Formal Complaint Form $14-1283$ - INS -CSS

$$
\frac{\text { JAMES F. DAGLEY }}{\text { Customer Name (Please Print) }}
$$

Against

MoHAWK UTLLITIES, INC.
Utility Company Name

$$
\begin{aligned}
& 6585 \text { CUESTPOUNT DRIVE } \\
& \hline \text { Customer Address } \\
& \text { HUDSON } \quad O H \quad 44236 \\
& \text { City }
\end{aligned}
$$

$$
445
$$

Account Number

$$
\frac{180 \text { ClUE YENNE TRALL (LOTYYS) }}{\text { Customer Service Address (if different from above) }}
$$

Please describe your complaint. (Attach additional sheets if necessary)
Please refer to attached sheets for
specific complaint.

This is to certify that the images appearing are an accurate and complete reproduction of a c is f tile document delivered in the regular course of jujsuess. Technician AtrN_Date processed _7/24/1t.

July 23, 2014

PUCO CaseD: EDAG0505145L

Formal Complaint Against Mohawk Utilities, Inc. by James Dagley

Name \& Address (Primary Residence):
James F. Dagley
6585 Westpoint Drive
Hudson, OH 44236
(h) 330-655-1670
(m) 330-352-5734

Account \# \& Service Address:

Account \#: 445
James and Elizabeth Dagley
180 Cheyenne Trail (Lot 445)
Malvern, OH 44644

Statement:

I, James F. Dagley, with a secondary residence at 180 Cheyenne Trail, Malvern, OH , am a water customer of Mohawk Utilities, Inc.

Name of Utility:

Mohawk Utilities, Inc
P.O. Box566

Malvern, OH 44644
1-800-332-0613

Summary of the facts which are the basis of the complaint:

In accordance with Ohio Revised Code Section 4905.26, Mohawk Utilities Inc., relying on a faulty measurement, provided an unjust and unreasonable charge for water for the period of February $1^{\text {st }}$, 2014 through March $1^{\text {st }}, 2014$. The water bill for this period claims a water usage of 645,100 gallons for a total bill of $\$ 5,744.06$. The house was unoccupied during this period, but did experience water damage during a 9 day window (Feb $21^{\text {st }}-$ Mar $2^{\text {nd }}$) due to frozen pipes; however, it is physically impossible for that extreme amount of water (approximately 3 full water tower's capacity - or 46.7 gallons per minute) to have moved through the house in only 9 days for the following reasons: (1) the Hersey water meter in the house has a maximum capacity of 15 gallons per minute, (2) the Hersey water meter itself was damaged by the frozen pipes and several parts had to be replaced, so it cannot relied upon for accuracy, (3) the water level in the basement never reached more the $1 / 2^{\prime \prime}$ deep. The only path for water to leave was via a drain in the basement floor connected to a grinder pump. The grinder

CASE ID: EDAG0505145L.
pump has a maximum capacity of 10 gallons per minute Please see "Detailed Facts and Information" and Exhibits for more specific details.

What the Commission can do about this complaint:

It is obvious that some amount of water did flow through the house from Feb $21^{\text {st }}-$ Mar $2^{\text {nd }}$. However, because of the damaged water meter, no one can know for certainty the exact amount. The best anyone can do is use reasonable engineering judgment based on the facts. If the amount of the leak somehow managed to match exactly the maximum capacity of the grinder pump, then the maximum the volume of water could have been is 138,000 gallons. With that in mind, I recommend that the Commission rule to have Mohawk Utilities charge me for half of the maximum possible amount, or 69,000 gallons (138,000 gallons $/ 2$), which at $\$ 0.008851 /$ gallon equates to $\$ 610.75$ (crediting $\$ 5,133.31$: $\$ 5,744.06$ - $\$ 610.75$).

Detailed Facts and Information:

1) The water leak only ran for 9.6 days - from Feb $21^{\text {st }}-2 \mathrm{pm}$ on Mar $2^{\text {nd }}$. This converts to a maximum possible time of 13,800 minutes (9 days $\times 24 \times 60$ plus 14 hours $\times 60$). (The power was out until Feb $21^{\text {st }}$ and leak was discovered on Mar $2^{\text {nd }}-$ see attached report from Carroll Electric-Exhibit A)
2) The water level in the basement never reached more than $1 / 2^{\prime \prime}$ - see picture taken immediately after water leak discovered -- Exhibit B.
3) The Mueller Systems Hersey Meter $4305 / 8$ water meter has a maximum capacity of 15 gallons per minute (see attached data sheet - Exhibit C), which translates into a max possible water flow of 207,000 gallons ($13,800 \mathrm{~m} \times 15 \mathrm{gpm}$).
4) The only possible path for water to leave the basement is through a drain connected to a grinder pump. There was absolutely no sign of water exiting the house (I have pictures to verify). The maximum capacity for the grinder pump is 10 gpm - the pump operates at 80 ft of head (see attached 2HP Grinder Pump spec sheet - Exhibit D). This translates into a max possible water flow of 138,000 gallons $(13,800 \mathrm{~m} \times 10 \mathrm{gpm})$.
5) The water meter plate itself was damaged during the freezing conditions and required three attempts to get a working replacement. Therefore, the meter reading cannot be assumed to be accurate.

Sincerely,

BS, Mechanical Engineering \& Material Science
Duke University, ' 89
Cell: 330-352-5734

CASE ID: EDAG0505145L

Service History for Meter \# 52307232

緊㻿

Account Information

Usage Information

CASE ID: EDA60505145L

https://carroll.commandcentermsp.com/servicehistory.aspx?meterId=12352\&start=1/1/2014... 3/5/2014

紋

Exhibit B - Copy of the Water Bill from Mohawk Utilities

This is a picture of the water level in the basement. As confirmed in this picture and by water marks on the furniture, the water level was never higher than $1 / 2^{\prime \prime}$. If over 46 gallons per minute were flowing in the house, the water level would have quickly reached the ceiling.

400 Series IIS

Magnetic Drive Positive Displacement Disc Meters Sizes $5 / 8^{\prime \prime}-3 / 4^{\prime \prime}-1^{\prime \prime}$

Meter Registration

Meter Size	Initial Dial*	Capacity	Initial Dial*	Capacity
$5 / 8^{n}$	10 Gallons	10 Million	1 Cubic Feet	1 Million
$3 / 4^{\mathrm{B}}$	10 Gallons	10 Million	1 Cubic Feet	1 Million
1^{n}	10 Gallons	10 Million	1 Cubic Feet	1 Million

*Registration equal to one full revolution of the sweep hand.

Flow Characteristics

Meter Size	Typical Low Flow (95\% Minimum)	Typical Operating Range (100\% $\pm 1.5 \%)$	Maximum Continuous Operation
$5 / 8^{\prime \prime}$	$1 / 4 \mathrm{GPM}$	$1 / 2$ to 25 GPM	15 GPM
$3 / 4^{\prime \prime}$	$1 / 2 \mathrm{GPM}$	$3 / 4$ to 35 GPM	25 GPM
$1^{\prime \prime}$	$3 / 4 \mathrm{GPM}$	2 to 50 GPM	35 GPM

NOTE: Performance curves are typical only and NOT a guarantee of performance.

Dimensions and Weights

Performance

HEAD LOSS - 5/8", 3/4" AND 1"
(Figure 1)

NOTE: Performance curves are typical only and NOT a guarantee of performance.

Performance

ACCURACY - $5 / 8^{\prime \prime}, 3 / 4^{\prime \prime}$, AND $1^{\prime \prime}$
(Figure 2)

Technical Specs

Compliance and Restrictions

None
Documentation

11A345 Technical Data Sheet
Repair Parts
Displaying repair parts for model: 11A345 2 Parts Available
Mfr. Part\# Part Description

Brand Hem\#
Availability
Price
Qty
http://www.grainger.com/product/DAYTON-Grinder-Pump-11A345?s_pp=false
CASE ID: EDAGO505,45L

Exhibit E-Copy of the Water Bill from Mohawk Utilities

