TO THE

PUBLIC UTILITIES COMMISSION OF OHIO

DUKE ENERGY OHIO, INC.
2011 ELECTRIC
LONG-TERM FORECAST REPORT AND RESOURCE PLAN

CASE NO. 11-1439-EL-FOR

This is to certify that the images appearing are an accurate and complete reproduction of a case file document delivered in the regular course of business.
\qquad

STATEMENT
 OF
 JULIA S. JANSON PRESIDENT, DUKE ENERGY OHIO, INC.

I, Julia S. Janson, President of Duke Energy Ohio, Inc., hereby certify that the statement and modifications set forth in the 2011 DUKE ENERGY OHIO LONG-TERM ELECTRIC FORECAST REPORT AND RESOURCE PLAN as submitted to the Public Utilities Commission of Ohio are true and correct to the best of my knowledge and belief.

I further certify that the requirements of Ohio Administrative Code §4901:5-1-03, paragraphs (F) to (I) will be met.

Libraries Receiving a Letter of Notification Regarding Duke Energy Ohio, Inc.'s 2011 Long-Term Forecast Report and Resource Plan

County	Library	Address
Adams	Manchester Branch Library	401 Pike St. Manchester, Ohio 45144
Brown	Mary P. Shelton Library	200 West Grant Avenue Georgetown, Ohio 45121
Butler	Lane Public Library	300 North Third Street Hamilton, Ohio 45011
Butler	Middletown Public Library	125 South Broad Street Middletown, Ohio 45044
Clermont	Clermont County Public Library	180 South Third Street Batavia, Ohio 45103
Clinton	Wilmington Public Library	268 North South Street Wilmington, Ohio 45117
Hamilton	Public Library of Cincinnati and Hamilton County University of Cincinnati Library Reference Division	800 Vine Street Cincinnati, Ohio 45202 2600 Clifton Avenue Cincinnati, Ohio 45221
Highland	Highland County District Library	10 Willettsville Pike Hillsboro, Ohio 45133
Montgomery	Dayton and Montgomery County Public Library	215 East Third Street Dayton, Ohio 45402
Preble	Preble County District Library	301 North Barron Street Eaton, Ohio 45320
Warren	Lebanon Public Library	101 South Broadway
Lebanon, Ohio 45036		

CERTIFICATE OF SERVICE

I hereby certify that a true and accurate copy of Duke Energy Ohio's Long-Term Forecast Report and Resource Plan was served by hand delivery, this $15^{\text {th }}$ day of July, 2011 upon the following:

Office of the Ohio Consumers' Counsel
10 West Broad Street, Suite 1800
Columbus, OH 43215-3485

Furthermore, a Letter of Notification was sent by First Class U.S. Mail to each library listed in the Report.

Elizabeth H. Watts
Associate General Counsel
Duke Energy Business Services

TABLE OF CONTENTS

Page

SECTION I - FORECAST REPORT REQUIREMENTS 1
A. SUMMARY OF THE LONG-TERM FORECAST REPORT 1
B. FORECAST SUMMARY \& ASSUMPTIONS 7

1. Service Area Economy 8
2. Electric Energy Forecast 8
3. Specific 18
D. FORECAST DOCUMENTATION 20
4. Economic Data 20
5. Energy and Peak Models 21
6. Forecast Data 24
7. Load Research and Market Research Efforts. 25
E. MODELS 26
8. Specific Analytical Techniques 26
9. Relationships Between The Specific Techniques 28
10. Alternative Methodologies 28
11. Changes In Methodology 28
12. Equations 28
13. Computer Software 55
SECTION II FORECASTS FOR ELECTRIC TRANSMISSION OWNERS 55
A. GENERAL GUIDELINES 55
B. ELECTRIC TRANSMISSION FORECAST 55
C. THE EXISTING TRANSMISSION SYSTEM 92
D. THE PLANNED TRANSMISSION SYSTEM 104
E. SUBSTANTIATION OF THE PLANNED TRANSMISSION SYSTEM 115
F. REGIONAL AND BULK POWER REQUIREMENTS 117
G. CRITICAL ENERGY INFRASTRUCTURE INFORMATION 117
H. SUBSTANTIATION OF THE PLANNED DISTRIBUTION SYSTEM 117
SECTION III -- ELECTRIC DISTRIBUTION FORECAST 120
14. Service Area Energy Forecasts 121
15. System Seasonal Peak Load Forecast 121
16. Controllable Loads 122
17. Load Factor. 131
SECTION IV - DUKE ENERGY OHIO 2011 RESOURCE PLAN 132
A. EXECUTIVE SUMMARY 132
18. Overview 132
19. Planning Process Results 134
B. INTRODUCTION 139
C. RESOURCE PLANNING PROCESS 140
D. PLANNING ASSUMPTIONS 141
E. EXISTING RESOURCES AND ANTICIPATED CHANGES 144
20. Existing Generation System Description 144
21. Fuel Supply and Pricing 147
22. Maintenance and Availability 149
23. Anticipated Changes to Existing Generation 151
F. ENVIRONMENTAL REGULATIONS 153
24. Clean Air Interstate Rule (CAIR) and Replacement CAIR - the Transport Rule 153
25. Utility Boiler Maximum Achievable Control Technology (MACT 154
26. National Ambient Air Quality Standards (NAAQS 154
a. 8 Hour Ozone Standard 154
b. SO_{2} Standard 155
27. Global Climate Change 156
28. Water Quality 156
a. CWA 316(b) Cooling Water Intake Structures 156
b. Steam Electric Effluent Guidelines 157
29. Waste Issues (Coal Combustion Byproducts) 158
G. POOLING AND BULK POWER AGREEMENTS 161
H. ENERGY EFFICIENCY/DSM PROGRAMS 161
30. Existing Programs 162
a. Residential Programs 163
b. Non-Residential Programs 164
31. Future Programs 170
I. FUTURE RESOURCES AND REQUIREMENT 173
32. Generation Technologies 173
33. Supply Side Resources 173
A. Overview 173
B. Selected Supply Side Technologies 175
J. ADVANCED ENERGY REQUIREMENTS 176
34. Qualified Renewable Resources 177
35. Qualified Advanced Energy Resources 179
36. Discussion of Renewable Compliance Strategy 179
37. Renewable Energy in the Resource Planning Model 180
38. Intermittency and Capacity Factors 183
39. Other Renewable Resources 184
K. RESOURCE PLAN 184
L. SYSTEM OPTIMIZER RESOURCE PORTFOLIO ALTERNAT 186
M. RESOURCE PORTFOLIO ALTERNATIVE EVALUATION RESULTS 187

SECTION I - FORECAST REPORT REQUIREMENTS

A. SUMMARY OF THE LONG-TERM FORECAST REPORT

Duke Energy Ohio provides electric service to approximately 690,000 customers in an area covering some 2,500 square miles in Southwestern Ohio. Duke Energy Ohio's service territory includes the cities of Cincinnati and Middletown, Ohio. Duke Energy Kentucky provides electric service in the Northern Kentucky area contiguous to the Southwestern Ohio area served by Duke Energy Ohio. Duke Energy Kentucky serves approximately 136,000 electric customers in its 500 square mile service territory. Duke Energy Kentucky's service territory includes the cities of Covington and Newport, Kentucky. Duke Energy Ohio and Duke Energy Kentucky operate within the regional economy as defined by the Cincinnati Primary Metropolitan Statistical Area (PMSA). Therefore, the Company coordinates and prepares the forecast for the entire region encompassing both utility service areas. This consolidated forecast is then allocated to each service area. Subsequently, this report covers the forecast for Duke Energy Ohio only.

As of December 2010, the transmission system of Duke Energy Ohio consisted of approximately 403 circuit miles of 345 kV lines (including Duke Energy Ohio's share of jointlyowned transmission) and 724 circuit miles of 138 kV lines. Portions of the 345 kV transmission system are jointly owned with Columbus Southern Power Company and/or the Dayton Power \& Light Company. Duke Energy Ohio is interconnected with five other transmission providers (including Duke Energy Indiana).

The electric energy and peak demand forecasts of the Duke Energy Ohio franchised service territory are prepared each year as part of the planning process.

The general framework of the Electric Energy and Peak Load Forecast involves a national economic forecast, a service area economic forecast, and the electric load forecast.

The national economic forecast provides information about the prospective growth of the national economy. This involves projections of national economic and demographic concepts such as population, employment, industrial production, inflation, wage rates, and income. The national economic forecast is obtained from Moody's Analytics, a national economic consulting firm.

Similarly, the history and forecast of key economic and demographic concepts for the service area economy is obtained from Moody's Analytics. The service area economic forecast is used along with the energy and peak models to produce the electric load forecast.

Energy sales projections are prepared for the residential, commercial, industrial, and other sectors. Those components plus electric system losses are aggregated to produce a forecast of net energy.

Table 1-1 below, provides information on the Duke Energy Ohio System projected annual growth rates in energy for the major customer classes as well as net energy and peak demand before and after implementation of any new or incremental energy efficiency programs. The growth rates are consistent with the forecast presented in the FE-D forms in Section 3 and represent the full distribution forecast regardless of who supplies the energy. The forecast incorporates impacts associated with the Energy Independence and Security Act of 2007 (EISA).

TABLE 1-1
Duke Energy Ohio System
ELECTRIC ENERGY AND PEAK LOAD
FORECAST: ANNUAL GROWTH RATES
2011 to 2021

	Before EE	After EE
Residential MWH	0.8%	-0.7%
Commercial MWH	1.5%	0.3%
Industrial MWH	1.6%	0.5%
Net Energy MWH	1.2%	-0.1%
Summer Peak MW	1.0%	0.2%
Winter Peak MW	0.9%	0.3%

Growth rates are computed as the compound annual rate of growth in total distribution loads for the years 2011-2021.

The forecast of energy is graphically depicted on Figure 1-1, and the summer and winter peak forecasts are shown on Figure 1-2.

Please note that the FE-T forms in Section II represent the load supplied by the regulated utility. These forecasts of energy and peak demand provide the starting point for the development of the Integrated Resource Plan. As such, the first year of the forecast reflects energy and peak reduced for current switching levels, i.e. default load supplied by the regulated utility. The remaining years of the forecast reflect the assumption that all load returns to the regulated utility at the end of the current ESP in 2011. This result follows from the assumption
that the Company sets an electric generation price at a new market-based ESP price. With the establishment of an ESP price at a market level, it is assumed that the cost savings that encourages customer switching would disappear. As a result, in this event, all switched customers are expected to return to the regulated utility for generation service.

Changes In Methodology

The Company changed its approach regarding the development of its appliance stock variable to rely more completely on information from Itron, Inc. for estimates of historical appliance efficiency. The Company uses the latest historical data available and relies on recent economic data and forecasts from Moody's Analytics.

Figure 1.1: Total Energy Forecast (Before Implementation of Energy Efficiency Programs)

Figure 2.2: Peak Forecast (Before Implementation of Energy Efficiency Programs)

The electric energy and peak demand forecasts of the Duke Energy Ohio service territory are prepared each year as part of the planning process by a staff that is shared with the other Duke Energy affiliated utilities, using the same methodology. Duke Energy Ohio does not perform joint load forecasts with non-affiliated utility companies, and the forecast is prepared independently of the forecasting efforts of non-affiliated utilities.

B. FORECAST SUMMARY \& ASSUMPTIONS

The forecast methodology is essentially the same as that presented in past Electric LongTerm Forecast Reports Plans filed with the Public Utilities Commission of Ohio (Commission). Energy is a key commodity linked to the overall level of economic activity. As residential, commercial, and industrial economic activity increases or decreases, the use of energy, or more specifically electricity, should increase or decrease, respectively. It is this linkage to economic activity that is important to the development of long-range energy forecasts. For that reason, forecasts of the national and local economies are key ingredients to energy forecasts.

The general framework of the Electric Energy and Peak Load Forecast involves a national economic forecast, a service area economic forecast, and the electric load forecast. The national economic forecast provides information about the prospective growth of the national economy. This involves projections of national economic and demographic concepts such as population, employment, industrial production, inflation, wage rates, and income. The national economic forecast is obtained from Moody's Analytics, a nationally recognized vendor of economic forecasts. In conjunction with the forecast of the national economy, the Company also obtains a forecast of the service area economy from Moody's Analytics.

The Duke Energy Ohio service area is located in southwestern Ohio adjacent to the service area of Duke Energy Kentucky. The economy of southwestern Ohio is contained within the Cincinnati Primary Metropolitan Statistical Area (PMSA) and is an integral part of the regional economy. The service area economic forecast is used along with the energy and peak models to produce the electric load forecast.

1. Service Area Economy

There are several sectors to the service area economy: employment, income, inflation, production, and population. Forecasts of employment are provided by North American Industry Classification System (NAICS) and aggregated to major sectors such as commercial and industrial. Income for the local economy is forecasted in several categories including wages, rents, proprietors' income, personal contributions for social insurance, and transfer payments. The forecasts of these items are summed to produce the forecast of income less personal contributions for social insurance. Inflation is measured by changes in the Consumer Price Index (CPI). Production is projected for each key NAICS group by multiplying the forecast of productivity (production per employee) by the forecast of employment. Population projections are aggregated from forecasts by age-cohort. This information serves as input into the energy and peak load forecast models.

2. Electric Energy Forecast

The forecast methodology follows economic theory in that the use of energy is dependent upon key economic factors such as income, production, energy prices, and the weather. The projected energy requirements for Duke Energy Ohio's retail electric customers are determined through econometric analysis. Econometric models are a means of representing economic behavior through the use of statistical methods, such as regression analysis.

The Duke Energy Ohio forecast of energy requirements is included within the overall forecast of energy requirements of the Greater Cincinnati and Northern Kentucky region. The Duke Energy Ohio sales forecast is developed by allocating percentages of the total regional forecast for each customer group. These groups include residential, commercial, industrial, governmental or other public authority (OPA), and street lighting energy sectors. In addition,
forecasts are also prepared for three minor categories: interdepartmental use (Gas Department), Company use, and losses. In a similar fashion, the Duke Energy Ohio peak load forecast is developed by allocating a share from the regional total. Historical percentages and judgment are used to develop the allocations of sales and peak demands.

With respect to energy-price relationships, the forecast methodology described below includes discussion on the incorporation of energy price variables in the model specification. The price variables are explicitly included in the forecast models to account for the effect that changes in real prices can have on the level of energy usage. The econometric models presented in the report provide estimates of price elasticity for specific customer groups. Load impacts from rising real prices are also examined relative to projected load impacts from energy efficiency programs to ascertain how much of the price elasticity impacts are already reflected through impacts from energy efficiency programs.

The following sections provide the specifications of the econometric equations developed to forecast electricity sales for the franchised service territory.

Residential Sector - There are two components to the residential sector energy forecast: the number of residential customers and kWh energy usage per customer. The forecast of total residential sales is developed by multiplying the forecasts of the two components. That is:
(1) Residential Sales $=$

> Number of Residential Customers * Use per Residential Customer.

Econometric relationships are developed for each of the component pieces of total residential sales.

Customers - The number of electric residential customers (households) is affected by real per capita income. This is represented as follows:
(2) Residential Customers $=$
f (Real Per Capita Income)

Where: \quad Real Per Capita Income $=($ Personal Income $/$ Population $/ \mathrm{CPI})$.

While changes in per capita income are expected to alter the number of residential customers, the adjustment relating to real per capita income is not immediate. The number of customers will change gradually over time as a result of a change in real per capita income. This adjustment process is modeled using a lag structure.

Residential Use per Customer - The key ingredients that impact energy use per customer are per capita income, real electricity prices and the combined impact of numerous other determinants. These include the saturation of air conditioners, electric space heating, other appliances, the efficiency of those appliances, and weather.
(3) Energy usage per Customer =
> f (Real Income per Capita * Efficient Appliance Stock,

> Real Electricity Price * Efficient Appliance Stock,

> Saturation of Electric Heating Customers,

> Saturation of Customers with Central Air Conditioning,

> Saturation of Window Air Conditioning Units,

Efficiency of Space Conditioning Appliances,

Billed Cooling and Heating Degree Days).

The derivation of the efficient appliance stock variable and the forecast of appliance saturations are discussed in the data section.

Commercial Sector - Commercial electricity usage changes with the level of local commercial employment, real electricity price, and the impact of weather. The model is formulated as follows:
(4) Commercial Sales $=$
f(Commercial Employment,

Marginal Electric Price/Consumer Price Index,

Billed Cooling and Heating Degree Days).

Industrial Sector - Duke Energy Ohio produces industrial sales forecasts by NAICS classifications. Electricity use by industrial customers is primarily dependent upon the level of industrial production and the impacts of real electricity prices, electric price relative to alternate fuels, and weather. The general model of industrial sales is formulated as follows:
(5) Industrial Sales $=$
f (Industrial Production,

Real Electricity Price,

Electricity Price/Alternate Fuel Price,

Billed Cooling and Heating Degree Days).

Governmental Sector - The Company uses the term Other Public Authorities (OPA) to indicate those customers involved and/or affiliated with federal, state or local government. Two categories comprise the electricity sales in the Other Public Authority (OPA) sector: sales to OPA water pumping customers and sales to OPA non-water pumping customers.

In the case of OPA water pumping, electricity sales are related to the number of residential electricity customers, real price of electricity demand, precipitation levels, and heating and cooling degree days. That is:
(6) Water Pumping Sales $=$

> f(Residential Electricity Customers, Real Electricity Demand Price, Precipitation, Cooling Degree Days).

Electricity sales to the non-water pumping component of Other Public Authority is related to governmental employment, the real price of electricity, the real price of natural gas, and heating and cooling degree days. This relationship can be represented as follows:
(7) Non-Water Pumping Sales $=$
f(Governmental Employment,

Marginal Electric Energy Price/Natural Gas Price,

Billed Cooling and Heating Degree Days).

The total OPA electricity sales forecast is the sum of the individual forecasts of sales to water pumping and non-water pumping customers.

Street Lighting Sector - For the street lighting sector, electricity usage varies with the number of street lights and the efficiency of the lighting fixtures used. The number of street lights is associated with the population of the service area. The efficiency of the street lights is related to the saturation of mercury and sodium vapor lights. That is:
(8) Street Lighting Sales $=$
f(Population,
Saturation of Mercury Vapor Lights,

Saturation of Sodium Vapor Lights).

Total Electric Sales - Once these separate components have been projected - Residential sales, Commercial sales, Industrial sales, Other Public Authority sales, and Street Lighting sales - they can be summed along with Inter-department sales to produce the projection of total electric sales.

Total System Sendout - Upon completion of the total electric sales forecast, the forecast of total energy can be prepared. This requires that all the individual sector forecasts be combined along with forecasts of Company use, and system losses. After the system sendout forecast is completed, the peak load forecast can be prepared.

Peak Load - Forecasts of summer and winter peak demands are developed using econometric models.

The peak forecasting model is designed to closely represent the relationship of weather to peak loads. Only days when the temperature equaled or exceeded 90 degrees are included in the summer peak model. For the winter, only those days with a temperature at or below 10 degrees are included in the winter peak model.

Summer Peak - Summer peak loads are influenced by the current level of economic activity and the weather conditions. The primary weather factors are temperature and humidity; however, not only are the temperature and humidity at the time of the peak important, but also the morning low temperature, and high temperature from the day before. These other temperature variables are important to capture effect of thermal buildup.

The summer equation can be specified as follows:
(9) Peak $=f$ (Weather Normalized Sendout, Weather Factors).

Winter Peak - Winter peak loads are also influenced by the current level of economic activity and the weather conditions. The selection of winter weather factors depends upon whether the peak occurs in the morning or evening. For a morning peak, the primary weather factors are morning low temperature, wind speed, and the prior evening's low temperature. For an evening peak, the primary weather factors are the evening low temperature, wind speed, and the morning low temperature.

The winter equation is specified in a similar fashion as the summer:
(10) Peak $=f($ Weather Normalized Sendout, Weather Factors).

The summer and winter peak equations are estimated separately for the respective seasonal periods. Peak load forecasts are produced under specific assumptions regarding the type of weather conditions typically expected to cause a peak.

Weather-Normalized Sendout - The level of peak demand is related to economic activity. The best indicator of the combined influences of economic variables on peak demand is the level of base load demand exclusive of aberrations caused by non-normal weather. Thus, the first step in developing the peak equations is to weather normalize historical monthly sendout.

The procedure used to develop historical weather normalized sendout data involves two steps. First, instead of weather normalizing sendout in the aggregate, each component is weather normalized. In other words, residential, commercial, industrial, and other public authority, are individually adjusted for the difference between actual and normal weather. Street lighting sales are not weather normalized because they are not weather sensitive. Using the equations previously discussed, the adjustment process is performed as follows:

Let: $\quad \mathrm{KWH}(\mathrm{N})=\mathrm{f}(\mathrm{W}(\mathrm{N})) \mathrm{g}(\mathrm{E})$

$$
K W H(A)=f(W(A)) g(E)
$$

Where: $\quad \mathrm{KWH}(\mathrm{N})=$ electric sales - normalized

$$
\mathrm{W}(\mathrm{~N})=\text { weather variables }- \text { normal }
$$

$$
\mathrm{E}=\text { economic variables }
$$

$\mathrm{KWH}(\mathrm{A})=$ electric sales - actual

$$
\mathrm{W}(\mathrm{~A})=\text { weather variables }- \text { actual }
$$

Then: $\quad \mathrm{KWH}(\mathrm{N})=\mathrm{KWH}(\mathrm{A}) * \mathrm{f}(\mathrm{W}(\mathrm{N})) \mathrm{g}(\mathrm{E}) / \mathrm{f}(\mathrm{W}(\mathrm{A})) \mathrm{g}(\mathrm{E})$

$$
=\mathrm{KWH}(\mathrm{~A}) * \mathrm{f}(\mathrm{~W}(\mathrm{~N})) / \mathrm{f}(\mathrm{~W}(\mathrm{~A}))
$$

With this process, weather normalized sales are computed by scaling actual sales for each class by a factor from the forecast equation that accounts for the impact of deviation from normal weather. Industrial sales are weather normalized using a factor from an aggregate industrial equation developed for that purpose.

Second, weather normalized sendout is computed by summing the weather normalized sales with non-weather sensitive sector sales. This weather adjusted sendout is then used as a variable in the summer and winter peak equations.

Peak Forecast Procedure - The summer peak usually occurs in July or August in the afternoon and the winter peak occurs the following January in the morning or evening. Since the energy model produces forecasts under the assumption of normal weather, the forecast of sendout is "weather normalized" by design. Thus, the forecast of sendout drives the forecast of the peaks. In the forecast, the weather variables are set to values determined to be normal peak-producing conditions. These values are derived using historical data on the worst weather conditions in each year (summer and winter).

National Economy

It is generally assumed that the Duke Energy Ohio service area economy will tend to react much like the national economy over the forecast period. Duke Energy Ohio uses a longterm forecast of the national and service area economy prepared by Moody's Analytics.

No major wars or energy embargoes are assumed to occur during the forecast period. Even if minor conflicts and/or energy supply disruptions, such as those caused by hurricanes, occur during the forecast period, the long-range path of the overall forecast would not be dramatically altered.

A major risk to the national and regional economic forecasts and hence the electric load forecast is the continued economic growth in the U.S. economy. While the national and local economies have been experiencing the effects of a decline in economic activity since the fourth quarter of 2007, there are strong signs that the economy is recovering. The ultimate outcome in the near term is dependent upon the success of the economy moving forward out of this slow period as well as managing recent increases in energy prices.

With extensive economic diversity, the Cincinnati area economy, including Northern Kentucky, is well structured to withstand an economic slowdown and make the adjustments necessary for growth. In the manufacturing sector, its major industries are food products, paper, printing, chemicals, steel, fabricated metals, machinery, and automotive and aircraft transportation equipment. In the non-manufacturing sector, its major industries are life insurance and finance. In addition, the Cincinnati area is the headquarters for major international and national marketoriented retailing establishments.

Local Economy

Forecasts of employment, local population, industrial production, and inflation are key indicators of economic and demographic trends for the Duke Energy Ohio service area. The majority of the employment growth over the forecast period occurs in the non-manufacturing sector. This reflects a continuation of the trend toward the service industries and the
fundamental change that is occurring in manufacturing and other basic industries. The rate of growth in local employment expected over the forecast will be below the national level: 0.7 percent locally versus 1.3 percent nationally (2011-2021).

Duke Energy Ohio is also affected by national population trends. The average age of the U.S. population is rising. The primary reasons for this phenomenon are stagnant birth rates and lengthening life expectancies. As a result, the portion of the population of the Duke Energy Ohio service area that is "age 65 and older" increases over the forecast period. Over the period 2011 to 2021, Duke Energy Ohio's population is expected to increase at an annual average rate of 0.6 percent. Nationally, population is expected to grow at an annual rate of 1.0 percent over the same period.

For the forecast period, local industrial production is expected to increase at a 2.0 percent annual rate, while 1.4 percent is the expected growth rate for the nation.

The residential sector is the largest in terms of total existing customers and total new customers per year. Within the Duke Energy Ohio service area, many commercial customers serve local markets. Therefore, there is a close relationship between the growth in local residential customers and the growth in commercial customers. The number of new industrial customers added per year is relatively small.

3. Specific

Commercial Fuels - Natural gas and oil prices are expected to increase over the forecast period. The projected annual growth rate 2011 to 2021 , in nominal terms, is 1.6 percent for the price of electricity, 7.3 percent for the price of natural gas and 2.1 percent for the price of oil (residual fuel oils.)

Regarding availability of the conventional fuels, nothing on the horizon indicates any severe limitations in their supply, although world reserves of natural gas and oil are believed to be dwindling. There are unknown potential impacts from future changes in legislation or a change in the pricing or supply policy of oil producing countries that might affect fuel supply. However, these cannot be quantified within the forecast. The only non-utility information source relied upon is Moody's Analytics.

Year End Residential Customers - In the following table, historical and projected total year-end residential customers for the entire Ohio service area are provided.

NUMBER OF YEAR-END RESIDENTIAL CUSTOMERS

2006	610,648
2007	612,766
2008	610,603
2009	610,482
2010	611,494
2011	610,113
2012	614,624
2013	619,122
2014	624,127
2015	629,155
2016	633,770
2017	638,234
2018	642,604
2019	646,947
2020	651,337

Appliance Efficiencies - Trends in appliance efficiencies, saturations, and usage patterns have an impact on the projected use per residential customer. Overall, the forecast incorporates a projection of increasing saturation for many appliances including heat pumps, air conditioners, electric space heating equipment, electric water heaters, electric clothes dryers, dish washers, and freezers. In addition, the forecast embodies trends of increasing appliance efficiency, including lighting, consistent with standards established by the federal government.

D. FORECAST DOCUMENTATION

In the following sections, information on forecast related databases is provided for Duke Energy Ohio.

The first step in the forecasting process is the collection of relevant information and data. The database discussion is broken into three parts:
a) Economic Data,
b) Energy and Peak Data, and
c) Forecast Data.

1.Economic Data

The major groups of data in the economic forecast are employment, demographics, income, production, inflation and prices. National and local values for these concepts are available from Moody's Analytics and company data.

Employment - Employment numbers are required on both a national and service area basis. Quarterly national and local employment series by industry are obtained from Moody's Analytics. Employment series are available for manufacturing and nonmanufacturing sectors.

Population - National and local values for total population and population by age-cohort groups are obtained from Moody's Analytics.

Income - Local income data series are obtained from Moody's Analytics. The data is available on a county level and summed to a service area level. This includes data for personal income; dividends, interest, and rent; transfer payments; wage and salary disbursements plus other labor income; personal contributions for social insurance; and non-farm proprietors' income.

Consumer Price Index - The local CPI is equivalent to the national CPI obtained from Moody's Analytics.

Electricity and Natural Gas Prices - The average price of electricity and natural gas is available from Company financial reports. Data on marginal electricity price (including fuel cost) is collected for each customer class. This information is obtained from Company records and rate schedules.

2. Energy and Peak Models

The majority of data required to develop the electricity sales and peak forecasts is obtained from the Duke Energy Ohio service area economic data provided by Moody's Analytics, from Duke Energy Ohio financial reports and research groups, and from national sources. With regard to the national sources of information, generally all national information is
obtained from Moody's Analytics. However, local weather data are obtained from the National Oceanic and Atmospheric Administration (NOAA).

The major groups of data that are used in developing the energy forecasts are: kilowatt-hour sales by customer class, number of customers, use-per-customer, electricity prices, natural gas prices, appliance saturations, and local weather data. The following are descriptions of the adjustments performed on various groups of data to develop the final data series actually used in regression analysis.

Kilowatt hour Sales and Revenue - Duke Energy Ohio collects sales and revenue data monthly by rate class. For forecast purposes this information is aggregated into the following categories: residential, commercial, industrial, OPA, and the other sales categories. In the industrial sector, sales and revenue for each manufacturing NAICS are collected. From the sales and revenue information, average electricity prices by sector can be calculated.

The other public authorities (OPA) sales category is analyzed in two parts: water pumping and OPA less water-pumping sales.

Number of Customers - The number of customers by class is obtained on a monthly basis from Company records.

Use Per Customer - Average use per customer is computed on a monthly basis by dividing residential sales by total customers.

Local Weather Data - Local climatologic data are provided by NOAA for the Cincinnati/Covington airport reporting station. Cooling degree days and heating degree
days are calculated on a monthly basis using temperature data. The degree day series are required on a billing cycle basis for use in regression analysis.

Appliance Stock - To account for the impact of appliance saturations and federal efficiency standards, an appliance stock variable is created. This variable is composed of three parts: appliance efficiencies, appliance saturations, and appliance energy consumption values.

The appliance stock variable is calculated as follows:
(11) Appliance Stock $_{\mathrm{t}}=$
$\operatorname{SUM}\left(\mathrm{K}_{\mathrm{i}} * \operatorname{SAT}_{\mathrm{i}, \mathrm{t}} * \mathrm{EFF}_{\mathrm{i}, \mathrm{t}}\right)$ for all i

Where: $t=$ time period
$i=$ end-use appliance
$K_{i}=$ fixed energy consumption value for appliance i,
$\mathrm{SAT}_{\mathrm{i}, \mathrm{t}}=$ saturation of appliance i in period t , and
$E F F_{i, t}=$ efficiency of appliance i in period t.

The appliances included in the calculation of the Appliance Stock variable are: electric range, frost-free refrigerator, manual-defrost refrigerator, food freezer, dish washer, clothes washer, clothes dryer, water heater, microwave, color television, black and white television, room air conditioner, central air conditioner, electric resistance heat, electric heat pump, and miscellaneous uses including lighting.

Appliance Saturation and Efficiency - In general, information on historical appliance saturations for all appliances is obtained from Company Appliance Saturation Surveys.

Data on historical appliance efficiency are obtained from Itron, Inc., a forecast consulting firm.

The forecast of appliance saturations and efficiencies is also obtained from data provided by Itron, Inc. They have developed Regional Statistically Adjusted End-use (SAE) Models, an end-use approach to electric forecasting that provides forward looking levels of appliance saturations and efficiencies.

Peak Weather Data - The weather conditions associated with the monthly peak load are collected from the hourly and daily data recorded by NOAA. The weather variables which influence the summer peak are maximum temperature on the peak day and the day before, morning low temperature, and humidity on the peak day. The weather influence on the winter peak is measured by the low temperatures and the associated wind speed. The variables selected are dependent upon whether it is a morning or evening winter peak load.

An average of extreme weather conditions is used as the basis for the weather component in the preparation of the peak load forecast. Using historical data for the single worst summer weather occurrence and the single worst winter weather occurrence in each year, an average extreme weather condition can be computed.

3. Forecast Data

Projections of exogenous variables in Duke Energy Ohio's models are required in the following areas: national and local employment, income, industrial production, and population, as well as natural gas and electricity prices.

Employment -The forecast of employment by industry is provided by Moody's Analytics.

Income -The forecast of income is provided by Moody's Analytics.

Industrial Production - The forecast of industrial production is also provided by Moody's Analytics.

Population - Duke Energy Ohio's population forecast is derived from data provided by Moody's Analytics. Population projections for the service area are prepared by first collecting county-level population forecasts for the counties in the Company's service area and then summing.

Prices - The projected change in electricity and natural gas prices over the forecast interval is provided by the Company's Financial Planning and Analysis department and Moody's Analytics.

4. Load Research and Market Research Efforts

Duke Energy Ohio is committed to the continued development and maintenance of a substantive class load database of typical customer electricity consumption patterns and the collection of primary market research data on customers.

Load Research - Complete load profile information, or 100% sample data, is maintained on commercial and industrial customers whose average annual demand is greater than 500 kW , served at primary distribution voltage or served at transmission voltage. Additionally, the Company continues to collect whole premise or building level electricity consumption patterns on representative samples of the various customer classes and rate groups whose annual demands are less than 500 kW .

Periodically, the Company monitors selected end-uses or systems associated with energy efficiency evaluations performed in conjunction with energy efficiency programs. These studies are performed as necessary and tend to be of a shorter duration.

Market Research - Primary research projects continue to be conducted as part of the ongoing efforts to gain knowledge about the Company's customers. These projects include customer satisfaction studies, appliance saturation studies, end-use studies, studies to track competition (to monitor customer switching percentages in order to forecast future utility load), and related types of marketing research projects.

E. MODELS

Specific analytical techniques have been employed for development of the forecast models.

1. Specific Analytical Techniques

Regression Analysis - Ordinary least squares is the principle regression technique employed to estimate economic/behavioral relationships among the relevant variables. This econometric technique provides a method to perform quantitative analysis of economic behavior.

Ordinary least-squares techniques were used to model electric sales. Based upon their relationship with the dependent variable, several independent variables were tested in the regression models. The final models were chosen based upon their statistical strength and logical consistency.

Logarithmic Transformations - The projection of economic relationships over time requires the use of techniques that can account for non-linear relationships. By transforming the dependent variable and independent variables into their "natural
logarithm", a non-linear relationship can be transformed into a linear relationship for model estimation purposes.

Polynomial Distributed Lag Structure - One method of accounting for the lag between a change in one variable and its ultimate impact on another variable is through the use of polynomial distributed lags. This technique is also referred to as Almon lags. Polynomial Distributed Lag Structures derive their name from the fact that the lag weights follow a polynomial of specified degree. That is, the lag weights all lie on a line, parabola, or higher order polynomial as required.

This technique is employed in developing econometric models for most of the energy equations.

Serial Correlation - It is often the case in forecasting an economic time series that residual errors in one period are related to those in a previous period. This is known as serial correlation. By correcting for this serial correlation of the estimated residuals, forecast error is reduced and the estimated coefficients are more efficient. The Marquardt algorithm is employed to correct for the existence of autocorrelation.

Qualitative Variables - In several equations, qualitative variables are employed. In estimating an econometric relation using time series data, it is quite often the case that "outliers" are present in the historic data. These unusual shifts or deviations in the data can be the result of problems such as errors in the reporting of data by particular companies and agencies, labor-management disputes, severe energy shortages or restrictions, and other perturbations that do not repeat with predictability. Therefore, in order to identify the true underlying economic relationship between the dependent
variable and the other independent variables, qualitative variables are employed to account for the impact of the outliers. The coefficient for the qualitative variable must be statistically significant, have a sign in the expected direction, and make an improvement to model fit statistics.

2. Relationships Between The Specific Techniques

The manner in which specific methodologies for forecasting components of the total load are related is explained in the discussion of specific analytical techniques above.

3. Alternative Methodologies

The Company continues to use the current forecasting methodology as it has for the past several years. The Company considers the forecasting methods currently utilized to be adequate.

4. Changes In Methodology

There were no significant changes to the forecast methodology. The Company uses the latest historical data available and relies on recent economic data and forecasts from Moody's Analytics.

5. Equations

Following is a display of all the relevant equations used in the forecast. Specifically, for each of the equations in the Electric Energy Forecast Model and Electric Peak Load Model the following information is included:

Equation Estimation Results - The results of the estimation of each of the stochastic equations in the models is provided. Included are the estimated coefficients and the
results of appropriate statistical tests. Those equations which required a correction for serial correlation are so indicated.

The computer output for each variable lists the estimated coefficient, standard error, and the t statistic. Lagged variables are denoted with the $1-\mathrm{N}$ symbol, " N " being the number of periods lagged.

The use of Polynomial Distributed Lags (PDL) is indicated by the expression:
PDL followed by a number signifying the PDL variable number. The PDL is defined using the degree of the polynomial, the length of lag, and the restrictions. The restrictions may constrain the PDL such that the end values of the distributed lag are close to zero. The computer output for each PDL variable lists the estimated lag weights and their associated standard errors. There is also a plot of the distributed lag. In addition to the individual lag weights, statistics are presented on the sum and average of the lag weights.

Mnemonic Definition - Following the equation estimation results is a definition list of the mnemonics for each variable used in the equation.

Forecast Error - Following the equation mnemonics definition is the forecast error as measured by the mean of the forecast standard errors over the forecast period.

EQUATIONS USED IN FORECAST

Service Area Electric Customers - Residential

Dependent Variable: LOG(CUSRES_OH_KY)
Method: Least Squares
Date: 02/22/11 Time: 12:53
Sample: 1989M10 2010M12
Included observations: 255
Convergence achieved after 7 iterations

Variable	Coefficient	Std. Error	t-Statistic	Prob.
@MONTH=1	14.77528	3.476269	4.250328	0.0000
@MONTH=2	14.77606	3.476271	4.250548	0.0000
@MONTH=3	14.77619	3.476272	4.250585	0.0000
$@ \mathrm{MONTH}=4$	14.77461	3.476271	4.250132	0.0000
©MONTH=5	14.77171	3.476268	4.249301	0.0000
@MONTH=7	14.76918	3.476263	4.248581	0.0000
$@ M O N T H=8$	14.76796	3.476261	4.248232	0.0000
@MONTH=9	14.76739	3.476259	4.248070	0.0000
@MONTH=10	14.76912	3.476263	4.248561	0.0000
(@MONTH=6)+(@MONTH=11)	14.77052	3.476265	4.248962	0.0000
@MONTH=12	14.77363	3.476264	4.249857	0.0000
@ISPERIOD("1994M05")	-0.005035	0.001281	-3.932009	0.0001
@ISPERIOD("2001m02")	0.028551	0.001652	17.28378	0.0000
@ISPERIOD("2001m03")	0.008740	0.002084	4.193195	0.0000
@\|SPERIOD('2001m04")	0.007463	0.002210	3.377294	0.0009
@ISPERIOD("2001m05")	0.028774	0.002081	13.82542	0.0000
@1SPERIOD("2001m06")	0.015467	0.001637	9.451164	0.0000
@ISPERIOD(2003 m 12 l ")	-0.004948	0.001474	-3.357548	0.0009
(1SPERIOD($2004 \mathrm{m01}$ ($)$	0.003394	0.001476	2.298880	0.0224
@ISPERIOD($2005 \mathrm{m02}{ }^{\text {") }}$	-0.003342	0.001281	-2.609005	0.0097
@ISPERIOD('2006m02")	-0.002619	0.001281	-2.044769	0.0420
(\%ISPERIOD("2007m04")	-0.002782	0.001279	-2.174691	0.0307
@ISPERIOD('2009m05")	-0.005493	0.001281	-4.287902	0.0000
PDL01	0.006679	0.003382	1.974954	0.0495
AR(1)	0.999353	0.002004	498.7187	0.0000
R-squared	0.999392	Mean dependent var		13.42009
Adjusted R-squared	0.999329	S.D. dependent var		0.067997
S.E. of regression	0.001761	Akaike info criterion		-9.752425
Sum squared resid	0.000714	Schwarz criterion		-9.405242
Log likelihood	1268.434	Hannan-Quinn criter.		-9.612773
Durbin-Watson stat	1.993809			
Inverted AR Roots				
Lag Distribution of LOG(YP_OH_KY/N_OH_KY/CPI)	i	Coefficient	Std. Error	t-Statistic
* 1	0	0.00607	0.00307	1.97495
- * 1		0.01093	0.00553	1.97495
* 1	2	0.01457	0.00738	1.97495
*	3	0.01700	0.00861	1.97495
*	4	0.01822	0.00922	1.97495
	5	0.01822	0.00922	1.97495
. **	6	0.01700	0.00861	1.97495
.	7	0.01457	0.00738	1.97495
.	8	0.01093	0.00553	1.97495
. * \|	9	0.00607	0.00307	1.97495
	Sum of Lags	0.13358	0.06764	1.97495

KWH USE PER CUSTOMER - RESIDENTIAL

Dependent Variable: LOG(KWHRES_OH_KY/CUSRES_OH_KY)
Method: Least Squares
Date: 02/22/11 Time: 17:22
Sample: 1998M01 2010M12
Included observations: 158
Convergence achieved after 11 iterations

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	-0.514845	1.115202	-0.461661	0.6451
LOG(APPLSTK_EFF_OH_KY* ${ }^{\text {PP_OH_KY/N_OH_KY/CPI) }) ~}$	0.917152	0.143311	6.399716	0.0000
	0.003158	0.000126	25.03541	0.0000
	0.002783	0.000149	18.67755	0.0000
	0.002237	9.63E-05	23.23254	0.0000
	0.003034	0.000238	12.73487	0.0000
	0.005602	0.000449	12.47811	0.0000
$\left(1-\bar{D}_{-} J J A\right){ }^{*}\left(\mathrm{SA} \bar{T}_{-} \mathrm{CA} \bar{C}_{-} \mathrm{EFF}\right)^{*} \mathrm{CDD} \bar{B}_{-} \mathrm{OH}$	0.007240	0.000359	20.14954	0.0000
	0.001446	0.000319	4.532283	0.0000
	0.001417	0.000404	3.506665	0.0006
	0.003962	0.000411	9.636836	0.0000
@MONTH=1	0.103920	0.006545	15.87673	0.0000
$@$ MONTH=5	-0.047385	0.009273	-5.110109	0.0000
@MONTH=7	0.076130	0.010368	7.342619	0.0000
@MONTH=8	0.061891	0.012905	4.795728	0.0000
@MONTH=12	0.081894	0.008190	7.557223	0.0000
@ISPERIOD("2001m04")	-0.048687	0.020563	-2.367680	0.0194
@ISPERIOD("2001m05")	-0.098768	0.021593	-4.574078	0.0000
@ISPERIOD("2002m05")+@ISPERIOD("2004m05")	-0.043707	0.014726	-2.967941	0.0036
@ISPERIOD("2005m01")	0.080274	0.018672	4.299069	0.0000
@ISPERIOD("2007m05")	-0.082077	0.019906	-4.123167	0.0001
@ISPERIOD("2007m10")	0.082826	0.020268	4.086511	0.0001
©/SPERIOD("2008m10")	-0.062908	0.019367	-3.248155	0.0015
@ISPERIOD("2010m10")	-0.044210	0.019111	-2.313270	0.0223
@ISPERIOD('2004m06")	0.052896	0.019490	2.713963	0.0076
@ISPERIOD("2010m05")	-0.068642	0.019277	-3.560903	0.0005
PDL01	-0.039970	0.022929	-1.743183	0.0837
AR(1)	0.524912	0.077534	6.770093	0.0000
R-squared	0.992259	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		6.887594
Adjusted R-squared	0.990626			0.206988
S.E. of regression	0.020040			-4.821019
Sum squared resid	0.051405			-4.273609
Log likelihood	404.0395			-4.598685
F-statistic	607.6934			1.843885
Prob(F-statistic)	0.000000			
Inverted AR Roots	. 52			
Lag Distribution of LOG(APPLSTK_EFF_OH_KY* (MP_RES_OH_KY/CPI $)$)	i	Coefficient	Std. Error	t-Statistic
* $\cdot 1$	0	-0.03997	0.02293	-1.74318
	1	-0.01998	0.01146	-1.74318
	Sum of Lags	-0.05995	0.03439	-1.74318

KWH SALES - COMMERCIAL

Dependent Variable: $\mathrm{LOG}\left(\mathrm{KWHCOM} \mathrm{OH}_{2} \mathrm{KY}\right)$
Method: Least Squares
Date: 03/04/11 Time: 16:41
Sample: 1986MD1 2010M12
Included observations: 300
Convergence achieved after 12 iterations
MA BackCast: 1985M12

Variable	Coefficient Std. Error t-Statistic	Prob.	
c	10.031730 .59731816 .79462	0.0000	
LOG(ECOM_OH_KY)	1.4723300 .09469915 .54747	0.0000	
LOG(DS_KWH_COM_OH_KY(-1)/CPI(-1))	-0.048246 0.0230532 .092865	0.0373	
(@MONTH=11)*HDDB_OH_KY_59	$6.88 \mathrm{E}-052.64 \mathrm{E}-052.602332$	0.0098	
$(@ \mathrm{MONTH}=12)^{*} \mathrm{HDDB}$ _OH_KY_59	$0.0001881 .18 \mathrm{E}-0515.85891$	0.0000	
(@MONTH=1)*HDDB_OH_KY_59	$0.0001928 .38 \mathrm{E}-0622.94841$	0.0000	
	0.000127 B.89E-06 14.34678	0.0000	
(@MONTH=3)* HDDB _OH_KY_59	$0.0001081 .09 \mathrm{E}-059.897655$	0.0000	
	8.00E-05 1.93E-05 4.146326	0.0000	
(@MONTH=5)*CDDB_OH_KY_65	0.0009750 .0001526 .425203	0.0000	
(@MONTH=6)* ${ }^{*}$ CDDB_OH_KY_65_0_100	0.001323 7.92E-05 16.69725	0.0000	
	$0.0007167 .60 \mathrm{E}-059.425939$	0.0000	
	$0.00 \ddagger 8140.00015311 .82619$	0.0000	
	0.000467 7.42E-05 6.292792	0.0000	
(@MONTH=8)*CDDB_OH_信_ $\overline{6} 5 _\bar{D}_{-} 100$	0.0013820 .00013010 .64329	0.0000	
	$0.0006174 .98 \mathrm{E}-0512.39518$	0.0000	
(@MONTH=9)* ${ }^{\text {² }}$ (CDDB_OH_KY_65_0_100	0.0017480 .00010616 .44290	0.0000	
(@MONTH=9) ${ }^{\text { }} \mathrm{CDD} \bar{B} _O \bar{H} _K \bar{Y} _6 \overline{5} _100$	$0.0004575 .68 \mathrm{E}-058.045500$	0.0000	
	$0.0007038 .58 \mathrm{E}-058.195241$	0.0000	
	0.0276460 .0097102 .847026	0.0048	
@ISPERIOD("1991m04")	$0.0974660 .0168305 .791198$	0.0000	
@ISPERIOD('1991m11")	0.0584180 .0171193 .412397	0.0007	
@ISPERIOD("1993m09")	-0.120572 0.0175956 .852518	0.0000	
@\|SPERIOD("1993m10")+@	SPERIOD("2004m12")+@1SPERIOD("2007m04")	0.0447870 .0104054 .304534	0.0000
@lSPERIOD("1995m04")	0.0542370 .0186352 .910520	0.0039	
@ISPERIOD("1995M05")	-0.086021 0.0187814 .580158	0.0000	
@ISPER100("1998m05")	0.0638310 .0167093 .820089	0.0002	
@ISPERIOD("1998m07")	$0.0530640 .0168683 .145907$		
@ISPERIOD('2000m01")+@ISPERIOD("2000m07")	-0.060989 0.0127294 .791479	0.0000	
@ISPERIOD('2000m08")	0.0430760 .0180582 .385449	0.0178	
	0.0865260 .0168615 .131709	0.0000	
@ISPERIOD("1993m11")+@ISPERIOD("2002m08")+@ISPERIOD("2004m11")+@ISPERIOD("2004m03")			
+@ISPERIOD("2005m02")+@ISPERIOD('2005m08") (\#\|SPERIOD("2002m04")	$\begin{array}{r} -0.0500280 .0072746 .877750 \\ 0.0554910 .0168383 .295599 \end{array}$	$\begin{aligned} & 0.0000 \\ & 0.0011 \end{aligned}$	
@\|SPERIOD("2005m03")+@	SPERIOD("1999m02")	-0.028477 0.0118802 .397000	0.0172
@ISPERIOD("2010m02")	-0.092050 0.0171525 .366674	0.0000	
AR(2)	0.7979240 .04952716 .11088	0.0000	
MA(1)	0.8291770 .04582718 .09353	0.0000	
	Mean dependent		
R-squared	0.991621 var	20.05652	
	S.D. dependent		
Adjusted R-squared	0.990474 var	0.219772	
	Akaike info		
S.E. of regression	0.021450 criterion	4.731100	
Sum squared resid	0.121012 Schwarz criterion	4.274300	
Log likelihood	Hannan-Quinn 746.6650 criter	4548288	
Log Inelhood	Durbin-Watson	4.548288	
F-statistic	864.5352 stat	2.213320	
Prob(F-statistic)	0.000000		
Inverted AR Roots	. 89 -. 89		
Inverted MA Roots	-. 83		

MWH SALES - INDUSTRIAL - FOOD, BEVERAGE AND TOBACCO

Dependent Variable: $\mathrm{LOG}\left(\mathrm{MWHN} 311 _312 _\mathrm{OH}\right.$ _KY)				
Method: Least Squares				
Date: 02/18/11 Time: 12:58				
Sample: 198001 201004				
Included observations: 124				
Convergence achieved after 14 iterations				
Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	10.50195	0.424660	24.73025	0.0000
LOG(JQINDN311_312_OH_KY(-3))	0.349835	0.194308	1.800411	0.0745
LOG(DS_KWH_IND_OH_KY/CPI)	-0.114501	0.048419	-2.364800	0.0198
CDDB_OH_KY_65	0.000165	1.31E-05	12.64796	0.0000
HDDB_OH_KY_59	-3.05E-05	5.27E-06	-5.777112	0.0000
D_1965Q1_1990Q4	-0.295112	0.046512	-6.344824	0.0000
@ISPERIOD("1991q1")+@ISPERIOD("2000q3")	-0.152495	0.031910	-4.778932	0.0000
@ISPERIOD("2007q4")	0.141740	0.042345	3.347297	0.0011
@ISPERIOD("2008q4")+@ISPERIOD("2009q1")	0.149228	0.043009	3.469609	0.0007
D_1976Q1_1989Q2+D_1987Q1_199103	-0.086445	0.027814	-3.107943	0.0024
@ISPERIOD("1993q2")	-0.108494	0.042446	-2.556059	0.0120
@ISPERIOD("1992q2")	-0.162981	0.042087	-3. 872467	0.0002
D_1980Q1_2005Q2	-0.076237	0.032984	-2.311303	0.0227
AR(1)	0.719013	0.074756	9.618118	0.0000
R-squared	0.970883	Mean dependent var		11.31940
Adjusted R-squared	0.967441	S.D. dependent var		0.285979
S.E. of regression	0.051602	Akaike info criterion		-2.984504
Sum squared resid	0.292905	Schwarz criterion		-2.666085
Log likelihood	199.0393	Hannan-Quinn criter.		-2.855155
F-statistic	282.1387	Durbin-Watson stat		2.010146
Prob(F-statistic)	0.000000			
Inverted AR Roots				

MWH SALES - INDUSTRIAL - PAPER, PLASTIC AND RUBBER

Dependent Variable: LOG(MWHN322_326_OH_KY)
Method: Least Squares
Date: 02/22/11 Time: 08:40
Sample: 1979Q1 2010Q4
Included observations: 128
Convergence achieved after 13 iterations

Variable	Coefficient	Std. Error	t-Statistic	Prob.
LOG(JQINDN322_326_OH_KY)	0.309810	0.168334	1.840453	0.0683
@ISPERIOD("1992q1")+@ISPERIOD("1993q1")	0.051513	0.016989	3.032060	0.0030
@ISPERIOD("2001q2")	-0.203553	0.024566	-8.285811	0.0000
@ISPERIOD("2003q4")+@ISPERIOD("1996q3")	-0.088605	0.016437	-5.390512	0.0000
@ISPERIOD("2005q1")	0.124963	0.023737	5.264399	0.0000
HDOB_OH_KY_59*D_199901_200102	-2.15E-05	8.14E-06	-2.639061	0.0095
@ @ISPERIOD("2000q3")	0.093176	0.023828	3.910416	0.0002
@ISPERIOD("1990q2")+@ISPERIOD("2010q2")	-0.053079	0.016964	-3.128934	0.0022
@QUARTER=1	9.894756	0.852062	11.61272	0.0000
*QUARTER=2	9.945191	0.852586	11.66474	0.0000
@QUARTER=3	9.961354	0.852341	11.68705	0.0000
@QUARTER=4	9.930137	0.852097	11.65377	0.0000
PDLO1	-0.061645	0.029480	-2.091070	0.0388
PDL02	-0.024528	0.013997	-1.752412	0.0824
AR(1)	1.083638	0.097795	11.08068	0.0000
AR(2)	-0.165519	0.096048	-1.723287	0.0876
R-squared	0.957649	Mean dependent var		11.97044
Adjusted R-squared	0.951977	S.D. dependent var		0.156135
S.E. of regression	0.034216	Akaike info criterion		-3.795786
Sum squared resid	0.131121	Schwarz criterion		-3.439282
Log likelihood	258.9303	Наппап-Quinп criter.		-3.650937
Durbin-Watson stat	1.994581			
Inverted AR Roots	. 90	. 18		
Lag Distribution of LOG(DS_KW_IND_OH_KY/CPI)	1	Coefficient	Std. Error	t-Statistic
*	0	-0.08219	0.03931	-2.09107
	1	-0.06165	0.02948	-2.09107
	2	-0.04110	0.01965	-2.09107
	3	-0.02055	0.00983	-2.09107
	Sum of Lags	-0.20548	0.09827	-2.09107
Lag Distribution of LOG(DS_KWH_IND_OH_KY/CPI)	i	Coefficient	Sta. Error	t-Statistic
*	0	-0.04292	0.02449	-1.75241
	1	-0.03679	0.02099	-1.75241
	2	-0.03066	0.01750	-1.75241
	3	-0.02453	0.01400	-1.75241
	4	-0.01840	0.01050	-1.75241
	5	-0.01226	0.00700	-1.75241
	6	-0.00613	0.00350	-1.75241
Sum of Lags		-0.17169	0.09798	-1.75241

MWH SALES - INDUSTRIAL - CHEMICALS

Dependent Variable: LOG(MWHN325_OH_KY)
Method: Least Squares
Date: 02/18/11 Time: 13:04
Sample: 1978Q1 2010Q4
Inctuded observations: 132
Convergence achieved after 20 iterations

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	10.28476	0.792054	12.98493	0.0000
LOG(JQINDN325_OH_KY)	0.486093	0.124505	3.904195	0.0002
CDDB_OH_KY_65	9.97E-05	8.17E-06	12.19917	0.0000
@\|SPERIOD("1994q1")	-0.077933	0.036333	-2.144959	0.0339
@ISPERIOD("2003q4")	0.091963	0.037040	2.482807	0.0144
@ISPERIOD("2000q4")	0.080947	0.037184	2.176911	0.0314
@ISPERIOD("2009q2")	-0.131512	0.038205	-3.442319	0.0008
PDL01	-0.043777	0.017428	-2.511874	0.0133
AR(1)	0.569665	0.094034	6.058096	0.0000
AR(2)	0.352997	0.096003	3.676941	0.0004
R-squared	0.964301	Mean dependent var		12.33676
Adjusted R-squared	0.961668	S.D. dependent var		0.220981
S.E. of regression	0.043265	Akaike info criterion		-3.370200
Sum squared resid	0.228369	Schwarz criterion		-3.151806
Log likelihood	232.4332	Hannan-Quinn criter.		-3.281455
F-statistic	366.1631	Durbin-Watson stat		1.953791
$\operatorname{Prob}(F-$ statistic)	0.000000			
Inverted AR Roots		-. 37		
Lag Distribution of LOG(TS_KWH_IND_OH_KY/CPI)	i	Coefficient	Std. Error	t-Statistic
.	0	-0.06567	0.02614	-2.51187
* 1	1	-0.05472	0.02179	-2.51187
* 1	2	-0.04378	0.01743	-2.51187
* . 1	3	-0.03283	0.01307	-2.51187
*. 1	4	-0.02189	0.00871	-2.51187
* . 1	5	-0.01094	0.00436	-2.51187
	Sum of Lags	-0.22983	0.09150	-2.51187

MWH SALES - INDUSTRIAL - PRIMARY METALS - BUTLER

Dependent Variable: LOG(MWHN331_BUTLER-BASE)
Method: Least Squares
Date: 02/18/11 Time: 13:05
Sample: 1985Q1 2010Q4
Included observations: 104
Convergence achieved after 11 iterations

Variable	Coefficient	Sta. Error	t-Statistic	Prob.
C	11.54288	0.475030	24.29927	0.0000
(1-D_1965Q1_1985Q4)*LOG(TS_KWH_IND_OH_KY/CPI)	-0.008049	0.004027	-1.999083	0.0487
LOG(TS_KWH_IND_OH_KY(-5)/APGIND_OH_KY(-5))	-0.070697	0.023743	-2.977573	0.0038
@ISPERIOD("2009q2")	-0.380330	0.035585	-10.68799	0.0000
@ISPERIOD("2009q1")	-0.185576	0.034136	-5.436410	0.0000
D_1965Q1_1995Q4	-0.151179	0.033208	-4.552514	0.0000
@ISPERIOD("1998q3")	-0.118403	0.028031	-4.224004	0.0001
@ISPERIOD("1990q2")	-0.083181	0.028377	-2.931266	0.0043
@ISPERIOD("2008q4")	-0.111339	0.032228	-3.454775	0.0009
@ISPERIOD("1991q3")	-0.094316	0.029815	-3.163375	0.0021
@ISPERIOO("1986q3")	-0.071409	0.028216	-2.530772	0.0132
@ISPERIOD("1991q4")	0.056292	0.029192	1.928352	0.0574
@ISPERIOD("2001q1")	-0.078628	0.028031	-2.805044	0.0062
PDL01	0.196650	0.045579	4.314501	0.0000
PDL02	-0.112835	0.064230	-1.756746	0.0825
AR(1)	0.607956	0.105443	5.765747	0.0000
AR(2)	0.361086	0.104754	3.446999	0.0009
R-squared	0.979879	Mean dependent var		12.61955
Adjusted R-squared	0.976178	S.D. dependent var		0.221847
S.E. of regression	0.034241	Akaike info criterion		-3.762375
Sum squared resid	0.102000	Schwarz criterion		-3.330118
Log likelihood	212.6435	Hannan-Quinn criter.		-3.587255
F-statistic	264.7997	Durbin-Watson stat		1.944391
Prob(F-statistic)	0.000000			
Inverted AR Roots	. 98	-. 37		
Lag Distribution of LOG(JQINDN331_BUTLER)	i	Coefficient	Std. Error	t-Statistic
* 1	0	0.19665	0.04558	4.31450
* 1	1	0.09832	0.02279	4.31450
	Sum of Lags	0.29497	0.06837	4.31450
Lag Distribution of LOG(TS_KW_IND_OH_KY/CPl)	i	Coefficient	Std. Error	t-Statistic
. 1	0	-0.11284	0.06423	-1.75675
- 1	1	-0.05642	0.03211	-1.75675
	Sum of Lags	-0.16925	0.09634	-1.75675

MWH SALES - INDUSTRIAL - PRIMARY METALS - LESS BUTLER

Dependent Variable: LOG(MWHN331LBUTLER_OH_KY)
Method: Least Squares
Date: 02/18/11 Time: 13:07
Sample: 1987Q1 2010Q4
Included observations: 96
Convergence achieved after 9 iterations

Variable	Coefficient	Std. Error	t-Statistic	Prob.
c	7.245961	0.959964	7.548156	0.0000
@\|SPERIOD("1999q1")	-0.402581	0.071569	-5.625043	0.0000
@ISPERIOD("1988q4")	-0.203375	0.071421	-2.847565	0.0055
@1SPERIOD("1996q33")+@ISPERIOD("1997q3")	-D 252081	0.050789	-4.963296	0.0000
D_1998Q3_2001Q2	0.774640	0.054284	14.27017	0.0000
D_1965Q1_1998Q2	1.097773	0.040415	27.16255	0.0000
@ISPERIOD("2002q2")	-0.326168	0.072427	-4.503412	0.0000
@ISPERIOD("2003q1")	-0.155829	0.072110	-2.160995	0.0335
PDL. 01	0.300736	0.073052	4.116739	0.0001
PDL02	-0.113535	0.031400	-3.615828	0.0005
AR(1)	0.611689	0.092466	6.615247	0.0000
AR(3)	-0.191377	0.079864	-2.396267	0.0188
R-squared	0.976734	Mean dependent var		11.09645
Adjusted R-squared	0.973687	S.D. dependent var		0.518957
S.E. of regression	0.084181	Akaike info criterion		-1.995227
Sum squared resid	0.595261	Schwarz criterion		-1.674683
Log likelihood	107.3709	Hannan-Quinn criter.		-1.865658
F-statistic	320.5839	Ourbin-Watson stat		2.242857
Prob(F-statistic)	0.000000			
Inverted AR Roots	.52-42i	. $52+.42 \mathrm{i}$		
Lag Distribution of LOG(JQINDN331_CMSA)	i	Coefficient	Std. Error	t-Statistic
* 1	0	0.30074	0.07305	4.11674
* 1	1	0.15037	0.03653	4.11674
	Sum of Lags	0.45110	0.10958	4.11674
Lag Distribution of LOG(TS_KWH_IND_OH_KY/CPI)	i	Coefficient	Std. Error	t-Statistic
* . 1	0	-0.15138	0.04187	-3.61583
* .1	1	-0.11354	0.03140	-3.61583
* . 1	2	-0.07569	0.02093	-3.61583
* . 1	3	-0.03785	0.01047	-3.61583
	Sum of Lags	-0.37845	0.10467	-3.61583

MWH SALES - INDUSTRIAL - FABRICATED METALS

Dependent Variable: LOG(MWHN332_OH_KY)				
Method: Least Squares				
Date: 05/06/11 Time: 11:46				
Sample: 1984Q1 201004				
Included observations: 108				
Convergence achieved after 7 iterations				
Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	10.92849	0.180443	60.56472	0.0000
LOG(JQINDN332_OH_KY)	0.449144	0.149219	3.009954	0.0033
LOG(DS_KWH_IND_OH_KYNPPI0561)	-0.035225	0.014375	-2.450477	0.0160
D_2000Q3_2001Q2	0.184784	0.021119	8.749484	0.0000
@ISPERIOD("2009q1")+@ISPERIOD("2009q2")	-0.114032	0.022081	-5.164267	0.0000
CDDB_OH_KY_65	6.27E-05	$5.86 \mathrm{E}-06$	10.69503	0.0000
@ISPERIOD("2000q1")+@ISPERIOD("1988q3")	-0.042499	0.015110	-2.812634	0.0059
@ISPERIOD("1986q3")	-0.074790	0.021510	-3.476921	0.0008
@\|SPERIOD("200191")	0.083925	0.021116	3.974499	0.0001
AR(1)	0.966756	0.032927	29.36071	0.0000
R -squared	0.940692	Mean dependent var		11.27337
Adjusted R-squared	0.935245	S.D. dependent var		0.115249
S.E. of regression	0.029328	Akaike info criterion		-4.132559
Sum squared resid	0.084290	Schwarz criterion		-3.884214
Log likelihood	233.1582	Hannan-Quinn criter.		-4.031864
F-statistic	172.7091	Durbin-Watson stat		2.009184
Prob(F-statistic)	0.000000			
Inverted AR Roots				

MWH SALES - INDUSTRIAL - MACHINERY

Dependent Variable: LOG(MWHN333_OH_KY)				
Method: Least Squares				
Date: 02/18/11 Time: 13:11				
Sample: 1982Q4 2010Q4				
Included observations: 113				
Convergence achieved after θ iterations				
Variable	Coefficient	Std. Error	t-Statistic	Prob.
LOG(JQINDN333_OH_KY)	0.503092	0.120403	4.178396	0.0001
LOG(DS_KW_IND_OH_KY(-8)/CP((-8))	-0.322183	0.129203	-2.493630	0.0143
LOG(DS_KWH_IND_OH_KY/APGIND_OH_KY)	-0.047762	0.028667	-1.791068	0.0763
CDDB_OH_KY_65*(1-D_1965Q1_1986Q4)	8.27E.05	$1.95 \mathrm{E}-05$	4.248634	0.0000
@ISPERIOD("1998q4")	0.065967	0.030046	2.195512	0.0305
D_1965Q1_2001Q2	0.152257	0.038175	3.988430	0.0001
@ISPERIOD("2009q1")	-0.081080	0.030330	-2.673219	0.0088
(1)ISPERIOD(${ }^{(2000 q 2}{ }^{\prime \prime}$)	-0.281998	0.034988	. 8.059888	0.0000
@ISPERIOD('2000q1")	-0.075197	0.034782	-2.161935	0.0330
(c)UARTER=1	9.423331	0.466364	20.20596	0.0000
$@$ QUARTER=2	9.414453	0.465468	20.22577	0.0000
@QUARTER=3	9.434672	0.462262	20.40980	0.0000
@QUARTER=4	9.414505	0.465407	20.22853	0.0000
AR(1)	0.890755	0.046713	19.06876	0.0000
R -squared	0.931419	Mean dependent var		10.82105
Adjusted R-squared	0.922414	S.D. dependent var		0.141517
S.E. of regression	0.039419	Akaike info criterion		-3.513634
Sum squared resid	0.153829	Schwarz criterion		-3.175728
Log likelihood	212.5203	Hannan-Quinn criter.		-3.376515
Durbin-Watson stat	1.869360			

MWH SALES - INDUSTRIAL - COMPUTER AND ELECTRONICS

Dependent Variable: LOG(MWHN334_OH_KY)
Method: Least Squares
Date: 02/18/11 Time: 13:12
Sample: 1980Q1 2010Q4
Included observations: 124
Convergence achieved after 14 iterations

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	7.636820	0.785829	9.718169	0.0000
LOG(JQINDN334_OH_KY)	0.068654	0.023298	2.946718	0.0039
CDDB_OH_KY_65	0.000110	8.49E-06	12.96695	0.0000
@ISPERIOD("1986q3")	-0.075276	0.033735	-2.231351	0.0278
©ISPERIOD("1992q2")	-0.114736	0.033268	-3.448810	0.0008
©ISPERIOD("1988q4")	0.128977	0.033545	3.844941	0.0002
@ISPERIOD("2002q1")	-0.102444	0.033293	-3.077074	0.0026
@ISPERIOD("201092")	-0.176752	0.044545	-3.967914	0.0001
1-@ISPERIOD("2010q3")-@1SPERIOD("2010q4")	0.348847	0.059188	5.893851	0.0000
@ISPERIOD("2009Q1")	-0.110379	0.033326	-3.312139	0.0012
PDL01	-0.054523	0.015581	-3.499310	0.0007
AR(1)	0.835586	0.057735	14.47272	0.0000
R-squared	0.963975	Mean dependent var		10.76919
Adjusted R-squared	0.960437	S.D. dependent var		0.217775
S.E. of regression	0.043316	Akaike info criterion		-3.348802
Sum squared resid	0.210147	Schwarz criterion		-3.075871
Log likelihood	219.6257	Mannan-Quinn criter.		-3.237931
F-statistic	272.4499	Durbin-Watson stat		1.768787
Prob(F-statistic)	0.000000			
Inverted AR Roots	84			
Lag Distribution of LOG(DS_KWH_IND_OH_KY/CPI)	i	Coefficient	Std. Error	t-Statistic
. 1	0	-0.04544	0.01298	-3.49931
. 1	1	-0.07270	0.02077	-3.49931
1	2	-0.08178	0.02337	-3.49931
. 1	3	-0.07270	0.02077	-3.49931
* 1	4	-0.04544	0.01298	-3.49931
	Sum of Lags	-0.31805	0.09089	-3.49931

MWH SALES - INDUSTRIAL - ELEC. EQUIPMENT, APPLIANCE \& COMPONENT

Dependent Variable: LOG(MWHN335_OH_KY)
Method: Least Squares
Date: 02/18/11 Time: 13:13
Sample: 1984Q1 2010Q4
Included observations: 108
Convergence achieved after 11 iterations

Variable	Coefficient	Std. Error	t-Statistic	Prob.
LOG(DS_KWH_IND_OH_KYNP10561)	-0.045043	0.016224	-2.776292	0.0067
@ISPERIOC("1988q3")	-0.083343	0.020768	-4.013147	0.0001
@ISPERIOD("1998q3")	-0.066663	0.020910	-3.188013	0.0020
@ISPERIOD("2009q1")+@ISPERIOD("2009q2")	-0.235459	0.029168	-8.072589	0.0000
(0\|SPERIOD("2008q4")	-0.099709	0.026210	-3.804251	0.0003
@ISPERIOD("1986q3")+@ISPERIOD("1992q2")	-0.073565	0.014501	-5.073269	00000
@ISPERIOD("2002q3")	0.065103	0.020910	3.113398	0.0025
@ISPERIOD("199991")	-0.057785	0.020907	-2.763877	0.0069
@QUARTER=1	8.052516	1.216334	6.620316	0.0000
@QUARTER=2	8.059279	1.216439	6.625307	0.0000
@QUARTER=3	8.083518	1.216455	6.645142	0.0000
@QUARTER=4	8.062102	1.216512	6.627227	0.0000
PDL01	0.096288	0.050134	1.920602	0.0579
PDL02	-0.012352	0.006802	-1.816043	0.0726
AR(1)	1.147741	0.114382	10.03425	0.0000
AR(2)	-0.235883	0.173489	-2.078473	0.0405
R-squared	0.965821	Mean dependent var		10.54494
Adjusted R-squared	0.960248	S.D. dependent var		0.156964
S.E. of regression	0.031295	Akaike info criterion		-3.954751
Sum squared resid	0.090104	Schwarz criterion		-3.557398
Log likelihood	229.5565	Hannan-Quinn criter.		-3.793639
Durbin-Watson stat	1.904155			
Inverted AR Roots	. 88	27		
Lag Distribution of LOG(JQINDN335_OH_KY)	i	Coefficient	Stc. Error	t-Statistic
* *	0	0.12838	0.06685	1.92060
	1	0.09629	0.05013	1.92060
	2	0.06419	0.03342	1.92060
	3	0.03210	0.01674	1.92060
	Sum of Lags	0.32096	0.16711	1.92060
Lag Distribution of LOG $\mathrm{DSS}_{\sim} \mathrm{KWH}$	i	Coefficient	Std. Error	t-Statistic
* 1	0	-0.01723	0.00618	-1.81604
* . \|	1	-0.02021	0.01113	-1.81604
* .	2	-0.02695	0.01484	-1.81604
. 1	3	-0.03144	0.01731	-1.81604
. 1	4	-0.03369	0.01855	-1.81604
.	5	-0.03369	0.01855	-1.81604
* . .	6	-0.03144	0.01731	-1.81604
* .	7	-0.02695	0.01484	-1.81604
. 1	B	-0.02021	0.01113	-1.81604
* . 1	9	-0.01123	0.00618	-1.81604
	Sum of Lags	-0.24704	0.13603	-1.81604

MWH SALES - INDUSTRIAL - MOTOR VEHICLES AND PARTS

Dependent Variable: LOG(MWHN3361_62_83_OH_KY)
Method: Least Squares
Date: 02/18/11 Time: 13:15
Sample: 1983Q1 2010Q4
included observations: 112
Convergence achieved after 5 iterations
MA Backcast: 1982Q2 1982 Q4

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	8.051917	0.520185	15.47896	0.0000
LOG(TS_KWH_IND_OH_KY(-6)/WP10561(-6))	-0.063659	0.032882	-1.935967	0.0558
CDDB_OH_KY_65	9.43E-05	$1.49 \mathrm{E}-05$	6.346838	0.0000
@ISPERIOD("1999q1")	0.541207	0.058225	9.295131	0.0000
@ISPERIOD("2000q71)	0.195837	0.059601	3.285824	0.0014
@ISPERIOD("2004q4")	-0.270881	0.058810	-4.605995	0.0000
D_1965Q1_2005Q1	0.230177	0.048607	4.735464	0.0000
@ISPERIOD("2008q3")	-0.219970	0.064779	-3.395720	0.0010
@ISPERIOD("2008q4")	-0.241327	0.068775	-3.508926	0.0007
@ISPERIOD("2009q")	-0.296137	0.068781	-4.434421	0.0000
@ISPERIOD("1991q1")	-0.131337	0.058181	-2.257392	0.0262
PDL01	0.081793	0.024827	3.294454	0.0014
PDL02	-0.174030	0.030342	-5.735555	0.0000
AR(1)	0.441387	0.097294	4.536622	0.0000
MA(3)	0.479336	0.097863	4.898011	0.0000
R-squared	0.888195	Mean dependent var		11.43920
Adjusted R-squared	0.872058	S.D. dependent var		0.197459
S.E. of regression	0.070629	Akaike info criterion		-2.338684
Sum squared resid	0.483880	Schwarz criterion		-1.974599
Log likelihood	145.9663	Hannan-Quinn criter		-2.190963
F-statistic	55.04158	Durbin-Watson stat		2.131481
Prab(F-statistic)	0.000000			
Inverted AR Roots	. 44			
Inverted MA Roots	. $39-68 i$	39+.68i		
Lag Distribution of LOG(JQINDN3361_62_63_OH_KY)	i	Coefficient	Sto. Error	t-Statistic
* 1	0	0.12269	0.03724	3.29445
1	1	0.08179	0.02483	3.29445
*	2	0.04090	0.01241	3.29445
Sum of Lags		0.24538	0.07448	3.29445
Lag Distribution of LOG(TS_KWH_IND_OH_KY/APGIND_OH_KY)	i	Coefficient	Std. Error	t-Statistic
. 1	0	-0.17403	0.03034	-5.73555
* . 1	1	-0.08701	0.01517	-5.73555
Sum of Lags		-0.26104	0.04551	-5.73555

MWH SALES - INDUSTRIAL - AEROSPACE PRODUCTS AND PARTS

Dependent Variable: $\mathrm{LOG}(\mathrm{MWHN} 3364$ _OH_KY)				
Method: Least Squares				
Date: 02/18/11 Time: 13:17				
Sample (adjusted): 1976Q3 2010Q4				
Included observations: 138 after adjustments				
Convergence achieved after 9 iterations				
Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	10.40620	0.301787	34.48198	0.0000
LOG(TS_KWH_IND_OH_KY/CPI)	-0.077685	0.034073	-2.279933	0.0243
CDDB_OH_KY_65	0.000122	$8.06 \mathrm{E}-06$	15.17080	0.0000
@ISPERIOD("1986q2")+@ISPERIOD("1991q4")	0.129654	0.025078	5.170028	0.0000
@\|SPERIOD("1991q1")+@ISPERIOD("1999q4")	-0.084145	0.025266	-3.330377	0.0011
@\|SPERIOD("1992q1")+@ISPERIOD("2000q3")	-0.280391	0.025243	-11.10777	0.0000
@ISPERIOD("2008q2")+@ISPERIOD("2002q3")	0.164495	0.025305	6.500603	0.0000
@ISPERIOD("2001q2")	0.219082	0.036720	5.966257	0.0000
@\|SPERIOD("2001q4")+@ISPERIOD("2004q1")	0.127053	0.026964	4.711866	0.0000
@ISPERIOD("2003q3")	-0.159349	0.037565	-4.241923	0.0000
@ISPERIOO("2003q4")	-0.403937	0.036510	-11.06362	0.0000
PDL01	0.159517	0.055972	2.849946	0.0051
AR(1)	0.475000	0.083613	5.680911	00000
AR(2)	0.458309	0.083692	5.476172	0.0000
R-squared	0.922112	Mean dependent var		11.13682
Adjusted R-squared	0.913946	S.D. dependent var		0.144033
S.E. of regression	0.042252	Akaike info criterion		-3.394411
Sum squared resid	0221367	Schwarz criterion		-3.097443
Log likelihood	248.2144	Hannan-Quinn criter.		-3.273731
F-statistic	112.9252	Durbin-Watson stat		1.928903
$\operatorname{Prob}(\mathrm{F}$-statistic)	0.000000			
Inverted AR Roots	. 95	-. 48		
Lag Distribution of LOG(JQ\|NDN3364_OH_KY)	i	Coefficient	Std. Error	t-Statistic
*	0	0.15952	0.05597	2.84995
* 1	1	0.07976	0.02799	2.84995
	Sum of Lags	0.23928	0.08396	2.84995

MWH SALES - INDUSTRIAL - MISCELLANEOUS

Dependent Variable: LOG(MWHNAOI_OH_KY)				
Method: Least Squares				
Date: 02/18/11 Time: 13:16				
Sample: 1979012010Q4				
Included observations: 128				
Convergence achieved after 8 iterations				
MA Backcast: 1978Q3 1978Q4				
Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	11.88779	0.501920	23.68465	0.0000
LOG(JQINDNAOI_OH_KY)	0.437354	0.202024	2.164859	0.0325
CDDB_OH_KY_65	0.000152	5.82E-06	26.08549	0.0000
D_1965Q1_2001Q3	0.239000	0.034977	6.832993	0.0000
@ISPERIOD("1993q1")+@ISPERIOD("1993q2")	-0.112249	0.022882	-4.905591	0.0000
@ISPERIOD("1996q2")	-0.100633	0.024413	-4.122139	0.0001
@ISPERIOD("2003q4")	-0.064136	0.024469	-2.621110	0.0100
@ISPERIOD("2004q4")	0.131309	0.027091	4.846902	0.0000
@ISPERIOD("2005q1")	-0.166456	0.027212	-6.117062	0.0000
@ISPERIOD("2000q2")	-0.153083	0.029028	-5.273714	0.0000
@ISPERIOD("2000q3")+@ISPERIOD("2000q4")	-0.105271	0.027091	-3.885913	0.0002
@ISPERIOD("2001q2")+@ISPERIOD("2005q4")	-0.069407	0.017390	-3.991301	0.0001
@ISPERIOD("2008q3")+@ISPERIOD("2008q4")	0.133541	0.023910	5.585172	0.0000
PDL01	-0.055260	0.031283	-1.766453	0.0800
AR(1)	0.980983	0012992	75.50632	0.0000
MA(2)	0.150976	0.000364	414.8660	0.0000
R-squared	0.986800	Mean dependent var		12.43838
Adjusted R-squared	0.985032	S.D. dependent var		0.282311
S.E. of regression	0.034539	Akaike info criterion		-3.776990
Sum squared resid	0.133609	Schwarz criterion		-3.420486
Log likelihood	257.7274	Hannan-Quinn criter.		-3.632141
F-statistic	558.1851	Durbin-Watson stat		1.906248
Prob(F-statistic)	0.000000			
Inverted AR Roots	. 98			
Lag Distribution of LOG(DS_KWH_IND_OH_KY(-4)/CPl(-4))	i	Coefficient	Std. Error	t-Statistic
* .1	0	-0.05526	0.03128	-1.76645
* . 1		-0.02763	0.01564	-1.76645
	um of Lags	-0.08289	0.04692	-1.76645

KWH SALES - OTHER PUBLIC AUTHORITIES - WATER PUMPING

Dependent Variable: LOG(KWHOPAWP_OH_KY)
ethod: Least Squares
Date: 02/22/11 Time: 17:19
Sample: 1976M01 2010M12
Included observations: 420

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	7.343583	0.815592	9.003991	0.0000
D_1965M01_2001M12*LOG(CUSRES_OH_KY)	0.666205	0.059001	11.29152	0.0000
(1-D_1965M01_2001M12)*LOG(CUSRES_OH_KY	0.623779	0.058028	10.74957	0.0000
LOG(DS_KW_OPA_OH_KY/CPI)	-0.041952	0.020836	-2.013434	0.0448
((@MONTH=5)+(@MONTH=6)+(@MONTH=7)+(@MONTH=8))*(PRECIP_OH_KY+PRECIP_OH_KY(- 1))	-0.003603	0.001357	-2.654939	0.0083
((@MONTH=4)+(@MONTH=9)+(@MONTH=10)+(@MONTH=11) $)^{*}$ (PRECIP_OH_KY+PRECIP_OH_KY(-				
1))	-0.002277	0.001320	-1.725192	0.0853
$\left((@ M O N T H=6)+(@ M O N T H=7)\right.$) ${ }^{(0)}$	0.000684	5.08E-05	13.47076	0.0000
(@MONTH=8)*CDD_OH_KY_65	0.000774	5.67E-05	13.65227	0.0000
	0.001241	0.000101	12.33444	0.0000
(\%ISPERIOD("1982m06")	0.832372	0.081478	10.21594	0.0000
@ISPERIOD("1998m10")	-0.559534	0.081309	-6.881549	0.0000
@ISPERIOD("2000m01")	-0.803448	0.081575	-9.849237	0.0000
@ISPERIOD("2000m06")	0.354003	0.081863	4.324362	0.0000
@ISPERIOD("2000m05")	-0.691377	0.082285	-B. 402177	0.0000
@\|SPERIOD("2000m07")	-1.272906	0.081849	-15.55187	0.0000
D_2000M08_2001M12	-0.485575	0.024621	-19.72236	0.0000
@ISPERIOD("2001m07")	-0.87937	0.084491	-10.40782	0.0000
D_2001M09_2002M06	-0.144578	0.028124	-5.14073t	0.0000
D_2002M07_2003M01	0.365595	0.038160	9.580551	0.0000
@1SPERIOD("2002m10")	-0.453355	0.089081	-5.089212	0.0000
© (1SPERIOD("2003m01")	0.476502	0.088909	5.359416	0.0000
(21SPERIOD("2004m01")	0.424579	0.081677	5.198297	0.0000
@ISPER1OD(${ }^{(2004 \mathrm{mO3}}$ ")	0.833829	0.081677	10.20890	0.0000
@ISPERIOD("2006m09")	-0.530826	0.081833	-6.486693	0.0000
@ISPERIOD("2006m10")	0.298049	0.082239	3.624159	0.0003
@ISPERIOD('2010m03")	0.601023	0.082044	7.325577	0.0000
D_1965M01_2007M09	0.219629	0.017147	12.80855	0.0000
R -squared	0.921765	Mean dependent var S.D. dependent var		16.43708
Adjusted R-squared	0.916589			0.279638
S.E. of regression	0.080762	Akaike info criterion		2.132488
Sum squared resid	2.563358	Schwarz criterion		1.872757
Log likelihood	474.8225	Hannan-Quinn criter. Durbin-Watson stat		2.029831
F-statistic	178.0885			1.729098
Prob(F-statistic)	0.000000			

KWH SALES - OTHER PUBLIC AUTHORITIES - LESS WATER PUMPING

Dependent Variable: LOG(KWHOPALWP_OH_KY)
Method: Least Squares
Date: $02 / 18 / 11$ Time: $11: 07$
Sample: $1978 \mathrm{M01} 2010 \mathrm{M} 12$
Included observations: 396
Convergence achieved after 6 iterations
MA Backcast: 1977 M01 1977M12

KWH SALES - STREET LIGHTING

Dependent Variable: LOG(KWHSL_OH_KY)
Method: Least Squares
Date: 02/18/11 Time: 11:10
Sample (adjusted): 1976M03 2010M12
included observations: 418 after adjustments
Convergence achieved after 13 iterations

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	6.634622	0.817873	8.112046	0.0000
LOG(N _OH_KY)	1.187030	0.093199	12.73652	0.0000
D_1965M01_2002M1 ${ }^{\text {a }}$ @MONTH=1	0.129729	0.005804	22.34983	0.0000
D_1965M01_2002M12*@MONTH=2	-0.017364	0.005586	-3.108402	0.0020
D_1965M01_2002M12*@MONTH=4	-0.125481	0.005380	-23.32294	0.0000
D_1965M01_2002M12*@MONTH=5	-0.183103	0.005853	-31.28516	0.0000
D_1965M01_2002M12*@MONTH=6	-0.272574	0.006585	-41.39356	0.0000
D_1965M01_2002M12*@MONTH=7	-0.227443	0.006769	-33.60018	0.0000
D_1965M01_2002M12*@MONTH=8	-0. 144281	0.006805	-21.19983	0.0000
D_1965M01_2002M12*@MONTH=9	-0.079487	0.006838	-11.62400	0.0000
D_1965M01_2002M12*@MONTH=10	0.026083	0.006776	3.849203	0.0001
D_1965M01_2002M12*@MONTH=11	0.080469	0.006638	12.12199	0.0000
D_1965M01_2002M12*@MONTH $=12$	0.143832	0.006298	22.83764	0.0000
@ISPERIOD("1980m02")	-0.163252	0.022107	-7.384568	0.0000
@ISPERIOD("1991m06")	-0.366945	0.023674	-15.49977	0.0000
@ISPERIOD("1999m06")	0.526448	0.022075	23.84800	0.0000
@ISPERIOD('1999m1\%')	-0. 215151	0.022062	-9.752211	0.0000
@ISPERIOD('2001m02')	-0.751729	0.022988	-32.70043	0.0000
@ISPERIOD("2001m03")	0.419849	0.023222	18.08003	0.0000
@ISPERIOD("2001m05")	-0.314116	0.022717	-13.82746	0.0000
@ISPERIOD("2001m07")+@ISPERIOD("2002m07")	0.194966	0.016484	11.82759	0.0000
@ISPERIOD("2002m06")	-0.146027	0.022475	-6.497423	0.0000
©ISPERIOD('1991m03")	-0.137568	0.022208	-6.194428	0.0000
@ISPERIOD("2007m02")	-0.134596	0.021717	-6.197862	0.0000
@ISPERIOD("2007m05")	-0.106050	0.022853	-4.640490	0.0000
@ISPERIOD("2007m06")	0.054432	0.022445	2.425113	0.0158
@ISPERIOD("2002m02")	0.106135	0.022361	4.746497	0.0000
@ISPERIOD("2006m02")	0.084365	0.021746	3.879554	0.0001
D_1965M01_2007M09	0.067105	0.012236	5.484119	0.0000
PDL01	-0.148257	0.052585	-2.819371	0.0051
AR(1)	0.411845	0.055537	7.415701	0.0000
AR(2)	0.220771	0.053764	4.106317	0.0000
R-squared	0.978873	Mean dependent var		15.94102
Adjusted R-squared	0.977176	S.D. dependent var		0.157949
S.E. of regression	0.023862	Akaike info criterion		-4.559575
Sum squared resid	0.219790	Schwarz criterion		-4.250639
Log likelihood	984.9512	Hannan-Quinn criter.		-4.437446
F-statistic	576.9154	Durbin-Watson stat		2.042699
Prob(F-statistic)	0.000000			
Inverted AR Roots	. 72	-. 31		
Lag Distribution of LOG(SAT_SL_OH_KY)	i	Coefficient	Std. Error	t-Statistic
* . I	0	-0.19768	0.07011	-2.81937
* . 1	1	-0.14826	0.05259	-2.81937
* . 1	2	-0 09884	0.03506	-2.81937
* . 1	3	-0.04942	0.01753	-2.81937
	Sum of Lags	-0.49419	0.17528	-2.81937

SERVICE AREA - SUMMER PEAK

Dependent Variabie: LOG(MWSPEAK_OH_KY)
Method: Least Squares
Date: 03/02/11 Time: 17:36
Sample: 1/01/1974 12/31/2010 IF WEEKDAY $<=5$
Included observations: 374

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D_072180_091498*MJUN	-3.011771	0.321205	-9.376481	0.0000
(1-D_072180_091498)*MJUN	-3.124540	0.319518	-9.778925	0.0000
D_072180_091498*MJUL	-3.287855	0.290345	-11.32395	0.0000
(1-D_072180_091498)*MJUL	-3.623843	0.184254	-19.66766	0.0000
D_072180_091498*MAUG	-1.598406	0.243600	-6.561600	0.0000
(1-D_072180_091498)*MAUG	-4.460045	0.229457	-19.43742	0.0000
MSEP	-3.635690	0.260506	-13.95628	0.0000
(D_072180_091498)* ${ }^{\text {(MJUN+MSEP)*LOG(KWHSEND_OH_KY_WN/1000/DAYS) }}$	0.909660	0.018172	50.05902	0.0000
(1-D_072180_091498)*(MJUN+MSEP)*LOG(KWHSEND_OH_KY_WN/1000/DAYS)	0.920730	0.017986	51.19140	0.0000
(D_072180_091498)*(MJUL)*LOG(KWHSEND_OH_KY_WN/1000/DAYS)	0.915842	0.024645	37.16087	0.0000
(1-D_072180_091498)*(MJUL)*LOG(KWHSEND_OH_KY_WN/1000/DAYS)	0.943693	0.013466	70.08135	0.0000
(D_072180_091498)*(MAUG)*LOG(KWHSEND_OH_KY_WN/1000/DAYS)	0.749686	0.020357	36.82746	0.0000
(1-D_072180_091498)*(MAUG)*LOG(KWHSEND_OH_KY_WN/1000/DAYS)	1.007129	0.018754	53.70340	0.0000
(MJUN)*PMHIGH	0.006528	0.002595	2.516140	0.0123
(MJUL+MAUG+MSEP)*PMHIGH	0010185	0.001090	9.341020	0.0000
(MJUN+MJUL+MAUG+MSEP)*PREVPMHIGH	0.002587	0.000596	4.339495	0.0000
(MJUN+MAUG)*AMLOW	0.005175	0.000788	6.569148	0.0000
MJUL*AMLOW	0.003140	0.000945	3.322639	0.0010
MSEP*AMLOW	0.009130	0.002129	4.288538	0.0000
(MJUN+MJUL+MAUG+MSEP)*PMHUMIDATHIGH	0.000754	0.000302	2.497370	0.0130
JULY4WEEK*PMHIGH	-0.000318	7.53E-05	-4.226065	0.0000
@ISPERIOD("6/11/1976")	-0.097349	0.036540	-2.664175	0.0081
©ISPERIOD("6/18/1976")	-0.124767	0.036541	-3.414419	0.0007
@ISPERIOD("7/5/1993")	-0. 109721	0.035655	-3.077264	0.0023
@ISPERIOD("7/5/99")	-0.122669	0.035685	-3.437554	0.0007
@ISPERIOD("8/13/1999")	0.105063	0.035423	2.965939	0.0032
©/SPERIOD("8/17/1999")	0.104280	0.035654	2.924797	0.0037
D_080107_082907	-0.093970	0.010804	-8.697776	0.0000
@ISPERIOD("7/7/10")	-0.384991	0.035580	-10.82035	0.0000
R-squared	0.980720	Mean dependent var		8.264019
Adjusted R-squared	0.979155	S.D. dependent var		0.240056
S.E. of regression	0.034659	Akaike info criterion		-3.812170
Sum squared resid	0.414422	Schwarz criterion		-3.507882
Log likelihood	741.8757	Hannan-Quinn criter.		-3.691354
Durbin-Watson stat	0.689958			

SERVICE AREA - WINTER PEAK

Dependent Variable: LOG(MWWPEAK_OH_KY)
Method: Least Squares
Date: 03/03/11 Time: 12:36
Sample: 1/01/1974 12/31/2010 IF WEEKDAY<=5
Included observations: 258

Variable	Coefficient	Sta. Error	t-Statistic	Prob.
AMPEAK* ${ }^{(M D E C+M J A N+M F E B+M M A R) ~}$	-1.609170	0.284221	-5,661692	0.0000
AMPEAK*(MDEC+MJAN+MFEB+MMAR)*LOG(KWHSEND_OH_KY_WN/1000/DAYS)	0.882089	0.025989	33.94138	0.0000
AMPEAK ${ }^{*}$ (MDEC+MJAN+MFEB+MMAR)*AMLOW	-0.002167	0.001165	-1.859507	0.0641
AMPEAK* ${ }^{(M D E C+M J A N+M M A R) * W I N D A M ~}$	0.006007	0.001457	4.122567	0.0001
AMPEAK* ${ }^{\text {(MJAN+MFEB+MMAR)*PREVPMLOW }}$	-0.002277	0.001045	-2.178155	0.0303
PMPEAK* ${ }^{\text {(MDEC }}$ +MJAN+MFEB+MMAR)	-0. 936795	0.372091	-2.517650	0.0125
PMPEAK*(MDEC+MMAR)*LOG(KWHSEND_OH_KY_WN/i000/DAYS)	0.826439	0.034517	23.94265	0.0000
PMPEAK*(MJAN+MFEB)*LOG(KWHSEND_OH_KY_WN/1000/DAYS)	0.822818	0.034252	24.02242	0.0000
PMPEAK* ${ }^{*}$ MDEC+MJAN+MFEB+MMAR)*PMLOW	-0.003700	0.001386	-2.669020	0.0081
@ISPERIOD("1/27/1977")+@\|SPERIOD("1/28/1977")	-0.253712	0.058986	-4.301214	0.0000
PMPEAK*XMAS	-0.083042	0.029656	-2.800147	0.0055
@ISPERIOD("1/23/2003")	-0.165564	0.085684	-1.932259	0.0545
R -squared	0.883007	Mean dependent var		8.026330
Adjusted R-squared	0.877776	S.D. dependent var		0.235440
S.E. of regression	0.082311	Akaike info criterion		-2.111221
Sum squared resid	1.666687	Schwarz criterion		-1.945968
Log likelihood	284.3476	Hannan-Quinn criter.		-2.044772
Durbin-Watson stat	0.565187			

Mnemonics Definitions

VARIABLE
@ISPERIOD("8/11/1976")
@ISPERIOD("6/18/1976")
@ISPERIOD("1/27/1977")
@ISPERIOD("1/28/1977")
@ISPERIOD("7/5/1993")
@ISPERIOD("7/5/1999")
@ISPERIOD(" $8 / 13 / 1999$ ")
@ISPERIOD("B/17/1999")
@ISPERIOD ("1/23/2003")
@ISPERIOD("7/7/2010")
@ISPERIOD("1980M02")
@ISPERIOD("1982MO6")
@ISPERIOD("1986Q2")
@ISPERIOD("1986Q3")
@ISPERIOD("1988Q3")
@ISPERIOD("1988Q4")
@ISPERIOD("1990Q2")
@ISPERIOD("1991MO3")
@ISPERIOD("1991MO4")
(@ISPERIOD ("1991M06")
(CISPERIOD("1991M11")
@ISPERIOD\{"1991Q1"\}
@ISPERIOD("1991Q3")
@ISPERIOD("1991Q4")
@ISPERIOD("1992Q1")
@ISPERIOD("1992Q2")
@ISPERIOD("1993M09")
@ISPERIOD("1993M10")
@ISPERIOD("1993M11")
©(SPPERIOD("1993Q1")
©ISPERIOD("1993Q2")
@ISPERIOD("1994M02")
@ISPERIOD("1994M05")
@1SPERIOD("1994Q1")
@ISPERIOD("1995MO4")
@ISPERIOD("1995M05"
@ISPERIOD("1995MOB")
@ISPERIOD("1996Q2")
@ISPERIOD("1996Q3")
@ISPERIOD("1997Q3")
@ISPERIOD("1998M05")
@ISPERIOD("1998MOT") @ISPERIOD("1998M10")
@lSPERIOD("1998Q3")
@ISPERIOD("1998Q4")
@ISPERIOD ("4999M02")
@ISPERIOD("1999M06"
@ISPERIOD("1999M10")
@ISPERIOD("1999M11")
@ISPERIOD("1999M12")
@ISPERIOD("1999Q1")
@ISPERIOD("1999Q4")
@ISPERIOD("2000MO1") @ISPERIOD("2000M04") @ISPERIOD("2000MO5") @ISPERIOD("2000MO6") @ISPERIOD("2000MO7" @|SPERIOD("2000M08 @ISPERIOD("2000M10") @ISPERIOD("2000M12") @ISPERIOD("2000Q1") @ISPERIOD("2000Q2") ©ISPERIOD("2000Q3") (@ISPERIOD("200004") @ISPERIOD("2001M01") ©ISPERIOD("2001M02" @ISPERIOD("2001MO3" @ISPERIOD("2D01M04") ©ISPERIOD("2001M05*) @ISPERIOD("2001M06") @ISPERIOD("2001M07") @ISPERIOD("2001Q1") @ISPERIOD("2001Q2") @ISPERIOD("2001Q4") ©|SPERIOD("2002M02") @ISPERIOD("2002M04") @ISPERIOD("2002M05") @ISPERIOD("2002M06")

DESCRIPTION
QUALITATIVE VARIABLE - JUNE 11, 1976
QUALITATIVE VARIABLE - JUNE 18, 1976
QUALITATIVE VARIABLE - JANUARY 27, 1977
QUALITATIVE VARIABLE - JANUARY 28,1977
QUALITATIVE VARIABLE - JULY 5, 1993
QUALITATIVE VARIABLE - JULY 5, 1999
QUALITATIVE VARIABLE - AUGUST 13, 1999
QUALITATIVE VARIABLE - AUGUST 17, 1999
QUALITATIVE VARIABLE - JANUARY 23, 2003
QUALITATIVE VARIABLE - JULY 7, 2010
QUALITATIVE VARIABLE - FEBRUARY, 1980
QUALITATIVE VARIABLE - JUNE, 1982
QUALITATIVE VARIABLE - SECOND QUARTER 1986
QUALITATIVE VARIABLE - THIRD QUARTER, 1986
QUALITATIVE VARIABLE - THIRD QUARTER, 1988
QUALITATIVE VARIABLE - FOURTH QUARTER, 1988
QUALITATIVE VARIABLE - SECOND QUARTER, 1990
QUALITATIVE VARIABLE - MARCH, 1991
QUALITATIVE VARIABLE - APRIL, 1991
QUALITATIVE VARIABLE - JUNE, 1991
QUALITATIVE VARIABLE - NOVEMBER, 1991
QUALITATIVE VARIABLE - FIRST QUARTER, 1991
QUALITATIVE VARIABLE - THIRD QUARTER, 1991
QUALITATIVE VARIABLE - FOURTH QUARTER, 1991
QUALITATIVE VARIABLE - FIRST QUARTER, 1992
QUALITATIVE VARIABLE - SECOND QUARTER, 1992
QUALITATIVE VARIABLE - SEPTEMBER, 1993
QUALITATIVE VARIABLE - OCTOBER, 1993
QUALITATIVE VARIABLE - NOVEMBER, 1993
QUALITATIVE VARIABLE - FIRST QUARTER, 1993
QUALITATIVE VARIABLE - SECOND QUARTER, 1993
QUALITATIVE VARIABLE - FEBRUARY, 1994
QUALITATIVE VARIABLE - MAY, 1994
QUALITATIVE VARIABLE - FIRST QUARTER, 1994
QUALITATIVE VARIABLE - APRIL, 9995
QUALITATIVE VARIABLE - MAY, 1995
QUALITATIVE VARIABLE - AUGUST, 1995
QUALITATIVE VARIABLE - SECOND QUARTER, 1996
QUALITATIVE VARIABLE - THIRD QUARTER, 1996
QUALITATIVE VARIABLE - THIRD QUARTER, 1997
QUALITATIVE VARIABLE - MAY, 1998
QUALITATIVE VARIABLE - JULY, 1998
QUALITATIVE VARIABLE - OCTOBER, 1998
QUALITATIVE VARIABLE - THIRD QUARTER, 1998
QUALITATIVE VARIABLE - FOURTH QUARTER, 1998
QUALITATIVE VARIABLE - FEBRUARY, 1999
QUALITATIVE VARIABLE - JUNE, 1999
QUALITATIVE VARIABLE - OCTOBER, 1999
QUALITATIVE VARIABLE - NOVEMBER, 1999
QUALITATIVE VARIABLE - DECEMBER, 1999
QUALITATIVE VARIABLE - FIRST QUARTER, 1999
QUALITATIVE VARIABLE - FOURTH QUARTER, 1999
QUALITATIVE VARIABLE - JANUARY, 2000
QUALITATIVE VARIABLE - APRIL, 2000
QUALITATIVE VARIABLE - MAY, 2000
QUALITATIVE VARIABLE - JUNE, 2000
QUALITATIVE VARIABLE - JULY, 2000
QUALITATIVE VARIABLE - AUGUST, 2000
QUALITATIVE VARIABLE - OCTOBER, 2000
QUALITATIVE VARIABLE - DECEMBER, 2000
QUALITATIVE VARIABLE - FIRST QUARTER, 2000
QUALITATIVE VARIABLE - SECOND QUARTER, 2000
QUALITATIVE VARIABLE - THIRD QUARTER, 2000 QUALITATIVE VARIABLE - FOURTH QUARTER, 2000
QUALITATIVE VARIABLE - JANUARY, 2001
QUALITATIVE VARIABLE - FEBRUARY, 2001
QUALITATIVE VARIABLE - MARCH, 2001
QUALITATIVE VARIABLE - APRIL, 2001
QUALITATIVE VARIABLE - MAY, 2001
QUALITATIVE VARIABLE - JUNE, 2001
QUALITATIVE VARIABLE - JULY, 2001
QUALITATIVE VARIABLE - FIRST QUARTER, 2001
QUALITATIVE VARIABLE - SECOND QUARTER, 2001
QUALITATIVE VARIABLE - FOURTH QUARTER, 2001
QUALITATIVE VARIABLE - FEBRUARY, 2002
QUALITATIVE VARIABLE - APRIL, 2002
QUALITATIVE VARIABLE - MAY, 2002
QUALITATIVE VARIABLE - JUNE, 2002

QUALITATIVE VARIABLE - JULY, 2002
QUALITATIVE VARIABLE - AUGUST, 2002
QUALITATIVE VARIABLE - OCTOBER, 2002
QUALITATIVE VARIABLE - DECEMBER, 2002
QUALITATIVE VARIABLE - FIRST QUARTER, 2002
QUALITATIVE VARIABLE - SECOND QUARTER, 2002
QUALITATIVE VARIABLE - THIRD QUARTER, 2002
QUALITATIVE VARIABLE - JANUARY, 2003
QUALITATIVE VARIABLE - DECEMBER, 2003
QUALITATIVE VARIABLE - FIRST QUARTER, 2003
QUALITATIVE VARIABLE - THIRD QUARTER, 2003
QUALITATIVE VARIABLE - FOURTH QUARTER, 2003
QUALITATIVE VARIABLE - JANUARY, 2004
QUALITATIVE VARIABLE - MARCH, 2004
QUALITATIVE VARIABLE - MAY, 2004
QUALITATIVE VARIABLE - JUNE, 2004
QUALITATIVE VARIABLE - NOVEMBER, 2004
QUALITATIVE VARIABLE - DECEMBER, 2004
QUALITATIVE VARIABLE - FIRST QUARTER, 2004
QUALITATIVE VARIABLE - FOURTH QUARTER, 2004
QUALITATIVE VARIABLE - JANUARY, 2005
QUALITATIVE VARIABLE - FEBRUARY, 2005
QUALITATIVE VARIABLE - MARCH, 2005
QUALITATIVE VARIABLE - AUGUST, 2005
QUALTTATIVE VARIABLE - FIRST QUARTER, 2005
QUALITATIVE VARIABLE - FOURTH QUARTER, 2005
QUALITATIVE VARIABLE - FEBRUARY, 2006
QUALITATNE VARIABLE - SEPTEMBER, 2006
QUALITATIVE VARIABLE - OCTOBER, 2006
QUALITATIVE VARIABLE - FEBRUARY, 2007
QUALITATIVE VARIABLE - APRIL, 2007
QUALITATIVE VARIABLE - MAY, 2007
QUALITATIVE VARIABLE - JUNE, 2007
QUALITATIVE VARIABLE - OCTOBER, 2007
QUALITATIVE VARIABLE - FOURTH QUARTER, 2007
QUALITATIVE VARIABLE - OCTOBER, 2008
QUALITATIVE VARIABLE - SECOND QUARTER, 2008
QUALITATIVE VARIABLE - THIRD QUARTER, 2008
QUALITATIVE VARIABLE - FOURTH QUARTER, 2008
QUALITATIVE VARIABLE - MAY, 2009
QUALITATIVE VARIABLE - FIRST QUARTER, 2009
QUALITATIVE VARIABLE - SECOND QUARTER, 2009
QUALITATIVE VARIABLE - FEBRUARY, 2010
QUALITATIVE VARIABLE - MARCH, 2010
QUALITATIVE VARIABLE - MAY, 2010
QUALITATIVE VARIABLE - OCTOBER, 2010
QUALITATIVE VARIABLE - SECOND QUARTER, 2010
QUALITATIVE VARIABLE - THIRD QUARTER, 2010
QUALITATIVE VARIABLE - FOURTH QUARTER, 2010
QUALITATIVE VARIABLE - JANJIARY
QUALITATIVE VARIABLE - OCTOBER
QUALITATIVE VARIABLE - NOVEMBER
QUALITATIVE VARIABLE - DECEMBER
QUALITATIVE VARIABLE - FEBRUARY
QUALITATIVE VARIABLE - MARCH
QUALITATIVE VARIABLE - APRIL
QUALITATIVE VARIABLE - MAY
QUALITATIVE VARIABLE - JUNE
QUALITATIVE VARIABLE - JULY
QUALITATIVE VARIABLE - AUGUST
QUALITATIVE VARIABLE - SEPTEMBER
QUALITATNE VARIABLE - FIRST QUARTER
QUALITATVE VARIABLE - SECOND QUARTER
QUALITATIVE VARIABLE - THIRD QUARTER
QUALITATIVE VARIABLE - FOURTH QUARTER
MINIMUM HOURLY TEMPERATURE - MORNING
QUALITATIVE VARIABLE - MORNING PEAK
SERVICE AREA AVERAGE PRICE OF GAS FOR INDUSTRIAL CUSTOMERS
SERVICE AREA AVERAGE PRICE OF GAS FOR OPA CUSTOMERS
EFFICIENT APPLIANCE STOCK
BUTLER COUNTY EASE AMOUNT OF MWH SALES - INOUSTRIAL - PRIMARY METAL INDUSTRIES COOLING DEGREE DAYS
BILLING COOLING DEGREE DAYS
=MINIMUM(CDDB_OH_KY,100)
$=$ MAXIMUM (CDDB_OH_KY-100,0)
CONSUMER PRICE INDEX (ALL URBAN) - ALL ITEMS
SERVICE AREA ELECTRIC CUSTOMERS - RESIOENTIAL
QUALITATIVE VARIABLE - JULY 21, 1980 TO SEPTEMBER 14, 1998
QUALITATIVE VARIABLE - AUGUST 1, 2007 TO AUGUST 29, 2007
QUALITATIVE VARIABLE - JANUARY, 1965 THRU DECEMBER, 2001
QUALITATIVE VARIABLE - JANUARY, 1965 THRU DECEMBER, 2002
QUALITATIVE VARIABLE - JANUARY, 1965 THRU SEPTEMBER, 2007
QUALITATIVE VARIABLE - FIRST QUARTER, 1965 TO FOURTH QUARTER, 1985

D 196501199004
D_1965Q1_1995Q4
-1965Q1_1998Q2
_1985
D_1965Q1_2001Q3
D_1976M01_1984M12
D 1976Q1 1989Q2
D_1980Q1_2005Q2
1987Q1_1991Q3
_1998Q3_2001Q2
D_2000M0 ${ }^{-2001 M 12}$
D 2000Q3 2001Q2
D_2001M09_2002M06
D_D.JF
D_JJA
DAYS
IND_OH_KY NW_OPA_OH_K DS_KWH_COM_OH_KY

DS KWH OPA OH-KY
E90X_OH_KY
ECOM_OH_KY
CAC_OH_KY
EHP_OH_KY
HDDB OH KY 59
DB OH KY 590500
HDDB OH KY 59500
JQINDN $31 \overline{1}$ _312_OH_KY
QINDN322_326_OH_KY
QINDN325 OH KY
JQINDN331_BUTLER
QINDN33i_CMSA
JQNDN32 OH-KY
QINDN333_OH_KY
OINDN335-OH-KY
JQINDN3364 OH KY
JQINDN361_62_63_OH_KY
INDNAOI OH KY
相
WHCOM OH KY
KWHOPALWP_OH_KY
WHOPAWP_OH_K
WWHRES_OH KY
KWHSEND_OH_KY_WN
MAUG
MDEC

MUN
MJUN
RPS_OH_KY
MSEP
MWHN322 $32 \mathrm{O}^{-} \mathrm{KY}$
MWHN325 OH
MWHN331_BUTLER
OH KY
WHN332_OH_KY
MWHN333_OH_KY
WWH $3355^{-1} \mathrm{OH}$
MWHN3361_62 83 OH_KY

MWHNAOI_OH_KY
MWSPEAK_OH KY
_OH_KY
N-
PMHUMIDATHIGH
PMPEAK
PRECIP_OH_KY
PREVPMMIGH

QUALITATIVE VARIABLE - FIRST QUARTER, 1965 THRU FOURTH QUARTER, 1986 QUALITATIVE VARIABLE - FIRST QUARTER, 1965 THRU FOURTH QUARTER, 1990 QUALITATNE VARIABLE - FIRST QUARTER, 1965 TO FOURTH QUARTER, 1995
QUALITATIVE VARIABLE - FIRST QUARTER, 1965 TO SECOND QUARTER, 1998
QUALITATIVE VARIABLE - FIRST QUARTER, 1965 TO SECOND QUARTER, 2001 QUALITATIVE VARIABLE - FIRST QUARTER, 1965 THRU THIRD QUARTER, 2001 QUALITATIVE VARIABLE - FIRST QUARTER, 1965 THRU FIRST QUARTER, 2005 QUALITATIVE VARIABLE - JANUARY, 1976 THRU DECEMBER, 1984
QUALITATIVE VARIABLE - FIRST QUARTER, 1976 TO SECOND QUARTER, 1989
QUALITATIVE VARIABLE - FIRST QUARTER, 1980 TO SECOND QUARTER, 2005
QUALITATIVE VARIABLE - FIRST QUARTER, 1987 THRU THIRD QUARTER, 1991
QUALITATIVE VARIABLE - THIRD QUARTER, 1998 THRU SECOND QUARTER, 2001
QUALITATIVE VARIABLE - FIRST QUARTER, 1999 THRU SECOND QUARTER, 2001
QUALITATIVE VARIABLE - AUGUST, 2000 THRU DECEMBER, 2001
QUALITATIVE VARIABLE - THIRD QUARTER, 2000 THRU SECOND QUARTER, 2001
QUALITATIVE VARIABLE - SEPTEMBER, 2001 THRU JUNE, 2002
QUALITATIVE VARIABLE - JULY, 2002 THRU JANUARY, 2003
$=(@$ MONTH $=12+@$ MONTH $=1+$ QMONTH=2)
$=(@ M O N T H=6+@ M O N T H=7+@ M O N T H=8)$
NUMBER OF DAYS IN THE MONTH
SERVICE AREA DS RATE FOR DEMAND FOR INDUSTRIAL CUSTOMERS
SERVICE AREA DS RATE FOR DEMAND FOR OTHER PUBLIC AUTHORITIES CUSTOMERS
SERVICE AREA DS RATE FOR USAGE FOR COMMERCIAL CUSTOMERS
SERVICE AREA DS RATE FOR USAGE FOR INDUSTRIAL CUSTOMERS
SERVICE AREA DS RATE FOR USAGE FOR OTHER PUBLIC AUTHORITIES CUSTOMERS
SERVICE AREA EMPLOYMENT - STATE AND LOCAL GOVERNMENT
SERVICE AREA EMPLOYMENT - COMMERCIAL
EFFICIENCY OF CENTRAL AIR CONDITIONING UNITS IN SERVICE AREA
EFFICIENCY OF ELECTRIC HEAT PUMP UNITS IN SERVICE AREA
EFFICIENCY OF WINDOW AIR CONDITIONING UNITS IN SERVICE AREA
BILLING HEATING DEGREE DAYS
=MINIMUM(HDDB OH KY,500)
$=\mathrm{MAXIMUM}\left(\mathrm{HDDB}_{-}^{-} \mathrm{OH}_{-} \mathrm{KY}-500,0\right)$
SERVICE AREA INDUSTRIAL PRODUCTION INDEX - FOOD AND PRODUCTS
SERVICE AREA INDUSTRIAL PRODUCTION INDEX - PAPER AND PRODUCTS
SERVICE AREA INDUSTRIAL PRODUCTION INDEX - CHEMICALS AND PRODUCTS
BUTLER COUNTY INDUSTRIAL PRODUCTION INDEX - PRIMARY METAL INDUSTRIES
CINCINNATI CMSA INDUSTRIAL PRODUCTION INDEX - PRIMARY METAL INDUSTRIES
SERVICE AREA INOUSTRIAL PRODUCTION INDEX - FABRICATED METALS
SERVICE AREA INDUSTRIAL PRODUCTION INDEX - INDUSTRIAL MACHINERY \& EQUIPMENT
SERVICE AREA INDUSTRIAL PRODUCTION INDEX - COMPUTER AND ELECTRONICS
SERVICE AREA INOUSTRIAL PRODUCTION INDEX - ELECTRICAL EQUIPMENT
SERVICE AREA INDUSTRIAL PRODUCTION INDEX - AIRCRAFT AND PARTS
SERVICE AREA INDUSTRIAL PRODUCTION INDEX - MOTOR VEHICLES AND PARTS
SERVICE AREA INDUSTRIAL PRODUCTION - ALL OTHER INDUSTRIES
QUALITATIVE VARIABLE FOR THE WEEK OF JULY 4TH
SERVICEA KWH SALES - COMMERCIAL
SERVICE AREA KWH SALES - OPA LESS WATER PUMPING
SERVICE AREA KWH SALES - OPA WATER PUMPING
SERVICE AREA KWH SALES - RESIDENTIAL
SERVICE AREA KWH SENDOUT - WEATHER NORMALIZED
SERVICE AREA KWH SALES - STREET LIGHTING
QUALITATIVE VARIABLE - AUGUST
QUALITATIVE VARIABLE - DECEMBER
QUALITATIVE VARIABLE - FEBRUARY
QUALITATIVE VARIABLE - JANUARY
QUALITATIVE VARIABLE - JULY
QUALITATIVE VARIABLE - JUNE
QUALITATIVE VARIABLE - MARCH
MARGINAL PRICE OF ELECTRICITY - RESIDENTIAL
QUALITATIVE VARIABLE - SEPTEMBER
SERVICE AREA MWH SALES - INDUSTRIAL - FOOD AND PRODUCTS
SERVICE AREA MWH SALES - INDUSTRIAL - PAPER AND PRODUCTS
SERVICE AREA MWH SALES - INDUSTRIAL - CHEMICALS AND PRODUCTS
BUTLER COUNTY MWH SALES - INDUSTRIAL - PRIMARY METAL INDUSTRIES
SERVICE AREA MWH SALES LESS BUTLER COUNTY - INDUSTRIAL - PRIMARY METAL INDUSTRIES
SERVICE AREA MWH SALES - INDUSTRIAL - FABRICATED METALS
SERVICE AREA MWH SALES - INDUSTRIAL - INDUSTRIAL MACHINERY AND EQUIPMENT
SERVICE AREA MWH SALES - INDUSTRIAL - COMPUTER AND ELECTRONICS
SERVICE AREA MWH SALES - INDUSTRIAL - ELECTRICAL EQUIPMENT
SERVICE AREA MWH SALES - INDUSTRIAL - MOTOR VEHICLES AND PARTS
SERVICE AREA MWH SALES - INDUSTRIAL - TRANSPORTATION EQUIPMENT
OTHER THAN MOTOR VEHICLES AND PARTS
SERVICE AREA MWH SALES - INDUSTRIAL - ALL OTHER INDUSTRIES
SERVICE AREA MW PEAK - SUMMER
SERVICE AREA MW PEAK - WINTER
SERVICE AREA TOTAL POPULATION
MAXIMUM HOURLY TEMPERATURE - AFTERNOON
HUMIDITY - AFTERNOON
MINIMUM HOURLY TEMPERATURE - EVENING
QUALITATIVE VARIABLE - EVENING PEAK
SERVICE AREA PRECIPITATION
MAXIMUM HOURLY TEMPERATURE - PREVIOUS AFTERNOON

PREVPMLOW
SAT CAC EFF
SAT_CACNHP_OH_KY
SAT EH_EFF
SATEEHP_OH_KY
SAT_ER_OH_KY
SAT_RAC_EFF
SAT RAC_OH_KY
SAT_SL_OH_KY
SATMERC_ÖH_KY
SATSODVAP_ÖH_KY
TS KW_IND OH_KY
TS_KWH_IND_OH_KY
WINDAM
WPIOS61
XMAS
YP_OH_KY

MINIMUM HOURLY TEMPERATURE - PREVIOUS AFTERNOON
=EFF CAC OH KY*(SAT EHP OH_KY+SAT CACNHP OH_KY) SERVICE AREA SATURATION OF CENTRAL AIR CONDITIONING WITHOUT HEAT PUMP $=\left(S A T _E R _O H _K Y+\left\{S A T _E H P _O H _K Y * E F F _E H P _O H _K Y\right)\right.$)
SERVICE AREA SATURATION OF ELECTRIC HEAT PUMPS - RESIDENTIAL
SATURATION RATE OF ELECTRIC RESISTANCE HEATERS IN SERVICE AREA
$=E F F _$RAC_OH_KY*SAT RAC_OH_KY
SERVICE AREA SATURATION OF WINDOW AIR CONDITIONING SERVICE AREA
$=\left(0.5^{*}\right.$ SATMERC OH KY $)+\left(0.5^{*}\right.$ SATSODVAP OH KY $)$
SERVICE AREA SATURATION OF MERCURY VAPOR STREET LIGHTING
SERVICE AREA SATURATION OF SODIUM VAPOR STREET LIGHTING
SERVICE AREA TS RATE FOR DEMAND FOR INDUSTRIAL CUSTOMERS
SERVICE AREA TS RATE FOR USAGE FOR INDUSTRIAL CUSTOMERS
WIND SPEED - MORNING
WHOLESALE PRICE INDEX FOR CRUDE PETROLEUM
QUALITATIVE VARIABLE - CHRISTMAS WEEK
SERVICE AREA PERSONAL INCOME

MEAN OF THE STANDARD ERRORS

6. Computer Software

All of the equations in the Electric Energy Forecast Model and Electric Peak Load Model were estimated and forecasted on personal computers using the Eviews software from Quantitative Micro Software, LLC.

SECTION II FORECASTS FOR ELECTRIC TRANSMISSION OWNERS

A. GENERAL GUIDELINES

No Response Required.

B. ELECTRIC TRANSMISSION FORECAST

This section of the 2011 Electric Long-Term Forecast Report contains the transmission forecast forms FE-T1 through FE-T10 as required by OAC 4901:5-5-04. The forecast is developed using the methodology previously described.
FORM FE－T1：TRANSMISSION ENERGY DELIVERY FORECAST

ZI－II Gaisıno Wals （ ε ）		寺	菏		－			$\left\lvert\, \begin{gathered} \frac{y}{c} \\ \frac{y}{4} \\ \hline \end{gathered}\right.$	倉	－		$\underset{\sim}{\sim}$	$\xrightarrow{\sim}$	－		－
	$\left.\begin{gathered} n \\ 0 \\ n \\ n \\ n \\ n \end{gathered} \right\rvert\,$	cin	䂞	$\frac{\underset{\sim}{n}}{\underset{\sim}{n}}$			$\begin{gathered} 8 \\ \hline \end{gathered}$	\mathfrak{c}	－	－	O	－		N		cion
\qquad				$\begin{aligned} & 2 \\ & i \end{aligned}$				\mathfrak{c}	8	d	－	$\begin{gathered} 0 \\ \infty \\ \infty \\ n \\ \infty \\ \infty \end{gathered}$		等		（1）
SNOILOANNOOYGLNI LV SAIYGAITGO ADYANG TVLOL (01)	$\begin{gathered} 2 \\ \underset{2}{2} \\ \stackrel{2}{2} \\ n_{2} \end{gathered}$	¢	\％	$\begin{gathered} \underset{c}{c} \\ \underset{\sim}{n} \\ \underset{\sim}{n} \end{gathered}$	\％											
 （6）		$\begin{gathered} \substack{0 \\ \\ \\ \hline \\ \hline} \end{gathered}$	\％	－	$\frac{2}{2}$											
OLHO ЭGISNI SEIN甘dWOO NOISSIWSNYYL yॄhlo hlim snoliognnojyaini lv saitanitag royana （8）		$\begin{aligned} & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \end{aligned}$	－	¢	8											
$9+\varepsilon$ SLdIGOTY KDY （L）				$\begin{aligned} & \hat{0} \\ & \underset{y}{c} \\ & \infty \\ & \hat{y} \\ & \underset{y}{j} \end{aligned}$	9											
$\varsigma+\dagger$ SNOILOENNOOYGLNI LY SLdIGOZY AO\＆GNG TVIOL （9）			筞			＝										
Oiho gaisıno sainydwos （s）			－	\cdots		－										
OIHO ZGISNI SEINVdWOD （ \dagger ）			－	－												
$\tau+I$ （£）	$\left\|\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right\|$	$\left[\begin{array}{l} \frac{m}{m} \\ \underset{n}{m} \\ m \\ m \end{array}\right.$	等	－	$\underset{\sim}{N}$											
OIHO gaislino walsas GHL OL GILDaNNOO SGOYOOS NOILVYGNGO WOYA SJdIGOFy ADYGNG （7）				\dot{c}												
OIHO GOISNI WGLSAS S．YGNMO （ I$)$																
	$\mid \stackrel{\rightharpoonup}{\circ}$	$3 \begin{gathered} \hat{0} \\ \text { Nun } \end{gathered}$	－	令	$\stackrel{\rightharpoonup}{C}$		$\stackrel{N}{N} \underset{\sim}{\underset{\sim}{N}}$		$\stackrel{4}{7}$	$\stackrel{\sim}{\sim}$	－	$\stackrel{\sim}{i}$	$\stackrel{\sim}{\sim}_{\sim}^{\infty}$	$\stackrel{\square}{1}$		式
	0	才	？	\cdots	．	1.	－－		m	\％		\bigcirc	－	∞		응

4901: 5-5-03

$49015 \cdot 5-03$
PUCO Form FE.T3: Electric Transmission Owner's Total Monthly Energy Forecast (MWh)

Duke Energy Ohio After DSM (e)			
Year 0 idi	Onio Portion (a)	Total Company (b)	Total System (c)
January	622.588	622588	622.586
February	533214	533.214	533.214
March	503154	503.154	503.154
April	426.514	426.514	426.514
May	452.079	452.079	452.079
June	576.330	576.330	576,330
July	672.000	672.000	672.000
August	687.108	687.108	687,108
September	545.019	545.019	545.019
October	484.528	484.528	484.528
November	480.628	480.628	480,628
December	612486	612.486	612,486
Year 1 (d)			
January	2,031,431	2,031,431	2.031 .431
February	1.748 .560	1,748.560	1.748560
March	1.747 .858	1.747 .850	1.747,858
Aprit	1,571,651	1.571 .651	1.571,651
May	1,686,388	1,686,388	1.686 .388
June	1,955,723	1.955,723	1.955,723
July	2.132,536	2.132,536	2.132 .536
August	2,172,250	2,172,250	2.172 .250
September	1.746 .410	1746,410	1.746 .410
October	1.661.485	1.661,485	1.661 .485
November	1,634,280	1.634,280	1.634 .280
December	1.906.867	1.906 .867	1.906 .867

[^0]4901:5-5.03
PucO Form FE.T4: Electric Transmission Owner's Monethy Internal Peak Load Forecast (Megawatrs)

(b) Electric transmission owner operating across Ohto boundanes shall provide or cause to be pronded data for the totail service area in this column
(c) Electnc transmission owner operating as a part of an integrated operating system shall prowde data for the total system in this column
(d) Actual data shall be indicated with an asterisk (")
Form FE-T5 - As of February 1, 2002 The Midwest Independent Transmission System Operator (MISO) took over functional control of the transmission system. It is Duke Energy Ohio opinion that this form is no longer pertinent to Duke Energy Ohio since Duke Energy Ohio no longer sells transmission or tracks the firmness thereof. For this reason, Duke Energy Ohio cannot guarantee the accuracy of the numbers in firm and non-firm "transmission to transmission service."
FORM FE-T5 MONTHLY ENERGY TRANSACTIONS (TOTAL MWH/MONTH) FOR THE MOST RECENT YEAR
PART A: SOURCES OF ENERGY

\(\left.$$
\begin{array}{|l|c|c|c|}\hline & \text { Firm Transmission } \\
\text { Service }\end{array}
$$ \begin{array}{c}Non-Firm

Transmission

Service\end{array}\right]\)| Total |
| :---: |

[^1]PART B: DELIVERY OF ENERGY

FORM FE-TS MONTHLY ENERGY TRANSACTIONS (TOTAL FORM FE-T5 MONTHLY ENERGY TRANSACTIONS (TOTAL
MWH/MONTH) FOR THE MOST RECENT YEAR

Jan-10 Reporting Month

PART C: LOSSES AND UNACCOUNTED FOR (MWH)
REPORTING MONTH
$\left.\begin{array}{|l|c|c|c|c|}\hline & \text { Firm Transmission } \\ \text { Service }\end{array} \begin{array}{c}\text { Non-Firm } \\ \text { Transmission } \\ \text { Service }\end{array}\right]$
(a) FE-T5: Part A minus Part B (1)
FORM FE-T5 MONTHLY ENERGY TRANSACTIONS (TOTAL MWH/MONTH) FOR THE MOST RECENT YEAR
PART A: SOURCES OF ENERGY

	Firm Transmission Service	Non-Firm Transmission Service	Total
Energy Receipts from Power Plants directly connected to the Electric Transmission Owner's transmission system	$2,340,256$	0	$2,340,256$
Energy Receipts from other sources	50,173		
Total Energy Receipts	$2,390,429$	0	50,173

PART B: DELIVERY OF ENERGY

FORM FE-T5 MONTHLY ENERGY TRANSACTIONS (TOTAL MWH/MONTH) FOR THE MOST RECENT YEAR
Reporting Month

	Firm Transmission Service	Non-Firm Transmission Service	Total
For Distribution service:			
Affiliated Electric Utility Companies	1,727,280,010	0	1,727,280,010
Other Investor-Owned Electric Utilities			
Cooperatively-Owned Electric System	27,227		27,227
Municipally-Owned Electric Systems	52,930	0	52,930
Federal and State Electric Agencies			
Other end user service			
For Non Distribution service (transmission to transmission service)	1,351,904	0	1,351,904
Total Energy Delivery	1,728,712,071	0	1,728,712,071

[^2](a) FE-T5: Part A minus Part B (1)
FORM FE-T5 MONTHLY ENERGY TRANSACTIONS (TOTAL MWH/MONTH) FOR THE MOST RECENT YEAR

PART A: SOURCES OF ENERGY

Reporting Month

1. Energy Receipts from all sources by type: (MWH)
PART B: DELIVERY OF ENERGY
Reporting Manth Mar-10

FORM FE-T5 MONTHLY ENERGY TRANSACTIONS (TOTAL
MWH/MONTH) FOR THE MOST RECENT YEAR MWH/MONTH) FOR THE MOST RECENT YEAR
Reporting Month

	Firm Transmission Service	Non-Firm Transmission Service	Total
For Distribution service:			
Affiliated Electric Utility Companies	1,677,561,203	0	1,677,561,203
Other Investor-Owned Electric Utilities			
Cooperatively-Owned Electric System	21,767		21,767
Municipally-Owned Electric Systems	49,407	0	49,407
Federal and State Electric Agencies			
Other end user service			
For Non Distribution service (transmission to transmission service)	1,420,011	0	1,420,011
Total Energy Delivery	1,679,052,388	0	1,679,052,388

PART C: LOSSES AND UNACCOUNTED FOR (MWH)

REPORTING MONTH

FORM FE-T5 MONTHLY ENERGY TRANSACTIONS (TOTAL MWH/MONTH) FOR THE MOST RECENT YEAR
PART A: SOURCES OF ENERGY

	Firm Transmission Service	Non-Firm Transmission Service	Total
Energy Receipts from Power Plants directly connected to the Electric Transmission Owner's transmission system	$2,274,031$	0	$2,274,031$
Energy Receipts from other sources		039,176	0
			$0,613,207$
Total Energy Receipts		0	$2,613,207$

PART B: DELIVERY OF ENERGY

1. Energy deliveries to all points connected to the Electric Transmission Owner's system (MWH)
Firm Transmission Service Non-Firm Transmission Service Total
For Distribution service:
Affiliated Electric Utility Companies
Other Investor-Owned Electric Utilities
Cooperative-Owned Electric System
Municipal-Owned Electric Systems
Federal and State Electric Agencies
Other end user service
For Non Distribution service (transmission to transmission service)
Total Energy Delivery

FORM FE-T5 MONTHLY ENERGY TRANSACTIONS (TOTAL MWH/MONTH) FOR THE MOST RECENT YEAR

Reporting Month

FORM FE-TS MONTHLY ENERGY TRANSACTIONS (TOTAL MWH/MONTH) FOR THE MOST RECENT YEAR

PART A: SOURCES OF ENERGY

Reporting Month

1. Energy Receipts from all sources by type: (MWH)

	Firm Transmission Sevvice	Non-Firm Transmission Service	Total
Energy Receipts from Power Plants directy connected to the Electric Transmission Owner's transmission system	$1,877,304$	0	$1,877,304$
Energy Receipts from other sources	$(301,783)$	0	$(301,783)$
Total Energy Receipts	$1,575,521$	0	$1,575,521$

PART B: DELIVERY OF ENERGY

FORM FE-T5 MONTHLY ENERGY TRANSACTIONS (TOTAL MWH/MONTH) FOR THE MOST RECENT YEAR
Reporting Month

2. Energy deliveries to all points connected to the Electric Transmission Owner's system located in Ohio (MWH)
Firm Transmission Service
Non-Firm Transmission Service
For Distribution service:
Affiliated Electric Utility Companies
Other Investor-Owned Electric Utilities
Cooperatively-Owned Electric System
Municipally-Owned Electric Systems
Federal and State Electric Agencies
Other end user service
For Non Distribution service (transmission to transmission service)

[^3]FORM FE-T5 MONTHLY ENERGY TRANSACTIONS (TOTAL MWH/MONTH) FOR THE MOST RECENT YEAR
PART A: SOURCES OF ENERGY

	Firm Transmission Service	\qquad	Total
Energy Receipts from Power Plants directly connected to the Electric Transmission Owner's transmission system	2,082,701	0	2,082,701
Energy Receipts from other sources	(544,907)	0	$(544,907)$
Total Energy Receipts	1,537,794	0	1,537,794

PART B: DELIVERY OF ENERGY
Reporting Month Jun-10

FORM FE－T5 MONTHLY ENERGY TRANSACTIONS（TOTAL MWH／MONTH）FOR THE MOST RECENT YEAR
Reporting Month
Jun－10

	0	$601^{\prime} 26 L^{\prime} \angle t 8^{\prime} \mathrm{l}$	
こ9て＇9E1＇	0	29\％＇9E1＇！	
006＇8b	0	006＇87	
L98＇z2		L98＇zZ	
060＇686＇St8＇	0	060＇686＇St8＇\downarrow	səuedmoう Kı！！
12101	$\begin{gathered} \text { esinas } \\ \text { uolssiusued } \\ \text { untituon } \end{gathered}$	abuas uolss！usuen \perp unt．	

[^4]
PART A: SOURCES OF ENERGY

1. Energy Receipts from all sources by type: (MWH-)

$02 \operatorname{tni}$

Reporting Month

	Firm Transmission Service		Total
Energy Receipts from Power Plants directly connected to the Electric Transmission Owner's transmission system	2,160,085	0	2,160,085
Energy Receipts from other sources	$(692,960)$	0	$(692,960)$
Total Energy Receipts	1,467,125	0	1,467,125

PART B: DELIVERY OF ENERGY

FORM FE-T5 MONTHLY ENERGY TRANSACTIONS (TOTAL MWH/MONTH) FOR THE MOST RECENT YEAR
Reporting Month

	Firm Transmission Service	Non-Firm Transmission Service	Total
For Distribution service:			
Affiliated Electric Utility Companies	2,027,417,735	0	2,027,417,735
Other Investor-Owned Electric Utilities			
Cooperatively-Owned Electric System	25,901		25,901
Municipally-Owned Electric Systems	52,149	0	52,149
Federal and State Electric Agencies			
Other end user service			
For Non Distribution service (transmission to transmission service)	1,226,326	0	1,226,326
Total Energy Delivery	2,028,722,111	0	2,028,722,111

PART C: LOSSES AND UNACCOUNTED FOR (MWH)

(a) FE-T5: Part A minus Part B (1)
FORM FE-T5 MONTHLY ENERGY TRANSACTIONS (TOTAL
MWHMONTH) FOR THE MOST REGENT YEAR
PART A: SOURCES OF ENERGY

Reporting Month

1. Energy Receipts from all sources by type: (MWH)
$\left.\begin{array}{|l|c|c|c|}\hline & \text { Firm Transmission } \\ \text { Service }\end{array} \begin{array}{c}\text { Non-Firm } \\ \text { Transmission } \\ \text { Service }\end{array}\right]$
PART B: DELIVERY OF ENERGY
Reporting Month Aug-10

1. Energy deliveries to all points connected to the Electric Transmission Owner's system (MWH)
Non-Firm Transmission Service Total For Distribution service: Transmission Service
Affiliated Electric Utility Companies
Other Investor-Owned Electric Utilities
Cooperative-Owned Electric System
Municipal-Owned Electric Systems
Federal and State Electric Agencies
Other end user service
For Non Distribution service (transmission to transmission service)
Total Energy Delivery

FORM FE-T5 MONTHLY ENERGY TRANSACTIONS (TOTAL MWH/MONTH) FOR THE MOST RECENT YEAR
Reporting Month
Aug-10

	Firm Transmission Service	Non-Firm Transmission Service	Total
For Distribution service:			
Affiliated Electric Utility Companies	2,069,587,082	0	2,069,587,082
Other Investor-Owned Electric Utilities			
Cooperatively-Owned Electric System	25,099		25,099
Municipally-Owned Electric Systems	47,835	0	47,835
Federal and State Electric Agencies			
Other end user service			
For Non Distribution service (transmission to transmission service)	1,248,469	0	1,248,469
Total Energy Delivery	2,070,908,485	0	2,070,908,485

[^5]FORM FE-T5 MONTHLY ENERGY TRANSACTIONS (TOTAL
MWH/MONTH) FOR THE MOST RECENT YEAR

PART A: SOURCES OF ENERGY

Reporting Month

1. Energy Receipts from all sources by type: (MWH)

	Firm Transmission Service	Non-Firm Transmission Service	Total
Energy Receipts from Power Plants directly connected to the Electric Transmission Owner's transmission system	$2,346,285$	0	$2,346,285$
Energy Receipts from other sources	$(478,485)$	0	$(478,485)$
Total Energy Receipts		$1,867,800$	0

PART B: DELIVERY OF ENERGY

1. Energy deliveries to all points connected to the Electric Transmission Owner's system (MWH)
Non-Firm Transmission Service Transmission Service
For Distribution service:
Affiliated Electric Utility Companies
Other Investor-Owned Electric Ctilities
Cooperative-Owned Electric System
Municipal-Owned Electric Systems
Federal and State Electric Agencies
Other end user service
For Non Distribution service stransmission to transmission service).
Total Energy Delivery

FORM FE-T5 MONTHLY ENERGY TRANSACTIONS (TOTAL MWH/MONTH) FOR THE MOST RECENT YEAR

Sep-10

2. Energy deliveries to all points connected to the Electric Transmission Owner's system located in Ohio (MWH)

	Firm Transmission Service	Non-Firm Transmission Service	Total
For Distribution service:			
Affiliated Electric Utility Companies	1,875,112,769	0	1,875,112,769
Other Investor-Owned Electric Utilities			
Cooperatively-Owned Electric System	18,748		18,748
Municipally-Owned Electric Systems	43,224	0	43,224
Federal and State Electric Agencies			
Other end user service			
	0		
For Non Distribution service (transmission to transmission service)	1,198,053	0	1,198,053
Total Energy Delivery	1,876,372,794	0	1,876,372,794

PART C: LOSSES AND UNACCOUNTED FOR (MWH)

REPORTING MONTH

	Firm Transmission Service	Non-Firm Transmission Service	Total
Sources minus Delivery (a)__	$(2,250,713,982)$	0	$(2,250,713,982)$

(a) FE-T5: Part A minus Part B (1)
FORM FE-T5 MONTHLY ENERGY TRANSACTIONS (TOTAL MWH/MONTH) FOR THE MOST RECENT YEAR
PART A: SOURGES OF ENERGY

	Firm Transmission Service	Non-Firm Transmission Service	Total
Energy Receipts from Power Plants directly connected to the Electric Transmission Owner's transmission system	$2,199,638$	0	$2,199,638$
Energy Receipts from other sources	207,519	0	207,519
Total Energy Receipts	$2,407,157$	0	$2,407,157$

PART B: DELIVERY OF ENERGY

	Firm Transmission Senvice		Total
For Distribution service:			
Affiliated Electric Utility Companies	1,821,205,356	0	1,821,205,356
Other Investor-Owned Electric Utilities			
Cooperative-Owned Electric System	33,367	0	33,367
Municipat-Owned Electric Systems	54,517	0	54,517
Federal and State Electric Agencies			
Other end user service			
For Non Distribution service (transmission to transmission service)	1,433,130	0	1,433,130
Total Energy Delivery	1,822,726,370	0	1,822,726,370

FORM FE-T5 MONTHLY ENERGY TRANSACTIONS (TOTAL MWH/MONTH) FOR THE MOST RECENT YEAR

Reporting Month

[^6]FORM FE-T5 MONTHLY ENERGY TRANSACTIONS (TOTAL MWH/MONTH) FOR THE MOST RECENT YEAR

PART B: DELIVERY OF ENERGY
Nov-10

81

FORM FE-T5 MONTHLY ENERGY TRANSACTIONS (TOTAL MWH/MONTH) FOR THE MOST RECENT YEAR

PART C: LOSSES AND UNACCOUNTED FOR (MWH)
REPORTING MONTH
$\left.\begin{array}{|l|c|c|c|c|c|}\hline & \text { Firm Transmission } \\ \text { Service }\end{array} \begin{array}{c}\text { Non-Firm } \\ \text { Transmission } \\ \text { Service }\end{array}\right]$.
FORM FE-T5 MONTHLY ENERGY TRANSACTIONS (TOTAL MWH/MONTH) FOR THE MOST RECENT YEAR
PART A: SOURCES OF ENERGY

1. Energy Receipts from all sources by type: (MWH)

	Firm Transmission Service	Non-Firm Transmission Service	Total
Energy Receipts from Power Plants directly connected to the Electric Transmission Owner's transmission system	$2,354,478$	0	$2,354,478$
Energy Receipts from other sources	$(161,920)$	0	$(161,920)$
Total Energy Receipts	$2,192,558$	0	$2,192,558$

PART B: DELIVERY OF ENERGY
Reporting Month

1. Energy deliveries to all points connected to the Electric Transmission Owner's system (MWH)
Non-Firm Firm Transmission Service Transmission Service Total
For Distribution service:
Affilated Electric Utility Companies
Other Investor-Owned Electric Unilities
Cooperative-Owned Electric System
Municipar-Owned Electric Systems
Federal and State Electric Agencies
Other end user service
For Non Distribution service (transmission to transmission service)
Total Energy Delivery

FORM FE-TS MONTHLY ENERGY TRANSACTIONS (TOTAL MWH/MONTH) FOR THE MOST RECENT YEAR

As of February 1, 2002 the Midwest ISO took over the function of managing DEO's Transmission Service Requests. As such,
the allocation of AFC is the sole responsibility of the Midwest ISO.
FORM FE-TG: CONDITIONS AT TLME OF MONTHLY PEAK

Reporting Month	RUAR							
Megawatts	3,497	Day of Week	FRI	Day of Month	th 12	How of Peak		9:00
CURTALLMENT PRIORITY CLASSES						Total		
Number of Requests				72	5	77		
Requests (MW)				36,157	397	36,554		
Number of requests accepted.				44	1	45		
Requests accepted (MW)				31,860	29	31,889		
							Rea non-d	$\begin{aligned} & \mathrm{n} \text { for } \\ & \text { livery } \end{aligned}$
Requests not accepled (MW) and reason for not acceptin delivery				4,297	368	4,665	With ln Re Dect Ann Ret	$\begin{aligned} & \text { rawn } / \\ & \text { lid } / \\ & \text { sed } / \\ & \text { ined } / \\ & \text { lled } / \\ & \text { cted } \\ & \hline \end{aligned}$

FORM FE-TG: CONDITIONS AT TIME OF MONTHLY PEAK

©
FORM FE-T6: CONDITIONS AT TIME OF MONTHLY PEAK

Megawatts	3,739	Day of Week	THUR	Day of Month \| 27		Hour of Peak		13:00
CURTALLMENT PRIORITY CLASSES						Total		
Number of Requests				82	3	85		
Requests (MW)				36,448	379	36827		
Number of requests accepted				53	2	55		
Requests accepled (MW)				32,054	19	32073		
							Rea non-	for livery
Requests not accepted (MW) and reason for not accepting delivery				4,394	360	4754	With In Re Dect Alu Ret	drawn/ alid/ sed/ ined/ lled/ acted

FORM FE-T6: CONDITIONS AT TIME OF MONTHLY PEAK

$\begin{array}{\|l\|} \hline 8 \\ 0 \\ 0 \\ \hline \end{array}$					
	흥	$\begin{gathered} \infty \\ \infty \end{gathered}$	$\stackrel{\substack{2 \\ \underset{m}{2} \\ \hline}}{ }$		$$
-		$\xrightarrow[0]{7}$	\cdots		8
$\left\|\begin{array}{\|c} 0 \\ 20 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right\|$			Com		$\stackrel{\rightharpoonup}{\vec{m}}$

Reporting Month AUGUST

Megawatts	4,669	Day of Week	WED	Day of Mo	th 4	Hour of	Peak $14: 00$
CURTAILMENT PRIORITY CLASSES						Total	
Number of Requests				85	3	88	
Requests (MW)				36,540	400	36,940	
Number of requests accepted				58	2	60	
Requests accepted (MW)				32,539	40	32,579	
							Reason for non-delivery
Requests not accepted (MW) and reason for not accepting delivery				4,001	360	4,361	Withdrawn/ Invalid/ Refused Declined/ Annulled Retracted

FORM FE-T6: CONDITIONS AT TIME OF MONTHLY PEAK

Megawatts	4,322	Day of Week	WED	Day of Month	th	Hour of Peak		17:00
CURTALLMENT PRIORITY CLASSES						Total		
Number of Requests				86	3	89		
Requests (MW)				36,590	390	36980		
Number of requests accepted				58	2	60		
Requests accepted (MW)				32,539	30	32569		
							Rea non-	n for livery
Requests not accepted (MW) and reason for not accepting delivery				4,051	360	4411	Wit R Re De An Re	$\begin{aligned} & \text { drawn/ } \\ & \text { alid/ } \\ & \text { used/ } \\ & \text { ined } / \\ & \text { alled } / \\ & \text { acted } \end{aligned}$

Reporting Month OCTOBER

Megawatts	3,006	Day of Week	MON	Day of Mo	th II	Hour of	Peak ${ }^{\text {a }}$ 15:00
CURTALLMENT PRIORITY CLASSES						Total	
Number of Requests				85	3	88	
Requests (MW)				36,540	404	36,944	
Number of requests accepted				58	2	60	
Requests accepted (MW)				32,539	44	32,583	
							Reason for non-delivery
Requests not accepted (MW) and reason for not accepting delivery				4,001	360	4,361	Withdrawn/ Invalid/ Refused Dectined/ Annulled/ Retracted

FORM FE-T6: CONDITIONS AT TIME OF MONTHLY PEAK

| Megawatts | 2,993 | Day of Week | WED | Day of Month | 24 | Hour of Peak | $18: 00$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | | |

Reporting Month DECEMBER

Megawatts	3,640	Day of Week	MON	Day of Mo	th 6	Hour of	eak
CURTAILMENT PRIORTTY CLASSES						Total	
Number of Requests				93	3	96	
Requests (MW)				36,916	405	37,321	
Number of requests accepted				66	2	68	
Requests accepted (MW)				32,915	45	32,960	
							Reason for non-delivery
Requests not accepted (MW) and reason for not accepting delivery				4,001	360	4,361	Withdrawn/ Invalid/ Refused Declined $/$ Annulled/ Retracted

91

C. THE EXISTING TRANSMISSION SYSTEM

(1) General Description - The Duke Energy-Ohio (DEO) transmission system above 125 kV consists of 138 kV and 345 kV systems. The 345 kV system generally serves to distribute power from the larger, base load generating units which are connected to the Duke Energy Ohio transmission system, and to interconnect the Duke Energy Ohio system with other systems. These interconnections enable the transmission of power between systems as required to meet the service area load requirements and they provide capacity for economy and emergency power transfers. The 345 kV system is connected to the 138 kV system through large transformers at a number of substations across the system. The 138 kV system distributes power received through the transformers and also from several smaller generating units which are connected directly at this voltage level. This power is distributed to substations which supply lower voltage sub-transmission systems, distribution circuits, or serve a number of large customer loads directly.

As of December 2010, the transmission system of Duke Energy Ohio and its subsidiary companies consisted of approximately 403 circuit miles of 345 kV lines (including Duke Energy Ohio's share of jointly owned transmission) and 725 circuit miles of 138 kV lines. Portions of the 345 kV transmission system are jointly owned with American Electric Power (AEP) and/or Dayton Power \& Light (DP\&L).
(a) A summary of the characteristics of existing transmission lines are shown on the following forms FE-T7, Characteristics of existing Transmission lines. The forms are separated into several groups. The first group is of lines designed to operate at 138 kV . The second group is of wholly owned lines designed to operate at 345 kV . The remaining groups are of lines designed to operate at 345 kV which are jointly owned with other utilities. The line numbers correspond to those shown on the schematic diagrams and geographic maps of section 4901:5-5-04 (C)(2).

$\begin{gathered} \text { CIRCUIT } \\ \text { NO. DEO-A } \end{gathered}$	LINE NaME	origin	sumater capabill trirninus	TY (MNA) NORMAL rating	WINTER CA EMERGENCY RATING	TY (M / A) normal rating	Voltage EMETGENCY RATIRG		DESTGN Level	$\begin{gathered} \text { Lengity } \\ \text { (MILES) } \\ \hline \end{gathered}$	$\begin{gathered} \text { WIDTH } \\ (\text { FEET }) \end{gathered}$	number SUPPORTINE structures	$\begin{gathered} \text { of } \\ \text { CIRCuIts } \end{gathered}$	surstations on the line
684684	Evendale-GE Ram Jot Elmmood-Lateral	Eyendale Elmwocd	Tower No. Lateral	170	206	227	252	139	138	0.17	100	steal Towar	1	
	section 1			226	275	302	336	138	138	1.34	100	Wood Pole	1	
	Section 2			226	275	302	336	138	138	2.37	100	Steel Tower	2	
689	Elmuod-Terminal	Elmwood	Terminal	261	318	349	389	138	138	1.40	100	Food Fole	1	
985	Oakley-Red Bank	cakley	Red Bank	292	343	377	421	138	138	1.09	100	gteal Towar	2	
886	Oakley-Eeckjord	Oakley	meckjord	282	343	377	421	138	139	16.45	100	steel Tovar	2	
1263	Mitchell-Brighton	Mitchell	Erighton	92	111	123	136	69	139	4.20	100	steal Tower	2	
1269	Contral-Ashland	Tower No. 37	Tower No. 58	98	98	122	122	69	139	3.43	100	steel Towar	2	
1284	mitchell-Terninal	mitchell	Terminal	234	284	312	343	238	238	3.61	100	stael tomar	2	Eerkel Corp.
1286	Mitahell-west End	Mitchell	West End	230	280	309	343	138	138	8.18	100	steel Tower	2	Cumminsville, gusensgate, Matro Sever Dist.
1288	Mitchell-Ashland-Oakley	Mitchell	Oakley, Ashland											
	Section 1			230	80	309	343	138	139	1.30	100	Steel	1	
1385		Charles	West End	230 234	280 245	309 267	343 277	138 138	139 139	7.33 1.11	100 100	Steol Tover	2 1	
1389	Charles-West End	Charles	Wast End	234	245	267	277	138	138	1.12	100	Underground	1	
1587	Hest End-Crescent	West End	ohio/ky. st. Line	225	275	302	336	138	138	-. 30	100	steal Towar	1	
1666	Milami Fort-Monsanto	Masami Fort	Tonar No. 30	83	101	111	123	69	139	6.39	200	steel Tower	2	
1681	miami Fort-Gruendale	Miami Fort	Ohio/rind. st. hune	500	500	679	679	138	138	0.86	100	Steal Towar wood pole	41	
1582	Mami Fort-clifty Craok	Mami fort	ohio/ky. st. Line	136	136	181	181	138	138	0.30	100	Wocd H-Frame	1	
1689	Miami Fort-mFgr	Miami fort	Miami fort bt	226	${ }^{275}$	302	${ }^{336}$	138	139	0.34	100	Wood Pole	1	
16891762	Miami Fort-Morgan	Miamm fort	morgan	226	275	302	336	138	138	8.16	100	steel Towar	2	
	Trenton-Tarminal section 1	Tranton	Terminal	77	92	102	113	69	139	0.45	100	steel Toner	1	
	Section 2			77	92	102	113	69	138	1.20	100	Woad pole	1	
1782	Terminal-Glenvien	Terminal	Glanview				343		13		10			
	Section 12 Section 2			230	280	308	343	138	238	0.60	100	Wood H-Erama	1	
1783	Terminal-Ebenezer	Terminal	Ebenezer											
	section 1			234	284	312	349	138	138	9.98	100	Steel Tower	2	
	Section 2			234	284	312	349	238	239	3. 64	100	Wrod pole	1	
	Section 3			234	284	312	349	238	139	0.13	100	Wood H-Frame	1	Midvay
1880	Heckjord-Silver Grove Section 1	Beck jord	Ohio/ky. St. Line	253	308	339	377	138	139	1.00	100	Wood Pole	1	
	Section 2			253	308	339	377	138	138	0.25	100	Steel Towor	2	
1981	Hackjord-Wildar	Back jord	Ohio/ky. st. Line	166	201	221	245	138	138	0.32	100	steal Towar	2	
1885	Beckjord-Tabasco	Beck jord	Tobasco	282 478	343 478	377 478	421 478	138 138	139 138	5.34 0.38	100 50	${ }_{\text {Steel }}$ Tower	${ }_{1}^{2}$	
1887	Backjord-Piarce	Beckjord	Pierce	478	${ }^{478}$	478	478	138	138	0.38	$\begin{aligned} & \text { 50 } \\ & \text { staol } \end{aligned}$	Wood Pole 5 Tower	1	
$18 \mathrm{B9}$	Backjord-Pierres	Heck jored	Piarce	478	478	479	478	139	139	0.22	100	Stael Tower	1	
2166	Hrighton-Wilder	${ }_{\text {Brighton }}$	Ohio/ky. 8t. Line	83	101	111	123 252	$\begin{array}{r}69 \\ \hline 138\end{array}$	138 138	3.65	100	Stael Towne	${ }_{1}^{2}$	
2381 2862	Warron-Clinton County	${ }_{\text {Miami }}^{\text {Warren }}$ Fort or	Clinton County	170 83	206 101	227 111	252 123	139 69	138 138	16.32 0.14	100 100	Wood H-Frame	1	
2865	Mzami Fort Gr-Monsanto	Hiami fort or	Tower No. 30	123	137	151	168	69	138	6.39	100	steel 1 toxar	2	
2985	Cedarville-Ford	Codarwalle	Fard											
	Section 1			253	308 308	339 339	378 378	138 138	138 138	5. 02	100	Wood Pole	1	
	section 2			253	${ }^{308}$	339	${ }^{378}$	138	138	4.86	100	Wood Pole	1	
${ }_{3281}^{3263}$	Tranton-M2ddlatown Oxygun	Tower No. 1	Tower No. ${ }^{17}$	83	101	111	123 225	69 138	139 138	2. 77	100	steel Tovar	1	Collinsville, BREC Euston
3283	Trenton-College Corner	Trenton	$\underset{\text { chiosind. St. }}{\substack{\text { Structure }}}$	153 170	184 206	203 227	225 252	138 138	138 138	24.11 3.94	100 90			
		696	6454											
3284	Trenton-Todhunter	Trenton	Todhunter	170	206	227	252	138	138	4.9	100	Worod H-Framm	1	
3881	Fort Union-Summerside	port Union	Summerside	170	206	227	252	138	${ }^{139}$	22.74	100	steel Tower	2	
3985	Port Union-Fairfield	port Union	Fairfield	310	310	310	310	138	138	6.59	100	steel Tower	2	Hall
3886	port Union-willey	port Union	willey	170	206	227	252	138	${ }^{138}$	14.30	100	Stanl Towar	2	${ }_{\text {Mulhauser }}$
3887	Fort Union-Todhunter	port Union	Todhunter	304	304	390	390	138	${ }^{139}$	9.69	100	Steel Tower	2	Mrllikin
зава	Port Union-Todhunter	port Union	Todhuntar	304	304	390	390	138	138	9.69	100	Steel Tower	2	Heckatt
3889 4187	Port Union-City or Eamilton Lateral-ked Bank	Port Union Lateral	Crity of Hamilton Red Bank	253 230	308 200	339 308	377 343	138 138	138 138	4.65 2.90	100 100	Wood Pole steel tower	1	
41861	Ivorydale-Tarminal	Towar No. 1	Tower No. 5	83	101	111	123	69	138	0.90	100	stoel Towe	2	

[^7]FORM FE-T7: CRARACTERISTICS OF EXISTING TRANSMISSION LINES COMONLY OWNED TRANSMISSION - DEO AND DPGL COMPRNIES
TENANTS IN CCOMON WITH UNDIVIDED ONNERSHIF, TOTAL MILEAGE GIVEN
ltage (iv)

(b) A separate listing of substations for each line included in form FE-T7 is shown on the following forms FE-T8, Summary of Existing Substations. The existing and proposed lines associated with each station are listed. The line numbers correspond to those shown on the schematic diagrams and geographic maps of section 4901:5-5-04 (C)(2).

		FORM FE-T8:	DUKE ENERGY OHIO 4901:5-5-04(C)(1)(b) SUMMARY OF EXISTING S	STATIONS	
SUBSTATION NAME	TYPE*	$\begin{aligned} & \text { VOLTAGE(S) } \\ & \text { (KV) } \end{aligned}$	LINE NAME	LINE NUMBER	EXISTING OR PROPOSED
AK Steel	T	138	Todhunter-AK Steel	5682	Existing
			Todhunter-AK Steel	5686	Existing
Ashland	D	138	Mitchell-Ashland-Oakley	1288	Existing
			Ashland-Mitchell	1269	Existing
			Red Bank-Ashland	7484	Existing
			Ashland-Whittier	1180	Proposed
Beckett	D	138	Port Union-Todhunter	3888	Existing
Beckjord	T	345 \& 138	Oakley-Beckjord	886	Existing
			Beckjord-Silver Grove	1880	Existing
			Beckjord-Red Bank	1883	Existing
			Beckjord-Tabasco	1885	Existing
			Beckjord-Pierce	1887	Existing
			Beckjord-Pierce	1889	Existing
			Remington-Beckjord	9482	Existing
			Beckjord-Wilder	1881	Existing
			Wilder-Beckjord	5988	Existing
			Summerside-Beckjord	6984	Existing
			Beckjord-Pierce	4501	Existing
Bethany	D	138	Foster-Shaker Run	5485	Existing
BREC Huston	T	138	Trenton-College Comer	3281	Existing
Brighton	D	69	Mitchell-Brighton	1263	Existing
Brown	D	138	Brown-Stuart	5886	Existing
			Brown-Eastwood	5884	Existing
Carlisle	D	138	Shaker Run-Rockies Express	5381	Existing
Cedarville	D	138	Foster-Cedarville	5489	Existing
			Cedarville-Ford	2986	Existing
Central	D	69 \& 138	Mitchell-Ashland	1269	Existing
		(138 proposed)	Central-Ashland	3985	Proposed
			Central-Mitchell	1288	Proposed
			Central-Oakley	3981	Proposed
Charles	D	138	Charles-West End	1385	Existing
			Charles-West End	1389	Existing
			Rochelle-Charles	8283	Existing
Cinti. M.S.D.	T	138	Mitchell-West End	1286	Existing
City of HamiltonT	138	Port Union-	City of Ham.	3889	Existing
			Fairfield-City of Hamilton	5781	Existing
Clermont	D	138	Summerside-Beckjord	6984	Existing
Clinton County	D	138	Warren-Clinton Co.	2381	Existing
Collinsville	D	138	Trenton-College Comer	3281	Existing
Cooper	D	138	Red Bank-Terminal	7481	Existing
Cornell	D	138	Red Bank-Terminal	7481	Existing
			Port Union-Foster	5483	Existing
Cumminsville	D	138	Mitchell-West End	1286	Existing
Deer Park	D	138	Red Bank-Terminal	7481	Existing
Dicks Creek	T	138	Todhunter-AK Steel	5686	Existing
Dimmick	D	138	Foster-Port Union	5483	Existing

DUKE ENERGY OHIO
4901:5-5-04(C)(1)(b)
FORM FE-T8: SUMMARY OF EXISTING SUBSTATIONS

SUBSTATION NAME	TYPE*	$\begin{aligned} & \text { VOLTAGE(S) } \\ & (\mathrm{KV}) \end{aligned}$	LINE NAME	$\begin{gathered} \text { LINE } \\ \text { NUMBER } \end{gathered}$	EXISTING OR PROPOSED
Eastwood	D	138	Brown-Eastwood	5884	Existing
			Eastwood-Ford	8481	Existing
			Hillcrest-Eastwood	8887	Existing
Ebenezer	D	138	Terminal-Ebenezer	1783	Existing
			Ebenezer-Miami Fort	6885	Existing
Elmwood	D	138	Elmwood-Lateral	684	Existing
			Elmwood-Terminal	689	Existing
Evendale	D	138	Evendale-Port Union	4683	Existing
			Evendale-Terminal	4685	Existing
			Evendale-General Electric	GE4	Existing
Fairfield	D	138	Fairfield-Morgan	5783	Existing
			Port Union-Fairfield	3885	Existing
			Fairfield-City of Hamilton	5781	Existing
Feldman	D	138	Remington-Beckjord	9482	Existing
Finneytown	D	138	Willey-Terminal	9787	Existing
Ford	D	138	Foster-Ford	5489	Existing
			Brown-Ford	5884	Existing
Foster	T\& D	345 \& 138	Foster-Port Union	5483	Existing
			Foster-Warren	5484	Existing
			Foster-Shaker Run	5485	Existing
			Foster-Remington	5487	Existing
			Foster-Cedarville	5489	Existing
			Pierce-Foster	4502	Existing
			Stuart-Foster	4511	Existing
			Port Union-Foster	4508	Existing
			Foster-Todhunter	4515	Existing
			Foster-Sugarcreek	4524	Existing
Glenview	D	138	Terminal-Glenview	1782	Existing
			Miami Fort-Glenview	7284	Existing
Golf Manor	D	138	Red Bank-Terminal	7481	Existing
Hall	D	138	Port Union-Fairfield	3885	Existing
Henkel Corp.	D	138	Mitchell-Terminal	1284	Existing
Hillcrest	T \& D	345 \& 138	Stuart-Hillcrest	4511	Existing
			Foster-Hillcrest	34569	Existing
			Hillcrest-Eastwood	8887	Existing
Kemper	D	138	Evendale-Port Union	4683	Existing
Kleeman	D	138	Glenview-Miami Fort	7284	Existing
Lateral	D	138	Elmwood-Lateral	684	Existing
			Lateral-Red Bank	4187	Existing
Maineville	D	138	Foster-Warren	5484	Existing
Mapleknoll	D	138	Willey-Terminal	9787	Existing

[^8]DUKE ENERGY OHIO
4901:5-5-04(C)(1)(b)
FORM FE-T8: SUMMARY OF EXISTING SUBSTATIONS

SUBSTATION NAME	TYPE*	$\begin{aligned} & \text { VOLTAGE(S) } \\ & (\mathrm{KV}) \end{aligned}$	LINE NAME	LINE NUMBER	EXISTING OR PROPOSED
Miami Fort	T	345 \& 138	Miami Fort-Greendale	1681	Existing
			Miami Fort-Clifty Creek	1682	Existing
			Miami Fort-MFGT	1688	Existing
			Miami Fort-Morgan	1689	Existing
			Ebenezer-Miami Fort	6885	Existing
			Crescent-Miami Fort	7086	Existing
			Glenview-Miami Fort	7284	Existing
			Willey-Miami Fort	9784	Existing
			Miami Fort-Miami	4591	Existing
			Miami Fort-Woodsdale	4592	Existing
			Miami Fort-Tanners Creek	4504	Existing
			Miami Fort-Terminal	4514	Existing
Miami Fort GT	T	138	Miami Fort-MFGT	1688	Existing
			MFGT-Villa	2862	Existing
			MFGT-Ebenezer	2865	Existing
Midway	D	138	Terminal-Ebenezer	1783	Existing
			Miami Fort-Glenview	7284	Existing
Millikin	D	138	Port Union-Todhunter	3887	Existing
Mitchell	D	138	Mitchell-Brighton	1263	Existing
			Mitchell-Terminal	1284	Existing
			Mitchell-West End	1286	Existing
			Mitchell-Ashland-Oakley	1288	Existing
Montgomery	D	138	Foster-Remington	5487	Existing
			Foster-Port Union	5483	Existing
Morgan	D	138	Miami Fort-Morgan	1689	Existing
			Fairfield-Morgan	5783	Existing
Mt. Healthy	D	138	Willey-Terminal	9787	Existing
Mulhauser	D	138	Port Union-Willey	3886	Existing
Newtown	D	138	Beckjord-Red Bank	1883	Existing
Nickel	D	138	Warren-Todhunter	5680	Existing
Oakley	D	138	Oakley-Red Bank	885	Existing
			Oakley-Beckjord	886	Existing
			Mitchell-Ashland-Oakley	1288	Existing
OBannonville	D	138	Foster-Cedarville	5489	Existing
Park	D	138	Foster-Shaker Run	5485	Existing
Port Union	T \& D	345 \& 138	Port Union-Summerside	3881	Existing
			Foster-Port Union	5483	Existing
			Port Union-Fairfield	3885	Existing
			Port Union-Willey	3886	Existing
			Port Union-Todhunter	3887	Existing
			Port Union-Todhunter	3888	Existing
			Port Union-City of Hamilton	3889	Existing
			Evendale-Port Union	4683	Existing
			Zimmer-Port Union	4544	Existing
			Port Union-Foster	4508	Existing
			Terminal-Port Union	4513	Existing

DUKE ENERGY OHiO
4901:5-5-04(C)(1)(b)
FORM FE-T8: SUMMARY OF EXISTING SUBSTATIONS

SUBSTATION NAME	TYPE*	$\begin{aligned} & \text { VOLTAGE(S) } \\ & (\mathrm{KV}) \end{aligned}$	LINE NAME	LINE NUMBER	EXISTING OR PROPOSED
Queensgate	D	138	Mitchell-West End	1286	Existing
Red Bank	T	345 \& 138	Red Bank-Terminal	7481	Existing
			Lateral-Red Bank	4187	Existing
			Beckjord-Red Bank	1883	Existing
			Red Bank-Ashland	7484	Existing
			Oakley-Red Bank	885	Existing
			Red Bank-Tobasco	7489	Existing
			Red Bank-Terminal	4546	Existing
			Zimmer-Red Bank	4545	Existing
Remington	D	138	Remington-Beckjord	9482	Existing
			Foster-Remington	5484	Existing
Rochelle	D	138	Rochelle-Charles	8283	Existing
			Rochelle-Terminal	8286	Existing
			Ridgeway-Whittier	8281	Proposed
Rockies Express	T	138	Shaker Run-Rockies Express	5381	Existing
			Todhunter-Rockies Express	5689	Existing
Seward	D	138	Port Union-Hamilton	3889	Existing
Shaker Run	D	138	Foster-Shaker Run	5485	Existing
			Shaker Run-Rockies Express	5381	Existing
Simpson	D	138	Foster-Port Union	5483	Existing
Socialville	D	138	Foster-Port Union	5483	Existing
SCP Eastwood	T	138	Hillcrest-Eastwood	8887	Existing
Summerside	D	138	Port Union-Summerside	3881	Existing
			Summerside-Beckjord	6984	Existing
Terminal	T \& D	345 \& 138	Elmwood-Terminal	689	Existing
			Mitchell-Terminal	1284	Existing
			Terminal-Allen	1762	Existing
			Terminal-Glenview	1782	Existing
			Terminal-Ebenezer	1783	Existing
			Evendale-Terminal	4685	Existing
			Red Bank-Terminal	7481	Existing
			Rochelle-Terminal	8286	Existing
			Willey-Terminal	9787	Existing
			Terminal-Port Union	4513	Existing
			Miami Fort-Terminal	4514	Existing
			East Bend-Terminal	4516	Existing
			Red Bank-Terminal	4546	Existing
Tobasco	D	138	Beckjord-Tobasco	1885	Existing
			Red Bank-Tobasco	7489	Existing

DUKE ENERGY OHIO
4901:5-5-04(C)(1)(b)
FORM FE-T8: SUMMARY OF EXISTING SUBSTATIONS

SUBSTATION NAME	TYPE*	$\begin{aligned} & \text { VOLTAGE(S) } \\ & \text { (KV) } \\ & \hline \end{aligned}$	LINE NAME	LINE NUMBER	EXISTING OR PROPOSED
Todhunter	T \& D	345 \& 138	Trenton-Todhunter	3284	Existing
			Port Union-Todhunter	3887	Existing
			Port Union-Todhunter	3888	Existing
			Todhunter-Monroe	5667	Existing
			Warren-Todhunter	5680	Existing
			Todhunter-AK Steel	5682	Existing
			Todhunter-AK Steel	5686	Existing
			Todhunter-Rockies Express	5689	Existing
			Foster-Todhunter	4515	Existing
			Woodsdale-Todhunter	4561	Existing
			Woodsdale-Todhunter	4562	Existing
Trenton	D	138	Trenton-College Corner	3281	Existing
			Trenton-Todhunter	3284	Existing
			Trenton-Air Products	3263	Existing
Twenty Mile	D	138	Foster-Port Union	5483	Existing
Union	D	138	Shaker Run-Rockies Express	5381	Existing
Wards Comer	D	138	Remington-Beckjord	9482	Existing
Warren	T\& D	138	Foster-Warren	5484	Existing
			Warren-Todhunter	5680	Existing
			Warren-Clinton County	2381	Existing
West End	D	138	Mitchell-West End	1286	Existing
			Charles-West End	1385	Existing
			Charles-West End	1389	Existing
			Crescent-West End	1587	Existing
			Wilder-West End	5985	Existing
Willey	D	138	Port Union-Willey	3886	Existing
			Willey-Miami Fort	9784	Existing
			Willey-Terminal	9787	Existing
Woodsdale	T	345	Woodsdale-Todhunter	4561	Existing
			Woodsdale-Todhunter	4562	Existing
			Miami Fort-Woodsdale	4592	Existing
Zimmer	T	345	Spurlock-Zimmer	4541	Existing
			Zimmer-Port Union	4544	Existing
			Zimmer-Red Bank	4545	Existing

[^9](2) Existing Transmission System Maps
(a) Schematic diagrams of the existing 345 kV and 138 kV transmission networks are considered by Duke Energy Ohio to be critical energy infrastructure information. The diagrams are provided under seal.
(b) A map showing the actual, physical routing of the transmission lines, geographic landmarks, major metropolitan areas, and the location of substations and generating plants, interconnects with distribution, and interconnections with other electric transmission owners is considered by Duke Energy Ohio to be critical energy infrastructure information. The map will be provided under seal.
(c) Rule Requirement - Two copies of the map described in paragraph (C)(2)(b) of this rule, for Commission use, on a $1: 250,000$ scale. The electric transmission owners may jointly provide one set of maps to meet this requirement. Participation in the Commission's joint mapping project will meet this requirement:

The joint mapping project coordinated by the OEUI has not been accomplished for a number of years to Duke Energy Ohio's knowledge. Duke Energy Ohio will provide a map at the requested scale to the Commission upon request.

D. THE PLANNED TRANSMISSION SYSTEM

(1) Specifications of planned transmission lines are provided on the following forms FE-T9, Specifications of Planned Electric Transmission Lines.

FORM FE-T9: SPECIFICATIONS OF PLANNED ELECTRIC TRANSMISSION LINES

1. Line Name:

Line Number:
2. Point of Origin:

Terminus:
3.Right of Way, Length:

Average width:
Number of circuits:
4. Voltage: 138 kV
5. Application for Certificate:
6. Construction to Commence:

Commercial Operation:
7. Capital Investment:
8. Substations:
9. Supporting Structures:
10. Participation with other Utilities:
11. Purpose of the Planned transmission line :
12. Consequences of Line

Construction deferment or Termination:

Ashland-Whittier
DEO-A1180

Ashland Substation
Whittier Substation (proposed)

3200 feet
50 ft .
1

DUKE ENERGY OHIO
4901:5-5-04(D)(1)
FORM FE-T9: SPECIFICATIONS OF PLANNED ELECTRIC TRANSMISSION LINES

1. Line Name:

Line Number:
2. Point of Origin:

Terminus:
3. Right-of-Way, Length:

Average Width:
Number of Circuits:
4. Voltage:
5. Application for Certificate:
6. Construction:
7. Capital Investment:
8. Substations:
9. Supporting Structures:
10. Participation with other Utilities:
11. Purpose of the planned transmission line:
12. Consequences of Line Construction deferment or Termination:
13. Miscellaneous:

Foster-Warren
DEO-A5484
Tap Feeder 5484
Columbia Substation (proposed)
approximately 175 feet
50 feet
1 transmission line above 125 kV
138 kV design and operate voltage
6/1/2012
construction commencement -9/1/12
anticipated date of
commercial operation - 12/31/12
$\$ 30,000$
Columbia Substation, 138 kV
wood poles
DEO - 100\%
supply new substation to provide 12.47 kV
distribution system capacity.
inability to supply 12.47 kV distribution load
area to be served is primarily west-central
Warren County

DUKE ENERGY OHIO

FORM FE-T9: SPECIFICATIONS OF PLANNED ELECTRIC TRANSMISSION LINES

1. Line Name:

Line Number:
2. Point of Origin:

Terminus:
3. Right-of-Way, Length:

Average Width:
Number of Circuits:
4. Voltage:
5. Application for Certificate:
6. Construction:
7. Capital Investment:
8. Substations:
9. Supporting Structures:
10. Participation with other Utilities:
11. Purpose of the planned transmission line:
12. Consequences of Line

Construction deferment or Termination:

Foster-Warren
DEO-A5484

Tap Feeder 5484
Columbia Substation (proposed)
approximately 175 feet
50 feet
1 transmission line above 125 kV
138 kV design and operate voltage

6/01/2012
construction commencement -9/01/12
anticipated date of
commercial operation - 12/31/12
$\$ 30,000$

Columbia Substation, 138 kV
wood poles

DEO - 100\%
supply new substation to provide 12.47 kV distribution system capacity.
inability to supply 12.47 kV distribution
load
13. Miscellaneous:
area to be served is primarily west-central
Warren County

DUKE ENERGY OHIO

 4901:5-5-04(D)(1)FORM FE-T9: SPECIFICATIONS OF PLANNED ELECTRIC TRANSMISSION LINES

1. Line Name:

Line Number:
2, Point of Origin:
Terminus:
3.Right of Way, Length:

Average width:
Number of circuits:
4. Voltage: 138 kV
5. Application for Certificate:
6. Construction to Commence:

Commercial Operation:
7. Capital Investment:
8. Substations:
9. Supporting Structures:
10. Participation with other Utilities:
11. Purpose of the Planned transmission line:
12. Consequences of Line Construction deferment or Termination:
13. Miscellaneous:

Whittier-Rochelle
DEO-A8281

Whittier Substation (proposed)
Rochelle Substation

7100 feet
10 ft .
1

12/2011
commencement date: 6/2012 anticipated date: 6/2013
\$7,700,000
none
underground
DEO - 100%
reinforce 138 kV transmission system
inability to supply all 138 kV transmission system load under normal and outage condition
area to be served is Cincinnati, OH

DUKE ENERGY OHIO

4901:5-5-04(D)(1)
FORM FE-T9: SPECIFICATIONS OF PLANNED ELECTRIC TRANSMISSION LINES

1. Line Name:

Line Number:
2. Point of Origin:

Terminus:
3.Right-of-Way, Length:

Average width:
Number of circuits:
4. Voltage: 138 kV
5. Application for Certificate:
6. Construction to Commence:

Commercial Operation:
8. Capital Investment,

Estimated Cost:
8. Substations:
9. Supporting Structures:
10. Participation with other Utilities:
11. Purpose of the Planned Transmission Line:
12. Consequences of Line Construction deferment or Termination:
13. Miscellaneous:

Eastwood - Ford Batavia
DEO-A8481

Tap Feeder 8481
Curliss Sub (Proposed)
0.1 miles

50 ft .
1

09/2015
01/2016
06/2016
\$58,117
Curliss Sub

Wood Poles

DEO - 100\%
reinforce underlying 69 kV transmission system
inability to supply all 69 kV subtransmission system load under normal and outage conditions
area to be served is Central Clermont County

DUKE ENERGY OHIO

4901:5-5-04(D)(1)

FORM FE-T9: SPECIFICATIONS OF PLANNED ELECTRIC TRANSMISSION LINES

1. Line Name:

Line Number:
2. Point of Origin:

Terminus:
3. Right-of-Way, Length:

Average width:
Number of circuits:
4. Voltage: 138 kV
5. Application for Certificate:
6. Construction to Commence:

Commercial Operation:
9. Capital Investment,

Estimated Cost:
8. Substations:
9. Supporting Structures:
10. Participation with other Utilities:
11. Purpose of the Planned

Transmission Line:
12. Consequences of Line Construction deferment or termination:
13. Miscellaneous:

Eastwood-Ford Batavia
DEO-A8481

Tap Feeder 8481
Curliss Sub (Proposed)
0.1 miles

50 ft .
1

09/2015

01/2016
06/2016
\$58,117
Curliss Sub

Wood Poles

Duke Energy Ohio - 100\%
reinforce underlying 69 kV transmission system
inability to supply all 69 kV subtransmission system load under normal and outage conditions
area to be served is Central Clermont County
(2) A listing of all proposed substations is provided on the following forms FET10, Summary of Proposed Substations.

DUKE ENERGY OHIO
$4901: 5-5-04(\mathrm{D})(2)$
FORM FE-T10: SUMMARY OF PROPOSED SUBSTATIONS
DUKE ENERGY OHIO
FORM FE-T10: SUMMARY OF PROPOSED SUBSTATIONS
DUKE ENERGY OHIO
4901:5-5-04(D)(2)
FORM FE-T10: SUMMARY OF PROPOSED SUBSTATIONS 114
(3) Planned Transmission System Maps
(a) Schematic maps and geographic maps depicting the existing and planned 345 kV and 138 kV transmission networks are considered by DEO to be critical energy infrastructure information. The maps and diagrams will be provided under seal.
(b) Rule Requirement - Two copies of the above maps, for Commission use, on a scale of $1: 250,000$. The electric transmission owners may jointly provide one set of overlays to meet this requirement. Participation in the Commission's joint mapping project will meet this requirement:

The joint mapping project coordinated by the OEUI has not been accomplished for a number of years to DEO's knowledge. DEO can provide a map at the requested scale to the Commission upon request.

E. SUBSTANTIATION OF THE PLANNED TRANSMISSION SYSTEM

(1) Graphic plots of the DEO 138 kV and 345 kV systems that show the MW and MVAR flows and the bus voltages have been prepared. They are considered by DEO to be critical energy infrastructure information. Plots of 138 kV system and 345 kV system for the 2011 summer base case and the most recently prepared 2016 summer base case plots will be provided separately to PUCO staff. The 2011 and 2016 summer base case power flow cases in PSS/E format are included with the CEII information.
(2) Contingency cases - Contingency cases based on the peak load base cases are studied to determine system performance for generation and transmission system outages. The results of such studies are used as bases for the determination of the need for and timing of additions to the transmission system. DEO has prepared several power flow outage cases which can be considered representative of the types of outages studied. All cases are based on the 2011 Summer Peak Load Power Flow Base Case. The outage cases, discussion and power flow transcription diagrams are considered by DEO to be critical energy infrastructure information which will be provided under seal.
(3) Analysis of proposed solutions to problems identified in paragraph (E)(2) of this rule: As discussed, a number of contingency cases, predicated on the various base cases, have been studied. These contingency cases include loss
of transformer and/or loss of transmission circuit, as well as unscheduled variation of generation dispatch. These contingency cases seek to model system performance under various conditions that are common to electric system operation. The general criteria applied to these studies are that the loss of either a major transformer or transmission circuit should not cause loading on any of the remaining transformers or circuits to exceed their emergency thermal ratings. In addition, double-contingency outages, which include at least one 345 kV system component, should likewise not cause loading on any remaining components to exceed the emergency thermal ratings. Probability of occurrence, availability of mitigating procedures, and other factors are considered when these reliability analyses are performed and evaluated. No problems are expected as a result of the contingencies identified in paragraph (E) (2) of this rule. DEO expects all electric components to operate within their limits based on DEO's planning criteria.
(4) Adequacy of the electric transmission owner's transmission system to withstand natural disasters and overload conditions: The contingency cases and reliability analyses described above indicate the performance of the transmission system subsequent to outages, which may be caused by natural disasters. As discussed above, the transmission system is designed to withstand certain outages without causing loading on the remaining system components to exceed emergency thermal load ratings. More severe outages may cause system components to overload. Such overloads, if not corrected by switching or other actions, may cause loss of life of the overloaded system components. Some outages may be of such a severity that all of the load could not be served. The transmission system could also be segmented to such a degree that all of the load could not be served.
(5) Analysis of the electric transmission owner's transmission system to permit power interchange with neighboring systems: The Duke Energy Ohio transmission system is interconnected to American Power (AEP), Dayton Power and Light (DAY), Ohio Valley Electric Company (OVEC), and Eastern Kentucky Power Cooperative (EKPC). The ability to accommodate any particular interchange, whether short term or long term is highly dependent on the actual transfer and the conditions under which it would occur. Duke Energy Ohio is a member of the Midwest Independent Transmission System Operator as such the allocation of Available Flowgate Capacity (AFC) is the sole responsibility if the Midwest ISO.
(6) Transmission Import and Export Transfer Capability: Duke Energy Ohio is a member of the Midwest Independent Transmission System Operator as such the allocation of AFC is the sole responsibility of the Midwest ISO.
(7) A description of any studies regarding transmission system improvement, including, but not limited to, any studies of the potential for reducing line losses, thermal loading, and low voltage, and for improving access to
alternative energy resources: No transmission system studies specifically addressing the above items have been performed. Line losses are considered in the evaluation of alternative projects. Thermal loading and low voltage issues are considered and addressed as a part of the transmission system evaluation and planning process. Accommodation of alternative energy sources requesting connection to the DEO transmission system are handled by the Midwest ISO interconnection procedures.
(8) Switching diagrams of the DEO 138 kV and 345 kV systems are considered by DEO to be critical energy infrastructure information which will be provided under seal.

F. REGIONAL AND BULK POWER REQUIREMENTS

Information relating to RFC and bulk power requirements is provided to the Public Utilities Commission of Ohio by RFC on behalf of Duke Energy Ohio and several Ohio electrical utilities.

G. CRITICAL ENERGY INFRASTRUCTURE INFORMATION

As discussed previously, Duke Energy Ohio considers all or portions of the information sought under the rules listed below to be critical energy infrastructure information. This information has been assembled separately and will be provided to the Commission under seal.

$4901: 5-5-04(\mathrm{C})(2)(\mathrm{a})$	$4901: 5-5-04(\mathrm{C})(2)(\mathrm{b})$	$4901: 5-5-04(\mathrm{C})(2)(\mathrm{c})$
$4901: 5-5-04(\mathrm{D})(3)(\mathrm{a})$	$4901: 5-5-04(\mathrm{D})(3)(\mathrm{b})$	$4901: 5-5-04(\mathrm{E})(1)$
$4901: 5-5-04(\mathrm{E})(2)$	$4901: 5-5-04(\mathrm{E})(8)$	

H. SUBSTANTIATION OF THE PLANNED DISTRIBUTION SYSTEM

A. Load flow or other system analysis by voltage class of the EDU's distribution system performance in Ohio, that identifies and considers each of the following:
(a) Any thermal overloading of distribution circuits and equipment;
(b) Any voltage variations on distribution circuits that do not comply with the current version of American National Standard Institute (ANSI) C84.1, electric power systems and equipment and equipment voltage ratings or standard as later amended.

The Duke Energy Ohio distribution system includes systems that operate at nominal voltages of $4.16 \mathrm{kV}, 12.47 \mathrm{kV}, 13.2 \mathrm{kV}, 34.5 \mathrm{kV}$ and 69 kV . Planning for the $4.16 \mathrm{kV}, 12.47 \mathrm{kV}$ and 34.5 kV systems utilizes a combination of peak load power flow analysis and projections of the expected future peak loads on the various system components. The load projections are based on historical loads, general load growth trends within defined load areas, and known proposed loads. The projected future loads are then compared to the assigned capacity of the components to determine if and when any components are expected to experience peak loading in excess of their assigned capacities. System reinforcement projects are then identified and planned for completion prior to the projected time that the components would be overloaded without relief. This process is repeated on an annual basis, adjusting project schedules as required due to differences between actual load growth and projected load growth and any other pertinent factors.

The distribution capacity planning process addresses voltage variation in planning for the Duke Energy $4.16 \mathrm{kV}, 12.47 \mathrm{kV}, 13.2 \mathrm{kV}$ and 34.5 kV systems by incorporating design parameters intended to maintain the voltage at all the customer service points within ANSI C84.1 standards. These design parameters include the following:

1. application of automatic voltage regulation at the feeder source within substations
2. application of capacitor banks both within substations and distributed on the distribution feeders
3. utilization of adequately sized conductor and distribution transformers Any voltage concerns identified by customer notification or system monitoring are addressed by insuring that the above design parameters are adhered to.
B. Analysis and consideration of proposed solutions to problems identified in paragraph (C)(1) of this rule.

As of the date of preparation of this report, the following major projects are planned to insure that adequate thermal capacity will exist on the Duke Energy $4.16 \mathrm{kV}, 12.47 \mathrm{kV}, 13.2 \mathrm{kV}$ and 34.5 kV distribution systems:

2011
Seward Substation - Install an additional 22.4 MVA, 138 -12.47 kV transformer and associated equipment at an existing Duke Energy Ohio Substation to serve expected increased demand in the West Chester area.

Green Secondary Network Improvements - Add transformers and conductors to relieve projected overloading to parts of downtown Cincinnati service area.
$\underline{2012}$
Canal Substation - Install a 22.4 MVA, $69-12.47 \mathrm{kV}$ transformer and associated equipment in a new Duke Energy substation to serve expected increased demand in the Hamilton area.

Columbia Substation - Install a $22.4 \mathrm{MVA}, 138-12.47 \mathrm{kV}$ transformer and associated equipment at a new Duke Energy Ohio substation to serve projected area loading and relieve existing circuits in the area.

Brown Substation - Install a 22.4 MVA, 138-12.47 kV transformer and associated equipment at an existing Duke Energy Ohio substation to serve projected winter heating demand in southeastern Brown County.

Mack Substation - Install an additional 22.4 MVA, $69-12.47 \mathrm{kV}$ transformer and associated equipment at an existing Duke Energy Ohio substation to serve projected area loading and relieve existing circuits in the area.

Distribution capacity projects are typically not planned beyond a three to four year time horizon, due to the variability in area load growth patterns and the ability to react fairly quickly in the implementation of capacity projects. Smaller-scale projects to upgrade or establish distribution feeder routes to serve new load and/or allow loads to be served by existing substation capacity are typically planned and implemented in shorter time-frames as required by actual load development.
C. Adequacy of the electric utility distribution system to withstand natural disasters and overload conditions.

The Duke Energy Ohio distribution system is designed to withstand certain wind loading, ice loading, and other structural issues by recognized national standards. Natural disasters that exceed these conditions may result in damage to the distribution system and the inability to serve all customers. Duke Energy Ohio has an Emergency Plan that calls for the mobilization of personnel and resources as required by the severity of a given incident, including mutual assistance from other utilities.

The goal of the Duke Energy Ohio planning process is to insure that components are not loaded beyond their assigned ratings under normal system conditions to meet expected load. However, under outage or other abnormal conditions, Duke Energy Ohio recognizes that it may be necessary to load components beyond the ratings assigned for normal use. Certain components, such as transformers, regulators, and cables, have identifiable overload
capabilities that are either allowable for intermittent use during the life of the component or can be mitigated after the overload by maintenance activities. Duke Energy Ohio will utilize such capacity when necessary and feasible to carry load if the alternative is to not serve the load. Certain other system components, such as overhead lines, do not have significant overload capacity due the necessity of maintaining adequate electrical clearance.
D. Analysis and consideration of any studies regarding distribution system improvement, including, but not limited to, any studies of the potential for reducing line losses, thermal loading and low voltage or any other problems, and for improving access to alternative resources.

The analytical process intended to alleviate thermal loading and low voltage conditions on the Duke Energy Ohio distribution system is described in response to paragraph $4901: 5-5-04(\mathrm{C})(1)(\mathrm{a})$ and (b). No general improvement studies or studies related solely to the reduction of line losses are performed. No studies specifically related to improving access to alternative energy sources have been performed.
E. A switching diagram of circuits less than one hundred twenty-five kV that are not radial.

All Duke Energy Ohio $4.16 \mathrm{kV}, 12.47 \mathrm{kV}, 13.2 \mathrm{kV}$ and 34.5 kV circuits are operated in a radial mode. A number of 69 kV circuits operate in non-radial mode. The switching diagram of the DEO 69 kV system is considered by DEO to be critical energy infrastructure information. This diagram will be provided separately to PUCO staff with the 138 kV and 345 kV switching diagrams requested under 4901:5-5-04 (E)(8). The non-radial operated circuits are indicated on this diagram.

SECTION III - ELECTRIC DISTRIBUTION FORECAST

On the following pages, the loads for Duke Energy Ohio are provided. Please note that FE-D forms represent the full distribution forecast regardless of who supplies the energy, whereas the FE-T forms represent the load supplied by the regulated utility. Therefore, the first two years of
the forecast reflect energy and peak reduced for current switching levels. The remaining years of the forecast reflect the assumption that all load returns to the regulated utility at the end of the ESP.

1. Service Area Energy Forecasts

The following forms contain the energy forecast for Duke Energy Ohio's service area.
Before implementation of any new EE programs or incremental EE impacts, Residential use for the ten-year period of the forecast from 2011 to 2021 is expected to increase at a rate of 0.8 percent per year; Commercial use increases 1.5 percent per year; and Industrial use increases 1.6 percent per year. The summation of the forecast across each sector and including losses results in a growth rate forecast of 1.2 percent for Total Energy.

The Total energy growth rate after EE impacts is (-0.1) percent.

2. System Seasonal Peak Load Forecast

The following forms also contain the forecast of summer and winter peaks before implementation of EE programs for the Duke Energy Ohio service area. The historical difference between native and internal load before EE reflects the impact of the interruptible rate tariff and other demand response programs.

The table shows the Summer and succeeding Winter Peaks, the Summer Peaks being the predominant ones historically. Projected growth in the internal summer peak demand is 1.0 percent. Projected growth in the internal winter peak demand is 0.9 percent per year.

Peak load forecasts after implementation of EE programs are shown for native and internal loads after EE . The projected growth in the internal summer peak is 0.2 percent.

3. Controllable Loads

The native peak load forecast reflects the MW impacts from the PowerShare ${ }^{(B}$ demand response program and controllable loads from the Power Manager program. The amount of load controlled depends upon the level of operation of the particular customers participating in the programs. The difference between the internal and native peak loads consists of the impact from these loads. See Section H in Duke Energy Ohio's Resource Plan for a complete discussion of controllable and other demand response programs.
$4901 \cdot 5.504$

[^10]PuCO Form FE－D1：EDU Service Area Energy Delivery Forecast

∞									$\begin{gathered} 9 \\ \hline \\ \hline \end{gathered}$						疗
－	0 0														
			$\begin{aligned} & 6 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$				2								8
	$\begin{aligned} & 8 \\ & \text { 曷 } \\ & \text { 號 } \end{aligned}$								\square						
									,						
m	줄						and								
\sim	0 0 0 0 0 0 0 0									$8 \sqrt[9]{8}$					
－							局品								（1）
			気高㻤	우우물		気合侖		ले	$\mathrm{c}_{\substack{0}}^{2}$	$y_{0}^{9} \sum_{0}^{\infty}$	号家宫	商家家:	cong		
												$\cdots \mathrm{m}$			

[^11]$4901 \cdot 5-5-04$

PUCO Form FE-D3 : EDU System Seasonal Peak Load Demand Forecast

Duke Energy Ohio After DSM									
		Native (b)ic)				Internal ib)(c)			
	Year	Summer	Demand Response	Net Summer	Winter (b)	Summer	Demand Response	Net Summer	Winter (b)
- 5	2006	4,366	0	4,366	3,551	4.366	0	4.366	3.551
4	2007	4436	0	4.436	3,505	4.459	23	4.436	3.505
-3	2008	4.074	0	4.074	3.526	4.074	0	4,074	3.526
-2	2009	3.675	0	3.675	2,271	3.675	0	3.675	2,271
-1	2010	2.317	0	2.317	1.459	2.328	11	2.317	1.459
0	2011	1.795	0	1795	3.626	1859	64	1.795	3.626
1	2012	4.340	0	4340	3.676	4.504	164	4.340	3,676
2	2013	4.376	0	4,376	3.729	4,540	164	4.376	3.729
3	2014	4.439	0	4,439	3.740	4.603	164	4.439	3.740
4	2015	4.441	0	4,441	3:745	4.605	164	4.441	3.745
5	2016	4.424	0	4.424	3,750	4.588	164	4424	3.750
6	2017	4,432	0	4.432	3,756	4.596	164	4.432	3.756
7	2018	4.436	0	4.436	3.745	4.600	164	4.436	3.745
8	2019	4,417	0	4.417	3.736	4.581	164	4.417	3.736
9	2020	4.398	0	4.398	3.730	4.563	164	4.398	3.730
10	2021	4.388	0	4.388	3,724	4,552	164	4.388	3.724

(a) To be filled out by all EDUs. Data should refer to the Ohio portion of the EDU's total service area.
(b) Winter load reference is to peak loads which follow the summer peak load.
(c) Includes DSM impacts
$4901 \cdot 5 \cdot 5 \cdot 04$

Year 0 [d]				Ohio Senvice Area	System
January				623.017	623017
February				533.960	533.960
March				504.294	504294
April				427.847	427.847
May				453,843	453.843
June				576.746	578,746
July				675.096	675.096
August				690.568	690.568
September				548,456	548.456
October				487,978	487.978
November				484,853	404.853
December				617736	617.736
	, , ,				
Year 1 (d)					
	-				
January				2,045,536	2,045.536
February				1.761 .974	1761.974
March				1.761 .845	1,761.845
April				1,584,760	1.584 .760
May				1.701 .376	1.701 .376
June				1.972 .989	1.972.989
July				2.152015	2.152 .015
August				2.192.293	2.192293
September				1.764 .821	1.764 .821
October				1.677 .436	1,677436
November				1.652 .311	1.652.311
December				1,927:439	1.927439

(a) To be filled out by all EDUs. Data should refer to the Ohio portion of the EDU's total semace area in this column.
(c) EDUs operating as a part of an integrated operating system shall provide data for the total system in this column.
4901: 5-5-04

Year 0 id)				Ohio Service Area	System
January				622.588	622.586
February				533,214	533214
March				503,154	503.154
April				426.514	426,514
May				452.079	452.079
June				576.330	576.330
July				672000	672.000
August				687,108	687108
September				545019	545,019
October				484.528	484.528
November				480,628	480,628
December				612.486	612.486
Year 1 (d)					
January				2.031 .431	2.031431
February				1.748 .560	1.748 .560
March				1.747 .858	1,747,858
Apod				1571.651	1.571 .651
May				1.686 .388	1.686 .388
June				1.955 .723	1,955,723
July				2.132,536	2.132 .536
August				2,172 250	2. 172.250
September				1.746 .410	1746.410
October				1,661,485	1661.485
November				1.634280	$1,634.280$
December				1.906 .867	1,906.867

[^12]$4901: 5-5-04$
PUCO Form FE-D6: EDU's Monthly Internal Peak Load Forecast (Megawats)

	Natwe				Internal	
Year 0id)	Ohio Service Area	Demand Response	Net Summer	System	Ohio Service Area	System
January	1.259	0	1.259	1,259	1.259	1,259
February	1.296	0	1.296	1.296	1.296	1.296
March	1,240	0	1.240	1.240	1.240	1240
April	1028	35	1.028	1.028	1063	1.063
May	1.198	35	1.198	1,198	1.232	1,232
June	1.532	54	1.532	1,532	1586	1.586
July	1.810	54	1,810	1.810	1.364	1.864
August	1.695	54	1695	1,695	1.749	1749
September	1.570	54	1.570	1.570	1.624	1624
October	1,180	0	1,180	1.180	1.180	1.160
November	1230	0	1.230	1.230	1.230	1.230
December	1.425	0	1.425	1.425	1.425	1.425
Year 1 (d)						
January	3.644	0	3.644	3.644	3.644	3.644
February	3,547	0	3,547	3.547	3.547	3.547
March	3.326	0	3326	3.326	3,326	3,326
April	2.956	106	2.956	2.956	3,061	3.061
May	3,514	106	3,514	3,514	3.620	3620
June	4.145	164	4,145	4.145	4.309	4.309
July	4379	164	4.379	4.379	4,543	4,543
August	4.379	164	4.379	4.379	4.543	4.543
September	3841	164	3.841	3.841	4.005	4.005
October	3.226	0	3.226	3,226	3.226	3,226
November	3.185	0	3.185	3.185	3.185	3185
December	3,600	0	3.600	3.600	3600	3.600

(a) To be filled out by all EDUS Dala should refer to the Ohio portion of the EDU s total senice afea in this conm.
(c) EDUs operating as a part of an integrated operating system shail provide data for the total system in this column (d) Actual data shall be indicated with an asterisk ("),
4901. 5-5-04

(a) To be filled out by ail EDUs Data should refer to the Ohio portion of the EDU's total service area in this column.
(b) EDUs operating across Ohio boundaries shall provide data for he total senvee area in this column in this column
(d) Actual data shall be indicated with an asterisk (")

4. Load Factor

The numbers below represent the annual percentage load factor for the Duke Energy
Ohio System before any new or incremental EE. It shows the relationship between Total Energy and the annual internal Summer Peak, before EE.

YEAR	LOADFACIOR
2006	58.5%
2007	55.4%
2008	62.2%
2009	63.8%
2010	58.3%
2011	$\ddots 5.8 \%$
2012	55.8%
2013	56.5%
2014	56.7%
2015	56.9%
2016	57.1%
2017	57.1%
2018	57.2%
2019	57.2%
2020	57.2%
2021	

SECTION IV - DUKE ENERGY OHIO 2011 RESOURCE PLAN

A. EXECUTIVE SUMMARY

1. Overview

Duke Energy Ohio, Inc., (Duke Energy Ohio or Company) has both a legal obligation and a corporate commitment to meet the electricity needs of its customers in a way that is affordable, reliable, and clean. Planning and analysis helps the Company achieve this commitment to customers. Duke Energy Ohio utilizes a resource planning process to identify the best options by which to serve customers in the future. The process incorporates both quantitative analysis and qualitative considerations. For example, quantitative analysis provides insight on future risks and uncertainties associated with energy efficiency (EE) impacts, fuel and energy and capacity costs, and renewables. Qualitative perspectives, such as the importance of fuel diversity, the Company's environmental profile, and the stage of technology deployment are also important factors to consider as long-term decisions are made regarding existing and new resources. The end result is a resource plan that serves as an important tool to guide the Company in making business decisions to meet customers' near-term and long-term electricity needs.

The overall objective of the resource planning process is to develop a robust and reliable economic strategy for meeting the needs of customers in a very dynamic and uncertain environment. Uncertainty always plays a role in the planning process and can normally be expected to be a concern when dealing with factors such as emerging environmental regulations, load growth or decline, and the pricing of fuel and market products. This Integrated Resource Plan (IRP) demonstrates a need for additional generation in the near future, but Duke Energy Ohio does not have any immediate plans to construct new generation in Ohio due to the lack of
certainty under Ohio law in respect of the timely and adequate recovery of specific constructionrelated costs. Therefore, Duke Energy Ohio submits that, despite a need for additional generation, it is not requesting that the Public Utilities Commission of Ohio (Commission) certify that a need for newly used and useful generation exists as a disposition of this case.

The challenge in resource planning is to create an economical mix of existing and new resources that will be capable of serving uncertain capacity and energy needs while meeting Amended Substitute Senate Bill 221 (SB 221) resource requirements in the face of new and evolving environmental regulations. Two major changes in the 2011 Resource Plan from the 2010 Resource Plan are, first, the expectation of acceleration of the retirement date of all six units at the WC Beckjord Station (Beckjord) to 2015 and, second, the regulatory construct in which Duke Energy Ohio proposes to operate for the foreseeable future.

The accelerated retirement of Beckjord is driven primarily by the recently proposed United States Environmental Protection Agency (EPA) Utility Maximum Achievable Control Technology (MACT) rule. The MACT rule is expected to be finalized in November 2011, with required control technologies to be installed by January 1, 2015. Other emerging environmental regulations that also impact the retirement decision include the Coal Combustion Residuals (CCR) rule and the new Sulfur Dioxide $\left(\mathrm{SO}_{2}\right)$, Cross State Air Pollution Rule (CSAPR), Particulate Matter (PM) and Ozone National Ambient Air Quality standards. The anticipated retirement of the Beckjord units causes a significant incremental capacity need that likely will be realized in the 2015 period and thus places the emphasis of this resource plan on how to best meet this need.

This IRP also considers the proposed Electric Security Plan (ESP) regulatory construct as filed by Duke Energy Ohio in its recent Standard Service Offer (SSO) filing in Case No. 11-3549-EL-SSO. In this construct, all Duke Energy Ohio customers will have their capacity needs met with legacy Duke Energy Ohio resources, market purchases and potentially new resources, while the energy needs of those customers are supplied either by successful competitive suppliers in energy auctions or competitive retail electric service (CRES) providers. Further, under the proposed ESP framework, all Duke Energy Ohio's customers will share in the profits from the dedicated resources.

2. Planning Process Results

Given the numerous uncertainties and assumptions described above, the Company believes the most prudent approach is to create a plan that is robust under various possible future scenarios. At the same time, the Company must maintain its flexibility to adjust to evolving regulatory, economic, environmental, and operating circumstances.

The dedication of and investments in the Company's legacy generating assets, along with sharing in the profits these assets accrue from the energy market, was compared to securing the needed capacity from the market at PJM clearing prices. The ten year analysis indicates that the continued dedication and investments in the existing legacy generation, as proposed by the Company, is preferred to reliance on the PJM capacity market over the long-term. This analysis is dependent upon the ESP construct proposed by the Company which itself rests upon a nonbypassable charge for capacity.

The planning process identified two portfolios, shown below, that would ensure reliable service in an optimized manner to meet customers' needs for reliable, economic capacity and energy, as well as the alternative energy resource (AER) requirements. Both scenarios include
dedication of, and investment in, the Company' existing generating assets and compliance with SB 221's requirements regarding AER and EE.

- Portfolio 1 (Combustion Turbine Portfolio (CT Portfolio)) - Meet capacity needs through market capacity purchases in the short term that will be met through the Duke Energy Ohio Fixed Resource Requirement (FRR) plan, with a longer-term option to meet capacity needs through the purchase of peaking capacity from a third party or a Duke Energy Ohio-owned peaking resource.
- Portfolio 2 (Combined Cycle/Combustion Turbine Portfolio (CC/CT Portfolio)) - Meet capacity needs through market capacity purchases in the short term that will be met through the Duke Energy Ohio FRR plan with a longer term option to meet capacity needs through the purchase of intermediate capacity or a Duke Energy Ohio-owned intermediate resource.

These portfolios were evaluated to determine which would better to meet both the capacity and energy needs of the Company's customers over the IRP planning horizon. While the two portfolios have similarities, the CC/CT Portfolio reduces reliance on peaking resources and increases the diversity in the resource mix. New CC intermediate generation is approximately 30% more efficient than new CT with the flexibility to operate over a broader range of capacity factors. It provides fuel diversity and acts as a price hedge if natural gas prices are lower than projected or if coal prices are significantly higher than projected in the future.

The IRP modeling results indicate that there is no significant difference in the results between the two portfolios analyzed under base assumptions. In other words, the model indicates that customers are indifferent between meeting future, incremental capacity needs with
peaking or intermediate gas resources. However, in the higher fuel price sensitivity, the CC/CT Portfolio was more beneficial for customers. In addition, given the increased flexibility of CC generation as compared to CT generation, meeting a portion of the capacity need described in the $\mathrm{CC} / \mathrm{CT}$ Portfolio with CC is preferred. As the future regulatory environment continues to unfold, it will impact how Duke Energy Ohio can best meet its future capacity needs. Monitoring the regulatory environment and evaluating the possible impacts to Duke Energy Ohio generating assets will be a primary focus for the Company in 2011, prior to making any definitive long-term plans to meet existing and incremental capacity needs.

Based on the results discussed above, the resource planning process indicates that the optimal resource plan for Ohio for the short-term consists of the ongoing operation of, and investment in, the legacy assets and securing capacity in the near-term through capacity market purchases.,. In addition to the continued operation of, and investment in, the legacy assets, longerterm options include building or purchasing intermediate generation over the next ten years. The option to build or purchase intermediate generation to offset some of the capacity need would reduce reliance on the capacity market and increase operational flexibility with consideration of construction lead times, and prevailing market prices. The IRP reflects meeting renewable resource requirements through a balanced approach of Renewable Energy Credit (REC) only purchases and securing energy/RECs through new, Company-owned renewable resources or contracts with third party renewable facilities. The Company's 2011 Resource Plan, shown in Table 4 A. 1 below, reflects the addition of annual short-term capacity purchases and the option for a Duke Energy Ohio-owned or purchased intermediate facility, as well as the addition of renewable resources. The ongoing operation of, and investment in, the legacy assets, is not reflected in the table, but is an assumption.

Further details regarding the planning process, issues, uncertainties, and alternative plans are presented and discussed in the following sections to comply with Commission's Rule 4901:5-5-06, Ohio Administrative Code (O.A.C.). For further guidance on the location of information required pursuant to Rule 4901:5-5-06, O.A.C compliance, please refer to the crossreference table in Appendix 4 B .

Table 4 A. 1

(Table Redacted)

B. INTRODUCTION

Resource planning is about charting a course for the future in an uncertain world. Arguably, the planning environment is more dynamic than ever. A few of the key uncertainties include, but are not limited to:

- Load Forecasts: How elastic is the demand for electricity? Will environmental regulations such as federal carbon regulation result in higher costs of electricity and, thus, lower electricity usage? Can a highly successful energy efficiency program flatten or even reduce demand growth? At what pace will recovery from the current economic conditions affect the demand for electricity? What will Duke Energy Ohio's generation (i.e., capacity and energy) obligation be from year to year? How can Duke Energy Ohio ensure that it has adequate resources to meet customer needs in this uncertain environment?
- Federal Carbon Regulation: What type of federal carbon legislation will be passed? Will it be industry-specific or economy-wide? Will it be a "cap-and-trade" system or in the form of a Clean Energy Standard? If legislation is not passed, how will the EPA regulations be implemented?
- Renewable Energy: Can Duke Energy Ohio secure sufficient renewable energy resources to meet its obligations under SB 221 ? Can the 25% AER requirement by 2025 be met with renewables alone? What impact would significant amounts of renewables have on system stability? Will a federal standard be set?
- Demand Side Management (DSM) and Energy Efficiency: Can DSM and EE deliver the anticipated capacity and energy savings reliably? Are customers ready to embrace EE? Will investments in DSM and EE be treated equally with investments in a generating plant?
- Gas Prices: What is the future of natural gas prices and supply? To what degree will enhanced natural gas recovery techniques open up new reserves and lower prices in the long term in the United States?
- Coal Prices: What is the future of coal prices and supply? What impact will increased regulatory pressure on the coal mining industry have on availability and price?

Duke Energy Ohio's resource planning process seeks to identify what actions the Company must take to ensure a safe, reliable, reasonably-priced supply of electricity for its customers regardless of how these uncertainties unfold. The planning process considers a wide range of assumptions and uncertainties and develops a resource plan and an action plan that preserves the options necessary to meet customers' needs. It is important to note that this resource plan has a limited life in a period of dynamic change. In essence, plans require constant adjustments to reflect the changing environment. The process and resulting conclusions for the current plan are discussed in this document.

The objective of the 2011 Duke Energy Ohio Resource Plan is to outline a strategy to supply electric services over a long-term planning horizon in a reliable, efficient, and economical manner. The proposed resource plan includes the specific AER and EE resource requirements as set forth by SB 221. Beyond the scope of the proposed plan, additional discussion is provided on the impact of AER requirements beginning in 2024. The integrated modeling approach of the resource plan incorporates forecasted electric loads, existing generating resources, potential traditional supply-side resources, renewable resources, and EE targets.

C. RESOURCE PLANNING PROCESS

The development of the resource plan is a multi-step process involving these key planning functions:

- Preparation of the electric load forecast.
- Consideration of the impacts of anticipated or pending regulations or events on existing resources.
- Identification of electric EE, renewable, and advanced energy resource options to the levels required by SB 221.
- Identification and economic screening for the cost-effectiveness of supply-side resource options.
- Integration of the EE, renewable, and supply-side options with the existing system and electric load forecast to develop potential resource portfolios to meet the desired reserve margin criteria.
- Performance of detailed modeling of potential resource portfolios to determine the resource portfolio that exhibits the lowest cost (i.e., lowest net present value of costs) to customers over a wide range of alternative futures.
- Evaluation of the ability of the selected resource portfolio to minimize price and reliability risks to customers.

Many of these steps are influenced by or required because of the uncertainty factors presented in the Introduction section.

D. PLANNING ASSUMPTIONS

Preparing a resource plan that addresses the issues and uncertainties presented in the Executive Summary and Introduction requires the utility to develop planning assumptions for a variety of inputs including a forecast of future energy usage, current generation resource
portfolio operating assumptions, future environmental regulation impacts and the expectations to meet future legislative requirements such as the comprehensive SB 221 . The major planning assumptions used for the development of this plan are presented below, followed by further discussion detail.

- Load Forecast - Under the proposed ESP, Duke Energy Ohio has responsibility for meeting the capacity needs of all Duke Energy Ohio customers. Thus, the projected peak load for all Duke Energy Ohio customers will be used for the IRP analysis. In addition, a plus and minus 10% load in each hour of the forecast was developed for sensitivity analysis.
- Reserve Margin - To ensure an adequate and reliable source of electricity for customers, Duke Energy Ohio must plan to have sufficient resources to meet customer's need, while taking into consideration that load can be higher than forecasted or generating units may be unavailable due to scheduled or unscheduled outages. As a result, a target planning reserve margin is established as a reliability criteria in planning. Since Duke Energy Ohio will be a Fixed Resource Requirement ("FRR") entity when it transfers to PJM, PJM will establish the reliability requirement. The reliability requirement for an FRR entity for planning year 2011/2012 is 15.3
- Retirements - Due to the probable implementation of new environmental regulations, the development of the resource plan assumes the retirement of the six Beckjord coal-fired units (859 MW) at the end of 2014.
- Fuel Cost - Fuel is the largest cost component in estimating production costs. This plan is developed using a combination of observed market prices that transition to a long-term fundamental outlook as a base assumption. Lower and higher fuel pricing
impacts are investigated through sensitivity analyses using cost adjustments of -25% for a low fuel cost scenario and $+50 \%$ for coal and $+30 \%$ for gas costs for a high fuel cost scenario.
- Senate Bill 221 Energy Efficiency - SB 221 EE and peak load reduction goals will be met over the next ten years with considerations for full implementation by 2025.
- Renewables - SB 221 renewable energy requirements for solar and non-solar will be met through a balanced combination of REC purchases and new wind, solar, and biomass resources.
- Transmission - Duke Energy Ohio will operate within PJM consistent with its intention to transfer the Duke Energy Ohio transmission assets from the MISO to the PJM regional transmission organization effective January 1, 2012.
- Carbon - Duke Energy Ohio has established a CO_{2} price curve beginning in 2016 to represent the potential for future federal climate change legislation. The CO_{2} prices that Duke Energy is utilizing are associated with proposed and debated legislation, including H.R. 2454 - the American Clean Energy and Security Act of 2009, which passed the U.S. House of Representatives on June 26, 2009. The prices utilized in the 2011 Resource Plan represent the lower end of the range of prices that were estimated in proposed legislation.
- Energy and Capacity Market Prices - Duke Energy Corporation annually develops forecasts of fundamental prices for commodities, based on expectations of environmental regulations, including greenhouse gas regulation. For the purposes of the 2011 Duke Energy Ohio Resource Plan, observable market prices were used through

2015, switching to market fundamental prices in 2016. In addition, the energy prices were adjusted for the impacts of the high and low fuel cost sensitivities.

E. EXISTING RESOURCES AND ANTICIPATED CHANGES

1. Existing Generation System Description

The total installed net summer generation capability owned by Duke Energy Ohio is 3,894 Megawatts (MW). This capacity consists of 3,514 MW of coal-fired steam capacity, 136 MW of natural gas-fired peaking capacity, and 244 MW of oil-fired peaking capacity. The steam capacity consists of fifteen coal-fired units located at six stations. The peaking capacity consists of eight oil-fired CT units located at two stations, and four natural gas-fired CTs located at one station. Ten of the fifteen steam units are jointly owned. Table 4 E .1 is a listing of the jointly-owned units, ownership percentages, and summer capacity:

Table 4 E. 1

Jointly Owned Units, Percentages, and Summer Capacity

Plant	\% Ownership	$\underline{\text { MWs }}$
Zimmer Unit 1	46.5%	605
Miami Fort Unit 7	64%	320
Miami Fort Unit 8	64%	320
Conesville Unit 4	40%	312
Stuart Unit 1	39%	225
Stuart Unit 2	39%	225
Stuart Unit 3	39%	225
Stuart Unit 4	39%	225
Killen Unit 2	33%	198
Beckjord Unit 6	37.5%	$\underline{155}$
Total		2,810

Station locations are shown on Map 4 E. 1 on the following page.

Map 4 E. 1 Duke Energy Ohio Generation Station Locations

The largest coal-fired unit on the Duke Energy Ohio system is Zimmer Unit 1, rated at 1300 MW total, or 605 MW Duke Ohio ownership share. The smallest coal-fired units on the system are Beckjord Units 1 and 2, each rated at 94 MW . The CT peaking units on the Duke Energy Ohio system range in size from 14 MW (Miami Fort 3-6 and Dicks Creek 3) to 92 MW (Dicks Creek 1).

Further information on existing generating facilities is contained in PUCO Forms FE-R3 and FE-R4 as shown in Appendix A.

2. Fuel Supply and Pricing

The Duke Energy Ohio system utilizes diverse fuel sources to generate energy to serve its customers. These fuels include coal, natural gas, and oil. Furthermore, the market encompasses an even wider diversity of technology types and fuels to which the Company has access via purchased power.

Although the majority of the energy generated by Duke Energy Ohio is currently derived from coal, the actual amount of coal consumed is determined by the forward market prices for power, fuel (coal), and emission allowances. Specifically, Duke Energy Ohio uses an approach for commercial risk management, including fuel procurement, best described as active management. The benefits of active management are that Duke Energy Ohio makes rational economic decisions based upon the available market prices of fuel, power, and emission allowances and thus reduces market risk and volatility to consumers.

Electricity generated from burning coal serves approximately 98\% of Duke Energy Ohio's total electric needs. The cost of coal is the most significant element in the cost of electric production. The goal of Duke Energy Ohio with respect to coal procurement is threefold. First,

Duke Energy Ohio seeks to provide a reliable supply of coal in quantities sufficient to meet the generating requirements of the entire portfolio. Second, Duke Energy Ohio seeks to work closely with the stations, operations, and engineering groups to evaluate coal compatibility with environmental regulations and alternate suppliers. Finally, Duke Energy Ohio seeks to procure coal at the lowest reasonable cost. Duke Energy Ohio plans to attempt to purchase coal contemporaneously with the auction, and then actively manage the coal position as part of the portfolio.

To ensure fuel supply quality and reliability, Duke Energy Ohio purchases coal from three regions (Illinois Basin, Northern Appalachia \& Central Appalachia) and ensures that potential counterparties are qualified based on coal quality and creditworthiness. Duke Energy Ohio buys and burns two types of coal (i.e., low sulfur and high sulfur under various term contracts. Low sulfur coal is easily acquired via the liquid Over-The-Counter (OTC) or broker market where its price is easily discernable and its characteristics are standardized. High sulfur coal, which is purchased for units that have installed pollution control equipment, is unique given its characteristics (e.g., BTU content, chlorine, ash fusion temperature, iron) and requires a greater level of negotiations with a smaller group of suppliers than does low sulfur coal. Duke Energy Ohio maintains stockpiles of coal at each station to guard against short-term supply disruptions, with a goal of having a minimum of 15 days with a target of 20 to 30 day supply (at full burn rate) on site, depending on economic and logistical conditions.

Duke Energy Ohio purchases natural gas on a day-ahead basis for the gas-fired peaking units when the units have been or are expected to be cleared in the day-ahead market. The natural gas purchased for the peaking units is a delivered product (e.g., CGE City gate) and does not require the purchase of pipeline transportation capacity. Duke Energy Ohio buys fuel oil on
a contractual basis. The pricing is based on the lower of the posted Oil Price Information Service (OPSI) price or the contract price. Duke Energy Ohio monitors oil pricing and makes purchases based on a combination of inventory levels and expected prices.

The fuel price assumptions utilized to develop the resource plan represent a combination of observed market prices and the long-term fundamental outlook developed for the Company by Wood McKenzie. The Company utilizes its internal subject matter experts to review and validate the assumptions and study results provided by Wood McKenzie. The Company typically uses current market prices where there is an observable market to represent the near term (first 3 to 5 years) and then transitions to the long-term fundamentals for the balance of the study period. The prices used for natural gas and fuel oil are based on a combination of the New York Mercantile Exchange (NYMEX) forward curve and the Wood McKenzie long-term fundamental outlook.

3. Maintenance and Availability

The existing generation unit unplanned outage rates used for planning purposes were derived from the historical Generating Availability Data System (GADS) data. Table 4 E. 2 lists the current forced outage rates being used for modeling purposes:

Table 4 E. 2

Coal Unit	Forced Outage Rate	Gas Turbine	Forced Outage Rate
Beckjord Unit 1	17%	Beckjord GT Unit 1	10%
Beckjord Unit 2	17%	Beckjord GT Unit 2	10%
Beckjord Unit 3	17%	Beckjord GT Unit 3	10%
Beckjord Unit 4	12%	Beckjord GT Unit 4	10%
Beckjord Unit 5	17%	Dicks Creek GT Unit 1	10%
Beckjord Unit 6	15%	Dicks Creek GT Unit 2	10%
Conesville Unit 4	8%	Dicks Creek GT Unit 3	10%
Killen Unit 1	10%	Dicks Creek GT Unit 4	10%
Miami Fort Unit 7	11%	Dicks Creek GT Unit 5	10%
Miami Fort Unit 8	9%	Miami Fort GT Unit 3	20%
Zimmer Unit 1		Miami Fort GT Unit 5	20%
		Miami Fort GT Unit 6	20%
			20%

Planned outages were based on maintenance requirement projections as discussed below. 'This resource plan assumes that Duke Energy Ohio's existing generating units generally will continue to operate at their present availability and efficiency (heat rate) levels. A comprehensive maintenance program for generating assets is important in providing reliable, low-cost service. The following outlines the general guidelines governing the preparation of a planned outage schedule for existing units operated by Duke Energy Ohio. It is anticipated that future units will be governed by similar guidelines.

Scheduling Guidelines for Duke Energy Ohio Units:
(1) Major maintenance (turbine overhauls) on base load units 500 MWs and larger is performed at eight- to twelve-year intervals. Major boiler maintenance repairs and
replacements are performed in conjunction with major turbine overhauls. General boiler inspections, turbine valve inspections, and balance of plant repairs are performed on two or three year intervals.
(2) Major maintenance on intermediate-duty units between approximately 90 MWs and 500 MWs is performed at eight- to fifteen-year intervals. General boiler inspections, turbine valve inspections, and balance of plant repairs are performed on two-year intervals.
(3) Maintenance on simple cycle peaking units 14 MWs to approximately 90 MWs are time predictive with preventive maintenance based primarily on routine bore scope inspections. These inspections provide the opportunity to inspect the unit without disassembling the unit. The bore scope inspections provide sufficient data required for the scheduling of major maintenance.

In addition to the regularly scheduled planned outages for all unit groups "availability outages" are performed. Availability outages are unplanned, opportunistic, proactive, shortduration maintenance outages aimed at addressing peak period reliability. At appropriate times, when market conditions allow, units may be scheduled out of service for generally short periods of time to perform maintenance activities. This enhancement in maintenance philosophy reflects the focus on having generation available during peak periods.

4. Anticipated Changes to Existing Generation

In general, the existing generation system is expected to be able to maintain current operational characteristics with normal expenditures to ensure continued reliability. The exception to this statement relates to the age and condition of the Beckjord units and the anticipated impacts of environmental rulemaking.

Beckjord units 1,2 and 3 continue to appear on the existing generation list; however, these units were suspended from operation due to operational economics on March 1, 2010, and placed in mothballed status for up to a period of three years. On November 18, 2009, Duke Energy Ohio submitted MISO Attachment Y (Notification of Potential Generation Resource/SCU Change of Status) of the MISO tariff requesting a suspension of operation for the three units effective March 1, 2010. On February 19, 2010, MISO notified Duke Energy Ohio that the units were approved to be suspended from operation after reviewing the power system reliability impacts under the MISO tariff. If the units remain mothballed after the three-year period, new interconnection and deliverability studies will be required for the units return to service. Duke Energy Ohio does not expect conditions to change the economics of this decision.

There are multiple new air, water, and waste EPA regulatory requirements with anticipated compliance requirements between 2015 and 2018. Analysis indicates that installing the necessary control equipment to meet the new rules should be economically justified for all existing units except for those at Beckjord. Given those results, it was assumed that all six of the Beckjord coal units would be retired at the end of 2014. These retirement assumptions are used for planning purposes to recognize potential new environmental regulations rather than specific unit firm commitments.

Prior to any Beckjord retirements, Duke Energy Ohio will need to submit to the appropriate transmission operator a request and receive approval to suspend the operations of these units, similar to what Duke Energy Ohio did for Beckjord units 1 through 3.

F. ENVIRONMENTAL REGULATIONS

Duke Energy Ohio is required to comply with numerous state and federal regulations. In addition to current programs and regulatory requirements, several new regulations are in various stages of implementation and development that will impact operations for Duke Energy Ohio in the coming years. Table 4 F. 1 summarizes EPA's current regulatory schedule and Table 4 F. 2 provides the anticipated control requirements provided at the end of this discussion. Some of the major rules include:

1. Clean Air Interstate Rule (CAIR) and Replacement CAIR - the Transport Rule

The EPA finalized its Clean Air Interstate Rule (CAIR) in May 2005. The CAIR limits total annual and summertime NO_{X} emissions and annual SO_{2} emissions from electric generating facilities across the Eastern U.S. through a two-phased cap-and-trade program. Phase 1 began in 2009 for NO_{X} and in 2010 for SO_{2}. In December 2008, the United States District Court for the District of Columbia issued a decision remanding CAIR to the EPA, allowing CAIR to remain in effect as an interim solution until EPA develops new regulations.

In August 2010, EPA published a proposed replacement rule for CAIR, known as the Transport Rule (TR). The TR was finalized in July 2011 and is now called the Cross State Air Pollution Rule (CSAPR). In the CSAPR, EPA established state-level annual SO_{2} caps and annual and ozone season NO_{X} caps that would take effect in 2012. Further CSAPRs are also expected that would incorporate the more stringent National Ambient Air Quality Standards (NAAQS), that are in varying stages of development and are discussed later in this document.

2. Utility Boiler Maximum Achievable Control Technology (MACT

In May 2005, the EPA issued the Clean Air Mercury Rule (CAMR). The rule established mercury emission-rate limits for new coal-fired steam generating units. It also established a nationwide mercury cap-and-trade program covering existing and new coal-fired power units.

In February 2008, the United States Court of Appeals for the District of Columbia issued its opinion, vacating the CAMR. EPA has begun the process of developing a rule to replace the CAMR. The replacement rule, the Utility Boiler MACT, will create emission limits for hazardous air pollutants (HAPs), including mercury. Duke Energy Ohio completed work in 2010 as required for EPA's Utility MACT Information Collection Request (ICR). The ICR required collection of mercury and HAPs emissions data from numerous Duke Energy Ohio facilities for use by EPA in developing the MACT rule. EPA issued a proposed MACT rule in March 2011 and expects to finalize it by the end of 2011. The MACT rule is expected to require compliance with new emission limits by 2015.

3. National Ambient Air Quality Standards (NAAQS

a. 8 Hour Ozone Standard

In March 2008, EPA revised the 8 Hour Ozone Standard by lowering it from 84 to 75 parts per billion (ppb). In September of 2009, EPA announced a decision to reconsider the 75 ppb standard in response to a court challenge from environmental groups and their own belief that a lower standard was justified. A proposed rule was issued by the EPA in January 2010 in which EPA proposed to replace the existing 84 ppb standard with a new standard between 60 and 70 ppb . EPA must finalize the rule by the end of July 2011. State Implementation Plans (SIP)
will be due by the end of 2014, with attainment dates for most areas possibly in the 2017 to 2018 timeframe. Any new controls may have to be in place prior to the 2017 ozone season. Until the states develop implementation plans, only an estimate of the potential impact to Duke Energy Ohio's generation can be developed. With a standard in the 60 to 70 ppb range, the installation of the best performing NO_{X} controls such as Selective Catalytic Reduction (SCR) is anticipated. All Duke Energy Ohio units, with the exception of Beckjord, currently have SCRs installed, positioning Duke Energy Ohio assets well should this standard become reality.

b. SO_{2} Standard

In November 2009, the EPA proposed a rule to replace the current 24 -hour and annual primary SO_{2} NAAQS with a 1 -hour SO_{2} standard. A new 1-hour standard of 75 ppb was finalized in June 2010. States with non-attainment areas will have until January 2014 to submit their SIPs. Initial attainment dates are expected to be the summer of 2017 with any required controls in place by late-2016. EPA will base its nonattainment designations on monitored air quality data as well as on dispersion modeling. All Ohio power plants will be modeled by the state and are therefore potential targets for additional SO_{2} reductions, even if there is no monitored potential to exceed the standard.

In addition, EPA is proposing to require states to relocate some existing monitors and to add new monitors. While these monitors will not be used by EPA to make the initial nonattainment designations, they will play a role in identifying possible future nonattainment areas.

All Duke Energy Ohio coal units with the exception of Beckjord currently have Flue Gas Desulfurization (FGDs) installed.

4. Global Climate Change

The EPA has been active in the regulation of greenhouse gases (GHGs). In May 2010, the EPA finalized what is commonly referred to as the Tailoring Rule. This rule sets the emission thresholds to 75,000 tons/year of CO_{2} for determining when a source is potentially subject to Prevention of Significant Deterioration (PSD) permitting for greenhouse gases. The Tailoring Rule went into effect beginning January 2, 2011. Being subject to PSD permitting requirements for CO_{2} will require a Best Available Control Technology (BACT) analysis and the application of BACT for GHGs. BACT will be determined by the state permitting authority. Since it is not known if, or when, a Duke Energy Ohio generating unit might undertake a modification that triggers PSD permitting requirements for GHGs and exactly what might constitute BACT, the potential implications of this regulatory requirement are unknown.

On December 23, 2010, EPA entered into a proposed settlement agreement to issue New Source Performance Standards for GHG emissions from new and modified fossil fueled electric generating units (EGUs) and emission guidelines for existing EGUs that do not undergo a modification. The agreement calls for regulations to be proposed by July 26, 2011, and to be finalized by May 26, 2012. Passage of any federal climate change legislation is not expected until 2013 or later.

5. Water Quality

a. CWA 316(b) Cooling Water Intake Structures

Federal regulations in Section 316(b) of the Clean Water Act may necessitate cooling water intake modifications for existing facilities to minimize impingement and entrainment of aquatic organisms. All Duke Energy Ohio facilities are potential affected sources under that
rule. EPA issued a proposed rule in March 2011 with a final rule planned to be issued in July 2012. With an assumed timeframe for compliance of three years, implementation of selected technology is possible as early as mid-2015.

Most likely, regardless of water body type, performance standards to achieve 80% reduction of impinged fish and 80% reduction of fish entrainment will be required. Provided that performance requirements can be met, retrofits may involve intake screen modifications only. However, failure to meet these performance standards or a more stringent regulation could require use of a closed-cycle cooling system.

b. Steam Electric Effluent Guidelines

In September 2009, EPA announced plans to revise the steam electric effluent guidelines. In order to assist with development of the revised regulation, EPA issued an ICR to gather information and data from all coal-fired generating facilities. The ICR was completed by the Company and submitted to EPA in October 2010. The regulation is to be technology-based, in that limits are based on the capability of technology. The primary focus of the revised regulation is on coal-fired generation, thus the major areas likely to be impacted are FGD wastewater treatment systems and ash handling systems. The EPA may set limits that dictate certain FGD wastewater treatment technologies for the industry and may require the installation of dry ash handling systems for both fly and bottom ash. Following review of the ICR data, EPA plans to issue a draft rule in mid-2012 and a final rule around March 2014. After the final rulemaking, effluent guideline requirements will be included in a station's National Pollutant Discharge Elimination System (NPDES) permit renewals. Thus, requirements to comply with NPDES
permit conditions may begin as early as 2017 for some facilities. The deadline to comply will depend upon each station's permit renewal schedule.

6. Waste Issues (Coal Combustion Byproducts)

Following Tennessee Valley Authority's Kingston ash dike failure in December 2008, EPA began to assess the integrity of ash dikes nationwide and to begin developing a rule to manage coal combustion byproducts (CCBs). CCBs include fly ash, bottom ash and FGD byproducts (gypsum). Since the 2008 dike failure, numerous ash dike inspections have been completed by EPA and an enormous amount of input has been received by EPA as it developed proposed regulations. On June 21, 2010, EPA issued its proposed rule regarding CCBs. The EPA rule refers to these as CCRs. The proposed rule offers two options: 1) a hazardous waste classification under Resource Conservation Recovery Act (RCRA) Subtitle C; and 2) a nonhazardous waste classification under RCRA Subtitle D, along with dam safety and alternative rules. Both options would require strict new requirements regarding the handling, disposal and potential re-use ability of CCRs. The proposal will likely result in more conversions to dry handling of ash, more landfills, closure of existing ash ponds and the addition of new wastewater treatment systems. Final regulations are expected in 2012. EPA's regulatory classification of CCRs as hazardous or non-hazardous will be critical in developing plans for handling CCRs in the future. Compliance with new regulations is projected to begin around 2017.
Table 4 F. 1 Major Environmental Regulatory Issues Schedule
*Bold Dates indicated in the Table are actual dates.

Regulation/Issue	Proposed Rule Date	Final Rule Date	Compliance Date	Notes
Water				
316 (b)	March 2011	July 2012	Mid-Late 2015	316(b) - regulates cooling water intake requirements
Effluent Guidelines	July 2012	March 2014	Mid-2017	
Air				
Transport Rule (TR)	August 2, 2010	Mid-2011	Starting 2012	
TR Phase II	Late 2011	Late 2012	2016/2017	To incl. Ozone NAAQS
Utility MACT	March 2011	November 2011	January 2015	
NAAQS - 8 hr . Ozone Std.	January 6, 2010	July 2011	Late 2017	NA Areas designated - July 2012
NAAQS PM Std.	Mid-2011	Mid-2012	Late-2018	NA Areas designated - 2014
NAAQS SO ${ }_{2}$ Std.	November 11, 2009	June 22, 2010	Mid-2017	NA Areas designated - June 2012
Waste				
Coal Combustion Residuals (CCRs)	June 21, 2010	2012	2017	
Climate				
Greenhouse Gas Regulation - New Source Performance Standards	July 2011	May 2012	2015-2016	TR in effect January 2, 2011 for PSD and Title V

G. POOLING AND BULK POWER AGREEMENTS

At present, Duke Energy Ohio does not participate in any formal type of power pooling arrangement. However, Duke Energy Ohio is currently a member of the Midwest ISO. However Duke Energy Ohio will transition to the PJM Interconnection, Inc. (PJM) on 1/1/2012. Both MISO and PJM are FERC approved RTO's that administer markets for capacity, energy and ancillary services in addition to the independent provision of transmission service.

Duke Energy Ohio is directly interconnected with eight other balancing authorities: American Electric Power, Louisville Gas and Electric Energy, Ameren, Hoosier Energy, Indianapolis Power and Light, Northern Indiana Public Service Company, Vectren, and Duke Energy Indiana. PJM operate Ancillary Services Markets for their balancing authorities within the PJM, which are consolidated into a single PJM balancing authority.

Table 4 G. 1 identifies Current Duke Energy Ohio full requirements contracts.

Table 4 G. 1 Duke Energy Ohio Full Requirements Contracts

Wholesale Customer	Max Quantity of Energy/Capacity	Contract Expiration Date
(OH)	MW per hour	

H. ENERGY EFFICIENCY/DSM PROGRAMS

In July 2008, in Case No. 08-920-EL-SSO, et al., the Commission approved a Stipulation between Duke Energy Ohio and various intervenors that included a plan for
meeting EE and peak demand reduction requirements under $\mathbf{S B}$ 221. This plan included a portfolio that expanded existing programs and coupled them with a new regulatory mechanism called save-a-watt.

Within the ESP proposed by the Company in July 2008 was a three-year plan for supply and pricing of electric generation service. The plan requested recovery of costs for fuel used to generate electricity, wholesale electricity purchases, emission allowances, and federally mandated carbon costs. On December 17, 2008, the Commission approved the Stipulation submitted by the parties, including implementation of the proposed programs and the save-a-watt revenue recovery proposal for EE and peak demand reduction. The Company eliminated its demand side management rider and implemented a rider establishing the Company's save-a-watt program effective January 1, 2009. The Company began implementation of the programs in early January 2009. The ESP is in effect through December 31, 2011. Most of these programs were again reviewed a second time by the Commission in Case No. 09-1999-EL-POR and approved again for implementation by the Commission in an Order dated December 15, 2010.

1. Existing Programs

Under save-a-watt, the Company is reducing energy and demand on the Duke Energy Ohio system through the implementation of a broad set of EE programs. These programs fall into two categories for residential and non-residential customers: conservation EE programs and demand response programs that contain customer-specific contract curtailment options and other demand response programs such as Power Manager ${ }^{\circledR}$ and PowerShare ${ }^{\circledR}$. The following are the current EE and Demand Response programs in place in Ohio:

a. Residential Programs

Smart Saver® Residential - Provides incentives to residential customers for installing energy efficient equipment. This program addresses the market barrier of higher upfront costs of high efficiency equipment. The program is available to residential customers served by Duke Energy Ohio. A third party is under contract to process customer applications and maintain a list of participating HVAC contractors and builders.

Residential Energy Assessment - Offers two energy assessment measures: 1) Personalized Energy Report (PER) ${ }^{\circledR}$ and 2) Home Energy House Call. This program provides single family home customers with a customized report about their home and their energy practices. In addition, customers receive free Compact Fluorescent Light bulbs (CFLs) (both programs) and an Energy Efficiency Starter Kit (Home Energy House Call) as an incentive to participate in the program.

Energy Efficiency Education Program for Schools - Educates students about sources of energy and EE in homes and schools and provides them the ability to conduct an energy audit of their homes. This program will help homeowners identify efficiency savings, addressing the market barrier of a lack of customer recognition of savings opportunities. Energy Efficiency Starter Kits are provided free to homes where students complete a home energy survey. Additional CFL's are also provided if available sockets are identified in the survey.

Low Income Services - Provides assistance to low income customers through several measures. The upfront costs of high efficiency equipment are an especially difficult barrier for low income customers to overcome. The CFL portion of this program is available to any low income customer eligible for services provided by low income agencies who has not participated in this
program within the past 36 months. The weatherization and refrigerator replacement portion of this program is available to any low income customer up to 200% of the federal poverty level who has not participated in this program within the past 10 years. For the CFL program, eligible customers will complete a survey with an assistance agency. The agency submits the report to the Company, and the customer will receive up to 12 CFLs. A third party will complete the weatherization/refrigerator replacement and will be paid by the Company.

Power Manager ${ }^{\circledR}$ - Provides financial incentives to residential customers that allow the company to cycle their outdoor A / C compressor remotely during peak energy periods between May and September when the load and/or marginal energy costs on Duke Energy Ohio's system reach peak levels. Participating customers of the Company who have a functioning outdoor A / C unit are eligible for the program.

Pilot Program - Home Energy Comparison Report - Piloted in 2010, the Home Energy Comparison Report provides a customer with a comparative usage data report for similar residences in the same geographic region. By identifying efficiency savings and educating customers, this program confronts the significant market barrier of customer awareness of potential savings. Participants receive periodic comparative usage reports along with specific recommendations to encourage energy saving behavior.

b. Non-Residential Programs

Smart Saver® Non- Residential - Provides prescriptive incentives for businesses to install high efficiency equipment. This program addresses the market barrier of higher upfront costs of high efficiency equipment. Major categories include lighting, motors, pumps, variable frequency drives (VFDs), food service and process equipment. The program is available to new or existing
non-residential facilities served by Duke Energy Ohio. The incentive process is handled by a third party vendor.

Custom Rebate- Offers financial assistance to qualifying commercial, industrial and institutional customers (that have not opted out of the DSM Rider) to enhance their ability to adopt and install cost-effective electrical energy efficiency projects.

The Smart\$aver®Non-Residential Custom Incentive program is designed to meet the needs of Duke Energy Ohio customers with electrical energy saving projects involving more complicated or alternative technologies, or those measures not covered by standard Prescriptive Smart\$aver ${ }^{\circledR}$ incentives. The intent of the Smart\$aver ${ }^{\circledR}$. Non-Residential Custom Incentive program is to encourage the implementation of energy efficiency projects that would not otherwise be completed without the Company's technical or financial assistance.

Unlike the Prescriptive Incentives, Custom Incentives do require pre-approval prior to the project implementation. Proposed energy efficiency measures may be eligible for Custom Incentives if they clearly reduce electrical consumption and/or demand.

PowerShare (B) Represents Duke Energy Ohio's demand side management (or demand response) program geared toward Commercial and Industrial customers. The primary offering under PowerShare \circledR^{\circledR} CallOption provides customers with a variety of offers that are based on their willingness to shed load during times of peak system usage and/or high marginal energy cost conditions. These credits are received regardless of whether an event is called or not. Energy credits are also available for participation (shedding load) during curtailment events. The notice to curtail under these offers is between 6 hrs (emergency) and day-ahead (economic) and there are penalties for non-compliance during an event.

Table 4 H. 1 lists information for the 2010 Save-a-watt programs.

Table 4 H. 12010 save-a-watt Programs

Residential save-a-watt Programs		Annual Cost	
Program	Number of Participants/ Measures (1)		
Residential Energy Assessments	9,617	\$	1,998,976
Smart Saver ${ }^{(8)}$ Residential Central Air Conditioner/Heat Pump	6,531	\$	2,690,381
Smart Saver ${ }^{(1)}$ Residential Compact Fluorescent Light	2,658,866	\$	6,875,937
Low-Income Services	3,774	\$	425,031
Energy Efficiency Education Program for Schools	3,920	\$	857,935
Power Manager	33,413	\$	2,967,675
Non Residential Save-A- Watt Programs			
Smart Saver ${ }^{(8)}$ Non-Residential	275,531	\$	5,510,145
Custom Rebate	17,309	\$	1,441,462
PowerShare(${ }^{(1)}$	77	\$	309,337
Total Annual Cost		\$	23,076,879

(1) Participants/Measures are incremental for 2010 except for PowerShare and Power Manager which are cumulative.

Note: Table 4.H.1 does not include Participants/Measures or Annual Cost information for Pilot Program - Home Energy Comparison Report.

The annual costs for the 2010 programs, $\$ 23,076,879$, are slightly less than the original projection of $\$ 24,047,482$ for 2010 . All energy efficiency programs are screened for cost-effectiveness. The projected incremental load impacts of existing programs, including the Save-a-watt program, were incorporated into the optimization process of the resource plan development.

The Company's measures and programs are analyzed by using DSMore, a financial analysis tool designed to evaluate the costs, benefits and risk of energy efficiency programs and measures. DSMore estimates the value of an energy efficiency measure at an hourly level across
distributions of weather and/or energy costs or prices. By examining energy efficiency performance and cost effectiveness over a wide variety of weather and cost conditions, the Company is better positioned to measure the risks and benefits of employing energy efficiency measures in the same way traditional generation capacity additions are vetted, and further, to ensure that demand-side resources are compared to supply-side resources on comparable basis.

The analysis of energy efficiency cost-effectiveness has traditionally focused primarily on the calculation of specific metrics, often referred to as the Califormia Standard tests: Utility Cost Test (UCT), Rate Impact Measure (RIM) Test, Total Resource Cost (TRC) Test, and Participant Test. DSMore provides the results of these tests for any type of energy efficiency program (demand response and/or energy conservation).

- The UCT compares utility benefits (avoided energy and capacity related costs) to utility costs incurred to implement the program such as marketing, customer incentives, and measure offset costs, but does not consider other benefits such as participant savings or societal impacts. This test compares the cost (to the utility) to implement the measures with the savings or avoided costs (to the utility) resulting from the change in magnitude and/or the pattern of electricity consumption caused by implementation of the program. Avoided costs are considered in the evaluation of cost-effectiveness based on the projected cost of power, and the projected cost of the utility's environmental compliance for known regulatory requirements. The cost-effectiveness analyses also incorporate avoided transmission and distribution costs and load (line) losses.
- The RIM Test, or non-participants test, indicates if rates increase or decrease over the long-run as a result of implementing the program.
- The TRC test compares the total benefits to the utility and participants relative to the costs of utility program implementation and costs to the participant. The benefits to the utility are the same as those computed under the UCT. The benefits to the participant are the same as those computed under the Participant Test (below), however, customer incentives are considered to be a pass-through benefit to customers. As such, customer incentives or rebates are not included in the TRC though some precedent exists in other jurisdictions to consider non-energy benefits in this test.
- The Participant Test compares the benefits to the participant through bill savings and incentives from the utility, relative to the costs to the participant for implementing the energy efficiency measure. The costs can include capital cost, as well as increased annual operating costs, if applicable.

The use of multiple tests can ensure the development of a reasonable set of DSM/EE programs and indicate the likelihood that customers will participate. It should also be noted that none of the tests described above include external benefits to participants and non-participants that can also offset the costs of the programs.
Table 4 H. 2 summarizes the cost effectiveness results for current programs, respectively.
Table 4 H. 2 Cost-Effective of Proposed Programs
Cost Effectiveness Test Results of Proposed Programs

| | Cost Effectiveness Test Results of Proposed Programs |
| :---: | :---: | :---: |

	Utility Test	TRC Test	RIM Test	Participant 'Test
RESIDENTIAL CUSTOMER PROGRAMS				
Residential Energy Assessments	2.46	2.44	1.08	210.25
Residential Smart \$aver® Energy Efficiency	2.42	1.21	0.88	2.43
Low Income Services	2.19	2.19	0.79	NA
Energy Efficiency Education Program for Schools	2.69	2.69	0.94	NA
Power Manager	1.40	1.67	1.40	NA
NON-RESIDENTIAL CUSTOMER PROGRAMS				
Smart \$aver $®$ for Non-Residential Customers	3.81	2.20	1.27	2.83
Power Share (8)	3.54	29.79	1.23	NA

2. Future Programs

The energy efficiency material presented thus far has been primarily focused on existing programs. However, both customer adoption rates and costs to achieve new energy efficiency measures remain uncertain over the long term. Market potential studies provide estimates of the level of energy efficiency that is realistically achievable by customers in the market place. A study of the market potential involves an assessment of the Technical Potential, the level achievable through application of all technically feasible technologies regardless of market or economic constraints, and the Economic Potential, a subset of the Technical Potential that can be acquired for less than the avoided cost of supply assuming 100% customer participation in all cost-effective energy efficiency programs. The Market Potential is a subset of the Economic Potential that reflects expected customer acceptance and adoption of energy efficiency measures.

The most recent market potential study, performed by a third party for Duke Energy Ohio in February 2009, yielded economic accomplishment potentials that indicated that the level of projected cost-effective energy efficiency accomplishments would not attain the level necessary to comply with the SB 221 requirements.

In order to achieve full compliance with SB 221 requirements, Duke Energy Ohio would need to exceed the estimated Economic Potential which, as stated above, assumes 100% customer participation in all cost-effective energy efficiency programs.

The results of the study do not impact the Company's stated goal of achieving the state mandates as long as economically achievable. However, it is important to note that even though a market potential study may indicate that a certain level of energy efficiency is economically achievable, the success of a program is ultimately driven by the adoption rate of the customers which is beyond the control of the utility.

Due to uncertainty, future programs will be guided by the experience gained through periods of testing and application. For now, EE mandates will be accomplished on an incremental basis by applying patterns of continued growth of existing programs, as well as development of new products over the next ten years. At this juncture, while the Company intends to pursue all cost-effective EE, based on the past market potential study, it is unclear whether or not there is sufficient cost-effective EE to enable the Company to fully comply with the SB 221 requirements.

Table 4 H. 3 provides projected annual load impacts for an EE scenario that matches the SB 221 mandate levels.

Table 4.H. 3
SB221 Scenario Load Impact Projections Conservation and Demand-Side Management Programs

	Conservation Program Load Impacts				Demand-Side Mangement Program Impacts			Total Summer Peak MW
	MWh			Summer Peak MW		Summer Peak MW		
Year	Residential	Non-Residential	Total	Cumulative beginning 2011	Interruptible	Power Manager	Total	Total MW Impacts
2011	60,644	90,788	151,431	13	98	55	153	166
2012	140,314	182,694	323,008	39	106	59	164	203
2013	247,837	271,634	519,471	43	106	59	164	207
2014	378,627	359,909	738,536	68	106	59	164	232
2015	523,863	436,295	960,159	119	106	59	164	283
2016	645,875	538,264	1,184,139	147	106	59	164	311
2017	768,697	640,621	1,409,318	175	106	59	164	339
2018	891,533	743,009	1,634,542	203	106	59	164	367
2019	1,136,738	947,172	2,083,910	259	106	59	164	423
2020	1,380,701	1,150,126	2,530,827	314	106	59	164	478
2021	1,622,509	1,351,358	2,973,867	369	106	59	164	534

Table 4 H. 4 provides projected annual energy impacts using the 2011 forecast.

Table 4.H. 4
Development of SB 221 Case

	Spring 2011 Weather Normal Total Energy	Total Energy History and Forecast	Total Energy Adjusted for EE	Mowing Avg Prior 3 Years	$\begin{array}{\|c\|} \hline \text { SB } 221 \text { Required } \\ \text { EE Impacts } \\ \hline \end{array}$	58221 Required EElmpacts	Cumulative EE Impacts	Cumulative EE impacts adjusted for 2011 Start	Projected Cumulative Impacts
Year	MWH	MWH	MWH	MWH	\%	MWH	MWH	MWH	MWH
2006	22,665,556	22,665,556							
2007	22,746,814	22,746,814							
2008	22,249,088	22,249,088							
2009	20,725,616	20,725,616		22,553,819	0.3\%	67,661	67,661		292,830
2010	21,924,369	21,924,369		21,507,173	0.5\%	109,536	17,197		603,585
2011	21,842,793	21,842,793	21,691,362	21,633,024	0.7\%	151,431	328,628	151,431	755,016
2012	22,194,796	22,194,796	21,871,788	21,447,115	0.8\%	171, 577	500,205	323,008	926,593
2013	22,675,994	22,675,994	22,156,523	21,829,173	0.9\%	196,463	696,668	519,471	1,123,056
2014	23,196,953	23,196,953	22,458,416	21,906,557	1.0\%	219,066	915,734	738,536	1,342,121
2015	23,539,375	23,539,375	22,579,216	22,162,242	1.0\%	221,622	1,137,356	960,159	1,563,744
2016	23,700,247	23,700,247	22,516,108	22,398,052	1.0\%	223,981	1,361,336	1,184,139	1,787,724
2017	23,881,249	23,881,249	22,471,930	22,517,913	1.0\%	225,179	1,586,516	1,409,318	2,012,903
2018	24,051,604	24,051,604	22,417,062	22,522,418	1.0\%	225,224	1,811,740	1,634,542	2,238,127
2019.	24,232,423	24,232,423	22,148,513	22,468,367	2.0\%	449,367	2,261,107	2,083,910	2,687,495
2020	24,421,384	24,421,384	21,890,557	22,345,835	2.0\%	446,917	2,708,024	2,530,827	3,134,412
2021	24,617,567	24,617,567	21,643,700	22,152,044	2.0\%	443,041	3,151,065	2,973,867	3,577,452

Table 4.H.5 provides projected calculations of the achievement towards the peak
benchmarks. It is expected that the peak load achievements will far exceed the benchmark requirements.

Table 4.H.5
Assessment of Peak Benchmark Achievements for the SB 221 Scenario

	Weather Normal and Forecasted Level of Peak Demand	Forecast Adjusted for EE and DR Impacts	Three Year Average	Benchmark Percentage	Benchmark Requirement	Cumulative Requirements	Adjusted to 2011 Cumulative Requirements	Projected Curnulative Impacts
Year	MW	MW	MW	\%	MW	MW	MW	MW
2006	4,591							
2007	4,328							
2008	4,462							
2009	4,478		4,460	1.00\%	45	45		97
2010	4,444		4,423	0.75\%	33	78		176
2011	4,467	4,434	4,461	0.75\%	33	111	33	255
2012	4,543	4,476	4,452	0.75\%	33	145	67	292
2013	4,583	4,483	4,462	0.75\%	33	178	100	297
2014	4,671	4,537	4,498	0.75\%	34	212	134	321
2015	4,725	4,556	4,554	0.75\%	34	246	168	373
2016	4,735	4,532	4,603	0.75\%	35	281	203	400
2017	4,771	4,534	4,642	0.75\%	35	315	238	428
2018	4,803	4,531	4,664	0.75\%	35	350	273	456
2019	4,840	4,567					273	
2020	4,876	4,604					273	
2021	4,921	4,648					273	

I. FUTURE RESOURCES AND REQUIREMENT

Many potential resource options are available to meet future electricity needs. These resources include conventional generation technologies, demonstrated technologies with limited acceptance, renewable technologies, EE, and demand reduction programs. All of these resources were considered in the resource planning process and are discussed in this section in relation to their applicability to this plan.

1. Generation Technologies

Generation technologies are considered at several levels. The first is a screening level where the diverse mix of technologies and fuel sources are initially screened based on the following attributes:

- Technically feasible and commercially available in the marketplace
- Compliant with all federal and state requirements
- Long-term reliability
- Reasonable cost parameters

Potential technologies that pass initial screening are moved on to a quantitative system optimization and portfolio development phase.

2. Supply Side Resources

A. Overview

An assortment of supply-side resources was considered as potential alternatives to meet future incremental capacity and energy resource needs in addition to the existing legacy assets for the Ohio Resource Plan. Supply side resources selected in this process were used as potential
resource alternatives in combination with renewable generation resources to develop an integrated resource plan to meet future customer resource requirements. Specific steps for selection of potential supply side options include:

- Technical Screening - The initial step in the supply-side screening process was a technical screening of the technologies to eliminate those that have technical limitations, commercial availability issues, or are not feasible in the Duke Energy Ohio service territory.
- Economic Screening - The technologies were screened using relative dollar per kilowattyear versus capacity factor screening curves.

As a result, supply-side technologies that were commercially available and consistently cost effective were considered "Best in Class" within each technology type, such as simple cycle CT, CC, wind, and advanced coal/nuclear units. The largest practical sizes of each technology were primarily considered to include the lowest cost due to economies of scale. A diverse range of technology choices utilizing a variety fuels was considered including advanced nuclear, wind, Integrated Coal Gasification Combined Cycle (IGCC) with carbon sequestration, CTs, and CC units. Technologies representing each category of baseload, peaking and intermediate supply side resources were included to meet all potential customer resource needs.

Duke Energy Ohio has at least two options to procure needed traditional generation capacity, beyond that supplied from its existing system: 1) own generation; or 2) purchase capacity from the market. Estimating the cost of asset ownership or capacity purchases beyond the near term is an inexact science, but the cost of both should trend toward the marginal cost of building new capacity. For the purposes of this resource plan, the Company has represented any needed peaking or intermediate capacity as purchases based on the cost of building new CT or

CC capacity, respectively. Such an assumption gives the Company flexibility to make decisions to purchase short-term market capacity or build/purchase assets at the appropriate time, taking into consideration current market prices as well as a regulatory environment that provides a reasonable assurance to mitigate risk and provide for timely cost recovery. Duke Energy Ohio will regularly assess the future, near-term resource needs and make decisions on market capacity purchases, or new build options in line with the strategic direction selected in the resource plan.

B. Selected Supply Side Technologies

Potential supply side resources selected for detailed modeling included technologies that were commercially available and consistently cost effective relative to other technologies. These resources represented new technologies to address an expected low carbon future environment. Specifically new supply side technologies that are believed to meet the AER requirements of SB 221 required by 2025 include new advanced nuclear, 90% carbon sequestered IGCC technologies and biomass for base load technologies.

The Company continues to investigate the possibility of new nuclear generation to continue to modernize its aging fleet and also to satisfy Ohio's AER requirement. Duke Energy AREVA, USEC, Inc., UniStar Nuclear Energy and the Southern Ohio Diversification Initiative (SODI), formed the Southern Ohio Clean Energy Park Alliance (SOCEPA) to identify the potential for and implications of building an advanced nuclear power plant for the region. At this time, the SOCEPA is continuing the investigation but no decision has been made on the technology, site, or timeframe for the proposed plant. Duke Energy Ohio is not proposing the construction of nuclear powered generation in the context of this resource plan.

Renewable technologies are also an integral part of the overall resource plan as mandated in SB 221. Renewable generation technologies including wind, solar, and dedicated biomass generation are included in the list of the selected supply side technologies.

Supply side resources selected for further integrated resource planning modeling based on technical and economic screening include the following:

- CT (peaking capacity annual purchases)
- $\quad \mathrm{CC}$ (intermediate capacity annual purchases)
- 630 MW Class Integrated Gasified Combined Cycle Coal (IGCC)
- Advanced Nuclear Capacity (not available by 2020)
- $\quad 50 \mathrm{MW}$ Wind (renewable)
- $\quad 3$ MW Solar Photovoltaic (renewable)
- $\quad 50 \mathrm{MW}$ Woody Biomass (renewable)

J. ADVANCED ENERGY REQUIREMENTS

SB 221 establishes a 25% AER portfolio requirement that must be met by 2025. At least one-half of the AER requirements must be satisfied by renewable energy resources. The renewable requirement also includes a specific "set-aside" for solar energy resources. The annual benchmarks for the renewable energy requirements are represented in Table 4 J .1 below:

Table 4 J. 1

RENEWABLE ENERGY RESOURCE REQUIREMENTS

By end of year:	Total renewable energy resources	Solar energy resources
2009	0.25%	0.004%
2010	0.50%	0.01%
2011	1.0%	0.03%
2012	1.5%	0.06%
2013	2.0%	0.09%
2014	2.5%	0.12%
2015	3.5%	0.15%
2016	4.5%	0.18%
2017	5.5%	0.22%
2018	6.5%	0.26%
2019	7.5%	0.30%
2020	8.5%	0.34%
2021	9.5%	0.38%
2022	10.5%	0.42%
2023	11.5%	0.46%
2024 and each year thereafter	12.5%	0.50%

Demonstrated compliance with SB 221 renewable energy mandates utilizes the purchase of RECs. As defined in SB 221, a REC is measured as the environmental attributes associated with one megawatt-hour of electricity generated by a renewable energy resource.

1. Qualified Renewable Resources

The following resources or technologies, if they have a placed-in-service date of January 1,1998 , or after, are qualified resources for meeting the renewable energy resource benchmarks:

- Solar photovoltaic or solar thermal energy;
- Wind energy;
- Hydroelectric energy;
- Geothermal energy;
- Solid waste energy derived from fractionalization,
- Biological decomposition,
- Other process that does not principally involve combustion;
- Biomass energy;

Energy from a fuel cell;

- Storage facility provided that a) the electricity used to pump the resource into a storage reservoir must qualify as a renewable energy resource, or the equivalent renewable energy credits are obtained; and b) the amount of energy that may qualify from a storage facility is the amount of electricity dispatched from the storage facility;
- Distributed generation system used by a customer to generate electricity from a qualified list of resources or technologies;
- Renewable energy resource created on or after January 1, 1998, by the modification or retrofit of any facility placed in service prior to January 1, 1998.

SB 221 mandates that at least one half of the resources used to comply with the renewable energy portfolio standard must come from sources which are based in the state of Ohio. The remaining one half must come from supply sources that are deliverable into the state, or are located within one of Ohio's five contiguous states (Pennsylvania, West Virginia, Kentucky, Indiana and Michigan).

2. Qualified Advanced Energy Resources

Qualified advanced energy resources include technological improvements that increase a generating facility's output without a corresponding increase in emissions;

- Distributed generation that relies on co-generation of electricity and thermal output;
- Clean coal;
- Advanced nuclear energy;
- Fuel cell;
- Advanced solid waste or construction and demolition debris technology;
- DSM and energy efficiency.

Annual benchmarks leading up to 2025 were not established in SB 221 for advanced energy resources as they were for renewable energy resources.

In summary, by 2025, Ohio SB 221 requires that Duke Energy Ohio obtain 25% of its electricity supply from AERs, with a minimum of 12.5% coming from renewable resources.

3. Discussion of Renewable Compliance Strategy

Up until now, the compliance strategy of Duke Energy Ohio has consisted only of shortterm market REC purchases. The primary reason for this decision is that longer term contracts with third parties and utility-owned renewable resources both present cost recovery uncertainties that the Company presently feels would be imprudent to assume. These uncertainties exist because the Company's renewable obligation is based on SSO sales volume, which historically has been uncertain due to customer switching. Duke Energy Ohio recognizes that efforts other than short-term REC purchases may be needed in order to ensure compliance as renewable requirements increase over time; however, over the near term, it is assumed that the current cost
recovery uncertainties will continue. While these cost recovery uncertainties exist, the Company will continue to rely primarily on short-term REC purchases and will consider other long-term procurement methods as additional options if the applicable cost recovery uncertainties are adequately addressed.

An exception to the aforementioned discussion is the Company's residential solar REC purchase program, which commits the Company to enter into long-term REC purchase agreements with residential customers. However, this program is not expected to contribute to the Company's total compliance requirements on a material basis due to the relatively small size of the applicable solar installations (residential homes). More details on the necessary renewable resource additions to meet the compliance requirements follow.

4. Renewable Energy in the Resource Planning Model

For the purposes of the resource planning model, Duke Energy Ohio assumed that a combination of solar and wind resources would be used to satisfy renewable requirements through 2020. The Company assumed photovoltaic solar because of the specific "set-aside" and then included wind because it is a familiar and widespread renewable resource in the Midwest. In general, the need for each resource was increased in accordance with the levels proscribed in SB 221. Duke Energy Ohio considers many types of renewable resources in its compliance planning efforts, including various forms of biomass energy, biomethane (landfill gas), and hydroelectric resources. The choice of wind and solar PV resources in the resource plan is an assumption that is made for modeling purposes. It is possible that the actual resource development could be different than projected in the resource plan.

Specifically, the resource plan assumes the following:

- Near-Term Renewable Compliance Strategy (2011): Near-term renewable compliance for solar and non-solar will be met with market REC purchases.
- Long-Term Renewable Compliance Strategy (2012+): In 2012 and beyond, Duke Energy Ohio has assumed that renewable compliance will consist of approximately 50% REC purchases, and the remaining 50% of the compliance requirements coming from renewable resources that will deliver both energy and RECs. For resource planning purposes, REC purchases do not serve to meet the Company's energy or capacity requirements. This assumption is consistent with SB 221 in that contiguous state RECs may be utilized to meet up to 50% of the renewable requirement. Renewable resources that contribute both energy and RECs would contribute to the Company's energy and capacity requirements. The resources that contribute both energy and RECs could come in several variations including but not limited to local grid-tied renewable resources that are selling or self-consuming electrical energy separate from an agreement to sell RECs to the Company. For purposes of the resource planning model, it is assumed that the renewable resources that contribute energy and RECs are all solar or wind projects. Wind projects are assumed to be added in 50 MW increments beginning in 2014, and solar projects are added in 3 MW increments beginning in 2012. These resource additions are in line with the resource needs necessary to meet the renewable requirements established by SB 221. Table 4 J .2 shows the nameplate additions of wind and solar capacity in increments.

Table 4 J. 2

Nameplate Capacity Additions Incremental (MW)										
	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Wind				50	50	50	50	50	50	50
Solar	1	3	3	3	3	3	3	3	3	3
Total	1	3	3	53	53	53	53	53	53	53
	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Wind	0	0	0	50	100	150	200	250	300	350
Solar	1	4	7	10	13	16	19	22	25	28
Total	1	4	7	60	113	166	219	272	325	378

The renewable resource additions identified above are included in the resource plan to meet the 12.5% SB 221 renewable requirements. These installed nameplate capacities are adjusted to reflect the intermittent capacity allocation guidelines from PJM. The adjusted wind and solar capacity resources that can be counted as firm capacity resources are shown in Table 4 J.3. PJM counts 38% of solar capacity and 13% of wind capacity for coincident peak reserve margin requirements.

Table 4 J. 3

Renewable Capacity Resources at Summer Peak Incremental (MW)												
	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020		
Wind	0	0	0	6.5	6.5	6.5	6.5	6.5	6.5	6.5		
Solar	0.38	1.14	1.14	1.14	1.14	1.14	1.14	1.14	1.14	1.14		
Total	0.38	1.14	1.14	7.64	7.64	7.64	7.64	7.64	7.64	7.64		
Renewable Capacity at Summer Peak Total (MW)												
	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020		
Wind	0	0	0	6.5	13	19.5	26	32.5	39	45.5		
Solar	0.38	1.52	2.66	3.8	4.94	6.08	7.22	8.36	9.5	10.64		
Total	0.38	1.52	2.66	10.3	17.94	25.58	33.22	40.86	48.5	56.14		

5. Intermittency and Capacity Factors

Both solar and wind installed capacity resources are classified as intermittent by PJM since these resources have varying generation profiles which are subject to the prevailing meteorological conditions. As such, actual energy production may not occur at the specific times when energy is most needed, such as the peak periods of each day. With this in mind, it is important to look closely at the actual amount of energy and capacity each resource contributes to the grid at any point in time. Therefore to meet SB 221 requirements, significant amounts of capacity would have to be built in order to achieve the necessary production for compliance.

Based on the Company's experience, solar resources have annual capacity factors that range from 11% to 25%, depending on the location and chosen technology. Wind in the Midwest typically has annual capacity factors that range from 25% to 40% also depending on the location
and chosen technology. Cost, capacity factor values, and energy production were assigned based on results from solicited and unsolicited proposals from third party developers received by Duke Energy Ohio, as well as appropriate estimates for capital and fixed costs based on internal estimates and applicable tax credits.

6. Other Renewable Resources

As noted, Duke Energy Ohio has considered multiple forms of renewable resources in its compliance planning activities. In addition to wind and solar, the Company has utilized and/or evaluated hydroelectric, biomass and biomethane (landfill gas) resources as renewable energy options to meet the AER requirements. Duke Energy Ohio has considered biomass co-firing, which refers to blending biomass with coal fuel at existing facilities. The Company has conducted some biomass co-firing test burns at existing coal facilities, but there are presently no ongoing co-firing efforts. However, should regulations governing biomass facilities become clearer, Duke Energy Ohio may reconsider co-firing or the installation of a dedicated biomass facility for AER compliance. At this time, Duke Energy Ohio has no plans for biomass.

Duke Energy Ohio will continue to evaluate its options for satisfying its AER requirement and will make adjustments to the AER resources included in the selected resource plan based on factors such as cost recovery challenges, and the availability and prices of RECs.

K. RESOURCE PLAN

The development of the resource plan integrates the customer load forecast, energy efficiency programs, DSM programs, renewable resources, existing supply-side generation, and potential new supply-side resources into the planning process. Computer models used to
perform this integration process are System Optimizer (SO) and Planning \& Risk (PAR) owned by Ventyx (recently purchased by ABB).

SO is an expansion planning model that dynamically analyzes the cost-effectiveness of a multitude of combinations of resource alternatives to meet the reliability criteria of a minimum reserve margin. The model performs an economic dispatch of numerous potential combinations of resource plans to determine the lowest cost (PVRR) plan, considering capital, operations and maintenance costs, and total production costs. System Optimizer enables Duke Energy Ohio to consider various alternative planning environments such as different fuel price projections, supply side generation capital costs, and levels of future energy efficiency accomplishments. Using SO to identify the lowest cost expansion plans for alternative planning environments allows Duke Energy Ohio to examine the performance of the "best" resource plans in many possible future scenarios.

The various resource plans generated through SO are examined to identify potential alternative resource plans that will be tested in the detailed production costing simulations with the PAR model. The PAR model is similar to the detailed PROMOD production costing model (another Ventyx production costing model) in that both models perform detailed generating resource hourly dispatch to simulate total production costs of every modeled resource plan. In particular, alternative resource plans are developed to explore resource decisions that will be needed over the next 10 years. For example, plans with peaking capacity were developed for comparison with varying levels of intermediate capacity. After each alternative resource plan is modeled in PAR, the production costing results are compared along with total capital costs to compare the total cost to ratepayers for each plan. The resource plan that consistently performs cost effectively in multiple planning environments with due consideration of qualitative issues is selected as the most "robust" resource plan.

L. SYSTEM OPTIMIZER RESOURCE PORTFOLIO ALTERNATIVES

The SO capacity expansion model was used to develop alternative resource portfolios through 2020. There was not a significant difference between the EE economic potential and the requirements associated with SB 221 by 2021. Therefore, only the requirements associated with SB 221 were considered in SO portfolio development. Also, though it is the Company's belief that there will be a carbon-constrained future, the likelihood of legislation being passed prior to 2013 is unlikely. With the uncertainty of federal climate change legislation with regard to greenhouse gas reduction, Duke Energy Ohio has established a CO_{2} price curve beginning in 2016 to represent the potential for future federal climate change legislation. The CO_{2} prices that Duke Energy is utilizing are associated with proposed and debated legislation, including H.R. 2454 - the American Clean Energy and Security Act of 2009, which passed the U.S. House of Representatives on June 26, 2009. The prices utilized in the 2011 Resource Plan represent the lower end of the range of prices that were estimated in proposed legislation. The projected CO_{2} allowance prices are less than $\$ 20$ /ton by 2020 and it is not likely that prices would be higher in the short-term. For this reason, portfolios were not evaluated for variation in CO_{2} prices. The primary focus of the resource plan was to determine how best to meet the capacity and energy needs in the 2015 period while positioning the Company to meet AER requirements when fully implemented by 2025 .

Sensitivities in load, fuel, and the associated energy prices were evaluated to determine the basis for the different portfolios to be further evaluated in detailed production costing analysis. These portfolios are outlined in Table 4 L .1 below.

Table 4 L. 1

Resource Portfolio Alternatives (2012-2020)		
	CT and CC Resources	RPS Renewables
CT Portfolio	$1,050-2,100$ MW Peaking PPA and/or Resources	28 MW new build Solar 350 MW new build Wind
CC/CT Portfolio	$1,050-1,450$ MW Peaking Resource 650 MW CC in 2015	28 MW new build Solar 350 MW new build Wind

The capacity need between 2012 and 2015 averages approximately 1,360 MW per year in addition to capacity that the legacy generation assets will still serve. This need will be met through the Company's FRR plan to meet the 15.3% reserve margin. The capacity need will increase in the 2015 period to 2,261 MWs primarily due to the retirement assumption of Beckjord Units 1-6 (859 MWs). The 2015 timeframe could be volatile time in the capacity market due to the significant number of coal retirements expected due to the new environmental regulatory requirements. Nationwide estimates of retirements of coal generation in the 2015 timeframe fall in the range of 40 to 80 GWs. Depending on the rate of economic recovery and the impact on load growth, adoption rates of DSM, and the number of retired coal units, there could be a capacity shortage in the 2015 timeframe. For this reason, the option of continued operation of and investment in the existing system, coupled with self- build or peaking or intermediate resource purchases is maintained to reduce the risk of exclusively relying on the capacity market to customers.

M. RESOURCE PORTFOLIO ALTERNATIVE EVALUATION RESULTS

After the development of the alternative resource portfolios in SO, the PAR model was used to perform detailed production costing analysis for the CT Portfolio and the CC/CT Portfolio under the Proposed ESP construct for future resource needs.

The analysis compared a portfolio that relies on peaking resources for future capacity needs (CT portfolio) and one that relies on a mix of peaking and intermediate resources (CT/CC portfolio). The Present Value of Revenue Requirements (PVRR) for the portfolios is calculated as shown below. The IRP rules require consideration and discussion of rate impacts associated with a selected baseline resource plan and alternative plans. Due to several factors, primarily the regulatory uncertainties involved, this document does not address explicit rate impacts. It is assumed that a minimization of PVRR will equate to a minimization of rate impact for customers.
a) Capacity Cost - PVRR associated with securing capacity to meet customers' capacity needs.
b) Duke Energy Ohio Customer Energy Cost - PVRR associated with the cost of providing energy to meet customers' energy needs from the PJM energy market (through competitive suppliers in an energy auction).
c) Duke Energy Ohio Generation Profit - PVRR of the profit associated with the dispatch of all Company Generation to the PJM energy market.
d) Customer PVRR $=$ Capacity Cost + Duke Energy Ohio Customer Energy Cost 80\% * Duke Energy Ohio Profit

A range of sensitivities was also considered for each portfolio as shown below:

- Load Forecast - High: plus 10% Low: minus 10% (represent a 95% confidence interval).
- Fuel \& Energy Prices
- High: Natural Gas plus 20%; Coal plus 25%, and corresponding impact on the Energy market.
- Low: Natural Gas and Coal minus 40%; and corresponding impact on the Encrgy market.
- AER - Evaluation of portfolios assuming meeting approximately half of the compliance obligation the AER requirements in 2024.

The results of the analysis are shown below in Table 4 M .2 . Table 4 M. 2 reflects a comparison of the CT Portfolio to the CC/CT Portfolio. For example, in the Reference case, the CC/CT Portfolio resulted in a $\$ 19$ million higher PVRR than the CT Portfolio.

Table 4 M. 2 (Proposed ESP Portfolios)

Comparison of the CT Portfolio to the CC/CT Portfolio
(PVRR Cost deltas represented in Smillions)

Portfolio	Reference		High Fuel		Low Fuel						Low EE/ Renewables	
CT Portfolio	Baseline		Baseline:		Bascline						Baseline	
CCICT Portfolı	\$	19	\$	(77)	S	192	\$	19	\$	19	\$	19

In the Proposed ESP, the PVRR of the CT Portfolio is less than 0.1% better than the $\mathrm{CC} / \mathrm{CT}$ Portfolio when compared to the total system PVRR. In the High Fuel sensitivitics, the $\mathrm{CC} / \mathrm{CI}$ Portfolio was preferred. In the Low Fuel sensitivities, the CT Portfolio was preferred, primarily because of the difference in capital cost between a CT and CC. Prohts minimally impacted the results of this sensitivity.

Peaking capacity resource options include the PJM capacity markets and short-term purchase power agreements in the near term. However, over a longer term, the option to build
or purchase intermediate generation (such as CCs) to offset some of the capacity need would reduce reliance on the capacity market and increase operational flexibility with consideration of construction lead times and prevailing market prices. Duke Energy Ohio will regularly assess the future near-term resource needs and make decisions on market capacity purchases, shortterm PPAs or new build/purchase options in line with the strategic direction selected in the resource plan.

The primary advantages that the $\mathrm{CC} / \mathrm{CT}$ Portfolio has over the CT Portfolio are that CCs have increased flexibility to meet the energy needs of Duke Energy Ohio customers and are more competitive in the PJM energy market.

There are additional advantages associated with having some CC in the future generation mix. CC capacity provides flexibility and increased fuel diversity for operations over a broader range of capacity factors. It also serves as a price hedge if natural gas prices are lower than projected or if coal prices are significantly higher than projected in the future. If the challenging requirements associated with SB 221 cannot be met and there is more energy to be served with conventional generation, CC generation would provide the flexibility to meet the demand.

In summary, there is a significant capacity need in the 2015 period at a time when there could be increased volatility in the capacity market. Securing a portion of this need with existing resources and additional firm intermediate capacity, secured either through purchasing assets or a self-build option, would minimize this risk. But the Company must have a reasonable assurance of the timely recovery of costs. As the future regulatory environment continues to unfold, it will impact how Duke Energy Ohio can best meet the significant capacity need in the 2015 timeframe. Monitoring the regulatory environment and possible resulting impacts to Duke

Energy Ohio generating assets will be a primary focus for the Company in 2011, prior to making any definitive long-term plans to meet this capacity need.

The Supply and Demand table as shown in Table 4 M. 3 demonstrates that there is a 2,151 MW capacity need in 2024 with full implementation of SB 221 AER requirements, which further supports securing firm capacity in the 2015 timeframe. Chart 4 M .1 is a comparison of the capacity changes in the portfolio between 2012 and 2020 that demonstrates the increased system diversity with the increasing EE requirements, renewables, market purchases, and additional natural gas generation.

Chart 4 M. 1

Capacity comparison between 2012 and 2020

2012 Duke Energy Ohio Capacity

Craltast

2020 Duke Energy Ohio Capacity (CCPlan)

Appendix 4 A

PUCO Forms

PUCO Form FE-R1:
Monthly Forecast of Electric Utility's Ohio Service Area Peak Load and Resources
Dedicated to Meet Ohio Service Area Peak Load
(Megawatts)

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Net Demonstrated Capability	4013	4013	4013	4013	4013	3894	3894	3894	3894	4013	4013	4013
Net Seasonal Capability	4013	4013	4013	4013	4013	3894	3894	3894	3894	4013	4013	4013
Purchases	0	0	0	0	0	0	0	0	0	0	0	0
Sales	0	0	0	0	0	0	0	0	0	0	0	0
Renewables	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38
Available Capability ${ }^{\text {a }}$	4013	4013	4013	4013	4013	3894	3894	3894	3894	4013	4013	4013
Native Load	1259	1295	1238	1026	1195	1524	1795	1683	1554	1174	1225	1419
Energy Reduction Programs ${ }^{\text {c }}$	0	1	2	37	37	62	69	66	70	6	5	6
Available Reserve ${ }^{\text {d }}$	2755	2719	2776	2988	2818	2370	2099	2211	2340	2840	2788	2594
Internal Load ${ }^{\text {b }}$	1,259	1,296	1,240	1,063	1,232	1,586	1,864	1,749	1,624	1,180	1.230	1,425
Reserve ${ }^{\text {e }}$	2755	2720	2778	3025	2855	2432	2169	2277	2410	2846	2793	2600
	Next Calendar Year-2012											
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Net Demonstrated Capability	4013	4013	4013	4013	4013	3894	3894	3894	3894	4013	4013	4013
Net Seasonal Capability	4013	4013	4013	4013	4013	3894	3894	3894	3894	4013	4013	4013
Purchases	0	0	0	0	1050	1050	1050	1050	1050	1050	1050	1050
Sales	0	0	0	0	0	0	0	0	0	0	0	0
Renewables	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52
Available Capability ${ }^{\text {a }}$	4015	4015	4015	4015	5065	4946	4946	4946	4946	5065	5065	5065
Native Load	3626	3529	3301	2930	3486	4111	4336	4340	3805	3195	3577	3577
Energy Reduction Programs ${ }^{\text {c }}$	18	18	26	131	134	198	207	203	200	31	20	23
Available Reserve ${ }^{\text {d }}$	389	486	714	1084	1579	835	609	605	1141	1869	1900	1487
Internal Load ${ }^{\text {b }}$	3,644	3,547	3,326	3,061	3,620	4,309	4,543	4,543	4,005	3,226	3,185	3,600
Reserve ${ }^{\text {e }}$	407	504	740	1215	1713	1033	816	808	1341	1900	1508	1510

[^13]Monthly Forecast of System Peak Load and Resources Dedicated to Meet System Peak Load

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Net Demonstrated Capability	4013	4013	4013	4013	4013	3894	3894	3894	3894	4013	4013	4013
Net Seasonal Capability	4013	4013	4013	4013	4013	3894	3894	3894	3894	4013	4013	4013
Purchases	0	0	0	0	0	0	0	0	0	0	0	0
Sales	0	0	0	0	0	0	0	0	0	0	0	0
Renewables	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38
Available Capability ${ }^{\text {a }}$	4013	4013	4013	4013	4013	3894	3894	3894	3894	4013	4013	4013
Native Load	1259	1295	1238	1026	1195	1524	1795	1683	1554	1174	1225	1419
Energy Reduction Programs ${ }^{\text {c }}$	0	1	2	37	37	62	69	66	70	6	5	6
Available Reserve ${ }^{\text {d }}$	2755	2719	2776	2988	2818	2370	2099	2211	2340	2840	2788	2594
Internal Load ${ }^{\text {b }}$	1,259	1,296	1,240	1,063	1,232	1,586	1,864	1,749	1,624	1,180	1,230	1,425
Reserve ${ }^{\text {e }}$	2755	2720	2778	3025	2855	2432	2169	2277	2410	2846	2793	2600
Next Calendar Year - 2012												
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Net Demonstrated Capability	4013	4013	4013	4013	4013	3894	3894	3894	3894	4013	4013	4013
Net Seasonal Capability	4013	4013	4013	4013	4013	3894	3894	3894	3894	4013	4013	4013
Purchases	0	0	0	0	1050	1050	1050	1050	1050	1050	1050	1050
Sales	0	0	0	0	0	0	0	0	0	0	0	0
Renewables	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52
Available Capability ${ }^{\text {a }}$	4015	4015	4015	4015	5065	4946	4946	4946	4946	5065	5065	5065
Native Load	3626	3529	3301	2930	3486	4111	4336	4340	3805	3195	3577	3577
Energy Reduction Programs ${ }^{\text {c }}$	18	18	26	131	134	198	207	203	200	31	20	23
Available Reserve ${ }^{\text {d }}$	389	486	714	1084	1579	835	609	605	1141	1869	1900	1487
Internal Load ${ }^{\text {b }}$	3,644	3,547	3,326	3,061	3,620	4,309	4,543	4,543	4,005	3,226	3,185	3,600
Reserve ${ }^{\text {e }}$	407	504	740	1215	1713	1033	816	808	1341	1900	1508	1510

[^14]PUCO Form FE-R3:
Summary of Existing Electric Generation Facilities

STATION NAME \&	FOOT			$\begin{gathered} \text { TYPE } \\ \text { OF } \end{gathered}$	INGTALLATION 'dATE	tentative RETIREMENT	MAXIMUM G CAPABILITY	ERATING	ENVIRONMENTAL PROTECTION	MAXIMUM GENERATING CAPABILITY \{net kW\}
LOCATION	SYSTEM*	NOTES	UNIT	UNIT*		YEAR	SUMMER	WINTER	MEASURES*	Spring/Esil
W.C. Beckjord	DEO		1	CF-S	6-1952	Unknown	94,000 ${ }^{\text {² }}$	94,000 ${ }^{\text { }}$	LNB, EP \& FGC	94,000 ${ }^{7}$
New Richmond,			2	CF-S	10-1953	Unknown	94,000	94,000"	LNB, EP \& FGC	94,000
Ohio			3	CF-S	11-1954	Unknown	128,000 ${ }^{\circ}$	128,000	EP, FGC, LNB \& OFA	128,000 ${ }^{\text {² }}$
			4	CF-S	7-1958	Unknown	150,000	150,000	EP, FGC, LNB \& OFA	150,000
			5	CF-S	12-1962	Unknown	238,000	233,000	EP, FGC, LNB \& OFA	238,000
		A	5	CF-S	7-1969	Unknown	155,000	158,000	EP, FGC, LNB \& OFA	158,000
			1.Gr	OF-GT	4-1972	Unknown	47,000	61,000 ${ }^{*}$	None	53,000
			2 -GT	OF-GT	4-1972	Unknown	47,000	61,000 ${ }^{\text {' }}$	None	53,000
			3-GT	OF-GT	6-1972	Unknown	47,000 ${ }^{\text {² }}$	61,000 ${ }^{\text { }}$	None	53,000
			4-GT	OF-GT	6-1972	Unknown	47,000 ${ }^{\circ}$	61,000 ${ }^{7}$	None	53,000
						Station Total:	1,047,000	1,106,000		1,074,000
Conesville	DEO	B	4	CF-S	6-1973	Unknown	312,000	312,000	EP, CT, LNB, SO2 Scrubber	312,000
Conesville, OH									SCR	
Dicks Creek	DEO		1	GF-GT	9-1965	Unknown	92,000 ${ }^{\circ}$	110,000	SC	101,000
Middletown,			3	GF-GT	6-1969	Unknown	14,000 ${ }^{\circ}$	20,000 ${ }^{\text {* }}$	SC	15,000
Ohio			4	GF-GT	10-1969	Unknown	15,000	21,000	None	18,000
			5	GF-GT	10-1969	Unknown	15,000	21,000	None	18,000
						Station Total:	136,000	172,000		152,000
Killen	DEO	c	2	CF-S	6-1982	Unknown	198,000*	198,000 ${ }^{\text {* }}$	EP, LNB, CT, SO2 Scrubber SCR	198,000
Wrightsville, OH										
Miami Fort	DEO		3-GT	OF-GT	7-1971	Unknown	14,000*	20,000*	* None	15,000
North Bend,			4-GT	OF-GT	8-1971	Unknown	14,000*	20,000	None	15,000
Ohio			$5-\mathrm{GT}$	OF-GT	9-1971	Unknown	14,000	20,000 ${ }^{\text {² }}$	None	15,000
			6-GT	OF-GT	10-1971	Unknown	14,000 ${ }^{\text {² }}$	20,000 ${ }^{7}$	None	15,000
		D	7	CF-S	S-197S	Unknown	320,000	320,000	EP, LNB, CT	320,000
									SO2 Scrubber, SCR \& SBS	
		D	8	CF-S	2-1978	Unknown	320,000	320,000	EP, LNB, CT	320,000
									502 Scrubber, SCR \& SB5	
						Station Total:	696,000	720,000		700,000
J.M.Stuart Aberdeen,	DEC	E	1	CF-S	5-1971	Unknown	225,000	225,000	EP, LNB, SO2 Scrubber \& SCR	225,000
ahia		E	2	CF-S	10-1970	Unknown	225,000	225,000	EP, LNB,	225,000
									SO2 Scrubber \& SCR	
		E	3	CF-S	5-1972	Unknown	225,000	225,000	EP, LNB,	225,000
									502 Scrubber \& SCR	
		E	4	CF-S	6-1974	Unknown	225,000	225,000	EP, LNB, CT	225,000
									SO2 Scrubber \& SCR	
						Station Total:	900,000	900,000		900,000
W.H.ZımmerMoscow, DH	DEO	F	1	CF-S	3-1991	Unknown	605,000	605,000	EP, LNB, CT,SO2 Scrubber, SCR \& SBS	605,000
							3,894,000	4,013,000		3,941,000
*LEGEND:		CF = Coal Fired			$\mathrm{S}=\mathrm{Ste} \mathrm{m}$				$E^{P}=$ Electrostatic. Precipitator	
		OF = Oil fired			$\mathrm{GT}=$ Simple-Cycle Combustion Turine				SC: $=$ smokeless Combustor	
		GF $=$ Natural Gas Fired							CT $=$ Cooling Tower(s)	
									$S C R=$ Selective Catalytic Reduction, Nox	
									W: = Water Injection, NOx	
									SI = Steam injection, NOX	
									LNB = Low NOX Burners	
									OfA $=$ Overfire Air	
									SNCR = Selective Non-Cataly	c Reduction
		DEO $=$ Duke Eneggy Ohio							FGC = Flue Gas Conditioning	
									SBS = Sodium Bisulfite/Soda	Sh Injection Systern

FOOT NOTES:
(A) Unit 5 is commonly owned by Duke Energy Ohio ($\mathbf{3 7 . 5 \%}$ - Operator);

The Dayton Power and Light Company (50\%) and Columbus Southern Power Company ($\mathbf{1 2 . 5 \%}$).
(B) Unit 4 is commonly owned by Duke Energy Ohio (40\%); The Dayton Power and Light Company (16.5\%) and columbus Southern Power Company (43.5% - Operator).
(C) Unit 2 is commonly owned by Duke Energy Ohio (33\%) and The Dayton Power and Light Company (67% - Operator).
(D) Units 7 and 8 are commonly owned by Duke Energy Ohio (64\% - Operator) and by The Dayton Power and Light Compary (36%).
(E) This station is commonly owned by Duke Energy Ohio (39\%); The Dayton Power and Light Company (35% - Operator) and Columbus Southem Power Company (26\%).
(F) Unit 1 is commonly owned by Ouke Energy Ohio (46.5\%-Operator); The Dayton Power and Light Company (28.1\%) and Columbus Southem Power Company (25.4%).

PUCO Form FE-R4:
Actual Generating Capability Dedicated to meet Ohio Peak Load (as of $12 / 31 / 20 x x$)

Unit Designation

Year/Season	Unit Name	Description	Seasonal Total (MW)	
2010/Summer	Beckjord 1	Coal - Steam	94	
2010/Summer	Beckjord 2	Coal-Steam	94	
2010/Summer	Beckjord 3	Coal - Steam	128	
2010/Summer	Beckjord 4	Coal-Steam	150	
2010/Summer	Beckjord 5	Coal-Steam	238	
2010/Summer	Beckjord 6	Coal-Steam	155	Foot Note A
2010/Summer	Conesville 4	Coal - Steam	312	Foot Note B
2010/Summer	Killen 2	Coal-Steam	198	Foot Note C
2010/Summer	Miami Fort 7	Coal-Steam	320	Foot Note D
2010/Summer	Miami Fort 8	Coal - Steam	320	Foot Note D
2010/Summer	Stuart 1	Coal - Steam	225	Foot Note E
2010/Summer	Stuart 2	Coal - Steam	225	Foot Note E
2010/Summer	Stuart 3	Coal - Steam	225	Foot Note E
2010/Summer	Stuart 4	Coal - Steam	225	Foot Note E
2010/Summer	Zimmer 1	Coal - Steam	605	Foot Note F
2010/Summer	Beckjord GT 1	Combustion Turbine/Oil-fired	47	
2010/Summer	Beckjord GT 2	Combustion Turbine/Oil-fired	47	
2010/Summer	Beckjord GT 3	Combustion Turbine/Oil-fired	47	
2010/Summer	Beckjord GT 4	Combustion Turbine/Oil-fired	47	
2010/Summer	Dicks Creek 1	Combustion Turbine/Nat Gas-fired	92	
2010/Summer	Dicks Creek 3	Combustion Turbine/Nat Gas-fired	14	
2010/Summer	Dicks Creek 4	Combustion Turbine/Nat Gas-fired	15	
2010/Summer	Dicks Creek 5	Combustion Turbine/Nat Gas-fired	15	
2010/Summer	Miami Fort 3	Combustion Turbine/Oil-fired	14	
2010/Summer	Miami Fort 4	Combustion Turbine/Oil-fired	14	
2010/Summer	Miami Fort 5	Combustion Turbine/Oil-fired	14	
2010/Summer	Miami Fort 6	Combustion Turbine/Oil-fired	14	

FOOT NOTES:
(A) Unit 6 is commonly owned by Duke Energy Ohio (37.5% - Operator); The Dayton Power and Light Company (50%) and Columbus Southern Power Company (12.5%).
(B) Unit 4 is commonly owned by Duke Energy Ohio (40%); The Dayton Power and Light Company (16.5%) and Columbus Southern Power Company (43.5% - Operator)
(C) Unit 2 is commonly owned by Duke Energy Ohio (33%) and The Dayton Power and Light Company (67% - Operator).
(D) Units 7 and 8 are commonly owned by Duke Fnergy Ohio (64% - Operator) and by The Dayton Power and Light Company (36%).
(E) This station is commonly owned by Duke Energy Ohio (39\%); The Dayton Power and Light Company (35% - Operator) and Columbus Southern Power Company (26%).
(F) Unit I is commonly owned by Duke Energy Ohio (46.5%. Operator); The Dayton Power and Light Company (28.1\%) and Columbus Southern Power Company (25.4\%).
PUCO Form FE-R6:
Electric Utility's Actual and Forecast Ohio Peak Load and Resources

	2006	2007	2008	2009	2010	2011	2012	2013
	-5	-4	-3	-2	-1	0	1	2
Net Demonstrated Capability	3961	3906	3906	3906	3894	3894	3894	3894
Net Seasonal Capability	3961	3906	3906	3906	3894	3894	3894	3894
Purchases	1050	1058	1064	979	758	0	1050	1000
Sales				369	1035	0	0	0
Renewables ${ }^{\text {d }}$						0.38	1.52	2.66
Available Capability ${ }^{\text {a }}$	5011	4964	4970	4516	3617	3894	4946	4897
Native Load	4366	4436	4074	3675	2317	1795	4340	4376
Energy Reduction Programs ${ }^{\text {c }}$	0	23	0	0	11	69	203	207
Available Reserve ${ }^{\text {e }}$	645	528	896	841	1300	2099	605	521
Internal Load ${ }^{\text {b }}$	4366	4459	4074	3675	2328	1864	4543	4583
Reserve ${ }^{\text {f }}$	645	551	896	841	1311	2169	808	728
	2014	2015	2016	2017	2018	2019	2020	2021
	3	4	5	6	7	8	9	10
Net Demonstrated Capability	3894	3685	3685	3685	3685	3685	3685	3685
Net Seasonal Capability	3894	3685	3685	3685	3685	3685	3685	3685
Purchases	1000	1100	1100	1050	1000	950	900	850
Sales	0	0	0	0	0	0	0	0
Renewables ${ }^{\text {d }}$	10.3	17.94	25.58	33.22	40.86	48.5	56.14	62.64
Available Capability ${ }^{\text {a }}$	4904	4803	4811	4768	4726	4684	4641	4598
Native Load	4439	4441	4424	4432	4436	4417	4398	4388
Energy Reduction Programs ${ }^{\text {c }}$	232	283	311	339	367	423	478	534
Available Reserve ${ }^{\text {e }}$	466	362	387	336	290	267	243	210
Internal Load ${ }^{\text {b }}$	4671	4725	4735	4771	4803	4840	4876	4921
Reserve ${ }^{\text { }}$	698	645	698	675	657	690	720	744

[^15]PUCO Form FE-R8:
Electric Utility's Actual and Forecast Ohio Peak Load and Resources (Megawatts)
Winter Season
Dedicated to Meet Electric Utility's Ohio Peak Load

Winter Season								
	2006	2007	2008	2009	2010	2011	2012	2013
	-5	-4	-3	-2	-1	0	1	2
Net Demonstrated Capability	4080	4025	4025	4025	4013	4013	4013	4013
Net Seasonal Capability	4080	4025	4025	4025	4013	4013	4013	4013
Purchases	0	625	577	700		0	1050	1000
Sales						0	0	0
Renewables ${ }^{\text {d }}$						0.38	1.52	2.66
Available Capability ${ }^{\text {a }}$	4080	4650	4602	4725	4013	4013	5065	5016
Native Load	3551	3505	3526	2271	1459	3626	3676	3729
Energy Reduction Programs ${ }^{\text {c }}$	0	0	0	0	0	18	33	48
Available Reserve ${ }^{\text {e }}$	529	1145	1076	2454	2554	388	1388	1287
Internal Load ${ }^{\text {b }}$	3551	3505	3526	2271	1459	3644	3709	3777
Reserve ${ }^{\text {f }}$	529	1145	1076	2454	2554	406	1421	1335
	2014	2015	2016	2017	2018	2019	2020	2021
	3	4	5	6	7	8	9	10
Net Demonstrated Capability	4013	3804	3804	3804	3804	3804	3804	3804
Net Seasonal Capability	4013	3804	3804	3804	3804	3804	3804	3804
Purchases	1000	1100	11.00	1050	1000	950	900	850
Sales	0	0	0	0	0	0	\bigcirc	o
Renewables ${ }^{\text {d }}$	10.3	17.94	25.58	33.22	40.86	48.5	56.14	62.64
Available Capability ${ }^{\text {a }}$	5023	4922	4930	4887	4845	4803	4760	4717
Native Load	3740	3745	3750	3756	3745	3736	3730	3724
Energy Reduction Programs ${ }^{\text {c }}$	81	100	108	125	159	193	227	261
Available Reserve ${ }^{\text {e }}$	1283	1177	1180	1131	1100	1066	1031	993
Internal Load ${ }^{\text {b }}$	3821	3845	3858	3881	3904	3929	3957	3984
Reserve ${ }^{\text {f }}$	1364	1276	1287	1256	1259	1259	1258	1254

a. Available Capability is equal to Net Seasonal Capability plus Purchases minus Sales plus Renewables. b. Internal Load equals Native Load plus Energy Reduction Programs. c. Includes both energy efficiency and demand response.
d. A f. Reserve is equal to Available Capability minus Native Load plus Energy Reduction Programs.

NOTE: Plans for facilities listed on this Form are entirely speculative and consequently should not be regarded as "planned" electric generation facilities. The Company continues to monitor markets and evaluate options as appropriate.

PUCO Form FE-R10:
Specifications of Planned Electric Generation Facilities

1. Facility Name	Solar 2011
2. Facility Location	TBD
3. Facility Type	Photovoltaic
4. Anticipated Capability	1 MW
5. Anticipated Capital Cost	
6. Application Timing	1 year
7. Construction timing	1 year
8. Planned Pollution Control Measures	N/A
9. Fuel	Sun
10. Miscellaneous	
1. Facility Name	Solar 2012 - Solar 2019 (1 plant added per year)
2. Facility Location	TBD
3. Facility Type	Photovoltaic
4. Anticipated Capability	3 MW (per plant)
5. Anticipated Capital Cost	
6. Application Timing	1 year
7. Construction timing	1 year
8. Planned Pollution Control Measures	N/A
9. Fuel	Sun
10. Miscellaneous	
1. Facility Name	Wind 2014 - Wind 2021 (1 plant added per year)
2. Facility Location	TBD
3. Facility Type	Wind
4. Anticipated Capability	50 MW (per plant)
5. Anticipated Capital Cost	
6. Application Timing	1 year
7. Construction timing	1 year
8. Planned Poilution Control Measures	N/A
9. Fuel	Wind
10. Miscellaneous	
1. Facility Name	Woody Biomass
2. Facility Location	TBD
3. Facility Type	Biomass
4. Anticipated Capability	50 MW
5. Anticipated Capital Cost	
6. Application Timing	1 year
7. Construction timing	5 years
8. Planned Pollution Control Measures	NOx \& Particulate
9. Fuel	Wood
10. Miscellaneous	

PUCO Form FE-R10 (continued):
 Specifications of Planned Electric Generation Facilities

1. Facility Name
2. Facility Location
3. Facility Type
4. Anticipated Capability
5. Anticipated Capital Cost
6. Application Timing
7. Construction timing
8. Planned Pollution Control Measures
9. Fuel
10. Miscellaneous
11. Facility Name
12. Facility Location
13. Facility Type
14. Anticipated Capability
15. Anticipated Capital Cost
16. Application Timing
17. Construction timing
18. Planned Pollution Control Measures
19. Fuel
20. Miscellaneous
4×160 CT
TBD
Combustion Turbine
632 MW

1 year
3 year
NOx
Natural Gas

Combined Cycle w/Duct Firing \& Chilling TBD
Combined Cycle
620 MW
1 year
4 years
NOX
Natural Gas

CROSS-REFERENCE OF RESOURCE PLAN DEVELOPMENT REQUIREMENTS		
Requirement	Location	Reference
Discussion and analysis of anticipated technological changes expected to influence:		
generation mix	Sections K, L and M	4901:5-5-06 A. 1
use of energy efficiency and peak-demand reduction programs	Section H	4901:5-5-06 A. 1
availability of fuels	Section E, part 2	4901:5-5-06 A. 1
type of generation	Sections K, L and M	4901:5-5-06 A. 1
use of alternative energy resources	Section J	4901:5-5-06 A. 1
Discussion and analysis of availability and potential development of alternative energy resources	Section J, all parts	4901:5-5-06 A. 2
Discussion and analysis of research, development, and demonstration efforts relating to alternative energy resources	Section J, all parts	4901:5-5-06 A. 3
Discussion and analysis of the impact of environmental regulations on generating capacity, cost, and reliability	Section E, part 4 and Section F, all parts	4901:5-5-06 A. 4
Discussion and analysis of textual material not specifically required, but of importance to the resource forecast	Sections B, F, I and J	4901:5-5-06 A. 5
Electricity resource forecast forms Form FE-R1 Form FE-R2 Form FE-R3 Form FE-R4 Form FE-R5 Form FE-R6 Form FE-R7 Form FE-R8 Form FE-R9 Form FE-R10	Appendix A	4901:5-5-06 A.6.a 4901:5-5-06 A.6.b 4901:5-5-06 A.6.c 4901:5-5-06 A.6.d.i 4901:5-5-06 A.6.dii 4901:5-5-06 A.6.d.iii 4901:5-5-06 A.6.d.iv 4901:5-5-06 A.6.d.v 4901:5-5-06 A.6.d.vi 4901:5-5-06 A.6.e.i 4901:5-5-06 A.6.e.ii
Existing generation system description	Section E, part 1 and Appendix A	4901:5-5-06 B.1.a
Existing pooling, mutual assistance, and all purchase/sales agreements including costs and amounts	Section G	4901:5-5-06 B.1.b

CROSS-REFERENCE OF RESOURCE PLAN DEVELOPMENT REQUIREMENTS

CROSS-REFERENCE OF RESOURCE PLAN DEVELOPMENT REQUIREMENTS		
Requirement	Location	Reference
System load profile	PUCO Forms FE-D1-6	4901:5-5-06 B.2.a
Maintenance requirements of existing and planned units	Section E, part 3	4901:5-5-06 B.2.b
Number, size, and availability of existing and planned units	Section E, parts 1 \& 3, Appendix A	4901:5-5-06 B.2.c
Forecast uncertainty	Section D, part 1	4901:5-5-06 B.2.d
Option uncertainty with respect to cost, availability, in-service dates, and performance	Section H, part 2 \& Section I, part 2 Sections J \& K	4901:5-5-06 B.2.e
Lead times for construction and implementation	Appendix A, Form FE-R10	4901:5-5-06 B.2.f
Power interchange with other electric systems	Section G	4901:5-5-06 B.2.g
Price-responsive demand and price elasticity due to the implementation of timedifferentiated pricing options	Section M	4901:5-5-06 B.2.h
Regulatory climate	Sections A, B, D, F, H, J, L \& M	4901:5-5-06 B.2.i
Reliability criteria and reliability measures used	Section D, part 2 \& Section J, part 5	4901:5-5-06 B.2.j.i
Reliability criteria and engineering analysis performed	Section D, part 2 \& Section J, part 5	4901:5-5-06 B.2.j.ii
Reliability criteria and economic analysis performed	Section D, part 2 \& Section J, part 5	4901:5-5-06 B.2.j.iii
Reliability criteria and any judgments applied	Section D, part 2 \& Section J, part 5	4901:5-5-06 B.2.j.iv
Resource plan description of base case projected resource mix	Sections K, L \& M	4901:5-5-06 B.3.a
Resource plan discussion of projected system reliability	Section D, part 2 \& Section J, part 5	4901:5-5-06 B.3.b.i
Resource plan discussion of projected adequacy of fuel supply	Section E, part 2	4901:5-5-06 B.3.b.ii
Resource plan discussion of revenue requirements and rate impacts of base and alternative plans	Sections C \& M	4901:5-5-06 B.3.c
Resource plan methodology discussion of: decision-making process, criteria, and standards employed overall planning objectives (4901:5-5-03 paragraph A) key assumptions and judgments used in development	Sections C, D, I, J, K, L \& M	$\begin{aligned} & \text { 4901:5-5-06 B.3.d.i } \\ & \text { 4901:5-5-06 B.3.d.ii } \end{aligned}$ 4901:5-5-06 B.3.d.iii
Discussion of adequacy, reliability, and cost-effectiveness of the plan	Sections A, C, D, E, F, H, I, J, K, L \& M	4901:5-5-06 B.3.e.i
Discussion of evaluation equality among all resource options	Sections H, I, J, K \& M	4901:5-5-06 B.3.e.ii
Discussion of adequate consideration of potential rate and customer bill impacts	Sections C \& M	4901:5-5-06B.3.e.iii.a

CROSS-REFERENCE OF RESOURCE PLAN DEVELOPMENT REQUIREMENTS		
Requirement	Location	Reference
Discussion of adequate consideration of environmental impacts and their associated costs	Section E, part 4 \& Section F	4901:5-5-06B.3.e.iii.b
Discussion of adequate consideration of other economic impacts and their associated costs	Sections C, D, I, J, K, L \& M	4901:5-5-06B.3.e.iii.c
Discussion of adequate consideration of plan impact on financial status of the company	Section M	4901:5-5-06B.3.e.iii.d
Discussion of adequate consideration of plan impact on other strategic decisions (flexibility, diversity, size and lead times, and lost investment opportunities)	Sections C, D, I, J, K, L \& M	4901:5-5-06B.3.e.iii.e
Discussion on adequate consideration of plan impact on equity among customer classes	Section M	4901:5-5-06B.3.e.iii.f
Discussion on adequate consideration of plan impact over time	Sections C, D, I, J, K, L \& M	4901:5-5-06B.3.e.iii.g
Discussion on adequate consideration of plan impact on other matters the commission considers appropriate		4901:5-5-06B.3.e.iii.h

[^0]: a. Eleciric transmission owner shat provide or cause to be provided cata for the Oho porton of its service area in this conm.
 . Electric transmission owner cperating across onio councries shal provide or cause to be provided data for the total service area ir this column c. Electric transmssion owner operating as a part of an megrated operating system shall prowie for the total system in this colum. d. Actual oata shal De molcated win an asterisk (${ }^{*}$).

[^1]:

[^2]: PART C: LOSSES AND UNACCOUNTED FOR (MWH)

 | | Firm Transmission | | |
|---|---|---|---|
 | Service | | | Non-Firm
 Transmission
 Service |
 | :---: |
 | Sources minus Delivery (a) |
 | $(2,061,384,561)$ |

[^3]: PART C: LOSSES AND UNACCOUNTED FOR (MWH)
 REPORTING MONTH

 | | Firm Transmission
 Service | Non-Firm
 Transmission
 Service | Total |
 | :--- | :---: | :---: | :---: |
 | Sources minus Delivery (a) | $(1,729,540,601)$ | 0 | $(1,729,540,601)$ |

 (a) FE-T5: Part A minus Part B (1)

[^4]: PART C：LOSSES AND UNACCOUNTED FOR（MWH）

 （a）FE－T5：Part A minus Part $\mathrm{B}(1)$

[^5]: PART C: LOSSES AND UNACCOUNTED FOR (MWH)
 REPORTING MONTH

 | | Firm Transmission
 Service | Non-Firm
 Transmission
 Service | Total |
 | :--- | :---: | :---: | :---: |
 | Sources minus Delivery (a) | $(2,480,845,525)$ | 0 | $(2,480,845,525)$ |

[^6]: PART C: LOSSES AND UNACCOUNTED FOR (MWH)
 Oct-10

 (a) FE-T5: Part A minus Part B (1)

[^7]: DUKE ENERGY ORIO
 $4901: 5-5-04$ (C) (1) (a)

[^8]: * DISTRIBUTION(D) TRANSMISSION (T)

[^9]: * DISTRIBUTION(D) TRANSMISSION (T)

[^10]: a) To be filled out by all ECUs. The category breakoown shouid refer to the Ohe portion of the EDL's total serace arga
 iel Historical numbers iegresent ncrementai mpacts of erergy eficiency programs. Forecast numbers represent a

[^11]: （a）To be filled out by all EDUs．The category breakdown shoutd refer to the Ohio portion of the EDU＇s total serice area （of Transportation inciudes railroads \＆raiways
 （d）Historical numbers include the impact of DSM programs in place at the tinie

[^12]: (d) Actual data shall be indicated with an asterisk (*)
 (e) Includes DSili impacts

[^13]: a. Available Capability is equal to Net Seasonal Capability plus Purchases minus Sales plus Renewables. b. Internal Load equals Native Load plus Energy Reduction Programs.
 c. Includes both energy efficiency and demand response.
 d. Available Reserve is equal to Available Capability minus Internal Load plus Energy Reduction Programs. e. Reserve is equal to Available Capability minus Native Load plus Energy Reduction Programs.

[^14]: a. Available Capability is equal to Net Seasonal Capability plus Purchases minus Sales plus Renewables. b. Internal Load equals Native Load plus Energy Reduction Programs.
 c. Includes both energy efficiency and demand response.
 d. Available Reserve is equal to Available Capability minus internal Load plus Energy Reduction Programs. e. Reserve is equal to Available Capability minus Native Load plus Energy Reduction Programs.

[^15]: a. Available Capability is equal to Net Seasonal Capability plus Purchases minus Sales plus Renewables. b. Internal Load equals Native Load plus Energy Reduction Programs.
 c. Includes both energy efficiency and demand response.
 f. Reserve is equal to Available Capability minus Native Load plus Energy Reduction Programs. g. Load forecast assumes wires-connected customers from 2012 forward.

