## **EXHIBIT D: CHP Preliminary Architectural Design**











BRICK AND GLASS BASE - BRICK PRECEDENT FROM ADJACENT VETERINARY MEDICAL COMPLEX



METAL PANEL WITH SLOT WINDOWS







SOUTH FACADE



NORTH FACADE



**COMPOSITIONAL DIAGRAM ENGIE CHP PLANT** OCTOBER 2019









SOUTHWEST CORNER

ENGIE CHP PLANT OCTOBER 2019

**3** BRICK AND GLASS BASE - BRICK PRECEDENT FROM ADJACENT VETERINARY MEDICAL COMPLEX





### NORTHWEST CORNER ENGIE CHP PLANT

OCTOBER 2019





3 BRICK AND GLASS BASE - BRICK PRECEDENT FROM ADJACENT VETERINARY MEDICAL COMPLEX

# **EXHIBIT E: American Electric Power Short Form Application**



A Short Form Application is available for inverter-based systems (25 kW or less).

An Application is a complete application when it provides all applicable and correct information required below. Additional information to evaluate a request for interconnection may be required pursuant to the application process after the Application is deemed complete.

Applications for Interconnection meeting Level 2 qualifying criteria are subject to an application fee of \$50 + \$1/kW. Applications for Interconnection meeting Level 3 qualifying criteria are subject to an application fee of \$100 + \$2/kW.

|                                | 9                   | <u>Customer</u>         |                                 |        |
|--------------------------------|---------------------|-------------------------|---------------------------------|--------|
| Legal Name:                    |                     |                         |                                 |        |
| Mailing Address:               | -2.42               |                         |                                 |        |
| City:                          |                     | State:                  | Zip:                            |        |
| Phone: ()                      |                     | Phone: ()               |                                 |        |
| E-mail address:                |                     |                         |                                 |        |
|                                | Alte                | rnate Contact           |                                 |        |
| Name:                          |                     |                         | . (                             |        |
| Mailing Address:               |                     |                         |                                 |        |
| City:                          |                     | State:                  | Zip:                            |        |
| Phone: ()                      |                     | Phone: ()               |                                 |        |
| E-mail address:                |                     |                         |                                 |        |
|                                | Fac                 | ility Location          |                                 |        |
| Street Address:                |                     |                         |                                 |        |
| City:                          |                     | Zip:                    |                                 |        |
|                                | Servi               | ice Information         |                                 |        |
| Electric Service Account Nur   | nber:               |                         |                                 |        |
| Existing Electric Service: Ca  | apacity:            | Amperes                 | Voltage:                        | Volts  |
| Se                             | ervice Character: ( | ) Single Phase () Three | e Phase                         |        |
| Site Maximum Demand:           | kW                  | Annual Energy Consum    | ption                           | kWh    |
| Requested Point of Interconn   | ection:             |                         |                                 |        |
| Location of Utility Accessible | e Lockable Discon   | nect Switch:            |                                 |        |
|                                |                     |                         | (e.g. West wall next to utility | meter) |
| Requested In-Service Date: _   |                     |                         |                                 |        |

#### **Consulting Engineer or Contractor**

| Name: ENGIE Buckeye Operations c/o Jason Jones |                      |                               |  |  |  |  |
|------------------------------------------------|----------------------|-------------------------------|--|--|--|--|
| Address: 1990 Post Oak Blvd. Suite 1900        |                      |                               |  |  |  |  |
| City: Houston                                  | State: Texas         | Zip: <u>77056</u>             |  |  |  |  |
| Phone: (713) 636-1982                          | Phone: (716 994-9566 | E-mail: jason.jones@engie.com |  |  |  |  |

#### **Generator Qualifications**

| Energy Source: () Solar () Wind () Hydro: type (e.g. run-of-river)                                                                                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| () Diesel () Natural Gas () Fuel Oil () Other: (specify) Natural Gas                                                                                                                                                                                                     |
| Type of Generator: Inverter-Based Synchronous Induction                                                                                                                                                                                                                  |
| Generator Nameplate Ratings: 2x33800, 1x50500 kW 13800 Volts Connected: ☑ Wye □ Delta                                                                                                                                                                                    |
| Number of Generators: <u>3</u> Service Character: <u>1 Phase</u> <b>3</b> Phase Power Factor: <u>%</u>                                                                                                                                                                   |
| Inverter AC Ratings: kW Volts Number of Inverters                                                                                                                                                                                                                        |
| Number of Solar PV Modules: DC Rating: watts                                                                                                                                                                                                                             |
| Maximum Net Export Capability: 0 kW Estimated Annual Energy Production: 495000000 kWh                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                          |
| This Generating Equipment is intended to be used to:                                                                                                                                                                                                                     |
| Emergency/Standby – Operated when AEP service is not available. Paralleling is for short durations.                                                                                                                                                                      |
| () Peak Shaving - Operated during peak demand periods. Paralleling is for extended times.                                                                                                                                                                                |
| Base Load Power – Operated continuously at a pre-determined output. Paralleling is continuous.                                                                                                                                                                           |
| Cogeneration – Operated primarily to produce thermal energy. Paralleling is extended or continuous.                                                                                                                                                                      |
| () Renewable non-dispatched - Operated in response to an available renewable resource. Paralleling is                                                                                                                                                                    |
| for extended times.                                                                                                                                                                                                                                                      |
| () Other – Describe: The CHP will run in parallel to the AEP system and the intended use is to completely offset the university's load at all times.<br>The control and protection will be designed to ensure that there is NO real power injection into the AEP system. |
| List components of the generation equipment that are currently certified by a nationally recognized testing and certification laboratory (NRTL) and/or listed by the Underwriters Laboratory:                                                                            |
| Equipment Type UL Listing or certifying NRTL Certification                                                                                                                                                                                                               |
| 1                                                                                                                                                                                                                                                                        |
| 2                                                                                                                                                                                                                                                                        |

Page 2 of 3

3. \_\_\_\_\_

4. \_\_\_\_\_

#### **Generation Equipment Technical Information**

Attach electrical one-line diagram showing the configuration of all generating facility equipment, transformers, switchgear, switches, circuit breakers, fuses, current and potential transformers, and protection and control schemes. (This diagram must be signed and stamped by a licensed Professional Engineer if the facility is larger than 50kW).

Attach site documentation that indicates the precise physical location of the proposed generating facility and location of protective interface equipment, disconnect switch, and utility electric meter (e.g. USGS topographic map or other diagram or documentation).

Attach technical specifications literature for inverters, photovoltaic modules, wind turbines, other generation equipment, battery systems, transformers, switches, or other interface devices and documentation that describes and details the operation of all protection and control schemes.

Attach UL 1741documentation or installation test procedures for all the tests required by IEEE 1547 and the periodic maintenance schedule recommended by the equipment manufacturer.

Attach "Certificate of Liability Insurance" or proof of insurance sufficient to meet construction, operating and liability responsibilities.

I hereby certify that, to the best of my knowledge, all the information provided in the Interconnection Application is true and correct.

| CUSTOMER'S SIGNATURE: |  |
|-----------------------|--|
|                       |  |

TITLE:

DATE: \_\_\_\_\_\_

| Return Completed Application to: | AEP Ohio                   |
|----------------------------------|----------------------------|
|                                  | Attn: DG Coordinator       |
|                                  | 700 Morrison Road          |
|                                  | Gahanna, Ohio 43230-6605   |
|                                  | 614-883-6775               |
|                                  | dgcoordinator-ohio@aep.com |



Approved

3

2

1

3

2

1

# SINGLE LINE DIAGRAM – STEAM TURBOGENERATOR

5

4

| FUNCTION | DESCRIPTION                                                         |
|----------|---------------------------------------------------------------------|
| -F11     | MULTIFUNCTION PROTECTION DEVICE                                     |
| 21       | DISTANCE PROTECTION                                                 |
| 24       | VOLTS-PER-HERTZ / OVERFLUXING / OVEREXCITATION PROTECTION           |
| 25A      | SYNCHRONIZING DEVICE – AUTOMATIC                                    |
| 27       | GENERATOR UNDERVOLTAGE PROTECTION                                   |
| 27/50    | GENERATOR ACCIDENTAL ENERGIZATION PROTECTION                        |
| 32R      | REVERSE POWER PROTECTION                                            |
| 40       | GENERATOR LOSS OF FIELD PROTECTION                                  |
| 46       | GENERATOR UNBALANCED LOAD PROTECTION                                |
| 49       | GENERATOR OVERLOAD PROTECTION / THERMAL OVERLOAD PROTECTION         |
| 50BF     | GENERATOR CIRCUIT-BREAKER FAILURE                                   |
| 51       | GENERATOR INVERSE TIME OVERCURRENT PROTECTION                       |
| 52       | AC CIRCUIT-BREAKER                                                  |
| 59       | GENERATOR OVERVOLTAGE PROTECTION                                    |
| 64S      | GENERATOR STATOR GROUND PROTECTION                                  |
| 67       | GENERATOR DIRECTIONAL OVERCURRENT PROTECTION                        |
| 810      | GENERATOR OVERFREQUENCE PROTECTION                                  |
| 81U      | GENERATOR UNDERFREQUENCE PROTECTION                                 |
| 87G      | GENERATOR DIFFERENTIAL PROTECTION                                   |
| 90       | VOLTAGE REGULATING DEVICE (AVR – AUTOMATIC VOLTAGE REGULATOR)       |
| A/B/C/N  | PHASE IDENTIFICATION                                                |
| СВ       | CIRCUIT-BREAKER                                                     |
| GCP      | GENERATOR CONTROL, PROTECTION, EXCITATION AND SYNCHRONIZATION PANEL |
| NGR      | NEUTRAL GROUNDING RESISTOR                                          |
| PMG      | PERMANENT MAGNET GENERATOR                                          |
| U10      | ACTIVE POWER TRANSDUCER                                             |
| S52GA    | CIRCUIT-BREAKER 52GA COMMAND SWITCH                                 |
| S52GB    | CIRCUIT-BREAKER 52GB COMMAND SWITCH                                 |
|          |                                                                     |

6

Remark: Table based on IEEE Std C37.2-2008 – "IEEE Standard for Electrical Power System Device Function Numbers, Acronyms, and Contact Designations"

4

5

## Document title SINGLE LINE DIAGRAM STEAM TURBINE FOR REFERENCE ONLY

6

| SYMBOL DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                         |                                                                                             |                                                                                                    |   |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---|--|
|                                                                                                                                                                                                                                                                                                                                                                                     | SYNCHRONOUS GENERATOR                                                                                                                                                                                   | (m) □                                                                                       | MEDIUM VOLTAGE CIRCUIT-BREAKER                                                                     |   |  |
|                                                                                                                                                                                                                                                                                                                                                                                     | GROUNDING TRANSFORMER                                                                                                                                                                                   |                                                                                             |                                                                                                    | Α |  |
| Ļ                                                                                                                                                                                                                                                                                                                                                                                   | GROUNDING RESISTOR                                                                                                                                                                                      | ∭                                                                                           | MOTORIZED DISCONNECTOR SWITCH                                                                      |   |  |
|                                                                                                                                                                                                                                                                                                                                                                                     | STEP-UP TRANSFORMER                                                                                                                                                                                     | \$                                                                                          | MEDIUM VOLTAGE CABLE TERMINAL                                                                      |   |  |
| ∎<br><b>♦</b>  (1□                                                                                                                                                                                                                                                                                                                                                                  | CONDENSER AGAINST OVERVOLTAGE                                                                                                                                                                           | - <del>3</del> E-                                                                           | AUXILIARY POWER TRANSFORMER                                                                        |   |  |
|                                                                                                                                                                                                                                                                                                                                                                                     | SURGE ARRESTER                                                                                                                                                                                          |                                                                                             | TRANSDUCER                                                                                         |   |  |
| $H_c^{\epsilon}$                                                                                                                                                                                                                                                                                                                                                                    | VOLTAGE TRANSFORMER                                                                                                                                                                                     | *                                                                                           | DIODE                                                                                              |   |  |
| L<br>L                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                         | M                                                                                           | MECHANICAL INTERLOCK                                                                               |   |  |
| ŧ                                                                                                                                                                                                                                                                                                                                                                                   | CURRENT TRANSFORMER                                                                                                                                                                                     | K                                                                                           | MECHANICAL INTERLOCK KIRK TYPE                                                                     | В |  |
|                                                                                                                                                                                                                                                                                                                                                                                     | ELECTRICAL CABLE – VOLTAGE<br>TRANSFORMER                                                                                                                                                               | E                                                                                           | ELECTRICAL INTERLOCK                                                                               |   |  |
| _                                                                                                                                                                                                                                                                                                                                                                                   | ELECTRICAL CABLE – CURRENT<br>TRANSFORMER                                                                                                                                                               | G<br>3~                                                                                     | GENERATOR                                                                                          |   |  |
|                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                         |                                                                                             | SIEMENS PG SU SCOPE OF SUPPLY                                                                      |   |  |
|                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                         |                                                                                             | OUT OF SIEMENS PG SU SCOPE OF SUPPLY                                                               |   |  |
|                                                                                                                                                                                                                                                                                                                                                                                     | ELETRICAL CADLE - TRIE SIGNAL                                                                                                                                                                           |                                                                                             |                                                                                                    |   |  |
|                                                                                                                                                                                                                                                                                                                                                                                     | ELETRICAL CABLE – CIRCUIT BREAKER<br>CLOSE/OPEN COMMAND                                                                                                                                                 |                                                                                             |                                                                                                    |   |  |
|                                                                                                                                                                                                                                                                                                                                                                                     | ELECTRIC POWER CABLE                                                                                                                                                                                    |                                                                                             |                                                                                                    | С |  |
|                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                         |                                                                                             |                                                                                                    |   |  |
| REMARKS:                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                         |                                                                                             |                                                                                                    |   |  |
| 1) CUSTOMER TO<br>BREAKER (UPSTRE<br>DEVICES WILL BE<br>SAFETY INTERIOC                                                                                                                                                                                                                                                                                                             | CONFIRM IF WILL BE APPLIED IN THIS PROJE<br>AM AND DOWNSTREAM) FOR MAINTENAN<br>APPLIED, THEN WILL BE NECESSARY FOLLOW                                                                                  | ECT EARTHING SWITCH ON OI<br>CE AS WELL AS FOR GENERAT<br>VING                              | VE SIDE OR BOTH SIDES OF CIRCUIT-<br>OR CAPACITANCE DISCHARGE. IF SUCH                             |   |  |
| - MECHANICAL IN<br>- ELECTRICAL INTE                                                                                                                                                                                                                                                                                                                                                | NS.<br>TERLOCK ("M") BETWEEN EARTHING SWITC<br>ERLOCK ("E1") FOR EARTHING SWITCH BETW                                                                                                                   | H AND CIRCUIT-BREAKER;<br>/EEN GENERATOR AND BREAI                                          | KER. CONSIDERING EXCITATION OFF                                                                    |   |  |
| (PERMISSIVE CONDITION);<br>- ELECTRICAL INTERLOCK ("E2") FOR EARTHING SWITCH BETWEEN BREAKER AND STEP-UP TRANSFORMER, CONSIDERING BREAKER<br>ON STEP-UP TRANSFORMER PRIMARY SIDE OPEN AND GENERATOR EXCITATION OFF (PERMISSIVE CONDITIONS);<br>TO BE EVALUATED ALSO THE USE OF LOCK "KIRK" TYPE ("K1" AND "K2", DEPENDING ON SUBSTATIONS DISTANCES AND<br>OPERATIONAL REQUIREMENTS) |                                                                                                                                                                                                         |                                                                                             |                                                                                                    |   |  |
| 2) MEDIUM VOLT.<br>CABLES BETWEEN                                                                                                                                                                                                                                                                                                                                                   | 2) MEDIUM VOLTAGE DUCTS / CABLES, VOLTAGE CABLES, CURRENT TRANSFORMER CABLES, CONTROL AND INTERCONNECTING<br>CABLES BETWEEN CONTROL CABINETS ARE OUT OF SIEMENS PGSU SCOPE OF SUPPLY;                   |                                                                                             |                                                                                                    |   |  |
| 3) SIEMENS DOES<br>BREAKERS ON SEC<br>- SHORT-CIRCUITS<br>- SHORT-CIRCUITS<br>VOLTAGE SIDE AR<br>EFFECT;                                                                                                                                                                                                                                                                            | N'T RECOMMEND HIGH-VOLTAGE FUSES ON<br>CONDARY SIDE, DUE FOLLOWING REASONS:<br>ON HIGH-VOLTAGE SIDE DOES NOT AFFECT<br>ON SECONDARY SIDE WILL BE PROTECTED I<br>E TOO SMALL TO BURN HV FUSES (APP. 1.04 | N PRIMARY SIDE OF VOLTAGE<br>VT;<br>BY MCB ON LOW VOLTAGE SI<br>A). THIS CURRENT CAN ALSO I | TRANSFORMERS, JUST MINI-CIRCUIT-<br>DE. REFLECTED CURRENT ON HIGH<br>EXPLODE THIS FUSE DUE THERMAL |   |  |
| - HV FUSES ARE A                                                                                                                                                                                                                                                                                                                                                                    | DDITIONAL POINTS OF FAILURE;                                                                                                                                                                            |                                                                                             |                                                                                                    |   |  |

8

4) SIEMENS GENERATOR PROTECTION SHALL TRIP BREAKER 52-GB

7

5) THE BREAKERS SHOULD HAVE TWO TRIP SECURITY COIL (TC1-TRIP COIL # 1 AND TC2-TRIP COIL # 2);

6) ALL BREAKER STATUS CONTACT SHALL BE DRY TYPE (POTENTIAL FREE). 1NO AND 1NC CONTACT (MAINTAINED) SHALL BE PROVIDED.

7) THE CLOSING COILS OF THE SYNCHRONIZABLE SWITCHES (CC - CLOSING COIL) SHOULD HAVE DOUBLE SECURITY, FOR SAFETY;

| INITIAL ISSUE                |   |  | Language | EN         |   |
|------------------------------|---|--|----------|------------|---|
|                              |   |  | Format   | A2         |   |
|                              |   |  | Pov 0    | Sheet no.  | 1 |
| Document no. FOR REFERENCE ( |   |  |          | Next sheet | 0 |
|                              | 7 |  | 8        |            |   |

#### **TECHNICAL SPECIFICATION FOR BRUSHLESS SYNCHRONOUS GENERATOR**

| CLIENT           | : Siemens           |
|------------------|---------------------|
| PROJECT          | : Siemens Brazil    |
| ТҮРЕ             | : AMS 1250ALM 4L BS |
| OUR REFERENCE    | : BRT15460-18       |
| DRIVEN EQUIPMENT | : Steam turbine     |
| DATE             | : 2016-02-22        |
| SERIALNUMBER     | : 0                 |
|                  |                     |

#### INDEX

- 1. Technical Specification
- 2. Included accessories
- 3. Position notes, Specification comments and Validation notes
- 4. Documentation
- 5. Tests and Certificates
- 6 A. Rated data
- 6 B. Standards
- 6 C. Other performance data
- 6 D. Site conditions
- 6 E. Starting characteristics
- 6 F. Installation data
- 7 Short Circuit Equations
- 8 Curves" "

| Prep. | Peter Pettersson          | 2016-02-22  | Project       | Siemens Brazil |        |           |           |    |
|-------|---------------------------|-------------|---------------|----------------|--------|-----------|-----------|----|
| Appr. |                           |             | Client        | Siemens        |        |           |           |    |
| Title | Technical Specification S | Synchronous | Our reference | BRT15460-18    |        |           |           |    |
|       | Machine                   |             | Resp. dept    | DMMG / MHS     | Status | Draft     |           |    |
|       |                           |             | Doc. no.      |                | Lang.  | Rev. ind. | Page      | 1  |
|       | ABE ABE                   | 3 AB        | XYF           | (210045-XXX    | en     | -         | No. of p. | 18 |

FILE: TS\_PROJECT\_TEMPLATE.dot; TEMPLATE: Normal.dot -; SKELETON: MMO2007-000079; SAVEDATE: 2007-10-05 15:12

#### 1. Technical Specification

ABB type AMS 1250ALM 4L BS brushless synchronous Generator ratedPower=61147 kVA,PF=0.85 (Overexcited),PF=0.9 (Underexcited),Voltage=13800 V,Frequency=60 Hz,Speed=1800 rpm,for installation in safe area.Designed for Steam Turbine.Designed according to NEMA MG1.

#### 2. Included accessories

- 2.1 Standards and Site Conditions
- UBC4 earthquake zone classification.
- 2.2 Main Mechanical Data

- Clockwise direction of rotation at drive end, facing shaft end.

- Cooling arrangement: IC8 A1W7. Self circulated inner air circuit cooled by built-on water-air heat exchanger.

- Protection of machine IP54
- Temperature rise, rotor within class B
- Temperature rise, stator within class B

#### 2.3 Excitation

- Main brushless exciter type GLC 600 for DC excitation complete with diode bridge, thyristors, RC-circuits and control box.

- Mini circuit breaker - PMG over current protection.

- PMG

#### 2.4 Cooling System

- 2x67 % Water cooler redundancy
- Air-to-water single tube cooler with ANSI flanges (Design/Test pressure 0.6/0.9MPa)
- Customer water analysis required
- Safety valve on water cooler
- Safety valve on water cooler
- Water cooler connection at left side of machine facing DE
- Water cooler counter flanges
- Water cooler counter flanges

|        | Doc. no.      | Lang. | Rev. ind. | Page      | 2  |
|--------|---------------|-------|-----------|-----------|----|
| ABB AB | XYK210045-XXX | en    | -         | No. of p. | 18 |

- Water cooler material: Tubes: Stainless steel, Tube end plates: Stainless steel, Water box: Rilsan coated steel, Plate fins: Aluminium

#### 2.5 Shaft Extensions

- Flange diameter 648 mm
- Flanged shaft end with internal spigot in DE

#### 2.6 Bearings

- Bearing size GL397
- Bearings prepared for jacking oil
- Forced lubricated sleeve bearing.
- Lockable oil pressure reducing valve in brass.
- Oil connections at left side of machine seen from DE, locations close to machine edges.
- Oil inlet flange: DIN, DN 20 PN16
- Oil outlet flanges: DIN, DN 65 PN16
- Oil pressure measurement by manometer without contact.
- Separate oil connections at both bearings, stainless in- and outlet, DIN

- The lube oil drain pressure must be less than or equal to the machine ambient pressure. An oil drain pressure of 200-1000 Pa lower than the bearing ambient is recommended.

#### Bearings not equipped with oil ring



#### 2.7 Main Terminal Boxes and Related Accessories

| ARR |        | Doc. no.      | Lang. | Rev. ind. | Page      | 3  |
|-----|--------|---------------|-------|-----------|-----------|----|
|     | ABB AB | XYK210045-XXX | en    | -         | No. of p. | 18 |

- Main terminal box located on the right side, seen from DE
- MTB supply cable entry from below. Gland plate is removable, undrilled and of non magnetic material.
- Standard large air insulated Main Terminal Box

- The main terminal box is delivered as a loose item, assembly on site is not included in ABB's scope of supply.

- The main terminal box needs to be supported from beneath. Supports are not included in ABB's scope of supply.

#### 2.7.1 Line side

- 3 Current Transformers, 3 core, mounted in MTB, metering accuracy class 0.3 B 2.0 (ANSI) and relaying accuracy C400.

- 3 Surge Arrestors
- 3 Surge Capacitors single phase
- 3 Voltage Transformers

#### 2.7.2 Neutral side

- 1 Current Transformer for NGTR (1 core)

- 3 Current Transformers, 3 core, mounted in MTB, metering accuracy class 0.3 B 2.0 (ANSI) and relaying accuracy C400.

- LV-Contactor for Neutral Grounding Resistor (NGTR)

- Neutral Grounding Transformer with secondary Resistor (10 A for 10 sec)
- 2.8 Monitoring and Protection Accessories

RTD's according to IEC 60751, class B

- Provision for proximity transducers
- 1x RTD in warm machine air, duplex (Pt100), 3 wire, unshielded.
- 1x RTD per bearing in oil outlet pipe, single (Pt100), 3 wire unshielded
- 2x RTD in cold machine air, duplex (Pt100), 3 wire, unshielded (mounted at NDE + DE)
- 2x RTD per Bearing Shell, duplex (Pt100), 3 wire, unshielded
- 6+3 spare x RTD's in stator windings, single (Pt100), 3 wire, unshielded, safe and hazardous area
- BN 3300XL keyphasor
- Generator not prepared for MACHsense-R (later installation impossible)
- Heaters in both main machine and exciter, safe area, 480 VAC 1 phase supply. The heaters should always be connected during stand still to avoid condensation.
- Prepared for bonding
- Rotor earth fault brush mounted at NDE
- Shaft earthing brush mounted at DE.
- Stainless steel junction boxes provided with undrilled gland plates. Located at left side of machine facing DE.
- Water leakage detector, float switch, Safe area.
- Vibration control, velocity type BN 330500 (1 probe in horizontal direction per bearing), hazardous area.

#### 2.9 Foundation and Installation

|        | Doc. no.      | Lang. | Rev. ind. | Page      | 4  |
|--------|---------------|-------|-----------|-----------|----|
| ABB AB | XYK210045-XXX | en    | -         | No. of p. | 18 |

- Long sole plates kit (ABB std)

- Mounting shims in black steel, total thickness 2 mm for each machine foot.

2.10 Special Design and Accessories

- Burnishing shaft hub surface for proximity type of vibration probes, maximum combined electrical and mechanical run out 23 µm (0.91 mils) peak-to-peak.

- Noise reduction -3 dB(A) acc. to ISO 3744
- Rotor sliding tool RST 1 (one covering all identical units)
- Stainless steel bolts (M12 or smaller) on external covers.

#### Rotor sliding tool, RST 1

Sliding plates for rotor removal of rotor by sliding, requires one hook lifting with a capacity which can handle the rotor weight, the hook motion must be along the shaft. No slings, lifting jack or rotor storage support included.

- 2.11 Painting and corrosion protection
- ABB blue colour (NCS 4822-B05G)
- Standard industrial coating acc. to ISO 12944 C3
- 2.12 Packing and Transportation
- Long term storage (heater included)
- Seaworthy wooden case packing.

#### 2.13 Spare Parts & services

- 10: Operational spare parts package ABB bearing (one covering all identical units)
- 11: 6 pc Diodes, 2 pc Thyristors & 1 pc Control pulse unit (one covering all identical units)
- 13: 4 pc Bearing liners, 4 pc Air filters (one covering all identical units)
- 14: 1 pc Earth fault brush set (one covering all identical units)
- 1A: 1 pc Grounding brush set (one covering all identical units)

#### 2.14 Special components

- 1 extra water leakage detector

#### 3. Position notes, Specification comments and Validation notes

|        | Doc. no.      | Lang. | Rev. ind. | Page      | 5  |
|--------|---------------|-------|-----------|-----------|----|
| ABB AB | XYK210045-XXX | en    | -         | No. of p. | 18 |

#### 4. Documentation

- Installation and maintenance manual in Portugese language. Language for other documents is English.
- Standard documents for Machine according to MDD 3AAM100439
- User's manual on CD, (1 copies)

#### 5. Tests and Certificates

- Final inspection of complete machine, unwitnessed
- Routine and Type test according to ABB standard procedure

#### 5.1 Routine tests

- Air gap measurement, unwitnessed
- Dielectric test, unwitnessed
- Magnetic neutral pos., axial play in bearing and distance shaft-end to footplate, unwitnessed
- Measurement of insulation resistance before and after dielectric test, unwitnessed
- No-load characteristics, unwitnessed
- Overspeed test, unwitnessed
- Phase sequence and terminal marking, unwitnessed
- Resistance measurement, unwitnessed
- Settings list for machine protection, unwitnessed
- Short-circuit characteristics, unwitnessed
- Vibration measurement during retardation or acceleration, unwitnessed
- Vibration measurements, unwitnessed
- Visual inspection of complete machine, unwitnessed

#### 5.2 Type tests

- Determination of efficiency at rated P.F. and 100, 75, 50 and 25% load, unwitnessed (one covering all identical units)

- Determination of rated excitation current, unwitnessed (one covering all identical units)

- Determination of reactance Xd, Xd', Xd'' and time-constant Ta, Td', Td'', unwitnessed (one covering all identical units)

- Determination of timeconstant (Td0'), unwitnessed (one covering all identical units)
- Heat run at P.F. = 0, unwitnessed (one covering all identical units)
- Sudden three -phase short-circuit test, unwitnessed (one covering all identical units)
- Waveform analys TIF, unwitnessed (one covering all identical units)

#### 5.3 Special tests

- Control of leak water detector, unwitnessed
- Control of proximity vibration units, unwitnessed
- Control of seismic vibration units, unwitnessed
- Functional control and adjustment of oil flow measurement system, unwitnessed
- Measurement on burnish surface at rotor shaft with rotor journaled in vee-block, unwitnessed
- PMG, Output voltage and frequency, unwitnessed

| ARR ARR AR | Doc. no. | Lang.         | Rev. ind. | Page | 6         |    |
|------------|----------|---------------|-----------|------|-----------|----|
| /~IDID     | ABB AB   | XYK210045-XXX | en        | -    | No. of p. | 18 |

- Shaft voltage measurement, unwitnessedTest of main terminal box, unwitnessed

#### 5.4 Certificates

- Declaration of Incorporation for partly completed machinery
  Pressure test of water cooler

| ARR |        | Doc. no.      | Lang. | Rev. ind. | Page      | 7  |
|-----|--------|---------------|-------|-----------|-----------|----|
|     | ABB AB | XYK210045-XXX | en    | -         | No. of p. | 18 |

| A. Rated data                              |               |                      |         |           |           |    |
|--------------------------------------------|---------------|----------------------|---------|-----------|-----------|----|
| at cooling water temperature 32 °C/ 89.6 F |               |                      |         |           |           | ]  |
| Machine type                               |               | AMS 125              | 0ALM 4  | IL BS     |           |    |
| Output                                     | kVA           | 61147                |         |           |           |    |
| Power factor (overexcited)                 |               | 0.85                 |         |           |           |    |
| Voltage                                    | V (±5.0 %)    | 13800                |         |           |           |    |
| Frequency                                  | Hz (±5.0 %)   | 60                   |         |           |           |    |
| Speed                                      | rom           | 1800                 |         |           |           |    |
| Current                                    | A             | 2558                 |         |           |           |    |
| Exciter type                               | ,,            | GI C 600             |         |           |           |    |
| Excitation                                 | \/ / Δ        | 78 / 10              |         |           |           |    |
| Power factor ( underexcited )              | v / / (       | 0.90                 |         |           |           |    |
| Output (underexcited)                      | <i>L</i> \/۸  | 0.30<br>57750        |         |           |           |    |
| Active output (underexcited)               |               | 51075                |         |           |           |    |
| Active output ( underexcited )             |               | 2416                 |         |           |           |    |
|                                            | A             | 2410                 |         |           |           |    |
| PMG raings:                                | N/            | 170                  |         |           |           |    |
| - vollage AC                               | V             | 1/3                  |         |           |           |    |
|                                            |               | 0.5                  |         |           |           |    |
| - Current                                  | . A           | 11.8                 |         |           |           |    |
| - Frequency                                | Hz            | 300                  |         |           |           |    |
| - Poles                                    |               | 20                   |         |           |           |    |
| - Phases                                   |               | 3                    |         |           |           |    |
|                                            |               |                      |         |           |           |    |
| B. Standards                               |               |                      |         |           |           |    |
| Applicable standards                       |               |                      |         |           |           |    |
| Insulation class stator and exciter        |               | F                    |         |           |           |    |
| Insulation class main rotor                |               | Н                    |         |           |           |    |
| Temperature rise, stator within class      |               | В                    |         |           |           |    |
| Temperature rise, rotor within class       |               | В                    |         |           |           |    |
| Increased safety, Standards/Form           |               |                      |         |           |           |    |
| C. Other performance data                  |               |                      |         |           |           |    |
| C. Other performance data                  |               |                      |         |           |           |    |
|                                            | 0/            |                      | . 40 0- | 7 6 2 0   |           |    |
| 100 / 75 / 50 / 25 % load                  | %             | 98.39 98             | 3.18 97 | 0.63 9    | 5.66      |    |
| Guaranteed efficiency at P.F. 1.0 and      | 0/            | 00 <del>7</del> 0 00 |         |           | 0.05      |    |
| 100 / 75 / 50 / 25 % load                  | %             | 98.70 98             | 3.51 98 | 3.04 9    | 6.35      |    |
| Reactances:                                | <i>.</i>      |                      |         |           |           |    |
| - X <sub>d</sub>                           | (±15) %       | 154.5                |         |           |           |    |
| - X <sub>d</sub> ' unsat/sat               | " %           | 23.9 / 20.           | 5       |           |           |    |
| - X <sub>d</sub> " unsat/sat               | " %           | 14.8 / 12.           | 6       |           |           |    |
| - X <sub>q</sub> unsat/sat                 | " %           | 72.3 / 67.           | 4       |           |           |    |
| - X <sub>q</sub> " unsat/sat               | " %           | 22.1 / 18.           | 8       |           |           |    |
| - X <sub>0</sub>                           | %             | 5.9                  |         |           |           |    |
| - X <sub>2</sub>                           | %             | 14.8                 |         |           |           |    |
| - X <sub>L</sub>                           | %             | 10.8                 |         |           |           |    |
| Time constants:                            |               |                      |         |           |           |    |
| - T <sub>d</sub> '                         | S             | 0.934                |         |           |           |    |
| - T <sub>d</sub> "                         | ۵<br>م        | 0.022                |         |           |           |    |
| - T <sub>do</sub> '                        | 5<br>Q        | 7 090                |         |           |           |    |
| - T <sub>a</sub> o"                        |               | 0 109                |         |           |           |    |
| - Ta                                       | 5             | 0.100                |         |           |           |    |
| Sub-transient short circuit current lk"    | 5<br>(_15\ 0/ | 706 2                |         |           |           |    |
| Congrator inortio constant                 | (±13) %       | 190.2                |         |           |           |    |
|                                            |               |                      |         |           |           | I  |
|                                            | Doc. no.      |                      | Lang.   | Rev. ind. | Page      | 8  |
|                                            | XYK210045     | 5-XXX                | en      | -         | No. of p. | 11 |
|                                            |               |                      |         |           |           | 10 |

| - H                                                                            | S                   | 1.28    |         |            |        |
|--------------------------------------------------------------------------------|---------------------|---------|---------|------------|--------|
| Excitation main machine:                                                       |                     |         |         |            |        |
| <ul> <li>voltage no load</li> </ul>                                            | V                   | 96      |         |            |        |
| <ul> <li>voltage full load</li> </ul>                                          | V                   | 214     |         |            |        |
| <ul> <li>current no load</li> </ul>                                            | A                   | 232     |         |            |        |
| - current full load                                                            | A                   | 516     |         |            |        |
| Excitation exciter:                                                            |                     |         |         |            |        |
| <ul> <li>voltage no load</li> </ul>                                            | V                   | 35      |         |            |        |
| - voltage full load                                                            | V                   | 78      |         |            |        |
| - current no load                                                              | A                   | 4       |         |            |        |
| - current full load                                                            | A                   | 10      |         |            |        |
| Sudden short circuit current (peak)                                            | kA                  | 58      |         |            |        |
| Short circuit ratio                                                            | %                   | 69      |         |            |        |
| Max. field forcing for 10 seconds                                              | %                   | 200     |         |            |        |
| Sustained short circuit, stator current for                                    | %                   | 309     |         |            |        |
| 10 seconds at symmetrical conditions                                           |                     | 0400    |         |            |        |
| Max. permissible overspeed (<2 min)                                            | rpm                 | 2160    |         |            |        |
|                                                                                | %                   | 67      |         |            |        |
| Service<br>Max continuous nogativo soquenco                                    | 0/_                 | 10      |         |            |        |
| current                                                                        | 70                  | 10      |         |            |        |
| Fault condition canability $(I_0/I_0)^2$ t                                     | c                   | 40      |         |            |        |
| Voltage regulation acc. to IEEE 100                                            | 5                   | -0      |         |            |        |
| seventh edition                                                                |                     |         |         |            |        |
| - Regulation = $(Ft - F) / F$                                                  | %                   | 141     |         |            |        |
| Overcurrent capability $(I^2 - 1)$ t                                           | ,°<br>S             | 37.5    |         |            |        |
| this relationship shall apply for values of t                                  | S                   | 10 - 60 |         |            |        |
| between                                                                        | C C                 |         |         |            |        |
| Allowed current harmonic content, with                                         | Harmonic            |         | Ampli   | tude [p.u] |        |
| base 61150 kVA                                                                 |                     |         | •       |            |        |
|                                                                                | 5                   |         | 0.02    |            |        |
|                                                                                | 7                   |         | 0.017   |            |        |
|                                                                                | 11                  |         | 0.012   |            |        |
|                                                                                | 13                  |         | 0.011   |            |        |
|                                                                                | 17                  |         | 0.01    |            |        |
|                                                                                | 19                  |         | 0.01    |            |        |
|                                                                                | 23                  |         | 0.009   |            |        |
|                                                                                | 25                  |         | 0.006   |            |        |
| If the current harmonic content is higher that rise above the specified limits | n above values, the | tempera | ture of | the machi  | ne may |
| Permissible output at diff. temp.                                              |                     |         |         |            |        |
| Cooling water temperature                                                      | °C/F                | 15/     | ′59     | 27/81      | 41/106 |
| Output                                                                         | kVA                 | 630     | 00      | 62160      | 55500  |
| Power factor                                                                   |                     | 0.      | 85      | 0.85       | 0.85   |
| Stator current                                                                 | A                   | 26      | 36      | 2601       | 2322   |
| Exciter output                                                                 | kVA                 | 1       | 15      | 113        | 97     |
| Exciter excitation                                                             | V/A                 | 80 /    | 10      | 79 / 10    | 73/9   |
| Efficiency at                                                                  |                     |         |         |            |        |
| 100 % load                                                                     | %                   | 98.     | 40      | 98.40      | 98.33  |
| /5 % load                                                                      | %                   | 98.     | 20      | 98.19      | 98.07  |
| 50 % load                                                                      | %                   | 97.     | 68      | 97.65      | 97.44  |
| 25 % 1020                                                                      | %                   | 95.     | 11      | 95.72      | 95.27  |

| ARR |        | Lang.         | Rev. ind. | Page | 9         |    |
|-----|--------|---------------|-----------|------|-----------|----|
|     | ABB AB | XYK210045-XXX | en        | -    | No. of p. | 18 |

| D. Site conditions            |          |            |           |          |
|-------------------------------|----------|------------|-----------|----------|
| Ambient temperature range     | °C       | 0 - 41     | F         | 32 - 106 |
| Altitude                      | m a.s.l. | 1000       | ft.a.s.l. | 3281     |
| Water temperature range       | °C       | 10 - 32    | F         | 50 - 90  |
| Hazardous area classification |          | Non hazaro | dous area |          |
| Seismic zone                  |          | Acc. to UB | C, Zone 4 |          |

| F. Installation data                             |                     |             |          |                    |           |
|--------------------------------------------------|---------------------|-------------|----------|--------------------|-----------|
| Protection form/cooling form                     |                     | IP54 TEW    | AC       |                    |           |
| Cooler location/No of coolers                    |                     | Top / 2+2   | vertica  | l coole            | r         |
|                                                  |                     | elements.   | air in s | eries              |           |
| Water cooling:                                   |                     | ,           |          |                    |           |
| - Required cooling water flow                    | m³/h                | 128.0       |          | apm                | 563.6     |
| - Cooling water temperature (rated)              |                     | 32          |          | F                  | 90        |
| - Temperature rise cooling water                 | K                   | 52          |          | F                  | 93        |
| - Pressure drop cooling water                    | kPa                 | 25          |          | nsi                | 0.0<br>4  |
| - Fouling factor                                 | m <sup>2</sup> °C/W | 0 000090    | h        | r-ft2-             | 0.000511  |
|                                                  |                     | 0.000000    | •        | =/Rtu              | 0.000011  |
| Heat losses:                                     |                     |             |          | /Dia               |           |
| - Cooling water                                  | k\٨/                | 757         |          |                    |           |
| - Lubrication oil at 65 °C                       | κνν<br>k\Λ/         | 30 0        |          |                    |           |
| Arrangement form                                 |                     | IM 1005     |          |                    |           |
| Shaft and according to drawing                   |                     | 1005        |          |                    |           |
| Shall end according to drawing                   |                     |             |          |                    |           |
| Max axial play towards D and                     | mm                  | 10.0        | 1        | in                 | 0 204     |
| - Max. axial play towards D-end                  |                     | 10.0        |          | 111.<br>in         | 0.394     |
| - Max. axial play lowards in-end                 | []]]]]<br>[/N]      | 10.0        |          | 111.<br>Ihf        | 0.394     |
| - Max. permissible axial thrust                  | KIN                 | 45          |          | ן ומו              | 0         |
| - Min. barring speed                             | rpm                 | 45          |          |                    |           |
| - Min. barring speed with jacking oil            | rpm                 | 0           |          |                    |           |
|                                                  | Nime                | 40500       |          |                    |           |
| - Rotor break away torque                        | NM<br>Neo           | 12539       |          |                    |           |
| - Rotor break away torque with Jacking           | INM                 | 100         |          |                    |           |
|                                                  | 1/!                 | 74          | 1        |                    | 10.0      |
| - Required oil flow to bearings (1 otal)         | i/min               | 10 05       |          | gpm                | 19.6      |
| - Oil temperature range to bearings              | <del>د</del> ا      | 40 - 65     |          | F                  | 104 - 149 |
| - Required oil pressure at 65 °C                 | кРа                 | 200         | <u> </u> | psi                | 29        |
| - Supply oil pressure                            |                     | I o be advi | sed by   | custo              | mer^)     |
| *)For setting of pressure reduction              |                     |             |          |                    |           |
| valve/orifice                                    |                     |             | 1        | . 1                |           |
| Default oil pressure <sup>*</sup> )              | kPa                 | 240         |          | psi                | 34.8      |
| *)Used if no value received from customer        |                     |             |          |                    |           |
| before FAT                                       |                     |             | 1        | . 1                |           |
| - Max supply oil pressure                        | kPa                 | 500         |          | psi                | 72.5      |
| - Type of oil                                    |                     | ISO VG 46   | 5        |                    |           |
| - Degree of purity for oil                       |                     | 17/15/12 a  | icc. to  | ISO 44             | 106:1999  |
| Weights (estimated):                             | _                   |             | 1        |                    |           |
| - Total (complete machine, excluding             | kg                  | 78800       |          | lb                 | 173600    |
| terminal box)                                    |                     |             |          |                    |           |
| - Stator                                         | kg                  | 38900       |          | lb                 | 85700     |
| - Rotor                                          | kg                  | 25800       |          | lb                 | 56800     |
| Rotor inertia (J=m*r <sub>m</sub> <sup>2</sup> ) | kgm²                | 4394        |          | lb-ft <sup>2</sup> | 104268    |
| First lateral critical speed                     | rpm                 | >2070       |          |                    |           |
| Direction of rotation (at drive end, facing      |                     | Clockwise   |          |                    |           |
|                                                  |                     | T_          | 200      | Pov ind            | -         |
|                                                  | DUC. 110.           | L           | ang.     | itev. IIIu.        | Page 1    |

|        | Doc. no.      | Lang. | Rev. Ind. | Page      | 10 |
|--------|---------------|-------|-----------|-----------|----|
| ABB AB | XYK210045-XXX | en    | -         | No. of p. | 18 |

| Forces on the foundation  | per stator side              |                               |                               |
|---------------------------|------------------------------|-------------------------------|-------------------------------|
| Static                    | Rated torque                 | 2-phase short circuit         | 3-phase short circuit         |
| F ¥ F                     | F F F                        | F F F                         | F ¥ F                         |
| F = 386.1 kN              | F = 386.1 kN ± 107.7<br>kN   | F = 386.1 kN ± 1202.7<br>kN   | F = 386.1 kN ± 1118.6<br>kN   |
| F = 86798 lbf             | F = 86798 lbf ± 24213        | F = 86798 lbf ±<br>270367 lbf | F = 86798 lbf ±<br>251464 lbf |
| Forces on each inner for  | t (2 inner feet/side)*)      |                               |                               |
| F = 96.5 kN               | F = 96.5 kN ± 53.9 kN        | F = 96.5 kN ± 601.3<br>kN     | F = 96.5 kN ± 559.3<br>kN     |
| F = 21700 lbf             | F = 21700 lbf ± 12107<br>lbf | F = 21700 lbf ±<br>135184 lbf | F = 21700 lbf ±<br>125732 lbf |
| Forces on each outer for  | ot (2 outer feet/side)*)     |                               |                               |
| F = 96.5 kN               | F = 96.5 kN                  | F = 96.5 kN                   | F = 96.5 kN                   |
| F = 21700 lbf             | F = 21700 lbf                | F = 21700 lbf                 | F = 21700 lbf                 |
| *)The foundation shall be | e dimensioned to withstar    | nd the maximum force at a     | all feet positions.           |

| ARR | Doc. no. | Lang.         | Rev. ind. | Page | 11        |    |
|-----|----------|---------------|-----------|------|-----------|----|
|     | ABB AB   | XYK210045-XXX | en        | -    | No. of p. | 18 |

#### Airgap torque equation - 3-phase short circuit

 $T_e(t) = M_0 e^{-t/\tau_0} \sin \omega t + M_1 e^{-t/\tau_1}$ 

 $M_0$  = 8.89 ;  $M_1$  = 1.83 ;  $\tau_0$  = 0.129 s ;  $\tau_1$  = 0.128 s ;  $\omega$  = 377 rad/s

Maximum value of torque 10.4 \*  $T_N$ , when t = 4.1 ms

#### Airgap torque equation - 2-phase short circuit

 $T_e(t) = M_0 e^{-t/\tau_0} \sin \omega t - M_1 e^{-t/\tau_1} \sin 2\omega t + M_2 e^{-t/\tau_2}$ 

 $M_0$  = 7.25 ;  $M_1$  = 3.64 ;  $M_2$  = 1.96 ;  $\tau_0$  = 0.223 s ;  $\tau_1$  = 0.505 s ;  $\tau_2$  = 0.304 ;  $\omega$  = 377 rad/s

Maximum value of torque 11.2 \*  $T_N$ , when t = 5.55 ms

Rated torque  $T_N = 280 \text{ kNm}$ 

| АВВ АВВАВ | Doc. no. | Lang.         | Rev. ind. | Page | 12        |
|-----------|----------|---------------|-----------|------|-----------|
|           | ABB AB   | XYK210045-XXX | en        | -    | No. of p. |



|        |        | Doc. no.      | Lang. | Rev. ind. | Page      | 13 |
|--------|--------|---------------|-------|-----------|-----------|----|
| /~IPIP | ABB AB | XYK210045-XXX | en    | -         | No. of p. | 18 |



| АВВ АВВ |        | Lang.         | Rev. ind. | Page | 14        |
|---------|--------|---------------|-----------|------|-----------|
|         | ABB AB | XYK210045-XXX | en        | -    | No. of p. |



|       |        | Doc. no.      | Lang. | Rev. ind. | Page      | 15 |
|-------|--------|---------------|-------|-----------|-----------|----|
| лірір | ABB AB | XYK210045-XXX | en    | -         | No. of p. | 18 |



|        |        |               | Lang. | Rev. ind. | Page      | 16 |
|--------|--------|---------------|-------|-----------|-----------|----|
| /~IPIP | ABB AB | XYK210045-XXX | en    | -         | No. of p. | 18 |



| АВВ АВВ АВ | Doc. no. | Lang.         | Rev. ind. | Page | 17        |
|------------|----------|---------------|-----------|------|-----------|
|            | ABB AB   | XYK210045-XXX | en        | -    | No. of p. |



| АВВ АВВАВ | Doc. no. | Lang.         | Rev. ind. | Page | 18        |
|-----------|----------|---------------|-----------|------|-----------|
|           | ABB AB   | XYK210045-XXX | en        | -    | No. of p. |

#### **TECHNICAL SPECIFICATION FOR BRUSHLESS SYNCHRONOUS GENERATOR**

CLIENT: Siemens Industrial Turbomachinery ABPROJECT: Ohio State UniversityTYPE: AMS 1250SE 4L BSOUR REFERENCE: SET18281-02DRIVEN EQUIPMENT: Gas turbineDATE: 2018-09-13

#### INDEX

- 1. Technical Specification
- 2. Included accessories
- 3. Position notes, Specification comments and Validation notes
- 4. Documentation
- 5. Tests and Certificates
- 6 A. Rated data
- 6 B. Standards
- 6 C. Other performance data
- 6 D. Site conditions
- 6 E. Starting characteristics
- 6 F. Installation data
- 7 Short Circuit Equations

8 Curves" "

| Prep. | Carl Regnstrom             | 2018-09-13 | Project       | Ohio State University |           |           |           |    |
|-------|----------------------------|------------|---------------|-----------------------|-----------|-----------|-----------|----|
| Appr. |                            |            | Client        | Siemens Industri      | ial Turbo | machine   | ry AB     |    |
| Title | Technical Specification Sy | /nchronous | Our reference | SET18281-02           |           |           |           |    |
|       | Machine                    |            | Resp. dept    | DMMG / MHS            | Status    | Draft     |           |    |
|       | DD                         |            | Doc. no.      |                       | Lang.     | Rev. ind. | Page      | 1  |
|       | ABB ABB                    | AB         | SET           | 18281-02-TS           | en        | -         | No. of p. | 18 |

FILE: TS\_PROJECT\_TEMPLATE.dot; TEMPLATE: Normal.dot -; SKELETON: MMO2007-000079; SAVEDATE: 2007-10-05 15:12

#### 1. Technical Specification

ABB type AMS 1250SE 4L BS brushless synchronous Generator ratedPower=35000 kVA,PF=0.85 (Overexcited),PF=0.9 (Underexcited),Voltage=13800 V,Frequency=60 Hz,Speed=1800 rpm,for installation in safe area.Designed for Gas Turbine.Designed according to NEMA MG1.

#### 2. Included accessories

- 2.1 Standards and Site Conditions
- UBC4 earthquake zone classification.
- 2.2 Main Mechanical Data

- Cooling arrangement: IC8 A1W7. Self circulated inner air circuit cooled by built-on water-air heat exchanger.

- Counter clockwise direction of rotation at drive end, facing shaft end.
- Protection of machine IP54
- Temperature rise, rotor within class B
- Temperature rise, stator within class B

#### 2.3 Excitation

- Main brushless exciter type GLB 600C for DC excitation complete with diode bridge, thyristors, RCcircuits and control box.

- Mini circuit breaker - PMG over current protection.

- PMG

#### 2.4 Cooling System

- 2x70% Water cooler redundancy
- Air-to-water single tube cooler with ANSI flanges (Design/Test pressure 1.0/1.5MPa)
- Customer water analysis required
- Ethylene glycol as water cooler anti-freeze (40 %).
- Water cooler connection at right side of machine facing DE

- Water cooler material: Tubes: Cu 90%/Ni 10%, Tube end plates: Naval brass, Water box: Rilsan coated steel, Plate fins: Aluminium

|  | Doc. no. | Lang.          | Rev. ind. | Page | 2         |    |
|--|----------|----------------|-----------|------|-----------|----|
|  | ABB AB   | SET18281-02-TS | en        | -    | No. of p. | 18 |

#### 2.5 Shaft Extensions

- Flange diameter 548 mm
- Flanged shaft end with internal spigot in DE

#### 2.6 Bearings

- Bearing size GL355
- Bearings prepared for jacking oil
- Complete bearing oil connection system to common point, stainless in- and outlet, ANSI
- Forced lubricated sleeve bearing.
- Oil connection at left side of machine seen from DE, location at DE.
- Oil inlet flange: ANSI 3/4" CI 150
- Oil outlet flange: ANSI 3" CI 150
- Orifice in fitting for reduction of oil pressure

- The lube oil drain pressure must be less than or equal to the machine ambient pressure. An oil drain pressure of 200-1000 Pa lower than the bearing ambient is recommended.

#### Bearings not equipped with oil ring



#### 2.7 Main Terminal Boxes and Related Accessories

- Heaters in main terminal box, safe area, 480 V single phase supply

- Main terminal box located on the left side, seen from DE

- MainTerminal Box supply cable entry from below. Gland plate is removable, undrilled and of non magnetic material.

- Standard large air insulated Main Terminal Box

|        | Doc. no. | Lang.          | Rev. ind. | Page | 3         |    |
|--------|----------|----------------|-----------|------|-----------|----|
| / IPIP | ABB AB   | SET18281-02-TS | en        | -    | No. of p. | 18 |

- The main terminal box is delivered as a loose item, assembly on site is not included in ABB's scope of supply.

- The main terminal box needs to be supported from beneath. Supports are not included in ABB's scope of supply.

#### 2.7.1 Line side

- 3 Current Transformers, 3 cores, accuracy class C200 (ANSI)
- 3 Surge Arrestors
- 3 Voltage Transformers

#### 2.7.2 Neutral side

- 3 Current Transformers, 3 core, accuracy class C200 (ANSI)

- Neutral Grounding Resistor NGR, 10 A, 10 sec.

2.8 Monitoring and Protection Accessories

RTD's according to IEC 60751, class B

- 1x RTD in warm machine air, duplex (Pt100), 3 wire, unshielded.
- 1x RTD per Bearing Shell, duplex (Pt100), 3 wire, unshielded
- 2x RTD in cold machine air, duplex (Pt100), 3 wire, unshielded (mounted at NDE + DE)
- 12x RTD's in stator windings, single (Pt100), 3 wire, unshielded, safe and hazardous area

- Heaters in both main machine and exciter, safe area, 480 VAC 1 phase supply. The heaters should always be connected during stand still to avoid condensation.

- Painted carbon steel junction boxes with glands. Located at right side of machine facing DE.

- Prepared for bonding

- Shaft earthing brush mounted at DE.
- Water leakage detector, float switch, Safe area.

- Vibration control, velocity type BN 330500 (3 probes(2003) in horizontal direction per bearing), safe area.

2.9 Special Design and Accessories

- Noise reduction -3 dB(A) acc. to ISO 3744

- Vibration level according to ABB standard (MDD 3AAM100425)

#### 2.10 Painting and corrosion protection

- Standard gray colour (RAL 7032)
- Standard industrial coating acc. to ISO 12944 C3

#### 2.11 Packing and Transportation

- Shrink film packing.

|  | Doc. no. | Lang.          | Rev. ind. | Page | 4         |    |
|--|----------|----------------|-----------|------|-----------|----|
|  | ABB AB   | SET18281-02-TS | en        | -    | No. of p. | 18 |

#### 3. Position notes, Specification comments and Validation notes

#### 4. Documentation

- Installation and maintenance manual in English language. (one covering all identical units)
- Standard documents for Machine according to MDD 3AAM100439
- User's manual on CD, (1 copies) (one covering all identical units)

#### 5. Tests and Certificates

- Routine and Type test according to ABB standard procedure

#### 5.1 Routine tests

- Air gap measurement, unwitnessed
- Bearing heat run, unwitnessed
- Dielectric test, unwitnessed
- Magnetic neutral pos., axial play in bearing and distance shaft-end to footplate, unwitnessed
- Measurement of insulation resistance before and after dielectric test, unwitnessed
- No-load characteristics, unwitnessed
- Overspeed test, unwitnessed
- Phase sequence and terminal marking, unwitnessed
- Resistance measurement, unwitnessed
- Settings list for machine protection, unwitnessed
- Short-circuit characteristics, unwitnessed
- Vibration measurement during retardation or acceleration, unwitnessed
- Vibration measurements, unwitnessed
- Visual inspection of complete machine, unwitnessed

#### 5.2 Type tests

- Determination of efficiency at rated P.F. and 100, 75, 50 and 25% load, unwitnessed
- Determination of rated excitation current, unwitnessed

- Determination of reactance Xd, Xd', Xd" and time-constant Ta, Td', Td", unwitnessed (one covering all identical units)

- Determination of timeconstant (Td0'), unwitnessed (one covering all identical units)
- Heat run at P.F. = 0, unwitnessed (one covering all identical units)
- Sudden three -phase short-circuit test, unwitnessed (one covering all identical units)
- Waveform analys TIF, unwitnessed (one covering all identical units)

#### 5.3 Special tests

- Adjustment of pressure reducing valve/orifice plate, unwitnessed
- Balancing of rotor complete, unwitnessed
- Control of leak water detector, unwitnessed
- Control of seismic vibration units, unwitnessed

| ADD    |        | Doc. no.       | Lang. | Rev. ind. | Page      | 5  |
|--------|--------|----------------|-------|-----------|-----------|----|
| / TPIP | ABB AB | SET18281-02-TS | en    | -         | No. of p. | 18 |

- Dissipation factor (tan delta) measurement on complete winding, unwitnessed
- PMG, Output voltage and frequency, unwitnessed
- Radial bearing clearance, unwitnessed
- Shaft voltage measurement, unwitnessed
- Sound level measurement, unwitnessed (one covering all identical units)
- Test of main terminal box, unwitnessed
- Voltage and current balance, unwitnessed

#### 5.4 Certificates

- Declaration of Incorporation for partly completed machinery
- Material check of blank for rotorbody
- Material check of blank to pole tips
- Pressure test of water cooler

|        |        | Doc. no.       | Lang. | Rev. ind. | Page      | 6  |
|--------|--------|----------------|-------|-----------|-----------|----|
| / IPIP | ABB AB | SET18281-02-TS | en    | -         | No. of p. | 18 |

| A. Rated data                            |             |                   |         |                     |           |    |
|------------------------------------------|-------------|-------------------|---------|---------------------|-----------|----|
| at cooling water temperature 35 °C/ 95 F |             |                   |         |                     |           |    |
| Machine type                             |             | AMS 125           | 0SE 4L  | BS                  |           |    |
| Output                                   | kVA         | 35000             |         |                     |           |    |
| Power factor (overexcited)               |             | 0.85              |         |                     |           |    |
| Voltage                                  | V (±5.0 %)  | 13800             |         |                     |           |    |
| Frequency                                | Hz (±2.0 %) | 60                |         |                     |           |    |
| Speed                                    | rpm         | 1800              |         |                     |           |    |
| Current                                  | A           | 1464              |         |                     |           |    |
| Exciter type                             |             | GLB 600           | С       |                     |           |    |
| Excitation                               | V / A       | 103 / 7           |         |                     |           |    |
| Power factor ( underexcited )            |             | 0.90              |         |                     |           |    |
| Output ( underexcited )                  | kVA         | 33056             |         |                     |           |    |
| Active output ( underexcited )           | kW          | 29750             |         |                     |           |    |
| Current (underexcited )                  | A           | 1383              |         |                     |           |    |
| PMG ratings:                             |             |                   |         |                     |           |    |
| - Voltage AC                             | V           | 166               |         |                     |           |    |
| - Power factor                           |             | 0.6               |         |                     |           |    |
| - Current                                | A           | 8.9               |         |                     |           |    |
| - Frequency                              | Hz          | 300               |         |                     |           |    |
| - Poles                                  |             | 20                |         |                     |           |    |
| - Phases                                 |             | 3                 |         |                     |           |    |
|                                          |             |                   |         |                     |           |    |
| B. Standards                             |             |                   |         |                     |           |    |
| Applicable standards                     |             | NEMA              |         |                     |           |    |
| Insulation class stator and exciter      |             | F                 |         |                     |           |    |
| Insulation class main rotor              |             | Н                 |         |                     |           |    |
| Temperature rise, stator within class    |             | В                 |         |                     |           |    |
| Temperature rise, rotor within class     |             | В                 |         |                     |           |    |
| Increased safety, Standards/Form         |             |                   |         |                     |           |    |
|                                          |             |                   |         |                     |           |    |
| C. Other performance data                |             |                   |         |                     |           |    |
| Guaranteed efficiency at P.F. 0.85 and   |             |                   |         |                     |           |    |
| 100 / 75 / 50 / 25 % load                | %           | 97.95 97          | 7.65 96 | 5.90 9 <sup>,</sup> | 4.31      |    |
| Guaranteed efficiency at P.F. 1.0 and    |             |                   |         |                     |           |    |
| 100 / 75 / 50 / 25 % load                | %           | 98.32 98          | 3.06 97 | 7.42 9              | 5.19      |    |
| Reactances:                              |             |                   |         |                     |           |    |
| - X <sub>d</sub>                         | (±15) %     | 138.7             |         |                     |           |    |
| - X <sub>d</sub> ' unsat/sat             | " %         | 22.5 / 19.        | .3      |                     |           |    |
| - X <sub>d</sub> " unsat/sat             | " %         | 14.2 / 12.        | .1      |                     |           |    |
| - X <sub>q</sub> unsat/sat               | " %         | 67.2 / 62.        | 9       |                     |           |    |
| - X <sub>q</sub> " unsat/sat             | " %         | 21.4 / 18.        | 2       |                     |           |    |
| - X <sub>0</sub>                         | %           | 5.8               |         |                     |           |    |
| - X <sub>2</sub>                         | %           | 14.2              |         |                     |           |    |
| - XL                                     | %           | 10.6              |         |                     |           |    |
| Time constants:                          |             |                   |         |                     |           |    |
| - T <sub>d</sub> '                       | S           | 0.951             |         |                     |           |    |
| - T <sub>d</sub> "                       | S           | 0.023             |         |                     |           |    |
| - T <sub>d0</sub> '                      | S           | 6.863             |         |                     |           |    |
| - T <sub>q0</sub> ''                     | S           | 0.109             |         |                     |           |    |
| - Ta                                     | S           | 0.138             |         |                     |           |    |
| Sub-transient short circuit current lk"  | (±15) %     | 825.9             |         |                     |           |    |
| Generator inertia constant               |             |                   |         |                     |           |    |
|                                          |             |                   | Lang    | Rev ind             | 1_        |    |
|                                          |             | - \\\\            | ere     |                     | Page      | 7  |
|                                          | XYK210045   | 5-XXX en - No. of |         |                     | No. of p. | 18 |

| - H                                                                         | S   | 1.56    |
|-----------------------------------------------------------------------------|-----|---------|
| Excitation main machine:                                                    |     |         |
| <ul> <li>voltage no load</li> </ul>                                         | V   | 45      |
| <ul> <li>voltage full load</li> </ul>                                       | V   | 94      |
| - current no load                                                           | A   | 325     |
| - current full load                                                         | A   | 675     |
| Excitation exciter:                                                         |     |         |
| <ul> <li>voltage no load</li> </ul>                                         | V   | 49      |
| <ul> <li>voltage full load</li> </ul>                                       | V   | 103     |
| - current no load                                                           | A   | 3       |
| - current full load                                                         | A   | 7       |
| Sudden short circuit current (peak)                                         | kA  | 34      |
| Short circuit ratio                                                         | %   | 77      |
| Max. field forcing for 10 seconds                                           | %   | 160     |
| Sustained short circuit, stator current for                                 | %   | 256     |
| 10 seconds at symmetrical conditions                                        |     |         |
| Max. permissible overspeed (<2 min)                                         | rpm | 2160    |
| Output with one cooler element out of                                       | %   | 70      |
| service                                                                     |     |         |
| Max. continuous negative sequence                                           | %   | 10      |
| current                                                                     |     |         |
| Fault condition capability (I <sub>2</sub> /I <sub>N</sub> ) <sup>2</sup> t | S   | 40      |
| Voltage regulation acc. to IEEE 100,                                        |     |         |
| seventh edition                                                             |     |         |
| - Regulation = (Et - E) / E                                                 | %   | 138     |
| Overcurrent capability (I <sup>2</sup> - 1) t                               | S   | 37.5    |
| this relationship shall apply for values of t                               | S   | 10 - 60 |
| between                                                                     |     |         |

#### D. Site conditions

| Ambient temperature range     | C°       | 0 - 40              | F         | 32 - 104 |  |
|-------------------------------|----------|---------------------|-----------|----------|--|
| Altitude                      | m a.s.l. | 1000                | ft.a.s.l. | 3281     |  |
| Water temperature range       | C°       | 10 - 35             | F         | 50 - 95  |  |
| Hazardous area classification |          | Non hazardous area  |           |          |  |
| Seismic zone                  |          | Acc. to UBC, Zone 4 |           |          |  |

F. Installation data

| Protection form/c   | cooling form       |               | IP54 TEWAC                |       |           |           |    |
|---------------------|--------------------|---------------|---------------------------|-------|-----------|-----------|----|
| Cooler location/N   | lo of coolers      |               | Top / 2+2 vertical cooler |       |           |           |    |
|                     |                    |               | elements, air in series   |       |           |           |    |
| Water cooling:      |                    |               |                           |       |           |           |    |
| - Required coolir   | g water flow       | m³/h          | 61.1                      |       | gpm       | 268       | .9 |
| - Ethylen glycol    | -                  | %             | 40.0                      | •     |           |           |    |
| - Cooling water to  | emperature (rated) | °C            | 35                        | 5     | F         | ç         | 95 |
| - Temperature ris   | se cooling water   | K             | 8.6                       | 5     | F         | 15        | .6 |
| - Pressure drop of  | cooling water      | kPa           | 31                        |       | psi       |           | 5  |
| - Fouling factor    | C C                | m² °C/W       | 0.000090                  | )     | hr-ft2-   | 0.00051   | 1  |
|                     |                    |               |                           | c     | °F/Btu    |           |    |
| Heat losses:        |                    |               |                           | •     | •         |           |    |
| - Cooling water     |                    | kW            | 549                       |       |           |           |    |
| - Lubrication oil a | at 65 °C           | kW            | 26.8                      |       |           |           |    |
| Arrangement for     | m                  |               | IM 1005                   |       |           |           |    |
| Shaft end accord    | ling to drawing    |               |                           |       |           |           |    |
|                     | 5 5 1              |               | 1                         |       |           |           |    |
|                     |                    | Doc. no.      |                           | Lang. | Rev. ind. | Page      | 8  |
| / <b>/</b> ¬ IP IP  | ABB AB             | XYK210045-XXX |                           | en    | -         | No. of p. | 18 |

18
| Sleeve bearings:                                 |       |              |                    |           |
|--------------------------------------------------|-------|--------------|--------------------|-----------|
| - Max. permissible axial play towards D-         | mm    | 15.0         | in.                | 0.591     |
| end                                              |       |              |                    |           |
| - Max. permissible axial play towards N-         | mm    | 15.0         | in.                | 0.591     |
| end                                              |       |              |                    | _         |
| - Max. permissible axial thrust                  | kN    | 0            | lbf                | 0         |
| - Min. barring speed                             | rpm   | 45           |                    |           |
| - Min. barring speed with jacking oil            | rpm   | 0            |                    |           |
| activated                                        |       |              |                    |           |
| - Rotor break away torque                        | Nm    | 8335         |                    |           |
| - Rotor break away torque with jacking           | Nm    | 67           |                    |           |
| activated                                        | ., .  |              |                    |           |
| - Required oil flow to bearings (1 otal)         | l/min | 60           | gpm                | 15.8      |
| - Oil temperature range to bearings              | °C    | 40 - 65      | F                  | 104 - 149 |
| - Required oil pressure at 65 °C                 | kPa   | 200          | psi                | 29        |
| - Supply oil pressure                            |       | I o be advis | sed by custo       | omer*)    |
| *)For setting of pressure reduction              |       |              |                    |           |
| valve/orifice                                    |       |              |                    |           |
| Default oil pressure*)                           | kPa   | 240          | psi                | 34.8      |
| *)Used if no value received from customer        |       |              |                    |           |
| before FAT                                       |       |              |                    |           |
| - Max supply oil pressure                        | kPa   | 500          | psi                | 72.5      |
| - Type of oil                                    |       | ISO VG 46    |                    |           |
| - Degree of purity for oil                       |       | 17/15/12 a   | cc. to ISO 44      | 406:1999  |
| Weights (estimated):                             | _     |              |                    |           |
| - Total (complete machine, excluding             | kg    | 56300        | lb                 | 124100    |
| terminal box)                                    |       |              |                    |           |
| - Stator                                         | kg    | 25000        | lb                 | 55200     |
| - Rotor                                          | kg    | 19200        | lb                 | 42300     |
| Rotor inertia (J=m*r <sub>m</sub> <sup>2</sup> ) | kgm²  | 3072         | lb-ft <sup>2</sup> | 72890     |
| First bending lateral critical speed             | rpm   | >2070        |                    |           |
| Direction of rotation (at drive end, facing      |       | Counter-clo  | ockwise            |           |
| shaft end)                                       |       |              |                    |           |
| Noise level (at 1m, rated speed and no           | dB(A) | 85 dB(A)     |                    |           |
| load acc.to ISO 3744)                            |       |              |                    |           |

| Forces on the foundation | per stator side                       |                                          |                           |           |            |    |
|--------------------------|---------------------------------------|------------------------------------------|---------------------------|-----------|------------|----|
| Static                   | Rated torque                          | 2-phase short circuit                    | 3-pha                     | se sho    | rt circuit |    |
| F F F                    | F F F                                 | F F F                                    | F F F                     |           |            |    |
| F = 275.9 kN             | F = 275.9 kN ± 61.9<br>kN             | F = 275.9 kN ± 700.9<br>kN               | F = 275.9 kN ± 658.<br>kN |           |            |    |
| F = 62027 lbf            | F = 62027 lbf ± 13919                 | F = 62027 lbf ±                          | F = 62027 lbf ±           |           | f ±        |    |
|                          | lbf                                   | 157568 lbf                               | 14795                     | 53 lbf    |            |    |
| Forces on each inner foo | ot (2 inner feet/side)*)              |                                          |                           |           |            |    |
| F = 69 kN                | $F = 69 \text{ kN} \pm 31 \text{ kN}$ | $F = 69 \text{ kN} \pm 350.4 \text{ kN}$ | F = 69                    | 9 kN ± 3  | 329.1 kN   |    |
| F = 15507 lbf            | $F = 15507 \text{ lbf} \pm 6959$      | F = 15507 lbf ± 78784                    | F = 1                     | 5507 lb   | f ± 73976  | ;  |
|                          | lbf                                   | lbf                                      | lbf                       |           |            |    |
| Forces on each outer for | ot (2 outer feet/side)*)              |                                          |                           |           |            |    |
|                          |                                       | Doc. no.                                 | Lang.                     | Rev. ind. | Page       |    |
|                          |                                       | XXK210045-XXX                            | en                        | _         |            | 9  |
|                          |                                       | ATTAL 10043-AAA                          |                           |           | No. of p.  | 18 |

| F = 69 kN                 | F = 69 kN               | F = 69 kN                | F = 69 kN           |
|---------------------------|-------------------------|--------------------------|---------------------|
| F = 15507 lbf             | F = 15507 lbf           | F = 15507 lbf            | F = 15507 lbf       |
| *)The foundation shall be | dimensioned to withstan | d the maximum force at a | all feet positions. |

|     |        | Doc. no.      | Lang. | Rev. ind. | Page      | 10 |
|-----|--------|---------------|-------|-----------|-----------|----|
| add | ABB AB | XYK210045-XXX | en    | -         | No. of p. | 18 |

## Airgap torque equation - 3-phase short circuit

 $T_e(t) = M_0 e^{-t/t_0} \sin wt + M_1 e^{-t/t_1}$ 

 $\mathsf{M}_0$  = 9.21 ;  $\mathsf{M}_1$  = 1.86 ;  $\mathsf{t}_0$  = 0.103 s ;  $\mathsf{t}_1$  = 0.0947 s ; w = 377 rad/s

Maximum value of torque 10.6 \*  $T_N$ , when t = 4.08 ms

## Airgap torque equation - 2-phase short circuit

 $T_e(t) = M_0 e^{-t/t_0} \sin wt - M_1 e^{-t/t_1} \sin 2wt + M_2 e^{-t/t_2}$ 

 $\mathsf{M}_0 = 7.45 \text{ ; } \mathsf{M}_1 = 3.74 \text{ ; } \mathsf{M}_2 = 1.91 \text{ ; } \mathsf{t}_0 = 0.166 \text{ s ; } \mathsf{t}_1 = 0.53 \text{ s ; } \mathsf{t}_2 = 0.29 \text{ ; } \mathsf{w} = 377 \text{ rad/s}$ 

Maximum value of torque 11.3 \*  $T_N$ , when t = 5.55 ms

Rated torque  $T_N = 161 \text{ kNm}$ 

|        | Doc. no.      | Lang. | Rev. ind. | Page      | 11 |
|--------|---------------|-------|-----------|-----------|----|
| ABB AB | XYK210045-XXX | en    | -         | No. of p. | 18 |

# TRANSFER FUNCTION FOR BRUSHLESS AC EXCITER MACHINE WITH RECTIFICATION (IEEE STD. 421.5)

Excitation system for synchronous machine type: AMS 1250SE 4L BS Exciter: GLB 600C



IEEE Std. 421.5 Type AC excitation system model. The illustrated model is Type AC8B.

The table below provides a computer representation of the brushless AC exciter with rectification in accordance with IEEE Std. 421.5.

Note that the AC exciter with rectification only constitutes one part of a complete AC excitation system model, as shown in the figure above.

| IEEE 421.5 Type AC Model Parameter | Unit | Value  |
|------------------------------------|------|--------|
| Kc                                 |      | 0.93   |
| K <sub>D</sub>                     |      | 0.39   |
| K <sub>E</sub>                     |      | 1.00   |
| TE                                 | S    | 0.275  |
| SE (VE1 = 5.6 p.u.)                |      | 0.0220 |
| SE (VE2 = 3.5 p.u.)                |      | 0.0219 |
| VEMIN                              | p.u. | 0      |
| VFEMAX                             | p.u. | 19.21  |
| Exciter Machine Base Values        |      |        |
| VRBASE                             | V    | 23.09  |
| EFDBASE                            | V    | 42.44  |
| IFDBASE                            | A    | 304.80 |

Note

The function  $F_{EX} = f(I_N)$  describes the rectifier voltage drop due to commutation and phase retard. For the definition of  $f(I_N)$ , refer to IEEE Std. 421.5-2005, annex D.

|        |        | Doc. no.      | Lang. | Rev. ind. | Page      | 12 |
|--------|--------|---------------|-------|-----------|-----------|----|
| /~IDID | ABB AB | XYK210045-XXX | en    | -         | No. of p. | 18 |



|    |        | Doc. no.      | Lang. | Rev. ind. | Page      | 13 |
|----|--------|---------------|-------|-----------|-----------|----|
| ли | ABB AB | XYK210045-XXX | en    | -         | No. of p. | 18 |



|    |        | Doc. no.      | Lang. | Rev. ind. | Page      | 14 |
|----|--------|---------------|-------|-----------|-----------|----|
| ли | ABB AB | XYK210045-XXX | en    | -         | No. of p. | 18 |



|       |        | Doc. no.      | Lang. | Rev. ind. | Page      | 15 |
|-------|--------|---------------|-------|-----------|-----------|----|
| лірір | ABB AB | XYK210045-XXX | en    | -         | No. of p. | 18 |



|       |        | Doc. no.      | Lang. | Rev. ind. | Page      | 16 |
|-------|--------|---------------|-------|-----------|-----------|----|
| лірір | ABB AB | XYK210045-XXX | en    | -         | No. of p. | 18 |



|        | Doc. no.      | Lang. | Rev. ind. | Page      | 17 |
|--------|---------------|-------|-----------|-----------|----|
| ABB AB | XYK210045-XXX | en    | -         | No. of p. | 18 |



|               |        | Doc. no.      | Lang. | Rev. ind. | Page      | 18 |
|---------------|--------|---------------|-------|-----------|-----------|----|
| <i>r</i> ipip | ABB AB | XYK210045-XXX | en    | -         | No. of p. | 18 |



Site Layout







| С     | 09/10/2018 | FOR REVIEW  |
|-------|------------|-------------|
| В     | 08/30/2018 | FOR REVIEW  |
| A     | 08/03/2018 | FOR REVIEW  |
| ISSUE | DATE       | DESCRIPTION |



PLAN

SCALE: 1" = 20'-0"20' 10' 0 20' 40'





60



# OHIO STATE ENERGY PARTNERS CHP / DHC PLANT 3x1 OPTION CONCEPTUAL SITE PLAN

FILENAME 10125564-0

"=20'-0"

SCALE

'0125564-0GA-C101.dwg **SHEET** 

10125564-0GA-C201

Ŭ

В

А



3



1

| ISSUE | DATE       | DESCRIPTION | DRAWN |
|-------|------------|-------------|-------|
| A     | 08/03/2018 | FOR REVIEW  | J_B   |
| В     | 08/30/2018 | FOR REVIEW  | J_B   |
| С     | 09/10/2018 | FOR REVIEW  |       |
|       |            |             |       |
|       |            |             |       |
|       |            |             |       |
|       |            |             |       |
|       |            |             |       |



5



JPKAWSJPKAWSJPKAWSENGINEERCHECKEDAPPROVED

60'



| <u> </u>                     | CILITI LLGLIND                                        |
|------------------------------|-------------------------------------------------------|
|                              | CTG                                                   |
| 2                            | CTG - ELECTRICAL / CONTROL ENCLOSURE                  |
| 3                            | STG - LUBE OIL AND EHC SKID                           |
| 4                            | CONDENSER                                             |
| 5                            | CW PUMPS                                              |
| 6                            | ELECTRICAL AND I&C ROOM                               |
| 7                            | CHILLERS                                              |
| 8                            | ADMINISTRATION AND BREAK ROOM                         |
| 9                            | WATER TREATMENT                                       |
| 10                           | GAS TREATMENT AND COMPRESSORS                         |
| (11)                         | DEMIN TANK                                            |
| 12                           | CHEMICAL STORAGE TOTES                                |
| (13)                         | CONDENSATE PUMPS                                      |
| (14)                         | VACUUM PUMPS                                          |
| (15)                         | FEEDWATER PUMPS                                       |
| (16)                         | CCCW PUMPS AND HEAT EXCHANGERS                        |
| (17)                         | HRSG SUMP                                             |
| (18)                         | HRSG STACK SUPPORT                                    |
| (19)                         | HRSG BLOWDOWN TANK                                    |
| 20                           | CTG - FIRE SUPPRESSION SKID                           |
| (21)                         | 4160V TRANSFORMERS                                    |
| (22)                         | 480V TRANSFORMER                                      |
| (23)                         | OVERHEAD DOOR (MAJOR EQUIPMENT TRUCK ACCESS)          |
| (24)                         | SERVICE WATER TANK                                    |
| $\underbrace{(25)}^{\smile}$ | EDGE OF OPEN SPACE (NO 2ND FLOOR ABOVE / ACCESS AREA) |
| (26)                         | OUTLINE OF HRSG (ABOVE) (FOR REFERENCE)               |
| (27)                         | UREA STORAGE                                          |
| $\bigcirc$                   |                                                       |

# <u>NOTES</u>

- 1. TOTAL BUILDING SIZE IS APPROXIMATELY 62,000 SQ. FT.
- 2. THIRD CT/HRSG IS FUTURE AND SHOWN FOR REFERENCE.

# **OHIO STATE ENERGY PARTNERS** CHP / DHC PLANT 3x1 OPTION CONCEPTUAL BUILDING PLAN - 1st FLOOR

SHEET

FILENAME 10125564-OGA-M101.dwg

SCALE 1"=20'-0"

10125564-0GA-M201

В

D

С

А





| С     | 09/10/2018 | FOR REVIEW  |  |
|-------|------------|-------------|--|
| В     | 08/30/2018 | FOR REVIEW  |  |
| Α     | 08/03/2018 | FOR REVIEW  |  |
| ISSUE | DATE       | DESCRIPTION |  |
|       |            |             |  |







D

С

B

# FACILITY LEGEND

| 1                | HRSG                               |
|------------------|------------------------------------|
| 2                | HRSG - FUEL GAS SKID               |
| 3                | DEAERATOR                          |
| 4                | CEMS                               |
| 5                | AMMONIA INJECTION SKID             |
| 6                | STG                                |
| 7                | HOT WATER PUMPS                    |
| 8                | CONTROL ROOM / OFFICES             |
| 9                | COMPRESSED AIR EQUIPMENT / STORAGE |
| 10               | OVERHEAD CRANE                     |
| 11               | DEMIN TANK                         |
| 12               | RO SKIDS                           |
| 13               | FIRE PUMP ROOM                     |
| $\widetilde{14}$ | CHILLED WATER PUMPS                |

# <u>NOTES</u>

- 1. TOTAL BUILDING SIZE IS APPROXIMATELY 90,000 SQ. FT.
- 2. THIRD CT/HRSG IS FUTURE AND SHOWN FOR REFERENCE.

# OHIO STATE ENERGY PARTNERS CHP / DHC PLANT 3x1 OPTION CONCEPTUAL BUILDING PLAN - 2nd FLOOR

FILENAME 10125564-0GA-M101.dwg

**SCALE** 1"=20'-0"

SHEET

10125564-0GA-M202



| /2018<br>/2018 | OR REVIEW  |                  |                  |  |  |
|----------------|------------|------------------|------------------|--|--|
| /2018          | OR REVIEW  |                  |                  |  |  |
|                |            |                  |                  |  |  |
| /2018          | FOR REVIEW |                  |                  |  |  |
|                | /2018      | /2018 FOR REVIEW | /2018 FOR REVIEW |  |  |



# FACILITY LEGEND

1) STORAGE

(2) CONDENSER WATER PUMPS

(3) STEAM TO HOT WATER HEAT EXCHANGERS

# <u>NOTES</u>

- 1. TOTAL BUILDING SIZE IS APPROXIMATELY 62,000 SQ. FT.
- 2. THIRD CT/ HRSG IS FUTURE AND SHOWN FOR REFERENCE.

А

В

# OHIO STATE ENERGY PARTNERS CHP / DHC PLANT 3x1 OPTION CONCEPTUAL BUILDING PLAN - 3rd FLOOR

FILENAME 10125564\_OGA\_M101.dwg SCALE 1"=20'-0"

SHEET

10125564-0GA-M203

С

D





| OR REVIEW |
|-----------|
| OR REVIEW |
| OR REVIEW |
| SCRIPTION |
|           |



6

D

С

В

# FACILITY LEGEND

- (1) STG COOLING TOWER
- (2) DHC COOLING TOWER
- (3) HRSG EXHAUST STACK
- (4) CTG INLET AIR (MOUNTED BELOW ROOF LEVEL)
- (5) CTG VENTILATION AIR (MOUNTED BELOW ROOF LEVEL)

# <u>NOTES</u>

- 1. TOTAL BUILDING SIZE IS APPROXIMATELY 62,000 SQ. FT.
- 2. THIRD CT/ HRSG IS FUTURE AND SHOWN FOR REFERENCE.

А

# **OHIO STATE ENERGY PARTNERS** CHP / DHC PLANT 3x1 OPTION CONCEPTUAL BUILDING PLAN - ROOF

FILENAME 10125564\_OGA\_M204.dwg

**SCALE** 1"=20'-0"

SHEET

10125564-0GA-M204



| DATE       | DESCRIPTION      |
|------------|------------------|
| 06/03/2019 | FOR CLIENT REVIE |
|            |                  |
|            |                  |





LEGEND:

 PROPOSED SEL-787-2E OR EQUIVALENT AS BACK-UP PROTECTION FOR STG.

CHP / DMC PLANT GENERATOR PROTECTION ONE-LINE DIAGRAM SHEET 10161576-SK-E002 SCALE NO SCALE

D

С

А





| A | 06/03/2019 | FOR CLIENT REVIEW | REB |
|---|------------|-------------------|-----|



NOT FORTION CONSTRUCTION

 SAS
 JBP

 ENGINEER
 CHECKED

 APPROVED

|                                                                                                             | 6                                                                                                                                                                                                                                                | 7 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| LEG<br>M<br>M<br>TC #2<br>TC #1<br>V                                                                        | END<br>SURGE ARRESTER<br>HOOK STICK OPERATED SWITCH<br>MOTOR OPERATOR<br>CIRCUIT BREAKER WITH DUAL TRIP                                                                                                                                          | NOTES         1. SEE SPECIFICATIONS FOR PROTECTION, CONTROL, AND<br>INSTRUMENTATION EQUIPMENT TO BE FURNISHED BY OSU.         2. TEST SWITCHES NOT SHOWN FOR CLARITY.         3. INTERLOCK THE CIRCUIT SWITCHER (CS-3), CB314 AND<br>CB114 TO OPEN CB314 AND CB114 IF CS-3 IS OPEN<br>AND BLOCK THE CLOSURE OF CB314 AND CB114 OF<br>CS-3 IS OPEN. INTERLOCK THE MOTOR OPERATED<br>SWITCH TO BLOCK OPENNING OF SWITCH UNLESS CS-3 IS<br>OPEN AND BLOCK THE CLOSURE OF SWITCH UNLESS<br>CS-3 IS OPEN.         IP COILS         5. THIS CURRENT CIRCUIT PROVIDES THE CIRCULATING<br>CURRENT TO M2001C ON TR 2X(NORMAL) OR TR<br>1Y(SUSTAINED ALTERNATE) DEPENDING ON BREAKER |  |
|                                                                                                             | VOLTAGE (POTENTIAL) TRANSFORME<br>CURRENT TRANSFORMER<br>SF6 CIRCUIT SWITCHER<br>METER                                                                                                                                                           | <ul> <li>MER (VT)</li> <li>6. THIS CURRENT CIRCUIT PROVIDES THE CIRCULATING<br/>CURRENT FROM M2001C ON TR 1X(NORMAL) OR TR<br/>2Y(SUSTAINED ALTERNATE) DEPENDING ON BREAKER<br/>STATUS.</li> <li>7. AUXILIARY CT'S SHALL BE FURNISHED, INSTALLED, AND<br/>WIRED BY INSTALLATION CONTRACTOR. MOUNTING<br/>PROVISIONS IN RELAY PANELS SHALL BE PROVIDED BY<br/>INSTALLATION CONTRACTOR.</li> </ul>                                                                                                                                                                                                                                                                           |  |
| PML<br>M2001C<br>M0169A<br>M571<br>M870D                                                                    | ION PML METER (IN SWITCHGEAR)<br>BECKWITH LTC CONTROL (IN LTC<br>BECKWITH AUX CT (IN LTC PANEL)<br>BITRONICS M571 TRANSDUCER (IN<br>LOOSE BY PANEL VENDOR FOR IN<br>BITRONICS M870D REMOTE DISPLA<br>POWER CONDUCTOR/BUS<br>RELAYING AND CONTROL | )<br>PANEL)<br>IL)<br>N SWITCHGEAR, SHIPPED<br>INSTALLATION BY CONTRACTOR)<br>AY (IN LTC PANEL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| <u>KELAY</u><br>SEL 351<br>SEL 387<br>SEL 501X<br>SIEMENS 3<br>86BFX314<br>86BFY114<br>86T-3A C<br>86T-3B C | – BATTERY "B"<br>– BATTERY "A"<br>Y – BATTERY "B"<br>SIPROTEC 51G-114/314 – BATTERY<br>SIPROTEC 51-114/314 – BATTERY<br>COIL – BATTERY "B"<br>COIL – BATTERY "B"<br>COIL – BATTERY "A"<br>COIL – BATTERY "B"                                     | RY "A"<br>("B"<br>REVISION NOTES:<br>1. REPLACE WITH DIRECTIONAL CT'S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                                                                                             |                                                                                                                                                                                                                                                  | 2. REVERSE POWER PROTECTION RELAY, MODEL NUMBER TBD.         NOTE:         THIS DRAWING COPIED & CREATED FROM OHIO STATE UNIVERSITY FACILITIES OPERATIONS AND DEVELOPMENT DRAWING #079E1101, SH #1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|                                                                                                             |                                                                                                                                                                                                                                                  | CHP / DMC PLANT<br>OSU SUBSTATION<br>TRANSFORMER #1<br>RELAYING SINGLE DIAGRAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |

| 6                                                                                                                                                                                     | 7 8                                                                                                                                                                                                                                                                                                  |     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| SEND                                                                                                                                                                                  | NOTES                                                                                                                                                                                                                                                                                                |     |
| SURGE ARRESTER                                                                                                                                                                        | 1. SEE SPECIFICATIONS FOR PROTECTION, CONTROL, AND<br>INSTRUMENTATION EQUIPMENT TO BE FURNISHED BY OSU.                                                                                                                                                                                              |     |
| HOOK STICK OPERATED SWITCH                                                                                                                                                            | 2. TEST SWITCHES NOT SHOWN FOR CLARITY.                                                                                                                                                                                                                                                              |     |
| MOTOR OPERATOR                                                                                                                                                                        | 3. INTERLOCK THE CIRCUIT SWITCHER (CS-3), CB314 AND<br>CB114 TO OPEN CB314 AND CB114 IF CS-3 IS OPEN<br>AND BLOCK THE CLOSURE OF CB314 AND CB114 OF<br>CS-3 IS OPEN. INTERLOCK THE MOTOR OPERATED<br>SWITCH TO BLOCK OPENING OF SWITCH UNLESS CS-3 IS<br>OPEN AND BLOCK THE CLOSURE OF SWITCH UNLESS |     |
| CIRCUIT BREAKER WITH DUAL TRIP COILS                                                                                                                                                  | <ul> <li>CS-3 IS OPEN.</li> <li>4. NOT USED</li> <li>5. THIS CURRENT CIRCUIT PROVIDES THE CIRCULATING<br/>CURRENT TO M2001C ON TR 2X(NORMAL) OR TR</li> </ul>                                                                                                                                        |     |
| VOLTAGE (POTENTIAL) TRANSFORMER (VT)                                                                                                                                                  | <ul> <li>1Y(SUSTAINED ALTERNATE) DEPENDING ON BREAKER<br/>STATUS.</li> <li>6. THIS CURRENT CIRCUIT PROVIDES THE CIRCULATING<br/>CURRENT FROM M2001C ON TR 1X(NORMAL) OR TR<br/>2Y(SUSTAINED ALTERNATE) DEPENDING ON BREAKER</li> </ul>                                                               |     |
| CURRENT TRANSFORMER                                                                                                                                                                   | STÀTUS.<br>7. AUXILIARY CT'S SHALL BE FURNISHED, INSTALLED, AND                                                                                                                                                                                                                                      |     |
| SF6 CIRCUIT SWITCHER                                                                                                                                                                  | WIRED BY INSTALLATION CONTRACTOR. MOUNTING<br>PROVISIONS IN RELAY PANELS SHALL BE PROVIDED BY<br>INSTALLATION CONTRACTOR.                                                                                                                                                                            |     |
| METER                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                      |     |
| ION PML METER (IN SWITCHGEAR)                                                                                                                                                         |                                                                                                                                                                                                                                                                                                      |     |
| BECKWITH LTC CONTROL (IN LTC PANEL)                                                                                                                                                   |                                                                                                                                                                                                                                                                                                      |     |
| BECKWITH AUX CT (IN LTC PANEL)                                                                                                                                                        |                                                                                                                                                                                                                                                                                                      |     |
| BURGINICS M571 TRANSDUCER (IN SWITCHGEAR, S<br>LOOSE BY PANEL VENDOR FOR INSTALLATION BY                                                                                              | CONTRACTOR)                                                                                                                                                                                                                                                                                          |     |
| BITRONICS M870D REMOTE DISPLAY (IN LTC PANE                                                                                                                                           | EL)                                                                                                                                                                                                                                                                                                  |     |
| <ul> <li>POWER CONDUCTOR/BUS</li> <li>RELAYING AND CONTROL</li> </ul>                                                                                                                 |                                                                                                                                                                                                                                                                                                      |     |
|                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                      |     |
| YY - BATTERY "B"<br>SIPROTEC 51G-114/314 - BATTERY "A"<br>SIPROTEC 51-114/314 - BATTERY "B"<br>4 COIL - BATTERY "B"<br>COIL - BATTERY "A"<br>COIL - BATTERY "A"<br>COIL - BATTERY "B" | REVISION NOTES:<br>1. REPLACE WITH DIRECTIONAL CT'S.<br>2. REVERSE POWER PROTECTION RELAY,                                                                                                                                                                                                           |     |
|                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                      |     |
|                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                      |     |
|                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                      |     |
|                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                      |     |
| / <u>NOTE</u> :<br>/ THIS DR/<br>FACILITIE                                                                                                                                            | AWING COPIED & CREATED FROM OHIO STATE UNIVERSITY<br>ES OPERATIONS AND DEVELOPMENT DRAWING #079E1101, SH #1.                                                                                                                                                                                         | . / |
|                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                      |     |

FILENAME 10161576-SK-E003.dwg

SCALE NO SCALE

SHEET

10161576-SK-E003





|   |            | DESCRIPTION       | DRAW |
|---|------------|-------------------|------|
| А | 06/03/2019 | FOR CLIENT REVIEW | REB  |
|   |            |                   |      |
|   |            |                   |      |
|   |            |                   |      |
|   |            |                   |      |
|   |            |                   |      |
|   |            |                   |      |
|   |            |                   |      |

 SAS
 JBP

 ENGINEER
 CHECKED

 APPROVED



|                                                                    | 6                                                                                                                                                                  |                         | 7                                                                                                |                                     | 8        |
|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------|----------|
|                                                                    |                                                                                                                                                                    | Ν                       |                                                                                                  |                                     |          |
| LEG                                                                | <u>PEND</u>                                                                                                                                                        | <u> \</u><br>1.         | SEE SPECIFICATIONS FOR PROTECTIO                                                                 | N, CONTROL, AND                     |          |
|                                                                    | SURGE ARRESTER                                                                                                                                                     | 2                       | INSTRUMENTATION EQUIPMENT TO BE                                                                  | FURNISHED BY OSU.                   |          |
|                                                                    | HOOK STICK OPERATED SWITCH                                                                                                                                         | 3.                      | INTERLOCK THE CIRCUIT SWITCHER (                                                                 | CS-3), CB314 AND                    |          |
| м                                                                  | MOTOR OPERATOR                                                                                                                                                     |                         | AND BLOCK THE CLOSURE OF CB31<br>CS-3 IS OPEN. INTERLOCK THE MO                                  | 4 AND CB114 OF<br>TOR OPERATED      |          |
| Ŷ                                                                  |                                                                                                                                                                    |                         | SWITCH TO BLOCK OPENING OF SWI<br>OPEN AND BLOCK THE CLOSURE OF<br>CS-3 IS OPEN.                 | TCH UNLESS CS-3 IS<br>SWITCH UNLESS |          |
| TC #2<br>TC #1                                                     | CIRCUIT BREAKER WITH DUAL TRIP CO                                                                                                                                  | DILS 5                  | NOT USED                                                                                         |                                     |          |
| ¥                                                                  |                                                                                                                                                                    |                         | CURRENT TO M2001C ON TR 2X(NO<br>1Y(SUSTAINED ALTERNATE) DEPENDIN                                | RMAL) OR TR<br>G ON BREAKER         |          |
| •}[                                                                | VOLTAGE (POTENTIAL) TRANSFORMER                                                                                                                                    | (VT) 6.                 | STATUS.<br>THIS CURRENT CIRCUIT PROVIDES TH                                                      | E CIRCULATING                       |          |
| -4ı" -4ı"                                                          |                                                                                                                                                                    |                         | CURRENT FROM M2001C ON TR 1X(<br>2Y(SUSTAINED ALTERNATE) DEPENDIN<br>STATUS                      | NORMAL) OR TR<br>IG ON BREAKER      |          |
| €                                                                  | CURRENT TRANSFORMER                                                                                                                                                | 7.                      | AUXILIARY CT'S SHALL BE FURNISHE                                                                 | D, INSTALLED, AND                   |          |
| $(\square)$                                                        |                                                                                                                                                                    |                         | WIRED BY INSTALLATION CONTRACTOR<br>PROVISIONS IN RELAY PANELS SHALL<br>INSTALLATION CONTRACTOR. | R. MOUNTING<br>_ BE PROVIDED BY     | _        |
|                                                                    | SF6 CIRCUIT SWITCHER                                                                                                                                               |                         |                                                                                                  |                                     |          |
|                                                                    |                                                                                                                                                                    |                         |                                                                                                  |                                     |          |
| M                                                                  | METER                                                                                                                                                              |                         |                                                                                                  |                                     |          |
|                                                                    | ION DMI METER (IN SWITCHOSAD)                                                                                                                                      |                         |                                                                                                  |                                     |          |
| PML                                                                | ION PML METER (IN SWITCHGEAR)                                                                                                                                      |                         |                                                                                                  |                                     |          |
| M2001C                                                             | BECKWITH LTC CONTROL (IN LTC PAN                                                                                                                                   | IEL)                    |                                                                                                  |                                     |          |
| M0169A                                                             | BECKWITH AUX CT (IN LTC PANEL)<br>BITRONICS M571 TRANSDUCER (IN SV                                                                                                 | VITCHGEAR, SHIPPED      |                                                                                                  |                                     |          |
| M571                                                               | LOOSE BY PANEL VENDOR FOR INSTA                                                                                                                                    | ILLATION BY CONTRACTOR) |                                                                                                  |                                     |          |
| M870D                                                              | BITRONICS M870D REMOTE DISPLAY (                                                                                                                                   | IN LTC PANEL)           |                                                                                                  |                                     |          |
|                                                                    | - POWER CONDUCTOR/BUS                                                                                                                                              |                         |                                                                                                  |                                     |          |
| SIEMENS<br>SIEMENS<br>86BFX314<br>86BFY114<br>86T-3A (<br>86T-3B ( | SIPROTEC 51G—114/314 — BATTERY "A<br>SIPROTEC 51—114/314 — BATTERY "B'<br>4 COIL — BATTERY "B"<br>4 COIL — BATTERY "B"<br>COIL — BATTERY "A"<br>COIL — BATTERY "B" | Α."                     |                                                                                                  |                                     |          |
|                                                                    |                                                                                                                                                                    |                         |                                                                                                  |                                     |          |
|                                                                    |                                                                                                                                                                    | RE                      | VISION NOTES:                                                                                    | ······                              |          |
|                                                                    |                                                                                                                                                                    | <b>8</b> –              |                                                                                                  |                                     |          |
|                                                                    |                                                                                                                                                                    | <b>\</b>                |                                                                                                  |                                     |          |
|                                                                    |                                                                                                                                                                    | <b>\$</b> <sup>2.</sup> | MODEL NUMBER TBD.                                                                                | STION RELAY,                        |          |
|                                                                    |                                                                                                                                                                    |                         | ·····                                                                                            | hund                                |          |
|                                                                    |                                                                                                                                                                    |                         | _                                                                                                |                                     |          |
|                                                                    |                                                                                                                                                                    |                         |                                                                                                  |                                     |          |
|                                                                    |                                                                                                                                                                    |                         |                                                                                                  |                                     |          |
|                                                                    |                                                                                                                                                                    |                         |                                                                                                  |                                     |          |
|                                                                    |                                                                                                                                                                    |                         |                                                                                                  |                                     |          |
|                                                                    | _                                                                                                                                                                  | /                       |                                                                                                  |                                     |          |
|                                                                    |                                                                                                                                                                    | NOTE:                   |                                                                                                  |                                     |          |
|                                                                    |                                                                                                                                                                    | THIS DRAWING CO         | OPIED & CREATED FROM OF                                                                          | HO STATE UNIVERSIT                  | Y /      |
|                                                                    |                                                                                                                                                                    | FACILITIES OPERA        | ATIONS AND DEVELOPMENT                                                                           | DRAWING #079E1101                   | , SH #2. |
|                                                                    | 1                                                                                                                                                                  |                         |                                                                                                  |                                     | 1        |
|                                                                    |                                                                                                                                                                    |                         |                                                                                                  |                                     |          |
|                                                                    |                                                                                                                                                                    |                         |                                                                                                  |                                     |          |
|                                                                    |                                                                                                                                                                    | . I.                    | СНР                                                                                              |                                     |          |

|                                                                    | 6                                                                                                                                                               |                                              | 7                                                                                           |                                                                                                                                   |                                                  | 8             | I |
|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------|---|
|                                                                    |                                                                                                                                                                 | K I                                          | OTE C                                                                                       |                                                                                                                                   |                                                  |               |   |
| LEG                                                                | END                                                                                                                                                             | <u> </u>                                     | SEE SPECIFICATIONS                                                                          | S FOR PROTECTION CONTRO                                                                                                           | )I. AND                                          |               |   |
|                                                                    | SURGE ARRESTER                                                                                                                                                  |                                              | INSTRUMENTATION E                                                                           | QUIPMENT TO BE FURNISHE                                                                                                           | D BY OSU.                                        |               |   |
|                                                                    | HOOK STICK OPERATED SWITCH                                                                                                                                      | 2.<br>3.                                     | INTERLOCK THE CIR                                                                           | t shown for clarity.<br>RCUIT SWITCHER (CS-3), CB                                                                                 | 314 AND                                          |               |   |
| M                                                                  | MOTOR OPERATOR                                                                                                                                                  |                                              | CB114 TO OPEN C<br>AND BLOCK THE C<br>CS-3 IS OPEN. IN<br>SWITCH TO BLOCK<br>OPEN AND BLOCK | B314 AND CB114 IF CS-3<br>LOSURE OF CB314 AND CB<br>TERLOCK THE MOTOR OPERA<br>OPENING OF SWITCH UNLES<br>THE CLOSURE OF SWITCH U | IS OPEN<br>114 OF<br>TED<br>IS CS-3 IS<br>INLESS |               | D |
| TC #2                                                              | CIRCUIT BREAKER WITH DUAL TRIP COI                                                                                                                              | ILS 4.                                       | CS-3 IS OPEN.<br>NOT USED                                                                   |                                                                                                                                   |                                                  |               |   |
| <u>TC #1</u><br>↓                                                  |                                                                                                                                                                 | 5.                                           | THIS CURRENT CIR<br>CURRENT TO M200<br>1Y(SUSTAINED ALTE<br>STATUS.                         | CUIT PROVIDES THE CIRCULA<br>1C ON TR 2X(NORMAL) OR<br>RNATE) DEPENDING ON BRE/                                                   | ATING<br>TR<br>AKER                              |               |   |
|                                                                    | VOLTAGE (POTENTIAL) TRANSFORMER (\                                                                                                                              | VT) 6.                                       | THIS CURRENT CIR<br>CURRENT FROM M2<br>2Y(SUSTAINED ALTE                                    | CUIT PROVIDES THE CIRCULA<br>2001C ON TR 1X(NORMAL) C<br>RNATE) DEPENDING ON BRE                                                  | ATING<br>DR TR<br>AKER                           |               |   |
| ¢                                                                  | CURRENT TRANSFORMER                                                                                                                                             | 7.                                           | AUXILIARY CT'S SHA<br>WIRED BY INSTALLA<br>PROVISIONS IN PEL                                | ALL BE FURNISHED, INSTALLE<br>TION CONTRACTOR. MOUNTIN                                                                            | ED, AND<br>Ig<br>Ided by                         |               |   |
|                                                                    | SF6 CIRCUIT SWITCHER                                                                                                                                            |                                              | INSTALLATION CONT                                                                           | RACTOR.                                                                                                                           | IDED BY                                          |               |   |
| M                                                                  | METER                                                                                                                                                           |                                              |                                                                                             |                                                                                                                                   |                                                  |               |   |
| PML                                                                | ION PML METER (IN SWITCHGEAR)                                                                                                                                   |                                              |                                                                                             |                                                                                                                                   |                                                  |               |   |
| M2001C                                                             | BECKWITH LTC CONTROL (IN LTC PANE                                                                                                                               | EL)                                          |                                                                                             |                                                                                                                                   |                                                  |               |   |
| M0169A<br>M571                                                     | BECKWITH AUX CT (IN LTC PANEL)<br>BITRONICS M571 TRANSDUCER (IN SWI<br>LOOSE BY PANEL VENDOR FOR INSTAL                                                         | TCHGEAR, SHIPPED<br>LATION BY CONTRACTOR)    |                                                                                             |                                                                                                                                   |                                                  |               | C |
| M870D                                                              | BITRONICS M870D REMOTE DISPLAY (IN                                                                                                                              | N LTC PANEL)                                 |                                                                                             |                                                                                                                                   |                                                  |               |   |
|                                                                    | POWER CONDUCTOR/BUS                                                                                                                                             |                                              |                                                                                             |                                                                                                                                   |                                                  |               |   |
|                                                                    | RELAYING AND CONTROL                                                                                                                                            |                                              |                                                                                             |                                                                                                                                   |                                                  |               |   |
| SIEMENS<br>SIEMENS<br>86BFX314<br>86BFY114<br>86T-3A (<br>86T-3B ( | SIPROTEC 51G-114/314 - BATTERY "A"<br>SIPROTEC 51-114/314 - BATTERY "B"<br>COIL - BATTERY "B"<br>COIL - BATTERY "B"<br>COIL - BATTERY "A"<br>COIL - BATTERY "B" | REV<br>1.<br>2.                              | /ISION NOTES:<br>REPLACE WIT<br>REVERSE POV                                                 | H DIRECTIONAL CT'S                                                                                                                | S.<br>ELAY,                                      |               | E |
|                                                                    |                                                                                                                                                                 | NOTE:<br>THIS DRAWING CO<br>FACILITIES OPERA | OPIED & CREAT                                                                               | ED FROM OHIO STAT                                                                                                                 | TE UNIVERSITY<br>NG #079E1101                    | Y<br>, SH #2. | А |
|                                                                    |                                                                                                                                                                 | 1                                            |                                                                                             |                                                                                                                                   |                                                  |               |   |

# OSU SUBSTATION TRANSFORMER #2 RELAYING SINGLE DIAGRAM

FILENAME 10161576-SK-E004.dwg

SCALE NO SCALE

SHEET

10161576-SK-E004





| - |  |  |
|---|--|--|
|   |  |  |
|   |  |  |
|   |  |  |

|                                                           | NOTES<br>1. SEE SPECIFICATIONS FOR PROTECTION, CONTROL, AND<br>NETERINATION FOR PROTECTION, CONTROL, AND                                                                                                                                                                                             |   |
|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 1                                                         | 2. TEST SWITCHES NOT SHOWN FOR CLARITY.                                                                                                                                                                                                                                                              |   |
|                                                           | 3. INTERLOCK THE CIRCUIT SWITCHER (CS-3), CB314 AND<br>CB114 TO OPEN CB314 AND CB114 IF CS-3 IS OPEN<br>AND BLOCK THE CLOSURE OF CB314 AND CB114 OF<br>CS-3 IS OPEN. INTERLOCK THE MOTOR OPERATED<br>SWITCH TO BLOCK OPENING OF SWITCH UNLESS CS-3 IS<br>OPEN AND BLOCK THE CLOSURE OF SWITCH UNLESS | D |
| TRIP COILS                                                | <ul> <li>CS-3 IS OPEN.</li> <li>4. NOT USED</li> <li>5. THIS CURRENT CIRCUIT PROVIDES THE CIRCULATING<br/>CURRENT TO M2001C ON TR 2X(NORMAL) OR TR<br/>1X(CUSTANIED ALTERNATE) DEFENSIVE ON DEFENSIVE</li> </ul>                                                                                     |   |
| RMER (VT)                                                 | <ul> <li>6. THIS CURRENT CIRCUIT PROVIDES THE CIRCULATING<br/>CURRENT FROM M2001C ON TR 1X(NORMAL) OR TR</li> <li>2. CONSTANTED ALTERNATED DEFENSION ON DEFENSION ON DEFENSION</li> </ul>                                                                                                            |   |
|                                                           | ZY(SUSTAINED ALTERNATE) DEPENDING ON BREAKER<br>STATUS.<br>7. AUXILIARY CT'S SHALL BE FURNISHED INSTALLED AND                                                                                                                                                                                        |   |
|                                                           | WIRED BY INSTALLATION CONTRACTOR. MOUNTING<br>PROVISIONS IN RELAY PANELS SHALL BE PROVIDED BY<br>INSTALLATION CONTRACTOR.                                                                                                                                                                            |   |
|                                                           |                                                                                                                                                                                                                                                                                                      |   |
| AR)                                                       |                                                                                                                                                                                                                                                                                                      |   |
| TC PANEL)                                                 |                                                                                                                                                                                                                                                                                                      | С |
| NEL)<br>(IN SWITCHGEAR, SHIPPE<br>R INSTALLATION BY CONTR | D<br>RACTOR)                                                                                                                                                                                                                                                                                         |   |
| PLAY (IN LTC PANEL)                                       |                                                                                                                                                                                                                                                                                                      |   |
|                                                           |                                                                                                                                                                                                                                                                                                      |   |
| //coil sour                                               | <u>CES</u>                                                                                                                                                                                                                                                                                           |   |
| ERY "A"<br>RY "B"                                         |                                                                                                                                                                                                                                                                                                      |   |
|                                                           |                                                                                                                                                                                                                                                                                                      | B |
|                                                           |                                                                                                                                                                                                                                                                                                      |   |
|                                                           | REVISION NOTES:                                                                                                                                                                                                                                                                                      |   |
|                                                           | 1. REPLACE WITH DIRECTIONAL CT's.                                                                                                                                                                                                                                                                    |   |
|                                                           | MODEL NUMBER TBD.                                                                                                                                                                                                                                                                                    |   |
|                                                           |                                                                                                                                                                                                                                                                                                      |   |
|                                                           |                                                                                                                                                                                                                                                                                                      |   |
| 1                                                         | 1                                                                                                                                                                                                                                                                                                    | A |
|                                                           |                                                                                                                                                                                                                                                                                                      |   |
| FACILITIES                                                | ING COPIED & CREATED FROM OHIO STATE UNIVERSITY<br>OPERATIONS AND DEVELOPMENT DRAWING #079E1101, SH #3.                                                                                                                                                                                              |   |
|                                                           |                                                                                                                                                                                                                                                                                                      |   |
|                                                           |                                                                                                                                                                                                                                                                                                      | 1 |

# CHP / DMC PLANT OSU SUBSTATION TRANSFORMER #3 **RELAYING SINGLE DIAGRAM**

FILENAME 10161576-SK-E005.dwg

SCALE NO SCALE

SHEET

10161576-SK-E005

#### Distrbuted Generation Facility IEEE 1547.1 Testing Matrix

| Facility Name     | Smart <sup>E</sup> Campus    |
|-------------------|------------------------------|
| Facility Location | Ohio State University Campus |
| Total Generation  | 117.6MW                      |
| DG Type           | CTG, STG                     |
|                   |                              |

|      |                |                                                                                  | on Test   |         |          |                                                               |                     |                                                                                                                     |
|------|----------------|----------------------------------------------------------------------------------|-----------|---------|----------|---------------------------------------------------------------|---------------------|---------------------------------------------------------------------------------------------------------------------|
|      |                |                                                                                  | Productic | est     | plicable |                                                               |                     |                                                                                                                     |
| Line | IEEE 1547.1 ID | IEEE 1547.1 Test                                                                 | Type/I    | Field T | Not Ap   | Device under test                                             | Referenced Document | Notes                                                                                                               |
| 1    | 5.1.2.1        | Operational Temperature Test                                                     |           |         |          |                                                               |                     |                                                                                                                     |
| 2    | 5.1.2.2        | Storage Temperature Test                                                         |           |         |          |                                                               |                     |                                                                                                                     |
| 3    | 5.2.1.2        | Test for overvoltage magnitude                                                   |           | х       |          | SEL 751, SIPROTEC 7UM621(CTG), SIPROTEC 7UM621(STG), SEL 787  | D                   | To be tested per IEEE 1547.1 test procedure. Field test report<br>to be provided by others after testing completed. |
| 4    | 5.2.1.3        | Test for overvoltage trip time                                                   |           | х       |          | SEL 751, SIPROTEC 7UM621(CTG), SIPROTEC 7UM621(STG), SEL 787  | D                   | To be tested per IEEE 1547.1 test procedure. Field test report to be provided by others after testing completed.    |
| 5    | 5.2.2.2        | Test for undervoltage magnitude                                                  |           | х       |          | SEL 751, SIPROTEC 7UM621(CTG), SIPROTEC 7UM621(STG), SEL 787  | D                   | To be tested per IEEE 1547.1 test procedure. Field test report<br>to be provided by others after testing completed. |
| 6    | 5.2.2.3        | Test for undervoltage trip time                                                  |           | х       |          | SEL 751, SIPROTEC 7UM621(CTG), SIPROTEC 7UM621(STG), SEL 787  | D                   | To be tested per IEEE 1547.1 test procedure. Field test report<br>to be provided by others after testing completed. |
| 7    | 5.3.1.2        | Test for overfrequency magnitude                                                 | Х         |         |          | SEL 751. SIPROTEC 7UM621(CTG). SIPROTEC 7UM621(STG). SEL 787  | С                   | Per supplied manufacturer's spec sheet                                                                              |
| 8    | 5.3.1.3        | Test for overfrequency trip time                                                 | х         |         |          | SEL 751, SIPROTEC 7UM621(CTG), SIPROTEC 7UM621(STG), SEL 787  | C                   | Per supplied manufacturer's spec sheet                                                                              |
| 9    | 5.3.2.2        | Test for underfrequency magnitude                                                | Х         |         |          | SEL 751, SIPROTEC 7UM621(CTG), SIPROTEC 7UM621(STG), SEL 787  | C                   | Per supplied manufacturer's spec sheet                                                                              |
| 10   | 5.3.2.3        | Test for underfrequency trip time                                                | Х         |         |          | SEL 751, SIPROTEC 7UM621(CTG), SIPROTEC 7UM621(STG), SEL 787  | С                   | Per supplied manufacturer's spec sheet                                                                              |
| 11   | 5.4.1.2        | Synchronization Method 1 Variation 1                                             | х         |         |          | SIPROTEC 7VE61, STG PARALLELING DEVICE                        | D                   | To be tested per IEEE 1547.1 test procedure. Field test report<br>to be provided by others after testing completed. |
| 12   | 5.4.2.2        | Synchronization Method 1 Variation 2                                             |           | х       |          | SIPROTEC 7VE61, STG PARALLELING DEVICE                        | D                   | To be tested per IEEE 1547.1 test procedure. Field test report<br>to be provided by others after testing completed. |
| 13   | 5.4.3.2        | Synchronization Method 1 Variation 3                                             |           | х       |          | STG PARALLELING DEVICE                                        | D                   | To be tested per IEEE 1547.1 test procedure. Field test report<br>to be provided by others after testing completed. |
| 14   | 5.4.4.2        | Synchronization Startup current measurement (Method 2)                           |           |         | х        |                                                               |                     |                                                                                                                     |
| 15   | 5.5.1.2        | Protection from electromagnetic<br>interference (EMI) test                       | х         |         |          | SEL 751, SIPROTEC 7UM621(CTG), SIPROTEC 7UM621(STG), SEL 311L | С                   | Per supplied manufacturer's spec sheet                                                                              |
| 16   | 5.5.2.2        | Surge withstand performance test                                                 | Х         |         |          | SEL 751, SIPROTEC 7UM621(CTG), SIPROTEC 7UM621(STG), SEL 311L | С                   | Per supplied manufacturer's spec sheet                                                                              |
| 17   | 5.5.3.2        | Dielectric test for paralleling device                                           |           |         | Х        |                                                               |                     |                                                                                                                     |
| 18   | 5.6.2          | Limitation of dc injection for inverters<br>without interconnection transformers |           |         | х        |                                                               |                     |                                                                                                                     |
| 19   | 5.7.1.2        | Unintentional Islanding test                                                     |           |         | Х        |                                                               |                     |                                                                                                                     |
| 20   | 5.7.2.2        | Unintentional Islanding test for synchronous generators                          |           |         | x        |                                                               |                     |                                                                                                                     |
| 21   | 5.8.1.2        | Reverse power for unintentional islanding                                        |           |         | х        |                                                               |                     |                                                                                                                     |
| 22   | 5.8.2.2        | Reverse power time test                                                          |           |         | Х        |                                                               |                     |                                                                                                                     |
| 23   | 5.9.2          | Open phase test                                                                  |           |         |          |                                                               |                     |                                                                                                                     |
| 24   | 5.10.2         | Reconnect following abnormal condition disconnect test                           |           |         |          |                                                               |                     |                                                                                                                     |
| 25   | 5.11.1.1       | Harmonics test for inverters                                                     |           |         | Х        |                                                               |                     |                                                                                                                     |

# **SEL-311L Line Current Differential** <sup>®</sup> Protection and Automation System

Differential Relays With Alpha Plane Restraint Provide Superior Security, Speed, and Sensitivity



# **Major Features and Benefits**

- ► Synchrophasors. Improve operator awareness of system conditions. Use real-time data to view load angles, improve event analysis, and provide state measurements.
- ► Security and Reliability. Provide security for CT saturation and channel asymmetry by using the Alpha Plane restraint characteristic.
- Protection Sensitivity. Provide sensitivity without sacrificing security during external faults through use of negative-sequence current differential and Alpha Plane restraint.
- > Protection Speed. Subcycle operating times at only four times minimum pickup for phase elements.
- ► Single-Pole Tripping. Improve system stability with optional single-pole tripping by differential and Zone 1 distance elements.
- ► Full-Featured Backup Protection. Standard backup protection includes: four zones of distance protection, directional overcurrent elements, and a four-shot reclose logic system.
- ► Easy to Apply. Select CT ratios and channel ID and the relay is ready to be used on most differential applications. Use application settings for simplifying setting requirements.
- Communication Security. True hot standby communications for no loss or degradation in protection during single channel failure. Isolation of 1.5 kV on electronic differential communication circuits. IEEE C37.94 fiber to multiplexer compatible. Multiple channel paths do not require the same baud rate or channel delay.
- ► Three-Terminal Application. Apply the SEL-311L on three-terminal lines without compromising protection even on loss of a single differential channel.
- ► Mismatched CTs. Set the CT ratio for all connected terminals. The Alpha Plane restraint characteristic prevents misoperation due to mismatched characteristics such as voltage class or burden.
- ► Automation. Equip the SEL-311L with optional dual fail-over Ethernet communications for Telnet, FTP, read-only web server, and IEC 61850 communications support.

# **Functional Overview**



# **Protection Features**

The SEL-311L contains an advanced line current differential system that is easy to set and apply, while still giving subcycle operation and superior fault resistance coverage. It is suitable for protection of any transmission line or underground cable where digital communications, in the form of either a 56/64 kb channel or a dedicated fiber-optic interface is available. Enable as many as four zones of phase and ground mho distance backup elements plus four zones of ground quadrilateral distance elements. These distance elements, together with overcurrent functions, may be applied in communicationsassisted and stepped-distance protection schemes (see *Figure 1*).

Predefined configurations for typical applications are included in the relay settings. These configurations allow for greatly reduced settings for many line configurations, with or without potential transformers.

# **Protection Elements**

The SEL-311L differential elements compare phase and sequence components from each line terminal, as illustrated in *Figure 2*. Because line charging current has a very low negative-sequence component, negative-sequence current differential protection allows for high

sensitivity without compromising security. The phase elements provide high-speed protection for severe or balanced faults. This allows high-speed operation even under heavy load flow conditions when system stability may be critical.

The innovative differential protection in the SEL-311L checks the vector ratio of the local  $(\vec{I_{I}})$  and remote  $(\vec{I_{P}})$ currents in a complex plane, known as the Alpha Plane, as shown in Figure 3, Figure 4, Figure 6, and Figure 7. For load and external faults, with no CT or communication errors, the vector ratio of remote current to local current will be -1 or  $1 \angle 180^{\circ}$ . Errors introduced from CTs or nonequal communications path delays cause the ratio to appear at different locations within the complex ratio plane. The SEL-311L restraint characteristic improves on prior systems. The SEL-311L restraint region surrounds the ideal external fault and load current point allowing for errors in both magnitude and phase angle. CT saturation, channel asymmetry, and other effects during faults outside the protected zone produce shifts in the magnitude and angle of the ratio. The restraint characteristic provides proper restraint for these conditions and still detects high-impedance faults and "outfeed" faults that occur within the protected zone. The restraint region is adjustable both in angular extent and radial reach.

The differential protection algorithms are insensitive to CT saturation effects due to different CT characteristics at the line ends or remnant CT flux. This prevents tripping on through faults and allows the use of existing CTs at each line end. The SEL-311L current connections

add very little burden, which allows line current differential protection to be added to multiuse CTs without degradation of accuracy (see *Figure 5* and *Figure 6*).



Figure 2 Differential Element Operate and Restraint Regions



#### Figure 3 Operate and Restraint Regions in the Alpha Plane

For characteristics with the same sensitivity, SEL-311L Relays have greater security than percent-restraint, as seen in this Alpha Plane comparison.





Communications channel asymmetry causes errors in angle, and is easily handled by the SEL-311L semi-annular restraint characteristic. Percent-restraint is less secure.



#### Figure 5 Effect of Current Transformer Saturation in Wave Form

Secondary CT currents resulting in false differential current due to CT saturation at one end of the protected line.



#### Figure 6 Effect of Current Transformer Saturation in Alpha Plane

For the CT saturation shown, the current-ratio trajectory plots outside the percent-restraint circle while remaining securely inside the SEL-311L semi-annular restraint characteristic. Percent-restraint could misoperate for this fault.



Figure 7 System Conditions in the Alpha Plane

## Alpha Plane Restraint Provides Security, Even With CT Saturation

The SEL-311L restraint characteristic advances the state of the art in transient security for differential relays. CT saturation during external faults moves the remote to local current ratio plot in the Alpha Plane. The restraint characteristic accommodates a large degree of CT saturation.

The following equation gives the CT selection criteria for a two-terminal application:

 $150 \ge (X/R + 1) \bullet I_F \bullet Z_B$ 

where:

- ► X/R is system X/R ratio
- I<sub>F</sub> is secondary fault current, per unit of nominal secondary current
- $\blacktriangleright$  Z<sub>B</sub> is CT burden, per unit of rated secondary burden

To avoid CT saturation entirely, select and apply the CT such that

$$20 \ge (X/R + 1) \bullet I_F \bullet Z_B$$

Notice that the SEL-311L remains secure even when the CT is over-burdened 7.5 times worse than the case which avoids all CT saturation.

# Sensitivity and High Speed

The SEL-311L provides sensitive negative- and zerosequence differential elements, as well as high-speed phase current differential elements. Set negative- and zero-sequence differential elements below load or line charging current without risk of misoperation. The graph in *Figure 9* shows the average operate time, including high-speed outputs, for the phase differential units. For improved security on uneven pole operation, the sequence units operate approximately 2 cycles slower.



Figure 8 Ground Fault Sensitivity



Figure 9 Current Differential Element Trip Times

# Single-Pole Tripping

In this example two-line system (*Figure 10*) we can look at the stability curve to see the power transfer capability under different system conditions. In cases where systems must operate near stability limits, it is clear that the optional single-pole tripping capability of the SEL-311L will improve the transient stability.





System Load Angle from A to B

Figure 11 Equal Area Curve

Single-pole tripping improves stability as illustrated by the difference between Area B (for single-pole trips) and Area B + C (for three-pole trips) (*Figure 11*). The difference in these two areas is the extra stabilizing momentum available when single-pole tripping is used as compared to three-pole tripping.

The high-speed tripping of the SEL-311L complements the single-pole tripping by minimizing the size of Area A. The operating time of the SEL-311L, including output time, is approximately 0.75 cycles for a severe fault.

# Full-Scheme and/or Current-Only Backup Protection

### **Full-Scheme Backup Protection**

The SEL-311L includes all of the protection elements in the SEL-311C Relay. A complete and independent distance and directional overcurrent system is included for use if potential transformers are available (see *Figure 12*). These elements run on a separate processor platform using separate contacts and firmware. Failure of either the 87L channel or processing hardware does not affect backup protection. Both step-distance and communications-assisted protection are available. Transmit the permissive trip, direct trip, or block trip signal using the current differential channel, MIRRORED BITS<sup>®</sup> communications on a separate serial port, or via contact to channel equipment.

Backup protection maintains excellent sensitivity using patented Best Choice Ground Directional<sup>™</sup> protection. All the features of the SEL-311C, such as load-encroachment, out-of-step, loss-of-potential detection and blocking, and CCVT transient detection are also included.

## **Current-Only Backup Protection**

Apply phase and ground overcurrent backup protection elements in the SEL-311L. When the "Current-Only" Application Setting is used, these are the only backup elements that will be displayed for setting.

Three steps of phase and four steps of ground and negative-sequence instantaneous/definite timeovercurrent protection are included. Inverse-time phase, ground, and negative-sequence overcurrent elements are also included. If desired, backup elements can be enabled only after communication failure.



Figure 12 Full Scheme Backup Protection

# Synchrophasors

The SEL-311L now includes phasor measurement technology that provides synchrophasor measurements throughout a power system. This technology in a protective relay reduces or eliminates incremental installation and maintenance costs while leaving system reliability unaffected. Incorporate present and future synchrophasor technology control applications without much effort into the same devices that protect and control the power system.

# High-Speed Trip Contacts Interrupt Trip Current

Six high-speed, high-current interrupting contact outputs are controlled directly by the line current differential processor. These contacts can interrupt trip currents should the breaker auxiliary contacts fail to open. Backup protection can use the same high-speed contact outputs, passing backup trip decisions through the current differential processor (see *Figure 13*).



#### and Current Differential Protection

To maintain backup protection independent of line current differential protection, use standard contacts (eight included) controlled by the backup protection processor for backup tripping (see *Figure 14*).



Figure 14 Segregated Differential and Backup Tripping



Figure 15 Dual Channel Hot Standby Communications

# Dual Channel, Hot Standby Communications

Use one or two current differential communications channels between the line ends. For a two-terminal line, the redundant channel is in hot standby mode until the primary channel fails (see *Figure 15*). There is no interruption of protection or delay in tripping, even if a fault occurs simultaneously with the loss of one communications channel (see *Figure 16*).





Dual Communications and Dual Differential prevent loss or degradation of protection during channel failure.

The relay continuously monitors both channels for correct data transmission and channel delay. Channel quality reports available from the relay include short and long term unavailability, and round trip channel delay. Use this information to accurately assess protection and communications system reliability and make appropriate changes for maximum system reliability.

## **Channel Requirements**

The SEL-311L has options for the following channel interfaces (select one or two):

- ► G.703 codirectional to multiplexer
- ► EIA-422 to multiplexer for a 64 kbps or 56 kbps channel
- ► 1300 nm single-mode (120 km) fiber
- ► 1550 nm single-mode (120 km) fiber
- ► IEEE C37.94-compatible multimode fiber to multiplexer
- ► IEEE C37.94-compatible modulated 1300nm single-mode fiber to multiplexer



#### Figure 17 IEEE C37.94-Compatible

The SEL-311L Relay with an IEEE C37.94-compatible standard fiber interface. It provides a direct fiber-optic interface between the relay and multiplexer to prevent communication errors, equipment damage, and hazardous conditions due to ground potential rise.

| =>>COMM YL <enter><br/>SEL-311L<br/>EXAMPLE: BUS B, BREAKER 3</enter>                                                                          | D                                                                | ate: 05/26/01                                                                | Time: O                                           | 9:27:03.269                                                         |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------|--|--|--|--|--|
| FID-SEL-311L-R100-V0-Z001001-D20010625 CID-BAFD<br>Summary for 87L Channel Y<br>Channel Status Alarms<br>R0KY - 1 DBADY - 0 RBADY - 0 AVAY - 0 |                                                                  |                                                                              |                                                   |                                                                     |  |  |  |  |  |
| For 05/24/01 13:37:01.631                                                                                                                      | to 05/26/                                                        | 01 09:27:04.24                                                               | 8                                                 |                                                                     |  |  |  |  |  |
| COMMUNICATION LOG SUMM<br>∦ of Error records 29<br>Data Error 20<br>Dropout 9<br>Test Mode Entered 0                                           | ARY                                                              | COMMUNICATIO<br>Last error<br>Longest failu<br>Lost Packets,<br>One Way Dela | N STATISTI<br>Da<br>ure<br>prev. 24<br>y (Ping-Po | CS<br>ta Error<br>4.685 sec.<br>hours 407<br>ng) 0.4 msec.          |  |  |  |  |  |
| Error<br># Date Time<br>1 05/26/01 09:23:54.041<br>2 05/26/01 09:23:53.888<br>3 05/26/01 09:23:53.885<br>4 05/26/01 09:23:53.882               | Recovery<br>Date<br>05/26/01<br>05/26/01<br>05/26/01<br>05/26/01 | Time<br>09:23:54.042<br>09:23:54.040<br>09:23:53.888<br>09:23:53.885         | Duration<br>0.001<br>0.152<br>0.003<br>0.003      | Cause<br>Data Error<br>Dropout Error<br>Data Error<br>Dropout Error |  |  |  |  |  |
| 27 05/24/01 13:37:04.688<br>28 05/24/01 13:37:00.003<br>29 05/24/01 13:37:00.000                                                               | 05/24/01<br>05/24/01<br>05/24/01                                 | 13:37:04.689<br>13:37:04.688<br>13:37:00.003                                 | 0.001<br>4.685<br>0.003                           | Data Error<br>Dropout Error<br>Data Error                           |  |  |  |  |  |
| =>>                                                                                                                                            |                                                                  |                                                                              |                                                   |                                                                     |  |  |  |  |  |

#### Figure 18 COMM Command Report

The SEL-311L Relay communications monitor reports performance of all 87L channels and MIRRORED BITS communications channels. Review these reports to optimize communications.

# **Tapped Load Application**

The SEL-311L coordinates with tapped loads. A difference-current ANSI or IEC overcurrent protection curve, as shown in *Figure 19*, coordinates with the tapped load protection. This prevents loss of the line for cases of a fault on the tap, while still providing differential measurements of the protected line to give the fastest operation possible. Implement either fuse-saving or trip-saving schemes. For example, select high-speed, sensitive protection for the initial shot and then delayed tripping on a subsequent reclose operation to allow a fuse on the tapped line to blow if the fault is still present. This can be modified to accommodate the user's operation practices and provide the best possible service for the end customers. This feature is applicable to two- and three-terminal lines.



#### Figure 19 Tapped Load Coordination

Relays determine current at the tap point. Overcurrent elements use that current to coordinate with tap protection. Use phase current, negative-sequence current, and zero-sequence current for optimal protection.

# **Three-Terminal Lines**

The SEL-311L protects three-terminal lines in either a peer-to-peer configuration using two channels connected to each relay, as shown in *Figure 20*, or in a leader-remote arrangement when only one relay is connected to two channels. The leader relay has line current information from all terminals. It sends a trip signal to the remote units when it determines there is a fault on the line.

# Reclosing

The SEL-311L includes a four-shot recloser. Internal element status or external inputs can condition the recloser to match your practice:

- ► Reclose initiate (e.g., breaker status, fault type, trip).
- Drive-to-lockout or last shot (e.g., input from manual or SCADA open).
- Skip shot (use 27/59 elements, fault current magnitude).
- ► Stall open-interval timing.
- ► Separate times to reset from cycle or lockout.

The recloser shot counter can control which protective elements are used in each reclose interval for fuse-saving or fuse-coordination of tapped or downstream loads. Front-panel LEDs track the recloser state: Reset (RS) and Lockout (L0).



Figure 20 Three-Terminal Line Protection Communications Connections

# **Bus Stub Logic**

Bus stub protection is enabled by input or SELOGIC control equation.

- ► No analog data are sent to the remote terminal
- Analog data received from the remote terminal are ignored
- ► Differential transfer trips are disabled



Figure 21 Automatic Bus Stub Protection

# **Fault Locator**

If potentials are applied, the SEL-311L provides an accurate fault location calculation even during periods of substantial load flow. The fault locator uses fault type, replica line impedance settings, and fault conditions to calculate fault location without communications channels, special instrument transformers, or prefault information. This feature contributes to efficient dispatch of line crews and fast restoration of service.

The relay provides fault location information on the front panel, in the event reports, and in event summaries.

# Six Independent Setting Groups

The relay stores six groups of settings. Select the active setting group by contact input, serial port or front-panel command, or other programmable conditions. Use these setting groups to cover a wide range of protection and control contingencies. Selectable setting groups make the SEL-311L ideal for applications requiring frequent setting changes and for adapting the protection to changing system conditions. Selecting a group also selects logic settings.

Program group selection logic to adjust settings for different operating conditions, such as station maintenance, seasonal operations, emergency contingencies, loading, source changes, and adjacent relay setting changes.



# **Relay and Logic Settings Software**

Figure 22 ACSELERATOR<sup>®</sup> QuickSet SEL-5030 Software Screen

The ACSELERATOR QuickSet SEL-5030 software program uses the Microsoft<sup>®</sup> Windows<sup>®</sup> operating system to simplify settings and provide analysis support for the SEL-311L.

Use ACSELERATOR QuickSet to create and manage relay settings:

- Develop settings off-line with an intelligent settings editor that only allows valid settings.
- Create SELOGIC control equations with a drag and drop graphical editor and/or text editor.
- ► Use on-line help to assist with configuring proper settings.
- ➤ Organize settings with the relay database manager.
- Load and retrieve settings using a simple PC communications link.

Use ACSELERATOR QuickSet to verify settings and analyze events:

- ➤ Use the logic simulator to test setting schemes with user or event report input stimulus. (Use for training, too!)
- ► Analyze power system events with the integrated waveform and harmonic analysis tools.

Use ACSELERATOR QuickSet to aid with monitoring, commissioning, and testing the SEL-311L:

 Use the Human Machine Interface (HMI) to monitor meter data, Relay Word bits, and output contacts status during testing.

Use the PC interface to remotely retrieve breaker wear, voltage sag/swell/interruption reports, and other power system data.

# **Metering and Monitoring**

#### Table 1 Metering Capabilities

| Quantities                                                                                   | Description                                                                                            |
|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Currents (local) I <sub>A,B,C,pol</sub> , I <sub>1</sub> , 3I <sub>2</sub> , 3I <sub>0</sub> | Individual phase, polarizing, and sequence currents for local relay terminal.                          |
| Currents (remote and difference) $I_{A,B,C}$ , $I_1$ , $3I_2$ , $3I_0$                       | Individual phase and sequence currents for remote relay terminal and difference currents.              |
| Voltages $V_{A,B,C,S}$ , $V_0$ , $V_1$ , $V_2$                                               | Individual phase voltages for wye-connected PTs, and positive-, negative-, and zero-sequence voltages. |
| Power MW <sub>A,B,C,3P</sub> MVAR <sub>A,B,C,3P</sub>                                        | Single-phase and three-phase megawatts and megavars available for wye-connected PTs.                   |
| Energy MWh <sub>A,B,C,3P</sub> MVARh <sub>A,B,C,3P</sub>                                     | Single-phase and three-phase megawatt and megavar hours available for wye-con-<br>nected PTs.          |
| Power Factor PF <sub>A,B,C,3P</sub>                                                          | Single-phase and three-phase power factor; leading or lagging.                                         |

# **Advanced Metering Capabilities**

The SEL-311L provides extensive metering capabilities, as shown in *Table 1*. Metering accuracies are provided in the *Specifications on page 1.23*. Metering information is displayed on the relay front panel or is available via communications over the serial port.

Use the current differential meter to verify line charging current. Compare local and remote currents to detect CT connection errors or CT ratio setting errors at any terminal.

If voltages are supplied to the relay, power and energy quantities are also available.

# Event Reporting and Sequential Events Recorder (SER)

Event Reports and Sequential Events Recorder simplify post-fault analysis and improve understanding of simple and complex protective scheme operations. They also aid in testing and troubleshooting relay settings and protection schemes.

Eleven 60-cycle, twenty-two 30-cycle, or forty-one 15-cycle oscillographic event reports provide 4 or 16 samples per cycle resolution for remote and differential phase currents, each local analog channel, system frequency, dc system voltage, contact I/O, and many relay elements. Use the local and remote current oscillography to completely reconstruct complex system disturbances, and check local and remote CT connections during commission testing from a single report (see *Figure 23*).



Oscillograph From Any Terminal

The SEL-311L Sequential Events Recorder records the last 512 event entries, which may include contact inputs, internal relay conditions, relay setting changes, and relay power-up.

The IRIG-B time-code input synchronizes the SEL-311L Relay SER time stamps to within  $\pm 5$  ms of the timesource input. A convenient source for this time code is the SEL-2032, SEL-2030, or SEL-2020 Communications Processor (via Serial Port 2 on the SEL-311L). Line current differential protection does not rely on IRIG-B time synchronization, nor on any other external source of time synchronization.

To simplify event analysis following an operation, relay settings are appended to the bottom of each event report.

# **Flexible Event Analysis**

Examine line currents from two or three line ends in the same event report. Use the SEL-5601 Analytic Assistant to help visualize power system disturbances. *Figure 23* shows phase currents from the local relay, from the relay connected to Channel X, from the relay connected to Channel Y, and difference currents for an internal ground fault on a three-terminal line. Trigger event reports using any programmable condition.

*Figure 24* shows the corresponding negative-sequence Alpha Plane plot, showing the prefault current inside the restraint region and the fault current outside the restraint region.



Figure 24 Alpha Plane Display

# **Event Summary**

Each time the relay generates a standard event report, it also generates a corresponding Event Summary (see *Figure 25*). This is a concise description of an event that includes the following information:

- Prefault and fault, local and remote phase, zeroand negative-sequence currents
- ► Status of each 87L channel
- ► Phase voltages
- ► Fault type at time of trip
- ► System frequency at time of trigger
- ► Recloser shot count at time of trigger
- ► Relay identification
- ► Event date and time
- ► Event type
- ► Fault location
- ► ALARM status
- ► Status of all MIRRORED BITS and 87L channels

- ► Trip and close time tags
- ► Breaker status (open/close)

| 🔀 Relay/Terminal ID                                      | ): Compressed Event Report                        |              |                           | ⊐ × |  |  |  |  |  |
|----------------------------------------------------------|---------------------------------------------------|--------------|---------------------------|-----|--|--|--|--|--|
|                                                          | Event Report Su                                   | mmary        |                           |     |  |  |  |  |  |
| Event Report File: C:\Program Files\SEL5601\3T_Fault.cev |                                                   |              |                           |     |  |  |  |  |  |
| Relay FID:                                               | Relay FID: FID=SEL-311L-X122-V0-Z001001-D20010531 |              |                           |     |  |  |  |  |  |
| Frequency:                                               | 60 # Cycles: 16                                   |              | Samples/Cycle: 16         |     |  |  |  |  |  |
| Event Date/Time: Thursday, June 14, 2001 14:44:39.261    |                                                   |              |                           |     |  |  |  |  |  |
| Miscellaneous:                                           | Miscellaneous: EVENT BG T                         |              |                           |     |  |  |  |  |  |
|                                                          | LOCATION                                          | \$\$\$\$\$\$ |                           |     |  |  |  |  |  |
|                                                          | SHOT                                              |              |                           |     |  |  |  |  |  |
|                                                          | TARGETS                                           | 87           |                           |     |  |  |  |  |  |
|                                                          | IA                                                | 1665         |                           |     |  |  |  |  |  |
|                                                          | IB                                                | 2463         |                           |     |  |  |  |  |  |
|                                                          | IC                                                | 1570         |                           |     |  |  |  |  |  |
|                                                          | [IP                                               | 1            |                           | -   |  |  |  |  |  |
|                                                          |                                                   |              | <u>P</u> rint <u>C</u> lo | se  |  |  |  |  |  |

Figure 25 Example Event Report Summary

The relay automatically sends an Event Summary to all serial ports set as "AUTO" each time an event report is triggered.

The relay gives each Event Summary a unique identifier. This allows an automated event system, such as the SEL-5040, to acknowledge triggered events, and to retrieve the associated oscillographic report reliably.

# Synchrophasor Measurements Upgrade System Models

Send synchrophasor data using SEL Fast Message protocol to SEL communications processors, or to SEL-5077 SYNCHROWAVE Server phasor data concentration software, or to an SEL-3306 Synchrophasor Processor. Data rates of as much as one message per second with an accuracy of  $\pm 1$  electrical degree provide for real-time visualization.

The SEL-5077 SYNCHROWAVE Server software and the SEL-3306 Synchrophasor Processor time correlate data from multiple SEL-311 relays and other phasor measurement and control units (PMCUs). Then, the SEL-5077 sends the concentrated data to visualization tools, such as the SEL-5078 SYNCHROWAVE Console, for use by utility operations.

Use SEL-2032 or SEL-2030 Communications Processors to collect synchrophasor data from multiple SEL-311 relays and incorporate the data into traditional SCADA and EMS systems. Traditional power system models are created based on measurements of voltages and power flows at different points on the system. The system state is then estimated based on a scan of these values and an iterative calculation. The state estimation includes an inherent error caused by measurement inaccuracies, time delays between measurements, and model simplifications. Synchrophasor measurements reduce error and change state estimation into state

measurement. The time required for iterative calculation is minimized, and system state values can be directly displayed to system operators and engineers.



Figure 26 Synchrophasor Measurements Turn State Estimation Into State Measurement

### Improve Situational Awareness

Provide improved information to system operators. Advanced synchrophasor-based tools provide a real-time view of system conditions. Use system trends, alarm points, and preprogrammed responses to help operators prevent a cascading system collapse and maximize system stability. Awareness of system trends provides operators with an understanding of future values based on measured data.



#### Figure 27 Visualization of Phase Angle Measurements Across a Power System

- Increase system loading while maintaining adequate stability margins.
- Improve operator response to system contingencies such as overload conditions, transmission outages, or generator shutdown.
- ► Advance system knowledge with correlated event reporting and real-time system visualization.
- Validate planning studies to improve system load balance and station optimization.



Figure 28 SEL-5078 SYNCHROWAVE Console Real-Time Wide-Area Visualization Tool

# IEC 61850 Communications (SEL-311L-1 and SEL-311L-7)

IEC 61850 Ethernet-based communications provides interoperability between intelligent devices within the substation. Logical nodes using IEC 61850 communications allow standardized interconnection of intelligent devices from different manufacturers for monitoring and control of the substation. Reduce wiring between various manufacturers' devices and simplify operating logic with SEL-311L relays equipped with IEC 61850. Eliminate system RTUs by streaming monitoring and control information from the intelligent devices directly to remote SCADA client devices.

The SEL-311L-1 or SEL-311L-7 can be ordered with embedded IEC 61850 communications operating on dual fail-over 100 Mbps Ethernet interfaces. Use IEC 61850 communications for relay monitoring and control functions, including:

- As many as 16 incoming GOOSE messages. The incoming GOOSE messages can be used to control as many as 32 control bits in the relay with <10 ms latency from device to device. These messages provide binary control inputs to the relay for highspeed control functions and monitoring.
- ➤ As many as eight outgoing GOOSE messages. Outgoing GOOSE messages can be configured for Boolean or analog data. Boolean data are provided with <10 ms latency from device to device. Use outgoing GOOSE messages for high-speed control and monitoring of external breakers, switches and other devices.
- ➤ IEC 61850 Data Server. SEL-311L relays equipped with embedded IEC 61850 communications provide data according to predefined logical node objects. As many as six simultaneous client associations are supported by each relay. Relevant Relay Word bits are available within the logical node data, so status of relay elements, inputs, out-

puts, or SELOGIC control equations can be monitored using the IEC 61850 data server provided in the relay.

Use the ACSELERATOR Architect SEL-5032 Software to manage the logical node data for all IEC 68150 devices on the network. This Microsoft Windows<sup>®</sup>-based software provides easy-to-use displays for identifying and binding IEC 61850 network data between logical nodes using IEC 61850-compliant CID (Configured IED Description) files. CID files are used by ACSELERATOR Architect to describe the data that will be provided by the IEC 61850 logical node within each relay.

## Telnet, FTP, and Read-Only Web Server

Order the SEL-311L-1 or the SEL-311L-7 with Ethernet communications and use the built-in Telnet and FTP (File Transfer Protocol) that come standard with Ethernet to enhance relay communication sessions. Use Telnet to access relay settings, metering, and event reports remotely using the ASCII interface. Upload IEC 61850 CID files to the relay via the high-speed Ethernet port using FTP.

Enable the integrated read-only web server and browse the relay with any standard web browser to safely read settings, verify relay self-test status, inspect meter reports, read relay configuration, and more. The web server allows no control or modification actions, so users can be confident that an inadvertent button press will have no adverse effects.

# Substation Battery Monitor for DC Quality Assurance

The SEL-311L measures and reports the substation battery voltage presented to its power supply terminals. The relay includes two programmable threshold comparators and associated logic for alarm and control. For example, if the battery charger fails and the measured dc voltage falls below a programmable threshold, operations personnel are then notified before the substation battery voltage falls to unacceptable levels. Monitor these thresholds with the SEL Communications Processor. Use the SEL Communications Processor to trigger messages, initiate telephone calls, or take other actions.

The measured dc voltage is reported in the METER display via serial port communications, on the LCD, and in the event report. Use the event report data to see an oscillographic display of the battery voltage. You can see how the substation battery voltage drops during trip, close, and other control operations.

# Breaker Monitor Feature Allows for Intelligent Breaker Maintenance Scheduling

Circuit breakers experience mechanical and electrical wear every time they operate. Effective scheduling of breaker maintenance takes into account the manufacturer's published data of contact wear versus interruption levels and operation count. The SEL-311L breaker monitor feature compares the breaker manufacturer's published data to the interrupted current.

Every time the breaker trips, the interrupted current is added to its previous value. When the result of this addition exceeds the threshold set by the breaker wear curve (*Figure 29*), the relay can alarm via serial port, output contact, or the front-panel display. With this information, breaker maintenance is scheduled in a timely, economical fashion.



Figure 29 Breaker Contact Wear Curve and Settings

# **Automation**

# Flexible Control Logic and Integration Features

Use the SEL-311L control logic to:

- ► Replace traditional panel control switches.
- ► Replace traditional indicating panel lights.
- ► Replace traditional latching relays.
- ► Eliminate RTU-to-relay wiring.

Eliminate traditional panel control switches with 16 local control switches. Set, clear, or pulse local control switches with the front-panel pushbuttons and display. Program the local control switches into your control scheme via SELOGIC control equations. Use the local control switches to trip test, enable/disable reclosing, trip/close the breaker, etc.

Eliminate RTU-to-relay wiring with 16 remote control switches. Set, clear, or pulse remote control switches via serial port commands. Program the remote control switches into your control scheme via SELOGIC control equations. Use remote control switches for SCADA-type control operations: trip, close, settings group selection, etc.

Replace traditional latching relays for such functions as "remote control enable" with 16 latching control switches. Program latch set and latch reset conditions with SELOGIC control equations. Set or reset the latch control switches via optoisolated inputs, remote bits, local bits, or any programmable logic condition. The latch control switches retain their state when the relay loses power.

Replace traditional indicating panel lights with 16 programmable displays. Define custom messages (e.g., REMOTE BREAKER OPEN, REMOTE BREAKER CLOSED, RECLOSER ENABLED) to report power system or relay conditions on the LCD. Control which messages are displayed via SELOGIC control equations using any logic point in the relay.

# Serial Communications



Figure 30 Example Communication System

Three EIA-232 serial ports and one isolated EIA-485 serial port each operate independently of the other serial ports.

- ► Full access to event history, relay status, and meter information from the serial ports.
- ► Settings and group switching have password control.
- ► DNP3 Level 2 protocol with point mapping (optional).
- ► Open communications protocols (see *Table 2*).

The relay does not require special communications software. ASCII terminals, printing terminals, or a computer supplied with terminal emulation and a serial communications port is all that is required. SEL manufactures a variety of standard cables for connecting this and other relays to a variety of external devices. Consult your SEL representative for more information on cable availability.

| Туре                                            | Description                                                                                                                                                                                                                                                                                                 |
|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Simple ASCII                                    | Plain language commands for human and simple machine communications. Use for metering, setting, self-test status, event reporting, and other functions.                                                                                                                                                     |
| Compressed ASCII                                | Comma-delimited ASCII data reports. Allows external devices to obtain relay data in an appropriate format for direct import into spreadsheets and database programs. Data are checksum protected.                                                                                                           |
| Extended Fast Meter, Fast Operate, and Fast SER | Binary protocol for machine-to-machine communications. Quickly updates SEL-2032/2030/2020, RTUs, and other substation devices with metering information, relay element, I/O status, time-tags, open and close commands, summary event reports, and sequence of events records. Data are checksum protected. |
|                                                 | Binary and ASCII protocols operate simultaneously over the same communications lines so control operator metering information is not lost while transferring an event report.                                                                                                                               |
| Distributed Port Switch Protocol                | Enables multiple SEL devices to share a common communications bus (two-character address setting range is 01–99). Use this protocol for low-cost, port-switching applications.                                                                                                                              |
| DNP3 Level 2 Slave                              | Certified Distributed Network Protocol. Includes capability for settings-based DNP events, full-point remapping, individual scaling and dead-band thresholds for analog inputs.                                                                                                                             |
| IEC 61850                                       | Ethernet-based international standard for interoperability between intelligent devices in a substation.                                                                                                                                                                                                     |

 Table 2
 Open Communications Protocols
## Relay-to-Relay Digital Communications (MIRRORED BITS)

In addition to the differential channels, the SEL-311L includes MIRRORED BITS communications which can operate simultaneously on any two serial ports for three-terminal operation. The SEL patented MIRRORED BITS technology provides bidirectional relay-to-relay digital communications (see *Figure 31*).

This bidirectional digital communication creates eight additional outputs (transmitted MIRRORED BITS) and eight additional inputs (received MIRRORED BITS) for each serial port operating in the MIRRORED BITS mode. These MIRRORED BITS can be used to transfer information between line terminals to enhance coordination and achieve faster tripping or to provide additional contact I/O with the SEL-2505. MIRRORED BITS also help reduce total pilot scheme operating time by eliminating the need to close output contacts and debounce contact inputs. Use the dual-port MIRRORED BITS capabilities for high-speed communicationsassisted schemes applied to three-terminal transmission lines.

## Advanced SELogic Control Equations

Advanced SELOGIC control equations put relay logic in the hands of the protection engineer. Assign the relay inputs to suit your application, logically combine selected relay elements for various control functions, and assign outputs to your logic functions.

Programming SELOGIC control equations consists of combining relay elements, inputs, and outputs with SELOGIC control equation operators. Any element in the Relay Word can be used in these equations.

The SELOGIC control equation operators include the following: OR, AND, invert, parentheses, and rising and falling edges of element state changes.

In addition to Boolean-type logic, 16 general-purpose SELOGIC control equation timers eliminate external timers for custom protection or control schemes. Each timer has independent time-delay pickup and dropout settings. Program each timer input with any desired element (e.g., time-qualify a voltage element). Assign the timer output to trip logic, reclose logic, or other control scheme logic.







## Front-Panel User Interface

#### Status and Trip Target LEDs, Front-Panel Display, and Pushbuttons

*Figure 32* shows a close-up view of the user interface portion of the SEL-311L front panel. It includes a two-line, 16-character LCD, 16 LED status and target indicators, and 8 pushbuttons for local communication. *Table 3* explains the front-panel LEDs.

The LCD shows event, metering, setting, and relay self-test status information and allows relay settings changes without the need for a data terminal.

The LCD is controlled by the pushbuttons, automatic messages the relay generates, and user-programmed Display Points. The default display scrolls through any active, nonblank Display Points. If none are active, the relay scrolls through four two-line displays of the A-, B-, and C-phase local and remote currents in primary quantities. Each display remains for two seconds, before scrolling continues. Any message generated by the relay due to an alarm condition takes precedence over the normal default display. The **{EXIT}** pushbutton returns the display to the default display, if some other front-panel function is being performed.

Error messages such as self-test failures are displayed on the LCD in place of the default display when they occur.

Table 3 Description of Target LEDs

| Target LED                 | Function                                                                    |
|----------------------------|-----------------------------------------------------------------------------|
| EN                         | Relay powered properly and self-tests okay                                  |
| TRIP                       | Indication that a trip occurred                                             |
| TIME                       | Time-delayed trip                                                           |
| СОММ                       | Communications-assisted trip                                                |
| 87                         | Line current differential trip                                              |
| 50/51                      | Instantaneous and time-overcurrent trip                                     |
| RECLOSER<br>RS<br>LO       | Ready for reclose cycle<br>Control in lockout state                         |
| FAULT TYPE<br>A, B, C<br>G | Phase(s) involved in fault<br>Ground involved in fault                      |
| ZONE/LEVEL<br>1-3          | Trip by Zone 1–3 distance elements and/or<br>Level 1–3 overcurrent elements |
| 87CH FAIL                  | Failure of active differential channel                                      |

## **Contact Inputs and Outputs**

The SEL-311L includes six high-speed/high-interrupting outputs as well as eight standard duty output contacts and six optoisolated inputs. Assign the contact inputs for control functions, monitoring logic, and general indication. Except for a dedicated alarm output, each contact output is programmable using SELOGIC control equations.

# Wiring Diagram



Figure 33 SEL-311L Inputs, Outputs, and Communications Ports

# Front- and Rear-Panel Diagrams



Figure 34 SEL-311L Horizontal and Vertical Front-Panel Diagrams



Figure 35 SEL-311L Rear-Panel Diagrams Showing Differential Channel Options

20



Figure 36 Typical Rear-Panel Diagrams Showing Dual 10/100BASE-T and Dual 100BASE-FX Ethernet



# **Relay Dimensions**

For projection rack mounting, brackets must be reversed.

Figure 37 SEL-311L Dimensions for Rack- and Panel-Mount Models

# **Specifications**

#### Compliance

| Designed and manufactured under an ISO 9001 certified quality  |
|----------------------------------------------------------------|
| management system                                              |
| UL Listed to U.S. and Canadian safety standards (File E212775; |
| NRGU, NRGU7)                                                   |
| CE Mark                                                        |
| RCM Mark                                                       |
| Class 1 Laser Product                                          |

#### General

#### **Terminal Connections**

Rear Screw-Terminal Tightening Torque:

9-in-lb (1.1 Nm) Minimum: Maximum: 12-in-lb (1.3 Nm)

Terminals or stranded copper wire. Ring terminals are recommended. Minimum temperature rating of 105°C.

#### **AC Current Input**

|                    |                                                                        | 250 Vdc 0.20 A                                                                          | L/R = 40  ms                                   |
|--------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------|
| Nominal: 5 A       |                                                                        | Hybrid (High Current In                                                                 | terrupting)                                    |
| Continuous:        | 15 A, linear to 100 A symmetrical.                                     | Make                                                                                    | 30 4                                           |
| Thermal Rating:    | 500 A for 1 second.                                                    | Corry:                                                                                  | 6 A continuous corru at 70°C                   |
| M D                |                                                                        | Cally.                                                                                  | 4 A continuous carry at 85°C                   |
| Measurement Range: | (DC offset for 1.5 cycles @ X/R = 10)                                  | 1s Rating:                                                                              | 50 A                                           |
| Burden:            | 0.27 VA at 5 A<br>2.51 VA at 15 A                                      | MOV Protection<br>(maximum voltage):                                                    | 330 Vdc, 130 J                                 |
| Nominal:           | 1 A                                                                    | Pickup/Dropout Time:                                                                    | <5 ms                                          |
| Continuous:        | 3 A, linear to 20 A symmetrical.                                       | Breaking Capacity (10,000 operations):                                                  |                                                |
| Thermal Rating:    | 100 A for 1 second.<br>250 A for 1 cycle.                              | 48 Vdc 10.0 A<br>125 Vdc 10.0 A                                                         | L/R = 40  ms<br>L/R = 40  ms                   |
| Measurement Range: | 0.1–19.2 A                                                             | 250 Vdc 10.0 A                                                                          | L/R = 20  ms                                   |
|                    | (DC offset for 1.5 cycles @ $X/R = 10$ )                               | Cyclic Capacity (4 interruptions/second, followed by 2 minutes in thermal discipation): |                                                |
| Burden:            | 0.13 VA at 1 A                                                         | 48 Vdc 10.0 A                                                                           | L/R = 40  ms                                   |
| AC Voltage Inputs  | 1.51 VA at 5 A                                                         | 125 Vdc 10.0 A                                                                          | L/R = 40  ms                                   |
| Naminal            | (7 M three share form mine                                             | 250 vdc 10.0 A                                                                          | L/R = 20  ms                                   |
| Nominai:           | connection.                                                            | Note: Make per IEEE<br>IEC 60255-23:1994.                                               | C37.90-1989; Breaking and Cyclic Capacity per  |
| Continuous:        | 150 V <sub>L-N</sub> (connect any voltage up to $150$ V <sub>C-N</sub> | Fast Hybrid (High Curre                                                                 | nt Interrupting)                               |
| M                  | 265 Vie (                                                              | Make:                                                                                   | 30 A                                           |
| Measurement Range: | 365 vac for 10 seconds.                                                | Carry:                                                                                  | 6 A continuous carry at 70°C                   |
| Burden:            | 0.13 VA at 67 V<br>0.45 VA at 120 V                                    |                                                                                         | 4 A continuous carry at 85°C                   |
| Power Supply       |                                                                        | 1s Rating:                                                                              | 50 A                                           |
|                    |                                                                        | MOV Protection                                                                          | 220 Vdc 120 I                                  |
| Input voltage      | 105/050 1/1 1/2                                                        | (inaxinum voitage).                                                                     | 550 vuc, 150 J                                 |
| Rated:             | 125/250 Vdc or Vac                                                     | Pickup/Dropout Time:                                                                    | <10 µs; <8 ms, typical                         |
| Range:             | 85–350 Vdc or 85–264 Vac                                               | Breaking Capacity (10,0                                                                 | 00 operations):                                |
| Rated:             | 48/125 Vdc or 125 Vac                                                  | 48 Vdc 10.0 A<br>125 Vdc 10.0 A                                                         | L/R = 40  ms<br>L/R = 40  ms                   |
| Range:             | 38–200 Vdc or 85–140 Vac                                               | 250 Vdc 10.0 A                                                                          | L/R = 20  ms                                   |
| Rated:             | 24/48 Vdc                                                              | Cyclic Capacity (4 interr                                                               | uptions/second, followed by 2 minutes idle for |
| Range:             | 18-60 Vdc polarity dependent                                           | thermal dissipation):                                                                   |                                                |
| Power Consumption: | <25 W                                                                  | 48 Vdc 10.0 A                                                                           | L/R = 40  ms                                   |
|                    |                                                                        | 250 Vdc 10.0 A                                                                          | L/R = 40  ms<br>L/R = 20  ms                   |
|                    |                                                                        |                                                                                         |                                                |

**Control Outputs** 

30 A

50 A

<5 ms

L/R = 40 ms

6 A continuous carry at 70°C 4 A continuous carry at 85°C

270 Vac, 360 Vdc, 40 J

Standard Make:

Carry:

1s Rating:

MOV Protection

48 Vdc

125 Vdc

250 Vdc

48 Vdc

125 Vdc

(maximum voltage):

Pickup/Dropout Time:

Breaking Capacity (10,000 operations):

0.50 A

0.30 A

0.20 A

0.50 A

0.30 A

Cyclic Capacity (2.5 cycles/second):

Note: Make per IEEE C37.90-1989; Breaking and Cyclic Capacity per IEC 60255-23:1994.

#### **Optoisolated Inputs**

| 250 Vdc: | Pickup 200–300 Vdc; dropout 150 Vdc  |
|----------|--------------------------------------|
| 220 Vdc: | Pickup 176–264 Vdc; dropout 132 Vdc  |
| 125 Vdc: | Pickup 105–150 Vdc; dropout 75 Vdc   |
| 110 Vdc: | Pickup 88–132 Vdc; dropout 66 Vdc    |
| 48 Vdc:  | Pickup 38.4–60 Vdc; dropout 28.8 Vdc |
| 24 Vdc:  | Pickup 15–30 Vdc                     |

**Note:** 24, 48, 125, 220, and 250 Vdc optoisolated inputs draw approximately 5 mA of current; 110 Vdc inputs draw approximately 8 mA of current. All current ratings are at nominal input voltages.

#### Frequency and Rotation

| System Frequency:   | 50 or 60 Hz |
|---------------------|-------------|
| Phase Rotation:     | ABC or ACB  |
| Frequency Tracking: | 40.1–65 Hz  |

#### **Serial Communications Ports**

| EIA-232:   | 1 Front, 2 Rear                           |
|------------|-------------------------------------------|
| EIA-485:   | 1 Rear, 2100 Vdc isolation                |
| Baud Rate: | 300–38400<br>(Port 1 Baud Rate 300–19200) |

#### Ethernet Communications Ports (SEL-311L-1 and SEL-311L-7)

| Application Protocols          |                                                                                                |  |
|--------------------------------|------------------------------------------------------------------------------------------------|--|
| FTP to Card:                   | 1 server session<br>(supports IEC 61850 CID files)                                             |  |
| Telnet to Card:                | 1 server session (supports SEL ASCII)                                                          |  |
| Telnet to Host:                | 1 server session (supports SEL ASCII,<br>SEL Compressed ASCII, Fast Meter and<br>Fast Operate) |  |
| IEC 61850:                     | 6 MMS sessions<br>16 incoming GOOSE messages<br>8 outgoing GOOSE messages                      |  |
| Web Server:                    | 3 simultaneous read-only server sessions to host                                               |  |
| Protocol Stacks                |                                                                                                |  |
| TCP/IP                         |                                                                                                |  |
| OSI                            |                                                                                                |  |
| Physical Layer Options (P0     | RT 5 and PORT 6)                                                                               |  |
| 10/100BASE-T:                  | 10/100 Mbps, RJ45 connector                                                                    |  |
| 100BASE-FX:                    | 100 Mbps, LC connector                                                                         |  |
| Indicators (PORT 5 and PORT 6) |                                                                                                |  |
| Link:                          | Green LED is on when the link is operational.                                                  |  |
| Activity:                      | Red LED blinks when there is transmit or receive activity.                                     |  |
| Differential Communications    | Ports                                                                                          |  |
| Fiber Optics-ST Connector      |                                                                                                |  |
| 1550 nm Single Mode:           |                                                                                                |  |
| Tx Power:                      | -18 dBm                                                                                        |  |
| Rx Min. Sensitivity:           | -58 dBm                                                                                        |  |
| Rx Max. Sensitivity:           | 0 dBm                                                                                          |  |
| System Gain:                   | 40 dB                                                                                          |  |
| Distance Limitations:          | 120 km                                                                                         |  |
| 1300 nm Multimode or Sing      | le Mode:                                                                                       |  |

-18 dBm

-58 dBm

| Rx Max. Sensitivity:                                      | 0 dBm                                                                                         |
|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| System Gain:                                              | 40 dB                                                                                         |
| Distance Limitations:                                     | <i>x</i> km                                                                                   |
| where:                                                    | x = 30 for multimode<br>x = 80 for single mode                                                |
| 1300 nm Single Mode (IEE                                  | E C37.94-Compatible Modulated):                                                               |
| Tx Power:                                                 | -24 dBm                                                                                       |
| Rx Min. Sensitivity:                                      | -37.8 dBm                                                                                     |
| Rx Max. Sensitivity:                                      | 0 dBm                                                                                         |
| System Gain:                                              | 13.8 dB                                                                                       |
| Distance Limitations:                                     | 15 km                                                                                         |
| 850 nm Multimode, IEEE O                                  | C37.94-Compatible:                                                                            |
| Tx Power:                                                 | 50 μm: -23 dBm; 62.5 μm: -19 dBm                                                              |
| Rx Min. Sensitivity:                                      | 50 μm: –32 dBm; 62.5 μm: –32 dBm                                                              |
| Rx Max. Sensitivity:                                      | 50 μm: –11 dBm; 62.5 μm: –11 dBm                                                              |
| System Gain:                                              | 50 um: 9 dB: 62.5 um: 13 dB                                                                   |
| Distance Limitations:                                     | 2 km                                                                                          |
| Flectrical                                                |                                                                                               |
| EIA-422:                                                  | 56 or 64 Kbps synchronous;<br>Isolated to 1500 Vac                                            |
| CCITT G.703:                                              | 64 Kbps synchronous, codirectional                                                            |
| Time-Code Input                                           |                                                                                               |
| Relay accepts demodulated<br>Relay time is synchronized   | IRIG-B time-code input at Port 1 or 2.<br>d to within ±5 ms of time-source input.             |
| Synchronization (specificati<br>time source)              | on is with respect to the accuracy of the                                                     |
| Synchrophasor:                                            | ±10 μs                                                                                        |
| Other:                                                    | ±5 ms                                                                                         |
| Current differential protecti                             | on does not require external time source.                                                     |
| Dimensions                                                |                                                                                               |
| Refer to Figure 37 for relay                              | dimensions.                                                                                   |
| Operating Temperature                                     |                                                                                               |
| $-40^{\circ}$ to $+85^{\circ}$ C ( $-40^{\circ}$ to $+18$ | 5°F)                                                                                          |
| Note: LCD contrast impa                                   | ired for temperatures below -20°C                                                             |
| Weight                                                    |                                                                                               |
| 311 Pack Unit: 6.0 kilogram                               | s(15.2  pounds)                                                                               |
| 4U Baak Unit: 9.2 kilogram                                | s(19.2  pounds)                                                                               |
| 40 Kack Olitt. 8.5 Klogram                                | s (18.5 pounds)                                                                               |
| Type Tests                                                |                                                                                               |
| Electromagnetic Compatibil                                | ity Emissions                                                                                 |
|                                                           | EN 55011: 1998 + A1:1999 + A2:2002                                                            |
| Product Specific<br>Emissions:                            | IEC 60255-25:2000                                                                             |
| Electromagnetic Compatibil                                | ity Immunity                                                                                  |
| Conducted RF Immunity:                                    | IEC 60255-22-6:2001<br>Severity Level: 10 Vrms                                                |
| Radiated Radio Frequency<br>Immunity:                     | IEC 60255-22-3:2007<br>Severity Level: 10 V/m<br>IEC 61000-4-3:2010<br>Severity Level: 10 V/m |
| Radiated Digital Radio<br>Telephone RF Immunity:          | ENV 50204:1995<br>Severity Level: 10 V/m at 900 MHz and<br>1.89 GHz                           |

Tx Power:

Rx Min. Sensitivity:

| Electrostatic Discharge  | IEC 60255-22-2:2008                                                                                                          | Processin                       |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| Immunity:                | 4, 8, 15 kV air<br>IEEE C37 90 3-2001                                                                                        | AC Voltage                      |
|                          | Severity Level: 2, 4, and 8 kV contact; 4,<br>8, and 15 kV air                                                               | 16 sample<br>frequen            |
| Fast Transient/Burst     | IEC 60255-22-4:2008                                                                                                          | Digital Filte                   |
| Immunity:                | Severity Level: 4 kV, 5 kHz on power<br>supply, 2 kV, 5 kHz on I/O, signal, data,<br>and control lines<br>IEC 61000-4-4:2011 | One-cycle<br>(analog<br>fundame |
|                          | Severity Level: 4 (4 kV on power<br>supply), 3 (2 kV on inputs and outputs)                                                  | Current Dif                     |
| Power Supply Immunity:   | IEC 60255-11:2008                                                                                                            | 16 times<br>and trip            |
| Radiated Radio Frequency | IEEE C37.90.2-2004<br>Severity Level: 35 V/m                                                                                 | Backup Pro                      |
| Surge Withstand          | IEC 60255-22-1:2007                                                                                                          | 4 times p                       |
| Capability Immunity:     | Severity Level: 2.5 kV peak common<br>mode, 1.0 kV peak differential mode                                                    | Relay Eler                      |
|                          | IEEE C37.90.1-2002                                                                                                           | Line Curren                     |
|                          | Severity Level: 2.5 kV oscillatory, 4 kV fast transient waveform                                                             | 87L Enabl                       |
| Environmental            |                                                                                                                              | Phase Set                       |
| Cold:                    | IEC 60068-2-1:2007<br>Severity Level: 16 hours at -40°C                                                                      | Negative-<br>Range:             |
| Dry Heat:                | IEC 60068-2-2:2007<br>Severity Level: 16 hours at +85°C                                                                      | Zero-Seq<br>Range:              |
| Damp Heat, Cyclic:       | IEC 60068-2-30:2005                                                                                                          | Accuracy                        |
|                          | Severity Level: 25°C to 55°C, 6 cycles,<br>Relative Humidity: 95%                                                            | Restraint                       |
| Vibration:               | IEC 60255-21-3:1993                                                                                                          | Outer Ra                        |
|                          | Severity Level: Class 2                                                                                                      | Radius                          |
|                          | IEC 60255-21-1:1988                                                                                                          | Angle I                         |
|                          | Severity Level: Class 1–Endurance,<br>Class 2–Response<br>IEC 60255-21-2:1988                                                | Accura                          |
|                          | Severity Level: Class 1–Shock<br>withstand, Bump, and Class 2–Shock                                                          | Operate<br>(for b               |
|                          | Response                                                                                                                     | Not                             |
| Safety                   |                                                                                                                              | Insti<br>abov                   |
| Product Safety:          | EN 50263:1999                                                                                                                | Difference                      |
| IP Code:                 | IEC 60529:2001 + CRGD:2003                                                                                                   | Setting R                       |
|                          | equipment                                                                                                                    | Accuracy                        |
| Insulation Coordination: | IEC 60255-5:2000                                                                                                             | Substation                      |
|                          | Severity Level: 5 kV Impulse on DI,<br>DO, AI, and Power Supply; 2.2 kV on                                                   | Pickup R                        |
|                          | IRIG-B, EIA-485 and Ethernet.                                                                                                | Pickup A                        |
|                          | 3.1 kVdc on Power Supply; 2.2 kVdc on                                                                                        | Timer Spec                      |
|                          | EIA-485; 1.5 kVac on Ethernet. Type tested for 1 minute.                                                                     | Reclosing                       |
| Laser Safety:            | IEC 60825-1:2007<br>Product Class: Class 1<br>21 CFR 1040.10<br>Product Class: Class 1<br>ANSI Z136.1-2007                   | Other Tin                       |
|                          | Product Class: Class 1                                                                                                       | Pickup/D                        |
| Product Safety:          | IEC 60255-6:1988                                                                                                             | Accuracy                        |

#### g Specifications

#### and Current Inputs

les per power system cycle, 3 dB low-pass filter cut-off ncy of 560 Hz.

#### ering

le full cosine after low-pass analog filtering. Net filtering g plus digital) rejects dc and all harmonics greater than the nental.

#### fferential Processing

per power system cycle for line current differential protection ping logic.

#### otection and Control Processing

ber power system cycle

#### ments

#### nt Differential (87L) Elements

| 87L Enable Levels (Differe                                                 | ence or Total Current)                                                                                 |
|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Phase Setting Range:                                                       | OFF, 1.00 to 10.00 A, 0.01 A steps                                                                     |
| Negative-Sequence Setting<br>Range:                                        | OFF, 0.50 to 5.00 A, 0.01 A steps                                                                      |
| Zero-Sequence Setting<br>Range:                                            | OFF, 0.50 to 5.00 A, 0.01 A steps                                                                      |
| Accuracy:                                                                  | $\pm 3\% \pm 0.01 \text{ I}_{\text{NOM}}$                                                              |
| Restraint Characteristics                                                  |                                                                                                        |
| Outer Radius                                                               |                                                                                                        |
| Radius Range:                                                              | 2 to 8 in steps of 0.1 (unitless).                                                                     |
| Angle Range:                                                               | 90–270° in steps of 1°                                                                                 |
| Accuracy:                                                                  | ±5% of radius setting<br>±3° of angle setting                                                          |
| Operate Time<br>(for bolted fault):                                        | See operate time curves in <i>Section 3</i> of the Instruction Manual.                                 |
| <b>Note:</b> Refer to <i>Current</i><br>Instruction Manual for t<br>above. | <i>Differential Elements</i> in <i>Section 3</i> of the the definition of terms and terminology listed |
| Difference Current Alarm                                                   | Setting                                                                                                |
| Setting Range:                                                             | OFF, 0.5 to 10.0 A, 0.1 A steps                                                                        |
| Accuracy:                                                                  | $\pm 3\%$ of $\pm 0.01$ I <sub>NOM</sub>                                                               |
| Substation Battery Voltage                                                 | Monitor Specifications                                                                                 |
| Pickup Range:                                                              | 20-300 Vdc, 1 Vdc steps                                                                                |
| Pickup Accuracy:                                                           | $\pm 2\% \pm 2$ Vdc of setting                                                                         |
| Timer Specifications                                                       |                                                                                                        |
| Reclosing Relay Pickup:                                                    | 0.00–999,999.00 cycles, 0.25-cycle steps<br>(reclosing relay and some<br>programmable timers)          |
| Other Timers:                                                              | 0.00-16,000.00 cycles, 0.25-cycle steps<br>(some programmable and other various<br>timers)             |
| Pickup/Dropout<br>Accuracy for All Timers:                                 | $\pm 0.25$ cycle and $\pm 0.1\%$ of setting                                                            |

#### Mho Phase Distance Elements

| Zones 1-4 Impedance Reach                                                                          |                                                                                                                                                              | Pickup Range:                             | OFF, 0.00–150.00 V, 0.01 V steps                                                                      |
|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Setting Range:                                                                                     | OFF, 0.05 to $64.00 \Omega$ secondary,<br>0.01 $\Omega$ steps (5 A nominal)<br>OFF, 0.25 to 320.00 $\Omega$ secondary, 0.01 $\Omega$<br>steps (1 A nominal)  | Steady-State Pickup                       | (various elements)<br>OFF, 0.00–260.00 V, 0.01 V steps<br>(phase-to-phase elements)                   |
| Note: Minimum censitivit                                                                           | s controlled by the pickup of the                                                                                                                            | Accuracy:                                 | $\pm 1$ V and $\pm 5\%$ of setting                                                                    |
| supervising phase-to-ph                                                                            | ase overcurrent elements for each zone, load                                                                                                                 | Transient Overreach                       | <5% of pickup                                                                                         |
| encroachment, OSB, and supervisory directional logic.                                              |                                                                                                                                                              | Instantaneous/Definite-Time               | e Overcurrent Elements                                                                                |
| Accuracy:                                                                                          | <ul> <li>±5% of setting at line angle<br/>for 30 ≤ SIR ≤ 60</li> <li>±3% of setting at line angle<br/>for SIR &lt;30</li> </ul>                              | Pickup Range:                             | OFF, 0.25–100.00 A, 0.01 A steps<br>(5 A nominal)<br>OFF, 0.05–20.00 A, 0.01 A steps<br>(1 A nominal) |
| Transient Overreach: <5% of setting plus steady-state<br>accuracy                                  |                                                                                                                                                              | Steady-State Pickup                       | $\pm 0.05$ A and $\pm 3\%$ of setting                                                                 |
| Zones 1–4 Phase-to-Phase C                                                                         | Current Fault Detectors (FD)                                                                                                                                 | Accuracy:                                 | $\pm 0.01$ A and $\pm 3\%$ of setting<br>(1 A nominal)                                                |
| Setting Range:                                                                                     | $0.5-170.0 \text{ A}_{P-P}$ secondary,<br>0.01 A steps (5 A nominal)                                                                                         | Transient Overreach                       | <5% of pickup                                                                                         |
|                                                                                                    | $0.1-34.0 \text{ A}_{P-P}$ secondary,                                                                                                                        | Time Delay:                               | 0.00-16.000.00 cycles $0.25$ -cycle steps                                                             |
|                                                                                                    | 0.01 A steps (1 A nominal)                                                                                                                                   | Timer Accuracy                            | +0.25 cycle and $+0.1%$ of setting                                                                    |
| Accuracy:                                                                                          | $\pm 0.05$ A and $\pm 3\%$ of setting<br>(5 A nominal)                                                                                                       | Max Operating Time                        | See nickup and reset time curves in                                                                   |
|                                                                                                    | $\pm 0.01$ A and $\pm 3\%$ of setting (1 A nominal)                                                                                                          |                                           | Section 4 of the Instruction Manual.                                                                  |
| Transient Overreach:                                                                               | <5% of pickup                                                                                                                                                | Time-Overcurrent Elements                 |                                                                                                       |
| Max. Operating Time:                                                                               | See pickup and reset time curves in <i>Section 4</i> of the Instruction Manual.                                                                              | Pickup Range:                             | OFF, 0.25–16.00 A, 0.01 A steps<br>(5 A nominal)<br>OFF, 0.05–3.20 A, 0.01 A steps<br>(1 A nominal)   |
| Mho and Quadrilateral Ground Distance Elements                                                     |                                                                                                                                                              | Staady Stata Dickup                       | +0.05 A and $+3%$ of setting                                                                          |
| Zones 1–4 Impedance Reach<br>Mho Element Reach:                                                    | 1<br>OFF, 0.05 to 64.00 Ω secondary,<br>0.01 Ω steps (5 A nominal)                                                                                           | Accuracy:                                 | (5 A nominal)<br>$\pm 0.01$ A and $\pm 3\%$ of setting<br>(1 A nominal)                               |
|                                                                                                    | OFF, 0.25 to 320.00 $\Omega$ secondary, 0.01 $\Omega$ steps (1 A nominal)                                                                                    | Time Dial Range:                          | 0.50–15.00, 0.01 steps (US)<br>0.05–1.00, 0.01 steps (IEC)                                            |
| Quadrilateral Reactance<br>Reach:                                                                  | <ul> <li>OFF, 0.05 to 64.00 Ω secondary,</li> <li>0.01 Ω steps (5 A nominal)</li> <li>OFF, 0.25 to 320.00 Ω secondary, 0.01 Ω steps (1 A nominal)</li> </ul> | Curve Timing Accuracy:                    | $\pm 1.50$ cycles and $\pm 4\%$ of curve time for<br>current between 2 and 30 multiples of<br>pickup. |
| Ouadrilateral Resistance                                                                           | OFF. 0.05 to 50.00 $\Omega$ secondary.                                                                                                                       | Synchronism-Check Elemen                  | ts                                                                                                    |
| Reach:                                                                                             | $0.01 \Omega$ steps (5 A nominal)<br>OFF, 0.25 to 250.00 $\Omega$ secondary, 0.01 $\Omega$<br>steps (1 A nominal)                                            | Slip Frequency<br>Pickup Range:           | 0.005–0.500 Hz, 0.001 Hz steps                                                                        |
|                                                                                                    |                                                                                                                                                              | Slip Frequency                            | . 0. 002 11                                                                                           |
| supervising phase and re                                                                           | esidual overcurrent elements for each zone,                                                                                                                  | Pickup Accuracy:                          | ±0.003 HZ                                                                                             |
| and supervisory directional logic.                                                                 |                                                                                                                                                              | Phase Angle Range:                        | 0-80°, 1° steps                                                                                       |
| Accuracy:                                                                                          | $\pm 5\%$ of setting at line angle<br>for $30 \le SIR \le 60$<br>$\pm 3\%$ of setting at line angle                                                          | Phase Angle Accuracy:                     | ±4°                                                                                                   |
|                                                                                                    |                                                                                                                                                              | Definite-Lime Overfrequenc                | y or Underfrequency (81) Elements                                                                     |
|                                                                                                    | for SIR <30                                                                                                                                                  | Pickup Range:                             | 41.00–65.00 Hz, 0.01 Hz steps                                                                         |
| Transient Overreach:                                                                               | <5% of setting plus steady-state                                                                                                                             | Pickup Time:                              | 32 ms at 60 Hz (max)                                                                                  |
|                                                                                                    | accuracy                                                                                                                                                     | Time Delays:                              | 2.00-16,000.00 cycles, 0.25-cycle steps                                                               |
| Zones 1–4 Phase and Residual Current Fault Detectors (FD)<br>Setting Range: 0.5–100.0 A secondary, |                                                                                                                                                              | Maximum Definite-Time<br>Delay Accuracy:  | $\pm 0.25$ cycles, $\pm 1\%$ of setting at 60 Hz                                                      |
|                                                                                                    | 0.01 A steps (5 A nominal)<br>0.1–20.0 A secondary,<br>0.01 A steps (1 A nominal)                                                                            | Steady-State plus Transient<br>Overshoot: | ±0.01 Hz                                                                                              |
| Accuracy:                                                                                          | ±0.05 A and ±3% of setting<br>(5 A nominal)                                                                                                                  | Supervisory 27:                           | 20.0–150.0 V, ±5%, ±0.1 V                                                                             |
|                                                                                                    | $\pm 0.01$ A and $\pm 3\%$ of setting (1 A nominal)                                                                                                          |                                           |                                                                                                       |
| Transient Overreach:                                                                               | <5% of pickup                                                                                                                                                |                                           |                                                                                                       |
| Max. Operating Time:                                                                               | See pickup and reset time curves in <i>Section 4</i> of the Instruction Manual.                                                                              |                                           |                                                                                                       |

Undervoltage and Overvoltage Elements

#### **Metering Accuracy**

| Voltages                                      |                                                                           |
|-----------------------------------------------|---------------------------------------------------------------------------|
| $V_A, V_B, V_C, V_S, V_1, V_2, 3V_0$ :        | ±2% (33.5–150 V)                                                          |
| Currents                                      |                                                                           |
| $I_A$ , $I_B$ , $I_C$ , $I_P$ (Local):        | ±1% (0.5 to 100.0 A) (5 A nominal)<br>±1% (0.1 to 20.0 A) (1 A nominal)   |
| $I_1, 3 I_0, 3I_2$ (Local):                   | ±3% (0.25 to 100.0 A) (5 A nominal)<br>±3% (0.05 to 20.0 A) (1 A nominal) |
| $I_A, I_B, I_C, 3I_2, 3I_0, I_1$<br>(Remote): | ±3% (0.25 to 100.0 A) (5 A nominal)<br>±3% (0.05 to 20.0 A) (1 A nominal) |
| $I_A, I_B, I_C, 3I_2, 3I_0, I_1$<br>(Total):  | ±3% (0.25 to 100.0 A) (5 A nominal)<br>±3% (0.05 to 20.0 A) (1 A nominal) |
| Phase Angle Accuracy:                         | ±1°                                                                       |
| MW/MVAR:                                      | ±3%                                                                       |

#### Synchrophasor Accuracy

**Note:** Specification is with respect to **MET PM** command and SEL Fast Message Synchrophasor protocol.

| Voltages:   | 33.5–150 V; 45–65 Hz                                                       |
|-------------|----------------------------------------------------------------------------|
| Magnitudes: | ±2%                                                                        |
| Angles:     | $\pm 1.0^{\circ}$                                                          |
| Currents:   | 0.50–1.25 A; 45–65 Hz (5 A nominal)<br>0.10–0.25 A; 45–65 Hz (1 A nominal) |
| Magnitudes: | ±4%                                                                        |
| Angles:     | ±1.5° @ 25°C<br>±2.0° over the full temperature range                      |
| Currents:   | 1.25–7.50 A; 45–65 Hz (5 A nominal)<br>0.25–2.50 A; 45–65 Hz (1 A nominal) |
| Magnitudes: | ±2%                                                                        |
| Angles:     | ±1.0° @ 25°C<br>±1.5° over the full temperature range                      |

© 2001–2017 by Schweitzer Engineering Laboratories, Inc. All rights reserved.

All brand or product names appearing in this document are the trademark or registered trademark of their respective holders. No SEL trademarks may be used without written permission. SEL products appearing in this document may be covered by U.S. and Foreign patents.

Schweitzer Engineering Laboratories, Inc. reserves all rights and benefits afforded under federal and international copyright and patent laws in its products, including without limitation software, firmware, and documentation.

The information in this document is provided for informational use only and is subject to change without notice. Schweitzer Engineering Laboratories, Inc. has approved only the English language document.

This product is covered by the standard SEL 10-year warranty. For warranty details, visit selinc.com or contact your customer service representative.

#### SCHWEITZER ENGINEERING LABORATORIES, INC.

2350 NE Hopkins Court • Pullman, WA 99163-5603 U.S.A. Tel: +1.509.332.1890 • Fax: +1.509.332.7990 selinc.com • info@selinc.com







# **SEL-351A Protection System**

# Optimize Protection, Automation, and Breaker Control



SEL-351A Protection System shown with front-panel USB port and SafeLock<sup>®</sup> trip/close pushbuttons with high-visibility breaker status LEDs.

# **Major Features and Benefits**

The SEL-351A Protection System provides an exceptional package of protection, monitoring, control, and fault locating features. The SEL-351A-1 Protection System offers an economical, yet impressive feature subset of the SEL-351A. The SEL-351A-1 offers the same functionality as the SEL-351A, except without directional elements, second-harmonic blocking, synchronism checking, load-encroachment, station battery monitoring, and sensitive earth fault elements.

## **Protection Functions**

- ► Second-harmonic blocking secures relay during transformer energization (SEL-351A only).
- Phase, negative-sequence, residual-ground, and neutral-ground overcurrent elements with directional control optimize radial and looped network protection for lines and equipment. Load-encroachment logic provides additional security to distinguish between heavy load and three-phase faults.
- ► Under- and overfrequency and under- and overvoltage elements and powerful SELOGIC<sup>®</sup> control equations help implement load shedding and other control schemes.
- SELOGIC control equations permit custom programming for traditional and unique protection and control functions.
- Four levels of rate-of-change-of-frequency elements help detect rapid frequency changes to initiate load shedding or network decoupling.

## Automatic Reclosing and Synchronism Check

- > Program as many as four shots of automatic reclosing with two selectable reclose formats.
- Control reclosing schemes for trip saving or fuse saving, and inhibit reclosing for hot-line maintenance.
- > Supervise manual or automatic reclosing with synchronism-check and voltage condition logic.

## Synchrophasors

- ► Improve operator awareness of system conditions with standard IEEE C37.118-2005 Level 1 synchrophasors at as many as 60 messages per second.
- Synchronize 128 sample-per-cycle oscillography and event reports to the microsecond to reconstruct complex disturbances. Synchronize meter reports to verify proper phasing.
- ► Use the "MRI of the power system" to replace state estimation with state measurement.

## Metering and Monitoring

- Eliminate expensive, separately mounted metering devices with built-in, high-accuracy metering and harmonic metering functions.
- ► Improve maintenance scheduling using circuit breaker contact wear and substation battery voltage monitors (SEL-351A only). Record relay and external trips and total interrupted current for each pole.
- > Use alarm elements to inhibit reclosing and provide local and remote alarm indication.
- Analyze oscillographic and Sequential Events Recorder (SER) reports for rapid commissioning, testing, and post-fault diagnostics.
- ► Use unsolicited SER protocol to allow station-wide collection of binary SER messages with original time stamp for easy chronological analysis.
- Synchronize all reports with IRIG-B on the standard rear-panel BNC or on serial Port 2, from Simple Network Time Protocol (SNTP) on the standard or optional Ethernet connections, or via DNP serial or Ethernet protocols. Connect all possible time sources and the relay automatically selects the best.

## **Fault Locator**

- Reduce fault location and repair time with built-in impedance-based fault locator and faulted phase indication.
- > Efficiently dispatch line crews to quickly isolate line problems and restore service faster.

## **Operator Interface and Controls**

- > Standard target LEDs annunciate trip and status indication and fault type.
- Two-line, large font rotating LCD display provides added operator information with programmable display points.
- Optional SafeLock<sup>®</sup> trip/close pushbuttons with high-visibility breaker status LEDs eliminate expensive panel-mounted breaker control switches and position indicating lights. The breaker status LED clusters are bright and easy to see from all viewing angles.

## **Communications Protocols**

- ► Optional IEC 61850 MMS and GOOSE. As many as 6 MMS sessions, guaranteed GOOSE performance with 24 subscriptions and 8 publications.
- ► Standard Modbus<sup>®</sup> with label-based map settings (serial and Ethernet—as many as three sessions).
- ► Standard DNP3 Level 2 with label-based map settings (serial and Ethernet—as many as six sessions).
- ► IEEE C37.118-2005 synchrophasor protocol (serial and Ethernet).
- ► ASCII, SEL Fast Meter, SEL Fast Message, SEL Unsolicited SER, SEL Fast Operate, and SEL Distributed Port Switch (LMD) serial protocols are all standard.
- > Standard Telnet and integrated web server on Ethernet.
- ► Parallel redundancy protocol (when supported by hardware).

# **Communications Hardware**

Two 10/100BASE-T Ethernet ports with RJ45 connector included.

- > One or two 10/100BASE-FX Ethernet ports with LC multimode fiber-optic connectors optional.
- One 10/100BASE-T Ethernet port and one 10/100BASE-FX Ethernet port with LC multimode fiberoptic connectors optional.
- ► Front-panel high-speed USB Type-B port included.
- ► Front-panel EIA-232 DB-9 serial port included.
- ➤ Two rear-panel EIA-232 DB-9 ports included.
- > One optional rear-panel EIA-485 port with five-position compression terminal block.
- ► One optional SEL-2812-compatible fiber-optic serial port.

## Single-Phase or Three-Phase Wye- or Delta-Connected Voltage Inputs

- > Settings allow either single-phase or three-phase wye or three-phase delta voltage inputs.
- Single-phase voltage input permits phantom phase voltage for balanced three-phase metering and other limited voltage-dependent functions.
- ► The VS voltage input (SEL-351A only) can be used for either synchronism-check or broken-delta (zero-sequence) voltage connection to the relay.

## **Other Features and Options**

Table 1 SEL-351A/SEL-351A-1 Feature Comparison (Sheet 1 of 2)

| SEL-351A Features                                                                                  | Standard<br>SEL-351A | Nondirectional,<br>Three Voltage Input<br>SEL-351A-1 |
|----------------------------------------------------------------------------------------------------|----------------------|------------------------------------------------------|
| SELOGIC Control Equations                                                                          | Yes                  | Yes                                                  |
| Event Report                                                                                       | Yes                  | Yes                                                  |
| Sequential Events Recorder (SER)                                                                   | Yes                  | Yes                                                  |
| Breaker Wear and Operate Time Monitor                                                              | Yes                  | Yes                                                  |
| Station Battery Monitor                                                                            | Yes                  | No                                                   |
| DNP3 Serial LAN/WAN Outstation (Slave)                                                             | Yes                  | Yes                                                  |
| Modbus RTU and TCP                                                                                 | Yes                  | Yes                                                  |
| High-Accuracy Metering                                                                             | Yes                  | Yes                                                  |
| Remote and Local Control Switches                                                                  | Yes                  | Yes                                                  |
| Wye or Delta Voltage Connection                                                                    | Yes                  | Yes                                                  |
| Synchrophasor Measurements                                                                         | Yes                  | Yes                                                  |
| Fault Locator                                                                                      | Yes                  | Yes                                                  |
| Fast SER Protocol                                                                                  | Yes                  | Yes                                                  |
| Directional/Definite-Time Overcurrent Elements                                                     | Yes                  | No                                                   |
| Number of Residual-Ground Time-Overcurrent Elements                                                | 2                    | 1                                                    |
| Number of Frequency Elements                                                                       | 6                    | 3                                                    |
| Rate-of-Change-of-Frequency Elements                                                               | Yes                  | Yes                                                  |
| Sensitive Earth Fault Protection and Directional Protection for Various System Grounding Practices | Yes <sup>a</sup>     | No                                                   |
| Second-Harmonic Blocking                                                                           | Yes                  | No                                                   |
| Load-Encroachment Logic                                                                            | Yes                  | No                                                   |

#### Table 1 SEL-351A/SEL-351A-1 Feature Comparison (Sheet 2 of 2)

| SEL-351A Features               | Standard<br>SEL-351A | Nondirectional,<br>Three Voltage Input<br>SEL-351A-1 |
|---------------------------------|----------------------|------------------------------------------------------|
| Synchronism Check               | Yes                  | No                                                   |
| ACSELERATOR QuickSet Compatible | Yes                  | Yes                                                  |

<sup>a</sup> Ordering option.

- ► Available 750 KB of on-board storage space for ACSELERATOR QuickSet<sup>®</sup> SEL-5030 Software settings file, ACSELERATOR QuickSet design template, or anything else you choose.
- Nominal 5 A or 1 A current inputs: 5 A phase, 5 A neutral; 5 A phase, 1 A neutral; 1 A phase, 1 A neutral; 0.05 A neutral for nondirectional sensitive earth fault (SEF) protection (SEL-351A only); or 0.2 A neutral for directional ground protection on low-impedance grounded, ungrounded, high-impedance grounded, and Petersen Coil grounded systems (SEL-351A only).

**Note:** The 0.2 A nominal channel can also provide nondirectional SEF protection. The 0.05 A nominal neutral channel IN option is a legacy nondirectional SEF option.

# **Functional Overview**

*Figure 1* shows the device numbers associated with the protection and control functions available on the SEL-351A Protection System, along with a list of the standard and optional monitoring and communications features.





# **Applications**

The SEL-351A Protection System has many power system protection, monitoring, and control applications. Figure 2 shows some of the typical protection applications that are well suited for the SEL-351A. The SEL-351A directional and nondirectional overcurrent functions can be used to protect virtually any power system circuit or device including lines, feeders, breakers, transformers, capacitor banks, reactors, and generators. Special relay versions can be ordered on the SEL-351A to provide nondirectional sensitive ground fault protection on high-impedance grounded systems, and directional overprotection ground fault protection on ungrounded, high-impedance grounded and tuned reactance (Petersen Coil) grounded systems.

Over/underfrequency, over/undervoltage, rate-of-changeof-frequency and synchronism-check elements (SEL-351A only) are well suited for applications at distributed generation sites. Directional power elements in the SEL-351A model also make the relay suitable for utility/customer interface protection where customer generation is present.

Powerful SELOGIC control equations in the SEL-351A Protection System can be used to provide custom protection and control applications. SEL Application Guides and technical support personnel are available to help with many unique applications.



Figure 2 SEL-351A Protection Systems Applied Throughout the Power System

5

## **Overcurrent Elements**

The SEL-351A includes numerous phase, negative-sequence, residual-ground, and neutral overcurrent elements, as shown in *Table 2*.

| Table 2 | SEL-351A Phase, | Negative-Sequence,   | Residual-Ground, | and Neutral | <b>Overcurrent Elements</b> |
|---------|-----------------|----------------------|------------------|-------------|-----------------------------|
|         | SEE SSIA I Huse | incgutive bequeileer | nesidual oroanaj | and nearing | overcallent Elements        |

| Overcurrent Element<br>Operating Quantity         | Number of Elements                            | Directional Control | Torque Control  | Definite-Time Delay |  |
|---------------------------------------------------|-----------------------------------------------|---------------------|-----------------|---------------------|--|
| Maximum phase current                             | 1 inverse-time (51P)                          | Yes                 | Yes             | NA                  |  |
| (IA, IB, or IC)                                   | 6 instantaneous (50P1–50P6)                   | Yes, on first 4     | Yes, on first 4 | Yes, on first 4     |  |
| Maximum phase-phase current<br>(IAB, IBC, or ICA) | 4 instantaneous (50PP1–50PP4) No              |                     | No              | No                  |  |
| Independent phase current                         | 3 inverse-time (51A, 51B, 51C)                | Yes                 | Yes             | NA                  |  |
| Residual-ground current (3I0)                     | 2 inverse-time (51G, 51G2)                    | Yes                 | Yes             | NA                  |  |
|                                                   | 6 instantaneous (50G1–50G6)                   | Yes, on first 4     | Yes, on first 4 | Yes, on first 4     |  |
| Negative-sequence current (3I2)                   | e-sequence current (3I2) 1 inverse-time (51Q) |                     | Yes             | NA                  |  |
|                                                   | 6 instantaneous (50Q1–50Q6) Y                 |                     | Yes, on first 4 | Yes, on first 4     |  |
| Neutral current (IN)                              | 1 inverse-time (51N)                          | Yes                 | Yes             | NA                  |  |
|                                                   | 6 instantaneous (50N1–50N6)                   | Yes, on first 4     | Yes, on first 4 | Yes, on first 4     |  |

Inverse-time overcurrent element settings include a wide and continuous pickup current range, continuous timedial setting range, and time-current curve choices from both US (IEEE) and IEC standard curves shown in *Table 3*.

| Table 3 | Inverse | <b>Time-Overcurrent</b> | Curves |
|---------|---------|-------------------------|--------|
|---------|---------|-------------------------|--------|

| IEEE                    | IEC                     |
|-------------------------|-------------------------|
| Moderately Inverse (U1) | Standard Inverse (C1)   |
| Inverse (U2)            | Very Inverse (C2)       |
| Very Inverse (U3)       | Extremely Inverse (C3)  |
| Extremely Inverse (U4)  | Long-Time Inverse (C4)  |
| Short-Time Inverse (U5) | Short-Time Inverse (C5) |

Use multiple inverse curves to coordinate with downstream reclose fast and delay curves. Sequence coordination logic is also included to provide coordination between fast and delayed curves on the SEL-351A and downstream reclosers. *Figure 3* represents an SEL-351A coordinated to a downstream SEL-351R Recloser Control. Inverse-time relay curve settings include a wide and continuous pickup current and time-dial (vertical multiplier) range.



Figure 3 Coordinate Overcurrent Protective Devices

The SEL-351A Protection System inverse-time overcurrent relay curve settings offer two reset characteristic choices for each element. Setting EM Reset Delay = Y emulates electromechanical induction disc elements, where the reset time depends on the time-dial setting, the percentage of disc travel, and the amount of current. Setting EM Reset Delay = N resets the elements immediately if current drops below pickup for at least one cycle.

## Overcurrent Elements for Phase Fault Detection

The SEL-351A Protection System provides the tools necessary to provide sensitive fault protection, yet accommodate heavily loaded circuits. Where heavy loading prevents the phase overcurrent elements from being set sufficiently sensitive to detect lower magnitude phase-to-ground faults, residual-ground overcurrent elements are available to provide sensitive ground fault protection without tripping under balanced heavy load conditions. Likewise, when heavy loading prevents the phase overcurrent elements from being set sufficiently sensitive to detect lower magnitude phase-to-phase faults, negative-sequence overcurrent elements are available to provide more sensitive phase-to-phase fault detection without tripping under balanced heavy load conditions. Phase overcurrent element pickup can be set high to accommodate heavy load, yet remain sensitive to higher magnitude three-phase faults. Block any element during transformer inrush with programmable secondharmonic blocking (SEL-351A only).

On extremely heavily loaded feeders, when phase overcurrent elements cannot be set to provide adequate three-phase fault sensitivity and also accommodate load, the SEL-351A load-encroachment logic (not available in the SEL-351A-1) adds security. This logic allows you to set the phase overcurrent elements below peak load current to see end-of-line phase faults in heavily loaded feeder applications. This load-encroachment logic uses positive-sequence load-in and load-out elements to discriminate between load and fault conditions based on the magnitude and angle of the positive-sequence impedance (Figure 4). When the measured positivesequence load impedance (Z1) resides in a region defined by the load-encroachment settings, loadencroachment logic blocks the phase overcurrent elements. As Figure 4 shows, when a phase fault occurs, Z1 moves from a load region to the line angle and allows the phase overcurrent elements to operate.



Figure 4 Load-Encroachment Characteristics

Residual-ground  $(I_G)$  and neutral  $(I_N)$  overcurrent elements detect ground faults. Increase security by controlling these elements using optoisolated inputs or the internal ground directional element. The SEL-351A Protection System includes patented Best Choice Ground Directional Element<sup>®</sup> logic, providing a selection of negative-sequence impedance, zero-sequence impedance, and zero-sequence current polarizing techniques for optimum directional ground element control.

#### Connect a Single-Phase Voltage Input or a Three-Phase Voltage With Wye or Open-Delta Connected Potential Transformers

With a single-phase voltage input connected, the SEL-351A Protection System creates phantom phase voltages to emulate balanced three-phase voltages for metering. The single-phase voltage must be connected to VA and N, as shown in *Figure 5*, but can come from any phase or phase-to-phase voltage source. Make Global setting PTCONN = SINGLE and set PHANTV to the desired phase or phase-to-phase voltage to identify the single-phase voltage source for proper metering. Single-phase voltage input also permits some voltage-dependent protection functions, including fault locating, are not available with only single-phase voltage connected.

Three-phase voltages from either wye-connected (fourwire) or open-delta-connected (three-wire) sources can be applied to three-phase voltage inputs VA, VB, VC, and N, as shown in *Figure 5*. You only need to make a Global setting (PTCONN = WYE or PTCONN = DELTA, respectively) and an external wiring change no internal relay hardware changes or adjustments are required. Three-phase, wye-connected voltage inputs permit full use of voltage-dependent protection functions. Some limitations exist with delta-connected voltage inputs. See *Table 4* for more details.

| Voltage-Dependent                                          | Voltage Source   |                     |                       |  |  |  |  |
|------------------------------------------------------------|------------------|---------------------|-----------------------|--|--|--|--|
| Protection<br>Functions                                    | Single-<br>phase | Three-<br>phase wye | Three-<br>phase delta |  |  |  |  |
| Phase<br>Over/Undervoltage                                 | Yes              | Yes                 | No                    |  |  |  |  |
| Phase-to-Phase<br>Over/Undervoltage                        | No               | Yes                 | Yes                   |  |  |  |  |
| Sequence<br>Over/Undervoltage                              | No               | Yes                 | Positive and negative |  |  |  |  |
| Over/Underfrequency                                        | Yes              | Yes                 | Yes                   |  |  |  |  |
| Load Encroachment                                          | No               | Yes                 | Yes                   |  |  |  |  |
| Phase and Negative-<br>Sequence Directional<br>Overcurrent | No               | Yes                 | Yes                   |  |  |  |  |
| Ground Directional<br>Overcurrent                          | Yes <sup>a</sup> | Yes                 | Yes                   |  |  |  |  |
| Communications-<br>Assisted Trip Logic                     | No               | Yes                 | Yes                   |  |  |  |  |
| Loss-of-Potential                                          | No               | Yes                 | Yes                   |  |  |  |  |

Table 4 Voltage-Dependent Protection Function

Availability Based on Voltage Source Connection

a Requires 3IO current polarization on IN, or 3VO voltage

polarization on VS input.



A single-phase voltage can be connected to provide phantom three-phase voltages for metering.

Figure 5 Connect Wye or Open-Delta Voltage to SEL-351A Three-Phase Voltage Inputs or Connect any Single-Phase or Phase-to-Phase Voltage to VA and N

#### Connect to Synchronism-Check or Broken-Delta Voltage (SEL-351A Only)

Traditionally, single-phase voltage (phase-to-neutral or phase-to-phase) is connected to voltage input VS/NS for synchronism check across a circuit breaker (or hot/dead-line check), as shown in *Figure 22*.

Alternatively, voltage input VS/NS can be connected to a broken-delta voltage source, as shown in *Figure 6*. This broken-delta connection provides a zero-sequence voltage source (3V0)—useful when zero-sequence voltage is not available via the three-phase voltage inputs VA, VB, VC, and N, (e.g., when open-delta-connected voltage is applied to the three-phase voltage inputs—see *Figure 5*). Zero-sequence voltage is used in zero-sequence voltage-polarized ground directional elements and in the directional protection for Petersen Coil grounded systems.

Choosing between synchronism-check or broken-delta (3V0) voltage source operation for voltage input VS/NS requires only a Global setting (VSCONN = VS or VSCONN = 3V0, respectively) and an external wiring change—no internal relay hardware changes or adjustments are required. Therefore, a single SEL-351A model can be used in either traditional synchronism-check applications or broken-delta voltage applications.



Figure 6 Broken-Delta Connection to SEL-351A Voltage Input VS/NS

#### Directional Elements Increase Sensitivity and Security (SEL-351A Only)

Phase and ground directional elements are standard. An automatic setting mode (E32 = AUTO) sets all directional threshold settings based on replica positive-sequence and zero-sequence line impedance settings (Z1MAG, Z1ANG, Z0MAG, and Z0ANG) for line protection applications. For all non-line protection applications, set E32 = Y to enable and set appropriate directional element thresholds.

Phase directional elements provide directional control to the phase- and negative-sequence overcurrent elements. Phase directional characteristics include positivesequence and negative-sequence directional elements that work together. The positive-sequence directional element memory provides a reliable output for close-in, forward or reverse three-phase faults where each phase voltage is zero.

Ground directional elements provide directional control to the residual-ground and neutral overcurrent elements. The patented negative-sequence and zero-sequence impedance directional elements and the zero-sequence current directional element use the same principles proven in our SEL transmission line relays. Our patented Best Choice Ground Directional Element logic selects the optimum ground directional element based on the ORDER setting you provide.

#### Directional Protection for Various System Grounding Practices (SEL-351A Only)

Current channel IN, ordered with an optional 0.2 A secondary nominal rating, provides directional ground protection for the following systems:

- Ungrounded systems
- ► High-impedance grounded systems
- Petersen Coil grounded systems
- ► Low-impedance grounded systems

This optional directional control allows the faulted feeder to be identified on a multifeeder bus, with an SEL-351A on each feeder (*Figure 7*). Alarm or trip for the ground fault condition with sensitivity down to 5 mA secondary.



Figure 7 Apply SEL-351A Relays to Petersen Coil Grounded, Impedance-Grounded, and Ungrounded Systems for Directional Control

#### Loss-of-Potential Logic (SEL-351A Only) Supervises Directional Elements

Voltage-polarized directional elements rely on valid input voltages to make correct decisions. The SEL-351A includes loss-of-potential (LOP) logic that detects one, two, or three blown potential fuses. For an LOP condition, you can chose to disable all directional elements (set ELOP = Y), disable all reverse directional elements and enable forward directional elements as nondirectional (set ELOP = Y1), or chose not to affect the directional element operation with LOP logic (set ELOP = N).

This patented LOP logic is unique, as it does not require settings and is universally applicable. The LOP logic does not monitor the VS voltage input, nor does it affect zero-sequence voltage-polarized ground directional elements when a broken-delta 3V0 voltage source is connected to the VS-NS terminals. The LOP logic is not available when only single-phase voltage is applied to the relay.

## Programmable Torque-Control Feature Handles Cold-Load Energization (SEL-351A Only)

When a feeder is re-energized following a prolonged outage, lost load diversity causes large phase currents (cold-load inrush). Avoid phase overcurrent element misoperation during cold-load inrush by programming cold-load block elements into the phase overcurrent element torque controls. One example of a cold-load block element is a time-delayed 52 status (long timedelay pickup and dropout timer with 52 as the input). An alternative is to detect the long outage condition (breaker open) automatically, and temporarily switch to a setting group with higher phase overcurrent element pickup thresholds.

#### Harmonic Blocking Elements Secure Protection During Transformer Energization (SEL-351A Only)

Transformer inrush can cause sensitive protection to operate. Use the second-harmonic blocking feature to detect an inrush condition and block selected tripping elements until the inrush subsides. Select the blocking threshold as a percentage of fundamental current, and optimize security and dependability with settable pickup and dropout times. Use the programmable torque-control equation to only enable the blocking element immediately after closing the beaker.

## Voltage and Frequency Elements for Extra Protection and Control

#### Under/Overvoltage Elements

Phase (wye-connected and single-phase only) or phaseto-phase and single-phase undervoltage (27) and overvoltage (59) elements in the SEL-351A create the following protection and control schemes:

- ► Torque control for the overcurrent protection
- ► Hot-bus (line), dead-bus (line) recloser control
- ► Blown transformer high-side fuse detection logic
- Trip/alarm or event report triggers for voltage sags and swells
- ► Undervoltage (27) load shedding scheme. Having both 27 and 81U load shedding schemes allows detection of system MVAR- and MW-deficient conditions.
- ► Control schemes for capacitor banks

Use the following undervoltage and overvoltage elements, associated with the  $V_S$  voltage channel, for additional control and monitoring:

- ► Hot-line/dead-line recloser control
- ► Ungrounded capacitor neutrals
- ► Ground fault detection on delta systems
- ► Generator neutral overvoltage
- ► Broken-delta zero-sequence voltage (see *Figure 6*)

#### Sequence Voltage Elements

Independently set positive-, negative-, and zero-sequence voltage elements provide protection and control. Applications include transformer bank single-phase trip schemes and delta-load back-feed detection scheme for dead-line recloser control. Note that zero-sequence elements are not available when the relay is delta connected, and no sequence elements are available when only single-phase voltage is connected.

#### **Under/Overfrequency Protection**

Six (three in the SEL-351A-1) levels of secure under-(81U) or overfrequency (81O) elements detect true frequency disturbances. Use the independently timedelayed output of these elements to shed load or trip local generation. Phase undervoltage supervision prevents undesired frequency element operation during faults.

Implement an internal multistage frequency trip/restore scheme at each breaker location using the multiple under/overfrequency levels. This avoids the cost of wiring a complicated trip and control scheme from a separate frequency relay.

#### Rate-of-Change-of-Frequency Protection

Four independent rate-of-change-of-frequency elements are provided with individual time delays for use when frequency changes occur, such as when there is a sudden

# **Operator Controls and Reclosing**

## Optional SafeLock Trip/Close Pushbuttons and Indicating LEDs

Optional SafeLock trip/close pushbuttons (see *Figure 8*) and bright indicating LEDs allow breaker control independent of the relay. The trip/close pushbuttons are electrically separate from the relay, operating even if the relay is powered down. Make the extra connections at terminals **Z15** through **Z22**. See *Figure 23* through *Figure 26* for front-panel and rear-panel views. *Figure 9* shows one possible set of connections.

The trip/close pushbuttons incorporate an arc suppression circuit for interrupting dc trip or close current to protect the internal electrical contacts. To use these pushbuttons with ac trip or close circuits, disable the arc suppression for either pushbutton by changing jumpers inside the SEL-351A. The operating voltage ranges of the BREAKER CLOSED and BREAKER OPEN indicating LEDs are also jumper selectable.



Figure 8 SafeLock Trip/Close Pushbuttons and Indicators

**Note:** The SafeLock trip/close pushbuttons and breaker status LEDs always have configurable labels. Dashed lines outline the configurable label area where text can be changed.

imbalance between generation and load. They call for control action or switching action such as network

decoupling or load shedding. Each element includes

logic to detect either increasing or decreasing frequency.



Figure 9 Optional SafeLock Trip/Close Pushbuttons and Indicating LEDs

#### Local and Remote Control

Under certain operating conditions, such as performing distribution feeder switching, it is desirable to temporarily disable ground fault protection. This is accomplished in a variety of ways using SELOGIC control equations with local and remote control. As shown in *Figure 10*, achieve remote disable/enable control using an optoisolated input or the serial communications port. The local control switch function handles local disable/enable control. Output contacts, serial ports and the local LCD display points indicate ground relay operating status. Local and remote control capabilities require programming SELOGIC control equations.



Figure 10 Local and Remote Control Using SELOGIC Control Equations (ground relay example)

## **Programmable Autoreclosing**

The SEL-351A autoreclose flexibility allows many different reclosing strategies to meet traditional and custom requirements. Traditional applications include sequence coordination, fuse-saving, and trip-saving schemes. The SEL-351A can autoreclose a circuit breaker as many as four times before lockout. Use SELOGIC control equations to enable and disable reclosing, define reclose initiation and supervision conditions, shot counter advance and drive-to-lockout conditions, close supervision and close failure conditions, and open interval timer start and stall conditions. Separate time delays are available for reset-from-successful-reclose and reset-from-lockout conditions. The reset timer can be stalled if the relay detects an overcurrent condition after the breaker closes to prevent the recloser from resetting before the relay trips on a permanent slow-clearing fault.

Program the SEL-351A to perform unconditional reclose, conditional reclose using voltage check and synchrocheck functions, and even autosynchronizing when the two systems are asynchronous. Select from two recloser supervision failure modes: one drives to lockout, the other advances to the next available shot. The front-panel LEDs (**RESET, CYCLE**, and **LOCKOUT**) track the recloser state.

# **Relay and Logic Settings Software**



Figure 11 ACSELERATOR QuickSet Software Screen

The ACSELERATOR QuickSet software program uses the Microsoft<sup>®</sup> Windows<sup>®</sup> operating system to simplify settings and provide analysis support for the SEL-351A.

Use ACSELERATOR QuickSet to create and manage relay settings and analyze events:

- Develop settings off-line with an intelligent settings editor that only allows valid settings.
- Create SELOGIC control equations with a drag and drop graphical editor and/or text editor.

- ► Use online help to assist with configuring proper settings.
- ► Organize settings with the relay database manager.
- Load and retrieve settings using a simple PC communications link.
- ➤ Enter settings into a settings template generated with licensed versions of SEL ACSELERATOR QuickSet. Send resulting settings and the template to the relay with a single action. When reading settings from the relay, ACSELERATOR QuickSet also retrieves the template and compares the settings generated by the template to those in use by the relay, alerting you to any differences.
- ➤ Analyze power system events with the integrated waveform and harmonic analysis tools.

Use ACSELERATOR QuickSet to aid with monitoring, commissioning, and testing the SEL-351A:

- ➤ Use the human-machine interface (HMI) to monitor meter data, Relay Word bits, and output contacts status during testing.
- ➤ Use the PC interface to remotely retrieve breaker wear, voltage sag/swell/interruption reports, and other power system data.

An embedded web server is included in every SEL-351A relay. Browse to the relay with any standard web browser to safely read settings, verify relay self-test status, inspect meter reports, and read relay configuration and event history. The web server allows no control or modification actions at Access Level 1 (ACC), so users can be confident that an inadvertent button press will have no adverse effects. *Figure 12* shows an example of a settings display web page.

The web server allows users with the appropriate engineering access level (2AC) to upgrade the firmware over an Ethernet connection. An Ethernet port setting enables or disables this feature, with the option of requiring front-panel confirmation when the file is completely uploaded.

The SEL-351A firmware files contain cryptographic signatures that enable the SEL-351A to recognize official SEL firmware. A digital signature, computed using the Secure Hash Algorithm 1 (SHA-1), is appended to the compressed firmware file. Once the firmware is fully uploaded to the relay, the relay verifies the signature using a Digital Signature Algorithm security key that SEL stored on the device. If the signature is valid, the firmware is upgraded in the relay. If the relay cannot verify the signature, it reverts back to the previously installed firmware.

| • 192.168.1.2/protec  | ted/N_z0I-yJB_d0 | IIFQbj2j7-k1sh        | o1.html        |                     | .∀`             | C Q Search          |                 |            | Ê.   | ₽ <b>^</b> | 0               |              |
|-----------------------|------------------|-----------------------|----------------|---------------------|-----------------|---------------------|-----------------|------------|------|------------|-----------------|--------------|
| FEEDER 1<br>STATION A |                  |                       |                |                     |                 |                     |                 |            | Fri, | Dec 19,    | 2014 0<br>2AC [ | )9:0<br>Logo |
| leter                 | SEL-351          | A Group 1 S           | ettings        | (SHO 1)             |                 |                     |                 |            |      |            |                 |              |
| eports                | Group 1          | and the second second |                |                     |                 |                     |                 |            |      |            |                 |              |
| elay Status           | Group S          | ettings:              |                |                     | TTO             | -STATION A          |                 |            |      |            |                 |              |
| ettings               | CTR              | = 120                 | CTRN           | = 120               | PTR             | = 180.00            | PTRS            | = 180.00   |      |            |                 |              |
| Global                | Z1MAG            | = 67.00<br>= 2.14     | ZIANG          | = 68.86             | ZOMAG           | = 6.38              | ZOANG           | = 72.47    |      |            |                 |              |
| Group                 | LL<br>ESOP       | = 4.84<br>= 1         | ESON           | = N                 | ESOG            | = N                 | E500            | = N        |      |            |                 |              |
| Group 1 - Active      | E51P             | = 1                   | E51N           | = N                 | E51G            | = 1                 | E510            | = N        |      |            |                 |              |
| Group 2               | EVOLT            | = N                   | E25            | = N                 | EFLOC           | = Y                 | ELOP            | = N        |      |            |                 |              |
| Group 3               | E81<br>EDEM      | = N<br>= THM          | E81R           | = N                 | E79             | = 1                 | ESV             | = 1        |      |            |                 |              |
| Group 4               | 50P1P<br>67P1D   | = 15.00               |                |                     |                 |                     |                 |            |      |            |                 |              |
| Group 5               | 50PP1P           | = OFF                 |                |                     |                 |                     |                 | 1.4        |      |            |                 |              |
| Group 6               | 51GP             | = 6.00                | 51PC<br>51GC   | = U3<br>= U3        | 51PTD<br>51GTD  | = 3.00              | 51PRS<br>51GRS  | = N<br>= N |      |            |                 |              |
|                       | 790I1<br>DMTC    | = 300.00<br>= 5       | 79RSD<br>PDEMP | = 1800.00<br>= 5.00 | 79RSLD<br>NDEMP | = 300.00<br>= 1.500 | 79CLSD<br>GDEMP | = 0.00     |      |            |                 |              |
| Logic                 | QDEMP            | = 1.50                | CED            |                     | 2000            | - 1.50              | COL P           | - 0.25     |      |            |                 |              |
| Report                | SV1PU            | = 12.00               | SV1D0          | = 2.00              | SPUD            | = 1.50              | SULP            | = 0.25     |      |            |                 |              |
| Port                  |                  |                       |                |                     |                 |                     |                 |            |      |            |                 |              |
| vstem                 |                  |                       |                |                     |                 |                     |                 |            |      |            |                 |              |

Figure 12 Settings Display Web Page

# **Metering and Monitoring**

| Quantities                                              | Description                                                                      |
|---------------------------------------------------------|----------------------------------------------------------------------------------|
| Currents I <sub>A,B,C,N</sub> , I <sub>G</sub>          | Input currents, residual-ground current ( $I_G = 3I_0 = I_A + I_B + I_C$ ).      |
| Voltages V <sub>A,B,C</sub>                             | Wye-connected and single-phase voltage inputs.                                   |
| Voltages V <sub>AB,BC,CA</sub>                          | Delta-connected voltage inputs, or calculated from wye-connected voltage inputs. |
| Voltage V <sub>S</sub>                                  | Synchronism-check or broken-delta voltage input.                                 |
| Harmonics and THD                                       | Current and voltage rms, THD, and harmonics to the 16th harmonic.                |
| Power MW <sub>A,B,C,3P</sub> , MVAR <sub>A,B,C,3P</sub> | Single- <sup>b</sup> and three-phase megawatts and megavars.                     |

Table 5 Metering Capabilities<sup>a</sup> (Sheet 2 of 2)

| Quantities                                                                  | Description                                                                 |
|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| Energy MWh <sub>A,B,C,3P</sub> MVARh <sub>A,B,C,3P</sub>                    | Single- <sup>b</sup> and three-phase megawatt-hours and megavar-hours.      |
| Power Factor PF <sub>A,B,C,3P</sub>                                         | Single- <sup>b</sup> and three-phase power factor; leading or lagging.      |
| Sequence $I_1, 3I_2, 3I_0, V_1, V_2, 3V_0$                                  | Positive-, negative-, and zero-sequence currents and voltages. <sup>c</sup> |
| Frequency, FREQ (Hz)                                                        | Instantaneous power system frequency (monitored on channel VA).             |
| Power Supply Vdc                                                            | Battery voltage (not available in SEL-351A-1)                               |
| Demand and Peak Current, $I_{A,B,C,N,G}$ , $3I_2$                           | Phase, neutral, ground, and negative-sequence currents                      |
| Demand and Peak Power, MW <sub>A,B,C,3P</sub> ,<br>MVAR <sub>A,B,C,3P</sub> | Single- and three-phase megawatts and megavars, in and out                  |

<sup>a</sup> If single-phase or true three-phase voltage is not connected, voltage, MW/MVAR, MWh/MVARh, and power factor metering values are not available. With single-phase voltage connected and Global setting PTCONN = SINGLE, the relay measures the single-phase voltage and calculates other phase voltages and power measurements assuming balanced three-phase voltage.

Note that single-phase power, energy, and power factor quantities are not available when delta-connected PTs are used.

<sup>c</sup> Sequence voltages are not metered with only single-phase voltage connected and Global setting PTCONN = SINGLE.

## **Complete Metering Capabilities**

The SEL-351A provides extensive and accurate metering capabilities. See Specifications on page 26 for metering and power measurement accuracies.

As shown in Table 5, metered quantities include phase voltages and currents (including demand currents); sequence voltages and currents; power (including

=>MET H <Enter>

demand), frequency, and energy; and maximum/minimum logging of selected quantities. The relay reports all metered quantities in primary quantities (current in A primary and voltage in kV primary).

The SEL-351A also includes harmonic meters, Total Harmonic Distortion (THD), and rms metering through the 16th harmonic.

| FEEDER 1 Date: 11/13/09 Time: 13:19:22.102<br>STATION A |      |                  |       |       | 02                |       |       |       |       |
|---------------------------------------------------------|------|------------------|-------|-------|-------------------|-------|-------|-------|-------|
|                                                         |      | Currents (A pri) |       |       | Voltages (kV pri) |       |       |       |       |
|                                                         |      | IA               | IB '  | ÍIC   | IN                | VA    | VB .  | ýc    | VS    |
| THD                                                     | (%)  | 19               | 22    | 11    | 0                 | 2     | 4     | 2     | 2     |
| RMS                                                     | . ,  | 35.40            | 41.79 | 38.60 | 0.00              | 21.61 | 21.54 | 21.50 | 21.50 |
| Fund                                                    | ۱.   | 34.77            | 40.80 | 38.35 | 0.00              | 21.60 | 21.52 | 21.50 | 21.50 |
| Harm                                                    | onic |                  |       |       |                   |       |       |       |       |
| 2                                                       | (%)  | 0                | 0     | 0     | 0                 | 0     | 0     | 0     | 0     |
| 3                                                       | (%)  | 7                | 14    | 4     | 0                 | 0     | 4     | 0     | 0     |
| 4                                                       | (%)  | 0                | 0     | 0     | 0                 | 0     | 0     | 0     | 0     |
| 5                                                       | (%)  | 3                | 12    | 6     | 0                 | 2     | 0     | 0     | 0     |
| 6                                                       | (%)  | 0                | 0     | 0     | 0                 | 0     | 0     | 0     | 0     |
| 7                                                       | (%)  | 13               | 4     | 2     | 0                 | 0     | 0     | 2     | 2     |
| 8                                                       | (%)  | 0                | 0     | 0     | 0                 | 0     | 0     | 0     | 0     |
| 9                                                       | (%)  | 5                | 6     | 4     | 0                 | 0     | 0     | 0     | 0     |
| 10                                                      | (%)  | 0                | 0     | 2     | 0                 | 0     | 0     | 0     | 0     |
| 11                                                      | (%)  | 6                | 6     | 0     | 0                 | 0     | 0     | 0     | 0     |
| 12                                                      | (%)  | 0                | 0     | 0     | 0                 | 0     | 0     | 0     | 0     |
| 13                                                      | (%)  | 3                | 3     | 6     | 0                 | 0     | 0     | 0     | 0     |
| 14                                                      | (%)  | 0                | 0     | 0     | 0                 | 0     | 0     | 0     | 0     |
| 15                                                      | (%)  | 2                | 3     | 0     | 0                 | 0     | 0     | 0     | 0     |
| 16                                                      | (%)  | 8                | 4     | 0     | 0                 | 0     | 0     | 0     | 0     |
| =>                                                      |      |                  |       |       |                   |       |       |       |       |

#### **Event Reporting and** Sequential Events Recorder (SER)

Event Reports and the SER simplify post-fault analysis and improve understanding of simple and complex protective scheme operations. In response to a userselected trigger, the voltage, current, frequency, and element status information contained in each event report confirms relay, scheme, and system performance for every fault. The Global setting LER determines if the relay stores 15-cycle, 30-cycle, or 60-cycle event reports. The relay stores the most recent eleven 60-cycle, twentythree 30-cycle, or forty-four 15-cycle event reports in nonvolatile memory; a total of 11 seconds of oscillography. The relay always appends relay settings to the bottom of each event report.

The following event report formats are available:

- ► 1/4-cycle, 1/16-cycle, 1/32-cycle, or 1/128-cycle resolution
- ► Unfiltered or filtered analog
- ► ASCII or Compressed ASCII

The relay SER feature stores the latest 1024 entries. Use this feature to gain a broad perspective at a glance. An SER entry helps to monitor input/output change-of-state occurrences, element pickup/dropout, and recloser state changes.

The IRIG-B time-code input synchronizes the SEL-351A time to within 1 ms of the time-source input. A convenient source for this time code is an SEL communications processor (combining data and IRIG signals via Serial Port 2 on the SEL-351A) or an SEL GPS clock connected to the high-accuracy BNC IRIG-B connector on the SEL-351A rear panel. The optional SEL-2812-compatible fiber-optic serial port is also an IRIG-B source when paired with a compatible serial transceiver that transmits IRIG-B.

#### Synchrophasor Measurements

Send synchrophasor data using IEEE C37.118-2005 protocol to SEL synchrophasor applications. These include the SEL-3306 Synchrophasor Processor,

SEL-3378 Synchrophasor Vector Processor (SVP),

SEL-3530 Real-Time Automation Controller (RTAC), and the SEL SYNCHROWAVE<sup>®</sup> Central software suite. The SEL-3306 Synchrophasor Processor time correlates data from multiple SEL-351A relays and concentrates the result into a single output data stream. The SEL-3378 SVP enables control applications based on synchrophasors. Directly measure the oscillation modes of your power system. Act on the result. Properly control islanding of distributed generation using wide-area phase angle slip and acceleration measurements. With the SVP you have the power to customize synchrophasor control application based on the unique requirements of your power system. Then use SEL SYNCHROWAVE software to archive and display wide-area system measurements, which are precisely time-aligned using synchrophasor technology.

The data rate of SEL-351A synchrophasors is selectable with a range of one to sixty messages per second. This flexibility is important for efficient use of communications capacity. The SEL-351A phasor measurement accuracy meets the highest IEEE C37.118-2005 Level 1 requirement of 1 percent total vector error (TVE). This means you can use the low-cost SEL-351A in any application that otherwise would have required purchasing a separate dedicated phasor measurement unit (PMU).

Backward compatibility with the SEL Fast Message Protocol is maintained in the SEL-351A. Send data from one message per second to slower rates such as one message per minute using this protocol. The slow data rates are useful for integration into an existing SCADA scan rate. Use with the SEL communications processors, or the SEL-3530 RTAC, to change nonlinear state estimation into linear state estimation. If all necessary lines include synchrophasor measurements then state estimation is no longer necessary. The system state is directly measured.



Figure 13 Synchrophasor Measurements Turn State Estimation Into State Measurement

#### Improve Situational Awareness

Provide improved information to system operators. Advanced synchrophasor-based tools provide a real-time view of system conditions. Use system trends, alarm points, and preprogrammed responses to help operators prevent a cascading system collapse and maximize system stability. Awareness of system trends provides operators with an understanding of future values based on measured data.



#### Figure 14 Visualization of Phase Angle Measurements Across a Power System

- Increase system loading while maintaining adequate stability margins.
- Improve operator response to system contingencies such as overload conditions, transmission outages, or generator shutdown.
- ► Advance system knowledge with correlated event reporting and real-time system visualization.
- Validate planning studies to improve system load balance and station optimization.



Figure 15 SEL-5078-2 SYNCHROWAVE Console Real-Time, Wide-Area Visualization Tool

## **Demand Current Threshold Alarm**

Use overload and unbalanced current threshold alarms for phase, negative-sequence, neutral, and residual demand currents.

Two types of demand-measuring techniques are offered: thermal and rolling.

Select the demand ammeter time constant from 5 to 60 minutes.

#### Circuit Breaker Operate Time and Contact Wear Monitor

Circuit breakers experience mechanical and electrical wear every time they operate. Intelligent scheduling of breaker maintenance takes into account manufacturer's published data of contact wear versus interruption levels and operation count. With the breaker manufacturer's maintenance curve as input data, the SEL-351A breaker monitor feature compares this input data to the measured (unfiltered) ac current at the time of trip and the number of close to open operations.

Every time the breaker trips, it integrates the measured current information. When the result of this integration exceeds the breaker wear curve threshold (*Figure 16*) the

relay alarms via output contact, serial port, or front-panel display. This kind of information allows timely and economical scheduling of breaker maintenance.



Figure 16 Breaker Contact Wear Curve and Settings

The relay monitors and records electrical and mechanical breaker operate times and minimum dc voltage for open and close operations. Use the settable alarm thresholds to issue warning alarms for slow mechanical or electrical trip or close operations. Inspect reports for the most recent operation, or gather trending data for as many as 128 previous operations. Retrieve breaker monitor reports through FTP or Manufacturing Message Specification (MMS) file transfer.

#### Substation Battery Monitor (SEL-351A Only)

The SEL-351A measures and reports the substation battery voltage connected to the power supply terminals. The relay includes two programmable threshold comparators and associated logic for alarm and control. For example, if the battery charger fails, the measured dc falls below a programmable threshold. The SEL-351A alarms operations personnel before the substation battery voltage falls to unacceptable levels. Monitor these thresholds with SEL communications processors and trigger messages, telephone calls, or other actions.

The measured dc voltage appears in the METER display and the VDC column of the event report. Use the event report column data to see an oscillographic display of the battery voltage. You can see how much the substation battery voltage drops during trip, close, and other control operations.

# **Fault Locator**

The SEL-351A provides a valuable estimate of fault location even during periods of substantial load flow. The fault locator uses fault type, replica line impedance settings, and fault conditions to calculate fault location without communications channels, special instrument transformers, or prefault information. This feature contributes to efficient dispatch of line crews and fast restoration of service. The fault locator requires three-phase

# Automation

## **Flexible Control Logic** and Integration Features

The SEL-351A Protection System is equipped with two 10/100BASE-T Ethernet ports on the rear panel, a frontpanel USB port, and three independently-operated serial ports: one EIA-232 serial port on the front panel and two EIA-232 serial ports on the rear panel. Communications port ordering options include replacing the standard metallic Ethernet port with a 100BASE-FX optical Ethernet port, dual-redundant 100BASE-FX optical Ethernet ports, or with one 10/100BASE-T metallic and one 100BASE-FX fiber port. Additional options include an isolated EIA-485 rear-panel port or SEL-2812-compatible rear-panel fiber-optic port. The USB Type-B port on the front panel allows for fast local communication. A special driver required for USB communication is provided with the product literature CD.

The relay does not require special communications software. Use any system that emulates a standard terminal system. Establish communication by connecting computers, modems, protocol converters, data concentrators, port switchers, communications processors, and printers.

Connect multiple SEL-351A relays to an SEL communications processor, an SEL real-time automation controller (RTAC), and SEL computing platform, or an SEL synchrophasor vector processor for advanced data collection, protection, and control schemes (see Figure 17).

voltage inputs. Wye-connected voltages are required for phase and ground fault distance calculations. Only phase fault distance calculations are available with delta-connected voltages. The fault locator is not available when no voltage or single-phase voltages are connected. The fault locator also does not operate for ground faults on ungrounded, high-impedance grounded, or Petersen Coil grounded systems.



Figure 17 Typical Serial Communications Architecture

SEL manufactures a variety of standard cables for connecting this and other relays to a variety of external devices. Consult your SEL representative for more information on cable availability. The SEL-351A can communicate directly with SCADA systems, computers, and RTUs via serial or Ethernet port for local or remote communication (see Figure 18).



Figure 18 Typical Ethernet Communications Architecture

# Dual-Port Ethernet Network Configuration Options

The dual-port Ethernet option increases network reliability and availability by incorporating the relay with external managed or unmanaged switches. Implement a self-healing ring structure with managed switches, or use unmanaged switches in a dual-redundant configuration (see *Figure 19* and *Figure 20*).



Figure 19 Self-Healing Ring Using Internal Ethernet Switch

| Table 6 | Open | Communications | Protocols |
|---------|------|----------------|-----------|
|---------|------|----------------|-----------|



Figure 20 Failover Network Topology

*Table 6* lists the communications protocols available on the SEL-351A for protection, monitoring, control, interrogation, setting, and reporting.

| Туре                                          | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IEC 61850                                     | Ethernet-based international standard for interoperability between intelligent devices in a substation. Operates remote bits, breaker controls, and I/O. Monitors Relay Word bits and analog quantities. Use MMS file transfer to retrieve event and breaker monitor reports.                                                                                                                                                                                                                                                                                                                                             |
| Simple ASCII                                  | Plain language commands for human and simple machine communication. Use for metering, setting, self-test sta-<br>tus, event reporting, and other functions.                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Compressed ASCII                              | Comma-delimited ASCII data reports. Allows external devices to obtain relay data in an appropriate format for direct import into spreadsheets and database programs. Data are checksum protected.                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Extended Fast Meter<br>and Fast Operate       | Serial or Telnet binary protocol for machine-to-machine communication. Quickly updates SEL communications processors, RTUs, and other substation devices with metering information, relay element and I/O status, time-tags, open and close commands, and summary event reports. Data are checksum protected. Binary and ASCII protocols operate simultaneously over the same communications lines so binary SCADA metering information is not lost while an engineer or technician is transferring an event report or communicating with the relay using ASCII communication through the same relay communications port. |
| SEL Distributed Port<br>Switch (LMD) Protocol | Enables multiple SEL devices to share a common communications bus (two-character address setting range is 01–99). Use this protocol for low-cost, port-switching applications.                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Fast SER Protocol                             | Provides serial or Ethernet SER data transfers with original time stamps to an automated data collection system.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Modbus RTU or TCP                             | Serial or Ethernet-based Modbus with point remapping. Includes access to metering data, protection elements, contact I/O, targets, relay summary events, and settings groups.                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| DNP3 Serial or<br>LAN/WAN                     | Serial or Ethernet-based Distributed Network Protocol with point remapping. Includes access to metering data, protection elements, contact I/O, targets, SER, relay summary event reports, and setting groups.                                                                                                                                                                                                                                                                                                                                                                                                            |
| IEEE C37.118-2005                             | Serial or Ethernet Phasor Measurement Protocol. Streams synchrophasor data to archiving historian for post-dis-<br>turbance analysis, to visualization software for real-time monitoring, or to synchrophasor data processor for real-<br>time control.                                                                                                                                                                                                                                                                                                                                                                   |

## Control Logic and Integration

SEL-351A control logic improves integration in the following ways:

Replace traditional panel control switches. As many as 16 local control switch functions (Local Bits LB1–LB16) can be programmed for operation through the **CNTRL** front-panel pushbutton (available on all SEL-351A-1 relays and on SEL-351A relays equipped with a front-panel LCD display). Set, clear, or pulse selected Local Bits and program the front-panel operator pushbuttons and LEDs and the Local Bits into your control scheme with SELOGIC control equations. Use the Local Bits to perform functions such as turning ground tripping and autoreclosing on and off or a breaker trip/close.

- ➤ Eliminate RTU-to-relay wiring. Use serial or LAN/WAN communication to control as many as 32 remote control switches (Remote Bits RB1– RB32). Set, clear, or pulse selected Remote Bits over serial port or network communication using ASCII, DNP, or Modbus commands. Program the Remote Bits into your control scheme with SELOGIC control equations. Use Remote Bits for SCADA-type control operations such as trip, close, and turning autoreclose on or off.
- ➤ Replace traditional latching relays. Perform traditional latching relay functions, such as "remote control enable", with 16 internal logic latch control switches (Latch Bits LT1-LT16). Program latch set and latch reset conditions with SELOGIC control equations. Set or reset the nonvolatile Latch Bits using optoisolated inputs, remote control switches, local control switches, or any programmable logic condition. The Latch Bits retain their state when the relay loses power.
- Replace traditional indicating panel lights. Use 16 programmable rotating messages on the frontpanel LCD display to define custom text messages (e.g., Breaker Open, Breaker Closed, and real-time analog quantities) that report power system or relay conditions. Use SELOGIC control equations to control which rotating display messages are displayed.
- ► Eliminate external timers. Provide custom protection or control schemes with 16 general purpose SELOGIC control equation timers. Each timer has independent time-delay pickup and dropout settings. Program each timer input with any desired element (e.g., time qualify a current element). Assign the timer output to trip logic, transfer trip communication, or other control scheme logic.

► Eliminate settings changes. Selectable setting groups make the SEL-351A ideal for applications requiring frequent setting changes and for adapting the protection to changing system conditions.

The relay stores six setting groups. Select the active setting group by optoisolated input, command, or other programmable conditions. Use these setting groups to cover a wide range of protection and control contingencies.

Changing setting groups switches logic and relay element settings. Program groups for different operating conditions, such as feeder paralleling, station maintenance, seasonal operations, emergency contingencies, loading, source changes, and downstream relay setting changes.

## **Fast SER Protocol**

SEL Fast Sequential Events Recorder (SER) protocol provides SER events to an automated data collection system. SEL Fast SER protocol is available on any serial port. Devices with embedded processing capability can use these messages to enable and accept unsolicited binary SER messages from SEL-351A Relays.

SEL relays and communications processors have two separate data streams that share the same serial port. The normal serial interface consists of ASCII character commands and reports that are intelligible to people using a terminal or terminal emulation package. The binary data streams can interrupt the ASCII data stream to obtain information, and then allow the ASCII data stream to continue. This mechanism allows a single communications channel to be used for ASCII communication (e.g., transmission of a long event report) interleaved with short bursts of binary data to support fast acquisition of metering or SER data.

# **Added Capabilities**

## Status and Trip Target LEDs

The SEL-351A includes 16 status and trip target LEDs on the front panel to indicate if the relay is enabled (healthy), follow the reclosing relay state, and to latch in on various trip conditions. This combination of targets is explained in *Table 7* and shown in *Figure 21*.

| Target LED | Function                                                 |
|------------|----------------------------------------------------------|
| ENABLED    | Relay powered properly and self-tests are okay.          |
| TRIP       | Trip occurred.                                           |
| INST       | Trip due to instantaneous overcurrent element operation. |
| СОММ       | Trip triggered by a direct transfer trip (DTT).          |
| SOTF       | Switch-onto-fault trip.                                  |

Table 7 Description of Front-Panel LEDs (Sheet 1 of 2)

| 20 |  |
|----|--|
|    |  |

| Target LED            | Function                             |
|-----------------------|--------------------------------------|
| 50                    | Inst./deftime overcurrent trip.      |
| 51                    | Time-overcurrent trip.               |
| 81                    | Underfrequency trip.                 |
| RECLOSING STATE       |                                      |
| RESET                 | Ready for reclose cycle.             |
| CYCLE                 | Actively in trip/reclose cycle mode. |
| LOCKOUT               | Reclosing relay is in lockout state. |
| FAULT TYPE            |                                      |
| A, B, C (fixed logic) | Involved phases latch in on trip.    |
| G                     | Ground involved in fault.            |
| N                     | Neutral element (channel IN) trip.   |

Table 7Description of Front-Panel LEDs (Sheet 2 of 2)



Figure 21 Status and Trip Target LEDs

# Wiring Diagram



Figure 22 Example SEL-351A Wiring Diagram (Wye-Connected PTs; Synchronism-Check Voltage Input)

# **Mechanical Diagrams**



Panel or Projection Mount With USB Port



Panel or Projection Mount With USB Port and SafeLock Trip/Close Pushbuttons

Figure 23 SEL-351A Horizontal Panel-Mount Front-Panel Drawings (shown with LCD display and pushbuttonsoptional on the SEL-351A and standard on the SEL-351A-1)



Rack Mount With USB Port



Rack Mount With USB Port and SafeLock Trip/Close Pushbuttons

Figure 24 SEL-351A Horizontal Rack-Mount Front-Panel Drawings (shown with LCD display and pushbuttons-optional on the SEL-351A and standard on the SEL-351A-1)



Figure 25 SEL-351A Vertical Front-Panel Drawings (not available on the SEL-351A-1)


Standard



Optional SafeLock Trip/Close Pushbuttons

Vertical mount is identical to horizontal mount configuration rotated by 90 degrees counterclockwise.

#### Figure 26 SEL-351A Horizontal Rear-Panel Drawings (refer to Figure 27 for port configurations)



Figure 27 SEL-351A Rear-Panel Communications Port Configurations



Figure 28 SEL-351A Dimensions and Drill Plan for Rack-Mount and Panel-Mount Models

# **Specifications**

**Important:** Do not use the following information to order an SEL-351A. Refer to the actual ordering information sheets.

#### Compliance

| Designed and manufactured under an ISO 9001 certified quality |
|---------------------------------------------------------------|
| management system                                             |
| UL Listed to US and Canadian safety standards (File E212775;  |
| NRGU, NRGU7)                                                  |
| CE Mark                                                       |
| RCM Mark                                                      |

#### General

#### **Terminal Connections**

**Note:** Terminals or stranded copper wire. Ring terminals are recommended. Minimum temperature rating of 75°C.

#### Tightening Torque

| Terminals A01-A28                       |                         |
|-----------------------------------------|-------------------------|
| Terminals B01-B40 (if                   |                         |
| present):                               | 1.1-1.3 Nm (9-12 in-lb) |
| Terminals Z01–Z27:                      | 1.1-1.3 Nm (9-12 in-lb) |
| Serial Port 1<br>(EIA-485, if present): | 0.6–0.8 Nm (5–7 in-lb)  |

#### **AC Voltage Inputs**

| Nominal Range              |                                                    |
|----------------------------|----------------------------------------------------|
| Line to Neutral:           | 67-120 Vrms                                        |
| Line to Line (open delta): | 115–260 Vrms                                       |
| Continuous:                | 300 Vrms                                           |
| Short-Term Overvoltage:    | 600 Vac for 10 seconds                             |
| Burden:                    | 0.03 VA @ 67 V; 0.06 VA @ 120 V;<br>0.8 VA @ 300 V |

#### **AC Current Inputs**

#### IA, IB, IC, and Neutral Channel IN

| 5 A Nominal:             | 15 A continuous (20 A continuous at<br>55°C), 500 A for 1 s,<br>linear to 100 A symmetrical,<br>1250 A for 1 cycle |
|--------------------------|--------------------------------------------------------------------------------------------------------------------|
| Burden:                  | 0.27 VA @ 5 A, 2.51 VA @ 15 A                                                                                      |
| 1 A Nominal:             | 3 A continuous (4 A continuous at 55°C),<br>100 A for 1 s,<br>linear to 20 A symmetrical,<br>250 A for 1 cycle     |
| Burden:                  | 0.13 VA @ 1 A, 1.31 VA @ 3 A                                                                                       |
| Additional Neutral Chann | el IN Options                                                                                                      |

| 0.2 A Nominal       | 15 A continuous, 500 A for 1 second,       |
|---------------------|--------------------------------------------|
| Neutral Channel     | linear to 6.4 A symmetrical                |
| (IN) Current Input: | 1250 A for 1 cycle                         |
| Burden:             | 0.00009 VA @ 0.2 A, 0.54 VA @ 15 A         |
| 0.05 A Nominal      | 15 A continuous, 500 A for 1 second,       |
| Neutral Channel     | linear to 6.4 A symmetrical                |
| (IN) Current Input: | 1250 A for 1 cycle                         |
| Burden:             | 0.000005 VA @ 0.05 A,<br>0.0054 VA @ 1.5 A |

**Note:** The 0.2 A nominal neutral channel IN option is used for directional control on low-impedance grounded, Petersen Coil grounded, and ungrounded/high-impedance grounded systems (see *Table 4.4*). The 0.2 A nominal channel can also provide nondirectional sensitive earth fault (SEF) protection. The 0.05 A nominal neutral channel IN option is a legacy nondirectional SEF option.

Power Supply Rated: 125/250 Vdc nominal or 120/230 Vac nominal 85-350 Vdc or 85-264 Vac Range: <25 W Burden: Rated: 48/125 Vdc nominal or 120 Vac nominal Range: 38-200 Vdc or 85-140 Vac <25 W Burden: Rated: 24/48 Vdc nominal 18-60 Vdc polarity dependent Range: <25 W Burden: Frequency and Rotation Note: 60/50 Hz system frequency and ABC/ACB phase rotation are user-settable. 40-65 Hz (Zero-crossing detection Frequency Tracking Range: method, preferred source: VA-N terminals. Backup source(s) VB-N or VC-N, depending on PT configuration). Maximum Rate of Change: ~20 Hz/s (The relay will not measure faster-changing frequencies, and will revert to nominal frequency if the condition is maintained for more than 0.25 s) **Output Contacts** Standard DC Output Ratings Make: 30 A 6 A continuous carry at 70°C Carry: 4 A continuous carry at 85°C 50 A 1s Rating: MOV Protected: 270 Vac/360 Vdc/75 J Pickup Time: Less than 5 ms Dropout Time: Less than 5 ms, typical Breaking Capacity (10,000 operations): 24 V 0.75 A L/R = 40 ms48 V 0.50 A L/R = 40 ms125 V 0.30 A L/R = 40 ms250 V 0.20 A L/R = 40 msCyclic Capacity (2.5 cycle/second): 24 V 0.75 A L/R = 40 ms48 V 0.50 A L/R = 40 ms125 V 0.30 A L/R = 40 ms250 V 0.20 A L/R = 40 msNote: Make per IEEE C37.90-1989. Note: Breaking and Cyclic Capacity per IEC 60255-0-20:1974. Note: EA certified relays do not have MOV protected standard output contacts. AC Output Ratings Maximum Operational Voltage (Ue) Rating: 240 Vac Insulation Voltage (Ui) Rating (excluding 300 Vac EN 61010-1): Utilization Category: AC-15 (control of electromagnetic loads > 72 VA)

Contact Rating B300 (B = 5 A, 300 = rated insulation Designation: voltage)

| Voltage Protection Across<br>Open Contacts:                             | 270 Vac, 40 J                          |
|-------------------------------------------------------------------------|----------------------------------------|
| Rated Operational<br>Current (I <sub>e</sub> ):                         | 3 A @ 120 Vac<br>1.5 A @ 240 Vac       |
| Conventional Enclosed<br>Thermal Current (I <sub>the</sub> )<br>Rating: | 5 A                                    |
| Rated Frequency:                                                        | 50/60 ±5 Hz                            |
| Electrical Durability<br>Make VA Rating:                                | 3600 VA, $\cos \phi = 0.3$             |
| Electrical Durability<br>Break VA Rating:                               | 360 VA, $\cos \phi = 0.3$              |
| High-Current Interruption for                                           | or OUT101, OUT102, and Extra I/O Board |

| Make:           | 30 A                                                         |
|-----------------|--------------------------------------------------------------|
| Carry:          | 6 A continuous carry at 70°C<br>4 A continuous carry at 85°C |
| 1 s Rating:     | 50 A                                                         |
| MOV Protection: | 330 Vdc/145 J                                                |
| Pickup Time:    | Less than 5 ms                                               |
| Dropout Time:   | Less than 8 ms, typical                                      |
|                 |                                                              |

Breaking Capacity (10,000 operations):

| 24 V  | 10 A | L/R = 40  ms |
|-------|------|--------------|
| 48 V  | 10 A | L/R = 40  ms |
| 125 V | 10 A | L/R = 40  ms |
| 250 V | 10 A | L/R = 20  ms |

Cyclic Capacity (4 cycles in 1 second, followed by 2 minutes idle for thermal dissipation):

| 24 V  | 10 A | L/R = 40  ms |
|-------|------|--------------|
| 48 V  | 10 A | L/R = 40  ms |
| 125 V | 10 A | L/R = 40  ms |
| 250 V | 10 A | L/R = 20  ms |
|       |      |              |

Note: Make per IEEE C37.90-1989.

Note: Do not use high-current interrupting output contacts to switch ac control signals. These outputs are polarity dependent. Note: Breaking and Cyclic Capacity per IEC 60255-0-20:1974.

#### SafeLock<sup>®</sup> Trip/Close Pushbuttons

Resistive DC or AC Load With Arc Suppression Disabled

| Make:           | 30 A                  |
|-----------------|-----------------------|
| Carry:          | 6 A continuous carry  |
| 1 s Rating:     | 50 A                  |
| MOV Protection: | 250 Vac/330 Vdc/130 J |
|                 |                       |

Breaking Capacity (10,000 operations):

| 48 V  | 0.50 A | L/R = 40  ms |
|-------|--------|--------------|
| 125 V | 0.30 A | L/R = 40  ms |
| 250 V | 0.20 A | L/R = 40  ms |
|       |        |              |

Note: Make per IEEE C37.90-1989.

High-Interrupt DC Outputs With Arc Suppression Enabled

| Make:           | 30 A                 |
|-----------------|----------------------|
| Carry:          | 6 A continuous carry |
| 1 s Rating:     | 50 A                 |
| MOV Protection: | 330 Vdc/130 J        |

Breaking Capacity (10,000 operations):

| 10 A | L/R = 40 ms          |
|------|----------------------|
| 10 A | L/R = 40 ms          |
| 10 A | L/R = 20 ms          |
|      | 10 A<br>10 A<br>10 A |

Note: Make per IEEE C37.90-1989.

#### Breaker Open/Closed LEDs

| 250 Vdc: | on for 150-300 Vdc; | 192-288 Vac |
|----------|---------------------|-------------|
| 125 Vdc: | on for 80-150 Vdc;  | 96-144 Vac  |
| 48 Vdc:  | on for 30-60 Vdc;   |             |
| 24 Vdc:  | on for 15-30 Vdc    |             |
|          |                     |             |

**Note:** With nominal control voltage applied, each LED draws 8 mA (max.). Jumpers may be set to 125 Vdc for 110 Vdc input and set to 250 Vdc for 220 Vdc input.

#### **Optoisolated Input Ratings**

When Used With DC Control Signals

| 250 Vdc:    | on for 200-300 Vdc;  | off below 150 Vdc  |
|-------------|----------------------|--------------------|
| 220 Vdc:    | on for 176-264 Vdc;  | off below 132 Vdc  |
| 125 Vdc:    | on for 105-150 Vdc;  | off below 75 Vdc   |
| 110 Vdc:    | on for 88-132 Vdc;   | off below 66 Vdc   |
| 48 Vdc:     | on for 38.4-60 Vdc;  | off below 28.8 Vdc |
| 24 Vdc:     | on for 15-30 Vdc     |                    |
| n Llood Wit | h AC Control Signals |                    |

When Used With AC Control Signals

| 250 Vdc: | on for 170.6-300 Vac;   | off below 106.0 Vac |
|----------|-------------------------|---------------------|
| 220 Vdc: | on for 150.3-264.0 Vac; | off below 93.2 Vac  |
| 125 Vdc: | on for 89.6-150.0 Vac;  | off below 53.0 Vac  |
| 110 Vdc: | on for 75.1-132.0 Vac;  | off below 46.6 Vac  |
| 48 Vdc:  | on for 32.8-60.0 Vac;   | off below 20.3 Vac  |
| 24 Vdc:  | on for 12.8-30.0 Vac    |                     |

**Note:** AC mode is selectable for each input via Global settings IN101D–IN106D and IN201D–IN216D. AC input recognition delay from time of switching: 0.75 cycles maximum pickup, 1.25 cycles maximum dropout.

Note: All optoisolated inputs draw less than 10 mA of current at nominal voltage or ac rms equivalent.

#### Time-Code Inputs

Relay accepts demodulated IRIG-B time-code input at Port 2, on the rear-panel BNC input, or through the optional SEL-2812-compatible fiber-optic serial port.

| Port 2, Pin 4 Input Current:                              | 1.8 mA typical at 4.5 V (2.5 k $ \Omega$ resistive)                                   |
|-----------------------------------------------------------|---------------------------------------------------------------------------------------|
| BNC Input Current:                                        | 4 mA typical at 4.5 V (750 $\Omega$ resistive when input voltage is greater than 2 V) |
| BNC Input Voltage:                                        | 2.2 V minimum                                                                         |
| BNC Nominal Input<br>Impedance:                           | $\geq 1 \ k\Omega$                                                                    |
| Synchronization Accuracy                                  |                                                                                       |
| Internal Clock:                                           | ±1 μs                                                                                 |
| Synchrophasor Reports<br>(e.g., MET PM, EVE P,<br>CEV P): | ±10 μs                                                                                |
| All Other Reports:                                        | ±5 ms                                                                                 |
| Simple Network Time Prot                                  | ocol (SNTP) Accuracy                                                                  |
| Internal Clock:                                           | ±5 ms                                                                                 |
| Unsychronized Clock Drift                                 |                                                                                       |
| Relay Powered:                                            | 2 minutes per year typical                                                            |
| <b>Communications Ports</b>                               |                                                                                       |
| EIA-232:                                                  | 1 front, 2 rear                                                                       |
| EIA-485:                                                  | 1 rear with 2100 Vdc of isolation, optional                                           |
| Fiber-Optic Serial Port:                                  | SEL-2812-compatible port, optional                                                    |
| Wavelength:                                               | 820 nm                                                                                |
| Optical Connector Type:                                   | ST                                                                                    |
| Fiber Type:                                               | Multimode                                                                             |
| Typical TX Power:                                         | -16 dBm                                                                               |
| RX Min. Sensitivity:                                      | -24 dBm                                                                               |
| Fiber Size:                                               | 62.5/125 μm                                                                           |

| Per Port Data Rate                                                                                              | 300, 1200, 2400, 4800, 9600, 19200,                                                                                                                                                                                          | Environmental                                                                                             |                                                                                                                                                                                                                                                         |
|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| USB:                                                                                                            | 38400, 57600<br>1 front (Type-B connector, CDC class                                                                                                                                                                         | Cold:                                                                                                     | IEC 60068-2-1:2007<br>Severity Level: 16 hours at -40°C                                                                                                                                                                                                 |
| Ethernet:                                                                                                       | 2 standard 10/100BASE-T rear ports<br>(RJ45 connector)                                                                                                                                                                       | Damp Heat, Cyclic:                                                                                        | IEC 60068-2-30:2005<br>Severity Level: 25°C to 55°, 6 cycles,<br>Relative Humidity: 95%                                                                                                                                                                 |
|                                                                                                                 | (LC connectors)<br>Wavelength: 1300 nm                                                                                                                                                                                       | Dry Heat:                                                                                                 | IEC 60068-2-2:2007<br>Severity Level: 16 hours at +85°C                                                                                                                                                                                                 |
| Dimensions                                                                                                      | Optical Connector Type: LC connector<br>Fiber Type: Multimode fiber<br>Typical TX Power: –15.7 dBm<br>RX Min. Sensitivity: –30 dBm<br>Fiber Size: 62.5 µm<br>Internal Ethernet switch included with<br>second Ethernet port. | Vibration:                                                                                                | IEC 60255-21-1:1988<br>Severity Level: Class 1 Endurance,<br>Class 2 Response<br>IEC 60255-21-2:1988<br>Severity Level: Class 1—Shock withstand,<br>Bump, and Class 2—Shock Response<br>IEC 60255-21-3:1993<br>Severity Level: Class 2 (Quake Response) |
| Refer to Figure 2.1                                                                                             |                                                                                                                                                                                                                              | Safety                                                                                                    |                                                                                                                                                                                                                                                         |
| Weight                                                                                                          |                                                                                                                                                                                                                              | Dielectric:                                                                                               | IEC 60255-5:2000                                                                                                                                                                                                                                        |
| 15  lb (6.8  kg) = 211  mock up                                                                                 | it height relay                                                                                                                                                                                                              |                                                                                                           | Severity Level: 2500 Vac on contact                                                                                                                                                                                                                     |
| Operating Temperature                                                                                           | it height felay                                                                                                                                                                                                              |                                                                                                           | inputs, 3100 Vdc on power supply. Type                                                                                                                                                                                                                  |
| -40° to +185°F (-40° to +8<br>(LCD contrast impaired for<br><b>Note:</b> Temperature range is<br>installations. | 5°C)<br>temperatures below –20°C.)<br>not applicable to UL-compliant                                                                                                                                                         |                                                                                                           | Tested for 1 minute.<br>IEEE C37.90-2005<br>Severity Level: 2500 Vac on contact<br>inputs, contact outputs, and analog<br>inputs. 3100 Vdc on power supply. Type<br>Tested for 1 minute.                                                                |
| Type Tests                                                                                                      |                                                                                                                                                                                                                              | Impulse:                                                                                                  | IEC 60255-5:2000                                                                                                                                                                                                                                        |
| Electromagnetic Compatible                                                                                      | lity Emissions                                                                                                                                                                                                               |                                                                                                           | Severity Level: 0.5 Joule, 5 kV<br>IEEE C37.90:2005                                                                                                                                                                                                     |
| Elliissiolis.                                                                                                   | ity Immunity                                                                                                                                                                                                                 | IP Code:                                                                                                  | IEC 60529:2001 + CRDG:2003                                                                                                                                                                                                                              |
|                                                                                                                 |                                                                                                                                                                                                                              | n coue.                                                                                                   | Severity Level: IP30                                                                                                                                                                                                                                    |
| Conducted RF Immunity:                                                                                          | IEC 60255-22-6:2001<br>Severity Level: 10 Vrms<br>IEC 61000-4-6:2008<br>Severity Level: 10 Vrms                                                                                                                              | Product Safety:                                                                                           | C22.2 No. 14 - 95<br>Canadian Standards Association,<br>Industrial control equipment, industrial<br>products                                                                                                                                            |
| Digital Radio Telephone<br>RF Immunity:                                                                         | ENV 50204:1995<br>Severity Level: 10 V/m at 900 MHz and<br>1.89 GHz                                                                                                                                                          |                                                                                                           | UL 508<br>Underwriters Laboratories inc.,<br>Standard for safety: Industrial control<br>equipment                                                                                                                                                       |
| Electrostatic Discharge<br>Immunity:                                                                            | IEC 60255-22-2:2008<br>Severity Level: 2, 4, 6, 8 kV contact; 2,<br>4, 8, 15 kV air                                                                                                                                          | Processing Specifications and Oscillography                                                               |                                                                                                                                                                                                                                                         |
|                                                                                                                 | IEC 61000-4-2:2008                                                                                                                                                                                                           | AC Voltage and Current Inputs                                                                             |                                                                                                                                                                                                                                                         |
|                                                                                                                 | 8, and 15 kV air<br>IEEE C37.90.3-2001                                                                                                                                                                                       | 128 samples per power<br>frequency of 3 kHz                                                               | system cycle, 3 dB low-pass filter cut-off                                                                                                                                                                                                              |
|                                                                                                                 | Severity Level: 2, 4, and 8 kV contact; 4,<br>8, and 15 kV air                                                                                                                                                               | Digital Filtering                                                                                         |                                                                                                                                                                                                                                                         |
| Fast Transient/Burst<br>Immunity:                                                                               | IEC 60255-22-4:2008<br>Severity Level: Class A: 4 kV at 5 kHz,<br>2 kV at 5 kHz on comm ports<br>IEC 61000-4-4:2004 + CRGD:2006                                                                                              | Digital low-pass filter t<br>by one-cycle cosine fi<br>Net filtering (analog plu<br>than the fundamental. | hen decimate to 32 samples per cycle followed<br>lter.<br>as digital) rejects dc and all harmonics greater                                                                                                                                              |
|                                                                                                                 | Severity Level: 4 kV, 5 kHz                                                                                                                                                                                                  | Protection and Control Processing (Processing Interval)                                                   |                                                                                                                                                                                                                                                         |
| Power Supply Immunity:                                                                                          | IEC 60255-11:2008                                                                                                                                                                                                            | 4 times per power system cycle                                                                            |                                                                                                                                                                                                                                                         |
|                                                                                                                 | IEC 61000-4-29:2000                                                                                                                                                                                                          | Oscillography                                                                                             |                                                                                                                                                                                                                                                         |
| Radiated Radio Frequency                                                                                        | IEC 60255-22-3:2007                                                                                                                                                                                                          | Length:                                                                                                   | 15, 30, or 60 cycles                                                                                                                                                                                                                                    |
| Immunity: Severity Level: 10 V/m<br>IEC 61000-4-3:2008                                                          | Severity Level: 10 V/m<br>IEC 61000-4-3:2008                                                                                                                                                                                 | Total Storage:                                                                                            | 11 seconds of analog and binary                                                                                                                                                                                                                         |
|                                                                                                                 | Severity Level: 10 V/m<br>IEEE C37.90.2-2004<br>Severity Level: 35 V/m                                                                                                                                                       | Sampling Rate:                                                                                            | 128 samples per cycle unfiltered<br>32 and 16 samples per cycle unfiltered<br>and filtered                                                                                                                                                              |
| Surge Withstand                                                                                                 | IEC 60255-22-1:2007                                                                                                                                                                                                          |                                                                                                           | 4 samples per cycle filtered                                                                                                                                                                                                                            |
| Capaoniny minumity:                                                                                             | mode, 1.0 kV peak differential mode                                                                                                                                                                                          | Trigger:                                                                                                  | Programmable with Boolean expression                                                                                                                                                                                                                    |
|                                                                                                                 | IEEE C37.90.1-2002<br>Severity Level: 2.5 kV oscillatory;<br>4.0 kV fast transient                                                                                                                                           | Format:                                                                                                   | ASCII and Compressed ASCII<br>Binary COMTRADE (128 samples per<br>cycle unfiltered)                                                                                                                                                                     |

| Time-Stamp Resolution: 1 µs when high-accuracy time source is<br>connected ( <b>EVE P</b> or <b>CEV P</b>            | Time-Overcurrent Elements                                                                                                                                                                                                                                                                               |                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                     |
|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                      | commands). 1 ms otherwise.                                                                                                                                                                                                                                                                              | Pickup Range:                                                                                                                                                 | 0.25–16.00 A, 0.01 A steps (5 A nominal)<br>0.10–16.00 A, 0.01 A steps                                                                                                                                                                                                                                                                                                              |
| Time-Stamp Accuracy:                                                                                                 | See Time-Code Inputs on page 27.                                                                                                                                                                                                                                                                        |                                                                                                                                                               | (5 A nominal—for residual-ground                                                                                                                                                                                                                                                                                                                                                    |
| Sequential Events Recorder                                                                                           | г                                                                                                                                                                                                                                                                                                       |                                                                                                                                                               | 0.05–3.20 A, 0.01 A steps (1 A nominal)                                                                                                                                                                                                                                                                                                                                             |
| Time-Stamp Resolution:                                                                                               | 1 ms                                                                                                                                                                                                                                                                                                    | 0.02–3.20 A, 0.01 A s                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                     |
| Time-Stamp Accuracy (with respect to time source):                                                                   | ±5 ms                                                                                                                                                                                                                                                                                                   |                                                                                                                                                               | 0.005–0.640 A, 0.001 A steps<br>(0.2 A nominal neutral channel (IN)                                                                                                                                                                                                                                                                                                                 |
| Relay Element Pickup R                                                                                               | anges and Accuracies                                                                                                                                                                                                                                                                                    |                                                                                                                                                               | current input)<br>0.005–0.160 A, 0.001 A steps                                                                                                                                                                                                                                                                                                                                      |
| Accuracy of cycle-based ti                                                                                           | mers is specified for steady-state frequency.                                                                                                                                                                                                                                                           |                                                                                                                                                               | (0.05 A nominal neutral channel (IN)<br>current input)                                                                                                                                                                                                                                                                                                                              |
| Instantaneous/Definite-Tim                                                                                           | e Overcurrent Elements                                                                                                                                                                                                                                                                                  | Steady-State                                                                                                                                                  | $\pm 0.05$ A and $\pm 3\%$ of setting (5 A nominal)                                                                                                                                                                                                                                                                                                                                 |
| Pickup Range: 0.25–100.00 A, 0<br>(5 A nominal)<br>1.00–170.00 A, 0<br>(5 A nominal—<br>elements)<br>0.050–100.000 A | 0.25–100.00 A, 0.01 A steps<br>(5 A nominal)<br>1.00–170.00 A, 0.01 A steps<br>(5 A nominal—for phase-to-phase<br>elements)<br>0.050–100.000 A, 0.010 A steps<br>(5 A nominal—for residual-ground                                                                                                       | Pickup Accuracy:                                                                                                                                              | <ul> <li>±0.01 A and ±3% of setting (1 A nominal)</li> <li>±0.005 A and ±3% of setting (0.2 A nominal neutral channel (IN) current input)</li> <li>±0.001 A and ±5% of setting (0.05 A nominal neutral channel (IN) current input)</li> </ul>                                                                                                                                       |
|                                                                                                                      | elements)<br>0.05–20.00 A, 0.01 A steps<br>(1 A nominal)                                                                                                                                                                                                                                                | Time-Dial Range:                                                                                                                                              | 0.50–15.00, 0.01 steps (US)<br>0.05–1.00, 0.01 steps (IEC)<br>0.10–2.00 in 0.01 steps (recloser curves)                                                                                                                                                                                                                                                                             |
|                                                                                                                      | 0.20–34.00 A, 0.01 A steps<br>(1 A nominal—for phase-to-phase<br>elements)<br>0.010–20.000 A, 0.002 A steps                                                                                                                                                                                             | Curve Timing Accuracy:                                                                                                                                        | <ul> <li>±1.50 cycles and ±4% of curve time for<br/>current between 2 and 30 multiples of<br/>pickup</li> </ul>                                                                                                                                                                                                                                                                     |
| Steady-State                                                                                                         | <ul> <li>(1 A nominal—for residual-ground elements)</li> <li>0.005–2.500 A, 0.001 A steps</li> <li>(0.2 A nominal neutral channel (IN) current input)</li> <li>0.005–1.500 A, 0.001 A steps</li> <li>(0.05 A nominal neutral channel (IN) current input)</li> <li>±0.05 A and ±3% of setting</li> </ul> |                                                                                                                                                               | <ul> <li>±1.50 cycles and ±4% of curve time for current less than 1 multiple of pickup</li> <li>±3.50 cycles and ±4% of curve time for current between 2 and 30 multiples of pickup for 0.05 A nominal neutral channel (IN) current input</li> <li>±3.50 cycles and ±4% of curve time for current less than 1 multiple of pickup for 0.05 A nominal neutral channel (IN)</li> </ul> |
| Pickup Accuracy:                                                                                                     | (5 A nominal)                                                                                                                                                                                                                                                                                           |                                                                                                                                                               | current input                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                      | $\pm 0.01$ A and $\pm 3\%$ of setting (1 A nominal)                                                                                                                                                                                                                                                     | Second-Harmonic Blocking                                                                                                                                      | Elements                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                      | <ul> <li>±0.001 A and ±3% of setting</li> <li>(0.2 A nominal neutral channel (IN) current input)</li> <li>±0.001 A and ±5% of setting</li> <li>(0.05 A nominal neutral channel (IN) current input)</li> </ul>                                                                                           | Pickup Range:                                                                                                                                                 | 5-100% of fundamental, 1% steps                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                      |                                                                                                                                                                                                                                                                                                         | Steady-State Pickup<br>Accuracy:                                                                                                                              | 2.5 percentage points                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                      |                                                                                                                                                                                                                                                                                                         | Pickup/Dropout Time:                                                                                                                                          | <1.25 cycles                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                      | current input)                                                                                                                                                                                                                                                                                          | Time Delay:                                                                                                                                                   | 0.00-16,000.00 cycles, 0.25 cycle steps                                                                                                                                                                                                                                                                                                                                             |
| Transient Overreach:                                                                                                 | ±5% of pickup                                                                                                                                                                                                                                                                                           | Timer Accuracy:                                                                                                                                               | $\pm 0.25$ cycle and $\pm 0.1\%$ of setting                                                                                                                                                                                                                                                                                                                                         |
| Time Delay:                                                                                                          | 0.00–16,000.00 cycles, 0.25 cycle steps                                                                                                                                                                                                                                                                 | Under- and Overvoltage Ele                                                                                                                                    | ments                                                                                                                                                                                                                                                                                                                                                                               |
| Timer Accuracy:                                                                                                      | $\pm 0.25$ cycle and $\pm 0.1\%$ of setting                                                                                                                                                                                                                                                             | Pickup Ranges                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                     |
| Note: See pickup and reset                                                                                           | time curves in <i>Figure 3.5</i> and <i>Figure 3.6</i> .                                                                                                                                                                                                                                                | Wye-Connected (Global                                                                                                                                         | 0.00-200.00 V, 0.01 V steps (negative-                                                                                                                                                                                                                                                                                                                                              |
| Breaker Failure Current Del                                                                                          | Breaker Failure Current Detectors and Logic                                                                                                                                                                                                                                                             |                                                                                                                                                               | sequence element)<br>0.00–300.00 V.0.01 V.or.0.02 V.steps                                                                                                                                                                                                                                                                                                                           |
| Pickup Range:                                                                                                        | 0.5–100.00 A, 0.01 A steps (5 A nominal)<br>0.1–20.00 A, 0.01 A steps (1 A nominal)                                                                                                                                                                                                                     | WYE): 0.00–300.00 V, 0.0<br>(various elements<br>0.00–520.00 V, 0.0                                                                                           | (various elements)<br>0.00–520.00 V, 0.02 V steps                                                                                                                                                                                                                                                                                                                                   |
| Steady-State Pickup<br>Accuracy:                                                                                     | ±0.05 A and ±3% of setting (5 A nominal)<br>±0.01 A and ±3% of setting (1 A nominal)                                                                                                                                                                                                                    | (phase-to-pha<br>Open-Delta Connected 0.00–120.00 V,<br>(when available, by sequence eler<br>Global setting 0.00–170.00 V,<br>PTCONN = DELTA): (positive-sequ | (phase-to-phase elements)<br>0.00–120.00 V, 0.01 V steps (negative-                                                                                                                                                                                                                                                                                                                 |
| Transient Overreach:                                                                                                 | ±5% of pickup                                                                                                                                                                                                                                                                                           |                                                                                                                                                               | sequence elements)<br>0 00–170 00 V 0 01 V steps                                                                                                                                                                                                                                                                                                                                    |
| Reset Time:                                                                                                          | ≤1 cycle                                                                                                                                                                                                                                                                                                |                                                                                                                                                               | (positive-sequence element)                                                                                                                                                                                                                                                                                                                                                         |
| Pickup Time:                                                                                                         | ≤1 cycle for current greater than 2 multiples of pickup                                                                                                                                                                                                                                                 |                                                                                                                                                               | 0.00–300.00 V, 0.01 V steps<br>(various elements)                                                                                                                                                                                                                                                                                                                                   |
| Time Delay:                                                                                                          | 0.00-16,000.00 cycles, 0.25 cycle steps                                                                                                                                                                                                                                                                 | Steady-State Pickup                                                                                                                                           | ±0.5 V plus ±1% for 12.5–300.00 V<br>(phase and synchronizing elements)<br>±0.5 V plus ±2% for 12.5–300.00 V<br>(negative-, positive-, and zero-sequence<br>elements, phase-to-phase elements)                                                                                                                                                                                      |
| Timer Accuracy:                                                                                                      | $\pm 0.25$ cycle and $\pm 0.1\%$ of setting                                                                                                                                                                                                                                                             | Accuracy:                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                      |                                                                                                                                                                                                                                                                                                         | Transient Overreach:                                                                                                                                          | ±5% of pickup                                                                                                                                                                                                                                                                                                                                                                       |

#### 30

| Synchronism-Check Elemen                                          | ts                                                |                                            |
|-------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------|
| Slip Frequency<br>Pickup Range:                                   | 0.005–1.000 Hz, 0.00                              | 01 Hz steps                                |
| Slip Frequency<br>Pickup Accuracy:                                | ±0.003 Hz                                         |                                            |
| Phase Angle Range:                                                | 0-80°, 1° steps                                   |                                            |
| Phase Angle Accuracy:                                             | ±4° when slip freque<br>±10° when 0.4 Hz < s      | encyl ≤ 0.4 Hz<br>slip frequencyl < 1.0 Hz |
| Under- and Overfrequency B                                        | Elements                                          |                                            |
| Pickup Range:                                                     | 40.10-65.00 Hz, 0.0                               | 1 Hz steps                                 |
| Steady-State <i>plus</i> Transient<br>Overshoot:                  | ±0.01 Hz                                          |                                            |
| Pickup/Dropout Time:<br>Maximum instantaneous e<br>frequency (dF) | element response time                             | to a step change in                        |
| $dF \leq \ 0.3 \ Hz$                                              | NFREQ = 50 Hz                                     | NFREQ = 60 Hz                              |
| 81DnP-Initial<br>Frequency  $\leq 0.5  dF $                       | 45 ms                                             | 40 ms                                      |
| 81DnP-Initial<br>Frequency  > 0.5  dF                             | 60 ms                                             | 50 ms                                      |
| dF > 0.3 Hz                                                       | NFREQ = 50 Hz                                     | NFREQ = 60 Hz                              |
| 81DnP-Initial<br>Frequency  $\leq 0.5$  dF                        | 75 ms                                             | 60 ms                                      |
| 81DnP-Initial<br>Frequency  > 0.5  dF                             | 85 ms                                             | 70 ms                                      |
| Time Delay:                                                       | 2.00-16,000.00 cycle                              | es, 0.25-cycle steps                       |
| Timer Accuracy:                                                   | $\pm 0.25$ cycle and $\pm 0.1$                    | % of setting                               |
| Undervoltage Frequency<br>Element Block Range:                    | 25.00–300.00 $V_{LN}$ (v or $V_{LL}$ (open delta) | wye)<br>)                                  |
| Rate-of-Change-of-Frequen                                         | cy Element                                        |                                            |
| Pickup Range:                                                     | 0.10-15.00 Hz/sec, 0                              | 0.01 Hz/sec steps                          |
| Dropout:                                                          | 95% of pickup                                     |                                            |
| Pickup Accuracy:                                                  | $\pm 100$ mHz/s and $\pm 3.2$                     | 33% of pickup                              |
| Pickup/Dropout Time:                                              | See Equation 3.1.                                 |                                            |
| Pickup Time Delay:                                                | 0.10-60.00 seconds,                               | 0.01 second steps                          |
| Dropout Time Delay:                                               | 0.00-60.00 seconds,                               | 0.01 second steps                          |
| Timer Accuracy:                                                   | $\pm 6$ ms and $\pm 0.1\%$ of                     | setting                                    |
| Timers                                                            |                                                   |                                            |
| Pickup Ranges:                                                    | 0.00–999,999.00 cyc                               | les, 0.25-cycle steps                      |

p Ranges: 0.00–999,999.00 cycles, 0.25-cycle steps (reclosing relay and some programmable timers) 0.00–16,000.00 cycles, 0.25-cycle steps (some programmable and other various timers)

Pickup and Dropout Accuracy for all Timers: ±0.25 cycle and ±0.1% of setting

Substation Battery Voltage Monitor

| Pickup Range:    | 20-300 Vdc, 1 Vdc steps |
|------------------|-------------------------|
| Pickup accuracy: | ±2% of setting ±2 Vdc   |

#### **Fundamental Metering Accuracy**

Accuracies are specified at 20°C, at nominal system frequency, and voltages 67-250 V unless noted otherwise.

| $V_A, V_B, V_C$ :          | ±0.2% (67.0–250 V; wye-connected)<br>±0.4% typical (250–300 V; wye-connected)         |
|----------------------------|---------------------------------------------------------------------------------------|
| $V_{AB}, V_{BC}, V_{CA}$ : | ±0.4% (67.0–250 V; delta-connected)<br>±0.8% typical (250–300 V; delta-<br>connected) |

| V <sub>S</sub> :                                                                                    | ±0.2% (67.0–250 V)<br>±0.4% typical (250–300 V)                                                                                                                                                                                                                                                                                                                       |
|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2V V V                                                                                              | 51                                                                                                                                                                                                                                                                                                                                                                    |
| $(3V_0, v_1, v_2)$<br>$(3V_0 \text{ not available with delta-connected inputs}):$                   | ±0.6% (67.0–250 V)<br>±1.2% typical (250–300 V)                                                                                                                                                                                                                                                                                                                       |
| I <sub>A</sub> , I <sub>B</sub> , I <sub>C</sub> :                                                  | ±4 mA and ±0.1% (1.0–100 A)                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                     | (5 A nominal)<br>$\pm 6 \text{ mA and } \pm 0.1\% (0.25-1.0 \text{ A})$<br>(5 A nominal)<br>$\pm 1 \text{ mA and } \pm 0.1\% (0.2-20 \text{ A})$<br>(1 A nominal)<br>$\pm 2 \text{ mA and } \pm 0.1\% (0.05-0.2 \text{ A})$<br>(1 A nominal)<br>Temperature coefficient:<br>$[(0.0002\%)/(^{\circ}\text{C})^{2}] \cdot (\_^{\circ}\text{C} - 20^{\circ}\text{C})^{2}$ |
| I <sub>N</sub> :                                                                                    | ±4 mA and ±0.1% (1.0–100 A)<br>(5 A nominal)<br>±6 mA and ±0.1% (0.25–1.0 A)<br>(5 A nominal)<br>±1 mA and ±0.1% (0.2–20 A)<br>(1 A nominal)<br>±2 mA and ±0.1% (0.05–0.2 A)<br>(1 A nominal)<br>±1.6 mA and ±0.1% (0.005–4.5 A)<br>(0.2 A or 0.05 A nominal channel IN                                                                                               |
|                                                                                                     | current input)                                                                                                                                                                                                                                                                                                                                                        |
| I <sub>1</sub> , 3I <sub>0</sub> , 3I <sub>2</sub> :                                                | ±0.05 A and ±3% (0.5–100 A)<br>(5 A nominal)<br>±0.01 A and ±3% (0.1–20 A)<br>(1 A nominal)                                                                                                                                                                                                                                                                           |
| Phase Angle Accuracy                                                                                |                                                                                                                                                                                                                                                                                                                                                                       |
| $I_A$ , $I_B$ , $I_C$ :                                                                             | ±0.5° (1.0–100 A) (5 A nominal)<br>±3° (0.25–1.0 A) (5 A nominal)<br>±0.5° (0.2–20 A) (1 A nominal)<br>±5° (0.05–0.2 A) (1 A nominal)                                                                                                                                                                                                                                 |
| V <sub>A</sub> , V <sub>B</sub> , V <sub>C</sub> , V <sub>S</sub><br>(wye-connected voltages):      | ±0.5°                                                                                                                                                                                                                                                                                                                                                                 |
| V <sub>AB</sub> , V <sub>BC</sub> , V <sub>CA</sub> , V <sub>S</sub><br>(delta-connected voltages): | ±1.0°                                                                                                                                                                                                                                                                                                                                                                 |
| MW/MVAR<br>(A, B, C, and three-phase;<br>MW/MVAR<br>(three-phase; open-delta c                      | wye-connected voltages)<br>onnected voltages; balanced conditions)                                                                                                                                                                                                                                                                                                    |
| Accuracy (MW/MVAR)                                                                                  | at load angle                                                                                                                                                                                                                                                                                                                                                         |
| for phase current $> 0.2 \cdot I$                                                                   | NOM:                                                                                                                                                                                                                                                                                                                                                                  |
| 0.35%/-                                                                                             | $0^{\circ}$ or 180° (unity power factor)                                                                                                                                                                                                                                                                                                                              |
| 0.40% / 6.00%                                                                                       | +8 or +172°                                                                                                                                                                                                                                                                                                                                                           |
| 0.75% / 1.50%                                                                                       | $+30^{\circ} \text{ or } +150^{\circ}$                                                                                                                                                                                                                                                                                                                                |
| 1.00% / 1.00%                                                                                       | $+45^{\circ} \text{ or } +135^{\circ}$                                                                                                                                                                                                                                                                                                                                |
| 1 50% / 0 75%                                                                                       | $+60^{\circ} \text{ or } +120^{\circ}$                                                                                                                                                                                                                                                                                                                                |
| 6.00% / 0.40%                                                                                       | +82° or +98°                                                                                                                                                                                                                                                                                                                                                          |
| -/035%                                                                                              | $+90^{\circ}$ (power factor = 0)                                                                                                                                                                                                                                                                                                                                      |
| Energy Meter                                                                                        |                                                                                                                                                                                                                                                                                                                                                                       |
| Accumulators:                                                                                       | Separate IN and OUT accumulators updated<br>once every two seconds, transferred to<br>nonvolatile storage once per day.                                                                                                                                                                                                                                               |
| ASCII Report Resolution:                                                                            | 0.01 MWh                                                                                                                                                                                                                                                                                                                                                              |
| Accuracy:                                                                                           | The accuracy of the energy meter depends<br>on applied current and power factor as<br>shown in the power metering accuracy<br>table above. The additional error<br>introduced by accumulating power to                                                                                                                                                                |

yield energy is negligible when power changes slowly compared to the processing rate of twice per second.

#### Synchrophasor Accuracy

#### Maximum Data Rate in Messages per Second

| IEEE C37.118 Protocol:         | 60 (nominal 60 Hz system)<br>50 (nominal 50 Hz system)                                                                                                                                                                                                                                                                                   |
|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SEL Fast Message<br>Protocol:  | 1                                                                                                                                                                                                                                                                                                                                        |
| IEEE C37.118-2005<br>Accuracy: | Level 1 at maximum message rate when<br>phasor has the same frequency as phase<br>A voltage, frequency-based phasor<br>compensation is enabled (PHCOMP =<br>Y), and the narrow-bandwidth filter is<br>selected (PMAPP = N). Out-of-band<br>interfering frequency (Fs) test,<br>$10 \text{ Hz} \le \text{Fs} \le (2 \cdot \text{NFREQ}).$ |
| Current Range:                 | $(0.1-2) \bullet I_{NOM} (I_{NOM} = 1 \text{ A or 5 A})$                                                                                                                                                                                                                                                                                 |
| Frequency Range:               | ±5 Hz of nominal (50 or 60 Hz)                                                                                                                                                                                                                                                                                                           |
| Voltage Range:                 | 30 V-250 V                                                                                                                                                                                                                                                                                                                               |
| Phase Angle Range:             | -179.99° to 180°                                                                                                                                                                                                                                                                                                                         |

#### Harmonic Metering Accuracy

#### Voltages $V_A$ , $V_B$ , $V_C$ , $V_S$ (Wye or Single-Phase); $V_{AB}$ , $V_{BC}$ , $V_S$ (Delta)

| Accuracies valid for THD < 100%, 30 V < fundamental < 200 V 50 Hz or 60 Hz |                                        |  |  |  |  |
|----------------------------------------------------------------------------|----------------------------------------|--|--|--|--|
| RMS and Fundamental<br>Magnitude:                                          | ±5%                                    |  |  |  |  |
| THD Percentage:                                                            | ±5 percentage points                   |  |  |  |  |
| 02 Through 16<br>Harmonic Percentage:                                      | ±5 percentage points                   |  |  |  |  |
| Currents I <sub>A</sub> , I <sub>B</sub> , I <sub>C</sub> , I <sub>N</sub> |                                        |  |  |  |  |
| Accuracies Valid for THD < 50 Hz or 60 Hz                                  | x 100%, fundamental voltage < 200 V,   |  |  |  |  |
| 5 A Nominal:                                                               | 0.25 A < fundamental current < 5 A sec |  |  |  |  |
| 1 A Nominal:                                                               | 0.05 A < fundamental current < 1 A sec |  |  |  |  |
| 0.2 A and 0.05 A<br>Nominal (IN channel<br>only):                          | 0.01 A < fundamental current < 1A sec  |  |  |  |  |
| RMS and Fundamental<br>Magnitude:                                          | ±5%                                    |  |  |  |  |
| THD Percentage:                                                            | ±5 percentage points                   |  |  |  |  |
| 02 Through 16<br>Harmonic Percentage:                                      | ±5 percentage points                   |  |  |  |  |

#### **Power Element Accuracy**

#### **Single-Phase Power Elements**

| Pickup Setting<br>0.33–2 VA<br>(5 A nominal),<br>0.07–0.4 VA<br>(1 A nominal):  | <ul> <li>±0.05 A • (L-N voltage secondary) and<br/>±10% of setting at unity power factor<br/>for power elements and zero power<br/>factor for reactive power element (5 A<br/>nominal)</li> <li>±0.01 A • (L-N voltage secondary) and<br/>±10% of setting at unity power factor<br/>for power elements and zero power<br/>factor for reactive power element (1 A<br/>nominal)</li> </ul> |
|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pickup Setting<br>2–13000 VA<br>(5 A nominal),<br>0.4–2600 VA<br>(1 A nominal): | ±0.025 A • (L-N voltage secondary) and<br>±5% of setting at unity power factor (5<br>A nominal)<br>±0.005 A • (L-N voltage secondary) and<br>±5% of setting at unity power factor (1<br>A nominal)                                                                                                                                                                                       |

#### **Three-Phase Power Elements**

| Pickup Setting<br>1–6 VA<br>(5 A nominal),<br>0.2–1 VA<br>(1 A nominal):      | <ul> <li>±0.05 A • (L-L voltage secondary) and</li> <li>±10% of setting at unity power factor for power elements and zero power factor for reactive power element (5 A nominal)</li> <li>±0.01 A • (L-L voltage secondary) and</li> <li>±10% of setting at unity power factor for power elements and zero power factor for reactive power element (1 A nominal)</li> </ul> |
|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pickup Setting<br>6–39000 VA<br>(5 A nominal),<br>1–7800 VA<br>(1 A nominal): | <ul> <li>±0.025 A • (L-L voltage secondary) and</li> <li>±5% of setting at unity power factor for power elements and zero power factor for reactive power element (5 A nominal)</li> <li>±0.005 A • (L-L voltage secondary) and</li> <li>±5% of setting at unity power factor for power elements and zero power factor for reactive power element (1 A nominal)</li> </ul> |
| The quoted three-phase pow applicable as follows:                             | er element accuracy specifications are                                                                                                                                                                                                                                                                                                                                     |

- ► Wye-connected voltages (PTCONN = WYE): any condition
- ► Open-delta connected voltages (PTCONN = DELTA), with properly configured broken-delta 3V0 connection (VSCONN = 3V0): any condition
- Open-delta connected voltages, without broken-delta 3V0 connection (VSCONN = VS): balanced conditions only

© 2009–2019 by Schweitzer Engineering Laboratories, Inc. All rights reserved.

All brand or product names appearing in this document are the trademark or registered trademark of their respective holders. No SEL trademarks may be used without written permission. SEL products appearing in this document may be covered by U.S. and Foreign patents.

Schweitzer Engineering Laboratories, Inc. reserves all rights and benefits afforded under federal and international copyright and patent laws in its products, including without limitation software, firmware, and documentation.

The information in this document is provided for informational use only and is subject to change without notice. Schweitzer Engineering Laboratories, Inc. has approved only the English language document.

This product is covered by the standard SEL 10-year warranty. For warranty details, visit selinc.com or contact your customer service representative.

#### SCHWEITZER ENGINEERING LABORATORIES, INC.

2350 NE Hopkins Court • Pullman, WA 99163-5603 U.S.A. Tel: +1.509.332.1890 • Fax: +1.509.332.7990 selinc.com • info@selinc.com







# SEL-501 Dual Universal <sup>®</sup> Overcurrent Relay



# **Major Features and Benefits**

- > Features two three-phase, current-based relays in one complete package.
- > Protects feeders, buses, transformers, motors, breakers, and other apparatus.
- ► Is easily set from the front panel or communications port.
- > Includes metering, self-testing, alarm, and event reporting.
- > Saves two full reports and twenty summaries in nonvolatile memory.
- > Makes redundant protection practical—ideal for stacked breaker switchgear.
- ► Includes low-level test interface.
- ► Supports ASCII, SEL LMD, Modbus<sup>®</sup>, and Square-D SY/MAX protocol.

2

# Features

# **Dual Relay Concept**

The SEL-501 Dual Universal Overcurrent Relay provides two complete and independent groups of protection functions in one compact unit. The unit contains Relay X and Relay Y, each having separate optoisolated inputs, output contacts, and three-phase current inputs.

| Table 1 | Relay | I/0 | and | Current | Inputs |
|---------|-------|-----|-----|---------|--------|
|---------|-------|-----|-----|---------|--------|

|         | Input | Output Contacts | Current Inputs |  |  |
|---------|-------|-----------------|----------------|--|--|
| Relay X | XIN   | XOUT1, XOUT2    | IAX, IBX, ICX  |  |  |
| Relay Y | YIN   | YOUT1, YOUT2    | IAY, IBY, ICY  |  |  |

# **Five Relay Functions**

Select the relay functions independently for Relays X and Y. Choose from five relay functions.



Figure 1 Relay Application Single-Line Diagrams

# **SEL-501 Dual Relay Applications**





# **Overcurrent Protection**

The SEL-501 has two overcurrent protection setting options: FDR or OC1. Both options use the same overcurrent elements, but differ in input and output contact functions.

#### Table 2 Overcurrent Settings and Ranges

| Eight Overcurrent Elements             | Instantaneous      | Definite-Time      | Inverse-Time        |
|----------------------------------------|--------------------|--------------------|---------------------|
| Phase (Ia, Ib, and Ic)                 | 50H                | 50PT               | 51PT                |
| Negative-Sequence (IQ = $3 \cdot I2$ ) |                    | 50QT               | 51QT                |
| Residual (IR = $Ia + Ib + Ic$ )        | 50NH               | 50NT               | 51NT                |
| Ranges (A secondary)                   |                    |                    |                     |
| 5 A Model:                             | 0.5-80 A, 0.1 step | 0.5-80 A, 0.1 step | 0.5-16 A, 0.1 step  |
| 1 A Model:                             | 0.1-16 A, 0.1 step | 0.1–16 A, 0.1 step | 0.1–3.2 A, 0.1 step |
| Definite-Time Delay                    |                    | 0–16,000 cycles    | US and IEC curves   |

#### Table 3 Overcurrent Contact Functions

| Setting | Input                                                                                                                                   | Output Contacts                                                                                                                             |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| FDR     | 52A                                                                                                                                     | TRIP (OUT1)—select any elements<br>CLOSE (OUT2)                                                                                             |
| OC1     | Programmable—select one<br>EN—Enable user-selected elements<br>BLK—Block user-selected elements<br>ET—External Trigger of event reports | Both trips have time-delay pickup timers, settable 0–16,000 cycles.<br>TRIP1 (OUT1)—select any elements<br>TRIP1 (OUT2)—select any elements |

# **Motor Protection**

| Table 4 Moto | r Protection | Settings | and Ranges |
|--------------|--------------|----------|------------|
|--------------|--------------|----------|------------|

| Elements                               | Instantaneous | Definite-Time   |  |  |  |
|----------------------------------------|---------------|-----------------|--|--|--|
| Phase (Ia, Ib, and Ic)                 | 50H           | 50PT            |  |  |  |
| Negative-Sequence (IQ = $3 \cdot I2$ ) |               | 50QT            |  |  |  |
| Residual ( $IR = Ia + Ib + Ic$ )       | 50NH          | 50NT            |  |  |  |
| Ranges (A secondary)                   |               |                 |  |  |  |
| 5 A Model:                             | 0.5–80 A      | 0.5–80 A        |  |  |  |
| 1 A Model:                             | 0.1–16 A      | 0.1–16 A        |  |  |  |
| Definite-Time Delay                    |               | 0–16,000 cycles |  |  |  |

Thermal Model (49) provides locked-rotor, unbalance and overload protection.

Motor operation monitors include load-jam trip, load-loss trip, and a starts per-hour limit.

| Input | Output Contacts |
|-------|-----------------|
| 52A   | TRIP (OUT1)     |
|       | CLOSE (OUT2)    |

# **Breaker Failure Protection**

| Instantaneous Overcurrent Elements |                                                                  | Breaker Failure Timer (62FC) |
|------------------------------------|------------------------------------------------------------------|------------------------------|
| Phase (Ia, Ib, and Ic)             | 50PP                                                             | 0.25–63.75 cycles            |
| Residual ( $IR = Ia + Ib + Ic$ )   | 50NP                                                             |                              |
| Ranges (A secondary)               |                                                                  | Breaker Retrip Timer (62FC)  |
| 5 A Model:                         | 0.5–80 A                                                         | 0–63.75 cycles               |
| 1 A Model:                         | 0.1–16 A                                                         |                              |
| Maximum Reset Time                 | 0.75 cycles                                                      |                              |
| Input                              | Output Contacts                                                  |                              |
| BFI—Breaker Failure Initiate       | 86TR—Breaker Failure Trip (OUT1)<br>RETRIP Breaker Retrip (OUT2) |                              |





Note: The BFI input latch (seal-in) is optional via setting

Figure 3 SEL-501 Relay Breaker Failure Logic

# **General-Purpose Timer**

Timer Ranges (62 Device) Pickup: 0–16,000 cycles Dropout: 0–16,000 cycles

The timers are completely independent of the relay current inputs.



Figure 4 SEL-501 Relay General-Purpose Timer

# Operation, Metering, and Communications

- Complete operation from front-panel controls or rear-panel serial port.
- Full access to event history, relay status, and meter information.
- Instantaneous, demand, and peak demand currents metered.
- ➤ Settings and control have passcode protection.
- One serial port for two relays cuts communications burden in half.
- Modbus RTU protocol supports direct integration, via appropriate gateways, into SCADA or DCS systems.

# **Event Reporting**

- Relay stores twelve reports: newest two are in nonvolatile memory.
- Reports have fifteen-cycle duration and quartercycle resolution.
- ► Unique event headers for each application.

| FEEDER<br>BFR 1   | 1            |               |                    |            |                | Date:         | : 06/11      | 1/94             | Time:    | 06:41:       | 40.9         | 913 -   | Time tag corresponds to the 8th            |
|-------------------|--------------|---------------|--------------------|------------|----------------|---------------|--------------|------------------|----------|--------------|--------------|---------|--------------------------------------------|
| FID=SEL           | 501-R106     | -V65X1X       | Xpa-D9405          | 525        |                |               |              |                  |          |              |              |         |                                            |
|                   | Relay        | Х             |                    |            | Relay          | / Y           |              | Rela<br>5555555  | ух<br>50 | Kelay<br>55  | B0           | A<br>L  |                                            |
| IRX               | Amps<br>IAX  | Pri<br>IBX    | ICX                | IRY        | Amps<br>IAY    | Pri<br>IBY    | ICY          | 111000<br>PQNPQN | 2U<br>AT | 0 06<br>P N2 | 5 FU<br>2 IT | R<br>M  |                                            |
| -2                | 392          | 224           | -618               | - 0        | 393            | 228           | -621         |                  | *        | P            |              |         | I                                          |
| 0                 | -491         | 586           | -94                | 2          | -495           | 585           | -88          |                  | *.       | P            |              |         | One cycle of data.                         |
| -2                | -389<br>493  | -230<br>-583  | 620<br>88          | - 4<br>- 2 | -389<br>494    | -235<br>-585  | 621<br>89    |                  | *.<br>*. | Р<br>Р       | •••          | :       |                                            |
| -2                | 386          | 234           | -622               | 2          | 386            | 240           | -623         |                  | *.       | Ρ            |              |         | Relay Y 50PP element is picked             |
| 4                 | -495         | 582           | -84                | -0         | -499           | 585           | -86          |                  | *.       | Ρ            | ••           | •       | up.                                        |
| -2                | 496          | -239          | 637                | -6         | 500            | -1693         | 1186         | •••••<br>•pq     | *.       | P            |              | :       |                                            |
| 8                 | 380          | -450          | 78                 | 8          | 381            | -1172         | 799          | pq               | *.       | Ρ            |              |         | Relay X 51P1 and 51Q1 time-overcurrent     |
| 6<br>- 13         | -501         | 2738          | -2231              | 7          | -505           | 3788          | -3276        | pq               | *.<br>*  | P            | ••           | •       | this report. Breaker is closed.            |
| -8                | 502          | -3783         | 3273               | -13        | 503            | -3795         | 3279         | pq               | *.       | Ρ            |              | :       | ·                                          |
| [Four c           | ycles of     | data]         | :                  |            |                |               |              |                  |          |              |              |         |                                            |
| 5                 | 3/1          | -1126         |                    | 10         | 3/2            | -1123         | 701          | na               | *        | D            |              |         |                                            |
| 2                 | -526         | 3858          | -3330              | 8          | -526           | 3873          | -3338        | pq               | *.       | Ρ            |              |         |                                            |
| -5<br>-3          | -339<br>528  | 1105<br>-3863 | -770<br>3333       | -11<br>-8  | -341<br>529    | 1094<br>-3878 | -764<br>3340 | pq               | *.<br>*. | Р<br>Р       | •••          | :       | Relay X 510T element times out             |
| 5                 | 337          | -1077         | 745                | 6          | 334            | -1058         | 730          | nT               | *1       | D            |              |         | causing a trip.                            |
| 4                 | -531         | 3872          | -3337              | 4          | -532           | 3883          | -3347        | pT               | *1       | Ρ            |              | :       | 2                                          |
| -6<br>-6          | -333<br>533  | 1049<br>-3881 | -722<br>3343       | -10<br>-11 | -332<br>535    | 1038<br>-3900 | -716<br>3354 | рТ<br>рТ         | *1<br>*1 | Р<br>Р.t     | *.           | :       | Breaker Failure Initiate input is asserted |
| 6                 | 320          | -1025         | 702                | 7          | 326            | -1006         | 697          | nT               | *1       | D +          | • *          |         | starting breaker failure timer.            |
| 4                 | -535         | 3887          | -3348              | 5          | -534           | 3897          | -3358        | pT               | *1       | P.t          | *            |         |                                            |
| -6<br>-5          | -325<br>535  | 998<br>-3892  | -678<br>3352       | -10<br>-8  | -324<br>540    | 975<br>-3908  | -660<br>3360 | рТ<br>рТ         | *1<br>*1 | P.t<br>P.t   | *.           | •       |                                            |
| ГТwо су           | cles of      | datal         | •                  |            |                |               |              |                  |          |              |              |         |                                            |
| 0                 | 170          | 440           |                    | 10         |                | 0.1           | 7.4          | - T              | 4.1      | D +          |              |         | 1                                          |
| -2                | -180         | -449<br>1122  | -943               | -10        | 44             | 21            | - / 4        | рт<br>рТ         | *1       | P.t          | *.           | :       | Breaker operates,                          |
| 3<br>0            | -24          | 7<br>0        | 20<br>0            | -5<br>0    | - 2<br>0       | - 2<br>0      | - 2          | pT               | .1       |              | *.<br>*.     | •       |                                            |
| 0                 | 0            | 0             | 0                  | 0          | 0              | 0             | 0            |                  |          |              |              |         | 1                                          |
| -1                | -1           | 0             | 0                  | - 2        | - 2            | 0             | 0            |                  |          |              | ^•<br>*.     | :       |                                            |
| -2<br>0           | -1           | -1<br>0       | 0                  | 1          | 0<br>- 2       | 0<br>- 2      | 1            |                  | •••      |              | ••           | •       |                                            |
| -                 | -            | 0             | 0                  | 1          | -              | _             | -            |                  |          |              |              |         |                                            |
| -1                | 1            | -1            | 0                  | 0          | 0              | 0             | 0            |                  |          | · · · ·      | •••          | :       |                                            |
| -2<br>0           | -1           | -1<br>0       | 0                  | 0          | 0              | 0<br>0        | 0            |                  | •••      |              | ••           | •       |                                            |
| Evont.            |              |               | Tango              | te V P     | C 0            |               | Dunati       | ion.             | 11 00    | ĺ            |              | -       | C                                          |
| Relay X           | Current      | s (A Pr       | i), ABCQN          | I: I       | 626 I          | L165          | 888          | 242              | 2        | F            |              | Even    | LSummary                                   |
| Relay Y           | Current      | s (APr        | i), ABCQN          | 1: 0       | 628 1          | 1710 1        | 1341         | 481              | 2        | 1            |              |         |                                            |
| Relay X           | Setting      | s:<br>1       |                    |            |                |               |              |                  |          |              |              |         |                                            |
| APP =             | FDR          | CTR           | = 120              | DATC       | = 15           |               |              |                  |          |              |              |         |                                            |
| 50PP =<br>50QP =  | 15.5<br>10.8 | 50PD<br>50QD  | = 20.00<br>= 18.00 | 50H        | = 40.0         | )             |              |                  |          |              |              | Delevi  | /                                          |
| 50NP =            | 4.3          | 50ND          | = 15.00            | 50NH       | = 18.0         | )             |              |                  |          | F            |              | Relay 7 | set for overcurrent protection.            |
| 51PRS =           | N            | 5176          | 04                 | JIFID      | - 3.20         |               |              |                  |          |              |              |         |                                            |
| 51QP = 51QRS =    | 5.00<br>N    | 51QC          | = U4               | 51QTD      | = 1.10         | )             |              |                  |          |              |              |         |                                            |
| 51NP =<br>51NRS = | 2.25<br>N    | 51NC          | = U4               | 51NTD      | = 2.00         | )             |              |                  |          |              |              |         |                                            |
| Delaw             | <br>Cattin   |               |                    |            |                |               |              |                  |          | I            |              |         |                                            |
| ID =              | BFR 1        | 5:            |                    |            |                |               |              |                  |          |              |              | Relav Y | set for breaker failure protection.        |
| APP = 50PP =      | BFR<br>4.0   | CTR<br>50NP   | = 120<br>= 2.0     | DATC<br>FC | = 15<br>= 10.5 | 50            |              |                  |          | -            |              |         |                                            |
|                   |              |               |                    | ERT        | R = N          |               |              |                  |          |              |              |         |                                            |

Figure 5 Example Event Report

# **Two Rear-Panel Options**

# **Conventional Terminal Blocks**



#### Figure 6 SEL-501 Relay Rear Panel (Conventional Terminal Block Option)

Output contacts XOUT1, XOUT2, YOUT1, YOUT2, and ALARM are not polarity dependent.

**Connectorized Relay (Plug-In Connectors)** 

Optoisolated inputs XIN and YIN are not polarity dependent.

All screws are size #6-32.



#### i3034a

#### Figure 7 SEL-501 Relay Rear Panel (Plug-In Connectors Option)

**Important:** Improvements in Connectorized<sup>®</sup> SEL-501 relays (Plug-In Connectors) resulted in part number changes.

The current transformer shorting connectors for current channel inputs IAX, IBX, ICX, and IAY, IBY, ICY have been made more robust. This improvement makes the new connector design incompatible with the old design. Thus, new Connectorized SEL-501 relays with this improved connector have a new part number (partial part numbers shown):

| Old    | New    |
|--------|--------|
| 0501xJ | 0501xW |

The respective wiring harness part numbers for these old and new Connectorized SEL-501 relays are (partial part numbers shown):

| Old      | New      |
|----------|----------|
| WA0501xJ | WA0501xW |

*Figure* 7 shows the rear panel for new models 0501xW. Because all terminal/numbering remains the same between the new and old relays, these figures can also be used as a reference for old model 0501xJ. Only the connectors and part numbers have changed.

Connector terminals **A01–A16** accept wire size AWG 24 to 12 (install wires with a small slotted screwdriver).

Output contacts XOUT1, XOUT2, YOUT1, YOUT2, and ALARM are polarity dependent (note the + above terminal A02, A04, A06, A08, and A10).

See *Specifications on page 14* for high current interrupting output contact ratings.

Optoisolated inputs XIN and YIN are not polarity dependent.

Current input connector (terminals **Z01–Z12**):

- ► Contains current transformer shorting mechanisms
- ► Accepts wire size AWG 16 to 10 (special tool required to attach wire to connector)
- ► Can be ordered prewired

Ground connection (terminal **Z13**): tab size 0.250 inch • 0.032 inch, screw size #6-32.

# Front- and Rear-Panel Diagrams



SEL-501 Relay Fitted With Mounting Bracket (SEL P/N 9100) for Mounting in 19-Inch Rack



SEL-501 Relay Front Panel, Rack-Mount Version (Half-Rack Width)





SEL-501 Relay Front Panel, Panel-Mount Version

i3028a

Figure 8 SEL-501 Front Panels

| ſ    |          | -<br>- | хоит    | 1 X(            |       |        | א<br>ר | YOU            | T1      |        | 2 AI  | ARM   | POV<br>+ | VER |                     | SE               |                                                | ort                                        |
|------|----------|--------|---------|-----------------|-------|--------|--------|----------------|---------|--------|-------|-------|----------|-----|---------------------|------------------|------------------------------------------------|--------------------------------------------|
| \$   | Ð        | Ð      | ÐG      | ÐŒ              |       | Ð      | Ð      | Ð              | Ð       | ÐG     | ÐŒ    | Ð     | ⊕        |     | ¢                   | 9<br>PIN<br>1 N. | EIA-232<br>OPTION                              |                                            |
|      | 201      | 202 2  | 203 20  | 94 20           | 5 206 | 207    | 208    | 209            | 210 2   | 211 21 | 2 213 | 3 214 | 215      | 216 | $\langle 0 \rangle$ | 2 3 4 5 6        | RXD<br>TXD<br>+IRIG-B<br>GND<br>-IRIG-B<br>BTS | -TX<br>N/C<br>+IRIG-B<br>SHIELD<br>-IRIG-B |
| /:`  |          |        | v       | IP              | v     | 10     | Ŷ      | 1              | ۸V      | 1      | DV    | 10    | v        | 2   | GND                 | 8                | CTS                                            | -RX                                        |
| DANG | S<br>SER | • "    | AX      | • IB            | X     | • 10   | X      | •              | AY      | •      | BY    | • 10  | CY       |     |                     | ģ                | CTS<br>GND                                     | -RX<br>SHIELD                              |
| DANG | ER       | •      | •x<br>⊕ | • <sup>IB</sup> | ×     | •<br>C | x      | • <sup>I</sup> | ay<br>E | •      | BY    | •"    | Y        |     |                     | 89               | GND                                            | RX<br>SHIELD                               |

i3031a

SEL-501 Relay Rear Panel (Conventional Terminal Blocks Option)



SEL-501 Relay Rear Panel (Plug-In Connectors Option)



# **Relay Dimensions**



Figure 10 SEL-501 Dimensions and Drill Plan for Single Rack-Mounted Relay



\*ADD 0.80 (20.3) FOR CONNECTORIZED RELAYS

i9024b Figure 11 Relay Dimensions and Drill Plan for Mounting Two SEL-500 Series Relays Together Using Mounting Block (SEL P/N 9101)

# **RACK-MOUNT CHASSIS**





\*ADD 0.80 (20.3) FOR CONNECTORIZED RELAYS

i9028a Figure 12 Relay Dimensions and Drill Plan for Mounting an SEL-501 Relay with Rack Mount Bracket 9100 (bracket on right side front view)

# **Specifications**

#### Compliance

Designed and manufactured under an ISO 9001 certified quality management system

UL Listed to US and Canadian safety standards (File E212775; NRGU, NRGU7)

CE Mark

RCM Mark

#### General

#### **Terminal Connections**

Terminals or stranded copper wire. Ring terminals are recommended. Minimum temperature rating of 105°C.

#### **Tightening Torque**

| Terminal Block    |                                                                                                                                  |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------|
| Minimum:          | 1.1 Nm (9-in-lb)                                                                                                                 |
| Maximum:          | 1.3 Nm (12-in-lb)                                                                                                                |
| Connectorized     |                                                                                                                                  |
| Minimum:          | 0.6 Nm (5-in-lb)                                                                                                                 |
| Maximum:          | 0.8 Nm (7-in-lb)                                                                                                                 |
| AC Current Inputs |                                                                                                                                  |
| 5 A nominal:      | 15 A continuous, 500 A for 1 s,<br>linear to 100 A symmetrical.<br>625 A for 1 cycle (sinusoidal waveform)                       |
| Burden:           | 0.16 VA at 5 A<br>1.15 VA at 15 A                                                                                                |
| 1 A nominal:      | <ul><li>3 A continuous, 100 A for 1 s,<br/>linear to 20 A symmetrical.</li><li>250 A for 1 cycle (sinusoidal waveform)</li></ul> |
| Burden:           | 0.06 VA at 1 A<br>0.18 VA at 3 A                                                                                                 |

Note: 60/50 Hz system frequency and ABC/ACB phase rotation are ordering options.

#### Power Supply

| 125/250 Vdc or Vac    |                              |
|-----------------------|------------------------------|
| Range:                | 85-350 Vdc or 85-264 Vac     |
| Burden:               | <5.5 W                       |
| Interruption:         | 100 ms at 250 Vdc            |
| Ripple:               | 100%                         |
| 48/125 Vdc or 125 Vac |                              |
| Range:                | 36-200 Vdc or 85-140 Vac     |
| Burden:               | <5.5 W                       |
| Interruption:         | 100 ms at 125 Vdc            |
| Ripple:               | 5%                           |
| 24 Vdc                |                              |
| Range:                | 16-36 Vdc polarity dependent |
| Burden:               | <5.5 W                       |
| Interruption:         | 25 ms at 36 Vdc              |
| Ripple:               | 5%                           |
|                       |                              |

Note: Interruption and Ripple per IEC 60255-11[IEC 255-11]:1979.

#### **Output Contacts**

The output type is dependent on the rear-panel terminal type. Output ratings were determined with IEC 60255-0-20:1974, using the simplified method of assessment.

Standard (Conventional Terminal Block Option)

|   | Make:             |               | 30 A                     |
|---|-------------------|---------------|--------------------------|
|   | Carry:            |               | 6 A continuous carry     |
|   | 1 s Rating:       |               | 100 A                    |
|   | MOV Protectio     | on:           | 270 Vac/360 Vdc          |
|   | Pickup Time:      |               | <5 ms                    |
|   | Dropout Time:     |               | <5 ms                    |
|   | Breaking Capa     | city (10000   | operations):             |
|   | 24 V              | 0.75 A        | L/R = 40  ms             |
|   | 48 V              | 0.50 A        | L/R = 40  ms             |
|   | 125 V             | 0.30 A        | L/R = 40  ms             |
|   | 250 V             | 0.20 A        | L/R = 40  ms             |
|   | Cyclic Capacit    | y (2.5 cycle/ | second):                 |
|   | 24 V              | 0.75 A        | L/R = 40  ms             |
|   | 48 V              | 0.50 A        | L/R = 40  ms             |
|   | 125 V             | 0 30 A        | L/R = 40  ms             |
|   | 250 V             | 0.20 A        | L/R = 40  ms             |
| H | ligh Current Inte | errupting (Pl | ug-In Connectors Option) |
|   | Make:             |               | 30 A                     |
|   | Carry:            |               | 6 A continuous carry     |
|   | MOV Protectio     | on:           | 330 Vdc                  |
|   | Pickup Time:      |               | <5 ms                    |
|   | Dropout Time:     |               | <8 ms, typical           |
|   | Update Rate:      |               | 1/8 cycle                |
|   | Breaking Capa     | city (10000   | operations):             |
|   |                   |               |                          |

| 24 V  | 10.0 A | L/R = 40  ms |
|-------|--------|--------------|
| 48 V  | 10.0 A | L/R = 40  ms |
| 125 V | 10.0 A | L/R = 40  ms |
| 250 V | 10.0 A | L/R = 20  ms |

Cyclic Capacity (4 cycles in 1 second followed by 2 minutes idle for thermal dissipation):

| 24 V  | 10.0 A | L/R = 40  ms |
|-------|--------|--------------|
| 48 V  | 10.0 A | L/R = 40  ms |
| 125 V | 10.0 A | L/R = 40  ms |
| 250 V | 10.0 A | L/R = 20  ms |

Note: Do not use high-current interrupting output contacts to switch ac control signals. These outputs are polarity dependent.
 Note: Make per IEEE C37.90-1989; Breaking and Cyclic Capacity per IEC 60255-23 [IEC 255-23]:1994.

#### **Optoisolated Inputs**

The input type is dependent on the rear-panel terminal type. "Levelsensitive" inputs differ from "standard" jumper-selectable inputs in that they are guaranteed to deassert below a certain voltage level and they are not user-settable. The inputs are not polarity dependent. With nominal control voltage applied, each input draws approximately 4 mA of current.

**Jumper-Selectable (Conventional Terminal Blocks Option):** The conventional terminal block model is equipped with jumperselectable inputs. Both inputs may be individually user-configured to operate on any of the following nominal voltages.

| 24 Vdc: on for  | 15–30 Vdc   |
|-----------------|-------------|
| 48 Vdc: on for  | 30-60 Vdc   |
| 125 Vdc: on for | 80-150 Vdc  |
| 250 Vdc: on for | 150-330 Vdc |

#### Level-Sensitive (Plug-In Connectors Option)

The plug-in connectors model is equipped with fixed "levelsensitive" inputs. Both inputs are factory-configured to the control voltage specified at time of ordering. Please note that the 24 Vdc option is not available as "level-sensitive."

| 24 Vdc: on for  | 15–30 Vdc                       |
|-----------------|---------------------------------|
| 48 Vdc: on for  | 38.4-60 Vdc; off below 28.8 Vdc |
| 125 Vdc: on for | 105–150 Vdc; off below 75 Vdc   |
| 250 Vdc: on for | 200-300 Vdc; off below 150 Vdc  |
|                 |                                 |

#### Serial Communications

| Rear Panel: | 9-pin sub-D connector                                      |
|-------------|------------------------------------------------------------|
| Baud Rate:  | 300–38400 baud<br>Settable baud rate and data bit protocol |

#### Protocols

| ASCII                                  |
|----------------------------------------|
| Distributed Port Switch Protocol (LMD) |
| Modbus RTU (baud rate limited to       |
| 192000; only available in SEL-501      |
| Relay)                                 |
| SY/MAX (only available in SEL-501-1    |
| Relay)                                 |
|                                        |

#### **Metering Functions**

Instantaneous and Demand Ammetering functions. Measurement Accuracy:  $\pm 2\%$ 

#### **Breaker Monitor**

Relay counts trip operations and accumulates interrupted current on a pole-by-pole basis.

#### **Routine Dielectric Test**

Current inputs: 2500 Vac for 10 s

Power supply, optoisolated inputs,

and output contacts: 3000 Vdc for 10 s

The following IEC 60255-5:1977 dielectric test is performed on all units with the CE mark:

2500 Vac for 10 seconds on analog inputs.3100 Vdc for 10 seconds on power supply, optoisolated inputs, and contact inputs.

#### **Operating Temperature**

-40° to +85°C (-40° to +185°F)

#### Dimensions

8.81 cm x 21.59 cm x 23.37 cm (3.47" x 8.5" x 9.2") (H x W x D)

#### Weight

2.6 kg (5 lb, 12 oz)

#### Type Tests

#### **Environmental Tests**

| Cold:                    | IEC 60068-2-1:1990<br>[EN 60068-1-1:1993]<br>Test Ad; 16 hr at -40°C   |
|--------------------------|------------------------------------------------------------------------|
| Damp Heat, Steady State: | IEC 60068-2-3:1969<br>Test Ca; 96 hours at +40°C, 93% RH               |
| Damp Heat, Cyclic        | IEC 60068-2-30:1980<br>Test Db; 25° to 55°C,<br>6 cycles, 95% humidity |
| Dry Heat:                | IEC 60068-2-2:1974<br>[EN 60068-2-2:1993]<br>Test Bd: 16 hr at +85°C   |

#### **Dielectric Strength and Impulse Tests**

| Dielectric:                    | IEC 60255-5:1977<br>IEEE C37.90-1989<br>2500 Vac on analogs, contact<br>inputs, and contact outputs;<br>100 Vdc on power supply; 2200 Vdc<br>on EIA-485 communications port |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Impulse:                       | IEC 60255-5:1977 0.5 J, 5000 V                                                                                                                                              |
| Electrostatic Discharge Test   | t                                                                                                                                                                           |
| ESD:                           | IEC 60255-22-2:1996<br>IEC 60801-2:1991 Level 4                                                                                                                             |
| RFI and Interference Tests     |                                                                                                                                                                             |
| Fast Transient Burst:          | IEC 60801-4:1988<br>Level 4 (4 kV on power supply, 2 kV on<br>inputs and outputs)                                                                                           |
| Fast Transient<br>Disturbance: | IEC 60255-22-4:1992<br>IEC 60801-2:1991 Level 4                                                                                                                             |
| Radiated EMI:                  | IEC 60255-22-3:1989, 10 V/m                                                                                                                                                 |
| Surge Withstand:               | IEEE C37.90.1-1989<br>3.0 kV oscillatory; 5.0 kV fast transient                                                                                                             |
| Vibration and Shock Tests      |                                                                                                                                                                             |
| Shock and Bump:                | IEC 60255-21-2:1988 Class 2<br>IEC 60255-21-3:1993 Class 2                                                                                                                  |
| Sinusoidal Vibration:          | IEC 60255-21-1:1988 Class 2                                                                                                                                                 |
| Object Penetration             |                                                                                                                                                                             |

Object Penetration:

IEC 60529:1989 IP3X

© 2002–2017 by Schweitzer Engineering Laboratories, Inc. All rights reserved.

All brand or product names appearing in this document are the trademark or registered trademark of their respective holders. No SEL trademarks may be used without written permission. SEL products appearing in this document may be covered by U.S. and Foreign patents.

Schweitzer Engineering Laboratories, Inc. reserves all rights and benefits afforded under federal and international copyright and patent laws in its products, including without limitation software, firmware, and documentation.

The information in this document is provided for informational use only and is subject to change without notice. Schweitzer Engineering Laboratories, Inc. has approved only the English language document.

This product is covered by the standard SEL 10-year warranty. For warranty details, visit selinc.com or contact your customer service representative.

#### SCHWEITZER ENGINEERING LABORATORIES, INC.

2350 NE Hopkins Court • Pullman, WA 99163-5603 U.S.A. Tel: +1.509.332.1890 • Fax: +1.509.332.7990 selinc.com · info@selinc.com





# **SEL**-751 Feeder Protection Relay

# Directional Overcurrent, Arc-Flash Detection, and High-Impedance Fault Detection



Five-Inch, Color Touchscreen Display Model With Four Pushbuttons



Two-Line Display Model With Four Pushbuttons



Five-Inch, Color Touchscreen Display Model With Eight Pushbuttons



Two-Line Display Model With Eight Pushbuttons

# **New Features**

- ➤ A new front-panel layout option with a 5-inch, color, 800 x 480-pixel touchscreen interface to navigate the screens, folders, and applications. The new touchscreen display layout allows bay control. You can also view metered quantities and perform HMI functions including viewing and editing settings, event summaries, target status, SER, etc. This option is available with four or eight pushbuttons, with or without a fiber-optic serial port, or with or without ac voltage inputs.
- Added an ac currents only model (no voltages) that can be configured with four pushbuttons, four ac current inputs, and without a fiber-optic serial port.
- ► Increased the maximum number of GOOSE subscriptions to 64.

# **Major Features and Benefits**

The SEL-751 Feeder Protection Relay provides a comprehensive combination of protection, fault-locating features, monitoring, control, and communication in an industrial package.

The SEL-751 protection features depend on the model selected. The models are configured with specific current/voltage input cards. *Table 1* shows current (ACI) and voltage (AVI) card selections for the SEL-751 models.

| Model Description                                                                                                         | Slot Z Card Option<br>(MOT String Digital<br>Number 14, 15) | Slot Z Inputs                 | Slot E Card Option<br>(MOT String Digits<br>Number 12, 13) | Slot E Inputs                   |
|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------|------------------------------------------------------------|---------------------------------|
| Base SEL-751 AC Currents Only                                                                                             | 4 ACI<br>(A1, A2, A3, A5, A6, A7)                           | IA, IB, IC, IN                | None (0X)                                                  | None                            |
| SEL-751 With AC Voltages (300 Vac)                                                                                        | 4 ACI/3 AVI<br>(81, 82, 83, 85, 86, 87)                     | IA, IB, IC, IN,<br>VA, VB, VC | None (0X)                                                  | None                            |
| SEL-751 With LEA AC Voltages (8 Vac)                                                                                      | 4 ACI/3 AVI<br>(L1, L2, L3, L5, L6, L7)                     | IA, IB, IC, IN,<br>VA, VB, VC | None (0X)                                                  | None                            |
| SEL-751 With AC Phase Voltages (300 Vac),<br>Vsync (300 Vac), Vbat (300 V) Input, and<br>4 Arc-Flash Detections Inputs    | 4 ACI/3 AVI<br>(81, 82, 83, 85, 86, 87)                     | IA, IB, IC, IN,<br>VA, VB, VC | 2 AVI/4 AFDI (70)                                          | VS, VBAT, AF1,<br>AF2, AF3, AF4 |
| SEL-751 With LEA AC Phase Voltages<br>(8 Vac), LEA Vsync (8 Vac), Vbat (300 V)<br>Input, and 4 Arc-Flash Detection Inputs | 4 ACI/3 AVI<br>(L1, L2, L3, L5, L6, L7)                     | IA, IB, IC, IN,<br>VA, VB, VC | 2 AVI/4 AFDI (L0)                                          | VS, VBAT, AF1,<br>AF2, AF3, AF4 |

| Table 1 | Current (ACI) and | Voltage (AVI) C | ard Selection | for SEL-751 Models |
|---------|-------------------|-----------------|---------------|--------------------|
|---------|-------------------|-----------------|---------------|--------------------|

The SEL-751 offers an extensive variety of protection features, depending on the model and options selected. *Table 2* lists the protection features available in each model.

Table 2 SEL-751 Protection Elements (Sheet 1 of 2)

|               | Protection Element                                   | Slot Z 4 ACI Card<br>(Current Only Model)<br>With 1 A or 5 A Neutral<br>Channel | Slot Z 4 ACI/3 AVI<br>Card With 1 A or 5 A<br>Neutral Channel | Slot Z 4 ACI/3 AVI<br>Card With 200 mA<br>Neutral Channel |
|---------------|------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------|
| 50P           | Max. Phase Overcurrent                               | Х                                                                               | Х                                                             | Х                                                         |
| 67P           | Max. Phase Overcurrent With Directional Control      |                                                                                 | X <sup>a</sup>                                                | X <sup>b</sup>                                            |
| 50Q           | NegSeq. Overcurrent                                  | Х                                                                               | Х                                                             | Х                                                         |
| 67Q           | NegSeq. Overcurrent With<br>Directional Control      |                                                                                 | X <sup>a</sup>                                                | X <sup>b</sup>                                            |
| 50G           | Residual Overcurrent                                 | Х                                                                               | Х                                                             | Х                                                         |
| 67G           | Residual Overcurrent With<br>Directional Control     |                                                                                 | X <sup>a</sup>                                                | X <sup>b</sup>                                            |
| 50N           | Neutral Overcurrent                                  | Х                                                                               | Х                                                             | Х                                                         |
| 67N           | Neutral Overcurrent With<br>Directional Control      |                                                                                 |                                                               | X <sup>b</sup>                                            |
| 51 <i>m</i> P | Phase Time Overcurrent $(m = A, B, C)$               | Х                                                                               | Х                                                             | Х                                                         |
| 51P           | Max. Phase Time Overcurrent                          | Х                                                                               | Х                                                             | Х                                                         |
| 51P           | Max. Phase Time Overcurrent With Directional Control |                                                                                 | X <sup>a</sup>                                                | Xb                                                        |
| 51G           | Residual Time Overcurrent                            | Х                                                                               | Х                                                             | Х                                                         |
| 51G           | Residual Time Overcurrent With Directional Control   |                                                                                 | X <sup>a</sup>                                                | X <sup>b</sup>                                            |

|         | Protection Element                                       | Slot Z 4 ACI Card<br>(Current Only Model)<br>With 1 A or 5 A Neutral<br>Channel | Slot Z 4 ACI/3 AVI<br>Card With 1 A or 5 A<br>Neutral Channel | Slot Z 4 ACI/3 AVI<br>Card With 200 mA<br>Neutral Channel |
|---------|----------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------|
| 51Q     | NegSeq. Time Overcurrent                                 | X                                                                               | Х                                                             | Х                                                         |
| 51Q     | NegSeq. Time Overcurrent With Directional Control        |                                                                                 | X <sup>a</sup>                                                | X <sup>b</sup>                                            |
| 51N     | Neutral Time Overcurrent                                 | Х                                                                               | Х                                                             | Х                                                         |
| 51N     | Neutral Time Overcurrent With<br>Directional Control     |                                                                                 |                                                               | X <sup>b</sup>                                            |
| SEF     | Sensitive Earth Fault                                    |                                                                                 |                                                               | Х                                                         |
| HBL     | Second- and Fifth-Harmonic Blocking                      | Х                                                                               | Х                                                             | Х                                                         |
| FLOC    | Fault Locator                                            |                                                                                 | Х                                                             | Х                                                         |
| 27      | Undervoltage<br>(Phase, Phase-to-Phase, Vsync)           |                                                                                 | Х                                                             | Х                                                         |
| 59      | Overvoltage (Phase, Phase-to-Phase,<br>Seq., Vsync)      |                                                                                 | Х                                                             | Х                                                         |
| 27I     | Inverse Time Undervoltage                                |                                                                                 | Х                                                             | Х                                                         |
| 59I     | Inverse Time Overvoltage                                 |                                                                                 | Х                                                             | Х                                                         |
| 60LOP   | Loss of Potential                                        |                                                                                 | Х                                                             | Х                                                         |
| 32      | Directional Power                                        |                                                                                 | Х                                                             | Х                                                         |
| 49T     | IEC Thermal (line/cable)                                 | Х                                                                               | Х                                                             | Х                                                         |
| 55      | Power Factor                                             |                                                                                 | Х                                                             | Х                                                         |
| 78VS    | Vector Shift                                             |                                                                                 | Х                                                             | Х                                                         |
| 81      | Over- and Underfrequency                                 | Х                                                                               | Х                                                             | Х                                                         |
| 81R     | Rate-of-Change of Frequency                              |                                                                                 | Х                                                             | Х                                                         |
| 81RF    | Fast Rate-of-Change of Frequency                         |                                                                                 | Х                                                             | Х                                                         |
| 25      | Synchronism Check                                        |                                                                                 | X <sup>c</sup>                                                | X <sup>c</sup>                                            |
| BF      | Breaker Failure                                          | Х                                                                               | Х                                                             | Х                                                         |
| 49RTD   | RTDs                                                     | X <sup>d</sup>                                                                  | X <sup>d</sup>                                                | X <sup>d</sup>                                            |
| 79      | Reclosing                                                | X <sup>d</sup>                                                                  | X <sup>d</sup>                                                | X <sup>d</sup>                                            |
| HIF AST | High-Impedance Fault Detection With Arc Sense Technology |                                                                                 | X <sup>d</sup>                                                | X <sup>d</sup>                                            |
| AFT     | Arc-Flash Detection                                      | X <sup>d</sup>                                                                  | X <sup>d</sup>                                                | X <sup>d</sup>                                            |

#### Table 2 SEL-751 Protection Elements (Sheet 2 of 2)

<sup>a</sup> Available when ordered with the directional option. The 1 A/5 A neutral channel is suitable for solidly grounded systems and also impedance-grounded systems, depending on the available fault current level.
 <sup>b</sup> Available when ordered with the directional option. The 200 mA neutral channel is suitable for ungrounded, low-impedance grounded, high-

<sup>c</sup> Available with the 2 AVI/4 AFDI card in Slot E.
 <sup>d</sup> Available as ordering options.

The SEL-751 offers four front-panel HMI layouts that are front-panel option dependent. *Table 3* lists the HMI options for the SEL-751 front panel.

| Model/Display Description <sup>a</sup>                                | Front-Panel Option<br>(MOT String Digit<br>Number 16) | Number of Pushbuttons | LED Type |
|-----------------------------------------------------------------------|-------------------------------------------------------|-----------------------|----------|
| SEL-751With Two-Line Display<br>(2 x 16 characters)                   | 0                                                     | 8                     | Tricolor |
| SEL-751 With Two-Line Display (2 x 16 characters)                     | 1                                                     | 4                     | Tricolor |
| SEL-751 With Touchscreen Display<br>(5-inch, color, 800 x 480 pixels) | А                                                     | 8                     | Tricolor |
| SEL-751With Touchscreen Display<br>(5-inch, color, 800 x 480 pixels)  | В                                                     | 4                     | Tricolor |

#### Table 3 SEL-751 Front-Panel Options

<sup>a</sup> For ordering options, refer to the SEL-751 MOT.

- ➤ Standard Protection Features. Protect lines and equipment with an extensive range of protection elements, including overcurrent elements, over- and underfrequency elements, rate-of-change-of-frequency and fast rate-of-change-of-frequency elements, definite-time and inverse-time over- and undervoltage elements, directional power elements, second- and fifth-harmonic current blocking (inrush blocking), load encroachment, demand metering elements, and breaker failure protection. Implement load shedding and other control schemes with under- and overfrequency elements, under- and overvoltage elements, and powerful SELOGIC<sup>®</sup> control equations. Also protect and control equipment with cable or line thermal elements that conform to the IEC 60255-149 standard and with vector shift elements that aid in islanding detection.
- ➤ **Optional Directional Control.** Use overcurrent elements with directional control to optimize radial and looped network protection for lines and equipment. Best Choice Ground Directional Element<sup>®</sup> logic optimizes directional element performance and eliminates the need for many directional settings.
- Optional High-Impedance Fault Detection. Use the high-impedance fault (HIF) detection element to operate for small current ground faults typically resulting from downed conductors on ground surfaces such as earth, reinforced concrete, or other poorly conductive materials. HIF event data are available in COMTRADE or Compressed ASCII format.
- ➤ Optional Arc-Flash Protection. Reduce or eliminate damage from arc-flash events with the optional four- or eight-channel fiber-optic arc-flash detector inputs and protection elements. Settable arc-flash phase and neutral overcurrent elements combined with arc-flash light detection elements provide secure, reliable, and fast arc-flash event protection.
- > Optional Low-Energy Analog (LEA) Voltage Inputs. Measure voltages as low as 8 Vac rms.
- ► Optional Synchronism Check and DC Station Battery Monitor. Check single-phase voltage across a circuit breaker; measure dc voltage levels in the substation battery.
- ➤ Operator Controls and Reclosing. Trip and close the breaker easily with eight programmable front-panel pushbuttons, each with two tricolor LEDs. Implement remote and local control functions, and selectively reclose with synchronism and voltage checks.
- Relay and Logic Settings Software. Reduce engineering costs by using ACSELERATOR QuickSet<sup>®</sup> SEL-5030 Software for relay settings and logic programming. Tools in QuickSet make it easy to develop SELOGIC control equations.
- ➤ Metering and Monitoring. Use built-in metering functions to eliminate separately mounted metering devices. Analyze Sequential Events Recorder (SER) reports and oscillographic event reports for rapid commissioning, testing, and post-fault diagnostics. Unsolicited SER protocol allows station-wide collection of binary SER messages.
- ► Fault Location. Reduce fault location and repair time with built-in impedance-based fault location and faulted phase indication.
- ► Wye or Delta Voltage Inputs. Connect voltage inputs that are wye-connected, open-delta-connected, or single voltage.

- Additional Standard Features. Improve your feeder protection with these additional standard features in every SEL-751: Modbus RTU; Event Messenger support and MIRRORED BITS<sup>®</sup> communications; load profile and breaker wear monitoring; support for 12 external RTDs (SEL-2600); IRIG-B input; advanced SELOGIC; and IEEE C37.118-compliant synchrophasor protocol to provide real-time measurement data.
- Additional Optional Features. Select from a wide offering of other optional features, including IEC 61850 Edition 2; IEC-60870-5-103; DNP3 serial and LAN/WAN; Modbus TCP/IP; Simple Network Time Protocol (SNTP); parallel redundancy protocol (PRP) with dual Ethernet ports; ten internal RTDs; expanded digital/ analog I/O; additional EIA-232 or EIA-485 communications ports; and single or dual, copper-wire or fiber-optic Ethernet ports, and an ac currents only model (no voltages) with no fiber-optic serial port and four programmable pushbuttons.
- **Supported Languages.** Multiple language support with English and Spanish options.

#### Intertie Standards and Compliance

The SEL-751 Feeder Protection Relay offers an extensive variety of protection and control features depending on the model and options selected. The SEL-751 Relay can be configured to meet or exceed the protection and control requirements specified in the ANSI/IEEE Std 1547-2014, *Standard for Interconnecting Distributed Resources with Electric Power Systems*.

# **Functional Overview**



- Low-Energy Analogs (LEA) for AC Voltage Inputs (8 Vac RMS)\*
- Sequential Events Recorder
- Event Reports and Load Profile
- SEL ASCII, Modbus RTU, Ethernet\*, Modbus TCP\*, IEC 61850 Edition 2\*, DNP3 LAN/WAN\*, DNP3 Serial\*, SNTP\*, Telnet\*, IEC 60870-5-103\*, PRP\*, FTP\*, and DeviceNet Communications\*
- Event Messenger Compatible
- Front-Panel Tricolor LED Programmable Targets
- Two Inputs and Three Outputs Standard
- I/O Expansion\*-Additional Contact Inputs, Contact Outputs, Analog Inputs, Analog Outputs, and RTD Inputs
- ST Fiber-Optic Communications Port\*
- Single or Dual Ethernet, Copper or Fiber-Optic Communications Port\*
- Battery-Backed Clock, IRIG-B Time Synchronization

- Instantaneous Metering
- Four or Eight Programmable Front-Panel Pushbuttons and Tricolor LED Indicators
- Advanced SELogic<sup>®</sup> Control Equations
- 32 Programmable Display Messages
- Station Battery Monitor\*
- Breaker Wear Monitoring
- Synchrophasor Protocol (IEEE C37.118)
- Arc-Flash Protection\*
- Peak Demand, Demand Metering
- Load Encroachment
- High-Impedance Fault Detection\*
- Fault Locator
- Directional Protection\*
- Touchscreen Display (5-inch, color, 400 x 800 pixels)\*

\*Optional

6

Figure 1 Functional Diagram

## **Overcurrent Elements**

The SEL-751 includes a robust set of phase, negativesequence, residual, and neutral overcurrent elements. Each element type has four levels of instantaneous protection with individual torque control and definite-time delay settings. Each element type has two inverse-time overcurrent elements (except negative-sequence, which has one time-overcurrent element). *Table 4* lists the curves available in the SEL-751.

The SEL-751 has two reset characteristic choices for each time-overcurrent element. One choice resets the elements if current drops below pickup for at least one cycle. The other choice emulates electromechanical induction disc elements, where the reset time depends on the time dial setting, the percentage of disc travel, and the amount of current.

Table 4 Inverse-Time Overcurrent Curves

| US                 | IEC                |
|--------------------|--------------------|
| Moderately Inverse | Standard Inverse   |
| Inverse            | Very Inverse       |
| Very Inverse       | Extremely Inverse  |
| Extremely Inverse  | Long-Time Inverse  |
| Short-Time Inverse | Short-Time Inverse |

# Overcurrent Elements for Phase Fault Detection

The SEL-751 Relay provides the tools necessary for sensitive fault protection while accommodating heavily loaded circuits. Where heavy loading prevents sufficiently sensitive setting of the phase overcurrent elements to detect lower magnitude phase-to-ground faults, residualground overcurrent elements are available to provide sensitive ground fault protection without tripping under balanced heavy load conditions. Similarly, when heavy loading prevents sufficiently sensitive setting of the phase overcurrent elements to detect lower magnitude phase-tophase faults, negative-sequence overcurrent elements are available to provide more sensitive phase-to-phase fault detection without tripping under balanced heavy load conditions. You can set phase overcurrent element pickup sufficiently high to accommodate heavy load while retaining sensitivity to higher magnitude three-phase faults.

On extremely heavily loaded feeders, SEL-751 loadencroachment logic adds security in cases when you cannot set phase overcurrent elements to provide adequate three-phase fault sensitivity while also accommodating load. With this logic, you can set the phase overcurrent elements below peak load current so that the relay can detect end-of-line phase faults in heavily loaded feeder applications. This load-encroachment logic uses positivesequence load-in and load-out elements to discriminate between load and fault conditions based on the magnitude and angle of the positive-sequence impedance. When the measured positive-sequence load impedance (Z1) is within a region the load-encroachment settings define, load-encroachment logic blocks the phase overcurrent elements. As *Figure 2* shows, a phase fault causes Z1 to move from a load region to the line angle and leads to operation of the phase overcurrent elements.



Figure 2 Load Encroachment Characteristics

# Overcurrent Elements for Ground Fault Detection

Residual-ground  $(I_G)$  and neutral  $(I_N)$  overcurrent elements detect ground faults. Increase security by controlling these elements using optoisolated inputs or the internal ground directional element. The SEL-751 protection system includes patented Best Choice Ground Directional Element logic, providing a selection of negative-sequence impedance, zero-sequence impedance, and zero-sequence current polarizing techniques for optimum directional ground element control.

# Directional Elements Increase Sensitivity and Security

Phase and ground directional elements come standard in an SEL-751 with the directional control option. An automatic setting mode (EDIR = AUTO) sets all directional threshold settings according to replica positive-sequence and zero-sequence line impedance settings (Z1MAG, Z1ANG, Z0MAG, and Z0ANG) for line protection applications. For all non-line protection applications, set EDIR = Y to enable and set appropriate directional element thresholds. Phase directional elements provide directional control to the phase- and negative-sequence overcurrent elements. Phase directional characteristics include positivesequence and negative-sequence directional elements working together. The positive-sequence directional element memory provides a reliable output for close-in, forward, or reverse three-phase faults where each phase voltage is zero.

Ground directional elements provide directional control to the residual-ground and neutral overcurrent elements. Patented negative-sequence, zero-sequence impedance directional elements, and the zero-sequence current directional element use the same principles proven in our SEL transmission line relays. Our patented Best Choice Ground Directional Element logic selects the best available ground directional element for the ORDER setting you provide.

## Directional Protection for Various System Grounding Practices

Current channel IN, ordered with an optional 0.2 A secondary nominal rating, provides directional ground protection for the following systems:

- ► Ungrounded systems
- ► High-impedance grounded systems
- ► Petersen coil-grounded systems
- ► Low-impedance grounded systems

This optional directional control allows the faulted feeder to be identified on a multifeeder bus with an SEL-751 on each feeder (*Figure 3*). Alarm or trip for the ground fault condition with sensitivity down to 5 mA secondary.



Figure 3 Apply SEL-751 Relays to Petersen Coil-Grounded, Impedance-Grounded, and Ungrounded Systems for Directional Control

## Line/Cable Thermal Elements

Power lines and cables are designed to operate under a certain temperature range. Because the trend in power system operations is for equipment to be used as close to the operating limits as possible, the importance of protecting equipment against thermal overloads becomes more critical. The thermal overload protection element is used to protect the overhead lines and cables against thermal damage (including insulation degradation and loss of equipment life) and to monitor the thermal state of the overhead lines and cables. The temperature is calculated using a thermal model according to IEC 60255-149.

## Wye or Open-Delta Voltages

You can apply wye-connected (four-wire) voltages or open-delta-connected (three-wire) voltages to three-phase voltage inputs VA, VB, VC, and N, as shown in *Figure 4*. You only need to make a global setting (DELTA\_Y = WYE or DELTA\_Y = DELTA) and an external wiring change—no internal relay hardware changes or adjustments are necessary. Thus, a single SEL-751 model meets all your distribution protection needs, regardless of available three-phase voltages.



Figure 4 Connect Wye or Open-Delta Voltages to SEL-751 Three-Phase Voltage Inputs

*Figure 5* shows the connections for a 3V0 broken delta input.



Figure 5 Broken-Delta Connections

# Voltage and Frequency Elements for Extra Protection and Control

#### **Over- and Undervoltage Elements**

Phase-to-ground, phase-to-phase, negative-sequence, and residual overvoltage (59) and phase-to-ground or phase-to-phase undervoltage (27) elements in the SEL-751 can be used to create the following protection and control schemes.

- Trip/alarm or event report triggers for over- and undervoltage conditions.
- ➤ Undervoltage (27) load shedding scheme (having both 27 and 81U load shedding schemes allows detection of system MVAR- and MW-deficient conditions).

#### Inverse-Time Over- and Undervoltage Elements

Custom programmable, IEC equation-based inverse-time overvoltage (59I) and undervoltage (27I) elements in the SEL-751 add flexibility in voltage protection and control schemes.

#### **Over- and Underfrequency Protection**

Six levels of secure overfrequency (810) or underfrequency (81U) elements detect true frequency disturbances. Use the independently time-delayed output of these elements to shed load or trip local generation. The SEL-751 uses the voltage input to make frequency measurements; it switches automatically to current input when voltages are insufficient. In addition, the SEL-751 supports single voltage input. For customers with a single PT input, the SEL-751 will assume balanced voltage input for all protection and metering functions.

### Loss-of-Potential Logic

The SEL-751 includes loss-of-potential (LOP) logic that detects one, two, or three blown potential fuses. This patented LOP logic is unique because it does not require settings and is universally applicable. The LOP feature allows the blocking of protection elements to add security during fuse failure.

#### Synchronism Check

When you order the Vsync, Vbat Voltage Input and 4 Arc-Flash Detection Inputs card (SELECT 2 AVI/ 4 AFDI), single-phase voltage (phase-to-neutral or phase-to-phase) is connected to voltage input VS/NS for synchronism check across a circuit breaker (or hot/dead line check). You can use synchronism-check voltage to coordinate reclosing with the optional recloser control.

Implement an internal multistage frequency trip/restore scheme at each breaker location using the multiple overand underfrequency levels. This method avoids the cost of wiring a complicated trip and control scheme from a separate frequency relay.

#### Rate-of-Change-of-Frequency Protection

Four independent rate-of-change-of-frequency elements are provided with individual time delays for use when frequency changes occur, for example, when there is a sudden imbalance between generation and load. The elements can call for control action or switching action such as network decoupling or load shedding. Each element includes logic to detect either increasing or decreasing frequency and above or below nominal frequency.

## Fast Rate-of-Change-of-Frequency Protection for Aurora Vulnerability Mitigation

The fast rate-of-change-of-frequency protection, 81RF, provides a faster response compared to frequency (81) and rate-of-change-of-frequency (81R) elements. Fast operating speed makes the 81RF element suitable for detecting islanding conditions. The element uses a characteristic (see *Figure 6*) based on the frequency deviation from nominal frequency (DF = FREQ – FNOM) and the rate-of-change of frequency (DF3C) to detect islanding conditions.



Figure 6 81RF Characteristic Power Element Protection

A time window of three cycles is used to calculate the value of DF3C. Under steady state conditions, the operating point is close to the origin. During islanding conditions, depending on the islanded system acceleration, the operating point enters Trip Region 1 or Trip Region 2 of the characteristic. 81RFDFP (in Hz) and 81RFRP (in Hz sec) are the settings used to configure the characteristic.

# Vector Shift (78VS) Protection

When distributed generators (DG) are connected in the utility network, the vector shift (78VS) element is used to detect islanding conditions and trip the DG. Failure to trip islanded generators can lead to problems such as personnel safety, out-of-synchronization reclosing, and degradation of power quality. Based on the change in the angle of the voltage waveform, the islanding condition can be detected by the vector shift function.

Use the vector shift element with the 81RF element as a backup for fast and secure islanding detection. The vector shift element operates within three cycles, which is fast enough to prevent reclosing out-of-synchronism with the network feeders to avoid generator damage.

# Harmonic Blocking Elements Secure Protection During Transformer Energization

Transformer inrush can cause sensitive protection to operate. Use the second- and fifth-harmonic blocking feature to detect an inrush condition and block selected tripping elements until the inrush subsides. Select the blocking threshold as a percentage of fundamental current, and optimize security and dependability with settable pickup and dropout times. Use the programmable torque control equation only to enable the blocking element immediately after closing the breaker.

## **Power Element Protection**

The SEL-751 provides two power elements for detecting real (watts) or reactive (VARS) positive- or negative-power flow levels for the feeder application. Each power element has a definite-time delay setting.

# High-Impedance Fault (HIF) Detection

High-impedance faults are short-circuit faults with fault currents smaller than what a traditional overcurrent protective relay can detect. The main causes of HIFs are tree branches touching a phase conductor; dirty or failing insulators that cause flashovers between a phase conductor and the ground; or downed conductors touching the ground. The SEL-751 with Arc Sense<sup>™</sup> technology (AST) option, includes logic that can detect HIF signatures without being affected by loads or other system operation conditions. A running average provides a stable prefault reference, and adaptive tuning learns and tunes out feeder ambient noise conditions. Decision logic differentiates an HIF condition from other system conditions such as switching operations and noisy loads. The relay stores as many as 20 minutes of high-impedance fault activity in 2-cycle resolution Compressed ASCII and COMTRADE formats and it stores a summary of HIF activity that you can access through the use of ASCII commands.

# **Arc-Flash Protection**

An arcing short circuit or a ground fault in low- or medium-voltage switchgear can cause serious equipment damage and personal injury, resulting in prolonged and expensive downtime.

The best way to minimize the impact of an arc-flash event is to reduce the detection and circuit breaker tripping times. Conventional protection may need several cycles to detect the resulting overcurrent fault and trip the breaker. In some cases, there may not be sufficient current to detect an overcurrent fault. Tripping may be delayed hundreds of milliseconds for sensitivity and selectivity reasons in some applications.

The arc-flash detection-based (AFD) protection can act on the circuit breaker in a few milliseconds (2–5 ms). This fast response can limit the arc-flash energy, thus preventing injury to personnel and limiting or eliminating equipment damage.

The arc-flash protection option in the SEL-751 Relay adds four- or eight-channel fiber-optic AFD inputs and protection elements. Each channel has a fiber-optic receiver and an LED-sourced fiber-optic transmitter that continuously self-tests and monitors the optical circuit to detect and alarm for any malfunction. There are two types of applications supported by the SEL-751: point-sensor applications and fiber sensor applications.

#### **Point Sensor Application**

The arc is detected by transmitting the arc-flash light captured by the optical diffuser (located appropriately in the switchgear) over a 1000  $\mu$ m plastic fiber-optic cable to the optical detector in the relay. The relay performs sensor loopback tests on the optical system using an LED-based transmitter to transmit light pulses at regular intervals to the point-sensor assembly (through a second fiber-optic cable). If the relay optical receiver does not detect this light, the relay declares a malfunction and alarms. *Figure 7* (top) shows a diagram for the point sensor application.

#### **Fiber Sensor Application**

A second option for AFD uses a clear-jacketed 1000 µm plastic fiber-optic cable located in the switchgear equipment. One end of the fiber is connected to the optical detector in the relay and the other end is connected to the LED transmitter in the relay. The LED transmitter injects periodic light pulses into the fiber as a sensor loopback test to verify the integrity of the loop.



Figure 7 SEL-751 Arc-Flash Detection System

The relay detects and alarms for any malfunction. *Figure 7* (bottom) shows a diagram for the clear-jacketed fiber sensor application.

The SEL-751 AFD system provides four or eight channels per relay that can be configured for the point sensor or the clear-jacketed fiber sensor applications. The optional fast hybrid outputs (high-speed and high-current) of the relay provide fast-acting trip outputs to the circuit breaker (less than 50  $\mu$ s). The fast breaker tripping can prevent serious damage or personal injury in case of an arc-flash event. The relay also provides light metering and light event capture to aid in setting the relay and capturing the arc-flash event for records and analysis.

Settable arc-flash phase and neutral overcurrent elements are combined with arc-flash light detection elements to provide secure, reliable, and fast acting arc-flash event protection.

## **RTD Thermal Protection**

When the SEL-751 is equipped with either an optional 10 RTD input expansion card or an external SEL-2600 RTD Module with as many as 12 RTD inputs, you can program as many as 12 thermal elements in the relay for two levels of thermal protection per element. Each RTD input provides an alarm and trip thermal pickup setting in degrees Celsius, open and shorted RTD detection, and is compatible with the following three-wire RTD types:

- PT100 (100 Ω platinum)
- ► NI100 (100  $\Omega$  nickel)
- ► NI120 (120 Ω nickel)
- ➤ CU10 (10 Ω copper)
# **Operator Controls and Reclosing**

# Operator Controls Eliminate Traditional Panel Control Switches

Four or eight conveniently sized operator controls, each with two programmable tricolor LEDs, are located on the relay front panel (see *Figure 8*). You can set the SER to track operator controls. You can also change operator control functions using SELOGIC control equations. The following operator control descriptions are for factory-set logic.



#### Figure 8 Operator Controls for Standard Model and Optional Reclosing Control Model

In the non-reclosing control SEL-751, you can program the top right operator control and its corresponding two LEDs. When the SEL-751 is ordered with optional reclosing, the two LEDs are programmed to give the status of the reclosing. The two LEDs, **RECL RESET** and **RECL LOCK-OUT**, indicate whether the recloser is in the Reset or Lockout state. The LOCK operator control blocks selected functions. Press it for at least three seconds to engage or disengage the lock function. While locked in position, the following operator controls cannot change state if pressed, TRIP and CLOSE.

Use the **CLOSE** and **TRIP** operator controls to close and open the connected circuit breaker. Program with intentional time delays to support operational requirements for breaker-mounted relays. This allows the operator to press the **CLOSE** or **TRIP** pushbutton, then move to an alternate location before the breaker command is executed.

In the SEL-751 with the touchscreen display, you can use the front-panel operator control pushbuttons to jump to a specific screen while using them for LOCK/OPEN/ CLOSE operations, etc. You can program the selectable operator pushbutton screen settings under the touchscreen setting category in QuickSet and map the button to the specific screen.

# Programmable Autoreclosing

When ordered with optional reclosing, the SEL-751 can autoreclose a circuit breaker as many as four times before lockout. Use SELOGIC control equations to program the SEL-751 to perform the following reclosing functions.

- ➤ Allow closing, e.g., when the load-side line is dead, or when the two systems are in synchronism (optional).
- ➤ Advance the shot counter without tripping, e.g., when another protective relay clears a fault, also known as sequence coordination.
- ➤ Initiate reclosing, e.g., for particular protection trip operations.
- Drive-to-lockout, e.g., when an optoisolated input is deasserted.
- ► Delay reclosing, e.g., after a trip caused by a close-in, high-duty fault.
- ► Flexible reclose supervision failure scheme that allows going to lockout or moving to the next available shot.

The reclosing shot counter controls which protective elements are involved in each reclose interval. Applications include fuse- and trip-saving schemes. The front-panel LEDs (**RECL RESET** and **RECL LOCKOUT**) track the reclosing state.

# **Relay and Logic Settings Software**

QuickSet Software simplifies settings and provides analysis support for the SEL-751. With QuickSet you have several ways to create and manage relay settings:

- Develop settings offline with an intelligent settings editor that only allows valid settings.
- Create SELOGIC control equations with a dragand-drop text editor.
- ► Configure proper settings using online help.
- Organize settings with the relay database manager.
- Load and retrieve settings using a simple PC communications link.

With QuickSet you can verify settings and analyze events; and analyze power system events with the integrated waveform and harmonic analysis tools.

Use the following features of QuickSet to monitor, commission, and test the SEL-751.

- The PC interface remotely retrieves power system data.
- ➤ The human-machine interface (HMI) monitors meter data, Relay Word bits, and output contacts status during testing. The control window allows resetting of metering quantities, arc-flash sensor

testing and diagnostics, and other control functions.

➤ Bay control allows you to design new bay screens and edit existing bay screens by launching ACSELERATOR Bay Screen Builder SEL-5036 Software for SEL-751 relays with the touchscreen display.

# ACSELERATOR Bay Screen Builder SEL-5036 Software

The SEL-751 Relay with the touchscreen display layout option provides you with the ability to design bay configuration screens to meet your system needs. You can display the bay configuration as a single-line diagram (SLD) on the touchscreen. You can use ANSI and IEC symbols, along with analog and digital labels, for the SLD to indicate the status of the breaker and disconnects, bus voltages, and power flow through the breaker. In addition to SLDs, you can design the screens to show the status of various relay elements via Relay Word bits or to show analog quantities for commissioning or day-to-day operations. You can design these screens with the help of Bay Screen Builder in conjunction with QuickSet. Bay Screen Builder provides an intuitive and powerful interface to design bay screens to meet your application needs.



Figure 9 Bay Screen Builder

# Metering and Monitoring

The SEL-751 provides extensive metering capabilities. See *Specifications on page 30* for metering and power measurement accuracies. As shown in *Table 5*, metered quantities include phase voltages and currents; sequence voltages and currents; power, frequency, and energy; and maximum/minimum logging of selected quantities. The relay reports all metered quantities in primary quantities (current in A primary and voltage in V primary).

| Table | 5 | Meterina | Capabilities | 5 |
|-------|---|----------|--------------|---|
| Tuble | 5 | metering | cupublices   | , |

| Types of Metering                   |                |                                                                                      |                                          |  |
|-------------------------------------|----------------|--------------------------------------------------------------------------------------|------------------------------------------|--|
| Instantaneous                       | Light          | Analog Inputs                                                                        | Energy                                   |  |
| Math Variables                      | RMS            | Remote Analogs                                                                       | Thermal                                  |  |
| Demand and Peak Demand              | Synchrophasors | Max/Min                                                                              | HIF (High-Impedance Fault)               |  |
| Quantities <sup>a</sup>             |                | Description                                                                          |                                          |  |
| Currents IA, IB, IC, IN, IG         |                | Input currents, residual grou                                                        | nd current ( $IG = 3I0 = IA + IB + IC$ ) |  |
| Voltages VA, VB, VC                 |                | Wye-connected voltage inpu                                                           | ts                                       |  |
| Voltages VAB, VBC, VCA              |                | Delta-connected voltage input                                                        | uts                                      |  |
| Voltage VS                          |                | Synchronism-check voltage                                                            | input                                    |  |
| Power kW <sub>A,B,C,3P</sub>        |                | Single and three-phase kilow                                                         | vatts, kilovars, and kilovolt-amps       |  |
| kVAR <sub>A,B,C,3P</sub>            |                |                                                                                      |                                          |  |
| kVA <sub>A,B,C,3P</sub>             |                |                                                                                      |                                          |  |
| Energy MWh3P,                       |                | Three-phase megawatt-hours                                                           | s, megavar-hours, and megavolt-amp-hours |  |
| MVARh3P-IN,                         |                |                                                                                      |                                          |  |
| MVARh3P-OUT,                        |                |                                                                                      |                                          |  |
| MVAh3P                              |                |                                                                                      |                                          |  |
| Power Factor PF <sub>A,B,C,3P</sub> |                | Single and three-phase power factor (leading or lagging)                             |                                          |  |
| Sequence I1, 3I2, 3I0, V1, 3V2, 3V  | /0             | Positive-, negative-, and zero-sequence currents and voltages                        |                                          |  |
| Frequency, FREQ, FREQS (Hz)         |                | Instantaneous relay frequency, synchronism-check voltage frequency                   |                                          |  |
| Voltage VDC                         |                | Station battery voltage                                                              |                                          |  |
| Light Intensity (%) LS1-LS8         |                | Arc-flash light inputs in percentage of full scale                                   |                                          |  |
| AIx01–AIx08                         |                | Analog Inputs                                                                        |                                          |  |
| MV01–MV32                           |                | Math Variables                                                                       |                                          |  |
| RA001-RA128                         |                | Remote Analogs                                                                       |                                          |  |
| Thermal Element <i>x</i>            |                | Element <i>x</i> pu current level, thermal capacity, time to trip, and time to reset |                                          |  |
| Current THIEQx pu                   |                | values, where $x = 1, 2, \text{ or } 3$                                              |                                          |  |
| TCU THTCUx%                         |                |                                                                                      |                                          |  |
| Trip Time THTRIPx s                 |                |                                                                                      |                                          |  |
| Release Time THRLSx s               |                |                                                                                      |                                          |  |
| RTD1-RTD12                          |                | RTD temperature measureme                                                            | ent (degrees C)                          |  |

<sup>a</sup> Single-phase power, energy, and power factor quantities are not available when delta-connected PTs are used.

## Load Profile

The SEL-751 features a programmable Load Data Profile (LDP) recorder that records as many as 17 metering quantities into nonvolatile memory at fixed time intervals. The LDP saves several days to several weeks of the most recent data depending on the LDP settings (6500 entries total).

## Synchrophasor Measurements

Use IEEE C37.118-2005 protocol to send synchrophasor data to such SEL synchrophasor applications as the SEL-3373 Station Phasor Data Concentrator (PDC), the SEL-5073 SYNCHROWAVE<sup>®</sup> PDC, the SEL-3378

Synchrophasor Vector Processor (SVP), the SEL-3530 Real-Time Automation Controller (RTAC), and the SEL SYNCHROWAVE software suite.

The SEL-3373 Station PDC and the SEL-5073 SYNCHRO-WAVE PDC correlate data from multiple SEL-751 Relays and concentrate the result into a single output data stream. These products also provide synchrophasor data archiving capability. The SEL-3378 SVP enables control applications based on synchrophasors. Directly measure the oscillation modes of your power system and then act on the result. Use wide-area phase angle slip and acceleration measurements to properly control islanding of distributed generation. With the SVP, you can customize a synchrophasor control application according to the unique requirements of your power system. The data rate of SEL-751 synchrophasors is selectable with a range of 1–60 messages per second. This flexibility is important for efficient use of communication capacity.

The SEL-751 phasor measurement accuracy meets the highest IEEE C37.118-2005 Level 1 requirement of 1 percent total vector error (TVE). This means you can use any SEL-751 model in an application that otherwise would require purchasing a separate dedicated phasor measurement unit (PMU).

Use the SEL-751 with SEL communications processors, or the SEL-3530 RTAC, to change nonlinear state estimation into linear state estimation. If all necessary lines

# Improve Situational Awareness

Provide improved information to system operators. Advanced synchrophasor-based tools produce a real-time view of system conditions. Use system trends, alarm points, and preprogrammed responses to help operators prevent a cascading system collapse and maximize system stability. Awareness of system trends provides operators with an understanding of future values based on measured data.

- Increase system loading while maintaining adequate stability margins.
- Improve operator response to system contingencies such as overload conditions, transmission outages, or generator shutdown.
- Advance system knowledge with correlated event reporting and real-time system visualization.
- Validate planning studies to improve system load balance and station optimization.



Figure 11 Visualization of Phase Angle Measurements Across a Power System

include synchrophasor measurements then state estimation is no longer necessary. The system state is directly measured.



Figure 10 Synchrophasor Measurements Turn State Estimation Into State Measurement



Figure 12 SEL-5078 SYNCHROWAVE Console Real-Time, Wide-Area Visualization Tool

## **Event Reporting**

Event reports and the SER simplify post-fault analysis and improve understanding of simple and complex protective scheme operations. In response to a user-selected trigger, the voltage, current, frequency, and element status information contained in each event report confirms relay, scheme, and system performance for every fault. Decide how much detail is necessary when you request an event report (e.g., 1/4-cycle or 1/32-cycle resolution and filtered or raw analog data).

The relay stores as many as 6 of the most recent 180cycle, 17 of the most recent 64-cycle, or 70 of the most recent 15-cycle event reports in nonvolatile memory. The relay always appends relay settings to the bottom of each event report.

The following analog data formats are available:

- ► 1/4-cycle or 1/32-cycle resolution, unfiltered or filtered analog, ASCII or Compressed ASCII reports
- ► 1/32-cycle resolution COMTRADE reports

The IRIG-B time-code input synchronizes the SEL-751 internal clock time to within  $\pm 1 \ \mu s$  of the time-source input. Convenient sources for this time code are the SEL-2401 Satellite-Synchronized Clock, the SEL communication processor, or the SEL Real Time Automation Controller (RTAC) (via Serial Port 2 or 3 on the SEL-751). For time accuracy specifications for metering, synchrophasors, and events, see *Specifications*.

## **Substation Battery Monitor**

The SEL-751 relays that include the enhanced voltage option with the monitoring package measure and report the substation battery voltage connected to the VBAT terminals. The relay includes two programmable threshold comparators and associated logic for alarm and control. For example, if the battery charger fails, the measured dc falls below a programmable threshold. The SEL-751 alarms to alert operations personnel before the substation battery voltage falls to unacceptable levels. Monitor these thresholds with an SEL communications processor and trigger messages, telephone calls, or other actions.

The measured dc voltage appears in the meter display and the Vdc column of the event report. Use the event report column data to see an oscillographic display of the battery voltage. This display shows how much the substation battery voltage drops during trip, close, and other control operations.

## **Circuit Breaker Contact Wear Monitor**

Circuit breakers experience mechanical and electrical wear every time they operate. Intelligent scheduling of breaker maintenance takes into account a manufacturer's published data of contact wear versus interruption levels and operation count. With the breaker manufacturer's maintenance curve as input data, the SEL-751 breaker monitor feature compares this input data to the measure (unfiltered) ac current at the time of trip and the number of close-to-open operations.

Every time the breaker trips, it integrates the measured current information. When the result of this integration exceeds the breaker wear curve threshold (see *Figure 13*) the relay alarms via output contact, communications port, or front-panel display. This kind of information allows timely and economical scheduling of breaker maintenance.



Figure 13 Breaker Contact Wear Curve and Settings

## **Fault Locator**

The SEL-751 provides a valuable estimate of fault location even during periods of substantial load flow. The fault locator uses fault type, replica line impedance settings, and fault conditions to calculate fault location. This feature, which operates without the use of communications channels, special instrument transformers, or prefault information, contributes to efficient dispatch of line crews and fast restoration of service. The fault locator uses three-phase voltage inputs. Wye-connected voltages are necessary for phase and ground fault distance calculations.

Only phase fault distance calculations are available with delta-connected voltages. The fault locator is unavailable in the absence of voltage or single-phase voltage connections.

# **Touchscreen Display**

You can order the SEL-751 Feeder Protection Relay with an optional touchscreen display (5-inch, color, 800 x 480 pixels). The touchscreen display makes relay data metering, monitoring, and control quick and efficient. The touchscreen display option in the SEL-751 features a straightforward application-driven control structure and includes intuitive and graphical screen designs.

The touchscreen display allows you to:

- ► View and control bay screens
- ► Access metering and monitoring data
- ➤ Inspect targets
- View event history, summary data, and SER information
- ► View relay status and configuration
- ► Control relay operations
- ► View and edit settings
- ► Enable the rotating display
- Program control pushbuttons to jump to a specific screen

You can navigate the touchscreen by tapping the folders and applications. The folders and applications of the **Home** screen are shown in *Figure 14*. Folders and applications are labeled according to functionality. Additional folder and application screens for the SEL-751 touchscreen display option can be seen in *Figure 15* through *Figure 23*.



Figure 14 Home (Default FPHOME Screen)

## **Bay Screens Application**

The SEL-751 Relay with the touchscreen display option provides you with the ability to design bay configuration screens to meet your system needs. The bay configuration can be displayed as an SLD on the touchscreen. You can create as many as five bay screens with one controllable breaker and as many as five monitor-only disconnects. ANSI and IEC symbols, along with analog and digital labels, are available for you to create detailed SLDs of the bay to indicate the status of the breaker and disconnects, bus voltages, and power flow through the breaker. *Figure 15* shows the default SLD for the touchscreen display option.



Figure 15 Default Bay Screen

## Meter Folder Applications

The applications in the **Meter** folder are part-number dependent. Only those metering applications specific to your part number appear in the **Meter** folder. Tapping an application in the **Meter** folder shows you the report for that particular application. Tap the **Phasor** application to view the current and voltage phasors (see *Figure 16*).





Tap the **Energy** application to view the energy metering quantities (see *Figure 17*). A reset feature is provided for the **Energy**, **Max/Min**, **Demand**, and **Peak Demand** 

applications. Tap the **Reset** button  $\bigcirc$  (see *Figure 17*) to navigate to the reset confirmation screen. Once you confirm the reset, the data are reset to zero.



Figure 17 Meter Energy

# **Reports Folder Applications**

Tapping the **Reports** folder navigates you to the screen where you can access the **Events**, **HIF Events** (if available), and **SER** applications. Use these applications to view events and SERs. To view the event summary (see *Figure 18*) of a particular event record, you can tap the event record on the **Event History** screen (for **Events** and **HIF Events**).

| Event Summary |          |            | 02/08/2017 | 08:50:47         |          |
|---------------|----------|------------|------------|------------------|----------|
| Ð             | Ref_Num  | 10061      | Event      | t 27 T           | rip      |
|               | Date     | 01/25/2017 | Time       | 11:50            | ):28.732 |
|               | Location | \$\$\$\$\$ | Targe      | ets <b>1100</b>  | 0000     |
|               | IA (A)   | 24.8       | VAN        | (V) <b>178</b>   |          |
|               | IB (A)   | 25.1       | VBN        | (V) <b>180</b>   |          |
| •             | IC (A)   | 24.8       | VCN        | (V) <b>176</b>   |          |
|               | IN (A)   | 0.12       | VG (\      | /) 6             |          |
| ~             | IG (A)   | 0.49       | Freq       | (Hz) <b>60.0</b> | )        |
|               |          |            |            | *                | LR ACC   |

Figure 18 Event Summary

Tap the **Sequential Events Recorder** application to view a history of the SER reports (see *Figure 19*).

| Sequ            | ential | Events Reco | order        |    | 02/08/ | 2017     | 08:   | 51:56  |
|-----------------|--------|-------------|--------------|----|--------|----------|-------|--------|
| ſ               | #      | DATE        | TIME         | EL | EMENT  | S        | ΤΑΤΙ  | •      |
|                 | 105    | 01/25/2017  | 08:19:30.061 |    | 51G1T  |          | As    | serted |
| C               | 106    | 01/25/2017  | 08:19:29.194 |    | SALARM |          | Deas  | serted |
| TIÎT            | 107    | 01/25/2017  | 08:19:28.198 |    | 51G1T  |          | Deas  | serted |
|                 | 108    | 01/25/2017  | 08:19:28.194 |    | SALARM |          | As    | serted |
|                 | 109    | 01/25/2017  | 08:19:28.194 |    | Relay  | Setting  | gs Ch | anged  |
| ~               | 110    | 01/25/2017  | 08:19:10.604 |    | 51G1T  |          | As    | serted |
|                 | 111    | 01/25/2017  | 08:16:02.792 |    | SALARM |          | Deas  | serted |
| $\mathbf{\sim}$ | 112    | 01/25/2017  | 08:16:01.792 |    | SALARM |          | As    | serted |
|                 |        |             |              |    |        | $\times$ | LR    | ACC    |

Figure 19 Sequential Events Recorder

Tapping the **Trash** button, shown in *Figure 18*, on the **Event History**, **HIF Event History**, and **Sequential Events Recorder** screens and confirming the delete action removes the records from the relay.

# **Control Folder Applications**

Tapping the **Control** folder navigates you to the screen where you can access the **Breaker Control**, **Output Pulsing**, and **Local Bits** applications. Use the applications to perform breaker control operations, pulse output contacts (*Figure 20*), and control the local bits (*Figure 21*).



Figure 20 Digital Output Pulsing-Slot A

| Loca  | l Bits |                | 02/08/2017 | 10:25:26 |
|-------|--------|----------------|------------|----------|
| 5     | #      | LOCAL BIT NAME | ST         | ATE      |
|       | LB01   | SPERV SW       | 0          | PEN      |
|       | LB02   | FAN START      | c          | DFF      |
|       |        |                |            |          |
| ^     |        |                |            |          |
| ~     |        |                |            |          |
| Тар а | a row. |                | *          | LR 2AC   |

Figure 21 Local Bits

# **Device Info Folder Applications**

Tapping the **Device Info** folder navigates you to the screen where you can access specific device information applications (**Status**, **Configuration**, **Arc-Flash Diagnostics**, and **Trip & Diag. Messages**) and the **Reboot** application.

Tap the **Status** application to view the relay status, firmware version, part number, etc. (see *Figure 22*).

| Devi   | evice Status     |                 | 02/08/2017    | 14:05:22 |
|--------|------------------|-----------------|---------------|----------|
| 5      | Status           | Relay Enabled   |               |          |
|        | Serial No        | 3162580033      |               |          |
|        | FID String       | SEL-751-X391-\  | /0-Z007002-D2 | 20170201 |
|        | Part Number      | 751601A1X4X7    | 085A63X       |          |
|        | SEL Display      | 1.0.0.813       |               |          |
| ~      | Customer Display | 1.539168099.0.0 | 0             |          |
|        | IEC-61850 CID    | ICD-751-R200-   | V0-Z111006-D2 | 0151112  |
| $\sim$ |                  |                 |               |          |
|        |                  |                 | *             | LR ACC   |

Figure 22 Status

To view the trip and diagnostic messages, tap the **Trip & Diag.** Messages application (see *Figure 23*). When a diagnostic failure, trip, or warning occurs, the relay displays the diagnostic message on the screen until it is either overriden by the restart of the rotating display, or the inactivity timer expires.

| Trip, | , Warning, & Diagnostic Messages |                | essages 02/08/2017 11:05:03 |           |        |
|-------|----------------------------------|----------------|-----------------------------|-----------|--------|
| 5     | ΤΥΡΕ                             | DATE           | TIME                        | EVENT     |        |
|       | TRIP                             | 02/08/2017     | 11:04:54.544                | ABC       | т      |
|       | WARN                             | 02/08/2017     | 11:04:52.489                | Arc Flash | Status |
|       |                                  |                |                             |           |        |
|       |                                  |                |                             |           |        |
|       |                                  |                |                             |           |        |
| View  | Events                           | or Status repo | rts for details.            | . ×       | LR ACC |

Figure 23 Trip and Diagnostics

# Automation

# **Flexible Control Logic and Integration Features**

The SEL-751 can be equipped with as many as four independently operated serial ports:

- ► EIA-232 port on the front panel
- EIA-232 or EIA-485 port on the main board in the rear
- ► EIA-232 fiber-optic port on the main board in the rear
- ► EIA-232 or EIA-485 port on the optional communications card in Slot C in the rear

Optionally, the relay supports single or dual, copper or fiber-optic Ethernet ports. The relay does not require special communications software. You can use any system that emulates a standard terminal system. Establish communication by connecting computers, modems, protocol converters, printers, an SEL real-time automation controller (RTAC), SEL communications processor, SEL computing platform, SCADA serial port, or RTUs for local or remote communication. Refer to *Table 6* for a list of communications protocols available in the SEL-751.

SEL-751 Data Sheet

| Туре                                    | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Simple ASCII                            | Plain language commands for human and simple machine communications. Use for metering, setting, self-test status, event reporting, and other functions.                                                                                                                                                                                                                                                                                                                                               |
| Compressed ASCII                        | Comma-delimited ASCII data reports. Allows external devices to obtain relay data in an appropriate format for direct import into spreadsheets and database programs. Data are checksum protected.                                                                                                                                                                                                                                                                                                     |
| Extended Fast Meter and<br>Fast Operate | Binary protocol for machine-to-machine communications.<br>Quickly updates SEL communications processors, RTUs, and other substation devices with metering<br>information, relay elements, I/O status, time-tags, open and close commands, and summary event reports. Data<br>are checksum protected. Binary and ASCII protocols operate simultaneously over the same communications<br>lines so control operator metering information is not lost while a technician is transferring an event report. |
| Fast SER Protocol                       | Provides SER events to an automated data collection system.                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Modbus                                  | Serial- or Ethernet-based Modbus with point remapping. Includes access to metering data, protection elements, contact I/O, targets, SER, relay summary event reports, and setting groups.                                                                                                                                                                                                                                                                                                             |
| DNP3                                    | Serial or Ethernet-based DNP3 protocols.<br>Provides default and mappable DNP3 objects that include access to metering data, protection elements,<br>Relay Word bits, contact I/O, targets, SER, relay summary event reports, and setting group selection.                                                                                                                                                                                                                                            |
| IEC 61850 Edition 2                     | Ethernet-based international standard for interoperability between intelligent devices in a substation. Operates remote bits and I/O. Monitors Relay Word bits and analog quantities.                                                                                                                                                                                                                                                                                                                 |
| Synchrophasors                          | IEEE C37.118-compliant synchrophasors for system state, response, and control capabilities.                                                                                                                                                                                                                                                                                                                                                                                                           |
| Event Messenger                         | The SEL-3010 allows users to receive alerts sent directly to their cell phone. Alerts can be triggered through relay events and can include quantities measured by the relay.                                                                                                                                                                                                                                                                                                                         |

Table 6Communications Protocols (Sheet 1 of 2)

| Туре            | Description                                                                                                                              |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------|
| DeviceNet       | Allows for connection to a DeviceNet network for access to metering data, protection elements, contact I/O, targets, and setting groups. |
| SNTP            | Ethernet-based protocol that provides time synchronization of the relay.                                                                 |
| IEC 60870-5-103 | Serial communications protocol—international standard for interoperability between intelligent devices in a substation.                  |

Table 6 Communications Protocols (Sheet 2 of 2)

Apply an SEL communications processor as the hub of a star network with a point-to-point fiber or copper connection between the hub and the SEL-751 (see *Figure 24*).

The communications processor supports external communications links including the public switched telephone network for engineering access to dial-out alerts and private line connections of the SCADA system.



Figure 24 Example Communication System

SEL manufactures a variety of standard cables for connecting this and other relays to a variety of external devices. Consult your SEL representative for more information on cable availability.

SEL-751 control logic improves integration in the following ways.

- ► Replaces traditional panel control switches. Eliminate traditional panel control switches with 32 local bits. Set, clear, or pulse local bits with the front-panel pushbuttons and display. Program the local bits into your control scheme with SELOGIC control equations. Use the local bits to perform functions such as a trip test or a breaker trip/close.
- Eliminates RTU-to-relay wiring with 32 remote bits. Set, clear, or pulse remote bits using serial port commands. Program the remote bits into your control scheme with SELOGIC control equations. Use remote bits for SCADA-type control operations such as trip, close, and settings group selection.
- Replaces traditional latching relays. Replace as many as 32 traditional latching relays for such functions as "remote control enable" with latch bits. Program latch set and latch reset conditions with SELOGIC control equations. Set or reset the nonvolatile latch bits using optoisolated inputs, remote bits, local bits, or any programmable logic

condition. The latch bits retain their state when the relay loses power.

- Replaces traditional indicating panel lights. Replace traditional indicating panel lights with 32 programmable displays. Define custom messages (e.g., Breaker Open, Breaker Closed) to report power system or relay conditions on the frontpanel display. Use advanced SELOGIC control equations to control which messages the relay displays.
- ► Eliminates external timers. Eliminate external timers for custom protection or control schemes with 32 general purpose SELogic control equation timers. Each timer has independent time-delay pickup and dropout settings. Program each timer input with any desired element (e.g., time qualify a current element). Assign the timer output to trip logic, transfer trip communications, or other control scheme logic.
- Eliminates setting changes. Selectable setting groups make the SEL-751 ideal for applications requiring frequent setting changes and for adapting the protection to changing system conditions.

The relay stores three setting groups. Select the active setting group by optoisolated input, command, or other programmable conditions. Use these setting groups to cover a wide range of protection and control contingencies.

Switching setting groups switches logic and relay element settings. You can program groups for different operating conditions, such as feeder paralleling, station maintenance, seasonal operations, emergency contingencies, loading, source changes, and downstream relay setting changes.

## **Fast SER Protocol**

SEL Fast SER provides SER events to an automated data collection system. Fast SER is available on any rear serial port. Devices with embedded processing capability can use these messages to enable and accept unsolicited binary SER messages from SEL-751 relays.

SEL relays and communications processors have two separate data streams that share the same serial port. The normal serial interface consists of ASCII character commands and reports that are intelligible to people using a terminal or terminal emulation package. The binary data streams can interrupt the ASCII data stream to obtain information, and then allow the ASCII data stream to continue. This mechanism allows a single communications channel to be used for ASCII communications (e.g., transmission of a long event report) interleaved with short bursts of binary data to support fast acquisition of metering or SER data.

# **Ethernet Network Architectures**



Figure 25 Simple Ethernet Network Configuration



Figure 26 Ethernet Network Configuration With Dual Redundant Connections (Failover Mode)





# **Additional Features**

# MIRRORED BITS Relay-to-Relay Communications

The SEL-patented MIRRORED BITS communications technology provides bidirectional relay-to-relay digital communications. MIRRORED BITS can operate independently on as many as two EIA-232 rear serial ports and one fiber-optic rear serial port on a single SEL-751.

This bidirectional digital communication creates eight additional virtual outputs (transmitted MIRRORED BITS) and eight additional virtual inputs (received MIRRORED BITS) for each serial port operating in the MIRRORED BITS mode (see *Figure 28*). Use these MIRRORED BITS to transmit/receive information between upstream relays and a downstream recloser control (e.g., SEL-351R) to enhance coordination and achieve faster tripping for downstream faults. MIRRORED BITS technology also helps reduce total scheme operating time by eliminating the need to assert output contacts to transmit information.



Figure 28 MIRRORED BITS Transmit and Receive Bits

## **Status and Trip Target LEDs**

The SEL-751 includes 24 status and trip target tricolor LEDs on the front panel. When shipped from the factory, all LEDs are predefined and fixed in settings. You can reprogram these LEDs for specific applications. This combination of targets is explained and shown in *Figure 31*. Some front-panel relabeling of LEDs may be needed if you reprogram them for unique or specific applications (see *Configurable Labels*).

## **Event Messenger Points**

The SEL-751, when used with the SEL-3010 Event Messenger, can allow for ASCII-to-voice translation of as many as 32 user-defined messages, along with analog data that has been measured or calculated by the relay. This combination can allow the user to receive voice messages on any phone for alerts to transition of any Relay Word bits in the relay.

Verbal notification of breaker openings, fuse failures, RTD alarms, etc. can now be sent directly to your cell phone through the use of your SEL-751 and SEL-3010 (must be connected to an analog telephone line). In addition, messages can include an analog value such as current, voltage, or power measurements made by the SEL-751.

## **Configurable Labels**

Use the configurable labels to relabel the operator controls and LEDs to suit the installation requirements. This feature includes preprinted labels (with factory-default text), blank label media, and a Microsoft<sup>®</sup> Word template on CD-ROM. This allows you to create quick, professional-looking labels for the SEL-751. Labels may also be customized without the use of a PC by writing the new label on the blank stock provided. The ability to customize the control and indication features allows specific utility or industry procedures to be implemented without the need for adhesive labels. All of the figures in this data sheet show the factory default labels of the SEL-751, including the standard model shown in *Figure 31*.

### **CHASSIS** 7.36 7.56 SIDE FRONT PANEL CUTOUT (192.0) (187.0) 5.47 5.67 5.80 1.12 (139.0) (144.0) (28.5) (147.4) LEGEND in i9089b (mm)

# **Relay Dimensions**

Figure 29 SEL-751 Dimensions for Rack- and Panel-Mount Models

# **Hardware Overview**



Figure 30 Wiring Diagram SEL-751

# **Relay Panel Diagrams**



Figure 31 Front Panel With Default Configurable Labels in Base Relay



Figure 32 Dual Fiber Ethernet With 2 AVI/4 AFDI Voltage Option With Arc-Flash Detector Inputs, DeviceNet Card, and Fast Hybrid 4 DI/4 DO Card (Relay MOT 751501AA3CA70850830)



(A) Side-Panel Input and Output Designations

(B) Rear-Panel Layout





**+** SEE DOCUMENTATION FOR INPUT VOLTAGE RATING (A) Side-Panel Input and Output Designations

(B) Rear-Panel Layout

Figure 34 Single Copper Ethernet With EIA-232 Communication, 10 RTD Card, 4 DI/4 DO Card, and 2 AVI/4 AFDI Voltage Option Card With Arc-Flash Detector Inputs (Relay MOT 751501A1A9X70850230)



**‡** SEE DOCUMENTATION FOR INPUT VOLTAGE RATING (A) Side-Panel Input and Output Designations

(B) Rear-Panel Layout





(A) Side-Panel Input and Output Designations

(B) Rear-Panel Layout





**‡** SEE DOCUMENTATION FOR INPUT VOLTAGE RATING (A) Side-Panel Input and Output Designations

(B) Rear-Panel Layout





**‡** SEE DOCUMENTATION FOR INPUT VOLTAGE RATING

(A) Side-Panel Input and Output Designations

(B) Rear-Panel Layout

Figure 38 Dual 10/100 Base-T Ethernet, EIA-232 Rear Port, Without Single Multimode ST Fiber-Optic Serial Port Rear, With DeviceNet Card, Fast Hybrid 4 DI/4 DO Card, 8 DI Card, and 4 ACI Card (No Voltage Inputs) (Relay MOT 751001AA3CA3AA50F30)

# **Applications**

*Figure 39* shows some typical protection applications for the SEL-751. You can use the SEL-751 directional and non-directional overcurrent functions to protect virtually any power system circuit or device including lines, feeders, transformers, capacitor banks, reactors, and generators. Over- and underfrequency, over- and undervoltage, vector shift elements, rate-of-change-of-frequency elements, and synchronism-check elements are well suited for applications at distributed generation sites. Directional power elements make the relay suitable for utility and customer interface protection in applications with customer generation. IEC cable/line thermal elements can be used to prevent insulation damage. Special relay versions can be ordered to provide sensitive earth fault (SEF) protection on high-impedance grounded systems, and directional overcurrent ground fault protection on ungrounded, high-impedance grounded and tuned reactance (Petersen coil) grounded systems.

You can use powerful SELOGIC control equations in all SEL-751 models for custom protection and control applications. SEL application guides and technical support personnel are available to help with unique applications.



Figure 39 SEL-751 Feeder Protection Relay Applied Throughout the Power System

# **Specifications**

#### Compliance

Designed and manufactured under an ISO 9001 certified quality management system

- 47 CFR 15B, Class A
- Note: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.
- UL Listed to U.S. and Canadian safety standards (File E212775, NRGU, NRGU7)
- Note: UL has not yet developed requirements for products intended to detect and mitigate an arc flash; consequently, UL has not evaluated the performance of this feature. While UL is developing these requirements, it will place no restriction on the use of this product for arc-flash detection and mitigation. For test results performed by an independent laboratory and other information on the performance and verification of this feature, please contact SEL customer service.

CE Mark

RCM Mark

#### Hazardous Locations

UL Certified for Hazardous Locations to U.S. and Canadian standards (File E470448)

EU

### Ex ec nC IIC T3 Gc DEMKO 18 ATEX 2081X

EN 60079-0:2012 + A11:2013, EN 60079-7:2015, EN 60079-15:2010, EN 60079-11:2012

Note: Where so marked, ATEX and UL Hazardous Location Certification tests are applicable to rated supply specifications only and do not apply to the absolute operating ranges, continuous thermal, or short circuit duration specifications.

#### General

#### AC Current Input

Phase and Neutral Currents

I<sub>NOM</sub> = 200 mA, 1 A, or 5 A secondary, depending on model.

 $I_{NOM} = 5 A$ 

| Continuous Rating:     | 3 • I <sub>NOM</sub> @ 85°C, linear to 100 A<br>symmetrical<br>4 • I <sub>NOM</sub> @ 55°C, linear to 100 A<br>symmetrical |  |
|------------------------|----------------------------------------------------------------------------------------------------------------------------|--|
| 1-Second Thermal:      | 500 A                                                                                                                      |  |
| Burden (per phase):    | <0.1 VA @ 5 A                                                                                                              |  |
| I <sub>NOM</sub> = 1 A |                                                                                                                            |  |
| Continuous Rating:     | 3 • I <sub>NOM</sub> @ 85°C, linear to 20 A<br>symmetrical<br>4 • I <sub>NOM</sub> @ 55°C, linear to 20 A<br>symmetrical   |  |
| 1-Second Thermal:      | 100 A                                                                                                                      |  |

<0.01 VA @ 1 A

#### I<sub>NOM</sub> = 200 mA

| Continuous Rating:    |
|-----------------------|
| 1-Second Thermal:     |
| Burden (per phase):   |
| Measurement Category: |

4 A, linear to 4 A symmetrical 500 A <0.01 VA @ 0.2 A Π

#### **AC Voltage Input**

V<sub>NOM</sub> (L-L) Setting Range:

20-250 V (if DELTA\_Y := DELTA) 20-480 V (if DELTA\_Y := WYE)

| 300 Vac Voltage Inputs    |
|---------------------------|
| Rated Continuous Voltage: |
| 10-Second Thermal:        |

300 Vac (phase-to-neutral) 600 Vac (phase-to-neutral)

|         | Burden             | Input Impedance<br>(Per Phase) | Input Impedance<br>(Phase-to-Phase) |
|---------|--------------------|--------------------------------|-------------------------------------|
| Vphase  | 0.008 VA @ 120 Vac | 2 MΩ                           | 4 MΩ                                |
| Vbat/Vs | 0.003 VA @ 120 Vac | 5 MΩ                           |                                     |

Low-Energy Analog (LEA) Voltage Inputs

| Rated Continuous Voltage: | 8 Vac (phase-to-neutral)                                                                  |
|---------------------------|-------------------------------------------------------------------------------------------|
| Nominal LEA Voltage:      | 0.5–6.8 Vrms (phase-to-neutral)                                                           |
| Input Range:              | ±12 V <sub>peak</sub>                                                                     |
| 10-Second Thermal:        | 300 Vac (phase-to-neutral)                                                                |
| Burden:                   | 0.0001 VA                                                                                 |
| Input Impedance:          | $2 M\Omega$ single-ended (phase-to-neutral)<br>4 M $\Omega$ differential (phase-to-phase) |

#### Power Supply

Relay Start-Up Time: Approximately 5-10 seconds (after power is applied until the ENABLED LED turns on) High-Voltage Supply Rated Supply Voltage: 110-240 Vac, 50/60 Hz 110-250 Vdc Input Voltage Range 85-264 Vac (Design Range): 85-300 Vdc Power Consumption: <50 VA (ac) <25 W (dc) Interruptions: 50 ms @ 125 Vac/Vdc 100 ms @ 250 Vac/Vdc Low-Voltage Supply 24-48 Vdc Rated Supply Voltage: 19.2-60.0 Vdc Input Voltage Range

> <25 W (dc) 10 ms @ 24 Vdc 50 ms @ 48 Vdc

#### **Fuse Ratings**

Interruptions:

(Design Range): Power Consumption:

Low-Voltage Power Supply Fuse Rating: 3.15 A Maximum Rated Voltage: 300 Vdc, 250 Vac Breaking Capacity: 1500 A at 250 Vac Type: Time-lag T

Burden (per phase):

| High-Voltage Power Supply Fuse |                   |  |  |
|--------------------------------|-------------------|--|--|
| Rating:                        | 3.15 A            |  |  |
| Maximum Rated Voltage:         | 300 Vdc, 250 Vac  |  |  |
| Breaking Capacity:             | 1500 A at 250 Vac |  |  |
| Туре:                          | Time-lag T        |  |  |

### **Output Contacts**

| General                                        |                                              |
|------------------------------------------------|----------------------------------------------|
| The relay supports Form A, B,                  | and C outputs.                               |
| Dielectric Test Voltage:                       | 2500 Vac                                     |
| Impulse Withstand Voltage (U <sub>IMP</sub> ): | 5000 V                                       |
| Mechanical Durability:                         | 100,000 no-load operations                   |
| Standard Contacts                              |                                              |
| Pickup/Dropout Time:                           | ≤8 ms (coil energization to contact closure) |

### DC Output Ratings

| Rated Operat  | ional V | Voltage:   | 250 Vdc                                            |
|---------------|---------|------------|----------------------------------------------------|
| Rated Voltage | e Rang  | je:        | 19.2–275 Vdc                                       |
| Rated Insulat | ion Vo  | ltage:     | 300 Vdc                                            |
| Make:         |         |            | 30 A @ 250 Vdc per IEEE C37.90                     |
| Continuous C  | Carry:  |            | 6 A @ 70°C<br>4 A @ 85°C                           |
| 1-Second The  | ermal:  |            | 50 A                                               |
| Contact Prote | ection: |            | 360 Vdc, 115 J MOV protection across open contacts |
| Breaking Cap  | acity   | (10,000 Op | perations) per IEC 60255-0-20:1974:                |
| 24 V          | dc      | 0.75 A     | L/R = 40  ms                                       |
| 48 V          | 'dc     | 0.50 A     | L/R = 40  ms                                       |
| 125           | Vdc     | 0.30 A     | L/R = 40  ms                                       |
| 250           | Vdc     | 0.20 A     | L/R = 40  ms                                       |
| Cyclic (2.5 C | ycles/  | Second) pe | r IEC 60255-0-20:1974:                             |
| 24 V          | 'dc     | 0.75 A     | L/R = 40  ms                                       |
| 48 V          | 'dc     | 0.50 A     | L/R = 40  ms                                       |
| 125           | Vdc     | 0.30 A     | L/R = 40  ms                                       |
| 250           | Vdc     | 0.20 A     | L/R = 40  ms                                       |

#### AC Output Ratings

| voltage $(U_e)$ Rating: 240 va                                                |    |
|-------------------------------------------------------------------------------|----|
| Insulation Voltage (U <sub>i</sub> ) Rating<br>(excluding EN 61010-1): 300 Va | ac |
| 1-Second Thermal: 50 A                                                        |    |
| Contact Rating Designation: B300                                              |    |

| B300 (5 A Thermal Current, 300 Vac Max) |         |         |      |
|-----------------------------------------|---------|---------|------|
| Maximum Current Max VA                  |         |         |      |
| Voltage                                 | 120 Vac | 240 Vac | —    |
| Make                                    | 30 A    | 15 A    | 3600 |
| Break                                   | 3 A     | 1.5 A   | 360  |
| PF < 0.35, 50–60 Hz                     |         |         |      |

Utilization Category:

AC-15

| AC-15                                             |         |         |  |
|---------------------------------------------------|---------|---------|--|
| Operational Voltage (Ue)                          | 120 Vac | 240 Vac |  |
| Operational Current (Ie)                          | 3 A     | 1.5 A   |  |
| Make Current                                      | 30 A    | 15 A    |  |
| Break Current                                     | 3 A     | 1.5 A   |  |
| Electromagnetic loads > 72 VA, PF < 0.3, 50-60 Hz |         |         |  |

Voltage Protection Across 270 Vac, 40 J Open Contacts:

#### DC Output Ratings

| Rated Operational Voltage:                                                              | 250 Vdc                                                   |
|-----------------------------------------------------------------------------------------|-----------------------------------------------------------|
| Rated Voltage Range:                                                                    | 19.2–275 Vdc                                              |
| Rated Insulation Voltage:                                                               | 300 Vdc                                                   |
| Make:                                                                                   | 30 A @ 250 Vdc per IEEE C37.90                            |
| Carry:                                                                                  | 6 A @ 70°C<br>4 A @ 85°C                                  |
| 1-Second Thermal:                                                                       | 50 A                                                      |
| Open State Leakage Current:                                                             | <500 µA                                                   |
| MOV Protection (maximum voltage):                                                       | 250 Vac/330 Vdc                                           |
| Pickup Time:                                                                            | <50 µs, resistive load                                    |
| Dropout Time:                                                                           | <8 ms, resistive load                                     |
| Breaking Capacity (10,000 Op                                                            | erations) per IEC 60255-0-20:1974:                        |
| 48 Vdc         10.0 A           125 Vdc         10.0 A           250 Vdc         10.0 A | L/R = 40  ms<br>L/R = 40  ms<br>L/R = 20  ms              |
| Cyclic Capacity (4 Cycles in 1<br>Thermal Dissipation) per IEG                          | Second, Followed by 2 Minutes Idle for C 60255-0-20:1974: |
| 48 Vdc         10.0 A           125 Vdc         10.0 A           250 Vdc         10.0 A | L/R = 40  ms<br>L/R = 40  ms<br>L/R = 20  ms              |
| AC Output Ratings                                                                       |                                                           |

See AC Output Ratings for Standard Contacts.

### **Optoisolated Control Inputs**

When Used With DC Control Signals

| Pickup/Dropout Time:      | Depends on the input debounce settings      |
|---------------------------|---------------------------------------------|
| 250 V:                    | ON for 200.0–312.5 Vdc<br>OFF below 150 Vdc |
| 220 V:                    | ON for 176–275 Vdc<br>OFF below 132 Vdc     |
| 125 V:                    | ON for 100.0–156.2 Vdc<br>OFF below 75 Vdc  |
| 110 V:                    | ON for 88.0–137.5 Vdc<br>OFF below 66 Vdc   |
| 48 V:                     | ON for 38.4–60.0 Vdc<br>OFF below 28.8 Vdc  |
| 24 V:                     | ON for 15–30 Vdc<br>OFF below 5 Vdc         |
| When Used With AC Control | Signals                                     |
| Pickup Time:              | 2 ms                                        |
| Dropout Time:             | 16 ms                                       |
| 250 V:                    | ON for 170.6–312.5 Vac<br>OFF below 106 Vac |
| 220 V:                    | ON for 150.2–275 Vac<br>OFF below 93.3 Vac  |
| 125 V:                    | ON for 85–156.2 Vac<br>OFF below 53 Vac     |
| 110 V:                    | ON for 75.1–137.5 Vac<br>OFF below 46.6 Vac |
| 48 V:                     | ON for 32.8–60 Vac<br>OFF below 20.3 Vac    |
| 24 V:                     | ON for 14–30 Vac<br>OFF below 5 Vac         |

| Current Draw at Nominal DC | 2 mA (at 220-250 V) |
|----------------------------|---------------------|
| Voltage:                   | 4 mA (at 48–125 V)  |
|                            | 10 mA (at 24 V)     |

Rated Impulse Withstand Voltage (U<sub>imp</sub>):

#### Analog Output (Optional)

|                               | 1 A0                      | 4 A0            |
|-------------------------------|---------------------------|-----------------|
| Current:                      | 4–20 mA                   | ±20 mA          |
| Voltage:                      | _                         | ±10 V           |
| Load at 1 mA:                 | —                         | 0–15 kΩ         |
| Load at 20 mA:                | 0–300 Ω                   | 0–750 Ω         |
| Load at 10 V:                 | _                         | $>2000 \Omega$  |
| Refresh Rate:                 | 100 ms                    | 100 ms          |
| % Error, Full Scale, at 25°C: | <±1%                      | <±0.55%         |
| Select From:                  | Analog quantities availab | le in the relay |

4000 V

#### Analog Inputs (Optional)

| Maximum Input Range:                    | ±20 mA<br>±10 V                                                           |
|-----------------------------------------|---------------------------------------------------------------------------|
|                                         | Operational range set by user                                             |
| Input Impedance:                        | 200 Ω (current mode)<br>>10 kΩ (voltage mode)                             |
| Accuracy at 25°C                        |                                                                           |
| With User Calibration:                  | 0.05% of full scale (current mode)<br>0.025% of full scale (voltage mode) |
| Without User Calibration:               | Better than 0.5% of full scale at $25^{\circ}C$                           |
| Accuracy Variation With<br>Temperature: | ±0.015% per °C of full-scale<br>(±20 mA or ±10 V)                         |

#### Arc-Flash Detectors (Optional)

Multimode fiber-optic receiver/transmitter pair

| Fiber Type:     | 1000 µm diameter, 640 nm wavelength |
|-----------------|-------------------------------------|
|                 | plastic, clear-jacketed, or black-  |
|                 | jacketed                            |
| Connector Type: | V-pin                               |

#### **Frequency and Phase Rotation**

| System Frequency:   | 50, 60 Hz |
|---------------------|-----------|
| Phase Rotation:     | ABC, ACB  |
| Frequency Tracking: | 15–70 Hz  |

#### Time-Code Input

| Format:                                                            | Demodulated IRIG-B         |
|--------------------------------------------------------------------|----------------------------|
| On (1) State:                                                      | $V_{ih} \ge 2.2 V$         |
| Off (0) State:                                                     | $V_{il} \le 0.8 V$         |
| Input Impedance:                                                   | 2 kΩ                       |
| Synchronization Accuracy<br>Internal Clock:                        | ±1 μs                      |
| Synchrophasor Reports (e.g., MET PM):                              | ±10 μs                     |
| All other reports:                                                 | ±5 ms                      |
| Simple Network Time<br>Protocol (SNTP) Accuracy<br>Internal Clock: | ±5 ms                      |
| Unsynchronized Clock Drift:                                        | 2 minutes per year typical |

#### nicatio Dort С

| Communications Ports                              |                                             |
|---------------------------------------------------|---------------------------------------------|
| Standard EIA-232 (2 ports)                        |                                             |
| Location:                                         | Front Panel                                 |
|                                                   | Rear Panel                                  |
| Data Speed:                                       | 300-38400 bps                               |
| EIA-485 Port (optional)                           |                                             |
| Location:                                         | Rear panel                                  |
| Data Speed:                                       | 300-19200 bps                               |
| Ethernet Port (optional)                          |                                             |
| Single/Dual 10/100BASE-<br>Single/Dual 100BASE-FX | T copper (RJ45 connector)<br>(LC connector) |
| EIA-232 Multimode Fiber-Op                        | tic Port (Optional)                         |
| Location:                                         | Rear panel                                  |
| Data Speed:                                       | 300-38400 bps                               |
| Fiber-Optic Ports Characteri                      | stics                                       |
| Port 1 (or 1A, 1B) Ethernet                       |                                             |
| Wavelength:                                       | 1300 nm                                     |
| Optical Connector Type:                           | LC                                          |
| Fiber Type:                                       | Multimode                                   |
| Link Budget:                                      | 16.1 dB                                     |
| Typical TX Power:                                 | -15.7 dBm                                   |
| RX Min. Sensitivity:                              | -31.8 dBm                                   |
| Fiber Size:                                       | 62.5/125 μm                                 |
| Approximate Range:                                | ~6.4 km                                     |
| Data Rate:                                        | 100 Mbps                                    |
| Typical Fiber Attenuation:                        | -2 dB/km                                    |
| Port 2 Serial                                     |                                             |
| Wavelength:                                       | 820 nm                                      |
| Optical Connector Type:                           | ST                                          |
| Fiber Type:                                       | Multimode                                   |
| Link Budget                                       | 8 dB                                        |

Link Budget: 8 dB Typical TX Power: -16 dBm RX Min. Sensitivity: -24 dBm Fiber Size: 62.5/125 μm Approximate Range: ~1 km Data Rate: 5 Mbps Typical Fiber Attenuation: -4 dB/km Channels 1-8 Arc-Flash Detectors (AFDI) Diagnostic Wavelength: 640 nm Optical Connector Type: V-pin Fiber Type: Multimode

-12 dBm Typical TX Power: Point Sensor Minimum Receive -52.23 dB Sensitivity: Point Sensor Diagnostic Worst Case Loss: -28 dB 12.23 dB Link Budget: Black-Jacketed Fiber Worst

-0.19 dBm

-0.17 dBm

Case Loss:

Loss:

Black-Jacketed Fiber Typical

| ST or V-Pin Connector Splice |                 |
|------------------------------|-----------------|
| Loss:                        | -2.00 dB        |
| Approximate Range:           | As much as 35 m |
| Fiber Sensor                 |                 |
| Minimum Receive              |                 |
| Sensitivity:                 | –29.23 dB       |
| Link Budget:                 | 17.23 dB        |
| Clear-Jacketed Fiber Worst   |                 |
| Case Loss:                   | –0.19 dBm       |
| Clear-Jacketed Fiber Typical |                 |
| Loss:                        | –0.17 dBm       |
| ST or V-Pin Connector Splice |                 |
| Loss:                        | -2.00 dB        |
| Approximate Range:           | As much as 70 m |
|                              |                 |

### **Optional Communications Cards**

| Option 1: | EIA-232 or EIA-485 communications |
|-----------|-----------------------------------|
|           | card                              |
| Option 2: | DeviceNet communications card     |

#### **Communications Protocols**

SEL, Modbus, DNP3, FTP, TCP/IP, Telnet, SNTP, IEC 61850 Edition 2, IEC 60870-5-103, PRP, MIRRORED BITS, EVMSG, C37.118 (synchrophasors), and DeviceNet

### **Operating Temperature**

| operating temperature                                                                              |                                                                                                                                                                                                                                           |
|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IEC Performance Rating:                                                                            | -40° to +85°C (-40° to +185°F)<br>(per IEC/EN 60068-2-1 and<br>IEC/EN 60068-2-2)                                                                                                                                                          |
| <b>Note:</b> Not applicable to UL<br><b>Note:</b> The front-panel displa<br>-20°C and above +70°C. | applications.<br>ay is impaired for temperatures below                                                                                                                                                                                    |
| DeviceNet Communications<br>Card Rating:                                                           | +60°C (+140°F) maximum                                                                                                                                                                                                                    |
| Optoisolated Control Inputs:                                                                       | As many as 26 inputs are allowed in<br>ambient temperatures of 85°C or less<br>As many as 34 inputs are allowed in<br>ambient temperatures of 75°C or less<br>As many as 44 inputs are allowed in<br>ambient temperatures of 65°C or less |
| Operating Environment                                                                              |                                                                                                                                                                                                                                           |
| Insulation Class:                                                                                  | 1                                                                                                                                                                                                                                         |
| Pollution Degree:                                                                                  | 2                                                                                                                                                                                                                                         |
| Overvoltage Category:                                                                              | II                                                                                                                                                                                                                                        |
| Atmospheric Pressure:                                                                              | 80–110 kPa                                                                                                                                                                                                                                |
| Relative Humidity:                                                                                 | 5%-95%, noncondensing                                                                                                                                                                                                                     |
| Maximum Altitude Without<br>Derating (Consult the<br>Factory for Higher Altitude<br>Derating):     | 2000 m                                                                                                                                                                                                                                    |
| Dimensions                                                                                         |                                                                                                                                                                                                                                           |
| 144.0 mm (5.67 in) x 192.0 mi                                                                      | m (7.56 in) x 147.4 mm (5.80 in)                                                                                                                                                                                                          |
| Weight                                                                                             |                                                                                                                                                                                                                                           |
| 2.7 kg (6.0 lb)                                                                                    |                                                                                                                                                                                                                                           |
| Relay Mounting Screw (#8-3                                                                         | 2) Tightening Torque                                                                                                                                                                                                                      |
| Minimum:                                                                                           | 1.4 Nm (12 in-lb)                                                                                                                                                                                                                         |
| Maximum:                                                                                           | 1.7 Nm (15 in-lb)                                                                                                                                                                                                                         |

### **Terminal Connections**

| Terminal Block              |                             |
|-----------------------------|-----------------------------|
| Screw Size:                 | #6                          |
| Ring Terminal Width:        | 0.310-inch maximum          |
| Terminal Block Tightening T | orque                       |
| Minimum:                    | 0.9 Nm (8 in-lb)            |
| Maximum:                    | 1.4 Nm (12 in-lb)           |
| Compression Plug Tightenin  | ig Torque                   |
| Minimum:                    | 0.5 Nm (4.4 in-lb)          |
| Maximum:                    | 1.0 Nm (8.8 in-lb)          |
| Compression Plug Mounting   | Ear Screw Tightening Torque |
| Minimum:                    | 0.18 Nm (1.6 in-lb)         |
| Maximum:                    | 0.25 Nm (2.2 in-lb)         |
| Product Standards           |                             |

| Electromagnetic | IEC 60255-26:2013   |
|-----------------|---------------------|
| Compatibility:  | IEC 60255-27:2013   |
|                 | UL 508              |
|                 | CSA C22.2 No. 14-05 |

### Type Tests

| Environmental Tests       |                                                                                                                                                                                                                                                                                                                                                                               |
|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Enclosure Protection:     | IEC 60529:2001 + CRDG:2003<br>IP65 enclosed in panel<br>(2-line display models)<br>IP54 enclosed in panel<br>(touchscreen models)<br>IP50 for terminals enclosed in the dust-<br>protection assembly (protection<br>against solid foreign objects only)<br>(SEL Part #915900170). The 10°C<br>temperature derating applies to the<br>temperature specifications of the relay. |
| Vibration Resistance:     | IEC 60255-21-1:1998<br>IEC 60255-27:2013, Section 10.6.2.1<br>Endurance: Class 2<br>Response: Class 2                                                                                                                                                                                                                                                                         |
| Shock Resistance:         | IEC 60255-21-2:1998<br>IEC 60255-27:2013, Section 10.6.2.2<br>IEC 60255-27:2013, Section 10.6.2.3<br>Withstand: Class 1<br>Response: Class 2<br>Bump: Class 1                                                                                                                                                                                                                 |
| Seismic (Quake Response): | IEC 60255-21-3:1993<br>IEC 60255-27:2013, Section 10.6.2.4<br>Response: Class 2                                                                                                                                                                                                                                                                                               |
| Cold:                     | IEC 60068-2-1:2007<br>IEC 60255-27:2013, Section 10.6.1.2<br>IEC 60255-27:2013, Section 10.6.1.4<br>-40°C, 16 hours                                                                                                                                                                                                                                                           |
| Dry Heat:                 | IEC 60068-2-2:2007<br>IEC 60255-27:2013, Section 10.6.1.1<br>IEC 60255-27:2013, Section 10.6.1.3<br>85°C, 16 hours                                                                                                                                                                                                                                                            |
| Damp Heat, Steady State:  | IEC 60068-2-78:2001<br>IEC 60255-27:2013, Section 10.6.1.5<br>40°C, 93% relative humidity, 10 days                                                                                                                                                                                                                                                                            |
| Damp Heat, Cyclic:        | IEC 60068-2-30:2001<br>IEC 60255-27:2013, Section 10.6.1.6<br>25° to 55°C, 6 cycles, relative<br>humidity                                                                                                                                                                                                                                                                     |

| Change of Temperature: IEC 60068-2-14:2009                                                                       |                                                                                                                                                                          | EMC Emissions                                      |                                                                                                                                                                                                  |  |
|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                  | IEC 60255-1:2010, Section 6.12.3.5<br>-40° to +85°C, ramp rate 1°C/min,                                                                                                  | Conducted Emissions:                               | IEC 60255-26:2013 Class A                                                                                                                                                                        |  |
|                                                                                                                  | 5 cycles                                                                                                                                                                 |                                                    | ICES-003 Issue 6                                                                                                                                                                                 |  |
| Dielectric Strength and Imp                                                                                      | ulse Tests                                                                                                                                                               |                                                    | EN 55011:2009 + A1:2010 Class A<br>EN 55022:2010 + AC:2011 Class A                                                                                                                               |  |
| Dielectric (Hi-Pot): IEC 60255-27:2013, Section 10<br>IEEE C37.90-2005<br>1.0 kVac on analog outputs, E<br>ports | IEC 60255-27:2013, Section 10.6.4.3<br>IEEE C37.90-2005<br>1.0 kVac on analog outputs, Ethernet<br>ports                                                                 |                                                    | EN 550222010 + AC:2011 Class A<br>EN 55032:2012 + AC:2013 Class A<br>CISPR 11:2009 + A1:2010 Class A<br>CISPR 22:2008 Class A<br>CISPR 22:2008 Class A                                           |  |
|                                                                                                                  | <ul> <li>2.0 kVac on analog inputs, IRIG</li> <li>2.5 kVac on contact I/O</li> <li>3.6 kVdc on power supply, IN and VN terminals</li> </ul>                              | Radiated Emissions:                                | IEC 60255-26:2013 Class A<br>FCC 47 CFR Part 15.109 Class A<br>ICES-003 Issue 6<br>EN 55011:2009 + A1:2010 Class A                                                                               |  |
| Impulse:                                                                                                         | IEC 60255-27:2013, Section 10.6.4.2<br>0.5 J, 5 kV on power supply, contact<br>I/O, ac current, and voltage inputs<br>0.5 J, 530 V on analog outputs<br>IEEE C37.90:2005 |                                                    | EN 55022:2010 + AC:2011 Class A<br>EN 55032:2012 + AC:2013 Class A<br>CISPR 11:2009 + A1:2010 Class A<br>CISPR 22:2008 Class A<br>CISPR 32:2015 Class A                                          |  |
|                                                                                                                  | 0.5 J, 530 V on analog outputs                                                                                                                                           | Processing Specifications and Oscillography        |                                                                                                                                                                                                  |  |
| RFI and Interference Tests                                                                                       |                                                                                                                                                                          | AC Voltage and<br>Current Inputs:                  | 32 samples per power system cycle                                                                                                                                                                |  |
| Electrostatic Discharge                                                                                          | IEC 61000-4-2:2008                                                                                                                                                       | Frequency Tracking Range:                          | 15–70 Hz                                                                                                                                                                                         |  |
| Immunity: IEC 60255-26:2013; Section 7.2.3<br>IEEE C37.90.3:2001<br>Severity Level 4<br>8 kV contact discharge   | IEC 60255-26:2013; Section 7.2.3<br>IEEE C37.90.3:2001<br>Severity Level 4<br>8 kV contact discharge<br>15 kV air discharge                                              | Digital Filtering:                                 | One-cycle cosine after low-pass analog<br>filtering. Net filtering (analog plus<br>digital) rejects dc and all harmonics<br>greater than the fundamental.                                        |  |
| Radiated RF Immunity:                                                                                            | IEC 61000-4-3:2010<br>IEC 60255-26:2013; Section 7.2.4<br>10 V/m<br>IEEE C37.90.2-2004<br>20 V/m                                                                         | Protection and<br>Control Processing:              | Processing interval is 4 times per power<br>system cycle (except for math<br>variables and analog quantities, which<br>are processed every 25 ms). Analog<br>quantities for rms data are derived |  |
| Fast Transient, Burst<br>Immunity <sup>a</sup> :                                                                 | IEC 61000-4-4:2011<br>IEC 60255-26:2013; Section 7.2.5<br>4 kV @ 5.0 kHz<br>2 kV @ 5.0 kHz for comm. ports                                                               | Arc-Flash Processing:                              | from data averaged from the previous<br>8 cycles.<br>Arc-Flash light is sampled 32 times per<br>cycle                                                                                            |  |
| Surge Immunity <sup>a</sup> :                                                                                    | IEC 61000-4-5:2005<br>IEC 60255-26:2013; Section 7.2.7<br>2 kV line-to-line<br>4 kV line to conth                                                                        |                                                    | Arc-Flash current, light, and 2 fast<br>hybrid outputs are processed 16 times<br>per cycle                                                                                                       |  |
| Surge Withstand Capability                                                                                       | EN 61000-4-18:2010                                                                                                                                                       | Oscillography                                      |                                                                                                                                                                                                  |  |
| Immunity <sup>a</sup> :                                                                                          | IEC 60255-26:2013; Section 7.2.6                                                                                                                                         | Length:                                            | 15, 64, or 180 cycles                                                                                                                                                                            |  |
|                                                                                                                  | 2.5 kV common mode<br>1 kV differential mode                                                                                                                             | Sampling Rate:                                     | 16 samples per cycle unfiltered<br>4 samples per cycle filtered                                                                                                                                  |  |
|                                                                                                                  | I KV common mode on comm. ports<br>IEEE C37.90.1-2002                                                                                                                    | Trigger:                                           | Programmable with Boolean expression                                                                                                                                                             |  |
|                                                                                                                  | 2.5 kV oscillatory<br>4 kV fast transient                                                                                                                                | Format:                                            | ASCII and Compressed ASCII<br>Binary COMTRADE (32 samples per<br>guale unfiltered)                                                                                                               |  |
| Conducted RF Immunity:                                                                                           | IEC 61000-4-6:2008<br>IEC 60255 26:2013: Section 7.2.8                                                                                                                   | Time-Stamp Resolution:                             | 1 ms                                                                                                                                                                                             |  |
|                                                                                                                  | 10 Vrms                                                                                                                                                                  | Time-Stamp Accuracy:                               | ±5 ms                                                                                                                                                                                            |  |
| Magnetic Field Immunity:                                                                                         | IEC 61000-4-8:2009<br>IEC 60255-26:2013, Section 7.2.10                                                                                                                  | Sequential Events Recorder                         |                                                                                                                                                                                                  |  |
| Severity Level:                                                                                                  | Severity Level:                                                                                                                                                          | Time-Stamp Resolution:                             | 1 ms                                                                                                                                                                                             |  |
|                                                                                                                  | 100 A/m for 1 minute; 50/60 Hz<br>IEC 61000-4-9: 2001                                                                                                                    | Time-Stamp Accuracy (With Respect to Time Source): | 5 ms                                                                                                                                                                                             |  |
| Severity Level: 1000 A/m<br>IEC 61000-4-10:2001                                                                  | Severity Level: 1000 A/m<br>IEC 61000-4-10:2001<br>Severity Level: 100 A/m                                                                                               | Relay Elements                                     |                                                                                                                                                                                                  |  |
|                                                                                                                  | (100 kHz and 1 MHz)                                                                                                                                                      | Instantaneous/Definite-Time                        | e Overcurrent (50P, 50G, 50N, 50Q)                                                                                                                                                               |  |
| Power Supply Immunity:                                                                                           | IEC 61000-4-11:2004                                                                                                                                                      | Pickup Setting Range, A Seco                       | ndary:                                                                                                                                                                                           |  |
|                                                                                                                  | IEC 61000-4-17:1999<br>IEC 61000-4-29:2000                                                                                                                               | 5 A models:                                        | 0.25-100.00 A, 0.01 A steps                                                                                                                                                                      |  |
|                                                                                                                  | IEC 60255-26:2013, Section 7.2.11                                                                                                                                        | 1 A models:                                        | 0.05–20.00 A, 0.01 A steps                                                                                                                                                                       |  |
|                                                                                                                  | IEC 60255-26:2013, Section 7.2.12<br>IEC 60255-26:2013, Section 7.2.13                                                                                                   | 200 mA model:                                      | 0.01-4.00 A, 0.01 A steps (50N)                                                                                                                                                                  |  |

| Accuracy:            | ±3% plus ±0.02 • I <sub>NOM</sub> A secondary<br>(steady state)                                                                      | Overvoltage (59P, 59PP, 59G, 59Q, 59S) |                                                                                                                                                         |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      | ±5% plus ±0.02 • I <sub>NOM</sub> A secondary<br>(transient)<br>±6% plus ±0.02 • I <sub>NOM</sub> A secondary<br>(transient for 50Q) | Setting Range:                         | OFF, 2.00–300.00 V (phase elements,<br>phase-to-phase elements with delta<br>inputs or synchronism voltage input)<br>OFF, 2.00–520.00 V (phase-to-phase |
| Time Delay:          | 0.00–400.00 seconds, 0.01 seconds<br>steps<br>0.1–400.0 seconds, 0.1 second steps<br>(50Q)                                           | Accuracy:<br>Time Delay:               | elements with wye inputs)<br>±1% of setting plus ±0.5 V<br>0.00–120.00 seconds, 0.01-second steps                                                       |
| Pickup/Dropout Time: | <1.5 cycles                                                                                                                          | Pickup/Dropout Time:                   | <1.5 cycles                                                                                                                                             |

Inverse-Time Undervoltage (27I)

Setting Range:

Accuracy:

Time Dial:

Accuracy:

Accuracy:

Time Dial:

Accuracy:

Harmonic Blocking Pickup Range (% of

fundamental):

5 A models:

1 A models:

Time Delay Accuracy:

Vector Shift (78VS) Pickup Setting Range:

Voltage Supervision

Power Elements (32)

5 A models:

1 A models:

Three-Phase Elements Type: Pickup Setting Range, VA Secondary:

Accuracy:

Threshold: Pickup Time:

Pickup Accuracy (A secondary):

#### Arc-Flash Instantaneous Overcurrent (50PAF, 50NAF)

Pickup Setting Range, A Secondary:

| 0.50-100.00 A, 0.01-A steps                                                             |
|-----------------------------------------------------------------------------------------|
| 0.10-20.00 A, 0.01 A-steps                                                              |
| 0 to +10% of setting plus $\pm 0.02 \cdot I_{NOM}$<br>A secondary (steady state pickup) |
| 2–5 ms/1 cycle                                                                          |
|                                                                                         |

#### Arc-Flash Time-Overlight (TOL1-TOL8)

| Pickup Setting Range, % of   | 3.0-80.0% (point sensor) |                                 | 0.1 multiples of pickup              |
|------------------------------|--------------------------|---------------------------------|--------------------------------------|
| Full Scale:                  | 0.6-80.0% (fiber sensor) | Invorso-Timo Ovorvol            | tago (591)                           |
| Pickup/Dropout Time: 2–5 ms/ | 2-5  ms/1 cycle          | liverse-fille overvollage (591) |                                      |
|                              |                          | Setting Range:                  | OFF, 2.00-300.00 V (phase elements,  |
| Inverse-Time Overcurrent (   | 51P. 51G. 51N. 510)      |                                 | sequence elements, or phase-to-phase |

### Inverse-Time Overcurrent (51P, 51G, 51N, 51Q)

Pickup Setting Range, A Secondary:

| 5 A models:    | 0.25-24.00 A, 0.01 A steps                                                                       |
|----------------|--------------------------------------------------------------------------------------------------|
| 1 A models:    | 0.05-4.80 A, 0.01 A steps                                                                        |
| 200 mA models: | 10.00-960.00 mA, 0.01 mA steps (51N)                                                             |
| Accuracy:      | ±5% of setting plus ±0.02 • I <sub>NOM</sub> A secondary (steady state pickup)                   |
| Time Dial      |                                                                                                  |
| U.S.:          | 0.50-15.00, 0.01 steps                                                                           |
| IEC:           | 0.01-1.50, 0.01 steps                                                                            |
| Accuracy:      | ±1.5 cycles, plus ±4% between 2 and 30<br>multiples of pickup (within rated<br>range of current) |

#### IEC Thermal Element (49IEC)

| Setting Range:               | Trip pickup, 1%–150%<br>Alarm pickup, 1%–100%                                                                                    |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| Pickup Accuracy:             | $ \begin{array}{l} \pm 2\% \; ( for \; I \geq I_{NOM} ) \\ \pm 5\% \; ( for \; 0.4 \bullet I_{NOM} < I < I_{NOM} ) \end{array} $ |
| Time to Trip/Reset Accuracy: | $\pm 5\%$ plus $\pm 0.5$ s of the calculated value                                                                               |

#### Undervoltage (27P, 27PP, 27S)

| Setting Range:       | OFF, 2.00–300.00 V (phase elements,<br>phase-to-phase elements with delta<br>inputs or synchronism voltage input)<br>OFF, 2.00–520.00 V (phase-to-phase<br>elements with wye inputs) |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Accuracy:            | $\pm 1\%$ of setting plus $\pm 0.5$ V                                                                                                                                                |
| Time Delay:          | 0.00-120.00 seconds, 0.01-second steps                                                                                                                                               |
| Pickup/Dropout Time: | <1.5 cycles                                                                                                                                                                          |

### Schweitzer Engineering Laboratories, Inc.

OFF, 2.00-300.00 V (phase elements,

±1.5 cyc plus ±4% between 0.95 and

elements with delta inputs or

synchronism voltage input) OFF, 2.00-520.00 V (phase-to-phase elements with wye inputs)

±1% of setting plus ±0.5 V

±1.5 cyc plus ±4% between 1.05 and 5.5 multiples of pickup

±5% plus ±0.10 A of harmonic current

±5% plus ±0.02 A of harmonic current

2.0°-30.0°, 0.1-degree increment  $\pm 10\%$  of the pickup setting,  $\pm 1$  degree

±0.5% plus ±0.25 cycle

20.0%-100.0% • VNOM

1.0-6500.0 VA, 0.1 VA steps

0.2-1300.0 VA, 0.1 VA steps

0.00-16.00 s

5%-100%

<3 cycles

Instantaneous/Definite Time, +W, -W, +VAR, -VAR

±1% of setting plus ±0.5 V

0.00-16.00 s

positive-sequence elements, phase-tophase elements with delta inputs or synchronism-check voltage input) OFF, 2.00-520.00 V (phase-to-phase elements with wye inputs)

#### Accuracy: $\pm 0.10 \text{ A} \bullet (\text{L-L voltage secondary}) \text{ plus}$ Timers ±5% of setting at unity power factor for power elements and zero power Set factor for reactive power elements Ac (5 A nominal) ±0.02 A • (L-L voltage secondary) plus RT ±5% of setting at unity power factor Set for power elements and zero power factor for reactive power elements Ac (1 A nominal) RT Time Delay: 0.0-240.0 seconds, 0.1-second steps RT Pickup/Dropout Time: <10 cycles RT Тур RTD Lead Resistance: Power Factor (55) Update Rate: Setting Range: OFF, 0.05-0.99

±5% of full scale for current  $\geq 0.5$  •  $I_{NOM}$ 1-240 seconds, 1-second steps

#### Frequency (81)

Accuracy:

Time Delay:

| Setting Range:       | Off, 15.00–70.00 Hz                                                                                             |
|----------------------|-----------------------------------------------------------------------------------------------------------------|
| Accuracy:            | ±0.01 Hz (V1 >60 V) with voltage<br>tracking<br>±0.05 Hz (11 >0.8 • I <sub>NOM</sub> ) with current<br>tracking |
| Time Delay:          | 0.00-240.00 seconds, 0.01 second steps                                                                          |
| Pickup/Dropout Time: | <4 cycles                                                                                                       |
|                      |                                                                                                                 |

#### Rate-of-Change of Frequency (81R)

| Setting Range: | OFF, 0.10-15.00 Hz/s                  |
|----------------|---------------------------------------|
| Accuracy:      | ±100 mHz/s, plus ±3.33% of pickup     |
| Time Delay:    | 0.10-60.00 seconds, 0.01 second steps |

### Synchronism Check (25)

Pickup Range, Secondary 0.00-300.00 V Voltage: Pickup Accuracy, Secondary ±1% plus ±0.5 V Voltage: (over the range of 2-300 V) Slip Frequency Pickup Range: 0.05 Hz-0.50 Hz Slip Frequency Pickup ±0.02 Hz Accuracy: Phase Angle Range:  $0^{\circ}-80^{\circ}$ Phase Angle Accuracy:  $\pm 4^{\circ}$ 

#### Load-Encroachment Detection

| Pickup Setting Range   |                                          |
|------------------------|------------------------------------------|
| 5 A Model:             | 0.10–128.00 Ω secondary,<br>0.01 Ω steps |
| 1 A Model:             | 0.50–640.00 Ω secondary,<br>0.01 Ω steps |
| Forward Load Angle:    | $-90^{\circ}$ to $+90^{\circ}$           |
| Forward Load Angle:    | +90° to +270°                            |
| Accuracy               |                                          |
| Impedance Measurement: | $\pm 5\%$ plus $\pm 0.5 \Omega$          |
| Angle Measurement:     | ±3°                                      |

#### Station Battery Voltage Monitor

| Operating Range: | 0-350 Vdc (300 Vdc for UL purposes)   |
|------------------|---------------------------------------|
| Pickup Range:    | 20.00–300.00 Vdc                      |
| Pickup accuracy: | $\pm 2\%$ of setting plus $\pm 2$ Vdc |

| tting Range:               | Various                                     |
|----------------------------|---------------------------------------------|
| ccuracy:                   | $\pm 0.5\%$ of setting plus $\pm 1/4$ cycle |
| D Protection               |                                             |
| tting Range:               | Off, 1°–250°C                               |
| ccuracy:                   | ±2°C                                        |
| D Open-Circuit Detection:  | >250°C                                      |
| D Short-Circuit Detection: | <-50°C                                      |
| D Types:                   | PT100, NI100, NI120, CU10                   |
|                            |                                             |

 $25 \ \Omega \ max. \ per \ lead$ <3 s As high as 1.4 Vac (peak) at 50 Hz or Noise Immunity on RTD greater frequency

RTD Trip/Alarm Time Delay: Approx. 6 s

#### Metering

Inputs:

| Accuracies are specified at 20°<br>(0.2–20.0) • I <sub>NOM</sub> A secondar<br>secondary (1.33–6.67 V secondary) v secondary (1.33–6.67 V secondary) v secondary v sec | C, nominal frequency, ac currents within<br>ry, and ac voltages within 50–250 V<br>ndary with 8 V LEA option), unless                                                                                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Phase Currents:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\pm 1\%$ of reading, $\pm 1^\circ$ (±2.5° at 0.2–0.5 A for relays with $I_{NOM}$ = 1 A)                                                                                                                                                     |
| Three-Phase Average Current:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ±1% of reading                                                                                                                                                                                                                               |
| IG (Residual Current):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\pm 2\%$ of reading, $\pm 2^\circ$ (±5.0° at 0.2–0.5 A for relays with $I_{NOM}$ = 1 A)                                                                                                                                                     |
| IN (Neutral Current):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\pm 1\%$ of reading, $\pm 1^{\circ} (\pm 2.5^{\circ} \text{ at } 0.20.5 \text{ A}$<br>for relays with I <sub>NOM</sub> = 1 A)<br>$\pm 1.6 \text{ mA}$ and $\pm 1\% (0.044.0 \text{ A}) (0.2 \text{ A}$<br>nominal channel IN current input) |
| I1 Positive-Sequence Current:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ±2% of reading                                                                                                                                                                                                                               |
| 312 Negative-Sequence<br>Current:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ±2% of reading                                                                                                                                                                                                                               |
| System Frequency:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ±0.01 Hz of reading for frequencies<br>within 15–70 Hz (V1 > 60 V)                                                                                                                                                                           |
| Line-to-Line Voltages:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\pm 1\%$ of reading, $\pm 1^{\circ}$ for voltages                                                                                                                                                                                           |
| Three-Phase Average<br>Line-to-Line Voltage:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ±1% of reading for voltages within 24–264 V                                                                                                                                                                                                  |
| Line-to-Ground Voltages:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\pm1\%$ of reading, $\pm1^\circ$ for voltages within 24–264 V (0.64–7.04 V for LEA inputs)                                                                                                                                                  |
| Three-Phase Average<br>Line-to-Ground Voltages:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ±1% of reading for voltages within<br>24–264 V (0.64–7.04 V for LEA<br>inputs)                                                                                                                                                               |
| Voltage Imbalance (%):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ±2% of reading                                                                                                                                                                                                                               |
| V1 Positive-Sequence<br>Voltage:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ±2% of reading for voltages within<br>24–264 V (0.64–7.04 V for LEA<br>inputs)                                                                                                                                                               |
| 3V2 Negative-Sequence<br>Voltage:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ±2% of reading for voltages within<br>24–264 V (0.64–7.04 V for LEA<br>inputs)                                                                                                                                                               |
| Real Three-Phase Power (kW):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ±3% of reading for 0.10 < pf < 1.00                                                                                                                                                                                                          |
| Reactive Three-Phase Power (kVAR):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ±3% of reading for 0.00 < pf < 0.90                                                                                                                                                                                                          |
| Apparent Three-Phase Power (kVA):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ±3% of reading                                                                                                                                                                                                                               |
| Power Factor:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ±2% of reading                                                                                                                                                                                                                               |
| RTD Temperatures:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ±2°C                                                                                                                                                                                                                                         |

#### **Energy Meter**

| Accumulators:            | Separate IN and OUT accumulators<br>updated once per second, transferred<br>to nonvolatile storage 4 times per day                                                                                                                                                                                                                   |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ASCII Report Resolution: | 0.001 MWh                                                                                                                                                                                                                                                                                                                            |
| Accuracy:                | The accuracy of the energy meter<br>depends on applied current and power<br>factor as shown in the power metering<br>accuracy specifications above. The<br>additional error introduced by<br>accumulating power to yield energy is<br>negligible when power changes slowly<br>compared to the processing rate of<br>once per second. |

### Synchrophasor Accuracy

#### Maximum Message Rate

Nominal 60 Hz System: 60 messages per second

Nominal 50 Hz System: 50 messages per second

The voltage accuracy specifications are only applicable for the model options with standard voltage inputs (not applicable to LEA option). The current accuracy specifications are applicable for all 1 A and 5 A options.

**Note:** For the SEL-751 current only model, the accuracy specifications for currents are only applicable when the applied signal frequency equals FNOM.

#### Accuracy for Voltages

Level 1 compliant as specified in IEEE C37.118 under the following conditions for the specified range.

Conditions

- ► At maximum message rate
- When phasor has the same frequency as the positive-sequence voltage
- Frequency-based phasor compensation is enabled PHCOMP := Y)
   The narrow bandwidth filter is selected (PMAPP := N)

Range

| Frequency:                                 | $\pm 5.0$ Hz of nominal (50 or 60 Hz) |
|--------------------------------------------|---------------------------------------|
| Magnitude:                                 | 30 V-250 V                            |
| Phase Angle:                               | -179.99° to 180.00°                   |
| Out-of-Band Interfering<br>Frequency (Fs): | 10 Hz $\leq$ Fs $\leq$ (2 • FNOM)     |

#### Accuracy for Currents

Level 1 compliant as specified in IEEE C37.118 under the following conditions for the specified range.

Conditions

- ► At maximum message rate
- When phasor has the same frequency as the positive-sequence voltage
- Frequency-based phasor compensation is enabled (PHCOMP := Y)

The narrow bandwidth filter is selected (PMAPP := N)

Range

| Frequency:                                 | ±5.0 Hz of nominal (50 or 60 Hz)                          |
|--------------------------------------------|-----------------------------------------------------------|
| Magnitude:                                 | $(0.4-2) \bullet I_{NOM} (I_{NOM} = 1 \text{ A or 5 A})$  |
| Phase Angle:                               | -179.99° to 180.00°                                       |
| Out-of-Band Interfering<br>Frequency (Fs): | $10 \text{ Hz} \le \text{Fs} \le (2 \bullet \text{FNOM})$ |

<sup>a</sup> Front port serial cable (non-fiber) lengths assumed to be <3 m.

# Notes

© 2011–2018 by Schweitzer Engineering Laboratories, Inc. All rights reserved.

All brand or product names appearing in this document are the trademark or registered trademark of their respective holders. No SEL trademarks may be used without written permission. SEL products appearing in this document may be covered by U.S. and Foreign patents.

Schweitzer Engineering Laboratories, Inc. reserves all rights and benefits afforded under federal and international copyright and patent laws in its products, including without limitation software, firmware, and documentation.

The information in this document is provided for informational use only and is subject to change without notice. Schweitzer Engineering Laboratories, Inc. has approved only the English language document.

This product is covered by the standard SEL 10-year warranty. For warranty details, visit selinc.com or contact your customer service representative.

### SCHWEITZER ENGINEERING LABORATORIES, INC.

2350 NE Hopkins Court • Pullman, WA 99163-5603 U.S.A. Tel: +1.509.332.1890 • Fax: +1.509.332.7990 selinc.com • info@selinc.com







#### Distrbuted Generation Facility IEEE 1547.1 Testing Matrix

| Facility Name     | Smart <sup>E</sup> Campus    |
|-------------------|------------------------------|
| Facility Location | Ohio State University Campus |
| Total Generation  | 117.6MW                      |
| DG Type           | CTG, STG                     |
|                   |                              |

|      |                |                                                                    | Ļ                   |            |                |                                            | <i>,</i> ,          |                                                                                                                      |
|------|----------------|--------------------------------------------------------------------|---------------------|------------|----------------|--------------------------------------------|---------------------|----------------------------------------------------------------------------------------------------------------------|
| Line | IEEE 1547.1 ID | IEEE 1547.1 Test                                                   | Type/Production Tes | Field Test | Not Applicable | Device under test                          | Referenced Document | Notes                                                                                                                |
| 26   | 5.11.2.1       | Harmonics test for synchronous                                     |                     |            |                |                                            |                     |                                                                                                                      |
| 27   | 5 44 2 4       | generators                                                         |                     |            | v              |                                            |                     |                                                                                                                      |
| 27   | 5.11.3.1       | Harmonics test for induction generators                            |                     |            | X              |                                            |                     |                                                                                                                      |
| 28   | 6.1.2          | Response to abnormal voltage                                       |                     |            |                |                                            |                     |                                                                                                                      |
| 29   | 6.2.2          | Response to abnormal frequency                                     |                     |            |                |                                            |                     |                                                                                                                      |
| 30   | 6.3.1.1        | Synchronization production test                                    |                     | х          |                | SIPROTEC 7VE61, STG PARALLELING DEVICE     | D                   | To be tested per IEEE 1547.1 test procedure. Field test report<br>to be provided by others after testing completed.  |
| 31   | 6.3.2.1        | Optional test for equipment with<br>synchronizing disable function |                     |            | х              |                                            |                     |                                                                                                                      |
| 32   | 7.2            | Verifications and inspections                                      |                     | x          |                | SEL 751, SEL 311, SEL 787, SIPROTEC 7UM621 | D                   | To be performed per IEEE 1547.1 procedure. Field inspection report to be provided by others after testing completed. |
| 33   | 7.4.1          | Reverse power or minimum power test                                |                     | x          |                | 32 Reverse Power Relay TBD                 | D                   | To be performed per IEEE 1547.1 procedure. Field inspection report to be provided by others after testing completed. |
| 34   | 7.4.2          | Non-island functionality test                                      |                     |            | Х              |                                            |                     |                                                                                                                      |
| 35   | 7.4.3          | Other unintentional islanding test methods                         |                     |            | х              |                                            |                     |                                                                                                                      |
| 36   | 7.5.1          | Cease to energize functionality test                               |                     |            | Х              |                                            |                     |                                                                                                                      |



# **CERTIFICATE OF LIABILITY INSURANCE**

DATE (MM/DD/YYYY) 10/19/2018

| THIS CERTIFICATE IS ISSUED AS A<br>CERTIFICATE DOES NOT AFFIRMA<br>BELOW. THIS CERTIFICATE OF IN<br>REPRESENTATIVE OR PRODUCER,               | MAT<br>TIVEL<br>ISURA               | TER<br>Y OR<br>NCE<br>HE C     | OF INFORMATION ONLY<br>REGATIVELY AMEND,<br>DOES NOT CONSTITU<br>ERTIFICATE HOLDER.             | AND CONFERS I<br>EXTEND OR ALT<br>TE A CONTRACT                                                                                                                      | NO RIGHTS<br>ER THE CO<br>BETWEEN 1                   | UPON THE CERTIFICAT<br>VERAGE AFFORDED E<br>THE ISSUING INSURER       | TE HOI<br>BY THE<br>(S), AU | Lder. This<br>5 Policies<br>Jthorized  |
|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------|----------------------------------------|
| IMPORTANT: If the certificate holde<br>If SUBROGATION IS WAIVED, subje<br>this certificate does not confer right                              | r is an<br>ct to t                  | ADD<br>he te                   | DITIONAL INSURED, the prime and conditions of the ificate holder in lieu of si                  | policy(ies) must ha<br>ne policy, certain p<br>uch endorsement(s                                                                                                     | ve ADDITION<br>olicies may                            | NAL INSURED provision require an endorsement                          | is or b<br>t. A st          | e endorsed.<br>tatement on             |
| PRODUCER                                                                                                                                      |                                     |                                | incate noticer in neu or 30                                                                     | CONTACT                                                                                                                                                              | ·)·                                                   |                                                                       |                             |                                        |
| Marsh USA Inc.                                                                                                                                |                                     |                                |                                                                                                 |                                                                                                                                                                      |                                                       | FAX                                                                   |                             |                                        |
| Houston, TX 77002                                                                                                                             |                                     |                                |                                                                                                 | E-MAIL                                                                                                                                                               |                                                       | (A/C, NO).                                                            |                             |                                        |
|                                                                                                                                               |                                     |                                |                                                                                                 | ADDRESS.                                                                                                                                                             |                                                       |                                                                       |                             | NAIC #                                 |
| CN115354100GAWUP-18-19                                                                                                                        |                                     |                                |                                                                                                 | INSURER A · Liberty Mu                                                                                                                                               | tual Fire Ins Co                                      |                                                                       |                             | 23035                                  |
| INSURED                                                                                                                                       |                                     |                                |                                                                                                 | INSURER B : ACE Prope                                                                                                                                                | erty & Casualty In                                    | surance Company                                                       |                             | 20699                                  |
| ENGIE Holdings Inc.<br>And their subsidiaries                                                                                                 |                                     |                                |                                                                                                 | INSURER C : Liberty Ins                                                                                                                                              | urance Corporatio                                     | n                                                                     |                             | 42404                                  |
| 1990 Post Oak Blvd., Suite 1900                                                                                                               |                                     |                                |                                                                                                 | INSURER D : Berkley As                                                                                                                                               | surance Compan                                        | V                                                                     |                             | 39462                                  |
| Houston, TX 77056                                                                                                                             |                                     |                                |                                                                                                 |                                                                                                                                                                      |                                                       | )                                                                     |                             |                                        |
|                                                                                                                                               |                                     |                                |                                                                                                 | INSURER F :                                                                                                                                                          |                                                       |                                                                       |                             |                                        |
| COVERAGES CE                                                                                                                                  | RTIFI                               | CATE                           | E NUMBER:                                                                                       | HOU-003309300-12                                                                                                                                                     |                                                       | <b>REVISION NUMBER: 3</b>                                             | 80                          | ,L                                     |
| THIS IS TO CERTIFY THAT THE POLICII<br>INDICATED. NOTWITHSTANDING ANY<br>CERTIFICATE MAY BE ISSUED OR MA'<br>EXCLUSIONS AND CONDITIONS OF SUC | ES OF<br>REQUIE<br>( PERT<br>H POLI | INSUF<br>REME<br>AIN,<br>CIES. | RANCE LISTED BELOW HA<br>NT, TERM OR CONDITION<br>THE INSURANCE AFFORD<br>LIMITS SHOWN MAY HAVE | VE BEEN ISSUED TO<br>OF ANY CONTRACT<br>ED BY THE POLICIE<br>BEEN REDUCED BY                                                                                         | O THE INSURE<br>OR OTHER<br>S DESCRIBE<br>PAID CLAIMS | ED NAMED ABOVE FOR T<br>DOCUMENT WITH RESPE<br>D HEREIN IS SUBJECT T( | HE POL<br>CT TO<br>O ALL    | JCY PERIOD<br>WHICH THIS<br>THE TERMS, |
|                                                                                                                                               | INSD                                | WVD                            | POLICY NUMBER                                                                                   | (MM/DD/YYYY)                                                                                                                                                         | (MM/DD/YYYY)                                          | LIMIT                                                                 | rs                          |                                        |
|                                                                                                                                               |                                     |                                | I DZ-041-4430UD-U38                                                                             | 07/01/2018                                                                                                                                                           | 0//01/2019                                            | EACH OCCURRENCE<br>DAMAGE TO RENTED                                   | \$                          | 2,000,000                              |
| CLAIMS-MADE X OCCUR                                                                                                                           |                                     |                                |                                                                                                 |                                                                                                                                                                      |                                                       | PREMISES (Ea occurrence)                                              | \$                          | 100,000                                |
|                                                                                                                                               | -                                   |                                |                                                                                                 |                                                                                                                                                                      |                                                       | MED EXP (Any one person)                                              | \$                          | 2 000 000                              |
|                                                                                                                                               | -                                   |                                |                                                                                                 |                                                                                                                                                                      |                                                       | PERSONAL & ADV INJURY                                                 | \$                          | 2,000,000                              |
| GEN'L AGGREGATE LIMIT APPLIES PER:                                                                                                            |                                     |                                |                                                                                                 |                                                                                                                                                                      |                                                       | GENERAL AGGREGATE                                                     | \$                          | 2,000,000                              |
|                                                                                                                                               |                                     |                                |                                                                                                 |                                                                                                                                                                      |                                                       | PRODUCTS - COMP/OP AGG                                                | \$<br>¢                     | 2,000,000                              |
|                                                                                                                                               |                                     |                                | AS2-641-443605-028                                                                              | 07/01/2018                                                                                                                                                           | 07/01/2019                                            | COMBINED SINGLE LIMIT                                                 | ф<br>ф                      | 2 000 000                              |
|                                                                                                                                               |                                     |                                |                                                                                                 | 0110112010                                                                                                                                                           | 0//0//2017                                            | (Ea accident)                                                         | ¢                           | 2,000,000                              |
| OWNED SCHEDULED                                                                                                                               |                                     |                                |                                                                                                 |                                                                                                                                                                      |                                                       | BODILY INJURY (Per period)                                            | ¢                           |                                        |
| AUTOS ONLY AUTOS<br>V HIRED V NON-OWNED                                                                                                       |                                     |                                |                                                                                                 |                                                                                                                                                                      |                                                       | PROPERTY DAMAGE                                                       | ф<br>ф                      |                                        |
| AUTOS ONLY AUTOS ONLY                                                                                                                         |                                     |                                |                                                                                                 |                                                                                                                                                                      |                                                       | (Per accident)                                                        | ф<br>ф                      |                                        |
|                                                                                                                                               |                                     |                                | G27614814 004                                                                                   | 07/01/2010                                                                                                                                                           | 07/01/2010                                            |                                                                       | φ                           | 20,000,000                             |
|                                                                                                                                               |                                     |                                |                                                                                                 | 07/01/2018                                                                                                                                                           | 0//0//2017                                            | EACH OCCURRENCE                                                       | \$                          | 20,000,000                             |
|                                                                                                                                               | DE                                  |                                |                                                                                                 |                                                                                                                                                                      |                                                       | AGGREGATE                                                             | \$                          | 20,000,000                             |
| C WORKERS COMPENSATION                                                                                                                        |                                     |                                | WC7-641-443605-018                                                                              | 07/01/2018                                                                                                                                                           | 07/01/2019                                            | χ PER OTH-                                                            | \$                          |                                        |
|                                                                                                                                               | N                                   |                                |                                                                                                 |                                                                                                                                                                      |                                                       | A STATUTE ER                                                          |                             | 2 000 000                              |
| OFFICER/MEMBEREXCLUDED?                                                                                                                       | N / A                               |                                |                                                                                                 |                                                                                                                                                                      |                                                       | E.L. EACH ACCIDENT                                                    | \$                          | 2,000,000                              |
| If yes, describe under                                                                                                                        |                                     |                                |                                                                                                 |                                                                                                                                                                      |                                                       | E.L. DISEASE - EA EMPLOYEE                                            | \$                          | 2,000,000                              |
| D Contractor's Professional                                                                                                                   | _                                   |                                | ΡCΔR-500/075 0719                                                                               | 07/01/2010                                                                                                                                                           | 07/01/2010                                            | E.L. DISEASE - POLICY LIMIT                                           | \$                          | 5 000 000                              |
|                                                                                                                                               |                                     |                                | PCAD-5004975-0716                                                                               | 07/01/2018                                                                                                                                                           | 0//01/2019                                            | Anne ante                                                             |                             | 5,000,000                              |
| Liability                                                                                                                                     |                                     |                                | SIR: \$250,000                                                                                  |                                                                                                                                                                      |                                                       | Aggregate                                                             |                             | 5,000,000                              |
| DESCRIPTION OF OPERATIONS / LOCATIONS / VEH<br>Evidence Only.                                                                                 | ICLES (/                            | ACORD                          | 0101, Additional Remarks Schedu                                                                 | le, may be attached if mor                                                                                                                                           | e space is requir                                     | ed)                                                                   |                             |                                        |
| CERTIFICATE HOLDER                                                                                                                            |                                     |                                |                                                                                                 |                                                                                                                                                                      |                                                       |                                                                       |                             |                                        |
| ENGIE Holdings Inc.<br>1990 Post Oak Blvd., Suite 1900<br>Houston, TX 77056                                                                   |                                     |                                |                                                                                                 | SHOULD ANY OF THE ABOVE DESCRIBED POLICIES BE CANCELLED BEFORE<br>THE EXPIRATION DATE THEREOF, NOTICE WILL BE DELIVERED IN<br>ACCORDANCE WITH THE POLICY PROVISIONS. |                                                       |                                                                       |                             |                                        |
|                                                                                                                                               |                                     |                                |                                                                                                 | AUTHORIZED REPRESE<br>of Marsh USA Inc.                                                                                                                              | ENTATIVE                                              | _                                                                     |                             |                                        |
|                                                                                                                                               |                                     |                                |                                                                                                 | Freeman M. Wade                                                                                                                                                      | -                                                     | Freekan M. A                                                          | al                          |                                        |

The ACORD name and logo are registered marks of ACORD

© 1988-2016 ACORD CORPORATION. All rights reserved.

AGENCY CUSTOMER ID: CN115354100

LOC #: Houston



# **ADDITIONAL REMARKS SCHEDULE**

Page 2 of 2

| AGENCY<br>Marsh USA Inc. | NAMED INSURED<br>ENGIE Holdings Inc.<br>And their subsidiaries<br>1990 Post Oak Blvd., Suite 1900<br>Houston, TX 77056 |                 |  |
|--------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------|--|
| POLICY NUMBER            |                                                                                                                        |                 |  |
| CARRIER                  | NAIC CODE                                                                                                              |                 |  |
|                          |                                                                                                                        | EFFECTIVE DATE: |  |

### ADDITIONAL REMARKS

THIS ADDITIONAL REMARKS FORM IS A SCHEDULE TO ACORD FORM,

FORM NUMBER: 25 FORM TITLE: Certificate of Liability Insurance

Property: Policy No.: 1041445 Carrier: Factory Mutual Insurance Company Limit: \$2,000,000 Deductible: \$25,000

EXHIBIT F: Copies of Adjacent Property Owners Notification Letter, List of Adjacent Landowners, and Newspaper Advertisement



Calfee, Halter & Griswold LLP Attorneys at Law

1200 Huntington Center 41 South High Street Columbus, Ohio 43215-3465 614.621.1500 **Phone** Calfee.com

September 3, 2019

Via First Class U.S. Mail

«Owners» «Street» «City», «ST» «Zip»

### Re: Case No. 19-1641-EL-BTX

In the Matter of the Application of **The Ohio State University** for a Certificate of Environmental Compatibility and Public Need for a Combined Heat and Power Major Unit Facility in Franklin County, Ohio on the Campus of The Ohio State University

Dear «Salutation»:

### Introduction

As the attorney representing The Ohio State University (Ohio State) before the Ohio Power Siting Board ("Board"), I am sending this letter as required by Ohio Administrative Code Rule ("OAC") 4906-3-03(B)(2). This letter is being sent to property owners and affected tenants to a proposed Combined Heat and Power ("CHP") major unit facility on the Ohio State campus in Clinton Township, Franklin County, Ohio. You are receiving this letter because your property is contiguous to the planned project area parcel. OAC Rule 4906-3-03(B)(2) requires the applicant to notify all property owners and affected tenants contiguous to the planned project area.

### Background

Ohio State is committed to continuing to make a world-class education both accessible and affordable. At the same time, Ohio State is driven to continually improve the environmental sustainability of campus operations. As we add new academic, research, and medical facilities to campus, our energy demands grow accordingly. To reduce Ohio State's energy costs and improve the campus' carbon emissions impact on the environment, Ohio State is proposing to install a CHP facility on campus.

The proposed CHP facility will reduce the amount of electric power Ohio State must purchase from the electricity markets. Additionally, producing electricity on campus using highly efficient natural gas-fired generators will reduce the total carbon dioxide emissions associated with the campus.

Ohio State examined several possible locations for the proposed CHP facility. The proposed site is on the corner of John Herrick Drive and Vernon Tharp Street.

### Description of Facility

The CHP facility will produce thermal energy powered by natural gas while introducing electricity generation on campus. The general purpose of the project is for the CHP facility to be a primary source of heating and electricity to the Columbus campus.

The proposed CHP major unit facility site is located on 1.35 acres on an area previously disturbed for the Howlett Greenhouse operations on campus. The site is on the corner of John H. Herrick Drive and Vernon L. Tharp Street adjacent to the Galbreath Equine Center, Parker Food and Science Technology Building, Howlett Greenhouses, and Howlett Hall. The proposed site is currently a gravel lot within a

September 3, 2019 Page 2

chain link fence that contains lightweight plastic sheeting greenhouses and related structures (e.g. composting bins).

The CHP facility will include the installation of two natural gas combustion turbine generators and one steam turbine generator. The turbines nameplate output capacity will be 105.5 megawatts in summer and 85.1 megawatts in winter. The nameplate maximum heat input is 314.8 million Btu per hour (Higher Heating Value).

"Associated facilities" as defined by the Board rules will consist of buried lines except where the utility line(s) will be attached underneath a new bridge crossing the Olentangy River just south of Ohio Stadium. The new bridge will replace the existing bridge in that location which currently has utility lines attached to it. The buried lines will be located on the Ohio State campus in previously disturbed areas through lawns, streets, roads, sidewalks and parking lots within the urbanized area developed for the campus.

### Description of the Certification Process

In order to construct, operate, and maintain the CHP facility, Ohio State must obtain permission from the Board. That permission is provided in the form of a Certificate.

In the near future, Ohio State will submit to the Board an Application for a Certificate of Environmental Compatibility and Public Need to construct, operate, and maintain the CHP facility. Once the application is submitted, the Board will preliminarily review the application to determine whether it is complete and contains all necessary requirements. No later than 60 days after the application is filed, the Chairman of the Board will notify Ohio State whether the application was complete and contains all necessary requirements. The docket number which has been assigned to this matter is: 19-1641-EL-BTX.

Assuming the application is found to be complete, the Board is required to promptly fix dates for public hearings: one, a non-adjudicatory, local public hearing to be held nearby in Franklin County; and also an adjudicatory hearing to be held at the offices of the Public Utilities Commission of Ohio, 180 East Broad Street, Columbus, Ohio 43215-3793.

Prior to the hearings, however, the application will be investigated by the Board staff. The investigation must be completed, and the staff must submit a written report to the Board, not less than fifteen days prior to the date of the hearings and no more than 75 days from the date the application is deemed complete. The report will set forth the nature of the investigation and contain recommended findings with regard to the criteria the Board must use to review the application. A copy of the report will be made available to any person upon request.

The criteria the Board must use to review the application are as follows:

- (1) the basis of the need for the facility;
- (2) the nature of the probable environmental impact;
- (3) that the facility represents the minimum adverse environmental impact, considering the state of available technology and the nature and economics of the various alternatives, and other pertinent considerations;
- (4) in the case of an electric transmission line, that the facility is consistent with regional plans for expansion of the electric power grid of the electric systems serving this state and interconnected utility systems and that the facility will serve the interests of electric system economy and reliability;
- (5) that the facility will comply with Chapters 3704, 3734, and 6111 of the Revised Code and all rules and standards adopted under those chapters and under Sections 1501.33, 1501.34 and 4561.32 of the Revised Code;
- (6) that the facility will serve the public interest, convenience, and necessity;

- (7) the impact on the viability as agricultural land of any land in an existing agricultural district established under Chapter 929 of the Revised Code that is located within the site (route) and alternative site (route) of the proposed major utility facility (pipeline);
- (8) that the facility incorporates maximum feasible water conservation practices as determined by the Board, considering available technology and the nature and economics of the various alternatives.

After the public hearings are completed, recent Board practice is that the Board directs the administrative law judge who presides over the hearings to prepare a draft order for its review and consideration. The Board will issue a final decision within a reasonable time after conclusion of the hearings. If a party is not satisfied with the Board's decision, an application for rehearing can be submitted and if the Board denies the rehearing application, the party can appeal to the Ohio Supreme Court.

Parties who are interested in this application may file a petition to intervene in the adjudicatory hearing or they may ask the Board to send them notices. Petitions to intervene will be accepted by the Board up to 30 days following the publication of the newspaper notice setting the date for the hearing, or later, if good cause is shown. However, the Board strongly encourages interested persons who wish to intervene in the adjudicatory hearing to file their petitions as soon as possible. Petitions should be addressed to the Ohio Power Siting Board, 180 East Broad Street, Columbus, Ohio 43215-3793 and cite the above-listed Case No. 19-1641-EL-BTX.

You may access all the filings in this case at the PUCO website at <u>http://www.puc.state.oh.us/</u> and then click on "Docketing Information System (DIS)" in the second section, middle column; once the Docket Information System screen appears, type the case number for the CHP facility application, Case No. 19-1641-EL-BTX, and follow the instructions to retrieve copies of all filings in the case.

The Board's address is 180 East Broad Street, Columbus, Ohio 43215-3793; its telephone number is 1-866-270-6772, its website is <u>http://www.opsb.ohio.gov/opsb/</u>, and its email is <u>opsb@puco.ohio.gov</u>. The applicant's project website is <u>http://buildingthefuture.osu.edu/combined-heat-and-power-plant</u>.

### Community Informational Meeting Date

Ohio State has arranged for a public community open house to be held on September 26, 2019 on the Ohio State campus at the Fawcett Center, 2400 Olentangy River Rd, Columbus, OH 43210 between the hours of 5:30 and 7:30 pm. Free parking will be available. The meeting format will be an open house with poster stations arranged throughout the room. Each station will have information about various aspects of the CHP project, including maps of the project area. Representatives from Ohio State and the university's utility systems manager, Ohio State Energy Partners LLC, will be in attendance to answer questions. Those who attend the meeting may write comments that the applicant will summarize and include in its application.

### Conclusion

We expect that the Board will conclude, as we believe, that the CHP facility will benefit the community and the region. If you have any questions regarding the open house you may contact Ohio State's energy management office at (614) 292-0357 or email at <u>potter.138@osu.edu</u>.

Sincerely,

Steven D. Lesser
| PARCELID   | Land Use                 |               | Site A          | ddress       |       | Owner Name 1          | Owner Name 2    | ame 2 Owner Address |                     |                |                        |
|------------|--------------------------|---------------|-----------------|--------------|-------|-----------------------|-----------------|---------------------|---------------------|----------------|------------------------|
|            |                          |               |                 |              |       |                       |                 |                     |                     | 605 S FRONT ST |                        |
| 010-207716 | CONDOMINIUM UNIT         | 364 W LANE AV | <b>UNIT 100</b> | COLUMBUS OH  | 43201 | RIVERWATCH TOWER      | ASSOCIATION INC | OHIO EQUITIES LLC   |                     | STE 200        | COLUMBUS OH 43215-5777 |
|            | EXEMPT PROPERTY OWNED BY |               |                 |              |       |                       |                 |                     |                     |                |                        |
| 010-207717 | STATE OF OHIO            | 364 W LANE AV | UNIT 101        | COLUMBUS OH  | 43201 | STATE OF OHIO FBO-OSU |                 | OSU                 | LEASE ADMINISTRATOR | 1534 N HIGH ST | COLUMBUS OH 43201-1121 |
|            | EXEMPT PROPERTY OWNED BY |               |                 |              |       |                       |                 |                     |                     | 3001 HACKBERRY |                        |
| 010-207718 | STATE OF OHIO            | 364 W LANE AV | <b>UNIT 102</b> | COLUMBUS OH  | 43201 | STATE OF OHIO FBO-OSU |                 | CORELOGIC           |                     | RD             | IRVING TX 75063-0156   |
|            | EXEMPT PROPERTY OWNED BY |               |                 |              |       |                       |                 |                     |                     |                |                        |
| 010-207719 | STATE OF OHIO            | 364 W LANE AV | <b>UNIT 103</b> | COLUMBUS OH  | 43201 | STATE OF OHIO FBO-OSU |                 | OSU                 | LEASE ADMINISTRATOR | 1534 N HIGH ST | COLUMBUS OH 43201-1121 |
|            | EXEMPT PROPERTY OWNED BY |               |                 |              |       |                       |                 |                     |                     |                |                        |
| 010-207720 | STATE OF OHIO            | 364 W LANE AV | <b>UNIT 104</b> | COLUMBUS OH  | 43201 | STATE OF OHIO FBO-OSU |                 | OSU                 | LEASE ADMINISTRATOR | 1534 N HIGH ST | COLUMBUS OH 43201-1121 |
|            | EXEMPT PROPERTY OWNED BY |               |                 |              |       |                       |                 |                     |                     |                |                        |
| 010-207721 | STATE OF OHIO            | 364 W LANE AV | <b>UNIT 105</b> | COLUMBUS OH  | 43201 | STATE OF OHIO FBO-OSU |                 | OSU                 | LEASE ADMINISTRATOR | 1534 N HIGH ST | COLUMBUS OH 43201-1121 |
|            | EXEMPT PROPERTY OWNED BY |               |                 |              |       |                       |                 |                     |                     |                |                        |
| 010-207722 | STATE OF OHIO            | 364 W LANE AV | <b>UNIT 106</b> | COLUMBUS OH  | 43201 | STATE OF OHIO FBO-OSU |                 | OSU                 | LEASE ADMINISTRATOR | 1534 N HIGH ST | COLUMBUS OH 43201-1121 |
|            | EXEMPT PROPERTY OWNED BY |               |                 |              |       |                       |                 |                     |                     |                |                        |
| 010-207723 | STATE OF OHIO            | 364 W LANE AV | <b>UNIT 107</b> | COLUMBUS OH  | 43201 | STATE OF OHIO FBO-OSU |                 | OSU                 | LEASE ADMINISTRATOR | 1534 N HIGH ST | COLUMBUS OH 43201-1121 |
|            | EXEMPT PROPERTY OWNED BY |               |                 |              |       |                       |                 |                     |                     |                |                        |
| 010-207724 | STATE OF OHIO            | 364 W LANE AV | <b>UNIT 108</b> | COLUMBUS OH  | 43201 | STATE OF OHIO FBO-OSU |                 | OSU                 | LEASE ADMINISTRATOR | 1534 N HIGH ST | COLUMBUS OH 43201-1121 |
|            | EXEMPT PROPERTY OWNED BY |               |                 |              |       |                       |                 |                     |                     |                |                        |
| 010-207725 | STATE OF OHIO            | 364 W LANE AV | <b>UNIT 109</b> | COLUMBUS OH  | 43201 | STATE OF OHIO FBO-OSU |                 | OSU                 | LEASE ADMINISTRATOR | 1534 N HIGH ST | COLUMBUS OH 43201-1121 |
|            | EXEMPT PROPERTY OWNED BY |               |                 |              |       |                       |                 |                     |                     |                |                        |
| 010-207726 | STATE OF OHIO            | 364 W LANE AV | UNIT 110        | COLUMBUS OH  | 43201 | STATE OF OHIO FBO-OSU |                 | OSU                 | LEASE ADMINISTRATOR | 1534 N HIGH ST | COLUMBUS OH 43201-1121 |
|            | EXEMPT PROPERTY OWNED BY |               |                 |              |       |                       |                 |                     |                     |                |                        |
| 010-207727 | STATE OF OHIO            | 364 W LANE AV | UNIT 111        | COLUMBUS OH  | 43201 | STATE OF OHIO FBO-OSU |                 | OSU                 | LEASE ADMINISTRATOR | 1534 N HIGH ST | COLUMBUS OH 43201-1121 |
|            | EXEMPT PROPERTY OWNED BY |               |                 |              |       |                       |                 |                     |                     |                |                        |
| 010-207728 | STATE OF OHIO            | 364 W LANE AV | UNIT 112        | COLUMBUS OH  | 43201 | STATE OF OHIO FBO-OSU |                 | OSU                 | LEASE ADMINISTRATOR | 1534 N HIGH ST | COLUMBUS OH 43201-1121 |
|            | EXEMPT PROPERTY OWNED BY |               |                 |              |       |                       |                 |                     |                     |                |                        |
| 010-207729 | STATE OF OHIO            | 364 W LANE AV | UNIT 113        | COLUMBUS OH  | 43201 | STATE OF OHIO FBO-OSU |                 | OSU                 | LEASE ADMINISTRATOR | 1534 N HIGH ST | COLUMBUS OH 43201-1121 |
|            | EXEMPT PROPERTY OWNED BY |               |                 |              |       |                       |                 |                     |                     |                |                        |
| 010-207730 | STATE OF OHIO            | 364 W LANE AV | UNIT 114        | COLUMBUS OH  | 43201 | STATE OF OHIO FBO-OSU |                 | OSU                 | LEASE ADMINISTRATOR | 1534 N HIGH ST | COLUMBUS OH 43201-1121 |
|            | EXEMPT PROPERTY OWNED BY |               |                 |              |       |                       |                 |                     |                     |                |                        |
| 010-207731 | STATE OF OHIO            | 364 W LANE AV | UNIT 115        | COLUMBUS OH  | 43201 | STATE OF OHIO FBO-OSU |                 | OSU                 | LEASE ADMINISTRATOR | 1534 N HIGH ST | COLUMBUS OH 43201-1121 |
|            | EXEMPT PROPERTY OWNED BY |               |                 |              |       |                       |                 |                     |                     |                |                        |
| 010-207732 | STATE OF OHIO            | 364 W LANE AV | UNIT 116        | COLUMBUS OH  | 43201 | STATE OF OHIO FBO-OSU |                 | OSU                 | LEASE ADMINISTRATOR | 1534 N HIGH ST | COLUMBUS OH 43201-1121 |
|            | EXEMPT PROPERTY OWNED BY |               |                 |              |       |                       |                 |                     |                     |                |                        |
| 010-207733 | STATE OF OHIO            | 364 W LANE AV | UNIT 117        | COLUMBUS OH  | 43201 | STATE OF OHIO FBO-OSU |                 | OSU                 | LEASE ADMINISTRATOR | 1534 N HIGH ST | COLUMBUS OH 43201-1121 |
|            | EXEMPT PROPERTY OWNED BY |               |                 |              |       |                       |                 |                     |                     |                |                        |
| 010-207734 | STATE OF OHIO            | 364 W LANE AV | UNIT 118        | COLUMBUS OH  | 43201 | STATE OF OHIO FBO-OSU |                 | OSU                 | LEASE ADMINISTRATOR | 1534 N HIGH ST | COLUMBUS OH 43201-1121 |
|            | EXEMPT PROPERTY OWNED BY |               |                 |              |       |                       |                 |                     |                     |                |                        |
| 010-207735 |                          | 364 W LANE AV | UNIT 119        | COLUMBUS OH  | 43201 | STATE OF OHIO FBO-OSU |                 | OSU                 | LEASE ADMINISTRATOR | 1534 N HIGH ST | COLUMBUS OH 43201-1121 |
|            | EXEMPT PROPERTY OWNED BY |               |                 |              |       |                       |                 |                     |                     |                |                        |
| 010-207736 |                          | 364 W LANE AV | UNIT 120        | COLUMBUS OH  | 43201 | STATE OF OHIO FBO-OSU |                 | 050                 | LEASE ADMINISTRATOR | 1534 N HIGH ST | COLUMBUS OH 43201-1121 |
|            | EXEMPT PROPERTY OWNED BY |               |                 |              |       |                       |                 |                     |                     |                |                        |
| 010-207737 |                          | 364 W LANE AV | UNIT 121        | COLUMBUS OH  | 43201 | STATE OF OHIO FBO-OSU |                 | 050                 | LEASE ADMINISTRATOR | 1534 N HIGH ST | COLUMBUS OH 43201-1121 |
| 04.0 00776 | EXEMPT PROPERTY OWNED BY |               |                 |              | 40000 |                       |                 |                     |                     |                |                        |
| 010-207738 | STATE OF OHIO            | 364 W LANE AV | UNIT 122        | ICOLUMBUS OH | 43201 | STATE OF OHIO FBO-OSU |                 | 050                 | LEASE ADMINISTRATOR | 1534 N HIGH ST | COLUMBUS OH 43201-1121 |

|            | EXEMPT PROPERTY OWNED BY |                |                 |               |       |                        |                |                     |                        |                  |                           |
|------------|--------------------------|----------------|-----------------|---------------|-------|------------------------|----------------|---------------------|------------------------|------------------|---------------------------|
| 010-207739 | STATE OF OHIO            | 364 W LANE AV  | UNIT 123        | COLUMBUS OH   | 43201 | STATE OF OHIO FBO-OSU  |                | OSU                 | LEASE ADMINISTRATOR    | 1534 N HIGH ST   | COLUMBUS OH 43201-1121    |
|            | EXEMPT PROPERTY OWNED BY |                |                 |               |       |                        |                |                     |                        |                  |                           |
| 010-207740 | STATE OF OHIO            | 364 W LANE AV  | UNIT 124        | COLUMBUS OH   | 43201 | STATE OF OHIO FBO-OSU  |                | OSU                 | LEASE ADMINISTRATOR    | 1534 N HIGH ST   | COLUMBUS OH 43201-1121    |
| 010 207741 | EXEMPT PROPERTY OWNED BY |                |                 |               | 42201 |                        |                | 0511                |                        |                  |                           |
| 010-207741 | STATE OF OHIO            | 364 W LAINE AV |                 | COLOIVIBUS OH | 43201 | STATE OF OHIO FBO-050  |                | 030                 | LEASE ADIVITINISTRATOR | 1534 N RIGH SI   | COLUMBUS OH 43201-1121    |
| 010-207742 |                          | 364 W LANE AV  | <b>UNIT 126</b> |               | 43201 |                        |                | OSU                 |                        | 1534 N HIGH ST   |                           |
| 010 207742 |                          |                |                 |               | 43201 |                        |                |                     |                        | 1554 10 11611 51 | COLONIDOS ON 43201 1121   |
|            |                          |                |                 |               |       |                        |                |                     |                        | 8354 NUTHATCH    |                           |
| 010-207743 | CONDOMINIUM UNIT         | 364 W LANE AV  | <b>UNIT 201</b> | COLUMBUS OH   | 43201 | LEONG KENNETH          |                | KENNETH LEONG       |                        | WAY              | COLUMBUS OH 43235-1480    |
|            |                          |                |                 |               |       |                        |                |                     |                        |                  |                           |
|            |                          |                |                 |               |       |                        |                |                     |                        | 230 HURONVIEW    |                           |
| 010-207744 | CONDO 4-19 RENTAL UNITS  | 364 W LANE AV  | UNIT 202        | COLUMBUS OH   | 43201 | MVP 364RW LLC          |                | MVP 364 W LLC       |                        | BLVD             | ANN ARBOR MI 48103-2948   |
|            |                          |                |                 |               |       |                        |                |                     |                        | 7201 N           |                           |
| 010-207745 |                          | 364 W LANE AV  | UNIT 203        | COLUMBUS OH   | 43201 | HALDAR FRANCES L       |                | FRANCES L HALDAR    |                        | CHESTNUT LN      | VAN NUYS CA 91405-5479    |
|            |                          |                |                 |               |       |                        |                |                     |                        |                  |                           |
|            |                          |                |                 |               |       |                        |                |                     |                        | 230 HURONVIEW    |                           |
| 010-207746 | CONDO 4-19 RENTAL UNITS  | 364 W LANE AV  | UNIT 204        | COLUMBUS OH   | 43201 | MVP RIVERWATCH LLC     |                | MVP RIVERWATCH LLC  | ATTN ACCT DEPT         | BLVD             | ANN ARBOR MI 48103-2948   |
| 010 207747 |                          |                |                 |               | 42201 |                        |                |                     |                        | 8428 COUNTY      |                           |
| 010-207747 |                          | 504 W LAINE AV |                 |               | 45201 | JARRELL SUSAN K        |                | JUJAN K JARKELL     |                        | KUAD 107         | PROCIORVILLE OF 45009-64  |
| 010-207748 |                          | 364 W LANE AV  |                 |               | 43201 | YERKEY MATTHEW R TR    |                | MATTHEW R VERKEY TR |                        | 1750 SHADY I N   | SALEM OH 44460-1240       |
| 010 207740 |                          |                |                 |               | 45201 |                        | DAUGHERTY      | WILLIAM L DAUGHERTY |                        | 1750 517/01 EIV  | SALLIN ON 44400 1240      |
| 010-207749 | CONDOMINIUM UNIT         | 364 W LANE AV  | <b>UNIT 208</b> | COLUMBUS OH   | 43201 | DAUGHERTY WILLIAM L TR | BEVERLY A TR   | TR                  | BEVERLY DAUGHERTY TR   | 1470 CARDIFF RD  | COLUMBUS OH 43221-3954    |
|            |                          |                |                 |               |       |                        |                | RIVERWATCH          |                        | 8931 WHITNEY     |                           |
| 010-207750 | CONDOMINIUM UNIT         | 364 W LANE AV  | <b>UNIT 209</b> | COLUMBUS OH   | 43201 | RIVERWATCH INVESTMENT  | LLC            | INVESTMENTS LLC     |                        | DR               | LEWIS CENTER OH 43035-710 |
|            |                          |                |                 |               |       |                        |                |                     |                        | 3001 HACKBERRY   | ,<br>,                    |
| 010-207751 | CONDOMINIUM UNIT         | 364 W LANE AV  | UNIT 210        | COLUMBUS OH   | 43201 | BESHRIDA OSAMA N       |                | CORELOGIC           |                        | RD               | IRVING TX 75063-0156      |
|            |                          |                |                 |               |       |                        |                | FIRST FEDERAL       |                        | 119 S SANDUSKY   |                           |
| 010-207752 |                          | 364 W LANE AV  | UNIT 212        | COLUMBUS OH   | 43201 | MOSER PAUL J           | MOSER LUANNE K | COMMUNITY BANK      |                        | AVE              | BUCYRUS OH 44820-2220     |
|            |                          |                |                 |               |       |                        |                |                     |                        |                  |                           |
| 040 007750 |                          |                |                 |               | 10001 |                        |                |                     |                        | 11530            |                           |
| 010-207753 |                          | 364 W LANE AV  | UNIT 213        | COLUMBUS OH   | 43201 |                        |                | LEAH LIU            |                        |                  | NEW ALBANY OH 43054-855   |
| 010-207754 |                          |                | 1 INIT 215      |               | 12201 |                        |                |                     |                        |                  |                           |
| 010-207734 |                          | JU4 W LANL AV  |                 |               | 43201 |                        |                |                     |                        | 690 RIVERVIEW    | DOBLIN OIT 43010          |
| 010-207755 | CONDO 4-19 RENTAL UNITS  | 364 W LANF AV  | UNIT 217        |               | 43201 | WANG HUA               |                | HUA WANG            |                        | DR APT 105       | COLUMBUS OH 43202-3240    |
| 010 207700 |                          |                |                 |               | 10201 |                        |                |                     |                        |                  |                           |
|            |                          |                |                 |               |       |                        |                |                     |                        | 230 HURONVIEW    |                           |
| 010-207756 | CONDOMINIUM UNIT         | 364 W LANE AV  | UNIT 218        | COLUMBUS OH   | 43201 | MCP RIVERWATCH LLC     |                | MCP RIVERWATCH LLC  |                        | BLVD             | ANN ARBOR MI 48103-2948   |
| 010-207757 | CONDO 20-39 RENTAL UNITS | 364 W LANE AV  | UNIT 219        | COLUMBUS OH   | 43201 | JIANG TIANLU           | LIN IVY RONG   | TIANLU JIANG        |                        | 5940 TARRIN CT   | DUBLIN OH 43016-6125      |
|            |                          |                |                 |               |       |                        |                |                     |                        | 364 W LANE AVE   |                           |
| 010-207758 | CONDOMINIUM UNIT         | 364 W LANE AV  | UNIT 220        | COLUMBUS OH   | 43201 | BENEDICT JASON         |                | JASON BENEDICT      |                        | APT 220          | COLUMBUS OH 43201-1096    |
|            |                          |                |                 |               |       |                        |                |                     |                        |                  |                           |
|            |                          |                |                 |               |       |                        |                |                     |                        | 230 HURONVIEW    |                           |
| 010-207759 | CONDO 4-19 RENTAL UNITS  | 364 W LANE AV  | <b>UNIT 222</b> | COLUMBUS OH   | 43201 | WRE DE LLC             |                | WRE DE LLC          |                        | BLVD             | ANN ARBOR MI 48103-2948   |

| -          |                          |                   |           |             |       |                        |                |                     |                        |                |                           |
|------------|--------------------------|-------------------|-----------|-------------|-------|------------------------|----------------|---------------------|------------------------|----------------|---------------------------|
| 010-207760 |                          |                   |           |             | 12201 |                        |                |                     |                        |                |                           |
| 010-207700 |                          | 304 W LANL AV     | 01111 223 |             | 43201 |                        |                |                     |                        |                | COLONIBOS ON 43221-1230   |
| 010-207761 | CONDO 4-19 RENTAL UNITS  | 364 W LANE AV     | UNIT 224  | COLUMBUS OH | 43201 | KARNITIS CHARLES I     | LAIMA E        | CHARLES I KARNITIS  | LAIMA E KARNITIS       | RDG            | COLUMBUS OH 43214-2954    |
| 010-207762 |                          | 364 W LANE AV     | LINIT 225 |             | 43201 | SUITAM ΔΙ FK Τ         |                | ΑΙ ΕΚ Τ SITAM       |                        | 1201 WESTPHAL  | COLUMBUS OH 43227-1744    |
| 010 207702 |                          | 501 11 2/112 / 11 | 01111 223 |             | 13201 |                        |                |                     |                        | 6619 S         |                           |
| 010-207763 |                          | 364 W LANE AV     | UNIT 226  | COLUMBUS OH | 43201 | JPC OF COLUMBUS LTD    |                | JPC OF COLUMBUS LTD |                        | PATSBURG ST    | AURORA CO 80016-4394      |
|            |                          |                   |           |             |       |                        |                |                     |                        | 6871           |                           |
|            |                          |                   |           |             |       |                        |                |                     |                        | CHILLINGSWORT  |                           |
| 010-207764 |                          | 364 W LANE AV     | UNIT 228  | COLUMBUS OH | 43201 | KAMEL MOUHAMED K       |                | MOUHAMED K KAMEL    |                        | H CIR NW       | CANTON OH 44718-1571      |
|            |                          |                   |           |             |       |                        |                |                     |                        | 239 HURONVIEW  |                           |
| 010-207765 |                          | 364 W LANF AV     | UNIT 229  |             | 43201 | WRF DF LLC             |                | WRE DE LLC          |                        | BLVD           | ANN ARBOR MI 48103-2947   |
| 010-207766 |                          | 364 W LANE AV     | UNIT 231  | COLUMBUS OH | 43201 | MCFADDEN TERRY         |                | TERRY MCFADDEN      |                        | 730 ERIN ST    | LEWIS CENTER OH 43035-844 |
|            |                          |                   |           |             |       |                        |                |                     |                        |                |                           |
|            |                          |                   |           |             |       |                        |                |                     |                        | 703            |                           |
| 010-207767 | CONDOMINIUM UNIT         | 364 W LANE AV     | UNIT 235  | COLUMBUS OH | 43201 | STAHL BRADLEY T        | STAHL ALICIA K | BRADLEY T STAHL     | ALICIA K STAHL         | HAWTHORNE DR   | MARSHALL IL 62441-1976    |
| 010-207768 |                          | 364 W LANE AV     | UNIT 237  | COLUMBUS OH | 43201 | REPP CLIFFORD M & RUTH | A              | CLIFFORD M REPP     | RUTH A REPP            | PO BOX 2699    | MANSFIELD OH 44906-0699   |
|            |                          |                   |           |             |       |                        |                |                     |                        |                |                           |
|            |                          |                   |           |             |       |                        |                |                     |                        | 230 HURONVIEW  |                           |
| 010-207769 |                          | 364 W LANE AV     | UNIT 239  | COLUMBUS OH | 43201 | WRE DE LLC             |                | WRE DE LLC          |                        | BLVD           | ANN ARBOR MI 48103-2948   |
|            |                          |                   |           |             |       |                        |                |                     |                        |                |                           |
|            |                          |                   |           |             |       |                        |                |                     |                        | 230 HURONVIEW  |                           |
| 010-207770 |                          | 364 W LANE AV     | UNIT 301  | COLUMBUS OH | 43201 | WRE DE LLC             |                | WRE DE LLC          |                        | BLVD           | ANN ARBOR MI 48103-2948   |
| 040 007774 |                          |                   |           |             | 42204 |                        |                |                     |                        | 591/ GROVE     |                           |
| 010-207771 |                          | 364 W LANE AV     | UNIT 302  | COLOMBOS OH | 43201 | SGL ENTERPRISES LLC    |                | SGL ENTERPRISES LLC |                        |                | GROVE CITY OH 43123-8925  |
| 010-207772 |                          |                   |           |             | /3201 |                        |                | DKI INVESTMENTS LLC |                        |                |                           |
| 010 207772 |                          |                   | 01111 303 |             | 43201 |                        |                |                     |                        | 688 RIVERVIEW  | COLOMIDOS ON 45255 1040   |
| 010-207773 | CONDO 4-19 RENTAL UNITS  | 364 W LANE AV     | UNIT 304  | COLUMBUS OH | 43201 | WANG HUA               |                | HUA WANG            |                        | DR APT 50      | COLUMBUS OH 43202-1659    |
|            | 1                        |                   |           |             |       |                        |                |                     |                        |                |                           |
|            |                          |                   |           |             |       |                        |                |                     |                        | 230 HURONVIEW  |                           |
| 010-207774 | CONDO 4-19 RENTAL UNITS  | 364 W LANE AV     | UNIT 305  | COLUMBUS OH | 43201 | WRE DE LLC             |                | WRE DE LLC          |                        | BLVD           | ANN ARBOR MI 48103-2948   |
| 010-207775 |                          | 364 W LANE AV     | UNIT 306  | COLUMBUS OH | 43201 | HO TSING-CHIANG        | HO SHIU-FAN    | TSING-CHIANG HO     |                        | 1961 DREW AVE  | COLUMBUS OH 43235-7412    |
|            |                          |                   |           |             |       |                        |                |                     |                        | 724 CHAFFIN    |                           |
| 010-207776 | CONDO 4-19 RENTAL UNITS  | 364 W LANE AV     | UNIT 308  | COLUMBUS OH | 43201 | KARNITIS CHARLES I     | LAIMA E TRUST  | CHARLES I KARNITIS  | LAIMA E KARNITIS TRUST | RDG            | COLUMBUS OH 43214-2954    |
|            |                          |                   |           |             |       |                        |                |                     |                        | 4001 POTTER ST |                           |
| 010-207777 |                          | 364 W LANE AV     | UNIT 309  | COLUMBUS OH | 43201 | ZHANG HAIBO            |                | HAIBO ZHANG         |                        | APT 28         | EUGENE OR 97405-4566      |
| 040 007770 |                          |                   |           |             | 40004 |                        |                |                     |                        | 1/025 NW       |                           |
| 010-2077/8 | CONDO 20-39 RENTAL UNITS | 364 W LANE AV     | UNII 310  | COLUMBUS OH | 43201 | CHONG PUI YEE KALINE   | CHIANG JON     | JON CHIANG          |                        | MADRONE ST     | PORTLAND OR 97229-1427    |
| 010-207770 |                          |                   |           |             | 42201 |                        |                | ΚΛΤΗΙ ΕΕΝΙ ΗΛΟΔΕΦ   |                        |                |                           |
| 010-207779 |                          | JU4 W LAINE AV    | 5111 512  |             | 45201 |                        |                |                     |                        |                | COLOIVIDOS OFI 45221-1250 |
| 010-207780 |                          | 364 W I ANF AV    | UNIT 313  |             | 43201 |                        |                | SUNTERNATIONAL LTD  |                        | RD             | COLUMBUS OH 43220-4416    |
| 010 207700 |                          |                   | 5         |             | .5201 |                        |                |                     |                        | 6619 S         | 522011200 011 15220 4410  |
| 010-207781 | CONDOMINIUM UNIT         | 364 W LANE AV     | UNIT 315  | COLUMBUS OH | 43201 | JPC OF COLUMBUS LTD    |                | JPC OF COLUMBUS LTD |                        | PATSBURG ST    | AURORA CO 80016-4394      |
|            | -                        | J                 |           |             |       |                        |                |                     |                        |                |                           |

|             |                          |                |                 |               |       |                         |                  |                     |                        | 18854 STATE     |                          |
|-------------|--------------------------|----------------|-----------------|---------------|-------|-------------------------|------------------|---------------------|------------------------|-----------------|--------------------------|
| 010-207782  | CONDOMINIUM UNIT         | 364 W LANE AV  | UNIT 317        | COLUMBUS OH   | 43201 | ZOLLER D TIM            | ZOLLER MARILYN S | D TIM ZOLLER        |                        | ROUTE 676       | MARIETTA OH 45750-6321   |
|             |                          |                |                 |               |       |                         |                  |                     |                        | 364 W LANE AVE  |                          |
| 010-207783  |                          | 364 W LANE AV  | UNII 318        | COLUMBUS OH   | 43201 | COCKERILL CURTIS A      |                  |                     |                        | APT 318         | COLUMBUS OH 43201-4300   |
|             |                          |                |                 |               |       |                         |                  |                     |                        |                 |                          |
| 010-207784  |                          |                |                 |               | 42201 |                         |                  | NIRMAL K SINHA      |                        |                 |                          |
| 010-207784  |                          | 304 W LANL AV  | 0111 313        |               | 43201 |                         |                  |                     |                        | 8825 BIRGHAM    |                          |
| 010-207785  |                          | 364 W LANE AV  | UNIT 320        | COLUMBUS OH   | 43201 | SAIDUDDIN JAMU          |                  | JAMU SAIDUDDIN      |                        | CT N            | DUBLIN OH 43017-9718     |
|             |                          |                |                 |               |       |                         |                  |                     |                        | 124             |                          |
|             |                          |                |                 |               |       |                         |                  |                     |                        | SCARBOROUGH     |                          |
| 010-207786  | CONDOMINIUM UNIT         | 364 W LANE AV  | <b>UNIT 322</b> | COLUMBUS OH   | 43201 | DESAI FAMILY TRUST      |                  | DESAI FAMILY TRUST  |                        | VILLAGE DR      | DAYTON OH 45458-1104     |
|             |                          |                |                 |               |       |                         |                  |                     |                        | 364 W LANE AVE  |                          |
| 010-207787  | CONDOMINIUM UNIT         | 364 W LANE AV  | UNIT 323        | COLUMBUS OH   | 43201 | XU CHARLES E            |                  | CHARLES E XU        |                        | APT 323         | COLUMBUS OH 43201-4300   |
|             |                          |                |                 |               |       |                         |                  |                     |                        | 724 CHAFFIN     |                          |
| 010-207788  | CONDO 4-19 RENTAL UNITS  | 364 W LANE AV  | UNIT 324        | COLUMBUS OH   | 43201 | KARNITIS CHARLES I      | LAIMA E CO-TR    | CHARLES I KARNITIS  | LAIMA E KARNITIS CO-TR | RDG             | COLUMBUS OH 43214-2954   |
|             |                          |                |                 |               |       |                         |                  |                     |                        |                 |                          |
| 04.0 207700 |                          |                |                 |               | 42204 |                         |                  |                     |                        | 230 HURONVIEW   |                          |
| 010-207789  |                          | 364 W LANE AV  | UNIT 325        | COLUMBUS OH   | 43201 |                         |                  |                     |                        | BLVD            | ANN ARBOR INI 48103-2948 |
|             |                          |                |                 |               |       |                         |                  |                     |                        | STRATHSHIRE     |                          |
| 010-207790  |                          | 364 W LANE AV  | UNIT 326        |               | 43201 | I FE SHIRI FY PEI-CHI   |                  | SHIRLEY PEI-CHILLEE |                        |                 | POWELL OH 43065-9439     |
| 010-207791  | CONDO 4-19 RENTAL UNITS  | 364 W LANE AV  | UNIT 328        | COLUMBUS OH   | 43201 | KARNITIS CATHERINE SOPH | HA               | CATHERINE KARNITIS  |                        | PO BOX 2892     | TAOS NM 87571-2892       |
|             |                          |                |                 |               |       |                         | ST JEAN          |                     |                        | 1645 N STATE    |                          |
| 010-207792  | CONDOMINIUM UNIT         | 364 W LANE AV  | <b>UNIT 329</b> | COLUMBUS OH   | 43201 | ST JEAN CHARLES         | KATHERYN         | CHARLES ST JEAN     |                        | ROUTE 61        | SUNBURY OH 43074-7504    |
| 010-207793  | CONDOMINIUM UNIT         | 364 W LANE AV  | UNIT 331        | COLUMBUS OH   | 43201 | KOO OLIVER TAIT         | LIU PEI-YANG     | OLIVER TAIT KOO     | PEI-YANG LIU           | 191 PRENTISS ST | MUNROE FALLS OH 44262-15 |
|             |                          |                |                 |               |       |                         |                  |                     |                        | 1201 WESTPHAL   |                          |
| 010-207794  | CONDOMINIUM UNIT         | 364 W LANE AV  | UNIT 335        | COLUMBUS OH   | 43201 | SIITAM ALEK T           |                  | ALEK T SIITAM       |                        | AVE             | COLUMBUS OH 43227-1744   |
|             |                          |                |                 |               |       |                         |                  |                     |                        | 3001 HACKBERRY  |                          |
| 010-207795  |                          | 364 W LANE AV  | UNIT 337        | COLUMBUS OH   | 43201 | WISEMAN BRITT T         |                  | CORELOGIC           |                        | RD              | IRVING TX 75063-0156     |
| 010 207706  |                          |                |                 |               | 42204 |                         | SI JEAN KATHRYN  |                     |                        | 1645 N STATE    |                          |
| 010-207796  |                          | 364 W LANE AV  | 0011 339        | COLUMBUS OH   | 43201 | ST JEAN CHARLES         | 5                | CHARLES ST JEAN     |                        |                 | SUNBURY OH 430/4-/504    |
| 010-207707  |                          |                |                 |               | /3201 |                         | MESCALE          |                     |                        |                 | OYON HUL MD 20745-1031   |
| 010-207757  |                          | JO4 W LANE AV  |                 |               | 45201 |                         |                  |                     |                        | 334 SILVER      |                          |
| 010-207798  | CONDO 20-39 RENTAL UNITS | 364 W LANE AV  | <b>UNIT 402</b> | COLUMBUS OH   | 43201 | WENG XIN                |                  | XIN WENG            |                        | MAPLE DR        | BLACKLICK OH 43004-8426  |
|             |                          |                |                 |               |       |                         |                  |                     |                        | 5681 LONDON     |                          |
| 010-207799  | CONDOMINIUM UNIT         | 364 W LANE AV  | <b>UNIT 403</b> | COLUMBUS OH   | 43201 | DICK DUANE E TR         |                  | DUANE E DICK TR     |                        | WEST RD         | SHELBY OH 44875-9228     |
|             |                          |                |                 |               |       |                         |                  |                     |                        |                 |                          |
|             |                          |                |                 |               |       |                         |                  |                     |                        | 230 HURONVIEW   |                          |
| 010-207800  | CONDO 4-19 RENTAL UNITS  | 364 W LANE AV  | UNIT 404        | COLUMBUS OH   | 43201 | WRE DE LLC              |                  | WRE DE LLC          |                        | BLVD            | ANN ARBOR MI 48103-2948  |
|             |                          |                |                 |               |       |                         |                  |                     |                        | 3001 HACKBERRY  | ,                        |
| 010-207801  | CONDOMINIUM UNIT         | 364 W LANE AV  | UNIT 405        | COLUMBUS OH   | 43201 | RYAN THOMAS E           |                  | CORELOGIC           |                        | RD              | IRVING TX 75063-0156     |
|             |                          |                |                 |               |       |                         |                  |                     |                        | 690 RIVERVIEW   |                          |
| 010-207802  | CONDO 4-19 RENTAL UNITS  | 364 W LANE AV  | UNIT 406        | COLUMBUS OH   | 43201 | WANG HUA                |                  | HUA WANG            |                        | DR APT 105      | COLUMBUS OH 43202-3240   |
| 010 207902  |                          |                |                 |               | 42201 |                         |                  |                     |                        | TASO RKAFINIAK  |                          |
| 010-207803  |                          | SO4 W LAINE AV | 101111 408      | COLOIVIBUS OH | 43201 |                         |                  | חוחכ או טאוטהטן     |                        |                 |                          |

|             | I                        |                  | 1               |             | 1     |                      | 1               |                      |                    |                |                            |
|-------------|--------------------------|------------------|-----------------|-------------|-------|----------------------|-----------------|----------------------|--------------------|----------------|----------------------------|
| 010 207904  |                          |                  |                 |             | 42201 |                      |                 |                      |                    | 24 KESWICK     |                            |
| 010-207804  |                          | 504 W LAINE AV   | 01011 409       |             | 45201 | EIVIT PROPERTIES LLC |                 |                      |                    |                | NEW ALBANT OF 45054-825.   |
| 010-207805  |                          | 364 W LANE AV    | LINIT 410       |             | 43201 |                      |                 |                      |                    | CIR            | WORTHINGTON OH 43085-31    |
| 010 207 000 |                          | 50110 EXITE 710  |                 |             | 13201 |                      | PROPERTY        |                      |                    |                |                            |
|             |                          |                  |                 |             |       |                      | MANAGEMENT      |                      |                    | 2398           |                            |
| 010-207806  | CONDOMINIUM UNIT         | 364 W LANE AV    | <b>UNIT 412</b> | COLUMBUS OH | 43201 | DENNISON ASSOCIATES  | LLC             | DENNISON ASSOCIATES  | PROPERTY MANAGEMEN | TKENSINGTON DR | COLUMBUS OH 43221-3770     |
|             |                          |                  |                 |             |       |                      |                 |                      |                    | 1690 ARDWICK   |                            |
| 010-207807  | CONDOMINIUM UNIT         | 364 W LANE AV    | UNIT 413        | COLUMBUS OH | 43201 | SJ INTERNATIONAL LTD |                 | SJ INTERNATIONAL LTD |                    | RD             | COLUMBUS OH 43220-4416     |
|             |                          |                  |                 |             |       |                      |                 |                      |                    |                |                            |
| 010-207808  | CONDOMINIUM UNIT         | 364 W LANE AV    | UNIT 415        | COLUMBUS OH | 43201 | LEE JEFFREY W TR     | LEE MONICA M TR | JEFFREY W LEE TR     | MONICA M LEE TR    | PO BOX 37      | CRYSTAL BEACH FL 34681-003 |
|             |                          |                  |                 |             |       |                      |                 |                      |                    |                |                            |
| 010 007000  |                          |                  |                 |             | 42204 |                      |                 |                      |                    | 230 HURONVIEW  |                            |
| 010-207809  |                          | 364 W LANE AV    | UNII 417        | COLUMBUS OH | 43201 | WRE DE LLC           |                 | WRE DE LLC           |                    | BLVD           | ANN ARBOR MI 48103-2948    |
| 010 207010  |                          |                  |                 |             | 42201 |                      |                 |                      |                    | DATERURC ST    |                            |
| 010-207810  |                          | 304 W LAINE AV   | UNIT 418        |             | 43201 | JPC OF COLUMBUS LTD  |                 |                      |                    | PAISDURG SI    | AURUKA CU 80010-4394       |
|             |                          |                  |                 |             |       |                      |                 |                      |                    | 230 HURONVIEW  |                            |
| 010-207811  | CONDO 4-19 RENTAL LINITS | 364 W LANE AV    |                 |             | 43201 |                      |                 | WREDELLC             |                    | BIVD           | ANN ARBOR MI 48103-2948    |
| 010 20/011  |                          | 504 W L/ IVL / W |                 |             | +5201 |                      | LUSTRE DALISAY  |                      |                    | 1651 REGAL     |                            |
| 010-207812  |                          | 364 W LANE AV    | UNIT 420        | COLUMBUS OH | 43201 | LUSTRE OSCAR TR      | TR              | OSCAR E LUSTRE       | DALISAY M LUSTRE   | MIST LOOP      | TRINITY FL 34655-4975      |
|             |                          |                  |                 |             |       |                      |                 |                      |                    | 5660 JANET     |                            |
| 010-207813  | CONDOMINIUM UNIT         | 364 W LANE AV    | <b>UNIT 422</b> | COLUMBUS OH | 43201 | SAHNI VEENA          | SAHNI SANJAY K  | VEENA SAHNI          |                    | BLVD           | SOLON OH 44139-1963        |
|             |                          |                  |                 |             |       |                      |                 |                      |                    | 4837 WINTERSET |                            |
| 010-207814  | CONDOMINIUM UNIT         | 364 W LANE AV    | UNIT 423        | COLUMBUS OH | 43201 | JIANG TIANLU         |                 | TIANLU JIANG         |                    | DR             | COLUMBUS OH 43220-3138     |
|             |                          |                  |                 |             |       |                      |                 |                      |                    | 2080 SHARON    |                            |
| 010-207815  | CONDOMINIUM UNIT         | 364 W LANE AV    | UNIT 424        | COLUMBUS OH | 43201 | GUTHRIE WILLIAM R TR |                 | WILLIAM R GUTHRIE    |                    | RD             | WINTER PARK FL 32789-1517  |
|             |                          |                  |                 |             |       |                      |                 |                      |                    | 364 W LANE AVE |                            |
| 010-207816  |                          | 364 W LANE AV    | UNIT 425        | COLUMBUS OH | 43201 | PAN LEO              |                 | LEO PAN              |                    | APT 912        | COLUMBUS OH 43201-4345     |
|             |                          |                  |                 |             |       |                      |                 |                      |                    | 141 NAVIGATOR  |                            |
| 010-207817  | CONDO 4-19 RENTAL UNITS  | 364 W LANE AV    | UNIT 426        | COLUMBUS OH | 43201 | JMG HOMES LLC        |                 | JMG HOMES LLC        |                    | DR             | AUSTIN TX 78717-4938       |
| 010 207010  |                          |                  |                 |             | 42201 |                      |                 |                      |                    |                |                            |
| 010-207818  |                          | 504 W LAINE AV   | 01011 426       |             | 45201 |                      |                 |                      |                    | 2000 BRITON CI | POWELL OF 43005-7428       |
| 010-207810  |                          |                  |                 |             | /3201 |                      |                 |                      |                    |                |                            |
| 010 20/015  |                          | JOH W LANE AV    |                 |             | 45201 |                      |                 |                      |                    | 5077           |                            |
| 010-207820  |                          | 364 W LANE AV    | UNIT 431        | COLUMBUS OH | 43201 | SARO LLC             |                 | SARO LLC             |                    | GRASSLAND DR   | DUBLIN OH 43016-4318       |
|             |                          |                  |                 |             |       |                      |                 |                      |                    | 508            |                            |
|             |                          |                  |                 |             |       |                      |                 |                      |                    | WASHINGTON     |                            |
| 010-207821  | CONDOMINIUM UNIT         | 364 W LANE AV    | <b>UNIT 435</b> | COLUMBUS OH | 43201 | RINEHART PAULETTE J  |                 | PAULETTE J RINEHART  |                    | AVE            | BELLEFONTAINE OH 43311-18  |
|             |                          |                  |                 |             |       |                      |                 |                      |                    | 24 KESWICK     |                            |
| 010-207822  | CONDOMINIUM UNIT         | 364 W LANE AV    | UNIT 437        | COLUMBUS OH | 43201 | EMI PROPERTIES       |                 | EMI PROPERTIES LLC   |                    | CMNS           | NEW ALBANY OH 43054-8231   |
|             |                          |                  |                 |             |       |                      |                 |                      |                    | 3001 HACKBERRY |                            |
| 010-207823  | CONDOMINIUM UNIT         | 364 W LANE AV    | UNIT 439        | COLUMBUS OH | 43201 | ZELEK JARED          |                 | CORELOGIC            |                    | RD             | IRVING TX 75063-0156       |
|             |                          |                  |                 |             |       |                      |                 |                      |                    | 4409           |                            |
|             |                          |                  |                 |             |       |                      |                 |                      |                    | SCISSORTAIL    |                            |
| 010-207824  |                          | 364 W LANE AV    | UNIT 501        | COLUMBUS OH | 43201 | LEE EUSEBIO          |                 | EUSEBIO LEE          |                    | LOOP           | WESTERVILLE OH 43081-3723  |

|            |                          |               | -               |             |       |                         |                  |                       |                 |                 |                           |
|------------|--------------------------|---------------|-----------------|-------------|-------|-------------------------|------------------|-----------------------|-----------------|-----------------|---------------------------|
|            |                          |               |                 |             |       |                         |                  |                       |                 |                 |                           |
| 010-207825 | CONDO 20-39 RENTAL UNITS | 364 W LANF AV | UNIT 502        | согимвиз он | 43201 | MVP RIVERWATCH LLC      |                  | MVP RIVERWATCH LLC    |                 | BLVD            | ANN ARBOR MI 48103-2948   |
|            |                          |               |                 |             |       |                         |                  | LINDA WAY PROPERTIES  |                 | 1182 STANHOPE   |                           |
| 010-207826 | CONDOMINIUM UNIT         | 364 W LANE AV | UNIT 503        | COLUMBUS OH | 43201 | LINDA WAY PROPERTIES LL | C                | LLC                   |                 | DR              | COLUMBUS OH 43221-2331    |
|            |                          |               |                 |             |       |                         |                  |                       |                 |                 |                           |
|            |                          |               |                 |             |       |                         |                  |                       |                 | 230 HURONVIEW   |                           |
| 010-207827 | CONDO 4-19 RENTAL UNITS  | 364 W LANE AV | <b>UNIT 504</b> | COLUMBUS OH | 43201 | WRE DE LLC              |                  | WRE DE LLC            |                 | BLVD            | ANN ARBOR MI 48103-2948   |
|            |                          |               |                 |             |       |                         |                  |                       |                 | 9322            |                           |
|            |                          |               |                 |             |       |                         |                  | PATRICIA A            |                 | CHATTANOOGA     |                           |
| 010-207828 | CONDOMINIUM UNIT         | 364 W LANE AV | <b>UNIT 505</b> | COLUMBUS OH | 43201 | TIMMERMAN PATRICIA A    |                  | TIMMERMAN             |                 | DR              | SAN ANTONIO TX 78240-2873 |
|            |                          |               |                 |             |       |                         |                  |                       |                 | 610 HAVENS      |                           |
| 010-207829 | CONDOMINIUM UNIT         | 364 W LANE AV | UNIT 506        | COLUMBUS OH | 43201 | RWATCH LLC              |                  | RWATCH LLC            |                 | CORNERS RD      | COLUMBUS OH 43230-3112    |
|            |                          |               |                 |             |       |                         |                  |                       |                 |                 |                           |
|            |                          |               |                 |             |       |                         |                  |                       |                 | 230 HURONVIEW   |                           |
| 010-207830 | CONDO 4-19 RENTAL UNITS  | 364 W LANE AV | UNIT 508        | COLUMBUS OH | 43201 | WRE DE LLC              |                  | WRE DE LLC            |                 | BLVD            | ANN ARBOR MI 48103-2948   |
|            |                          |               |                 |             |       |                         | CHONG PUI YEE    |                       |                 | 17025 NW        |                           |
| 010-207831 |                          | 364 W LANE AV | UNIT 509        | COLUMBUS OH | 43201 | CHIANG KUN YEH          | KALINE           | JON CHIANG            |                 | MADRONE ST      | PORTLAND OR 97229-1427    |
|            |                          |               |                 |             |       |                         |                  |                       |                 | 334 SILVER      |                           |
| 010-207832 | CONDO 20-39 RENTAL UNITS | 364 W LANE AV | UNIT 510        | COLUMBUS OH | 43201 | WENG XIN                |                  | XIN WENG              |                 | MAPLE DR        | BLACKLICK OH 43004-8426   |
| 010-207833 | CONDOMINIUM UNIT         | 364 W LANE AV | UNIT 512        | COLUMBUS OH | 43201 | SCALES FRONISTA LTD     |                  | SCALES FRONISTA LTD   |                 | 8969 ADAMS RD   | DAYTON OH 45424-4037      |
|            |                          |               |                 |             |       |                         |                  |                       |                 | 179 SANBRIDGE   |                           |
| 010-207834 | CONDOMINIUM UNIT         | 364 W LANE AV | UNIT 513        | COLUMBUS OH | 43201 | DU YANG                 | XIN LIPING       | YANG DU               | LIPING XIN      | CIR             | WORTHINGTON OH 43085-35   |
|            |                          |               |                 |             |       |                         |                  |                       |                 |                 |                           |
|            |                          |               |                 |             |       |                         |                  |                       |                 | 230 HURONVIEW   |                           |
| 010-207835 | CONDO 20-39 RENTAL UNITS | 364 W LANE AV | <b>UNIT 515</b> | COLUMBUS OH | 43201 | WRE DE LLC              |                  | WRE DE LLC            |                 | BLVD            | ANN ARBOR MI 48103-2948   |
|            |                          |               |                 |             |       |                         |                  |                       |                 | 610 HAVENS      |                           |
| 010-207836 | CONDOMINIUM UNIT         | 364 W LANE AV | UNIT 517        | COLUMBUS OH | 43201 | RWATCH LLC              |                  | RWATCH LLC            |                 | CORNERS RD      | COLUMBUS OH 43230-3112    |
|            |                          |               |                 |             |       |                         |                  |                       |                 | 5502 QUEENS     |                           |
| 010-207837 | CONDOMINIUM UNIT         | 364 W LANE AV | UNIT 518        | COLUMBUS OH | 43201 | MAHAFFEY MARY S         |                  | MARY S MAHAFFEY       |                 | PARK DR         | DUBLIN OH 43016-7250      |
|            |                          |               |                 |             |       |                         |                  |                       |                 |                 |                           |
|            |                          |               |                 |             |       |                         |                  |                       |                 | 230 HURONVIEW   |                           |
| 010-207838 | CONDOMINIUM UNIT         | 364 W LANE AV | UNIT 519        | COLUMBUS OH | 43201 | WRE DE LLC              |                  | WRE DE LLC            |                 | BLVD            | ANN ARBOR MI 48103-2948   |
|            |                          |               |                 |             |       |                         | KARNITIS LAIMA E |                       |                 | 724 CHAFFIN     |                           |
| 010-207839 | CONDO 4-19 RENTAL UNITS  | 364 W LANE AV | <b>UNIT 520</b> | COLUMBUS OH | 43201 | KARNITIS CHARLES I TR   | TR               | CHARLES I KARNITIS TR |                 | RDG             | COLUMBUS OH 43214-2954    |
|            |                          |               |                 |             |       |                         |                  |                       |                 | 334 SILVER      |                           |
| 010-207840 | CONDOMINIUM UNIT         | 364 W LANE AV | <b>UNIT 522</b> | COLUMBUS OH | 43201 | LIN WILL                | WENG XIN         | WILL LIN              | XIN WENG        | MAPLE DR        | BLACKLICK OH 43004-8426   |
|            |                          |               |                 |             |       |                         |                  |                       |                 | 1690 ARDWICK    |                           |
| 010-207841 | CONDOMINIUM UNIT         | 364 W LANE AV | <b>UNIT 523</b> | COLUMBUS OH | 43201 | SJ INTERNATIONAL LTD    |                  | SJ INTERNATIONAL LTD  |                 | RD              | COLUMBUS OH 43220-4416    |
|            |                          |               |                 |             |       |                         |                  |                       |                 | 5176 LAKE POINT |                           |
| 010-207842 | CONDOMINIUM UNIT         | 364 W LANE AV | <b>UNIT 524</b> | COLUMBUS OH | 43201 | NOGGLE KERRY            | NOGGLE XIAOXIAO  | KERRY NOGGLE          | XIAOXIAO NOGGLE | DR              | CARMEL IN 46033-7212      |
|            |                          |               |                 |             |       |                         |                  |                       |                 | 688 RIVERVIEW   |                           |
| 010-207843 | CONDO 4-19 RENTAL UNITS  | 364 W LANE AV | <b>UNIT 525</b> | COLUMBUS OH | 43201 | WANG HUA                |                  | HUA WANG              |                 | DR APT 50       | COLUMBUS OH 43202-1659    |
|            |                          |               |                 |             |       |                         |                  |                       |                 |                 |                           |
| 010-207844 | CONDOMINIUM UNIT         | 364 W LANE AV | UNIT 526        | COLUMBUS OH | 43201 | YERKEY MATTHEW R TR     |                  | MATTHEW R YERKEY TR   |                 | 1750 SHADY LN   | SALEM OH 44460-1240       |
|            |                          |               |                 |             |       |                         |                  |                       |                 | 4794 CORDOBA    |                           |
| 010-207845 | CONDOMINIUM UNIT         | 364 W LANE AV | <b>UNIT 528</b> | COLUMBUS OH | 43201 | HRELIC DAREN            | HRELIC DARKO     | DAREN HRELIC          |                 | ST              | HILLIARD OH 43026-8902    |
|            |                          |               |                 |             |       |                         |                  |                       |                 |                 |                           |

|            |                         |                |                 |             |       |                         |                |                      |                         | 4000           |                          |
|------------|-------------------------|----------------|-----------------|-------------|-------|-------------------------|----------------|----------------------|-------------------------|----------------|--------------------------|
|            |                         |                |                 |             |       |                         |                |                      |                         | BAUGHMAN       |                          |
| 010-207846 | CONDOMINIUM UNIT        | 364 W LANE AV  | UNIT 529        | COLUMBUS OH | 43201 | GIBSON MICHAEL P        |                | MICHAEL P GIBSON     |                         | GRANT          | NEW ALBANY OH 43054-8933 |
|            |                         |                |                 |             |       |                         | NAODATO        |                      |                         | 1005 0         |                          |
| 010 207947 |                         |                |                 |             | 42201 |                         | INIORATO-      |                      |                         |                |                          |
| 010-207847 |                         | 304 W LAINE AV | 01011 331       |             | 45201 | GRANATO SAIVIOEL C      | KORI MAMTA M   | SAMOLE C GRANATO     | SUST MORATO-GRANATO     | 4277 MACKENZIE | COLUMBUS OF 45209-2455   |
| 010-207848 | CONDOMINIUM UNIT        | 364 W LANE AV  | UNIT 535        | COLUMBUS OH | 43201 | KORI ARUN S TR          | TR             | ARUN S KORI          | MAMTA M KORI            | CT             | MASON OH 45040-4664      |
|            |                         |                |                 |             |       |                         |                |                      |                         |                |                          |
|            |                         |                |                 |             |       |                         |                |                      |                         | 230 HURONVIEW  |                          |
| 010-207849 | CONDOMINIUM UNIT        | 364 W LANE AV  | UNIT 537        | COLUMBUS OH | 43201 | WRE DE LLC              |                | WRE DE LLC           |                         | BLVD           | ANN ARBOR MI 48103-2948  |
|            |                         |                |                 |             |       |                         |                |                      |                         | 724 CHAFFIN    |                          |
| 010-207850 | CONDO 4-19 RENTAL UNITS | 364 W LANE AV  | UNIT 539        | COLUMBUS OH | 43201 | KARNITIS CHARLES I      | LAIMA E CO TRS | CHARLES I KARNITIS   | LAIMA E KARNITIS CO-TRS | RDG            | COLUMBUS OH 43214-2954   |
| 010-207851 |                         | 364 W LANE AV  | UNIT 601        | COLUMBUS OH | 43201 | STROVILAS CRIST G TR    |                | CRIST G STROVILAS TR |                         | 812 N 4TH ST   | TORONTO OH 43964-1626    |
| 010 207052 |                         |                |                 |             | 42204 |                         |                |                      |                         | 8825 BIRGHAM   |                          |
| 010-207852 |                         | 364 W LANE AV  | UNIT 602        | COLUMBUS OH | 43201 | SAIDUDDIN JAMU          |                |                      | SHAFI SAIDUDDIN         |                | DUBLIN OH 43017-9718     |
| 010-207853 |                         | 364 W LANE AV  |                 |             | 43201 | STROVILAS JACOUELINE C  | ΓR             | STROVILAS TR         |                         | 812 N 4TH ST   | TORONTO OH 43964-1626    |
| 010 207055 |                         | JOH W LANE AV  |                 |             | 45201 | STROVILAS SACQUELINE C  |                |                      |                         | 8755 CARTER RD | 10101110 011 43504 1020  |
| 010-207854 |                         | 364 W LANE AV  | UNIT 604        | COLUMBUS OH | 43201 | BALEN ALAN              | BALEN MARK     | MARK BALEN           | ALAN BALEN              | APT 29         | FREELAND MI 48623-8768   |
|            |                         |                |                 |             |       |                         |                |                      |                         |                |                          |
| 010-207855 | CONDOMINIUM UNIT        | 364 W LANE AV  | <b>UNIT 605</b> | COLUMBUS OH | 43201 | WRE DE LLC              |                | WRE DE LLC           |                         | 364 W LANE AVE | COLUMBUS OH 43201-4362   |
|            |                         |                |                 |             |       |                         |                |                      |                         | 124            |                          |
|            |                         |                |                 |             |       |                         |                |                      |                         | SCARBOROUGH    |                          |
| 010-207856 | CONDOMINIUM UNIT        | 364 W LANE AV  | UNIT 606        | COLUMBUS OH | 43201 | DESAI MANOJ TR          | DESAI PRIYA TR | MANOJ DESAI CO-TR    | PRIYA DESAI CO-TR       | VILLAGE DR     | DAYTON OH 45458-1104     |
|            |                         |                |                 |             |       |                         |                |                      |                         | 19             |                          |
| 040 007057 |                         |                |                 |             | 42204 |                         | GARGASZ SHARON |                      |                         | TANGLEWOOD     |                          |
| 010-207857 |                         | 364 W LANE AV  | UNII 608        | COLUMBUS OH | 43201 | GARGASZ RONALD L        | L              | RUNALD L GARGASZ     |                         | LN             | BOWLING GREEN OH 43402-4 |
| 010-207858 |                         |                |                 |             | /3201 |                         |                |                      |                         |                |                          |
| 010-207838 |                         | JO4 W LANE AV  |                 |             | 43201 |                         |                |                      |                         | 4205 NAVAIO    | COLONIBOS OTT 43201-4302 |
| 010-207859 | CONDOMINIUM UNIT        | 364 W LANE AV  | <b>UNIT 610</b> | COLUMBUS OH | 43201 | STUMP VIOLET P          |                | VIOLET P STUMP       |                         | TRL            | JAMESTOWN OH 45335-1331  |
|            |                         |                |                 |             |       |                         |                |                      |                         | 724 CHAFFIN    |                          |
| 010-207860 | CONDO 4-19 RENTAL UNITS | 364 W LANE AV  | <b>UNIT 612</b> | COLUMBUS OH | 43201 | KARNITIS CHARLES I      | LAIMA E TRS    | CHARLES I KARNITIS   | LAIMA E KARNITIS TRS    | RDG            | COLUMBUS OH 43214-2954   |
|            |                         |                |                 |             |       |                         |                |                      |                         |                |                          |
|            |                         |                |                 |             |       |                         |                |                      |                         | 230 HURONVIEW  |                          |
| 010-207861 |                         | 364 W LANE AV  | UNIT 613        | COLUMBUS OH | 43201 | WRE DE LLC              |                | WRE DE LLC           |                         | BLVD           | ANN ARBOR MI 48103-2948  |
|            |                         |                |                 |             |       |                         |                |                      |                         | 5513 CRESTONE  |                          |
| 010-207862 |                         | 364 W LANE AV  | UNIT 615        | COLUMBUS OH | 43201 | BALDESSARI HECTOR A     | ESTHER N       | HECTOR A BALDESSARI  | ESTHER N BALDESSARI     | CIR            | BOULDER CO 80301-3518    |
|            |                         |                |                 |             |       |                         |                |                      |                         |                |                          |
| 010 207962 |                         |                |                 |             | 42201 |                         | N C            |                      |                         |                |                          |
| 010-207805 |                         | 504 W LAINE AV |                 |             | 45201 | HART RICHARD D & TERESA |                |                      | IERESA S HART           |                | CANTON OF 44709-5941     |
| 010-207864 | CONDOMINIUM UNIT        | 364 W LANE AV  | UNIT 618        | COLUMBUS OH | 43201 | MCKITRICK ROBERT L      | MESCAL E       | ROBERT L MCKITRICK   | MESCAL E MCKITRICK      | RD             | OXON HILL MD 20745-1031  |
|            |                         |                |                 |             |       |                         |                |                      |                         |                |                          |
|            |                         |                |                 |             |       |                         |                |                      |                         | 230 HURONVIEW  |                          |
| 010-207865 | CONDO 4-19 RENTAL UNITS | 364 W LANE AV  | UNIT 619        | COLUMBUS OH | 43201 | WRE DE LLC              |                | WRE DE LLC           |                         | BLVD           | ANN ARBOR MI 48103-2948  |

|            |                         |                |           |             |       |                       |                  |                      |                     | 230 HURONVIEW   |                           |
|------------|-------------------------|----------------|-----------|-------------|-------|-----------------------|------------------|----------------------|---------------------|-----------------|---------------------------|
| 010-207866 | CONDOMINIUM UNIT        | 364 W LANE AV  | UNIT 620  | COLUMBUS OH | 43201 | WRE DE LLC            |                  | WRE DE LLC           |                     | BLVD            | ANN ARBOR MI 48103-2948   |
|            |                         |                |           |             |       |                       |                  |                      |                     | 8428 COUNTY     |                           |
| 010-207867 |                         | 364 W LANE AV  | UNIT 622  | COLUMBUS OH | 43201 | KELLEY-JARRELL SUSAN  |                  | SUSAN KELLEY-JARRELL |                     | ROAD 107        | PROCTORVILLE OH 45669-84  |
| 010-207868 |                         | 364 W LANE AV  |           |             | 43201 | SRIPAN ΜΔΡΤΙΝ         |                  | MARTIN SRIPAN        |                     | # 153           |                           |
| 010 207000 |                         | JOH W LANE AV  |           |             | 45201 |                       |                  |                      |                     | 3495 SEABROOK   | COLONIDOS ON 43212 2322   |
| 010-207869 | CONDOMINIUM UNIT        | 364 W LANE AV  | UNIT 624  | COLUMBUS OH | 43201 | PAREKH AMI M          |                  | AMI M PAREKH         |                     | ISLAND RD       | JOHNS ISLAND SC 29455-605 |
|            |                         |                |           |             |       |                       |                  |                      |                     | 6347 TANERA     |                           |
| 010-207870 | CONDOMINIUM UNIT        | 364 W LANE AV  | UNIT 625  | COLUMBUS OH | 43201 | YEHASKUL DEBBIE       |                  | DEBBIE YEHSAKUL      |                     | MORE CT         | DUBLIN OH 43017-9579      |
|            |                         |                |           |             |       |                       |                  |                      |                     |                 |                           |
| 010-207871 |                         | 364 W LANE AV  | UNIT 626  |             | 43201 | WREDELLC              |                  | WRE DE LLC           |                     | BIVD            | ANN ARBOR MI 48103-2948   |
| 010 207071 |                         |                | 01111 020 |             | 15201 |                       |                  |                      |                     | 724 CHAFFIN     |                           |
| 010-207872 | CONDO 4-19 RENTAL UNITS | 364 W LANE AV  | UNIT 628  | COLUMBUS OH | 43201 | KARNITIS CHARLES I    | LAIMA E TRUST    | CHARLES I KARNITIS   | LAIMA E TRUST       | RDG             | COLUMBUS OH 43214-2954    |
|            |                         |                |           |             |       |                       |                  |                      |                     |                 |                           |
| 010-207873 | CONDOMINIUM UNIT        | 364 W LANE AV  | UNIT 629  | COLUMBUS OH | 43201 | SAVIA JONATHAN J      | SAVIA JAMES J    | JONATHAN J SAVIA     | JAMES J SAVIA       | 2593 NORTON PL  | BELLMORE NY 11710-5428    |
| 010 207974 |                         |                |           |             | 42201 |                       |                  |                      |                     | 20209 BARKER    |                           |
| 010-207874 |                         | 504 W LAINE AV |           |             | 45201 | DELL STEVEN D         | BELL GLENINA J   |                      |                     |                 | WARTSVILLE OH 45040-9100  |
|            |                         |                |           |             |       |                       |                  |                      |                     | 2398            |                           |
| 010-207875 | CONDOMINIUM UNIT        | 364 W LANE AV  | UNIT 635  | COLUMBUS OH | 43201 | WRE DE LLC            |                  | DENNISON ASSOCIATES  | PROPERTY MANAGEMENT | KENSINGTON DR   | COLUMBUS OH 43221-3770    |
|            |                         |                |           |             |       |                       |                  |                      |                     | 5526 VILLAGE    |                           |
| 010-207876 | CONDOMINIUM UNIT        | 364 W LANE AV  | UNIT 637  | COLUMBUS OH | 43201 | ZHAO XUEYANG          |                  | XUEYANG ZHAO         |                     | PSGE            | HILLIARD OH 43026-7995    |
| 010 207977 |                         |                |           |             | 42201 |                       |                  |                      |                     | 3001 HACKBERRY  |                           |
| 010-207877 |                         | 304 W LAINE AV | 01011 039 |             | 43201 |                       |                  | CORELOGIC            |                     |                 |                           |
|            |                         |                |           |             |       |                       |                  |                      |                     | 230 HURONVIEW   |                           |
| 010-207878 | CONDO 4-19 RENTAL UNITS | 364 W LANE AV  | UNIT 701  | COLUMBUS OH | 43201 | WRE DE LLC            |                  | WRE DE LLC           |                     | BLVD            | ANN ARBOR MI 48103-2948   |
|            |                         |                |           |             |       |                       |                  |                      |                     | 4103 174TH ST   |                           |
| 010-207879 |                         | 364 W LANE AV  | UNIT 702  | COLUMBUS OH | 43201 | LIN SHIOW HWA         |                  | SHIOW HWA LIN        |                     | SE              | BOTHELL WA 98012-7625     |
| 010-207880 |                         | 364 W LANE AV  | UNIT 703  | COLUMBUS OH | 43201 |                       |                  |                      |                     |                 | HANOVER PA 1/331-/430     |
| 010-207881 | CONDOMINIUM UNIT        | 364 W LANF AV  | UNIT 704  |             | 43201 | EMI PROPERTIES LLC    |                  | EMI PROPERTIES LLC   |                     | CMNS            | NFW ALBANY OH 43054-823   |
| 010 207001 |                         |                |           |             | 10201 |                       |                  |                      |                     | 1326 WINDHAM    |                           |
| 010-207882 | CONDOMINIUM UNIT        | 364 W LANE AV  | UNIT 705  | COLUMBUS OH | 43201 | COVELLI ANTHONY P     |                  | ANTHONY P COVELLI    |                     | RD              | COLUMBUS OH 43220-3963    |
|            |                         |                |           |             |       |                       |                  |                      |                     | 5176 LAKE POINT |                           |
| 010-207883 |                         | 364 W LANE AV  | UNIT 706  | COLUMBUS OH | 43201 | LIU LIYUAN            |                  | LIYUAN LIU           |                     | DR              | CARMEL IN 46033-7212      |
|            |                         |                |           |             |       |                       |                  |                      |                     |                 |                           |
| 010-207884 | CONDO 4-19 RENTAL UNITS | 364 W LANE AV  | UNIT 707  |             | 43201 | WRE DE LLC            |                  | WRE DE LLC           |                     | BLVD            | ANN ARBOR MI 48103-2948   |
| 220 20,004 |                         |                |           |             |       |                       | KARNITIS LAIMA E | ···                  |                     | 724 CHAFFIN     |                           |
| 010-207885 | CONDO 4-19 RENTAL UNITS | 364 W LANE AV  | UNIT 708  | COLUMBUS OH | 43201 | KARNITIS CHARLES I TR | TR               | CHARLES I KARNITIS   |                     | RDG             | COLUMBUS OH 43214-2954    |
|            |                         |                |           |             |       |                       |                  |                      |                     |                 |                           |
| 010 207000 |                         |                |           |             | 42224 |                       |                  |                      |                     | 230 HURONVIEW   |                           |
| 010-207886 | CONDO 4-19 KENTAL UNITS | 364 W LANE AV  | 10NH 709  | COLOMBUS OH | 43201 | WKE DE LLC            |                  | WKE DE LLC           |                     | IRLAD           | ANN ARBOR MI 48103-2948   |

| r          |                          | 1             |                  | I           | -     |                       |                  | I                     |                     | I              |                           |
|------------|--------------------------|---------------|------------------|-------------|-------|-----------------------|------------------|-----------------------|---------------------|----------------|---------------------------|
| 010-207887 | CONDO 20-39 RENTAL UNITS | 364 W LANE AV | UNIT 710         | COLUMBUS OH | 43201 | WRE DE LLC            |                  | WRE DE LLC            |                     | 364 W LANE AVE | COLUMBUS OH 43201-4362    |
|            |                          |               |                  |             |       |                       |                  |                       |                     | 1799 W 5TH AVE |                           |
| 010-207888 | CONDOMINIUM UNIT         | 364 W LANE AV | <b>UNIT 711</b>  | COLUMBUS OH | 43201 | SRIPAN SUTHATIP       | SRIPAN MARTIN    | MARTIN SRIPAN         |                     | # 153          | COLUMBUS OH 43212-2322    |
|            |                          |               |                  |             |       |                       | PENG SHANNON     |                       |                     | 1926 PARKLAND  |                           |
| 010-207889 | CONDOMINIUM UNIT         | 364 W LANE AV | <b>UNIT 712</b>  | COLUMBUS OH | 43201 | LOW THIAM GAIK        | GIN-TI           | THIAM GAIK LOW        | SHANNON GIN-TI PENG | СТ             | LEWIS CENTER OH 43035-606 |
|            |                          |               |                  |             |       |                       | YEHSAKUL         |                       |                     |                |                           |
|            |                          |               |                  |             |       |                       | PHONGSAK D,      |                       |                     |                |                           |
|            |                          |               |                  |             |       |                       | YEHSAKUL DAVID   |                       |                     |                |                           |
|            |                          |               |                  |             |       |                       | CW, YEHSAKUL     |                       |                     | 6347 TANERA    |                           |
| 010-207890 | CONDO 20-39 RENTAL UNITS | 364 W LANE AV | <b>UNIT 713</b>  | COLUMBUS OH | 43201 | YEHSAKUL DEBBIE S     | ALEXANDER H      | DEBBIE S YEHSAKUL     |                     | MORE CT        | DUBLIN OH 43017-9579      |
|            |                          |               |                  |             |       |                       |                  |                       |                     | 888 VERNON     |                           |
| 010-207891 | CONDOMINIUM UNIT         | 364 W LANE AV | <b>UNIT 715</b>  | COLUMBUS OH | 43201 | CROWELL NANCY E       |                  | NANCY CROWELL         |                     | HEIGHTS CIR    | MARION OH 43302-6504      |
| 010-207892 | CONDOMINIUM UNIT         | 364 W LANE AV | UNIT 717         | COLUMBUS OH | 43201 | KITTSONMILLER LLC     |                  | KITTSONMILLER LLC     |                     | RR 1 BOX 732   | SUGAR GROVE OH 43155-966  |
|            |                          |               |                  |             |       |                       |                  |                       |                     | 6619 S         |                           |
| 010-207893 | CONDOMINIUM UNIT         | 364 W LANE AV | <b>UNIT 718</b>  | COLUMBUS OH | 43201 | JPC OF COLUMBUS LTD   |                  | JPC OF COLUMBUS LTD   |                     | PATSBURG ST    | AURORA CO 80016-4394      |
|            |                          |               |                  |             |       |                       |                  |                       |                     | 3001 HACKBERRY |                           |
| 010-207894 | CONDO 4-19 RENTAL UNITS  | 364 W LANE AV | <b>UNIT 719</b>  | COLUMBUS OH | 43201 | THEADO MICHAEL J      |                  | CORELOGIC             |                     | RD             | IRVING TX 75063-0156      |
|            |                          |               |                  |             |       |                       |                  |                       |                     |                |                           |
|            |                          |               |                  |             |       |                       |                  |                       |                     | 230 HURONVIEW  |                           |
| 010-207895 | CONDOMINIUM UNIT         | 364 W LANE AV | <b>UNIT 720</b>  | COLUMBUS OH | 43201 | WRE DE LLC            |                  | WRE DE LLC            |                     | BLVD           | ANN ARBOR MI 48103-2948   |
|            |                          |               |                  |             |       |                       |                  |                       |                     | 3001 HACKBERRY |                           |
| 010-207896 | CONDOMINIUM UNIT         | 364 W LANE AV | UNIT 721         | COLUMBUS OH | 43201 | FOLEY MICHAEL V       | FOLEY MARY B     | CORELOGIC             |                     | RD             | IRVING TX 75063-0156      |
|            |                          |               |                  |             |       |                       |                  |                       |                     |                |                           |
| 010-207897 | CONDOMINIUM UNIT         | 364 W LANE AV | UNIT 722         | COLUMBUS OH | 43201 | WRE DE LLC            |                  | WRE DE LLC            |                     | 364 W LANE AVE | COLUMBUS OH 43201-4362    |
|            |                          |               |                  |             |       |                       | WAI KA-YEE       |                       |                     | 1776 DREW AVE  |                           |
| 010-207898 | CONDOMINIUM UNIT         | 364 W LANE AV | UNIT 723         | COLUMBUS OH | 43201 | LOCK SZE-WAI PETER    | GRACE            | SZE WAI & PETER LOK   | KA-YEE GRACE WAI    | APT 122W       | COLUMBUS OH 43235-7423    |
|            |                          |               |                  |             |       |                       |                  |                       |                     | 724 CHAFFIN    |                           |
| 010-207899 | CONDO 4-19 RENTAL UNITS  | 364 W LANE AV | UNIT 724         | COLUMBUS OH | 43201 | KARNITIS CHARLES I TR | KARNITIS LAIMA E | CHARLES I KARNITIS TR |                     | RDG            | COLUMBUS OH 43214-2954    |
| 010-207900 | CONDOMINIUM UNIT         | 364 W LANE AV | UNIT 725         | COLUMBUS OH | 43201 | MQ5936 LLC            |                  | LI Q ZHANG            | M&Q REALTY LLC      | PO BOX 1479    | POWELL OH 43065-1479      |
|            |                          |               |                  |             |       |                       |                  |                       |                     |                |                           |
|            |                          |               |                  |             |       |                       |                  |                       |                     | 230 HURONVIEW  |                           |
| 010-207901 | CONDOMINIUM UNIT         | 364 W LANE AV | UNIT 726         | COLUMBUS OH | 43201 | CAV364 LANE I LLC     |                  | CAV364 LANE I LLC     |                     | BLVD           | ANN ARBOR MI 48103-2948   |
|            |                          |               |                  |             |       |                       |                  | CHIANG WEI HSIU-      |                     | 4103 174TH ST  |                           |
| 010-207902 | CONDO 20-39 RENTAL UNITS | 364 W LANE AV | UNIT 727         | COLUMBUS OH | 43201 | HSIU-LAING CHIANG WEI |                  | LAING                 |                     | SE             | BOTHELL WA 98012-7625     |
|            |                          |               |                  |             |       |                       |                  |                       |                     | 724 CHAFFIN    |                           |
| 010-207903 | CONDO 4-19 RENTAL UNITS  | 364 W LANE AV | UNIT 728         | COLUMBUS OH | 43201 | KARNITIS CHARLES I    | KARNITIS LAIMA E | CHARLES I KARNITIS    | LAIMA EVE KARNITIS  | RDG            | COLUMBUS OH 43214-2954    |
|            |                          |               |                  |             |       |                       |                  |                       |                     | 1201 WESTPHAL  |                           |
| 010-207904 |                          | 364 W LANE AV | UNIT 729         | COLUMBUS OH | 43201 | SIITAM ALEK           |                  | ALEK SIITAM           |                     | AVE            | COLUMBUS OH 43227-1744    |
|            |                          |               |                  |             |       |                       |                  |                       |                     |                |                           |
|            |                          |               |                  |             |       |                       |                  |                       |                     | 230 HURONVIEW  |                           |
| 010-207905 | CONDO 20-39 RENTAL UNITS | 364 W LANE AV | UNIT 731         | COLUMBUS OH | 43201 | WRE DE LLC            |                  | WRE DE LLC            |                     | BLVD           | ANN ARBOR MI 48103-2948   |
|            |                          |               |                  |             |       |                       |                  |                       |                     | 724 CHAFFIN    |                           |
| 010-207906 |                          | 364 W LANE AV | UNIT 733         | COLUMBUS OH | 43201 | KARNITIS CHARLES      | KARNITIS EVE     | CHARLES KARNITIS      | EVE KARNITIS        | RDG            | COLUMBUS OH 43214-2954    |
|            |                          |               |                  |             |       |                       |                  |                       |                     |                |                           |
|            |                          |               |                  |             |       |                       |                  |                       |                     | 230 HURONVIEW  |                           |
| 010-207907 | CONDO 4-19 RENTAL UNITS  | 364 W LANE AV | <b>JUNIT 735</b> | COLUMBUS OH | 43201 | MVP RIVERWATCH LLC    |                  | MVP RIVERWATCH LLC    | ATTN ACCT DEPT      | BLVD           | ANN ARBOR MI 48103-2948   |

| 010-207908  | CONDOMINIUM UNIT        | 364 W LANE AV  | UNIT 737        | COLUMBUS OH | 43201 | PHILLIPS ERIC A       |                 |                     |                 |               |                          |
|-------------|-------------------------|----------------|-----------------|-------------|-------|-----------------------|-----------------|---------------------|-----------------|---------------|--------------------------|
|             |                         |                |                 |             |       |                       |                 |                     |                 | 254           |                          |
| 010-207909  |                         | 364 W LANE AV  | UNIT 739        | COLUMBUS OH | 43201 | LUCIA KERRY ANN       |                 | KERRY ANN LUCIA     |                 | GLENWORTH CT  | POWELL OH 43065-9118     |
| 010 207010  |                         |                |                 |             | 42201 |                       |                 |                     |                 |               |                          |
| 010-207910  |                         | 304 W LAINE AV |                 |             | 43201 | TUUNG BARBARA         |                 | DARDARA TUUNG       |                 | 610 HAVENS    | COLUMBUS OF 43206-2549   |
| 010-207911  | CONDOMINIUM UNIT        | 364 W LANE AV  | UNIT 802        |             | 43201 | RWATCH LLC            |                 | RWATCH LLC          |                 | CORNER RD     | COLUMBUS OH 43230-3112   |
|             |                         |                |                 |             |       |                       |                 |                     |                 | 2065          |                          |
|             |                         |                |                 |             |       |                       |                 |                     |                 | STRATHSHIRE   |                          |
| 010-207912  | CONDOMINIUM UNIT        | 364 W LANE AV  | UNIT 803        | COLUMBUS OH | 43201 | LEE SHIRLEY PEI-CHI   |                 | SHIRLEY LEE         |                 | HALL LN       | POWELL OH 43065-9439     |
|             |                         |                |                 |             |       |                       |                 |                     |                 | 5917 GROVE    |                          |
| 010-207913  | CONDOMINIUM UNIT        | 364 W LANE AV  | UNIT 804        | COLUMBUS OH | 43201 | SGL ENTERPRISES LLC   |                 | SGL ENTERPRISES LLC |                 | CITY RD       | GROVE CITY OH 43123-8925 |
|             |                         |                |                 |             |       |                       |                 |                     |                 |               |                          |
|             |                         |                |                 |             | 42224 |                       |                 |                     |                 | 239 HURONVIEW |                          |
| 010-207914  |                         | 364 W LANE AV  | UNII 805        |             | 43201 | WRE DE LLC            |                 | WRE DE LLC          |                 | BLVD          | ANN ARBOR MI 48103-2947  |
| 010-207015  |                         |                |                 |             | 12201 | SAPOLIC               |                 | SAROLIC             |                 |               |                          |
| 010-207915  |                         | JU4 W LANE AV  |                 |             | 43201 |                       |                 |                     |                 |               | DODLIN 01143010-4318     |
|             |                         |                |                 |             |       |                       |                 |                     |                 | 230 HURONVIEW |                          |
| 010-207916  | CONDO 4-19 RENTAL UNITS | 364 W LANE AV  | <b>UNIT 807</b> | COLUMBUS OH | 43201 | WRE DE LLC            |                 | WRE DE LLC          |                 | BLVD          | ANN ARBOR MI 48103-2948  |
|             |                         |                |                 |             |       |                       | ļ               |                     |                 | 2861 HALSTEAD |                          |
| 010-207917  | CONDOMINIUM UNIT        | 364 W LANE AV  | <b>UNIT 808</b> | COLUMBUS OH | 43201 | MATTHEWS CHARLES W JR | LTD             | CHARLES MATTHEWS    |                 | RD            | COLUMBUS OH 43221-2915   |
|             |                         |                |                 |             |       |                       |                 |                     |                 | 6619 S        |                          |
| 010-207918  | CONDOMINIUM UNIT        | 364 W LANE AV  | UNIT 809        | COLUMBUS OH | 43201 | JPC OF COLUMBUS LTD   |                 | JPC OF COLUMBUS LTD |                 | PATSBURG ST   | AURORA CO 80016-4394     |
|             |                         |                |                 |             |       |                       |                 |                     |                 | 8825 BIRGHAM  |                          |
| 010-207919  |                         | 364 W LANE AV  | UNIT 810        | COLUMBUS OH | 43201 | SAIDUDDIN JAMU        | SAIDUDDIN SHAFI | JAMU SAIDUDDIN      | SHAFI SAIDUDDIN | CT N          | DUBLIN OH 43017-9718     |
| 04.0 207020 |                         |                |                 |             | 42204 |                       |                 | CARELLO             |                 | 5077          |                          |
| 010-207920  |                         | 364 W LANE AV  | UNII 811        |             | 43201 | SARULLC               |                 | SARE LLC            |                 | GRASSLAND DR  | DUBLIN OH 43016-4318     |
|             |                         |                |                 |             |       |                       |                 |                     |                 | 9725          |                          |
| 010-207921  |                         | 364 W LANF AV  | UNIT 812        |             | 43201 | BILLETT ANTHONY F     |                 | ANTHONY F BILLETT   |                 | COUNSELLOR DR | VIFNNA VA 22181-3252     |
| 010 207 521 |                         |                |                 |             | 15201 |                       |                 |                     |                 | 610 HAVENS    |                          |
| 010-207922  | CONDOMINIUM UNIT        | 364 W LANE AV  | <b>UNIT 813</b> | COLUMBUS OH | 43201 | RWATCH LLC            |                 | RWATCH LLC          |                 | CORNERS RD    | COLUMBUS OH 43230-3112   |
|             |                         |                |                 |             |       |                       |                 |                     |                 | 8825 BIRGHAM  |                          |
| 010-207923  | CONDOMINIUM UNIT        | 364 W LANE AV  | UNIT 815        | COLUMBUS OH | 43201 | SAIDUDDIN JAMU        | SAIDUDDIN SYED  | JAMU SAIDUDDIN      | SYED SAIDUDDIN  | CT N          | DUBLIN OH 43017-9718     |
|             |                         |                |                 |             |       |                       |                 |                     |                 |               |                          |
|             |                         |                |                 |             |       |                       |                 |                     |                 | 230 HURONVIEW |                          |
| 010-207924  |                         | 364 W LANE AV  | UNIT 817        | COLUMBUS OH | 43201 | WRE DE LLC            |                 | WRE DE LLC          |                 | BLVD          | ANN ARBOR MI 48103-2948  |
|             |                         |                |                 |             | 42224 |                       |                 |                     |                 | 610 HAVENS    |                          |
| 010-207925  | CONDO 4-19 RENTAL UNITS | 364 W LANE AV  | UNII 818        |             | 43201 | RWATCH LLC            |                 | RWATCH LLC          |                 | CORNERS RD    | COLUMBUS OH 43230-3112   |
| 010 207026  |                         |                |                 |             | 42201 |                       |                 |                     |                 | 401 VAN BUREN |                          |
| 010-207920  | CONDO 4-19 RENTAL ONITS | 504 W LAINE AV | 01011 019       |             | 45201 |                       |                 |                     |                 | 207 GRANGE    | STRACUSE NT 15244-2752   |
| 010-207927  | CONDOMINIUM UNIT        | 364 W LANF AV  | UNIT 820        | COLUMBUS OH | 43201 | LAHOTI RUKMANI I      |                 | RUKMANI J LAHOTI    |                 | HALL DR       | GAITHERSBURG MD 20877-4  |
|             |                         |                |                 |             |       |                       |                 |                     |                 |               |                          |
|             |                         |                |                 |             |       |                       |                 |                     |                 | 230 HURONVIEW |                          |
| 010-207928  | CONDO 4-19 RENTAL UNITS | 364 W LANE AV  | UNIT 821        | COLUMBUS OH | 43201 | WRE DE LLC            |                 | WRE DE LLC          |                 | BLVD          | ANN ARBOR MI 48103-2948  |

| 010-207929  | CONDOMINIUM UNIT         | 364 W LANE AV  | UNIT 822 | COLUMBUS OH | 43201 | WRE DE LLC           |                      | WICKFIELD PROPERTIES |                    | 230 HURONVIEW<br>BLVD  | ANN ARBOR MI 48103-2948       |
|-------------|--------------------------|----------------|----------|-------------|-------|----------------------|----------------------|----------------------|--------------------|------------------------|-------------------------------|
| 010 20, 525 |                          |                |          |             | 10201 |                      |                      |                      |                    | 3954                   |                               |
| 010-207930  | CONDOMINIUM UNIT         | 364 W LANE AV  | UNIT 823 | COLUMBUS OH | 43201 | BIEDENHARN JUDY H    |                      | EDWARD BIEDENHARN    | JUDY H BIEDENHARN  | LARCHMERE DR           | GROVE CITY OH 43123-8738      |
|             |                          |                |          |             |       |                      |                      |                      |                    |                        |                               |
| 010-207931  | CONDO 4-19 RENTAL UNITS  | 364 W LANE AV  | UNIT 824 | COLUMBUS OH | 43201 | WRE DE LLC           |                      | WRE DE LLC           |                    | BLVD                   | ANN ARBOR MI 48103-2948       |
|             |                          |                |          |             |       |                      |                      |                      |                    |                        |                               |
| 010-207932  |                          |                |          |             | /3201 |                      |                      | WREDELLC             |                    | 230 HURONVIEW          |                               |
| 010 207 552 |                          |                | 0111 025 |             | 45201 |                      |                      |                      |                    |                        | ANN ANDON MI 40103 2340       |
|             |                          |                |          |             |       |                      |                      |                      |                    | 230 HURONVIEW          |                               |
| 010-207933  |                          | 364 W LANE AV  | UNIT 826 | COLUMBUS OH | 43201 | WRE DE LLC           |                      | WRE DE LLC           |                    | BLVD                   | ANN ARBOR MI 48103-2948       |
|             |                          |                |          |             |       |                      |                      |                      |                    | 230 HURONVIEW          |                               |
| 010-207934  | CONDO 4-19 RENTAL UNITS  | 364 W LANE AV  | UNIT 827 | COLUMBUS OH | 43201 | WRE DE LLC           |                      | WRE DE LLC           |                    | BLVD                   | ANN ARBOR MI 48103-2948       |
| 010 207025  |                          |                |          |             | 42201 |                      |                      |                      |                    | 724 CHAFFIN            |                               |
| 010-207935  | CONDO 4-19 RENTAL UNITS  | 304 W LAINE AV | UNIT 828 | COLUMBUS ON | 43201 | KARINITIS CHARLES I  | KARINI IIS LAIIVIA E | CHARLEST KARINITIS   |                    | 1695 HARVARD           | COLUMBUS OF 43214-2954        |
| 010-207936  | CONDOMINIUM UNIT         | 364 W LANE AV  | UNIT 829 | COLUMBUS OH | 43201 | WRE DE LLC           |                      | WRE DE LLC           |                    | СТ                     | OXFORD MI 48371-5970          |
| 010 207027  |                          |                |          |             | 42204 |                      |                      |                      |                    | 6528 SADDLE            |                               |
| 010-207937  |                          | 364 W LANE AV  | UNIT 831 | COLOMBOS OH | 43201 |                      |                      | GARY CHUI            |                    |                        | TOLEDO OH 43615-2440          |
|             |                          |                |          |             |       |                      |                      |                      |                    | 230 HURONVIEW          |                               |
| 010-207938  | CONDO 4-19 RENTAL UNITS  | 364 W LANE AV  | UNIT 833 | COLUMBUS OH | 43201 | WRE DE LLC           |                      | WRE DE LLC           |                    | BLVD                   | ANN ARBOR MI 48103-2948       |
| 010-207939  | CONDOMINIUM UNIT         | 364 W LANF AV  | UNIT 835 | COLUMBUS OH | 43201 | 7594 SUGAR DRIVE LLC |                      | 7594 SUGAR DRIVE LLC |                    | 7594 SUGAR<br>CREEK DR | YOUNGSTOWN OH 44512-57        |
|             |                          |                |          |             |       |                      | PROPERTY             |                      |                    |                        |                               |
|             |                          |                |          |             |       |                      | MANAGEMENT           |                      |                    | 2398                   |                               |
| 010-207940  |                          | 364 W LANE AV  | UNIT 837 | COLUMBUS OH | 43201 | DENNISON ASSOCIATES  |                      | DENNISON ASSOCIATES  | PROPERTY MANAGEMEN | 7707 WINDING           | COLUMBUS OH 43221-3770        |
| 010-207941  | CONDOMINIUM UNIT         | 364 W LANE AV  | UNIT 839 | COLUMBUS OH | 43201 | JJM RENTALS LLC      |                      | JJM RENTALS LLC      |                    | WAY S                  | TIPP CITY OH 45371-9246       |
|             |                          |                |          |             |       |                      |                      |                      |                    |                        |                               |
| 010-207942  | CONDO 4-19 RENTAL LINITS | 364 W LANE AV  | UNIT 901 |             | 43201 |                      |                      | WREDELLC             |                    | 230 HURONVIEW          | ANN ARBOR MI 48103-2948       |
| 010 207 542 |                          |                |          |             | 45201 |                      |                      |                      |                    |                        | 7.1117.11.BOIL 111 40103 2340 |
|             |                          |                |          |             |       |                      |                      |                      |                    | 230 HURONVIEW          |                               |
| 010-207943  |                          | 364 W LANE AV  | UNIT 902 | COLUMBUS OH | 43201 | WRE DE LLC           |                      | WRE DE LLC           |                    | BLVD                   | ANN ARBOR MI 48103-2948       |
| 010-207944  | CONDO 20-39 RENTAL UNITS | 364 W LANE AV  | UNIT 903 | COLUMBUS OH | 43201 | SGL ENTERPRISES LLC  |                      | SGL ENTERPRISES LLC  |                    | CITY RD                | GROVE CITY OH 43123-8925      |
|             |                          |                |          |             |       |                      |                      |                      |                    | 4103 174TH ST          |                               |
| 010-207945  |                          | 364 W LANE AV  | UNIT 904 | COLUMBUS OH | 43201 | CHIANG CONWAY        |                      | CONWAY CHIANG        |                    | SE                     | BOTHELL WA 98012-7625         |
| 010-207946  | CONDOMINIUM UNIT         | 364 W LANE AV  | UNIT 905 | COLUMBUS OH | 43201 | SINGH GIRIDHAR       | RANI                 | GIRIDHAR SINGH       | SHOBA RANI SINGH   | 6174 ENKE CT           | DUBLIN OH 43017-9517          |
|             |                          |                |          |             |       |                      |                      |                      |                    | 5217 VAN HORN          |                               |
| 010-207947  | CONDOMINIUM UNIT         | 364 W LANE AV  | UNIT 906 | COLUMBUS OH | 43201 | KANG JUN             |                      | XINLU LIU            |                    | ST                     | ELMHURST NY 11373-4348        |

|            |                          |                |                 |              |       |                       |                |                     |                      | 6470            |                           |
|------------|--------------------------|----------------|-----------------|--------------|-------|-----------------------|----------------|---------------------|----------------------|-----------------|---------------------------|
| 010 207049 |                          |                |                 |              | 42201 |                       | TDIDTI         |                     |                      |                 |                           |
| 010-207948 |                          | 304 W LAINE AV | 01011 907       |              | 43201 |                       |                |                     |                      | 2680 WARREN     |                           |
| 010-207949 | CONDOMINIUM UNIT         | 364 W LANE AV  | UNIT 908        | COLUMBUS OH  | 43201 | SZCZUREK MICHAEL J    |                | MICHAEL J SZCZUREK  |                      | BURTON RD       | SOUTHINGTON OH 44470-97   |
|            |                          |                |                 |              |       |                       |                |                     |                      | 3001 HACKBERRY  | ,                         |
| 010-207950 | CONDOMINIUM UNIT         | 364 W LANE AV  | UNIT 909        | COLUMBUS OH  | 43201 | THEADO MICHAEL J      |                | CORELOGIC           |                      | RD              | IRVING TX 75063-0156      |
|            |                          |                |                 |              |       |                       | WOLFE CARYOLYN |                     |                      | 10062 HOBBY     |                           |
| 010-207951 |                          | 364 W LANE AV  | UNIT 910        | COLUMBUS OH  | 43201 | WOLFE HERMAN P TR     | J TR           | HERMAN P WOLFE      | CAROLYN J WOLFE      | HORSE LN        | MENTOR OH 44060-6824      |
| 010-207952 |                          |                |                 |              | /3201 | ΡΥΔΝΙ ΤΗΩΜΔS Ε        |                | COBELOGIC           |                      |                 | IRV/ING TX 75063-0156     |
| 010-207952 |                          | 504 W LANE AV  |                 |              | 43201 |                       |                |                     |                      | 364 W LANE AVE  | INVING TX 75003-0150      |
| 010-207953 | CONDOMINIUM UNIT         | 364 W LANE AV  | <b>UNIT 912</b> | COLUMBUS OH  | 43201 | LIN WILL              |                | WILL LIN            |                      | APT 912         | COLUMBUS OH 43201-4345    |
| 010-207954 | CONDOMINIUM UNIT         | 364 W LANE AV  | UNIT 913        | COLUMBUS OH  | 43201 | OSBORN JED E & MARY L |                | JED E OSBORN        | MARY L OSBORN        | 2634 ROAD 8     | LEIPSIC OH 45856-9261     |
|            |                          |                |                 |              |       |                       |                |                     |                      | 5176 LAKE POINT | •                         |
| 010-207955 | CONDOMINIUM UNIT         | 364 W LANE AV  | UNIT 915        | COLUMBUS OH  | 43201 | LIU XIAOXIAO          |                | XIAOXIAO LIU        |                      | DR              | CARMEL IN 46033-7212      |
| 010 207050 |                          |                |                 |              | 42204 |                       |                |                     |                      | 364 W LANE AVE  |                           |
| 010-207956 |                          | 364 W LANE AV  | UNIT 917        | COLOMBOS OH  | 43201 | GUINGS FUREST         |                | FUREST GUINGS       |                      | 5917 GROVE      | COLUMBUS OH 43201-4345    |
| 010-207957 | CONDOMINIUM UNIT         | 364 W LANF AV  | <b>UNIT 918</b> |              | 43201 | SGL ENTERPRISES LLC   |                | SGL ENTERPRISES LLC |                      | CITY RD         | GROVE CITY OH 43123-8925  |
| 010 207007 |                          |                |                 |              | 10201 |                       | KORI MAMTA M   |                     |                      | 4277 MACKENZIE  |                           |
| 010-207958 | CONDOMINIUM UNIT         | 364 W LANE AV  | UNIT 919        | COLUMBUS OH  | 43201 | KORI ARUN S TR        | TR             | ARUN S KORI         | MAMTA M KORI         | СТ              | MASON OH 45040-4664       |
|            |                          |                |                 |              |       |                       | VERHOFF        |                     |                      |                 |                           |
|            |                          |                |                 |              |       |                       | THEODORE J,    |                     |                      |                 |                           |
| 010 207050 |                          |                |                 |              | 42204 |                       | VERHOFF SUSAN  |                     |                      | 10804 0040 5    |                           |
| 010-207959 |                          | 364 W LANE AV  | UNIT 920        | COLOMBOS OH  | 43201 | VERHOFF AMANDA J      |                |                     |                      | 19894 RUAD S    | FORT JENNINGS OH 45844-91 |
| 010-207960 |                          | 364 W LANE AV  | UNIT 921        | COLUMBUS OH  | 43201 | KRESKE SHIRLEY SU TR  |                | SHIRLEY KRESKE      |                      | CIR             | PORT CHARLOTTE FL 33948-2 |
|            |                          |                |                 |              |       |                       |                |                     |                      | 7511            |                           |
|            |                          |                |                 |              |       |                       |                |                     |                      | HEATHERWOOD     |                           |
| 010-207961 | CONDOMINIUM UNIT         | 364 W LANE AV  | UNIT 922        | COLUMBUS OH  | 43201 | XU LONGYA             | ZHAO AILAN     | LONGYA XU           | AILAN ZHAO           | LN              | DUBLIN OH 43017-8229      |
| 040 007060 |                          |                |                 |              | 40004 |                       |                |                     |                      |                 |                           |
| 010-207962 | CONDO 20-39 RENTAL UNITS | 364 W LANE AV  | UNIT 923        |              | 43201 |                       |                |                     |                      | 364 W LANE AVE  | COLUMBUS OH 43201-4362    |
| 010-207903 |                          | S04 W LANE AV  | 01111 924       | COLOIMBUS ON | 45201 | DEINEDICT JOSEPH W    |                | JUSEFIT W BEINEDICT |                      | 4103 174TH ST   | COLOIVIBOS OF 45250-0840  |
| 010-207964 | CONDOMINIUM UNIT         | 364 W LANE AV  | <b>UNIT 925</b> | COLUMBUS OH  | 43201 | CHIANG CONWAY         |                | CONWAY CHIANG       |                      | SE              | BOTHELL WA 98012-7625     |
|            |                          |                |                 |              |       |                       |                |                     |                      |                 |                           |
|            |                          |                |                 |              |       |                       |                |                     |                      | 230 HURONVIEW   |                           |
| 010-207965 | CONDO 4-19 RENTAL UNITS  | 364 W LANE AV  | UNIT 926        | COLUMBUS OH  | 43201 | MVP RIVERWATCH LLC    |                | MVP RIVERWATCH LLC  | ATTN ACCT DEPT       | BLVD            | ANN ARBOR MI 48103-2948   |
|            |                          |                |                 |              |       |                       |                |                     |                      |                 |                           |
| 010 207066 |                          |                |                 |              | 42201 |                       |                |                     |                      |                 |                           |
| 010-207900 |                          | JU4 W LANE AV  | 0111 927        |              | 43201 |                       |                |                     |                      | 724 CHAFFIN     | ANN ANDON WI 48103-2348   |
| 010-207967 | CONDO 4-19 RENTAL UNITS  | 364 W LANE AV  | <b>UNIT 928</b> | COLUMBUS OH  | 43201 | KARNITIS CHARLES I    | LAIMA E TRS    | CHARLES I KARNITIS  | LAIMA E KARNITIS TRS | RDG             | COLUMBUS OH 43214-2954    |
|            |                          |                |                 |              |       |                       |                |                     |                      |                 |                           |
|            |                          |                |                 |              |       |                       |                |                     |                      | 230 HURONVIEW   |                           |
| 010-207968 | CONDOMINIUM UNIT         | 364 W LANE AV  | UNIT 929        | COLUMBUS OH  | 43201 | WRE DE LLC            |                | WRE DE LLC          |                      | BLVD            | ANN ARBOR MI 48103-2948   |

| 010-207969  | CONDO 20-39 RENTAL UNITS | 364 W LANE AV      | UNIT 931        | COLUMBUS OH  | 43201   | WRE DE LLC            |                 | WRE DE LLC          |                       | BLVD                | ANN ARBOR MI 48103-2948          |
|-------------|--------------------------|--------------------|-----------------|--------------|---------|-----------------------|-----------------|---------------------|-----------------------|---------------------|----------------------------------|
|             |                          |                    |                 |              |         |                       |                 |                     |                       | 528 HARTFORD        |                                  |
| 010-207970  | CONDO 4-19 RENTAL UNITS  | 364 W LANE AV      | UNIT 933        | COLUMBUS OH  | 43201   | SCHERER BARBARA E     | ļ               | BARBARA E SCHERER   |                       | DR                  | ELYRIA OH 44035-2906             |
| 010 207071  |                          |                    |                 |              | 42201   |                       |                 |                     |                       | 610 HAVENS          |                                  |
| 010-207971  |                          | 304 W LANE AV      | 01011 933       |              | 43201   |                       | <u> </u>        |                     |                       | 3750 87TH ST        | COLONIBUS OF 45250-5112          |
| 010-207972  |                          | 364 W LANE AV      | UNIT 937        | COLUMBUS OH  | 43201   | KANG JUN              |                 | JUN KANG            |                       | APT 4F              | JACKSON HEIGHTS NY 11372-        |
|             |                          |                    |                 |              |         |                       |                 |                     |                       | 610 HAVENS          |                                  |
| 010-207973  |                          | 364 W LANE AV      | UNIT 939        | COLUMBUS OH  | 43201   | RWATCH LLC            |                 | RWATCH LLC          |                       | CORNERS RD          | COLUMBUS OH 43230-3112           |
| 040 007074  |                          |                    |                 |              | 42204   |                       | WILSON KRISTINE |                     |                       |                     |                                  |
| 010-207974  |                          | 364 W LANE AV      | UNIT 100        | 1COLUMBUS OH | 43201   | WILSON CURTIS D       | N               | CURTIS D WILSON     |                       | 399 HICKORY LN      | WESTERVILLE OH 43081-3082        |
| 010-207075  |                          |                    |                 |              | 12201   |                       |                 |                     |                       | 1925<br>EDGEMONT RD |                                  |
| 010-207975  |                          | 364 W LANE AV      | UNIT 100        |              | 43201   |                       | <u> </u>        |                     |                       |                     | DUBLIN OH 43017-6892             |
| 010 207570  |                          | 504 W L/ ((VL / (V |                 |              | 45201   | VICONDOLLC            | <u> </u>        |                     |                       | 334 SILVER          | 505EIN 011 43017 0052            |
| 010-207977  | CONDO 20-39 RENTAL UNITS | 364 W LANE AV      | <b>UNIT 100</b> | COLUMBUS OH  | 43201   | WENG XIN              |                 | XIN WENG            |                       | MAPLE DR            | BLACKLICK OH 43004-8426          |
|             |                          | 1                  |                 | 1            |         |                       |                 | ,                   |                       | 5176 LAKE POINT     |                                  |
| 010-207978  | CONDO 4-19 RENTAL UNITS  | 364 W LANE AV      | <b>UNIT 100</b> | COLUMBUS OH  | 43201   | LIU LIYUAN            |                 | LIYUAN LIU          |                       | DR                  | CARMEL IN 46033-7212             |
|             |                          |                    |                 |              |         |                       |                 |                     |                       | 364 W LANE AVE      |                                  |
| 010-207979  |                          | 364 W LANE AV      | UNIT 100        | COLUMBUS OH  | 43201   | BENEDICT JASON ANDREW | ļ               | JASON BENEDICT      |                       | APT 220             | COLUMBUS OH 43201-1096           |
|             |                          |                    |                 |              |         |                       |                 |                     |                       |                     |                                  |
| 010 207090  |                          |                    |                 |              | 42201   |                       |                 |                     |                       | 230 HURONVIEW       |                                  |
| 010-207980  | CONDO 4-19 RENTAL UNITS  | 364 W LAINE AV     |                 |              | 43201   |                       | <u> </u>        |                     |                       | BLVD                | ANN ARBUR INI 48103-2948         |
|             |                          |                    |                 |              |         |                       |                 |                     |                       | 3417                |                                  |
| 010-207981  |                          | 364 W LANE AV      | UNIT 100        | COLUMBUS OH  | 43201   | KAPADIA PURNIMA K TR  |                 | PURNIMA K KAPADIA   |                       | WATERPOINT DR       | COLUMBUS OH 43221-4951           |
|             |                          |                    |                 |              |         |                       |                 |                     |                       | 5176 LAKE POINT     |                                  |
| 010-207982  | CONDO 4-19 RENTAL UNITS  | 364 W LANE AV      | <b>UNIT 100</b> | COLUMBUS OH  | 43201   | LIU LIYUAN            |                 | LIYUAN LIU          |                       | DR                  | CARMEL IN 46033-7212             |
|             |                          | 1                  |                 |              |         |                       | YEHSAKUL        |                     | 1                     | 6347 TANERA         |                                  |
| 010-207983  |                          | 364 W LANE AV      | UNIT 101        | COLUMBUS OH  | 43201   | YEHSAKUL DEBBIE S     | PHONGSAK D      | DEBBIE S YEHSAKUL   |                       | MORE CT             | DUBLIN OH 43017-9579             |
|             |                          |                    |                 |              |         |                       |                 |                     |                       | 3877 FRENCH         |                                  |
| 010-207984  |                          | 364 W LANE AV      | UNIT 101        | 1COLUMBUS OH | 43201   | HALL GARNETT J        | <u> </u>        | GARNETTHALL         | C/O NANCY HALL DURNIN | FIELDS LN           | HARRISBURG NC 28075-9695         |
| 010-207085  |                          |                    |                 |              | 12201   |                       |                 |                     |                       |                     |                                  |
| 010-207383  |                          | JOH W LANE AV      |                 |              | 43201   |                       |                 |                     |                       | WIEDDROOK CT        | WEST CHESTER OH 45005-520        |
|             |                          |                    |                 |              |         |                       |                 |                     |                       | 230 HURONVIEW       |                                  |
| 010-207986  |                          | 364 W LANE AV      | <b>UNIT 101</b> | COLUMBUS OH  | 43201   | WRE DE LLC            |                 | WRE DE LLC          |                       | BLVD                | ANN ARBOR MI 48103-2948          |
|             |                          |                    |                 |              |         |                       |                 |                     |                       | 2318 WICKLIFFE      |                                  |
| 010-207987  |                          | 364 W LANE AV      | UNIT 101        | COLUMBUS OH  | 43201   | MOHAMMED KASHEED      | JEANNETTE R     | KASHEEED MOHAMMED   | JEANNETTE R MOHAMME   | RD                  | COLUMBUS OH 43221-1834           |
|             |                          |                    |                 |              |         |                       |                 |                     |                       |                     |                                  |
| 010-207988  |                          | 364 W LANE AV      | UNIT 101        | COLUMBUS OH  | 43201   | YERKEY MATTHEW R TR   |                 | MATTHEW R YERKEY TR |                       | 1750 SHADY LN       | SALEM OH 44460-1240              |
|             |                          |                    |                 |              |         |                       |                 |                     |                       |                     |                                  |
| 010-207989  | CONDO 4-19 RENTAL LINITS | 364 W I ANF AV     | <b>UNIT 101</b> |              | 43201   | MVP RIVERWATCH LLC    |                 | MVP RIVERWATCH U.C  | ΑΤΤΝ ΑCCT DEPT        | BIVD                | ANN ARBOR MI 48103-2948          |
| 1010 201000 |                          |                    | 10101 101       | 1001000001   | 1 75201 |                       | 1               | THE REPORT OF LEG A |                       |                     | P 1111 7 11 DOL 101 TOLOJ 2040 1 |

|             |                           |                 |                 |             |         |                      |                 |                      |                     | 4664 CHERRY    |                           |
|-------------|---------------------------|-----------------|-----------------|-------------|---------|----------------------|-----------------|----------------------|---------------------|----------------|---------------------------|
| 010-207990  | CONDOMINIUM UNIT          | 364 W LANE AV   | UNIT 101        | COLUMBUS OH | 43201   | GIANGARCELLA JOHN P  |                 | JOHN P GIANGARCELLA  |                     | GLEN DR        | POWELL OH 43065-7464      |
|             |                           |                 |                 |             |         |                      |                 | CROSSCOUNTRY         |                     |                |                           |
| 010-207991  | CONDO 4-19 RENTAL UNITS   | 364 W LANE AV   | UNIT 102        | COLUMBUS OH | 43201   | KAWECKI DENNIS       |                 | MORTGAGE             |                     | 6850 MILLER RD | BRECKSVILLE OH 44141-3222 |
|             |                           |                 |                 |             |         |                      |                 |                      |                     | 1201 WESTPHAL  |                           |
| 010-207992  | CONDOMINIUM UNIT          | 364 W LANE AV   | <b>UNIT 102</b> | COLUMBUS OH | 43201   | SIITAM ALEK          |                 | ALEK SIITAM          |                     | AVE            | COLUMBUS OH 43227-1744    |
|             |                           |                 |                 |             |         |                      |                 |                      |                     | 1720           |                           |
|             |                           |                 |                 |             |         |                      |                 |                      |                     | STRINGTOWN RD  |                           |
| 010-207993  | CONDOMINIUM UNIT          | 364 W LANE AV   | <b>UNIT 102</b> | COLUMBUS OH | 43201   | LOCKWOOD GARY R TR   |                 | GARY R LOCKWOOD TR   |                     | NE             | LANCASTER OH 43130-8203   |
|             |                           |                 |                 |             |         |                      |                 |                      |                     |                |                           |
|             |                           |                 |                 |             |         |                      |                 |                      |                     | 230 HURONVIEW  | ,                         |
| 010-207994  | CONDO 4-19 RENTAL UNITS   | 364 W LANE AV   | <b>UNIT 102</b> |             | 43201   | WREDELLC             |                 | WREDELLC             |                     | BLVD           | ANN ARBOR MI 48103-2948   |
| 010 207331  |                           | 50110 EXITE 710 |                 |             | 13201   |                      |                 |                      |                     | 2695           |                           |
|             |                           |                 |                 |             |         |                      |                 |                      |                     | STRINGTOWN RD  | ,                         |
| 010-207005  |                           |                 |                 |             | 12201   |                      |                 |                      |                     |                |                           |
| 010-207993  |                           | JU4 W LANE AV   |                 |             | 43201   |                      |                 |                      |                     |                | LANCASTER ON 45150-5152   |
| 010 207006  |                           |                 |                 |             | 42201   |                      |                 |                      |                     |                |                           |
| 010-207996  | CONDO 20-39 REINTAL ONITS | 504 LAINE AV    |                 |             | 45201   |                      |                 |                      |                     |                | BLACKLICK OH 43004-8428   |
|             |                           |                 |                 |             |         |                      |                 |                      |                     |                |                           |
|             |                           |                 |                 |             | 42204   |                      |                 |                      |                     |                |                           |
| 010-207997  | CONDO 20-39 RENTAL UNITS  | 364 W LANE AV   | UNII 102        |             | 43201   | CHONG MANDY M        |                 |                      |                     | ST UNIT A      | COLUMBUS OH 43214-1972    |
|             |                           |                 |                 |             |         |                      |                 |                      |                     |                |                           |
|             |                           |                 |                 |             |         |                      |                 |                      |                     | 230 HURONVIEW  |                           |
| 010-207998  |                           | 364 W LANE AV   | UNIT 102        | COLUMBUS OH | 43201   | WRE DE LLC           |                 | WRE DE LLC           |                     | BLVD           | ANN ARBOR MI 48103-2948   |
|             |                           |                 |                 |             |         |                      | WEATHERHEAD     |                      |                     | 3001 HACKBERRY |                           |
| 010-207999  |                           | 364 W LANE AV   | UNIT 102        | COLUMBUS OH | 43201   | RATLIFF KIMBERLY S   | JAMES E         | CORELOGIC            |                     | RD             | IRVING TX 75063-0156      |
|             |                           |                 |                 |             |         |                      |                 |                      |                     |                |                           |
| 010-208000  | CONDOMINIUM UNIT          | 364 W LANE AV   | UNIT 102        | COLUMBUS OH | 43201   | WRE DE LLC           |                 | WRE DE LLC           |                     | 364 W LANE AVE | COLUMBUS OH 43201-4362    |
|             |                           |                 |                 |             |         |                      |                 |                      |                     | 17025 NW       |                           |
| 010-208001  | CONDOMINIUM UNIT          | 364 W LANE AV   | UNIT 103        | COLUMBUS OH | 43201   | CHONG PUI YEE KALINE |                 | PUI YEE KALINE CHONG |                     | MADRONE ST     | PORTLAND OR 97229-1427    |
|             |                           |                 |                 |             |         |                      |                 |                      |                     |                |                           |
|             |                           |                 |                 |             |         |                      |                 |                      |                     | 6041           |                           |
| 010-208002  | CONDOMINIUM UNIT          | 364 W LANE AV   | UNIT 103        | COLUMBUS OH | 43201   | SCOTT PATICE LLC     |                 | SCOTT PATICE LLC     |                     | WOODSBORO DR   | COLUMBUS OH 43228-9263    |
|             |                           |                 |                 |             |         |                      |                 |                      |                     |                |                           |
|             |                           |                 |                 |             |         |                      |                 |                      |                     | 230 HURONVIEW  | ,                         |
| 010-208003  | CONDO 4-19 RENTAL UNITS   | 364 W LANE AV   | <b>UNIT 103</b> | COLUMBUS OH | 43201   | MVP RIVERWATCH LLC   |                 | MVP RIVERWATCH LLC   | ATTN ACCT DEPT      | BLVD           | ANN ARBOR MI 48103-2948   |
|             |                           |                 |                 |             |         |                      |                 |                      |                     | 4103 174TH ST  |                           |
| 010-208004  | CONDOMINIUM UNIT          | 364 W LANE AV   | <b>UNIT 103</b> | COLUMBUS OH | 43201   | CHIANGWEI HSIULAING  |                 | HSIU LAING           | CHIANG WEI          | SE             | BOTHELL WA 98012-7625     |
|             |                           |                 |                 |             |         |                      |                 |                      |                     | 5077           |                           |
| 010-208005  | CONDOMINIUM UNIT          | 364 W LANE AV   | <b>UNIT 103</b> | COLUMBUS OH | 43201   | SARO LLC             |                 | SARO LLC             |                     | GRASSLAND DR   | DUBLIN OH 43016-4318      |
|             |                           |                 |                 |             |         |                      |                 |                      |                     |                |                           |
|             |                           |                 |                 |             |         |                      |                 |                      |                     | 230 HURONVIEW  | ,                         |
| 010-208006  | CONDO 4-19 RENTAL UNITS   | 364 W LANF AV   | UNIT P1         | COLUMBUS OH | 43201   | WRE DE LLC           |                 | WRE DE LLC           |                     | BLVD           | ANN ARBOR MI 48103-2948   |
|             |                           |                 |                 |             |         |                      | 1               |                      | 1                   | 254            |                           |
| 010-208007  |                           | 364 W I ANF AV  | UNIT P2         |             | 43201   | TRACY FILEEN         |                 | FILEEN TRACY         |                     | GLENWORTH CT   | POWELL OH 43065-9118      |
| 510 200007  |                           |                 |                 |             |         |                      | KARNITIS I AIMA |                      |                     | 724 CHAFFIN    |                           |
| 010-208008  |                           | 364 W I ANF AV  |                 |             | 43201   | KARNITIS CHARLES I   | EVE             | CHARLES L KARNITIS   | I AIMA EVE KARNITIS |                |                           |
| 1010 200000 |                           |                 |                 |             | 1 75201 |                      |                 |                      |                     |                |                           |

|            |                         |                |           |             | 40004 |                      |                |                      |                     | 6619 S        |                           |
|------------|-------------------------|----------------|-----------|-------------|-------|----------------------|----------------|----------------------|---------------------|---------------|---------------------------|
| 010-208009 |                         | 364 W LANE AV  | UNIT P4   | COLUMBUS OH | 43201 | JPC OF COLUMBUS LTD  |                | JPC OF COLUMBUS LTD  |                     | PAISBURG SI   | AURORA CO 80016-4394      |
| 010-208010 | CONDO 4-19 RENTAL UNITS | 364 W LANF AV  | LINIT P5  |             | 43201 | RWATCHILC            |                | RWATCHILC            |                     | CORNERS RD    | COLUMBUS OH 43230-3112    |
| 010 200010 |                         |                |           |             | 13201 |                      |                |                      |                     | 688 RIVERVIEW |                           |
| 010-208011 | CONDO 4-19 RENTAL UNITS | 364 W LANE AV  | UNIT P6   | COLUMBUS OH | 43201 | WANG HUA             |                | HUA WANG             |                     | DR APT 50     | COLUMBUS OH 43202-1684    |
|            |                         |                |           |             |       |                      |                |                      |                     | 1201 WESTPHAL |                           |
| 010-208012 | CONDOMINIUM UNIT        | 364 W LANE AV  | UNIT P7   | COLUMBUS OH | 43201 | SIITAM ALEK T        |                | ALEK T SIITAM        |                     | AVE           | COLUMBUS OH 43227-1744    |
|            |                         |                |           |             |       |                      |                |                      |                     | 1341          |                           |
| 010 200012 |                         |                |           |             | 42204 |                      |                |                      |                     | BRIARMEADOW   |                           |
| 010-208013 |                         | 364 W LANE AV  | UNIT P8   | COLUMBUS OH | 43201 | JENKS FRANCIA D      |                | FRANCIA D JENKS      |                     |               | COLUMBUS OH 43235-1612    |
|            |                         |                |           |             |       |                      |                |                      |                     | 230 HURONVIEW |                           |
| 010-208014 | CONDO 4-19 RENTAL UNITS | 364 W LANE AV  | UNIT P9   | COLUMBUS OH | 43201 | MVP RIVERWATCH LLC   |                | MVP RIVERWATCH LLC   | ATTN ACCT DEPT      | BLVD          | ANN ARBOR MI 48103-2948   |
|            |                         |                |           |             |       |                      |                |                      |                     | 610 HAVENS    |                           |
| 010-208015 | CONDOMINIUM UNIT        | 364 W LANE AV  | UNIT P10  | COLUMBUS OH | 43201 | RWATCH LLC           |                | RWATCH LLC           |                     | CORNERS RD    | COLUMBUS OH 43230-3112    |
|            |                         |                |           |             |       |                      |                |                      |                     |               |                           |
|            |                         |                |           |             |       |                      |                |                      |                     | 230 HURONVIEW |                           |
| 010-208016 |                         | 364 W LANE AV  | UNIT P11  | COLUMBUS OH | 43201 | WRE DE LLC           |                | WICKFIELD PROPERTIES |                     | BLVD          | ANN ARBOR MI 48103-2948   |
|            |                         |                |           |             |       |                      |                |                      |                     |               |                           |
| 010-208017 |                         |                |           |             | 12201 |                      |                |                      |                     |               | WARAN MA 02468-1622       |
| 010-208017 |                         | 304 W LAINE AV |           |             | 45201 |                      |                |                      |                     |               | WADAN WA 02406-1022       |
|            |                         |                |           |             |       |                      |                |                      |                     | 230 HURONVIEW |                           |
| 010-208018 | CONDO 4-19 RENTAL UNITS | 364 W LANE AV  | UNIT P15  | COLUMBUS OH | 43201 | WRE DE LLC           |                | WRE DE LLC           |                     | BLVD          | ANN ARBOR MI 48103-2948   |
|            |                         |                |           |             |       |                      |                |                      |                     | 12729 OAK     |                           |
| 010-208019 | CONDOMINIUM UNIT        | 364 W LANE AV  | UNIT P17  | COLUMBUS OH | 43201 | LAL VIKAS K          |                | VIKAS K LAL          |                     | FARMS DR      | HERNDON VA 20171-4217     |
|            |                         |                |           |             |       |                      |                | JENNINGS             |                     | 5830 US       |                           |
| 010-208020 |                         | 364 W LANE AV  | UNIT P18  | COLUMBUS OH | 43201 | NICHOLS JOSEPH E     | NICHOLS LISA M | DEVELOPMENT CO       |                     | HIGHWAY 42    | OSTRANDER OH 43061-9343   |
|            |                         |                |           |             | 40004 |                      |                |                      |                     | 71 FORGE      |                           |
| 010-208021 | CONDOMINIUM UNIT        | 364 W LANE AV  | UNIT P19  | COLUMBUS OH | 43201 | ARSHAD MUHAMMAD & S  |                |                      | SHUA ARSHAD         | VILLAGE RD    | GROTON MA 01450-2047      |
| 010-208022 | CONDO 4-19 RENTAL UNITS | 364 W LAINE AV |           |             | 43201 | PAUSCHJERRYBIR       |                | JERRY D PAUSCH TR    |                     | 4103 174TH ST |                           |
| 010-208023 |                         | 364 W LANE AV  | UNIT P21  | социмвиз он | 43201 | CHIANG CONWAY        |                | CONWAY CHIANG        |                     | SE            | BOTHELL WA 98012-7625     |
|            |                         |                |           |             |       |                      | MCCASLIN LEE   |                      |                     |               |                           |
| 010-208024 | CONDOMINIUM UNIT        | 364 W LANE AV  | UNIT P22  | COLUMBUS OH | 43201 | MCCASLIN KENNETH     | ANN            | KENNETH MCCASLIN     | LEE ANN MCCASLIN    | 1885 ROSE AVE | CRIDERSVILLE OH 45806-214 |
|            |                         |                |           |             |       |                      |                |                      |                     |               |                           |
|            |                         |                |           |             |       |                      |                |                      |                     | 230 HURONVIEW |                           |
| 010-208025 | CONDOMINIUM UNIT        | 364 W LANE AV  | UNIT P23  | COLUMBUS OH | 43201 | WRE DE LLC           |                | WRE DE LLC           |                     | BLVD          | ANN ARBOR MI 48103-2948   |
|            |                         |                |           |             |       |                      |                |                      |                     | 11953 BOCKEY  |                           |
| 010-208026 |                         | 364 W LANE AV  | UNIT P24  | COLUMBUS OH | 43201 | HUEY INVESTMENTS LLC |                | HUEY INVESTMENTS LLC | C/O JOHN M KLAUSING | RD            | DELPHOS OH 45833-8869     |
| 010 200027 |                         |                |           |             | 42201 |                      |                |                      |                     | SPRINGS AVE   |                           |
| 010-208027 |                         | SO4 W LAINE AV |           |             | 43201 | LIIVIIVIERS SIEVEN L |                | STEVEN L ZIIVIIVIEKS |                     |               | CINCININATI UH 45229-1345 |
| 010-208028 |                         | 364 WIANFAV    | LINIT P26 |             | 43201 | CHONG HOLVEE LOEV    |                |                      |                     | CREEK CT      | HOLLAND OH 43528-9812     |
| 510 200020 |                         |                |           |             | 13201 |                      | 1              |                      |                     | 4103 174TH ST |                           |
| 010-208029 | CONDOMINIUM UNIT        | 364 W LANE AV  | UNIT P27  | COLUMBUS OH | 43201 | LIN SHIOW-HWA        |                | SHIOW HWA LIN        |                     | SE            | BOTHELL WA 98012-7625     |

|            |                          |                |          |             |       |                       |                  |                       |                          | 724 CHAFFIN    |                           |
|------------|--------------------------|----------------|----------|-------------|-------|-----------------------|------------------|-----------------------|--------------------------|----------------|---------------------------|
| 010-208030 |                          | 364 W LANE AV  |          |             | 43201 | KARNITIS CHARLES I    | I AIMA E CO-TRS  | CHARLES I KARNITIS    | I AIMA E KARNITIS CO-TRO |                |                           |
| 010 200050 |                          |                | 0111120  |             | 45201 |                       |                  |                       |                          | 17025 NW       | 0101000001145214 2554     |
| 010 208021 |                          |                |          |             | 42201 |                       |                  |                       |                          |                |                           |
| 010-208031 |                          | 504 W LAINE AV |          |             | 45201 |                       | KALINL           |                       |                          |                | FORTLAND OR 37223-1427    |
| 010 200022 |                          |                |          |             | 42201 |                       |                  |                       |                          | 11230 BAYSIDE  |                           |
| 010-208032 |                          | 364 W LANE AV  | UNIT P31 |             | 43201 | BUSCU NANCY L         |                  | NANCI BUSCU-JUSEPH    |                          |                | FORT MIYERS BEACH FL 3393 |
|            |                          |                |          |             |       |                       |                  |                       |                          | 2065           |                           |
|            |                          |                |          |             |       |                       |                  |                       |                          | STRATHSHIRE    |                           |
| 010-208033 | CONDO 4-19 RENTAL UNITS  | 364 W LANE AV  | UNIT P33 | COLUMBUS OH | 43201 | LEE SHIRLEY PEI-CHI   |                  | SHIRLEY PEI-CHI LEE   |                          | HALL LN        | POWELL OH 43065-9439      |
|            |                          |                |          |             |       |                       |                  |                       |                          |                |                           |
|            |                          |                |          |             |       |                       |                  |                       |                          | 230 HURONVIEW  |                           |
| 010-208034 | CONDO 20-39 RENTAL UNITS | 364 W LANE AV  | UNIT P35 | COLUMBUS OH | 43201 | WRE DE LLC            |                  | WRE DE LLC            |                          | BLVD           | ANN ARBOR MI 48103-2948   |
|            |                          |                |          |             |       |                       |                  |                       |                          | 3001 HACKBERRY | ,                         |
| 010-208035 | CONDOMINIUM UNIT         | 364 W LANE AV  | UNIT P37 | COLUMBUS OH | 43201 | BOMBOLIS NICHOLAS G   |                  | CORELOGIC             |                          | RD             | IRVING TX 75063-0156      |
|            |                          |                |          |             |       |                       |                  |                       |                          | 5946           |                           |
|            |                          |                |          |             |       |                       | CASBARRO         |                       |                          | MORGANWOOD     |                           |
| 010-208036 | CONDOMINIUM UNIT         | 364 W LANE AV  | UNIT P39 | COLUMBUS OH | 43201 | CASBARRO PATRICK J    | KATHRYN R        | PATRICK J CASBARRO    | KATHRYN CASBARRO         | sq             | HILLIARD OH 43026-7175    |
|            |                          |                |          |             |       |                       | KARNITIS LAIMA E |                       |                          | 724 CHAFFIN    |                           |
| 010-208037 | CONDO 4-19 RENTAL UNITS  | 364 W LANE AV  | UNIT P41 | COLUMBUS OH | 43201 | KARNITIS CHARLES I TR | TR               | CHARLES I KARNITIS TR |                          | RDG            | COLUMBUS OH 43214-2954    |
|            |                          |                |          |             |       |                       |                  |                       |                          | -              |                           |
|            |                          |                |          |             |       |                       |                  |                       |                          | +              |                           |
|            |                          |                |          |             |       |                       |                  |                       |                          | ┼────          |                           |
|            |                          |                |          |             |       |                       |                  |                       |                          | <u> </u>       |                           |
|            |                          |                |          |             |       |                       |                  |                       |                          | ╂─────         |                           |
|            |                          |                |          |             |       |                       |                  |                       |                          | <u> </u>       |                           |
|            |                          |                |          |             |       |                       |                  |                       |                          | <u> </u>       |                           |
|            |                          |                |          |             |       |                       |                  |                       |                          | <u> </u>       |                           |
|            |                          |                |          |             |       |                       |                  |                       |                          | <b></b>        |                           |
|            |                          |                |          |             |       |                       |                  |                       |                          | <b></b>        |                           |
|            |                          |                |          |             |       |                       |                  |                       |                          | <u> </u>       |                           |
|            |                          |                |          |             |       |                       |                  |                       |                          | L              |                           |
|            |                          |                |          |             |       |                       |                  |                       |                          | Ļ              |                           |
|            |                          |                |          |             |       |                       |                  |                       |                          |                |                           |
|            |                          |                |          |             |       |                       |                  |                       |                          |                |                           |
|            |                          |                |          |             |       |                       |                  |                       |                          |                |                           |
|            |                          |                |          |             |       |                       |                  |                       |                          |                |                           |
|            |                          |                |          |             |       |                       |                  |                       |                          |                |                           |
|            |                          |                |          |             |       |                       |                  |                       |                          |                |                           |
|            |                          |                |          |             |       |                       |                  |                       |                          |                |                           |
|            |                          |                |          |             |       |                       |                  |                       |                          | 1              |                           |
|            |                          |                |          |             |       |                       |                  |                       |                          |                |                           |
|            |                          |                |          |             | 1     |                       |                  |                       |                          | 1              |                           |
|            |                          |                |          |             |       |                       |                  |                       |                          | 1              |                           |
|            |                          | 1              |          |             |       |                       |                  |                       |                          | <u> </u>       |                           |
|            |                          |                |          | 1           |       |                       |                  |                       |                          | <u> </u>       |                           |
|            |                          |                |          |             |       |                       |                  |                       |                          | +              |                           |
|            |                          |                | <u> </u> |             |       |                       |                  |                       |                          | <u> </u>       |                           |
|            |                          |                |          |             |       |                       |                  |                       |                          | <del> </del>   |                           |
|            |                          |                |          |             |       |                       |                  |                       |                          | <u> </u>       |                           |

**EXHIBIT G: Decommissioning Plan** 



# Smart Campus<sup>E</sup> Facility Project

# **Decommissioning Plan**

# **ENGIE Buckeye Operations**

Columbus, OH

REVISION 0 OCTOBER 21, 2019

# TABLE OF CONTENTS

| 1. | INTRODUCTION                         | 2 |
|----|--------------------------------------|---|
| 2. | ASBESTOS AND OTHER POTENTIAL HAZARDS | 2 |
| 3. | SEGREGATION OF CHP BUILDING          | 2 |
| 4. | DECOMMISSIONING                      | 3 |
| 5. | FINANCIAL CONSIDERATIONS             | 3 |

## 1. INTRODUCTION

The CHP facility is designed to serve the energy needs of the University at least until year 2050. However, the technical life of the CHP can be extended with routine maintenance and upgrades for necessary equipment. The Ohio State University has the authority to decide when to retire and decommission the CHP facility, at which time the University will instruct the Ohio State Energy Partners to initiate this decommissioning plan.

It should be noted that the CHP plant building also houses the central chillers and heating hot water heat exchangers which provide cooling and heating sources, respectively, for the University's campus on the west side of the Olentangy River. The CHP plant decommissioning plan considers the removal of all equipment related to combined heat and power operations while maintaining the building itself intact with the chilled water system, heating hot water system, and related auxiliary equipment.

## 2. ASBESTOS AND OTHER POTENTIAL HAZARDS

The CHP plant is being designed and will be built asbestos-free.

The CHP plant's hazardous materials log, which will initially be based on the construction bill of materials, will be used as the reference when detailed decommissioning plans are being developed.

The decommissioning plan shall include, if applicable, abatement plan for any hazardous materials that may be present when the plant is considered for decommissioning.

# 3. SEGREGATION OF CHP BUILDING

In addition to the combined heat and power generation equipment, the CHP plant building houses a central control room, electrical switchgear room, the central chillers along with heating hot water heat exchangers, distribution pumps, and associated auxiliary equipment including cooling towers. The decommissioning plan will be based on removing the CHP Generation Equipment (listed below) while maintaining the integrity of the building, the cooling and heating equipment, and associated auxiliaries.

#### **CHP Generation Equipment**

- The two Siemens STG-700 combustion turbines and auxiliaries<sup>1</sup>
- The Siemens SST-400 steam turbine generator and auxiliaries<sup>2</sup>
- The heat recovery steam generators (HRSGs) and auxiliaries<sup>3</sup>
- HRSG exhaust stacks
- Selective Catalytic Reduction (SCR) system including urea hydrolyzer
- The water-steam cycle equipment and auxiliaries<sup>4</sup>
- Electrical and controls systems for the equipment listed above

<sup>&</sup>lt;sup>1</sup> Combustion turbine generator auxiliaries include the air inlet filters and duct work, electrical switchgear and controls room, fuel gas compressors and delivery system, lube and control oil systems, the exhaust duct, the combustion turbine and generator enclosures, and other minor auxiliary equipment.

 $<sup>^{2}</sup>$  The steam turbine generator auxiliaries include the steam turbine control and stop valves, drain systems, and enclosures

<sup>&</sup>lt;sup>3</sup> The HRSG structure including all internal piping and heat exchangers, drains, fans, and pumps, safety valves, vents, and silencers

<sup>&</sup>lt;sup>4</sup> The water-steam cycle equipment includes the steam condenser and condensate pumps, cooling towers, feedwater pumps, all steam piping between the HRSGs and the steam turbine, gland seal system, steam turbine vacuum system, chemical dosing system, vents, drains, and silencers

Following the decommissioning of the CHP plant, a new heat source – based on best available technology available at the time of CHP decommissioning - will be installed for the heating hot water district heating system.

# 4. DECOMMISSIONING

A tower crane will be utilized to dismantle and remove the HRSG stacks, the steam condenser cooling towers, and all related vents and silencers from the roof of the HRSG building.

The Siemens SGT-700 gas turbines and their generators, and the Siemens SSG-400 steam turbine and its generator are skid-mounted units which can be disconnected and rigged using the turbine hall bridge crane in the CHP building, and loaded on flatbed trucks.

The HRSGs will be dismantled using a telescoping or crawler crane after the combustion and steam turbine generators and associated equipment are removed from the CHP building.

Other smaller equipment, such as controls, electrical equipment, pumps, and fans, can be removed using smaller cranes or forklifts.

Two lanes along John H. Herrick drive and a single lane on Vernon L. Tharp street along the west and south side of the CHP building would be closed during decommissioning as construction zone. Dismantled equipment would be loaded on flatbed trucks in-situ and taken off site.

## 5. FINANCIAL CONSIDERATIONS

#### a. Cost of decommissioning

Using 2019 US dollars, the cost of decommissioning and removal of the CHP equipment is considered to be approximately \$2 million. This estimate is based on a recent demolition experience executed by ENGIE (as the owner of the plant) at the Mt. Tom coal-fired power plant in Holyoke, Massachusetts.

#### b. Revenues from decommissioning

Any equipment that has a value to be re-purposed, such as the combustion turbine and steam turbine generators, shall be sold to the market. Most other metals, such as copper, steel, and iron, will be sold at respective junk metal value. As price of junk metal fluctuates, it is not possible to make an accurate estimate today for revenues from junk metal sales in 2050. However, it generally considered to be very close to the cost of decommissioning and dismantling of the CHP equipment.

#### c. Funding sources

The term for The Long-Term Lease and Concession Agreement for The Ohio State University Utility System (the "Concession Agreement") extends to year 2067. At the time of this decommissioning plan, the CHP is planned to operate until year 2050 and decommissioned then. Consequently, the existing funding mechanism where Ohio State Energy Partners provides the funds for capital projects and the University pays OSEP through the Variable Fee mechanism over a long-term period (20-yr is default) would apply to the decommissioning of the CHP. This foregoing document was electronically filed with the Public Utilities

Commission of Ohio Docketing Information System on

11/6/2019 11:31:42 AM

in

Case No(s). 19-1641-EL-BGN

Summary: Application Application Part 11 of 17 - Exhibits D-G electronically filed by Ms. Kari D Hehmeyer on behalf of Alexander, Trevor Mr. and THE OHIO STATE UNIVERSITY