

							MV	AC WIRING SCH	EDULE						Phone (852) 937-5150 7699 An Fax (852) 937-5822 Eden Pr Tol Free (888) 937-5150
CONDUCTOR LOCATION CODE	ORIGINATING EQUIPMENT	TERMINATING EQUIPMENT	Rated Vac (kV)	lac (A)	# OF TUBRINES	LENGTH (FT)	CONDUCTOR SIZE	CONDUCTOR MATERIAL	# OF PARALLEL CONDUCTORS	GROUND CONDUCTOR SIZE	GROUND CONDUCTOR MATERIAL	DRAWING REFERENCE	CONDUCTOR SPECIFICS		Warmood Periadonal Junion. Inc.
MV1.SUB-T25	SUB	T25	34.5	516	10	4,616	3#1250 KCMIL	AL	1	7#7	Copper Clad Steel	E.200	35kV, (3) 1/C, 100% insulation, 1/6 Cu CN, Type MV-90		
MV1.T25-10	T25	T10	34.5	412.8	8	10,172	3#1000 KCMIL	AL	1	787	Copper Clad Steel	E.200	35kV, (3) 1/C, 100% Insulation, 1/6 Cu CN, Type MV-90		
MV1.T10-09	T10	T09	34.5	361.2	7	2,161	3#750 KCMIL	AL	1	7#7	Copper Clad Steel	E-200	35kV, (3) 1/C, 100% Insulation, 1/6 Cu CN, Type MV-90		
MV1.T09-08	T09	T08	34.5	309.6	6	3,297	3#500 KCMIL	AL	1	7#7	Copper Clad Steel	E.200	35kV; (3) 1/C, 100% insulation, 1/3 Cu CN, Type MV-90		
MV1.T08-05 MV1.T05-04	T08 T05	T05 T04	34.5 34.5	258 206.4	5	2,679	3#500 KCMIL 3#4/0 AWG	AL	1	787	Copper Clad Steel Copper Clad Steel	E.200 E.200	35kV, (3) 1/C, 100% Insulation, 1/3 Cu CN, Type MV-90 35kV, (3) 1/C, 100% Insulation, 1/2 Cu CN, Type MV-90		
MV1.T04-03	T04	T03	34.5	154.8	3	1,777	3#4/0 AWG	AL	1	7#7	Copper Clad Steel	E200	35kV, (3) 1/C, 100% Insulation, 1/2 Cu CN, Type MV-90 35kV, (3) 1/C, 100% Insulation, 1/2 Cu CN, Type MV-90		
MV1.T03-02	T03	T02	34.5	103.2	2	1,878	3#1/0 AW/G	AL	1	7#7	Copper Clad Steel	E.200	35kV, (3) 1/C, 100% Insulation, 2/3 Cu CN, Type MV-90		Delgast
MV1.T02-01	T02	T01	34.5	51.6	1	2,213	3#1/0 AW/G	AL	1	7#7	Copper Clad Steel	E.200	35kV, (3) 1/C, 100% Insulation, 2/3 Cu CN, Type MV-90		Checkerk Deserve
MV1.T25-24	T25	T24	34.5	51.6	1	1,633	3#4/0 AW G	AL	1	7#7	Copper Clad Steel	E.200	35kV, (3) 1/C, 100% insulation, 1/2 Cu CN, Type MV-90		Arihili Danday
MV2.SUB-JB2/1	SUB	JB2/1	34.5	567.6	11	8,109	3#1250 KCMIL	AL	1	787	Copper Clad Steel	E.200	35kV, (3) 1/C, 100% Insulation, 1/6 Cu CN, Type MV-90		A 09/27/17 30% plons
MV2 JB2/1-T22	JB2/1	T22	34.5	103.2	2	2,964	3#4/0 AW/G	AL	1	7#7	Copper Clad Steel	E.200	35kV, (3) 1/C, 100% Insulation, 1/2 Cu CN, Type MV-90		B 10/03/17 Issued for Proc C 10/19/17 60% plans
MV2.T22-29	T22	T29	34.5	51.6	1	4,171	3#1/0 AWG	AL	1	787	Copper Clad Steel	E.200	35kV, (3) 1/C, 100% insulation, 2/3 Cu CN, Type MV-90		D 10/30/17 90% plans
MV2.T22-21 MV2.T21-20	T22 T21	T21 T20	34.5 34.5	103.2 51.6	2	1,417 3,551	3#1/0 AWG 3#1/0 AWG	AL	1	7#7 7#7	Copper Clad Steel Copper Clad Steel	E200 E200	35kV, (3), (3) 1/C, 100% insulation, 2/3 Cu CN, Type MV-90 35kV, (3), (3) 1/C, 100% insulation, 2/3 Cu CN, Type MV-90		Propered for:
MV2.JB2/1-T17	JB2/1	T17	34.5	206.4	4	2,718	3#750 KCMIL	AL	1	7#7	Copper Clad Steel	E.200	35kV, (3) 1/C, 100% insulation, 1/6 Cu CN, Type MV-90		17100
MV2.T17-15	T17	T15	34.5	154.8	3	4,579	3#500 KCMIL	AL	1	787	Copper Clad Steel	E.200	35kV, (3) 1/C, 100% Insulation, 1/3 Cu CN, Type MV-90		
MV2.T15-14	T15	T14	34.5	103.2	2	3,770	3#1/0 AW G	AL	1	7#7	Copper Clad Steel	E.200	35kV, (3) 1/C, 100% Insulation, 2/3 Cu CN, Type MV-90		111 Q
MV2.T14-13	T14	T13	34.5	51.6	1	1,517	3#1/0 AW G	AL	1	787	Copper Clad Steel	E.200	35kV, (3) 1/C, 100% Insulation, 2/3 Cu CN, Type MV-90		Site 1. Wh Clinton, IN
MV2.T15-07	T15	T07	34.5	103.2	2	2,790	3#4/0 AWG	AL	1	7#7	Copper Clad Steel	E.200	35kV; (3) 1/C, 100% Insulation, 1/2 Cu CN, Type MV-90		
MV2.T07-06	T07	T06	34.5	51.6	1	1,388	3#1/0 AW G	AL	1	7#7	Copper Clad Steel	E.200	35kV, (3) 1/C, 100% insulation, 2/3 Cu CN, Type MV-90		
MV2.T07-16	T07	T16	34.5	51.6	1	3,068	3#1/0 AW/G	AL	1	787	Copper Clad Steel	E.200	35kV, (3) 1/C, 100% Insulation, 2/3 Cu CN, Type MV-90		Trishe Wind (c/o Starwood Ram J Greenwich Office
MV3.SUB-T23	SUB	T23	34.5	567.6	11	12,285	3#1250 KCMIL	AL	1	787	Copper Clad Steel	E.201	35kV, (3) 1/C, 100% Insulation, 1/6 Cu CN, Type MV-90		Granwich, (
MV3.T23-28	T23	T28	34.5	154.8	3	2,947	3#1250 KCMIL	AL	1	7#7	Copper Clad Steel	E.201	35kV, (3) 1/C, 100% insulation, 1/6 Cu CN, Type MV-90		
MV3.T28-27	T28	T27	34.5	103.2	2	1,703	3#1/0 AWG	AL	1	787	Copper Clad Steel	E.201	35kV, (3) 1/C, 100% Insulation, 2/3 Cu CN, Type MV-90		
MV3.T27-26	T27	T26	34.5	51.6	1	1,780	3#1/0 AWG	AL	1	787	Copper Clad Steel	E.201	35kV, (3) 1/C, 100% insulation, 2/3 Cu CN, Type MV-90		
MV3.T28-33	T28	T33	34.5	154.8	3	5,853	3#750 KCMIL	AL	1	7#7	Copper Clad Steel	E.201	35kV, (3) 1/C, 100% insulation, 1/6 Cu CN, Type MV-90		
MV3.T33-32	T33	T32	34.5	103.2	2	1,314	3#1/0 AWG	AL	1	7#7	Copper Clad Steel	E.201	35kV, (3) 1/C, 100% Insulation, 2/3 Cu CN, Type MV-90		
MV3.T32-31	T32	T31	34.5	51.6	1	5,205	3#1/0 AWG	AL	1	787	Copper Clad Steel	E.201	35kV, (3) 1/C, 100% Insulation, 2/3 Cu CN, Type MV-90		
MV3.T33-34	T33	T34	34.5	154.8	3	1,674	3#4/0 AWG	AL	1	7#7	Copper Clad Steel	E.201	35kV, (3) 1/C, 100% Insulation, 1/2 Cu CN, Type MV-90		
MV3.T34-36	T34	T36	34.5	103.2	2	3,312	3#1/0 AWG	AL	1	787	Copper Clad Steel	E.201	35kV, (3) 1/C, 100% Insulation, 2/3 Cu CN, Type MV-90		
MV3.T36-37	T36	T37	34.5	51.6	1	1,301	3#1/0 AWG	AL	1	7#7	Copper Clad Steel	E.201	35kV; (3) 1/C, 100% insulation, 2/3 Cu CN, Type MV-90		
MV3.T34-39	T34	T39	34.5	51.6	1	5,680	3#1/0 AW G	AL	1	7#7	Copper Clad Steel	E.201	35kV; (3) 1/C, 100% Insulation, 2/3 Cu CN, Type MV-90		
MV4.SUB-T40	SUB	T40	34.5	516	10	29,905	3#1250 KCMIL	AL	1	7#7	Copper Clad Steel	E.201	35kV, (3) 1/C, 100% Insulation, 1/6 Cu CN, Type MV-90		
MV4.T40-46	T40	T46	34.5	309.6	6	2,581	3#1000 KCMIL	AL	1	787	Copper Clad Steel	E.201	35kV, (3) 1/C, 100% Insulation, 1/6 Cu CN, Type MV-90	No	rthwest
MV4.T46-45	T46	T45	34.5	258	5	3,997	3#1000 KCMIL	AL	1	7#7	Copper Clad Steel	E.201	35kV, (3) 1/C, 100% Insulation, 1/6 Cu CN, Type MV-90	1001	rinwest
MV4.T45-44 MV4.T44-JB4/1	T45 T44	T44 JB4/1	34.5 34.5	206.4	4	2,881 3,486	3#750 KCMIL 3#500 KCMIL	AL	1	787	Copper Clad Steel	E201 E201	35kV, (3) 1/C, 100% Insulation, 1/6 Cu CN, Type MV-90 35kV, (3) 1/C, 100% Insulation, 1/3 Cu CN, Type MV-90	- Ohi	io Wind
MV4.144-J04/1 MV4.IB4/1-T42	144 IR4/1	JB4/1 T42	34.5	154.8	3	3,460	345/0 AW/G	AL	1	7#7	Copper Clad Steel Copper Clad Steel	E.201	35kV, (3) 1/C, 100% insulation, 1/3 Cu CN, type MV-90 35kV, (3) 1/C, 100% insulation, 1/2 Cu CN, Type MV-90	-	
MV4.T42-49	T42	T49	34.5	103.2	2	6,471	3#4/0 AWG	AL	1	7#7	Copper Clad Steel	E.201	35kV, (3) 1/C, 100% Insulation, 1/2 Cu CN, Type MV-90	Pro	iect
MV4.T49-48	T49	T48	34.5	51.6	1	1,717	3#1/0 AW G	AL	1	7#7	Copper Clad Steel	E.201	35kV, (3) 1/C, 100% insulation, 2/3 Cu CN, Type MV-90		ing County, Ohi
MV4.T49-50	T49	T50	34.5	51.6	1	1,661	3#1/0 AWG	AL	1	7#7	Copper Clad Steel	E.201	35kV; (3) 1/C, 100% Insulation, 2/3 Cu CN, Type MV-90	• •	
MV4JB4/1-T43	JB4/1	T43	34.5	51.6	1	1,349	3#1/0 AWG	AL	1	787	Copper Clad Steel	E201	35kV, (3) 1/C, 100% Insulation, 2/3 Cu CN, Type MV-90		MVAC Wiring S
MV4JB4/1-T41	JB4/1	T41	34.5	51.6	1	1,386	3#1/0 AWG	AL	1	787	Copper Clad Steel	E.201	35kV, (3) 1/C, 100% Insulation, 2/3 Cu CN, Type MV-90		
												·	NOTES		
													 DISTANCES SHOWN ARE POINT TO POINT DISTANCES MEAS NOT ACCOUNT FOR WETHCAL LEWITHS ALL LEWITHS TO REFER TO MYAC STE PLANS FOR WENG ROUTING. 	JURED IN CAD. THEY DO BE FIELD VERIFIED.	Not For Constru Array Date 09/14/202 Date 10/20/2017
															the E800

1		2			3		4	5			6		7		8		
od Professional Servi	ces, inc.																Westwo
																	Phone (852) 927-5150 7699 Fax (852) 927-5822 Eden Tol Free (868) 927-5150 MM
																	tilumoned Perilational Sociols, in
																.	
							Multi-Ckt Separation								Multi-Ckt Separation		
Bore ID	Circuit	Sheet #	Bore Type	From	То	Cable Size	(center-center)	Bore ID	Circuit	Sheet #	Bore Type	From	То	Cable Size	(center-center)		
							(ft)								(ft)		
/V1.T02-T01.1	MV1	E.310 & E.312	COUNTY RD	T02	T01	1/0 AWG	N/A	MV3.T32-T31.1	MV3	E.315	WETLAND	T32	T31	1/0 AWG	N/A		
/V1.T03-T02.1	MV1	E.312	WETLAND	T03	T02	1/0 AWG	N/A	MV3.T32-T31.2	MV3	E.315 & E.322	COUNTY RD	T32	T31	1/0 AWG	N/A		
/V1.T05-T04.1	MV1	E.312 & E.317	COUNTY RD	T05	T04	4/0 AWG	N/A	MV3.T34-T36.1	MV3	E.322 & E.323	COUNTY RD	T34	T36	1/0 AWG	N/A		Designed
/V1.T08-T05.1	MV1	E.317 & E.318	COUNTY RD	T08	T05	500 MCM	N/A	MV3.T34-T39.1	MV3	E.329	WETLAND	T34	T39	1/0 AWG	3' (10' ROW)		Contrast Con
/V1.T09-T08.1	MV1	E.318	GAS PIPELINE	T09	T08	500 MCM	N/A	MV3.T34-T39.2	MV3	E.323 & E.329	COUNTY RD	T34	T39	1/0 AWG	3' (10' ROW)		Aritali Danim
/V1.T09-T08.2 /V1.T09-T08.3	MV1 MV1	E.318 E.318 & E.325	WETLAND COUNTY RD	T09 T09	T08 T08	500 MCM 500 MCM	N/A N/A	MV3.T34-T39.3 MV3.T28-T33.1	MV3 MV3	E.322 & E.323	COUNTY RD STATE HWY, GAS PIPE	T34 T28	T39 T33	1/0 AWG 750 MCM	3' (10' ROW) 3' (10' ROW)		
/V1.T25-T10.1	MV1	E.325 & E.325	COUNTY RD	T25	T10	1000 MCM	N/A N/A	MV3.T28-T33.1	MV3	E.321 & E.322 E.321	WETLAND	T28	T33	750 MCM	3' (10' ROW)		A 09/27/17 30% plons
/V1.T25-T10.1	MV1	E.325 & E.326	WETLAND	T25	T10	1000 MCM	N/A N/A	MV3.T23-T28.1	MV3	E.320 & E.321	COUNTY RD	T23	T28	1250 MCM	3' (10' ROW)		8 10/03/17 Issued for Pr
/V1.T25-T10.3	MV1	E.326 & E.327	COUNTY RD	T25	T10	1000 MCM	N/A	MV3.T23-T28.2	MV3	E.320	MVAC FDR2	T23	T28	1250 MCM	15' (20' ROW)		C 10/19/17 60% plans
/V1.SUB-T25.1	MV1	E.327	GAS PIPELINE	SUB	T25	1250 MCM	23' (76' ROW)	MV3.SUB-T23.1	MV3	E.320	WETLAND	SUB	T23	1250 MCM	12' (28' ROW)		D 10/30/17 90% plans
/V1.SUB-T25.2	MV1	E.327 & E.331	STATE HWY	SUB	T25	1250 MCM	23' (76' ROW)	MV3.SUB-T23.2	MV3	E.320 & E.327	COUNTY RD	SUB	T23	1250 MCM	18' (40' ROW)		Freezed for
/V1.SUB-T25.3	MV1	E.327 & E.331	GAS PIPELINE	SUB	T25	1250 MCM	23' (76' ROW)	MV3.SUB-T23.3	MV3	E.327	GAS PIPELINE	SUB	T23	1250 MCM	23' (76' ROW)		
/V2.T15-T14.1	MV2 MV2	E.313 & E.319	COUNTY RD COUNTY RD	T15	T14 T07	1/0 AWG	N/A 2' (10' ROW)	MV3.SUB-T23.4	MV3	E.327 & E.331	STATE HWY	SUB	T23	1250 MCM			1/14
AV2.T15-T07.1	MV2 MV2	E.318 & E.319 E.319	WETLAND	T15 T07	107 T16	4/0 AWG	3' (10' ROW) N/A	MV3.SUB-T23.5 MV4.T49-T50.1	MV3 MV4	E.327 & E.331 E.311	GAS PIPELINE WETLAND	SUB T49	T23 T50	1250 MCM 1/0 AWG	23' (76' ROW) N/A		
/V2.T07-T16.2	MV2	E.318 & E.319	COUNTY RD	T07	T16	1/0 AWG	3' (10' ROW)	MV4.T49-T50.2	MV4	E.311	WETLAND	T49	T50	1/0 AWG	N/A		
/V2.T17-T15.1	MV2	E.319	WETLAND	T17	T15	500 MCM	N/A	MV4.T49-T48.2	MV4	E.311	WETLAND	T49	T48	1/0 AWG	N/A		See L W
/V2.T17-T15.2	MV2	E.319	COUNTY RD	T17	T15	500 MCM	N/A	MV4.T42-T49.1	MV4	E.311 & E.316	COUNTY RD	T42	T49	4/0 AWG	N/A		
/V2.T17-T15.3	MV2	E.319 & E.326	WETLAND	T17	T15	500 MCM	N/A	MV4.T42-T49.2	MV4	E.316	COUNTY RD	T42	T49	4/0 AWG	N/A		
/V2.T17-T15.4	MV2	E.319 & E.326	WETLAND	T17	T15	500 MCM	N/A	MV4.T44-JB4/1.1	MV4	E.316 & E.324	COUNTY RD	T44	JB4/1	500 MCM	N/A		Triphe Wind
/V2.JB2/1-T17.1	MV2 MV2	E.326 & E.327 E.320	COUNTY RD	JB2/1	T17 T22	750 MCM 4/0 AWG	N/A 12' (28' ROW)	MV4.T46-T45.1	MV4	E.324 & E.330 E.324	COUNTY RD	T46	T45	1000 MCM	N/A		c/o Starwood Has 3 Greenwich Offic
//V2.JB2/1-T22.1 //V2.JB2/1-T22.2	MV2	E.320 & E.327	COUNTY RD	JB2/1 JB2/1	T22	4/0 AWG	12 (28 ROW) 18' (40' ROW)	MV4.T45-T44.1 MV4.T45-T44.2	MV4 MV4	E.324	WETLAND COUNTY RD	T45 T45	T44 T44	750 MCM 750 MCM	N/A N/A		Greenwich,
/V2.T22-T29.1	MV2	E.321 & E.328	COUNTY RD	T22	T29	1/0 AWG	N/A	MV4.T40-T46.1	MV4	E.329 & E.330	COUNTY RD	T40	T46	1000 MCM	N/A		
/V2.T22-T29.2	MV2	E.320 & E.321	COUNTY RD	T22	T29	1/0 AWG	N/A	MV4.SUB-T40.1	MV4	E.329	WETLAND	SUB	T40	1250 MCM	3' (10' ROW)		
/V2.T21-T20.1	MV2	E.314 & E.320	COUNTY RD	T21	T20	1/0 AWG	N/A	MV4.SUB-T40.2	MV4	E.323 & E.329	COUNTY RD	SUB	T40	1250 MCM	3' (10' ROW)		
/V2.T21-T20.2	MV2	E.320	WETLAND	T21	T20	1/0 AWG	N/A	MV4.SUB-T40.3	MV4	E.322 & E.323	COUNTY RD	SUB	T40	1250 MCM	3' (10' ROW)		
/V2.T21-T20.3	MV2	E.320	WETLAND	T21	T20	1/0 AWG	N/A	MV4.SUB-T40.4	MV4	E.321 & E.322	STATE HWY	SUB	T40	1250 MCM	3' (10' ROW)		
//V2.SUB-JB2/1.1 //V2.SUB-JB2/1.2	MV2 MV2	E.327 E.327 & E.331	GAS PIPELINE STATE HWY	SUB SUB	JB2/1 JB2/1	1250 MCM 1250 MCM	23' (76' ROW) 23' (76' ROW)	MV4.SUB-T40.5 MV4.SUB-T40.6	MV4 MV4	E.321 E.320 & E.321	WETLAND COUNTY RD	SUB SUB	T40 T40	1250 MCM 1250 MCM	3' (10' ROW) 3' (10' ROW)		
/V2.SUB-JB2/1.3	MV2	E.327 & E.331	GAS PIPELINE	SUB	JB2/1 JB2/1	1250 MCM	23' (76' ROW)	MV4.SUB-T40.7	MV4	E.320 & E.321 E.320	MVAC FDR2	SUB	T40	1250 MCM	15' (20' ROW)		
								MV4.SUB-T40.8	MV4	E.320	WETLAND	SUB	T40	1250 MCM	12' (28' ROW)		
								MV4.SUB-T40.9	MV4	E.320 & E.327	COUNTY RD	SUB	T40	1250 MCM	18' (40' ROW)		
								MV4.SUB-T40.10	MV4	E.327	GAS PIPELINE	SUB	T40	1250 MCM	23' (76' ROW)		
								MV4.SUB-T40.11	MV4	E.327 & E.331	STATE HWY	SUB	T40	1250 MCM	23' (76' ROW)		
								MV4.SUB-T40.12	MV4	E.327 & E.331	GAS PIPELINE	SUB	T40	1250 MCM	23' (76' ROW)		
																No	rthwest
																l Oh	io Wind
																Pro	oject
																Pauld	ling County, Oh
																Taulo	ing county, or
																	Boring Schedul
																	boring Schedul
																	Not For Consta
																	Array Date 09/14/2
																	Date: 10/30/2017
																	these E.801
																	5000E ELOUL 00071

Westwood	8	/	6		5			4	
Phone (162) 927-5150 7089 Anagram Drive Fax (162) 927-5150 Zoley Educ Prairie, NN 553 Tol Free (188) 927-5150 Westwood Soley Wasseved Perdinational Fonders Inc.		GENERAL							
	NER LOSSES TABLE BELOW FOR DB LOSSES FOR CSSES CALCULATED AT 0.35 DB PER KM, 0.1 DB PER CONNECTOR, AND INCLUDE 3DB	1. SEE FIBER OPTIC F EACH FIBER UNK. DB PER SPUCE, 0.			DSSES	IC POWER L			
		ALU NUNAL MARGE				# of CONNECTORS 6	# of FUSION SPLICES 3	MINIMUM	
			POWER LOSS	FIBER CABLE	FIBER CABLE	ADDITIONAL	ADDITIONAL	CO-LOCATED FIBER	
			(dB)	LENGTH (kM)	LENGTH (FT)	CONNECTORS	SPLICES	CABLE (12-STRAND S1)	CIRCUIT
			6.79243488	1.407	4616	0	0	FO.SUB-T25	1
Data			7.38514896 8.08225944	3.100	10172 5458	0	0	FO.T25-10 FO.T10-08	1
Deserve			7.85172396	1.005	3297	2	2	FO.T08-04	1
Aribili Daning			7.78579572	0.817	2679	2	2	FO.T04-03	1
Participation and an and an and an and an and an			7.71239988 6.48957036	0.607	1991 1777	2	2	FO.T03-01	1
A 09/27/17 30% plans			7.70034504	0.542	1///	2	2	F0.T01-02 F0.T02-MET.1	1
8 10/03/17 Issued for Procurement C 10/19/17 60% plans			7.73608284	0.675	2213	2	2	FO.MET.1-05	1
D 10/30/17 90% plans			8.13751968	1.821	5976	2	2	FO.T05-09	1
Frepared for			10.18989288 6.96664332	4.257	13966 6249	4	4	FO.T09-24 FO.SUB-24	1
			6.96664332 7.67420844	0.498	6249	2	2	F0.S08-24 F0.T25-24	1
WHIT							_		
an EtEA cor			7.48126764	3.375	11073	0	0	FO.SUB-T22	2
3000 R. 105-10- A			6.74496228 9.67494852	1.271 2.786	4171 9139	0 4	0 4	FO.T22-29 FO.T29-20	2
Site L. White Ave Clinton, IN 47842			9.67494852 6.67882068	1.082	3551	4	4	F0.T29-20 F0.T20-21	2
			11.14580904	3.559	11678	6	6	FO.T21-15	2
Trinke Wind Ohio, Li			8.06401716	1.611	5287	2	2	FO.T15-13	2
c/o Starwood Bangy Gos J Greenvich Office Park, 3			6.46183356 8.1998208	0.462	1517 6560	0	2	FO.T13-14 FO.T14-07	2
J Greenwich Office Park, 3 Greenwich, CT 6660			7.97536608	1.358	4456	2	2	FO.T06-16	2
			13.36844352	6.481	21264	8	8	FO.T16-SUB	2
									3
			7.6105638 6.61438596	3.744	12285 2947	0	0	FO.SUB-T23 FO.T23-28	3
			7.87156644	1.062	3483	2	2	FO.T28-26	3
			6.4898904	0.543	1780	0	0	FO.T26-27	3
			8.30607408	2.303	7556	2	2	FO.T27-33	3
			8.19544692 6.8552694	1.987	6519 5205	2	2	F0.T33-31 F0.T31-32	3
			7.81875984	0.911	2988	2	2	FO.T32-34	3
			7.99211484	1.406	4613	2	2	FO.T34-37	3
			6.43879068	0.397	1301	0	0	FO.T37-36	3
			8.45926656 12.93387252	2.741 8.668	8992 28439	2	2	FO.T36-39 FO.T36-SUB	3
							-		
Jorthwest			10.96560648	9.902	32486	2	2	FO.SUB-T46	4
			8.23374504 9.76541316	2.096	6878 9987	2 4	2 4	FO.T46-44 FO.T44-49	4
Dhio Wind			6.48316956	0.523	1717	4	4	FO.T49-48	4
			7.86036504	1.030	3378	2	2	FO.T48-50	4
roject	I P		8.36752176	2.479	8132	2	2	F0.T50-42	4
ulding County, Ohio	Pa		7.64711172 7.7917698	0.420	1379 2735	2	2	FO.T42-43 FO.T43-41	4
			9.52709004	2.363	7753	4	4	FO.T41-45	4
Fiber Optic Schedul			8.20174104	2.005	6578	2	2	FO.T45-40	4
			9.4902654	9.115	29905	0	0	FO.J40-SUB	4
			(dB)	(kM)	(ft)				
			(00)	102.91	337,637	Total			
			13.37	9.90	32,486	Max			
Nat Res Constant			6.44	0.40	1,301	Min			
Not For Construction Array Date 09/14/2017									
Date 10/30/2017									
thest E802									
0007186_E800 S									

HARMONICS STUDY

Northwest Ohio Wind Project

Paulding, Ohio October 20, 2017

Prepared for:

Prepared by:

Westwood

Project Name: NW OH Wind Project						
Title J.O. or W.O. Number						
Harmonics Study	0007186.00					

Арр	rovals	Revision	Date	Description	
Preparer(s) Name	Reviewer(s) Name	Number	Date	Description	
Josh Venden	Drew Szabo	0	10/20/2017	Original Release	

TABLE OF CONTENTS

INTRODUCTION	4
OBJECTIVE	4
INPUTS & ASSSUMPTIONS	
METHODOLOGY	5
CONCLUSION	6

APPENDIX A: ETAP MODEL INPUTS	А
APPENDIX B: HARMONIC SPECTRUM PLOTS	В
APPENDIX C: FREQUENCY SCAN SUMMARY REPORTS	С

INTRODUCTION

NW OH Wind Project is a 100 MW wind generation installation in Paulding, OH consisting 42 of GE 2.5 MW wind turbines. The turbines are grouped into four medium voltage (MV) feeders with 10 turbines on Feeders 1 and 4 and 11 turbines on Feeders 2 and 3. The feeders are connected to a main power transformer that steps the voltage up to 138kV where it interconnects with the AEP transmission system via a short overhead line segment.

OBJECTIVE

The objectives of this study are to identify the natural resonance of the collector system for various operating configurations as well as determine the total harmonic distortion (THD) for the current and voltage at the point of interconnection (POI). Frequency scan analysis for several collector system configurations will be performed to identify the natural resonant frequencies with different components of the collector system in-service to represent a range of operating conditions. Resonance at the 3rd, 5th, 7th, 11th, or 13th harmonics typically cause the greatest problems for power system equipment. An analysis of the voltage and current waveforms within the plant and at the POI will determine if there are any harmonic resonance issues due to the PV plant being interconnected at the proposed location. Verify that harmonic distortion levels within the plant and at the POI are within the acceptable ranges defined in the IEEE 519 standard. Voltage distortion due to harmonics can cause excessive heating of rotating machines, failure of capacitor banks and other increased wear and tear on equipment. Current distortion can be less of an issue but is still important to identify and mitigate for operation of the PV plant without adverse effects on the plant, power system or neighboring facilities.

INPUTS & ASSSUMPTIONS

- Power flow analysis performed with ETAP v16.0.0C power system simulation software.
- Medium voltage AC collector electrical layout is per the Westwood Professional Services Electrical Drawings, MVAC Collection One-Line Diagrams E.200 & E.210.
- ETAP model parameters for equipment such as turbines (WTG), step-up transformers (GSU) and main power transformer (MPT) based on manufacturer data when available or typical ETAP values when information is not available.
- The harmonic profile for the existing utility system without the Northwest Ohio wind plant connected was unavailable at the time of this report. Wind turbine harmonic profile data provided by GE.
- ETAP model parameters for MV cables based on thermal analysis using CYME Cymcap Underground Cable Thermal Analysis software.
- ETAP model parameters for overhead transmission line data based on ETAP library of standard overhead conductors.
- ETAP model parameters for utility equivalent impedance information provided by AEP.
- Appendix C shows the various ETAP inputs used.
- The 2.5 MW GE wind turbines are capable of delivering a maximum leading or lagging power factor of 0.9
- The grounded wye connection of the main power transformer secondary is connected to ground reactor of 0.6 ohms.
- The MPT has a load tap changer (LTC) on the high side windings which maintains a voltage of 1.0 pu on the low-side transformer bus.

METHODOLOGY

- This calculation utilizes the ETAP Harmonic Load Flow Analysis module, which employs the Newton-Raphson method for power flow iterative solution. See Appendix A for the ETAP Load Flow and Losses output reports.
- A frequency scan is performed for several different operating configurations to ensure parallel or series resonance does not occur at any of the more problematic harmonic frequencies (i.e. 3rd, 5th, 7th, 11th, 13th).
- Series resonant frequencies can create problems if there are high levels of harmonic voltage distortion already existing in the utility system, however this is not a common occurrence.
- Parallel resonant frequencies can create problems if there are other harmonic sources near the wind farm with similar resonant frequencies. Parallel resonance can result in large voltages at capacitor bank terminals during switching which can lead to premature equipment failure.
- An analysis of the total harmonic distortion (current and voltage) at the POI was performed to determine if the PV plant interconnection results in any harmonic distortion exceeding the limits defined in IEEE Standard 519-2014. The harmonic voltage distortion limits are shown in Table 1 harmonic current distortion limits from IEEE-519-2014 (Table 3) are shown below.

Bus voltage V at PCC	Individual harmonic (%)	Total harmonic distortion THD (%)
$V \le 1.0 \text{ kV}$	5.0	8.0
$1 \text{ kV} \le V \le 69 \text{ kV}$	3.0	5.0
$69 \text{ kV} \le V \le 161 \text{ kV}$	1.5	2.5
$161 \text{ kV} \le V$	1.0	1.5ª

Table 1—Voltage distor	tion limits
------------------------	-------------

^aHigh-voltage systems can have up to 2.0% THD where the cause is an HVDC terminal whose effects will have attenuated at points in the network where future users may be connected.

Table 3—Current distortion I	imits for systems rated above 69 kV through 161 kV
------------------------------	--

	1	Maximum ha ir	rmonic curi n percent of		n	
	Indi	vidual harmo	onic order (o	dd harmonic	(s) ^{a, b}	
$I_{\rm sc}/I_{\rm L}$	$3 \le h \le 11$	$11 \le h \le 17$	17≤h<23	$23 \le h \le 35$	$35 \le h \le 50$	TDD
$< 20^{c}$	2.0	1.0	0.75	0.3	0.15	2.5
20<50	3.5	1.75	1.25	0.5	0.25	4.0
$50 \le 100$	5.0	2.25	2.0	0.75	0.35	6.0
100 < 1000	6.0	2.75	2.5	1.0	0.5	7.5
>1000	7.5	3.5	3.0	1.25	0.7	10.0

*Even harmonics are limited to 25% of the odd harmonic limits above.

^bCurrent distortions that result in a dc offset, e.g., half-wave converters, are not allowed.

 $^{\circ}$ All power generation equipment is limited to these values of current distortion, regardless of actual I_{sc}/I_{L}

where

Isc = maximum short-circuit current at PCC

IL = maximum demand load current (fundamental frequency component)

at the PCC under normal load operating conditions

CONCLUSION

- The first configurations analyzed were with all collection feeders online. The utility equivalent impedance was modeled for the current intact transmission system as well as an equivalent impedance for an N-1 contingency configuration and an estimated future (2022) utility equivalent impedance.
- 14 additional scans were performed for various combinations of feeders in-service with the current intact system utility equivalent information.
- Frequency scans were also run at the MV buses of the closest and farthest wind turbines on the collection system.
- Additionally, all scenarios were run with the 4 Mvar substation cap bank in and out of service.
- Appendix C shows the frequency scan plots for all study cases, spikes in the plot represent the parallel resonant frequencies, dips or troughs in the plot represent series resonant frequencies.
- The following table shows a summary of the parallel resonant frequencies for the different configurations and indicates parallel resonant frequencies at the 11th harmonic with the capacitor bank online. This could create issues during capacitor bank switching if nearby harmonic sources also have similar parallel resonance.

Study Case	Resonant Frequency w/out Cap	Resonant Frequency with Cap
Current System Intact	12	11
Timber Switch Contingency	12	11
Future (2022) System	13	11
Feeder 1 Only	21	14
Feeder 2 Only	22	14
Feeder 3 Only	19	13
Feeder 4 Only	15	12
Feeders 1 & 2	17	13
Feeders 1 & 3	16	12
Feeders 1 & 4	14	11
Feeders 2 & 3	16	12
Feeders 2 & 4	14	12
Feeders 3 & 4	13	11
Feeders 1, 2 & 3	15	12
Feeders 1, 2 & 4	13	11
Feeders 1, 3 & 4	13	11
Feeders 2, 3 & 4	13	11
T-25 (Closest)	13	11
T-48 (Farthest)	13	11
WindFree (0kW 400kvar)	12	11

Table 1: Resonant Frequency Summary

- Series resonant frequencies typically fall on even numbered harmonics which would indicate these should not pose any detrimental impacts to the wind farm or other nearby interconnected customers.
- Total Harmonic Current Distortion (THD) at the POI is summarized in the following table and plot. It can be seen that the THID levels at the POI are well within the limits established by IEEE 519-2014.

Maximun	n Demand L	oad Current I _L :	45	8.54 A								
Harmonic Order	% of I_L	IEEE Limit		Harmonic Order	% of Fund Amps	IEEE Limit	Harmonic Order	% of Fund Amps	IEEE Limit	Harmonic Order	% of Fund Amps	IEEE Limit
THD	0.39	2.5		14	0.02	0.25	27	0	0.3	40	0	0.0375
2	0.03	0.5		15	0	1	28	0	0.075	41	0	0.15
3	0	2		16	0	0.1875	29	0	0.3	42	0	0.0375
4	0.01	0.5		17	0.01	0.75	30	0	0.075	43	0	0.15
5	0.08	2		18	0	0.1875	31	0	0.3	44	0	0.0375
6	0	0.5		19	0	0.75	32	0.01	0.075	45	0	0.15
7	0.12	2		20	0	0.1875	33	0	0.3	46	0	0.0375
8	0.01	0.5		21	0	0.75	34	0	0.0375	47	0	0.15
9	0	2		22	0	0.075	35	0	0.15	48	0	0.0375
10	0.01	0.25		23	0	0.3	36	0	0.0375	49	0	0.15
11	0.03	1		24	0	0.075	37	0	0.15	50	0	0.0375
12	0	0.25		25	0	0.3	38	0	0.0375			
13	0.36	1		26	0	0.075	39	0	0.15			

Table 2: Current Harmonic Distortion Summary

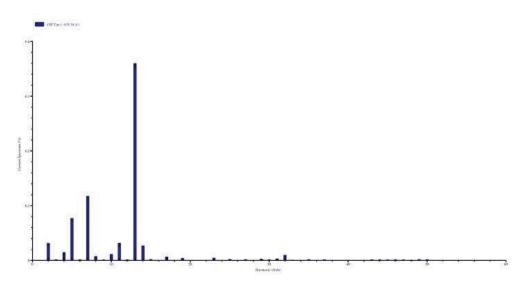
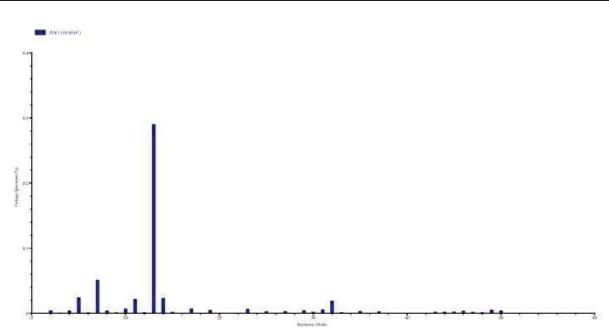



Figure 1: Current Harmonic Distortion Plot

• A Total Harmonic Voltage Distortion (THD) summary at the POI is also shown below in Table 3. It can be seen that the THID levels at the POI are well within the limits established by IEEE 519-2014.

	Fundamer	ital Voltage V _F :	131.1 k	V								
Harmonic			Har	monic			Harmonic			Harmonic		
Order	% of V _F	IEEE Limit	0	rder	% of V _F	IEEE Limit	Order	% of V_F	IEEE Limit	Order	% of V _F	IEEE Limit
THD	0.39	2.5		14	0.02	1.5	27	0	1.5	40	0	1.5
2	0	1.5		15	0	1.5	28	0	1.5	41	0	1.5
3	0	1.5		16	0	1.5	29	0	1.5	42	0	1.5
4	0	1.5		17	0.01	1.5	30	0	1.5	43	0	1.5
5	0.03	1.5		18	0	1.5	31	0.01	1.5	44	0	1.5
6	0	1.5		19	0	1.5	32	0.02	1.5	45	0	1.5
7	0.05	1.5		20	0	1.5	33	0	1.5	46	0	1.5
8	0	1.5		21	0	1.5	34	0	1.5	47	0	1.5
9	0	1.5		22	0	1.5	35	0	1.5	48	0	1.5
10	0.01	1.5		23	0.01	1.5	36	0	1.5	49	0.01	1.5
11	0.02	1.5		24	0	1.5	37	0	1.5	50	0	1.5
12	0	1.5		25	0	1.5	38	0	1.5			
13	0.31	1.5		26	0	1.5	39	0	1.5			

Table 3: Voltage Harmonic Distortion Summary

Figure 2: Voltage Harmonic Distortion Plot

- Given the relatively low level of voltage harmonic distortion and the presence of series resonance at even harmonics, the likelihood of the Trishe Wind installation experiencing negative effects from harmonics is low.
- The presence of parallel resonant frequencies at the 11th and 13th harmonics indicates a potential issue if there are other harmonic sources with similar resonant frequencies. This would not warrant any immediate action as far as harmonic filters or other mitigation. However, if problems are suspected, RMS data logger metering can be installed to monitor and record the harmonic performance of the wind farm and utility system interconnected to determine problem harmonics and remedy them accordingly.

Power Grid Editor - Haviland	23
Info Rating Short Circuit Time Domain Harmonic Reliab	
	Nitty Energy Price Remarks Comment
138 kV Swing	J.
Grounding	
<u>K</u>	
SC Rating	SC Impedance (100 MVAb)
MVAsc X/R kAsc	% R % X
3-Phase 1723.7 4.375 7.211	Pos. 1.29271 5.65562
	Neg. 1.29271 5.65562
1-Phase 1612.8 537.6 5.068 6.747	Zero 1.35513 6.86778
sqrt(3)VII If Vin If	Zero 1.35513 6.66776
Power Grid Editor - Future System (2022)	
Info Rating Short Circuit Time Domain Harmonic Reliab	ility Energy Price Remarks Comment
138 kV Swing	
Grounding	
SC Rating	SC Impedance (100 MVAb)
MVAsc MVAsc X/R kAsc	% R % X
3-Phase 2145 4.375 8.974	Pos. 1.03881 4.5448
	Neg. 1.03881 4.5448
1-Phase 1875 625 5.068 7.844	Neg. 1.03881 4.5448

Figure 3: Utility Equivalent Data

	Reliabili	ty		Remarks		Comment
nfo	Ratir	ng Impe	dance	Тар	Grounding	Protection Harmon
70.3	2 70.2 70	.2 MVA				138 34.5 13.8 kV
Imped	dance					Z Variation
		itive	Ze	no		
	% Z	X/R	% Z	X/R	MVA Base	@ - 5 % Tap
PS	10.103	40.4	9.903	39.6	70.2	0 %
n T	10 204	20.20	14 501	22.00	70.0	
PT	16.204	36.38	14.561	32.69	70.2	@+5%Tap
ST	4.192	12.2	3.765	10.95	70.2	0 %
Note	ad Losses	(Inhalanced	and Flow ont	vì		7 Tolerance
No Lo			Load Flow onl	y) % G	% В	Z Tolerance
		(Unbalanced % FLA 0		10	% B 0	Z Tolerance
Po	sitive	% FLA 0	kW 0	% G 0	0	
Po	8	% FLA	kW	%G		
Po	sitive	% FLA 0	kW 0	% G 0 0	0	
Po	sitive	% FLA 0	kW 0	% G 0 0	0	
Po	sitive	% FLA 0	kW 0	% G 0 0	0	

Figure 4: Main Power Transformer Impedance

	Reliability		Ren	narks		Commer	t
Info	Rating	Impedance	Tap	Grounding	Sizing	Protection	Harmonie
2.75 M	/A ANSI Lic	quid-Fill Other 6	5 C			34.5	0.69 kV
Impedan	ce					Z Base	
	%Z	X/R	R/X	%X	%R		1993
Positive	5.75	9.03	0.111	5.715	0.633		MVA
Zero	5.75	9.03	0.111	5.715	0.633		2.75
2010	0.70	0.00		3.713	0.055	Ot	her 65
	Typical	Z&X/R	Typical X/R]			
Z Variatio		% Тар	%Z	% Z Va		Z Toler	ance
@	<u></u>	% Tap	5.75			ž.	0 %
	Test Data (l ositive	Used for Unbalar % FLA 0	nced Load Flov kW 0	v only)	% G 0	% B 0	
	Zero	0	0		0	0	
	d Delta Wind	ling	Zero Seq.	Impedance		Typical Value	

Figure 5: Step-Up Transformer Impedance Data

Rating Imp/	Model Turbin	e Wind	Controls	Pitch Control	Inertia	lime Domai	n Relia	bility F
Generic 0.69 kV	2.5 MW					Voltage	e Control	
Locked Rotor	ANS	SI Short-Cir			Parame	ters		
LRC 600 3	. 0	Std MF	Xsc 20	1/2 cy	Xo	20	X2	20
PF 11.15		Xsc	20	1.5-4 cy	X/R	45.093	Td'	0.2
Grounding								
Model Model Typ WT3G X'' 0.2	e • 11 0	T2 0		T3 0	Lvplsw		Sample	Data
Lvpl1	Lvpl2	zerox		brkpt	mpwr			
1.11	0	0.5	1	0.9	0			
	Current Injectio	n						

Figure 6: Turbine Impedance/Short Circuit Data

Amp	pacity Im	npedance Physical (Cable Pulling	6				77						
		Phase		Ground/Neutral		R	х	Ĺ	Y	Ro	Xo	Lo	Yo	Rdc
	Avail.	Code	Size	#	Size	90°C	60 Hz	60 Hz	60 Hz	90°C	60 Hz	60 Hz	60 Hz	25°C
1	Yes	1/0 - 2/3 CN	1/0	18	16	0.24087	0.05182	0.00014	1.77E-05	0.35886	0.05482	0.00015	1.77E-05	0.1859
2	Yes	4/0 - 1/2 CN	4/0	17	14	0.11303	0.04679	0.00012	2.2E-05	0.28416	0.07373	0.0002	2.2E-05	0.08673
3	Yes	500 - 1/3 CN	500	16	12	0,4939	0.04115	0.00011	3.05E-05	0.16756	0.04488	0.00012	3.05E-05	0.0361
4	Yes	750 - 1/6 CN	750	19	14	0.0343	0.03865	0.0001	3.56E-05	0.18978	0.05914	0.00016	3.56E-05	0.0248
5	Yes	1000 - 1/6 CN	1000	25	14	0.02568	0.03703	0.0001	3.98E-05	0.20941	0.07373	0.0002	3.98E-05	0.01814
6	Yes	1250 - 1/6 CN	1250	20	12	0.02048	0.03537	9E-05	4.36E-05	0.23977	0.09952	0.00026	4.36E-05	0.01422
												10		

Figure 7: Cable Impedance Data

We	estw	<i>l</i> ood

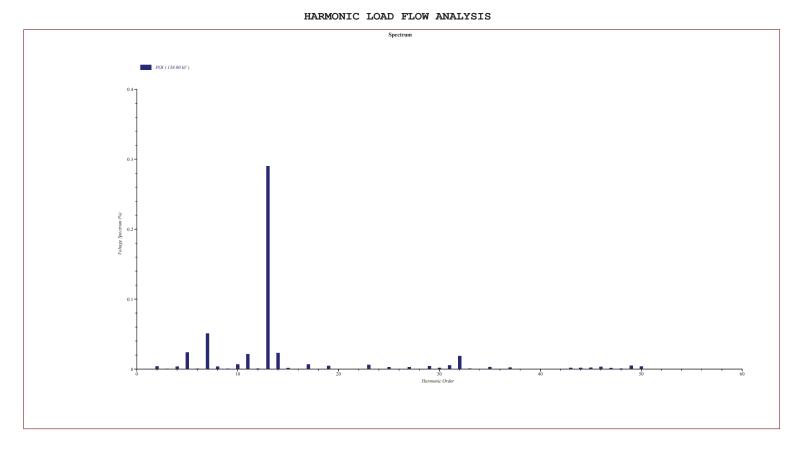
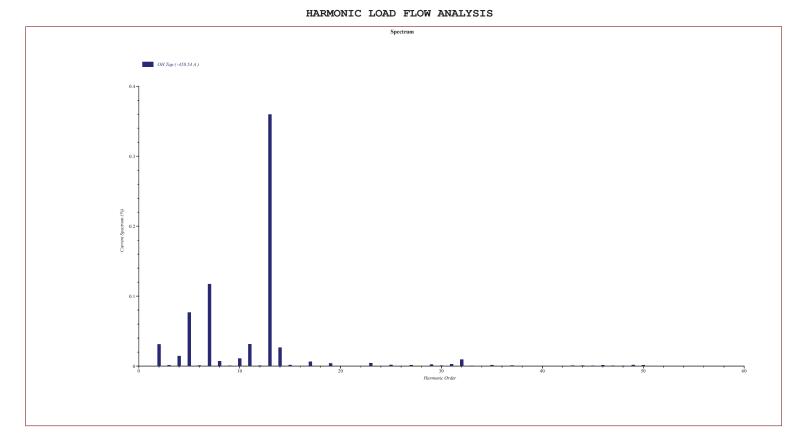
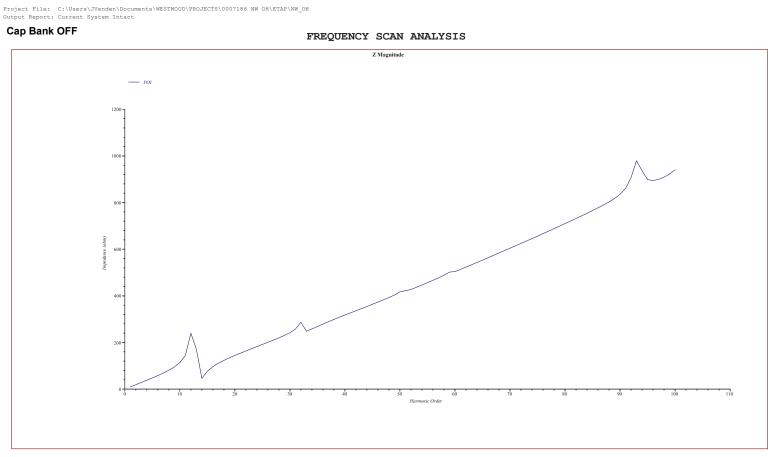

larmonic Cu	rrent co	ntent tran	formed fro	om 2500	kVA base to 275	OkVA
requency	Order	ZWTGN1	IWTGN1	Z'TRF	IWTGN2 p.u. IV	VTGN2 %
120	2	1.4934	0.0007	-0.52%	0.000702446	0.07024%
180	3	0.9742	0.0003	-0.52%	0.000301610	0.03016%
240	4	0.7365	0.0003	-0.52%	0.000302133	0.03021%
300	5	0.7566	0.0015	-0.52%	0.001510381	0.15104%
360	6	0.9617	0.0002	-0.52%	0.000201087	0.02011%
420	7	1.1793	0.0019	-0.52%	0.00190841.5	0.19084%
480	8	1.4439	0.0001	-0.52%	0.000100361	0.01004%
540	9	1.7393	0.0001	-0.52%	0.000100300	0.01003%
600	10	2.0955	0.0001	-0.52%	0.000100249	0.01002%
660	11	2.5326	0.0002	-0.52%	0.000200411	0.02004%
720	12	3.1029	0.0001	-0.52%	0.000100168	0.01002%
780	13	3.9474	0.0003	-0.52%	0.000300396	0.03004%
840	14	5.3926	0.0001	-0.52%	0.000100097	0.01001%
900	15	8.3778	0.0001	-0.52%	0.000100062	0.01001%
960	16	16.9707	0	-0.52%	0.000000000	0.00000%
1020	17	13.525	0.0001	-0.52%	0.000100038	0.01000%
1020	18	5.8805	0	-0.52%	0.000000000	0.00000%
1140	19	3.2628	0.0001	-0.52%	0.000100160	0.010029
1200	20	2.0024	0.0001	-0.52%	0.000000000	0.000009
1260	20	1.2792	0	-0.52%	0.000000000	0.000009
1320	21	0.8236	0		0.000000000	0.000009
			-	-0.52% -0.52%		0.020189
1380	23	0.5726	0.0002		0.000201833	
1440	24	0.5534	0	-0.52%	0.00000000	0.000009
1500	25	0.6856	0.0001	-0.52%	0.000100764	0.010089
1560	26	0.8592	0	-0.52%	0.00000000	0.000009
1620	27	1.0333	0.0002	-0.52%	0.000201012	0.020109
1680	28	1.2015	0	-0.52%	0.00000000	0.000009
1740	29	1.3641	0.0002	-0.52%	0.000200765	0.02008%
1800	30	1.5197	0.0002	-0.52%	0.000200687	0.02007%
1860	31	1.6686	0.0002	-0.52%	0.00020062.5	0.02006%
1920	32	1.8121	0.0003	-0.52%	0.000300863	0.03009%
1980	33	1.95	0.0001	-0.52%	0.000100267	0.01003%
2040	34	2.0832	0	-0.52%	0.000000000	0.00000%
2100	35	2.2126	0.0001	-0.52%	0.000100236	0.01002%
2160	36	2.3385	0	-0.52%	0.000000000	0.00000%
2220	37	2.4618	0.0001	-0.52%	0.000100212	0.01002%
2280	38	2.5829	0	-0.52%	0.000000000	0.00000%
2340	39	2.7018	0	-0.52%	0.000000000	0.00000%
2400	40	2.8184	0	-0.52%	0.000000000	0.00000%
2460	41	2.9328	0	-0.52%	0.000000000	0.00000%
2520	42	3.0454	0	-0.52%	0.000000000	0.00000%
2580	43	3.1568	0.0001	-0.52%	0.000100165	0.01002%
2640	44	3.2672	0.0001	-0.52%	0.000100159	0.010029
2700	45	3.3764	0.0003	-0.52%	0.000300463	0.03005%
2760	46	3.4847	0.0002	-0.52%	0.000200299	0.020039
2820	47	3.592	0.0001	-0.52%	0.000100145	0.010019
2880	48	3.6984	0.0001	-0.52%	0.000100141	0.010019
2880	48	3.804	0.0001	-0.52%	0.000300411	0.03004%
	49	J.004				

Figure 8: Wind Turbine Harmonic Profile

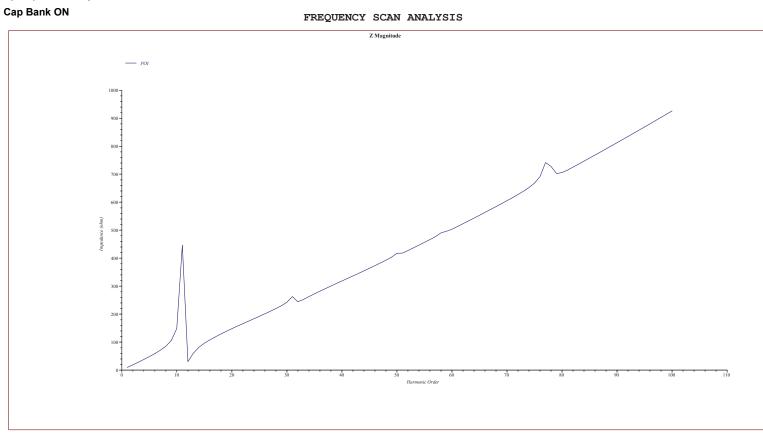


APPENDIX B: HARMONIC SPECTRUM PLOTS

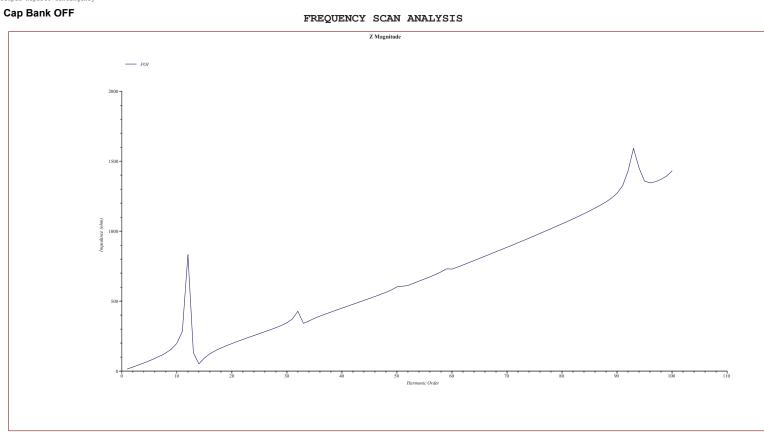
		ETAP		
		LIAF		
Project:	NW OH WIND	16.0.0C	Date:	10-20-2017
Location:	Paulding, OH		SN:	WESTWOOD3
Contract:			Revision:	100% GEN
Engineer:	Josh Venden	Study Case: Voltage THD	Config.:	HarmonicGen



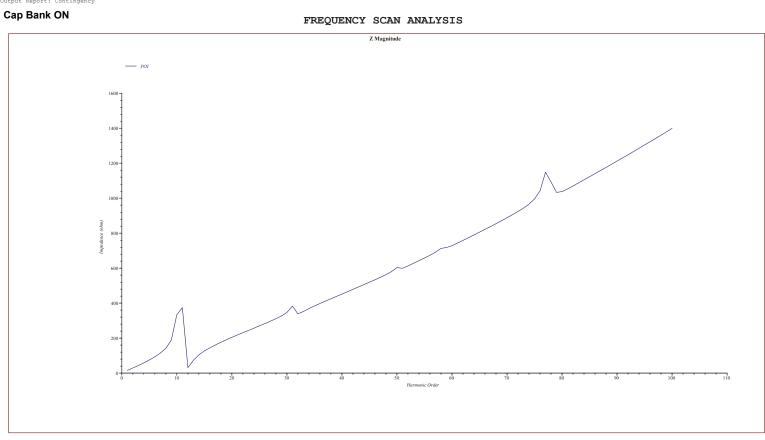
ETAP	ETAP
16.0.0C Date: 10-20-2017	NW OH WIND 16.0.0C
SN: WESTWOOD3	Paulding, OH
Revision: 100% GEN	
Study Case: Voltage THD Config.: HarmonicGen	Josh Venden Study Case: Voltage THD
16.0.0C Date: 10-20-2017 SN: WESTWOOD3 Revision: 100% GEN	NW OH WIND 16.0.0C Paulding, OH



APPENDIX C: FREQUENCY SCAN SUMMARY REPORTS

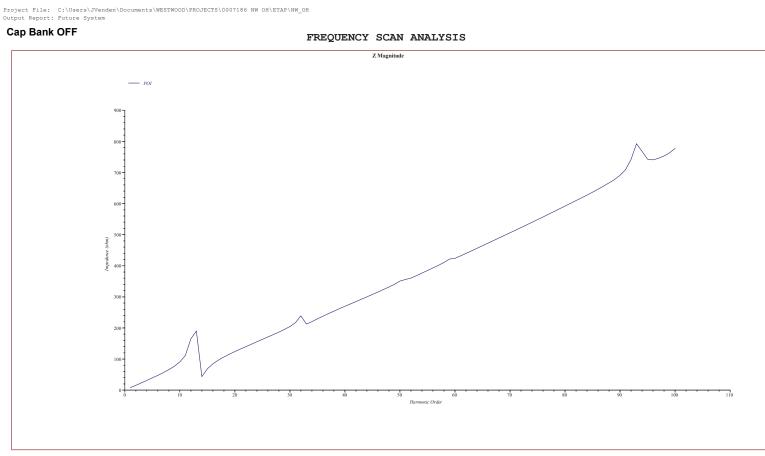


		ETAP		
Project:	NW OH WIND	16.0.0C	Date:	10-13-2017
Location:	Paulding, OH		SN:	WESTWOOD3
Contract:			Revision:	100% GEN
Engineer:	Josh Venden	Study Case: Freq Scan	Config.:	HarmonicGen

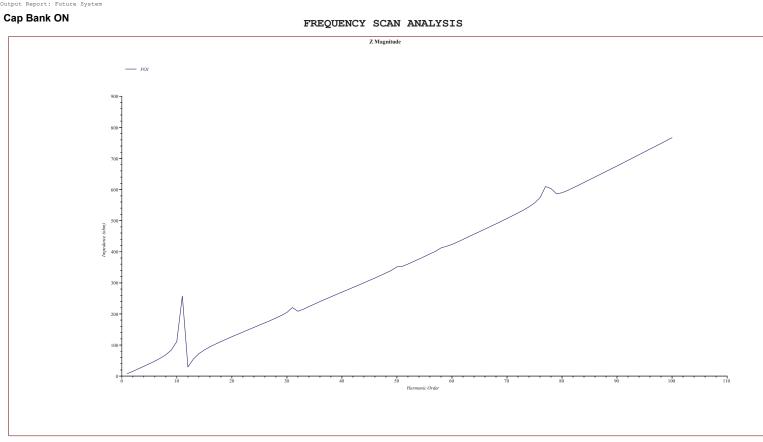


Project File: C:\Users\JVenden\Documents\WESTWOOD\PROJECTS\0007186 NW OH\ETAP\NW_OH Output Report: Current System Intact

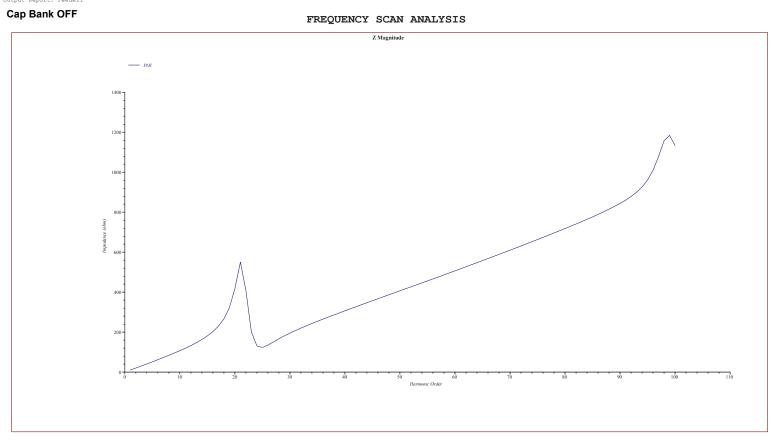
		ETAP		
Project:	NW OH WIND	16.0.0C	Date:	10-13-2017
Location:	Paulding, OH		SN:	WESTWOOD3
Contract:			Revision:	100% GEN
Engineer:	Josh Venden	Study Case: Freq Scan	Config.:	HarmonicGen

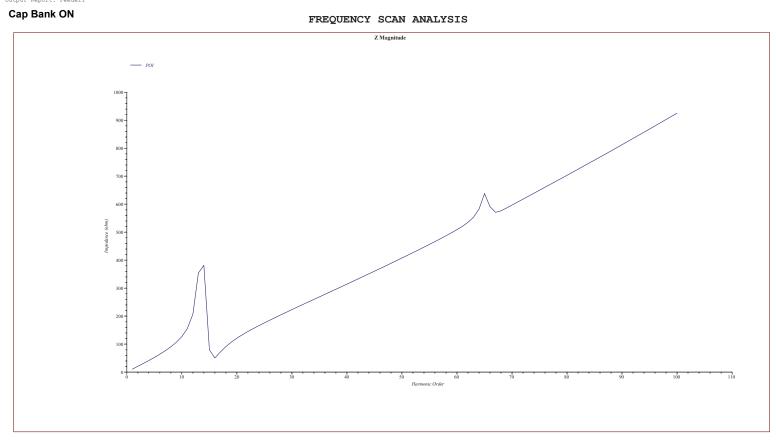


		ETAP		
Project:	NW OH WIND	16.0.0C	Date:	10-13-2017
Location:	Paulding, OH		SN:	WESTWOOD3
Contract:			Revision:	100% GEN
Engineer:	Josh Venden	Study Case: Freq Scan	Config.:	HarmonicGen

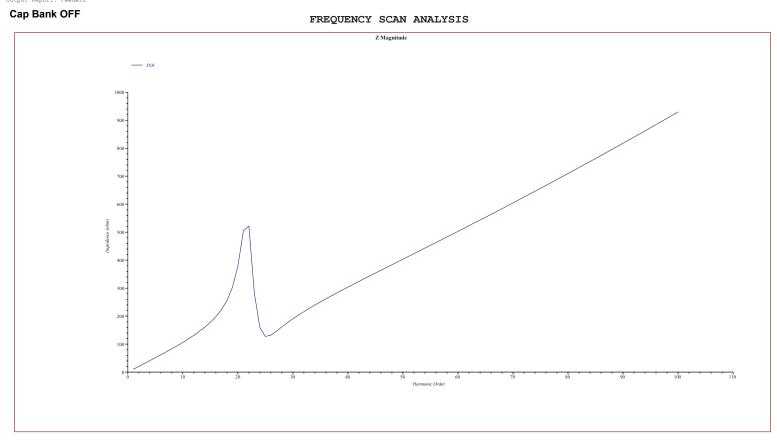


Project File: C:\Users\JVenden\Documents\WESTWOOD\PROJECTS\0007186 NW OH\ETAP\NW_OH Output Report: Contingency

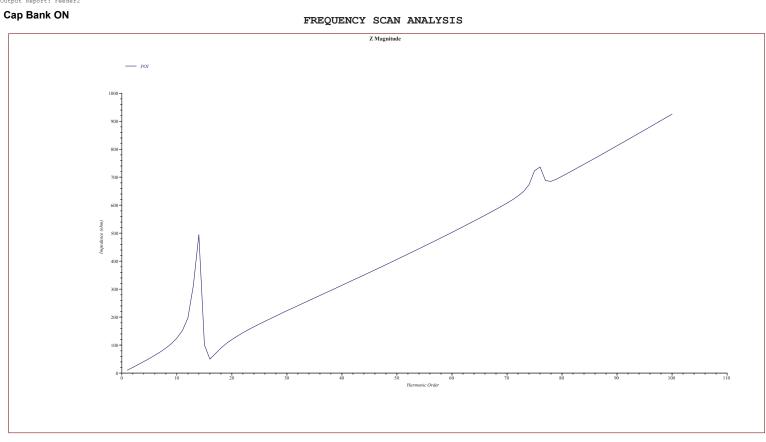

		ETAP		
Project:	NW OH WIND	16.0.0C	Date:	10-13-2017
Location:	Paulding, OH		SN:	WESTWOOD3
Contract:			Revision:	100% GEN
Engineer:	Josh Venden	Study Case: Freq Scan	Config.:	HarmonicGen


		ETAP		
Project:	NW OH WIND	16.0.0C	Date:	10-13-2017
Location:	Paulding, OH		SN:	WESTWOOD3
Contract:			Revision:	100% GEN
Engineer:	Josh Venden	Study Case: Freq Scan	Config.:	HarmonicGen

		ETAP		
Project:	NW OH WIND	16.0.0C	Date:	10-13-2017
Location:	Paulding, OH		SN:	WESTWOOD3
Contract:			Revision:	100% GEN
Engineer:	Josh Venden	Study Case: Freq Scan	Config.:	HarmonicGen

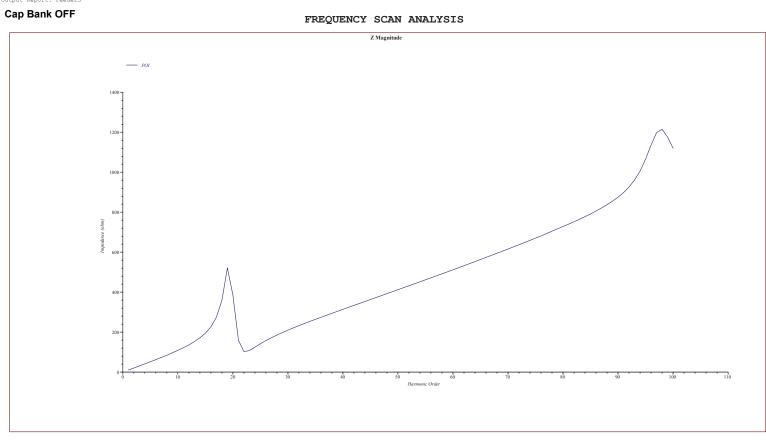


		ETAP		
Project:	NW OH WIND	16.0.0C	Date:	10-13-2017
Location:	Paulding, OH		SN:	WESTWOOD3
Contract:			Revision:	100% GEN
Engineer:	Josh Venden	Study Case: Freq Scan	Config.:	HarmonicGen

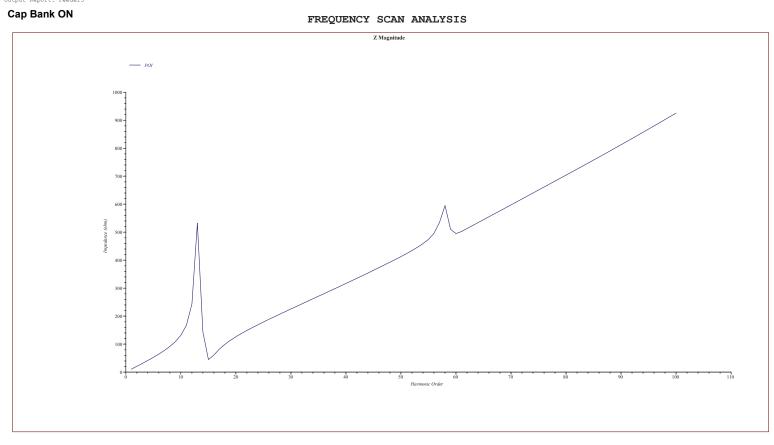


Project File: C:\Users\JVenden\Documents\WESTWOOD\PROJECTS\0007186 NW OH\ETAP\NW_OH Output Report: Feeder1

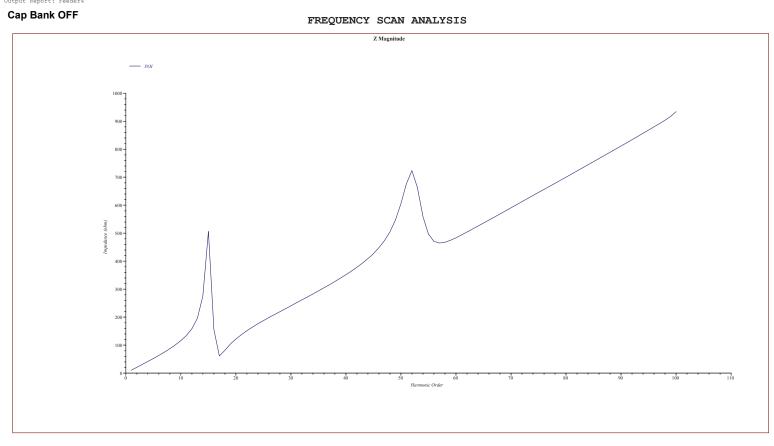
		ETAP		
Project:	NW OH WIND	16.0.0C	Date:	10-13-2017
Location:	Paulding, OH		SN:	WESTWOOD3
Contract:			Revision:	100% GEN
Engineer:	Josh Venden	Study Case: Freq Scan	Config.:	HarmonicGen



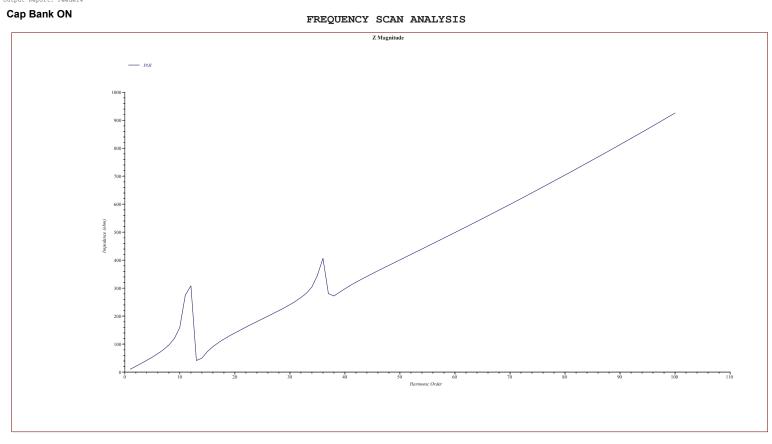
		ETAP		
Project:	NW OH WIND	16.0.0C	Date:	10-13-2017
Location:	Paulding, OH		SN:	WESTWOOD3
Contract:			Revision:	100% GEN
Engineer:	Josh Venden	Study Case: Freq Scan	Config.:	HarmonicGen


Project File: C:\Users\JVenden\Documents\WESTWOOD\PROJECTS\0007186 NW OH\ETAP\NW_OH Output Report: Feeder2

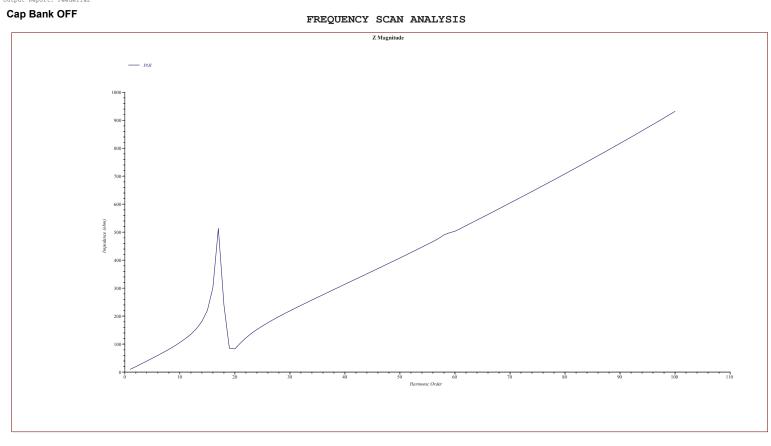
		ETAP		
Project:	NW OH WIND	16.0.0C	Date:	10-13-2017
Location:	Paulding, OH		SN:	WESTWOOD3
Contract:			Revision:	100% GEN
Engineer:	Josh Venden	Study Case: Freq Scan	Config.:	HarmonicGen


Project File: C:\Users\JVenden\Documents\WESTWOOD\PROJECTS\0007186 NW OH\ETAP\NW_OH Output Report: Feeder3

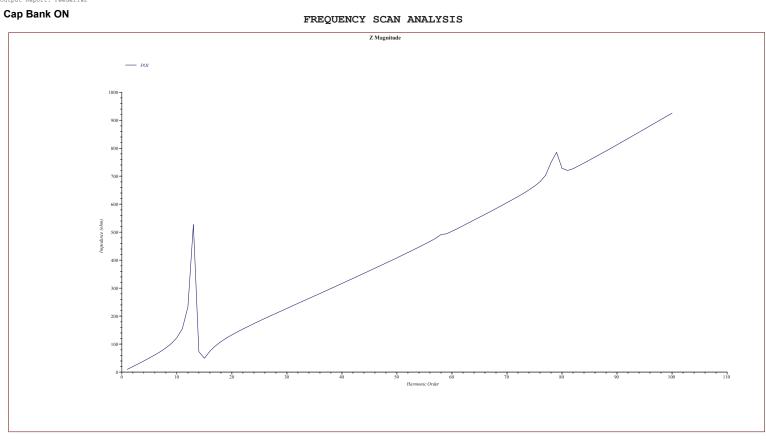
		ETAP		
Project:	NW OH WIND	16.0.0C	Date:	10-13-2017
Location:	Paulding, OH		SN:	WESTWOOD3
Contract:			Revision:	100% GEN
Engineer:	Josh Venden	Study Case: Freq Scan	Config.:	HarmonicGen


Project File: C:\Users\JVenden\Documents\WESTWOOD\PROJECTS\0007186 NW OH\ETAP\NW_OH Output Report: Feeder3

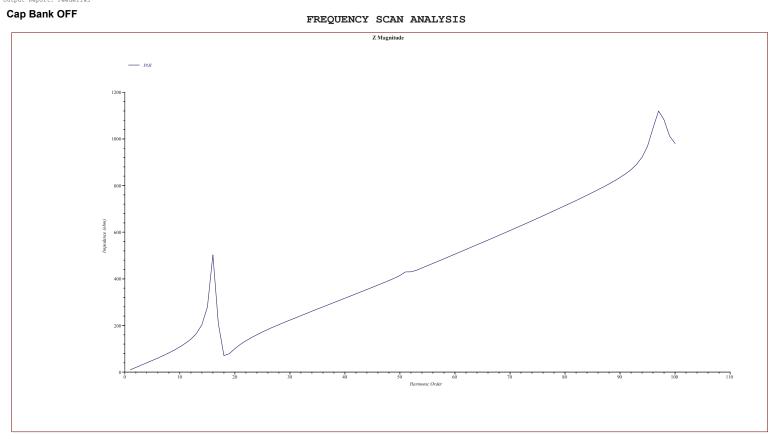
		ETAP		
Project:	NW OH WIND	16.0.0C	Date:	10-13-2017
Location:	Paulding, OH		SN:	WESTWOOD3
Contract:			Revision:	100% GEN
Engineer:	Josh Venden	Study Case: Freq Scan	Config.:	HarmonicGen



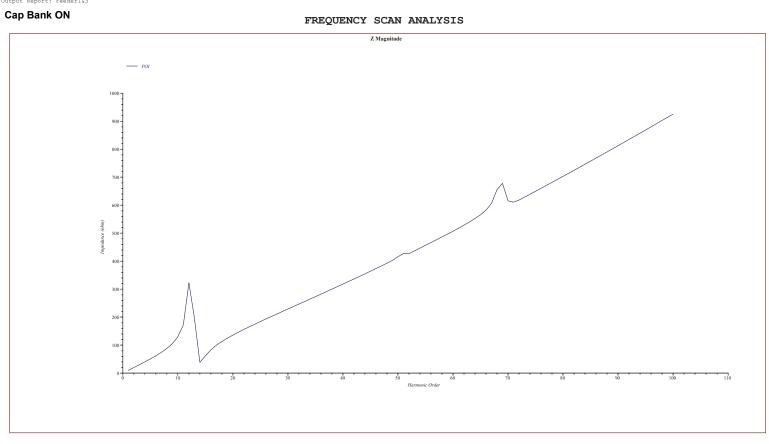
Project File: C:\Users\JVenden\Documents\WESTWOOD\PROJECTS\0007186 NW OH\ETAP\NW_OH Output Report: Feeder4


		ETAP		
Project:	NW OH WIND	16.0.0C	Date:	10-13-2017
Location:	Paulding, OH		SN:	WESTWOOD3
Contract:			Revision:	100% GEN
Engineer:	Josh Venden	Study Case: Freq Scan	Config.:	HarmonicGen

		ETAP		
Project:	NW OH WIND	16.0.0C	Date:	10-13-2017
Location:	Paulding, OH		SN:	WESTWOOD3
Contract:			Revision:	100% GEN
Engineer:	Josh Venden	Study Case: Freq Scan	Config.:	HarmonicGen

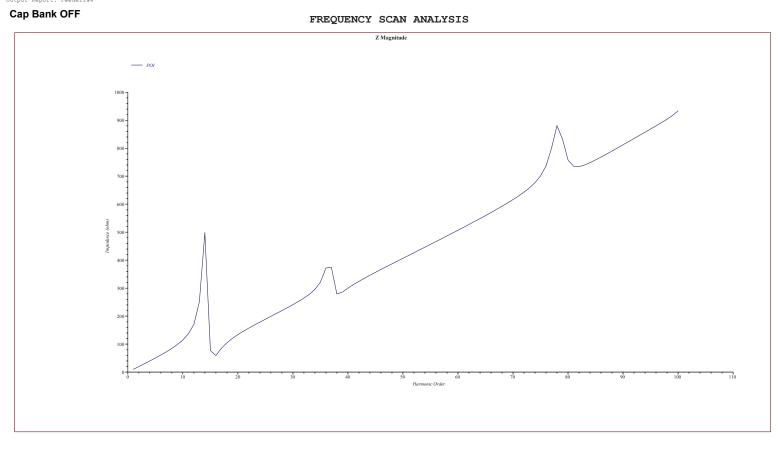


		ETAP		
Project:	NW OH WIND	16.0.0C	Date:	10-13-2017
Location:	Paulding, OH		SN:	WESTWOOD3
Contract:			Revision:	100% GEN
Engineer:	Josh Venden	Study Case: Freq Scan	Config.:	HarmonicGen

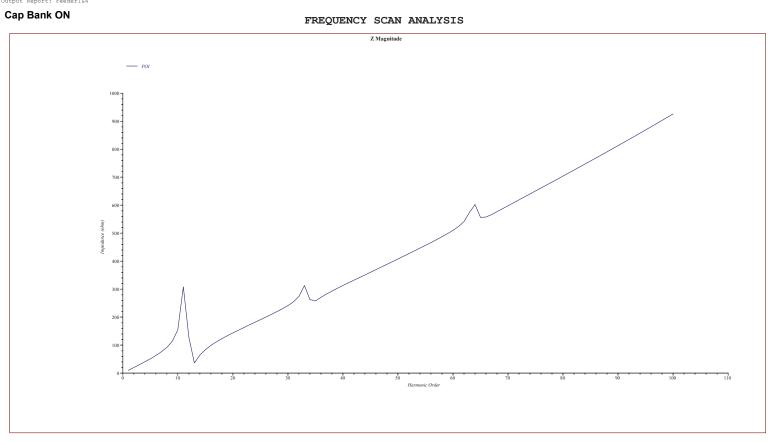


Project File: C:\Users\JVenden\Documents\WESTWOOD\PROJECTS\0007186 NW OH\ETAP\NW_OH Output Report: Feeder162

		ETAP		
Project:	NW OH WIND	16.0.0C	Date:	10-13-2017
Location:	Paulding, OH		SN:	WESTWOOD3
Contract:			Revision:	100% GEN
Engineer:	Josh Venden	Study Case: Freq Scan	Config.:	HarmonicGen

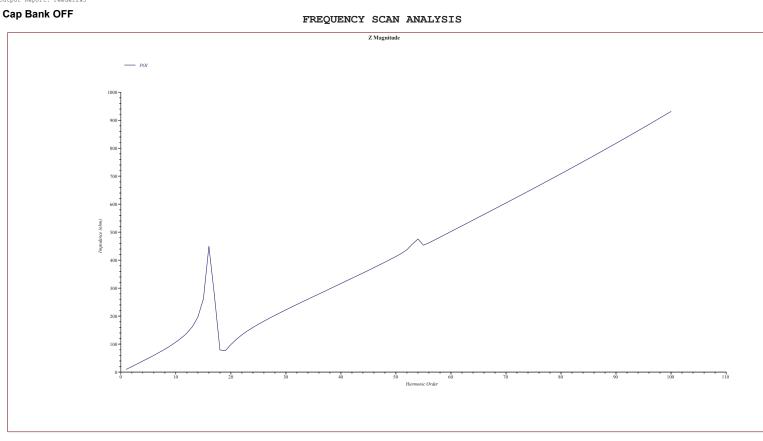


		ETAP		
Project:	NW OH WIND	16.0.0C	Date:	10-13-2017
Location:	Paulding, OH		SN:	WESTWOOD3
Contract:			Revision:	100% GEN
Engineer:	Josh Venden	Study Case: Freq Scan	Config.:	HarmonicGen

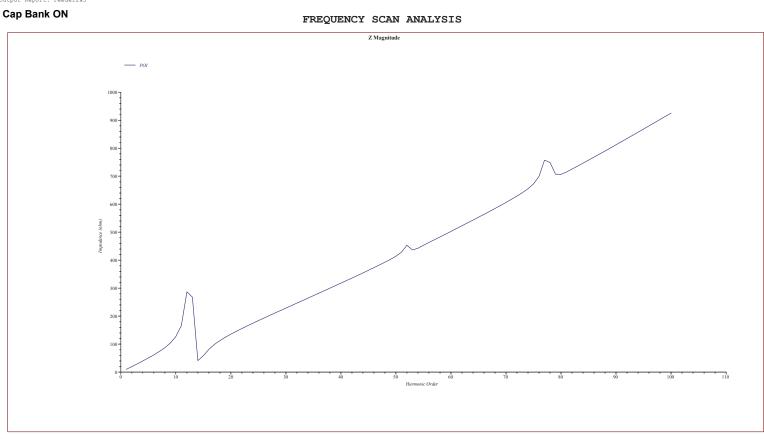


Project File: C:\Users\JVenden\Documents\WESTWOOD\PROJECTS\0007186 NW OH\ETAP\NW_OH Output Report: Feeder163

		ETAP		
Project:	NW OH WIND	16.0.0C	Date:	10-13-2017
Location:	Paulding, OH		SN:	WESTWOOD3
Contract:			Revision:	100% GEN
Engineer:	Josh Venden	Study Case: Freq Scan	Config.:	HarmonicGen

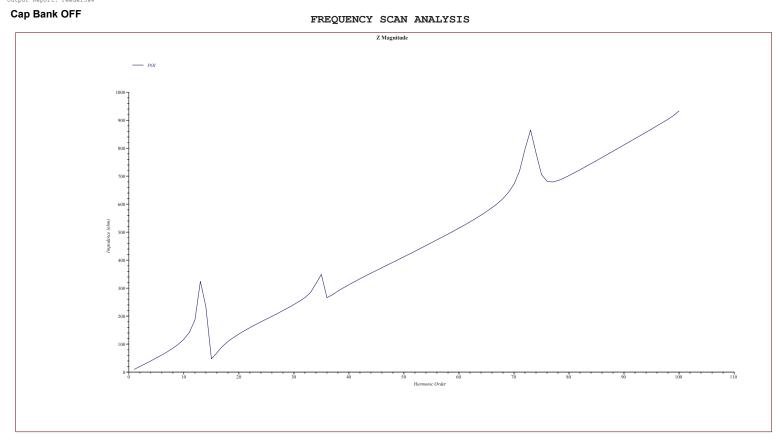


		ETAP		
Project:	NW OH WIND	16.0.0C	Date:	10-13-2017
Location:	Paulding, OH		SN:	WESTWOOD3
Contract:			Revision:	100% GEN
Engineer:	Josh Venden	Study Case: Freq Scan	Config.:	HarmonicGen

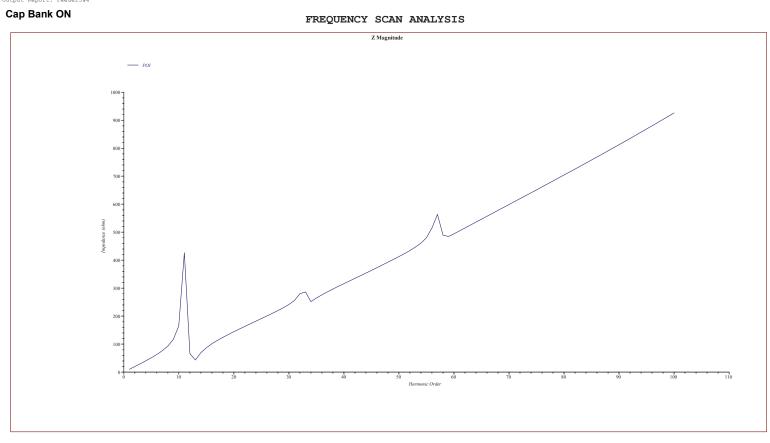


Project File: C:\Users\JVenden\Documents\WESTWOOD\PROJECTS\0007186 NW OH\ETAP\NW_OH Output Report: Feeder164

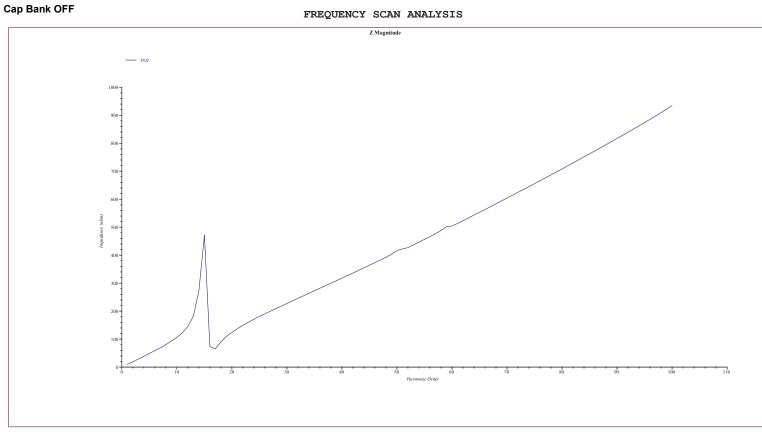
		ETAP		
Project:	NW OH WIND	16.0.0C	Date:	10-13-2017
Location:	Paulding, OH		SN:	WESTWOOD3
Contract:			Revision:	100% GEN
Engineer:	Josh Venden	Study Case: Freq Scan	Config.:	HarmonicGen



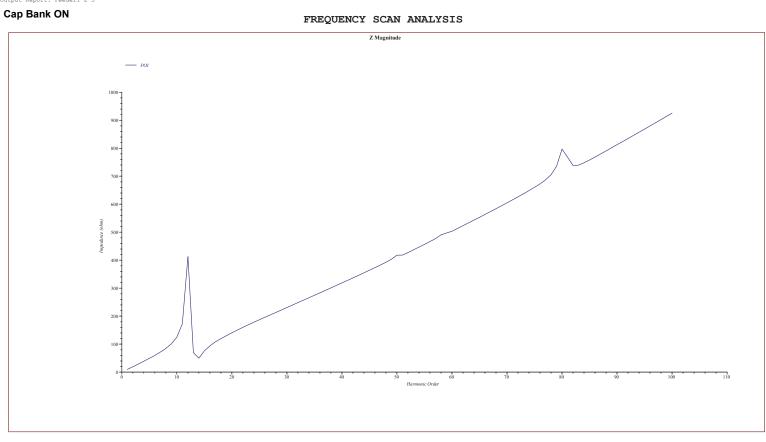
		ETAP		
Project:	NW OH WIND	16.0.0C	Date:	10-13-2017
Location:	Paulding, OH		SN:	WESTWOOD3
Contract:			Revision:	100% GEN
Engineer:	Josh Venden	Study Case: Freq Scan	Config.:	HarmonicGen


Project File: C:\Users\JVenden\Documents\WESTWOOD\PROJECTS\0007186 NW OH\ETAP\NW_OH Output Report: Feeder243

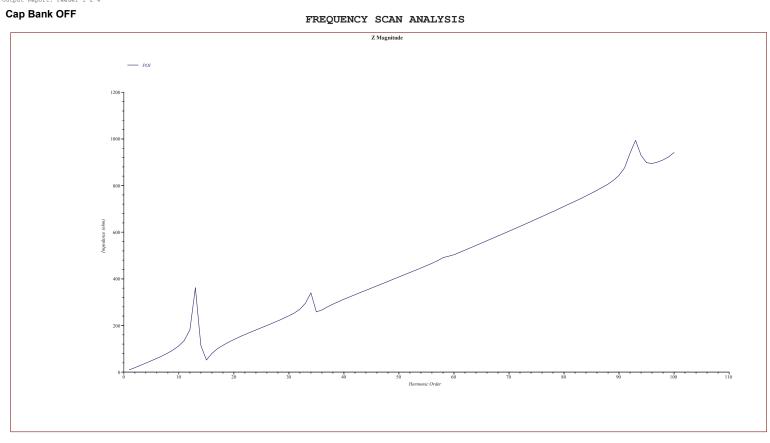
		ETAP		
Project:	NW OH WIND	16.0.0C	Date:	10-13-2017
Location:	Paulding, OH		SN:	WESTWOOD3
Contract:			Revision:	100% GEN
Engineer:	Josh Venden	Study Case: Freq Scan	Config.:	HarmonicGen


Project File: C:\Users\JVenden\Documents\WESTWOOD\PROJECTS\0007186 NW OH\ETAP\NW_OH Output Report: Feeder364

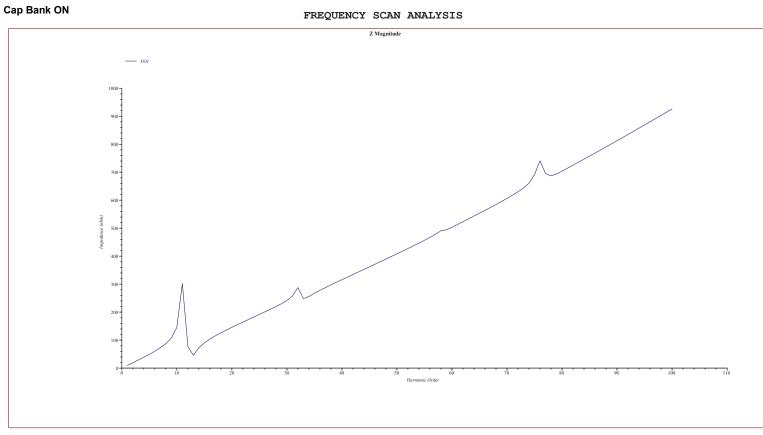
		ETAP		
Project:	NW OH WIND	16.0.0C	Date:	10-13-2017
Location:	Paulding, OH		SN:	WESTWOOD3
Contract:			Revision:	100% GEN
Engineer:	Josh Venden	Study Case: Freq Scan	Config.:	HarmonicGen


Project File: C:\Users\JVenden\Documents\WESTWOOD\PROJECTS\0007186 NW OH\ETAP\NW_OH Output Report: Feeder364

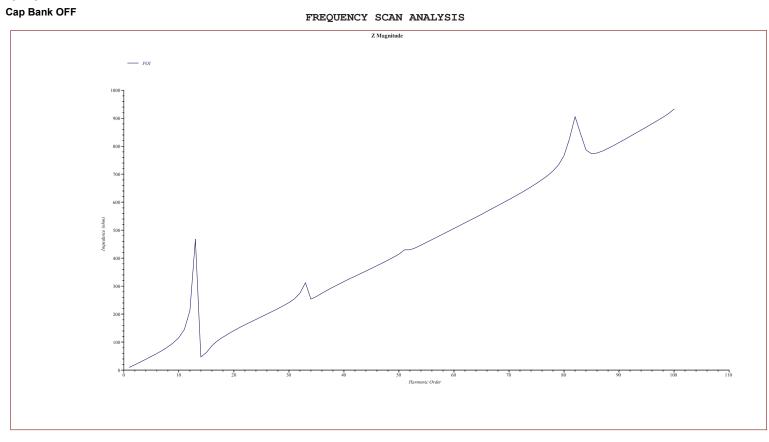
		ETAP		
Project:	NW OH WIND	16.0.0C	Date:	10-13-2017
Location:	Paulding, OH		SN:	WESTWOOD3
Contract:			Revision:	100% GEN
Engineer:	Josh Venden	Study Case: Freq Scan	Config.:	HarmonicGen


 $\label{eq:project} \mbox{File: C:Users} Uenden \mbox{WESTWOOD} \mbox{PROJECTS} 0007186 \mbox{NW OH} \mbox{ETAP} \mbox{NW_OH} \mbox{Output Report: Feeder1 2 3}$

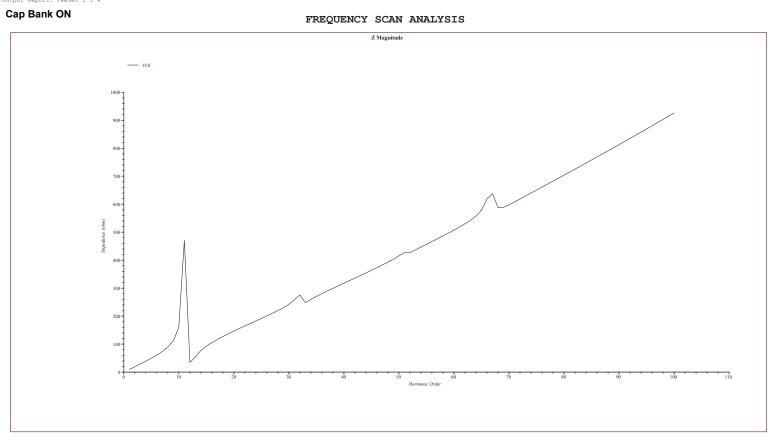
		ETAP		
Project:	NW OH WIND	16.0.0C	Date:	10-13-2017
Location:	Paulding, OH		SN:	WESTWOOD3
Contract:			Revision:	100% GEN
Engineer:	Josh Venden	Study Case: Freq Scan	Config.:	HarmonicGen


 $\label{eq:project} \mbox{File: C:Users} Uenden \mbox{WESTWOOD} \mbox{PROJECTS} 0007186 \mbox{NW OH} \mbox{ETAP} \mbox{NW_OH} \mbox{Output Report: Feeder1 2 3}$

		ETAP		
Project:	NW OH WIND	16.0.0C	Date:	10-13-2017
Location:	Paulding, OH		SN:	WESTWOOD3
Contract:			Revision:	100% GEN
Engineer:	Josh Venden	Study Case: Freq Scan	Config.:	HarmonicGen


 $\label{eq:project} \mbox{File: C:Users} Uenden \mbox{WESTWOOD} \mbox{PROJECTS} \mbox{O007186 NW OH} \mbox{ETAP} \mbox{NW_OH} \mbox{Output Report: Feeder 1 2 4}$

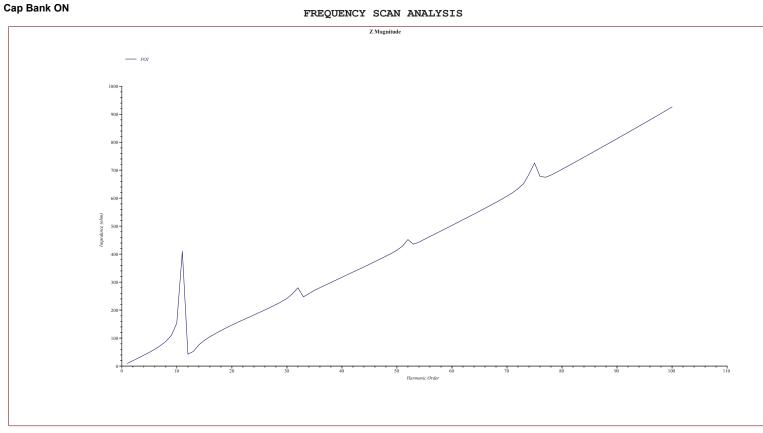
		ETAP		
Project:	NW OH WIND	16.0.0C	Date:	10-13-2017
Location:	Paulding, OH		SN:	WESTWOOD3
Contract:			Revision:	100% GEN
Engineer:	Josh Venden	Study Case: Freq Scan	Config.:	HarmonicGen


 $\label{eq:project} \mbox{File: C:Users} Uenden \mbox{WESTWOOD} \mbox{PROJECTS} \mbox{O007186 NW OH} \mbox{ETAP} \mbox{NW_OH} \mbox{Output Report: Feeder 1 2 4}$

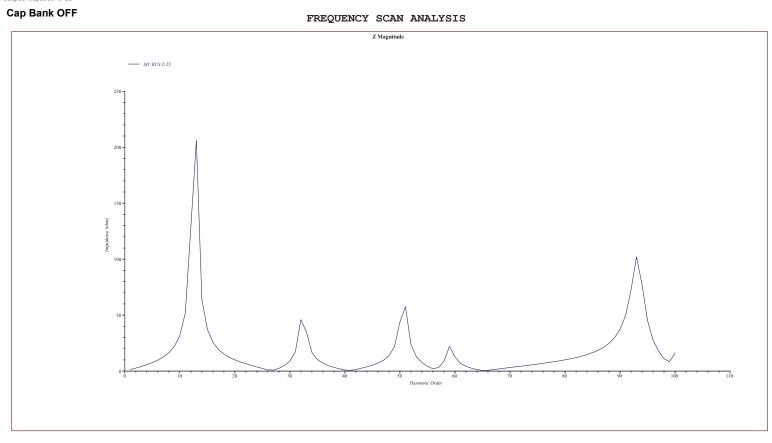
		ETAP		
Project:	NW OH WIND	16.0.0C	Date:	10-13-2017
Location:	Paulding, OH		SN:	WESTWOOD3
Contract:			Revision:	100% GEN
Engineer:	Josh Venden	Study Case: Freq Scan	Config.:	HarmonicGen


 $\label{eq:project} \mbox{File: C:Users} Uenden \mbox{WESTWOOD} \mbox{PROJECTS} \mbox{O007186 NW OH} \mbox{ETAP} \mbox{NW_OH} \mbox{Output Report: Feeder 1 3 4}$

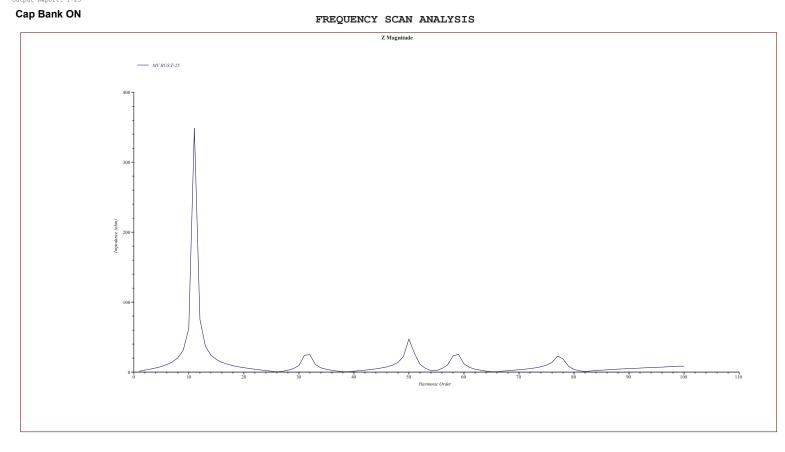
		ETAP		
Project:	NW OH WIND	16.0.0C	Date:	10-13-2017
Location:	Paulding, OH		SN:	WESTWOOD3
Contract:			Revision:	100% GEN
Engineer:	Josh Venden	Study Case: Freq Scan	Config.:	HarmonicGen


$\label{eq:project} \mbox{File: C:Users} Uenden \mbox{WESTWOOD} \mbox{PROJECTS} \mbox{O007186 NW OH} \mbox{ETAP} \mbox{NW_OH} \mbox{Output Report: Feeder 1 3 4}$

		ETAP		
Project:	NW OH WIND	16.0.0C	Date:	10-13-2017
Location:	Paulding, OH		SN:	WESTWOOD3
Contract:			Revision:	100% GEN
Engineer:	Josh Venden	Study Case: Freq Scan	Config.:	HarmonicGen

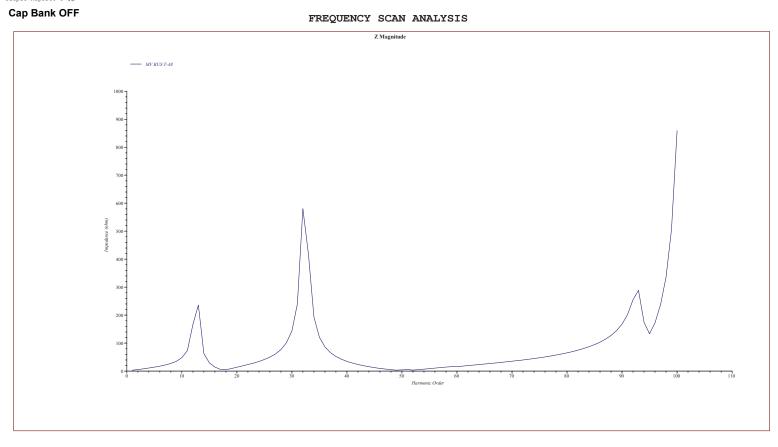

 $\label{eq:project} \mbox{File: C:Users} Uenden \mbox{WESTWOOD} \mbox{PROJECTS} \mbox{O007186 NW OH} \mbox{ETAP} \mbox{NW_OH} \mbox{Output Report: Feeder 2 3 4}$

		ETAP		
Project:	NW OH WIND	16.0.0C	Date:	10-13-2017
Location:	Paulding, OH		SN:	WESTWOOD3
Contract:			Revision:	100% GEN
Engineer:	Josh Venden	Study Case: Freq Scan	Config.:	HarmonicGen

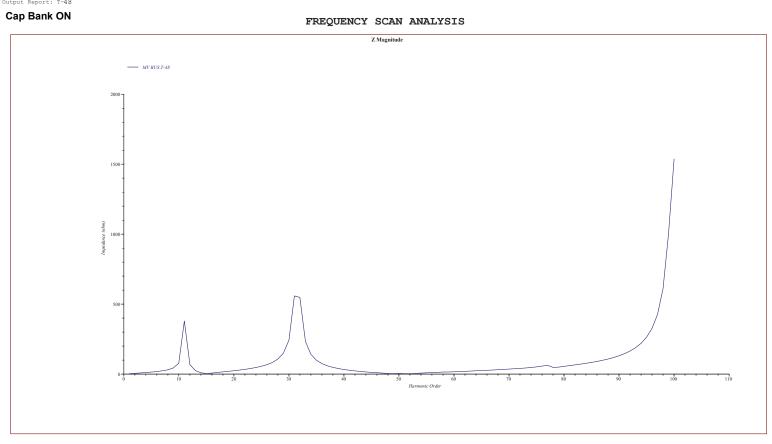

 $\label{eq:project} \mbox{File: C:Users} Uenden \mbox{WESTWOOD} \mbox{PROJECTS} \mbox{O007186 NW OH} \mbox{ETAP} \mbox{NW_OH} \mbox{Output Report: Feeder 2 3 4}$

		ETAP		
Project:	NW OH WIND	16.0.0C	Date:	10-13-2017
Location:	Paulding, OH		SN:	WESTWOOD3
Contract:			Revision:	100% GEN
Engineer:	Josh Venden	Study Case: Freq Scan	Config.:	HarmonicGen

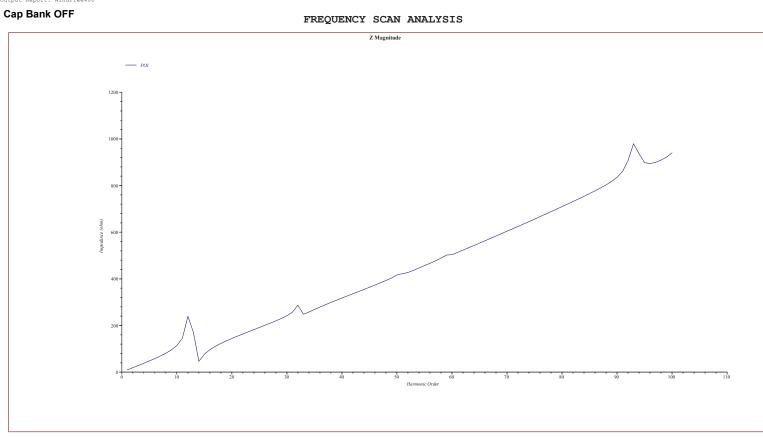
$\label{eq:project} \mbox{ProjectFile: C:Users} we have the the two of the the two of tw$


		ETAP		
		ETAP		
Project:	NW OH WIND	16.0.0C	Date:	10-13-2017
Location:	Paulding, OH		SN:	WESTWOOD3
Contract:			Revision:	100% GEN
Engineer:	Josh Venden	Study Case: Freq Scan	Config.:	HarmonicGen

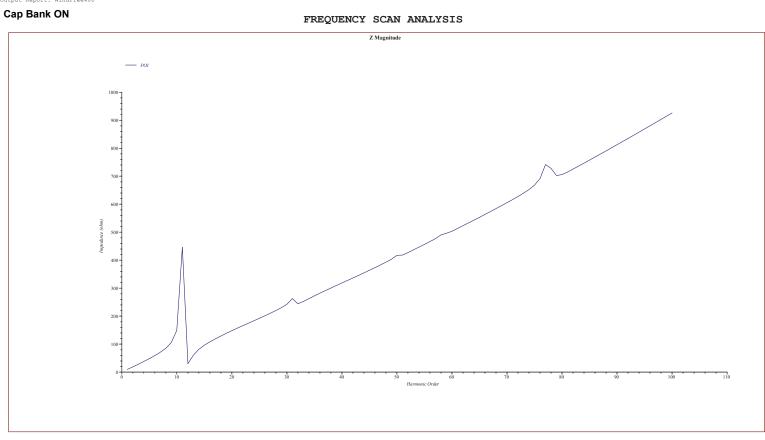
$\label{eq:project} \mbox{ProjectFile: C:Users} we have the the two of the the two of tw$



		ETAP		
Project:	NW OH WIND	16.0.0C	Date:	10-13-2017
Location:	Paulding, OH		SN:	WESTWOOD3
Contract:			Revision:	100% GEN
Engineer:	Josh Venden	Study Case: Freq Scan	Config.:	HarmonicGen


 $\label{eq:project} \mbox{ProjectFile: C:Users} Odden \mbox{WestWOOD} \mbox{ProjectS} 0007186 \mbox{NW OH} \mbox{ETAP} \mbox{NW_OH} \mbox{Output Report: T-48}$

		ETAP		
Project:	NW OH WIND	16.0.0C	Date:	10-13-2017
Location:	Paulding, OH		SN:	WESTWOOD3
Contract:			Revision:	100% GEN
Engineer:	Josh Venden	Study Case: Freq Scan	Config.:	HarmonicGen


 $\label{eq:project} \mbox{ProjectFile: C:Users} Odden \mbox{WestWOOD} \mbox{ProjectS} 0007186 \mbox{NW OH} \mbox{ETAP} \mbox{NW_OH} \mbox{Output Report: T-48}$

		ETAP		
Project:	NW OH WIND	16.0.0C	Date:	10-13-2017
Location:	Paulding, OH		SN:	WESTWOOD3
Contract:			Revision:	100% GEN
Engineer:	Josh Venden	Study Case: Freq Scan	Config.:	HarmonicGen

Project File: C:\Users\JVenden\Documents\WESTWOOD\PROJECTS\0007186 NW OH\ETAP\NW_OH Output Report: WindFree400

		ETAP		
Project:	NW OH WIND	16.0.0C	Date:	10-13-2017
Location:	Paulding, OH		SN:	WESTWOOD3
Contract:			Revision:	100% GEN
Engineer:	Josh Venden	Study Case: WindFree	Config.:	HarmonicGen

Project File: C:\Users\JVenden\Documents\WESTWOOD\PROJECTS\0007186 NW OH\ETAP\NW_OH Output Report: WindPree400

		ETAP		
Project:	NW OH WIND	16.0.0C	Date:	10-13-2017
Location:	Paulding, OH		SN:	WESTWOOD3
Contract:			Revision:	100% GEN
Engineer:	Josh Venden	Study Case: WindFree	Config.:	HarmonicGen

AC CABLE SIZING STUDY

Northwest Ohio Wind Project

Paulding, Ohio October 27, 2017

Prepared for:

Prepared by:

Westwood

Project Name: NW OH Wind Project		
Title J.O. or W.O. Number		
AC Cable Sizing Study	0007186.00	

Арр	rovals	Revision	Date	Description
Preparer(s) Name	Reviewer(s) Name	Number	Date	Description
Josh Venden	Drew Szabo	0	09/27/2017	Original Release
Josh Venden	Drew Szabo	1	10/06/2017	Added options for homerun trenches
Josh Venden	Drew Szabo	2	10/27/2017	Added boring details

TABLE OF CONTENTS

OBJECTIVE		
INPUTS & ASSSUMPTIONS		Ļ
METHODOLOGY	5	,
THERMAL ANALYSIS RESULTS AND CONCLU	JSION 5	,
SINGLE CIRCUIT AMPACITY	5	,
MULTIPLE CIRCUIT TRENCHES	5	,
CONSTRAINED EASEMENT	Error! Bookmark not defined.	
WETLANDS, ROAD AND PIPELINE CROSSING	GS9)
APPENDIX A: TRENCHED CIRCUITS CYMCA	AP OUTPUTB	
APPENDIX B: CONSTRAINED RIGHT OF WA	AY OPTIONSQ	
APPENDIX C: DIRECTIONAL BORING CYCM	IAP OUTPUTB	

INTRODUCTION

NW OH Wind Project is a 100 MW wind generation installation in Paulding, OH consisting 42 of GE 2.5 MW wind turbines. The turbines are grouped into four medium voltage (MV) feeders with 10 turbines on Feeders 1 and 4 and 11 turbines on Feeders 2 and 3. The feeders are connected to a main power transformer that steps the voltage up to 138kV where it interconnects with the AEP transmission system via a short overhead line segment.

OBJECTIVE

The objective of this report is to provide the design basis for determining the ampacity ratings of the medium and low voltage AC cables between the turbines, transformers, and junction boxes.

INPUTS & ASSSUMPTIONS

- The native soil thermal resistivity is 150°C-cm/W as per the assessment of Westwood Professional Services based on the Geotechnical Engineering Report for Northwest Ohio Wind Project; completed by BARR, December 2014.
- Thermal resistivity of the disturbed soil in the cable trench is based on considerations of residual moisture, such that it indicates a worst case rho value of 190°C-cm/W at the specified 85% compaction.
- Thermal resistivity of the concrete ductbank is assumed to be 55 C-cm/W per NEC.
- Appendix D, has the excerpts for the dry out curves of the soil at various test points.
- Soil ambient temperature at various depths is shown in the following table.

Depth [ft]	Depth[m]	T _{max} [C]
3	0.91	22
4	1.22	21
5	1.52	20
6	1.83	19
7	2.13	18
8	2.44	18
9	2.74	17
10	3.05	17

- Cables are analyzed at their maximum allowable continuous operating temperature of 90° C.
- Load factor assumed conservatively at 100% for determining the cable ampacities.
- Direct buried medium voltage AC Cables are evaluated with minimum 48" soil cover.
- Medium voltage AC collector electrical layout is per the Westwood Professional Services Electrical Drawings, MVAC Collection One-Line Diagrams E.200 & E.210 and Trench Details E.600.
- The standard installation is based on a trefoil arrangement of cables, aluminum conductors with copper concentric neutral wires bonded at both ends.
- The nameplate rating of the turbines is 2.5MW with reactive power capability of 0.9 lead/lag. Maximum cable amp loadings are based on maximum total turbine MVA output; approximately 49A at 34.5 kV.

METHODOLOGY

- Thermal analysis of underground cables is conducted with CYME Cymcap software, which uses the Neher-McGrath methodology to determine reduced cable ratings based on project specific thermal constraints.
- CYMCAP analysis is conducted for single and multiple circuit trenches for all of the MV cable sizes and configurations used in the underground collection design.
- CYMCAP analysis is also performed to verify the ampacity of the low voltage cables passing through the turbine foundation.

THERMAL ANALYSIS RESULTS AND CONCLUSION

SINGLE CIRCUIT AMPACITY

• Table 1 shows a summary of the single circuit cable ampacities and maximum number of turbines that can be connected to each cable size without violating its respective ampacity rating.

Cable	Material	Maximum 3PH Fault Current	Min. Required Area	Phase Conductor Area	Ampacity & Configuration	
1/0	Al	10412	83315	105600	143	Trefoil
4/0	Al	13136	105113	211600	214	Trefoil
500	Al	10166	81347	500000	337	Trefoil
750	Al	11365	90941	750000	411	Trefoil
1000	Al	10185	81499	1000000	481	Trefoil
1250	Al	12570	100583	1250000	545	Trefoil
1250*	Al	12570	100583	1250000	570	Trefoil

* Increased ampacity based on 90% soil compaction in trenches with 11 turbines on the ckt

Table 1: Cable Ampacity Summary

• As the final two rows of the above table indicate, for 1250 kCMIL cable with an ampacity rating large enough to accommodate 11 turbines, a soil compaction of at least 90% must be achieved in the trenches, which reduces the soil thermal resistivity closer to the native soil value of 150°C-cm/W. Feeders 2 and 3 require this compaction level for the MV cable trenches from the substation to the first wind turbine on each feeder.

MULTIPLE CIRCUIT TRENCHES

- In several locations, multiple MV circuits will run parallel to one another in the same right of way (ROW). Further thermal analysis was performed on these areas to determine the minimum spacing between circuits required to maintain acceptable operating temperatures.
- The following table summarizes the locations where multiple circuits will occupy the same parallel trench paths. The table indicates the number of turbines and corresponding loading on each cable segment and the minimum spacing required for double, triple and quad circuit ROW.

TRENCH SEGMENT		FE	EDERS IN TREN	СН	Cable	Trench Detail Dwg				
FROM TO		FDR	TURBINES	AMPS	Sizes					
			1	10	489.32	1250				
SUB	HWY 114	2	11	538.25	1250	4 ckts; 12" trenches				
2012	11001 114	3	11	538.25	1250	15' min spacing center-center				
		4	10	489.32	1250					
		1	10	489.32	1250					
HWY 114	T-25	2	11	538.25	1250	4 ckts; 12" trenches				
ΠΨΙ 114	1-25	3	11	538.25	1250	15' min spacing center-center				
		4	10	489.32	1250					
		1	1	48.93	4/0					
T-25	T-24	2	11	538.25	1250	4 ckts; 12" trenches				
1-23	1-24	1-24	1-24	1-24	3 1-24 3	3	11	538.25	1250	15' min spacing center-center
		4	10	489.32	1250					
	JB-2/1	JB-2/1	2	11	538.25	1250	3 ckts; 12" trenches			
T-24			3-2/1 3 1	11	538.25	1250	11' min spacing center-center			
		4	10	489.32	1250	11 min spacing center-center				
	T-22	T-22	2	4	195.73	4/0	3 ckts; 12" trenches			
JB-2/1			T-22	3	11	538.25	1250	11' min spacing center-center		
		4	10	489.32	1250	11 min spacing center center				
		2	1	48.93	1/0	3 ckts; 12" trenches				
T-22	T-23	3	11	538.25	1250	11' min spacing center-center				
		4	11	538.25	1250	11 min spacing center-center				
T-23	T-28	3	10	489.32	1250	2 ckts; 12" trenches;				
1 25	1 20	4	10	489.32	1250	5' min spacing center-center				
T-28	T-33	3	7	342.52	750	2 ckts; 12" trenches;				
1 20	1.00	4	10	489.32	1250	5' min spacing center-center				
T-33	T-34	3	4	195.73	4/0	2 ckts; 12" trenches;				
		4	10	489.32	1250	5' min spacing center-center				
T-34	T-39	3	1	48.93	1/0	2 ckts; 12" trenches;				
		4	10	489.32	1250	5' min spacing center-center				

Table 2: Multiple Circuit Trench Summary

CONSTRAINED EASEMENT

- The worst case from a thermal standpoint occurs in the ROW from Turbine 25 to the Substation where all four fully loaded feeders run parallel to one another. The cable ROW that runs along the south side of Hwy 114 is currently limited to less than 20 feet. At the eastern end of this easement the cables would run on land designated for the O&M building and substation where the ROW could again be expanded to the spacing indicated in Table 2 above. Several options for this ROW are discussed below.
 - Copper Conductors

This option looks at using copper conductors for the approximately 1,450 feet in the ditch along the south of Hwy 114. Junction boxes would have to be installed on each end of the constrained easement to convert the cables from Al to Cu. This is approximately 4,350 feet of 1250 kCMIL copper cable for each feeder. The feeder spacing is shown in the following table.

Westwood TRENCH SEGMENT **FEEDERS IN TRENCH** Cable **Ckt Spacing** FROM TO FDR TURBINES AMPS Sizes (center-to-center) 1 489.32 1250 CU 10 four 12" trenches; 13' ROW CONSTRAINED 2 1250 CU 3' FDR1-FDR2; 11 538.25 EASEMENT 4' FDR2-FDR3; 3 11 538.25 1250 CU 3' FDR3-FDR4 4 10 489.32 1250 CU

o Duct Bank

This option looks at the installation of a 4 circuit duct bank for the approximately 1,450 feet in the ditch along the south of Highway 114. The duct bank would be a minimum of 10' wide and 18" high with approximately 18" of cover over the duct bank. The following table summarizes the duct spacing for the four circuits.

TRENCH SEGMENT		FEEDERS IN TRENCH			Cable	Ckt Spacing
FROM TO		FDR	TURBINES	AMPS	Sizes	(center-to-center)
		1	10	489.32	1250	limited ROW < 20'
CONSTRAINED EASEMENT		2	11	538.25	1250	1.5' x 10' duct bank
		3	11	538.25	1250	rho <= 0.55 C-m/W
		4	10	489.32	1250	2.5' duct spacing

o 3 Turbine Tap

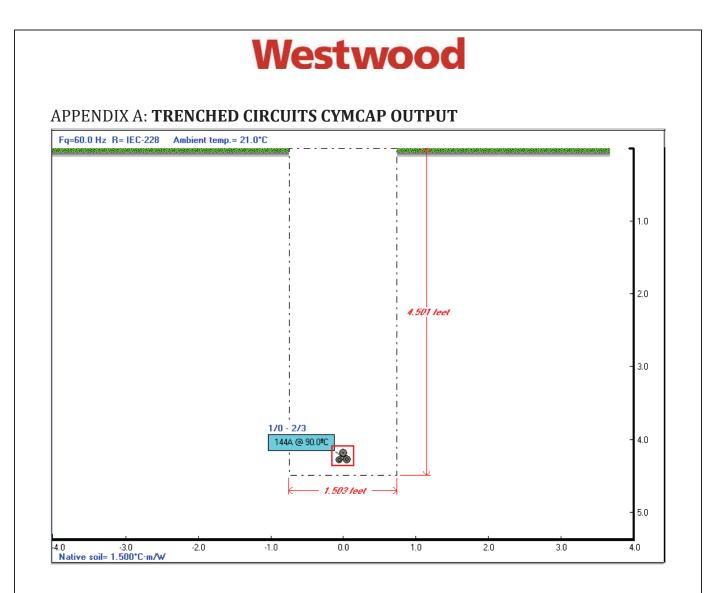
For this option, the total number of turbines per homerun are reduced by installing a separate "tap" circuit to collect turbines 23, 24 and 29. The reconfiguration reduces the total turbines on circuits 2 and 3 to ten. Additionally, turbine 24 would be connected to this feeder to eliminate the tap connection from turbine 25 to 24. This option also impacts several of the trench segments as the number of circuits and loading on each circuit has changed. The following table summarizes the new trench configurations. This would result in an additional 40,725 feet of 4/0 cable.

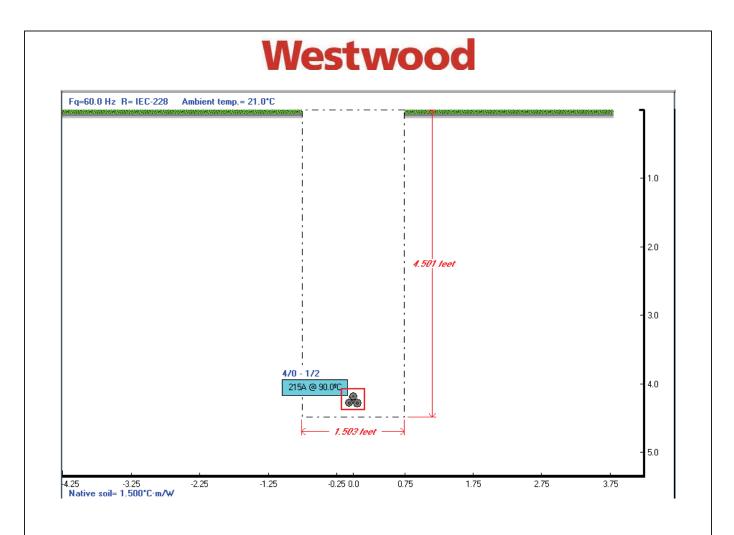
TRENCH SEGMENT		FEI	EDERS IN TRE	NCH	Cable	Ckt Spacing	
FROM	Т0	FDR	TURBINES	AMPS	Sizes	(center-to-center)	
		1	9	440.39	1250		
SUB	HWY 114	2	10	489.32	1250	85% compaction all trenches	
		3	10	489.32	1250	10' center-center	
HWY 114	T-25	4	10	489.32	1250	45' ROW	
		TAP	3	146.80	4/0		
		1	9	440.39	1250	limited ROW < 20'	
CONST	RAINED	2	10	489.32	1250	$1.5' \times 13'$ duct bank	
	MENT	3	10	489.32	1250	rho <= 0.55 C-m/W	
LASE		4	10	489.32	1250	2.75' duct spacing	
		TAP	3	146.80	4/0	2.75 duct spacing	
	T-24	2	10	489.32	1250	85% compaction all trenches	
T-25		3	10	489.32	1250	8' FDR2-TAP; 10.5' TAP-FDR3;	
1-25		4	10	489.32	1250	10.5' FDR3-FDR4	
		TAP	3	146.80	4/0	35' ROW	
	JB-2/1		2	10	489.32	1250	85% compaction all trenches
T-24		3	10	489.32	1250	4' FDR2-TAP; 8.5' TAP-FDR3;	
1-24		4	10	489.32	1250	11.5' FDR3-FDR4	
		TAP	2	97.86	4/0	25' ROW	
		2	3	146.80	4/0	85% compaction all trenches	
JB-2/1	Т-22	3	10	489.32	1250	8' FDR2-FDR3; 7' FDR3-TAP;	
1/2-2/1	1-22	4	10	489.32	1250	6' TAP-FDR4	
		TAP	2	97.86	4/0	25' ROW	
		3	10	489.32	1250	85% compaction all trenches	
T-22	T-23	4	10	489.32	1250	5.5' center-center	
		TAP	2	97.86	4/0	15' ROW	

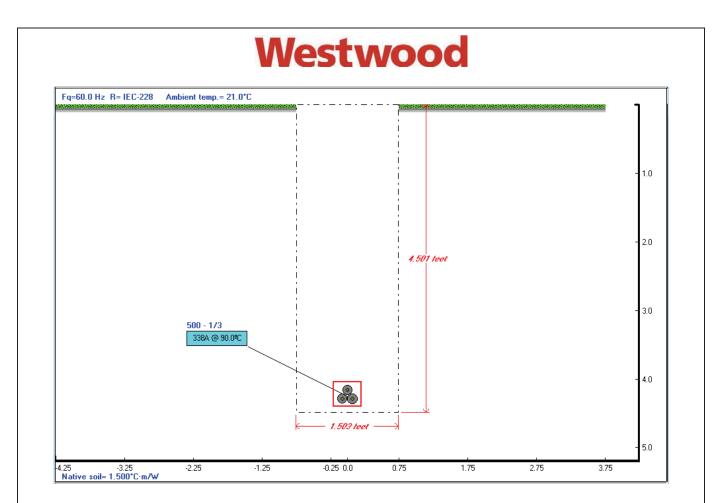
A summary of the additional materials required for each option is shown in the table below.

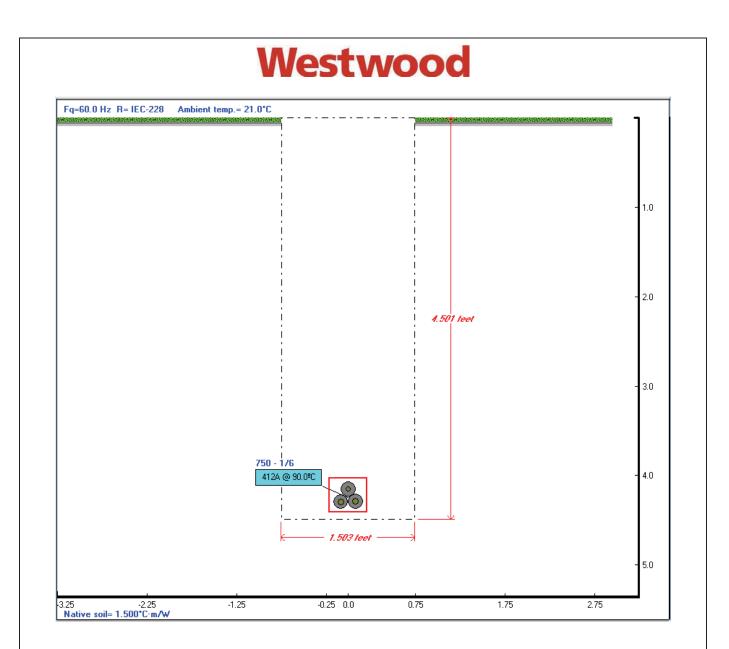
OPTION	DESCRIPTION	BOM CHANGES	QTY
1	Copper Conductor Cable	Junction boxes Remove 1250 kCMIL Aluminum Add 1250 kCMIL Copper	8 17,400' 17,400'
2	Slurry Backfill and Duct Bank	Add flowable fill (trench feet 4 ckts) Add 10x1.5' duct bank	1,928 cu yd 19,280' 1,450'
3	Additional Circuit and Duct Bank	Add 4/0 AWG AL 1/2CN Add 7#8 trench ground Add 13x1.5' duct bank Additional trenching	40,725' 13,575' 1,450' 8,040'

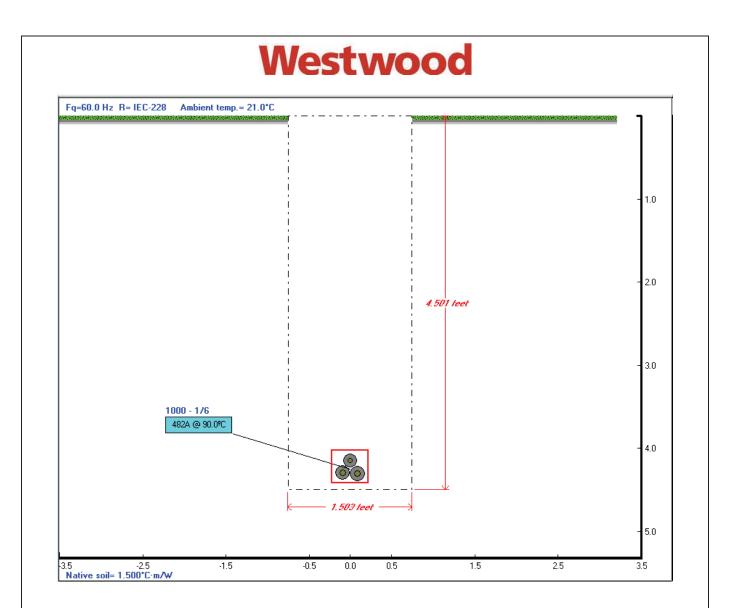
WETLANDS, ROAD AND PIPELINE CROSSINGS

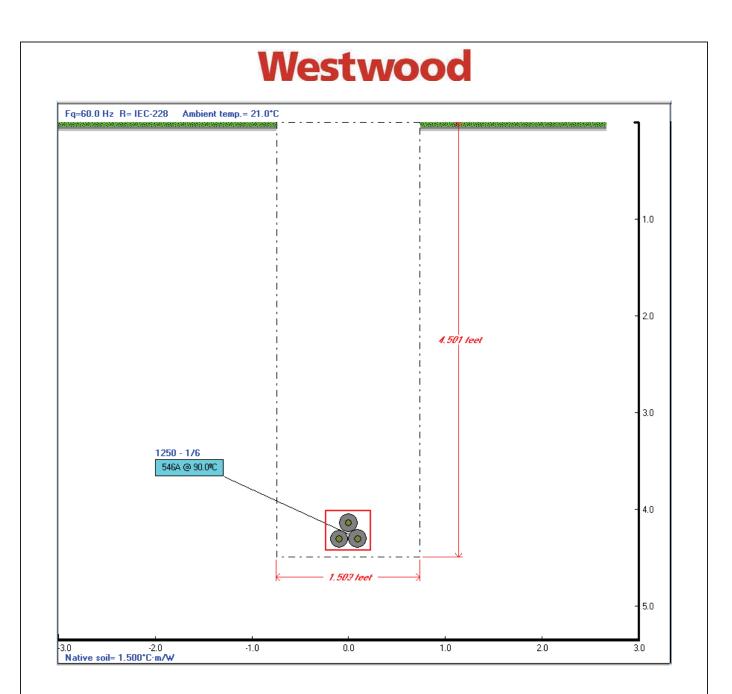

• There are several designated wetland areas, road and gas pipeline crossings throughout the site that require directional drill boring installation. The following table summarizes the location of each boring with the assumed depth. For boring locations, a soil temperature of 17 °C and a thermal resistivity of 100 °C-cm/W are assumed due to native soil compaction and moisture assumptions at greater depths.

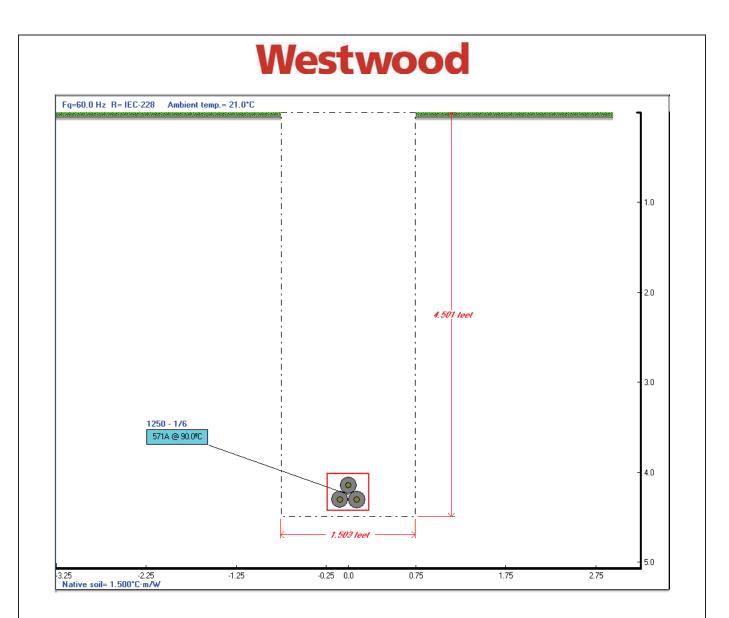

Bore ID	Bore Type	Cable Size	Lowest Depth Of Ditch, Pipe, or Wetland (ft)	Depth Of Cable Duct (ft)	Multi-Circuit Separation	Notes
MV1.T02-T01.1	COUNTY RD	1/0 AWG	5.0	9.0	N/A	Assume 4' below lowest point in ditch
MV1.T03-T02.1	WETLAND	1/0 AWG	5.0	9.0	N/A	Assume 4' below lowest point of wetland
MV1.T05-T04.1	COUNTY RD	4/0 AWG	4.5	8.5	N/A	Assume 4' below lowest point in ditch
MV1.T08-T05.1	COUNTY RD	500 MCM	1.0	5.0	N/A	Assume 4' below lowest point in ditch
MV1.T09-T08.1	GAS PIPELINE	500 MCM	3.5	13.5	N/A	Assume 10' separation with gas pipeline
MV1.T09-T08.2	WETLAND	500 MCM	6.5	10.5	N/A	Assume 4' below lowest point of wetland
MV1.T09-T08.3	COUNTY RD	500 MCM	1.0	5.0	N/A	Assume 4' below lowest point in ditch
MV1.T25-T10.1	COUNTY RD	1000 MCM	2.0	6.0	N/A	Assume 4' below lowest point in ditch
MV1.T25-T10.2	WETLAND	1000 MCM	10.0	14.0	N/A	Assume 4' below lowest point of wetland
MV1.T25-T10.3	COUNTY RD	1000 MCM	5.5	9.5	N/A	Assume 4' below lowest point in ditch
MV1.SUB-T25.1	GAS PIPELINE	1250 MCM	3.5	13.5	23' (76' ROW)	Assume 10' separation with gas pipeline
MV1.SUB-T25.2	STATE HWY	1250 MCM	2.0	6.0	23' (76' ROW)	Assume 4' below lowest point in ditch
MV1.SUB-T25.3	GAS PIPELINE	1250 MCM	3.0	13.0	N/A	Assume 10' separation with gas pipeline
MV2.T15-T14.1	COUNTY RD	1/0 AWG	6.0	10.0	N/A	Assume 4' below lowest point in ditch
MV2.T15-T07.1	COUNTY RD	4/0 AWG	6.0	10.0	3' (10' ROW)	Assume 4' below lowest point in ditch
MV2.T07-T16.1	WETLAND	1/0 AWG	8.0	12.0	N/A	Assume 4' below lowest point of wetland
MV2.T07-T16.2	COUNTY RD	1/0 AWG	7.0	11.0	3' (10' ROW)	Assume 4' below lowest point in ditch
MV2.T17-T15.1	WETLAND	500 MCM	6.5	10.5	N/A	Assume 4' below lowest point of wetland
MV2.T17-T15.2	COUNTY RD	500 MCM	1.0	5.0	N/A	Assume 4' below lowest point in ditch
MV2.T17-T15.3	WETLAND	500 MCM	2.0	6.0	N/A	Assume 4' below lowest point of wetland
MV2.T17-T15.4	WETLAND	500 MCM	1.5	5.5	N/A	Assume 4' below lowest point of wetland
MV2.JB2/1-T17.1	COUNTY RD	750 MCM	8.0	12.0	N/A	Assume 4' below lowest point in ditch
MV2.JB2/1-T22.1	WETLAND	4/0 AWG	5.0	9.0	12' (28' ROW)	Assume 4' below lowest point of wetland
MV2.JB2/1-T22.2	COUNTY RD	4/0 AWG	6.0	10.0	18' (40' ROW)	Assume 4' below lowest point in ditch
MV2.T22-T29.1	COUNTY RD	1/0 AWG	1.5	5.5	N/A	Assume 4' below lowest point in ditch
MV2.T22-T29.2	COUNTY RD	1/0 AWG	6.0	10.0	N/A	Assume 4' below lowest point in ditch
MV2.T21-T20.1	COUNTY RD	1/0 AWG	1.0	5.0	N/A	Assume 4' below lowest point in ditch
MV2.T21-T20.2	WETLAND	1/0 AWG	1.0	5.0	N/A	Assume 4' below lowest point of wetland
MV2.T21-T20.3	WETLAND	1/0 AWG	13.5	17.5	N/A	Assume 4' below lowest point of wetland
MV2.SUB-JB2/1.1	GAS PIPELINE	1250 MCM	3.5	13.5	23' (76' ROW)	Assume 10' separation with gas pipeline
MV2.SUB-JB2/1.2	GAS PIPELINE	1250 MCM	3.5	13.5	23' (76' ROW)	Assume 10' separation with gas pipeline

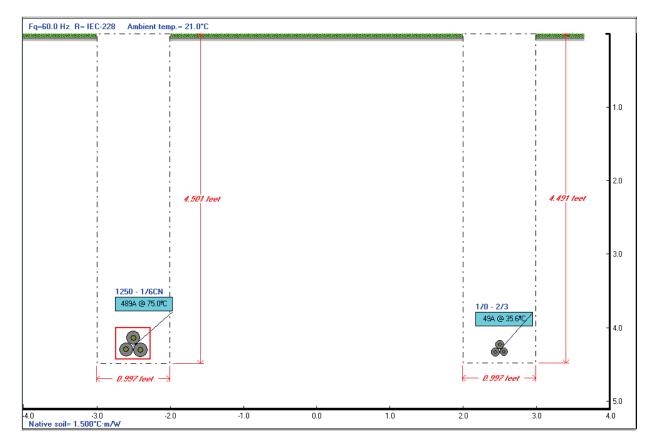

Table 3: Boring Summary, Feeders	1	& :	2
----------------------------------	---	-----	---

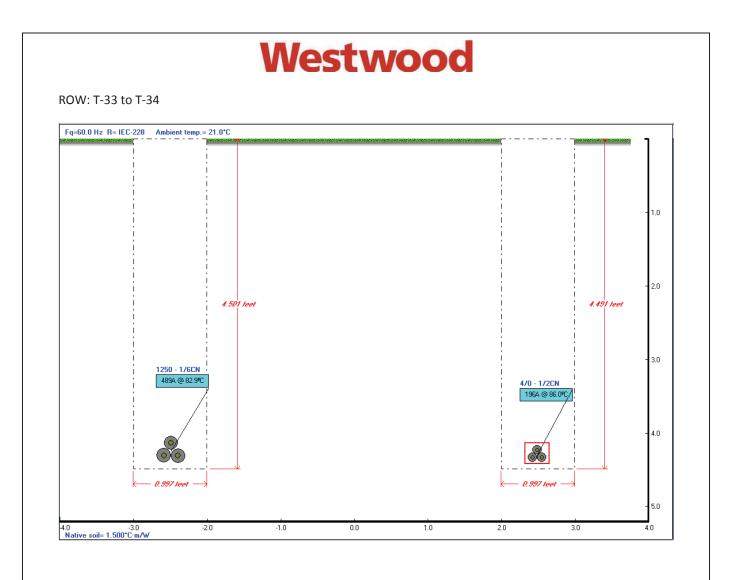

Table 3: Boring Summary, Feeders 3 & 4

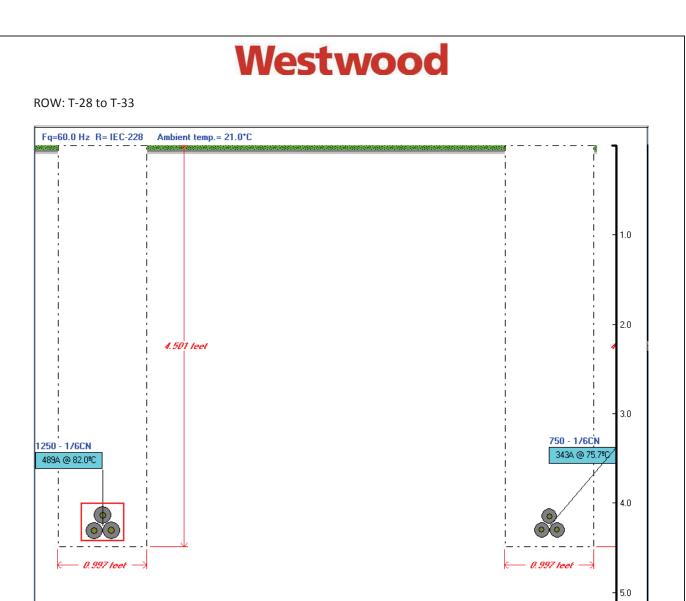

Bore ID	Bore Type	Cable Size	Lowest Depth Of Ditch, Pipe, or Wetland (ft)	Depth Of Cable Duct (ft)		Notes
MV3.T32-T31.1	WETLAND	1/0 AWG	3.5	7.5	N/A	Assume 4' below lowest point of wetland
MV3.T32-T31.2	COUNTY RD	1/0 AWG	5.5	9.5	N/A	Assume 4' below lowest point in ditch
MV3.T34-T36.1	COUNTY RD	1/0 AWG	2.0	6.0	N/A	Assume 4' below lowest point in ditch
MV3.T34-T39.1	WETLAND	1/0 AWG	9.0	13.0	3' (10' ROW)	Assume 4' below lowest point of wetland
MV3.T34-T39.2	COUNTY RD	1/0 AWG	5.5	9.5	3' (10' ROW)	Assume 4' below lowest point in ditch
MV3.T34-T39.3	COUNTY RD	1/0 AWG	2.0	6.0	3' (10' ROW)	Assume 4' below lowest point in ditch
MV3.T28-T33.1	STATE HWY, GAS PIPE	750 MCM	7.0	11.0	3' (10' ROW)	Assume 4' below lowest point in ditch - VERIFY REQS
MV3.T28-T33.2	WETLAND	750 MCM	4.0	8.0	3' (10' ROW)	Assume 4' below lowest point of wetland
MV3.T23-T28.1	COUNTY RD	1250 MCM	5.5	9.5	3' (10' ROW)	Assume 4' below lowest point of wetland
MV3.T23-T28.2	MVAC FDR2	1250 MCM	4.0	7.0	15' (20' ROW)	Assume boring 7' beneath circuit 2
MV3.SUB-T23.1	WETLAND	1250 MCM	5.5	9.5	12' (28' ROW)	Assume 4' below lowest point of wetland
MV3.SUB-T23.2	COUNTY RD	1250 MCM	1.5	5.5	18' (40' ROW)	Assume 4' below lowest point in ditch
MV3.SUB-T23.3	GAS PIPELINE	1250 MCM	3.5	13.5	23' (76' ROW)	Assume 10' separation with gas pipeline
MV3.SUB-T23.4	STATE HWY	1250 MCM	2.0	6.0	23' (76' ROW)	Assume 4' below lowest point in ditch
MV3.SUB-T23.5	GAS PIPELINE	1250 MCM	3.0	13.0	N/A	Assume 10' separation with gas pipeline
MV4.T49-T50.1	WETLAND	1/0 AWG	2.0	6.0	N/A	Assume 4' below lowest point of wetland
MV4.T49-T50.2	WETLAND	1/0 AWG	1.0	5.0	N/A	Assume 4' below lowest point of wetland
MV4.T49-T48.2	WETLAND	1/0 AWG	2.0	6.0	N/A	Assume 4' below lowest point of wetland
MV4.T42-T49.1	COUNTY RD	4/0 AWG	3.0	7.0	N/A	Assume 4' below lowest point in ditch
MV4.T42-T49.2	COUNTY RD	4/0 AWG	4.0	8.0	N/A	Assume 4' below lowest point in ditch
MV4.T44-JB4/1.1	COUNTY RD	500 MCM	3.0	7.0	N/A	Assume 4' below lowest point in ditch
MV4.T46-T45.1	COUNTY RD	1000 MCM	2.0	6.0	N/A	Assume 4' below lowest point in ditch
MV4.T45-T44.1	WETLAND	750 MCM	7.5	11.5	N/A	Assume 4' below lowest point of wetland
MV4.T45-T44.2	COUNTY RD	750 MCM	0.5	4.5	N/A	Assume 4' below lowest point in ditch
MV4.T40-T46.1	COUNTY RD	1000 MCM	1.5	5.5	N/A	Assume 4' below lowest point in ditch
MV4.SUB-T40.1	WETLAND	1250 MCM	9.5	13.5	3' (10' ROW)	Assume 4' below lowest point of wetland
MV4.SUB-T40.2	COUNTY RD	1250 MCM	5.5	9.5	3' (10' ROW)	Assume 4' below lowest point in ditch
MV4.SUB-T40.3	COUNTY RD	1250 MCM	1.5	5.5	3' (10' ROW)	Assume 4' below lowest point in ditch
MV4.SUB-T40.4	STATE HWY	1250 MCM	7.5	11.5	3' (10' ROW)	Assume 4' below lowest point in ditch
MV4.SUB-T40.5	WETLAND	1250 MCM	3.5	7.5	3' (10' ROW)	Assume 4' below lowest point of wetland
MV4.SUB-T40.6	COUNTY RD	1250 MCM	5.5	9.5	3' (10' ROW)	Assume 4' below lowest point in ditch
MV4.SUB-T40.7	MVAC FDR2	1250 MCM	4.0	7.0	15' (20' ROW)	Assume boring 7' beneath circuit 2
MV4.SUB-T40.8	WETLAND	1250 MCM	5.5	9.5	12' (28' ROW)	Assume 4' below lowest point of wetland
MV4.SUB-T40.9	COUNTY RD	1250 MCM	1.0	5.0	18' (40' ROW)	Assume 4' below lowest point in ditch
MV4.SUB-T40.10	GAS PIPELINE	1250 MCM	3.5	13.5	23' (76' ROW)	Assume 10' separation with gas pipeline
MV4.SUB-T40.11	GAS PIPELINE	1250 MCM	3.5	13.5	23' (76' ROW)	Assume 10' separation with gas pipeline







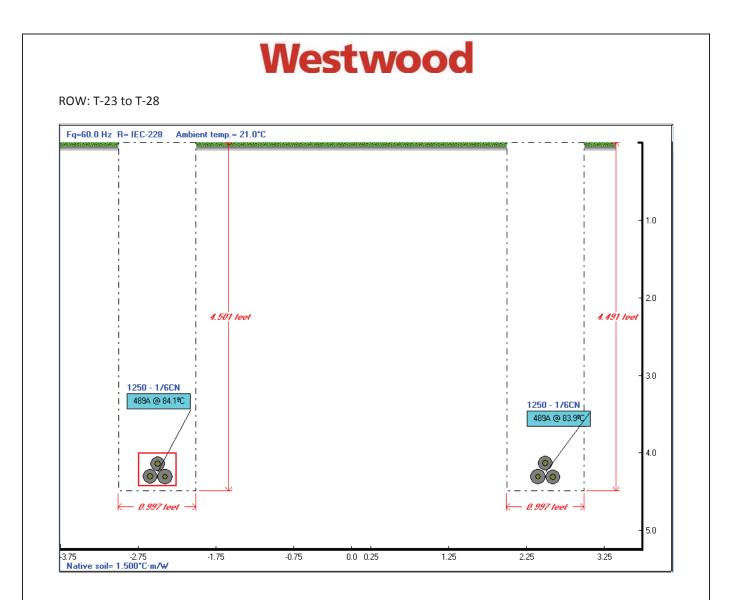


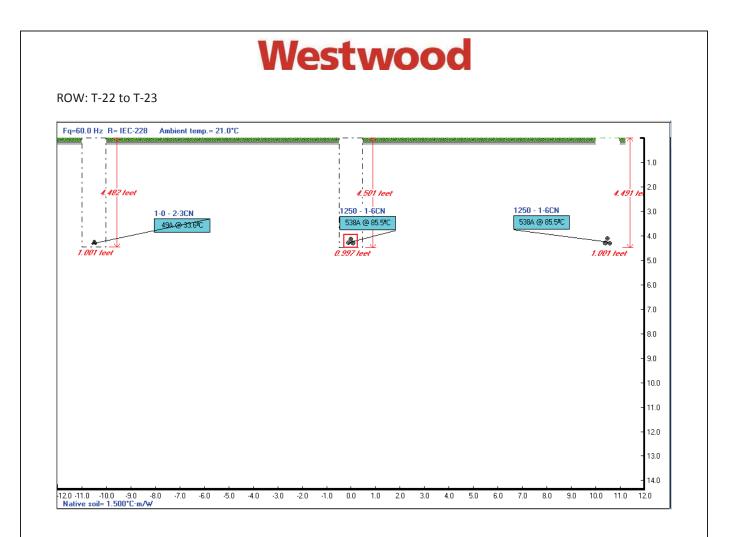


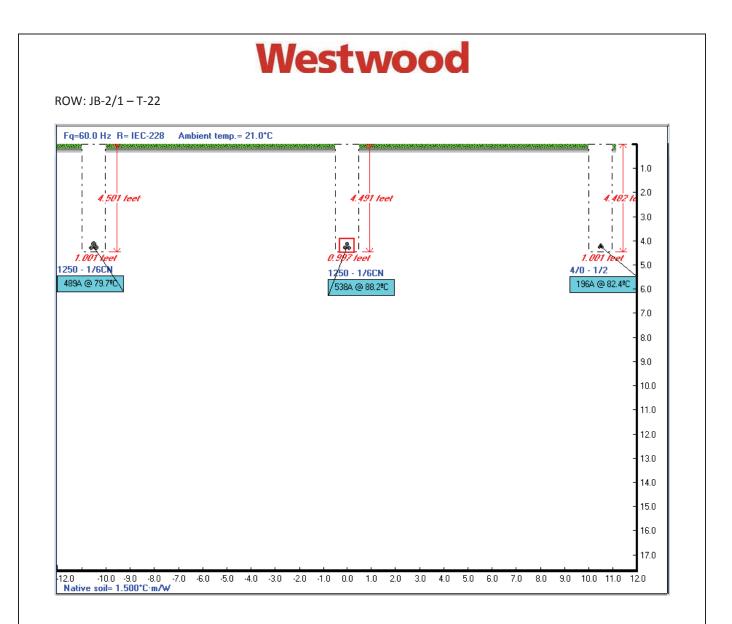
MULTI-CIRCUIT TRENCHES

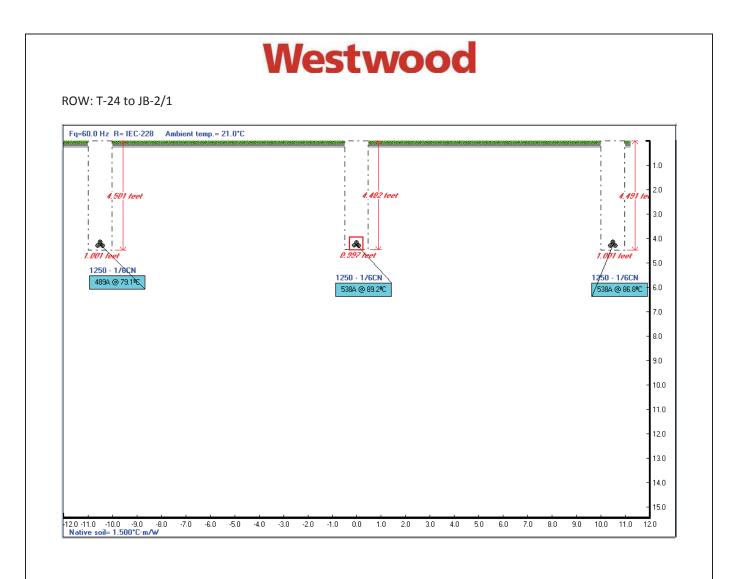
ROW: T-34 to T39

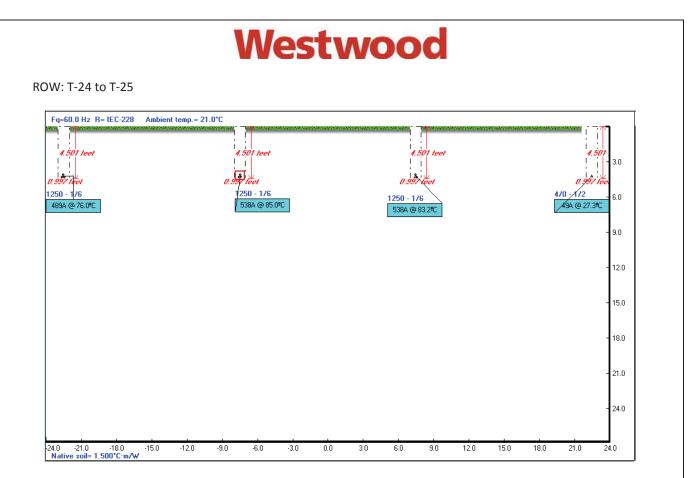
-0.25 0.0

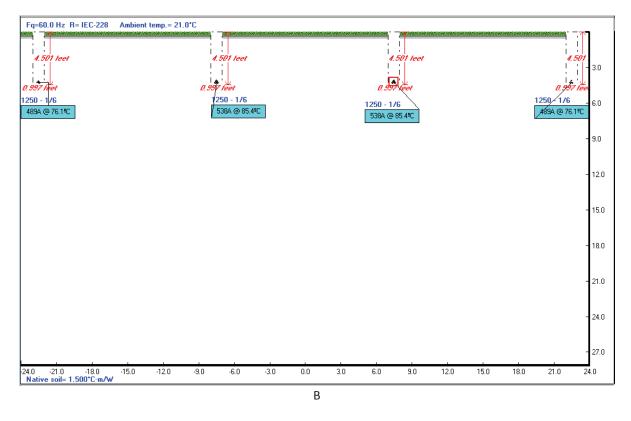

0.75


1.75

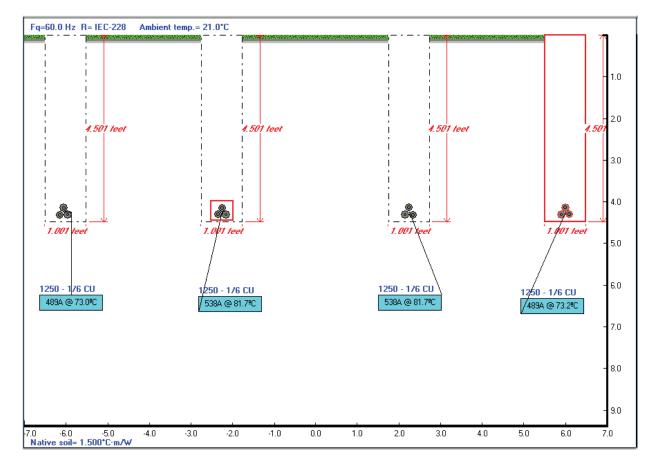

2.75


3.25 - 2.25 Native soil= 1.500*C·m/W -1.25


В

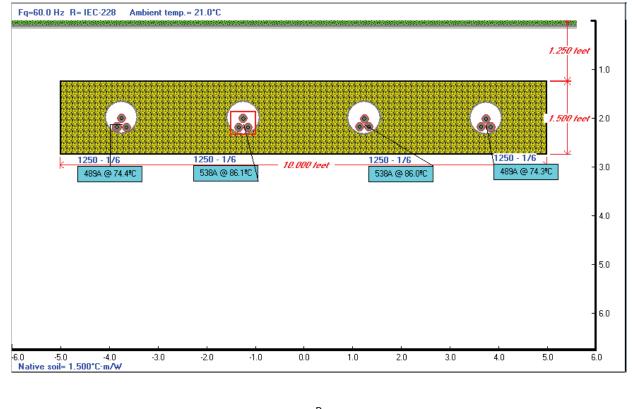


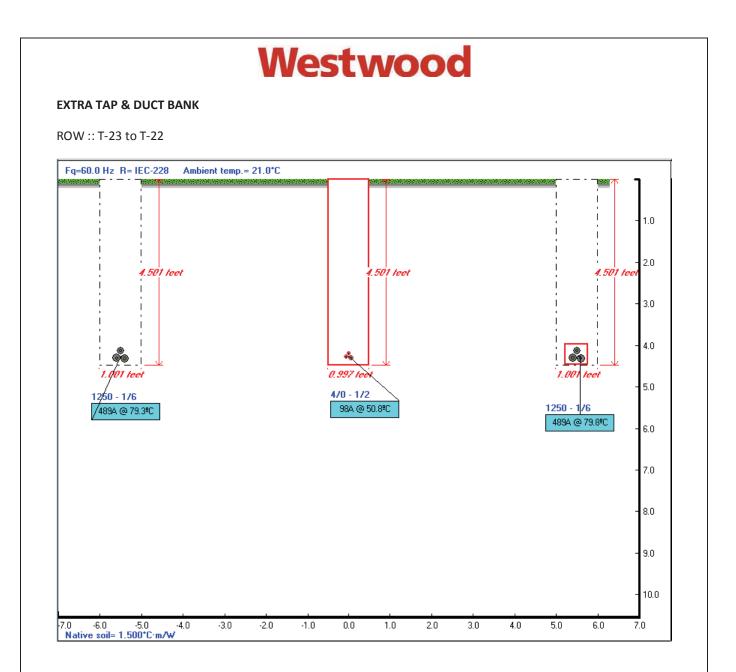
ROW: T-25 to SUB (unconstrained ROW)

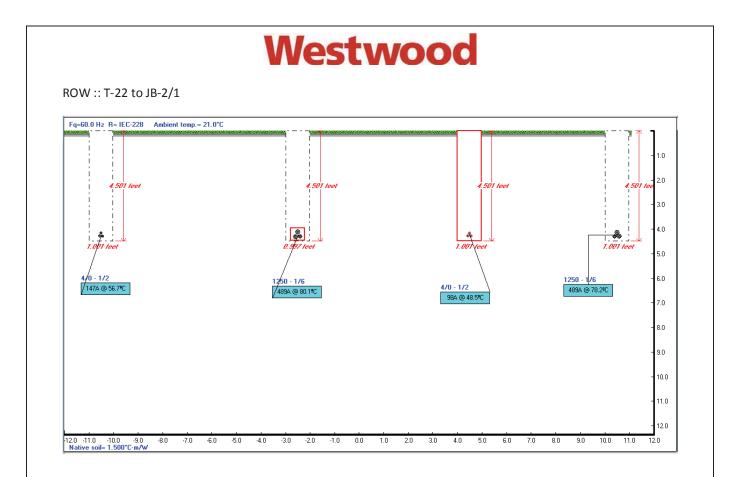


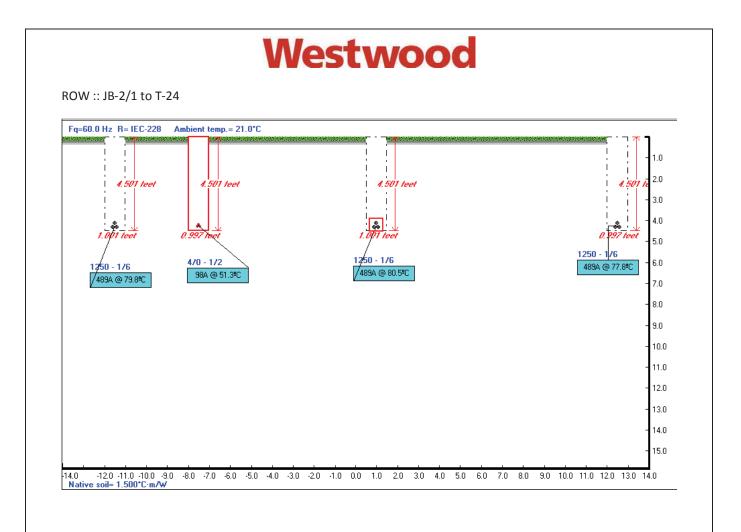
APPENDIX B: CONSTRAINED RIGHT OF WAY OPTIONS

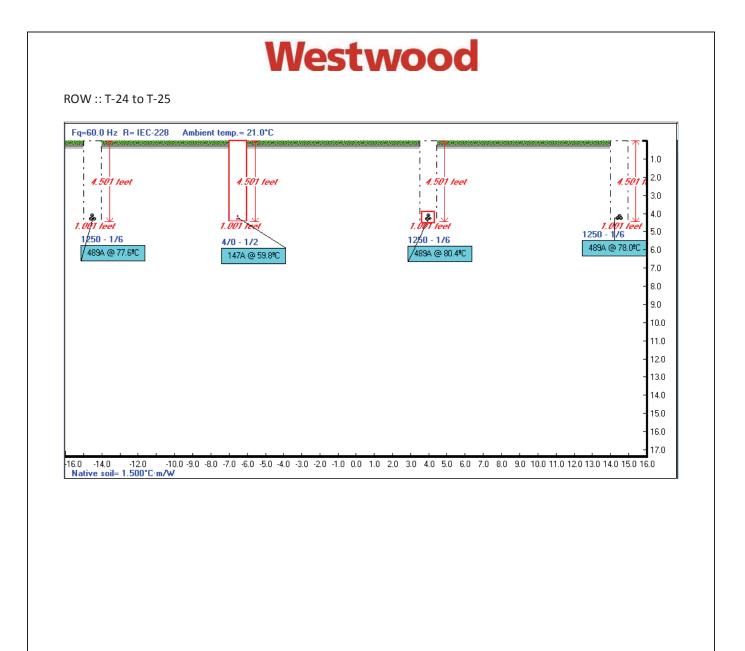
ROW: T-25 to SUB OPTIONS

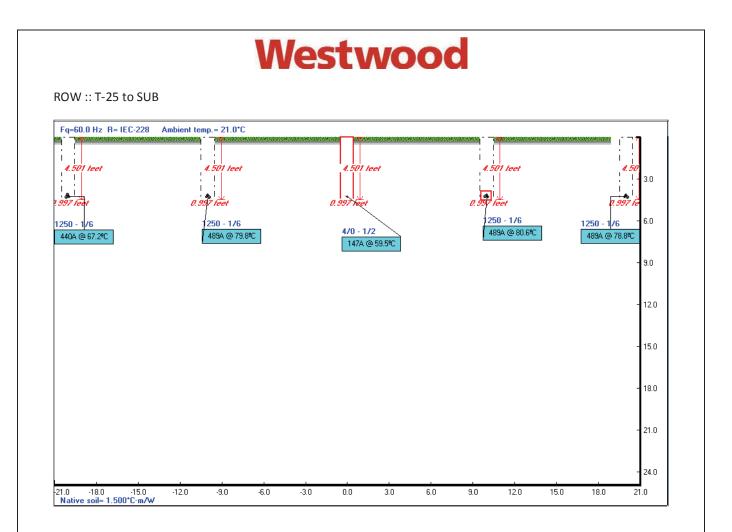

COPPER CABLES

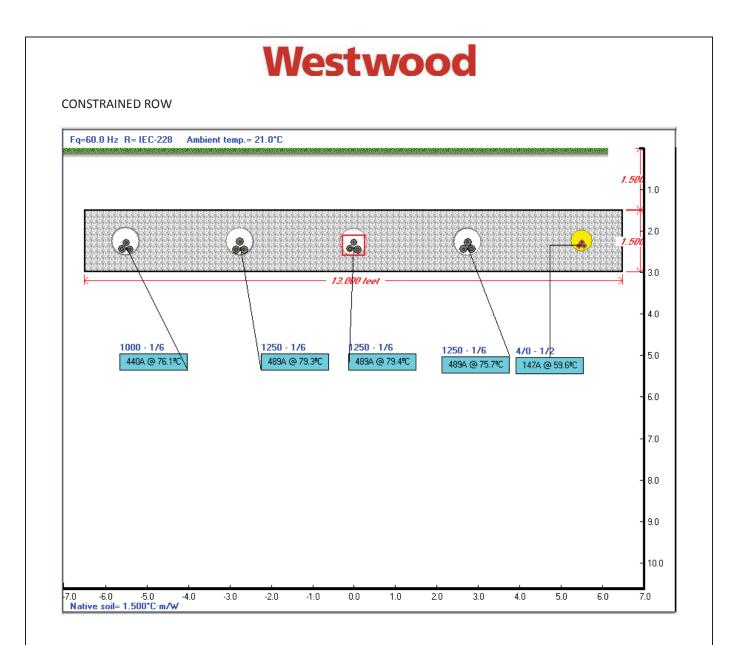

ROW :: T-25 to SUB

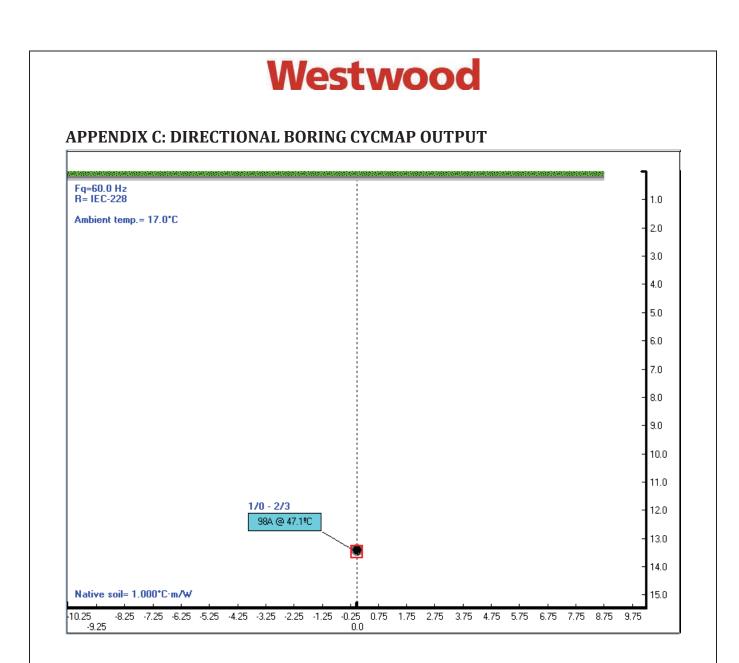


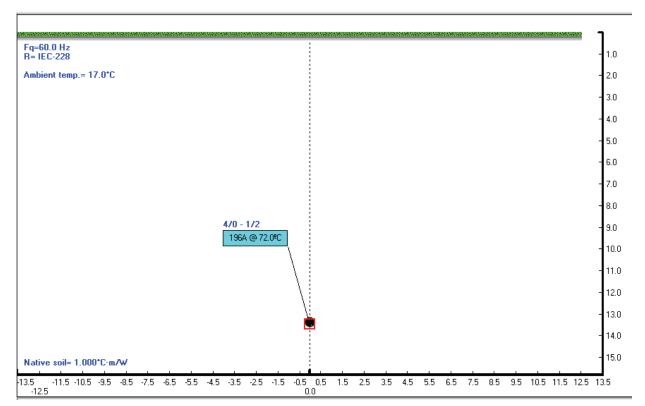

Westwood **SLURRY & DUCT BANK** ROW :: T-25 to SUB Fq=60.0 Hz R= IEC-228 Ambient temp.= 21.0*C 4.501 leet 4 501 teel 4.501 teel 3.0 Т 1 ۰ 1.0 1250 - 1/6 0.9:1250 - 1/6 001 250 1/6 538A @ 78.8ºC 489A @ 66.6ºC 1250 - 1/6 538A @ 78.9ºC 6.0 489A @ 66.4ºC 9.0 12.0 15.0 •21.0 •18.0 •15.0 Native soil= 1.500*C·m/₩ -12.0 -9.0 -6.0 -3.0 0.0 3.0 6.0 9.0 12.0 15.0 18.0 21.0

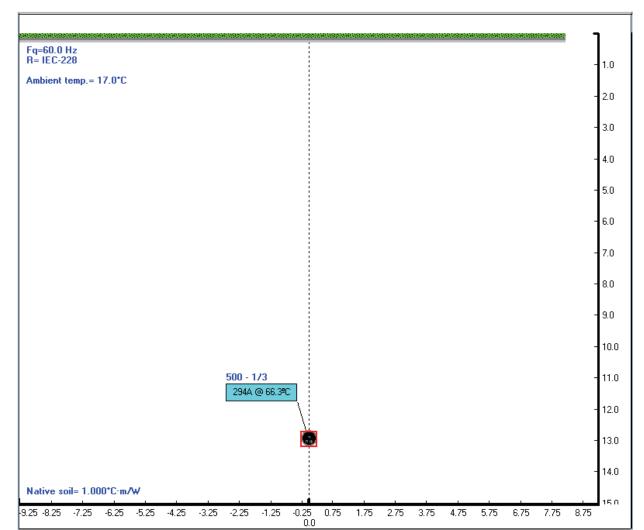

CONSTRAINED EASEMENT

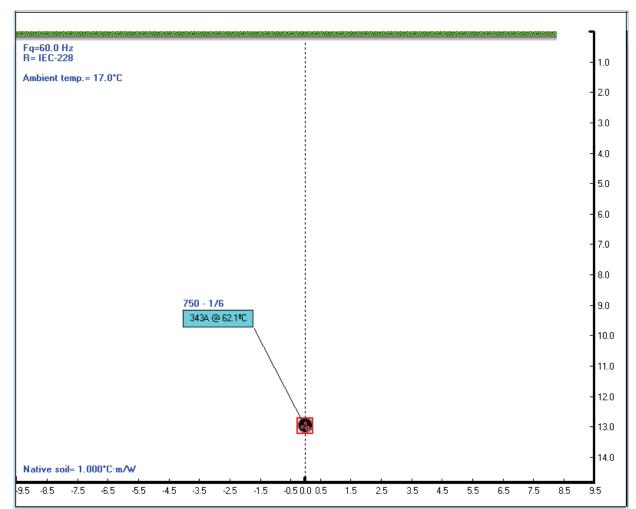


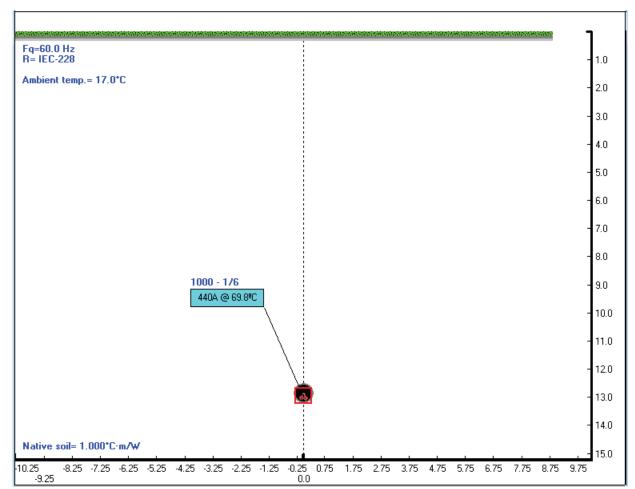


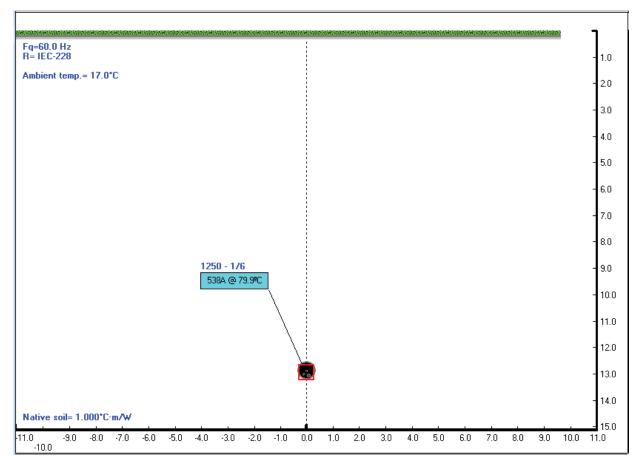


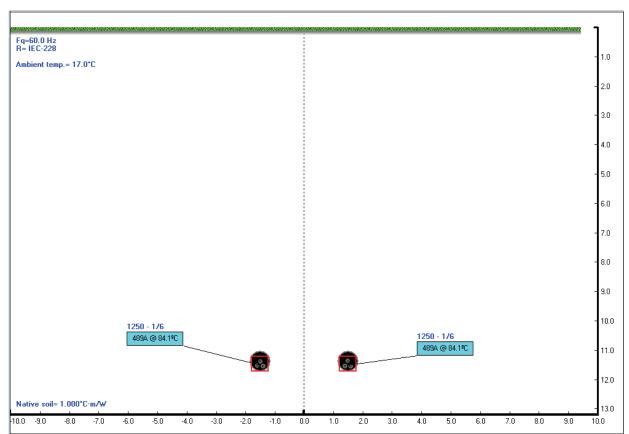


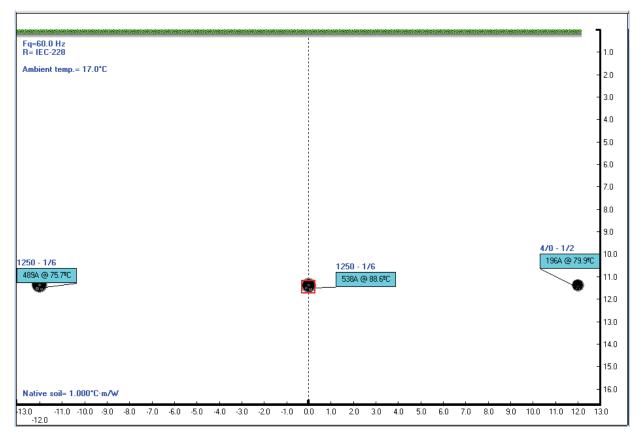


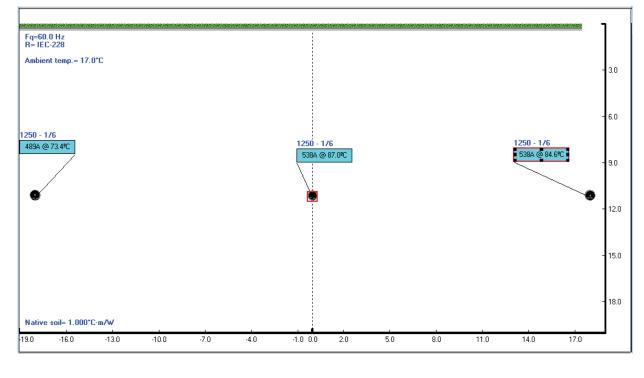












=60.0 Hz IEC-228		den noval values i food values noval valen noval valen i food valen noval valen noval valen noval vale	
bient temp.= 17.0°C			
	1250 - 1/6	1250 - 176 538A @ 86.5%	1250 - 176
	538A @ 86.5*C		483A @ 72.8°C
1250 - 1/6 4894 @ 72.8ªC			
ive soil= 1.000°C·m/W			

GROUNDING STUDY

13111

Northwest Ohio Wind Project

in main in

Paulding County, Ohio October 30 2017 Revision 0

Prepared For:

Prepared By: Westwood

Project Name: NW OH Wind Project	
Title	J.O. or W.O. Number
Grounding Study	0007186.00

Аррг	rovals	Revision	Date	Description
Preparer(s) Name	Reviewer(s) Name	Number		
Joseph Gorman	Drew Szabo	0	10/30/2017	Original Release

CONTENTS

BACKGROUND	1
OBJECTIVE	1
SUMMARY OF RESULTS	1
SOIL RESISTIVITY DATA AND TWO-LAYER SOIL MODEL	1
GROUND GRID MODEL	3
NETWORK MODEL	5
GPR AND TOUCH AND STEP POTENTIAL RESULTS	6
CONCLUSION	8

Background

The Northwest Ohio Wind project in Paulding, Ohio is a new wind power generation installation with an overall capacity of 100 MW, consisting of 42 GE 2.5MW Wind Turbines. The turbines are grouped into four medium voltage (MV) feeders with 10 turbines on feeders 1 and 4, and 11 turbines on feeders 2 and 3. The feeders are connected to a main power transformer that steps the voltage up to 138kV where it interconnects with the AEP transmission system via a short overhead line segment.

Objective

This study assesses the facility grounding design for touch and step potential hazards which may arise due to ground faults on the high voltage electrical system. The design is assessed using the methods of IEEE Std. 80, "IEEE Guide for Safety in AC Substation Grounding" The grounding system was modeled using WinIGS (Integrated Grounding System Analysis and Design) software, which combines both tools for modeling electrical properties of soil and grounding systems, and electrical network analysis tools which give the flexibility to model interface with the electrical transmission or distribution system in many ways, depending on the amount of detail desired.

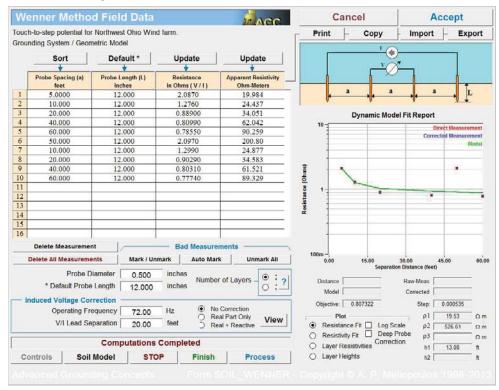
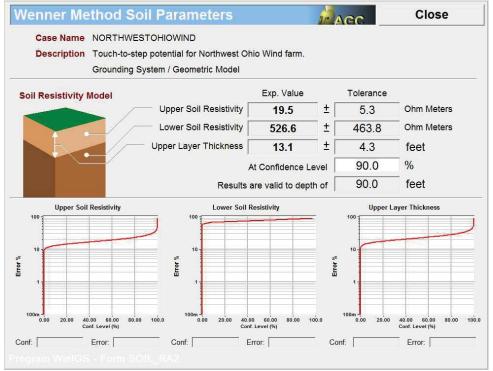
Summary of Results

The study finds that the wind turbine ground grid as indicated in the 90% electrical collection drawings meet the IEEE Std 80 requirements for touch and step potential hazard. These main findings are summarized below.

Parameter	Calculated Result
Individual Turbine Ground Grid	2.098 ohms (< 10 ohms)
Resistance	
Maximum Ground Potential Rise at a	1,223 volts at WTG 31 (Circuit 3)
wind turbine	
Maximum Touch Potential at a wind	122 volts (168.5 volts permitted by IEEE Std. 80 for
turbine	0.5 seconds)
Maximum Step Potential at a wind	27.6 volts (182.9 volts permitted by IEEE Std. 80
turbine	for 0.5 seconds)

Soil Resistivity Data and Two-Layer Soil Model

The electrical soil resistivity for the site was measured and recorded in the document "Geotechnical Engineering Report" by BARR Engineering dated December 2014. The soil resistivity at the site was measured at 4 turbine locations within the site area using the Wenner Four-Pin method, running in both a North-South and East-West directions using probe spacing ranging between 5 and 60 feet. The soil resistivity was also measured at the substation location using probe spacing ranging between 5 and 300 feet. Figures 1 and 2 below show the data collected from the site at WTG 37, which yielded the worst case ground grid resistance of 2.098 Ohms. The resulting tower ground grid resistance from WinIGS is shown in Figure 4.

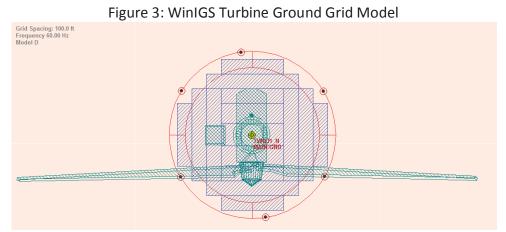
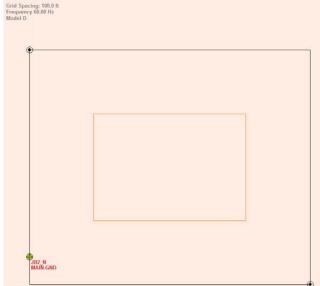

Figure 1: Wenner Method Field Data – Worst Case Site

Figure 2: Wenner Method Two-Layer Soil Model – Worst Case Site

Ground Grid Model

A ground grid model was developed for all wind turbine locations based on the ground grid design. The ground grid for each GE wind turbine consists of two buried 4/0 AWG bare copper rings that are bonded to each other and electrically bonded to six driven 5/8" x 8' copper clad steel ground rods, equally spaced. The innermost of the two buried copper rings is encased in the concrete foundation and mechanically connected to the foundation rebar as well as the turbine tower flange. The outer bare copper ring is buried in soil and is bonded, using compression connectors, to the six 8-foot vertical ground rods, as well as the inner copper ring. The turbine grounding arrangement can be found on detail drawing E.411. Figure 3 shows the turbine ground grid model, encompassing the outer ring and the concrete encased electrode of the foundation and the inner ring.



Based on the physical and soil resistivity model, WinIGS calculates the resistance of the ground grid to be 2.098 Ohms. This meets the requirement of 10 Ohms or less specified by GE. The results from WinIGS are shown on Figure 4.

		ch-to-step poten unding System /)0 <mark>H</mark> z			
Group Name	Node Name	Resistance (Ohms)	Reactance (Ohms)	Voltage (Volts)	Current (Amperes)
MAIN-GND	TWR31_N	2.0978	0.0136	1223.10	583.02
		Rp = 2.0978	Xp = 0.0136	Earth Current:	583.02
				Fault Current:	3940.03
				Split Factor:	14.80 %
	r	Oriving Point		Viev	w Full Matrix

Figure 4: Result of Resistance Calculation for Individual Turbine Ground Grid

The junction box ground grid consists of two 10-foot 3/4 CCS rods driven into the soil on two of the corners of a 4/0 copper ground ring which exists 3 feet beyond the perimeter of the junction box, and 1.5 feet below ground level. The WinIGS rendering of the junction box ground grid is shown on Figure 5.

Figure 5: WinIGS rendering of Junction Box Ground Grid

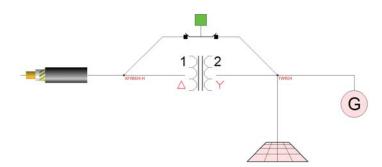
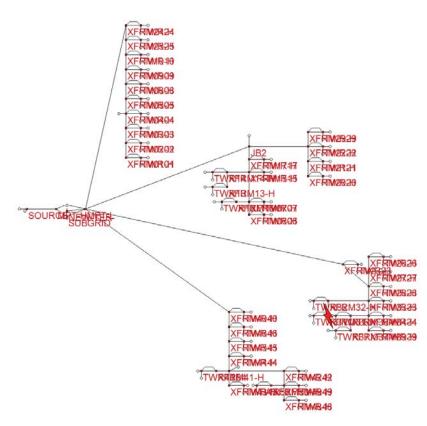

Based on the physical and soil resistivity model, WinIGS calculates the resistance for the collector junction box to be 3.9 Ohms. The results from resistance report from WinIGS are shown below, on figure 6.

Figure 6: Result	of Docistopoo	Coloulation	for Collector	lunation Day
FIGURE D: RESUIL	OF RESISTANCE	Calculation	IOF COHECIOF	IUNCHON BOX
ingale of neodic	or neolocarioe	Gardaracion	001 0011000001	

	equency: 60.0	0 TIZ			
Group Name	Node Name	Resistance (Ohms)	Reactance (Ohms)	Voltage (Volts)	Current (Amperes)
MAIN-GND	JB2_N	3.8994	0.0006	359.30	92.14
		Rp = 3.8994	Xp = 0.0006	Earth Current:	92.14
		94		Fault Current:	7430.06
				Split Factor:	1.24 %


Network Model

To accurately simulate touch and step potential at the various locations in the collector system during a ground fault, it is necessary to construct a network model that includes the transmission source, substation main transformer, collector system cabling, padmount transformers, generators, and grounding electrodes. Figure 7 shows the WinIGS depiction of a single turbine generator site, with incoming concentric neutral collector cable, ground grid, delta/wye padmount transformer, and generator. The network model is based on the collector one-line drawings (E.200 and E.201). Also shown below in Figure 8 is the full network model.

Figure 7: WinIGS schematic rendering of single turbine location

GPR and Touch and Step Potential Results

Turbine Ground Grid

Ground potential rise was examined for faults at select locations on the 34.5kV collector system. The highest ground potential rise at a turbine for a ground fault was found at WTG-31 on Circuit 3. The instances where the higher ground potential rises exist were at turbines relatively close to the substation. High ground potential rise at the turbines which are short distances from the substation are due to the higher fault current present near the substation. The high ground potential rise occurrences at turbines that are further away from the substation occur due to increased neutral path impedance on the longer collector lines, resulting in larger portions of fault current returning through the ground. Figure 9 shows the resulting ground current. Figures 10 and 11 show the touch and step potential plots, which can be seen to be below the permissible values for the entire surface within the outer ground ring for an assumed ground fault of 0.5 second, based on IEEE Std. 80.

Figure 9: Ground Current for Single Line to Ground Fault at Turbine 31 (34.5kV)

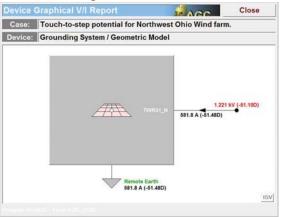
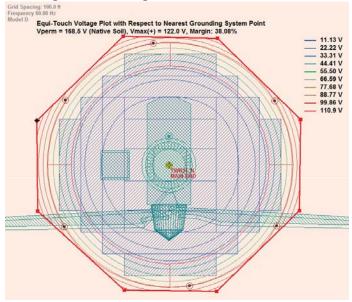
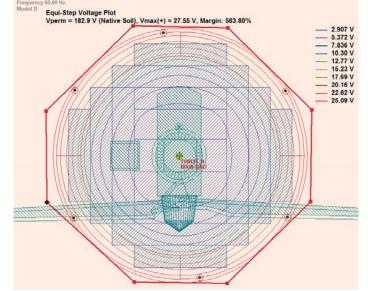




Figure 10: Touch Voltage Plot for Single Line to Ground Fault at Turbine 31 (34.5kV)

Figure 11: Step Voltage Plot for Single Line to Ground Fault at Turbine 31 (34.5kV)

Junction Boxes

The highest ground potential rise at a junction box for a ground fault was found at JB2 on circuit 2. The touch and step potential plots for JB2 are shown on figures 12 and 13 below. As shown on the plots, touch and step potentials are below the permissible values for a .5 seconds fault, based on IEEE Std. 80.

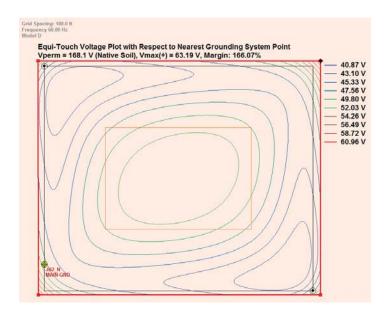
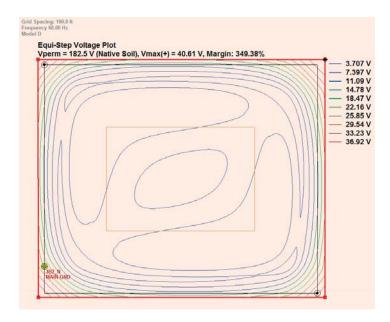



Figure 12: Touch Voltage Plot for Single Line to Ground Fault at Turbine 31 (34.5kV)

Figure 13: Step Voltage Plot for Single Line to Ground Fault at Turbine 31 (34.5kV)

Conclusion

The preceding analysis has modeled the electrical network and grounding systems of the Northwest Ohio Wind Farm. The analysis shows an expected worst case individual wind turbine ground resistance of 2.098 ohms. Additionally, simulations of line to ground faults show that the design meets IEEE Std. 80 safety criteria for touch and step potential.

1800 Deming Way, Suite 102 Middleton, WI 53562

Main (608) 821-6600

westwoodps.com

NORTHWEST OHIO WIND INSULATION COORDINATION REPORT

October 30, 2017

INTRODUCTION:

The following presents Westwood Professional Services' insulation coordination analysis for Northwest Ohio Wind Project. The purpose of the report is to confirm that surge arrestors are rated properly to coordinate with insulation level and provide protective margins consistent with the requirements of IEEE standard C62.22 "IEEE Guide for the Application of Metal-Oxide Surge Arresters for Alternating-Current Systems"

Equipment: Medium voltage equipment on the site consists of shielded cable, padmount transformers and junction boxes (sectionalizing cabinets). The 2750 kVA step-up transformers are 34.5 kV(delta)/690 V(wye-g), with 200 kV BIL for the windings. All major medium voltage equipment is rated with a BIL level of 150kV, which is standard for a system energized at 34.5 kV. Since 150 kV is the lowest level, protective margins are calculated with respect to 150 kV.

A preliminary selection of 24.4 kV MCOV was made and is evaluated here. It is noted that the 24.4 kV MCOV rating is sufficient to operate continuously on the 34.5 kV system even if the system should operate at greater than 10% over the nominal voltage.

CALCULATION:

IEEE Std. C62.22 recommends the calculation of two different margins of protection, as identified below, the first with respect to the chopped wave (CWW) withstand level of the equipment, and the second with respect to the basic impulse insulation level (BIL).

 $PM_{L1} = [CWW/(FOW + Ldi/dt) - 1]100\%$

 $PM_{L1} = [(BIL/LPL) - 1]100(\%)$

where

PM_{L1}	is FOW Protective Margin (in percent)
PM_{L2}	is Full Wave Protective Margin (in percent)
CWW	is Chopped Wave Withstand of protected equipment (in kilovolts)
FOW	is Front-of-Wave protective level of arrester (in kilovolts)
BIL	is Basic Impulse Insulation Level of protected equipment (in kilovolts)
LPL	is Lightning Protective Level (in kilovolts)
Ldi/dt	is connecting lead wire voltage drop (in kilovolts)-see 6.7.1

October 30, 2017 Page 2

The configuration studied assumes a 24.4 kV MCOV station class arrester at the substation, with direct connect, 24.4 kV MCOV elbow-type arrestors at the end of each medium voltage feeder. Calculations are as follows:

Equipment BIL = 150 kV CWW = 1.0 x BIL for solid insulation cable = 150 kV (Since CWW for liquid insulation is 110% of BIL, this represents a worst case.

di/dt = 8kV/foot of lead length (assumed based on .4 microHenry/ft and 20 kA/microsec)

L = 3 feet (assumed lead length of arrestor in substation)

LPL – For the case with an arrester in the substation and end point arresters at the remote end of the circuit, the 20 kA protection level is assume for the substation arrester and the 1.5 kA protection level for the end point arrester. A reflected magnitude of ½ the end point arresters protection level is assumed to add to the voltage at the riser corresponding to the reflection that occurs before the endpoint arrester starts full conduction.

FOW protective level for 24.4 kV MCOV substation arrestor = 85.8 kV (Hubbell Power Systems assumed) Maximum discharge voltage at 20 kA for 8/20 current wave is 75.0 kV.

Collection arrester is assumed as Tyco ELB-35-600-30, 24.4 kV MCOV. FOW protective level (10 kA) is 93.1 kV. Maximum discharge voltage at 1.5 kA for 8/20 current wave is 72.6 kV.

Based on these inputs and assumptions, the results are as follows:

PML1 = [CWW/(FOW+Ldi/dt)-1] x 100 (%) = [150/(93.1+3x8)-1] x 100 (%) = 28%. This exceeds the minimum recommended by IEEE C62.22 of 20%

PML2 = [BIL/LPL-1] x 100 (%) = [150/(75+0.5*72.6)-1] x 100 (%) = 35% This exceeds the minimum recommended by IEEE C62.22 of 20%

CONCLUSION

Based on the analysis presented, referencing the IEEE standards 62.22 and typical arrester datasheets, it is verified that the proposed arresters satisfy the minimum protective margin recommendations and are suitable to be applied on this 34.5 kV system.

APPENDIX – Arrester Data Sheets

Collection Arresters – TE Connectivity

Product Selection Information									
Catalog Number	Duty Cycle Rating (kV/ rms)	MCOV (kVrms)	Maximum Discharge Voltage (kV cres 8 x 20 microsecond current wave						
		5	1.5kA	5kA	10kA	20kA			
ELB-35-600 ARSTR-27	27	22.0	65.6	72.3	78.2	85.7			
ELB-35-600 ARSTR-30	30	24.4	72.6	79.9	86.5	94.8			
ELB-35-600 ARSTR-33	33	26.8	80.1	88.2	95.4	104.5			
ELB-35-600 ARSTR-36	36	29.0	87.1	95.9	103.8	113.8			

	PROTECTIVE CHARACTERISTICS									
ELD 25 600 ADOTD 27	Duty Cycle Rating (kVrms)	MCOV (kVrms)	8/20us Discharge Voltage Lightning Impulse Classifying Current LPL (10kA)	30/60us Switching Impulse Protective Level SPL (500A)	1us Front of Wave Protective Level FOW (10kA)					
ELB-35-600-ARSTR-27	27	22.0	78.2	61.2	84.1					
ELB-35-600-ARSTR-30	30	24.4	86.5	67.7	93.1					
ELB-35-600-ARSTR-33	33	26.8	95.4	74.7	102.6					
ELB-35-600-ARSTR-36	36	29.0	103.8	81.3	111.7					

Substation Riser arresters - Hubbell Power Systems

Polymer Station [18kV - 444kV Rated]

Protective Characteristics

Arrector		Maximum Continuous	Maximum 0.5µs	Maximum Switching	Capa	DV Ibility 3)	Max using				e Volt nt Way	
Catalog Number	Rating kV rms	Operating Voltage (MCOV) kV rms	kV (1)	Surge Protective Level (kV) (2)	1 sec kV rms	10 sec kV rms	1.5kA	3kA	5kA	10kA	20kA	40kA
SVN018GA015AA	18	15.3	48.5	34.1	17.8	17.1	38.9	40.5	41.9	44.0	46.7	52.0
SVN021GA017AA	21	17	53.9	37.9	19.8	19.0	43.3	45.0	46.5	48.9	52.5	57.5
SVN024GA019AA	24	19.5	61.8	43.5	22.7	21.8	49.6	52.0	53.5	56.5	60.0	66.0
SVN027GA022AA	27	22	69.8	49.1	25.7	24.6	56.0	58.5	60.5	63.5	67.5	74.5
SVN030GA024AA	30	24.4	79.3	55.8	28.5	27.3	62.5	64.5	67.0	70.5	75.0	82.5
SVN036GA029AA	36	29	92.0	64.7	33.8	32.4	74.0	77.0	79.5	83.5	89.0	98.0
SVN039GA031AA	39	31.5	101	71.4	36.7	35.2	80.5	83.5	86.5	90.5	97.0	107
SVN045GA036AA	45	36.5	116	81.4	42.6	40.8	93.0	96.5	100	105	112	124

TOV STUDY

Northwest Ohio Wind Project

Paulding, Ohio October 30, 2017

Prepared for:

Prepared by:

Project Name: NW OH Wind Project						
Title	J.O. or W.O. Number					
TOV Study	0007186.00					

Арр	Revision	Date	Description		
Preparer(s) Name	Reviewer(s) Name	Number	Date	Description	
Josh Venden	Drew Szabo	0	10/30/2017	Original Release	

TABLE OF CONTENTS

INTRODUCTION	4
OBJECTIVE	4
METHODOLOGY	4
INPUTS & ASSSUMPTIONS	5
STUDY RESULTS	5
CONCLUSION	10

APPENDIX A: EMA VDH/GMSI GROUNDING BREAKER DATA SHEETS	. Α
APPENDIX B: 34.5KV COLLECTION CABLE ELECTRICAL PARAMETERS	. В
APPENDIX C: MODEL INPUTS	. C

INTRODUCTION

The NW OH Wind Project is a 100 MW wind generation installation in Paulding, OH consisting 42 of GE 2.5 MW wind turbines. The turbines are grouped into four medium voltage (MV) feeders with 10 turbines on Feeders 1 and 4 and 11 turbines on Feeders 2 and 3. The feeders are connected to a main power transformer that steps the voltage up to 138kV where it interconnects with the AEP transmission system via a short overhead line segment.

A temporary transient overvoltage (TOV) study was performed on the medium voltage collection system to determine if any system changes or additions are required in order to limit the transient overvoltage on the collection system. This wind plant substation consists of EMA circuit breakers, which use a three-phase integral grounding switch to effectively ground the feeders once the feeder breaker has opened. This type of circuit breaker has been shown to limit exposure of temporary transient overvoltage on wind farm collection circuits when an unbalanced ground fault occurs. Additionally, surge arresters are installed at the end of each feeder string.

OBJECTIVE

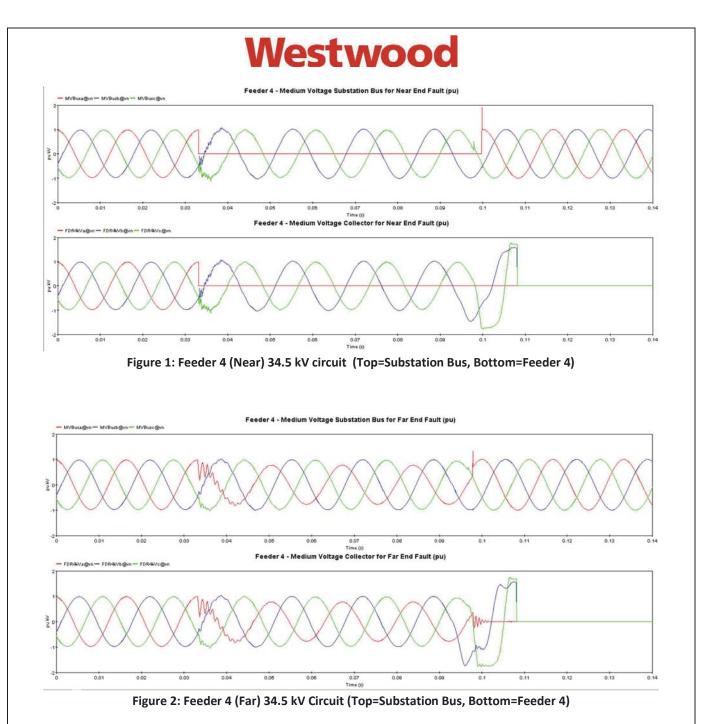
This transient study assesses temporary overvoltage (TOV), and will analyze system responses to switching and during fault interrupting events. The TOV results for a single line to ground fault on the collector system are used to assess impact on surge arrestor MCOV ratings. Typically the TOV can be significant with weak systems which are interconnected to wind plants, since these plant have a larger than normal capacitive reactance due to the electrical collector system and capacitor banks. The wind plant substation integrates collector feeder circuit breakers which include an integral grounding switch and will typically not require any additional effective grounding techniques such as neutral derived grounding transformers due to the speed of this three phase grounding mechanism. The EMTP-RV and ATP software programs are used to perform this analysis. The model parameters are located in Appendix C.

Another purpose of the TOV study is to determine the maximum energy that will be absorbed by each medium voltage arrester installed on the collection system circuits. Energy is an integral function and therefore increases over time, so the total energy absorption is determined and then compared to the energy rating of the installed surge arresters. The comparison is used to determine that the arresters are appropriately sized to withstand the amount of energy present during a single line-to-ground fault.

METHODOLOGY

Several switching times were studied, including the peak of all three phase sinusoidal waves, the zero crossings of all three phases, and various other points on the waveform. The preliminary analysis showed that the transient overvoltage values seen were similar at each switching time. For the transient overvoltage analysis results provided in this report, the single line-to-ground fault was applied at 33.12 ms to correspond with the positive voltage peak for the faulted phase. Fault locations on the feeder were analyzed for locations close (near) to the substation, the farthest location on the collector circuit (far), and points in the middle of the feeder. It was determined from results that the temporary overvoltage levels seen at the individual arrestor locations were slightly higher for the far end fault.

INPUTS & ASSSUMPTIONS


For a single line-to-ground fault occurring on the collection system circuits it is assumed, per the substation engineer, that the corresponding circuit breaker will trip in a total of 58.33 ms, or 3.5 cycles after the fault The EMA circuit breaker grounding switch operates in 1 cycle (16.67 ms) after the circuit breaker opens.

The energy is recorded at 1108.12 ms; which accounts for application of the fault at 1.98 cycles (33.12 ms), plus the total time for the breaker to open of 3.5 cycles (58.33 ms), and 1 cycle (16.67 ms) for the grounding switch to close. The GE wind turbines will stop contributing current to a fault at 60 cycles (1000 ms) after the circuit breaker opens. The total simulation time will yield results for the maximum possible absorbed energy; 33.12 ms + 58.33 ms + 16.67 ms + 1000 ms = 1108.12 ms.

STUDY RESULTS

The simulation results provide the transient overvoltage waveform for each of the un-faulted phases after the single line-to-ground fault is applied, the feeder circuit breaker opens and the grounding switch closes. The waveforms are analyzed to obtain the TOV magnitude values, which are compared to per unit transient voltage levels provided in IEEE Standard C62.92, which are characteristic of an effectively grounded system. The maximum pre-fault peak voltage (normal operation) is 28.17 kV which is equal to the peak line-to-ground voltage of the 34.5 kV system. The line-to-ground voltage of 34.5 kV_{L-L} is 34.5 / $\sqrt{3}$ = 19.92 kV_{L-N}, the peak voltage is 19.92 * $\sqrt{2}$ = 28.17 kV.

The voltage waveforms in Figure 1 and Figure 2 are for Feeder 4 (Figure 1: fault at substation (near); Figure 2: fault at far end of circuit). In each figure, the upper curve is for the substation 34.5 kV bus, while the lower curve depicts voltages at the far end of the circuit. The waveforms show a fault being applied at 33.12 ms, the feeder circuit breaker opening 58.33 ms later at 91.45 ms, and the EMA breaker three-phase grounding switch closing 1 cycle later at 108.12 ms. The fault is applied at the peak of the voltage waveform (at 33.12 ms), which yields the most conservative transient overvoltage. Other pre-fault peaks prior to 33.12 ms could have been used, but this one was chosen in order to show a small time period of steady-state voltage prior to the fault being applied for reference purposes in the study results.

The waveforms in Figure 2 show the applied fault at 33.12 ms, the circuit breaker opening at 91.45 ms, and a quickly damped transient voltage once the grounding switch closes at 108.12 ms. The peak voltage varies based on the feeder properties such as number of turbines and total feeder impedance and capacitance.

Table 1 shows the maximum transient voltages at each time for near and far locations of the feeder. In all cases the transient voltage after the grounding switch operates is significantly damped within 30 ms.

Collector Circuit	Overvoltage Arrestor Location	Single Line to Ground Fault Location on the Collector Circuit	Peak Line to Ground Rated Voltage (kV)	Single Line to Ground Fault @ 33.12ms Line to Ground Voltage (kVrms)	EMA Circuit Breaker Opening @ 91.45ms Line to Ground Voltage (kVrms)	EMA Circuit Breaker Three- Phase Ground Switch Closes @ 108.12ms Line to Ground Voltage (kVrms)	Steady-State Voltage after EMA Circuit Breaker Grounding Three- Phase Grounding Switch Closes Line to Ground Voltage (kVrms)	24.4kV MCOV Arrestor Location Maximum Voltage in per- unit of rated MCOV [typical max @ 108.12 ms] (pu)	24.4kV MCOV Arrestor Energy Absorbed at 1108.12ms (kJ/kVMCOV)	
1	WTG-1	Near	28.17	19.56	10.75	33.05	0.51	1.37	0.4474	
1	WTG-24	Near	28.17	19.48	10.62	33.02	0.104	1.36	0.4517	
1	WTG-1	Far	28.17	19.56	15.43	33.29	0.55	1.41	0.5096	
1	WTG-24	Far	28.17	19.48	11.07	33.22	0.122	1.4	0.4734	_
2	WTG-16	Near	28.17	19.31	10.84	31.1	0.354	1.32	0.2262	
2	WTG-6	Near	28.17	19.52	10.47	31.14	0.344	1.31	0.2266	
2	WTG-13	Near	28.17	19.53	10.67	31.03	0.359	1.32	0.2269	
2	WTG-20	Near	28.17	19.52	10.55	31.14	0.269	1.31	0.2271	
2	WTG-29	Near	28.17	19.51	10.53	31.14	0.254	1.31	0.227	
2	WTG-16	Far	28.17	19.52	14.86	31.21	0.305	1.42	0.2604	
2	WTG-6	Far	28.17	19.52	14.37	31.2	0.298	1.41	0.2548	
2	WTG-13	Far	28.17	19.37	13.66	30.75	0.314	1.41	0.2493	
2	WTG-20	Far	28.17	19.51	12.43	31.15	0.241	1.38	0.2413	
2	WTG-29	Far	28.17	19.51	12.55	31.17	0.228	1.38	0.2411	
3	WTG-39	Near	28.17	19.53	10.49	31.37	0.4058	1.35	0.2915	
3	WTG-37	Near	28.17	19.54	10.51	31.37	0.4196	1.35	0.2925	
3	WTG-31	Near	28.17	19.53	10.49	31.36	0.4286	1.35	0.2918	
3	WTG-26	Near	28.17	19.51	10.42	31.22	0.3108	1.35	0.2946	
3	WTG-39	Far	28.17	19.53	15.89	31.74	0.4347	1.43	0.3414	
3	WTG-37	Far	28.17	19.54	15.41	31.73	0.4562	1.42	0.3317	-
3	WTG-31	Far	28.17	19.53	14.58	31.71	0.4304	1.42	0.3265	
3	WTG-26	Far	28.17	19.51	14.05	31.69	0.3323	1.41	0.3195	
4	WTG-41	Near	28.17	19.54	10.95	33.84	0.8101	1.39	0.4428	
4	WTG-43	Near	28.17	19.46	10.96	33.84	0.8714	1.39	0.4428	
4	WTG-50	Near	28.17	19.57	10.96	33.81	0.9301	1.39	0.4368	
4	WTG-48	Near	28.17	19.56	10.89	33.81	0.9303	1.39	0.4367	
4	WTG-41	Far	28.17	19.54	18.77	33.41	0.7321	1.53	0.6569	
4	WTG-43	Far	28.17	19.54	18.56	33.16	0.7325	1.53	0.6477	
4	WTG-50	Far	28.17	19.57	18.71	33.33	0.8101	1.55	0.6435	Worst Ca
4	WTG-48	Far	28.17	19.57	18.7	33.51	0.8076	1.55	0.6434	_

Maximum Transient L-G Voltage

Table 1: Transient and temporary healthy phase voltages.

IEEE Std C62.92.1-2000 indicates that a characteristic of an effectively grounded system is that the transient lineto-ground voltage is less than or equal to 2 pu. Based on this, an effectively grounded system would have transient voltages that remain below $(34.5 \text{ kV} / \sqrt{3}) * \sqrt{2} * 2 = 56.34 \text{ kV}$ on the medium voltage equipment.

Table 1 shows that for the one cycle between when the feeder breaker opens and the grounding switch operates, the transient voltages are the highest. This is because, for this short period of time, the system is not grounded through the substation transformer, so during this period the system is not effectively grounded. Once the grounding switch operates at 108.12 ms and effectively grounds the isolated feeder, the overvoltage is reduced to less than the 2 pu which is characteristic of an effectively grounded system.

The EMA grounding breaker also significantly decreases the steady-state voltage after the grounding switch operates, as Figure 1 and Figure 2 show by the decreased steady-state line-to- ground voltage after 108.12 ms. The steady-state voltages are recorded in Table 1, at least 30 ms after the grounding switch operates to allow time for damping. These steady-state voltages are related to the steady-state effectively grounded requirements in IEEE Std C62.92.1-2000.

The analysis also verifies the maximum energy required to be absorbed by the arresters does not exceed the energy the arrester is able to absorb. This is accomplished by measuring the energy through each surge arrester

after the single line-to-ground fault is applied. Figure 3 shows the energy waveform at the worst case wind turbine WTG-50 surge arresters on Feeder 4. This waveform is typical of all medium voltage surge arresters in this wind power plant. Below, Figure 3 shows that the arrester stops absorbing significant amounts of energy once the grounding switch in the EMA grounding breaker closes at 108.12 ms. The greatest period of energy absorption is in the 1 cycle between when the circuit breaker opens and the grounding switch closes. If the grounding switch is not there, the arrester would continue to absorb more energy after the circuit breaker opens.

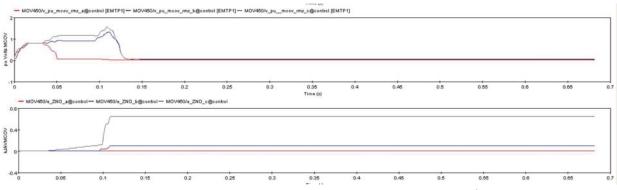


Figure 3: kV MCOV pu and Arrestor Energy at WTG-50 (Top=kV MCOV pu, Bottom=kJ/kVMCOV)

The GE wind turbines shut off 1000 ms after being disconnected from the grid when the feeder breaker opens due to a single line-to-ground fault, so the maximum energy absorbed by each arrester will occur at approximately 1108.12 ms. The maximum energy is calculated in Joules at 1108.12 ms on the time scale for each of the collector system surge arresters. In reality after the turbines stop contributing fault current at 1108.12 ms, the energy absorbed by the surge arrester would dampen. That is not shown in this simulation. The maximum absorbed energy on each feeder for a single line-to-ground fault on the feeder are also shown in Table 1 in kJ/kVMCOV. The maximum energy absorption rate for the 24.4 kV MCOV arrester is rated at 5.1 kJ/kVMCOV. The maximum energy the WTG-50 arrester is required to absorb is 27.28 kJ for a medium voltage single line-to-ground fault, which gives a normalized energy of 0.6435kJ/kVMCOV, which is less than the 5.1 kJ/kVMCOV allowable. The results show that the medium voltage collector system arresters are adequately sized to absorb the required energy for a single line-to-ground fault on any of the collection system feeders.

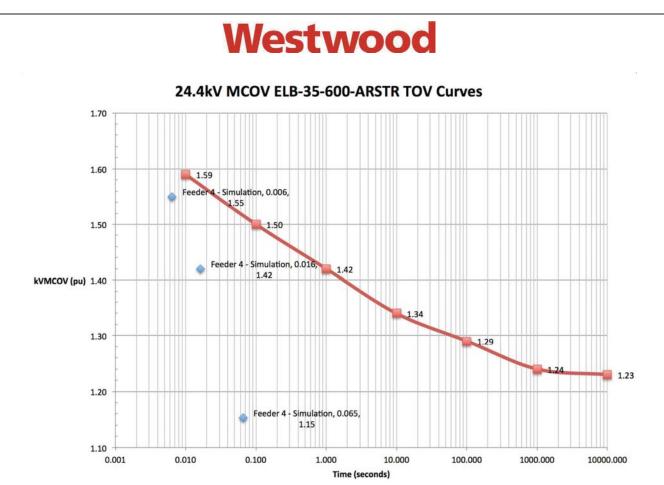


Figure 4: Maximum TOV in kV MCOV pu correlate with the 24.4kVMCOV arrestor TOV Curve.

The maximum TOV is on Feeder 4 at the arrestor located closest to WTG-50, the TOV magnitudes during the single line to ground fault, after the circuit breaker trips, and after the three-phase grounding switch closes. The results show that the maximum overvoltage is less than the 24.4kV MCOV arrestor TOV characteristic.

CONCLUSION

The maximum TOV is on Feeder 4, as shown in Table 1 and Figure 5, located at the arrestor closest to WTG-50, the TOV magnitudes during the single line to ground fault, after the circuit breaker trips, and after the three-phase grounding switch closes. The results show that the maximum overvoltage is less than the 24.4kV MCOV arrestor TOV characteristic.

The maximum transient overvoltage results on all medium voltage feeder equipment are less than 2 per-unit after the EMA circuit breaker integral three-phase grounding switch closes. IEEE Std C62.92.1-2000 states that a characteristic of an effectively grounded system is when the maximum transient overvoltage is less than or equal to 2 per-unit of the crest of the pre-fault line-to-ground operating voltage.

The results also show the maximum required energy to be absorbed by the 24.4 kV MVOC TE Connectivity (TE) collector system arresters. The energy through each surge arrester was simulated for condition both before and after the single phase to ground fault is applied within the collection system. As shown in the results, these arresters are adequately sized to absorb the required energy in the case of a phase to ground fault on any of the four collection system circuits. No equipment changes or modifications are recommended.

The study results show the un-faulted phase voltage waveforms for the collection system feeders due to a single phase to ground fault and then for circuit breaker isolation from the substation ground. The waveforms show the transient voltage peak after the single line-to-ground fault before the feeder circuit breaker opens, after the feeder circuit breaker receives the signal to trip due to the fault, and after the grounding switch in the EMA grounding breaker operates. The maximum overvoltage on all medium voltage collectors are shown to be less than the 24.4kVMCOV arrestor characteristics, and is less than 2 pu after the grounding switch of the EMA breakers close, and the energy absorbed by the arresters are also within acceptable limits. No equipment modifications are recommended.

APPENDIX A: EMA VDH/GMSI Grounding Breaker Data Sheets

Grounding Switch

Combined 34.5 kV Vacuum Circuit Breaker & High Speed Grounding Switch VDH/GSMI™

MP VDH/GSMI™

Combined 34.5 kV Vacuum Circuit Breaker & High Speed Mechanically Interlocked Grounding Switch

- VDH/GSMI[™] model is especially designed for application with wind farm collection circuits. This model combines a circuit breaker with a high speed, mechanically-interlocked grounding switch within the same outdoor enclosure, and totally replaces traditional use of grounding transformers in wind generation installations.
- Circuit breaker connects wind turbine collection circuits to the substation bus, while the associated grounding switch automatically switches the collection circuits to ground immediately after the circuit breaker opens. The primary characteristic of the overall system is that the complete switching operation (time duration for opening circuit breaker through closing grounding switch) is mechanically accomplished in less than 1 cycle (between 12 to 16 milliseconds), with a maximum electrical switching of 12 milliseconds.
- When a conventional wind farm collection system circuit breaker opens and the wind turbines are still in operation the voltage will typically rise on the 34.5 kV collection system cables between the turbines and the substation. If the voltage is allowed to rise excessively then surge arresters at the substation and at the ends of the 34.5 kV cable runs may be subject to overvoltage failure. The turbine controllers may also be subject to overvoltage failure. It's essential to keep the voltage down to the withstand limits of the surge arresters and the turbine controllers.
- Wind generation installations have typically used grounding transformers in order to limit that voltage rising. Now VDH/GSMI[™] model provides a very fast switching time to ground which holds transient voltage excursion to very low levels, thereby **eliminating the need for grounding transformers**, with very important advantanges as follows:

*Appreciably less expensive compared to a grounding transformer + conventional substation circuit breaker, plus lower installation labor costs & lower installation materials costs, which amounts to a very large first cost savings.

* Eliminates grounding transformers core losses, which amounts to a very large savings over project life.

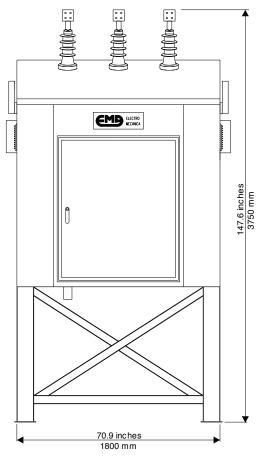
• Enclosure is metal enclosed, self-supporting and free standing construction, with weatherproof design suitable for installation in an unprotected environment, equipped inside with the following main components:

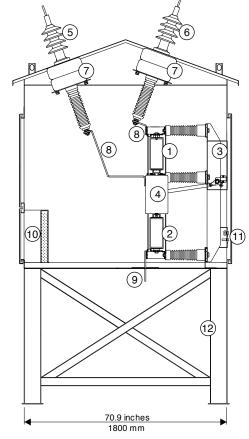
*Three-pole vacuum circuit breaker combined with a high speed, mechanically-interlocked three-pole vacuum grounding switch.

*Switching & operating mechanism, spring stored energy type.

* Epoxy resin bushings including 4-hole flat pad stud connectors.

* Epoxy insulated ring-core current transformers installed around the bushings (up to two current transformers per bushing).


* Frontal control panel & rear auxiliary compartment.


- All exterior parts fabricated from steel sheet with an electro-chemical process as anticorrosive protection which provides longlasting perfomance in corrosive or contaminated environments. Roof assembly especially fabricated in aluminium to prevent eddy currents around bushings.
- Manufactured and tested to meet ANSI C37 and IEC 62271-100 standards, this series provides easy installation and accessibility, minimal maintenance and long service life.

CMD VDH/GSMI[™] Electrical Ratings

	Rated Voltage	Rated Maximum Voltage	Rated Continuous Current	Symmetrical Interrupting Capability	Short Time Withstand Current	Making Capability (peak)	Dielectric Strength Withstand 60 Hz 1 min	Dielectric Strength Impulse Full Wave (BIL)	Rated Frecuency	Rated Closing Time	Rated Opening Time	Rated Arcing Time	Rated Mechanical Switching Time	Maximum Electrical Switching Time
	kV	kV	А	kA	kA (3 sec)	kA	kV	kV	Hz	msec	msec	msec	msec	msec
circuit breaker	34.5	38	1200 2000	25 31.5 40	25 31.5 40	68 85 106	80	200	60	40	30	4 to 11	12 to 16	12
grounding switch			-	—	12.5	34				_	_	_		

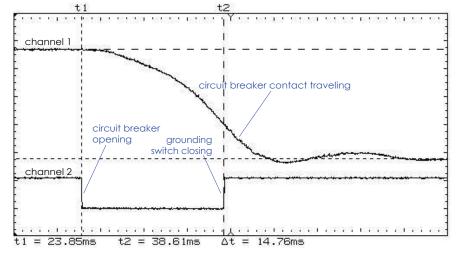
CMD VDH/GSMI™ Dimensions and Weight

Approximate Weight: 4070 pounds / 1850 kg

- 1 VACUUM CIRCUITBREAKER
- (2) VACUUM GROUNDING SWITCH
- (3) OPERATING & COMMUTATION MECHANISM
- (4) MECHANICAL INTERLOCK
- (5) BUSHINGS (WIND FARM SIDE)
- (6) BUSHINGS (TRANSFORMER SIDE)

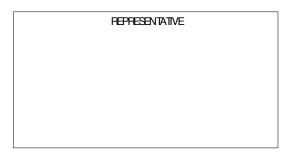
- (7) CURRENT TRANSFORMERS
- (8) MAIN BUSBARS
- 9 GROUNDING BAR
- 10 AUXILIARY & TERMINAL BLOCKSCOMPARTMENT
- (1) CONTROL PUSH-BUTTONS & INDICATING LAMPS
- (12) SUPPORTING FRAME

CMD VDH/GSMI[™] The Circuit Breaker & Grounding Switch Unit


FRONTAL VIEW

SIDE VIEW

REAR VIEW


Circuit breaker (upper vacuum interrupters) connects wind turbine collection circuits to the substation bus, while the associated high speed, mechanically-interlocked grounding switch (lower vacuum interrupters) connects collection circuits automatically to ground. Complete switching sequence is mechanically accomplished in less than 1 cycle (between 12 to 16 milliseconds), with a maximum electrical switching of 12 milliseconds, thus the transient voltage doesn't rise enough to be above the withstand of the arresters or the allowable rise at the wind turbine controllers.

CMD VDH/GSMI™ Switching Oscillogram

In this oscillogram, channel 1 is the analog representation of the circuit breaker contact traveling, while channel 2 is the representation of the contact mechanical positions of both circuit breaker and grounding switch, connected in a parallel circuit.

This shows that complete switching sequence (time duration for opening circuit breaker through closing grounding switch) was accomplished in 14.76 msec, and the circuit breaker contact traveled more than 75% of its total stroke when the grounding switch closed.

Due to the continuous development of standars as well as materials, the characteristics and dimensions indicated in this brochure should be considered as binding only on confirmation from Ema Electromecanica S.A. © Ema Electromecanica S.A. 2008 - All rights reserved.

APPENDIX B: 34.5kV Collection Cable Electrical Parameters

_	bacity In	Land Television In			-	110		12 16 1	~	1,000	(1	58.00	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
		Phase		Ground	t/Neutral	R	X	L	Y	Ro	Xo	Lo	Yo	Rdc
	Avail.	Code	Size	#	Size	90°C	60 Hz	60 Hz	60 Hz	90°C	60 Hz	60 Hz	60 Hz	25°C
1	Yes	1/0 - 2/3 CN	1/0	18	16	0.24087	0.05182	0.00014	1.77E-05	0.35886	0.05482	0.00015	1.77E-05	0.1859
2	Yes	4/0 - 1/2 CN	4/0	17	14	0.11303	0.04679	0.00012	2.2E-05	0.28416	0.07373	0.0002	2.2E-05	0.0867
3	Yes	500 - 1/3 CN	500	16	12	0,4939	0.04115	0.00011	3.05E-05	0.16756	0.04488	0.00012	3.05E-05	0.0361
4	Yes	750 - 1/6 CN	750	19	14	0.0343	0.03865	0.0001	3.56E-05	0.18978	0.05914	0.00016	3.56E-05	0.0248
5	Yes	1000 - 1/6 CN	1000	25	14	0.02568	0.03703	0.0001	3.98E-05	0.20941	0.07373	0.0002	3.98E-05	0.01814
6	Yes	1250 - 1/6 CN	1250	20	12	0.02048	0.03537	9E-05	4.36E-05	0.23977	0.09952	0.00026	4.36E-05	0.01423

Figure 5: Cable Impedance Data

Feede	r 1										
From	То	Cable Type	Voltage Rating [kV]	Length [Feet]	Length [Miles]	R1 [Ohms]	L1 [mH]	C1 [uF]	R0 [Ohms]	L0 [mH]	C0 [uF]
101	102	1/0 AWG AL	34.5	1400	0.265151515	0.2976316	0.229143236	0.0418376	0.5512892	0.103692838	0.03974572
102	JB1B	1/0 AWG AL	34.5	1500	0.284090909	0.318891	0.24551061	0.044826	0.590667	0.111099469	0.0425847
103	104	1/0 AWG AL	34.5	1400	0.265151515	0.2976316	0.229143236	0.0418376	0.5512892	0.103692838	0.03974572
104	JB1B	1/0 AWG AL	34.5	2000	0.378787879	0.425188	0.32734748	0.059768	0.787556	0.148132626	0.0567796
JB1B	105	1/0 AWG AL	34.5	900	0.170454545	0.1913346	0.147306366	0.0268956	0.3544002	0.066659682	0.02555082
105	106	4/0 AWG AL	34.5	2400	0.454545455	0.2590152	0.427709284	0.0884664	0.4878744	0.444407427	0.08404308
106	107	4/0 AWG AL	34.5	1800	0.340909091	0.1942614	0.320781963	0.0663498	0.3659058	0.33330557	0.06303231
107	108	500 MCM AL	34.5	3400	0.643939394	0.1590826	0.657228117	0.1579504	0.561833	0.605145889	0.15005288
108	109	500 MCM AL	34.5	1400	0.265151515	0.0655046	0.270623342	0.0650384	0.231343	0.249177719	0.06178648
109	110	500 MCM AL	34.5	1900	0.359848485	0.0888991	0.367274536	0.0882664	0.3139655	0.338169761	0.08385308
110	111	500 MCM AL	34.5	3900	0.738636364	0.1824771	0.75387931	0.1811784	0.6444555	0.694137931	0.17211948
111	JB1A	500 MCM AL	34.5	4700	0.890151515	0.2199083	0.90852122	0.2183432	0.7766515	0.836525199	0.20742604
112	113	1/0 AWG AL	34.5	3500	0.662878788	0.744079	0.57285809	0.104594	1.378223	0.259232095	0.0993643
113	JB1A	1/0 AWG AL	34.5	5800	1.098484848	1.2330452	0.949307692	0.1733272	2.2839124	0.429584615	0.16466084
JB1A	114	1000kCMILS AL	34.5	800	0.151515152	0.0196568	0.16324244	0.045212	0.1142264	0.149415385	0.0429514
114	115	1000kCMILS AL	34.5	4400	0.833333333	0.1081124	0.897833422	0.248666	0.6282452	0.821784615	0.2362327
115	FDR1	1000kCMILS AL	34.5	6600	1.25	0.1621686	1.346750133	0.372999	0.9423678	1.232676923	0.35434905

Feede	r 2										
From	То	Cable Type	Voltage Rating [kV]	Length [Feet]	Length [Miles]	R1 [Ohms]	L1 [mH]	C1 [uF]	R0 [Ohms]	L0 [mH]	C0 [uF]
201	202	1/0 AWG AL	34.5	1300	0.246212121	0.2763722	0.212775862	0.0388492	0.5119114	0.096286207	0.03690674
202	203	1/0 AWG AL	34.5	1300	0.246212121	0.2763722	0.212775862	0.0388492	0.5119114	0.096286207	0.03690674
203	204	1/0 AWG AL	34.5	1400	0.265151515	0.2976316	0.229143236	0.0418376	0.5512892	0.103692838	0.03974572
204	205	4/0 AWG AL	34.5	1200	0.227272727	0.1295076	0.213854642	0.0442332	0.2439372	0.222203714	0.04202154
205	JB2A	4/0 AWG AL	34.5	1500	0.284090909	0.1618845	0.267318302	0.0552915	0.3049215	0.277754642	0.052526925
206	207	1/0 AWG AL	34.5	2000	0.378787879	0.425188	0.32734748	0.059768	0.787556	0.148132626	0.0567796
207	JB2A	1/0 AWG AL	34.5	1600	0.303030303	0.3401504	0.261877984	0.0478144	0.6300448	0.118506101	0.04542368
JB2A	208	4/0 AWG AL	34.5	1800	0.340909091	0.1942614	0.320781963	0.0663498	0.3659058	0.33330557	0.06303231
208	209	500 MCM AL	34.5	1300	0.246212121	0.0608257	0.251293103	0.0603928	0.2148185	0.23137931	0.05737316
209	210	500 MCM AL	34.5	1900	0.359848485	0.0888991	0.367274536	0.0882664	0.3139655	0.338169761	0.08385308
210	211	500 MCM AL	34.5	2100	0.397727273	0.0982569	0.405935013	0.0975576	0.3470145	0.373766578	0.09267972
211	212	500 MCM AL	34.5	2000	0.378787879	0.093578	0.386604775	0.092912	0.33049	0.35596817	0.0882664
212	213	1000kCMILS AL	34.5	1500	0.284090909	0.0368565	0.306079576	0.0847725	0.2141745	0.280153846	0.080533875
213	214	1000kCMILS AL	34.5	4500	0.852272727	0.1105695	0.918238727	0.2543175	0.6425235	0.840461538	0.241601625
214	215	1000kCMILS AL	34.5	2500	0.473484848	0.0614275	0.510132626	0.1412875	0.3569575	0.466923077	0.134223125
215	FDR2	1000kCMILS AL	34.5	12600	2.386363636	0.3095946	2.571068435	0.712089	1.7990658	2.353292308	0.67648455

Feede	r 3										
From	То	Cable Type	Voltage Rating [kV]	Length [Feet]	Length [Miles]	R1 [Ohms]	L1 [mH]	C1 [uF]	R0 [Ohms]	L0 [mH]	C0 [uF]
301	302	1/0 AWG AL	34.5	1200	0.227272727	0.2551128	0.196408488	0.0358608	0.4725336	0.088879576	0.03406776
302	303	1/0 AWG AL	34.5	1400	0.265151515	0.2976316	0.229143236	0.0418376	0.5512892	0.103692838	0.03974572
303	304	1/0 AWG AL	34.5	1300	0.246212121	0.2763722	0.212775862	0.0388492	0.5119114	0.096286207	0.03690674
304	305	1/0 AWG AL	34.5	1200	0.227272727	0.2551128	0.196408488	0.0358608	0.4725336	0.088879576	0.03406776
305	306	4/0 AWG AL	34.5	1600	0.303030303	0.1726768	0.285139523	0.0589776	0.3252496	0.296271618	0.05602872
306	307	4/0 AWG AL	34.5	1700	0.321969697	0.1834691	0.302960743	0.0626637	0.3455777	0.314788594	0.059530515
307	JB3A	350kCMILS AL	34.5	1300	0.246212121	0.070267727	0.152140176	0.123556629	0.151567	0.162941379	0.117378797
308	309	1/0 AWG AL	34.5	1500	0.284090909	0.318891	0.24551061	0.044826	0.590667	0.111099469	0.0425847
309	JB3A	1/0 AWG AL	34.5	1500	0.284090909	0.318891	0.24551061	0.044826	0.590667	0.111099469	0.0425847
JB3A	310	350kCMILS AL	34.5	1200	0.227272727	0.064862517	0.140437086	0.114052273	0.139908	0.150407427	0.108349659
310	311	350kCMILS AL	34.5	1300	0.246212121	0.070267727	0.152140176	0.123556629	0.151567	0.162941379	0.117378797
311	312	350kCMILS AL	34.5	2100	0.397727273	0.113509405	0.2457649	0.199591477	0.244839	0.263212997	0.189611903
312	313	1000kCMILS AL	34.5	1500	0.284090909	0.0368565	0.306079576	0.0847725	0.2141745	0.280153846	0.080533875
313	314	1000kCMILS AL	34.5	2300	0.435606061	0.0565133	0.469322016	0.1299845	0.3284009	0.429569231	0.123485275
314	315	1000kCMILS AL	34.5	1900	0.359848485	0.0466849	0.387700796	0.1073785	0.2712877	0.354861538	0.102009575
315	FDR3	1000kCMILS AL	34.5	17800	3.371212121	0.4373638	3.632144297	1.005967	2.5415374	3.324492308	0.95566865

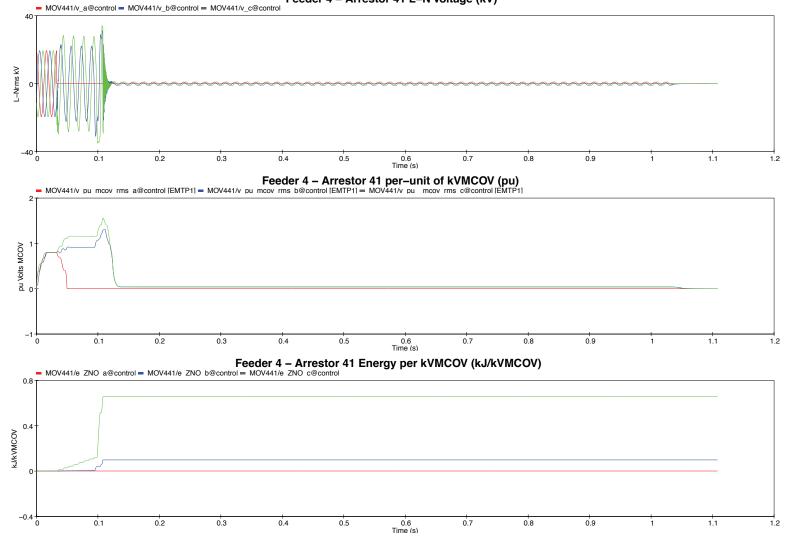
eede											
From	То	Cable Type	Voltage Rating [kV]	Length [Feet]	Length [Miles]	R1 [Ohms]	L1 [mH]	C1 [uF]	R0 [Ohms]	L0 [mH]	C0 [uF]
401	402	1/0 AWG AL	34.5	1300	0.246212121	0.2763722	0.212775862	0.0388492	0.5119114	0.096286207	0.03690674
402	403	1/0 AWG AL	34.5	1200	0.227272727	0.2551128	0.196408488	0.0358608	0.4725336	0.088879576	0.03406776
403	404	1/0 AWG AL	34.5	1300	0.246212121	0.2763722	0.212775862	0.0388492	0.5119114	0.096286207	0.03690674
404	405	1/0 AWG AL	34.5	1400	0.265151515	0.2976316	0.229143236	0.0418376	0.5512892	0.103692838	0.03974572
405	406	4/0 AWG AL	34.5	2000	0.378787879	0.215846	0.356424403	0.073722	0.406562	0.370339523	0.0700359
406	407	4/0 AWG AL	34.5	1900	0.359848485	0.2050537	0.338603183	0.0700359	0.3862339	0.351822546	0.066534105
407	408	4/0 AWG AL	34.5	1200	0.227272727	0.1295076	0.213854642	0.0442332	0.2439372	0.222203714	0.04202154
408	409	500 MCM AL	34.5	1300	0.246212121	0.0608257	0.251293103	0.0603928	0.2148185	0.23137931	0.05737316
409	410	500 MCM AL	34.5	1200	0.227272727	0.0561468	0.231962865	0.0557472	0.198294	0.213580902	0.05295984
410	411	500 MCM AL	34.5	1900	0.359848485	0.0888991	0.367274536	0.0882664	0.3139655	0.338169761	0.08385308
411	412	500 MCM AL	34.5	2100	0.397727273	0.0982569	0.405935013	0.0975576	0.3470145	0.373766578	0.09267972
412	413	1000kCMILS AL	34.5	2300	0.435606061	0.0565133	0.469322016	0.1299845	0.3284009	0.429569231	0.123485275
413	414	1000kCMILS AL	34.5	1400	0.265151515	0.0343994	0.285674271	0.079121	0.1998962	0.261476923	0.07516495
414	415	1000kCMILS AL	34.5	2500	0.473484848	0.0614275	0.510132626	0.1412875	0.3569575	0.466923077	0.134223125
415	FDR4	1000kCMILS AL	34.5	25200	4.772727273	0.6191892	5.14213687	1.424178	3.5981316	4.706584615	1.3529691

PPENDIX C: MODEL INPUTS	
	22
Power Grid Editor - Haviland	
	Reliability Energy Price Remarks Comment
138 kV Swing	P
Grounding	
K	
1	
SC Rating	SC Impedance (100 MVAb) % R % X
MVAsc MVAsc X/R kAs 3-Phase 1723.7 4.375 7.21	Pos. 1,29271 5,65562
	Neg. 1.29271 5.65562
1-Phase 1612.8 537.6 5.068 6.74	7 Zero 1.35513 6.86778
sqrt(3)VII If Vin If	
Power Grid Editor - Future System (2022)	X
	Reliability Energy Price Remarks Comment
138 kV Swing	
Grounding	
K	
SC Rating MVAsc MVAsc X/R kAs	SC Impedance (100 MVAb) % R % X
3-Phase 2145 4.375 8.97	Pos 1.03881 4.5448
	Neg. 1.03881 4.5448
1-Phase 1875 625 5.068 7.84 sqrt(3)VII lf Vin lf	4 Zero 1.2927 6.55141
sqrt(3) VII # VIn #	

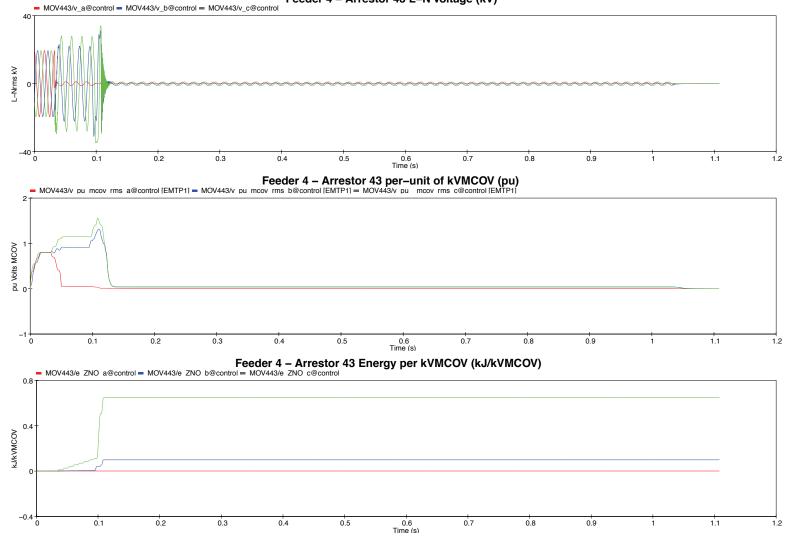
	Reliabil		8	Remarks		Comment
Info	Rati	ing Impe	edance	Tap	Grounding	Protection Harmo
70.3	2 70,2 70).2 MVA				138 34.5 13.8 kV
Imped	lance					Z Variation
	Pos	sitive	Z	ero		
	% Z	X/R	% Z	X/R	MVA Base	@-5% Tap
PS	10.103	40.4	9.903	39.6	70.2	0 %
		10.000	11 2012/2016/0			C.XX
PT	16.204	36.38	14.561	32.69	70.2	@+5% Tap
ST	4.192	12.2	3.765	10.95	70.2	
No Lo	oad Losses	(Unbalanced	Load Row on	ıly)		Z Tolerance
No Lo	oad Losses	(Unbalanced	Load Row on	ily) % G	% В	Z Tolerance
	oad Losses sitive				% B 0	Z Tolerance
Po		% FLA	kW	% G		
Po	sitive Zero	% FLA 0	kW D	% G 0 0	0	
Po	sitive Zero	% FLA 0 0	kW D	% G 0 0	0	
Po	sitive Zero	% FLA 0 0	kW D	% G 0 0	0	

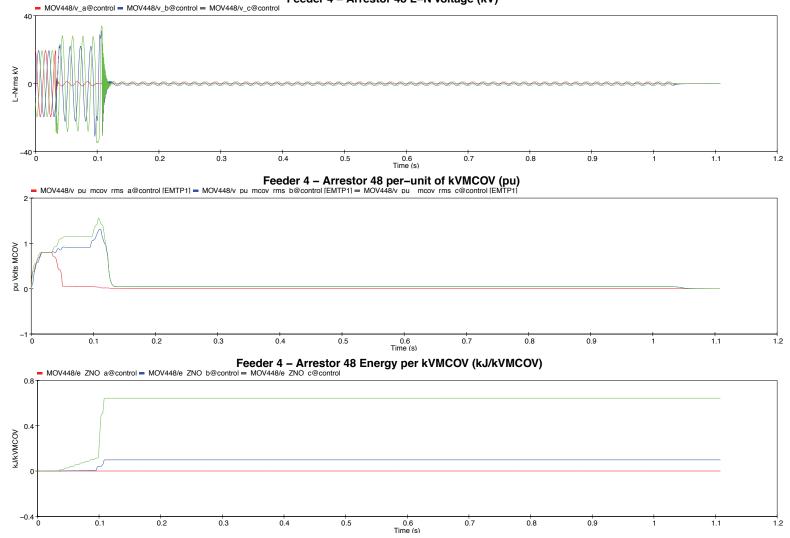
Figure 7: Main Power Transformer Impedance

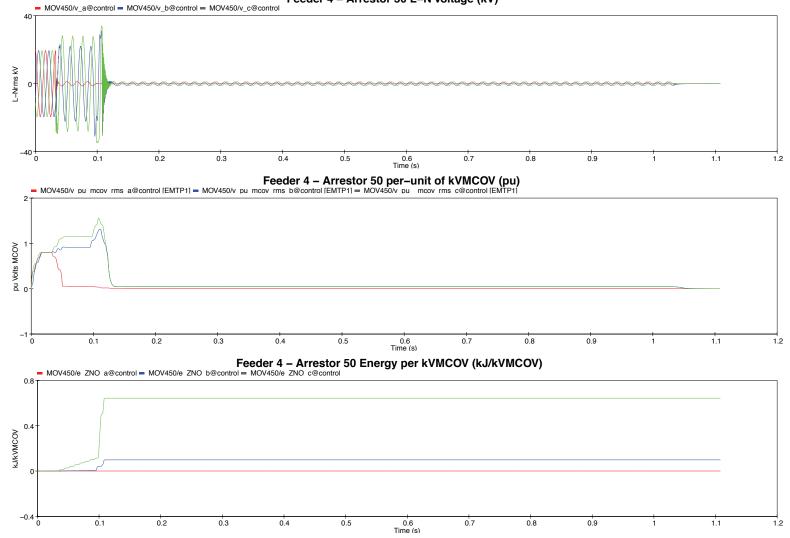
Info	Rating	Impedance	Tap				
0.75.10.0			rap	Grounding	Sizing	Protection	Harmonie
2.75 MVA	ANSI Lic	quid-Fill Other (65 C			34.5	0.69 kV
Impedance						Z Base	
	%Z	X/R	R/X	%X	%R		
Positive	5.75	9.03	0.111	5.715	0.633		MVA
Zero	5.75	9.03	0.111	5.715	0.633		2.75 her 65
	Typical	Z&X/R	Typical X/R]			
e [% Tap % Tap	%Z 5.75 5.75	% Z Va ()	t	0 %
No Load T	est Data (l	Used for Unbala % FLA	nced Lo <mark>ad</mark> Flo	w only)	%G	% B	
Pos	sitive	0	0	1	0	4 D	
	Zero		0				
2	Leio	0	0		0	0	
Buried	Delta Wind	ling	Zero Seq	. Impedance		Typical Value	

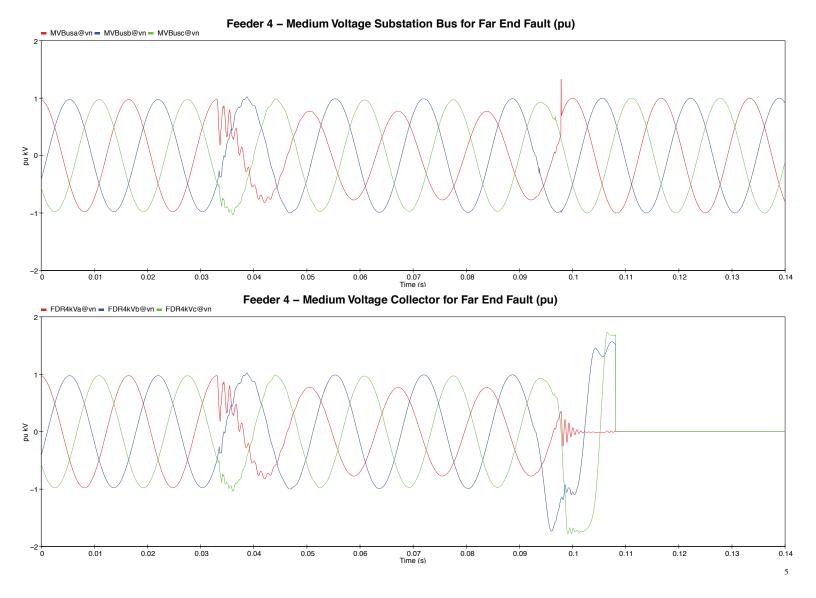

Figure 8: Step-Up Transformer Impedance Data

		1.1 - 7.1				P.0.00		oility
Seneric 0.69 kV	2.5 MW					Voltage	e Control	
ocked Rotor	AN	SI Short-Circuit	Z Xsc		Parame	ters		
LRC 600 2	. 0			1/2 cy	Xo	20	X2	20
PF 11.15 %		Xsc	20	1.5-4 cy	X/R	45.093	Td'	0.2
Grounding								
arthing Type Ni Model Model Typ WT3G	÷.							
X"	T1	T2		T3	Lvplsw		Sample	Data
0.2	0	0		0	0			
Lvpi1	Lvpl2	zerox		brkpt	mpwr			
1.11	0	0.5		0.9	0			

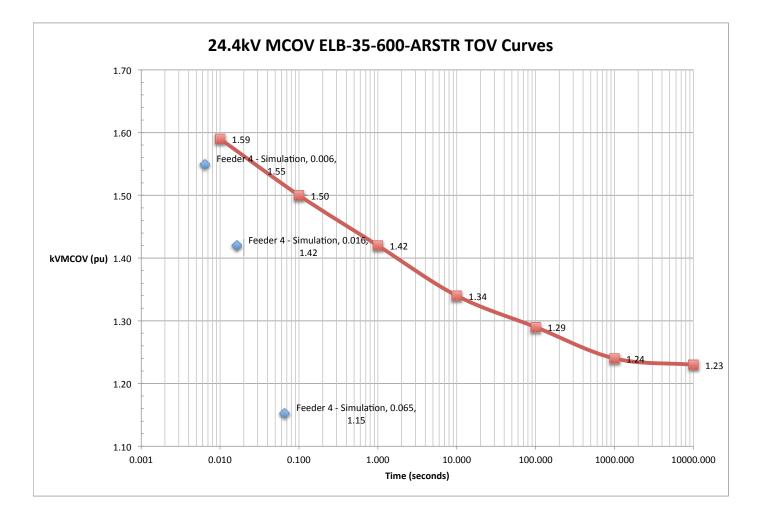

Figure 9: Turbine Impedance/Short Circuit Data


APPENDIX D: Feeder 4 TOV Waveforms for a Far End Fault


```
Feeder 4 – Arrestor 41 L–N Voltage (kV)
```



Feeder 4 – Arrestor 43 L–N Voltage (kV)


```
Feeder 4 – Arrestor 48 L–N Voltage (kV)
```




```
Feeder 4 – Arrestor 50 L–N Voltage (kV)
```


Maximum Transient L-G Voltage

							U U			
Collector Circuit	Overvoltage Arrestor Location	Single Line to Ground Fault Location on the Collector Circuit	Peak Line to Ground Rated Voltage (kV)	Single Line to Ground Fault @ 33.12ms Line to Ground Voltage (kVrms)	EMA Circuit Breaker Opening @ 91.45ms Line to Ground Voltage (kVrms)	EMA Circuit Breaker Three- Phase Ground Switch Closes @ 108.12ms Line to Ground Voltage (kVrms)	Steady-State Voltage after EMA Circuit Breaker Grounding Three- Phase Grounding Switch Closes Line to Ground Voltage (kVrms)	24.4kV MCOV Arrestor Location Maximum Voltage in per- unit of rated MCOV [typical max @ 108.12 ms] (pu)	24.4kV MCOV Arrestor Energy Absorbed at 1108.12ms (kJ/kVMCOV)	
1	WTG-1	Near	28.17	19.56	10.75	33.05	0.51	1.37	0.4474	
1	WTG-24	Near	28.17	19.48	10.62	33.02	0.104	1.36	0.4517	
1	WTG-1	Far	28.17	19.56	15.43	33.29	0.55	1.41	0.5096	
1	WTG-24	Far	28.17	19.48	11.07	33.22	0.122	1.4	0.4734	-
2	WTG-16	Near	28.17	19.31	10.84	31.1	0.354	1.32	0.2262	
2	WTG-6	Near	28.17	19.52	10.47	31.14	0.344	1.31	0.2266	
2	WTG-13	Near	28.17	19.53	10.67	31.03	0.359	1.32	0.2269	
2	WTG-20	Near	28.17	19.52	10.55	31.14	0.269	1.31	0.2271	
2	WTG-29	Near	28.17	19.51	10.53	31.14	0.254	1.31	0.227	
2	WTG-16	Far	28.17	19.52	14.86	31.21	0.305	1.42	0.2604	
2	WTG-6	Far	28.17	19.52	14.37	31.2	0.298	1.41	0.2548	-
2	WTG-13	Far	28.17	19.37	13.66	30.75	0.314	1.41	0.2493	
2	WTG-20	Far	28.17	19.51	12.43	31.15	0.241	1.38	0.2413	
2	WTG-29	Far	28.17	19.51	12.55	31.17	0.228	1.38	0.2411	
3	WTG-39	Near	28.17	19.53	10.49	31.37	0.4058	1.35	0.2915	
3	WTG-37	Near	28.17	19.54	10.51	31.37	0.4196	1.35	0.2925	
3	WTG-31	Near	28.17	19.53	10.49	31.36	0.4286	1.35	0.2918	
3	WTG-26	Near	28.17	19.51	10.42	31.22	0.3108	1.35	0.2946	
3	WTG-39	Far	28.17	19.53	15.89	31.74	0.4347	1.43	0.3414	
3	WTG-37	Far	28.17	19.54	15.41	31.73	0.4562	1.42	0.3317	-
3	WTG-31	Far	28.17	19.53	14.58	31.71	0.4304	1.42	0.3265	
3	WTG-26	Far	28.17	19.51	14.05	31.69	0.3323	1.41	0.3195	
4	WTG-41	Near	28.17	19.54	10.95	33.84	0.8101	1.39	0.4428	
4	WTG-43	Near	28.17	19.46	10.96	33.84	0.8714	1.39	0.4428	
4	WTG-50	Near	28.17	19.57	10.96	33.81	0.9301	1.39	0.4368	
4	WTG-48	Near	28.17	19.56	10.89	33.81	0.9303	1.39	0.4367	
4	WTG-41	Far	28.17	19.54	18.77	33.41	0.7321	1.53	0.6569	
4	WTG-43	Far	28.17	19.54	18.56	33.16	0.7325	1.53	0.6477	_
4	WTG-50	Far	28.17	19.57	18.71	33.33	0.8101	1.55	0.6435	Wors
4	WTG-48	Far	28.17	19.57	18.7	33.51	0.8076	1.55	0.6434	

This foregoing document was electronically filed with the Public Utilities

Commission of Ohio Docketing Information System on

11/1/2017 4:00:13 PM

in

Case No(s). 13-0197-EL-BGN, 16-1687-EL-BGA, 17-1099-EL-BGA

Summary: Notice of Update to September 1, 2017 Filing Regarding Compliance with Condition 6 – Drawings for Final Design Plan (Part 2 of 2) electronically filed by Mr. William V Vorys on behalf of Trishe Wind Ohio, LLC