Ohio Public Utilities Commission

Application to Commit Energy Efficiency/Peak Demand Reduction Programs (Mercantile Customers Only)

Case No.: 14-0264-EL-EEC

Mercantile Customer:	Jo-Ann Stores Inc
Electric Utility:	Ohio Edison Company
Program Title or Description:	Penthouse Upgrades,Print Shop Renovation and Dual Duct Replacement Phase 1

Rule 4901:1-39-05(F), Ohio Administrative Code (O.A.C.), permits a mercantile customer to file, either individually or jointly with an electric utility, an application to commit the customer's existing demand reduction, demand response, and energy efficiency programs for integration with the electric utility's programs. The following application form is to be used by mercantile customers, either individually or jointly with their electric utility, to apply for commitment of such programs in accordance with the Commission's pilot program established in Case No. <u>10-834-EL-POR</u>

Completed applications requesting the cash rebate reasonable arrangement option (Option 1) in lieu of an exemption from the electric utility's energy efficiency and demand reduction (EEDR) rider will be automatically approved on the sixty-first calendar day after filing, unless the Commission, or an attorney examiner, suspends or denies the application prior to that time. Completed applications requesting the exemption from the EEDR rider (Option 2) will also qualify for the 60-day automatic approval so long as the exemption period does not exceed 24 months. Rider exemptions for periods of more than 24 months will be reviewed by the Commission Staff and are only approved up the issuance of a Commission order.

Complete a separate application for each customer program. Projects undertaken by a customer as a single program at a single location or at various locations within the same service territory should be submitted together as a single program filing, when possible. Check all boxes that are applicable to your program. For each box checked, be sure to complete all subparts of the question, and provide all requested additional information. Submittal of incomplete applications may result in a suspension of the automatic approval process or denial of the application.

Any confidential or trade secret information may be submitted to Staff on disc or via email at <u>ee-pdr@puc.state.oh.us</u>.

Section 1: Mercantile Customer Information

Name: Jo-Ann Stores Inc

Principal address: 5555 Darrow Rd Hudson, Ohio 44236

Address of facility for which this energy efficiency program applies:Same

Name and telephone number for responses to questions: Debbie Mansfield #330-656-2600

Electricity use by the customer (check the box(es) that apply):

The customer uses more than seven hundred thousand kilowatt hours per year at the above facility. (Please attach documentation.)

The customer is part of a national account involving multiple facilities in one or more states. (Please attach documentation.)

Section 2: Application Information

A) The customer is filing this application (choose which applies):

_____ Individually, without electric utility participation.

Jointly with the electric utility.

- B) The electric utility is: Ohio Edison Company
- C) The customer is offering to commit (check any that apply):
 - Energy savings from the customer's energy efficiency program. (Complete Sections 3, 5, 6, and 7.)
 - Capacity savings from the customer's demand response/demand reduction program. (Complete Sections 4, 5, 6, and 7.)
 - Both the energy savings and the capacity savings from the customer's energy efficiency program. (Complete all sections of the Application.)

Section 3: Energy Efficiency Programs

- A) The customer's energy efficiency program involves (check those that apply):
 - Early replacement of fully functioning equipment with new equipment. (Provide the date on which the customer replaced fully functioning equipment, and the date on which the customer would have replaced such equipment if it had not been replaced early. Please include a brief explanation for how the customer determined this future replacement date (or, if not known, please explain why this is not known)). If Checked, Please see Exhibit 1 and Exhibit 2
 - Installation of new equipment to replace equipment that needed to be replaced The customer installed new equipment on the following date(s):
 - Installation of new equipment for new construction or facility expansion. The customer installed new equipment on the following date(s):

Behavioral or operational improvement.

- B) Energy savings achieved/to be achieved by the energy efficiency program:
 - If you checked the box indicating that the project involves the early replacement of fully functioning equipment replaced with new equipment, then calculate the annual savings [(kWh used by the original equipment) - (kWh used by new equipment) = (kWh per year saved)]. Please attach your calculations and record the results below:

Annual savings: 605,532 kWh

2) If you checked the box indicating that the customer installed new equipment to replace equipment that needed to be replaced, then calculate the annual savings [(kWh used by less efficient new equipment) - (kWh used by the higher efficiency new equipment) = (kWh per year saved)]. Please attach your calculations and record the results below:

Annual savings: _____ kWh

Please describe any less efficient new equipment that was rejected in favor of the more efficient new equipment. Please see Exhibit 1 if applicable

 If you checked the box indicating that the project involves equipment for new construction or facility expansion, then calculate the annual savings [(kWh used by less efficient new equipment) - (kWh used by higher efficiency new equipment) = (kWh per year saved)]. Please attach your calculations and record the results below:

Annual savings: _____ kWh

Please describe the less efficient new equipment that was rejected in favor of the more efficient new equipment. Please see Exhibit 1 if applicable

4) If you checked the box indicating that the project involves behavioral or operational improvements, provide a description of how the annual savings were determined.

Section 4: Demand Reduction/Demand Response Programs

- A) The customer's program involves (check the one that applies):
 - Coincident peak-demand savings from the customer's energy efficiency program.
 - Actual peak-demand reduction. (Attach a description and documentation of the peak-demand reduction.)
 - Potential peak-demand reduction (check the one that applies):
 - The customer's peak-demand reduction program meets the requirements to be counted as a capacity resource under a tariff of a regional transmission organization (RTO) approved by the Federal Energy Regulatory Commission.
 - The customer's peak-demand reduction program meets the requirements to be counted as a capacity resource under a program that is equivalent to an RTO program, which has been approved by the Public Utilities Commission of Ohio.
- B) On what date did the customer initiate its demand reduction program?

Please reference Exhibit 2

C) What is the peak demand reduction achieved or capable of being achieved (show calculations through which this was determined):

<u>91</u> kW

Revised June 24, 2011

Section 5: Request for Cash Rebate Reasonable Arrangement (Option 1) or Exemption from Rider (Option 2)

Under this section, check the box that applies and fill in all blanks relating to that choice.

Note: If Option 2 is selected, the application will not qualify for the 60-day automatic approval. All applications, however, will be considered on a timely basis by the Commission.

A) The customer is applying for:

Option 1: A cash rebate reasonable arrangement.

OR

Option 2: An exemption from the energy efficiency cost recovery mechanism implemented by the electric utility.

OR

Commitment payment

- B) The value of the option that the customer is seeking is:
 - Option 1: A cash rebate reasonable arrangement, which is the lesser of (show both amounts):
 - A cash rebate of \$<u>36,332</u>. (Rebate shall not exceed 50% project cost. Attach documentation showing the methodology used to determine the cash rebate value and calculations showing how this payment amount was determined.)
 - Option 2: An exemption from payment of the electric utility's energy efficiency/peak demand reduction rider.
 - An exemption from payment of the electric utility's energy efficiency/peak demand reduction rider for _____ months (not to exceed 24 months). (Attach calculations showing how this time period was determined.)
 - OR

A commitment payment valued at no more than \$_____. (Attach documentation and calculations showing how this payment amount was determined.)

OR

Ongoing exemption from payment of the electric utility's energy efficiency/peak demand reduction rider for an initial period of 24 months because this program is part of the customer's ongoing efficiency program. (Attach documentation that establishes the ongoing nature of the program.) In order to continue the exemption beyond the initial 24 month period, the customer will need to provide a future application establishing additional energy savings and the continuance of the organization's energy efficiency program.)

Section 6: Cost Effectiveness

The program is cost effective because it has a benefit/cost ratio greater than 1 using the (choose which applies):

- _____ Total Resource Cost (TRC) Test. The calculated TRC value is: _____(Continue to Subsection 1, then skip Subsection 2)
- Utility Cost Test (UCT). The calculated UCT value is: See Exhibit 3 (Skip to Subsection 2.)

Subsection 1: TRC Test Used (please fill in all blanks).

The TRC value of the program is calculated by dividing the value of our avoided supply costs (generation capacity, energy, and any transmission or distribution) by the sum of our program overhead and installation costs and any incremental measure costs paid by either the customer or the electric utility.

The electric utility's avoided supply costs were _____.

Our program costs were _____.

The incremental measure costs were _____.

Subsection 2: UCT Used (please fill in all blanks).

We calculated the UCT value of our program by dividing the value of our avoided supply costs (capacity and energy) by the costs to our electric utility (including administrative costs and incentives paid or rider exemption costs) to obtain our commitment.

Our avoided supply costs were See Exhibit 3

The utility's program costs were See Exhibit 3

The utility's incentive costs/rebate costs were See Exhibit 3

Section 7: Additional Information

Please attach the following supporting documentation to this application:

- Narrative description of the program including, but not limited to, make, model, and year of any installed and replaced equipment.
- A copy of the formal declaration or agreement that commits the program or measure to the electric utility, including:
 - 1) any confidentiality requirements associated with the agreement;
 - 2) a description of any consequences of noncompliance with the terms of the commitment;
 - 3) a description of coordination requirements between the customer and the electric utility with regard to peak demand reduction;
 - permission by the customer to the electric utility and Commission staff and consultants to measure and verify energy savings and/or peak-demand reductions resulting from your program; and,
 - 5) a commitment by the customer to provide an annual report on your energy savings and electric utility peak-demand reductions achieved.
- A description of all methodologies, protocols, and practices used or proposed to be used in measuring and verifying program results. Additionally, identify and explain all deviations from any program measurement and verification guidelines that may be published by the Commission.

Public Utilities Commission

Application to Commit Energy Efficiency/Peak Demand Reduction Programs (Mercantile Customers Only)

Case No.: 14-0264-EL-EEC

State of Ohio :

Debbie Mansfield, Affiant, being duly sworn according to law, deposes and says that:

1. I am the duly authorized representative of:

> Jo-Ann Stores Inc [insert customer or EDU company name and any applicable name(s) doing business as]

2. I have personally examined all the information contained in the foregoing application, including any exhibits and attachments. Based upon my examination and inquiry of those persons immediately responsible for obtaining the information contained in the application, I believe that the information is true, accurate and complete.

Signature of exitiant & Title

DIRECTOR, ENERGY & FACILITIES

Sworn and subscribed before me this <u>3PD</u> day of <u>APEIL</u> <u>2014</u> Month/Year

Signature of official administering oath

Vilma M Quinlan, SVP Admin Print Name and Title

My commission expires on _ _____

VELMA M. QUINLAN NOTARY PUBLIC, STATE OF OHIO My Commission Expires 8/28/2017

Revised June 24, 2011

FE Rev 06.29.11

Exhibit 1

Customer Legal Entity Name: Jo-Ann Stores Inc

Site Address: JoAnn Fabric Corpoerate Offices and Distribution Center Principal Address: 5555 Darrow Rd

What date would you have replaced your equipment if you had not replaced it early? Please describe the less efficient new

Project		Narrative description of your program including, but not limited to,	Description of methodologies, protocols and practices	Also, please explain briefly how you	equipment that you rejected in favor of
No.	Project Name	make, model, and year of any installed and replaced equipment:	used in measuring and verifying project results	determined this future replacement date.	the more efficient new equipment.
1	Penthouse Upgrades	This project entailed removing two existing HR-195 195 ton reciprocating chillers used to supply chilled water to dual duct air handlers located in separate North and South penthouse mechanical rooms. The two chillers were replaced with 30HXC 244 ton chillers. The original piping to the chilled water coil did not include a chilled water control valve. As part of the project the chilled water pumps were fitted with variable speed drives. These are controlled to act as capacity control for the chilled water coil, allowing the centrifugal chillers to operate at minimum required capacity for prolonged periods and to reduce pump horsepower requirements Included in the project was modifications to the air handlers mixing section dampers. These dampers were the original dampers provided with the air handling unit. The measured leakage rate was in excess of 45% with the dampers at minimum position. The damper closure was not possible, thus when the air handling system shutdown the estimated leakage rate was in excess of 15%. The unoccupied savings was not calculated since the chilled water system was held off after hoursBAS modification include comparative enthalpy economizer control and demand controlled ventilation (CO2). +Cooling tower savings are based on reduced operating hours and modifications to the existing BAS sequence of	Please reference the Chiller , Tower,Control & VFD upgrade and optimization calcualtions attached.	Approx year 2018. At that time we estimated that the chiller repair , parts availability , operational and on-going maintenance costs would warrant replacement.	N/A
2	Print Shop Renovation	Replaced 25 ton air cooled D.X air handler with new air handler and Carrier 30RAP chiller. New air handler included low leakage dampers. Eliminated 24/7 3 hp exhaust system. Integrated chiller and AHU controls with existing BAS.	Please reference the Print Shop renovation upgrade and optimization calcualtions attached.	Approximately 2016. We estimated that the on going energy cost, equipment repair, and parts availability would warrant replacing the existing system.	N/A
3	Dual Duct Replacement Phase 1	Replaced existing pneumatically controlled constant volume dual duct mixing boxes with electronically controlled dual duct VAV mixing boxes. Air is supplied to the boxes by AHU-1. Boxes are interfaced with existing BAS. The change to VAV and optimized control sequences allows AHU-1 supply and return exhaust fans to operate at reduced speeds. It also prevent's simultanueous heating and cooling which was prevalent with the original boxes. Additional boxes were installed to match the current office usage and improve occupancy scheduling.	Please reference the Dual Duct upgrade and optimization calcualtions attached.	Approximatley yr 2017. We estimated the replacement cost for single boxes, that would have been replaced as they failed. We estimated the energy savings of VAV boxes compared to present operation. The result was that early replacement made financial sense, as it increased office comfort levels and reduced energy usage.	N/A

Docket No. 14-0264

Site: 5555 Darrow Rd

Customer Legal Entity Name: Jo-Ann Stores Inc

Site Address: JoAnn Fabric Corpoerate Offices and Distribution Center

Principal Address: 5555 Darrow Rd

		Unadjusted Usage, kwh (A)	Weather Adjusted Usage, kwh (B)	Weather Adjusted Usage with Energy Efficiency Addbacks, kwh (c) Note 1						
	2012	10,522,947	10,522,947	10,522,947						
	Average	10,522,947	10,522,947	10,522,947						
Project Number	Project Name	In-Service Date	Project Cost \$	50% of Project Cost \$	KWh Saved/Year (D) counting towards utility compliance	KWh Saved/Year (E) eligible for incentive	Utility Peak Demand Reduction Contribution, KW (F)	Prescriptive Rebate Amount (G) \$	Eligible Rebate Amount (H) \$ Note 2	Commitment Payment \$
1	Penthouse Upgrades	06/01/2013	\$541,845	\$270,923	351,019	351,019	78	\$28,082	\$21,062	
2	Print Shop Renovation	06/01/2013	\$459,378	\$229,689	182,112	182,112	13	\$14,569	\$10,927	
3	Dual Duct Replacement Phase 1	12/01/2013	\$444,000	\$222,000	72,401	72,401	-	\$5,792	\$4,344	
					-	-	-			
							-			
					-	-	-			
							-			
		Total	\$1,445,223		605,532	605,532	91	\$48,443	\$36,332	\$0

Docket No. 14-0264 Site: 5555 Darrow Rd

Notes

(1) Customer's usage is adjusted to account for the effects of the energy efficiency programs included in this application. When applicable, such adjustments are prorated to the in-service date to account for partial year savings.

(2) The eligible rebate amount is based upon 75% of the rebates offered by the FirstEnergy Commercial and Industrial Energy Efficiency programs or 75% of \$0.08/kWh for custom programs for all energy savings eligible for a cash rebate as defined in the PUCO order in Case NO.10-834-EL-EEC dated 9/15/2010, not to exceed the lesser of 50% of the project cost or \$250,000 per project. The rebate also cannot exceed \$500,000 per customer per year, per utility service territory.

Exhibit 3 Utility Cost Test

Project	Total Annual Savings, MWh (A)	otal Annual vings, MWh (A) (A) (B) (Cost \$/MWh (B)		d Utility Avoided Cost \$ (C)		ι	Jtility Cost \$ (D)	Cash Rebate \$ (E)	Administrator Variable Fee \$ (F)	То	otal Utility Cost \$ (G)	UСТ (Н)	
1	351	\$	308	\$	108,212	\$	1,350	\$21,062	\$0	\$	22,412	4.8	
2	182	\$	308	\$	56,141	\$	1,350	\$10,927	\$ 0	\$	12,277	4.57	
3	72	\$	308	\$	22,320	\$	1,350	\$4,344	\$O	\$	5,694	3.92	
Total	606	\$	308		186,673		4,050	\$36,332	\$0		40,382	4.6	

UCT = Utility Avoided Costs / Utility Costs

Notes

- (A) From Exhibit 2, = kWh saved / 1000
- (B) This value represents avoided energy costs (wholesale energy prices) from the Department of Energy, Energy Information Administration's 2009 Annual Energy Outlook (AEO) low oil prices case. The AEO represents a national average energy price, so for a better representation of the energy price that Ohio customers would see, a Cinergy Hub equivalent price was derived by applying a ratio based on three years of historic national average and Cinergy Hub prices. This value is consistent with avoided cost assumptions used in EE&PDR Program Portfolio and Initial Benchmark Report, filed Dec 15, 2009 (See Section 8.1, paragraph a).

(C) = (A) * (B)

- (D) Represents the utility's costs incurred for self-directed mercantile applications for applications filed and applications in progress. Includes incremental costs of legal fees, fixed administrative expenses, etc.
- (E) This is the amount of the cash rebate paid to the customer for this project.
- (F) Based on approximate Administrator's variable compensation for purposes of calculating the UCT, actual compensation may be less.

(G) = (D) + (E) + (F)

(H) = (C) / (G)

Jo-Ann Stores Inc ~ JoAnn Fabric Corpoerate Offices and Distribution Center Docket No. 14-0264

Site: 5555 Darrow Rd

JoAnn Hudson Chiller Replacement Project Hudson, Ohio FE Rebate Information 2/4/2014

	Existing	Red. Existing	New	Avoided
Chiller Replacements	_	_		
Replace North and South Chillers	418,645		151,789	266,856
Chilled water pump savings				
Reduced hours of operation	47,622	37,679		9,943
Variable Flow Pumping		37,679	26,375	11,304
Cooling tower savings				
Reduced hours of operation	72,997	57,756		15,241
BAS sequence optimization		57,756	41,584	16,172
Damper Replacements				
Replace North and South mixing dampe	95,433		63,929	31,504
<u>Totals</u>	<u>634,697</u>		<u>283,678</u>	<u>351,019</u>

JoAnn Hudson Chiller Replacement Project Hudson, Ohio

\$ Saved	kWh Saved
\$24,017.00	266,856
\$894.87	9,943
\$1,017.33	11,304
\$1,371.70	15,241
\$1,455.45	16,172
\$2,835.38	31,504
	\$ Saved \$24,017.00 \$894.87 \$1,017.33 \$1,371.70 \$1,455.45 \$2,835.38

This project entailed removing two existing HR-195 195 ton reciprocating chillers used to supply chilled water to dual duct air handlers located in separate North and South penthouse mechanical rooms. The two chillers were replaced with 30HXC 244 ton chillers. The original piping to the chilled water coil did not include a chilled water control valve. As part of the project the chilled water pumps were fitted with variable speed drives. These are controlled to act as capacity control for the chilled water coil, allowing the centrifugal chillers to operate at minimum required capacity for prolonged periods and to reduce pump horsepower requirements.

Included in the project was modifications to the air handlers mixing section dampers. These dampers were the original dampers provided with the air handling unit. The measured leakage rate was in excess of 45% with the dampers at minimum position. The damper closure was not possible, thus when the air handling system shutdown the estimated leakage rate was in excess of 15%. The unoccupied savings was not calculated since the chilled water system was held off after hours. ---BAS modification include comparative enthalpy economizer control and demand controlled ventilation (CO2).

Cooling tower savings are based on reduced operating hours and modifications to the existing BAS sequence of operation.

Estimated Chiller Energy Savings		
kWh Avoided	<u>319,515</u>	
Total Savings	\$28,756	
Chiller Replacements		
HR 195 Carrier Recip Chiller (5 comperssors)		
Existing North chiller usage		
Hours/Month = (14 Hours*6.5 days*4 wks)	364	hrs.
Chiller kW/ton at Cond. ENT		
75° = 167 kW / 191 Tons	0.87	kW
80° = 173.5 kW / 186 Tons	0.93	kW
85° = 179.6 kW / 181 Tons	1.01	kW
90° = 185 kW / 176 Tons	1.05	kW
kW per compressor at full load (@40 Tons)		
75° = .875 kW/ton x 39T	0.87	kW
80° = .932 kW/Ton x 39 T	0.93	kW
85° = 1.007 kW/Ton x 39 T	1.01	kW
90° = 1.05 kW/Ton x 39 T	1.05	kW
kW per compressor at unloaded part load (@ 26 Tons)		
75° = .875 kW/ton x 39T x .66	0.58	kW
80° = .932 kW/Ton x 39 T x .66	0.62	kW
85° = 1.007 kW/Ton x 39 T x .66	0.66	kW
90° = 1.05 kW/Ton x 39 T x .66	0.69	kW
Total full load hours (all compressors)	4,659	hrs.
Total partial load hours (all compressors)	1,947	hrs.
Total no load hours (all compressors)		hrs.
Total full load ton hours	186,368	t/hrs
Total partial load ton hours	50,632	t/hrs
Total ton hours	237,000	t/hrs
Total kWh consumed		
North chilled water system	209,322	kWh
South chilled water system (identical system)	209,322	kWh
Total kWh used by North & South systems	<u>418,645</u>	kWh
30HXC 244 Chiller (cetrifigual)		
New North chiller usage		
Hours/Month (12 Hours * 6 days * 4 wks)	288	hrs.
Total full load hours	23	hrs.
Total partial load hours	1,377	hrs.
Total no load hours	331	hrs.
Total full load ton hours	5,622	t/hrs
Total partial load ton hours	125,260	t/hrs
Total ton hours	130,882	t/hrs
North chilled water system	75,895	kWh
South chilled water system (identical system)	75,895	kWh
Total kWh used by North & South systems	<u>151,789</u>	kWh
kWh avoided	<u>266,856</u>	kWh
\$/kWh	\$0.09	
Total cost savings	\$24,017	

Chilled water pump savings

Reduced hours of operation		
Pump Hp (both North and South pumps 10 hp @	20	
Amps	27.4	
kW	21.8	kW
Existing hours (6 months)	2184	hrs.
kWh used	47,621.9	kWh
New hours (6 months)	1728	hrs.
kWh used	37,678.9	kWh
kWh avoided	<u>9,943.0</u>	
\$/kWh	\$0.09	
Total cost savings	\$895	
Variable Flow Pumping		
Chilled Water Pump VFD (Acting as control valve)		
kWh used	37,678.9	kWh
Est Reduction	30%	
New kWh used	26,375.2	kWh
kWh avoided	<u>11,303.7</u>	kWh
\$/kWh	\$0.09	
Total cost savings	\$1,017.33	
Cooling tower savings		
Reduced hours of operation		
Tower fan Hp (both North and South towers 15 I	30	
Amps	42.0	
kW	33.4	kW
Existing hours (6 months)	2184	hrs.
kWh used	72,997.1	kWh
New hours (6 months)	1728	hrs.
kWh used	57,756.0	kWh
kWh avoided	<u>15,241.2</u>	
\$/kWh	\$0.09	
Total cost savings	\$1,372	
BAS sequence optimization		
Chilled Water Pump VFD (Acting as control valve)		
kWh used	57,756.0	kWh
Est Reduction	28%	
New kWh used	41,584.3	kWh
kWh avoided	<u>16,171.7</u>	kWh
\$/kWh	\$0.09	
I otal cost savings	\$1,455.45	

Existing HR 195 chiller estimated energy usage

Estimate % of compressor operation

	CDD Comp 1				Comp 2		Comp 3			Comp 4			Comp 5			
		Full (40T)	Partial (26 T)	Off	Full (40T)	Partial (26 T)	Off	Full (40T)	Partial (26 T	Off	Full (40T)	Partial (26 T)	Off	Full (40T)	Partial (26 T)	Off
#########	13	45%	15%	40%	35%	15%	50%	30%	10%	60%	15%	10%	75%	0%	0%	100%
Jun-08	163	75%	25%	0%	65%	25%	10%	55%	25%	20%	30%	30%	40%	10%	15%	75%
Jul-08	222	95%	5%	0%	85%	15%	0%	65%	30%	5%	45%	45%	10%	15%	15%	70%
#########	139	95%	5%	0%	90%	10%	0%	70%	25%	5%	45%	45%	10%	15%	15%	70%
#########	74	75%	15%	10%	55%	15%	30%	35%	20%	45%	25%	15%	60%	10%	10%	80%
Oct-08	2	45%	15%	40%	35%	35%	30%	15%	15%	70%	0%	0%	100%	5%	15%	80%

Estimate hours of operation (% operation * hours per month)

	CDD		Comp 1		Comp 2			Comp 3		Comp 4		Comp 5				CI		
		Full (40T)	Partial (26 T)	Off	Full (40T)	Partial (26 T)	Off	Full (40T)	Partial (26 T)	Off	Full (40T)	Partial (26 T)	Off	Full (40T)	Partial (26 T)	Off		
#########	13	163.8	54.6	145.6	127.4	54.6	182	109.2	36.4	218.4	54.6	36.4	273	0	0	364	########	
Jun-08	163	273	91	0	236.6	91	36.4	200.2	91	72.8	109.2	109.2	145.6	36.4	54.6	273	#########	1
Jul-08	222	345.8	18.2	0	309.4	54.6	0	236.6	109.2	18.2	163.8	163.8	36.4	54.6	54.6	254.8	Jul-08	2
#########	139	345.8	18.2	0	327.6	36.4	0	254.8	91	18.2	163.8	163.8	36.4	54.6	54.6	254.8	#########	1
#########	74	273	54.6	36.4	200.2	54.6	109.2	127.4	72.8	163.8	91	54.6	218.4	36.4	36.4	291.2	########	
Oct-08	2	163.8	54.6	145.6	127.4	127.4	109.2	54.6	54.6	254.8	0	0	364	18.2	54.6	291.2	#########	
Total		1,565	291	328	1,329	419	437	983	455	746	582	528	1,074	200	255	1,729	Total	

-																
	ENT Comp 1					Comp 2		Comp 3			Comp 4			Comp 5		
		Full (40T)	Partial (26 T)) Off	Full (40T)	Partial (26 T)	Off	Full (40T)	Partial (26 T)	Off	Full (40T)	Partial (26 T)	Off	Full (40T)	Partial (26 T)	Off
########	75	6,552	1,420	0	5,096	1,420	0	4,368	946	0	2,184	946	0	0	0	0
Jun-08	80	10,920	2,366	0	9,464	2,366	0	8,008	2,366	0	4,368	2,839	0	1,456	1,420	0
Jul-08	85	13,832	473	0	12,376	1,420	0	9,464	2,839	0	6,552	4,259	0	2,184	1,420	0
########	90	13,832	473	0	13,104	946	0	10,192	2,366	0	6,552	4,259	0	2,184	1,420	0
#########	85	10,920	1,420	0	8,008	1,420	0	5,096	1,893	0	3,640	1,420	0	1,456	946	0
Oct-08	75	6,552	1,420	0	5,096	3,312	0	2,184	1,420	0	0	0	0	728	1,420	0
Total		62,608	7,571	0	53,144	10,884	0	39,312	11,830	0	23,296	13,723	0	8,008	6,625	0

New HXC246 chiller estimate energy usage

		INCW II	X0240 Cilline	estimate ene	igy usage		
Estimate %	operation	at partial loa	ads				
	CDD	0%	25%	50%	75%	100%	
		offline					
#########	13	35%	45%	15%	5%	0%	100%
#########	163	15%	55%	25%	5%	0%	100%
Jul-08	222	5%	43%	45%	5%	3%	101%
#########	139	5%	25%	55%	10%	5%	100%
########	74	15%	50%	30%	5%	0%	100%
########	2	40%	55%	5%	0%	0%	100%

Estimate hours at partial loads

	CDD	0%	25%	50%	75%	100%	
		offline					
########	13	100.8	129.6	43.2	14.4	0	301
#########	163	43.2	158.4	72	14.4	0	451
Jul-08	222	14.4	123.84	129.6	14.4	8.64	513
########	139	14.4	72	158.4	28.8	14.4	427
#########	74	43.2	144	86.4	14.4	0	362
########	2	115.2	158.4	14.4	0	0	290
Total		331	786	504	86	23	2,344

	CDD	0%	25%	50%	75%	100%	
		offline					
#########	13	0	7,906	5,270	2,635	0	15,811
########	163	0	9,662	8,784	2,635	0	21,082
Jul-08	222	0	7,554	15,811	2,635	2,108	28,109
#########	139	0	4,392	19,325	5,270	3,514	32,501
########	74	0	8,784	10,541	2,635	0	21,960
#########	2	0	9,662	1,757	0	0	11,419
Total		0	47,961	61,488	15,811	5,622	130,882

Estimate kWh used by existing system (Hours x Tons x kW/ton)

	ENT		Comp 1		Comp 2			Comp 3				Comp 4		Comp 5			
		Full (40T)	Partial (26 T)	Off	Full (40T)	Partial (26 T)	Off	Full (40T)	Partial (26 T)	Off	Full (40T)	Partial (26 T)	Off	Full (40T)	Partial (26 T)	Off	
#########	75	3,779	819	0	2,940	819	0	2,520	546	0	1,260	546	0	0	0	0	
Jun-08	80	10,177	1,455	0	8,820	1,455	0	7,463	1,455	0	4,071	1,746	0	1,357	873	0	
Jul-08	85	13,929	314	0	12,463	943	0	9,530	1,887	0	6,598	2,830	0	2,199	943	0	
########	90	14,524	314	0	13,759	629	0	10,702	1,572	0	6,880	2,830	0	2,293	943	0	
#########	85	10,996	943	0	8,064	943	0	5,132	1,258	0	3,665	943	0	1,466	629	0	
Oct-08	75	5,726	819	0	4,454	1,911	0	1,909	819	0	0	0	0	636	819	0	
Total		59,132	4,666	0	50,500	6,701	0	37,255	7,538	0	22,474	8,897	0	7,952	4,208	0	

Estimate kWh used by new chiller

	CDD	.0 kW/ton	.523 kw/ton	0.586 kW/ton	0.646 kW/ton	.703 kW/ton	Total kWh
		offline					
########	13	0	4,135	3,088	1,702	0	8,938
########	163	0	5,053	5,147	1,702	0	12,066
Jul-08	222	0	3,951	9,265	1,702	1,482	16,623
########	139	0	2,297	11,324	3,405	2,470	19,635
########	74	0	4,594	6,177	1,702	0	12,547
########	2	0	5,053	1,029	0	0	6,085
Total		0	25,083	36,032	10,214	3,952	75,895

Low Leakage Damper North and South Kwh avoided Cooling Savings	<u>31,504</u> \$2,835.38	
Unit CFM (both units)	130,000	
Estimate cooling occupied hours Average indoor temp Average indoor relative humidity Average indoor enthalpy	1,731 72 55% 27	(288 hrs./month/6 months) ° Btu/# of air
Average OA temp	79	0
Average outdoor relative humidity	68%	
Average outdoor enthalpy	35	Btu/# of air
Outdoor enthalpy - indoor enthalpy	8	Btu/# of air
Minimum %	45.0%	Verified with field measurements
New minimum %	10.0%	
Leakage Diff	35.0%	
CFM reduction	45,500	
Cooling Btu saved per hour	364,000	
Tons saved per hour	30	
Tons saved per year	52507	
Existing chiller kW/ton	0.6	
kWh avoided	<u>31,504</u>	
\$/kWh	\$0.09	
Total Savings	<u>\$2,835.38</u>	

2008 - 2009 Electric Usage Analysis JoAnn Hudson Facility, Hudson, Ohio

2008 - 2009 Energy Utilization Intensity Analysis JoAnn Hudson Facility, Hudson, Ohio

										2008			
Read Date	kWh	kVa	Cost	Unit Cost	HDD	CDD	DD Month	kWh/Sq.Ft.	\$/Sq.Ft.	Month	Gas EUI	Electric EUI	Total EUI
Jan-08	1,233,710	4,844	\$94,415.78	\$0.08	1,128	0	Jan-08	0.9	\$0.07	Jan-08	8,013.8	3,129.0	#######################################
Feb-08	1,170,143	4,746	\$91,848.84	\$0.08	1,119	0	Feb-08	0.9	\$0.07	Feb-08	9,192.7	2,967.8	#######################################
Mar-08	1,205,749	4,673	\$94,085.52	\$0.08	972	0	Mar-08	0.9	\$0.07	Mar-08	3,720.4	3,058.1	6,778.4
Apr-08	1,113,902	4,700	\$91,820.25	\$0.08	392	3	Apr-08	0.8	\$0.07	Apr-08	2,230.0	2,825.1	5,055.1
May-08	1,189,422	5,105	\$98,833.35	\$0.08	304	13	########	0.9	\$0.07	May-08	773.8	3,016.7	3,790.5
Jun-08	1,263,044	5,128	\$105,859.68	\$0.08	31	163	Jun-08	0.9	\$0.08	Jun-08	274.3	3,203.4	3,477.7
Jul-08	1,273,680	5,177	\$105,659.35	\$0.08	1	222	Jul-08	0.9	\$0.08	Jul-08	125.6	3,230.4	3,356.0
Aug-08	1,320,317	5,084	\$106,122.55	\$0.08	6	139	Aug-08	1.0	\$0.08	Aug-08	47.6	3,348.6	3,396.2
Sep-08	1,228,604	5,326	\$97,269.54	\$0.08	59	74	Sep-08	0.9	\$0.07	Sep-08	217.1	3,116.0	3,333.1
Oct-08	2,492,531	Gas u	\$197,335.54	\$0.08	446	2	Oct-08	1.9	\$0.15	Oct-08	1,302.3	6,321.6	7,624.0
Nov-08	1,171,039	4,703	\$94,742.35	\$0.08	792	0	Nov-08	0.9	\$0.07	Nov-08	3,285.5	2,970.0	6,255.5
Dec-08	1,299,306	4,789	\$99,605.52	\$0.08	1,065	0	Dec-08	1.0	\$0.07	Dec-08	7,960.3	3,295.3	#######################################
Totals/Avg.	############	54,274	\$1,277,598.27	\$0.08	6,315	616		1.0	\$0.08		#########	40,482.0	#######################################
2009										2009			
Read Date	kWh	kVa	Cost	Unit Cost	HDD	CDD	DD Month	kWh/Sq.Ft.	\$/Sq.Ft.	Month	Gas EUI	Electric EUI	Total EUI
Jan-09	2,607,860	4,788	\$196,669.18	\$0.08	1,443	0	Jan-09	1.9	\$0.15	Jan-09	8,412.3	6,614.2	#######################################
Feb-09	2,397,476	4,720	\$186,910.90	\$0.08	994	0	Feb-09	1.8	\$0.14	Feb-09	5 525 2	C 000 C	#######################################
Mar. 00											0,010.1	6,080.6	
Mar-09	2,428,774	4,604	\$191,129.54	\$0.08	757	0	Mar-09	1.8	\$0.14	Mar-09	3,171.8	6,080.6 6,159.9	9,331.7
Mar-09 Apr-09	2,428,774 1,143,186	4,604 2,361	\$191,129.54 \$97,532.45	\$0.08 \$0.09	757 463	0 22	Mar-09 Apr-09	1.8 0.8	\$0.14 \$0.07	Mar-09 Apr-09	3,171.8 3,307.8	6,080.6 6,159.9 2,899.4	9,331.7 6,207.2
Mar-09 Apr-09 May-09	2,428,774 1,143,186 1,190,869	4,604 2,361 2,473	\$191,129.54 \$97,532.45 \$102,536.38	\$0.08 \$0.09 \$0.09	757 463 171	0 22 30	Mar-09 Apr-09 ########	1.8 0.8 0.9	\$0.14 \$0.07 \$0.08	Mar-09 Apr-09 May-09	3,171.8 3,307.8 198.5	6,080.6 6,159.9 2,899.4 3,020.3	9,331.7 6,207.2 3,218.8
Mar-09 Apr-09 May-09 Jul-09	2,428,774 1,143,186 1,190,869 1,252,691	4,604 2,361 2,473 5,090	\$191,129.54 \$97,532.45 \$102,536.38 \$112,995.69	\$0.08 \$0.09 \$0.09 \$0.09	757 463 171 8	0 22 30 106	Mar-09 Apr-09 ######## Jul-09	1.8 0.8 0.9 0.9	\$0.14 \$0.07 \$0.08 \$0.08	Mar-09 Apr-09 May-09 Jul-09	3,171.8 3,307.8 198.5 55.0	6,080.6 6,159.9 2,899.4 3,020.3 3,177.1	9,331.7 6,207.2 3,218.8 3,232.1
Mar-09 Apr-09 May-09 Jul-09 Aug-09	2,428,774 1,143,186 1,190,869 1,252,691 1,219,957	4,604 2,361 2,473 5,090 5,105	\$191,129.54 \$97,532.45 \$102,536.38 \$112,995.69 \$23,515.32	\$0.08 \$0.09 \$0.09 \$0.09 \$0.02	757 463 171 8 16	0 22 30 106 187	Mar-09 Apr-09 ######## Jul-09 Aug-09	1.8 0.8 0.9 0.9 0.9	\$0.14 \$0.07 \$0.08 \$0.08 \$0.02	Mar-09 Apr-09 May-09 Jul-09 Aug-09	3,171.8 3,307.8 198.5 55.0 198.5	6,080.6 6,159.9 2,899.4 3,020.3 3,177.1 3,094.1	9,331.7 6,207.2 3,218.8 3,232.1 3,292.6
Mar-09 Apr-09 May-09 Jul-09 Aug-09 Sep-09	2,428,774 1,143,186 1,190,869 1,252,691 1,219,957	4,604 2,361 2,473 5,090 5,105 5,326	\$191,129.54 \$97,532.45 \$102,536.38 \$112,995.69 \$23,515.32 \$98,008.32	\$0.08 \$0.09 \$0.09 \$0.09 \$0.02 \$0.02	757 463 171 8 16 79	0 22 30 106 187 46	Mar-09 Apr-09 ######## Jul-09 Aug-09 Sep-09	1.8 0.8 0.9 0.9 0.9 0.9	\$0.14 \$0.07 \$0.08 \$0.08 \$0.02 \$0.07	Mar-09 Apr-09 May-09 Jul-09 Aug-09 Sep-09	3,171.8 3,307.8 198.5 55.0 198.5 1,627.9	6,080.6 6,159.9 2,899.4 3,020.3 3,177.1 3,094.1 3,116.0	9,331.7 6,207.2 3,218.8 3,232.1 3,292.6 4,743.9
Mar-09 Apr-09 May-09 Jul-09 Aug-09 Sep-09 Oct-09	2,428,774 1,143,186 1,190,869 1,252,691 1,219,957 1,238,856	4,604 2,361 2,473 5,090 5,105 5,326 1,228,604	\$191,129.54 \$97,532.45 \$102,536.38 \$112,995.69 \$23,515.32 \$98,008.32 \$97,071.66	\$0.08 \$0.09 \$0.09 \$0.09 \$0.02 \$0.08 \$0.08	757 463 171 8 16 79 487	0 22 30 106 187 46 0	Mar-09 Apr-09 ######## Jul-09 Aug-09 Sep-09 Oct-09	1.8 0.9 0.9 0.9 0.9 0.9 0.9	\$0.14 \$0.07 \$0.08 \$0.08 \$0.02 \$0.07 \$0.07	Mar-09 Apr-09 May-09 Jul-09 Aug-09 Sep-09 Oct-09	3,171.8 3,307.8 198.5 55.0 198.5 1,627.9 2,263.4	6,080.6 6,159.9 2,899.4 3,020.3 3,177.1 3,094.1 3,116.0 3,142.0	9,331.7 6,207.2 3,218.8 3,232.1 3,292.6 4,743.9 5,405.5
Mar-09 Apr-09 May-09 Jul-09 Aug-09 Sep-09 Oct-09 Nov-09	2,428,774 1,143,186 1,190,869 1,252,691 1,219,957 1,238,856 1,199,596	4,604 2,361 2,473 5,090 5,105 5,326 1,228,604 2,281	\$191,129.54 \$97,532.45 \$102,536.38 \$112,995.69 \$23,515.32 \$98,008.32 \$97,071.66 \$94,357.44	\$0.08 \$0.09 \$0.09 \$0.02 \$0.08 \$0.08 \$0.08	757 463 171 8 16 79 487 577	0 22 30 106 187 46 0 0	Mar-09 Apr-09 ######## Jul-09 Aug-09 Sep-09 Oct-09 Nov-09	1.8 0.8 0.9 0.9 0.9 0.9 0.9 0.9	\$0.14 \$0.07 \$0.08 \$0.08 \$0.02 \$0.07 \$0.07 \$0.07	Mar-09 Apr-09 May-09 Jul-09 Aug-09 Sep-09 Oct-09 Nov-09	3,171.8 3,307.8 198.5 55.0 198.5 1,627.9 2,263.4 3,478.8	6,080.6 6,159.9 2,899.4 3,020.3 3,177.1 3,094.1 3,116.0 3,142.0 3,042.5	9,331.7 6,207.2 3,218.8 3,232.1 3,292.6 4,743.9 5,405.5 6,521.2
Mar-09 Apr-09 May-09 Jul-09 Aug-09 Sep-09 Oct-09 Nov-09 Dec-09	2,428,774 1,143,186 1,190,869 1,252,691 1,219,957 1,238,856 1,199,596 1,240,218	4,604 2,361 2,473 5,090 5,105 5,326 1,228,604 2,281 2,293	\$191,129.54 \$97,532.45 \$102,536.38 \$112,995.69 \$23,515.32 \$98,008.32 \$97,071.66 \$94,357.44 \$97,286.32	\$0.08 \$0.09 \$0.09 \$0.02 \$0.08 \$0.08 \$0.08 \$0.08 \$0.08	757 463 171 8 16 79 487 577 1,099	0 22 30 106 187 46 0 0 0	Mar-09 Apr-09 ######## Jul-09 Aug-09 Sep-09 Oct-09 Nov-09 Dec-09	1.8 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	\$0.14 \$0.07 \$0.08 \$0.08 \$0.02 \$0.07 \$0.07 \$0.07 \$0.07	Mar-09 Apr-09 May-09 Jul-09 Aug-09 Sep-09 Oct-09 Nov-09 Dec-09	3,171.8 3,307.8 198.5 55.0 198.5 1,627.9 2,263.4 3,478.8 6,254.4	6,080.6 6,159.9 2,899.4 3,020.3 3,177.1 3,094.1 3,116.0 3,142.0 3,042.5 3,145.5	9,331.7 6,207.2 3,218.8 3,232.1 3,292.6 4,743.9 5,405.5 6,521.2 9,399.9
Mar-09 Apr-09 Jul-09 Aug-09 Sep-09 Oct-09 Nov-09 Dec-09 Totals/Avg.	2,428,774 1,143,186 1,190,869 1,252,691 1,219,957 1,238,856 1,199,596 1,240,218	4,604 2,361 2,473 5,090 5,105 5,326 1,228,604 2,281 2,293 1,267,646	\$191,129.54 \$97,532.45 \$102,536.38 \$112,995.69 \$23,515.32 \$98,008.32 \$97,071.66 \$94,357.44 \$97,286.32 \$1,298,013.20	\$0.08 \$0.09 \$0.09 \$0.02 \$0.08 \$0.08 \$0.08 \$0.08 \$0.08 \$0.08	757 463 171 8 16 79 487 577 1,099 6,094	0 22 30 106 187 46 0 0 0 391	Mar-09 Apr-09 ######## Jul-09 Aug-09 Sep-09 Oct-09 Nov-09 Dec-09	1.8 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	\$0.14 \$0.07 \$0.08 \$0.02 \$0.07 \$0.07 \$0.07 \$0.07 \$0.07 \$0.07	Mar-09 Apr-09 May-09 Jul-09 Aug-09 Sep-09 Oct-09 Nov-09 Dec-09	3,171.8 3,307.8 198.5 55.0 198.5 1,627.9 2,263.4 3,478.8 6,254.4 ###################################	6,080.6 6,159.9 2,899.4 3,020.3 3,177.1 3,094.1 3,116.0 3,142.0 3,042.5 3,145.5 43,491.6	9,331.7 6,207.2 3,218.8 3,232.1 3,292.6 4,743.9 5,405.5 6,521.2 9,399.9 ##################################
Mar-09 Apr-09 Jul-09 Aug-09 Sep-09 Oct-09 Nov-09 Dec-09 Totals/Avg.	2,428,774 1,143,186 1,190,869 1,252,691 1,219,957 1,238,856 1,199,596 1,240,218 ####################################	4,604 2,361 2,473 5,090 5,105 5,326 1,228,604 2,281 2,293 1,267,646	\$191,129.54 \$97,532.45 \$102,536.38 \$112,995.69 \$23,515.32 \$98,008.32 \$97,071.66 \$94,357.44 \$97,286.32 \$1,298,013.20	\$0.08 \$0.09 \$0.09 \$0.02 \$0.08 \$0.08 \$0.08 \$0.08 \$0.08 \$0.08	757 463 171 8 16 79 487 577 1,099 6,094	0 22 30 106 187 46 0 0 0 391	Mar-09 Apr-09 ######## Jul-09 Aug-09 Sep-09 Oct-09 Nov-09 Dec-09	1.8 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 1.2	\$0.14 \$0.07 \$0.08 \$0.08 \$0.02 \$0.07 \$0.07 \$0.07 \$0.07 \$0.07 \$0.09	Mar-09 Apr-09 May-09 Jul-09 Aug-09 Sep-09 Oct-09 Nov-09 Dec-09	3,171.8 3,307.8 198.5 55.0 198.5 1,627.9 2,263.4 3,478.8 6,254.4 #########	6,080.6 6,159.9 2,899.4 3,020.3 3,177.1 3,094.1 3,116.0 3,142.0 3,042.5 3,145.5 43,491.6	9,331.7 6,207.2 3,218.8 3,232.1 3,292.6 4,743.9 5,405.5 6,521.2 9,399.9 ##################################

RED indicates estimated data

EUI = Btu/Sq.Ft.

Existing Carrier HR 225 water cooled chiller See 30 HD 3PD.PDF page 19 46° LWT 85° Entering condenser water temp.

> Capacity kŴ

220 tons 217.4

New chiller HXC246 water cooled chiller

ARI* capacity ratings

30HXC WATER-COOLED CHILLER ARI RATINGS (60 Hz ONLY)

UNIT SIZE	CAPACITY		INPUT POWER	COOLER FLOW		COOLER PRESSURE DROP		CONDENSER FLOW		CONDE PRESS DRC	NSER SURE)P	FULL-LOAD EFFICIENCY	IPLV†
30HXC	Tons	Output kW	(kW)	GPM	L/s	Ft of Water	kPa	GPM	L/S	Ft of Water	kPa	(kW/Ton)	(KW/IOII)
076	75.4	265.2	53.7	181.0	11.4	14.5	43.2	226.2	14.3	8.9	26.6	0.712	0.512
086	83.1	292.3	60.4	199.4	12.6	17.2	51.4	249.3	15.7	10.7	31.8	0.727	0.523
096	94.0	330.5	67.0	225.5	14.2	17.0	50.7	282.0	17.8	11.0	32.7	0.713	0.513
106	104.3	366.8	75.3	250.3	15.4	15.4	46.0	312.9	19.7	13.3	39.6	0.722	0.521
116	113.5	399.3	83.2	272.5	17.2	13.3	39.8	340.6	21.5	17.0	50.6	0.733	0.509
126	122.9	432.1	92.2	295.2	18.6	15.4	45.9	369.0	23.3	19.6	58.5	0.751	0.530
136	136.5	479.9	97.0	327.5	20.7	14.6	43.7	409.4	25.8	18.5	55.1	0.711	0.541
146	145.9	513.2	105.1	350.2	22.1	16.5	49.3	437.8	27.6	20.9	62.4	0.720	0.533
161	156.5	550.6	111.7	375.5	23.7	13.7	40.9	469.6	29.6	21.3	63.6	0.714	0.520
171	165.9	585.3	118.2	398.1	25.1	15.2	45.4	497.6	31.4	17.2	51.4	0.712	0.538
186	177.2	623.1	126.7	426.2	26.8	13.9	41.5	531.6	33.5	19.5	58.1	0.715	0.562
206	211.5	744.0	146.4	507.7	32.0	14.7	43.9	634.7	40.0	20.9	62.4	0.692	0.510
246	248.6	874.1	172.4	596.5	37.6	16.2	48.3	745.7	47.0	21.9	65.2	0.693	0.522
261	257.2	904.6	180.5	617.3	38.9	17.2	51.4	771.6	48.7	23.3	69.5	0.702	0.523
271	267.4	940.3	189.5	641.7	40.5	18.5	55.1	802.1	50.6	25.1	74.7	0.709	0.525

LEGEND

IPLV — Integrated Part-Load Value

*Air Conditioning and Refrigeration Institute (U.S.A.). †IPLV shown is the lower of Sequence A or Sequence B unloading.

NOTES:
1. Rated (60 Hz only) in accordance with ARI Standard 550/590-2004 at standard rating conditions.
2. Standard rating conditions are as follows: Cooler Conditions: Leaving Water Temperature: 44 F (6.7 C) Flow: 2.4 gpm per ton (0.043 L/s per kW)
Condenser Conditions: Entering Water temperature: 85 F (29.4 C) Flow: 3.0 gpm per ton (0.054 L/s per kW)
Fouling Factor (Cooler): 0.00010 hr x sq ft x F per Btuh (0.000018 m² x K per W)
Fouling Factor sq ft x F per Btuh (0.000044 m² x K per W)

IPLV is a single number part-load efficiency value calculated using the efficiency values at 100%, 75%, 50%, and 25% of load when the chiller is operating at ARI conditions.
 All data in this table is rated (60 Hz only) in accordance with ARI Standard 550/590-2004 as represented in the Chiller Selection Program (E-Cat) version 2,93.
 Contact Carrier for custom ratings.

Rated in accordance with ARI Standard 550/590-2004.

60 Hz only

AKRON, OH

Humidity	Jar	ו	F	eb	M	ar	A	pr	M	av	Ju	un	J	ul	A	uq	S	ер	C	ct	N	ov	D	ес	Ann	ual
M=Morning	Μ	Α	Μ	Α	Μ	Α	Μ	A	Μ	A	Μ	Α	Μ	Α	Μ	A	Μ	A	Μ	Α	Μ	Α	Μ	Α	М	Α
A=Afternoon	79	69	78	65	77	60	75	54	77	55	80	56	84	56	88	58	87	60	82	58	79	65	79	70	80	61
											-															
Average	74		72		69		65		66		68		70		73		74		70		72		75		71	
_																										
Temperature	Jar	۱	F	eb	M	ar	A	pr	M	ay	Ju	un	J	ul	A	ug	S	ер	C	oct	N	ov	D	ec	Ann	ual
L=Low	L	Н	L	Н	L	Н	L	Н	L	Н	L	Н	L	Н	L	Н	L	Н	L	Н	L	Н	L	Н	L	Н
H=High	19	33	21	36	28	46	59	67	48	69	57	78	61	82	61	80	53	73	42	61	34	49	24	37	42	59
	26		29		37		63		59		68		72		71		63		52		42		31		51	

JoAnn Hudson Corporate Offices Dual Duct VAV Conversion Project (North Penthouse) 2/4/2014

Phase 1 FE Rebate Information

	kWh per box	Boxes replaced
		39
Existing kWh	3,504	136,655
New kWh	1,337	52,126
Avoided kWh	1,856	72,401

JoAnn Hudson Corporate Offices Dual Duct Replacement Project 2/4/2014

This is a multi-phase project designed to replace the existing Conner pneumatically controlled dual duct mixing boxes. Conditioned air is supplied to the 193 existing boxes by constant volume air handling units located in the North and South Penthouse mechanical rooms. Each unit supplies approximately ½ of the existing boxes.

These boxes, installed in the early 1960's, have been slowly degrading. Repair parts for the boxes are not available, thus when a box begins to fail the box controls have to be "gamed" in order provide a modicum of comfort control. We have also had to modify the operation of the air handling unit to prevent overheating in the winter and over cooling in the summer. These solutions are not energy efficient and were one of the reasons JoAnn's undertook the replacement program.

The replacement is scheduled for four phases, each addresses a specific area. The first stage replaced 39 "old" boxes with 45 new DDC controlled boxes. The box sequences allow for remote set point control and sectional "group" occupancy control.

Additional boxes were added to address the current office usage patterns and optimize the group scheduling feature.

<u>AHU-1 Total Savings (99 original boxes)</u>
--

Combined Supply and Return Exhaust Fan Savings		\$16,541		
Convert Existing Dual Duct System to Dual Duct VAV				
Hours				
Occupied hours M-F (52 wks x 6 days X 14 hours)		4,368		
Occupied hours Sat (52 wks x 1 days X 6 hours)		312		
Total Occupied Hours		4,680		
Supply Fan Speed Reductions				
Constant Volume				
Supply Fan Horsepower		75		
Amps		69.0		
kW		54.9	kW	
Existing hours		4,680	hrs.	
kWh used		256,980	kWh	
Variable Volume (reduced speed)				
		Hours	kW @ % Red.	kW Used
Hours of Operation		4,680	54.9	
% time at 100% speed	0%	0	54.9	0
% time at 90% speed	5%	234	49.4	11,562
% time at 80% speed	10%	468	43.9	20,555
% time at 70% speed	15%	702	38.4	26,978
% time at 60% speed	20%	936	32.9	30,832
% time at 50% speed	35%	1,638	27.5	44,963
% time at 40% speed	10%	468	11.0	5,139
% time at 30% speed	5%	234	16.5	3,854
	100%			
Constant Volume Fan kWh		256,980		
Variable Volume Fan kWh		143,882	kWh	
kWh avoided		113,098	kWh	
\$/kW		0.09		
Savings		\$10,179		

Return Exhaust Fan Speed Reductions

Constant Volume		
Return Exhaust Fan Horsepower	15	
Amps	11.1	
kW	8.8	kW
Existing hours	10,179	hrs.
kWh used	89,913	kWh

Variable Volume (reduced speed)

		Hours	kW @ % Red.	kW Used
Hours of Operation		4,680	8.8	
% time at 100% speed	0%	0	8.8	0
% time at 90% speed	5%	234	8.0	1,860
% time at 80% speed	5%	234	7.1	1,654
% time at 70% speed	10%	468	6.2	2,894
% time at 60% speed	15%	702	5.3	3,721
% time at 50% speed	35%	1,638	4.4	7,235
% time at 40% speed	15%	702	1.8	1,240
% time at 30% speed	5%	234	2.7	620
% time at 0% speed	10%	468	0.0	0
	100%			
Constant Volume Fan kWh		89,913		
Variable Volume Fan kWh		19,223	kWh	
kWh avoided		70,690	kWh	
\$/kW		\$0.09		
Savings		\$6,362		

FE Rebate Calc					
Supply and Return Exh. Fan kWh per AHU	kWh	I	Existing 346,893	New 132,321	Avoided 183,788
	No. of	Boxe	es		
kWh Per Box		99	3,504	1,337	1,856
Replaced		39	136,655	52,126	72,401

JoAnn Hudson Penthouse Upgrades Modified Schedule of Values 2/4/2014

_	Penthouse Upgrades		Costs associated wit	th energy improvements
#	Description of Item	Scheduled Value	Applicatble %	Value
1	General Conditions	\$ 14,500.00	50%	\$ 7,250.00
2	Engineering	\$ 16,400.00	65%	\$ 10,660.00
3	Mobiliziation	\$ 22,000.00	50%	\$ 11,000.00
4	Demoltion	\$ 32,000.00	60%	\$ 19,200.00
5	Chiller	\$ 136,890.00	100%	\$ 136,890.00
6	Boilers	\$ 47,750.00	0%	\$ -
7	Misc. Equipment	\$ 46,500.00	35%	\$ 16,275.00
8	Install Equipment	\$ 24,750.00	60%	\$ 14,850.00
9	Crane & Rigging	\$ 24,500.00	85%	\$ 20,825.00
10	Piping Material	\$ 37,856.00	45%	\$ 17,035.20
11	Piping Labor	\$ 38,500.00	35%	\$ 13,475.00
12	Piping Equipment	\$ 26,500.00	35%	\$ 9,275.00
13	Sheetmetal Material	\$ 3,500.00	90%	\$ 3,150.00
14	Sheetmetal Labor	\$ 8,000.00	85%	\$ 6,800.00
15	Controls	\$ 56,423.00	85%	\$ 47,959.55
20	Testing & Balancing	\$ 2,500.00	35%	\$ 875.00
	Total	\$ 538,569.00		\$ 335,519.75

JoAnn Hudson Print Shop Renovations Modified Schedule of Values 2/4/2014

	Print Shop Renovation		Costs associated with	th energy ir	nprovements
#	Description of Item	Scheduled Value	Applicatble %	I	/alue
1	General Conditions	\$ 8,500.00	50%	\$	4,250.00
2	Engineering	\$ 17,500.00	65%	\$	11,375.00
3	Mobiliziation	\$ 15,750.00	50%	\$	7,875.00
4	Drafting	\$ 3,500.00	75%	\$	2,625.00
5	N Penthouse Heating Water Piping	\$ 19,750.00	0%	\$	-
6	Demolition	\$ 7,500.00	100%	\$	7,500.00
7	Chillers	\$ 27,600.00	100%	\$	27,600.00
8	Air Handling Units	\$ 10,200.00	65%	\$	6,630.00
9	Miscellaneous Equipment	\$ 31,000.00	50%	\$	15,500.00
10	Install Equipment	\$ 7,500.00	65%	\$	4,875.00
11	Crane & Rigging	\$ 5,000.00	75%	\$	3,750.00
12	Piping Material	\$ 22,000.00	65%	\$	14,300.00
13	Piping Labor	\$ 22,000.00	75%	\$	16,500.00
14	Piping Equipment	\$ 24,000.00	75%	\$	18,000.00
15	Sheetmteal Material	\$ 17,200.00	65%	\$	11,180.00
16	Sheetmetal Labor	\$ 32,500.00	65%	\$	21,125.00
17	Mechanical Insulation	\$ 6,544.00	45%	\$	2,944.80
18	Controls	\$ 56,534.00	85%	\$	48,053.90
19	Roofing	\$ 7,500.00	100%	\$	7,500.00
20	Testing & Balancing	\$ 2,500.00	85%	\$	2,125.00
	Total	\$ 344,578.00		\$	233,708.70

JoAnn Hudson Print Shop Renovation Hudson, Ohio FE Rebate Information 2/4/2013

	Old	New	Avoided
AC Efficiency	152,719	108,452	44,267
Exhaust Fan	49,942	0	49,942
Outside air reduction	104,894	16,991	87,903
<u>Totals</u>	<u>307,555</u>	<u>125,444</u>	<u>182,112</u>

JoAnn Hudson Chiller Replacement Project Hudson, Ohio

The existing air handling unit is a Trane split system climate changer, RA250 condenser and a BH300 fan coil unit, circa 1959. The condenser is fitted with a single R22 hermetic compressor, with unloaders and is rated at 25 tons. The fan coil unit is rated at 11,000 cfm and was delivered with a 5 hp motor, which since has been replaced with a 10 hp high efficiency motor. The system was originally used to condition a fuel testing lab, but has been retrofitted to condition a print shop.

It should be noted that the existing unit outdoor air dampers were broken and held in a fixed 45% open position. In addition, due to the former usage as a fuel testing lab, an exhaust system operated 24/7 exhausting conditioned air to the outdoors.

As part of this renovation project, a 1,830 sq. ft. addition was added to the conditioned area, additional equipment was added and specific area temperature and humidity requirements were dictated. Our load estimates determined that the existing 25 ton air handler was marginally able to maintain the existing area. The added square footage, the additional equipment, and the specified temperature and humidity requirements required additional cooling capacity.

The new load was determined to be approximately 42 tons. A 50 ton Carrier Aqua Snap air cooled chiller was selected to supply the mechanical refrigeration needs of the new system. The selection of a chiller versus a D.X. system was based on the ability of the chilled water system to provide infinite capacity control, allowing the application of a zoned VAV system. In addition, the chiller kW per ton at part loads was superior to the existing system.

The new system will correct the outdoor damper and exhaust system problems noted above. The building automation system will control the new system providing reduced operation and sharper control.

As to the energy savings estimate. We chose to evaluate the savings compared to the existing 25 ton system. This gave a representation of the actual energy savings, rather than modeled savings based on a supposed 1959 50 tons system. Thus, for the rebate calculations, all the calculations are based on the premise that we are installing a 25 ton replacement system base on the new criteria. The existing system was de-rated to 20 tons based on field measurements.

The existing Print Room electric duct heaters, installed after the gas duct heaters failed, were eliminated. We also eliminated the electric reheats used for the Print Shop Offices. The new air handling units are equipped with hot water coils supplied by a high efficiency hot water boiler system.

\$ Saved kWh Saved

Estimated Print Shop Energy Savings

Estimated Frint onop Energy outings			
	S	Savings	kWh Avoided
A/C efficiency savings	\$	3,541	44,267
Exhaust Fan Savings	\$	3,995	49,942
Eliminate Print Room Electric Heat Savings	\$	5,155	64,441
Min OA Savings	\$	11,404	142,549
Total Annual	\$	24,096	301,199
Exhaust Fan Savings Eliminate Print Room Electric Heat Savings Min OA Savings Total Annual	Գ Տ Տ Տ Տ	3,995 5,155 11,404 24,096	44,20 49,94 64,44 142,54 301, 11

A/C efficiency savings

Existing equipment Indoor air handling unit, D.X. with outdoor condensing unit RA2504 Comp. 25.2 kW 3 Cond, Fan @ 2.7 kW each full load unit tons (See Note 1) part load unit tons full load existing EER part load existing EER		20 15 7.2 11.5
Replacement equipment full load unit tons (See Note 2) part load unit tons full load Chiller EER (See note 3) part load Chiller EER (See note 3)		20 15 10.3 15.3
Estimate cooling hours cooling hours full load % part load %		5,630 65% 35%
hours at full load hours at part load		3,660 1,971
full load existing system kW/ton part load existing system kW/ton full load new system kW/ton part load new system kW/ton		1.67 1.04 1.17 0.78
full load existing system kW/ton x tons part load existing system kW/ton x tons full load new system kW/ton x tons part load new system kW/ton x tons		33.3 15.7 23.3 11.8
full load existing system kW/ton x tons x hrs. per year part load existing system kW/ton x tons x hrs. per year full load new system kW/ton x tons x hrs. per year part load new system kW/ton x tons x hrs. per year		121,861.35 30,858.03 85,269.90 23,182.35
existing system total kWh per year new system total kWh per year		152,719.38 108,452.26
kWh avoided		44,267.12
\$/kw	\$	0.08
existing cost new cost	\$ \$	12,218 8,676
Total AC Savings	\$	3.541

Note 1 : Unit age and condition has reduced output capacity, kW has remained constant EER = (20T/12)/(25.2 kW + 8.1 kW = 33.3 kW)

Note 2 : New system capacity matched to existing system capacity 30RAP 025

Note 3 : Carrier Aqua Snap product data sheet; page 4, AHRI Capacity Rating (30RAP O25)

Exhaust Fan Savings

Exhaust fan (elimninated)	
existing fan hp	1
voltage (3 phase)	460
amps	2
efficiency	0.87
power factor	0.9
kW=(amps x volts x eff x pf)/1000	0.72
hours of operation	8,760
kWh avoided per year	6,310
A/C (elimnated cooling load)	
exhaust fan cfm	1,500
cooling hours	5,630
summer delta (Indoor - Average outdoor temps)	15
sensible tons	11,401
Tons at full load	7,410
Tons at part load	3,990
kWh per ton	
Existing full load kWH/ton	1.67
Existing part load kWh/ton	1.04
kWh used	
Full load kWh	12.338
Part load kWh	4,166
	.,
kWh saved	16,504
Electric Heat	
exhaust fan cfm	1,500
heating hours	3,130
Winter Delta T (Room - Average winter OA temp.)	45
kWh at full load	66,875
Interior Load Factor	50%
kWh avoided	33,437
total kWh avoided	49,942
\$/kW	\$ 0.08
Total Exhaust Fan Savings	\$ 3,995.34
Eliminate Print Room Electric Heat Savings	
Heaters replaced with hot water coils (gas boilers)	
Electric duct heaters	
heating hours	3,130
full load %	35%
hours at full load	1,096
Full load output (mbh)	200
kW heating (per hour)	58.8
kWh used	64,441
\$/kW	\$ 0.08
Total electric heat savings	\$ 5,155

\$/kW otal Min. Oa Savings	\$ \$	0.0 11,4 (
Total Min. OA Avoided kWh		142,54
Winter heating kWh avoided (converted to hot water heat) Summer cooling kWh avoided		54,64 87,90
kWh used		16,99
Part load kWh		4,52
Full load kWh		12,4
kWh used		
Existing part load kWh/ton		0
Existing full load kWH/ton		1
kWh per ton		0,1
Tons at part load		5.7
Tons at full load		10,4
Sensible Tons		16.4
Delta H		3,3
Cooing Hours (60%)		5,6 2,2
		1,0
New Minimum % (CO2 monitoring system)		1
Unit CFM		10,0
New Summer Cooling (sensible)		
kWh used		104,8
		26,4
Full 1080 KWN Part load kWh		18,4
KWN used		70 4
Existing part load kWh/ton		1
Existing full load kWH/ton		1
kWh per ton		
Tons at part load		25,3
Tons at full load		47,0
Sensible Tons		72,4
Delta H		
Cooing Hours (60%)		3,3
Summer Hours		5,6
Minimum CFM		4,4
Existing Minimum %		4
Unit CFM		11,0
Existing Summer Cooling (sensible)		
kWh avoided		54,6
Btu/kWh		3,4
Electric Heat Btu	186,4	53,205.
% electric heat		6
Sensible Winter	28	6.851.0
Winter Delta T (Room - Average winter OA temp.)		
Hours of heating		5
% of hours requiring heating		6
Weekday after hours (Presses off = 8 hrs.)		1
Weeks		1
		3,1
Winter Hours		

NOMINAL HP SIZE	MAX. AMB TEMP	γ_{1}	- 54	1	197	2	3	5	7'2	10
	5031	А	11	1.25	17	2.3	3.46	5.75	n 60	11.5
MAXIMUM BHP	1201-	7	1.0	1.1	15	2.0	3 90	ອຸບບ	7 50	10.0
	F30F	. 6	85	.85	1.25	1.7	2.55	4.25	6.30	8.5

- -

3		I	COM	ITRESS	SOR	мота	R5	
MODEL	NO. HER	in Mi Mi	VOLTS	CYC.	PH	F I	MPS]1 R	IN PUT
RA2003 RA2004 RA2503 RA2503 RA3004 RA3004 RA4003 RA4004 RA4004 RA4004	1 1 1 1 1 1 1 1 1		208, 220 440 200, 220 440 208, 220 440 208, 220 440 208, 220 440 208, 220 840	60 60 60 60 60 60 60 60 60 60 60 60 60 6	טעצעעט טטצעע	72 16 33 44 106 53 140 70 171 85	210 145 365 102 435 218 560 200 217 359	20 D 20.0 25.2 30 3 40 7 40.1 50.3 50.7
]	00		R FAR	/ MC	AM	PS	ĸw
M010F1 RA2003 RA2003 RA2003 RA2003 RA3003 RA3004 RA3004	HP 2233	FCP N 1750 1750 1750 1750 1750 1750	220 440 220 220 440 220 440 220 440	670. 82883888	E MARAAAAA		42.5 21.5 57 57 57 57 57 57 57 57 57 57 57 57 57	1.8 1.8 2.7 2.7 2.7 2.7 4.6 4.6

BH-DDD 3 2460 2002/220/240 40 60 3 7.4/3.7 122/20 2.4 DH2DO 5 3490 2002/220/440 40 60 12.8/6.4 80-40 12.8/6.4 80-40 12.8/6.4 80-40 12.8/6.4 80-40 12.8/6.4 80-40 12.8/6.4 80-40 12.8/6.4 80-40 12.8/6.4 80-40 12.8/6.4 80-40 12.8/6.4 80-40 12.8/6.4 80-40 12.8/6.4 80-40 12.8/6.4 80-40 12.8/6.4 4.8	MODEL	кр	RPM	VOLTS	CYC.	РΗ.	F.L. 1	∟R.	INPUT
BHUDO 5 1456 2087-228/440 30 3 2010 171,846 4.8	8H200 HH250	3 5	3450 3450	200/220/440 200/220/449	60 60	3	7.4/3.7 12.8/0.4	52/26 90-'45	2.4 4 II
FAT ARI CONDITIONS, 50 DB, 67 WE, 95 AMBIENT WITH MATCHING BK EVAPORATOR UNIT NOTE $F_1 = -F_1 UL (DAD)$	BH300 BH400 BH500	5 716 715	3450	208/220/440 708/220/440 208/220/440	60 60 50	3	20-10	120.60	4.8
				<u>_</u>			20/10		4.5

ons		COMPRESSOR POWER INPUT (kW)	FAN POWER (kW)	TOTAL POWER (kW)	FULL LOAD		IPLV		COOLER FLOW RATE		COOLER WATER PRESSURE DROP	
	kW	((()))	(417)	((()))	EER	COP	EER	COP	GPM	L/s	Ft wg	kPa
0.5	36.8	10.7	1.2	12.0	10.5	3.1	14.2	4.2	25.1	1.6	13.7	40.
4.0	49.2	15.6	1.3	16.8	10.0	2.9	13.2	3.9	33.5	2.1	15.7	46.
6.1	56.6	15.6	3.0	18.6	10.4	3.0	14.5	4.2	38.6	2.4	15.6	46.
8.8	66.1	19.1	2.9	21.9	10.3	3.0	14.5	4.2	45.2	2.9	14.2	42.
3.4	82.3	24.0	2.8	21.4	10.3	3.0	10.3	4.0	20.3	3.0	17.8	03.
1.0	121.0	30.9	2.7	33.0	9.9	2.9	14.8	4.3	00.3	4.2	10.9	20
0.0	126.0	42.2	2.0	46.1	10.4	2.0	15.0	4.4	02.5	5.0	12.2	41
3.1	151.6	48.6	3.4	52.0	10.0	20	15.3	45	103.4	6.5	15.3	45.0
7.3	166.3	53.1	3.8	57.0	10.0	2.9	14.7	4.3	113.5	7.2	19.1	57.0
1.8	182.2	56.4	5.3	61.7	10.1	3.0	14.6	4.3	124.2	7.8	17.6	52.
6.0	196.9	60.8	5.3	66.2	10.2	3.0	14.5	4.2	134.4	8.5	20.5	61.
8.9	242.3	74.6	6.8	81.4	10.2	3.0	15.2	4.5	165.2	10.4	19.5	59.
7.4	272.2	83.2	6.7	89.9	10.3	3.0	15.5	4.5	185.9	11.7	21.2	52.5
	6.1 8.8 3.4 7.6 4.4 8.9 3.1 7.3 1.8 6.0 8.9	8.1 56.6 8.8 66.1 3.4 82.3 7.6 97.1 4.4 121.0 8.9 136.8 3.1 151.6 7.3 166.3 1.8 182.2 6.0 196.9 8.9 242.3	8.1 56.6 15.6 8.8 66.1 19.1 3.4 82.3 24.5 7.6 97.1 30.9 4.4 121.0 35.9 8.9 136.8 42.3 3.1 151.6 48.6 7.3 166.3 53.1 1.8 182.2 56.4 6.0 196.9 60.8 8.9 24.2.3 74.6	8.1 56.6 15.6 3.0 8.8 66.1 19.1 2.9 3.4 82.3 24.5 2.8 7.6 97.1 30.9 2.7 4.4 121.0 35.9 3.8 8.9 136.8 42.3 3.8 3.1 151.6 48.6 3.4 7.3 166.3 53.1 3.8 1.8 182.2 56.4 5.3 6.0 196.9 60.8 5.3 8.9 24.2.3 74.6 6.8	8.1 56.6 15.6 3.0 18.6 8.8 66.1 19.1 2.9 21.9 3.4 82.3 24.5 2.8 27.4 7.6 97.1 30.9 2.7 33.6 4.4 121.0 35.9 3.8 39.7 3.1 151.6 48.6 3.4 52.0 7.3 166.3 53.1 3.8 46.1 7.3 166.3 53.1 3.8 57.0 1.8 182.2 56.4 5.3 61.7 6.0 196.9 60.8 5.3 66.2 8.9 24.2.3 74.6 6.8 81.4		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

l gentfemturatineles chatten 33001 IRS , EIRS - Waateste a complesel - - Elagjillesin

			CONDENSER ENTERING WATER TEMPERATURE (F)															
111117	LINUT	LOWT		7	5.0			8	0.0			8	5.0			9	0.0	
30	SIZE	(F)	Cap. (Tons)	Input kW	Cooler Flow Rate (Gpm)	Cond Flow Rate (Gpm)	Cap. (Tons)	input kW	Cooler Flow Rate (Gpm)	Cond Flow Rate (Gpm)	Cap. (Tons)	Input kW	Cooler Flow Rate (Gpm)	Cond Flow Rate (Gpm)	Cap. (Tons)	Input kW	Cooler Flow Rate (Gpm)	Cond Flow Rate (Gpm)
нк	015 020 025 030 040 050 060	40 0	15 3 19 7 26 7 28 7 39 9 48 8 56 7	12 1 15 2 20 8 23 7 30 6 39 0 47 3	36 7 47 2 63 9 68 7 95 5 116 8 135 8	44 5 57.0 77 3 84 0 115 3 142 0 166 2	14 9 19 1 25 9 27 9 38 7 47 4 55.1	12 8 15 9 21 7 24 8 32 1 40 8 49 3	35 7 45 7 61 9 66 9 92 6 113 4 132 0	44 0 56 1 76 0 82 9 113 4 139 8 163 9	14 5 18 5 25 1 27 2 37 5 45 9 53 5	13 6 16 6 22 7 25 8 33 5 42 5 51 4	34 7 44 3 60 0 65 0 89 7 109 9 128 1	43 5 55 1 74 7 81 8 111 4 137 5 161 4	14 1 17 9 24 2 26 4 36 2 44 4 51.9	14 3 17 3 23 6 26.8 34.9 44.2 53.3	33 7 42 8 58 0 63 1 86 7 106 3 124.3	43.0 54.1 73.4 80 5 109.4 135 0 158.9
HR	070 080 090 100 120 140 160 195 225	40 0	67.6 75 3 83 3 95 8 102 7 109 6 131 9 146 3 177 8 208 5	53 9 61 5 69.5 76.5 84.3 91 9 113 5 127 9 162 7 194 1	161 9 180 2 199 3 229 4 246 0 262 4 315 8 350 1 425 6 499 0	196 7 219 9 244 2 278 8 300 3 321 7 388 9 432 4 534 7 629 1	65 7 73 2 81 0 93 3 100 1 106 9 128 4 142 5 173 0 202 9	56 4 64 3 72 6 80 2 88 1 96 1 118 2 132 8 168 5 201 0	157 2175 3194 0223 4239 7255 9307 5341 2414 2485 8	193 7 216 8 240 9 275 3 296 7 318 0 383 8 426 9 527 5 620 8	63 7 71 1 78 8 90 8 97 5 104 2 125 0 138 8 168 3 197 3	58 8 67 0 75 6 83 7 91 9 100 0 122 7 137 7 174 2 207 7	152 4 170 2 188 6 217 4 233 4 249 6 299 2 332 3 402 8 472 4	190 5 213 6 237 6 271 7 293 0 314 4 378 6 421 3 520 1 612 3	61.7 68.9 76 5 88 2 94 8 101.4 121 5 135 1 163 4 191 9	61 1 69 6 78 4 87 1 95 6 103 9 127 1 142 3 179 7 214 0	147 6 165 0 183 0 211 2 227 0 242 8 290 7 323 3 391 1 459.4	187 3 210 2 233 9 267 9 289 1 310 2 373 2 415 6 512 5 603.8
нк	015 020 025 030 040 050 060	42.0	15 9 20 5 27 8 29 8 41 6 50 8 59 0	12 1 15 4 21 0 24 0 30 8 39 3 47 7	38 2 49 2 66 5 71 5 99 6 121.8 141.4	46 0 59 1 80 0 86 9 119 5 147 2 172 1	155 199 269 290 403 494 574	12 9 16 1 22 0 25 1 32 4 41 2 49 9	37 2 47 7 64 5 69 6 96 6 118 3 137.5	45 5 58 1 78 7 85 8 117 6 144 9 169 7	15 1 19 3 26 1 28 3 39 1 47 9 55.8	13 7 16.8 23.0 26 2 33.9 43 0 52 0	36 1 46 2 62 5 67 7 93 6 114 7 133.6	45 0 57 1 77 4 84 6 115 6 142 6 167 2	14 7 18 6 25 3 27 4 37 8 46 4 54.1	14 4 17 6 23 9 27 2 35 3 44 8 54 0	35 1 44 7 60 6 65 8 90 5 111 0 129.6	44 5 56 1 76 1 83 4 113 5 140 1 164.6
HR	070 080 090 100 110 120 140 160 195 225	42 0	70 5 78 4 86 6 99 4 106 6 113 6 137 0 151 9 184 4 216 1	54 4 62 2 70 2 77 2 85 0 92 8 114 8 129 4 164 9 196 8	168 9 187 8 207 6 238 2 255 3 272 0 328 3 363 9 441 9 517 7	203 9 227 8 252 7 287 9 310 0 331 7 402 1 447 0 552.2 649.3	68 5 76 3 84 4 96 9 103 9 110 8 133 5 148 1 179.5 210.5	57.0 65 0 73 4 80.9 97 0 119 7 134 6 171 0 204 0	164 1 182 7 202 1 232 2 248 8 265 5 319 8 354 8 430 1 504.3	200 9 224 7 249 5 284 5 306 2 328 0 396 9 441.5 544 8 641 0	66 5 74 1 82 1 94 3 101 2 108 1 129 9 144 3 174 7 204.8	59 5 67.8 76 5 84 6 92 9 101 2 124 4 139 6 176 9 210 9	159 2 177 5 196 6 225 8 242 4 259 0 311 2 345 6 418 4 490.7	197 7 221.4 246 1 280 6 302 5 324 4 391 6 435 8 537 3 632 5	64 4 71 9 79 7 91 7 98 5 105.2 126 3 140 4 169.7 199 1	61 9 70 5 79 5 88 1 96 7 105 3 129 0 144 5 182 6 217 7	154 3 172 2 190 9 219 6 235 9 251 9 302 6 336 4 406 6 477 0	194 5 218 0 242 5 276 8 298 6 320 1 386 2 430 0 529.7 623 7
нк	015 020 025 030 040 050 060	44.0	16.6 21 4 28.9 31 0 43.3 52.9 61.4	12 2 15.5 21 1 24 2 31 1 39.7 48 2	39 7 51 2 69 4 74 3 103 7 126 9 147 1	47 6 61 1 83 0 89 9 123 7 152 4 178 0	16 1 20 7 28 0 30 2 42 0 51 4 59 7	13 0 16 3 22 2 25 3 32 7 41 6 50 4	38 7 49 7 67 2 72 3 100 7 123 3 143 1	47 1 60 2 81 5 88 7 121 8 150 1 175 6	15 7 20 1 27 2 29 4 40 7 49 9 58 0	13 8 17 0 23 2 26 5 34 2 43 5 52 6	37 6 48 2 65 2 70 4 97 6 119 7 139.1	46 5 59 2 80 2 87 5 119 8 147 8 173.1	15 3 19 5 26 3 28 5 39 4 48 3 56 4	14 6 17.8 24 2 27 5 35 8 45 4 54.7	36 6 46.6 63 1 68 4 94.5 115.9 135.1	46 0 58 1 78 8 86 3 117 7 145 3 170.5
HR	070 080 090 100 110 120 140 160 195 225	44 0	73 5 81 5 90 1 103 1 110 4 117 6 142 3 157 7 191 2 224 1	549 627 70.9 779 85.7 93.6 1160 130.9 167.2 1996	176 1 195 5 215 9 247 1 264 6 281 8 341 1 378 0 458 4 537 2	211 4 235 8 261 4 297 1 319 6 341 9 415 5 461 9 570 0 670 3	714 794 878 1005 1077 1149 1386 1538 1862 2182	57 6 65 7 74 2 81 7 89 9 98 0 121 1 136 4 173 5 207 0	171 1 190 4 210 4 258.2 275.3 332.4 368.6 446 4 523 0	$\begin{array}{c} 208 \ 2\\ 232 \ 7\\ 258 \ 2\\ 293 \ 6\\ 316 \ 0\\ 338 \ 4\\ 410 \ 2\\ 456 \ 2\\ 562 \ 5\\ 661 \ 5 \end{array}$	69 3 77 2 85 4 97 9 104 9 111.9 135 0 149 8 181 2 212 4	60 2 68 7 77 4 85 5 93 9 102 3 126 0 141 6 179 6 214 2	166 1 185 0 204 8 234 7 251 5 268 4 323 6 359 2 434.3 509.1	205 1 229 3 254 8 289 9 312 1 334 4 404 9 450 5 554 9 652 8	67.2 74 9 83 0 95 2 102 2 109 1 131 3 145 9 176 2 206 5	62 8 71.5 80 6 89 1 97 9 106 5 130 8 146 6 185 6 221 3	161 0 179 7 199 0 228 2 244 9 261 5 314 8 349 8 422 3 495 0	201 7 225 9 251 2 285 9 308 3 330 5 399 4 444 6 547 2 643.8
нк	015 020 025 030 040 050 060	46 0	17.2 22.2 30 1 32 2 45 0 55 1 63 8	12 3 15 6 21 3 24 4 31 3 40 0 48 6	41 3 53 3 72 2 77 2 107 9 132 1 152 9	49 1 63 3 85 8 92 8 128 0 157 7 184 0	16 8 21 6 29 2 31 3 43.7 53 5 62 1	13 1 16 4 22 4 25 6 33 0 42 0 51 0	40 2 51 7 69 9 75 2 104 8 128 4 148 9	48 6 62 3 84 4 91 6 126 1 155 4 181 6	16 3 20 9 28 3 30 5 42 4 52 0 60 4	13 9 17.2 23 5 26 8 34 6 44 0 53 2	39 1 50 2 67.8 73 2 101 7 124 7 144 8	48 1 61 3 83 0 90 4 124 0 153 1 179 1	15 9 20 3 27 4 29 7 41 1 50 4 58.6	14 7 18 0 24 5 27 9 36 2 45 9 55 4	38 1 48 6 65 7 71 2 98 5 120 9 140.7	47 6 60 2 81 6 89 2 121 9 150 6 176 5
HR	070 080 090 100 110 120 140 160 195 225	46 0	76.4 84 8 93 6 106.8 114.3 121 7 147.6 163 6 198 2 232 0	55 4 63 2 71 5 78 3 86 3 94 4 117 2 132 4 169 3 202 3	183 3203 4224 5256 1274 1291 9354 1392 4475 3556 6	218 8 243 9 270 3 306 3 329 4 352 3 429 1 477 1 588 1 691 2	744 826 91.3 1042 1116 1188 1439 1596 1930 2262	58 2 66 4 74 9 82 4 90 6 98 9 122 5 138 0 175 9 210 0	$178.4 \\1981 \\2189 \\2499 \\2676 \\2850 \\3452 \\3828 \\4630 \\5425$	215 9 240 7 267 0 302 8 325.8 348 5 423 8 471 3 580 5 682.7	72 2 80 4 88 8 101 5 108 8 116 0 140 2 155.6 187 9 220.1	60 9 69 4 78 4 86 3 94 8 103 4 127 6 143 5 182 3 217 4	$\begin{array}{c} 173 \ 3\\ 192 \ 8\\ 213 \ 1\\ 243 \ 5\\ 260 \ 9\\ 278 \ 3\\ 336 \ 2\\ 373 \ 2\\ 450 \ 6\\ 528 \ 0\end{array}$	212 6 237 5 263 6 299 1 322 1 344 8 418 4 465 5 572 8 673 6	70 1 78 1 86 4 98 8 106 0 113 0 136 4 151 5 182 7 214 1	63 6 72 4 81 6 90 1 98 9 107 7 132 6 148 7 188 5 224 8	168 0 187 2 207 3 236 9 254 2 271 1 327 2 363 5 438 3 513 5	209 2 234 0 260 0 295 2 318 1 340 7 412 8 459 5 565 0 664 5

LEGEND

 Cap.
 —
 Capacity

 kW
 —
 Compressor Motor Power Input at Rated Voltage

 LCWT
 —
 Leaving Chilled Water Temperature

Ohio Edison • The Illuminating Company • Toledo Edison

Mercantile Customer Program - Custom Project Rebate Calculator

Project Name and Number:	Chiller, Tower, Controls VFD upgrade				
Site Name:	JoAnn Fabrics				
Completed by (Name):	Joe Cindric				
Date completed:	2/4/2014				

Energy Conservation Measure	Annual Energy Savings kWh	Eligible Prescriptive Rebate Amount kWh * \$0.08
Chiller,Tower,Controls,VFD upgrade #1	351,019	28081.52
Print Shop Renovation- project #2	182,112	14568.96
Dual Duct VAV Conversion-project #3	72,401	5792.08
Total Project Energy Savings kWh	605,532	
Total Custom Prescriptive	\$ 48,442.56	

Notes about this rebate calculation:

See attached Chiller,Tower,Controls & VFD upgrade Calcs; Print Shop Renovation: Dual Duct VAV Conversion

<u>Mercantile Customer Project Commitment Agreement</u> <u>Cash Rebate Option</u>

THIS MERCANTILE CUSTOMER PROJECT COMMITMENT AGREEMENT ("Agreement") is made and entered into by and between Ohio Edison Company, its successors and assigns (hereinafter called the "Company") and Jo-Ann Stores Inc, Taxpayer ID No. 34-0720629 its permitted successors and assigns (hereinafter called the "Customer") (collectively the "Parties" or individually the "Party") and is effective on the date last executed by the Parties as indicated below.

WITNESSETH

WHEREAS, the Company is an electric distribution utility and electric light company, as both of these terms are defined in R.C. § 4928.01(A); and

WHEREAS, Customer is a mercantile customer, as that term is defined in R.C. § 4928.01(A)(19), doing business within the Company's certified service territory; and

WHEREAS, R.C. § 4928.66 (the "Statute") requires the Company to meet certain energy efficiency and peak demand reduction ("EE&PDR") benchmarks; and

WHEREAS, when complying with certain EE&PDR benchmarks the Company may include the effects of mercantile customer-sited EE&PDR projects; and

WHEREAS, Customer has certain customer-sited demand reduction, demand response, or energy efficiency project(s) as set forth in attached Exhibit 1 (the "Customer Energy Project(s)") that it desires to commit to the Company for integration into the Company's Energy Efficiency & Peak Demand Reduction Program Portfolio Plan ("Company Plan") that the Company will implement in order to comply with the Statute; and

WHEREAS, the Customer, pursuant to the Public Utilities Commission of Ohio's ("Commission") September 15, 2010 Order in Case No. 10-834-EL-EEC, desires to pursue a cash rebate of some of the costs pertaining to its Customer Energy Project(s) ("Cash Rebate") and is committing the Customer Energy Project(s) as a result of such incentive.

WHEREAS, Customer's decision to commit its Customer Energy Project(s) to the Company for inclusion in the Company Plan has been reasonably encouraged by the possibility of a Cash Rebate.

WHEREAS, in consideration of, and upon receipt of, said cash rebate, Customer will commit the Customer Energy Project(s) to the Company and will comply with all other terms and conditions set forth herein.

NOW THEREFORE, in consideration of the mutual promises set forth herein, and for other good and valuable consideration, the receipt and sufficiency of which is hereby acknowledged, the parties, intending to be legally bound, do hereby agree as follows:

 Customer Energy Projects. Customer hereby commits to the Company and Company accepts for integration into the Company Plan the Customer Energy Project(s) set forth on attached Exhibit 1. Said commitment shall be for the life of the Customer Energy Project(s). Company will incorporate said project(s) into the Company Plan to the extent that such projects qualify. In so committing, and as evidenced by the affidavit attached hereto as Exhibit A, Customer acknowledges that the information provided to the Company about the Customer Energy Project(s) is true and accurate to the best of its knowledge.

- a. By committing the Customer Energy Project(s) to the Company, Customer acknowledges and agrees that the Company shall control the use of the kWh and kW reductions resulting from said projects for purposes of complying with the Statute. By committing the Customer Energy Project(s), Customer has the ability to either:
 - i. Take ownership of the Energy Efficiency resource credits resulting from their Customer Energy Project(s) and may be able to bid - or sell - the Energy Efficiency resource credits into the market operated by the grid operator, PJM Interconnection, Inc. (PJM), provided several prerequisites are met; or
 - ii. Allow the Company to take ownership of the Energy Efficiency resource credits associated with their Customer Energy Project(s). The Company shall, at its sole discretion, aggregate said capacity into the PJM market through an auction. Any proceeds from any such bids accepted by PJM will be used to offset the costs charged to the Customer and other of the Company's customers for compliance with state mandated energy efficiency and/or peak demand requirements.

Please indicate your preference as to the treatment of your Energy Efficiency resource credits:

Customer would like to retain ownership of its Energy Efficiency resource credits.

Customer assigns ownership of its Energy Efficiency resource credits to Company for purposes of bidding these credits into PJM.

- b. The Company acknowledges that some of Customer's Energy Projects contemplated in this paragraph may have been performed under certain other federal and/or state programs in which certain parameters are required to be maintained in order to retain preferential financing or other government benefits (individually and collectively, as appropriate, "Benefits"). In the event that the use of any such project by the Company in any way affects such Benefits, and upon written request from the Customer, Company will release said Customer's Energy Project(s) to the extent necessary for Customer to meet the prerequisites for such Benefits. Customer acknowledges that such release (i) may affect Customer's cash rebate discussed in Article 3 below; and (ii) will not affect any of Customer's other requirements or obligations.
- c. Any future Customer Energy Project(s) committed by Customer shall be subject to a separate application and, upon approval by the Commission, said projects shall become part of this Agreement.
- d. Customer will provide Company or Company's agent(s) with reasonable assistance in the preparation of the Commission's standard joint application for approval of this Agreement ("Joint Application") that will be filed with the Commission, with such Joint Application being consistent with then current Commission requirements.
- e. Upon written request and reasonable advance notice, Customer will grant employees or authorized agents of either the Company or the Commission reasonable, pre-arranged access to the Customer Energy Project(s) for purposes of measuring and verifying energy savings and/or peak demand reductions resulting from the Customer Energy Project(s). It is expressly agreed that consultants of either the Company or the Commission are their respective authorized agents.
- 2. Joint Application to the Commission. The Parties will submit the Joint Application using the Commission's standard "Application to Commit Energy Efficiency/Peak Demand Reduction Programs" ("Joint Application") in which they will seek the Commission's approval of (i) this

Agreement: (ii) the commitment of the Customer Energy Project(s) for inclusion in the Company Plan; and (iii) the Customer's Cash Rebate.

The Joint Application shall include all information as set forth in the Commission's standard form which, includes without limitation:

- i. A narrative description of the Customer Energy Project(s), including but not limited to, make, model and year of any installed and/or replaced equipment;
- ii. A copy of this Agreement; and
- iii. A description of all methodologies, protocols, and practices used or proposed to be used in measuring and verifying program results.
- 3. Customer Cash Rebate. Upon Commission approval of the Joint Application, Customer shall provide Company with a W-9 tax form, which shall at a minimum include Customer's tax identification number. Within the greater of 90 days of the Commission's approval of the Joint Application or the completion of the Customer Energy Project, the Company will issue to the Customer the Cash Rebate in the amount set forth in the Commission's Finding and Order approving the Joint Application.
 - a. Customer acknowledges: i) that the Company will cap the Cash Rebate at the lesser of 50% of Customer Energy Project(s) costs or \$250,000; ii) the maximum rebate that the Customer may receive per year is \$500,000 per Taxpayer Identification Number per utility service territory; and iii) if the Customer Energy Project qualifies for a rebate program approved by the Commission and offered by the Company, Customer may still elect to file such project under the Company's mercantile customer self direct program, however the Cash Rebate that will be paid shall be discounted by 25%; and
 - b. Customer acknowledges that breaches of this Agreement, include, but are not limited to:
 - i. Customer's failure to comply with the terms and conditions set forth in the Agreement, or its equivalent, within a reasonable period of time after receipt of written notice of such non-compliance;
 - ii. Customer knowingly falsifying any documents provided to the Company or the Commission in connection with this Agreement or the Joint Application.
 - c. In the event of a breach of this Agreement by the Customer, Customer agrees and acknowledges that it will repay to the Company, within 90 days of receipt of written notice of said breach, the full amount of the Cash Rebate paid under this Agreement. This remedy is in addition to any and all other remedies available to the Company by law or equity.
- 4. Termination of Agreement. This Agreement shall automatically terminate:
 - a. If the Commission fails to approve the Joint Agreement;
 - b. Upon order of the Commission; or
 - c. At the end of the life of the last Customer Energy Project subject to this Agreement.

Customer shall also have an option to terminate this Agreement should the Commission not approve the Customer's Cash Rebate, provided that Customer provides the Company with written notice of such termination within ten days of either the Commission issuing a final appealable order or the Ohio Supreme Court issuing its opinion should the matter be appealed.

- 5. Confidentiality. Each Party shall hold in confidence and not release or disclose to any person any document or information furnished by the other Party in connection with this Agreement that is designated as confidential and proprietary ("Confidential Information"), unless: (i) compelled to disclose such document or information by judicial, regulatory or administrative process or other provisions of law; (ii) such document or information is generally available to the public; or (iii) such document or information was available to the receiving Party on a non-confidential basis at the time of disclosure.
 - a. Notwithstanding the above, a Party may disclose to its employees, directors, attorneys, consultants and agents all documents and information furnished by the other Party in connection with this Agreement, provided that such employees, directors, attorneys, consultants and agents have been advised of the confidential nature of this information and through such disclosure are deemed to be bound by the terms set forth herein.
 - b. A Party receiving such Confidential Information shall protect it with the same standard of care as its own confidential or proprietary information.
 - c. A Party receiving notice or otherwise concluding that Confidential Information furnished by the other Party in connection with this Agreement is being sought under any provision of law, to the extent it is permitted to do so under any applicable law, shall endeavor to: (i) promptly notify the other Party; and (ii) use reasonable efforts in cooperation with the other Party to seek confidential treatment of such Confidential Information, including without limitation, the filing of such information under a valid protective order.
 - d. By executing this Agreement, Customer hereby acknowledges and agrees that Company may disclose to the Commission or its Staff any and all Customer information, including Confidential Information, related to a Customer Energy Project, provided that Company uses reasonable efforts to seek confidential treatment of the same.
- 6. Taxes. Customer shall be responsible for all tax consequences (if any) arising from the payment of the Cash Rebate.
- 7. Notices. Unless otherwise stated herein, all notices, demands or requests required or permitted under this Agreement must be in writing and must be delivered or sent by overnight express mail, courier service, electronic mail or facsimile transmission addressed as follows:

If to the Company:

FirstEnergy Service Company 76 South Main Street Akron, OH 44308 Attn: Victoria Nofziger Telephone: 330-384-4684 Fax: 330-761-4281 Email: <u>vmnofziger@firstenergycorp.com</u>

If to the Customer:

Jo-Ann Stores Inc 5555 Darrow Rd Hudson, OH 44236 Attn:Debbie Mansfield Telephone:330-656-2600 Fax: Email:debbie.mansfield@joann.com or to such other person at such other address as a Party may designate by like notice to the other Party. Notice received after the close of the business day will be deemed received on the next business day; provided that notice by facsimile transmission will be deemed to have been received by the recipient if the recipient confirms receipt telephonically or in writing.

- 8. Authority to Act. The Parties represent and warrant that they are represented by counsel in connection with this Agreement, have been fully advised in connection with the execution thereof, have taken all legal and corporate steps necessary to enter into this Agreement, and that the undersigned has the authority to enter into this Agreement, to bind the Parties to all provisions herein and to take the actions required to be performed in fulfillment of the undertakings contained herein.
- 9. Non-Waiver. The delay or failure of either party to assert or enforce in any instance strict performance of any of the terms of this Agreement or to exercise any rights hereunder conferred, shall not be construed as a waiver or relinquishment to any extent of its rights to assert or rely upon such terms or rights at any later time or on any future occasion.
- 10. Entire Agreement. This Agreement, along with related exhibits, and the Company's Rider DSE, or its equivalent, as amended from time to time by the Commission, contains the Parties' entire understanding with respect to the matters addressed herein and there are no verbal or collateral representations, undertakings, or agreements not expressly set forth herein. No change in, addition to, or waiver of the terms of this Agreement shall be binding upon any of the Parties unless the same is set forth in writing and signed by an authorized representative of each of the Parties. In the event of any conflict between Rider DSE or its equivalent and this document, the latter shall prevail.
- 11. Assignment. Customer may not assign any of its rights or obligations under this Agreement without obtaining the prior written consent of the Company, which consent will not be unreasonably withheld. No assignment of this Agreement will relieve the assigning Party of any of its obligations under this Agreement until such obligations have been assumed by the assignee and all necessary consents have been obtained.
- 12. Severability. If any portion of this Agreement is held invalid, the Parties agree that such invalidity shall not affect the validity of the remaining portions of this Agreement, and the Parties further agree to substitute for the invalid portion a valid provision that most closely approximates the economic effect and intent of the invalid provision.
- 13. Governing Law. This Agreement shall be governed by the laws and regulations of the State of Ohio, without regard to its conflict of law provisions.
- 14. **Execution and Counterparts.** This Agreement may be executed in multiple counterparts, which taken together shall constitute an original without the necessity of all parties signing the same page or the same documents, and may be executed by signatures to electronically or telephonically transmitted counterparts in lieu of original printed or photocopied documents. Signatures transmitted by facsimile shall be considered original signatures.

IN WITNESS WHEREOF, the Parties hereto have caused this Agreement to be executed by their duly authorized officers or representatives as of the day and year set forth below.

Ohio Edison Company_ (Company) By: Title: V.P. Of Energy Efficiency C Date:

Jo-Ann Stores Inc._ (Customer) By: Title: D FACILITIES ECTOR Date: 03 01

Affidavit of Jo-Ann Stores Inc - Exhibit _A _

STATE OF OHIO

SS:

)

)

COUNTY OF Summit

I, Debbie Mansfield ,being first duly sworn in accordance with law, deposes and states as follows:

- 1. I am the Director of Energy and Facilities of Jo-Ann Stores Inc. ("Customer") As part of my duties, I oversee energy related matters for the Customer.
- The Customer has agreed to commit certain energy efficiency projects to Ohio Edison Company ("Company"), which are the subject of the agreement to which this affidavit is attached ("Project(s)").
- 3. In exchange for making such a commitment, the Company has agreed to provide Customer with Cash ("Incentive"). This Incentive was a critical factor in the Customer's decision to go forward with the Project(s) and to commit the Project(s) to the Company.
- 4. All information related to said Project(s) that has been submitted to the Company is true and accurate to the best of my knowledge.

FURTHER AFFIANT SAYETH NAUGHT.

Sworn to before me and subscribed i	in my presence this 3 day of April 2014
	Merunai
۶.)	Notary

VELMA M. QUINEAU NOTARY PUBLIC, STATE OF OKIC My Commission Expires 8/26/2017

7

Version 9.04.13

This foregoing document was electronically filed with the Public Utilities

Commission of Ohio Docketing Information System on

6/17/2014 11:50:12 AM

in

Case No(s). 14-0264-EL-EEC

Summary: Application to Commit Energy Efficiency/Peak Demand Reduction Programs of Ohio Edison Company and Jo-Ann Stores Inc electronically filed by Ms. Jennifer M. Sybyl on behalf of Ohio Edison Company and Jo-Ann Stores Inc