55	$\frac{1}{M}$	N = 68										SANDY LEAN CLAY (CL), dark gray, hard, moist
LOG A GI		55												Total Depth = 55.5 ft.
RENEWABLE LOG - LOG A GNNL01	P T R	- PO(- TXE - RO	CKE OOT CK	DARD PENET ET PENETRO CONE PEN CORE RECO	OMET ETRA OVEF	TER F ATION RY	RESIS N RES	TAN(SISTA	CE	 CE				REMARKS: GPS COORDINATES: Lat. 41.094265, Long82.770634

CLIENT: Apex Clean Energy, Inc
PROJECT: Emerson Creek Wind Project
LOCATION: Erie and Huron Counties, OH

					га	x: (5	12).	251-	2518					DATE(S) DRILLED: 5/8/2019
		FIE	ELD	DATA			L/	AΒO	RATO	RY DA	ΑTΑ			DRILLING METHOD(S):
					(%)	ATT L	ERBE	S			(%)	Щ	(%)	Hollow Stem Auger
SOII SYMBOI	1 0	(FT)	ES	N. BLOWS/FT P: TONS/SQ FT T: BLOWS R: % RQD: %	MOISTURE CONTENT (%)	LIQUID LIMIT	PLASTIC LIMIT	PLASTICITY INDEX	DRY DENSITY POUNDS/CU.FT	COMPRESSIVE STRENGTH (TONS/SQ. FT)	STRAIN AT FAILURE (%)	CONFINING PRESSURE (POUNDS/SQ IN)	MINUS NO. 200 SIEVE (%)	GROUNDWATER INFORMATION: No groundwater encountered during or immediately after drilling
S	<u> </u>	DEPTH (FT)	SAMPLES	BLOW TONS BLOW 8LOW 2D: %	DIST				YY DE	MPF REN	RAIN	NEW O	NUS	SURFACE ELEVATION (FT):
77		8	\&	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ž	LL	PL	PI	DF PC	SE	ST	86	Σ	DESCRIPTION OF STRATUM
			X	N = 10										\[\lambda 1.5 in. Topsoil \\ \text{LEAN CLAY (CL), trace Sand, brown, stiff to very stiff, moist} \]
		5	X	N = 16	16									
			Ħ	N = 26										
¬[//		10		N = 16	14									
7.GP			\perp	N = 10	13									
MD190100		15	-X	N = 11										
ON CREEK -		20		N = 13										
1007\EMERS		25	- - X	N = 14	17									Grading moist to wet
2019 EMERSON CREEK - MD1901007 EMERSON CREEK - MD1901007 GPJ		30		N = 14										
MERSON		35	<u>-</u>	N = 38										CLAYEY SAND (SC), brownish gray, dense, moist to wet, fine to coarse grained
919 19	1]											Coarse granted
		40	<u>X</u>	N = 79										LEAN CLAY (CL), trace Sand, brown, hard, moist
I-G:\GINT\PI		45	-X	N = 31										
- 2/5/20 20:04		50	-	N = 39										
UNL01.GDT		55		N = 38										
-LOGAGN		J												Total Depth = 55.5 ft.
RENEWABLE LOG - LOG A GNNL01.GDT - 2/5/20 20:04 - G:\GINT\PROJECTS	P T R	- PO - TXI - RO	CKE OOT CK	PARD PENET T PENETRO CONE PEN CORE RECO	OMET IETRA OVEF	TER F ATION RY	RESIS N RES	TANG	CE	E		ı		REMARKS: GPS COORDINATES: Lat. 41.092712, Long82.777417

RQD - ROCK QUALITY DESIGNATION

RRC Power & Energy, LLC 3801 Doris Lane Round Rock, TX 78664 Telephone: (512) 992-2087 Fax: (512) 251-2518

CLIENT: Apex Clean Energy, Inc PROJECT: **Emerson Creek Wind Project** LOCATION: Erie and Huron Counties, OH

					۸. رد	, 12)	201	-2010					DATE(S) DRILLED: 5/7/2019
	FIE	LC	DATA					RATO	DRY DA	ATA			DRILLING METHOD(S):
				:NT (%)		ERBI IMIT	S			E (%)	SURE	VE (%)	Hollow Stem Auger GROUNDWATER INFORMATION:
SOIL SYMBOL	(FT)	ES	N. BLOWS/FT P: TONS/SQ FT T: BLOWS R: % RQD: %	MOISTURE CONTENT (%)	LIQUID LIMIT	PLASTIC LIMIT	PLASTICITY INDEX	DRY DENSITY POUNDS/CU.FT	COMPRESSIVE STRENGTH (TONS/SQ. FT)	STRAIN AT FAILURE (%)	CONFINING PRESSURE (POUNDS/SQ IN)	MINUS NO. 200 SIEVE (%)	Groundwater encountered at 39 ft. during drilling and not measure immediately after drilling
	ОЕРТН (FT)	SAMPLES	V: BLOW V: TONS V: BLOW V: %	MOIST	T LIQI	PL	PI PI	ORY DE	COMPE STREN TONS/	STRAIN	POUN	MINUS	SURFACE ELEVATION (FT):
7		Ħ				1 -			0000	0)		_	DESCRIPTION OF STRATUM \[\2 \text{ in. Topsoil} \]
		\prod	N = 7										LEAN CLAY (CL), trace Sand, brown, medium stiff to very stiff, moist
	5	-X	N = 11	20									
		口	N = 21										
	10	$\frac{1}{1}$	N = 14										Grading trace lignite
			N = 12	16									SANDY LEAN CLAY (CL), light reddish brown, stiff, moist
7	15	\overline{A}	N = 10	19									LEAN CLAY (CL), with Sand, grayish brown, stiff to hard, moist
	•	-											
	20	X	N = 17										Grading trace Sand, dry to moist
	•]											
	25		N = 23										
		-											
	30	$\frac{1}{\lambda}$	N = 9	16	26	17	9					75	Grading with Sand
		-											
		$\frac{1}{M}$	N = 32										
	35	7	IN - 32										
			7	¥									
	40	$\frac{1}{2}$	N = 40										
	45	\mathbb{A}	N = 37										
		-											
	50	X	N = 34										Grading trace Sand, moist
]											
	55	\forall	N = 55										Grading moist to wet
													Total Depth = 55.5 ft.
			ARD PENE						E E				REMARKS:
7	r - TXE R - RO	OOT CK	CONE PEN CORE REC	IETRA OVEF	atioi Ry	N RES	SISTA						GPS COORDINATES: Lat. 41.091692, Long82.788934

CLIENT: Apex Clean Energy, Inc
PROJECT: Emerson Creek Wind Project
LOCATION: Erie and Huron Counties, OH

				Fa	x: (5	12)	2 5 1-	·2518					DATE(S) DRILLED: 5/10/2019 - 5/11/2019
	FIE	=1 [DATA			1.4	∆R∩	RATO	DRY DA	ΔΤΔ			DRILLING METHOD(S):
-	' "		TOATA		ATI	ERBI		IXAIC		NIA			Hollow Stem Auger
SOIL SYMBOL	ОЕРТН (FT)	SAMPLES	N. BLOWS/FT P: TONS/SQ FT T: BLOWS R: % RQD: %	MOISTURE CONTENT (%)	LIQUID LIMIT	PLASTIC LIMIT	PLASTICITY INDEX	DRY DENSITY POUNDS/CU.FT	COMPRESSIVE STRENGTH (TONS/SQ. FT)	STRAIN AT FAILURE (%)	CONFINING PRESSURE (POUNDS/SQ IN)	MINUS NO. 200 SIEVE (%)	GROUNDWATER INFORMATION: No groundwater encountered during or immediately after drilling SURFACE ELEVATION (FT):
SOII	DEP	SAN	S	MO	LL	PL	PI	POL	STR (TOI	STR		Z	DESCRIPTION OF STRATUM
		X	N = 20	14									\2 in. Topsoil LEAN CLAY (CL), with Sand, brown, stiff to very stiff, dry to moist
	5	X	N = 23										
	10	-X	N = 20 N = 21	15									
07.GPJ		X	N = 12	16									Grading trace Sand, gray
- MD1901007.GPJ	15	-X	N = 15										
SON CREEK	20	 X	N = 22										
019)EMERSON CREEK - MD1901007/EMERSON CREEK	25		N = 14	17									
CREEK - MD1	30		N = 11										SANDY LEAN CLAY (CL), gray, stiff to hard, moist to wet
9/EMERSON	35		P = 3.5	15				121	3.66	15.1	0.0		
	40	- - - - - - -	N = 37										
04 - G:\GINT\P	45	- - - - - -	N = 30										LEAN CLAY (CL), with Sand, gray to brown, very stiff, moist to wet
OT - 2/5/20 20:	50	- - - - - - -	N = 24										
NL01.GI	<u> </u>	1	N = 80/10"										SHALE, dark gray, very hard, moist, with trace Sand deposits
A GN	55	1	IN - OU/ IU										
90-L0G													Total Depth = 55.5 ft.
RENEWABLE LOG - LOG A GNNLO1 GDT - 2/5/20 20.04 - G./GINTPROJECTS'S	P - PC T - TXI R - RC	CKI DOT CK	DARD PENE ET PENETRO CONE PEN CORE RECO	OMET IETRA OVEF	TER F ATIOI RY	RESIS N RES	STAN(SISTA	CE	Œ				REMARKS: GPS COORDINATES: Lat. 41.088115, Long82.817980

R - ROCK CORE RECOVERY RQD - ROCK QUALITY DESIGNATION

RRC Power & Energy, LLC 3801 Doris Lane Round Rock, TX 78664 Telephone: (512) 992-2087 Fax: (512) 251-2518 CLIENT: Apex Clean Energy, Inc
PROJECT: Emerson Creek Wind Project
LOCATION: Erie and Huron Counties, OH

				Fa	x: (5	12)	251-	2518					DATE(S) DRILLED: 5/6/2019
	FIE	ELC	DATA			L	4BO	RATO	ORY DA	λTΑ			DRILLING METHOD(S):
SOIL SYMBOL	DЕРТН (FT)	SAMPLES	N. BLOWS/FT P: TONS/SQ FT F: BLOWS R: RDD: %	MOISTURE CONTENT (%)		PLASTIC LIMIT		DRY DENSITY POUNDS/CU.FT	COMPRESSIVE STRENGTH (TONS/SQ. FT)	STRAIN AT FAILURE (%)	CONFINING PRESSURE (POUNDS/SQ IN)	MINUS NO. 200 SIEVE (%)	Hollow Stem Auger GROUNDWATER INFORMATION: Groundwater encountered at 14.25 ft. during drilling and not measured immediately after drilling SURFACE ELEVATION (FT): DESCRIPTION OF STRATUM
			N = 11										\2 in. Topsoil / LEAN CLAY (CL), with Sand, brown, stiff to hard, dry to moist
	- - - - - - - 10		N = 22 N = 27 N = 31	15 16									Grading trace Sand
			N = 35										
	- - 15		N = 37	7									
	- - - - 20 - -		N = 18	16									
	- 25 -	-X	N = 17										
	- - - 30 - -	- - - - - -	N = 21										
	- - 35	$\frac{1}{2}$	N = 48										Grading with Sand
		-											
	- - 40 - -	-X	N = 27										SILTY SAND (SM), dark gray to black, medium dense to dense, wet, fine to medium grained
	- - 45	<u>X</u>	N = 17										
	- - - - 50 - - - - - - 55		N = 33 N = 30										
- المثالة	33												Total Depth = 55.5 ft.
	P - PO T - TXI	CKE Dot	OARD PENET T PENETRO CONE PEN	OME ^T	TER F ATIOI	RESIS	TANG	CE	Ë				REMARKS: GPS COORDINATES: Lat. 41.087076, Long82.777013

RRC Power & Energy, LLC 3801 Doris Lane Round Rock, TX 78664 Telephone: (512) 992-2087 Fax: (512) 251-2518 CLIENT: Apex Clean Energy, Inc PROJECT: **Emerson Creek Wind Project** LOCATION: Erie and Huron Counties, OH

					ıa	7. (3	12)	201-	2010					DATE(S) DRILLED: 4/23/2019
		FIE	LD	DATA			LA	ΑВО	RATC	RY DA	ATA			DRILLING METHOD(S):
					VT (%)		ERBI	S I			(%)	JRE	/E (%)	Hollow Stem Auger: 0 to 8 ft.; NX Wet Rock Coring: 8 to 28 ft.
	1BOL	[AFT Q FT	MOISTURE CONTENT (%)	LIQUID LIMIT	PLASTIC LIMIT	PLASTICITY INDEX	DRY DENSITY POUNDS/CU.FT	COMPRESSIVE STRENGTH (TONS/SQ. FT)	STRAIN AT FAILURE (%)	CONFINING PRESSURE (POUNDS/SQ IN)	MINUS NO. 200 SIEVE (%)	GROUNDWATER INFORMATION: No groundwater encountered prior to the introduction of drilling fluid
	SOIL SYMBOL	БЕРТН (FT)	SAMPLES	N: BLOWS/FT P: TONS/SQ FT T: BLOWS R: % RQD: %	OISTUF				RY DEN JUNDS/	MPRE RENGT ONS/SC	RAIN A	OUNDS	NUS N	SURFACE ELEVATION (FT):
ļ	S	<u> </u>	∖∾	\ <u> </u>	ž	LL	PL	PI	PC	SPE	S	8€	Σ	DESCRIPTION OF STRATUM
			\forall	N = 4	25									\[2 in. Topsoil \[EAN CLAY (CL), with Sand, brown, soft to hard, dry to moist \]
		5		N = 4										22. IIV 32/ VI (32), Mail Saila, Slowil, Soit to Hara, ally to Molec
			$\frac{1}{4}$	N = 50/5" _	_14_									Grading trace Gravel
Ė			н		14									LIMESTONE, gray, fine grained, moderately weathered, weak rock
.GPJ		10		R = 89 RQD = 17										
- MD1901007.		15	-	R = 100 RQD = 68										
	 	20	- -	R = 98										
MERSON				RQD = 63										
1901007\E	 	25	-	R = 98 RQD = 92										Grading fresh to slightly weathered
EEK - MD														Total Depth = 28 ft.
RSON CR														
2019\EME														
OJECTS														
:\GINT\PR														
20:04 - G														
T - 2/5/20														
INL01.GD														
LOG A GN														
RENEWABLE LOG - LOG A GNNL01.GDT - 2/5/20 20:04 - G:\GINTIPROJECTS\2019\EMERSON CREEK - MD1901007\EMERSON CREEK				ARD PENET						E E				REMARKS: GPS COORDINATES: Lat. 41.317416, Long82.790099
RENEWA	F	R - RO	CK	CONE PEN CORE RECO	OVEF	RΥ			NCE					

RRC Power & Energy, LLC 3801 Doris Lane Round Rock, TX 78664 Telephone: (512) 992-2087 Fax: (512) 251-2518 CLIENT: Apex Clean Energy, Inc PROJECT: **Emerson Creek Wind Project** LOCATION: Erie and Huron Counties, OH

					га	x: (5	12).	251-	2518					DATE(S) DRILLED: 4/18/2019
		FIE	LD	DATA			LA	4BO	RATC	RY DA	λTΑ			DRILLING METHOD(S):
					(%)	ATT L	ERBE IMIT	S 			(%	Щ.	(%)	Hollow Stem Auger: 0 to 8 ft.; NX Wet Rock Coring: 8 to 23 ft.
IOGWAA IIOG	OT MBOL	DЕРТН (FT)	LES	N: BLOWS/FT P: TONS/SQ FT T: BLOWS R: % RQD: %	MOISTURE CONTENT (%)	LIQUID LIMIT	PLASTIC LIMIT	PLASTICITY INDEX	DRY DENSITY POUNDS/CU.FT	COMPRESSIVE STRENGTH (TONS/SQ. FT)	STRAIN AT FAILURE (%)	CONFINING PRESSURE (POUNDS/SQ IN)	MINUS NO. 200 SIEVE (%)	GROUNDWATER INFORMATION: No groundwater encountered prior to the introduction of drilling fluid
= = = = = = = = = = = = = = = = = = = =	١	EPT	SAMPLES	: BLO : BLO : BLO	NOIS.	LL	ᅵᅵ	PI □	RY E	TONS	TRA	ANO.	IINU:	SURFACE ELEVATION (FT):
77	n ///		\o'	/ ΖΔ⊢ແແ		LL	PL	PI		000	o)	0 =	2	DESCRIPTION OF STRATUM \\1 in. Topsoil
			X	N = 50/5"	17									LEAN CLAY (CL), with Sand and Gravel, brown, hard, dry
F	7	5	A	N = 50/1"										LIMESTONE, gray, hard, dry
F	4			N = 50/2"	1									LIMECTONIC growt fine grained eligibity to good engine
.GPJ		10	- - - - - -	R = 90 RQD = 17										LIMESTONE, gray, fine grained, slightly to moderately weathered, weak rock
- MD1901007		15	-	R = 97 RQD = 72										
SON CREEK		20	- - - -	R = 100 RQD = 87										
RENEWABLE LOG - LOG A GNNL01.GDT - 2/5/20 20:04 - G:\GINTPROJECTS\2019\EMERSON CREEK - MD1901007\EMERSON CREEK														Total Depth = 23 ft.
RENEWABLE LO	P T R	- PO(- TXE - RO	CKE OOT CK	ARD PENET T PENETRO CONE PEN CORE RECO	OMET ETRA OVER	TER F ATION RY	RESIS NRES	STANG	CE	E		•		REMARKS: GPS COORDINATES: Lat. 41.309842, Long82.815969

RRC Power & Energy, LLC 3801 Doris Lane Round Rock, TX 78664 Telephone: (512) 992-2087 Fax: (512) 251-2518 CLIENT: Apex Clean Energy, Inc PROJECT: **Emerson Creek Wind Project** LOCATION: Erie and Huron Counties, OH

L					га	х. (э	12).	251-	2518					DATE(S) DRILLED: 4/17/2019 - 4/18/2019
		FIE	LD	DATA					RATO	RY DA	ATA			DRILLING METHOD(S):
					١ (%)	ATT L	ERBE	S			(%)	RE	(%)	Hollow Stem Auger: 0 to 11 ft.; NQ Wet Rock Coring: 11 to 26 ft.
	SOIL SYMBOL	DЕРТН (FT)	SAMPLES	N. BLOWS/FT P: TONS/SQ FT T: BLOWS R: % RQD: %	MOISTURE CONTENT (%)	LIQUID LIMIT	PLASTIC LIMIT	PLASTICITY INDEX	DRY DENSITY POUNDS/CU.FT	COMPRESSIVE STRENGTH (TONS/SQ. FT)	STRAIN AT FAILURE (%)	CONFINING PRESSURE (POUNDS/SQ IN)	MINUS NO. 200 SIEVE (%)	GROUNDWATER INFORMATION: No groundwater encountered prior to the introduction of drilling fluid SURFACE ELEVATION (FT):
	SOIL	DEP.	SAM	N: BL T: BL ROD:	MOIS	LL	PL	PI	DRY POU	STRI (TON	STR	SON POL	MIN	DESCRIPTION OF STRATUM
		5	\Box	N = 6 N = 51	22									\(4 in. Topsoil \\ LEAN CLAY (CL), with Sand, brown, medium stiff to hard, moist to wet
		10	$\frac{1}{\sqrt{2}}$	N = 17 N = 50/1" N = 50/1"	17									LIMESTONE, gray, fine grained, moderately weathered, weak rock
- MD1901007.GPJ		15		R = 92 RQD = 40										LINILS FORE, gray, line grained, moderately weathered, weak fock
		20		R = 99 RQD = 65										
1007\EMERS		25		R = 100 RQD = 70										
RENEWABLE LOG - LOG A GNNL01.GDT - 2/5/20 20:04 - G:\GINT\PROJECTS\2019\EMERSON CREEK - MD1901007\EMERSON CREEK														Total Depth = 26 ft.
RENEWABLE LC	F T F	- PO(- TXE R - RO	CKE OOT CK	ARD PENET T PENETRO CONE PEN CORE RECO CK QUALITY	OMET ETRA OVER	TER F ATION RY	RESIS N RES	TANG SISTA	CE	CE .				REMARKS: GPS COORDINATES: Lat. 41.307049, Long82.817887

RRC Power & Energy, LLC 3801 Doris Lane Round Rock, TX 78664 Telephone: (512) 992-2087 Fax: (512) 251-2518 CLIENT: Apex Clean Energy, Inc PROJECT: **Emerson Creek Wind Project** Erie and Huron Counties, OH LOCATION:

NUMBER: MD1901007

				ıa	x. (J	12).	231-	2010					DATE(S) DRILLED: 4/28/2019 - 4/29/2019
	FIE	ELD	DATA			L	4ВО	RATO	RY DA	λTΑ			DRILLING METHOD(S):
				(%		ERBE IMIT				_		(%	Hollow Stem Auger: 0 to 13 ft.; NX Wet Rock Coring: 13 to 28 ft.
				MOISTURE CONTENT (%)			DEX			STRAIN AT FAILURE (%)	CONFINING PRESSURE (POUNDS/SQ IN)	MINUS NO. 200 SIEVE (%)	GROUNDWATER INFORMATION:
Ι,				ONTE	¥	PLASTIC LIMIT	PLASTICITY INDEX	, <u>L</u> -	<u> </u>	NI UF	NES IN	O SIE	Groundwater encountered at 7 ft. during drilling prior to the
SOIL SYMBOL	l F	l o	N: BLOWS/FT P: TONS/SQ FT T: BLOWS R: % RQD: %	Z Z	LIQUID LIMIT	TIC	TICIL	DRY DENSITY POUNDS/CU.FT	COMPRESSIVE STRENGTH (TONS/SQ. FT)	\T F/	NG P S/SQ	0. 20	introduction of drilling fluid
SYN	ОЕРТН (FT)	SAMPLES	swo:	STUF	l Dai	ار	-LAS	DEN	APRE ENG VS/S(AIN /		N S N	SURFACE ELEVATION (FT):
SOII	PEP	SAN	ROD 81.	MO	LL	PL	PI	DRY POU	STR (TO)	STR	S S	Ν	DESCRIPTION OF STRATUM
	1												∖2 in. Topsoil /
	1	*	N = 4										SANDY LEAN CLAY (CL), brown, soft, moist
	5	<u> </u>	N = 8	19									LEAN CLAY (CL), with Sand, brown, medium stiff, moist
	4	\downarrow	N = 50/5"	<u> </u>									SHALE, gray to black, very hard, moist to wet
	10	\overline{X}	N = 50/3"	16									
ء ا	‡ ·	$\frac{1}{2}$	N - 50/4"										
007.GPJ	⋕	Ϋ́	N = 50/4"										LIMESTONE, light gray, fine grained, slightly to moderately
- MD1901007	‡ 15	4	R = 75 RQD = 37					183*	1612.80		0.0		weathered, weak to moderately strong rock
]	4											
	‡ ₂₀	1	R = 100										
	‡	4	RQD = 44										
MERS	<u>‡</u>	\dagger											
	25	4	R = 100 RQD = 76										
1901	<u> </u>	Ш											
X - M													Total Depth = 28 ft.
SREE													
SON													
EMER													
2019\E													
CTS													
ROJE													
IAT/N													
9:\G													
0:04 -													
5/20 2													
T - 2/£													
11.GD													
NNIC													
G A G													
Ō-FO													
RENEWABLE LOG - LOG A GNNL01.GDT - 2/5/20 20:04 - G:\GINT\PROJECTS\2019\EMERSON CREEK - MD1901007\EMERSON CREEK			L DARD PENE						E		1	<u> </u>	REMARKS:
VABLI			ET PENETRO CONE PEN										GPS COORDINATES: Lat. 41.260506, Long82.803113 *Denotes Total Unit Weight
ENEV	R - RC	CK	CORE RECO	OVEF	RΥ								Donates Total Only Wolght
~ 	- יישטי		OIN QUALITI		, O (N/		•						

RRC Power & Energy, LLC 3801 Doris Lane Round Rock, TX 78664 Telephone: (512) 992-2087 Fax: (512) 251-2518

CLIENT: Apex Clean Energy, Inc PROJECT: **Emerson Creek Wind Project** LOCATION: Erie and Huron Counties, OH

					Fa	x: (5	12) :	251-	2518					DATE(S) DRILLED: 4/9/2019
	FI	ELI	D DA	TA			L/	\BO	RATO	RY DA	λTΑ			DRILLING METHOD(S):
					_	ATT	ERBE IMITS	ERG						Hollow Stem Auger
SOIL SYMBOL	DEPTH (FT)	SAMPLES	N: BLOWS/FT P: TONS/SO FT	T: BLOWS R: % RQD: %	MOISTURE CONTENT (%)	Г СО СТИТ	구 PLASTIC LIMIT	☐ PLASTICITY INDEX	DRY DENSITY POUNDS/CU.FT	COMPRESSIVE STRENGTH (TONS/SQ. FT)	STRAIN AT FAILURE (%)	CONFINING PRESSURE (POUNDS/SQ IN)	MINUS NO. 200 SIEVE (%)	GROUNDWATER INFORMATION: Groundwater encountered at 14 ft. during drilling and not measured immediately after drilling SURFACE ELEVATION (FT): DESCRIPTION OF STRATUM
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		<u> </u>	N = -	12										10 in. Topsoil LEAN CLAY (CL), with Sand, brown, stiff to hard, moist
	5			24	16									ELAN OLAT (OL), with Gand, brown, sun to flard, moist
	4	1	N = 4		10									SHALE, gray, hard, dry to moist
	10	ľ			10									
77.GP		1	N = !	7	4 Z									
MD1901007	15	1	N = !	50/2"										
CREEK -	20	-2	N = 5	50/1"										
MD1901007/EMERSON	25	-2	N =	50/1"										
CREEK -	30	1	N = !	50/1"										
2019\EMERSON	35		N = !	50/1"										
JECTS	40		N = !	50/1"										
G:\GINT\PRO.	-	*	N = :	50/1"										
RENEWABLE LOG - LOG A GNNL01.GDT - 2/5/20 20:04 - G														Auger Refusal = 44.5 ft.
RENEWABLE L	P - P(T - TX R - R(OCK OCK	ET PE T CON COR	PENET NETRO IE PEN E RECO UALITY	OMET ETRA	ER F ATION RY	ESIS RES	TANG SISTA	Œ	E 				REMARKS: GPS COORDINATES: Lat. 41.197831, Long82.755836

RRC Power & Energy, LLC 3801 Doris Lane Round Rock, TX 78664 Telephone: (512) 992-2087 Fax: (512) 251-2518

CLIENT: Apex Clean Energy, Inc PROJECT: **Emerson Creek Wind Project** LOCATION: Erie and Huron Counties, OH

				Fa	x: (5	12)	251-	2518					DATE(S) DRILLED: 12/19/2019
	FII	ELD	DATA			L/	ABO	RATO	RY DA	λTΑ			DRILLING METHOD(S):
				(%)		ERBE	S 			(%)	ш	(%)	Hollow Stem Auger: 0 to 19 ft.; Mud Rotary: 19 to 39 ft.
SOIL SYMBOL	ОЕРТН (FT)	SAMPLES	N. BLOWS/FT P: TONS/SQ FT T: BLOWS R: % RQD: %	MOISTURE CONTENT (%)	LIQUID LIMIT	PLASTIC LIMIT	PLASTICITY INDEX	DRY DENSITY POUNDS/CU.FT	COMPRESSIVE STRENGTH (TONS/SQ. FT)	STRAIN AT FAILURE (%)	CONFINING PRESSURE (POUNDS/SQ IN)	MINUS NO. 200 SIEVE (%)	GROUNDWATER INFORMATION: No groundwater encountered prior to the introduction of drilling fluid SURFACE ELEVATION (FT):
7777		/%	/ ፰፻፫፰፰	Σ	LL	PL	PI	<u> </u>	22P	ဟ	<u>გ</u>	Σ	DESCRIPTION OF STRATUM \[\gamma \text{in. Topsoil} \frac{1}{2} \]
	1	\overline{X}	N = 27										LEAN CLAY (CL), trace Sand, brown, very stiff to hard, moist
	5	X	N = 16	15									
	1	\downarrow	N = 30	14									
	10	X	N = 47										Grading with Sand, moist to wet
7.GPJ		1	N = 94/11"										POORLY GRADED GRAVEL (GP), light brown, very dense, dry to moist, fine grained, angular
1901007	15	<u> </u>	N = 64	9									SHALE, gray, very hard, dry to moist
ON CREEK - MD1	20		N = 50/5"										
MD1901007\EMERSON	25	-X	N = 25/0"										
CREEK -	30	-X	N = 25/0"										
2019\EMERSON	35	X	N = 25/0"										
	-	-	N = 25/0"										Total Depth = 39 ft.
3:\GINT\PR													
/20 20:04 - 0													
1.GDT - 2/5 _/													
OG A GNNLO													
) 													
RENEWABLE LOG - LOG A GNNL01.GDT - 2/5/20 20:04 - G:\GINT\PROJECTS	P - PC T - TX R - RC	DCKI DOT DCK	DARD PENE ET PENETRO CONE PEN CORE RECO	OMET IETRA OVEF	TER F ATION RY	RESIS N RES	TANG SISTA	CE	E				REMARKS: GPS COORDINATES: Lat. 41.197446, Long82.776172

RRC Power & Energy, LLC 3801 Doris Lane Round Rock, TX 78664 Telephone: (512) 992-2087 Fax: (512) 251-2518 CLIENT: Apex Clean Energy, Inc PROJECT: **Emerson Creek Wind Project** LOCATION: Erie and Huron Counties, OH

L					ıa	λ. (Ο	12)	201-	2010					DATE(S) DRILLED: 5/14/2019
		FIE	LD	DATA			L	4BO	RATO	RY DA	ATA			DRILLING METHOD(S):
					(%) LN		ERBI	S 			E (%)	URE	VE (%)	Hollow Stem Auger
COMAN	MBCL	(FT)	S	N: BLOWS/FT P: TONS/SQ FT T: BLOWS R: % RQD: %	MOISTURE CONTENT (%)	LIQUID LIMIT	PLASTIC LIMIT	PLASTICITY INDEX	DRY DENSITY POUNDS/CU.FT	COMPRESSIVE STRENGTH (TONS/SQ. FT)	STRAIN AT FAILURE (%)	CONFINING PRESSURE (POUNDS/SQ IN)	MINUS NO. 200 SIEVE (%)	GROUNDWATER INFORMATION: No groundwater encountered during or immediately after drilling
2	5	DEPTH (FT)	SAMPLES	"LOW!	ISTU	LIQU	PLAS	PLAS	Y DEI	MPRE SENG NS/S	X SAIN	NEN ON ON	N SNI	SURFACE ELEVATION (FT):
	5	DEF	\S/	R.H.B.R.R.R.R.R.R.R.R.R.R.R.R.R.R.R.R.R.	MO	LL	PL	PI	DR' POI	STS (T)	STF	<u>8</u>	MIN	DESCRIPTION OF STRATUM
			\forall	N = 10	25									\[\lambda 1.5 in. Topsoil \] LEAN CLAY (CL), with Sand, brown, stiff to very stiff, dry to moist
		5	\perp	N = 20	20									LEAN CLAY (CL), with Sand, brown, still to very still, dry to moist
		3	\Box											Out they have a Count owner.
	4		\Box	N = 25	17									Grading trace Sand, gray
	⇟	10	X	N = 75										SHALE, dark gray, medium hard to very hard, moist
GPJ	⇟		\forall	N = 33										
MD1901007		15	X	N = 82/10"	14									
CREEK -		20		N = 50/1"										
MD1901007/EMERSON		25	-X	N = 50/1.5"										Grading moist to wet
· ⊨				N = 50/2"										
IERSON CR														Auger Refusal at 31 ft.
S\2019\EM														
PROJECT														
- G:\GINT														
5/20 20:04														
1.GDT - 2/E														
A GNNL01														
907-90														
RENEWABLE LOG - LOG A GNNL01.GDT - 2/5/20 20:04 - G:\GINT\PROJECTS\2019\EMERSON CREEK	P T R	- PO - TXI - RO	CKE OOT CK	ARD PENET T PENETRO CONE PEN CORE RECO	OMET ETRA OVEF	TER F ATION RY	RESIS N RES	STAN(SISTA	CE	E				REMARKS: GPS COORDINATES: Lat. 41.133708, Long82.823198

RQD - ROCK QUALITY DESIGNATION

RRC Power & Energy, LLC 3801 Doris Lane Round Rock, TX 78664 Telephone: (512) 992-2087 Fax: (512) 251-2518 CLIENT: Apex Clean Energy, Inc
PROJECT: Emerson Creek Wind Project
LOCATION: Erie and Huron Counties, OH

				Fa	ıx: (5	12)	251-	-2518					DATE(S) DRILLED: 12/11/2019
	FIE	ELC	DATA			L/	ABO	RATO	DRY DA	ATA			DRILLING METHOD(S):
				(%)		ERBI IMIT	S			(%)	ш	(%)	Hollow Stem Auger
SOIL SYMBOL	ОЕРТН (FT)	SAMPLES	N. BLOWS/FT P: TONS/SQ FT T: BLOWS R: % RQD: %	MOISTURE CONTENT (%)	F LIQUID LIMIT	PLASTIC LIMIT	PLASTICITY INDEX	DRY DENSITY POUNDS/CU.FT	COMPRESSIVE STRENGTH (TONS/SQ. FT)	STRAIN AT FAILURE (%)	CONFINING PRESSURE (POUNDS/SQ IN)	MINUS NO. 200 SIEVE (%)	GROUNDWATER INFORMATION: Groundwater encountered at 40 ft. during drilling and measured at 30 ft. immediately after drilling SURFACE ELEVATION (FT):
7//		\forall		_	LL	PL	PI		0000	6	00	2	DESCRIPTION OF STRATUM \[\2 \] in. Topsoil \[\frac{1}{2} \]
	5	\Box	N = 20 N = 36	15									LEAN CLAY (CL), trace Sand, light brown, very stiff to hard, dry to moist
	10	Ъ	N = 35 N = 30	16									
<u> </u>	1		N = 40										
0.1901007.0	- 15 -	Д	N = 22	16									FAT CLAY (CH), trace Sand, gray, very stiff, dry to moist
SON CREEK - MI	- - - 20 -	-X	N = 22										
1901007\EMER	- - :- 25 :-	- - - -	N = 17	24									SILTY SAND (SM), gray, medium dense, moist, fine to medium grained
I CREEK - MD190	30	-	P = +4.5	Y									
19/EMERSON	35 - 35 -		N = 33										SANDY FAT CLAY (CH), gray, hard, dry to moist
PROJECTS/20	- - 40 -	-X	N = 48 \(\frac{7}{2}\)	<u>Z</u>									
1:04 - G:\GINT\PI	- - 45 -	-X	N = 50/4"										SHALE, gray, hard to very hard, moist to wet
GDT - 2/5/20 20:	50	- - - - -	N = 60										
GNNL01.G	- - 55	-	N = 90/10"										
G - LOG A													Total Depth = 55.5 ft.
ENEWABLE LOG - LOG A GNNL01	P - PO T - TXI R - RC	CKE Dot Ock	DARD PENE ET PENETRO CONE PEN CORE RECO	OME ⁻ IETR. OVEF	TER F ATIOI RY	RESIS N RES	STAN(SISTA	CE	CE				REMARKS: GPS COORDINATES: Lat. 41.110892, Long82.740271

R - ROCK CORE RECOVERY RQD - ROCK QUALITY DESIGNATION

RRC Power & Energy, LLC 3801 Doris Lane Round Rock, TX 78664 Telephone: (512) 992-2087 Fax: (512) 251-2518 CLIENT: Apex Clean Energy, Inc
PROJECT: Emerson Creek Wind Project
LOCATION: Erie and Huron Counties, OH

				Fa	ıx: (5	512)	251-	-2518					DATE(S) DRILLED: 12/6/2019
	FIE	ELE	DATA					RATO	DRY DA	ATA		1	DRILLING METHOD(S): 1 Hollow Stem Auger
SOIL STMBOL	DЕРТН (FT)	SAMPLES	N. BLOWS/FT P: TONS/SQ. FT T: BLOWS RQD: %	MOISTURE CONTENT (%)		PLASTIC LIMIT INTERNATIONS INTO THE PROPERTY IN THE PROPERTY I		DRY DENSITY POUNDS/CU.FT	COMPRESSIVE STRENGTH (TONS/SQ. FT)	STRAIN AT FAILURE (%)	CONFINING PRESSURE (POUNDS/SQ IN)	MINUS NO. 200 SIEVE (%)	GROUNDWATER INFORMATION: No groundwater encountered during or immediately after drilling SURFACE ELEVATION (FT): DESCRIPTION OF STRATUM
		1	N = 18	16		<u> </u>			00,0	0,		_	∖3 in. Topsoil
	. 5		N = 18	16									FAT CLAY (CH), trace Sand, dark brown, very stiff to hard, dry to moist
	. 10	- - - X	N = 36 N = 35	17									
	· -	\downarrow	N = 28										
	· 15 ·		N = 22	16									
	20	- - - - -	N = 23	22									SILTY SAND (SM), brown, medium dense, dry to moist, fine to medium grained
	25 -		N = 17										FAT CLAY (CH), trace Sand, olive gray, stiff to very stiff, dry to moist
	30		N = 16	16									
	- 35 -	-X	N = 19										
	40	-X	N = 15										
	- 45 -	 X	N = 15										
	50	 X	N = 19										
	- 55	 X	N = 26										Total Depth = 55.5 ft.
F	P - PO Γ - TXI	CKI DOT	DARD PENE ET PENETR CONE PEN	OME ^T	TER F ATIOI	RESIS	STAN	CE	ĊE				REMARKS: GPS COORDINATES: Lat. 41.065264, Long82.824944

RQD - ROCK QUALITY DESIGNATION

RRC Power & Energy, LLC 3801 Doris Lane Round Rock, TX 78664 Telephone: (512) 992-2087 Fax: (512) 251-2518 CLIENT: Apex Clean Energy, Inc
PROJECT: Emerson Creek Wind Project
LOCATION: Erie and Huron Counties, OH

_				16	۱۸. (د	12)	201-	2518					DATE(S) DRILLED: 12/6/2019
\downarrow	FIE	ELC	DATA		1			RATO	DRY DA	ATA		<u> </u>	DRILLING METHOD(S): Hollow Stem Auger
	DЕРТН (FT)	SAMPLES	N. BLOWS/FT P. TONS/SQ. FT T. BLOWS R.R.* ROD: %	MOISTURE CONTENT (%)		PLASTIC LIMIT INTERNATION PLASTIC LIMIT		DRY DENSITY POUNDS/CU.FT	COMPRESSIVE STRENGTH (TONS/SQ. FT)	STRAIN AT FAILURE (%)	CONFINING PRESSURE (POUNDS/SQ IN)	MINUS NO. 200 SIEVE (%)	GROUNDWATER INFORMATION: Groundwater encountered at 19 ft. during drilling and measured at 28 ft. immediately after drilling SURFACE ELEVATION (FT): DESCRIPTION OF STRATUM
+	_ 	\pm	N = 13						00,0			_	∖3 in. Topsoil
1		\Box											FAT CLAY (CH), trace Sand, dark brown, stiff, dry to moist
1	5	-X	N = 18	16									LEAN CLAY (CL), trace Sand, light brown, very stiff, dry to moist
	10	Д	N = 16 N = 21	16									
1		\overline{X}	N = 16	17									
	15	X	N = 25										SILTY SAND (SM), brown, medium dense, moist, fine to medium grained
	20	<u>X</u>	N = 14	17									SANDY LEAN CLAY (CL), gray, stiff to very stiff, dry to moist
	25	- - - - -	N = 16										
1	30	-X	N = 16	<u>*</u>									FAT CLAY (CH), with Sand, gray, stiff to very stiff, moist
	35	- - - - -	N = 21										Grading trace Sand
	40		N = 14	18									
	45		N = 13										
	50	- - - - -	N = 18										
1	55	-	N = 19										
													Total Depth = 55.5 ft.
F	P - PO T - TXI	CKE Dot	OARD PENE T PENETR CONE PEN CORE REC	OME [*] NETR	TER I ATIO	RESIS	TAN	CE	CE				REMARKS: GPS COORDINATES: Lat. 41.058500, Long82.824749

R - ROCK CORE RECOVERY RQD - ROCK QUALITY DESIGNATION

RRC Power & Energy, LLC 3801 Doris Lane Round Rock, TX 78664 Telephone: (512) 992-2087 Fax: (512) 251-2518 CLIENT: Apex Clean Energy, Inc
PROJECT: Emerson Creek Wind Project
LOCATION: Erie and Huron Counties, OH

				Fa	ıx: (5	12)	251-	-2518					DATE(S) DRILLED: 12/7/2019 - 12/8/2019
	FIE	ELD	DATA			L	4BO	RATO	DRY DA	ATA			DRILLING METHOD(S):
				(%)	ATT	ERBI	ERG S					(%)	Hollow Stem Auger
SOIL SYMBOL	DЕРТН (FT)	SAMPLES	N. BLOWS/FT P: TONS/SQ FT T: BLOWS R: % RQD: %	MOISTURE CONTENT (%)	F LIQUID LIMIT	PLASTIC LIMIT	PLASTICITY INDEX	DRY DENSITY POUNDS/CU.FT	COMPRESSIVE STRENGTH (TONS/SQ. FT)	STRAIN AT FAILURE (%)	CONFINING PRESSURE (POUNDS/SQ IN)	MINUS NO. 200 SIEVE (%)	GROUNDWATER INFORMATION: Groundwater encountered at 29 ft. during drilling and measured at 16 ft. immediately after drilling SURFACE ELEVATION (FT): DESCRIPTION OF STRATUM
		$\overline{\mathbb{X}}$	N = 12	22									\2 in. Topsoil LEAN CLAY (CL), trace Sand, brown, medium stiff to hard, dry to
	5		N = 24										moist
	10		N = 29 N = 31	18									
G ///			N = 28										
901007	15		N = 19	▼									
EWABLE LOG - LOG A GNNL01.GDT - 2/6/20 20.04 - G./GINTPROJECTS/2019/EMERSON CREEK - MD1901007/EMERSON CREEK - MD1901007 GFJ	20	- - X	N = 12	19									Grading gray
901007/EMERSC	25		P = 1.0	21	28	16	12	110	1.48	15.0	19.0	83	Grading with Sand
CREEK - MD19	30	-X	N = 19	¥									
9/EMERSON (35	- - X	N = 21										
ROJECTS/201	40	- - X	N = 20	13									
.04 - G:\GINT\F	45	- - X	N = 19										
DT - 2/5/20 20:	50	-\ -X -	N = 66										
NL01.G			N = 87/10"										SHALE, dark gray to black, very hard, dry to moist
-LOG A GN	55	7	0//10										Total Depth = 55.5 ft.
EWABLE LOG	P - PO T - TXI	CKE DOT	OARD PENE T PENETR CONE PEN	OME ^T	TER F ATIOI	RESIS	TAN	CE	L CE	<u> </u>		<u> </u>	REMARKS: GPS COORDINATES: Lat. 41.049640, Long82.827139

RQD - ROCK QUALITY DESIGNATION

RRC Power & Energy, LLC 3801 Doris Lane Round Rock, TX 78664 Telephone: (512) 992-2087 Fax: (512) 251-2518 CLIENT: Apex Clean Energy, Inc
PROJECT: Emerson Creek Wind Project
LOCATION: Erie and Huron Counties, OH

				Гъ	IX. (C) (2)	251-	2518					DATE(S) DRILLED: 12/7/2019
	FIE	LC	DATA					RATO	DRY DA	ATA			DRILLING METHOD(S): Hollow Stem Auger
	DЕРТН (FT)	SAMPLES	N. BLOWS/FT P. TONS/SQ FT T. BLOWS R?:% RQD: %	MOISTURE CONTENT (%)		PLASTIC LIMIT INTERPRETATION OF THE PROPERTY O		DRY DENSITY POUNDS/CU.FT	COMPRESSIVE STRENGTH (TONS/SQ. FT)	STRAIN AT FAILURE (%)	CONFINING PRESSURE (POUNDS/SQ IN)	MINUS NO. 200 SIEVE (%)	GROUNDWATER INFORMATION: Groundwater encountered at 22 ft. during drilling and measured a 22 ft. immediately after drilling SURFACE ELEVATION (FT):
, //		\perp			LL	PL	PI		000	S	0.5	2	DESCRIPTION OF STRATUM \[1 \text{ in. Topsoil} \]
	5		N = 24 N = 41	16									LEAN CLAY (CL), trace Sand, very stiff to hard, dry to moist Grading trace Gravel
	10	H	N = 51 N = 34	18									Gravel grades out
#		$\frac{1}{\lambda}$	N = 26										SANDY LEAN CLAY (CL), brown, very stiff, dry to moist
#	15		N = 34										LEAN CLAY (CL), trace Sand, brown, stiff to hard, dry to moist
	20 25 30		N = 16 P = 1.5 N = 16 N = 14	¥ 18	29	16	13	115	1.46	15.0	16.0	89	Grading moist to wet
	35		N = 15										
	40		N = 23										CLAYEY SAND (SC), dark gray, medium dense, moist, fine to medium grained
	45	- X	N = 26										LEAN CLAY (CL), trace Sand, dark gray, very stiff, moist
	50	-X	N = 27										SANDY LEAN CLAY (CL), dark gray, very stiff, moist
1	55	$\frac{1}{\lambda}$	N = 51	1									LEAN CLAY (CL), trace Sand, dark gray, hard, moist
1	50												Total Depth = 55.5 ft.
P T F	P - PO - TXE R - RO	CKE DOT CK	DARD PENE ET PENETR CONE PEN CORE REC	OME NETR OVE	TER I ATIO RY	RESIS N RES	STAN(SISTA	CE) DE		l		REMARKS: GPS COORDINATES: Lat. 41.048849, Long82.823246

RRC Power & Energy, LLC 3801 Doris Lane Round Rock, TX 78664 Telephone: (512) 992-2087 Fax: (512) 251-2518 CLIENT: Apex Clean Energy, Inc PROJECT: **Emerson Creek Wind Project** Erie and Huron Counties, OH LOCATION:

NUMBER: MD1901007

					Fa	x: (5	12)	251-	2518					DATE(S) DRILLED: 5/21/2019
Ī		FIE	LD	DATA			L	ABO	RATO	RY DA	λTΑ			DRILLING METHOD(S):
					Г (%)	ATT L	ERBI	S			(%)	RE	(%) =	Hollow Stem Auger: 0 to 7 ft.; NX Wet Rock Coring: 7 to 30 ft.
	SOIL SYMBOL	ОЕРТН (FT)	SAMPLES	N. BLOWS/FT P: TONS/SQ FT T: BLOWS R: % RQD: %	MOISTURE CONTENT (%)	LIQUID LIMIT	PLASTIC LIMIT	PLASTICITY INDEX	DRY DENSITY POUNDS/CU.FT	COMPRESSIVE STRENGTH (TONS/SQ. FT)	STRAIN AT FAILURE (%)	CONFINING PRESSURE (POUNDS/SQ IN)	MINUS NO. 200 SIEVE (%)	GROUNDWATER INFORMATION: No groundwater encountered prior to the introduction of drilling fluid SURFACE ELEVATION (FT):
ļ	S 7777	DE	\8	S G I S S	M	LL	PL	PI	PO	SES SES	STI	88	Σ	DESCRIPTION OF STRATUM
		. 5	\Box	N = 8 N = 14	18									\[\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
			\perp	N = 50/1" /-										
		. 10	1	R = 48 RQD = 29										LIMESTONE, light brown, fine grained, slightly to moderately weathered, weak to moderately strong rock
- MD1901007.GPJ		. 15	-	R = 83 RQD = 49					168*	784.08		0.0		
		. 20		R = 96 RQD = 46										
- MD1901007\EMERSON CREEK		. 25	-	R = 100 RQD = 63										
- MD190100			- - -	R = 98 RQD = 94										
2019\EMERSON CREEK		30												Total Depth = 30 ft.
2019\EMER														
14 - G:\GINT\														
- 2/5/20 20:0														
NNL01.GDT														
G-LOGAG														
RENEWABLE LOG - LOG A GNNL01.GDT - 2/5/20 20:04 - G:\GINT\PROJECTS\	F 7 F	P - PO(T - TXD R - RO(CKE OOT CK	ARD PENET T PENETRO CONE PEN CORE RECO	OMET SVEF	TER F ATION RY	RESIS N RES	STANC SISTA	CE	E				REMARKS: GPS COORDINATES: Lat. 41.241977, Long82.827098 *Denotes Total Unit Weight

RRC Power & Energy, LLC 3801 Doris Lane Round Rock, TX 78664 Telephone: (512) 992-2087 Fax: (512) 251-2518

CLIENT: Apex Clean Energy, Inc PROJECT: **Emerson Creek Wind Project** LOCATION: Erie and Huron Counties, OH

L					га	х. (э	12)	251-	2518					DATE(S) DRILLED: 4/28/2019
		FIE	ELD	DATA			L	4BO	RATO	RY DA	λTΑ			DRILLING METHOD(S):
					(%)	ATT L	ERBI	S 			(%	ш	(%)	Hollow Stem Auger: 0 to 9 ft.; NX Wet Rock Coring: 9 to 19 ft.
	SOIL SYMBOL	DЕРТН (FT)	LES	N. BLOWS/FT P: TONS/SQ FT T: BLOWS R: % RQD: %	MOISTURE CONTENT (%)	LIQUID LIMIT	PLASTIC LIMIT	PLASTICITY INDEX	DRY DENSITY POUNDS/CU.FT	COMPRESSIVE STRENGTH (TONS/SQ. FT)	STRAIN AT FAILURE (%)	CONFINING PRESSURE (POUNDS/SQ IN)	MINUS NO. 200 SIEVE (%)	GROUNDWATER INFORMATION: No groundwater encountered prior to the introduction of drilling fluid
		EPT	SAMPLES	: BLC : TON : BLC : BLC : BLC	NOIS	LL	립 PL	립 PI	NN I	TONS	ĭTRA	NO.	NINC.	SURFACE ELEVATION (FT):
7)) ////		\forall		_	-	FL	FI		0000	0)	00		DESCRIPTION OF STRATUM 8 in. Topsoil
			-X	N = 6	31									LEAN CLAY (CL), with Sand, brown, medium stiff, moist
		5	X	N = 13	17									SANDY LEAN CLAY (CL), brown, stiff, moist
		10		N = 50/4" N = 50/2"										SHALE, dark gray, hard, dry to moist
07.GPJ		10	- - - -	R = 93 RQD = 0										SHALE, dark gray, fine grained, slightly to moderately weathered, very weak to weak rock
K - MD1901007.		15	- - -	R = 65 RQD = 17										
2019 EMERSON CREEK - MD1901007\EMERSON CREEK														Total Depth = 19 ft.
K - MD190100														
RSON CREE														
S\2019\EME														
\PROJECT														
04 - G:\GINT														
- 2/5/20 20:(
NL01.GDT														
-LOG A GN														
RENEWABLE LOG - LOG A GNNL01.GDT - 2/5/20 20:04 - G:\GINT\PROJECTS'	F T F	- PO - TXE R - RO	CKE OOT CK	OARD PENE ET PENETRO CONE PEN CORE RECO	OMET IETRA OVER	TER F ATION RY	RESIS N RES	STANG	CE	i				REMARKS: GPS COORDINATES: Lat. 41.268959, Long82.764984

RRC Power & Energy, LLC 3801 Doris Lane Round Rock, TX 78664 Telephone: (512) 992-2087 Fax: (512) 251-2518

CLIENT: Apex Clean Energy, Inc PROJECT: **Emerson Creek Wind Project** LOCATION: Erie and Huron Counties, OH

					Fa	x: (5	12)	251-	2518					DATE(S) DRILLED: 4/28/2019
Ī		FIE	LD	DATA			L/	\BO	RATO	RY DA	TΑ			DRILLING METHOD(S):
					(%)	ATT L	ERBE IMITS	S			(%	Щ.	(%)	Hollow Stem Auger
	SOIL SYMBOL	DЕРТН (FT)	SAMPLES	N: BLOWS/FT P: TONS/SQ FT T: BLOWS R: % RQD: %	MOISTURE CONTENT (%)	LIQUID LIMIT	PLASTIC LIMIT	PLASTICITY INDEX	DRY DENSITY POUNDS/CU.FT	COMPRESSIVE STRENGTH (TONS/SQ. FT)	STRAIN AT FAILURE (%)	CONFINING PRESSURE (POUNDS/SQ IN)	MINUS NO. 200 SIEVE (%)	GROUNDWATER INFORMATION: No groundwater encountered during or immediately after drilling SURFACE ELEVATION (FT):
	SOI	DEF	\8	S G I S S S S S S S S S S S S S S S S S	8	LL	PL	PI	DR) POL	STS TOT)	STF	9.6	Z Z	DESCRIPTION OF STRATUM
				N = 6										8 in. Topsoil LEAN CLAY (CL), with Sand, brown, medium stiff to stiff, moist
		5	Н	N = 12										DOUALE CONTRACTOR OF THE PROPERTY OF THE PROPE
RENEWABLE LOG - LOG A GNNL01.GDT - 2/5/20 20:04 - G:\GINT\PROJECTS\2019\EMERSON CREEK - MD1901007\EMERSON CREEK - MD1901007.GPJ				N = 50/2" /										SHALE, gray, very hard, dry to moist Auger Refusal at 6.25 ft.
NEWABLE LOG - LOG	F F	P - PO(T - TXE R - RO	CKE OOT CK	ARD PENE T PENETR CONE PEN CORE REC	OMET NETRA OVER	TER F ATION RY	RESIS N RES	TAN(SISTA	CE	E				REMARKS: GPS COORDINATES: Lat. 41.268962, Long82.763493
뽒[ŀ	マ (リー	KU(CK QUALIT	ז ארן	SIGN/	4HON	N						

RRC Power & Energy, LLC 3801 Doris Lane Round Rock, TX 78664 Telephone: (512) 992-2087 Fax: (512) 251-2518

CLIENT: Apex Clean Energy, Inc PROJECT: **Emerson Creek Wind Project** Erie and Huron Counties, OH LOCATION:

					Fa	x: (5	12)	251-	2518					DATE(S) DRILLED: 4/28/2019
ł		FIE	ELC	DATA			L	ABO	RATO	DRY DA	TA			DRILLING METHOD(S):
ŀ						ATT	ERBI	ERG						Hollow Stem Auger
	SOIL SYMBOL	DЕРТН (FT)	SAMPLES	N. BLOWS/FT P: TONS/SQ FT T: BLOWS ROD: "	MOISTURE CONTENT (%)	F LIQUID LIMIT	PLASTIC LIMIT W	□ PLASTICITY INDEX	DRY DENSITY POUNDS/CU.FT	COMPRESSIVE STRENGTH (TONS/SQ. FT)	STRAIN AT FAILURE (%)	CONFINING PRESSURE (POUNDS/SQ IN)	MINUS NO. 200 SIEVE (%)	GROUNDWATER INFORMATION: No groundwater encountered during or immediately after drilling SURFACE ELEVATION (FT): DESCRIPTION OF STRATUM
				N = 7										8 in. Topsoil LEAN CLAY (CL), with Sand, brown, medium stiff to stiff, moist
			$\frac{1}{4}$	N = 10	22	42	20	22					02	
		5	М	N = 10 N = 50/3" /	23	43	20	23					83	\SHALE, dark gray to black, very hard, dry to moist
RENEWABLE LOG - LOG A GNNL01.GDT - 2/5/20 20:04 - G:\GINT\PROJECTS\2019\EMERSON CREEK - MD1901007\EMERSON CREEK - MD1901007.GPJ				OARD PENE						Æ				REMARKS:
RENEWABL	T F	Γ - TXI R - RO	OOT CK	T PENETR CONE PEN CORE REC CK QUALIT	NETRA OVEF	ATIOI YS	N RES	SISTA						GPS COORDINATES: Lat. 41.269448, Long82.763495

RRC Power & Energy, LLC 3801 Doris Lane Round Rock, TX 78664 Telephone: (512) 992-2087 Fax: (512) 251-2518

CLIENT: Apex Clean Energy, Inc PROJECT: **Emerson Creek Wind Project** LOCATION: Erie and Huron Counties, OH

					га	х. (э	12)	251-	2518					DATE(S) DRILLED: 4/28/2019
Ī		FIE	ELD	DATA			L	ABO	RATC	RY DA	λTΑ			DRILLING METHOD(S):
İ					<u> </u>	ATT	ERBE	ERG S					(0	Hollow Stem Auger
	SOIL SYMBOL	DЕРТН (FT)	SAMPLES	N. BLOWS/FT P: TONS/SQ FT T: BLOWS R: % RQD: %	MOISTURE CONTENT (%)	Н СПОПІВ СІМІТ	PLASTIC LIMIT	PLASTICITY INDEX	DRY DENSITY POUNDS/CU.FT	COMPRESSIVE STRENGTH (TONS/SQ. FT)	STRAIN AT FAILURE (%)	CONFINING PRESSURE (POUNDS/SQ IN)	MINUS NO. 200 SIEVE (%)	GROUNDWATER INFORMATION: No groundwater encountered during or immediately after drilling SURFACE ELEVATION (FT): DESCRIPTION OF STRATUM
	7//		\forall				-			0 0, 0				8 in. Topsoil
		- - - 5	П	N = 9 N = 22										LEAN CLAY (CL), with Sand, light reddish brown, stiff to very stiff, dry to moist Grading black
				N = 50/4"										SHALE, gray, very hard, dry to moist
RENEWABLE LOG - LOG A GNNL01.GDT - 2/5/20 20:04 - G:\GINT\PROJECTS\2019\EMERSON CREEK - MD1901007\EMERSON CREEK - MD1901007.GPJ														Auger Refusal = 8 ft.
RENEWABLE L	F F	P - PO Γ - TXI R - RO	CKE OOT CK	DARD PENET ET PENETRO CONE PEN CORE RECO CK QUALITY	OMET IETRA OVEF	TER F ATION RY	RESIS N RES	STANG	CE	E 				REMARKS: GPS COORDINATES: Lat. 41.269444, Long82.764986

RRC Power & Energy, LLC 3801 Doris Lane Round Rock, TX 78664 Telephone: (512) 992-2087 Fax: (512) 251-2518 CLIENT: Apex Clean Energy, Inc PROJECT: **Emerson Creek Wind Project** LOCATION: Erie and Huron Counties, OH

					Fa	x: (5	12) :	251-	2518					DATE(S) DRILLED: 4/29/2019
	F	IELI	D [DATA			L/	ABO	RATO	RY DA	TΑ			DRILLING METHOD(S):
							ERBE	RG						Hollow Stem Auger
					(%)	L	IMITS				(%	ļ Į	(%)	
					MOISTURE CONTENT (%)		_	PLASTICITY INDEX			STRAIN AT FAILURE (%)	CONFINING PRESSURE (POUNDS/SQ IN)	MINUS NO. 200 SIEVE (%)	GROUNDWATER INFORMATION:
					ONT	MIT	IMI	II ∖⊥	/ FT	ا ب	AILU	S S (S	IS 00	Groundwater encountered at 7.5 ft. during drilling and not
SOII SYMBOI	l E	0	, ţ	N: BLOWS/F1 P: TONS/SQ FT T: BLOWS R: % RQD: %	RE C	LIQUID LIMIT	PLASTIC LIMIT	TICI	DRY DENSITY POUNDS/CU.FT	COMPRESSIVE STRENGTH (TONS/SQ. FT)	AT F,	NG F S/SQ	0. 20	measured immediately after drilling
\ \frac{1}{2}	DEPTH (FT)	SAMPLES		SMO SMO SMO SMO	STUI	laui.	LAS	ال	DEN NDS	IPRE ENG VS/S	AIN /	NE S	N SC	SURFACE ELEVATION (FT):
	E H	/AA/		R : R : B B : B : B : B : B : B : B : B : B :	MO	LL	PL	PI	DRY Pou	STR (TO)	STR	NOS JO	MM	DESCRIPTION OF STRATUM
	7	\downarrow												∖2 in. Topsoil
		*	N	= 8	28									FAT CLAY (CH), trace Sand, brown, medium stiff, dry to moist
	5	\pm	N	= 7	30									LEAN CLAY (CL), with Sand, brown, medium stiff, dry to moist
	} '	+	1		7									
	1	$\overline{}$	N	= 50/4"	_									SHALE, dark gray, very hard, dry to moist
	1 0	, 1	N	= 50/3"	4									
- F		1	١	F0 /0"										
07.GP.	‡	#	1	= 50/2"										
MD1901007	15	· ‡	N	= 50/4"										Grading moist to wet
- MD	1	-												
CREEK]	, 1	l _N	= 50/2"										
	<u>}</u> 20	' 7	1.	00/2										
IRSO	‡	7												
2019)EMERSON CREEK - MD1901007/EMERSON	7	7	₹ N	= 50/1"										∼Grading dry to moist
00100														Total Depth = 24.5 ft.
MD18														
岩														
CRE														
RSO														
EME														
CTS														
ROJE														
NTN														
G:\GI														
- 40:														
20 20														
- 2/5/														
.GDT														
NL01														
A GN														
RENEWABLE LOG - LOG A GNNL01.GDT - 2/5/20 20:04 - G:\GiNT\PROJECTS\ 														
99														
3LE L				RD PENET PENETRO						E				REMARKS: GPS COORDINATES: Lat. 41.252176, Long82.801635
EWAE	T - T	KDO	ТС	ONE PEN	ETR/	OITA								5. 5 5 5 5 10 11 W. 1 20. Edit. 11.252 11 0, Edity. 02.00 1000
REN				QUALITY			ATION	١						

RRC Power & Energy, LLC 3801 Doris Lane Round Rock, TX 78664 Telephone: (512) 992-2087 Fax: (512) 251-2518 CLIENT: Apex Clean Energy, Inc PROJECT: **Emerson Creek Wind Project** LOCATION: Erie and Huron Counties, OH

NUMBER: MD1901007

				га	x: (5	12)	251-	-2518					DATE(S) DRILLED: 4/30/2019
	FIE	LD	DATA			L	٩ВО	RATC	DRY DA	ATA			DRILLING METHOD(S):
				(%)	ATT L	ERBI	S 			(%)	<u>ا</u>	(%)	Hollow Stem Auger
IBOL	(T		Q FT	MOISTURE CONTENT (%)	LIQUID LIMIT	PLASTIC LIMIT	PLASTICITY INDEX	SITY CU.FT	SSIVE TH 2. FT)	STRAIN AT FAILURE (%)	CONFINING PRESSURE (POUNDS/SQ IN)	MINUS NO. 200 SIEVE (%)	GROUNDWATER INFORMATION: No groundwater encountered during or immediately after drilling
SOIL SYMBOL	ОЕРТН (FT)	SAMPLES	N: BLOWS/FT P: TONS/SQ FT T: BLOWS R: % RQD: %	MOISTUR	F LIQUII	PLAS	⊡ PLAS	DRY DENSITY POUNDS/CU.FT	COMPRESSIVE STRENGTH (TONS/SQ. FT)	STRAIN A	CONFININ	MINUS NC	SURFACE ELEVATION (FT): DESCRIPTION OF STRATUM
	-	Ħ		_	-	1 -			0000	0)	00	_	∖4 in. Topsoil
	- - -	\Box	N = 5 N = 3	32	59	22	37					93	FAT CLAY (CH), trace Sand, brown, soft to medium stiff, moist
	- 5 -	1					0,						
	-	Ħ	N = 50/3"	8									SHALE, gray to dark gray, hard, dry to moist
	- 10 -	†	N = 50/2"										
- MD1901007.GPJ	-	Н	N = 50/3"										
19010	- 15 -	$\frac{1}{1}$	N = 50/5"										
REEK - MC	- - - 20		N = 50/2"										
SON C	-	1											
EMER	-		N = 50/2"										
301007													Total Depth = 24.5 ft.
2019 EMERSON CREEK - MD1901007 EMERSON CREEK													
CREEK													
SON C													
)EMEF													
S\2016													
OJECT													
NT/PR													
- G:\GI													
20:04													
2/5/20													
.GDT -													
NNEO													
0G A 6													
E LOG - LOG A GNNL01.GDT - 2/5/20 20:04 - G:\GINT\PROJECTS			100 500										
::I	N - ST/	AND	ARD PENE	ıkat	ION	IEST	KESI	STANC	/ ⊏				REMARKS:

N - STANDARD PENETRATION TEST RESISTANCE

P - POCKET PENETROMETER RESISTANCE

T - TXDOT CONE PENETRATION RESISTANCE R - ROCK CORE RECOVERY

RQD - ROCK QUALITY DESIGNATION

REMARKS: GPS COORDINATES: Lat. 41.251718, Long. -82.801880

3801 Doris Lane Round Rock, TX 78664 512.992.2087

APPENDIX B

Beyond Engineering & Testing, LLC 3801 Doris Lane, Suite B CLIENT:

3801 Doris Lane, Suite B Round Rock, TX 78664 Telephone: (512) 358-6048 CLIENT: RRC Power & Energy, LLC
PROJECT: Emerson Creek Wind Project
LOCATION: Erie and Huron Counties, OH

NUMBER: MD1901007

Specimens prepared by: T.W.

Beyond Engineering & Testing, LLC 3801 Doris Lane, Suite B CLIENT:

3801 Doris Lane, Suite B Round Rock, TX 78664 Telephone: (512) 358-6048 CLIENT: RRC Power & Energy, LLC
PROJECT: Emerson Creek Wind Project
LOCATION: Erie and Huron Counties, OH

NUMBER: MD1901007

Specimens prepared by: T.W.

Beyond Engineering & Testing, LLC 3801 Doris Lane, Suite B CLIENT:

3801 Doris Lane, Suite B Round Rock, TX 78664 Telephone: (512) 358-6048 CLIENT: RRC Power & Energy, LLC
PROJECT: Emerson Creek Wind Project
LOCATION: Erie and Huron Counties, OH

NUMBER: MD1901007

Specimens prepared by: T.W.

Beyond Engineering & Testing, LLC 3801 Doris Lane, Suite B CLIENT:

3801 Doris Lane, Suite B Round Rock, TX 78664 Telephone: (512) 358-6048 CLIENT: RRC Power & Energy, LLC
PROJECT: Emerson Creek Wind Project
LOCATION: Erie and Huron Counties, OH

NUMBER: MD1901007

Specimens prepared by: T.W.

Beyond Engineering & Testing, LLC 3801 Doris Lane, Suite B CLIENT:

3801 Doris Lane, Suite B Round Rock, TX 78664 Telephone: (512) 358-6048 CLIENT: RRC Power & Energy, LLC
PROJECT: Emerson Creek Wind Project
LOCATION: Erie and Huron Counties, OH

NUMBER: MD1901007

Specimens prepared by: T.W.

Unconsolidated-Undrained Triaxial Compression Test

Client: RRC Power & Energy,

LLC.

Project: Emerson Creek Wind Project

Sample No.: T-58 at 12 ft

RRC Project No.: MD1901007

Test Method: ASTM D2850

Test Date: 1/24/2020

Type of Specimen: Shelby Tube

Strain Rate (%/min): 1 % / min

Type of Test: Q-Test

30 -	-					
20 -	- - -				9.5	psi
10 -		E _{50%}				
0 -	0	Y 5	10	15 train (%)	20	:

Mohr Circles (Total Stress) for Peak Stress at Failure

Initial Specimen C	onditions	
Confining Pressure (psi)		9.5
Avg. Diameter (in)	D _o	2.84
Avg. Height (in)	H _o	5.67
In-situ Water Content (%)	w _o	14.7
Total Unit Weight (pcf)	γ_{total}	138.7
Dry Unit Weight (pcf)	$\gamma_{ m dry}$	120.9
Saturation (%)	S_{r}	100
Void Ratio	e _o	0.39
Specific Gravity (Assumed)	G_{s}	2.70

Stresses at Failure	
Maximum Deviator Stress (psi)	28.5
Axial Strain at Failure (%)	15.0
Axial Strain at 50% of q_u , \mathcal{E}_{50} (%)	5.3
Total Stresses at Failure	
Major Principal Stress Corrected, σ_{1C} (psi)	38.0
Minor Principal Stress, σ_3 (psi)	9.5

Test Results	
Unconsolidated-Undrained Compressive	
Strength at Failure,	2.05
σ_{1C} - σ_3 (tsf)	

Note: The test specimen was nearly saturated; the Mohr-Coulomb failure envelope was taken as a horizontal straight line. Failure was taken to correspond to the deviator stress at 15 % axial strain.

Olga Vasquez, 02/04/20

Analysis & Quality Review/Date Specimen Prepared by: T.D.

Unconsolidated-Undrained Triaxial Compression Test Appendix

Client: RRC Power & Energy, LLC. RRC Project No.: MD1901007

Project: Emerson Creek Wind Project Test Method: ASTM D2850

Specimen: T-58 at 12 ft Test Date: 01/24/20

Unconsolidated-Undrained Triaxial Compression Test

Client: RRC Power & Energy, LLC.

Project: Emerson Creek Wind Project

7, RRC Project No.: MD1901007 Test Method: ASTM D2850 Type of Specimen: Shelby Tube

Strain Rate (%/min): 1 % / min

Test Date: 6/25/2019 Type of Test: Q-Test

Sample No.: T-66 at 24 ft

	1	0	5	10	15 train (%)	20	25
	0 -		-30%				
De	10 -		€50%				
viator S	20 -					19	psi
Deviator Stress (psi)	30	-					
(si)	40	-					
	50	_					
		<u>P</u>	rincipal:	Stress Dif	ference vs. Az	xial Strain	

Initial Specimen C	onditions	
Confining Pressure (psi)		19.0
Avg. Diameter (in)	D_{o}	2.85
Avg. Height (in)	H _o	5.67
In-situ Water Content (%)	w _o	17.2
Total Unit Weight (pcf)	γ_{total}	136.7
Dry Unit Weight (pcf)	$\gamma_{ m dry}$	116.6
Saturation (%)	S_{r}	100
Void Ratio	e _o	0.45
Specific Gravity (Assumed)	G_s	2.70

Stresses at Failure	
Maximum Deviator Stress (psi)	38.5
Axial Strain at Failure (%)	14.9
Axial Strain at 50% of q_u , \mathcal{E}_{50} (%)	4.5
Total Stresses at Failure	
Major Principal Stress Corrected, $\sigma_{1C}(psi)$	57.5
Minor Principal Stress, σ_3 (psi)	19.0

Test Results	
Unconsolidated-Undrained Compressive	
Strength at Failure,	2.77
σ_{1C} - σ_3 (tsf)	

Note: The test specimen was nearly saturated; the Mohr-Coulomb failure envelope was taken as a horizontal straight line. Failure was taken to correspond to the deviator stress at 15 % axial strain.

Mohr Circles (Total Stress) for Peak Stress at Failure

Olga Vasquez, 07/22/19

Analysis & Quality Review/Date Specimen Prepared by: T.D.

Unconsolidated-Undrained Triaxial Compression Test Appendix

Client: RRC Power & Energy, LLC. RRC Project No.: MD1901007

Project: Emerson Creek Wind Project Test Method: ASTM D2850

Specimen: T-66 at 24 ft Test Date: 06/25/19

Unconsolidated-Undrained Triaxial Compression Test

Client: RRC Power & Energy,

LLC.

RRC Project No.: MD1901007 Test Method: ASTM D2850 Test Date: 1/24/2020

Type of Specimen: Shelby Tube

Strain Rate (%/min): 1 % / min

Type of Test: Q-Test

Project: Emerson Creek Wind Project

Sample No.: T-82 at 24 ft

Mohr Circle	<u>es (Total Stress</u>	s) for Peak Stress at Failure

Initial Specimen Conditions			
Confining Pressure (psi)		19.0	
Avg. Diameter (in)	D _o	2.85	
Avg. Height (in)	H _o	5.68	
In-situ Water Content (%)	w _o	20.7	
Total Unit Weight (pcf)	γ _{total}	133.2	
Dry Unit Weight (pcf)	$\gamma_{ m dry}$	110.3	
Saturation (%)	S _r	100	
Void Ratio	e _o	0.53	
Specific Gravity (Assumed)	G_{s}	2.70	

Stresses at Failure		
Maximum Deviator Stress (psi)	20.6	
Axial Strain at Failure (%)	15.0	
Axial Strain at 50% of q_u , \mathcal{E}_{50} (%)	4.6	
Total Stresses at Failure		
Major Principal Stress Corrected, $\sigma_{1C}(psi)$	39.6	
Minor Principal Stress, σ_3 (psi)	19.0	

Test Results	
Unconsolidated-Undrained Compressive	
Strength at Failure,	1.48
σ_{1C} - σ_3 (tsf)	

Note: The test specimen was nearly saturated; the Mohr-Coulomb failure envelope was taken as a horizontal straight line. Failure was taken to correspond to the deviator stress at 15 % axial strain.

Olga Vasquez, 02/04/20

Analysis & Quality Review/Date Specimen Prepared by: T.D.

Unconsolidated-Undrained Triaxial Compression Test Appendix

Client: RRC Power & Energy, LLC. RRC Project No.: MD1901007

Project: Emerson Creek Wind Project Test Method: ASTM D2850

Specimen: T-82 at 24 ft Test Date: 01/24/20

Unconsolidated-Undrained Triaxial Compression Test

Client: RRC Power & Energy, LLC.

Test Method: ASTM D2850

RRC Project No.: MD1901007

Strain Rate (%/min): 1 % / min

Project: Emerson Creek Wind Project

Test Date: 1/24/2020

Type of Test: Q-Test

Type of Specimen: Shelby Tube

Sample No.: T-83 at 21 ft

]	Principal :	Stress Dif	ference vs. A	xial Strain	
	30	<u> </u>				***	
_	25						
ss (psi)	20	-					
Deviator Stress (psi)	15					16.0]	osi
)evia1	10	<u> </u>	A				
I	5		E50%				
	0	0	5	10 Axial S	15 train (%)	20	25

Initial Specimen Conditions			
Confining Pressure (psi)		16.0	
Avg. Diameter (in)	D _o	2.83	
Avg. Height (in)	H _o	5.66	
In-situ Water Content (%)	w _o	18.4	
Total Unit Weight (pcf)	Y _{total}	136.1	
Dry Unit Weight (pcf)	$\gamma_{ m dry}$	115.0	
Saturation (%)	S_r	100	
Void Ratio	e _o	0.47	
Specific Gravity (Assumed)	G_{s}	2.70	

Stresses at Failure		
Maximum Deviator Stress (psi)	20.3	
Axial Strain at Failure (%)	15.0	
Axial Strain at 50% of q_u , \mathcal{E}_{50} (%)	5.0	
Total Stresses at Failure		
Major Principal Stress Corrected, $\sigma_{1C}(psi)$	36.3	
Minor Principal Stress, σ ₃ (psi)	16.0	

Test Results	
Unconsolidated-Undrained Compressive	
Strength at Failure,	1.46
σ_{1C} - σ_3 (tsf)	

Note: The test specimen was nearly saturated; the Mohr-Coulomb failure envelope was taken as a horizontal straight line. Failure was taken to correspond to the deviator stress at 15 % axial strain.

Mohr Circles (Total Stress) for Peak Stress at Failure

Olga Vasquez, 02/04/20

Analysis & Quality Review/Date Specimen Prepared by: T.D.

Unconsolidated-Undrained Triaxial Compression Test Appendix

Client: RRC Power & Energy, LLC. RRC Project No.: MD1901007

Project: Emerson Creek Wind Project Test Method: ASTM D2850

Specimen: T-83 at 21 ft Test Date: 01/24/20

Unconfined Compression Test Report

Client: RRC Power & Energy, LLC. RRC Project No.: MD1901007 Type of Specimen: Shelby Tube Project: Emerson Creek Wind Project Test Method: ASTM D2166 Strain Rate (%/min): 1 % / min

Sample I.D.: T-65 at 24 ft Test Date: 6/26/2019

Initial Specimen Conditions			
Avg. Diameter (in)	D_{o}	2.84	
Avg. Height (in)	H_{o}	5.66	
In-situ Moisture Content (%)	w _o	14.8	
Total Unit Weight (pcf)	γ_{total}	138.7	
Dry Unit Weight (pcf)	$\gamma_{ m dry}$	120.8	
Saturation (%)	S_{r}	100	
Void Ratio	e _o	0.40	
Specific Gravity (Assumed)	G_s	2.70	

Mohr Circles for Peak Stress at Failure

Stresses at Failure		
Unconfined Compressive Strength, q_u (psi)	62.8	
Axial Strain at Failure (%)	10.0	
Axial Strain at 50 % of q_u (%)	4.3	
Total Stresses at Failure		
Major Principal Stress, σ ₁ (psi)	62.8	
Minor Principal Stress, σ ₃ (psi)	0	
Undrained Shear Strength, S_u (tsf)	2.26	

Note: Failure was determined at the maximum deviator stress or deviator stress at 15 % axial strain, whenever is obtained first.

Olga Vasquez, 07/22/19

Quality Review/Date Specimen prepared & tested by: T.D.

Unconfined Compression Test Report

Client: RRC Power & Energy, LLC. RRC Project No.: MD1901007 Type of Specimen: Shelby Tube Project: Emerson Creek Wind Project Test Method: ASTM D2166 Strain Rate (%/min): 1 % / min

Sample I.D.: T-70 at 34 ft Test Date: 6/26/2019

Initial Specimen Conditions			
Avg. Diameter (in)	D_{o}	2.84	
Avg. Height (in)	H_{o}	5.67	
In-situ Moisture Content (%)	w _o	15.4	
Total Unit Weight (pcf)	γ_{total}	139.3	
Dry Unit Weight (pcf)	$\gamma_{ m dry}$	120.7	
Saturation (%)	S_{r}	100	
Void Ratio	e _o	0.40	
Specific Gravity (Assumed)	G_s	2.70	

Stresses at Failure	
Unconfined Compressive Strength, q_u (psi)	50.9
Axial Strain at Failure (%)	15.1
Axial Strain at 50 % of q_u (%)	5.8
Total Stresses at Failure	
Major Principal Stress, σ ₁ (psi)	50.9
Minor Principal Stress, σ ₃ (psi)	0
Undrained Shear Strength, S_u (tsf)	1.83

Note: Failure was determined at the maximum deviator stress or deviator stress at 15 % axial strain, whenever is obtained first.

Olga Vasquez, 07/22/19

Quality Review/Date repared & tested by: T.D.

Specimen prepared & tested by: T.D.

Uniaxial Compressive Strength Test Report

Client: RRC Power & Energy, LLC. BET Project No.: MD1901007 Type of Specimen: Intact Rock Core

Project: Emerson Creek Wind Project Test Method: ASTM D7012, Method D Deformation Rate: 0.5 % / min

Sample I.D.: T-01 at 8 ft Test Date: 7/8/2019

Initial Specimen Conditions		
Avg. Diameter (in)	D _o	1.78
Avg. Height (in)	H_{o}	4.09
In-situ Water Content (%)	Wo	
Total Unit Weight (pcf)	γ_{total}	168.4
Dry Unit Weight (pcf)	$\gamma_{ m dry}$	

Stresses at Failure	
Uniaxial Compressive Strength, σ_u (psi)	14790.0
Axial Strain at Failure (%)	
Axial Strain at 50% of σ_u (%)	

Olga Vasquez, 07/23/19

Quality Review/Date

Specimen prepared & tested by: J.R.

Uniaxial Compressive Strength Test Report

Client: RRC Power & Energy, LLC. BET Project No.: MD1901007 Type of Specimen: Intact Rock Core

Project: Emerson Creek Wind Project Test Method: ASTM D7012, Method D Deformation Rate: 0.5 % / min

Sample I.D.: T-07 at 17 ft Test Date: 7/8/2019

Initial Specimen Conditions		
Avg. Diameter (in)	D_{o}	1.78
Avg. Height (in)	H_{o}	4.09
In-situ Water Content (%)	Wo	
Total Unit Weight (pcf)	γ_{total}	165.3
Dry Unit Weight (pcf)	$\gamma_{ m dry}$	

Stresses at Failure	
Uniaxial Compressive Strength, σ_u (psi)	15260.0
Axial Strain at Failure (%)	
Axial Strain at 50% of σ_u (%)	

Olga Vasquez, 07/23/19

Quality Review/Date

Specimen prepared & tested by: J.R.

Uniaxial Compressive Strength Test Report

Client: RRC Power & Energy, LLC. BET Project No.: MD1901007 Type of Specimen: Intact Rock Core

Project: Emerson Creek Wind Project Test Method: ASTM D7012, Method D Deformation Rate: 0.5 % / min

Sample I.D.: T-20B at 15 ft Test Date: 7/8/2019

Initial Specimen Conditions		
Avg. Diameter (in)	D_{o}	1.76
Avg. Height (in)	H_{o}	4.11
In-situ Water Content (%)	Wo	
Total Unit Weight (pcf)	γ_{total}	165.7
Dry Unit Weight (pcf)	$\gamma_{ m dry}$	

Stresses at Failure	
Uniaxial Compressive Strength, σ_u (psi)	12820.0
Axial Strain at Failure (%)	
Axial Strain at 50% of σ_u (%)	

Olga Vasquez, 07/23/19

Quality Review/Date

Specimen prepared & tested by: J.R.

Client: RRC Power & Energy, LLC. BET Project No.: MD1901007 Type of Specimen: Intact Rock Core

Project: Emerson Creek Wind Project Test Method: ASTM D7012, Method D Deformation Rate: 0.5 % / min

Sample I.D.: T-30 at 21 ft Test Date: 7/8/2019

Initial Specimen Conditions		
Avg. Diameter (in)	D_{o}	1.84
Avg. Height (in)	H_{o}	4.15
In-situ Water Content (%)	Wo	
Total Unit Weight (pcf)	γ_{total}	163.0
Dry Unit Weight (pcf)	γ_{dry}	

Stresses at Failure	
Uniaxial Compressive Strength, σ_u (psi)	4960.0
Axial Strain at Failure (%)	
Axial Strain at 50% of σ_u (%)	

Olga Vasquez, 07/23/19

Quality Review/Date

Specimen prepared & tested by: J.R.

Client: RRC Power & Energy, LLC. BET Project No.: MD1901007 Type of Specimen: Intact Rock Core

Project: Emerson Creek Wind Project Test Method: ASTM D7012, Method D Deformation Rate: 0.5 % / min

Sample I.D.: T-34 at 12.5 ft Test Date: 7/8/2019

Initial Specimen Conditions		
Avg. Diameter (in)	D_{o}	1.79
Avg. Height (in)	H_{o}	4.09
In-situ Water Content (%)	Wo	
Total Unit Weight (pcf)	γ_{total}	164.3
Dry Unit Weight (pcf)	$\gamma_{ m dry}$	

Stresses at Failure	
Uniaxial Compressive Strength, σ_u (psi)	11790.0
Axial Strain at Failure (%)	
Axial Strain at 50% of σ_u (%)	

Olga Vasquez, 07/23/19

Quality Review/Date

Specimen prepared & tested by: J.R.

Client: RRC Power & Energy, LLC. BET Project No.: MD1901007 Type of Specimen: Intact Rock Core

Project: Emerson Creek Wind Project Test Method: ASTM D7012, Method D Deformation Rate: 0.5 % / min

Sample I.D.: T-36 at 16 ft Test Date: 7/8/2019

Initial Specimen Conditions		
Avg. Diameter (in)	D_{o}	1.87
Avg. Height (in)	H_{o}	4.08
In-situ Water Content (%)	Wo	
Total Unit Weight (pcf)	γ_{total}	148.2
Dry Unit Weight (pcf)	$\gamma_{ m dry}$	

Stresses at Failure	
Uniaxial Compressive Strength, σ_u (psi)	12800.0
Axial Strain at Failure (%)	
Axial Strain at 50% of σ_u (%)	

Olga Vasquez, 07/23/19

Quality Review/Date

Specimen prepared & tested by: J.R.

Client: RRC Power & Energy, LLC. BET Project No.: MD1901007 Type of Specimen: Intact Rock Core

Project: Emerson Creek Wind Project Test Method: ASTM D7012, Method D Deformation Rate: 0.5 % / min

Sample I.D.: T-43 at 16 ft Test Date: 7/8/2019

Initial Specimen Conditions		
Avg. Diameter (in)	D_{o}	1.87
Avg. Height (in)	H_{o}	4.09
In-situ Water Content (%)	Wo	
Total Unit Weight (pcf)	γ_{total}	174.7
Dry Unit Weight (pcf)	$\gamma_{ m dry}$	

Stresses at Failure	
Uniaxial Compressive Strength, σ_u (psi)	15170.0
Axial Strain at Failure (%)	
Axial Strain at 50% of σ_u (%)	

Olga Vasquez, 07/23/19

Quality Review/Date

Specimen prepared & tested by: J.R.

Client: RRC Power & Energy, LLC. BET Project No.: MD1901007 Type of Specimen: Intact Rock Core

Project: Emerson Creek Wind Project Test Method: ASTM D7012, Method D Deformation Rate: 0.5 % / min

Sample I.D.: T-45B at 29 ft Test Date: 7/8/2019

Initial Specimen Conditions		
Avg. Diameter (in)	D_{o}	1.77
Avg. Height (in)	H_{o}	4.14
In-situ Water Content (%)	Wo	
Total Unit Weight (pcf)	γ_{total}	153.7
Dry Unit Weight (pcf)	γ_{dry}	

Stresses at Failure	
Uniaxial Compressive Strength, σ_u (psi)	10200.0
Axial Strain at Failure (%)	
Axial Strain at 50% of σ_u (%)	

Olga Vasquez, 07/23/19

Quality Review/Date

Specimen prepared & tested by: J.R.

Client: RRC Power & Energy, LLC. BET Project No.: MD1901007 Type of Specimen: Intact Rock Core

Project: Emerson Creek Wind Project Test Method: ASTM D7012, Method D Deformation Rate: 0.5 % / min

Sample I.D.: T-75 at 13 ft Test Date: 7/8/2019

Initial Specimen Conditions		
Avg. Diameter (in)	D_{o}	1.81
Avg. Height (in)	H_{o}	4.12
In-situ Water Content (%)	Wo	
Total Unit Weight (pcf)	γ_{total}	182.7
Dry Unit Weight (pcf)	γ_{dry}	

Stresses at Failure	
Uniaxial Compressive Strength, σ_u (psi)	22400.0
Axial Strain at Failure (%)	
Axial Strain at 50% of σ_u (%)	

Olga Vasquez, 07/23/19

Quality Review/Date

Specimen prepared & tested by: J.R.

Client: RRC Power & Energy, LLC. BET Project No.: MD1901007 Type of Specimen: Intact Rock Core

Project: Emerson Creek Wind Project Test Method: ASTM D7012, Method D Deformation Rate: 0.5 % / min

Sample I.D.: T-87 at 12.5 ft Test Date: 7/8/2019

Initial Specimen Conditions				
Avg. Diameter (in)	D_{o}	1.78		
Avg. Height (in)	H_{o}	4.14		
In-situ Water Content (%)	Wo			
Total Unit Weight (pcf)	γ_{total}	168.3		
Dry Unit Weight (pcf)	$\gamma_{ m dry}$			

Stresses at Failure				
Uniaxial Compressive Strength, σ_u (psi)	10890.0			
Axial Strain at Failure (%)				
Axial Strain at 50% of σ_u (%)				

Olga Vasquez, 07/23/19

Quality Review/Date

Specimen prepared & tested by: J.R.

RRC Power & Energy, LLC. Client: Project: **Emerson Creek Wind Project**

Specimen: T-66 at 24 ft

Soil Specimen Properties	
Initial Specimen Water Content (%)	17.9
Final Specimen Water Content (%)	16.5
Initial Specimen Height (in)	0.902
Final Specimen Height (in)	0.853
Initial Dry Unit Weight, γ _o (pcf)	113.1
Final Dry Unit Weight, γ _f (pcf)	119.5
Initial Void Ratio, e _o	0.479
Final Void Ratio, e_f	0.398
Initial Degree of Saturation (%)	100
Preconsolidation Pressure, p' _c (psf)	4200
Seating Load (psf)	250

Beyond Project No.: MD1901007

Test Method: ASTM D2435, Method A

Test Date: 06/20/19

Specimen was trimmed using a trimming turntable. Specimen was inundated with tap water during testing. Coefficient of Consolidation was determined using the Log Time Method. Loading increment duration was 24 hours. The calculation was included the machine deflections that measured in each loading steps. G_s assumed to be 2.68.

Preconsolidation pressure was determined by using the Casagrande construction technique.

Compression Index, C_c & Recompression Index, C_r calculated in accordance with void ratio (Δe).

Specimen Diameter: 2.497 inches

Vertical Effective Stress, σ'_v (psf)

σ'_{v} (psf)	250	500	1000	2000	4000	8000	16000	4000	1000	4000	16000
$C_v (ft^2/yr)$		36.49	60.49	62.59	40.55	73.14	46.71		-	64.90	148.80
Axial Strain (%)	-0.03	0.15	0.50	0.99	1.90	3.06	4.37	4.09	3.19	3.66	4.88
e	0.479	0.477	0.471	0.464	0.451	0.434	0.414	0.418	0.432	0.425	0.407

σ' _v (psf)	32000	58000	16000	4000	1000
$C_v (ft^2/yr)$	123.83	78.34		-	
Axial Strain (%)	6.46	8.30	8.07	6.92	5.53
e	0.383	0.356	0.359	0.376	0.397

Compression Index, C_c 0.103 Recompression Index, C_r(1st Rebound) 0.015 Recompression Index, C_r (2nd Rebound) 0.023

Client: RRC Power & Energy, LLC. Beyond Project No.: MD1901007

Project: Emerson Creek Wind Project Test Method: ASTM D2435, Method A

Specimen: T-66 at 24 ft Test Date: 06/20/19

Vertical Effective Stress, σ', (psf)

Client: RRC Power & Energy, LLC. Beyond Project No.: MD1901007

Project: Emerson Creek Wind Project Test Method: ASTM D2435, Method A

Specimen: T-66 at 24 ft Test Date: 06/20/19

Cheng-Wei Chen, Ph.D. 07/11/19

Quality Review/Date

Sample Prepared by: T.D.

Client: RRC Power & Energy, LLC.
Project: Emerson Creek Wind Project

Specimen: T-66 at 24 ft

Test Method: ASTM D2435, Method A

Test Date: 06/20/19

RRC Power & Energy, LLC. Client: Project: **Emerson Creek Wind Project**

Specimen: T-82 at 24 ft

Soil Specimen Properties	
Initial Specimen Water Content (%)	18.0
Final Specimen Water Content (%)	14.6
Initial Specimen Height (in)	0.897
Final Specimen Height (in)	0.832
Initial Dry Unit Weight, γ _o (pcf)	111.9
Final Dry Unit Weight, γ _f (pcf)	120.6
Initial Void Ratio, e _o	0.495
Final Void Ratio, e_f	0.388
Initial Degree of Saturation (%)	97.4
Preconsolidation Pressure, p' _c (psf)	2300
Seating Load (psf)	250

Beyond Project No.: MD1901007

Test Method: ASTM D2435, Method A

Test Date: 01/24/20

Specimen was trimmed using a trimming turntable. Specimen was inundated with tap water during testing. Coefficient of Consolidation was determined using the Log Time Method. Loading increment duration was 24 hours. The calculation was included the machine deflections that measured in each loading steps. G_s assumed to be 2.68.

Preconsolidation pressure was determined by using the Casagrande construction technique.

Compression Index, C_c & Recompression Index, C_r calculated in accordance with void ratio (Δe).

Coefficient of Consolidation, C_v (ft²/yr)

Specimen Diameter: 2.499 inches

Vertical Effective Stress, σ'_{v} (psf)

σ'_{v} (psf)	250	500	1000	2000	4000	8000	16000	4000	1000	4000	16000
$C_v (ft^2/yr)$	5.15	7.75	8.00	16.53	22.93	26.27	30.18		-	36.06	125.37
Axial Strain (%)	0.27	0.47	0.96	1.83	3.02	4.41	6.04	5.76	5.00	5.43	6.43
e	0.491	0.488	0.480	0.467	0.449	0.429	0.404	0.409	0.420	0.413	0.399

0.34

0.32

σ'_{v} (psf)	32000	58000	16000	4000	1000
$C_v (ft^2/yr)$	41.44	41.41		-	-
Axial Strain (%)	8.06	9.62	9.32	8.36	7.21
e	0.374	0.351	0.355	0.370	0.387

Compression Index, C_c 0.097 Recompression Index, C_r (1st Rebound) 0.013 Recompression Index, C_r (2nd Rebound) 0.020

Client: RRC Power & Energy, LLC. Beyond Project No.: MD1901007

Project: Emerson Creek Wind Project Test Method: ASTM D2435, Method A

Specimen: T-82 at 24 ft Test Date: 01/24/20

Vertical Effective Stress, σ', (psf)

Client: RRC Power & Energy, LLC. Beyond Project No.: MD1901007

Project: Emerson Creek Wind Project Test Method: ASTM D2435, Method A

Specimen: T-82 at 24 ft Test Date: 01/24/20

Cheng-Wei Chen, Ph.D. 02/19/20

Quality Review/Date

Sample Prepared by: T.D.

Client: RRC Power & Energy, LLC. Beyond Project No.: MD1901007 Project: **Emerson Creek Wind Project** Test Method: ASTM D2435, Method A Specimen: T-82 at 24 ft Test Date: 01/24/20 Time (min) 250-psf Load 2000-psf Load Time (min) 0.01 0.1 10 100 1000 10000 0.01 0.1 100 1000 10000 0.461 0.476 0.4780.462 Deformation (in) 0.480 Deformation (in) 0.463 0.482 0.464 0.484 0.465 0.4860.488 0.466 4000-psf Load Time (min) 500-psf Load Time (min) 0.01 0.1 100 1000 10000 10 0.1 0.01 10 100 1000 10000 0.488 0.464 0.490 0.465 Deformation (in) 0.492 Deformation (in) 0.494 0.466 0.496 0.467 0.498 0.468 0.500 0.502 0.469 8000-psf Load Time (min) 1000-psf Load Time (min) 0.01 0.01 0.1 1 10 100 1000 10000 0.1 10 100 1000 10000 0.470 0.502 0.504 0.471 0.506 Deformation (in) Deformation (in) 0.472 0.508 0.473 0.510 0.512 0.474 0.514 0.475 0.5160.476 0.518

Client: RRC Power & Energy, LLC.
Project: Emerson Creek Wind Project

Specimen: T-82 at 24 ft

Test Method: ASTM D2435, Method A

Test Date: 01/24/20

Minimum Soil Resistivity

Client: RRC Power & Energy, LLC
Project: Emerson Creek Wind Project
Test Method: ASTM G187
Test Date: 06/25/19

Project No.: MD1901007

As-received conditions:

Sample ID: T-06 at 1 ft.

Resistivity Meter: Humboldt, H-4385

Calibrated Date: 8/20/2018

Multiplication Factor: 1.0

Distilled Water Added (mL)	Measured Resistance (ohms)
20	6460
40	1830
60	2110
80	2300

Minimum Resistivity:	1830 ohm-cm
----------------------	-------------

pH of Soil for Use in Corrosion Testing

7.52

Temp:	25.0 °C	pH Meter:	Hanna Instruments
	_		No. 99121

Tamika Vasquez, 07/1/19

Quality Review/Date

Tested by: E.P.

Test Method: ASTM G51

Minimum Soil Resistivity

Client: RRC Power & Energy, LLC Test Method: ASTM G187 Project: Emerson Creek Wind Project Test Date: 06/25/19

Project No.: MD1901007

Sample ID: T-26 at 1 ft.

Resistivity Meter: Humboldt, H-4385

Calibrated Date: 8/20/2018

Multiplication Factor: 1.0

Distilled Water Added (mL)	Measured Resistance (ohms)
20	5410
40	1480
60	1560
80	1760

pH of Soil for Use in Corrosion Testing

As-received conditions:	7.43	Test Method: ASTM G51
Temp:	24.5 °C	pH Meter: Hanna Instruments
		No. 99121
		Tamika Vasquez, 06/27/19

Quality Review/Date Tested by: E.P.

Minimum Soil Resistivity

Client: RRC Power & Energy, LLC
Project: Emerson Creek Wind Project
Test Method: ASTM G187
Test Date: 06/25/19

Project No.: MD1901007

Sample ID: T-45A at 4 ft.

Resistivity Meter: Humboldt, H-4385

Calibrated Date: 8/20/2018

Multiplication Factor: 1.0

Distilled Water Added (mL)	Measured Resistance (ohms)
20	7180
40	2290
60	2320
80	2450

Minimum Resistivity:	2290 ohm-cm
----------------------	-------------

pH of Soil for Use in Corrosion Testing

As-received conditions:	7.59	Test Method: ASTM G51
Temp:	25.1 °C	pH Meter: Hanna Instruments
_	_	No. 99121

Tamika Vasquez, 06/27/19

Quality Review/Date

Tested by: E.P.

Minimum Soil Resistivity

Client: RRC Power & Energy, LLC
Project: Emerson Creek Wind Project
Test Method: ASTM G187
Test Date: 06/25/19

Project No.: MD1901007

Sample ID: T-54 at 1 ft.

Resistivity Meter: Humboldt, H-4385

Calibrated Date: 8/20/2018

Multiplication Factor: 1.0

Distilled Water Added (m.I.)	Management Designation on (alarma)
Distilled Water Added (mL)	Measured Resistance (ohms)
20	5780
40	1530
60	1370
80	1700
100	1820

Minimum Resistivity:	1370 ohm-cm
----------------------	-------------

pH of Soil for Use in Corrosion Testing

As-received conditions:	7.65	Test Method: ASTM G51
Temp:	25.7 °C	pH Meter: Hanna Instruments
_		No. 99121

Tamika Vasquez, 07/02/19

Quality Review/Date

Tested by: E.P.

Minimum Soil Resistivity

Client: RRC Power & Energy, LLC Test Method: ASTM G187 Project: Emerson Creek Wind Project Test Date: 06/25/19

Project No.: MD1901007 Resistivity Meter: Humboldt, H-4385

Sample ID: T-66 at 1 ft. Calibrated Date: 8/20/2018

Multiplication Factor: 1.0

Test Method: ASTM G51

Tested by: E.P.

Distilled Water Added (mL)	Measured Resistance (ohms)
20	4980
40	2210
60	2030
80	2150
100	2210

pH of Soil for Use in Corrosion Testing

As-received conditions:

Temp:	23.7 °C	pH Meter: Hanna Instruments
		No. 99121
		Tamika Vasquez, 06/27/19
		Quality Review/Date

Minimum Soil Resistivity

Client: RRC Power & Energy, LLC Test Method: ASTM G187

Project: Emerson Creek Wind Project Test Date: 06/25/19

Project No.: MD1901007 Resistivity Meter: Humboldt, H-4385

Sample ID: Sub-1 at 1 ft. Calibrated Date: 8/20/2018

Multiplication Factor: 1.0

Distilled Water Added (mL)	Measured Resistance (ohms)
20	10100
40	2660
60	2740
80	2770

Minimum Resistivity:	2660 ohm-cm	
----------------------	-------------	--

pH of Soil for Use in Corrosion Testing

As-received conditions:	6.83	Test Method: ASTM G51
Temp:	25.3 °C	pH Meter: Hanna Instruments
_		No. 99121

Tamika Vasquez, 07/25/19

Quality Review/Date

Tested by: E.P.

Client: RRC Power & Energy, LLC RRC
Project: Emerson Creek Wind Project Tes

RRC Project No.: MD1901007
Testing Method: ASTM C1580
AASHTO T 291,

Method B

Test Date: 7/3/2019

No.	Sample ID & Depth	Sulfate Content (mg SO ₄ /kg)	Chloride Content (mg/kg)
1	T-06 at 4 ft	20.9*	ND
2	T-26 at 4 ft	21.6*	ND
3	T-45A at 1 ft	111*	ND
4	T-54 at 4 ft	136*	13.6*
5	T-66 at 4 ft	48.0*	ND
6	Sub-1 at 4 ft	80.8*	ND
7			
8			
9			
10			

Note 1: Method Detection Limit (MDL) is 5 mg/L

Note 2: ND = No Detection, Below Method Detection Limit

Note 3: (*) = Sample analyzed outside of recommended hold time.

The chloride and sulfate MDLs are volumetric. Results are mass per mass of dry soil.

Olga Vasquez, 07/03/19

Quality Review/Date Tested by: C.M.

Page 1 of 1

CBR (California Bearing Ratio) Test

Client: RRC Power & Energy, LLC.

Project: Emerson Creek Wind Project

Seconda New TR 1 (T. (2) at 2 to 4 for

Sample No: TR-1 (T-63) at 2 to 4 ft

Beyond Project No.: MD1901007

Test Method: ASTM D1883

Test Date: 5/13/2019

Rate of Penetration: 0.05 in/min

CBR for 0.100-in Penetration 5 4 3 2 1 0 85 90 95 100 105 Dry Unit Weight (pcf)

		CBR for	· 0.200-in P	<u>enetration</u>	
	5				
	4				
CBR	3				
Ö	2				
	1				
	0				
	85	90	95	100	105
		Dry	Unit Weig	tht (pcf)	

Initial Conditions									
		2	2						
Specimen No.	1	2	3						
Target Dry Unit Weight (pcf)	92.6	97.8	100.8						
Condition of sample	soaked	soaked	soaked						
Surcharge Weight (lbs)	10	10	10						
Water Content (%)	21.3	21.3	21.7						
Dry Unit Weight (pcf)	92.7	97.5	100.6						
Final Con	ditions								
Water Content (%) at top 1-in layer after soaking	26.1	26.4	25.9						
Swell (% of initial height)	0.4	0.7	0.4						
Bearing Ratio of Sample at 0.100 in penetration	1.1	1.7	2.1						
Bearing Ratio of Sample at 0.200 in penetration	0.9	1.6	2.0						

Note: Soil specimens were remolded to a range of densities to develop the CBR versus dry density curve. It was allowed the specimens to soak for 96 hrs prior bearing test. Removed the free water and allow the specimens to drain out for 15 min. The 10-lbs surcharge load was placed during bearing test.

Olga Vasquez, 05/15/19

Analysis & Quality Review/Date Specimens prepared and tested by: R.N.

CBR (California Bearing Ratio) Test

Client: RRC Power & Energy, LLC. Project: Emerson Creek Wind Project Sample No: TR-4 (T-08) at 2 to 4 ft

Test Method: ASTM D1883
Test Date: 5/13/2019
Rate of Penetration: 0.05 in/min

Beyond Project No.: MD1901007

CBR for 0.100-in Penetration 5 4 3 2 1 0 95 100 105 110 115 120

Dry Unit Weight (pcf)

		95 1	00	105	110	115	120
	0 -	- - - -					
	1 -				1		
_	2 -	- - -					
CDK	3 -	_			P		
	4 -	- - - -					
	5 -	-					

Initial Conditions								
Specimen No.	1	2	3					
Target Dry Unit Weight (pcf)	101.7	107.4	110.7					
Condition of sample	soaked	soaked	soaked					
Surcharge Weight (lbs)	10	10	10					
Water Content (%)	14.1	14.2	14.2					
Dry Unit Weight (pcf)	101.8	107.3	110.8					
Final Con	Final Conditions							
Water Content (%) at top 1-in layer after soaking	17.3	17.9	18.5					
Swell (% of initial height)	0.2	0.5	0.6					
Bearing Ratio of Sample at 0.100 in penetration	0.6	1.3	2.7					
Bearing Ratio of Sample at 0.200 in penetration	0.5	1.4	3.0					

Note: Soil specimens were remolded to a range of densities to develop the CBR versus dry density curve. It was allowed the specimens to soak for 96 hrs prior bearing test. Removed the free water and allow the specimens to drain out for 15 min. The 10-lbs surcharge load was placed during bearing test.

Olga Vasquez, 05/16/18

Analysis & Quality Review/Date Specimens prepared and tested by: R.N.

EYOND Beyond Engineering & Testing, LLC 3801 Doris Lane, Suite B Round Rock, TX 78664 Telephone: (512) 358-6048

RRC Power & Energy, LLC CLIENT: PROJECT: Emerson Creek Wind Project LOCATION: Erie and Huron Counties, OH

NUMBER: MD1901007

T-63 at 39.0 ft. Sample ID: Date: 07/01/2019 Test Method: ASTM D6913 U.S. SIEVE OPENING IN INCHES 1 U.S. SIEVE NUMBERS **HYDROMETER** 1 3/4 1/23/8 3 810 14 16 20 30 40 50 60 100 140 200 100 90 80 PERCENT FINER BY WEIGHT 70 60 50 40 30 20 10 0.001 0.01 **GRAIN SIZE IN MILLIMETERS GRAVEL** SAND **COBBLES** SILT OR CLAY coarse fine medium fine coarse PLClassification LL Ы Сс Cu 1.14 12.82 D60 %Gravel %Sand %Silt %Clay D100 D30 D10 9.5 1.345 0.401 0.105 9.3 82.2 8.5

Cheng-Wei Chen, 07/01/2019

Analysis & Quality Review/Date

EYOND Beyond Engineering & Testing, LLC 3801 Doris Lane, Suite B Round Rock, TX 78664 Telephone: (512) 358-6048

CLIENT: RRC Power & Energy, LLC PROJECT: Emerson Creek Wind Project LOCATION: Erie and Huron Counties, OH

NUMBER: MD1901007

Sample ID: TR-1 (T-63) at 2.0 ft. Date: 05/10/2019 Test Method: ASTM D6913 U.S. SIEVE OPENING IN INCHES - 1 U.S. SIEVE NUMBERS **HYDROMETER** 2 1.5 1 3/4 1/23/8 3 810 14 16 20 30 40 50 60 100 140 200 6 100 90 80 PERCENT FINER BY WEIGHT 70 60 50 40 30 20 10 0.01 0.001 **GRAIN SIZE IN MILLIMETERS**

CORRI ES	GRA	VEL		SAND)	SILT OR CLAY
COBBLES	coarse	fine	coarea	medium	fine	SILT OR CLAT

Classification	LL	PL	PI	Сс	Cu
FAT CLAY with SAND(CH)	51	20	31		

D100	D60	D30	D10	%Gravel	%Sand	%Silt	%Clay
9.5				0.2	15.7	84.1	

Cheng-Wei Chen, 05/10/2019

Analysis & Quality Review/Date

EYOND Beyond Engineering & Testing, LLC 3801 Doris Lane, Suite B Round Rock, TX 78664 Telephone: (512) 358-6048

RRC Power & Energy, LLC CLIENT: PROJECT: Emerson Creek Wind Project LOCATION: Erie and Huron Counties, OH

NUMBER: MD1901007

TR-2 (T-48) at 2.0 ft. Sample ID: Date: 05/10/2019 Test Method: ASTM D6913 U.S. SIEVE OPENING IN INCHES 1 U.S. SIEVE NUMBERS **HYDROMETER** 1 3/4 1/23/8 3 4 6 810 14 16 20 30 40 50 60 100 140 200 100 90 80 PERCENT FINER BY WEIGHT 70 60 50 40 30 20 10 0.001 0.01 **GRAIN SIZE IN MILLIMETERS GRAVEL** SAND **COBBLES** SILT OR CLAY coarse fine coarse medium fine PLClassification Ы Сс Cu LL LEAN CLAY with SAND(CL) 41 19 22 D60 D30 %Gravel %Sand %Silt %Clay D100 D10 19 3.2 19.2 77.6

Cheng-Wei Chen, 05/10/2019

Analysis & Quality Review/Date

EYOND Beyond Engineering & Testing, LLC 3801 Doris Lane, Suite B Round Rock, TX 78664 Telephone: (512) 358-6048

RRC Power & Energy, LLC CLIENT: PROJECT: Emerson Creek Wind Project LOCATION: Erie and Huron Counties, OH

NUMBER: MD1901007

TR-3 at 2.0 ft. Sample ID: Date: 05/10/2019 Test Method: ASTM D6913 U.S. SIEVE OPENING IN INCHES 1 U.S. SIEVE NUMBERS **HYDROMETER** 3/4 1/23/8 3 810 14 16 20 30 40 50 60 100 140 200 4 6 100 90 80 PERCENT FINER BY WEIGHT 70 60 50 40 30 20 10 0.001 0.01 **GRAIN SIZE IN MILLIMETERS GRAVEL** SAND **COBBLES** SILT OR CLAY coarse fine coarse medium fine PLClassification LL Ы Сс Cu LEAN CLAY with SAND(CL) 37 19 18 D60 D30 %Gravel %Sand %Silt %Clay D100 D10 25 4.5 18.5 77.0

Cheng-Wei Chen, 05/10/2019

Analysis & Quality Review/Date

EYOND Beyond Engineering & Testing, LLC 3801 Doris Lane, Suite B Round Rock, TX 78664 Telephone: (512) 358-6048

CLIENT: RRC Power & Energy, LLC PROJECT: Emerson Creek Wind Project LOCATION: Erie and Huron Counties, OH

NUMBER: MD1901007

Sample ID: TR-4 (T-08) at 2.0 ft. Date: 05/10/2019

Test Method: ASTM D6913

GRAIN SIZE IN MILLIMETERS

COPPLES	GRAVEL		SAND			SILT OR CLAY
COBBLES	coarse	fine	coarse	medium	fine	SILT OR CLAT

Classification	LL	PL	PI	Сс	Cu
SANDY LEAN CLAY(CL)	27	16	11		

D100	D60	D30	D10	%Gravel	%Sand	%Silt	%Clay
25				8.3	23.3	68	3.4

Cheng-Wei Chen, 05/10/2019

Analysis & Quality Review/Date

EYOND Beyond Engineering & Testing, LLC 3801 Doris Lane, Suite B Round Rock, TX 78664 Telephone: (512) 358-6048

RRC Power & Energy, LLC CLIENT: PROJECT: Emerson Creek Wind Project LOCATION: Erie and Huron Counties, OH

NUMBER: MD1901007

TR-5 (SUB) at 2.0 ft. Sample ID: Date: 05/10/2019 Test Method: ASTM D6913 U.S. SIEVE OPENING IN INCHES 1 U.S. SIEVE NUMBERS **HYDROMETER** 2 1.5 1 3/4 1/23/8 3 4 6 810 14 16 20 30 40 50 60 100 140 200 100 90 80 PERCENT FINER BY WEIGHT 70 60 50 40 30 20 10 0.001 0.01 **GRAIN SIZE IN MILLIMETERS GRAVEL** SAND **COBBLES** SILT OR CLAY coarse fine coarse medium fine PLClassification LL Ы Сс Cu LEAN CLAY with SAND(CL) 46 19 27 D60 D30 %Gravel %Sand %Silt %Clay D100 D10 9.5 1.3 16.1 82.6

Cheng-Wei Chen, 05/10/2019

Analysis & Quality Review/Date

RRC Power & Energy, LLC 3801 Doris Lane Round Rock, TX 78664 Telephone: (512) 992-2087 Fax: (512) 251-2518

Apex Clean Energy, Inc PROJECT: CLIENT:

SUMMARY OF LABORATORY RESULTS

Emerson Creek Wind Project Erie and Huron Counties, OH LOCATION:

MD1901007 NUMBER:

Minimum Resistivity (ohm-cm)									1,830																							
Hd									7.5																							
Sulfates (%/weight)										0.0021																						
Chlorides (%/weight)										ND																						
Confining Pressure (psi)		0.0												0.0																		
Strain at Failure (%)																																
Compressive Strength (tsf)		1064.88												1098.72																		
₫																				8												
4																				16												
4																				24												
< No. 200 (%)																				72												
Dry Unit Weight (pcf)		168*												165*																		
Water Content (%)	32		40	10	4	30	ဇ	2	17	13	12	19	13		18	11	11	17	13	10	15	15	6	17	21	18	12	21	16	28	19	
nscs																				CL												
Depth (ft)	1.0	8.0	1.0	4.0	9.0	1.0	7.0	14.0	1.0	4.0	7.0	1.0	4.0	17.0	1.0	4.0	7.0	4.0	7.0	9.0	4.0	7.0	9.0	20.0	1.0	4.0	12.0	1.0	7.0	1.0	7.0	Diluted:
Borehole	T-01	T-01	T-03	T-03	T-03	T-04	T-04	T-04	1-06	90-L	T-06	T-07	T-07	T-07	T-08	T-08	T-08	L-09	T-09	L-09	T-10	T-10	T-10	T-10	T-11	T-11	T-11	T-12	T-12	T-13	T-13	Not Defected: D Diluted:
						l	l																							ш		

Not Detected; D Diluted; *Denotes Total Unit Weight

PAGE 1 OF 9

RRC Power & Energy, LLC 3801 Doris Lane Round Rock, TX 78664 Telephone: (512) 992-2087 Fax: (512) 251-2518

Emerson Creek Wind Project Apex Clean Energy, Inc PROJECT: CLIENT:

SUMMARY OF LABORATORY RESULTS

Erie and Huron Counties, OH LOCATION:

MD1901007 NUMBER:

Minimum Resistivity (ohm-cm)																															
F.																															
Sulfates (%/weight)																															
Chlorides (%/weight)																															
Confining Pressure (psi)																										0.0					
Strain at Failure (%)																															
Compressive Strength (tsf)																										923.04					
₫															10																
4															9																
															28																
^ No. 200 (%)															65																
Dry Unit Weight (pcf)																										166*					
Water Content (%)	7	16	22	56	13	16	15	10	24	16	7	5	56	14	1	14	9	10	16	17	15	6	6	21	4		24	24	17	30	12
nscs															占																
Depth (ft)	9.0	14.0	4.0	7.0	19.0	1.0	4.0	14.0	1.0	4.0	9.0	29.0	4.0	9.0	24.0	4.0	9.0	14.0	34.0	1.0	7.0	12.0	24.0	1.0	4.0	15.0	1.0	1.0	4.0	9.0	14.0
Borehole	T-13	T-13	T-14	T-14	T-14	T-15	T-15	T-15	T-16	T-16	T-16	T-16	T-17	T-17	T-17	T-18	T-18	T-18	T-18	T-19	T-19	T-19	T-19	T-20	T-20	T-20	T-21	T-22	T-22	T-22	T-22

ND Not Detected; **D** Diluted; *Denotes Total Unit Weight

PAGE 2 OF 9

Apex Clean Energy, Inc PROJECT: CLIENT:

SUMMARY OF LABORATORY RESULTS

Emerson Creek Wind Project Erie and Huron Counties, OH LOCATION:

MD1901007 NUMBER:

Minimum Resistivity (ohm-cm)							1,480																								
五							7.4																								
Sulfates (%/weight)								0.0022																							
Chlorides (%/weight)								QN																							
Confining Pressure (psi)																					0.0										
Strain at Failure (%)																															
Compressive Strength (tsf)																					357.12										
₫													10																	7	
4													15																	15	
4													25																	22	
^ No. 200 (%)													06																	49	
Dry Unit Weight (pcf)																					163*										
Water Content (%)	25	9	15	32	18	17	27	31	2	21	19	21	6	13	7	25	16	17	23	6		20	6	20	13	7	12	7	20	25	6
nscs													占																	SC-SM	
Depth (ft)	1.0	7.0	1.0	4.0	1.0	9.0	1.0	4.0	14.0	1.0	1.0	4.0	9.0	12.0	14.0	4.0	9.0	19.0	1.0	7.0	21.0	4.0	9.0	15.0	24.0	4.0	7.0	19.0	1.0	7.0	12.0
Borehole	T-23	T-23	T-24	T-24	T-25	T-25	T-26	T-26	T-26	T-27	T-28	T-28	T-28	T-28	T-28	T-29	T-29	T-29	T-30	T-30	T-30	T-31	T-31	T-31	T-31	T-32	T-32	T-32	T-33	T-33	T-33

ND Not Detected; **D** Diluted; *Denotes Total Unit Weight

PAGE 3 OF 9

Apex Clean Energy, Inc PROJECT: CLIENT:

SUMMARY OF LABORATORY RESULTS

Emerson Creek Wind Project Erie and Huron Counties, OH LOCATION:

MD1901007 NUMBER:

Minimum Resistivity (ohm-cm)																													2,290			4 OF 9
Hg.																													9.7			, ⊐₽∆q
Sulfates (%/weight)																												0.0111				
Chlorides (%/weight)																												QN				
Confining Pressure (psi)	0.0							0.0																0.0							0.0	
Strain at Failure (%)																																
Compressive Strength (tsf)	848.88							921.60																1092.24							734.40	
۵																																
4																																
4																																
^ No. 200 (%)																																
Dry Unit Weight (pcf)	164							148*																175*							154*	
Water Content (%)		24	17	16	25	23	17		17	-	15	15	17	20	18	7	22	13	7	29	20	26	19		41	15	10	20	15	11		
nscs																																
Depth (ft)	12.5	1.0	4.0	7.0	1.0	4.0	9.0	16.0	1.0	4.0	4.0	9.0	14.0	1.0	4.0	7.0	1.0	4.0	9.0	4.0	12.0	14.0	1.0	16.0	1.0	4.0	9.0	1.0	4.0	9.0	29.0	Diluted;
Borehole	T-34	T-35	T-35	T-35	T-36	T-36	T-36	T-36	T-37	T-37	T-39	T-39	T-39	T-40	T-40	T-40	T-41	T-41	T-41	T-42	T-42	T-42	T-43	T-43	T-44	T-44	T-44	T-45A	T-45A	T-45A	T-45B	ND Not Detected; D Diluted;

*Denotes Total Unit Weight

PAGE 4 OF 9

Emerson Creek Wind Project Apex Clean Energy, Inc PROJECT: CLIENT:

SUMMARY OF LABORATORY RESULTS

Erie and Huron Counties, OH LOCATION:

MD1901007 NUMBER:

Minimum Resistivity (ohm-cm)																												1,370			
Æ																												7.7			
Sulfates (%/weight)																													0.0136		
Chlorides (%/weight)																													0.0014		
Confining Pressure (psi)																															
Strain at Failure (%)																															
Compressive Strength (tsf)																															
₫																			7												
٦																			16												
==																			27												
No.200(%)																			29												
Dry Unit Weight (pcf)																															
Water Content (%)	39	10	17	14	13	6	16	14	18	13	16	13	16	17	17	14	16	15	14	11	23	22	14	23	12	14	19	19	16	17	13
nscs																			ರ												
Depth (ft)	1.0	7.0	14.0	4.0	9.0	12.0	4.0	9.0	19.0	4.0	9.0	14.0	1.0	7.0	12.0	14.0	4.0	9.0	12.0	19.0	1.0	4.0	12.0	1.0	7.0	14.0	19.0	1.0	4.0	9.0	14.0
Borehole	T-46	T-46	T-46	T-47	T-47	T-47	T-48	T-48	T-48	T-49	T-49	T-49	T-50	T-50	T-50	T-50	T-51	T-51	T-51	T-51	T-52	T-52	T-52	T-53	T-53	T-53	T-53	T-54	T-54	T-54	T-54

ND Not Detected; **D** Diluted; *Denotes Total Unit Weight

PAGE 5 OF 9

Apex Clean Energy, Inc PROJECT: CLIENT:

SUMMARY OF LABORATORY RESULTS

Emerson Creek Wind Project Erie and Huron Counties, OH

MD1901007 LOCATION: NUMBER:

Minimum Resistivity (ohm-cm)																															
Н																															
Sulfates (%/weight)																															
Chlorides (%/weight)																															
Confining Pressure (psi)													6.5																		
Strain at Failure (%)													15.0																		
Compressive Strength (tsf)													2.05																		
٩													14											15							
Ч													15											16							
													59											31							
< No. 200 (%)													80											74						96	
Dry Unit Weight (pcf)													121																		
Water Content (%)	10	15	15	11	13	22	16	15	6	23	21	13	15	17	15	11	17	12	19	17	17	16	19	16	19	16	15	15	16	28	17
SOSO													CL											CL							
Depth (ft)	24.0	7.0	12.0	19.0	29.0	1.0	7.0	12.0	19.0	1.0	4.0	9.0	12.0	14.0	19.0	39.0	4.0	9.0	24.0	4.0	9.0	12.0	24.0	9.0	24.0	1.0	7.0	12.0	19.0	29.0	7.0
Borehole	T-54	9 5- 1	T-56	1-56	T-56	L-57	T-57	T-57	T-57	L-58	T-58	L-58	T-58	T-58	T-58	T-58	T-59	T-59	L-59	T-60	T-60	1-60	09-L	T-61	19-1	T-62	T-62	T-62	T-62	T-62	T-63

PAGE 6 OF 9

ND Not Detected; **D** Diluted; *Denotes Total Unit Weight

Emerson Creek Wind Project Apex Clean Energy, Inc PROJECT: CLIENT:

SUMMARY OF LABORATORY RESULTS

Erie and Huron Counties, OH MD1901007 LOCATION: NUMBER:

num tivity cm)											30																				
Minimum Resistivity (ohm-cm)											2,030																				
Hd											7.4																				
Sulfates (%/weight)												0.0048																			
Chlorides (%/weight)												QN																			
Confining Pressure (psi)										0.0						19.0															
Strain at Failure (%)										10.0						14.9															
Compressive Strength (tsf)										4.52						2.77															
₫															15	12											6				
Ч															16	17											17				
=======================================															31	29											26				
^ No. 200 (%)		6													77	91											75				
Dry Unit Weight (pcf)										121						117															
Water Content (%)	17	15	16	16	16	19	16	17	17	15	22	20	18	14	18	17	23	14	19	16	14	13	17	20	16	19	16	14	15	16	17
SOSO															占	CL											CL				
Depth (ft)	19.0	39.0	4.0	9.0	14.0	24.0	1.0	9.0	14.0	24.0	1.0	4.0	12.0	14.0	19.0	24.0	29.0	19.0	24.0	4.0	9.0	12.0	24.0	4.0	12.0	14.0	29.0	1.0	7.0	12.0	0.70
Borehole	T-63	T-63	T-64	T-64	T-64	T-64	T-65	T-65	T-65	T-65	1-66	99-L	1-66	99-L	1-66	99-L	1-66	L-67	L-67	T-68	T-68	T-68	T-68	69-L	69-L	69-L	T-69	T-70	T-70	T-70	T_70

ND Not Detected; **D** Diluted; *Denotes Total Unit Weight

PAGE 7 OF 9

Emerson Creek Wind Project Apex Clean Energy, Inc PROJECT: CLIENT:

SUMMARY OF LABORATORY RESULTS

Erie and Huron Counties, OH LOCATION:

MD1901007 NUMBER:

Minimum Resistivity (ohm-cm)																															
Hd																															
Sulfates (%/weight)																															
Chlorides (%/weight)																															
Confining Pressure (psi)	0.0												0.0																		
Strain at Failure (%)	15.1																														
Compressive Strength (tsf)	3.66												1612.80																		
П																															
<u>ط</u>																															
^ No. 200 (%)																															
Dry Unit Weight (pcf)	121												183*																		
Water Content (%)	15	15	16	16	25	14	17	-	22	17	19	16		16	10	4	15	14	6	25	17	14	15	16	16	24	16	17	16	22	16
SOSN																															
Depth (ft)	34.0	4.0	9.0	19.0	1.0	7.0	1.0	7.0	4.0	9.0	4.0	9.0	13.0	4.0	9.0	12.0	4.0	7.0	14.0	1.0	7.0	14.0	4.0	9.0	14.0	24.0	1.0	9.0	14.0	19.0	29.0
Borehole	T-70	T-71	T-71	T-71	T-72	T-72	T-73	T-73	T-74	T-74	T-75	T-75	T-75	1-76	1-76	1-76	L-77	T-77	T-77	T-78	T-78	T-78	L-79	L-79	1-79	L-79	T-80	T-80	T-80	T-80	T-80 29.0

Not Detected; D Diluted; *Denotes Total Unit Weight

PAGE 8 OF 9

Apex Clean Energy, Inc PROJECT: CLIENT:

SUMMARY OF LABORATORY RESULTS

Emerson Creek Wind Project

Erie and Huron Counties, OH MD1901007 LOCATION: NUMBER:

_																																	
	Minimum Resistivity (ohm-cm)																		2,660														
	Ьd																		8.9														
	Sulfates (%/weight)																			0.0081													
	Chlorides (%/weight)																			ND													
	Confining Pressure (psi)									19.0				16.0				0.0															
Strain	at Failure (%)									15.0				15.0																			
	Compressive Strength (tsf)									1.48				1.46				784.08															
										12				13							23					37		31	22	18	7	27	
	Ы									16				16							20					22		20	19	19	16	19	
	П									28				29							43					69		51	41	37	27	46	
	< No. 200 (%)									83				89							83					66		84	78	22	68	83	
	Dry Unit Weight (pcf)									110				115				168*															
	Water Content (%)	16	16	17	17	18	22	18	19	21	13	16	18	18	21	18	20		31	17	23	8	28	30	4	32	8	21	16	18	19	24	
	nscs									귕				占							CF					НЭ		СН	CL	CF	٦ ا	디	
	Depth (ft)	4.0	7.0	12.0	19.0	39.0	1.0	7.0	19.0	24.0	39.0	1.0	9.0	21.0	29.0	1.0	4.0	12.5	1.0	4.0	4.0	0.9	1.0	4.0	9.0	4.0	7.0	2.0	2.0	2.0	2.0	2.0	Diluted:
	Borehole	T-81	T-81	T-81	T-81	T-81	T-82	T-82	T-82	T-82	T-82	T-83	T-83	T-83	T-83	T-87	T-87	T-87	SUB-1	SUB-1	SUB-3	SUB-3	OM1	OM1	OM1	OM2	OM2	TR-1 (T-63)	TR-2 (T-48)	TR-3	TR-4 (T-08)	TR-5 (SUB)	Not Detected: D Diluted

ND Not Detected; **D** Diluted; *Denotes Total Unit Weight

PAGE 9 OF 9

3801 Doris Lane Round Rock, TX 78664 512.992.2087

APPENDIX C

	Shear Wave
Depth	Velocity
(ft)	(ft/sec)
3.8	819
8.5	982
14.5	1,258
21.9	1,999
31.1	2,199
42.7	2,519
57.2	3,527
75.2	4,294
97.8	4,578

Note:

- 1. Data collected on January 20, 2020
- 2. SurfSeis v. 4.2.4.5 computer software developed by Kansas Geological Survey was used to process the field data.

5 (1	Shear Wave
Depth	Velocity
(ft)	(ft/sec)
2.5	374
5.5	456
9.4	826
14.2	862
20.2	1,025
27.7	1,389
37.1	1,752
48.8	1,935
63.5	2,008

Note:

- 1. Data collected on January 20, 2020
- 2. SurfSeis v. 4.2.4.5 computer software developed by Kansas Geological Survey was used to process the field data.

	Shear Wave
Depth	Velocity
(ft)	(ft/sec)
2.4	466
5.4	565
9.1	563
13.8	678
19.6	760
26.9	844
36.0	920
47.3	1,124
61.6	1,399

Note:

- 1. Data collected on January 20, 2020
- 2. SurfSeis v. 4.2.4.5 computer software developed by Kansas Geological Survey was used to process the field data.

	Shear Wave
Depth	Velocity
(ft)	(ft/sec)
3.5	675
7.9	708
13.4	840
20.3	867
28.9	805
39.7	919
53.2	1,033
70.0	1,203
91.0	1,386

Note:

- 1. Data collected on January 21, 2020
- 2. SurfSeis v. 4.2.4.5 computer software developed by Kansas Geological Survey was used to process the field data.

SOIL RESISTIVITY MEASURMENT DATA SHEET

Survey ID ER T-15 DATE 1/22/2020

CLIENT Apex Clean Energy, Inc **PROJECT** Emerson Creek Wind Project Project No. MD1901007

LOCATION: Erie and Huron Counties, OH

LATITUDE : 41.303032 **LONGITUDE**: -82.68839

WEATHER: Parlty Cloudy

TOP SOIL: Lean Clay(CL), With Sand, Light Brown, Dry

TYPE OF TEST: Wenner 4-Pin Method **EQUIPMENT:** AEMC Ground Resistane Tester

SERIAL NO. 257543JJDV MODEL: 4630

CALIBRATION DUE DATE: 7/8/2020

TEST PERFORMED BY: RRC

Temp. (°F) 23°F

TEST SET RANGE

Meter Current: 1mA - 10mA

Meter Resistance: 1cOhm - 1.999 kOhm

					APPARENT	ELECTRICAL F	RESISTIVITY		
PROB	PROBE C DEPTH	PROBE P DEPTH	E-	-w	N	-S			
Spacing (ft)	(Inches)	(Inches)	Meter reading (Ω)	Soil Resistivity (Ωm)	Meter reading (Ω)	Soil Resistivity (Ωm)	Meter reading (Ω)	Soil Resistivity (Ωm)	Average Soil Resistivity (Ωm)
2.5	4	2	31.500	150.74	38.400	183.76			167.25
5	4	2	25.000	239.27	25.900	247.88			243.57
10	12	6	14.740	282.14	15.390	294.59			288.37
20	12+	6	5.990	229.31	6.370	243.86			236.59
40	12+	6	1.850	141.65	1.810	138.58			140.12
60	12+	6	0.960	110.25	0.940	107.96			109.11

Notes:

General Sketch of the test set up.

Total Array length is 3 times the probe spacing. The Apparent resistivity is calculated using the following equation: r=2*p*R*spacing*0.3048, where last item converts feet to meters. Wenner Array surveys were performed generally in accordance with IEEE std 81-2012 "IEEE Guide for Measuring Earth Resistivity, Ground Impedance and Earth Surface Potentials of a Grounding System." and ASTM G-57.

Emerson Creek Wind Project Electrical Resistivity Survey at ER T-15

SOIL RESISTIVITY MEASURMENT DATA SHEET

Survey ID ER T-42 DATE 1/22/2020

CLIENT Apex Clean Energy, Inc **PROJECT** Emerson Creek Wind Project

LOCATION: Erie and Huron Counties, OH

LATITUDE : 41.200378 **LONGITUDE**: -82.777286

WEATHER: Parlty Cloudy

TOP SOIL: Lean Clay(CL), With Sand, Light Brown, Dry TYPE OF TEST: Wenner 4-Pin Method

EQUIPMENT: AEMC Ground Resistane Tester

SERIAL NO. 257543JJDV MODEL: 4630

CALIBRATION DUE DATE: 7/8/2020

TEST PERFORMED BY: RRC

Project No. MD1901007

Temp. (°F) 23°F

TEST SET RANGE

Meter Current: 1mA - 10mA

Meter Resistance: 1cOhm - 1.999 kOhm

					APPARENT	ELECTRICAL F	RESISTIVITY		
PROB	PROBE C DEPTH	PROBE P DEPTH	E-	-w	N	-S			
Spacing (ft)	(Inches)	(Inches)	Meter reading (Ω)	Soil Resistivity (Ωm)	Meter reading (Ω)	Soil Resistivity (Ωm)	Meter reading (Ω)	Soil Resistivity (Ωm)	Average Soil Resistivity (Ωm)
2.5	4	2	10.110	48.38	10.070	48.19			48.28
5	4	2	5.900	56.47	5.900	56.47			56.47
10	12	6	3.840	73.50	3.780	72.35			72.93
20	12+	6	2.760	105.66	2.710	103.75			104.70
40	12+	6	1.840	140.88	1.860	142.41			141.65
60	12+	6	1.280	147.01	1.330	152.75			149.88

Notes:

General Sketch of the test set up.

Total Array length is 3 times the probe spacing. The Apparent resistivity is calculated using the following equation: r=2*p*R*spacing*0.3048, where last item converts feet to meters. Wenner Array surveys were performed generally in accordance with IEEE std 81-2012 "IEEE Guide for Measuring Earth Resistivity, Ground Impedance and Earth Surface Potentials of a Grounding System." and ASTM G-57.

Emerson Creek Wind Project Electrical Resistivity Survey at ER T-42

SOIL RESISTIVITY MEASURMENT DATA SHEET

Survey ID ER T-53 DATE 1/21/2020

CLIENT Apex Clean Energy, Inc **PROJECT** Emerson Creek Wind Project Project No.

LOCATION: Erie and Huron Counties, OH

LATITUDE : 41.138747 LONGITUDE: -82.832547

WEATHER: Parlty Cloudy TOP SOIL:

Lean Clay(CL), With Sand, Light Brown, Dry TYPE OF TEST: Wenner 4-Pin Method

EQUIPMENT: AEMC Ground Resistane Tester

SERIAL NO. 257543JJDV MODEL: 4630

CALIBRATION DUE DATE: 7/8/2020

TEST PERFORMED BY: RRC

MD1901007

Temp. (°F) 26°F

TEST SET RANGE

Meter Current: 1mA - 10mA

Meter Resistance: 1cOhm - 1.999 kOhm

	PROB PROBE C				APPARENT	ELECTRICAL F	RESISTIVITY		
		PROBE P DEPTH	E-	-w	N	-S			
Spacing (ft)	(Inches)	(Inches)	Meter reading (Ω)	Soil Resistivity (Ωm)	Meter reading (Ω)	Soil Resistivity (Ωm)	Meter reading (Ω)	Soil Resistivity (Ωm)	Average Soil Resistivity (Ωm)
2.5	4	2	9.210	44.07	9.650	46.18			45.13
5	4	2	3.020	28.90	3.110	29.76			29.33
10	12	6	1.440	27.56	1.420	27.18			27.37
20	12+	6	0.890	34.07	0.870	33.31			33.69
40	12+	6	0.680	52.06	0.670	51.30			51.68
60	12+	6	0.590	67.76	0.590	67.76			67.76

Notes:

General Sketch of the test set up.

Total Array length is 3 times the probe spacing. The Apparent resistivity is calculated using the following equation: r=2*p*R*spacing*0.3048, where last item converts feet to meters. Wenner Array surveys were performed generally in accordance with IEEE std 81-2012 "IEEE Guide for Measuring Earth Resistivity, Ground Impedance and Earth Surface Potentials of a Grounding System." and ASTM G-57.

Emerson Creek Wind Project Electrical Resistivity Survey at ER T-53

SOIL RESISTIVITY MEASURMENT DATA SHEET

Survey ID ER T-67 DATE 1/21/2020

CLIENT Apex Clean Energy, Inc **PROJECT** Emerson Creek Wind Project Project No. MD1901007

LOCATION: Erie and Huron Counties, OH

41.094198 LATITUDE : **LONGITUDE**: -82.770705

WEATHER: Parlty Cloudy TOP SOIL: Lean Clay(CL), Trace Sand, Light Brown, Dry

TYPE OF TEST: Wenner 4-Pin Method

EQUIPMENT: AEMC Ground Resistane Tester

SERIAL NO. 257543JJDV MODEL: 4630

CALIBRATION DUE DATE: 7/8/2020

TEST PERFORMED BY: RRC

Temp. (°F) 32°F

TEST SET RANGE

Meter Current: 1mA - 10mA

Meter Resistance: 1cOhm - 1.999 kOhm

					APPARENT	ELECTRICAL F	RESISTIVITY		
PROB	PROBE C DEPTH	PROBE P DEPTH	E-	-w	N	-S			
Spacing (ft)	(Inches)	(Inches)	Meter reading (Ω)	Soil Resistivity (Ωm)	Meter reading (Ω)	Soil Resistivity (Ωm)	Meter reading (Ω)	Soil Resistivity (Ωm)	Average Soil Resistivity (Ωm)
2.5	4	2	5.150	24.64	6.050	28.95			26.80
5	4	2	2.400	22.97	2.420	23.16			23.07
10	12	6	1.080	20.67	1.020	19.52			20.10
20	12+	6	0.470	17.99	0.510	19.52			18.76
40	12+	6	0.250	19.14	0.260	19.91			19.52
60	12+	6	0.190	21.82	0.190	21.82			21.82

Notes:

General Sketch of the test set up.

Total Array length is 3 times the probe spacing. The Apparent resistivity is calculated using the following equation: r=2*p*R*spacing*0.3048, where last item converts feet to meters. Wenner Array surveys were performed generally in accordance with IEEE std 81-2012 "IEEE Guide for Measuring Earth Resistivity, Ground Impedance and Earth Surface Potentials of a Grounding System." and ASTM G-57.

Emerson Creek Wind Project Electrical Resistivity Survey at ER T-67

SOIL RESISTIVITY MEASURMENT DATA SHEET

Survey ID ER Substation DATE 1/22/2020

CLIENT Apex Clean Energy, Inc
PROJECT Emerson Creek Wind Project

LOCATION: Erie and Huron Counties, OH **LATITUDE**: 41.268763

LONGITUDE : -82.764568

WEATHER: Cloudy
TOP SOIL: Lean Clay(CL), With Sand, Light brown, Dry

TYPE OF TEST: Wenner 4-Pin Method EQUIPMENT: AEMC Ground Resistane Tester

SERIAL NO. 257543JJDV

 MODEL:
 4630

 CALIBRATION DUE DATE:
 7/8/2020

 TEST PERFORMED BY:
 RRC

Project No. MD1901007

Temp. (°F) 33°F

TEST SET RANGE

Meter Current: 1mA - 10mA

Meter Resistance: 1cOhm - 1.999 kOhm

					APPARENT	ELECTRICAL I	RESISTIVITY		
PROB	PROBE C DEPTH	PROBE P DEPTH	E-	-W	N	-s			
Spacing (ft)	(Inches)	(Inches)	Meter reading (Ω)	Soil Resistivity (Ωm)	Meter reading (Ω)	Soil Resistivity (Ωm)	Meter reading (Ω)	Soil Resistivity (Ωm)	Average Soil Resistivity (Ωm)
0.5	4	2	96.400	92.26	112.600	107.77			100.01
1	4	2	55.000	105.28	58.200	111.40			108.34
1.5	4	2	32.700	93.89	34.600	99.34			96.62
2	4	2	22.700	86.90	23.300	89.20			88.05
3	4	2	17.270	99.17	17.850	102.50			100.84
5	4	2	11.250	107.67	12.140	116.19			111.93
7	12	6	8.220	110.14	9.900	132.65			121.40
10	12	6	7.020	134.37	7.450	142.60			138.49
15	12	6	5.090	146.14	5.260	151.03			148.59
20	12+	6	3.880	148.54	3.820	146.24			147.39
30	12+	6	2.640	151.60	2.620	150.45			151.03
45	12+	6	1.760	151.60	1.870	161.08			156.34
70	12+	6	1.320	176.87	1.310	175.53			176.20
100	12+	6+	1.010	193.33	1.010	193.33			193.33
150	12+	6+	0.710	203.86	0.690	198.11			200.99
200	12+	6+	0.490	187.59	0.510	195.24			191.41

General Sketch of the test set up.

Total Array length is 3 times the probe spacing. The Apparent resistivity is calculated using the following equation: r=2*p*R*spacing*0.3048, where last item converts feet to meters. Wenner Array surveys were performed generally in accordance with IEEE std 81-2012 "IEEE Guide for Measuring Earth Resistivity, Ground Impedance and Earth Surface Potentials of a Grounding System." and ASTM G-57.

Emerson Creek Wind Project Electrical Resistivity Survey at ER Substation

4370 Contractors Common Livermore, CA 94551

Tel: 925-999-9232 Fax: 925-999-8837 info@geothermusa.com

SOIL THERMAL SURVEY EMERSON CREEK WIND FARM PROJECT NEAR BELLEVUE, OHIO

MAY 2019

Prepared for:

RRC Power & Energy 3801 Doris Lane Round Rock, TX 78664

Submitted by:

GEOTHERM USA, LLC

COOL SOLUTIONS FOR UNDERGROUND POWER CABLES THERMAL SURVEYS, CORRECTIVE BACKFILLS & INSTRUMENTATION

INTRODUCTION

A field thermal resistivity survey of the native soils was performed for the proposed underground power cables at the **Emerson Creek Wind Farm Project near Bellevue**, **Ohio. RRC Companies** provided all the support services through a local contractor and their field personnel. This included identifying the test locations, obtaining permits, clearing underground services and providing a backhoe with operator to excavate all test pits.

Field Testing and Soil Sampling:

Thermal resistivity testing was performed at five (5) locations along the cable routes; on April 11th, 2019 **(Table 1)**. At each location, a backhoe was used to dig a 4-foot deep test-pit and thermal resistivity tests were performed at depths of 2, 3 and 4-feet below grade. In addition, samples for visual description, moisture content and thermal dry out characterization were taken. Test location coordinates were provided by **RRC**.

In-situ thermal resistivity and ambient temperature measurements were made using field thermal probes and the *Geotherm* **TPA-2000** run off a portable power source. All thermal testing was performed in accordance with the IEEE Standard (**IEEE 442-2017**). Laboratory geotechnical testing was conducted in accordance with **ASTM**.

The field thermal resistivity values were measured at the given soil moisture on that day. Depending on weather and environmental conditions; i.e. drying due to cable heat or other heat source, seasonal drying (drought), artificial draining, water demand of crops, etc., the soil may be drier at certain times of the year. Therefore, the design thermal resistivity for the native soils should be based on the <u>driest</u> expected conditions.

The attached table present factual information on the subsurface conditions at the specific test pit locations; no warrantee is expressed or implied that materials or conditions other than those described may not be encountered along the cable route.

Laboratory Testing:

The samples sent to us by RRC were tested at their 'as received' moisture content and at 92% of the MDD provided by *RRC*. The tests were conducted in accordance with IEEE standard 442-2017. The test results are given in **Table 2** and the thermal dryout curves are presented in **Figure 1**.

Comments:

Ambient Temperature: In-situ testing was conducted at the time of the year when the earth ambient temperatures were not the highest. At the end of a warm summer, the ambient temperatures may increase significantly; especially at shallow depths. This should be taken into consideration for the cable rating. At the proposed cable burial depth of about 3-4 ft., temperature of about 25 °C is suggested.

Geotherm believes a maximum ambient soil temperature of approximately 25 °C shall be adequate; however, the Engineer of Record will ultimately be responsible for the determination of appropriate soil temperature assumptions.

Please contact us if you have any questions or if we can be of further assistance.

Geotherm USA

Hoch

Nimesh Patel

Table 1 - Field Test Results

Test Pit #	Latitude	Longitude	Test Depth (ft)	Ambient Temp. (°C)	In-situ Thermal Resistivity (°C-cm/W)	RRC Description
			2	6.0	62	
TR - 1 (T-63)	41.107602	-82.807065	3	6.9	57	Brown Fat Clay w/ Sand (CH)
(. 55)			4	6.3	59	
			2	6.5	67	_
TR - 2 (T-48)	41.154774	-82.811374	3	7.6	69	Brown Lean Clay w/ Sand (CL)
			4	7.1	63	
		-82.788517	2	5.8	60	
TR - 3	41.209883		3	6.6	59	Light Brown Lean Clay w/ Sand (CL)
			4	6.1	58	
			2	6.5	48	
TR - 4 (T-08)	41.316613	-82.776070	3	7.7	50	Dark Brown Sandy Lean Clay (CL)
(. 55)			4	7.4	51	
			2	6.0	65	
TR - 5 (Sub)	41.268924	-82.765749	3	6.9	64	Dark Brown Lean Clay w/ Sand (CL)
(25)			4	6.3	62	(0 2)

Table 2 - Laboratory Test Results

Sample ID (@ 2'-4')	Description (RRC)	Thei Resis (°C-c	tivity	Moisture Content	Dry Density
,	,	Wet	Dry	(%)	(lb/ft³)
TR - 1 (T-63)	Brown Fat Clay w/ Sand (CH)	74	221	21	95
TR - 2 (T-48)	Brown Lean Clay w/ Sand (CL)	90	263	15	98
TR - 3	Light Brown Lean Clay w/ Sand (CL)	80	234	16	99
TR - 4 (T-08)	Dark Brown Sandy Lean Clay (CL)	60	178	17	104
TR - 5 (Sub)	Dark Brown Lean Clay w/ Sand (CL)	79	246	21	93

THERMAL DRYOUT CURVES

RRC Power & Energy (RRC No. MD1901007)

Thermal Analysis of Native Soil

Emerson Creek Wind Project

May 2019 Figure 1

3801 Doris Lane Round Rock, TX 78664 512.992.2087

APPENDIX D

Table D1.1 - LPILE Computer Program Parameters for Lateral Load Analysis for Substation

LPILE Soil Type Static Cyclic (pcf) (psf) (degree) Soft Clay (1) 120 Stiff Clay w/o Free Water (3) 120 1,580 Stiff Clay w/o Free Water (3) 120 5,900 Weak Rock (9) 130 Weak Rock (9) 130	Soil	Depth		K (I	K (pci)	γ,	ပ	•	053	Erm	son	RQD	Krm
Soft Clay (1) 120 Stiff Clay w/o Free Water (3) 120 1,580 Stiff Clay w/o Free Water (3) 120 5,900 Weak Rock (9) 130 Weak Rock (9) 130	Layer		.>	Static	Cyclic	(bct)	(bst)	(degree)		(psi)	(isd)	(%)	
Stiff Clay w/o Free Water (3) 120 1,580 Stiff Clay w/o Free Water (3) 120 5,900 Weak Rock (9) 130 Weak Rock (9) 130	1*	0 to 3	Soft Clay (1)	-	-	120	-	-		-			
Stiff Clay w/o Free Water (3) 120 5,900 Weak Rock (9) 130 Weak Rock (9) 130	2	3 to 7		;	-	120	1,580	-	200'0	-			+
Weak Rock (9) 130 Weak Rock (9) 130	3	7 to 10	_	-	1	120	5,900	-	0.004	-		-	1
Weak Rock (9) 130	4	10 to 15)	-	-	130	:	-		120,000	1,000	20	0.0005
	2	15 to 20	$\overline{}$	-	-	130	;			120,000	1,000	20	0.0005

*Upper 3 feet of soil should be neglected due to seasonal moisture change. Notes:

Table D1.2 - Direct Embedment/Drilled Pier Foundation Design Parameters for Substation

(feet) (0 to 3		>	-6	ر	ز		SPT N-		_	Allowable Bearing
(feet) 0 to 3		,	•	>	Rock		Volue	Doformation	Skin Friction	Droce:::c (EC-2)
(feet) 0 to 3	Jaca aoil & Rock						Value	Delomation		(c-cu) ainssaid
1* 0 to 3	Classification	(pcf)	(degree)	(bst)	(bst)	$\mathbf{K}_{\!\scriptscriptstyle \mathrm{D}}$	(blows/ft)	Modulus (ksi)	(FS=2.5) ⁽¹⁾ (psf)	(psf)
	Soft Clay	120					-		-	
2 3 to 7	CL	120		1,580	-	2.98	12	1.4	340	4,200
3 7 to 10	CL	120	-	5,900		2.98	200	8.0	1,060	17,700
4 10 to 15	SHALE	130	31		2,000	-	-	100.0	3,100	19,200
5 15 to 20	SHALE	130	31	1	2,000	1	1	100.0	3,100	19,200

Table D1.3 – MFAD 5.1/HFAD 5.1 Rock Design Parameters for Substation

						_
Ultimate Rock/Concrete Bond Strength (psi)			+	20	20	
USCS Soil & Rock Classification	Soft Clay	CL	CL	SHALE	SHALE	Decise death to assumption in 20 feet
Depth (feet)	0 to 3	3 to 7	7 to 10	10 to 15	15 to 20	Occide dend
Soil Layer	1*	2	3	4	2	

Design depth to groundwater is 20 feet Notes: *Upper 3 feet of soils should be neglected due to seasonal moisture change; Kp: Rankine Passive Earth Pressure Coefficient; γ : Effective Unit Weight (γ^2 = γ_{roal} -62.4 pcf); ϕ : Angle of Internal Friction.

(1) For uplift resistance, the allowable skin friction provided in table above should be reduced by 25 percent.

(2) A minimum bond length of 10 feet in bedrock and 15 feet in soils is recommended. Estimated bond strength are for gravity grout anchors. RRC recommends grout anchor capacities be verified by pull-out

This foregoing document was electronically filed with the Public Utilities

Commission of Ohio Docketing Information System on

9/11/2020 4:42:31 PM

in

Case No(s). 18-1607-EL-BGN

Summary: Testimony - Direct Testimony of Alfred Williams electronically filed by Christine M.T. Pirik on behalf of Firelands Wind, LLC