Ms. Renee Jenkins
Docketing Division
Public Utilities Commission of Ohio
Ohio Power Siting Board
180 East Broad Street
Columbus, Ohio 43215

RE: Hamilton/AMP Meldahl Transmission Line and Substation Projects
 OPSB Case Nos. 10-2439-EL-BSB and 10-2440-EL-BTX
 Responses to Additional Clarification Questions from OPSB Staff

Dear Ms. Jenkins:

On behalf of the City of Hamilton and American Municipal Power, Inc., the Applicants for pending consolidated cases $10-2439-E L-B S B$ and $10-2440-E L-B T X$, please accept for filing in the docket the attached responses to questions asked by Staff of the Ohio Power Siting Board.

Please contact me with any questions.
Sincerely,

April R. Bott
Bott Law Group LLC
5126 Blazer Parkway
Dublin, Ohio 43017
614-761-2688
abott@bottlawgroup.com
Enclosure

```
This is to certify that the imayes appearing are an accurate and complete reproduction of a case file document delivered in the regular course of burines.
```


Via E-mail to: jon.pawley@puc.state.oh.us
Jon Pawley
Ohio Power Siting Board
180 East Broad Street
Columbus, OH 43215

RE: Responses to OPSB Staff Questions:
 Meldahl Hydroelectric Project-Transmission Line and Substation OPSB Case Nos. 10-2439-EL-BSB and 10-2440-EL-BTX

Dear Jon:
On September 12, 2011, OPSB posed three additional clarification questions to the Applicants by electronic mail. On behalf of the Applicants, City of Hamilton and American Municipal Power, Inc., this letter answers OSPB's questions. For ease of review, OPSB's questions have been set forth below followed by the answers to each question.

1. Please list the types of structures (wood, steel, pole, tower, or H-frame) presently being considered by the Applicant at each location for clarification (table form) for structures 1-41 of the Preferred Route and the Alternate Route.

Tables 1 and 2 below list the types of structures presently anticipated for the Preferred Route (Table 1) and the Alternate Route (Table 2).

Table 1 - Structure Information for the Preferred Route

Structure No.	Structure Type	Wood / Steel	Number of Poles
1	Take-off Structure	Steel	2
2	Steel Large Angle (with cross braces)	Steel	3
3	Y - Frame Structure	Steel	1
4	Y - Frame Structure	Steel	1
5	3-Pole Tangent Dead End	Steel	3
6	River Crossing Dead-End	Steel	3
7	River Crossing Lattice Tower	Steel	---
8	River Crossing Lattice Tower	Steel	---
9	River Crossing Dead-end	Steel	2
10	Wood Medium Angle (guyed)	Wood	3
11	Tangent Wood H-Frame	Wood	2

Structure No.	Structure Type	Wood / Steel	Number of Poles
12	Wood Large Angle (guyed)	Wood	3
13	Tangent Wood H-Frame	Wood	2
14	Tangent Wood H-Frame	Wood	2
15	Tangent Wood H-Frame	Wood	2
16	Tangent Wood H-Frame	Wood	2
17	Wood Small Angle (guyed)	Wood	3
18	Tangent Wood H-Frame	Wood	2
19	Tangent Wood H-Frame	Wood	2
20	Tangent Wood H-Frame	Wood	2
21	Tangent Wood H-Frame	Wood	2
22	Wood Small Angle (guyed)	Wood	3
23	Tangent Wood H-Frame	Wood	2
24	Tangent Wood H-Frame	Wood	2
25	Tangent Wood H-Frame	Wood	2
26	Tangent Wood H-Frame	Wood	2
27	Tangent Wood H-Frame	Wood	2
28	Tangent Wood H-Frame	Wood	2
29	Wood Large Angle (guyed)	Wood	3
30	SPECIAL Small Angle Wood H-Frame (with cross braces, side guying)	Wood	2
31	Steel Double Dead End Angle Pole	Steel	1
32	Steel Tangent Dead End Pole	Steel	1
33	Tangent Wood H-Frame	Wood	2
34	Wood Medium Angle (guyed)	Wood	3
35	Tangent Wood H-Frame	Wood	2
36	Tangent Wood H-Frame	Wood	2
37	Wood Medium Angle (guyed)	Wood	3
38	Tangent Wood H-Frame	Wood	2
39	Tangent Wood H-Frame	Wood	2
40	Tangent Wood H-Frame	Wood	2
41	End Steel H - Frame	Steel	2

Table 2 - Structure Information for the Alternate Route

Structure No.	Structure Type	Wood / Steel	Number of Poles
1	Take-off Structure	Steel	2
2	Steel Large Angle (with cross braces)	Steel	3
3	Y - Frame Structure	Steel	1
4	Y- Frame Structure	Steel	1
5	3-Pole Tangent Dead End	Steel	3

Structure No.	Structure Type	Wood / Steel	Number of Poles
6	River Crossing Dead-End	Steel	3
7	River Crossing Lattice Tower	Steel	---
8	River Crossing Lattice Tower	Steel	---
9	River Crossing Dead-end	Steel	2
10	3 Pole Steel structure	Steel	3
11	3 Pole Steel structure	Steel	3
12	Wood Small Angle (guyed)	Wood	3
13	Tangent Wood H-Frame	Wood	2
14	Wood Small Angle (guyed)	Wood	3
15	Tangent Wood H-Frame	Wood	2
16	Tangent Wood H-Frame	Wood	2
17	Wood Small Angle (guyed)	Wood	3
18	Small Angle Wood H-Frame (guyed)	Wood	2
19	Tangent Wood H-Frame	Wood	2
20	Tangent Wood H-Frame	Wood	2
21	Tangent Wood H-Frame	Wood	2
22	Wood Small Angle (guyed)	Wood	3
23	Tangent Wood H-Frame	Wood	2
24	3 Pole Steel structure	Steel	3
25	3 Pole Steel structure	Steel	3
26	3 Pole Steel structure	Steel	3
27	Wood Small Angle (guyed)	Wood	3
28	Wood Small Angle (guyed)	Wood	3
29	Wood Small Angle (guyed)	Wood	3
30	Tangent Wood H-Frame	Wood	2
31	Tangent Wood H-Frame	Wood	2
32	Wood Small Angle (guyed)	Wood	3
33	Wood Small Angle (guyed)	Wood	3
34	Tangent Wood H-Frame	Wood	2
35	Tangent Wood H-Frame	Wood	2
36	Small Angle Wood H-Frame (guyed)	Wood	2
37	Tangent Wood H-Frame	Wood	2
38	Tangent Wood H-Frame	Wood	2
39	Tangent Wood H-Frame	Wood	2
40	Tangent Wood H-Frame	Wood	2
41	Wood Small Angle (guyed)	Wood	3
42	Tangent Wood H-Frame	Wood	2
43	Wood Small Angle (guyed)	Wood	3
44	Tangent Wood H-Frame	Wood	2
45	Tangent Wood H-Frame	Wood	2
46	Tangent Wood H-Frame	Wood	2

Structure No.	Structure Type	Wood / Steel	Number of Poles
47	Tangent Wood H-Frame	Wood	2
48	Small Angle Wood H-Frame (guyed)	Wood	2
49	Tangent Wood H-Frame	Wood	2
50	Tangent Wood H-Frame	Wood	2
51	Tangent Wood H-Frame	Wood	2
52	Tangent Wood H-Frame	Wood	2
53	Tangent Wood H-Frame	Wood	2
54	Wood Small Angle (guyed)	Wood	3
55	Tangent Wood H-Frame	Wood	2
56	Wood Small Angle (guyed)	Wood	3
57	Tangent Wood H-Frame	Wood	2
58	Tangent Wood H-Frame	Wood	2
59	Tangent Wood H-Frame	Wood	2
60	Tangent Wood H-Frame	Wood	2
61	Wood Large Angle (guyed)	Wood	3
62	Wood Small Angle (guyed)	Wood	3
63	Tangent Wood H-Frame	Wood	2
64	Tangent Wood H-Frame	Wood	2
65	Tangent Wood H-Frame	Wood	2
66	Wood Small Angle (guyed)	Wood	3
67	Tangent Wood H-Frame	Wood	2
68	Small Angle Wood H-Frame (guyed)	Wood	2
69	Tangent Wood H-Frame	Wood	2
70	Small Angle Wood H-Frame (guyed)	Wood	2
71	Tangent Wood H-Frame	Wood	2
72	Wood Medium Angle (guyed)	Wood	3
73	Tangent Wood H-Frame	Wood	2
74	Tangent Wood H-Frame	Wood	2
75	Wood Small Angle (guyed)	Wood	3
76	End Steel H - Frame	Steel	2

2. Please explain based on engineering principles why the Preferred Route line could not be extended to the north and east over Bear Creek so as to shorten the span and avoid impacts to taller trees currently in the route's alignment. (Why can't structure 31 be placed in the open area to the east?)

The primary reason for spanning Bear Creek was to preserve, to the greatest extent practicable, the riparian corridor to maintain water quality and habitat in Bear Creek. While a line height of 40^{\prime} will result in some topping of trees, the riparian corridor along Bear Creek is maintained which was the original intent in altering the original design.

In addition, the proposed route cannot be moved to relocate Structure 31 to the east, because the proposed route was deliberately shifted to the west already to avoid two cultural resources: 33 Ct694 and 33Ct695. These sites are both eligible for listing on the National Register of Historic Places and have potential archaeological significance. As part of the FERC process, Ohio SHPO has concurred with the study and recommendations to avoid resources 33 Ct 694 and 33Ct695. A report describing these features and the archaeological survey is included as Appendix 06-5 of the OPSB Transmission Line Application (OPSB Case No. 10-2440-ELBTX).

2a. Related, what is the maximum span distance and structure height at the Bear Creek crossing that the Applicant can accommodate to increase the 40 ' tree topping statement listed in prior interrogatories for the Preferred Route?

If the structure locations remain as currently shown (i.e., the span does not change), additional ground clearance can only be achieved by increasing the heights of the structures. Due to the topography and the angle at which the line crosses the valley, the increase in tower height would likely not be proportional to the increase in ground clearance. That is, if the towers were raised a foot, it would result in additional ground clearance, but less than a foot. With the increased heights, the structures would have to be enlarged to accommodate the increased structural loadings. Depending upon how much structure 30 would increase in height, it would have to be changed to a steel structure that would require a drilled concrete pier foundation(s). This would increase the disturbance to the land around the structure and access way due to increased amount of equipment needed for the installation of the foundation and steel structure versus that which is needed for the direct buried wooden structure.

Please contact me if you have any questions or need additional information.
Sincerely,
whifereot

April R. Bott

cc: Charles Young
Mark Brandenburger
Phil Meier
John Bentine

