Case No. 16-2443-EL-BGN

Application to the Ohio Power Siting Board for a Certificate of Environmental Compatibility and Public Need

Submitted by: Guernsey Power Station, LLC

March 2017

COLUMBUS I CLEVELAND CINCINNATI I DAYTON MARIETTA

BRICKER & ECKLER LLP 100 South Third Street Columbus, OH 43215-4291 MAIN: 614.227.2300 FAX: 614.227.2390

www.bricker.com info@bricker.com

Sally W. Bloomfield 614.227.2368 sbloomfield@bricker.com March 16, 2017

Via Hand Delivery

Ms. Barcy McNeal Administration/Docketing Ohio Power Siting Board 180 East Broad Street, 11th Floor Columbus, Ohio 43215-3793

Re: Guernsey Power Station, LLC Case No. 16-2443-EL-BGN

Dear Ms. McNeal:

Enclosed for filing in the above-referenced case is a copy of the Application of Guernsey Power Station, LLC for a Certificate of Environmental Compatibility and Public Need for an electric generating facility, Guernsey Power Station, in Valley Township, Guernsey County, Ohio. In addition, we have provided Staff of the Ohio Power Siting Board ("Board") ten disks and five hard copies of the Application. Pursuant to Ohio Administrative Code Rule 4906-2-04(A)(3), the Applicant makes the following declarations:

Name of Applicant:	Guernsey Power Station, LLC whose authorized representative is Michael King 6229 White Alder Court Avon, IN 46123
Name/Location of Proposed Facility:	Guernsey Power Station, LLC Valley Township, Guernsey County, Ohio
Authorized Representative	
Technical:	Mary King Guernsey Power Station, LLC 6229 White Alder Court Avon, IN 46123 Telephone: 317-447-4513 E:mail: mary@apexpowergroup.com

Bricker&Eckler

ATTORNEYS AT LAW

Guernsey Power Station, LLC Case No. 16-2443-EL-BGN March 16, 2017 Page 2

Authorized Representative Legal:

Sally W. Bloomfield Dylan Borchers Devin D. Parram Bricker & Eckler LLP 100 South Third Street Columbus, OH 43215 Telephone: (614) 227-2368; 227-4914; 227-8813 Facsimile: (614) 227-2390 E-Mail: <u>sbloomfield@bricker.com</u> <u>dborchers@bricker.com</u> <u>dparram@bricker.com</u>

Since the preapplication notification letter was filed, there have been no revisions that appear in the application.

Notarized Statement:

See Attached Affidavit of Michael King, on behalf of Guernsey Power Station, LLC

Sincerely on behalf of GUERNSEY POWER STATION, LLC

Sally N Bloomjula

Sally W. Bloomfield

Enclosure

BEFORE THE OHIO POWER SITING BOARD

In the Matter of the Application of **Guernsey**) **Power Station, LLC** for a Certificate of) Environmental Compatibility and Public Need) Case No. 16-2443-EL-BGN for an Electric Generating Facility in Guernsey) County, Ohio)

> : : ss.

÷

AFFIDAVIT OF MICHAEL KING

STATE OF OHIO

COUNTY OF FRANKLIN

I, Michael King, being duly sworn and cautioned, state that I am over 18 years of age and competent to testify to the matters stated in this affidavit and further state the following based upon my personal knowledge:

1. I am an Authorized Representative of Guernsey Power Station, LLC ("GPS"). Guernsey Power Station, LLC ("GPS") is being jointly developed by Apex Power Group, LLC ("Apex") and Caithness Energy, L.L.C. ("Caithness"). I am the primary individual in charge of the development of GPS.

2. I have reviewed GPS's Application to the Ohio Power Siting Board for a Certificate of Environmental Compatibility and Public Need for GPS.

3. To the best of my knowledge, information, and belief, the information and materials contained in the above-referenced Application are true and accurate.

4. To the best of my knowledge, information, and belief, the above-referenced Application is complete.

Michael King

Sworn to before and signed in my presence this 15^{th} day of March 2017.

rera E. Drahood

TERESA E. ORAHOOD Notary Public, State of Ohio Commission Expires December 3, 2020

Page No.

LIST OF TA	BLES viii		
LIST OF FIGURES ix			
LIST OF API	PENDICES xi		
ACRONYMS	S AND ABBREVIATIONS xii		
4906-4-02	Project Summary and Applicant Information1		
(A) SU	JMMARY OF THE PROPOSED PROJECT1		
(1) (2) (3) (4)	General Purpose of the Facility.1Facility Description.1Site Suitability.3Project Schedule.4		
(B) Al	DDITIONAL INFORMATION		
(1) (2)	Description of Future Plans/Plans for Future Additions		
4906-4-03	Project Description and Schedule		
(A) DI	ETAILED DESCRIPTION OF THE PROJECT AREA		
(1) (2)	Project Map7 Project Area7		
(B) PF	ROPOSED FACILITY DESCRIPTION		
(1)	Project Details7		
(a (b) (c) (d) (e)	 Description of Wind Turbine Equipment		
(2)	Description of Construction Method and Project Components12		
(a) (b) (c) (d) (e) (f) (g))Storage Facilities13)Processing Facilities14)Water Supply and Discharge14)Transmission Facilities14)On-Site Electric Components15)Ancillary Facilities15		
(h) (i) (j)	Transportation Facilities		

	 (k) Security (l) Other Installations 	
(3)		
	 (a) Electric Transmission Line	17
(4)	Map of Project Site	17
(C)	DETAILED PROJECT SCHEDULE	18
(1) (2) (3)	Construction Sequence	19
4906-4-04	Project Area Selection and Site Design	20
(A)	SITE SELECTION PROCESS	20
(1) (2) (3) (4) (5)	Maps of Evaluated Alternate Sites Siting Criteria Process for Identifying the Proposed Site	20 21 21
(B)	FACILITY LAYOUT DESIGN	23
(1) (2) (3)	Facility Layout and Alternatives Considered	23
4906-4-05	Electric Grid Interconnection	25
(A)	INTERCONNECTION TO THE REGIONAL ELECTRIC POWER SYSTEM	25
(B)	INTERCONNECTION REQUEST	25
(1) (2)		
4906-4-06	Economic Impact and Public Interaction	27
(A)	OWNERSHIP	27
(B)	CAPITAL AND INTANGIBLE COSTS	27
(1) (2) (3)	Capital Cost Comparison	28
(C)	OPERATION AND MAINTENANCE EXPENSES	28
(1) (2) (3)	Operation and Maintenance Expenses Comparison Present Worth and Annualized O&M Expenses Comparison to	29
	Alternatives	29

(D)	COST OF DELAYS	30	
(E)	ECONOMIC IMPACT		
(1) (2) (3) (4)	Construction and Operation Employment Increase in Local Revenue	31 31	
(F)	RESPONSIBILITY TO THE PUBLIC	33	
(1) (2) (3) (4) (5)	Liability Compensation Plans Impact to Surrounding Infrastructure Transportation Permits	34 35 35	
4906-4-07	Air, Water, Solid Waste, and Aviation Regulations	38	
(A)	COMPLIANCE WITH APPLICABLE REGULATIONS	38	
(B)	AIR QUALITY	38	
(1)	Preconstruction	38	
	(a) Ambient Air Quality	38	
	(b) Pollution Control Equipment		
	(c) State and Federal Performance Standards		
	(d) Required Permits		
	 (e) Air Monitoring Stations and Major Source Mapping (f) Compliance Plans 		
(2)			
(2) (3)			
(0)	(a) Description of Air Monitoring Plans		
	 (b) Estimated Air Concentration Isopleths 		
	 (c) Potential Failure of Air Pollution Control Equipment 		
(C)	WATER QUALITY		
(1)			
(1)			
	 (a) Required Permits (b) Location of Survey Data Sources 		
	 (c) Description of Data Sampling Stations and Reporting Procedures 		
	(d) Water Quality of Receiving Stream		
	 (a) Water Quality of Receiving Stream. (e) Water Discharge Permit Information		
(2)			
(2)			
	 (a) Location of Water Monitoring and Gauging Stations (b) Aquatic Discharges 		
	 (b) Aquatic Discharges		
	(d) Changes in Flow Patterns and Erosion		
	 (a) Changes in Flow Fatterns and Elosion		

(3)	Operation	66
	 (a) Location of Monitoring Equipment (b) Water Pollution Control Equipment and Treatment Process (c) Issuance of Required Permits	66 66
	 (a) Quantitative Flow Diagram	
(D)	SOLID WASTE	67
(1)	Preconstruction	67
	 (a) Debris and Solid Waste (b) Waste Management Plan 	
(2)	Construction	68
	 (a) Debris and Solid Waste (b) Waste Management Plan 	
(3)	Operations	68
	 (a) Solid Waste (b) Waste Management Plan 	
(4)	Licenses and Permits	69
(E)	AVIATION	69
(1) (2)		
4906-4-08	Health and Safety, Land Use, and Ecological Information	71
(A)	HEALTH AND SAFETY	71
(1)	Equipment Safety	71
	 (a) Public Safety Equipment	72 72 72 72
(2) (3)		
(4)	 (a) Construction Noise	77 78 80 83
(4)		
	 (a) Construction and Operation Impacts (b) Impact of Pollution Control Equipment Failure 	

(c)	Proximate Water Sources	86
(d)	1	
(<i>e</i>)	Potential for Flooding	87
(5)	Geological Features	
(a)	Site Geology	
(b)		
(c)	•	
(6)	Potential for High Wind Conditions	
(7)	Potential Impact from Blade Shear	
(8)	Potential Impact from Ice Throw	
(9)	Potential Impact from Shadow Flicker	95
(10)	Potential Impact to Radio and TV Reception	
(11)	Potential Impact to Radar Systems	
(12)	Potential Impact to Microwave Communications	
(B) EC	COLOGICAL RESOURCES	96
(1)	Existing Ecological Resources	96
(a)	Nearby Resources	
(b)		
(c)	· · ·	
(d)	Species Field Survey	111
<i>(e)</i>	Additional Ecological Studies	114
(2)	Potential Construction Impact	
(a)	Ecological Resource Impact Evaluation	
(b)	· ·	
(3)	Potential Operation and Maintenance Impact	116
(a)	Ecological Resource Impact Evaluation	
(b)	· ·	
<i>(c)</i>	Post-Construction Monitoring of Wildlife Impacts	117
(C) LA	AND USE AND COMMUNITY DEVELOPMENT	117
(1)	Land Use	117
(a)	Land Use Mapping	
(b)		
(<i>c</i>)		
(d)	Structures to be Removed or Relocated	
(2)	Wind Turbine Structure Locations	
(3)	Land Use Plans	121
(a)		
<i>(b)</i>		
<i>(c)</i>	1 0 1	
(d)	Compatibility with Current Regional Plans	

	(e) Demographic Characteristics	123
(D)	CULTURAL AND ARCHAEOLOGICAL RESOURCES	125
(1)	Cultural Resource Mapping	
(2)	Cultural Resource Impacts	126
(3)	Recreational Areas	
(4)		
	(a) Project Visibility	128
	(b) Existing Landscape	
	(c) Landscape Alterations	130
	(d) Visual Impacts	
	(e) Photographic Simulations	
	(f) Proposed Mitigation Measures	
(E)	AGRICULTURAL DISTRICTS	
(1)	Agricultural Land Mapping	
(2)		
	(a) Acreage Impacted	
	(b) Impact of Project Activities	
	(c) Agricultural Mitigation Practices	
(F)	OTHER CONSIDERATIONS IN PREPARING THE APPLICATION	133

LIST OF TABLES

Table 02-1 Facility Site Characteristics – Site Selection	4
Table 03-1 Fuel Characteristics	9
Table 03-2 Structure and Building Dimensions	13
Table 03-3 Storage Facilities	13
Table 06-1 Estimated Capital and Intangible Costs	27
Table 07-1 Background Air Quality Monitoring Stations	40
Table 07-2 Background Air Quality Data	40
Table 07-3 Maximum Predicted Facility Impacts for Criteria Pollutants	59
Table 07-4 Maximum Cumulative Predicted Impacts for Comparison With the NAAQS	60
Table 08-1 Estimated Facility Construction Sound Levels	76
Table 08-2 Acoustical Model Results Summary – Mitigated Design	77
Table 08-3 Baseline Sound Monitoring Locations	84
Table 08-4 Ambient Sound Monitoring Results	84
Table 08-5 Soil Properties and Characteristics	92

Table 08-6 Vegetation Recorded Within Forested Upland Patches	98
Table 08-7 Vegetation Recorded Within Residential Lawns, Maintained Utility ROWs, Upland Fields, Managed Agricultural Areas, and Active Pastures	101
Table 08-8 Vegetation Recorded Within Emergent, Scrub-Shrub, and Forested Wetlands	103
Table 08-9 Wildlife Species Observed On and Adjacent to the Project Area	111
Table 08-10 Land Use Within One Mile of the Facility	118
Table 08-11 Structures Within 1,000 Feet and 250 Feet From Generating Equipment and Facility Footprint	119
Table 08-12 Existing and Projected Populations	124

LIST OF FIGURES

Section 4906-4-02 Project Summary and Applicant Information

- Figure 02-1: Facility Location
- Figure 02-2: Project Schedule

Section 4906-4-03 Project Description and Schedule

- Figure 03-1 A and B: Facility Location within Two Miles
- Figure 03-2: Proposed Facility and Vicinity
- Figure 03-3: General Arrangement
- Figure 03-4: Facility Rendering
- Figure 03-5A and B: Water Balance

Section 4906-4-04 Project Area Selection and Site Design

- Figure 04-1A and B: Site Selection Attributes
- Figure 04-2: Site Selection Constraints

4906-4-05 Electric Grid Interconnection

• No Figures

4906-4-06 Economic Impact and Public Interaction

• No Figures

4906-4-07 Air, Water Solid Waste and Aviation Regulations

- Figure 07-1: Air Quality Monitoring Stations and Emission Source Mapping
- Figure 07-2: Air Modeling Concentration Isopleths: 1-hour NO₂ Normal Operation
- Figure 07-3: Air Modeling Concentration Isopleths: Annual NO₂
- Figure 07-4: Air Modeling Concentration Isopleths: 1- hour CO
- Figure 07-5: Air Modeling Concentration Isopleths: 8-hour CO
- Figure 07-6: Air Modeling Concentration Isopleths: 24-hour PM₁₀ (NAAQS) and 24-hour PM_{2.5} (PSD)

4906-4-07 Air, Water Solid Waste and Aviation Regulations (continued)

- Figure 07-7: Air Modeling Concentration Isopleths: Annual PM₁₀ (NAAQS) and Annual PM_{2.5} (PSD)
- Figure 07-8: Air Modeling Concentration Isopleths: 24-hour PM_{2.5} (5-year average NAAQS)
- Figure 07-9: Air Modeling Concentration Isopleths: Annual PM_{2.5} (5-year average NAAQS)
- Figure 07-10: Air Modeling Concentration Isopleths: 1-hour SO₂ (5-year average NAAQS)
- Figure 07-11: Air Modeling Concentration Isopleths: 3-hour SO₂
- Figure 07-12: Air Modeling Concentration Isopleths: 24-hour SO₂
- Figure 07-13: Air Modeling Concentration Isopleths: Annual SO₂
- Figure 07-14: Airports and Navigation Facilities

4906-4-08 Health and Safety, Land Use and Ecological Information

- Figure 08-1: Sound Level Contours
- Figure 08-2: Baseline Sound Monitoring Locations
- Figure 08-3: Water Wells, Oil and Gas Wells and Drinking Water Source Protection Areas (USGS)
- Figure 08-4: Groundwater Resources Existing Aquifers
- Figure 08-5: FEMA Flood Zones
- Figure 08-6: Soils
- Figure 08-7: Natural Resource Characteristics of the Site and Surroundings
- Figures 08-8A, 8B, and 8C: Wetland Details
- Figure 08-9: Proposed Natural Resource Impacts
- Figure 08-10A: Surrounding Land Use within One Mile
- Figure 08-10B and B: Surrounding Land Use Structures
- Figure 08-11A through H: Cultural and Recreational Areas within Five Miles
- Figure 08-12A: Photographic Simulation Vocational Road
- Figure 08-12B: Photographic Simulation Marietta Road
- Figure 08-13: Agricultural Land

LIST OF APPENDICES

- Appendix A Service letter from Village of Byesville
- Appendix B Stormwater Analysis
- Appendix C Public Involvement Process
- Appendix D PJM Feasibility Studies
- Appendix E Economic Assessment
- Appendix F Complaint Resolution Program
- Appendix G Traffic Management Plan
- Appendix H- Sound Survey and Analysis Report
- Appendix I Preliminary Geotechnical Report
- Appendix J Aquatic Resources Report
- Appendix K Species Correspondence

Acronyms and Abbreviations

٩F	degrees Fahrenheit
%	percent
§	section (when referring to Ohio Administrative Code)
$\mu g/m^3$	microgram per cubic meter
ACC	air-cooled condenser
AEP	American Electric Power
amsl	above mean sea level
APE	Area of Potential Effect
Apex	Apex Power Group, LLC
BACT	Best Available Control Technology
bgs	below ground surface
BMP	Best Management Practice
Btu	British thermal unit
Caithness	Caithness Energy, L.L.C.
CEMS	Continuous Emission Monitoring System
CFR	Code of Federal Regulations
CIK	compression ignition
CO	carbon monoxide
CO CO ₂	carbon dioxide
CO _{2e} CSAPR	carbon dioxide equivalent
	Cross-State Air Pollution Rule
CTG	combustion turbine generator
dB	decibel
dBA	A-weighted decibel
DLN	dry low nitrogen oxide
DOW	Division of Wildlife
FAA	Federal Aviation Administration
the Facility	Guernsey Power Station, a new 1,650-MW natural gas-fired
	combined- cycle electric generating facility located in
	Guernsey County, Ohio
the Facility Site	the approximately 118-acre location proposed for the
	Guernsey Power Station in Valley Township, Guernsey
	County
FEMA	Federal Emergency Management Agency
g/hp-hr	grams per horsepower-hour
g/kW-hr	grams per kilowatt-hour
GdD	Gilpin silt loam, 15 to 25 percent slopes
GE	General Electric
GHG	greenhouse gas
GnA	Glenford silt loam, 0 to 3 percent slopes
gpd	gallons per day
GPS	Guernsey Power Station, LLC
H2SO4	sulfuric acid mist

HAPS	hazardous air pollutants
HRSG	heat recovery steam generator
I-70	Interstate 70
I-77	Interstate 77
the Interconnection Property	portion of an approximately 135-acre property south of the
	AEP 765-kV ROW that is the proposed location for the
	electrical interconnection facilities
ISO	International Organization for Standardization
kV	kilovolt
kW	kilowatt
the Laydown and Parking Area	an approximately 15-acre property on the north side of
	Seneca Lane that will be used for temporary construction
	laydown and parking
lb/MMBtu	pounds per million British thermal unit
lb/MW-hr	pounds per megawatt-hour
L _{eq}	equivalent continuous sound level
McA	McGary silt loam, 0 to 3 percent slopes
MeB	Mentor silt loam, 2 to 8 percent slopes
MeC	Mentor silt loam, 8 to 15 percent slopes
MeD	Mentor silt loam 15 to 25 percent slopes
mgd	million gallons per day
ML	monitoring location
MMBtu	million British thermal units
MMcf	million cubic feet
MW	megawatt
MW-hr	megawatt-hour
N/A	Not Applicable
NAAQS	National Ambient Air Quality Standards
NERC	North American Electric Reliability Corporation
NESHAP	National Emission Standards for Hazardous Air Pollutants
NFPA	National Fire Protection Association
ng/J	nanograms per Joule
NH ₃	ammonia
NHD	National Hydrography Dataset
NLCD	National Land Cover Database
NO	nitric oxide
No	Nolin silt loam, 0 to 3 percent slopes, frequently flooded
NO ₂	nitrogen dioxide
NOx	nitrogen oxides
NPDES	National Pollutant Discharge Elimination System
NRCS	Natural Resources Conservation Service
NRHP	National Register of Historic Places
NSPS	New Source Performance Standard
NSR	New Source Review
O&M	operation and maintenance

O ₂	oxygen
03	ozone
OAC	Ohio Administrative Code
ODA	Ohio Department of Agriculture
ODNR	Ohio Department of Natural Resources
Ohio EPA	Ohio Environmental Protection Agency
OPSB	Ohio Power Siting Board
ORAM	Ohio Rapid Assessment Method
OSHA	Occupational Safety and Health Administration
PADEP	Pennsylvania Department of Environmental Protection
Pb	lead
PEM	Palustrine Freshwater Emergent Wetlands
PFO	Palustrine Freshwater Forested Wetlands
PJM	Pennsylvania-New Jersey-Maryland Interconnection
PM	particulate matter
PM ₁₀	particulate matter with a diameter less than or equal to 10
-10	micrometers
PM _{2.5}	particulate matter with a diameter less than or equal to 2.5
	micrometers
ppm	parts per million
ppmvdc	parts per million by volume, corrected to 15% oxygen
the Project Area	The 133-acre property consisting of the Guernsey Power
5	Station and temporary work areas
PSD	Prevention of Significant Deterioration
psig	pounds per square inch gauge
PTI	Permit to Install
PUB	Palustrine Unconsolidated Bottom
REX	Tallgrass Energy Rockies Express
ROW	right-of-way
RPM	Reliability Pricing Model
Sa	Sarahsville silty clay loam, frequently flooded
SCR	selective catalytic reduction
SER	Significant Emission Rate
SIL	Significant Impact Level
SIS	System Impact Study
SO ₂	sulfur dioxide
STG	steam turbine generator
SPT	Standard Penetration Test
the Strategic Plan	Guernsey County Comprehensive Strategic Plan
SU/SD	startup/shutdown
tpy	tons per year
ULSD	ultra-low-sulfur distillate
USACE	United States Army Corps of Engineers
USEPA	United States Environmental Protection Agency
USFWS	United States Fish and Wildlife Service

USGS	United States Geological Survey
UTM	Universal Transverse Mercator
VOC	volatile organic compound
WVDEP	West Virginia Department of Environmental Protection
WWTP	wastewater treatment plant
Zs	Zipp silty clay loam, ponded

4906-4-02 **Project Summary and Applicant Information**

(A) SUMMARY OF THE PROPOSED PROJECT

Guernsey Power Station, LLC (GPS) is proposing to develop, build, and operate Guernsey Power Station (the Facility), a new 1,650-megawatt (MW) natural gas-fired combined-cycle electric generating facility located in Guernsey County, Ohio (Figure 02-1). GPS will use stateof-the-art combined-cycle technology and a dry air cooling system to reduce air emissions and minimize water use. GPS is a limited liability company for the purpose of developing, owning, and operating the Facility. GPS is being jointly developed by Apex Power Group, LLC (Apex) and Caithness Energy, L.L.C. (Caithness).

(1) General Purpose of the Facility

The Facility will help meet energy demand in the region, particularly in light of the recent and planned retirement of existing coal-fueled generating assets located in PJM.¹ Over 30,000 MW have retired since 2003 and almost 7,000 MW are pending retirement by the end of 2020, including several plants in Ohio. The Facility will help meet this need by providing additional base load and peaking capacity via its natural gas-fired, combined-cycle technology.

(2) Facility Description

The Facility is a state-of-the-art combined-cycle natural gas-fired electric generating facility, designed utilizing three 1x1x1 single shaft power train configurations with a total plant nominal net generating capacity of approximately 1,650 MW. The Facility will be located within an approximately 118-acre property (as shown in Figure 02-1) that is located entirely within Valley

¹ PJM is the regional independent transmission organization that coordinates the movement of wholesale electricity in all or parts of 13 states (including Ohio) and the District of Columbia. Its name results from its origin serving Pennsylvania (P), New Jersey (J), and Maryland (M).

Township, Guernsey County, Ohio (the Facility Site). The Facility includes combustion turbine generators (CTGs), heat recovery steam generators (HRSGs), steam turbine generators (STGs), air-cooled condensers (ACC), transformers, a Facility switchyard, and other ancillary equipment. Natural gas will be provided to the Facility via the Tallgrass y Rockies Express (REX) natural gas pipeline that is located in a right-of-way (ROW) on the Facility Site just south of the Facility. Electricity from the Facility will be transmitted to the PJM power grid via an American Electric Power (AEP) 765-kilovolt (kV) electric transmission line that is also located in an ROW on the Facility Site just south of the Facility. The Facility switchyard is included in this Application. Additional electrical interconnection equipment will be located on a separate adjacent parcel south of the existing 765-kV electric transmission line (referred to as the Interconnection Property). The natural gas and electric transmission interconnections, including activities on the Interconnection Property, will be the subject of separate filings with the Ohio Power Siting Board (OPSB), as appropriate.

The Facility Site consists of an approximately 118-acre rectangular-shaped parcel of land. An approximately 15-acre parcel located across Seneca Lane (Route 2360) to the north of the Facility Site (located in Jackson Township) will be used for temporary construction laydown and parking for the Facility (the Laydown and Parking Area). Approximately 9.8 acres within the northwestern corner of the Facility Site will also be used for temporary construction laydown. The Facility Site is located entirely within Guernsey County and Valley Township, west of Interstate 77 (I-77) and north of Clay Pike Road (Route 313); the Laydown and Parking Area is located in Jackson Township, as noted above.

The majority of the Facility Site is used, or was formerly used, for agricultural purposes. Several structures, including two residences accessed via Puritan Street, and one residence on Seneca Lane, are located within the Facility Site and will be demolished. Additional residences located along Seneca Lane are within 0.25 mile of the Facility Site and will remain in place.

The Facility Site is adjacent to I-77 and approximately 4.5 miles south of Interstate 70 (I-70). Wills Creek, a tributary of the Muskingum River, forms the southern boundary of the Facility Site. The Facility Site is bounded to the west by a privately-owned railroad spur; and to the north by Seneca Lane, although an area to the north of Seneca Lane will be temporarily used for construction laydown and parking.

The Facility Site and Laydown and Parking Area will be generally accessed from I-77 to Clay Pike Road (a two-lane road located south of the Facility Site) to Marietta Road (Route 821) to the eastern end of Seneca Lane. The Facility entrance will be located off of Puritan Street.

(3) Site Suitability

The Facility Site selection process is described in greater detail in Section 4906-4-04 of this Application. As outlined in that section, GPS's market knowledge identified this region of southeastern Ohio as one where the planned shutdown of existing coal-fired capacity has created the need for clean, efficient power generation. Guernsey County and Valley Township were selected based on consideration of a range of key characteristics for a successful project. Upon identification of this Facility Site, additional scrutiny of a range of issues was undertaken prior to initiating the engineering and environmental activities necessary for the preparation of the OPSB Application.

Key characteristics of the proposed Facility Site that makes it suitable for Facility development are outlined in Table 02-1.

TABLE 02-1 FACILITY SITE CHARACTERISTICS – SITE SELECTION

Key Attribute	Facility Site Conditions	
Adequate Size	Adequate space for the Facility layout exists within the	
_	property, with additional adjacent property available for	
	ancillary equipment and temporary construction laydown	
	and parking.	
Compatible Land	The Facility Site is located on a relatively flat parcel,	
Characteristics and Use	formerly and currently used for agricultural purposes that	
	has robust on-site natural gas and electric infrastructure.	
	Major transportation features and other industrial uses are in	
	proximity.	
On-Site Natural Gas	A REX 42-inch high pressure natural gas pipeline is located	
Interconnection	at the southern end of the Facility Site.	
Natural Gas Supply	There is an abundant, local, low-cost supply of natural gas in	
Alternatives	the region, including Utica and Marcellus shale gas.	
On-Site Electrical	An AEP 765-kV transmission line corridor is located at the	
Interconnection	southern end of the Facility Site requiring minimal new	
	electrical infrastructure to transmit electricity to the grid.	
Adequate Water Supply and	The Village of Byesville has adequate capacity to supply	
Wastewater Discharge	water and wastewater services such that community water	
	use will not be adversely affected.	
Strong Transportation Network	The Facility Site is located in close proximity to major	
	highways (e.g., I-70 and I-77) as well as rail.	
Lack of Significant	The Facility Site is located in an attainment area with respect	
Environmental Constraints	ental Constraints to National Ambient Air Quality Standards (NAAQS) for all	
	criteria pollutants; the Facility can be accommodated with	
	limited environmental impact.	

(4) **Project Schedule**

The Facility schedule is based on the submission of this Application in March 2017, the issuance of the OPSB certificate by October 2017, and the commencement of commercial operation by the third quarter of 2020 in order to meet the anticipated demands within the PJM marketplace.

Any delay in the issuance of the OPSB certificate would have a significant negative commercial impact on the Facility's planned year end 2020 operations and would jeopardize the

Facility's ability to meet contractual PJM needs, as well as lowering the availability of capacity in Ohio during wintertime conditions when load demands are high.

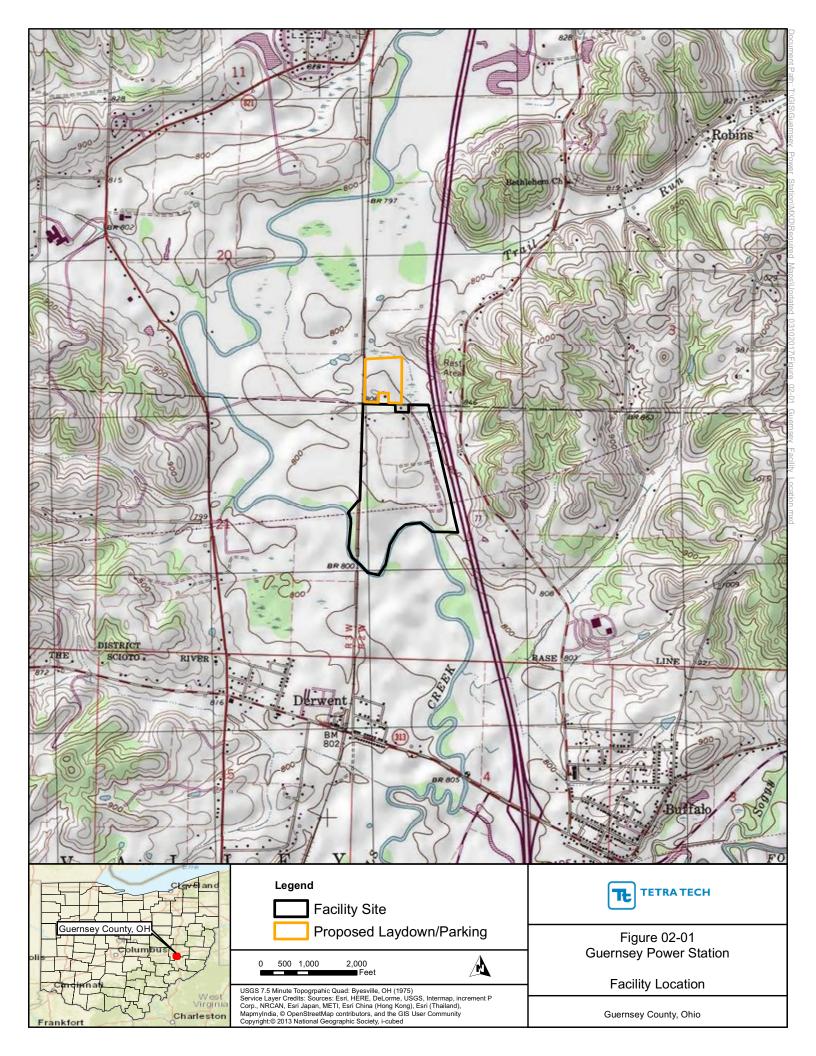
GPS intends to bid into PJM's Capacity Auction in May 2018 and subsequent Incremental Auctions for delivery of Facility capacity beginning in October 2020. If development delays occur, including issuance of permits, GPS will be subject to substantial financial penalties by PJM, since PJM would be relying upon capacity not operational by the committed date.

GPS is confident that this schedule is achievable and that the Facility will be producing electricity by October 2020 when the State of Ohio needs new electricity resources. The Facility schedule is provided in Figure 02-2.

(B) ADDITIONAL INFORMATION

(1) Description of Future Plans/Plans for Future Additions

No additional generating units are planned on the Facility Site.


(2) Applicant Information

GPS is a limited liability company for the purpose of developing, owning, and operating the Facility. GPS is being jointly developed by Apex Power Group, LLC and Caithness Energy, L.L.C.

Apex is a privately held power generation development company founded in 2007. Apex has successfully completed two major power generation projects: the Pio Pico Energy Center, a 300-MW peaking and load-following plant in San Diego County, California; and the Panoche Energy Center, a 400-MW peaking plant in Fresno County, California. Apex is also developing Neches Station, a quick-start, gas-fired combined-cycle facility capable of producing between 450 to 900 MW, located in Cherokee County, Texas.

Caithness is an independent power producer engaged in the development of power plants including renewable energy and natural gas-fired facilities in the United States. Over the last 40 years, Caithness has successfully developed, operated, and owned interests in more than 42 power projects across the United States. Caithness recently partnered with Moxie Energy LLC to develop the Caithness Moxie Freedom Generating Station in Luzerne County, Pennsylvania, a 1,029-MW natural gas-fired generating facility that is currently under construction and targeted to be on line in mid-2018. Other recent achievements include: development and construction of the Shepherds Flat Wind Farm, an 845-MW wind energy facility located in eastern Oregon; and development and construction of the Caithness Long Island Energy Center, a 350-MW gas-fired facility that has been providing Long Island, New York with reliable power since 2009.

- Figure 02-1: Facility Location
- Figure 02-2: Project Schedule

(A) DETAILED DESCRIPTION OF THE PROJECT AREA

(1) **Project Map**

Figures 03-1A and 03-1B identify: the proposed Facility; major population centers and administrative boundaries; major transportation routes and utility corridors; named rivers, streams, and other bodies of water; and major institutions, parks, and recreational areas within a 2-mile radius of the Facility Site and the Laydown and Parking Area.

(2) **Project Area**

The 118-acre Facility Site and the 15-acre Laydown and Parking Area comprise the 133-acre Project Area. The Facility Site is comprised of several parcels that GPS has optioned to purchase; the Laydown and Parking Area will be leased.

Figure 03-2 depicts the proposed Facility layout overlain within the boundaries of the Facility Site. Additional detail is provided in Figure 03-3, a general arrangement drawing that labels the various Facility components. A computer-generated color rendering of the Facility is included as Figure 03-4.

(B) PROPOSED FACILITY DESCRIPTION

As shown in Figure 03-2, the proposed Facility is situated on the approximately 118-acre Facility Site. The following sections describe key aspects of the proposed Facility.

(1) **Project Details**

The Facility will utilize combined-cycle gas turbine technology consisting of three separate generating trains in a 1x1x1 configuration. Each power generating train will include: an integrated General Electric (GE) Model 7HA.02 CTG; a supplementary-fired HRSG; a STG; and an ACC. Additional auxiliary equipment to support the Facility will include an auxiliary boiler, two natural gas heaters, two emergency diesel generator engines, and an emergency diesel fire pump engine.

The CTGs, duct burners, auxiliary boiler, and natural gas heaters will be fired solely with natural gas, while the emergency diesel generator engines and emergency fire pump engine will operate on ultra-low-sulfur distillate (ULSD).

(a) Generation Units

The Facility is designed to be a nominal net 1,650-MW electric generating facility and will consist of three GE Model 7HA.02 CTGs, each capable of generating a nominal output of approximately 550 MW and a maximum output of approximately 600 MW. The Facility will be capable of operating up to 8,760 hours per year, although actual hours of operation will be dependent upon energy needs in the region and will incorporate downtime for planned and unplanned maintenance events. Based on power market data for southeastern Ohio, it is anticipated that the Facility will initially operate 85 to 95 percent (%) of the year. Each CTG will exhaust through a dedicated HRSG to generate steam from the waste heat energy in the exhaust gas. Each HRSG will be equipped with supplemental firing via a duct burner. The duct burners will provide additional thermal energy to the HRSG to provide more steam to the STG during periods of increased electricity demand.

Steam generated in each of the three HRSGs will be expanded through a single multi-stage, reheat-condensing STG. The discharge steam from the STG will be directed to an ACC. The ACCs directly condense exhaust steam from each STG by using indirect heat exchange with the ambient air, rather than utilizing water for cooling. Mechanical power produced by the steam turbines will be converted to electric power via the connected generators.

(b) Description of Wind Turbine Equipment

Since the proposed Facility does not include the installation of any wind turbine equipment, this section is not applicable.

(c) Fuel Quantity and Quality

The fuel will be natural gas supplied at an approximate pressure of 1,400 pounds per square inch gauge (psig). The natural gas provider will deliver fuel to a new on-site Facility metering station. A liquids removal, pre-heating system, and metering will be installed as part of the natural gas fuel system. The high efficiency gas turbines will require that the natural gas has a pressure of about 600 psig upon entry to the CTGs. Table 03-1 is a summary of the natural gas characteristics.

TABLE 03-1FUEL CHARACTERISTICS

Characteristics	Natural Gas
Ash (%)	
Sulfur Content (grains per 100 dry standard cubic feet)	0.5
British thermal unit (Btu) Value (Btu/cubic foot, higher	1,028
heating value)	

(d) Pollutant Emissions

Construction impacts on air quality will consist of relatively minor emissions from the construction equipment required for site preparation and from fugitive dust emissions. General construction vehicles (both gasoline- and diesel-powered) and other dieselpowered engines will emit insignificant amounts of volatile organic compounds (VOCs), sulfur dioxide (SO₂), carbon monoxide (CO), nitrogen oxides (NO_x), and particulate matter (PM). These emissions are not expected to cause any significant adverse impact on the Facility Site or beyond the Project Area. Atmospheric dispersion modeling has been performed to predict maximum concentrations for a range of Facility operating conditions and has confirmed that Facility impacts will be below NAAQS for all operating conditions. The model accounts for emission rates; HRSG stack heights of 180 feet; exhaust parameters; meteorological data (wind speed, direction, atmospheric stability, and temperature); and the topography around the Facility Site. The following is a list of the federal criteria pollutants that will be emitted from the Facility: SO₂; PM with a diameter of less than or equal to 10 micrometers (PM₁₀); PM with a diameter of less than or equal to 2.5 micrometers (PM_{2.5}); NO_X; CO; and VOCs. Several non-criteria pollutants will be emitted, including sulfuric acid mist (H₂SO₄), ammonia (NH₃), and formaldehyde.

The emission control technologies proposed for the CTG and duct burner exhaust gases include: dry low nitrogen oxide (DLN) combustors in the CTG; selective catalytic reduction (SCR) to control NO_x emissions; and an oxidation catalyst to control CO and VOC emissions.

DLN combustors will be integrated within each CTG. The DLN combustion control process reduces the formation of NO_X by controlling the flame temperature and oxygen (O₂) concentration at various points within the combustion process. SCR, a post-combustion chemical process, will be installed in each HRSG to treat exhaust gases downstream of the CTGs and duct burners. An oxidation catalyst system will be located within each HRSG to control emissions of CO and VOC. The SCR and oxidation catalyst will be located within the HRSG at the area with the optimum temperature for an efficient reaction. Emissions of SO₂, PM/PM₁₀/PM_{2.5}, and H₂SO₄ will be minimized through use of natural gas as the sole fuel in the CTGs and duct burners.

In addition, NOx, CO, and NH₃ emissions from the CTGs at the Facility will be continuously tracked using a Continuous Emission Monitoring System (CEMS), and CO₂ emissions will be continuously monitored based on fuel flow measurements. In the unlikely event of control equipment failure, the failure would be immediately detected by the distributed control system and corrective actions would be initiated. It is unlikely that any unforeseen outage of pollution control systems would result in a significant impact before corrective actions could be taken.

(e) Water Volume Requirement

The Facility will use closed cycle ACCs rather than a traditional water-cooled condenser. The Facility will use an average of approximately 147,000 gallons per day (gpd) of water per unit (or approximately 441,000 gpd total) primarily as makeup to the steam cycle process. Figure 03-5A and B provide a water balance diagram showing summer and winter expected usage. While costly compared to wet cooling technologies, ACCs reduce water consumption by as much as 95% (compared to wet-cooling technologies), also minimizing the need for additional water treatment chemicals and significantly reducing wastewater generation.

Water needs of the Facility (including process water, fire protection, and sanitary use) will be met through a contract to supply water from the Village of Byesville. A letter from Byesville indicating its ability to serve the Facility's water and wastewater needs is attached as Appendix A.

Facility wastewater, made up primarily of blowdown water, will average 121,000 gpd per unit (363,000 for the total Facility); details of Facility wastewater generation are also shown in Figures 03-5A and B. Facility wastewater will be discharged to the existing

Village of Byesville Wastewater Treatment Plant (WWTP). If necessary, pre-treatment will occur at the Facility Site prior to discharge in order to meet existing National Pollutant Discharge Elimination System (NPDES) requirements at the WWTP. As noted above, Byesville has confirmed its ability to receive this discharge (Appendix A).

Stormwater flows from the developed Facility Site will be controlled through the use of detention ponds and other features. Preliminary stormwater control features are shown in Appendix B.

(2) Description of Construction Method and Project Components

(a) Generation Equipment

The Facility Site is generally level with elevations ranging from approximately 800 feet to 830 feet above mean sea level (amsl). The Facility Site will be graded prior to the start of construction. Several existing structures that are located on the Facility Site at the end of Puritan Lane and on Seneca Lane will be demolished prior to the start of construction. Approximately 50 acres of the Facility Site will be used for the Facility footprint, with the remaining area used for temporary construction workspace and site buffer. An additional approximately 15 acres will be used for construction laydown and parking across Seneca Lane, north of the Facility Site.

The Facility will include three separate generating trains, each consisting of a CTG with natural gas as the fuel, a HRSG, an STG and an ACC. The CTGs and STGs will be located indoors in a steam turbine building. Other major buildings and structures include the: ACCs; auxiliary boiler building; water treatment building; administration/control building; warehouse building; boiler feed pump building; and other assorted buildings and structures (see Figure 03-3). A rendering of the Facility is provided in Figure 03-4.

Dimensions of the above-identified facilities are provided in Table 03-2.

Building or Structure	Dimensions (feet)	Stack Height	Diameter
HRSG/Stack 1, 2, 3	150' L x 70' W x 130' H	180 feet	22 feet
Steam Turbine Building	184'L x 140'W x 75'H		
Auxiliary Boiler Building/Stack	85'L x 68'W x 35'H	55 feet	51 inches
Water Treatment Building	150'L x 65'W x 25'H		
Administration/Control Building	100'L x 65'W x 18'H		
Warehouse Building	100'L x 90'W x 23'H		
Boiler Feed Pump Building (#1,2,3)	95'L x 50'W x 25'H		
Medium Voltage Electric Enclosure (#1,2,3)	75'L x 30'W x 20'H		
ACC (#1,2,3)	284'L x 127'W x 128'H		
Fin Fan Cooler (#1,2,3)	60'L x 60'W x 30'H		
Emergency Diesel Generators	30'L x 12'W x 15'H	16 feet	1.33 feet
Fuel Gas Start Up Heaters 1 & 2		25 feet	36 inches
Emergency Diesel Fire Pump		12 feet	6 inches (horizontal)

TABLE 03-2 STRUCTURE AND BUILDING DIMENSIONS

(b) Storage Facilities

On-site storage facilities will be provided for water, fuel, and other materials required

for Facility operations. Table 03-3 outlines the proposed on-site storage facilities.

Facility	Size	Volume
Aqueous NH ₃ Storage Tank	144" diameter x 45'6" H	35,000 gallons
Service Water Tank	80' diameter x 65' H	1.8 million gallons
Demineralized Water Tank	46' diameter x 40' H	600,000 gallons
HRSG Blowdown Tank	9' diameter x 9' H	4,286 gallons
STG Drain Tank	110" diameter x 145" H	7,150 gallons
Water Wash Drain Tank	7' diameter x 21' H	6,000 gallons
Hydrogen Storage Bottles	Trailer - 24' L x 8' W x 9' H	53,623 cubic feet (38 tubes)
Seal Oil Storage Tanks		11,250 gallons

TABLE 03-3STORAGE FACILITIES

Facility	Size	Volume
ULSD Storage Tanks (2 for		
emergency diesel generators and 1		300 gallons (each)
for emergency fire pump engine)		

All storage tanks requiring secondary containment will be designed to meet or exceed applicable regulations. Containment systems will be placed in unloading areas, as needed, to catch and contain any released material.

In association with ancillary equipment, as described in Section 4906-4-03(B)(2)(g) of this application, two 300-gallon double containment ULSD storage tanks will be incorporated to fuel the emergency diesel generator engines and one 300-gallon double containment ULSD storage tank will be incorporated for the emergency fire pump engine.

(c) Processing Facilities

No additional processing facilities will be located at the Facility Site.

(d) Water Supply and Discharge

The Facility's water supply will come from the Village of Byesville Water Department to meet all of the Facility's water needs.

Facility wastewater will be discharged to the Village of Byesville WWTP. Facility wastewater will be consistent with WWTP acceptance requirements to allow the WWTP to continue to comply with its existing NPDES permit.

(e) Transmission Facilities

The Facility will interconnect to the AEP 765-kV Kammer-Vassell electric transmission line, located on the Facility Site. The electrical infrastructure, to be located on the Interconnection Property south of the Facility Site, will include an electrical

interconnection, substation, and switchyard, and will be the subject of a separate filing with the OPSB.

GPS will obtain natural gas delivery from the on-site 42-inch diameter REX natural gas pipeline. A new gas metering station to be owned and operated by REX will be located onsite. GPS will construct, own and operate a low pressure fuel gas regulating skid, fuel gas filter/separator, fuel gas heaters, and associated equipment to fuel the CTGs.

(f) On-Site Electric Components

A step-up transformer, switchyard, and switchyard electrical building will be located at the Facility Site. Electricity will be generated at the Facility in units of approximately 23,000 volts (23.0 kV) and each unit will have a generator step-up transformer from 23.0 kV to 230,000 volts (230 kV). The 230-kV lines will merge in the Facility electrical yard and a common electric transmission line will be routed south to the new switching substation south of the Facility Site, where the voltage will be stepped up to 765 kV and transmitted via a 765-kV circuit to the onsite AEP electric transmission line. The 230-kV electric circuit, 230/765-kV substation, switchyard, and 765-kV circuit will be the subject of a separate OPSB filing to be submitted by GPS.

(g) Ancillary Facilities

In addition to the power generation equipment, the Facility will include various ancillary facilities, including: a fire protection system, two stand-by emergency diesel generators, aqueous ammonia storage containing <20% aqueous ammonia solution (either one or two tanks, depending upon final design details), two natural gas heaters, and an auxiliary boiler.

(h) Meteorological Towers

Since the proposed Facility does not include the installation of any meteorological towers, this section is not applicable.

(i) Transportation Facilities

The Facility Site is located in close proximity to a strong transportation network, including major highways (I-70 and I-77). Access during construction and operations will be generally via I-77, with vehicles traveling to the Facility Site via Clay Pike Road, Marietta Road, and Seneca Lane to the new plant entrance at Puritan Street.

(j) Laydown and Parking Areas

An adjacent property is proposed for temporary laydown and parking during Facility construction. This adjacent parcel is the approximately 15-acre Laydown and Parking Area, which is located north of the Facility Site, across Seneca Lane. Approximately 9.8 acres in the northwestern corner of the Facility Site will also be used for laydown and construction parking.

(k) Security

There will be no public access to the proposed Facility. A security fence will be installed around the Facility with card-activated gates and Facility operator access control. All appropriate North American Electric Reliability Corporation (NERC) standards for physical and/or cyber security will be met by the Facility.

(l) Other Installations

No other installations are associated with the Facility.

(3) Description of New Transmission Facilities

(a) Electric Transmission Line

Power leaving the Facility generators will be "stepped up" to 765 kV prior to being conveyed to the PJM power grid. Power will be generated in units of approximately 23.0 kV and each unit has a generator step-up transformer from 23.0 kV to 230 kV. The 230-kV lines will merge in the Facility's electrical switchyard. Four auto transformers located within the switchyard will boost the power from 230 kV to 765 kV. The transmission line will be routed south to a new 765-kV switching substation located within the Interconnection Property south of the Facility Site.

The off-site electrical components associated with the Facility will be the subject of a separate filing with the OPSB.

(b) Natural Gas Pipelines

The Facility is designed to burn natural gas as its primary fuel to make electricity. Assuming that the Facility is operating at net output of 1,650 MW, it will consume approximately 262,000 million cubic feet (MMcf) per day of natural gas, or an hourly consumption of approximately 11,000 MMcf.

In addition, an approximate gas pressure of about 600 psig is required when delivered to the Facility's CTGs, consistent with most modern-day efficient CTGs; this is well under the expected delivery pressure of 1,400 psig.

(4) Map of Project Site

Figure 03-2 illustrates the proposed Facility on an aerial photograph overlain with the Facility layout, showing surrounding road names and major features of the proposed Facility.

(C) DETAILED PROJECT SCHEDULE

(1) Schedule

The electrical interconnection planning stages for the Facility began in 2016, with an ultimate goal of being fully functional and operational by third quarter 2020 in order to sell capacity/energy into the grid by October 2020. PJM's Capacity Auction process dictates the timeline as to when capacity should be made available. GPS anticipates participating in the Base Residual Auction for the 2021/2022 Delivery Year which will be held in May 2018, three years prior to the start of the Delivery Year (June 1, 2020 – May 31, 2021). GPS also anticipates participating in one or more of the Incremental Auctions for the 2020/2021 Delivery Year which are held as follows:

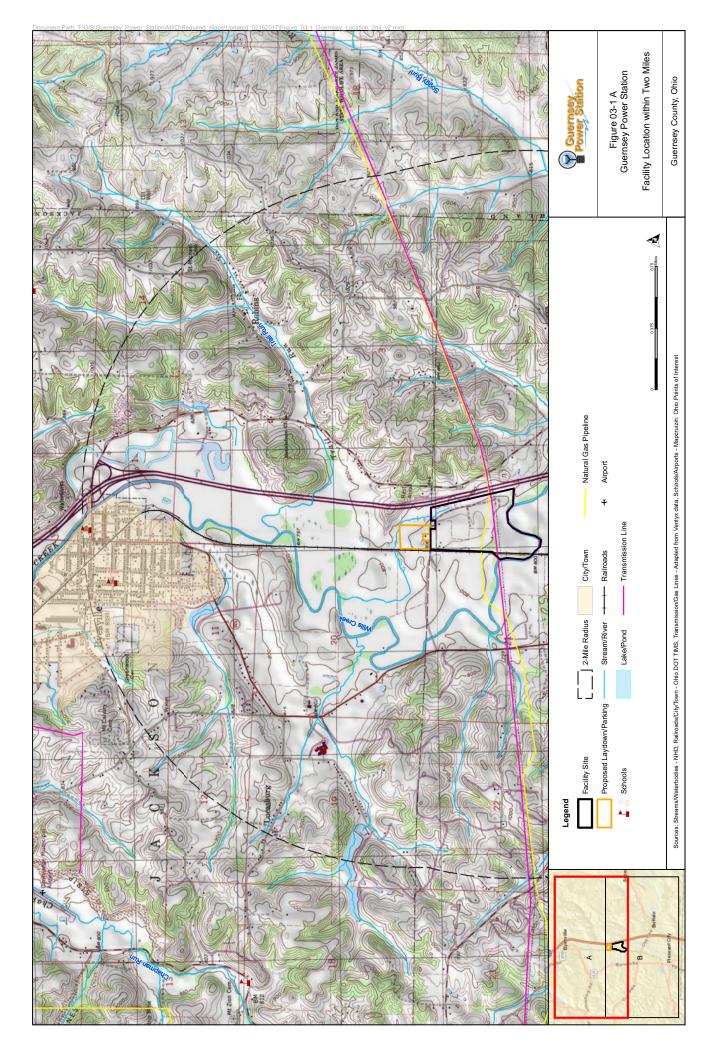
- First Incremental Auction: September 2018, 20 months prior to start of the Delivery Year;
- Second Incremental Auction: July 2019, 10 months prior to start of the Delivery Year; and
- Third Incremental Auction: February 2020, 3 months prior to start of the Delivery Year.

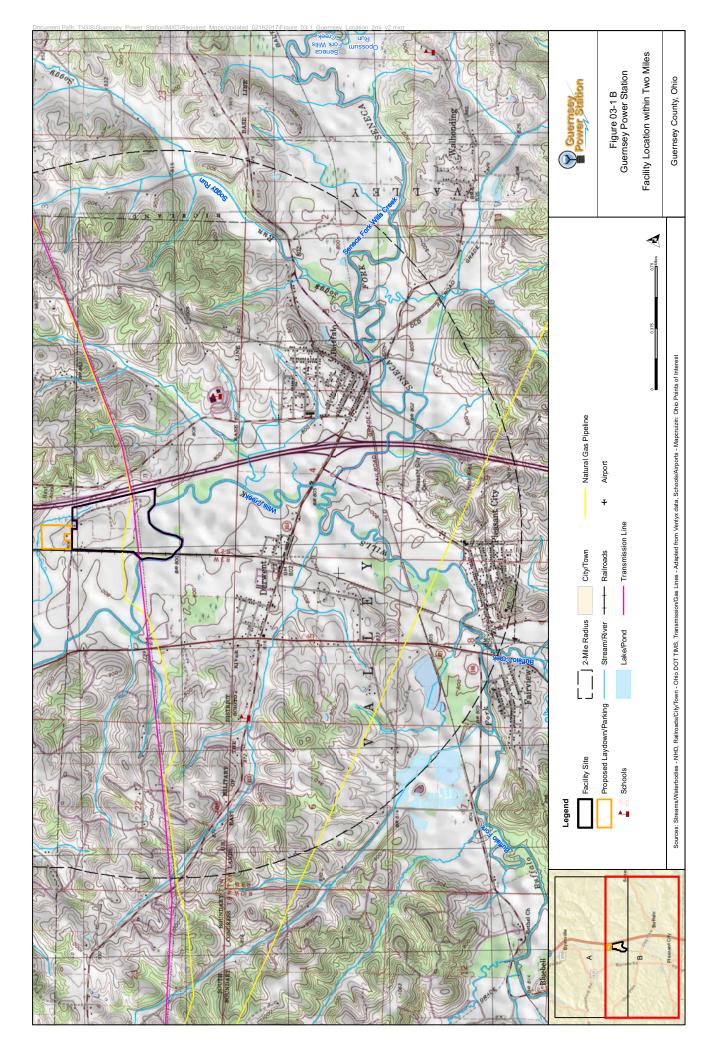
With a goal of Facility operation by fall 2020, GPS anticipates having all essential permits approved by fall 2017. Once permits are obtained, financing can be concluded and construction can begin.

Figure 02-2 provides the proposed Facility schedule for major activities and milestones. This schedule is based on the submission of this Application in March 2017, the receipt of the OPSB certificate by October 2017, and placing the Facility into commercial operation by the third quarter of 2020.

(2) **Construction Sequence**

Initial construction activities will commence following certification by the OPSB, receipt of other environmental permits, and financial close. Site preparation and demolition, grading, Facility Site access, stormwater management, and underground utilities will be completed, followed by equipment foundations.


As equipment foundations are completed, CTGs, tanks, pumps, and electric equipment will be installed. During this same period, electrical cable, piping, and pre-engineered metal buildings will be installed. As the various equipment components are installed, system checkout and testing activities will be performed to ensure the Facility conforms to design specifications. After completing checkout, inspection, and testing activities, the Facility will be started up for operation.


In conjunction with initial startup and testing of the Facility, finish coatings, insulation, paving, and landscaping activities will be completed.

(3) Delays

It is crucial that the proposed in-service date of third quarter 2020 be achieved in order to meet the anticipated load demand. GPS intends to enter the PJM Capacity Auction to be held in May 2018 as well as Incremental Auctions for delivery of power starting in the fall of 2020. Therefore, the OPSB certificate must be issued prior to financial close in the fall of 2017 in order for the Facility to be completed on schedule. A delay in the schedule before the beginning of construction would jeopardize the Facility's ability to meet wintertime demand in 2020-2021, potentially lowering the region's available capacity during winter conditions and resulting in significant performance penalties payable by GPS for not meeting PJM's contractual performance date.

- Figure 03-1A and B: Facility Location within Two Miles
- Figure 03-2: Proposed Facility and Vicinity
- Figure 03-3: General Arrangement
- Figure 03-4: Facility Rendering
- Figure 03-5A and B: Water Balance

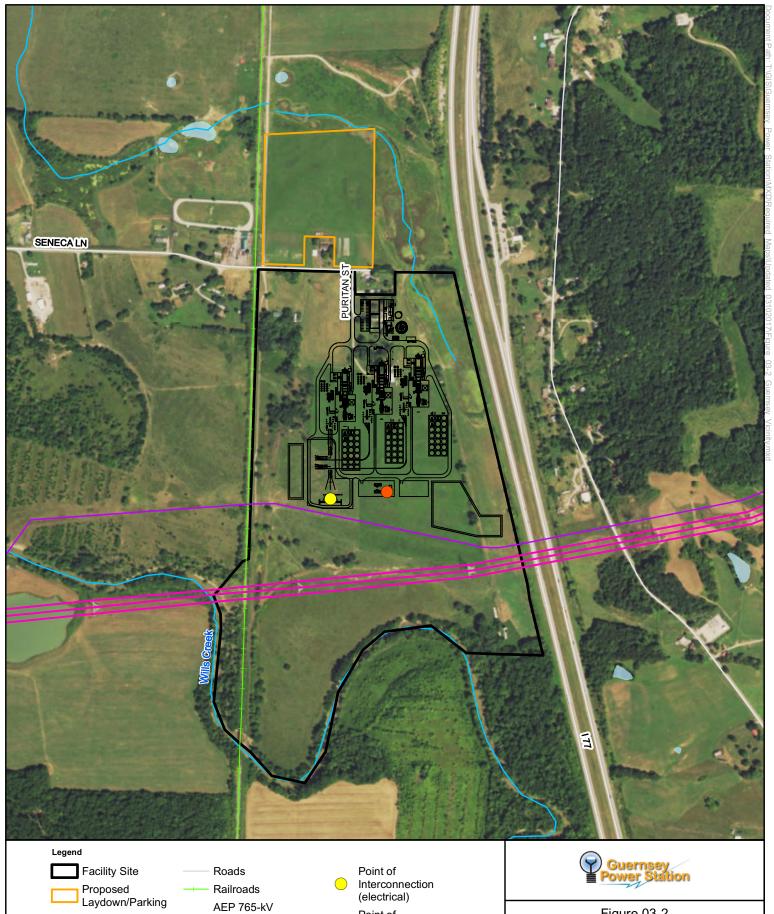


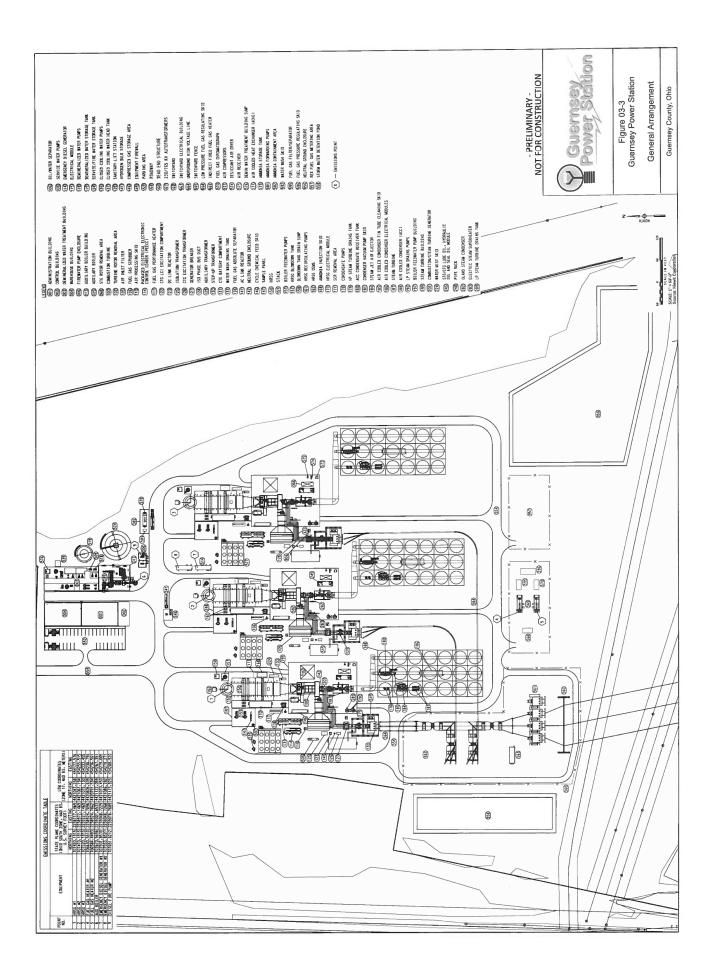
Figure 03-2 Guernsey Power Station

Proposed Facility and Vicinity

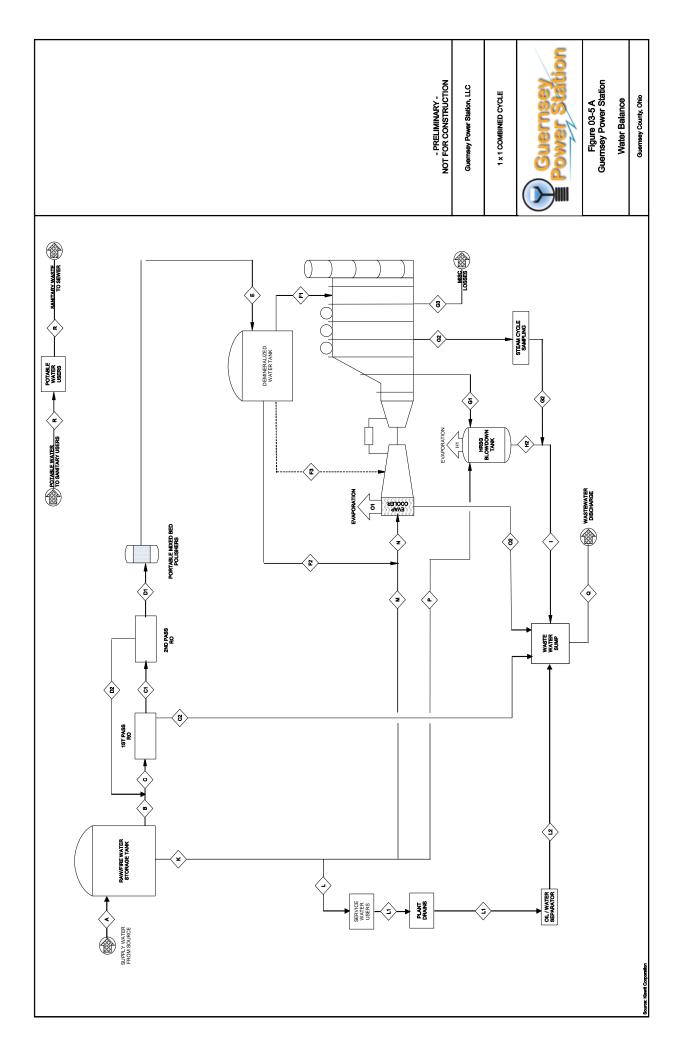
Krammer-Vassel Transmission Line

REX 42-inch Diameter Natural Gas Pipeline

Facility Site Layout


Stream/River

Lake/Pond


Point of

Interconnection

(natural gas)

	Case 6	Case 2	Case 4	Case 5	Case 1	Case 3				1. MAX INST FLOWS ARE CALCULATED BASED ON THE ASSUMPTIONS
AMBIENT CONDITIONS	30F/60%RH	59F/60%RH	92F/60%RH	30F/60%RH	59F/60%RH	92F/60%RH				OUI LINEU IN YOTES AND USED ONLY FOR LINE AND FUMP AND LINE SIZING. THESE FLOWS WILL BE BUFFERED BY TANKAGE, AND THE SIZE OF
PLANT GROSS OUTPUT (MW)	544.3	531.5	494.8	619.6	602.7	563.8				THE SUMP PUMPS WILL DETERMINE DISCHARGE FLOWRATE.
EVAP COOLER STATUS	OFF	OFF	NO	OFF	OFF	ON				
DUCT BURNER STATUS TYDE OF SOURCE FUEL	Untired	Unfired	Unfired	Fired	Fired	Fired				
QUANTITY OF CTS OPERATING	-	1	- 1	-	1	1				
STREAM PARAMETER	Case 6	Case 2	Case 4	Case 5	Case 1	Case 3	AVERAGE	MAXIMUM	MAX INST FLOWS	
A PLANT MAKEUP	82	80	109	102	104	13.2	102	132	382	
B DEMINERALIZER MAKEUP	41	41	49	51	50	59	49	59	59	
	45	44	53	55	54	64	53	64	64	
C1 151 PASS KU PEKMEATE (ZND PASS INFLUENT) C3 15T DASS DD DE IECT	33	33	40	4 4	41	48	89 5	48	48	
D1 2ND PASS RO PERMEATE	30	30	36	37	# 28	43	29	43	43	
	e	9	4	4	4	5	4	5	0	
\vdash	30	30	36	37	37	43	35	43	43	
F1 HRSG MAKEUP	30	30	30	37	37	37	33	37	148	
F2 DEMIN BLEND WATER TO EVAP COOLER	0	0	9	0	0	9	2	9	9	
_	0	0	0	0	0	0	0	0	TBD	
_	19	19	19	26	26	26	22	26	130	
G2 STEAM CYCLE SAMPLING LOSSES	9	9	9	9	9	9	9	9	9	
	5	5	5	5	5	5	5	5	5	
_	4	4	4	5	9	9	5	9	29	
H2 HRSG BLOWDOWN TANK BLOWDOWN	51	49	50	68	69	69	59	69	342	
I HRSG BLOWDOWN AND STEAM SAMPLING LOSSES	57	55	56	74	75	75	65	75	348	
K TOTAL SERVICE WATER USAGE	41	39	60	52	54	73	53	73	323	
	5	5	5	5	9	9	ъ	¢.	50	
	5	5	5	5	5	5	5	5	50	
	5	5	5	5	5	5	5	5	50	
	0	0	19	0	0	19	9	19	26	
	0	0	26	0	0	26	6	26	26	
-	0	0	24	0	0	24	80	24	33	
	0	0	2	0	0	2	~	2	2	
P HRSG BLOWDOWN TANK QUENCH WATER	36	34	35	47	49	49	42	49	248	
╉	73	1	76	93	93	98	88 ·	98	NOTE 1	
R POTABLE WATER	2	2	2	2	2	2	2	2	40	
										- PRELIMINARY -
ESTIMATED SEASONAL WATER USAGE	1			•	'	,				NOT FOR CONSTRUCTION
	Winter Ope	erations	Fall-Spring O	perations	Summer O	perations	TOTAL			
HB Case #	9	5	2	-	4	e				Guemsey Power Station 11 C
Ambient Conditions	30F/60% RH	30F/60% RH	59F/60%RH	59F/60%RH	92F/60% RH	92F/60% RH				
Plant Gross Output, MW	544	620	532	602	563	563				
Evan Cooler Status	OFF	OFF	OFF	OFF	NO	NO				
DB Status	Unfired	Fired	Unfired	Fired	Unfired	Fired				1 × 1 COMBINED CYCLE
Qtv of CTGs Operating	ę	ю	e	e	e	ę				
-										
Operating Hours	1,000	1,000	1,800	1,800	1,000	1,000	7,600			(
MWHS/Period - Predicted	544,000	620,000	957,600	1,083,600	563,000	563,000	4,331,200			
MWHS/Period - Maximum	595,680	678,900	1,165,080	1,318,380	616,485	616,485	4,991,010			
Capacity Factor, %	91.3%	91.3%	82.2%	82.2%	91.3%	91.3%				
Instantaneous Plant Makeup. com	247	307	240	312	327	396				June 1
Plant Makeup, gallons/dav	5.936	7.372	5,750	7.494	7.847	9.506				
Plant Makeup, gallons/period	14,840,521	18,429,373	25,876,382	33,725,029	19,618,576	23,764,052	136,253,934			Eining 03-5B
	1	1		1						Guemsey Power Station
Instantaneous Wastewater Discharge, gpm Miserounter Discherzei zeitons/Anic	220	278	214 5 136	280	228 E 476	293				
Wastewater Discharge, gallons/ period	13,190,244	16,654,648	23,111,745	30,282,552	13,690,158	17,555,798	114,485,145			Water Balance

This foregoing document was electronically filed with the Public Utilities

Commission of Ohio Docketing Information System on

3/16/2017 11:17:05 AM

in

Case No(s). 16-2443-EL-BGN

Summary: Application of Guernsey Power Station, LLC Part 1 - Application Text electronically filed by Teresa Orahood on behalf of Sally W. Bloomfield