BEFORE THE PUBLIC UTILITIES COMMISSION OF OHIO

NOTICE OF FILING

The Dayton Power and Light Company's Notice of Filing Greenhouse Gas Report)	Case No. 13-871-EL-ECP	

The Commission's December 12, 2012 Entry in Case No. 12-3026-EL-WVR granted The Dayton Power and Light Company ("DP&L") a waiver of the requirement of O.A.C. 4901:1-41-03 that DP&L become a participating member in the climate registry and report greenhouse gas (GHG) emissions according to the Commission's GHG Rule in light of the mandatory federal GHG reporting requirements. The Entry directed DP&L to docket its federal GHG report with the Commission. Accordingly, attached hereto are the emission reports from the federal EPA reporting system for DP&L plants located in Ohio.

Respectfully submitted,

Judi L. Sobecki (0067186)

Randall V. Griffin (0080499)

The Dayton Power and Light Company

1065 Woodman Drive

Dayton, OH 45432

Telephone: (937) 259-7171

Facsimile: (937) 259-7178

Email: judi.sobecki@dplinc.com

randall.griffin@dplinc.com

Attorneys for The Dayton Power and Light Company

Certification Statement:

The designated representative or alternate designated representative must sign (i.e., agree to) this certification statement. If you are an agent and you click on "SUBMIT", you are not agreeing to the certification statement, but are submitting the certification statement on behalf of the designated representative or alternate designated representative who is agreeing to the certification statement. An agent is only authorized to make the electronic submission on behalf of the designated representative, not to sign (i.e., agree to) the certification statement.

Facility Name: J M Stuart
Facility Identifier: 520011
Facility Reporting Year: 2012

Facility Location:
Address: US Route 52

City: Aberdeen State: OH

Postal Code: 45101

Facility Site Details:

CO2 Equivalent (excluding biogenic, mtons, Subparts C-II and RR-UU): 11303328

CO2 Equivalent (mtons, Subparts LL-QQ): 0

Biogenic CO2 (mtons, Subparts C-II and RR-UU): 0

Cogeneration Unit Emissions Indicator: N

GHG Report Start Date: 2012-01-01 GHG Report End Date: 2012-12-31

Description of Changes to Calculation Methodology:

Part 75 Biogenic Emissions Indication:

Primary NAICS Code: 221112 Second Primary NAICS Code:

Parent Company Details:

Parent Company Name: Dayton Power and Light Company

Address: 1065 Woodman Drive, Dayton, OH 45432

Percent Ownership Interest: 100

Subpart C: General Stationary Fuel Combustion

Gas Information Details

Gas Name	Other Gas Name	Gas Quantity	Own Result?
Carbon Dioxide		3673.8 (Metric Tons)	
Biogenic Carbon dioxide		0 (Metric Tons)	
Methane		0.15 (Metric Tons)	
Nitrous Oxide		0.03 (Metric Tons)	

Unit Details:

Unit Name: GP01

Unit Type:

Unit Description: Group 1

Small Unit Aggregation Details:

Highest Maximum Rated Heat Input Capacity: 70

Emission Details:

Annual Biogenic CO2 Emissions: 0 (metric tons)

Annual Fossil fuel based CO2 Emissions: 3673.8 (metric tons)

Tier Fuel Details:

Fuel: Distillate Fuel Oil No. 2
Tier Name: Tier 2 (Equation C-2a)

Tier Methodology Start Date: 2012-01-01

Tier Methodology End Date: 2012-12-31

Frequency of HHV determinations: Other (specify)

Other specified frequency of HHV determinations: Per Lot

Tier 2 Monthly HHV Details:

January	February	March	April	May	June	July	August	September	October	November	December
N	N	N	N	N	N	N	N	Ν	N	N	N

Fuel Emission Details:

Total CO2 emissions	Total CH4 emissions			Total N20 emissions CO2e
3673.8 (Metric Tons)	0.15 (Metric Tons)	0.03 (Metric Tons)	3.1 (Metric Tons)	9.2 (Metric Tons)

Subpart D: Electricity Generation

Gas Information Details

Gas Name	Other Gas Name	Gas Quantity	Own	Result?
Carbon Dioxide		11237225 (Metric Tons)		
Methane		120.73 (Metric Tons)		
Nitrous Oxide		193.166 (Metric Tons)		

Unit Details:

Unit Name: MS4B

Unit Type: Electricity Generator

Unit Description: Boiler 4 Bypass Stack

Part 75 Methodology: CEMS

Methodology Start Date: 2012-01-01 Methodology End Date: 2012-12-31 Acid Rain Program Indicator: Y

Emission Details:

Annual CO2 Emissions Including Biomass (metric tons): 17876.6 **Annual CO2 Emissions Including Biomass** (short tons): 19705.4

Annual CO2 Emissions from Biomass (metric tons): 0

CEMS Details:

Operating Hours CO2 Concentration Substituted: 44
Operating Hours Stack Gas Flow Rate Substituted: 22
Operating Hours Stack Gas Moisture Substituted: 0

Electricity Fuel Details:

Fuel type: Bituminous

Annual heat input: 192075 (mmBtu)

Annual CH₄ emissions from combustion of the specified fuel: 0.19 (Metric Tons)

Annual N₂O emissions from combustion of the specified fuel: 0.307 (Metric Tons)

CH₄ Emissions CO₂ Equivalent: 4 (Metric Tons)
N₂O Emissions CO₂ Equivalent: 95.2 (Metric Tons)

Unit Name: MS2W

Unit Type: Electricity Generator
Unit Description: Boiler 2 Wet Stack

Part 75 Methodology: CEMS

Methodology Start Date: 2012-01-01 Methodology End Date: 2012-12-31 Acid Rain Program Indicator: Y

Emission Details:

Annual CO2 Emissions Including Biomass (metric tons): 3180392.6 Annual CO2 Emissions Including Biomass (short tons): 3505746.8

Annual CO2 Emissions from Biomass (metric tons): 0

CEMS Details:

Operating Hours CO2 Concentration Substituted: 42
Operating Hours Stack Gas Flow Rate Substituted: 3
Operating Hours Stack Gas Moisture Substituted: 0

Electricity Fuel Details:

Fuel type: Bituminous

Annual heat input: 34169054 (mmBtu)

Annual CH₄ emissions from combustion of the specified fuel: 34.17 (Metric Tons)

Annual N₂O emissions from combustion of the specified fuel: 54.67 (Metric Tons)

CH₄ Emissions CO₂ Equivalent: 717.6 (Metric Tons)
N₂O Emissions CO₂ Equivalent: 16947.7 (Metric Tons)

Unit Name: MS2B

Unit Type: Electricity Generator

Unit Description: Boiler 2 Bypass Stack

Part 75 Methodology: CEMS

Methodology Start Date: 2012-01-01 Methodology End Date: 2012-12-31 Acid Rain Program Indicator: Y

Emission Details:

Annual CO2 Emissions Including Biomass (metric tons): 10082.7 Annual CO2 Emissions Including Biomass (short tons): 11114.2

Annual CO2 Emissions from Biomass (metric tons): 0

CEMS Details:

Operating Hours CO2 Concentration Substituted: 24
Operating Hours Stack Gas Flow Rate Substituted: 67
Operating Hours Stack Gas Moisture Substituted: 0

Electricity Fuel Details:

Fuel type: Bituminous

Annual heat input: 108329 (mmBtu)

Annual CH₄ emissions from combustion of the specified fuel: 0.11 (Metric Tons)

Annual N₂O emissions from combustion of the specified fuel: 0.173 (Metric Tons)

CH₄ Emissions CO₂ Equivalent: 2.3 (Metric Tons) N₂O Emissions CO₂ Equivalent: 53.6 (Metric Tons)

Unit Name: MS3W

Unit Type: Electricity Generator
Unit Description: Boiler 3 Wet Stack

Part 75 Methodology: CEMS

Methodology Start Date: 2012-01-01 Methodology End Date: 2012-12-31 Acid Rain Program Indicator: Y

Emission Details:

Annual CO2 Emissions Including Biomass (metric tons): 1885393.6 **Annual CO2 Emissions Including Biomass** (short tons): 2078269.4

Annual CO2 Emissions from Biomass (metric tons): 0

CEMS Details:

Operating Hours CO2 Concentration Substituted: 509 Operating Hours Stack Gas Flow Rate Substituted: 2 Operating Hours Stack Gas Moisture Substituted: 0

Electricity Fuel Details:

Fuel type: Bituminous

Annual heat input: 20256060 (mmBtu)

Annual CH₄ emissions from combustion of the specified fuel: 20.26 (Metric Tons)

Annual N₂O emissions from combustion of the specified fuel: 32.41 (Metric Tons)

CH₄ Emissions CO₂ Equivalent: 425.5 (Metric Tons)
N₂O Emissions CO₂ Equivalent: 10047.1 (Metric Tons)

Unit Name: MS4W

Unit Type: Electricity Generator
Unit Description: Boiler 4 Wet Stack

Part 75 Methodology: CEMS

Methodology Start Date: 2012-01-01 Methodology End Date: 2012-12-31 Acid Rain Program Indicator: Y

Emission Details:

Annual CO2 Emissions Including Biomass (metric tons): 3116354.4 Annual CO2 Emissions Including Biomass (short tons): 3435157.5

Annual CO2 Emissions from Biomass (metric tons): 0

CEMS Details:

Operating Hours CO2 Concentration Substituted: 8
Operating Hours Stack Gas Flow Rate Substituted: 9
Operating Hours Stack Gas Moisture Substituted: 0

Electricity Fuel Details:

Fuel type: Bituminous

Annual heat input: 33481107 (mmBtu)

Annual CH₄ emissions from combustion of the specified fuel: 33.48 (Metric Tons)
Annual N₂O emissions from combustion of the specified fuel: 53.57 (Metric Tons)

CH₄ Emissions CO₂ Equivalent: 703.1 (Metric Tons)
N₂O Emissions CO₂ Equivalent: 16606.7 (Metric Tons)

Unit Name: MS3B

Unit Type: Electricity Generator

Unit Description: Boiler 3 Bypass Stack

Part 75 Methodology: CEMS

Methodology Start Date: 2012-01-01 Methodology End Date: 2012-12-31 Acid Rain Program Indicator: Y

Emission Details:

Annual CO2 Emissions Including Biomass (metric tons): 16342.4 Annual CO2 Emissions Including Biomass (short tons): 18014.2

Annual CO2 Emissions from Biomass (metric tons): 0

CEMS Details:

Operating Hours CO2 Concentration Substituted: 48 Operating Hours Stack Gas Flow Rate Substituted: 19 Operating Hours Stack Gas Moisture Substituted: 0

Electricity Fuel Details:

Fuel type: Bituminous

Annual heat input: 175573 (mmBtu)

Annual CH₄ emissions from combustion of the specified fuel: 0.18 (Metric Tons) Annual N₂O emissions from combustion of the specified fuel: 0.281 (Metric Tons)

CH₄ Emissions CO₂ Equivalent: 3.8 (Metric Tons) N₂O Emissions CO₂ Equivalent: 87.1 (Metric Tons)

Unit Name: MS1B

Unit Type: Electricity Generator

Unit Description: Boiler 1 Bypass Stack

Part 75 Methodology: CEMS

Methodology Start Date: 2012-01-01 Methodology End Date: 2012-12-31 Acid Rain Program Indicator: Y

Emission Details:

Annual CO2 Emissions Including Biomass (metric tons): 27171.3 Annual CO2 Emissions Including Biomass (short tons): 29950.9

Annual CO2 Emissions from Biomass (metric tons): 0

CEMS Details:

Operating Hours CO2 Concentration Substituted: 63 Operating Hours Stack Gas Flow Rate Substituted: 67 Operating Hours Stack Gas Moisture Substituted: 0

Electricity Fuel Details:

Fuel type: Bituminous

Annual heat input: 291927 (mmBtu)

Annual CH, emissions from combustion of the specified fuel: 0.29 (Metric Tons) Annual N₂O emissions from combustion of the specified fuel: 0.467 (Metric Tons)

CH₄ Emissions CO₂ Equivalent: 6.1 (Metric Tons)

N₂O Emissions CO, Equivalent: 144.8 (Metric Tons)

Unit Name: MS1W

Unit Type: Electricity Generator Unit Description: Boiler 1 Wet Stack

Part 75 Methodology: CEMS

Methodology Start Date: 2012-01-01 Methodology End Date: 2012-12-31 Acid Rain Program Indicator: Y

Emission Details:

Annual CO2 Emissions Including Biomass (metric tons): 2983611.4 Annual CO2 Emissions Including Biomass (short tons): 3288834.8

Annual CO2 Emissions from Biomass (metric tons): 0

CEMS Details:

Operating Hours CO2 Concentration Substituted: 1056 Operating Hours Stack Gas Flow Rate Substituted: 31 Operating Hours Stack Gas Moisture Substituted: 0

Electricity Fuel Details:

Fuel type: Bituminous

Annual heat input: 32054920 (mmBtu)

Annual CH₄ emissions from combustion of the specified fuel: 32.05 (Metric Tons)
Annual N₂O emissions from combustion of the specified fuel: 51.288 (Metric Tons)

CH₄ Emissions CO₂ Equivalent: 673.1 (Metric Tons)
N₂O Emissions CO₂ Equivalent: 15899.3 (Metric Tons)

GHGRP Annual Report - 2012

Report generated on 03/28/2013

Killen Station

Facility/Supplier Name:

新聞の事事者となる。以外は大人の報告の方が、 とっといるかっち のいちからい 100 Time Period Used 45432 0.00 0.0 0.0 핑 3,301,838.1 はおおけれた、大きなできるというのははないというというのかが、ちゃっともにあっているとのなるないないできるというできる。 3,301,838.1 Dayton 0.0 Use of Best Available Monitoring Method (BAMM) Changes to Emission Calculation Methodologies Parent Owner Company Information Reporting Elements for Subpart A Facility-Level GHG Emissions NAICS Code(s) 1065 Woodman Drive 58.121 0.000 56.121 2 2 Dayton Power and Light Company 36.00 36.00 0.00 45144 if yes, provide each parameter using BAMM and the time period during which BAMM was used. If yes, provide a written explanation, as required under § 98.3(e) in the space below. F January-December 2012 3/28/2013 3,283,684.6 Did you change emission methodologies during the reporting period? Did you use BAMM for any data element during the reporting period? 2 Killen Station 14869 U.S. 52 Manchester 520253 Description 221112 Name of Facility/Supplier Physical Street Address Cogeneration Unit Emissions Facility/Supplier Information Comments for EPA: Additional NAICS Code(s) City,State,Zlp Code Secondary NAICS Code Reporting Months/Year Primary NAICS Code Parameter Report Date Facility ID: Subpart C Subpart D TOTAL

GHGRP Annual Report - 2012 Report generated on 03/28/2013

Subpart C Tier 2

Killen Station

Facility/Supplier Name:

Facility ID: Applicability:

520253

Page 2 Steam N/A Measured or Substitute? 0.0 0 2 2 2 2 2 2 2 2 2 2 E 2 2 2 2 2 2 2 2 2 2 2 2 2 HI/Steam Retho MA ž E02mT) Monthly HHS Walue 0.0 00 Max Rated Heat Input-Capacity 96 mmBtu/hr #Hrs Sub 0.0 00 Š Ϋ́ ¥ ≸ × X A A A A A A Source Type Cade Unit-Level Details for Subpart C Fuel Use Subbed? 2 2 2 2 2 2 2 2 2 2 2 2 2 운 2 2 2 2 2 2 2 2 2 2 2 2 NZO(mil.) 0,000 0.00 Sampling Erequency PerLot Per Lot 9,731 gal Runt Court ut and 0 gal 0 gal 0 gal 0 gal 0 gal 0 gal 14,258 gal 6,306 gal 223 gal 669 gal 135 gaf 17,988 gal ogat ogat ogat 0 gal 18,012 gal 13,911 gal 9,021 gal 1,116 gal 133,710 gal 18,012 gal 30,633 gal (ancertic@28) CO2 Calcutation Methodology 0,0 0.0 Tier 2 Ter 2 OHATEME! 0.0 8 September **September** November **Десеттрег** November December October February August **February** August March October March June Start Date End Date Month May June July April Petrol - Distillate Fuel Oil No. 2 Petrol - Distillate Fuel Oil No. 2 April Total Jaly Otal Perry - Distrillate Fuel Oil No 1,1/1980 12/31/2099 Fueis Combusted During Year Petrol - Distillate Fuel Oil No 1/1/2009 N/A C02(mF) 0.0 0,0 Subpart End Bota 12/31/2012 1231/2012 Petrol - Distillate Fuel Oil No. Petrol - Distillate Fuel Oil No. Fier 2 (Subpart C) Black Start Turbine Unit, Group 1 Fuels Combusted During Year Start Bate 1/1/2009 1/1/2009 **新工事是** Black Start Turbine Unit (1/1/2009-12/31/2012) Black Start Turbine Unit Black Start Turbine Unit Group 1 (1/1/2009-12/31/2012) Graup 1 Group 1

0.0		Total GGZe(mŦ)	0.0	0.0	0.0
0.0		Bio CO2(nT)	0.0	0.0	0.0
0.0		N2O (48 naT602e)	0.0	0,0	0,0
0.000	Annual Unit-Level CO2e	N2O(m))			0.000
0.0	Annual	CH4 (5% m\(602e)	0.0	0.0	0.0
00:00		OH4(mf.)	0.00	0.00	0.00
0.0		Coz(mt)	0:0	0.0	0.0
Total		Until	Black Start Turbine Unit	Group 1	Total

GHGRP Annual Report - 2012 Report generated on 03/28/2013

Killen Station 620263 Boiler 2 Subpart D Facility/Suppiler Name: Facility ID: Monitoring Location ID(s): Applicability:

				Unit/Star	ckiPipe Level D	Unit/Stack/Pipe:Lavet Details for Subpart D						
Northering Location library Soiler 2	を 100mm 1	an 15 COZ Melhodology	A STATE OF THE STA	methodology Start De	The result of the second	- Mennonopolik	A same of	cio Fain Program Yes	n inglicator, 3, 115	Methodology Start Dete and the start Detection of Detection of Detection of Detection Control		
		CEMS		1/1/2009		NIA						
				Annual CH4 and N2O at Each Monitored Location by Fuel Type	20 at Each Mor	iitored Location by	²uel Type					
IntristacióPipe ID	Fred Type	ateC bent ateC tests	End Date	Total Heat Input	CHAIMT	CH4 (se mTCO3s)	CH4 CH4 (as mTCO2e) N20 (as mTCO2e)	M2D/mT	N20		Consolina 1	

	į.	CHMS		1/1/2009		NA					
				Annual CH4 and N2O at Each Mo	120 at Each Moni	tored Location by Fuel Type	uel Type				
UniustacivPipe ID	Fuel Type	Start Date	End Date	Total Heat Input (mmBtu)	CH4(mT)	CH4 (48 mTC02e)	CH4 (as mTCO2e) EPA-rounded value used in XML	NZO(mT)	N20 (as mTCO2e)	N2O (as mTCO2e) EPA-rounded value used in XML	COZe(mT)*
Boller 2 (1/1/2009 - 12/31/2012)											
	Coal - Bituminous	1/1/2009	N/A	34,943,147	34.94	733.8	733.7	55,909	17,331.8	17,331.8	18,065.6
	Petrol - Distillate Fuel Oil No.	1/1/2009	N/A	352,961	1.06	22.2	22.3	0.212	65.7	65.7	87.9
Total					36.00	756.1		56.121	17,397.5		3,301,838.1

* Total CO2e by fuel type not Including biogenic credit or CO2mT

			Annue	II CO2 Emissions at	nnual CO2 Emissions at each Monitored Location	ation			
Unit/Stack/Pipe ID Boiler 2 (1/1/2009 - 12/31/2012)	36.00	CH4 (as reT002s) 756.1	1420/mT) 56.121	N20 (84 M70024) 17,397.5	CO. (€T) 3,619,605.5	3,283,684.6	Biogenia 60-(eT), Beogenia 60, (mT)	Total (0020(m)) 3,301,838.1	
Total	36.00	756.1	56.121	17,397.5	3,519,505.5	3,283,684.6		3,301,838.1	

ise a missing data p	Did you use a missing data procedure for any data element during the reporting penda	ring the repolating period?		1 68					
			Number of	mber of Hours per Year That a Missing Data Procedure Was Used	ssing Data Proced	ire Was Used			
		K-12-XX			Data Element				
Intribitacid Pipe ID	State	W. C. C. B. C. C. C.		TO SECTION PROPERTY OF THE PARTY OF THE PART	100	Stocking Contract Contract Management and Secretary of the Secretary of th	Fuel Oil Departy	TO SECTION OF THE PARTY OF THE	
	06	0	18	0	o	O	0	o	

Subpart D

e-GGRT Reporting Year Comparison Trend

Facility:

Killen Station

Address:

14869 US 52

MANCHESTER, OH 45144

GHGRP ID: 520253

	RY2011 v1	RY2012 v1	Difference	% Change
	(mtons)	(mtons)	(RY2012-	(Diff/RY2011)
	Certified	Ready for review	RY2011)	
Subpart C				
Biogenic Carbon dioxide	0.00	0.00	0.00	N/A
Carbon Dioxide	1,467.30	0.00	-1,467.30	-100%
Methane	0.06	0.00	-0.06	-100%
Nitrous Oxide	0.01	0.00	-0.01	-100%
Bubpart D				
Carbon Dioxide	3,564,100.00	3,283,684.60	-280,415.40	-8%
Methane	39.07	36.00	-3.07	-8%
Nitrous Oxide	60.91	56.12	-4.79	-8%
otals				
CO2e from C-II, SS, and TT	3,585,273.90	3,301,838.10	-283,435.80	-8%
Biogenic CO2 from C-II, SS, and TT	0.00	0.00	0.00	N/A
CO2e from LL-QQ	0.00	0.00	0.00	N/A

Certification Statement:

The designated representative or alternate designated representative must sign (i.e., agree to) this certification statement. If you are an agent and you click on "SUBMIT", you are not agreeing to the certification statement, but are submitting the certification statement on behalf of the designated representative or alternate designated representative who is agreeing to the certification statement. An agent is only authorized to make the electronic submission on behalf of the designated representative, not to sign (i.e., agree to) the certification statement.

Facility Name: O H Hutchings Facility Identifier: 520010 Facility Reporting Year: 2012

Facility Location:

Address: 9200 Chautauqua Road

City: Miamisburg State: OH

Postal Code: 45342

Facility Site Details:

CO2 Equivalent (excluding biogenic, mtons, Subparts C-II and RR-UU): 65826.2

CO2 Equivalent (mtons, Subparts LL-QQ): 0

Biogenic CO2 (mtons, Subparts C-II and RR-UU): 0

Cogeneration Unit Emissions Indicator: N

GHG Report Start Date: 2012-01-01 GHG Report End Date: 2012-12-31

Description of Changes to Calculation Methodology:

Part 75 Biogenic Emissions Indication:

Primary NAICS Code: 221112 Second Primary NAICS Code:

Parent Company Details:

Parent Company Name: Dayton Power and Light Company

Address: 1065 Woodman Drive, Dayton, OH 45432

Percent Ownership Interest: 100

Subpart C: General Stationary Fuel Combustion

Gas Information Details

Gas Name	Other Gas	Name	Gas Quantity	Own Result?
Carbon Dioxide			159 (Metric Tons)	
Biogenic Carbon dioxide			0 (Metric Tons)	
Methane			0 (Metric Tons)	
Nitrous Oxide	**************************************		0 (Metric Tons)	

Unit Details:

Unit Name : GP1 Unit Type :

Unit Description: Group 1

Small Unit Aggregation Details:

Highest Maximum Rated Heat Input Capacity: 17

Emission Details:

Annual Biogenic CO2 Emissions: 0 (metric tons)

Annual Fossil fuel based CO2 Emissions: 159 (metric tons)

Tier Fuel Details:

Fuel: Natural Gas (Weighted U.S. Average)

Tier Name: Tier 1 (Equation C-1)

Tier Methodology Start Date: 2012-01-01 **Tier Methodology End Date**: 2012-12-31

Fuel Emission Details:

				Total N2O emissions CO2e
159 (Metric Tons)	0 (Metric Tons)	0 (Metric Tons)	0.1 (Metric Tons)	0.1 (Metric Tons)

Subpart D: Electricity Generation

Gas Information Details

Gas Name	Other Gas Name	Gas Quantity	Own Result?
Carbon Dioxide		65314.7 (Metric Tons)	
Methane		0.71 (Metric Tons)	
Nitrous Oxide		1.089 (Metric Tons)	

Unit Details:

Unit Name: CS0002

Unit Type: Electricity Generator Unit Description: CS0002 Part 75 Methodology: CEMS

Methodology Start Date: 2012-01-01 Methodology End Date: 2012-12-31 Acid Rain Program Indicator: Y

Emission Details:

Annual CO2 Emissions Including Biomass (metric tons): 21318.1 **Annual CO2 Emissions Including Biomass** (short tons): 23498.9

Annual CO2 Emissions from Biomass (metric tons): 0

CEMS Details:

Operating Hours CO2 Concentration Substituted: 7
Operating Hours Stack Gas Flow Rate Substituted: 4
Operating Hours Stack Gas Moisture Substituted: 0

Electricity Fuel Details:

Fuel type: Bituminous

Annual heat input: 222623 (mmBtu)

Annual CH₄ emissions from combustion of the specified fuel: 0.22 (Metric

Tons'

Annual N₂O emissions from combustion of the specified fuel: 0.356 (Metric

Tons)

CH₄ Emissions CO₂ Equivalent: 4.6 (Metric Tons)
N₂O Emissions CO₂ Equivalent: 110.4 (Metric Tons)

Fuel type: Natural Gas (Weighted U.S. Average)

Annual heat input: 9276 (mmBtu)

Annual CH₄ emissions from combustion of the specified fuel: 0.01 (Metric

Tons)

Annual N₂O emissions from combustion of the specified fuel: 0.001 (Metric

Tons)

CH₄ Emissions CO₂ Equivalent: 0.2 (Metric Tons)
N₂O Emissions CO₂ Equivalent: 0.3 (Metric Tons)

Unit Name: CS0003

Unit Type: Electricity Generator
Unit Description: CS0003
Part 75 Methodology: CEMS

Methodology Start Date: 2012-01-01 Methodology End Date: 2012-12-31 Acid Rain Program Indicator: Y

Emission Details:

Annual CO2 Emissions Including Biomass (metric tons): 37313.8 **Annual CO2 Emissions Including Biomass** (short tons): 41131

Annual CO2 Emissions from Biomass (metric tons): 0

CEMS Details:

Operating Hours CO2 Concentration Substituted: 6
Operating Hours Stack Gas Flow Rate Substituted: 4
Operating Hours Stack Gas Moisture Substituted: 0

Electricity Fuel Details:

Fuel type: Natural Gas (Weighted U.S. Average)

Annual heat input: 16519 (mmBtu)

Annual CH, emissions from combustion of the specified fuel: 0.02 (Metric

Tons)

Annual N₂O emissions from combustion of the specified fuel: 0.002 (Metric

Tons)

CH₄ Emissions CO₂ Equivalent: 0.4 (Metric Tons) N₂O Emissions CO₂ Equivalent: 0.6 (Metric Tons)

Fuel type: Bituminous

Annual heat input: 386395 (mmBtu)

Annual CH_a emissions from combustion of the specified fuel: 0.39 (Metric

Tons)

Annual N₂O emissions from combustion of the specified fuel: 0.618 (Metric

Tons)

CH₄ Emissions CO₂ Equivalent: 8.2 (Metric Tons)
N₂O Emissions CO₂ Equivalent: 191.6 (Metric Tons)

Unit Name: CS0001

Unit Type: Electricity Generator Unit Description: CS0001

Part 75 Methodology: CEMS

Methodology Start Date: 2012-01-01 Methodology End Date: 2012-12-31 Acid Rain Program Indicator: Y

Emission Details:

Annual CO2 Emissions Including Biomass (metric tons): 6682.8 **Annual CO2 Emissions Including Biomass** (short tons): 7366.5

Annual CO2 Emissions from Biomass (metric tons): 0

CEMS Details:

Operating Hours CO2 Concentration Substituted: 5
Operating Hours Stack Gas Flow Rate Substituted: 4
Operating Hours Stack Gas Moisture Substituted: 0

Electricity Fuel Details:

Fuel type: Bituminous

Annual heat input: 69731 (mmBtu)

Annual CH₄ emissions from combustion of the specified fuel: 0.07 (Metric

Tons)

Annual N₂O emissions from combustion of the specified fuel: 0.112 (Metric

Tons)

CH₄ Emissions CO₂ Equivalent: 1.5 (Metric Tons) N₂O Emissions CO₂ Equivalent: 34.7 (Metric Tons)

Fuel type: Natural Gas (Weighted U.S. Average)

Annual heat input: 2604 (mmBtu)

Annual CH₄ emissions from combustion of the specified fuel: 0 (Metric Tons)

Annual N₂O emissions from combustion of the specified fuel: 0 (Metric Tons)

CH₄ Emissions CO₂ Equivalent: 0 (Metric Tons) N₂O Emissions CO₂ Equivalent: 0 (Metric Tons)

Certification Statement:

The designated representative or alternate designated representative must sign (i.e., agree to) this certification statement. If you are an agent and you click on "SUBMIT", you are not agreeing to the certification statement, but are submitting the certification statement on behalf of the designated representative or alternate designated representative who is agreeing to the certification statement. An agent is only authorized to make the electronic submission on behalf of the designated representative, not to sign (i.e., agree to) the certification statement.

Facility Name: Frank M Tait Station Facility Identifier: 520009 Facility Reporting Year: 2012

Facility Location:

Address: 2101 Arbor Blvd

City: Dayton State: OH

Postal Code: 45439

Facility Site Details:

CO2 Equivalent (excluding biogenic, mtons, Subparts C-II and RR-UU): 37273.6

CO2 Equivalent (mtons, Subparts LL-QQ): 0

Biogenic CO2 (mtons, Subparts C-II and RR-UU): 0

Cogeneration Unit Emissions Indicator: N

GHG Report Start Date: 2012-01-01 GHG Report End Date: 2012-12-31

Description of Changes to Calculation Methodology:

Part 75 Biogenic Emissions Indication:

Primary NAICS Code: 221112 Second Primary NAICS Code:

Parent Company Details:

Parent Company Name: Dayton Power and Light Company

Address: 1065 Woodman Drive, Dayton, OH 45432

Percent Ownership Interest: 100

Subpart C: General Stationary Fuel Combustion

Gas Information Details

Gas Name	Other Gas Name	Gas Quantity	Own Result?
Carbon Dioxide		54.9 (Metric Tons)	
Biogenic Carbon dioxide		0 (Metric Tons)	
Methane		0 (Metric Tons)	
Nitrous Oxide		0 (Metric Tons)	

Unit Details:

Unit Name : GP1 Unit Type :

Unit Description: Group 1

Small Unit Aggregation Details:

Highest Maximum Rated Heat Input Capacity: 30

Emission Details:

Annual Biogenic CO2 Emissions: 0 (metric tons)

Annual Fossil fuel based CO2 Emissions: 54.9 (metric tons)

Tier Fuel Details:

Fuel: Distillate Fuel Oil No. 2

Tier Name: Tier 2 (Equation C-2a)

Tier Methodology Start Date: 2012-01-01 **Tier Methodology End Date**: 2012-12-31

Frequency of HHV determinations : Other (specify)

Other specified frequency of HHV determinations: Per Lot

Tier 2 Monthly HHV Details:

January	February	March	April	May	June	July	August	September	October	November	December
N	N	N	N	N	Ν	N	N	N	N	N	N

Fuel Emission Details:

Total CO2 emissions	Total CH4 emissions		Total CH4 emissions CO2e	Total N2O emissions CO2e
54.9 (Metric Tons)	0 (Metric Tons)	0 (Metric Tons)	0.1 (Metric Tons)	0.1 (Metric Tons)

Subpart D: Electricity Generation

Gas Information Details

Gas Name	Other Gas Name	Gas Quantity	Own Result?
Carbon Dioxide		37182.8 (Metric Tons)	
Methane		0.69 (Metric Tons)	
Nitrous Oxide		0.069 (Metric Tons)	

Unit Details:

Unit Name: 2

Unit Type: Electricity Generator

Unit Description: Combustion Turbine 2 **Part 75 Methodology**: LME (§75.19(c)(4)(iii))

Methodology Start Date: 2012-01-01 Methodology End Date: 2012-12-31 Acid Rain Program Indicator: Y

Emission Details:

Annual CO2 Emissions Including Biomass (metric tons): 8697 Annual CO2 Emissions Including Biomass (short tons): 9586.7

Annual CO2 Emissions from Biomass (metric tons): 0

Electricity Fuel Details:

Fuel type: Natural Gas (Weighted U.S. Average)

Annual heat input: 162475 (mmBtu)

Annual CH₄ emissions from combustion of the specified fuel: 0.16 (Metric Tons)

Annual N₂O emissions from combustion of the specified fuel: 0.016 (Metric Tons)

CH₄ Emissions CO₂ Equivalent: 3.4 (Metric Tons)N₂O Emissions CO₂ Equivalent: 5 (Metric Tons)

Fuel type: Distillate Fuel Oil No. 2
Annual heat input: 0 (mmBtu)

Annual CH₄ emissions from combustion of the specified fuel: 0 (Metric Tons)

Annual N₂O emissions from combustion of the specified fuel: 0 (Metric Tons)

CH₄ Emissions CO₂ Equivalent: 0 (Metric Tons)
N₂O Emissions CO₂ Equivalent: 0 (Metric Tons)

Unit Name: 1

Unit Type: Electricity Generator

Unit Description: Combustion Turbine 1
Part 75 Methodology: LME (§75.19(c)(4)(iii))
Methodology Start Date: 2012-01-01

Methodology End Date: 2012-01-0 Methodology End Date: 2012-12-31 Acid Rain Program Indicator: Y

Emission Details:

Annual CO2 Emissions Including Biomass (metric tons): 9253.7

Annual CO2 Emissions Including Biomass (short tons): 10200.4

Annual CO2 Emissions from Biomass (metric tons): 0

Electricity Fuel Details:

Fuel type: Natural Gas (Weighted U.S. Average)

Annual heat input: 172901 (mmBtu)

Annual CH₄ emissions from combustion of the specified fuel: 0.17 (Metric Tons)

Annual N₂O emissions from combustion of the specified fuel: 0.017 (Metric Tons)

CH₄ Emissions CO₂ Equivalent: 3.6 (Metric Tons) N₂O Emissions CO₂ Equivalent: 5.3 (Metric Tons)

Fuel type: Distillate Fuel Oil No. 2
Annual heat input: 0 (mmBtu)

Annual CH₄ emissions from combustion of the specified fuel: 0 (Metric Tons)

Annual N₂O emissions from combustion of the specified fuel: 0 (Metric Tons)

CH₄ Emissions CO₂ Equivalent: 0 (Metric Tons) N₂O Emissions CO₂ Equivalent: 0 (Metric Tons)

Unit Name: 3

Unit Type: Electricity Generator

Unit Description: Combustion Turbine 3
Part 75 Methodology: LME (§75.19(c)(4)(iii))
Methodology Start Date: 2012-01-01

Methodology Start Date: 2012-01-01 Methodology End Date: 2012-12-31 Acid Rain Program Indicator: Y

Emission Details:

Annual CO2 Emissions Including Biomass (metric tons): 19232.1 Annual CO2 Emissions Including Biomass (short tons): 21199.5

Annual CO2 Emissions from Biomass (metric tons): 0

Electricity Fuel Details:

Fuel type: Distillate Fuel Oil No. 2
Annual heat input: 0 (mmBtu)

Annual CH₄ emissions from combustion of the specified fuel: 0 (Metric Tons)

Annual N₂O emissions from combustion of the specified fuel: 0 (Metric Tons)

CH₄ Emissions CO₂ Equivalent: 0 (Metric Tons)
N₂O Emissions CO₂ Equivalent: 0 (Metric Tons)

Fuel type: Natural Gas (Weighted U.S. Average)

Annual heat input: 359306 (mmBtu)

Annual CH₄ emissions from combustion of the specified fuel: 0.36 (Metric Tons)

Annual N₂O emissions from combustion of the specified fuel: 0.036 (Metric Tons)

CH₄ Emissions CO₂ Equivalent: 7.6 (Metric Tons)
 N₂O Emissions CO₂ Equivalent: 11.2 (Metric Tons)

Certification Statement:

The designated representative or alternate designated representative must sign (i.e., agree to) this certification statement. If you are an agent and you click on "SUBMIT", you are not agreeing to the certification statement, but are submitting the certification statement on behalf of the designated representative or alternate designated representative who is agreeing to the certification statement. An agent is only authorized to make the electronic submission on behalf of the designated representative, not to sign (i.e., agree to) the certification statement.

Facility Name: Tait Electric Generating Station

Facility Identifier: 520827 Facility Reporting Year: 2012

Facility Location:

Address: 2101 Arbor Blvd

City: Dayton State: OH

Postal Code: 45439

Facility Site Details:

CO2 Equivalent (excluding biogenic, mtons, Subparts C-II and RR-UU): 69835.1

CO2 Equivalent (mtons, Subparts LL-QQ): 0

Biogenic CO2 (mtons, Subparts C-II and RR-UU): 0

Cogeneration Unit Emissions Indicator: N

GHG Report Start Date: 2012-01-01 GHG Report End Date: 2012-12-31

Description of Changes to Calculation Methodology:

Part 75 Biogenic Emissions Indication:

Primary NAICS Code: 221112 Second Primary NAICS Code:

Parent Company Details:

Parent Company Name: DPL Energy, LLC

Address: 1065 Woodman Drive, Dayton, OH 45432

Percent Ownership Interest: 100

Subpart D: Electricity Generation

Gas Information Details

Gas Name	Other Gas Name	Gas Quantity	Own Result?
Carbon Dioxide		69767 (Metric Tons)	
Methane		1.31 (Metric Tons)	
Nitrous Oxide		0.131 (Metric Tons)	

Unit Details:

Unit Name: CT6

Unit Type: Electricity Generator

Unit Description: Combustion Turbine 6 **Part 75 Methodology**: LME (§75.19(c)(4)(iii))

Methodology Start Date: 2012-01-01 Methodology End Date: 2012-12-31 Acid Rain Program Indicator: Y

Emission Details:

Annual CO2 Emissions Including Biomass (metric tons): 15812.5 Annual CO2 Emissions Including Biomass (short tons): 17430.1

Annual CO2 Emissions from Biomass (metric tons): 0

Electricity Fuel Details:

Fuel type: Natural Gas (Weighted U.S. Average)

Annual heat input: 295414 (mmBtu)

Annual CH₄ emissions from combustion of the specified fuel: 0.3 (Metric

Tons)

Annual N₂O emissions from combustion of the specified fuel: 0.03 (Metric

Tons)

CH₄ Emissions CO₂ Equivalent: 6.3 (Metric Tons) N₂O Emissions CO₂ Equivalent: 9.3 (Metric Tons)

Fuel type: Distillate Fuel Oil No. 2 Annual heat input: 0 (mmBtu)

Annual CH₄ emissions from combustion of the specified fuel: 0 (Metric Tons)

Annual N₂O emissions from combustion of the specified fuel: 0 (Metric Tons)

CH₄ Emissions CO₂ Equivalent: 0 (Metric Tons) N₂O Emissions CO₂ Equivalent: 0 (Metric Tons)

Unit Name: CT5

Unit Type: Electricity Generator

Unit Description: Combustion Turbine 5
Part 75 Methodology: LME (§75.19(c)(4)(iii))

Methodology Start Date: 2012-01-01 Methodology End Date: 2012-12-31 Acid Rain Program Indicator: Y

Emission Details:

Annual CO2 Emissions Including Biomass (metric tons): 18796.2 Annual CO2 Emissions Including Biomass (short tons): 20719

Annual CO2 Emissions from Biomass (metric tons): 0

Electricity Fuel Details:

Fuel type: Distillate Fuel Oil No. 2
Annual heat input: 0 (mmBtu)

Annual CH₄ emissions from combustion of the specified fuel: 0 (Metric Tons)

Annual N₂O emissions from combustion of the specified fuel: 0 (Metric Tons)

CH₄ Emissions CO₂ Equivalent: 0 (Metric Tons) N₂O Emissions CO₂ Equivalent: 0 (Metric Tons)

Fuel type: Natural Gas (Weighted U.S. Average)

Annual heat input: 351164 (mmBtu)

Annual CH₄ emissions from combustion of the specified fuel: 0.35 (Metric

(ons

Annual N₂O emissions from combustion of the specified fuel: 0.035 (Metric

Tons)

CH₄ Emissions CO₂ Equivalent: 7.4 (Metric Tons) N₂O Emissions CO₂ Equivalent: 10.9 (Metric Tons)

Unit Name: CT7

Unit Type: Electricity Generator

Unit Description: Combustion Turbine 7 **Part 75 Methodology**: LME (§75.19(c)(4)(iii))

Methodology Start Date: 2012-01-01 Methodology End Date: 2012-12-31 Acid Rain Program Indicator: Y

Emission Details:

Annual CO2 Emissions Including Biomass (metric tons): 15832.8 Annual CO2 Emissions Including Biomass (short tons): 17452.5

Annual CO2 Emissions from Biomass (metric tons): 0

Electricity Fuel Details:

Fuel type: Distillate Fuel Oil No. 2
Annual heat input: 0 (mmBtu)

Annual CH₄ emissions from combustion of the specified fuel: 0 (Metric Tons)

Annual N₂O emissions from combustion of the specified fuel: 0 (Metric Tons)

CH₄ Emissions CO₂ Equivalent: 0 (Metric Tons) N₂O Emissions CO₂ Equivalent: 0 (Metric Tons)

Fuel type: Natural Gas (Weighted U.S. Average)

Annual heat input: 295785 (mmBtu)

Annual CH₄ emissions from combustion of the specified fuel: 0.3 (Metric

Tons)

Annual N₂O emissions from combustion of the specified fuel: 0.03 (Metric

Tons)

CH₄ Emissions CO₂ Equivalent: 6.3 (Metric Tons)N₂O Emissions CO₂ Equivalent: 9.3 (Metric Tons)

Unit Name: CT4

Unit Type: Electricity Generator

Unit Description: Combustion Turbine 4 **Part 75 Methodology**: LME (§75.19(c)(4)(iii))

Methodology Start Date: 2012-01-01 Methodology End Date: 2012-12-31 Acid Rain Program Indicator: Y

Emission Details:

Annual CO2 Emissions Including Biomass (metric tons): 19325.5 Annual CO2 Emissions Including Biomass (short tons): 21302.5

Annual CO2 Emissions from Biomass (metric tons): 0

Electricity Fuel Details:

Fuel type: Distillate Fuel Oil No. 2
Annual heat input: 0 (mmBtu)

Annual CH₄ emissions from combustion of the specified fuel: 0 (Metric Tons)

Annual N₂O emissions from combustion of the specified fuel: 0 (Metric Tons)

CH₄ Emissions CO₂ Equivalent: 0 (Metric Tons) N₂O Emissions CO₂ Equivalent: 0 (Metric Tons)

Fuel type: Natural Gas (Weighted U.S. Average)

Annual heat input: 361064 (mmBtu)

Annual CH₄ emissions from combustion of the specified fuel: 0.36 (Metric

Tons)

Annual N₂O emissions from combustion of the specified fuel: 0.036 (Metric

Tons)

CH₄ Emissions CO₂ Equivalent: 7.6 (Metric Tons)
 N₂O Emissions CO₂ Equivalent: 11.2 (Metric Tons)

This foregoing document was electronically filed with the Public Utilities

Commission of Ohio Docketing Information System on

4/15/2013 1:46:53 PM

in

Case No(s). 13-0871-EL-ECP

Summary: Application In the matter of the Dayton Power and Light Company for a notice of Filing Federal Greenhouse Gas Reports electronically filed by Eric R Brown on behalf of The Dayton Power and Light Company