Appendix B: Stormwater Management Plan

STORMWATER MANAGEMENT PLAN

Carroll County Energy (CCE) Washington Township, Carroll County, Ohio

September 18, 2013

Prepared by:

CESO, Inc. 402 2nd Street SE, Suite 310 Canton, OH 44702 Phone: 330.451.0975 Fax: 330.451.0983 www.cesoinc.com On Behalf of:

CARROLL COUNTY ENERGY LLC 31 Milk Street, Suite 1001 Boston, MA 02109 www.carrollcountyenergy.com

TABLE OF CONTENTS

- i. COVER SHEET
- ii. TABLE OF CONTENTS
- I. PROJECT STORM WATER MANAGEMENT NARRATIVE
 - A. Introduction
 - B. Existing Drainage Conditions
 - C. Stormwater Pollution Prevention Approach
- II. APPENDIX
 - A. Storm Water Pollution Prevention Plans (SWPPP)
 - B. Water Quality Calculations
 - C. Water Quality Pond Discharge Rate Calculations

Project Stormwater Management Narrative

A. Introduction

The project site is located approximately 2.5 miles north of the village of Carrollton, between State Route 9 (Kensington Road NE) and Mobile Road (Township Road 275) in the Township of Washington, Carroll County, Ohio ("Project Site"). The proposed development consists of the clearing of the existing site and the construction of Carroll County Energy (the Project); a nominal 700 megawatt (MW) air-cooled 2x1 combined-cycle gas turbine facility.

The site is bounded by Carroll County land that is planned for commercial/industrial development to the north and agricultural land to the south, east and west. The Project Site includes a 77-acre parcel that will be used for the power block ("Facility Site"), a 23-acre parcel that will be utilized for construction laydown and parking ("Construction Laydown") and associated easements for utility interconnections. A paved access drive will enter the Project Site off of State Route 9 and serve the Facility Site. During construction, approximately 57 acres will be disturbed.

The 100-acre Project Site consists of agricultural and wooded land with minimal impervious area. The proposed development of this land will increase the amount of permanent impervious surface to 17 acres. Ohio National Pollutant Discharge Elimination System (NPDES) stormwater requirements dictate that the Water Quality Standards be met and the post construction water quality volume ("WQv") be equivalent to the volume of runoff from a 0.75 inch rainfall over the disturbed area. This will be achieved through the use of three water quality ponds. See Appendix B for these calculations. The proposed Project will result in greater than 5.0 acres of disturbance, thus Post-Construction Stormwater Quality Treatment as outlined in the Ohio EPA General Construction Permit is required and will be implemented. A preliminary Stormwater Pollution Prevention Plan ("SWPPP") has been prepared for the Project construction (provided in Appendix A of this report).

B. Existing Drainage Conditions

The existing Project Site consists of agricultural and wooded land. The site topography is hilly with a maximum elevation of roughly 1320' and a minimum elevation of roughly 1050'. The site drains naturally in four different directions into unnamed tributaries of Pipes Fork. These tributaries flow in a generally east / northeast direction to a point of confluence with Pipes Fork in the northeastern corner of the Project Site. As part of the preliminary due diligence and assessment of the Project Site, a wetlands determination was completed and several small wetlands and streams were identified. These are shown and identified on the preliminary SWPPP in Appendix A of this report.

C. Stormwater Pollution Prevention Approach

The preliminary SWPPP provides direction to the owner as to how stormwater pollution prevention should be handled during and after construction activities are complete. The two conditions require two distinctly different approaches. Initial methods focus on preventing loss of soil while post construction methods deal with not only soil loss but long term water quality measures as well.

During Construction Activities

The preliminary SWPPP attached in Appendix A shows the approach to controlling erosion and sediment during construction activities. The owner will require the contractor to comply with this SWPPP, as may be revised to reflect final Project design, which has been prepared based on the current Ohio Environmental Protection Agency (Ohio EPA) General Permit for Storm Water Discharge from Small and Large Construction Activities ("the Ohio EPA General Permit"), as amended.

The majority of the runoff from the disturbed area on the Project Site will be directed through three sediment basins that will be constructed in the locations shown on the preliminary SWPPP. These basins will be constructed per the Ohio Rainwater and Land Development Manual including a temporary outlet structure as shown on the detail included in the preliminary SWPPP. These basins will be maintained during construction by removing accumulated sediment if necessary. Runoff that does not go through these basins will be treated locally with filter socks or other acceptable Best Management Practices ("BMP") to minimize soil loss. Areas of disturbance will be seeded upon completion.

After Construction Activities

The preliminary SWPPP indicates the conceptual proposed grading of the site. As stated above, during construction three sediment basins will be constructed that will capture and retain sediment on site prior to final stabilization of the Project Site. As part of the final improvements to the Project site, these three basins will be converted into water quality ponds by cleaning out accumulated sediment, removal of the temporary sediment basin outlet structure and installation of the permanent outlet structure. With these improvements complete, the water quality ponds will provide the post-construction water quality treatment required by the Ohio EPA General Permit.

Runoff will be detained above ground in these ponds to allow sediment particles to settle out and will then be released through an orifice in the outlet structure. The permanent outlet structure installed upon completion of site construction will keep the ponds normally dry and only fill up during rain events. See the detail for this outlet included in the preliminary SWPPP. Once full they will drain through the orifice over the course of 48 hours as required by the Ohio Rainwater and Land Development Manual. As the ponds are only required to hold the WQv, any additional water will be released through the windows of the outlet structure. Additionally, emergency spillways will be constructed in case the outlet structure does not function properly. Refer to Appendix A for the preliminary SWPPP showing the location of these ponds and details of the outlet structures. See Appendix B for the sizing calculations for the ponds and Appendix C for calculations showing the drawdown time of the ponds.

APPENDIX A STORM WATER POLLUTION PREVENTION PLANS (SWPPP)

CARROLL COUNTY ENERGY STORMWATER POLLUTION PREVENTION PLAN

VICINITY MAP N.T.S.

STORMWATER POLLUTION PREVENTION PLAN SHEET INDEX

Sheet Title	Sheet Number
TITLE SHEET	SW-1
SWPPP NOTES	SW-2
SWPPP - EXISTING SITE SOILS	SW-3
DURING CONSTRUCTION WEST SWPPP	SW-4
DURING CONSTRUCTION EAST SWPPP	SW-5
POST CONSTRUCTION WEST SWPPP	SW-6
POST CONSTRUCTION EAST SWPPP	SW-7
WATER QUALITY PONDS	SW-8
SWPPP DETAILS	SW-9

PROJECTED START DATE: ##/ ##/ 2014

PROJECTED COMPLETION DATE: ##/##/ 2017

CARROLL COUNTY (SECTION 28) WASHINGTON TOWNSHIP CARROLL COUNTY, OHIO

GRAPHIC SCALE (IN FEET)

1-800-925-0988 OR DIAL 811

STORM WATER POLLUTION PREVENTION PLAN NOTES:

- 1. ALL EROSION AND SEDIMENTATION CONTROL SHALL BE PERFORMED ACCORDING TO: SWPPP AND DETAIL PLANS; ACCORDING TO THE LATEST OHIO EPA AUTHORIZATION FOR CONSTRUCTION ACTIVITY UNDER THE "NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM" (NPDES); ANY AND ALL REQUIRED PERMITS, REPORTS, AND RELATED DOCUMENTS. SEE OHIO EPA PERMIT NO. OHC000004 FOR SWPPP RULES AND REGULATIONS. ALL CONTRACTORS AND SUBCONTRACTORS MUST BECOME FAMILIAR WITH ALL OF THE ABOVE
- CONTRACTOR SHALL IMPLEMENT BEST MANAGEMENT PRACTICES AS REQUIRED BY THE SWPPP. ADDITIONAL BEST MANAGEMENT PRACTICES SHALL BE IMPLEMENTED AS DICTATED BY CONDITIONS AND GRADE CHANGES TO THE SITE AT NO ADDITIONAL COST TO OWNER THROUGHOUT ALL PHASES OF CONSTRUCTION.
- CONTRACTOR SHALL MINIMIZE CLEARING AND DISTURBANCE TO THE ENVIRONMENT TO THE MAXIMUM EXTENT POSSIBLE OR AS REQUIRED BY THE GENERAL PERMIT. EVERY EFFORT SHALL BE MADE TO PRESERVE THE NATURAL RIPARIAN SETBACK ADJACENT TO EXISTING STREAMS OR OTHER EXISTING SURFACE WATER BODIES.
- 4. SEDIMENT STRUCTURE AND PERIMETER SEDIMENT BARRIERS SHALL BE IMPLEMENTED AS THE FIRST STEP OF GRADING WITHIN SEVEN (7) DAYS FROM THE START OF CLEARING AND GRUBBING, AND SHALL CONTINUE TO FUNCTION UNTIL THE SLOPE DEVELOPMENT AREA IS RESTABILIZED. SEDIMENT CONTROL DEVICES SHALL BE IMPLEMENTED FOR ALL AREAS REMAINING DISTURBED FOR OVER 14 DAYS.
- 5. TEMPORARY SOIL STABILIZATION OF DISTURBED AREAS BY MEANS OF TEMPORARY VEGETATION, MULCHING, GEOTEXTILES, SOD, PRESERVATION OF EXISTING VEGETATION, AND OTHER APPROVED TECHNIQUES TO BE APPLIED AS FOLLOWS: WITHIN TWO (2) DAYS OF ANY AREA WITHIN 50 FEET OF A STREAM NOT AT FINAL GRADE REMAINING DORMANT FOR OVER TWENTY ONE (21) DAYS. WITHIN SEVEN (7) DAYS OF ANY AREA THAT WILL BE DORMANT FOR MORE THAN TWENTY ONE (21) DAYS. PRIOR TO THE ONSET OF WINTER WEATHER FOR AREAS THAT WILL BE IDLE OVER WINTER.
- PERMANENT SOIL STABILIZATION OF DISTURBED AREAS BY MEANS OF VEGETATION, LANDSCAPE TYPE MULCHING, MATTING, SOD, RIP RAP, AND OTHER APPROVED LANDSCAPING TECHNIQUES TO BE APPLIED AS FOLLOWS:

A) WITHIN SEVEN (7) DAYS OF ANY AREA THAT WILL BE DORMANT FOR ONE (1) YEAR OR MORE. B) WITHIN TWO (2) DAYS OF ANY AREA WITHIN 50 FEET OF A STREAM AT FINAL GRADE.

C) WITHIN SEVEN (7) DAYS FOR ANY OTHER AREA AT FINAL GRADE.

TEMPORARY SEEDING, MULCHING, AND FERTILIZER SPECIFICATIONS:

SEEDING: ANNUAL RYEGRASS AT 2.02 #/1,000 S.F.

MULCHING: STRAW MATERIAL SHALL BE UNROTTED SMALL GRAIN STRAW APPLIED AT A RATE OF TWO (2) TON/ACRE, OR 80-100 POUNDS PER 1,000 S.F. MULCH MATERIALS SHALL BE RELATIVELY FREE OF ALL KINDS OF WEEDS AND SHALL BE FREE OF PROHIBITIVE NOXIOUS WEEDS. MULCH SHALL BE SPREAD UNIFORMLY BY HAND OR MECHANICAL MEANS. FROM NOVEMBER 01 THRU MARCH 15 INCREASE THE RATE OF STRAW MULCH TO THREE (3) TON/ACRE.

- FERTILIZER: APPLY FERTILIZER AT HALF THE RATE OF PERMANENT APPLICATION AND AS PER STATE DOT SPECIFICATIONS. IF PROJECT CONDITIONS PREVENT FERTILIZING THE SOIL, THEN THIS ITEM MAY BE WAIVED
- PERMANENT SEEDING SHALL BE IN ACCORDANCE WITH ODOT STANDARD SPECIFICATIONS.
- SLOPES SHALL BE LEFT IN A ROUGHENED CONDITION DURING THE GRADING PHASE TO REDUCE RUNOFF VELOCITIES AND EROSION. ALL SLOPES 3:1 OR GREATER THAN 3:1 SHALL BE TREATED WITH FLEXTERRA HP-FGM OR AN APPROVED EQUAL AS SPECIFIED IN THE PLANS.
- 10. OHIO EPA SWPPP REGULATIONS REQUIRES THAT A SEDIMENT TRAP OR POND BE SIZED TO PROVIDE AT LEAST 104 CUBIC YARDS (67 CY FOR DEWATERING AND 37 CY FOR SEDIMENT STORAGE) OF STORAGE PER ACRE OF TOTAL CONTRIBUTING AREA. MAXIMUM DEPTH OF SEDIMENT SETTLING POND SHALL BE EQUAL OR LESS THAN 5-FEET WITH A LENGTH TO WIDTH RATIO GREATER THAN OR EQUAL TO 2:1)
- 11. OUTLET STRUCTURES IN SEDIMENTATION BASINS SHALL BE MAINTAINED IN OPERATIONAL CONDITIONS AT ALL TIMES. SEDIMENT MUST BE REMOVED FROM BASINS AND OR TRAPS WHEN THE DESIGN CAPACITY HAS BEEN REDUCED BY 40% (APPROXIMATELY ONE-HALF OF POND DEPTH)
- 12. NO SOLID (OTHER THAN SEDIMENT) OR LIQUID WASTE, INCLUDING BUILDING MATERIALS, SHALL BE DISCHARGED IN STORM WATER RUNOFF.
- 13. ALL TOXIC WASTES, HAZARDOUS WASTES AND NON-SEDIMENT POLLUTANTS MUST BE DISPOSED OF IN ACCORDANCE WITH LOCAL, STATE, AND FEDERAL GUIDELINES. WASH OUT OF CEMENT TRUCKS SHOULD OCCUR IN DESIGNATED PIT OR DIKED AREAS, WHERE WASHINGS CAN BE REMOVED AND PROPERLY DISPOSED OFF-SITE WHEN THEY HARDEN. STORAGE TANKS SHOULD ALSO BE LOCATED IN PIT OR DIKED AREAS. IN ADDITION, SUFFICIENT OIL AND GREASE ABSORBING MATERIALS AND FLOTATION BOOMS TO CLEAN AND CONTAIN FUEL AND CHEMICAL SPILLS MUST BE KEPT ON SITE. NO TOXIC OR HAZARDOUS WASTES SHALL BE DISPOSED INTO STORM DRAINS, SEPTIC TANKS OR BY BURYING, BURNING OR MIXING THE WASTES.
- 14. CONTAINERS SHALL BE AVAILABLE FOR DISPOSAL OF DEBRIS, TRASH, HAZARDOUS OR PETROLEUM WASTES. ALL CONTAINERS MUST BE COVERED AND LEAK-PROOF. ALL WASTE MATERIAL SHALL BE DISPOSED OF AT FACILITIES APPROVED FOR THE PERTINENT MATERIAL.
- 15. RUBBISH, TRASH, GARBAGE, LITTER, OR OTHER SUCH MATERIALS SHALL BE DISPOSED INTO SEALED CONTAINERS. MATERIALS SHALL BE PREVENTED FROM LEAVING THE SITE THROUGH THE ACTION OF WIND OR STORM WATER DISCHARGE INTO DRAINAGE DITCHES OR WATERS OF THE STATE.
- 16. BRICKS, HARDENING CONCRETE AND SOIL WASTE SHALL BE FREE FROM CONTAMINATION WHICH MAY LEACH CONSTITUENTS TO WATERS OF THE STATE.
- 17. CLEAN CONSTRUCTION WASTES THAT WILL BE DISPOSED INTO THE PROPERTY SHALL BE SUBJECT TO ANY LOCAL PROHIBITIONS FROM THIS TYPE OF DISPOSAL
- 18. ALL CONSTRUCTION AND DEMOLITION DEBRIS (C&DD) WASTE SHALL BE DISPOSED OF IN AN OHIO EPA APPROVED C&DD LANDFILL AS REQUIRED BY OHIO REVISED CODE 3714. CONSTRUCTION DEBRIS MAY BE DISPOSED OF ON-SITE, BUT DEMOLITION DEBRIS MUST BE DISPOSED IN AN OHIO EPA APPROVED LANDFILL. ALSO, MATERIALS WHICH CONTAIN ASBESTOS MUST COMPLY WITH AIR POLLUTION REGULATIONS (SEE OHIO ADMINISTRATIVE CODE 3745-20).
- 19. AREA SHALL BE DESIGNATED BY CONTRACTOR AND SHOWN ON SWPPP MAP FOR MIXING OR STORAGE OF COMPOUNDS SUCH AS FERTILIZERS, LIME ASPHALT, OR CONCRETE, THESE DESIGNATED AREAS SHALL BE LOCATED AWAY FROM WATERCOURSES, DRAINAGE DITCHES, FIELD DRAINS, OR OTHER STORMWATER DRAINAGE AREA.
- 20. EQUIPMENT FUELING & MAINTENANCE SHALL BE IN DESIGNATED AREAS ONLY, THESE DESIGNATED AREAS SHALL BE LOCATED AWAY FROM WATERCOURSES, DRAINAGE DITCHES, FIELD DRAINS, OR OTHER STORMWATER DRAINAGE AREA.
- 21. A SPILL PREVENTION CONTROL AND COUNTERMEASURE (SPCC) PLAN MUST BE DEVELOPED FOR SITES WITH ONE ABOVE-GROUND STORAGE TANK OF 660 GALLONS OR MORE, TOTAL ABOVE-GROUND STORAGE OF 1,330 GALLONS OR BELOW-GROUND STORAGE OF 4,200 GALLONS OF FUEL.
- 22. ALL DESIGNATED CONCRETE CHUTE OR WASHOUT AREAS SHALL BE LOCATED AWAY FROM WATERCOURSES, DRAINAGE DITCHES, FIELD DRAINS OR OTHER STORMWATER DRAINAGE ARFAS
- 23. IN THE EVENT THAT HIGH GROUND WATER AT THIS SITE IS ENCOUNTERED, CONTRACTOR IS RESPONSIBLE FOR DESIGNING AND IMPLEMENTING A PLAN TO CONTROL BOTH SURFACE AND GROUND WATER DURING THE COURSE OF CONSTRUCTION. ALL DEWATERING ACTIVITIES SHALL PASS THROUGH A BMP PRIOR TO LEAVING THE SITE.
- 24. DISCHARGE OF WATER WITH POTENTIAL SEDIMENT FROM THE SITE SHALL BE THROUGH A FILTER BAG, SUMP PIT OR OTHER SEDIMENT REMOVAL DEVICE.

- 25. ALL CONTAMINATED SOIL MUST BE TREATED AND/OR DISPOSED IN AN OHIO EPA APPROVED SOLID WASTE MANAGEMENT FACILITY OR HAZARDOUS WASTE TREATMENT, STORAGE OR DISPOSAL FACILITIES (TSDFs).
- 26. IF THE SITE CONTAINS CONTAMINATED SOIL, THE FOLLOWING SHALL BE USED TO PREVENT CONTAMINATION FROM BEING RELEASED
- 1. BERMS, TRENCHES AND PITS TO COLLECT CONTAMINATED RUNOFF AND PREVENT DISCHARGES.
- 2. PUMPING RUNOFF INTO A SANITARY SEWER (WITH PRIOR APPROVAL OF THE SANITARY SYSTEM OPERATOR) OR INTO A CONTAINER FOR TRANSPORT TO AN APPROPRIATE TREATMENT/DISPOSAL FACILITY.
- 3. COVERING AREAS OF CONTAMINATION WITH TARPS OR OTHER METHODS THAT PREVENT STORM WATER FROM COMING INTO CONTACT WITH THE MATERIAL.
- GENERAL CONTRACTOR TO CONTAIN AND REMOVE THE SPILLED MATERIAL. ALL HAZARDOUS MATERIALS, INCLUDING CONTAMINATED SOIL AND LIQUID CONCRETE WASTE, WILL BE DISPOSED OF BY THE CONTRACTOR IN THE MANNER SPECIFIED BY FEDERAL, STATE AND LOCAL REGULATIONS AND BY THE MANUFACTURER OF SUCH PRODUCTS. AS SOON AS POSSIBLE, THE SPILL WILL BE REPORTED TO THE APPROPRIATE AGENCIES. AS REQUIRED UNDER THE PROVISIONS OF THE CLEAN WATER ACT, ANY SPILL OR DISCHARGE ENTERING WATERS OF THE UNITED STATES WILL BE PROPERLY REPORTED. THE GENERAL CONTRACTOR WILL PREPARE A WRITTEN RECORD OF ANY SPILL AND ASSOCIATED CLEAN-UP ACTIVITIES OF PETROLEUM PRODUCTS OR HAZARDOUS MATERIALS IN EXCESS OF 1 GALLON OR REPORTABLE QUANTITIES, WHICH EVER IS LESS.
- 28. THE CONTRACTOR SHALL CONTACT THE OHIO EPA AT 800.282.9378, THE LOCAL FIRE DEPARTMENT AND THE LOCAL EMERGENCY PLANNING COMMITTEE IN THE EVENT OF A PETROLEUM SPILL (>25 GALLONS) OR THE PRESENCE OF SHEEN.
- 29. DUST CONTROL USING APPROVED MATERIALS MUST BE PERFORMED WHEN NECESSARY. DUST SUPPRESSANTS SHALL NOT BE APPLIED NEAR CATCH BASINS FOR STORM SEWERS OR OTHER DRAINAGE WAYS. THE USE OF MOTOR OILS AND OTHER PETROLEUM BASED OR TOXIC LIQUIDS FOR DUST SUPPRESSION IS PROHIBITED.
- 30. PROCESS WASTEWATERS (EQUIPMENT WASHING, LEACHATE ASSOCIATED WITH ON-SITE WASTE DISPOSAL AND CONCRETE WASH-OUTS) SHALL BE COLLECTED AND DISPOSED OF PROPERLY.
- 31. ENGINEER WILL FILE SANITARY AND WATER PTI FORMS WITH THE OHIO EPA AS REQUIRED.
- 32. PROTECTED STORAGE AREAS SHALL BE USED FOR INDUSTRIAL AND CONSTRUCTION MATERIALS IN ORDER TO MINIMIZE THE EXPOSURE OF SUCH MATERIALS TO STORMWATER.
- 33. ALL CONTROL MEASURES STATED IN THE SWPPP SHALL BE MAINTAINED IN FULLY FUNCTIONAL CONDITION UNTIL TEMPORARY OR PERMANENT STABILIZATION OF THE SITE IS ACHIEVED. ALL EROSION AND SEDIMENTATION CONTROL MEASURES SHALL BE INSPECTED BY A QUALIFIED PERSON IN ACCORDANCE TO THE CONTRACT DOCUMENTS OR THE APPLICABLE PERMIT, WHICHEVER IS MORE STRINGENT, AND REPAIRED.
- 34. INSPECTIONS OF BMPS SHALL BE PERFORMED BY QUALIFIED PERSONS PROVIDED BY THE PERMITTEE AND THE INSPECTION LOGS ARE TO BECOME A PART OF THIS PLAN. INSPECTIONS RECORDS SHALL BE SIGNED BY THE INSPECTOR AND WILL BE KEPT FOR 3 YEARS AFTER THE NOTICE OF TERMINATION IS SUBMITTED.
- INSPECTIONS SHALL BE CONDUCTED AT LEAST ONCE IN EVERY 7 CALENDAR DAYS AND WITHIN 24 HOURS AFTER ANY STORM EVENT GREATER THAN 0.5 INCHES OF RAIN PER 24 HOUR PERIOD. FROM THE BEGINNING OF CONSTRUCTION THROUGH THE FINAL INSPECTION PRIOR TO THE NOTICE OF TERMINATION.
- 36. NON-SEDIMENT POND BMPS TO BE REPAIRED WITHIN 3 DAYS OF INSPECTION AND SEDIMENT POND BMPS WITHIN 10 DAYS OF INSPECTION. BMPS NOT MEETING THE INTENDED FUNCTION SHALL BE REPLACED WITHIN 10 DAYS OF INSPECTION. MISSING BMPS SHALL BE INSTALLED WITHIN 10 DAYS OF INSPECTION.
- 37. IF THE SITE IS STABILIZED AND WILL BE DORMANT FOR A LONG PERIOD OF TIME. LESS
- FREQUENT INSPECTIONS MAY BE REQUESTED OF THE OEPA VIA A WAIVER REQUEST.
- SHOW SIGNS OF UNDERMINING AND OR DETERIORATION. 39. ALL SEEDED AREAS SHALL BE CHECKED REGULARLY TO ENSURE THAT A GOOD STANDING OF
- 40. CHECK DAMS, FILTER SOCK AND INLET PROTECTION SHALL BE REPAIRED TO THEIR ORIGINAL
- CONDITION IF DAMAGED. SEDIMENT ACCUMULATION MUST BE REMOVED WHEN SEDIMENT HEIGHT REACHES ONE-HALF THE HEIGHT OF THE CHECK DAMS, FILTER SOCK AND INLET PROTECTION.
- 41. MINIMIZE OFF-SITE SEDIMENT TRACKING OF VEHICLES BY THE USE OF STONE MATERIAL IN ALL CONSTRUCTION ENTRANCES, ALONG WITH REGULARLY SCHEDULED SWEEPING/GOOD HOUSEKEEPING. STABILIZED CONSTRUCTION ENTRANCES TO BE PROPERLY MAINTAINED AND IN GOOD WORKING ORDER AT ALL TIMES; THIS MAY REQUIRE PERIODIC TOP DRESSING OF THE STONE AS CONDITIONS DEMAND.
- 42. IF THE ACTION OF VEHICLES TRAVELING OVER THE STABILIZED CONSTRUCTION ENTRANCE DOES NOT SUFFICIENTLY REMOVE MOST OF THE DIRT AND MUD, THEN THE TIRES MUST BE WASHED BEFORE VEHICLES ENTER A PUBLIC ROAD. PROVISIONS MUST BE MADE TO INTERCEPT THE WATER AND TRAP THE SEDIMENT BEFORE IT IS CARRIED OFF THE SITE.
- 43. ALL MATERIALS SPILLED, DROPPED, WASHED, OR TRACKED ONTO THE ROADWAYS OR INTO THE STORM SEWERS MUST BE REMOVED IMMEDIATELY.
- 44. THE TEMPORARY PARKING AND STORAGE AREA SHALL BE KEPT IN GOOD CONDITION (SUITABLE FOR PARKING AND STORAGE) BY GENERAL CONTRACTOR. THIS MAY REQUIRE PERIODIC TOP DRESSING OF THE TEMPORARY PARKING AS CONDITIONS DEMAND.
- 45. CONTRACTORS AND SUBCONTRACTORS WILL BE RESPONSIBLE FOR REMOVING ALL SEDIMENT FROM THE SITE, INCLUDING DETENTION PONDS, AND STORM SEWER SYSTEMS. SEDIMENT DEPOSITION DURING SITE STABILIZATION MUST ALSO BE REMOVED.
- 46. ALL RIP RAP MUST BE PLACED OVER GEOTEXTILE FABRIC GEOTEXTILE FABRIC SHOULD ALSO BE PLACED UNDER THE STONE OF THE STABILIZED CONSTRUCTION EXIT.
- 47. STONE CONSTRUCTION EXIT TO BE MAINTAINED BY CONTRACTOR UNTIL SITE HAS BEEN PAVED OR IS NO LONGER REQUIRED.
- 48. ALL CATCH BASIN GRATES ARE TO BE PROTECTED WITH INLET BAGS AFTER THEY ARE INSTALLED. THEY SHOULD BE ROUTINELY CLEANED AND MAINTAINED.
- 49. ROCK CHECK DAMS SHOULD BE ROUTINELY CLEANED ONCE SEDIMENT BEGINS TO APPEAR ON THE UPSTREAM SIDE OF THE ROCK.
- 50. ON-SITE AND OFF-SITE STOCKPILE AND BORROW AREAS SHALL BE PROTECTED FROM EROSION AND SEDIMENTATION BY THE USE OF BEST MANAGEMENT PRACTICES. THESE AREAS MUST BE SHOWN IN THE SITE MAP AND PERMITTED IN ACCORDANCE WITH GENERAL PERMIT REQUIREMENTS. AT A MINIMUM, SILT FENCE TO BE PLACED AT PERIMETER OF STOCKPILE AREA TO PREVENT SOIL FROM LEAVING THE STOCKPILE AREA.
- 51. CONTRACTOR TO DELINEATE STOCK PILE LOCATION ON PLANS TO BE KEPT ON SITE DURING CONSTRUCTION.
- 52. CONSTRUCT STOCKPILES IN ACCESSIBLE LOCATIONS THAT DO NOT INTERFERE WITH NATURAL DRAINAGE. INSTALL APPROPRIATE SEDIMENT CONTROLS TO TRAP SEDIMENT SUCH AS SILT FENCE IMMEDIATELY ADJACENT TO THE STOCKPILE OR SEDIMENT TRAPS OR BASINS
- 53. IF STOCKPILE IS STORED FOR MORE THAN 21 DAYS, IT SHOULD BE TEMPORARY SEEDED, OR COVERED WITH A TARP.
- 54. ALL CONSTRUCTION SHALL BE STABILIZED AT THE END OF EACH DAY; THIS INCLUDES BACKFILLING OF TRENCHES FOR UTILITY CONSTRUCTION AND PLACEMENT OF GRAVEL OR ASPHALT FOR ROAD CONSTRUCTION.

27. IN THE EVENT OF AN ACCIDENTAL SPILL, IMMEDIATE ACTION WILL BE UNDERTAKEN BY THE

38. INLET PROTECTION DEVICES AND CONTROLS SHALL BE REPAIRED OR REPLACED WHEN THEY

GRASS IS MAINTAINED. AREAS SHOULD BE FERTILIZED, WATERED, AND RESEEDED AS NEEDED.

DOWNSTREAM OF STOCKPILE. STOCKPILE SIDE SLOPES SHALL NOT EXCEED A RATIO OF 2:1.

- 55. THE LAST LAYER OF SOIL, INCLUDING TOP SOIL SHOULD BE COMPACTED TO 80% 85% OF THE MAXIMUM STANDARD PROCTOR DENSITY, IN AREAS OUTSIDE THE PARKING LOT THAT WILL RECEIVE VEGETATION. THIS IS PARTICULARLY IMPORTANT IN CUT SLOPE AND EMBANKMENT AREAS. IN PAVEMENT AND ISLAND AREAS, IT IS RECOMMENDED THAT THE SOIL BE COMPACTED TO 98% AND 95% OF THE MAXIMUM STANDARD PROCTOR DENSITY RESPECTIVELY: THE LAST COMPACTED LAYER MAY BE SCARIFIED TO IMPROVE THE SOIL GROWTH CHARACTERISTICS.
- 56. THE POST CONSTRUCTION REQUIREMENTS OF OHIO EPA PERMIT OHC000004 SHALL BE MET BY THE THREE WATER QUALITY BASINS ON THE SITE.
- 57. ALL WATER FROM DEWATERING ACTIVITIES SHALL BE PROCESSED THROUGH A BMP PRIOR TO LEAVING THE SITE.
- 58. CONTRACTOR TO ENSURE STREETS SHALL BE CLEARED OF DEBRIS FROM SITE AND SWEPT CLEAN ON AN AS NEEDED BASIS. AT NO POINT SHOULD DIRT, DEBRIS, OR ANY MATERIAL BE STORED OR LEFT ON THE STREET.
- 59. ADDITIONAL EROSION CONTROL MEASURES MAY BE REQUIRED BY THE INSPECTOR IN THE FIELD.

SITE NOTES

THE PROPOSED PROJECT IS THE CARROLL COUNTY ENERGY 700MW AIR COOLED 2x1 COMBINED CYCLE. THE PROJECT SITE IS 100 ACRES INCLUDING THE 77 ACRE FACILITY SITE, OF WHICH 17 ACRES WILL BE USED FOR THE POWER BLOCK. 57 ACRES WILL BE DISTURBED AS PART OF THIS PROJECT.

THE PRE-CONSTRUCTION RUNOFF CURVE NUMBER IS 69. THE POST-CONSTRUCTION RUNOFF CURVE NUMBER IS 81.

THE PROJECT SITE INCLUDES WETLANDS, TWO OF WHICH ARE TO BE REMOVED DURING THIS PROJECT. ALL OTHER AREAS ARE TO BE PROTECTED AND NOT DISTURBED DURING CONSTRUCTION.

GEOTECHNICAL SUMMARY

REFER TO PRELIMINARY SUBSURFACE EXPLORATION REPORT BY TETRATECH, DATED JULY 2013

SOILS ON SITE CONSIST OF: BERKS SHALY SILT LOAM, 3-8% SLOPE (BkB) BERKS SHALY SILT LOAM, 8-15% SLOPE (BkC) BERKS SHALY SILT LOAM, 15-25% SLOPE (BkD) COSHOCTON-KEENE SILT LOAM, 3-8 % SLOPE (CoB) CULLEOKA SILT LOAM, 3-8 % SLOPE (CuB) ELBA SILTY CLAY LOAM, 8-5% SLOPE (EbC2) GLENFORD SILT LOAM, 8-15% SLOPE (GfC) GUERNSEY SILTY CLAY LOAM, 8-15% SLOPE (GuC2) WESTMORELAND COSHOCTON SILT, 8-15% SLOPE (WmC) WESTMORELAND COSHOCTON SILT, 15-25% SLOPE (WmD)

THE PRE-EXISTING SITE CONDITION IS UNDEVELOPED AGRICULTURAL AND WOODEN LAND. THE SITE IS BORDERED BY AGRICULTURAL LAND THAT IS PLANNED FOR INDUSTRIAL DEVELOPMENT TO THE NORTH BY MAGES DEVELOPMENT AND AGRICULTURAL LAND TO THE SOUTH, EAST AND WEST.

SEQUENCE OF CONSTRUCTION

DURING CONSTRUCTION CONTRACTOR SHALL INSTALL/PLACE ORANGE MESH CONSTRUCTION/BARRIER FENCING ALONG THE DESIGNATED STREAM CORRIDOR PROTECTION ZONE LINE WHICH RUNS ADJACENT TO THE PROJECT SITE. A SIGN INDICATING THE SPACE AS A " STREAM CORRIDOR PROTECTION ZONE - NO DISTURBANCE PERMITTED" TO BE INSTALLED EVERY 250-300 FEET.

1. INSTALL ALL TEMPORARY EROSION CONTROL MEASURES. INSPECTION OF EROSION CONTROL MEASURE AS OUTLINED IN SWPPP NOTES. REPAIRS AND/ OR REPLACEMENTS SHALL BE MADE AS NEEDED.

- 2. CONSTRUCT TEMPORARY PARKING, DRIVE AND STORAGE AREA.
- 3. BEGIN CLEARING & GRUBBING AS NEEDED.
- 4. STRIP AND STOCKPILE TOPSOIL
- 5. BEGIN GRADING THE SITE. MAKING SURE THAT EROSION CONTROL MEASURES ARE IN PLACE, WORKING PROPERLY AND MAINTAINED THROUGHOUT GRADING OPERATIONS.
- TEMPORARY SEED DISTURBED AREAS.
- 7. BEGIN CONSTRUCTION OF BUILDING PADS AND STRUCTURES.
- 8. INSTALL UTILITIES AS DESIGNED.
- 9. REDISTRIBUTE TOPSOIL PER LANDSCAPE PLAN. PERMANENTLY SEED, MULCH & LANDSCAPE REMAINDER OF PERVIOUS AREAS.
- 10. COMPLETE BUILDING CONSTRUCTION.
- 11. PERFORM SITE PAVING.
- 12. COMPLETE POST CONSTRUCTION WALK THROUGH WITH THE ENGINEER.
- 13. REMOVE EROSION AND SEDIMENT CONTROL MEASURES AFTER PERMANENT VEGETATION HAS BEEN ESTABLISHED.

EROSION AND SEDIMENT CONTROL NARRATIVE

PLAN ENGINEERS CESO, INC. 402 2ND STREET SE, SUITE 310 CANTON, OHIO 44702 PHONE: (330) 451-0975 FAX: (330) 451-0983

EROSION & SEDIMENT SEDIMENT CONTROL: EROSION AND SEDIMENT RUNOFF SHALL BE CONTROLLED THROUGH A COMBINATION OF EROSION CONTROL DEVICES AS SHOWN ON THE EROSION CONTROL PLAN AND DETAIL SHEETS.

DEVELOPER: CARROLL COUNTY ENGERGY, LLC 31 MILK STREET **SUITE 1001** BOSTON, MA 02109

MAINTENANCE: MAINTENANCE OF THE EROSION AND SEDIMENT CONTROL ITEMS SHALL BE IN ACCORDANCE WITH THE NOTES LISTED ON THIS SHEET. SEE THE SITE NOTES AND SEQUENCE OF CONSTRUCTION NOTES SHOWN ON THIS SHEET FOR ADDITIONAL INFORMATION.

SITE SOIL BREAKDOWN						
SOIL SYMBOL	SOIL NAME	SLOPE	AREA (ACRES)	AREA (PERCENT OF TOTAL)		
BkB	BERKS SHALY SILT LOAM	3-8%	0.6	0.60%		
BkC	BERKS SHALY SILT LOAM	8-15%	11.1	11.16%		
BkD	BERKS SHALY SILT LOAM	15-25%	24.2	24.32%		
СоВ	COSHOCTON-KEENE SILT LOAM	3-8%	1.9	1.91%		
CuB	CULLEOKA SILT LOAM	3-8%	5.4	5.43%		
EbC2	ELBA SILTY CLAY LOAM	8-15%	1.6	1.61%		
GfC	GLENFORD SILT LOAM	8-15%	5.7	5.73%		
GuC2	GUERNSEY SILTY CLAY LOAM	8-15%	5.4	5.43%		
WmC	WESTMORELAND COSHOCTON SILT	8-15%	27.1	27.23%		
WmD	WESTMORELAND COSHOCTON SILT	15-25%	16.5	16.58%		
			99.5	100.00%		

Z:\ADVANCED POWER\5188 - CARROLL COUNTY ELECTRIC\CIVIL\PLAN\5188 - CCE SWPPP.DWG - 9/18/2013 5:06 PM

Z:\ADVANCED POWER\5188 - CARROLL COUNTY ELECTRIC\CIVIL\PLAN\5188 - CCE SWPPP.DWG - 9/18/2013 5:07 PM

Z:\ADVANCED POWER\5188 - CARROLL COUNTY ELECTRIC\CIVIL\PLAN\5188 - CCE SWPPP.DWG - 9/18/2013 2:31 PM

Z:\ADVANCED POWER\5188 - CARROLL COUNTY ELECTRIC\CIVIL\PLAN\5188 - CCE SWPPP.DWG - 9/18/2013 2:32 PM

SOUTHWEST WATER QUALITY POND 1:20 SCALE

NORTHEAST WATER QUALITY POND 1:20 SCALE

WATER QUALITY POND TABLE										
POND	LENGTH (ft)	WIDTH (ft)	L:W RATIO	DEPTH (ft)	Total Volume (CF)	Water Quality Volume (ac-ft)	Area Drained (acres)	Discharge Rate (cfs)	Drawdown Time (hr)	Orifice Elevation (ft)
NORTHWEST	100	50	2:1	5	10800	0.25	10	0.09	48.6	1277
SOUTHEAST	100	50	2:1	5	17550	0.32	13	0.09	48.9	1249
NORTHEAST	150	75	2:1	5	31050	0.84	34	0.04	49.3	1210

APPENDIX B WATER QUALITY CALCULATIONS

WATER QUALITY VOLUME CALCULATIONS

Project: Location: Carroll County Energy

Washington Township, Carroll County, Ohio

Northwest Pond	
WQv = C * P * A / 12	
WQv = Water Quality	
Volume in acre-feet	0.14
C = Runoff Coefficient (per	
calculation provided in	
ODNR Manual)	0.23
P = 0.75 in precipiation	
depth	0.75
A = area draining into the	
BMP in acres	10.00

Southwest Pond WQv = C * P * A / 12 WQv = Water Quality Volume in acre-feet 0.19 C = Runoff Coefficient (per نامار با ما م ما

Job Number: Date:

September 17, 2013

5188

Northeast Pond	
WQv = C * P * A / 12	
WQv = Water Quality	
Volume in acre-feet	0.49
C = Runoff Coefficient (per	
calculation provided in	
ODNR Manual)	0.23
P = 0.75 in precipiation	
depth	0.75
A = area draining into the	
BMP in acres	34.00

_	Table 1	
	Land Use	С
	Industrial & Commercial	0.8
	High Density Residential	
	(>15 dwelling/acre)	0.5
	Medium Density Residential	
	(4-15 dwelling/acre)	0.4
	Low Density Residential	
	(1-4 dwelling/acre)	0.3
	Open Space and	
	Recreational Areas	0.2

Permanent Pool / Extended

Detention Volume = 1.2 * WQv =

Table 1	
Land Use	С
Industrial & Commercial	0.8
High Density Residential	
(>15 dwelling/acre)	0.5
Medium Density Residential	
(4-15 dwelling/acre)	0.4
Low Density Residential	
(1-4 dwelling/acre)	0.3
Open Space and	
Recreational Areas	0.2

Permanent Pool / Extended

Detention Volume =

1.2 * WQv =

0.17

calculation provided in	
ODNR Manual)	0.23
P = 0.75 in precipiation	
depth	0.75
A = area draining into the	
BMP in acres	13.00
Table 1	
Table 1 Land Use	С
Table 1 Land Use Industrial & Commercial	C 0.8
Table 1 Land Use Industrial & Commercial High Density Residential	C 0.8
Table 1 Land Use Industrial & Commercial High Density Residential (>15 dwelling/acre)	C 0.8 0.5

(1-4 dwelling/acre)	0.3
Open Space and	
Recreational Areas	0.2
Permanent Pool / Extended	

nent Pool / Extended Detention Volume =

1.2 * WQv =

0.22

Medium Density Residential (4-15 dwelling/acre) 0.4 Low Density Residential

APPENDIX C WATER QUALITY POND DISCHARGE RATE CALCULATIONS

Updated: 9/17/13 DETENTION BASIN DRAW DOWN CALCULATIONS

Project:..... CARROLL COUNTY ENERGY Location:..... WASHINGTON TWP.,

Job No: Date: 5188 Sept. 17, 2013

Northwest Pond Basin Invert:....

Increments:....

1277.00 Ft. 0.10 Ft.

Elev.	Height	Area	Area Incremental Total Volume				
		(SF)	Volume	Cubic Ft.	Acre Ft.		
1277.00	0.00 F	t. 175 S	F 0 CFT	0 0	CFT 0.000	Ac/Ft.	
1277.10	0.10 F	t. 352 S	F 26 CFT	26 0	CFT 0.001	Ac/Ft.	
1277.20	0.20 F	t. 528 S	F 44 CFT	70 C	CFT 0.002	Ac/Ft.	
1277.30	0.30 F	t. 705 S	F 62 CFT	132 (CFT 0.003	Ac/Ft.	
1277.40	0.40 F	t. 881 S	F 79 CFT	211 0	CFT 0.005	Ac/Ft.	
1277.50	0.50 F	t. 1,058 S	F 97 CFT	308 C	CFT 0.007	Ac/Ft.	
1277.60	0.60 F	t. 1,235 S	F 115 CFT	423 0	CFT 0.010	Ac/Ft.	
1277.70	0.70 F	t. 1,411 S	F 132 CFT	555 C	CFT 0.013	Ac/Ft.	
1277.80	0.80 F	t. 1,588 S	F 150 CFT	705 C	CFT 0.016	Ac/Ft.	
1277.90	0.90 F	t. 1,764 S	F 168 CFT	873 C	CFT 0.020	Ac/Ft.	
1278.00	1.00 F	t. 1,058 S	F 141 CFT	1,014 C	CFT 0.023	Ac/Ft.	
1278.10	1.10 F	t. 1,142 S	F 110 CFT	1,124 0	CFT 0.026	Ac/Ft.	
1278.20	1.20 F	t. 1,226 S	F 118 CFT	1,242 (CFT 0.029	Ac/Ft.	
1278.30	1.30 F	t. 1,311 S	F 127 CFT	1,369 C	CFT 0.031	Ac/Ft.	
1278.40	1.40 F	t. 1,395 S	F 135 CFT	1,504 C	CFT 0.035	Ac/Ft.	
1278.50	1.50 F	t. 1,479 S	F 144 CFT	1,648 C	CFT 0.038	Ac/Ft.	
1278.60	1.60 F	t. 1,563 S	F 152 CFT	1,800 C	CFT 0.041	Ac/Ft.	
1278.70	1.70 F	t. 1,647 S	F 161 CFT	1,961 C	CFT 0.045	Ac/Ft.	
1278.80	1.80 F	t. 1,732 S	F 169 CFT	2,130 0	CFT 0.049	Ac/Ft.	
1278.90	1.90 F	t. 1,816 S	F 177 CFT	2,307 0	CFT 0.053	Ac/Ft.	
1279.00	2.00 F	t. 1,479 S	F 165 CFT	2,472 0	CFT 0.057	Ac/Ft.	
1279.10	2.10 F	t. 1,527 S	F 150 CFT	2,622 0	CFT 0.060	Ac/Ft.	
1279.20	2.20 F	t. 1,574 S	F 155 CFT	2,777 0	CFT 0.064	Ac/Ft.	
1279.30	2.30 F	t. 1,622 S	F 160 CFT	2,937 0	CFT 0.067	Ac/Ft.	
1279.40	2.40 F	t. 1,670 S	F 165 CFT	3,102 0	CFT 0.071	Ac/Ft.	
1279.50	2.50 F	t. 1,718 S	F 169 CFT	3,271 0	CFT 0.075	Ac/Ft.	
1279.60	2.60 F	t. 1,765 S	F 174 CFT	3,445 0	CFT 0.079	Ac/Ft.	
1279.70	2.70 F	t. 1,813 S	F 179 CFT	3,624 0	CFT 0.083	Ac/Ft.	
1279.80	2.80 F	t. 1,861 S	F 184 CFT	3,808 0	CFT 0.087	Ac/Ft.	
1279.90	2.90 F	t. 1,908 S	F 188 CFT	3,996 0	CFT 0.092	Ac/Ft.	
1280.00	3.00 F	t. 1,956 S	F 193 CFT	4,189 C	CFT 0.096	Ac/Ft.	
1280.10	3.10 F	t. 2,009 S	F 198 CFT	4,388 0	CFT 0.101	Ac/Ft.	
1280.20	3.20 F	t. 2,063 S	F 204 CFT	4,591 C	CFT 0.105	Ac/Ft.	
1280.30	3.30 F	t. 2,116 S	F 209 CFT	4,800 C	CFT 0.110	Ac/Ft.	
1280.40	3.40 F	t. 2,170 S	F 214 CFT	5,014 C	CFT 0.115	Ac/Ft.	
1280.50	3.50 F	t. 2,223 S	F 220 CFT	5,234 0	CFT 0.120	Ac/Ft.	
1280.60	3.60 F	t. 2,276 S	F 225 CFT	5,459 C	CFT 0.125	Ac/Ft.	
1280.70	3.70 F	t. 2,330 S	F 230 CFT	5,689 C	CFT 0.131	Ac/Ft.	
1280.80	3.80 F	t. 2,383 S	F 236 CFT	5,925 C	CFT 0.136	Ac/Ft.	
1280.90	3.90 F	t. 2,437 S	F 241 CFT	6,166 C	CFT 0.142	Ac/Ft.	
1281.00	4.00 F	t. 2,490 S	F 246 CFT	6,412 0	CFT 0.147	Ac/Ft.	
1281.10	4.10 F	t. 2,697 S	F 259 CFT	6,672 0	CFT 0.153	Ac/Ft.	
1281.20	4.20 F	t. 2,903 S	F 280 CFT	6,952 C	CFT 0.160	Ac/Ft.	
1281.30	4.30 F	t. 3,110 S	F 301 CFT	7,252 0	CFT 0.166	Ac/Ft.	
1281.40	4.40 F	t. 3,316 S	F 321 CFT	7,574 C	CFT 0.174	Ac/Ft.	
1281.50	4.50 F	t. 3,523 S	F 342 CFT	7,916 C	CFT 0.182	Ac/Ft.	
1281.60	4.60 F	t. 3,730 S	F 363 CFT	8,278 0	CFT 0.190	Ac/Ft.	
1281.70	4.70 F	t. 3,936 S	F 383 CFT	8,661 0	CFT 0.199	Ac/Ft.	
1281.80	4.80 F	t. 4,143 S	F 404 CFT	9,065 C	CFT 0.208	Ac/Ft.	
1281.90	4.90 F	t. 4,349 S	F 425 CFT	9,490 C	CFT 0.218	Ac/Ft.	
1282.00	5.00 F	t. 4,556 S	F 445 CFT	9,935 C	CFT 0.228	Ac/Ft.	
1282.10	5.10 F	t. 4,557 S	F 456 CFT	10,391 C	CFT 0.239	Ac/Ft.	
1282.20	5.20 F	t. 4,558 S	F 456 CFT	10,847 0	CFT 0.249	Ac/Ft.	
1282.30	5.30 F	t. 4,559 S	F 456 CFT	11,303 0	CFT 0.259	Ac/Ft.	
1282.40	5.40 F	t. 4,560 S	F 456 CFT	11,758 C	CFT 0.270	Ac/Ft.	
1282.50	5.50 F	t. 4,561 S	F 456 CFT	12,215 C	CFT 0.280	Ac/Ft.	
1282.60	5.60 F	t. 4,562 S	F 456 CFT	12,671 C	CFT 0.291	Ac/Ft.	
1282.70	5.70 F	t. 4,563 S	F 456 CFT	13,127 (CFT 0.301	Ac/Ft.	
1282.80	5.80 F	t. 4,564 S	F 456 CFT	13,583 C	CFT 0.312	Ac/Ft.	
1282.90	5.90 F	t. 4,565 S	F 456 CFT	14,040 C	CFT 0.322	Ac/Ft.	
1283.00	6.00 F	t. 4,566 S	F 457 CFT	14,496 0	CFT 0.333	Ac/Ft.	

OUTFLOW STRUCTURE DATA

Q=C*A*(2*G*H)^.5 ORIFICÈ 1

Northwest Pond

1277.00 Inv. El.

1.25 In. 0.60 Diameter C = 0.01 CFS Q Full=

Inverts can not be any lower than...... 1277.00

Elev.	Height	Orifice 1 Control	Total Flow		Time Vol/Flow = Time		Sum of (Min)	Time (Hour)
1277.00	0.00	Ft. 0.00	CFS	0.00 CFS	0.0	Min.	0.0	0.0
1277.10	0.10	Ft. 0.01	CFS	0.01 CFS	49.5	Min.	49.5	0.8
1277.20	0.20	Ft. 0.02	CFS	0.02 CFS	46.5	Min.	95.9	1.6
1277 30	0.30	Ft 0.02	CES	0.02 CFS	50.3	Min	146.2	24
1277 40	0.40	Ft 0.02	CFS	0.02 CFS	54.6	Min	200.8	3.3
1277 50	0.50	Ft 0.03	CES	0.03 CFS	58.8	Min	259 7	4.3
1277.60	0.00	Ft 0.03	CES	0.03 CES	62.9	Min.	322.6	4.0 5.4
1277.00	0.00	Ft 0.03	CES	0.00 CFS	66.8	Min.	380.3	6.5
1277.80	0.70	Ft 0.04	CES	0.00 CFS	70.4	Min.	459.8	77
1277.00	0.00	Ft 0.04	CES	0.04 CFS	73.9	Min.	533.7	80
1278.00	1 00	Ft 0.04	CES	0.04 CFS	58.0	Min	592.6	0.5 0.0
1270.00	1.00	Ft 0.04	CES	0.04 CES	13.6	Min	636.2	10.6
1270.10	1.10	Ft 0.04	CES	0.04 CFS	43.0	Min	681.1	11.0
1270.20	1.20	Ft 0.05	CES	0.04 CFS	44.5	Min	727.2	12.4
1270.30	1.30	Ft 0.05	CES	0.05 CFS	40.1	Min	774.6	12.1
1270.40	1.40	FL. 0.05	CFS CFS	0.05 CFS	47.3	Min	022.1	12.9
1270.00	1.50	FL. 0.05			40.0	IVIIII.	023.1	13.7
1278.00	1.60	FL. 0.05		0.05 CFS	49.7	IVIII.	872.7	14.5
12/8./0	1.70	FL. 0.05		0.05 CFS	50.8	IVIII.	923.5	10.4
1278.80	1.80	Ft. 0.05	CFS	0.05 CFS	51.9	IVIIN.	975.4	16.3
1278.90	1.90	Ft. 0.06	CFS	0.06 CFS	53.0	iviin.	1028.4	17.1
1279.00	2.00	Ft. 0.06	CFS	0.06 CFS	47.9	iviin.	1076.4	17.9
1279.10	2.10	Ft. 0.06	CFS	0.06 CFS	42.7	Min.	1119.0	18.7
1279.20	2.20	Ft. 0.06	CFS	0.06 CFS	43.0	Min.	1162.0	19.4
1279.30	2.30	Ft. 0.06	CES	0.06 CFS	43.3	Min.	1205.3	20.1
1279.40	2.40	Ft. 0.06	CFS	0.06 CFS	43.6	Min.	1248.9	20.8
1279.50	2.50	Ft. 0.06	CFS	0.06 CFS	44.0	Min.	1292.9	21.5
1279.60	2.60	Ft. 0.07	CFS	0.07 CFS	44.3	Min.	1337.2	22.3
1279.70	2.70	Ft. 0.07	CFS	0.07 CFS	44.7	Min.	1381.8	23.0
1279.80	2.80	Ft. 0.07	CFS	0.07 CFS	45.0	Min.	1426.8	23.8
1279.90	2.90	Ft. 0.07	CFS	0.07 CFS	45.4	Min.	1472.2	24.5
1280.00	3.00	Ft. 0.07	CFS	0.07 CFS	45.7	Min.	1517.9	25.3
1280.10	3.10	Ft. 0.07	CFS	0.07 CFS	46.1	Min.	1564.0	26.1
1280.20	3.20	Ft. 0.07	CFS	0.07 CFS	46.6	Min.	1610.7	26.8
1280.30	3.30	Ft. 0.07	CFS	0.07 CFS	47.1	Min.	1657.7	27.6
1280.40	3.40	Ft. 0.08	CFS	0.08 CFS	47.6	Min.	1705.3	28.4
1280.50	3.50	Ft. 0.08	CFS	0.08 CFS	48.0	Min.	1753.4	29.2
1280.60	3.60	Ft. 0.08	CFS	0.08 CFS	48.5	Min.	1801.9	30.0
1280.70	3.70	Ft. 0.08	CFS	0.08 CFS	49.0	Min.	1850.8	30.8
1280.80	3.80	Ft. 0.08	CFS	0.08 CFS	49.4	Min.	1900.3	31.7
1280.90	3.90	Ft. 0.08	CFS	0.08 CFS	49.9	Min.	1950.2	32.5
1281.00	4.00	Ft. 0.08	CFS	0.08 CFS	50.4	Min.	2000.5	33.3
1281.10	4.10	Ft. 0.08	CFS	0.08 CFS	52.4	Min.	2052.9	34.2
1281.20	4.20	Ft. 0.08	CFS	0.08 CFS	55.8	Min.	2108.7	35.1
1281.30	4.30	Ft. 0.08	CFS	0.08 CFS	59.2	Min.	2168.0	36.1
1281.40	4.40	Ft. 0.09	CFS	0.09 CFS	62.6	Min.	2230.6	37.2
1281.50	4.50	Ft. 0.09	CFS	0.09 CFS	65.9	Min.	2296.4	38.3
1281.60	4.60	Ft. 0.09	CFS	0.09 CFS	69.1	Min.	2365.5	39.4
1281.70	4.70	Ft. 0.09	CFS	0.09 CFS	72.2	Min.	2437.7	40.6
1281.80	4.80	Ft. 0.09	CFS	0.09 CFS	75.3	Min.	2513.0	41.9
1281.90	4.90	Ft. 0.09	CFS	0.09 CFS	78.3	Min.	2591.3	43.2
1282.00	5.00	Ft. 0.09	CFS	0.09 CFS	81.3	Min.	2672.6	44.5
1282.10	5.10	Ft. 0.09	CFS	0.09 CFS	82.4	Min.	2755.0	45.9
1282.20	5.20	Ft. 0.09	CFS	0.09 CFS	81.6	Min.	2836.6	47.3
1282.30	5.30	Ft. 0.09	CFS	0.09 CFS	80.8	Min.	2917.4	48.6
1282.40	5.40	Ft. 0.09	CFS	0.09 CFS	80.1	Min.	2997.5	50.0
1282.50	5.50	Ft. 0.10	CFS	0.10 CFS	79.4	Min.	3076.9	51.3
1282.60	5.60	Ft. 0.10	CFS	0.10 CFS	78.7	Min.	3155.5	52.6
1282.70	5.70	Ft. 0.10	CFS	0.10 CFS	78.0	Min.	3233.5	53.9
1282.80	5.80	Ft. 0.10	CFS	0.10 CFS	77.3	Min.	3310.8	55.2
1282.90	5.90	Ft. 0.10	CFS	0.10 CFS	76.7	Min.	3387.5	56.5
1283.00	6.00	Ft. 0.10	CFS	0.10 CFS	76.0	Min.	3463.5	57.7

Updated: 9/17/13 DETENTION BASIN DRAW DOWN CALCULATIONS

Project:...... CARROLL COUNTY ENERGY Location:..... WASHINGTON TWP.,

Job No: Date:

5188 Sept. 17, 2013

Southwest Pond Basin Invert:.... Increments:....

1249.00 Ft. 0.10 Ft.

Elev.	Height	Area	Incremental	To	Total Volume			
		(SF)	Volume	Cubic Ft.	Acre Ft.			
1249.00	0.00	Ft. 135 S	SF 0 CFT	0	CFT 0.000	Ac/Ft.		
1249.10	0.10 I	Ft. 387 S	SF 26 CFT	26	CFT 0.001	Ac/Ft.		
1249.20	0.20 I	Ft. 639 S	SF 51 CFT	77	CFT 0.002	Ac/Ft.		
1249.30	0.30 I	Ft. 891 S	SF 76 CFT	154	CFT 0.004	Ac/Ft.		
1249.40	0.40 I	Ft. 1,143 S	SF 102 CFT	256	CFT 0.006	Ac/Ft.		
1249.50	0.50 I	Ft. 1,395 S	SF 127 CFT	382	CFT 0.009	Ac/Ft.		
1249.60	0.60 I	Ft. 1,647 S	SF 152 CFT	535	CFT 0.012	Ac/Ft.		
1249.70	0.70 I	Ft. 1,899 S	SF 177 CFT	712	CFT 0.016	Ac/Ft.		
1249.80	0.80 I	Ft. 2,151 S	SF 202 CFT	914	CFT 0.021	Ac/Ft.		
1249.90	0.90 I	Ft. 2,403 S	SF 228 CFT	1,142	CFT 0.026	Ac/Ft.		
1250.00	1.00 I	Ft. 1,395 S	SF 190 CFT	1,332	CFT 0.031	Ac/Ft.		
1250.10	1.10 I	Ft. 1,488 S	SF 144 CFT	1,476	CFT 0.034	Ac/Ft.		
1250.20	1.20 I	Ft. 1,581 S	SF 153 CFT	1,630	CFT 0.037	Ac/Ft.		
1250.30	1.30 I	Ft. 1,675 S	SF 163 CFT	1,792	CFT 0.041	Ac/Ft.		
1250.40	1.40 I	Ft. 1,768 S	SF 172 CFT	1,965	CFT 0.045	Ac/Ft.		
1250.50	1.50 I	Ft. 1,861 S	SF 181 CFT	2,146	CFT 0.049	Ac/Ft.		
1250.60	1.60 I	Ft. 1,954 S	SF 191 CFT	2,337	CFT 0.054	Ac/Ft.		
1250.70	1.70 I	Ft. 2,047 S	SF 200 CFT	2,537	CFT 0.058	Ac/Ft.		
1250.80	1.80 I	Ft. 2,141 S	SF 209 CFT	2,746	CFT 0.063	Ac/Ft.		
1250.90	1.90 I	Ft. 2,234 S	SF 219 CFT	2,965	CFT 0.068	Ac/Ft.		
1251.00	2.00 I	Ft. 1,861 S	SF 205 CFT	3,170	CFT 0.073	Ac/Ft.		
1251.10	2.10 I	Ft. 1,913 S	SF 189 CFT	3,358	CFT 0.077	Ac/Ft.		
1251.20	2.20 I	Ft. 1,966 S	SF 194 CFT	3,552	CFT 0.082	Ac/Ft.		
1251.30	2.30 I	Ft. 2,018 S	SF 199 CFT	3,752	CFT 0.086	Ac/Ft.		
1251.40	2.40 I	Ft. 2,070 S	SF 204 CFT	3,956	CFT 0.091	Ac/Ft.		
1251.50	2.50 I	Ft. 2,123 S	SF 210 CFT	4,166	CFT 0.096	Ac/Ft.		
1251.60	2.60 I	Ft. 2,175 S	SF 215 CFT	4,380	CFT 0.101	Ac/Ft.		
1251.70	2.70 I	Ft. 2,227 S	SF 220 CFT	4,601	CFT 0.106	Ac/Ft.		
1251.80	2.80 I	Ft. 2,279 S	SF 225 CFT	4,826	CFT 0.111	Ac/Ft.		
1251.90	2.90 I	Ft. 2,332 S	SF 231 CFT	5,056	CFT 0.116	Ac/Ft.		
1252.00	3.00 I	Ft. 2,384 S	SF 236 CFT	5,292	CFT 0.121	Ac/Ft.		
1252.10	3.10 I	Ft. 2,442 S	SF 241 CFT	5,533	CFT 0.127	Ac/Ft.		
1252.20	3.20 I	Ft. 2,500 S	SF 247 CFT	5,781	CFT 0.133	Ac/Ft.		
1252.30	3.30 I	Ft. 2,558 S	SF 253 CFT	6,033	CFT 0.139	Ac/Ft.		
1252.40	3.40 I	Ft. 2,616 S	SF 259 CFT	6,292	CFT 0.144	Ac/Ft.		
1252.50	3.50 I	Ft. 2,674 S	SF 264 CFT	6,557	CFT 0.151	Ac/Ft.		
1252.60	3.60 I	Ft. 2,732 S	SF 270 CFT	6,827	CFT 0.157	Ac/Ft.		
1252.70	3.70 I	Ft. 2,790 S	SF 276 CFT	7,103	CFT 0.163	Ac/Ft.		
1252.80	3.80 I	Ft. 2,848 S	SF 282 CFT	7,385	CFT 0.170	Ac/Ft.		
1252.90	3.90 I	Ft. 2,906 S	SF 288 CFT	7,673	CFT 0.176	Ac/Ft.		
1253.00	4.00 I	Ft. 2,964 S	SF 293 CFT	7,966	CFT 0.183	Ac/Ft.		
1253.10	4.10 I	Ft. 3,028 S	SF 300 CFT	8,266	CFT 0.190	Ac/Ft.		
1253.20	4.20 I	Ft. 3,091 S	SF 306 CFT	8,572	CFT 0.197	Ac/Ft.		
1253.30	4.30 I	Ft. 3,155 S	SF 312 CFT	8,884	CFT 0.204	Ac/Ft.		
1253.40	4.40 I	Ft. 3,219 S	SF 319 CFT	9,203	CFT 0.211	Ac/Ft.		
1253.50	4.50 I	Ft. 3,283 S	SF 325 CFT	9,528	CFT 0.219	Ac/Ft.		
1253.60	4.60 I	Ft. 3,346 S	SF 331 CFT	9,859	CFT 0.226	Ac/Ft.		
1253.70	4.70 I	Ft. 3,410 S	SF 338 CFT	10,197	CFT 0.234	Ac/Ft.		
1253.80	4.80 I	Ft. 3,474 S	SF 344 CFT	10,541	CFT 0.242	Ac/Ft.		
1253.90	4.90 I	Ft. 3,537 S	SF 351 CFT	10,892	CFT 0.250	Ac/Ft.		
1254.00	5.00 l	Ft. 3,601 S	SF 357 CFT	11,249	CFT 0.258	Ac/Ft.		
1254.10	5.10 I	Ft. 3,670 S	SF 364 CFT	11,612	CFT 0.267	Ac/Ft.		
1254.20	5.20 I	Ft. 3,740 S	SF 371 CFT	11,983	CFT 0.275	Ac/Ft.		
1254.30	5.30 I	Ft. 3,809 S	SF 377 CFT	12,360	CFT 0.284	Ac/Ft.		
1254.40	5.40 l	Ft. 3,879 S	SF 384 CFT	12,745	CFT 0.293	Ac/Ft.		
1254.50	5.50 I	Ft. 3,948 S	SF 391 CFT	13,136	CFT 0.302	Ac/Ft.		
1254.60	5.60	Ft. 4,017 S	SF 398 CFT	13,534	CFT 0.311	Ac/Ft.		
1254.70	5.70 I	Ft. 4,087 S	SF 405 CFT	13,939	CFT 0.320	Ac/Ft.		
1254.80	5.80	Ft. 4,156 S	SF 412 CFT	14,352	CFT 0.329	Ac/Ft.		
1254.90	5.90 I	Ft. 4,226 S	SF 419 CFT	14,771	CFT 0.339	Ac/Ft.		
1255.00	6.00 l	Ft. 4,295 S	SF 426 CFT	15,197	CFT 0.349	Ac/Ft.		

OUTFLOW STRUCTURE DATA

Q=C*A*(2*G*H)^.5 ORIFICE 1

Southwest Pond

1249.00 Inv. El.

1.25 In. 0.60 Diameter C = Q Full= 0.01 CFS

Inverts can not be any lower than...... 1249.00

Elev.	Height	Orifice 1 Control	Total Flow		Time Vol/Flow = Time		Sum of (Min)	Time (Hour)
1249.00	0.00	Ft. 0.00	CFS	0.00 CFS	0.0	Min.	0.0	0.0
1249.10	0.10	Ft. 0.01	CFS	0.01 CFS	49.0	Min.	49.0	0.8
1249.20	0.20	Ft. 0.02	CFS	0.02 CFS	54.2	Min.	103.2	1.7
1249.30	0.30	Ft. 0.02	CFS	0.02 CFS	62.4	Min.	165.6	2.8
1249.40	0.40	Ft. 0.02	CFS	0.02 CFS	70.0	Min.	235.7	3.9
1249.50	0.50	Ft. 0.03	CFS	0.03 CFS	77.0	Min.	312.7	5.2
1249.60	0.60	Ft. 0.03	CFS	0.03 CFS	83.5	Min.	396.1	6.6
1249.70	0.70	Ft. 0.03	CFS	0.03 CFS	89.5	Min.	485.6	8.1
1249.80	0.80	Ft. 0.04	CFS	0.04 CFS	95.1	Min.	580.7	9.7
1249.90	0.90	Ft. 0.04	CFS	0.04 CFS	100.4	Min.	681.1	11.4
1250.00	1.00	Ft. 0.04	CFS	0.04 CFS	79.2	Min.	760.4	12.7
1250.10	1.10	Ft. 0.04	CFS	0.04 CFS	57.2	Min.	817.6	13.6
1250.20	1.20	Ft. 0.04	CFS	0.04 CFS	58.2	Min.	875.7	14.6
1250.30	1.30	Ft. 0.05	CFS	0.05 CFS	59.2	Min.	934.9	15.6
1250.40	1.40	Ft. 0.05	CFS	0.05 CFS	60.2	Min.	995.2	16.6
1250.50	1.50	Ft. 0.05	CFS	0.05 CFS	61.2	Min.	1056.4	17.6
1250.60	1.60	Ft. 0.05	CFS	0.05 CFS	62.3	Min.	1118.7	18.6
1250.70	1.70	Ft. 0.05	CFS	0.05 CFS	63.3	Min.	1182.0	19.7
1250.80	1.80	Ft. 0.05	CFS	0.05 CFS	64.3	Min.	1246.3	20.8
1250.90	1.90	Ft. 0.06	CFS	0.06 CFS	65.4	iviin.	1311.7	21.9
1251.00	2.00	Ft. 0.06	CFS	0.06 CFS	59.6	Min.	1371.2	22.9
1251.10	2.10	Ft. 0.06	CFS	0.06 CFS	53.6	Min.	1424.8	23.7
1251.20	2.20	Ft. 0.06		0.06 CFS	53.7	IVIIN.	1478.6	24.6
1251.30	2.30			0.06 CFS	54.0	IVIII.	1532.5	25.5
1251.40	2.40	FL. 0.00		0.00 CFS	54.Z	Win.	1580.7	20.4
1251.50	2.50	FL. 0.00		0.00 CFS	54.4 54.7	Win.	1041.1	27.4
1251.00	2.00	FL 0.07	CFS CFS	0.07 CFS	54.7 54.0	Min	1095.0	20.3
1251.70	2.70	FL 0.07	CFS CFS	0.07 CFS	04.9 55.2	Min	1750.7	29.2
1251.00	2.00	FL 0.07	CES	0.07 CFS	55.5	Min	1803.9	31.0
1251.90	2.90	FL 0.07	CES	0.07 CFS	55.8	Min	1001.4	32.0
1252.00	3.00	Ft 0.07	CES	0.07 CFS	56.1	Min	1917.2	32.0
1252.10	3 20	Ft 0.07	CES	0.07 CFS	56.6	Min	2020.0	33.8
1252.20	3 30	Ft 0.07	CES	0.07 CFS	57.0	Min.	2023.3	34.8
1252.00	3 40	Ft 0.08	CES	0.07 CFS	57.4	Min	2144.3	35.7
1252.50	3 50	Ft 0.08	CFS	0.08 CFS	57.9	Min	2202.2	36.7
1252 60	3 60	Ft 0.08	CFS	0.08 CFS	58.3	Min	2260 5	37.7
1252.70	3.70	Ft. 0.08	CFS	0.08 CFS	58.7	Min.	2319.2	38.7
1252.80	3.80	Ft. 0.08	CFS	0.08 CFS	59.1	Min.	2378.3	39.6
1252.90	3.90	Ft. 0.08	CFS	0.08 CFS	59.6	Min.	2437.9	40.6
1253.00	4.00	Ft. 0.08	CFS	0.08 CFS	60.0	Min.	2497.9	41.6
1253.10	4.10	Ft. 0.08	CFS	0.08 CFS	60.5	Min.	2558.4	42.6
1253.20	4.20	Ft. 0.08	CFS	0.08 CFS	61.0	Min.	2619.4	43.7
1253.30	4.30	Ft. 0.08	CFS	0.08 CFS	61.5	Min.	2681.0	44.7
1253.40	4.40	Ft. 0.09	CFS	0.09 CFS	62.1	Min.	2743.0	45.7
1253.50	4.50	Ft. 0.09	CFS	0.09 CFS	62.6	Min.	2805.6	46.8
1253.60	4.60	Ft. 0.09	CFS	0.09 CFS	63.1	Min.	2868.8	47.8
1253.70	4.70	Ft. 0.09	CFS	0.09 CFS	63.6	Min.	2932.4	48.9
1253.80	4.80	Ft. 0.09	CFS	0.09 CFS	64.2	Min.	2996.6	49.9
1253.90	4.90	Ft. 0.09	CFS	0.09 CFS	64.7	Min.	3061.2	51.0
1254.00	5.00	Ft. 0.09	CFS	0.09 CFS	65.2	Min.	3126.4	52.1
1254.10	5.10	Ft. 0.09	CFS	0.09 CFS	65.7	Min.	3192.1	53.2
1254.20	5.20	Ft. 0.09	CFS	0.09 CFS	66.3	Min.	3258.5	54.3
1254.30	5.30	Ft. 0.09	CFS	0.09 CFS	66.9	Min.	3325.4	55.4
1254.40	5.40	Ft. 0.09	CFS	0.09 CFS	67.5	Min.	3392.9	56.5
1254.50	5.50	⊢t. 0.10	CFS	0.10 CFS	68.1	Min.	3461.0	57.7
1254.60	5.60	⊢t. 0.10	CFS	0.10 CFS	68.7	Min.	3529.7	58.8
1254.70	5.70	Ft. 0.10	CES	0.10 CFS	69.3	Min.	3598.9	60.0
1254.80	5.80	Ft. 0.10	050	0.10 CFS	69.8	Min.	3668.7	61.1
1254.90	5.90	Ft. 0.10	050	0.10 CFS	/0.4	Min.	3739.1	62.3
1255.00	6.00	rt. 0.10	UFS .	0.10 CFS	/1.0	Min.	3810.1	63.5

Updated: 9/17/13 DETENTION BASIN DRAW DOWN CALCULATIONS

Project:..... CARROLL COUNTY ENERGY Location:..... WASHINGTON TWP.,

Job No: Date: 5188 Sept. 17, 2013

Northeast Pond Basin Invert:.... Increments:.....

1210.00 Ft. 0.10 Ft.

Elev.	Height	Area	Incremental Total Volume		otal Volume	
		(SF)	Volume	Cubic Ft.	Acre Ft.	
1210.00	0.00 Ft.	410 SF	0 CFT	0	CFT 0.000	Ac/Ft.
1210.10	0.10 Ft.	1,423 SF	92 CFT	92	CFT 0.002	Ac/Ft.
1210.20	0.20 Ft.	2,436 SF	193 CFT	285	CFT 0.007	Ac/Ft.
1210.30	0.30 Ft.	3,448 SF	294 CFT	579	CFT 0.013	Ac/Ft.
1210.40	0.40 Ft.	4,461 SF	395 CFT	974	CFT 0.022	Ac/Ft.
1210.50	0.50 Ft.	5.474 SF	497 CFT	1.471	CFT 0.034	Ac/Ft.
1210.60	0.60 Ft.	6.487 SF	598 CFT	2.069	CFT 0.047	Ac/Ft.
1210 70	0.70 Ft	7,500 SE	699 CFT	2 768	CFT 0.064	Ac/Ft
1210.80	0.80 Ft	8.512 SF	801 CFT	3,569	CFT 0.082	Ac/Ft
1210.90	0.90 Ft	9.525 SE	902 CFT	4 471	CFT 0 103	Ac/Ft
1211.00	1.00 Ft	5 474 SE	750 CFT	5 221	CFT 0.120	Ac/Ft
1211.00	1 10 Ft	5.669 SE	557 CFT	5 778	CFT 0.133	Ac/Ft
1211.10	1.10 Ft.	5.864 SE	577 CET	6 355	CFT 0.146	Ac/Ft
1211.20	1.20 Ft.	6,060 SE	596 CET	6 951	CFT 0.160	Δc/Ft
1211.00	1.00 Ft.	6 255 SE	616 CET	7 567	CET 0.174	Ac/Et
1211.40	1.40 TL 1.50 Et	0,233 SI	625 CET	7,307	CET 0.109	Ac/Et
1211.50	1.50 TL 1.60 Et	0,400 OI	655 CFT	0,202	CET 0.100	Ac/Et
1211.00	1.00 FL	0,040 SF	055 CF1	0,007	CFT 0.203	
1211.70	1.70 FL	0,040 SF	674 CFT	9,551	CFI 0.219	
1211.80	1.80 Ft.	7,030 SF	694 CF1	10,225	CFI 0.235	AC/Ft.
1211.90	1.90 Ft.	7,231 SF	713 CFI	10,938	CFI 0.251	AC/Ft.
1212.00	2.00 Ft.	6,450 SF	684 CFT	11,622	CFI 0.267	AC/Ft.
1212.10	2.10 Ft.	6,553 SF	650 CF1	12,272	CFI 0.282	Ac/Ft.
1212.20	2.20 Ft.	6,657 SF	660 CFT	12,933	CFT 0.297	Ac/Ft.
1212.30	2.30 Ft.	6,760 SF	671 CFT	13,603	CFT 0.312	Ac/Ft.
1212.40	2.40 Ft.	6,863 SF	681 CFT	14,285	CFT 0.328	Ac/Ft.
1212.50	2.50 Ft.	6,967 SF	691 CFT	14,976	CFT 0.344	Ac/Ft.
1212.60	2.60 Ft.	7,070 SF	702 CFT	15,678	CFT 0.360	Ac/Ft.
1212.70	2.70 Ft.	7,173 SF	712 CFT	16,390	CFT 0.376	Ac/Ft.
1212.80	2.80 Ft.	7,276 SF	722 CFT	17,113	CFT 0.393	Ac/Ft.
1212.90	2.90 Ft.	7,380 SF	733 CFT	17,845	CFT 0.410	Ac/Ft.
1213.00	3.00 Ft.	7,483 SF	743 CFT	18,588	CFT 0.427	Ac/Ft.
1213.10	3.10 Ft.	7,592 SF	754 CFT	19,342	CFT 0.444	Ac/Ft.
1213.20	3.20 Ft.	7,701 SF	765 CFT	20,107	CFT 0.462	Ac/Ft.
1213.30	3.30 Ft.	7,810 SF	776 CFT	20,882	CFT 0.479	Ac/Ft.
1213.40	3.40 Ft.	7,919 SF	786 CFT	21,669	CFT 0.497	Ac/Ft.
1213.50	3.50 Ft.	8,028 SF	797 CFT	22,466	CFT 0.516	Ac/Ft.
1213.60	3.60 Ft.	8,137 SF	808 CFT	23,274	CFT 0.534	Ac/Ft.
1213.70	3.70 Ft.	8,246 SF	819 CFT	24,094	CFT 0.553	Ac/Ft.
1213.80	3.80 Ft.	8,355 SF	830 CFT	24,924	CFT 0.572	Ac/Ft.
1213.90	3.90 Ft.	8,464 SF	841 CFT	25,765	CFT 0.591	Ac/Ft.
1214.00	4.00 Ft.	8,573 SF	852 CFT	26,616	CFT 0.611	Ac/Ft.
1214.10	4.10 Ft.	8,688 SF	863 CFT	27,480	CFT 0.631	Ac/Ft.
1214.20	4.20 Ft.	8,802 SF	875 CFT	28,354	CFT 0.651	Ac/Ft.
1214.30	4.30 Ft.	8.917 SF	886 CFT	29.240	CFT 0.671	Ac/Ft.
1214.40	4.40 Ft.	9.032 SF	897 CFT	30,137	CFT 0.692	Ac/Ft.
1214.50	4.50 Ft.	9.147 SF	909 CFT	31.046	CFT 0.713	Ac/Ft.
1214 60	4.60 Ft	9.261 SF	920 CFT	31,967	CFT 0.734	Ac/Ft
1214 70	4 70 Ft	9.376 SE	932 CFT	32 899	CFT 0.755	Ac/Ft
1214 80	4.80 Ft	9491 SF	943 CFT	33 842	CFT 0.777	Ac/Ft
1214 90	4 90 Ft	9.605 SE	955 CFT	34 797	CFT 0.799	Ac/Ft
1215.00	5.00 Ft	9,000 SF	966 CET	35 763	CFT 0.821	Ac/Ft
1215.00	5 10 Ft	0.841 SF	978 CET	36 741	CFT 0.843	Ac/Ft
1215.10	5 20 Ft			27 721	CFT 0.040	Δc/Ft
1215.20	5.20 FL	10 022 CE	1 002 CET	20722	CFT 0.000	Δο/Ετ
1210.00	5.50 FL	10,002 00	1,002 OF I	20,133	CET 0.009	Λο/E+
1213.40		10,202 OF		39,141	OFT 0.912	
1213.50	5.50 Ft.	10,323 SF		40,774	CET 0.930	
1215.00	5.00 Ft.	10,443 SF		41,812	CET 0.960	
1215.70		10,004 5F		42,802	OFI 0.984	
1215.80		10,004 51		43,925	OFT 1.008	
1215.90	5.90 Ft.	10,805 SF	1,074 CFT	44,999	UFI 1.033	AC/FT.
1216.00	6.00 Ft.	10,925 SF	1,086 CEI	46,085	UFI 1.058	AC/⊢t.

OUTFLOW STRUCTURE DATA

Q=C*A*(2*G*H)^.5 ORIFICE 1

Northeast Pond

1210.00 1.25 0.60	ln.
0.01	CFS
	1210.00
	1210.00 1.25 0.60 0.01

Inverts can not be any lower than...... 1210.00

Elev.	Height	Orifice		Total			Time		Sum of	Time
	-	Control		Flow			Vol/Flow = Time		(Min)	(Hour)
1210.00	0.00	Ft. C	.00 CF	S	0.00	CFS	0.0	Min.	0.0	0.0
1210.10	0.10	Ft. C	.01 CF	S	0.01	CFS	172.2	Min.	172.2	2.9
1210.20	0.20	Ft. C	.02 CF	S	0.02	CFS	203.7	Min.	375.9	6.3
1210.30	0.30	Ft. C	.02 CF	S	0.02	CFS	240.0	Min.	615.9	10.3
1210.40	0.40	Ft. C	.02 CF	S	0.02	CFS	272.3	Min.	888.3	14.8
1210.50	0.50	Ft. C	.03 CF	S	0.03	CFS	301.5	Min.	1189.7	19.8
1210.60	0.60	Ft. C	.03 CF	S	0.03	CFS	328.2	Min.	1517.9	25.3
1210.70	0.70	Ft. C	.03 CF	S	0.03	CFS	352.9	Min.	1870.8	31.2
1210.80	0.80	Ft. C	.04 CF	S	0.04	CFS	376.0	Min.	2246.8	37.4
1210.90	0.90	Ft. C	.04 CF	S	0.04	CFS	397.8	Min.	2644.6	44.1
1211.00	1.00	Ft. C	.04 CF	S	0.04	CFS	312.9	Min.	2957.5	49.3
1211.10	1.10	Ft. C	.04 CF	S	0.04	CFS	221.1	Min.	3178.5	53.0
1211.20	1.20	Ft. C	.04 CF	S	0.04	CFS	218.6	Min.	3397.1	56.6
1211.30	1.30	Ft. C	.05 CF	S	0.05	CFS	216.8	Min.	3613.9	60.2
1211.40	1.40	Ft. C	.05 CF	S	0.05	CFS	215.4	Min.	3829.3	63.8
1211.50	1.50	Ft. C	.05 CF	S	0.05	CFS	214.4	Min.	4043.8	67.4
1211.60	1.60	Ft. C	.05 CF	S	0.05	CFS	213.8	Min.	4257.5	71.0
1211.70	1.70	Ft. C	.05 CF	S	0.05	CFS	213.3	Min.	4470.8	74.5
1211.80	1.80	Ft. C	.05 CF	S	0.05	CFS	213.1	Min.	4684.0	78.1
1211.90	1.90	Ft. C	.06 CF	S	0.06	CFS	213.1	Min.	4897.1	81.6
1212.00	2.00	Ft. C	.06 CF	S	0.06	CFS	199.1	Min.	5096.2	84.9
1212.10	2.10	Ft. C	.06 CF	S	0.06	CFS	184.5	Min.	5280.7	88.0
1212.20	2.20	Ft. C	.06 CF	S	0.06	CFS	183.0	Min.	5463.8	91.1
1212.30	2.30	Ft. C	.06 CF	S	0.06	CFS	181.7	Min.	5645.5	94.1
1212.40	2.40	Ft. C	.06 CF	S	0.06	CFS	180.6	Min.	5826.1	97.1
1212.50	2.50	Ft. C	.06 CF	S	0.06	CFS	179.5	Min.	6005.6	100.1
1212.60	2.60	Ft. C	.07 CF	S	0.07	CFS	178.6	Min.	6184.2	103.1
1212.70	2.70	Ft. C	.07 CF	S	0.07	CFS	177.8	Min.	6361.9	106.0
1212.80	2.80	Ft. C	.07 CF	S	0.07	CFS	177.0	Min.	6538.9	109.0
1212.90	2.90	Ft. C	.07 CF	S	0.07	CFS	176.4	Min.	6715.3	111.9
1213.00	3.00	Ft. C	.07 CF	S	0.07	CFS	175.8	Min.	6891.1	114.9
1213.10	3.10	Ft. C	.07 CF	S	0.07	CFS	175.4	Min.	7066.5	117.8
1213.20	3.20	Ft. C	.07 CF	S	0.07	CFS	175.0	Min.	7241.5	120.7
1213.30	3.30	Ft. C	.07 CF	S	0.07	CFS	174.8	Min.	7416.3	123.6
1213.40	3.40	Ft. C	.08 CF	S	0.08	CFS	174.6	Min.	7590.9	126.5
1213.50	3.50	Ft. C	.08 CF	S	0.08	CFS	174.4	Min.	7765.3	129.4
1213.60	3.60	Ft. C	.08 CF	S	0.08	CFS	174.3	Min.	7939.6	132.3
1213.70	3.70	Ft. C	.08 CF	S	0.08	CFS	174.2	Min.	8113.8	135.2
1213.80	3.80	Ft. C	.08 CF	S	0.08	CFS	174.1	Min.	8287.9	138.1
1213.90	3.90	Ft. C	.08 CF	S	0.08	CFS	174.1	Min.	8462.1	141.0
1214.00	4.00	Ft. C	.08 CF	S	0.08	CFS	174.1	Min.	8636.2	143.9
1214.10	4.10	Ft. C	.08 CF	S	0.08	CFS	174.2	Min.	8810.4	146.8
1214.20	4.20	Ft. C	.08 CF	S	0.08	CFS	174.4	Min.	8984.8	149.7
1214.30	4.30	Ft. C	.08 CF	S	0.08	CFS	174.6	Min.	9159.4	152.7
1214.40	4.40	Ft. C	.09 CF	S	0.09	CFS	174.8	Min.	9334.2	155.6
1214.50	4.50	Ft. C	.09 CF	S	0.09	CFS	175.0	Min.	9509.3	158.5
1214.60	4.60	Ft. C	.09 CF	S	0.09	CFS	175.3	Min.	9684.6	161.4
1214.70	4.70	Ft. C	.09 CF	S	0.09	CFS	175.6	Min.	9860.1	164.3
1214.80	4.80	Ft. C	.09 CF	S	0.09	CFS	175.8	Min.	10036.0	167.3
1214.90	4.90	Ft. C	.09 CF	S	0.09	CFS	176.1	Min.	10212.1	170.2
1215.00	5.00	Ft. C	.09 CF	S	0.09	CFS	176.4	Min.	10388.6	173.1
1215.10	5.10	Ft. C	.09 CF	S	0.09	CFS	176.8	Min.	10565.4	176.1
1215.20	5.20	Ft. C	.09 CF	S	0.09	CFS	177.2	Min.	10742.6	179.0
1215.30	5.30	Ft. C	.09 CF	S	0.09	CFS	177.7	Min.	10920.3	182.0
1215.40	5.40	Ft. C	.09 CF	S	0.09	CFS	178.1	Min.	11098.4	185.0
1215.50	5.50	Ft. C	.10 CF	S	0.10	CFS	178.6	Min.	11277.0	187.9
1215.60	5.60	Ft. C	.10 CF	S	0.10	CFS	179.0	Min.	11456.0	190.9
1215.70	5.70	Ft. C	.10 CF	S	0.10	CFS	179.5	Min.	11635.5	193.9
1215.80	5.80	Ft. C	.10 CF	S	0.10	CFS	180.0	Min.	11815.5	196.9
1215.90	5.90	Ft. C	.10 CF	S	0.10	CFS	180.5	Min.	11996.0	199.9
1216.00	6.00	Ft. C	.10 CF	S	0.10	CFS	180.9	Min.	12176.9	202.9

This foregoing document was electronically filed with the Public Utilities

Commission of Ohio Docketing Information System on

11/15/2013 1:19:22 PM

in

Case No(s). 13-1752-EL-BGN

Summary: Application Appendix B: Stormwater Management Plan electronically filed by Ms. Miranda R Leppla on behalf of Carroll County Energy LLC