

PUBLIC VERSION

TO THE PUBLIC UTILITIES COMMISSION OF OHIO

DUKE ENERGY OHIO, INC. 2011 ELECTRIC LONG-TERM FORECAST REPORT AND RESOURCE PLAN

CASE NO. 11-1439-EL-FOR

This is to certify that the images appearing are an accurate and complete reproduction of a case file document delivered in the regular course of business. Technician Date Processed 7/15/2011

STATEMENT OF JULIA S. JANSON PRESIDENT, DUKE ENERGY OHIO, INC.

I, Julia S. Janson, President of Duke Energy Ohio, Inc., hereby certify that the statement and modifications set forth in the 2011 DUKE ENERGY OHIO LONG-TERM ELECTRIC FORECAST REPORT AND RESOURCE PLAN as submitted to the Public Utilities Commission of Ohio are true and correct to the best of my knowledge and belief.

I further certify that the requirements of Ohio Administrative Code §4901:5-1-03, paragraphs (F) to (I) will be met.

President Duke Energy Ohio, Inc.

*

Libraries Receiving a Letter of Notification Regarding Duke Energy Ohio, Inc.'s 2011 Long-Term Forecast Report and Resource Plan

County	Library	Address
Adams	Manchester Branch Library	401 Pike St.
	-	Manchester, Ohio 45144
Brown	Mary P. Shelton Library	200 West Grant Avenue
		Georgetown, Ohio 45121
Butler	Lane Public Library	300 North Third Street
		Hamilton, Ohio 45011
Butler	Middletown Public Library	125 South Broad Street
		Middletown, Ohio 45044
Clermont	Clermont County Public Library	180 South Third Street
		Batavia, Ohio 45103
Clinton	Wilmington Public Library	268 North South Street
		Wilmington, Ohio 45117
Hamilton	Public Library of Cincinnati and	800 Vine Street
	Hamilton County	Cincinnati, Ohio 45202
	University of Cincinnati	2600 Clifton Avenue
	Library Reference Division	Cincinnati, Ohio 45221
Highland	Highland County District Library	10 Willettsville Pike
		Hillsboro, Ohio 45133
Montgomery	Dayton and Montgomery County Public	215 East Third Street
	Library	Dayton, Ohio 45402
Preble	Preble County District Library	301 North Barron Street
· · · · · · · · · · · · · · · · · · ·		Eaton, Ohio 45320
Warren	Lebanon Public Library	101 South Broadway
		Lebanon, Ohio 45036

CERTIFICATE OF SERVICE

I hereby certify that a true and accurate copy of Duke Energy Ohio's Long-Term Forecast Report and Resource Plan was served by hand delivery, this 15th day of July, 2011 upon the following:

Office of the Ohio Consumers' Counsel

10 West Broad Street, Suite 1800

Columbus, OH 43215-3485

Furthermore, a Letter of Notification was sent by First Class U.S. Mail to each library listed in the Report.

Elizabeth H. Watts Associate General Counsel Duke Energy Business Services

TABLE OF CONTENTS

SECTION I – FORECAST REPORT REQUIREMENTS	1
A. SUMMARY OF THE LONG-TERM FORECAST REPORT	1
B. FORECAST SUMMARY & ASSUMPTIONS	7
1. Service Area Economy	8
2. Electric Energy Forecast	8
3. Specific	18
D. FORECAST DOCUMENTATION	20
1. Economic Data	20
2. Energy and Peak Models	21
3. Forecast Data	
4. Load Research and Market Research Efforts	
E. MODELS	
1. Specific Analytical Techniques	
2. Relationships Between The Specific Techniques	
3. Alternative Methodologies	28
4. Changes In Methodology	28
5. Equations	
6. Computer Software	55
SECTION II FORECASTS FOR ELECTRIC TRANSMISSION OWNERS	55
A. GENERAL GUIDELINES	55
B. ELECTRIC TRANSMISSION FORECAST	55
C. THE EXISTING TRANSMISSION SYSTEM	92
D. THE PLANNED TRANSMISSION SYSTEM	104

E. SUBSTANTIATION OF THE PLANNED TRANSMISSION SYSTEM 115
F. REGIONAL AND BULK POWER REQUIREMENTS 117
G. CRITICAL ENERGY INFRASTRUCTURE INFORMATION 117
H. SUBSTANTIATION OF THE PLANNED DISTRIBUTION SYSTEM 117
SECTION III – ELECTRIC DISTRIBUTION FORECAST 120
1. Service Area Energy Forecasts 121
2. System Seasonal Peak Load Forecast 121
3. Controllable Loads
4. Load Factor
SECTION IV - DUKE ENERGY OHIO 2011 RESOURCE PLAN 132
A. EXECUTIVE SUMMARY 132
1. Overview
2. Planning Process Results
B. INTRODUCTION
C. RESOURCE PLANNING PROCESS 140
D. PLANNING ASSUMPTIONS 141
E. EXISTING RESOURCES AND ANTICIPATED CHANGES 144
1. Existing Generation System Description 144
2. Fuel Supply and Pricing 147
3. Maintenance and Availability 149
4. Anticipated Changes to Existing Generation 151
F. ENVIRONMENTAL REGULATIONS 153
1. Clean Air Interstate Rule (CAIR) and Replacement CAIR – the Transport Rule
2. Utility Boiler Maximum Achievable Control Technology (MACT 154

3.	National Ambient Air Quality Standards (NAAQS	154
	a. 8 Hour Ozone Standard	.154
	b. SO ₂ Standard	.155
4.	Global Climate Change	156
5.	Water Quality	156
	a. CWA 316(b) Cooling Water Intake Structures	.156
	b. Steam Electric Effluent Guidelines	.157
6.	Waste Issues (Coal Combustion Byproducts)	158
G. PO	OLING AND BULK POWER AGREEMENTS	161
H. EN	ERGY EFFICIENCY/DSM PROGRAMS	161
1.	Existing Programs	162
	a. Residential Programs	.163
	b. Non-Residential Programs	.164
2. Futu	re Programs	170
I. FUT	URE RESOURCES AND REQUIREMENT	173
1.	Generation Technologies	173
2.	Supply Side Resources	173
	A. Overview	.173
	B. Selected Supply Side Technologies	.175
J. ADV	ANCED ENERGY REQUIREMENTS	1 7 6
1.	Qualified Renewable Resources	177
2.	Qualified Advanced Energy Resources	179
3.	Discussion of Renewable Compliance Strategy	179
4.	Renewable Energy in the Resource Planning Model	180
5.	Intermittency and Capacity Factors	183
6.	Other Renewable Resources	184
K. RE	SOURCE PLAN	184

L.	SYSTEM OPTIMIZER RESOURCE PORTFOLIO ALTERNAT 1	86
M.	RESOURCE PORTFOLIO ALTERNATIVE EVALUATION RESULTS 1	87

SECTION I – FORECAST REPORT REQUIREMENTS

A. SUMMARY OF THE LONG-TERM FORECAST REPORT

Duke Energy Ohio provides electric service to approximately 690,000 customers in an area covering some 2,500 square miles in Southwestern Ohio. Duke Energy Ohio's service territory includes the cities of Cincinnati and Middletown, Ohio. Duke Energy Kentucky provides electric service in the Northern Kentucky area contiguous to the Southwestern Ohio area served by Duke Energy Ohio. Duke Energy Kentucky serves approximately 136,000 electric customers in its 500 square mile service territory. Duke Energy Kentucky's service territory includes the cities of Covington and Newport, Kentucky. Duke Energy Ohio and Duke Energy Kentucky operate within the regional economy as defined by the Cincinnati Primary Metropolitan Statistical Area (PMSA). Therefore, the Company coordinates and prepares the forecast for the entire region encompassing both utility service areas. This consolidated forecast is then allocated to each service area. Subsequently, this report covers the forecast for Duke Energy Ohio only.

As of December 2010, the transmission system of Duke Energy Ohio consisted of approximately 403 circuit miles of 345 kV lines (including Duke Energy Ohio's share of jointly-owned transmission) and 724 circuit miles of 138 kV lines. Portions of the 345 kV transmission system are jointly owned with Columbus Southern Power Company and/or the Dayton Power & Light Company. Duke Energy Ohio is interconnected with five other transmission providers (including Duke Energy Indiana).

The electric energy and peak demand forecasts of the Duke Energy Ohio franchised service territory are prepared each year as part of the planning process.

The general framework of the Electric Energy and Peak Load Forecast involves a national economic forecast, a service area economic forecast, and the electric load forecast.

The national economic forecast provides information about the prospective growth of the national economy. This involves projections of national economic and demographic concepts such as population, employment, industrial production, inflation, wage rates, and income. The national economic forecast is obtained from Moody's Analytics, a national economic consulting firm.

Similarly, the history and forecast of key economic and demographic concepts for the service area economy is obtained from Moody's Analytics. The service area economic forecast is used along with the energy and peak models to produce the electric load forecast.

Energy sales projections are prepared for the residential, commercial, industrial, and other sectors. Those components plus electric system losses are aggregated to produce a forecast of net energy.

Table 1-1 below, provides information on the Duke Energy Ohio System projected annual growth rates in energy for the major customer classes as well as net energy and peak demand before and after implementation of any new or incremental energy efficiency programs. The growth rates are consistent with the forecast presented in the FE-D forms in Section 3 and represent the full distribution forecast regardless of who supplies the energy. The forecast incorporates impacts associated with the Energy Independence and Security Act of 2007 (EISA).

2

TABLE 1-1 Duke Energy Ohio System

ELECTRIC ENERGY AND PEAK LOAD

FORECAST: ANNUAL GROWTH RATES

2011 to 2021

	Before EE	<u>After EE</u>
Residential MWH	0.8%	-0.7%
Commercial MWH	1.5%	0.3%
Industrial MWH	1.6%	0.5%
Net Energy MWH	1.2%	-0.1%
Summer Peak MW	1.0%	0.2%
Winter Peak MW	0.9%	0.3%

Growth rates are computed as the compound annual rate of growth in total distribution loads for the years 2011-2021.

The forecast of energy is graphically depicted on Figure 1-1, and the summer and winter peak forecasts are shown on Figure 1-2.

Please note that the FE-T forms in Section II represent the load supplied by the regulated utility. These forecasts of energy and peak demand provide the starting point for the development of the Integrated Resource Plan. As such, the first year of the forecast reflects energy and peak reduced for current switching levels, i.e. default load supplied by the regulated utility. The remaining years of the forecast reflect the assumption that all load returns to the regulated utility at the end of the current ESP in 2011. This result follows from the assumption

that the Company sets an electric generation price at a new market-based ESP price. With the establishment of an ESP price at a market level, it is assumed that the cost savings that encourages customer switching would disappear. As a result, in this event, all switched customers are expected to return to the regulated utility for generation service.

Changes In Methodology

The Company changed its approach regarding the development of its appliance stock variable to rely more completely on information from Itron, Inc. for estimates of historical appliance efficiency. The Company uses the latest historical data available and relies on recent economic data and forecasts from Moody's Analytics.

Figure 1.1: Total Energy Forecast (Before Implementation of Energy Efficiency Programs)

.

The electric energy and peak demand forecasts of the Duke Energy Ohio service territory are prepared each year as part of the planning process by a staff that is shared with the other Duke Energy affiliated utilities, using the same methodology. Duke Energy Ohio does not perform joint load forecasts with non-affiliated utility companies, and the forecast is prepared independently of the forecasting efforts of non-affiliated utilities.

B. FORECAST SUMMARY & ASSUMPTIONS

The forecast methodology is essentially the same as that presented in past Electric Long-Term Forecast Reports Plans filed with the Public Utilities Commission of Ohio (Commission). Energy is a key commodity linked to the overall level of economic activity. As residential, commercial, and industrial economic activity increases or decreases, the use of energy, or more specifically electricity, should increase or decrease, respectively. It is this linkage to economic activity that is important to the development of long-range energy forecasts. For that reason, forecasts of the national and local economies are key ingredients to energy forecasts.

The general framework of the Electric Energy and Peak Load Forecast involves a national economic forecast, a service area economic forecast, and the electric load forecast. The national economic forecast provides information about the prospective growth of the national economy. This involves projections of national economic and demographic concepts such as population, employment, industrial production, inflation, wage rates, and income. The national economic forecast is obtained from Moody's Analytics, a nationally recognized vendor of economic forecasts. In conjunction with the forecast of the national economy, the Company also obtains a forecast of the service area economy from Moody's Analytics.

The Duke Energy Ohio service area is located in southwestern Ohio adjacent to the service area of Duke Energy Kentucky. The economy of southwestern Ohio is contained within the Cincinnati Primary Metropolitan Statistical Area (PMSA) and is an integral part of the regional economy. The service area economic forecast is used along with the energy and peak models to produce the electric load forecast.

7

1. Service Area Economy

There are several sectors to the service area economy: employment, income, inflation, production, and population. Forecasts of employment are provided by North American Industry Classification System (NAICS) and aggregated to major sectors such as commercial and industrial. Income for the local economy is forecasted in several categories including wages, rents, proprietors' income, personal contributions for social insurance, and transfer payments. The forecasts of these items are summed to produce the forecast of income less personal contributions for social insurance. Inflation is measured by changes in the Consumer Price Index (CPI). Production is projected for each key NAICS group by multiplying the forecast of productivity (production per employee) by the forecast of employment. Population projections are aggregated from forecasts by age-cohort. This information serves as input into the energy and peak load forecast models.

2. Electric Energy Forecast

The forecast methodology follows economic theory in that the use of energy is dependent upon key economic factors such as income, production, energy prices, and the weather. The projected energy requirements for Duke Energy Ohio's retail electric customers are determined through econometric analysis. Econometric models are a means of representing economic behavior through the use of statistical methods, such as regression analysis.

The Duke Energy Ohio forecast of energy requirements is included within the overall forecast of energy requirements of the Greater Cincinnati and Northern Kentucky region. The Duke Energy Ohio sales forecast is developed by allocating percentages of the total regional forecast for each customer group. These groups include residential, commercial, industrial, governmental or other public authority (OPA), and street lighting energy sectors. In addition, forecasts are also prepared for three minor categories: interdepartmental use (Gas Department), Company use, and losses. In a similar fashion, the Duke Energy Ohio peak load forecast is developed by allocating a share from the regional total. Historical percentages and judgment are used to develop the allocations of sales and peak demands.

With respect to energy-price relationships, the forecast methodology described below includes discussion on the incorporation of energy price variables in the model specification. The price variables are explicitly included in the forecast models to account for the effect that changes in real prices can have on the level of energy usage. The econometric models presented in the report provide estimates of price elasticity for specific customer groups. Load impacts from rising real prices are also examined relative to projected load impacts from energy efficiency programs to ascertain how much of the price elasticity impacts are already reflected through impacts from energy efficiency programs.

The following sections provide the specifications of the econometric equations developed to forecast electricity sales for the franchised service territory.

<u>Residential Sector</u> - There are two components to the residential sector energy forecast: the number of residential customers and kWh energy usage per customer. The forecast of total residential sales is developed by multiplying the forecasts of the two components. That is:

(1) Residential Sales =

Number of Residential Customers * Use per Residential Customer. Econometric relationships are developed for each of the component pieces of total residential sales.

9

<u>Customers</u> - The number of electric residential customers (households) is affected by real per capita income. This is represented as follows:

(2) Residential Customers =

f (Real Per Capita Income)

Where: Real Per Capita Income = (Personal Income/Population/CPI).

While changes in per capita income are expected to alter the number of residential customers, the adjustment relating to real per capita income is not immediate. The number of customers will change gradually over time as a result of a change in real per capita income. This adjustment process is modeled using a lag structure.

<u>Residential Use per Customer</u> - The key ingredients that impact energy use per customer are per capita income, real electricity prices and the combined impact of numerous other determinants. These include the saturation of air conditioners, electric space heating, other appliances, the efficiency of those appliances, and weather.

(3) Energy usage per Customer =

f (Real Income per Capita * Efficient Appliance Stock,

Real Electricity Price * Efficient Appliance Stock,

Saturation of Electric Heating Customers,

Saturation of Customers with Central Air Conditioning,

Saturation of Window Air Conditioning Units,

Efficiency of Space Conditioning Appliances,

Billed Cooling and Heating Degree Days).

The derivation of the efficient appliance stock variable and the forecast of appliance saturations are discussed in the data section.

<u>Commercial Sector</u> - Commercial electricity usage changes with the level of local commercial employment, real electricity price, and the impact of weather. The model is formulated as follows:

(4) Commercial Sales =

f (Commercial Employment,

Marginal Electric Price/Consumer Price Index,

Billed Cooling and Heating Degree Days).

<u>Industrial Sector</u> - Duke Energy Ohio produces industrial sales forecasts by NAICS classifications. Electricity use by industrial customers is primarily dependent upon the level of industrial production and the impacts of real electricity prices, electric price relative to alternate fuels, and weather. The general model of industrial sales is formulated as follows:

(5) Industrial Sales =

f (Industrial Production,

Real Electricity Price,

Electricity Price/Alternate Fuel Price,

Billed Cooling and Heating Degree Days).

<u>Governmental Sector</u> - The Company uses the term Other Public Authorities (OPA) to indicate those customers involved and/or affiliated with federal, state or local government. Two categories comprise the electricity sales in the Other Public Authority (OPA) sector: sales to OPA water pumping customers and sales to OPA non-water pumping customers.

In the case of OPA water pumping, electricity sales are related to the number of residential electricity customers, real price of electricity demand, precipitation levels, and heating and cooling degree days. That is:

(6) Water Pumping Sales =

f (Residential Electricity Customers,

Real Electricity Demand Price,

Precipitation,

Cooling Degree Days).

Electricity sales to the non-water pumping component of Other Public Authority is related to governmental employment, the real price of electricity, the real price of natural gas, and heating and cooling degree days. This relationship can be represented as follows:

(7) Non-Water Pumping Sales =

f (Governmental Employment,

Marginal Electric Energy Price/Natural Gas Price,

Billed Cooling and Heating Degree Days).

The total OPA electricity sales forecast is the sum of the individual forecasts of sales to water pumping and non-water pumping customers.

<u>Street Lighting Sector</u> - For the street lighting sector, electricity usage varies with the number of street lights and the efficiency of the lighting fixtures used. The number of street lights is associated with the population of the service area. The efficiency of the street lights is related to the saturation of mercury and sodium vapor lights. That is:

(8) Street Lighting Sales =

f (Population,

Saturation of Mercury Vapor Lights,

Saturation of Sodium Vapor Lights).

<u>Total Electric Sales</u> - Once these separate components have been projected - Residential sales, Commercial sales, Industrial sales, Other Public Authority sales, and Street Lighting sales - they can be summed along with Inter-department sales to produce the projection of total electric sales.

<u>Total System Sendout</u> - Upon completion of the total electric sales forecast, the forecast of total energy can be prepared. This requires that all the individual sector forecasts be combined along with forecasts of Company use, and system losses. After the system sendout forecast is completed, the peak load forecast can be prepared.

<u>**Peak Load</u>** - Forecasts of summer and winter peak demands are developed using econometric models.</u>

The peak forecasting model is designed to closely represent the relationship of weather to peak loads. Only days when the temperature equaled or exceeded 90 degrees are included in the summer peak model. For the winter, only those days with a temperature at or below 10 degrees are included in the winter peak model.

<u>Summer Peak</u> - Summer peak loads are influenced by the current level of economic activity and the weather conditions. The primary weather factors are temperature and humidity; however, not only are the temperature and humidity at the time of the peak important, but also the morning low temperature, and high temperature from the day before. These other temperature variables are important to capture effect of thermal buildup.

The summer equation can be specified as follows:

(9) Peak = f (Weather Normalized Sendout, Weather Factors).

Winter Peak - Winter peak loads are also influenced by the current level of economic activity and the weather conditions. The selection of winter weather factors depends upon whether the peak occurs in the morning or evening. For a morning peak, the primary weather factors are morning low temperature, wind speed, and the prior evening's low temperature. For an evening peak, the primary weather factors are the evening low temperature, wind speed, and the morning low temperature, wind speed, and the morning low temperature.

The winter equation is specified in a similar fashion as the summer:

(10) Peak = f (Weather Normalized Sendout, Weather Factors).

The summer and winter peak equations are estimated separately for the respective seasonal periods. Peak load forecasts are produced under specific assumptions regarding the type of weather conditions typically expected to cause a peak.

<u>Weather-Normalized Sendout</u> - The level of peak demand is related to economic activity. The best indicator of the combined influences of economic variables on peak demand is the level of base load demand exclusive of aberrations caused by non-normal weather. Thus, the first step in developing the peak equations is to weather normalize historical monthly sendout.

The procedure used to develop historical weather normalized sendout data involves two steps. First, instead of weather normalizing sendout in the aggregate, each component is weather normalized. In other words, residential, commercial, industrial, and other public authority, are individually adjusted for the difference between actual and normal weather. Street lighting sales are not weather normalized because they are not weather sensitive. Using the equations previously discussed, the adjustment process is performed as follows:

Let: KWH(N) = f(W(N))g(E)

KWH(A) = f(W(A))g(E)

Where: KWH(N) = electric sales - normalized

W(N) = weather variables - normal

E = economic variables

KWH(A) = electric sales - actual

W(A) = weather variables - actual

Then: KWH(N) = KWH(A) * f(W(N))g(E)/f(W(A))g(E)

=KWH(A) * f(W(N))/f(W(A))

With this process, weather normalized sales are computed by scaling actual sales for each class by a factor from the forecast equation that accounts for the impact of deviation from normal weather. Industrial sales are weather normalized using a factor from an aggregate industrial equation developed for that purpose.

Second, weather normalized sendout is computed by summing the weather normalized sales with non-weather sensitive sector sales. This weather adjusted sendout is then used as a variable in the summer and winter peak equations.

<u>**Peak Forecast Procedure</u>** - The summer peak usually occurs in July or August in the afternoon and the winter peak occurs the following January in the morning or evening. Since the energy model produces forecasts under the assumption of normal weather, the forecast of sendout is "weather normalized" by design. Thus, the forecast of sendout drives the forecast of the peaks. In the forecast, the weather variables are set to values determined to be normal peak-producing conditions. These values are derived using historical data on the worst weather conditions in each year (summer and winter).</u>

National Economy

It is generally assumed that the Duke Energy Ohio service area economy will tend to react much like the national economy over the forecast period. Duke Energy Ohio uses a longterm forecast of the national and service area economy prepared by Moody's Analytics. No major wars or energy embargoes are assumed to occur during the forecast period. Even if minor conflicts and/or energy supply disruptions, such as those caused by hurricanes, occur during the forecast period, the long-range path of the overall forecast would not be dramatically altered.

A major risk to the national and regional economic forecasts and hence the electric load forecast is the continued economic growth in the U.S. economy. While the national and local economies have been experiencing the effects of a decline in economic activity since the fourth quarter of 2007, there are strong signs that the economy is recovering. The ultimate outcome in the near term is dependent upon the success of the economy moving forward out of this slow period as well as managing recent increases in energy prices.

With extensive economic diversity, the Cincinnati area economy, including Northern Kentucky, is well structured to withstand an economic slowdown and make the adjustments necessary for growth. In the manufacturing sector, its major industries are food products, paper, printing, chemicals, steel, fabricated metals, machinery, and automotive and aircraft transportation equipment. In the non-manufacturing sector, its major industries are life insurance and finance. In addition, the Cincinnati area is the headquarters for major international and national market-oriented retailing establishments.

Local Economy

Forecasts of employment, local population, industrial production, and inflation are key indicators of economic and demographic trends for the Duke Energy Ohio service area. The majority of the employment growth over the forecast period occurs in the non-manufacturing sector. This reflects a continuation of the trend toward the service industries and the fundamental change that is occurring in manufacturing and other basic industries. The rate of growth in local employment expected over the forecast will be below the national level: 0.7 percent locally versus 1.3 percent nationally (2011-2021).

Duke Energy Ohio is also affected by national population trends. The average age of the U.S. population is rising. The primary reasons for this phenomenon are stagnant birth rates and lengthening life expectancies. As a result, the portion of the population of the Duke Energy Ohio service area that is "age 65 and older" increases over the forecast period. Over the period 2011 to 2021, Duke Energy Ohio's population is expected to increase at an annual average rate of 0.6 percent. Nationally, population is expected to grow at an annual rate of 1.0 percent over the same period.

For the forecast period, local industrial production is expected to increase at a 2.0 percent annual rate, while 1.4 percent is the expected growth rate for the nation.

The residential sector is the largest in terms of total existing customers and total new customers per year. Within the Duke Energy Ohio service area, many commercial customers serve local markets. Therefore, there is a close relationship between the growth in local residential customers and the growth in commercial customers. The number of new industrial customers added per year is relatively small.

3. Specific

<u>Commercial Fuels</u> - Natural gas and oil prices are expected to increase over the forecast period. The projected annual growth rate 2011 to 2021, in nominal terms, is 1.6 percent for the price of electricity, 7.3 percent for the price of natural gas and 2.1 percent for the price of oil (residual fuel oils.)

Regarding availability of the conventional fuels, nothing on the horizon indicates any severe limitations in their supply, although world reserves of natural gas and oil are believed to be dwindling. There are unknown potential impacts from future changes in legislation or a change in the pricing or supply policy of oil producing countries that might affect fuel supply. However, these cannot be quantified within the forecast. The only non-utility information source relied upon is Moody's Analytics.

<u>Year End Residential Customers</u> - In the following table, historical and projected total year-end residential customers for the entire Ohio service area are provided.

2006	610,648
2007	612,766
2008	610,603
2009	610,482
2010	611,494
2011	610,113
2012	614,624
2013	619,122
2014	624,127
2015	629,155
2016	633, 770
2017	638,234
2018	642,604
2019	646, 947
2020	651,337

NUMBER OF YEAR-END RESIDENTIAL CUSTOMERS

Appliance Efficiencies - Trends in appliance efficiencies, saturations, and usage patterns have an impact on the projected use per residential customer. Overall, the forecast incorporates a projection of increasing saturation for many appliances including heat pumps, air conditioners, electric space heating equipment, electric water heaters, electric clothes dryers, dish washers, and freezers. In addition, the forecast embodies trends of increasing appliance efficiency, including lighting, consistent with standards established by the federal government.

D. FORECAST DOCUMENTATION

In the following sections, information on forecast related databases is provided for Duke Energy Ohio.

The first step in the forecasting process is the collection of relevant information and data. The database discussion is broken into three parts:

- a) Economic Data,
- b) Energy and Peak Data, and
- c) Forecast Data.

1.Economic Data

The major groups of data in the economic forecast are employment, demographics, income, production, inflation and prices. National and local values for these concepts are available from Moody's Analytics and company data.

Employment - Employment numbers are required on both a national and service area basis. Quarterly national and local employment series by industry are obtained from Moody's Analytics. Employment series are available for manufacturing and non-manufacturing sectors.

<u>Population</u> - National and local values for total population and population by age-cohort groups are obtained from Moody's Analytics.

Income - Local income data series are obtained from Moody's Analytics. The data is available on a county level and summed to a service area level. This includes data for personal income; dividends, interest, and rent; transfer payments; wage and salary disbursements plus other labor income; personal contributions for social insurance; and non-farm proprietors' income.

<u>Consumer Price Index</u> - The local CPI is equivalent to the national CPI obtained from Moody's Analytics.

<u>Electricity and Natural Gas Prices</u> - The average price of electricity and natural gas is available from Company financial reports. Data on marginal electricity price (including fuel cost) is collected for each customer class. This information is obtained from Company records and rate schedules.

2. Energy and Peak Models

The majority of data required to develop the electricity sales and peak forecasts is obtained from the Duke Energy Ohio service area economic data provided by Moody's Analytics, from Duke Energy Ohio financial reports and research groups, and from national sources. With regard to the national sources of information, generally all national information is obtained from Moody's Analytics. However, local weather data are obtained from the National Oceanic and Atmospheric Administration (NOAA).

The major groups of data that are used in developing the energy forecasts are: kilowatt-hour sales by customer class, number of customers, use-per-customer, electricity prices, natural gas prices, appliance saturations, and local weather data. The following are descriptions of the adjustments performed on various groups of data to develop the final data series actually used in regression analysis.

<u>Kilowatt hour Sales and Revenue</u> - Duke Energy Ohio collects sales and revenue data monthly by rate class. For forecast purposes this information is aggregated into the following categories: residential, commercial, industrial, OPA, and the other sales categories. In the industrial sector, sales and revenue for each manufacturing NAICS are collected. From the sales and revenue information, average electricity prices by sector can be calculated.

The other public authorities (OPA) sales category is analyzed in two parts: water pumping and OPA less water-pumping sales.

Number of Customers - The number of customers by class is obtained on a monthly basis from Company records.

<u>Use Per Customer</u> - Average use per customer is computed on a monthly basis by dividing residential sales by total customers.

Local Weather Data - Local climatologic data are provided by NOAA for the Cincinnati/Covington airport reporting station. Cooling degree days and heating degree

days are calculated on a monthly basis using temperature data. The degree day series are required on a billing cycle basis for use in regression analysis.

<u>Appliance Stock</u> - To account for the impact of appliance saturations and federal efficiency standards, an appliance stock variable is created. This variable is composed of three parts: appliance efficiencies, appliance saturations, and appliance energy consumption values.

The appliance stock variable is calculated as follows:

(11) Appliance $Stock_t =$

SUM (K_i * SAT_{i,t} * EFF_{i,t}) for all i

Where: t = time period

i = end-use appliance

 K_i = fixed energy consumption value for appliance i,

 $SAT_{i,t}$ = saturation of appliance i in period t, and

 $EFF_{i,t}$ = efficiency of appliance i in period t.

The appliances included in the calculation of the Appliance Stock variable are: electric range, frost-free refrigerator, manual-defrost refrigerator, food freezer, dish washer, clothes washer, clothes dryer, water heater, microwave, color television, black and white television, room air conditioner, central air conditioner, electric resistance heat, electric heat pump, and miscellaneous uses including lighting.

Appliance Saturation and Efficiency - In general, information on historical appliance saturations for all appliances is obtained from Company Appliance Saturation Surveys.

Data on historical appliance efficiency are obtained from Itron, Inc., a forecast consulting firm.

The forecast of appliance saturations and efficiencies is also obtained from data provided by Itron, Inc. They have developed Regional Statistically Adjusted End-use (SAE) Models, an end-use approach to electric forecasting that provides forward looking levels of appliance saturations and efficiencies.

<u>Peak Weather Data</u> - The weather conditions associated with the monthly peak load are collected from the hourly and daily data recorded by NOAA. The weather variables which influence the summer peak are maximum temperature on the peak day and the day before, morning low temperature, and humidity on the peak day. The weather influence on the winter peak is measured by the low temperatures and the associated wind speed. The variables selected are dependent upon whether it is a morning or evening winter peak load.

An average of extreme weather conditions is used as the basis for the weather component in the preparation of the peak load forecast. Using historical data for the single worst summer weather occurrence and the single worst winter weather occurrence in each year, an average extreme weather condition can be computed.

3. Forecast Data

Projections of exogenous variables in Duke Energy Ohio's models are required in the following areas: national and local employment, income, industrial production, and population, as well as natural gas and electricity prices.

Employment - The forecast of employment by industry is provided by Moody's Analytics.

24

Income -The forecast of income is provided by Moody's Analytics.

Industrial Production - The forecast of industrial production is also provided by Moody's Analytics.

Population - Duke Energy Ohio's population forecast is derived from data provided by Moody's Analytics. Population projections for the service area are prepared by first collecting county-level population forecasts for the counties in the Company's service area and then summing.

<u>Prices</u> - The projected change in electricity and natural gas prices over the forecast interval is provided by the Company's Financial Planning and Analysis department and Moody's Analytics.

4. Load Research and Market Research Efforts

Duke Energy Ohio is committed to the continued development and maintenance of a substantive class load database of typical customer electricity consumption patterns and the collection of primary market research data on customers.

Load Research – Complete load profile information, or 100% sample data, is maintained on commercial and industrial customers whose average annual demand is greater than 500 kW, served at primary distribution voltage or served at transmission voltage. Additionally, the Company continues to collect whole premise or building level electricity consumption patterns on representative samples of the various customer classes and rate groups whose annual demands are less than 500 kW. Periodically, the Company monitors selected end-uses or systems associated with energy efficiency evaluations performed in conjunction with energy efficiency programs. These studies are performed as necessary and tend to be of a shorter duration.

<u>Market Research</u> - Primary research projects continue to be conducted as part of the ongoing efforts to gain knowledge about the Company's customers. These projects include customer satisfaction studies, appliance saturation studies, end-use studies, studies to track competition (to monitor customer switching percentages in order to forecast future utility load), and related types of marketing research projects.

E. MODELS

Specific analytical techniques have been employed for development of the forecast models.

1. Specific Analytical Techniques

<u>Regression Analysis</u> - Ordinary least squares is the principle regression technique employed to estimate economic/behavioral relationships among the relevant variables. This econometric technique provides a method to perform quantitative analysis of economic behavior.

Ordinary least-squares techniques were used to model electric sales. Based upon their relationship with the dependent variable, several independent variables were tested in the regression models. The final models were chosen based upon their statistical strength and logical consistency.

Logarithmic Transformations - The projection of economic relationships over time requires the use of techniques that can account for non-linear relationships. By transforming the dependent variable and independent variables into their "natural

logarithm", a non-linear relationship can be transformed into a linear relationship for model estimation purposes.

Polynomial Distributed Lag Structure - One method of accounting for the lag between a change in one variable and its ultimate impact on another variable is through the use of polynomial distributed lags. This technique is also referred to as Almon lags. Polynomial Distributed Lag Structures derive their name from the fact that the lag weights follow a polynomial of specified degree. That is, the lag weights all lie on a line, parabola, or higher order polynomial as required.

This technique is employed in developing econometric models for most of the energy equations.

<u>Serial Correlation</u> - It is often the case in forecasting an economic time series that residual errors in one period are related to those in a previous period. This is known as serial correlation. By correcting for this serial correlation of the estimated residuals, forecast error is reduced and the estimated coefficients are more efficient. The Marquardt algorithm is employed to correct for the existence of autocorrelation.

Qualitative Variables - In several equations, qualitative variables are employed. In estimating an econometric relation using time series data, it is quite often the case that "outliers" are present in the historic data. These unusual shifts or deviations in the data can be the result of problems such as errors in the reporting of data by particular companies and agencies, labor-management disputes, severe energy shortages or restrictions, and other perturbations that do not repeat with predictability. Therefore, in order to identify the true underlying economic relationship between the dependent

variable and the other independent variables, qualitative variables are employed to account for the impact of the outliers. The coefficient for the qualitative variable must be statistically significant, have a sign in the expected direction, and make an improvement to model fit statistics.

2. Relationships Between The Specific Techniques

The manner in which specific methodologies for forecasting components of the total load are related is explained in the discussion of specific analytical techniques above.

3. Alternative Methodologies

The Company continues to use the current forecasting methodology as it has for the past several years. The Company considers the forecasting methods currently utilized to be adequate.

4. Changes In Methodology

There were no significant changes to the forecast methodology. The Company uses the latest historical data available and relies on recent economic data and forecasts from Moody's Analytics.

5. Equations

Following is a display of all the relevant equations used in the forecast. Specifically, for each of the equations in the Electric Energy Forecast Model and Electric Peak Load Model the following information is included:

Equation Estimation Results - The results of the estimation of each of the stochastic equations in the models is provided. Included are the estimated coefficients and the
results of appropriate statistical tests. Those equations which required a correction for serial correlation are so indicated.

The computer output for each variable lists the estimated coefficient, standard error, and the t statistic. Lagged variables are denoted with the \-N symbol, "N" being the number of periods lagged.

The use of Polynomial Distributed Lags (PDL) is indicated by the expression:

PDL followed by a number signifying the PDL variable number. The PDL is defined using the degree of the polynomial, the length of lag, and the restrictions. The restrictions may constrain the PDL such that the end values of the distributed lag are close to zero. The computer output for each PDL variable lists the estimated lag weights and their associated standard errors. There is also a plot of the distributed lag. In addition to the individual lag weights, statistics are presented on the sum and average of the lag weights.

<u>Mnemonic Definition</u> - Following the equation estimation results is a definition list of the mnemonics for each variable used in the equation.

Forecast Error - Following the equation mnemonics definition is the forecast error as measured by the mean of the forecast standard errors over the forecast period.

EQUATIONS USED IN FORECAST

Service Area Electric Customers - Residential

Dependent Variable: LOG(CUSRES_OH_KY) Method: Least Squares Date: 02/22/11 Time: 12:53 Sample: 1989M10 2010M12 Included observations: 255 Convergence achieved after 7 iterations

Variable	Coefficient	Std. Error	t-Statistic	Prob.
@MQNTH=1	14 77528	3 476269	4 250328	0 0000
@MONTH=>	14 77606	3.476271	4.250548	0.0000
@MONTH=3	14,77619	3.476272	4.250585	0.0000
@MONTH=4	14.77461	3.476271	4.250132	0.0000
@MONTH=5	14.77171	3.476268	4.249301	0.0000
@MONTH=7	14.76918	3.476263	4.248581	0.0000
@MONTH≃8	14.76796	3.476261	4.248232	0.0000
@MONTH=9	14.76739	3,476259	4.248070	0.0000
	14,75912	3.470203	4.240001	0,0000
	14.77363	3.476263	4.240902	0.0000
@ISPERIOD("1894M05")	-0.005035	0.001281	-3 932009	0.0000
@ISPERIOD("2001m02")	0.028551	0.001652	17.28378	0.0000
@ISPERIOD("2001m03")	0.008740	0.002084	4.193195	0.0000
@ISPERIOD("2001m04")	0.007463	0.002210	3.377294	0.0009
@ISPERIOD("2001m05")	0.028774	0.002081	13.82542	0.0000
@ISPERIOD("2001m06")	0.015467	0.001637	9.451164	0.0000
@ISPERIOD("2003m12")	-0.004948	0.001474	-3.357548	0.0009
@ISPERIOD("2004m01")	0.003394	0.001476	2.298880	0.0224
@ISPERIOD("2005m02")	-0.003342	0.001281	-2.609005	0.0097
@ISPERIOD("2006m02")	-0.002619	0.001281	-2.044/69	0.0420
	-0.002782	0.001279	-2,174091	0.0307
	-0.005495	0.001201	1 974954	0.0000
AR(1)	0.999353	0.002004	498.7187	0.0000
R-squared	0.999392	Mean dependent var	<u> </u>	13.42009
S E of regression	0.999329	Akaike info criterion		-9 752425
Sum souared resid	0.001701	Schwarz criterion		-9.405242
Log likelihood	1268.434	Hannan-Quinn criter.		-9.612773
Durbin-Watson stat	1.993809			
Inverted AR Roots	1.00		- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10	
Lag Distribution of	<u> </u>			<u> </u>
	i	Coefficient	Std. Error	t-Statistic
. •	0	0.00607	0.00307	1.97495
. •	1	0.01093	0.00553	1.97495
. *	2	0.01457	0.00738	1.97495
· *	3	0.01700	0.00861	1.97495
· *	4	0.01822	0.00922	1.97495
· "]	5	0.01822	0.00922	1.9/495
*	5	0.01700	0.00001	1.9/490
*	י א	0.01093	0.00553	1.97495
*	9	0.00607	0.00307	1.97495
	Sum of Lags	0.13358	0.06764	1.97495

-

KWH USE PER CUSTOMER - RESIDENTIAL

Dependent Variable: LOG(KWHRES_OH_KY/CUSRES_OH_KY) Method: Least Squares Date: 02/22/11 Time: 17:22 Sample: 1998M01 2010M12 Included observations: 156 Convergence achieved after 11 iterations

Variable	Coefficient	Std. Error	t-Statistic	Prob.
 	-0 514845	1 115202	-0.461661	0.6451
LOG(APPLSTK EFF OH KY*(YP OH KY/N OH KY/CPI))	0.917152	0.143311	6.399716	0.0000
(D DJF)*(SAT EH EFF)*HDDB OH KY 59 0 500	0.003158	0.000126	25.03541	0.000
(1-D DJF)*(SAT EH EFF)*HDDB OH KY 59 0 500	0.002783	0.000149	18,67755	0.0000
(D DJF)*(SAT EH EFF)*HDDB OH KY 59 500	0.002237	9.63E-05	23 2325 1	0.0000
(1.D DJF)*(SAT EH EFF)*HDDB OH KY 59 500	0.003034	0.000238	12,73487	0.0000
(D JJA)*(SAT CAC EFF)*CDDB OH KY 65 0 100	0.005602	0.000449	12.47811	0.0000
(1-D_JJÁ)*(SAT_CAC_EFF)*CDDB_OH_KY_65_0_100	0.007240	0.000359	20.14954	0.0000
(D_JJA)*(SAT_CAC_EFF)*CDDB_OH_KY_65_100	0.001446	0.000319	4.532283	0.0000
(1-D_JJA)*(SAT_CAC_EFF)*CDDB_OH_KY_65_100	0.001417	0.000404	3.506865	0.0006
(D_JJA+(@MONTH=5)+(@MONTH=9))*(SAT_RAC_EFF)*CDDB_OH_KY_65	0.003962	0.000411	9.636836	0.0000
@MONTH=1	0.103920	0.006545	15.87673	0.0000
@MONTH=5	-0.047385	0.009273	-5.110109	0.0000
@MONTH=7	0.076130	0.010368	7.342619	0.0000
@MONTH=8	0.061891	0.012905	4.795728	0.0000
@MONTH=12	0.061894	0.008190	7.557223	0.0000
@ISPERIOD("2001m04")	-0.048687	0.020563	-2.367680	0.0194
@ISPERIOD("2001m05")	-0.098768	0.021593	-4.574070	0.0000
@ISPERIOD("2002m05")+@ISPERIOD("2004m05")	-0.043707	0.014726	-2.967941	0.0036
@ISPERIOD("2005m01")	0.080274	0.018672	4.299069	0.0000
@ISPERIOD("2007m05")	-0.082077	0.019906	-4.123167	0,0001
@ISPERIOD("2007m10")	0.082826	0.020268	4.086511	0.0001
@ISPERIOD("2008m10")	-0.062908	0.019367	-3.248155	0.0015
@ISPERIOD("2010m10")	-0.044210	0.019111	-2.313270	0.0223
@ISPERIOD("2004m06")	0,052896	0.019490	2.713963	0.0076
@ISPERIOD("2010m05")	-0.068642	0.019277	-3.560903	0,0005
PDL01	-0.039970	0.022929	-1.743183	0.0837
AK(1)	0.524912	0.077534	6.770093	0.0000
R-squared	0.992259	Mean dependen	t var	6.887594
Adjusted R-squared	0.990626	S.D. dependent	var	0.206988
S.E. of regression	0.020040	Akaike info criter	ion	-4.821019
Sum squared resid	0.051405	Schwarz criterior	n	-4.273609
Log likelihood	404.0395	Hannan-Quinn c	riter.	-4.598685
F-statistic	607.6934	Durbin-Watson s	stat	1.843885
Prob(F-statistic)	0.000000			
Inverted AR Roots	.52		÷	
Lag Distribution of LOG(APPLSTK_EFF_OH_KY*(MP_RES_OH_KY/CPI))	i	Coefficient	Std. Error	t-Statistic
• · · · · · · · · · · · · · · · · · · ·	0	-0.03997 -0.01998	0.02293	-1.74318 -1.74318
	Sum of Lags	-0.05995	0.03439	-1.74318

KWH SALES - COMMERCIAL

Dependent Variable: LOG(KWHCOM_OH_KY) Method: Least Squares Date: 03/04/11 Time: 16:41 Sample: 1986M01 2010M12 Included observations: 300 Convergence achieved after 12 iterations MA Backcast: 1985M12

Variable	Coefficient Std. Error t-Statistic	Prob.
c	10.03173 0.597318 16.79462	0.0000
LOG(ECOM_OH_KY)	1.472330 0.094699 15.54747	0.0000
LOG(DS KWH COM OH KY(-1)/CPI(-1))	- -0.048246 0.023053 2.092865	0.0373
(@MŌNTH≕11)*HDDB_OH_KY_59	6.88E-05 2.64E-05 2.602332	0.0098
(@MONTH=12)*HDDB_OH_KY_59	0.000188 1.18E-05 15.85891	0.0000
(@MONTH=1)*HDDB_OH_KY_59	0.000192 8.38E-06 22.94841	0.0000
(@MONTH=2)*HDDB_OH_KY_59	0.000127 8.89E-06 14.34678	0.0000
(@MONTH=3)*HDDB_OH_KY_59	0.000108 1.09E-05 9.897655	0.0000
(@MONTH=4)*HDDB_OH_KY_59	8.00E-05 1.93E-05 4.146326	0.0000
(@MONTH=5)*CDDB_OH_KY_65	0.000975 0.000152 6.425203	0.0000
(@MONTH=6)*CDDB_OH_KY_65_0_100	0.001323 7.92E-05 16.69725	0.0000
(@MONTH=6)*CDDB_OH_KY_65_100	0.000716 7.60E-05 9.425939	0.0000
(@MONTH=7)⁺CDDB_OH_KY_65_0_100	0.001814 0.000153 11.82619	0.0000
(@MONTH=7)*CDDB_OH_KY_65_100	0.000467 7.42E-05 6.292792	0.0000
(@MONTH=8)*CDDB_OH_KY_65_0_100	0.001382 0.000130 10.64329	0,0000
	0.000617 4.98E-05 12.39518	0.0000
	0.001748 0.000106 16.44290	0,0000
	0.000457 5.68E-05 8.045500	0.0000
	0.000703 8.58E-05 8.195241	0.0000
	0.027648 0.009710 2.847026	0.0040
	0.09/400 0.010030 5./91180	0.0000
(USPERIOD(19911111)	0.000418 0.017119 3.412397	0.0007
@ISPERIOD("1993m09")	-0.120572 0.017595 6.852518	0.0000
@ISPERIOD("1993m10")+@ISPERIOD("2004m12")+@ISPERIOD("2007m04")	0.044787 0.010405 4.304534	0.0000
@ISPERIOD("1995m04")	0.054237 0.018635 2.910520	0.0039
@ISPERIOD("1995M05")	- -0.086021 0 018781 4 580158	0.0000
@(SPER/OD("1998m05")	0.063831 0.016709 3.820089	0.0002
@ISPERIOD("1998m07")	0.053064 0.016868 3.145907	0.0018
	-	0.0000
	-0.000909 0.012729 4.791479	0.0000
	0.0430/0 0.016036 2.363449	0.0170
@ISPERIOD/*1003m11*\+@ISPERIOD(*2000m00) @ISPERIOD/*1003m11*\+@ISPERIOD/*2000m00*\+@ISPERIOD/*2001m03*\	0.060520 0.010001 0.131709	0.0000
#@ISPERIOD(2005millio)*@ISPERIOD(2005millio)*@ISPERIOD(2005millio)*	-0 050026 0 007274 6 877750	0 0000
	0.055401.0.016938.3.295599	0.0000
(g)GFE((()D)(20021104)	0,033481 0.010030 0.230395	0.0011
@ISPERIOD("2005m03")+@ISPERIOD("1999m02")	-0.028477 0.011880 2.397000	0.0172
@ISPERIOD("2010m02")	-0.092050 0.017152 5.366674	0.0000
	0,797924 0.049527 16.11088	0.0000
MA(1)	0.829177 0.045827 18.09353	0.0000
		_

	Mean dependent	
R-squared	0.991621var	20.05652
Adjusted R-squared	S.D. dependent 0,990474 var Akaika info	0.219772
S.E. of regression	0.021450 criterion	4.731100
Sum squared resid	0.121012 Schwarz criterion Hannan-Quinn	4.274300
Log likelihood	746.6650 criter. Durbin-Watson	4,548288
F-statistic Prob(F-statistic)	864.5352 stat 0.000000	2.213320
Inverted AR Roots Inverted MA Roots	.8989 83	

MWH SALES - INDUSTRIAL - FOOD, BEVERAGE AND TOBACCO

Dependent Variable: LOG(MWHN311_312_OH_KY) Method: Least Squares Date: 02/18/11 Time: 12:58 Sample: 1980Q1 2010Q4 Included observations: 124 Convergence achieved after 14 iterations

	Coefficient	Std. Error	t-Statistic	Prob.
c	10.50195	0.424660	24.73025	0.0000
LOG(JQINDN311_312_OH_KY(-3))	0.349835	0.194308	1.800411	0.0745
LOG(DS_KWH_IND_OH_KY/CPI)	-0.114501	0.048419	-2.364800	0.0198
CDDB_OH_KY_65	0.000165	1.31E-05	12.64796	0.0000
HDDB_OH_KY_59	-3.05E-05	5.27E-06	-5.777112	0.0000
D_1965Q1_1990Q4	-0.295112	0.046512	-6.344824	0.0000
@ISPERIOD("1991q1")+@ISPERIOD("2000q3")	-0.152495	0.031910	-4.778932	0.0000
@ISPERIOD("2007q4")	0.141740	0.042345	3.347297	0.0011
@ISPERIOD("2008q4")+@ISPERIOD("2009q1")	0.149226	0,043009	3.469609	0.0007
D_1976Q1_1989Q2+D_1987Q1_1991Q3	-0.086445	0.027814	-3.107943	0.0024
@ISPERIOD("1993q2")	-0.108494	0.042446	-2.556059	0.0120
@ISPERIOD("1992q2")	-0.162981	0.042087	-3.872467	0.0002
D_1980Q1_2005Q2	-0.076237	0.032984	-2.311303	0.0227
AR(1)	0.719013	0.074756	9.618118	0.0000
R-squared	0.970883	Mean dependent var		11.31940
Adjusted R-squared	0.967441	S.D. dependent var		0.285979
S.E. of regression	0.051602	Akaike info criterion		-2.984504
Sum squared resid	0.292905	Schwarz criterion		-2.666085
Log likelihood	199.0393	Hannan-Quinn criter.		-2.855155
F-statistic	282.1387	Durbin-Watson stat		2.010146
	0.000000			

MWH SALES - INDUSTRIAL - PAPER, PLASTIC AND RUBBER

Dependent Variable: LOG(MWHN322_326_OH_KY) Method: Least Squares Date: 02/22/11 Time: 08:40 Sample: 1979Q1 2010Q4 Included observations: 128 Convergence achieved after 13 iterations

Variable	Coefficient	Std. Error	t-Statistic	Prob.
LOG(JQINDN322_328_OH_KY) @ISPERIOD("1992q1")+@ISPERIOD("1993q1") @ISPERIOD("2001q2") @ISPERIOD("2003q4")+@ISPERIOD("1996q3") @ISPERIOD("2005q1") HDDB_OH_KY_59*D_1999Q1_2001Q2 @ISPERIOD("2000q3")	0.309810 0.051513 -0.203553 -0.088605 0.124963 -2.15E-05 0.093176	0.168334 0.016989 0.024566 0.016437 0.023737 8.14E-06 0.023828	1.840453 3.032060 -8.285811 -5.390512 5.264399 -2.639061 3.910416	0.0683 0.0030 0.0000 0.0000 0.0000 0.0005 0.0095
@ISPERIOD("1990q2")+@ISPERIÓD("2010q2") @QUARTER=1 @QUARTER=2 @QUARTER=3 @QUARTER=4 PDL01 PDL02 AR(1) AR(2)	-0.053079 9.894756 9.945191 9.961354 9.930137 -0.061645 -0.024528 1.083638 -0.165519	0.016964 0.852062 0.852586 0.852341 0.852097 0.029480 0.013997 0.097795 0.096048	-3.128934 11.61272 11.66474 11.68705 11.65377 -2.091070 -1.752412 11.08066 -1.723287	0.0022 0.0000 0.0000 0.0000 0.0388 0.0824 0.0000 0.0876
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log fikelihood Durbin-Watson stat	0.957649 0.951977 0.034216 0.131121 258.9303 1.994581	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter.		11.97044 0.156135 -3.795786 -3.439282 -3.650937
Inverted AR Roots	.90	.18		
Lag Distribution of LOG(DS_KW_IND_OH_KY/CPI)	ì	Coefficient	Std. Error	t-Statistic
	0 1 2 3	-0.08219 -0.06165 -0.04110 -0.02055	0.03931 0.02948 0.01965 0.00983	-2.09107 -2.09107 -2.09107 -2.09107 -2.09107
	Sum of Lags	-0.20548	0.09827	-2.09107
Lag Distribution of LOG(DS_KWH_IND_OH_KY/CPI)	i	Coefficient	Std. Error	t-Statistic
	0 1 2 3 4 5 6	-0.04292 -0.03679 -0.03066 -0.02453 -0.01840 -0.01226 -0.00613	0.02449 0.02099 0.01750 0.01400 0.01050 0.00700 0.00350	-1.75241 -1.75241 -1.75241 -1.75241 -1.75241 -1.75241 -1.75241
	Sum of Lags	-0.17169	0.09798	-1.75241

MWH SALES - INDUSTRIAL - CHEMICALS

Dependent Variable: LOG(MWHN325_OH_KY) Method: Least Squares Date: 02/18/11 Time: 13:04 Sample: 1978Q1 2010Q4 Included observations: 132 Convergence achieved after 20 iterations

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	10.28476	0.792054	12.98493	0.0000
LOG(JQINDN325_OH_KY)	0.486093	0.124505	3.904195	0.0002
CDDB_OH_KY 65	9.97E-05	8.17E-06	12.19917	0.0000
@ISPERIOD("1994q1")	-0.077933	0.036333	-2.144959	0.0339
@ISPERIOD("2003q4")	0.091963	0.037040	2.482807	0.0144
@ISPERIOD("2000q4")	0.080947	0.037184	2.176911	0.0314
@ISPERIOD("2009q2")	-0.131512	0.038205	-3.44231 9	0.0008
PDL01	-0.043777	0.017428	-2.511874	0,0133
AR(1)	0.569665	0.094034	6.058096	0.0000
AR(2)	0.352997	0.096003	3.676941	0.0004
R-squared	0.964301	Mean dependent var		12.33676
Adjusted R-squared	0.961668	S.D. dependent var		0.220981
S.E. of regression	0.043265	Akaike info criterion		-3.370200
Sum squared resid	0.228369	Schwarz criterion		-3.151806
Log likelihood	232,4332	Hannan-Quinn criter.		-3.281455
F-statistic	366.1631	Durbin-Watson stat		1,953791
Prob(F-statistic)	0.000000			
Inverted AR Roots	.94	37		
Lag Distribution of LOG(TS_KWH_IND_OH_KY/CPI)	,	Coefficient	Std. Error	t-Statistic
* .!	0	-0,06567	0.02614	-2.51187
* .	1	-0.05472	0.02179	-2.51187
* .]	2	-0.04378	0.01743	-2.51187
* .	3	-0.03283	0.01307	-2.51187
* .	4	-0.02189	0.00871	-2,51187
* .	5	-0.01094	0.00436	-2.51187
	Sum of Lags	-0.22983	0.09150	-2.51187

MWH SALES - INDUSTRIAL - PRIMARY METALS - BUTLER

Dependent Variable: LOG(MWHN331_BUTLER-BASE) Method: Least Squares Date: 02/18/11 Time: 13:05 Sample: 1985Q1 2010Q4 Included observations: 104 Convergence achieved after 11 iterations

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	11.54289	0.475030	24.29927	0.0000
(1-D_1965Q1_1985Q4)*LOG(TS_KWH_IND_OH_KY/CPI)	-0.008049	0.004027	-1.999083	0.0487
LOG(TS_KWH_IND_OH_KY(-5)/APGIND_OH_KY(-5))	-0.070697	0.023743	-2.977573	0.0038
@ISPERIOD("2009q2")	-0,380330	0.035585	-10.68799	0.0000
@ISPERIOD("2009q1")	-0.185576	0.034136	-5.436410	0.0000
D_1965Q1_1995Q4	-0.151179	0.033208	-4.552514	0.0000
@ISPERIOD("1998q3")	-0.118403	0.028031	-4.224004	0.0001
@ISPERIOD("1990q2")	-0.083181	0.028377	-2.931266	0.0043
@ISPERIOD("2008q4")	-0.111339	0.032228	-3.454775	0.0009
@ISPERIOD("1991q3")	-0.094316	0.029815	-3.163375	0.0021
@ISPERIOD("1986q3")	-0.071409	0.028216	-2.530772	0.0132
@ISPERIOD("1991q4")	0.056292	0.029192	1.928352	0.0571
@ISPERIOD("2001q1")	-0.078628	0.028031	-2.805044	0.0062
PDL01	0.196650	0.045579	4.314501	0.0000
PDL02	-0.112835	0.064230	-1.756746	0.0825
AR(1)	0.607956	0.105443	5.765747	0.0000
AR(2)	0.361086	0.104754	3.446999	0.0009
R-squared	0.979879	Mean dependent var		12.61955
Adjusted R-squared	0.976178	S.D. dependent var		0.221847
S.E. of regression	0.034241	Akaike info criterion		-3.762375
Sum squared resid	0.102000	Schwarz criterion		-3.330118
Log likelihood	212.6435	Hannan-Quinn criter		-3.587255
F-statistic	264.7997	Durbin-Watson stat		1.944391
Prob(F-statistic)	0.00000			
Inverted AR Roots	.98	37		
Lag Distribution of LOG(JQINDN331_BUTLER)	i	Coefficient	Std. Error	t-Statistic
· •	0	0.19665	0.04558	4,31450
· • j	1	0.09832	0.02279	4.31450
	Sum of Lags	0.29497	0.06837	4.31450
Lag Distribution of LOG(TS_KW_IND_OH_KY/CPI)	i	Coefficient	Std. Error	t-Statistic
• .	0	-0.11284	0.06423	-1.75675
<u> </u>	1	-0.05642	0.03211	-1.75675

MWH SALES - INDUSTRIAL - PRIMARY METALS - LESS BUTLER

Dependent Variable: LOG(MWHN331LBUTLER_OH_KY) Method: Least Squares Date: 02/18/11 Time: 13:07 Sample: 1987Q1 2010Q4 Included observations: 96 Convergence achieved after 9 iterations

Variable	Coefficient	Std. Error	t-Statistic	Prob.
c	7.245961	0.959964	7.548156	0.0000
@ISPERIOD("1999q1")	-0.402581	0.071569	-5.625043	0.0000
@ISPERIOD("1988q4")	-0.203375	0.071421	-2.847565	0.0055
@ISPERIOD("1996q3")+@ISPERIOD("1997q3")	-0 252081	0.050789	-4.963296	0.0000
D_1998Q3_2001Q2	0.774640	0.054284	14.27017	0.0000
D_196\$Q1_1998Q2	1.097773	0.040415	27.16255	0.0000
@ISPERIOD("2002q2")	-0.326168	0.072427	-4.503412	0.0000
@ISPERIOD("2003q1")	-0.155829	0.072110	-2.160995	0.0335
PDL01	0.300736	0.073052	4.116739	0.0001
PDL02	-0.113535	0.031400	-3.615828	0.0005
AR(1)	0.611689	0.092466	6.615247	0.0000
AR(3)	-0.191377	0.079864	-2.396267	0.0188
R-squared	0.976734	Mean dependent var		11.09645
Adjusted R-squared	0.973687	S.D. dependent var		0.518957
S.E. of regression	0.084181	Akaike info criterion		-1.995227
Sum squared resid	0.595261	Schwarz criterion		-1.674683
Log likelihood	107.7709	Hannan-Quinn criter.		-1.865658
F-statistic	320.5839	Durbin-Watson stat		2.242857
Prob(F-statistic)	0.00000			
Inverted AR Roots	.5242i	.52+.42i	43	
Lag Distribution of LOG(JQINDN331_CMSA)	i	Coefficient	Std. Error	t-Statistic
. *	0	0,30074	0.07305	4.11674
•	1	0.15037	0.03653	4.11674
	Sum of Lags	0,45110	0.10958	4.11674
Lag Distribution of LQG(TS_KWH_IND_OH_KY/CPI)	ì	Coefficient	Std. Error	t-Statistic
* .	0	-0.15138	0.04187	-3.61583
* .	1	-0.11354	0.03140	-3,61583
* .	2	-0.07569	0.02093	-3.61583
• .I	3	-0.03785	0.01047	-3.61583
	Sum of Lags	-0,37845	0.10467	-3.61583

MWH SALES - INDUSTRIAL - FABRICATED METALS

Dependent Variable: LOG(MWHN332_OH_KY) Method: Least Squares Date: 05/06/11 Time: 11:46 Sample: 1984Q1 2010Q4 Included observations: 108 Convergence achieved after 7 iterations

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	10.92849	0.180443	60.56472	0.0000
LOG(JQINDN332_OH_KY)	0.449144	0.149219	3.009954	0.0033
LOG(DS_KWH_IND_OH_KY/WPI0561)	-0 035225	0.014375	-2.450477	0.0160
D_2000Q3_2001Q2	0.184784	0.021119	8.749484	0.0000
@ISPERIOD("2009q1")+@ISPERIOD("2009q2")	-0.114032	0.022081	-5.164267	0.0000
CDDB_OH_KY_65	6.27E-05	5.86E-06	10.69503	0.0000
@ISPERIOD("2000q1")+@ISPERIOD("1988q3")	-0.042499	0.015110	-2.812634	0.0059
@ISPERIOD("1986q3")	-0.074790	0.021510	-3.476921	0.0008
@ISPERIOD("2001q1")	0.083925	0.021116	3.974499	0.0001
AR(1)	0.966756	0.032927	29.36071	0.0000
R-squared	0.940692	Mean dependent var		11.27337
Adjusted R-squared	0.935245	S.D. dependent var		0.115249
S.E. of regression	0.029328	Akaike info criterion		-4.132559
Sum squared resid	0.084290	Schwarz criterion		-3.884214
Log likelihood	233,1582	Hannan-Quinn criter.		-4.031864
F-statistic	172.7091	Durbin-Watson stat		2.009184
Prob(F-statistic)	0.00000			
Inverted AR Roots	.97			

MWH SALES - INDUSTRIAL - MACHINERY

Dependent Variable: LOG(MWHN333_OH_KY) Method: Least Squares Date: 02/18/11 Time: 13:11 Sample: 1982Q4 2010Q4 Included observations: 113 Convergence achieved after 9 iterations

0.503092 -0.322183 -0.047762 8.27E-05 0.065967 0.152257 -0.081080	0.120403 0.129203 0.026667 1.95E-05 0.030046 0.038175 0.030330	4.178396 -2.493630 -1.791068 4.248634 2.195512 3.988430	0.0001 0.0143 0.0763 0.0000 0.0305 0.0305
-0.322183 -0.047762 8.27E-05 0.065967 0.152257 -0.081080	0.129203 0.026667 1.95E-05 0.030046 0.038175 0.030330	-2.493630 -1.791068 4.248634 2.195512 3.988430	0.0143 0.0763 0.0000 0.0305 0.0001
-0.047762 8.27E-05 0.065967 0.152257 -0.081080	0.026667 1.95E-05 0.030046 0.038175 0.030330	-1.791068 4.248634 2.195512 3.988430	0.0763 0.0000 0.0305 0.0001
8.27E-05 0.065967 0.152257 -0.081080	1.95E-05 0.030046 0.038175 0.030330	4.248634 2.195512 3.988430	0.0000 0.0305 0.0001
0.065967 0.152257 -0.081080	0.030046 0.038175 0.030330	2.195512 3.988430	0.0305 0.0001
0.152257 -0.081080	0.03817 5 0.030330	3.988430	0.0001
-0.081080	0.030330		
0.004000		-2.673219	0.0088
-0.201999	0.034988	-8.059888	0.0000
-0.075197	0.034782	-2.161935	0.0330
9.423331	0.466364	20.20596	0.0000
9.414453	0.465468	20.22577	0.0000
9.434672	0.462262	20.40980	0.0000
9.414505	0.465407	20.22853	0.0000
0.890755	0.046713	19.06876	0.0000
0.931419	Mean dependent var		10.82105
0.922414	S.D. dependent var		0.141517
0.039419	Akaike info criterion		-3.513634
0.153829	Schwarz criterion		-3.175728
212.5203	Hannan-Quinn criter.		-3.376515
1.869360			
	-0.075197 9.423331 9.414453 9.434672 9.414505 0.890755 0.931419 0.922414 0.039419 0.153829 212.5203 1.869360	-0.075197 0.034782 9.423331 0.466364 9.414453 0.466364 9.434672 0.462262 9.414505 0.465407 0.890755 0.046713 0.931419 Mean dependent var 0.922414 S.D. dependent var 0.039419 Akaike info criterion 0.153829 Schwarz criterion 212.5203 Hannan-Quinn criter. 1.869360	-0.075197 0.034782 -2.161935 9.423331 0.466364 20.20596 9.414453 0.466364 20.22577 9.434672 0.462262 20.40980 9.414505 0.465407 20.22853 0.890755 0.046713 19.06876 0.931419 Mean dependent var 0.922414 S.D. dependent var 0.039419 Akaike info criterion 0.153829 Schwarz criterion 212.5203 Hannan-Quinn criter. 1.869360

MWH SALES - INDUSTRIAL - COMPUTER AND ELECTRONICS

Dependent Variable: LOG(MWHN334_OH_KY) Method: Least Squares Date: 02/18/11 Time: 13:12 Sample: 1980Q1 2010Q4 Included observations: 124 Convergence achieved after 14 iterations

Variable	Coefficient	Std. Error	t-Statistic	Prob.
c	7.636820	0.785829	9.718169	0.0000
LOG(JQINDN334_OH_KY)	0.068654	0.023298	2.946718	0.0039
CDDB_OH_KY_65	0.000110	8.49E-06	12.96695	0.0000
@ISPERIOD("1986q3")	-0.075276	0.033735	-2.231351	0.0276
@ISPERIOD("1992q2")	-0.114736	0.033268	-3.448810	0.0008
@ISPERIOD("1988q4")	0.128977	0.033545	3.844941	0.0002
@ISPERIOD("2002q1")	-0.102444	0.033293	-3.077074	0.0026
@ISPERIOD("2010q2")	-0.176752	0.044545	-3.967914	0.0001
1-@ISPERIOD("2010q3")-@ISPERIOD("2010q4")	0.348847	0.059188	5,893851	0.0000
@ISPERIOD("2009Q1")	-0.110379	0.033326	-3.312139	0.0012
PDL01	-0.054523	0.015581	-3.499310	0.0007
AR(1)	0.835586	0.057735	14.47272	0.0000
R-souared	0.963975	Mean dependent var		10,76919
Adjusted R-squared	0.960437	S.D. dependent var		0.217775
S.E. of regression	0.043316	Akaike info criterion		-3.348802
Sum squared resid	0.210147	Schwarz criterion		-3.075871
Log likelihood	219,6257	Hannan-Quinn criter.		-3.237931
F-statistic	272.4499	Durbin-Watson stat		1.768787
Prob(F-statistic)	0.000000			
Inverted AR Roots	.84			
Lag Distribution of LOG(DS_KWH_IND_OH_KY/CPI)	i	Coefficient	Std. Error	t-Statistic
* .1	0	-0.04544	0.01298	-3,49931
* .	1	-0.07270	0.02077	-3.49931
* . (2	-0.06178	0.02337	-3.49931
*	3	-0.07270	0.02077	-3,49931
•	4	-0.04544	0.01298	-3.49931
	Sum of Lags	-0.31805	0.09089	-3.49931

Dependent Variable: LOG(MWHN335_OH_KY) Method: Least Squares Date: 02/18/11 Time: 13:13 Sample: 1984Q1 2010Q4 Included observations: 108 Convergence achieved after 11 iterations

Variable	Coefficient	Std. Error	t-Statistic	Prob.
LQG(DS_KWH_IND_OH_KY/WPI0561) @ISPERIOD("1988q3") @ISPERIOD("2009q1")+@ISPERIOD("2009q2") @ISPERIOD("2008q4") @ISPERIOD("1986q3")+@ISPERIOD("1992q2") @ISPERIOD("2002q3") @ISPERIOD("1999q1") @QUARTER=1 @QUARTER=1 @QUARTER=3 @QUARTER=3 @QUARTER=4 PDL01 PDL02 AR(1) AR(2)	-0.045043 -0.083343 -0.066663 -0.235459 -0.099709 -0.073665 <i>D.065103</i> -0.057785 8.052516 8.059279 8.083518 8.062102 0.096288 -0.012352 1.147741 -0.235883	0.016224 0.020768 0.020910 0.029168 0.026210 0.014501 0.020910 0.020910 0.020907 1.216334 1.216439 1.216455 1.216512 0.050134 0.006802 0.114382 0.113489	-2.776292 -4.013147 -3.188013 -8.072589 -3.804251 -5.073269 3.113399 -2.763877 6.620316 6.625307 6.645142 6.627227 1.920602 -1.816043 10.03425 -2.078473	0.0067 0.0001 0.0000 0.0003 0.0003 0.0005 0.0009 0.0000 0.0000 0.0000 0.0000 0.0000 0.0579 0.0726 0.0726 0.0000 0.0405
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.965821 0.960248 0.031295 0.090104 229.5565 1.904155	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter.		10.54494 0.156964 -3.954751 -3.557398 -3.793639
Inverted AR Roots	.88	.27		
Lag Distribution of LOG(JQINDN335_OH_KY)	i	Coefficient	Std. Error	t-Statistic
	0 1 2 3	0.12838 0.09629 0.06419 0.03210	0.06685 0.05013 0.03342 0.01671	1.92060 1.92060 1.92060 1.92060
	Sum of Lags	0.32096	0.16711	1.92060
Lag Distribution of LOG(DS_KWH_IND_OH_KY/CPI)	ĩ	Coefficient	Std. Error	t-Statistic
	0 1 2 3 4 5 6 7 8 9	-0.01123 -0.02021 -0.02695 -0.03144 -0.03369 -0.03369 -0.03144 -0.02695 -0.02021 -0.01123	0.00618 0.01113 0.01484 0.01731 0.01855 0.01855 0.01855 0.01731 0.01484 0.01113 0.00618	-1.81604 -1.81604 -1.81604 -1.81604 -1.81604 -1.81604 -1.81604 -1.81604 -1.81604 -1.81604
	Sum of Lags	-0.24704	0.13603	-1.81604

MWH SALES - INDUSTRIAL - MOTOR VEHICLES AND PARTS

Dependent Variable: LOG(MWHN3361_62_83_OH_KY) Method: Least Squares Date: 02/18/11 Time: 13:15 Sample: 1983Q1 2010Q4 Included observations: 112 Convergence achieved after 5 iterations MA Backcast: 1982Q2 1982Q4

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	8,051917	0.520185	15.47896	0.0000
LOG(TS_KWH_IND_OH_KY(-6)/WP10561(-6))	-0.063659	0.032882	-1.935967	0.0558
CDDB_OH_KY_65	9.43E-05	1.49E-05	6.346838	0.0000
@ISPERIOD("1999q1")	0.541207	0.058225	9.295131	0.0000
@ISPERIOD("2000q1")	0.195837	0.059601	3.285824	0.0014
@ISPERIOD("2004q4")	-0.270881	0.058810	-4.60599 5	0.0000
D_1965Q1_2005Q1	0,230177	0.048607	4.735464	0.0000
@ISPERIOD("2008q3")	-0.219970	0.064779	-3.395720	0.0010
@ISPERIOD("2008q4")	-0.241327	0.068775	-3.508926	0.0007
@ISPERIOD("2009q1")	-0.296137	0.066791	-4.434421	0.0000
@ISPERIOD("1991q1")	-0.131337	0.058181	-2.257392	0.0262
PDL01	0.081793	0.024827	3.294454	0.0014
PDL02	-0.174030	0.030342	-5.735555	0.0000
AR(1)	0.441387	0.097294	4.536622	0.0000
MA(3)	0.479336	0.097863	4.898011	0.0000
R-squared	0.888195	Mean dependent	var	11.43920
Adjusted R-squared	0.872058	S.D. dependent va	аг	0.197459
S.E. of regression	0.070629	Akaike info criterio	п	-2.338684
Sum squared resid	0.483880	Schwarz criterion		-1.974599
Log likelihood	145.9663	Hannan-Quinn cri	ter.	-2.190963
F-statistic	55.04158	Durbin-Watson sta	at	2.131481
Prob(F-statistic)	0.000000			
Inverted AR Roots	.44			
Inverted MA Roots	.3968i	.39+.68i	78	
Lag Distribution of LOG(JQINDN3361_62_63_OH_KY)	i	Coefficient	Std, Error	t-Statistic
. *1	0	0.12269	0.03724	3.29445
. *	1	0.08179	0.02483	3.29445
•	2	0.04090	0.01241	3.29445
	Sum of Lags	0.24538	0.07448	3.29445
Lag Distribution of LOG(TS_KWH_IND_OH_KY/APGIND_OH_KY)	i	Coefficient	Std. Error	t-Statistic
* .	0	-0.17403	0.03034	-5.73555
<u> </u>	1	-0.08701	0.01517	-5.73555
	Sum of Lags	-0.26104	0.04551	-5.73555

MWH SALES - INDUSTRIAL - AEROSPACE PRODUCTS AND PARTS

Dependent Variable: LOG(MWHN3364_OH_KY) Method: Least Squares Date: 02/18/11 Time: 13:17 Sample (adjusted): 1976Q3 2010Q4 Included observations: 138 after adjustments Convergence achieved after 9 iterations

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	10.40620	0.301787	34,48198	0.0000
LOG(TS_KWH_IND_OH_KY/CPI)	-0.077685	0.034073	-2.279933	0.0243
CDDB_OH_KY_65	0.000122	8.06E-06	15,17080	0.0000
@ISPERIOD("1986q2")+@ISPERIOD("1991q4")	0.129654	0.025078	5.170028	0.0000
@ISPERIOD("1991q1")+@ISPERIOD("1999q4")	-0.084145	0.025266	-3.330377	0.0011
@ISPERIOD("1992q1")+@ISPERIOD("2000q3")	-0.280391	0.025243	-11.10777	0.0000
@ISPERIOD("2008q2")+@ISPERIOD("2002q3")	0.164495	0.025305	6,500603	0.0000
@ISPERIOD("2001g2")	0.219082	0.036720	5.966257	0.0000
@ISPERIOD("2001q4")+@ISPERIOD("2004q1")	0.127053	0.026964	4.711866	0.0000
@ISPERIOD("2003q3")	-0.159349	0.037565	-4.241923	0.0000
@ISPERIOD("2003q4")	-0.403937	0.036510	-11.06362	0.0000
PDL01	0.159517	0.055972	2.849946	0.0051
AR(1)	0.475000	0.083613	5.680911	0 0000
AR(2)	0.458309	0.083692	5.476172	0.0000
R-squared	0.922112	Mean dependent var		11.13682
Adjusted R-squared	0.913946	S.D. dependent var		0.144033
S.E. of regression	0.042252	Akaike info criterion		-3.394411
Sum squared resid	0 221367	Schwarz criterion		-3.097443
Log likelihood	248.2144	Hannan-Quinn criter.		-3.273731
F-statistic	112.9252	Durbin-Watson stat		1.928903
Prob(F-statistic)	0.000000			
Inverted AR Roots	.95	48		
Lag Distribution of LOG(JQINDN3364_OH_KY)	i	Coefficient	Std. Error	t-Statistic
		0.15952	0.05597	2,84995
•	1	0.07976	0.02799	2.84995
	Sum of Lags	0.23928	0.08396	2.84995

MWH SALES - INDUSTRIAL - MISCELLANEOUS

Dependent Variable: LOG(MWHNAOI_OH_KY) Method: Least Squares Date: 02/18/11 Time: 13:16 Sample: 1979Q1 2010Q4 Included observations: 128 Convergence achieved after 8 iterations MA Backcast: 1978Q3 1978Q4

Variable	Coefficient	Std. Error	t-Statistic	Prob.
c	11.88779	0.501920	23.68465	0.0000
LOG(JQINDNAOI_OH_KY)	0.437354	0.202024	2,164859	0.0325
CDDB_OH_KY_65	0.000152	5.82E-06	26.08549	0.0000
D_1965Q1_2001Q3	0.239000	0.034977	6,832993	0.0000
@ISPERIOD("1993q1")+@ISPERIOD("1993q2")	-0.112249	0.022882	-4.905591	0.0000
@ISPERIOD("1996q2")	-0.100633	0.024413	-4.122139	0.0001
@ISPERIOD("2003q4")	-0.064136	0.024469	-2.621110	0,0100
@ISPERIOD("2004q4")	0.131309	0.027091	4.846902	0.0000
@ISPERIOD("2005q1")	-0.166456	0.027212	-6.117062	0.0000
@ISPERIOD("2000q2")	-0.153083	0.029028	-5.273714	0.0000
@ISPERIOD("2000q3")+@ISPERIOD("2000q4")	-0.105271	0.027091	-3.885913	0.0002
@ISPERIOD("2001q2")+@ISPERIOD("2005q4")	-0.069407	0.017390	-3.991301	0.0001
@ISPERIOD("2008q3")+@ISPERIOD("2008q4")	0.133541	0.023910	5.585172	0.0000
PDL01	-0.055260	0.031283	-1.766453	0.0800
AR(1)	0.980983	0 012992	75.50632	0.0000
MA(2)	0.150976	0.000364	414.8660	0.0000
R-squared	0.986800	Mean dependent var		12.43838
Adjusted R-squared	0.985032	S.D. dependent var		0.282311
S.E. of regression	0.034539	Akaike info criterion		-3.776990
Sum squared resid	0,133609	Schwarz criterion		-3.420486
Log likelihood	257.7274	Hannan-Quinn criter.		-3.632141
F-statistic	558,1851	Durbin-Watson stat		1.906248
Prob(F-statistic)	0.000000			
Inverted AR Roots	.98			
Lag Distribution of LOG(DS_KWH_IND_OH_KY(-4)/CPI(-4))	i	Coefficient	Std. Error	t-Statistic
*	0	-0.05526	0.03128	-1,76645
* .I	1	-0.02763	0.01564	-1.76645
	Sum of Lags	-0.08289	0.04692	-1.76645

KWH SALES - OTHER PUBLIC AUTHORITIES - WATER PUMPING

Dependent Variable: LOG(KWHOPAWP_OH_KY) Method: Least Squares Date: 02/22/11 Time: 17:19 Sample: 1976M01 2010M12 Included observations: 420

Variable	Coefficient	Std. Error	t-Statistic	Prob.
	7 343583	0.815592	9.003991	0.000
D 1965M01 2001M121 OG(CUSRES OH KY)	0.666205	0.059001	11.29152	0.0000
(1-D 1965M01 2001M12)* OGCUSBES OH KY)	0.623779	0.058028	10,74957	0.0000
LOG(DS KW OPA OH KY/CPI)	-0.041952	0.020836	-2.013434	0,0448
((@MONTH=5)+(@MONTH=6)+(@MONTH=7)+(@MONTH=8))*(PRECIP_OH_KY+PRECIP_OH_KY(-				
1))	-0.003603	0.001357	-2.654939	0.0063
((@MONTH=4)+(@MONTH=9)+(@MONTH=10)+(@MONTH=11))*(PRECIP_OH_KY+PRECIP_OH_KY	-			
1))	-0.002277	0.001320	-1.725192	0.0853
((@MONTH=6)+(@MONTH=7))*CDD_OH_KY_65	0.000684	5.08E-05	13.47076	0.0000
(@MONTH=8)*CDD_OH_KY_65	0.000774	5.67E-05	13.65227	0.0000
(1-{{@MONTH=6}+(@MONTH=7}+(@MONTH=8)))*CDD_OH_KY_65	0.001241	0.000101	12.33444	0.0000
@ISPERIOD("1982m06")	0.832372	0.081478	10.21594	0.0000
@ISPERIOD("1998m10")	-0.559534	0.081309	-6.881549	0.0000
@ISPERIOD("2000m01")	-0.803448	0.081575	-9.849237	0.0000
@ISPERIOD("2000m06")	0.354003	0.081863	4.324362	0.0000
@ISPERIOD("2000m05")	-0.691377	0.082285	-8.402177	0.0000
@ISPERIOD("2000m07")	-1.272906	0 081849	-15.55187	0.0000
D_2000M08_2001M12	-0.485575	0.024621	-19.72236	0,0000
@ISPERIOD("2001m07")	-0.879371	0.084491	-10.40782	0.0000
D_2001M09_2002M06	-0.144578	0.028124	-5.140731	0.0000
D_2002M07_2003M01	0.365595	0.038160	9.580551	0.0000
@ISPERIOD("2002m10")	-0.453355	0.089081	-5.089212	0.0000
@ISPERIOD("2003m01")	0.476502	0.088909	5.359416	0.0000
@ISPERIOD("2004m01")	0.424579	0.081677	5.198297	0.0000
@ISPERIOD("2004m03")	0.833829	0.081677	10.20890	0.0000
@ISPERIOD("2006m09")	-0.530826	0.081833	-6.486693	0.0000
@ISPERIOD("2006m10")	0.298049	0.082239	3.624159	0.0003
@ISPERIOD("2010m03")	0.601023	0.082044	7.325577	0.0000
D_1965M01_2007M09	0.219629	0.017147	12.80855	0.0000
R-squared	0.921765	Mean dep	endent var	16.43708
Aojusteo A-squareo	0,916589	S.D. depe	ndent var	0.279030
S.E. of regression	0.080762	Akaike info	o criterion	2.132488
Sum squared resid	2.563358	Schwarz c	riterion	1.872757
Log likelihood F-statistic Prob(F-statistic)	474.8225 178.0885 0.000000	Hannan-Q Durbin-Wa	uinn criter. itson stat	2.029831 1.729098

KWH SALES - OTHER PUBLIC AUTHORITIES - LESS WATER PUMPING

Dependent Variable: LOG(KWHQPALWP_OH_KY) Method: Least Squares Date: 02/18/11 Time: 11:07 Sample: 1978M01 2010M12 Included observations: 396 Convergence achieved after 6 iterations MA Backcast: 1977M01 1977M12

Variable	Coefficient	Std. Error	t-Statistic	Prob.
c	9.177343	0.464818	19.74395	0.0000
LOG(DS_KWH_OPA_OH_KY/CPI)	-0.153704	0.036853	-4.170683	0.0000
LOG(DS_KWH_OPA_OH_KY(-11)/APGOPA_OH_KY(-11))	-0.086142	0.021786	-3.953931	0.0001
CDDB_OH_KY_65*D_1976M01_1984M12	0.000266	0.000101	2.642251	0,0086
CDDB_OH_KY_65*(1-D_1976M01_1984M12)	0.000578	5.45E-05	10.59282	0.0000
HDDB_OH_KY_59*D_1976M01_1984M12	0.000107	3.18E-05	3.358502	0.0009
HDDB_OH_KY_59*(1-D_1976M01_1984M12)	8.33E-05	2.13E-05	3.912876	0.0001
@MONTH=6	0.044197	0.011728	3.768620	0.0002
@MONTH=11	-0.048075	0.011843	-4.059367	0.0001
@ISPERIOD("1994m02")	0.271680	0.053263	5.100765	0.0000
@ISPERIOD("1995m08")	-0.228265	0.053677	-4.252564	0.0000
@ISPERIOD("1999m06")	-0.239280	0.053810	-4.446751	0.0000
@ISPERIOD("1999m10")	0.263578	0.053521	4.924797	0.0000
@ISPERIOD("1999m12")	0.271471	0.054635	4.966812	0.0000
@ISPERIOD("2000m04")	-0.485594	0.054471	-8.914713	0.0000
@ISPERIOD("2000m12")	0.289804	0.060753	4.770228	0.0000
@ISPERIOD("2001m01")	-0.237152	0.059899	-3.959179	0.0001
@ISPERIOD("2001m04")	-0.280704	0.054442	-5.156055	0.0000
@ISPERIOD("2002m12")	-0.196509	0.053360	-3.682695	0.0003
PDL01	0.498819	0.045765	10.89966	0.0000
AR(1)	0.559005	0.044939	12.43909	0.0000
MA(12)	0.211711	0.052362	4.043206	0.0001
R-squared	0.941059	Mean dependent v	/ar	18.51108
Adjusted R-squared	0.937750	S.D. dependent va	аг	0.249366
S.E. of regression	0.062217	Akaike info criterio	n	-2.662435
Sum squared resid	1.447722	Schwarz criterion		-2.441245
Log likelihood	549.1621	Hannan-Quinn crì	ter.	-2.574806
F-statistic	284.3511	Durbin-Watson sta	ət	2.160948
Prob(F-statistic)	0.00000			
Inverted AR Roots	.56			
Inverted MA Roots	.85+.23i	,8523i .0	62+.62i	.62+.62i
	.23+.85i	.2385i:	2385i	23+.85i
	62+.62i	62+.62i	8523i	85+.23i
Lag Distribution of LOG(E90X_OH_KY)	i	Coefficient	Std. Error	t-Statistic
· *	0	0.74823	0.06865	10.8997
. *	1	0.49882	0.04576	10.8997
•	2	0.24941	0.02288	10.8997
	Sum of Lags	1.49646	0.13729	10.8997

KWH SALES - STREET LIGHTING

Dependent Variable: LOG(KWHSL_OH_KY) Method: Least Squares Date: 02/18/11 Time: 11:10 Sample (adjusted): 1976M03 2010M12 Included observations: 418 after adjustments Convergence achieved after 13 iterations

Variable	Coefficient	Std. Error	t-Statistic	Prob.
	e 624630	A 917972	8 112048	0.0000
	1 187030	0.017075	12 73652	0.0000
D 1965M01 2002M12*@MONTH=1	0 129729	0.005804	22 34983	0.0000
D 1965M01 2002M12*@MONTH=2	-0.017364	0.005586	-3.108402	0.0020
D 1965M01 2002M12*@MONTH=4	-0.125481	0.005380	-23.32294	0.0000
D 1965M01 2002M12*@MONTH=5	0.183103	0.005853	-31,2B516	0.0000
D 1965M01 2002M12*@MONTH=6	-0.272574	0.006585	-41,39356	0.0000
D_1965M01_2002M12*@MONTH=7	-0.227443	0.006769	-33,60018	0.0000
D_1965M01_2002M12*@MONTH=8	-0.144261	0,006805	-21,19983	0.0000
D_1965M01_2002M12*@MONTH=9	-0.079487	0.006838	-11,62400	0.0000
D_1965M01_2002M12*@MONTH=10	0.026083	0.006776	3.849203	0.0001
D_1965M01_2002M12*@MONTH=11	0.080469	0.006638	12.12199	0.0000
D_1965M01_2002M12*@MONTH=12	0.143832	0.006298	22.83764	0.0000
@ISPERIOD("1980m02")	-0.163252	0.022107	-7.384568	0.0000
@ISPERIOD("1991m06")	-0.366945	0.023674	-15,49977	0.0000
@ISPERIOD("1999m06")	0.526448	0.022075	23.84800	0.0000
@ISPERIOD("1999m11")	-0.215151	0.022062	-9.752211	0,0000
@ISPERIOD("2001m02")	-0.751729	0.022988	-32,70043	0.0000
@ISPERIOD("2001m03")	0.419849	0.023222	18.08003	0.0000
@ISPERIOD(2001m05") @ISPERIOD/!0004_07!!\+@ISPERIOD/!0002_07!!\	-0.314136	0.022717	-13.82/40	0.0000
	0.194900	0.019464	11.827.09	0.0000
@ISPERIOD(20020006) @ISPERIOD("1001~02")	-0.140027	0.022475	-0.48/423	0.0000
@ISPERIOD(19911103) @ISPERIOD("2007m02")	-0.137506	0.022200	-0.154420	0.0000
@ISPERIOD("2007m05")	-0.104050	0.022853	-4 840490	0.0000
@ISPERIOD("2007m06")	0.054432	0.022445	2 425113	0.0000
@ISPERIOD("2002m02")	0.106135	0.022361	4 746497	0.0100
@ISPERIOD("2006m02")	0.084365	0.021746	3 879554	0.0001
D 1965M01 2007M09	0.067105	0.012236	5.484119	0.0000
PDL01	-0.148257	0.052585	-2.819371	0.0051
AR(1)	0.411845	0.055537	7.415701	0.0000
AR(2)	0.220771	0.053764	4.106317	0.0000
R-squared	0.978873	Mean dependent var		15.94102
Adjusted R-squared	0.977176	S.D. dependent var		0.157949
S.E. of regression	0.023862	Akaike info criterion		-4.559575
Sum squared resid	0.219790	Schwarz criterion		-4.250639
Log likelihood	984.9512	Hannan-Quinn criter.		-4.437446
F-statistic	576.9154	Durbin-Watson stat		2.042699
Prob(F-statistic)	0.000000			
Inverted AR Roots	.72	31		
Lag Distribution of LOG(SAT_SL_OH_KY)	i	Coefficient	Std. Error	t-Statistic
•		0 10769	0.07044	2 81027
•	U 1	-0, 19/00 _0 1/826	0.07011	-2.01937
•	2	-0.14020	0.00209	-2.01937
• 1	3	-0.04942	0.01753	-2.81937
	Sum of Lags	-0.49419	0.17528	-2,81937

SERVICE AREA – SUMMER PEAK

Dependent Variable: LOG(MWSPEAK_OH_KY) Method: Least Squares Date: 03/02/11 Time: 17:36 Sample: 1/01/1974 12/31/2010 IF WEEKDAY<=5 Included observations: 374

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D_072180_091498*MJUN	-3.011771	0.321205	-9.376481	0.0000
(1-D_072180_091498)*MJUN	-3.124540	0.319518	-9.778925	0.0000
D_072180_091498*MJUL	-3.287855	0.290345	-11.32395	0.0000
(1-D_072180_091498)*MJUL	-3.623843	0.184254	-19.66766	0.0000
D_072180_091498*MAUG	-1.598406	0.243600	-6.561600	0.0000
(1-D_072180_091498)*MAUG	-4,460045	0.229457	-19.43742	0.0000
MSEP	-3.635690	0.260506	-13,95628	0.0000
(D_072180_091498)*(MJUN+MSEP)*LOG(KWHSEND_OH_KY_WN/1000/DAYS)	0.909660	0.018172	50.05902	0.0000
(1-D_072180_091498)*(MJUN+MSEP)*LOG(KWHSEND_OH_KY_WN/1000/DAYS)	0.920730	0.017986	51.19140	0.0000
(D_072180_091498)*(MJUL)*LOG(KWHSEND_OH_KY_WN/1000/DAYS)	0.915842	0.024645	37.16087	0.0000
(1-D_072180_091498)*(MJUL)*LOG(KWHSEND_OH_KY_WN/1000/DAYS)	0.943693	0.013466	70.08135	0.0000
(D_072180_091498)*(MAUG)*LOG(KWHSEND_OH_KY_WN/1000/DAYS)	0.749686	0.020357	36,82746	0.0000
(1-D_072180_091498)*(MAUG)*LOG(KWHSEND_OH_KY_WN/1000/DAYS)	1.007129	0.018754	53,70340	0.0000
(MJUN)*PMHIGH	0.006528	0.002595	2.516140	0.0123
(MJUL+MAUG+MSEP)*PMHIGH	0 010185	0.001090	9,341020	0.0000
(MJUN+MJUL+MAUG+MSEP)*PREVPMHIGH	0.002587	0.000596	4.339495	0.0000
(MJUN+MAUG)*AMLOW	0.005175	0.000788	6.569148	0.0000
MJUL*AMLOW	0.003140	0.000945	3.322639	0.0010
MSEP*AMLOW	0.009130	0.002129	4.288536	0.0000
(MJUN+MJUL+MAUG+MSEP)*PMHUMIDATHIGH	0.000754	0.000302	2.497370	0.0130
JULY4WEEK*PMHIGH	-0.000318	7.53E-05	-4.226065	0.0000
@ISPERIOD("6/11/1976")	-0.097349	0.036540	-2.664175	0.0081
@ISPERIOD("6/18/1976")	-0.124767	0.036541	-3.414419	0.0007
@ISPERIOD("7/5/1993")	-0.109721	0.035655	-3.077264	0.0023
@ISPERIOD("7/5/99")	-0.122669	0.035685	-3.437554	0.0007
@ISPERIOD("8/13/1999")	0.105063	0.035423	2.965939	0.0032
@ISPERIOD("8/17/1999")	0.104280	0.035654	2.924797	0.0037
D_080107_082907	-0.093970	0.010804	-8.697776	0.0000
@ISPERIOD("7//10")	-0.384991	0.035580	-10.82035	0.0000
R-squared	0.980720	Mean depende	nt var	8.264019
Adjusted R-squared	0.979155	S.D. dependen	t var	0.240056
S.E. of regression	0.034659	Akaike info crite	erion	-3.812170
Sum squared resid	0.414422	Schwarz criterie	n	-3.507882
Log likelihood	741.8757	Hannan-Quinn	criter.	-3.691354
Durbin-Watson stat	0.689958			

SERVICE AREA – WINTER PEAK

Dependent Variable: LOG(MWWPEAK_OH_KY) Method: Least Squares Date: 03/03/11 Time: 12:36 Sample: 1/01/1974 12/31/2010 IF WEEKDAY<=5 Included observations: 258

Variable	Coefficient	Std. Error	t-Statistic	Prob.
AMPEAK*(MDEC+MJAN+MFE8+MMAR)	-1.609170	0.284221	-5.661692	0.0000
AMPEAK*(MDEC+MJAN+MFEB+MMAR)*LOG(KWHSEND_OH_KY_WN/1000/DAYS)	0.882089	0.025989	33.94138	0.0000
AMPEAK*(MDEC+MJAN+MFEB+MMAR)*AMLOW	-0.002167	0.001165	-1.859507	0.0641
AMPEAK*(MDEC+MJAN+MMAR)*WINDAM	0.006007	0.001457	4.122567	0.0001
AMPEAK*(MJAN+MFEB+MMAR)*PREVPMLOW	-0.002277	0.001045	-2.178155	0.0303
PMPEAK*(MDEC+MJAN+MFEB+MMAR)	-0 936795	0.372091	-2.517650	0.0125
PMPEAK*(MDEC+MMAR)*LOG(KWHSEND_OH_KY_WN/1000/DAYS)	0.826439	0.034517	23.94265	0.0000
PMPEAK*(MJAN+MFEB)*LOG(KWHSEND_OH_KY_WN/1000/DAYS)	0.822818	0.034252	24.02242	0.0000
PMPEAK*(MDEC+MJAN+MFEB+MMAR)*PMLOW	-0.003700	0.001386	-2.669020	0.0081
@ISPERIOD("1/27/1977")+@ISPERIOD("1/28/1977")	-0.253712	0.058986	-4.301214	0.0000
PMPEAK*XMAS	-0.083042	0.029656	-2.800147	0.0055
@ISPERIOD("1/23/2003")	-0.165564	0.085684	-1.932259	0.0545
R-squared	0.883007	Mean depender	nt var	8.026330
Adjusted R-squared	0.877776	S.D. dependent	var	0.235440
S.E. of regression	0.082311	Akaike info crite	rian	-2.111221
Sum squared resid	1.666687	Schwarz criteric	n	-1.945968
Log likelihood	284.3476	Hannan-Quinn d	criter.	-2.044772
Durbin-Watson stat	0.565187			

Mnemonics Definitions

VARIABLE	DESCRIPTION
@ISPERIOD("6/11/1976")	QUALITATIVE VARIABLE - JUNE 11, 1976
@ISPERIOD(*6/18/19/6") @ISPERIOD(*4/27(1977")	QUALITATIVE VARIABLE - JUNE 18, 1976 OLIALITATIVE VARIABLE - JANUARY 27, 1977
@ISPERIOD(1/2//1317)	QUALITATIVE VARIABLE - JANUARY 28, 1977
@ISPERIOD("7/5/1993")	QUALITATIVE VARIABLE - JULY 5, 1993
@ISPERIOD("7/5/1999")	QUALITATIVE VARIABLE - JULY 5, 1999
@ISPERIOD("8/13/1999")	QUALITATIVE VARIABLE - AUGUST 13, 1999
@ISPERIOD("8/17/1999")	QUALITATIVE VARIABLE - AUGUST 17, 1999
@ISPERIOD(*1/23/2003) @ISPERIOD(*7/7/2010*)	QUALITATIVE VARIABLE - JANUARY 23, 2003
@ISPERIOD(1112010)	QUALITATIVE VARIABLE - FEBRUARY, 1980
@ISPERIOD("1982M06")	QUALITATIVE VARIABLE - JUNE, 1982
@ISPERIOD("1986Q2")	QUALITATIVE VARIABLE - SECOND QUARTER, 1986
@ISPERIOD("1986Q3")	QUALITATIVE VARIABLE - THIRD QUARTER, 1986
@ISPERIOD(*1988Q3*)	QUALITATIVE VARIABLE - THIRD QUARTER, 1988
@ISPERIOD(1900Q4) @ISPERIOD(*199002")	QUALITATIVE VARIABLE - FOURTH QUARTER, 1960
@ISPERIOD(*1991M03")	QUALITATIVE VARIABLE - MARCH, 1991
@ISPERIOD("1991M04")	QUALITATIVE VARIABLE - APRIL, 1991
@ISPERIOD("1991M06")	QUALITATIVE VARIABLE - JUNE, 1991
@ISPERIOD("1991M11")	QUALITATIVE VARIABLE - NOVEMBER, 1991
@ISPERIOD("1991Q1")	QUALITATIVE VARIABLE - FIRST QUARTER, 1991
@ISPERIOD(*199104*)	QUALITATIVE VARIABLE - THIRD QUARTER, 1991 OHALITATIVE VARIABLE - FOURTH OHARTER, 1991
@ISPERIOD("1992Q1")	QUALITATIVE VARIABLE - FIRST QUARTER, 1992
@ISPERIOD("1992Q2")	QUALITATIVE VARIABLE - SECOND QUARTER, 1992
@ISPERIOD("1993M09")	QUALITATIVE VARIABLE - SEPTEMBER, 1993
@ISPERIOD("1993M10")	QUALITATIVE VARIABLE - OCTOBER, 1993
@ISPERIOD("1993M11")	QUALITATIVE VARIABLE - NOVEMBER, 1993
@ISPERIOD("1993Q1)	QUALITATIVE VARIABLE - FIRST QUARTER, 1993
@ISPERIOD(*1994M02")	QUALITATIVE VARIABLE - FEBRUARY 1994
@ISPERIOD("1994M05")	QUALITATIVE VARIABLE - MAY, 1994
@ISPERIOD("1994Q1")	QUALITATIVE VARIABLE - FIRST QUARTER, 1994
@ISPERIOD("1995M04")	QUALITATIVE VARIABLE - APRIL, 1995
@ISPERIOD("1995M05")	QUALITATIVE VARIABLE - MAY, 1995
@ISPERIOD(~1993M06) @ISPERIOD(~199602")	QUALITATIVE VARIABLE - AUGUST, 1995 OHALITATIVE VARIABLE - SECOND OHARTER 1996
@ISPERIOD(199002) @ISPERIOD(*199603")	QUALITATIVE VARIABLE - THIRD QUARTER, 1996
@ISPERIOD("1997Q3")	QUALITATIVE VARIABLE - THIRD QUARTER, 1997
@ISPERIOD(*1998M05")	QUALITATIVE VARIABLE - MAY, 1998
@ISPERIOD(*1998M07")	QUALITATIVE VARIABLE - JULY, 1998
@ISPERIOD(*1998M10") @ISPERIOD(*1998Q3")	QUALITATIVE VARIABLE - OCTOBER, 1998
@ISPERIOD(1990Q3) @ISPERIOD(*1998Q4")	QUALITATIVE VARIABLE - THIRD QUARTER, 1990
@ISPERIOD("1999M02")	QUALITATIVE VARIABLE - FEBRUARY, 1999
@ISPERIOD("1999M06")	QUALITATIVE VARIABLE - JUNE, 1999
@ISPERIOD("1999M10")	QUALITATIVE VARIABLE - OCTOBER, 1999
@ISPERIOD(*1999M11")	QUALITATIVE VARIABLE - NOVEMBER, 1999
@ISPERIOD("19999012")	QUALITATIVE VARIABLE - DECEMBER, 1999 ONALITATIVE VARIABLE - EIRST ONARTER, 1999
@ISPERIOD("199904")	QUALITATIVE VARIABLE - FOURTH QUARTER, 1999
@ISPERIOD("2000M01")	QUALITATIVE VARIABLE - JANUARY, 2000
@ISBERIOD/*2000M04")	
	QUALITATIVE VARIABLE - APRIL, 2000
@ISPERIOD(2000M05")	QUALITATIVE VARIABLE - APRIL, 2000 QUALITATIVE VARIABLE - MAY, 2000
@ISPERIOD(*2000M05") @ISPERIOD(*2000M06") @ISPERIOD(*2000M06")	QUALITATIVE VARIABLE - APRIL, 2000 QUALITATIVE VARIABLE - MAY, 2000 QUALITATIVE VARIABLE - JUNE, 2000
@ISPERIOD("2000M05") @ISPERIOD("2000M06") @ISPERIOD("2000M06") @ISPERIOD("2000M08")	QUALITATIVE VARIABLE - APRIL, 2000 QUALITATIVE VARIABLE - MAY, 2000 QUALITATIVE VARIABLE - JUNE, 2000 QUALITATIVE VARIABLE - JULY, 2000 QUALITATIVE VARIABLE - JULY, 2000
@(SPERIOD(*2000M05*) @(SPERIOD(*2000M05*) @(SPERIOD(*2000M06*) @(SPERIOD(*2000M08*) @(SPERIOD(*2000M10*)	QUALITATIVE VARIABLE - APRIL, 2000 QUALITATIVE VARIABLE - MAY, 2000 QUALITATIVE VARIABLE - JUNE, 2000 QUALITATIVE VARIABLE - JULY, 2000 QUALITATIVE VARIABLE - AUGUST, 2000 QUALITATIVE VARIABLE - OCTOBER, 2000
@(SPERIOD(*2000M05") @(SPERIOD(*2000M05") @(SPERIOD(*2000M07") @(SPERIOD(*2000M03") @(SPERIOD(*2000M10") @(SPERIOD(*2000M12")	QUALITATIVE VARIABLE - APRIL, 2000 QUALITATIVE VARIABLE - MAY, 2000 QUALITATIVE VARIABLE - JUNE, 2000 QUALITATIVE VARIABLE - JULY, 2000 QUALITATIVE VARIABLE - AUGUST, 2000 QUALITATIVE VARIABLE - OCTOBER, 2000 QUALITATIVE VARIABLE - DECEMBER, 2000
@ISPERIOD(*2000M05") @ISPERIOD(*2000M05") @ISPERIOD(*2000M06") @ISPERIOD(*2000M08") @ISPERIOD(*2000M10") @ISPERIOD(*2000M12") @ISPERIOD(*2000Q1")	QUALITATIVE VARIABLE - APRIL, 2000 QUALITATIVE VARIABLE - MAY, 2000 QUALITATIVE VARIABLE - JUNE, 2000 QUALITATIVE VARIABLE - JULY, 2000 QUALITATIVE VARIABLE - AUGUST, 2000 QUALITATIVE VARIABLE - OCTOBER, 2000 QUALITATIVE VARIABLE - DECEMBER, 2000 QUALITATIVE VARIABLE - FIRST QUARTER, 2000
@ISPERIOD(*2000M05") @ISPERIOD(*2000M05") @ISPERIOD(*2000M06") @ISPERIOD(*2000M08") @ISPERIOD(*2000M10") @ISPERIOD(*2000M12") @ISPERIOD(*2000M12") @ISPERIOD(*2000Q2")	QUALITATIVE VARIABLE - APRIL, 2000 QUALITATIVE VARIABLE - MAY, 2000 QUALITATIVE VARIABLE - JUNE, 2000 QUALITATIVE VARIABLE - JULY, 2000 QUALITATIVE VARIABLE - AUGUST, 2000 QUALITATIVE VARIABLE - OCTOBER, 2000 QUALITATIVE VARIABLE - DECEMBER, 2000 QUALITATIVE VARIABLE - FIRST QUARTER, 2000 QUALITATIVE VARIABLE - SECOND QUARTER, 2000
((SPERIOD(*2000M05") (SPERIOD(*2000M05") (SPERIOD(*2000M06") (SPERIOD(*2000M08") (SPERIOD(*2000M10") (SPERIOD(*2000M12") (SPERIOD(*2000Q1") (SPERIOD(*2000Q2") (SPERIOD(*200Q2") (SPERIOD(*200Q2") (QUALITATIVE VARIABLE - APRIL, 2000 QUALITATIVE VARIABLE - MAY, 2000 QUALITATIVE VARIABLE - JUNE, 2000 QUALITATIVE VARIABLE - JULY, 2000 QUALITATIVE VARIABLE - AUGUST, 2000 QUALITATIVE VARIABLE - OCTOBER, 2000 QUALITATIVE VARIABLE - DECEMBER, 2000 QUALITATIVE VARIABLE - FIRST QUARTER, 2000 QUALITATIVE VARIABLE - SECOND QUARTER, 2000 QUALITATIVE VARIABLE - SECOND QUARTER, 2000 QUALITATIVE VARIABLE - THIRD QUARTER, 2000 QUALITATIVE VARIABLE - COURTER, 2000
@ISPERIOD("2000M05") @ISPERIOD("2000M05") @ISPERIOD("2000M06") @ISPERIOD("2000M10") @ISPERIOD("2000M10") @ISPERIOD("2000M12") @ISPERIOD("2000Q1") @ISPERIOD("2000Q2") @ISPERIOD("2000Q3") @ISPERIOD("2001M01")	QUALITATIVE VARIABLE - APRIL, 2000 QUALITATIVE VARIABLE - MAY, 2000 QUALITATIVE VARIABLE - JUNE, 2000 QUALITATIVE VARIABLE - JULY, 2000 QUALITATIVE VARIABLE - AUGUST, 2000 QUALITATIVE VARIABLE - OCTOBER, 2000 QUALITATIVE VARIABLE - DECEMBER, 2000 QUALITATIVE VARIABLE - FIRST QUARTER, 2000 QUALITATIVE VARIABLE - SECOND QUARTER, 2000 QUALITATIVE VARIABLE - THIRD QUARTER, 2000 QUALITATIVE VARIABLE - FOURTH QUARTER, 2000 QUALITATIVE VARIABLE - FOURTH QUARTER, 2000 QUALITATIVE VARIABLE - FOURTH QUARTER, 2000
@ISPERIOD(*2000M05") @ISPERIOD(*2000M05") @ISPERIOD(*2000M05") @ISPERIOD(*2000M10") @ISPERIOD(*2000M10") @ISPERIOD(*2000M12") @ISPERIOD(*2000Q1") @ISPERIOD(*2000Q2") @ISPERIOD(*2000Q3") @ISPERIOD(*2001M01") @ISPERIOD(*2001M01")	QUALITATIVE VARIABLE - APRIL, 2000 QUALITATIVE VARIABLE - MAY, 2000 QUALITATIVE VARIABLE - JUNE, 2000 QUALITATIVE VARIABLE - JULY, 2000 QUALITATIVE VARIABLE - AUGUST, 2000 QUALITATIVE VARIABLE - AUGUST, 2000 QUALITATIVE VARIABLE - OCTOBER, 2000 QUALITATIVE VARIABLE - DECEMBER, 2000 QUALITATIVE VARIABLE - FIRST QUARTER, 2000 QUALITATIVE VARIABLE - SECOND QUARTER, 2000 QUALITATIVE VARIABLE - THIRD QUARTER, 2000 QUALITATIVE VARIABLE - FOURTH QUARTER, 2000
(USPERIOD(*2000M05") (USPERIOD(*2000M05") (USPERIOD(*2000M06") (USPERIOD(*2000M10") (USPERIOD(*2000M10") (USPERIOD(*2000M12") (USPERIOD(*2000Q2") (USPERIOD(*2000Q2") (USPERIOD(*2000Q3") (USPERIOD(*2001M01") (USPERIOD(*2001M01") (USPERIOD(*2001M02") (USPERIOD(*2001M02") (USPERIOD(*2001M03")	QUALITATIVE VARIABLE - APRIL, 2000 QUALITATIVE VARIABLE - MAY, 2000 QUALITATIVE VARIABLE - JUNE, 2000 QUALITATIVE VARIABLE - JULY, 2000 QUALITATIVE VARIABLE - JULY, 2000 QUALITATIVE VARIABLE - AUGUST, 2000 QUALITATIVE VARIABLE - OCTOBER, 2000 QUALITATIVE VARIABLE - DECEMBER, 2000 QUALITATIVE VARIABLE - FIRST QUARTER, 2000 QUALITATIVE VARIABLE - SECOND QUARTER, 2000 QUALITATIVE VARIABLE - THIRD QUARTER, 2000 QUALITATIVE VARIABLE - FOURTH QUARTER, 2000 QUALITATIVE VARIABLE - FOURTH QUARTER, 2000 QUALITATIVE VARIABLE - FOURTH QUARTER, 2000 QUALITATIVE VARIABLE - FEBRUARY, 2001 QUALITATIVE VARIABLE - MARCH, 2001
(USPERIOD(*2000M05") (USPERIOD(*2000M05") (USPERIOD(*2000M05") (USPERIOD(*2000M08") (USPERIOD(*2000M10") (USPERIOD(*2000M12") (USPERIOD(*2000Q1") (USPERIOD(*2000Q2") (USPERIOD(*2001M01") (USPERIOD(*2001M01") (USPERIOD(*2001M02") (USPERIOD(*2001M02") (USPERIOD(*2001M03") (USPERIOD(*2001M04") (U	QUALITATIVE VARIABLE - APRIL, 2000 QUALITATIVE VARIABLE - MAY, 2000 QUALITATIVE VARIABLE - JUNE, 2000 QUALITATIVE VARIABLE - JULY, 2000 QUALITATIVE VARIABLE - JULY, 2000 QUALITATIVE VARIABLE - AUGUST, 2000 QUALITATIVE VARIABLE - OCTOBER, 2000 QUALITATIVE VARIABLE - DECEMBER, 2000 QUALITATIVE VARIABLE - FIRST QUARTER, 2000 QUALITATIVE VARIABLE - SECOND QUARTER, 2000 QUALITATIVE VARIABLE - THIRD QUARTER, 2000 QUALITATIVE VARIABLE - FOURTH QUARTER, 2001 QUALITATIVE VARIABLE - MARCH, 2001 QUALITATIVE VARIABLE - MARCH, 2001
(USPERIOD(*2000M05") (USPERIOD(*2000M05") (USPERIOD(*2000M06") (USPERIOD(*2000M08") (USPERIOD(*2000M12") (USPERIOD(*2000M12") (USPERIOD(*2000Q2") (USPERIOD(*2000Q2") (USPERIOD(*2001M01") (USPERIOD(*2001M01") (USPERIOD(*2001M01") (USPERIOD(*2001M02") (USPERIOD(*2001M03") (USPERIOD(*2001M03") (USPERIOD(*2001M03") (USPERIOD(*2001M03") (USPERIOD(*2001M05") (U	QUALITATIVE VARIABLE - APRIL, 2000 QUALITATIVE VARIABLE - MAY, 2000 QUALITATIVE VARIABLE - JUNE, 2000 QUALITATIVE VARIABLE - JUNE, 2000 QUALITATIVE VARIABLE - JULY, 2000 QUALITATIVE VARIABLE - OCTOBER, 2000 QUALITATIVE VARIABLE - DECEMBER, 2000 QUALITATIVE VARIABLE - DECEMBER, 2000 QUALITATIVE VARIABLE - FORST QUARTER, 2000 QUALITATIVE VARIABLE - SECOND QUARTER, 2000 QUALITATIVE VARIABLE - THIRD QUARTER, 2000 QUALITATIVE VARIABLE - FOURTH QUARTER, 2000 QUALITATIVE VARIABLE - FOURTH QUARTER, 2000 QUALITATIVE VARIABLE - FOURTH QUARTER, 2000 QUALITATIVE VARIABLE - FORTH QUARTER, 2001 QUALITATIVE VARIABLE - MANCH, 2001 QUALITATIVE VARIABLE - MARCH, 2001 QUALITATIVE VARIABLE - APRIL, 2001 QUALITATIVE VARIABLE - MAY, 2001
(USPERIOD(*2000M05") (USPERIOD(*2000M05") (USPERIOD(*2000M05") (USPERIOD(*2000M10") (USPERIOD(*2000M10") (USPERIOD(*2000Q1") (USPERIOD(*2000Q2") (USPERIOD(*2000Q2") (USPERIOD(*2001M01") (USPERIOD(*2001M01") (USPERIOD(*2001M02") (USPERIOD(*2001M02") (USPERIOD(*2001M03") (USPERIOD(*2001M05") (USPERIOD(*2001M06") (US	QUALITATIVE VARIABLE - APRIL, 2000 QUALITATIVE VARIABLE - MAY, 2000 QUALITATIVE VARIABLE - JUNE, 2000 QUALITATIVE VARIABLE - JULY, 2000 QUALITATIVE VARIABLE - JULY, 2000 QUALITATIVE VARIABLE - OCTOBER, 2000 QUALITATIVE VARIABLE - DECEMBER, 2000 QUALITATIVE VARIABLE - DECEMBER, 2000 QUALITATIVE VARIABLE - FIRST QUARTER, 2000 QUALITATIVE VARIABLE - SECOND QUARTER, 2000 QUALITATIVE VARIABLE - FOURTH QUARTER, 2001 QUALITATIVE VARIABLE - FORTH QUARTER, 2001 QUALITATIVE VARIABLE - MARCH, 2001 QUALITATIVE VARIABLE - APRIL, 2001 QUALITATIVE VARIABLE - MAY, 2001 QUALITATIVE VARIABLE - JUNE, 2001 QUALITATIVE VARIABLE - JUNE, 2001 QUALITATIVE VARIABLE - JUNE, 2001
(USPERIOD(*2000M05") (USPERIOD(*2000M05") (USPERIOD(*2000M05") (USPERIOD(*2000M08") (USPERIOD(*2000M10") (USPERIOD(*2000M12") (USPERIOD(*2000Q1") (USPERIOD(*2000Q3") (USPERIOD(*2001M01") (USPERIOD(*2001M01") (USPERIOD(*2001M03") (USPERIOD(*2001M03") (USPERIOD(*2001M05") (USPERIOD(*2001M05") (USPERIOD(*2001M07") (U	QUALITATIVE VARIABLE - APRIL, 2000 QUALITATIVE VARIABLE - MAY, 2000 QUALITATIVE VARIABLE - JUNE, 2000 QUALITATIVE VARIABLE - JULY, 2000 QUALITATIVE VARIABLE - JULY, 2000 QUALITATIVE VARIABLE - OCTOBER, 2000 QUALITATIVE VARIABLE - DECEMBER, 2000 QUALITATIVE VARIABLE - DECEMBER, 2000 QUALITATIVE VARIABLE - FIRST QUARTER, 2000 QUALITATIVE VARIABLE - SECOND QUARTER, 2000 QUALITATIVE VARIABLE - FIRST QUARTER, 2000 QUALITATIVE VARIABLE - FOURTH QUARTER, 2001 QUALITATIVE VARIABLE - JANUARY, 2001 QUALITATIVE VARIABLE - MARCH, 2001 QUALITATIVE VARIABLE - APRIL, 2001 QUALITATIVE VARIABLE - JUNE, 2001 QUALITATIVE VARIABLE - JUNE, 2001 QUALITATIVE VARIABLE - JULY, 2001 QUALITATIVE VARIABLE - JULY, 2001 QUALITATIVE VARIABLE - FIRST QUARTER, 2001
(USPERIOD(*2000M05") (USPERIOD(*2000M05") (USPERIOD(*2000M05") (USPERIOD(*2000M07") (USPERIOD(*2000M10") (USPERIOD(*2000M12") (USPERIOD(*2000Q1") (USPERIOD(*2000Q3") (USPERIOD(*2001M01") (USPERIOD(*2001M01") (USPERIOD(*2001M03") (USPERIOD(*2001M03") (USPERIOD(*2001M03") (USPERIOD(*2001M05") (USPERIOD(*2001M05") (USPERIOD(*2001M05") (USPERIOD(*2001M07") (U	QUALITATIVE VARIABLE - APRIL, 2000 QUALITATIVE VARIABLE - MAY, 2000 QUALITATIVE VARIABLE - JUNE, 2000 QUALITATIVE VARIABLE - JULY, 2000 QUALITATIVE VARIABLE - AUGUST, 2000 QUALITATIVE VARIABLE - OCTOBER, 2000 QUALITATIVE VARIABLE - DECEMBER, 2000 QUALITATIVE VARIABLE - FIRST QUARTER, 2000 QUALITATIVE VARIABLE - FIRST QUARTER, 2000 QUALITATIVE VARIABLE - FIRST QUARTER, 2000 QUALITATIVE VARIABLE - FOURTH QUARTER, 2001 QUALITATIVE VARIABLE - FEBRUARY, 2001 QUALITATIVE VARIABLE - MARCH, 2001 QUALITATIVE VARIABLE - APRIL, 2001 QUALITATIVE VARIABLE - JUNE, 2001 QUALITATIVE VARIABLE - JULY, 2001
(USPERIOD(*2001M05") (USPERIOD(*2000M05") (USPERIOD(*2000M05") (USPERIOD(*2000M03") (USPERIOD(*2000M10") (USPERIOD(*2000M12") (USPERIOD(*2000Q1") (USPERIOD(*2000Q3") (USPERIOD(*2001Q3") (USPERIOD(*2001M01") (USPERIOD(*2001M02") (USPERIOD(*2001M02") (USPERIOD(*2001M04") (USPERIOD(*2001M04") (USPERIOD(*2001M05") (USPERIOD(*2001M05") (USPERIOD(*2001M07") (USPERIOD(*2001Q2") (USPERIOD(*2001M05") (USPERIOD(*2001M07") (USPERIOD(*2001Q2") (USPERIOD(*200	QUALITATIVE VARIABLE - APRIL, 2000 QUALITATIVE VARIABLE - MAY, 2000 QUALITATIVE VARIABLE - JUNE, 2000 QUALITATIVE VARIABLE - JULY, 2000 QUALITATIVE VARIABLE - AUGUST, 2000 QUALITATIVE VARIABLE - OCTOBER, 2000 QUALITATIVE VARIABLE - DECEMBER, 2000 QUALITATIVE VARIABLE - FIRST QUARTER, 2000 QUALITATIVE VARIABLE - FIRST QUARTER, 2000 QUALITATIVE VARIABLE - FIRST QUARTER, 2000 QUALITATIVE VARIABLE - FOURTH QUARTER, 2001 QUALITATIVE VARIABLE - FEBRUARY, 2001 QUALITATIVE VARIABLE - APRIL, 2001 QUALITATIVE VARIABLE - APRIL, 2001 QUALITATIVE VARIABLE - JUNE, 2001 QUALITATIVE VARIABLE - SECOND QUARTER, 2001 QUALITATIVE VARIABLE - SECOND QUARTER, 2001 QUALITATIVE VARIABLE - SECOND QUARTER, 2001 QUALITATIVE VARIABLE - FIRST QUARTER, 2001 QUALITATIVE VARIABLE - FOURTH QUARTER, 2001 QUALITATIVE VARIABLE - FOURTH QUARTER, 2001
(USPERIOD(*2000M05") (USPERIOD(*2000M05") (USPERIOD(*2000M05") (USPERIOD(*2000M08") (USPERIOD(*2000M10") (USPERIOD(*2000M12") (USPERIOD(*2000Q1") (USPERIOD(*2000Q3") (USPERIOD(*2001M01") (USPERIOD(*2001M01") (USPERIOD(*2001M02") (USPERIOD(*2001M04") (USPERIOD(*2001M04") (USPERIOD(*2001M04") (USPERIOD(*2001M04") (USPERIOD(*2001M04") (USPERIOD(*2001M04") (USPERIOD(*2001M04") (USPERIOD(*2001M04") (USPERIOD(*2001M04") (USPERIOD(*2001M04") (USPERIOD(*2001M04") (USPERIOD(*2001M04") (USPERIOD(*2001Q2") (USPERIOD(*2001Q2") (USPERIOD(*2002M02") (USP	QUALITATIVE VARIABLE - APRIL, 2000 QUALITATIVE VARIABLE - MAY, 2000 QUALITATIVE VARIABLE - JUNE, 2000 QUALITATIVE VARIABLE - JULY, 2000 QUALITATIVE VARIABLE - JULY, 2000 QUALITATIVE VARIABLE - OCTOBER, 2000 QUALITATIVE VARIABLE - DECEMBER, 2000 QUALITATIVE VARIABLE - FIRST QUARTER, 2000 QUALITATIVE VARIABLE - FIRST QUARTER, 2000 QUALITATIVE VARIABLE - FIRST QUARTER, 2000 QUALITATIVE VARIABLE - FOURTH QUARTER, 2001 QUALITATIVE VARIABLE - FEBRUARY, 2001 QUALITATIVE VARIABLE - APRIL, 2001 QUALITATIVE VARIABLE - MAY, 2001 QUALITATIVE VARIABLE - JUNE, 2001 QUALITATIVE VARIABLE - SECOND QUARTER, 2001 QUALITATIVE VARIABLE - FIRST QUARTER, 2001 QUALITATIVE VARIABLE - FOURTH QUARTER, 2001
(USPERIOD(*2000M05") (USPERIOD(*2000M05") (USPERIOD(*2000M05") (USPERIOD(*2000M08") (USPERIOD(*2000M10") (USPERIOD(*2000M12") (USPERIOD(*2000Q1") (USPERIOD(*2000Q2") (USPERIOD(*2001M01") (USPERIOD(*2001M01") (USPERIOD(*2001M01") (USPERIOD(*2001M03") (USPERIOD(*2001M04") (USPERIOD(*2001M04") (USPERIOD(*2001M04") (USPERIOD(*2001M07") (USPERIOD(*2001M07") (USPERIOD(*2001M07") (USPERIOD(*2001Q2") (USPERIOD(*2001Q2") (USPERIOD(*2002M02") (USPERIOD(*2002M04") (USP	QUALITATIVE VARIABLE - APRIL, 2000 QUALITATIVE VARIABLE - MAY, 2000 QUALITATIVE VARIABLE - JUNE, 2000 QUALITATIVE VARIABLE - JULY, 2000 QUALITATIVE VARIABLE - JULY, 2000 QUALITATIVE VARIABLE - AUGUST, 2000 QUALITATIVE VARIABLE - DECEMBER, 2000 QUALITATIVE VARIABLE - DECEMBER, 2000 QUALITATIVE VARIABLE - FIRST QUARTER, 2000 QUALITATIVE VARIABLE - FIRST QUARTER, 2000 QUALITATIVE VARIABLE - FOURTH QUARTER, 2001 QUALITATIVE VARIABLE - FOURTH QUARTER, 2001 QUALITATIVE VARIABLE - MARCH, 2001 QUALITATIVE VARIABLE - MAY, 2001 QUALITATIVE VARIABLE - JUNE, 2001 QUALITATIVE VARIABLE - JUNE, 2001 QUALITATIVE VARIABLE - FIRST QUARTER, 2001 QUALITATIVE VARIABLE - FOURTH QUARTER, 2002 QUALITATIVE VARIABLE - APRIL, 2002
(USPERIOD(*2000M05") (USPERIOD(*2000M05") (USPERIOD(*2000M05") (USPERIOD(*2000M10") (USPERIOD(*2000M10") (USPERIOD(*2000M12") (USPERIOD(*2000Q1") (USPERIOD(*2000Q4") (USPERIOD(*2001M01") (USPERIOD(*2001M01") (USPERIOD(*2001M03") (USPERIOD(*2001M04") (USPERIOD(*2001M04") (USPERIOD(*2001M04") (USPERIOD(*2001M04") (USPERIOD(*2001M07") (U	QUALITATIVE VARIABLE - APRIL, 2000 QUALITATIVE VARIABLE - MAY, 2000 QUALITATIVE VARIABLE - JUNE, 2000 QUALITATIVE VARIABLE - JULY, 2000 QUALITATIVE VARIABLE - JULY, 2000 QUALITATIVE VARIABLE - OCTOBER, 2000 QUALITATIVE VARIABLE - DECEMBER, 2000 QUALITATIVE VARIABLE - DECEMBER, 2000 QUALITATIVE VARIABLE - FIRST QUARTER, 2000 QUALITATIVE VARIABLE - FIRST QUARTER, 2000 QUALITATIVE VARIABLE - SECOND QUARTER, 2000 QUALITATIVE VARIABLE - FOURTH QUARTER, 2001 QUALITATIVE VARIABLE - FEBRUARY, 2001 QUALITATIVE VARIABLE - MARCH, 2001 QUALITATIVE VARIABLE - MARCH, 2001 QUALITATIVE VARIABLE - JUNE, 2001 QUALITATIVE VARIABLE - JUNE, 2001 QUALITATIVE VARIABLE - FIRST QUARTER, 2001 QUALITATIVE VARIABLE - FOURTH QUARTER, 2002 QUALITATIVE VARIABLE - MAY, 2002 QUALITATIVE VARIABLE - MAY, 2002 QUALITATIVE VARIABLE - MAY, 2002

@(SPERIOD("2002M07")	QUALITATIVE VARIABLE - JULY, 2002
@ISPERIOD("2002M08")	QUALITATIVE VARIABLE - AUGUST, 2002
@ISPERIOD("2002M10")	QUALITATIVE VARIABLE - OCTOBER, 2002
@ISPERIOD("2002M12")	QUALITATIVE VARIABLE - DECEMBER, 2002
SISPERIOD("200201")	QUALITATIVE VARIABLE - FIRST QUARTER, 2002
@ISPERIOD("200202")	QUALITATIVE VARIABLE - SECOND QUARTER, 2002
@ISPERIOD(*200203*)	QUALITATIVE VARIABLE - THIRD QUARTER, 2002
@ISPERIOD("2003M01")	Olla ITATIVE VARIABLE - JANUARY 2003
(U)SFERIOD(2003M12)	
@ISPERIOD("2004IVI01")	
@ISPERIOD("2004M03")	QUALITATIVE VARIABLE - MARCH, 2004
@ISPERIOD("2004M05")	QUALITATIVE VARIABLE - MAT, 2004
@ISPERIOD("2004M06")	QUALITATIVE VARIABLE - JUNE, 2004
@ISPERIOD("2004M11")	QUALITATIVE VARIABLE - NOVEMBER, 2004
@ISPERIOD("2004M12")	QUALITATIVE VARIABLE - DECEMBER, 2004
@ISPERIOD("2004Q1")	QUALITATIVE VARIABLE - FIRST QUARTER, 2004
@ISPERIOD("2004Q4")	QUALITATIVE VARIABLE - FOURTH QUARTER, 2004
@ISPERIOD("2005M01")	QUALITATIVE VARIABLE - JANUARY, 2005
@ISPERIOD("2005M02")	QUALITATIVE VARIABLE - FEBRUARY, 2005
@ISPERIOD("2005M03")	QUALITATIVE VARIABLE - MARCH, 2005
@ISPERIOD("2005M08")	QUALITATIVE VARIABLE - AUGUST, 2005
@ISPERIOD("2005Q1")	QUALITATIVE VARIABLE - FIRST QUARTER, 2005
@ISPERIOD("2005Q4")	QUALITATIVE VARIABLE - FOURTH QUARTER, 2005
@ISPERIOD("2006M02")	QUALITATIVE VARIABLE - FEBRUARY, 2006
@ISPERIOD(*2006M09*)	QUALITATIVE VARIABLE - SEPTEMBER, 2006
@ISPERIOD("2006M10")	QUALITATIVE VARIABLE - OCTOBER, 2008
@ISPERIOD("2007M02")	QUALITATIVE VARIABLE - FEBRUARY, 2007
@ISPERIOD("2007M04")	QUALITATIVE VARIABLE - APRIL, 2007
misperiod(*2007M05*)	QUALITATIVE VARIABLE - MAY, 2007
0.5PERIOD("2007M06")	QUALITATIVE VARIABLE - JUNE, 2007
@ISPERIOD("2007M10")	QUALITATIVE VARIABLE - OCTOBER, 2007
@ISPERIOD("200704")	QUALITATIVE VARIABLE - FOURTH QUARTER, 2007
@ISPERIOD("2008M10")	QUALITATIVE VARIABLE - OCTOBER, 2008
alseERIOD("200802")	QUALITATIVE VARIABLE - SECOND QUARTER, 2008
miseERIOD("2008O3")	QUALITATIVE VARIABLE - THIRD QUARTER, 2008
@ISPERIOD("200804")	QUALITATIVE VARIABLE - FOURTH QUARTER 2008
@ISPERIOD("2009M05")	QUALITATIVE VARIABLE - MAY, 2009
@ISPERIOD("200901")	QUALITATIVE VARIABLE - FIRST QUARTER, 2009
@ISPERIOD("200902")	QUALITATIVE VARIABLE - SECOND QUARTER, 2009
@ISPERIOD("2010M02")	QUALITATIVE VARIABLE - FEBRUARY 2010
@ISPERIOD("2010M03")	QUALITATIVE VARIABLE - MARCH 2010
@ISPERIOD("2010M05")	QUALITATIVE VARIABLE - MAY, 2010
@ISPERIOD("2010M10")	QUALITATIVE VARIABLE - OCTOBER, 2010
@isPERIOD("201002")	OUALITATIVE VARIABLE - SECOND QUARTER 2010
AISPERIOD("201003")	OIDALITATIVE VARIABLE - THIRD OLIARTER 2010
@ISPERIOD/"201004")	
MUNTH-1	
@MUNTH-5	
@MUNIA~0	
@MONTH=0	
@MONTH=9	
@QUARTER=1	
@QUARTER=2	
@QUARTER=3	
@QUARTER=4	
AMLOW	
APGIND_OH_KY	SERVICE AREA AVERAGE FRICE OF GAS FOR INDUSTRIAL CUSTOMERS
APGUPA_UH_KT	SERVICE AREA AVERAGE PRICE OF GAS FOR OPA COSTOMERS
APPLOIN_EFF_OH_KY	EFFICIENT AFFLIANCE STUGN
BASE OH KY CE	BOTLER COUNTY BASE AMOUNT OF MYNE SALES - INDUSTRIAL - PRIMART METAL INDUSTRIES
	COULING DEGREE UATS
CDDB_OM_KY_65	BILLING COULING DEGREE DATS
CDDB_OH_KY_65_0_100	
CDDB_OH_KY_65_100	=MAXIMUM(CDDB_OH_KY-100,0)
CPI	GUNSUMER PRICE INDEX (ALL URBAN) - ALL ITEMS
CUSRES_OH_KY	SERVICE AREA ELECTRIC CUSTOMERS - RESIDENTIAL
D_072180_091498	QUALITATIVE VARIABLE - JULY 21, 1980 TO SEP FEMBER 14, 1998
D_080107_082907	QUALITATIVE VARIABLE - AUGUST 1, 2007 TO AUGUST 29, 2007
D_1965M01_2001M12	QUALITATIVE VARIABLE - JANUARY, 1965 THRU DECEMBER, 2001
D_1965M01_2002M12	QUALITATIVE VARIABLE - JANUARY, 1965 THRU DECEMBER, 2002
D_1965M01_2007M09	QUALITATIVE VARIABLE - JANUARY, 1965 THRU SEPTEMBER, 2007
D 1965Q1 1985Q4	QUALITATIVE VARIABLE - FIRST QUARTER, 1965 TO FOURTH QUARTER, 1985

QUALITATIVE VARIABLE - FIRST QUARTER, 1965 THRU FOURTH QUARTER, 1986 D_1965Q1_1986Q4 D_1965Q1_1990Q4 D_1965Q1_1995Q4 QUALITATIVE VARIABLE - FIRST QUARTER, 1965 THRU FOURTH QUARTER, 1990 QUALITATIVE VARIABLE - FIRST QUARTER, 1965 TO FOURTH QUARTER, 1995 QUALITATIVE VARIABLE - FIRST QUARTER, 1965 TO SECOND QUARTER, 1998 QUALITATIVE VARIABLE - FIRST QUARTER, 1965 TO SECOND QUARTER, 2001 D_1965Q1_1998Q2 D_1965Q1_2001Q2 D_1965Q1_2001Q3 QUALITATIVE VARIABLE - FIRST QUARTER, 1965 THRU THIRD QUARTER, 2001 D_1965Q1_2005Q1 QUALITATIVE VARIABLE - FIRST QUARTER, 1965 THRU FIRST QUARTER, 2005 D_1976M01_1984M12 QUALITATIVE VARIABLE - JANUARY, 1976 THRU DECEMBER, 1984 D_1976Q1_1989Q2 QUALITATIVE VARIABLE - FIRST QUARTER, 1976 TO SECOND QUARTER, 1989 QUALITATIVE VARIABLE - FIRST QUARTER, 19/8 TO SECOND QUARTER, 19/9 QUALITATIVE VARIABLE - FIRST QUARTER, 19/8 TO SECOND QUARTER, 2005 QUALITATIVE VARIABLE - FIRST QUARTER, 19/8 THRU THIRD QUARTER, 1991 QUALITATIVE VARIABLE - THIRD QUARTER, 1998 THRU SECOND QUARTER, 2001 QUALITATIVE VARIABLE - FIRST QUARTER, 1999 THRU SECOND QUARTER, 2001 QUALITATIVE VARIABLE - AUGUST, 2000 THRU DECEMBER, 2001 D_1980Q1_2005Q2 D_1987Q1_1991Q3 D_1998Q3_2001Q2 D_1999Q1_2001Q2 D_2000M08_2001M12 D_2000Q3_2001Q2 QUALITATIVE VARIABLE - THIRD QUARTER, 2000 THRU SECOND QUARTER, 2001 QUALITATIVE VARIABLE - SEPTEMBER, 2001 THRU JUNE, 2002 D_2001M09_2002M06 D_2002M07_2003M01 QUALITATIVE VARIABLE - JULY, 2002 THRU JANUARY, 2003 =(@MONTH=12+@MONTH=1+@MONTH=2) D_DJF =(@MONTH=6+@MONTH=7+@MONTH=8) D_JJA NUMBER OF DAYS IN THE MONTH DAYS DS_KW_IND_OH_KY DS_KW_OPA_OH_KY SERVICE AREA DS RATE FOR DEMAND FOR INDUSTRIAL CUSTOMERS SERVICE AREA DS RATE FOR DEMAND FOR OTHER PUBLIC AUTHORITIES CUSTOMERS DS_KWH_COM_OH_KY SERVICE AREA DS RATE FOR USAGE FOR COMMERCIAL CUSTOMERS DS_KWH_IND_OH_KY SERVICE AREA DS RATE FOR USAGE FOR INDUSTRIAL CUSTOMERS DS_KWH_OPA_OH_KY SERVICE AREA DS RATE FOR USAGE FOR OTHER PUBLIC AUTHORITIES CUSTOMERS E90X_OH_KY SERVICE AREA EMPLOYMENT - STATE AND LOCAL GOVERNMENT ЕСОЙ ОН КҮ SERVICE AREA EMPLOYMENT - COMMERCIAL EFF_CAC_OH_KY EFFICIENCY OF CENTRAL AIR CONDITIONING UNITS IN SERVICE AREA EFFICIENCY OF ELECTRIC HEAT PUMP UNITS IN SERVICE AREA EFF_EHP_OH_KY EFF_RAC_OH_KY HDDB_OH_KY_59 HDDB_OH_KY_59_0_500 HDDB_OH_KY_59_500 JQINDN311_312_OH_KY JQINDN322_326_OH_KY JQINDN331_BUTLFR EFFICIENCY OF WINDOW AIR CONDITIONING UNITS IN SERVICE AREA BILLING HEATING DEGREE DAYS =MINIMUM(HDDB_OH_KY,500) =MAXIMUM(HDDB_OH_KY-500,0) SERVICE AREA INDUSTRIAL PRODUCTION INDEX - FOOD AND PRODUCTS SERVICE AREA INDUSTRIAL PRODUCTION INDEX - PAPER AND PRODUCTS SERVICE AREA INDUSTRIAL PRODUCTION INDEX - CHEMICALS AND PRODUCTS JQINDN331_BUTLER BUTLER COUNTY INDUSTRIAL PRODUCTION INDEX - PRIMARY METAL INDUSTRIES JQINDN331_CMSA JQINDN332_OH_KY CINCINNATI CMSA INDUSTRIAL PRODUCTION INDEX - PRIMARY METAL INDUSTRIES SERVICE AREA INDUSTRIAL PRODUCTION INDEX - FABRICATED METALS JQINDN333_OH_KY SERVICE AREA INDUSTRIAL PRODUCTION INDEX - INDUSTRIAL MACHINERY & EQUIPMENT JQINDN334_OH_KY SERVICE AREA INDUSTRIAL PRODUCTION INDEX - COMPUTER AND ELECTRONICS JQINDN335_OH_KY SERVICE AREA INDUSTRIAL PRODUCTION INDEX - ELECTRICAL EQUIPMENT JQINDN3364_OH_KY SERVICE AREA INDUSTRIAL PRODUCTION INDEX - AIRCRAFT AND PARTS JQINDN361_62_63_OH_KY SERVICE AREA INDUSTRIAL PRODUCTION INDEX - MOTOR VEHICLES AND PARTS JQINDNAOI_OH_KŸ SERVICE AREA INDUSTRIAL PRODUCTION - ALL OTHER INDUSTRIES JULY4WEEK QUALITATIVE VARIABLE FOR THE WEEK OF JULY 4TH KWHCOM_OH_KY SERVICEA KWH SALES - COMMERCIAL KWHOPAEWP_OH_KY SERVICE AREA KWH SALES - OPA LESS WATER PUMPING KWHOPAWP OH KY SERVICE AREA KWH SALES - OPA WATER PUMPING KWHRES_OH_KY SERVICE AREA KWH SALES - RESIDENTIAL KWHSEND OH KY WN SERVICE AREA KWH SENDOUT - WEATHER NORMALIZED SERVICE AREA KWH SALES - STREET LIGHTING KWHSL_OH_KY MAUG QUALITATIVE VARIABLE - AUGUST QUALITATIVE VARIABLE - DECEMBER QUALITATIVE VARIABLE - FEBRUARY MDEC MFEB QUALITATIVE VARIABLE - JANUARY MJAN MJUL QUALITATIVE VARIABLE - JULY QUALITATIVE VARIABLE - JUNE MJUN QUALITATIVE VARIABLE - MARCH MMAR MP_RES_OH_KY MARGINAL PRICE OF ELECTRICITY - RESIDENTIAL QUALITATIVE VARIABLE - SEPTEMBER MSEP MWHN311_312_OH_KY SERVICE AREA MWH SALES - INDUSTRIAL - FOOD AND PRODUCTS MWHN322_326_OH_KY MWHN325_OH_KY MWHN331_BUTLER SERVICE AREA MWH SALES - INDUSTRIAL - PAPER AND PRODUCTS SERVICE AREA MWH SALES - INDUSTRIAL - CHEMICALS AND PRODUCTS BUTLER COUNTY MWH SALES - INDUSTRIAL - PRIMARY METAL INDUSTRIES MWHN331LBUTLER_OH_KY SERVICE AREA MWH SALES LESS BUTLER COUNTY - INDUSTRIAL - PRIMARY METAL INDUSTRIES MWHN332_OH_KY SERVICE AREA MWH SALES - INDUSTRIAL - FABRICATED METALS MWHN333_OH_KY SERVICE AREA MWH SALES - INDUSTRIAL - INDUSTRIAL MACHINERY AND EQUIPMENT MWHN334_OH_KY SERVICE AREA MWH SALES - INDUSTRIAL - COMPUTER AND ELECTRONICS MWHN335_OH_KY SERVICE AREA MWH SALES - INDUSTRIAL - ELECTRICAL EQUIPMENT MWHN3361_62_63_OH_KY SERVICE AREA MWH SALES - INDUSTRIAL - MOTOR VEHICLES AND PARTS MWHN3364_OH_KY SERVICE AREA MWH SALES - INDUSTRIAL - TRANSPORTATION EQUIPMENT OTHER THAN MOTOR VEHICLES AND PARTS MWHNAOI_OH_KY SERVICE AREA MWH SALES - INDUSTRIAL - ALL OTHER INDUSTRIES MWSPEAK_OH_KY SERVICE AREA MW PEAK - SUMMER MWWPEAK_OH_KY SERVICE AREA MW PEAK - WINTER N OH KY SERVICE AREA TOTAL POPULATION PMHIGH MAXIMUM HOURLY TEMPERATURE - AFTERNOON PMHUMIDATHIGH HUMIDITY - AFTERNOON PMLOW MINIMUM HOURLY TEMPERATURE - EVENING PMPEAK QUALITATIVE VARIABLE - EVENING PEAK PRECIP OH KY SERVICE AREA PRECIPITATION PREVPMHIGH MAXIMUM HOURLY TEMPERATURE - PREVIOUS AFTERNOON

PREVPMLOW SAT_CAC_EFF SAT_CACNHP_OH_KY SAT_EHP_OH_KY SAT_EHP_OH_KY SAT_RAC_EFF SAT_RAC_OH_KY SAT_RAC_OH_KY SATSL_OH_KY SATSODVAP_OH_KY TS_KW_IND_OH_KY TS_KW_IND_OH_KY WINDAM WPI0661 XMAS YP_OH_KY MINIMUM HOURLY TEMPERATURE - PREVIOUS AFTERNOON =EFF_CAC_OH_KYY(SAT_EHP_OH_KY+SAT_CACNHP_OH_KY) SERVICE AREA SATURATION OF CENTRAL AIR CONDITIONING WITHOUT HEAT PUMP =(SAT_ER_OH_KY+(SAT_EHP_OH_KY*EFF_EHP_OH_KY)) SERVICE AREA SATURATION OF ELECTRIC HEAT PUMPS - RESIDENTIAL SATURATION RATE OF ELECTRIC RESISTANCE HEATERS IN SERVICE AREA =EFF_RAC_OH_KY*SAT_RAC_OH_KY SERVICE AREA SATURATION OF WINDOW AIR CONDITIONING SERVICE AREA =(0.5*SATMERC_OH_KY)+(0.5*SATSODVAP_OH_KY) SERVICE AREA SATURATION OF MERCURY VAPOR STREET LIGHTING SERVICE AREA SATURATION OF SODIUM VAPOR STREET LIGHTING SERVICE AREA SATURATION OF SODIUM VAPOR STREET LIGHTING SERVICE AREA TS RATE FOR DEMAND FOR INDUSTRIAL CUSTOMERS SERVICE AREA TS RATE FOR USAGE FOR INDUSTRIAL CUSTOMERS WIND SPEED - MORNING WHOLESALE PRICE INDEX FOR CRUDE PETROLEUM QUALITATIVE VARIABLE - CHRISTMAS WEEK SERVICE AREA PERSONAL INCOME

EQUATION FORECAST ERROR MEASURED BY MEAN OF THE STANDARD ERRORS

		-	
	SERVICE AREA ELECTRIC CUSTOMERS - RESIDENTIAL	10,162	
	KWH USE PER CUSTOMER – RESIDENTIAL	5	KWH
	KWH SALES – COMMERCIAL	21,040,448	KWH
	MWH SALES - INDUSTRIAL - FOOD, BEVERAGE AND TOBACCO	8,780	MWH
	MWH SALES – INDUSTRIAL – PAPER, PLASTIC AND RUBBER	15,261	MWH
	WWH SALES - INDUSTRIAL - CHEMICALS	25,310	HMM
	MWH SALES – INDUSTRIAL – PRIMARY METALS - BUTLER	12,205	HWM
	MWH SALES – INDUSTRIAL – PRIMARY METALS – LESS BUTLER	3,204	HWIK
	MWH SALES – INDUSTRIAL – FABRICATED METALS	7,725	HWM
	MWH SALES - INDUSTRIAL - MACHINERY	5°7+25	HWM
	MWH SALES - INDUSTRIAL - COMPUTER AND ELECTRONICS	4,159	HWIX
	MWH SALES - INDUSTRIAL - ELEC. EQUIPMENT, APPLIANCE & COMPONENT	3,149	HMM
	MWH SALES - INDUSTRIAL MOTOR VEHICLES AND PARTS	8,695	HWM
	MWH SALES - INDUSTRIAL - AEROSPACE PRODUCTS AND PARTS	6,61+	HMM
	MWH SALES - INDUSTRIAL - MISCELLANEOUS	41,644	HWM
	KWH SALES – OTHER PUBLIC AUTHORITIES – WATER PUMPING	713,775	KWH
	KWH SALES – OTHER PUBLIC AUTHORITIES – LESS WATER PUMPING	10,029,656	HWH
	KWH SALES – STREET LIGHT	283,225	KWH
	SERVICE AREA – SUMMER PEAK	197	MW
Forecast Erron	SERVICE AREA – WINTER PEAK	366	MM

6. Computer Software

All of the equations in the Electric Energy Forecast Model and Electric Peak Load Model were estimated and forecasted on personal computers using the Eviews software from Quantitative Micro Software, LLC.

SECTION II FORECASTS FOR ELECTRIC TRANSMISSION OWNERS

A. GENERAL GUIDELINES

No Response Required.

B. ELECTRIC TRANSMISSION FORECAST

This section of the 2011 Electric Long-Term Forecast Report contains the

transmission forecast forms FE-T1 through FE-T10 as required by OAC 4901:5-5-04.

The forecast is developed using the methodology previously described.

	11-13 OHIO ENEBER DEFINEBIES FOR LOADS CONNECTED TO THE SYSTEM OUTSIDE (13)	4,059,541	4,502,844	4,399,647	4,167,497	4,051,814	4,007,022	4,140,187	1 140 000	4,137,070	4,132,211	4,128,281	4,133,426	4,134,230	4,142,032	4,101,010
	OHIO ENEKGA DEFIAEKIES FOK LOADS CONNECTED TO THE SYSTEM INSIDE (12)	23,573,015	24,535,599	23,542,249	22,131,394	12,824,742	17042041	21,626,010	21 211 605	21.075.558	20,880,930	20,697,588	20,562,909	20,409,617	20,292,894	20, L01, U2
	(11) TOTAL ENERGY DELIVERIES FOR LOAD CONNECTED TO THE SYSTEM 7-10	27,632,556	29,038,443	27,941,896	26,298,891	16,876,556	200,111,01	25,772,197 35,608,732	20,000,02	25,212,628	25,013,141	24,825,869	24,696,335	24,543,847	24,434,926	24,321,42
-	TOTAL ENERGY DELIVERIES AT INTERCONNECTIONS 8+9	15,570,326	14,314,966	18,496,700	15,759,392	15,793,925										
	LEVARMISSION COMEVAIES OUTSIDE OHIO ENERGY DELIVERIES AT INTERCONNECTIONS WITH OTHER (9)	306,588	327,267	184,035	235,746	182,132										
a)	ENERGY DELIVERIES AT INTERCONNECTIONS WITH OTHER TRANSMISSION COMPANIES INSIDE OHIO (8)	15,263,738	13,987,699	14,712,665	15,523,646	15,611,793										
urs/Year) (3 + 6 (7) (7)	43,202,882	43,353,409	42,838,596	42,058,283	40,038,049										
legawatt Ho	4 + 5 TOTAL ENERGY RECEIPTS AT INTERCONNECTIONS (6)	14,738,882	18,035,954	18,384,471	16,719,793	13,317,037										
S	(5) COMPANIES OUTSIDE OHIO COMPANIES OUTSIDE OHIO	581,918	926,439	1,199,563	863,773	1,081,646										
-	COMPANIES INSIDE OHIO COMPANIES INSIDE OHIO (4)	14,156,964	17,109,515	17,184,908	15,856,020	12,235,391										te onorotino in O
	1 + 2 TOTAL ENERGY RECEIPTS FROM GENERATION SOURCES (3)	28,464,000	25,317,455	24,454,125	25,338,490	26,721,012										anto noission suns
-	ENERGY RECEIPTS FROM GENERATION SOURCES CONNECTED TO THE	4,972,870	3,794,386	4,241,387	4,278,054	4,420,174										ant hu cleatric t
	OMNER'S SYSTEM INSIDE OHIO ENERGY RECEIPTS FROM GENERATION SOURCES CONNECTED TO THE (1)	23,491,130	21,523,069	20,212,738	21,060,436	22,300,838					-,		·	,		J. To he filled
	YEAR	2006	2007	2008	2009	2010	1107	2012	C102	2014	2016	2017	2018	2019	2020	2021
		<u>ې</u>	4	ကု	ç	·	> ∙	- ∽	4 6	ר ר	- m	0	5	∞	<u>م </u>	3

FORM FE-T1: TRANSMISSION ENERGY DELIVERY FORECAST

56

(a) To be filled out by electric transmission owners operating in Ohio.

PUCO Form FE-T2 : Electric Transmission Owner's System Seasonal Peak Load Demand Forecast (Mecawatts)(a)

	(e) (f)
	DSM
	After
seense State	Ohio
	nerov.
	Duke E

Į																		
		<u>Winter (d)</u>	3,551	3,505	3,526	2.271	1,459	3.626	3,676	3,729	3.740	3,745	3,750	3.756	3,745	3.736	3.730	3.724
	Internal Load (c)	Summer	4,366	4,459	4,074	3,675	2,328	1,859	4,504	4.540	4,603	4.605	4,588	4,596	4,600	4,581	4,563	4,552
		Winter (d)	3,551	3,505	3,526	2,271	1,459	3,626	3.676	3,729	3,740	3,745	3.750	3.756	3.745	3,736	3,730	3,724
כמער רו	Native Load (b)	Summer	4.366	4,436	4,074	3,675	2,317	1,795	4,340	4,376	4,439	4,441	4.424	4,432	4,436	4,417	4,398	4,388
		Year	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021
			Ϋ́	4	ٺ ا	5		0	-	5	m	4	5	9	7	~	5	10

(a) To be filled out by electric transmission owners operating in Ohio.
(b) Excludes interruptible load.
(c) Includes interruptible load.
(d) Winter load reference is to peak loads which follow the summer peak load.
(e) Includes historical DSM impacts.
(f) Historical company peaks not necessarily coincident with system peak

4901 5-5-03

PUCO Form FE-T3: Electric Transmission Owner's Total Monthly Energy Forecast (MWh)

j	
	(e)
	DSM
	After
	Ohio
	Energy
	Duke

M (e)	Total System (c)	 22 588 622,588	33.214 533.214	03.154 503.154	26.514 426.514	52.079 452.079	6.330 576,330	2.000 672,000	37,108 687,108	15.019 545.019	34.528 484.528	30.628 480,628	12,486 612,486		11,431 2.031,431	1.748 560	1747,858	71.651 1.571,651	1.686.388	55,723 1.955,723	2.132.536	2,172,250	6,410 1.746,410	51,485	34,280 1.634,280	
Duke Energy Ohio After DSI	ion (a) Total Company (b)	622,588	533 214 53	503 154 50	426.514 42	452,079	576.330	672.000	687,108	545.019	484.528	480.628	612.486 61		2,031,431 2,03	1,748,560	1.747.858	1,571,651 1,57	1,686,388	1,955,723	2,132,536	2,172,250 2,17	1,746,410	1,661,485	1,634,280	
	Year 0 (d) Ohio Porti	January	February	March	April	May	June	July	August	September	October	November	December	Year 1 (d)	January	February	March	April	May	June	July	August	September	October	November	

b. Electric transmission owner operating across Ohio bouncres shall provide or cause to be provided data for the total service area in this column. a. Electric transmission owner shall provide or cause to be provided data for the Ohio portion of its service area in this column.

c. Electric transmission owner operating as a part of an integrated operating system shall provide for the total system in this column.

d. Actual data shall be indicated with an esterisk (*).

58

4901:5-5-03

PUCO Form FE-T4: Electric Transmission Owner's Monthly Internal Peak Load Forecast (Megawatts) Internal

		Duke Energy Ohio After DSM (e)	
Year 0 (d)	Ohio Portion ^a	Total Service Area ^b	System ^c
January	1,259	1,259	1.259
February	1,295	1,295	1.295
March	1.238	1.238	1,238
April	1.060	1.060	1 060
May	1 229	1.229	1,229
June	1,581	1.581	1,581
July	1,859	1.869	1,359
August	1,743	1.743	1,743
September	1,617	1,617	1,617
Octaber	1.174	1,174	1,174
November	1 225	1,225	1,225
December	1,419	1 419	1 119
Year 1 (d)			
January	3.626	3.626	3,626
February	3.529	3.529	3,529
March	3.301	3,301	3.301
April	3.036	3.036	3.036
May	3.591	3,591	3,591
June	4 275	4,275	4 275
VIN	4 501	4.501	4,501
August	4 504	4,504	4 504
September	3,969	3 969	3 959
October	3,195	3.195	3 195
November	3,165	3 166	3,165
December	3,577	3 577	3 577
(a) Electric transm	ission owner shall provide or cause to	be provided data for the Ohio portion of its service	area in this column

(b) Electric transmission owner operating across Ohio boundaries shall provide or cause to be provided data for the total service area in this column
 (c) Electric transmission owner operating as a part of an integrated operating system shall provide data for the total system in this column.
 (d) Actual data shall be indicated with an asterisk (*)
 (e) Includes DSM impacts.

59

control of the transmission system. It is Duke Energy Ohio opinion that this form is no longer pertinent to Duke Energy Ohio since Duke Energy Ohio no longer sells transmission or tracks the firmness thereof. For this reason, Duke Energy Ohio Form FE-T5 - As of February 1, 2002 The Midwest Independent Transmission System Operator (MISO) took over functional cannot guarantee the accuracy of the numbers in firm and non-firm "transmission to transmission service."

FORM FE-T5 MONTHLY ENERGY TRANSACTIONS (TOTAL MWH/MONTH) FOR THE MOST RECENT YEAR

PART A: SOURCES OF ENERGY

Reporting Month

Jan-10

1. Energy Receipts from all sources by type: (MWH)

	Firm Transmission	Non-Firm Transmission	, i
Energy Receipts from Power Plants directly connected to the Electric	Service	Service	1 0(31
Fransmission Owner's transmission system	2,470,935		2,470,935
Energy Receipts from other sources	(71,117)		(71,117)
Fotal Energy Receipts	2,399,818	0	2,399,818

PART B: DELIVERY OF ENERGY

Reporting Month

Jan-10

1. Energy deliveries to all points connected to the Electric Transmission Owner's system (MWH)

	Firm Transmission	Non-Firm Transmission		
	Service	Service	Total	_
For Distribution service:				
Affiliated Electric Utility Companies	2,319,273,091	0	2,319,273,091	
Other Investor-Owned Electric Utilities				
Cooperative-Owned Electric System	48,839		48,839	_
Municipal-Owned Electric Systems	57,593		57,593	_
Federal and State Electric Agencies				
Other end user service				
				_
For Non Distribution service (transmission to transmission service)	1,604,179		1,604,179	_
Total Energy Delivery	2,320,983,702	0	2,320,983,702	_

FORM FE-TS MONTHLY ENERGY TRANSACTIONS (TOTAL MWH/MONTH) FOR THE MOST RECENT YEAR

Reporting Month

Jan-10

2. Energy deliveries to all points connected to the Electric Transmission Owner's system located in Ohio (MWH)

				_
	Firm Transmission	Transmission		
	Service	Service	Total	
For Distribution service:				
Affiliated Electric Utility Companies	1,940,075,618	0	1,940,075,618	
Other Investor-Owned Electric Utilities				
Cooperatively-Owned Electric System	31,168		31,168	,
Municipally-Owned Electric Systems	57,593		57,593	
Federal and State Electric Agencies				
Other end user service				
For Non Distribution service (transmission to transmission service)	1,471,832		1,471,832	
Total Ererav Deliverv	1.941.636.211	0	1.941.636.211	_

PART C: LOSSES AND UNACCOUNTED FOR (MWH)

REPORTING MONTH

Jan-10

		Non-Firm	
	Firm Transmission	Transmission	
	Service	Service	Total
Sources minus Delivery (a)	(2,318,583,884)	0	(2,318,583,884)

(a) FE-T5: Part A minus Part B (1)

FORM FE-T5 MONTHLY ENERGY TRANSACTIONS (TOTAL MWH/MONTH) FOR THE MOST RECENT YEAR

PART A: SOURCES OF ENERGY

Reporting Month

Feb-10

1. Energy Receipts from all sources by type: (MWH)

		Nor-Firm	
	Firm Transmission	Transmission	
	Service	Service	Total
Energy Receipts from Power Plants directly connected to the Electric			
ransmission Owner's transmission system	2,340,256	0	2,340,256
Energy Receipts from other sources	50,173		50,173
Fotal Energy Receipts	2,390,429	0	2,390,429

PART B: DELIVERY OF ENERGY

Reporting Month

Feb-10

1. Energy deliveries to all points connected to the Electric Transmission Owner's system (MWH)

	Firm Transmission Service	Non-Firm Transmission Service	Total	
For Distribution service:				
Affiliated Electric Utility Companies	2,062,228,163	0	2,062,228,163	
Other Investor-Owned Electric Utilities		-		
Cooperative-Owned Electric System	42,689	0	42,689	
Municipal-Owned Electric Systems	52,930		52,930	
Federal and State Electric Agencies				
Other and user service				
For Non Distribution service (transmission to transmission service)	1,451,208		1,451,208	
Total Energy Delivery	2,063,774,990	0	2,063,774,990	
			:	

FORM FE-TS MONTHLY ENERGY TRANSACTIONS (TOTAL MWH/MONTH) FOR THE MOST RECENT YEAR

Reporting Month

Feb-10

(HWH)	
in Ohio	
located	
system	
Owner's	
ransmission (
Electric T	
to the	
connected	
points	
to all	
deliveries (
Energy	
N	l

	Firm Transmission	Transmission	
	Service	Service	Total
For Distribution service:			
Affiliated Electric Utility Companies	1,727,280,010	0	1,727,280,010
Other Investor-Owned Electric Utilities			
Cooperatively-Owned Electric System	27,227		27,227
Municipally-Owned Electric Systems	52,930	0	52,930
Federal and State Electric Agencies			
Other end user service			
For Non Distribution service (transmission to transmission service)	1,351,904	0	1,351,904
Total Energy Delivery	1,728,712,071	0	1,728,712,071

PART C: LOSSES AND UNACCOUNTED FOR (MWH)

REPORTING MONTH

Feb-10

		Non-Firm	
	Firm Transmission	Transmission	
	Service	Service	Total
Sources minus Delivery (a)	(2,061,384,561)	0	(2,061,384,561)

(a) FE-T5: Part A minus Part B (1)
PART A: SOURCES OF ENERGY

Reporting Month

Mar-10

1. Energy Receipts from all sources by type: (MWH)

		Non-Firm	
	Firm Transmission	Transmission	
	Service	Service	Total
Energy Receipts from Power Plants directly connected to the Electric			
Fransmission Owner's transmission system	2,361,567	0	2,361,567
Energy Receipts from other sources	200,057	0	200,057
fotal Energy Receipts	2,561,624	0	2,561,624

PART B: DELIVERY OF ENERGY

Reporting Month

Mar-10

	F	Non-Firm		_
	FIRM LEARSMISSION	I ransmission		-
	Service	Service	Total	
For Distribution service:				_
Affiliated Electric Utility Companies	2,013,014,898	0	2,013,014,898	_
Other Investor-Owned Electric Utilities				· · · · · · · · · · · · · · · · · · ·
Cooperative-Owned Electric System	36,624	0	36,624	-
Municipal-Owned Electric Systems	49,407	0	49,407	_
Federal and State Electric Agencies				
Other end user service				
For Non Distribution service (transmission to transmission service)	1,507,359	0	1,507,359	_
Total Energy Delivery	2,014,608,288	0	2,014,608,288	_

Reporting Month

Mar-10

2. Energy deliveries to all points connected to the Electric Transmission Owner's system located in Ohio (MWH)

	Firm Transmission	Transmission	
	Service	Service	Total
For Distribution service:			
Affiliated Electric Utility Companies	1,677,561,203	0	1,677,561,203
Other Investor-Owned Electric Utilities			
Cooperatively-Owned Electric System	21,767		21,767
Municipally-Owned Electric Systems	49,407	0	49,407
Federal and State Electric Agencies			
Other end user service			
For Non Distribution service (transmission to transmission service)	1,420,011	0	1,420,011
	•		
Total Energy Delivery	1.679.052.388	0	1.679.052.388

PART C: LOSSES AND UNACCOUNTED FOR (MWH)

REPORTING MONTH

Mar-10

	-		
	Firm Transmission	Transmission	
	Service	Service	Total
Sources minus Delivery (a)	(2,012,046,664)	0	(2,012,046,664)

PART A: SOURCES OF ENERGY

Reporting Month

Apr-10

1. Energy Receipts from all sources by type: (MWH)

	Firm Transmission	Non-Firm Transmission Service	Total
Energy Receipts from Power Plants directly connected to the Electric Transmission Owner's transmission system	2,274,031	0	2,274,031
Energy Receipts from other sources	339,176	0	339,176
Total Energy Receipts	2,613,207	0	2,613,207

PART B: DELIVERY OF ENERGY

Reporting Month

Apr-10

	Firm Transmission	Non-Firm Transmission		
	Service	Service	Total	
For Distribution service:				
Affiliated Electric Utility Companies	1,781,294,466	0	1,781,294,466	
Other Investor-Owned Electric Utilities				
Cooperative-Owned Electric System	30,578	0	30,578	
Municipal-Owned Electric Systems	51,743	0	51,743	
Federal and State Electric Agencies				
Other end user service				
For Non Distribution service (transmission to transmission service)	1,452,297	0	1,452,297	
Total Energy Delivery	1,782,829,084	0	1,782,829,084	

Reporting Month

Apr-10

-	
(HWH)	-Firm
<u>ohi</u> d	<u>S</u>
cated	
<u>0</u> E	
yste	
r's s	
whee Whee	
5	
lissi	
ansn	
c Tr	
lectri	
щ	
to tl	
cted	
ŠŪLĢ	
ts co	
poin	
o all	
es t	
iveri	
y de	
nerg	
ш а	
2	

	Firm Transmission	Transmission	
	Service	Service	Total
For Distribution service:			
Affiliated Electric Utility Companies	1,492,007,517	0	1,492,007,517
Other Investor-Owned Electric Utilities			
Cooperatively-Owned Electric System	16,336		16,336
Municipally-Owned Electric Systems	51,743	0	51,743
Federal and State Electric Agencies			
Other end user service			
For Non Distribution service (transmission to transmission service)	1,347,745	0	1,347,745
Total Energy Delivery	1,493,423,341	0	1,493,423,341

PART C: LOSSES AND UNACCOUNTED FOR (MWH)

REPORTING MONTH

Apr-10

	Firm Transmission	Transmission	
	Service	Service	Total
Sources minus Delivery (a)	(1,780,215,877)	0	(1,780,215,877)

PART A: SOURCES OF ENERGY

Reporting Month

May-10

1. Energy Receipts from all sources by type: (MWH)

		Non-Film		
	Firm Transmission	Transmission		
	Service	Service	Total	_
Energy Receipts from Power Plants directly connected to the Electric				-
Fransmission Owner's transmission system	1,877,304	0	1,877,304	
Energy Receipts from other sources	(301,783)	0	(301,783)	
Total Energy Receipts	1,575,521	0	1,575,521	

PART B: DELIVERY OF ENERGY

Reporting Month

May-10

		Non-Firm		
	Firm Transmission	Transmission		
	Service	Service	Total	
For Distribution service:				_
Affiliated Electric Utility Companies	1,729,906,226	0	1,729,906,226	
Other Investor-Owned Electric Utilities				
Cooperative-Owned Electric System	34,118	0	34,118	
Municipal-Owned Electric Systems	37,130	0	37,130	
Federal and State Electric Agencies				
Other end user service				
For Non Distribution service (transmission to transmission service)	1,138,648	0	1,138,648	_
				_
Total Energy Delivery	1,731,116,122	0	1,731,116,122	_

Reporting Month

May-10

2. Energy deliveries to all points connected to the Electric Transmission Owner's system located in Ohio (MWH)

		Non-Firm	
	Firm Transmission	Transmission	-
	Service	Service	Total
For Distribution service:			
Affiliated Electric Utility Companies	1,447,689,411	0	1,447,689,411
Other Investor-Owned Electric Utilities			
Cooperatively-Owned Electric System	18,402		18,402
Municipally-Owned Electric Systems	37,130	o	37,130
Federal and State Electric Agencies			
Other end user service			
For Non Distribution service (transmission to transmission service)	1,115,655	0	1,115,655
Total Energy Delivery	1,448,860,598	0	1,448,860,598

PART C: LOSSES AND UNACCOUNTED FOR (MWH)

REPORTING MONTH

May-10

		Non-Firm	
	Firm Transmission	Transmission	
	Service	Service	Total
Sources minus Delivery (a)	(1,729,540,601)	0	(1,729,540,601)

PART A: SOURCES OF ENERGY

Reporting Month

Jur-10

1. Energy Receipts from all sources by type: (MWH)

		Non-Firm	
	Firm Transmission	Transmission	
	Service	Service	Total
Energy Receipts from Power Plants directly connected to the Electric			
Fransmission Owner's transmission system	2,082,701	0	2,082,701
Energy Receipts from other sources	(544,907)	0	(544,907)
Fotal Energy Receipts	1,537,794	0	1,537,794

PART B: DELIVERY OF ENERGY

Reporting Month

Jun-10

	Firm Transmission	Non-Firm Transmission		
	Service	Service	Total	
For Distribution service:				
Affiliated Electric Utility Companies	2,205,546,091	0	2,205,546,091	
Other Investor-Owned Electric Utilities				
Cooperative-Owned Electric System	41,128	0	41,128	
Municipal-Owned Electric Systems	48,900	0	48,900	
Federal and State Electric Agencies				
Other end user service				
For Non Distribution service (transmission to transmission service)	1,228,771	0	1,228,771	
				_
Total Energy Delivery	2,206,864,890	0	2,206,864,890	_

Reporting Month

Jun-10

2. Energy deliveries to all points connected to the Electric Transmission Ov	vner's system located	in Ohio (MWH)	
		Non-Firm	
	Firm Transmission	Transmission	
	Service	Service	Total
For Distribution service:			
Affiliated Electric Utility Companies	1,845,989,090	0	1,845,989,090
Other Investor-Owned Electric Utilities			
Cooperatively-Owned Electric System	22,857		22,857
Municipally-Owned Electric Systems	48,900	0	48,900
Federal and State Electric Agencies			
Other end user service			
For Non Distribution service (transmission to transmission service)	1,136,262	0	1,136,262
Total Energy Delivery	1,847,197,109	0	1,847,197,109

PART C: LOSSES AND UNACCOUNTED FOR (MWH)

REPORTING MONTH

Jun-10

		Non-Firm	
	Firm Transmission	Transmission	
	Service	Service	Total
Sources minus Delivery (a)	(2,205,327,096)	0	(2,205,327,096)

PART A: SOURCES OF ENERGY

Reporting Month

14-10

1. Energy Receipts from all sources by type: (MWH)

		Non-Firm	
	Firm Transmission	Transmission	
	Service	Service	Total
Energy Receipts from Power Plants directly connected to the Electric			
Transmission Owner's transmission system	2,160,085	0	2,160,085
Energy Receipts from other sources	(692,960)	0	(692,960)
Total Energy Receipts	1,467,125	0	1,467,125

PART B: DELIVERY OF ENERGY

Reporting Month

Jul-10

	Firm Transmission	Non-Firm Transmission		
	Service	Service	Total	
For Distribution service:				
Affiliated Electric Utility Companies	2,426,251,794	0	2,426,251,794	
Other Investor-Owned Electric Utilities				
Cooperative-Owned Electric System	44,780	0	44,780	
Municipal-Owned Electric Systems	52, 149	0	52,149	
Federal and State Electric Agencies				
Other end user service				
For Non Distribution service (transmission to transmission service)	1,337,250	0	1,337,250	
		-		
Total Energy Delivery	2,427,685,973	0	2,427,685,973	

Reporting Month

Jul-10

(MWH)	
in Ohio	No.
located	
system	:
wher's	
ransmission C	
Electric 7	
to the	
oints connected	
o all po	
/ deliveries t	
Energy	
ŝ	

	Firm Transmission	Transmission		
	Service	Service	Total	_
For Distribution service:				
Affiliated Electric Utility Companies	2,027,417,735	0	2,027,417,735	
Other Investor-Owned Electric Utilities				
Cooperatively-Owned Electric System	25,901		25,901	
Municipally-Owned Electric Systems	52,149	0	52,149	1
Federal and State Electric Agencies				-
Other end user service				-
				_
For Non Distribution service (transmission to transmission service)	1,226,326	0	1,226,326	I
				- 1
Total Energy Delivery	2,028,722,111	0	2,028,722,111	
				t

PART C: LOSSES AND UNACCOUNTED FOR (MWH)

REPORTING MONTH

Jul-10

		Non-Firm	
	Firm Transmission	Transmission	
	Service	Service	Total
Sources minus Delivery (a)	(2,426,218,848)	0	(2,426,218,848)

PART A: SOURCES OF ENERGY

Reporting Month

Aug-10

1. Energy Receipts from all sources by type: (MWH)

		Non-Firm	
	Firm Transmission	Transmission	
	Service	Service	Total
Energy Receipts from Power Plants directly connected to the Electric			
Fransmission Owner's transmission system	2,346,285	0	2,346,285
chergy Receipts from other sources	(478,485)	0	(478,485)
Total Energy Receipts	1,867,800	0	1,867,800

PART B: DELIVERY OF ENERGY

Reporting Month

Aug-10

		Non-Firm	
	Firm Transmission	Transmission	
	Service	Service	Total
For Distribution service:			
Affiliated Electric Utility Companies	2,481,255,279	0	2,481,255,279
Other Investor-Owned Electric Utilities			
Cooperative-Owned Electric System	46,594	0	46,594
Municipal-Owned Electric Systems	47,835	0	47,835
Federal and State Electric Agencies			
Other end user service			
For Non Distribution service (transmission to transmission service)	1,363,617	0	1,363,617
Total Energy Delivery	2,482,713,325	0	2,482,713,325

Reporting Month

Aug-10

2. Energy deliveries to all points connected to the Electric Transmission Owner's system located in Ohio (MWH)

		Non-Firm		
	Firm Transmission	Transmission		
	Service	Service	Total	
For Distribution service:				
Affiliated Electric Utility Companies	2,069,587,082	0	2,069,587,082	<u> </u>
Other Investor-Owned Electric Utilities				
Cooperatively-Owned Electric System	25,099		25,099	-
Municipally-Owned Electric Systems	47,835	0	47,835	_
Federal and State Electric Agencies				_
Other end user service				r
For Non Distribution service (transmission to transmission service)	1,248,469	0	1,248,469	
				-
Total Energy Delivery	2,070,908,485	0	2,070,908,485	
				1

PART C: LOSSES AND UNACCOUNTED FOR (MWH)

REPORTING MONTH

Aug-10

		Nan-Firm		
	Firm Transmission	Transmission		
	Service	Service	Total	
Sources minus Delivery (a)	(2,480,845,525)	0	(2,480,845,525)	

PART A: SOURCES OF ENERGY

Reporting Month

Sep-10

1. Energy Receipts from all sources by type: (MWH)

	Firm Transmission	Transmission	
	Service	Service	Totat
Energy Receipts from Power Plants directly connected to the Electric			
Transmission Owner's transmission system	2,346,285	0	2,346,285
Energy Receipts from other sources	(478,485)	0	(478,485)
Total Energy Receipts	1,867,800	0	1,867,800

PART B: DELIVERY OF ENERGY

Reporting Month

Sep-10

		Non-Firm	
	Firm Transmission	Transmission	
	Service	Service	Total
For Distribution service:			
Affiliated Electric Utility Companies	2,251,222,534	0	2,251,222,534
Other Investor-Owned Electric Utilities			
Cooperative-Owned Electric System	36,407	0	36,407
Municipal-Owned Electric Systems	43,224	0	43,224
Federal and State Electric Agencies			
Other end user service			-
For Non Distribution service (transmission to transmission service)	1,279,617	0	1,279,617
Total Energy Delivery	2,252,581,782	0	2,252,581,782

Reporting Month

Sep-10

2. Energy deliveries to all points connected to the Electric Transmission Owner's system located in Ohio (MWH)

		Non-Firm		
	Firm Transmission	Transmission		.
	Service	Service	Total	
For Distribution service:				
Affiliated Electric Utility Companies	1,875,112,769	0	1,875,112,769	
Other Investor-Owned Electric Utilities				
Cooperatively-Owned Electric System	18,748		18,748	
Municipally-Owned Electric Systems	43,224	0	43,224	
Federal and State Electric Agencies				
Other end user service				
	0			
For Non Distribution service (transmission to transmission service)	1,198,053	0	1,198,053	
Total Energy Delivery	1,876,372,794	0	1,876,372,794	

PART C: LOSSES AND UNACCOUNTED FOR (MWH)

REPORTING MONTH

Sep-10

		Non-Firm	
	Firm Transmission	Transmission	
	Service	Service	Total
Sources minus Delivery (a)	(2,250,713,982)	٥	(2,250,713,982)

PART A: SOURCES OF ENERGY

Reporting Month

Oct-10

1. Energy Receipts from all sources by type: (MWH)

		Non-Firm		
	Firm Transmission	Transmission		
	Service	Service	Total	
Energy Receipts from Power Plants directly connected to the Electric				
Transmission Owner's transmission system	2,199,638	0	2, 199,638	
				_
Energy Receipts from other sources	207,519	0	207,519	
Total Energy Receipts	2 407 157	C	2 407 157	

PART B: DELIVERY OF ENERGY

Reporting Month

Oct-10

		Non-Firm		
	Firm Transmission	Transmission		-
	Service	Service	Total	
⁻ or Distribution service:				
Affiliated Electric Utility Companies	1,821,205,356	0	1,821,205,356	
Other Investor-Owned Electric Utilities				_
Cooperative-Owned Electric System	33,367	0	33,367	_
Municipal-Owned Electric Systems	54,517	0	54,517	
Federal and State Electric Agencies				
Other end user service				
or Non Distribution service (transmission to transmission service)	1,433,130	0	1,433,130	
				_
Fotal Energy Delivery	1.822.726.370	0	1,822,726,370	

Reporting Month

Oct-10

2. Energy deliveries to all points connected to the Electric Transmission Owner's system located in Ohio (MWH)

	Firm Transmission	Transmission	
	Service	Service	Total
For Distribution service:			
Affiliated Electric Utility Companies	1,517,521,233	0	1,517,521,233
Other Investor-Owned Electric Utilities			
Cooperatively-Owned Electric System	17,104		17,104
Municipally-Owned Electric Systems	54,517	0	54,517
Federal and State Electric Agencies			
Other end user service			
For Non Distribution service (transmission to transmission service)	1,345,856	0	1,345,856
Total Energy Delivery	1,518,938,710	0	1,518,938,710

PART C: LOSSES AND UNACCOUNTED FOR (MWH)

REPORTING MONTH

Oct-10

		Non-Firm	
	Firm Transmission	Transmission	
	Service	Service	Total
Sources minus Delivery (a)	(1,820,319,213)	0	(1,820,319,213)

PART A: SOURCES OF ENERGY

Reporting Month

Nov-10

1. Energy Receipts from all sources by type: (MWH)

		Non-Firm		
	Firm Transmission	Transmission		
	Service	Service	Total	
Energy Receipts from Power Plants directly connected to the Electric				
Transmission Owner's transmission system	2,105,225	0	2,105,225	
				1
Energy Receipts from other sources	73,232	0	73,232	<u> </u>
				· · · ·
Total Energy Receipts	2,178,457	0	2,178,457	Г —
				1

PART B: DELIVERY OF ENERGY

Reporting Month

Nov-10

		Non-Firm	
	Firm Transmission	Transmission	
	Service	Service	Total
For Distribution service:			
Affiliated Electric Utility Companies	1,716,163,348	0	1,716,163,348
Other Investor-Owned Electric Utilities			
Cooperative-Owned Electric System	35,367	0	35,367
Municipal-Owned Electric Systems	55,904	0	55,904
Federal and State Electric Agencies			
Other end user service			
For Non Distribution service (transmission to transmission service)	1,413,806	0	1,413,806
Total Energy Delivery	1,717,668,425	0	1,717,668,425

Reporting Month

Nov-10

2. Energy deliveries to all points connected to the Electric Transmission Owner's system located in Ohio (MWH)

	i	Non-Firm	
	Firm Transmission	Transmission	
	Service	Service	Total
For Distribution service:			
Affiliated Etectric Utility Companies	1,434,269,777	0	1,434,269,777
Other Investor-Owned Electric Utilities			
Cooperatively-Owned Electric System	21,116		21,116
Municipally-Owned Electric Systems	55,904	0	55,904
Federal and State Electric Agencies			
Other end user service			
For Non Distribution service (transmission to transmission service)	1,325,100	0	1,325,100
Total Energy Delivery	1,435,671,897	0	1,435,671,897

PART C: LOSSES AND UNACCOUNTED FOR (MWH)

REPORTING MONTH

Nov-10

		Non-Firm	
	Firm Transmission	Transmission	
	Service	Service	Tota
Sources minus Delivery (a)	(1,715,489,968)	0	(1,715,489,968)

PART A: SOURCES OF ENERGY

Reporting Month

Dec-10

1. Energy Receipts from all sources by type: (MWH)

		Non-Firm	
	Firm Transmission	Transmission	
	Service	Service	Total
Energy Receipts from Power Plants directly connected to the Electric			
Transmission Owner's transmission system	2,354,478	0	2,354,478
Energy Receipts from other sources	(161,920)	0	(161,920)
Total Energy Receipts	2,192,558	0	2,192,558

PART B: DELIVERY OF ENERGY

Reporting Month

Dec-10

		Non-Firm	
	Firm Transmission	Transmission	
	Service	Service	Total
For Distribution service:			
Affiliated Electric Utility Companies	2,127,758,632	0	2,127,758,632
Other Investor-Owned Electric Utilities			
Cooperative-Owned Electric System	48,460	0	48,460
Municipal-Owned Electric Systems	62,085	0	62,085
Federal and State Electric Agencies			
Other end user service			
For Non Distribution service (transmission to transmission service)	1,530,508	0	1,530,508
Total Energy Delivery	2, 129, 399, 685	0	2,129,399,685

Reporting Month

Dec-10

2. Energy deliveries to all points connected to the Electric Transmission Owner's system located in Ohio (MWH)

		Non-Firm		
	Firm Transmission	Transmission		
	Service	Service	Total	
For Distribution service:				
Affiliated Electric Utility Companies	1,768,025,937	0	1,768,025,937	
Other Investor-Owned Electric Utilities				
Cooperatively-Owned Electric System	31,109		31,109	
Municipally-Owned Electric Systems	62,085	0	62,085	
Federal and State Electric Agencies	0			
Other end user service				
			-	
or Non Distribution service (transmission to transmission service)	1,424,585	0	1,424,585	
Total Energy Delivery	1,769,543,716	0	1,769,543,716	

PART C: LOSSES AND UNACCOUNTED FOR (MWH)

REPORTING MONTH

Dec-10

		Non-Firm	
	Firm Transmission	Transmission	
	Service	Service	Total
Sources minus Delivery (a)	(2, 127, 207, 127)	0	(2,127,207,127)

As of February 1, 2002 the Midwest ISO took over the function of managing DEO's Transmission Service Requests. As such, the allocation of AFC is the sole responsibility of the Midwest ISO.

Reporting Month JANUARY

Megawatts	3,539	Day of W	/eek	FRI	Day of Mo	nth 8	Hour of	Peak	10:00
CURTAILMENT PRIO	RITY CL	SSES			Firm Transmission Service	Моя-Firm Ттапатіззіол Service	Totai		
Number of Requests					73	9	79		
Requests (MW)					36,457	410	36867		
Number of requests accel	pted				44	3	47		
Requests accepted (MW)	(31,860	44	31904		
								Reas	on for
								p-uou	elivery
Requests not accepted	(MW) an	d reason 1	or not	accepting	4,597	366	4963	With	drawn/
delivery								Inv	alid/
								Refi	used/
								Decl	ined/
								Ann	ulled/
								Retr	acted

Reporting Month FEBRUARY

<u> </u>					_										
eak 9:00							Reason for	non-delivery	Withdrawn/	lnvalid/	Refused/	Declined/	Annulled/	Retracted	
Hour of F	Total	17	36,554		45	31,889			4,665		·				86
ith 12	Non-Firm Transmission Service	5	397		1	29			368						
Day of Mor	Firm Transmission Service	72	36,157	-	44	31,860			4,297						
FRI									t accepting						
Day of Week	LASSES								and reason for no						
3,497	RIORITY C	0			accepted	MW)			pted (MW)						
Megawatts	CURTAILMENT P	Number of Request.	Requests (MW)		Number of requests	Requests accepted (Requests not acce	delivery					

Reporting Month MARCH

Į

Megawatts 3,240 Day of Week TUES	Day of Mo.	nth 2	Hour of I	Peak] 2	00:00
CURTALLMENT PRIORITY CLASSES	Firm Transmission Service	Non-Firm Transmission Service	Total		
Number of Requests	78	4	82		
Requests (MW)	36,157	378	36535		
Number of requests accepted	50	1	51		
Requests accepted (MW)	31,860	12	31872		
				Reason	for
				non-deli	very
Requests not accepted (MW) and reason for not accepting	4,297	366	4663	Withdra	/IIME
delivery				Invali	q،
	_			Refus	/pe
				Dechin	ed/
				Annull	ed/
				Retrac	ted

Reporting Month APRIL

							1	22.21
4ENT PRIOR		ASSES		Firm Transmission Service	Mon-Firm Transmission Service	Total		
Requests				81	4	85		
(W)				36,448	405	36,853		
	i			-				
equests accept	ted			52	1	53		
cepted (MW).				32,054	39	32,093		
	I						Reaso	n for
							non-de	livery
ot accepted (MW) a	nd reason for not	accepting	4,394	366	4,760	Withd	rawn/
				• ·			Lnva	lid/
							Refu	sed
							Decl	ned/
							Vnnu	lled/
							Retra	loted

Reporting Month MAY

Mcgawatts	3,739	Day of Week	THUR	Day of Mo	nth 27	Hour of	Peak	13:00
CURTAILMENT PR	JORITY CI	LASSES		Firm Transmission Service	Non-Firm Transmission Service	Total		
Number of Requests				82	e	85		
[Requests (MW)				36,448	379	36827		
Number of requests a	ccepted			53	2	55		
Requests accepted (N	(W)			32,054	19	32073		
							Rease	n for
							non-de	livery
Requests not accept	ed (MW)	and reason for not	accepting	4,394	360	4754	Withd	rawn/
delivery							lnva	Jid/
							Refu	sed/
							Decl	ined/
							Annu	lled/
							Retra	icted

Reporting Month JUNE

Megawatts	4,464	Day of Week	WED	Day of Mor	th 23	Hour of J	Peak	16:00
CURTALMENT PH	UORITY CL	ASSES		Firm Transmission Service	Mon-Firm Transmission Service	Total		
Number of Requests		-		83	2	85		
Requests (MW)				36,126	380	36,506		
Number of requests a	ccepted			58	1	59		
Requests accepted (N	(W)			32.072	20	32,092		
							Reaso	n for
							_ non-de	livery
Requests not accept	ted (MW) a	nd reason for n	ot accepting	4,054	360	4,414	Withd	rawn/
delivery							Inva	lid/
							Refu	sed/
							Decli	ned/
							Annu	lled/
							Retra	cted

Reporting Month JULY

Megawatts 4,446 Day of Week 1	HUR	Day of Moi	ıth 8	Hour of	Peak	16:00
CURTAILMENT PRIORETY CLASSES		Firm Transmission Service	Mon-Firm Transmission Service	Total		
Number of Requests		85	4	89		
Requests (MW)		36,440	612	37052		
Number of requests accepted		62	3	65		
Requests accepted (MW)		32,539	252	32791		
					Rease	оп for
			-		non-de	clivery
Requests not accepted (MW) and reason for not ac	cepting	3,901	360	4261	Withc	trawn/
delivery					łnva	ulid/
					Refu	ised/
					Decl	ined/
					Ann	ulled/
					Retri	acted

Reporting Month AUGUST

Megawatts	4,669	Day of Week	WED	Day of Mon	h 4	Hour of I	Peak 14:01
CURTAILMENT PRU	ORITY CL	ASSES		Firm Transmission Service	Von-Firm Transmission Service	Total	
Number of Requests				85	3,	88	
Requests (MW)				36,540	400	36,940	
Number of requests acc	cepted			58	2	60	
Requests accepted (MV	W)			32,539	40	32,579	
							Reason for
							Uavilab-uou
Requests not accepted	d (MW) a	nd reason for not	accepting	4,001	360	4,361	Withdrawn/
delivery							Invalid/
							Refused/
							Declined/
							Annulled/
							Retracted
				-			

Reporting Month SEPTEMBER

Megawatts	4,322	Day of Week	WED	Day of Mor	nth 1	Hour of	Peak	17:00
CURTAILMENT PR	I I I I I I I I I I I I I I I I I I I	LASSES		rinn Transmission Service	Von-Firm Transmission Service	Total		
Number of Requests				86	3	89		
Requests (MW)				36,590	390	36980		
Number of requests ac	cepted			58	2	60		
Requests accepted (M	W)			32,539	30	32569		
							Reas	on for
							p-uou	elivery
Requests not accept	e (MM) ba	and reason for no	ot accepting	4,051	360	4411	With	drawn/
delivery							Inv	alid/
							Refi	/pəsr
							Dec	ined/
							Ann	ulledv
							Retr	acted

Reporting Month OCTOBER

Hour of Peak 15:00	Total	88	36,944	60	32,583	Reason for	non-delivery	4,361 Withdrawn/	Invalid/	Refused/	Declined/	Annulled/	Detracted
th 11	Mon-Firm Tansnission Service	3	404	2	44			360					
Day of Mor	Firm Transnission Service	85	36,540	58	32,539	·		4,001					
MON		-						of accepting					
Day of Week	SEES							d reason for no					
3,006	JORITY CLA			ccepted	(W)			ed (MW) an					
Megawatts	CURTALMENT PR	Number of Requests	Requests (MW)	Number of requests au	Requests accepted (M			Requests not accept	delivery				

6

Reporting Month NOVEMBER

Megawatts	2,993	Day of Week	WED	Day of Mor	th 24	Hour of	Peak	18:00
CURTAILMENT PR	HORITYCL	ASSES		Firm Transmission Service	Von-Firm Transmission Service	Total		
Number of Requests				86	7	93		
Requests (MW)				36,873	401	37274		
Number of requests a	ccepted			58	9	64		
Requests accepted (M	(W)			32,872	41	32913		
							Rease	on for
				-			non-de	slivery
Requests not accept	ed (MW) an	id reason for not	accepting	4,001	360	4361	Withd	lrawn/
delivery				-			lnva	ulid/
			-	-			Refu	ised/
							Decl	ined/
							Ann	ulled/
							Retri	acted

Reporting Month DECEMBER

Megawatts	3,640	Day of Week	MON	Day of Mon	th 6	Hour of]	Peak	9:00
CURTAILMENT PRI	IORITY CL	SISS		Firm Transnission Service	Non-Firm noissiment Service	Total		
Number of Requests				93	с С	96		
Requests (MW)	-			36,916	405	37,321		_
Number of requests ac	cepted			66	2	68		
Requests accepted (M ¹	(M)			32,915	45	32,960		
							Reason	for
							non-del	ivery
Requests not accepte	e (MM) ba	nd reason for no	t accepting	4,001	360	4,361	Withdr	awn/
delivery			1				Inval	q,
							Refus	ed/
							Declin	led/
							Annul	led/
							Retrac	ted

C. THE EXISTING TRANSMISSION SYSTEM

(1) General Description - The Duke Energy-Ohio (DEO) transmission system above 125 kV consists of 138 kV and 345 kV systems. The 345 kV system generally serves to distribute power from the larger, base load generating units which are connected to the Duke Energy Ohio transmission system, and to interconnect the Duke Energy Ohio system with other systems. These interconnections enable the transmission of power between systems as required to meet the service area load requirements and they provide capacity for economy and emergency power transfers. The 345 kV system is connected to the 138 kV system through large transformers at a number of substations across the system. The 138 kV system distributes power received through the transformers and also from several smaller generating units which are connected directly at this voltage level. This power is distributed to substations which supply lower voltage sub-transmission systems, distribution circuits, or serve a number of large customer loads directly.

As of December 2010, the transmission system of Duke Energy Ohio and its subsidiary companies consisted of approximately 403 circuit miles of 345 kV lines (including Duke Energy Ohio's share of jointly owned transmission) and 725 circuit miles of 138 kV lines. Portions of the 345 kV transmission system are jointly owned with American Electric Power (AEP) and/or Dayton Power & Light (DP&L).

(a) A summary of the characteristics of existing transmission lines are shown on the following forms FE-T7, Characteristics of existing Transmission lines. The forms are separated into several groups. The first group is of lines designed to operate at 138 kV. The second group is of wholly owned lines designed to operate at 345 kV. The remaining groups are of lines designed to operate at 345 kV which are jointly owned with other utilities. The line numbers correspond to those shown on the schematic diagrams and geographic maps of section 4901:5-5-04 (C)(2).

				MEOLLY OF	INTERINSING DEN	A LINES DES	HEI NOS CTANDI	XV OPERAT						
CIRCUIT			SUMMER CAPABILI	TY (MVA) NORMAL	WINTER CAPABI EMERGENCY	ITY (MVA)	VOLTAGE (I EMERGENCY	KV) R-I OPER.	DEBIGN	LENGTH	HLCILM	NUMBER SUPPORTING	OF	
NO. DEO-A	LINE NAME	ORIGIN	TERMINUS	RATING	RATING	RATING	RATING	LEVEL	TEART	(MILES)	(FEET)	8TRUCTURES	CIRCUITS	SUBSTATIONS ON THE LINE
0E4	Evendale-GE Ram Jet	Evendale	Tower No.	170	206	227	252	138	138	0.17	100	Steel Tower	ī	
689	ELEMOOD - Lateral Sertion 1	500WILL3	Leteral	996	9.7E	60E	AFF	138	85.1	46.1	001	Wood Pole		
	Section 2			226	275	302	336	138	138	2.37	001	Steel Tower	0	
689	Eimwood-Terminal	Elmwood	Terminal	261	316	349	389	138	BET	1.40	100	Wood Pole	-	
885	Oakley-Red Bank	oaktey	Red Bank	282	343	377	421	138	138	1.09	100	Steel Tower	2	
886	0akley-Beckjord	Cakley	Beckjord	282	343	377	421	138	138	16.45	100	Steel Tower	2	
1263	Mitchell-Brighton	Mitchell	Brighton	92	111	123	136	69	138	4.20	100	Steel Tower	2	
1269	Central-Ashland To	OWBE ND. 37	Tower No. 58	96	96	122	122	69	138	3.43	100	Steel Tower	2	
1284	Mitchell-Terminal	Mitchell	Terminal	234	284	312	343	138	138	3.61	DOL	Steel Towar	R	Herkel Corp.
1286	Mitchell-West End	Mitchell	West End	230	280	308	343	138	138	8.16	100	Steel Tower	~	umminsville, Queensgate, V s Nist
1288	Mitchell-Babland-Cakley	Mi rohal I	Carley. Ashland											MALLO SAMEL DISC.
0044	Section 1		Station (Estate)	230	280	308	343	136	138	1.30	100	Steel Tower	1	
	Section 2			230	280	308	343	138	861	7.33	100	Steel Tower	7	
1385	Charles-West End	Charles	West End	234	245	267	277	138	138	1.11	100	Drucergraph	г	
1389	Charles-West End	Charles	West End	234	245	267	277	138	138	1.12	100	Underground	-	
1587	West End-Crescent	West End	Ohio/Ky. St. Line	226	275	302	336 102	138	138	05.00		Starl Towar	- 0	
000T	Miani Fort-Monsanto	Miami Fort	TOWNER NO. 30 Chio/Took at 1:00		101	111	571 571		807 F			Steel Tower 6	N -	
TOOT				2	~~~			007	001			Wood Pole	•	
1682	Mıami Fort-Clifty Creek	Miami Fort	Ohio/Ky. St. Line	136	136	181	181	138	138	0E.0	100	Wood H-Frame	г	
1688	Miand Fort-MFGT	Miami Fort	Miami Fort GT	226	275	302	336	138	138	9.34	100	Wood Pola	7	
1689	Miami Fort-Morgan	Miama Fort	Morgan	226	275	302	336	138	138	8.16	100	Steel Tower	N	
1762	Tranton-Terminal	Tranton	Terninal	Ę	ş		-		00.		100	Terre Lands		
	Section 1 Section 3			2 F	2.0		113			0 0 0 0 0		Wood Pole		
1782	Terminal-Glenviev	Terminal	Glenview	:	1	404		5	•	***			•	
1	Section 1			230	280	308	343	138	138	5.03	100	Steel Tower	N	
	Section 2			230	280	308	343	138	138	0.60	100	Wood H-Frame	-	
1783	Tornnal-Ebenezer	Terminal	Lbenezer											
	Section 1			234	284	312	349	138	138	9.38	100	Steel Tower	2	
	Section 2			234	284	215	349	138	138	3.64 2.54		Wood Pole	.,	tes decen
1980	Bection 3 Beationd-stlant Crass	Backtow	Chic/Ku at line	234	582	715	አሞሳ	P 7 7	041	6T-0	AOT.	MIRETALIT DOOL	•	August 1
	Smortion 1		Friday in the local in	253	ROB	930	377	138	138	1.00	100	Wood Pole	1	
	Section 2			253	306	339	377	138	138	0.25	100	Steel Tower	1.04	
1961	Beckjord-Wilder	Back jord	Ohio/Ky. Bt. Line	166	201	221	245	138	138	0.32	100	Stael Tower	61	
1985	Beckjord-Tobasco	Beckjord	Tobasco	282	343	377	421	138	138	5.84	100 100	Steel Tower	2 -	
1887	Beck)ord~Plarce	Beckjord	Plerce	47B	9/B	8/8	47B	RET	138	0.JS	Steel 7	Wood Pole &	1	
1889	Beckjord-Pierce	Back jord	Pierce	478	478	478	478	138	138	0.22	100	Steel Tower	ı	
2166	Brighton-Wilder	Brighton	chio/Ky. 8t. Line	83	101	111	123	63	138	3,65	100	Stael Towar	R	
2381	Warren-Clinton County	Warren	Clinton County	170	206	227	252	138	138	16.32	100	Wood H-Frame		
2862	Miani Fort GT-Villa	Miami Fort GT	Ohio/Ky. St. Line morrer No. 20	89 ;	101		123	6.9	138	0.14 8 30		Steel Tower	2	
1992	remains For 5 31 Foundation	redard la	Entrol			101	007	;	1		1		4	
2	Bection 1			253	308	339	378	138	138	5.02	100	Wood Pole	ī	
	Section 2			253	308	339	378	138	138	4.86	100	Wood Pole	-	
3263	Trenton-Middletown Orygen	Towar No.1	TOWER No. 17	83	101	111	123	69	138	2.77	100	Steel Tower	1	
3281	Trenton-College Corner	Trenton	Ohio/Ind. St. Line	153	184	203	225	138	138	24.11	100	Steel Tower	7	Collinsville, BREC Ruston
3283	N/A	Structur e Kûk	Structure 645A	170	206	227	252	138	851	46.5	3	Nood H-Frame		
ARCE	Trenton-Todhunter	Trenton	Technicter	021	206	227	252	138	138	0.4	100	Wood H-Frame	,	
3881	Port Union-Summerside	Port Union		170	206	227	252	138	138	22.74	100	Steel Tower	0	
3865	Port Union-Fairfield	Port Union	Fairfield	310	310	01E	310	138	138	6.59	100	Steel Tower	0	Hall
3886	Fort Union-Willey	Port Union	Willey	170	206	227	252	138	138	14.30	100	Steel Tower	8	Mulhauser
3887	Fort Union-Todhunter	Port Dricn	Todhunter	304	304	390	390	138	138	9.69	100	Steel Tower	01	Millikin
3888	Port Union-Todhunter	Port Union	Todhunter	90F	304	06E	390	851	138	9.69	100	Steel Tower	N 7	Becketc
3889 A187	Port Union-City of Hamilton Tatoral-Pod Back	Port Union	CITY OF Hamilton	253	308 280	500 E	377	138	136	4.60 000	001	NOOG POLE Stoel Truer	- 0	
4861	Ivorydale-Taxminal	TOWAL NO. 1	Tower No. 5	83	101	111	123	69	138	0.90	100	Steel Tower	1 01	

DUXE ENERGY OHI 4901:5-5-04 (C) (1) (a) FORM FE-T7: CEARACTERISTICS OF EXISTING TRANSAUSSION LINES

93

				O ATTOEM	NED TRANSMERSIC	N LINES DES	IGNED FOR JAR	KV OPERAT	ION					
CIRCUI NO. DEC	T LINE NAME	ORIGIN	TERMINUS	SUMMER CAI NORMAL RATING	raility (mua) Emergency Rating	WINTER CAP NORMAL BATING	ABILITY (MVA) Emercency Rating	VOLTA OPER. LEVEL	E (KV) DESIGN LEVEL	R-0-W LENGTH (MILES)	WIDTH (FEET)	SUPPORTING STRUCTURES O	UMBER OF IRCUITS	SUBSTATIONS ON THE LINE
1963	Shaker Run-Rockies Express								r :					
	Section 1 Section 2	Structure 69B Rocknes Extress	Rockies Express Carlisle	478 287	478 287	478 287	478 287	138 138	138 138	0.67 10.58	205	Steel Pole Wood Pole		Carlisle. Union
5483	Foster-Port Union	Foster	Fort Union				2							Dimmick, Montgomery
	Section 1 section 2			226	275	302	336 379	138	138 138	9.19 8.39	001	Steel Tower Wood Pole	~ ~	Twanty Mile, Cornell Simnson, Socialville
5487	Foster-Remington	Foster	Remington	0	807	1	1	2					,	
	Section 1		I	253	308	666	378	136	138	13.40	100	Steel Tower	2	Montgomery
5400	Maction 2 Wortherication 2	Tarter	Parlami 11-	170	206	227	252	138 961	961 961	4.45	801	Wood Pole		<u>channonville</u>
4845	FOSTER - VEHAL VILLE Eveter-Marren	Foster	Warren	100	308 208	600 000	815 815	138	961	8.70	001	Wood pole	। न	Maineville
5656	Todhunter-Manchester	TOWER No. 17	Tower No. 20		TEL C	151	168	69	361	0.55	100	Steel Tower	1 -1	
5667	Todhunter-Shaker Run	Todhunter	Structure 645A	83	101	111	521	69	136	5.14	100	Wood E-Frame	г	
5680	Todhunter-Werren 	Todhunter	Warren	165	202	227	252	861 26	138	9.55	9 ič	Wood H-Frame	- °	NICKET
5686 5686	Todhunter-AK Steel Todhunter-AK Steel	Todhunter Todhunter	AK Steel AX Steel	300	300	300	300	851	27 7	HC 7	001	TRADI TRADE	v	
	Section 1			300	300	300	300	138	138	2.34	100	Steel Tower	~	
	Section 2			170	206	227	252	138	136	0,33	100	Steel Tower	г н -	Dicks Creek
5689	Todhunter-Rockies Express	Structure 69B	Rockles Express	478	478	478	478	138	138	0.63	50	Steel Fole	-1 ,	
5782	Fairfield-City of Hamilton Fairfield-Morran	Fairfield Verveiald	City of Hamilton Morean	253	308 201	985E	8/5	8		16.50		Steel Tower	10	
5884	Brown-Eastwood	Brown	Eastwood	253	308	1995 1997	376	138	138	13.00	100	Wood H-Frame	I - I	
5886	Brown-Stuart	Brown	Stuart	234	285	213	349	138	138	21.16	100	Wood H-Frame	п	
5965	Wilder-West End	Chip/Ky. St. Line	West End	253	287	339	351	138	138	0.20	100	Steel Tower	n,	
5988	Wilder-Beckjord	Ohio/Ky. St. Line	BackJord	226	275	302	336	138	136	0.37	100	Steel Tower	21	
6365	Tobasco-Markley Thursday South	Pole No. 601	Markley Mari Tour	83	101	111	122	63	138	1.70	100	9TOJ DOOM	4	
	ADDREET PLANL FOLD		2104 10010	228	280	31.3	350	138	138	10.26	100	Steel Tower	2	
	Section 2			226	275	302	336	138	138	4.92	100	Wood Pole	-1	
6984	Summerside-Beckjord	Sumerside	Beckjord	310	310	OTE	310	138	138	10.44	100	Steel Tower	<u>а</u>	<u>clernont</u>
7086	Creacent-Miami Fort	Ohio/Ky. St. Line	Miani Fort	204	248	273	303	136	BET	61.0	100	Steel Tower	N	
597/	Glenview-mian, Forc	MOTAUOTO	ATRIN LOLD	050	940	805	CPE	۵۶ I	138	0 60	100	Wood B-Frame		
	Section 2			052	280	BOE	342	138	138	15.07	100	Steel Tower	. (1)	Kleeman
	Section 3			185	224	246	273	138	138	0.12	100	Wood H-Frame	-1	Лемр ти
7481	Red Bark-Terminal													
	Section 1	Tower 117	Cornell	344	423	463	518	138	138	9.10	100	Mood Pole	rt 1	Deer Park
	Section 2	Pole 1493	Cooper	226	274	302	336	138	BET	1.19	50	BIOG DOOM	-	
484/	aad bark-Ashiend Qaation 1	KING FRIDE		040	UDF.	076	UUE	138	138	0.96	100	Steel Tower	2	
	Section 2			240	300	240	300	138	138	0.12	101	Wood Pole	ाल	
	Section 3			240	300	240	300	138	138	4.24	100	Dnderground	-1	
7489	Red Bank-Tobasco	Red Bank	Tobasco			1	ŝ				001	Ctes] Manual	c	
	section 2			282	146	9 00 1 00 1 00	421	961 138	138	0.07	3 2	Wood Pale	4 14	
8283	Rochelle-Charles	Rochelle	Charles	269	282	307	816	138	138	2.38	100	Underground	н	
8286	Rochelle-Terminal	Rochelle	Terminal) - -	¢	
	Section 1			234	287	307	816	138	861 -	00.7 30.7		TOROT TOROTS	N -	
	section a section 3			162	282	202	816	136	138	1.32	3 8	Underground		
8481	Eastwood-Ford	Eastwood	Ford			2						•		
	Section 1			253	308	939	378	138	138	4.97	100	Wood Pole	-	
	Section 2	4		253	308	5 C	378 272	138 951	138	1.50	8 <u>1</u>	Wood Pole		SrD Tastanni
1998	HILLOYes C-Eas CW000	Brmineten Drmineten	the contract of the contract o	010	005	VRF	790		900 T		85	Steel Tower	10	Feldman, Wards Corner
9784	Will evcMiami Fort		Miami Fort	170	206	200	252	136	138	14.95	100	Steel Tower	IN	
9787	Witley-Terminal	A DITTM	Terroral			ł								
	Section 1	•		226	275	302	336	138	9ET	5.68	100	Wood B-Frame	-	Mapleknoll
	Section 2			226	275	302	336	138	138	17.11	81	Wood Pole	ч с	Mt. Heatury, winneycown
13803	Bection J HitchinderCollege Corper			977	6/7	205	011		1	2	2		J	
	Section 1	Structure 1101	Trenton	170	206	227	252	9CT	138	4.91	100	Wood B-Frame	H	
	Section 2	Trenton	Tower 129	170	206	227	252	138	138	24.06	100	Steel Tower	8	

DURE ENERGY OHIO 4901:5-5-04(C)(1)(A) FORM FE-T7: CHARACTERISTICS OF EXISTING TRANSMISSION LINES

94

DURY ENERGY OHIO PODM FE-T7: CHARACTERISTICS OF EXISTING TRANSMISSION LINES WEGLLY OWNED TRANSMISSION LINES DESIGNED FOR 345 YV OPERATION

	TIONS ON THE LINE																Newtown			Kemper					ark, Bethany		Golf Manor
AER	ATSEUS SUID:																								ä		•
54CUN	SUPPORTING OF STRUCTURES CIRC	Steel Towar 2		Steel Tower 2	Steel Tower 1		Steel Tower 1	Steel Tower 2		Stael Tower 2	Steel Tower 2	Steel Tower 2	Stael Tower 2	Steel Tower 2		Steel Tower 1	Steel Tower 2		Steel Tower 1	Steel Tower 2		Steel Tower 1	Steel Towar 2	Steel Tower 2	Steel Tower 2	Staul Tower 2	Stl Twr & Pole 2
	HIDTH (FEET)	150		150	150		150	150		150	150	150	150	150		150	150		150	150		150	150	150	150	150	150
R-0-W	(SELIN)	0.32		11.66	0.24		0.46	9.65		14.84	0.32	15.79	14.84	4.68		0.89	13.62		0.52	5.48		0.21	4.02	2.62	10.29	6.44	5.72
GE (XV)	DESIGN	345		345	345		345	345		345	345	345	345	345		345	345		345	345		345	345	345	345	345	345
VOLTA	OPER. LEVEL	345		345	345		345	345		345	345	345	345	345		138	138		138	138		136	136	138	138	138	138
ABILITY (HVA)	EMERGENCY RATING	824		1315	1315		1315	1315		1315	1315	1315	1315	1315		421	421		518	518		382	382	478	385	478	518
WINTER CAP	NORMAL	717		1195	1195		1195	1195		1195	1195	1195	1195	1195		378	978		463	463		362	382	478	345	478	463
ABILITY (MVA)	EMERGENCY BATING	824		1315	1315		1315	1315		1315	1315	1315	1315	1315		344	344		423	423		382	382	478	314	478	423
SUMMER CAL	NORMAL	717		1195	1195		1195	1195		1195	1195	1195	1195	1195		262	282		344	344		382	382	478	259	476	344
	SUNDART	Ohio/Ky. St. Line	Foster			Port Union				Ohio/Ky. St. Line	Ohio/Ky. St. Line	Todhunter	Terminal	Todhunter	Red Bank			Fort Union			Terminal.			Rockies Express	Shaker Run	Structure 698	Terninal
	ORIGIN	Miami Fort	Port Union			Taxwinal				Terminal	Miami Fort	Foster	Ohio/Ky. St. Line	Woodsdale	Back jord			Evendale			Evendale			Structure 69A	FOSTER	Todhunter	Red Bank
	LINE NAME	Miami Fort-Tanners Creek	Fort Union-Foster	Section 1	Section 2	Terminal-Fort Union	Saction 1	Section 2	Muami Fort-Terminal	Section 1	Section 2	Foster-Todhunter	East Bend-Terminal	Woodsdale-Todhunter	Beckjord-Red Bank	Section 1	Section 2	Evendale-Port Union	Section 1	Section 2	Evendale-Terminal	Section 1	Section 2	Shaker Run-Rockies Express	Foster-Shaker Run	Todhunter-Rockies Express	Red Bank-Terminal
	CIRCULT NO. DEO-B	60	08			13			14			5T	91	62	1883			4683			4685			1925	5485	5689	7481

.

				COMMON TENANTS D	LY OWNED TRANSM N COMMON WITE U	ILBSION - DEC), AEP AND DPGL IERSHIP, TOTAL	COMPANIES MILEAGE C	VEN					
CIRCUIT				SUMMER CAP NORMAL	ABILITY (MVA) EMERGENCY	WINTER CAP NORMAL	ABILITY (MVA) EMERGENCY	VOLTAG OPER.	E (KV) Design	R-0-W LENGTH	ELCIM	SUPPORTING	NUMBER OF	
NO. CCD-B	LINE NAME	ORIGIN	TERMINUS	RATING	RATING	RATING	RATING	LEVEL	LEVEL	(MILES)	(FEET)	STRUCTURES	CIRCUITS	SUBSTATIONS ON
10	Beck jord-Pierce	Beckjord	Pierce	500	500	500	500	345	345	0.32	150	Steel Towar	Ħ	
02	Pierce-Foster	Pierce	Foster						246	00 00	160	Otool Toolo	ç	
	Section 1			1195 1196	1915	1105	1315	145 745	1.00	25.52	2021	Steel Tower	۲ -	
ъÜ	Successing 2 Succession - Greene	Sugarorea)	GTRADA	1965	1915	1195	1315	345	345	06.8	150	Steel Towar		
96	Greene-Beatty	Greene	Beatty						1				I	
	Section 1		1	1195	1315	1195	1315	345	345	3.66	150	Steel Towar	7	
	Section 2			1195	1315	1195	1315	345	345	45.34	150	Steel Tower	1	
01	Marquis-Bixby section 1	eiupreM	Bizdy	1105	1915	1195	1915	345	345	91.59	150	Steel Tower	-	
	Section 2			1195	1315	1195	1315	392	345	8.52	150	Steel Tower	1 (1)	
60	Stuart-Greene	Stuart	Greene	1195	SIEI	1195	1315	345	345	80.38	150	Steel Towar	T	
10	Stuart-Killen	stuart	Killen Tap	1195	1315	1195	1315	345	345	13.13	150	Steel Tower	1	
11	Stuart-Hillcrest	stuart	Hillersat	1255	1374	1255	1374	345	345	32.61	150	Steel Tower	-	
24	Foster-Sugarcreek	Foster	Sugarcreek	1257	1554	1745	1947	345	345	27.33	150	Steel Tower	N	
T T	Beatty-Bixby Continu 1	Beatry	YOULD	1040	9261	1042	1338	345	345	4.69	150	Steel Tower	-	
	Smetten 2			1042	1338	1042	1338	345	912	8,52	150	Steel Tower	1 01	
55	<u>Kirk-Corridor</u>	Kirk	Corridor	1302	1673	1302	1673	345	345	18.36	150	Wood R-Frame	г	
40	Conesville-Byatt	Conesvila	Byatt											
	Section 1			1195	1374	1195	1374	345	345	66.07	150	Steel Tower	-	
	Section 2			1195	1374	1195	1374	47 F	345	1.78	150	Wood Pole		
:	Section 3			G611	13.64	5411	8/FT	0.65	1.0	87 O	DCT	HERIF-D DOOM	-	
14	Spurtock-Almudr Section 1	WITH THE 'AVIATION		1195	1315	1195	1315	345	345	31.77	150	Steel Tower	1	
	Section 2			1195	1315	1195	1315	345	345	0.78	150	Steel Tower	2	
42	Atlanta-Beatty	Atlanta	Beatty											
	Section 1			1042	1281	1042	1281	345	345 245	3.68 25.22	150	Steel Tower	CN F	
٤Ŧ	Section 2 Conserville-Bryby	Conessi e	Bi vhu	2401	1871	1042	1971	695	C	77.67		JawoI Taang	4	
2	Section 1		Ĩ	1195	1374	5611	1374	345	345	14.87	150	Steel Tower	2	
	Section 2			1195	1374	1195	1374	345	345	50.86	150	Wood H-Frame	ч	
44	Zimmer-Port Union	Zimmer	Port Union	1105	31916	1105	3161	346	345	35, 68	150	Steel Towar		
	Section 1 Section 2			1195	1315	9611	1315	1	345	E0.01	150	Steel Tower	• •	
45	Zimer-Red Bank													
	Section 1	Zimmer	Ohlo/Ky. St. Line	1264	1538	1264	1538	345	345	0.43	150	Steel Tower	1	
	Section 2	Red Bank	TOWEL NO. 24	1195	1315	1195	1315	345	345	10.58	150	Steel Tower	(1	
:	Section 3	TOWER No. 23	Ohio/Ky, St. Line	1195	1315	1195	1315	345	345	0.80	150	Steel Tower	1	
46	Red Bank-Terminal	Red Bank	len luit	30.57	3161	1100	1 31 6	346	345	Б 7. Т	150	Steel Dole	•	
	Section 1 Section 2			1195	1315	1195	1315	1940	345	06.0	150	Steel Tower	1 (1	
47	BLYDY-KIRK	Ydar 15	Kirk										I	
	Section 1	I		1302	1673	1302	1673	345	345	14.87	150	Steel Tower	0	
	Section 2			1302	1673	1302	1673	345	345	4.20	150	Wood H-Frame	rt i	
0. (7 L	Killen-Marquis Attraction	Killen Tap Storet	Marquis	1195	1315 1216	1195	1315 1315	345 945	345 245	32.01 45.00	150	Steel Tower Steel Tower	-1 -	
8	BCUARC-ACLADICA 5411	douar c U.11.coort	Protect	1551	1551	2011	1742	245	ł	26.36	150	Stael Tower	•	
4 C)	Spurlock-Stuart	Ohio/Ky, St. Line	stuart.	1195	1315	1195	1315	345	345	10.86	150	Steel Tower		

DURG REMEARY OHIO 4901:5-5-04(C)(1)(a) FORM FE-TT: CHARAGTERISTICS OF EXISTING TRANSMISSION LINES THE LINE

96

		ON THE LINE						
		SUBSTATIONS						
		NUMBER OF CIRCUITS	2	61	-1	2	н	N
		SUPPORTING STRUCTURES	Steel Tower	Steel Tower	Steel Tower	Steel Tower	Steel Tower	Staal Towar
		NIDTE (feet)	150	150	150	150	150	150
		R-O-W LENGTH (MILES)	4.68	33,25	1.37	33.25	4.82	40.28
1LS	SIVEN	GE (KV) DESIGN LEVEL	345	345	345	345	345	345
ISSION LIN	COMPANIES	VOLTA OPER. LEVEL	345	345	345	345	345	345
XISTING TRANSM	DEO AND DPLL (NERBHIP, TOTAL	PABILITY (MVA) EMERGENCY RATING	1315	1315	1315	1315	1315	1315
STICS OF E	- NOISEINE MO DEDINIO	WINTER CAL NORMAL FATING	1195	1195	1195	1195	1195	1195
TT: CEARACTERI	ONLY OWNED TRAN	ABILITY (MVA) Emergency Rating	5161	1315	1315	1315	1315	1315
FORM FE-T7:	COMP. TENANTS II	BUMMER CAL NORMAL RATING	1195	1195	1195	1195	1195	1195
		TERMINUS	Todhunter	Tower No. 173		e Tepspool		Bath
		ORIGIN	Woodsdale	Miami Fort		MLAML FOIT		Foster
		LINE NAVE	Woodsdale-Todhunter	Miami Fort-West Milton Section 1	Section 2	Miami Fort-Woodsdale Section 1	Section 2	Foster-Bath
		CIRCULT NO. CCD-B	61	91		35		86

97

(b) A separate listing of substations for each line included in form FE-T7 is shown on the following forms FE-T8, Summary of Existing Substations. The existing and proposed lines associated with each station are listed. The line numbers correspond to those shown on the schematic diagrams and geographic maps of section 4901:5-5-04 (C)(2).

DUKE ENERGY OHIO 4901:5-5-04(C)(1)(b) FORM FE-T8: SUMMARY OF EXISTING SUBSTATIONS

SUBSTATION	TYPE*	VOLTAGE(S)	LINE	LINE	EXISTING OR
NAME		(KV)	NAME	NUMBER	PROPOSED
AK Steel	T	138	Todhunter-AK Steel	5682	Existing
			Todhunter-AK Steel	5686	Existing
Ashland	D	138	Mitchell-Ashland-Oakley	1288	Existing
			Ashland-Mitchell	1269	Existing
			Red Bank-Ashland	7484	Existing
			Ashland-Whittier	1180	Proposed
Beckett	D	138	Port Union-Todhunter	3888	Existing
Beckjord	Т	345 & 138	Oakley-Beckjord	886	Existing
0			Beckjord-Silver Grove	1880	Existing
			Beckjord-Red Bank	1883	Existing
			Beckjord-Tabasco	1885	Existing
			Beckjord-Pierce	1887	Existing
			Beckjord-Pierce	1889	Existing
			Remington-Beckjord	9482	Existing
			Beckjord-Wilder	1881	Existing
			Wilder-Beckjord	5988	Existing
			Summerside-Beckjord	6984	Existing
			Beckjord-Pierce	4501	Existing
Bethany	D	138	Foster-Shaker Run	5485	Existing
BREC Huston	Т	138	Trenton-College Corner	3281	Existing
Brighton	D	69	Mitchell-Brighton	1263	Existing
Brown	D	138	Brown-Stuart	5886	Existing
			Brown-Eastwood	5884	Existing
Carlisle	D	138	Shaker Run-Rockies Express	5381	Existing
Cedarville	D	138	Foster-Cedarville	5489	Existing
			Cedarville-Ford	2986	Existing
Central	D	69 & 138	Mitchell-Ashland	1269	Existing
		(138 proposed)	Central-Ashland	3985	Proposed
			Central-Mitchell	1288	Proposed
			Central-Oakley	3981	Proposed
Charles	Ð	138	Charles-West End	1385	Existing
			Charles-West End	1389	Existing
			Rochelle-Charles	8283	Existing
Cinti. M.S.D.	Т	138	Mitchell-West End	1286	Existing
City of HamiltonT	138	Port Union-	City of Ham.	3889	Existing
			Fairfield-City of Hamilton	5781	Existing
Clermont	D	138	Summerside-Beckjord	6984	Existing
Clinton County	D	138	Warren-Clinton Co.	2381	Existing
Collinsville	D	138	Trenton-College Corner	3281	Existing
Cooper	D	138	Red Bank-Terminal	7481	Existing
Cornell	D	138	Red Bank-Terminal	74 8 1	Existing
			Port Union-Foster	5483	Existing
Cumminsville	D	138	Mitchell-West End	1286	Existing
Deer Park	D	138	Red Bank-Terminal	7481	Existing
Dicks Creek	Т	138	Todhunter-AK Steel	5686	Existing
Dimmick	D	138	Foster-Port Union	5483	Existing

.

* DISTRIBUTION(D) TRANSMISSION (T)

DUKE ENERGY OHIO 4901:5-5-04(C)(1)(b) FORM FE-T8: SUMMARY OF EXISTING SUBSTATIONS

SUBSTATION	TYPE*	VOLTAGE(S)	LINE	LINE	EXISTING OR	
NAME		(KV)	NAME	NUMBER	PROPOSED	
Eastwood	D	138	Brown-Eastwood	5884	Existing	
			Eastwood-Ford	8481	Existing	
			Hillcrest-Eastwood	8887	Existing	
Ebenezer	D	138	Terminal-Ebenezer	1783	Existing	
			Ebenezer-Miami Fort	6885	Existing	
Elmwood	D	138	Elmwood-Lateral	684	Existing	
			Elmwood-Terminal	689	Existing	
Evendale	D	138	Evendale-Port Union	4683	Existing	
			Evendale-Terminal	4685	Existing	
			Evendale-General Electric	GE4	Existing	
Fairfield	D	138	Fairfield-Morgan	5783	Existing	
			Port Union-Fairfield	3885	Existing	
			Fairfield-City of Hamilton	5781	Existing	
Feldman	D	138	Remington-Beckjord	9482	Existing	
Finneytown	D	138	Willey-Terminal	9787	Existing	
Ford	D	138	Foster-Ford	5489	Existing	
			Brown-Ford	5884	Existing	
Foster	T & D	345 & 138	Foster-Port Union	5483	Existing	
			Foster-Warren	5484	Existing	
			Foster-Shaker Run	5485	Existing	
			Foster-Remington	5487	Existing	
			Foster-Cedarville	5489	Existing	
			Pierce-Foster	4502	Existing	
			Stuart-Foster	4511	Existing	
			Port Union-Foster	4508	Existing	
			Foster-Todhunter	4515	Existing	
			Foster-Sugarcreek	4524	Existing	
Glenview	D	138	Terminal-Glenview	1782	Existing	
			Miami Fort-Glenview	7284	Existing	
Golf Manor	D	138	Red Bank-Terminal	7481	Existing	
Hall	D	138	Port Union-Fairfield	3885	Existing	
Henkel Corp.	D	138	Mitchell-Terminal	1284	Existing	
Hillcrest	T & D	345 & 138	Stuart-Hillcrest	4511	Existing	
			Foster-Hillcrest	34569	Existing	
			Hillcrest-Eastwood	8887	Existing	
Kemper	D	138	Evendale-Port Union	4683	Existing	
Kleeman	D	138	Glenview-Miami Fort	7284	Existing	
Lateral	D	138	Elmwood-Lateral	684	Existing	
			Lateral-Red Bank	4187	Existing	
Maineville	D	138	Foster-Warren	5484	Existing	
Mapleknoll	D	138	Willey-Terminal	9787	Existing	

* DISTRIBUTION(D) TRANSMISSION (T)
DUKE ENERGY OHIO 4901:5-5-04(C)(1)(b) FORM FE-T8: SUMMARY OF EXISTING SUBSTATIONS

SUBSTATION	TYPE*	VOLTAGE(S)	LINE	LINE	EXISTING OR	
NAME		(KV)	NAME	NUMBER	PROPOSED	
Miami Fort	T	345 & 138	Miami Fort-Greendale	1681	Existing	
			Miami Fort-Clifty Creek	1682	Existing	
			Miami Fort-MFGT	1688	Existing	
			Miami Fort-Morgan	1689	Existing	
			Ebenezer-Miami Fort	6885	Existing	
			Crescent-Miami Fort	7086	Existing	
			Glenview-Miami Fort	7284	Existing	
			Willey-Miami Fort	9784	Existing	
			Miami Fort-Miami	4591	Existing	
			Miami Fort-Woodsdale	4592	Existing	
			Miami Fort-Tanners Creek	4504	Existing	
			Miami Fort-Terminal	4514	Existing	
Miami Fort GT	Т	138	Miami Fort-MFGT	1688	Existing	
			MFGT-Villa	2862	Existing	
			MFGT-Ebenezer	2865	Existing	
Midway	D	138	Terminal-Ebenezer	1783	Existing	
-			Miami Fort-Glenview	7284	Existing	
Millikin	D	138	Port Union-Todhunter	3887	Existing	
Mitchell	D	138	Mitchell-Brighton	1263	Existing	
			Mitchell-Terminal	1284	Existing	
			Mitchell-West End	1286	Existing	
			Mitchell-Ashland-Oakley	1288	Existing	
Montgomery	D	138	Foster-Remington	5487	Existing	
			Foster-Port Union	5483	Existing	
Morgan	D	138	Miami Fort-Morgan	1689	Existing	
			Fairfield-Morgan	5783	Existing	
Mt. Healthy	D	138	Willey-Terminal	9787	Existing	
Mulhauser	D	138	Port Union-Willey	3886	Existing	
Newtown	D	138	Beckjord-Red Bank	1883	Existing	
Nickel	D	138	Warren-Todhunter	5680	Existing	
Oakley	D	138	Oakley-Red Bank	885	Existing	
			Oakley-Beckjord	886	Existing	
			Mitchell-Ashland-Oakley	1288	Existing	
OBannonville	D	138	Foster-Cedarville	5489	Existing	
Park	D	138	Foster-Shaker Run	5485	Existing	
Port Union	T & D	345 & 138	Port Union-Summerside	3881	Existing	
			Foster-Port Union	5483	Existing	
			Port Union-Fairfield	3885	Existing	
			Port Union-Willey	3886	Existing	
			Port Union-Todhunter	3887	Existing	
			Port Union-Todhunter	3888	Existing	
			Port Union-City of Hamilton	3889	Existing	
			Evendale-Port Union	4683	Existing	
			Zimmer-Port Union	4544	Existing	
			Port Union-Foster	4508	Existing	
			Terminal-Port Union	4513	Existing	
* DISTRIBUTIO	\mathbf{M}	O HOOLONT (T)			-	

* DISTRIBUTION(D) TRANSMISSION (T)

DUKE ENERGY OHIO 4901:5-5-04(C)(1)(b) FORM FE-T8: SUMMARY OF EXISTING SUBSTATIONS

SUBSTATION	ON TYPE* VOLTAGE(S) LINE (KV) NAME NU		LINE	EXISTING OR	
NAME		(KV)	NAME	NUMBER	PROPOSED
Queensgate	D	138	Mitchell-West End	1286	Existing
Red Bank	Т	345 & 138	Red Bank-Terminal	7481	Existing
			Lateral-Red Bank	4187	Existing
			Beckjord-Red Bank	1883	Existing
			Red Bank-Ashland	7484	Existing
			Oakley-Red Bank	885	Existing
			Red Bank-Tobasco	74 89	Existing
			Red Bank-Terminal	4546	Existing
			Zimmer-Red Bank	4545	Existing
Remington	D	138	Remington-Beckjord	9482	Existing
			Foster-Remington	5484	Existing
Rochelle	D	138	Rochelle-Charles	8283	Existing
			Rochelle-Terminal	8286	Existing
			Ridgeway-Whittier	8281	Proposed
Rockies Express	Т	138	Shaker Run-Rockies Express	5381	Existing
			Todhunter-Rockies Express	5689	Existing
Seward	D	138	Port Union-Hamilton	3889	Existing
Shaker Run	D	138	Foster-Shaker Run	5485	Existing
			Shaker Run-Rockies Express	5381	Existing
Simpson	D	138	Foster-Port Union	5483	Existing
Socialville	D	138	Foster-Port Union	5483	Existing
SCP Eastwood	Т	138	Hillcrest-Eastwood	8887	Existing
Summerside	D	138	Port Union-Summerside	3881	Existing
			Summerside-Beckjord	6984	Existing
Terminal	T & D	345 & 138	Elmwood-Terminal	689	Existing
			Mitchell-Terminal	1284	Existing
			Terminal-Allen	1762	Existing
			Terminal-Glenview	1782	Existing
			Terminal-Ebenezer	1783	Existing
			Evendale-Terminal	4685	Existing
			Red Bank-Terminal	7481	Existing
			Rochelle-Terminal	8286	Existing
			Willey-Terminal	9787	Existing
			Terminal-Port Union	4513	Existing
			Miami Fort-Terminal	4514	Existing
			East Bend-Terminal	4516	Existing
			Red Bank-Terminal	4546	Existing
Tobasco	D	138	Beckjord-Tobasco	1885	Existing
			Red Bank-Tobasco	7489	Existing

* DISTRIBUTION(D) TRANSMISSION (T)

DUKE ENERGY OHIO 4901:5-5-04(C)(1)(b) FORM FE-T8: SUMMARY OF EXISTING SUBSTATIONS

SUBSTATION	TYPE*	VOLTAGE(S)	LINE	LINE	EXISTING OR
NAME	_	(KV)	NAME	NUMBER	PROPOSED
Todhunter	T & D	345 &138	Trenton-Todhunter	3284	Existing
			Port Union-Todhunter	3887	Existing
			Port Union-Todhunter	3888	Existing
			Todhunter-Monroe	5667	Existing
			Warren-Todhunter	5680	Existing
			Todhunter-AK Steel	5682	Existing
			Todhunter-AK Steel	5686	Existing
			Todhunter-Rockies Express	5689	Existing
			Foster-Todhunter	4515	Existing
			Woodsdale-Todhunter	4561	Existing
			Woodsdale-Todhunter	4562	Existing
Trenton	D	138	Trenton-College Corner	3281	Existing
			Trenton-Todhunter	3284	Existing
			Trenton-Air Products	3263	Existing
Twenty Mile	D	138	Foster-Port Union	5483	Existing
Union	D	138	Shaker Run-Rockies Express	5381	Existing
Wards Corner	D	138	Remington-Beckjord	9482	Existing
Warren	T & D	138	Foster-Warren	5484	Existing
			Warren-Todhunter	5680	Existing
			Warren-Clinton County	2381	Existing
West End	D	138	Mitchell-West End	1286	Existing
			Charles-West End	1385	Existing
			Charles-West End	1389	Existing
			Crescent-West End	1587	Existing
			Wilder-West End	5985	Existing
Willey	D	138	Port Union-Willey	3886	Existing
			Willey-Miami Fort	9784	Existing
			Willey-Terminal	9787	Existing
Woodsdale	Т	345	Woodsdale-Todhunter	4561	Existing
			Woodsdale-Todhunter	4562	Existing
			Miami Fort-Woodsdale	4592	Existing
Zimmer	T	345	Spurlock-Zimmer	4541	Existing
			Zimmer-Port Union	4544	Existing
			Zimmer-Red Bank	4545	Existing

* DISTRIBUTION(D) TRANSMISSION (T)

- (2) Existing Transmission System Maps
 - (a) Schematic diagrams of the existing 345 kV and 138 kV transmission networks are considered by Duke Energy Ohio to be critical energy infrastructure information. The diagrams are provided under seal.
 - (b) A map showing the actual, physical routing of the transmission lines, geographic landmarks, major metropolitan areas, and the location of substations and generating plants, interconnects with distribution, and interconnections with other electric transmission owners is considered by Duke Energy Ohio to be critical energy infrastructure information. The map will be provided under seal.
 - (c) Rule Requirement Two copies of the map described in paragraph
 (C)(2)(b) of this rule, for Commission use, on a 1:250,000 scale. The electric transmission owners may jointly provide one set of maps to meet this requirement. Participation in the Commission's joint mapping project will meet this requirement:

The joint mapping project coordinated by the OEUI has not been accomplished for a number of years to Duke Energy Ohio's knowledge. Duke Energy Ohio will provide a map at the requested scale to the Commission upon request.

D. THE PLANNED TRANSMISSION SYSTEM

(1) Specifications of planned transmission lines are provided on the following forms FE-T9, Specifications of Planned Electric Transmission Lines.

1.	Line Name:	Ashland-Whittier
	Line Number:	DEO-A1180
2.	Point of Origin:	Ashland Substation
	Terminus:	Whittier Substation (proposed)
3.Rig	ht of Way. Length:	3200 feet
0	Average width:	50 ft.
	Number of circuits:	1
4.	Voltage: 138 kV	
5.	Application for Certificate:	6/2011
6.	Construction to Commence:	commencement date: 9/2011
	Commercial Operation:	anticipated date: 6/2012
7.	Capital Investment:	\$686,000
8.	Substations:	none
9 .	Supporting Structures:	wood and/or steel poles
10.	Participation with	DEO 100%
	other Utilities:	
11.	Purpose of the Planned	supply new substation to provide 12.47 kV
	transmission line :	distribution system capacity.
12.	Consequences of Line	inability to supply 12.47 kV distribution
	Construction deferment or	load
	Termination:	
13.	Miscellaneous:	area to be served is primarily north
		Cincinnati, OH

1.	Line Name:	Foster-Warren
	Line Number:	DEO-A5484
2.	Point of Origin:	Tap Feeder 5484
	Terminus:	Columbia Substation (proposed)
3.	Right-of-Way, Length:	approximately 175 feet
	Average Width:	50 feet
	Number of Circuits:	1 transmission line above 125 kV
4.	Voltage:	138 kV design and operate voltage
5.	Application for Certificate:	6/1/2012
6.	Construction:	construction commencement $-9/1/12$
		anticipated date of commercial operation – 12/31/12
7.	Capital Investment:	\$30,000
8.	Substations:	Columbia Substation, 138 kV
9.	Supporting Structures:	wood poles
10.	Participation with	DEO - 100%
	other Utilities:	
11.	Purpose of the planned	supply new substation to provide 12.47 kV
	transmission line:	distribution system capacity.
12.	Consequences of Line	inability to supply 12.47 kV distribution
	Construction deferment or	load
	Termination:	
13.	Miscellaneous:	area to be served is primarily west-central
		Warren County

1.	Line Name: Line Number:	Foster-Warren DEO-A5484
2.	Point of Origin: Terminus:	Tap Feeder 5484 Columbia Substation (proposed)
3.	Right-of-Way, Length: Average Width: Number of Circuits:	approximately 175 feet 50 feet 1 transmission line above 125 kV
4.	Voltage:	138 kV design and operate voltage
5.	Application for Certificate:	6/01/2012
6.	Construction:	construction commencement $-9/01/12$
		commercial operation $-12/31/12$
7.	Capital Investment:	\$30,000
8.	Substations:	Columbia Substation, 138 kV
9.	Supporting Structures:	wood poles
10.	Participation with other Utilities:	DEO 100%
11.	Purpose of the planned transmission line:	supply new substation to provide 12.47 kV distribution system capacity.
12.	Consequences of Line Construction deferment or Termination:	inability to supply 12.47 kV distribution load
13.	Miscellaneous:	area to be served is primarily west-central Warren County

1,	Line Name: Line Number:	Whittier-Rochelle DEO-A8281
2,	Point of Origin: Terminus:	Whittier Substation (proposed) Rochelle Substation
3.Rig	ght of Way, Length: Average width: Number of circuits:	7100 feet 10 ft. 1
4.	Voltage: 138 kV	
5.	Application for Certificate:	12/2011
6.	Construction to Commence: Commercial Operation:	commencement date: 6/2012 anticipated date: 6/2013
7,	Capital Investment:	\$7,700,000
8.	Substations:	none
9.	Supporting Structures:	underground
10,	Participation with other Utilities:	DEO – 100%
11.	Purpose of the Planned transmission line:	reinforce 138 kV transmission system
12,	Consequences of Line Construction deferment or Termination:	inability to supply all 138 kV transmission system load under normal and outage condition
13.	Miscellaneous:	area to be served is Cincinnati, OH

1.	Line Name: Line Number:	Eastwood – Ford Batavía DEO-A8481
2.	Point of Origin: Terminus:	Tap Feeder 8481 Curliss Sub (Proposed)
3.Rig	ht-of-Way, Length: Average width: Number of circuits:	0.1 miles 50 ft. 1
4.	Voltage: 138 kV	
5.	Application for Certificate:	09/2015
6.	Construction to Commence: Commercial Operation:	01/2016 06/2016
8.	Capital Investment, Estimated Cost:	\$58,117
8.	Substations:	Curliss Sub
9.	Supporting Structures:	Wood Poles
10.	Participation with other Utilities:	DEO – 100%
11.	Purpose of the Planned Transmission Line:	reinforce underlying 69 kV transmission system
12.	Consequences of Line Construction deferment or Termination:	inability to supply all 69 kV subtransmission system load under normal and outage conditions
13.	Miscellaneous:	area to be served is Central Clermont County

ι.	Line Name: Line Number:	Eastwood-Ford Batavia DEO-A8481						
2.	Point of Origin: Terminus:	Tap Feeder 8481 Curliss Sub (Proposed)						
3.	Right-of-Way, Length: Average width: Number of circuits:	0.1 miles 50 ft. 1						
4.	Voltage: 138 kV							
5.	Application for Certificate:	09/2015						
6.	Construction to Commence: Commercial Operation:	01/2016 06/2016						
9.	Capital Investment, Estimated Cost:	\$58,117						
8.	Substations:	Curliss Sub						
9.	Supporting Structures:	Wood Poles						
10.	Participation with other Utilities:	Duke Energy Ohio – 100%						
11.	Purpose of the Planned Transmission Line:	reinforce underlying 69 kV transmission system						
12.	Consequences of Line Construction deferment or termination:	inability to supply all 69 kV subtransmission system load under normal and outage conditions						
13.	Miscellaneous:	area to be served is Central Clermont County						

(2) A listing of all proposed substations is provided on the following forms FE-T10, Summary of Proposed Substations.

DUKE ENERGY OHIO

4901:5-5-04(D)(2)

FORM FE-TI0: SUMMARY OF PROPOSED SUBSTATIONS

Substation Name: Columbia

Voltage(s): 138 kV, 12.47 kV

Type of Substation: Distribution (D)

Timing: 2012

Line Association(s): DEO-A5484

Minimum Substation Site Acreage: 5 acres

DUKE ENERGY OHIO

4901:5-5-04(D)(2)

FORM FE-TI0: SUMMARY OF PROPOSED SUBSTATIONS

Substation Name: Whittier

Voltage(s): 138 kV, 12.47 kV

Type of Substation: Distribution (D)

Timing: 2012

Line Association(s): DEO-A1180

Minimum Substation Site Acreage: 5 acres

DUKE ENERGY OHIO

4901:5-5-04(D)(2)

FORM FE-T10: SUMMARY OF PROPOSED SUBSTATIONS

Substation Name: Curliss Substation

Voltage(s): 138 kV, 69 kV

Type of Substation: Distribution (D)

Timing: 2016

Line Association(s): DEO-A8481

,

Minimum Substation Site Acreage: 5 acres

- (3) Planned Transmission System Maps
 - (a) Schematic maps and geographic maps depicting the existing and planned 345 kV and 138 kV transmission networks are considered by DEO to be critical energy infrastructure information. The maps and diagrams will be provided under seal.
 - (b) Rule Requirement Two copies of the above maps, for Commission use, on a scale of 1:250,000. The electric transmission owners may jointly provide one set of overlays to meet this requirement. Participation in the Commission's joint mapping project will meet this requirement:

The joint mapping project coordinated by the OEUI has not been accomplished for a number of years to DEO's knowledge. DEO can provide a map at the requested scale to the Commission upon request.

E. SUBSTANTIATION OF THE PLANNED TRANSMISSION SYSTEM

- (1) Graphic plots of the DEO 138 kV and 345 kV systems that show the MW and MVAR flows and the bus voltages have been prepared. They are considered by DEO to be critical energy infrastructure information. Plots of 138 kV system and 345 kV system for the 2011 summer base case and the most recently prepared 2016 summer base case plots will be provided separately to PUCO staff. The 2011 and 2016 summer base case power flow cases in PSS/E format are included with the CEII information.
- (2) Contingency cases Contingency cases based on the peak load base cases are studied to determine system performance for generation and transmission system outages. The results of such studies are used as bases for the determination of the need for and timing of additions to the transmission system. DEO has prepared several power flow outage cases which can be considered representative of the types of outages studied. All cases are based on the 2011 Summer Peak Load Power Flow Base Case. The outage cases, discussion and power flow transcription diagrams are considered by DEO to be critical energy infrastructure information which will be provided under seal.
- (3) Analysis of proposed solutions to problems identified in paragraph (E)(2) of this rule: As discussed, a number of contingency cases, predicated on the various base cases, have been studied. These contingency cases include loss

of transformer and/or loss of transmission circuit, as well as unscheduled variation of generation dispatch. These contingency cases seek to model system performance under various conditions that are common to electric system operation. The general criteria applied to these studies are that the loss of either a major transformer or transmission circuit should not cause loading on any of the remaining transformers or circuits to exceed their emergency thermal ratings. In addition, double-contingency outages, which include at least one 345 kV system component, should likewise not cause loading on any remaining components to exceed the emergency thermal ratings. Probability of occurrence, availability of mitigating procedures, and other factors are considered when these reliability analyses are performed and evaluated. No problems are expected as a result of the contingencies identified in paragraph (E) (2) of this rule. DEO expects all electric components to operate within their limits based on DEO's planning criteria.

- (4) Adequacy of the electric transmission owner's transmission system to withstand natural disasters and overload conditions: The contingency cases and reliability analyses described above indicate the performance of the transmission system subsequent to outages, which may be caused by natural disasters. As discussed above, the transmission system is designed to withstand certain outages without causing loading on the remaining system components to exceed emergency thermal load ratings. More severe outages may cause system components to overload. Such overloads, if not corrected by switching or other actions, may cause loss of life of the overloaded system components. Some outages may be of such a severity that all of the load could not be served. The transmission system could also be segmented to such a degree that all of the load could not be served.
- (5) Analysis of the electric transmission owner's transmission system to permit power interchange with neighboring systems: The Duke Energy Ohio transmission system is interconnected to American Power (AEP), Dayton Power and Light (DAY), Ohio Valley Electric Company (OVEC), and Eastern Kentucky Power Cooperative (EKPC). The ability to accommodate any particular interchange, whether short term or long term is highly dependent on the actual transfer and the conditions under which it would occur. Duke Energy Ohio is a member of the Midwest Independent Transmission System Operator as such the allocation of Available Flowgate Capacity (AFC) is the sole responsibility if the Midwest ISO.
- (6) Transmission Import and Export Transfer Capability: Duke Energy Ohio is a member of the Midwest Independent Transmission System Operator as such the allocation of AFC is the sole responsibility of the Midwest ISO.
- (7) A description of any studies regarding transmission system improvement, including, but not limited to, any studies of the potential for reducing line losses, thermal loading, and low voltage, and for improving access to

alternative energy resources: No transmission system studies specifically addressing the above items have been performed. Line losses are considered in the evaluation of alternative projects. Thermal loading and low voltage issues are considered and addressed as a part of the transmission system evaluation and planning process. Accommodation of alternative energy sources requesting connection to the DEO transmission system are handled by the Midwest ISO interconnection procedures.

(8) Switching diagrams of the DEO 138 kV and 345 kV systems are considered by DEO to be critical energy infrastructure information which will be provided under seal.

F. REGIONAL AND BULK POWER REQUIREMENTS

Information relating to RFC and bulk power requirements is provided to the Public Utilities Commission of Ohio by RFC on behalf of Duke Energy Ohio and several Ohio electrical utilities.

G. CRITICAL ENERGY INFRASTRUCTURE INFORMATION

As discussed previously, Duke Energy Ohio considers all or portions of the information sought under the rules listed below to be critical energy infrastructure information. This information has been assembled separately and will be provided to the Commission under seal.

4901:5-5-04 (C)(2)(a)	4901:5-5-04 (C)(2)(b)	4901:5-5-04 (C)(2)(c)
4901:5-5-04 (D)(3)(a)	4901:5-5-04 (D)(3)(b)	4901:5-5-04 (E)(1)
4901:5-5-04 (E)(2)	4901:5-5-04 (E)(8)	

H. SUBSTANTIATION OF THE PLANNED DISTRIBUTION SYSTEM

A. Load flow or other system analysis by voltage class of the EDU's distribution system performance in Ohio, that identifies and considers each of the following:

(a) Any thermal overloading of distribution circuits and equipment;
(b) Any voltage variations on distribution circuits that do not comply with the current version of American National Standard Institute (ANSI) C84.1, electric power systems and equipment and equipment voltage ratings or standard as later amended.

The Duke Energy Ohio distribution system includes systems that operate at nominal voltages of 4.16 kV, 12.47 kV, 13.2 kV, 34.5 kV and 69 kV. Planning for the 4.16 kV, 12.47 kV and 34.5 kV systems utilizes a combination of peak load power flow analysis and projections of the expected future peak loads on the various system components. The load projections are based on historical loads, general load growth trends within defined load areas, and known proposed loads. The projected future loads are then compared to the assigned capacity of the components to determine if and when any components are expected to experience peak loading in excess of their assigned capacities. System reinforcement projects are then identified and planned for completion prior to the projected time that the components would be overloaded without relief. This process is repeated on an annual basis, adjusting project schedules as required due to differences between actual load growth and projected load growth and any other pertinent factors.

The distribution capacity planning process addresses voltage variation in planning for the Duke Energy 4.16 kV, 12.47 kV, 13.2 kV and 34.5 kV systems by incorporating design parameters intended to maintain the voltage at all the customer service points within ANSI C84.1 standards. These design parameters include the following:

1. application of automatic voltage regulation at the feeder source within substations

2. application of capacitor banks both within substations and distributed on the distribution feeders

3. utilization of adequately sized conductor and distribution transformers Any voltage concerns identified by customer notification or system monitoring are addressed by insuring that the above design parameters are adhered to.

B. Analysis and consideration of proposed solutions to problems identified in paragraph (C)(1) of this rule.

As of the date of preparation of this report, the following major projects are planned to insure that adequate thermal capacity will exist on the Duke Energy 4.16 kV, 12.47 kV, 13.2 kV and 34.5 kV distribution systems:

<u>2011</u>

Seward Substation – Install an additional 22.4 MVA, 138-12.47 kV transformer and associated equipment at an existing Duke Energy Ohio Substation to serve expected increased demand in the West Chester area.

Green Secondary Network Improvements – Add transformers and conductors to relieve projected overloading to parts of downtown Cincinnati service area.

<u>2012</u>

Canal Substation – Install a 22.4 MVA, 69-12.47 kV transformer and associated equipment in a new Duke Energy substation to serve expected increased demand in the Hamilton area.

Columbia Substation – Install a 22.4 MVA, 138-12.47 kV transformer and associated equipment at a new Duke Energy Ohio substation to serve projected area loading and relieve existing circuits in the area.

Brown Substation – Install a 22.4 MVA, 138-12.47 kV transformer and associated equipment at an existing Duke Energy Ohio substation to serve projected winter heating demand in southeastern Brown County.

Mack Substation – Install an additional 22.4 MVA, 69-12.47 kV transformer and associated equipment at an existing Duke Energy Ohio substation to serve projected area loading and relieve existing circuits in the area.

Distribution capacity projects are typically not planned beyond a three to four year time horizon, due to the variability in area load growth patterns and the ability to react fairly quickly in the implementation of capacity projects. Smaller-scale projects to upgrade or establish distribution feeder routes to serve new load and/or allow loads to be served by existing substation capacity are typically planned and implemented in shorter time-frames as required by actual load development.

C. Adequacy of the electric utility distribution system to withstand natural disasters and overload conditions.

The Duke Energy Ohio distribution system is designed to withstand certain wind loading, ice loading, and other structural issues by recognized national standards. Natural disasters that exceed these conditions may result in damage to the distribution system and the inability to serve all customers. Duke Energy Ohio has an Emergency Plan that calls for the mobilization of personnel and resources as required by the severity of a given incident, including mutual assistance from other utilities.

The goal of the Duke Energy Ohio planning process is to insure that components are not loaded beyond their assigned ratings under normal system conditions to meet expected load. However, under outage or other abnormal conditions, Duke Energy Ohio recognizes that it may be necessary to load components beyond the ratings assigned for normal use. Certain components, such as transformers, regulators, and cables, have identifiable overload capabilities that are either allowable for intermittent use during the life of the component or can be mitigated after the overload by maintenance activities. Duke Energy Ohio will utilize such capacity when necessary and feasible to carry load if the alternative is to not serve the load. Certain other system components, such as overhead lines, do not have significant overload capacity due the necessity of maintaining adequate electrical clearance.

D. Analysis and consideration of any studies regarding distribution system improvement, including, but not limited to, any studies of the potential for reducing line losses, thermal loading and low voltage or any other problems, and for improving access to alternative resources.

The analytical process intended to alleviate thermal loading and low voltage conditions on the Duke Energy Ohio distribution system is described in response to paragraph 4901:5-5-04(C)(1)(a) and (b). No general improvement studies or studies related solely to the reduction of line losses are performed. No studies specifically related to improving access to alternative energy sources have been performed.

E. A switching diagram of circuits less than one hundred twenty-five kV that are not radial.

All Duke Energy Ohio 4.16 kV, 12.47 kV, 13.2 kV and 34.5 kV circuits are operated in a radial mode. A number of 69 kV circuits operate in non-radial mode. The switching diagram of the DEO 69 kV system is considered by DEO to be critical energy infrastructure information. This diagram will be provided separately to PUCO staff with the 138 kV and 345 kV switching diagrams requested under 4901:5-5-04 (E)(8). The non-radial operated circuits are indicated on this diagram.

SECTION III – ELECTRIC DISTRIBUTION FORECAST

On the following pages, the loads for Duke Energy Ohio are provided. Please note that FE-D forms represent the full distribution forecast regardless of who supplies the energy, whereas the FE-T forms represent the load supplied by the regulated utility. Therefore, the first two years of

the forecast reflect energy and peak reduced for current switching levels. The remaining years of the forecast reflect the assumption that all load returns to the regulated utility at the end of the ESP.

1. Service Area Energy Forecasts

The following forms contain the energy forecast for Duke Energy Ohio's service area.

Before implementation of any new EE programs or incremental EE impacts, Residential use for the ten-year period of the forecast from 2011 to 2021 is expected to increase at a rate of 0.8 percent per year; Commercial use increases 1.5 percent per year; and Industrial use increases 1.6 percent per year. The summation of the forecast across each sector and including losses results in a growth rate forecast of 1.2 percent for Total Energy.

The Total energy growth rate after EE impacts is (-0.1) percent.

2. System Seasonal Peak Load Forecast

The following forms also contain the forecast of summer and winter peaks before implementation of EE programs for the Duke Energy Ohio service area. The historical difference between native and internal load before EE reflects the impact of the interruptible rate tariff and other demand response programs.

The table shows the Summer and succeeding Winter Peaks, the Summer Peaks being the predominant ones historically. Projected growth in the internal summer peak demand is 1.0 percent. Projected growth in the internal winter peak demand is 0.9 percent per year.

Peak load forecasts after implementation of EE programs are shown for native and internal loads after EE. The projected growth in the internal summer peak is 0.2 percent.

3. Controllable Loads

The native peak load forecast reflects the MW impacts from the PowerShare® demand response program and controllable loads from the Power Manager program. The amount of load controlled depends upon the level of operation of the particular customers participating in the programs. The difference between the internal and native peak loads consists of the impact from these loads. See Section H in Duke Energy Ohio's Resource Plan for a complete discussion of controllable and other demand response programs.

4901 - 5-5-04

PUCO Form FE.D1 : EDU Service Area Energy Dellvery Forecas: (Megavatt Hours/Year) (a)

	8			Total Energy		6+7	21 561 508	22,705 692	21 561 257	17,790,025	10 945 442	6 595 647	21 995,439	22.315 589	22 847,557	22,579,261	22 516 323	22.472 196	22 417 361	22 148 549	21.891 109	21 644.399
	+- !			Line Losses and Company Use			1.370.231	1 554 761	1 231 134	602,245	844 C07	452 537	1,450,657	1 472 977	1.504 257	1.525.911	1,535,570	1.547 916	1 559.151	1,571,064	1.563 393	1 596,409 [
	6	Total End Use Detwery (f) (f) (f)				26 843 612	21.143.748	21 053 350	20 924 280 20 924 280 30 858 930		20 858 230	20 577 865	20 307.716	20 047 990								
(q)	[[1]]	Energy Efficiency &	Demand Response	(e)			379	54 677	151 371	66.403	310 755	30,746	29C 561	369 405	648,955	til 096	1, 183 524	1 409 053	1,634 223	2 083 474	2 530 275	2.973 168
e Energy Ohi	5(a)			Other (c)			1 551 925	1,592,553	1,553,139	1 435 194	475 304	153,007	1 350 698	1 436 194	1,475.037	1,494 652	£18'857'1	1,497,130	1.491 962	1 466.384	1,430.776	1.476 590
Duke	Ţ			Transportation (b)									•			-	•					-
	- -			Industnat			5.794 652	5 756.911	5,364 071	3.371 411	638,338	718 164	5.352 390	5 467,437	5,586 454	5 666,504	5, 739 282	5,809 615	5 877 271	5.945 452	6.010 593	6 075 950
	2		••••	Commercial			5 776 434	6 178 343	6.092.035	5.656 344	2,660,497	1.163 895	6 724 039	6.988.970	7,252,705	7 397 689	7.463 050	7,502,188	7.531 982	7 557 993	7,590.294	7.623 573
	1			Residential			7 368, 216	7.623.125	7 230 678	6,721,835	6 328 297	4,133.790	7 287 012	7 290.455	7,358,469	7,454 619	7 462, 133	7.524.400	7 591 238	7 571 620	7,756.327	7, 845, 045
				Year			2606	2007	2008	5007	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021
							40	4	Ϋ́	5	-	e	-	2	m	4	-0	ø	m-	က	m	2

(a) To be filled out by all EDUs. The callegory breakdown should refer to the Ond portion of the EDU's total service area (b) Transportation includes reliqued 8 relivarys (c) Other includes street 8 ingliving regimes, underdepartmental sales, and wholesale (d) Historical class numbers include the impact of DSM programs in place at the time. Forecast numbers have not been reduced for energy efficiency impacts (e) Historical numbers represent normatical impact of EDM programs. Forecast numbers have not been reduced for energy efficiency measures (e) Historical numbers represent normatical impact of EDM programs in place at the time. Forecast numbers have not been reduced for energy efficiency programs. Forecast numbers have not undative impacts (e) Historical numbers represent normatical impact of DSM programs in place at the time. Forecast numbers have not been reduced for energy efficiency programs. Forecast numbers have not been reduced for energy efficiency programs in place at the time.

				_	_	_		_		_	_	_	<u> </u>	_	_	_	_		_
	20	Totai Energy	6+7	21,561,508	22,705,693	21 561,257	17,790.029	10.946 442	5.595,647	21,995 439	22,316 589	22.647,997	22,579 261	22.516,323	22,472,196	22,417,381	22 148 949	21.891 109	21 644 399
	2	Line Losses and Company Use		1 370,231	1,554 761	1,231,134	602.245	344.007	450,372	1.437 690	1 449.679	1,468.619	1,463 447	1,459,282	1.456,389	1 452 982	1,435,748	1,419,457	1,403,301
DSM (d)	9	Total End Use Delivery	1+2+3+4+5	20,191,276	21 150 932	20.330 124	17 187 784	10 102 436	6,145 275	20 557 749	20.866 910	21,179 378	21.115,815	21,057 041	21,015,607	20 964,399	20 713 200	20.471.652	20.241 098
iergy Ohio After	5	Other (c)		1,551,925	1.592 553	1,593.139	1,438,194	475,304	152.838	1 372,382	1 419 273	1,446.897	1 441,911	1,426 626	1,410 992	1.393 342	1,362,356	1,332,282	1.304.710
Duke Er	4	Transportation (b)		•				•	•	4	,		,		1				
	3	Industrial		6,794,652	5.756.911	5 354.071	3,371,411	638 338	716.525	5,320.313	5 425,496	5 486,990	5,483,351	5.484.985	5,509 770	5,532 528	5.509.783	5.486,286	5,465.795
	2 1	Commercial		5.776.484	6 178 343	6,092,035	5,656 344	2 660 497	1, 166.262	6,683,490	6.907.423	7,127.019	7.143,445	7,107 190	7 080 737	7.045.899	6.941.981	6,846,478	6.754.887
	÷	Residential		7,068,216	7,623,125	7 280,878	6 721 835	6, 326, 297	4 109,650	7,181,563	7,114,718	7 118,472	7,047.107	7.038.238	7.014.307	6,992,629	6 899,081	6,806,605	6 715,706
		Year		5 2006	4 2007	3 2008	2 2009	1 2010	1 2011	2012	2013	1 2014	1 2015	2016	3 2017	2018	3 2019	9 2020	0 2021
				171	ľΎ	ĽĽ	1.5	1	9	· · · ·	1.1	$ _{\alpha}$	-4	" "	.	' "	30	51	****

(a) To be filled out by all EDUs. The category breakdown should refer to the Ohio portion of the EDU's lotal service area (b) Transportation includes raitoads & raikoads & raikarys (c) Other includes street & highway lighting, public authorities, interdepartmental sales and wholesale (d) Historical numbers include the impact of DSM programs in place at the time

4901 5-5-04

			_		_				_	_	_	_	_	_	_	_		_	
			<u>Winter (b)</u>	3,551	3,505	3.526	2.271	1,459	3,644	3,709	3 777	3,821	3 845	3,858	3.881	3,904	3 929	3,957	3 984
	ternal		Net Summer	4.366	4,436	4.074	3.675	2,317	1.600	4.379	4,419	4.506	4,560	4,571	4,607	4,639	4 676	4,712	4 757
	Ч	Demand	Response	0	23	0	0	11	54	164	164	164	164	164	164	164	164	164	16/
			Summer	4.366	4,459	4.074	3,675	2.328	1,864	4,543	4,583	4,671	4.725	4.735	4,771	4,803	4,840	4,876	100 V
Before DSM			Winter (b)	3.551	3,505	3,526	2.271	1,459	3,644	3,709	3,777	3.821	3,845	3,858	3,881	3,904	3,929	3.957	3 08/1
te Energy Ohio	ve		Net Summer	1,366	4,436	4.074	3.675	2.317	1,800	4,379	4,419	4.506	4,560	4.571	4,607	4,639	4,676	4.712	136 V
Dut	Nati	Demand	Response	0	0	0	0	0	0	0	G	0	0	Đ	G	0	0	0	C
			Summer	4,366	4,436	4,074	3,675	2,317	1,800	4,379	4,419	4,506	4,560	4,571	4,607	4.639	4,676	4,712	1 767
			Year	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	20.74
				ņ	. 4	e.	, ,	÷	0		~	<u>س</u>	4	ц	Q	7	œ	5	ç

 10
 2021
 4,757
 0
 4.757
 3.984
 4.921

 (a) To be filled out by all EDUs. Data should refer to the Ohio portion of the EDU's total service area.
 (b) Winter toad reference is to peak loads which follow the summer peak load.
 (c) Historical company peaks not necessarily coincident with the system peak.
 (d) Figures reflect the impact of historical demand side programs.

	[]]		a		1															Ĩ
			Winter (b	3,551	3,505	3,526	2,271	1,459	3,626	37676	3.729	3,740	3.745	3,750	95 <u>7</u> ,E	3775	3,736	3,730	3,724	
	(b)(c)	Net	Summer	4 366	4,436	4,074	3,675	2,317	1,795	4,340	4.376	4,439	4,441	4 424	4,432	4,436	4,417	4,398	4.388	
	Internal	Demand	Response	0	23	0	0	11	3	164	164	164	164	164	164	164	164	164	2	rea.
			Summer	4,366	4,459	4,074	3.675	2.326	1 859	4,504	4,540	4,603	4,605	4,588	4,596	4.600	4,581	4.563	4,552	al service a
r DSM			Winter (b)	3,551	3,505	3.526	2,271	1,459	3.626	3.676	3,729	3.740	3,745	3,750	3,756	3,745	3,736	3,730	3,724	e EDU's tot
Megawatts)(a) ergy Ohio Afte	(c)		Net Summer	4,366	4,436	4.074	3,675	2.317	1,795	4,340	4,376	4,439	4,441	4,424	4,432	4.436	4.417	4,398	4.388	hio portion of th
() Duke En	Native (b)	Demand	Response	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Id refer to the O
			Summer	4,366	4 436	4,074	3,675	2,317	1,795	4,340	4.376	4.439	4.441	4 424	4,432	4,436	4,417	4,398	4.388	EDUs. Data shou
			Year	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	filled out by all E
				ç.	4	-3	-2		0	1	2	ر	দ	ۍ د	6	7	10	6	10	(a) To be

PUCO Form FE-D3 : EDU System Seasonal Peak Load Demand Forecast

(a) to be miled out by all EUUS. Data should refer to the Unity portion of the EU (b) Winter load reference is to peak loads which follow the summer peak load.
 (c) includes DSM impacts

4901 - 5-5-04

PUCO Form FE.D5: EDU's Total Monthly Energy Forecast (MWh) Duke Energy Ohio Before DSM

January E23 017 E23 017 E23 01 E20 01 E33 01 E20 01 E33 01 E30 01 <the30 01<="" th=""> <the30 01<="" th=""> <the30 01<<="" th=""><th>January E23.017 E23.017 E23.017 E23.017 E23.017 E23.017 E23.017 E23.017 E23.012 <the23.012< th=""> <th< th=""><th>Year 0 (d)</th><th>Ohio</th><th>o Service Area</th><th><u>System</u></th></th<></the23.012<></th></the30></the30></the30>	January E23.017 E23.017 E23.017 E23.017 E23.017 E23.017 E23.017 E23.017 E23.012 E23.012 <the23.012< th=""> <th< th=""><th>Year 0 (d)</th><th>Ohio</th><th>o Service Area</th><th><u>System</u></th></th<></the23.012<>	Year 0 (d)	Ohio	o Service Area	<u>System</u>	
January E23.017 E23.017 E23.017 E23.017 E23.017 E23.017 E23.017 E23.017 E23.017 E23.013 E23.017 E23.013 E23.013 E23.013 E33.056 E53.017 E33.056 E53.013 E53.056 E53.017 E53.056 E53.017 E53.056 E53.056 <t< td=""><td>January E33.01 6.23.01 <th7.01.31< th=""> <th7.01< th=""> <th2.01<< td=""><td></td><td></td><td></td><td></td></th2.01<<></th7.01<></th7.01.31<></td></t<>	January E33.01 6.23.01 <th7.01.31< th=""> <th7.01< th=""> <th2.01<< td=""><td></td><td></td><td></td><td></td></th2.01<<></th7.01<></th7.01.31<>					
February 633 960 533 960 533 950 553 950 553 950 557 950 557 950 557 950 557 950 551 755 551 950 551 755 551 950 617 756 7045 556 7045 556 7045 556 7045 556 7045 556	February 633.3960 533.961 564.234 427.841 427.843 437.851 437.851 437.951 548.457 548.456 548.456 548.456 548.457 548.457 548.456 548.457 548.457 548.457 548.457 548.457 548.457 548.456 548.456 548.456 548.456 548.457 548.457 548.457 548.457 548.457 548.457 548.457 548.457 548.456	January		623.017	623 017	
Match 504.294 617.73 418.455 548.456 617.73 418.455 617.73 418.455 617.73 418.456 617.73 418.456 617.73 418.456 617.73 418.456 617.73 418.456 617.73 418.456 617.73 418.456 617.73 418.456 617.73 418.456 617.7356 176.197 <td>Match 564.294 564.234 457.847 457.947 457.947 457.947 457.947 457.947 457.947 457.947 457.947 457.947 457.947 457.947 457.947 457.947 457.947 457.947</td> <td>February</td> <td></td> <td>533.960</td> <td>533,960</td>	Match 564.294 564.234 457.847 457.947 457.947 457.947 457.947 457.947 457.947 457.947 457.947 457.947 457.947 457.947 457.947 457.947 457.947 457.947	February		533.960	533,960	
April 427,34.7 427,34.7 427,34.7 427,34.3 427,34.3 427,34.3 427,34.3 427,34.3 427,34.3 427,34.3 427,34.3 427,34.3 427,34.3 427,34.3 427,34.3 427,34.3 427,34.3 427,34.3 427,34.3 453,34.3 453,34.3 453,34.3 453,34.3 453,34.3 453,45.3 453,45.5 548,45.6 573,66.6 579,66 578,66 579,66 578,66 579,66 578,66 578,66 578,66 578,66 578,67 518,47 617,73 487,978 497,5293 497,5203 497,520	April 427,847 427,847 427,847 427,843 427,843 423,843 423,843 423,843 423,843 423,843 423,843 423,843 423,843 423,843 423,843 423,843 423,843 423,843 423,843 423,843 427,843 438,753 438,453 438,453 438,453 438,453 438,453 438,453 438,453 438,453 438,453 438,453 438,453 438,453 438,453 438,453 438,453 438,453 438,453 448,753 438,453	March		504.294	504 294	
May 453.843 453.443 4	May 453 843 453 843 453 843 453 843 453 843 453 843 453 843 453 843 453 843 453 843 453 843 453 843 453 843 453 843 453 906 617 307 716 160 716 160 716 160 716 160 716 160 716 160 716 160 716 160 716 160 716 160 716 160 71	April		427,847	427,847	
June 578 746 578 745 578 745 578 745 578 745 578 745 578 745 578 745 578 745 578 745 548 745 548 745 548 745 617 735 716 619 717 619 717 619 717 619 717 619 717 619 717 619 717 619 717 619 717 619 717 619 717 619 717 619 7	June 578 746 578 746 578 745 548 753 558 753 5	May		453,843	453.843	
July 675,096 675,096 675,096 675,096 675,096 675,096 675,096 675,096 675,096 675,096 675,096 690,556 690,556 690,556 690,556 690,556 690,556 690,556 690,556 690,556 690,556 690,556 690,556 690,556 548,457 548,475 548,475 548,475 548,475 617,736 761,637 761,637 761,637 761,637 761,637 761,637 761,637 761,637 761,637 761,637 761,637 761,637 761,637 761,637 761,637 761,637 761,637 761,637 776,636 776,636 776,636 776,636 776,636 776,636 776,536 776,636 7	July 675 096 675 096 675 096 675 096 675 096 675 096 675 096 675 096 675 096 675 096 675 096 675 096 675 096 675 096 675 096 675 09 548 45	June		578.746	578,74	
August Eg0.566 690.566 690.566 690.566 548.45 548.455 548.455 548.455 548.455 548.455 548.455 548.455 548.455 548.455 548.455 548.455 548.455 548.455 548.455 548.455 548.455 548.455 548.455 647.73 647.735 647.743 761.97 761.97 761.97 761.97 761.97 761.97 761.97 761.97 761.97 761.97 761.97 761.97 761.97 761.37 761.97 776.167 776.167 776.167 776.167 776.167 776.167 776.167 776.167 776.167 776.167 776.167 776.167 776.167 776.167 776.167 776.167 776.167 776.167 776.167	August Egg0 568 690 568 690 568 690 568 690 568 690 568 690 568 690 568 690 568 690 568 690 568 690 568 690 568 690 568 548 45 568 45 548 45	VID		675.096	675.09	
September 548.456 548.456 548.456 548.456 548.456 548.456 548.457 487.978 497.289 497.289 497.289 497.298 497.298 497.298 497.298 497.298 497.298 497.298 497.298 497.298 497.298	September 548.45 547.55 547.55 547.55 547.55 547.55 547.55 547.65 547.55 547.65 547.55 547.65 547.55 547.65 547.55 547.15 543.75 543.75 543.75 543.75 543.75 543.75 543.75 543.75 1.761.93 701.33 1.701.	August		690,568	95,069	
October 487.97 487.97 487.97 Novermber 631.736 484.863 484.865 Novermber 631.736 631.736 484.865 December 631.736 617.736 617.73 Vear 1 (d) 2.045.636 2.045.63 2.045.63 January 1.761.974 1.761.974 1.761.974 Andr 1.761.974 1.761.974 1.761.974 March 1.761.974 1.761.974 1.761.974 March 1.761.974 1.761.974 1.761.974 March 1.761.974 1.761.974 1.761.974 March 1.971.92 1.970.92 1.970.92 March 1.971.92 1.972.93 2.192.293 2.192.293 2.192.293 2.192.293 2.192.293 2.192.293 2.192.293 2.192.293 <	October 487.97 November 481.853 484.65 November 481.853 484.65 December 617.736 617.736 December 2.045.636 2.045.636 March 1.761.845 1.761.91 March 1.761.845 1.761.91 March 1.761.845 1.761.92 July 1.761.845 1.701.376 1.701.376 July 2.192.293 2.192.293 2.192.293 October 1.764.821 1.764.821 1.764.82 July 0.0000000 of the EDU's total service area in this column. 1.927.435 1.927.48 December 1.627.435 1.764.821 1.764.82 December 1.627.435 1.972.93 1.977.435 December 1.627.435 1.627.435 1.972.93	September		548,456	548,45	
November 484,853 484,853 484,853 484,853 617,73 617,735 617,636 7,64,85 7,761,84 7,761,84 7,701,376 1,701,376	November 484,863 484,863 484,863 484,863 484,863 617/73 617/23 61/73	October		487,978	487.97	
December 617 736 617 736 617 736 617 736 617 736 617 736 617 736 617 736 617 736 617 736 617 736 617 736 617 736 617 736 617 736 617 736 617 736 617 736 617 736 761 997 761 912 <	December 617.736 617.736 617.736 617.73 Year 1 (d) Year 1 (d) 2.045.636 1.701.376 1.702.201 2.152.201 2.152.201	November		484,853	484,85	
Year 1 (d) Year 1 (d) 2045.636 2 045.636 1 761.91 1 761.91 1 761.91 1 761.91 1 761.91 1 761.91 1 701.31 1 972.969 1 1.01.31 1 972.969 1 1.01.31 2 192.263 2 152.013 2 15	Year 1 (d) Year 1 (d) 2.045.536 1.761.93 1.701.376 1.702.801 <	December		617 736	617.73	
January January 2,045,636 2,045,636 2,045,636 2,045,636 2,045,636 2,045,636 2,045,636 2,045,636 2,045,636 2,045,636 2,045,636 2,045,636 2,045,636 2,045,636 2,045,636 2,045,636 2,045,636 2,045,636 2,045,636 1,761,97 1,761,97 1,761,97 1,761,97 1,761,97 1,761,37 1,70	January Z.045.536 Z.045.526 Z.045.526 Z.045.526 Z.052.66 Z.052.67 Z.052.67 Z.052.67 Z.052.67 Z.052.67 Z.052.67 Z.052.67 Z.052.67 <thz.06< th=""> Z.052.67 Z.052.67</thz.06<>	Year 1 (d)				
January Z.045,536 Z.045,547 Z.012,292 Z.045,261 Z.012,292 Z.045,293 Z.152,013	January Z.045,536 2.045,536 1.761,97 1.761,97 1.761,97 1.761,97 1.761,376 1.701,376 2.152,076 2.152,076 2.152,076 2.152,076 2.152,076 2.152,076 2.152,076 2.152,076 2.152,076 2.152,076 2.152,076 2.152,076 2.152,076 2.152,076 2.152,076 2.152,076 2.15					
February 1.761.97 1.761.97 March 1.761.845 1.761.845 1.761.845 April 1.761.845 1.761.845 1.761.845 April 1.584.760 1.584.760 1.584.76 May 1.701.376 1.701.376 1.701.37 May 1.701.376 1.701.376 1.701.37 June 2.152.015 2.152.015 2.152.01 July 2.192.293 2.192.293 2.192.292 August 2.192.293 2.192.293 2.192.293 August 2.00tober 1.764.82 1.764.82 November 0.677.435 1.677.435 1.677.43 December 1.652.311 1.652.31 1.652.31	February 1.761.974 1.761.974 1.761.97 March 1.761.845 1.761.845 1.761.845 1.761.845 April 1.584.760 1.584.760 1.584.760 1.584.76 1.701.37 May June 1.701.376 1.701.376 1.701.37 1.701.37 June June 1.701.376 1.701.37 1.701.37 1.701.37 June June 2.152.01 2.152.01 2.152.01 2.152.01 July August 2.152.01 2.152.015 2.152.01 2.152.01 August Cotober 2.152.015 2.152.015 2.192.293 2.192.293 2.192.293 2.192.263 Nowember October 1.677.436 <t< td=""><td>January</td><td></td><td>2,045,536</td><td>2,045.53</td></t<>	January		2,045,536	2,045.53	
March 1,761,845 1,761,845 1,761,845 1,761,845 1,761,845 1,761,845 1,761,845 1,761,845 1,761,847 1,761,847 1,701,37 1,972,98 1,972,98 1,972,98 1,972,98 1,972,98 1,972,98 1,972,98 1,972,96 1,972,97 2,192,293 2,192,293 2,192,293 2,192,293 2,192,293 2,192,292 2,192,293	March 1,761,84 1,761,84 1,761,84 1,761,84 1,761,84 1,761,84 1,761,84 1,761,84 1,761,84 1,761,84 1,761,84 1,761,84 1,761,84 1,761,84 1,761,84 1,761,84 1,701,37 1,972,99 1,972,99 2,192,29 2,192,293 2,192,435 1,617,465 2,192,435 <t< td=""><td>February</td><td></td><td>1,761.974</td><td>1 761,97</td></t<>	February		1,761.974	1 761,97	
April 1.584.760 1.584.760 1.584.760 1.584.760 1.584.760 1.584.760 1.584.760 1.584.760 1.584.760 1.584.760 1.584.760 1.584.760 1.701.37 1.701.376 1.701.376 1.701.376 1.701.376 1.701.376 1.701.376 1.701.376 1.701.376 1.701.376 1.701.376 1.701.376 1.701.376 1.701.376 1.701.376 1.701.376 1.701.376 1.972.968 1.972.968 1.972.968 1.972.968 1.972.968 1.972.968 1.972.968 1.972.968 1.972.962 2.152.016 2.152.016 2.152.016 2.152.016 2.152.016 2.152.016 2.152.016 2.156.216 2.156.216 2.156.216 2.156.216 2.156.216 2.156.216 2.156.216 2.156.216 2.156.216 2.156.231 1.657.316 1.657.316 1.657.316 1.657.316 1.657.316 1.657.316 1.657.316 1.657.316 1.657.316 1.657.316 1.657.316 1.657.316 1.657.316 1.657.316 1.657.316 1.657.316 1.657.316 1.657.316 1.657.316 1.6	April 1.584.760 1.584.760 1.584.760 1.584.760 1.584.760 1.584.760 1.584.760 1.584.760 1.584.760 1.584.760 1.584.760 1.584.760 1.701.376 1.701.376 1.701.376 1.701.376 1.701.376 1.701.376 1.701.376 1.701.376 1.701.376 1.701.376 1.701.376 1.701.376 1.972.989 1.972.989 1.972.989 1.972.982 1.972.982 1.972.982 1.972.982 2.152.015 2.152.015 2.152.015 2.152.016 2.152.143 2.152.143 2.	March		1,761,845	1,761,84	
May 1.701.376 1.701.376 1.701.37 June 1.972.989 1.972.989 1.972.98 Junk 2.152.015 2.152.015 2.152.015 July 2.192.293 2.192.293 2.192.293 August 2.192.293 2.192.293 2.192.293 September 1.764.821 1.764.821 1.764.82 November 0ctober 1.652.311 1.677.43 December 1.927.439 1.927.43 1.927.435	May 1.701.376 1.701.376 1.701.376 1.701.376 1.701.376 1.701.376 1.701.376 1.701.376 1.701.376 1.701.376 1.701.376 1.701.376 1.701.376 1.972.989 1.972.989 1.972.989 1.972.989 1.972.989 1.972.989 1.972.989 1.972.983 1.972.983 1.972.983 1.972.983 1.972.983 1.972.983 1.972.983 2.152.01 2.152.01 2.152.01 2.152.01 2.152.01 2.152.01 2.152.01 2.152.01 2.152.03 2.192.253 2.192.253 2.192.253 2.192.253 2.192.251 1.1564.82 1.1564.82 1.1564.82 1.1564.82 1.1564.82 1.1564.82 1.1564.82 1.1564.82 1.1564.82 1.1564.82 1.1564.82 1.1564.82 1.157.43 1.157.43 1.617.42 1.617.42 1.617.42 1.617.42 1.617.42 1.617.42 1.617.42 1.617.42 1.617.42 1.617.43 1.617.43 1.617.43 1.617.43 1.617.43 1.617.43 1.617.43 1.617.43 1.617.43 1.617.43 <th 1.617.63<="" td=""><td>April</td><td></td><td>1,584,760</td><td>1.584.76</td></th>	<td>April</td> <td></td> <td>1,584,760</td> <td>1.584.76</td>	April		1,584,760	1.584.76
June 1.972.989 1.972.989 1.972.989 1.972.989 1.972.989 1.972.989 1.972.989 1.972.993 2.152.015 2.152.015 2.152.019 2.156.019 2.276.019 2.276.019 2.276.019 2.276.019 2.2	June 1.972.989 1.972.993 2.152.015 2.152.015 2.152.015 2.152.012 2.152.015 2.152.012 2.192.283 2.192.283 2.192.283 2.192.283 2.192.285 2.192.285 2.192.285 2.192.285 2.192.285 2.192.435 1.617.485 0.060 mm 0.060 mm 0.061 mm 0.062 mm 0.061 mm 0.061 mm 0.061 mm <td>May</td> <td></td> <td>1,701,376</td> <td>1,701.37</td>	May		1,701,376	1,701.37	
July 2.152.015 2.152.015 2.152.015 2.152.015 2.152.015 2.192.293 1.164.80 1.617.435 1.617.435 1.617.435 1.657.31 1.657.313 1.652.311 1.652.313 1.652.313 1.652.313 1.652.313 1.652.313 1.652.313 1.652.313 1.652.313 1.652.313 1.657.433 1.927	July 2.152.015 2.152.015 2.152.015 2.152.015 2.152.015 2.152.015 2.152.015 2.192.293 2.192.293 2.192.293 2.192.293 2.192.293 2.192.293 2.192.293 2.192.293 2.192.293 2.192.293 2.192.293 2.192.293 2.192.293 2.192.293 2.192.293 2.192.293 2.192.293 2.192.293 2.192.248 2.192.248 1.677.45 1.677.45 1.677.45 1.677.45 1.677.45 1.652.31 <t< td=""><td>June</td><td></td><td>1.972.989</td><td>1.972,98</td></t<>	June		1.972.989	1.972,98	
August 2,192,293 2,192,293 2,192,293 2,192,293 2,192,293 2,192,293 2,192,293 2,192,293 2,192,293 2,192,293 2,192,293 2,192,243 1,764,82 1,764,82 1,764,82 1,764,82 1,764,82 1,764,82 1,764,82 1,764,82 1,764,82 1,764,82 1,764,82 1,764,82 1,764,82 1,764,82 1,764,82 1,764,82 1,764,82 1,764,82 1,764,82 1,677,43 1,677,43 1,677,43 1,677,43 1,927,43 <td>August 2.192.293 2.192.248 1.164.85 1.164.85 1.164.85 1.164.85 1.164.85 1.164.85 1.164.85 1.164.85 1.164.85 1.164.85 1.164.85 1.164.85 1.164.85 1.164.85 1.164.85 1.164.85 1.1652.31 1.1652.31 1.1652.31 1.1652.31 1.1652.31 1.1652.31 1.1652.31 1.1652.31 1.927.43</td> <td>July</td> <td></td> <td>2,152,015</td> <td>2.152.01</td>	August 2.192.293 2.192.248 1.164.85 1.164.85 1.164.85 1.164.85 1.164.85 1.164.85 1.164.85 1.164.85 1.164.85 1.164.85 1.164.85 1.164.85 1.164.85 1.164.85 1.164.85 1.164.85 1.1652.31 1.1652.31 1.1652.31 1.1652.31 1.1652.31 1.1652.31 1.1652.31 1.1652.31 1.927.43	July		2,152,015	2.152.01	
September 1.764.82 1.764.82 October 1.677.43 1.764.82 November 1.652.31 1.677.43 December 1.927.439 1.927.43	September 1.764.821 1.764.82 October 1.677.436 1.677.436 1.677.43 November 1.652.31 1.657.43 1.652.31 1.652.31 December 1.652.31 1.652.31 1.652.31 1.652.31 1.652.31 October 1.927.439 1.927.439 1.927.439 1.927.439 1.927.439 1.927.439 (a) To be filled out by all EDUs. Data should refer to the Ohio portion of the EDUs total service area in this column. 1.927.439 1.927.439 1.927.439	August		2,192,293	2,192,29	
October 1.677.43 1.677.43 1.677.43 November 1.652.311 1.652.31 1.652.31 December 1.927.439 1.927.439 1.927.439	October 1.677.436 1.677.436 1.677.436 1.652.31 1.652.43	September		1,764,821	1.764.82	
November 1.652.311 1.652.31 December 1.927.439 1.927.439	November 1.652.31 1.652.31 December 1.927.439 1.927.439 (a) To be filled out by all EDUs. Data should refer to the Ohio portion of the EDU's total service area in this column. 1.927.43	October		1.677.436	1 677 43	
December 1,927,439 1 927,43	December 1.927,439 1.927,43 (a) To be filled out by all EDUs. Data should refer to the Ohio portion of the EDU's total service area in this column. 1.927,43	November		1.652,311 [1.652,31	
	(a) To be filled out by all EDUs. Data should refer to the Ohio portion of the EDU's total service area in this column. (b) EDU encouring processing housed area shall primited data for the total service area in this relumn.	December		1,927,439	1 927 43	

127

4901 : 5-5-04

PUCO Form FE-D5: EDU's Total Monthly Energy Forecast (MWh) Duke Energy Ohio After DSM (e)

Year 0 (d)			Ohio Service Area	System
January			622.568	622,588
February			533,214 [533 214
March			503,154	503,154
April			426.514	426,514
May			452,079	452.079
June			576.330	576.330
ylul			672 000	672.000
August			687,108	687 108
September			545 019	545,019
October			484.528	484,528
November			480,628	480,628
December			612.486	612.486
Year 1 (d)				
January			2 031 431	2,031431
February		-	1,748.560	1,748,560
March			1,747,858	1,747,658
April			1 571,651	1.571.651
May			1,686,388	1.686.388
June			1,955,723	1,955,723
July			2.132,536	2, 132, 536
August			2,172,250	2,172,250
September			1.746.410	1,746,410
October			1,661,485	1 661.485
November			1 634 280	1,634.280
December			1,906,867	1,906,867
(a) To be filled out by (b) EDUs operating a	r all EDUs. Data should refer to icross Ohio boundaries shall pri	the Ohio portion of the EDU's total se wde data for the total service area in	wice area in this column. this column	
(c) EDUs operating a	is a part of an integrated operat	ng system shall provide data for the ti	otal system in this column	
(d) Actual data shall	be indicated with an asterisk (*			
(e) Includes DSM im	pacts			

40	
5-5-	
• •	
4901	

PUCO Form FE-D6: EDU's Monthly Internal Peak Load Forecast (Megawatts) Dute Forent Ohio Bafers OSM

			Duke Energy OF	ILD DEFORE USIN		
		Na	ative			Internal
	Ohio Service	Demand			Ohio Service	
Year 0 (d)	Area	Response	Net Summer	System	Area	System
January	1.259	0	1.259	1,259	1,259	1,259
February	1,296	0	1.296	1.296	1,296	1.296
March	1,240	0	1,240	1,240	1.240	1 240
April	1 028	35	1.028	1.028	1 063	1,063
May	1,198	5E	1.198	1,198	1.232	1,232
June	1,532	5	1,532	1,532	1 586	1.586
July	1,810	54	1,810	1.810	1,864	1,864
August	1.695	54	1 695	1,695	1,749	1 749
September	1.570	54	1.570	1,570	1.624	1 624
October	1,180	0	1,180	1,180	1.180	1,160
November	1 230	0	1.230	1,230	1.230	1.230
December	1.425	0	1.425	1,425	1.425	1,425
ŗ						
Year 1 (d)						
January	3.644	0	3,644	3.644	3,644	3,644
February	3,547	0	3,547	3.547	3.547	3.547
March	3.326	0	3 326	3,326	3,326	3,326
April	2.956	106	2,956	2.956	3,061	3,061
May	3,514	106	3,514	3,514	3.620	3 620
June	4,145	164	4,145	4,145	4.309	4,309
July	4 379	164	4.379	4,379	4,543	4,543
August	4 379	164	4,379	4,379	4.543	4.543
September	3,841	164	3,841	3.841	4.005	4,005
October	3 226	0	3.226	3,226	3.226	3,226
November	3.185	0	3,185	3, 185	3.185	3 185
December	3,600	0	3,600	3.600	3 600	3 600
(a) To be filled	1 out by all EDUs Da	ata should refer to I	the Ohio portion of the	EDU's total servic	ce area in this column.	
(b) EDUs ope	rating across Ohio b	voundaries shall pro	wide data for the total	service area in this	s column.	:
(c) EDUs ope	rating as a part of an	n integrated operatii	ng system shail provid	te data for the tota	I system in this column	
(d) Actual dat	a shall be indicated i	with an asterisk (*)		-		:

129

5-5-6	
4901	

•		
	(Megawatts) (e)	
	PUCO Form FE-D6: EDU's Monthly Internal Peak Load Forecast (Duke Energy Ohio After DSM (e)

Year 1 (c) Dito Service Demand Service Net Summer System Area System January 1 295 0 1 295 1 295 1 295 1 295 January 1 295 0 1 295 1 295 1 295 1 295 February 1 295 0 1 295 1 295 1 295 1 295 Marcin 1 205 35 1 195 1 295 1 296 1 296 Marcin 1 195 35 1 195 1 295 1 296 1 296 Marcin 1 195 35 1 195 1 689 1 249 1 296 Marcin 1 305 54 1 689 1 743 1 74 1 74 Marcin 1 564 54 1 689 1 743 1 74 1 74 Marcin 1 564 54 1 689 1 743 1 74 1 74 Marcin 1 564 54 1 695 1 743 1 74 1 74 Marcin 1 564	Tear (i) Onto Service Demand Net Summer System Area System January 1259 0 1259 1259 1259 1259 January 1259 0 1295 1295 1259 1259 February 1259 0 1295 1295 1259 1259 March 1236 0 1296 1296 1259 1259 Amich 1236 0 1296 1296 1259 1269 Amich 1236 1195 1195 1296 1269 1269 Amich 1527 1195 1195 149 1743 1743 Amich 1669 1663 1743 1743 1743 Amich 1669 1663 1743 1743 1743 Amich 1669 1663 1743 1743 1743 Amich 1674 174 174 174 1743 Amich			Z	lative			nternal
Yaar Old Aca Response Net Summer System Area System Januxy 1 259 0 1 229 1 259 1 259 1 259 Januxy 1 236 0 1 259 1 259 1 259 1 259 March 1 236 0 1 259 0 1 259 1 259 1 259 March 1 258 0 1 259 1 56 1 56 1 259 1 259 March 1 257 54 1 656 1 57 1 561 1 561 1 561 June 1 57 1 564 1 564 1 743 1 743 1 743 June 1 564 1 749 1 744 1 744 1 744 1 744 June 1 564 1 174 1 744 1 745 1 259 1 259 June 1 564 1 749 1 744 1 744 1 744 Jocomber 1 174 1 744 1 744 1 744 Jocomber 1 254 0	Yaar O (c) Area Response Net Summer System Area System Januxy 1 236 0 1 296 1 296 1 296 1 296 Januxy 1 236 0 1 236 1 296 1 296 1 296 March 1 236 0 1 236 1 296 1 296 1 296 March 1 226 3 1 195 1 296 1 296 1 296 March 1 206 35 1 1956 1 296 1 296 1 296 June 1 307 35 1 195 1 195 1 296 1 296 June 1 307 35 1 195 1 195 1 299 1 299 June 1 307 1 564 1 564 1 617 1 617 Jorenber 1 174 1 174 1 174 1 174 Jorenber 1 305 3 526 3 526 3 526 3 526 Januxy 3 529 3 529 3 529 3 529 3 529 3		Ohio Service	Demand			Ohio Service	
January 1269 0 1295 1269 1274 1174	January 1259 0 1259 1259 1259 1259 1259 1259 1259 1259 1259 1259 1259 1259 1269 1274 1274 July August 1564 1<174	Year 0 (d)	Area	Response	Net Summer	Svstem	Area	System
January 1259 1264 1274	January 1259 0 1296 1259 1259 1259 1256 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>							
February 1,296 0 1,296 1,296 1,296 1,296 1,296 1,236 1,174 <th< td=""><td>February 1295 0 1296 1243 August 1664 1664 1664 1617 1174 1174 1174 Condent 1174 1174 1174 1174 1174 1174 Veart (d) 1174 1174 1174 1174 1174 1174 Veart (d)</td><td>January</td><td>1.259</td><td>0</td><td>1,259</td><td>1 259</td><td>1.259</td><td>1,259</td></th<>	February 1295 0 1296 1243 August 1664 1664 1664 1617 1174 1174 1174 Condent 1174 1174 1174 1174 1174 1174 Veart (d) 1174 1174 1174 1174 1174 1174 Veart (d)	January	1.259	0	1,259	1 259	1.259	1,259
March 1238 0 1238 1338	Match 1238 0 1238 1231 1243 1244 1144 1144 1	February	1,295	0	1 295	1.295	1 295	1,295
April 1,026 35 1,026 1,060 1,060 1,060 1,060 May 1,195 35 1,195 1,195 1,229 1,229 1,229 May 1,857 5.4 1,867 1,867 1,869 1,869 1,439 1,239 1,529 July 1,857 5.4 1,867 5.4 1,869 1,639 1,531 1,531 July 1,857 5.4 1,869 1,649 1,664 1,617 1,174 August 1,664 1,664 1,664 1,617 1,743 1,743 September 1,174 1,174 1,174 1,174 1,174 Norember 1,119 1,175 1,174 1,174 1,174	April 1026 36 1026 1060 1060 May 1195 35 1195 159 1299 1299 May 1857 54 1857 157 159 159 My 1857 54 1857 1689 154 158 My 1857 54 1689 164 1617 151 August 1564 167 1617 151 1743 August 1564 1743 1149 1174 1174 September 11214 1174 1174 1174 1174 Normber 1215 0 1216 1216 1215 Vestriber 1139 0 1216 1174 1174 Normber 11216 1116 1174 1174 Normber 1216 1216 1216 1216 Normber 1216 1216 1216 1216 Normber 1216	March	1.238	0	1.238	1.238	1.238	1.238
May 1196 35 1195 1229 1229 1229 June 1.527 5.4 1.627 1.681 1.783	May 1 196 35 1 195 1 229 1 229 1 229 June 1 527 54 1 627 1 627 1 639 1 743 1 231 June 1 527 54 1 663 1 639 1 743 1 243 June 1 564 54 1 663 1 664 1 617 1 743 1 617 August 1 564 54 1 663 1 634 1 617 1 617 1 617 September 1 174 0 1 174 1 174 1 174 1 174 September 1 174 0 1 174 1 174 1 174 1 174 Moren 1 225 0 1 226 1 226 1 226 1 226 December 1 119 1 112 1 1124 1 174 1 174 Moren 3 529 3 626 3 626 3 626 3 626 3 626 Jeanuary 3 622 3 626 3 626 3 626 3 626 3 626 3 626	April	1,026	35	1.026	1,026	1,060	1,060
June 1.527 1.627 1.527 1.527 1.581 1.681 July 1.805 5.4 1.805 5.4 1.805 1.869 1.859 1.869 July 1.805 5.4 1.805 5.4 1.683 1.743 1.743 Selvember 1.744 0 1.174 1.743 1.743 Selvember 1.744 0 1.174 1.743 1.743 October 1.744 0 1.174 1.174 1.174 October 1.749 0 1.225 1.225 1.226 December 1.219 0 1.219 1.419 1.174 October 1.219 0 1.216 1.226 1.226 December 1.226 0 1.225 1.226 1.226 December 1.219 0 1.219 1.419 1.174 Neart (d) 3.301 3.301 3.301 3.301 3.301 January 3.626 3.626 3.626 3.626 3.626 Anuary 3.529 3.529 3.529 3.529 3.529 March 3.301 3.301 3.301 3.301 3.301 March 3.301 3.301 3.301 3.301 3.036 March 3.301 3.301 3.301 3.301 3.016 March 3.301 3.301 3.301 3.301 3.016 March 3.301 4.340 4.340 4.501 4.501 </td <td>June 1.227 5.4 1.227 1.527 1.527 1.527 1.527 1.527 1.527 1.561 1.617 1.617 1.659 1.869 1.74 1.174 1.1256 1</td> <td>May</td> <td>1 195</td> <td>35</td> <td>1 195</td> <td>1,195</td> <td>1.229</td> <td>1 229</td>	June 1.227 5.4 1.227 1.527 1.527 1.527 1.527 1.527 1.527 1.561 1.617 1.617 1.659 1.869 1.74 1.1256 1	May	1 195	35	1 195	1,195	1.229	1 229
$\dot{M}y$ 1806541805180518691869186918691869 $\dot{M}guest$ 156454168954168916716171617 \dot{S} 156454156454156415716171617 \dot{S} 156454156415615615716171617 \dot{S} 1743011741174117411741174 \dot{S} 122512251225122512251225 \dot{R} 141901419141914191419 \dot{R} 14191<174	July180554180518691859185918591859August1669541689168916731.7431.743August156454115641.7441.7431.743August117401.1251.2251.2251.225August125501.2151.2251.2251.225August1.25501.4191.741.174Aucember1.21901.4191.7491.174Aucember1.21901.4191.2251.225Aucember1.41901.2151.2251.225December1.41901.4191.4191.174Vaar 1 (z)3.2013.6263.6263.6263.626Auch3.30103.3013.3013.3013.301Anti3.30103.3013.3013.5293.529Anti2.3033.3013.3013.3013.5263.526Anti2.3030.063.4363.3013.0363.529Anti2.3033.3013.3013.3013.5263.529Anti2.3033.4363.4363.5363.5263.529Anti2.33013.3013.3013.3013.531Anti2.33013.3013.3013.3013.531Anti2.33013.3663.4364.5014.501Anti4.33	June	1,527	52	1 527	1 527	1,581	1,581
August1.6895.41.6891.6891.7431.743September1.5645.41.5641.6171.6171.617September1.74401.1741.7471.1741.174October1.17401.1741.2251.2251.225Horember1.31901.4191.4191.4191.4191.419Vear 1 (d)1.32501.4191.4191.4191.419Year 1 (d)1.32501.4191.4191.4191.419Year 1 (d)2.5993.6263.6263.6263.626January3.5293.5293.6263.6263.626January3.5293.5293.6263.6263.626January3.5901.662.9303.0113.0363.329January3.5901.662.9303.6263.6263.6263.626January3.5901.662.9303.3013.0363.301January3.30103.3013.0363.3013.51January3.3063.4863.4863.4863.6163.569June4.1114.1114.1114.1114.754.275June4.1114.1114.1114.1114.5014.501June4.1114.1114.1114.1114.5014.501June4.3361.644.3363.6653.6653.665June<	August1689541 6891 7431 7431 743August1 564541 5641 5641 6171 617September1 71401 1741 6171 617September1 22501 2251 2251 2251 215Norember1 41901 4191 4191 4191 419Norember1 41901 4191 4191 4191 419Veart 1 d)3 62601 4191 4191 4191 419Yeart 1 d)3 62603 5293 6263 6263 626January3 62603 3013 3013 3013 301March3 3013 3013 3013 3013 3013 301March3 3013 5293 5293 5293 5293 529April2 9303 3013 3013 3013 301April2 9303 3013 3013 3013 301April2 9301 644 3101 644 316April2 9301 663 4363 6263 626April2 9301 663 3013 3013 301April2 9301 644 3164 3164 501April2 164 3164 3363 3053 656April2 1644 3363 3053 6563 656April4 3404 3363 3653 656April4 3363 3653 656	July	1.805	3	1 805	1 305	1.859	658.1
September 1564 5.4 1.564 1.617 1.617 1.617 October 1174 1174 1174 1174 1174 1174 Norember 1174 1174 1174 1174 1174 1174 Norember 1174 1174 1174 1174 1174 1174 Norember 11419 1 1 1 1 1 1 1 Norember 1	September 1564 1.564 1.617 1617 1617 September 1174 0 1174 1174 1174 1174 October 1174 0 1174 1174 1174 1174 November 1225 0 1174 1174 1174 1174 November 1225 0 1419 1,419 1,419 1,419 Year 1 (d) 225 0 1,419 1,419 1,419 1,419 Year 1 (d) 3626 3,626 3,626 3,626 3,626 3,626 January 3,626 0 3,626 3,626 3,626 3,626 January 3,626 3,626 3,626 3,626 3,626 3,626 January 3,626 3,626 3,626 3,626 3,626 3,626 January 3,626 3,626 3,626 3,626 3,626 3,626 January 3,629 3,626 3,626 <td>August</td> <td>1,689</td> <td>Ę</td> <td>1 689</td> <td>1.689</td> <td>1,743</td> <td>1,743</td>	August	1,689	Ę	1 689	1.689	1,743	1,743
October 1,74 0 1,74 1,74 1,176 1,126 1,226 1,226 1,226 1,226 1,226 1,226 1,219 1,110 1,111 1,111 1,1	October 1174 0 1174 1174 1174 November 1255 0 1225 1225 1225 1225 November 1319 0 1419 1,225 1,225 1,225 Pear 1 (d) 1419 1,419 1,419 1,419 1,419 1,419 Year 1 (d) 3526 3,626 3,626 3,626 3,626 3,529 January 3,529 3,529 3,529 3,529 3,529 3,529 January 3,301 0,0 3,529 3,529 3,529 3,529 January 3,301 0,0 3,529 3,529 3,529 3,529 January 3,301 0,0 3,486 3,486 3,529 3,529 3,529 January 3,301 0,0 3,486 3,486 3,529 3,519 3,519 March 2,301 3,050 3,486 3,486 3,519 3,516 3,516 Ju	September	1,564	13	1.564	1.564	1617	1.617
November 1,225 0 1,225 1,225 1,225 1,225 December 1,419 1,419 1,419 1,419 1,419 1,419 Vear 1 (d) 1,419 1,419 1,419 1,419 1,419 1,419 Year 1 (d) 1,419 1,419 1,419 1,419 1,419 1,419 Year 1 (d) 3,626 0 3,626 3,626 3,626 3,626 January 3,629 0 3,629 3,629 3,626 3,626 March 3,301 0 3,01 3,01 3,01 3,01 April 2,930 106 2,930 3,629 3,626 3,626 May 3,301 3,011 3,011 3,011 3,01 3,01 April 2,930 106 2,930 3,436 3,619 3,616 June 4,111 4,111 4,111 4,111 4,275 4,275 Jure 4,111 4,11	November 1 226 0 1 225 1 226 1 225 December 1 419 1 419 1 419 1 419 1 419 December 1 419 1 419 1 419 1 419 1 419 Year 1 (d) 1 419 1 419 1 419 1 419 Year 1 (d) 1 419 1 419 1 419 1 419 January 3 626 0 3 626 3 626 3 626 3 626 3 626 January 3 626 0 3 626 3 626 3 626 3 626 3 626 3 626 January 3 626 3 626 3 626 3 626 3 626 3 626 January 3 301 3 626 3 626 3 626 3 626 3 626 Alarch 2 301 3 7 301 3 016 3 301 3 529 3 529 3 529 Alarch 2 301 2 301 3 616 3 436 3 636 3 636 Alarch <	October	1,174	0	1,174	1,174	1,174	1,174
December 1.419 0 1.419 1.419 1.419 1.419 Year 1 (d) 1.419 1.419 1.419 1.419 1.419 1.419 Year 1 (d) 1.419 1.419 1.419 1.419 1.419 1.419 January 3.626 3.664 4.604 4.604 4.604 <t< td=""><td>December 1,419 0 1,419 1,419 1,419 1,419 1,419 Year 1 (d) Year 1 (d) 1,419 1,419 1,419 1,419 1,419 Year 1 (d) 1,529 0 3,626 <</td><td>November</td><td>1.225</td><td>0</td><td>1.225</td><td>1,225</td><td>1.225</td><td>1 225</td></t<>	December 1,419 0 1,419 1,419 1,419 1,419 1,419 Year 1 (d) Year 1 (d) 1,419 1,419 1,419 1,419 1,419 Year 1 (d) 1,529 0 3,626 <	November	1.225	0	1.225	1,225	1.225	1 225
Year 1 (d) Year 1 (d) Year 1 (d) January 3 626 0 3 626 3 626 January 3 626 0 3 626 3 626 January 3 626 3 626 3 626 3 626 January 3 629 0 3 529 3 629 3 529 January 3 529 0 3 301 3 529 3 529 March 3 301 0 3 301 3 301 3 301 April 2 930 106 2 930 3 301 3 529 April 2 930 106 2 930 3 305 3 305 June 4,111 4,111 4,111 4,111 4,275 July 4,336 164 4,336 3 561 3 561 July 4,336 164 4,340 4,501 4 501 July 4,336 164 4,301 4 501 July 4,336 3 436 3 563 3 563 June 4,340 4,340 4 504 4 504 July 4,336 3 195 3 195 3 969 September 3 195 3 195 3 195 3 195 October 3 577 3 577	Year 1 (d) Year 1	December	1,419	0	1.419	1,419	1,419	1.419
Year 1 (d)Year 1 (d) <td>Year 1 (d)Year 1 (d)<!--</td--><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td>	Year 1 (d)Year 1 (d) </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
January 3 626 <	January 3 626 3 629 3 639 3 631 <	Year 1 (d)			1			
January 3 526 0 3 626 3 626 3 626 3 626 3 626 3 626 3 626 3 626 3 626 3 626 3 626 3 626 3 626 3 626 3 626 3 626 3 626 3 629 3 631 3 631 3 631 3 631 3 631 3 631 3 631 3 631 3 632 3 632 3 632 3 632 3 632 3 632 3 632 3 632 3 632 3 632 3 632 3 632 3 632 3 632 3 632 3	January 3 526 0 3 626 3 626 3 626 3 626 3 626 3 626 3 626 3 626 3 626 3 626 3 626 3 626 3 626 3 626 3 626 3 626 3 629 3 636 3							
February 3.529 0 3.529 3.51 3.301 3.511 3.511 3.511 3.511 3.511 3.517 3	February 3.529 0 3.529 3.51 3.301 3.517 3.517 3.517 3.517 3.517 3.517 3.517 3.517 3.517 3.517 3	January	3 626	0	3,626	3,626	3,626	3.626
March 3.301 3.591 3.591 3.591 3.591 3.591 3.591 3.591 3.591 3.591 3.591 3.591 3.591 3.569 <th< td=""><td>March 3.301 3.301 3.301 3.301 3.301 April 2.930 106 2.930 2.930 3.016 3.301 April 2.930 106 2.930 2.930 3.056 3.036 3.036 May 3.436 106 2.930 2.930 3.05 3.036 3.036 June 4.111 164 4.111 4.111 4.275 3.4275 June 4.111 4.111 4.111 4.275 3.591 3.591 June 4.336 164 3.365 3.605 3.601 3.601 August 3.805 164 3.805 3.605 3.969 3.969 September 3.165 0 3.165 3.195 3.195 3.195 November 3.165 3.165 3.165 3.165 3.165 3.165 Occomber 3.577 3.577 3.577 3.577 3.577 3.577 3.577 3.577 <td>February</td><td>3,529</td><td>0</td><td>3 529</td><td>3.529</td><td>3,529</td><td>3,529</td></td></th<>	March 3.301 3.301 3.301 3.301 3.301 April 2.930 106 2.930 2.930 3.016 3.301 April 2.930 106 2.930 2.930 3.056 3.036 3.036 May 3.436 106 2.930 2.930 3.05 3.036 3.036 June 4.111 164 4.111 4.111 4.275 3.4275 June 4.111 4.111 4.111 4.275 3.591 3.591 June 4.336 164 3.365 3.605 3.601 3.601 August 3.805 164 3.805 3.605 3.969 3.969 September 3.165 0 3.165 3.195 3.195 3.195 November 3.165 3.165 3.165 3.165 3.165 3.165 Occomber 3.577 3.577 3.577 3.577 3.577 3.577 3.577 3.577 <td>February</td> <td>3,529</td> <td>0</td> <td>3 529</td> <td>3.529</td> <td>3,529</td> <td>3,529</td>	February	3,529	0	3 529	3.529	3,529	3,529
April 2,930 106 2,930 2,930 3,036 4,01 4,275 4,275 4,275 4,275 4,275 4,275 4,275 4,275 4,275 4,275 4,275 4,275 4,201 4,501 3,569 3,969 3,969 3,969 3,969 3,969 3,969 3,969 3,969 3,969 3,969 3,	April 2.930 106 2.930 2.930 3.036 3.042 4.275 4.275 4.275 4.275 4.275 4.275 4.275 4.275 4.275 4.275 4.275 4.275 4.201 3.691 3	March	3.301	0	3,301	3.301	3.301	3.301
May 3.486 106 3.486 3.486 3.591 3.591 3.591 June 4.111 164 4.111 4.275 4.275 4.275 June 4.111 164 4.111 4.275 4.275 4.275 July 4.336 164 4.336 4.316 4.501 4.501 July 4.336 164 4.336 4.340 4.501 4.501 Jugust 4.340 164 4.340 4.340 4.504 4.504 August 3.805 164 3.805 3.969 3.969 3.969 September 3.195 0 3.195 3.195 3.195 3.195 November 3.165 0 3.165 3.165 3.165 3.165 December 3.57 3.577 3.577 3.577 3.577 3.577	May 3.406 106 3.486 3.486 3.691 3.591 3.591 June 4.111 164 4.111 4.275 4.275 4.275 July 4.111 164 4.111 4.275 4.275 4.275 July 4.336 164 4.336 4.361 4.501 4.501 July 4.336 164 4.336 4.340 164 4.501 August 4.340 164 3.805 3.969 3.969 3.969 September 3.195 0 3.195 3.195 3.195 3.195 November 3.165 0 3.165 3.195 3.195 3.195 November 3.577 0 3.577 3.577 3.577 3.577 (a) To be filled out by ail EDUs Data should refer to the Ohio portion of the EDU's total service area in this column. 3.577 3.577 3.577	Apri	2,930	106	2 930	2.930	3,036	3,036
June 4,111 164 4,111 4,275 4,275 4,275 July July 4,336 164 4,336 4,501 4,501 4,501 July 4,336 164 4,336 4,340 4,501 4,501 4,501 August 4,340 164 4,340 4,340 4,504 4,504 September 3,805 164 3,805 3,905 3,969 3,969 September 3,195 0 3,195 3,195 3,195 3,195 November 3,57 0 3,617 3,577 3,577 3,577	June 4,111 164 4,111 4,275 4,275 4,275 July 4,336 164 4,336 4,501 4,501 4,501 July 4,336 164 4,336 4,501 4,501 4,501 August 4,340 164 4,340 164 3,805 3,969 3,969 September 3,195 0 3,195 3,195 3,195 3,195 3,195 November 3,165 0 3,165 3,165 3,165 3,165 3,165 December 3,577 0 3,577 3,577 3,577 3,577 (a) To be filled out by ail EDUs Data should refer to the Ohio portion of the EDU's total service area in this column. 3,577 3,577 3,577	May	3.486	106	3,486	3 486	3.591	3 591
July 4.336 164 4.336 4.501 4.501 4.501 August 4.340 164 4.340 4.504 4.504 4.504 August 4.340 164 4.340 4.504 4.504 4.504 September 3.805 164 3.805 3.965 3.969 3.969 October 3.195 0 3.195 3.195 3.195 3.195 November 3.165 0 3.165 3.165 3.165 3.165 3.165 December 3.577 0 3.577 3.577 3.577 3.577	July 4.336 164 4.336 4.501 4.501 4.501 August 4.340 164 4.340 164 4.340 4.501 4.501 August 4.340 164 4.340 164 4.340 4.504 4.504 September 3.805 164 3.805 3.969 3.969 3.969 October 3.195 0 3.195 3.195 3.195 3.195 November 3.165 0 3.165 3.165 3.165 3.165 3.165 December 3.577 0 3.577 3.577 3.577 3.577 (a) To be filled out by ail EDUs Data should refer to the Ohio portion of the EDU's total service area in this column. 3.577 3.577 3.577	June	4,111	164	4.111	4,111	4.275	4,275
August 4.340 164 4.340 164 4.504 4.504 4.504 September 3.805 164 3.805 3.965 3.969 3.969 October 3.195 0 3.195 3.195 3.195 3.195 3.195 November 3.165 0 3.165 3.165 3.165 3.165 December 3.577 0 3.577 3.577 3.577 3.577	August 4.340 164 4.340 164 4.504 4.504 4.504 September 3.805 164 3.805 3.965 3.965 3.969 3.969 September 3.195 0 3.195 3.195 3.195 3.195 3.195 November 3.165 0 3.165 3.165 3.165 3.165 3.165 December 3.577 0 3.165 3.165 3.165 3.165 Occember 3.577 0 3.577 3.577 3.577 3.577 (a) To be filled out by ail EDUs Data should refer to the Ohio portion of the EDU's total service area in this column. 3.577 3.577 3.577	July	4.336	164	4,336	4,336	4.501	4,501
September 3 805 164 3 805 3.969 3.966 3.966 3.966 3.966 3.966 3.966 3.966 3.966 3.966 3.966 3.966 3.966 3.966 3.966 3.967 3.577 <	September 3 805 164 3 805 164 3 805 3 965 3 965 3 965 3 965 3 965 3 965 3 965 3 965 3 195 3 165 <th< td=""><td>August</td><td>4.340</td><td>164</td><td>1340</td><td>4,340</td><td>4.504</td><td>4 504</td></th<>	August	4.340	1 64	1340	4,340	4.504	4 504
October 3.195 0 3.195 3.195 3.195 3.195 3.195 3.195 3.195 3.195 3.195 3.195 3.165 3.175 3.577 3	October 3.195 0 3.195 3.195 3.195 3.195 3.195 3.195 3.195 3.195 3.195 3.195 3.165 3.175 3.577 3	September	3 805	164	3.805	3,805	3,965	3,969
November 3.165 0 3.165	November 3.165 0 3.165 3.577	October	3.195	0	3 195	3,195	3.195	3 195
December 357 0 3.577 3.577 3.577 3.577 3.577 3.577	December 3 5/7	November	3,165	¢	3 165	3.165	3 165	3,165
	(a) To be filled out by ail EDUs Data should refer to the Ohio portion of the EDU's total service area in this column.	December	3 577	a	3,577	3,577	3 577	3 577

(c) EDUs operating as a part of an integrated operating system shall provide data for the total system in this column (d) Actual data shall be indicated with an asterisk (*)
(e) Includes DSM impacts

.

130

4. Load Factor

The numbers below represent the annual percentage load factor for the Duke Energy Ohio System before any new or incremental EE. It shows the relationship between Total Energy and the annual internal Summer Peak, before EE.

YEAR	LOAD FACTOR
2006	58.5%
2007	55.4%
2008	62.2%
2009	63.8%
2010	58.3%
2011	55.8%
2012	55.8%
2013	56.5%
2014	56.7%
2015	56.9%
2016	57.1%
2017	57.1%
2018	57.2%
2019	57.2%
2020	57.2%
2021	57.1%

SECTION IV - DUKE ENERGY OHIO 2011 RESOURCE PLAN

A. EXECUTIVE SUMMARY

1. Overview

Duke Energy Ohio, Inc., (Duke Energy Ohio or Company) has both a legal obligation and a corporate commitment to meet the electricity needs of its customers in a way that is affordable, reliable, and clean. Planning and analysis helps the Company achieve this commitment to customers. Duke Energy Ohio utilizes a resource planning process to identify the best options by which to serve customers in the future. The process incorporates both quantitative analysis and qualitative considerations. For example, quantitative analysis provides insight on future risks and uncertainties associated with energy efficiency (EE) impacts, fuel and energy and capacity costs, and renewables. Qualitative perspectives, such as the importance of fuel diversity, the Company's environmental profile, and the stage of technology deployment are also important factors to consider as long-term decisions are made regarding existing and new resources. The end result is a resource plan that serves as an important tool to guide the Company in making business decisions to meet customers' near-term and long-term electricity needs.

The overall objective of the resource planning process is to develop a robust and reliable economic strategy for meeting the needs of customers in a very dynamic and uncertain environment. Uncertainty always plays a role in the planning process and can normally be expected to be a concern when dealing with factors such as emerging environmental regulations, load growth or decline, and the pricing of fuel and market products. This Integrated Resource Plan (IRP) demonstrates a need for additional generation in the near future, but Duke Energy Ohio does not have any immediate plans to construct new generation in Ohio due to the lack of certainty under Ohio law in respect of the timely and adequate recovery of specific constructionrelated costs. Therefore, Duke Energy Ohio submits that, despite a need for additional generation, it is not requesting that the Public Utilities Commission of Ohio (Commission) certify that a need for newly used and useful generation exists as a disposition of this case.

The challenge in resource planning is to create an economical mix of existing and new resources that will be capable of serving uncertain capacity and energy needs while meeting Amended Substitute Senate Bill 221 (SB 221) resource requirements in the face of new and evolving environmental regulations. Two major changes in the 2011 Resource Plan from the 2010 Resource Plan are, first, the expectation of acceleration of the retirement date of all six units at the WC Beckjord Station (Beckjord) to 2015 and, second, the regulatory construct in which Duke Energy Ohio proposes to operate for the foreseeable future.

The accelerated retirement of Beckjord is driven primarily by the recently proposed United States Environmental Protection Agency (EPA) Utility Maximum Achievable Control Technology (MACT) rule. The MACT rule is expected to be finalized in November 2011, with required control technologies to be installed by January 1, 2015. Other emerging environmental regulations that also impact the retirement decision include the Coal Combustion Residuals (CCR) rule and the new Sulfur Dioxide (SO₂), Cross State Air Pollution Rule (CSAPR), Particulate Matter (PM) and Ozone National Ambient Air Quality standards. The anticipated retirement of the Beckjord units causes a significant incremental capacity need that likely will be realized in the 2015 period and thus places the emphasis of this resource plan on how to best meet this need. This IRP also considers the proposed Electric Security Plan (ESP) regulatory construct as filed by Duke Energy Ohio in its recent Standard Service Offer (SSO) filing in Case No. 11-3549-EL-SSO. In this construct, all Duke Energy Ohio customers will have their capacity needs met with legacy Duke Energy Ohio resources, market purchases and potentially new resources, while the energy needs of those customers are supplied either by successful competitive suppliers in energy auctions or competitive retail electric service (CRES) providers. Further, under the proposed ESP framework, all Duke Energy Ohio's customers will share in the profits from the dedicated resources.

2. Planning Process Results

Given the numerous uncertainties and assumptions described above, the Company believes the most prudent approach is to create a plan that is robust under various possible future scenarios. At the same time, the Company must maintain its flexibility to adjust to evolving regulatory, economic, environmental, and operating circumstances.

The dedication of and investments in the Company's legacy generating assets, along with sharing in the profits these assets accrue from the energy market, was compared to securing the needed capacity from the market at PJM clearing prices. The ten year analysis indicates that the continued dedication and investments in the existing legacy generation, as proposed by the Company, is preferred to reliance on the PJM capacity market over the long-term. This analysis is dependent upon the ESP construct proposed by the Company which itself rests upon a non-bypassable charge for capacity.

The planning process identified two portfolios, shown below, that would ensure reliable service in an optimized manner to meet customers' needs for reliable, economic capacity and energy, as well as the alternative energy resource (AER) requirements. Both scenarios include dedication of, and investment in, the Company' existing generating assets and compliance with SB 221's requirements regarding AER and EE.

- Portfolio 1 (Combustion Turbine Portfolio (CT Portfolio)) Meet capacity needs through market capacity purchases in the short term that will be met through the Duke Energy Ohio Fixed Resource Requirement (FRR) plan, with a longer-term option to meet capacity needs through the purchase of peaking capacity from a third party or a Duke Energy Ohio-owned peaking resource.
- Portfolio 2 (Combined Cycle/Combustion Turbine Portfolio (CC/CT Portfolio)) Meet capacity needs through market capacity purchases in the short term that will be met through the Duke Energy Ohio FRR plan with a longer term option to meet capacity needs through the purchase of intermediate capacity or a Duke Energy Ohio-owned intermediate resource.

These portfolios were evaluated to determine which would better to meet both the capacity and energy needs of the Company's customers over the IRP planning horizon. While the two portfolios have similarities, the CC/CT Portfolio reduces reliance on peaking resources and increases the diversity in the resource mix. New CC intermediate generation is approximately 30% more efficient than new CT with the flexibility to operate over a broader range of capacity factors. It provides fuel diversity and acts as a price hedge if natural gas prices are lower than projected or if coal prices are significantly higher than projected in the future.

The IRP modeling results indicate that there is no significant difference in the results between the two portfolios analyzed under base assumptions. In other words, the model indicates that customers are indifferent between meeting future, incremental capacity needs with peaking or intermediate gas resources. However, in the higher fuel price sensitivity, the CC/CT Portfolio was more beneficial for customers. In addition, given the increased flexibility of CC generation as compared to CT generation, meeting a portion of the capacity need described in the CC/CT Portfolio with CC is preferred. As the future regulatory environment continues to unfold, it will impact how Duke Energy Ohio can best meet its future capacity needs. Monitoring the regulatory environment and evaluating the possible impacts to Duke Energy Ohio generating assets will be a primary focus for the Company in 2011, prior to making any definitive long-term plans to meet existing and incremental capacity needs.

Based on the results discussed above, the resource planning process indicates that the optimal resource plan for Ohio for the short-term consists of the ongoing operation of, and investment in the legacy assets and securing capacity in the near-term through capacity market purchases... In addition to the continued operation of, and investment in, the legacy assets, longerterm options include building or purchasing intermediate generation over the next ten vears. The option to build or purchase intermediate generation to offset some of the capacity need would reduce reliance on the capacity market and increase operational flexibility with consideration of construction lead times, and prevailing market prices. The IRP reflects meeting renewable resource requirements through a balanced approach of Renewable Energy Credit (REC) only purchases and securing energy/RECs through new, Company-owned renewable resources or contracts with third party renewable facilities. The Company's 2011 Resource Plan, shown in Table 4 A,1 below, reflects the addition of annual short-term capacity purchases and the option for a Duke Energy Ohio-owned or purchased intermediate facility, as well as the addition of renewable resources. The ongoing operation of, and investment in, the legacy assets, is not reflected in the table, but is an assumption.
Further details regarding the planning process, issues, uncertainties, and alternative plans are presented and discussed in the following sections to comply with Commission's Rule 4901:5-5-06, Ohio Administrative Code (O.A.C.). For further guidance on the location of information required pursuant to Rule 4901:5-5-06, O.A.C compliance, please refer to the cross-reference table in Appendix 4 B.

Table 4 A.1

(Table Redacted)

B. INTRODUCTION

Resource planning is about charting a course for the future in an uncertain world. Arguably, the planning environment is more dynamic than ever. A few of the key uncertainties include, but are not limited to:

- Load Forecasts: How elastic is the demand for electricity? Will environmental regulations such as federal carbon regulation result in higher costs of electricity and, thus, lower electricity usage? Can a highly successful energy efficiency program flatten or even reduce demand growth? At what pace will recovery from the current economic conditions affect the demand for electricity? What will Duke Energy Ohio's generation (*i.e.*, capacity and energy) obligation be from year to year? How can Duke Energy Ohio ensure that it has adequate resources to meet customer needs in this uncertain environment?
- Federal Carbon Regulation: What type of federal carbon legislation will be passed? Will it be industry-specific or economy-wide? Will it be a "cap-and-trade" system or in the form of a Clean Energy Standard? If legislation is not passed, how will the EPA regulations be implemented?
- Renewable Energy: Can Duke Energy Ohio secure sufficient renewable energy resources to meet its obligations under SB 221? Can the 25% AER requirement by 2025 be met with renewables alone? What impact would significant amounts of renewables have on system stability? Will a federal standard be set?
- Demand Side Management (DSM) and Energy Efficiency: Can DSM and EE deliver the anticipated capacity and energy savings reliably? Are customers ready to embrace EE?
 Will investments in DSM and EE be treated equally with investments in a generating plant?

- Gas Prices: What is the future of natural gas prices and supply? To what degree will enhanced natural gas recovery techniques open up new reserves and lower prices in the long term in the United States?
- Coal Prices: What is the future of coal prices and supply? What impact will increased regulatory pressure on the coal mining industry have on availability and price?

Duke Energy Ohio's resource planning process seeks to identify what actions the Company must take to ensure a safe, reliable, reasonably-priced supply of electricity for its customers regardless of how these uncertainties unfold. The planning process considers a wide range of assumptions and uncertainties and develops a resource plan and an action plan that preserves the options necessary to meet customers' needs. It is important to note that this resource plan has a limited life in a period of dynamic change. In essence, plans require constant adjustments to reflect the changing environment. The process and resulting conclusions for the current plan are discussed in this document.

The objective of the 2011 Duke Energy Ohio Resource Plan is to outline a strategy to supply electric services over a long-term planning horizon in a reliable, efficient, and economical manner. The proposed resource plan includes the specific AER and EE resource requirements as set forth by SB 221. Beyond the scope of the proposed plan, additional discussion is provided on the impact of AER requirements beginning in 2024. The integrated modeling approach of the resource plan incorporates forecasted electric loads, existing generating resources, potential traditional supply-side resources, renewable resources, and EE targets.

C. RESOURCE PLANNING PROCESS

The development of the resource plan is a multi-step process involving these key planning functions:

- Preparation of the electric load forecast.
- Consideration of the impacts of anticipated or pending regulations or events on existing resources.
- Identification of electric EE, renewable, and advanced energy resource options to the levels required by SB 221.
- Identification and economic screening for the cost-effectiveness of supply-side resource options.
- Integration of the EE, renewable, and supply-side options with the existing system and electric load forecast to develop potential resource portfolios to meet the desired reserve margin criteria.
- Performance of detailed modeling of potential resource portfolios to determine the resource portfolio that exhibits the lowest cost (*i.e.*, lowest net present value of costs) to customers over a wide range of alternative futures.
- Evaluation of the ability of the selected resource portfolio to minimize price and reliability risks to customers.

Many of these steps are influenced by or required because of the uncertainty factors presented in the Introduction section.

D. PLANNING ASSUMPTIONS

Preparing a resource plan that addresses the issues and uncertainties presented in the Executive Summary and Introduction requires the utility to develop planning assumptions for a variety of inputs including a forecast of future energy usage, current generation resource portfolio operating assumptions, future environmental regulation impacts and the expectations to meet future legislative requirements such as the comprehensive SB 221. The major planning assumptions used for the development of this plan are presented below, followed by further discussion detail.

- Load Forecast Under the proposed ESP, Duke Energy Ohio has responsibility for meeting the capacity needs of all Duke Energy Ohio customers. Thus, the projected peak load for all Duke Energy Ohio customers will be used for the IRP analysis. In addition, a plus and minus 10% load in each hour of the forecast was developed for sensitivity analysis.
- Reserve Margin To ensure an adequate and reliable source of electricity for customers, Duke Energy Ohio must plan to have sufficient resources to meet customer's need, while taking into consideration that load can be higher than forecasted or generating units may be unavailable due to scheduled or unscheduled outages. As a result, a target planning reserve margin is established as a reliability criteria in planning. Since Duke Energy Ohio will be a Fixed Resource Requirement ("FRR") entity when it transfers to PJM, PJM will establish the reliability requirement. The reliability requirement for an FRR entity for planning year 2011/2012 is 15.3
- **Retirements** Due to the probable implementation of new environmental regulations, the development of the resource plan assumes the retirement of the six Beckjord coal-fired units (859 MW) at the end of 2014.
- **Fuel Cost** Fuel is the largest cost component in estimating production costs. This plan is developed using a combination of observed market prices that transition to a long-term fundamental outlook as a base assumption. Lower and higher fuel pricing

impacts are investigated through sensitivity analyses using cost adjustments of -25% for a low fuel cost scenario and +50% for coal and +30% for gas costs for a high fuel cost scenario.

- Senate Bill 221 Energy Efficiency SB 221 EE and peak load reduction goals will be met over the next ten years with considerations for full implementation by 2025.
- **Renewables** SB 221 renewable energy requirements for solar and non-solar will be met through a balanced combination of REC purchases and new wind, solar, and biomass resources.
- **Transmission** Duke Energy Ohio will operate within PJM consistent with its intention to transfer the Duke Energy Ohio transmission assets from the MISO to the PJM regional transmission organization effective January 1, 2012.
- Carbon Duke Energy Ohio has established a CO₂ price curve beginning in 2016 to represent the potential for future federal climate change legislation. The CO₂ prices that Duke Energy is utilizing are associated with proposed and debated legislation, including H.R. 2454 the American Clean Energy and Security Act of 2009, which passed the U.S. House of Representatives on June 26, 2009. The prices utilized in the 2011 Resource Plan represent the lower end of the range of prices that were estimated in proposed legislation.
- Energy and Capacity Market Prices Duke Energy Corporation annually develops forecasts of fundamental prices for commodities, based on expectations of environmental regulations, including greenhouse gas regulation. For the purposes of the 2011 Duke Energy Ohio Resource Plan, observable market prices were used through

2015, switching to market fundamental prices in 2016. In addition, the energy prices were adjusted for the impacts of the high and low fuel cost sensitivities.

E. EXISTING RESOURCES AND ANTICIPATED CHANGES

1. Existing Generation System Description

The total installed net summer generation capability owned by Duke Energy Ohio is 3,894 Megawatts (MW). This capacity consists of 3,514 MW of coal-fired steam capacity, 136 MW of natural gas-fired peaking capacity, and 244 MW of oil-fired peaking capacity. The steam capacity consists of fifteen coal-fired units located at six stations. The peaking capacity consists of eight oil-fired CT units located at two stations, and four natural gas-fired CTs located at one station. Ten of the fifteen steam units are jointly owned. Table 4 E.1 is a listing of the jointly-owned units, ownership percentages, and summer capacity:

Table 4 E.1

Jointly Owned Units, Percentages, and Summer Capacity

<u>Plant</u>	% Ownership	MWs
Zimmer Unit 1	46.5%	605
Miami Fort Unit 7	64%	320
Miami Fort Unit 8	64%	320
Conesville Unit 4	40%	312
Stuart Unit 1	39%	225
Stuart Unit 2	39%	225
Stuart Unit 3	39%	225
Stuart Unit 4	39%	225
Killen Unit 2	33%	198
Beckjord Unit 6	37.5%	<u>155</u>
Total		2,810

Station locations are shown on Map 4 E.1 on the following page.

Map 4 E.1 Duke Energy Ohio Generation Station Locations

The largest coal-fired unit on the Duke Energy Ohio system is Zimmer Unit 1, rated at 1300 MW total, or 605 MW Duke Ohio ownership share. The smallest coal-fired units on the system are Beckjord Units 1 and 2, each rated at 94 MW. The CT peaking units on the Duke Energy Ohio system range in size from 14 MW (Miami Fort 3-6 and Dicks Creek 3) to 92 MW (Dicks Creek 1).

Further information on existing generating facilities is contained in PUCO Forms FE-R3 and FE-R4 as shown in Appendix A.

2. Fuel Supply and Pricing

The Duke Energy Ohio system utilizes diverse fuel sources to generate energy to serve its customers. These fuels include coal, natural gas, and oil. Furthermore, the market encompasses an even wider diversity of technology types and fuels to which the Company has access via purchased power.

Although the majority of the energy generated by Duke Energy Ohio is currently derived from coal, the actual amount of coal consumed is determined by the forward market prices for power, fuel (coal), and emission allowances. Specifically, Duke Energy Ohio uses an approach for commercial risk management, including fuel procurement, best described as active management. The benefits of active management are that Duke Energy Ohio makes rational economic decisions based upon the available market prices of fuel, power, and emission allowances and thus reduces market risk and volatility to consumers.

Electricity generated from burning coal serves approximately 98% of Duke Energy Ohio's total electric needs. The cost of coal is the most significant element in the cost of electric production. The goal of Duke Energy Ohio with respect to coal procurement is threefold. First, Duke Energy Ohio seeks to provide a reliable supply of coal in quantities sufficient to meet the generating requirements of the entire portfolio. Second, Duke Energy Ohio seeks to work closely with the stations, operations, and engineering groups to evaluate coal compatibility with environmental regulations and alternate suppliers. Finally, Duke Energy Ohio seeks to procure coal at the lowest reasonable cost. Duke Energy Ohio plans to attempt to purchase coal contemporaneously with the auction, and then actively manage the coal position as part of the portfolio.

To ensure fuel supply quality and reliability, Duke Energy Ohio purchases coal from three regions (Illinois Basin, Northern Appalachia & Central Appalachia) and ensures that potential counterparties are qualified based on coal quality and creditworthiness. Duke Energy Ohio buys and burns two types of coal (*i.e.*, low sulfur and high sulfur under various term contracts. Low sulfur coal is easily acquired via the liquid Over-The-Counter (OTC) or broker market where its price is easily discernable and its characteristics are standardized. High sulfur coal, which is purchased for units that have installed pollution control equipment, is unique given its characteristics (*e.g.*, BTU content, chlorine, ash fusion temperature, iron) and requires a greater level of negotiations with a smaller group of suppliers than does low sulfur coal. Duke Energy Ohio maintains stockpiles of coal at each station to guard against short-term supply disruptions, with a goal of having a minimum of 15 days with a target of 20 to 30 day supply (at full burn rate) on site, depending on economic and logistical conditions.

Duke Energy Ohio purchases natural gas on a day-ahead basis for the gas-fired peaking units when the units have been or are expected to be cleared in the day-ahead market. The natural gas purchased for the peaking units is a delivered product (*e.g.*, CGE City gate) and does not require the purchase of pipeline transportation capacity. Duke Energy Ohio buys fuel oil on a contractual basis. The pricing is based on the lower of the posted Oil Price Information Service (OPSI) price or the contract price. Duke Energy Ohio monitors oil pricing and makes purchases based on a combination of inventory levels and expected prices.

The fuel price assumptions utilized to develop the resource plan represent a combination of observed market prices and the long-term fundamental outlook developed for the Company by Wood McKenzie. The Company utilizes its internal subject matter experts to review and validate the assumptions and study results provided by Wood McKenzie. The Company typically uses current market prices where there is an observable market to represent the near term (first 3 to 5 years) and then transitions to the long-term fundamentals for the balance of the study period. The prices used for natural gas and fuel oil are based on a combination of the New York Mercantile Exchange (NYMEX) forward curve and the Wood McKenzie long-term fundamental outlook.

3. Maintenance and Availability

The existing generation unit unplanned outage rates used for planning purposes were derived from the historical Generating Availability Data System (GADS) data. Table 4 E.2 lists the current forced outage rates being used for modeling purposes:

Table 4 E.2

Coal Unit	Forced Outage Rate	Gas Turbine	Forced Outage Rate
Beckjord Unit 1	17%	Beckjord GT Unit 1	10%
Beckjord Unit 2	17%	Beckjord GT Unit 2	10%
Beckjord Unit 3	17%	Beckjord GT Unit 3	10%
Beckjord Unit 4	12%	Beckjord GT Unit 4	10%
Beckjord Unit 5	17%	Dicks Creek GT Unit 1	10%
Beckjord Unit 6	15%	Dicks Creek GT Unit 2	10%
Conesville Unit 4	8%	Dicks Creek GT Unit 3	10%
Killen Unit 1	7%	Dicks Creek GT Unit 4	10%
Miami Fort Unit 7	10%	Dicks Creek GT Unit 5	10%
Miami Fort Unit 8	11%	Miami Fort GT Unit 3	20%
Zimmer Unit 1	9%	Miami Fort GT Unit 4	20%
		Miami Fort GT Unit 5	20%
		Miami Fort GT Unit 6	20%

Planned outages were based on maintenance requirement projections as discussed below. This resource plan assumes that Duke Energy Ohio's existing generating units generally will continue to operate at their present availability and efficiency (heat rate) levels. A comprehensive maintenance program for generating assets is important in providing reliable, low-cost service. The following outlines the general guidelines governing the preparation of a planned outage schedule for existing units operated by Duke Energy Ohio. It is anticipated that future units will be governed by similar guidelines.

Scheduling Guidelines for Duke Energy Ohio Units:

(1) Major maintenance (turbine overhauls) on base load units 500 MWs and larger is performed at eight- to twelve-year intervals. Major boiler maintenance repairs and

replacements are performed in conjunction with major turbine overhauls. General boiler inspections, turbine valve inspections, and balance of plant repairs are performed on two or three year intervals.

(2) Major maintenance on intermediate-duty units between approximately 90 MWs and 500 MWs is performed at eight- to fifteen-year intervals. General boiler inspections, turbine valve inspections, and balance of plant repairs are performed on two-year intervals.

(3) Maintenance on simple cycle peaking units 14 MWs to approximately 90 MWs are time predictive with preventive maintenance based primarily on routine bore scope inspections. These inspections provide the opportunity to inspect the unit without disassembling the unit. The bore scope inspections provide sufficient data required for the scheduling of major maintenance.

In addition to the regularly scheduled planned outages for all unit groups "availability outages" are performed. Availability outages are unplanned, opportunistic, proactive, shortduration maintenance outages aimed at addressing peak period reliability. At appropriate times, when market conditions allow, units may be scheduled out of service for generally short periods of time to perform maintenance activities. This enhancement in maintenance philosophy reflects the focus on having generation available during peak periods.

4. Anticipated Changes to Existing Generation

In general, the existing generation system is expected to be able to maintain current operational characteristics with normal expenditures to ensure continued reliability. The exception to this statement relates to the age and condition of the Beckjord units and the anticipated impacts of environmental rulemaking.

151

Beckjord units 1, 2 and 3 continue to appear on the existing generation list; however, these units were suspended from operation due to operational economics on March 1, 2010, and placed in mothballed status for up to a period of three years. On November 18, 2009, Duke Energy Ohio submitted MISO Attachment Y (Notification of Potential Generation Resource/SCU Change of Status) of the MISO tariff requesting a suspension of operation for the three units effective March 1, 2010. On February 19, 2010, MISO notified Duke Energy Ohio that the units were approved to be suspended from operation after reviewing the power system reliability impacts under the MISO tariff. If the units remain mothballed after the three-year period, new interconnection and deliverability studies will be required for the units return to service. Duke Energy Ohio does not expect conditions to change the economics of this decision.

There are multiple new air, water, and waste EPA regulatory requirements with anticipated compliance requirements between 2015 and 2018. Analysis indicates that installing the necessary control equipment to meet the new rules should be economically justified for all existing units except for those at Beckjord. Given those results, it was assumed that all six of the Beckjord coal units would be retired at the end of 2014. These retirement assumptions are used for planning purposes to recognize potential new environmental regulations rather than specific unit firm commitments.

Prior to any Beckjord retirements, Duke Energy Ohio will need to submit to the appropriate transmission operator a request and receive approval to suspend the operations of these units, similar to what Duke Energy Ohio did for Beckjord units 1 through 3.

152

F. ENVIRONMENTAL REGULATIONS

Duke Energy Ohio is required to comply with numerous state and federal regulations. In addition to current programs and regulatory requirements, several new regulations are in various stages of implementation and development that will impact operations for Duke Energy Ohio in the coming years. Table 4 F.1 summarizes EPA's current regulatory schedule and Table 4 F.2 provides the anticipated control requirements provided at the end of this discussion. Some of the major rules include:

1. Clean Air Interstate Rule (CAIR) and Replacement CAIR - the Transport Rule

The EPA finalized its Clean Air Interstate Rule (CAIR) in May 2005. The CAIR limits total annual and summertime NO_X emissions and annual SO_2 emissions from electric generating facilities across the Eastern U.S. through a two-phased cap-and-trade program. Phase 1 began in 2009 for NO_X and in 2010 for SO_2 . In December 2008, the United States District Court for the District of Columbia issued a decision remanding CAIR to the EPA, allowing CAIR to remain in effect as an interim solution until EPA develops new regulations.

In August 2010, EPA published a proposed replacement rule for CAIR, known as the Transport Rule (TR). The TR was finalized in July 2011 and is now called the Cross State Air Pollution Rule (CSAPR). In the CSAPR, EPA established state-level annual SO₂ caps and annual and ozone season NO_X caps that would take effect in 2012. Further CSAPRs are also expected that would incorporate the more stringent National Ambient Air Quality Standards (NAAQS), that are in varying stages of development and are discussed later in this document.

2. Utility Boiler Maximum Achievable Control Technology (MACT

In May 2005, the EPA issued the Clean Air Mercury Rule (CAMR). The rule established mercury emission-rate limits for new coal-fired steam generating units. It also established a nationwide mercury cap-and-trade program covering existing and new coal-fired power units.

In February 2008, the United States Court of Appeals for the District of Columbia issued its opinion, vacating the CAMR. EPA has begun the process of developing a rule to replace the CAMR. The replacement rule, the Utility Boiler MACT, will create emission limits for hazardous air pollutants (HAPs), including mercury. Duke Energy Ohio completed work in 2010 as required for EPA's Utility MACT Information Collection Request (ICR). The ICR required collection of mercury and HAPs emissions data from numerous Duke Energy Ohio facilities for use by EPA in developing the MACT rule. EPA issued a proposed MACT rule in March 2011 and expects to finalize it by the end of 2011. The MACT rule is expected to require compliance with new emission limits by 2015.

3. National Ambient Air Quality Standards (NAAQS

a. 8 Hour Ozone Standard

In March 2008, EPA revised the 8 Hour Ozone Standard by lowering it from 84 to 75 parts per billion (ppb). In September of 2009, EPA announced a decision to reconsider the 75 ppb standard in response to a court challenge from environmental groups and their own belief that a lower standard was justified. A proposed rule was issued by the EPA in January 2010 in which EPA proposed to replace the existing 84 ppb standard with a new standard between 60 and 70 ppb. EPA must finalize the rule by the end of July 2011. State Implementation Plans (SIP)

will be due by the end of 2014, with attainment dates for most areas possibly in the 2017 to 2018 timeframe. Any new controls may have to be in place prior to the 2017 ozone season. Until the states develop implementation plans, only an estimate of the potential impact to Duke Energy Ohio's generation can be developed. With a standard in the 60 to 70 ppb range, the installation of the best performing NO_X controls such as Selective Catalytic Reduction (SCR) is anticipated. All Duke Energy Ohio units, with the exception of Beckjord, currently have SCRs installed, positioning Duke Energy Ohio assets well should this standard become reality.

b. SO₂ Standard

In November 2009, the EPA proposed a rule to replace the current 24-hour and annual primary SO₂ NAAQS with a 1-hour SO₂ standard. A new 1-hour standard of 75 ppb was finalized in June 2010. States with non-attainment areas will have until January 2014 to submit their SIPs. Initial attainment dates are expected to be the summer of 2017 with any required controls in place by late-2016. EPA will base its nonattainment designations on monitored air quality data as well as on dispersion modeling. All Ohio power plants will be modeled by the state and are therefore potential targets for additional SO₂ reductions, even if there is no monitored potential to exceed the standard.

In addition, EPA is proposing to require states to relocate some existing monitors and to add new monitors. While these monitors will not be used by EPA to make the initial nonattainment designations, they will play a role in identifying possible future nonattainment areas.

All Duke Energy Ohio coal units with the exception of Beckjord currently have Flue Gas Desulfurization (FGDs) installed.

4. Global Climate Change

The EPA has been active in the regulation of greenhouse gases (GHGs). In May 2010, the EPA finalized what is commonly referred to as the Tailoring Rule. This rule sets the emission thresholds to 75,000 tons/year of CO₂ for determining when a source is potentially subject to Prevention of Significant Deterioration (PSD) permitting for greenhouse gases. The Tailoring Rule went into effect beginning January 2, 2011. Being subject to PSD permitting requirements for CO₂ will require a Best Available Control Technology (BACT) analysis and the application of BACT for GHGs. BACT will be determined by the state permitting authority. Since it is not known if, or when, a Duke Energy Ohio generating unit might undertake a modification that triggers PSD permitting requirements for GHGs and exactly what might constitute BACT, the potential implications of this regulatory requirement are unknown.

On December 23, 2010, EPA entered into a proposed settlement agreement to issue New Source Performance Standards for GHG emissions from new and modified fossil fueled electric generating units (EGUs) and emission guidelines for existing EGUs that do not undergo a modification. The agreement calls for regulations to be proposed by July 26, 2011, and to be finalized by May 26, 2012. Passage of any federal climate change legislation is not expected until 2013 or later.

5. Water Quality

a. CWA 316(b) Cooling Water Intake Structures

Federal regulations in Section 316(b) of the Clean Water Act may necessitate cooling water intake modifications for existing facilities to minimize impingement and entrainment of aquatic organisms. All Duke Energy Ohio facilities are potential affected sources under that

rule. EPA issued a proposed rule in March 2011 with a final rule planned to be issued in July 2012. With an assumed timeframe for compliance of three years, implementation of selected technology is possible as early as mid-2015.

Most likely, regardless of water body type, performance standards to achieve 80% reduction of impinged fish and 80% reduction of fish entrainment will be required. Provided that performance requirements can be met, retrofits may involve intake screen modifications only. However, failure to meet these performance standards or a more stringent regulation could require use of a closed-cycle cooling system.

b. Steam Electric Effluent Guidelines

In September 2009, EPA announced plans to revise the steam electric effluent guidelines. In order to assist with development of the revised regulation, EPA issued an ICR to gather information and data from all coal-fired generating facilities. The ICR was completed by the Company and submitted to EPA in October 2010. The regulation is to be technology-based, in that limits are based on the capability of technology. The primary focus of the revised regulation is on coal-fired generation, thus the major areas likely to be impacted are FGD wastewater treatment systems and ash handling systems. The EPA may set limits that dictate certain FGD wastewater treatment technologies for the industry and may require the installation of dry ash handling systems for both fly and bottom ash. Following review of the ICR data, EPA plans to issue a draft rule in mid-2012 and a final rule around March 2014. After the final rulemaking, effluent guideline requirements will be included in a station's National Pollutant Discharge Elimination System (NPDES) permit renewals. Thus, requirements to comply with NPDES permit conditions may begin as early as 2017 for some facilities. The deadline to comply will depend upon each station's permit renewal schedule.

6. Waste Issues (Coal Combustion Byproducts)

Following Tennessee Valley Authority's Kingston ash dike failure in December 2008, EPA began to assess the integrity of ash dikes nationwide and to begin developing a rule to manage coal combustion byproducts (CCBs). CCBs include fly ash, bottom ash and FGD byproducts (gypsum). Since the 2008 dike failure, numerous ash dike inspections have been completed by EPA and an enormous amount of input has been received by EPA as it developed proposed regulations. On June 21, 2010, EPA issued its proposed rule regarding CCBs. The EPA rule refers to these as CCRs. The proposed rule offers two options: 1) a hazardous waste classification under Resource Conservation Recovery Act (RCRA) Subtitle C; and 2) a nonhazardous waste classification under RCRA Subtitle D, along with dam safety and alternative rules. Both options would require strict new requirements regarding the handling, disposal and potential re-use ability of CCRs. The proposal will likely result in more conversions to dry handling of ash, more landfills, closure of existing ash ponds and the addition of new wastewater treatment systems. Final regulations are expected in 2012. EPA's regulatory classification of CCRs as hazardous or non-hazardous will be critical in developing plans for handling CCRs in the future. Compliance with new regulations is projected to begin around 2017.

*Bold Dates indicated in the Table are actu	ial dates.			
Regulation/Issue	Proposed Rule Date	Final Rule Date	Compliance Date	Notes
		Water		
316 (b)	March 2011	July 2012	Mid-Late 2015	316(b) - regulates cooling water intake requirements
Effluent Guidelines	July 2012	March 2014	Mid-2017	
		Air		
Transport Rule (TR)	August 2, 2010	Mid-2011	Starting 2012	
TR Phase II	Late 2011	Late 2012	2016/2017	To incl. Ozone NAAQS
Utility MACT	March 2011	November 2011	January 2015	
NAAQS - 8 hr. Ozone Std.	January 6, 2010	July 2011	Late 2017	NA Areas designated – July 2012
NAAQS PM Std.	Mid-2011	Mid-2012	Late-2018	NA Areas designated - 2014
NAAQS SO2 Std.	November 11, 2009	June 22, 2010	Mid-2017	NA Areas designated - June 2012
		Waste		
Coal Combustion Residuals (CCRs)	June 21, 2010	2012	2017	
		Climate		
Greenhouse Gas Regulation – New Source Performance Standards	July 2011	May 2012	2015-2016	TR in effect January 2, 2011 for PSD and Title V

Table 4 F.1 Major Environmental Regulatory Issues Schedule

159

Table 4 F.2 – Estimated Environmental Impact Summary (2012-2018)

(Table Redacted)

G. POOLING AND BULK POWER AGREEMENTS

At present, Duke Energy Ohio does not participate in any formal type of power pooling arrangement. However, Duke Energy Ohio is currently a member of the Midwest ISO. However Duke Energy Ohio will transition to the PJM Interconnection, Inc. (PJM) on 1/1/2012. Both MISO and PJM are FERC approved RTO's that administer markets for capacity, energy and ancillary services in addition to the independent provision of transmission service.

Duke Energy Ohio is directly interconnected with eight other balancing authorities: American Electric Power, Louisville Gas and Electric Energy, Ameren, Hoosier Energy, Indianapolis Power and Light, Northern Indiana Public Service Company, Vectren, and Duke Energy Indiana. PJM operate Ancillary Services Markets for their balancing authorities within the PJM, which are consolidated into a single PJM balancing authority.

Table 4 G.1 identifies Current Duke Energy Ohio full requirements contracts.

Wholesale Customer	Max Quantity of Energy/Capacity	Contract Expiration Date
(OH)	MW per hour	

H. ENERGY EFFICIENCY/DSM PROGRAMS

In July 2008, in Case No. 08-920-EL-SSO, *et al.*, the Commission approved a Stipulation between Duke Energy Ohio and various intervenors that included a plan for

meeting EE and peak demand reduction requirements under SB 221. This plan included a portfolio that expanded existing programs and coupled them with a new regulatory mechanism called save-a-watt.

Within the ESP proposed by the Company in July 2008 was a three-year plan for supply and pricing of electric generation service. The plan requested recovery of costs for fuel used to generate electricity, wholesale electricity purchases, emission allowances, and federally mandated carbon costs. On December 17, 2008, the Commission approved the Stipulation submitted by the parties, including implementation of the proposed programs and the save-a-watt revenue recovery proposal for EE and peak demand reduction. The Company eliminated its demand side management rider and implemented a rider establishing the Company's save-a-watt program effective January 1, 2009. The Company began implementation of the programs in early January 2009. The ESP is in effect through December 31, 2011. Most of these programs were again reviewed a second time by the Commission in Case No. 09-1999-EL-POR and approved again for implementation by the Commission in an Order dated December 15, 2010.

1. Existing Programs

Under save-a-watt, the Company is reducing energy and demand on the Duke Energy Ohio system through the implementation of a broad set of EE programs. These programs fall into two categories for residential and non-residential customers: conservation EE programs and demand response programs that contain customer-specific contract curtailment options and other demand response programs such as Power Manager® and PowerShare®. The following are the current EE and Demand Response programs in place in Ohio:

a. Residential Programs

<u>Smart Saver® Residential</u> - Provides incentives to residential customers for installing energy efficient equipment. This program addresses the market barrier of higher upfront costs of high efficiency equipment. The program is available to residential customers served by Duke Energy Ohio. A third party is under contract to process customer applications and maintain a list of participating HVAC contractors and builders.

<u>Residential Energy Assessment</u> - Offers two energy assessment measures: 1) Personalized Energy Report (PER) [®] and 2) Home Energy House Call. This program provides single family home customers with a customized report about their home and their energy practices. In addition, customers receive free Compact Fluorescent Light bulbs (CFLs) (both programs) and an Energy Efficiency Starter Kit (Home Energy House Call) as an incentive to participate in the program.

Energy Efficiency Education Program for Schools - Educates students about sources of energy and EE in homes and schools and provides them the ability to conduct an energy audit of their homes. This program will help homeowners identify efficiency savings, addressing the market barrier of a lack of customer recognition of savings opportunities. Energy Efficiency Starter Kits are provided free to homes where students complete a home energy survey. Additional CFL's are also provided if available sockets are identified in the survey.

Low Income Services - Provides assistance to low income customers through several measures. The upfront costs of high efficiency equipment are an especially difficult barrier for low income customers to overcome. The CFL portion of this program is available to any low income customer eligible for services provided by low income agencies who has not participated in this program within the past 36 months. The weatherization and refrigerator replacement portion of this program is available to any low income customer up to 200% of the federal poverty level who has not participated in this program within the past 10 years. For the CFL program, eligible customers will complete a survey with an assistance agency. The agency submits the report to the Company, and the customer will receive up to 12 CFLs. A third party will complete the weatherization/refrigerator replacement and will be paid by the Company.

<u>**Power Manager®</u>** - Provides financial incentives to residential customers that allow the company to cycle their outdoor A/C compressor remotely during peak energy periods between May and September when the load and/or marginal energy costs on Duke Energy Ohio's system reach peak levels. Participating customers of the Company who have a functioning outdoor A/C unit are eligible for the program.</u>

<u>Pilot Program – Home Energy Comparison Report</u> - Piloted in 2010, the Home Energy Comparison Report provides a customer with a comparative usage data report for similar residences in the same geographic region. By identifying efficiency savings and educating customers, this program confronts the significant market barrier of customer awareness of potential savings. Participants receive periodic comparative usage reports along with specific recommendations to encourage energy saving behavior.

b. Non-Residential Programs

<u>Smart Saver® Non- Residential</u> - Provides prescriptive incentives for businesses to install high efficiency equipment. This program addresses the market barrier of higher upfront costs of high efficiency equipment. Major categories include lighting, motors, pumps, variable frequency drives (VFDs), food service and process equipment. The program is available to new or existing

non-residential facilities served by Duke Energy Ohio. The incentive process is handled by a third party vendor.

<u>Custom Rebate-</u> Offers financial assistance to qualifying commercial, industrial and institutional customers (that have not opted out of the DSM Rider) to enhance their ability to adopt and install cost-effective electrical energy efficiency projects.

The Smart\$aver®Non-Residential Custom Incentive program is designed to meet the needs of Duke Energy Ohio customers with electrical energy saving projects involving more complicated or alternative technologies, or those measures not covered by standard Prescriptive Smart\$aver® incentives. The intent of the Smart\$aver® Non-Residential Custom Incentive program is to encourage the implementation of energy efficiency projects that would not otherwise be completed without the Company's technical or financial assistance.

Unlike the Prescriptive Incentives, Custom Incentives do require pre-approval prior to the project implementation. Proposed energy efficiency measures may be eligible for Custom Incentives if they clearly reduce electrical consumption and/or demand.

PowerShare® - Represents Duke Energy Ohio's demand side management (or demand response) program geared toward Commercial and Industrial customers. The primary offering under PowerShare® CallOption provides customers with a variety of offers that are based on their willingness to shed load during times of peak system usage and/or high marginal energy cost conditions. These credits are received regardless of whether an event is called or not. Energy credits are also available for participation (shedding load) during curtailment events. The notice to curtail under these offers is between 6 hrs (emergency) and day-ahead (economic) and there are penalties for non-compliance during an event.

Table 4 H.1 lists information for the 2010 Save-a-watt programs.

Residential save-a-watt Programs			
Program	Number of Participants/ Measures (1)	A	nnual Cost
Residential Energy Assessments	9,617	\$	1,998,976
Smart Saver® Residential Central Air Conditioner/Heat Pump	6,531	\$	2,690,381
Smart Saver® Residential Compact Fluorescent Light	2,658,866	\$	6,875,937
Low-Income Services	3,774	\$	425,031
Energy Efficiency Education Program for Schools	3,920	\$	857,935
Power Manager	33,413	\$	2,967,675
Non Residential Save-A- Watt Programs			
Smart Saver® Non-Residential	275,531	\$	5,510,145
Custom Rebate	17,309	\$	1,441,462
PowerShare®	77	\$	309,337
Total Annual Cost		\$	23.076.879

Table 4 H.1 2010 save-a-watt Programs

(1) Participants/Measures are incremental for 2010 except for PowerShare and Power Manager which are cumulative.

Note: Table 4.H.1 does not include Participants/Measures or Annual Cost information for Pilot Program – Home Energy Comparison Report.

The annual costs for the 2010 programs, \$23,076,879, are slightly less than the original projection of \$24,047,482 for 2010. All energy efficiency programs are screened for cost-effectiveness. The projected incremental load impacts of existing programs, including the Save-a-watt program, were incorporated into the optimization process of the resource plan development.

The Company's measures and programs are analyzed by using DSMore, a financial analysis tool designed to evaluate the costs, benefits and risk of energy efficiency programs and measures. DSMore estimates the value of an energy efficiency measure at an hourly level across

distributions of weather and/or energy costs or prices. By examining energy efficiency performance and cost effectiveness over a wide variety of weather and cost conditions, the Company is better positioned to measure the risks and benefits of employing energy efficiency measures in the same way traditional generation capacity additions are vetted, and further, to ensure that demand-side resources are compared to supply-side resources on comparable basis.

The analysis of energy efficiency cost-effectiveness has traditionally focused primarily on the calculation of specific metrics, often referred to as the California Standard tests: Utility Cost Test (UCT), Rate Impact Measure (RIM) Test, Total Resource Cost (TRC) Test, and Participant Test. DSMore provides the results of these tests for any type of energy efficiency program (demand response and/or energy conservation).

- The UCT compares utility benefits (avoided energy and capacity related costs) to utility costs incurred to implement the program such as marketing, customer incentives, and measure offset costs, but does not consider other benefits such as participant savings or societal impacts. This test compares the cost (to the utility) to implement the measures with the savings or avoided costs (to the utility) resulting from the change in magnitude and/or the pattern of electricity consumption caused by implementation of the program. Avoided costs are considered in the evaluation of cost-effectiveness based on the projected cost of power, and the projected cost of the utility's environmental compliance for known regulatory requirements. The cost-effectiveness analyses also incorporate avoided transmission and distribution costs and load (line) losses.
- The RIM Test, or non-participants test, indicates if rates increase or decrease over the long-run as a result of implementing the program.

- The TRC test compares the total benefits to the utility and participants relative to the costs of utility program implementation and costs to the participant. The benefits to the utility are the same as those computed under the UCT. The benefits to the participant are the same as those computed under the Participant Test (below), however, customer incentives are considered to be a pass-through benefit to customers. As such, customer incentives or rebates are not included in the TRC though some precedent exists in other jurisdictions to consider non-energy benefits in this test.
- The Participant Test compares the benefits to the participant through bill savings and incentives from the utility, relative to the costs to the participant for implementing the energy efficiency measure. The costs can include capital cost, as well as increased annual operating costs, if applicable.

The use of multiple tests can ensure the development of a reasonable set of DSM/EE programs and indicate the likelihood that customers will participate. It should also be noted that none of the tests described above include external benefits to participants and non-participants that can also offset the costs of the programs.

Table 4 H.2 summarizes the cost effectiveness results for current programs, respectively.

Table 4 H.2 Cost-Effective of Proposed Programs

	Cost Effectiv	veness Test Resul	ts of Proposed	Programs	
	Utility Test	TRC Test	RIM Test	Participant Test	
RESIDENTIAL CUSTOMER PROGRAMS					
	040	7 V C	100	10.010	
kesidenual Energy Assessments	2.40	2.44	1.08	62.012	
Residential Smart \$aver@ Energy Efficiency	2.42	1.21	0.88	2.43	
Low Income Services	2.19	2.19	0.79	NA	
Energy Efficiency Education Program for Schools	2.69	2.69	0.94	NA	
Power Manager	1.40	1.67	1.40	NA	
NON-RESIDENTIAL CUSTOMER PROGRAMS					
Smart \$aver® for Non-Residential Customers	3.81	2.20	1.27	2.83	
Power Share ®	3.54	29.79	1.23	NA	

2. Future Programs

The energy efficiency material presented thus far has been primarily focused on existing programs. However, both customer adoption rates and costs to achieve new energy efficiency measures remain uncertain over the long term. Market potential studies provide estimates of the level of energy efficiency that is realistically achievable by customers in the market place. A study of the market potential involves an assessment of the Technical Potential, the level achievable through application of all technically feasible technologies regardless of market or economic constraints, and the Economic Potential, a subset of the Technical Potential that can be acquired for less than the avoided cost of supply assuming 100% customer participation in all cost-effective energy efficiency programs. The Market Potential is a subset of the Economic Potential that reflects expected customer acceptance and adoption of energy efficiency measures.

The most recent market potential study, performed by a third party for Duke Energy Ohio in February 2009, yielded economic accomplishment potentials that indicated that the level of projected cost-effective energy efficiency accomplishments would not attain the level necessary to comply with the SB 221 requirements.

In order to achieve full compliance with SB 221 requirements, Duke Energy Ohio would need to exceed the estimated Economic Potential which, as stated above, assumes 100% customer participation in all cost-effective energy efficiency programs.

The results of the study do not impact the Company's stated goal of achieving the state mandates as long as economically achievable. However, it is important to note that even though a market potential study may indicate that a certain level of energy efficiency is economically achievable, the success of a program is ultimately driven by the adoption rate of the customers which is beyond the control of the utility. Due to uncertainty, future programs will be guided by the experience gained through periods of testing and application. For now, EE mandates will be accomplished on an incremental basis by applying patterns of continued growth of existing programs, as well as development of new products over the next ten years. At this juncture, while the Company intends to pursue all cost-effective EE, based on the past market potential study, it is unclear whether or not there is sufficient cost-effective EE to enable the Company to fully comply with the SB 221 requirements.

Table 4 H.3 provides projected annual load impacts for an EE scenario that matches the SB 221 mandate levels.

:		. Co	SB221 S onservation ar	Table 4.H.: cenario Load Imp nd Demand-Side I	3 act Projection Management	ns Programs			
.		Conservation Pr	ogram Load Impac	ts	Demand-Side Mangement Program Impacts				
	mwh			Summer Peak MW	Summer Peak MW			Summer Peak MW	
				Cumulative			_		
Year	Residential	Non-Residential	Total	beginning 2011	Interruptible	Power Manager	Total	Total MW Impacts	
2011	60,644	90,788	151,431	13		55	153	166	
2012	140,314	182,694	323,008	39	106	59	164	203	
2013	247,837	271,634	519,471	43	106	59	164	207	
2014	378,627	359,909	738,536	68	106	59	164	232	
2015	523,863	436,295	960,159	119	106	59	164	283	
2016	645,875	538,264	1,184,139	147	106	59	164	311	
2017	768,697	640,621	1,409,318	175	106	59	164	339	
2018	891,533	743,009	1,634,542	203	106	59	164	367	
2019	1,136,738	947,172	2,083,910	259	106	59	164	423	
2020	1,380,701	1,150,126	2,530,827	314	106	59	164	478	
2021	1,622,509	1,351,358	2,973,867	369	106	59	164	534	

Table 4 H.4 provides projected annual energy impacts using the 2011 forecast.

	Spring 2011	Total Energy						Cumulative EE	Projected
	Weather Normal	History and	Total Energy	Moving Avg	SB 221 Required	S8 221 Required	Cumulative	impacts adjusted	Cumulative
	Total Energy	Forecast	Adjusted for EE	Prior 3 Years	EE Impacts	EE Impacts	EE Impacts	for 2011 Start	Impacts
Year	мwн	MWH	MWH	MWH	%	MWH	MWH	MWH	MWH
2006	22,665,556	22,665,556							
2007	22,746,814	22,746,814							
2008	22,249,088	22,249,088							
2009	20,725,616	20,725,616		22,553,819	0.3%	67,661	67,661		292,830
2010	21,924,369	21,924,369		21,907,173	0.5%	109,536	177,197		603,585
2011	21,842,793	21,842,793	21,691,362	21,633,024	0.7%	151,431	328,628	151,431	755,016
2012	22,194,796	22, 194, 796	21,871,788	21,447,115	0.8%	171,577	500,205	323,008	926,593
2013	22,675,994	22,675,994	22,156,523	21,829,173	0.9%	196,463	696,668	519,471	1,123,056
2014	23,196,953	23, 196, 953	22,458,416	21,906,557	1.0%	219,066	915,734	738,536	1,342,121
2015	23,539,375	23,539,375	22,579,216	22,162,242	1.0%	221,622	1,137,356	960,159	1,563,744
2016	23,700,247	23,700,247	22,516,108	22,398,052	1.0%	223,981	1,361,336	1,184,139	1,787,724
2017	23,881,249	23,881,249	22,471,930	22,517,913	1.0%	225,179	1,586,516	1,409,318	2,012,903
2018	24,051,604	24,051,604	22,417,062	22,522,418	1.0%	225,224	1,811,740	1,634,542	2,238,127
2019	24,232,423	24,232,423	22,148,513	22,468,367	2.0%	449,367	2,261,107	2,083,910	2,687,495
2020	24,421,384	24,421,384	21,890,557	22,345,835	2.0%	446,917	2,708,024	2,530,827	3,134,412
2021	24,617,567	24,617,567	21,643,700	22,152,044	2.0%	443,041	3,151,065	2,973,867	3,577,452

Table 4.H.4 Development of SB 221 Case

Table 4.H.5 provides projected calculations of the achievement towards the peak benchmarks. It is expected that the peak load achievements will far exceed the benchmark requirements.

Year	Weather Normal and Forecasted Level of Peak Demand MW	Forecast Adjusted for EE and DR Impacts MW	Three Year Average MW	Benchmark Percentage %	Benchmark Requirement MW	Cumulative Requirements MW	Adjusted to 2011 Cumulative Requirements MW	Projected Cumulative Impacts MW
2006	4,591							
2007	4,328							
2008	4,462							
2009	4,478		4,460	1.00%	45	45		97
2010	4,444		4,423	0.75%	33	78		176
2011	4,467	4,434	4,461	0.75%	33	111	33	255
2012	4,543	4,476	4,452	0.75%		145	67	292
2013	4,583	4,483	4,462	0.75%	33	178	100	297
2014	4,671	4,537	4,498	0.75%	34	212	134	321
2015	4,725	4,556	4,554	0.75%	34	246	168	373
2016	4,735	4,532	4,603	0.75%	35	281	203	400
2017	4,771	4,534	4,642	0.75%	35	315	238	428
2018	4,803	4,531	4,664	0.75%	35	350	273	456
2019	4,840	4,567					273	
2020	4,876	4,604					273	
2021	4,921	4,648					273	

 Table 4.H.5

 Assessment of Peak Benchmark Achievements for the SB 221 Scenario
I. FUTURE RESOURCES AND REQUIREMENT

Many potential resource options are available to meet future electricity needs. These resources include conventional generation technologies, demonstrated technologies with limited acceptance, renewable technologies, EE, and demand reduction programs. All of these resources were considered in the resource planning process and are discussed in this section in relation to their applicability to this plan.

1. Generation Technologies

Generation technologies are considered at several levels. The first is a screening level where the diverse mix of technologies and fuel sources are initially screened based on the following attributes:

- Technically feasible and commercially available in the marketplace
- Compliant with all federal and state requirements
- Long-term reliability
- Reasonable cost parameters

Potential technologies that pass initial screening are moved on to a quantitative system optimization and portfolio development phase.

2. Supply Side Resources

A. Overview

An assortment of supply-side resources was considered as potential alternatives to meet future incremental capacity and energy resource needs in addition to the existing legacy assets for the Ohio Resource Plan. Supply side resources selected in this process were used as potential resource alternatives in combination with renewable generation resources to develop an integrated resource plan to meet future customer resource requirements. Specific steps for selection of potential supply side options include:

- Technical Screening The initial step in the supply-side screening process was a technical screening of the technologies to eliminate those that have technical limitations, commercial availability issues, or are not feasible in the Duke Energy Ohio service territory.
- Economic Screening The technologies were screened using relative dollar per kilowattyear versus capacity factor screening curves.

As a result, supply-side technologies that were commercially available and consistently cost effective were considered "Best in Class" within each technology type, such as simple cycle CT, CC, wind, and advanced coal/nuclear units. The largest practical sizes of each technology were primarily considered to include the lowest cost due to economies of scale. A diverse range of technology choices utilizing a variety fuels was considered including advanced nuclear, wind, Integrated Coal Gasification Combined Cycle (IGCC) with carbon sequestration, CTs, and CC units. Technologies representing each category of baseload, peaking and intermediate supply side resources were included to meet all potential customer resource needs.

Duke Energy Ohio has at least two options to procure needed traditional generation capacity, beyond that supplied from its existing system: 1) own generation; or 2) purchase capacity from the market. Estimating the cost of asset ownership or capacity purchases beyond the near term is an inexact science, but the cost of both should trend toward the marginal cost of building new capacity. For the purposes of this resource plan, the Company has represented any needed peaking or intermediate capacity as purchases based on the cost of building new CT or CC capacity, respectively. Such an assumption gives the Company flexibility to make decisions to purchase short-term market capacity or build/purchase assets at the appropriate time, taking into consideration current market prices as well as a regulatory environment that provides a reasonable assurance to mitigate risk and provide for timely cost recovery. Duke Energy Ohio will regularly assess the future, near-term resource needs and make decisions on market capacity purchases, or new build options in line with the strategic direction selected in the resource plan.

B. Selected Supply Side Technologies

Potential supply side resources selected for detailed modeling included technologies that were commercially available and consistently cost effective relative to other technologies. These resources represented new technologies to address an expected low carbon future environment. Specifically new supply side technologies that are believed to meet the AER requirements of SB 221 required by 2025 include new advanced nuclear, 90% carbon sequestered IGCC technologies and biomass for base load technologies.

The Company continues to investigate the possibility of new nuclear generation to continue to modernize its aging fleet and also to satisfy Ohio's AER requirement. Duke Energy AREVA, USEC, Inc., UniStar Nuclear Energy and the Southern Ohio Diversification Initiative (SODI), formed the Southern Ohio Clean Energy Park Alliance (SOCEPA) to identify the potential for and implications of building an advanced nuclear power plant for the region. At this time, the SOCEPA is continuing the investigation but no decision has been made on the technology, site, or timeframe for the proposed plant. Duke Energy Ohio is not proposing the construction of nuclear powered generation in the context of this resource plan.

Renewable technologies are also an integral part of the overall resource plan as mandated in SB 221. Renewable generation technologies including wind, solar, and dedicated biomass generation are included in the list of the selected supply side technologies.

Supply side resources selected for further integrated resource planning modeling based on technical and economic screening include the following:

- CT (peaking capacity annual purchases)
- CC (intermediate capacity annual purchases)
- 630 MW Class Integrated Gasified Combined Cycle Coal (IGCC)
- Advanced Nuclear Capacity (not available by 2020)
- 50 MW Wind (renewable)
- 3 MW Solar Photovoltaic (renewable)
- 50 MW Woody Biomass (renewable)

J. ADVANCED ENERGY REQUIREMENTS

SB 221 establishes a 25% AER portfolio requirement that must be met by 2025. At least one-half of the AER requirements must be satisfied by renewable energy resources. The renewable requirement also includes a specific "set-aside" for solar energy resources. The annual benchmarks for the renewable energy requirements are represented in Table 4 J.1 below:

Table 4 J.1

By end of year:	Total renewable energy resources	Solar energy resources
2009	0.25%	0.004%
2010	0.50%	0.01%
2011	1.0%	0.03%
2012	1.5%	0.06%
2013	2.0%	0.09%
2014	2.5%	0.12%
2015	3.5%	0.15%
2016	4.5%	0.18%
2017	5.5%	0.22%
2018	6.5%	0.26%
2019	7.5%	0.30%
2020	8.5%	0.34%
2021	9.5%	0.38%
2022	10.5%	0.42%
2023	11.5%	0.46%
2024 and each year thereafter	12.5%	0.50%

RENEWABLE ENERGY RESOURCE REQUIREMENTS

Demonstrated compliance with SB 221 renewable energy mandates utilizes the purchase of RECs. As defined in SB 221, a REC is measured as the environmental attributes associated with one megawatt-hour of electricity generated by a renewable energy resource.

1. Qualified Renewable Resources

The following resources or technologies, if they have a placed-in-service date of January 1, 1998, or after, are qualified resources for meeting the renewable energy resource benchmarks:

- Solar photovoltaic or solar thermal energy;
- Wind energy;
- Hydroelectric energy;
- Geothermal energy;
- Solid waste energy derived from fractionalization,
- Biological decomposition,
- Other process that does not principally involve combustion;
 - o Biomass energy;

Energy from a fuel cell;

- Storage facility provided that a) the electricity used to pump the resource into a storage reservoir must qualify as a renewable energy resource, or the equivalent renewable energy credits are obtained; and b) the amount of energy that may qualify from a storage facility is the amount of electricity dispatched from the storage facility;
- Distributed generation system used by a customer to generate electricity from a qualified list of resources or technologies;
- Renewable energy resource created on or after January 1, 1998, by the modification or retrofit of any facility placed in service prior to January 1, 1998.

SB 221 mandates that at least one half of the resources used to comply with the renewable energy portfolio standard must come from sources which are based in the state of Ohio. The remaining one half must come from supply sources that are deliverable into the state, or are located within one of Ohio's five contiguous states (Pennsylvania, West Virginia, Kentucky, Indiana and Michigan).

2. Qualified Advanced Energy Resources

Qualified advanced energy resources include technological improvements that increase a generating facility's output without a corresponding increase in emissions;

- Distributed generation that relies on co-generation of electricity and thermal output;
- Clean coal;
- Advanced nuclear energy;
- Fuel cell;
- Advanced solid waste or construction and demolition debris technology;
- DSM and energy efficiency.

Annual benchmarks leading up to 2025 were not established in SB 221 for advanced energy resources as they were for renewable energy resources.

In summary, by 2025, Ohio SB 221 requires that Duke Energy Ohio obtain 25% of its electricity supply from AERs, with a minimum of 12.5% coming from renewable resources.

3. Discussion of Renewable Compliance Strategy

Up until now, the compliance strategy of Duke Energy Ohio has consisted only of shortterm market REC purchases. The primary reason for this decision is that longer term contracts with third parties and utility-owned renewable resources both present cost recovery uncertainties that the Company presently feels would be imprudent to assume. These uncertainties exist because the Company's renewable obligation is based on SSO sales volume, which historically has been uncertain due to customer switching. Duke Energy Ohio recognizes that efforts other than short-term REC purchases may be needed in order to ensure compliance as renewable requirements increase over time; however, over the near term, it is assumed that the current cost recovery uncertainties will continue. While these cost recovery uncertainties exist, the Company will continue to rely primarily on short-term REC purchases and will consider other long-term procurement methods as additional options if the applicable cost recovery uncertainties are adequately addressed.

An exception to the aforementioned discussion is the Company's residential solar REC purchase program, which commits the Company to enter into long-term REC purchase agreements with residential customers. However, this program is not expected to contribute to the Company's total compliance requirements on a material basis due to the relatively small size of the applicable solar installations (residential homes). More details on the necessary renewable resource additions to meet the compliance requirements follow.

4. Renewable Energy in the Resource Planning Model

For the purposes of the resource planning model, Duke Energy Ohio assumed that a combination of solar and wind resources would be used to satisfy renewable requirements through 2020. The Company assumed photovoltaic solar because of the specific "set-aside" and then included wind because it is a familiar and widespread renewable resource in the Midwest. In general, the need for each resource was increased in accordance with the levels proscribed in SB 221. Duke Energy Ohio considers many types of renewable resources in its compliance planning efforts, including various forms of biomass energy, biomethane (landfill gas), and hydroelectric resources. The choice of wind and solar PV resources in the resource plan is an assumption that is made for modeling purposes. It is possible that the actual resource development could be different than projected in the resource plan.

Specifically, the resource plan assumes the following:

- Near-Term Renewable Compliance Strategy (2011): Near-term renewable compliance for solar and non-solar will be met with market REC purchases.
- Long-Term Renewable Compliance Strategy (2012+): In 2012 and beyond, Duke Energy Ohio has assumed that renewable compliance will consist of approximately 50% REC purchases, and the remaining 50% of the compliance requirements coming from renewable resources that will deliver both energy and RECs. For resource planning purposes, REC purchases do not serve to meet the Company's energy or capacity requirements. This assumption is consistent with SB 221 in that contiguous state RECs may be utilized to meet up to 50% of the renewable requirement. Renewable resources that contribute both energy and RECs would contribute to the Company's energy and capacity requirements. The resources that contribute both energy and RECs could come in several variations including but not limited to local grid-tied renewable resources that are selling or self-consuming electrical energy separate from an agreement to sell RECs to the Company. For purposes of the resource planning model, it is assumed that the renewable resources that contribute energy and RECs are all solar or wind projects. Wind projects are assumed to be added in 50 MW increments beginning in 2014, and solar projects are added in 3 MW increments beginning in 2012. These resource additions are in line with the resource needs necessary to meet the renewable requirements established by SB 221. Table 4 J.2 shows the nameplate additions of wind and solar capacity in increments.

		Nam	eplate C	apacity	Additior	is Incren	nental (N	MW)		
	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Wind				50	50	50	50	50	50	50
Solar	1	3	3	3	3	3	3	3	3	3
Total	1	3	3	53	53	53	53	53	53	53
	<u></u>	N	ameplat	e Capac	ity Addi	tions To	tal (MW	<i>'</i>)		
	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Wind	0	0	0	50	100	150	200	250	300	350
Solar	1	4	7	10	13	16	19	22	25	28
Total	1	4	7	60	113	166	219	272	325	378

Table 4 J.2

The renewable resource additions identified above are included in the resource plan to meet the 12.5% SB 221 renewable requirements. These installed nameplate capacities are adjusted to reflect the intermittent capacity allocation guidelines from PJM. The adjusted wind and solar capacity resources that can be counted as firm capacity resources are shown in Table 4 J.3. PJM counts 38% of solar capacity and 13% of wind capacity for coincident peak reserve margin requirements.

<u> </u>	Ren	ewable (Capacity	Resour	ces at S	ummer P	eak Incr	emental	(MW)	
	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Wind	0	0	0	6.5	6.5	6.5	6.5	6.5	6.5	6.5
Solar	0.38	1.14	1.14	1.14	1.14	1.14	1.14	1.14	1.14	1.14
Total	0.38	1.14	1.14	7.64	7.64	7.64	7.64	7.64	7.64	7.64
	•	Ren	ewable	Capacit	y at Sun	nmer Pea	ak Total	(MW)		L
	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Wind	0	0	0	6.5	13	19.5	26	32.5	39	45.5
Solar	0.38	1.52	2.66	3.8	4.94	6.08	7.22	8.36	9.5	10.64
Total	0.38	1.52	2.66	10.3	17.94	25.58	33.22	40.86	48.5	56.14

Table 4 J.3

5. Intermittency and Capacity Factors

Both solar and wind installed capacity resources are classified as intermittent by PJM since these resources have varying generation profiles which are subject to the prevailing meteorological conditions. As such, actual energy production may not occur at the specific times when energy is most needed, such as the peak periods of each day. With this in mind, it is important to look closely at the actual amount of energy and capacity each resource contributes to the grid at any point in time. Therefore to meet SB 221 requirements, significant amounts of capacity would have to be built in order to achieve the necessary production for compliance.

Based on the Company's experience, solar resources have annual capacity factors that range from 11% to 25%, depending on the location and chosen technology. Wind in the Midwest typically has annual capacity factors that range from 25% to 40% also depending on the location

and chosen technology. Cost, capacity factor values, and energy production were assigned based on results from solicited and unsolicited proposals from third party developers received by Duke Energy Ohio, as well as appropriate estimates for capital and fixed costs based on internal estimates and applicable tax credits.

6. Other Renewable Resources

As noted, Duke Energy Ohio has considered multiple forms of renewable resources in its compliance planning activities. In addition to wind and solar, the Company has utilized and/or evaluated hydroelectric, biomass and biomethane (landfill gas) resources as renewable energy options to meet the AER requirements. Duke Energy Ohio has considered biomass co-firing, which refers to blending biomass with coal fuel at existing facilities. The Company has conducted some biomass co-firing test burns at existing coal facilities, but there are presently no ongoing co-firing efforts. However, should regulations governing biomass facilities become clearer, Duke Energy Ohio may reconsider co-firing or the installation of a dedicated biomass facility for AER compliance. At this time, Duke Energy Ohio has no plans for biomass.

Duke Energy Ohio will continue to evaluate its options for satisfying its AER requirement and will make adjustments to the AER resources included in the selected resource plan based on factors such as cost recovery challenges, and the availability and prices of RECs.

K. RESOURCE PLAN

The development of the resource plan integrates the customer load forecast, energy efficiency programs, DSM programs, renewable resources, existing supply-side generation, and potential new supply-side resources into the planning process. Computer models used to

perform this integration process are System Optimizer (SO) and Planning & Risk (PAR) owned by Ventyx (recently purchased by ABB).

SO is an expansion planning model that dynamically analyzes the cost-effectiveness of a multitude of combinations of resource alternatives to meet the reliability criteria of a minimum reserve margin. The model performs an economic dispatch of numerous potential combinations of resource plans to determine the lowest cost (PVRR) plan, considering capital, operations and maintenance costs, and total production costs. System Optimizer enables Duke Energy Ohio to consider various alternative planning environments such as different fuel price projections, supply side generation capital costs, and levels of future energy efficiency accomplishments. Using SO to identify the lowest cost expansion plans for alternative planning environments allows Duke Energy Ohio to examine the performance of the "best" resource plans in many possible future scenarios.

The various resource plans generated through SO are examined to identify potential alternative resource plans that will be tested in the detailed production costing simulations with the PAR model. The PAR model is similar to the detailed PROMOD production costing model (another Ventyx production costing model) in that both models perform detailed generating resource hourly dispatch to simulate total production costs of every modeled resource plan. In particular, alternative resource plans are developed to explore resource decisions that will be needed over the next 10 years. For example, plans with peaking capacity were developed for comparison with varying levels of intermediate capacity. After each alternative resource plan is modeled in PAR, the production costing results are compared along with total capital costs to compare the total cost to ratepayers for each plan. The resource plan that consistently performs cost effectively in multiple planning environments with due consideration of qualitative issues is selected as the most "robust" resource plan.

L. SYSTEM OPTIMIZER RESOURCE PORTFOLIO ALTERNATIVES

The SO capacity expansion model was used to develop alternative resource portfolios through 2020. There was not a significant difference between the EE economic potential and the requirements associated with SB 221 by 2021. Therefore, only the requirements associated with SB 221 were considered in SO portfolio development. Also, though it is the Company's belief that there will be a carbon-constrained future, the likelihood of legislation being passed prior to 2013 is unlikely. With the uncertainty of federal climate change legislation with regard to greenhouse gas reduction, Duke Energy Ohio has established a CO₂ price curve beginning in 2016 to represent the potential for future federal climate change legislation. The CO₂ prices that Duke Energy is utilizing are associated with proposed and debated legislation, including H.R. 2454 – the American Clean Energy and Security Act of 2009, which passed the U.S. House of Representatives on June 26, 2009. The prices utilized in the 2011 Resource Plan represent the lower end of the range of prices that were estimated in proposed legislation. The projected CO₂ allowance prices are less than \$20/ton by 2020 and it is not likely that prices would be higher in the short-term. For this reason, portfolios were not evaluated for variation in CO₂ prices. The primary focus of the resource plan was to determine how best to meet the capacity and energy needs in the 2015 period while positioning the Company to meet AER requirements when fully implemented by 2025.

Sensitivities in load, fuel, and the associated energy prices were evaluated to determine the basis for the different portfolios to be further evaluated in detailed production costing analysis. These portfolios are outlined in Table 4 L.1 below.

Table 4 L.1

	Resource Portfolio Alternatives (2012 – 2020)	
	CT and CC Resources	RPS Renewables
CT Portfolio	1,050 – 2,100 MW Peaking PPA and/or Resources	28 MW new build Solar 350 MW new build Wind
CC/CT Portfolio	1,050 – 1,450 MW Peaking Resource	28 MW new build Solar
	650 MW CC in 2015	330 W w new build wind

The capacity need between 2012 and 2015 averages approximately 1,360 MW per year in addition to capacity that the legacy generation assets will still serve. This need will be met through the Company's FRR plan to meet the 15.3% reserve margin. The capacity need will increase in the 2015 period to 2,261 MWs primarily due to the retirement assumption of Beckjord Units 1-6 (859 MWs). The 2015 timeframe could be volatile time in the capacity market due to the significant number of coal retirements expected due to the new environmental regulatory requirements. Nationwide estimates of retirements of coal generation in the 2015 timeframe fall in the range of 40 to 80 GWs. Depending on the rate of economic recovery and the impact on load growth, adoption rates of DSM, and the number of retired coal units, there could be a capacity shortage in the 2015 timeframe. For this reason, the option of continued operation of and investment in the existing system, coupled with self- build or peaking or intermediate resource purchases is maintained to reduce the risk of exclusively relying on the capacity market to customers.

M. RESOURCE PORTFOLIO ALTERNATIVE EVALUATION RESULTS

After the development of the alternative resource portfolios in SO, the PAR model was used to perform detailed production costing analysis for the CT Portfolio and the CC/CT Portfolio under the Proposed ESP construct for future resource needs.

The analysis compared a portfolio that relies on peaking resources for future capacity needs (CT portfolio) and one that relies on a mix of peaking and intermediate resources (CT/CC portfolio). The Present Value of Revenue Requirements (PVRR) for the portfolios is calculated as shown below. The IRP rules require consideration and discussion of rate impacts associated with a selected baseline resource plan and alternative plans. Due to several factors, primarily the regulatory uncertainties involved, this document does not address explicit rate impacts. It is assumed that a minimization of PVRR will equate to a minimization of rate impact for customers.

- a) Capacity Cost PVRR associated with securing capacity to meet customers' capacity needs.
- b) Duke Energy Ohio Customer Energy Cost PVRR associated with the cost of providing energy to meet customers' energy needs from the PJM energy market (through competitive suppliers in an energy auction).
- c) Duke Energy Ohio Generation Profit PVRR of the profit associated with the dispatch of all Company Generation to the PJM energy market.
- d) Customer PVRR = Capacity Cost + Duke Energy Ohio Customer Energy Cost 80% * Duke Energy Ohio Profit

A range of sensitivities was also considered for each portfolio as shown below:

- Load Forecast High: plus 10 %; Low: minus 10% (represent a 95% confidence interval).
- Fuel & Energy Prices

- High: Natural Gas plus 20%; Coal plus 25%; and corresponding impact on the Energy market.
- Low: Natural Gas and Coal minus 40%; and corresponding impact on the Energy market.
- AER Evaluation of portfolios assuming meeting approximately half of the compliance obligation the AER requirements in 2024.

The results of the analysis are shown below in Table 4 M.2. Table 4 M.2 reflects a comparison of the CT Portfolio to the CC/CT Portfolio. For example, in the Reference case, the CC/CT Portfolio resulted in a \$19 million higher PVRR than the CT Portfolio.

Table 4 M.2 (Proposed ESP Portfolios)

Comparison of the CT Portfolio to the CC/CT Portfolio

(PVRR Cost deltas represented in Smillions)

Portfalio	Reference	High Fuel	Low Fuel	High Load	Low Load	Low EE/ Renewables
CT Portfolio	Baseline	Baseline	Baseline	Baseline	Baseline	Baseline
CC/CT Portfolio	\$ 19	\$ (77)	\$ 192	\$ 19	\$ 19	\$ 19

In the Proposed ESP, the PVRR of the CT Portfolio is less than 0.1% better than the CC/CT Portfolio when compared to the total system PVRR. In the High Fuel sensitivities, the CC/CT Portfolio was preferred. In the Low Fuel sensitivities, the CT Portfolio was preferred, primarily because of the difference in capital cost between a CT and CC. Profits minimally impacted the results of this sensitivity.

Peaking capacity resource options include the PJM capacity markets and short-term purchase power agreements in the near term. However, over a longer term, the option to build or purchase intermediate generation (such as CCs) to offset some of the capacity need would reduce reliance on the capacity market and increase operational flexibility with consideration of construction lead times and prevailing market prices. Duke Energy Ohio will regularly assess the future near-term resource needs and make decisions on market capacity purchases, shortterm PPAs or new build/purchase options in line with the strategic direction selected in the resource plan.

The primary advantages that the CC/CT Portfolio has over the CT Portfolio are that CCs have increased flexibility to meet the energy needs of Duke Energy Ohio customers and are more competitive in the PJM energy market.

There are additional advantages associated with having some CC in the future generation mix. CC capacity provides flexibility and increased fuel diversity for operations over a broader range of capacity factors. It also serves as a price hedge if natural gas prices are lower than projected or if coal prices are significantly higher than projected in the future. If the challenging requirements associated with SB 221 cannot be met and there is more energy to be served with conventional generation, CC generation would provide the flexibility to meet the demand.

In summary, there is a significant capacity need in the 2015 period at a time when there could be increased volatility in the capacity market. Securing a portion of this need with existing resources and additional firm intermediate capacity, secured either through purchasing assets or a self-build option, would minimize this risk. But the Company must have a reasonable assurance of the timely recovery of costs. As the future regulatory environment continues to unfold, it will impact how Duke Energy Ohio can best meet the significant capacity need in the 2015 timeframe. Monitoring the regulatory environment and possible resulting impacts to Duke

Energy Ohio generating assets will be a primary focus for the Company in 2011, prior to making any definitive long-term plans to meet this capacity need.

The Supply and Demand table as shown in Table 4 M.3 demonstrates that there is a 2,151 MW capacity need in 2024 with full implementation of SB 221 AER requirements, which further supports securing firm capacity in the 2015 timeframe. Chart 4 M.1 is a comparison of the capacity changes in the portfolio between 2012 and 2020 that demonstrates the increased system diversity with the increasing EE requirements, renewables, market purchases, and additional natural gas generation.

Table 4 M.3 Summer Projections of Load, Capacity and Reserves for Duke Energy Ohio 2011 Annual Plan

(Table Redacted)

Chart 4 M.1

193

Appendix 4 A

PUCO Forms

Monthly Forecast of Electric Utility's Ohio Service Area Peak Load and Resources Dedicated to Meet Ohio Service Area Peak Load PUCO Form FE-R1: (Megawatts)

					Curre	nt Calenda	ır Year - 20	11				
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Net Demonstrated Capability	4013	4013	4013	4013	4013	3894	3894	3894	3894	4013	4013	4013
Net Seasonal Capability	4013	4013	4013	4013	4013	3894	3894	3894	3894	4013	4013	4013
Purchases	0	0	0	0	0	0	0	0	0	0	0	0
Sales	0	0	0	0	0	0	0	0	0	0	0	0
Renewables	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38
Available Capability ^ª	4013	4013	4013	4013	4013	3894	3894	3894	3894	4013	4013	4013
Native Load	1259	1295	1238	1026	1195	1524	1795	1683	1554	1174	1225	1419
Energy Reduction Programs ^c	0	1	2	37	37	62	69	99	70	9	Ŋ	9
Available Reserve ^d	2755	2719	2776	2988	2818	2370	2099	2211	2340	2840	2788	2594
Internal Load ^b	1,259	1, 296	1,240	1,063	1,232	1,586	1,864	1,749	1,624	1, 180	1,230	1,425
Reserve	2755	2720	2778	3025	2855	2432	2169	2277	2410	2846	2793	2600
					Nex	t Calendar	Year - 201	2				
	Jan	Feb	Mar	Apr	May	Jun	luL	Aug	Sep	Oct	Nov	Dec
Net Demonstrated Capability	4013	4013	4013	4013	4013	3894	3894	3894	3894	4013	4013	4013
Net Seasonal Capability	4013	4013	4013	4013	4013	3894	3894	3894	3894	4013	4013	4013
Purchases	o	0	0	0	1050	1050	1050	1050	1050	1050	1050	1050
Sales	0	0	٥	0	0	0	0	0	0	0	0	0
Renewables	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52
Available Capability ^a	4015	4015	4015	4015	5065	4946	4946	4946	4946	5065	5065	5065
Native Load	3626	3529	3301	2930	3486	4111	4336	4340	3805	3195	3577	3577
Energy Reduction Programs ^c	18	18	26	131	134	198	207	203	200	31	20	23
Available Reserve ^d	389	486	714	1084	1579	835	609	605	1141	1869	1900	1487
internal Load ^b	3,644	3,547	3,326	3,061	3,620	4,309	4,543	4,543	4,005	3,226	3,185	3,600
Reserve ^e	407	504	740	1215	1713	1033	816	808	1341	1900	1508	1510

a. Available Capability is equal to Net Seasonal Capability plus Purchases minus Sales plus Renewables.

b. Internal Load equals Native Load plus Energy Reduction Programs.

c. Includes both energy efficiency and demand response.

d. Available Reserve is equal to Available Capability minus Internal Load plus Energy Reduction Programs. e. Reserve is equal to Available Capability minus Native Load plus Energy Reduction Programs.

Monthly Forecast of System Peak Load and Resources Dedicated to Meet System Peak Load PUCO Form FE-R2: (Megawatts)

					Curre	nt Calenda	ır Year - 20	11				
	Jan	Feb	Mar	Apr	May	Jun	lul	Aug	Sep	Oct	Nov	Dec
Net Demonstrated Capability	4013	4013	4013	4013	4013	3894	3894	3894	3894	4013	4013	4013
Net Seasonal Capability	4013	4013	4013	4013	4013	3894	3894	3894	3894	4013	4013	4013
Purchases	0	0	0	0	0	0	0	0	0	0	0	0
Sales	0	0	0	0	0	0	a	0	0	0	0	a
Renewables	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38
Available Capability ^a	4013	4013	4013	4013	4013	3894	3894	3894	3894	4013	4013	4013
Native Load	1259	1295	1238	1026	1195	1524	1795	1683	1554	1174	1225	1419
Energy Reduction Programs ^c	0	1	2	37	37	62	69	99	70	9	Ŋ	9
Available Reserve ^d	2755	2719	2776	2988	2818	2370	2099	2211	2340	2840	2788	2594
Internal Load ^b	1,259	1,296	1,240	1,063	1,232	1,586	1,864	1,749	1,624	1,180	1,230	1,425
Reserve ^e	2755	2720	2778	3025	2855	2432	2169	2277	2410	2846	2793	2600
					Nex	t Calendar	Year - 201:	2				
	Jan	Feb	Mar	Apr	May	Jun	Int	Aug	Sep	Oct	Nov	Dec
Net Demonstrated Capability	4013	4013	4013	4013	4013	3894	3894	3894	3894	4013	4013	4013
Net Seasonal Capability	4013	4013	4013	4013	4013	3894	3894	3894	3894	4013	4013	4013
Purchases	0	0	0	0	1050	1050	1050	1050	1050	1050	1050	1050
Sales	0	•	0	o	0	0	0	0	0	0	0	0
Renewables	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52
Available Capability ^a	4015	4015	4015	4015	5065	4946	4946	4946	4946	5065	5065	5065
Native Load	3626	3529	3301	2930	3486	4111	4336	4340	3805	3195	3577	3577
Energy Reduction Programs ^c	18	18	26	131	134	198	207	203	200	31	20	33
Available Reserve ^d	389	486	714	1084	1579	835	609	605	1141	1869	0061	1487
internai Load ^b	3,644	3,547	3,326	3,061	3,620	4,309	4,543	4,543	4,005	3,226	3,185	3,600
Reserve ^e	407	504	740	1215	1713	1033	816	808	1341	1900	1508	1510

a. Available Capability is equal to Net Seasonal Capability plus Purchases minus Sales plus Renewables.

b. Internal Load equals Native Load plus Energy Reduction Programs.

c. Includes both energy efficiency and demand response.
 d. Available Reserve is equal to Available Capability minus Internal Load plus Energy Reduction Programs.
 e. Reserve is equal to Available Capability minus Native Load plus Energy Reduction Programs.

PUCO Form FE-R3:
Summary of Existing Electric Generation Facilities

STATION				TYPE	INSTALLATION	TENTATIVE	MAXIMUM GEI	NERATING	ENVIRONMENTAL	MAXIMUM GENERATING
NAME &		FOOT		OF	'DATE	BETIBEMENT	CAPABILITY (net kWi	PROTECTION	CAPABILITY Inet KW
LOCATION	SYSTEM*	NOTES	UNIT	UNIT*	DATE	YFAR	SUMMER	WINTER	MEASURES*	Soring/Fail
200411011	<u>3/3/2/01</u>	10120		<u>onn</u>		1-01	DOMINICIA	TUNTEN	hiersones	<u></u>
W.C.Beckiord	DEO		1	CE-S	6-1952	Unknown	94.000	94.000	INB EP & EGC	94.000
New Richmond			5	CES	10-1953	Unknown	94,000	94,000	INB EP & EGC	94,000
Obio			â	CES	11-1954	Linknown	128,000	128,000	EP EGC LNB & GEA	128,000
Ono			2	CF 6	11-1354	Uskasus	123,000	120,000		150,000
			7	05.5	17 1063	Unknown	130,000	130,000		130,000
			2	05.0	12-1962	Unknown	238,000	238,000	EP, FGC, LNB & OFA	258,000
		А	6	CF-S	7-1969	Unknown	155,000	158,000	EP, FGC, LNB & OFA	158,000
			1-61	OF-GT	4-1972	Unknown	47,000	61,000	None	\$3,000
			2-GT	OF-GT	4-1972	Unknown	47,000	61,000	None	53,000
			3-GT	OF-GT	6-1972	Unknown	47,000	61,000	None	53,000
			4-GT	OF-GT	6-1972	Unknown _	47,000	61,000	None	53,000
						Station Total:	1,047,000	1,106,000		1,074,000
Conesville	DEO	8	4	CF-S	6-1973	Unknown	312,000	312,000	EP, CT, LNB, SO2 Scrubber	312,000
Conesville, OH									SCR	
Dicks Creek	DEO		1	GF-GT	9-1965	Unknown	92,000	110,000	SC	101,000
Middletown,			з	GF-GT	6-1969	Unknown	14.000	20.000	SC	15,000
Ohio			4	GF-GT	10-1969	Unknown	15,000	21,000	None	18,000
			5	GE-GT	10-1969	Unknown	15,000	21,000	None	18,000
			2	01-01	10-1305	Station Total:	136,000	172,000	None	152,000
						station rotat.	130,000	172,000		152,000
Killer	050	~		CE C	C 4000	I la ha su u	••••			100.000
Xillen	DEO	C	2	01-5	6-1982	Unknown	198,000	198,000	EP, UNB, CT, SO2 Schubber	198,000
wrightsville, OH									SCR	
							۲	•		
Miami Fort	DEO		3-GT	OF-GT	7-1971	Unknown	14,000	20,000	None	15,000
North Bend,			4-GT	OF-GT	8-1971	Unknown	14,000	20,000	None	15,000
Ohio			5-GT	OF-GT	9-1971	Unknown	14,000	20,000	None	15,000
			6-GT	OF-GT	10-1971	Unknown	14,000	20,000	None	15,000
		D	7	CF-S	S-1975	Unknown	320,000	320,000	EP, LNB, CT	320,000
									SO2 Scrubber, SCR & SBS	
		D	8	CF-S	2-1978	Unknown	320,000	320,000	EP, LNB, CT	320,000
							,		SO2 Scrubber, SCR & SBS	
						Station Total:	696.000	720.000		700,000
								/ 20,000		
LM Stuart	DEC	F	1	CE-S	5-1971	Unknown	225.000	225.000	EP INB	225.000
aberdeen	010		Ŷ	Q. 3	3 19/1	CHARGEN	123,000	223,000	600 Sombher & SCR	120,000
Obia		-	-		10 1970	Linknassa	205.000	225,000	502 Schubber a Sch	225.000
onia			4	Cr-J	10-1370	OTINIKAWIT	223,000	223,000	COR Completion & CCR	125,000
		-	-	65 6	F 1070	1.1-1	225 000	225 000	SOZ SCIUDOEI & SCR	225.000
		5	2	Gr-a	3-13/2	Unitriown	225,000	225,000	CP, LIND,	223,000
		-							SUZ SCHUBOER & SUK	335.000
		E	4	CF-5	6-1974	Unknown	225,000	225,000	EP, LNB, CT	225,000
									SO2 Scrubber & SCR	
						Station Total:	900,000	900,000		900,000
W.H.Zimmer	DEO	F	1	CF-S	3-1991	Unknown	605,000	605,000	EP, LNB, CT,	605,000
Moscow, DH						_			SO2 Scrubber, SCR & SBS	
						-				
							3,894,000	4,013,000		3,941,000
							• • • • • • • • • • • • • • • • • • • •			-
*LEGEND:		CF = Coa	i Fired		S = Steam				EP = Electrostatic Precipitator	
		OF = Oil	fired		GT = Simple-C	vole Combustion	Turbine		SC = Smokeless Combustor	
		GF ≑ Nat	tural Gas	: Fired	,				CT = Cooling Tower(s)	
									STR = Selective Catalytic Redu	iction Nov
									Wit - Water Injection NOv	
									Cl - Steam injection, NOv	
									SI = Stearn nijection, Nox	
									LINE = LOW NOX Burners	
									UFA ≈ Uvernire Air	. n . (
									SNCR = Selective Non-Catalytic	a Reduction
		DEO = D	luke Ene	ngy Ohio					FGC = Flue Gas Conditioning	
									SBS = Sodium Bisulfite/Soda As	sh Injection System
FOOT NOTES:		(A) Un	it 6 is co	mmonly	owned by Duke	Energy Ohio (37	.5% - Operator);			
		T	ie Dayto	n Power	and Light Comp	any (50%) and C	olumbus Southern	Power Company	y (12.5%).	
		(B) Un	it 4 is co	mmonly	owned by Duke	Energy Ohio (40	%); The Dayton Po	wer and Light (Сотралу (16.5%)	
		a	nd Colur	nbus Sou	them Power Co	mpany (43.5% - I	Operator).	2		
		(C) Un	it 2 is co	mmonly	owned by Duke	Energy Ohio (33	%) and			
		T	e Davto	n Power	and Light Comp	any (67% - Open	atorì			

The Dayton Power and Light Company (67% - Operator). (D) Units 7 and 8 are commonly owned by Duke Energy Ohio (64% - Operator) and by The Dayton Power and Light Company (36%).

(E) This station is commonly owned by Duke Energy Ohio (39%); The Dayton

Power and Light Company (35%) - Operator) and Columbus Southern Power Company (26%). (F) Unit 1 is commonly owned by Duke Energy Ohio (46.5% - Operator); The Dayton Power and Light Company (28.1%) and Columbus Southern Power Company (25.4%).

	Ur	nit Designation		-
Year/Season	Unit Name	Description	Seasonal Total (MW)	_
2010/Summer	Beckjord 1	Coal - Steam	94	
2010/Summer	Beckjord 2	Coal - Steam	94	
2010/Summer	Beckjord 3	Coal - Steam	128	
2010/Summer	Beckjord 4	Coal - Steam	150	
2010/Summer	Beckjord 5	Coal - Steam	238	
2010/Summer	Beckjord 6	Coal - Steam	155	Foot Note A
2010/Summer	Conesville 4	Coal - Steam	312	Foot Note B
2010/Summer	Killen 2	Coal - Steam	198	Foot Note C
2010/Summer	Miami Fort 7	Coal - Steam	320	Foot Note D
2010/Summer	Miami Fort 8	Coal - Steam	320	Foot Note D
2010/Summer	Stuart 1	Coal - Steam	225	Foot Note E
2010/Summer	Stuart 2	Coal - Steam	225	Foot Note E
2010/Summer	Stuart 3	Coal - Steam	225	Foot Note E
2010/Summer	Stuart 4	Coal - Steam	225	Foot Note E
2010/Summer	Zimmer 1	Coal - Steam	605	Foot Note F
2010/Summer	Beckjord GT 1	Combustion Turbine/Oil-fired	47	
2010/Summer	Beckjord GT 2	Combustion Turbine/Oil-fired	47	
2010/Summer	Beckjord GT 3	Combustion Turbine/Oil-fired	47	
2010/Summer	Beckjord GT 4	Combustion Turbine/Oil-fired	47	
2010/Summer	Dicks Creek 1	Combustion Turbine/Nat Gas-fired	92	
2010/Summer	Dicks Creek 3	Combustion Turbine/Nat Gas-fired	14	
2010/Summer	Dicks Creek 4	Combustion Turbine/Nat Gas-fired	15	
2010/Summer	Dicks Creek 5	Combustion Turbine/Nat Gas-fired	15	
2010/Summer	Miami Fort 3	Combustion Turbine/Oil-fired	14	
2010/Summer	Miami Fort 4	Combustion Turbine/Oil-fired	14	
2010/Summer	Miami Fort 5	Combustion Turbine/Oil-fired	14	
2010/Summer	Miami Fort 6	Combustion Turbine/Oil-fired	14	
FOOT NOTES:	(A) Unit 6 is commonly	y owned by Duke Energy Ohio (37.5% - Operator);		
	The Dayton Powe	r and Light Company (50%) and Columbus Southern F	ower Company (12.5%)	

PUCO Form FE-R4: Actual Generating Capability Dedicated to meet Ohio Peak Load (as of 12/31/20xx)

(B) Unit 4 is commonly owned by Duke Energy Ohio (40%); The Dayton Power and Light Company (16.5%) and Columbus Southern Power Company (43.5% - Operator)

(C) Unit 2 is commonly owned by Duke Energy Ohio (33%) and

The Dayton Power and Light Company (67% - Operator).

(D) Units 7 and 8 are commonly owned by Duke Energy Ohio (64% - Operator) and by The Dayton Power and Light Company (36%).

(E) This station is commonly owned by Duke Energy Ohio (39%); The Dayton Power and Light Company (35% - Operator) and Columbus Southern Power Company (26%).

(F) Unit 1 is commonly owned by Duke Energy Ohio (46.5% - Operator); The Dayton

Power and Light Company (28.1%) and Columbus Southern Power Company (25.4%).

Electric Ut	cility's Actual edicated to f	and Forec Meet Electr	ast Ohio Pe ic Utility's	eak Load a Ohio Peak	nd Resourc : Load	es		
		(Mega	awatts) r Saacon					
	2006	2007	2008	2009	2010	2011	2012	2013
	-5	-4	-3	-2	-1	0	л	7
Net Demonstrated Capability	3961	3906	3906	3906	3894	3894	3894	3894
Net Seasonal Capability	3961	3906	3906	3906	3894	3894	3894	3894
Purchases	1050	1058	1064	979	758	0	1050	1000
Sales				369	1035	0	Ō	0
Renewables ^d						0.38	1.52	2.66
Available Capability ^a	5011	4964	4970	4516	3617	3894	4946	4897
Native Load	4366	4436	4074	3675	2317	1795	4340	4376
Energy Reduction Programs ^c	o	23	0	0	11	69	203	207
Available Reserve ^e	645	528	896	841	1300	2099	605	521
Internal Load ^b	4366	4459	4074	3675	2328	1864	4543	4583
Reserve ^f	645	551	896	841	1311	2169	808	728
	2014	2015	2016	2017	2018	2019	2020	2021
	3	4	5	6	7	8	6	10
Net Demonstrated Capability	3894	3685	3685	3685	3685	3685	3685	3685
Net Seasonal Capability	3894	3685	3685	3685	3685	3685	3685	3685
Purchases	1000	1100	1100	1050	1000	950	006	850
Sales	0	0	0	0	0	0	0	0
Renewables ^d	10,3	17.94	25.58	33.22	40.86	48.5	56.14	62.64
Available Capability ^a	4904	4803	4811	4768	4726	4684	4641	4598
Native Load	4439	4441	4424	4432	4436	4417	4398	4388
Energy Reduction Programs ^c	232	283	311	339	367	423	478	534
Available Reserve ^e	466	362	387	336	290	267	243	210
Internal Load ^b	4671	4725	4735	4771	4803	4840	4876	4921
Reservet	698	645	698	675	657	690	720	744

PUCO Form FE-R6:

a. Available Capability is equal to Net Seasonal Capability plus Purchases minus Sales plus Renewables.
b. Internal Load equals Native Load plus Energy Reduction Programs.
c. Includes both energy efficiency and demand response.
d. Renewable Capacity on Summer Peak.
e. Available Reserve is equal to Available Capability minus Internal Load plus Energy Reduction Programs.
f. Reserve is equal to Available Capability minus Internal Load plus Energy Reduction Programs.
g. Load forecast assumes wires-connected customers from 2012 forward.

199

Electric Utilit	ty's Actual a	nd Forecas	t Ohio Pea	ak Load and	d Resource	S		
200		(Megaw Winter S	utility > U /atts) eason					
	2006	2007	2008	2009	2010	2011	2012	2013
	-5	-4	-3	-2	-1	0	1	2
Net Demonstrated Capability	4080	4025	4025	4025	4013	4013	4013	4013
Net Seasonal Capability	4080	4025	4025	4025	4013	4013	4013	4013
Purchases	0	625	577	700		0	1050	1000
Sales						0	0	0
Renewables ^d						0.38	1.52	2.66
Available Capability ^a	4080	4650	4602	4725	4013	4013	5065	5016
Native Load	3551	3505	3526	2271	1459	3626	3676	3729
Energy Reduction Programs ^c	0	0	0	•	0	18	33	48
Available Reserve ^e	529	1145	1076	2454	2554	388	1388	1287
Internal Load ^b	3551	3505	3526	2271	1459	3644	3709	3777
Reserve ^f	529	1145	1076	2454	2554	406	1421	1335
	2014	2015	2016	2017	2018	2019	2020	2021
	£	4	5	6	7	8	6	10
Net Demonstrated Capability	4013	3804	3804	3804	3804	3804	3804	3804
Net Seasonal Capability	4013	3804	3804	3804	3804	3804	3804	3804
Purchases	1000	1100	1100	1050	1000	950	006	850
Sales	0	0	0	0	0	0	0	0
Renewables ^d	10.3	17.94	25.58	33.22	40.86	48.5	56.14	62.64
Available Capability ^a	5023	4922	4930	4887	4845	4803	4760	4717
Native Load	3740	3745	3750	3756	3745	3736	3730	3724
Energy Reduction Programs ^c	81	100	108	125	159	193	227	261
Available Reserve ^e	1283	1177	1180	1131	1100	1066	1031	663
Internal Load ^b	3821	3845	3858	3881	3904	3929	3957	3984
Reserve ^f	1364	1276	1287	1256	1259	1259	1258	1254

PUCO Form FE-R8:

a. Available Capability is equal to Net Seasonal Capability plus Purchases minus Sales plus Renewables. b. Internal Load equals Native Load plus Energy Reduction Programs.

c. Includes both energy efficiency and demand response.
d. Renewable Capacity on Summer Peak.
e. Available Reserve is equal to Available Capability minus Internal Load plus Energy Reduction Programs.
f. Reserve is equal to Available Capability minus Native Load plus Energy Reduction Programs.
g. Load forecast assumes wires-connected customers from 2012 forward.

NOTE: Plans for facilities listed on this Form are entirely speculative and consequently should not be regarded as "planned" electric generation facilities. The Company continues to monitor markets and evaluate options as appropriate.

PUCO Form FE-R10: Specifications of Planned Electric Generation Facilities

	C 1
1. Facility Name	Solar 2011
2. Facility Location	IBD
3. Facility Type	Photovoltaic
4. Anticipated Capability	1 MW
5. Anticipated Capital Cost	
6. Application Timing	1 year
7. Construction timing	1 year
8. Planned Pollution Control Measures	N/A
9. Fuel	Sun
10. Miscellaneous	
1. Facility Name	Solar 2012 - Solar 2019 (1 plant added per year)
2. Facility Location	TBD
3. Facility Type	Photovoltaic
4. Anticipated Capability	3 MW (per plant)
5. Anticipated Capital Cost	
6. Application Timing	1 year
7. Construction timing	1 year
8. Planned Pollution Control Measures	N/A
9. Fuel	Sun
10. Miscellaneous	
1. Facility Name	Wind 2014 - Wind 2021 (1 plant added per year)
2. Facility Location	TBD
3. Facility Type	Wind
4. Anticipated Capability	50 MW (per plant)
5. Anticipated Capital Cost	
6. Application Timing	1 year
7. Construction timing	1 year
8. Planned Pollution Control Measures	N/A
9. Fuel	Wind
10. Miscellaneous	
1. Facility Name	Woody Biomass
2. Facility Location	TBD
3. Facility Type	Biomass
4. Anticipated Capability	50 MW
5. Anticipated Capital Cost	
6. Application Timing	1 year
7. Construction timing	5 years
8. Planned Pollution Control Measures	NOx &Particulate
9. Fuel	Wood
10. Miscellaneous	

PUCO Form FE-R10 (continued): Specifications of Planned Electric Generation Facilities

1. Facility Name	4 x 160 CT
2. Facility Location	TBD
3. Facility Type	Combustion Turbine
4. Anticipated Capability	632 MW
5. Anticipated Capital Cost	
6. Application Timing	1 year
7. Construction timing	3 year
8. Planned Pollution Control Measures	NOx
9. Fuel	Natural Gas
10. Miscellaneous	
1. Facility Name	Combined Cycle w/Duct Firing & Chilling
1. Facility Name 2. Facility Location	Combined Cycle w/Duct Firing & Chilling TBD
1. Facility Name 2. Facility Location 3. Facility Type	Combined Cycle w/Duct Firing & Chilling TBD Combined Cycle
 Facility Name Facility Location Facility Type Anticipated Capability 	Combined Cycle w/Duct Firing & Chilling TBD Combined Cycle 620 MW
 Facility Name Facility Location Facility Type Anticipated Capability Anticipated Capital Cost 	Combined Cycle w/Duct Firing & Chilling TBD Combined Cycle 620 MW
 Facility Name Facility Location Facility Type Anticipated Capability Anticipated Capital Cost Application Timing 	Combined Cycle w/Duct Firing & Chilling TBD Combined Cycle 620 MW
 Facility Name Facility Location Facility Type Anticipated Capability Anticipated Capital Cost Application Timing Construction timing 	Combined Cycle w/Duct Firing & Chilling TBD Combined Cycle 620 MW 1 year 4 years
 Facility Name Facility Location Facility Type Anticipated Capability Anticipated Capital Cost Application Timing Construction timing Planned Pollution Control Measures 	Combined Cycle w/Duct Firing & Chilling TBD Combined Cycle 620 MW 1 year 4 years NOx
 Facility Name Facility Location Facility Type Anticipated Capability Anticipated Capital Cost Application Timing Construction timing Planned Pollution Control Measures Fuel 	Combined Cycle w/Duct Firing & Chilling TBD Combined Cycle 620 MW 1 year 1 year 4 years NOx Natural Gas

Appendix 4 B

Cross-Reference Table of RP Requirements

CROSS-REFERENCE OF RESOURCE PLAN D	EVELOPMENT REQUIREMENTS	
Requirement	Location	Reference
Discussion and analysis of anticipated technological changes expected to influence:		
generation mix	Sections K, L and M	4901:5-5-06 A.1
use of energy efficiency and peak-demand reduction programs	Section H	4901:5-5-06 A.1
availability of fuels	Section E, part 2	4901:5-5-06 A.1
type of generation	Sections K, L and M	4901:5-5-06 A.1
use of alternative energy resources	Section J	4901:5-5-06 A.1
Discussion and analysis of availability and potential development of alternative energy resources	Section J, all parts	4901:5-5-06 A.2
Discussion and analysis of research, development, and demonstration efforts relating to alternative energy resources	Section J. all parts	4901:5-5-06 A 3
Discussion and analysis of the impact of environmental regulations on	Section E, part 4 and	
generating capacity, cost, and reliability	Section F, all parts	4901:5-5-06 A.4
Discussion and analysis of textual material not specifically required, but of		
importance to the resource forecast	Sections B, F, I and J	4901:5-5-06 A.5
Electricity resource forecast forms		
Form FE-R1	Appendix A	4901:5-5-06 A.6.a
Form FE-R2	Appendix A	4901:5-5-06 A.6.b
Form FE-R3	Appendix A	4901:5-5-06 A.6.c
Form FE-R4	Appendix A	4901:5-5-06 A.6.d.i
Form FE-R5	Appendix A	4901:5-5-06 A.6.dii
Form FE-R6	Appendix A	4901:5-5-06 A.6.d.iii
Form FE-R7	Appendix A	4901:5-5-06 A.6.d.iv
Form FE-R8	Appendix A	4901:5-5-06 A.6.d.v
Form FE-R9	Appendix A	4901:5-5-06 A.6.d.vi
Form FE-R10	Appendix A	4901:5-5-06 A.6.e.i 4001:5-5-06 A.6.e.i
Existing generation system description	Section E, part 1 and Appendix A	4901:5-5-06 B.1.a
Existing pooling, mutual assistance, and all purchase/sales agreements including costs and amounts	Section G	4901:5-5-06 B.1.b

CROSS-REFERENCE OF RESOURCE PLAN D	EVELOPMENT REQUIREMENTS	
Requirement	Location	Reference
System load profile	PUCO Forms FE-D1-6	4901:5-5-06 B.2.a
Maintenance requirements of existing and planned units	Section E, part 3	4901:5-5-06 B.2.b
Number, size, and availability of existing and planned units	Section E, parts 1 & 3, Appendix A	4901:5-5-06 B.2.c
Forecast uncertainty	Section D, part 1	4901:5-5-06 B.2.d
Option uncertainty with respect to cost, availability, in-service dates, and performance	Section H, part 2 & Section I, part 2 Sections J & K	4901:5-5-06 B.2.e
Lead times for construction and implementation	Appendix A, Form FE-R10	4901:5-5-06 B.2.f
Power interchange with other electric systems	Section G	4901:5-5-06 B.2.g
Price-responsive demand and price elasticity due to the implementation of time- differentiated pricing options	Section M	4901:5-5-06 B.2.h
Regulatory climate	Sections A, B, D, F, H, J, L & M	4901:5-5-06 B.2.i
Reliability criteria and reliability measures used	Section D, part 2 & Section J, part 5	4901:5-5-06 B.2.j.i
Reliability criteria and engineering analysis performed	Section D, part 2 & Section J, part 5	4901:5-5-06 B.2.j.ii
Reliability criteria and economic analysis performed	Section D, part 2 & Section J, part 5	4901:5-5-06 B.2.j.iii
Reliability criteria and any judgments applied	Section D, part 2 & Section J, part 5	4901:5-5-06 B.2.j.iv
Resource plan description of base case projected resource mix	Sections K, L & M	4901:5-5-06 B.3.a
Resource plan discussion of projected system reliability	Section D, part 2 & Section J, part 5	4901:5-5-06 B.3.b.i
Resource plan discussion of projected adequacy of fuel supply	Section E, part 2	4901:5-5-06 B.3.b.ii
Resource plan discussion of revenue requirements and rate impacts of base and alternative plans	Sections C & M	4901:5-5-06 B.3.c
Resource plan methodology discussion of: decision-making process, criteria, and standards employed overall planning objectives (4901: 5-5-03 paragraph A)	Sections C. D. L. J. K. L & M	4901:5-5-06 B.3.d.i 4901:5-5-06 B.3.d.i
key assumptions and judgments used in development		4901:5-5-06 B.3.d.iii
Discussion of adequacy, reliability, and cost-effectiveness of the plan	Sections A, C, D, E, F, H, I, J, K, L & M	4901:5-5-06 B.3.e.i
Discussion of evaluation equality among all resource options	Sections H, I, J, K & M	4901:5-5-06 B.3.e.ii
Discussion of adequate consideration of potential rate and customer bill impacts	Sections C & M	4901:5-5-06B.3.e.iii.a

CROSS-REFERENCE OF RESOURCE PLAN D	EVELOPMENT REQUIREMENTS	
Requirement	Location	Reference
Discussion of adequate consideration of environmental impacts and their		
associated costs	Section E, part 4 & Section F	4901:5-5-06B.3.e.iii.b
Discussion of adequate consideration of other economic impacts and their		
associated costs	Sections C, D, I, J, K, L & M	4901:5-5-06B.3.e.iii.c
Discussion of adequate consideration of plan impact on financial status of		
the company	Section M	4901:5-5-06B.3.e.iii.d
Discussion of adequate consideration of plan impact on other strategic		
decisions (flexibility, diversity, size and lead times, and lost investment	Sections C, D, I, J, K, L & M	4901:5-5-06B.3.e.iii.e
opportunities)		
Discussion on adequate consideration of plan impact on		
equity among customer classes	Section M	4901:5-5-06B.3.e.iii.f
Discussion on adequate consideration of plan impact over time	Sections C, D, I, J, K, L & M	4901:5-5-06B.3.e.iii.g
Discussion on adequate consideration of plan impact on other matters the		
commission considers appropriate		4901:5-5-06B.3.e.iii.h