TABLE 6-2 EMPIRICAL EVIDENCE ON THE ALPHA FACTOR					
Author	Range of alpha				
Fischer (1993) Fischer, Jensen and Scholes (1972) Fama and McBeth (1972) Fama and French (1992) Litzenberger and Ramaswamy (1979) Litzenberger, Ramaswamy and Sosin (1980) Pettengill, Sundaram and Mathur (1995) Morin (1989)	-3.6% to 3.6% -9.61% to 12.24% 4.08% to 9.36% 10.08% to 13.56% 5.32% to 8.17% 1.63% to 5.04% 4.6% 2.0%				

For an alpha in the range of 1%–2% and for reasonable values of the market risk premium and the risk-free rate, Equation 6-5 reduces to the following more pragmatic form:

$$K = R_F + 0.25 (R_M - R_F) + 0.75 \beta (R_M - R_F)$$
 (6-6)

Over reasonable values of the risk-free rate and the market risk premium, Equation 6-6 produces results that are indistinguishable from the ECAPM of Equation 6-5.¹²

An alpha range of 1%-2% is somewhat lower than that estimated empirically. The use of a lower value for alpha leads to a lower estimate of the cost of capital for low-beta stocks such as regulated utilities. This is because the use of a long-term risk-free rate rather than a short-term risk-free rate already incorporates some of the desired effect of using the ECAPM. That is, the

Return =
$$0.0829 + 0.0520 \beta$$

Given that the risk-free rate over the estimation period was approximately 6% and that the market risk premium was 8% during the period of study, the intercept of the observed relationship between return and beta exceeds the risk-free rate by about 2%, or 1/4 of 8%, and that the slope of the relationship is close to 3/4 of 8%. Therefore, the empirical evidence suggests that the expected return on a security is related to its risk by the following approximation:

$$K = R_F + x(R_M - R_F) + (1 - x)\beta(R_M - R_F)$$

where x is a fraction to be determined empirically. The value of x that best explains the observed relationship Return = $0.0829 + 0.0520 \beta$ is between 0.25 and 0.30. If x = 0.25, the equation becomes:

$$K = R_F + 0.25(R_M - R_F) + 0.75\beta(R_M - R_F)$$

¹² Typical of the empirical evidence on the validity of the CAPM is a study by Morin (1989) who found that the relationship between the expected return on a security and beta over the period 1926–1984 was given by:

long-term risk-free rate version of the CAPM has a higher intercept and a flatter slope than the short-term risk-free version which has been tested. Thus, it is reasonable to apply a conservative alpha adjustment. Moreover, the lowering of the tax burden on capital gains and dividend income enacted in 2002 may have decreased the required return for taxable investors, steepening the slope of the ECAPM risk-return trade-off and bring it closer to the CAPM predicted returns.¹³

To illustrate the application of the ECAPM, assume a risk-free rate of 5%, a market risk premium of 7%, and a beta of 0.80. The Empirical CAPM equation (6-6) above yields a cost of equity estimate of 11.0% as follows:

$$K = 5\% + 0.25 (12\% - 5\%) + 0.75 \times 0.80 (12\% - 5\%)$$

= 5.0% + 1.8% + 4.2%
= 11.0%

As an alternative to specifying alpha, see Example 6-1.

Some have argued that the use of the ECAPM is inconsistent with the use of adjusted betas, such as those supplied by Value Line and Bloomberg. This is because the reason for using the ECAPM is to allow for the tendency of betas to regress toward the mean value of 1.00 over time, and, since Value Line betas are already adjusted for such trend, an ECAPM analysis results in double-counting. This argument is erroneous. Fundamentally, the ECAPM is not an adjustment, increase or decrease, in beta. This is obvious from the fact that the expected return on high beta securities is actually lower than that produced by the CAPM estimate. The ECAPM is a formal recognition that the observed risk-return tradeoff is flatter than predicted by the CAPM based on myriad empirical evidence. The ECAPM and the use of adjusted betas comprised two separate features of asset pricing. Even if a company's beta is estimated accurately, the CAPM still understates the return for low-beta stocks. Even if the ECAPM is used, the return for low-beta securities is understated if the betas are understated. Referring back to Figure 6-1, the ECAPM is a return (vertical axis) adjustment and not a beta (horizontal axis) adjustment. Both adjustments are necessary. Moreover, recall from Chapter 3 that the use of adjusted betas compensates for interest rate sensitivity of utility stocks not captured by unadjusted betas.

¹³ The lowering of the tax burden on capital gains and dividend income has no impact as far as non-taxable institutional investors (pension funds, 401K, and mutual funds) are concerned, and such investors engage in very large amounts of trading on security markets. It is quite plausible that taxable retail investors are relatively inactive traders and that large non-taxable investors have a substantial influence on capital markets.

The Risk Premium Approach to Measuring a Utility's Cost of Equity

Eugene F. Brigham; Dilip K. Shome; Steve R. Vinson

Financial Management, Vol. 14, No. 1. (Spring, 1985), pp. 33-45.

Stable URL:

http://links.jstor.org/sici?sici=0046-3892%28198521%2914%3A1%3C33%3ATRPATM%3E2.0.CO%3B2-1

Financial Management is currently published by Financial Management Association International.

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/fma.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers, and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take advantage of advances in technology. For more information regarding JSTOR, please contact support@jstor.org.

Cost of Capital Estimation

The Risk Premium Approach to Measuring a Utility's Cost of Equity

Eugene F. Brigham, Dilip K. Shome, and Steve R. Vinson

Eugene F. Brigham and Dilip K. Shome are faculty members of the University of Florida and the Virginia Polytechnic Institute and State University, respectively; Steve R. Vinson is affiliated with AT&T Communications.

■ In the mid-1960s, Myron Gordon and others began applying the theory of finance to help estimate utilities' costs of capital. Previously, the standard approach in cost of equity studies was the "comparable earnings method," which involved selecting a sample of unregulated companies whose investment risk was judged to be comparable to that of the utility in question, calculating the average return on book equity (ROE) of these sample companies, and setting the utility's service rates at a level that would permit the utility to achieve the same ROE as comparable companies. This procedure has now been thoroughly discredited (see Robichek [15]), and it has been replaced by three market-oriented (as opposed to accounting-oriented) approaches: (i) the DCF method, (ii) the bond-yield-plusrisk-premium method, and (iii) the CAPM, which is a specific version of the generalized bond-yield-plusrisk-premium approach.

Our purpose in this paper is to discuss the riskpremium approach, including the market risk premium that is used in the CAPM. First, we critique the various procedures that have been used in the past to estimate risk premiums. Second, we present some data on estimated risk premiums since 1965. Third, we examine the relationship between equity risk premiums and the level of interest rates, because it is important, for purposes of estimating the cost of capital, to know just how stable the relationship between risk premiums and interest rates is over time. If stability exists, then one can estimate the cost of equity at any point in time as a function of interest rates as reported in *The Wall Street Journal*, the *Federal Reserve Bulletin*, or some similar source. Fourth, while we do not discuss the CAPM directly, our analysis does have some important implications for selecting a market risk premium for use in that model. Our focus is on utilities, but the methodology is applicable to the estimation of the cost of

'For example, the Federal Energy Regulatory Commission's Staff recently proposed that a risk premium be estimated every two years and that, between estimation dates, the last-determined risk premium be added to the current yield on ten-year Treasury bonds to obtain an estimate of the cost of equity to an average utility (Docket RM 80–36). Subsequently, the FCC made a similar proposal ("Notice of Proposed Rulemaking," August 13, 1984, Docket No. 84–800). Obviously, the validity of such procedures depends on (i) the accuracy of the risk premium estimate and (ii) the stability of the relationship between risk premiums and interest rates. Both proposals are still under review.

equity for any publicly traded firm, and also for non-traded firms for which an appropriate risk class can be assessed, including divisions of publicly traded corporations.²

Alternative Procedures for Estimating Risk Premiums

In a review of both rate cases and the academic literature, we have identified three basic methods for estimating equity risk premiums: (i) the *ex post*, or historic, yield spread method; (ii) the survey method; and (iii) an *ex ante* yield spread method based on DCF analysis. In this section, we briefly review these three methods.

Historic Risk Premiums

A number of researchers, most notably lbbotson and Sinquefield [12], have calculated historic holding period returns on different securities and then estimated risk premiums as follows:

Historic
Risk =
Premium

Ibbotson and Sinquefield (I&S) calculated both arithmetic and geometric average returns, but most of their risk-premium discussion was in terms of the geometric averages. Also, they used both corporate and Treasury bond indices, as well as a T-bill index, and they analyzed all possible holding periods since 1926. The I&S study has been employed in numerous rate cases in two ways: (i) directly, where the I&S historic risk premium is added to a company's bond yield to obtain an esti-

mate of its cost of equity, and (ii) indirectly, where I&S data are used to estimate the market risk premium in CAPM studies.

There are both conceptual and measurement problems with using I&S data for purposes of estimating the cost of capital. Conceptually, there is no compelling reason to think that investors expect the same relative returns that were earned in the past. Indeed, evidence presented in the following sections indicates that relative expected returns should, and do, vary significantly over time. Empirically, the measured historic premium is sensitive both to the choice of estimation horizon and to the end points. These choices are essentially arbitrary, yet they can result in significant differences in the final outcome. These measurement problems are common to most forecasts based on time series data.

The Survey Approach

One obvious way to estimate equity risk premiums is to poll investors. Charles Benore [1], the senior utility analyst for Paine Webber Mitchell Hutchins, a leading institutional brokerage house, conducts such a survey of major institutional investors annually. His 1983 results are reported in Exhibit 1.

Exhibit 1. Results of Risk Premium Survey, 1983*

Assuming a double A, long-term utility bond currently yields 12½%, the common stock for the same company would be fairly priced relative to the bond if its expected return was as follows:

Total Return	Indicated Risk Premium (basis points)	Percent of Respondents
over 201/2%	over 800)	
201/2%	800}	
191/2%	700J	
181/2%	600	10%
171/2%	500	8%
161/2%	400	29%
151/2%	300	35%
141∕2%	200	16%
131/2%	100	0%
under [31/2%	under 100	1%
Weighted	<u> </u>	
average	358	100%

^{*}Benore's questionnaire included the first two columns, while his third column provided a space for the respondents to indicate which risk premium they thought applied. We summarized Benore's responses in the frequency distribution given in Column 3. Also, in his questionnaire each year, Benore adjusts the double A bond yield and the total returns (Column 1) to reflect current market conditions. Both the question above and the responses to it were taken from the survey conducted in April 1983.

²The FCC is particularly interested in risk-premium methodologies, because (i) only eighteen of the 1,400 telephone companies it regulates have publicly-traded stock, and hence offer the possibility of DCF analysis, and (ii) most of the publicly-traded telephone companies have both regulated and unregulated assets, so a corporate DCF cost might not be applicable to the regulated units of the companies.

In rate cases, some witnesses also have calculated the differential between the yield to maturity (YTM) of a company's bonds and its concurrent ROE, and then called this differential a risk premium. In general, this procedure is unsound, because the YTM on a bond is a future expected return on the bond's marker value, while the ROE is the past realized return on the stock's book value. Thus, comparing YTMs and ROEs is like comparing apples and oranges.

Benore's results, as measured by the average risk premiums, have varied over the years as follows:

	Average RP
Year	(basis points)
1978	491
1979	475
1980	423
1981	349
1982	275
1983	358

The survey approach is conceptually sound in that it attempts to measure investors' expectations regarding risk premiums, and the Benore data also seem to be carefully collected and processed. Therefore, the Benore studies do provide one useful basis for estimating risk premiums. However, as with most survey results, the possibility of biased responses and/or biased sampling always exists. For example, if the responding institutions are owners of utility stocks (and many of them are), and if the respondents think that the survey results might be used in a rate case, then they might bias upward their responses to help utilities obtain higher authorized returns. Also, Benore surveys large institutional investors, whereas a high percentage of utility stocks are owned by individuals rather than institutions, so there is a question as to whether his reported risk premiums are really based on the expectations of the "representative" investor. Finally, from a pragmatic standpoint, there is a question as to how to use the Benore data for utilities that are not rated AA. The Benore premiums can be applied as an add-on to the own-company bond yields of any given utility only if it can be assumed that the premiums are constant across bond rating classes. A priori, there is no reason to believe that the premiums will be constant.

DCF-Based Ex Ante Risk Premiums

In a number of studies, the DCF model has been used to estimate the *ex ante* market risk premium, RP_M . Here, one estimates the average expected future return on equity for a group of stocks, k_M , and then subtracts the concurrent risk-free rate, R_F , as proxied by the yield to maturity on either corporate or Treasury securities:⁴

$$RP_{M} = k_{M} - R_{F}. \tag{2}$$

Conceptually, this procedure is exactly like the I&S approach except that one makes direct estimates of future expected returns on stocks and bonds rather than

assuming that investors expect future returns to mirror past returns.

The most difficult task, of course, is to obtain a valid estimate of k_M , the expected rate of return on the market. Several studies have attempted to estimate DCF risk premiums for the utility industry and for other stock market indices. Two of these are summarized next.

Vandell and Kester. In a recently published monograph, Vandell and Kester [18] estimated *ex ante* risk premiums for the period from 1944 to 1978. $R_{\rm F}$ was measured both by the yield on 90-day T-bills and by the yield on the Standard and Poor's AA Utility Bond Index. They measured $k_{\rm M}$ as the average expected return on the S&P's 500 Index, with the expected return on individual securities estimated as follows:

$$\mathbf{k}_{i} = \left(\frac{\mathbf{D}_{t}}{\mathbf{P}_{0}}\right)_{i} + \mathbf{g}_{i}, \tag{3}$$

where,

D₁ = dividend per share expected over the next twelve months,

 $P_0 = current stock price,$

g = estimated long-term constant growth rate,

 $i = the i^{th} stock.$

To estimate g_i, Vandell and Kester developed fifteen forecasting models based on both exponential smoothing and trend-line forecasts of earnings and dividends, and they used historic data over several estimating horizons. Vandell and Kester themselves acknowledge that, like the Ibbotson-Sinquefield premiums, their analysis is subject to potential errors associated with trying to estimate expected future growth purely from past data. We shall have more to say about this point later.

We did test to see how debt maturities would affect our calculated risk premiums. If a short-term rate such as the 30-day T-bill rate is used, measured risk premiums jump around widely and, so far as we could tell, randomly. The choice of a maturity in the 10- to 30-year range has little effect, as the yield curve is generally fairly flat in that range.

In this analysis, most people have used yields on long-term bonds rather than short-term money market instruments. It is recognized that long-term bonds, even Treasury bonds, are not risk free, so an RP_M based on these debt instruments is smaller than it would be if there were some better proxy to the long-term riskless rate. People have attempted to use the T-bill rate for R_F , but the T-bill rate embodies a different average inflation premium than stocks, and it is subject to random fluctuations caused by monetary policy, international currency flows, and other factors. Thus, many people believe that for cost of capital purposes, R_F should be based on long-term securities.

Malkiel. Malkiel [14] estimated equity risk premiums for the Dow Jones Industrials using the DCF model. Recognizing that the constant dividend growth assumption may not be valid, Malkiel used a nonconstant version of the DCF model. Also, rather than rely exclusively on historic data, he based his growth rates on Value Line's five-year earnings growth forecasts plus the assumption that each company's growth rate would, after an initial five-year period, move toward a long-run real national growth rate of four percent. He also used ten-year maturity government bonds as a proxy for the riskless rate. Malkiel reported that he tested the sensitivity of his results against a number of different types of growth rates, but, in his words, "The results are remarkably robust, and the estimated risk premiums are all very similar." Malkiel's is, to the best of our knowledge, the first risk-premium study that uses analysts' forecasts. A discussion of analysts' forecasts follows.

Security Analysts' Growth Forecasts

Ex ante DCF risk premium estimates can be based either on expected growth rates developed from time series data, such as Vandell and Kester used, or on analysts' forecasts, such as Malkiel used. Although there is nothing inherently wrong with time seriesbased growth rates, an increasing body of evidence suggests that primary reliance should be placed on analysts' growth rates. First, we note that the observed market price of a stock reflects the consensus view of investors regarding its future growth. Second, we know that most large brokerage houses, the larger institutional investors, and many investment advisory organizations employ security analysts who forecast future EPS and DPS, and, to the extent that investors rely on analysts' forecasts, the consensus of analysts' forecasts is embodied in market prices. Third, there have been literally dozens of academic research papers dealing with the accuracy of analysts' forecasts, as well as with the extent to which investors actually use them. For example, Cragg and Malkiel [7] and Brown and Rozeff [5] determined that security analysts' forecasts are more relevant in valuing common stocks and estimating the cost of capital than are forecasts based solely on historic time series. Stanley, Lewellen, and Schlarbaum [16] and Linke [13] investigated the importance of analysts' forecasts and recommendations to the investment decisions of individual and institutional investors. Both studies indicate that investors rely heavily on analysts' reports and incorporate analysts' forecast information in the formation of their

expectations about stock returns. A representative listing of other work supporting the use of analysts' forecasts is included in the References section. Thus, evidence in the current literature indicates that (i) analysts' forecasts are superior to forecasts based solely on time series data, and (ii) investors do rely on analysts' forecasts. Accordingly, we based our cost of equity, and hence risk premium estimates, on analysts' forecast data.⁵

Risk Premium Estimates

For purposes of estimating the cost of capital using the risk premium approach, it is necessary either that the risk premiums be time-invariant or that there exists a predictable relationship between risk premiums and interest rates. If the premiums are constant over time, then the constant premium could be added to the prevailing interest rate. Alternatively, if there exists a stable relationship between risk premiums and interest rates, it could be used to predict the risk premium from the prevailing interest rate.

To test for stability, we obviously need to calculate risk premiums over a fairly long period of time. Prior to 1980, the only consistent set of data we could find came from Value Line, and, because of the work involved, we could develop risk premiums only once a year (on January 1). Beginning in 1980, however, we began collecting and analyzing Value Line data on a monthly basis, and in 1981 we added monthly estimates from Merrill Lynch and Salomon Brothers to our data base. Finally, in mid-1983, we expanded our analysis to include the IBES data.

Annual Data and Results, 1966–1984

Over the period 1966–1984, we used Value Line data to estimate risk premiums both for the electric utility industry and for industrial companies, using the companies included in the Dow Jones Industrial and Utility averages as representative of the two groups. Value Line makes a five-year growth rate forecast, but it also gives data from which one can develop a longer-term forecast. Since DCF theory calls for a truly long-term (infinite horizon) growth rate, we concluded that it was better to develop and use such a forecast than to

⁵Recently, a new type of service that summarizes the key data from most analysts' reports has become available. We are aware of two sources of such services, the Lynch, Jones, and Ryan's Institutional Brokers Estimate System (IBES) and Zack's Icarus Investment Service. IBES and the Icarus Service gather data from both buy-side and sell-side analysts and provide it to subscribers on a monthly basis in both a printed and a computer-readable format.

January 1 of the Year	Dov	Dow Jones Electrics			Dow Jones Industrials			
Reported	k _{Avg}	R _F	RP	k _{Avg}	R _F	RP	(3)÷(6)	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	
1966	8.11%	4.50%	3.61%	9.56%	4.50%	5.06%	0.71	
1967	9.00%	4.76%	4.24%	11.57%	4.76%	6.81%	0.62	
1968	9.68%	5.59%	4.09%	10.56%	5.59%	4.97%	0.82	
1969	9.34%	5.88%	3.46%	10.96%	5.88%	5.08%	0.68	
1970	H.04%	6.91%	4.13%	12.22%	6.91%	5.31%	0.78	
19 71	10.80%	6.28%	4.52%	11.23%	6.28%	4.95%	0.91	
1972	10.53%	6.00%	4.53%	11.09%	6.00%	5.09%	0.89	
1973	U.37%	5.96%	5.41%	11.47%	5.96%	5.51%	0.98	
1974	13.85%	7.29%	6.56%	12.38%	7.29%	5.09%	1.29	
1975	16.63%	7.91%	8.72%	14.83%	7.91%	6.92%	1.26	
1976	13.97%	8.23%	5.74%	13.32%	8.23%	5.09%	1.13	
1977	12.96%	7.30%	5.66%	13.63%	7.30%	6.33%	0.89	
1978	13.42%	7.87%	5.55%	14.75%	7.87%	6.88%	0.81	
1979	14.92%	8.99%	5.93%	15.50%	8.99%	6.51%	0.91	
1980	16.39%	10.18%	6.21%	16.53%	10.18%	6.35%	0.98	
1981	17.61%	H.99%	5.62%	17.37%	11.99%	5.38%	1.04	
1982	17.70%	14.00%	3.70%	19.30%	14.00%	5.30%	0.70	
1983	16.30%	10.66%	5.64%	16.53%	10.66%	5.87%	0.96	
1984	16.03%	11.97%	4.06%	15.72%	11.97%	3.75%	1.08	

Exhibit 2. Estimated Annual Risk Premiums, Nonconstant (Value Line) Model, 1966–1984

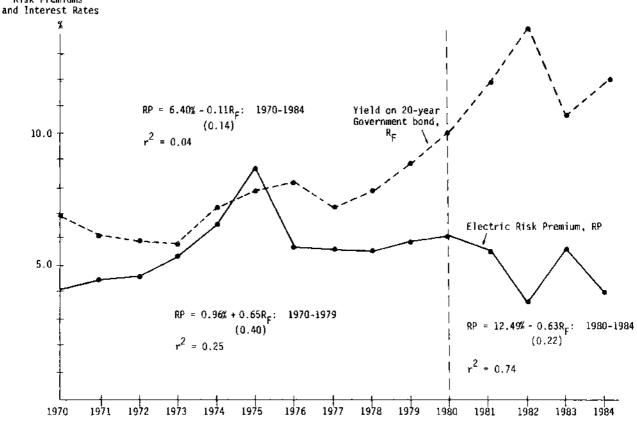
use the five-year prediction.⁶ Therefore, we obtained data as of January 1 from Value Line for each of the Dow Jones companies and then solved for k, the expected rate of return, in the following equation:

$$P_{0} = \sum_{t=1}^{n} \frac{D_{t}}{(1+k)^{t}} + \left(\frac{D_{n}(1+g_{n})}{k-g_{n}}\right) \left(\frac{1}{1+k}\right)^{n}.$$
 (4)

Equation (4) is the standard nonconstant growth DCF model; P_0 is the current stock price; D_t represents the forecasted dividends during the nonconstant growth period; n is the years of nonconstant growth; D_n is the first constant growth dividend; and g_n is the constant, long-run growth rate after year n. Value Line provides D_t values for t = 1 and t = 4, and we interpolated to obtain D_2 and D_3 . Value Line also gives estimates for

ROE and for the retention rate (b) in the terminal year, n, so we can forecast the long-term growth rate as $g_n = b(ROE)$. With all the values in Equation (4) specified except k, we can solve for k, which is the DCF rate of return that would result if the Value Line forecasts were met, and, hence, the DCF rate of return implied in the Value Line forecast.⁷

Having estimated a k value for each of the electric and industrial companies, we averaged them (using market-value weights) to obtain a k value for each group, after which we subtracted $R_{\rm F}$ (taken as the December 31 yield on twenty-year constant maturity Treasury bonds) to obtain the estimated risk premiums shown in Exhibit 2. The premiums for the electrics are plotted in Exhibit 3, along with interest rates. The following points are worthy of note:


- 1. Risk premiums fluctuate over time. As we shall see in the next section, fluctuations are even wider when measured on a monthly basis.
- 2. The last column of Exhibit 2 shows that risk premi-

[&]quot;This is a debatable point. Cragg and Malkiel, as well as many practicing analysts, feel that most investors actually focus on five-year forecasts. Others, however, argue that five-year forecasts are too heavily influenced by base-year conditions and/or other nonpermanent conditions for use in the DCF model. We note (i) that most published forecasts do indeed cover five years, (ii) that such forecasts are typically "normalized" in some fashion to alleviate the base-year problem, and (iii) that for relatively stable companies like those in the Dow Jones averages, it generally does not matter greatly if one uses a normalized five-year or a longer-term forecast, because these companies meet the conditions of the constant-growth DCF model rather well.

⁷Value Line actually makes an explicit price forecast for each stock, and one could use this price, along with the forecasted dividends, to develop an expected rate of return. However, Value Line's forecasted stock price builds in a forecasted change in k. Therefore, the forecasted price is inappropriate for use in estimating current values of k.

Exhibit 3. Equity Risk Premiums for Electric Utilities and Yields on 20-Year Government Bonds, 1970–1984*

Risk Premiums

^{*}Standard errors of the coefficients are shown in parentheses below the coefficients.

ums for the utilities increased relative to those for the industrials from the mid-1960s to the mid-1970s. Subsequently, the perceived riskiness of the two groups has, on average, been about the same.

3. Exhibit 3 shows that, from 1970 through 1979, utility risk premiums tended to have a positive association with interest rates: when interest rates rose, so did risk premiums, and vice versa. However, beginning in 1980, an inverse relationship appeared: rising interest rates led to declining risk premiums. We shall discuss this situation further in the next section.

Monthly Data and Results, 1980-1984

In early 1980, we began calculating risk premiums on a monthly basis. At that time, our only source of analysts' forecasts was Value Line, but beginning in 1981 we also obtained Merrill Lynch and Salomon Brothers' data, and then, in mid-1983, we obtained

IBES data. Because our focus was on utilities, we restricted our monthly analysis to that group.

Our 1980-1984 monthly risk premium data, along with Treasury bond yields, are shown in Exhibits 4 and 5 and plotted in Exhibits 6, 7, and 8. Here are some comments on these Exhibits:

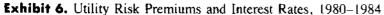

- 1. Risk premiums, like interest rates and stock prices, are volatile. Our data indicate that it would not be appropriate to estimate the cost of equity by adding the current cost of debt to a risk premium that had been estimated in the past. Current risk premiums should be matched with current interest rates.
- Exhibit 6 confirms the 1980-1984 section of Exhibit 3 in that it shows a strong inverse relationship between interest rates and risk premiums; we shall discuss shortly why this relationship holds.
- 3. Exhibit 7 shows that while risk premiums based on Value Line, Merrill Lynch, and Salomon Brothers

Exhibit 4. Estimated Monthly Risk Premiums for Electric Utilities Using Analysts' Growth Forecasts, January 1980–June 1984

Beginning of Month	Value Line	Merrill Lynch	Salomon Brothers	Average Premiums	20-Year Treasury Bond Yield, Constant Maturity Series	Beginning of Month	Value Line	Merrill Lynch	Salomon Brothers	Average Premiums	20-Year Treasury Bond Yield, Constant Maturity Series
Jan 1980	6.21%	ΝA	NA	6.21%	10.18%	Apr 1982	3.49%	3.61%	4.29%	3.80%	13.69%
Feb 1980	5.77%	NA	NA	5.77%	10.86%	May 1982	3.08%	4.25%	3.91%	3.75%	13.47%
Mar 1980	4.73%	NA	NA	4.73%	12.59%	Jun 1982	3.16%	4.51%	4.72%	4.13%	13.53%
Apr 1980	5.02%	NA	NA	5.02%	12.71%	Jul 1982	2.57%	4.21%	4.21%	3.66%	14.48%
May 1980 -	4.73%	NA	NA	4.73%	11.04%	Aug 1982	4.33%	4.83%	5.27%	4.81%	13.69%
Jun 1980	5.09%	NA	NA	5.09%	10.37%	Sep 1982	4.08%	5.14%	5.58%	4.93%	12.40%
ful 1980	5.41%	NA	NA	5.41%	9.86%	Oct 1982	5.35%	5.24%	6.34%	5.64%	11.95%
Aug 1980	5.72%	NA	NΑ	5.72%	10.29%	Nov 1982	5.67%	5.95%	6.91%	6.18%	10.97%
Sep 1980	5.16%	NA	NA	5.16%	11.41%	Dec 1982	6.31%	6.71%	7.45%	6.82%	10.52%
Oct 1980	5.62%	NA	NA	5.62%	11.75%	Annual Aug	4.00%	1 51CL	5.01%	4.52%	13.09%
Nov 1980	5.09%	NA	NA	5.09%	12.33%	Annual Avg.	4.00%	4.54%	5.01%	4.02%	13.09%
Dec 1980	5.65%	NA	NA	5.65%	12.37%	Jan 1983	5.64%	6.04%	6.81%	6.16%	10.66%
Annual Aug	5.35%			5.35%	11.31%	Feb 1983	4.68%	5.99%	6.10%	5.59%	11.01%
Annual Avg.	3.33%			1.37%	U.SIN	Mar 1983	4.99%	6.89%	6.43%	6.10%	10.71%
Jan 1981	5.62%	4.76%	5.63%	5.34%	11.99%	Apr. 1983	4.75%	5.82%	6.31%	5.63%	10.84%
Feb 1981	4.82%	4.87%	5.16%	4.95%	12.48%	May 1983	4.50%	6.41%	6.24%	5.72%	10.57%
Mar 1981	4.70%	3.73%	4.97%	4.47%	13.10%	Jun 1983	4.29%	5.21%	6.16%	5.22%	10.90%
Apr 1981	4.24%	3.23%	4.52%	4.00%	13.11%	Jul 1983	4.78%	5.72%	6.42%	5.64%	11.12%
May 1981	3.54%	3.24%	4.24%	3.67%	13.51%	Aug 1983	3.89%	4.74%	5.41%	4.68%	II.78%
Jun 1981	3.57%	4.04%	4.27%	3.96%	13.39%	Sep 1983	4.07%	4.90%	5.57%	4.85%	11.71%
Jul 1981	3,61%	3.63%	4.16%	3.80%	13.32%	Oct 1983	3.79%	4.64%	5.38%	4.60%	11.64%
Aug [981	3.17%	3.05%	3.04%	3.09%	14.23%	Nov 1983	2.84%	3.77%	4.46%	3.69%	11.90%
Sep 1981	2.11%	2.24%	2.35%	2.23%	14.99%	Dec 1983	3.36%	4.27%	5.00%	4.21%	11.83%
Oct 1981	2.83%	2.64%	3.24%	2.90%	14.93%	Amount Area	4.30%	5.37%	5.86%	5.17%	11.120
Nov -1981	2.08%	2.49%	3.03%	2.53%	15.27%	Annual Avg.	4.30%	2). 21776	J. 60 %.	J.1770	11.22%
Dec 1981	3.72%	3.45%	4.24%	3.80%	13.12%	Jan 1984	4.06%	5.04%	5.65%	4.92%	11.97%
Ammual Area	2 670	3.45%	4.07%	3.73%	13.62%	Feb 1984	4.25%	5.37%	5.96%	5.19%	11.76%
Annual Avg.	3.67%	3.43%	4.01%	3.13%	13.02%	Mar 1984	4.73%	6.05%	6.38%	5.72%	12.12%
Jan 1982	3.70%	3.37%	4.04%	3.70%	14.00%	Apr 1984	4.78%	5.33%	6.32%	5.48%	12.51%
Feb 1982	3.05%	3.37%	3.70%	3.37%	14.37%	May 1984	4.36%	5.30%	6.42%	5.36%	12.78%
Mar 1982	3.15%	3.28%	3.75%	3.39%	13.96%	Jun 1984	3.54%	4.00%	5.63%	4.39%	13.60%

Exhibit 5. Monthly Risk Premiums Based on IBES Data

Beginning of Month	Average of Merrill Lynch, Salomon Brothers, and Value Line Premiums for Dow Jones Electrics	IBES Premiums for Dow Jones Electrics	IBES Premiums for Entire Electric Industry	Beginn of Mon	-	Average of Merrill Lynch, Salomon Brothers, and Value Line Premiums for Dow Jones Electrics	IBES Premiums for Dow Jones Electrics	IBES Premiums for Entire Electric Industry
Aug 1983	4.68%	4.10%	4.16%	Feb	1984	5.19%	5.00%	4.36%
Sep 1983	4.85%	4.43%	4.27%	Mar	1984	5.72%	5.35%	4.45%
Oct 1983	4.60%	4.31%	3.90%	Apr	1984	5.48%	5.33%	4.23%
Nov 1983	3.69%	3.36%	3.36%	May	1984	5.36%	5.26%	4.30%
Dec 1983	4.21%	3.86%	3.54%	Jun	1984	4.39%	4.47%	3.40%
Jan 1984	4.92%	4.68%	4.18%	Avera	ge			
				Pre	niums	4.83%	4.56%	4.01%

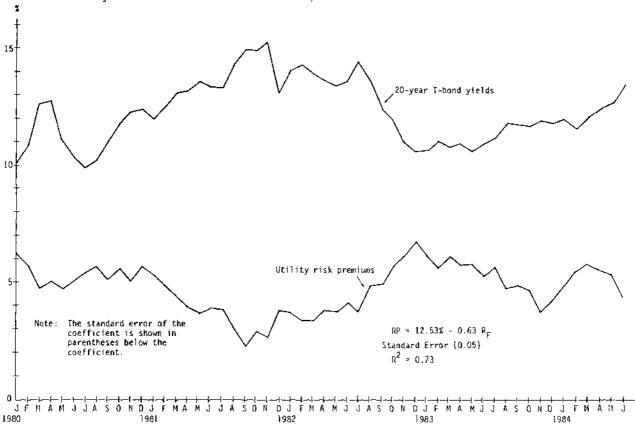
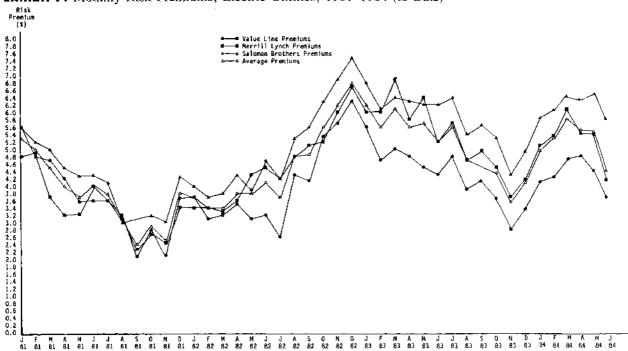
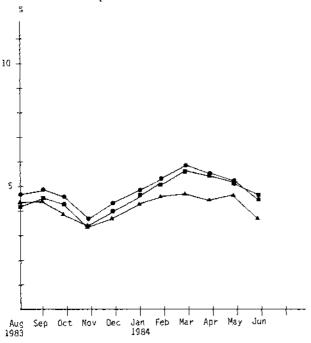




Exhibit 7. Monthly Risk Premiums, Electric Utilities, 1981-1984 (to Date)

Exhibit 8. Comparative Risk Premium Data

Value Line, ML, SB: Dow Jones Electrics

IBES: Dow Jones Electrics IBES: All Electric Utilities

do differ, the differences are not large given the nature of the estimates, and the premiums follow one another closely over time. Since all of the analysts are examining essentially the same data and since utility companies are not competitive with one another, and hence have relatively few secrets, the similarity among the analysts' forecasts is not surprising.

4. The IBES data, presented in Exhibit 5 and plotted in Exhibit 8, contain too few observations to enable us to draw strong conclusions, but (i) the Dow Jones Electrics risk premiums based on our threeanalyst data have averaged 27 basis points above premiums based on the larger group of analysts surveyed by IBES and (ii) the premiums on the [1] Dow Jones Electrics have averaged 54 basis points higher than premiums for the entire utility industry followed by IBES. Given the variability in the data, we are, at this point, inclined to attribute these differences to random fluctuations, but as more data become available, it may turn out that the differences are statistically significant. In particular, the 11 electric utilities included in the Dow

Jones Utility Index all have large nuclear investments, and this may cause them to be regarded as riskier than the industry average, which includes both nuclear and non-nuclear companies.

Tests of the Reasonableness of the Risk Premium Estimates

So far our claims to the reasonableness of our riskpremium estimates have been based on the reasonableness of our variable measures, particularly the measures of expected dividend growth rates. Essentially, we have argued that since there is strong evidence in the literature in support of analysts' forecasts, risk premiums based on these forecasts are reasonable. In the spirit of positive economics, however, it is also important to demonstrate the reasonableness of our results more directly.

It is theoretically possible to test for the validity of the risk-premium estimates in a CAPM framework. In a cross-sectional estimate of the CAPM equation,

$$(k - R_p)_i = \alpha_0 + \alpha_1 \beta_1 + u_i, \qquad (5)$$

we would expect

$$\hat{\alpha}_0 = 0$$
 and $\hat{\alpha}_1 = k_M - R_F = Market risk premium.$

This test, of course, would be a joint test of both the CAPM and the reasonableness of our risk-premium estimates. There is a great deal of evidence that questions the empirical validity of the CAPM, especially when applied to regulated utilities. Under these conditions, it is obvious that no unambiguous conclusion can be drawn regarding the efficacy of the premium estimates from such a test.8

A simpler and less ambiguous test is to show that the risk premiums are higher for lower rated firms than for higher rated firms. Using 1984 data, we classified the

$$(k - R_e)_i = 3.1675 + 1.8031 \beta_i$$

(0.91) (1.44)

The figures in parentheses are standard errors. Utility risk premiums do increase with betas, but the intercept term is not zero as the CAPM would predict, and α_t is both less than the predicted value and not statistically significant. Again, the observation that the coefficients do not conform to CAPM predictions could be as much a problem with CAPM specification for utilities as with the risk premium estimates.

A similar test was carried out by Friend, Westerfield, and Granito [9]. They tested the CAPM using expectational (survey) data rather than expost holding period returns. They actually found their coefficient of β_i to be negative in all their cross-sectional tests.

^{*}We carried out the test on a monthly basis for 1984 and found positive but statistically insignificant coefficients. A typical result (for April 1984) follows:

		•					
Month	Aaa/AA	AA	Aa/A	A	A/BBB	B88	Below BBB
Januaryt	_	2.61%	3.06%	3.70%	5.07%	4.90%	9.45%
February	2.98%	3.17%	3.36%	4.03%	5.26%	5.14%	7.97%
March	2.34%	3.46%	3.29%	4.06%	5.43%	5.02%	8.28%
April	2.37%	3.03%	3.29%	3.88%	5.29%	4.97%	6.96%
May	2.00%	2.48%	3.42%	3.72%	4.72%	6.64%	8.81%
June	0.72%	2.17%	2.46%	3.16%	3.76%	5.00%	5.58%
Average	2.08%	2 82%	3 15%	3 76%	4 92%	5 2802	7 84%

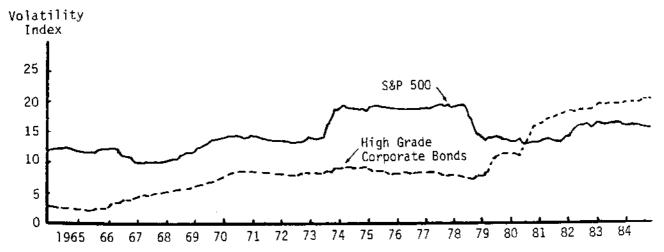
Exhibit 9. Relationship between Risk Premiums and Bond Ratings, 1984*

utility industry into risk groups based on bond ratings. For each rating group, we estimated the average risk premium. The results, presented in Exhibit 9, clearly show that the lower the bond rating, the higher the risk premiums. Our premium estimates therefore would appear to pass this simple test of reasonableness.

Risk Premiums and Interest Rates

Traditionally, stocks have been regarded as being riskier than bonds because bondholders have a prior claim on earnings and assets. That is, stockholders stand at the end of the line and receive income and/or assets only after the claims of bondholders have been satisfied. However, if interest rates fluctuate, then the holders of long-term bonds can suffer losses (either realized or in an opportunity cost sense) even though they receive all contractually due payments. Therefore, if investors' worries about "interest rate risk" versus "earning power risk" vary over time, then perceived risk differentials between stocks and bonds, and hence risk premiums, will also vary.

Any number of events could occur to cause the perceived riskiness of stocks versus bonds to change, but probably the most pervasive factor, over the 1966–1984 period, is related to inflation. Inflationary expectations are, of course, reflected in interest rates. Therefore, one might expect to find a relationship between risk premiums and interest rates. As we noted in our discussion of Exhibit 3, risk premiums were positively correlated with interest rates from 1966 through 1979, but, beginning in 1980, the relationship turned negative. A possible explanation for this change is given next.


1966—1979 Period. During this period, inflation heated up, fuel prices soared, environmental problems

surfaced, and demand for electricity slowed even as expensive new generating units were nearing completion. These cost increases required offsetting rate hikes to maintain profit levels. However, political pressure, combined with administrative procedures that were not designed to deal with a volatile economic environment, led to long periods of "regulatory lag" that caused utilities' earned ROEs to decline in absolute terms and to fall far below the cost of equity. These factors combined to cause utility stockholders to experience huge losses: S&P's Electric Index dropped from a mid-1960s high of 60.90 to a mid-1970s low of 20.41, a decrease of 66.5%. Industrial stocks also suffered losses during this period, but, on average, they were only one third as severe as the utilities' losses. Similarly, investors in long-term bonds had losses, but bond losses were less than half those of utility stocks. Note also that, during this period, (i) bond investors were able to reinvest coupons and maturity payments at rising rates, whereas the earned returns on equity did not rise, and (ii) utilities were providing a rising share of their operating income to debtholders versus stockholders (interest expense/book value of debt was rising, while net income/common equity was declining). This led to a widespread belief that utility commissions would provide enough revenues to keep utilities from going bankrupt (barring a disaster), and hence to protect the bondholders, but that they would not necessarily provide enough revenues either to permit the expected rate of dividend growth to occur or, perhaps, even to allow the dividend to be maintained.

Because of these experiences, investors came to regard inflation as having a more negative effect on utility stocks than on bonds. Therefore, when fears of inflation increased, utilities' measured risk premiums

^{*}The risk premiums are based on IBES data for the electric utilities followed by both IBES and Salomon Brothers. The number of electric utilities followed by both firms varies from month to month. For the period between January and June 1984, the number of electrics followed by both firms ranged from 96 to 99 utilities. In January, there were no Aaa/AA companies, Subsequently, four utilities were upgraded to Aaa/AA.

Exhibit 10. Relative Volatility* of Stocks and Bonds, 1965–1984

*Volatility is measured as the standard deviation of total returns over the last 5 years. Source: Merrill Lynch, Quantitative Analysis, May/June 1984.

also increased. A regression over the period 1966–1979, using our Exhibit 2 data, produced this result:

$$RP = 0.30\% + 0.73 R_{Fi}; r^2 = 0.48.$$

$$(0.22)$$

This indicates that a one percentage point increase in the Treasury bond rate produced, on average, a 0.73 percentage point increase in the risk premium, and hence a 1.00 + 0.73 = 1.73 percentage point increase in the cost of equity for utilities.

1980-1984 Period. The situation changed dramatically in 1980 and thereafter. Except for a few companies with nuclear construction problems, the utilities' financial situations stabilized in the early 1980s, and then improved significantly from 1982 to 1984. Both the companies and their regulators were learning to live with inflation; many construction programs were completed; regulatory lags were shortened; and in general the situation was much better for utility equity investors. In the meantime, over most of the 1980-1984 period, interest rates and bond prices fluctuated violently, both in an absolute sense and relative to common stocks. Exhibit 10 shows the volatility of corporate bonds very clearly. Over most of the eighteen-year period, stock returns were much more volatile than returns on bonds. However, that situation changed in October 1979, when the Fed began to focus

on the money supply rather than on interest rates.4

In the 1980-1984 period, an increase in inflationary expectations has had a more adverse effect on bonds than on utility stocks. If the expected rate of inflation increases, then interest rates will increase and bond prices will fall. Thus, uncertainty about inflation translates directly into risk in the bond markets. The effect of inflation on stocks, including utility stocks, is less clear. If inflation increases, then utilities should, in theory, be able to obtain rate increases that would offset increases in operating costs and also compensate for the higher cost of equity. Thus, with "proper" regulation, utility stocks would provide a better hedge against unanticipated inflation than would bonds. This hedge did not work at all well during the 1966-1979 period, because inflation-induced increases in operating and capital costs were not offset by timely rate increases. However, as noted earlier, both the utilities and their regulators seem to have learned to live better with inflation during the 1980s.

Since inflation is today regarded as a major investment risk, and since utility stocks now seem to provide a better hedge against unanticipated inflation than do

⁹Because the standard deviations in Exhibit 10 are based on the last five years of data, even if bond returns stabilize, as they did beginning in 1982, their reported volatility will remain high for several more years. Thus, Exhibit 10 gives a rough indication of the current relative riskiness of stocks versus bonds, but the measure is by no means precise or necessarily indicative of future expectations.

bonds, the interest-rate risk inherent in bonds offsets, to a greater extent than was true earlier, the higher operating risk that is inherent in equities. Therefore, when inflationary fears rise, the perceived riskiness of bonds rises, helping to push up interest rates. However, since investors are today less concerned about inflation's impact on utility stocks than on bonds, the utilities' cost of equity does not rise as much as that of debt, so the observed risk premium tends to fall.

For the 1980–1984 period, we found the following relationship (see Exhibit 6):

RP =
$$12.53\% - 0.63 R_{\rm F}$$
; $r^2 = 0.73$. (0.05)

Thus, a one percentage point increase in the T-bond rate, on average, caused the risk premium to fall by 0.63%, and hence it led to a 1.00-0.63=0.37 percentage point increase in the cost of equity to an average utility. This contrasts sharply with the pre-1980 period, when a one percentage point increase in interest rates led, on average, to a 1.73 percentage point increase in the cost of equity.

Summary and Implications

We began by reviewing a number of earlier studies. From them, we concluded that, for cost of capital estimation purposes, risk premiums must be based on expectations, not on past realized holding period returns. Next, we noted that expectational risk premiums may be estimated either from surveys, such as the ones Charles Benore has conducted, or by use of DCF techniques. Further, we found that, although growth rates for use in the DCF model can be either developed from time-series data or obtained from security analysts, analysts' growth forecasts are more reflective of investors' views, and, hence, in our opinion are preferable for use in risk-premium studies.

Using analysts' growth rates and the DCF model, we estimated risk premiums over several different periods. From 1966 to 1984, risk premiums for both electric utilities and industrial stocks varied widely from year to year. Also, during the first half of the period, the utilities had smaller risk premiums than the industrials, but after the mid-1970s, the risk premiums for the two groups were, on average, about equal.

The effects of changing interest rates on risk premiums shifted dramatically in 1980, at least for the utilities. From 1965 through 1979, inflation generally had a more severe adverse effect on utility stocks than on bonds, and, as a result, an increase in inflationary expectations, as reflected in interest rates, caused an increase in equity risk premiums. However, in 1980 and thereafter, rising inflation and interest rates increased the perceived riskiness of bonds more than that of utility equities, so the relationship between interest rates and utility risk premiums shifted from positive to negative. Earlier, a 1.00 percentage point increase in interest rates had led, on average, to a 1.73% increase in the utilities' cost of equity, but after 1980 a 1.00 percentage point increase in the cost of debt was associated with an increase of only 0.37% in the cost of equity.

Our study also has implications for the use of the CAPM to estimate the cost of equity for utilities. The CAPM studies that we have seen typically use either Ibbotson-Sinquefield or similar historic holding period returns as the basis for estimating the market risk premium. Such usage implicitly assumes (i) that ex post returns data can be used to proxy ex ante expectations and (ii) that the market risk premium is relatively stable over time. Our analysis suggests that neither of these assumptions is correct; at least for utility stocks, ex post returns data do not appear to be reflective of ex ante expectations, and risk premiums are volatile, not stable.

Unstable risk premiums also make us question the FERC and FCC proposals to estimate a risk premium for the utilities every two years and then to add this premium to a current Treasury bond rate to determine a utility's cost of equity. Administratively, this proposal would be easy to handle, but risk premiums are simply too volatile to be left in place for two years.

References

- C. Benore, A Survey of Investor Attitudes toward the Electric Power Industry, New York, Paine Webber Mitchell Hutchins, Inc., May 1983.
- E.F. Brigham and D.K. Shome, "The Risk Premium Approach to Estimating the Cost of Common Equity Capital,"
 Proceedings of the Iowa State Regulatory Conference (May 1980), pp. 239-275.
- "Estimating the Market Risk Premium," in R.L. Crum and F.G.J. Derkinderin (eds.), Risk, Capital Costs, and Project Financing Decisions, Nijenrode Studies in Business, Boston, Martinus Nijhoff, 1981.
- "Equity Risk Premiums in the 1980s," in Earnings Regulation under Inflation, Washington, DC, Institute for the Study of Regulation, 1982, pp. 166-181.
- L.D. Brown and M.S. Rozeff, "The Superiority of Analysts' Forecasts as a Measure of Expectations: Evidence from Earnings," *Journal of Finance* (March 1978), pp. 1–16.

- W.T. Carleton, D.R. Chambers, and J. Lakonishok, "Inflation Risk and Regulatory Lag," *Journal of Finance* (May 1983), pp. 419–431.
- J.G. Cragg and B.G. Malkiel, Expectations and the Structure of Share Prices, Chicago, The University of Chicago Press, 1982.
- E.F. Fama and W.G. Schwert, "Asset Returns and Inflation," *Journal of Financial Economics*, November 1977, pp. 115–146.
- 9. I. Friend, R. Westerfield, and M. Granito, "New Evidence on the Capital Asset Pricing Model," *Journal of Finance* (June 1978), pp. 903-917.
- M.J. Gordon and P.J. Halpern, "Bond Share Yield Spreads under Uncertain Inflation," *American Economic Review* (September 1976), pp. 559–565.
- N.B. Gultekin, "Stock Market Returns and Inflation Forecasts," *Journal of Finance* (June 1983), pp. 663-673.
- R.G. Ibbotson and R.A. Sinquefield, Stocks, Bonds, Bills, and Inflation: Historical Returns (1926–1978), Charlottes-

- ville, VA, Financial Analysts Research Foundation, 1979.
- 13. C.M. Linke, "Estimating Growth Expectations for AT&T: Survey Approach," Washington, DC, Advanced Seminar on Earnings Regulation, November 1981.
- B.G. Malkiel, "The Capital Formation Problem in the United States," *Journal of Finance*, May 1979, pp. 291-306.
- 15. A.A. Robichek, "Regulation and Modern Finance Theory," *Journal of Finance* (June 1978), pp. 693-705.
- K.L. Stanley, W.G. Lewellen, and G.G. Schlarbaum, "Further Evidence on the Value of Professional Investment Research," *Journal of Financial Research* (Spring 1981), pp. 1-9.
- 17. Touche, Ross, and Company, *Proxy Disclosures and Stockholder Attitude Survey*, Washington, DC, National Association of Corporate Directors, May 1982.
- 18. R.F. Vandell and G.W. Kester, A History of Risk Premia Estimates for Equities: 1944–1978, Charlottesville, VA, Financial Analysts Research Foundation, 1983.

CALL FOR PAPERS

American Real Estate and Urban Economics Association 1985 Annual Meetings December 28-30, 1985 New York

Papers are being solicited for presentation at the 1985 AREUEA Meetings held as part of the Allied Social Sciences Associations (ASSA) Meetings in New York. The areas of interest to AREUEA are real estate and urban economics in their broadest sense to include theoretical and applied research on real estate finance, land and housing economics, real estate investment and valuation, real estate and mortgage markets along with government policies related to these markets. Anyone wishing to present a paper should submit a completed manuscript or abstract by no later than May 15, 1985 to the Program Chairman:

Professor George W. Gau
Faculty of Commerce and Business Administration
University of British Columbia
Vancouver, B.C.
V6T 1Y8
Canada
604-228-5847

Estimating Shareholder Risk Premia Using Analysts' Growth Forecasts

Robert S. Harris and Felicia C. Marston

Robert S. Harris is the C. Stewart Sheppard Professor of Business at the Darden Graduate School of Business at the University of Virginia, Charlottesville, Virginia. Felicia C. Marston is an Assistant Professor of Commerce at the McIntire School of Commerce, University of Virginia, Charlottesville, Virginia.

■ One of the most widely used concepts in finance is that shareholders require a risk premium over bond yields to bear the additional risks of equity investments. While models such as the two-parameter capital asset pricing model (CAPM) or arbitrage pricing theory offer explicit methods for varying risk premia across securities, the models are invariably linked to some underlying market (or factor-specific) risk premium. Unfortunately, the theoretical models provide limited practical advice on establishing empirical estimates of such a benchmark market risk premium. As a result, the typical advice to practitioners is to estimate the market risk premium based on historical realizations of share and bond returns (see Brealey and Myers [3]).

In this paper, we present estimates of shareholder required rates of return and risk premia which are derived

using forward-looking analysts' growth forecasts. We update, through 1991, earlier work which, due to data availability, was restricted to the period 1982-1984 (Harris [12]). Using stronger tests, we also reexamine the efficacy of using such an expectational approach as an alternative to the use of historical averages. Using the S&P 500 as a proxy for the market portfolio, we find an average market risk premium (1982-1991) of 6.47% above yields on longterm U.S. government bonds and 5.13% above yields on corporate bonds. We also find that required returns for individual stocks vary directly with their risk (as proxied by beta) and that the market risk premium varies over time. In particular, the equity market premium over government bond yields is higher in low interest rate environments and when there is a larger spread between corporate and government bond yields. These findings show that, in addition to fitting the theoretical requirement of being forwardlooking, the utilization of analysts' forecasts in estimating return requirements provides reasonable empirical results that can be useful in practical applications.

Section I provides background on the estimation of equity required returns and a brief discussion of related

Thanks go to Ed Bachmann, Bill Carleton, Pete Crawford, and Steve Osborn for their assistance on earlier research in this area. We thank Bell Atlantic for supplying data for this project. Financial support from the Darden Sponsors and from the Associates Program at the McIntire School of Commerce is gratefully acknowledged.

literature on financial analysts' forecasts (FAF). In Section II, models and data are discussed. Following a comparison of the results to historical risk premia, the estimates are subjected to economic tests of both their time-series and cross-sectional characteristics in Section III. Finally, conclusions are offered in Section IV.

I. Background and Literature Review

In establishing economic criteria for resource allocation, it is often convenient to use the notion of a shareholder's required rate of return. Such a rate (k) is the minimum level of expected return necessary to compensate the investor for bearing risks and receiving dollars in the future rather than in the present. In general, k will depend on returns available on alternative investments (e.g., bonds or other equities) and the riskiness of the stock. To isolate the effects of risk, it is useful to work in terms of a risk premium (rp), defined as

$$rp = k - i, (1)$$

where i = required return for a zero risk investment. ¹

Lacking a superior alternative, investigators often use averages of historical realizations to estimate a benchmark "market" risk premium which then may be adjusted for the relative risk of individual stocks (e.g., using the CAPM or a variant). The historical studies of Ibbotson Associates [13] have been used frequently to implement this approach. This historical approach requires the assumptions that past realizations are a good surrogate for future expectations and, as typically applied, that risk premia are constant over time. Carleton and Lakonishok [5] demonstrate empirically some of the problems with such historical premia when they are disaggregated for different time periods or groups of firms.

As an alternative to historical estimates, the current paper derives estimates of k, and hence, implied values of rp, using publicly available expectational data. This expectational approach employs the dividend growth model (hereafter referred to as the discounted cash flow or DCF model) in which a consensus measure of financial analysts' forecasts (FAF) of earnings is used as a proxy for investor expectations. Earlier works by Malkiel [17], Brigham,

Vinson, and Shome [4], and Harris [12] have used FAF in DCF models, and this approach has been employed in regulatory settings (see Harris [12]) and suggested by consultants as an alternative to use of historical data (e.g., Ibbotson Associates [13, pp. 127, 128]). Unfortunately, the published studies use data extending to 1984 at the latest. Our paper draws on this earlier work but extends it through 1991.3 Our work is closest to that done by Harris [12], who reviews literature showing a strong link between equity prices and FAF and supporting the use of FAF as a proxy for investor expectations. Using data from 1982 to 1984, Harris' results suggest that this expectational approach to estimating equity risk premia is an encouraging alternative to the use of historical averages. He also demonstrates that such risk premia vary both cross-sectionally with the riskiness of individual stocks and over time with financial market conditions.

II. Models and Data

A. Model for Estimation

The simplest and most commonly used version of the DCF model to estimate shareholders' required rate of return, k, is shown in Equation (2):

$$k = \left(\frac{D_1}{P_0}\right) + g,\tag{2}$$

where D_1 = dividend per share expected to be received at time one, P_0 = current price per share (time 0), and g = expected growth rate in dividends per share. The limitations of this model are well known, and it is straightforward to derive expressions for k based on more general specifications of the DCF model.⁴ The primary difficulty in using the DCF model is obtaining an estimate of g, since it should reflect market expectations of future perfor-

¹Theoretically, *i* is a risk-free rate, though empirically its proxy (e.g., yield to maturity on a government bond) is only a "least risk" alternative that is itself subject to risk. In this development, the effects of tax codes on required returns are ignored.

²Many leading texts in financial management use such historical risk premia to estimate a market return. See, for example, Brealey and Myers [3]. Often a market risk premium is adjusted for the observed relative risk of a stock.

³See Harris [12] for a discussion of the earlier work and a detailed discussion of the approach employed here.

⁴As stated, Equation (2) requires expectations of either an infinite horizon of dividend growth at a rate g or a finite horizon of dividend growth at rate g and special assumptions about the price of the stock at the end of that horizon. Essentially, the assumption must ensure that the stock price grows at a compound rate of g over the finite horizon. One could alternatively estimate a nonconstant growth model, although the proxies for multistage growth rates are even more difficult to obtain than single stage growth estimates. Marston, Harris, and Crawford [19] examine publicly available data from 1982-1985 and find that plausible measures of risk are more closely related to expected returns derived from a constant growth model than to those derived from multistage growth models. These findings illustrate empirical difficulties in finding empirical proxies for multistage growth models for large samples.

mance. Without a ready source for measuring such expectations, application of the DCF model is fraught with difficulties. This paper uses published FAF of long-run growth in earnings as a proxy for g.

B. Data

FAF for this research come from IBES (Institutional Broker's Estimate System), which is a product of Lynch, Jones, and Ryan, a major brokerage firm. ⁵ Representative of industry practice, IBES contains estimates of (i) EPS for the upcoming fiscal years (up to five separate years), and (ii) a five-year growth rate in EPS. Each item is available at monthly intervals.

The mean value of individual analysts' forecasts of five-year growth rate in EPS will be used as a proxy for g in the DCF model. The five-year horizon is the longest horizon over which such forecasts are available from IBES and often is the longest horizon used by analysts. IBES requests "normalized" five-year growth rates from analysts in order to remove short-term distortions that might stem from using an unusually high or low earnings year as a base.

Dividend and other firm-specific information come from COMPUSTAT. Interest rates (both government and corporate) are gathered from Federal Reserve Bulletins and *Moody's Bond Record*. Exhibit 1 describes key variables used in the study. Data collected cover all dividend paying stocks in the Standard & Poor's 500 stock (S&P 500) index, plus approximately 100 additional stocks of regulated companies. Since five-year growth rates are first available from IBES beginning in 1982, the analysis covers the 113-month period from January 1982 to May 1991.

III. Risk Premia and Required Rates of Return

A. Construction of Risk Premia

For each month, a "market" required rate of return is calculated using each dividend paying stock in the S&P 500 index for which data are available. The DCF model in

Exhibit 1. Variable Definitions

- k = Equity required rate of return.
 - 0 = Average daily price per share.
- D_1 = Expected dividend per share measured as current indicated annual dividend from COMPUSTAT multiplied by (1 + g).
- g = Average financial analysts' forecast of five-year growth rate in earnings per share (from IBES).
- i_{lt} = Yield to maturity on long-term U.S. government obligations (source: Federal Reserve Bulletin, constant maturity series).
- *i_c* = Yield to maturity on long-term corporate bonds: Moody's average.^b
- rp = Equity risk premium calculated as rp = k i.
- β = beta, calculated from CRSP monthly data over 60 months.

Notes:

^aSee footnote 7 for a discussion of the (1 + g) adjustment.

^bThe average corporate bond yield across bond rating categories as reported by Moody's. See *Moody's Bond Survey* for a brief description and the latest published list of bonds included in the bond rating categories.

Equation (2) is applied to each stock and the results weighted by market value of equity to produce the market required return. The return is converted to a risk premium

⁷The construction of D_1 is controversial since dividends are paid quarterly and may be expected to change during the year; whereas, Equation (2), as is typical, is being applied to annual data. Both the quarterly payment of dividends (due to investors' reinvestment income before year's end, see Linke and Zumwalt [15]) and any growth during the year require an upward adjustment of the current annual rate of dividends to construct D_1 . If quarterly dividends grow at a constant rate, both factors could be accommodated straightforwardly by applying Equation (2) to quarterly data with a quarterly growth rate and then annualizing the estimated quarterly required return. Unfortunately, with lumpy changes in dividends, the precise nature of the adjustment depends on both an individual company's pattern of growth during the calendar year and an individual company's required return (and hence reinvestment income in the risk class).

In this work, D_1 is calculated as D_0 (1 + g). The full g adjustment is a crude approximation to adjust for both growth and reinvestment income. For example, if one expected dividends to have been raised, on average, six months ago, a "1/2 g" adjustment would allow for growth, and the remaining "1/2 g" would be justified on the basis of reinvestment income. Any precise accounting for both reinvestment income and growth would require tracking each company's dividend change history and making explicit judgments about the quarter of the next change. Since no organized "market" forecast of such a detailed nature exists, such a procedure is not possible. To get a feel for the magnitudes involved, during the sample period the dividend yield (D_1/P_0) and growth (market value weighted) for the S&P 500 were typically 4% to 6% and 11% to 13%, respectively. As a result, a "full g" adjustment on average increases the required return by 60 to 70 basis points (relative to no g adjustment).

⁵Harris [12] provides a discussion of IBES data and its limitations. In more recent years, IBES has begun collecting forecasts for each of the next five years. Since this work was completed, the FAF used here have become available from IBES Inc., now a subsidiary of CitiBank.

⁶While the model calls for expected growth in dividends, no source of data on such projections is readily available. In addition, in the long run, dividend growth is sustainable only via growth in earnings. As long as payout ratios are not expected to change, the two growth rates will be the same.

Exhibit 2. Bond Market Yields, Equity Required Return, and Equity Risk Premium, a 1982-1991

	Bond Market Yields ^b		Equity Market Required Return ^c	Equity F	Equity Risk Premium		
Year	(1) U.S. Gov't	(2) Moody's Corporates	(3) S&P 500	U.S. Gov't (3) - (1)	Moody's Corporates (3) - (2)		
1982	12.92	14.94	20.08	7.16	5.14		
1983	11.34	12.78	17.89	6.55	5.11		
1984	12.48	13.49	17.26	4.78	3.77		
1985	10.97	12.05	16.32	5.37	4.28		
1986	7.85	9.71	15.09	7.24	5.38		
1987	8.58	9.84	14.71	6.13	4.86		
1988	8.96	10.18	15.37	6.41	5.19		
1989	8.46	9.66	15.06	6.60	5.40		
1990	8.61	9.77	15.69	7.08	5.92		
1991 ^d	8.21	9.41	15.61	7. <u>40</u>	6.20		
Average ^e	9.84	11.18	16.31	6.47	5.13		

Notes:

over government bonds by subtracting i_{ll} , the yield to maturity on long-term government bonds. A risk premium over corporate bond yields is also constructed by subtracting i_c , the yield on long-term corporate bonds. Exhibit 2 reports the results by year (averages of monthly data).

The results are quite consistent with the patterns reported earlier (i.e., Harris [12]). The estimated risk premia in Exhibit 2 are positive, consistent with equity owners demanding additional rewards over and above returns on debt securities. The average expectational risk premium (1982 to 1991) over government bonds is 6.47%, only slightly higher than the 6.16% average for 1982 to 1984 reported earlier (Harris [12]). Furthermore, Exhibit 2 shows the estimated risk premia change over time, suggesting changes in the market's perception of the incremental risk of investing in equity rather than debt securities.

For comparison purposes, Exhibit 3 contains historical returns and risk premia. The average expectational risk premium reported in Exhibit 2 falls roughly midway between the arithmetic (7.5%) and geometric (5.7%) long-term differentials between returns on stocks and long-term government bonds. Note, however, that the expectational risk premia appear to change over time. In the following

sections, we examine the estimated risk premia to see if they vary cross-sectionally with the risk of individual stocks and over time with financial market conditions.

B. Cross-Sectional Tests

Earlier, Harris [12] conducted crude tests of whether expectational equity risk premia varied with risk proxied by bond ratings and the dispersion of analysts' forecasts and found that required returns increased with higher risk. Here we examine the link between these premia and beta, perhaps the most commonly used measure of risk for equities. In keeping with traditional work in this area, we adopt the methodology introduced by Fama and Macbeth [9] but replace realized returns with expected returns from Equation (2) as the variable to be explained. For this portion of our tests, we restrict our sample to 1982-1987

^aValues are averages of monthly figures in percent.

^bYields to maturity.

^cRequired return on value weighted S&P 500 index using Equation (1).

dFigures for 1991 are through May.

^eMonths weighted equally.

⁸For other efforts using expectational data in the context of the two-parameter CAPM, see Friend, Westerfield, and Granito [10], Cragg and Malkiel [7], Marston, Crawford, and Harris [19], Marston and Harris [20], and Linke, Kannan, Whitford, and Zumwalt [16]. For a more complete treatment of the subject, see Marston and Harris [20] from which we draw some of these results. Marston and Harris also investigate the role of unsystematic risk and the difference in estimates found when using expected versus realized returns.

Exhibit 3. Average Historical Returns on Bonds, Stocks, Bills, and Inflation in the U.S., 1926-1989

Historical Return Realizations	Geometric	Arithmetic	
Common stock	10.3%	12.4%	
Long-term government bonds	4.6%	4.9%	
Long-term corporate bonds	5.2%	5.5%	
Treasury bills	3.6%	3.7%	
Inflation rate	3.1%	3.2%	

Source: Ibbotson Associates, Inc., 1990 Stocks, Bonds, Bills and Inflation, 1990 Yearbook.

and in any month include firms that have at least three forecasts of earnings growth to reduce measurement error associated with individual forecasts. This restricted sample still consists of, on average, 399 firms for each of the 72 months (or 28,744 company months).

For a given company in a given month, beta is estimated via the market model (using ordinary least squares) on the prior 60 months of return data taken from CRSP. Beta estimates are updated monthly and are calculated against an equally weighted index of all NYSE securities. For each month, we aggregate firms into 20 portfolios (consisting of approximately 20 securities each). The advantage of grouped data is the reduction in potential measurement error inherent in independent variables at the company level. Portfolios are formed based on a ranking of beta estimated from a prior time period (t = -61 to t = -120). Portfolio expected returns and beta are calculated as the simple averages for the individual securities.

Using these data, we estimate the following model for each of the 72 months:

$$R_p = \alpha_0 + \alpha_1 \beta_p + u_p, \quad p = 1...20,$$
 (3)

where:

 R_p = Expected return for portfolio p in the given month,

 β_p = Portfolio beta, estimated over 60 prior months,

 $u_p = A$ random error term with mean zero.

As a result of estimating regression (3) for each month, 72 estimates of each coefficient (α_0 and α_1) are obtained.

Using realized returns as the dependent variable, the traditional approach (e.g., Fama and Macbeth [9]) is to assume that realized returns are a fair game. Given this assumption, the mean of the 72 values of each coefficient is an unbiased estimate of the mean over that same time period if one could have actually used expected returns as the dependent variable. Note that if expected returns are used as the dependent variable the fair-game assumption is not required. Making the additional assumption that the true value of the coefficient is constant over the 72 months, a test of whether the mean coefficient is different from zero is performed using a t-statistic where the denominator is the standard error of the 72 values of the coefficient. This is the technique employed by Fama and Macbeth [9]. If one assumes the CAPM is correct, the coefficient α_1 is an empirical estimate of the market risk premium, which should be positive.

To test the sensitivity of the results, we also repeat our procedures using individual security returns rather than portfolios. To account, at least in part, for differences in precision of coefficient estimates in different months we also report results in which monthly parameter estimates are weighted inversely by the standard error of the coefficient estimate rather than being weighted equally (following Chan, Hamao, and Lakonishok [6]).

Exhibit 4 shows that there is a significant positive link between expectational required returns and beta. For instance, in Panel A, the mean coefficient of 2.78 on beta is significantly different from zero at better than the 0.001 level (t = 35.31), and each of the 72 monthly coefficients going into this average is positive (as shown by that 100% positive figure). Using individual stock returns, the significant positive link between beta and expected return remains, though it is smaller in magnitude than for portfolios. ¹⁰ Comparison of Panels A and B shows that the results are not sensitive to the weighting of monthly coefficients.

While the findings in Exhibit 4 suggest a strong positive link between beta and risk premia (a result often not supported when realized returns are used as a proxy for expectations; e.g., see Tinic and West [22]), the results do not support the predictions of a simple CAPM. In particular, the intercept is higher than a proxy for the risk-free rate over the sample period and the coefficient of beta is well below estimates of a market risk premium obtained from either expectational (Exhibit 2) or historical data (Exhibit

⁹Firms for which the standard deviation of individual FAF exceeded 20 in any month were excluded since we suspect some of these involve errors in data entry. This screen eliminated very few companies in any month. The 1982-1987 period was chosen due to the availability of data on betas.

¹⁰The smaller coefficients on beta using individual stock portfolio returns are likely due in part to the higher measurement error in measuring individual stock versus portfolio betas.

Exhibit 4. Mean Values of Monthly Parameter Estimates for the Relationship Between Required Returns and Beta for Both Portfolios and Individual Securities (Figures in Parentheses are t Values and Percent Positive), 1982-1987

		Panel A. Equal Weighting ^a	_	
	Intercept	В	Adjusted R^{2c}	F ^c
Portfolio returns	14.06 (54.02, 100)	2.78 (35.31, 100)	0.503	25.4
Security returns	14.77 (58.10, 100)	1.91 (16.50, 99)	0.080	39.0
	Pan	el B. Weighted by Standard Err	ors ^b	
Portfolio returns	13.86 (215.6, 100)	2.67 (35.80, 100)	0.503	25.4
Security returns	14.63 (398.9, 100)	1.92 (47.3, 99)	0.080	39.0

^aEqually weighted average of monthly parameters estimated using cross-sectional data for each of the 72 months, January 1982 - December 1987. ^bIn obtaining the reported means, estimates of the monthly intercept and slope coefficients are weighted inversely by the standard error of the estimate from the cross-sectional regression for that month.

3). Nonetheless, the results show that the estimated risk premia conform to the general theoretical relationship between risk and required return that is expected when investors are risk-averse.

C. Time Series Tests — Changes in Market Risk Premia

A potential benefit of using ex ante risk premia is the estimation of changes in market risk premia over time. With changes in the economy and financial markets, equity investments may be perceived to change in risk. For instance, investor sentiment about future business conditions likely affects attitudes about the riskiness of equity investments compared to investments in the bond markets. Moreover, since bonds are risky investments themselves, equity risk premia (relative to bonds) could change due to changes in perceived riskiness of bonds, even if equities displayed no shifts in risk. For example, during the high interest rate period of the early 1980s, the high level of interest rate volatility made fixed income investments more risky holdings than they were in a world of relatively stable rates.

Studying changes in risk premia for utility stocks, Brigham, et al [4] conclude that, prior to 1980, utility risk premia increased with the level of interest rates, but that this pattern reversed thereafter, resulting in an inverse correlation between risk premia and interest rates. Studying risk premia for both utilities and the equity market generally, Harris [12] also reports that risk premia appear to change over time. Specifically, he finds that equity risk premia decreased with the level of government interest rates, increased with the increases in the spread between corporate and government bond yields, and increased with increases in the dispersion of analysts' forecasts. Harris' study is, however, restricted to the 36-month period, 1982 to 1984.

Exhibit 5 reports results of analyzing the relationship between equity risk premia, interest rates, and yield spreads between corporate and government bonds. Following Harris [12], these bond yield spreads are used as a time series proxy for equity risk. As the perceived riskiness of corporate activity increases, the difference between yields on corporate bonds and government bonds should increase. One would expect the sources of increased riskiness to corporate bonds to also increase risks to shareholders. All regressions in Exhibit 5 are corrected for serial correlation. ¹²

^cValues are averages for the 72 monthly regressions.

¹¹Estimation difficulties confound precise interpretation of the intercept as the risk-free rate and the coefficient on beta as the market risk premium (see Miller and Scholes [21], and Black, Jensen, and Scholes [2]). The higher than expected intercept and lower than expected slope coefficient on beta are consistent with the prior studies of Black, Jensen, and Scholes [2], and Fama and MacBeth [9] using historical returns. Such results are consistent with Black's [1] zero beta model, although alternative explanations for these findings exist as well (as noted by Black, Jensen, and Scholes [2]).

¹²Ordinary least squares regressions showed severe positive autocorrelation in many cases, with Durbin Watson statistics typically below one. Estimation used the Prais-Winsten method. See Johnston [14, pp. 321-325].

Exhibit 5. Changes in Equity Risk Premia Over Time — Entries are Coefficient (t-value); Dependent Variable is Equity Risk Premium

Time period	Intercept	i _{ll}	$i_c - i_{lt}$	R^2	
A. May 1991-19 9 2	0.131	-0.651		0.53	
	(19.82)	(-11.16)			
8	0.092	-0.363	0.666	0.54	
	(14.26)	(-6.74)	(5.48)		
B. 1982-1984	0.140	-0.637		0.43	
В. 1902-1904	(8.15)	(-5.00)			
	0.064	-0.203	1.549	0.60	
	(3.25)	(-1.63)	(4.84)		
C. 1985-1987	0.131	-0.739		0.74	
C. 1983-1987	(7.73)	(-9.67)			
	0.110	-0.561	0.317	0.77	
	(12.53)	(-7.30)	(1.87)		
D 1000 1001	0.136	-0.793		0.68	
D. 1988-1991	(16.23)	(-8.29)			
	0.130	-0.738	0.098	0.68	
	(8.71)	(-4.96)	(0.40)		

Note: All variables are defined in Exhibit 1. Regressions were estimated using monthly data and were corrected for serial correlation using the Prais-Winsten method. For purposes of this regression, variables are expressed in decimal form, e.g., 14% = 0.14.

For the entire sample period, Panel A shows that risk premia are negatively related to the level of interest rates—as proxied by yields on government bonds, i_{lt} . This negative relationship is also true for each of the subperiods displayed in Panels B through D. Such a negative relationship may result from increases in the perceived riskiness of investment in government debt at high levels of interest rates. A direct measure of uncertainty about investments in government bonds would be necessary to test this hypothesis directly.

For the entire 1982 to 1991 period, the addition of the yield spread risk proxy to the regressions dramatically lowers the magnitude of the coefficient on government bond yields, as can be seen by comparing Equations 1 and 2 of Panel A. Furthermore, the coefficient of the yield spread (0.666) is itself significantly positive. This pattern suggests that a reduction in the risk differential between investment in government bonds and in corporate activity is translated into a lower equity market risk premium. Further examination of Panels B through D, however, suggests that the yield spread variable is much more important in explaining changes in equity risk premia in the early portion of the 1980s than in the 1988 to 1991 period.

In summary, market equity risk premia change over time and appear inversely related to the level of government interest rates but positively related to the bond yield spread, which proxies for the incremental risk of investing in equities as opposed to government bonds.

IV. Conclusions

Shareholder required rates of return and risk premia are based on theories about investors' expectations for the future. In practice, however, risk premia are often estimated using averages of historical returns. This paper applies an alternate approach to estimating risk premia that employs publicly available expectational data. At least for the decade studied (1982 to 1991), the resultant average market equity risk premium over government bonds is comparable in magnitude to long-term differences (1926) to 1989) in historical returns between stocks and bonds. There is strong evidence, however, that market risk premia change over time and, as a result, use of a constant historical average risk premium is not likely to mirror changes in investor return requirements. The results also show that the expectational risk premia vary cross-sectionally with the relative risk (beta) of individual stocks.

The approach offers a straightforward and powerful aid in establishing required rates of return either for corporate investment decisions or in the regulatory arena. Since data are readily available on a wide range of equities, an investigator can analyze various proxy groups (e.g., portfolios of utility stocks) appropriate for a particular decision as well as analyze changes in equity return requirements over time.

References

- 1. F. Black, "Capital Market Equilibrium with Restricted Borrowing," Journal of Business (July 1972), pp. 444-455.
- F. Black, M. Jensen, and M. Scholes, "The Capital Asset Pricing Model: Some Empirical Results," in Studies in the Theory of Capital Markets, Michael Jensen (ed.), New York, Praeger, 1972.
- R. Brealey and S. Myers, Principles of Corporate Finance, New York, McGraw-Hill, 4th edition, 1990.
- E. Brigham, D. Shome, and S. Vinson, "The Risk Premium Approach to Measuring Utility's Cost of Equity," *Financial Management* (Spring 1985), pp. 33-45.
- W.T. Carleton and J. Lakonishok, "Risk and Return on Equity: The Use and Misuse of Historical Estimates," Financial Analysts Journal (January/February 1985), pp. 38-47.
- L. Chan, Y. Hamao, and J. Lakonishok, "Fundamental and Stock Returns in Japan," Working Paper, University of Illinois at Urbana-Champaign, July 1990.
- J. Cragg and B.G. Malkiel, Expectations and the Structure of Share Prices, National Bureau of Economic Research, Chicago, University of Chicago Press, 1982.
- E.J. Elton, M.J. Gruber, and M. Gultekin, "Expectations and Share Prices." Management Science (September 1981), pp. 975-987.
- E. Fama and J. Macbeth, "Risk, Return, and Equilibrium: Empirical Tests," *Journal of Political Economy* (May 1973), pp. 607-636.
- I. Friend, R. Westerfield, and M. Granito, "New Evidence on the Capital Asset Pricing Model," *Journal of Finance* (June 1978), pp. 903-917.
- D. Givoly and J. Lakonishok, "Earnings Expectation and Properties of Earnings Forecasts —A Review and Analysis of the Research," Journal of Accounting Literature (Spring 1984), pp. 85-107.
- R.S. Harris, "Using Analysts' Growth Forecasts to Estimate Share-holder Required Rates of Return," *Financial Management* (Spring 1988), pp. 58-67.

- 13. Ibbotson Associates, Inc., 1990 Stocks, Bonds, Bills, and Inflation, 1990 Yearbook.
- J. Johnston, Econometric Methods, New York, McGraw-Hill, 3rd edition, 1984.
- C. Linke and J. Zumwalt, "Estimation Biases in Discounted Cash Flow Analyses of Equity Capital Cost in Rate Regulation," Financial Management, (Autumn 1984), pp. 15-21.
- 16. C. Linke, S. Kannan, D. Whitford, and J. Zumwalt, "Divergence of Opinion and Risk: An Empirical Analysis of Ex Ante Beliefs of Institutional Investors," Working Paper 1294, University of Illinois at Urbana-Champaign, October 1986.
- 17. B. Malkiel, "Risk and Return: A New Look," in The Changing Role of Debt and Equity in Financing U.S. Capital Formation, B.B. Friedman (ed.), National Bureau of Economic Research, Chicago, University of Chicago Press, 1982.
- B. Malkiel, "The Capital Formation Problem in the United States," Journal of Finance (May 1979), pp. 291-306.
- F. Marston, R. Harris, and P. Crawford, "Risk and Return in Equity Markets: Evidence Using Financial Analysts' Forecasts," in Handbook of Security Analysts' Forecasting and Asset Allocation, J. Guerard and M. Gultekin (eds.), Greenwich, CT, JAI Press, forthcoming.
- F. Marston and R.S. Harris, "Risk, Return, and Equilibrium: A Revisit Using Expected Returns," University of Virginia Working Paper, September 1989.
- M. Miller and M. Scholes, "Rates of Return in Relation to Risk: A Re-Examination of Some Recent Findings," in Studies in the Theory of Capital Markets, Michael Jensen (ed.), New York, Praeger, 1972.
- S. Tinic and R. West, "Risk, Return, and Equilibrium: A Revisit," Journal of Political Economy (February 1986), pp. 126-147.
- J. VanderWeide and W.T. Carleton, "Investor Growth Expectations: Analysts vs. History," *Journal of Portfolio Management* (Spring 1988), pp. 78-82.

CALL FOR PAPERS EASTERN FINANCE ASSOCIATION 1993 ANNUAL MEETING April 14-17, 1993 Richmond, Virginia

Members and friends of the Eastern Finance Association are invited to participate in the 29th Annual Meeting of the EFA in Richmond, Virginia. Research papers covering all major areas of finance will be presented and discussed. Panel sessions and tutorials will also be included in the program. Academicians, practitioners, government specialists, and others with an interest in finance are encouraged to attend and to take part in our meetings.

Those wishing to participate should submit a participation form indicating their desire to present a paper, discuss a paper, chair a session, or organize a special panel or tutorial. Those wishing to present a paper should include *four copies* of the completed paper or detailed abstract. The deadline for receipt of all materials is September 18, 1992. The EFA will present monetary awards for outstanding research papers in futures and options, investments, corporate finance, and financial institutions. There will also be a special competitive paper session for doctoral students. For participation forms or other information, please contact:

William R. Lane
Vice-President - 1993 EFA Program
Department of Finance
College of Business Administration
Louisiana State University
Baton Rouge, LA 70803
(504) 388-6291

NEW REGULATORY FINANCE

Roger A. Morin, PhD

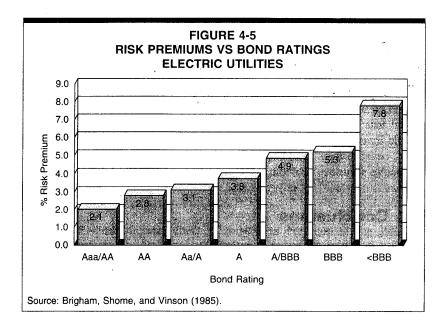
2006
PUBLIC UTILITIES REPORTS, INC.
Vienna, Virginia

Any forward-looking cost of capital calculation already embodies tax effects since investors price securities on the basis of after-tax returns. Besides, a very large proportion of trading is conducted by tax-exempt financial institutions (pension funds, mutual funds, 401K, etc.) for whom tax issues are largely immaterial.

The existence of a negative risk premium is highly unlikely, as it is at serious odds with the basic tenets of finance, economics, and law. Using proper definitions for expected rates of return of equity and debt, the preponderance of the evidence indicates that the negative risk premium does not exist. Several risk premium studies cited in this chapter have found positive risk premiums well in excess of 5% over the last decade. Risk premiums do narrow during unusually turbulent and volatile interest rate environments, but then return to normal levels. They are most unlikely to ever become negative.

4.7 Risk Premium Determinants

Fundamentally, the primary determinant of expected returns is risk. To wit, the various paradigms of financial theory, including the Capital Asset Pricing Model and the Arbitrage Pricing Model covered in subsequent chapters, posit fundamental relationships between return and risk. There are also secondary influences on the relative magnitude of the risk premium, however, including the level of interest rates, default risk, and taxes.


Interest Rates

Published studies by Brigham, Shome, and Vinson (1985), Harris (1986), Harris and Marston (1992, 1993), Carleton, Chambers, and Lakonishok (1983), Morin, (2005), and McShane (2005), and others demonstrate that, beginning in 1980, risk premiums varied inversely with the level of interest rates rising when rates fell and declining when interest rates rose. The reason for this relationship is that when interest rates rise, bondholders suffer a capital loss. This is referred to as interest rate risk. Stockholders, on the other hand, are more concerned with the firm's earning power. So, if bondholders' fear of interest rate risk exceeds shareholders' fear of loss of earning power, the risk differential will narrow and hence the risk premium will shrink. This is particularly true in high inflation environments. Interest rates rise as a result of accelerating inflation, and the interest rate risk of bonds intensifies more than the earnings risk of common stocks, which are partially hedged from the ravages of inflation. This phenomenon has been termed as a "lock-in" premium. Conversely in low interest rate environments, when bondholders' interest rate fears subside and shareholders' fears of loss of earning power dominate, the risk differential will widen and hence the risk premium will increase.

Harris (1986) showed that for every 100 basis point change in government bond yields, the equity risk premium for utilities changes 51 basis points in the opposite direction, for a net change in the cost of equity of 49 basis points. For example, a 100 basis point decline in government bond yields would lead to a 51 basis point increase in the equity risk premium and therefore an overall decrease in the cost of equity of 49 basis points, a result almost identical to the estimate reported in Morin (2005). As discussed earlier, similar results were uncovered by McShane (2005), who examined the statistical relationship between DCF-derived risk premiums and interest rates using a sample of natural gas distribution utilities.

The gist of the empirical research on this subject is that the cost of equity has changed only half as much as interest rates have changed in the past. The knowledge that risk premiums vary inversely to the level of interest rates can be used to adjust historical risk premiums to better reflect current market conditions. Thus, when interest rates are unusually high (low), the appropriate current risk premium is somewhat below (above) that long-run average. The empirical research cited above provides guidance as to the magnitude of the adjustment.

Risk premiums also tend to fluctuate with changes in investor risk aversion. Such changes can be tracked by observing the yield spreads between different bond rating categories over time. Brigham, Shome, and Vinson (1985) examined the relationship between risk premium and bond rating and found, unsurprisingly, that the risk premiums are higher for lower rated firms than for higher rated firms. Figure 4-5 shows the results graphically.

This foregoing document was electronically filed with the Public Utilities

Commission of Ohio Docketing Information System on

5/13/2016 3:24:11 PM

in

Case No(s). 13-2385-EL-SSO, 13-2386-EL-AAM

Summary: Application -ESP III Extension Work Papers (Part 3 of 6) electronically filed by Mr. Steven T Nourse on behalf of Ohio Power Company