Ohio Public Utilities Commission

Case No.: ____-EL-EEC

Mercantile Customer: Cincinnati Bell Telephone

Electric Utility: Duke Energy

Program Title or Description:

Cooling Heat Exchanger and VFD's

Rule 4901:1-39-05(F), Ohio Administrative Code (O.A.C.), permits a mercantile customer to file, either individually or jointly with an electric utility, an application to commit the customer's existing demand reduction, demand response, and energy efficiency programs for integration with the electric utility's programs. The following application form is to be used by mercantile customers, either individually or jointly with their electric utility, to apply for commitment of such programs in accordance with the Commission's pilot program established in Case No. <u>10-834-EL-POR</u>

Completed applications requesting the cash rebate reasonable arrangement option (Option 1) in lieu of an exemption from the electric utility's energy efficiency and demand reduction (EEDR) rider will be automatically approved on the sixty-first calendar day after filing, unless the Commission, or an attorney examiner, suspends or denies the application prior to that time. Completed applications requesting the exemption from the EEDR rider (Option 2) will also qualify for the 60-day automatic approval so long as the exemption period does not exceed 24 months. Rider exemptions for periods of more than 24 months will be reviewed by the Commission Staff and are only approved up the issuance of a Commission order.

Complete a separate application for each customer program. Projects undertaken by a customer as a single program at a single location or at various locations within the same service territory should be submitted together as a single program filing, when possible. Check all boxes that are applicable to your program. For each box checked, be sure to complete all subparts of the question, and provide all requested additional information. Submittal of incomplete applications may result in a suspension of the automatic approval process or denial of the application.

Any confidential or trade secret information may be submitted to Staff on disc or via email at <u>ee-pdr@puc.state.oh.us</u>.

Section 1: Mercantile Customer Information

Name: Cincinnati Bell Telephone

Principal address: 209 West 7th Street, Cincinnati, Ohio 45202

Address of facility for which this energy efficiency program applies:

209 - 229 West 7th Street, Cincinnati, Ohio 45202

Name and telephone number for responses to questions:

Grady Reid, Jr. 513-287-1038

Electricity use by the customer (check the box(es) that apply):

✓ The customer uses more than seven hundred thousand kilowatt hours per year at the above facility. (See - Appendix A)

□ The customer is part of a national account involving multiple facilities in one or more states. (Please attach documentation.)

Section 2: Application Information

- A) The customer is filing this application (choose which applies):
 - □ Individually, without electric utility participation.

✓ Jointly with the electric utility.

- B) The electric utility is: **Duke Energy**
- C) The customer is offering to commit (check any that apply):
 - Energy savings from the customer's energy efficiency program. (Complete Sections 3, 5, 6, and 7.)
 - □ Capacity savings from the customer's demand response/demand reduction program. (Complete Sections 4, 5, 6, and 7.)

✓ Both the energy savings and the capacity savings from the customer's energy efficiency program. (Complete all sections of the Application.)

Section 3: Energy Efficiency Programs

A) The customer's energy efficiency program involves (check those that apply):

✓ Early replacement of fully functioning equipment with new equipment. (Provide the date on which the customer replaced fully functioning equipment, and the date on which the customer would have replaced such equipment if it had not been replaced early. Please include a brief explanation for how the customer determined this future replacement date (or, if not known, please explain why this is not known)).

The following new equipment was installed starting January 2008 and was finished March 2011.

- (2) 1000 Ton Free Cooling Heat Exchangers Added March 2011
- (1) VFD added to Cooling Water Pump 1 Motor December 2008
- (1) VFD added to Cooling Water Pump 4 Motor December 2008
- (3) Package of VFDs added to Domestic Water Pump- December 2088
- (2) VFD's added to Cooling Tower 1 Fan Motor December 2008
- (2) VFD's added to Cooling Tower 2 Fan Motor December 2008

This project involved a major renovation of an existing facility. As a result, the project takes on characteristics of both retrofit and new construction. Particularly, VFDs were added to new equipment that replaced existing, like equipment that was not driven by VFD. These measures are compared to the as-found condition which did not include VFDs, but a future replacement date is not known. The free cooling heat exchangers were an addition to the facility made solely for energy efficiency with no applicable future replacement date

- □ Installation of new equipment to replace equipment that needed to be replaced The customer installed new equipment on the following date(s):
- Installation of new equipment for new construction or facility expansion.
 The customer installed new equipment on the following date(s):

□ Behavioral or operational improvement.

- B) Energy savings achieved/to be achieved by the energy efficiency program:
 - If you checked the box indicating that the project involves the early replacement of fully functioning equipment replaced with new equipment, then calculate the annual savings [(kWh used by the original equipment) – (kWh used by new equipment) = (kWh per year saved)].

Please attach your calculations and record the results below:

Annual savings: 3,671,231 kWh savings (Refer to Appendix B for calculations and supporting documents).

2) If you checked the box indicating that the customer installed new equipment to replace equipment that needed to be replaced, then calculate the annual savings [(kWh used by less efficient new equipment) – (kWh used by the higher efficiency new equipment) = (kWh per year saved)]. Please attach your calculations and record the results below:

Annual savings: _____kWh

Please describe any less efficient new equipment that was rejected in favor of the more efficient new equipment.

 If you checked the box indicating that the project involves equipment for new construction or facility expansion, then calculate the annual savings [(kWh used by less efficient new equipment) – (kWh used by higher efficiency new equipment) = (kWh per year saved)]. Please attach your calculations and record the results below:

Annual savings: _____kWh

Please describe the less efficient new equipment that was rejected in favor of the more efficient new equipment.

4) If you checked the box indicating that the project involves behavioral or operational improvements, provide a description of how the annual savings were determined.

Section 4: Demand Reduction/Demand Response Programs

- A) The customer's program involves (check the one that applies):
 - ✓ Coincident peak-demand savings from the customer's energy efficiency program.
 - □ Actual peak-demand reduction. (Attach a description and documentation of the peak-demand reduction.)
 - D Potential peak-demand reduction (check the one that applies):
 - □ The customer's peak-demand reduction program meets the requirements to be counted as a capacity resource under a tariff of a regional transmission organization (RTO) approved by the Federal Energy Regulatory Commission.
 - □ The customer's peak-demand reduction program meets the requirements to be counted as a capacity resource under a program that is equivalent to an RTO program, which has been approved by the Public Utilities Commission of Ohio.
- B) On what date did the customer initiate its demand reduction program?
 New equipment was installed starting January 2008 and was finished March 2011.
- C) What is the peak demand reduction achieved or capable of being achieved (show calculations through which this was determined):

6 KW Refer to Appendix B for calculations and supporting documentation

Section 5: Request for Cash Rebate Reasonable Arrangement (Option 1) or Exemption from Rider (Option 2)

Under this section, check the box that applies and fill in all blanks relating to that choice.

Note: If Option 2 is selected, the application will not qualify for the 60-day automatic approval. All applications, however, will be considered on a timely basis by the Commission.

A) The customer is applying for:

✓ Option 1: A cash rebate reasonable arrangement.

OR

□ Option 2: An exemption from the energy efficiency cost recovery mechanism implemented by the electric utility.

OR

- □ Commitment payment
- B) The value of the option that the customer is seeking is:
 - Option 1: A cash rebate reasonable arrangement, which is the lesser of (show both amounts):
 - ✓ A cash rebate of Sector Refer to Appendix C (Rebate shall not exceed 50% project cost. Attach documentation showing the methodology used to determine the cash rebate value and calculations showing how this payment amount was determined.)
 - Option 2: An exemption from payment of the electric utility's energy efficiency/peak demand reduction rider.
 - An exemption from payment of the electric utility's energy efficiency/peak demand reduction rider for _____ months (not to exceed 24 months). (Attach calculations showing how this time period was determined.)

OR

A commitment payment valued at no more than
 \$_____. (Attach documentation and

calculations showing how this payment amount was determined.)

OR

Ongoing exemption from payment of the electric utility's energy efficiency/peak demand reduction rider for an initial period of 24 months because this program is part of the customer's ongoing efficiency program. (Attach documentation that establishes the ongoing nature of the program.) In order to continue the exemption beyond the initial 24 month period, the customer will need to provide a future application establishing additional energy savings and the continuance of the organization's energy efficiency program.)

Section 6: Cost Effectiveness

The program is cost effective because it has a benefit/cost ratio greater than 1 using the (choose which applies):

- Total Resource Cost (TRC) Test. The calculated TRC value is: ______
 (Continue to Subsection 1, then skip Subsection 2)
- ✓ Utility Cost Test (UCT). The calculated UCT value is: 19.06 (Skip to Subsection 2.) Refer to Appendix D for calculations and supporting documents.

Subsection 1: TRC Test Used (please fill in all blanks).

The TRC value of the program is calculated by dividing the value of our avoided supply costs (generation capacity, energy, and any transmission or distribution) by the sum of our program overhead and installation costs and any incremental measure costs paid by either the customer or the electric utility.

The electric utility's avoided supply costs were _____.

Our program costs were _____.

The incremental measure costs were _____.

Subsection 2: UCT Used (please fill in all blanks).

We calculated the UCT value of our program by dividing the value of our avoided supply costs (capacity and energy) by the costs to our electric utility (including administrative costs and incentives paid or rider exemption costs) to obtain our commitment.

Our avoided supply costs were **\$2,298,689**

The utility's program costs were **\$54,451.22**

The utility's incentive costs/rebate costs were \$

Refer to Appendix D for calculations

Section 7: Additional Information

Please attach the following supporting documentation to this application:

Narrative description of the program including, but not limited to, make, model, and year of any installed and replaced equipment.

A copy of the formal declaration or agreement that commits the program or measure to the electric utility, including:

- 1) any confidentiality requirements associated with the agreement;
- 2) a description of any consequences of noncompliance with the terms of the commitment;
- 3) a description of coordination requirements between the customer and the electric utility with regard to peak demand reduction;
- 4) permission by the customer to the electric utility and Commission staff and consultants to measure and verify energy savings and/or peak-demand reductions resulting from your program; and,
- 5) a commitment by the customer to provide an annual report on your energy savings and electric utility peak-demand reductions achieved.

Refer to Rebate Offer Letter following this application

A description of all methodologies, protocols, and practices used or proposed to be used in measuring and verifying program results. Additionally, identify and explain all deviations from any program measurement and verification guidelines that may be published by the Commission.

DUKE ENERGY CORPORATION Mercantile Self Direct Program 139 East Fourth Street Cincinnati, OH 45202

513 629 5572 fax

February 3, 2012

Mr. Kevin Daniel Cincinnati Bell Telephone 229 West 7th Street Cincinnati, Oh 45202

Subject: Your Application for a Duke Energy Mercantile Self-Direct Rebate

Dear Mr. Daniel:

Thank you for your Duke Energy Mercantile Self Direct rebate application. As noted in the Energy Conservation Measure (ECM) chart on page two, a total rebate of **Sectors** has been proposed for your condenser water pump and cooling tower VFD projects completed in the 2008 calendar year. All Self Direct Rebates are contingent upon approval by the Public Utilities Commission of Ohio (PUCO).

At your earliest convenience, please indicate if you accept this rebate by

- providing your signature on page two
- completing the PUCO-required affidavit on page three.

Please return the documents to my attention via fax at 513-629-5572 or e-mail to SelfDirect@Duke-Energy.com. Upon receipt, Duke Energy will submit the necessary documentation to PUCO. Following PUCO's approval, Duke Energy will remit payment.

At Duke Energy, we value your business and look forward to working with you on this and future energy efficiency projects. We hope you will consider our Smart \$aver® incentives, when applicable. Please contact me if you have any questions.

Sincerely,

Grady Reid, Jr Product Manager Mercantile Self Direct Rebates

CC:

Mike Harp, Duke Energy Rob Jung, WECC Please indicate your response to this rebate offer within 30 days of receipt.

Rebate is accepted.

Rebate is declined.

By accepting this rebate, Cincinnati Bell Telephone affirms its intention to commit and integrate the energy efficiency projects listed on the following pages into Duke Energy's peak demand reduction, demand response and/or energy efficiency programs.

Additionally, Cincinnati Bell Telephone also agrees to serve as joint applicant in any future filings necessary to secure approval of this arrangement as required by PUCO and to comply with any information and reporting requirements imposed by rule or as part of that approval.

Finally, Cincinnati Bell Telephone affirms that all application information submitted to Duke Energy pursuant to this rebate offer is true and accurate. Information in question would include, but not be limited to, project scope, equipment specifications, equipment operational details, project costs, project completion dates, and the quantity of energy conservation measures installed.

If rebate is accepted, will you use the monies to fund future energy efficiency and/or demand reduction projects?

If rebate is declined, please indicate reason (optional):

Customer Signature

Printed Name

Date

Proposed Rebate Amounts

Measure ID	Energy Conservation Measure (ECM)	Proposed Rebate Amount
ECM-1	Condenser Water Pump # 1 (added 1 VFD)	
ECM-2	Condenser Water Pump # 4 (added 1 VFD)	
ECM-2	Cooling Tower #1 (added 2 VFD's)	
ECM-2	Cooling Tower #2 (added 2 VFD's)	
Total		and the second sec

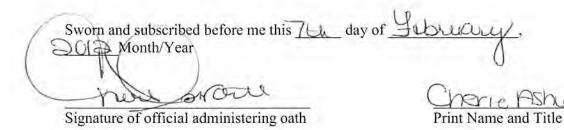
2 | Page

Ohio Public Utilities Commission

Application to Commit Energy Efficiency/Peak Demand Reduction Programs (Mercantile Customers Only)

Case No.: ____-EL-EEC

State of _____:


<u>Kevin Daniel</u>, Affiant, being duly sworn according to law, deposes and says that:

1. I am the duly authorized representative of:

[insert customer or EDU company name and any applicable name(s) doing business as]

- 2. I have personally examined all the information contained in the foregoing application, including any exhibits and attachments. Based upon my examination and inquiry of those persons immediately responsible for obtaining the information contained in the application, I believe that the information is true, accurate and complete.
- 3. I am aware of fines and penalties which may be imposed under Ohio Revised Code Sections 2921.11, 2921.31, 4903.02, 4903.03, and 4903.99 for submitting false information.

Signature of Afffant & Title

My commission expires on CHERIE ASHWORTH Notary Public, State of Ohio Wy Commission Expires 07-31-15

3 Page

DUKE ENERGY CORPORATION Mercantile Self Direct Program 139 East Fourth Street Cincinnati, OH 45202

513 629 5572 fax

February 10, 2012

C/O Mr. Kevin Daniel Cincinnati Bell Telephone 229 West 7th Street Mail Location 121-1200 Cincinnati, Ohio 45202

Subject: Your Application for a Duke Energy Mercantile Self-Direct Rebate

Dear Mr. Daniel:

Thank you for your Duke Energy Mercantile Self Direct rebate application. As noted in the Energy Conservation Measure (ECM) chart on page two, a total rebate of the bate of the proposed for your VFD project completed in the 2008 calendar year. All Self Direct Rebates are contingent upon approval by the Public Utilities Commission of Ohio (PUCO).

At your earliest convenience, please indicate if you accept this rebate by

- providing your signature on page two
- completing the PUCO-required affidavit on page three.

Please return the documents to my attention via fax at 513-629-5572 or e-mail to SelfDirect@Duke-Energy.com. Upon receipt, Duke Energy will submit the necessary documentation to PUCO. Following PUCO's approval, Duke Energy will remit payment.

At Duke Energy, we value your business and look forward to working with you on this and future energy efficiency projects. We hope you will consider our Smart \$aver® incentives, when applicable. Please contact me if you have any questions.

Sincerely,

Kilt

Grady Reid, Jr Product Manager Mercantile Self Direct Rebates

CC:

Mike Harp, Duke Energy Rob Jung, WECC Please indicate your response to this rebate offer within 30 days of receipt.

Rebate is accepted.

Rebate is declined.

By accepting this rebate, Cincinnati Bell Telephone affirms its intention to commit and integrate the energy efficiency projects listed on the following pages into Duke Energy's peak demand reduction, demand response and/or energy efficiency programs.

Additionally, Cincinnati Bell Telephone also agrees to serve as joint applicant in any future filings necessary to secure approval of this arrangement as required by PUCO and to comply with any information and reporting requirements imposed by rule or as part of that approval.

Finally, Cincinnati Bell Telephone affirms that all application information submitted to Duke Energy pursuant to this rebate offer is true and accurate. Information in question would include, but not be limited to, project scope, equipment specifications, equipment operational details, project costs, project completion dates, and the quantity of energy conservation measures installed.

If rebate is accepted, will you use the monies to fund future energy efficiency and/or demand reduction projects?

If rebate is declined, please indicate reason (optional):

Customer Signature

Printed Name

27-12

Date

Proposed Rebate Amounts

Measure ID	Energy Conservation Measure (ECM) Domestic Water Pump Package (VFDs added)	Proposed Rebate Amount
ECM-1	Domestic Water Pump Package (VFDs added)	
Total		

Public Utilities Commission Ohio

Application to Commit Energy Efficiency/Peak Demand Reduction Programs (Mercantile Customers Only)

Case No.: - -EL-EEC

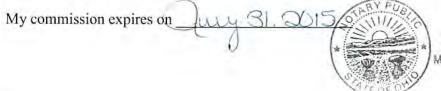
State of ()hill :

Danie / , Affiant, being duly sworn according to law, deposes and says that:

1. I am the duly authorized representative of:

[insert customer or EDU company name and any applicable name(s) doing business as]

- 2. I have personally examined all the information contained in the foregoing application, including any exhibits and attachments. Based upon my examination and inquiry of those persons immediately responsible for obtaining the information contained in the application, I believe that the information is true, accurate and complete.
- 3. I am aware of fines and penalties which may be imposed under Ohio Revised Code Sections 2921.11, 2921.31, 4903.02, 4903.03, and 4903.99 for submitting false information.


fuiros Manago

Signature of Affiant & Title

Sworn and subscribed before me this Muday of Subrulary, Month/Year

Shall Signature of official administering oath

Print Name and Title

CHERIE ASHWORTH Notary Public, State of Ohio My Commission Expires 07-31-15

3 Phue

DUKE ENERGY CORPORATION Mercantile Self Direct Program 139 East Fourth Street Cincinnati, OH 45202

513 629 5572 fax

Janauary 27, 2012

C/O Mr. Kevin Daniel Cincinnati Bell Telephone 229 West 7th Street Mail Location 121-1200 Cincinnati, Ohio 45202

Subject: Your Application for a Duke Energy Mercantile Self-Direct Rebate

Dear Mr. Daniel:

Thank you for your Duke Energy Mercantile Self Direct rebate application. As noted in the Energy Conservation Measure (ECM) chart on page two, a total rebate of the self base of the proposed for your plate and frame heat exchanger project completed in the 2011 calendar year. All Self Direct Rebates are contingent upon approval by the Public Utilities Commission of Ohio (PUCO).

At your earliest convenience, please indicate if you accept this rebate by

- providing your signature on page two
- completing the PUCO-required affidavit on page three.

Please return the documents to my attention via fax at 513-629-5572 or e-mail to SelfDirect@Duke-Energy.com. Upon receipt, Duke Energy will submit the necessary documentation to PUCO. Following PUCO's approval, Duke Energy will remit payment.

At Duke Energy, we value your business and look forward to working with you on this and future energy efficiency projects. We hope you will consider our Smart \$aver® incentives, when applicable. Please contact me if you have any questions.

Sincerely,

Grady Reid, Jr Product Manager Mercantile Self Direct Rebates

CC:

Mike Harp, Duke Energy Rob Jung, WECC Jerry Lindsay, Peck, Hannaford, Briggs

www.duke-energy.com

Please indicate your response to this rebate offer within 30 days of receipt.

Rebate is accepted.

Rebate is declined.

By accepting this rebate, Cincinnati Bell Telephone affirms its intention to commit and integrate the energy efficiency projects listed on the following pages into Duke Energy's peak demand reduction, demand response and/or energy efficiency programs.

Additionally, Cincinnati Bell Telephone also agrees to serve as joint applicant in any future filings necessary to secure approval of this arrangement as required by PUCO and to comply with any information and reporting requirements imposed by rule or as part of that approval.

Finally, Cincinnati Bell Telephone affirms that all application information submitted to Duke Energy pursuant to this rebate offer is true and accurate. Information in question would include, but not be limited to, project scope, equipment specifications, equipment operational details, project costs, project completion dates, and the quantity of energy conservation measures installed.

If rebate is accepted, will you use the monies to fund future energy efficiency and/or demand reduction projects?

If rebate is declined, please indicate reason (optional):

1-27-12

Customer Signature

Printed Name

Date

Proposed Rebate Amounts

Measure ID	Energy Conservation Measure (ECM)	Proposed Rebate Amount
ECM-1	Installed 1000 Ton –Plate and Frame Heat Exchangers (Qty – 2)	
Total		

hio Public Utilities Commission

Application to Commit Energy Efficiency/Peak Demand Reduction Programs (Mercantile Customers Only)

Case No.: ____-EL-EEC

State of Ohio :

Kevin Daniel, Affiant, being duly sworn according to law, deposes and says that:

1. I am the duly authorized representative of:

[insert customer or EDU company name and any applicable name(s) doing business as]

- 2. I have personally examined all the information contained in the foregoing application, including any exhibits and attachments. Based upon my examination and inquiry of those persons immediately responsible for obtaining the information contained in the application, I believe that the information is true, accurate and complete.
- 3. I am aware of fines and penalties which may be imposed under Ohio Revised Code Sections 2921.11, 2921.31, 4903.02, 4903.03, and 4903.99 for submitting false information.

Signature of Affiant & Title

Sworn and subscribed before me this The day of Howay 2012

Signature of official administering oath

Shart

Print Name and Title

CHERIE ASHWORTH Notary Public, State of Ohio My Commission Expires 07-31-15 Appendix 1

34800674 01		
CINTI BELL TEL CO		
209 7TH W		
CINCINNATI, OH 4	5202	
Date	Days	Actual KWH
9/22/2011	30	6,383,118
8/23/2011	29	6,399,714
7/25/2011	32	7,008,074
6/23/2011	30	6,495,600
5/24/2011	29	6,052,707
4/25/2011	32	6,615,081
3/24/2011	29	5,972,643
2/23/2011	29	5,865,793
1/25/2011	34	6,843,733
12/22/2010	33	6,628,584
11/19/2010	29	5,878,295
10/21/2010	29	5,970,012
Total		76,113,354

See Appendix B At The End

Appendix C -Cash Rebate Calculation

Heat Exchanger and VFD's

Measure	Quantity	Cash Rebate Rate	Rebate	Cash Rebate
		50% of incentive that would be offered by		
Free Cooling HX Package	1	the Smart \$aver Custom program	\$	\$
		50% of incentive that would be offered by		
Cooling Tower #1 VFD's	2	the Smart \$aver Custom program	\$	\$
		50% of incentive that would be offered by		
Cooling Tower #2 VFD's	2	the Smart \$aver Custom program	\$	\$
		50% of incentive that would be offered by		
Condenser Water Pump 1 VFD	1	the Smart \$aver Custom program	\$	\$
		50% of incentive that would be offered by		
Condenser Water Pump 4 VFD	1	the Smart \$aver Custom program	\$	\$
		50% of incentive that would be offered by		
Domestic Water Pump Package	1	the Smart \$aver Custom program	\$	\$
			Total	\$

Appendix D -UCT Value

Heat Exchanger and VFD's

Measure	Total Avoided Cost	Program Cost	Incentive	Quantity	Measure UCT
Free Cooling HX Package	\$2,131,766	\$49,216	¢	1	20.07
Cooling Tower #1 VFD's	\$12,447	\$623	¢	2	7.67
Cooling Tower #2 VFD's	\$13,328	\$615	¢	2	8.25
Condenser Water Pump 1 VFD	\$50,668	\$1,693	¢	1	12.46
Condenser Water Pump 4 VFD	\$60,577	\$831	¢	1	18.89
Domestic Water Pump Package	\$4,127	\$235	\$	1	6.50
Totals	\$2,298,689	\$54,451	¢	8	

Total Avoided Supply Costs Total Program Costs Total Incentive \$2,298,689 \$54,451.22 Aggregate Application UCT

19.06

Appendix B – Energy Savings Achieved

	Pre-Proje	ect (at the meter	r)	Post	-Project (at the	meter)	Savings (at	the meter)
			Summer			Summer		
		Total Annual	Coincident	New	Total Annual	Coincident	Energy	Demand
ECM	As-Found Equipment	kWh ¹	kW ¹	Equipment	kWh ¹	kW ²	Savings (kWh)	Savings (kW) ²
ECM1 ³	(4) 1200 Ton Water Cooled Chillers	3,112,704	N/A	(2) 1000 Ton Free Cooling HEX Added	0	N/A	3,112,704	0
ECM2 ⁴	125HP Condenser Cooling Water Pump 1 Motor	415,418	94.1	VFD Added	329,911	86.4	85,207	7.7
ECM3 ⁴	125HP Condenser Cooling Water Pump 4 Motor	408,645	N/A	VFD Added	294,750	N/A	113,895	0
ECM4 ⁴	3 x 15HP Domestic Water Pump Package	103,216	11.8	VFDs Added	94,968	12.0	8,248	(0.2)
ECM5 ⁴	60HP Cooling Tower 1 Fan Motor	203,902	46.2	VFD Added	178,941	47.1	24,961	(0.9)
ECM6 ⁴	60HP Cooling Tower 2 Fan Motor	200,578	N/A	VFD Added	176,661	N/A	23,917	0

Notes:

1. Energy consumption baseline, demand baseline and post-project energy consumption basis are outlined in the following pages.

2. Demand savings are returned by DSMore software as a result of energy savings allocations at the coincident hour. Post-project demand is calculated as the difference between pre-project modeled demand and the DSMore software result. An exception occurs where it was identified that the addition of the VFD introduces the possibility of a demand increase at the coincident hour. In these cases, the expected demand increase is applied.

3. Baseline values for ECM1 are shown as the portion of energy offset by the free cooling heat exchangers. Because of the simplicity of modeling the savings of the heat exchangers, which have capacity that is maximized when in operation, the total energy use for the (4) chillers around the year is not modeled.

4. Baseline and energy savings calculation basis for these VFDs were obtained from facility building management system speed data and are a reflection of actual operation. As such, the savings between two similar pieces of equipment may vary based on actual equipment cycling in the facility. Some equipment is not used during coincident months. Actual building management system data is not included due to file size but is available upon request.

ECM	Quantity	Total Annual Energy Savings (kWh)	Total Demand Savings (kW)
ECM1	1	3,112,704	0
ECM2	1	85,207	7.7
ECM3	1	113,895	0
ECM4	1	8,248	(0.2)
ECM5	2	49,922	(1.8)
ECM6	2	47,834	0
Total		3,417,810	5.7

Application of 7.43% line losses yields **3,671,231 kWh** savings and **6 coincident kW** savings at the plant. This value also reflects minor rounding error resulting from the analytical mode of DSMore software used to model the projects.

Duke Energy Mercantile Self Direct Incentives – CUSTOM

Plate and Frame Exchangers

Model No. VXN-93-SS-FS-1-500

Cincinnati Bell purchased **two**, **1000 ton**, plate & frame heat exchangers from Peck, Hannaford, Briggs (PHB), in 2008.

PHB installed the heat exchangers along with associated pipes, valves, etc

Glenwood Electric performed the electric piece of the project.

Installation began 2008 and heat exchangers were commissioned in 2011, after 2010 winter.

Total costs of \$725,000.00 is detailed on included letter to Mike Harp from Kevin Daniel.

Energy numbers were calculated as follows:

- Two centrifugal chillers operate at .579 KW/ton.
- Two (2) heat exchangers replace both chillers at full load during [approx] 16 wks of winter @ 1000 tons each = 1158 KW
- 16 weeks (112 days) (a) 24 hours a day operation = 2688 hrs.
- 2688 hrs x 1158 KW = 3,112,704 KWh reduction
- 3,112,704 x \$.10 = \$311,270 savings

Ohio Mercantile Self Direct Program

Application Guide & Cover Sheet

Questions? Call 1-866-380-9580 or visit www.duke-energy.com.

Email this form along with completed Mercantile Self Direct Prescriptive or Custom applications, proof of payment, energy savings calculations and spec sheets to SelfDirect@Duke-Energy.com. You may also fax to 1-513-419-5572.

Mercantile customers, defined as using at least 700,000 kWh annually are eligible for the Mercantile Self Direct program. Please indicate mercantile gualification:

a single Duke Energy Ohio account

multiple accounts in Ohio (energy usage with other utilities may be counted toward the total)

Please list Duke Energy account numbers below (attach listing of multiple accounts an/or billing history for other utilities as required);

Account Number	Annual Usage	Account Number	Annual Usage	
3480-0674-01	76,828,077			

Self Direct rebates are available for completed Custom projects that have not previously received a Duke Energy Smart \$aver® Custom Incentive. Self Direct incentives are applicable to Prescriptive measures that were installed more than 90 days prior to submission to Duke Energy and have not previously received a Duke Energy Prescriptive rebate.

Self Direct Program requirements dictate that certain projects that may be Prescriptive in nature under the Smart \$aver program must be evaluated using the Custom process. Use the table on page two as a guide to determine which Self Direct program fits your project(s). Apply for Self Direct projects using the appropriate application forms in conjunction with this cover sheet. Where Mercantile Self Direct Prescriptive applications are listed, please refer to the measure list on that application. If your measure is not listed, you may be eligible for a Self Direct Custom rebate. Self Direct Custom applications, like Smart \$aver Custom applications, should include detailed analysis of pre-project and post-project energy usage and project costs. Please indicate which type of rebate applications are included in the table provided on page two.

Please check each box to indicate completion of the following program requirements:

All sections of appropriate application(s) are completed	Proof of payment.*	Manufacturer's Spec sheets	Energy model/calculations and detailed inputs for Custom applications
--	--------------------	----------------------------	---

* If a single payment record is intended to demonstrate the costs of both Prescriptive & Custom projects, please include an additional document with an estimated breakout of costs for each Prescriptive and Custom energy conservation measure.

Application Type	Replaced equipment at end of lifetime or because equipment failed**	Replaced fully operational equipment to improve efficiency***	New Construction	
	NSD Costana Bast 1	MSD Prescriptive Lighting	MSD Prescriptive Lighting 🗌	
Lighting	MSD Custom Part 1	MSD Custom Part 1	MSD Custom Part 1	
	MSD Custom Part 1	MSD Custom Part 1 🖂	MSD Prescriptive Heating & Cooling	
Heating & Cooling	MSD Custom General Worksheet 🗌	MSD Custom General Worksheet 🛛	MSD Custom Part 1 🖾 MSD Custom General Worksheet 🔀	
Window Films, Programmable Thermostats, & Guest Room Energy Management Systems	ammable MSD Custom Part 1 MSD Prescriptive Heating & Cooling Room Energy MSD Custom General and/or EMS Image: Cooling gement Worksheet(s) Image: Cooling		MSD Custom Part 1 MSD Custom General and/or EMS Worksheet(s)	
Chillers & Thermal	MSD Custom Part 1 🔲	MSD Custom Part 1 🔲	MSD Prescriptive Chillers & Therm Storage	
Storage	MSD Custom General Worksheet 🗌	MSD Custom General Worksheet 🗌	MSD Custom Part 1 MSD Custom General Worksheet	
	MSD Custom Part 1	MSD Custom Part 1	MSD Prescriptive Motors, Pumps Drives	
Motors & Pumps	MSD Custom General Worksheet 🗌	MSD Custom General Worksheet 🗌	MSD Custom Part 1 MSD Custom General Worksheet	
1.000	Sec. In the sec.	MSD Prescriptive Motors, Pumps & Drives 🗌	MSD Custom Part 1	
VFDs	Not Applicable	MSD Custom Part 1 MSD Custom VFD Worksheet	MSD Custom VFD Worksheet	
	MSD Custom Part 1	MSD Custom Part 1	MSD Prescriptive Food Service	
Food Service	MSD Custom General Worksheet	MSD Custom General Worksheet	MSD Custom Part 1 MSD Custom General Worksheet	
	MSD Custom Post 1	MSD Prescriptive Process	MSD Custom Port 1	
Process	MSD Custom Part 1 MSD Custom General Worksheet	MSD Custom Part 1 MSD Custom General Worksheet	MSD Custom Part 1	
Energy Management Systems	MSD Custom Part 1	MSD Custom Part 1 🔲 MSD Custom EMS Worksheet 🗌	MSD Custom Part 1 🔲 MSD Custom EMS Worksheet 🔲	
Behavioral*** & No/Low Cost		MSD Custom Part 1 MSD Custom General Worksheet	1	

** Under the Self Direct program, failed equipment and equipment at the end of its useful life are evaluated differently than early replacement of fully functioning equipment. All equipment replacements due to failure or old age will be evaluated via the Custom program.

*** Please ensure that you include the age of the replaced equipment for measures classified as "Early Replacement" in your application as well as the estimated date that you would have otherwise replaced the existing equipment if you had not chosen a more energy efficient option.

energy efficient option. **** Behavioral energy efficiency and demand reduction projects must be both measurable and verifiable. Provide justification with your application.

Proposed energy efficiency measures may be eligible for Self-Direct Custom rebates if they clearly reduce electrical consumption and/or demand as compared to the appropriate baseline.

Before you complete this application, please note the following important criteria:

- Submitting this application does not guarantee a rebate will be approved.
- Rebates are based on electricity conservation only.
- Electric demand and/or energy reductions must be well documented with auditable calculations.
- Incomplete applications cannot be reviewed; all fields are required.

Refer to the complete list of Instructions and Disclaimers, beginning on page 6.

Notes on the Application Process

If you have any questions concerning how to complete any portion of the application or what supplementary information is required, please contact your Duke Energy Ohio, Inc account manager or the Duke Energy Smart \$aver® team at 1-866-380-9580.

Every application must include calculations of the baseline electrical usage and the electrical usage of the proposed high-efficiency equipment/system. Monthly calculations are best. You, the Duke Energy Ohio customer, or your equipment vendor / engineer should perform these calculations and submit them to Duke Energy for review. We strongly encourage the use of modeling software (such as eQuest or comparable) for complex projects.

Upon receipt of your application, an acknowledgement email will be sent to you with an estimated response time based on an initial assessment of your application. The application review may include some communication to resolve any questions about the project or to request additional information. Applications that are received complete without missing information have a faster review time.

There are two ways to submit your completed application.

Email your scanned form to: SelfDirect@duke-energy.com

Or, fax your form to 513-419-5572

1. Contact Information (Required)

Company Name	Cincinnati Bell To	Cincinnati Bell Telephone (CBT)						
Address	209 West 7th Str	209 West 7th Street, Mail Location 121-1200						
Project Contact	Kevin Daniel, Bu	ilding Operations	Manager	r, Real Esta	ate Dej	ot.		
City	Cincinnati		State	он		Zip Code	45202	
Title	Building Manage	r						
Office Phone	513-397-5412	Mobile Phone	513-6	04-6959	Fax	513-39	7-0847	
E-mail Address	kevin.daniel@cir	ibell.com			1			

Company Name	or / Contractor / Architect / Engineer Contact Information Peck, Hannaford, Briggs (hvac installation); Pedco (engineering); Glenwood Electric (switchgear installation); Hunt Bldrs (project management)				
Address	209 West 7th Street				
City	Cincinnati	State	OH	Zip Code	45202
Project Contact	Kevin Daniel				
Title	Building Operations Manager				

Office Phone	513-397-5412	Mobile Phone	513-604-6959	Fax	513-397-0847
E-mail Address	kevin.daniel@cinbell.com				
Describe Role	Responsible to oversee all facility capital improvements and maintenance				nd maintenance

Payment Information						
Payee Legal Company Name (as shown on Federal income tax return):	Cincinnati Bell Telephone					
Mailing Address	209 We	st 7 th Street				
City	Cincinna	ati	State	OH	Zip Code	45202
Type of organization (check Unit of Government Payee Federal Tax ID # of L Company Name Above:	Non-Profi	ndividual/Sol t (non-corpor 20-2003820	ation)	or 🛛 C	orporation] Partnership
Who should receive incentiv	e paymen	it? (select on	e) 🛛 Cust	omer	Vendor (C must sign	
If the vendor is to receive pa I hereby authorize payment						
Customer Signature			Date	<u> </u>	_/(m	m/dd/yyyy)

2. Project Information (Required)

A. Please indicate project type:

- New Construction
- Expansion at an existing facility
- Replacing equipment due to equipment failure
- Replacing equipment that is estimated to have remaining useful life of 2 years or less
- Replacing equipment that is estimated to have remaining useful life of more than 2 years
- Behavioral, operational and/or procedural programs/projects
- B. Please describe your project, or attach a detailed project description that describes the project.

Two 1000 ton plate and frame heat exchanger were provided and installed by PHB along with related pipe, valves, controls, insulation. Model no. VXN-93-SS-FS-1-500.

C. When did you start and complete implementation?

Start date 7/2008 (mm/yyyy) End date 3/2011 (mm/yyyy)

D. Are you also applying for Self-Direct Prescriptive incentives and, if so, which one(s)¹?

- E. Please indicate which worksheet(s) you are submitting for this application (check all that apply):
 - Lighting
 - Variable Frequency Drive (VFD)
 - Compressed Air
 - Energy Management System (EMS)
 - General (for projects not easily submitted using one of the above worksheets)

¹ If your project involves some equipment that is eligible for prescriptive incentives and some equipment that is likely eligible for custom incentives, and if it is feasible to separate the equipment for the energy analysis, then the equipment will be evaluated separately. If it is not feasible to separate the equipment for analysis, then the equipment will be evaluated together in the custom application.

F. Please tell us if there is anything about your electrical energy projections (either for the baseline or the proposed project) that you are either unsure about or for which you have made significant assumptions. Attach additional sheets as needed.

see attached documentation

Required: Attach a supplier or contractor invoice or other equivalent information documenting the Implementation Cost for each project listed in your application. (Note: self-install costs cannot be included in the Implementation Cost)

3. Signature (Required – must be signed by Duke Energy customer)

Customer Consent to Release of Personal Information

I, (insert name) Kevin Daniel, do hereby consent to Duke Energy disclosing my Duke

Energy Ohio, Inc Account Number and Federal Tax ID Number to its subcontractors solely for the purpose of administering Duke Energy Ohio's Mercantile Self-Direct Program. I understand that such subcontractors are contractually bound to otherwise maintain my Duke Energy Ohio, Inc Account Number and Federal Tax ID Number in the strictest of confidence.

I realize that under the rules and regulations of the public utilities commission, I may refuse to allow Duke Energy Ohio, Inc to release the information set forth above. By my signature, I freely give Duke Energy Ohio, Inc permission to release the information designated above.

Application Signature

I certify that I meet the eligibility requirements of the Duke Energy Ohio, Inc Mercantile Self Direct Custom Incentives Program and that all information provided within this application is correct to the best of my knowledge. Lagree to the terms and conditions set forth for this program. I certify that the numbers, energy savings, and responses shown on this form are correct. Further, I certify that the taxpayer identification number is current and correct. I am not subject to backup withholding because: (a) I am exempt from backup withholding; or (b) I have not been notified by the IRS that I am subject to backup withholding as a result of a failure to report all interest or dividends; or (c) the IRS has notified me that I am no longer subject to backup withholding. I am a U.S. citizen (includes a U.S. resident alien).

AS AGENT for Givingoti Bell Telephone

Duke Energy Ohio, Inc Customer Signature

Print Name	Kevin Daniel	
Date	11-7-11	

Checklist for completing the Application

INCOMPLETE APPLICATIONS WILL RESULT IN DELAYS IN DUKE ENERGY PROCESSING YOUR APPLICATION AND NOTIFYING YOU CONCERNING AY REBATES. Before submitting the application and the required supplementary information, use the following checklist to ensure that your application is complete and the information in the application is accurate. (Note: this checklist is for your use only – do not submit this checklist with your application)

Section No. & Title	Have You:
1. Contact Information	 Completed the contact information for the Duke Energy customer? Completed the contact information for the equipment vendor / project engineer that can answer questions about the technical aspects of the project, if that is a different person than above?
2. Project Information	 Answered the questions A-E, including providing a description of your project. Completed and attached the lighting, compressed air, VFD, EMS and/or General worksheet(s)?
3. Signature	 Signed your name? Printed your name? Entered the date?
Supplementary information (Required)	 Attached a supplier or contractor's invoice or other equivalent information documenting the Implementation Cost for projects listed in your application? (Note: self-install costs cannot be included in the Implementation Cost) (If submitting the General Worksheet) attached calculations documenting the energy usage and energy savings for <u>each</u> project listed in your application?

If you have any questions concerning how to complete any portion of the application or what supplementary information is required, please contact:

- your Duke Energy account manager or,
- the Duke Energy Smart \$aver® team at 1-866-380-9580.

Mercantile Self Direct	Page 1 of
Nonresidential Custom Incentive Application	
GENERAL CUSTOM APPLICATIONS WORKSHEET - CUSTOM GENERAL APPLICATION PART 2	Rev 7/11

Duke Energy.

Page 1 of 3

The General Worksheet is part 2 of the application. Do not submit this file without submitting a completed Part1 Custom Application document file, which can be found at www.duke-energy.com. This worksheet is for all projects that are not easily submitted through one of the other worksheets

Before you complete this application, please note the following important criteria:

- Submitting this application does not guarantee an incentive will be approved. ÷
- Incentive already decided to proceed.
- · Electric demand and/or energy reductions must be well documented with auditable calculations.

Incomplete applications will not be reviewed; all fields are required.

Refer to the complete list of Instructions and Disclaimers, found in the Mercantile Self Direct Custom Application Part 1 document.

	ormation and data into the cells that are shaded. ked and cannot be written over.			
Duke Energy Custom	er Contact Information (Match the information in Application Part 1):			
Name	Kevin Daniel, Building Manager, Real Estate Dept.			
Company	Cincinnati Bell Telephone			
Equipment Vendor /	Project Engineer Contact Information			
Name	Jerry Lindsay, Manager			

Company

Before proceeding with the custom application, please verify that your project is not on the Self-Direct Prescriptive application.

The prescriptive incentive applications can be found at:

http://www.duke-energy.com/ohio-large-business/smart-saver/mercantile-self-direct.asp

Peck, Hannaford, Briggs

Prescriptive rebate amounts are pre-approved.

List of Proposed Projects at each site 2345 Project Name(s) Install Plate & Frame HX Ex as part of Chilled Water plant upgrade project serving both 209, 229 W7th St buildings. same	Operation 5,840	App No. Rev. Gross Square Footage 42,000 387,701 412,536	Conditioned Square Footage 38,000 336,481 378,366	81
each site 2345 Project Name(s) Install Plate & Frame HX Ex as part of Chilled Water plant upgrade project serving both 209, 229 W7th St buildings.	Hours of Operation 5,840 8,760	Rev. Gross Square Footage 42,000 387,701	Square Footage 38,000 336,481	Age (years) 12 81
each site 2345 Project Name(s) Install Plate & Frame HX Ex as part of Chilled Water plant upgrade project serving both 209, 229 W7th St buildings.	Hours of Operation 5,840 8,760	Square Footage 42,000 387,701	Square Footage 38,000 336,481	Age (years) 12 81
each site 2345 Project Name(s) Install Plate & Frame HX Ex as part of Chilled Water plant upgrade project serving both 209, 229 W7th St buildings.	Hours of Operation 5,840 8,760	Square Footage 42,000 387,701	Square Footage 38,000 336,481	Age (years) 12 81
Install Plate & Frame HX Ex as part of Chilled Water plant upgrade project serving both 209, 229 W7th St buildings.	8,760	387,701	336,481	8:
part of Chilled Water plant upgrade project serving both 209, 229 W7th St buildings.	8,760			
same				
same	Sume	412,550	378,300	
				-
				1
			Pharman -	
			Distanti Conservatione	
			1 S 1	
and the second se				
	2) mini-		in the second	+
and the second				+

1 Site ID

Can be a store number, building name or other way to identify the location. If there is only one site involved in this application, then a Site ID is not necessary.

2 Account Numbers

Must match the facility of the proposed project(s). If there are multiple meters at a site, only include the meters that pertain to the project(s)

Mercantile Self Direct
Nonresidential Custom Incentive Application
GENERAL CUSTOM APPLICATIONS WORKSHEET - CUSTOM GENERAL APPLICATION PART 2

Page 3 of 3 Rev 7/11

Duke Energy

For each project, an:	swer the following questions (use one worksheet per project)	App No.	0
Project Name:	Chilled Water System Upgrade - Plate & Frame Heat Exchangers	Rev.	0
C COMPENSION CONTRACTOR	sify this project? (Place an x in all boxes that apply.)		

Lighting	Heating/Cooling	х	Air Compressor	Energy Management System	-
VFD	Motors/Pumps		Process Equipment	Other, describe below:	

Brief Project Description

Describe the Baseline (see note 3) Equipment/System	Describe the Proposed High Efficiency Project
Existing Chiller plant is supported by four (4) 1200 ton centrifugal chillers.	Installed two (2) 1000 ton Plate and Frame Heat Exchangers to reduce the centrifugal chiller load during the cooler/colder periods of the year (winter).
If Existing Equipment is the Baseline, how many years of useful	life remain or how many years until scheduled replacement?

Detailed Project Description Attached? Yes (Required)

Operating Hours (see note 4)

24 x 7	Weekday		Saturday		Sunday		Weeks of Use in Year	Total Annual
	Start Hour	End Hour	Start Hour	End Hour	Start Hour	End Hour	(see note 5)	Hours of Use
Yes							12 wks	2,016

Energy Savings

1.1.2.1.1.1.1.1.1	Baseline (see Note 3)	Proposed	Savings	Describe how energy numbers were calculated	
Annual Electric Energy	3,112,704 kWh	0 kWh	3,112,704 kWh	See attached for details. Two centrifugal chillers operate at ,579 KW/ton. T	
Electric Demand	1,158 kW	0 kW	1,158 kW	heat exchangers replace both chillers at full load during 16 wks of winter @ 1000 tons each = 1158 KW @ 24 hours a day operation = 2688 hrs. x 1158 KW = 3,112,70	
Calculations attached	Yes	Yes	(Required)	KWh reduction: 3,112,704 KWh x 5.10 = \$311,270 savings	

Simple Payback

Average electric rate (\$/kWh) on the application	\$0.10			
Estimated annual electric savings	\$311,270]		
Other annual savings in addition to electric s	avings, such as operations,	maintenance, other fuels		
Incremental cost to implement the project (\$725,000.00	1		
Copy of vendor proposal is attached (see note	Yes			
Simple Electric Payback in years (see note 9)	2.329164611	Total Payback in years		2.329164611

a Baseline

Retrofit projects: the existing equipment is the baseline.

New construction projects: the baseline is the standard option in today's market, taking into account any applicable organizational, local, state or federal codes or standards currently in effect.

4 Operating Hours

Describe when the equipment is typically used. If the project is proposed for more than one site, provide any variations in operating hours between the sites on a separate sheet.

s Weeks of Use in Year

If the equipment is not in use 52 weeks during the year (for example, during holiday or summer break), provide an explanation of when usage is not expected and why: Two HX are used for approx 2688 hrs in the winter months to take the load off two chillers.

6 Average electric rate (\$/kWh)

If you do not know your average electric rate, use \$0.10/kWh.

7 Incremental cost to implement the project

Costs exclude self installation costs. Retrofit projects, incremental cost is the total cost of the proposed project. New construction or where the existing equipment must be replaced anyway, then incremental cost is the premium of the proposed high efficiency project over baseline.

s Copy of vendor invoice is attached

Vendor invoices detailing costs of the project are always required.

New construction projects or where the existing equipment must be replaced anyway, vendor proposal of baseline must also be attached.

9 Simple Electric Payback

If the simple electric payback is less than 1 year, the rebate structure is affected. Double check average electric rate for correct payback.

Plate & frame

Loca	omer: PPE Premium Process Equip tion: DE omer Ref:	ment	Quote: V07-25811G Item No.: Option #3 Page: 7 of 8 Hot Side Cold Sid					
	omer Ref: TOTAL PERFORMANCE Fluid Circulated Flow Rate Total Vapor Flow Rate (In/Out) Evaporation Temperature Superheat/Subcooling Specific Gravity (Ave) Specific Heat Capacity (Ave) Thermal Conductivity (Ave) Dynamic Viscosity (Ave) Temperature (In/Out) Excess Area Total Heat Exchanged LMTD/Correction INITION OF ONE HEAT EXCHAN Heat Transfer Rate Area Calculated/Provided Number of Plates	UNIT	Hot Side	Cold Side				
1 2		lb/hr / US GPM	Water 1,201,144 / 2,400	Water 2,001,910 / 4,000				
3 4 5 6 7 8 9	Evaporation Temperature Superheat/Subcooling Specific Gravity (Ave) Specific Heat Capacity (Ave) Thermal Conductivity (Ave) Dynamic Viscosity (Ave)	Btu/lbm, F Btu/ft, h, F cp	0.9995 1.0009 0.3388 1.32 54.00> 44.00	0.9995 1.0009 0.3357 1.45 40.00 -> 46.00				
10 11	the second	F	1.24%	40.00 40.00				
12 13 14 15		Btu/h F	12,021,840 5.7708 / 0.9998					
16 DEF	INITION OF ONE HEAT EXCHANG	ER	1					
17 18 19 20	Area Calculated/Provided	Btu/hr, ft2, F ft2		436 775.8 / 4835. 485 plates 93-SS-FS-1-500				
21 22 23 24	Number of Passes/Channels Inter-plate Velocity Pressure Drop Design Pressure/Test Pressure	ft/s PSI PSIG F	1 0.96 2.61 150 / 195 250	1 1.60 6.99 150 / 195 250				
25 26	Design Temperature Connection Size In/Out		10.0"-150# ANSI STUDDED	10.0"-150# ANSI STUDDED				
27 28 29	Fluid Volume Inside Nozzles Material Connection Location In/Out	gal	167.88 Mild Steel F1 / F4	167.88 Mild Steel F3 / F2 SS304				
30 31 32	Plate Material Gasket Material Frame Material Weight Dry/Flooded	lb	9	SS304 Nitrile CS-EPOXY-PAINTED 9415 / 12217				
33	reight bijn looded			1698 / 1795				

ViEX heat exchanger performance accuracy is dependent on accuracy of customer data and conformance to specified operating conditions.

PLATE + Frame HY

Page 7

Vie	Viexplate® Gasketed PHE Quotation Drawing	Model: VXN-93-SS-FS	:-1-500
Customer:	PPE Premium Process Equipment	Quote: V	/07-25811G
Location:	DE	Rev.	
Customer Re	ef:		3 of 8
Item No.:	Option #3	Date: 5	5/10/07
		12 12	
	Specified dimensions are not to		ourposes.
Dimensions	This is a representative dra Specified dimensions are not to	awing for quotation purpose to be used for construction p Design Parameters:	ourposes.
1000	This is a representative dra Specified dimensions are not to	Design Parameters:	485
H1: H2:	This is a representative dra Specified dimensions are not to s: 76.5" / 1944 mm 13.0" / 330 mm	Design Parameters: No. of Plates: Plate Material:	485 SS304
H1: H2: Y;	This is a representative dra Specified dimensions are not to s: 76.5" / 1944 mm 13.0" / 330 mm 50.8" / 1290 mm	Design Parameters: No. of Plates: Plate Material: Gasket Material:	485 SS304 Nitrile
H1: H2: Y; L (Max):	This is a representative dra Specified dimensions are not to s: 76.5" / 1944 mm 13.0" / 330 mm 50.8" / 1290 mm 152.3" / 3867 mm	Design Parameters: No. of Plates: Plate Material: Gasket Material: Design Pressure:	485 SS304 Nitrile 150 psig / 1034 kPag
H1: H2: Y: L (Max): W:	This is a representative dra Specified dimensions are not to s: 76.5" / 1944 mm 13.0" / 330 mm 50.8" / 1290 mm 152.3" / 3867 mm 37.0" / 940 mm	Design Parameters: No. of Plates: Plate Material: Gasket Material: Design Pressure: Design Temp.:	485 SS304 Nitrile
H1: H2: Y: L (Max): W:	This is a representative dra Specified dimensions are not to s: 76.5" / 1944 mm 13.0" / 330 mm 50.8" / 1290 mm 152.3" / 3867 mm	Design Parameters: No. of Plates: Plate Material: Gasket Material: Design Pressure:	485 \$\$304 Nitrile 150 psig / 1034 kPag 250 °F / 121 °C
H1: H2: Y:	This is a representative dra Specified dimensions are not to s: 76.5" / 1944 mm 13.0" / 330 mm 50.8" / 1290 mm 152.3" / 3867 mm 37.0" / 940 mm 18.3" / 465 mm	Design Parameters: No. of Plates: Plate Material: Gasket Material: Design Pressure: Design Temp.:	485 \$\$304 Nitrile 150 psig / 1034 kPag 250 °F / 121 °C
H1: H2: Y: L (Max): W: X	This is a representative dra Specified dimensions are not to s: 76.5" / 1944 mm 13.0" / 330 mm 50.8" / 1290 mm 152.3" / 3867 mm 37.0" / 940 mm 18.3" / 465 mm	o be used for construction p Design Parameters: No. of Plates: Plate Material: Gasket Material: Design Pressure: Design Temp.: Min Design Temp.:	485 \$\$304 Nitrile 150 psig / 1034 kPag 250 °F / 121 °C

1

PECK, HANNAFORD & BRIGGS SERVICE CORPORATION 4673 SPRING GROVE AVENUE CINCINNATI, OH 45232 (513) 681-1200 11/13/2007 09/12/2011 12:47 PURCHASE ORDER 095914

SERVICE BILL

TO:	JOB 9	360
VIEX INC.	C	CBT 7TH ST. DEMO CHILLER
1201 NICHOLSON ROAD		PECK, HANNAFORD & BRIGGS
NEWMARKET, ONTARIO		4673 SPRING GROVE AVE.
CANADA L3Y-9C3		CINCINNATI, OH 45232
JERRY LINDSAY	NET 30 DAYS	10/29/2007

1.000	1310 (2) P&F HEAT X PLUS FREIGHT 00	1-001-00001-M1	EA	99000.000	99000.00
1.000	1310 P&F HEAT X - 10% W/ GA	1-001-00001-M1 DRAWING	EA	11000.000	11000.00
.000	1310 FREIGHT	1-001-00001-M1	EA	1092.000	1092.00

11000.00 .00 11000.00

1

EQUAL OPPORTUNITY EMPLOYER

YK MAXE CHILLER PERFORMANCE SPECIFICATION

Unit Tag	Qty	Model No.	Capacity (tons)	Power	Refrigerant					
CH-3, CH-4		YKMQM4K2-CBGS	120	0	460/3/60	R-134A					
Unit Data		Evaporator			Condenser						
WT (°F):		54.00			85.00						
.WT (°F):		44.00			94.25						
low Rate (gpm):		2880			3600						
essure Drop (ft):		26.3		15.7							
ressure Drop (ft): luid Type (%):		WATER			WATER						
Fluid Type (%): Circuit No. of Passes:		2		2							
Fouling Factor (ft2 °F hr / B	tu):	0.00010		0.00025							
Tube No. / Description:		271 - 0.025" Enhanced Co	pper 2	266 - 0.025" CSL Enhanced Copper (1							
Design Working Pressure (p	osig):	150		150							
Entering Water Nozzle @ L	ocation:	2		12							
Leaving Water Nozzle @ L	ocation:	3		13							
Water Box Weight, ea (lbs)	(2):	1173			836						
Cover Plate Weight, ea (lbs		1568	_		792						
Return Head Weight (lbs):		509			214						
Water Weight (lbs):		3934		3572							
Water Volume(gal):		472			429						

Performan	ce Data	Electrical Data		Other	Contraction of the
Job KW:	695	Job FLA:	958	Operating Wt. (lbs):	51823
Motor KW:	675	Motor FLA:	946	Per Isolator (lbs):	12956
KW/Ton:	0.579	LRA:	5780	Refrigerant Wt. (lbs):	3385
IPLV (1):	0.357	Inrush Amps:	958	Oil Charge (gal):	20
Gear Code:	TZ	Min Circuit Ampacity (Amps):	1198	Motor Wt. (lbs):	5750
OptiSound Cntrl:	Yes	Max Fuse/Breaker:	2000	Compressor Wt. (lbs):	4600
Shaft HP:	859			Starter Wt. (lbs):	1920
Isolation Valves:	YES			Ship. Wt Shells (lbs):	27422
Oil Cooler Type:	Staudard			Ship. Wt Driveline (lbs):	10750
Condenser Inlet:	Standard				
		Type Starter: VSD w/ IEEE filter			

Notes:

Chiller IPLV value calculated to ARI Standard 550/590 equation.
 Not including cover plate on marine water boxes.

Project Name: CINCINNATI BELL '07	Sold To: JOHNSC	N CONTROLS, INC.
Location: CINCINNATI, OH	Customer Purchase	e Order No.: 2372646
Engineer:	York Contract No.	: 07132507
Contractor:	Date:	Revision Date:
Printed: 10/7/2011 at 13:57		CH-3, CH-4 Performance
Unit Folder: CHILLERS	v1_74.idd	Page 1 of 2

P. O. Box 2301 Cincinnati, OH 45202

November 8, 2011

Mr. Mike Harp Account Executive, Large Business Duke Energy 201 E. 4th Street Cincinnati, OH 45202

RE: Capital Improvements Cost Breakdown

Dear Mike,

Below I have copied a portion of our internal cost tracking document for the 2008 calendar year facility capital improvements. Some of these improvements continued into 2011 such as the Plate & Frame Heat Exchanger. We have not yet utilized the heat exchangers since they were commissioned in 2011 after the 2010 winter season was over.

1 .Commercial Main Replacement	\$ 275,000.00
2. Domestic Water Pump Replacement Includes VFD's	\$ 195,000.00
3. Plate and Frame Heat Exchangers	\$ 225,000.00
Engineering Applies to all projects listed.	\$ 500,000.00
5. Install 2-1200 ton Chillers – Chillers #3 & #4. Includes chilled water	
pumps & VFD's & condenser water pumps and VFD's	\$ 1,400,000.00
Install Switchboards #1 and #7, Need more Breaker Cubicles	\$ 2,400,000.00
7. Install 4 New Cooling Towers - Fills out the Tower Capacity includes	
VFD's	\$ 1,200,000.00
Total	\$ 6,195,000.00

Item 1& 6 above do not apply to the credits, but the balance of the costs do.

Let me know if you require further detail.

Sincerely,

Kevin W. Daniel, SMA as Agent for CBT Operations Manager Hunt Builders Corporation Suite 2310, Atnum Two 221 East Fourth Street Cincinnati, Ohio 45202-4148 Tel: 513/579-9770 Fax: 513/579-0333

> Please process - sh June 26, 2008 06 2608

Mr. Steve Herman Director, Business Development Cincinnati Bell Technology Solutions 4650 Montgomery Road Fifth Floor Cincinnatl, Ohio 45212-2690

Dear Steve:

Hunt Builders Corporation is progressing with the 2008 Infrastructure project. The total cost for the work completed is \$2,000,000, per the attached Application and Certificate for Payment.

Please allow the attached document to serve as our invoice and forward payment to Hunt Builders Corporation. Should you have any questions or concerns regarding this information, please feel free to call.

Sincerely,

R. Marty Jones Project Manager

Attachment

110:04:58 1/4:1423-4

AFFIDAVIT OF ORIGINAL CONTRACTOR

STATE OF OHIO)

COUNTY OF HAMILTON)

The undersigned Contractor states that no persons have made a claim for payment for work performed or for labor, materials, machinery or fuel furnished in connection with the 2008 Infrastructure project for Cincinnati Bell Fechnology Solutions.

Lipon receipt of payment for Payment Application \neq 1 in the amount of \$2,000,000, Hunt Builders Corporation waives all rights to a mechanics lien on the partial contract amount of \$2,000,000 or any other similar lien on the above premises for work performed and/or material furnished to date hereof.

Contractor:

Signature:

Hunt Blijklers Corporation 10

Title:

R. Marty Jones Project Manager

SWORN to before me and subscribed in my presence this 26th day of June 2008.

Cherie Ashworth Notary Public State of Ohio My Commission Expires July 31, 2010

168 1267-14

Hunt Builders Corporation, 221 East Fourth Street, Suite 2510, Cincinnati, Ohio 45223 Telephone: 513/579-9770; Fax: 513/574-0333

		and another state of the		
TO (OWNER): Cincinnari Bell Tech Solutiuns Accounts Payable (345-400) P.O. Box 2301 Cincinnali, OH 45201	9	PROJECT: 229WP-CBT-08 Infastructure>IAJ	Infustructore>IAJ APPLICATION NO: 1 PERIOD TO:6/26/2003	DISTRIBUTION TO: OWNER CONTENTED
FROM (CONTRACTOR): Hunt Builders Cerporation 221 East Fourth Sheet Sude 2010 Creation, OH 45202-4145	Sheet Sheet 5202-4145	VIA (ARCHITECT):	ARCHITECT'S PROJECT NO	
CONTRACT FOR: 1573-08 CBT Inhashucture	tore		CONTRACT DATE:	
CONTRACTOR'S APPLICATION FOR Application is made for Payment, as shown below, in connection with Commutation Street, AIA Type Document is attached	ICATION FOR n below, in connection with a dilached	PAYMENT the Gonitaci.	The Undersigned Contractor certiles that to the best of the Contractor's knowledge, information and belief the work covered by this application for Payment has been completed in accordance with the Contract Documents, that all announts have been paid by Contractor for Work for which previous Certificaties for Payment were stated and payments (esceved from the owner, and that current payment shown haren is now due.	of the Contractor's knowledge, informati yment has been completed in accorda wen paid by Contractor for Work for whi yments reserved from the owner, and ti
1. ORIGINAL CONTRACT SUM	s	9,735 000 00		
2. Net Change by Change Orders	5	00.0	CONTRACTOR Hunt Builders Corporation 221 FatuPount: Street Studie 2340	
3. CONTRACT SUM TO DATE (Line 1 + 2)	2) \$	9 785,000 00	Cincipation of 4202-4148	
4. TOTAL COMPLETED AND STORED TO DATE.	O DATE 5	2,000,000	1	Date: 6/27/05
 RETAINAGE: Renear A B Completed Work 	s	0.00	R. Marry Jones I. Propert Manager State of Gu	
b. 0.00 % of Stored Material	5	0.65	Sunstanting anufsuppring to testore megans CTLL	Day by Jul 20
Tolal retuinage (Line 5a + 50)	s	000	MotaryPurde Marker Mark	CITER and Wight
6. TOTAL EARNED LESS RETAINAGE (Ling 4 liss Line 5 Total)	· · · · · · · · · · · · · · · · · · ·	2,000 000 00	ARCHITECT'S CERTIFICATE FOR PAYMENT	FOR PAYMENT
7. LESS PREVIOUS CERTIFICATES FOR PAYMENT (Line 6 from prior Cetificate)	R PAYMENT	000	In Accordance with the Contract Documents, based on: on-site obsurvations and the data com- prising the above application. The Architect centiles to evener that to the sets of the Architect's knowledge, information and bread the Veok has propressed as indicated the outline of the work.	b) ton-site abservations and the data con a writer (but to the best of the Architect essent as indicated the quarky of the world.
12	· · · · · · · · · · · · · · · · · · ·	2 000 000 00	is in accordance with the Contract Documents, and the Constantion is emitted to payment of the association of contraction of the	as Contraction is emitted to provincent of th
9. BALANCE TO FINISH, INCLUDING RETAINAGE (Line 3 icss Late 6)	ETAINAGE S 7, 165, 000 00	0.00	AMOUNT CERTIFIED	<u>s</u>
CHANGE ORDER SUMMARY	ADDITIONS	DEDUCTIONS	(Attach explanation if amount certified differs from the aureaux upplied for initial of figures on this Application and on the Continuation Sheet that are charged to conform to the annual contribut.)	arreaux applied for initial of figures of I anged to contorn to the tenout continu
Total changes approved th provious months by Cwher	00.0	0.0	ARCHITECT: Ru-	Charter
Telat approved this Morth	000	0.00	A	and and the second s
TOTALS	0.60	00 0	This Confidence is not negotiable. The AMONNE CERTIFIED is payable only to the Contractor memory benefits technology Prominic and accordance of neuronal sin valued conjugation of accord	TIFIED is payable only to the Contractor
	WV		named retem issuence, raymen and acceptance of	they under working in the particular to any

 (\cdot)

O (OWNES	TO (OWNER): Circinnati Bell Tech Solutions Accounts Payable (345-400) P.O. Box 2301 Cincinnati, OH 45201		PROJECT: 229W7	PROJECT: 229W7-CBT-08 Inlastructure>MJ	(M~a)	APPLICATION NO: 1 PERIOD TO: 6/26/2006	1 035		DISTRIBUTION TO: OWNER ACHITECT
ROM (CO)	FROM (CONTRACTOR): Hunt Builders Gerporation 221 East Fourth Studel Sure 2310 Cancinnali, OH 45202-4148		VIA (ARCHITECT):			ARCHITECTS PROJECT NO:		1	
ONTRACT	CONTRACT FOR: 1573-08 CBT intrastructure ITEM DESCRIPTION	SCHEDULE VALUE	PREVIOUS	COMPLETED THIS PERIOD	STORED MATERIAL	CONTRACT DATE: COMPLETED STORED	76	BALANCE	RETAINAGE
	A H.U. Modifications	1,323,000.50	00.00	1,000,000 00	0 00	1,000,000,00	75.59	323,000.00	0.0
r1	New 16" Chiled Water Risers	00'000'066'7	0.00	200,000.00	0:00	500.000 00	16.72	2,490,000.00	0.00
	Domesho Water Pump Reptace	175,000,00	0.00	0.00	0.00	0.00	00.0	175,000,00	00'0
	Plate and Frome Exchangers	325,002.00	00'0	0.00	0.00	0.00	0.00	325,000.00	00.0
	Installation of Chilies 3.8.4	2,250,050.00	00 0	500.000.00	000	500,500,005	22.22	1.750,000.00	0 2 0
	Chiller Auto Diff Sensors, Etc.	285,000.00	00.0	0.00	0.00	0.00	00°C	285,000.00	00 0
	install New Couliny Towers	869,000.00	00.0	0.00	0.00	0.00	00.0	889,000,00	0,00
	Install Main Switchbids 1 & 7	925,630.00	0.00	0 00	00'0	0.00	0.00	925,000,00	0.00
	ARC Flash Study	80,000.00	0.00	0.00	000	0.00	0.00	80,000.00	000
10	Hoisl Beam Installation	80,300.00	0.00	0.00	0.00	0.00	00'0	80,000.00	00.00
н	Replace Circuit Breaker Mains	463,000.00	0 00	00'0	0.00	0.00	00'0	463,000,00	00.0
	REPORT TOTALS	58,785,000.00	00.05	\$2,000,000,00	\$0.00	\$2,000,000 00	20.44	57.785,000.00	50.00

•

÷.) (

÷

PECK, HANNAFORD & BRIGGS SERVICE CORPORATION 4673 SPRING GROVE AVENUE CINCINNATI, OH 45232 (513) 681-1200 11/13/2007 09/12/2011 12:47 PURCHASE ORDER 095914

SERVICE BILL

TO: VIEX INC. 1201 NICHC NEWMARKET, CANADA		JOB	960 CBT 7TH ST. DEMO CHILLER PECK, HANNAFORD & BRIGGS 4673 SPRING GROVE AVE. CINCINNATI, OH 45232	
JERRY	LINDSAY NET 3) DAYS	10/29/2007	
1.000	1310 (2) P&F HEAT X PLUS FREIGHT 00		1-001-00001-M1 EA 99000.000 99000.00	1440
1.000	1310	1	1-001-00001-M1 EA 11000.000 11000.00	
.000	P&F HEAT X - 10% 1310 FREIGHT	W/ GA	DRAWING 1-001-00001-M1 EA 1092.000 1092.00	-

11000.00 .00 11000.00

EQUAL OPPORTUNITY EMPLOYER

1

1

PECK, HANNAFORD & BRIGGS SERVICE CORPORATION 4673 SPRING GROVE AVENUE CINCINNATI, OH 45232 (513) 681-1200 1/31/2007 09/12/2011 12:39 PURCHASE ORDER 089689

1/31/2007

SERVICE BILL

TO:JOB914EVAPCO, INCCBT7THST. CHILLER PLANTP.O. BOX 62140PECK, HANNAFORD & BRIGGSCHICAGO IL 60693-06214673 SPRING GROVE AVE.CINCINNATI, OH45232

JERRY LINDSAY NET 30 DAYS JERRY

2.000 1310 1-001-00001-M1 EA169288.000338576.00 COOLING TOWER PER QUOTED DATED 1/16/07 00

> 338576.00 .00 338576.00

EQUAL OPPORTUNITY EMPLOYER

∍	-467		Yearly Total رایدا	4,416	0	4,344	8,760								Yearly Total (hr)	650	585	337	2844	0	0	0		0	4,416	4.344	
г	App No. <u>11-467</u> Rev0		×	761		744	744					_			Dec										0	744	
S			Non	720		0	720								Nov		10	10	700						720	0	>
2	d chillers.		ċ	10		744	744					tes 3 & 4)			Oct	5									0	744	
ď	Information Information NOTE: Savings here calculated for Pump #1 which serves the plate & frame HX (winter) and chillers.	Hours that each motor runs during the month (see Notes 3 & 4)	Son	720		0	720					Hours that each motor runs during the period (see Notes 3 & 4)			Sen	120	10	10	700						720	0	>
٩	iame HX (i	nonth (see	2110	3nu		744	744					ng tne per			Aug	9mm v									0	744	
0	e plate & f	uring the r	3	744		0	744										20	24	700						744	0	>
z	serves th	tor runs di	2			720	720								In										0	720	
Σ	p #1 which	t each mo		744		0	744					urs tnat ea			Mav	6	20	24	700						744	0	
_	d for Pum	Hours tha	200			720	720				=	Р –			Anr										0	720	
¥	e calculate		2 M	744		0	744								Mar	350	275	119	0						744		
~	id.		ц С Ч			672	672		p						Feb										0	672	
_	r Information P NOTE: Savin Motor HP motor HP		5			0	744		rwise note						lan			150	44						744		
I	D) D) D) D) D) D) D) D) D) D) D) D) D) D		Hours that each motor runs during the year (see	4,416		4,344	8,760		unless other		nours that	each motor	runs during	the year	(Notes 2 &	-7 650	585	337	2,844						4416	4344	
U	PUT DA	Motor	Electrical Power Draw	94.07	#DIV/01	0.00	Totals	ith VFC	ump1.xls"			Motor	Electrical	Power	Draw (kw)	94.07	84.66	75.26	65.85	56.44	47.04	37.63	28.22 18.81	9.41	NA	NA	
ш	NNS - IN (VFD) (VFD) ATION st. Cincinn st. Cincinn ser Water Driver	Motor	Efficiency @ Motor Output HP		%	NA %			ondenser p	<mark>98.0</mark> %		Motor	Efficiency	@ Motor	Output HP (%)	95.4 %		<mark>95.4</mark> %		_	_		95.4 %	-	NA %	\vdash	1
٥	ALCULATIONS - INPUT DATA VCY DRIVE (VFD) AL INFORMATION Cincinnati Bell Telephone 209-229 W 7th St, Cincinnati, OH ECM-1: Condenser Water Pump VFDs, Pump #1 ECM-1: Condenser Water Pump VFDs, Pump #1 125 hp pum Driven Equipment and Mot auipment Motor 200-VFD-App Condenser pump1.xls" unless oth		output nr as % of E Motor (Nameplate O	96%	0%	%0		D OPER/	1-VFD-App C		IVIOLOF	output HP			Nameplate 0	96%		77%					19%				
υ	INGS CA INGS CA GENERAL Cr Cr 200 Cr 10 Cr 10 Cr 10 Cr 10 C Cr Cr Cr C Cr C	Driven OI	ž -	120.3	0.0	0.0		PROPOSE	rom "Custon				ţ	al	Load Na (BHP)	120.3	108.3	96.2	84.2	72.2	60.2	48.1	30.1 24.1	12.0	NA	NA	
В	ENERGY SAVINGS CALCULATIONS - INPUT DATA VARIABLE FREQUENCY DRIVE (VFD) SECTION 1 - GENERAL INFORMATION Applicant name Cincinnati Bell Telephone Facility name Cincinnati Bell Telephone Facility name Cincinnati Bell Telephone Facility name Cincinnati Driven Equipment and Motor Informatic ECM-1: Condenser Water Pump VFDs, Pump #1 Driven Equipment and Motor Informatic Eduipment Identification Driven Equipment and Motor Informatic Brake HP (BHP) @ Full Load Operating Condition (see Note 1) 125.0 Motor Informatic Motor Informatic Outlition (see Note 1) ADDITION OPERATION without VFD Motor Informatic	% of	p ut		%	Not Running		SECTION 3 - PROPOSED OPERATION with VFD	All data below is from "Custom-VFD-App Condenser pump1.xls" unless otherwise noted	Efficiency of VFD		% of Full D		of	Driven Equipment (80 %		_	_	_	30 %	_	i i	Not Running	Q
A	1 ENE 2 VAR 2 VAR 3 3 3 3 3 4 5 5 6 Appli 7 Facilit 8 ECM 9 5 9 5 11 Equip 11 Equip 11 Brake 11 Name 11 All dail		Ful Ful Control of Con		21	22 Not				27 Efficié	07		_	Cap	30 Equi	-		33					30		41 Total	-	

			_	94.1	0.0	94.1			_	418	0	418
11-467 0			Annual	01		5			Annual	415,418		415,418
App No. 1 Rev.			Dec	0.0		0.0			Dec	0		0
			Nov	94.1		94.1			Nov	67,731		67,731
d in Sectio			Oct	0.0		0.0			Oct	0		0
ntity listed			Sep	94.1		94.1			Sep	67,731		67,731
the qua		kw)	Aug	0.0		0.0		-hr)	Aug	0		0
pendin. motor by	TION	Energy Demand (kw)	A lul	94.1		94.1		sage (kw		69,989		69,989
e VFD rr (e.g., d	ISUME	Energy D		0.0		0.0		Energy Usage (kw-hr)	lul (0 69		0 69
g the yearing the same	D CON		Jun			94.1			Jun	89		89
n (i.e., wi multiplyi	ND AN		May	0 94.1					May	0 69,989		0 69,989
conditio g loads v. ugh ا ath: th:	DEMA		Apr	0.0		0.0			Apr			
the base operation ns I throu that mon	ITION		Mar	94.1		94.1			Mar	69,989		69,989
; if the % in Colum avings will ours for t	COND		Feb	0.0		0.0			Feb	0		0
quipment operates for the base condition (i.e., without the VFD column H only; if the % operating loads vary during the year (e.g., dependin. blank and fill in Columns I through 1 The energy savings will be calculated by multiplying the saving per motor by the quantity listed in Section 1 for the total hours for that month: If the these values	- BASE		Jan	94.1		94.1			Jan	69,989		69,989
1 ENERGY SAVINGS CALCULATIONS - INPUT DATA 2 VARIABLE FREQUENCY DRIVE (VFD) 3 SECTION 1 - GENERAL INFORMATION 6 Applicant name Cinctinnati Bell Telephone 7 Facility name Cinctinnati Bell Telephone 4 Deficient name Cinctinnati Bell Telephone 7 Facility name Cinctinnati Bell Telephone 1 Facility name Cinctinnati Bell Telephone 4 AD Ithe % operating condition is the condition at which the driven equipment operates for the base condition (i.e., without the VFD 45 Ithe % operating loads are the same for each month of the year, fill in Column H only; if the % operating loads vary during the year (e.g., dependin on weather conditions or other season conditions), then leave column H blank and fill in Columns 1 through 1 47 I. fithe % operating loads are the same for each month, use the following values for the total hours for that month: 48 on weather conditions or other season conditions), then leave column H blank and fill in Columns 1 through 1 49 on weather conditions or other season conditions), then leave column H blank and fill in Columns 1 through 1 41 2. If the % operating loads are the following values for the total hours for that month: 50 4. If the motor runs continuously during a month, use the follo	SECTION 4 - BASE CONDITION DEMAND AND CONSUMPTION			100%	Other	Maximum	I			100%	Other	Total
DATA ich the d ich vear, the year, and its i ollowing lue prop	SEC					Ma						
ALCULATIONS - INPUT I VCY DRIVE (VFD) AL INFORMATION Cincinnati Bell Telephone 209-229 W 7th St, Cincinnati, OH are the same for each month of the are the same for each month of the intered for <u>ONE</u> driven equipment there are a an on the time, use a val												
VFD) VFD) ATIOI St, Cinci St, Cinci St, Cinci St, Cinci St, Cinci St, Cinci St, Cinci St, Cinci St, Cinci St, Cinci												
LATIO RIVE (<u>ORM</u> -ORM ane solution easone for easone for easone of uring a r g, Oct, 8												
CALCULATIONS - IN NCY DRIVE (VFD) (AL INFORMATION Cincinnati Bell Telephone 209-229 W 7th St, Cincinr g condition is the conditions) or other same for each mo or other same for each mo or other same for each mo vial, aug, Oct, & Dec & Nov												
INGS (INGS (ICCUE GENER operatin dig loads dig loads d												
1 ENERGY SAVINGS CALCULATIONS - INPUT DATA 2 VARIABLE FREQUENCY DRIVE (VFD) 3 3 4 SECTION 1 - GENERAL INFORMATION 5 Applicant name 7 Facility name 4 Cincinnati Bell Telephone 7 Facility name 4 Cincinnati Bell Telephone 7 Facility name 4 Cincinnati Bell Telephone 4 Cincinnati Bell Telephone 7 Facility name 6 Applicant name 7 Intervention 44 Nones 45 NOTES: 47 If the % operating loads are the same for each month of the year, fill in C 48 on weather conditions or other season conditions), then leave column H 49 Input values are to be entered for ONE driven equipment and its motor. 41 Input values are to be entered for ONE driven equipment and its motor. 42 Input values are to be entered for ONE driven equipment and its motor. 43 Input values are to be entered for ONE driven equipment and its motor. 44 Input values are to be entered for ONE driven equipment and its												
1 ENERGY SA 2 VARIABLE F 3 3 5 5 5 5 6 Applicant name 7 Facility name 44 NOTES: 46 1. The "full load 47 2. If the % operation on weather control 48 on weather control 49 3. Input values 3 50 4. If the motor r 51 4. So for fol Jar 52 4. If the motor r 53 * 720 for fol Jar 55 1 f the motor r 55 1 f the motor r												
1 1 1 1	56 57	58	59	60	61	62	63	64	65	66	67	68 69

ENERGY SAVINGS CALCULATIONS - INPUT DATA	TIONS - INPUT DATA														
VARIABLE FREQUENCY DRIVE (VFD)	VE (VFD)														
SECTION 1 - GENERAL INFORMATION	RMATION														
ne	Cincinnati Bell Telephone													App No.	11-46
Facility name 209-229 W	209-229 W 7th St, Cincinnati, OH	L L							20					Rev.	0
	SECTION	ი	D A D A		- PKOPOSED DEMAND	U AND	CONS	CONSUMPTION	N						
			-	-	-			Ene	Energy Demand (kw)	ind (kw)					
	% of Full Load Capacity of Driven Equipment	city ent Jan		Feb	Mar	Apr	May	unſ	lul	Aug	Sep	Oct	Nov	Dec	Annual
	10	~	96.0	0.0	96.0	0.0	0.0	0.0				0.0	0.0	0.0	96.0
	5		86.4	0.0	86.4	0.0	86.4	0.0	86.4		86.4	0.0	86.4	0.0	86.4
	8	80%	76.8	0.0	76.8	0.0	76.8	0.0	76.8	0.0	76.8	0.0	76.8	0.0	76.8
			67.2	0.0	0.0	0.0	67.2	0.0	67.2	0.0	67.2	0.0	67.2	0.0	67.2
	9	60%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	2	50%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	4	40%	0.0	0.0	0.0	0.0	0.0	0.0					0.0	0.0	0.0
	m	30%	0.0	0.0	0.0	0.0	0.0	0.0			0.0	0.0	0.0	0.0	0.0
	2	20%	0.0	0.0	0.0	0.0	0.0	0.0			0.0			0.0	0.0
	-	10%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Maximum		96.0	0.0	96.0	0.0	86.4	0.0	86.4	0.0	86.4	0.0	86.4	0.0	96.0
		-													
	% of Full Load Capacity	city						Ene	Energy Usage (kw-hr)	: (kw-hr)					
	of Driven Equipment	ent Jan		Feb	Mar	Apr	May	Jun	lul	Aug	Sep	Oct	Nov	Dec	Annual
	10	100% 28	28,797	0	33,597	0	0	0	0	0	0	0	0	0	62,394
	5		21,598	0	23,758	0	1,728	0		0		0	864	0	50,539
	8		11,519	0	9,138	0	1,843	0				0	768	0	25,879
			2,957	0	0	0	47,036	0	47,036		47,036		47,036	0	191,099
	9	60%	0	0	0	0	0	0	0	0	0	0	0	0	0
	- N	50%	0	0	0	0	0	0	0		0		0	0	0
	4	40%	0	0	0	0	0	0	0	0	0	0	0	0	0
	8	30%	0	0	0	0	0	0	0	0	0	0	0	0	0
	2	20%	0	0	0	0	0	0	0	0	0	0	0	0	0
	1	10%	0	0	0	0	0	0	0	0	0	0	0	0	0
	Total	64,	64,871	0	66,493	0	50,606	0	50,606	0	48,667	0	48,667	0	329,911
	SECTION	9	- SAVINGS	S											
		Jan		Feb	Mar	Apr	May	nn	lul	Aug	Sep	Oct	Nov	Dec	Annual
	Energy Demand (kw)		-1.9	0.0	-1.9	0.0	7.7	0.0		0.0		0.0	7.7	0.0	7.7
	Energy Use (kw-hr)	5	5,118	C	3 496	C	10 287	C	000 01	C		0			101 10

3 of 3

∍		11-467 0											rearly Lotal (hr)	4,344	0 1 116	8 760	0,700							-	Yearly Lotal (hr)	0	98	102	4T44	0	0	0	0	4.344	4.416	8,760
⊢		App No. 1 Rev.										,	Dec	744	C	D AAF	ŧ								Dec		20 2 2	24	0					744	0	744
s			-										Nov		002	07/	120								Νον									C	720	720
æ	•												Oct	744	c		Ŧ					es 3 & 4)			Oct		20	24	R)					744	0	744
σ										Notes 3 & 4)			Sep		002	07/	120					od (see Not			Sep	Ì								C	720	720
٩	•					ers.				onth (see			Aug	744	C	D AAF	ŧ				المحمد معافد	g the peri			Aug	0	20	24	R(744	0	744
0	•					NOTE: Savings here calculated for Pump #4 which serves only the chillers.				Hours that each motor runs during the month (see Notes 3 & 4)			Int		V V L	44/	ŧ				aturk anu	Hours that each motor runs during the period (see Notes 3 & 4)			Int									C	744	744
z	•					serves on				or runs du			nn	720	c	0002	07/				, no to to to to				un		14	9	R N					720	07/	720
Σ	•					#4 which				each mot			May		<u> </u>	744	Ŧ				an that ar	rs that ea			Mav									C	744	744
_						for Pump				ours that			Apr	720	C	000	120				- Flan	пон			Apr		10	10	8					720	07/	720
\mathbf{x}						calculatea				II -			Mar		VVL		ŧ								Mar									C	744	744
-				u		ings here							Feb	672	C	673	710								Feb		14	14	044					672	0	672
_				Informatic		NOTE: Sav	motor HP		- vise noted.				Jan		VVL	744 744	ŧ		vise noted						Jan									C	744	744
т	TA		ECM-1: Condenser Water Pump VFDs, Pump #4	Driven Equipment and Motor Information	125 hp pump			SECTION 2 - BASE CONDITION OPERATION without VFD	All data below is from "Custom-VFD-App Condenser pump4.xls" unless otherwise noted.	House that	each motor	runs during	the year (see Notes 2 & 3)	4,344	A 416	8 760	0,100		All data below is from "Custom-VFD-App Condenser pump4.xls" unless otherwise noted		nours that	each motor	runs during	the year	(Notes 2 &	0	98	102	4,144					4344	4416	8,760
σ	UT DA	ati, OH	ump VFD	Eauipmer				ION wi	ump4.xls"	Motor	Electrical		(kw)	94.07		U.UU Totale	IOCAIS	ith VFD	ump4.xls"			Motor	Electrical	Power	(kw)	94.07	84.66	75.26 65 05	56.44	47.04	37.63	28.22	18.81 9.41	NA NA	AN	Totals
ш	NS - INI VFD) ATION	elephone t, Cincinna	er Water I	Driven		dition (coo		DERAT	ndenser p	Motor	>	@ Motor	Output HP	<mark>95.4</mark> %	% %			TION W	ndenser p	<mark>98.0</mark> %		Motor		@ Motor	Output HP	95.4 %		95.4 %					95.4 % 95.4 %		+	
0	JLATIO DRIVE (' <u>JFORM</u>	Cincinnati Bell Telephone 209-229 W 7th St, Cincinnati, OH	.: Condens		L	ating Con	ent Motor		D-App Co	tt HP			ate		200 200			OPERA	D-App Co							96%		0 %//					19% 9			
	S CALCU IENCY I	Cincini 209-22	ECM-1		E	ad Oner	n Equipme	COND	Custom-VF	outout HP			HP	mic	2,0	0.0		OSED	Custom-VF		ΙΛΙΟΙΟΙ	ō			Nameplate		σ , σ	7 17	10	5	1.	1			: z	_
U	AVING: FREQU - GENI	ē			entificatio	auipment	of Driver	: - BASE	is from "C	Driven	Equipment	@ Actual	LOad (BHP)	120.3	0.0			- PROI	is from "C	FD		Driven	Equipment	@ Actual	LOAD (BHP)	120.3	108.3	96.2	72.2	60.2	48.1	36.1	24.1	NA L	AN	
AB	ENERGY SAVINGS CALCULATIONS - INPUT DATA VARIABLE FREQUENCY DRIVE (VFD) <u>SECTION 1 - GENERAL INFORMATION</u>	Applicant name Facility name			Equipment Identification	Quantity of Equipment Broke UD (BUD) @ Eull Load Oncerting Condition (200 March)	Nameplate HP of Driven Equipment Motor	CTION 2	lata below	% of	Full Load	рнр	or Uriven Equipment	100 %	+ Dunning	NOL KUNNING		SECTION 3 - PROPOSED OPERATION with VFD	lata below	Efficiency of VFD		% of Full	Load	Capacity of	Uriven Eauipment	100 %		80 %	_	_		_	20 %		Not Running	
	1 EN 2 VA 3 3 5 SE(ط 10	1	12 Qua			17 All d	18	F		01 19 Eq.		21 VIC		24	25 SE(_	20			ື່	30 Eai	-		33	35	36	37	38	39 40			

11-467 MSD Custom DSMore Input Cincinnati Bell Telephone-Condenser Water Pump VFDs Rev 1.xlsx Calculations-Pump 4

2	11-467			Annual	94.1	0.0 94 .1			Annual	408,645	0	408,645
F	App No. Rev.			Dec	94.1	94.1			Dec	69,989		69,989
S				Nov	0.0	0.0			Nov	0		0
с	ed in Sect			Oct	94.1	94.1			Oct	69,989		69,989
σ	uantity list			Sep	0.0	0.0			Sep	0		0
_	lin r by the q	z	ld (kw)	Aug	94.1	94.1		(kw-hr)	Aug	69,989		69,989
0	D g., depenc ; per moto	MPTIO	Energy Demand (kw)	Jul	0.0	0.0		Energy Usage (kw-hr)	Jul	0		0
z	ut the VFI ne year (e. the saving	CONSU	Enei	Jun	94.1	94.1		Ener	Jun	67,731		67,731
Σ	(i.e., withc y during th ultiplying	D AND		May	0.0	0.0			May	0		0
-	condition f loads var gh 1 h: h:	DEMAN		Apr	94.1	94.1			Apr	67,731		67,731
×	the base operating ns I throug II be calcul that mont	ITION E		Mar	0.0	0.0			Mar	0		0
-	erates for y; if the % l in Colum savings wi hours for t	COND		Feb	94.1	94.1			Feb	63,216		63,216
-	quipment operates for the base condition (i.e., without the VFD column H only; if the % operating loads vary during the year (e.g., dependin blank and fill in Columns I through 1 The energy savings will be calculated by multiplying the saving per motor by the quantity listed in Section 1 for the total hours for that month: I to these values	t - BASE		Jan	0.0	0.0			Jan	0		0
TA H	the driven equ year, fill in Coli e column H bli a its motor. Th wing values for proportional to	SECTION 4 - BASE CONDITION DEMAND AND CONSUMPTION			100%	Other Maximum				100%	Other	Total
A B C D E F G A ENERGY SAVINGS CALCULATIONS - INPUT DATA VARIABLE FREQUENCY DRIVE (VFD) SECTION 1 - GENERAL INFORMATION	6 Applicant name Cincinnati Bell Telephone 7 Facility name Cincinnati Bell Telephone 44 209-229 W 7th St, Cincinnati, OH 45 NOTES: 46 1. The "full load" operating condition is the condition at which the driven equipment operates for the base condition (i.e., without the VFD 47 2. If the % operating loads are the same for each month of the year, fill in Column H only; if the % operating loads vary during the year (e.g., dependin 48 0 n weather conditions or other season conditions), then leave column H blank and fill in Columns 1 through 1 49 3. Input values are to be entered for ONE driven equipment and its motor. The energy savings will be calculated by multiplying the saving per motor b 49 1. If the motor runs continuously during a month, use the following values for the total hours for that month: 50 4. If the motor runs continuously during a month, use the following values for the total hours for that month: 51 * 724 for Jan, Mar, May, Jul, Aug, Oct, & Dec 52 * 672 for Feb 53 * 720 for Apr, Jun, Sep, & Nov 54 If the motor runs only a percentage of the time, use a value proportional to these values			L			-					
A B 1 ENERGY Si 2 VARIABLE 3 4 4 SECTION 1	6Applicant name7Facility name44Facility name45NOTES:461. The "full load"472. If the % operat48on weather coi493. Input values ar504. If the motor ru51* 724 for Jan,53* 720 for Feb54If the motor ru55* 720 for Apr,	56 57	58	59	60	61 62	63	64	65	66	67	68 69

ENERGY SAVINGS CALCULATIONS - INPUT DATA VARIABLE FREQUENCY DRIVE (VFD)	ATIONS	- INPUT DAT	<													
ANIABLE FREQUENCE DR	DIVE VIEL		1													
SECTION 1 - GENERAL INFORMATION	ORMATI	NO														
Applicant name Cincinnat	Cincinnati Bell Telephone	ione													App No. 1	11-467
	209-229 W 7th St, Cincinnati, OH														Rev.	0
		S	SECTION 5		- PROPOSED DEMAND	DEMAN	ND AND	CONSI	CONSUMPTION	NO						
									Ene	Energy Demand (kw)	nd (kw)					
		% of Full Load Capacity of Driven Equipment	d Capacity	lan	Feb	Mar	Apr	Mav			Aug	Sep	Oct	Nov	Dec	Annual
			100%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
			%06	0.0	86.4	0.0	86.4	0.0	86.4	0.0	86.4	0.0	86.4	0.0	86.4	86.4
			80%	0.0	76.8	0.0	76.8	0.0	76.8	0.0	76.8	0.0	76.8	0.0	76.8	76.8
			70%	0.0	67.2	0.0	67.2	0.0	67.2	0.0	67.2	0.0	67.2	0.0	67.2	67.2
			60%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
			50%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
			40%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
			30%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
			20%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
				0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		Maximum	num	0.0	86.4	0.0	86.4	0.0	86.4	0.0	86.4	0.0	86.4	0.0	86.4	86.4
		% of Full Load Capacity	d Capacity						Ene	Energy Usage (kw-hr)	(kw-hr)					
		of Driven Equipment	quipment	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
			100%	0	0	0	0	0	0	0	0	0	0	0	0	0
			80%	0	1,209	0	864	0	1,209	0	1,728	0	1,728	0	1,728	8,466
			80%	0	1,075	0	768	0	461		1,843		1,843	0	1,843	7,833
			70%	0	43,273	0	47,036	0	47,036		47,036	0	47,036	0	47,036	278,450
			60%	0	0	0	0	0	0	0	0	0	0	0	0	0
			50%	0	0	0	0	0	0	0	0	0	0	0	0	0
			40%	0	0	0	0	0	0	0	0	0	0	0	0	0
			30%	0	0	0	0	0	0	0	0	0	0	0	0	0
			20%	0	0	0	0	0	0	0	0	0	0	0	0	0
			10%	0	0	0	0	0	0	0	0	0	0	0	0	0
		Total	al	0	45,557	0	48,667	0	48,706	0	50,606	0	50,606	0	50,606	294,750
		N	SECTION 6	<u>6 - SAVINGS</u>	NGS											
				Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
		Energy Demand (kw)	and (kw)	0.0	7.7	0.0	7.7	0.0	7.7	0.0	7.7	0.0	7.7	0.0	7.7	7.7
		Encrete Hee /him he/	had mel	c		•		0		•						

Project Submittal for Cincinnati Bell Technology Solutions

Contractor: Glenwood Electric

End Customer (User): Cincinnati Bell technology Solutions

Submitted By: WRP Associates, LLC

Revision:

Date: May 29, 2008

Submittal Schedule

This schedule includes the products supplied as part of this submittal.

	Sch	edule Tara (Motor D	ata ¹	Drive Dat	а	Outrast	
Item	Qty	Tag / Equipment ID	HP	FLA	Voltage	Product ID	HP	Output Amps	Voltage
1	4	60 HP	60	77	460 VAC	ACH550-BCR-078A-4+B055+E213	60	77	480 VAC
2	2	125 HP	125	156	460 VAC	ACH550-BCR-157A-4+B055	125	157	480 VAC
3	2	150 HP	150	180	460 VAC	ACH550-BCR-180A-4+B055	150	180	480 VAC
Notes:		•				250 for typical motors used in most applications al motor data may vary.	and is pro	vided as typi	cal data

Submittal Schedule Details for 60 HP

ltem	Tag / Equipment ID	Product ID
1	60 HP	ACH550-BCR-078A-4+B055+E213

Item Description

Input Voltage: 480 VAC Rated Output Current: 77 AMPS Construction: E-clipse-Bypass, Circuit Breaker Enclosure: NEMA 12 UL Type 12 Nominal Horsepower: 60 Frame Size: R4 Input Disconnecting Means: Circuit Breaker Bypass: E-Clipse Bypass Input Impedance: 5% Short Circuit Current Rating: 100 kA Communication Protocols: Johnson Controls N2 Other Options: AC Line Reactor

Drive Inp	ut Fuse Ratings ¹
(Note: Drive is UL approved without the need for input fuses	s. Fuse rating information provided for customer reference)
Amps (600 V)	Bussmann Type
100	JJS-100

	Wire Si	ze Capacities of Pow	er Terminals	
Circuit Breaker	Disconnect Switch	Terminal Block	Overload Relay	Ground Lug
#1 50 in-lbs	N/A N/A	#1 120 in-lbs	N/A N/A	#2 50 in-lbs

		Dimensions and	l Weights	
Height in / mm	Width in / mm	Depth in / mm	Weight Ibs / kg	Dimension Drawing
37.4 / 950	20.5 / 521	15.3 / 389	138 / 62.6	3AUA0000016379 1

	Heat Dissipation & A	Airflow Requirements	
Power	Losses	Airf	low
Watts	BTU/Hr	CFM	CM/Hr
1295	4420	165	280

	Reference Drawings	
Power Wiring	Connection Diagram	Dimension Detail
BC00R024PW-B	BCBDR018CC-A 0	3AUA0000016379

Submittal Schedule Details for 125 HP

	ltem	Tag / Equipment ID	Product ID	
Γ	2	125 HP	ACH550-BCR-157A-4+B055	

Item Description
Input Voltage: 480 VAC
Rated Output Current: 157 AMPS
Construction: E-clipse-Bypass, Circuit Breaker
Enclosure: NEMA 12 UL Type 12
Nominal Horsepower: 125
Frame Size: R6
Input Disconnecting Means: Circuit Breaker
Bypass: E-Clipse Bypass
Input Impedance: 5%
Short Circuit Current Rating: 100 kA
Communication Protocols: Johnson Controls N2
Other Options:

Drive Input Fuse Ratings ¹		
(Note: Drive is UL approved without the need for input fuses. Fuse rating information provided for customer reference)		
Amps (600 V) Bussmann Type		
200	170M1370 or M2617	

Wire Size Capacities of Power Terminals					
Circuit Breaker	Disconnect Switch	Terminal Block	Overload Relay	Ground Lug	
350MCM 274 in-Ibs	N/A N/A	250 MCM 300 in-lbs	N/A N/A	3 x #3/0 250 in-lbs	

Dimensions and Weights					
Height in / mm	Width in / mm	Depth in / mm	Weight Ibs / kg	Dimension Drawing	
54.3 / 1380	28.1 / 713	19.0 / 483	360 / 163	3AUA0000016382 1	

Heat Dissipation & Airflow Requirements				
Power Losses		Airflow		
Watts BTU/Hr		CFM	CM/Hr	
2310	7884	238	405	

Reference Drawings			
Power Wiring	Connection Diagram	Dimension Detail	
BC00R046PW-A	BCBDR018CC-A 0	3AUA0000016382	

Submittal Schedule Details for 150 HP

Item	Tag / Equipment ID	Product ID	
3	150 HP	ACH550-BCR-180A-4+B055	

Item Description
Input Voltage: 480 VAC
Rated Output Current: 180 AMPS
Construction: E-clipse-Bypass, Circuit Breaker
Enclosure: NEMA 12 UL Type 12
Nominal Horsepower: 150
Frame Size: R6
Input Disconnecting Means: Circuit Breaker
Bypass: E-Clipse Bypass
Input Impedance: 5%
Short Circuit Current Rating: 100 kA
Communication Protocols: Johnson Controls N2
Other Options:

Drive Input Fuse Ratings ¹		
(Note: Drive is UL approved without the need for input fuses. Fuse rating information provided for customer reference)		
Amps (600 V) Bussmann Type		
315	170M1372 or M2619	

Wire Size Capacities of Power Terminals					
Circuit Breaker	Disconnect Switch	Terminal Block	Overload Relay	Ground Lug	
350MCM 274 in-lbs	N/A N/A	350 MCM 375 in-lbs	N/A N/A	3 x #3/0 250 in-lbs	

Dimensions and Weights					
Height in / mm	Width in / mm	Depth in / mm	Weight Ibs / kg	Dimension Drawing	
54.3 / 1380	28.1 / 713	19.0 / 483	360 / 163	3AUA0000016382 1	

Heat Dissipation & Airflow Requirements			
Power	Losses	Airf	low
Watts	BTU/Hr	CFM	CM/Hr
2810	9590	238	405

	Reference Drawings	
Power Wiring	Connection Diagram	Dimension Detail
BC00R046PW-A	BCBDR018CC-A 0	3AUA0000016382

ACH550 Product Overview

Description

The ACH550 series is a microprocessor based Pulse Width Modulated (PWM) adjustable speed AC drive. The ACH550 drive takes advantage of sophisticated microprocessor control and advanced IGBT power switching technology to deliver high-performance control of AC motors for a wide range of HVAC applications.

With drives ranging from 1 to 550 HP, the ACH550 series features a universal full graphic interface that "speaks" to the operator in plain English phrases, greatly simplifying set-up, operation, and fault diagnosis. The ACH550 is also programmable in fourteen other languages.

Each ACH550 drive comes equipped with an extensive library of pre-programmed HVAC application macros which, at a touch of a button, allow rapid configuration of inputs, outputs, and performance parameters for specific HVAC applications to maximize convenience and minimize start-up time. The ACH550 series can handle the most demanding commercial applications in an efficient, dependable, and economic manner.

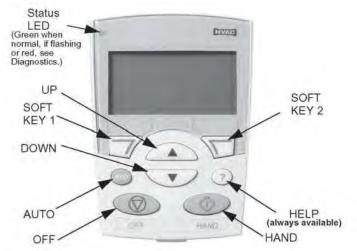
ACH550 Standard Features

UL, cUL labeled and CE marked EMI/RFI Filter (1st Environment, Restricted Distr bution) Start-Up Assistants Maintenance Assistants **Diagnostic Assistants** Real Time Clock Includes Day, Date and Time Operator Panel Parameter Backup (read/write) Full Graphic and Multilingual Display for Operator Control, Parameter Set-Up and Operating Data Display: Output Frequency (Hz) Speed (RPM) Motor Current Calculated % Motor Torque Calculated Motor Power (kW) DC Bus Voltage Output Voltage Heatsink Temperature Elapsed Time Meter (reset-able) KWh (reset-able) Input / Output Terminal Monitor PID Actual Value (Feedback) & Error Fault Text Warning Text Three (3) Scalable Process Variable Displays User Definable Engineering Units Two (2) Programmable Analog Inputs Six (6) Programmable Digital Inputs Two (2) Programmable Analog Outputs Up to six (6) Programmable Relay Outputs (Three (3) Standard) Adjustable Filters on Analog Inputs and Outputs Mathematical Functions on Analog Reference Signals All Control Inputs Isolated from Ground and Power Four (4) Resident Serial Communication Protocols Johnson Controls N2 Siemens Building Technologies FLN (P1) Modbus RTU BACnet (MS/TP) Input Speed Signals Current 0 (4) to 20 mA Voltage 0 (2) to 10 VDC Increase/Decrease Reference Contacts (Floating Point) Serial Communications Start/Stop 2 Wire (Dry Contact Closure) 3 Wire (Momentary Contact) Application of Input Power Application of Reference Signal (PID Sleep/Wake-Up) Serial Communications Start Functions Ramp Flying Start Premagnetization on Start Automatic Torque Boost Automatic Torque Boost with Flying Start Auto Restart (Reset) - Customer Selectable and Adjustable Stop Functions Ramp or Coast to Stop Emergency Stop DC Braking / Hold at Stop Flux Braking Accel/Decel Two (2) sets of Independently Ramps Linear or Adjustable 'S' Curve Accel/Decel Ramps

HVAC Specific Application Macros Separate Safeties (2) and Run Permissive Inputs Damper Control Override Input (Fire Mode) Timer Functions Four (4) Daily Start/Stop Time Periods Four (4) Weekly Start/Stop Time Periods Four Timers for Collecting Time Periods and Overrides Seven (7) Preset Speeds Supervision Functions Adjustable Current Limit Electronic Reverse Automatic Extended Power Loss Ride Through (Selectable) Programmable Maximum Frequency to 500 Hz PID Control Two (2) Integral Independent Programmable PID Setpoint Controllers (Process and External) External Selection between Two (2) Sets of Process **PID Controller Parameters** PID Sleep/Wake-Up Motor Control Features Scalar (V/Hz) and Vector Modes of Motor Control V/Hz Shapes Linear Squared **Energy Optimization** IR Compensation Slip Compensation Three (3) Critical Frequency Lockout Bands Preprogrammed Protection Circuits Overcurrent Short Circuit Ground Fault Overvoltage Undervoltage Input Phase Loss Output Device (IGBT) Overtemperature Adjustable Current Limit Regulator UL508C approved Electronic Motor Overload (I²T) Programmable Fault Functions for Protection Include Loss of Analog Input Panel Loss External Fault Motor Thermal Protection Stall Underload Motor Phase Loss Ground Fault 5% Input Impedance Equivalent 5% Impedance with Internal Reactor(s) Patented Swinging Choke Design for Superior Harmonic Mitigation (R1 to R4)

ACH550 Specifications

Input Connection


Input Connection	
Input Voltage (U ₁)	
	208/220/230/240 VAC 1-phase +/-10%
	380/400/415/440/460/480 VAC 3-phase +/-10%
Freewareau	500/600 VAC 3-phase +/-10%
Frequency:	
Line Limitations: Fundamental Power Factor (cos φ):	Max +/-3% of nominal phase to phase input voltage
Connection: Output (Motor) Connection	$ O_1, v_1, v_1 (O_1, v_1, I-pilase)$
	0 to U_1 , 3-phase symmetrical, U_2 at the field weakening point
Output Voltage:	
Frequency Resolution:	
Continuous Output Current:	
	1.0 * I _{2N} (Nominal rated output current, Variable Torque)
Short Term Overload Capacity:	
Variable Torque:	1.1 * I _{2N} , (1 min/10 min)
Peak Overload Capacity:	20, (
Variable Torque:	1.35 * I _{2N} , (2 sec/1 min)
Base Motor Frequency Range:	
Switching Frequency:	
Acceleration Time:	0.1 to 1800 s
Deceleration Time:	0.1 to 1800 s
Efficiency:	0.98 at nominal power level
Short Circuit Withstand Rating:	100,000 AIC (UL) w/o fuses
Connection:	U ₂ , V ₂ , W ₂
Enclosure	
Style:	
	UL Plenum Rated Type 1, Type 12
Agency Approval	
Listing and Compliance:	UL, cUL, CE
Ambient Conditions, Operation	
Air Temperature:	0° to 40° C (32° to 104° F), above 40° C the maximum output current is
	de-rated 1% for every additional 1°C (up to 50°C (122°F)) maximum
	limit.
Relative Humidity:	5 to 95%, no condensation allowed, maximum relative humidity is 60%
Contemination Lougla	in the presence of corrosive gasses
Contamination Levels: IEC:	C0704 0 4 C0704 0 0 and C0704 0 0
Chemical Gasses: Solid Particles:	
Installation Site Altitude	0 to 1000 m (3300 ft) above sea level. At sites over 1000 m (3300 ft) above sea level, the maximum power is de-rated 1% for every
	additional 100 m (330 ft). If the installation site is higher than 2000 m
	(6600 ft) above sea level, please contact your local ABB distributor or
	representative for further information
Vibration [.]	Max 3.0 mm (0.12 in) 2 to 9 Hz, Max 10 m/s ² (33 ft/s ²) 9 to 200 Hz
	sinusoidal
Ambient Conditions, Storage (in Protective Shipping Pa	
Air Temperature:	
Relative Humidity:	
Vibration Tested to (IEC 60068-2-6):	
	Max 100 m/s ² (330 ft/s ²) 11 ms (Tested 500 times each axis,
	each pole; 3000 times total)
Ambient Conditions, Transportation (in Protective Ship	
Air Temperature:	
Relative Humidity:	
Atmospheric Pressure:	
VIDIATION LESTED TO (IEC 60068-2-6):	Max 3.0 mm (0.14 in) 2 to 9 Hz, Max 15 m/s ² (49 ft/s ²) 9 to
	200 Hz sinusoidal
Bump Tested to (IEC 60068-2-29):	
	axis, each pole; 3000 times total)
Shock Tested to (IEC 60068-2-27)	
R1: 76 cm (30 in) R2: 61 cm (24 in) R3: 46 c	m (18 in) R4: 31 cm (12 in) R5 & 6: 25 cm (10 in)

ACH550 Specifications (continued)

Cooling Information Integral fan(s) Power Loss: Approximately 3% of rated power Analog Inputs Two (2) programmable Quantily 0 (4) to 20 mA, 100Chm, single ended Conting Minormation 0 (4) to 20 mA, 100Chm, single ended Detentioneter: 0 (4) to 20 mA, 100Chm, single ended Detentioneter: 0 VDC, 10 M, (1k to 100Chms) Input Modeling Since 23 mm² / 14AWG Reference Voltage 10 VDC, 1% at 25°C (77°F) Mapplicable Potentiometer 10 VDC, 1% at 25°C (77°F) Mapplicable Potentiometer 10 VDC, 1% at 25°C (77°F) Mapplicable Potentiometer 23 mm² / 14AWG Accuracy -4/16 ND at a at 25°C (77°F) Maximum Load Impediance 500 Ohms Output Udgating Time 2 ms Terminal Block Size 2 mm² / 14AWG Digital Inputs Six (6) programmable digital inputs Quantity Six (6) programmable digital inputs Signal Level -2 mm² / 14AWG Input Updating Time 4 ms Terminal Block Size 2 mm² / 14AWG Input Updating Time 4 ms Retind Updating Time 4 ms	Cooling Information	7
Power Loss: Approximately 3% of rated power Analog Inputs Quantity Two (2) programmable Yollage Reference: 0 (2) to 10 / 200 MA, 100Ohm, single ended Potentiometer: 10 VDC, 10 mA (1K to 10KOhms) Input Updating Time. 8 ms Input Updating Time. 8 ms Peterone Voltage. 10 VDC, 1% at 25 [°] C (77 [°] F) Maximum Load Applicable Potentiometer: 1 KOhm to 10 kOhm Terminal Block Size. 2.3mm ² / 14AWG Analog Outputs Quantity. Two (2) programmable current outputs Signal Level	Cooling Information	late and fam (a)
Analog Inputs Two (2) programmable Voltage Reference: 0 (2) to 10 V. 250k-Ohn, single ended Ournett, Reference: 0 (4) to 20 mA. (1K to 10KOhms) Input Updating Time. 8 ms Terminal Block Size 2.3mm² / 14AWG Reference Voltage +10 VDC, 1% at 25 [°] C (77 [°] F) Maximum Load 10 mA Applicable Potentioneter. -14 kWG Analog Outputs Two (2) programmable current outputs Signal Level -04 kto 20 mA Accuracy. -41 % ktill scale range at 25 [°] C (77 [°] F) Maximum Load Impedance 500 Ohns Output Updating Time. 2 ms Terminal Block Size 2 ms [°] (14AWG Digital Inputs Six (6) programmable digital inputs Signal Level -24 VDC, (10 V Logic 0) Input Updating Time. 2 ms Terminal Block Size -23mm² / 14AWG Digital Inputs Six (6) programmable digital inputs Signal Level -24 VDC, (10 V Logic 0) Input Updating Time. -2 ms Terminal Block Size -2 3mm² / 14AWG Primary Use Internal Power Supply Printention		
Quantity Two (2) programmable Voltage Reference: 0 (2) to 10 / 250000m, single ended Current Reference: 0 (4) to 20 mA, 10000m, single ended Potentiometer: 10 VDC, 10 mA (1K to 10K0hms) Input Updating Time. 8 ms Reference Voltage. +10 VDC, 11 % at 25°C (77°F) Maximum Load 10 mA Applicable Potentiometer: -1 (4 VDC, 11 % at 25°C (77°F) Maximum Load -10 mA Signal Level -4 (4) to 20 mA Accuracy -4 (4) to 20 mA Maximum Load Impedance. 500 Ohms Outputs		Approximately 5% of fated power
Voltage Reference: 0 (2) to 10 Å, 250kOhm, single ended Current Reference: 0 (4) to 20 mA, 100Ohm, single ended Potentiometer 10 VDC, 10 mA (1K to 10KOhms) Input Updating Time. 8 ms Terminal Block Size 2.3mm² / 14AWG Reference Voltage +10 VDC, 1% at 25 ⁶ C (77 ⁶ F) Maximum Load 10 mA Applicable Potentiometer 1 kOhm to 10 kOhm Terminal Block Size 2.3mm² / 14AWG Accuracy		T (0)
Current Reference: 0 (4) to 20 mA, 100Chm, single ended Input Updating Time. 8 ms Input Updating Time. 8 ms Terminal Block Size 2.3mm ² / 14AWG Reference Power Supply +10 VDC, 10 mA Applicable Potentioneter. 1 kOm to 10 kOhm Terminal Block Size 2.3mm ² / 14AWG Analog Outputs Two (2) programmable current outputs Signal Level 0 (4) to 20 mA Accuracy +10 VDC, 10 mA Accuracy +14 WWG Maximum Load Impedance. 500 Ohms Output Updating Time. 2 ms Terminal Block Size 2.3mm ² / 14AWG Digital Inputs Six (6) programmable digital inputs Quantity Six (6) programmable digital inputs Solation Solated as one group Signal Level .4 ms Terminal Block Size .2 mm ² / 14AWG Input Updating Time: 4 ms Terminal Block Size .2 mm ² / 14AWG Input Ourent .7 ms Signal Level .1 memodal size Output Updating Time: .4 ms Terminal Block Size .2		
Potentiometer:		
Input Updating Time		
Terminal Block Size 2.3mm ² / 14AWG Reference Voltage 2.3mm ² / 14AWG Reference Voltage 2.3mm ² / 14AWG Reference Voltage 4.10 VDC, 1% at 25 ⁶ C (77 ⁶ F) Maximum Load 2.3mm ² / 14AWG Quantity 2.3mm ² / 14AWG Quantity 7.40 (2) programmable current outputs Signal Level 0.41 (5 20 mA Accuracy 4.1% full scale range at 25 ⁶ C (77 ⁶ F) Maximum Load Impedance 2 ms Output Updating Time 2 ms Current 0.41 (5 20 mA Accuracy 4.1% full scale range at 25 ⁶ C (77 ⁶ F) Maximum Load Impedance 3.500 Ohms Output Updating Time 2 ms Current 0.5 Size 2.3mm ² / 14AWG Digital Inputs Cuantity 5.500 (5 0 ms Signal Level 4.1% full scale range at 25 ⁶ C (77 ⁶ F) Maximum Load Impedance 4.1% full scale range at 25 ⁶ C (77 ⁶ F) Maximum Load Impedance 4.1% full scale range at 25 ⁶ C (77 ⁶ F) Maximum Load Impedance 4.2 Maximum Current 4.2 Maximum Curr		
Reference Power Supply Reference Voltage 10 mA Applicable Potentiometer 10 mA Applicable Potentiometer 1 kOhm to 10 kOhm Terminal Block Size 2.3mm ² / 14AWG Analog Outputs 0 (4) to 20 mA Accuracy +1 % Uhi coale range at 25 th C (77 th F) Maximum Load Impedance 500 Ohms Output Updating Time 2 ms Terminal Block Size 2.3mm ² / 14AWG Digital Inputs Six (6) programmable digital inputs Signal Level 24 VDC, (10V Logic 0) Input Updating Time 4 ms Terminal Block Size 2.3mm ² / 14AWG Digital Inputs Six (6) programmable digital inputs Signal Level 24 VDC, (10V Logic 0) Input Updating Time 4 ms Terminal Block Size 2.3mm ² / 14AWG Maximum Current 250 mA Protection: Short circuit protected Relay Outputs Three (3) programmable relay (Form C) outputs Switching Capacity S A t24 VDC restowac, 04 A at 120 VDC Maximum Capacity A kA 24 VDC arbot VAC, 04 A at 120 VDC Max Continuous Current 24 k	Torminal Plack Size	$2.2 \text{mm}^2 / 14.0 \text{M/C}$
Reference Voltage +10 VDC, 1% at 25 [°] C (77 [°] E) Maximum Load 10 mA Applicable Potentiometer 1 kOhm to 10 kOhm Terminal Block Size 2.3mm ² / 14AWG Accuracy -r/-1% full scale range at 25 [°] C (77 [°] E) Maximum Load Impedance 500 Ohms Output Updating Time 2 ms Terminal Block Size 2.3mm ² / 14AWG Digital Inputs Six (6) programmable digital inputs Signal Level 24 VDC, (10V Logic 0) Input Updating Time 4 ms Terminal Block Size 2.3mm ² / 14AWG Input Updating Time 4 ms Terminal Block Size 2.3mm ² / 14AWG Internal Power Supply Internal supply for digital inputs Voltage		2.311111 / 14AWG
Maximum Load 10 mA Applicable Potentiometer 1 kOhm to 10 kOhm Terminal Block Size 2.3mm² / 14AWG Analog Outputs 0(4) to 20 mA Signal Level 0(4) to 20 mA Accuracy +1 % (bit locale range at 25°C (77°F) Maximum Load Impedance 500 Ohms Output Updating Time 2 ms Terminal Block Size 2.3mm² / 14AWG Digital Inputs Six (6) programmable digital inputs Isolation Isolated as one group Signal Level 2.4 VDC, (10V Logic 0) Input Updating Time 4 ms Terminal Block Size 2.3mm² / 14AWG Internal Power Supply Primarial Block Size Primati Block Size 2.3mm² / 14AWG Internal Power Supply Primarial Block Size Primati Block Size 2.3mm² / 14AWG Maximum Current 250 mA Protection Short circuit protected Relay Outputs Three (3) programmable relay (Form C) outputs Switching Capacity A at 24 VDC or 250 VAC, 0.4 A at 120 VDC Maximum Current 24 VDC, 1 minute Output Updating Time 12 ms		(40)(00, 40) = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Applicable Potentiometer 1 kOhm to 10 kOhm Terminal Block Size 2.3mm² / 14AWG Quantity Two (2) programmable current outputs Signal Level 0 (4) to 20 mA Accuracy +/ 1% full scale range at 25°C (77°F) Maximum Load Impedance 500 Ohms Output Updating Time 2 ms Terminal Block Size 2.3mm² / 14AWG Digital Inputs Six (6) programmable digital inputs Isolation Isolated as one group Signal Level 24 VDC, (10V Logic 0) Input Current 15 mA at 24 VDC Input Current 16 mA at 24 VDC Input Current 4 ms Terminal Block Size 2.3mm² / 14AWG Primary Use Internal supply for digital inputs Voltage: +24 VDC, max 250 mA Protection Short dircult protected Relay Outputs Three (3) programmable relay (Form C) outputs Switching Capacity: 8 A at 24 VDC or 250 VAC, 0.4 A at 120 VDC Max Continuous Current 2A RMS Contact Material: Silver Cadmium Oxide (AgCdO) Isolation Test Voltage 4 VMC or 114 AWG Protections </td <td></td> <td></td>		
Terminal Block Size 2.3mm ² / 14AWG Analog Outputs Quantity		
Analog Outputs Two (2) programmable current outputs Ouanity		
Quantity. Two (2) programmable current outputs Signal Level (4) to 20 mA Accuracy. +/-1% full scale range at 25°C (77°F) Maximum Load Impedance. 2 ms Output Updating Time. 2 ms Terminal Block Size 2 ms Output Updating Time. 2 ms Signal Level 2 Maximum Load Impedance. Output Updating Time. 2 Maximum Load as one group Signal Level 24 VDC, (10V Logic 0) Input Updating Time. 4 ms Terminal Block Size 2.3mm² / 14AWG Internal Power Supply Internal supply for digital inputs Voltage: +24 VDC, max 250 mA Maximum Current. 250 mA Maximum Current. 250 mA Maximum Current. 24 VDC, ax 24 VDC or 250 VAC, 0.4 A at 120 VDC Maximum Current. 24 RMS Contact Material: Silver Cadmium Oxide (AgCdO) Isolation Test Voltage 4 kVAC, 1 minute Output Updating Time. 12 ms Terminal Block Size 2.3mm² / 14AWG Protections Single Phase. Single Phase. Protected (input & output) <		2.311111 / 14AVVG
Signal Level 0 (4) to 20 mÅ Accuracy + 6 1% foll scale range at 25°C (77°F) Maximum Load Impedance 2 ms Terminal Block Size 2.3mm² / 14AWG Digital Inputs Six (6) programmable digital inputs Isolated as one group Six (6) programmable digital inputs Isolation Isolated as one group Signal Level 24 VDC, (10V Logic 0) Input Current 15 mA at 24 VDC Input Current 4 ms Terminal Block Size 2.3mm² / 14AWG Primary Use Internal supply for digital inputs Voltage - reve (3) programmable relay (Form C) outputs Switching Capacity 8 A at 24 VDC or 250 VAC, 0.4 A at 120 VDC Maximum Current: 250 mA Protection: Short circuit protected Relay Outputs Three (3) programmable relay (Form C) outputs Switching Capacity 8 A at 24 VDC or 250 VAC, 0.4 A at 120 VDC Max Continuous Current: 2.3 mm² / 14AWG Protections Silver Cadmium Oxide (AgCdO) Isolation Test Voltage 4 kVAC, 1 minute Output Updating Time 1.2 x kn (MS) max. Overouting Time		
Accuracy. +/: 1% full scale range at 25°C (77°F) Maximum Load Impedance. 500 Ohms Output Updating Time. 2 ms Terminal Block Size 2.3mm² / 14AWG Digital Inputs Six (6) programmable digital inputs Signal Level 24 VDC, (10V Logic 0) Input Updating Time. 4 ms Terminal Block Size 2.3mm² / 14AWG Internal Power Supply Internal supply for digital inputs Voltage: -24 VDC, max 250 mA Maximum Current. 250 mA Protection Short drcuit protected Relay Outputs Slore 24 VDC, max 250 mA Quantity. 8 A at 24 VDC max 250 mA Maximum Current. 250 mA Protection Short drcuit protected Relay Outputs Three (3) programmable relay (Form C) outputs Switching Capacity. 8 A at 24 VDC or 250 VAC, 0.4 A at 120 VDC Max 24 VDC Tax 24 VDC or 250 VAC, 0.4 A at 120 VDC Max 24 VDC Times (3) programmable relay (Form C) outputs Single Phase. 2.3mm² / 14AWG Protections Sliver Cadmium Oxide (AgCdO) Single Phase. 2.3mm² / 14AWG		
Maximum Load Impedance		
Output Updating Time 2 ms Terminal Block Size 2.3mm² / 14AWG Digital Inputs Six (6) programmable digital inputs Isolation Isolated as one group Signal Level 24 VDC, (10V Logic 0) Input Updating Time 4 ms Terminal Block Size 2.3mm² / 14AWG Internal Power Supply Internal supply for digital inputs Voltage: +24 VDC, max 250 mA Maximum Current 250 mA Protection: Short circuit protected Relay Outputs Three (3) programmable relay (Form C) outputs Quantity. Three (3) programmable relay (Form C) outputs Switching Capacity: & A at 24 VDC or 250 VAC, 0.4 A at 120 VDC Max Continuous Current: 2A RMS Contact Material: Silver Cadmium Oxide (AgCdO) Isolation Test Voltage 4 kVAC, 1 minute Output Updating Time 12 ms Terminal Block Size 2.3mm² / 14AWG Protections Silver Cadmium Oxide (AgCdO) Voerourrent Trip Limit: 3.5 x bin instantaneous Adjustable Current Regulation Limit: 1.1 x 1zN (RMS) max. Overourrent Tip Limit: 0.55 x UN		
Terminal Block Size 2.3mm² / 14AWG Digital Inputs Six (6) programmable digital inputs Isolation Isolated as one group Signal Level 24 VDC, (10V Logic 0) Input Current 15 mA at 24 VDC Input Current 4 ms Terminal Block Size 2.3mm² / 14AWG Internal Power Supply Internal supply for digital inputs Voitage: + 24 VDC, max 250 mA Protection: Short circuit protected Relay Outputs Three (3) programmable relay (Form C) outputs Switching Capacity: 8 A at 24 VDC or 250 VAC, 0.4 A at 120 VDC Max Continuous Current: 2A RMS Contact Material: Silver Cadmium Oxide (AgCdO) Isolation Test Voltage 4 KVAC, 1 minute Output Updating Time 12 ms Terminal Block Size 2.3mm² / 14AWG Protections Silver Cadmium Oxide (AgCdO) Silvable Current Trip Limit: .35 X bit instantaneous Adjustable Current Regulation Limit: 1.1 x bit (RMS) max. Overvoltage Trip Limit: .065 x UN Overentoge Trip Limit: .065 x UN Overtemperature (Heatsink): +116°C (+239		
Digital Inputs Six (6) programmable digital inputs Solation Isolated as one group Signal Level 24 VDC, (10V Logic 0) Input Current 15 mA at 24 VDC Input Qurent 4 ms Terminal Block Size 2.3mm² / 14AWG Internal Power Supply Internal supply for digital inputs Voltage: +24 VDC, max 250 mA Maximum Current 250 mA Protection: Short circuit protected Relay Outputs Three (3) programmable relay (Form C) outputs Quantity. A re (3) programmable relay (Form C) outputs Switching Capacity. & A at 24 VDC or 250 VAC, 0.4 A at 120 VDC Max Continuous Current: & A RMS Contact Material: Silver Cadmium Oxide (AgCdO) Isolation Tart Voltage 4 kVAC, 1 minute Output Updating Time 12 ms Terminal Block Size 2.3mm² / 14AWG Protections Silver Cadmium Oxide (AgCdO) Single Phase Protected (input & output) Overcurrent Trip Limit: .13 v km (RMS) max. Overourent Trip Limit: .13 v km Undervoltage Trip Limit: .05 v km	Output Opdating Time	$2.2 \text{mm}^2 / 14.0 \text{M/C}$
Quantity		2.311111 / 14AWG
Isolated as one group Signal Level 24 VDC, (10V Logic 0) Input Current 15 mA at 24 VDC Input Dipole Construction 15 mA at 24 VDC Internal Bock Size 2.3mm² / 14AWG Internal Power Supply Internal supply for digital inputs Yoltage: + 24 VDC, max 250 mA Maximum Current: 250 mA Relay Outputs Short circuit protected Quantity. Three (3) programmable relay (Form C) outputs Switching Capacity: 8 A at 24 VDC or 250 VAC, 0.4 A at 120 VDC Max Continuous Current: 2A RMS Contact Material: Silver Cadmium Oxide (AgCdO) Isolation Test Voltage 4 kVAC, 1 minute Output Updating Time 12 ms Terminal Block Size 2.3mm² / 14AWG Protections Single Phase Single Phase Protected (input & output) Overcurrent Trip Limit: 1.3 to X lN Adjustable Current Regulation Limit: 1.1 to X log Single Phase Overcurrent Trip Limit: 0.65 x UN Overcurrent Trip Limit: 0.65 x UN Overcurrent Trip Limit: 1.00 x UN Underworkage Trip Limit: </td <td></td> <td></td>		
Signal Level 24 VDC, (10V Lögic 0) Input Udrating Time: 15 mA at 24 VDC Input Uddating Time: 4 ms Terminal Block Size 2.3mm² / 14AWG Internal Power Supply Internal supply for digital inputs Voltage: +24 VDC, max 250 mA Maximum Current: 250 mA Protection: Short circuit protected Relay Outputs Outputs Quantity. Three (3) programmable relay (Form C) outputs Switching Capacity. 8 A at 24 VDC or 250 VAC, 0.4 A at 120 VDC Max Continuous Current: 2A RMS Contact Material: Silver Cadmium Oxide (AgCdO) Isolation Test Voltage 4 kVAC, 1 minute Output Updating Time 12 ms Terminal Block Size 2.3mm² / 14AWG Protections Single Phase Single Phase Protected (input & output) Overcurrent Trip Limit: 3.5 x IzN instantaneous Adjustable Current Regulation Limit: 1.1 x IzN (RMS) max. Overotinger Trip Limit: 0.65 x UN Overetroperature (Heatsink): +116*C (+239*F) Auxiliary Voltage: Short Circuit Protected		
Input Current. 15 mA at 24 VDC Input Updating Time. 4 ms Terminal Block Size 2.3mm² / 14AWG Internal Power Supply Internal supply for digital inputs Primary Use		
Input Updating Time: 4 ms Terminal Block Size 2.3mm² / 14AWG Internal Power Supply Internal supply for digital inputs Voltage: +24 VDC, max 250 mA Maximum Current: 250 mA Quantity. Short circuit protected Relay Outputs Three (3) programmable relay (Form C) outputs Switching Capacity. 8 A at 24 VDC or 250 VAC, 0.4 A at 120 VDC Max Continuous Current: 2A RMS Contact Material: Silver Cadmium Oxide (AgCdO) Isolation Test Voltage 4 kVAC, 1 minute Output Updating Time 12 ms Terminal Block Size 2.3mm² / 14AWG Protections Single Phase. Single Phase. Protected (input & output) Overcurrent Trip Limit: 3.5 x Izw instantaneous Adjustable Current Regulation Limit: 1.1 x Izw (RMS) max. Overourent ger Trip Limit: 0.65 x UN Overetmeperature (Heatsink): +115°C (+239°F) Auxiliary Voltage: Short Circuit Protected Microprocessor fault: Protected Motor Stall Protection: Protected Motor Stall Protection Protected		
Terminal Block Size 2.3mm² / 14AWG Internal Power Supply Internal supply for digital inputs Yoltage: +24 VDC, max 250 mA Protection: Short circuit protected Relay Outputs Three (3) programmable relay (Form C) outputs Switching Capacity: & A at 24 VDC or 250 VAC, 0.4 A at 120 VDC Max continuous Current: 2A RMS Contact Material: Silver Cadmium Oxide (AgCdO) Isolation Test Voltage 4 kVAC, 1 minute Output Updating Time 12 ms Terminal Block Size 2.3mm² / 14AWG Protections Single Phase Single Phase Protected (input & output) Overcurrent Trip Limit: 1.3 x Lw (RMS) max. Overvoltage Trip Limit: 0.65 x Lw Undervoltage Trip Limit: 9 rotected Short Circuit Protected Short Circuit Protected Short Circuit: Protected Motor Overtemperature Protection Protected Motor Stall Protection Protected Motor Stall Protection Protected Motor Overtemperature Protection (lzt): Protected Motor Stall Protection Protected		
Internal Power SupplyPrimary UseInternal supply for digital inputs +24 VDC, max 250 mAMaximum Current:250 mAProtection:Short circuit protectedRelay OutputsThree (3) programmable relay (Form C) outputs Switching Capacity:Switching Capacity:8 A at 24 VDC or 250 VAC, 0.4 A at 120 VDCMax Continuous Current:2A RMSContact Material:Silver Cadmium Oxide (AgCdO)Isolation Test Voltage4 kVAC, 1 minuteOutput Updating Time12 msTerminal Block Size2.3mm² / 14AWGProtectionsSingle Phase.Single Phase.Protected (input & output)Overcurrent Trip Limit:1.3 ox UNUndervoltage Trip Limit:1.30 x UNUndervoltage Trip Limit:ProtectedMaxinary Voltage:Short Circuit ProtectedGround Fault:ProtectedMicroprocessor fault:ProtectedMotor Overtemperature Protection (Izt):ProtectedMicroprocessor fault:ProtectedMotor Overtemperature Protection (Izt):ProtectedMotor Stall Protection:ProtectedMotor Overtemperature Protection (Izt):ProtectedMotor Overtemperature Protection (Izt):ProtectedMotor Overtemperature Protection (Izt):ProtectedMotor VoltageProtectedLos of Reference:ProtectedLos of Reference:ProtectedLos of Reference:ProtectedLos of Reference:ProtectedLos of Reference:Swinging choke 5% equiv	Input Updating Time:	4 ms
Primary Use Internal supply for digital inputs Voltage: +24 VDC, max 250 mA Maximum Current: 250 mA Protection: Short circuit protected Relay Outputs Three (3) programmable relay (Form C) outputs Switching Capacity: 8 A at 24 VDC or 250 VAC, 0.4 A at 120 VDC Max Continuous Current: 2A RMS Contact Material: Silver Cadmium Oxide (AgCdO) Isolation Test Voltage 4 kVAC, 1 minute Output Updating Time 12 ms Terminal Block Size 2.3 mm² / 14AWG Protections Single Phase Single Phase Protected (input & output) Overcurrent Trip Limit: 1.1 x lzn (RMS) max. Overcurage Trip Limit: 0.65 x UN Overotage Trip Limit: 0.65 x UN Overtorent prip Limit: 0.65 x UN Overtorent Protected Microprocessor fault: Protected Protected Microprocessor fault: Protected Motor Overtemperature Protection (lzt): Protected Motor Overtemperature Protection (lzt): Protected Input Power Loss of Phase: Protected Input Vo		2.3mm / 14AWG
Voltage: +24 VDC, max 250 mA Maximum Current: 250 mA Protection: Short circuit protected Relay Outputs Three (3) programmable relay (Form C) outputs Switching Capacity: 8 A at 24 VDC or 250 VAC, 0.4 A at 120 VDC Max Continuous Current: 2A RMS Contact Material: Silver Cadmium Oxide (AgCdO) Isolation Test Voltage 4 kVAC, 1 minute Output Updating Time 12 ms Terminal Block Size 2.3mm² / 14AWG Protections Single Phase Single Phase Protected (input & output) Overourent Trip Limit: 1.3 5 x lzw instantaneous Adjustable Current Regulation Limit: 1.30 x UN Uvervoltage Trip Limit: 0.65 x UN Overroltage Trip Limit: 0.65 x UN Overtemperature (Heatsink): +115°C (+239°F) Auxiliary Voltage: Short Circuit Protected Motor Overtemperature Protection (lzt): Protected Motor Overtemperature Protection (lzt): Protected Motor Overtemperature Protection (lzt): Protected Input Power Loss of Phase: Protected Line Impedance: Swinging ch		
Maximum Current: 250 mA Protection: Short circuit protected Relay Outputs Three (3) programmable relay (Form C) outputs Switching Capacity: 8 A at 24 VDC or 250 VAC, 0.4 A at 120 VDC Max Continuous Current: 2A RMS Contact Material: Silver Cadmium Oxide (AgCdO) Isolation Test Voltage 4 kVAC, 1 minute Output Updating Time 12 ms Terminal Block Size 2.3mm² / 14AWG Protections Single Phase Single Phase Protected (input & output) Overcurrent Trip Limit: 1.1 x lav (RMS) max. Overvoltage Trip Limit: 0.65 x UN Overtemperature (Heatsink): +115°C (+239°F) Auxiliary Voltage: Short Circuit Protected Ground Fault: Protected Microprocessor fault: Protected Motor Overtemperature Protection (lzt): Protected Input Power Loss of Phase: Protected Input Line Impedance: Protected Short Circuit Current Rating: 100,000 RMS symmetrical Amperes Input Und Rule U ₁ = Input Voltage U _N = Nominal Motor Voltage U ₁ = Input Voltage		
Protection:Short circuit protectedRelay OutputsThree (3) programmable relay (Form C) outputsQuantity.8 A at 24 VDC or 250 VAC, 0.4 A at 120 VDCMax Continuous Current:2A RMSContact Material:Silver Cadmium Oxide (AgCdO)Isolation Test Voltage4 kVAC, 1 minuteOutput Updating Time12 msTerminal Block Size2.3mm² / 14AWGProtectionsSingle PhaseSingle PhaseProtected (input & output)Overcurrent Trip Limit:3.5 x IzN instantaneousAdjustable Current Regulation Limit:1.1 x IzN (RMS) max.Overvoltage Trip Limit:0.65 x UNOvertemperature (Heatsink):+115°C (+239°F)Auxiliary Voltage:Short Circuit ProtectedShort Circuit:ProtectedMotor Overtemperature Protection (Izt):ProtectedMotor Overtemperature Protection (Izt):ProtectedMotor Overtemperature Protection (Izt):ProtectedMotor Overtemperature Protection (Izt):ProtectedInput Power Loss of Phase:ProtectedInput Power Loss of Phase:ProtectedLos of Reference:ProtectedShort Circuit Current Rating:100,000 RMS symmetrical AmperesInput Line Impedance:Swinging choke 5% equivalent R1-R6, 3% equivalent R8U1 = Input VoltageUN = Nominal Motor VoltageU2 = Nower – Normal Duty (HP)UN = Nominal Motor Current – Normal Duty		
Relay OutputsQuantityThree (3) programmable relay (Form C) outputsSwitching Capacity:8 A at 24 VDC or 250 VAC, 0.4 A at 120 VDCMax Continuous Current:2A RMSContact Material:Silver Cadmium Oxide (AgCdO)Isolation Test Voltage4 kVAC, 1 minuteOutput Updating Time12 msTerminal Block Size2.3mm² / 14AWGProtectionsSilver Cadmium & output)Single PhaseProtected (input & output)Overcurrent Trip Limit:3.5 x law instantaneousAdjustable Current Regulation Limit:1.1 x law (RMS) max.Overvoltage Trip Limit:0.65 x UNUndervoltage Trip Limit:0.65 x UNOvertemperature (Heatsink):+115°C (+239°F)Auxiliary Voltage:Short Circuit ProtectedGround Fault:ProtectedMotor Overtemperature Protection (lat):ProtectedMotor Overtemperature Protection (lat):ProtectedMotor Overtemperature Protection (lat):ProtectedMotor Overtemperature Protection (lat):ProtectedInput Line Impedance:Swinging choke 5% equivalent R1-R6, 3% equivalent R8U ₁ = Input VoltageU _N = Nominal Motor VoltageU ₂ = Output VoltageI ₂ = Nominal Motor Current - Normal Duty		
QuantityThree (3) programmable relay (Form C) outputsSwitching Capacity:8 A at 24 VDC or 250 VAC, 0.4 A at 120 VDCMax Continuous Current:2A RMSContact Material:Silver Cadmium Oxide (AgCdO)Isolation Test Voltage4 kVAC, 1 minuteOutput Updating Time12 msTerminal Block Size2.3mm² / 14AWGProtectionsSingle PhaseSingle PhaseProtected (input & output)Overcurrent Trip Limit:3.5 x IzN instantaneousAdjustable Current Regulation Limit:1.1 x IzN (RMS) max.Overvoltage Trip Limit:0.65 x UNOvervoltage Trip Limit:0.65 x UNOveretemperature (Heatsink):+115°C (+239°F)Auxiliary Voltage:Short CircuitMicroprocessor fault:ProtectedMotor Overtemperature Protection (Izt):ProtectedMotor Overtemperature ProtectionProtectedMotor Overtemperature Protection (Izt):ProtectedMotor Overtemperature Protection (Izt):ProtectedMotor Overtemperature Protection (Izt):ProtectedLoss of Reference:ProtectedShort Circuit Current Rating:100,000 RMS symmetrical AmperesInput Line Impedance:Swinging choke 5% equivalent R1-R6, 3% equivalent R8U ₁ = Input VoltageU _N = Nominal Motor VoltageU ₂ = Output VoltageF _N = Nominal Motor Current – Normal Duty		Short circuit protected
Switching Capacity:8 A at 24 VDC or 250 VAC, 0.4 A at 120 VDCMax Continuous Current:2A RMSContact Material:Silver Cadmium Oxide (AgCdO)Isolation Test Voltage4 kVAC, 1 minuteOutput Updating Time12 msTerminal Block Size $2.3mm^2 / 14AWG$ ProtectionsSingle PhaseSingle PhaseProtected (input & output)Overcurrent Trip Limit: $3.5 x l_{2N}$ instantaneousAdjustable Current Regulation Limit: $1.1 x l_{2N}$ (RMS) max.Overvoltage Trip Limit: $0.65 x U_N$ Overevoltage Trip Limit: $0.65 x U_N$ Overtemperature (Heatsink): $+115^{\circ}C (+239^{\circ}F)$ Auxiliary Voltage:Short Circuit ProtectedGround Fault:ProtectedMotor Overtemperature Protection (lzt):ProtectedMotor Overtemperature Protection (lzt):ProtectedInput Power Loss of Phase:ProtectedLoss of Reference:ProtectedShort Circuit Current Rating:100,000 RMS symmetrical AmperesInput Line Impedance:Swinging choke 5% equivalent R1-R6, 3% equivalent R8U ₁ = Input Voltage $f_N = Nominal Motor Voltage$ U ₂ = Output Voltage $f_N = Nominal Motor Current – Normal Duty$	Relay Outputs	
Max Continuous Current:2A RMSContact Material:Silver Cadmium Oxide (AgCdO)Isolation Test Voltage 4 kVAC , 1 minuteOutput Updating Time12 msTerminal Block Size 2.3mm^2 / 14AWG Protections Protected (input & output)Overcurrent Trip Limit: 3.5 x lzn instantaneousAdjustable Current Regulation Limit: 1.1 x lzn (RMS) max.Overvoltage Trip Limit: 1.30 x Un Undervoltage Trip Limit: 0.65 x Un Overtemperature (Heatsink): $+115^{\circ}\text{C}$ (+239°F)Auxiliary Voltage:Short Circuit ProtectedGround Fault:ProtectedMicroprocessor fault:ProtectedMotor Overtemperature Protection (lzt):ProtectedInput Power Loss of Phase:ProtectedLoss of Reference:ProtectedShort Circuit Current Rating:100,000 RMS symmetrical AmperesInput Line Impedance:Swinging choke 5% equivalent R1-R6, 3% equivalent R8U ₁ = Input Voltage $f_{N} = \text{Nominal Motor Voltage}$ U ₂ = Output Voltage $f_{N} = Nominal Motor Current - Normal Duty$		
Contact Material:Silver Cadmium Oxide (AgCdO)Isolation Test Voltage4 kVAC, 1 minuteOutput Updating Time12 msTerminal Block Size2.3mm² / 14AWG Protections ProtectionsSingle PhaseProtected (input & output)Overcurrent Trip Limit: $3.5 \times I_{2N}$ instantaneousAdjustable Current Regulation Limit: $1.1 \times I_{2N}$ (RMS) max.Overvoltage Trip Limit: $0.65 \times U_N$ Undervoltage Trip Limit: $0.65 \times U_N$ Overtemperature (Heatsink): $+115^\circ$ C (+239°F)Auxiliary Voltage:Short Circuit ProtectedGround Fault:ProtectedShort Circuit:ProtectedMotor Stall Protection (Izt):ProtectedInput Power Loss of Phase:ProtectedInput Power Loss of Phase:ProtectedInput Line Impedance:Swinging choke 5% equivalent R1-R6, 3% equivalent R8U ₁ = Input VoltageU _N = Nominal Motor VoltageU ₂ = Output VoltageF _N = Nominal Motor Current – Normal Duty		
Isolation Test Voltage 4 kVAC, 1 minute Output Updating Time 12 ms Terminal Block Size 2.3mm² / 14AWG Protections 3.5 x lav instantaneous Adjustable Current Regulation Limit: 1.1 x lav (RMS) max. Overvoltage Trip Limit: 1.30 x UN Undervoltage Trip Limit: 0.65 x UN Overtemperature (Heatsink): +115°C (+239°F) Akuiliary Voltage: Short Circuit Protected Ground Fault: Protected Microprocessor fault: Protected Motor Stall Protection: Protected Input Power Loss of Phase: Protected Loss of Reference: Protected Short Circuit Current Rating: 100,000 RMS symmetrical Amperes Input Line Impedance: Swinging choke 5% equivalent R1-R6, 3% equivalent R8 U ₁ = Input Voltage U _N = Nominal Motor Voltage U ₂ = Output Voltage U _N = Nominal Motor Current – Normal Duty		
Output Updating Time 12 ms Terminal Block Size 2.3mm² / 14AWG Protections Single Phase Single Phase Protected (input & output) Overcurrent Trip Limit: 3.5 x lav instantaneous Adjustable Current Regulation Limit: 1.1 x lav (RMS) max. Overvoltage Trip Limit: 1.30 x UN Undervoltage Trip Limit: 0.65 x UN Overtemperature (Heatsink): +115°C (+239°F) Auxiliary Voltage: Short Circuit Protected Ground Fault: Protected Motor Overtemperature Protection (lzt): Protected Motor Overtemperature Protection (lzt): Protected Input Power Loss of Phase: Protected Loss of Reference: Protected Short Circuit Current Rating: 100,000 RMS symmetrical Amperes Input Line Impedance: Swinging choke 5% equivalent R1-R6, 3% equivalent R8 U1 = Input Voltage U _N = Nominal Motor Voltage U2 = Output Voltage I _N = Nominal Motor Current – Normal Duty		
Terminal Block Size $2.3 \text{mm}^2 / 14\text{AWG}$ ProtectionsProtectionsSingle PhaseProtected (input & output)Overcurrent Trip Limit: 3.5 x lx instantaneousAdjustable Current Regulation Limit: 1.1 x lx (RMS) max.Overvoltage Trip Limit: 1.30 x UN Undervoltage Trip Limit: 0.65 x UN Overtemperature (Heatsink): $+115^{\circ}\text{C} (+239^{\circ}\text{F})$ Auxiliary Voltage:Short Circuit ProtectedGround Fault:ProtectedMotor Stall Protection:ProtectedMotor Overtemperature Protection (lzt):ProtectedInput Power Loss of Phase:ProtectedLoss of Reference:ProtectedShort Circuit Current Rating: $100,000 \text{ RMS symmetrical Amperes}$ Input Line Impedance:Swinging choke 5% equivalent R1-R6, 3% equivalent R8U1 = Input VoltageUN = Nominal Motor VoltageU2 = Output VoltageIN = Nominal Motor VoltageU2 = Output VoltageIN = Nominal Motor Current - Normal Duty		
ProtectionsSingle PhaseProtected (input & output)Overcurrent Trip Limit: $3.5 \times 1_{2N}$ instantaneousAdjustable Current Regulation Limit: $1.1 \times 1_{2N}$ (RMS) max.Overvoltage Trip Limit: $0.65 \times U_N$ Undervoltage Trip Limit: $0.65 \times U_N$ Overtemperature (Heatsink): $+115^{\circ}C (+239^{\circ}F)$ Auxiliary Voltage:Short Circuit ProtectedGround Fault:ProtectedMotor Stall Protection:ProtectedMotor Overtemperature Protection (1zt):ProtectedInput Power Loss of Phase:ProtectedShort Circuit Current Rating: $100,000$ RMS symmetrical AmperesInput Line Impedance:Swinging choke 5% equivalent R1-R6, 3% equivalent R8U1 = Input VoltageU _N = Nominal Motor VoltageU2 = Output Voltage I_N = Nominal Motor Current – Normal Duty		
Single PhaseProtected (input & output)Overcurrent Trip Limit: $3.5 \times l_{2N}$ instantaneousAdjustable Current Regulation Limit: $1.1 \times l_{2N}$ (RMS) max.Overvoltage Trip Limit: $1.30 \times U_N$ Undervoltage Trip Limit: $0.65 \times U_N$ Overtemperature (Heatsink): $+115^{\circ}C$ ($+239^{\circ}F$)Auxiliary Voltage:Short Circuit ProtectedGround Fault:ProtectedShort Circuit:ProtectedMotor Stall Protection:ProtectedMotor Overtemperature Protection (Izt):ProtectedInput Power Loss of Phase:ProtectedLoss of Reference:ProtectedShort Circuit Current Rating: $100,000$ RMS symmetrical AmperesInput Line Impedance:Swinging choke 5% equivalent R1-R6, 3% equivalent R8U ₁ = Input VoltageU _N = Nominal Motor VoltageU ₂ = Output Voltagef _N = Nominal Motor Current – Normal Duty		2.3mm / 14AWG
Overcurrent Trip Limit: $3.5 \times I_{2N}$ instantaneousAdjustable Current Regulation Limit: $1.1 \times I_{2N}$ (RMS) max.Overvoltage Trip Limit: $1.30 \times U_N$ Undervoltage Trip Limit: $0.65 \times U_N$ Overtemperature (Heatsink): $+115^{\circ}C$ ($+239^{\circ}F$)Auxiliary Voltage:Short Circuit ProtectedGround Fault:ProtectedShort Circuit:ProtectedMicroprocessor fault:ProtectedMotor Overtemperature Protection (Izt):ProtectedInput Power Loss of Phase:ProtectedLoss of Reference:ProtectedShort Circuit Current Rating: $100,000$ RMS symmetrical AmperesInput Line Impedance:Swinging choke 5% equivalent R1-R6, 3% equivalent R8U ₁ = Input Voltage U_N = Nominal Motor VoltageU ₂ = Output Voltage f_N = Nominal Motor Current – Normal Duty		
Adjustable Current Regulation Limit:1.1 x l_{2N} (RMS) max.Overvoltage Trip Limit:1.30 x UNUndervoltage Trip Limit:0.65 x UNOvertemperature (Heatsink):+115°C (+239°F)Auxiliary Voltage:Short Circuit ProtectedGround Fault:ProtectedMotor Stall Protection:ProtectedMotor Stall Protection:ProtectedInput Power Loss of Phase:ProtectedLoss of Reference:ProtectedShort Circuit Current Rating:100,000 RMS symmetrical AmperesInput Line Impedance:Swinging choke 5% equivalent R1-R6, 3% equivalent R8U1 = Input VoltageU _N = Nominal Motor VoltageU2 = Output Voltagef _N = Nominal Motor Current – Normal Duty		
Overvoltage Trip Limit:1.30 x UNUndervoltage Trip Limit: $0.65 \times UN$ Overtemperature (Heatsink): $+115^{\circ}C (+239^{\circ}F)$ Auxiliary Voltage:Short Circuit ProtectedGround Fault:ProtectedMotor Stall Protection:ProtectedMotor Overtemperature Protection (Izt):ProtectedInput Power Loss of Phase:ProtectedLoss of Reference:ProtectedShort Circuit Current Rating:100,000 RMS symmetrical AmperesInput Line Impedance:Swinging choke 5% equivalent R1-R6, 3% equivalent R8U1 = Input VoltageUN = Nominal Motor VoltageU2 = Output VoltagefN = Nominal Motor Current - Normal Duty		
Undervoltage Trip Limit: $0.65 \times UN$ Overtemperature (Heatsink): $+115^{\circ}C (+239^{\circ}F)$ Auxiliary Voltage:Short Circuit ProtectedGround Fault:ProtectedMotor Circuit:ProtectedMotor Stall Protection:ProtectedMotor Overtemperature Protection (l2t):ProtectedInput Power Loss of Phase:ProtectedLoss of Reference:ProtectedShort Circuit Current Rating:100,000 RMS symmetrical AmperesInput Line Impedance:Swinging choke 5% equivalent R1-R6, 3% equivalent R8U ₁ = Input VoltageU _N = Nominal Motor VoltageU ₂ = Output Voltagef _N = Nominal Motor Current – Normal Duty	, ,	
Overtemperature (Heatsink): $+115^{\circ}C (+239^{\circ}F)$ Auxiliary Voltage:Short Circuit ProtectedGround Fault:ProtectedShort Circuit:ProtectedMicroprocessor fault:ProtectedMotor Stall Protection:ProtectedMotor Overtemperature Protection (l2t):ProtectedInput Power Loss of Phase:ProtectedLoss of Reference:ProtectedShort Circuit Current Rating:100,000 RMS symmetrical AmperesInput Line Impedance:Swinging choke 5% equivalent R1-R6, 3% equivalent R8U1 = Input VoltageU _N = Nominal Motor VoltageU2 = Output Voltagef _N = Nominal Motor Current – Normal Duty		
Auxiliary Voltage: Short Circuit Protected Ground Fault: Protected Short Circuit: Protected Microprocessor fault: Protected Motor Stall Protection: Protected Motor Overtemperature Protection (l2t): Protected Input Power Loss of Phase: Protected Loss of Reference: Protected Short Circuit Current Rating: 100,000 RMS symmetrical Amperes Input Line Impedance: Swinging choke 5% equivalent R1-R6, 3% equivalent R8 U1 = Input Voltage U _N = Nominal Motor Voltage U2 = Output Voltage f _N = Nominal Motor Current – Normal Duty PN = Power – Normal Duty (HP) I _{2N} = Nominal Motor Current – Normal Duty		
Ground Fault: Protected Short Circuit: Protected Microprocessor fault: Protected Motor Stall Protection: Protected Motor Overtemperature Protection (lzt): Protected Input Power Loss of Phase: Protected Loss of Reference: Protected Short Circuit Current Rating: 100,000 RMS symmetrical Amperes Input Line Impedance: Swinging choke 5% equivalent R1-R6, 3% equivalent R8 U1 = Input Voltage U _N = Nominal Motor Voltage U2 = Output Voltage f _N = Nominal Motor Frequency PN = Power – Normal Duty (HP) I _{2N} = Nominal Motor Current – Normal Duty		
Short Circuit: Protected Microprocessor fault: Protected Motor Stall Protection: Protected Motor Overtemperature Protection (l2t): Protected Input Power Loss of Phase: Protected Loss of Reference: Protected Short Circuit Current Rating: 100,000 RMS symmetrical Amperes Input Line Impedance: Swinging choke 5% equivalent R1-R6, 3% equivalent R8 U1 = Input Voltage U _N = Nominal Motor Voltage U2 = Output Voltage f _N = Nominal Motor Frequency PN = Power – Normal Duty (HP) I _{2N} = Nominal Motor Current – Normal Duty	, .	
Microprocessor fault: Protected Motor Stall Protection: Protected Motor Overtemperature Protection (lzt): Protected Input Power Loss of Phase: Protected Loss of Reference: Protected Short Circuit Current Rating: 100,000 RMS symmetrical Amperes Input Line Impedance: Swinging choke 5% equivalent R1-R6, 3% equivalent R8 U1 = Input Voltage U _N = Nominal Motor Voltage U2 = Output Voltage f _N = Nominal Motor Frequency PN = Power – Normal Duty (HP) I _{2N} = Nominal Motor Current – Normal Duty		
Motor Stall Protection: Protected Motor Overtemperature Protection (lzt): Protected Input Power Loss of Phase: Protected Loss of Reference: Protected Short Circuit Current Rating: 100,000 RMS symmetrical Amperes Input Line Impedance: Swinging choke 5% equivalent R1-R6, 3% equivalent R8 U1 = Input Voltage U _N = Nominal Motor Voltage U2 = Output Voltage f _N = Nominal Motor Frequency PN = Power – Normal Duty (HP) I _{2N} = Nominal Motor Current – Normal Duty		
Motor Overtemperature Protection (lzt): Protected Input Power Loss of Phase: Protected Loss of Reference: Protected Short Circuit Current Rating: 100,000 RMS symmetrical Amperes Input Line Impedance: Swinging choke 5% equivalent R1-R6, 3% equivalent R8 U1 = Input Voltage U _N = Nominal Motor Voltage U2 = Output Voltage f _N = Nominal Motor Frequency PN = Power – Normal Duty (HP) I _{2N} = Nominal Motor Current – Normal Duty		
Input Power Loss of Phase: Protected Loss of Reference: Protected Short Circuit Current Rating: 100,000 RMS symmetrical Amperes Input Line Impedance: Swinging choke 5% equivalent R1-R6, 3% equivalent R8 U_1 = Input Voltage U_N = Nominal Motor Voltage U_2 = Output Voltage f_N = Nominal Motor Frequency P_N = Power – Normal Duty (HP) I_{2N} = Nominal Motor Current – Normal Duty		
Loss of Reference: Protected Short Circuit Current Rating: 100,000 RMS symmetrical Amperes Input Line Impedance: Swinging choke 5% equivalent R1-R6, 3% equivalent R8 U_1 = Input Voltage U_N = Nominal Motor Voltage U_2 = Output Voltage f_N = Nominal Motor Frequency P_N = Power – Normal Duty (HP) I_{2N} = Nominal Motor Current – Normal Duty	Input Power Loss of Phase	Protected
Short Circuit Current Rating: 100,000 RMS symmetrical Amperes Input Line Impedance: Swinging choke 5% equivalent R1-R6, 3% equivalent R8 U_1 = Input Voltage U_N = Nominal Motor Voltage U_2 = Output Voltage f_N = Nominal Motor Frequency P_N = Power – Normal Duty (HP) I_{2N} = Nominal Motor Current – Normal Duty		
Input Line Impedance:Swinging choke 5% equivalent R1-R6, 3% equivalent R8 U_1 = Input Voltage U_N = Nominal Motor Voltage U_2 = Output Voltage f_N = Nominal Motor Frequency P_N = Power – Normal Duty (HP) I_{2N} = Nominal Motor Current – Normal Duty		
U_1 = Input Voltage U_N = Nominal Motor Voltage U_2 = Output Voltage f_N = Nominal Motor Frequency P_N = Power – Normal Duty (HP) I_{2N} = Nominal Motor Current – Normal Duty		
U_2 = Output Voltage f_N = Nominal Motor Frequency P_N = Power - Normal Duty (HP) I_{2N} = Nominal Motor Current - Normal Duty		
U_2 = Output Voltage f_N = Nominal Motor Frequency P_N = Power - Normal Duty (HP) I_{2N} = Nominal Motor Current - Normal Duty	LL = Input Voltage	LL = Nominal Motor Voltage
P_N = Power – Normal Duty (HP) I_{2N} = Nominal Motor Current – Normal Duty		
	• • • •	•

ACH550 Control Panel

The ACH550 Control Panel is a multifunction control panel with full graphic LCD display and multiple language capability. The control panel can be connected to and detached from the ACH550 at any time. The panel can be used to upload and copy parameters to other ACH550 drives.

Run Indication and Shaft Direction

Control Panel Display	Significance
Rotating arrow (clockwise or counterclockwise)	Drive is running and at set point
Rotating arrow (clockwise of counterclockwise)	Shaft direction is forward or reverse
Rotating arrow blinking	Drive is operating but not at setpoint
Stationary arrow	Drive is stopped

LED Indicators

The green LED indicates that the power is on and the drive is operating normally. The red LED indicates a fault. A blinking green LED indicates an alarm condition. A blinking red LED indicates a fault that requires power to be cycled off and on to reset the drive.

Fault Indications

The ACH550 Control Panel can display over 20 alarm and fault messages. The last fault and previous faults (1 to 9) are retained in memory. The last fault and previous faults (1 & 2) also record important diagnostic information to assist in troubleshooting. Most faults can be reset by pressing the RESET key (Soft Key 1).

Parameters

Application specific parameters are immediately accessible through a selection of start-up "Assistants". A complete list of parameters is also available grouped by function in approximately 33 menu groups. One of the basic menu functions can be used to display the complete list of changed parameters.

Real Time Clock

The Operator Control Panel includes a real time clock which provides Day, Date and Time information, displayed in a choice of formats. The real time clock has a 10 year battery back up and provides time and date stamping of drive faults and other events. The clock is also used by the ACH550s internal timer functions, providing an integral time clock for start/stop control as well as other control operations.

Control Modes

When the HAND key is pressed, the drive starts and pressing the UP/DOWN keys can modify the reference frequency. The HAND (keypad) control mode is indicated.

When the OFF key is pressed, the drive stops and the OFF control mode is indicated.

When the AUTO key is pressed, the AUTO control mode is indicated. The drive can be started and stopped using whichever remote start/stop command has been configured, a contact closure applied to the start/stop input, a serial communication command or a process feedback signal. In AUTO mode the drive speed is typically controlled by the external speed reference input or by the PID controller.

If the HAND key is pressed while the drive is running in the AUTO control mode, the drive continues to run without changing speed, but ceases to respond to external input or PID speed reference changes. (Bumpless transfer) Pressing the UP/DOWN keys can modify the reference frequency.

If the AUTO key is pressed while the drive is running in the HAND control mode and an external start command is present, the drive continues to run and follows the acceleration or deceleration control ramp to the speed set by the external input or PID speed reference. (Bumpless transfer)

Terminal	Description	Note
U1, V1, W1	3~ power supply input	Use of 1~ supply requires 50% derate of output current and is applicable for 208 to 240 VAC operation only.
PE / GND	Protective Ground	Follow local rules for cable size.
U2, V2, W2	Power output to motor	
Uc+, Uc-	DC bus	
X1 1 to 18	Control Wiring	Low voltage control – Use shielded cable
X1 19 to 27	Control Wiring	Low voltage or 115VAC
X1 28 to 32	Serial Communications	Use shielded cable

Cable Connections

Follow local codes for cable size. To avoid electromagnetic interference, use separate metallic conduits for input power wiring, motor wiring, control and communications wiring. Keep these four classes of wiring separated in situations where the wiring is not enclosed in metallic conduit. Also, keep 115VAC control wiring separated from low voltage control wiring and power wiring.

Use shielded cable for control wiring.

Ampacity is based on the use of 60 °C rated power cable up to 100 Amps (75 °C over 100 Amps).

Refer to the included tables for current ratings, fuse recommendations and maximum wire size capacities and tightening torques for the terminals. The ACH550 is suitable for use on a circuit capable of delivering not more than 100,000 RMS symmetrical amperes, 480 V maximum. The ACH550 has an electronic motor protection feature that complies with the requirements of the National Electric Code (NEC). When this feature is selected and properly adjusted. Additional overload protection is not required unless more than one motor is connected to the drive or unless additional protection is required by applicable safety regulations.

For CE installation requirements, see ABB publication CE-US-02 "CE Council Directives and Variable Speed Drives." Contact your local ABB representative for specific IEC installation instructions.

ACH550 with ABB E-Clipse bypass Overview

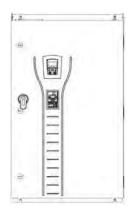
ABB E-Clipse bypass Standard Features

- Door Interlocked Disconnect or Circuit
 Breaker
- English Language Back-Lit LCD Display
- Operator Control Panel
- LED Status Pilot Lights
- Smoke Control
- Override Mode
- Serial Communications
- 5 Programmable Relay Outputs (Form C)
- 100% Functionality with Drive Removed
- Programmable Auto Transfer to Bypass
- Plain English Safety Annunciation
- UL & cUL Listed
- Seismic Zone 4 Certified (IBC 2006)
- UL Type 1 or Type 12 Enclosure
- Programmable Class 10, 20, or 30 OL
- Automatic Restart
- 24 Month Parts and Labor Warranty (with Certified Start-up)

- Two Contactor Bypass
- System Status Display
- Bypass Diagnostics Display
- Drive Exclusive Fast-Acting Fuses
- Electronic Motor Overload Protection
- Damper Control VFD and Bypass Modes
- 6 Digital Inputs (5 programmable)
- Single Phase Protection in VFD & Bypass Mode
- Bullet Proof Contactor Protection
- Serial Communications Pass Through I/O
- Proof-of-Flow Indication & Action
- Conformal Coated Circuit Boards
- +30%; -35% Input Voltage Tolerance
- Run Permissive Circuit
- Supervisory Control
- UL Listed I²T Electronic Overload
- UL Listed and tested 100,000 Ampere SCCR (VCR and BCR Units)

The ACH550 with ABB E-Clipse bypass is an ACH550 HVAC Drive in an integrated UL Type 1, UL Type 12 or NEMA 3R enclosure with a bypass motor starter. The ACH550 with ABB E-Clipse bypass provides an input disconnect switch or circuit breaker with door mounted and interlocked operator (padlockable in the OFF position), a bypass starter, electronic motor overload protection, a local programming and operator keypad with indicating lights, provisions for external control connections, and serial communications capability. Certain configurations (+F267) also provide a drive service switch.

The ACH550 with ABB E-Clipse bypass includes two contactors. One contactor is the bypass contactor, used to connect the motor directly to the incoming power line in the event that the ACH550 is out of service. The other contactor is the ACH550 output contactor that disconnects the ACH550 from the motor when the motor is operating in the Bypass mode. The drive output contactor and the bypass contactor are electrically interlocked to prevent "back feeding".



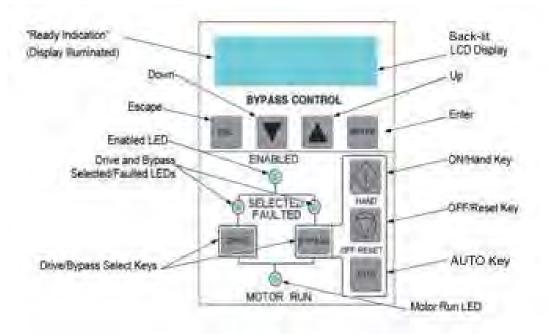
The ACH550 with ABB E-Clipse bypass is a microprocessorcontrolled "intelligent" system which features programmable Class 20 or 30 overload curves, programmable underload (broken belt) and overload trip or indication. Also included as standard features are single-phase protection in bypass mode, programmable manual or automatic transfer to bypass, fireman's override, smoke control, damper control, no contactor chatter on brown-out power conditions and serial communications. Should a drive problem occur, fast acting fuses exclusive to the ACH550 drive path disconnect the drive from the line prior to clearing upstream branch circuit protection, maintaining bypass capability.

Serial communications

All ABB E-Clipse bypass units have the following Embedded Fieldbus (EFB) protocols included as standard: Modbus RTU; Johnson Controls N2; Siemens Building Technologies FLN (P1); and BACnet (MS/TP).

The ACH550 with ABB E-Clipse bypass has the ability to monitor VFD/Bypass mode of operation, the status of the bypass H-O-A switch, bypass fault and override status over serial communication. In addition, the user can monitor and / or control over 45 points of bypass information via the communications protocols. Serial communication capabilities include - bypass run-stop control; the ability to force the unit to bypass; and the ability to control all relay outputs. The DDC system can monitor bypass feedback such as, current (in amps), kilowatt hours (resettable), operating hours (resettable), and bypass logic board temperature. The DDC system is also capable of monitoring the bypass relay output status, and all digital input status'. All bypass diagnostic warning and fault information is transmitted over the serial communications bus. Remote system (drive or bypass) fault reset is possible.

Vertical & Standard ABB E-Clipse bypass Exterior Views


ABB E-Clipse bypass Operator Control

ACH550 Control Panel

The ACH550 Control Panel is a keypad with an LCD unit that provides status indication and operator controls for the ACH550 drive. In normal operation with the ABB E-Clipse bypass, the ACH550 should be placed in the *Auto* mode of operation by pressing the *Auto* key on the ACH550 Control Panel. Refer to the *ACH550 User* is *Manual* for additional information on the ACH550 Control Panel and other aspects of ACH550 operation.

Bypass Control Keypad

The ABB E-Clipse bypass has a separate keypad with an LCD unit that provides status indication and programming of the system. This keypad is also used for selecting the *Drive* or *Bypass* mode of operation and manually starting and stopping the motor in the *Bypass* mode. The bypass keypad has LED indicating lights that indicate the status of both the bypass and the drive as well as an LCD display that provides programming, status and warning/fault indications.

The illustration below shows the bypass control keypad and identifies the keys and LED indicating lights.

The functions of the various keys and LEDs are described in the following table.

Enabled LED	 The Enabled LED is illuminated green under the following conditions: Both the Safety Interlock(s) and Run Enable contacts are closed. The Safety Interlock(s) contact are closed with no Start command present. The Enable LED flashes green if the Run Enable contact is open and when the Safety Interlock contact(s) are closed and a Start command is present. The Enable LED is illuminated red when the Safety Interlock contact(s) are open.
Drive Selected LED	The <i>Drive Selected</i> LED is illuminated green when the drive has been selected as the power source for the motor and no drive fault is present.
Bypass Selected LED	The <i>Bypass Selected</i> LED is illuminated green when the bypass has been selected as the power source for the motor and no bypass fault is present.
Motor Run LED	The <i>Motor Run</i> LED is illuminated green whenever the system is running. The <i>Motor Run</i> LED flashes green to indicate the system has been placed in an Override operating mode.
Drive Faulted LED	The <i>Drive Fault</i> LED is illuminated red when the bypass has lost its' communications link with the drive or when the motor or drive protection functions have shut down the drive.
Bypass Faulted LED	The <i>Bypass Faulted</i> LED is illuminated or flashes red when the motor or bypass protective functions have shut down the bypass.
Drive Key	The <i>Drive</i> Key selects the drive as the power source for the motor.
Bypass Key	The <i>Bypass</i> Key selects the bypass as the power source for the motor.
Auto Key	The <i>Auto</i> key selects the <i>Auto Start</i> contact or serial communications as the means for starting and stopping the motor in the bypass mode.
Off/Reset Key	The <i>Off/Reset</i> key may be used to manually stop the motor if the motor is running on bypass power. The <i>Off/Reset</i> Key also resets most bypass faults. It may take several minutes before the bypass can be reset after an overload trip. If a bypass fault condition is present, the second push of the <i>Off/Reset</i> key puts the bypass in the Off mode.
Hand Key	The <i>Hand</i> key can be used to manually start the motor when the bypass has been selected as the power source for the motor.
UP Key	Used to navigate through system programming steps.
Down Key	Used to navigate through system programming steps.

Control Modes

Drive mode

Under normal conditions the system is in the *Drive* mode. The ACH550 drive provides power to the motor and controls its speed. The source of the drive's start/stop and speed commands is determined by the *Auto* or *Hand* mode selection of the drive's keypad. Commands come from the control terminals or serial communications when the *Auto* mode has been selected or from the drive keypad when the *Hand* mode has been selected. The user can normally switch to the *Drive* mode by pressing the *Drive* key on the bypass keypad.

Bypass mode

In the *Bypass* mode, the motor is powered by AC line power through the bypass contactor. The source of the bypass'start/stop commands is determined by the *Auto* or *Hand* mode selection of the bypass' keypad. Commands come from the control terminals or serial communications when the *Auto* mode has been selected or from the bypass keypad when the *Hand* mode has been selected. The user can normally switch to the *Bypass* mode by pressing the *Bypass* key on the bypass keypad.

Bypass Override mode

In the *Bypass Override (Override 2)* mode, the motor is powered by AC line power through the bypass contactor. The source of the start command is internal and unaffected by external stop commands. The VFD Keypad and the Bypass Keypad will not accept user commands when the system is in Bypass Override mode (the keypad user inputs are disabled). The user can switch to the *Bypass Override* mode by closing the *Bypass Override* input contact (DI 5-if programmed). When the *Bypass Override* input contact is closed, the system is forced to bypass and does not respond to the *Drive* and *Bypass* keys. The Motor Run LED flashes green when the system is in override. While in *Bypass Override* the system responds to bypass overloads and programmed faults. The system may be custom programmed to acknowledge or disregard certain faults, safeties and enables. The unit is default programmed to ignore all external safeties and run enables. See Group 17 for programmability of the digital input and fault functions. Normally when the *Bypass Override* input contact is closed, in which case the system remains in *Smoke Control (Override 1)* input contact is closed, in which case the system remains in *Smoke Control* operation.

Hand mode

When the system is in the *Bypass* mode, the operator can manually start the motor by pressing the *Hand* key. The motor will run and the *Hand* LED will be illuminated green. In order to run the motor, the *Safety Interlock* and *Run Enable* contacts must be closed (green *Enable* LED) and any bypass fault must be reset.

Auto mode

In the *Auto* mode the bypass start/stop command comes from the *Start/Stop* input terminal on the bypass control board or from serial communications – if programmed. The *Auto* mode is selected by pressing the *Auto* key on the bypass keypad. The *Auto* LED is illuminated green when the bypass is in the *Auto* mode. If the system is in the *Bypass* mode, the motor will run across the line if the *Auto* mode is selected, the *Start/Stop, Safety Interlock* and *Run Enable* contacts are closed and any bypass fault is reset.

Off Mode

If the motor is running in the *Bypass* mode, the operator can manually stop the motor by pressing the *OFF* key. The *Motor Running* LED will go out. The motor can be restarted by pressing the *Hand* key or the bypass can be returned to the *Auto* mode by pressing the *Auto* key. If the system is in the *Drive* mode, pressing the *OFF* key will take the bypass out of the *Auto* mode, but will not affect motor operation from the drive. If the system is switched to the *Bypass* mode, a motor that is running will stop.

Programmable Relay Contact Outputs

The ABB E-Clipse bypass has five programmable relay outputs as standard. The default programming descriptions for these relay outputs is described below.

Bypass Not Faulted

The *Bypass Not Faulted* relay is energized during normal operation. The *Bypass Not Faulted* relay is deenergized when a bypass fault has occurred.

System Running

The *System Running* relay is energized when the ABB E-Clipse bypass System is running. The *System Running* relay provides an output when the motor is running whether powered by the ACH550 drive or the bypass.

System Started

The *System Started* relay is energized when the ABB E-Clipse bypass system is started. Three conditions must be met in order for the relay to energize. 1) a *Start* command must be present, 2) the *Safety Interlock* input contact must be closed and 3) there can be no fault present in the system. The *Start* command can come from the bypass control board terminal block, the ACH550 keypad, the bypass keypad, or serial communications depending on the operational mode selected. The *System Started* relay is ideal for use in damper actuator circuits, opening the dampers only under those conditions where the system is preparing to run the motor. The *System Started* relay will de-energize, closing the dampers if the safeties open, the system faults, or when a *Stop* command is issued.

Bypass Selected

Relay output four is factory default programmed for Bypass Selected. The relay will be energized anytime the user has placed the system in Bypass mode.

Bypass Auto

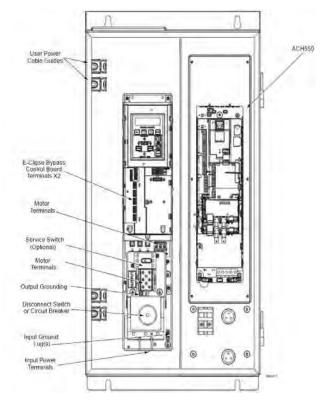
Relay Output five is factory default programmed for *Bypass Auto*. The relay will be energized anytime the user has placed the bypass in the Auto mode.

The complete list of programmable relay output functions follows:

Cable Connections

The following illustrations show the ACH550 with ABB E-Clipse bypass cable connection points for the various enclosure styles. The illustrations indicate the location of input and output power connections as well as equipment and motor grounding connection points.

ACH550 drives are configured for wiring access from the bottom only on Vertical ABB E-Clipse bypass units and from the top only on Standard ABB E-Clipse bypass units. At least three separate metallic conduits are required, one for input power, one for output power to the motor and one for control signals.

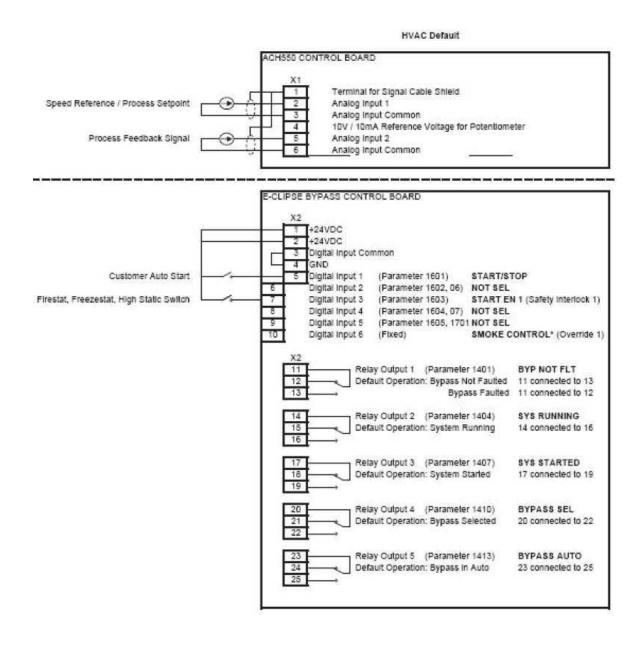

All ABB E-Clipse bypass units provided with a circuit breaker input - VCR and BCR configurations have a panel short circuit current rating of 100,000 RMS symmetrical Amperes. Units provided with a disconnect input - VDR and BDR configurations require separate external low peak fuses (supplied by others) to obtain the 100,000 KAIC SCCR.

Terminal Sizes

Power and motor cable terminal sizes are shown in the *Submittal Schedule Details* and in the *Wire Size Capacities of Power Terminals* Table. The information provided is for connections to an input circuit breaker or disconnect switch, a motor terminal block, overload relay and ground lugs. The table also lists torque that should be applied when tightening the connections.

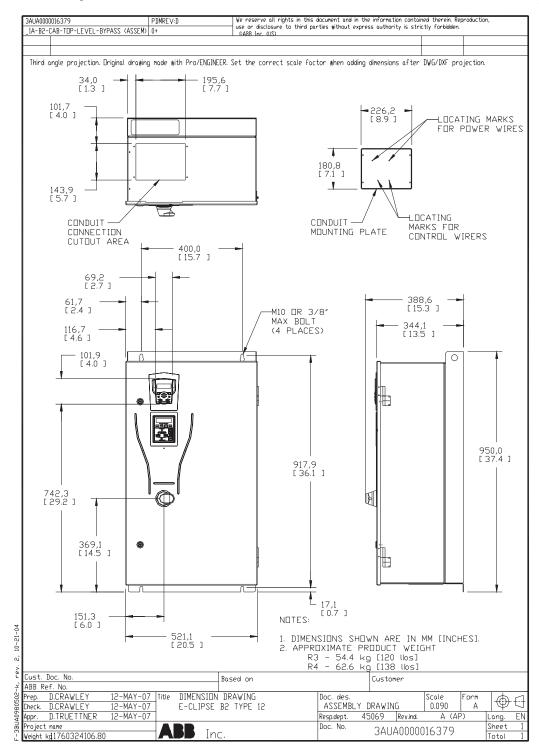
Protections

All ABB E-Clipse bypass units include the following protective features: single phase input and output; motor open phase; motor overload (UL Listed); stuck contactor; contactor coil open; undervoltage; motor underload (proof-of-flow / broken belt); serial communications loss; and overtemperature. All printed circuit boards are conformally coated as standard.

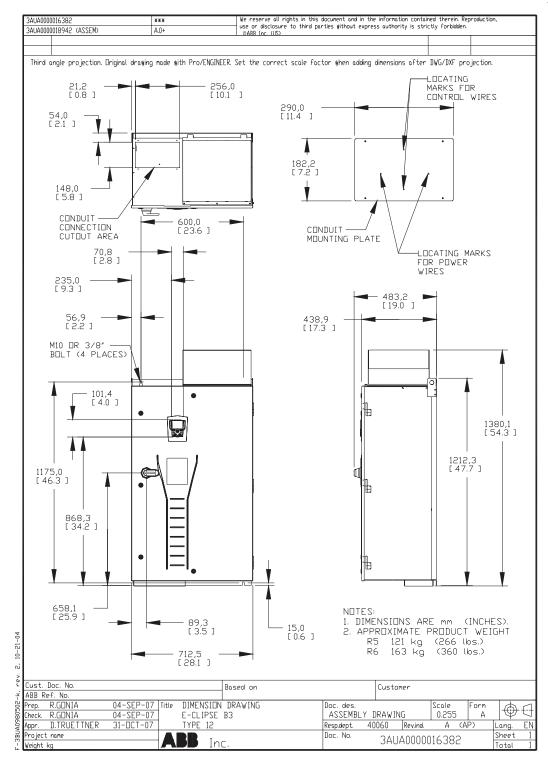

Internal Layout Drawings

Standard Wall Mount ABB E-Clipse Bypass

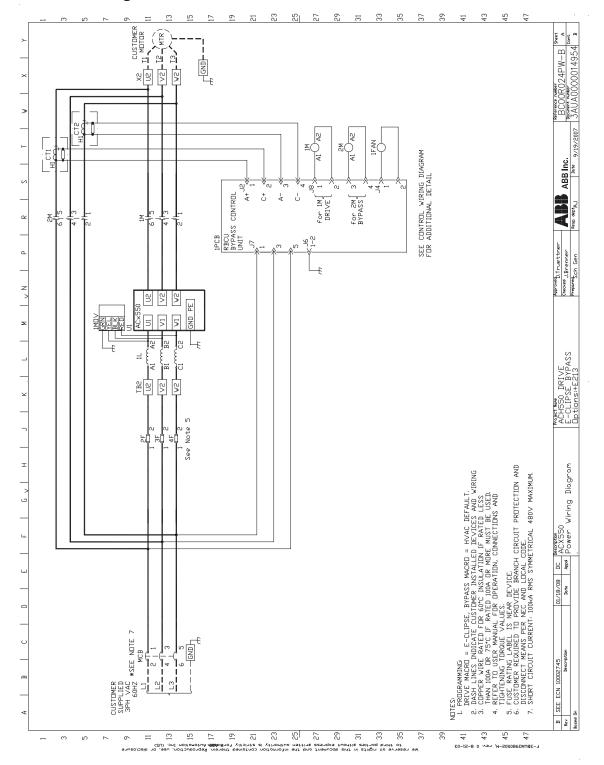
Standard Floor Mount ABB E-Clipse Bypass

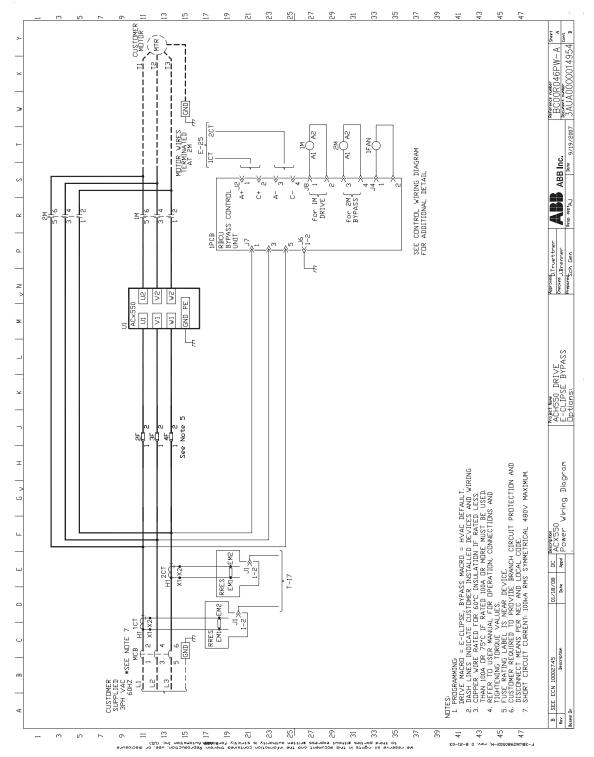

Control Terminals

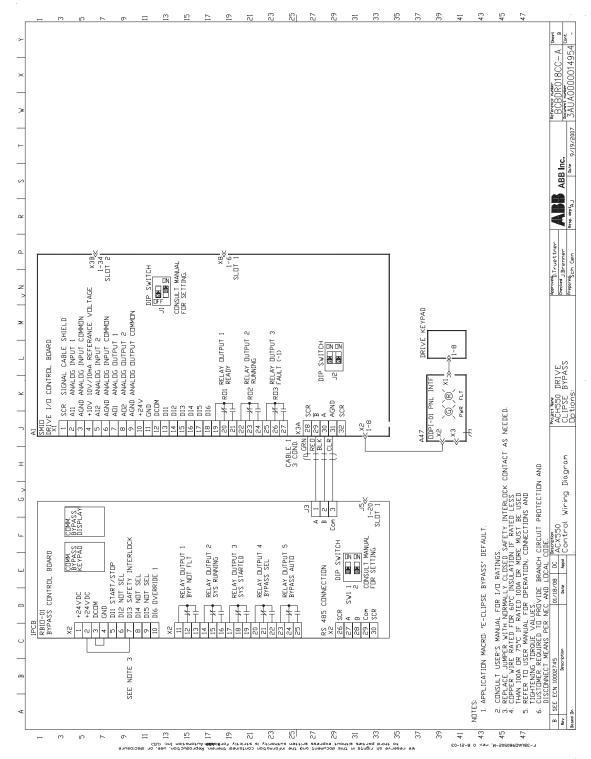
The control wiring includes connections to an analog speed command signal and a start/stop relay contact for controlling the motor in the AUTO mode. There may also be connections to external run enable interlock contacts and a connection from the Motor Run contact to an external status indication circuit. For a detailed description of the control circuit functions and alternate Control Connection diagrams, refer to the *ACH550 with ABB E-Clipse bypass Users Manual*.



Basic Control Connections for Damper Actuator Control


Dimension Drawing for 60 HP


Dimension Drawing for 125 HP, 150 HP



Power Drawing for 60 HP

Connection Drawing for 60 HP, 125 HP, 150 HP

CORPORATE EQUIPMENT COMPANY

SALES AND SERVICE OF ENGINEERED PUMPING EQUIPMENT SINCE 1948

July 24, 2007

INSTALLATION, OPERATION & MAINTENANCE MANUAL

PROJECT:Cincinnati Bell Telephone
Chiller UpgradeENGINEER:Pedco E&A Services, Inc.

CONTRACTOR: Peo

Peck, Hannaford + Briggs, Inc. P.O. S-89688-887

Equipment:

(2) <u>Condenser Water Pumps</u>

Peerless Pump model 10AE14A with base, coupling and 125 HP, 1800 RPM, premium efficiency motors.

(3) Chilled Water Pumps

Peerless Pump model 8AE15 with base, coupling and 150 HP, 1800 RPM, premium efficiency motors.

IOM Manual - Horizontal Pumps.

IOM Manual - Peerless AE Mechanical Seals.

REK/dlm submittal cintibell70724

PEERLESS PUMP

2

Corporate Equipment Company

Cincinnati, Oh 45215 Ron Kastner Ext 113 Phone 513-771-6696 Fax 513-771-0334 Customer : Corporate Equipment Company Peck Hannaford & Briggs C/O Cincinnati Bell Telephone Cincinnati, Oh 45201

			Contact :		
Project :	Cincinnati Bell Chiller Upgrade		Phone :	513-702-5427	Fax:
Quote No. :	Cinti Bell PHB Order S89688-887 01Bage No :	10	Date :	Sunday, February 11	, 2007

	ndenser Water Pumps	Flow (US gpm)	Head (ft)	Eff. (%)	Power (hp)	Speed (RPM)
Model : Peerless - 10AE14A	5583	70	84.5	120.3	1781	
		Liquid	Temp. (°F)	Sp. Gravity	Visc. (cSt)	Dia. (inch)
		Water	68	1,000	1.007	10.95

Item No	Description	Weight (lb)	Qty
1	10AE14A - CI/Brz Fit Horiz Mount, Mechanical Seal	2760	2
2	CI Casing with 125lb Suct /125lb Disch FF ANSI flanges	0	2
3	Hardware & Gasket for 125lb/125lb ANSI Flanged Casing	0	2
4	Bronze Impeller with Integral Rings	0	2
5	Bronze Casing Rings	0	4
6	Standard Grease Lube Bearings	0	2
7	RH 416 SS Shaft Double Row Outboard Bearing	0	2
8	Double Row Outboard/Sgl Row Inboard Brgs with Std Lip Seals	0	1
9	416 SS Shaft Sleeves (set of 2)	0	1
10	Std Mech Seals 225° F Max (set of 2)	0	1
11	Two Cyclone Separator Flush Piping Mounted	12	
12	B 180 N-EUPEX, Flexible Coupling, Flender	61.6	1
13	Standard Fab Steel, Coupling Guard, Factory	16	3
14	Horiz Fab Non-Drip Rim Base, Mounting Parts, Factory	630	
15	125Hp 1800R 405TS 460V 3P 60Hz FullVoltStart PremEff 1.15SF, Horiz Ft Mtd Mtr ODP F1, WEG	2414	3

Cincinnati, Oh 45215 Ron Kastner Ext 113 Phone 513-771-6696 Fax 513-771-0334 Customer : Corporate Equipment Company Peck Hannaford & Briggs C/O Cincinnati Bell Telephone Cincinnati, Oh 45201

Project : Quote No. :	Cincinnati Bell Chiller Upgrade Cinti Bell PHB Order S89688-8	37 01 886ë No. :	11	Contact : Phone : Date :	513-702-5427 Fax : Sunday, February 11, 2007	
Pump Model: Type:	Peerless - 10AE14A AE Horiz Mtg - Horizontal Split Case Single Stage	Nom. Speed: Impeller Dia.: Temperature:	10.95 68	°F	Duty Head : Efficiency : Power Required :	5583 US gpm 70 ft 84.5 % 120.3 hp
Curve No.: mpeller No. em : 'our Ref.:	3132135 2693193 Condenser Water Pumps		1.007 1.000 Water Hyd Inst-Pee		NPSH Required : Peak Power: Closed Valve Pressure	25.4 ft 122.4 hp 138.1 ft
150			_			90 80 70
н - истан - 100 - н - 100 - н			_			60 50 40 30
50-						-10
E 30 20 10						
100- 50-						
	2,000		4,0 Flow - U		6,000	8,000

Peerless Pump Company - RAPID v8.25.0 - 15th January 2007.

PEERLESS

Cincinnati, Oh 45215 Ron Kastner Ext 113 Phone 513-771-6696 Fax 513-771-0334 Customer : Corporate Equipment Company Peck Hannaford & Briggs C/O Cincinnati Bell Telephone Cincinnati, Oh 45201

				Contact :		
Project : Quote No. :	Cincinnati Bell C	hiller Upgrade rder S89688-887 01Baga	No.: 12	Phone : Date :	513-702-5427 Sunday, February 1	Fax :
						11,2001
Flow	Hea	d Efficiency	Power Required	NPSH Re	quired	
(US gp)	m) (ft	(%)	(hp)	(ft)		
2406.	.7 122.	4 65.3	114.0			
2870.	.6 116	3 72.1	116.9	16.9	1	
3334.	.5 109.	3 77.1	119.4	17.4	ł.	
3798.	.4 101.	8 80.6	121.3	17.8	5	
4262.	.3 94.	2 82.9	122.3	18.5)	
4726.	.2 86.	5 84.4	122.3	19,8	5	
5190.	.1 78.	9 85.1	121.5	22.3	6	
5654.	0 70.	8 84.2	120.1	26.1		
6117.	.8 61.	6 80.4	118.4	31.9		

Contant .

Cincinnati, Oh 45215 Ron Kastner Ext 113 Phone 513-771-6696 Fax 513-771-0334 Customer : Corporate Equipment Company Peck Hannaford & Briggs C/O Cincinnati Bell Telephone Cincinnati, Oh 45201

			Contact :		
Project : Cincinnati Bell Chiller Upgrade			Phone :	513-702-5427	Fax :
Quote No. :	Cinti Bell PHB Order S89688-887 01Bage No :	13	Date :	Sunday, February 11, 200	

Item:	Condenser Water Pumps	Flow (US gpm)	Head (ft)	Eff. (%)	Power (hp)	Speed (RPM)
Model: Peerless - 10AE14A	5583	70	84.5	120.3	1781	
		Liquid	Temp. (°F)	Sp. Gravity	Visc. (cSt)	Dia. (inch)
		Water	68	1.000	1.007	10.95

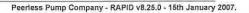
Technical Information:

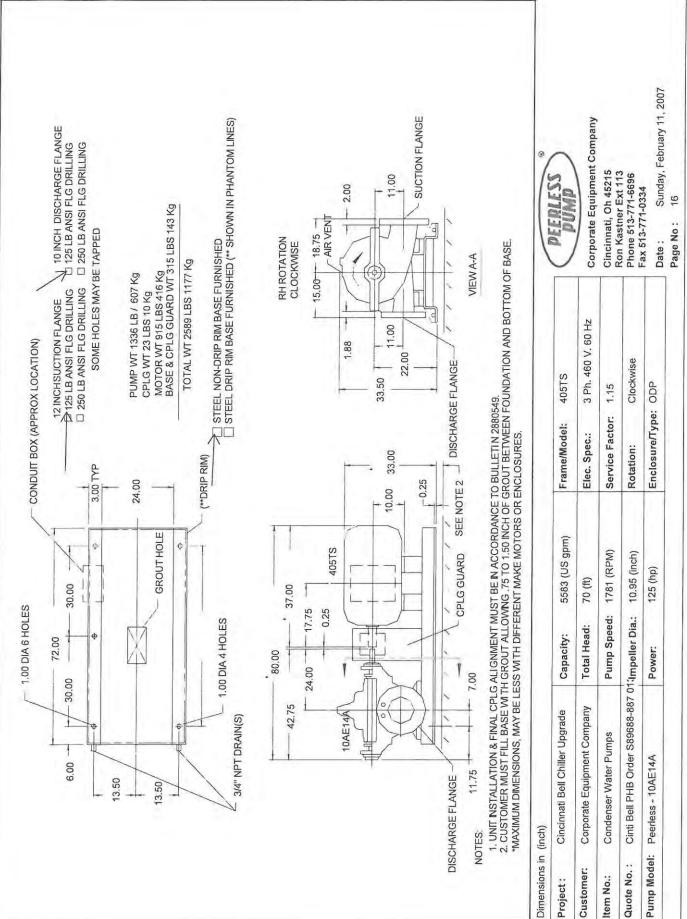
Technical Information: 10AE14A

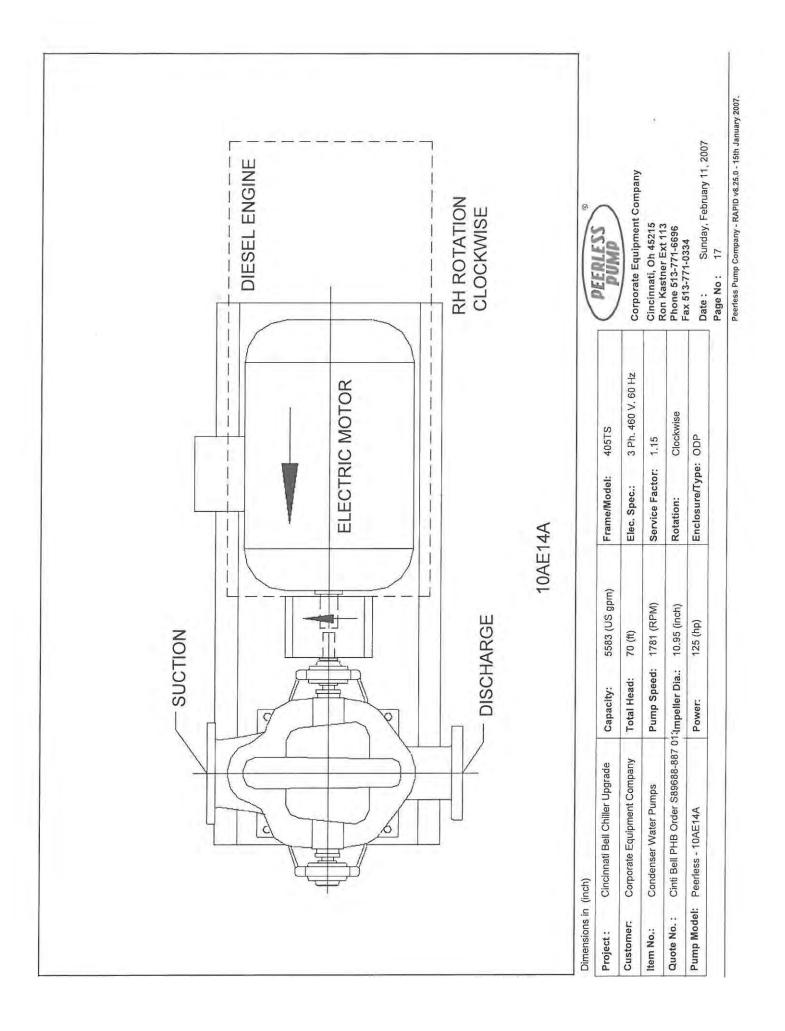
Casing Suction Design	Double	
Casing Volute Design	Double	
Nominal Casing Thickness Inches	0.62	
Corrosion Allow Inches	0.12	
Max Suct Press PSI MechSeal 125# Suct less than or = to 150°F CI	150	<
Max Suct Press PSI MechSeal 250# Suct less than or = to 150°F CI	150	
Max Suct Press PSI MechSeal 250# Suct less than or = to 150°F DI	150	
Max Suct Press PSI Packed 125# Suct CI Csg	150	
Max Suct Press PSI Packed 250# Suct CI Csg	150	
Max Suct Press PSI Packed 250# Suct DI Csg	150	
Max Work Press PSI MechSeal 125# Dischg less than or = to 150°F CI	175	<
Max Work Press PSI MechSeal 250# Dischg less than or = to 150°F CI	250	
Max Work Press PSI MechSeal 250# Dischg less than or = to 150°F DI	Refer to factory	
Max Work Press PSI Packed 125# Disch CICsg	175	
Max Work Press PSI Packed 250# Disch CICsg	250	
Max Work Press PSI Packed 250# Disch DI Csg	Not Available	
Max Suct Press PSI Mech Seal 125# Suct 200°F CI	137	
Max Suct Press PSI Mech Seal 250# Suct 200°F CI	137	
Max Suct Press PSI Mech Seal 250# Suct 200°F DI	137	
Max Suct Press PSI Packed 125# Suct 200°F CI	137	
Max Suct Press PSI Packed 250# Suct 200°F CI	137	
Max Suct Press PSI Packed 250# Suct 200°F DI	137	
Max Work Press PSI Mech Seal 125# Disc 200°F CI	162	

PEEL

Cincinnati, Oh 45215 Ron Kastner Ext 113 Phone 513-771-6696 Fax 513-771-0334 Customer : Corporate Equipment Company Peck Hannaford & Briggs C/O Cincinnati Bell Telephone Cincinnati, Oh 45201


그렇게 다 말 물 것 같아요? 정말 것 이렇게 정말 것이 없는 것이 같아요	702-5427 Fax : ay, February 11, 2007
Max Work Press PSI Mech Seal 250# Disc 200°F CI	232
Max Work Press PSI Mech Seal 250# Disc 200°F DI	Not Available
Max Work Press PSI Packed 125# Disch 200°F CI	162
Max Work Press PSI Packed 250# Disch 200°F CI	232
Max Work Press PSI Packed 250# Disch less than or = to 200°F DI	Not Available
Max Suct Press PSI Mech Seal 125# Suct less than or = to 225°F CI	125
Max Suct Press PSI Mech Seal 250# Suct less than or = to 225°F CI	125
Max Suct Press PSI Mech Seal 250# Suct less than or = to 225°F DI	Not Available
Max Suct Press PSI Packed 125# Suct less than or = to 250°F CI	125
Max Suct Press PSI Packed 250# Suct less than or = to 250°F CI	125
Max Suct Press PSI Pack 250# Suct 250° F DI	Not Available
Max Work Press PSI Mech Seal 125# Dischg less than or = to 225°F CI	130
Max Work Press PSI Mech Seal 250# Dischg less than or = to 225°F CI	225
Max Work Press PSI Mech Seal 250# Dischg less than or = to 225°F DI	Not Available
Max Work Press PSI Pack 125# Dischg less than or equal to 250°F CI	150
Max Work Press PSI Packed 250# Dischg less than or = to 250°F CI	215
Max Work Press PSI Packed 250# Dischg less than or = to 250°F DI	Not Available
Shaft Diameter Through Impeller Inches	2.5
Shaft Dia Through Coupling Inches	2.25
Cutwater Diameter Inches	15.08
Impeller Diameter at 90% of Cutwater Diameter	13.57
Impeller Diameter at 85% of Cutwater Diameter	12.82
Minimum Impeller Diameter Inches	Not Applicable
Minimum Impeller Average Diameter Inches	10
WR2 Lb-Ft2 Wet Bronze Impeller	16
Number of Impeller Vanes	8
Stuffing Box Shaft Sleeve Diameter Inches	2.75
Stuffing Box Bore Inches	4
Stuffing Box Depth Inches	4.12
Stuffing Box Face Nearest Obstruction Along Shaft In	2.44
Stuffing Box Square Packing Inches	0.625
Stuffing Box Packing Rows without Lantern Ring	6




Cincinnati, Oh 45215 Ron Kastner Ext 113 Phone 513-771-6696 Fax 513-771-0334 Customer : Corporate Equipment Company Peck Hannaford & Briggs C/O Cincinnati Bell Telephone Cincinnati, Oh 45201

oject : rote No. :	Cincinnati Bell Chiller Upgrade Cinti Bell PHB Order S89688-887 01 Bâĝ∉ No :	15	Contact : Phone : Date :	513-702-5427 Sunday, February	Fax : 11, 2007	
Stuffing	Box Packing Rows with Lantern Ring				5	
Stuffing	Box Gland Bolt Circle				7.5	
Stuffing	Box Gland Bolt Dia Inches				0.625	
Radial	Single Row Bearing Size				212	
Thrust	Single Row Bearing Size				310	
Thrust I	Double Row Bearing Size Optional				5310	<
Priming	Connection NPT				1	
Discha	rge Drain NPT				1	
Suction	Drain NPT				0.5	
First Cr	itical Speed RPM				4052	
Max Pu	Imp RPM Standard Construction				1800	
Max Pu	Imp RPM Special Construction				2000	
Rotor S	Series				5	

Peerless Pump Company. - Indianapolis, IN 46207-7026

ELECTRIC MOTOR DRIVER Performance and Data Sheet

Manufacturer	WEG	INVERTER DUTY MOTOR
Catalog No.	12518OT3G	RB405TS
Туре	12518OT3G	RB4
Motor Hp	125	
Synch Rpm	1800	
Motor Frame	405TS	
Low Voltage	0	
High Voltage	460	
Phase	3	
Hertz	60	
Motor Type	SCI	
NEMA Design	В	
Enclosure	ODP	
Class Insulation	F	
Service Factor	1.15	
Type Starting	FULL VOLT	
Type Motor Efficiency	PREM	
Construction	Cast Iron	
Full Load Rpm	1780	
Full Load Efficiency %	95.4	
Full Load Power Factor %	86	
Low Voltage Full Load Amps	282	
High Voltage Full Load Amps	141	
Low Voltage Locked Rotor Amps	0	
High Voltage Locked Rotor Amps	0	
Maximum Altitude in Feet	3300	
Rotation Facing Opposite Shaft End	Clockwise	

The above data are not certified being extracted from manufacturer's published catalog data sheets.

WARRANTY

New equipment manufactured by Peerless Pump Company. (Seller) is warranted to be free from defects in material and workmanship under normal use and service for a period of one year from date of shipment, Seller's obligation under this warranty being limited to repairing or replacing at its option any part found to be so defective provided that such part is, upon request, returned to Seller's factory from which it was shipped, transportation prepaid.

This warranty does not cover parts damaged by decomposition from chemical action or wear caused by abrasive materials, nor does it cover damage resulting from misuse, accident, neglect, or from improper operation, maintenance, installation, modification or adjustment.

This warranty does not cover parts repaired outside Seller's factory without prior written approval. Seller makes no warranty as to starting equipment, electrical apparatus or other material not of its manufacture, since the same are usually covered by warranties of the respective manufacturers thereof.

In the event, notwithstanding the terms of this agreement, it is determined by a court of competent jurisdiction that an express warranty has been given by Seller to Purchaser with respect to the head, capacity or other like performance characteristics of said equipment, Seller's liability for breach of the same shall be limited to accepting return of such equipment F.O.B. plant of manufacture, refunding any amount paid thereon by Purchaser (less depreciation at the rate of 15% per year if Purchaser has used equipment for more than thirty (30) days) and canceling any balance still owing on the equipment.

Peerless Pump Company. in no event will be liable for indirect or consequential damages.

This warranty is expressly in lieu of any other warranties, expressed or implied, and seller specifically disclaims any implied warranty of merchantability or fitness for a particular purpose.

La Bour * Taber PEERLESS

Peerless Pump Company 2005 Dr. Martin Luther King Jr. Street P. O. Box 7026 Indianapolis, Indiana 46207-7026

Phone (317) 925-9661 Fax (317) 924-7388

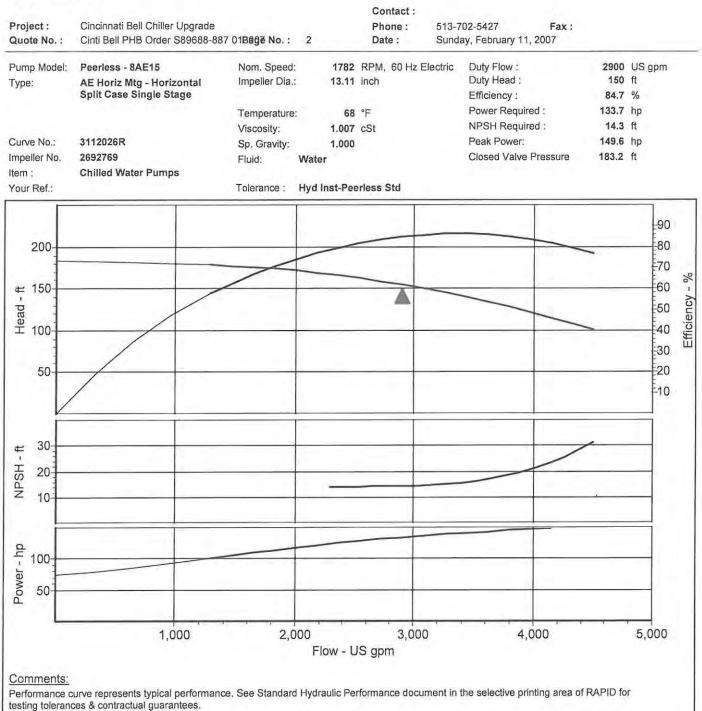
Form S-20 Rev10-15-03

PEERLESS PUMP

.

Corporate Equipment Company

Cincinnati, Oh 45215 Ron Kastner Ext 113 Phone 513-771-6696 Fax 513-771-0334 Customer : Corporate Equipment Company Peck Hannaford & Briggs C/O Cincinnati Bell Telephone Cincinnati, Oh 45201


			Contact :		
Project :	Cincinnati Bell Chiller Upgrade		Phone :	513-702-5427	Fax :
Quote No. :	Cinti Bell PHB Order S89688-887 01Bage No: 1		Date :	Sunday, February 11	, 2007

Item: Chilled Water Pumps	Flow (US gpm)	Head (ft)	Eff. (%)	Power (hp)	Speed (RPM)
Model : Peerless - 8AE15	2900	150	84.7	133.65	1782
	Liquid	Temp. (°F)	Sp. Gravity	Visc. (cSt)	Dia. (inch)
	Water	68	1.000	1.007	13.11

Item No	Description	Weight (lb)	Qty
1	8AE15 - Cl/Brz Fit Horiz Mount, Mechanical Seal	2625	3
2	CI Casing with 125lb Suct /125lb Disch FF ANSI flanges	0	3
3	Hardware & Gasket for 125lb/125lb ANSI Flanged Casing	0	3
4	Bronze Impeller with Integral Rings	0	3
5	Bronze Casing Rings	0	6
6	Standard Grease Lube Bearings	0	3
7	RH 416 SS Shaft Double Row Outboard Bearing	0	3
8	Double Row Outboard/Sgl Row Inboard Brgs with Std Lip Seals	0	3
9	416 SS Shaft Sleeves (set of 2)	0	3
10	Std Mech Seals 225° F Max (set of 2)	0	3
11	No Mechanical Seal Flush Piping	0	3
12	B 180 N-EUPEX, Flexible Coupling, Flender	92.4	3
13	Standard Fab Steel, Coupling Guard, Factory	24	3
14	Horiz Fab Non-Drip Rim Base, Mounting Parts, Factory	945	3
15	150Hp 1800R 444TS 460V 3P 60Hz FullVoltStart PremEff 1.15SF, Horiz Ft Mtd Mtr ODP F1, WEG	4827	3

Cincinnati, Oh 45215 Ron Kastner Ext 113 Phone 513-771-6696 Fax 513-771-0334 Customer : Corporate Equipment Company Peck Hannaford & Briggs C/O Cincinnati Bell Telephone Cincinnati, Oh 45201

Cincinnati, Oh 45215 Ron Kastner Ext 113 Phone 513-771-6696 Fax 513-771-0334 Customer : Corporate Equipment Company Peck Hannaford & Briggs C/O Cincinnati Bell Telephone Cincinnati, Oh 45201

					Contact :		
Project : Quote No. :		ti Bell Chiller	Upgrade S89688-887 01 889ë No.	: 3	Phone : Date :	513-702-5427 Sunday, February 1	Fax : 11, 2007
Flow (US gp		Head (ft)	Efficiency (%)	Power Required (hp)	NPSH R		
1291	.3	178.4	57.7	100.8			
1692	2.6	175.2	67.8	110.4			
2094	.0	170.2	75.5	119.2			
2495	i.4	163.4	81.1	127.0	14.	1	
2896	5.7	154.6	84.6	133.6	14.	3	
3298	.1	143.9	86.1	139.2	15,	1	
3699	.4	131.3	85.3	143.8	17.	6	
4100	.8	116.9	82.2	147.4	22.	7	
4502	.2	100.6	76.4	149.6	31.	1	

. . .

Cincinnati, Oh 45215 Ron Kastner Ext 113 Phone 513-771-6696 Fax 513-771-0334 Customer : Corporate Equipment Company Peck Hannaford & Briggs C/O Cincinnati Bell Telephone Cincinnati, Oh 45201

			Contact :		
Project :	Cincinnati Bell Chiller Upgrade		Phone :	513-702-5427	Fax :
Quote No. :	Cinti Bell PHB Order S89688-887 01Bage No :	4	Date :	Sunday, February 1	1, 2007

Item: Chilled Water Pumps	Flow (US gpm)	Head (ft)	Eff. (%)	Power (hp)	Speed (RPM)
Model : Peerless - 8AE15	2900	150	84.7	133.65	1782
	Liquid	Temp. (°F)	Sp. Gravity	Visc. (cSt)	Dia. (inch)
	Water	68	1.000	1.007	13.11

Technical Information:

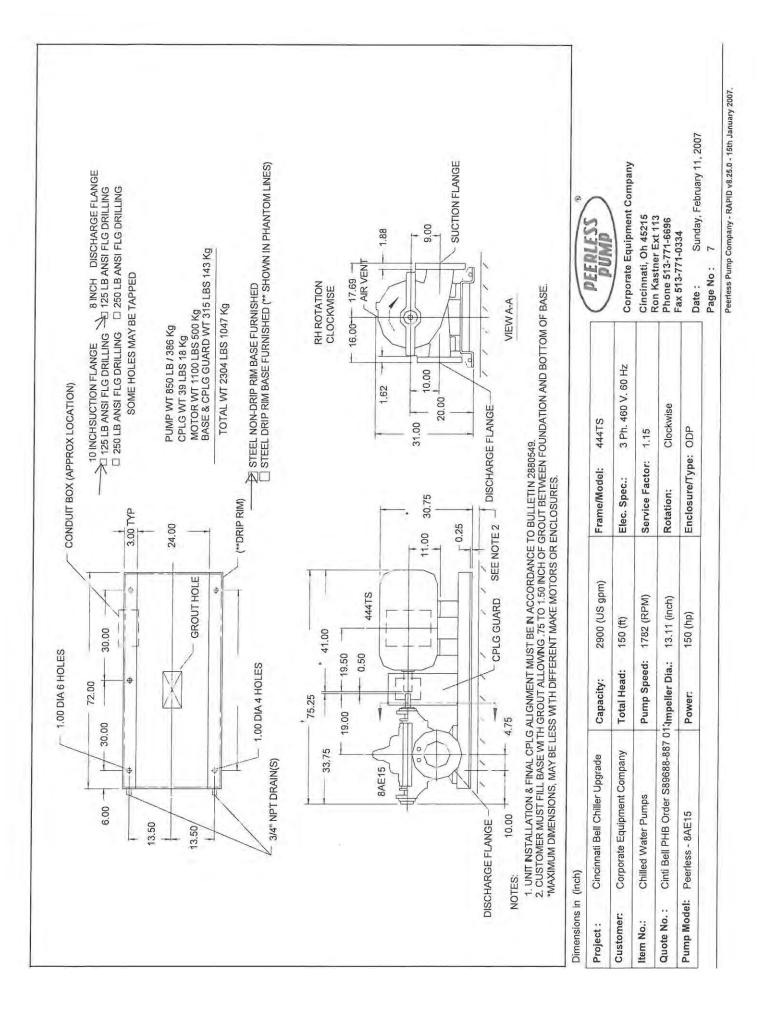
Technical Information: 8AE15

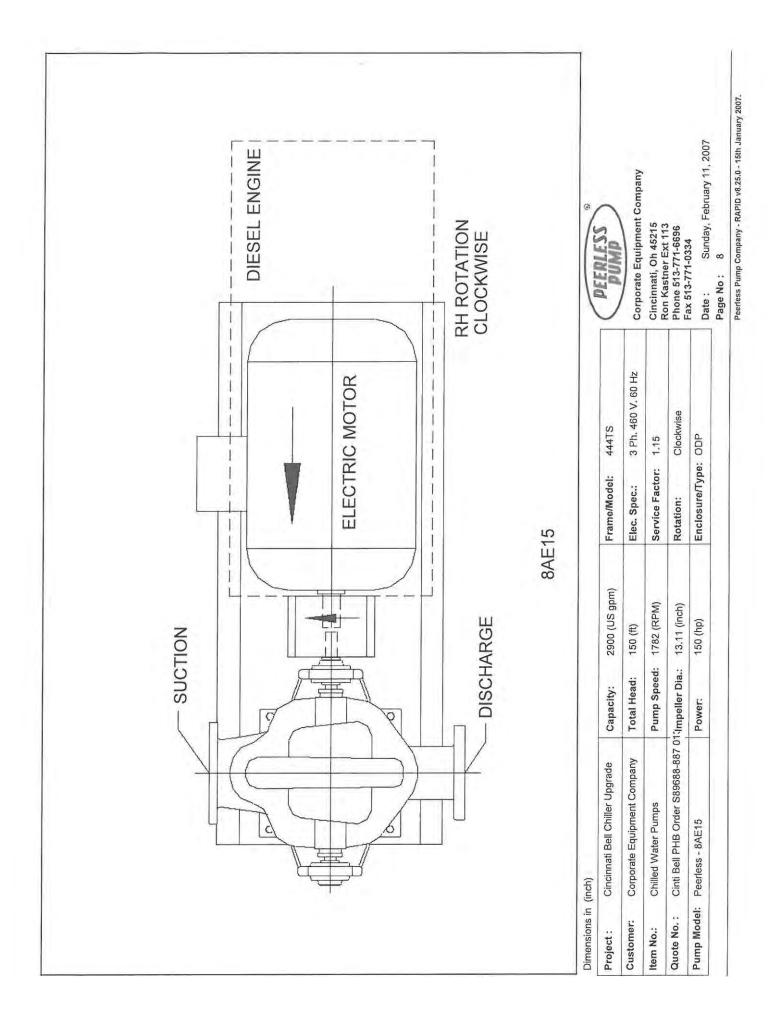
Casing Suction Design	Double	
Casing Volute Design	Single	
Nominal Casing Thickness Inches	0.56	
Corrosion Allow Inches	0.12	
Max Suct Press PSI MechSeal 125# Suct less than or = to 150°F CI	150	\leftarrow
Max Suct Press PSI MechSeal 250# Suct less than or = to 150°F CI	150	
Max Suct Press PSI MechSeal 250# Suct less than or = to 150°F DI	150	
Max Suct Press PSI Packed 125# Suct CI Csg	175	
Max Suct Press PSI Packed 250# Suct CI Csg	175	
Max Suct Press PSI Packed 250# Suct DI Csg	175	
Max Work Press PSI MechSeal 125# Dischg less than or = to 150°F CI	175	<
Max Work Press PSI MechSeal 250# Dischg less than or = to 150°F CI	250	
Max Work Press PSI MechSeal 250# Dischg less than or = to 150°F DI	Refer to factory	
Max Work Press PSI Packed 125# Disch CICsg	175	
Max Work Press PSI Packed 250# Disch CICsg	250	
Max Work Press PSI Packed 250# Disch DICsg	Not Available	
Max Suct Press PSI Mech Seal 125# Suct 200°F CI	150	
Max Suct Press PSI Mech Seal 250# Suct 200°F CI	150	
Max Suct Press PSI Mech Seal 250# Suct 200°F DI	150	
Max Suct Press PSI Packed 125# Suct 200°F CI	162	
Max Suct Press PSI Packed 250# Suct 200°F CI	162	
Max Suct Press PSI Packed 250# Suct 200°F DI	162	
Max Work Press PSI Mech Seal 125# Disc 200°F CI	162	

PEERI

Cincinnati, Oh 45215 Ron Kastner Ext 113 Phone 513-771-6696 Fax 513-771-0334 Customer : Corporate Equipment Company Peck Hannaford & Briggs C/O Cincinnati Bell Telephone Cincinnati, Oh 45201

ject : Cincinnati Bell Chiller Upgrade Phone : 513-702- ote No. : Cinti Bell PHB Order S89688-887 01B8ĝë No : 5 Date : Sunday,	-5427 Fax : February 11, 2007
Max Work Press PSI Mech Seal 250# Disc 200°F CI	232
Max Work Press PSI Mech Seal 250# Disc 200°F DI	Not Available
Max Work Press PSI Packed 125# Disch 200°F CI	162
Max Work Press PSI Packed 250# Disch 200°F CI	232
Max Work Press PSI Packed 250# Disch less than or = to 200°F DI	Not Available
Max Suct Press PSI Mech Seal 125# Suct less than or = to 225°F CI	150
Max Suct Press PSI Mech Seal 250# Suct less than or = to 225°F CI	150
Max Suct Press PSI Mech Seal 250# Suct less than or = to 225°F DI	Not Available
Max Suct Press PSI Packed 125# Suct less than or = to 250°F CI	150
Max Suct Press PSI Packed 250# Suct less than or = to 250°F CI	150
Max Suct Press PSI Pack 250# Suct 250° F DI	Not Available
Max Work Press PSI Mech Seal 125# Dischg less than or = to 225°F CI	160
Max Work Press PSI Mech Seal 250# Dischg less than or = to 225°F CI	225
Max Work Press PSI Mech Seal 250# Dischg less than or = to 225°F DI	Not Available
Max Work Press PSI Pack 125# Dischg less than or equal to 250°F CI	150
Max Work Press PSI Packed 250# Dischg less than or = to 250°F CI	215
Max Work Press PSI Packed 250# Dischg less than or = to 250°F DI	Not Available
Shaft Diameter Through Impeller Inches	2.125
Shaft Dia Through Coupling Inches	1.875
Cutwater Diameter Inches	16.38
Impeller Diameter at 90% of Cutwater Diameter	14.74
Impeller Diameter at 85% of Cutwater Diameter	13.92
Minimum Impeller Diameter Inches	Not Applicabl
Minimum Impeller Average Diameter Inches	10.25
WR2 Lb-Ft2 Wet Bronze Impeller	8.8
Number of Impeller Vanes	7
Stuffing Box Shaft Sleeve Diameter Inches	2.375
Stuffing Box Bore Inches	3.5
Stuffing Box Depth Inches	3.75
Stuffing Box Face Nearest Obstruction Along Shaft In	2.2
Stuffing Box Square Packing Inches	0.5625
Stuffing Box Packing Rows without Lantern Ring	6





Cincinnati, Oh 45215 Ron Kastner Ext 113 Phone 513-771-6696 Fax 513-771-0334 Customer : Corporate Equipment Company Peck Hannaford & Briggs C/O Cincinnati Bell Telephone Cincinnati, Oh 45201

roject : uote No. :	Cincinnati Bell Chiller Upgrade Cinti Bell PHB Order S89688-887 01 Båĝē No :	6	Contact : Phone : Date :	513-702-5427 Sunday, February 7	Fax : 11, 2007
Stuffing	g Box Packing Rows with Lantern Ring	anna ar ini anna - an tairige	nannannann sanne seannannan	anderen (antoine antoine	5
Stuffing	g Box Gland Bolt Circle				6.25
Stuffing	g Box Gland Bolt Dia Inches				0.625
Radial	Single Row Bearing Size				.210
Thrust	Single Row Bearing Size				308
Thrust	Double Row Bearing Size Optional				5308 🗧
Priming	g Connection NPT				1
Discha	rge Drain NPT				0.75
Suction	n Drain NPT				0.5
First C	ritical Speed RPM				6013
Max Pu	ump RPM Standard Construction				1800
Max Pu	ump RPM Special Construction				Not Available
Rotor S	Series				4

PEERLESS

Peerless Pump Company. - Indianapolis, IN 46207-7026

ELECTRIC MOTOR DRIVER Performance and Data Sheet

Manufacturer	WEG INVERTER DUTY MOTOR
Catalog No.	15018OT3GRB444TS
Туре	15018OT3GRB4
Motor Hp	150
Synch Rpm	1800
Motor Frame	444TS
Low Voltage	0
High Voltage	460
Phase	3
Hertz	60
Motor Type	SCI
NEMA Design	В
Enclosure	ODP
Class Insulation	F
Service Factor	1.15
Type Starting	FULL VOLT
Type Motor Efficiency	PREM
Construction	Cast Iron
Full Load Rpm	1780
Full Load Efficiency %	95.8
Full Load Power Factor %	87
Low Voltage Full Load Amps	332
High Voltage Full Load Amps	166
Low Voltage Locked Rotor Amps	0
High Voltage Locked Rotor Amps	0
Maximum Altitude in Feet	3300
Rotation Facing Opposite Shaft End	Clockwise

The above data are not certified being extracted from manufacturer's published catalog data sheets.

ENERGY SAVINGS CALCULATIONS for ECM4

	Cincinnati Bell Telephone - Dor	
JAN 2012 V1	Salesforce Opportunity Name	

TA STOTALL		
Salesforce Opportur	unity Name	Cincinnati Bell Telephone - Domestic Water Pump VFDs
Project Name	N/A	
Application #	11-464	Rev. 0
		State OH

Notes 1. Recause of lack of information in the application, the following assumptions were made to calculate the energy swings for this application a. Reflect implementation a. Reflect implementation b. Pumps operate according to the sume schedule as for after implementation b. Pumps operate according to the sume schedule as for after implementation b. Pumps operate at 100% of their design bad a. Pumps operate the consistently throughout the vear, i.e., no significant monthly variations b. After implementation and the implementation and ins of operation proportional to the total hns in the 2 tabs in this file b. Pumps total and much ins of operation proportional to pump speed because much of the head is static head a very Deficiency is 98%.

	Та	Table 1				Table 2	~
Pur	Pump Operating Hours w/VFD	ng Hours v	VFD		do	Operating Hrs for Each Pump	Each Pump
% Pump Speed	<u> </u>	odo sdun	Pumps Operating Hours			Days/Month	Hrs/Month
w/VFD	-	2	e	Totals	Jan	0.0	0
95 - 100% speed	586	568	23	1,177	Feb	0.0	0
90 - 95% speed	853	1,486	19	2,357	Mar	0.0	0
85 - 90% speed	36	149	435	620	Apr	0.0	0
80 - 85% speed	2	3	1,242	1,246	May	31.0	744
75 - 80% speed	1	0	229	230	ηυΓ	30.0	720
<75% speed	4,151	3,422	3,681	11,253	Jul	31.0	744
Total	5,628	5,628	5,628	16,883	Aug	31.0	744
				1	Sep	30.0	720
					Oct	31.0	744
Table 3					Nov	30.0	720
					Dec	20.5	492
Pump & Motor Power Usage	ver Usage				Total	234.5	5,628
arread labor	101						

	er Usage	13.5	85.5%	15.8	11.8	12.0
Table 3	Pump & Motor Power Usage	dund php	motor efficiency	motor input hp	motor kw wo/VFD	motor kw w/VFD

744 744 720 720 492 **5,628**

744

4	
able	
Ē	

61,014	66,313		Total
0	0	0.0%	<75%
2,140	2,706	77.5%	75 - 80%
12,358	14,680	82.5%	80 - 85%
6,518	7,300	87.5%	85 - 90%
26,208	27,766	92.5%	90 - 95%
13,790	13,861	97.5%	95 - 100%
Implem	Implem	ЧН %	% нР капge w/VFD
hr/yr	kw hr/yr		
Dec 21	for May 1	the kW hr	Calculations of the kW hr for May 1

	Year	/yr	_	m Savings	94,968 8,248
	e Entire	kw hr/yr	Afte	Imple	
Table 5	hr/yr for the		Before	Implem	103,216
Ta	Calculations of kw hr/yr for the Entire Year				Total for the year

```
Cell: 835
Comment: bubliesa
At full load - from the pump head and capacity at the design point on pg 3 of 6 & the pump head/capacity curve on pg. 5 of 6 of the "Dom Water Booster pump spec-CEC pd" file
Cell: A20
Comment: bchilesa
For the period May 1 to noon on Dec. 21 - see the "Dec21-May22 DWP 1,2,3" & the "May 21-1 DWP 1,2,3" tabs for 15-minute internal data for this period for each pump
                                                                                                            Cell: G2D
Comment: bohiesa
For the period May 1 to noon on Dec. 21 - see the "Dec21-May27 DWP 1,23" & the "May 21-1 DWP 1,23" tabs for 15-minute interval data for this period for each pump.
- · · ·
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            Cell: B51
Comment: bchiesa
Value of 0.0 used because the overwhelming majority of values in this range are zero.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            Cell: B36
Comment: bchiesa
Per pg. 4 of 6 of the "Dom Water Booster pump spec-CEC.pdf" file
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            Cell: C57
Comment: bchiesa
Data from May 1 to Dec 21 is extrapolated to the entire year
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            Cell: B44
Comment: bchiesa
Values used for calculations of kw-hr in each % HP range
                                                                                                                                                                                                                                                                                                                                                                                                            Comment: bchiesa
For the period May 1 to noon on Dec. 21
                                                                                                                                                                                                                                                                                            Cell: A29
Comment: bchiesa
For the period May 1 to noon on Dec. 21
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            Cell: A39
Comment: bchiesa
At full load
```

Project Submittal for CBTS

Project Number:

Specification:

Engineering Contact:

Contractor:

Architect:

End Customer (User):

Submitted By: WRP Associates, LLC

Quotation Number: 15660362

Revision:

Date: November 14, 2011

Submittal Schedule

This schedule includes the products supplied as part of this submittal.

	Sch	edule Tag /		Motor D	Data ¹	Drive Da	ata	Output	
Item	Qty	Equipment ID	HP	FLA	Voltage	Product ID	HP	Amps	Voltage
1	1	15 HP	15	21	460 VAC	ACH550-BCR-023A-4+B055	15	23	480 VAC
Notes:	Notes: 1. AC Motor Data is per National Electrical Code Table 430.250 for typical motors used in most applications and is provided as typical data only. DC motor data is per typical industry standards. Actual motor data may vary.						led as		

Submittal Schedule Details for 15 HP

Item	Tag / Equipment ID	Product ID
1	15 HP	ACH550-BCR-023A-4+B055

Item Description					
Input Voltage: 480 VAC					
Rated Output Current: 23 AMPS					
Construction: E-clipse-Bypass, Circuit Breaker					
Enclosure: NEMA 12 UL Type 12					
Nominal Horsepower: 15					
Frame Size: R2					
Input Disconnecting Means: Circuit Breaker					
Bypass: E-Clipse Bypass					
Input Impedance: 5%					
Short Circuit Current Rating: 100 kA					
Communication Protocols: Johnson Controls N2, Siemens Buildings Technologies FLN (P1), Modbus RTU,					
BACnet					
Other Options:					

Drive Input Fuse Ratings ¹			
(Note: Drive is UL approved without the need for input fuses. Fuse rating information provided for customer reference)			
Amps (600 V) Bussmann Type			
30 KTK-R-30			

Wire Size Capacities of Power Terminals					
Circuit Breaker	Disconnect Switch	Terminal Block	Overload Relay	Ground Lug	
#8 40 in-lbs	N/A N/A	#6 30 in-Ibs	N/A N/A	#4 35 in-lbs	

	Dimensions and Weights					
Height in / mm	Width in / mm	Depth in / mm	Weight Ibs / kg	Dimension Drawing		
33.2 / 842	17.4 / 443	13.5 / 343	84 / 38.1	3AUA0000016376 Sheet 1		

Heat Dissipation & Airflow Requirements				
Power	Losses	Airf	low	
Watts	BTU/Hr	CFM	CM/Hr	
337	1150	52	88	

Reference Drawings					
Power Wiring	Connection Diagram	Dimension Detail			
BC00R012PW-A	BCBDR016CC-A	3AUA0000016376 Sheet 1			

ACH550 Product Overview

Description

The ACH550 series is a microprocessor based Pulse Width Modulated (PWM) adjustable speed AC drive. The ACH550 drive takes advantage of sophisticated microprocessor control and advanced IGBT power switching technology to deliver high-performance control of AC motors for a wide range of HVAC applications.

With drives ranging from 1 to 550 HP, the ACH550 series features a universal full graphic interface that "speaks" to the operator in plain English phrases, greatly simplifying set-up, operation, and fault diagnosis. The ACH550 is also programmable in fourteen other languages.

Each ACH550 drive comes equipped with an extensive library of pre-programmed HVAC application macros which, at a touch of a button, allow rapid configuration of inputs, outputs, and performance parameters for specific HVAC applications to maximize convenience and minimize start-up time. The ACH550 series can handle the most demanding commercial applications in an efficient, dependable, and economic manner.

ACH550 Standard Features

UL. cUL labeled and CE marked EMI/RFI Filter (1st Environment, Restricted Distr bution) Start-Up Assistants Maintenance Assistants **Diagnostic Assistants** Real Time Clock Includes Day, Date and Time Operator Panel Parameter Backup (read/write) Full Graphic and Multilingual Display for Operator Control, Parameter Set-Up and Operating Data Display: Output Frequency (Hz) Speed (RPM) Motor Current Calculated % Motor Torque Calculated Motor Power (kW) DC Bus Voltage Output Voltage Heatsink Temperature Elapsed Time Meter (reset-able) KWh (reset-able) Input / Output Terminal Monitor PID Actual Value (Feedback) & Error Fault Text Warning Text Three (3) Scalable Process Variable Displays User Definable Engineering Units Two (2) Programmable Analog Inputs Six (6) Programmable Digital Inputs Two (2) Programmable Analog Outputs Up to six (6) Programmable Relay Outputs (Three (3) Standard) Adjustable Filters on Analog Inputs and Outputs Mathematical Functions on Analog Reference Signals All Control Inputs Isolated from Ground and Power Four (4) Resident Serial Communication Protocols Johnson Controls N2 Siemens Building Technologies FLN (P1) Modbus RTU BACnet (MS/TP) Input Speed Signals Current 0 (4) to 20 mA Voltage 0 (2) to 10 VDC Increase/Decrease Reference Contacts (Floating Point) Serial Communications Start/Stop 2 Wire (Dry Contact Closure) 3 Wire (Momentary Contact) Application of Input Power Application of Reference Signal (PID Sleep/Wake-Up) Serial Communications Start Functions Ramp Flying Start Premagnetization on Start Automatic Torque Boost Automatic Torque Boost with Flying Start Auto Restart (Reset) - Customer Selectable and Adjustable Stop Functions Ramp or Coast to Stop Emergency Stop DC Braking / Hold at Stop Flux Braking Accel/Decel Two (2) sets of Independently Ramps Linear or Adjustable 'S' Curve Accel/Decel Ramps

HVAC Specific Application Macros Separate Safeties (2) and Run Permissive Inputs Damper Control Override Input (Fire Mode) Timer Functions Four (4) Daily Start/Stop Time Periods Four (4) Weekly Start/Stop Time Periods Four Timers for Collecting Time Periods and Overrides Seven (7) Preset Speeds Supervision Functions Adjustable Current Limit Electronic Reverse Automatic Extended Power Loss Ride Through (Selectable) Programmable Maximum Frequency to 500 Hz PID Control Two (2) Integral Independent Programmable PID Setpoint Controllers (Process and External) External Selection between Two (2) Sets of Process PID Controller Parameters PID Sleep/Wake-Up Motor Control Features Scalar (V/Hz) and Vector Modes of Motor Control V/Hz Shapes Linear Squared Energy Optimization IR Compensation Slip Compensation Three (3) Critical Frequency Lockout Bands **Preprogrammed Protection Circuits** Overcurrent Short Circuit Ground Fault Overvoltage Undervoltage Input Phase Loss Output Device (IGBT) Overtemperature Adjustable Current Limit Regulator UL508C approved Electronic Motor Overload (I²T) Programmable Fault Functions for Protection Include Loss of Analog Input Panel Loss External Fault Motor Thermal Protection Stall Underload Motor Phase Loss Ground Fault 5% Input Impedance Equivalent 5% Impedance with Internal Reactor(s) Patented Swinging Choke Design for Superior Harmonic Mitigation (R1 to R4)

ACH550 Specifications

Input Connection

input connection	
Input Voltage (U ₁)	•
	208/220/230/240 VAC 1-phase +/-10%
	380/400/415/440/460/480 VAC 3-phase +/-10%
	500/600 VAC 3-phase +/-10%
Frequency:	
Line Limitations:	
Fundamental Power Factor (cos φ):	0.98 at nominal load
Connection:	U ₁ , V ₁ , W ₁ (U ₁ , V ₁ , 1-phase)
Output (Motor) Connection	
Output Voltage:	0 to U_1 , 3-phase symmetrical, U_2 at the field weakening point
Output Frequency:	500 to 500 Hz
Frequency Resolution:	0.01 Hz
Continuous Output Current:	
Variable Torque:	1.0 * I _{2N} (Nominal rated output current, Variable Torque)
Short Term Overload Capacity:	
Variable Torque:	1.1 * I _{2N} , (1 min/10 min)
Peak Overload Capacity:	
Variable Torque:	1.35 * I _{2N} , (2 sec/1 min)
Base Motor Frequency Range:	
Switching Frequency:	
Acceleration Time:	
Deceleration Time:	
Efficiency:	
Short Circuit Withstand Rating:	
Connection:	
Enclosure	
Style:	UL (NEMA) Type 1 Type 12 or Type 3R
e gio	UL Plenum Rated Type 1, Type 12
Agency Approval	
Listing and Compliance:	
Ambient Conditions, Operation	
	0° to 40°C (32° to 104°F), above 40°C the maximum output current is
	de-rated 1% for every additional 1°C (up to 50°C (122°F)) maximum
	limit.
Relative Humidity:	5 to 95%, no condensation allowed, maximum relative humidity is 60%
rolative rialmany	in the presence of corrosive gasses
Contamination Levels:	In the presence of concerve gasses
IEC:	60721-3-1 60721-3-2 and 60721-3-3
Chemical Gasses:	
Solid Particles:	
	0 to 1000 m (3300 ft) above sea level. At sites over 1000 m (3300 ft)
	above sea level, the maximum power is de-rated 1% for every
	additional 100 m (330 ft). If the installation site is higher than 2000 m
	(6600 ft) above sea level, please contact your local ABB distributor or
	representative for further information
Vibration:	Max 3.0 mm (0.12 in) 2 to 9 Hz, Max 10 m/s ² (33 ft/s ²) 9 to 200 Hz
	sinusoidal
Ambient Conditions, Storage (in Protective Shipping	
Air Temperature:	
Relative Humidity:	
Vibration Tested to (IEC 60068-2-6):	In accordance with ISTA 1A and 1B specifications
Bump Tested to (IEC 60068-2-29):	Max 100 m/s ² (330 ft/s ²) 11 ms (Tested 500 times each axis,
	each pole; 3000 times total)
Ambient Conditions, Transportation (in Protective Sh	
Air Temperature:	
Relative Humidity:	Less than 95%, no condensation allowed
Atmospheric Pressure:	60 to 106 kPa (8.7 to 15.4 PSI)
1	Max 3.0 mm (0.14 in) 2 to 9 Hz, Max 15 m/s ² (49 ft/s ²) 9 to
	200 Hz sinusoidal
Rump Tostod to (IEC 60068 2 20);	
Dump rested to (IEC 00000-2-29):	Max 100 m/s ² (330 ft/s ²) 11 ms (Tested 500 times each
	axis, each pole; 3000 times total)
Shock Tested to (IEC 60068-2-27)	
R1: 76 cm (30 in) R2: 61 cm (24 in) R3: 46	6 cm (18 in) R4: 31 cm (12 in) R5 & 6: 25 cm (10 in)

ACH550 Specifications (continued)

Cooling Information Cooling Method:	Integral fan(s)
Power Loss:	
Analog Inputs	
Quantity	Two (2) programmable
Voltage Reference:	
Current Reference:	
Potentiometer:	
Input Updating Time	
Terminal Block Size	2.3mm² / 14AWG
Reference Power Supply	
Reference Voltage	
Maximum Load	
Applicable Potentiometer	
Terminal Block Size	2.3mm² / 14AWG
Analog Outputs	
Quantity	
Signal Level	
Accuracy	
Maximum Load Impedance Output Updating Time	
Terminal Block Size	
Digital Inputs	
Quantity	Six (6) programmable digital inputs
Isolation	
Signal Level	
Input Current	
Input Updating Time:	
Terminal Block Size	2.3mm² / 14AWG
Internal Power Supply	
Primary Use	Internal supply for digital inputs
Voltage:	+24 VDC, max 250 mA
Maximum Current:	
Protection:	Short circuit protected
Relay Outputs	
	Three (3) programmable relay (Form C) outputs
Max Continuous Current:	
Contact Material:	
Isolation Test Voltage	
Output Updating Time	
Terminal Block Size	
Protections	
Single Phase	Protected (input & output)
Overcurrent Trip Limit:	
Adjustable Current Regulation Limit:	1.1 x I2N (RMS) max.
Overvoltage Trip Limit:	
Undervoltage Trip Limit:	
Overtemperature (Heatsink):	
Auxiliary Voltage:	
Ground Fault:	
Short Circuit:	
Microprocessor fault:	
Motor Stall Protection: Motor Overtemperature Protection (l2t):	
Input Power Loss of Phase:	
Loss of Reference:	
Short Circuit Current Rating:	
	Swinging choke 5% equivalent R1-R6, 3% equivalent R8
F	
U ₁ = Input Voltage	U_N = Nominal Motor Voltage
$U_2 = Output Voltage$	$f_N = Nominal Motor Frequency$
$P_N = Power - Normal Duty (HP)$	I_{2N} = Nominal Motor Current – Normal Duty

 $P_{N} = Power - Normal Duty (HP)$ $I_{2N} = Nominal Motor Current - Normal Duty$ Specifications are subject to change without notice. Please consult the factory when specifications are critical.

ACH550 Control Panel

The ACH550 Control Panel is a multifunction control panel with full graphic LCD display and multiple language capability. The control panel can be connected to and detached from the ACH550 at any time. The panel can be used to upload and copy parameters to other ACH550 drives.

Run Indication and Shaft Direction

Control Panel Display	Significance
Rotating arrow (clockwise or counterclockwise)	Drive is running and at set point Shaft direction is forward or reverse
Rotating arrow blinking	Drive is operating but not at setpoint
Stationary arrow	Drive is stopped

LED Indicators

The green LED indicates that the power is on and the drive is operating normally. The red LED indicates a fault. A blinking green LED indicates an alarm condition. A blinking red LED indicates a fault that requires power to be cycled off and on to reset the drive.

Fault Indications

The ACH550 Control Panel can display over 20 alarm and fault messages. The last fault and previous faults (1 to 9) are retained in memory. The last fault and previous faults (1 & 2) also record important diagnostic information to assist in troubleshooting. Most faults can be reset by pressing the RESET key (Soft Key 1).

Parameters

Application specific parameters are immediately accessible through a selection of start-up "Assistants". A complete list of parameters is also available grouped by function in approximately 33 menu groups. One of the basic menu functions can be used to display the complete list of changed parameters.

Real Time Clock

The Operator Control Panel includes a real time clock which provides Day, Date and Time information, displayed in a choice of formats. The real time clock has a 10 year battery back up and provides time and date stamping of drive faults and other events. The clock is also used by the ACH550s internal timer functions, providing an integral time clock for start/stop control as well as other control operations.

Control Modes

When the HAND key is pressed, the drive starts and pressing the UP/DOWN keys can modify the reference frequency. The HAND (keypad) control mode is indicated.

When the OFF key is pressed, the drive stops and the OFF control mode is indicated.

When the AUTO key is pressed, the AUTO control mode is indicated. The drive can be started and stopped using whichever remote start/stop command has been configured, a contact closure applied to the start/stop input, a serial communication command or a process feedback signal. In AUTO mode the drive speed is typically controlled by the external speed reference input or by the PID controller.

If the HAND key is pressed while the drive is running in the AUTO control mode, the drive continues to run without changing speed, but ceases to respond to external input or PID speed reference changes. (Bumpless transfer) Pressing the UP/DOWN keys can modify the reference frequency.

If the AUTO key is pressed while the drive is running in the HAND control mode and an external start command is present, the drive continues to run and follows the acceleration or deceleration control ramp to the speed set by the external input or PID speed reference. (Bumpless transfer)

Terminal	Description	Note
U1, V1, W1	3~ power supply input	Use of 1~ supply requires 50% derate of output current and is applicable for 208 to 240 VAC operation only.
PE / GND	Protective Ground	Follow local rules for cable size.
U2, V2, W2	Power output to motor	
Uc+, Uc-	DC bus	
X1 1 to 18	Control Wiring	Low voltage control – Use shielded cable
X1 19 to 27	Control Wiring	Low voltage or 115VAC
X1 28 to 32	Serial Communications	Use shielded cable

Cable Connections

Follow local codes for cable size. To avoid electromagnetic interference, use separate metallic conduits for input power wiring, motor wiring, control and communications wiring. Keep these four classes of wiring separated in situations where the wiring is not enclosed in metallic conduit. Also, keep 115VAC control wiring separated from low voltage control wiring and power wiring.

Use shielded cable for control wiring.

Ampacity is based on the use of 60 °C rated power cable up to 100 Amps (75 °C over 100 Amps).

Refer to the included tables for current ratings, fuse recommendations and maximum wire size capacities and tightening torques for the terminals. The ACH550 is suitable for use on a circuit capable of delivering not more than 100,000 RMS symmetrical amperes, 480 V maximum. The ACH550 has an electronic motor protection feature that complies with the requirements of the National Electric Code (NEC). When this feature is selected and properly adjusted. Additional overload protection is not required unless more than one motor is connected to the drive or unless additional protection is required by applicable safety regulations.

For CE installation requirements, see ABB publication CE-US-02 "CE Council Directives and Variable Speed Drives." Contact your local ABB representative for specific IEC installation instructions.

ACH550 with ABB E-Clipse bypass – Overview

ABB E-Clipse bypass Standard Features

- Door Interlocked Disconnect or Circuit Breaker
- English Language Back-Lit LCD Display
- Operator Control Panel
- LED Status Pilot Lights
- Smoke Control
- Override Mode
- Serial Communications
- 5 Programmable Relay Outputs (Form C)
- 100% Functionality with Drive Removed
- Programmable Auto Transfer to Bypass
- Plain English Safety Annunciation
- UL & cUL Listed
- Seismic Zone 4 Certified (IBC 2006)
- UL Type 1, Type 12 or Type 3R Enclosure
- Programmable Class 10, 20, or 30 OL
- Automatic Restart
- 24 Month Parts and Labor Warranty (with Certified Start-up)

- Two Contactor Bypass
- System Status Display
- Bypass Diagnostics Display
- Drive Exclusive Fast-Acting Fuses
- Electronic Motor Overload Protection
- Damper Control VFD and Bypass Modes
- 6 Digital Inputs (5 programmable)
- Single Phase Protection in VFD & Bypass Mode
- Bullet Proof Contactor Protection
- Serial Communications Pass Through I/O
- Proof-of-Flow Indication & Action
- Conformal Coated Circuit Boards
- +30%; -35% Input Voltage Tolerance
- Run Permissive Circuit
- Supervisory Control
- UL Listed I²T Electronic Overload
- UL Listed and tested 100,000 Ampere SCCR (VCR and BCR Units)

The ACH550 with ABB E-Clipse bypass is an ACH550 HVAC Drive in an integrated UL Type 12 enclosure with a bypass motor starter. The ACH550 with ABB E-Clipse bypass provides an input disconnect switch or circuit breaker with door mounted and interlocked operator (padlockable in the OFF position), a bypass starter, electronic motor overload protection, a local programming and operator keypad with indicating lights, provisions for external control connections, and serial communications capability.

The ACH550 with ABB E-Clipse bypass includes two contactors. One contactor is the bypass contactor, used to connect the motor directly to the incoming power line in the event that the ACH550 is out of service. The other contactor is the ACH550 output contactor that disconnects the ACH550 from the motor when the motor is operating in the Bypass mode. The drive output contactor and the bypass contactor are electrically interlocked to prevent "back feeding".

The ACH550 with ABB E-Clipse bypass is a microprocessorcontrolled "intelligent" system which features programmable Class 20 or 30 overload curves, programmable underload (broken belt) and overload trip or indication. Also included as standard features are single-phase protection in bypass mode, programmable manual or automatic transfer to bypass, fireman's override, smoke control, damper control, no contactor chatter on brown-out power conditions and serial communications. Should a drive problem occur, fast acting fuses exclusive to the ACH550 drive path disconnect the drive from the line prior to clearing upstream branch circuit protection, maintaining bypass capability.

Damper Control Circuit (Run Permissive)

The damper control circuit closes a dry contact upon a start command to open a damper such as an outdoor air damper, fire damper, isolation damper, etc. before the motor is allowed to operate in drive mode or bypass mode regardless of the source of the run command. When the damper is fully open, a normally open dry contact from the damper end-switch closes and allows the motor to operate. Up to four dedicated inputs are provided for safety interlocks such as firestats, smoke detectors, etc.

The safety interlock inputs may also be linked to plain English keypad diagnostic indications to be displayed on the LCD. The unit may be set-up to display any of the following diagnostics upon opening of a digital input: Vibration Switch; Firestat; Freezestat; Over Pressure; Vibration Trip; Smoke Alarm; Safety Open; Low Suction; Start Enable; Run Enable; Damper End Switch; Valve Open Proof; or Pre-Lube Cycle. When any of these contacts open, the motor stops (in drive or bypass mode) and the damper is commanded to close. Although it is not a recommend sequence of operation, this run permissive circuit may also be controlled via serial communications.

Smoke Control and Override Modes

The ACH550 with ABB E-Clipse bypass has two Override modes of operation for critical control situations. The Smoke Control Override accepts a normally open dry contact that forces the motor to run in bypass and ignores all keypad inputs. In Smoke Control Override mode, the system acknowledges high priority digital inputs such as overpressure safeties and damper end-switch run permissive proofs, and disregards other, low priority digital inputs. See the attached sample wiring diagram for further details. Smoke Control Override (Override 1) response is not field programmable. The unit will go into smoke Override mode whenever DI6 is closed.

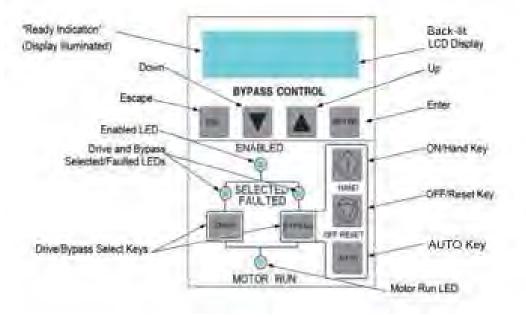
The second mode, Override 2, is fully programmable. Override 2 default programming is designed for "Run to Destruction" operation. However, the end user can program the unit to acknowledge some external inputs while ignoring others, ignore all external inputs or acknowledge all external inputs. This mode is fully programmable to allow the user to program the response of the unit to match his local AHU.

Serial communications

All ABB E-Clipse bypass units have the following Embedded Fieldbus (EFB) protocols included as standard: Modbus RTU; Johnson Controls N2; Siemens Building Technologies FLN (P1); and BACnet (MS/TP).

The ACH550 with ABB E-Clipse bypass has the ability to monitor VFD/Bypass mode of operation, the status of the bypass H-O-A switch, bypass fault and override status over serial communication. In addition, the user can monitor and / or control over 45 points of bypass information via the communications protocols. Serial communication capabilities include - bypass run-stop control; the ability to force the unit to bypass; and the ability to control all relay outputs. The DDC system can monitor bypass feedback such as, current (in amps), kilowatt hours (resettable), operating hours (resettable), and bypass logic board temperature. The DDC system is also capable of monitoring the bypass relay output status, and all digital input status'. All bypass diagnostic warning and fault information is transmitted over the serial communications bus. Remote system (drive or bypass) fault reset is possible.

ABB E-Clipse bypass Operator Control


ACH550 Control Panel

The ACH550 Control Panel is a keypad with an LCD unit that provides status indication and operator controls for the ACH550 drive. In normal operation with the ABB E-Clipse bypass, the ACH550 should be placed in the *Auto* mode of operation by pressing the *Auto* key on the ACH550 Control Panel. Refer to the *ACH550 User's Manual* for additional information on the ACH550 Control Panel and other aspects of ACH550 operation.

Bypass Control Keypad

The ABB E-Clipse bypass has a separate keypad with an LCD unit that provides status indication and programming of the system. This keypad is also used for selecting the *Drive* or *Bypass* mode of operation and manually starting and stopping the motor in the *Bypass* mode. The bypass keypad has LED indicating lights that indicate the status of both the bypass and the drive as well as an LCD display that provides programming, status and warning/fault indications.

The illustration below shows the bypass control keypad and identifies the keys and LED indicating lights.

The functions of the various keys and LEDs are described in the following table.

Enabled LED	 The Enabled LED is illuminated green under the following conditions: Both the Safety Interlock(s) and Run Enable contacts are closed. The Safety Interlock(s) contact are closed with no Start command present. The Enable LED flashes green if the Run Enable contact is open and when the Safety Interlock contact(s) are closed and a Start command is present. The Enable LED is illuminated red when the Safety Interlock contact(s) are open.
Drive Selected LED	The <i>Drive Selected</i> LED is illuminated green when the drive has been selected as the power source for the motor and no drive fault is present.
Bypass Selected LED	The <i>Bypass Selected</i> LED is illuminated green when the bypass has been selected as the power source for the motor and no bypass fault is present.
Motor Run LED	The <i>Motor Run</i> LED is illuminated green whenever the system is running. The <i>Motor Run</i> LED flashes green to indicate the system has been placed in an Override operating mode.
Drive Faulted LED	The <i>Drive Fault</i> LED is illuminated red when the bypass has lost its' communications link with the drive or when the motor or drive protection functions have shut down the drive.
Bypass Faulted LED	The <i>Bypass Faulted</i> LED is illuminated or flashes red when the motor or bypass protective functions have shut down the bypass.
Drive Key	The Drive Key selects the drive as the power source for the motor.
Bypass Key	The <i>Bypass</i> Key selects the bypass as the power source for the motor.
Auto Key	The <i>Auto</i> key selects the <i>Auto Start</i> contact or serial communications as the means for starting and stopping the motor in the bypass mode.
Off/Reset Key	The <i>Off/Reset</i> key may be used to manually stop the motor if the motor is running on bypass power. The <i>Off/Reset</i> Key also resets most bypass faults. It may take several minutes before the bypass can be reset after an overload trip. If a bypass fault condition is present, the second push of the <i>Off/Reset</i> key puts the bypass in the Off mode.
Hand Key	The <i>Hand</i> key can be used to manually start the motor when the bypass has been selected as the power source for the motor.
UP Key	Used to navigate through system programming steps.
Down Key	Used to navigate through system programming steps.
- /	

Control Modes

Drive mode

Under normal conditions the system is in the *Drive* mode. The ACH550 drive provides power to the motor and controls its speed. The source of the drive's start/stop and speed commands is determined by the *Auto* or *Hand* mode selection of the drive's keypad. Commands come from the control terminals or serial communications when the *Auto* mode has been selected or from the drive keypad when the *Hand* mode has been selected. The user can normally switch to the *Drive* mode by pressing the *Drive* key on the bypass keypad.

Bypass mode

In the *Bypass* mode, the motor is powered by AC line power through the bypass contactor. The source of the bypass'start/stop commands is determined by the *Auto* or *Hand* mode selection of the bypass' keypad. Commands come from the control terminals or serial communications when the *Auto* mode has been selected or from the bypass keypad when the *Hand* mode has been selected. The user can normally switch to the *Bypass* mode by pressing the *Bypass* key on the bypass keypad.

Smoke Control mode

In the *Smoke Control (Override 1)* mode, the motor is powered by AC line power through the bypass contactor. The source of the Smoke Control command is DI 6 and is unaffected by external stop commands. The VFD Keypad and the Bypass Keypad will not accept user commands when the system is in Smoke Control mode (the keypad user inputs are disabled). The user can switch to the *Smoke Control* mode by closing the *Smoke Control* input contact (DI 6). When the *Smoke Control* input contact is closed, the system is forced to bypass and runs the motor. The Motor Run LED flashes green when the system is in override. While in *Smoke Control*, the system only responds to certain inputs. Normally when the *Smoke Control* input contact is switched from closed to open, the system returns to the operating mode that existed prior to entering *Smoke Control* and can once again be controlled using the *Drive* and *Bypass* keys. The exception to this is when the *Bypass Override (Override 2)* input contact is closed, in which case the system switches to *Bypass Override* operation.

Bypass Override mode

In the *Bypass Override (Override 2)* mode, the motor is powered by AC line power through the bypass contactor. The source of the start command is internal and unaffected by external stop commands. The VFD Keypad and the Bypass Keypad will not accept user commands when the system is in Bypass Override mode (the keypad user inputs are disabled). The user can switch to the *Bypass Override* mode by closing the *Bypass Override* input contact (DI 5-if programmed). When the *Bypass Override* input contact is closed, the system is forced to bypass and does not respond to the *Drive* and *Bypass* keys. The Motor Run LED flashes green when the system is in override. While in *Bypass Override* the system responds to bypass overloads and programmed faults. The system may be custom programmed to acknowledge or disregard certain faults, safeties and enables. The unit is default programmed to ignore all external safeties and run enables. See Group 17 for programmability of the digital input and fault functions. Normally when the *Bypass Override* input contact is closed, in which case the system remains in *Smoke Control (Override 1)* input contact is closed, in which case the system remains in *Smoke Control* operation.

Hand mode

When the system is in the *Bypass* mode, the operator can manually start the motor by pressing the *Hand* key. The motor will run and the *Hand* LED will be illuminated green. In order to run the motor, the *Safety Interlock* and *Run Enable* contacts must be closed (green *Enable* LED) and any bypass fault must be reset.

Auto mode

In the *Auto* mode the bypass start/stop command comes from the *Start/Stop* input terminal on the bypass control board or from serial communications – if programmed. The *Auto* mode is selected by pressing the *Auto* key on the bypass keypad. The *Auto* LED is illuminated green when the bypass is in the *Auto* mode. If the system is in the *Bypass* mode, the motor will run across the line if the *Auto* mode is selected, the *Start/Stop, Safety Interlock* and *Run Enable* contacts are closed and any bypass fault is reset.

Off Mode

If the motor is running in the *Bypass* mode, the operator can manually stop the motor by pressing the *OFF* key. The *Motor Running* LED will go out. The motor can be restarted by pressing the *Hand* key or the bypass can be returned to the *Auto* mode by pressing the *Auto* key. If the system is in the *Drive* mode, pressing the *OFF* key will take the bypass out of the *Auto* mode, but will not affect motor operation from the drive. If the system is switched to the *Bypass* mode, a motor that is running will stop.

Programmable Relay Contact Outputs

The ABB E-Clipse bypass has five programmable relay outputs as standard. The default programming descriptions for these relay outputs is described below.

Bypass Not Faulted

The *Bypass Not Faulted* relay is energized during normal operation. The *Bypass Not Faulted* relay is deenergized when a bypass fault has occurred.

System Running

The *System Running* relay is energized when the ABB E-Clipse bypass System is running. The *System Running* relay provides an output when the motor is running whether powered by the ACH550 drive or the bypass.

System Started

The *System Started* relay is energized when the ABB E-Clipse bypass system is started. Three conditions must be met in order for the relay to energize. 1) a *Start* command must be present, 2) the *Safety Interlock* input contact must be closed and 3) there can be no fault present in the system. The *Start* command can come from the bypass control board terminal block, the ACH550 keypad, the bypass keypad, or serial communications depending on the operational mode selected. The *System Started* relay is ideal for use in damper actuator circuits, opening the dampers only under those conditions where the system is preparing to run the motor. The *System Started* relay will de-energize, closing the dampers if the safeties open, the system faults, or when a *Stop* command is issued.

Bypass Selected

Relay output four is factory default programmed for Bypass Selected. The relay will be energized anytime the user has placed the system in Bypass mode.

Bypass Auto

Relay Output five is factory default programmed for *Bypass Auto*. The relay will be energized anytime the user has placed the bypass in the Auto mode.

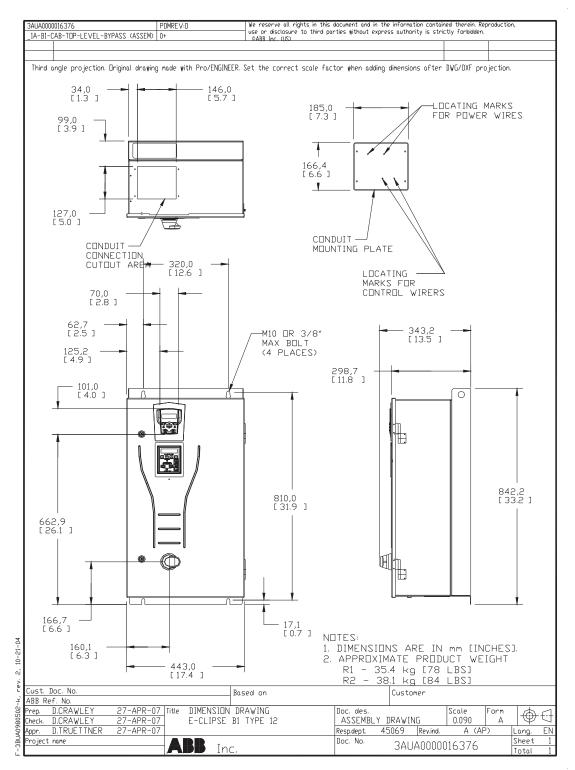
The complete list of programmable relay output functions follows:

Cable Connections

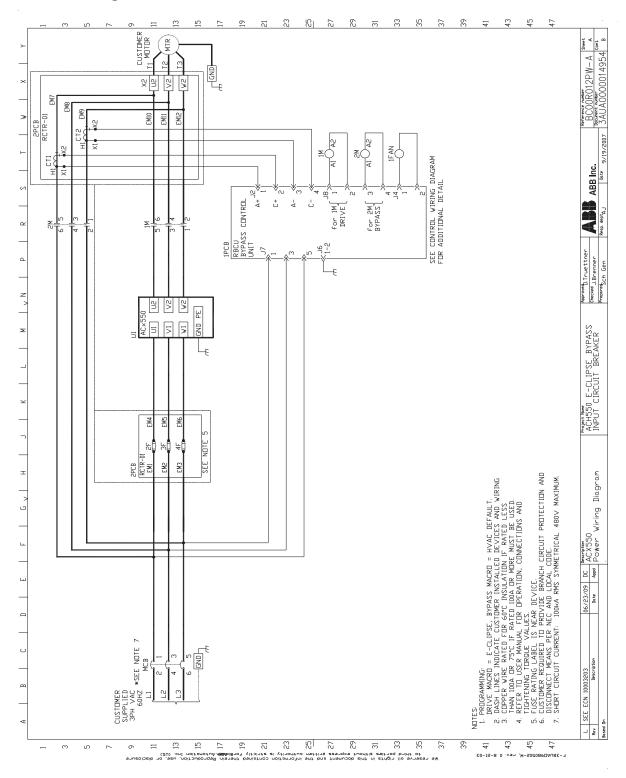
The following illustrations show the ACH550 with ABB E-Clipse bypass cable connection points for the various enclosure styles. The illustrations indicate the location of input and output power connections as well as equipment and motor grounding connection points.

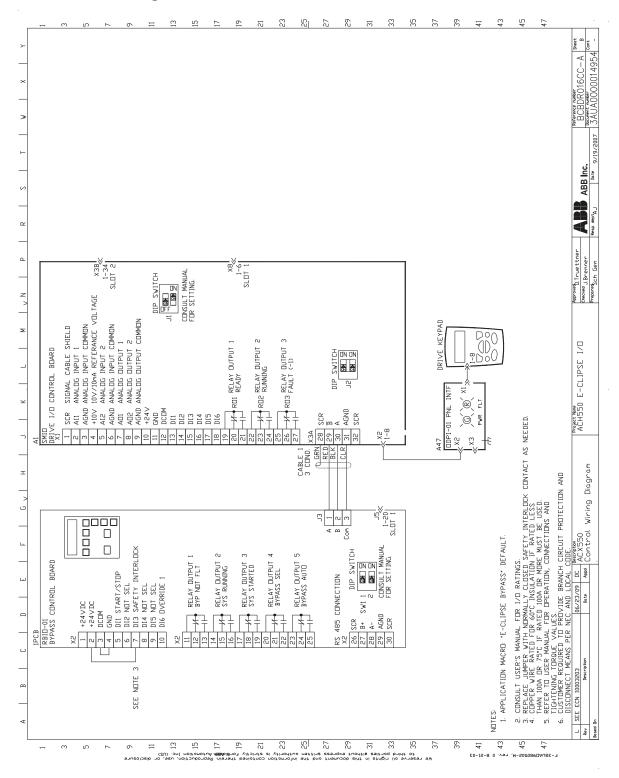
ACH550 drives are configured for wiring access from the bottom only on Vertical ABB E-Clipse bypass units and from the top only on Standard ABB E-Clipse bypass units. At least three separate metallic conduits are required, one for input power, one for output power to the motor and one for control signals.

All ABB E-Clipse bypass units provided with a circuit breaker input - VCR and BCR configurations have a panel short circuit current rating of 100,000 RMS symmetrical Amperes. Units provided with a disconnect input - VDR and BDR configurations require separate external low peak fuses (supplied by others) to obtain the 100,000 KAIC SCCR.


Terminal Sizes

Power and motor cable terminal sizes are shown in the *Submittal Schedule Details* and in the *Wire Size Capacities of Power Terminals* Table. The information provided is for connections to an input circuit breaker or disconnect switch, a motor terminal block, overload relay and ground lugs. The table also lists torque that should be applied when tightening the connections.


Protections

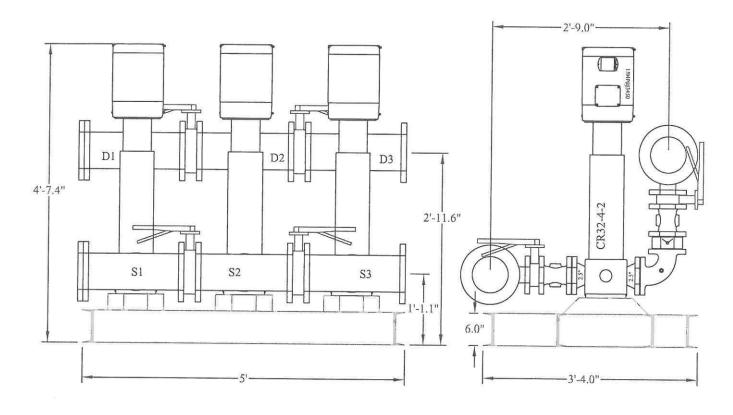

All ABB E-Clipse bypass units include the following protective features: single phase input and output; motor open phase; motor overload (UL Listed); stuck contactor; contactor coil open; undervoltage; motor underload (proof-of-flow / broken belt); serial communications loss; and overtemperature. All printed circuit boards are conformally coated as standard.

Dimension Drawing for 15 HP

Power Drawing for 15 HP

Connection Drawing for 15 HP

REPRESENTED BY: CORPORATE EQUIPMENT CO 607 REDNA TERRACE, #100 CINCINNATI, OHIO 45215 Phone 513-771-6696 Fax 513-771-0334


Date: APRIL 11, 2008 (REV 8/28/08)

PROJECT	NAME:	CINCINNAT	I BELL				
DISTRIBL	TOR:	CORPORAT	E EQUIPN	MENT			
SYSTEM I	MODEL:	3VC-VFD-G		TYPE:	TRIPLEX VA	RIABLE SPEED	
SYSTEM I	DATA:		P-1 P-2 P-3	MODEL MODEL MODEL	NO:	VCR32-4-2 VCR32-4-2 VCR32-4-2	150 GPM 150 GPM 150 GPM
			PRESSU MOTOF POWER ENCLO HEADE HEADE PIPE ISO		La	450 GPM 108 PSI (250' TDH) 3500 RPM 208/60/3 ODP 6X2.5 WELDED 304 S/S PIPI SINGLE SPHERE RUB RUBBER IN SHEAR T	BER
CONTROL	PANEL:		CONTR	OL PANEL A	ND DRIVES SU	PPLIED AND INSTALLED BY	OTHERS
NOTE:	SYSTEM IS P HEADERS AS	ROVIDED WITH (4) S NOTED ON THE R) 6" ISOL. EVISED I	ATION VALV DRAWINGS,	'ES IN THE SU AS REQUESTE	CTION AND DISCHARGE D BY THE OWNER.	

 TANK:
 26 GALLON, NON-CODE, 150 PSI W.P. BLADDER TANK, SUPPLIED FOR REMOTE MOUNTING BY

 THE INSTALLER.
 THE MAXIMUM PRESSURE AT THE REMOTE LOCATION NOT TO EXCEED 150 PSI.

CINCINNATI BELL DOMESTIC BOOSTER SYSTEM

NOTE 1: SYSTEM IS SUPPLIED WITH DOUBLE ENDED HEADERS FOR FLOW IN EITHER DIRECTION. EACH HEADER IS SUPPLIED WITH 6" BUTTERFLY VALVE BETWEEN PUMPS.

NOTE 2: SYSTEM IS SUPPLIED WITH RUBBER IN SHEAR VIBRATION MOUNTS.

NOTE 3: SYSTEM IS SUPPLIED WITHOUT CONTROL PANEL OR VARIABLE FREQUENCY DRIVES, SUPPLIED BY OTHERS.

MANUFACTURER

VC SYSTEMS

VC SYSTEMS

VC SYSTEMS

PUMP

P-1

P-2

P-3

PUMP SCHEDULE

MODEL NO.

VCR32-4-2

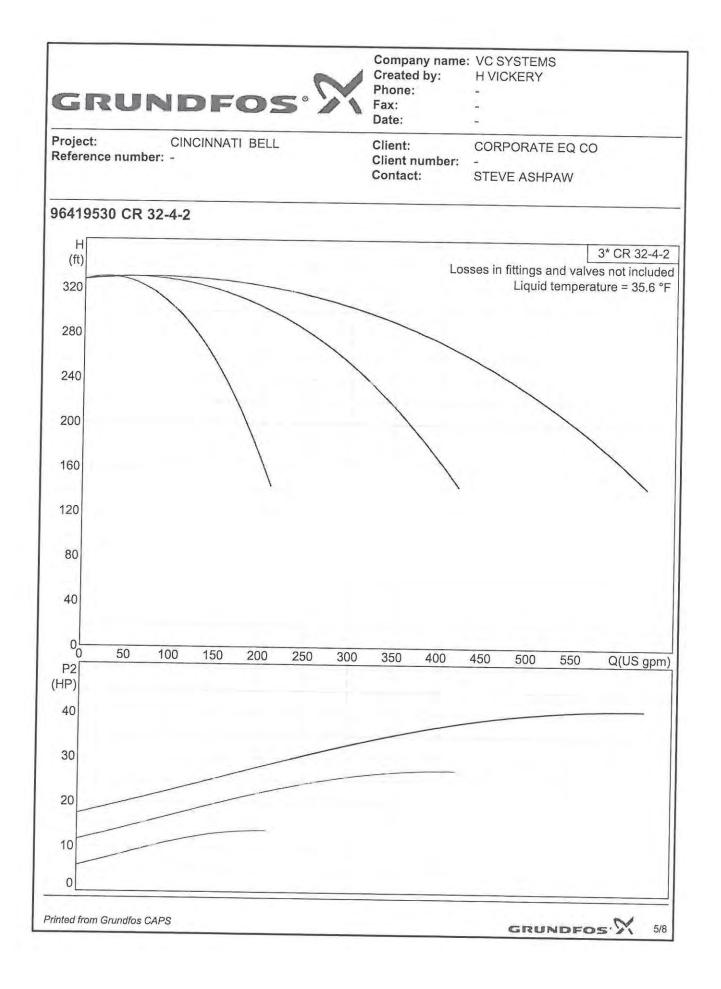
VCR32-4-2

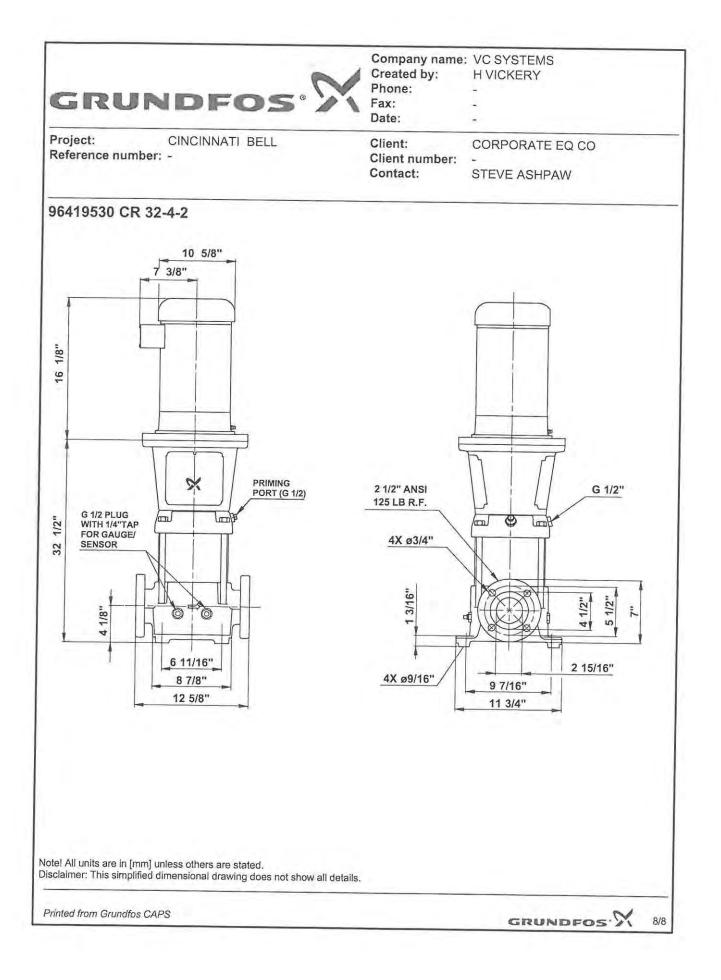
VCR32-4-2

GPM

150

150


150



	CINC	CINNATI B	ELL
drawn by: MRT	CHECKED BY: HGV	DATE:	UGUST 20, 2008
	CORPOR	ATE EQUI	PMENT
HEAD	HP	SPEED	POWER
250'	15	3500	???-60-3
250'	15	3500	???-60-3
250'	15	3500	???-60-3

GF	RU	INDFOS	• X	Company name: Created by: Phone: Fax: Date:	VC SYSTEMS H VICKERY - -	
Project: CINCINNATI BELL Reference number: -		Client: CORPORATE EQ CO Client number: - Contact: STEVE ASHPAW				
Position	Count	Description				Unit pric
		CR 32-4-2 A-G-A-E KUBE Product No.: 96419530 Vertical, non-self-priming, multi- centrifugal pump for installation and mounting on a foundation. The pump has the following of - Impellers and intermedia Stainless steel DIN WNr. 1.43 - Pump head and base are - The shaft seal has asser according to DIN 24960. - Power transmission is via coupling. - Pipework connection is v The motor is a 3-phase AC moto Liquid: Liquid temperature range: Liquid temp: Density: Technical: Speed for pump data: Rated flow: Rated head: Shaft seal: Approvals on motor nameplate: Curve tolerance: Materials: Pump housing: Impeller: Maximum ambient temperature: Maximum ambient temperature: Maximum ambient temperature: Pipe connection: Pressure stage: Flange size for motor:	in pipe syster characteristic: the chambers a 01 DIN WNr. e made of Cass mbly length a cast iron spli fia ANSI flange or. 32 248 °F 35.6 °F 62.4 lb/ft ³ 3444 rpm 140.9 US gp 260 ft KUBE UL Recogniz ISO 9906 An Cast iron EN-JS1050 [80-55-06 AS' Stainless ste 1.4301 DIN V 304 AISI 104 °F	s: are made of		Orreques

GRL	INDFOS	· X	Company name: Created by: Phone: Fax: Date:	VC SYSTEMS H VICKERY - -	
Project: Reference nu	CINCINNATI BELL mber: -		Client: Client number: Contact:	CORPORATE EQ CO - STEVE ASHPAW	
Position Count	Description				Unit pric
	Motor type: Rated power - P2: Main frequency: Rated voltage: Service factor: Rated current: Starting current: Cos phi - power factor: Rated speed: Motor efficiency at full load: Insulation class (IEC 85): Others: Gross weight: Shipping volume:	Baldor, OD 15 HP 60 Hz 3 x 208-230 1,15 38-36 / 18 / 289.7-262 / 0,92 3450 rpm 85,5 % F 441 lb 32.8 ft ³	0/460∨ A		
Printed from Grund	lfos CAPS			GRUNDFOS'	× 2/8

WRP Associates, LLC

5668 Wooster Pike Cincinnati, OH 45227 Phone: 513-271-4977

Invoice

Date Inv 12/15/2008 0

Involce # 678

01/09/2009

Bill To

Glenwood Electric 2107 Lawn Ave. Cincinnati, OH 45212

	P.O. No.	Terms	Project
	C7429	Net 30	CBTS
Quantity	Description	Rate	Amount
8 ABB Model ACH550-BCR-045A-4+B055, 30 HP VFD's		's 4,500.	00 36,000.00
1	ABB Model ACH550-BCR-072A-4+B055, 50 HP VFD	6,350.	
			0/0 · · · · · · · · · · · · · · · · · ·

WRP-B427

Thank you for your business. Phone #

Total

\$42,350.00

513-271-4977

WRP Associates, LLC

5668 Wooster Pike Cincinnati, OH 45227 Phone: 513-271-4977

Invoice

Date Invoice # 2/9/2009 739

03/23/2009

Bill To

Glenwood Electric 2107 Lawn Ave. Cincinnati, OH 45212

		P.O. No.	Terms	Project
		C7429	Net 30	CBTS
Quantity	Description		Rate	Amount
1 ABB Model	ACH550-BCR-023A-4+B055		2,990.00	2,990.00

WRP-C022

Thank you for your business. Phone #

513-271-4977

Total

\$2,990.00

WRP Associates, LLC

5668 Wooster Pike Cincinnati, OH 45227 Phone: 513-271-4977

Invoice

Date 8/15/2008 Invoice # 494

09/25/2008

Bill To

Glenwood Electric 12250 Chandler Drive Walton, KY 41094

	P.O. No.	Terms	Project
	C7404	Net 30	
Quantity	Description	Rate	Amount
	3 ABB Model ACH550-BCR-023A-4+B055, 15 HP Drives	3,025.00	9,075.00

Shipped To: Cincinnati Bell Attn: Mike March/Glenwood 221 E, Fourth St. Cincinnati, OH 45201

WRP-B277

Thank you for your business. Phone #

Total \$9,075.00

513-271-4977

Smart \$aver®	Page 1 of 3	
Nonresidential Custom Incentive Application		Duke Energy _®
VFD WORKSHEET - CUSTOM VFD APPLICATION PART 2	Rev 5/11	

The VFD Worksheet is part 2 of the application. Do not submit this file without submitting a completed Part1 Custom Application document file, which can be found at www.duke-energy.com.

Before you complete this application, please note the following important criteria:

- Incentive approval is required PRIOR to equipment purchase, or any other activity which would indicate that the Duke Energy customer has already decided to proceed.
- · Submitting this application does not guarantee an incentive will be approved.
- · Incentives are based on electricity conservation only.
- · Electric demand and/or energy reductions must be well documented with auditable calculations.
- Simple payback without incentive must be greater than 1 year.
- · Incomplete applications will not be reviewed; all fields are required.

Refer to the complete list of Instructions and Disclaimers, found in the Custom Application Part 1 document.

Please enter your information and data into the cells that are shaded. Cells in white are locked and cannot be written over.

Duke Energy Customer Contact Information (Match the information in Application Part 1):

Name	Kevin Daniel, Building Manager (as agent for Cincinnati Bell)
Company	Cincinnati Bell Telephone

Equipment Vendor / Project Engineer Contact Information

Name	Fred Betts
Company	Pedco

Location of Proposed VFD Project

Site Name	Cincinnati Bell W 7th St.
Electric Account Number(s)	3480-0674-01
Site Address	209-229 West 7th Street, Cincinnati Ohio, 45202

Before proceeding with the custom application, please verify that your project is not on the prescriptive incentive application. The prescriptive incentive applications can be found at:

KY http://www.duke-energy.com/kentucky-business/energy-management/energy-efficiency-incentives.asp

Kentucky only: custom incentives only available to K-12 school facilities; prescriptive incentives available for those not on rate TT.
 OH http://www.duke-energy.com/ohio-business/energy-management/energy-efficiency-incentives.asp

NC http://www.duke-energy.com/north-carolina-business/energy-management/energy-efficiency-incentives.asp

SC http://www.duke-energy.com/south-carolina-business/energy-management/energy-efficiency-incentives.asp

Prescriptive incentives are already pre-approved and the application is submitted after project implementation.

Take note of the equipment eligibility on the prescriptive application before planning to utilize the prescriptive application.

Smart \$aver®	Page 2 of 3	Page 2 of 3			
Nonresidential Custom Incentive A VFD WORKSHEET - CUSTOM VFD		RT 2		Rev 5/11	Duke Energy®
Use one worksheet for each type o Driven Equipment	of motor or fan th Name	nat is being evaluated for a VFD Cooling Towers	Type Fan		App No. Rev.
Quantity		2			

Current Equipment Operation without VFD - Input values for ONE driven equipment and its motor.

58.8

60.0

Brake HP (BHP) at Full Load (see note 1)

Nameplate HP

% of F Load B	НР	BHP of Driven Equipment	Motor output HP as % of	@ Mo	ncy	Motor Electrical Power	Annual hours that													
of Driv	/en	@ Actual	Nameplate	Output	t HP	Draw	motor runs			Mont	hly ho	ours th	iat ea	ch mo	tor ru	ns (see	note 3)			Yearly
Equipm	ent	Load (BHP)	HP	(%)		(kw)	(see note 2)	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total (hr)
100	%	58.8	98%	95	%	46.17	4,416	744		744		744		720		744		720		4,416
	%	0.0	0%		%	#DIV/0!														0
	%	0.0	0%		%	#DIV/0!														0
	%	0.0	0%		%	#DIV/0!														0
Not Run	ning	0.0	0%	NA	%	0.00														0
						Totals	4,416	744	0	744	0	744	0	720	0	744	0	720	0	4,416

Proposed Equipment Operation with VFD - Input values for ONE driven equipment and its motor.

Efficienc	y of	VFD		98	%															
% of F	-	BHP of Driven Equipment	Motor output HP as % of	Moto Efficie @ Mo	ncy	Motor Electrical Power	Annual													
of Driv	en	@ Actual	Motor	Output	t HP	Draw	hours that motor runs				hly ho									Yearly
Equipm		Load (BHP)	Nameplate	(%)	_	(kw)	(see note 2)	Jan	Feb		Apr	<u> </u>	Jun	Jul	Aug		Oct	Nov	Dec	
100	%	58.8	98%		%	47.12		280		280		19		675		720		10		1984
90	%	52.9	88%	95	%	42.40		225		225		150		69				35		704
80	%	47.0	78%	95	%	37.69		125		125		250						155		655
70	%	41.2	69%	95	%	32.98		60		60		225						200		545
60	%	35.3	59%	95	%	28.27		54		54		100						250		458
50	%	29.4	49%	95	%	23.56												70		70
40	%	23.5	39%		%	#DIV/0!														0
30	%	17.6	29%		%	#DIV/0!														0
20	%	11.8	20%		%	#DIV/0!														0
10	%	5.9	10%		%	#DIV/0!														0
Not Run	ning	0.0	0%	NA	%	0.00	8,760	0	672	0	720	0	720	0	744	0	744	0	744	4,344
						Totals	8,760	0	672	0	720	0	720	0	744	0	744	0	744	4,344

Detailed Project Description Attached?

(Required)

Yes

1 Brake HP (BHP) at Full Load

The "full load" operating condition is the condition at which the driven equipment operates for the base condition (i.e., without the VFD)

2 Annual hours that motor runs

If the % operating loads do not vary between months, then enter the total annual hours that the motor will run at full load, partial load and hours not operating.

3 Monthly hours that each motor runs

If the % operating loads vary between months (due to weather conditions or seasonal load), fill in the expected hours that the motor will run each month at full load, partial load and hours not operating.

Page 3 of 3

Rev 5/11

 App No.
 0

 Rev.
 0

Operating Hours (see note 4)

	We	ekday	Satur	day	Sunc	1	Weeks of Use in Year	Total Annual	
24 x 7	Start Hour	End Hour	Start Hour	End Hour	Start Hour	End Hour	(see note 5)	Hours of Use	
Yes	12:00 AM	11:59 PM	12:00 AM	11:59 PM	12:00 PM	11:59 PM	26	4,344	

Energy Savings

	Existing (no VFD)	Proposed (VFD)	Savings	
				Describe how energy numbers were calculated
Annual Electric Energy	269,376 kWh	233,317 kWh	36,059 kWh	
Electric Demand (kilowatts)	0 kW	0 kW	0 kW	
Calculations attached	Yes	Yes		63.94kVa*95PF*0.01=60.743kw*4416=kwh. Used % full load against hours at %fu

Simple Payback

Average electric rate (\$/kWh) on the applicable ac	\$0.10			
Estimated annual electric savings	\$3,606			
Other annual savings in addition to electric saving	\$0.00			
Incremental cost to implement the project (equip	\$10,906.00			
Copy of vendor proposal is attached (see note 8)	Yes			
Simple Electric Payback in years (see note 9)	3.024487645	Total Payback in years		3.024487645

4 Operating Hours

Describe when the equipment is typically used. If the project is proposed for more than one site, provide any variations in operating hours between the sites on a separate sheet. * TWO TOWERS RUN 8760 HRS/YR. ALL FOUR TOWERS RUN 2888 HRS OF THE YEAR DURING

5 Weeks of Use in Year

If the equipment is not in use 52 weeks during the year (for example, during holiday or summer break), provide an explanation of when usage is not expected and why: Towers are rotated monthly so each unit operates 6 months out of the year

6 Average electric rate (\$/kWh)

If you do not know your average electric rate, use \$0.10/kWh.

7 Incremental cost to implement the project

Costs exclude self installation costs.

Retrofit projects, incremental cost is the total cost of the proposed project. New construction or where the existing equipment must be replaced anyway, then incremental cost is the premium of the proposed high efficiency project over baseline.

8 Copy of vendor proposal is attached

Vendor proposal of proposed system is always required.

New construction projects or where the existing equipment must be replaced anyway, vendor proposal of baseline must also be attached.

9 Simple Electric Payback

If the simple payback on the project is less than 1 year, then the project is not eligible for a custom incentive. Please check that the electric rate is accurate based on history.

Smart \$aver®	Page 1 of 3	
Nonresidential Custom Incentive Application		Duke
VFD WORKSHEET - CUSTOM VFD APPLICATION PART 2	Rev 5/11	Energy.

The VFD Worksheet is part 2 of the application. Do not submit this file without submitting a completed Part1 Custom Application document file, which can be found at www.duke-energy.com.

Before you complete this application, please note the following important criteria:

- Incentive approval is required PRIOR to equipment purchase, or any other activity which would indicate that the Duke Energy customer has already decided to proceed.
- · Submitting this application does not guarantee an incentive will be approved.
- · Incentives are based on electricity conservation only.
- · Electric demand and/or energy reductions must be well documented with auditable calculations.
- Simple payback without incentive must be greater than 1 year.
- · Incomplete applications will not be reviewed; all fields are required.

Refer to the complete list of Instructions and Disclaimers, found in the Custom Application Part 1 document.

Please enter your information and data into the cells that are shaded. Cells in white are locked and cannot be written over.

Duke Energy Customer Contact Information (Match the information in Application Part 1):

	······································
Name	Kevin Daniel, Building Manager (as agent for Cincinnati Bell)
Company	Cincinnati Bell Telephone

Equipment Vendor / Project Engineer Contact Information

Name	Fred Betts
Company	Pedco

Location of Proposed VFD Project

Site Name	Cincinnati Bell W 7th St.
Electric Account Number(s)	3480-0674-01
Site Address	209-229 West 7th Street, Cincinnati Ohio, 45202

Before proceeding with the custom application, please verify that your project is not on the prescriptive incentive application. The prescriptive incentive applications can be found at:

KY http://www.duke-energy.com/kentucky-business/energy-management/energy-efficiency-incentives.asp

Kentucky only: custom incentives only available to K-12 school facilities; prescriptive incentives available for those not on rate TT.
 OH http://www.duke-energy.com/ohio-business/energy-management/energy-efficiency-incentives.asp

NC http://www.duke-energy.com/north-carolina-business/energy-management/energy-efficiency-incentives.asp

SC http://www.duke-energy.com/south-carolina-business/energy-management/energy-efficiency-incentives.asp

Prescriptive incentives are already pre-approved and the application is submitted after project implementation.

Take note of the equipment eligibility on the prescriptive application before planning to utilize the prescriptive application.

Smart \$aver [®]				Page 2 of 3	3
Nonresidential Custom Incentive A VFD WORKSHEET - CUSTOM VFD A		RT 2		Rev 5/11	Duke Energy®
Use one worksheet for each type o	f motor or fan th	at is being evaluated for a VFD		_	App No.
Driven Equipment	Name	Cooling Towers	Type Fan		Rev.
Quantity		2			

Current Equipment Operation without VFD - Input values for ONE driven equipment and its motor.

58.8

60.0

Brake HP (BHP) at Full Load (see note 1)

Nameplate HP

% of F Load B	-	BHP of Driven Equipment	Motor output HP as % of	Moto Efficie @ Mo	ncy	Motor Electrical Power	Annual hours that													
of Driv	/en	@ Actual	Nameplate	Output	t HP	Draw	motor runs			Mont	hly ho	ours th	nat ea	ch mo	tor ru	ns (see	note 3)			Yearly
Equipm	ent	Load (BHP)	HP	(%)		(kw)	(see note 2)	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total (hr)
100	%	58.8	98%	95	%	46.17	4,344	0	672		720		720		744		744		744	4,344
	%	0.0	0%		%	#DIV/0!														0
	%	0.0	0%		%	#DIV/0!														0
	%	0.0	0%		%	#DIV/0!														0
Not Run	ning	0.0	0%	NA	%	0.00														0
						Totals	4,344	0	672	0	720	0	720	0	744	0	744	0	744	4,344

Proposed Equipment Operation with VFD - Input values for ONE driven equipment and its motor.

Efficienc	су от	VFD		98	%	J														
		BHP of	Motor	Moto		Motor														
% of F	ull	Driven	output HP	Efficie	ncy	Electrical	Annual													
Load B	HP	Equipment	as % of	@ Mo	tor	Power	hours that													
of Driv	/en	@ Actual	Motor	Output	t HP	Draw	motor runs			Mont	hly ho	ours th	nat ea	ch mo	tor ru	I ns (see	note 3))		Yearly
Equipm	ent	Load (BHP)	Nameplate	(%)		(kw)	(see note 2)	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total (hr)
100	%	58.8	98%	95	%	47.12			200		50		450		700		744		5	2149
90	%	52.9	88%	95	%	42.40			200		85		250		44				25	604
80	%	47.0	78%	95	%	37.69			100		200		20						75	395
70	%	41.2	69%	95	%	32.98			77		225								200	502
60	%	35.3	59%	95	%	28.27			75		150								200	425
50	%	29.4	49%	95	%	23.56			20		10								239	269
40	%	23.5	39%		%	#DIV/0!														0
30	%	17.6	29%		%	#DIV/0!														0
20	%	11.8	20%		%	#DIV/0!														0
10	%	5.9	10%		%	#DIV/0!														0
Not Run	ning	0.0	0%	NA	%	0.00	8,760	744	0	744	0	744	0	744	0	720	0	720	0	4,416
						Totals	8,760	744	0	744	0	744	0	744	0	720	0	720	0	4,416

Detailed Project Description Attached?

(Required)

Yes

1 Brake HP (BHP) at Full Load

The "full load" operating condition is the condition at which the driven equipment operates for the base condition (i.e., without the VFD)

2 Annual hours that motor runs

If the % operating loads do not vary between months, then enter the total annual hours that the motor will run at full load, partial load and hours not operating.

3 Monthly hours that each motor runs

If the % operating loads vary between months (due to weather conditions or seasonal load), fill in the expected hours that the motor will run each month at full load, partial load and hours not operating.

Page 3 of 3

Rev 5/11

 App No.
 0

 Rev.
 0

Operating Hours (see note 4)

	We	ekday	Satur	day	Sunc	1	Weeks of Use in Year	Total Annual
24 x 7	Start Hour	End Hour	Start Hour	End Hour	Start Hour	End Hour	(see note 5)	Hours of Use
Yes	12:00 AM	11:59 PM	12:00 AM	11:59 PM	12:00 PM	11:59 PM	26	4,416

Energy Savings

	Existing (no VFD)	Proposed (VFD)	Savings	
				Describe how energy numbers were calculated
Annual Electric Energy	264,984 kWh	228,118 kWh	36,866 kWh	
Electric Demand (kilowatts)	0 kW	0 kW	0 kW	
Calculations attached	Yes	Yes		63.94kVa*95PF*0.01=60.743kw*4344=kwh. Used % full load against hours at %fu

Simple Payback

Average electric rate (\$/kWh) on the applicable ac	\$0.10			
Estimated annual electric savings	\$3,687			
Other annual savings in addition to electric saving	\$0.00			
Incremental cost to implement the project (equip	\$10,906.00			
Copy of vendor proposal is attached (see note 8)	Yes			
Simple Electric Payback in years (see note 9)	2.958281343	Total Payback in years	•	2.958281343

4 Operating Hours

Describe when the equipment is typically used. If the project is proposed for more than one site, provide any variations in operating hours between the sites on a separate sheet.

5 Weeks of Use in Year

If the equipment is not in use 52 weeks during the year (for example, during holiday or summer break), provide an explanation of when
usage is not expected and why:Equipment is rotated monthly so each tower runs 6 months per year.

6 Average electric rate (\$/kWh)

If you do not know your average electric rate, use \$0.10/kWh.

7 Incremental cost to implement the project

Costs exclude self installation costs.

Retrofit projects, incremental cost is the total cost of the proposed project. New construction or where the existing equipment must be replaced anyway, then incremental cost is the premium of the proposed high efficiency project over baseline.

8 Copy of vendor proposal is attached

Vendor proposal of proposed system is always required.

New construction projects or where the existing equipment must be replaced anyway, vendor proposal of baseline must also be attached.

9 Simple Electric Payback

If the simple payback on the project is less than 1 year, then the project is not eligible for a custom incentive. Please check that the electric rate is accurate based on history.

2841-01

EVAPCO, INC. P.O. Box 1300 Westminster, Maryland 21158, USA

ш

£U.

Telephone (410) 756-2600 FAX (410) 756-6450

February 09, 2007

Mr. Jerry Lindsay Peck, Hannaford & Briggs 4673 Spring Grove Avenue Cincinnati, OH 45230

RE: Purchase Order No. S89689-887 EVAPCO Order No. 7-308025-308026 (2) USS 224-918 Cooling Towers Project: Cincinnati Bell Telephone 7th Street Chiller Proje

Dear Mr. Lindsay:

Please find the enclosed certified submittal data for the above referenced order. This data is provided "for record" only. This order has been released for production. Any changes may have a schedule and/or financial impact.

This order is being manufactured at our Greenup factory using the highest quality materials and will be assembled in accordance with EVAPCO's strict quality control guidelines. All EVAPCO® products undergo a mechanical test prior to shipment to ensure proper field performance.

This order is in our production schedule for shipment on or before 3/12/2007. If you experience any delays in the project, which would affect your shipments requirements, please contact your local EVAPCO representative, Trane Company - Cincinnati, as soon as possible.

Thank you for your selecting EVAPCO as your supplier. We appreciate your business and look forward to working with you in the future.

Sincerely,

EVAPCO, INC.

Daniel S. Kelly

Daniel S. Kelly Senior Product Manager

ENCLOSURE(S) cc: Trane Company - Cincinnati - Bill Schriner

February 15, 2007

EVAPCO® SUBMITTAL PACKAGE

PROJECT	CINCINNATI B	ELL TELEPHONE 7TH STREET	UNIT	(2) USS 224-918 COOLING TOWERS
CUSTOMER PECK,		HANNAFORD & BRIGGS	P.O	S89689-887
EVAPCO SE	RIAL NO.	7-308025-308026	ENGINE	ERPEDCO

SUBMITTAL DATA ENCLOSED

DESCRIPTION	DOCUMENT NUMBER
PERFORMANCE AND MECHANICAL SPECIFICATIONS	USS12ST-ST
UNIT CERTIFIED DRAWING	T2241848-ERB-24
STEEL SUPPORT CONFIGURATION	SLAI2418DC
MOTOR DAVIT ARR. BELT DRIVE UNITS	MBAITTOO-ERA
LADDER DRAWING	T22418ERALD
VIBRATION SWITCH (SINGLE SPEED)	V1AU0000-ED
GUARANTEE OF THERMAL PERFORMANCE	AOS2636

EVAPCO...TAKING QUALITY AND SERVICE TO A HIGHER LEVEL!

PERFORMANCE AND MECHANICAL SPECIFICATIONS

EVAPCO® USS COOLING TOWERS

CUSTOMER Peck,	Hannaford & Briggs			
ENGINEER Pedco				
UNIT: (2) USS 224-9	18 Cooling Towers			
CUSTOMER P.O.	S89689-887	EVAPCO SERIAL N	NO7-30	8025-308026
CAPACITY	Each Unit 4650 GPM	95 °F IN	85 °F OUT	78 °F E.W.B.
FAN MOTOR: <u>E</u>	ach Unit (2) 60 (Inverter Duty) HP	ELEC. SPEC. 460/	/3/60	
INLET PRESSURE:	3.7 PSIG	DRIVES SIZED FOI	R 0" ESP.	

Brass float valve with adjustable plastic float.

access.

UNIT TYPE

Factory assembled, induced draft, counterflow cooling tower.

channels and angle supports. Fan cowl is constructed of stainless steel.

CONSTRUCTION

MAKE UP FLOAT VALVE ASSEMBLY* PAN STRAINER*

ACCESS

FAN SHAFT

FAN SHAFT BEARINGS

FANS

FAN MOTOR

FAN DRIVE

Solid shaft of ground and polished steel. Exposed surface coated with rust preventative.

All stainless steel construction with large area removable perforated screens.

All cold water basin components including vertical supports and air inlet louver frames are constructed of Type 316 Stainless Steel. Type 316 Stainless Steel casing,

Hinge mounted door in the upper casing for fan drive and water distribution system

access. Removable louver panels on all four sides of the unit for pan and sump

Heavy-duty, self-aligning ball type bearings with extended lubrication lines to grease fittings located on access door frame. Bearings are designed for a minimum L-10 life of 75,000 hours.

Fans are axial propeller type constructed of aluminum alloy and statically balanced. The fan is installed in a closely fitted cowl with venturi air inlet. Fan screens are stainless steel and have stainless steel frames bolted to the fan cowl.

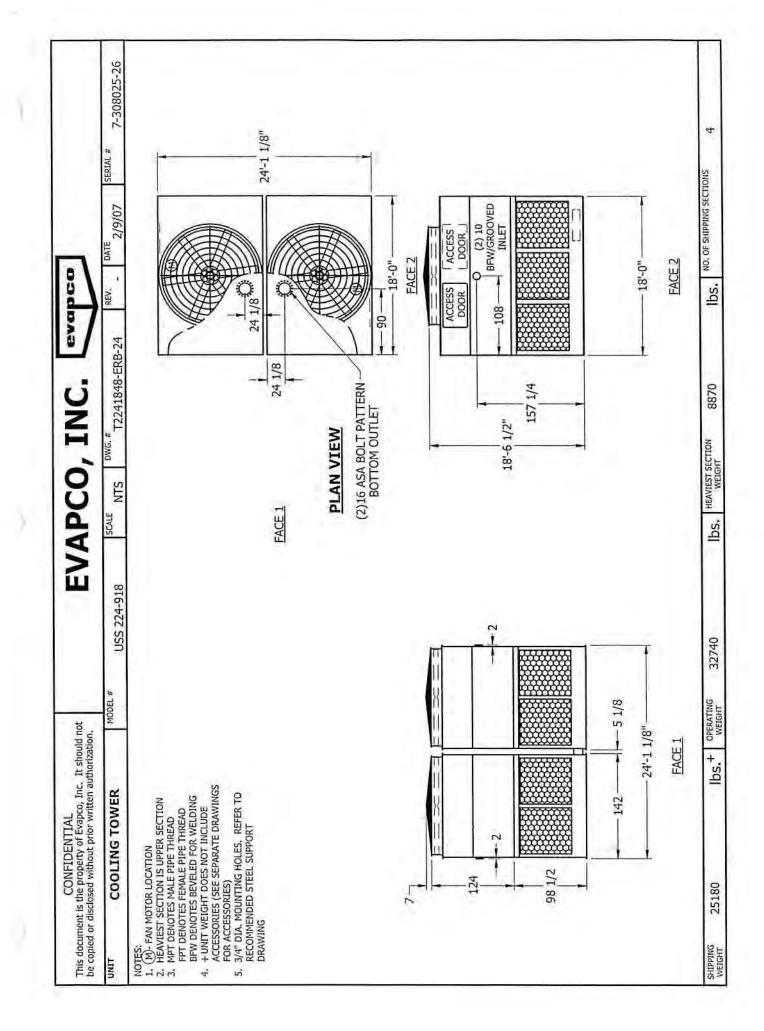
Totally enclosed ball bearing type electric motor(s) suitable for moist air service. Motor(s) are 1.15 service factor design.

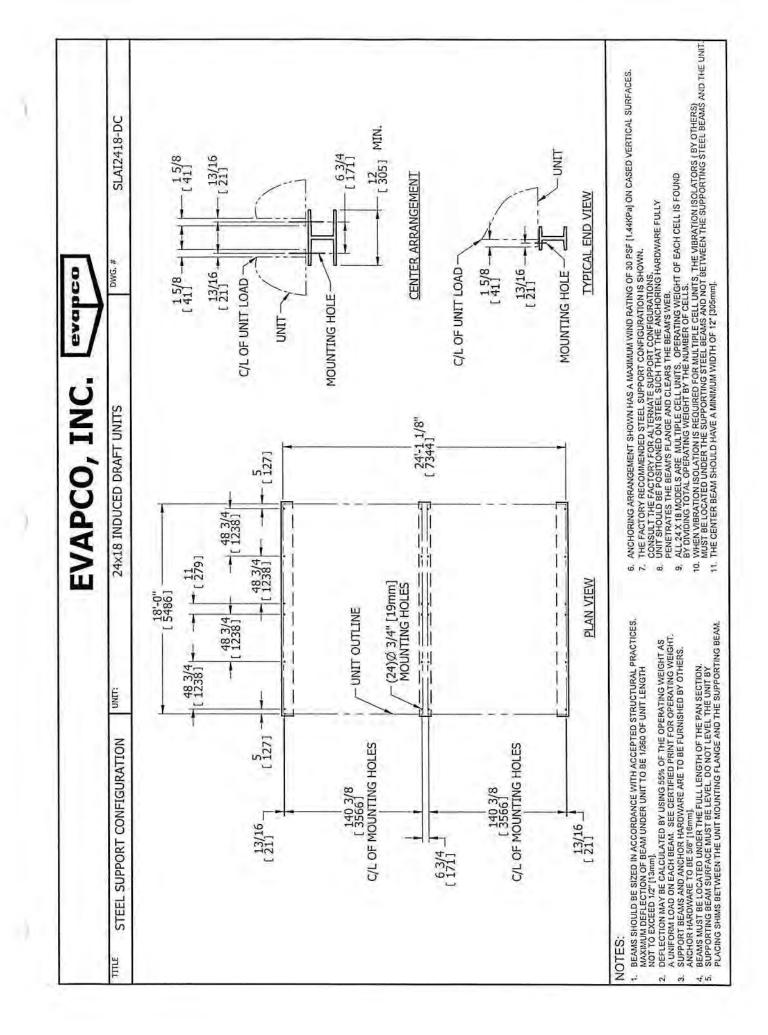
The fan drive is a multi-groove, solid back, reinforced neoprene V-belt type with taper lock sheaves designed for 150% of the motor nameplate horsepower. Fan and motor sheaves are constructed of aluminum alloy.

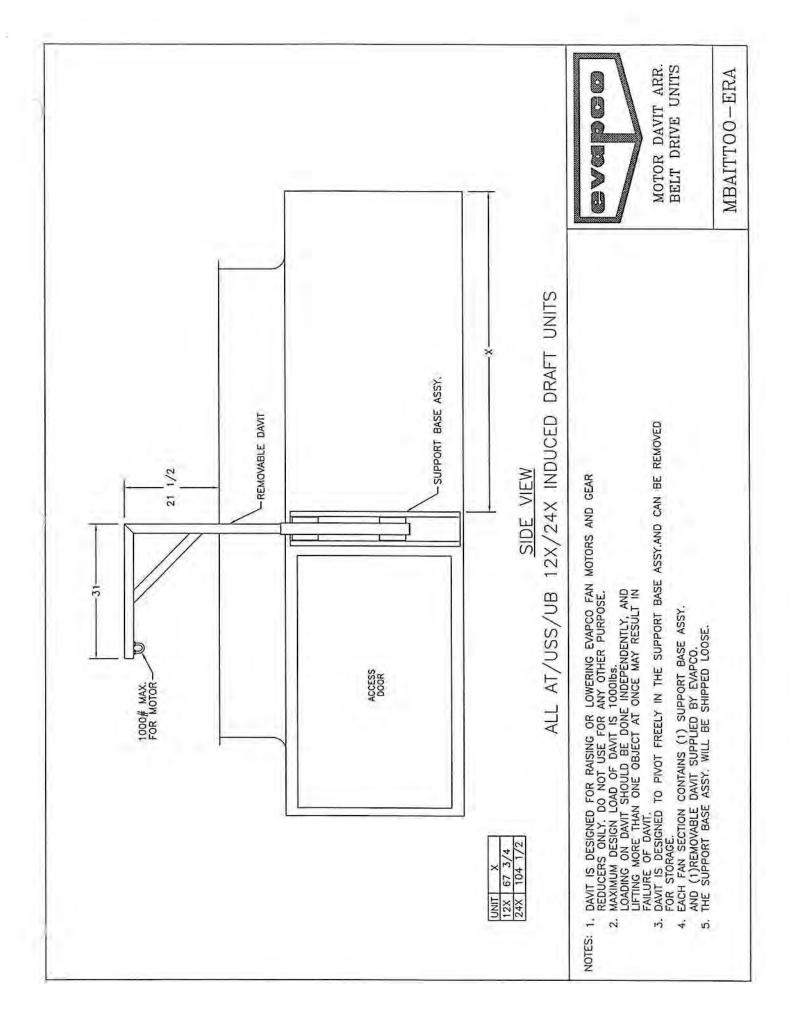
FILL	Polyvinyl Chloride (PVC) of cross-fluted design. PVC sheets are bonded together for strength and durability. Fill is self-extinguishing for fire resistance, has a flame spread of 5 under A.S.T.M. designation E-84-81a, and is resistant to rot, decay and biological attack.
WATER DISTRIBUTION SYSTEM	Precision molded ABS spray nozzles with a large orifice to eliminate clogging. Spray header and branches are Schedule 40 Polyvinyl Chloride (PVC) for corrosion resistance with stainless steel connection to attach external piping.
ELIMINATORS	The eliminators are constructed entirely of Polyvinyl Chloride (PVC) in easily handled sections. Design incorporates three changes in air direction and limits the water carryover to a maximum of 0.001% of the circulating water rate.
AIR INLET LOUVERS	The air inlet louvers are constructed from UV inhibited polyvinyl chloride (PVC) and incorporate a framed interlocking design that allows for easy removal of louvers for access to the entire basin area for maintenance. The louvers have a minimum of two changes in air direction and are of a non-planar design to prevent splash-out, block direct sunlight and debris from entering the basin. (Patent Pending)
*OMITTED ON UNITS FOR REMOTE SUMP OPERATION	All SST 12 FT WIDE BELT DRIVE USS12ST-ST
SPECIAL REMARKS:	
• Unit(s) to be supplied with Inverte	r Duty fan motor(s).

• Remote Sump Trash Screen(s).

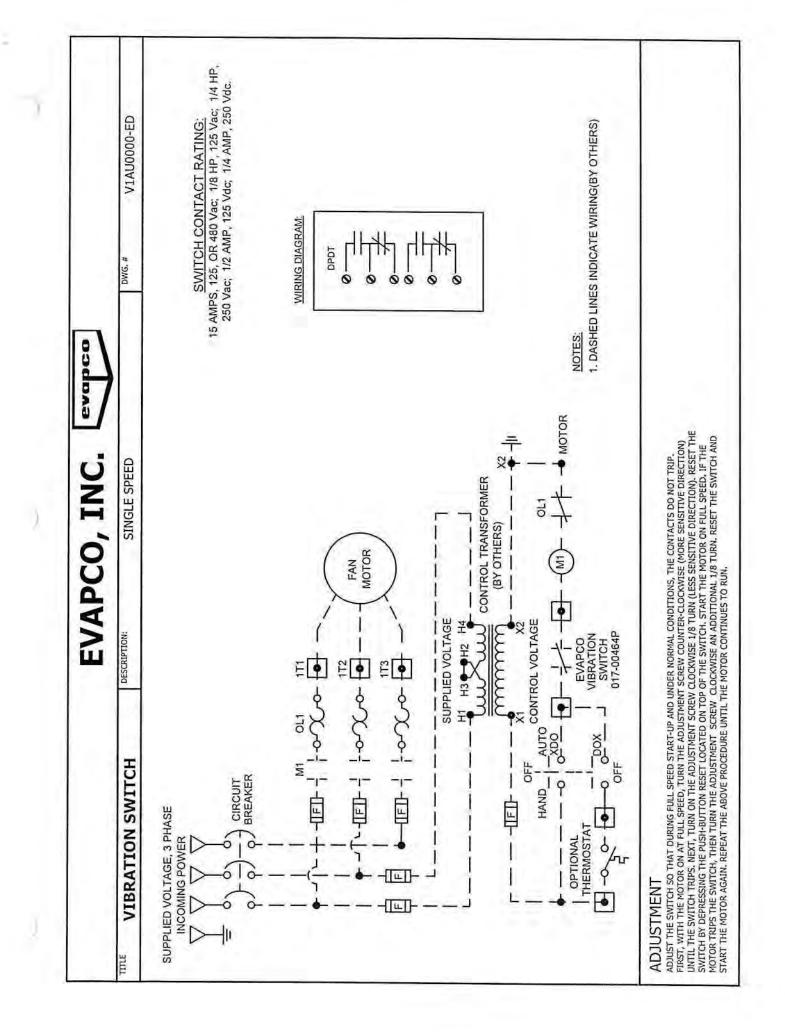
• Flume Plate.


• Unit(s) provided with ladder(s).


• (1) Motor Davit and Base per fan motor.


• Unit provided with Vibration Cutout Switch(cs), mounted (wiring and sensitivity adjustment by others).

• Unit(s) is arranged for remote sump operation. Suction hood, strainers and make-up valve(s) are not provided for this application.


• Unit to ship loosely bolted, less sealer tape.

Guarantee of Thermal Performance ^b

EVAPCO

83

EVAPCO® unequivocally guarantees the thermal performance of its equipment as shown on the certified drawings, when the equipment is installed in accordance with good engineering practice. If after installation and to be deficient, EVAPCO will make the necessary repairs or alterations to correct the deficiency at no cost to the owner. If the equipment is found to be performing in accordance with its certified drawing, the owner is expected start-up there is any question regarding thermal performance of the equipment, at the owner's request EVAPCO will send its engineers to the jobsite to conduct a performance test. This test may be observed by the owner and the consulting engineer or by their authorized representatives. If the results of the evaluation show the equipment to reimburse the company for its costs associated with this performance test

23

AOS2636

3

WRP Associates, LLC

5668 Wooster Pike Cincinnati, OH 45227 Phone: 513-271-4977

Invoice

Date 6/11/2008 Invoice # 395

0T12412008

Bill To

Glenwood Electric 12250 Chandler Drive Walton, KY 41094

	P.O. No.	Terms	Project
	C7350	Net 30	
Quantity	Description	Rate	Amount
	4 ABB Model ACH550-BCR-078A-4+B055 60 HP Drives	7,406.00	29,624.00
	2 ABB Model ACH550-BCR-157A-4+B055 125 HP Drives	11,473.00	22,946.00
	2 ABB Model ACH550-BCR-180A-4+B055 150 HP Drives	13,222.00	26,444.00
	Shipped To:		

Shipped To: Glenwood Electric C/O Cincinnati Bell Telephone 229 West 7th St. Cincinnati, OH 45202

WRP-B195

Thank you for your business. Phone #

513-271-4977

Total

\$79,014.00

Ohio Mercantile Self Direct Program

Application Guide & Cover Sheet

Questions? Call 1-866-380-9580 or visit www.duke-energy.com.

Email this form along with completed Mercantile Self Direct Prescriptive or Custom applications, proof of payment, energy savings calculations and spec sheets to SelfDirect@Duke-Energy.com. You may also fax to 1-513-419-5572.

Mercantile customers, defined as using at least 700,000 kWh annually are eligible for the Mercantile Self Direct program. Please indicate mercantile qualification:

a single Duke Energy Ohio account

multiple accounts in Ohio (energy usage with other utilities may be counted toward the total)

Please list Duke Energy account numbers below (attach listing of multiple accounts an/or billing history for other utilities as required):

Account Number	Annual Usage	Account Number	Annual Usage	
3480-0674-01	76,828,077			

Self Direct rebates are available for completed Custom projects that have not previously received a Duke Energy Smart \$aver® Custom Incentive. Self Direct incentives are applicable to Prescriptive measures that were installed more than 90 days prior to submission to Duke Energy and have not previously received a Duke Energy Prescriptive rebate.

Self Direct Program requirements dictate that certain projects that may be Prescriptive in nature under the Smart \$aver program must be evaluated using the Custom process. Use the table on page two as a guide to determine which Self Direct program fits your project(s). Apply for Self Direct projects using the appropriate application forms in conjunction with this cover sheet. Where Mercantile Self Direct Prescriptive applications are listed, please refer to the measure list on that application. If your measure is not listed, you may be eligible for a Self Direct Custom rebate. Self Direct Custom applications, like Smart \$aver Custom applications, should include detailed analysis of pre-project and post-project energy usage and project costs. Please indicate which type of rebate applications are included in the table provided on page two.

Please check each box to indicate completion of the following program requirements:

All sections of appropriate application(s) are completed	Proof of payment.*	Manufacturer's Spec sheets	Energy model/calculations and detailed inputs for Custom applications
---	--------------------	----------------------------	---

* If a single payment record is intended to demonstrate the costs of both Prescriptive & Custom projects, please include an additional document with an estimated breakout of costs for each Prescriptive and Custom energy conservation measure.

Application Type	Replaced equipment at end of lifetime or because equipment Replaced fully operational plication Type failed** equipment to improve efficiency***		New Construction	
		MSD Prescriptive Lighting	MSD Prescriptive Lighting	
Lighting	MSD Custom Part 1 Custom Lighting Worksheet	MSD Custom Part 1 🗌 Custom Lighting Worksheet 🗌	MSD Custom Part 1 🔲 Custom Lighting Worksheet 🔲	
	MSD Custom Part 1	MSD Custom Part 1	MSD Prescriptive Heating & Cooling	
Heating & Cooling	MSD Custom General Worksheet 🗌	MSD Custom General Worksheet 🗌	MSD Custom Part 1 🗍 MSD Custom General Worksheet 🗌	
Window Films, Programmable Thermostats, & Guest Room Energy Management Systems	MSD Custom Part 1 MSD Custom General and/or EMS Worksheet(s)	MSD Prescriptive Heating & Cooling	MSD Custom Part 1 MSD Custom General and/or EMS Worksheet(s)	
Chillers & Thermal	MSD Custom Part 1	MSD Custom Part 1	MSD Prescriptive Chillers & Thermal Storage	
Storage	MSD Custom General Worksheet 🗌	MSD Custom General Worksheet 🗌	MSD Custom Part 1 MSD Custom General Worksheet	
	MSD Custom Part 1	MSD Custom Part 1	MSD Prescriptive Motors, Pumps & Drives 🗌	
Motors & Pumps	MSD Custom General Worksheet 🗌	MSD Custom General Worksheet 🗌	MSD Custom Part 1 MSD Custom General Worksheet	
		MSD Prescriptive Motors, Pumps & Drives 🗌	MSD Custom Part 1	
VFDs	Not Applicable	MSD Custom Part 1 🛛 MSD Custom VFD Worksheet 🖂	MSD Custom VFD Worksheet	
1.5. 1.0			MSD Prescriptive Food Service	
Food Service	MSD Custom Part 1	MSD Custom Part 1 MSD Custom General Worksheet	MSD Custom Part 1 MSD Custom General Worksheet	
	MCD Concernant I	MSD Prescriptive Process	MCD Custom Den 1	
Process	MSD Custom Part 1 MSD Custom General Worksheet	MSD Custom Part 1 MSD Custom General Worksheet	 MSD Custom Part 1 MSD Custom General Worksheet [
Energy Management Systems	MSD Custom Part 1 MSD Custom EMS Worksheet	MSD Custom Part 1 MSD Custom EMS Worksheet	MSD Custom Part I	
Behavioral*** & No/Low Cost		MSD Custom Part 1 MSD Custom General Worksheet		

** Under the Self Direct program, failed equipment and equipment at the end of its useful life are evaluated differently than early replacement of fully functioning equipment. All equipment replacements due to failure or old age will be evaluated via the Custom program.

*** Please ensure that you include the age of the replaced equipment for measures classified as "Early Replacement" in your application as well as the estimated date that you would have otherwise replaced the existing equipment if you had not chosen a more energy efficient option.

**** Behavioral energy efficiency and demand reduction projects must be both measurable and verifiable. Provide justification with your application.

Proposed energy efficiency measures may be eligible for Self-Direct Custom rebates if they clearly reduce electrical consumption and/or demand as compared to the appropriate baseline.

Before you complete this application, please note the following important criteria:

- · Submitting this application does not guarantee a rebate will be approved.
- Rebates are based on electricity conservation only.
- Electric demand and/or energy reductions must be well documented with auditable calculations.
- Incomplete applications cannot be reviewed; all fields are required.

Refer to the complete list of Instructions and Disclaimers, beginning on page 6.

Notes on the Application Process

If you have any questions concerning how to complete any portion of the application or what supplementary information is required, please contact your Duke Energy Ohio, Inc account manager or the Duke Energy Smart \$aver® team at 1-866-380-9580.

Every application must include calculations of the baseline electrical usage and the electrical usage of the proposed high-efficiency equipment/system. Monthly calculations are best. You, the Duke Energy Ohio customer, or your equipment vendor / engineer should perform these calculations and submit them to Duke Energy for review. We strongly encourage the use of modeling software (such as eQuest or comparable) for complex projects.

Upon receipt of your application, an acknowledgement email will be sent to you with an estimated response time based on an initial assessment of your application. The application review may include some communication to resolve any questions about the project or to request additional information. Applications that are received complete without missing information have a faster review time.

There are two ways to submit your completed application.

Email your scanned form to: SelfDirect@duke-energy.com

Or, fax your form to 513-419-5572

1. Contact Information (Required)

Duke Energy Cu	stomer Contact	nformation					
Company Name	Cincinnati Bell Telephone						
Address	209 West 7th Str	209 West 7th Street, Mail Location 121-1200					
Project Contact	Kevin Daniel						
City	Cincinnati	State Ohio Zip Code			45202		
Title	Building Operati	Building Operations Manager, Real Estate Dept.					
Office Phone	513-397-5412	Mobile Phone	513-604-6959 F		Fax	513-39	7-0842
E-mail Address	kevin.daniel@cinbell.com AND grace.lobono@cinbell.com						

Company Name	Johnson Controls, Glenwood Electric						
Address	209 W7th St	209 W7th St					
City	Cincinnati	Cincinnati State OH Zip Code 45202					
Project Contact	Kevin Daniel	Kevin Daniel					
Title	Building Manage	Building Manager					
Office Phone	513-397-5412 Mobile Phone 613-604-6959 Fax 513-397-0842						
E-mail Address	kevin.daniel@cinbell.com AND grace.lobono@cinbell.com						
Describe Role	Responsible to oversee all facility capital improvements and maintenance						

Payment Information						
Payee Legal Company Name (as shown on Federal income tax return):	Cincinnati Bell Telephone					
Mailing Address	209 W 7th St. ML 121-1200					/
City	Cincinnati Bell State OH Zip Code 45202					45202
Type of organization (check Unit of Government I Payee Federal Tax ID # of L Company Name Above:	Non-Profit		ration)	r 🛛 C	orporation] Partnership
Who should receive incentive	e payment	? (select on	ie) 🛛 Cust	omer	Vendor (C must sign	
If the vendor is to receive pa I hereby authorize payment						
Customer Signature			Date	/_	_/(m	m/dd/yyyy)

- 2. Project Information (Required)
- A. Please indicate project type:
 - New Construction
 - Expansion at an existing facility
 - Replacing equipment due to equipment failure
 - Replacing equipment that is estimated to have remaining useful life of 2 years or less
 - Replacing equipment that is estimated to have remaining useful life of more than 2 years
 - Behavioral, operational and/or procedural programs/projects
- B. Please describe your project, or attach a detailed project description that describes the project.

Variable Speed Drives were installed on our Condenser Water Pumps, Cooling Towers, Chilled Water Pumps, and the Domestic Water Pumps, providing efficiency to the Chiller Plant.

C. When did you start and complete implementation?

Start date 1/2008 (mm/yyyy) End date 12/2008 (mm/yyyy)

- D. Are you also applying for Self-Direct Prescriptive incentives and, if so, which one(s)¹?
- E. Please indicate which worksheet(s) you are submitting for this application (check all that apply):
 - Lighting
 - Variable Frequency Drive (VFD)
 - Compressed Air
 - Energy Management System (EMS)
 - General (for projects not easily submitted using one of the above worksheets)
- F. Please tell us if there is anything about your electrical energy projections (either for the baseline or the proposed project) that you are either unsure about or for which you have made significant assumptions. Attach additional sheets as needed. Documentation and Trend Data for all pumps and drives is submitted with the applications.

¹ If your project involves some equipment that is eligible for prescriptive incentives and some equipment that is likely eligible for custom incentives, and if it is feasible to separate the equipment for the energy analysis, then the equipment will be evaluated separately. If it is not feasible to separate the equipment for analysis, then the equipment will be evaluated together in the custom application.

Required: Attach a supplier or contractor invoice or other equivalent information documenting the Implementation Cost for each project listed in your application. (Note: self-install costs cannot be included in the Implementation Cost)

3. Signature (Required – must be signed by Duke Energy customer)

Customer Consent to Release of Personal Information

I, (insert name) Kevin Daniel, do hereby consent to Duke Energy disclosing my

Duke Energy Ohio, Inc Account Number and Federal Tax ID Number to its subcontractors solely for the purpose of administering Duke Energy Ohio's Mercantile Self-Direct Program. I understand that such subcontractors are contractually bound to otherwise maintain my Duke Energy Ohio, Inc Account Number and Federal Tax ID Number in the strictest of confidence.

I realize that under the rules and regulations of the public utilities commission, I may refuse to allow Duke Energy Ohio, Inc to release the information set forth above. By my signature, I freely give Duke Energy Ohio, Inc permission to release the information designated above.

Application Signature

I certify that I meet the eligibility requirements of the Duke Energy Ohio, Inc Mercantile Self Direct Custom Incentives Program and that all information provided within this application is correct to the best of my knowledge. I agree to the terms and conditions set forth for this program. I certify that the numbers, energy savings, and responses shown on this form are correct. Further, I certify that the taxpayer identification number is current and correct. I am not subject to backup withholding because: (a) I am exempt from backup withholding; or (b) I have not been notified by the IRS that I am subject to backup withholding as a result of a failure to report all interest or dividends; or (c) the IRS has notified me that I am no longer subject to backup withholding. I am a U.S. citizen (includes a U.S. resident alien).

Duke Energy Ohio, Inc Customer Signature

Print Name Kevin Daniel

Date <u>12-15-11</u>

Checklist for completing the Application

INCOMPLETE APPLICATIONS WILL RESULT IN DELAYS IN DUKE ENERGY PROCESSING YOUR APPLICATION AND NOTIFYING YOU CONCERNING AY REBATES. Before submitting the application and the required supplementary information, use the following checklist to ensure that your application is complete and the information in the application is accurate. (Note: this checklist is <u>for your use only</u> – do not submit this checklist with your application)

Section No. & Title	Have You:
1. Contact Information	 Completed the contact information for the Duke Energy customer? Completed the contact information for the equipment vendor / project engineer that can answer questions about the technical aspects of the project, if that is a different person than above?
2. Project Information	 Answered the questions A-E, including providing a description of your project. Completed and attached the lighting, compressed air, VFD, EMS and/or General worksheet(s)?
3. Signature	 Signed your name? Printed your name? Entered the date?
Supplementary information (Required)	 Attached a supplier or contractor's invoice or other equivalent information documenting the Implementation Cost for projects listed in your application? (Note: self-install costs cannot be included in the Implementation Cost) (If submitting the General Worksheet) attached calculations documenting the energy usage and energy savings for <u>each</u> project listed in your application?

If you have any questions concerning how to complete any portion of the application or what supplementary information is required, please contact:

- your Duke Energy account manager or,
- the Duke Energy Smart \$aver® team at 1-866-380-9580.

Instructions/Terms/Conditions

Note: Please keep for your records- do not submit with the application

- Energy service companies or contractors may assist in preparing the application, but an authorized representative of the customer must sign this application to be eligible to participate in the Mercantile Self Direct Program. Completion of this application does not guarantee the approval of a Self Direct Custom Rebate.
- Once all documentation requested in this application is received by *Duke Energy Ohio*, *Inc*, and any follow-up information requested by *Duke Energy* is received, the rebate amount for each Energy Conservation Measure (ECM) will be communicated to the customer. The rebate amount will be based on ECM energy savings and ECM incremental installation cost.
- All rebates require approval by the Public Utilities Commission of Ohio. Duke Energy Ohio, Inc will submit an application for rebate on the customer's behalf upon customer attestation to program terms, conditions and requirements as outlined in the rebate offer letter and upon customer completion of attestation documents required by the Public Utilities Commission of Ohio.
- 4. Duke Energy Ohio, Inc will issue a Self Direct Custom Rebate check, based on the approved rebate amount for each ECM, upon receiving approval from the Public Utilities Commission of Ohio. Duke Energy Ohio, Inc does not guarantee PUCO approval.
- 5. With the application, the customer must provide a list of all sites where the ECMs were installed. Duke Energy Ohio, Inc requests that sites of similar size, hours of operation and energy consuming characteristics be grouped together in one application for the determination of the rebate amount. The application should identify the site where each unique ECM was installed.
- Based on the information submitted with the application and the information gathered both before and after the initial installation of the ECM, *Duke Energy Ohio*, *Inc* will calculate the rebate amount for each ECM.
- Duke Energy Ohio, Inc may conduct random site inspections of a sample of the locations where the ECMs are installed to verify installation and operability of the ECMs and to obtain information needed to calculate the Approved Incentive Amount.
- Customers are encouraged to retain copies of all forms, invoices and supporting documentation for their records.
- Approved rebates are valid for 6 months from the date communicated to the customer by Duke Energy Ohio, Inc, subject to the expiration of measure eligibility based on project completion dates and application submission deadlines as defined by PUCO. Customers are encouraged to execute their rebate offer contracts and PUCO-required affidavits promptly to ensure eligibility is not forfeited.
- Duke Energy Ohio, Inc reserves the right to recover all unrecoverable costs associated with the project approval if the customer decides not to execute the rebate contract, after the project is approved by Duke Energy Ohio, Inc.
- 11. Projects financially supported by other funding sources will be evaluated on a case-by-case basis for potential partial funding from *Duke Energy Ohio, Inc.*
- 12. Participants must be Duke Energy Ohio, Inc nonresidential, mercantile customers with the project sites in the Duke Energy Ohio, Inc service territory.

- 13. Customers or trade allies may not use any Duke Energy logo without prior written permission.
- 14. Only trade allies registered with Duke Energy are eligible to participate.
- 15. All equipment must be new. Used or rebuilt equipment is not eligible for incentives. All old existing equipment must be removed on retrofit projects.
- 16. Disclaimers: Duke Energy Ohio, Inc
 - a. does not endorse any particular manufacturer, product or system design within the program;
 - b. will not be responsible for any tax liability imposed on the customer as a result of the payment of incentives;
 - does not expressly or implicitly warrant the performance of installed equipment. (Contact your contractor for details regarding equipment warranties.);
 - d. is not responsible for the proper disposal/recycling of any waste generated or obsolete or old equipment as a result of this project;
 - e. is not liable for any damage caused by the installation of the equipment nor for any damage caused by the malfunction of the installed equipment; and
 - f. reserves the right to change or discontinue this program at any time. The acceptance of program applications is determined solely by Duke Energy Ohio, Inc.

This foregoing document was electronically filed with the Public Utilities

Commission of Ohio Docketing Information System on

3/12/2012 5:34:30 PM

in

Case No(s). 12-0928-EL-EEC

Summary: Application Application to Commit Energy Efficiency/Peak Demand Reduction Programs (Mercantile Customers Only)- Cincinnati Bell Telephone electronically filed by Carys Cochern on behalf of Duke Energy