December 29, 2010
Chairman Alan Schriber
Ohio Power Siting Board
Public Utilities Commission of Ohio
180 East Broad Street
Columbus, OH 43215-3793

Matthew J. Satterwhite
Senior Counsel Regulatory Services
(614) 716-1915 (P)
(614) 716-2014 (F)
mjsatterwhite@aep.com

Re: In the Matter of Fifth Third Bank)
 and Columbus Southern Power)
 Company for Approval of a) Case No. 10-1865-EL-EEC Special Arrangement Agreement) with a Mercantile Customer)

Dear Chairman Schriber,
Attached please find the Joint Application of Columbus Southern Power (CSP) and mercantile customer Fifth Third Bank for approval of a Special Arrangement of the commitment of energy efficiency/peak demand reduction (EE/PDR) resources toward compliance with the statutory benchmarks.

Amended Substitute Senate Bill 221 sets forth in R.C. 4928.66 EE/PDR benchmarks that electric distribution utilities shall be required to meet or exceed. The statute allows utilities to include EE/PDR resources committed by mercantile customers for integration into the utilities programs to be counted toward compliance with a utility's EE/PDR benchmarks. The statute also enables the Commission to approve special arrangements for mercantile customers that commit EE/PDR resources to be counted toward compliance with EE/PDR benchmarks.

The Commission's Order in Case No. 10-834-EL-EEC, established a streamlined process to expedite review of these special arrangements by developing a sample application process for parties to follow for consideration of such programs implemented during the prior three calendar years. Attached is CSP's version of that application and accompanying affidavit. Any confidential information referenced in the Joint Application has been filed in Commission Docket 10-1799-EL-EEC, under a request for protective treatment. CSP respectfully requests that the Commission treat the two cases as associated dockets.

Cordially,
/s/ Matthew J. Satterwhite
Matthew J. Satterwhite, Senior Counsel
Attachments

Application to Commit
Energy Efficiency/Peak Demand
Reduction Programs
(Mercantile Customers Only)

Case No.: 10-1865-EL-EEC

Rule 4901:1-39-05(F), Ohio Administrative Code (O.A.C.), permits a mercantile customer to file, either individually or jointly with an electric utility, an application to commit the customer's existing demand reduction, demand response, and energy efficiency programs for integration with the electric utility's programs. The following application form is to be used by mercantile customers, either individually or jointly with their electric utility, to apply for commitment of such programs implemented during the prior three calendar years.

Completed applications requesting the cash rebate reasonable arrangement option (Option 1) in lieu of an exemption from the rider will be automatically approved on the sixty-first calendar day after filing, unless the Commission, or an attorney examiner, suspends or denies the application prior to that time. Completed applications requesting the exemption from the electric utilities' energy efficiency rider option (Option 2) will not qualify for the 60-day automatic approval.

Complete a separate application for each customer program. Projects undertaken by a customer as a single program at a single location or at various locations within the same service territory should be submitted together as a single program filing, when possible. Check all boxes that are applicable to your program. For each box checked, be sure to complete all subparts of the question, and provide all requested additional information. Submittal of incomplete applications may result in a suspension of the automatic approval process or denial of the application.

If you consider some of the items requested in the application to be confidential or trade secret information, please file a copy of the application under seal, along with a motion for protective order pertaining to the material you believe to be confidential. Please also file a copy of the application in the public docket, with the information you believe to be confidential redacted.

Section 1: Company Information

Name: FIFTH THIRD BANK

Principal address: 38 Fountain Square, Cincinnati, Oh 45263
Address of facility for which this energy efficiency program applies: Various Locations (See Attachment 1 Summary Sheet)

Name and telephone number for responses to questions:
Jonathan Swann, Fifth Third Bank, (614) 367-9896
Electricity use by our company (at least one must apply to your company - check the box or boxes that apply):
\square We use more than seven hundred thousand kilowatt hours per year at our facility. (Please attach documentation.)

See Confidential and Proprietary Attachment 4 - Calculation of Rider Exemption and UCT which provides the facility consumption for the last three years, benchmark kWh, and the last 12 months usage.
\boxtimes We are part of a national account involving multiple facilities in one or more states. (Please attach documentation.) When checked, see Attachment 6 - Supporting Documentation for a listing of the customer's name and service addresses of other accounts in the AEP Ohio service territory.

Section 2: Application Information

A) We are filing this application (choose which applies):
\square Individually, on our own.
\boxtimes Jointly with our electric utility.
B) Our electric utility is: Columbus Southern Power Company

The application to participate in the electric utility energy efficiency program is "Confidential and Proprietary Attachment 3 - Self Direct Program Project Completed Application."
C) We are offering to commit (choose which applies):
\square Energy savings from our energy efficiency program. (Complete Sections $3,5,6$, and 7.)
\square Demand reduction from our demand response/demand reduction program. (Complete Sections 4, 5, 6, and 7.)
\boxtimes Both the energy savings and the demand reduction from our energy efficiency program. (Complete all sections of the Application.)

Section 3: Energy Efficiency Programs

A) Our energy efficiency program involves (choose whichever applies):
\boxtimes Early replacement of fully functioning equipment with new equipment. (Provide the date on which you replaced your fully functioning equipment, Various Dates (See Attachment 1 Summary Sheet) and the date on which you would have replaced your equipment if you had not replaced it early. Please include a brief explanation for how you determined this future replacement date (or, if not known, please explain why this is not known)).

The remaining life of the equipment varies and is not known with certainty. The future replacement date is unknown and has historically been at the end of equipment life. Replacement was completed early to achieve energy savings and to reduce future maintenance costs.

Installation of new equipment to replace equipment that needed to be replaced. We installed our new equipment on the following date(s):

Installation of new equipment for new construction or facility expansion. We installed our new equipment on the following date(s):
B) Energy savings achieved/to be achieved by your energy efficiency program:
a) If you checked the box indicating that your project involves the early replacement of fully functioning equipment replaced with new equipment, then calculate the annual savings [(kWh used by the original equipment) $-(\mathrm{kWh}$ used by new equipment) $=(\mathrm{kWh}$ per year saved $)$. Please attach your calculations and record the results below:

Unit Quantity (watts) = Existing (watts x units) - Installed (watts x units)
kWh Reduction (Annual Savings) $=$ Unit Quantity $\mathrm{x}($ Deemed $\mathrm{kWh} /$ Unit $)$

Annual savings: 152,366 kWh

See Confidential and Proprietary Attachment 5 - Self Direct Program Project Calculation for annual energy savings calculations and Attachment $\underline{8}$ - Prescriptive Protocols for the work papers that provide all methodologies, protocols, and practices used in this application for prescriptive measures, as needed.
b) If you checked the box indicating that you installed new equipment to replace equipment that needed to be replaced, then calculate the annual savings [(kWh used by less efficient new equipment) - (kWh used by the
higher efficiency new equipment $)=(\mathrm{kWh}$ per year saved $)$]. Please attach your calculations and record the results below:

Annual savings: kWh
Please describe the less efficient new equipment that you rejected in favor of the more efficient new equipment.
c) If you checked the box indicating that your project involves equipment for new construction or facility expansion, then calculate the annual savings [(kWh used by less efficient new equipment) - (kWh used by higher efficiency new equipment) $=(\mathrm{kWh}$ per year saved $)$. Please attach your calculations and record the results below:

Annual savings: kWh
Please describe the less efficient new equipment that you rejected in favor of the more efficient new equipment.

Section 4: Demand Reduction/Demand Response Programs

A) Our program involves (choose which applies):
\boxtimes Coincident peak-demand savings from our energy efficiency program.Actual peak-demand reduction. (Attach a description and documentation of the peak-demand reduction.)
\square Potential peak-demand reduction (choose which applies):
> Choose one or more of the following that applies:
Our peak-demand reduction program meets the requirements to be counted as a capacity resource under a tariff of a regional transmission organization (RTO) approved by the Federal Energy Regulatory Commission.
\square Our peak-demand reduction program meets the requirements to be counted as a capacity resource under a program that is equivalent to an RTO program, which has been approved by the Public Utilities Commission of Ohio.
B) What is the date your peak demand reduction program was initiated?

The coincident peak-demand savings are permanent installations that reduce demand through energy efficiency and were installed on the date specified in Section 3 A above.
C) What is the peak demand reduction achieved or capable of being achieved (show calculations through which this was determined):

Unit Quantity (watts) = Existing (watts x units) - Installed (watts x units)
KW Demand Reduction $=$ Unit Quantity (watts) x (Deemed KW/Unit (watts))
31.8 kW

See Confidential and Proprietary Attachment 5 - Self Direct Program Project Calculation for peak demand reduction calculation, and Attachment 8 Prescriptive Protocols for the work papers that provide all methodologies, protocols, and practices used in this application for prescriptive measures, as needed.

Section 5: Request for Cash Rebate Reasonable Arrangement (Option 1) or Exemption from Rider (Option 2)

Under this section, check the box that applies and fill in all blanks relating to that choice.

Note: If Option 2 is selected, the application will not qualify for the 60-day automatic approval. All applications, however, will be considered on a timely basis by the Commission.
A) We are applying for:
\boxtimes Option 1: A cash rebate reasonable arrangement.
OR
\square Option 2: An exemption from the cost recovery mechanism implemented by the electric utility.
B) The value of the option that we are seeking is:

Option 1: A cash rebate reasonable arrangement, which is the lesser of (show both amounts):
\square A cash rebate, based on avoided generation cost, of \$ \qquad . (Attach documentation showing the methodology used to determine the cash rebate value and calculations showing how this payment amount was determined.)

OR
\boxtimes A cash rebate valued at no more than 50% of the total project cost, which is equal to $\$ 10,416.18$. (Attach documentation and calculations showing how this payment amount was determined.)

See Confidential and Proprietary Attachment 5 - Self Direct Program Project Calculation for incentive calculations for this mercantile program.

Option 2: An exemption from payment of the electric utility's energy efficiency/ peak demand reduction rider.
\square An exemption from payment of the electric utility's energy efficiency/peak demand reduction rider for ___ months (not to exceed 24 months). (Attach
calculations showing how this time period was determined.)

OR

Ongoing exemption from payment of the electric utility's energy efficiency/peak demand reduction rider for an initial period of 24 months because this program is part of an ongoing efficiency program that is practiced by our organization. (Attach documentation that establishes your organization's ongoing efficiency program. In order to continue the exemption beyond the initial 24 month period your organization will need to provide a future application establishing additional energy savings and the continuance of the organization's energy efficiency program.)

Section 6: Cost Effectiveness

The program is cost effective because it has a benefit/cost ratio greater than 1 using the (choose which applies):
\square
Total Resource Cost (TRC) Test. The calculated TRC value is: \qquad (Continue to Subsection 1, then skip Subsection 2)
\boxtimes Utility Cost Test (UCT) . The calculated UCT value is: various see summary Attachment 1 (Skip to Subsection 2.)

Subsection 1: TRC Test Used (please fill in all blanks).
The TRC value of the program is calculated by dividing the value of our avoided supply costs (capacity and energy) by the sum of our program costs and our electric utility's administrative costs to implement the program.

Our avoided supply costs were \qquad .

Our program costs were \qquad .

The utility's administrative costs were \qquad .

Subsection 2: UCT Used (please fill in all blanks).
We calculated the UCT value of our program by dividing the value of our avoided supply costs (capacity and energy) by the costs to our electric utility (including administrative costs and incentives paid or rider exemption costs) to obtain our commitment.

Our avoided supply costs were \$ 69,007.82
The utility's administrative costs were \$ 914.19
The utility's incentive costs/rebate costs were $\$ 10,416.18$.

Section 7: Additional Information

Please attach the following supporting documentation to this application:

- Narrative description of your program including, but not limited to, make, model, and year of any installed and replaced equipment.
See Attachment 1 - Self Direct Project Overview and Commitment for a description of the project. See Attachment 6 - Supporting Documentation, for the specifications of the replacement equipment Attachment 8 - Prescriptive Protocols for the work papers that provide all methodologies, protocols, and practices used in this application for prescriptive measures, as needed. Due to the length of time since the equipment replacement, the make, model and year of the replaced equipment is not available.
- A copy of the formal declaration or agreement that commits your program to the electric utility, including:

1) any confidentiality requirements associated with the agreement;

See Attachment 2 - Self Direct Program Project Blank Application including Rules and Requirements. All confidentially requirements are pursuant to the Retrospective Projects/Rules and Requirements that are part of the signed application which is provided as Confidential and Proprietary Attachment 3 - Self Direct Program Project Completed Application.)
2) a description of any consequences of noncompliance with the terms of the commitment;

See Attachment 2 - Self Direct Program Project Blank Application including Rules and Requirements. All consequences of noncompliance are pursuant to the Retrospective Projects/Rules and Requirements that are part of the signed application which is provided as Confidential and Proprietary Attachment 3 - Self Direct Program Project Completed Application.
3) a description of coordination requirements between you and the electric utility with regard to peak demand reduction;
None required because the resources committed are permanent installations that reduce demand through increased efficiency during the Company's peak summer demand period generally defined as May through September and do not require specific coordination and communication to provide demand reduction capabilities to the Company.
4) permission by you to the electric utility and Commission staff and consultants to measure and verify energy savings and/or peak-demand reductions resulting from your program; and,
See Attachment 2 - Self Direct Program Blank Application including Rules and Requirements granting such permission pursuant to the Retrospective Projects/Rules and Requirements that are part of the signed application which is provided as Confidential and Proprietary Attachment 3 - Self Direct Program Project Completed Application.
5) a commitment by you to provide an annual report on your energy savings and electric utility peak-demand reductions achieved.
See Attachment 1 - Self Direct Project Overview and Commitment for the commitment to comply with any information and compliance reporting requirements imposed by rule or as part of the approval of this arrangement by the Public Utilities Commission of Ohio.

- A description of all methodologies, protocols, and practices used or proposed to be used in measuring and verifying program results. Additionally, identify and explain all deviations from any program measurement and verification guidelines that may be published by the Commission.
The Company applies the same methodologies, protocols, and practices to Self Direct Program retrospective projects that are screened and submitted for approval as it does to prospective projects submitted through its Prescriptive and Custom Programs. The Commission has not published a technical reference manual for use by the Company so deviations can not be identified. The project submitted is a prescriptive project and energy savings are determined as described in Confidential and Proprietary Attachment 5 - Self Direct Program Project Calculation, and Attachment 8 - Prescriptive Protocols for the work papers that provide all methodologies, protocols, and practices used in this application for prescriptive measures, as needed.

OhIo Public Utililities Commission

Application to Commit Energy Efficiency/Peak Demand Reduction Programs
(Mercantile Customers Only)

Case No.: 10-1865-EL-EEC

State of \qquad O
\qquad , Affiant, being duly sworn according to law, deposes and says that:

1. I am the duly authorized representative of:

KEMA Services, Inc agent of Columbus Southern Power
2. I have personally examined all the information contained in the foregoing application, including any exhibits and attachments. Based upon my examination and inquiry of those persons immediately responsible for obtaining the information contained in the application, I believe that the information is true, accurate and complete.
3. I am aware of fines and penalties which may be imposed under Ohio Revised Code Sections 2921.11, 2921.31, 4903.02, 4903.03, and 4903.99 for submitting false information.

Sworn and subscribed before me this 2\&ithy of Nectmasen, 20ro_Month/Year

Signature of official administering oath
Phgile, Down olitralacen Manage

My commission expires on $0 /-03-2011$

Self Direct Project Overview \& Commitment

The Public Utility Commission of Ohio (PUCO) will soon review your application for participation in AEP Ohio's Energy Efficiency/Peak Demand Response program. Based on your submitted project, please select by initialing one of the two options below, sign

Note: This is a one time selection. By selecting Option 1, the customer will receive payment in the amolunt stated above. Selection of Option 2. $E E / P D R$ rider exemprion, will result in the customer not being eligible to participate in any other energy efficiency programs offered by $A E P$ Ohio during the period of exemption. In addition, the term of Option 2: EE/PDR rider exemption is subject to ongoing review for compliance and could be changed by the PUCO.

If Option 1 has been selected, will the Energy Efficiency Funds selected help you move forward with other energy efficiency projects?

Project Overview:

The Self Direct (Prescriptive and Custom) projects that the above has completed and applied is as follows.

Projects:

AEP-10-02257	AEP-10-02286
AEP-10-02260	AEP-10-02287
AEP-10-02267	AEP-10-02288
AEP-10-02269	AEP-10-02305
AEP-10-02270	AEP-10-02309
AEP-10-02274	AEP-10-02311
AEP-10-02278	AEP-10-02312

The documentation that was included with the application proved that the energy measures applied for were purchased and installed.
By signing this document, the Mercantile customer affirms is intention to commit and integrate the above listed energy efficiency resources into the utility's peak demand reduction, demand response, and energy efficiency programs. By signing, the Mercantile customer also agrees to serve as a joint applicant in any flings necessary to secure approval of this arrangement by the Public Utilities Commission of Ohio, and comply with any information and compliance reporting requirements imposed by rule or as part of that approval.

Columbus Southern Power Company

FIFTH THIRD BANK

Date: $12 \% \mathrm{z} \cdot 10$

Project \#AEP-10-2257, 2260, 2267, 2269, 2270, 2274, 2278, 2286, 2287, 2288, 2305, 2309, 2311, 2312

	Project 1	Project 2	Project 3	Project 4	Project 5
Customer Name	FIFTH THIRD BANK				
Project Number	AEP-10-02257	AEP-10-02260	AEP-10-02267	AEP-10-02269	AEP-10-02270
Customer Premise Address	$\begin{aligned} & 1340 \text { BETHEL RD, COLUMBUS, } \mathrm{OH} \\ & 43220-2685 \end{aligned}$	2500 E DUBLIN GRANVILLE RD, COLUMBUS, OH 43231-4024	155 W MAIN ST, NEW ALBANY, OH 43054-9227	3949 W POWELL RD, POWELL, OH 43065-7984	7425 STATE ROUTE 3 , WESTERVILLE, OH 43082-8682
Customer Mailing Address	38 Fountain Square, Cincinnati, $\mathbf{O H}$ 45263				
Date Received	11/8/2010	11/8/2010	11/8/2010	11/8/2010	11/8/2010
Project Installation Date	7/2/2008	6/26/2008	6/18/2008	6/30/2008	6/26/2008
Annual kWh Reduction	9,656	10,501	16,753	9,823	17,548
Total Project Cost	\$6,291.85	\$7,147.59	\$11,309.08	\$6,071.57	\$9,401.23
Unadjusted Energy Efficiency Credit (EEC) Calculation	\$1,127.45	\$937.66	\$1,905.06	\$744.28	\$1,767.88
Simple Payback (yrs)	5.8	6.0	6.1	5.4	4.7
Utility Cost Test (UCT)	5.0	6.2	5.0	7.1	5.6
Option 1 - Self Direct EEC: 75\%	\$845.59	\$703.24	\$1,428.79	\$558.21	\$1,325.91
	Project 6	Project 7	Project 8	Project 9	Project 10
Customer Name	FIFTH THIRD BANK				
Project Number	AEP-10-02274	AEP-10-02278	AEP-10-02286	AEP-10-02287	AEP-10-02288
Customer Premise Address	2570 E MAIN ST, BEXLEY, OH 43209-2443	809 S HIGH ST, COLUMBUS, OH 43206-1910	3460 S HIGH ST, COLUMBUS, OH	2883 TAYLOR RD, REYNOLDSBURG, OH 43068-8028	1669 FISHINGER RD UNIT 3P, COLUMBUS, OH 43221-1419
Customer Mailing Address	38 Fountain Square, Cincinnati, $\mathbf{O H}$ 45263	38 Fountain Square, Cincinnati, OH 45263			
Date Received	11/8/2010	11/8/2010	11/8/2010	11/8/2010	11/8/2010
Project Installation Date	6/18/2008	6/19/2008	7/16/2008	6/17/2008	7/24/2008
Annual kWh Reduction	13,465	8,672	9,971	15,930	9,556
Total Project Cost	\$6,617.46	\$6,063.67	\$7,205.58	\$9,977.27	\$6,531.93
Unadjusted Energy Efficiency Credit (EEC) Calculation	\$1,227.14	\$1,125.52	\$1,227.42	\$2,034.43	\$684.48
Simple Payback (yrs)	4.3	6.1	6.4	5.5	6.0
Utility Cost Test (UCT)	6.3	4.4	4.6	4.6	7.5
Option 1 -Self Direct EEC: 75\%	\$920.36	\$844.14	\$920.56	\$1,525.82	\$513.36
	Project 11	Project 12	Project 13	Project 14	Totals
Customer Name	FIFTH THIRD BANK OF SOUTHERN OHIO	FIFTH THIRD BANK	FIFTH THIRD BANK OHIO VALLEY	FIFTH THIRD BANK	
Project Number	AEP-10-02305	AEP-10-02309	AEP-10-02311	AEP-10-02312	
Customer Premise Address	128 W MAIN ST, CHILLICOTHE, OH 45601-3106	60 N MAIN ST, PEEBLES, OH 45660- 1241	303 E EMMITT AVE, WAVERLY, OH 45690-1339	500 E MAIN ST, WEST UNION, OH 45693-1568	
Customer Mailing Address	38 Fountain Square, Cincinnati, $\mathbf{O H}$ 45263	38 Fountain Square, Cincinnati, OH 45263	38 Fountain Square, Cincinnati, OH 45263	38 Fountain Square, Cincinnati, OH 45263	
Date Received	11/8/2010	11/8/2010	11/8/2010	11/8/2010	
Project Installation Date	9/12/2008	8/20/2008	8/10/2008	8/19/2008	
Annual kWh Reduction	4,236	6,866	14,306	5,084	152,366
Total Project Cost	\$3,622.18	\$7,572.51	\$2,992.47	\$3,373.37	
Unadjusted Energy Efficiency Credit (EEC) Calculation	\$233.50	\$350.83	\$249.47	\$273.13	\$13,888.24
Simple Payback (yrs)	7.9	9.7	1.7	5.8	
Utility Cost Test (UCT)	10.4	11.3	18.9	10.6	
Option 1 -Self Direct EEC: 75\%	\$175.12	\$263.12	\$187.10	\$204.85	\$10,416.18

Attachment 2-Self Direct Program Project Application Blank including Rules and Requirements Page 1 of 9

Self-Direct Program
 Project Application

Step 1: Check Project and Equipment Eligibility
, Project must be a facility improvement that results in a permanent reduction in electrical energy usage (kWh).
\checkmark All installed equipment must meet or exceed the specifications given in the application and be installed in facilities served by AEP Ohio: Customer must have a valid AEP Ohio account number on an eligible AEP Ohio non-residential rate (see terms and conditions for list of eligible rates).

Step 2: Submit Application

, Fill out the Customer Information form and the Worksheet for the measures that you are installing. You may submit the application via mail, fax or e-mail.

Submit your application to:

AEP Ohio gridSMART Program

6031 East Main St. Suite 190
Columbus, OH 43213
Call: (877)-607-0739
Fax: (877)-607-0740
Email: gridsmartohio@kema.com
Visit our web site at gridsmartohio.com
\checkmark Submit an application prior to December 15,2010. Complete the checklist page and attach the documentation listed: a signed Agreement and Signature page, a scope of work (type, quantity and wattage of old and new equipment), dated, itemized invoices for the purchase and installation of all equipment installed and specification sheets for all equipment installed showing that it meets the program specifications.
Step 3: Project Review
, The program team will review your Application. For some projects, an inspection will be part of the review, and you will be contacted to schedule it.
, After approval by AEP Ohio self-direct projects are submitted to the Public Utilities Commission of Ohio (PUCO) for consideration. The PUCO will assign a case number and review the project details that were prepared by AEP Ohio. After the commission reviews the project the case will be put on the docket for a formal meeting. where action is taken to approve or reject the project for energy efficiency credits.
Step 4: Receive Energy Efficiency Credits
\checkmark The program team will issue the energy efficiency credits, within four to six weeks after PUCO project approval.
\checkmark In lieu of a one-time energy efficiency credit, you may elect to seek an exemption from the Energy Efficiency/ Peak Demand Reduction (EE/ PDR) Rider for the associated electric accounts(s) for a defined period of time as stated on this Application. For this exemption the Energy Efficiency Credit amount (Option 1) is compared to the estimated value of the estimated EE/PDR Rider obligation (Option 2), as calculated by AEP Ohio. The value of Option 2 will be approximately equal to the value of Option 1. If exemption is elected, you are not eligible for other programs offered by AEP Ohio during the exemption period. Unless additional resources are committed, you will, after the specified number of months exempted, be subject to the EE/ PDR Rider.
ح. If the energy efficiency credit is elected, you remain in the EE/ PDR rider for the period of time that an exemption would have been in effect and may also participate in the AEP Ohio programs.
\checkmark You are allowed and encouraged to consider using all or a portion of the energy credits, as received from AEP Ohio under this program, to help fund other energy efficiency and demand reduction projects you choose to initiate in the future. Future projects can also qualify for credits under the Prescriptive or Custom programs.

APPLICATION

Required Attachments
Customer/Contractor Information

- Completed Energy Efficiency Credits Requested Section of Agreement and Signature

PageCompleted Payment Release Section of Agreement and Signature Page (if applicable)Itemized Invoices
Equipment Specifications
Updated scope if project changed

Worksheets

Lighting
HVAC
Refrigeration
Motors and VFD
Custom
Application Date:

Completion Date:
*Incomplete applications will delay processing and energy efficiency credits.
"Please complete forms for above checked boxes

Please fill out if this is a revised submittal
SUBMITTAL DATE: \qquad
APPLICATION NUMBER (IF KNOWN): \qquad

AEP Ohio gridSMART Program
 6031 East Main St. Suite 190
 Columbus, OH 43213

Phone: (877)-607-0739
Fax: (877)-607-0740
gridsmartohio(0)kema.com
www.aridsmartohio.com

Self-Direct Program

Project Application

TERMS AND CONDITIONS

Columbus Southern Power and Ohio Power Company are collectively known as AEP Ohio (AEP Ohio). AEP Ohio is offering Prescriptive and Custom energy efficiency credits under the AEP Ohio gridSMART ${ }^{8 M}$ program to facilitate the implementation of past cost-effective energy-efficiency improvements for non-residential (commercial and industrial) customers. AEP Ohio provides energy efficiency credits (EEC) for the purchase and installation of qualifying cost effective equipment in the customer's facility (the Customer's "Commitment of Resources") under the Rules and Requirements provided in this application and subject to regulatory approvals. Energy efficiency credits will only be provided in the form of a check or an Energy Efficiency/Peak Demand Reduction (EE/PDR) Rider exemption under this program.

All applications are subject to review and approval by AEP Ohio, its contractor(s)/agent(s), and the Public Utility Commission of Ohio (PUCO) prior to any ECC payments or exemptions from the EE/PDR rider in this program. Funds are limited and subject to availability.

Program Effective Dates

gridSMART energy efficiency credits are offered until approved funds are exhausted or Dec 31 of each program year, whichever comes first. The effective dates of Year 2 of the gridSMART program and application submittal requirements are as follows:

- Self-direct projects are retrospective projects completed since $1 / 1 / 2007$. Self-direct projects are eligible to apply for energy efficiency credits with this application. Future projects that are not yet completed should apply on the Prescriptive/Custom application.
- All 2010 gridSMART program Applications must be received no later than Dec 15, 2010.
- Subsequent program year plans will be made available toward the end of the existing program year. At the current time, AEP Ohio has a commitment to provide this program through the 2010 program year.

Program and Project Eligibility

The Self-Direct Program applies to customers served at AEP Ohio's retail electric rates who meet the minimum energy usage requirements of $700,000 \mathrm{kWh}$ per year or who are part of a national account involving multiple facilities in one or more states.
The gridSMART program offers both Prescriptive energy efficiency credits for some of the more common energy efficiency measures and Custom energy efficiency credits for those eligible improvements not included on the list of Prescriptive measures. Program credits are available under the gridSMART program to non-residential customers served at AEP Ohio's regulated retail rates, where qualifying projects are installed in a facility in AEP Ohio's electric service territory. These credits are available to all non residential customers who pay into the Energy Efficiency and Peak Demand Response (EE/PDR) rider and receive their electricity over AEP Ohio wires, regardless of which retail electric supplier the customer has chosen to purchase power from.

Custom projects must involve measures that result in a reduction in electric energy usage due to an improvement in system efficiency. Projects that result in reduced energy consumption without an improvement in system efficiency are not eligible for a Custom credit. However, projects that involve an automated control technology such as energy management system programming may be eligible for a credit. All projects must meet AEP Ohio's cost-effectiveness requirements. The project simple payback prior to the credit must be greater than one year and pass utility cost effectiveness test(s) determined by AEP Ohio, to qualify for credit. The peak demand hours are defined as weekdays, 7:00 AM to 9:00 PM, May through September.

Projects involving measures covered by the Prescriptive energy efficiency credit portion of the program are not eligible for a Custom energy efficiency credit. However, the applicant has the option to apply for a Custom energy efficiency credit for whole building integrated projects or systems even if they include Prescriptive measures.

The energy efficiency credits are calculated in the following Prescriptive or Custom worksheets.

grid

Self-Direct Program Project Application

TERMS AND CONDITIONS

Project requirements under the AEP Ohio gridSMART program include the following:

- Projects must involve a facility improvement that results in a permanent reduction in electrical energy usage (kWh)
- Projects that are NOT eligible for a credit include the following:
- Fuel switching (e.g. electric to gas or gas to electric)
- Changes in operational and/or maintenance practices or simple control modifications not involving capital costs
- Removal or termination of existing processes, facilities, and/or operations
- On-site electricity generation
- Projects involving gas-driven equipment in place of or to replace electric equipment (such as a chiller)
- Projects focused primarily on power factor improvement;
- Projects that involve peak-shifting (and not kWh savings)
- Renewables
- Are required by state or federal law, building or other codes, or are standard industry practice
- Are easily reverted/removed or are installed entirely for reasons other than improving energy efficiency
- Include other conditions to be determined by AEP Ohio.
- Any measures installed at a facility must produce verifiable and persistent energy reduction. Measures must be sustainable and provide 100% of the energy benefits as stated in the Application for a period of at least five (5) years or for the life of the product, whichever is less. If the Customer ceases to be a delivery service customer of AEP Ohio or removes the equipment or systems at any time during the 5 -year period or the life of the product, the Customer may be required to return a prorated amount of credit funds to AEP Ohio.
- Customer can not apply for incentives for future projects and elect after the fact to apply for credits under this program.
- All documentation and verification is subject to strict confidentiality.
- All equipment must be new, used or rebuilt equipment is NOT eligible for energy efficiency credits
- All installed equipment must meet state, federal, or local codes and requirements
- Costs associated with internal labor are not eligible.
- Projects must be installed on the AEP Ohio electric account listed on the application
- Equipment must be purchased, installed, and operating (or capable of operating in the case of seasonal uses) prior to submitting an application for energy efficiency credits
- The energy efficiency credits are paid as a one-time, one-program offer and cannot be combined with incentive payments from other AEP Ohio programs. The customer may be eligible to participate in other programs offered by AEP Ohio, as long as no project receives more than one incentive/credit.

PROGRAM INCENTIVES	
Energy efficiency credit levels for one-year energy savings	$\$ 0.08 / k W h \times 75 \%$
Minimum / Maximum simple payback before energy efficiency credit applied	Or pass Min $/ 7$ year Max (determined by AEP Oheness test(s)
Maximum payout	50% of total project cost
(additional caps may also apply)	

```
grid
```


Self-Direct Program

 Project Application
TERMS AND CONDITIONS

Energy Efficiency Credit Limits

For both the Prescriptive and Custom measures in this application, the total energy efficiency credits shall be 75% of the lesser of. 1) The calculated credit as approved by AEP Ohio, or 2) 50% of the project cost with larger projects subject to the following limits and credit reductions. In calculating the savings and energy efficiency credits for Custom measures please contact the gridSMART office to determine appropriate baseline for savings.

Funding is limited

- The limit for each self-direct project is $\$ 225,000$.
- The limit for each business entity (corporation, LLC, partnership, etc) in the Self-Direct Program is based on their tariff, as indicated below:

TARIFF	LIMIT PER BUSINESS ENTITY
General Service Tariffs $1,2, \& 3$	$\$ 450,000$ per year
Any Other Tariff	$\$ 450,000$ overall for years 2009-2011

- A sliding scale credit reduction will be incorporated when the calculated energy efficiency credits exceed $\$ 160,000$ per project.

Application

Applications must be submitted by December 15, 2010 . Project documentation, such as copies of dated invoices for the purchase and installation of the measures and/or product specification sheets, is required. AEP Ohio reserves the right to request additional backup information, supporting detail, calculations, manufacturer specification sheets or any other information prior to any credit payment.

The location or business name on the invoice must be consistent with the application information. Applications and all required supporting documentation should be received by Dec 15,2010 , to be applicable for the 2010 program year.

A signed application with documentation verifying installation of the project including, but not limited to, equipment, invoices, approvals, and other related information must be submitted to AEP Ohio prior to application approval.

The project invoice should provide sufficient detail to separate the project cost from the cost of other services such as repairs and building code compliance. AEP Ohio reserves the right to request additional supporting documentation as deemed necessary to ensure measure eligibility and verify that the expected energy savings will occur. All customer information will be held in confidence. Requested information could include: equipment purchase dates, installation dates, proof that the equipment is operational, manufacturer specifications, warranty information, and proof of customer copayment.

The customer understands and agrees that all other terms and conditions, as specified in the application, including all attachments and exhibits attached to this application, which will serve as a contract for the customer's commitment of energy resources to AEP Ohio, shall apply.

Application Review Process

AEP Ohio will review Applications for eligibility and completeness. Completed applications will be reviewed in the order received. Funds are reserved for the project when AEP Ohio receives a complete application and determines that the project meets the program eligibility requirements. Applicants who submit incomplete applications will be notified of deficiencies upon review of the application, and could lose their place in line in the review process until all requested information is received. Applicants are encouraged to call the program hotline if they have any questions about documentation requirements.

grid
 Self-Direct Program
 Project Application

TERMS AND CONDITIONS

Inspections

AEP Ohio reserves the right to inspect all projects to verify compliance with the program rules and verify the accuracy of project documentation. This may include installation inspections, detailed lighting layout descriptions, metering. data collection, interviews, and utility bill data analysis. The customer must allow access to project documents and the facility where the measures were installed for a period of five years after receipt of energy efficiency credits by AEP Ohio. Customer understands and agrees that Program installations may also be subject to inspections by the PUCO or their designee, and photographs of installation may be required. All documentation and verification is subject to strict confidentiality.

Requirements for Custom Project Electricity Savings Calculation

The annual electricity savings must be calculated for Custom projects using industry accepted engineering algorithms or simulation models. The applicant must estimate the annual electricity usage of both the equipment removed (and baseline) and equipment installed based on the current operation of the facility. If the previous equipment was at the end of its useful life, the applicant must use as the baseline, the equipment that would meet the applicable federal and local energy codes when calculating the annual energy savings.

The applicant must be able to clearly describe the method used to calculate the savings. The applicant must provide all assumptions used in the calculations and document the source for these assumptions.

The method and assumptions used by the applicant to calculate the annual savings will be reviewed by AEP Ohio. AEP Ohio is solely responsible for the final determination of the annual energy savings to be used in calculating the energy efficiency credit amount. AEP Ohio also reserves the right to require specific measurement and verification activities including monitoring the retrofit and to determine the credit. Verification of the preexisting consumption may also be required.

AEP Ohio may need to conduct inspections both before and after the retrofit projects to verify equipment and operation conditions. For Custom projects, the applicant is required to provide information in order to allow AEP Ohio to verify the baseline usage of the pre-existing equipment.

Customers are encouraged to submit projects that warrant special treatment (i.e., non-typical projects) to be considered on a case-by-case basis by AEP Ohio.

Tax Liability

Credits are taxable and, if more than $\$ 600$, will be reported to the IRS unless the customer is exempt. AEP Ohio is not responsible for any taxes that may be imposed on your business as a result of your receipt of the energy efficiency credits.

Disclaimer

AEP Ohio does not guarantee the energy savings and does not make any warranties associated with the measures eligible for energy efficiency credits under this program. AEP Ohio has no obligations regarding and does not endorse or guarantee any claims, promises, work, or equipment made, performed, or furnished by any contractors or equipment vendors or manufacturers that sell or install any energy efficiency measures. AEP Ohio is not responsible for the proper disposal/recycling of any waste generated as a result of this project. AEP Ohio is not liable for any damage caused by the operation or malfunction of the installed equipment.

Attachment 2-Self Direct Program Project
Application Blank including Rules and Requirements Page 7 of 9

Self-Direct Program
 Project Application

AEP OHIO

SELF-DIRECT APPLICATION AGREEMENT

As an eligible AEP Ohio customer, I certify that the installation of the indicated energy efficiency measures, which will be demonstrated with supporting documentation required by AEP Ohio, and that work was completed on this project on or after Jan 1, 2007. The energy efficiency measures are for use on-site and not for resale. Project documentation, including copies of dated invoices for the purchase and installation of the measures and product specification sheets, is required. Further documentation requirements can be found at the program website www.gridsmartohio.com or by calling the program hotline.
I understand that the location or business name on the invoice must be consistent with the application information. Final Applications and all required supporting documentation should be received by Dec 15, 2010.

I agree to verification by the utility or their representatives of both sales transactions and equipment installation.
I understand that these energy efficiency credits are available to all eligible customers who pay the Energy Efficiency and Demand Response (EE/PDR) rider and receive their electricity over AEP Ohio wires regardless of which retail electric supplier the customer has chosen to purchase power from.

I certify that the information on this application is true and correct, and that the Taxpayer ID Number and tax status is the applicant's. I understand that incentives over $\$ 600$ will be reported to the IRS unless the applicant is exempt. I understand that energy efficiency credits assume related energy benefits over a period of 5 years or for the life of the product, whichever is less.
I agree that if: I remove the related product(s) identified in my application before a period of 5 years or the end of the product life, whichever is less, then I shall refund a prorated amount of energy efficiency credits to AEP Ohio based on the actual period of time in which the related product(s) were installed and operating. This is necessary to assure that the project's related energy benefits will be achieved.
I understand that the program may be modified or terminated without prior notice.
AEP Ohio reserves the right to refuse payment and participation if the customer or contractor violates Program rules and requirements. AEP Ohio is not liable for energy efficiency credits promised to customers as a result of misrepresentation of the Program.

Customer and customer's contractor shall be responsible to comply with any applicable codes or ordinances.
All submissions become the property of AEP Ohio. Keep a copy for your records.
I understand that the Application and all required documentation must be received by the AEP Ohio gridSMART ${ }^{\text {sm }}$ program prior to December 15,2010 . All equipment must be fully operational.
I understand that this project must involve a facility improvement that results in improved energy efficiency. I also understand that all materials removed, including lamps and PCB ballasts, must be permanently taken out of service and disposed of in accordance with local codes and ordinances. I understand it is my responsibility to be aware of any applicable codes or ordinances. Information about hazardous waste disposal can be found at: http://www.epa.gov/osw/hazwaste.htm.
AEP Ohio will pay 75% of the lesser of: 1) The calculated credit as approved by AEP Ohio subject to funding limits or 2) 50% of the total project cost (subject to application caps). I understand that AEP Ohio or their representatives have the right to ask for additional information at any time. AEP Ohio's gridSMART program will make the final determination of energy efficiency credit levels for this project.
The program has a limited budget. Applications will be processed within the budget limits. Applications and all supporting documentation required should be received by Dec 15,2010 to be eligible for funding under the current program period.

Customer understands and agrees that all other terms and conditions, as specified in the application, including all attachments and exhibits attached to this application which will serve as a contract for the Customer's commitment of energy and demand resources to AEP Ohio shall apply.

Self-Direct Program
 Project Application

AEP OHIO

SELF-DIRECT APPLICATION AGREEMENT

I understand that AEP Ohio does not guarantee the energy savings and does not make any warranties associated with the measures eligible for energy efficiency credits under this program, and, further, that AEP Ohio has no obligations regarding and does not endorse or guarantee any claims, promises, work, or equipment made, performed, or furnished by any contractors or equipment vendors that sell or install any energy efficiency measures.
Energy efficiency credits will be based upon the final application and program terms and conditions, as well as the availability of funds.

Any and all energy savings or environmental credits generated by the project described in this application will be retained by AEP Ohio.

ENERGY EFFICIENCY CREDITS REQUESTED
TOTAL PROJECT COST
CUSTOMER SIGNATURE (AEP CUSTOMER)
PRINT NAME TATAL ENERGY EFFICIENCY CREDITS REQUESTED

I have read and understand the program requirements and Measure Specifications and Terms and Conditions set forth in this application and agree to abide by those requirements. Furthermore, I concur that I must meet all eligibility criteria in order to be paid under this program.
ALL EQUIPMENT MUST BE INSTALLED AND OPERATIONAL. A CUSTOMER SIGNATURE IS REQUIRED. SIGNED APPLICATIONS RECEIVED BY FAX OR EMAIL WILL BE TREATED THE SAME AS ORIGINAL APPLICATIONS RECEIVED BY MAIL. All submissions become the property of AEP Ohio. Keep a copy for your records.

PAYMENT RELEASE AUTHORIZATION (OPTIONAL)

Complete this section ONLY if energy efficiency credits will be provided to an entity other than the AEP Ohio customer listed on the Applicant Information page.

I am authorizing the third party named below to receive my energy efficiency credits and I understand that I will not be receiving the energy efficiency credits from AEP Ohio. I also understand that my release of the payment to a third party does not exempt me from the program requirements outlined in the measure specifications and Terms \& Conditions.

Authorized by:

Self Direct Project Overview \& Commitment

The Public Utility Commission of Ohio (PUCO) will soon review your application for participation in AEP Ohio's Energy Efficiency/Peak Demand Response program. Based on your submitted project, please select by initialing one of the two options below, sign and fax to 877-607-0740.

Note: This is a one time selection. By selecting Option 1, the customer will receive payment in the amount stated above. Selection of Option 2: $E E / P D R$ rider exemption, will result in the customer not being eligible to participate in any other energy efficiency programs offered by $A E P$ Ohio during the period of exemption. In addition, the term of Option 2: EE/PDR rider exemption is subject to ongoing review for compliance and could be changed by the PUCO.
If Option 1 has been selected, will the Energy Efficiency Funds selected help you move forward with other energy efficiency projects?

Project Overview:

The Self Direct (Prescriptive and Custom) project that the above has completed and applied is as follows.
Retrofitted (5) 4' 1L T12 into (5) 4' 1L T8
Retrofitted (5) 4' 2L T12 into (5) 4' 2L T8
Retrofitted (31) 4' 2L T12 U-Tube into (31) 2' 3L T8
Retrofitted (1) 4' 3L T12 into (1) 4' 3L T8
Retrofitted (1) 4' 4L T12 into (1) 4' 2L T8
Converted (1) Incandescent Exit Sign into (1) LED Exit Sign
Converted (2) Open/Closed lane sign - 60W x 2 Lamps into (2) Open/Closed lane sign 7" x 34" - LED 3.4 Watts
Converted (2) Wall Switches - Manual into Wall Mount Occupancy Sensors
Converted (2) Manual constant setpoint thermostat into (2) Energy Star remote controllable thermostat
The documentation that was included with the application proved that the energy measures applied for were purchased and installed.
By signing this document, the Mercantile customer affirms its intention to commit and integrate the above listed energy efficiency resources into the utility's peak demand reduction, demand response, and energy efficiency programs. By signing, the Mercantile customer also agrees to serve as a joint applicant in any filings necessary to secure approval of this arrangement by the Public Utilities Commission of Ohio, and comply with any information and compliance reporting requirements imposed by rule or as part of that approval.

Columbus Southern Power Company

By: \qquad
Title: \qquad
Date: \qquad

FIFTH THIRD BANK

\qquad
By:

Date:

List of Fifth Third Bank properties within the AEP Ohio service territory

Note: State Savings Bank is a subsidiary of Fifth Third Bank.

Account Name	Billing Name	Service Address	City	State
Fifth Third Bank	FIFTH THIRD BANK	1340 BETHEL RD	COLUMBUS	OH
Fifth Third Bank	STATE SAVINGS BANK	3580 N HIGH ST	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	2500 E DUBLIN GRANVILLE RD	COLUMBUS	OH
Fifth Third Bank	STATE SAVINGS	229 S SANDUSKY ST	DELAWARE	OH
Fifth Third Bank	STATE SAVINGS BANK	6260 PERIMETER DR	DUBLIN	OH
Fifth Third Bank	FIFTH THIRD BANK	420 METRO PL APT A	DUBLIN	OH
Fifth Third Bank	STATE SAVINGS BANK	3800 W DUBLIN GRANVILLE RD	DUBLIN	OH
Fifth Third Bank	FIFTH THIRD BANK	434 HAVENS CORNERS RD	GAHANNA	OH
Fifth Third Bank	FIFTH THIRD BANK	3407 CLEVELAND AVE	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	155 W MAIN ST	NEW ALBANY	OH
Fifth Third Bank	STATE SAVINGS CO	1500 MORSE RD	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	3949 W POWELL RD	POWELL	OH
Fifth Third Bank	FIFTH THIRD BANK	7425 STATE ROUTE 3	WESTERVILLE	OH
Fifth Third Bank	STATE SAVINGS BANK	2081 HENDERSON RD	COLUMBUS	OH
Fifth Third Bank	STATE SAVINGS BANK	6895 N HIGH ST	WORTHINGTON	OH
Fifth Third Bank	STATE SAVINGS BANK	3011 E BROAD ST	COLUMBUS	OH
Fifth Third Bank	STATE SAVINGS BANK	2570 E MAIN ST	BEXLEY	OH
Fifth Third Bank	FIFTH THIRD BANK	159 E MAIN ST	CIRCLEVILLE	OH
Fifth Third Bank	STATE SAVINGS CO	2810 S HAMILTON RD	COLUMBUS	OH
Fifth Third Bank	STATE SAVINGS CO	1349 W 5TH AVE	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	809 S HIGH ST	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	2336 STRINGTOWN RD	GROVE CITY	OH
Fifth Third Bank	STATE SAVINGS CO	3990 BROADWAY	GROVE CITY	OH
Fifth Third Bank	STATE SAVINGS CO	1585 E MAIN ST	LANCASTER	OH
Fifth Third Bank	FIFTH THIRD BANK	2475 NORTHWEST BLVD	UPPER	OH
Fifth Third Bank	STATE SAVINGS CO	5055 W BROAD ST	COLUMBUS	OH
Fifth Third Bank	STATE SAVINGS INC	1235 N 21ST ST	NEWARK	OH
Fifth Third Bank	FIFTH THIRD BANK	6935 E MAIN ST	REYNOLDSBURG	OH
Fifth Third Bank	FIFTH THIRD BANK	3460 S HIGH ST	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	2883 TAYLOR RD	REYNOLDSBURG	OH
Fifth Third Bank	FIFTH THIRD BANK	1669 FISHINGER RD UNIT 3P	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	2455 HILLIARD ROME RD	HILLIARD	OH
Fifth Third Bank	FIFTH THIRD BANK	8877 OWENFIELD DR	LEWIS CENTER	OH
Fifth Third Bank	FIFTH THIRD BANK	4128 HOOVER RD	GROVE CITY	OH
Fifth Third Bank	FIFTH THIRD BANK	983 N CABLE RD	LIMA	OH
Fifth Third Bank	FIFTH THIRD OF WEST OH	225 N WEST ST	LIMA	OH
Fifth Third Bank	FIFTH THIRD BANK	2120 HARDING HWY	LIMA	OH
Fifth Third Bank	FIFTH THIRD BANK	2450 SHAWNEE RD BLDG 0439	LIMA	OH
Fifth Third Bank	FIFTH THIRD BK OF NW OHIC	337 S MAIN ST	FINDLAY	OH
Fifth Third Bank	FIFTH THIRD BANK	1735 TIFFIN AVE	FINDLAY	OH
Fifth Third Bank	FIFTH THIRD BANK NW OHIO	2720 N MAIN ST	FINDLAY	OH
Fifth Third Bank	FIFTH THIRD BANK	1412 S MAIN ST	FINDLAY	OH

Fifth Third Bank	FIFTH THIRD BANK	1207 OAK HARBOR RD	FREMONT	OH
Fifth Third Bank	FIFTH THIRD BANK	220 PERRY ST	FOSTORIA	OH
Fifth Third Bank	FIFTH THIRD BANK	720 W MARKET ST	TIFFIN	OH
Fifth Third Bank	FIFTH THIRD BANK	300 E SANDUSKY ST	FINDLAY	OH
Fifth Third Bank	FIFTH THIRD BANK OF SOUT	128 W MAIN ST	CHILLICOTHE	OH
Fifth Third Bank	FIFTH THIRD BANK	10551 US HIGHWAY 23	LUCASVILLE	OH
Fifth Third Bank	FIFTH THIRD BANK	31 E 2ND ST	MANCHESTER	OH
Fifth Third Bank	FIFTH THIRD BANK	511 N HIGH ST	HILLSBORO	OH
Fifth Third Bank	FIFTH THIRD BANK	60 N MAIN ST	PEEBLES	OH
Fifth Third Bank	FIFTH THIRD BANK	826 7TH ST	PORTSMOUTH	OH
Fifth Third Bank	5 3 BANK OHIO VALLEY	303 E EMMITT AVE	WAVERLY	OH
Fifth Third Bank	FIFTH THIRD BANK	500 E MAIN ST	WEST UNION	OH
Fifth Third Bank	FIFTH THIRD BANK	$7988-A ~ O H I O ~ R I V E R ~ R D ~$	WHEELERSBURG	OH
Fifth Third Bank	FIFTH THIRD BANK	5067 PORTAGE ST	UPPER	OH
Fifth Third Bank	FIFTH 3RD BANK	1819 W LANE AVE	OH	
Fifth Third Bank	FIFTH THIRD BANK	6031 GROVEPORT RD	OH	
Fifth Third Bank	FIFTH THIRD BANK	5342 N HAMILTON RD	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	8353 SANCUS BLVD	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	1637 N MAIN ST	NORTH CANTON	OH
Fifth Third Bank	FIFTH THIRD BANK	1669 HOLT RD	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	$3750 ~ F I S H I N G E R ~ B L V D ~$	HILLIARD	OH
Fifth Third Bank	FIFTH THIRD BANK	2152 SCHORRWAY DR	LANCASTER	OH
Fifth Third Bank	$5 T H ~ 3 R D ~ B A N K ~ I N C ~$	$3964 ~ F U L T O N ~ D R ~$	CANTON	OH
Fifth Third Bank	FITH THIRD BANK	4655 TUSCARAWAS ST	CANTON	OH
Fifth Third Bank	FIFTH THIRD BANK	$1960 ~ N ~ H I G H ~ S T ~$	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	4801 DRESSLER RD STE 100	OH	
Fifth Third Bank	FIFTH THIRD BANK	$4220 ~ C L E V E L A N D ~ A V E ~$	OH	

Square Footage of Locations by Project Number

AEP Project Number	Site Number	Square Footage	AEP Project Number	Site Number	Square Footage
AEP-10-02257	OH100479	2,971	AEP-10-02297	OH100641	3,120
AEP-10-02259	OH100480	1,660	AEP-10-02298	OH100642	3,220
AEP-10-02260	OH100481	4,371	AEP-10-02299	OH100643	2,220
AEP-10-02261	OH100482	1,550	AEP-10-02300	OH100644	4,200
AEP-10-02262	OH100484	2,760	AEP-10-02301	OH100647	12,478
AEP-10-02263	OH100485	4,000	AEP-10-02302	OH100650	3,350
AEP-10-02264	OH100486	28,698	AEP-10-02303	OH100670	450
AEP-10-02265	OH100487	3,240	AEP-10-02305	OH101151	5,714
AEP-10-02266	OH100490	2,680	AEP-10-02306	OH101156	2,170
AEP-10-02267	OH100494	6,085	AEP-10-02307	OH101157	4,000
AEP-10-02268	OH100495	3,000	AEP-10-02308	OH101158	6,890
AEP-10-02269	OH100498	4,514	AEP-10-02309	OH101159	4,224
AEP-10-02270	OH100500	5,832	AEP-10-02310	OH101160	65,945
AEP-10-02271	OH100501	1,992	AEP-10-02311	OH101162	1,000
AEP-10-02272	OH100502	3,240	AEP-10-02312	OH101163	4,000
AEP-10-02273	OH100503	3,400	AEP-10-02313	OH101164	5,000
AEP-10-02274	OH100504	3,277	AEP-10-02314	OH101184	4,200
AEP-10-02275	OH100508	4,025	AEP-10-02315	OH101186	2,920
AEP-10-02276	OH100509	1,800	AEP-10-02316	OH101189	3,500
AEP-10-02277	OH100513	3,000	AEP-10-02317	OH101195	4,155
AEP-10-02278	OH100514	3,400	AEP-10-02318	OH101198	4,200
AEP-10-02279	OH100515	2,752	AEP-10-02319	OH101205	4,115
AEP-10-02280	OH100516	3,402	AEP-10-02320	OH101220	4,200
AEP-10-02281	OH100517	2,176	AEP-10-02321	OH101238	1,651
AEP-10-02282	OH100518	3,900	AEP-10-02322	OH101239	4,200
AEP-10-02283	OH100519	3,240	AEP-10-02323	OH101248	4,200
AEP-10-02284	OH100520	2,500	AEP-10-02324	OH101256	4,200
AEP-10-02285	OH100522	2,680	AEP-10-02325	OH101260	4,200
AEP-10-02286	OH100523	3,684	AEP-10-02326	OH101401	4,200
AEP-10-02287	OH100524	5,621	AEP-10-02327	OH101415	4,200
AEP-10-02288	OH100525	3,000			
AEP-10-02289	OH100538	4,200			
AEP-10-02290	OH100539	4,200			
AEP-10-02291	OH100542	4,900			
AEP-10-02292	OH100548	2,800			
AEP-10-02293	OH100549	7,500			
AEP-10-02294	OH100550	2,500			
AEP-10-02295	OH100551	2,500			
AEP-10-02296	OH100640	18,740			

KEMAき

Programmable Thermostat

Measure Description	Installation of a programmable thermostat in place of a constant setpoint style thermostat.
Units	Per 1000 square feet
Base Case Description	Constant setpoint thermostats
Measure Savings	Source: This workpaper is based on the Michigan Statewide Energy Savings Database - Weather Sensitive Retrofit Measures for Residential and Commercial Buildings
Measure Incremental Cost	The total cost is assumed to be \$175 per 1,000 sf of conditioned space (or per thermostat).
Effective Useful Life	9 years

Programmable thermostats must meet ENERGY STAR® Version 2.0 criteria and must replace any non-programmable thermostat to automatically adjust the temperature at pre-selected times. To meet ENERGY STAR® standards, they must be capable of maintaining two separate programs (to address the different comfort needs of weekdays and weekends) and up to four temperature settings for each program.

Measure Savings

These savings are based on eQuest building models developed for the Michigan Statewide Energy Savings Database. The weather data used is for the Detroit airport area, which is more conservative than Columbus as Detroit has an average of 727 cooling degree days whereas, Columbus has an average of 925 cooling degree days (Source: National Climatic Data Center). The measure is to include temperature setback/setup during unoccupied hours. The savings assumes air conditioning with gas heating (gas package units).

Table 1 Programmable Thermostat Savings, per 1000 sq. ft

Building Type	kWh/unit
Assembly	1,063
Big Box Retail	579
Fast Food Restaurant	1,532
Full Service Restaurant	1,132
Light Industrial	502
Primary School	1,218
Small Office	748

Small Retail	1,036

Measure Life and Incremental Measure Cost

The following table provides the measure life and incremental measure cost (IMC) documented for this measure as well as the source of the data.

Table 2 Measure Life and Incremental Measure Cost

	Value	Source
Measure Life	9	MEMD
Incremental Measure Cost	$\$ 175$	MEMD

Pass \& Seymour

41 legrand

Features - Wall Switch Occupancy Sensors

- Detection Signature Analysis provides high immunity to RFI and EMI.
- Compact, decorator design replaces existing wall switch.
- Integrated light level sensor works from 10 to 150 footcandles.
- Compatible with all electronic and magnetic ballasts, PL lamp ballasts, compact fluorescent.
- 5-year warranty.
- cULus listed.

Decorator Devices

 Passive Infrared Sensors| Catalog Number | Description | Voltage | Load Requirements | Coverage | Time Delay | Color |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PIR Automatic Wall Switches - 3 Wire Technology | | | | | | |
| WSP200-I
 WSP200-W
 WSP200-GRY
 WSP200-LA | Passive Infrared Occupancy Sensor | $\begin{aligned} & \text { 120/277VAC; } \\ & 60 \mathrm{~Hz} \end{aligned}$ | 800W Max.
 at 120 V
 1200W Max.
 at 277 V | $\begin{aligned} & 180^{\circ}, \text { up to } \\ & 900 \text { sq. ft. } \end{aligned}$ | 30 sec . to 30 min . | Ivory
 White
 Gray
 Lt. Almond |

Planning a Layout

The WSP200's 2 -level lens provides superior coverage at desktop level by allowing the sensor to detect vertical as well as horizontal motion. Coverage shown is for walking motion. Under optimum conditions with a high level of activity and with no barriers or obstacles, coverage can reach a maximum of 900 square feet. Under a typical, desktop level of activity, when mounted at 4 feet, coverage is 300 square feet.

WSP200
Placement for PIR wall switch sensor

Single Level Lighting WSP200

Manual Bi-level Lighting WSP200

ALTO ${ }^{\circledR}$ Universal T8: Full Rated Average Life on All T8 Ballast Types,
Environmentally-Responsible Lamps. Ideal for any lighting application
Alto requiring maximum quality of light and maintain 2 2' and 3' T8
Allo Universal 1 Lamps 18 Iuorescent Lamps
Philips Exclusive Universal Design: The only T8 lamp to deliver full rated average life on all T8 ballast types (Instant Start, Rapid Start, Programmed Start and Hybrid ballasts)
Environmentally Responsible: Low mercury-TCLP*-compliant; energy efficient; long life
Sustainable Lighting Solution: Less mercury and fewer lamps in landfills, combined with energy efficiency, reduces the impact on the environment
Outstanding Lumen Maintenance: $\mathrm{HI}-\mathrm{VISION}$ ® Phosphor combined with Philips exclusive cathode guard delivers 95% lumen maintenance and reduced lamp-end blackening
Enhanced CRI: 86 CRI for TL80 lamps; 78 CRI for TL70 lamps

PHILIPS
ALTO UNIVERSAL F32TA/TL830NALTO HI-VISION/32 WATT Alto

Alfo		
Nom.	Product	
Lamp	Number Symbols,	Ordering Watts

cubeitan

ALTO Universal T8 Fluorescent Lamps T8 Medium Bipin

17	36787-0	\$	FI7T8/TL830/ALTO	25	TL 830, 3000K	24	20,000	25,000	1400	1300	86
	36791-2	\$	FI7T8/TL835/ALTO	25	TL 835, 3500K	24	20,000	25,000	1400	1300	86
	36793-8	\$	FI7T8/TL84I/ALTO	25	TL 841, 4100K	24	20,000	25,000	1400	1300	86
	36807-6	\$	FI7T8/TL730/ALTO	25	TL 730, 3000K	24	20,000	25,000	1325	1200	78
	36808-4	\$	FI7T8/TL735/ALTO	25	TL 735, 3500K	24	20,000	25,000	1325	1200	78
	36812-6	\$	FI7T8/TL74I/ALTO	25	TL 741, 4100K	24	20,000	25,000	1325	1200	78
25	36813-4		F25T8/TL830/ALTO	25	TL 830, 3000K	36	20,000	25,000	2225	2050	86
	36814-2	\$	F25T8/TL835/ALTO	25	TL 835, 3500K	36	20,000	25,000	2225	2050	86
	36825-8	\$	F25T8/TL84I/ALTO	25	TL 841, 4100K	36	20,000	25,000	2225	2050	86
	36826-6	\$	F25T8/TL730/ALTO	25	TL 730, 3000K	36	20,000	25,000	2125	1925	78
	36828-2	\$	F25T8/TL735/ALTO	25	TL 735, 3500K	36	20,000	25,000	2125	1925	78
	36829-0	\$	F25T8/TL74I/ALTO	25	TL 741, 4100K	36	20,000	25,000	2125	1925	78
32	24667-8	(E) \$	F32T8/TL830/ALTO	25	TL 830, 3000K	48	20,000	25,000	2950	2800	86
	27236-9	(E) $\$$	F32T8/TL830/ALTO PLZ	1350	TL 830, 3000K	48	20,000	25,000	2950	2800	86
	24670-2	(E) $\$$	F32T8/TL835/ALTO	25	TL 835, 3500K	48	20,000	25,000	2950	2800	86
	27233-6	(E) $\$$	F32T8/TL835/ALTO PLZ	1350	TL 835, 3500K	48	20,000	25,000	2950	2800	86
	24671-0	(E) $\$$	F32T8/TL84I/ALTO	25	TL 841, 4100K	48	20,000	25,000	2950	2800	86
	27235-1	(E) \$	F32T8/TL84I/ALTO PLZ	1350	TL 841, 4100K	48	20,000	25,000	2950	2800	86
	27229-4	(E) $\$$	F32T8/TL850/ALTO	25	TL 850, 5000K	48	20,000	25,000	2950	2800	86
	27252-6	(E) $\$$	F32T8/TL730 ALTO	25	TL 730, 3000K	48	20,000	25,000	2800	2660	78
	27282-3	(E) $\$$	F32T8/TL730/ALTO PLZ	1350	TL 730, 3000K	48	20,000	25,000	2800	2660	78
	27249-2	(E) $\$$	F32T8/TL735/ALTO	25	TL 735, 3500K	48	20,000	25,000	2800	2660	78
	27259-1	(E) $\$$	F32T8/TL735/ALTO PLZ	1350	TL 735, 3500K	48	20,000	25,000	2800	2660	78
	27248-4	(E) $\$$	F32T8/TL74I/ALTO	25	TL 741, 4100K	48	20,000	25,000	2800	2660	78
	38351-3	(E) $\$$	F32T8/TL74I/ALTO	10	TL 741, 4100K, 10 Pk .	48	20,000	25,000	2800	2660	78
	27255-9	(E) $\$$	F32T8/TL74I/ALTO PLZ	1350	TL 741, 4100K	48	20,000	25,000	2800	2660	78
	27268-2	(E) $\$$	F32T8/TL750/ALTO	25	TL 750, 5000K	48	20,000	25,000	2700	2550	78

For the most current product information, go to www.lighting.philips.com/nam/product_database/
Fluorescent symbols and footnotes located on page 77
\square This product utilizes ALTO® Lamp Technology

* The TCLP is the US EPA's Toxicity Characteristic Leaching Procedure.
\square
T8 Medium Bipin

A ADVANCE

Electrical Specifications 2' Ballasts

IOPA2P32LWSC@120V	
Brand Name	OPTANIUM 2.0
Ballast Type	Electronic
Starting Method	Instant Start
Lamp Connection	Parallel
Input Voltage	$120-277$
Input Frequency	$50 / 60 \mathrm{HZ}$
Status	Active

Lamp Type	Num. of Lamp s	Rated Lamp Watts	Min. Start Temp $\left({ }^{\circ} \mathrm{F} / \mathrm{C}\right.$)	Input Current $($ Amps $)$	Input Power (ANSI Watts)	Ballast Factor	MAX THD $\%$	Power Factor	MAX Lamp Current Crest Factor	B.E.F.
F17T8	1	17	$-20 /-29$	0.15	18	0.90	20	0.98	1.6	5.00
*F17T8	2	17	$-20 /-29$	0.23	27	0.80	10	0.99	1.6	2.96

Wiring Diagram

Diag. 64
The wiring diagram that appears above is for the lamp type denoted by the asterisk (*)

Standard Lead Length (inches)

	in.	cm.
Black	25	63.5
White	25	63.5
Blue	31	78.7
Red	37	94
Yellow		0
Gray		0
Violet		0

	in.	cm.
Yellow/Blue		0
Blue/White		0
Brown		0
Orange		0
Orange/Black		0
Black/White		0
Red/White		0

Enclosure

Enclosure Dimensions

OverAll (L)	Width (W)	Height (H)	Mounting (M)
9.500^{\prime}	1.7^{\prime}	$1.18^{\prime \prime}$	$8.90{ }^{\prime}$
$91 / 2$	$17 / 10$	$19 / 50$	$89 / 10$
24.1 cm	4.3 cm	3 cm	22.6 cm

Product Information Bulletin

OCTRON ${ }^{\circledR}$ 25W XP ${ }^{\circledR}$ SUPERSAVER ${ }^{\circledR}$ ECOLOGIC ${ }^{\circledR}$

EXtended Performance Fluorescent Lamps 4' T8 Lamps -

SYLVANIA 25 Watt OCTRON FO32/25W/800XP SUPERSAVER ECOLOGIC lamps operate on standard T8 instant start systems and provide 22% energy savings over standard 32 Watt OCTRON lamps where slight reductions in light are acceptable.

At $\$.10 / \mathrm{kWh}$ and 4000 hours of operation per year, the 22% savings translates to a savings of $\$ 9.80$ per fixture per year for a 4-lamp fixture with a normal ballast factor, instant start ballast. Changing from standard Cool White Energy Saving T12 lamps powered by energy saving magnetic ballasts to OCTRON FO32/25W/800XP/SS/ECO lamps combined with OSRAM SYLVANIA's QUICKTRONIC High Efficiency ISN ballasts could save $\$ 24$ a year with no light loss. These lamps pass the Federal TCLP test, classifying them as non-hazardous waste in most states. Group relamp to realize the benefits of these OCTRON lamps in your facility.

- Up to 22\% energy savings compared to standard 32W T8 lamp
- 25 Watt, 4-foot, SUPERSAVER energy saving, T8 lamp
- ECOLOGIC - Designed to pass TCLP ${ }^{1}$
- Initial lumens - 2475 (850 is 2300)
- 95% lumen maintenance at 8000 hours
- 3000K, 3500K, 4100K \& 5000K
- 85 CRI
- Retrofit lamp for existing T8 instant start systems - 24,000 hour average rated life @ 3 hrs. per start
- Also operates on OSRAM SYLVANIA QUICKTRONIC® Programmed Start ballasts
- 36,000 hour average rated life @ 3 hrs per start
- Minimum starting temperature: $70^{\circ} \mathrm{F}$
- Not dimmable
- Not for use in air handling fixtures
- Striation may occur if airflow is present (see application note 5)

SYLVANIA OCTRON T8 ECOLOGIC fluorescent lamps are designed to pass the Federal Toxicity Characteristic Leaching Procedure (TCLP) criteria for classification as non-hazardous waste in most states ${ }^{2}$.

1. TCLP test results are based on NEMA LL Series standards and are available on request.
2. Lamp disposal regulations may vary; check your local \& state regulations.

Product Availability

Lamp Type	Wattage	Color Temperature	CRI
F032/25W/830XP/SS/ECO	25	3000 K	85
F032/25W/835XP/SS/EC0	25	3500 K	85
F032/25W/841XP/SS/ECO	25	4100 K	85
F032/25W/850XP/SS/EC0	25	5000 K	85

Application Information

Applications

Retail Office Schools Hospitals Industrial Many applications with T8 instant start ballasts currently using 32W T8 lamps

Fixtures

Contact your local fixture agent for available fixtures.

Ballast Information

Contact your OSRAM SYLVANIA representative for a list of compatible electronic operating systems.

Application Notes

1. Recommended to be used on T8 F32 Instant Start circuits with minimum starting voltage of 550 v RMS.
2. Can operate on QUICKTRONIC Programmed Start Ballasts.
3. Fixture must conform to ANSI C78.81-2005 requirements for luminaire design.

Application Notes (continued)

4. Not recommended to be used: (1) with Rapid Start circuits unless the open circuit voltage is greater than 570V, (2) at lamp ambient temperatures below $70^{\circ} \mathrm{F}$ or in drafty locations, (3) in air handling fixtures, (4) on dimming ballasts, (5) on inverter operated emergency lighting systems unless any of the above equipment is specifically listed for 25 watt lamps, or (6) below $60^{\circ} \mathrm{F}$ starting temperature. Any of the above situations could result in lamp starting and stabilization problems, or system compatibility issues.
5. If an operating lamp is exposed to temperatures below $70^{\circ} \mathrm{F}$ or moving air (wind, drafts or air flow from an air conditioning or ventilation system), striation, a rhythmic pulsing pattern of light running the length of the tube and/or a reduction in brightness may occur. While visually disconcerting, neither behavior is damaging to the lamp and removing the cause (draft or temperature) will return the lamp to normal operation.

QHE Instant Start ballasts will operate F17, F25, \& F32 and the U-Bend equivalent \& energy saving T8 lamps. Complete performance data is available in the QUICKSYSTEMS section of the SYLVANIA Electronic Ballast Catalog

Specifications

Starting Method: Instant Start
Ballast Factor: 0.87
Circuit Type: Paralle
UL Type CC Rated
Lamp Frequency: > 40KHz
Lamp CCF: Less than 1.7
Starting Temp:
$-20^{\circ} \mathrm{F}$ for OCTRON T8 lamps; $60^{\circ} \mathrm{F}$ for SUPERSAVER ${ }^{\oplus}$ T8 lamps $0^{\circ} \mathrm{F}$ for F040T8
Input Frequency: 50/60 Hz
Low THD: < 10\%
Power Factor: > 98\%
Voltage Range: 108-305V
UL Listed Class P, Type 1 Outdoor UL Type CC
CSA Certified (where applicable)
$70^{\circ} \mathrm{C}$ Max Case Temperature
FCC 47 CFR Part 18 Non-Consumer Class A Sound Rating
ANSI 62.41 Cat. A Transient Protection
Remote Mounting up to 20 feet
GFCI compatible
Emergency ballast compatible
Operation below $50^{\circ} \mathrm{F}$ may affect light output or lamp operation - see "Low Temp. Starting definition.

System Life / Warranty

QUICKTRONIC products are covered by our QUICK 60+ ${ }^{\oplus}$ warranty, a comprehensive lamp and ballast system warranty. For additional details, refer to our QUICK 60+ warranty bulletin.

Specifications subject to change without notice.

Electrical Specifications

IOPA2P32LWN@120V	
Brand Name	OPTANIUM
Ballast Type	Electronic
Starting Method	Instant Start
Lamp Connection	Parallel
Input Voltage	$120-277$
Input Frequency	$50 / 60 \mathrm{HZ}$
Status	Active

| IOPA4P32 | |
| ---: | :--- | WSC@120V

Lamp Type	Num. of Lamps	Rated Lamp Watts	Min. Start Temp (${ }^{\circ}$ F/C)	Input Current (Amps)	Input Power (ANSI Watts)	Ballast Factor	MAX THD $\%$	Power Factor	MAX Lamp Current Crest Factor	B.E.F \cdot
F32T8/ES (25W)	3	25	$60 / 16$	0.52	62	0.85	10	0.99	1.6	1.37
*F32T8/ES $(25 W)$	4	25	$60 / 16$	0.52	77	0.77	10	0.99	1.6	11.00

Wiring Diagram

The wiring diagram that appears above is for the lamp type denoted by the asterisk (*)

Standard Lead Length (inches)

	in.	cm.
Black	25	63.5
White	25	63.5
Blue	31	78.7
Red	31	78.7
Yellow	39	99.1
Gray		0
Violet		0

Enclosure Dimensions

OverAll (L)	Width (W)	Height (H)	Mounting (M)
$9.50 "$	$1.7^{\prime \prime}$	$1.18^{\prime \prime}$	$8.90{ }^{\prime \prime}$
$91 / 2$	$17 / 10$	$19 / 50$	$89 / 10$
24.1 cm	4.3 cm	3 cm	22.6 cm

Polycarbonate Exit Signs Specification

Features

- Injection-molded thermoplastic ABS housing
- UL 94V-0 flame rating
- Innovative, snap-together design allows for fast installation
- Replaceable directional chevron inserts are easily removed and reinserted
- Lettes 6" height with $3 / 4$ " stroke
- Single or double face configuration
- Universal mounting- wall, side, or ceiling
- Housing snaps to canopy with simple twist and locking tightly secure housing to canopy
- 120/277 VAC dual voltage operation
- Low energy consumption- only 2.1 or 2.4 watts at 120 V
- LED indicator light and push button test switch
- LEDs mounted on print circuit board
- LED lamps are operating in normal (AC input) and emergency (DC input) modes
- Ni-Cd battery delivers more than 3 hours capacity to emergency lamps

- 24 hours recharge after 90 minutes discharge
- Low voltage battery disconnection- preventing deep discharge damage to the battery
- Maintenance-free battery provides an estimated service life of 10 years with an operating temperature range of $10^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$
- Power Factor of $>.95$
- UL Listed for damp location
- Meets NFPA 101, NEC, and NEMA code

Ordering Information				
Catalog Model \#	Description	$\begin{aligned} & \hline \text { LED } \\ & \text { Color } \end{aligned}$	Housing Color	$\begin{gathered} \mathrm{AC/} \\ \mathrm{BBUP} \end{gathered}$
20742D	Red LED Exit Sign Universal AC Only WH Housing	Red	White	AC
20743D	Red LED Exit Sign Universal Battery Backup WH Housing	Red	White	BBUP
20743DBLK	Red LED Exit Sign Universal Battery Backup BLK Housing	Red	Black	BBUP
20744D	Green LED Exit Sign Universal AC Only WH Housing	Green	White	AC
20745D	Green LED Exit Sign Universal Battery Backup WH Housing	Green	White	BBUP
20745DBLK	Green LED Exit Sign Universal Battery Backup BLK Housing	Green	Black	BBUP
20746D	Red LED Exit Sign Universal AC Only BLK Housing	Red	Black	
20748D	Green LED Exit Sign Universal AC Only BLK Housing	Green	Black	AC

	Accessories			
	Item \#	Description	Item \#	Description
c U us	$\begin{aligned} & \hline \text { 207WG } \\ & \text { 207WGWH } \\ & \text { 207PS } \\ & \text { 20730 } \\ & \text { 29999JR } \\ & \text { 29999JG } \end{aligned}$	Wire Guard for Exit Sign White Wire Guard for Exit Sign Polycarbonate Shield for Exit Sign Replacement Battery Ni-Cd 4.8V 650mAh Red Diffuser Panel Green Diffuser Panel	$\begin{aligned} & \text { 29999R2 } \\ & \text { 29999G2 } \\ & \text { 20704 } \\ & \text { CHEVRONPL } \\ & \text { 20708P } \end{aligned}$	Red Diffuser Panel with LED Strip Green Diffuser Panel with LED Strip Replacement White Canopy Replacement White Chevron Replacement Face Plate

TCP, Inc.

325 Campus Dr. | Aurora, Ohio 44202 | P: 800-324-1496 | F: 330-995-6188 | www.tcpi.com
©TCP, Inc. 2008/02804

Self Direct Project Overview \& Commitment

The Public Utility Commission of Ohio (PUCO) will soon review your application for participation in AEP Ohio's Energy Efficiency/Peak Demand Response program. Based on your submitted project, please select by initialing one of the two options below, sign and fax to 877-607-0740.

Customer Name	FIFTH THIRD BANK		
Project Number	AEP-10-02260		
Customer Premise Address	2500 E DUBLIN GRANVILLE RD, COLUMBUS, OH 43231-4024		
Customer Mailing Address	38 Fountain Square, Cincinnati, OH 45263		
Date Received	$11 / 8 / 2010$		
Project Installation Date	$6 / 26 / 2008$		
Annual kWh Reduction	10,501		
Total Project Cost	$\$ 7,147.59$		
Unadjusted Energy Efficiency Credit (EEC) Calculation	$\$ 937.66$		
Simple Payback (yrs)	6.0		
Utility Cost Test (UCT)	6.2		
Option 1 - Self Direct EEC: 75\%	$\$ 703.24$		
Option 2 - EE/PDR Rider Exemption	$\mathbf{3 2}$ Months (After PUCO Approval)		

Note: This is a one time selection. By selecting Option 1, the customer will receive payment in the amount stated above. Selection of Option 2: $E E / P D R$ rider exemption, will result in the customer not being eligible to participate in any other energy efficiency programs offered by $A E P$ Ohio during the period of exemption. In addition, the term of Option 2: EE/PDR rider exemption is subject to ongoing review for compliance and could be changed by the PUCO.
If Option 1 has been selected, will the Energy Efficiency Funds selected help you move forward with other energy efficiency projects?
\qquad NO

Project Overview:

The Self Direct (Prescriptive and Custom) project that the above has completed and applied is as follows.
Retroffited (15) 4' 2L T12 U-Tube into (15) 2' 3L T8
Retrofitted (1) 4' 3L T12 into (1) 4' 3L T8
Converted (3) Open/Closed lane sign LED 3.4 Watts lane signs
Installed occupancy sensors on (16) 4' 3L T8 25W fixtures
Converted (6) 4' 2L T8 32W Lamps into (6) 4' 2L T8 25W Lamps (No ballast change)
Converted (37) 4' 3L T8 32W Lamps into (37) 4' 3L T8 25W Lamps (No ballast change)
Converted (2) 4' 4L T8 32W Lamps into (2) 4' 4L T8 25W Lamps (No ballast change)
Converted (7) 4' 4L T8 32W U-Lamps into (7) 4' 4L T8 25W U-Lamps (No ballast change)
Converted (3) Manual constant setpoint thermostats into (3) Energy Star remote controllable thermostats
The documentation that was included with the application proved that the energy measures applied for were purchased and installed.
By signing this document, the Mercantile customer affirms its intention to commit and integrate the above listed energy efficiency resources into the utility's peak demand reduction, demand response, and energy efficiency programs. By signing, the Mercantile customer also agrees to serve as a joint applicant in any filings necessary to secure approval of this arrangement by the Public Utilities Commission of Ohio, and comply with any information and compliance reporting requirements imposed by rule or as part of that approval.

Columbus Southern Power Company

By: \qquad
Title: \qquad
Date: \qquad

FIFTH THIRD BANK

\qquad
Title:

List of Fifth Third Bank properties within the AEP Ohio service territory

Note: State Savings Bank is a subsidiary of Fifth Third Bank.

Account Name	Billing Name	Service Address	City	State
Fifth Third Bank	FIFTH THIRD BANK	1340 BETHEL RD	COLUMBUS	OH
Fifth Third Bank	STATE SAVINGS BANK	3580 N HIGH ST	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	2500 E DUBLIN GRANVILLE RD	COLUMBUS	OH
Fifth Third Bank	STATE SAVINGS	229 S SANDUSKY ST	DELAWARE	OH
Fifth Third Bank	STATE SAVINGS BANK	6260 PERIMETER DR	DUBLIN	OH
Fifth Third Bank	FIFTH THIRD BANK	420 METRO PL APT A	DUBLIN	OH
Fifth Third Bank	STATE SAVINGS BANK	3800 W DUBLIN GRANVILLE RD	DUBLIN	OH
Fifth Third Bank	FIFTH THIRD BANK	434 HAVENS CORNERS RD	GAHANNA	OH
Fifth Third Bank	FIFTH THIRD BANK	3407 CLEVELAND AVE	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	155 W MAIN ST	NEW ALBANY	OH
Fifth Third Bank	STATE SAVINGS CO	1500 MORSE RD	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	3949 W POWELL RD	POWELL	OH
Fifth Third Bank	FIFTH THIRD BANK	7425 STATE ROUTE 3	WESTERVILLE	OH
Fifth Third Bank	STATE SAVINGS BANK	2081 HENDERSON RD	COLUMBUS	OH
Fifth Third Bank	STATE SAVINGS BANK	6895 N HIGH ST	WORTHINGTON	OH
Fifth Third Bank	STATE SAVINGS BANK	3011 E BROAD ST	COLUMBUS	OH
Fifth Third Bank	STATE SAVINGS BANK	2570 E MAIN ST	BEXLEY	OH
Fifth Third Bank	FIFTH THIRD BANK	159 E MAIN ST	CIRCLEVILLE	OH
Fifth Third Bank	STATE SAVINGS CO	2810 S HAMILTON RD	COLUMBUS	OH
Fifth Third Bank	STATE SAVINGS CO	1349 W 5TH AVE	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	809 S HIGH ST	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	2336 STRINGTOWN RD	GROVE CITY	OH
Fifth Third Bank	STATE SAVINGS CO	3990 BROADWAY	GROVE CITY	OH
Fifth Third Bank	STATE SAVINGS CO	1585 E MAIN ST	LANCASTER	OH
Fifth Third Bank	FIFTH THIRD BANK	2475 NORTHWEST BLVD	UPPER	OH
Fifth Third Bank	STATE SAVINGS CO	5055 W BROAD ST	COLUMBUS	OH
Fifth Third Bank	STATE SAVINGS INC	1235 N 21ST ST	NEWARK	OH
Fifth Third Bank	FIFTH THIRD BANK	6935 E MAIN ST	REYNOLDSBURG	OH
Fifth Third Bank	FIFTH THIRD BANK	3460 S HIGH ST	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	2883 TAYLOR RD	REYNOLDSBURG	OH
Fifth Third Bank	FIFTH THIRD BANK	1669 FISHINGER RD UNIT 3P	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	2455 HILLIARD ROME RD	HILLIARD	OH
Fifth Third Bank	FIFTH THIRD BANK	8877 OWENFIELD DR	LEWIS CENTER	OH
Fifth Third Bank	FIFTH THIRD BANK	4128 HOOVER RD	GROVE CITY	OH
Fifth Third Bank	FIFTH THIRD BANK	983 N CABLE RD	LIMA	OH
Fifth Third Bank	FIFTH THIRD OF WEST OH	225 N WEST ST	LIMA	OH
Fifth Third Bank	FIFTH THIRD BANK	2120 HARDING HWY	LIMA	OH
Fifth Third Bank	FIFTH THIRD BANK	2450 SHAWNEE RD BLDG 0439	LIMA	OH
Fifth Third Bank	FIFTH THIRD BK OF NW OHIC	337 S MAIN ST	FINDLAY	OH
Fifth Third Bank	FIFTH THIRD BANK	1735 TIFFIN AVE	FINDLAY	OH
Fifth Third Bank	FIFTH THIRD BANK NW OHIO	2720 N MAIN ST	FINDLAY	OH
Fifth Third Bank	FIFTH THIRD BANK	1412 S MAIN ST	FINDLAY	OH

Fifth Third Bank	FIFTH THIRD BANK	1207 OAK HARBOR RD	FREMONT	OH
Fifth Third Bank	FIFTH THIRD BANK	220 PERRY ST	FOSTORIA	OH
Fifth Third Bank	FIFTH THIRD BANK	720 W MARKET ST	TIFFIN	OH
Fifth Third Bank	FIFTH THIRD BANK	300 E SANDUSKY ST	FINDLAY	OH
Fifth Third Bank	FIFTH THIRD BANK OF SOUTH	128 W MAIN ST	CHILLICOTHE	OH
Fifth Third Bank	FIFTH THIRD BANK	10551 US HIGHWAY 23	LUCASVILLE	OH
Fifth Third Bank	FIFTH THIRD BANK	31 E 2ND ST	MANCHESTER	OH
Fifth Third Bank	FIFTH THIRD BANK	511 N HIGH ST	HILLSBORO	OH
Fifth Third Bank	FIFTH THIRD BANK	60 N MAIN ST	PEEBLES	OH
Fifth Third Bank	FIFTH THIRD BANK	826 7TH ST	PORTSMOUTH	OH
Fifth Third Bank	53 BANK OHIO VALLEY	303 E EMMITT AVE	WAVERLY	OH
Fifth Third Bank	FIFTH THIRD BANK	500 E MAIN ST	WEST UNION	OH
Fifth Third Bank	FIFTH THIRD BANK	7988-A OHIO RIVER RD	WHEELERSBURG	OH
Fifth Third Bank	FIFTH THIRD BANK	5067 PORTAGE ST	NORTH CANTON	OH
Fifth Third Bank	FIFTH 3RD BANK	1819 W LANE AVE	UPPER	OH
Fifth Third Bank	FIFTH THIRD BANK	6031 GROVEPORT RD	GROVEPORT	OH
Fifth Third Bank	FIFTH THIRD BANK	5342 N HAMILTON RD	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	8353 SANCUS BLVD	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	1637 N MAIN ST	NORTH CANTON	OH
Fifth Third Bank	FIFTH THIRD BANK	1669 HOLT RD	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	3750 FISHINGER BLVD	HILLIARD	OH
Fifth Third Bank	FIFTH THIRD BANK	2152 SCHORRWAY DR	LANCASTER	OH
Fifth Third Bank	5TH 3RD BANK INC	3964 FULTON DR	CANTON	OH
Fifth Third Bank	FITH THIRD BANK	4655 TUSCARAWAS ST	CANTON	OH
Fifth Third Bank	FIFTH THIRD BANK	1960 N HIGH ST	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	4801 DRESSLER RD STE 100	CANTON	OH
Fifth Third Bank	FIFTH THIRD BANK	4220 CLEVELAND AVE	CANTON	OH

Square Footage of Locations by Project Number

AEP Project Number	Site Number	Square Footage	AEP Project Number	Site Number	Square Footage
AEP-10-02257	OH100479	2,971	AEP-10-02297	OH100641	3,120
AEP-10-02259	OH100480	1,660	AEP-10-02298	OH100642	3,220
AEP-10-02260	OH100481	4,371	AEP-10-02299	OH100643	2,220
AEP-10-02261	OH100482	1,550	AEP-10-02300	OH100644	4,200
AEP-10-02262	OH100484	2,760	AEP-10-02301	OH100647	12,478
AEP-10-02263	OH100485	4,000	AEP-10-02302	OH100650	3,350
AEP-10-02264	OH100486	28,698	AEP-10-02303	OH100670	450
AEP-10-02265	OH100487	3,240	AEP-10-02305	OH101151	5,714
AEP-10-02266	OH100490	2,680	AEP-10-02306	OH101156	2,170
AEP-10-02267	OH100494	6,085	AEP-10-02307	OH101157	4,000
AEP-10-02268	OH100495	3,000	AEP-10-02308	OH101158	6,890
AEP-10-02269	OH100498	4,514	AEP-10-02309	OH101159	4,224
AEP-10-02270	OH100500	5,832	AEP-10-02310	OH101160	65,945
AEP-10-02271	OH100501	1,992	AEP-10-02311	OH101162	1,000
AEP-10-02272	OH100502	3,240	AEP-10-02312	OH101163	4,000
AEP-10-02273	OH100503	3,400	AEP-10-02313	OH101164	5,000
AEP-10-02274	OH100504	3,277	AEP-10-02314	OH101184	4,200
AEP-10-02275	OH100508	4,025	AEP-10-02315	OH101186	2,920
AEP-10-02276	OH100509	1,800	AEP-10-02316	OH101189	3,500
AEP-10-02277	OH100513	3,000	AEP-10-02317	OH101195	4,155
AEP-10-02278	OH100514	3,400	AEP-10-02318	OH101198	4,200
AEP-10-02279	OH100515	2,752	AEP-10-02319	OH101205	4,115
AEP-10-02280	OH100516	3,402	AEP-10-02320	OH101220	4,200
AEP-10-02281	OH100517	2,176	AEP-10-02321	OH101238	1,651
AEP-10-02282	OH100518	3,900	AEP-10-02322	OH101239	4,200
AEP-10-02283	OH100519	3,240	AEP-10-02323	OH101248	4,200
AEP-10-02284	OH100520	2,500	AEP-10-02324	OH101256	4,200
AEP-10-02285	OH100522	2,680	AEP-10-02325	OH101260	4,200
AEP-10-02286	OH100523	3,684	AEP-10-02326	OH101401	4,200
AEP-10-02287	OH100524	5,621	AEP-10-02327	OH101415	4,200
AEP-10-02288	OH100525	3,000			
AEP-10-02289	OH100538	4,200			
AEP-10-02290	OH100539	4,200			
AEP-10-02291	OH100542	4,900			
AEP-10-02292	OH100548	2,800			
AEP-10-02293	OH100549	7,500			
AEP-10-02294	OH100550	2,500			
AEP-10-02295	OH100551	2,500			
AEP-10-02296	OH100640	18,740			

KEMA

Programmable Thermostat

Measure Description	Installation of a programmable thermostat in place of a constant setpoint style thermostat.
Units	Per 1000 square feet
Base Case Description	Constant setpoint thermostats
Measure Savings	Source: This workpaper is based on the Michigan Statewide Energy Savings Database - Weather Sensitive Retrofit Measures for Residential and Commercial Buildings
Measure Incremental Cost	The total cost is assumed to be \$175 per 1,000 sf of conditioned space (or per thermostat).
Effective Useful Life	9 years

Programmable thermostats must meet ENERGY STAR® Version 2.0 criteria and must replace any non-programmable thermostat to automatically adjust the temperature at pre-selected times. To meet ENERGY STAR® standards, they must be capable of maintaining two separate programs (to address the different comfort needs of weekdays and weekends) and up to four temperature settings for each program.

Measure Savings

These savings are based on eQuest building models developed for the Michigan Statewide Energy Savings Database. The weather data used is for the Detroit airport area, which is more conservative than Columbus as Detroit has an average of 727 cooling degree days whereas, Columbus has an average of 925 cooling degree days (Source: National Climatic Data Center). The measure is to include temperature setback/setup during unoccupied hours. The savings assumes air conditioning with gas heating (gas package units).

Table 1 Programmable Thermostat Savings, per 1000 sq. ft

Building Type	kWh/unit
Assembly	1,063
Big Box Retail	579
Fast Food Restaurant	1,532
Full Service Restaurant	1,132
Light Industrial	502
Primary School	1,218
Small Office	748

Small Retail	1,036

Measure Life and Incremental Measure Cost

The following table provides the measure life and incremental measure cost (IMC) documented for this measure as well as the source of the data.

Table 2 Measure Life and Incremental Measure Cost

	Value	Source
Measure Life	9	MEMD
Incremental Measure Cost	$\$ 175$	MEMD

Pass \& Seymour

41 legrand

Features - Wall Switch Occupancy Sensors

- Detection Signature Analysis provides high immunity to RFI and EMI.
- Compact, decorator design replaces existing wall switch.
- Integrated light level sensor works from 10 to 150 footcandles.
- Compatible with all electronic and magnetic ballasts, PL lamp ballasts, compact fluorescent.
- 5-year warranty.
- cULus listed.

Decorator Devices

 Passive Infrared Sensors| Catalog Number | Description | Voltage | Load Requirements | Coverage | Time Delay | Color |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PIR Automatic Wall Switches - 3 Wire Technology | | | | | | |
| WSP200-I
 WSP200-W
 WSP200-GRY
 WSP200-LA | Passive Infrared Occupancy Sensor | $\begin{aligned} & \text { 120/277VAC; } \\ & 60 \mathrm{~Hz} \end{aligned}$ | 800W Max.
 at 120 V
 1200W Max.
 at 277 V | $\begin{aligned} & 180^{\circ}, \text { up to } \\ & 900 \text { sq. ft. } \end{aligned}$ | 30 sec . to 30 min . | Ivory
 White
 Gray
 Lt. Almond |

Planning a Layout

The WSP200's 2 -level lens provides superior coverage at desktop level by allowing the sensor to detect vertical as well as horizontal motion. Coverage shown is for walking motion. Under optimum conditions with a high level of activity and with no barriers or obstacles, coverage can reach a maximum of 900 square feet. Under a typical, desktop level of activity, when mounted at 4 feet, coverage is 300 square feet.

WSP200
Placement for PIR wall switch sensor

Single Level Lighting WSP200

Manual Bi-level Lighting WSP200

A ADVANCE

Electrical Specifications
2' Ballasts

IOPA2P32LWSC@120V	
Brand Name	OPTANIUM 2.0
Ballast Type	Ilectronic
Starting Method	Instant Start
Lamp Connection	Parallel
Input Voltage	$120-277$
Input Frequency	$50 / 60 \mathrm{HZ}$
Status	Active

Lamp Type	Num. of Lamp \mathbf{s}	Rated Lamp Watts	Min. Start Temp $\left({ }^{\circ} \mathrm{F} / \mathrm{C}\right.$)	Input Current (Amps)	Input Power (ANSI Watts)	Ballast Factor	MAX THD $\%$	Power Factor	MAX Lamp Current Crest Factor	B.E.F.
F17T8	1	17	$-20 /-29$	0.15	18	0.90	20	0.98	1.6	5.00
*F17T8	2	17	$-20 /-29$	0.23	27	0.80	10	0.99	1.6	2.96

Wiring Diagram

Diag. 64
The wiring diagram that appears above is for the lamp type denoted by the asterisk (*)

Standard Lead Length (inches)

	in.	cm.
Black	25	63.5
White	25	63.5
Blue	31	78.7
Red	37	94
Yellow		0
Gray		0
Violet		0

	in.	cm.
Yellow/Blue		0
Blue/White		0
Brown		0
Orange		0
Orange/Black		0
Black/White		0
Red/White		0

Enclosure

Enclosure Dimensions

OverAll (L)	Width (W)	Height (H)	Mounting (M)
$9.50{ }^{\prime}$	1.7^{\prime}	1.18^{\prime}	$8.90{ }^{\prime \prime}$
$91 / 2$	$17 / 10$	$19 / 50$	$89 / 10$
24.1 cm	4.3 cm	3 cm	22.6 cm

ALTO ${ }^{\circledR}$ Universal T8: Full Rated Average Life on All T8 Ballast Types,
Environmentally-Responsible Lamps. Ideal for any lighting application
Alto
requiring maximum quality of light and maintain 2 2' and 3' T8
Allo Universal 18 Lamps 18 luorescent Lamps

Philips Exclusive Universal Design: The only T8 lamp to deliver full rated average life on all T8 ballast types (Instant Start, Rapid Start, Programmed Start and Hybrid ballasts)
Environmentally Responsible: Low mercury-TCLP*-compliant; energy efficient; long life
Sustainable Lighting Solution: Less mercury and fewer lamps in landfills, combined with energy efficiency, reduces the impact on the environment Outstanding Lumen Maintenance: $\mathrm{HI}-\mathrm{VISION}{ }^{\ominus}$ Phosphor combined with Philips exclusive cathode guard delivers 95% lumen maintenance and reduced lamp-end blackening
Enhanced CRI: 86 CRI for TL80 lamps; 78 CRI for TL70 lamps
 F32TATLLA3OUALTO HI-MISION/32 WATT Alto
cubertan

			Qualify based
Nom.	Product	Symbols,	Ordering
Lamp	Number Symols		
Watts	046677- Footnotes	Code	On CRI

ALTO Universal T8 Warranty: 24 months

 800 SeriesALTO Universal T8 Fluorescent Lamps T8 Medium Bipin

17	36787-0	\$	FI7T8/TL830/ALTO	25	TL 830, 3000K	24	20,000	25,000	1400	1300	86
	36791-2	\$	FI7T8/TL835/ALTO	25	TL 835, 3500K	24	20,000	25,000	1400	1300	86
	36793-8	\$	FI7T8/TL84I/ALTO	25	TL 841, 4100K	24	20,000	25,000	1400	1300	86
	36807-6	\$	FI7T8/TL730/ALTO	25	TL 730, 3000K	24	20,000	25,000	1325	1200	78
	36808-4	\$	FI7T8/TL735/ALTO	25	TL 735, 3500K	24	20,000	25,000	1325	1200	78
	36812-6	\$	FI7T8/TL74I/ALTO	25	TL 741, 4100K	24	20,000	25,000	1325	1200	78
25	36813-4	\$	F25T8/TL830/ALTO	25	TL 830, 3000K	36	20,000	25,000	2225	2050	86
	36814-2	\$	F25T8/TL835/ALTO	25	TL 835, 3500K	36	20,000	25,000	2225	2050	86
	36825-8	\$	F25T8/TL84I/ALTO	25	TL 841, 4100K	36	20,000	25,000	2225	2050	86
	36826-6	\$	F25T8/TL730/ALTO	25	TL 730, 3000K	36	20,000	25,000	2125	1925	78
	36828-2	\$	F25T8/TL735/ALTO	25	TL 735, 3500K	36	20,000	25,000	2125	1925	78
	36829-0	\$	F25T8/TL74I/ALTO	25	TL 741, 4100K	36	20,000	25,000	2125	1925	78
32	24667-8	(E) \$	F32T8/TL830/ALTO	25	TL 830, 3000K	48	20,000	25,000	2950	2800	86
	27236-9	(E) \$	F32T8/TL830/ALTO PLZ	1350	TL 830, 3000K	48	20,000	25,000	2950	2800	86
	24670-2	(E) \$	F32T8/TL835/ALTO	25	TL 835, 3500K	48	20,000	25,000	2950	2800	86
	27233-6	(E) \$	F32T8/TL835/ALTO PLZ	1350	TL 835, 3500K	48	20,000	25,000	2950	2800	86
	24671-0	(E) \$	F32T8/TL84I/ALTO	25	TL 84I, 4100K	48	20,000	25,000	2950	2800	86
	27235-1	(E) \$	F32T8/TL84I/ALTO PLZ	1350	TL 84I, 4100K	48	20,000	25,000	2950	2800	86
	27229-4	(E) \$	F32T8/TL850/ALTO	25	TL 850,5000K	48	20,000	25,000	2950	2800	86
	27252-6	(E) \$	F32T8/TL730 ALTO	25	TL 730, 3000K	48	20,000	25,000	2800	2660	78
	27282-3	(E) \$	F32T8/TL730/ALTO PLZ	1350	TL 730, 3000K	48	20,000	25,000	2800	2660	78
	27249-2	(E) \$	F32T8/TL735/ALTO	25	TL 735, 3500K	48	20,000	25,000	2800	2660	78
	27259-1	(E) \$	F32T8/TL735/ALTO PLZ	1350	TL 735, 3500K	48	20,000	25,000	2800	2660	78
	27248-4	(E) \$	F32T8/TL74I/ALTO	25	TL 741, 4100K	48	20,000	25,000	2800	2660	78
	38351-3	(E) \$	F32T8/TL74I/ALTO	10	TL 741, 4100K, I0 Pk.	48	20,000	25,000	2800	2660	78
	27255-9	(E) \$	F32T8/TL74I/ALTO PLZ	1350	TL 741, 4100K	48	20,000	25,000	2800	2660	78
	27268-2	(E) \$	F32T8/TL750/ALTO	25	TL 750, 5000K	48	20,000	25,000	2700	2550	78

For the most current product information, go to www.lighting.philips.com/nam/product_database/
Fluorescent symbols and footnotes located on page 77
\square This product utilizes ALTO® Lamp Technology

* The TCLP is the US EPA's Toxicity Characteristic Leaching Procedure.

T8 Medium Bipin

Product Information Bulletin

OCTRON ${ }^{\circledR}$ 25W XP ${ }^{\circledR}$ SUPERSAVER ${ }^{\circledR}$ ECOLOGIC ${ }^{\circledR}$

EXtended Performance Fluorescent Lamps 4' T8 Lamps -

SYLVANIA 25 Watt OCTRON FO32/25W/800XP SUPERSAVER ECOLOGIC lamps operate on standard T8 instant start systems and provide 22% energy savings over standard 32 Watt OCTRON lamps where slight reductions in light are acceptable.

At $\$.10 / \mathrm{kWh}$ and 4000 hours of operation per year, the 22% savings translates to a savings of $\$ 9.80$ per fixture per year for a 4-lamp fixture with a normal ballast factor, instant start ballast. Changing from standard Cool White Energy Saving T12 lamps powered by energy saving magnetic ballasts to OCTRON FO32/25W/800XP/SS/ECO lamps combined with OSRAM SYLVANIA's QUICKTRONIC High Efficiency ISN ballasts could save $\$ 24$ a year with no light loss. These lamps pass the Federal TCLP test, classifying them as non-hazardous waste in most states. Group relamp to realize the benefits of these OCTRON lamps in your facility.

- Up to 22\% energy savings compared to standard 32W T8 lamp
- 25 Watt, 4-foot, SUPERSAVER energy saving, T8 lamp
- ECOLOGIC - Designed to pass TCLP ${ }^{1}$
- Initial lumens - 2475 (850 is 2300)
- 95% lumen maintenance at 8000 hours
- 3000K, 3500K, 4100K \& 5000K
- 85 CRI
- Retrofit lamp for existing T8 instant start systems - 24,000 hour average rated life @ 3 hrs. per start
- Also operates on OSRAM SYLVANIA QUICKTRONIC® Programmed Start ballasts
- 36,000 hour average rated life @ 3 hrs per start
- Minimum starting temperature: $70^{\circ} \mathrm{F}$
- Not dimmable
- Not for use in air handling fixtures
- Striation may occur if airflow is present (see application note 5)

SYLVANIA OCTRON T8 ECOLOGIC fluorescent lamps are designed to pass the Federal Toxicity Characteristic Leaching Procedure (TCLP) criteria for classification as non-hazardous waste in most states ${ }^{2}$.

1. TCLP test results are based on NEMA LL Series standards and are available on request.
2. Lamp disposal regulations may vary; check your local \& state regulations.

Product Availability

Lamp Type	Wattage	Color Temperature	CRI
F032/25W/830XP/SS/ECO	25	3000 K	85
F032/25W/835XP/SS/EC0	25	3500 K	85
F032/25W/841XP/SS/ECO	25	4100 K	85
F032/25W/850XP/SS/EC0	25	5000 K	85

Application Information

Applications

Retail Office Schools Hospitals Industrial Many applications with T8 instant start ballasts currently using 32W T8 lamps

Fixtures

Contact your local fixture agent for available fixtures.

Ballast Information

Contact your OSRAM SYLVANIA representative for a list of compatible electronic operating systems.

Application Notes

1. Recommended to be used on T8 F32 Instant Start circuits with minimum starting voltage of 550 v RMS.
2. Can operate on QUICKTRONIC Programmed Start Ballasts.
3. Fixture must conform to ANSI C78.81-2005 requirements for luminaire design.

Application Notes (continued)

4. Not recommended to be used: (1) with Rapid Start circuits unless the open circuit voltage is greater than 570V, (2) at lamp ambient temperatures below $70^{\circ} \mathrm{F}$ or in drafty locations, (3) in air handling fixtures, (4) on dimming ballasts, (5) on inverter operated emergency lighting systems unless any of the above equipment is specifically listed for 25 watt lamps, or (6) below $60^{\circ} \mathrm{F}$ starting temperature. Any of the above situations could result in lamp starting and stabilization problems, or system compatibility issues.
5. If an operating lamp is exposed to temperatures below $70^{\circ} \mathrm{F}$ or moving air (wind, drafts or air flow from an air conditioning or ventilation system), striation, a rhythmic pulsing pattern of light running the length of the tube and/or a reduction in brightness may occur. While visually disconcerting, neither behavior is damaging to the lamp and removing the cause (draft or temperature) will return the lamp to normal operation.

Electrical Specifications

IOPA4P32LWSC@120V					
Brand Name			OPTANIUM		
Ballast Type			Electronic		
Starting Method			Instant Start		
Lamp Connection			Parallel		
Input Voltage			120-277		
4' 3L T8 with 25W Lamps: 62W			50/60		
Input Power (ANSI Watts)	Ballast Factor	$\begin{gathered} \hline \text { MAX } \\ \text { THD } \\ \% \end{gathered}$	Power Factor	MAX Lamp Current Crest Factor	B.E.F
62	0.85	10	0.99	1.6	1.37
77	0.77	10	0.99	1.6	11.00

Lamp Type	Num. of Lamps	Rated Lamp Watts	Min. Start Temp (${ }^{\circ}$ F/C)	Input Current (Amps)	Input Power (ANSI Watts)	Ballast Factor	MAX THD \%	Power Factor	MAX Lamp Current Crest Factor	B.E.F \cdot
F32T8/ES (25W)	3	25	$60 / 16$	0.52	62	0.85	10	0.99	1.6	1.37
*F32T8/ES (25W)	4	25	$60 / 16$	0.52	77	0.77	10	0.99	1.6	11.00

Wiring Diagram

The wiring diagram that appears above is for the lamp type denoted by the asterisk (*)

Standard Lead Length (inches)

	in.	cm.
Black	25	63.5
White	25	63.5
Blue	31	78.7
Red	31	78.7
Yellow	39	99.1
Gray		0
Violet		0

	in.	cm.
Yellow/Blue		0
Blue/White		0
Brown		0
Orange		0
Orange/Black		0
Black/White		0
Red/White	0	

Enclosure

Enclosure Dimensions

OverAll (L)	Width (W)	Height (H)	Mounting (M)
$9.50^{\prime \prime}$	$1.7^{\prime \prime}$	$1.18^{\prime \prime}$	$8.90^{\prime \prime}$
$91 / 2$	$17 / 10$	$19 / 50$	$89 / 10$
24.1 cm	4.3 cm	3 cm	22.6 cm

Product family description
Energy savings, low mercury

Features/Benefits

- Outstanding energy savings
- Save 7 watts per lamp instantly when compared to a 32W T8 U-Bent
- Save $\$ 14$ in energy costs over the rated average life of the lamp when compared to a 32 W T8 U-Bent
- Better for the environment
- Low mercury
- Energy efficient
- Philips Energy Advantage T8 U-Bent Warranty Period: 24 Months

Applications

- Ideal for Locations Already Using the Energy Advantage 25W T8 Lamps

Notes

- Rated average life under specified test conditions with lamps turned off and restarted no more frequently than once every 3 operating hours. Lamp life is appreciably longer if lamps are started less frequently. (202)
- Approximate Initial Lumens. The lamp lumen output is based upon lamp performance after 100 hours of operating life, when the output is measured during operation on a reference ballast under standard laboratory conditions. (203)
- For expected lamp lumen output, commercial ballast manufacturers can advise the appropriate Ballast Factor for each of their ballasts when they are informed of the designated lamp. The Ballast Factor is a multiplier applied to the designated lamp lumen output. (204)
- Design Lumens are the approximate lamp lumen output at 40% of the lamp's Rated Average Life. This output is based upon measurements obtained during lamp operation on a reference ballast under standard laboratory conditions. (208)
- Nominal length measured from face of base to maximum distant outside point of U. Measurement does not include base pins. Leg spacing center to center approximately 6 inches, for / 6 and $35 / 8$ inches for / 3 lamps.

	Product data
Product Number	204214
Full product name	FB32T8/6 25W ADV835 XEW ALTO
Ordering Code	FB32T8/ADV835/6/XEW/ALTO 25W

	Attachme Supportin Page 12	Project \# AEP-10-2 Docket \# CSP-10-
	Qualifes based on CRI and initial lumens	
Product data		
Pack type		
Pieces per Sku	1	
Skus/Case	2	
Pack UPC		
EAN2US		
Case Bar Code		
Successor Product number		
Base		
Base Information		
Bulb		
Execution		
Packing Type		
Packing Configuration	2	
Type		
Feature		
Rated Avg. Life [3 hr Start]		
Ordering Code		
Pack UPC		
Case Bar Code		
Energy Saving		
Watts		
Picogram per Lumen Hour		
Color Code		
Color Rendering Index		
Color Designation		
Color Temperature		
Initial Lumens		
Design Mean Lumens		
Nominal Length [inch]		
Product Number		

F-T8-UEA Med Bipin/GB

Base Medium Bi-Pin

Self Direct Project Overview \& Commitment

The Public Utility Commission of Ohio (PUCO) will soon review your application for participation in AEP Ohio's Energy Efficiency/Peak Demand Response program. Based on your submitted project, please select by initialing one of the two options below, sign and fax to 877-607-0740.

Note: This is a one time selection. By selecting Option 1, the customer will receive payment in the amount stated above. Selection of Option 2: $E E / P D R$ rider exemption, will result in the customer not being eligible to participate in any other energy efficiency programs offered by $A E P$ Ohio during the period of exemption. In addition, the term of Option 2: EE/PDR rider exemption is subject to ongoing review for compliance and could be changed by the PUCO.
If Option 1 has been selected, will the Energy Efficiency Funds selected help you move forward with other energy efficiency projects?

Project Overview:

The Self Direct (Prescriptive and Custom) project that the above has completed and applied is as follows.
Retrofitted (82) 4' 2 L T12 into (82) 4' 2 L T8 fixtures
Retrofitted (6) 4' 4L T12 into (6) 4' 4L T8 fixtures
Converted (7) Incandescent Lamp into (7) Energy Star Screw in CFL - 19W
Converted (4) Open/Closed incandescent lane sign into (4) Open/Closed lane sign 7" x 34 " - LED 3.4 Watts
Installed occupancy sensors on (6) 4' 3L T8 25W fixtures
Converted (2) 4' 2L T8 32W Lamps into (2) 4' 2L T8 25W Lamps (No ballast change)
Converted (12) 4' 3L T8 32W Lamps into (12) 4' 3L T8 25W Lamps (No ballast change)
Converted (13) 4' 4L T8 32W Lamps into (13) 4' 4L T8 25W Lamps (No ballast change)
Converted (4) Manual constant setpoint thermostats into (4) Energy Star remote controllable thermostats
The documentation that was included with the application proved that the energy measures applied for were purchased and installed.
By signing this document, the Mercantile customer affirms its intention to commit and integrate the above listed energy efficiency resources into the utility's peak demand reduction, demand response, and energy efficiency programs. By signing, the Mercantile customer also agrees to serve as a joint applicant in any filings necessary to secure approval of this arrangement by the Public Utilities Commission of Ohio, and comply with any information and compliance reporting requirements imposed by rule or as part of that approval.

Columbus Southern Power Company

By: \qquad
Title: \qquad
Date: \qquad

FIFTH THIRD BANK

\qquad
By:
Title: \qquad

Date: \qquad

List of Fifth Third Bank properties within the AEP Ohio service territory

Note: State Savings Bank is a subsidiary of Fifth Third Bank.

Account Name	Billing Name	Service Address	City	State
Fifth Third Bank	FIFTH THIRD BANK	1340 BETHEL RD	COLUMBUS	OH
Fifth Third Bank	STATE SAVINGS BANK	3580 N HIGH ST	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	2500 E DUBLIN GRANVILLE RD	COLUMBUS	OH
Fifth Third Bank	STATE SAVINGS	229 S SANDUSKY ST	DELAWARE	OH
Fifth Third Bank	STATE SAVINGS BANK	6260 PERIMETER DR	DUBLIN	OH
Fifth Third Bank	FIFTH THIRD BANK	420 METRO PL APT A	DUBLIN	OH
Fifth Third Bank	STATE SAVINGS BANK	3800 W DUBLIN GRANVILLE RD	DUBLIN	OH
Fifth Third Bank	FIFTH THIRD BANK	434 HAVENS CORNERS RD	GAHANNA	OH
Fifth Third Bank	FIFTH THIRD BANK	3407 CLEVELAND AVE	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	155 W MAIN ST	NEW ALBANY	OH
Fifth Third Bank	STATE SAVINGS CO	1500 MORSE RD	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	3949 W POWELL RD	POWELL	OH
Fifth Third Bank	FIFTH THIRD BANK	7425 STATE ROUTE 3	WESTERVILLE	OH
Fifth Third Bank	STATE SAVINGS BANK	2081 HENDERSON RD	COLUMBUS	OH
Fifth Third Bank	STATE SAVINGS BANK	6895 N HIGH ST	WORTHINGTON	OH
Fifth Third Bank	STATE SAVINGS BANK	3011 E BROAD ST	COLUMBUS	OH
Fifth Third Bank	STATE SAVINGS BANK	2570 E MAIN ST	BEXLEY	OH
Fifth Third Bank	FIFTH THIRD BANK	159 E MAIN ST	CIRCLEVILLE	OH
Fifth Third Bank	STATE SAVINGS CO	2810 S HAMILTON RD	COLUMBUS	OH
Fifth Third Bank	STATE SAVINGS CO	1349 W 5TH AVE	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	809 S HIGH ST	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	2336 STRINGTOWN RD	GROVE CITY	OH
Fifth Third Bank	STATE SAVINGS CO	3990 BROADWAY	GROVE CITY	OH
Fifth Third Bank	STATE SAVINGS CO	1585 E MAIN ST	LANCASTER	OH
Fifth Third Bank	FIFTH THIRD BANK	2475 NORTHWEST BLVD	UPPER	OH
Fifth Third Bank	STATE SAVINGS CO	5055 W BROAD ST	COLUMBUS	OH
Fifth Third Bank	STATE SAVINGS INC	1235 N 21ST ST	NEWARK	OH
Fifth Third Bank	FIFTH THIRD BANK	6935 E MAIN ST	REYNOLDSBURG	OH
Fifth Third Bank	FIFTH THIRD BANK	3460 S HIGH ST	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	2883 TAYLOR RD	REYNOLDSBURG	OH
Fifth Third Bank	FIFTH THIRD BANK	1669 FISHINGER RD UNIT 3P	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	2455 HILLIARD ROME RD	HILLIARD	OH
Fifth Third Bank	FIFTH THIRD BANK	8877 OWENFIELD DR	LEWIS CENTER	OH
Fifth Third Bank	FIFTH THIRD BANK	4128 HOOVER RD	GROVE CITY	OH
Fifth Third Bank	FIFTH THIRD BANK	983 N CABLE RD	LIMA	OH
Fifth Third Bank	FIFTH THIRD OF WEST OH	225 N WEST ST	LIMA	OH
Fifth Third Bank	FIFTH THIRD BANK	2120 HARDING HWY	LIMA	OH
Fifth Third Bank	FIFTH THIRD BANK	2450 SHAWNEE RD BLDG 0439	LIMA	OH
Fifth Third Bank	FIFTH THIRD BK OF NW OHIC	337 S MAIN ST	FINDLAY	OH
Fifth Third Bank	FIFTH THIRD BANK	1735 TIFFIN AVE	FINDLAY	OH
Fifth Third Bank	FIFTH THIRD BANK NW OHIO	2720 N MAIN ST	FINDLAY	OH
Fifth Third Bank	FIFTH THIRD BANK	1412 S MAIN ST	FINDLAY	OH

Fifth Third Bank	FIFTH THIRD BANK	1207 OAK HARBOR RD	FREMONT	OH
Fifth Third Bank	FIFTH THIRD BANK	220 PERRY ST	FOSTORIA	OH
Fifth Third Bank	FIFTH THIRD BANK	720 W MARKET ST	TIFFIN	OH
Fifth Third Bank	FIFTH THIRD BANK	300 E SANDUSKY ST	FINDLAY	OH
Fifth Third Bank	FIFTH THIRD BANK OF SOUT	128 W MAIN ST	CHILLICOTHE	OH
Fifth Third Bank	FIFTH THIRD BANK	10551 US HIGHWAY 23	LUCASVILLE	OH
Fifth Third Bank	FIFTH THIRD BANK	31 E 2ND ST	MANCHESTER	OH
Fifth Third Bank	FIFTH THIRD BANK	511 N HIGH ST	HILLSBORO	OH
Fifth Third Bank	FIFTH THIRD BANK	60 N MAIN ST	PEEBLES	OH
Fifth Third Bank	FIFTH THIRD BANK	826 7TH ST	PORTSMOUTH	OH
Fifth Third Bank	5 3 BANK OHIO VALLEY	303 E EMMITT AVE	WAVERLY	OH
Fifth Third Bank	FIFTH THIRD BANK	500 E MAIN ST	WEST UNION	OH
Fifth Third Bank	FIFTH THIRD BANK	$7988-A ~ O H I O ~ R I V E R ~ R D ~$	WHEELERSBURG	OH
Fifth Third Bank	FIFTH THIRD BANK	5067 PORTAGE ST	UPPER	OH
Fifth Third Bank	FIFTH 3RD BANK	1819 W LANE AVE	OH	
Fifth Third Bank	FIFTH THIRD BANK	6031 GROVEPORT RD	OH	
Fifth Third Bank	FIFTH THIRD BANK	5342 N HAMILTON RD	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	8353 SANCUS BLVD	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	1637 N MAIN ST	NORTH CANTON	OH
Fifth Third Bank	FIFTH THIRD BANK	1669 HOLT RD	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	$3750 ~ F I S H I N G E R ~ B L V D ~$	HILLIARD	OH
Fifth Third Bank	FIFTH THIRD BANK	2152 SCHORRWAY DR	LANCASTER	OH
Fifth Third Bank	$5 T H ~ 3 R D ~ B A N K ~ I N C ~$	$3964 ~ F U L T O N ~ D R ~$	CANTON	OH
Fifth Third Bank	FITH THIRD BANK	4655 TUSCARAWAS ST	CANTON	OH
Fifth Third Bank	FIFTH THIRD BANK	$1960 ~ N ~ H I G H ~ S T ~$	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	4801 DRESSLER RD STE 100	OH	
Fifth Third Bank	FIFTH THIRD BANK	$4220 ~ C L E V E L A N D ~ A V E ~$	OH	

Square Footage of Locations by Project Number

AEP Project Number	Site Number	Square Footage	AEP Project Number	Site Number	Square Footage
AEP-10-02257	OH100479	2,971	AEP-10-02297	OH100641	3,120
AEP-10-02259	OH100480	1,660	AEP-10-02298	OH100642	3,220
AEP-10-02260	OH100481	4,371	AEP-10-02299	OH100643	2,220
AEP-10-02261	OH100482	1,550	AEP-10-02300	OH100644	4,200
AEP-10-02262	OH100484	2,760	AEP-10-02301	OH100647	12,478
AEP-10-02263	OH100485	4,000	AEP-10-02302	OH100650	3,350
AEP-10-02264	OH100486	28,698	AEP-10-02303	OH100670	450
AEP-10-02265	OH100487	3,240	AEP-10-02305	OH101151	5,714
AEP-10-02266	OH100490	2,680	AEP-10-02306	OH101156	2,170
AEP-10-02267	OH100494	6,085	AEP-10-02307	OH101157	4,000
AEP-10-02268	OH100495	3,000	AEP-10-02308	OH101158	6,890
AEP-10-02269	OH100498	4,514	AEP-10-02309	OH101159	4,224
AEP-10-02270	OH100500	5,832	AEP-10-02310	OH101160	65,945
AEP-10-02271	OH100501	1,992	AEP-10-02311	OH101162	1,000
AEP-10-02272	OH100502	3,240	AEP-10-02312	OH101163	4,000
AEP-10-02273	OH100503	3,400	AEP-10-02313	OH101164	5,000
AEP-10-02274	OH100504	3,277	AEP-10-02314	OH101184	4,200
AEP-10-02275	OH100508	4,025	AEP-10-02315	OH101186	2,920
AEP-10-02276	OH100509	1,800	AEP-10-02316	OH101189	3,500
AEP-10-02277	OH100513	3,000	AEP-10-02317	OH101195	4,155
AEP-10-02278	OH100514	3,400	AEP-10-02318	OH101198	4,200
AEP-10-02279	OH100515	2,752	AEP-10-02319	OH101205	4,115
AEP-10-02280	OH100516	3,402	AEP-10-02320	OH101220	4,200
AEP-10-02281	OH100517	2,176	AEP-10-02321	OH101238	1,651
AEP-10-02282	OH100518	3,900	AEP-10-02322	OH101239	4,200
AEP-10-02283	OH100519	3,240	AEP-10-02323	OH101248	4,200
AEP-10-02284	OH100520	2,500	AEP-10-02324	OH101256	4,200
AEP-10-02285	OH100522	2,680	AEP-10-02325	OH101260	4,200
AEP-10-02286	OH100523	3,684	AEP-10-02326	OH101401	4,200
AEP-10-02287	OH100524	5,621	AEP-10-02327	OH101415	4,200
AEP-10-02288	OH100525	3,000			
AEP-10-02289	OH100538	4,200			
AEP-10-02290	OH100539	4,200			
AEP-10-02291	OH100542	4,900			
AEP-10-02292	OH100548	2,800			
AEP-10-02293	OH100549	7,500			
AEP-10-02294	OH100550	2,500			
AEP-10-02295	OH100551	2,500			
AEP-10-02296	OH100640	18,740			

KEMAき

Programmable Thermostat

Measure Description	Installation of a programmable thermostat in place of a constant setpoint style thermostat.
Units	Per 1000 square feet
Base Case Description	Constant setpoint thermostats
Measure Savings	Source: This workpaper is based on the Michigan Statewide Energy Savings Database - Weather Sensitive Retrofit Measures for Residential and Commercial Buildings
Measure Incremental Cost	The total cost is assumed to be \$175 per 1,000 sf of conditioned space (or per thermostat).
Effective Useful Life	9 years

Programmable thermostats must meet ENERGY STAR® Version 2.0 criteria and must replace any non-programmable thermostat to automatically adjust the temperature at pre-selected times. To meet ENERGY STAR® standards, they must be capable of maintaining two separate programs (to address the different comfort needs of weekdays and weekends) and up to four temperature settings for each program.

Measure Savings

These savings are based on eQuest building models developed for the Michigan Statewide Energy Savings Database. The weather data used is for the Detroit airport area, which is more conservative than Columbus as Detroit has an average of 727 cooling degree days whereas, Columbus has an average of 925 cooling degree days (Source: National Climatic Data Center). The measure is to include temperature setback/setup during unoccupied hours. The savings assumes air conditioning with gas heating (gas package units).

Table 1 Programmable Thermostat Savings, per 1000 sq. ft

Building Type	kWh/unit
Assembly	1,063
Big Box Retail	579
Fast Food Restaurant	1,532
Full Service Restaurant	1,132
Light Industrial	502
Primary School	1,218
Small Office	748

Small Retail	1,036

Measure Life and Incremental Measure Cost

The following table provides the measure life and incremental measure cost (IMC) documented for this measure as well as the source of the data.

Table 2 Measure Life and Incremental Measure Cost

	Value	Source
Measure Life	9	MEMD
Incremental Measure Cost	$\$ 175$	MEMD

Pass \& Seymour

41 legrand

Features - Wall Switch Occupancy Sensors

- Detection Signature Analysis provides high immunity to RFI and EMI.
- Compact, decorator design replaces existing wall switch.
- Integrated light level sensor works from 10 to 150 footcandles.
- Compatible with all electronic and magnetic ballasts, PL lamp ballasts, compact fluorescent.
- 5-year warranty.
- cULus listed.

Decorator Devices

 Passive Infrared Sensors| Catalog Number | Description | Voltage | Load Requirements | Coverage | Time Delay | Color |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PIR Automatic Wall Switches - 3 Wire Technology | | | | | | |
| WSP200-I
 WSP200-W
 WSP200-GRY
 WSP200-LA | Passive Infrared Occupancy Sensor | $\begin{aligned} & \text { 120/277VAC; } \\ & 60 \mathrm{~Hz} \end{aligned}$ | 800W Max.
 at 120 V
 1200W Max.
 at 277 V | $\begin{aligned} & 180^{\circ}, \text { up to } \\ & 900 \text { sq. ft. } \end{aligned}$ | 30 sec . to 30 min . | Ivory
 White
 Gray
 Lt. Almond |

Planning a Layout

The WSP200's 2 -level lens provides superior coverage at desktop level by allowing the sensor to detect vertical as well as horizontal motion. Coverage shown is for walking motion. Under optimum conditions with a high level of activity and with no barriers or obstacles, coverage can reach a maximum of 900 square feet. Under a typical, desktop level of activity, when mounted at 4 feet, coverage is 300 square feet.

WSP200
Placement for PIR wall switch sensor

Single Level Lighting WSP200

Manual Bi-level Lighting WSP200

Product Information Bulletin

OCTRON ${ }^{\circledR}$ 25W XP ${ }^{\circledR}$ SUPERSAVER ${ }^{\circledR}$ ECOLOGIC ${ }^{\circledR}$

EXtended Performance Fluorescent Lamps 4' T8 Lamps -

SYLVANIA 25 Watt OCTRON FO32/25W/800XP SUPERSAVER ECOLOGIC lamps operate on standard T8 instant start systems and provide 22% energy savings over standard 32 Watt OCTRON lamps where slight reductions in light are acceptable.

At $\$.10 / \mathrm{kWh}$ and 4000 hours of operation per year, the 22% savings translates to a savings of $\$ 9.80$ per fixture per year for a 4-lamp fixture with a normal ballast factor, instant start ballast. Changing from standard Cool White Energy Saving T12 lamps powered by energy saving magnetic ballasts to OCTRON FO32/25W/800XP/SS/ECO lamps combined with OSRAM SYLVANIA's QUICKTRONIC High Efficiency ISN ballasts could save $\$ 24$ a year with no light loss. These lamps pass the Federal TCLP test, classifying them as non-hazardous waste in most states. Group relamp to realize the benefits of these OCTRON lamps in your facility.

- Up to 22\% energy savings compared to standard 32W T8 lamp
- 25 Watt, 4-foot, SUPERSAVER energy saving, T8 lamp
- ECOLOGIC - Designed to pass TCLP ${ }^{1}$
- Initial lumens - 2475 (850 is 2300)
- 95% lumen maintenance at 8000 hours
- 3000K, 3500K, 4100K \& 5000K
- 85 CRI
- Retrofit lamp for existing T8 instant start systems - 24,000 hour average rated life @ 3 hrs. per start
- Also operates on OSRAM SYLVANIA QUICKTRONIC® Programmed Start ballasts
- 36,000 hour average rated life @ 3 hrs per start
- Minimum starting temperature: $70^{\circ} \mathrm{F}$
- Not dimmable
- Not for use in air handling fixtures
- Striation may occur if airflow is present (see application note 5)

SYLVANIA OCTRON T8 ECOLOGIC fluorescent lamps are designed to pass the Federal Toxicity Characteristic Leaching Procedure (TCLP) criteria for classification as non-hazardous waste in most states ${ }^{2}$.

1. TCLP test results are based on NEMA LL Series standards and are available on request.
2. Lamp disposal regulations may vary; check your local \& state regulations.

Product Availability

Lamp Type	Wattage	Color Temperature	CRI
F032/25W/830XP/SS/ECO	25	3000 K	85
F032/25W/835XP/SS/EC0	25	3500 K	85
F032/25W/841XP/SS/ECO	25	4100 K	85
F032/25W/850XP/SS/EC0	25	5000 K	85

Application Information

Applications

Retail Office Schools Hospitals Industrial Many applications with T8 instant start ballasts currently using 32W T8 lamps

Fixtures

Contact your local fixture agent for available fixtures.

Ballast Information

Contact your OSRAM SYLVANIA representative for a list of compatible electronic operating systems.

Application Notes

1. Recommended to be used on T8 F32 Instant Start circuits with minimum starting voltage of 550 v RMS.
2. Can operate on QUICKTRONIC Programmed Start Ballasts.
3. Fixture must conform to ANSI C78.81-2005 requirements for luminaire design.

Application Notes (continued)

4. Not recommended to be used: (1) with Rapid Start circuits unless the open circuit voltage is greater than 570V, (2) at lamp ambient temperatures below $70^{\circ} \mathrm{F}$ or in drafty locations, (3) in air handling fixtures, (4) on dimming ballasts, (5) on inverter operated emergency lighting systems unless any of the above equipment is specifically listed for 25 watt lamps, or (6) below $60^{\circ} \mathrm{F}$ starting temperature. Any of the above situations could result in lamp starting and stabilization problems, or system compatibility issues.
5. If an operating lamp is exposed to temperatures below $70^{\circ} \mathrm{F}$ or moving air (wind, drafts or air flow from an air conditioning or ventilation system), striation, a rhythmic pulsing pattern of light running the length of the tube and/or a reduction in brightness may occur. While visually disconcerting, neither behavior is damaging to the lamp and removing the cause (draft or temperature) will return the lamp to normal operation.

Electrical Specifications

Electrical Specifications

IOPA4P32LWSC@120V		
Brand Name	OPTANIUM	
Ballast Type	Electronic	
Starting Method	Instant Start	
Lamp Connection	Parallel	
Input Voltage	$120-277$	
Input Frequency	$50 / 60 \mathrm{HZ}$	
Status	Active	

Lamp Type	Num. of Lamps	Rated Lamp Watts	Min. Start Temp (${ }^{\circ} \mathrm{F} / \mathrm{C}$)	Input Current (Amps)	Input Power (ANSI Watts)	Ballast Factor	$\begin{gathered} \text { MAX } \\ \text { THD } \\ \% \end{gathered}$	Power Factor	MAX Lamp Current Crest Factor	B.E.F
F32T8/ES (25W)	3	25	60/16	0.52	62	0.85	10	0.99	1.6	1.37
* F32T8/ES (25W)	4	25	60/16	0.52	77	0.77	10	0.99	1.6	1.00
Wiring Diagr	m BA Dia	$\stackrel{\text { LLAST }}{\stackrel{1}{=}}$ LAMP LAMP LAMP LAMP g. 66			4' 4L T8 Lamps:	W 4L B Requ 0.99	F:	t is es		

The wiring diagram that appears above is for the lamp type denoted by the asterisk (*)

Enclosure Dimensions

OverAll (L)	Width (W)	Height (H)	Mounting (M)
$9.50 "$	$1.7^{\prime \prime}$	$1.18^{\prime \prime}$	$8.90^{\prime \prime}$
$91 / 2$	$17 / 10$	$19 / 50$	$89 / 10$
24.1 cm	4.3 cm	3 cm	22.6 cm

Standard Lead Length (inches)

| | in. | cm. | | |
| ---: | ---: | ---: | ---: | ---: | ---: |
| Black | 25 | 63.5 | | |
| White | 25 | 63.5 | | |
| Blue | 31 | 78.7 | | |
| Red | 31 | 78.7 | | |
| Yellow | 39 | 99.1 | | |
| Gray | | 0 | | |
| Violet | | 0 | | |
| Blue/White | | Brown | | 0 |
| Orange | | 0 | | |
| Orange/Black | | 0 | | |
| Black/White | | 0 | | |
| Red/White | | 0 | | |

 1R3014 $\star 1465$ 1R3016 $\star 16 \quad 75$ 1R4016 $\star 16$ 1R4019 $\star 1985$

1P3819 * 19
1P3823 * 23 90 1200
$\star=$ enengyth $\quad=6,000$ Hour Lamp Life

Special Application Options: (Ordering Suffix)
$\cdot 3100^{\circ} \mathrm{K}(31 \mathrm{~K}), 3500^{\circ} \mathrm{K}(35 \mathrm{~K}), 4100^{\circ} \mathrm{K}(41 \mathrm{~K}), 5100^{\circ} \mathrm{K}(51 \mathrm{~K})$
-Long Neck 1.65"(165), 1.75"(175), 2.25"(225)

- Shatter Resistant (SS) R20 only
- Pink (P), Soft Pink (SP)

SpringLamp ${ }^{\text {® }}$ INSIDE technology provides:

- Higher Iumen Output
- Long Lamp Life
- Better lumen maintenance

Ideal for:
 Cans

Outdoor Fixtures

Features and Benefits:

* Long life CFL, 8,000 / 6,000 hour average rated life
* NEW Amalgam technology- provides cooler operating temperatures for consistent performance in any position
* No lead glass- Better lumen maintenance over life of bulb
* $2700^{\circ} \mathrm{K}$ color temperature closest to incandescent light
* Medium base
* Replace less often, ideal for hard to reach places
* U.L. Listed for wet locations - use indoors or outdoors
* 12 Month Warranty
* Quickstart technology - fast run up time

Specifications (at full brightness)

End of Life Protection-----------------	
Ballast Type -----------------------------	Electronic
Starting Method	Modified Rapid Start
Input Line Voltage	120VAC
Input Line Frequency -	50/60HZ
Lamp Life (rated) ---------	8,000 / 6,000 Hours
Color Temperature	$2700^{\circ} \mathrm{K}$
Color Rendering Index	
Minimum Starting Temperature --	$-20^{\circ} \mathrm{F}$
Maximum Operating Temperature -	$160{ }^{\circ} \mathrm{F}$
U.L. / C.U.L. Listed ----------------	Yes
FCC Compliance ---	Part 18, Subpart C
Lamp Operating Frequency --------	45 KHZ
Lamp Current Crest Factor ---------	< 1.60
Maximum Open Circuit Voltage --	600 V
Power Factor	> . 50
Total Harmonic Distortion ----------	< 150\%

Lighting to the Next Power
Visit www.tcpi.com or call Toll Free 1-800-324-1496

Self Direct Project Overview \& Commitment

The Public Utility Commission of Ohio (PUCO) will soon review your application for participation in AEP Ohio's Energy Efficiency/Peak Demand Response program. Based on your submitted project, please select by initialing one of the two options below, sign and fax to 877-607-0740.

Note: This is a one time selection. By selecting Option 1, the customer will receive payment in the amount stated above. Selection of Option 2: $E E / P D R$ rider exemption, will result in the customer not being eligible to participate in any other energy efficiency programs offered by AEP Ohio during the period of exemption. In addition, the term of Option 2: EE/PDR rider exemption is subject to ongoing review for compliance and could be changed by the PUCO.
If Option 1 has been selected, will the Energy Efficiency Funds selected help you move forward with other energy efficiency projects?
\qquad NO

Project Overview:

The Self Direct (Prescriptive and Custom) project that the above has completed and applied is as follows.
Converted (3) Open/Closed incandescent lane signs into (3) Open/Closed lane sign 7" x 34 " - LED 3.4 Watts
Installed occupancy sensors on (28) 4' 4L T8 25W fixtures
Converted (36) 4' 1L T8 32W Lamps into (36) 4' 1L T8 25W Lamps (No ballast change)
Converted (4) 4' 2L T8 32W Lamps into (4) 4' 2L T8 25W Lamps (No ballast change)
Converted (24) 4' 3L T8 32W Lamps into (24) 4' 3L T8 25W Lamps (No ballast change)
Converted (34) 4' 4L T8 32W U-Lamps into (34) 4' 4L T8 25W U-Lamps (No ballast change)
Converted (2) Manual constant setpoint thermostats into (2) Energy Star remote controllable thermostats

The documentation that was included with the application proved that the energy measures applied for were purchased and installed.
By signing this document, the Mercantile customer affirms its intention to commit and integrate the above listed energy efficiency resources into the utility's peak demand reduction, demand response, and energy efficiency programs. By signing, the Mercantile customer also agrees to serve as a joint applicant in any filings necessary to secure approval of this arrangement by the Public Utilities Commission of Ohio, and comply with any information and compliance reporting requirements imposed by rule or as part of that approval.

Columbus Southern Power Company

By: \qquad
Title: \qquad
Date: \qquad

FIFTH THIRD BANK

\qquad
Title:

List of Fifth Third Bank properties within the AEP Ohio service territory

Note: State Savings Bank is a subsidiary of Fifth Third Bank.

Account Name	Billing Name	Service Address	City	State
Fifth Third Bank	FIFTH THIRD BANK	1340 BETHEL RD	COLUMBUS	OH
Fifth Third Bank	STATE SAVINGS BANK	3580 N HIGH ST	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	2500 E DUBLIN GRANVILLE RD	COLUMBUS	OH
Fifth Third Bank	STATE SAVINGS	229 S SANDUSKY ST	DELAWARE	OH
Fifth Third Bank	STATE SAVINGS BANK	6260 PERIMETER DR	DUBLIN	OH
Fifth Third Bank	FIFTH THIRD BANK	420 METRO PL APT A	DUBLIN	OH
Fifth Third Bank	STATE SAVINGS BANK	3800 W DUBLIN GRANVILLE RD	DUBLIN	OH
Fifth Third Bank	FIFTH THIRD BANK	434 HAVENS CORNERS RD	GAHANNA	OH
Fifth Third Bank	FIFTH THIRD BANK	3407 CLEVELAND AVE	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	155 W MAIN ST	NEW ALBANY	OH
Fifth Third Bank	STATE SAVINGS CO	1500 MORSE RD	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	3949 W POWELL RD	POWELL	OH
Fifth Third Bank	FIFTH THIRD BANK	7425 STATE ROUTE 3	WESTERVILLE	OH
Fifth Third Bank	STATE SAVINGS BANK	2081 HENDERSON RD	COLUMBUS	OH
Fifth Third Bank	STATE SAVINGS BANK	6895 N HIGH ST	WORTHINGTON	OH
Fifth Third Bank	STATE SAVINGS BANK	3011 E BROAD ST	COLUMBUS	OH
Fifth Third Bank	STATE SAVINGS BANK	2570 E MAIN ST	BEXLEY	OH
Fifth Third Bank	FIFTH THIRD BANK	159 E MAIN ST	CIRCLEVILLE	OH
Fifth Third Bank	STATE SAVINGS CO	2810 S HAMILTON RD	COLUMBUS	OH
Fifth Third Bank	STATE SAVINGS CO	1349 W 5TH AVE	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	809 S HIGH ST	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	2336 STRINGTOWN RD	GROVE CITY	OH
Fifth Third Bank	STATE SAVINGS CO	3990 BROADWAY	GROVE CITY	OH
Fifth Third Bank	STATE SAVINGS CO	1585 E MAIN ST	LANCASTER	OH
Fifth Third Bank	FIFTH THIRD BANK	2475 NORTHWEST BLVD	UPPER	OH
Fifth Third Bank	STATE SAVINGS CO	5055 W BROAD ST	COLUMBUS	OH
Fifth Third Bank	STATE SAVINGS INC	1235 N 21ST ST	NEWARK	OH
Fifth Third Bank	FIFTH THIRD BANK	6935 E MAIN ST	REYNOLDSBURG	OH
Fifth Third Bank	FIFTH THIRD BANK	3460 S HIGH ST	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	2883 TAYLOR RD	REYNOLDSBURG	OH
Fifth Third Bank	FIFTH THIRD BANK	1669 FISHINGER RD UNIT 3P	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	2455 HILLIARD ROME RD	HILLIARD	OH
Fifth Third Bank	FIFTH THIRD BANK	8877 OWENFIELD DR	LEWIS CENTER	OH
Fifth Third Bank	FIFTH THIRD BANK	4128 HOOVER RD	GROVE CITY	OH
Fifth Third Bank	FIFTH THIRD BANK	983 N CABLE RD	LIMA	OH
Fifth Third Bank	FIFTH THIRD OF WEST OH	225 N WEST ST	LIMA	OH
Fifth Third Bank	FIFTH THIRD BANK	2120 HARDING HWY	LIMA	OH
Fifth Third Bank	FIFTH THIRD BANK	2450 SHAWNEE RD BLDG 0439	LIMA	OH
Fifth Third Bank	FIFTH THIRD BK OF NW OHIC	337 S MAIN ST	FINDLAY	OH
Fifth Third Bank	FIFTH THIRD BANK	1735 TIFFIN AVE	FINDLAY	OH
Fifth Third Bank	FIFTH THIRD BANK NW OHIO	2720 N MAIN ST	FINDLAY	OH
Fifth Third Bank	FIFTH THIRD BANK	1412 S MAIN ST	FINDLAY	OH

Fifth Third Bank	FIFTH THIRD BANK	1207 OAK HARBOR RD	FREMONT	OH
Fifth Third Bank	FIFTH THIRD BANK	220 PERRY ST	FOSTORIA	OH
Fifth Third Bank	FIFTH THIRD BANK	720 W MARKET ST	TIFFIN	OH
Fifth Third Bank	FIFTH THIRD BANK	300 E SANDUSKY ST	FINDLAY	OH
Fifth Third Bank	FIFTH THIRD BANK OF SOUTH	128 W MAIN ST	CHILLICOTHE	OH
Fifth Third Bank	FIFTH THIRD BANK	10551 US HIGHWAY 23	LUCASVILLE	OH
Fifth Third Bank	FIFTH THIRD BANK	31 E 2ND ST	MANCHESTER	OH
Fifth Third Bank	FIFTH THIRD BANK	511 N HIGH ST	HILLSBORO	OH
Fifth Third Bank	FIFTH THIRD BANK	60 N MAIN ST	PEEBLES	OH
Fifth Third Bank	FIFTH THIRD BANK	826 7TH ST	PORTSMOUTH	OH
Fifth Third Bank	53 BANK OHIO VALLEY	303 E EMMITT AVE	WAVERLY	OH
Fifth Third Bank	FIFTH THIRD BANK	500 E MAIN ST	WEST UNION	OH
Fifth Third Bank	FIFTH THIRD BANK	7988-A OHIO RIVER RD	WHEELERSBURG	OH
Fifth Third Bank	FIFTH THIRD BANK	5067 PORTAGE ST	NORTH CANTON	OH
Fifth Third Bank	FIFTH 3RD BANK	1819 W LANE AVE	UPPER	OH
Fifth Third Bank	FIFTH THIRD BANK	6031 GROVEPORT RD	GROVEPORT	OH
Fifth Third Bank	FIFTH THIRD BANK	5342 N HAMILTON RD	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	8353 SANCUS BLVD	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	1637 N MAIN ST	NORTH CANTON	OH
Fifth Third Bank	FIFTH THIRD BANK	1669 HOLT RD	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	3750 FISHINGER BLVD	HILLIARD	OH
Fifth Third Bank	FIFTH THIRD BANK	2152 SCHORRWAY DR	LANCASTER	OH
Fifth Third Bank	5TH 3RD BANK INC	3964 FULTON DR	CANTON	OH
Fifth Third Bank	FITH THIRD BANK	4655 TUSCARAWAS ST	CANTON	OH
Fifth Third Bank	FIFTH THIRD BANK	1960 N HIGH ST	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	4801 DRESSLER RD STE 100	CANTON	OH
Fifth Third Bank	FIFTH THIRD BANK	4220 CLEVELAND AVE	CANTON	OH

Square Footage of Locations by Project Number

AEP Project Number	Site Number	Square Footage	AEP Project Number	Site Number	Square Footage
AEP-10-02257	OH100479	2,971	AEP-10-02297	OH100641	3,120
AEP-10-02259	OH100480	1,660	AEP-10-02298	OH100642	3,220
AEP-10-02260	OH100481	4,371	AEP-10-02299	OH100643	2,220
AEP-10-02261	OH100482	1,550	AEP-10-02300	OH100644	4,200
AEP-10-02262	OH100484	2,760	AEP-10-02301	OH100647	12,478
AEP-10-02263	OH100485	4,000	AEP-10-02302	OH100650	3,350
AEP-10-02264	OH100486	28,698	AEP-10-02303	OH100670	450
AEP-10-02265	OH100487	3,240	AEP-10-02305	OH101151	5,714
AEP-10-02266	OH100490	2,680	AEP-10-02306	OH101156	2,170
AEP-10-02267	OH100494	6,085	AEP-10-02307	OH101157	4,000
AEP-10-02268	OH100495	3,000	AEP-10-02308	OH101158	6,890
AEP-10-02269	OH100498	4,514	AEP-10-02309	OH101159	4,224
AEP-10-02270	OH100500	5,832	AEP-10-02310	OH101160	65,945
AEP-10-02271	OH100501	1,992	AEP-10-02311	OH101162	1,000
AEP-10-02272	OH100502	3,240	AEP-10-02312	OH101163	4,000
AEP-10-02273	OH100503	3,400	AEP-10-02313	OH101164	5,000
AEP-10-02274	OH100504	3,277	AEP-10-02314	OH101184	4,200
AEP-10-02275	OH100508	4,025	AEP-10-02315	OH101186	2,920
AEP-10-02276	OH100509	1,800	AEP-10-02316	OH101189	3,500
AEP-10-02277	OH100513	3,000	AEP-10-02317	OH101195	4,155
AEP-10-02278	OH100514	3,400	AEP-10-02318	OH101198	4,200
AEP-10-02279	OH100515	2,752	AEP-10-02319	OH101205	4,115
AEP-10-02280	OH100516	3,402	AEP-10-02320	OH101220	4,200
AEP-10-02281	OH100517	2,176	AEP-10-02321	OH101238	1,651
AEP-10-02282	OH100518	3,900	AEP-10-02322	OH101239	4,200
AEP-10-02283	OH100519	3,240	AEP-10-02323	OH101248	4,200
AEP-10-02284	OH100520	2,500	AEP-10-02324	OH101256	4,200
AEP-10-02285	OH100522	2,680	AEP-10-02325	OH101260	4,200
AEP-10-02286	OH100523	3,684	AEP-10-02326	OH101401	4,200
AEP-10-02287	OH100524	5,621	AEP-10-02327	OH101415	4,200
AEP-10-02288	OH100525	3,000			
AEP-10-02289	OH100538	4,200			
AEP-10-02290	OH100539	4,200			
AEP-10-02291	OH100542	4,900			
AEP-10-02292	OH100548	2,800			
AEP-10-02293	OH100549	7,500			
AEP-10-02294	OH100550	2,500			
AEP-10-02295	OH100551	2,500			
AEP-10-02296	OH100640	18,740			

KEMA

Programmable Thermostat

Measure Description	Installation of a programmable thermostat in place of a constant setpoint style thermostat.
Units	Per 1000 square feet
Base Case Description	Constant setpoint thermostats
Measure Savings	Source: This workpaper is based on the Michigan Statewide Energy Savings Database - Weather Sensitive Retrofit Measures for Residential and Commercial Buildings
Measure Incremental Cost	The total cost is assumed to be \$175 per 1,000 sf of conditioned space (or per thermostat).
Effective Useful Life	9 years

Programmable thermostats must meet ENERGY STAR® Version 2.0 criteria and must replace any non-programmable thermostat to automatically adjust the temperature at pre-selected times. To meet ENERGY STAR® standards, they must be capable of maintaining two separate programs (to address the different comfort needs of weekdays and weekends) and up to four temperature settings for each program.

Measure Savings

These savings are based on eQuest building models developed for the Michigan Statewide Energy Savings Database. The weather data used is for the Detroit airport area, which is more conservative than Columbus as Detroit has an average of 727 cooling degree days whereas, Columbus has an average of 925 cooling degree days (Source: National Climatic Data Center). The measure is to include temperature setback/setup during unoccupied hours. The savings assumes air conditioning with gas heating (gas package units).

Table 1 Programmable Thermostat Savings, per 1000 sq. ft

Building Type	kWh/unit
Assembly	1,063
Big Box Retail	579
Fast Food Restaurant	1,532
Full Service Restaurant	1,132
Light Industrial	502
Primary School	1,218
Small Office	748

Small Retail	1,036

Measure Life and Incremental Measure Cost

The following table provides the measure life and incremental measure cost (IMC) documented for this measure as well as the source of the data.

Table 2 Measure Life and Incremental Measure Cost

	Value	Source
Measure Life	9	MEMD
Incremental Measure Cost	$\$ 175$	MEMD

Pass \& Seymour
41 legrand

Features - Wall Switch Occupancy Sensors

- Detection Signature Analysis provides high immunity to RFI and EMI.
- Compact, decorator design replaces existing wall switch.
- Integrated light level sensor works from 10 to 150 footcandles.
- Compatible with all electronic and magnetic ballasts, PL lamp ballasts, compact fluorescent.
- 5-year warranty.
- cULus listed.

Decorator Devices

 Passive Infrared Sensors| Catalog Number | Description | Voltage | Load Requirements | Coverage | Time Delay | Color |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PIR Automatic Wall Switches - 3 Wire Technology | | | | | | |
| WSP200-I
 WSP200-W
 WSP200-GRY
 WSP200-LA | Passive Infrared Occupancy Sensor | $\begin{aligned} & \text { 120/277VAC; } \\ & 60 \mathrm{~Hz} \end{aligned}$ | 800W Max.
 at 120 V
 1200W Max.
 at 277 V | $\begin{aligned} & 180^{\circ} \text {, up to } \\ & 900 \text { sq. ft. } \end{aligned}$ | 30 sec . to 30 min . | Ivory
 White
 Gray
 Lt. Almond |

Planning a Layout

The WSP200's 2 -level lens provides superior coverage at desktop level by allowing the sensor to detect vertical as well as horizontal motion. Coverage shown is for walking motion. Under optimum conditions with a high level of activity and with no barriers or obstacles, coverage can reach a maximum of 900 square feet. Under a typical, desktop level of activity, when mounted at 4 feet, coverage is 300 square feet.

WSP200
Placement for PIR wall switch sensor

Single Level Lighting WSP200

Manual Bi-level Lighting WSP200

Product Information Bulletin

OCTRON ${ }^{\circledR}$ 25W XP ${ }^{\circledR}$ SUPERSAVER ${ }^{\circledR}$ ECOLOGIC ${ }^{\circledR}$

EXtended Performance Fluorescent Lamps 4' T8 Lamps -

SYLVANIA 25 Watt OCTRON FO32/25W/800XP SUPERSAVER ECOLOGIC lamps operate on standard T8 instant start systems and provide 22% energy savings over standard 32 Watt OCTRON lamps where slight reductions in light are acceptable.

At $\$.10 / \mathrm{kWh}$ and 4000 hours of operation per year, the 22% savings translates to a savings of $\$ 9.80$ per fixture per year for a 4-lamp fixture with a normal ballast factor, instant start ballast. Changing from standard Cool White Energy Saving T12 lamps powered by energy saving magnetic ballasts to OCTRON FO32/25W/800XP/SS/ECO lamps combined with OSRAM SYLVANIA's QUICKTRONIC High Efficiency ISN ballasts could save $\$ 24$ a year with no light loss. These lamps pass the Federal TCLP test, classifying them as non-hazardous waste in most states. Group relamp to realize the benefits of these OCTRON lamps in your facility.

- Up to 22\% energy savings compared to standard 32W T8 lamp
- 25 Watt, 4-foot, SUPERSAVER energy saving, T8 lamp
- ECOLOGIC - Designed to pass TCLP ${ }^{1}$
- Initial lumens - 2475 (850 is 2300)
- 95% lumen maintenance at 8000 hours
- 3000K, 3500K, 4100K \& 5000K
- 85 CRI
- Retrofit lamp for existing T8 instant start systems - 24,000 hour average rated life @ 3 hrs. per start
- Also operates on OSRAM SYLVANIA QUICKTRONIC® Programmed Start ballasts
- 36,000 hour average rated life @ 3 hrs per start
- Minimum starting temperature: $70^{\circ} \mathrm{F}$
- Not dimmable
- Not for use in air handling fixtures
- Striation may occur if airflow is present (see application note 5)

SYLVANIA OCTRON T8 ECOLOGIC fluorescent lamps are designed to pass the Federal Toxicity Characteristic Leaching Procedure (TCLP) criteria for classification as non-hazardous waste in most states ${ }^{2}$.

1. TCLP test results are based on NEMA LL Series standards and are available on request.
2. Lamp disposal regulations may vary; check your local \& state regulations.

Product Availability

Lamp Type	Wattage	Color Temperature	CRI
F032/25W/830XP/SS/ECO	25	3000 K	85
F032/25W/835XP/SS/EC0	25	3500 K	85
F032/25W/841XP/SS/ECO	25	4100 K	85
F032/25W/850XP/SS/EC0	25	5000 K	85

Application Information

Applications

Retail Office Schools Hospitals Industrial Many applications with T8 instant start ballasts currently using 32W T8 lamps

Fixtures

Contact your local fixture agent for available fixtures.

Ballast Information

Contact your OSRAM SYLVANIA representative for a list of compatible electronic operating systems.

Application Notes

1. Recommended to be used on T8 F32 Instant Start circuits with minimum starting voltage of 550 v RMS.
2. Can operate on QUICKTRONIC Programmed Start Ballasts.
3. Fixture must conform to ANSI C78.81-2005 requirements for luminaire design.

Application Notes (continued)

4. Not recommended to be used: (1) with Rapid Start circuits unless the open circuit voltage is greater than 570V, (2) at lamp ambient temperatures below $70^{\circ} \mathrm{F}$ or in drafty locations, (3) in air handling fixtures, (4) on dimming ballasts, (5) on inverter operated emergency lighting systems unless any of the above equipment is specifically listed for 25 watt lamps, or (6) below $60^{\circ} \mathrm{F}$ starting temperature. Any of the above situations could result in lamp starting and stabilization problems, or system compatibility issues.
5. If an operating lamp is exposed to temperatures below $70^{\circ} \mathrm{F}$ or moving air (wind, drafts or air flow from an air conditioning or ventilation system), striation, a rhythmic pulsing pattern of light running the length of the tube and/or a reduction in brightness may occur. While visually disconcerting, neither behavior is damaging to the lamp and removing the cause (draft or temperature) will return the lamp to normal operation.

Features/Benefits

- Outstanding energy savings
- Save 7 watts per lamp instantly when compared to a 32W T8 U-Bent
- Save $\$ 14$ in energy costs over the rated average life of the lamp when compared to a 32 W T8 U-Bent
- Better for the environment
- Low mercury
- Energy efficient
- Philips Energy Advantage T8 U-Bent Warranty Period: 24 Months

Applications

- Ideal for Locations Already Using the Energy Advantage 25W T8 Lamps

Notes

- Rated average life under specified test conditions with lamps turned off and restarted no more frequently than once every 3 operating hours. Lamp life is appreciably longer if lamps are started less frequently. (202)
- Approximate Initial Lumens. The lamp lumen output is based upon lamp performance after 100 hours of operating life, when the output is measured during operation on a reference ballast under standard laboratory conditions. (203)
- For expected lamp lumen output, commercial ballast manufacturers can advise the appropriate Ballast Factor for each of their ballasts when they are informed of the designated lamp. The Ballast Factor is a multiplier applied to the designated lamp lumen output. (204)
- Design Lumens are the approximate lamp lumen output at 40% of the lamp's Rated Average Life. This output is based upon measurements obtained during lamp operation on a reference ballast under standard laboratory conditions. (208)
- Nominal length measured from face of base to maximum distant outside point of U. Measurement does not include base pins. Leg spacing center to center approximately 6 inches, for / 6 and $35 / 8$ inches for / 3 lamps.

	Product data
Product Number	204214
Full product name	FB32T8/6 25W ADV835 XEW ALTO
Ordering Code	FB32T8/ADV835/6/XEW/ALTO 25W

F-T8-UEA Med Bipin/GB

Base Medium Bi-Pin

Self Direct Project Overview \& Commitment

The Public Utility Commission of Ohio (PUCO) will soon review your application for participation in AEP Ohio's Energy Efficiency/Peak Demand Response program. Based on your submitted project, please select by initialing one of the two options below, sign and fax to 877-607-0740.

Customer Name	FIFTH THIRD BANK	
Proiect Number	AEP-10-02270	
Customer Premise Address	7425 STATE ROUTE 3, WESTERVILLE, OH 43082-8682	
Customer Mailing Address	38 Fountain Square, Cincinnati, OH 45263	
Date Received	11/8/2010	
Project Installation Date	6/26/2008	
Annual kWh Reduction	17,548	
Total Project Cost	\$9,401.23	
Unadjusted Energy Efficiency Credit (EEC) Calculation	\$1,767.88	
Simple Payback (yrs)	4.7	
Utility Cost Test (UCT)	5.6	
	Please Choose One Option Below and Initial	
Option 1 - Self Direct EEC: 75\%	\$1,325.91	Initial:
Option 2 - EE/PDR Rider Exemption	82 Months (After PUCO Approval)	Initial:

Note: This is a one time selection. By selecting Option 1, the customer will receive payment in the amount stated above. Selection of Option 2: $E E / P D R$ rider exemption, will result in the customer not being eligible to participate in any other energy efficiency programs offered by $A E P$ Ohio during the period of exemption. In addition, the term of Option 2: EE/PDR rider exemption is subject to ongoing review for compliance and could be changed by the PUCO.
If Option 1 has been selected, will the Energy Efficiency Funds selected help you move forward with other energy efficiency projects?

Project Overview:

The Self Direct (Prescriptive and Custom) project that the above has completed and applied is as follows.
Retrofitted (5) 4' 2L T12 into (5) 4' 2L T8 Fixtures
Retrofitted (20) 4' 2L T12 into (20) 4' 2L T8 Fixtures
Retrofitted (22) 4' 4L T12 into (22) 4' 2L T8 Fixtures
Retrofitted (8) 4' 4L T12 into (8) 4' 4L T8 Fixtures
Converted (3) Incandescent Exit Signs into (3) LED Exit Signs
Converted (3) Open/Closed incandescent lane signs into (3) Open/Closed lane signs 7" x 34 " - LED 3.4 Watts
Installed occupancy sensors on (18) 4' 2L T8 25W fixtures
Converted (22) 4' 1L T8 32W Lamps into (22) 4' 1L T8 25W Lamps (No ballast change)
Converted (1) 4' 4L T8 32W Lamps into (1) 4' 4L T8 25W Lamps (No ballast change)
Converted (2) Manual constant setpoint thermostats into (2) Energy Star remote controllable thermostats
The documentation that was included with the application proved that the energy measures applied for were purchased and installed.
By signing this document, the Mercantile customer affirms its intention to commit and integrate the above listed energy efficiency resources into the utility's peak demand reduction, demand response, and energy efficiency programs. By signing, the Mercantile customer also agrees to serve as a joint applicant in any filings necessary to secure approval of this arrangement by the Public Utilities Commission of Ohio, and comply with any information and compliance reporting requirements imposed by rule or as part of that approval.

Columbus Southern Power Company

By: \qquad
Title: \qquad
Date: \qquad

FIFTH THIRD BANK

\qquad
Title:

List of Fifth Third Bank properties within the AEP Ohio service territory

Note: State Savings Bank is a subsidiary of Fifth Third Bank.

Account Name	Billing Name	Service Address	City	State
Fifth Third Bank	FIFTH THIRD BANK	1340 BETHEL RD	COLUMBUS	OH
Fifth Third Bank	STATE SAVINGS BANK	3580 N HIGH ST	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	2500 E DUBLIN GRANVILLE RD	COLUMBUS	OH
Fifth Third Bank	STATE SAVINGS	229 S SANDUSKY ST	DELAWARE	OH
Fifth Third Bank	STATE SAVINGS BANK	6260 PERIMETER DR	DUBLIN	OH
Fifth Third Bank	FIFTH THIRD BANK	420 METRO PL APT A	DUBLIN	OH
Fifth Third Bank	STATE SAVINGS BANK	3800 W DUBLIN GRANVILLE RD	DUBLIN	OH
Fifth Third Bank	FIFTH THIRD BANK	434 HAVENS CORNERS RD	GAHANNA	OH
Fifth Third Bank	FIFTH THIRD BANK	3407 CLEVELAND AVE	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	155 W MAIN ST	NEW ALBANY	OH
Fifth Third Bank	STATE SAVINGS CO	1500 MORSE RD	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	3949 W POWELL RD	POWELL	OH
Fifth Third Bank	FIFTH THIRD BANK	7425 STATE ROUTE 3	WESTERVILLE	OH
Fifth Third Bank	STATE SAVINGS BANK	2081 HENDERSON RD	COLUMBUS	OH
Fifth Third Bank	STATE SAVINGS BANK	6895 N HIGH ST	WORTHINGTON	OH
Fifth Third Bank	STATE SAVINGS BANK	3011 E BROAD ST	COLUMBUS	OH
Fifth Third Bank	STATE SAVINGS BANK	2570 E MAIN ST	BEXLEY	OH
Fifth Third Bank	FIFTH THIRD BANK	159 E MAIN ST	CIRCLEVILLE	OH
Fifth Third Bank	STATE SAVINGS CO	2810 S HAMILTON RD	COLUMBUS	OH
Fifth Third Bank	STATE SAVINGS CO	1349 W 5TH AVE	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	809 S HIGH ST	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	2336 STRINGTOWN RD	GROVE CITY	OH
Fifth Third Bank	STATE SAVINGS CO	3990 BROADWAY	GROVE CITY	OH
Fifth Third Bank	STATE SAVINGS CO	1585 E MAIN ST	LANCASTER	OH
Fifth Third Bank	FIFTH THIRD BANK	2475 NORTHWEST BLVD	UPPER	OH
Fifth Third Bank	STATE SAVINGS CO	5055 W BROAD ST	COLUMBUS	OH
Fifth Third Bank	STATE SAVINGS INC	1235 N 21ST ST	NEWARK	OH
Fifth Third Bank	FIFTH THIRD BANK	6935 E MAIN ST	REYNOLDSBURG	OH
Fifth Third Bank	FIFTH THIRD BANK	3460 S HIGH ST	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	2883 TAYLOR RD	REYNOLDSBURG	OH
Fifth Third Bank	FIFTH THIRD BANK	1669 FISHINGER RD UNIT 3P	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	2455 HILLIARD ROME RD	HILLIARD	OH
Fifth Third Bank	FIFTH THIRD BANK	8877 OWENFIELD DR	LEWIS CENTER	OH
Fifth Third Bank	FIFTH THIRD BANK	4128 HOOVER RD	GROVE CITY	OH
Fifth Third Bank	FIFTH THIRD BANK	983 N CABLE RD	LIMA	OH
Fifth Third Bank	FIFTH THIRD OF WEST OH	225 N WEST ST	LIMA	OH
Fifth Third Bank	FIFTH THIRD BANK	2120 HARDING HWY	LIMA	OH
Fifth Third Bank	FIFTH THIRD BANK	2450 SHAWNEE RD BLDG 0439	LIMA	OH
Fifth Third Bank	FIFTH THIRD BK OF NW OHIC	337 S MAIN ST	FINDLAY	OH
Fifth Third Bank	FIFTH THIRD BANK	1735 TIFFIN AVE	FINDLAY	OH
Fifth Third Bank	FIFTH THIRD BANK NW OHIO	2720 N MAIN ST	FINDLAY	OH
Fifth Third Bank	FIFTH THIRD BANK	1412 S MAIN ST	FINDLAY	OH

Fifth Third Bank	FIFTH THIRD BANK	1207 OAK HARBOR RD	FREMONT	OH
Fifth Third Bank	FIFTH THIRD BANK	220 PERRY ST	FOSTORIA	OH
Fifth Third Bank	FIFTH THIRD BANK	720 W MARKET ST	TIFFIN	OH
Fifth Third Bank	FIFTH THIRD BANK	300 E SANDUSKY ST	FINDLAY	OH
Fifth Third Bank	FIFTH THIRD BANK OF SOUTH	128 W MAIN ST	CHILLICOTHE	OH
Fifth Third Bank	FIFTH THIRD BANK	10551 US HIGHWAY 23	LUCASVILLE	OH
Fifth Third Bank	FIFTH THIRD BANK	31 E 2ND ST	MANCHESTER	OH
Fifth Third Bank	FIFTH THIRD BANK	511 N HIGH ST	HILLSBORO	OH
Fifth Third Bank	FIFTH THIRD BANK	60 N MAIN ST	PEEBLES	OH
Fifth Third Bank	FIFTH THIRD BANK	826 7TH ST	PORTSMOUTH	OH
Fifth Third Bank	53 BANK OHIO VALLEY	303 E EMMITT AVE	WAVERLY	OH
Fifth Third Bank	FIFTH THIRD BANK	500 E MAIN ST	WEST UNION	OH
Fifth Third Bank	FIFTH THIRD BANK	7988-A OHIO RIVER RD	WHEELERSBURG	OH
Fifth Third Bank	FIFTH THIRD BANK	5067 PORTAGE ST	NORTH CANTON	OH
Fifth Third Bank	FIFTH 3RD BANK	1819 W LANE AVE	UPPER	OH
Fifth Third Bank	FIFTH THIRD BANK	6031 GROVEPORT RD	GROVEPORT	OH
Fifth Third Bank	FIFTH THIRD BANK	5342 N HAMILTON RD	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	8353 SANCUS BLVD	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	1637 N MAIN ST	NORTH CANTON	OH
Fifth Third Bank	FIFTH THIRD BANK	1669 HOLT RD	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	3750 FISHINGER BLVD	HILLIARD	OH
Fifth Third Bank	FIFTH THIRD BANK	2152 SCHORRWAY DR	LANCASTER	OH
Fifth Third Bank	5TH 3RD BANK INC	3964 FULTON DR	CANTON	OH
Fifth Third Bank	FITH THIRD BANK	4655 TUSCARAWAS ST	CANTON	OH
Fifth Third Bank	FIFTH THIRD BANK	1960 N HIGH ST	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	4801 DRESSLER RD STE 100	CANTON	OH
Fifth Third Bank	FIFTH THIRD BANK	4220 CLEVELAND AVE	CANTON	OH

Square Footage of Locations by Project Number

AEP Project Number	Site Number	Square Footage	AEP Project Number	Site Number	Square Footage
AEP-10-02257	OH100479	2,971	AEP-10-02297	OH100641	3,120
AEP-10-02259	OH100480	1,660	AEP-10-02298	OH100642	3,220
AEP-10-02260	OH100481	4,371	AEP-10-02299	OH100643	2,220
AEP-10-02261	OH100482	1,550	AEP-10-02300	OH100644	4,200
AEP-10-02262	OH100484	2,760	AEP-10-02301	OH100647	12,478
AEP-10-02263	OH100485	4,000	AEP-10-02302	OH100650	3,350
AEP-10-02264	OH100486	28,698	AEP-10-02303	OH100670	450
AEP-10-02265	OH100487	3,240	AEP-10-02305	OH101151	5,714
AEP-10-02266	OH100490	2,680	AEP-10-02306	OH101156	2,170
AEP-10-02267	OH100494	6,085	AEP-10-02307	OH101157	4,000
AEP-10-02268	OH100495	3,000	AEP-10-02308	OH101158	6,890
AEP-10-02269	OH100498	4,514	AEP-10-02309	OH101159	4,224
AEP-10-02270	OH100500	5,832	AEP-10-02310	OH101160	65,945
AEP-10-02271	OH100501	1,992	AEP-10-02311	OH101162	1,000
AEP-10-02272	OH100502	3,240	AEP-10-02312	OH101163	4,000
AEP-10-02273	OH100503	3,400	AEP-10-02313	OH101164	5,000
AEP-10-02274	OH100504	3,277	AEP-10-02314	OH101184	4,200
AEP-10-02275	OH100508	4,025	AEP-10-02315	OH101186	2,920
AEP-10-02276	OH100509	1,800	AEP-10-02316	OH101189	3,500
AEP-10-02277	OH100513	3,000	AEP-10-02317	OH101195	4,155
AEP-10-02278	OH100514	3,400	AEP-10-02318	OH101198	4,200
AEP-10-02279	OH100515	2,752	AEP-10-02319	OH101205	4,115
AEP-10-02280	OH100516	3,402	AEP-10-02320	OH101220	4,200
AEP-10-02281	OH100517	2,176	AEP-10-02321	OH101238	1,651
AEP-10-02282	OH100518	3,900	AEP-10-02322	OH101239	4,200
AEP-10-02283	OH100519	3,240	AEP-10-02323	OH101248	4,200
AEP-10-02284	OH100520	2,500	AEP-10-02324	OH101256	4,200
AEP-10-02285	OH100522	2,680	AEP-10-02325	OH101260	4,200
AEP-10-02286	OH100523	3,684	AEP-10-02326	OH101401	4,200
AEP-10-02287	OH100524	5,621	AEP-10-02327	OH101415	4,200
AEP-10-02288	OH100525	3,000			
AEP-10-02289	OH100538	4,200			
AEP-10-02290	OH100539	4,200			
AEP-10-02291	OH100542	4,900			
AEP-10-02292	OH100548	2,800			
AEP-10-02293	OH100549	7,500			
AEP-10-02294	OH100550	2,500			
AEP-10-02295	OH100551	2,500			
AEP-10-02296	OH100640	18,740			

KEMA

Programmable Thermostat

Measure Description	Installation of a programmable thermostat in place of a constant setpoint style thermostat.
Units	Per 1000 square feet
Base Case Description	Constant setpoint thermostats
Measure Savings	Source: This workpaper is based on the Michigan Statewide Energy Savings Database - Weather Sensitive Retrofit Measures for Residential and Commercial Buildings
Measure Incremental Cost	The total cost is assumed to be \$175 per 1,000 sf of conditioned space (or per thermostat).
Effective Useful Life	9 years

Programmable thermostats must meet ENERGY STAR® Version 2.0 criteria and must replace any non-programmable thermostat to automatically adjust the temperature at pre-selected times. To meet ENERGY STAR® standards, they must be capable of maintaining two separate programs (to address the different comfort needs of weekdays and weekends) and up to four temperature settings for each program.

Measure Savings

These savings are based on eQuest building models developed for the Michigan Statewide Energy Savings Database. The weather data used is for the Detroit airport area, which is more conservative than Columbus as Detroit has an average of 727 cooling degree days whereas, Columbus has an average of 925 cooling degree days (Source: National Climatic Data Center). The measure is to include temperature setback/setup during unoccupied hours. The savings assumes air conditioning with gas heating (gas package units).

Table 1 Programmable Thermostat Savings, per 1000 sq. ft

Building Type	kWh/unit
Assembly	1,063
Big Box Retail	579
Fast Food Restaurant	1,532
Full Service Restaurant	1,132
Light Industrial	502
Primary School	1,218
Small Office	748

Small Retail	1,036

Measure Life and Incremental Measure Cost

The following table provides the measure life and incremental measure cost (IMC) documented for this measure as well as the source of the data.

Table 2 Measure Life and Incremental Measure Cost

	Value	Source
Measure Life	9	MEMD
Incremental Measure Cost	$\$ 175$	MEMD

Pass \& Seymour

41 legrand

Features - Wall Switch Occupancy Sensors

- Detection Signature Analysis provides high immunity to RFI and EMI.
- Compact, decorator design replaces existing wall switch.
- Integrated light level sensor works from 10 to 150 footcandles.
- Compatible with all electronic and magnetic ballasts, PL lamp ballasts, compact fluorescent.
- 5-year warranty.
- cULus listed.

Decorator Devices

 Passive Infrared Sensors| Catalog
 Number | Description | Voltage | Load
 Requirements | Coverage |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | | Time |
| :--- |
| Delay |\quad Color | |
| :--- | | PIR Automatic Wall Switches - $\mathbf{3}$ Wire Technology |
| :--- |
| WSP200-I
 WSP200-W
 WSP200-GRY
 WSP200-LA
 Passive Infrared
 Occupancy Sensor |

Planning a Layout

The WSP200's 2 -level lens provides superior coverage at desktop level by allowing the sensor to detect vertical as well as horizontal motion. Coverage shown is for walking motion. Under optimum conditions with a high level of activity and with no barriers or obstacles, coverage can reach a maximum of 900 square feet. Under a typical, desktop level of activity, when mounted at 4 feet, coverage is 300 square feet.

WSP200
Placement for PIR wall switch sensor

Single Level Lighting WSP200

Manual Bi-level Lighting WSP200

Product Information Bulletin

OCTRON ${ }^{\circledR}$ 25W XP ${ }^{\circledR}$ SUPERSAVER ${ }^{\circledR}$ ECOLOGIC ${ }^{\circledR}$

EXtended Performance Fluorescent Lamps 4' T8 Lamps -

SYLVANIA 25 Watt OCTRON FO32/25W/800XP SUPERSAVER ECOLOGIC lamps operate on standard T8 instant start systems and provide 22% energy savings over standard 32 Watt OCTRON lamps where slight reductions in light are acceptable.

At $\$.10 / \mathrm{kWh}$ and 4000 hours of operation per year, the 22% savings translates to a savings of $\$ 9.80$ per fixture per year for a 4-lamp fixture with a normal ballast factor, instant start ballast. Changing from standard Cool White Energy Saving T12 lamps powered by energy saving magnetic ballasts to OCTRON FO32/25W/800XP/SS/ECO lamps combined with OSRAM SYLVANIA's QUICKTRONIC High Efficiency ISN ballasts could save $\$ 24$ a year with no light loss. These lamps pass the Federal TCLP test, classifying them as non-hazardous waste in most states. Group relamp to realize the benefits of these OCTRON lamps in your facility.

- Up to 22\% energy savings compared to standard 32W T8 lamp
- 25 Watt, 4-foot, SUPERSAVER energy saving, T8 lamp
- ECOLOGIC - Designed to pass TCLP ${ }^{1}$
- Initial lumens - 2475 (850 is 2300)
- 95% lumen maintenance at 8000 hours
- 3000K, 3500K, 4100K \& 5000K
- 85 CRI
- Retrofit lamp for existing T8 instant start systems - 24,000 hour average rated life @ 3 hrs. per start
- Also operates on OSRAM SYLVANIA QUICKTRONIC® Programmed Start ballasts
- 36,000 hour average rated life @ 3 hrs per start
- Minimum starting temperature: $70^{\circ} \mathrm{F}$
- Not dimmable
- Not for use in air handling fixtures
- Striation may occur if airflow is present (see application note 5)

SYLVANIA OCTRON T8 ECOLOGIC fluorescent lamps are designed to pass the Federal Toxicity Characteristic Leaching Procedure (TCLP) criteria for classification as non-hazardous waste in most states ${ }^{2}$.

1. TCLP test results are based on NEMA LL Series standards and are available on request.
2. Lamp disposal regulations may vary; check your local \& state regulations.

Product Availability

Lamp Type	Wattage	Color Temperature	CRI
F032/25W/830XP/SS/ECO	25	3000 K	85
F032/25W/835XP/SS/EC0	25	3500 K	85
F032/25W/841XP/SS/ECO	25	4100 K	85
F032/25W/850XP/SS/EC0	25	5000 K	85

Application Information

Applications

Retail Office Schools Hospitals Industrial Many applications with T8 instant start ballasts currently using 32W T8 lamps

Fixtures

Contact your local fixture agent for available fixtures.

Ballast Information

Contact your OSRAM SYLVANIA representative for a list of compatible electronic operating systems.

Application Notes

1. Recommended to be used on T8 F32 Instant Start circuits with minimum starting voltage of 550 v RMS.
2. Can operate on QUICKTRONIC Programmed Start Ballasts.
3. Fixture must conform to ANSI C78.81-2005 requirements for luminaire design.

Application Notes (continued)

4. Not recommended to be used: (1) with Rapid Start circuits unless the open circuit voltage is greater than 570V, (2) at lamp ambient temperatures below $70^{\circ} \mathrm{F}$ or in drafty locations, (3) in air handling fixtures, (4) on dimming ballasts, (5) on inverter operated emergency lighting systems unless any of the above equipment is specifically listed for 25 watt lamps, or (6) below $60^{\circ} \mathrm{F}$ starting temperature. Any of the above situations could result in lamp starting and stabilization problems, or system compatibility issues.
5. If an operating lamp is exposed to temperatures below $70^{\circ} \mathrm{F}$ or moving air (wind, drafts or air flow from an air conditioning or ventilation system), striation, a rhythmic pulsing pattern of light running the length of the tube and/or a reduction in brightness may occur. While visually disconcerting, neither behavior is damaging to the lamp and removing the cause (draft or temperature) will return the lamp to normal operation.

Electrical Specifications

IOPA2P32LNO@120V		
Brand Name	OPTANIUM	
Ballast Type	Electronic	
Starting Method	Instant Start	
Lamp Connection	Parallel	
Input Voltage	$120-277$	
Input Frequency	$50 / 60 \mathrm{HZ}$	
Status	Active	

PHILIPS LIGHTING ELECTRONICS N.A.

Electrical Specifications

IOPA4P32LWSCO120V		
Brand Name	OPTANIUM	
Ballast Type	Electronic	
Starting Method	Instant Start	
Lamp Connection	Parallel	
Input Voltage	$120-277$	
Input Frequency	$50 / 60 \mathrm{HZ}$	
Status	Active	

| Lamp Type | Num.
 of
 Lamps | Rated
 Lamp Watts | Min. Start
 Temp (${ }^{\circ}$ F/C) | Input
 Current
 (Amps) | Input
 Power
 (ANSI
 Watts) | Ballast
 Factor | MAX
 THD
 $\%$ | Power
 Factor | MAX Lamp
 Current
 Crest Factor | B.E.F
 \cdot |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| F32T8/ES (25W) | 3 | 25 | $60 / 16$ | 0.52 | 62 | 0.85 | 10 | 0.99 | 1.6 | 1.37 |
| *F32T8/ES (25W) | 4 | 25 | $60 / 16$ | 0.52 | 77 | 0.77 | 10 | 0.99 | 1.6 | (1.00 |

Wiring Diagram

	in.	cm.
Black	25	63.5
White	25	63.5
Blue	31	78.7
Red	31	78.7
Yellow	39	99.1
Gray		0
Violet		0

	in.	cm.
Yellow/Blue		0
Blue/White		0
Brown		0
Orange		0
Orange/Black		0
Black/White		0
Red/White	0	

The wiring diagram that appears above is for the lamp type denoted by the asterisk (*)

Standard Lead Length (inches)

4' 4L T8 with 25W Lamps: 77W

Enclosure Dimensions

OverAll (L)	Width (W)	Height (H)	Mounting (M)
$9.50^{\prime \prime}$	$1.7^{\prime \prime}$	$1.18^{\prime \prime}$	8.90 "
$91 / 2$	$17 / 10$	$19 / 50$	$89 / 10$
24.1 cm	4.3 cm	3 cm	22.6 cm

Polycarbonate Exit Signs Specification

Features

- Injection-molded thermoplastic ABS housing
- UL 94V-0 flame rating
- Innovative, snap-together design allows for fast installation
- Replaceable directional chevron inserts are easily removed and reinserted
- Lettes 6 " height with $3 / 4$ " stroke
- Single or double face configuration
- Universal mounting- wall, side, or ceiling
- Housing snaps to canopy with simple twist and locking tightly secure housing to canopy
- 120/277 VAC dual voltage operation
- Low energy consumption- only 2.1 or 2.4 watts at 120 V
- LED indicator light and push button test switch
- LEDs mounted on print circuit board
- LED lamps are operating in normal (AC input) and emergency (DC input) modes
- Ni-Cd battery delivers more than 3 hours capacity to emergency lamps

- 24 hours recharge after 90 minutes discharge
- Low voltage battery disconnection- preventing deep discharge damage to the battery
- Maintenance-free battery provides an estimated service life of 10 years with an operating
temperature range of $10^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$
- Power Factor of $>.95$
- UL Listed for damp location
- Meets NFPA 101, NEC, and NEMA code

Ordering Information

Catalog Model \#	Description	$\begin{aligned} & \text { LED } \\ & \text { Color } \end{aligned}$	Housing Color	$\begin{gathered} \mathrm{AC/} \\ \mathrm{BBUP} \end{gathered}$
20742D	Red LED Exit Sign Universal AC Only WH Housing	Red	White	AC
20743D	Red LED Exit Sign Universal Battery Backup WH Housing	Red	White	BBUP
20743DBLK	Red LED Exit Sign Universal Battery Backup BLK Housing	Red	Black	BBUP
20744D	Green LED Exit Sign Universal AC Only WH Housing	Green	White	AC
20745D	Green LED Exit Sign Universal Battery Backup WH Housing	Green	White	BBUP
20745DBLK	Green LED Exit Sign Universal Battery Backup BLK Housing	Green	Black	BBUP
20746D	Red LED Exit Sign Universal AC Only BLK Housing	Red	Black	
20748D	Green LED Exit Sign Universal AC Only BLK Housing	Green	Black	AC

Accessories

Item \#	Description	Item \#	Description
207WG	Wire Guard for Exit Sign	29999R2	Red Diffuser Panel with LED Strip
207WGWH	White Wire Guard for Exit Sign	29999G2	Green Diffuser Panel with LED Strip
207PS	Polycarbonate Shield for Exit Sign	20704	Replacement White Canopy
20730	Replacement Battery Ni-Cd 4.8V 650mAh	CHEVRONPL	Replacement White Chevron
29999JR	Red Diffuser Panel	20708P	Replacement Face Plate
29999JG	Green Diffuser Panel		

TCP, Inc.

325 Campus Dr. | Aurora, Ohio 44202 | P: 800-324-1496 | F: 330-995-6188 | www.tcpi.com
©TCP, Inc. 2008/02804

Self Direct Project Overview \& Commitment

The Public Utility Commission of Ohio (PUCO) will soon review your application for participation in AEP Ohio's Energy Efficiency/Peak Demand Response program. Based on your submitted project, please select by initialing one of the two options below, sign and fax to 877-607-0740.

Note: This is a one time selection. By selecting Option 1, the customer will receive payment in the amount stated above. Selection of Option 2: $E E / P D R$ rider exemption, will result in the customer not being eligible to participate in any other energy efficiency programs offered by $A E P$ Ohio during the period of exemption. In addition, the term of Option 2: EE/PDR rider exemption is subject to ongoing review for compliance and could be changed by the PUCO.
If Option 1 has been selected, will the Energy Efficiency Funds selected help you move forward with other energy efficiency projects?

Project Overview:

The Self Direct (Prescriptive and Custom) project that the above has completed and applied is as follows.
Retrofitted (7) 4' 2L T12 into (7) 4' 2L T8 fixtures
Retrofitted (1) 4' 2L T12 U-Tube into (1) 2' 3L T8 fixtures
Retrofitted (26) 4' 4L T12 into (26) 4' 2L T8 fixtures
Converted (2) Incandescent Exit Signs into (2) LED Exit Signs
Converted (1) Screw in Fixture - 60W x 2 Incandescent into (1) 2' 2 L T8 New Fixture
Converted (3) Open/Closed incandescetn lane signs into (3) Open/Closed lane signs 7" x 18" - LED 3.4 Watts
Installed occupancy sensors on (10) 4' 2L T8 25W fixtures
Converted (1) 4' 2L T8 32W Lamps into (1) 4' 2L T8 25W Lamps (No ballast change)
Converted (2) Manual constant setpoint thermostats into (2) Energy Star remote controllable thermostats
The documentation that was included with the application proved that the energy measures applied for were purchased and installed.
By signing this document, the Mercantile customer affirms its intention to commit and integrate the above listed energy efficiency resources into the utility's peak demand reduction, demand response, and energy efficiency programs. By signing, the Mercantile customer also agrees to serve as a joint applicant in any filings necessary to secure approval of this arrangement by the Public Utilities Commission of Ohio, and comply with any information and compliance reporting requirements imposed by rule or as part of that approval.

Columbus Southern Power Company

By: \qquad
Title: \qquad
Date: \qquad

FIFTH THIRD BANK

\qquad
By:
Title: \qquad

Date: \qquad

List of Fifth Third Bank properties within the AEP Ohio service territory

Note: State Savings Bank is a subsidiary of Fifth Third Bank.

Account Name	Billing Name	Service Address	City	State
Fifth Third Bank	FIFTH THIRD BANK	1340 BETHEL RD	COLUMBUS	OH
Fifth Third Bank	STATE SAVINGS BANK	3580 N HIGH ST	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	2500 E DUBLIN GRANVILLE RD	COLUMBUS	OH
Fifth Third Bank	STATE SAVINGS	229 S SANDUSKY ST	DELAWARE	OH
Fifth Third Bank	STATE SAVINGS BANK	6260 PERIMETER DR	DUBLIN	OH
Fifth Third Bank	FIFTH THIRD BANK	420 METRO PL APT A	DUBLIN	OH
Fifth Third Bank	STATE SAVINGS BANK	3800 W DUBLIN GRANVILLE RD	DUBLIN	OH
Fifth Third Bank	FIFTH THIRD BANK	434 HAVENS CORNERS RD	GAHANNA	OH
Fifth Third Bank	FIFTH THIRD BANK	3407 CLEVELAND AVE	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	155 W MAIN ST	NEW ALBANY	OH
Fifth Third Bank	STATE SAVINGS CO	1500 MORSE RD	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	3949 W POWELL RD	POWELL	OH
Fifth Third Bank	FIFTH THIRD BANK	7425 STATE ROUTE 3	WESTERVILLE	OH
Fifth Third Bank	STATE SAVINGS BANK	2081 HENDERSON RD	COLUMBUS	OH
Fifth Third Bank	STATE SAVINGS BANK	6895 N HIGH ST	WORTHINGTON	OH
Fifth Third Bank	STATE SAVINGS BANK	3011 E BROAD ST	COLUMBUS	OH
Fifth Third Bank	STATE SAVINGS BANK	2570 E MAIN ST	BEXLEY	OH
Fifth Third Bank	FIFTH THIRD BANK	159 E MAIN ST	CIRCLEVILLE	OH
Fifth Third Bank	STATE SAVINGS CO	2810 S HAMILTON RD	COLUMBUS	OH
Fifth Third Bank	STATE SAVINGS CO	1349 W 5TH AVE	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	809 S HIGH ST	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	2336 STRINGTOWN RD	GROVE CITY	OH
Fifth Third Bank	STATE SAVINGS CO	3990 BROADWAY	GROVE CITY	OH
Fifth Third Bank	STATE SAVINGS CO	1585 E MAIN ST	LANCASTER	OH
Fifth Third Bank	FIFTH THIRD BANK	2475 NORTHWEST BLVD	UPPER	OH
Fifth Third Bank	STATE SAVINGS CO	5055 W BROAD ST	COLUMBUS	OH
Fifth Third Bank	STATE SAVINGS INC	1235 N 21ST ST	NEWARK	OH
Fifth Third Bank	FIFTH THIRD BANK	6935 E MAIN ST	REYNOLDSBURG	OH
Fifth Third Bank	FIFTH THIRD BANK	3460 S HIGH ST	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	2883 TAYLOR RD	REYNOLDSBURG	OH
Fifth Third Bank	FIFTH THIRD BANK	1669 FISHINGER RD UNIT 3P	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	2455 HILLIARD ROME RD	HILLIARD	OH
Fifth Third Bank	FIFTH THIRD BANK	8877 OWENFIELD DR	LEWIS CENTER	OH
Fifth Third Bank	FIFTH THIRD BANK	4128 HOOVER RD	GROVE CITY	OH
Fifth Third Bank	FIFTH THIRD BANK	983 N CABLE RD	LIMA	OH
Fifth Third Bank	FIFTH THIRD OF WEST OH	225 N WEST ST	LIMA	OH
Fifth Third Bank	FIFTH THIRD BANK	2120 HARDING HWY	LIMA	OH
Fifth Third Bank	FIFTH THIRD BANK	2450 SHAWNEE RD BLDG 0439	LIMA	OH
Fifth Third Bank	FIFTH THIRD BK OF NW OHIC	337 S MAIN ST	FINDLAY	OH
Fifth Third Bank	FIFTH THIRD BANK	1735 TIFFIN AVE	FINDLAY	OH
Fifth Third Bank	FIFTH THIRD BANK NW OHIO	2720 N MAIN ST	FINDLAY	OH
Fifth Third Bank	FIFTH THIRD BANK	1412 S MAIN ST	FINDLAY	OH

Fifth Third Bank	FIFTH THIRD BANK	1207 OAK HARBOR RD	FREMONT	OH
Fifth Third Bank	FIFTH THIRD BANK	220 PERRY ST	FOSTORIA	OH
Fifth Third Bank	FIFTH THIRD BANK	720 W MARKET ST	TIFFIN	OH
Fifth Third Bank	FIFTH THIRD BANK	300 E SANDUSKY ST	FINDLAY	OH
Fifth Third Bank	FIFTH THIRD BANK OF SOUTH	128 W MAIN ST	CHILLICOTHE	OH
Fifth Third Bank	FIFTH THIRD BANK	10551 US HIGHWAY 23	LUCASVILLE	OH
Fifth Third Bank	FIFTH THIRD BANK	31 E 2ND ST	MANCHESTER	OH
Fifth Third Bank	FIFTH THIRD BANK	511 N HIGH ST	HILLSBORO	OH
Fifth Third Bank	FIFTH THIRD BANK	60 N MAIN ST	PEEBLES	OH
Fifth Third Bank	FIFTH THIRD BANK	826 7TH ST	PORTSMOUTH	OH
Fifth Third Bank	53 BANK OHIO VALLEY	303 E EMMITT AVE	WAVERLY	OH
Fifth Third Bank	FIFTH THIRD BANK	500 E MAIN ST	WEST UNION	OH
Fifth Third Bank	FIFTH THIRD BANK	7988-A OHIO RIVER RD	WHEELERSBURG	OH
Fifth Third Bank	FIFTH THIRD BANK	5067 PORTAGE ST	NORTH CANTON	OH
Fifth Third Bank	FIFTH 3RD BANK	1819 W LANE AVE	UPPER	OH
Fifth Third Bank	FIFTH THIRD BANK	6031 GROVEPORT RD	GROVEPORT	OH
Fifth Third Bank	FIFTH THIRD BANK	5342 N HAMILTON RD	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	8353 SANCUS BLVD	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	1637 N MAIN ST	NORTH CANTON	OH
Fifth Third Bank	FIFTH THIRD BANK	1669 HOLT RD	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	3750 FISHINGER BLVD	HILLIARD	OH
Fifth Third Bank	FIFTH THIRD BANK	2152 SCHORRWAY DR	LANCASTER	OH
Fifth Third Bank	5TH 3RD BANK INC	3964 FULTON DR	CANTON	OH
Fifth Third Bank	FITH THIRD BANK	4655 TUSCARAWAS ST	CANTON	OH
Fifth Third Bank	FIFTH THIRD BANK	1960 N HIGH ST	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	4801 DRESSLER RD STE 100	CANTON	OH
Fifth Third Bank	FIFTH THIRD BANK	4220 CLEVELAND AVE	CANTON	OH

Square Footage of Locations by Project Number

AEP Project Number	Site Number	Square Footage	AEP Project Number	Site Number	Square Footage
AEP-10-02257	OH100479	2,971	AEP-10-02297	OH100641	3,120
AEP-10-02259	OH100480	1,660	AEP-10-02298	OH100642	3,220
AEP-10-02260	OH100481	4,371	AEP-10-02299	OH100643	2,220
AEP-10-02261	OH100482	1,550	AEP-10-02300	OH100644	4,200
AEP-10-02262	OH100484	2,760	AEP-10-02301	OH100647	12,478
AEP-10-02263	OH100485	4,000	AEP-10-02302	OH100650	3,350
AEP-10-02264	OH100486	28,698	AEP-10-02303	OH100670	450
AEP-10-02265	OH100487	3,240	AEP-10-02305	OH101151	5,714
AEP-10-02266	OH100490	2,680	AEP-10-02306	OH101156	2,170
AEP-10-02267	OH100494	6,085	AEP-10-02307	OH101157	4,000
AEP-10-02268	OH100495	3,000	AEP-10-02308	OH101158	6,890
AEP-10-02269	OH100498	4,514	AEP-10-02309	OH101159	4,224
AEP-10-02270	OH100500	5,832	AEP-10-02310	OH101160	65,945
AEP-10-02271	OH100501	1,992	AEP-10-02311	OH101162	1,000
AEP-10-02272	OH100502	3,240	AEP-10-02312	OH101163	4,000
AEP-10-02273	OH100503	3,400	AEP-10-02313	OH101164	5,000
AEP-10-02274	OH100504	3,277	AEP-10-02314	OH101184	4,200
AEP-10-02275	OH100508	4,025	AEP-10-02315	OH101186	2,920
AEP-10-02276	OH100509	1,800	AEP-10-02316	OH101189	3,500
AEP-10-02277	OH100513	3,000	AEP-10-02317	OH101195	4,155
AEP-10-02278	OH100514	3,400	AEP-10-02318	OH101198	4,200
AEP-10-02279	OH100515	2,752	AEP-10-02319	OH101205	4,115
AEP-10-02280	OH100516	3,402	AEP-10-02320	OH101220	4,200
AEP-10-02281	OH100517	2,176	AEP-10-02321	OH101238	1,651
AEP-10-02282	OH100518	3,900	AEP-10-02322	OH101239	4,200
AEP-10-02283	OH100519	3,240	AEP-10-02323	OH101248	4,200
AEP-10-02284	OH100520	2,500	AEP-10-02324	OH101256	4,200
AEP-10-02285	OH100522	2,680	AEP-10-02325	OH101260	4,200
AEP-10-02286	OH100523	3,684	AEP-10-02326	OH101401	4,200
AEP-10-02287	OH100524	5,621	AEP-10-02327	OH101415	4,200
AEP-10-02288	OH100525	3,000			
AEP-10-02289	OH100538	4,200			
AEP-10-02290	OH100539	4,200			
AEP-10-02291	OH100542	4,900			
AEP-10-02292	OH100548	2,800			
AEP-10-02293	OH100549	7,500			
AEP-10-02294	OH100550	2,500			
AEP-10-02295	OH100551	2,500			
AEP-10-02296	OH100640	18,740			

KEMA

Programmable Thermostat

Measure Description	Installation of a programmable thermostat in place of a constant setpoint style thermostat.
Units	Per 1000 square feet
Base Case Description	Constant setpoint thermostats
Measure Savings	Source: This workpaper is based on the Michigan Statewide Energy Savings Database - Weather Sensitive Retrofit Measures for Residential and Commercial Buildings
Measure Incremental Cost	The total cost is assumed to be \$175 per 1,000 sf of conditioned space (or per thermostat).
Effective Useful Life	9 years

Programmable thermostats must meet ENERGY STAR® Version 2.0 criteria and must replace any non-programmable thermostat to automatically adjust the temperature at pre-selected times. To meet ENERGY STAR® standards, they must be capable of maintaining two separate programs (to address the different comfort needs of weekdays and weekends) and up to four temperature settings for each program.

Measure Savings

These savings are based on eQuest building models developed for the Michigan Statewide Energy Savings Database. The weather data used is for the Detroit airport area, which is more conservative than Columbus as Detroit has an average of 727 cooling degree days whereas, Columbus has an average of 925 cooling degree days (Source: National Climatic Data Center). The measure is to include temperature setback/setup during unoccupied hours. The savings assumes air conditioning with gas heating (gas package units).

Table 1 Programmable Thermostat Savings, per 1000 sq. ft

Building Type	kWh/unit
Assembly	1,063
Big Box Retail	579
Fast Food Restaurant	1,532
Full Service Restaurant	1,132
Light Industrial	502
Primary School	1,218
Small Office	748

Small Retail	1,036

Measure Life and Incremental Measure Cost

The following table provides the measure life and incremental measure cost (IMC) documented for this measure as well as the source of the data.

Table 2 Measure Life and Incremental Measure Cost

	Value	Source
Measure Life	9	MEMD
Incremental Measure Cost	$\$ 175$	MEMD

Pass \& Seymour

41 legrand

Features - Wall Switch Occupancy Sensors

- Detection Signature Analysis provides high immunity to RFI and EMI.
- Compact, decorator design replaces existing wall switch.
- Integrated light level sensor works from 10 to 150 footcandles.
- Compatible with all electronic and magnetic ballasts, PL lamp ballasts, compact fluorescent.
- 5-year warranty.
- cULus listed.

Decorator Devices

 Passive Infrared Sensors| Catalog Number | Description | Voltage | Load Requirements | Coverage | Time Delay | Color |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PIR Automatic Wall Switches - 3 Wire Technology | | | | | | |
| WSP200-I
 WSP200-W
 WSP200-GRY
 WSP200-LA | Passive Infrared Occupancy Sensor | $\begin{aligned} & \text { 120/277VAC; } \\ & 60 \mathrm{~Hz} \end{aligned}$ | 800W Max.
 at 120 V
 1200W Max.
 at 277 V | $\begin{aligned} & 180^{\circ}, \text { up to } \\ & 900 \text { sq. ft. } \end{aligned}$ | 30 sec . to 30 min . | Ivory
 White
 Gray
 Lt. Almond |

Planning a Layout

The WSP200's 2 -level lens provides superior coverage at desktop level by allowing the sensor to detect vertical as well as horizontal motion. Coverage shown is for walking motion. Under optimum conditions with a high level of activity and with no barriers or obstacles, coverage can reach a maximum of 900 square feet. Under a typical, desktop level of activity, when mounted at 4 feet, coverage is 300 square feet.

WSP200
Placement for PIR wall switch sensor

Single Level Lighting WSP200

Manual Bi-level Lighting WSP200

ALTO ${ }^{\circledR}$ Universal T8: Full Rated Average Life on All T8 Ballast Types,
Environmentally-Responsible Lamps. Ideal for any lighting application
Alto
requiring maximum quality of light and maintain 2 2' and 3' T8
Allo Universal 18 Lamps 18 luorescent Lamps

Philips Exclusive Universal Design: The only T8 lamp to deliver full rated average life on all T8 ballast types (Instant Start, Rapid Start, Programmed Start and Hybrid ballasts)
Environmentally Responsible: Low mercury-TCLP*-compliant; energy efficient; long life
Sustainable Lighting Solution: Less mercury and fewer lamps in landfills, combined with energy efficiency, reduces the impact on the environment Outstanding Lumen Maintenance: $\mathrm{HI}-\mathrm{VISION}{ }^{\ominus}$ Phosphor combined with Philips exclusive cathode guard delivers 95% lumen maintenance and reduced lamp-end blackening
Enhanced CRI: 86 CRI for TL80 lamps; 78 CRI for TL70 lamps
 F32TATLLA3OUALTO HI-MISION/32 WATT Alto
cubertan

			Qualify based
Nom.	Product	Symbols,	Ordering
Lamp	Number Symols		
Watts	046677- Footnotes	Code	On CRI

ALTO Universal T8 Warranty: 24 months

 800 SeriesALTO Universal T8 Fluorescent Lamps T8 Medium Bipin

17	36787-0	\$	FI7T8/TL830/ALTO	25	TL 830, 3000K	24	20,000	25,000	1400	1300	86
	36791-2	\$	FI7T8/TL835/ALTO	25	TL 835, 3500K	24	20,000	25,000	1400	1300	86
	36793-8	\$	FI7T8/TL84I/ALTO	25	TL 841, 4100K	24	20,000	25,000	1400	1300	86
	36807-6	\$	FI7T8/TL730/ALTO	25	TL 730, 3000K	24	20,000	25,000	1325	1200	78
	36808-4	\$	FI7T8/TL735/ALTO	25	TL 735, 3500K	24	20,000	25,000	1325	1200	78
	36812-6	\$	FI7T8/TL74I/ALTO	25	TL 741, 4100K	24	20,000	25,000	1325	1200	78
25	36813-4	\$	F25T8/TL830/ALTO	25	TL 830, 3000K	36	20,000	25,000	2225	2050	86
	36814-2	\$	F25T8/TL835/ALTO	25	TL 835, 3500K	36	20,000	25,000	2225	2050	86
	36825-8	\$	F25T8/TL84I/ALTO	25	TL 841, 4100K	36	20,000	25,000	2225	2050	86
	36826-6	\$	F25T8/TL730/ALTO	25	TL 730, 3000K	36	20,000	25,000	2125	1925	78
	36828-2	\$	F25T8/TL735/ALTO	25	TL 735, 3500K	36	20,000	25,000	2125	1925	78
	36829-0	\$	F25T8/TL74I/ALTO	25	TL 741, 4100K	36	20,000	25,000	2125	1925	78
32	24667-8	(E) \$	F32T8/TL830/ALTO	25	TL 830, 3000K	48	20,000	25,000	2950	2800	86
	27236-9	(E) \$	F32T8/TL830/ALTO PLZ	1350	TL 830, 3000K	48	20,000	25,000	2950	2800	86
	24670-2	(E) \$	F32T8/TL835/ALTO	25	TL 835, 3500K	48	20,000	25,000	2950	2800	86
	27233-6	(E) \$	F32T8/TL835/ALTO PLZ	1350	TL 835, 3500K	48	20,000	25,000	2950	2800	86
	24671-0	(E) \$	F32T8/TL84I/ALTO	25	TL 84I, 4100K	48	20,000	25,000	2950	2800	86
	27235-1	(E) \$	F32T8/TL84I/ALTO PLZ	1350	TL 841, 4100K	48	20,000	25,000	2950	2800	86
	27229-4	(E) \$	F32T8/TL850/ALTO	25	TL 850, 5000K	48	20,000	25,000	2950	2800	86
	27252-6	(E) \$	F32T8/TL730 ALTO	25	TL 730, 3000K	48	20,000	25,000	2800	2660	78
	27282-3	(E) \$	F32T8/TL730/ALTO PLZ	1350	TL 730, 3000K	48	20,000	25,000	2800	2660	78
	27249-2	(E) \$	F32T8/TL735/ALTO	25	TL 735, 3500K	48	20,000	25,000	2800	2660	78
	27259-1	(E) \$	F32T8/TL735/ALTO PLZ	1350	TL 735, 3500K	48	20,000	25,000	2800	2660	78
	27248-4	(E) \$	F32T8/TL74I/ALTO	25	TL 741, 4100K	48	20,000	25,000	2800	2660	78
	38351-3	(E) \$	F32T8/TL74I/ALTO	10	TL 741, 4100K, 10 Pk .	48	20,000	25,000	2800	2660	78
	27255-9	(E) $\$$	F32T8/TL74I/ALTO PLZ	1350	TL 741, 4100K	48	20,000	25,000	2800	2660	78
	27268-2	(E) \$	F32T8/TL750/ALTO	25	TL 750, 5000K	48	20,000	25,000	2700	2550	78

For the most current product information, go to www.lighting.philips.com/nam/product_database/
Fluorescent symbols and footnotes located on page 77
\square This product utilizes ALTO® Lamp Technology

* The TCLP is the US EPA's Toxicity Characteristic Leaching Procedure.

T8 Medium Bipin

A ADVANCE

Electrical Specifications
2' Ballasts

IOPA2P32LWSC@120V	
Brand Name	OPTANIUM 2.0
Ballast Type	Ilectronic
Starting Method	Instant Start
Lamp Connection	Parallel
Input Voltage	$120-277$
Input Frequency	$50 / 60 \mathrm{HZ}$
Status	Active

Lamp Type	Num. of Lamp \mathbf{s}	Rated Lamp Watts	Min. Start Temp $\left({ }^{\circ} \mathrm{F} / \mathrm{C}\right.$)	Input Current (Amps)	Input Power (ANSI Watts)	Ballast Factor	MAX THD $\%$	Power Factor	MAX Lamp Current Crest Factor	B.E.F.
F17T8	1	17	$-20 /-29$	0.15	18	0.90	20	0.98	1.6	5.00
*F17T8	2	17	$-20 /-29$	0.23	27	0.80	10	0.99	1.6	2.96

Wiring Diagram

Diag. 64
The wiring diagram that appears above is for the lamp type denoted by the asterisk (*)

Standard Lead Length (inches)

	in.	cm.
Black	25	63.5
White	25	63.5
Blue	31	78.7
Red	37	94
Yellow		0
Gray		0
Violet		0

	in.	cm.
Yellow/Blue		0
Blue/White		0
Brown		0
Orange		0
Orange/Black		0
Black/White		0
Red/White		0

Enclosure

Enclosure Dimensions

OverAll (L)	Width (W)	Height (H)	Mounting (M)
$9.50{ }^{\prime}$	1.7^{\prime}	1.18^{\prime}	$8.90{ }^{\prime \prime}$
$91 / 2$	$17 / 10$	$19 / 50$	$89 / 10$
24.1 cm	4.3 cm	3 cm	22.6 cm

Product Information Bulletin

OCTRON ${ }^{\circledR}$ 25W XP ${ }^{\circledR}$ SUPERSAVER ${ }^{\circledR}$ ECOLOGIC ${ }^{\circledR}$

EXtended Performance Fluorescent Lamps 4' T8 Lamps -

SYLVANIA 25 Watt OCTRON FO32/25W/800XP SUPERSAVER ECOLOGIC lamps operate on standard T8 instant start systems and provide 22% energy savings over standard 32 Watt OCTRON lamps where slight reductions in light are acceptable.

At $\$.10 / \mathrm{kWh}$ and 4000 hours of operation per year, the 22% savings translates to a savings of $\$ 9.80$ per fixture per year for a 4-lamp fixture with a normal ballast factor, instant start ballast. Changing from standard Cool White Energy Saving T12 lamps powered by energy saving magnetic ballasts to OCTRON FO32/25W/800XP/SS/ECO lamps combined with OSRAM SYLVANIA's QUICKTRONIC High Efficiency ISN ballasts could save $\$ 24$ a year with no light loss. These lamps pass the Federal TCLP test, classifying them as non-hazardous waste in most states. Group relamp to realize the benefits of these OCTRON lamps in your facility.

- Up to 22\% energy savings compared to standard 32W T8 lamp
- 25 Watt, 4-foot, SUPERSAVER energy saving, T8 lamp
- ECOLOGIC - Designed to pass TCLP ${ }^{1}$
- Initial lumens - 2475 (850 is 2300)
- 95% lumen maintenance at 8000 hours
- 3000K, 3500K, 4100K \& 5000K
- 85 CRI
- Retrofit lamp for existing T8 instant start systems - 24,000 hour average rated life @ 3 hrs. per start
- Also operates on OSRAM SYLVANIA QUICKTRONIC® Programmed Start ballasts
- 36,000 hour average rated life @ 3 hrs per start
- Minimum starting temperature: $70^{\circ} \mathrm{F}$
- Not dimmable
- Not for use in air handling fixtures
- Striation may occur if airflow is present (see application note 5)

SYLVANIA OCTRON T8 ECOLOGIC fluorescent lamps are designed to pass the Federal Toxicity Characteristic Leaching Procedure (TCLP) criteria for classification as non-hazardous waste in most states ${ }^{2}$.

1. TCLP test results are based on NEMA LL Series standards and are available on request.
2. Lamp disposal regulations may vary; check your local \& state regulations.

Product Availability

Lamp Type	Wattage	Color Temperature	CRI
F032/25W/830XP/SS/ECO	25	3000 K	85
F032/25W/835XP/SS/EC0	25	3500 K	85
F032/25W/841XP/SS/ECO	25	4100 K	85
F032/25W/850XP/SS/EC0	25	5000 K	85

Application Information

Applications

Retail Office Schools Hospitals Industrial Many applications with T8 instant start ballasts currently using 32W T8 lamps

Fixtures

Contact your local fixture agent for available fixtures.

Ballast Information

Contact your OSRAM SYLVANIA representative for a list of compatible electronic operating systems.

Application Notes

1. Recommended to be used on T8 F32 Instant Start circuits with minimum starting voltage of 550 v RMS.
2. Can operate on QUICKTRONIC Programmed Start Ballasts.
3. Fixture must conform to ANSI C78.81-2005 requirements for luminaire design.

Application Notes (continued)

4. Not recommended to be used: (1) with Rapid Start circuits unless the open circuit voltage is greater than 570V, (2) at lamp ambient temperatures below $70^{\circ} \mathrm{F}$ or in drafty locations, (3) in air handling fixtures, (4) on dimming ballasts, (5) on inverter operated emergency lighting systems unless any of the above equipment is specifically listed for 25 watt lamps, or (6) below $60^{\circ} \mathrm{F}$ starting temperature. Any of the above situations could result in lamp starting and stabilization problems, or system compatibility issues.
5. If an operating lamp is exposed to temperatures below $70^{\circ} \mathrm{F}$ or moving air (wind, drafts or air flow from an air conditioning or ventilation system), striation, a rhythmic pulsing pattern of light running the length of the tube and/or a reduction in brightness may occur. While visually disconcerting, neither behavior is damaging to the lamp and removing the cause (draft or temperature) will return the lamp to normal operation.

Electrical Specifications

IOPA2P32	
IOWN@120V	
Brand Name	OPTANIUM
Ballast Type	Electronic
Starting Method	Instant Start
Lamp Connection	Parallel
Input Voltage	$120-277$
Input Frequency	$50 / 60$ HZ
Status	Active

PHILIPS LIGHTING ELECTRONICS N.A.

NOTE: Sign image may not exactly represent the finished product. For illustration purposes only.

Self Direct Project Overview \& Commitment

The Public Utility Commission of Ohio (PUCO) will soon review your application for participation in AEP Ohio's Energy Efficiency/Peak Demand Response program. Based on your submitted project, please select by initialing one of the two options below, sign and fax to 877-607-0740.

Note: This is a one time selection. By selecting Option 1, the customer will receive payment in the amount stated above. Selection of Option 2: $E E / P D R$ rider exemption, will result in the customer not being eligible to participate in any other energy efficiency programs offered by $A E P$ Ohio during the period of exemption. In addition, the term of Option 2: EE/PDR rider exemption is subject to ongoing review for compliance and could be changed by the PUCO.
If Option 1 has been selected, will the Energy Efficiency Funds selected help you move forward with other energy efficiency projects?
\qquad
\qquad NO

Project Overview:

The Self Direct (Prescriptive and Custom) project that the above has completed and applied is as follows.
Retrofitted (3) 2' 2L T12 into (3) 2' 2L T8 fixtures
Retrofitted (10) 4' 2L T12 into (10) 4' 2L T8 fixtures
Retrofitted (30) 4' 3L T12 into (30) 4' 3L T8 fixtures
Converted (1) Incandescent Lamp PAR 38 into (1) Energy Star Screw in CFL - 23W
Converted (2) Open/Closed incandescent lane signs into (2) Open/Closed lane signs 7" x 34 " - LED 3.4 Watts Installed occupancy sensors on (12) 4' 3L T8 25W fixtures
Converted (2) Manual constant setpoint thermostats into (2) Energy Star remote controllable thermostats

The documentation that was included with the application proved that the energy measures applied for were purchased and installed.
By signing this document, the Mercantile customer affirms its intention to commit and integrate the above listed energy efficiency resources into the utility's peak demand reduction, demand response, and energy efficiency programs. By signing, the Mercantile customer also agrees to serve as a joint applicant in any filings necessary to secure approval of this arrangement by the Public Utilities Commission of Ohio, and comply with any information and compliance reporting requirements imposed by rule or as part of that approval.

Columbus Southern Power Company

By: \qquad
Title: \qquad
Date: \qquad

FIFTH THIRD BANK

\qquad
Title:

List of Fifth Third Bank properties within the AEP Ohio service territory

Note: State Savings Bank is a subsidiary of Fifth Third Bank.

Account Name	Billing Name	Service Address	City	State
Fifth Third Bank	FIFTH THIRD BANK	1340 BETHEL RD	COLUMBUS	OH
Fifth Third Bank	STATE SAVINGS BANK	3580 N HIGH ST	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	2500 E DUBLIN GRANVILLE RD	COLUMBUS	OH
Fifth Third Bank	STATE SAVINGS	229 S SANDUSKY ST	DELAWARE	OH
Fifth Third Bank	STATE SAVINGS BANK	6260 PERIMETER DR	DUBLIN	OH
Fifth Third Bank	FIFTH THIRD BANK	420 METRO PL APT A	DUBLIN	OH
Fifth Third Bank	STATE SAVINGS BANK	3800 W DUBLIN GRANVILLE RD	DUBLIN	OH
Fifth Third Bank	FIFTH THIRD BANK	434 HAVENS CORNERS RD	GAHANNA	OH
Fifth Third Bank	FIFTH THIRD BANK	3407 CLEVELAND AVE	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	155 W MAIN ST	NEW ALBANY	OH
Fifth Third Bank	STATE SAVINGS CO	1500 MORSE RD	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	3949 W POWELL RD	POWELL	OH
Fifth Third Bank	FIFTH THIRD BANK	7425 STATE ROUTE 3	WESTERVILLE	OH
Fifth Third Bank	STATE SAVINGS BANK	2081 HENDERSON RD	COLUMBUS	OH
Fifth Third Bank	STATE SAVINGS BANK	6895 N HIGH ST	WORTHINGTON	OH
Fifth Third Bank	STATE SAVINGS BANK	3011 E BROAD ST	COLUMBUS	OH
Fifth Third Bank	STATE SAVINGS BANK	2570 E MAIN ST	BEXLEY	OH
Fifth Third Bank	FIFTH THIRD BANK	159 E MAIN ST	CIRCLEVILLE	OH
Fifth Third Bank	STATE SAVINGS CO	2810 S HAMILTON RD	COLUMBUS	OH
Fifth Third Bank	STATE SAVINGS CO	1349 W 5TH AVE	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	809 S HIGH ST	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	2336 STRINGTOWN RD	GROVE CITY	OH
Fifth Third Bank	STATE SAVINGS CO	3990 BROADWAY	GROVE CITY	OH
Fifth Third Bank	STATE SAVINGS CO	1585 E MAIN ST	LANCASTER	OH
Fifth Third Bank	FIFTH THIRD BANK	2475 NORTHWEST BLVD	UPPER	OH
Fifth Third Bank	STATE SAVINGS CO	5055 W BROAD ST	COLUMBUS	OH
Fifth Third Bank	STATE SAVINGS INC	1235 N 21ST ST	NEWARK	OH
Fifth Third Bank	FIFTH THIRD BANK	6935 E MAIN ST	REYNOLDSBURG	OH
Fifth Third Bank	FIFTH THIRD BANK	3460 S HIGH ST	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	2883 TAYLOR RD	REYNOLDSBURG	OH
Fifth Third Bank	FIFTH THIRD BANK	1669 FISHINGER RD UNIT 3P	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	2455 HILLIARD ROME RD	HILLIARD	OH
Fifth Third Bank	FIFTH THIRD BANK	8877 OWENFIELD DR	LEWIS CENTER	OH
Fifth Third Bank	FIFTH THIRD BANK	4128 HOOVER RD	GROVE CITY	OH
Fifth Third Bank	FIFTH THIRD BANK	983 N CABLE RD	LIMA	OH
Fifth Third Bank	FIFTH THIRD OF WEST OH	225 N WEST ST	LIMA	OH
Fifth Third Bank	FIFTH THIRD BANK	2120 HARDING HWY	LIMA	OH
Fifth Third Bank	FIFTH THIRD BANK	2450 SHAWNEE RD BLDG 0439	LIMA	OH
Fifth Third Bank	FIFTH THIRD BK OF NW OHIC	337 S MAIN ST	FINDLAY	OH
Fifth Third Bank	FIFTH THIRD BANK	1735 TIFFIN AVE	FINDLAY	OH
Fifth Third Bank	FIFTH THIRD BANK NW OHIO	2720 N MAIN ST	FINDLAY	OH
Fifth Third Bank	FIFTH THIRD BANK	1412 S MAIN ST	FINDLAY	OH

Fifth Third Bank	FIFTH THIRD BANK	1207 OAK HARBOR RD	FREMONT	OH
Fifth Third Bank	FIFTH THIRD BANK	220 PERRY ST	FOSTORIA	OH
Fifth Third Bank	FIFTH THIRD BANK	720 W MARKET ST	TIFFIN	OH
Fifth Third Bank	FIFTH THIRD BANK	300 E SANDUSKY ST	FINDLAY	OH
Fifth Third Bank	FIFTH THIRD BANK OF SOUTH	128 W MAIN ST	CHILLICOTHE	OH
Fifth Third Bank	FIFTH THIRD BANK	10551 US HIGHWAY 23	LUCASVILLE	OH
Fifth Third Bank	FIFTH THIRD BANK	31 E 2ND ST	MANCHESTER	OH
Fifth Third Bank	FIFTH THIRD BANK	511 N HIGH ST	HILLSBORO	OH
Fifth Third Bank	FIFTH THIRD BANK	60 N MAIN ST	PEEBLES	OH
Fifth Third Bank	FIFTH THIRD BANK	826 7TH ST	PORTSMOUTH	OH
Fifth Third Bank	53 BANK OHIO VALLEY	303 E EMMITT AVE	WAVERLY	OH
Fifth Third Bank	FIFTH THIRD BANK	500 E MAIN ST	WEST UNION	OH
Fifth Third Bank	FIFTH THIRD BANK	7988-A OHIO RIVER RD	WHEELERSBURG	OH
Fifth Third Bank	FIFTH THIRD BANK	5067 PORTAGE ST	NORTH CANTON	OH
Fifth Third Bank	FIFTH 3RD BANK	1819 W LANE AVE	UPPER	OH
Fifth Third Bank	FIFTH THIRD BANK	6031 GROVEPORT RD	GROVEPORT	OH
Fifth Third Bank	FIFTH THIRD BANK	5342 N HAMILTON RD	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	8353 SANCUS BLVD	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	1637 N MAIN ST	NORTH CANTON	OH
Fifth Third Bank	FIFTH THIRD BANK	1669 HOLT RD	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	3750 FISHINGER BLVD	HILLIARD	OH
Fifth Third Bank	FIFTH THIRD BANK	2152 SCHORRWAY DR	LANCASTER	OH
Fifth Third Bank	5TH 3RD BANK INC	3964 FULTON DR	CANTON	OH
Fifth Third Bank	FITH THIRD BANK	4655 TUSCARAWAS ST	CANTON	OH
Fifth Third Bank	FIFTH THIRD BANK	1960 N HIGH ST	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	4801 DRESSLER RD STE 100	CANTON	OH
Fifth Third Bank	FIFTH THIRD BANK	4220 CLEVELAND AVE	CANTON	OH

Square Footage of Locations by Project Number

AEP Project Number	Site Number	Square Footage	AEP Project Number	Site Number	Square Footage
AEP-10-02257	OH100479	2,971	AEP-10-02297	OH100641	3,120
AEP-10-02259	OH100480	1,660	AEP-10-02298	OH100642	3,220
AEP-10-02260	OH100481	4,371	AEP-10-02299	OH100643	2,220
AEP-10-02261	OH100482	1,550	AEP-10-02300	OH100644	4,200
AEP-10-02262	OH100484	2,760	AEP-10-02301	OH100647	12,478
AEP-10-02263	OH100485	4,000	AEP-10-02302	OH100650	3,350
AEP-10-02264	OH100486	28,698	AEP-10-02303	OH100670	450
AEP-10-02265	OH100487	3,240	AEP-10-02305	OH101151	5,714
AEP-10-02266	OH100490	2,680	AEP-10-02306	OH101156	2,170
AEP-10-02267	OH100494	6,085	AEP-10-02307	OH101157	4,000
AEP-10-02268	OH100495	3,000	AEP-10-02308	OH101158	6,890
AEP-10-02269	OH100498	4,514	AEP-10-02309	OH101159	4,224
AEP-10-02270	OH100500	5,832	AEP-10-02310	OH101160	65,945
AEP-10-02271	OH100501	1,992	AEP-10-02311	OH101162	1,000
AEP-10-02272	OH100502	3,240	AEP-10-02312	OH101163	4,000
AEP-10-02273	OH100503	3,400	AEP-10-02313	OH101164	5,000
AEP-10-02274	OH100504	3,277	AEP-10-02314	OH101184	4,200
AEP-10-02275	OH100508	4,025	AEP-10-02315	OH101186	2,920
AEP-10-02276	OH100509	1,800	AEP-10-02316	OH101189	3,500
AEP-10-02277	OH100513	3,000	AEP-10-02317	OH101195	4,155
AEP-10-02278	OH100514	3,400	AEP-10-02318	OH101198	4,200
AEP-10-02279	OH100515	2,752	AEP-10-02319	OH101205	4,115
AEP-10-02280	OH100516	3,402	AEP-10-02320	OH101220	4,200
AEP-10-02281	OH100517	2,176	AEP-10-02321	OH101238	1,651
AEP-10-02282	OH100518	3,900	AEP-10-02322	OH101239	4,200
AEP-10-02283	OH100519	3,240	AEP-10-02323	OH101248	4,200
AEP-10-02284	OH100520	2,500	AEP-10-02324	OH101256	4,200
AEP-10-02285	OH100522	2,680	AEP-10-02325	OH101260	4,200
AEP-10-02286	OH100523	3,684	AEP-10-02326	OH101401	4,200
AEP-10-02287	OH100524	5,621	AEP-10-02327	OH101415	4,200
AEP-10-02288	OH100525	3,000			
AEP-10-02289	OH100538	4,200			
AEP-10-02290	OH100539	4,200			
AEP-10-02291	OH100542	4,900			
AEP-10-02292	OH100548	2,800			
AEP-10-02293	OH100549	7,500			
AEP-10-02294	OH100550	2,500			
AEP-10-02295	OH100551	2,500			
AEP-10-02296	OH100640	18,740			

KEMA

Programmable Thermostat

Measure Description	Installation of a programmable thermostat in place of a constant setpoint style thermostat.
Units	Per 1000 square feet
Base Case Description	Constant setpoint thermostats
Measure Savings	Source: This workpaper is based on the Michigan Statewide Energy Savings Database - Weather Sensitive Retrofit Measures for Residential and Commercial Buildings
Measure Incremental Cost	The total cost is assumed to be \$175 per 1,000 sf of conditioned space (or per thermostat).
Effective Useful Life	9 years

Programmable thermostats must meet ENERGY STAR® Version 2.0 criteria and must replace any non-programmable thermostat to automatically adjust the temperature at pre-selected times. To meet ENERGY STAR® standards, they must be capable of maintaining two separate programs (to address the different comfort needs of weekdays and weekends) and up to four temperature settings for each program.

Measure Savings

These savings are based on eQuest building models developed for the Michigan Statewide Energy Savings Database. The weather data used is for the Detroit airport area, which is more conservative than Columbus as Detroit has an average of 727 cooling degree days whereas, Columbus has an average of 925 cooling degree days (Source: National Climatic Data Center). The measure is to include temperature setback/setup during unoccupied hours. The savings assumes air conditioning with gas heating (gas package units).

Table 1 Programmable Thermostat Savings, per 1000 sq. ft

Building Type	kWh/unit
Assembly	1,063
Big Box Retail	579
Fast Food Restaurant	1,532
Full Service Restaurant	1,132
Light Industrial	502
Primary School	1,218
Small Office	748

Small Retail	1,036

Measure Life and Incremental Measure Cost

The following table provides the measure life and incremental measure cost (IMC) documented for this measure as well as the source of the data.

Table 2 Measure Life and Incremental Measure Cost

	Value	Source
Measure Life	9	MEMD
Incremental Measure Cost	$\$ 175$	MEMD

Pass \& Seymour

41 legrand

Features - Wall Switch Occupancy Sensors

- Detection Signature Analysis provides high immunity to RFI and EMI.
- Compact, decorator design replaces existing wall switch.
- Integrated light level sensor works from 10 to 150 footcandles.
- Compatible with all electronic and magnetic ballasts, PL lamp ballasts, compact fluorescent.
- 5-year warranty.
- cULus listed.

Decorator Devices

 Passive Infrared Sensors| Catalog
 Number | Description | Voltage | Load
 Requirements | Coverage |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | | Time |
| :--- |
| Delay |\quad Color | |
| :--- | | PIR Automatic Wall Switches - $\mathbf{3}$ Wire Technology |
| :--- |
| WSP200-I
 WSP200-W
 WSP200-GRY
 WSP200-LA
 Passive Infrared
 Occupancy Sensor |

Planning a Layout

The WSP200's 2 -level lens provides superior coverage at desktop level by allowing the sensor to detect vertical as well as horizontal motion. Coverage shown is for walking motion. Under optimum conditions with a high level of activity and with no barriers or obstacles, coverage can reach a maximum of 900 square feet. Under a typical, desktop level of activity, when mounted at 4 feet, coverage is 300 square feet.

WSP200
Placement for PIR wall switch sensor

Single Level Lighting WSP200

Manual Bi-level Lighting WSP200

ALTO ${ }^{\circledR}$ Universal T8: Full Rated Average Life on All T8 Ballast Types,
Environmentally-Responsible Lamps. Ideal for any lighting application
Alto
requiring maximum quality of light and maintain 2 2' and 3' T8
Allo Universal 18 Lamps 18 luorescent Lamps

Philips Exclusive Universal Design: The only T8 lamp to deliver full rated average life on all T8 ballast types (Instant Start, Rapid Start, Programmed Start and Hybrid ballasts)
Environmentally Responsible: Low mercury-TCLP*-compliant; energy efficient; long life
Sustainable Lighting Solution: Less mercury and fewer lamps in landfills, combined with energy efficiency, reduces the impact on the environment Outstanding Lumen Maintenance: $\mathrm{HI}-\mathrm{VISION}{ }^{\ominus}$ Phosphor combined with Philips exclusive cathode guard delivers 95% lumen maintenance and reduced lamp-end blackening
Enhanced CRI: 86 CRI for TL80 lamps; 78 CRI for TL70 lamps
 F32TATLLA3OUALTO HI-MISION/32 WATT Alto
cubertan

Nom.	Product	Qualify based	
Lamp	Number Symbols,	Ordering	On CRI
Watts	046677- Footnotes	Code	On CRI

ALTO Universal T8 Warranty: 24 months

 800 SeriesALTO Universal T8 Fluorescent Lamps T8 Medium Bipin

17	36787-0	\$	FI7T8/TL830/ALTO	25	TL 830, 3000K	24	20,000	25,000	1400	1300	86
	36791-2	\$	FI7T8/TL835/ALTO	25	TL 835, 3500K	24	20,000	25,000	1400	1300	86
	36793-8	\$	FI7T8/TL84I/ALTO	25	TL 841, 4100K	24	20,000	25,000	1400	1300	86
	36807-6	\$	FI7T8/TL730/ALTO	25	TL 730, 3000K	24	20,000	25,000	1325	1200	78
	36808-4	\$	FI7T8/TL735/ALTO	25	TL 735, 3500K	24	20,000	25,000	1325	1200	78
	36812-6	\$	FI7T8/TL74I/ALTO	25	TL 741, 4100K	24	20,000	25,000	1325	1200	78
25	36813-4	\$	F25T8/TL830/ALTO	25	TL 830, 3000K	36	20,000	25,000	2225	2050	86
	36814-2	\$	F25T8/TL835/ALTO	25	TL 835, 3500K	36	20,000	25,000	2225	2050	86
	36825-8	\$	F25T8/TL84I/ALTO	25	TL 841, 4100K	36	20,000	25,000	2225	2050	86
	36826-6	\$	F25T8/TL730/ALTO	25	TL 730, 3000K	36	20,000	25,000	2125	1925	78
	36828-2	\$	F25T8/TL735/ALTO	25	TL 735, 3500K	36	20,000	25,000	2125	1925	78
	36829-0	\$	F25T8/TL74I/ALTO	25	TL 741, 4100K	36	20,000	25,000	2125	1925	78
32	24667-8	(E) \$	F32T8/TL830/ALTO	25	TL 830, 3000K	48	20,000	25,000	2950	2800	86
	27236-9	(E) \$	F32T8/TL830/ALTO PLZ	1350	TL 830, 3000K	48	20,000	25,000	2950	2800	86
	24670-2	(E) \$	F32T8/TL835/ALTO	25	TL 835, 3500K	48	20,000	25,000	2950	2800	86
	27233-6	(E) \$	F32T8/TL835/ALTO PLZ	1350	TL 835, 3500K	48	20,000	25,000	2950	2800	86
	24671-0	(E) \$	F32T8/TL84I/ALTO	25	TL 84I, 4100K	48	20,000	25,000	2950	2800	86
	27235-1	(E) \$	F32T8/TL84I/ALTO PLZ	1350	TL 84I, 4100K	48	20,000	25,000	2950	2800	86
	27229-4	(E) \$	F32T8/TL850/ALTO	25	TL 850,5000K	48	20,000	25,000	2950	2800	86
	27252-6	(E) \$	F32T8/TL730 ALTO	25	TL 730, 3000K	48	20,000	25,000	2800	2660	78
	27282-3	(E) \$	F32T8/TL730/ALTO PLZ	1350	TL 730, 3000K	48	20,000	25,000	2800	2660	78
	27249-2	(E) \$	F32T8/TL735/ALTO	25	TL 735, 3500K	48	20,000	25,000	2800	2660	78
	27259-1	(E) \$	F32T8/TL735/ALTO PLZ	1350	TL 735, 3500K	48	20,000	25,000	2800	2660	78
	27248-4	(E) \$	F32T8/TL74I/ALTO	25	TL 741, 4100K	48	20,000	25,000	2800	2660	78
	38351-3	(E) \$	F32T8/TL74I/ALTO	10	TL 741, 4100K, I0 Pk.	48	20,000	25,000	2800	2660	78
	27255-9	(E) \$	F32T8/TL74I/ALTO PLZ	1350	TL 741, 4100K	48	20,000	25,000	2800	2660	78
	27268-2	(E) \$	F32T8/TL750/ALTO	25	TL 750, 5000K	48	20,000	25,000	2700	2550	78

For the most current product information, go to www.lighting.philips.com/nam/product_database/
Fluorescent symbols and footnotes located on page 77
\square This product utilizes ALTO® Lamp Technology

* The TCLP is the US EPA's Toxicity Characteristic Leaching Procedure.

T8 Medium Bipin

A ADVANCE

Electrical Specifications
2' Ballasts

IOPA2P32LWSC@120V	
Brand Name	OPTANIUM 2.0
Ballast Type	Ilectronic
Starting Method	Instant Start
Lamp Connection	Parallel
Input Voltage	$120-277$
Input Frequency	$50 / 60 \mathrm{HZ}$
Status	Active

Lamp Type	Num. of Lamp \mathbf{s}	Rated Lamp Watts	Min. Start Temp $\left({ }^{\circ} \mathrm{F} / \mathrm{C}\right.$)	Input Current (Amps)	Input Power (ANSI Watts)	Ballast Factor	MAX THD $\%$	Power Factor	MAX Lamp Current Crest Factor	B.E.F.
F17T8	1	17	$-20 /-29$	0.15	18	0.90	20	0.98	1.6	5.00
*F17T8	2	17	$-20 /-29$	0.23	27	0.80	10	0.99	1.6	2.96

Wiring Diagram

Diag. 64
The wiring diagram that appears above is for the lamp type denoted by the asterisk (*)

Standard Lead Length (inches)

	in.	cm.
Black	25	63.5
White	25	63.5
Blue	31	78.7
Red	37	94
Yellow		0
Gray		0
Violet		0

	in.	cm.
Yellow/Blue		0
Blue/White		0
Brown		0
Orange		0
Orange/Black		0
Black/White		0
Red/White		0

Enclosure

Enclosure Dimensions

OverAll (L)	Width (W)	Height (H)	Mounting (M)
$9.50{ }^{\prime}$	1.7^{\prime}	1.18^{\prime}	$8.90{ }^{\prime \prime}$
$91 / 2$	$17 / 10$	$19 / 50$	$89 / 10$
24.1 cm	4.3 cm	3 cm	22.6 cm

Product Information Bulletin

OCTRON ${ }^{\circledR}$ 25W XP ${ }^{\circledR}$ SUPERSAVER ${ }^{\circledR}$ ECOLOGIC ${ }^{\circledR}$

EXtended Performance Fluorescent Lamps 4' T8 Lamps -

SYLVANIA 25 Watt OCTRON FO32/25W/800XP SUPERSAVER ECOLOGIC lamps operate on standard T8 instant start systems and provide 22% energy savings over standard 32 Watt OCTRON lamps where slight reductions in light are acceptable.

At $\$.10 / \mathrm{kWh}$ and 4000 hours of operation per year, the 22% savings translates to a savings of $\$ 9.80$ per fixture per year for a 4-lamp fixture with a normal ballast factor, instant start ballast. Changing from standard Cool White Energy Saving T12 lamps powered by energy saving magnetic ballasts to OCTRON FO32/25W/800XP/SS/ECO lamps combined with OSRAM SYLVANIA's QUICKTRONIC High Efficiency ISN ballasts could save $\$ 24$ a year with no light loss. These lamps pass the Federal TCLP test, classifying them as non-hazardous waste in most states. Group relamp to realize the benefits of these OCTRON lamps in your facility.

- Up to 22\% energy savings compared to standard 32W T8 lamp
- 25 Watt, 4-foot, SUPERSAVER energy saving, T8 lamp
- ECOLOGIC - Designed to pass TCLP ${ }^{1}$
- Initial lumens - 2475 (850 is 2300)
- 95% lumen maintenance at 8000 hours
- 3000K, 3500K, 4100K \& 5000K
- 85 CRI
- Retrofit lamp for existing T8 instant start systems - 24,000 hour average rated life @ 3 hrs. per start
- Also operates on OSRAM SYLVANIA QUICKTRONIC® Programmed Start ballasts
- 36,000 hour average rated life @ 3 hrs per start
- Minimum starting temperature: $70^{\circ} \mathrm{F}$
- Not dimmable
- Not for use in air handling fixtures
- Striation may occur if airflow is present (see application note 5)

SYLVANIA OCTRON T8 ECOLOGIC fluorescent lamps are designed to pass the Federal Toxicity Characteristic Leaching Procedure (TCLP) criteria for classification as non-hazardous waste in most states ${ }^{2}$.

1. TCLP test results are based on NEMA LL Series standards and are available on request.
2. Lamp disposal regulations may vary; check your local \& state regulations.

Product Availability

Lamp Type	Wattage	Color Temperature	CRI
F032/25W/830XP/SS/ECO	25	3000 K	85
F032/25W/835XP/SS/EC0	25	3500 K	85
F032/25W/841XP/SS/ECO	25	4100 K	85
F032/25W/850XP/SS/EC0	25	5000 K	85

Application Information

Applications

Retail Office Schools Hospitals Industrial Many applications with T8 instant start ballasts currently using 32W T8 lamps

Fixtures

Contact your local fixture agent for available fixtures.

Ballast Information

Contact your OSRAM SYLVANIA representative for a list of compatible electronic operating systems.

Application Notes

1. Recommended to be used on T8 F32 Instant Start circuits with minimum starting voltage of 550 v RMS.
2. Can operate on QUICKTRONIC Programmed Start Ballasts.
3. Fixture must conform to ANSI C78.81-2005 requirements for luminaire design.

Application Notes (continued)

4. Not recommended to be used: (1) with Rapid Start circuits unless the open circuit voltage is greater than 570V, (2) at lamp ambient temperatures below $70^{\circ} \mathrm{F}$ or in drafty locations, (3) in air handling fixtures, (4) on dimming ballasts, (5) on inverter operated emergency lighting systems unless any of the above equipment is specifically listed for 25 watt lamps, or (6) below $60^{\circ} \mathrm{F}$ starting temperature. Any of the above situations could result in lamp starting and stabilization problems, or system compatibility issues.
5. If an operating lamp is exposed to temperatures below $70^{\circ} \mathrm{F}$ or moving air (wind, drafts or air flow from an air conditioning or ventilation system), striation, a rhythmic pulsing pattern of light running the length of the tube and/or a reduction in brightness may occur. While visually disconcerting, neither behavior is damaging to the lamp and removing the cause (draft or temperature) will return the lamp to normal operation.

Electrical Specifications

IOPA2P32	
IOWN@120V	
Brand Name	OPTANIUM
Ballast Type	Electronic
Starting Method	Instant Start
Lamp Connection	Parallel
Input Voltage	$120-277$
Input Frequency	$50 / 60$ HZ
Status	Active

PHILIPS LIGHTING ELECTRONICS N.A.

Electrical Specifications

IOPA4P32LWSC@120V					
Brand Name			OPTANIUM		
Ballast Type			Electronic		
Starting Method			Instant Start		
Lamp Connection			Parallel		
Input Voltage			120-277		
4' 3L T8 with 25W Lamps: 62W			50/60		
Input Power (ANSI Watts)	Ballast Factor	$\begin{gathered} \hline \text { MAX } \\ \text { THD } \\ \% \end{gathered}$	Power Factor	MAX Lamp Current Crest Factor	B.E.F
62	0.85	10	0.99	1.6	1.37
77	0.77	10	0.99	1.6	11.00

Lamp Type	Num. of Lamps	Rated Lamp Watts	Min. Start Temp (${ }^{\circ}$ F/C)	Input Current (Amps)	Input Power (ANSI Watts)	Ballast Factor	MAX THD \%	Power Factor	MAX Lamp Current Crest Factor	B.E.F \cdot
F32T8/ES (25W)	3	25	$60 / 16$	0.52	62	0.85	10	0.99	1.6	1.37
*F32T8/ES (25W)	4	25	$60 / 16$	0.52	77	0.77	10	0.99	1.6	11.00

Wiring Diagram

The wiring diagram that appears above is for the lamp type denoted by the asterisk (*)

Standard Lead Length (inches)

	in.	cm.
Black	25	63.5
White	25	63.5
Blue	31	78.7
Red	31	78.7
Yellow	39	99.1
Gray		0
Violet		0

	in.	cm.
Yellow/Blue		0
Blue/White		0
Brown		0
Orange		0
Orange/Black		0
Black/White		0
Red/White	0	

Enclosure

Enclosure Dimensions

OverAll (L)	Width (W)	Height (H)	Mounting (M)
$9.50^{\prime \prime}$	$1.7^{\prime \prime}$	$1.18^{\prime \prime}$	$8.90^{\prime \prime}$
$91 / 2$	$17 / 10$	$19 / 50$	$89 / 10$
24.1 cm	4.3 cm	3 cm	22.6 cm

Item \# W	Wattage	Incandescent Wattage Comparison	Initial Lumens	Input Line Current	M.O.L. (inches)	Diameter (inches)	Life vs. Incandescent
1R2004	4	15	130	.15A	3.8	2.5	4X
1R2009	9	25	300	.15A	3.8	2.5	4X
1R2014 *	* 14	50	500	.23A	4.7	2.5	4X
1R3014 *	* 14	65	650	.23A	5.1	3.7	4X
1R3016 夫	$\star \quad 16$	75	750	.27A	5.7	3.7	4X
1R4016 *	$\star \quad 16$	75	750	.27A	5.9	4.7	4X
1R4019 *	$\star \quad 19$	85	950	. 32 A	5.9	4.7	4X
1R4023 \%	- 23	90	1250	.38A	6.5	4.8	$3 X$
1P3016	16	75	750	.27A	5.7	3.7	4X
1P3816 *	$\star \quad 16$	75	750	.27A	5.9	4.6	4X
1P3819 ${ }^{\text {® }}$	$\star \quad 19$	85	950	.32A	5.9	4.6	4X
1P3823 *	$\star \cdot 23$	90	1200	.38A	6.5	4.7	$3 X$

Special Application Options: (Ordering Sufifix)

- $3100^{\circ} \mathrm{K}(31 \mathrm{~K}), 3500^{\circ} \mathrm{K}(35 \mathrm{~K}), 4100^{\circ} \mathrm{K}(41 \mathrm{~K}), 5100^{\circ} \mathrm{K}(51 \mathrm{~K})$
-Long Neck 1.65"(165), 1.75"(175), 2.25"(225)
- Shatter Resistant (SS) R20 only
- Pink (P), Soft Pink (SP)

SpringLamp ${ }^{\circledR}$ INSIDE technology provides:

- Higher Iumen Output
- Long Lamp Life
- Better lumen maintenance

Ideal for
 Cans

Outdoor Fixtures

Energy Saving Solution for hard to reach light fixtures

Features and Benefits:

* Long life CFL, 8,000 / 6,000 hour average rated life
* NEW Amalgam technology- provides cooler operating temperatures for consistent performance in any position
* No lead glass- Better lumen maintenance over life of bulb
* $2700^{\circ} \mathrm{K}$ color temperature closest to incandescent light
* Medium base
* Replace less often, ideal for hard to reach places
* U.L. Listed for wet locations - use indoors or outdoors
* 12 Month Warranty
* Quickstart technology - fast run up time

Specifications (at full brightness)

End of Life Protection-------------	
Ballast Type	Electronic
Starting Method	Modified Rapid Start
Input Line Voltage	120VAC
Input Line Frequency	50/60HZ
Lamp Life (rated)	8,000 / 6,000 Hours
Color Temperature	$2700^{\circ} \mathrm{K}$
Color Rendering Ind	82
Minimum Starting Temperature	$-20^{\circ} \mathrm{F}$
Maximum Operating Temperature -	$160{ }^{\circ} \mathrm{F}$
U.L. / C.U.L. Listed ---------------	Yes
FCC Compliance -----------------------	Part 18, Subpart C
Lamp Operating Frequency --------	45 KHZ
Lamp Current Crest Factor ---------	< 1.60
Maximum Open Circuit Voltage --	600 V
Power Factor --	> . 50
	< 150\%

TECHNICAL CONSUMER PRODUCTS,INC.

Lighting to the Next Power

Visit www.tcpi.com or call Toll Free 1-800-324-1496

Self Direct Project Overview \& Commitment

The Public Utility Commission of Ohio (PUCO) will soon review your application for participation in AEP Ohio's Energy Efficiency/Peak Demand Response program. Based on your submitted project, please select by initialing one of the two options below, sign and fax to 877-607-0740.

Customer Name	FIFTH THIRD BANK		
Project Number	AEP-10-02286		
Customer Premise Address	3460 S HIGH ST, COLUMBUS, OH 43207-4004		
Customer Mailing Address	38 Fountain Square, Cincinnati, OH 45263		
Date Received	$11 / 8 / 2010$		
Project Installation Date	$7 / 16 / 2008$		
Annual kWh Reduction	9,971		
Total Project Cost	$\$ 7,205.58$		
Unadjusted Energy Efficiency Credit (EEC) Calculation	$\$ 1,227.42$		
Simple Payback (yrs)	6.4		
Utility Cost Test (UCT)	4.6	Please Choose One Option Below and Initial	
Option 1 - Self Direct EEC: 75\%	$\$ 920.56$	\square	
Option 2 - EE/PDR Rider Exemption	$\mathbf{9 6}$ Months (After PUCO Approval)	\square	

Note: This is a one time selection. By selecting Option 1, the customer will receive payment in the amount stated above. Selection of Option 2: $E E / P D R$ rider exemption, will result in the customer not being eligible to participate in any other energy efficiency programs offered by $A E P$ Ohio during the period of exemption. In addition, the term of Option 2: EE/PDR rider exemption is subject to ongoing review for compliance and could be changed by the PUCO.
If Option 1 has been selected, will the Energy Efficiency Funds selected help you move forward with other energy efficiency projects?

Project Overview:

The Self Direct (Prescriptive and Custom) project that the above has completed and applied is as follows.
Retrofitted (3) 2' 1L T12 into (3) 2' 1L T8 fixtures
Retrofitted (4) 4' 2 L T12 into (4) 4' 2 L T8 fixtures
Removed (6) 4' 2L T12 installed (6) 4' 2L T8 new fixture
Retrofitted (8) 4' 2L T12 U-Tube into (8) 4' 2L T8 U-Tube fixtures
Retrofitted (24) 4' 3L T12 into (24) 4' 3L T8 fixtures
Removed (3) 8' 2L T12 installed (3) 8' 4L 4' T8 Tandem new fixture
Converted (2) Incandescent Exit Sign into (2) LED Exit Sign
Converted (2) Open/Closed incandescent lane signsinto (2) Open/Closed lane signs 7" x 18" - LED 3.4 Watts
Installed occupancy sensors on (16) 4' 3L T8 25W fixtures
Converted (2) Manual constant setpoint thermostats into (2) Energy Star remote controllable thermostats
The documentation that was included with the application proved that the energy measures applied for were purchased and installed.
By signing this document, the Mercantile customer affirms its intention to commit and integrate the above listed energy efficiency resources into the utility's peak demand reduction, demand response, and energy efficiency programs. By signing, the Mercantile customer also agrees to serve as a joint applicant in any filings necessary to secure approval of this arrangement by the Public Utilities Commission of Ohio, and comply with any information and compliance reporting requirements imposed by rule or as part of that approval.

Columbus Southern Power Company

\qquad
Title: \qquad

Date: \qquad Date: \qquad

List of Fifth Third Bank properties within the AEP Ohio service territory

Note: State Savings Bank is a subsidiary of Fifth Third Bank.

Account Name	Billing Name	Service Address	City	State
Fifth Third Bank	FIFTH THIRD BANK	1340 BETHEL RD	COLUMBUS	OH
Fifth Third Bank	STATE SAVINGS BANK	3580 N HIGH ST	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	2500 E DUBLIN GRANVILLE RD	COLUMBUS	OH
Fifth Third Bank	STATE SAVINGS	229 S SANDUSKY ST	DELAWARE	OH
Fifth Third Bank	STATE SAVINGS BANK	6260 PERIMETER DR	DUBLIN	OH
Fifth Third Bank	FIFTH THIRD BANK	420 METRO PL APT A	DUBLIN	OH
Fifth Third Bank	STATE SAVINGS BANK	3800 W DUBLIN GRANVILLE RD	DUBLIN	OH
Fifth Third Bank	FIFTH THIRD BANK	434 HAVENS CORNERS RD	GAHANNA	OH
Fifth Third Bank	FIFTH THIRD BANK	3407 CLEVELAND AVE	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	155 W MAIN ST	NEW ALBANY	OH
Fifth Third Bank	STATE SAVINGS CO	1500 MORSE RD	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	3949 W POWELL RD	POWELL	OH
Fifth Third Bank	FIFTH THIRD BANK	7425 STATE ROUTE 3	WESTERVILLE	OH
Fifth Third Bank	STATE SAVINGS BANK	2081 HENDERSON RD	COLUMBUS	OH
Fifth Third Bank	STATE SAVINGS BANK	6895 N HIGH ST	WORTHINGTON	OH
Fifth Third Bank	STATE SAVINGS BANK	3011 E BROAD ST	COLUMBUS	OH
Fifth Third Bank	STATE SAVINGS BANK	2570 E MAIN ST	BEXLEY	OH
Fifth Third Bank	FIFTH THIRD BANK	159 E MAIN ST	CIRCLEVILLE	OH
Fifth Third Bank	STATE SAVINGS CO	2810 S HAMILTON RD	COLUMBUS	OH
Fifth Third Bank	STATE SAVINGS CO	1349 W 5TH AVE	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	809 S HIGH ST	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	2336 STRINGTOWN RD	GROVE CITY	OH
Fifth Third Bank	STATE SAVINGS CO	3990 BROADWAY	GROVE CITY	OH
Fifth Third Bank	STATE SAVINGS CO	1585 E MAIN ST	LANCASTER	OH
Fifth Third Bank	FIFTH THIRD BANK	2475 NORTHWEST BLVD	UPPER	OH
Fifth Third Bank	STATE SAVINGS CO	5055 W BROAD ST	COLUMBUS	OH
Fifth Third Bank	STATE SAVINGS INC	1235 N 21ST ST	NEWARK	OH
Fifth Third Bank	FIFTH THIRD BANK	6935 E MAIN ST	REYNOLDSBURG	OH
Fifth Third Bank	FIFTH THIRD BANK	3460 S HIGH ST	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	2883 TAYLOR RD	REYNOLDSBURG	OH
Fifth Third Bank	FIFTH THIRD BANK	1669 FISHINGER RD UNIT 3P	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	2455 HILLIARD ROME RD	HILLIARD	OH
Fifth Third Bank	FIFTH THIRD BANK	8877 OWENFIELD DR	LEWIS CENTER	OH
Fifth Third Bank	FIFTH THIRD BANK	4128 HOOVER RD	GROVE CITY	OH
Fifth Third Bank	FIFTH THIRD BANK	983 N CABLE RD	LIMA	OH
Fifth Third Bank	FIFTH THIRD OF WEST OH	225 N WEST ST	LIMA	OH
Fifth Third Bank	FIFTH THIRD BANK	2120 HARDING HWY	LIMA	OH
Fifth Third Bank	FIFTH THIRD BANK	2450 SHAWNEE RD BLDG 0439	LIMA	OH
Fifth Third Bank	FIFTH THIRD BK OF NW OHIC	337 S MAIN ST	FINDLAY	OH
Fifth Third Bank	FIFTH THIRD BANK	1735 TIFFIN AVE	FINDLAY	OH
Fifth Third Bank	FIFTH THIRD BANK NW OHIO	2720 N MAIN ST	FINDLAY	OH
Fifth Third Bank	FIFTH THIRD BANK	1412 S MAIN ST	FINDLAY	OH

Fifth Third Bank	FIFTH THIRD BANK	1207 OAK HARBOR RD	FREMONT	OH
Fifth Third Bank	FIFTH THIRD BANK	220 PERRY ST	FOSTORIA	OH
Fifth Third Bank	FIFTH THIRD BANK	720 W MARKET ST	TIFFIN	OH
Fifth Third Bank	FIFTH THIRD BANK	300 E SANDUSKY ST	FINDLAY	OH
Fifth Third Bank	FIFTH THIRD BANK OF SOUTH	128 W MAIN ST	CHILLICOTHE	OH
Fifth Third Bank	FIFTH THIRD BANK	10551 US HIGHWAY 23	LUCASVILLE	OH
Fifth Third Bank	FIFTH THIRD BANK	31 E 2ND ST	MANCHESTER	OH
Fifth Third Bank	FIFTH THIRD BANK	511 N HIGH ST	HILLSBORO	OH
Fifth Third Bank	FIFTH THIRD BANK	60 N MAIN ST	PEEBLES	OH
Fifth Third Bank	FIFTH THIRD BANK	826 7TH ST	PORTSMOUTH	OH
Fifth Third Bank	53 BANK OHIO VALLEY	303 E EMMITT AVE	WAVERLY	OH
Fifth Third Bank	FIFTH THIRD BANK	500 E MAIN ST	WEST UNION	OH
Fifth Third Bank	FIFTH THIRD BANK	7988-A OHIO RIVER RD	WHEELERSBURG	OH
Fifth Third Bank	FIFTH THIRD BANK	5067 PORTAGE ST	NORTH CANTON	OH
Fifth Third Bank	FIFTH 3RD BANK	1819 W LANE AVE	UPPER	OH
Fifth Third Bank	FIFTH THIRD BANK	6031 GROVEPORT RD	GROVEPORT	OH
Fifth Third Bank	FIFTH THIRD BANK	5342 N HAMILTON RD	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	8353 SANCUS BLVD	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	1637 N MAIN ST	NORTH CANTON	OH
Fifth Third Bank	FIFTH THIRD BANK	1669 HOLT RD	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	3750 FISHINGER BLVD	HILLIARD	OH
Fifth Third Bank	FIFTH THIRD BANK	2152 SCHORRWAY DR	LANCASTER	OH
Fifth Third Bank	5TH 3RD BANK INC	3964 FULTON DR	CANTON	OH
Fifth Third Bank	FITH THIRD BANK	4655 TUSCARAWAS ST	CANTON	OH
Fifth Third Bank	FIFTH THIRD BANK	1960 N HIGH ST	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	4801 DRESSLER RD STE 100	CANTON	OH
Fifth Third Bank	FIFTH THIRD BANK	4220 CLEVELAND AVE	CANTON	OH

Square Footage of Locations by Project Number

AEP Project Number	Site Number	Square Footage	AEP Project Number	Site Number	Square Footage
AEP-10-02257	OH100479	2,971	AEP-10-02297	OH100641	3,120
AEP-10-02259	OH100480	1,660	AEP-10-02298	OH100642	3,220
AEP-10-02260	OH100481	4,371	AEP-10-02299	OH100643	2,220
AEP-10-02261	OH100482	1,550	AEP-10-02300	OH100644	4,200
AEP-10-02262	OH100484	2,760	AEP-10-02301	OH100647	12,478
AEP-10-02263	OH100485	4,000	AEP-10-02302	OH100650	3,350
AEP-10-02264	OH100486	28,698	AEP-10-02303	OH100670	450
AEP-10-02265	OH100487	3,240	AEP-10-02305	OH101151	5,714
AEP-10-02266	OH100490	2,680	AEP-10-02306	OH101156	2,170
AEP-10-02267	OH100494	6,085	AEP-10-02307	OH101157	4,000
AEP-10-02268	OH100495	3,000	AEP-10-02308	OH101158	6,890
AEP-10-02269	OH100498	4,514	AEP-10-02309	OH101159	4,224
AEP-10-02270	OH100500	5,832	AEP-10-02310	OH101160	65,945
AEP-10-02271	OH100501	1,992	AEP-10-02311	OH101162	1,000
AEP-10-02272	OH100502	3,240	AEP-10-02312	OH101163	4,000
AEP-10-02273	OH100503	3,400	AEP-10-02313	OH101164	5,000
AEP-10-02274	OH100504	3,277	AEP-10-02314	OH101184	4,200
AEP-10-02275	OH100508	4,025	AEP-10-02315	OH101186	2,920
AEP-10-02276	OH100509	1,800	AEP-10-02316	OH101189	3,500
AEP-10-02277	OH100513	3,000	AEP-10-02317	OH101195	4,155
AEP-10-02278	OH100514	3,400	AEP-10-02318	OH101198	4,200
AEP-10-02279	OH100515	2,752	AEP-10-02319	OH101205	4,115
AEP-10-02280	OH100516	3,402	AEP-10-02320	OH101220	4,200
AEP-10-02281	OH100517	2,176	AEP-10-02321	OH101238	1,651
AEP-10-02282	OH100518	3,900	AEP-10-02322	OH101239	4,200
AEP-10-02283	OH100519	3,240	AEP-10-02323	OH101248	4,200
AEP-10-02284	OH100520	2,500	AEP-10-02324	OH101256	4,200
AEP-10-02285	OH100522	2,680	AEP-10-02325	OH101260	4,200
AEP-10-02286	OH100523	3,684	AEP-10-02326	OH101401	4,200
AEP-10-02287	OH100524	5,621	AEP-10-02327	OH101415	4,200
AEP-10-02288	OH100525	3,000			
AEP-10-02289	OH100538	4,200			
AEP-10-02290	OH100539	4,200			
AEP-10-02291	OH100542	4,900			
AEP-10-02292	OH100548	2,800			
AEP-10-02293	OH100549	7,500			
AEP-10-02294	OH100550	2,500			
AEP-10-02295	OH100551	2,500			
AEP-10-02296	OH100640	18,740			

KEMA

Programmable Thermostat

Measure Description	Installation of a programmable thermostat in place of a constant setpoint style thermostat.
Units	Per 1000 square feet
Base Case Description	Constant setpoint thermostats
Measure Savings	Source: This workpaper is based on the Michigan Statewide Energy Savings Database - Weather Sensitive Retrofit Measures for Residential and Commercial Buildings
Measure Incremental Cost	The total cost is assumed to be \$175 per 1,000 sf of conditioned space (or per thermostat).
Effective Useful Life	9 years

Programmable thermostats must meet ENERGY STAR® Version 2.0 criteria and must replace any non-programmable thermostat to automatically adjust the temperature at pre-selected times. To meet ENERGY STAR® standards, they must be capable of maintaining two separate programs (to address the different comfort needs of weekdays and weekends) and up to four temperature settings for each program.

Measure Savings

These savings are based on eQuest building models developed for the Michigan Statewide Energy Savings Database. The weather data used is for the Detroit airport area, which is more conservative than Columbus as Detroit has an average of 727 cooling degree days whereas, Columbus has an average of 925 cooling degree days (Source: National Climatic Data Center). The measure is to include temperature setback/setup during unoccupied hours. The savings assumes air conditioning with gas heating (gas package units).

Table 1 Programmable Thermostat Savings, per 1000 sq. ft

Building Type	kWh/unit
Assembly	1,063
Big Box Retail	579
Fast Food Restaurant	1,532
Full Service Restaurant	1,132
Light Industrial	502
Primary School	1,218
Small Office	748

Small Retail	1,036

Measure Life and Incremental Measure Cost

The following table provides the measure life and incremental measure cost (IMC) documented for this measure as well as the source of the data.

Table 2 Measure Life and Incremental Measure Cost

	Value	Source
Measure Life	9	MEMD
Incremental Measure Cost	$\$ 175$	MEMD

Pass \& Seymour

41 legrand

Features - Wall Switch Occupancy Sensors

- Detection Signature Analysis provides high immunity to RFI and EMI.
- Compact, decorator design replaces existing wall switch.
- Integrated light level sensor works from 10 to 150 footcandles.
- Compatible with all electronic and magnetic ballasts, PL lamp ballasts, compact fluorescent.
- 5-year warranty.
- cULus listed.

Decorator Devices

 Passive Infrared Sensors| Catalog Number | Description | Voltage | Load Requirements | Coverage | Time Delay | Color |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PIR Automatic Wall Switches - 3 Wire Technology | | | | | | |
| WSP200-I
 WSP200-W
 WSP200-GRY
 WSP200-LA | Passive Infrared Occupancy Sensor | $\begin{aligned} & \text { 120/277VAC; } \\ & 60 \mathrm{~Hz} \end{aligned}$ | 800W Max.
 at 120 V
 1200W Max.
 at 277 V | $\begin{aligned} & 180^{\circ} \text {, up to } \\ & 900 \text { sq. ft. } \end{aligned}$ | 30 sec . to 30 min . | Ivory
 White
 Gray
 Lt. Almond |

Planning a Layout

The WSP200's 2 -level lens provides superior coverage at desktop level by allowing the sensor to detect vertical as well as horizontal motion. Coverage shown is for walking motion. Under optimum conditions with a high level of activity and with no barriers or obstacles, coverage can reach a maximum of 900 square feet. Under a typical, desktop level of activity, when mounted at 4 feet, coverage is 300 square feet.

WSP200
Placement for PIR wall switch sensor

Single Level Lighting WSP200

Manual Bi-level Lighting WSP200

ALTO ${ }^{\circledR}$ Universal T8: Full Rated Average Life on All T8 Ballast Types,
Environmentally-Responsible Lamps. Ideal for any lighting application
Alto
requiring maximum quality of light and maintain 2 2' and 3' T8
Allo Universal 18 Lamps 18 luorescent Lamps

Philips Exclusive Universal Design: The only T8 lamp to deliver full rated average life on all T8 ballast types (Instant Start, Rapid Start, Programmed Start and Hybrid ballasts)
Environmentally Responsible: Low mercury-TCLP*-compliant; energy efficient; long life
Sustainable Lighting Solution: Less mercury and fewer lamps in landfills, combined with energy efficiency, reduces the impact on the environment Outstanding Lumen Maintenance: $\mathrm{HI}-\mathrm{VISION}{ }^{\ominus}$ Phosphor combined with Philips exclusive cathode guard delivers 95% lumen maintenance and reduced lamp-end blackening
Enhanced CRI: 86 CRI for TL80 lamps; 78 CRI for TL70 lamps
 F32TATLLA3OUALTO HI-MISION/32 WATT Alto
cubertan

			Qualify based
Nom.	Product	Symbols,	Ordering
Lamp	Number Symols		
Watts	046677- Footnotes	Code	On CRI

ALTO Universal T8 Warranty: 24 months

 800 SeriesALTO Universal T8 Fluorescent Lamps T8 Medium Bipin

17	36787-0	\$	FI7T8/TL830/ALTO	25	TL 830, 3000K	24	20,000	25,000	1400	1300	86
	36791-2	\$	FI7T8/TL835/ALTO	25	TL 835, 3500K	24	20,000	25,000	1400	1300	86
	36793-8	\$	FI7T8/TL84I/ALTO	25	TL 841, 4100K	24	20,000	25,000	1400	1300	86
	36807-6	\$	FI7T8/TL730/ALTO	25	TL 730, 3000K	24	20,000	25,000	1325	1200	78
	36808-4	\$	FI7T8/TL735/ALTO	25	TL 735, 3500K	24	20,000	25,000	1325	1200	78
	36812-6	\$	FI7T8/TL74I/ALTO	25	TL 741, 4100K	24	20,000	25,000	1325	1200	78
25	36813-4	\$	F25T8/TL830/ALTO	25	TL 830, 3000K	36	20,000	25,000	2225	2050	86
	36814-2	\$	F25T8/TL835/ALTO	25	TL 835, 3500K	36	20,000	25,000	2225	2050	86
	36825-8	\$	F25T8/TL84I/ALTO	25	TL 841, 4100K	36	20,000	25,000	2225	2050	86
	36826-6	\$	F25T8/TL730/ALTO	25	TL 730, 3000K	36	20,000	25,000	2125	1925	78
	36828-2	\$	F25T8/TL735/ALTO	25	TL 735, 3500K	36	20,000	25,000	2125	1925	78
	36829-0	\$	F25T8/TL74I/ALTO	25	TL 741, 4100K	36	20,000	25,000	2125	1925	78
32	24667-8	(E) \$	F32T8/TL830/ALTO	25	TL 830, 3000K	48	20,000	25,000	2950	2800	86
	27236-9	(E) \$	F32T8/TL830/ALTO PLZ	1350	TL 830, 3000K	48	20,000	25,000	2950	2800	86
	24670-2	(E) \$	F32T8/TL835/ALTO	25	TL 835, 3500K	48	20,000	25,000	2950	2800	86
	27233-6	(E) \$	F32T8/TL835/ALTO PLZ	1350	TL 835, 3500K	48	20,000	25,000	2950	2800	86
	24671-0	(E) \$	F32T8/TL84I/ALTO	25	TL 84I, 4100K	48	20,000	25,000	2950	2800	86
	27235-1	(E) \$	F32T8/TL84I/ALTO PLZ	1350	TL 84I, 4100K	48	20,000	25,000	2950	2800	86
	27229-4	(E) \$	F32T8/TL850/ALTO	25	TL 850,5000K	48	20,000	25,000	2950	2800	86
	27252-6	(E) \$	F32T8/TL730 ALTO	25	TL 730, 3000K	48	20,000	25,000	2800	2660	78
	27282-3	(E) \$	F32T8/TL730/ALTO PLZ	1350	TL 730, 3000K	48	20,000	25,000	2800	2660	78
	27249-2	(E) \$	F32T8/TL735/ALTO	25	TL 735, 3500K	48	20,000	25,000	2800	2660	78
	27259-1	(E) \$	F32T8/TL735/ALTO PLZ	1350	TL 735, 3500K	48	20,000	25,000	2800	2660	78
	27248-4	(E) \$	F32T8/TL74I/ALTO	25	TL 741, 4100K	48	20,000	25,000	2800	2660	78
	38351-3	(E) \$	F32T8/TL74I/ALTO	10	TL 741, 4100K, I0 Pk.	48	20,000	25,000	2800	2660	78
	27255-9	(E) \$	F32T8/TL74I/ALTO PLZ	1350	TL 741, 4100K	48	20,000	25,000	2800	2660	78
	27268-2	(E) \$	F32T8/TL750/ALTO	25	TL 750, 5000K	48	20,000	25,000	2700	2550	78

For the most current product information, go to www.lighting.philips.com/nam/product_database/
Fluorescent symbols and footnotes located on page 77
\square This product utilizes ALTO ${ }^{\circ}$ Lamp Technology

* The TCLP is the US EPA's Toxicity Characteristic Leaching Procedure.

T8 Medium Bipin

A ADVANCE

Electrical Specifications
2' Ballasts

IOPA2P32LWSC@120V	
Brand Name	OPTANIUM 2.0
Ballast Type	Ilectronic
Starting Method	Instant Start
Lamp Connection	Parallel
Input Voltage	$120-277$
Input Frequency	$50 / 60 \mathrm{HZ}$
Status	Active

Lamp Type	Num. of Lamp \mathbf{s}	Rated Lamp Watts	Min. Start Temp $\left({ }^{\circ} \mathrm{F} / \mathrm{C}\right.$)	Input Current (Amps)	Input Power (ANSI Watts)	Ballast Factor	MAX THD $\%$	Power Factor	MAX Lamp Current Crest Factor	B.E.F.
F17T8	1	17	$-20 /-29$	0.15	18	0.90	20	0.98	1.6	5.00
*F17T8	2	17	$-20 /-29$	0.23	27	0.80	10	0.99	1.6	2.96

Wiring Diagram

Diag. 64
The wiring diagram that appears above is for the lamp type denoted by the asterisk (*)

Standard Lead Length (inches)

	in.	cm.
Black	25	63.5
White	25	63.5
Blue	31	78.7
Red	37	94
Yellow		0
Gray		0
Violet		0

	in.	cm.
Yellow/Blue		0
Blue/White		0
Brown		0
Orange		0
Orange/Black		0
Black/White		0
Red/White		0

Enclosure

Enclosure Dimensions

OverAll (L)	Width (W)	Height (H)	Mounting (M)
$9.50{ }^{\prime}$	1.7^{\prime}	1.18^{\prime}	$8.90{ }^{\prime \prime}$
$91 / 2$	$17 / 10$	$19 / 50$	$89 / 10$
24.1 cm	4.3 cm	3 cm	22.6 cm

Product Information Bulletin

OCTRON ${ }^{\circledR}$ 25W XP ${ }^{\circledR}$ SUPERSAVER ${ }^{\circledR}$ ECOLOGIC ${ }^{\circledR}$

EXtended Performance Fluorescent Lamps 4' T8 Lamps -

SYLVANIA 25 Watt OCTRON FO32/25W/800XP SUPERSAVER ECOLOGIC lamps operate on standard T8 instant start systems and provide 22% energy savings over standard 32 Watt OCTRON lamps where slight reductions in light are acceptable.

At $\$.10 / \mathrm{kWh}$ and 4000 hours of operation per year, the 22% savings translates to a savings of $\$ 9.80$ per fixture per year for a 4-lamp fixture with a normal ballast factor, instant start ballast. Changing from standard Cool White Energy Saving T12 lamps powered by energy saving magnetic ballasts to OCTRON FO32/25W/800XP/SS/ECO lamps combined with OSRAM SYLVANIA's QUICKTRONIC High Efficiency ISN ballasts could save $\$ 24$ a year with no light loss. These lamps pass the Federal TCLP test, classifying them as non-hazardous waste in most states. Group relamp to realize the benefits of these OCTRON lamps in your facility.

- Up to 22\% energy savings compared to standard 32W T8 lamp
- 25 Watt, 4-foot, SUPERSAVER energy saving, T8 lamp
- ECOLOGIC - Designed to pass TCLP ${ }^{1}$
- Initial lumens - 2475 (850 is 2300)
- 95% lumen maintenance at 8000 hours
- 3000K, 3500K, 4100K \& 5000K
- 85 CRI
- Retrofit lamp for existing T8 instant start systems - 24,000 hour average rated life @ 3 hrs. per start
- Also operates on OSRAM SYLVANIA QUICKTRONIC® Programmed Start ballasts
- 36,000 hour average rated life @ 3 hrs per start
- Minimum starting temperature: $70^{\circ} \mathrm{F}$
- Not dimmable
- Not for use in air handling fixtures
- Striation may occur if airflow is present (see application note 5)

SYLVANIA OCTRON T8 ECOLOGIC fluorescent lamps are designed to pass the Federal Toxicity Characteristic Leaching Procedure (TCLP) criteria for classification as non-hazardous waste in most states ${ }^{2}$.

1. TCLP test results are based on NEMA LL Series standards and are available on request.
2. Lamp disposal regulations may vary; check your local \& state regulations.

Product Availability

Lamp Type	Wattage	Color Temperature	CRI
F032/25W/830XP/SS/ECO	25	3000 K	85
F032/25W/835XP/SS/EC0	25	3500 K	85
F032/25W/841XP/SS/ECO	25	4100 K	85
F032/25W/850XP/SS/EC0	25	5000 K	85

Application Information

Applications

Retail Office Schools Hospitals Industrial Many applications with T8 instant start ballasts currently using 32W T8 lamps

Fixtures

Contact your local fixture agent for available fixtures.

Ballast Information

Contact your OSRAM SYLVANIA representative for a list of compatible electronic operating systems.

Application Notes

1. Recommended to be used on T8 F32 Instant Start circuits with minimum starting voltage of 550 v RMS.
2. Can operate on QUICKTRONIC Programmed Start Ballasts.
3. Fixture must conform to ANSI C78.81-2005 requirements for luminaire design.

Application Notes (continued)

4. Not recommended to be used: (1) with Rapid Start circuits unless the open circuit voltage is greater than 570V, (2) at lamp ambient temperatures below $70^{\circ} \mathrm{F}$ or in drafty locations, (3) in air handling fixtures, (4) on dimming ballasts, (5) on inverter operated emergency lighting systems unless any of the above equipment is specifically listed for 25 watt lamps, or (6) below $60^{\circ} \mathrm{F}$ starting temperature. Any of the above situations could result in lamp starting and stabilization problems, or system compatibility issues.
5. If an operating lamp is exposed to temperatures below $70^{\circ} \mathrm{F}$ or moving air (wind, drafts or air flow from an air conditioning or ventilation system), striation, a rhythmic pulsing pattern of light running the length of the tube and/or a reduction in brightness may occur. While visually disconcerting, neither behavior is damaging to the lamp and removing the cause (draft or temperature) will return the lamp to normal operation.

Product family description
Energy savings, low mercury

Features/Benefits

- Outstanding energy savings
- Save 7 watts per lamp instantly when compared to a 32W T8 U-Bent
- Save $\$ 14$ in energy costs over the rated average life of the lamp when compared to a 32 W T8 U-Bent
- Better for the environment
- Low mercury
- Energy efficient
- Philips Energy Advantage T8 U-Bent Warranty Period: 24 Months

Applications

- Ideal for Locations Already Using the Energy Advantage 25W T8 Lamps

Notes

- Rated average life under specified test conditions with lamps turned off and restarted no more frequently than once every 3 operating hours. Lamp life is appreciably longer if lamps are started less frequently. (202)
- Approximate Initial Lumens. The lamp lumen output is based upon lamp performance after 100 hours of operating life, when the output is measured during operation on a reference ballast under standard laboratory conditions. (203)
- For expected lamp lumen output, commercial ballast manufacturers can advise the appropriate Ballast Factor for each of their ballasts when they are informed of the designated lamp. The Ballast Factor is a multiplier applied to the designated lamp lumen output. (204)
- Design Lumens are the approximate lamp lumen output at 40% of the lamp's Rated Average Life. This output is based upon measurements obtained during lamp operation on a reference ballast under standard laboratory conditions. (208)
- Nominal length measured from face of base to maximum distant outside point of U. Measurement does not include base pins. Leg spacing center to center approximately 6 inches, for / 6 and $35 / 8$ inches for / 3 lamps.

	Product data
Product Number	204214
Full product name	FB32T8/6 25W ADV835 XEW ALTO
Ordering Code	FB32T8/ADV835/6/XEW/ALTO 25W

F-T8-UEA Med Bipin/GB

Base Medium Bi-Pin

Electrical Specifications

IOPA2P32	
IOWN@120V	
Brand Name	OPTANIUM
Ballast Type	Electronic
Starting Method	Instant Start
Lamp Connection	Parallel
Input Voltage	$120-277$
Input Frequency	$50 / 60$ HZ
Status	Active

PHILIPS LIGHTING ELECTRONICS N.A.

Electrical Specifications

IOPA4P32LWSC@120V					
Brand Name			OPTANIUM		
Ballast Type			Electronic		
Starting Method			Instant Start		
Lamp Connection			Parallel		
Input Voltage			120-277		
4' 3L T8 with 25W Lamps: 62W			50/60		
Input Power (ANSI Watts)	Ballast Factor	$\begin{gathered} \hline \text { MAX } \\ \text { THD } \\ \% \end{gathered}$	Power Factor	MAX Lamp Current Crest Factor	B.E.F
62	0.85	10	0.99	1.6	1.37
77	0.77	10	0.99	1.6	11.00

Lamp Type	Num. of Lamps	Rated Lamp Watts	Min. Start Temp (${ }^{\circ}$ F/C)	Input Current (Amps)	Input Power (ANSI Watts)	Ballast Factor	MAX THD \%	Power Factor	MAX Lamp Current Crest Factor	B.E.F \cdot
F32T8/ES (25W)	3	25	$60 / 16$	0.52	62	0.85	10	0.99	1.6	1.37
*F32T8/ES (25W)	4	25	$60 / 16$	0.52	77	0.77	10	0.99	1.6	11.00

Wiring Diagram

The wiring diagram that appears above is for the lamp type denoted by the asterisk (*)

Standard Lead Length (inches)

	in.	cm.
Black	25	63.5
White	25	63.5
Blue	31	78.7
Red	31	78.7
Yellow	39	99.1
Gray		0
Violet		0

Yellow/Blue		in.
Blue/White		0
Brown		0
Orange		0
Orange/Black		0
Black/White		0
Red/White		0

Enclosure

Enclosure Dimensions

OverAll (L)	Width (W)	Height (H)	Mounting (M)
$9.50^{\prime \prime}$	$1.7^{\prime \prime}$	$1.18^{\prime \prime}$	$8.90^{\prime \prime}$
$91 / 2$	$17 / 10$	$19 / 50$	$89 / 10$
24.1 cm	4.3 cm	3 cm	22.6 cm

Polycarbonate Exit Signs Specification

Features

- Injection-molded thermoplastic ABS housing
- UL 94V-0 flame rating
- Innovative, snap-together design allows for fast installation
- Replaceable directional chevron inserts are easily removed and reinserted
- Lettes 6 " height with $3 / 4$ " stroke
- Single or double face configuration
- Universal mounting- wall, side, or ceiling
- Housing snaps to canopy with simple twist and locking tightly secure housing to canopy
- 120/277 VAC dual voltage operation
- Low energy consumption- only 2.1 or 2.4 watts at 120 V
- LED indicator light and push button test switch
- LEDs mounted on print circuit board
- LED lamps are operating in normal (AC input) and emergency (DC input) modes
- Ni-Cd battery delivers more than 3 hours capacity to emergency lamps

- 24 hours recharge after 90 minutes discharge
- Low voltage battery disconnection- preventing deep discharge damage to the battery
- Maintenance-free battery provides an estimated service life of 10 years with an operating
temperature range of $10^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$
- Power Factor of $>.95$
- UL Listed for damp location
- Meets NFPA 101, NEC, and NEMA code

Ordering Information

Catalog Model \#	Description	$\begin{aligned} & \text { LED } \\ & \text { Color } \end{aligned}$	Housing Color	$\begin{gathered} \mathrm{AC/} \\ \mathrm{BBUP} \end{gathered}$
20742D	Red LED Exit Sign Universal AC Only WH Housing	Red	White	AC
20743D	Red LED Exit Sign Universal Battery Backup WH Housing	Red	White	BBUP
20743DBLK	Red LED Exit Sign Universal Battery Backup BLK Housing	Red	Black	BBUP
20744D	Green LED Exit Sign Universal AC Only WH Housing	Green	White	AC
20745D	Green LED Exit Sign Universal Battery Backup WH Housing	Green	White	BBUP
20745DBLK	Green LED Exit Sign Universal Battery Backup BLK Housing	Green	Black	BBUP
20746D	Red LED Exit Sign Universal AC Only BLK Housing	Red	Black	
20748D	Green LED Exit Sign Universal AC Only BLK Housing	Green	Black	AC

Accessories

Item \#	Description	Item \#	Description
207WG	Wire Guard for Exit Sign	29999R2	Red Diffuser Panel with LED Strip
207WGWH	White Wire Guard for Exit Sign	29999G2	Green Diffuser Panel with LED Strip
207PS	Polycarbonate Shield for Exit Sign	20704	Replacement White Canopy
20730	Replacement Battery Ni-Cd 4.8V 650mAh	CHEVRONPL	Replacement White Chevron
29999JR	Red Diffuser Panel	20708P	Replacement Face Plate
29999JG	Green Diffuser Panel		

TCP, Inc.

325 Campus Dr. | Aurora, Ohio 44202 | P: 800-324-1496 | F: 330-995-6188 | www.tcpi.com
©TCP, Inc. 2008/02804

Self Direct Project Overview \& Commitment

The Public Utility Commission of Ohio (PUCO) will soon review your application for participation in AEP Ohio's Energy Efficiency/Peak Demand Response program. Based on your submitted project, please select by initialing one of the two options below, sign and fax to 877-607-0740.

Customer Name	FIFTH THIRD BANK		
Project Number	AEP-10-02287		
Customer Premise Address	2883 TAYLOR RD, REYNOLDSBURG, OH 43068-8028		
Customer Mailing Address	$\mathbf{3 8}$ Fountain Square, Cincinnati, OH 45263		
Date Received	$11 / 8 / 2010$		
Project Installation Date	$6 / 17 / 2008$		
Annual kWh Reduction	15,930		
Total Project Cost	$\$ 9,977.27$		
Unadjusted Energy Efficiency Credit (EEC) Calculation	$\$ 2,034.43$		
Simple Payback (yrs)	5.5		
Utility Cost Test (UCT)	4.6	Please Choose One Option Below and Initial	
Initial:			
Option 1 - Self Direct EEC: 75\%	$\$ 1,525.82$	\square	
Option 2 - EE/PDR Rider Exemption	$\mathbf{8 9}$ Months (After PUCO Approval)	\square	

Note: This is a one time selection. By selecting Option 1, the customer will receive payment in the amount stated above. Selection of Option 2: $E E / P D R$ rider exemption, will result in the customer not being eligible to participate in any other energy efficiency programs offered by AEP Ohio during the period of exemption. In addition, the term of Option 2: EE/PDR rider exemption is subject to ongoing review for compliance and could be changed by the PUCO.
If Option 1 has been selected, will the Energy Efficiency Funds selected help you move forward with other energy efficiency projects?
\qquad
\qquad NO

Project Overview:

The Self Direct (Prescriptive and Custom) project that the above has completed and applied is as follows.
Retrofitted (6) 4' 2L T12 into (6) 4' 2L T8 fixtures
Retrofitted (26) 4' 2L T12 U-Tube into (26) 2' 3L T8 fixtures
Retrofitted (40) 4' 3L T12 into (40) 4' 3L T8 fixtures
Converted (2) Open/Closed incandescent lane signs into (2) Open/Closed lane signs 7" x 34 " - LED 3.4 Watts
Installed occupancy sensors on (22) 4' 3L T8 25W fixtures
Converted (3) Manual constant setpoint thermostats into (3) Energy Star remote controllable thermostats

The documentation that was included with the application proved that the energy measures applied for were purchased and installed.
By signing this document, the Mercantile customer affirms its intention to commit and integrate the above listed energy efficiency resources into the utility's peak demand reduction, demand response, and energy efficiency programs. By signing, the Mercantile customer also agrees to serve as a joint applicant in any filings necessary to secure approval of this arrangement by the Public Utilities Commission of Ohio, and comply with any information and compliance reporting requirements imposed by rule or as part of that approval.

Columbus Southern Power Company

By: \qquad
Title: \qquad

Date: \qquad

FIFTH THIRD BANK

By: \qquad
Title: \qquad

Date: \qquad

List of Fifth Third Bank properties within the AEP Ohio service territory

Note: State Savings Bank is a subsidiary of Fifth Third Bank.

Account Name	Billing Name	Service Address	City	State
Fifth Third Bank	FIFTH THIRD BANK	1340 BETHEL RD	COLUMBUS	OH
Fifth Third Bank	STATE SAVINGS BANK	3580 N HIGH ST	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	2500 E DUBLIN GRANVILLE RD	COLUMBUS	OH
Fifth Third Bank	STATE SAVINGS	229 S SANDUSKY ST	DELAWARE	OH
Fifth Third Bank	STATE SAVINGS BANK	6260 PERIMETER DR	DUBLIN	OH
Fifth Third Bank	FIFTH THIRD BANK	420 METRO PL APT A	DUBLIN	OH
Fifth Third Bank	STATE SAVINGS BANK	3800 W DUBLIN GRANVILLE RD	DUBLIN	OH
Fifth Third Bank	FIFTH THIRD BANK	434 HAVENS CORNERS RD	GAHANNA	OH
Fifth Third Bank	FIFTH THIRD BANK	3407 CLEVELAND AVE	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	155 W MAIN ST	NEW ALBANY	OH
Fifth Third Bank	STATE SAVINGS CO	1500 MORSE RD	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	3949 W POWELL RD	POWELL	OH
Fifth Third Bank	FIFTH THIRD BANK	7425 STATE ROUTE 3	WESTERVILLE	OH
Fifth Third Bank	STATE SAVINGS BANK	2081 HENDERSON RD	COLUMBUS	OH
Fifth Third Bank	STATE SAVINGS BANK	6895 N HIGH ST	WORTHINGTON	OH
Fifth Third Bank	STATE SAVINGS BANK	3011 E BROAD ST	COLUMBUS	OH
Fifth Third Bank	STATE SAVINGS BANK	2570 E MAIN ST	BEXLEY	OH
Fifth Third Bank	FIFTH THIRD BANK	159 E MAIN ST	CIRCLEVILLE	OH
Fifth Third Bank	STATE SAVINGS CO	2810 S HAMILTON RD	COLUMBUS	OH
Fifth Third Bank	STATE SAVINGS CO	1349 W 5TH AVE	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	809 S HIGH ST	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	2336 STRINGTOWN RD	GROVE CITY	OH
Fifth Third Bank	STATE SAVINGS CO	3990 BROADWAY	GROVE CITY	OH
Fifth Third Bank	STATE SAVINGS CO	1585 E MAIN ST	LANCASTER	OH
Fifth Third Bank	FIFTH THIRD BANK	2475 NORTHWEST BLVD	UPPER	OH
Fifth Third Bank	STATE SAVINGS CO	5055 W BROAD ST	COLUMBUS	OH
Fifth Third Bank	STATE SAVINGS INC	1235 N 21ST ST	NEWARK	OH
Fifth Third Bank	FIFTH THIRD BANK	6935 E MAIN ST	REYNOLDSBURG	OH
Fifth Third Bank	FIFTH THIRD BANK	3460 S HIGH ST	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	2883 TAYLOR RD	REYNOLDSBURG	OH
Fifth Third Bank	FIFTH THIRD BANK	1669 FISHINGER RD UNIT 3P	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	2455 HILLIARD ROME RD	HILLIARD	OH
Fifth Third Bank	FIFTH THIRD BANK	8877 OWENFIELD DR	LEWIS CENTER	OH
Fifth Third Bank	FIFTH THIRD BANK	4128 HOOVER RD	GROVE CITY	OH
Fifth Third Bank	FIFTH THIRD BANK	983 N CABLE RD	LIMA	OH
Fifth Third Bank	FIFTH THIRD OF WEST OH	225 N WEST ST	LIMA	OH
Fifth Third Bank	FIFTH THIRD BANK	2120 HARDING HWY	LIMA	OH
Fifth Third Bank	FIFTH THIRD BANK	2450 SHAWNEE RD BLDG 0439	LIMA	OH
Fifth Third Bank	FIFTH THIRD BK OF NW OHIC	337 S MAIN ST	FINDLAY	OH
Fifth Third Bank	FIFTH THIRD BANK	1735 TIFFIN AVE	FINDLAY	OH
Fifth Third Bank	FIFTH THIRD BANK NW OHIO	2720 N MAIN ST	FINDLAY	OH
Fifth Third Bank	FIFTH THIRD BANK	1412 S MAIN ST	FINDLAY	OH

Fifth Third Bank	FIFTH THIRD BANK	1207 OAK HARBOR RD	FREMONT	OH
Fifth Third Bank	FIFTH THIRD BANK	220 PERRY ST	FOSTORIA	OH
Fifth Third Bank	FIFTH THIRD BANK	720 W MARKET ST	TIFFIN	OH
Fifth Third Bank	FIFTH THIRD BANK	300 E SANDUSKY ST	FINDLAY	OH
Fifth Third Bank	FIFTH THIRD BANK OF SOUTH	128 W MAIN ST	CHILLICOTHE	OH
Fifth Third Bank	FIFTH THIRD BANK	10551 US HIGHWAY 23	LUCASVILLE	OH
Fifth Third Bank	FIFTH THIRD BANK	31 E 2ND ST	MANCHESTER	OH
Fifth Third Bank	FIFTH THIRD BANK	511 N HIGH ST	HILLSBORO	OH
Fifth Third Bank	FIFTH THIRD BANK	60 N MAIN ST	PEEBLES	OH
Fifth Third Bank	FIFTH THIRD BANK	826 7TH ST	PORTSMOUTH	OH
Fifth Third Bank	53 BANK OHIO VALLEY	303 E EMMITT AVE	WAVERLY	OH
Fifth Third Bank	FIFTH THIRD BANK	500 E MAIN ST	WEST UNION	OH
Fifth Third Bank	FIFTH THIRD BANK	7988-A OHIO RIVER RD	WHEELERSBURG	OH
Fifth Third Bank	FIFTH THIRD BANK	5067 PORTAGE ST	NORTH CANTON	OH
Fifth Third Bank	FIFTH 3RD BANK	1819 W LANE AVE	UPPER	OH
Fifth Third Bank	FIFTH THIRD BANK	6031 GROVEPORT RD	GROVEPORT	OH
Fifth Third Bank	FIFTH THIRD BANK	5342 N HAMILTON RD	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	8353 SANCUS BLVD	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	1637 N MAIN ST	NORTH CANTON	OH
Fifth Third Bank	FIFTH THIRD BANK	1669 HOLT RD	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	3750 FISHINGER BLVD	HILLIARD	OH
Fifth Third Bank	FIFTH THIRD BANK	2152 SCHORRWAY DR	LANCASTER	OH
Fifth Third Bank	5TH 3RD BANK INC	3964 FULTON DR	CANTON	OH
Fifth Third Bank	FITH THIRD BANK	4655 TUSCARAWAS ST	CANTON	OH
Fifth Third Bank	FIFTH THIRD BANK	1960 N HIGH ST	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	4801 DRESSLER RD STE 100	CANTON	OH
Fifth Third Bank	FIFTH THIRD BANK	4220 CLEVELAND AVE	CANTON	OH

Square Footage of Locations by Project Number

AEP Project Number	Site Number	Square Footage	AEP Project Number	Site Number	Square Footage
AEP-10-02257	OH100479	2,971	AEP-10-02297	OH100641	3,120
AEP-10-02259	OH100480	1,660	AEP-10-02298	OH100642	3,220
AEP-10-02260	OH100481	4,371	AEP-10-02299	OH100643	2,220
AEP-10-02261	OH100482	1,550	AEP-10-02300	OH100644	4,200
AEP-10-02262	OH100484	2,760	AEP-10-02301	OH100647	12,478
AEP-10-02263	OH100485	4,000	AEP-10-02302	OH100650	3,350
AEP-10-02264	OH100486	28,698	AEP-10-02303	OH100670	450
AEP-10-02265	OH100487	3,240	AEP-10-02305	OH101151	5,714
AEP-10-02266	OH100490	2,680	AEP-10-02306	OH101156	2,170
AEP-10-02267	OH100494	6,085	AEP-10-02307	OH101157	4,000
AEP-10-02268	OH100495	3,000	AEP-10-02308	OH101158	6,890
AEP-10-02269	OH100498	4,514	AEP-10-02309	OH101159	4,224
AEP-10-02270	OH100500	5,832	AEP-10-02310	OH101160	65,945
AEP-10-02271	OH100501	1,992	AEP-10-02311	OH101162	1,000
AEP-10-02272	OH100502	3,240	AEP-10-02312	OH101163	4,000
AEP-10-02273	OH100503	3,400	AEP-10-02313	OH101164	5,000
AEP-10-02274	OH100504	3,277	AEP-10-02314	OH101184	4,200
AEP-10-02275	OH100508	4,025	AEP-10-02315	OH101186	2,920
AEP-10-02276	OH100509	1,800	AEP-10-02316	OH101189	3,500
AEP-10-02277	OH100513	3,000	AEP-10-02317	OH101195	4,155
AEP-10-02278	OH100514	3,400	AEP-10-02318	OH101198	4,200
AEP-10-02279	OH100515	2,752	AEP-10-02319	OH101205	4,115
AEP-10-02280	OH100516	3,402	AEP-10-02320	OH101220	4,200
AEP-10-02281	OH100517	2,176	AEP-10-02321	OH101238	1,651
AEP-10-02282	OH100518	3,900	AEP-10-02322	OH101239	4,200
AEP-10-02283	OH100519	3,240	AEP-10-02323	OH101248	4,200
AEP-10-02284	OH100520	2,500	AEP-10-02324	OH101256	4,200
AEP-10-02285	OH100522	2,680	AEP-10-02325	OH101260	4,200
AEP-10-02286	OH100523	3,684	AEP-10-02326	OH101401	4,200
AEP-10-02287	OH100524	5,621	AEP-10-02327	OH101415	4,200
AEP-10-02288	OH100525	3,000			
AEP-10-02289	OH100538	4,200			
AEP-10-02290	OH100539	4,200			
AEP-10-02291	OH100542	4,900			
AEP-10-02292	OH100548	2,800			
AEP-10-02293	OH100549	7,500			
AEP-10-02294	OH100550	2,500			
AEP-10-02295	OH100551	2,500			
AEP-10-02296	OH100640	18,740			

KEMA

Programmable Thermostat

Measure Description	Installation of a programmable thermostat in place of a constant setpoint style thermostat.
Units	Per 1000 square feet
Base Case Description	Constant setpoint thermostats
Measure Savings	Source: This workpaper is based on the Michigan Statewide Energy Savings Database - Weather Sensitive Retrofit Measures for Residential and Commercial Buildings
Measure Incremental Cost	The total cost is assumed to be \$175 per 1,000 sf of conditioned space (or per thermostat).
Effective Useful Life	9 years

Programmable thermostats must meet ENERGY STAR® Version 2.0 criteria and must replace any non-programmable thermostat to automatically adjust the temperature at pre-selected times. To meet ENERGY STAR® standards, they must be capable of maintaining two separate programs (to address the different comfort needs of weekdays and weekends) and up to four temperature settings for each program.

Measure Savings

These savings are based on eQuest building models developed for the Michigan Statewide Energy Savings Database. The weather data used is for the Detroit airport area, which is more conservative than Columbus as Detroit has an average of 727 cooling degree days whereas, Columbus has an average of 925 cooling degree days (Source: National Climatic Data Center). The measure is to include temperature setback/setup during unoccupied hours. The savings assumes air conditioning with gas heating (gas package units).

Table 1 Programmable Thermostat Savings, per 1000 sq. ft

Building Type	kWh/unit
Assembly	1,063
Big Box Retail	579
Fast Food Restaurant	1,532
Full Service Restaurant	1,132
Light Industrial	502
Primary School	1,218
Small Office	748

Small Retail	1,036

Measure Life and Incremental Measure Cost

The following table provides the measure life and incremental measure cost (IMC) documented for this measure as well as the source of the data.

Table 2 Measure Life and Incremental Measure Cost

	Value	Source
Measure Life	9	MEMD
Incremental Measure Cost	$\$ 175$	MEMD

Pass \& Seymour
41 legrand

Features - Wall Switch Occupancy Sensors

- Detection Signature Analysis provides high immunity to RFI and EMI.
- Compact, decorator design replaces existing wall switch.
- Integrated light level sensor works from 10 to 150 footcandles.
- Compatible with all electronic and magnetic ballasts, PL lamp ballasts, compact fluorescent.
- 5-year warranty.
- cULus listed.

Decorator Devices

 Passive Infrared Sensors| Catalog Number | Description | Voltage | Load Requirements | Coverage | Time Delay | Color |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PIR Automatic Wall Switches - 3 Wire Technology | | | | | | |
| WSP200-I
 WSP200-W
 WSP200-GRY
 WSP200-LA | Passive Infrared Occupancy Sensor | $\begin{aligned} & \text { 120/277VAC; } \\ & 60 \mathrm{~Hz} \end{aligned}$ | 800W Max.
 at 120 V
 1200W Max.
 at 277 V | $\begin{aligned} & 180^{\circ} \text {, up to } \\ & 900 \text { sq. ft. } \end{aligned}$ | 30 sec . to 30 min . | Ivory
 White
 Gray
 Lt. Almond |

Planning a Layout

The WSP200's 2 -level lens provides superior coverage at desktop level by allowing the sensor to detect vertical as well as horizontal motion. Coverage shown is for walking motion. Under optimum conditions with a high level of activity and with no barriers or obstacles, coverage can reach a maximum of 900 square feet. Under a typical, desktop level of activity, when mounted at 4 feet, coverage is 300 square feet.

WSP200
Placement for PIR wall switch sensor

Single Level Lighting WSP200

Manual Bi-level Lighting WSP200

ALTO ${ }^{\circledR}$ Universal T8: Full Rated Average Life on All T8 Ballast Types,
Environmentally-Responsible Lamps. Ideal for any lighting application
Alto
requiring maximum quality of light and maintain 2 2' and 3' T8
Allo Universal 18 Lamps 18 luorescent Lamps

Philips Exclusive Universal Design: The only T8 lamp to deliver full rated average life on all T8 ballast types (Instant Start, Rapid Start, Programmed Start and Hybrid ballasts)
Environmentally Responsible: Low mercury-TCLP*-compliant; energy efficient; long life
Sustainable Lighting Solution: Less mercury and fewer lamps in landfills, combined with energy efficiency, reduces the impact on the environment Outstanding Lumen Maintenance: $\mathrm{HI}-\mathrm{VISION}{ }^{\ominus}$ Phosphor combined with Philips exclusive cathode guard delivers 95% lumen maintenance and reduced lamp-end blackening
Enhanced CRI: 86 CRI for TL80 lamps; 78 CRI for TL70 lamps
 F32TATLLA3OUALTO HI-MISION/32 WATT Alto
cubertan

			Qualify based
Nom.	Product	Symbols,	Ordering
Lamp	Number Symols		
Watts	046677- Footnotes	Code	On CRI

ALTO Universal T8 Warranty: 24 months

 800 SeriesQualify based
on CRI
ALTO Universal T8 Fluorescent Lamps T8 Medium Bipin

17	36787-0	\$	FI7T8/TL830/ALTO	25	TL 830, 3000K	24	20,000	25,000	1400	1300	86
	36791-2	\$	FI7T8/TL835/ALTO	25	TL 835, 3500K	24	20,000	25,000	1400	1300	86
	36793-8	\$	FI7T8/TL84I/ALTO	25	TL 841, 4100K	24	20,000	25,000	1400	1300	86
	36807-6	\$	FI7T8/TL730/ALTO	25	TL 730, 3000K	24	20,000	25,000	1325	1200	78
	36808-4	\$	FI7T8/TL735/ALTO	25	TL 735, 3500K	24	20,000	25,000	1325	1200	78
	36812-6	\$	FI7T8/TL74I/ALTO	25	TL 741, 4100K	24	20,000	25,000	1325	1200	78
25	36813-4	\$	F25T8/TL830/ALTO	25	TL 830, 3000K	36	20,000	25,000	2225	2050	86
	36814-2	\$	F25T8/TL835/ALTO	25	TL 835, 3500K	36	20,000	25,000	2225	2050	86
	36825-8	\$	F25T8/TL84I/ALTO	25	TL 841, 4100K	36	20,000	25,000	2225	2050	86
	36826-6	\$	F25T8/TL730/ALTO	25	TL 730, 3000K	36	20,000	25,000	2125	1925	78
	36828-2	\$	F25T8/TL735/ALTO	25	TL 735, 3500K	36	20,000	25,000	2125	1925	78
	36829-0	\$	F25T8/TL74I/ALTO	25	TL 741, 4100K	36	20,000	25,000	2125	1925	78
32	24667-8	(E) \$	F32T8/TL830/ALTO	25	TL 830, 3000K	48	20,000	25,000	2950	2800	86
	27236-9	(E) \$	F32T8/TL830/ALTO PLZ	1350	TL 830, 3000K	48	20,000	25,000	2950	2800	86
	24670-2	(E) \$	F32T8/TL835/ALTO	25	TL 835, 3500K	48	20,000	25,000	2950	2800	86
	27233-6	(E) \$	F32T8/TL835/ALTO PLZ	1350	TL 835, 3500K	48	20,000	25,000	2950	2800	86
	24671-0	(E) \$	F32T8/TL84I/ALTO	25	TL 84I, 4100K	48	20,000	25,000	2950	2800	86
	27235-1	(E) \$	F32T8/TL84I/ALTO PLZ	1350	TL 841, 4100K	48	20,000	25,000	2950	2800	86
	27229-4	(E) \$	F32T8/TL850/ALTO	25	TL 850, 5000K	48	20,000	25,000	2950	2800	86
	27252-6	(E) \$	F32T8/TL730 ALTO	25	TL 730, 3000K	48	20,000	25,000	2800	2660	78
	27282-3	(E) \$	F32T8/TL730/ALTO PLZ	1350	TL 730, 3000K	48	20,000	25,000	2800	2660	78
	27249-2	(E) \$	F32T8/TL735/ALTO	25	TL 735, 3500K	48	20,000	25,000	2800	2660	78
	27259-1	(E) \$	F32T8/TL735/ALTO PLZ	1350	TL 735, 3500K	48	20,000	25,000	2800	2660	78
	27248-4	(E) \$	F32T8/TL74I/ALTO	25	TL 741, 4100K	48	20,000	25,000	2800	2660	78
	38351-3	(E) \$	F32T8/TL74I/ALTO	10	TL 741, 4100K, 10 Pk .	48	20,000	25,000	2800	2660	78
	27255-9	(E) $\$$	F32T8/TL74I/ALTO PLZ	1350	TL 741, 4100K	48	20,000	25,000	2800	2660	78
	27268-2	(E) \$	F32T8/TL750/ALTO	25	TL 750, 5000K	48	20,000	25,000	2700	2550	78

For the most current product information, go to www.lighting.philips.com/nam/product_database/
Fluorescent symbols and footnotes located on page 77
\square This product utilizes ALTO ${ }^{\circ}$ Lamp Technology

* The TCLP is the US EPA's Toxicity Characteristic Leaching Procedure.

T8 Medium Bipin

A ADVANCE

Electrical Specifications
2' Ballasts

IOPA2P32LWSC@120V	
Brand Name	OPTANIUM 2.0
Ballast Type	Ilectronic
Starting Method	Instant Start
Lamp Connection	Parallel
Input Voltage	$120-277$
Input Frequency	$50 / 60 \mathrm{HZ}$
Status	Active

Lamp Type	Num. of Lamp \mathbf{s}	Rated Lamp Watts	Min. Start Temp $\left({ }^{\circ} \mathrm{F} / \mathrm{C}\right.$)	Input Current (Amps)	Input Power (ANSI Watts)	Ballast Factor	MAX THD $\%$	Power Factor	MAX Lamp Current Crest Factor	B.E.F.
F17T8	1	17	$-20 /-29$	0.15	18	0.90	20	0.98	1.6	5.00
*F17T8	2	17	$-20 /-29$	0.23	27	0.80	10	0.99	1.6	2.96

Wiring Diagram

Diag. 64
The wiring diagram that appears above is for the lamp type denoted by the asterisk (*)

Standard Lead Length (inches)

	in.	cm.
Black	25	63.5
White	25	63.5
Blue	31	78.7
Red	37	94
Yellow		0
Gray		0
Violet		0

	in.	cm.
Yellow/Blue		0
Blue/White		0
Brown		0
Orange		0
Orange/Black		0
Black/White		0
Red/White		0

Enclosure

Enclosure Dimensions

OverAll (L)	Width (W)	Height (H)	Mounting (M)
$9.50{ }^{\prime}$	1.7^{\prime}	$1.18^{\prime \prime}$	$8.90{ }^{\prime \prime}$
$91 / 2$	$17 / 10$	$19 / 50$	$89 / 10$
24.1 cm	4.3 cm	3 cm	22.6 cm

Product Information Bulletin

OCTRON ${ }^{\circledR}$ 25W XP ${ }^{\circledR}$ SUPERSAVER ${ }^{\circledR}$ ECOLOGIC ${ }^{\circledR}$

EXtended Performance Fluorescent Lamps 4' T8 Lamps -

SYLVANIA 25 Watt OCTRON FO32/25W/800XP SUPERSAVER ECOLOGIC lamps operate on standard T8 instant start systems and provide 22% energy savings over standard 32 Watt OCTRON lamps where slight reductions in light are acceptable.

At $\$.10 / \mathrm{kWh}$ and 4000 hours of operation per year, the 22% savings translates to a savings of $\$ 9.80$ per fixture per year for a 4-lamp fixture with a normal ballast factor, instant start ballast. Changing from standard Cool White Energy Saving T12 lamps powered by energy saving magnetic ballasts to OCTRON FO32/25W/800XP/SS/ECO lamps combined with OSRAM SYLVANIA's QUICKTRONIC High Efficiency ISN ballasts could save $\$ 24$ a year with no light loss. These lamps pass the Federal TCLP test, classifying them as non-hazardous waste in most states. Group relamp to realize the benefits of these OCTRON lamps in your facility.

- Up to 22\% energy savings compared to standard 32W T8 lamp
- 25 Watt, 4-foot, SUPERSAVER energy saving, T8 lamp
- ECOLOGIC - Designed to pass TCLP ${ }^{1}$
- Initial lumens - 2475 (850 is 2300)
- 95% lumen maintenance at 8000 hours
- 3000K, 3500K, 4100K \& 5000K
- 85 CRI
- Retrofit lamp for existing T8 instant start systems - 24,000 hour average rated life @ 3 hrs. per start
- Also operates on OSRAM SYLVANIA QUICKTRONIC® Programmed Start ballasts
- 36,000 hour average rated life @ 3 hrs per start
- Minimum starting temperature: $70^{\circ} \mathrm{F}$
- Not dimmable
- Not for use in air handling fixtures
- Striation may occur if airflow is present (see application note 5)

SYLVANIA OCTRON T8 ECOLOGIC fluorescent lamps are designed to pass the Federal Toxicity Characteristic Leaching Procedure (TCLP) criteria for classification as non-hazardous waste in most states ${ }^{2}$.

1. TCLP test results are based on NEMA LL Series standards and are available on request.
2. Lamp disposal regulations may vary; check your local \& state regulations.

Product Availability

Lamp Type	Wattage	Color Temperature	CRI
F032/25W/830XP/SS/ECO	25	3000 K	85
F032/25W/835XP/SS/EC0	25	3500 K	85
F032/25W/841XP/SS/ECO	25	4100 K	85
F032/25W/850XP/SS/EC0	25	5000 K	85

Application Information

Applications

Retail Office Schools Hospitals Industrial Many applications with T8 instant start ballasts currently using 32W T8 lamps

Fixtures

Contact your local fixture agent for available fixtures.

Ballast Information

Contact your OSRAM SYLVANIA representative for a list of compatible electronic operating systems.

Application Notes

1. Recommended to be used on T8 F32 Instant Start circuits with minimum starting voltage of 550 v RMS.
2. Can operate on QUICKTRONIC Programmed Start Ballasts.
3. Fixture must conform to ANSI C78.81-2005 requirements for luminaire design.

Application Notes (continued)

4. Not recommended to be used: (1) with Rapid Start circuits unless the open circuit voltage is greater than 570V, (2) at lamp ambient temperatures below $70^{\circ} \mathrm{F}$ or in drafty locations, (3) in air handling fixtures, (4) on dimming ballasts, (5) on inverter operated emergency lighting systems unless any of the above equipment is specifically listed for 25 watt lamps, or (6) below $60^{\circ} \mathrm{F}$ starting temperature. Any of the above situations could result in lamp starting and stabilization problems, or system compatibility issues.
5. If an operating lamp is exposed to temperatures below $70^{\circ} \mathrm{F}$ or moving air (wind, drafts or air flow from an air conditioning or ventilation system), striation, a rhythmic pulsing pattern of light running the length of the tube and/or a reduction in brightness may occur. While visually disconcerting, neither behavior is damaging to the lamp and removing the cause (draft or temperature) will return the lamp to normal operation.

Electrical Specifications

IOPA2P32	
IOWN@120V	
Brand Name	OPTANIUM
Ballast Type	Electronic
Starting Method	Instant Start
Lamp Connection	Parallel
Input Voltage	$120-277$
Input Frequency	$50 / 60$ HZ
Status	Active

PHILIPS LIGHTING ELECTRONICS N.A.

Electrical Specifications

IOPA4P32LWSC@120V					
Brand Name			OPTANIUM		
Ballast Type			Electronic		
Starting Method			Instant Start		
Lamp Connection			Parallel		
Input Voltage			120-277		
4' 3L T8 with 25W Lamps: 62W			50/60		
Input Power (ANSI Watts)	Ballast Factor	$\begin{gathered} \hline \text { MAX } \\ \text { THD } \\ \% \end{gathered}$	Power Factor	MAX Lamp Current Crest Factor	B.E.F
62	0.85	10	0.99	1.6	1.37
77	0.77	10	0.99	1.6	11.00

Lamp Type	Num. of Lamps	Rated Lamp Watts	Min. Start Temp (${ }^{\circ}$ F/C)	Input Current (Amps)	Input Power (ANSI Watts)	Ballast Factor	MAX THD \%	Power Factor	MAX Lamp Current Crest Factor	B.E.F \cdot
F32T8/ES (25W)	3	25	$60 / 16$	0.52	62	0.85	10	0.99	1.6	1.37
*F32T8/ES (25W)	4	25	$60 / 16$	0.52	77	0.77	10	0.99	1.6	11.00

Wiring Diagram

The wiring diagram that appears above is for the lamp type denoted by the asterisk (*)

Standard Lead Length (inches)

	in.	cm.
Black	25	63.5
White	25	63.5
Blue	31	78.7
Red	31	78.7
Yellow	39	99.1
Gray		0
Violet		0

Yellow/Blue		in.
Blue/White		0
Brown		0
Orange		0
Orange/Black		0
Black/White		0
Red/White		0

Enclosure

Enclosure Dimensions

OverAll (L)	Width (W)	Height (H)	Mounting (M)
$9.50^{\prime \prime}$	$1.7^{\prime \prime}$	$1.18^{\prime \prime}$	8.90 "
$91 / 2$	$17 / 10$	$19 / 50$	$89 / 10$
24.1 cm	4.3 cm	3 cm	22.6 cm

Self Direct Project Overview \& Commitment

The Public Utility Commission of Ohio (PUCO) will soon review your application for participation in AEP Ohio's Energy Efficiency/Peak Demand Response program. Based on your submitted project, please select by initialing one of the two options below, sign and fax to 877-607-0740.

Note: This is a one time selection. By selecting Option 1, the customer will receive payment in the amount stated above. Selection of Option 2: $E E / P D R$ rider exemption, will result in the customer not being eligible to participate in any other energy efficiency programs offered by $A E P$ Ohio during the period of exemption. In addition, the term of Option 2: EE/PDR rider exemption is subject to ongoing review for compliance and could be changed by the PUCO.
If Option 1 has been selected, will the Energy Efficiency Funds selected help you move forward with other energy efficiency projects?
Project Overview:
The Self Direct (Prescriptive and Custom) project that the above has completed and applied is as follows.
Retrofitted (1) 4' 4L T12 into (1) 4' 4L T8 fixture
Converted (3) Incandescent Exit Signs into (3) LED Exit Signs
Converted (5) Open/Closed incandescent lane sign into (5) Open/Closed lane signs 7" x 34" - LED 3.4 Watts
Installed occupancy sensors on (12) 4' 4L T8 25W fixtures
Converted (2) 4' 2L T8 32W Lamps into (2) 4' 2L T8 25W Lamps (No ballast change)
Converted (51) 4' 4L T8 32W Lamps into (51) 4' 4L T8 25W Lamps (No ballast change)
Converted (2) Manual constant setpoint thermostats into (2) Energy Star remote controllable thermostats

The documentation that was included with the application proved that the energy measures applied for were purchased and installed.
By signing this document, the Mercantile customer affirms its intention to commit and integrate the above listed energy efficiency resources into the utility's peak demand reduction, demand response, and energy efficiency programs. By signing, the Mercantile customer also agrees to serve as a joint applicant in any filings necessary to secure approval of this arrangement by the Public Utilities Commission of Ohio, and comply with any information and compliance reporting requirements imposed by rule or as part of that approval.

Columbus Southern Power Company

By: \qquad
Title: \qquad
Date: \qquad

FIFTH THIRD BANK

\qquad
Title:

List of Fifth Third Bank properties within the AEP Ohio service territory

Note: State Savings Bank is a subsidiary of Fifth Third Bank.

Account Name	Billing Name	Service Address	City	State
Fifth Third Bank	FIFTH THIRD BANK	1340 BETHEL RD	COLUMBUS	OH
Fifth Third Bank	STATE SAVINGS BANK	3580 N HIGH ST	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	2500 E DUBLIN GRANVILLE RD	COLUMBUS	OH
Fifth Third Bank	STATE SAVINGS	229 S SANDUSKY ST	DELAWARE	OH
Fifth Third Bank	STATE SAVINGS BANK	6260 PERIMETER DR	DUBLIN	OH
Fifth Third Bank	FIFTH THIRD BANK	420 METRO PL APT A	DUBLIN	OH
Fifth Third Bank	STATE SAVINGS BANK	3800 W DUBLIN GRANVILLE RD	DUBLIN	OH
Fifth Third Bank	FIFTH THIRD BANK	434 HAVENS CORNERS RD	GAHANNA	OH
Fifth Third Bank	FIFTH THIRD BANK	3407 CLEVELAND AVE	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	155 W MAIN ST	NEW ALBANY	OH
Fifth Third Bank	STATE SAVINGS CO	1500 MORSE RD	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	3949 W POWELL RD	POWELL	OH
Fifth Third Bank	FIFTH THIRD BANK	7425 STATE ROUTE 3	WESTERVILLE	OH
Fifth Third Bank	STATE SAVINGS BANK	2081 HENDERSON RD	COLUMBUS	OH
Fifth Third Bank	STATE SAVINGS BANK	6895 N HIGH ST	WORTHINGTON	OH
Fifth Third Bank	STATE SAVINGS BANK	3011 E BROAD ST	COLUMBUS	OH
Fifth Third Bank	STATE SAVINGS BANK	2570 E MAIN ST	BEXLEY	OH
Fifth Third Bank	FIFTH THIRD BANK	159 E MAIN ST	CIRCLEVILLE	OH
Fifth Third Bank	STATE SAVINGS CO	2810 S HAMILTON RD	COLUMBUS	OH
Fifth Third Bank	STATE SAVINGS CO	1349 W 5TH AVE	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	809 S HIGH ST	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	2336 STRINGTOWN RD	GROVE CITY	OH
Fifth Third Bank	STATE SAVINGS CO	3990 BROADWAY	GROVE CITY	OH
Fifth Third Bank	STATE SAVINGS CO	1585 E MAIN ST	LANCASTER	OH
Fifth Third Bank	FIFTH THIRD BANK	2475 NORTHWEST BLVD	UPPER	OH
Fifth Third Bank	STATE SAVINGS CO	5055 W BROAD ST	COLUMBUS	OH
Fifth Third Bank	STATE SAVINGS INC	1235 N 21ST ST	NEWARK	OH
Fifth Third Bank	FIFTH THIRD BANK	6935 E MAIN ST	REYNOLDSBURG	OH
Fifth Third Bank	FIFTH THIRD BANK	3460 S HIGH ST	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	2883 TAYLOR RD	REYNOLDSBURG	OH
Fifth Third Bank	FIFTH THIRD BANK	1669 FISHINGER RD UNIT 3P	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	2455 HILLIARD ROME RD	HILLIARD	OH
Fifth Third Bank	FIFTH THIRD BANK	8877 OWENFIELD DR	LEWIS CENTER	OH
Fifth Third Bank	FIFTH THIRD BANK	4128 HOOVER RD	GROVE CITY	OH
Fifth Third Bank	FIFTH THIRD BANK	983 N CABLE RD	LIMA	OH
Fifth Third Bank	FIFTH THIRD OF WEST OH	225 N WEST ST	LIMA	OH
Fifth Third Bank	FIFTH THIRD BANK	2120 HARDING HWY	LIMA	OH
Fifth Third Bank	FIFTH THIRD BANK	2450 SHAWNEE RD BLDG 0439	LIMA	OH
Fifth Third Bank	FIFTH THIRD BK OF NW OHIC	337 S MAIN ST	FINDLAY	OH
Fifth Third Bank	FIFTH THIRD BANK	1735 TIFFIN AVE	FINDLAY	OH
Fifth Third Bank	FIFTH THIRD BANK NW OHIO	2720 N MAIN ST	FINDLAY	OH
Fifth Third Bank	FIFTH THIRD BANK	1412 S MAIN ST	FINDLAY	OH

Fifth Third Bank	FIFTH THIRD BANK	1207 OAK HARBOR RD	FREMONT	OH
Fifth Third Bank	FIFTH THIRD BANK	220 PERRY ST	FOSTORIA	OH
Fifth Third Bank	FIFTH THIRD BANK	720 W MARKET ST	TIFFIN	OH
Fifth Third Bank	FIFTH THIRD BANK	300 E SANDUSKY ST	FINDLAY	OH
Fifth Third Bank	FIFTH THIRD BANK OF SOUTH	128 W MAIN ST	CHILLICOTHE	OH
Fifth Third Bank	FIFTH THIRD BANK	10551 US HIGHWAY 23	LUCASVILLE	OH
Fifth Third Bank	FIFTH THIRD BANK	31 E 2ND ST	MANCHESTER	OH
Fifth Third Bank	FIFTH THIRD BANK	511 N HIGH ST	HILLSBORO	OH
Fifth Third Bank	FIFTH THIRD BANK	60 N MAIN ST	PEEBLES	OH
Fifth Third Bank	FIFTH THIRD BANK	826 7TH ST	PORTSMOUTH	OH
Fifth Third Bank	53 BANK OHIO VALLEY	303 E EMMITT AVE	WAVERLY	OH
Fifth Third Bank	FIFTH THIRD BANK	500 E MAIN ST	WEST UNION	OH
Fifth Third Bank	FIFTH THIRD BANK	7988-A OHIO RIVER RD	WHEELERSBURG	OH
Fifth Third Bank	FIFTH THIRD BANK	5067 PORTAGE ST	NORTH CANTON	OH
Fifth Third Bank	FIFTH 3RD BANK	1819 W LANE AVE	UPPER	OH
Fifth Third Bank	FIFTH THIRD BANK	6031 GROVEPORT RD	GROVEPORT	OH
Fifth Third Bank	FIFTH THIRD BANK	5342 N HAMILTON RD	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	8353 SANCUS BLVD	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	1637 N MAIN ST	NORTH CANTON	OH
Fifth Third Bank	FIFTH THIRD BANK	1669 HOLT RD	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	3750 FISHINGER BLVD	HILLIARD	OH
Fifth Third Bank	FIFTH THIRD BANK	2152 SCHORRWAY DR	LANCASTER	OH
Fifth Third Bank	5TH 3RD BANK INC	3964 FULTON DR	CANTON	OH
Fifth Third Bank	FITH THIRD BANK	4655 TUSCARAWAS ST	CANTON	OH
Fifth Third Bank	FIFTH THIRD BANK	1960 N HIGH ST	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	4801 DRESSLER RD STE 100	CANTON	OH
Fifth Third Bank	FIFTH THIRD BANK	4220 CLEVELAND AVE	CANTON	OH

Square Footage of Locations by Project Number

AEP Project Number	Site Number	Square Footage	AEP Project Number	Site Number	Square Footage
AEP-10-02257	OH100479	2,971	AEP-10-02297	OH100641	3,120
AEP-10-02259	OH100480	1,660	AEP-10-02298	OH100642	3,220
AEP-10-02260	OH100481	4,371	AEP-10-02299	OH100643	2,220
AEP-10-02261	OH100482	1,550	AEP-10-02300	OH100644	4,200
AEP-10-02262	OH100484	2,760	AEP-10-02301	OH100647	12,478
AEP-10-02263	OH100485	4,000	AEP-10-02302	OH100650	3,350
AEP-10-02264	OH100486	28,698	AEP-10-02303	OH100670	450
AEP-10-02265	OH100487	3,240	AEP-10-02305	OH101151	5,714
AEP-10-02266	OH100490	2,680	AEP-10-02306	OH101156	2,170
AEP-10-02267	OH100494	6,085	AEP-10-02307	OH101157	4,000
AEP-10-02268	OH100495	3,000	AEP-10-02308	OH101158	6,890
AEP-10-02269	OH100498	4,514	AEP-10-02309	OH101159	4,224
AEP-10-02270	OH100500	5,832	AEP-10-02310	OH101160	65,945
AEP-10-02271	OH100501	1,992	AEP-10-02311	OH101162	1,000
AEP-10-02272	OH100502	3,240	AEP-10-02312	OH101163	4,000
AEP-10-02273	OH100503	3,400	AEP-10-02313	OH101164	5,000
AEP-10-02274	OH100504	3,277	AEP-10-02314	OH101184	4,200
AEP-10-02275	OH100508	4,025	AEP-10-02315	OH101186	2,920
AEP-10-02276	OH100509	1,800	AEP-10-02316	OH101189	3,500
AEP-10-02277	OH100513	3,000	AEP-10-02317	OH101195	4,155
AEP-10-02278	OH100514	3,400	AEP-10-02318	OH101198	4,200
AEP-10-02279	OH100515	2,752	AEP-10-02319	OH101205	4,115
AEP-10-02280	OH100516	3,402	AEP-10-02320	OH101220	4,200
AEP-10-02281	OH100517	2,176	AEP-10-02321	OH101238	1,651
AEP-10-02282	OH100518	3,900	AEP-10-02322	OH101239	4,200
AEP-10-02283	OH100519	3,240	AEP-10-02323	OH101248	4,200
AEP-10-02284	OH100520	2,500	AEP-10-02324	OH101256	4,200
AEP-10-02285	OH100522	2,680	AEP-10-02325	OH101260	4,200
AEP-10-02286	OH100523	3,684	AEP-10-02326	OH101401	4,200
AEP-10-02287	OH100524	5,621	AEP-10-02327	OH101415	4,200
AEP-10-02288	OH100525	3,000			
AEP-10-02289	OH100538	4,200			
AEP-10-02290	OH100539	4,200			
AEP-10-02291	OH100542	4,900			
AEP-10-02292	OH100548	2,800			
AEP-10-02293	OH100549	7,500			
AEP-10-02294	OH100550	2,500			
AEP-10-02295	OH100551	2,500			
AEP-10-02296	OH100640	18,740			

KEMA

Programmable Thermostat

Measure Description	Installation of a programmable thermostat in place of a constant setpoint style thermostat.
Units	Per 1000 square feet
Base Case Description	Constant setpoint thermostats
Measure Savings	Source: This workpaper is based on the Michigan Statewide Energy Savings Database - Weather Sensitive Retrofit Measures for Residential and Commercial Buildings
Measure Incremental Cost	The total cost is assumed to be \$175 per 1,000 sf of conditioned space (or per thermostat).
Effective Useful Life	9 years

Programmable thermostats must meet ENERGY STAR® Version 2.0 criteria and must replace any non-programmable thermostat to automatically adjust the temperature at pre-selected times. To meet ENERGY STAR® standards, they must be capable of maintaining two separate programs (to address the different comfort needs of weekdays and weekends) and up to four temperature settings for each program.

Measure Savings

These savings are based on eQuest building models developed for the Michigan Statewide Energy Savings Database. The weather data used is for the Detroit airport area, which is more conservative than Columbus as Detroit has an average of 727 cooling degree days whereas, Columbus has an average of 925 cooling degree days (Source: National Climatic Data Center). The measure is to include temperature setback/setup during unoccupied hours. The savings assumes air conditioning with gas heating (gas package units).

Table 1 Programmable Thermostat Savings, per 1000 sq. ft

Building Type	kWh/unit
Assembly	1,063
Big Box Retail	579
Fast Food Restaurant	1,532
Full Service Restaurant	1,132
Light Industrial	502
Primary School	1,218
Small Office	748

Small Retail	1,036

Measure Life and Incremental Measure Cost

The following table provides the measure life and incremental measure cost (IMC) documented for this measure as well as the source of the data.

Table 2 Measure Life and Incremental Measure Cost

	Value	Source
Measure Life	9	MEMD
Incremental Measure Cost	$\$ 175$	MEMD

Pass \& Seymour
41 legrand

Features - Wall Switch Occupancy Sensors

- Detection Signature Analysis provides high immunity to RFI and EMI.
- Compact, decorator design replaces existing wall switch.
- Integrated light level sensor works from 10 to 150 footcandles.
- Compatible with all electronic and magnetic ballasts, PL lamp ballasts, compact fluorescent.
- 5-year warranty.
- cULus listed.

Decorator Devices

 Passive Infrared Sensors| Catalog
 Number | Description | Voltage | Load
 Requirements | Coverage |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | | Time |
| :--- |
| Delay |\quad Color | |
| :--- | | PIR Automatic Wall Switches - $\mathbf{3}$ Wire Technology |
| :--- |
| WSP200-I
 WSP200-W
 WSP200-GRY
 WSP200-LA
 Passive Infrared
 Occupancy Sensor |

Planning a Layout

The WSP200's 2 -level lens provides superior coverage at desktop level by allowing the sensor to detect vertical as well as horizontal motion. Coverage shown is for walking motion. Under optimum conditions with a high level of activity and with no barriers or obstacles, coverage can reach a maximum of 900 square feet. Under a typical, desktop level of activity, when mounted at 4 feet, coverage is 300 square feet.

WSP200
Placement for PIR wall switch sensor

Single Level Lighting WSP200

Manual Bi-level Lighting WSP200

Product Information Bulletin

OCTRON ${ }^{\circledR}$ 25W XP ${ }^{\circledR}$ SUPERSAVER ${ }^{\circledR}$ ECOLOGIC ${ }^{\circledR}$

EXtended Performance Fluorescent Lamps 4' T8 Lamps -

SYLVANIA 25 Watt OCTRON FO32/25W/800XP SUPERSAVER ECOLOGIC lamps operate on standard T8 instant start systems and provide 22% energy savings over standard 32 Watt OCTRON lamps where slight reductions in light are acceptable.

At $\$.10 / \mathrm{kWh}$ and 4000 hours of operation per year, the 22% savings translates to a savings of $\$ 9.80$ per fixture per year for a 4-lamp fixture with a normal ballast factor, instant start ballast. Changing from standard Cool White Energy Saving T12 lamps powered by energy saving magnetic ballasts to OCTRON FO32/25W/800XP/SS/ECO lamps combined with OSRAM SYLVANIA's QUICKTRONIC High Efficiency ISN ballasts could save $\$ 24$ a year with no light loss. These lamps pass the Federal TCLP test, classifying them as non-hazardous waste in most states. Group relamp to realize the benefits of these OCTRON lamps in your facility.

- Up to 22\% energy savings compared to standard 32W T8 lamp
- 25 Watt, 4-foot, SUPERSAVER energy saving, T8 lamp
- ECOLOGIC - Designed to pass TCLP ${ }^{1}$
- Initial lumens - 2475 (850 is 2300)
- 95% lumen maintenance at 8000 hours
- 3000K, 3500K, 4100K \& 5000K
- 85 CRI
- Retrofit lamp for existing T8 instant start systems - 24,000 hour average rated life @ 3 hrs. per start
- Also operates on OSRAM SYLVANIA QUICKTRONIC® Programmed Start ballasts
- 36,000 hour average rated life @ 3 hrs per start
- Minimum starting temperature: $70^{\circ} \mathrm{F}$
- Not dimmable
- Not for use in air handling fixtures
- Striation may occur if airflow is present (see application note 5)

SYLVANIA OCTRON T8 ECOLOGIC fluorescent lamps are designed to pass the Federal Toxicity Characteristic Leaching Procedure (TCLP) criteria for classification as non-hazardous waste in most states ${ }^{2}$.

1. TCLP test results are based on NEMA LL Series standards and are available on request.
2. Lamp disposal regulations may vary; check your local \& state regulations.

Product Availability

Lamp Type	Wattage	Color Temperature	CRI
F032/25W/830XP/SS/ECO	25	3000 K	85
F032/25W/835XP/SS/EC0	25	3500 K	85
F032/25W/841XP/SS/ECO	25	4100 K	85
F032/25W/850XP/SS/EC0	25	5000 K	85

Application Information

Applications

Retail Office Schools Hospitals Industrial Many applications with T8 instant start ballasts currently using 32W T8 lamps

Fixtures

Contact your local fixture agent for available fixtures.

Ballast Information

Contact your OSRAM SYLVANIA representative for a list of compatible electronic operating systems.

Application Notes

1. Recommended to be used on T8 F32 Instant Start circuits with minimum starting voltage of 550 v RMS.
2. Can operate on QUICKTRONIC Programmed Start Ballasts.
3. Fixture must conform to ANSI C78.81-2005 requirements for luminaire design.

Application Notes (continued)

4. Not recommended to be used: (1) with Rapid Start circuits unless the open circuit voltage is greater than 570V, (2) at lamp ambient temperatures below $70^{\circ} \mathrm{F}$ or in drafty locations, (3) in air handling fixtures, (4) on dimming ballasts, (5) on inverter operated emergency lighting systems unless any of the above equipment is specifically listed for 25 watt lamps, or (6) below $60^{\circ} \mathrm{F}$ starting temperature. Any of the above situations could result in lamp starting and stabilization problems, or system compatibility issues.
5. If an operating lamp is exposed to temperatures below $70^{\circ} \mathrm{F}$ or moving air (wind, drafts or air flow from an air conditioning or ventilation system), striation, a rhythmic pulsing pattern of light running the length of the tube and/or a reduction in brightness may occur. While visually disconcerting, neither behavior is damaging to the lamp and removing the cause (draft or temperature) will return the lamp to normal operation.

Electrical Specifications

IOPA4P32LWSCO120V	
Brand Name	OPTANIUM
Ballast Type	Electronic
Starting Method	Instant Start
Lamp Connection	Parallel
Input Voltage	$120-277$
Input Frequency	$50 / 60 \mathrm{HZ}$
Status	Active

| Lamp Type | Num.
 of
 Lamps | Rated
 Lamp Watts | Min. Start
 Temp (${ }^{\circ}$ F/C) | Input
 Current
 (Amps) | Input
 Power
 (ANSI
 Watts) | Ballast
 Factor | MAX
 THD
 $\%$ | Power
 Factor | MAX Lamp
 Current
 Crest Factor | B.E.F
 \cdot |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| F32T8/ES (25W) | 3 | 25 | $60 / 16$ | 0.52 | 62 | 0.85 | 10 | 0.99 | 1.6 | 1.37 |
| *F32T8/ES (25W) | 4 | 25 | $60 / 16$ | 0.52 | 77 | 0.77 | 10 | 0.99 | 1.6 | (1.00 |

Wiring Diagram

	in.	cm.
Black	25	63.5
White	25	63.5
Blue	31	78.7
Red	31	78.7
Yellow	39	99.1
Gray		0
Violet		0

	in.	cm.
Yellow/Blue		0
Blue/White		0
Brown		0
Orange		0
Orange/Black		0
Black/White		0
Red/White	0	

The wiring diagram that appears above is for the lamp type denoted by the asterisk (*)

Standard Lead Length (inches)

4' 4L T8 with 25W Lamps: 77W

Enclosure Dimensions

OverAll (L)	Width (W)	Height (H)	Mounting (M)
$9.50^{\prime \prime}$	$1.7^{\prime \prime}$	$1.18^{\prime \prime}$	$8.90^{\prime \prime}$
$91 / 2$	$17 / 10$	$19 / 50$	$89 / 10$
24.1 cm	4.3 cm	3 cm	22.6 cm

Polycarbonate Exit Signs Specification

Features

- Injection-molded thermoplastic ABS housing
- UL 94V-0 flame rating
- Innovative, snap-together design allows for fast installation
- Replaceable directional chevron inserts are easily removed and reinserted
- Lettes 6 " height with $3 / 4$ " stroke
- Single or double face configuration
- Universal mounting- wall, side, or ceiling
- Housing snaps to canopy with simple twist and locking tightly secure housing to canopy
- 120/277 VAC dual voltage operation
- Low energy consumption- only 2.1 or 2.4 watts at 120 V
- LED indicator light and push button test switch
- LEDs mounted on print circuit board
- LED lamps are operating in normal (AC input) and emergency (DC input) modes
- Ni-Cd battery delivers more than 3 hours capacity to emergency lamps

- 24 hours recharge after 90 minutes discharge
- Low voltage battery disconnection- preventing deep discharge damage to the battery
- Maintenance-free battery provides an estimated service life of 10 years with an operating
temperature range of $10^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$
- Power Factor of $>.95$
- UL Listed for damp location
- Meets NFPA 101, NEC, and NEMA code

Ordering Information

Catalog Model \#	Description	LED Color		Housing Color	AC/ BBUP
20742D	Red LED Exit Sign Universal AC Only WH Housing	Red	White	AC	
20743D	Red LED Exit Sign Universal Battery Backup WH Housing	Red	White	BBUP	
20743DBLK	Red LED Exit Sign Universal Battery Backup BLK Housing	Red	Black	BBUP	
20744D	Green LED Exit Sign Universal AC Only WH Housing	Green	White	AC	
20745D	Green LED Exit Sign Universal Battery Backup WH Housing	Green	White	BBUP	
20745DBLK	Green LED Exit Sign Universal Battery Backup BLK Housing	Green	Black	BBUP	
20746D	Red LED Exit Sign Universal AC Only BLK Housing	Red	Black	AC	
20748D	Green LED Exit Sign Universal AC Only BLK Housing	Green	Black	AC	

Accessories

Item \#	Description	Item \#	Description
207WG	Wire Guard for Exit Sign	29999R2	Red Diffuser Panel with LED Strip
207WGWH	White Wire Guard for Exit Sign	29999G2	Green Diffuser Panel with LED Strip
207PS	Polycarbonate Shield for Exit Sign	20704	Replacement White Canopy
20730	Replacement Battery Ni-Cd 4.8V 650mAh	CHEVRONPL	Replacement White Chevron
29999JR	Red Diffuser Panel	20708P	Replacement Face Plate
29999JG	Green Diffuser Panel		

TCP, Inc.

325 Campus Dr. | Aurora, Ohio 44202 | P: 800-324-1496 | F: 330-995-6188 | www.tcpi.com ©TCP, Inc. 2008/02804

Self Direct Project Overview \& Commitment

The Public Utility Commission of Ohio (PUCO) will soon review your application for participation in AEP Ohio's Energy Efficiency/Peak Demand Response program. Based on your submitted project, please select by initialing one of the two options below, sign and fax to 877-607-0740.

Customer Name	FIFTH THIRD BANK OF SOUTHERN OHIO	
Proiect Number	AEP-10-02305	
Customer Premise Address	128 W MAIN ST, CHILLICOTHE, OH 45601-3106	
Customer Mailing Address	38 Fountain Square, Cincinnati, OH 45263	
Date Received	11/8/2010	
Project Installation Date	9/12/2008	
Annual kWh Reduction	4,236	
Total Project Cost	\$3,622.18	
Unadjusted Energy Efficiency Credit (EEC) Calculation	\$233.50	
Simple Payback (yrs)	7.9	
Utility Cost Test (UCT)	10.4	
	Please Choose One Option Below and Initial	
Option 1 - Self Direct EEC: 75\%	\$175.12	Initial:
Option 2 - EE/PDR Rider Exemption	6 Months (After PUCO Approval)	Initial:

Note: This is a one time selection. By selecting Option 1, the customer will receive payment in the amount stated above. Selection of Option 2: $E E / P D R$ rider exemption, will result in the customer not being eligible to participate in any other energy efficiency programs offered by $A E P$ Ohio during the period of exemption. In addition, the term of Option 2: EE/PDR rider exemption is subject to ongoing review for compliance and could be changed by the PUCO.
If Option 1 has been selected, will the Energy Efficiency Funds selected help you move forward with other energy efficiency projects?

Project Overview:

The Self Direct (Prescriptive and Custom) project that the above has completed and applied is as follows. Converted (1) Incandescent Lamp into (1) Energy Star Screw in CFL - 23W
Converted (3) Open/Closed incandescent lane signs into (3) Open/Closed lane signs 7" x 34 " - LED 3.4 Watts
Converted (12) 4' 2L T8 32W Lamps into (12) 4' 2L T8 25W Lamps (No ballast change)
Converted (36) 4' 4L T8 32W Lamps into (36) 4' 4L T8 25W Lamps (No ballast change)
Converted (2) 4' 2L T8 32W U-Lamps into (2) 4' 2L T8 25W U-Lamps (No ballast change)

The documentation that was included with the application proved that the energy measures applied for were purchased and installed.
By signing this document, the Mercantile customer affirms its intention to commit and integrate the above listed energy efficiency resources into the utility's peak demand reduction, demand response, and energy efficiency programs. By signing, the Mercantile customer also agrees to serve as a joint applicant in any filings necessary to secure approval of this arrangement by the Public Utilities Commission of Ohio, and comply with any information and compliance reporting requirements imposed by rule or as part of that approval.

Columbus Southern Power Company

By: \qquad
Title: \qquad
Date: \qquad

FIFTH THIRD BANK OF SOUTHERN OHIO

\qquad
By:

Date:

List of Fifth Third Bank properties within the AEP Ohio service territory

Note: State Savings Bank is a subsidiary of Fifth Third Bank.

Account Name	Billing Name	Service Address	City	State
Fifth Third Bank	FIFTH THIRD BANK	1340 BETHEL RD	COLUMBUS	OH
Fifth Third Bank	STATE SAVINGS BANK	3580 N HIGH ST	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	2500 E DUBLIN GRANVILLE RD	COLUMBUS	OH
Fifth Third Bank	STATE SAVINGS	229 S SANDUSKY ST	DELAWARE	OH
Fifth Third Bank	STATE SAVINGS BANK	6260 PERIMETER DR	DUBLIN	OH
Fifth Third Bank	FIFTH THIRD BANK	420 METRO PL APT A	DUBLIN	OH
Fifth Third Bank	STATE SAVINGS BANK	3800 W DUBLIN GRANVILLE RD	DUBLIN	OH
Fifth Third Bank	FIFTH THIRD BANK	434 HAVENS CORNERS RD	GAHANNA	OH
Fifth Third Bank	FIFTH THIRD BANK	3407 CLEVELAND AVE	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	155 W MAIN ST	NEW ALBANY	OH
Fifth Third Bank	STATE SAVINGS CO	1500 MORSE RD	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	3949 W POWELL RD	POWELL	OH
Fifth Third Bank	FIFTH THIRD BANK	7425 STATE ROUTE 3	WESTERVILLE	OH
Fifth Third Bank	STATE SAVINGS BANK	2081 HENDERSON RD	COLUMBUS	OH
Fifth Third Bank	STATE SAVINGS BANK	6895 N HIGH ST	WORTHINGTON	OH
Fifth Third Bank	STATE SAVINGS BANK	3011 E BROAD ST	COLUMBUS	OH
Fifth Third Bank	STATE SAVINGS BANK	2570 E MAIN ST	BEXLEY	OH
Fifth Third Bank	FIFTH THIRD BANK	159 E MAIN ST	CIRCLEVILLE	OH
Fifth Third Bank	STATE SAVINGS CO	2810 S HAMILTON RD	COLUMBUS	OH
Fifth Third Bank	STATE SAVINGS CO	1349 W 5TH AVE	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	809 S HIGH ST	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	2336 STRINGTOWN RD	GROVE CITY	OH
Fifth Third Bank	STATE SAVINGS CO	3990 BROADWAY	GROVE CITY	OH
Fifth Third Bank	STATE SAVINGS CO	1585 E MAIN ST	LANCASTER	OH
Fifth Third Bank	FIFTH THIRD BANK	2475 NORTHWEST BLVD	UPPER	OH
Fifth Third Bank	STATE SAVINGS CO	5055 W BROAD ST	COLUMBUS	OH
Fifth Third Bank	STATE SAVINGS INC	1235 N 21ST ST	NEWARK	OH
Fifth Third Bank	FIFTH THIRD BANK	6935 E MAIN ST	REYNOLDSBURG	OH
Fifth Third Bank	FIFTH THIRD BANK	3460 S HIGH ST	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	2883 TAYLOR RD	REYNOLDSBURG	OH
Fifth Third Bank	FIFTH THIRD BANK	1669 FISHINGER RD UNIT 3P	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	2455 HILLIARD ROME RD	HILLIARD	OH
Fifth Third Bank	FIFTH THIRD BANK	8877 OWENFIELD DR	LEWIS CENTER	OH
Fifth Third Bank	FIFTH THIRD BANK	4128 HOOVER RD	GROVE CITY	OH
Fifth Third Bank	FIFTH THIRD BANK	983 N CABLE RD	LIMA	OH
Fifth Third Bank	FIFTH THIRD OF WEST OH	225 N WEST ST	LIMA	OH
Fifth Third Bank	FIFTH THIRD BANK	2120 HARDING HWY	LIMA	OH
Fifth Third Bank	FIFTH THIRD BANK	2450 SHAWNEE RD BLDG 0439	LIMA	OH
Fifth Third Bank	FIFTH THIRD BK OF NW OHIC	337 S MAIN ST	FINDLAY	OH
Fifth Third Bank	FIFTH THIRD BANK	1735 TIFFIN AVE	FINDLAY	OH
Fifth Third Bank	FIFTH THIRD BANK NW OHIO	2720 N MAIN ST	FINDLAY	OH
Fifth Third Bank	FIFTH THIRD BANK	1412 S MAIN ST	FINDLAY	OH

Fifth Third Bank	FIFTH THIRD BANK	1207 OAK HARBOR RD	FREMONT	OH
Fifth Third Bank	FIFTH THIRD BANK	220 PERRY ST	FOSTORIA	OH
Fifth Third Bank	FIFTH THIRD BANK	720 W MARKET ST	TIFFIN	OH
Fifth Third Bank	FIFTH THIRD BANK	300 E SANDUSKY ST	FINDLAY	OH
Fifth Third Bank	FIFTH THIRD BANK OF SOUTH	128 W MAIN ST	CHILLICOTHE	OH
Fifth Third Bank	FIFTH THIRD BANK	10551 US HIGHWAY 23	LUCASVILLE	OH
Fifth Third Bank	FIFTH THIRD BANK	31 E 2ND ST	MANCHESTER	OH
Fifth Third Bank	FIFTH THIRD BANK	511 N HIGH ST	HILLSBORO	OH
Fifth Third Bank	FIFTH THIRD BANK	60 N MAIN ST	PEEBLES	OH
Fifth Third Bank	FIFTH THIRD BANK	826 7TH ST	PORTSMOUTH	OH
Fifth Third Bank	53 BANK OHIO VALLEY	303 E EMMITT AVE	WAVERLY	OH
Fifth Third Bank	FIFTH THIRD BANK	500 E MAIN ST	WEST UNION	OH
Fifth Third Bank	FIFTH THIRD BANK	7988-A OHIO RIVER RD	WHEELERSBURG	OH
Fifth Third Bank	FIFTH THIRD BANK	5067 PORTAGE ST	NORTH CANTON	OH
Fifth Third Bank	FIFTH 3RD BANK	1819 W LANE AVE	UPPER	OH
Fifth Third Bank	FIFTH THIRD BANK	6031 GROVEPORT RD	GROVEPORT	OH
Fifth Third Bank	FIFTH THIRD BANK	5342 N HAMILTON RD	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	8353 SANCUS BLVD	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	1637 N MAIN ST	NORTH CANTON	OH
Fifth Third Bank	FIFTH THIRD BANK	1669 HOLT RD	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	3750 FISHINGER BLVD	HILLIARD	OH
Fifth Third Bank	FIFTH THIRD BANK	2152 SCHORRWAY DR	LANCASTER	OH
Fifth Third Bank	5TH 3RD BANK INC	3964 FULTON DR	CANTON	OH
Fifth Third Bank	FITH THIRD BANK	4655 TUSCARAWAS ST	CANTON	OH
Fifth Third Bank	FIFTH THIRD BANK	1960 N HIGH ST	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	4801 DRESSLER RD STE 100	CANTON	OH
Fifth Third Bank	FIFTH THIRD BANK	4220 CLEVELAND AVE	CANTON	OH

Square Footage of Locations by Project Number

AEP Project Number	Site Number	Square Footage	AEP Project Number	Site Number	Square Footage
AEP-10-02257	OH100479	2,971	AEP-10-02297	OH100641	3,120
AEP-10-02259	OH100480	1,660	AEP-10-02298	OH100642	3,220
AEP-10-02260	OH100481	4,371	AEP-10-02299	OH100643	2,220
AEP-10-02261	OH100482	1,550	AEP-10-02300	OH100644	4,200
AEP-10-02262	OH100484	2,760	AEP-10-02301	OH100647	12,478
AEP-10-02263	OH100485	4,000	AEP-10-02302	OH100650	3,350
AEP-10-02264	OH100486	28,698	AEP-10-02303	OH100670	450
AEP-10-02265	OH100487	3,240	AEP-10-02305	OH101151	5,714
AEP-10-02266	OH100490	2,680	AEP-10-02306	OH101156	2,170
AEP-10-02267	OH100494	6,085	AEP-10-02307	OH101157	4,000
AEP-10-02268	OH100495	3,000	AEP-10-02308	OH101158	6,890
AEP-10-02269	OH100498	4,514	AEP-10-02309	OH101159	4,224
AEP-10-02270	OH100500	5,832	AEP-10-02310	OH101160	65,945
AEP-10-02271	OH100501	1,992	AEP-10-02311	OH101162	1,000
AEP-10-02272	OH100502	3,240	AEP-10-02312	OH101163	4,000
AEP-10-02273	OH100503	3,400	AEP-10-02313	OH101164	5,000
AEP-10-02274	OH100504	3,277	AEP-10-02314	OH101184	4,200
AEP-10-02275	OH100508	4,025	AEP-10-02315	OH101186	2,920
AEP-10-02276	OH100509	1,800	AEP-10-02316	OH101189	3,500
AEP-10-02277	OH100513	3,000	AEP-10-02317	OH101195	4,155
AEP-10-02278	OH100514	3,400	AEP-10-02318	OH101198	4,200
AEP-10-02279	OH100515	2,752	AEP-10-02319	OH101205	4,115
AEP-10-02280	OH100516	3,402	AEP-10-02320	OH101220	4,200
AEP-10-02281	OH100517	2,176	AEP-10-02321	OH101238	1,651
AEP-10-02282	OH100518	3,900	AEP-10-02322	OH101239	4,200
AEP-10-02283	OH100519	3,240	AEP-10-02323	OH101248	4,200
AEP-10-02284	OH100520	2,500	AEP-10-02324	OH101256	4,200
AEP-10-02285	OH100522	2,680	AEP-10-02325	OH101260	4,200
AEP-10-02286	OH100523	3,684	AEP-10-02326	OH101401	4,200
AEP-10-02287	OH100524	5,621	AEP-10-02327	OH101415	4,200
AEP-10-02288	OH100525	3,000			
AEP-10-02289	OH100538	4,200			
AEP-10-02290	OH100539	4,200			
AEP-10-02291	OH100542	4,900			
AEP-10-02292	OH100548	2,800			
AEP-10-02293	OH100549	7,500			
AEP-10-02294	OH100550	2,500			
AEP-10-02295	OH100551	2,500			
AEP-10-02296	OH100640	18,740			

KEMA

Programmable Thermostat

Measure Description	Installation of a programmable thermostat in place of a constant setpoint style thermostat.
Units	Per 1000 square feet
Base Case Description	Constant setpoint thermostats
Measure Savings	Source: This workpaper is based on the Michigan Statewide Energy Savings Database - Weather Sensitive Retrofit Measures for Residential and Commercial Buildings
Measure Incremental Cost	The total cost is assumed to be \$175 per 1,000 sf of conditioned space (or per thermostat).
Effective Useful Life	9 years

Programmable thermostats must meet ENERGY STAR® Version 2.0 criteria and must replace any non-programmable thermostat to automatically adjust the temperature at pre-selected times. To meet ENERGY STAR® standards, they must be capable of maintaining two separate programs (to address the different comfort needs of weekdays and weekends) and up to four temperature settings for each program.

Measure Savings

These savings are based on eQuest building models developed for the Michigan Statewide Energy Savings Database. The weather data used is for the Detroit airport area, which is more conservative than Columbus as Detroit has an average of 727 cooling degree days whereas, Columbus has an average of 925 cooling degree days (Source: National Climatic Data Center). The measure is to include temperature setback/setup during unoccupied hours. The savings assumes air conditioning with gas heating (gas package units).

Table 1 Programmable Thermostat Savings, per 1000 sq. ft

Building Type	kWh/unit
Assembly	1,063
Big Box Retail	579
Fast Food Restaurant	1,532
Full Service Restaurant	1,132
Light Industrial	502
Primary School	1,218
Small Office	748

Small Retail	1,036

Measure Life and Incremental Measure Cost

The following table provides the measure life and incremental measure cost (IMC) documented for this measure as well as the source of the data.

Table 2 Measure Life and Incremental Measure Cost

	Value	Source
Measure Life	9	MEMD
Incremental Measure Cost	$\$ 175$	MEMD

Product Information Bulletin

OCTRON ${ }^{\circledR}$ 25W XP ${ }^{\circledR}$ SUPERSAVER ${ }^{\circledR}$ ECOLOGIC ${ }^{\circledR}$

EXtended Performance Fluorescent Lamps 4' T8 Lamps -

SYLVANIA 25 Watt OCTRON FO32/25W/800XP SUPERSAVER ECOLOGIC lamps operate on standard T8 instant start systems and provide 22% energy savings over standard 32 Watt OCTRON lamps where slight reductions in light are acceptable.

At $\$.10 / \mathrm{kWh}$ and 4000 hours of operation per year, the 22% savings translates to a savings of $\$ 9.80$ per fixture per year for a 4-lamp fixture with a normal ballast factor, instant start ballast. Changing from standard Cool White Energy Saving T12 lamps powered by energy saving magnetic ballasts to OCTRON FO32/25W/800XP/SS/ECO lamps combined with OSRAM SYLVANIA's QUICKTRONIC High Efficiency ISN ballasts could save $\$ 24$ a year with no light loss. These lamps pass the Federal TCLP test, classifying them as non-hazardous waste in most states. Group relamp to realize the benefits of these OCTRON lamps in your facility.

- Up to 22\% energy savings compared to standard 32W T8 lamp
- 25 Watt, 4-foot, SUPERSAVER energy saving, T8 lamp
- ECOLOGIC - Designed to pass TCLP ${ }^{1}$
- Initial lumens - 2475 (850 is 2300)
- 95% lumen maintenance at 8000 hours
- 3000K, 3500K, 4100K \& 5000K
- 85 CRI
- Retrofit lamp for existing T8 instant start systems - 24,000 hour average rated life @ 3 hrs. per start
- Also operates on OSRAM SYLVANIA QUICKTRONIC® Programmed Start ballasts
- 36,000 hour average rated life @ 3 hrs per start
- Minimum starting temperature: $70^{\circ} \mathrm{F}$
- Not dimmable
- Not for use in air handling fixtures
- Striation may occur if airflow is present (see application note 5)

SYLVANIA OCTRON T8 ECOLOGIC fluorescent lamps are designed to pass the Federal Toxicity Characteristic Leaching Procedure (TCLP) criteria for classification as non-hazardous waste in most states ${ }^{2}$.

1. TCLP test results are based on NEMA LL Series standards and are available on request.
2. Lamp disposal regulations may vary; check your local \& state regulations.

Product Availability

Lamp Type	Wattage	Color Temperature	CRI
F032/25W/830XP/SS/ECO	25	3000 K	85
F032/25W/835XP/SS/EC0	25	3500 K	85
F032/25W/841XP/SS/ECO	25	4100 K	85
F032/25W/850XP/SS/EC0	25	5000 K	85

Application Information

Applications

Retail Office Schools Hospitals Industrial Many applications with T8 instant start ballasts currently using 32W T8 lamps

Fixtures

Contact your local fixture agent for available fixtures.

Ballast Information

Contact your OSRAM SYLVANIA representative for a list of compatible electronic operating systems.

Application Notes

1. Recommended to be used on T8 F32 Instant Start circuits with minimum starting voltage of 550 v RMS.
2. Can operate on QUICKTRONIC Programmed Start Ballasts.
3. Fixture must conform to ANSI C78.81-2005 requirements for luminaire design.

Application Notes (continued)

4. Not recommended to be used: (1) with Rapid Start circuits unless the open circuit voltage is greater than 570V, (2) at lamp ambient temperatures below $70^{\circ} \mathrm{F}$ or in drafty locations, (3) in air handling fixtures, (4) on dimming ballasts, (5) on inverter operated emergency lighting systems unless any of the above equipment is specifically listed for 25 watt lamps, or (6) below $60^{\circ} \mathrm{F}$ starting temperature. Any of the above situations could result in lamp starting and stabilization problems, or system compatibility issues.
5. If an operating lamp is exposed to temperatures below $70^{\circ} \mathrm{F}$ or moving air (wind, drafts or air flow from an air conditioning or ventilation system), striation, a rhythmic pulsing pattern of light running the length of the tube and/or a reduction in brightness may occur. While visually disconcerting, neither behavior is damaging to the lamp and removing the cause (draft or temperature) will return the lamp to normal operation.

Item \# W	Wattage	Incandescent Wattage Comparison	Initial Lumens	Input Line Current	M.O.L. (inches)	Diameter (inches)	Life vs. Incandescent
1R2004	4	15	130	.15A	3.8	2.5	4X
1R2009	9	25	300	.15A	3.8	2.5	4X
1R2014 *	* 14	50	500	.23A	4.7	2.5	4X
1R3014 *	* 14	65	650	.23A	5.1	3.7	4X
1R3016 夫	$\star \quad 16$	75	750	.27A	5.7	3.7	4X
1R4016 *	$\star \quad 16$	75	750	.27A	5.9	4.7	4X
1R4019 *	$\star \quad 19$	85	950	. 32 A	5.9	4.7	4X
1R4023 \%	- 23	90	1250	.38A	6.5	4.8	$3 X$
1P3016	16	75	750	.27A	5.7	3.7	4X
1P3816 *	$\star \quad 16$	75	750	.27A	5.9	4.6	4X
1P3819 ${ }^{\text {® }}$	$\star \quad 19$	85	950	.32A	5.9	4.6	4X
1P3823 *	$\star \cdot 23$	90	1200	.38A	6.5	4.7	$3 X$

Special Application Options: (Ordering Sufifix)

- $3100^{\circ} \mathrm{K}(31 \mathrm{~K}), 3500^{\circ} \mathrm{K}(35 \mathrm{~K}), 4100^{\circ} \mathrm{K}(41 \mathrm{~K}), 5100^{\circ} \mathrm{K}(51 \mathrm{~K})$
-Long Neck 1.65"(165), 1.75"(175), 2.25"(225)
- Shatter Resistant (SS) R20 only
- Pink (P), Soft Pink (SP)

SpringLamp ${ }^{\circledR}$ INSIDE technology provides:

- Higher Iumen Output
- Long Lamp Life
- Better lumen maintenance

Ideal for
 Cans

Outdoor Fixtures

Energy Saving Solution for hard to reach light fixtures

Features and Benefits:

* Long life CFL, 8,000 / 6,000 hour average rated life
* NEW Amalgam technology- provides cooler operating temperatures for consistent performance in any position
* No lead glass- Better lumen maintenance over life of bulb
* $2700^{\circ} \mathrm{K}$ color temperature closest to incandescent light
* Medium base
* Replace less often, ideal for hard to reach places
* U.L. Listed for wet locations - use indoors or outdoors
* 12 Month Warranty
* Quickstart technology - fast run up time

Specifications (at full brightness)

End of Life Protection-------------	
Ballast Type	Electronic
Starting Method	Modified Rapid Start
Input Line Voltage	120VAC
Input Line Frequency	50/60HZ
Lamp Life (rated)	8,000 / 6,000 Hours
Color Temperature	$2700^{\circ} \mathrm{K}$
Color Rendering Ind	82
Minimum Starting Temperature	$-20^{\circ} \mathrm{F}$
Maximum Operating Temperature -	$160{ }^{\circ} \mathrm{F}$
U.L. / C.U.L. Listed ---------------	Yes
FCC Compliance -----------------------	Part 18, Subpart C
Lamp Operating Frequency --------	45 KHZ
Lamp Current Crest Factor ---------	< 1.60
Maximum Open Circuit Voltage --	600 V
Power Factor --	> . 50
	< 150\%

TECHNICAL CONSUMER PRODUCTS,INC.

Lighting to the Next Power

Visit www.tcpi.com or call Toll Free 1-800-324-1496

Features/Benefits

- Outstanding energy savings
- Save 7 watts per lamp instantly when compared to a 32W T8 U-Bent
- Save $\$ 14$ in energy costs over the rated average life of the lamp when compared to a 32 W T8 U-Bent
- Better for the environment
- Low mercury
- Energy efficient
- Philips Energy Advantage T8 U-Bent Warranty Period: 24 Months

Applications

- Ideal for Locations Already Using the Energy Advantage 25W T8 Lamps

Notes

- Rated average life under specified test conditions with lamps turned off and restarted no more frequently than once every 3 operating hours. Lamp life is appreciably longer if lamps are started less frequently. (202)
- Approximate Initial Lumens. The lamp lumen output is based upon lamp performance after 100 hours of operating life, when the output is measured during operation on a reference ballast under standard laboratory conditions. (203)
- For expected lamp lumen output, commercial ballast manufacturers can advise the appropriate Ballast Factor for each of their ballasts when they are informed of the designated lamp. The Ballast Factor is a multiplier applied to the designated lamp lumen output. (204)
- Design Lumens are the approximate lamp lumen output at 40% of the lamp's Rated Average Life. This output is based upon measurements obtained during lamp operation on a reference ballast under standard laboratory conditions. (208)
- Nominal length measured from face of base to maximum distant outside point of U. Measurement does not include base pins. Leg spacing center to center approximately 6 inches, for / 6 and $35 / 8$ inches for / 3 lamps.

	Product data
Product Number	204214
Full product name	FB32T8/6 25W ADV835 XEW ALTO
Ordering Code	FB32T8/ADV835/6/XEW/ALTO 25W

F-T8-UEA Med Bipin/GB

Base Medium Bi-Pin

Self Direct Project Overview \& Commitment

The Public Utility Commission of Ohio (PUCO) will soon review your application for participation in AEP Ohio's Energy Efficiency/Peak Demand Response program. Based on your submitted project, please select by initialing one of the two options below, sign and fax to 877-607-0740.

Note: This is a one time selection. By selecting Option 1, the customer will receive payment in the amount stated above. Selection of Option 2: $E E / P D R$ rider exemption, will result in the customer not being eligible to participate in any other energy efficiency programs offered by $A E P$ Ohio during the period of exemption. In addition, the term of Option 2: EE/PDR rider exemption is subject to ongoing review for compliance and could be changed by the PUCO.
If Option 1 has been selected, will the Energy Efficiency Funds selected help you move forward with other energy efficiency projects?

Project Overview:

The Self Direct (Prescriptive and Custom) project that the above has completed and applied is as follows.
Retrofitted (1) 4' 4L T12 into (1) 4' 4L T8 fixture
Converted (12) Incandescent Lamp into (12) Energy Star Screw in CFL - 13W
Converted (1) Incandescent Lamp into (1) Energy Star Screw in CFL - 23W
Converted (1) Incandescent Lamp into (1) Energy Star Screw in CFL - 7W x 5
Converted (6) 4' 2 L U-Tube T8 into (6) 2' 3 L T8
Converted (3) Open/Closed incandescent lane signs into (3) Open/Closed lane signs 14" x 18" - LED 3.4 Watts
Installed occupancy sensors on (2) 4' 2L T8 25W fixtures
Converted (37) 4' 2L T8 32W Lamps into (37) 4' 2L T8 25W Lamps (No ballast change)
Converted (29) 4' 4L T8 32W Lamps into (29) 4' 4L T8 25W Lamps (No ballast change)
Converted (4) 4' 2L T8 32W U-Lamps into (4) 4' 2L T8 25W U-Lamps (No ballast change)
The documentation that was included with the application proved that the energy measures applied for were purchased and installed.
By signing this document, the Mercantile customer affirms its intention to commit and integrate the above listed energy efficiency resources into the utility's peak demand reduction, demand response, and energy efficiency programs. By signing, the Mercantile customer also agrees to serve as a joint applicant in any filings necessary to secure approval of this arrangement by the Public Utilities Commission of Ohio, and comply with any information and compliance reporting requirements imposed by rule or as part of that approval.

Columbus Southern Power Company

By: \qquad

Title: \qquad
Date: \qquad

FIFTH THIRD BANK

By: \qquad

Title: \qquad

Date: \qquad

List of Fifth Third Bank properties within the AEP Ohio service territory

Note: State Savings Bank is a subsidiary of Fifth Third Bank.

Account Name	Billing Name	Service Address	City	State
Fifth Third Bank	FIFTH THIRD BANK	1340 BETHEL RD	COLUMBUS	OH
Fifth Third Bank	STATE SAVINGS BANK	3580 N HIGH ST	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	2500 E DUBLIN GRANVILLE RD	COLUMBUS	OH
Fifth Third Bank	STATE SAVINGS	229 S SANDUSKY ST	DELAWARE	OH
Fifth Third Bank	STATE SAVINGS BANK	6260 PERIMETER DR	DUBLIN	OH
Fifth Third Bank	FIFTH THIRD BANK	420 METRO PL APT A	DUBLIN	OH
Fifth Third Bank	STATE SAVINGS BANK	3800 W DUBLIN GRANVILLE RD	DUBLIN	OH
Fifth Third Bank	FIFTH THIRD BANK	434 HAVENS CORNERS RD	GAHANNA	OH
Fifth Third Bank	FIFTH THIRD BANK	3407 CLEVELAND AVE	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	155 W MAIN ST	NEW ALBANY	OH
Fifth Third Bank	STATE SAVINGS CO	1500 MORSE RD	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	3949 W POWELL RD	POWELL	OH
Fifth Third Bank	FIFTH THIRD BANK	7425 STATE ROUTE 3	WESTERVILLE	OH
Fifth Third Bank	STATE SAVINGS BANK	2081 HENDERSON RD	COLUMBUS	OH
Fifth Third Bank	STATE SAVINGS BANK	6895 N HIGH ST	WORTHINGTON	OH
Fifth Third Bank	STATE SAVINGS BANK	3011 E BROAD ST	COLUMBUS	OH
Fifth Third Bank	STATE SAVINGS BANK	2570 E MAIN ST	BEXLEY	OH
Fifth Third Bank	FIFTH THIRD BANK	159 E MAIN ST	CIRCLEVILLE	OH
Fifth Third Bank	STATE SAVINGS CO	2810 S HAMILTON RD	COLUMBUS	OH
Fifth Third Bank	STATE SAVINGS CO	1349 W 5TH AVE	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	809 S HIGH ST	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	2336 STRINGTOWN RD	GROVE CITY	OH
Fifth Third Bank	STATE SAVINGS CO	3990 BROADWAY	GROVE CITY	OH
Fifth Third Bank	STATE SAVINGS CO	1585 E MAIN ST	LANCASTER	OH
Fifth Third Bank	FIFTH THIRD BANK	2475 NORTHWEST BLVD	UPPER	OH
Fifth Third Bank	STATE SAVINGS CO	5055 W BROAD ST	COLUMBUS	OH
Fifth Third Bank	STATE SAVINGS INC	1235 N 21ST ST	NEWARK	OH
Fifth Third Bank	FIFTH THIRD BANK	6935 E MAIN ST	REYNOLDSBURG	OH
Fifth Third Bank	FIFTH THIRD BANK	3460 S HIGH ST	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	2883 TAYLOR RD	REYNOLDSBURG	OH
Fifth Third Bank	FIFTH THIRD BANK	1669 FISHINGER RD UNIT 3P	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	2455 HILLIARD ROME RD	HILLIARD	OH
Fifth Third Bank	FIFTH THIRD BANK	8877 OWENFIELD DR	LEWIS CENTER	OH
Fifth Third Bank	FIFTH THIRD BANK	4128 HOOVER RD	GROVE CITY	OH
Fifth Third Bank	FIFTH THIRD BANK	983 N CABLE RD	LIMA	OH
Fifth Third Bank	FIFTH THIRD OF WEST OH	225 N WEST ST	LIMA	OH
Fifth Third Bank	FIFTH THIRD BANK	2120 HARDING HWY	LIMA	OH
Fifth Third Bank	FIFTH THIRD BANK	2450 SHAWNEE RD BLDG 0439	LIMA	OH
Fifth Third Bank	FIFTH THIRD BK OF NW OHIC	337 S MAIN ST	FINDLAY	OH
Fifth Third Bank	FIFTH THIRD BANK	1735 TIFFIN AVE	FINDLAY	OH
Fifth Third Bank	FIFTH THIRD BANK NW OHIO	2720 N MAIN ST	FINDLAY	OH
Fifth Third Bank	FIFTH THIRD BANK	1412 S MAIN ST	FINDLAY	OH

Fifth Third Bank	FIFTH THIRD BANK	1207 OAK HARBOR RD	FREMONT	OH
Fifth Third Bank	FIFTH THIRD BANK	220 PERRY ST	FOSTORIA	OH
Fifth Third Bank	FIFTH THIRD BANK	720 W MARKET ST	TIFFIN	OH
Fifth Third Bank	FIFTH THIRD BANK	300 E SANDUSKY ST	FINDLAY	OH
Fifth Third Bank	FIFTH THIRD BANK OF SOUTH	128 W MAIN ST	CHILLICOTHE	OH
Fifth Third Bank	FIFTH THIRD BANK	10551 US HIGHWAY 23	LUCASVILLE	OH
Fifth Third Bank	FIFTH THIRD BANK	31 E 2ND ST	MANCHESTER	OH
Fifth Third Bank	FIFTH THIRD BANK	511 N HIGH ST	HILLSBORO	OH
Fifth Third Bank	FIFTH THIRD BANK	60 N MAIN ST	PEEBLES	OH
Fifth Third Bank	FIFTH THIRD BANK	826 7TH ST	PORTSMOUTH	OH
Fifth Third Bank	53 BANK OHIO VALLEY	303 E EMMITT AVE	WAVERLY	OH
Fifth Third Bank	FIFTH THIRD BANK	500 E MAIN ST	WEST UNION	OH
Fifth Third Bank	FIFTH THIRD BANK	7988-A OHIO RIVER RD	WHEELERSBURG	OH
Fifth Third Bank	FIFTH THIRD BANK	5067 PORTAGE ST	NORTH CANTON	OH
Fifth Third Bank	FIFTH 3RD BANK	1819 W LANE AVE	UPPER	OH
Fifth Third Bank	FIFTH THIRD BANK	6031 GROVEPORT RD	GROVEPORT	OH
Fifth Third Bank	FIFTH THIRD BANK	5342 N HAMILTON RD	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	8353 SANCUS BLVD	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	1637 N MAIN ST	NORTH CANTON	OH
Fifth Third Bank	FIFTH THIRD BANK	1669 HOLT RD	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	3750 FISHINGER BLVD	HILLIARD	OH
Fifth Third Bank	FIFTH THIRD BANK	2152 SCHORRWAY DR	LANCASTER	OH
Fifth Third Bank	5TH 3RD BANK INC	3964 FULTON DR	CANTON	OH
Fifth Third Bank	FITH THIRD BANK	4655 TUSCARAWAS ST	CANTON	OH
Fifth Third Bank	FIFTH THIRD BANK	1960 N HIGH ST	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	4801 DRESSLER RD STE 100	CANTON	OH
Fifth Third Bank	FIFTH THIRD BANK	4220 CLEVELAND AVE	CANTON	OH

Square Footage of Locations by Project Number

AEP Project Number	Site Number	Square Footage	AEP Project Number	Site Number	Square Footage
AEP-10-02257	OH100479	2,971	AEP-10-02297	OH100641	3,120
AEP-10-02259	OH100480	1,660	AEP-10-02298	OH100642	3,220
AEP-10-02260	OH100481	4,371	AEP-10-02299	OH100643	2,220
AEP-10-02261	OH100482	1,550	AEP-10-02300	OH100644	4,200
AEP-10-02262	OH100484	2,760	AEP-10-02301	OH100647	12,478
AEP-10-02263	OH100485	4,000	AEP-10-02302	OH100650	3,350
AEP-10-02264	OH100486	28,698	AEP-10-02303	OH100670	450
AEP-10-02265	OH100487	3,240	AEP-10-02305	OH101151	5,714
AEP-10-02266	OH100490	2,680	AEP-10-02306	OH101156	2,170
AEP-10-02267	OH100494	6,085	AEP-10-02307	OH101157	4,000
AEP-10-02268	OH100495	3,000	AEP-10-02308	OH101158	6,890
AEP-10-02269	OH100498	4,514	AEP-10-02309	OH101159	4,224
AEP-10-02270	OH100500	5,832	AEP-10-02310	OH101160	65,945
AEP-10-02271	OH100501	1,992	AEP-10-02311	OH101162	1,000
AEP-10-02272	OH100502	3,240	AEP-10-02312	OH101163	4,000
AEP-10-02273	OH100503	3,400	AEP-10-02313	OH101164	5,000
AEP-10-02274	OH100504	3,277	AEP-10-02314	OH101184	4,200
AEP-10-02275	OH100508	4,025	AEP-10-02315	OH101186	2,920
AEP-10-02276	OH100509	1,800	AEP-10-02316	OH101189	3,500
AEP-10-02277	OH100513	3,000	AEP-10-02317	OH101195	4,155
AEP-10-02278	OH100514	3,400	AEP-10-02318	OH101198	4,200
AEP-10-02279	OH100515	2,752	AEP-10-02319	OH101205	4,115
AEP-10-02280	OH100516	3,402	AEP-10-02320	OH101220	4,200
AEP-10-02281	OH100517	2,176	AEP-10-02321	OH101238	1,651
AEP-10-02282	OH100518	3,900	AEP-10-02322	OH101239	4,200
AEP-10-02283	OH100519	3,240	AEP-10-02323	OH101248	4,200
AEP-10-02284	OH100520	2,500	AEP-10-02324	OH101256	4,200
AEP-10-02285	OH100522	2,680	AEP-10-02325	OH101260	4,200
AEP-10-02286	OH100523	3,684	AEP-10-02326	OH101401	4,200
AEP-10-02287	OH100524	5,621	AEP-10-02327	OH101415	4,200
AEP-10-02288	OH100525	3,000			
AEP-10-02289	OH100538	4,200			
AEP-10-02290	OH100539	4,200			
AEP-10-02291	OH100542	4,900			
AEP-10-02292	OH100548	2,800			
AEP-10-02293	OH100549	7,500			
AEP-10-02294	OH100550	2,500			
AEP-10-02295	OH100551	2,500			
AEP-10-02296	OH100640	18,740			

KEMA

Programmable Thermostat

Measure Description	Installation of a programmable thermostat in place of a constant setpoint style thermostat.
Units	Per 1000 square feet
Base Case Description	Constant setpoint thermostats
Measure Savings	Source: This workpaper is based on the Michigan Statewide Energy Savings Database - Weather Sensitive Retrofit Measures for Residential and Commercial Buildings
Measure Incremental Cost	The total cost is assumed to be \$175 per 1,000 sf of conditioned space (or per thermostat).
Effective Useful Life	9 years

Programmable thermostats must meet ENERGY STAR® Version 2.0 criteria and must replace any non-programmable thermostat to automatically adjust the temperature at pre-selected times. To meet ENERGY STAR® standards, they must be capable of maintaining two separate programs (to address the different comfort needs of weekdays and weekends) and up to four temperature settings for each program.

Measure Savings

These savings are based on eQuest building models developed for the Michigan Statewide Energy Savings Database. The weather data used is for the Detroit airport area, which is more conservative than Columbus as Detroit has an average of 727 cooling degree days whereas, Columbus has an average of 925 cooling degree days (Source: National Climatic Data Center). The measure is to include temperature setback/setup during unoccupied hours. The savings assumes air conditioning with gas heating (gas package units).

Table 1 Programmable Thermostat Savings, per 1000 sq. ft

Building Type	kWh/unit
Assembly	1,063
Big Box Retail	579
Fast Food Restaurant	1,532
Full Service Restaurant	1,132
Light Industrial	502
Primary School	1,218
Small Office	748

Small Retail	1,036

Measure Life and Incremental Measure Cost

The following table provides the measure life and incremental measure cost (IMC) documented for this measure as well as the source of the data.

Table 2 Measure Life and Incremental Measure Cost

	Value	Source
Measure Life	9	MEMD
Incremental Measure Cost	$\$ 175$	MEMD

Pass \& Seymour
41 legrand

Features - Wall Switch Occupancy Sensors

- Detection Signature Analysis provides high immunity to RFI and EMI.
- Compact, decorator design replaces existing wall switch.
- Integrated light level sensor works from 10 to 150 footcandles.
- Compatible with all electronic and magnetic ballasts, PL lamp ballasts, compact fluorescent.
- 5-year warranty.
- cULus listed.

Decorator Devices

 Passive Infrared Sensors| Catalog Number | Description | Voltage | Load Requirements | Coverage | Time Delay | Color |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PIR Automatic Wall Switches - 3 Wire Technology | | | | | | |
| WSP200-I
 WSP200-W
 WSP200-GRY
 WSP200-LA | Passive Infrared Occupancy Sensor | $\begin{aligned} & \text { 120/277VAC; } \\ & 60 \mathrm{~Hz} \end{aligned}$ | 800W Max.
 at 120 V
 1200W Max.
 at 277 V | $\begin{aligned} & 180^{\circ}, \text { up to } \\ & 900 \text { sq. ft. } \end{aligned}$ | $\begin{aligned} & 30 \mathrm{sec} \text {. to } \\ & 30 \mathrm{~min} . \end{aligned}$ | Ivory
 White
 Gray
 Lt. Almond |

Planning a Layout

The WSP200's 2 -level lens provides superior coverage at desktop level by allowing the sensor to detect vertical as well as horizontal motion. Coverage shown is for walking motion. Under optimum conditions with a high level of activity and with no barriers or obstacles, coverage can reach a maximum of 900 square feet. Under a typical, desktop level of activity, when mounted at 4 feet, coverage is 300 square feet.

WSP200
Placement for PIR wall switch sensor

Single Level Lighting WSP200

Manual Bi-level Lighting WSP200

ALTO ${ }^{\circledR}$ Universal T8: Full Rated Average Life on All T8 Ballast Types,
Environmentally-Responsible Lamps. Ideal for any lighting application
Alto
requiring maximum quality of light and maintain 2 2' and 3' T8
Allo Universal 18 Lamps 18 luorescent Lamps

Philips Exclusive Universal Design: The only T8 lamp to deliver full rated average life on all T8 ballast types (Instant Start, Rapid Start, Programmed Start and Hybrid ballasts)
Environmentally Responsible: Low mercury-TCLP*-compliant; energy efficient; long life
Sustainable Lighting Solution: Less mercury and fewer lamps in landfills, combined with energy efficiency, reduces the impact on the environment Outstanding Lumen Maintenance: $\mathrm{HI}-\mathrm{VISION}{ }^{\ominus}$ Phosphor combined with Philips exclusive cathode guard delivers 95% lumen maintenance and reduced lamp-end blackening
Enhanced CRI: 86 CRI for TL80 lamps; 78 CRI for TL70 lamps
 F32TATLLA3OUALTO HI-MISION/32 WATT Alto
cubertan

			Qualify based
Nom.	Product	Symbols,	Ordering
Lamp	Number Symols		
Watts	046677- Footnotes	Code	On CRI

ALTO Universal T8 Warranty: 24 months

 800 SeriesQualify based
on CRI
ALTO Universal T8 Fluorescent Lamps T8 Medium Bipin

17	36787-0	\$	FI7T8/TL830/ALTO	25	TL 830, 3000K	24	20,000	25,000	1400	1300	86
	36791-2	\$	FI7T8/TL835/ALTO	25	TL 835, 3500K	24	20,000	25,000	1400	1300	86
	36793-8	\$	FI7T8/TL84I/ALTO	25	TL 841, 4100K	24	20,000	25,000	1400	1300	86
	36807-6	\$	FI7T8/TL730/ALTO	25	TL 730, 3000K	24	20,000	25,000	1325	1200	78
	36808-4	\$	FI7T8/TL735/ALTO	25	TL 735, 3500K	24	20,000	25,000	1325	1200	78
	36812-6	\$	FI7T8/TL74I/ALTO	25	TL 741, 4100K	24	20,000	25,000	1325	1200	78
25	36813-4	\$	F25T8/TL830/ALTO	25	TL 830, 3000K	36	20,000	25,000	2225	2050	86
	36814-2	\$	F25T8/TL835/ALTO	25	TL 835, 3500K	36	20,000	25,000	2225	2050	86
	36825-8	\$	F25T8/TL84I/ALTO	25	TL 841, 4100K	36	20,000	25,000	2225	2050	86
	36826-6	\$	F25T8/TL730/ALTO	25	TL 730, 3000K	36	20,000	25,000	2125	1925	78
	36828-2	\$	F25T8/TL735/ALTO	25	TL 735, 3500K	36	20,000	25,000	2125	1925	78
	36829-0	\$	F25T8/TL74I/ALTO	25	TL 741, 4100K	36	20,000	25,000	2125	1925	78
32	24667-8	(E) \$	F32T8/TL830/ALTO	25	TL 830, 3000K	48	20,000	25,000	2950	2800	86
	27236-9	(E) \$	F32T8/TL830/ALTO PLZ	1350	TL 830, 3000K	48	20,000	25,000	2950	2800	86
	24670-2	(E) \$	F32T8/TL835/ALTO	25	TL 835, 3500K	48	20,000	25,000	2950	2800	86
	27233-6	(E) \$	F32T8/TL835/ALTO PLZ	1350	TL 835, 3500K	48	20,000	25,000	2950	2800	86
	24671-0	(E) \$	F32T8/TL84I/ALTO	25	TL 84I, 4100K	48	20,000	25,000	2950	2800	86
	27235-1	(E) \$	F32T8/TL84I/ALTO PLZ	1350	TL 841, 4100K	48	20,000	25,000	2950	2800	86
	27229-4	(E) \$	F32T8/TL850/ALTO	25	TL 850, 5000K	48	20,000	25,000	2950	2800	86
	27252-6	(E) \$	F32T8/TL730 ALTO	25	TL 730, 3000K	48	20,000	25,000	2800	2660	78
	27282-3	(E) \$	F32T8/TL730/ALTO PLZ	1350	TL 730, 3000K	48	20,000	25,000	2800	2660	78
	27249-2	(E) \$	F32T8/TL735/ALTO	25	TL 735, 3500K	48	20,000	25,000	2800	2660	78
	27259-1	(E) \$	F32T8/TL735/ALTO PLZ	1350	TL 735, 3500K	48	20,000	25,000	2800	2660	78
	27248-4	(E) \$	F32T8/TL74I/ALTO	25	TL 741, 4100K	48	20,000	25,000	2800	2660	78
	38351-3	(E) \$	F32T8/TL74I/ALTO	10	TL 741, 4100K, 10 Pk .	48	20,000	25,000	2800	2660	78
	27255-9	(E) $\$$	F32T8/TL74I/ALTO PLZ	1350	TL 741, 4100K	48	20,000	25,000	2800	2660	78
	27268-2	(E) \$	F32T8/TL750/ALTO	25	TL 750, 5000K	48	20,000	25,000	2700	2550	78

For the most current product information, go to www.lighting.philips.com/nam/product_database/
Fluorescent symbols and footnotes located on page 77
\square This product utilizes ALTO ${ }^{\circ}$ Lamp Technology

* The TCLP is the US EPA's Toxicity Characteristic Leaching Procedure.

T8 Medium Bipin

A ADVANCE

Electrical Specifications
2' Ballasts

IOPA2P32LWSC@120V	
Brand Name	OPTANIUM 2.0
Ballast Type	Ilectronic
Starting Method	Instant Start
Lamp Connection	Parallel
Input Voltage	$120-277$
Input Frequency	$50 / 60 \mathrm{HZ}$
Status	Active

Lamp Type	Num. of Lamp \mathbf{s}	Rated Lamp Watts	Min. Start Temp $\left({ }^{\circ} \mathrm{F} / \mathrm{C}\right.$)	Input Current (Amps)	Input Power (ANSI Watts)	Ballast Factor	MAX THD $\%$	Power Factor	MAX Lamp Current Crest Factor	B.E.F.
F17T8	1	17	$-20 /-29$	0.15	18	0.90	20	0.98	1.6	5.00
*F17T8	2	17	$-20 /-29$	0.23	27	0.80	10	0.99	1.6	2.96

Wiring Diagram

Diag. 64
The wiring diagram that appears above is for the lamp type denoted by the asterisk (*)

Standard Lead Length (inches)

	in.	cm.
Black	25	63.5
White	25	63.5
Blue	31	78.7
Red	37	94
Yellow		0
Gray		0
Violet		0

	in.	cm.
Yellow/Blue		0
Blue/White		0
Brown		0
Orange		0
Orange/Black		0
Black/White		0
Red/White		0

Enclosure

Enclosure Dimensions

OverAll (L)	Width (W)	Height (H)	Mounting (M)
$9.50{ }^{\prime}$	1.7^{\prime}	$1.18^{\prime \prime}$	$8.90{ }^{\prime \prime}$
$91 / 2$	$17 / 10$	$19 / 50$	$89 / 10$
24.1 cm	4.3 cm	3 cm	22.6 cm

Product Information Bulletin

OCTRON ${ }^{\circledR}$ 25W XP ${ }^{\circledR}$ SUPERSAVER ${ }^{\circledR}$ ECOLOGIC ${ }^{\circledR}$

EXtended Performance Fluorescent Lamps 4' T8 Lamps -

SYLVANIA 25 Watt OCTRON FO32/25W/800XP SUPERSAVER ECOLOGIC lamps operate on standard T8 instant start systems and provide 22% energy savings over standard 32 Watt OCTRON lamps where slight reductions in light are acceptable.

At $\$.10 / \mathrm{kWh}$ and 4000 hours of operation per year, the 22% savings translates to a savings of $\$ 9.80$ per fixture per year for a 4-lamp fixture with a normal ballast factor, instant start ballast. Changing from standard Cool White Energy Saving T12 lamps powered by energy saving magnetic ballasts to OCTRON FO32/25W/800XP/SS/ECO lamps combined with OSRAM SYLVANIA's QUICKTRONIC High Efficiency ISN ballasts could save $\$ 24$ a year with no light loss. These lamps pass the Federal TCLP test, classifying them as non-hazardous waste in most states. Group relamp to realize the benefits of these OCTRON lamps in your facility.

- Up to 22\% energy savings compared to standard 32W T8 lamp
- 25 Watt, 4-foot, SUPERSAVER energy saving, T8 lamp
- ECOLOGIC - Designed to pass TCLP ${ }^{1}$
- Initial lumens - 2475 (850 is 2300)
- 95% lumen maintenance at 8000 hours
- 3000K, 3500K, 4100K \& 5000K
- 85 CRI
- Retrofit lamp for existing T8 instant start systems - 24,000 hour average rated life @ 3 hrs. per start
- Also operates on OSRAM SYLVANIA QUICKTRONIC® Programmed Start ballasts
- 36,000 hour average rated life @ 3 hrs per start
- Minimum starting temperature: $70^{\circ} \mathrm{F}$
- Not dimmable
- Not for use in air handling fixtures
- Striation may occur if airflow is present (see application note 5)

SYLVANIA OCTRON T8 ECOLOGIC fluorescent lamps are designed to pass the Federal Toxicity Characteristic Leaching Procedure (TCLP) criteria for classification as non-hazardous waste in most states ${ }^{2}$.

1. TCLP test results are based on NEMA LL Series standards and are available on request.
2. Lamp disposal regulations may vary; check your local \& state regulations.

Product Availability

Lamp Type	Wattage	Color Temperature	CRI
F032/25W/830XP/SS/ECO	25	3000 K	85
F032/25W/835XP/SS/EC0	25	3500 K	85
F032/25W/841XP/SS/ECO	25	4100 K	85
F032/25W/850XP/SS/EC0	25	5000 K	85

Application Information

Applications

Retail Office Schools Hospitals Industrial Many applications with T8 instant start ballasts currently using 32W T8 lamps

Fixtures

Contact your local fixture agent for available fixtures.

Ballast Information

Contact your OSRAM SYLVANIA representative for a list of compatible electronic operating systems.

Application Notes

1. Recommended to be used on T8 F32 Instant Start circuits with minimum starting voltage of 550 v RMS.
2. Can operate on QUICKTRONIC Programmed Start Ballasts.
3. Fixture must conform to ANSI C78.81-2005 requirements for luminaire design.

Application Notes (continued)

4. Not recommended to be used: (1) with Rapid Start circuits unless the open circuit voltage is greater than 570V, (2) at lamp ambient temperatures below $70^{\circ} \mathrm{F}$ or in drafty locations, (3) in air handling fixtures, (4) on dimming ballasts, (5) on inverter operated emergency lighting systems unless any of the above equipment is specifically listed for 25 watt lamps, or (6) below $60^{\circ} \mathrm{F}$ starting temperature. Any of the above situations could result in lamp starting and stabilization problems, or system compatibility issues.
5. If an operating lamp is exposed to temperatures below $70^{\circ} \mathrm{F}$ or moving air (wind, drafts or air flow from an air conditioning or ventilation system), striation, a rhythmic pulsing pattern of light running the length of the tube and/or a reduction in brightness may occur. While visually disconcerting, neither behavior is damaging to the lamp and removing the cause (draft or temperature) will return the lamp to normal operation.

Product family description
Energy savings, low mercury

Features/Benefits

- Outstanding energy savings
- Save 7 watts per lamp instantly when compared to a 32W T8 U-Bent
- Save $\$ 14$ in energy costs over the rated average life of the lamp when compared to a 32 W T8 U-Bent
- Better for the environment
- Low mercury
- Energy efficient
- Philips Energy Advantage T8 U-Bent Warranty Period: 24 Months

Applications

- Ideal for Locations Already Using the Energy Advantage 25W T8 Lamps

Notes

- Rated average life under specified test conditions with lamps turned off and restarted no more frequently than once every 3 operating hours. Lamp life is appreciably longer if lamps are started less frequently. (202)
- Approximate Initial Lumens. The lamp lumen output is based upon lamp performance after 100 hours of operating life, when the output is measured during operation on a reference ballast under standard laboratory conditions. (203)
- For expected lamp lumen output, commercial ballast manufacturers can advise the appropriate Ballast Factor for each of their ballasts when they are informed of the designated lamp. The Ballast Factor is a multiplier applied to the designated lamp lumen output. (204)
- Design Lumens are the approximate lamp lumen output at 40% of the lamp's Rated Average Life. This output is based upon measurements obtained during lamp operation on a reference ballast under standard laboratory conditions. (208)
- Nominal length measured from face of base to maximum distant outside point of U. Measurement does not include base pins. Leg spacing center to center approximately 6 inches, for / 6 and $35 / 8$ inches for / 3 lamps.

	Product data
Product Number	204214
Full product name	FB32T8/6 25W ADV835 XEW ALTO
Ordering Code	FB32T8/ADV835/6/XEW/ALTO 25W

F-T8-UEA Med Bipin/GB

Base Medium Bi-Pin

Electrical Specifications

IOPA4P32LWSCO120V	
Brand Name	OPTANIUM
Ballast Type	Electronic
Starting Method	Instant Start
Lamp Connection	Parallel
Input Voltage	$120-277$
Input Frequency	$50 / 60 \mathrm{HZ}$
Status	Active

| Lamp Type | Num.
 of
 Lamps | Rated
 Lamp Watts | Min. Start
 Temp (${ }^{\circ}$ F/C) | Input
 Current
 (Amps) | Input
 Power
 (ANSI
 Watts) | Ballast
 Factor | MAX
 THD
 $\%$ | Power
 Factor | MAX Lamp
 Current
 Crest Factor | B.E.F
 \cdot |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| F32T8/ES (25W) | 3 | 25 | $60 / 16$ | 0.52 | 62 | 0.85 | 10 | 0.99 | 1.6 | 1.37 |
| *F32T8/ES (25W) | 4 | 25 | $60 / 16$ | 0.52 | 77 | 0.77 | 10 | 0.99 | 1.6 | (1.00 |

Wiring Diagram

	in.	cm.
Black	25	63.5
White	25	63.5
Blue	31	78.7
Red	31	78.7
Yellow	39	99.1
Gray		0
Violet		0

	in.	cm.
Yellow/Blue		0
Blue/White		0
Brown		0
Orange		0
Orange/Black		0
Black/White		0
Red/White	0	

The wiring diagram that appears above is for the lamp type denoted by the asterisk (*)

Standard Lead Length (inches)

4' 4L T8 with 25W Lamps: 77W

Enclosure Dimensions

OverAll (L)	Width (W)	Height (H)	Mounting (M)
$9.50^{\prime \prime}$	$1.7^{\prime \prime}$	$1.18^{\prime \prime}$	$8.90^{\prime \prime}$
$91 / 2$	$17 / 10$	$19 / 50$	$89 / 10$
24.1 cm	4.3 cm	3 cm	22.6 cm

289 Series (2W-13W) Specifications

Features and Benefits:

- Small size
- Amalgam Technology - provides cooler operating temperatures for consistent performance in any position
- Long life, 8,000 hours to 12,000 hours average rated life
- No lead glass - Better lumen maintenance over life of bulb
- 2700 K color temperature closest to incandescent light
- Medium base or Candelabra base
- Replace less often, ideal for hard to reach places
- End of Life logic guards against violent failures
- UL Approved for totally enclosed fixtures

Specifications (at full brightness)

End of Life Protection-	Yes
Ballast Type	Electronic
Starting M ethod	Modified Rapid Start
Input Line Voltage	120 VAC
Input Line Frequency	50/60HZ
Lamp Life (rated)-	8,000 or 12,000 Hours
Color Temperature	2700K
Color Rendering Index	
Min. Starting Temperature	$-20{ }^{\circ} \mathrm{F}$
Max. Operating Temperature ---------	$160{ }^{\circ} \mathrm{F}$
U.L. / C.U.L. Listed -----	Yes
FCC Compliance	Part 18, Subpart C
Lamp Operating Frequency	45 KHZ
Lamp Current Crest Factor -----------	<1.60
Max. Open Circuit Voltage -----------	600 V
Power Factor	> 50
Total Harmonic Distortion	< 150\%

Special Application Options: (Ordering Suffix)

- $3100^{\circ} \mathrm{K}(31 \mathrm{~K}), 3500^{\circ} \mathrm{K}(35 \mathrm{~K}), 4100^{\circ} \mathrm{K}(41 \mathrm{~K}), 5100^{\circ} \mathrm{K}(51 \mathrm{~K}), 6500^{\circ} \mathrm{K}(65 \mathrm{~K})$
-Long Neck 1.65" (165), 1.75" (175), 2.25" (225) (9W \& 13W only)
- Wet Location(WL) • Shatter Resistant(SS)
- Blue(BL), Green (GR), Red (RD), Pink (P), Soft Pink (SP), Yellow()

12
MONTH WARRANTY
on 8,000 hour lamps
MONTH WARRANTY on 12,000 hour lamps

Actual Size Comparison: (28913 compared to 60 watt incandescent)

Item \# V	Wattage	Incandescent Wattage Comparison	Initial Lumens	Input Line Current	M.O.L. (inches)	Diameter (inches)	Life vs. Incandescent
1R2004	4	15	130	.15A	3.8	2.5	4X
1R2009	9	25	300	.15A	3.8	2.5	4X
1R2014 *	* 14	50	500	.23A	4.7	2.5	4X
1R3014 *	$\star \quad 14$	65	650	.23A	5.1	3.7	4X
1R3016 *	$\star 16$	75	750	.27A	5.7	3.7	4X
1R4016 *	$\star \quad 16$	75	750	.27A	5.9	4.7	4X
1R4019 *	$\star \quad 19$	85	950	.32A	5.9	4.7	4X
1R4023 \%	- 23	90	1250	.38A	6.5	4.8	$3 X$
1 P3016	16	75	750	.27A	5.7	3.7	4X
1P3816 *	$\star 16$	75	750	.27A	5.9	4.6	4X
1P3819 *	$\star 19$	85	950	.32A	5.9	4.6	4X
1P3823 *	\star * 23	90	1200	.38A	6.5	4.7	$3 X$

Special Application Options: (Ordering Sufifix)

- $3100^{\circ} \mathrm{K}(31 \mathrm{~K}), 3500^{\circ} \mathrm{K}(35 \mathrm{~K}), 4100^{\circ} \mathrm{K}(41 \mathrm{~K}), 5100^{\circ} \mathrm{K}(51 \mathrm{~K})$
-Long Neck 1.65"(165), 1.75"(175), 2.25"(225)
- Shatter Resistant (SS) R20 only
- Pink (P), Soft Pink (SP)

SpringLamp ${ }^{\circledR}$ INSIDE technology provides:

- Higher Iumen Output
- Long Lamp Life
- Better lumen maintenance

Ideal for
 Cans

Outdoor Fixtures

Energy Saving Solution for hard to reach light fixtures

Features and Benefits:

* Long life CFL, 8,000 / 6,000 hour average rated life
* NEW Amalgam technology- provides cooler operating temperatures for consistent performance in any position
* No lead glass- Better lumen maintenance over life of bulb
* $2700^{\circ} \mathrm{K}$ color temperature closest to incandescent light
* Medium base
* Replace less often, ideal for hard to reach places
* U.L. Listed for wet locations - use indoors or outdoors
* 12 Month Warranty
* Quickstart technology - fast run up time

Specifications (at full brightness)

End of Life Protection-------------	
Ballast Type	Electronic
Starting Method	Modified Rapid Start
Input Line Voltage	120VAC
Input Line Frequency	50/60HZ
Lamp Life (rated)	8,000 / 6,000 Hours
Color Temperature	$2700^{\circ} \mathrm{K}$
Color Rendering Ind	82
Minimum Starting Temperature	$-20^{\circ} \mathrm{F}$
Maximum Operating Temperature -	$160{ }^{\circ} \mathrm{F}$
U.L. / C.U.L. Listed ---------------	Yes
FCC Compliance -----------------------	Part 18, Subpart C
Lamp Operating Frequency --------	45 KHZ
Lamp Current Crest Factor ---------	< 1.60
Maximum Open Circuit Voltage --	600 V
Power Factor --	> . 50
	< 150\%

TECHNICAL CONSUMER PRODUCTS,INC.

Lighting to the Next Power

Visit www.tcpi.com or call Toll Free 1-800-324-1496

Deco Series Lamp Specifications

SpringLamp® Compact Fluorescent, NPF 8,000 Hours average rated life

Applications:

Ideal for decorative fixtures.
Replaces Incandescent for:

+ Decorative Fixtures
+ Enclosed Outdoor Fixtures
+ Sconces

Special Application Options: (Ordering sufix)

-3100K (31K)

- 4100K (41K)
- 6500K (65K)
- 3500K (35K)
- 5100 K (51K)

Catalog Number	
Notes	Type

Features and Benefits

- Long life CFL, 8,000 hour average rated life
- Amalgam technology- provides cooler operating temperatures for consistent performance in any position
- No lead glass- Better lumen maintenance over life of bulb
- $2700^{\circ} \mathrm{K}$ color temperature closest to incandescent light
- Medium base or candelabra base available
- Replace less often, ideal for hard to reach places
- U.L. Listed for wet locations - use indoors or outdoors
- Quickstart technology - fast run up time

Specifications (at full brightness)

End of Life Protection... Yes
Ballast Type ... Electronic
Starting Method.. Modified Rapid Start
Input Line Voltage .. I20VAC
Input Line Frequency ... 50/60HZ
Lamp Life (rated) .. 8,000 Hours
Color Temperature ... 2700\%
Color Rendering Index ... 82
Minimum Starting Temperature ...-20… $-29^{\circ} \mathrm{C}$
Maximum Operating Temperature .. $160^{\circ} \mathrm{F}, 71^{\circ} \mathrm{C}$
U.L. / C.U.L. Listed ... Yes - El49698

FCC Compliance .. Part 18, Subpart C
Lamp Operating Frequency ... 45 KHZ
Max. Open Circuit Voltage .. 600 V
Lamp Current Crest Factor .. <1.60
Total Harmonic Distortion .. $<33 \%$
High Power Factor Rated ... >. 90
Special Application Not 7 W CFL is actually

- UL approved for wet locatio	a 9 W CFL -	ition is defined
in a UL approve in a 12:00 po		

Warranties and Cerrifications:	Item \#	Description	Wattage	Incandescent Wattage Comparison	nititial Lumens	Input Line Current	M.OL. (inches)	Diameter (inches)	Life vs. Incandescent			
$\begin{aligned} & \text { (UL)us } \\ & 12 \frac{\text { MONTH }}{\text { WARRANTY }} \end{aligned}$	$\begin{aligned} & 10702 \\ & 10702 C \end{aligned}$	Deco, Medium Deco, Candelabra	$\begin{aligned} & 2 \\ & 2 \end{aligned}$		$\begin{aligned} & 80 \\ & 80 \end{aligned}$	$\begin{aligned} & .03 \mathrm{~A} \\ & .03 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 4.4 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 5 X \\ & 5 X \end{aligned}$			
	$\begin{aligned} & 10704 \\ & 10704 C \end{aligned}$	Deco, Medium Deco, Candelabra	$\begin{aligned} & 4 \\ & 4 \\ & 9 \\ & 9 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 195 \\ & 195 \end{aligned}$	$\begin{aligned} & .07 \mathrm{~A} \\ & .07 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 4.4 \\ & 4.4 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.6 \end{aligned}$	$\begin{aligned} & 5 X \\ & 5 X \end{aligned}$			
	$\begin{aligned} & 10709 \\ & 10709 \mathrm{C} \end{aligned}$	Deco, Medium Deco, Candelabra		$\begin{aligned} & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & 425 \\ & 425 \end{aligned}$	$\begin{aligned} & .16 \mathrm{~A} \\ & .16 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 4.8 \\ & 4.4 \end{aligned}$	$\begin{aligned} & 1.8 \\ & 1.8 \end{aligned}$	$\begin{aligned} & 5 X \\ & 5 X \end{aligned}$			
TCP reserves the right to void the warranty for any mis-application of these products.	$\begin{aligned} & 10714 \\ & 10714 C \end{aligned}$	Deco, Medium Deco, Candelabra	14 14	$\begin{aligned} & 60 \\ & 60 \end{aligned}$	$\begin{aligned} & 720 \\ & 720 \end{aligned}$.20 A .20 A	5.4 5.4	1.8 1.9	$5 X$ $5 X$			
TCP, Inc. 325 Campus Dr. \| Aurora, Ohio 44202	P: 1-800-324-1496	F: $330-9$ өтcP, Inc. Oct 2009/41638	2 \| P: 1-800-324-1496	F: $330-99$		\| tcpi.com		TCP is proud to have been awarded energy stare Partner of the Year 2009.			energyth $\begin{aligned} & \text { ENERGY STAR } \\ & \text { AWARD } \\ & 2009\end{aligned}$	

Self Direct Project Overview \& Commitment

The Public Utility Commission of Ohio (PUCO) will soon review your application for participation in AEP Ohio's Energy Efficiency/Peak Demand Response program. Based on your submitted project, please select by initialing one of the two options below, sign and fax to 877-607-0740.

Note: This is a one time selection. By selecting Option 1, the customer will receive payment in the amount stated above. Selection of Option 2: $E E / P D R$ rider exemption, will result in the customer not being eligible to participate in any other energy efficiency programs offered by $A E P$ Ohio during the period of exemption. In addition, the term of Option 2: EE/PDR rider exemption is subject to ongoing review for compliance and could be changed by the PUCO.
If Option 1 has been selected, will the Energy Efficiency Funds selected help you move forward with other energy efficiency projects?

Project Overview:

The Self Direct (Prescriptive and Custom) project that the above has completed and applied is as follows.
Converted (4) Incandescent Lamp into (4) Energy Star Screw in CFL - 14W
Converted (1) Incandescent Lamp into (1) Energy Star Screw in CFL - 23W
Converted (2) Incandescent Lamp PAR 38 into (2) Energy Star Screw in CFL - 23W
Converted (8) 100W MV Fixtures into (8) Exterior High Wattage Screw in CFL in new fixture
Converted (1) Open/Closed incandescent lane sign into (1) Open/Closed lane sign 7" x 34 " - LED 3.4 Watts
Installed occupancy sensors on (2) 4' 4L T8 25W fixtures
Converted (15) 4' 4L T8 32W Lamps into (15) 4' 4L T8 25W Lamps (No ballast change)
Converted (1) Manual constant setpoint thermostat into (1) Energy Star remote controllable thermostat

The documentation that was included with the application proved that the energy measures applied for were purchased and installed.
By signing this document, the Mercantile customer affirms its intention to commit and integrate the above listed energy efficiency resources into the utility's peak demand reduction, demand response, and energy efficiency programs. By signing, the Mercantile customer also agrees to serve as a joint applicant in any filings necessary to secure approval of this arrangement by the Public Utilities Commission of Ohio, and comply with any information and compliance reporting requirements imposed by rule or as part of that approval.

Columbus Southern Power Company

By: \qquad
Title: \qquad
Date: \qquad

FIFTH THIRD BANK OHIO VALLEY

\qquad
By:

Date:

List of Fifth Third Bank properties within the AEP Ohio service territory

Note: State Savings Bank is a subsidiary of Fifth Third Bank.

Account Name	Billing Name	Service Address	City	State
Fifth Third Bank	FIFTH THIRD BANK	1340 BETHEL RD	COLUMBUS	OH
Fifth Third Bank	STATE SAVINGS BANK	3580 N HIGH ST	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	2500 E DUBLIN GRANVILLE RD	COLUMBUS	OH
Fifth Third Bank	STATE SAVINGS	229 S SANDUSKY ST	DELAWARE	OH
Fifth Third Bank	STATE SAVINGS BANK	6260 PERIMETER DR	DUBLIN	OH
Fifth Third Bank	FIFTH THIRD BANK	420 METRO PL APT A	DUBLIN	OH
Fifth Third Bank	STATE SAVINGS BANK	3800 W DUBLIN GRANVILLE RD	DUBLIN	OH
Fifth Third Bank	FIFTH THIRD BANK	434 HAVENS CORNERS RD	GAHANNA	OH
Fifth Third Bank	FIFTH THIRD BANK	3407 CLEVELAND AVE	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	155 W MAIN ST	NEW ALBANY	OH
Fifth Third Bank	STATE SAVINGS CO	1500 MORSE RD	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	3949 W POWELL RD	POWELL	OH
Fifth Third Bank	FIFTH THIRD BANK	7425 STATE ROUTE 3	WESTERVILLE	OH
Fifth Third Bank	STATE SAVINGS BANK	2081 HENDERSON RD	COLUMBUS	OH
Fifth Third Bank	STATE SAVINGS BANK	6895 N HIGH ST	WORTHINGTON	OH
Fifth Third Bank	STATE SAVINGS BANK	3011 E BROAD ST	COLUMBUS	OH
Fifth Third Bank	STATE SAVINGS BANK	2570 E MAIN ST	BEXLEY	OH
Fifth Third Bank	FIFTH THIRD BANK	159 E MAIN ST	CIRCLEVILLE	OH
Fifth Third Bank	STATE SAVINGS CO	2810 S HAMILTON RD	COLUMBUS	OH
Fifth Third Bank	STATE SAVINGS CO	1349 W 5TH AVE	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	809 S HIGH ST	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	2336 STRINGTOWN RD	GROVE CITY	OH
Fifth Third Bank	STATE SAVINGS CO	3990 BROADWAY	GROVE CITY	OH
Fifth Third Bank	STATE SAVINGS CO	1585 E MAIN ST	LANCASTER	OH
Fifth Third Bank	FIFTH THIRD BANK	2475 NORTHWEST BLVD	UPPER	OH
Fifth Third Bank	STATE SAVINGS CO	5055 W BROAD ST	COLUMBUS	OH
Fifth Third Bank	STATE SAVINGS INC	1235 N 21ST ST	NEWARK	OH
Fifth Third Bank	FIFTH THIRD BANK	6935 E MAIN ST	REYNOLDSBURG	OH
Fifth Third Bank	FIFTH THIRD BANK	3460 S HIGH ST	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	2883 TAYLOR RD	REYNOLDSBURG	OH
Fifth Third Bank	FIFTH THIRD BANK	1669 FISHINGER RD UNIT 3P	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	2455 HILLIARD ROME RD	HILLIARD	OH
Fifth Third Bank	FIFTH THIRD BANK	8877 OWENFIELD DR	LEWIS CENTER	OH
Fifth Third Bank	FIFTH THIRD BANK	4128 HOOVER RD	GROVE CITY	OH
Fifth Third Bank	FIFTH THIRD BANK	983 N CABLE RD	LIMA	OH
Fifth Third Bank	FIFTH THIRD OF WEST OH	225 N WEST ST	LIMA	OH
Fifth Third Bank	FIFTH THIRD BANK	2120 HARDING HWY	LIMA	OH
Fifth Third Bank	FIFTH THIRD BANK	2450 SHAWNEE RD BLDG 0439	LIMA	OH
Fifth Third Bank	FIFTH THIRD BK OF NW OHIC	337 S MAIN ST	FINDLAY	OH
Fifth Third Bank	FIFTH THIRD BANK	1735 TIFFIN AVE	FINDLAY	OH
Fifth Third Bank	FIFTH THIRD BANK NW OHIO	2720 N MAIN ST	FINDLAY	OH
Fifth Third Bank	FIFTH THIRD BANK	1412 S MAIN ST	FINDLAY	OH

Fifth Third Bank	FIFTH THIRD BANK	1207 OAK HARBOR RD	FREMONT	OH
Fifth Third Bank	FIFTH THIRD BANK	220 PERRY ST	FOSTORIA	OH
Fifth Third Bank	FIFTH THIRD BANK	720 W MARKET ST	TIFFIN	OH
Fifth Third Bank	FIFTH THIRD BANK	300 E SANDUSKY ST	FINDLAY	OH
Fifth Third Bank	FIFTH THIRD BANK OF SOUTH	128 W MAIN ST	CHILLICOTHE	OH
Fifth Third Bank	FIFTH THIRD BANK	10551 US HIGHWAY 23	LUCASVILLE	OH
Fifth Third Bank	FIFTH THIRD BANK	31 E 2ND ST	MANCHESTER	OH
Fifth Third Bank	FIFTH THIRD BANK	511 N HIGH ST	HILLSBORO	OH
Fifth Third Bank	FIFTH THIRD BANK	60 N MAIN ST	PEEBLES	OH
Fifth Third Bank	FIFTH THIRD BANK	826 7TH ST	PORTSMOUTH	OH
Fifth Third Bank	53 BANK OHIO VALLEY	303 E EMMITT AVE	WAVERLY	OH
Fifth Third Bank	FIFTH THIRD BANK	500 E MAIN ST	WEST UNION	OH
Fifth Third Bank	FIFTH THIRD BANK	7988-A OHIO RIVER RD	WHEELERSBURG	OH
Fifth Third Bank	FIFTH THIRD BANK	5067 PORTAGE ST	NORTH CANTON	OH
Fifth Third Bank	FIFTH 3RD BANK	1819 W LANE AVE	UPPER	OH
Fifth Third Bank	FIFTH THIRD BANK	6031 GROVEPORT RD	GROVEPORT	OH
Fifth Third Bank	FIFTH THIRD BANK	5342 N HAMILTON RD	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	8353 SANCUS BLVD	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	1637 N MAIN ST	NORTH CANTON	OH
Fifth Third Bank	FIFTH THIRD BANK	1669 HOLT RD	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	3750 FISHINGER BLVD	HILLIARD	OH
Fifth Third Bank	FIFTH THIRD BANK	2152 SCHORRWAY DR	LANCASTER	OH
Fifth Third Bank	5TH 3RD BANK INC	3964 FULTON DR	CANTON	OH
Fifth Third Bank	FITH THIRD BANK	4655 TUSCARAWAS ST	CANTON	OH
Fifth Third Bank	FIFTH THIRD BANK	1960 N HIGH ST	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	4801 DRESSLER RD STE 100	CANTON	OH
Fifth Third Bank	FIFTH THIRD BANK	4220 CLEVELAND AVE	CANTON	OH

Square Footage of Locations by Project Number

AEP Project Number	Site Number	Square Footage	AEP Project Number	Site Number	Square Footage
AEP-10-02257	OH100479	2,971	AEP-10-02297	OH100641	3,120
AEP-10-02259	OH100480	1,660	AEP-10-02298	OH100642	3,220
AEP-10-02260	OH100481	4,371	AEP-10-02299	OH100643	2,220
AEP-10-02261	OH100482	1,550	AEP-10-02300	OH100644	4,200
AEP-10-02262	OH100484	2,760	AEP-10-02301	OH100647	12,478
AEP-10-02263	OH100485	4,000	AEP-10-02302	OH100650	3,350
AEP-10-02264	OH100486	28,698	AEP-10-02303	OH100670	450
AEP-10-02265	OH100487	3,240	AEP-10-02305	OH101151	5,714
AEP-10-02266	OH100490	2,680	AEP-10-02306	OH101156	2,170
AEP-10-02267	OH100494	6,085	AEP-10-02307	OH101157	4,000
AEP-10-02268	OH100495	3,000	AEP-10-02308	OH101158	6,890
AEP-10-02269	OH100498	4,514	AEP-10-02309	OH101159	4,224
AEP-10-02270	OH100500	5,832	AEP-10-02310	OH101160	65,945
AEP-10-02271	OH100501	1,992	AEP-10-02311	OH101162	1,000
AEP-10-02272	OH100502	3,240	AEP-10-02312	OH101163	4,000
AEP-10-02273	OH100503	3,400	AEP-10-02313	OH101164	5,000
AEP-10-02274	OH100504	3,277	AEP-10-02314	OH101184	4,200
AEP-10-02275	OH100508	4,025	AEP-10-02315	OH101186	2,920
AEP-10-02276	OH100509	1,800	AEP-10-02316	OH101189	3,500
AEP-10-02277	OH100513	3,000	AEP-10-02317	OH101195	4,155
AEP-10-02278	OH100514	3,400	AEP-10-02318	OH101198	4,200
AEP-10-02279	OH100515	2,752	AEP-10-02319	OH101205	4,115
AEP-10-02280	OH100516	3,402	AEP-10-02320	OH101220	4,200
AEP-10-02281	OH100517	2,176	AEP-10-02321	OH101238	1,651
AEP-10-02282	OH100518	3,900	AEP-10-02322	OH101239	4,200
AEP-10-02283	OH100519	3,240	AEP-10-02323	OH101248	4,200
AEP-10-02284	OH100520	2,500	AEP-10-02324	OH101256	4,200
AEP-10-02285	OH100522	2,680	AEP-10-02325	OH101260	4,200
AEP-10-02286	OH100523	3,684	AEP-10-02326	OH101401	4,200
AEP-10-02287	OH100524	5,621	AEP-10-02327	OH101415	4,200
AEP-10-02288	OH100525	3,000			
AEP-10-02289	OH100538	4,200			
AEP-10-02290	OH100539	4,200			
AEP-10-02291	OH100542	4,900			
AEP-10-02292	OH100548	2,800			
AEP-10-02293	OH100549	7,500			
AEP-10-02294	OH100550	2,500			
AEP-10-02295	OH100551	2,500			
AEP-10-02296	OH100640	18,740			

KEMA

Programmable Thermostat

Measure Description	Installation of a programmable thermostat in place of a constant setpoint style thermostat.
Units	Per 1000 square feet
Base Case Description	Constant setpoint thermostats
Measure Savings	Source: This workpaper is based on the Michigan Statewide Energy Savings Database - Weather Sensitive Retrofit Measures for Residential and Commercial Buildings
Measure Incremental Cost	The total cost is assumed to be \$175 per 1,000 sf of conditioned space (or per thermostat).
Effective Useful Life	9 years

Programmable thermostats must meet ENERGY STAR® Version 2.0 criteria and must replace any non-programmable thermostat to automatically adjust the temperature at pre-selected times. To meet ENERGY STAR® standards, they must be capable of maintaining two separate programs (to address the different comfort needs of weekdays and weekends) and up to four temperature settings for each program.

Measure Savings

These savings are based on eQuest building models developed for the Michigan Statewide Energy Savings Database. The weather data used is for the Detroit airport area, which is more conservative than Columbus as Detroit has an average of 727 cooling degree days whereas, Columbus has an average of 925 cooling degree days (Source: National Climatic Data Center). The measure is to include temperature setback/setup during unoccupied hours. The savings assumes air conditioning with gas heating (gas package units).

Table 1 Programmable Thermostat Savings, per 1000 sq. ft

Building Type	kWh/unit
Assembly	1,063
Big Box Retail	579
Fast Food Restaurant	1,532
Full Service Restaurant	1,132
Light Industrial	502
Primary School	1,218
Small Office	748

Small Retail	1,036

Measure Life and Incremental Measure Cost

The following table provides the measure life and incremental measure cost (IMC) documented for this measure as well as the source of the data.

Table 2 Measure Life and Incremental Measure Cost

	Value	Source
Measure Life	9	MEMD
Incremental Measure Cost	$\$ 175$	MEMD

Pass \& Seymour
41 legrand

Features - Wall Switch Occupancy Sensors

- Detection Signature Analysis provides high immunity to RFI and EMI.
- Compact, decorator design replaces existing wall switch.
- Integrated light level sensor works from 10 to 150 footcandles.
- Compatible with all electronic and magnetic ballasts, PL lamp ballasts, compact fluorescent.
- 5-year warranty.
- cULus listed.

Decorator Devices

 Passive Infrared Sensors| Catalog Number | Description | Voltage | Load Requirements | Coverage | Time Delay | Color |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PIR Automatic Wall Switches - 3 Wire Technology | | | | | | |
| WSP200-I
 WSP200-W
 WSP200-GRY
 WSP200-LA | Passive Infrared Occupancy Sensor | $\begin{aligned} & \text { 120/277VAC; } \\ & 60 \mathrm{~Hz} \end{aligned}$ | 800W Max.
 at 120 V
 1200W Max.
 at 277 V | $\begin{aligned} & 180^{\circ} \text {, up to } \\ & 900 \text { sq. ft. } \end{aligned}$ | 30 sec . to 30 min . | Ivory
 White
 Gray
 Lt. Almond |

Planning a Layout

The WSP200's 2 -level lens provides superior coverage at desktop level by allowing the sensor to detect vertical as well as horizontal motion. Coverage shown is for walking motion. Under optimum conditions with a high level of activity and with no barriers or obstacles, coverage can reach a maximum of 900 square feet. Under a typical, desktop level of activity, when mounted at 4 feet, coverage is 300 square feet.

WSP200
Placement for PIR wall switch sensor

Single Level Lighting WSP200

Manual Bi-level Lighting WSP200

Product Information Bulletin

OCTRON ${ }^{\circledR}$ 25W XP ${ }^{\circledR}$ SUPERSAVER ${ }^{\circledR}$ ECOLOGIC ${ }^{\circledR}$

EXtended Performance Fluorescent Lamps 4' T8 Lamps -

SYLVANIA 25 Watt OCTRON FO32/25W/800XP SUPERSAVER ECOLOGIC lamps operate on standard T8 instant start systems and provide 22% energy savings over standard 32 Watt OCTRON lamps where slight reductions in light are acceptable.

At $\$.10 / \mathrm{kWh}$ and 4000 hours of operation per year, the 22% savings translates to a savings of $\$ 9.80$ per fixture per year for a 4-lamp fixture with a normal ballast factor, instant start ballast. Changing from standard Cool White Energy Saving T12 lamps powered by energy saving magnetic ballasts to OCTRON FO32/25W/800XP/SS/ECO lamps combined with OSRAM SYLVANIA's QUICKTRONIC High Efficiency ISN ballasts could save $\$ 24$ a year with no light loss. These lamps pass the Federal TCLP test, classifying them as non-hazardous waste in most states. Group relamp to realize the benefits of these OCTRON lamps in your facility.

- Up to 22\% energy savings compared to standard 32W T8 lamp
- 25 Watt, 4-foot, SUPERSAVER energy saving, T8 lamp
- ECOLOGIC - Designed to pass TCLP ${ }^{1}$
- Initial lumens - 2475 (850 is 2300)
- 95% lumen maintenance at 8000 hours
- 3000K, 3500K, 4100K \& 5000K
- 85 CRI
- Retrofit lamp for existing T8 instant start systems - 24,000 hour average rated life @ 3 hrs. per start
- Also operates on OSRAM SYLVANIA QUICKTRONIC® Programmed Start ballasts
- 36,000 hour average rated life @ 3 hrs per start
- Minimum starting temperature: $70^{\circ} \mathrm{F}$
- Not dimmable
- Not for use in air handling fixtures
- Striation may occur if airflow is present (see application note 5)

SYLVANIA OCTRON T8 ECOLOGIC fluorescent lamps are designed to pass the Federal Toxicity Characteristic Leaching Procedure (TCLP) criteria for classification as non-hazardous waste in most states ${ }^{2}$.

1. TCLP test results are based on NEMA LL Series standards and are available on request.
2. Lamp disposal regulations may vary; check your local \& state regulations.

Product Availability

Lamp Type	Wattage	Color Temperature	CRI
F032/25W/830XP/SS/ECO	25	3000 K	85
F032/25W/835XP/SS/EC0	25	3500 K	85
F032/25W/841XP/SS/ECO	25	4100 K	85
F032/25W/850XP/SS/EC0	25	5000 K	85

Application Information

Applications

Retail Office Schools Hospitals Industrial Many applications with T8 instant start ballasts currently using 32W T8 lamps

Fixtures

Contact your local fixture agent for available fixtures.

Ballast Information

Contact your OSRAM SYLVANIA representative for a list of compatible electronic operating systems.

Application Notes

1. Recommended to be used on T8 F32 Instant Start circuits with minimum starting voltage of 550 v RMS.
2. Can operate on QUICKTRONIC Programmed Start Ballasts.
3. Fixture must conform to ANSI C78.81-2005 requirements for luminaire design.

Application Notes (continued)

4. Not recommended to be used: (1) with Rapid Start circuits unless the open circuit voltage is greater than 570V, (2) at lamp ambient temperatures below $70^{\circ} \mathrm{F}$ or in drafty locations, (3) in air handling fixtures, (4) on dimming ballasts, (5) on inverter operated emergency lighting systems unless any of the above equipment is specifically listed for 25 watt lamps, or (6) below $60^{\circ} \mathrm{F}$ starting temperature. Any of the above situations could result in lamp starting and stabilization problems, or system compatibility issues.
5. If an operating lamp is exposed to temperatures below $70^{\circ} \mathrm{F}$ or moving air (wind, drafts or air flow from an air conditioning or ventilation system), striation, a rhythmic pulsing pattern of light running the length of the tube and/or a reduction in brightness may occur. While visually disconcerting, neither behavior is damaging to the lamp and removing the cause (draft or temperature) will return the lamp to normal operation.

Item \#	Wattage	Incandescent Wattage Comparison	Initial Lumens	Input Line Current	M.O.L. (inches)	Diameter (inches)	Life vs. Incandescent
1R2004	4	15	130	.15A	3.8	2.5	4X
1R2009	9	25	300	.15A	3.8	2.5	4X
1R2014 \star	$\star \quad 14$	50	500	.23A	4.7	2.5	4X
1R3014 \star	$\star \quad 14$	65	650	.23A	5.1	3.7	4X
1R3016 \star	$\star \quad 16$	75	750	.27A	5.7	3.7	4X
1R4016 *	$\star 16$	75	750	.27A	5.9	4.7	4X
1R4019 ${ }^{\text {® }}$	$\star \quad 19$	85	950	.32A	5.9	4.7	4X
1R4023 \%	- 23	90	1250	.38A	6.5	4.8	3 X
1 P 3016	16	75	750	.27A	5.7	3.7	4X
1P3816 *	$\star \quad 16$	75	750	.27A	5.9	4.6	4X
1P3819 ${ }^{\text {® }}$	$\star \quad 19$	85	950	.32A	5.9	4.6	4X
1P3823 ᄎ	* * 23	90	1200	.38A	6.5	4.7	$3 X$

Special Application Options: (Ordering Sufifix)

- $3100^{\circ} \mathrm{K}(31 \mathrm{~K}), 3500^{\circ} \mathrm{K}(35 \mathrm{~K}), 4100^{\circ} \mathrm{K}(41 \mathrm{~K}), 5100^{\circ} \mathrm{K}(51 \mathrm{~K})$
-Long Neck 1.65"(165), 1.75"(175), 2.25"(225)
- Shatter Resistant (SS) R20 only
- Pink (P), Soft Pink (SP)

SpringLamp ${ }^{\circledR}$ INSIDE technology provides:

- Higher Iumen Output
- Long Lamp Life
- Better lumen maintenance

Ideal for
 Cans

Outdoor Fixtures

Energy Saving Solution for hard to reach light fixtures

Features and Benefits:

* Long life CFL, 8,000 / 6,000 hour average rated life
* NEW Amalgam technology- provides cooler operating temperatures for consistent performance in any position
* No lead glass- Better lumen maintenance over life of bulb
* $2700^{\circ} \mathrm{K}$ color temperature closest to incandescent light
* Medium base
* Replace less often, ideal for hard to reach places
* U.L. Listed for wet locations - use indoors or outdoors
* 12 Month Warranty
* Quickstart technology - fast run up time

Specifications (at full brightness)

End of Life Protection-------------	
Ballast Type	Electronic
Starting Method	Modified Rapid Start
Input Line Voltage	120VAC
Input Line Frequency	50/60HZ
Lamp Life (rated)	8,000 / 6,000 Hours
Color Temperature	$2700^{\circ} \mathrm{K}$
Color Rendering Ind	82
Minimum Starting Temperature	$-20^{\circ} \mathrm{F}$
Maximum Operating Temperature -	$160{ }^{\circ} \mathrm{F}$
U.L. / C.U.L. Listed ---------------	Yes
FCC Compliance -----------------------	Part 18, Subpart C
Lamp Operating Frequency --------	45 KHZ
Lamp Current Crest Factor ---------	< 1.60
Maximum Open Circuit Voltage --	600 V
Power Factor --	> . 50
	< 150\%

TECHNICAL CONSUMER PRODUCTS,INC.

Lighting to the Next Power

Visit www.tcpi.com or call Toll Free 1-800-324-1496

89 Series (18W-68W) Specifications

 32W, 42W

Features and Benefits:

- NEW Small size
- NEW Amalgam Technology - provides cooler operating temperatures for consistent performance in any position
- Long life, 10,000 hour average rated life
- No lead glass - Better lumen maintenance over life of bulb
- $2700^{\circ} \mathrm{K}$ color temperature closest to incandescent light Medium bas
Replace less often, ideal for hard to reach places
- End of Life logic guards against non-passive failures
- 18 Month arranty

Specifications (at full brightness)

End of Life Protection------------------- Yes

dast Type	Electronic
Starting Method	Instant Start
Input Line Voltage	120VAC
Input Line Frequency	50/60HZ
Lamp Life (rated)	10,000 Hou
LED Night-light Color Temperature --	$5000^{\circ} \mathrm{K}$
Color Temperature	$2700^{\circ} \mathrm{K}$
Color Rendering Index	
Min. Starting Temperature	$-20^{\circ} \mathrm{F}$
Max. Operating Temperatur	$160^{\circ} \mathrm{F}$
UL/C-UL Listed	Yes - E149698
FCC Compliance	47 CFR Part 18
Lamp Operating Frequency	45 KHZ
Lamp Current Crest Factor	< 1.60
Power Factor	
Total Harmonic Distortion	< 150\%

Special Application Options: (Ordering Suffix)

- $3000^{\circ} \mathrm{K}(30 \mathrm{~K}), 3500^{\circ} \mathrm{K}(35 \mathrm{~K}), 4100^{\circ} \mathrm{K}(41 \mathrm{~K}), 5000^{\circ} \mathrm{K}(50 \mathrm{~K}), 6500^{\circ} \mathrm{K}(65 \mathrm{~K})$ Long Neck 1.65" (165), 1.75" (175), 2.25" (225)
- Wet location (WL) Shatter Resistant (SS)

Energy Savings: (SpringLamp® compared to incandescent)

Special Notes: Up to 23 watt is UL approved for totally enclosed fixtures.
Use a 27 watt in an open recessed can with no cove
27 watt and above NOT recommended for totally enclosed fixtures.

68 watt is NOT for use in recessed cans.
Use in an enclosed recessed can voids the warranty

[^0]

Self Direct Project Overview \& Commitment

The Public Utility Commission of Ohio (PUCO) will soon review your application for participation in AEP Ohio's Energy Efficiency/Peak Demand Response program. Based on your submitted project, please select by initialing one of the two options below, sign and fax to 877-607-0740.

Note: This is a one time selection. By selecting Option 1, the customer will receive payment in the amount stated above. Selection of Option 2: $E E / P D R$ rider exemption, will result in the customer not being eligible to participate in any other energy efficiency programs offered by AEP Ohio during the period of exemption. In addition, the term of Option 2: EE/PDR rider exemption is subject to ongoing review for compliance and could be changed by the PUCO.
If Option 1 has been selected, will the Energy Efficiency Funds selected help you move forward with other energy efficiency projects?

Project Overview:

The Self Direct (Prescriptive and Custom) project that the above has completed and applied is as follows. Converted (4) Incandescent Lamp into (4) Energy Star Screw in CFL - 14W
Converted (3) Open/Closed incandesent lane signs into (3) Open/Closed lane sign 7" x 18" - LED 3.4 Watts
Converted (7) 4' 2L T8 32W Lamps into (7) 4' 2L T8 25W Lamps (No ballast change)
Converted (54) 4' 3L T8 32W Lamps into (54) 4' 3L T8 25W Lamps (No ballast change)
Converted (7) 4' 4L T8 32W Lamps into (7) 4' 4L T8 25W Lamps (No ballast change)

The documentation that was included with the application proved that the energy measures applied for were purchased and installed.
By signing this document, the Mercantile customer affirms its intention to commit and integrate the above listed energy efficiency resources into the utility's peak demand reduction, demand response, and energy efficiency programs. By signing, the Mercantile customer also agrees to serve as a joint applicant in any filings necessary to secure approval of this arrangement by the Public Utilities Commission of Ohio, and comply with any information and compliance reporting requirements imposed by rule or as part of that approval.

Columbus Southern Power Company

By: \qquad
Title: \qquad
Date: \qquad

FIFTH THIRD BANK

\qquad
Title:

List of Fifth Third Bank properties within the AEP Ohio service territory

Note: State Savings Bank is a subsidiary of Fifth Third Bank.

Account Name	Billing Name	Service Address	City	State
Fifth Third Bank	FIFTH THIRD BANK	1340 BETHEL RD	COLUMBUS	OH
Fifth Third Bank	STATE SAVINGS BANK	3580 N HIGH ST	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	2500 E DUBLIN GRANVILLE RD	COLUMBUS	OH
Fifth Third Bank	STATE SAVINGS	229 S SANDUSKY ST	DELAWARE	OH
Fifth Third Bank	STATE SAVINGS BANK	6260 PERIMETER DR	DUBLIN	OH
Fifth Third Bank	FIFTH THIRD BANK	420 METRO PL APT A	DUBLIN	OH
Fifth Third Bank	STATE SAVINGS BANK	3800 W DUBLIN GRANVILLE RD	DUBLIN	OH
Fifth Third Bank	FIFTH THIRD BANK	434 HAVENS CORNERS RD	GAHANNA	OH
Fifth Third Bank	FIFTH THIRD BANK	3407 CLEVELAND AVE	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	155 W MAIN ST	NEW ALBANY	OH
Fifth Third Bank	STATE SAVINGS CO	1500 MORSE RD	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	3949 W POWELL RD	POWELL	OH
Fifth Third Bank	FIFTH THIRD BANK	7425 STATE ROUTE 3	WESTERVILLE	OH
Fifth Third Bank	STATE SAVINGS BANK	2081 HENDERSON RD	COLUMBUS	OH
Fifth Third Bank	STATE SAVINGS BANK	6895 N HIGH ST	WORTHINGTON	OH
Fifth Third Bank	STATE SAVINGS BANK	3011 E BROAD ST	COLUMBUS	OH
Fifth Third Bank	STATE SAVINGS BANK	2570 E MAIN ST	BEXLEY	OH
Fifth Third Bank	FIFTH THIRD BANK	159 E MAIN ST	CIRCLEVILLE	OH
Fifth Third Bank	STATE SAVINGS CO	2810 S HAMILTON RD	COLUMBUS	OH
Fifth Third Bank	STATE SAVINGS CO	1349 W 5TH AVE	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	809 S HIGH ST	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	2336 STRINGTOWN RD	GROVE CITY	OH
Fifth Third Bank	STATE SAVINGS CO	3990 BROADWAY	GROVE CITY	OH
Fifth Third Bank	STATE SAVINGS CO	1585 E MAIN ST	LANCASTER	OH
Fifth Third Bank	FIFTH THIRD BANK	2475 NORTHWEST BLVD	UPPER	OH
Fifth Third Bank	STATE SAVINGS CO	5055 W BROAD ST	COLUMBUS	OH
Fifth Third Bank	STATE SAVINGS INC	1235 N 21ST ST	NEWARK	OH
Fifth Third Bank	FIFTH THIRD BANK	6935 E MAIN ST	REYNOLDSBURG	OH
Fifth Third Bank	FIFTH THIRD BANK	3460 S HIGH ST	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	2883 TAYLOR RD	REYNOLDSBURG	OH
Fifth Third Bank	FIFTH THIRD BANK	1669 FISHINGER RD UNIT 3P	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	2455 HILLIARD ROME RD	HILLIARD	OH
Fifth Third Bank	FIFTH THIRD BANK	8877 OWENFIELD DR	LEWIS CENTER	OH
Fifth Third Bank	FIFTH THIRD BANK	4128 HOOVER RD	GROVE CITY	OH
Fifth Third Bank	FIFTH THIRD BANK	983 N CABLE RD	LIMA	OH
Fifth Third Bank	FIFTH THIRD OF WEST OH	225 N WEST ST	LIMA	OH
Fifth Third Bank	FIFTH THIRD BANK	2120 HARDING HWY	LIMA	OH
Fifth Third Bank	FIFTH THIRD BANK	2450 SHAWNEE RD BLDG 0439	LIMA	OH
Fifth Third Bank	FIFTH THIRD BK OF NW OHIC	337 S MAIN ST	FINDLAY	OH
Fifth Third Bank	FIFTH THIRD BANK	1735 TIFFIN AVE	FINDLAY	OH
Fifth Third Bank	FIFTH THIRD BANK NW OHIO	2720 N MAIN ST	FINDLAY	OH
Fifth Third Bank	FIFTH THIRD BANK	1412 S MAIN ST	FINDLAY	OH

Fifth Third Bank	FIFTH THIRD BANK	1207 OAK HARBOR RD	FREMONT	OH
Fifth Third Bank	FIFTH THIRD BANK	220 PERRY ST	FOSTORIA	OH
Fifth Third Bank	FIFTH THIRD BANK	720 W MARKET ST	TIFFIN	OH
Fifth Third Bank	FIFTH THIRD BANK	300 E SANDUSKY ST	FINDLAY	OH
Fifth Third Bank	FIFTH THIRD BANK OF SOUTH	128 W MAIN ST	CHILLICOTHE	OH
Fifth Third Bank	FIFTH THIRD BANK	10551 US HIGHWAY 23	LUCASVILLE	OH
Fifth Third Bank	FIFTH THIRD BANK	31 E 2ND ST	MANCHESTER	OH
Fifth Third Bank	FIFTH THIRD BANK	511 N HIGH ST	HILLSBORO	OH
Fifth Third Bank	FIFTH THIRD BANK	60 N MAIN ST	PEEBLES	OH
Fifth Third Bank	FIFTH THIRD BANK	826 7TH ST	PORTSMOUTH	OH
Fifth Third Bank	53 BANK OHIO VALLEY	303 E EMMITT AVE	WAVERLY	OH
Fifth Third Bank	FIFTH THIRD BANK	500 E MAIN ST	WEST UNION	OH
Fifth Third Bank	FIFTH THIRD BANK	7988-A OHIO RIVER RD	WHEELERSBURG	OH
Fifth Third Bank	FIFTH THIRD BANK	5067 PORTAGE ST	NORTH CANTON	OH
Fifth Third Bank	FIFTH 3RD BANK	1819 W LANE AVE	UPPER	OH
Fifth Third Bank	FIFTH THIRD BANK	6031 GROVEPORT RD	GROVEPORT	OH
Fifth Third Bank	FIFTH THIRD BANK	5342 N HAMILTON RD	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	8353 SANCUS BLVD	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	1637 N MAIN ST	NORTH CANTON	OH
Fifth Third Bank	FIFTH THIRD BANK	1669 HOLT RD	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	3750 FISHINGER BLVD	HILLIARD	OH
Fifth Third Bank	FIFTH THIRD BANK	2152 SCHORRWAY DR	LANCASTER	OH
Fifth Third Bank	5TH 3RD BANK INC	3964 FULTON DR	CANTON	OH
Fifth Third Bank	FITH THIRD BANK	4655 TUSCARAWAS ST	CANTON	OH
Fifth Third Bank	FIFTH THIRD BANK	1960 N HIGH ST	COLUMBUS	OH
Fifth Third Bank	FIFTH THIRD BANK	4801 DRESSLER RD STE 100	CANTON	OH
Fifth Third Bank	FIFTH THIRD BANK	4220 CLEVELAND AVE	CANTON	OH

Square Footage of Locations by Project Number

AEP Project Number	Site Number	Square Footage	AEP Project Number	Site Number	Square Footage
AEP-10-02257	OH100479	2,971	AEP-10-02297	OH100641	3,120
AEP-10-02259	OH100480	1,660	AEP-10-02298	OH100642	3,220
AEP-10-02260	OH100481	4,371	AEP-10-02299	OH100643	2,220
AEP-10-02261	OH100482	1,550	AEP-10-02300	OH100644	4,200
AEP-10-02262	OH100484	2,760	AEP-10-02301	OH100647	12,478
AEP-10-02263	OH100485	4,000	AEP-10-02302	OH100650	3,350
AEP-10-02264	OH100486	28,698	AEP-10-02303	OH100670	450
AEP-10-02265	OH100487	3,240	AEP-10-02305	OH101151	5,714
AEP-10-02266	OH100490	2,680	AEP-10-02306	OH101156	2,170
AEP-10-02267	OH100494	6,085	AEP-10-02307	OH101157	4,000
AEP-10-02268	OH100495	3,000	AEP-10-02308	OH101158	6,890
AEP-10-02269	OH100498	4,514	AEP-10-02309	OH101159	4,224
AEP-10-02270	OH100500	5,832	AEP-10-02310	OH101160	65,945
AEP-10-02271	OH100501	1,992	AEP-10-02311	OH101162	1,000
AEP-10-02272	OH100502	3,240	AEP-10-02312	OH101163	4,000
AEP-10-02273	OH100503	3,400	AEP-10-02313	OH101164	5,000
AEP-10-02274	OH100504	3,277	AEP-10-02314	OH101184	4,200
AEP-10-02275	OH100508	4,025	AEP-10-02315	OH101186	2,920
AEP-10-02276	OH100509	1,800	AEP-10-02316	OH101189	3,500
AEP-10-02277	OH100513	3,000	AEP-10-02317	OH101195	4,155
AEP-10-02278	OH100514	3,400	AEP-10-02318	OH101198	4,200
AEP-10-02279	OH100515	2,752	AEP-10-02319	OH101205	4,115
AEP-10-02280	OH100516	3,402	AEP-10-02320	OH101220	4,200
AEP-10-02281	OH100517	2,176	AEP-10-02321	OH101238	1,651
AEP-10-02282	OH100518	3,900	AEP-10-02322	OH101239	4,200
AEP-10-02283	OH100519	3,240	AEP-10-02323	OH101248	4,200
AEP-10-02284	OH100520	2,500	AEP-10-02324	OH101256	4,200
AEP-10-02285	OH100522	2,680	AEP-10-02325	OH101260	4,200
AEP-10-02286	OH100523	3,684	AEP-10-02326	OH101401	4,200
AEP-10-02287	OH100524	5,621	AEP-10-02327	OH101415	4,200
AEP-10-02288	OH100525	3,000			
AEP-10-02289	OH100538	4,200			
AEP-10-02290	OH100539	4,200			
AEP-10-02291	OH100542	4,900			
AEP-10-02292	OH100548	2,800			
AEP-10-02293	OH100549	7,500			
AEP-10-02294	OH100550	2,500			
AEP-10-02295	OH100551	2,500			
AEP-10-02296	OH100640	18,740			

KEMA

Programmable Thermostat

Measure Description	Installation of a programmable thermostat in place of a constant setpoint style thermostat.
Units	Per 1000 square feet
Base Case Description	Constant setpoint thermostats
Measure Savings	Source: This workpaper is based on the Michigan Statewide Energy Savings Database - Weather Sensitive Retrofit Measures for Residential and Commercial Buildings
Measure Incremental Cost	The total cost is assumed to be \$175 per 1,000 sf of conditioned space (or per thermostat).
Effective Useful Life	9 years

Programmable thermostats must meet ENERGY STAR® Version 2.0 criteria and must replace any non-programmable thermostat to automatically adjust the temperature at pre-selected times. To meet ENERGY STAR® standards, they must be capable of maintaining two separate programs (to address the different comfort needs of weekdays and weekends) and up to four temperature settings for each program.

Measure Savings

These savings are based on eQuest building models developed for the Michigan Statewide Energy Savings Database. The weather data used is for the Detroit airport area, which is more conservative than Columbus as Detroit has an average of 727 cooling degree days whereas, Columbus has an average of 925 cooling degree days (Source: National Climatic Data Center). The measure is to include temperature setback/setup during unoccupied hours. The savings assumes air conditioning with gas heating (gas package units).

Table 1 Programmable Thermostat Savings, per 1000 sq. ft

Building Type	kWh/unit
Assembly	1,063
Big Box Retail	579
Fast Food Restaurant	1,532
Full Service Restaurant	1,132
Light Industrial	502
Primary School	1,218
Small Office	748

Small Retail	1,036

Measure Life and Incremental Measure Cost

The following table provides the measure life and incremental measure cost (IMC) documented for this measure as well as the source of the data.

Table 2 Measure Life and Incremental Measure Cost

	Value	Source
Measure Life	9	MEMD
Incremental Measure Cost	$\$ 175$	MEMD

Product Information Bulletin

OCTRON ${ }^{\circledR}$ 25W XP ${ }^{\circledR}$ SUPERSAVER ${ }^{\circledR}$ ECOLOGIC ${ }^{\circledR}$

EXtended Performance Fluorescent Lamps 4' T8 Lamps -

SYLVANIA 25 Watt OCTRON FO32/25W/800XP SUPERSAVER ECOLOGIC lamps operate on standard T8 instant start systems and provide 22% energy savings over standard 32 Watt OCTRON lamps where slight reductions in light are acceptable.

At $\$.10 / \mathrm{kWh}$ and 4000 hours of operation per year, the 22% savings translates to a savings of $\$ 9.80$ per fixture per year for a 4-lamp fixture with a normal ballast factor, instant start ballast. Changing from standard Cool White Energy Saving T12 lamps powered by energy saving magnetic ballasts to OCTRON FO32/25W/800XP/SS/ECO lamps combined with OSRAM SYLVANIA's QUICKTRONIC High Efficiency ISN ballasts could save $\$ 24$ a year with no light loss. These lamps pass the Federal TCLP test, classifying them as non-hazardous waste in most states. Group relamp to realize the benefits of these OCTRON lamps in your facility.

- Up to 22\% energy savings compared to standard 32W T8 lamp
- 25 Watt, 4-foot, SUPERSAVER energy saving, T8 lamp
- ECOLOGIC - Designed to pass TCLP ${ }^{1}$
- Initial lumens - 2475 (850 is 2300)
- 95% lumen maintenance at 8000 hours
- 3000K, 3500K, 4100K \& 5000K
- 85 CRI
- Retrofit lamp for existing T8 instant start systems - 24,000 hour average rated life @ 3 hrs. per start
- Also operates on OSRAM SYLVANIA QUICKTRONIC® Programmed Start ballasts
- 36,000 hour average rated life @ 3 hrs per start
- Minimum starting temperature: $70^{\circ} \mathrm{F}$
- Not dimmable
- Not for use in air handling fixtures
- Striation may occur if airflow is present (see application note 5)

SYLVANIA OCTRON T8 ECOLOGIC fluorescent lamps are designed to pass the Federal Toxicity Characteristic Leaching Procedure (TCLP) criteria for classification as non-hazardous waste in most states ${ }^{2}$.

1. TCLP test results are based on NEMA LL Series standards and are available on request.
2. Lamp disposal regulations may vary; check your local \& state regulations.

Product Availability

Lamp Type	Wattage	Color Temperature	CRI
F032/25W/830XP/SS/ECO	25	3000 K	85
F032/25W/835XP/SS/EC0	25	3500 K	85
F032/25W/841XP/SS/ECO	25	4100 K	85
F032/25W/850XP/SS/EC0	25	5000 K	85

Application Information

Applications

Retail Office Schools Hospitals Industrial Many applications with T8 instant start ballasts currently using 32W T8 lamps

Fixtures

Contact your local fixture agent for available fixtures.

Ballast Information

Contact your OSRAM SYLVANIA representative for a list of compatible electronic operating systems.

Application Notes

1. Recommended to be used on T8 F32 Instant Start circuits with minimum starting voltage of 550 v RMS.
2. Can operate on QUICKTRONIC Programmed Start Ballasts.
3. Fixture must conform to ANSI C78.81-2005 requirements for luminaire design.

Application Notes (continued)

4. Not recommended to be used: (1) with Rapid Start circuits unless the open circuit voltage is greater than 570V, (2) at lamp ambient temperatures below $70^{\circ} \mathrm{F}$ or in drafty locations, (3) in air handling fixtures, (4) on dimming ballasts, (5) on inverter operated emergency lighting systems unless any of the above equipment is specifically listed for 25 watt lamps, or (6) below $60^{\circ} \mathrm{F}$ starting temperature. Any of the above situations could result in lamp starting and stabilization problems, or system compatibility issues.
5. If an operating lamp is exposed to temperatures below $70^{\circ} \mathrm{F}$ or moving air (wind, drafts or air flow from an air conditioning or ventilation system), striation, a rhythmic pulsing pattern of light running the length of the tube and/or a reduction in brightness may occur. While visually disconcerting, neither behavior is damaging to the lamp and removing the cause (draft or temperature) will return the lamp to normal operation.

Item \#	Wattage	Incandescent Wattage Comparison	Initial Lumens	Input Line Current	M.O.L. (inches)	Diameter (inches)	Life vs. Incandescent
1R2004	4	15	130	.15A	3.8	2.5	4X
1R2009	9	25	300	.15A	3.8	2.5	4X
1R2014 \star	$\star \quad 14$	50	500	.23A	4.7	2.5	4X
1R3014 \star	$\star \quad 14$	65	650	.23A	5.1	3.7	4X
1R3016 \star	$\star \quad 16$	75	750	.27A	5.7	3.7	4X
1R4016 *	$\star 16$	75	750	.27A	5.9	4.7	4X
1R4019 ${ }^{\text {® }}$	$\star \quad 19$	85	950	.32A	5.9	4.7	4X
1R4023 \%	- 23	90	1250	.38A	6.5	4.8	3 X
1 P 3016	16	75	750	.27A	5.7	3.7	4X
1P3816 *	$\star \quad 16$	75	750	.27A	5.9	4.6	4X
1P3819 ${ }^{\text {® }}$	$\star \quad 19$	85	950	.32A	5.9	4.6	4X
1P3823 ᄎ	* * 23	90	1200	.38A	6.5	4.7	$3 X$

Special Application Options: (Ordering Sufifix)

- $3100^{\circ} \mathrm{K}(31 \mathrm{~K}), 3500^{\circ} \mathrm{K}(35 \mathrm{~K}), 4100^{\circ} \mathrm{K}(41 \mathrm{~K}), 5100^{\circ} \mathrm{K}(51 \mathrm{~K})$
-Long Neck 1.65"(165), 1.75"(175), 2.25"(225)
- Shatter Resistant (SS) R20 only
- Pink (P), Soft Pink (SP)

SpringLamp ${ }^{\circledR}$ INSIDE technology provides:

- Higher Iumen Output
- Long Lamp Life
- Better lumen maintenance

Ideal for
 Cans

Outdoor Fixtures

Energy Saving Solution for hard to reach light fixtures

Features and Benefits:

* Long life CFL, 8,000 / 6,000 hour average rated life
* NEW Amalgam technology- provides cooler operating temperatures for consistent performance in any position
* No lead glass- Better lumen maintenance over life of bulb
* $2700^{\circ} \mathrm{K}$ color temperature closest to incandescent light
* Medium base
* Replace less often, ideal for hard to reach places
* U.L. Listed for wet locations - use indoors or outdoors
* 12 Month Warranty
* Quickstart technology - fast run up time

Specifications (at full brightness)

End of Life Protection-------------	
Ballast Type	Electronic
Starting Method	Modified Rapid Start
Input Line Voltage	120VAC
Input Line Frequency	50/60HZ
Lamp Life (rated)	8,000 / 6,000 Hours
Color Temperature	$2700^{\circ} \mathrm{K}$
Color Rendering Ind	82
Minimum Starting Temperature	$-20^{\circ} \mathrm{F}$
Maximum Operating Temperature -	$160{ }^{\circ} \mathrm{F}$
U.L. / C.U.L. Listed ---------------	Yes
FCC Compliance -----------------------	Part 18, Subpart C
Lamp Operating Frequency --------	45 KHZ
Lamp Current Crest Factor ---------	< 1.60
Maximum Open Circuit Voltage --	600 V
Power Factor --	> . 50
	< 150\%

TECHNICAL CONSUMER PRODUCTS,INC.

Lighting to the Next Power

Visit www.tcpi.com or call Toll Free 1-800-324-1496

AEP GridSMART

KEMA Operations Manual

Supplement - Summary of Deemed Savings with Multipliers for Incentives Year 2010

From

Summary of Common Deemed Savings Measures

The below table contains prescriptive measures in a convenient format for viewing the default deemed savings. These values are multiplied by business type using the chart found in the next section.

Measure	Unit	Incentive Per Unit	kW Per Unit	Total kWh Per Unit	Years Life	Savings Category
Interior T8/T5 New Fluorescent Fixture w/ Electronic Ballast	Watts Reduced	0.35	0.000916	4.9141	11	Interior Non CFL Lighting
Exterior T8/T5 New Fluorescent Fixture w/ Electronic Ballast	Watts Reduced	0.30	0	4.1	11	Exterior Lighting
Garage T8/T5 New Fluorescent Fixture w/ Electronic Ballast	Watts Reduced	0.35	0.001	8.76	11	Garage Lighting
CFL - Screw-in (15W or Less)	Lamp	2.00	0.029	157	2.5	Interior CFL Lighting
CFL - Screw-in (16W to 26W)	Lamp	2.00	0.054	292	2.5	Interior CFL Lighting
CFL - Screw-in (27W or Greater)	Lamp	3.00	0.069	371	2.5	Interior CFL Lighting
HW CFL - 29W or Less	Fixture	30.00	0.052	280	12	Interior CFL Lighting
HW CFL - 30W or Greater	Fixture	60.00	0.103	551	12	Interior CFL Lighting
Permanent Lamp Removal - 2-ft Lamp	Lamp Removed	5.00	0.019	104.6	11	Interior Non CFL Lighting
Permanent Lamp Removal-3-ft Lamp	Lamp Removed	5.00	0.028	152.3	11	Interior Non CFL Lighting
Permanent Lamp Removal-4-ft Lamp	Lamp Removed	7.00	0.032	172.3	11	Interior Non CFL Lighting
Permanent Lamp Removal - 8-ft Lamp	Lamp Removed	12.00	0.062	333.7	11	Interior Non CFL Lighting
HP or RW T8-4-ft Lamp and Ballast	Lamp	7.00	0.012	62	11	Interior Non CFL Lighting
HP or RW T8-4-ft Reduced Watt Lamp only	Lamp	1.00	0.005	28.8	3	Interior Non CFL Lighting
CFL - Downlight, Dimmable or 3-way	Lamp	10.00	0.05	266	2.5	Interior CFL Lighting
RW T8 - 8-ft Lamp and Ballast	Lamp	7.00	0.015	78.7	11	Interior Non CFL Lighting
RW T8-8-ft Lamp only	Lamp	1.00	0.005	24.6	3	Interior Non CFL Lighting
2-ft T12 to T8	Lamp	6.00	0.01	51.6	11	Interior Non CFL Lighting

3-ft T12 to T8	Lamp	6.00	0.013	69.5	11	Interior Non CFL Lighting
4-ft T12 to T8 Includes U Lamps	Lamp	7.00	0.009	46.7	11	Interior Non CFL Lighting
T12 to T5	Lamp	7.00	0.012	65.1	11	Interior Non CFL Lighting
LED Lamp/Fixture	Lamp	15.00	0.03	160.9	16	Interior CFL Lighting
LED, T-1, or Electroluminescent Exit Signs	Signs	25.00	0.042	343.4	16	None
LED Open Sign	Signs	40.00	0.145	776.7	16	Interior Non CFL Lighting
LED Channel Sign <= 2 feet Interior	Letter	15.00	0.034	147	16	Interior Non CFL Lighting
LED Channel Sign > 2 feet Interior	Letter	45.00	0.086	378	16	Interior Non CFL Lighting
Integrated Ballast Ceramic Metal Halide Lamps	Fixture	10.00	0.044	231.1	8	Interior Non CFL Lighting
Pulse Start or Ceramic, 100W or Less	Fixture	20.00	0.048	211	16	Interior Non CFL Lighting
Pulse Start or Ceramic, 101W-200W	Fixture	35.00	0.065	285	16	Interior Non CFL Lighting
Pulse Start or Ceramic, 201W - 350W	Fixture	40.00	0.126	553	16	Interior Non CFL Lighting
Interior Induction Fixture	Fixture	35.00	0.063	337.7	16	Interior Non CFL Lighting
Cold Cathode	Lamp	5.00	0.02	108	5	Interior CFL Lighting
Occupancy Sensor	Watts Controlled	0.10	0.0003	1.385	8	Interior Non CFL Lighting
Daylight Sensor Controls	Watts Controlled	0.12	0.0003	1.475	8	Interior Non CFL Lighting
Bi-level Stairwell/Hall/Garage Fixture w/ integrated sensors	Fixture	30.00	0	340	11	Interior Non CFL Lighting
Lighting Density	W Reduction	0.40	0.000916	4.914	11	Interior Non CFL Lighting
Exterior High Wattage Screw-in CFLs	Lamp	10.00	0	1382.5	2.5	Exterior Lighting
LED Channel Sign <= 2 feet Outdoor	Letter	6.00	0	93	16	Exterior Lighting
LED Channel Sign > 2 feet Outdoor	Letter	20.00	0	237	16	Exterior Lighting
LED traffic lights Green 8"	Lamp	25.00	0.06	226	10	Exterior Lighting
LED traffic lights Green 12"	Lamp	35.00	0.14	520	10	Exterior Lighting

LED traffic lights - Red 8"	Lamp	25.00	0.06	299	10	Exterior Lighting
LED traffic lights - Red 12"	Lamp	35.00	0.14	694	10	Exterior Lighting
LED traffic lights - Walk/Don't Walk - 9"	Lamp	40.00	0.06	491	10	Exterior Lighting
LED traffic lights - Walk/Don't Walk - 12"	Lamp	50.00	0.11	946	10	Exterior Lighting
Pulse Start or Ceramic, 350W - 400W	Fixture	40.00	0	1623	16	Exterior Lighting
Exterior LED or Induction replacing 175 W or Less HID	Fixture	35.00	0	275	16	Exterior Lighting
Exterior LED or Induction replacing 176W - 250W HID	Fixture	45.00	0	484	16	Exterior Lighting
Exterior LED or Induction replacing 251W - 400W HID	Fixture	65.00	0	589	16	Exterior Lighting
Bi-Level Parking Lot Fixture	Fixture	100.00	0	482	8	Exterior Lighting
Bi-Level Wall Pack Fixture	Fixture	135.00	0	1194	8	Exterior Lighting
Exterior Lighting BiLevel Control w/ Override 150W-1000W HID	Fixture	60.00	0	743	10	Exterior Lighting
Photocells	Watts Controlled	0.05	0	0.28	8	Exterior Lighting
Time Clocks	Watts Controlled	0.05	0	1.248	8	Exterior Lighting
Interior Garage LED or Induction replacing 175W or Less HID	Fixture	65.00	0.042	369	16	Garage Lighting
Interior Garage LED or Induction replacing 176W - 250W HID	Fixture	80.00	0.067	587	16	Garage Lighting
Interior Garage LED or Induction replacing 251W - 400W HID	Fixture	125.00	0.131	1146	16	Garage Lighting
Interior Garage High Wattage Screw-in CFLs	Fixture	20.00	0.158	1382.5	2.5	Garage Lighting
Interior Garage Metal Halides (Pulse start or Ceramic) 350W-400W	Fixture	70.00	0.396	3467	16	Garage Lighting
Exterior Garage High Wattage Screw-in CFLs	Lamp	20.00	0	574.5	2.5	Garage Lighting

VFD for HVAC Fans	HP	60.00	0.025	503	15	VFD for HVAC Fans
VFD for HVAC Pumps	HP	60.00	0.025	503	15	VFD for HVAC Pumps
VFD for Kitchen Exhaust Fan - New Hood	HP	300.00	0.76	4486	15	None
VFD for Kitchen Exhaust Fan - Retrofit Hood	HP	400.00	0.76	4486	15	None
VFD for HVAC Chillers	HP	30.00	0.025	421	15	VFD for HVAC Chillers
Ice Maker 101-200 lbs / 24 hrs	Per Ice Maker	150.00	0.118	1029	12	None
Ice Maker 201-300 lbs / 24 hrs	Per Ice Maker	150.00	0.177	1551	12	None
Ice Maker 301-400 lbs / 24 hrs	Per Ice Maker	150.00	0.21	1840	12	None
Ice Maker 401-500 Ibs / 24 hrs	Per Ice Maker	225.00	0.229	2004	12	None
Ice Maker 501-1000 lbs / 24 hrs	Per Ice Maker	225.00	0.363	3176	12	None
Ice Maker 1001-1500 lbs / 24 hrs	Per Ice Maker	350.00	0.573	5019	12	None
Ice Maker >1500 lbs / 24 hrs	Per Ice Maker	350.00	0.638	5585	12	None
Refrigeration Strip Curtains on Walk-in	Square Foot	4.00	0.01	139	4	None
Refrigeration AntiSweat Heater Controls	Linear Foot	30.00	0.007	402	12	None
Refrigeration EC Motor for Walk-in	Motor	50.00	0.044	401	15	None
Refrigeration EC Motor for Reach-in Refrigerator cases	Motor	35.00	0.033	345	15	None
Refrigeration Evaporator Fan Controls	Motor	60.00	0.06	478	16	None
Refrigeration Door Gaskets	Linear Foot	4.00	0.011	13	4	None
Refrigeration Automatic Door Closers for Walk-in Coolers	Door	70.00	0.137	943	8	None
Refrigeration Automatic Door Closers for Walk-in Freezers	Door	100.00	0.309	2307	8	None

Refrigeration LED Refrigeration Case Lighting	Door	45.00	0.061	375	16	None
Refrigeration ENERGY STAR Solid Door Freezer	Unit	150.00	0.193	1695	12	None
Refrigeration ENERGY STAR Glass Door Freezer	Unit	400.00	0.676	5923	12	None
Food Service Steam Cookers	Unit	450.00	1	4419	12	None
Food Service Combination Oven	Unit	1,500.00	0.96	4208	12	None
Food Service Hot Holding Cabinet	Unit	300.00	0.6	2628	12	None
Food Service Beverage Machine Controls	Unit	100.00	0	1612	10	None
Food Service Snack Machine Controls	Unit	30.00	0	387	10	None
Food Service ENERGY STAR Refrigerated Vending Machine	Unit	150.00	0	1576	14	None
Networked Power Management Software	PC Controlled	10.00	0	200	10	None
Plug Load Occ Sensors	Sensor	20.00	0.091	258	8	None

HVAC Savings

Measure SubCategory	Measure	Building Type	Unit	Coincident kW Savings	kWh Savings
Unitary\&Split AC and ASHP	$\begin{aligned} & <65,000 \text { Btu/h (} 5.4 \text { tons) - } \\ & 14 \text { SEER } \end{aligned}$	College/University	Tons	0.07	49.1
Unitary\&Split AC and ASHP	$\begin{aligned} & <65,000 \text { Btu/h (} 5.4 \text { tons) - } \\ & 14 \text { SEER } \end{aligned}$	Grocery	Tons	0.07	87.8
Unitary\&Split AC and ASHP	$\begin{aligned} & <65,000 \text { Btu/h (} 5.4 \text { tons) - } \\ & 14 \text { SEER } \end{aligned}$	Heavy Industry	Tons	0.07	40.4
Unitary\&Split AC and ASHP	$\begin{aligned} & <65,000 \text { Btu/h (} 5.4 \text { tons) - } \\ & 14 \text { SEER } \end{aligned}$	Hotel/Motel	Tons	0.07	87.3
Unitary\&Split AC and ASHP	$\begin{aligned} & <65,000 \text { Btu/h (} 5.4 \text { tons) }- \\ & 14 \text { SEER } \end{aligned}$	Light Industry	Tons	0.07	41.5
Unitary\&Split AC and ASHP	$\begin{aligned} & \text { < 65,000 Btu/h (} 5.4 \text { tons) - } \\ & 14 \text { SEER } \end{aligned}$	Medical	Tons	0.07	96.7
Unitary\&Split AC and ASHP	$\begin{aligned} & <65,000 \text { Btu/h (} 5.4 \text { tons) - } \\ & 14 \text { SEER } \end{aligned}$	Office	Tons	0.07	41.2
Unitary\&Split AC and ASHP	$\begin{aligned} & \hline<65,000 \text { Btu/h (} 5.4 \text { tons) }- \\ & 14 \text { SEER } \end{aligned}$	Restaurant	Tons	0.07	54.4

Unitary\&Split AC and ASHP	$\begin{aligned} & <65,000 \text { Btu/h (} 5.4 \text { tons) - } \\ & 14 \text { SEER } \end{aligned}$	Retail/Service	Tons	0.07	65
Unitary\&Split AC and ASHP	< 65,000 Btu/h (5.4 tons) - 14 SEER	School	Tons	0.07	20.7
Unitary\&Split AC and ASHP	< 65,000 Btu/h (5.4 tons) - 14 SEER	Warehouse	Tons	0.07	36
Unitary\&Split AC and ASHP	$\begin{aligned} & <65,000 \text { Btu/h (} 5.4 \text { tons) - } \\ & 14 \text { SEER } \end{aligned}$	Miscellaneous	Tons	0.07	56.4
Unitary\&Split AC and ASHP	< 65,000 Btu/h (5.4 tons) 15 SEER	College/University	Tons	0.13	91.6
Unitary\&Split AC and ASHP	< 65,000 Btu/h (5.4 tons) 15 SEER	Grocery	Tons	0.13	164
Unitary\&Split AC and ASHP	< 65,000 Btu/h (5.4 tons) 15 SEER	Heavy Industry	Tons	0.12	75.5
Unitary\&Split AC and ASHP	< 65,000 Btu/h (5.4 tons) 15 SEER	Hotel/Motel	Tons	0.2	163
Unitary\&Split AC and ASHP	< 65,000 Btu/h (5.4 tons) 15 SEER	Light Industry	Tons	0.13	77.4
Unitary\&Split AC and ASHP	< 65,000 Btu/h (5.4 tons) 15 SEER	Medical	Tons	0.13	181
Unitary\&Split AC and ASHP	$\begin{aligned} & <65,000 \text { Btu/h (} 5.4 \text { tons) - } \\ & 15 \text { SEER } \end{aligned}$	Office	Tons	0.13	76.8
Unitary\&Split AC and ASHP	$\begin{aligned} & <65,000 \text { Btu/h (} 5.4 \text { tons) - } \\ & 15 \text { SEER } \end{aligned}$	Restaurant	Tons	0.13	102
Unitary\&Split AC and ASHP	$\begin{aligned} & <65,000 \text { Btu/h (} 5.4 \text { tons) - } \\ & 15 \text { SEER } \end{aligned}$	Retai/Service	Tons	0.13	121
Unitary\&Split AC and ASHP	< 65,000 Btu/h (5.4 tons) 15 SEER	School	Tons	0.12	38.6
Unitary\&Split AC and ASHP	< 65,000 Btu/h (5.4 tons) 15 SEER	Warehouse	Tons	0.13	67.1
Unitary\&Split AC and ASHP	$\begin{aligned} & <65,000 \text { Btu/h (} 5.4 \text { tons) - } \\ & 15 \text { SEER } \end{aligned}$	Miscellaneous	Tons	0.13	105
Unitary\&Split AC and ASHP	$\begin{aligned} & >=65,000 \mathrm{Btu} / \mathrm{h} \text { and }< \\ & 120,000 \mathrm{Btu} / \mathrm{h}(5.5-10 \\ & \text { tons) } \end{aligned}$	College/University	Tons	0.09	64
Unitary\&Split AC and ASHP	>= 65,000 Btu/h and < 120,000 Btu/h (5.5-10 tons)	Grocery	Tons	0.09	114
Unitary\&Split AC and ASHP	>= 65,000 Btu/h and < 120,000 Btu/h (5.5-10 tons)	Heavy Industry	Tons	0.09	52.6
Unitary\&Split AC and ASHP	$>=65,000 \mathrm{Btu} / \mathrm{h}$ and $<$ 120,000 Btu/h (5.5-10 tons)	Hotel/Motel	Tons	0.09	114
Unitary\&Split AC and ASHP	$>=65,000 \mathrm{Btu} / \mathrm{h}$ and $<$ 120,000 Btu/h (5.5-10 tons)	Light Industry	Tons	0.09	54.1
Unitary\&Split AC and ASHP	$>=65,000 \mathrm{Btu} / \mathrm{h}$ and $<$ 120,000 Btu/h (5.5-10 tons)	Medical	Tons	0.1	139
Unitary\&Split AC and	>= 65,000 Btu/h and <	Office	Tons	0.09	53.6

ASHP	$\begin{aligned} & 120,000 \mathrm{Btu} / \mathrm{h}(5.5-10 \\ & \text { tons) } \end{aligned}$				
Unitary\&Split AC and ASHP	$\begin{aligned} & >=65,000 \mathrm{Btu} / \mathrm{h} \text { and }< \\ & 120,000 \mathrm{Btu} / \mathrm{h}(5.5-10 \\ & \text { tons) } \end{aligned}$	Restaurant	Tons	0.09	70.8
Unitary\&Split AC and ASHP	$\begin{aligned} & >=65,000 \mathrm{Btu} / \mathrm{h} \text { and }< \\ & 120,000 \mathrm{Btu} / \mathrm{h}(5.5-10 \\ & \text { tons) } \end{aligned}$	Retail/Service	Tons	0.09	84.7
Unitary\&Split AC and ASHP	$\begin{aligned} & \hline>=65,000 \mathrm{Btu} / \mathrm{h} \text { and }< \\ & 120,000 \mathrm{Btu} / \mathrm{h}(5.5-10 \\ & \text { tons) } \end{aligned}$	School	Tons	0.09	27
Unitary\&Split AC and ASHP	```>= 65,000 Btu/h and < 120,000 Btu/h (5.5-10 tons)```	Warehouse	Tons	0.09	46.8
Unitary\&Split AC and ASHP	$\begin{aligned} & >=65,000 \mathrm{Btu} / \mathrm{h} \text { and }< \\ & 120,000 \mathrm{Btu} / \mathrm{h}(5.5-10 \\ & \text { tons) } \end{aligned}$	Miscellaneous	Tons	0.09	74.6
Unitary\&Split AC and ASHP	$\begin{aligned} & >=120,000 \mathrm{Btu} / \mathrm{h} \text { and }< \\ & 240,000 \mathrm{Btu} / \mathrm{h}(10-20 \text { tons }) \end{aligned}$	College/University	Tons	0.11	71.3
Unitary\&Split AC and ASHP	$\begin{aligned} & >=120,000 \mathrm{Btu} / \mathrm{h} \text { and }< \\ & 240,000 \mathrm{Btu} / \mathrm{h}(10-20 \text { tons }) \end{aligned}$	Grocery	Tons	0.11	127
Unitary\&Split AC and ASHP	$\begin{aligned} & >=120,000 \mathrm{Btu} / \mathrm{h} \text { and }< \\ & 240,000 \mathrm{Btu} / \mathrm{h}(10-20 \text { tons }) \end{aligned}$	Heavy Industry	Tons	0.11	65.4
Unitary\&Split AC and ASHP	$\begin{aligned} & \hline>=120,000 \mathrm{Btu} / \mathrm{h} \text { and }< \\ & 240,000 \mathrm{Btu} / \mathrm{h}(10-20 \text { tons }) \end{aligned}$	Hotel/Motel	Tons	0.12	123
Unitary\&Split AC and ASHP	$\begin{aligned} & \hline>=120,000 \mathrm{Btu} / \mathrm{h} \text { and }< \\ & 240,000 \mathrm{Btu} / \mathrm{h}(10-20 \text { tons }) \end{aligned}$	Light Industry	Tons	0.11	68.9
Unitary\&Split AC and ASHP	$\begin{aligned} & >=120,000 \mathrm{Btu} / \mathrm{h} \text { and }< \\ & 240,000 \mathrm{Btu} / \mathrm{h}(10-20 \text { tons }) \end{aligned}$	Medical	Tons	0.11	126
Unitary\&Split AC and ASHP	$\begin{aligned} & >=120,000 \mathrm{Btu} / \mathrm{h} \text { and }< \\ & 240,000 \mathrm{Btu} / \mathrm{h}(10-20 \text { tons }) \end{aligned}$	Office	Tons	0.12	60.7
Unitary\&Split AC and ASHP	$\begin{aligned} & >=120,000 \mathrm{Btu} / \mathrm{h} \text { and }< \\ & 240,000 \mathrm{Btu} / \mathrm{h}(10-20 \text { tons }) \end{aligned}$	Restaurant	Tons	0.11	82.9
Unitary\&Split AC and ASHP	$\begin{aligned} & >=120,000 \mathrm{Btu} / \mathrm{h} \text { and }< \\ & 240,000 \mathrm{Btu} / \mathrm{h}(10-20 \text { tons }) \end{aligned}$	Retail/Service	Tons	0.11	92.3
Unitary\&Split AC and ASHP	$\begin{aligned} & >=120,000 \mathrm{Btu} / \mathrm{h} \text { and }< \\ & 240,000 \mathrm{Btu} / \mathrm{h}(10-20 \text { tons }) \end{aligned}$	School	Tons	0.11	31.3
Unitary\&Split AC and ASHP	$\begin{aligned} & >=120,000 \mathrm{Btu} / \mathrm{h} \text { and }< \\ & 240,000 \mathrm{Btu} / \mathrm{h}(10-20 \text { tons }) \end{aligned}$	Warehouse	Tons	0.12	58
Unitary\&Split AC and ASHP	$\begin{aligned} & >=120,000 \mathrm{Btu} / \mathrm{h} \text { and }< \\ & 240,000 \mathrm{Btu} / \mathrm{h}(10-20 \text { tons }) \end{aligned}$	Miscellaneous	Tons	0.11	82.3
Unitary\&Split AC and ASHP	$\begin{aligned} & >=240,000 \mathrm{Btu} / \mathrm{h} \text { and < } \\ & 760,000 \mathrm{Btu} / \mathrm{h} \text { (21-63 tons) } \end{aligned}$	College/University	Tons	0.1	66.1
Unitary\&Split AC and ASHP	$\begin{aligned} & \hline>=240,000 \mathrm{Btu} / \mathrm{h} \text { and < } \\ & 760,000 \mathrm{Btu} / \mathrm{h} \text { (21-63 tons) } \end{aligned}$	Grocery	Tons	0.11	117
Unitary\&Split AC and ASHP	$\begin{aligned} & >=240,000 \mathrm{Btu} / \mathrm{h} \text { and < } \\ & 760,000 \mathrm{Btu} / \mathrm{h} \text { (21-63 tons) } \end{aligned}$	Heavy Industry	Tons	0.1	61.9
Unitary\&Split AC and ASHP	$\begin{aligned} & >=240,000 \mathrm{Btu} / \mathrm{h} \text { and < } \\ & 760,000 \mathrm{Btu} / \mathrm{h}(21-63 \text { tons }) \end{aligned}$	Hotel/Motel	Tons	0.11	114
Unitary\&Split AC and ASHP	$\begin{aligned} & \hline>=240,000 \mathrm{Btu} / \mathrm{h} \text { and < } \\ & 760,000 \mathrm{Btu} / \mathrm{h} \text { (21-63 tons) } \end{aligned}$	Light Industry	Tons	0.11	63.9

Unitary\&Split AC and ASHP	$\begin{aligned} & >=240,000 \mathrm{Btu} / \mathrm{h} \text { and }< \\ & 760,000 \mathrm{Btu} / \mathrm{h}(21-63 \text { tons }) \end{aligned}$	Medical	Tons	0.1	116
Unitary\&Split AC and ASHP	$\begin{aligned} & \hline>=240,000 \mathrm{Btu} / \mathrm{h} \text { and }< \\ & 760,000 \mathrm{Btu} / \mathrm{h}(21-63 \text { tons }) \end{aligned}$	Office	Tons	0.11	56.2
Unitary\&Split AC and ASHP	$\begin{aligned} & \hline>=240,000 \text { Btu/h and < } \\ & 760,000 \mathrm{Btu} / \mathrm{h} \text { (21-63 tons) } \end{aligned}$	Restaurant	Tons	0.1	76.7
Unitary\&Split AC and ASHP	$\begin{aligned} & >=240,000 \mathrm{Btu} / \mathrm{h} \text { and < } \\ & 760,000 \mathrm{Btu} / \mathrm{h} \text { (21-63 tons) } \end{aligned}$	Retail/Service	Tons	0.11	90.5
Unitary\&Split AC and ASHP	$\begin{aligned} & >=240,000 \mathrm{Btu} / \mathrm{h} \text { and }< \\ & 760,000 \mathrm{Btu} / \mathrm{h} \text { (21-63 tons) } \end{aligned}$	School	Tons	0.1	28.9
Unitary\&Split AC and ASHP	$\begin{aligned} & \hline>=240,000 \mathrm{Btu} / \mathrm{h} \text { and }< \\ & 760,000 \mathrm{Btu} / \mathrm{h}(21-63 \text { tons }) \end{aligned}$	Warehouse	Tons	0.11	53.8
Unitary\&Split AC and ASHP	$\begin{aligned} & >=240,000 \mathrm{Btu} / \mathrm{h} \text { and }< \\ & 760,000 \mathrm{Btu} / \mathrm{h}(21-63 \text { tons }) \end{aligned}$	Miscellaneous	Tons	0.11	76.8
Unitary\&Split AC and ASHP	$\begin{aligned} & >=760,000 \mathrm{Btu} / \mathrm{h}(>63 \\ & \text { tons) } \end{aligned}$	College/University	Tons	0.08	50.5
Unitary\&Split AC and ASHP	$\begin{aligned} & >=760,000 \mathrm{Btu} / \mathrm{h} \text { (> } 63 \\ & \text { tons) } \end{aligned}$	Grocery	Tons	0.08	89.7
Unitary\&Split AC and ASHP	$\begin{aligned} & >=760,000 \mathrm{Btu} / \mathrm{h}(>63 \\ & \text { tons) } \end{aligned}$	Heavy Industry	Tons	0.08	47.3
Unitary\&Split AC and ASHP	$\begin{aligned} & \hline>=760,000 \mathrm{Btu} / \mathrm{h} \text { (> } 63 \\ & \text { tons) } \\ & \hline \end{aligned}$	Hotel/Motel	Tons	0.08	86.9
Unitary\&Split AC and ASHP	$\begin{aligned} & >=760,000 \mathrm{Btu} / \mathrm{h}(>63 \\ & \text { tons) } \end{aligned}$	Light Industry	Tons	0.08	48.9
Unitary\&Split AC and ASHP	$\begin{aligned} & >=760,000 \mathrm{Btu} / \mathrm{h} \text { (> } 63 \\ & \text { tons) } \end{aligned}$	Medical	Tons	0.08	88.9
Unitary\&Split AC and ASHP	$\begin{aligned} & >=760,000 \mathrm{Btu} / \mathrm{h} \text { (> } 63 \\ & \text { tons) } \end{aligned}$	Office	Tons	0.08	42.4
Unitary\&Split AC and ASHP	$\begin{aligned} & >=760,000 \mathrm{Btu} / \mathrm{h}(>63 \\ & \text { tons) } \end{aligned}$	Restaurant	Tons	0.08	58.7
Unitary\&Split AC and ASHP	$\begin{aligned} & >=760,000 \mathrm{Btu} / \mathrm{h}(>63 \\ & \text { tons) } \end{aligned}$	Retail/Service	Tons	0.08	69.3
Unitary\&Split AC and ASHP	$\begin{aligned} & >=760,000 \mathrm{Btu} / \mathrm{h} \text { (> } 63 \\ & \text { tons) } \end{aligned}$	School	Tons	0.08	22.1
Unitary\&Split AC and ASHP	$\begin{aligned} & >=760,000 \mathrm{Btu} / \mathrm{h}(>63 \\ & \text { tons) } \end{aligned}$	Warehouse	Tons	0.08	41.1
Unitary\&Split AC and ASHP	$\begin{aligned} & >=760,000 \mathrm{Btu} / \mathrm{h}(>63 \\ & \text { tons) } \end{aligned}$	Miscellaneous	Tons	0.08	58.7
Water Cooled Chillers, Centrifugal	<= 150 tons - Level 1	College/University	Tons	0.06	72.4
Water Cooled Chillers, Centrifugal	<= 150 tons - Level 1	Grocery	Tons	0.07	115
Water Cooled Chillers, Centrifugal	<= 150 tons - Level 1	Heavy Industry	Tons	0.07	69.4
Water Cooled Chillers, Centrifugal	<= 150 tons - Level 1	Hotel/Motel	Tons	0.08	104
Water Cooled Chillers, Centrifugal	<= 150 tons - Level 1	Light Industry	Tons	0.07	43.1
Water Cooled Chillers, Centrifugal	<= 150 tons - Level 1	Medical	Tons	0.07	91.2
Water Cooled Chillers,	<= 150 tons - Level 1	Office	Tons	0.07	45.6

Centrifugal					
Water Cooled Chillers, Centrifugal	<= 150 tons - Level 1	Restaurant	Tons	0.07	89.4
Water Cooled Chillers, Centrifugal	<= 150 tons - Level 1	Retail/Service	Tons	0.06	67.3
Water Cooled Chillers, Centrifugal	<= 150 tons - Level 1	School	Tons	0.06	38.7
Water Cooled Chillers, Centrifugal	<= 150 tons - Level 1	Warehouse	Tons	0.07	46.1
Water Cooled Chillers, Centrifugal	<= 150 tons - Level 1	Miscellaneous	Tons	0.07	71.1
Water Cooled Chillers, Centrifugal	<= 150 tons - Level 2	College/University	Tons	0.12	134
Water Cooled Chillers, Centrifugal	<= 150 tons - Level 2	Grocery	Tons	0.13	213
Water Cooled Chillers, Centrifugal	<= 150 tons - Level 2	Heavy Industry	Tons	0.13	129
Water Cooled Chillers, Centrifugal	<= 150 tons - Level 2	Hotel/Motel	Tons	0.15	194
Water Cooled Chillers, Centrifugal	<= 150 tons - Level 2	Light Industry	Tons	0.13	80.1
Water Cooled Chillers, Centrifugal	<= 150 tons - Level 2	Medical	Tons	0.13	169
Water Cooled Chillers, Centrifugal	<= 150 tons - Level 2	Office	Tons	0.13	84.8
Water Cooled Chillers, Centrifugal	<= 150 tons - Level 2	Restaurant	Tons	0.13	166
Water Cooled Chillers, Centrifugal	<= 150 tons - Level 2	Retail/Service	Tons	0.12	125
Water Cooled Chillers, Centrifugal	<= 150 tons - Level 2	School	Tons	0.12	71.8
Water Cooled Chillers, Centrifugal	<= 150 tons - Level 2	Warehouse	Tons	0.13	85.6
Water Cooled Chillers, Centrifugal	<= 150 tons - Level 2	Miscellaneous	Tons	0.13	132
Water Cooled Chillers, Centrifugal	151 to 300 tons - Level 1	College/University	Tons	0.05	62
Water Cooled Chillers, Centrifugal	151 to 300 tons - Level 1	Grocery	Tons	0.06	98.2
Water Cooled Chillers, Centrifugal	151 to 300 tons - Level 1	Heavy Industry	Tons	0.06	59.4
Water Cooled Chillers, Centrifugal	151 to 300 tons - Level 1	Hotel/Motel	Tons	0.07	89.4
Water Cooled Chillers, Centrifugal	151 to 300 tons - Level 1	Light Industry	Tons	0.06	50.1
Water Cooled Chillers, Centrifugal	151 to 300 tons - Level 1	Medical	Tons	0.06	78.1
Water Cooled Chillers, Centrifugal	151 to 300 tons - Level 1	Office	Tons	0.06	39.1
Water Cooled Chillers, Centrifugal	151 to 300 tons - Level 1	Restaurant	Tons	0.06	76.5

Attachment 8 - Prescriptive Lighting Protocols for the work papers that provide all methodologies, protocols and practices used in this application
Page 11 of 206

Water Cooled Chillers, Centrifugal	151 to 300 tons - Level 1	Retail/Service	Tons	0.06	58.7
Water Cooled Chillers, Centrifugal	151 to 300 tons - Level 1	School	Tons	0.06	33.1
Water Cooled Chillers, Centrifugal	151 to 300 tons - Level 1	Warehouse	Tons	0.12	41.5
Water Cooled Chillers, Centrifugal	151 to 300 tons - Level 1	Miscellaneous	Tons	0.07	62.4
Water Cooled Chillers, Centrifugal	151 to 300 tons - Level 2	College/University	Tons	0.11	124
Water Cooled Chillers, Centrifugal	151 to 300 tons - Level 2	Grocery	Tons	0.13	196
Water Cooled Chillers, Centrifugal	151 to 300 tons - Level 2	Heavy Industry	Tons	0.12	119
Water Cooled Chillers, Centrifugal	151 to 300 tons - Level 2	Hotel/Motel	Tons	0.14	179
Water Cooled Chillers, Centrifugal	151 to 300 tons - Level 2	Light Industry	Tons	0.12	100
Water Cooled Chillers, Centrifugal	151 to 300 tons - Level 2	Medical	Tons	0.12	156
Water Cooled Chillers, Centrifugal	151 to 300 tons - Level 2	Office	Tons	0.12	78.1
Water Cooled Chillers, Centrifugal	151 to 300 tons - Level 2	Restaurant	Tons	0.12	153
Water Cooled Chillers, Centrifugal	151 to 300 tons - Level 2	Retail/Service	Tons	0.11	117
Water Cooled Chillers, Centrifugal	151 to 300 tons - Level 2	School	Tons	0.11	66.1
Water Cooled Chillers, Centrifugal	151 to 300 tons - Level 2	Warehouse	Tons	0.18	82.9
Water Cooled Chillers, Centrifugal	151 to 300 tons - Level 2	Miscellaneous	Tons	0.12	125
Water Cooled Chillers, Centrifugal	> 300 tons - Level 1	College/University	Tons	0.05	62
Water Cooled Chillers, Centrifugal	> 300 tons - Level 1	Grocery	Tons	0.06	98.1
Water Cooled Chillers, Centrifugal	> 300 tons - Level 1	Heavy Industry	Tons	0.06	59.4
Water Cooled Chillers, Centrifugal	> 300 tons - Level 1	Hotel/Motel	Tons	0.07	89.3
Water Cooled Chillers, Centrifugal	> 300 tons - Level 1	Light Industry	Tons	0.06	50.1
Water Cooled Chillers, Centrifugal	> 300 tons - Level 1	Medical	Tons	0.06	78
Water Cooled Chillers, Centrifugal	> 300 tons - Level 1	Office	Tons	0.06	39
Water Cooled Chillers, Centrifugal	> 300 tons - Level 1	Restaurant	Tons	0.06	76.5
Water Cooled Chillers, Centrifugal	> 300 tons - Level 1	Retail/Service	Tons	0.06	63
Water Cooled Chillers,	> 300 tons - Level 1	School	Tons	0.06	33

Attachment 8 - Prescriptive Lighting Protocols for the work papers that provide all methodologies, protocols and practices used in this application
Page 12 of 206

Centrifugal					
Water Cooled Chillers, Centrifugal	>300 tons - Level 1	Warehouse	Tons	0.06	44.5
Water Cooled Chillers, Centrifugal	>300 tons - Level 1	Miscellaneous	Tons	0.06	63
Water Cooled Chillers, Centrifugal	>300 tons - Level 2	College/University	Tons	0.1	114
Water Cooled Chillers, Centrifugal	>300 tons - Level 2	Grocery	Tons	0.11	180
Water Cooled Chillers, Centrifugal	>300 tons - Level 2	Heavy Industry	Tons	Tons	0.11

Water Cooled Chillers, Rotary, Scroll, or Screw	$<=150$ tons - Level 1	Miscellaneous	Tons	0.07	54.5
Water Cooled Chillers, Rotary, Scroll, or Screw	$<=150$ tons - Level 2	College/University	Tons	0.12	111
Water Cooled Chillers, Rotary, Scroll, or Screw	$<=150$ tons - Level 2	Grocery	Tons	0.14	166
Water Cooled Chillers, Rotary, Scroll, or Screw	$<=150$ tons - Level 2	Heavy Industry	Tons	0.12	95.3
Water Cooled Chillers, Rotary, Scroll, or Screw	$<=150$ tons - Level 2	Hotel/Motel	Tons	0.14	160
Water Cooled Chillers, Rotary, Scroll, or Screw	$<=150$ tons - Level 2	Light Industry	Tons	Tons\|	0.14

Attachment 8 - Prescriptive Lighting Protocols for the work papers that provide all methodologies, protocols and practices used in this application
Page 14 of 206

Rotary, Scroll, or Screw					
Water Cooled Chillers, Rotary, Scroll, or Screw	151 to 300 tons - Level 2	Grocery	Tons	0.13	154
Water Cooled Chillers, Rotary, Scroll, or Screw	151 to 300 tons - Level 2	Heavy Industry	Tons	0.12	88.7
Water Cooled Chillers, Rotary, Scroll, or Screw	151 to 300 tons - Level 2	Hotel/Motel	Tons	0.13	149
Water Cooled Chillers, Rotary, Scroll, or Screw	151 to 300 tons - Level 2	Light Industry	Tons	0.13	73.3
Water Cooled Chillers, Rotary, Scroll, or Screw	151 to 300 tons - Level 2	Medical	Tons	0.13	140
Water Cooled Chillers, Rotary, Scroll, or Screw	151 to 300 tons - Level 2	Office	Tons	0.13	75.6
Water Cooled Chillers, Rotary, Scroll, or Screw	151 to 300 tons - Level 2	Restaurant	Tons	0.13	109
Water Cooled Chillers, Rotary, Scroll, or Screw	151 to 300 tons - Level 2	Retail/Service	Tons	0.15	103
Water Cooled Chillers, Rotary, Scroll, or Screw	151 to 300 tons - Level 2	School	Tons	0.11	54.7
Water Cooled Chillers, Rotary, Scroll, or Screw	151 to 300 tons - Level 2	Warehouse	Tons	0.19	76
Water Cooled Chillers, Rotary, Scroll, or Screw	151 to 300 tons - Level 2	Miscellaneous	Tons	0.13	102
Water Cooled Chillers, Rotary, Scroll, or Screw	> 300 tons - Level 1	College/University	Tons	0.05	47.8
Water Cooled Chillers, Rotary, Scroll, or Screw	> 300 tons - Level 1	Grocery	Tons	0.06	71.2
Water Cooled Chillers, Rotary, Scroll, or Screw	> 300 tons - Level 1	Heavy Industry	Tons	0.05	41
Water Cooled Chillers, Rotary, Scroll, or Screw	> 300 tons - Level 1	Hotel/Motel	Tons	0.06	68.8
Water Cooled Chillers, Rotary, Scroll, or Screw	> 300 tons - Level 1	Light Industry	Tons	0.06	33.9
Water Cooled Chillers, Rotary, Scroll, or Screw	> 300 tons - Level 1	Medical	Tons	0.06	64.6
Water Cooled Chillers, Rotary, Scroll, or Screw	> 300 tons - Level 1	Office	Tons	0.06	35
Water Cooled Chillers, Rotary, Scroll, or Screw	> 300 tons - Level 1	Restaurant	Tons	0.06	50.4
Water Cooled Chillers, Rotary, Scroll, or Screw	> 300 tons - Level 1	Retail/Service	Tons	0.06	56.9
Water Cooled Chillers, Rotary, Scroll, or Screw	> 300 tons - Level 1	School	Tons	0.05	25.3
Water Cooled Chillers, Rotary, Scroll, or Screw	> 300 tons - Level 1	Warehouse	Tons	0.06	36
Water Cooled Chillers, Rotary, Scroll, or Screw	> 300 tons - Level 1	Miscellaneous	Tons	0.06	48.3
Water Cooled Chillers, Rotary, Scroll, or Screw	> 300 tons - Level 2	College/University	Tons	0.1	87.8
Water Cooled Chillers, Rotary, Scroll, or Screw	> 300 tons - Level 2	Grocery	Tons	0.11	131

Water Cooled Chillers, Rotary, Scroll, or Screw	>300 tons - Level 2	Heavy Industry	Tons	0.1	75.2
Water Cooled Chillers, Rotary, Scroll, or Screw	>300 tons - Level 2	Hotel/Motel	Tons	0.11	126
Water Cooled Chillers, Rotary, Scroll, or Screw	>300 tons - Level 2	Light Industry	Tons	0.11	62.2
Water Cooled Chillers, Rotary, Scroll, or Screw	>300 tons - Level 2	Medical	Tons	0.11	119
Water Cooled Chillers, Rotary, Scroll, or Screw	>300 tons - Level 2				

Attachment 8 - Prescriptive Lighting Protocols for the work papers that provide all methodologies, protocols and practices used in this application
Page 16 of 206

Reciprocal					
Water Cooled Chillers, Reciprocal	Level 2	Light Industry	Tons	0.13	75.9
Water Cooled Chillers, Reciprocal	Level 2	Medical	Tons	0.13	151
Water Cooled Chillers, Reciprocal	Level 2	Office	Tons	0.14	79.9
Water Cooled Chillers, Reciprocal	Level 2	Restaurant	Tons	0.15	114
Water Cooled Chillers, Reciprocal	Level 2	Retai/Service	Tons	0.16	108
Water Cooled Chillers, Reciprocal	Level 2	School	Tons	0.12	57.6
Water Cooled Chillers, Reciprocal	Level 2	Warehouse	Tons	0.14	81.1
Water Cooled Chillers, Reciprocal	Level 2	Miscellaneous	Tons	0.13	108
Air-Cooled Chillers	Air-Cooled Chillers	College/University	Tons	0.15	144
Air-Cooled Chillers	Air-Cooled Chillers	Grocery	Tons	0.16	176
Air-Cooled Chillers	Air-Cooled Chillers	Heavy Industry	Tons	0.15	119
Air-Cooled Chillers	Air-Cooled Chillers	Hotel/Motel	Tons	0.16	201
Air-Cooled Chillers	Air-Cooled Chillers	Light Industry	Tons	0.16	88.2
Air-Cooled Chillers	Air-Cooled Chillers	Medical	Tons	0.16	194
Air-Cooled Chillers	Air-Cooled Chillers	Office	Tons	0.17	102
Air-Cooled Chillers	Air-Cooled Chillers	Restaurant	Tons	0.16	147
Air-Cooled Chillers	Air-Cooled Chillers	Retai//Service	Tons	0.15	136
Air-Cooled Chillers	Air-Cooled Chillers	School	Tons	0.14	73
Air-Cooled Chillers	Air-Cooled Chillers	Warehouse	Tons	0.15	100
Air-Cooled Chillers	Air-Cooled Chillers	Miscellaneous	Tons	0.1	87.1
Air-Cooled Chillers	Air-Cooled Chillers	College/University	Tons	0.15	144
Air-Cooled Chillers	Air-Cooled Chillers	Grocery	Tons	0.16	176
Air-Cooled Chillers	Air-Cooled Chillers	Heavy Industry	Tons	0.15	119
Air-Cooled Chillers	Air-Cooled Chillers	Hotel/Motel	Tons	0.16	201
Air-Cooled Chillers	Air-Cooled Chillers	Light Industry	Tons	0.17	106
Air-Cooled Chillers	Air-Cooled Chillers	Medical	Tons	0.16	194
Air-Cooled Chillers	Air-Cooled Chillers	Office	Tons	0.17	102
Air-Cooled Chillers	Air-Cooled Chillers	Restaurant	Tons	0.16	147
Air-Cooled Chillers	Air-Cooled Chillers	Retai/Service	Tons	0.15	141
Air-Cooled Chillers	Air-Cooled Chillers	School	Tons	0.14	73
Air-Cooled Chillers	Air-Cooled Chillers	Warehouse	Tons	0.15	105
Air-Cooled Chillers	Air-Cooled Chillers	Miscellaneous	Tons	0.1	88.7
Air-Cooled Chillers	Air-Cooled Chillers	College/University	Tons	0.15	144
Air-Cooled Chillers	Air-Cooled Chillers	Grocery	Tons	0.16	176
Air-Cooled Chillers	Air-Cooled Chillers	Heavy Industry	Tons	0.15	119
Air-Cooled Chillers	Air-Cooled Chillers	Hotel/Motel	Tons	0.16	201
Air-Cooled Chillers	Air-Cooled Chillers	Light Industry	Tons	0.17	106
Air-Cooled Chillers	Air-Cooled Chillers	Medical	Tons	0.16	194
Air-Cooled Chillers	Air-Cooled Chillers	Office	Tons	0.17	102

Air-Cooled Chillers	Air-Cooled Chillers	Restaurant	Tons	0.16	147
Air-Cooled Chillers	Air-Cooled Chillers	Retai//Service	Tons	0.15	137
Air-Cooled Chillers	Air-Cooled Chillers	School	Tons	0.14	73
Air-Cooled Chillers	Air-Cooled Chillers	Warehouse	Tons	0.15	102
Air-Cooled Chillers	Air-Cooled Chillers	Miscellaneous	Tons	0.1	88.3
Room Air Conditioners	Room AC < 8,000 Btu/h (0.67 tons)	College/University	Tons	0.15	116
Room Air Conditioners	Room AC < 8,000 Btu/h (0.67 tons)	Grocery	Tons	0.15	116
Room Air Conditioners	Room AC $<8,000$ Btu/h (0.67 tons)	Heavy Industry	Tons	0.15	116
Room Air Conditioners	Room AC < 8,000 Btu/h (0.67 tons)	Hotel/Motel	Tons	0.15	116
Room Air Conditioners	Room AC < 8,000 Btu/h (0.67 tons)	Light Industry	Tons	0.15	116
Room Air Conditioners	Room AC < 8,000 Btu/h (0.67 tons)	Medical	Tons	0.15	116
Room Air Conditioners	Room AC < 8,000 Btu/h (0.67 tons)	Office	Tons	0.15	116
Room Air Conditioners	Room AC < 8,000 Btu/h (0.67 tons)	Restaurant	Tons	0.15	116
Room Air Conditioners	Room AC < 8,000 Btu/h (0.67 tons)	Retail/Service	Tons	0.15	116
Room Air Conditioners	Room AC < 8,000 Btu/h (0.67 tons)	School	Tons	0.15	116
Room Air Conditioners	Room AC < 8,000 Btu/h (0.67 tons)	Warehouse	Tons	0.15	116
Room Air Conditioners	Room AC < 8,000 Btu/h (0.67 tons)	Miscellaneous	Tons	0.15	116
Room Air Conditioners	Room AC >= 8,000 Btu/h and $<14,000$ Btu/h (0.67 1.2 tons)	College/University	Tons	114	0.15
Room Air Conditioners	Room AC >= 8,000 Btu/h and $<14,000$ Btu/h (0.67 1.2 tons)	Grocery	Tons	114	0.15
Room Air Conditioners	Room AC >= 8,000 Btu/h and $<14,000 \mathrm{Btu} / \mathrm{h}$ (0.671.2 tons)	Heavy Industry	Tons	114	0.15
Room Air Conditioners	Room AC >= 8,000 Btu/h and $<14,000 \mathrm{Btu} / \mathrm{h}$ (0.67 1.2 tons)	Hotel/Motel	Tons	114	0.15
Room Air Conditioners	Room AC >=8,000 Btu/h and < 14,000 Btu/h (0.671.2 tons)	Light Industry	Tons	114	0.15
Room Air Conditioners	Room AC >= 8,000 Btu/h and $<14,000$ Btu/h (0.67 1.2 tons)	Medical	Tons	114	0.15
Room Air Conditioners	Room AC >=8,000 Btu/h and < 14,000 Btu/h (0.671.2 tons)	Office	Tons	114	0.15
Room Air Conditioners	Room AC >= 8,000 Btu/h	Restaurant	Tons	114	0.15

	$\begin{aligned} & \text { and }<14,000 \mathrm{Btu} / \mathrm{h}(0.67- \\ & 1.2 \text { tons }) \end{aligned}$				
Room Air Conditioners	Room AC >= 8,000 Btu/h and < 14,000 Btu/h (0.671.2 tons)	Retail/Service	Tons	114	0.15
Room Air Conditioners	Room AC >= 8,000 Btu/h and < 14,000 Btu/h (0.671.2 tons)	School	Tons	114	0.15
Room Air Conditioners	Room AC >= 8,000 Btu/h and < 14,000 Btu/h (0.671.2 tons)	Warehouse	Tons	114	0.15
Room Air Conditioners	Room AC >=8,000 Btu/h and $<14,000 \mathrm{Btu} / \mathrm{h}$ (0.67 1.2 tons)	Miscellaneous	Tons	114	0.15
Room Air Conditioners	Room AC >= 14,000 Btu/h and < 20,000 Btu/h (1.31.7 tons)	College/University	Tons	0.15	116
Room Air Conditioners	Room AC >= 14,000 Btu/h and < 20,000 Btu/h (1.31.7 tons)	Grocery	Tons	0.15	116
Room Air Conditioners	Room AC >= 14,000 Btu/h and $<20,000$ Btu/h (1.31.7 tons)	Heavy Industry	Tons	0.15	116
Room Air Conditioners	Room AC >= 14,000 Btu/h and < 20,000 Btu/h (1.31.7 tons)	Hotel/Motel	Tons	0.15	116
Room Air Conditioners	Room AC >= 14,000 Btu/h and $<20,000$ Btu/h (1.31.7 tons)	Light Industry	Tons	0.15	116
Room Air Conditioners	Room AC >= 14,000 Btu/h and $<20,000$ Btu/h (1.31.7 tons)	Medical	Tons	0.15	116
Room Air Conditioners	$\begin{aligned} & \text { Room AC >= 14,000 Btu/h } \\ & \text { and }<20,000 \mathrm{Btu} / \mathrm{h}(1.3- \\ & 1.7 \text { tons) } \end{aligned}$	Office	Tons	0.15	116
Room Air Conditioners	$\begin{aligned} & \text { Room AC }>=14,000 \mathrm{Btu} / \mathrm{h} \\ & \text { and }<20,000 \mathrm{Btu} / \mathrm{h}(1.3- \\ & 1.7 \text { tons) } \end{aligned}$	Restaurant	Tons	0.15	116
Room Air Conditioners	Room AC >= 14,000 Btu/h and < 20,000 Btu/h (1.31.7 tons)	Retail/Service	Tons	0.15	116
Room Air Conditioners	Room AC >= 14,000 Btu/h and $<20,000$ Btu/h (1.31.7 tons)	School	Tons	0.15	116
Room Air Conditioners	Room AC >= 14,000 Btu/h and $<20,000$ Btu/h (1.31.7 tons)	Warehouse	Tons	0.15	116
Room Air Conditioners	Room AC >= 14,000 Btu/h and < 20,000 Btu/h (1.31.7 tons)	Miscellaneous	Tons	0.15	116
Room Air Conditioners	Room AC >= 20,000 Btu/h	College/University	Tons	0.17	131

	(> 1.7 tons)				
Room Air Conditioners	Room AC >= 20,000 Btu/h (> 1.7 tons)	Grocery	Tons	0.17	131
Room Air Conditioners	Room AC >=20,000 Btu/h (> 1.7 tons)	Heavy Industry	Tons	0.17	131
Room Air Conditioners	Room AC >= 20,000 Btu/h (> 1.7 tons)	Hotel/Motel	Tons	0.17	131
Room Air Conditioners	Room AC >= 20,000 Btu/h (> 1.7 tons)	Light Industry	Tons	0.17	131
Room Air Conditioners	Room AC >= 20,000 Btu/h (>1.7 tons)	Medical	Tons	0.17	131
Room Air Conditioners	$\begin{aligned} & \text { Room AC >= 20,000 Btu/h } \\ & \text { (> } 1.7 \text { tons) } \end{aligned}$	Office	Tons	0.17	131
Room Air Conditioners	Room AC >= 20,000 Btu/h (> 1.7 tons)	Restaurant	Tons	0.17	131
Room Air Conditioners	Room AC >= 20,000 Btu/h (>1.7 tons)	Retail/Service	Tons	0.17	131
Room Air Conditioners	Room AC >= 20,000 Btu/h (> 1.7 tons)	School	Tons	0.17	131
Room Air Conditioners	Room AC >= 20,000 Btu/h (> 1.7 tons)	Warehouse	Tons	0.17	131
Room Air Conditioners	$\begin{aligned} & \text { Room AC >= 20,000 Btu/h } \\ & \text { (> } 1.7 \text { tons) } \end{aligned}$	Miscellaneous	Tons	0.17	131
PTAC/PTHP	PTAC/PTHP	College/University	Tons	0.22	211
PTAC/PTHP	PTAC/PTHP	Grocery	Tons	0.22	301
PTAC/PTHP	PTAC/PTHP	Heavy Industry	Tons	0.22	147
PTAC/PTHP	PTAC/PTHP	Hotel/Motel	Tons	0.22	328
PTAC/PTHP	PTAC/PTHP	Light Industry	Tons	0.22	147
PTAC/PTHP	PTAC/PTHP	Medical	Tons	0.22	315
PTAC/PTHP	PTAC/PTHP	Office	Tons	0.22	136
PTAC/PTHP	PTAC/PTHP	Restaurant	Tons	0.22	288
PTAC/PTHP	PTAC/PTHP	Retail/Service	Tons	0.22	216
PTAC/PTHP	PTAC/PTHP	School	Tons	0.22	105
PTAC/PTHP	PTAC/PTHP	Warehouse	Tons	0.22	148
PTAC/PTHP	PTAC/PTHP	Miscellaneous	Tons	0.22	219

Motor Coincident kW Savings

	1200 RPM		1800 RPM		3600 RPM	
MOTOR HORSEPOWER	ODP MOTOR Coincident Demand Reduction (kW)	TEFC MOTOR Coincident Demand Reduction (kW)	ODP MOTOR Coincident Demand Reduction (kW)	TEFC MOTOR Coincident Demand Reduction (kW)	ODP MOTOR Coincident	TEFC Demand Reduction (kW)
1	MOTOR Coincident Demand Reduction (kW)					
1.5	0.016	0.016	0.018	0.018	0.011	0.011
2	0.021	0.017	0.021	0.021	0.013	0.013
3	0.022	0.022	0.028	0.028	0.017	0.017
5	0.032	0.032	0.048	0.032	0.026	0.017
7.5	0.053	0.053	0.053	0.053	0.028	0.027
10	0.066	0.057	0.096	0.083	0.040	0.039
	0.075	0.076	0.111	0.111	0.052	0.036

Attachment 8 - Prescriptive Lighting Protocols for the work papers that provide all methodologies, protocols and practices used in this application
Page 20 of 206

15	0.113	0.113	0.147	0.103	0.054	0.061
20	0.138	0.150	0.196	0.196	0.081	0.081
25	0.158	0.158	0.229	0.144	0.087	0.087
30	0.172	0.189	0.243	0.172	0.104	0.104
40	0.208	0.208	0.208	0.208	0.137	0.137
50	0.260	0.260	0.353	0.353	0.145	0.145
60	0.253	0.253	0.391	0.391	0.171	0.171
75	0.316	0.316	0.313	0.450	0.214	0.214
100	0.417	0.417	0.600	0.413	0.285	0.235
125	0.521	0.521	0.517	0.517	0.294	0.288
150	0.620	0.546	0.546	0.546	0.353	0.346
200	0.827	0.728	0.728	1.087	0.461	0.365

Motor kWh Savings

	1200 RPM		1800 RPM		3600 RPM	
MOTOR HORSEPOWER	ODP MOTOR Annual Savings (kWh)	TEFC MOTOR Annual Savings (kWh)	ODP MOTOR Annual Savings (kWh)	TEFC MOTOR Annual Savings (kWh)	ODP MOTOR Annual Savings (kWh)	TEFC MOTOR Annual Savings (kWh)
1	58	58	65	65		40
1.5	79	62	79	79	50	50
2	82	80	106	106	64	64
3	120	118	179	118	96	62
5	196	196	196	196	104	99
7.5	303	262	442	381	184	180
10	344	349	509	509	240	165
15	516	516	673	474	247	277
20	632	688	897	897	370	370
25	867	867	1,259	789	477	477
30	947	1,041	1,335	947	573	573
40	1,144	1,144	1,144	1,144	752	752
50	1,430	1,430	1,942	1,942	794	794
60	1,820	1,820	2,817	2,817	1,233	1,233
75	2,275	2,275	2,251	3,238	1,541	1,541
100	3,002	3,002	4,318	2,977	2,055	1,693
125	3,661	3,661	3,631	3,631	2,065	2,025
150	4,357	3,836	3,836	3,836	2,477	2,431
200	5,809	5,115	5,115	7,640	3,241	2,568

Savings Multipliers for Business Types

Savings claimed in the 2010 AEP GridSMART Program varies by business type. Savings presented in this document are averages across different business types. To calculate savings for a particular building type the appropriate multiplier need to be applied to the average savings value. The following table presents these KEMA calculated multipliers. The multipliers can vary across business and measure types. They also can differ for kW and kWh savings given a single measure type and business type.
For Light Industrial, Heavy Industrial and Warehouse business types, further breakdowns are used. Since these sectors present a wide range of operating hours, multipliers have been determined for 24/7, 16/5 and 8/5 facility schedules.

Measure and Building Type Multipliers

AEP GridSMART

KEMA Operations Manual
 Appendix A - AEP Ohio Prescriptive Lighting Protocols

From

Table of Contents

Lighting 3
Compact Fluorescent Lamps, Screw-In. 11
T5 Lamp and Ballast 15
High Performance and Reduced Wattage 4-foot T8 Lamps and Ballast 17
High-Performance T8 Specifications 18
Reduced Wattage 4-foot Lamp Only 21
Reduced Wattage 8-foot 24
U-Tube T8 Lamps and Ballast. 27
2-foot \& 3-foot T8 Lamps and Ballast 30
Ceramic Metal Halides or Pulse Start Metal Halides 33
Table 42 Ceramic Metal Halides or Pulse Start Metal Halides 33
New T5/T8 Fluorescent Fixtures 37
Exit Signs 39
LED Lamps 42
LED Refrigerated Case Lighting 45
LED Open Signs 47
LED Channel Signs, Indoor. 50
Interior Induction Fixtures 52
Compact Fluorescent Fixtures, Hardwired 55
Cold Cathode. 59
Specialty Screw-In CFL 62
Permanent Lamp Removal 64
Occupancy Sensors 68
Plug Load Occupancy Sensors 71
Daylighting Controls 73
Bi-level Stairwell/Hall/Garage Light Fixtures 75
Sensor-controlled LED Parking Lot Bi-Level Fixture 77
Sensor-controlled Wallpack Fixtures 79
Exterior LED and Induction Lighting 81
New T5/T8 Fluorescent Fixtures (Parking Garage) 85
High Wattage Screw-In CFLs for Parking Structures 88
Ceramic Metal Halides or Pulse Start Metal Halides (Parking Lots and Garages) 91
LED Channel Signs, Outdoor. 95
Photocells 97
Time Clocks for Lighting 99
LED Traffic Signals 101
Lighting Density 103
Cooling 106
Unitary or Split Air Conditioning Systems and Air Source Heat Pumps 107
Water-Cooled Chillers and Air-Cooled Chillers 111
Room Air Conditioners 114
Package Terminal Air Conditioners/Heat Pumps 117
Lodging - Guest Room Energy Management System (GREM) 119
Variable-Speed Drives for HVAC Applications 120
Commercial Kitchen Demand Ventilation Controls 122
Premium Motors 124
NEMA ${ }^{\circledR}$ Premium-Efficiency Motors 125
Refrigeration 132
Strip Curtains 133
Anti-Sweat Heater Controls 137
Electronically Commutated Motors (ECM) 139
Refrigeration Economizer 143
Evaporator Fan Control 145
Automatic Door Closer for Walk-In Coolers 147
Automatic Door Closer for Walk-in Freezers 148
Door Gaskets 149
LED Refrigerated Case Lighting 151
Beverage Machine Controls 153
Snack Machine Controls 154
ENERGY STAR Refrigerated Beverage Vending Machine 155
Food Service 159
ENERGY STAR® Combination Oven 163
ENERGY STAR® Hot Food Holding Cabinet 167
ENERGY STAR® Solid Door Reach-In Freezer 169
ENERGY STAR® Solid Door Reach-In Freezer 171
Miscellaneous 173
Engineered Nozzle 174
Network PC Management Software 178
Addendum: Savings Multipliers for Business Types 181

Attachment 8 - Prescriptive Lighting Protocols for the work papers that provide all methodologies, protocols and practices used in this application
Page 26 of 206

Lighting

Most lighting measures presented in these work papers use the same methodology. The following provides the assumptions and methods used for calculating energy savings.

Baseline and retrofit equipment assumptions, i.e. wattages, are specific to the measure. Most lighting retrofits assume an early replacement of existing technologies where the baseline represents the equipment removed.

Savings are calculated by appyling operating hours and other parameters that define the energy savings. These workpapers base the energy savings methodology on the California 2005 DEER Study ${ }^{1}$ assumptions. The DEER database is a tool that was jointly developed by the California Public Utilities Commission (CPUC) and the California Energy Commission with support and input from the Investor-Owned Utilities and other interested stakeholders. DEER provides operating hours, interative effects and coincidence factors by building type; however, savings for AEP Ohio Program will not be dependent on building type. Savings presented here are calculated using averages of DEER building type values.

Lighting factors used in savings calculations are listed in the table below. This document explains how these values and the resulting savings were derived.

Table 1: Average Lighting Factors

CFL Annual Operating Hours	Other Anhnual Operating Hours	Demand Interactive Effects	Coincident Diversity Factors	Energy Interactive Effects
4,321	4,389	1.19	0.77	1.12

Annual energy savings and the peak coincident demand savings were calculated using the equations below:

Non-coincident kW reduction $=\mathrm{kW}$ of existing equipment -kW of replacement equipment
Energy savings are based on the difference between baseline and efficient equipment connected wattage and annual operating hours, according to the following formula:

[^1]kWh Reduction $=(\mathrm{kW}$ of existing equipment -kW of replacement equipment) * (Annual operating hours)*(Energy Interactive Effects)

Coincident demand savings are calculated by applying the coincidence factor and the demand interactive effect, according to the following formula:

Coincident kW savings = non-coincident kW savings * Coincidence Factor * Demand interactive effect

Interactive factors account for savings that the measures achieve through avoided air conditioning load because of reduced internal heat gains from energy-efficient lighting. The interactive effects do not apply to exterior lighting.

The annual operating hours, the coincidence factors, and the interactive effect factors are all derived from DEER figures.

The following table lists building types set by DEER. A straight average across DEER building types would heavily weight sectors that happen to have multiple DEER categories. For instance, DEER has four sectors in education and only two in medical. A straight average of operating hours would have weighted the education sector twice as heavily as the medical sector where in reality the two are similar in electric demand. ${ }^{2}$ Instead, our average values are that of sector groupings as stated in the table below.

[^2]Attachment 8 - Prescriptive Lighting Protocols for the work papers that provide all methodologies, protocols and practices used in this application Page 29 of 206

Table 2: DEER Building Types

DEER	Average Grouping
Education - Primary School	K-12 School
Education - Secondary School	
Education - Community College	College/University
Education - University	Grocery
Grocery	Medical
Health/Medical - Hospital	Hotel/Motel
Health/Medical - Nursing Home	
Lodging - Hotel	Light Industry
Lodging - Motel	Office
Lodging - Guest Room	Restaurant
Manufacturing - Light Industrial	
Office - Large	Retail/Service
Office - Small	
Restaurant - Sit-Down	Restaurant - Fast-Food
Retail - 3-Story Large	
Retail - Single-Story Large	
Retail - Small	Warehouse
Storage - Conditioned	
Storage - Unconditioned	
Warehouse - Refrigerated	

The following tables list DEER values. Compact fluorescent lamps (CFLs), LED lighting (unless otherwise noted), and integrated ballast ceramic metal halides have CFL lighting operating hours. Other lighting categories have different operating hours as shown below.

Table 3: Interactive Effects by Building Type from DEER

DEER Market Sector	Demand Interactive Effects	Energy Interactive Effects
Education - Primary School	1.23	1.15
Education - Secondary School	1.23	1.15
Education - Community College	1.22	1.15
Education - University	1.22	1.15
Grocery	1.25	1.13
Medical - Hospital	1.26	1.18
Medical - Clinic	1.26	1.18
Lodging Hotel	1.14	1.14
Lodging Motel	1.14	1.14
Lodging - Guest Rooms	1.14	1.14
Manufacturing - Light Industrial	1.08	1.04
Office - Large	1.25	1.17
Office - Small	1.25	1.17
Restaurant - Sit-Down	1.26	1.15
Restaurant - Fast-Food	1.26	1.15
Retail - 3-Story Large	1.19	1.11
Retail - Single-Story Large	1.19	1.11
Retail - Small	1.19	1.11
Storage Conditioned	1.09	1.06
Storage Unconditioned	1.09	1.06
Warehouse	1.09	1.06

Table 4: Coincident Diversity Factors from DEER

DEER Market Sector	Coincident Diversity Factors
Education - Primary School	0.42
Education - Secondary School	0.42
Education - Community College	0.68
Education - University	0.68
Grocery	0.81
Medical - Hospital	0.74
Medical - Clinic	0.74
Lodging Hotel	0.67
Lodging Motel	0.67
Lodging - Guest Rooms	0.67
Manufacturing - Light Industrial	0.99
Office - Large	0.81
Office - Small	0.81
Restaurant - Sit-Down	0.68
Restaurant - Fast-Food	0.68
Retail - 3-Story Large	0.88
Retail - Single-Story Large	0.88
Retail - Small	0.88
Storage Conditioned	0.84
Storage Unconditioned	0.84
Warehouse	0.84

Table 5: Annual Operating Hours from DEER

DEER Market Sector	CFL Annual Operating Hours	Other Lighting Annual Operating Hours
Education - Primary School	1,440	1,440
Education - Secondary School	2,305	2,305
Education - Community College	3,792	3,792
Education - University	3,073	3,073
Grocery	5,824	5,824
Medical - Hospital	8,736	8,736
Medical - Clinic*	4,212	4,212
Lodging Hotel	8,736	8,736
Lodging Motel	8,736	8,736
Lodging - Guest Rooms	1,145	NA
Manufacturing - Light Industrial*	4,290	4,290
Office - Large	2,739	2,808
Office - Small	2,492	2,808
Restaurant - Sit-Down	3,444	4,368
Restaurant - Fast-Food	6,188	6,188
Retail - 3-Story Large	4,259	4,259
Retail - Single-Story Large	4,368	4,368
Retail - Small	3,724	4,004
Storage Conditioned*	2,860	4,859
Storage Unconditioned*	2,860	4,859
Warehouse*	2,600	4,859
Not from DEER		

Industrial-operating hours are assumed based on the following sources:

- DEER estimates hours to be 2,860 .
- Efficiency Vermont Technical Reference User Manual's (No. 2004-29) estimates 5,913 hours.
- The 2004-2005 PG\&E work papers assumed 6,650 hours for process industrial and 4,400 for assembly industrial.

DEER's estimated hours are far lower than figures other sources have provided and so we have increased the DEER values by 50% or to 4,290 hours. This value is reasonable and on the conservative side of the averages. We will use this conservative value until more data is available for AEP Ohio or other MidWestern utility territory.

Similarly, we believe that the DEER storage and warehouse operating hours are low as well. Using data from other programs in the region, KEMA has seen average operating hours that are significantly higher and is using a higher value of 4,859 as a better estimate of deemed operating hours for this region.

DEER has set Medical-Hospital operating hours at 8,736. We have lowered this value for the purposes of calculating our average by using operating hours that are 50% above that of offices or 4,212 hours (Medical-Clinic operating hours). This reduction accounts for areas in medical facilities that behave more like offices and do not operate around the clock. The value used in our calculations is the average of the DEER Hospital and the revised clinic operating hours.

Hotel/Motel operating hours are the average of guest room hours and either hotel or motel operating hours since a facility can only be one or the other.

Incremental costs are taken from a number of sources. The AEP Ohio 2009-2028 Energy Efficiency/Peak Demand Reduction Potential Study conducted in August of 2009 provides costs for some measures. Since this study was prepared specifically for AEP, the utility's costs are used whenever applicable. Because some measures listed in the study do not match with that of the program, costs are derived from other sources as well including DEER, KEMA, and the Commonwealth Edison Company's 2008-10 Energy Efficiency and Demand Response Plan prepared by ICF International. The ICF document is referenced as the ICF Portfolio Plan.

Compact Fluorescent Lamps, Screw-In

Table 6 Compact Fluorescent Lamps, Screw-In

Measure Description	ENERGY STAR-rated CFLs with lamp/ballast efficacy of ≥ 40 lumens per Watt. Measure applies only if incandescent or HID lamps are being replaced.
Units	Per lamp
Base Case Description	Incandescent or HID lamps.
Measure Savings	Source: KEMA
Measure Incremental Cost	Source: AEP Ohio Potential Study
Effective Useful Life	Source: DEER 2.5 years

This incentive applies to screw-in lamps and applies only if an incandescent or high-intensity discharge (HID) lamp is being replaced. All screw-in CFLs must be ENERGY STAR® rated. The lamp/ballast combination must have an efficacy ≥ 40 lumens per Watt (LPW). For screw-in CFLs, electronic ballasts are required for lamps ≥ 18 Watts.

Measure Savings

Baseline and retrofit equipment assumptions are presented in the next table. Most lighting retrofits assume an early replacement of existing technologies where the baseline represents the equipment removed. The table shows the wattages used for the savings calculations.

Table 7: Baseline and Retrofit Wattages

Measure	Base Wattage (Watts)	Retrofit Wattage (Watts)	kW Reductions (kW)
15 W or less	75	15	0.060
15 W or less	60	15	0.045
15 W or less	60	14	0.046
15 W or less	50	14	0.036
15 W or less	65	13	0.052
15 W or less	60	13	0.047
15 W or less	40	13	0.027
15 W or less	40	11	0.029
15 W or less	40	10	0.030
15 W or less	35	7	0.028
15 W or less	30	7	0.023
15 W or less	25	7	0.018
15 W or less	30	9	0.021
15 W or less	25	9	0.016
15 W or less	25	5	0.020
15 W or less	20	5	0.015
16W-25W	100	25	0.075
16W-25W	75	25	0.05
16W-25W	100	23	0.077
16W-25W	100	20	0.08
16W-25W	75	20	0.055
16W-25W	75	19	0.056
16W-25W	75	18	0.057
16W-25W	60	18	0.042
16W-25W	60	16	0.044
26W and Greater	150	40	0.11
26W and Greater	150	36	0.114
26W and Greater	100	30	0.07
26W and Greater	100	28	0.072
26W and Greater	100	26	0.074
26W and Greater	75	26	0.049

Table 8 Wattage Reduction

Wattage Category	Average Wattage Reduction
≤ 15	32
16 to 26	60
>26	76

The following tables provide the measure savings using the above wattage reduction assumptions.

Table 9 Measure Savings for 15 W or less

Annual Operating Hours	Demand Interactive Effects	Coincident Diversity Factors	Energy Interactive Effects	Peak kW Savings	kWh Savings
4,321	1.19	0.77	1.12	0.029	155

Table 10 Measure Savings for 16 - 26 W

Annual Operating Hours	Demand Interactive Effects	Coincident Diversity Factors	Energy Interactive Effects	Peak kW Savings	kWh Savings
4,321	1.19	0.77	1.12	0.054	290

Table 11 Measure Savings for > $\mathbf{2 6}$ W

Annual Operating Hours	Demand Interactive Effects	Coincident Diversity Factors	Energy Interactive Effects	Peak kW Savings	kWh Savings
4,321	1.19	0.77	1.12	0.069	368

Measure Savings Analysis

Annual energy savings and the peak coincident demand savings were calculated using the equations below.

Noncoincident kW reduction $=\mathrm{kW}$ of existing equipment -kW of replacement equipment

Energy savings are based on the difference between baseline and efficient equipment connected wattage and annual operating hours, according to the following formula:
kWh Reduction $=(\mathrm{kW}$ of existing equipment -kW of replacement equipment) * (Annual operating hours)*(Energy Interactive Effects)

Coincident demand savings are calculated by applying the coincidence factor and the demand interactive effect, according to the following formula:

> Coincident kW savings = noncoincident kW savings * Coincidence Factor * Demand interactive effect

Interactive factors account for savings that the measures achieve through avoided air conditioning load because of reduced internal heat gains from energy-efficient lighting.

The annual operating hours, the coincidence factors, and the interactive effect factors are all derived from DEER figures. ${ }^{3}$

Measure Life and Incremental Measure Cost

The following table provides the measure life and incremental measure cost (IMC) documented for this measure as well as the source of the data.

Incremental cost is the cost difference between the energy-efficient equipment and the less efficient option. For lighting measures, the IMC is equal to the full measure cost since the cost of the less efficient option, i.e., not conducting the retrofit, is $\$ 0$.

Table 12 Measure Life and Incremental Measure Cost

Wattage Category	Value	Source	
All	Measure Life	2.5	DEER 2005
$\leq 15 \mathrm{~W}$	Incremental Measure Cost	$\$ 4.13$	AEP Ohio Potential Study
$16 \mathrm{~W}-26 \mathrm{~W}$	Incremental Measure Cost	$\$ 4.13$	AEP Ohio Potential Study
$>26 \mathrm{~W}$	Incremental Measure Cost	$\$ 4.13$	AEP Ohio Potential Study

[^3]
T5 Lamp and Ballast

T5 Lamp and Ballast			
	This measure consists of replacing 4 foot T12 lamps and magnetic ballasts with T5 lamps and electronic ballast. The T5 lamps must have a color rendering index (CRI) ≥ 80. The electronic ballast must be high frequency ($\geq 20 \mathrm{kHz}$), UL listed, and warranted against defects for 5 years. Ballasts must have a power factor (PF) ≥ 0.90 and a total harmonic distortion (THD) ≤ 20 percent at full light output.		
Units	Per Lamp		
Base Case Description	T12 lamps with magnetic ballasts.		
Measure Savings	Source: KEMA		
Measure Incremental Cost	Source: KEMA		
Effective Useful Life	Source: DEER 11 years		

This measure consists of replacing 4 foot T12 lamps and magnetic ballasts with T5 lamps and electronic ballast. The T5 lamps must have a color rendering index (CRI) ≥ 80. The electronic ballast must be high frequency ($\geq 20 \mathrm{kHz}$), UL listed, and warranted against defects for 5 years. Ballasts must have a power factor (PF) ≥ 0.90 and a total harmonic distortion (THD) ≤ 20 percent at full light output.

Measure Savings

The savings are presented in the following table. The annual operation hours, the coincidence factors, and the interactive effect factors are obtained from the DEER database. ${ }^{4}$ Since the AEP SmartGrid program does not vary savings by building type, the savings presented below are averages of savings calculated for these building types.

Table 13 T12 to T5 Fluorescent Fixtures per Watt Reduced

Annual Operating Hours	Demand Interactive Effects	Coincident Diversity Factors	Energy Interactive Effects	Peak Watt Savings	kWh Savings
4,389	1.19	0.77	1.12	0.012	65.1

Measure Savings Analysis

Annual energy savings and the peak coincident demand savings were calculated using the equations below.

[^4]Non-coincident kW reduction $=\mathrm{kW}$ of existing equipment -kW of replacement equipment
Energy savings are calculated by applying the annual operating hours and the energy interactive effect, according to the following formula:

> kWh Reduction = Non-Coincident kW Savings * Annual Operating Hours * Energy Interactive Effect
Coincident demand savings are calculated by applying the coincidence factor and the demand interactive effect, according to the following formula:

> Coincident kW savings $=$ Non-Coincident kW Savings * Coincidence Factor * Demand Interactive Effect

Baseline and retrofit equipment assumptions are listed in the table below.
Table 14 Baseline and Retrofit Wattages for T12 to T5 Fixture Retrofits

Baseline					
Configuration	Base Fixture Wattage	Retrofit Configuration	Retrofit Fixture Wattage	Demand Savings per lamp (kW)	Weight Percentages
4ft 4-lamp T12	270	4ft T5 4lamp HO	234	0.009	13%
4ft 4-lamp T12	164	4ft T5 4lamp	128	0.009	13%
4ft 3-lamp T12	230	4ft T5 3 Lamp HO	179	0.017	13%
4ft 3-lamp T12	133	4ft T5 3 Lamp	97	0.012	13%
4ft 2-lamp T12	145	4ft T5 2 Lamp HO	117	0.014	13%
4ft 2-lamp T12	82	4ft T5 2 Lamp	64	0.009	13%
4ft 1-lamp T12	80	4ft T5 1 Lamp HO	62	0.018	13%
4ft 1-lamp T12	51	4ft T5 1 Lamp	33	0.018	13%
Weighted Average				0.013	

Measure Life and Incremental Measure Cost

The following table provides the measure life and IMC documented for this measure as well as the source of the data.

Incremental cost is cost difference between the energy efficient equipment and the less efficient option. In this case, the IMC is equal to the full measure cost since the cost of the less efficient option, i.e., not conducting the retrofit, is $\$ 0$.

Table15 Measure Life and Incremental Measure Cost

	Value	Source
Measure Life	11	DEER
Incremental Measure Cost	$\$ 18.54$	KEMA

High Performance and Reduced Wattage 4-foot T8 Lamps and Ballast

High Performance and Reduced Wattage 4-foot T8 Lamps and Ballast	
	This measure consists of replacing existing T12 4' lamps and magnetic ballasts with high performance 32W T8 lamps or reduced wattage 28W or 25W lamps and electronic ballasts. Both the lamp and ballast must meet the Consortium for Energy Efficiency (CEE) high performance or reduced wattage T8 specification (www.cee1.org) summarized below.
Units	Per lamp
Base Case Description	T12 lamp and magnetic ballasts
Measure Savings	Source: KEMA
Measure Incremental Cost	Source: AEP Ohio Potential Study
Effective Useful Life	Source: DEER 11 years

This measure consists of replacing existing T12 lamps and magnetic ballasts with highperformance T8 lamps or reduced wattage (28 or 25W) T8 lamps and electronic ballasts. This measure is based on the Consortium for Energy Efficiency (CEE) high-performance T8 or reduced wattage specification (www.cee1.org) and is summarized below. A list of qualified lamps and ballasts can be found at: http://www.cee1.org. Both the lamp and ballast must meet the specification to qualify for an incentive. The incentive is calculated based on the number of lamps installed. A manufacturer's specification sheet must accompany the application.

For reduced wattage 4-foot T8 lamps, the nominal wattage must be 28 W ($\geq 2,585$ Lumens) or 25 W ($\geq 2,400$ Lumens) to qualify. The mean system efficacy must be $\geq 90 \mathrm{MLPW}, \mathrm{CRI} \geq 80$, and lumen maintenance at 94 percent. Other requirements can be found on the CEE website using the links above.

The table below provides the specification for high performance systems.

High-Performance T8 Specifications

Table 16 High-Performance T8 Specifications

Performance Characteristics for Systems				
Mean system efficacy	≥ 90 Mean Lumens per Watt (MLPW) for Instant Start Ballasts			
	≥ 88 MLPW for Programmed Rapid Start Ballasts			
Performance Characteristics for Lamps				
Color Rendering Index (CRI)	≥ 80			
Minimum initial lamp lumens	≥ 3100 Lumens 5			
Lamp life	$\geq 24,000$ hours			
Lumen maintenance or minimum mean lumens	$\geq 90 \%$ or $\geq 2,900$ Mean Lumens			
Performance Characteristics for Ballasts				
Ballast Efficacy Factor (BEF) BEF $=(B F \times 100) /$ Ballast Input Watts	Instant-Start Ballast (BEF)			
	Lamps	Low BF ≤ 0.85	Norm $0.85<\mathrm{BF} \leq 1.0$	High BF ≥ 1.01
	1	> 3.08	> 3.11	NA
	2	> 1.60	> 1.58	>1.55
	3	≥ 1.04	≥ 1.05	≥ 1.04
	4	≥ 0.79	≥ 0.80	≥ 0.77
	Programmed Rapid Start Ballast (BEF)			
	1	≥ 2.84	≥ 2.84	NA
	2	≥ 1.48	≥ 1.47	≥ 1.51
	3	≥ 0.97	≥ 1.00	≥ 1.00
	4	≥ 0.76	≥ 0.75	≥ 0.75
Ballast Frequency	20 to 33 kHz or $\geq 40 \mathrm{kHz}$			
Power Factor	≥ 0.90			
Total Harmonic Distortion	$\leq 20 \%$			

Measure Savings

Savings are summarized by the following table:

Table 17 Measure Savings for High-Performance or Reduced Wattage 4-foot Lamp and Ballast (per lamp)

Coincident Demand Savings (kW)	Energy Savings (kWh)
0.012	62.0

${ }^{5}$ For lamps with temperature $\geq 4500 \mathrm{~K}, 2,950$ minimum initial lamp lumens are specified.

Measure Savings Analysis

Annual energy savings and the peak coincident demand savings were calculated using the equations below. The annual operating hours, the coincidence factors, and the interactive effect factors were all derived from the DEER database and shown in the following table. However, DEER values by building type were averaged for the AEP Ohio Program.

Table 18 Factors used for Calculating Lighting Savings

Annual Operating Hours	Demand Interactive Effects	Coincident Diversity Factors	Energy Interactive Effects
4,389	1.19	0.77	1.12

Non-coincident kW reduction $=$ kW of existing equipment -kW of replacement equipment
Energy savings are calculated by applying the annual operating hours and the energy interactive effect, according to the following formula:
kWh Reduction = non-coincident kW savings * Annual operating hours * Energy interactive effect
Coincident demand savings are calculated by applying the coincidence factor and the demand interactive effect, according to the following formula:

$$
\begin{aligned}
& \text { Coincident kW savings }=\text { non-coincident kW savings * Coincidence Factor * Demand interactive } \\
& \text { effect }
\end{aligned}
$$

Baseline and retrofit equipment assumptions are presented in the table below.

Table 19 Baseline and Retrofit Wattages for High－Performance or Reduced Wattage Fixture Retrofits

	T8，4－foot Configuration	Base Fixture Wattage	Retrofit Lamp Wattage	Retrofit Fixture Wattage	Demand Savings per fixture （kW）	Demand Savings per lamp （kW）	Weight Percentages
$\frac{\text { 京 }}{\text { 立 }}$	4－lamp	144	32	108	0.036	0.009	9\％
	3－lamp	103	32	83	0.02	0.007	4\％
	2－lamp	72	32	54	0.018	0.009	8\％
	1－lamp	43	32	28	0.015	0.015	4\％
$\frac{\nabla}{\sum}$	4－lamp	144	28	96	0.048	0.012	15\％
	3－lamp	103	28	72	0.031	0.010	10\％
	2－lamp	72	28	48	0.024	0.012	15\％
	1－lamp	43	28	25	0.018	0.018	10\％
3	4－lamp	144	25	85	0.059	0.015	9\％
	3－lamp	103	25	66	0.037	0.012	4\％
	2－lamp	72	25	44	0.028	0.014	8\％
	1－lamp	43	25	22	0.021	0.021	4\％
	Weighted Average					0.0126	

Measure Life and Incremental Measure Cost

The table below provides the measure life and IMC documented for this measure as well as the source of the data．Incremental cost is the cost difference between the energy－efficient equipment and the less efficient option．In this case，the IMC is equal to the full measure cost since cost of the less efficient option is 0 ．

Table 20 Measure Life and Incremental Measure Cost

	Measure Category	Value	Source
Measure Life	Lamp and Ballast	11	DEER
Incremental Measure Cost	4 Foot Lamp and Ballast	$\$ 13.14$	AEP Ohio Potential
Study			

Reduced Wattage 4-foot Lamp Only

Reduced Wattage 4-foot Lamp Only	
	This measure consists of replacing existing standard T8 4' lamps and electronic ballasts with reduced wattage T8 lamps. The lamp must meet the Consortium for Energy Efficiency (CEE) reduced wattage T8 specification (www.cee1.org). The nominal wattage for 4 foot lamps must be 28W (≥ 2585 Lumens) or 25W (≥ 2400 Lumens) to qualify. The mean system efficacy must be ≥ 90 MLPW, CRI ≥ 80, and lumen maintenance at 94%. A manufacturer's specification sheet must accompany the application.
Units	Per lamp
Base Case Description	Standard T8 fixtures.
Measure Savings	Source: KEMA
Measure Incremental Cost	Source: ICF Portfolio Plan
Effective Useful Life	Source: KEMA 3

Incentives are available when replacing standard 32-Watt T8 lamps with reduced-wattage T8 lamps when an electronic ballast is already present. The lamps must be reduced wattage in accordance with the Consortium for Energy Efficiency (CEE) specification (www.cee1.org). Qualified products can be found at http://www.cee1.org. The nominal wattage must be 28 W ($\geq 2,585$ Lumens) or 25 W ($\geq 2,400$ Lumens) to qualify. The mean system efficacy must be ≥ 90 MLPW, CRI ≥ 80, and lumen maintenance at 94 percent. A manufacturer's specification sheet must accompany the application.

Measure Savings

Savings are summarized by the following table:

Table 21 Measure Savings for Reduced-Wattage 4-foot Lamp Only

Coincident Demand Savings (kW)	Energy Savings (kWh)
0.005	28.8

Measure Savings Analysis

Annual energy savings and the peak coincident demand savings were calculated using the equations below. The annual operating hours, the coincidence factors, and the interactive effect factors were all derived from the DEER database and shown in the next table. However, DEER values by building type were averaged for the AEP Ohio Program.

Table 22 Factors used for Calculating Lighting Savings

Annual Operating Hours	Demand Interactive Effects	Coincident Diversity Factors	Energy Interactive Effects
4,389	1.19	0.77	1.12

Non-coincident kW reduction $=$ kW of existing equipment -kW of replacement equipment

Energy savings are calculated by applying the annual operating hours and the energy interactive effect, according to the following formula:
kWh Reduction = non-coincident kW savings * Annual operating hours * Energy interactive effect
Coincident demand savings are calculated by applying the coincidence factor and the demand interactive effect, according to the following formula:

Coincident kW savings = non-coincident kW savings * Coincidence Factor * Demand interactive effect
Baseline and retrofit equipment assumptions are presented in the next table.
Table 23 Baseline and Retrofit Wattages for 4-foot T8 Lamp Only

T8 Configuration	Base Lamp Wattage	Base Fixture Wattage	Retrofit Lamp Wattage	Retrofit Fixture Wattage	Demand Savings per fixture (kW)	Demand Savings per lamp (kW)	Weight Percentages
$4 \mathrm{ft}, 4$-lamp	32	112	28	96	0.016	0.004	18\%
4 ft , 3-lamp	32	85	28	72	0.013	0.004	13\%
4 ft , 2-lamp	32	58	28	48	0.01	0.005	15\%
4 ft , 1-lamp	32	32	28	25	0.007	0.007	5\%
$4 \mathrm{ft}, 4-\mathrm{lamp}$	32	112	25	85	0.027	0.007	18\%
4 ft , 3-lamp	32	85	25	66	0.019	0.006	13\%
4 ft , 2-lamp	32	58	25	44	0.014	0.007	15\%
4 ft , 1-lamp	32	32	25	22	0.01	0.010	5\%
Weighted Average						0.006	

Measure Life and Incremental Measure Cost

The following table provides the measure life and IMC documented for this measure as well as the source of the data. Incremental cost is the cost difference between the energy-efficient equipment and the less efficient option. In this case, the IMC is equal to the full measure cost for
lamp and ballast retrofit and incremental for lamp only. The lamp and ballast retrofit is a change in technology.

Table 24 Measure Life and Incremental Measure Cost

	Measure Category	Value	Source
Measure Life	Lamp Only	3	KEMA
Incremental Measure Cost	4 Foot Lamp Only	$\$ 2.10$	ICF Portfolio Plan

Reduced Wattage 8-foot

Table 25 Reduced Wattage 8-foot

	This measure consists of replacing existing T12 8' lamps and magnetic ballasts with reduced wattage T8 lamps and electronic ballasts. Both the lamp and ballast must meet the Consortium for Energy Efficiency (CEE) high performance or reduced wattage T8 specification (www.cee1.org). Eight foot lamps must have a minimum MLPW of 90 and must have a nominal wattage of less than 57W. A manufacturer's specification sheet must accompany the application. Measure Description High wattage T8 (59W) can be replaced with reduced wattage lamps without replacing the ballast. The lamps must also meet CEE standards for reduced wattage.
Units	Per lamp
Base Case Description	T12 lamp and magnetic ballasts or high watt T8 fixtures (for reduced wattage lamp only replacements).
Measure Savings	Source: KEMA
Measure Incremental Cost	Source: DEER and ICF Portfolio Plan
Effective Useful Life	Source: KEMA and DEER

This measure consists of replacing existing T12 lamps and magnetic ballasts with reduced wattage lamp and electronic ballast systems. The lamps and ballasts must meet the Consortium for Energy Efficiency (CEE) specification (www.cee1.org). Qualified lamps and ballast products can be found at http://www.cee1.org. Incentives are also available when replacing 59-Watt T8 lamps with reduced-wattage T8 lamps when an electronic ballast is already present. Eight-foot lamps must have a minimum MLPW of 90 and must have a nominal wattage of less than 57 W . A manufacturer's specification sheet must accompany the application.

Measure Savings

Savings are summarized by the following table:

Table 26 Measure Savings for Reduced-Wattage 8-foot Lamp and Ballast

Coincident Demand Savings (kW)	Energy Savings (kWh)
0.016	78.7

Table 27 Measure Savings for Reduced-Wattage 8-foot Lamp Only

Coincident Demand Savings (kW)	Energy Savings (kWh)
0.005	24.6

Measure Savings Analysis

Annual energy savings and the peak coincident demand savings were calculated using the equations below. The annual operating hours, the coincidence factors, and the interactive effect factors were all derived from the DEER database and shown in the table below. DEER values by building type were averaged for the AEP Ohio Program.

Table 28 Factors used for Calculating Lighting Savings

Annual Operating Hours	Demand Interactive Effects	Coincident Diversity Factors	Energy Interactive Effects
4,389	1.19	0.77	1.12

Non-coincident kW reduction $=\mathrm{kW}$ of existing equipment -kW of replacement equipment

Energy savings are calculated by applying the annual operating hours and the energy interactive effect, according to the following formula:
kWh Reduction = non-coincident kW savings * Annual operating hours * Energy interactive effect
Coincident demand savings are calculated by applying the coincidence factor and the demand interactive effect, according to the following formula:

Coincident kW savings = non-coincident kW savings * Coincidence Factor * Demand interactive effect
Baseline and retrofit equipment assumptions are presented in the next table.

Table 29 Baseline and Retrofit Wattages for 8-foot

	Configuration	Base Lamp Wattage	Base Fixture Wattage	Retrofit Lamp Wattage	Retrofit Fixture Wattage	Demand Savings per fixture (kW)	Demand Savings per lamp (kW)	Weight Percentages
	8ft, 2 lamp	60	132	57	102	0.030	0.015	50\%
	8ft, 1-lamp	60	77	57	60	0.017	0.017	50\%
	Weighted Average						0.016	
	8ft, 2 lamp	59	106	57	102	0.004	0.002	50\%
	8ft, 1-lamp	59	68	57	60	0.008	0.008	50\%
	Weighted Average						0.005	

Measure Life and Incremental Measure Cost

The following table provides the measure life and IMC documented for this measure as well as the source of the data. Incremental cost is the cost difference between the energy-efficient equipment and the less efficient option. In this case, the IMC is equal to the full measure cost for lamp and ballast retrofit and incremental for lamp only. The lamp and ballast retrofit is a change in technology.

Table 30 Measure Life and Incremental Measure Cost

	Measure Category	Value	Source
Measure Life	Lamp and Ballast	11	DEER
Measure Life	Lamp Only	3	KEMA
Incremental Measure Cost	Foot Lamp and Ballast	$\$ 36.91$	DEER
Incremental Measure Cost	8 Foot Lamp Only	$\$ 5.50$	ICF Portfolio Plan

U-Tube T8 Lamps and Ballast

Table 31 U-Tube T8 Lamps and Ballast

Measure Description	This measure consists of replacing existing T12 U-tube lamps and magnetic ballasts with T8 U-tube lamps and electronic ballasts.
Units	Per lamp
Base Case Description	U-tube T12 lamps and magnetic ballast
Measure Savings	Source: KEMA
Measure Incremental Cost	Source: AEP Ohio Potential Study
Effective Useful Life	Source: DEER 11 years

This measure consists of replacing existing U-tube T12 lamps and magnetic ballasts with Utube T8 lamps and electronic ballasts. The lamp must have a color rendering index (CRI) ≥ 80 and the ballast must have a total harmonic distortion (THD) $\leq 20 \%$ at full light output and power factor (PF) ≥ 90. Ballasts must also be warranted against defect for 5 years. The incentive is calculated based on the number of lamps installed. A manufacturer's specification sheet must accompany the application.

Measure Savings

The coincident kW and kWh savings are in the following table.
Table 32 Measure Savings for U-tube Lamp and Ballast (per lamp)

Coincident Demand Savings (kW)	Energy Savings (kWh)
0.009	46.7

Measure Savings Analysis

Annual energy savings and the peak coincident demand savings were calculated using the equations below. The annual operating hours, the coincidence factors, and the interactive effect factors were all derived from the DEER database and shown in the following table. ${ }^{6}$

[^5]Table 33 Factors used for Calculating Lighting Savings

Annual Operating Hours	Demand Interactive Effects	Coincident Diversity Factors	Energy Interactive Effects
4,389	1.19	0.77	1.12

Non-coincident kW reduction $=$ kW of existing equipment -kW of replacement equipment

Energy savings are calculated by applying the annual operating hours and the energy interactive effect, according to the following formula:
kWh Reduction = non-coincident kW savings * Annual operating hours * Energy interactive effect
Coincident demand savings are calculated by applying the coincidence factor and the demand interactive effect, according to the following formula:

Coincident kW savings = non-coincident kW savings * Coincidence Factor * Demand interactive effect

Baseline and retrofit equipment assumptions are presented in the following table. The wattages were collected from PG\&E's Non-residential retrofit standard wattages table.

Table 34 Baseline and Retrofit Wattages for U-tube lamps

T8 Configuration	Base Lamp Wattage	Base Fixture Wattage	Retrofit Lamp Wattage	Retrofit Fixture Wattage	Demand Savings per fixture (kW)	Demand Savings per lamp (kW)	Weight Percentages
U-tube, 2 lamp	35	72	32	59	0.013	0.007	50%
U-tube, 1 lamp	35	43	32	31	0.012	0.012	50%
Weighted Average					0.010		

Measure Life and Incremental Measure Cost

The table below provides the measure life and IMC documented for this measure as well as the source of the data. Incremental cost is cost difference between the energy-efficient equipment and the less efficient option. In this case, the IMC is equal to the full measure cost since cost of the less efficient option is $\$ 0$. For U-tubes, it is assumed that the cost is the same as a high performance 4-foot T8 lamp (DEER measure ID D03-852).

Table35 Measure Life and Incremental Measure Cost

	Measure Category	Value	Source
Measure Life	Lamp and Ballast	11	DEER
Measure Life	Lamp Only	3	KEMA
Incremental Measure Cost	U-Tube Lamp and Ballast	$\$ 13.14$	AEP Potential Study

2-foot \& 3-foot T8 Lamps and Ballast

Table 36 2-foot \& 3-foot T8 Lamps and Ballast

Measure Description	This measure consists of replacing existing T12 2-foot and 3- foot lamps and magnetic ballasts with 17W, 2-foot, and 25W, 3- foot, T8 lamps and electronic ballasts.
Units	Per lamp
Base Case Description	T12 lamps and magnetic ballast
Measure Savings	Source: KEMA
Measure Incremental Cost	Source: PG\&E 2006 Work papers
Effective Useful Life	Source: DEER 11 years

This measure consists of replacing existing T12 lamps and magnetic ballasts with T8 lamps and electronic ballasts. The lamp must have a color rendering index (CRI) ≥ 80 and the ballast must have a total harmonic distortion (THD) $\leq 32 \%$ at full light output and power factor (PF) ≥ 0.90. Ballasts must also be warranted against defects for 5 years. The incentive is calculated based on the number of lamps installed. A manufacturer's specification sheet must accompany the application.

Measure Savings

The coincident kW and kWh savings are provided in the following table:
Table 37 Measure Savings for 2-foot and 3-foot Lamp and Ballast (per lamp)

2-foot Lamp fixtures		3-foot Lamp fixtures	
Coincident Demand Savings (kW)	Energy Savings (kWh)	Coincident Demand Savings (kW)	Energy Savings (kWh)
0.010	51.6	0.013	69.5

Measure Savings Analysis

Annual energy savings and the peak coincident demand savings were calculated using the equations below. The annual operating hours, the coincidence factors, and the interactive effect factors were all derived from the DEER database and shown in the following table.

Table 38 Factors used for Calculating Lighting Savings

Annual Operating Hours	Demand Interactive Effects	Coincident Diversity Factors	Energy Interactive Effects
4,389	1.19	0.77	1.12

Non-coincident kW reduction $=\mathrm{kW}$ of existing equipment -kW of replacement equipment

Energy savings are calculated by applying the annual operating hours and the energy interactive effect, according to the following formula:
kWh Reduction = non-coincident kW savings * Annual operating hours * Energy interactive effect
Coincident demand savings are calculated by applying the coincidence factor and the demand interactive effect, according to the following formula:

Coincident kW savings = non-coincident kW savings * Coincidence Factor * Demand interactive effect

Baseline and retrofit equipment assumptions are presented in the tables below. The fixture wattages were collected from PG\&E's Non-residential Retrofit Program standard fixture wattage table.

Table 39 Baseline and Retrofit Wattages for 2-foot lamps

T8 Configuration	Base Lamp Wattage	Base Fixture Wattage	Retrofit Lamp Wattage	Retrofit Fixture Wattage	Demand Savings per fixture (kW)	Demand Savings per (amp (kW)	Weight Percentages
$2 \mathrm{ft}, 4$-lamp	20	112	17	61	0.051	0.013	2.5%
2 ft 3-lamp	20	84	17	47	0.037	0.012	2.5%
$2 \mathrm{ft}, 2$-lamp	20	56	17	33	0.023	0.012	65%
$2 \mathrm{ft}, 1-\operatorname{lamp}$	20	28	17	20	0.008	0.008	30%
Weighted Average						0.011	

Table 40 Baseline and Retrofit Wattages for 3-foot lamps

T8 Configuration	Base Lamp Wattage	Base Fixture Wattage	Retrofit Lamp Wattage	Retrofit Fixture Wattage	Demand Savings per fixture (kW)	Demand Savings per lamp (kW)	Weight Percentages

3 ft, 4-lamp	30	152	25	87	0.065	0.0163	2.5%
3 ft, 3-lamp	30	114	25	67	0.047	0.0157	2.5%
3 ft, 2-lamp	30	76	25	46	0.030	0.0150	65%
3 ft ,1-lamp	30	38	25	26	0.012	0.0120	30%
Weighted Average						0.014	

Measure Life and Incremental Measure Cost

The table below provides the measure life and IMC documented for this measure as well as the source of the data. Incremental cost is cost difference between the energy-efficient equipment and the less efficient option. In this case, the IMC is equal to the full measure cost since cost of the less efficient option is $\$ 0$.

Table 41 Measure Life and Incremental Measure Cost

	Measure Category	Value	Source
Measure Life	Lamp and Ballast	11	DEER
Measure Life	Lamp Only	3	KEMA
Incremental Measure Cost	2 Foot Lamp and Ballast	$\$ 10.50$	PG\& 2006 Work Paper
Incremental Measure Cost	3 Foot Lamp and Ballast	$\$ 21$	PGE 2006 Work Paper

Ceramic Metal Halides or Pulse Start Metal Halides

Table 42 Ceramic Metal Halides or Pulse Start Metal Halides

Measure Description	This measure applies to retrofits of high intensity discharge fixtures with either pulse start metal halide or ceramic metal halide fixtures. The new fixture must replace a higher wattage existing fixture.
Units	Per Fixture
Base Case Description	High wattage HID fixtures
Measure Savings	Source: KEMA
Measure Incremental Cost	Source: KEMA
Effective Useful Life	Source: DEER 16 years

This incentive applies to retrofits of high-intensity discharge fixtures with either pulse-start metal halide or ceramic metal halide fixtures. Total replacement wattage must be lower than existing wattage to ensure energy savings. This measure is subject to possible pre-inspection. Retrofit kits may be used on existing mercury vapor, standard metal halide or high-pressure sodium fixtures only.

Measure Savings

The table below provides the non-coincident savings.
Table 43 Wattage Reduction

Wattage Category	Average Wattage Reduction
100W or Less	48
101W-200W	65
$201-350 \mathrm{~W}$	126

The savings are presented in the following table. The annual operation hours, the coincidence factors, and the interactive effect factors are obtained from the DEER database. ${ }^{7}$ Since the AEP SmartGrid program does not vary savings by building type, the savings presented below are averages of savings calculated for these building types.

[^6]Table 44: Measure Savings for $\leq 100 W$ MH

Annual Operating Hours	Peak kW Savings	kWh Savings
4,389	0.048	211

Table 45 : Measure Savings for 101W-200W MH

Annual Operating Hours	Peak kW Savings	kWh Savings
4,389	0.065	285

Table 46: Measure Savings for >200W-350W MH

Annual Operating Hours	Peak kW Savings	kWh Savings
4,389	0.126	553

Measure Savings Analysis

Annual energy savings and the peak coincident demand savings were calculated using the equations below. The annual operation hours, the coincidence factors, and the interactive effect factors were all obtained from the DEER database. The savings presented here are averages of those savings by building type.

Non-coincident kW reduction = kW of existing equipment - kW of replacement equipment
Energy savings are calculated by applying the annual operating hours and the energy interactive effect, according to the following formula:
kWh Reduction = non-coincident kW savings * Annual operating hours * Energy interactive effect
Coincident demand savings are calculated by applying the coincidence factor and the demand interactive effect, according to the following formula:

> Coincident kW savings = non-coincident kW savings * Coincidence Factor * Demand interactive effect

For this measure, it is assumed that the lighting is placed in non-conditioned areas so the energy and demand interactive effects are 1.0.

Baseline and retrofit equipment assumptions are presented in the following table. Most lighting retrofits assume an early replacement of existing technologies where the baseline represents the equipment removed. The table shows the wattages used for the savings calculations.

Table 47: Baseline and Retrofit Wattages ${ }^{8}$

Measures	Base Wattage	Retrofit Wattage	Wattage Reduction
100W or Less	57	22	35
Base case => Ceramic MH (20W lamp)	83	46	37
Base case => Ceramic MH (39W Iamp)	100	27	73
Base case (100W) => Ceramic MH (25W lamp)		48	
Average			
101W-200W	295	208	87
Base case (250W lamp) => Metal Halide (175W lamp)	208	185	23
Base case (175W lamp) => Metal Halide (150W lamp)		85	
Metal Halide (250W) => Pulse Start Metal Halide (175W)			65
Average			
201-350W			
Base case (400W lamp) => Metal Halide (320W lamp)	458	365	93
Mercury Vapor (400W) => Pulse Start Metal Halide (250W)			159
Average			126

Measure Life and Incremental Measure Cost

The next table provides the measure life and IMC documented for this measure as well as the source of the data. Incremental cost is cost difference between the energy-efficient equipment and the less efficient option. In this case, lighting measures, the IMC is equal to the full measure cost since the cost of the less efficient option, i.e., not conducting the retrofit, is $\$ 0$.
${ }^{8} 2006$ PG\&E Interior Pulse Start Metal Halide Workpaper, PG\&E Directional Lighting CMH Workpaper, SCE Ceramic Metal Halide Workpaper (WPSCNRLG0054.1), 2005 Database for Energy Efficiency Resources (DEER) Update Study Final Report - Residential and Commercial Non-Weather Sensitive Measures.

Table 48: Measure Life and Incremental Measure Cost

Wattage Category	Measure Life	Value	Source
All	Incremental Measure Cost	16	DEER
100 W or Less	Incremental Measure Cost	$\$ 170$	SCE WP ${ }^{9}$
$101 \mathrm{~W}-200 \mathrm{~W}$	Incremental Measure Cost	$\$ 266$	PGE WP 10
$201-350 \mathrm{~W}$			

[^7]
New T5/T8 Fluorescent Fixtures

Table 49 New T5/T8 Fluorescent Fixtures

	This measure consists of replacing one or more existing fixtures with new fixtures containing T8 or T5 lamps and electronic ballasts. The T8 or T5 lamps must have a color rendering index (CRI) ≥ 80. The electronic ballast must be high frequency ($\geq 20 \mathrm{kHz}$), UL listed, and warranted against defects for 5 years. Ballasts must have a power factor (PF) 200.90. Ballasts for 4-foot lamps must have total harmonic distortion (THD) ≤ 20 percent at full light output. For 2-and 3-foot lamps, ballasts must have THD $\leq 32 \%$ at full light output.
Measure Description	Per Watt reduced
Units	Typically high wattage HID fixtures
Base Case Description	Source: KEMA
Measure Savings	Source: KEMA
Measure Incremental Cost	Source: DEER 11 years
Effective Useful Life	

This measure consists of replacing one or more existing fixtures with new fixtures containing T8 or T5 lamps and electronic ballasts. The T8 or T5 lamps must have a color rendering index (CRI) ≥ 80. The electronic ballast must be high frequency ($\geq 20 \mathrm{kHz}$), UL listed, and warranted against defects for 5 years. Ballasts must have a power factor (PF) ≥ 0.90. Ballasts for 4 -foot lamps must have total harmonic distortion (THD) ≤ 20 percent at full light output. For 2- and 3foot lamps, ballasts must have THD ≤ 32 percent at full light output.

Measure Savings

The annual operating hours, the coincidence factors, and the interactive effect factors were all derived from the DEER database. ${ }^{12}$

Table 50: Measure Savings for New T8/T5 Fluorescent Fixtures per Watt Reduced

Annual Operating Hours	Demand Interactive Effects	Coincident Diversity Factors	Energy Interactiv e Effects	Peak kW Savings	kWh Savings
4,389	1.19	0.77	1.12	0.000916	4.9141

[^8]
Measure Savings Analysis

Annual energy savings and the peak coincident demand savings were calculated using the equations below.

Non-coincident kW reduction $=$ kW of existing equipment -kW of replacement equipment

Energy savings are calculated by applying the annual operating hours and the energy interactive effect, according to the following formula:
kWh Reduction = non-coincident kW savings * Annual operating hours * Energy interactive effect
Coincident demand savings are calculated by applying the coincidence factor and the demand interactive effect, according to the following formula:

Coincident kW savings = non-coincident kW savings * Coincidence Factor * Demand interactive

Baseline and retrofit equipment assumptions are variable. Because we define this measure with the number of watts reduced, the non-coincident demand savings will be one watt by definition.

Measure Life and Incremental Measure Cost

The following table provides the measure life and IMC documented for this measure as well as the source of the data.

Incremental cost is cost difference between the energy efficient equipment and the less efficient option. For lighting measures, the IMC is equal to the full measure cost since the cost of the less efficient option, i.e., not conducting the retrofit, is $\$ 0$.

Table 51: Measure Life and Incremental Measure Cost

	Value	Source
Measure Life	11	DEER
Incremental Measure Cost ${ }^{13}$	$\$ 0.75$	KEMA

Exit Signs

Table 52 Exit Signs

	High-efficiency exit signs must replace or retrofit an existing incandescent exit sign. Electroluminescent, photoluminescent, T1 and light-emitting diode (LED) exit signs are eligible under this category. Non-electrified and remote exit signs are not eligible. All new exit signs or retrofit exit signs must be UL or ETL listed, have a minimum lifetime of 10 years, and have an input wattage ≤ 5 Watts or be ENERGY STAR qualified.
Units	Per Sign
Base Case Description	Incandescent Exit Signs
Measure Savings	Source: ENERGY STAR
Measure Incremental Cost	Source: AEP Ohio Potential Study
Effective Useful Life	Source: DEER 16 years

High-efficiency exit signs must replace or retrofit an existing incandescent exit sign.
Electroluminescent, photoluminescent, T1 and light-emitting diode (LED) exit signs are eligible under this category. Non-electrified and remote exit signs are not eligible. All new exit signs or retrofit exit signs must be UL or ETL listed, have a minimum lifetime of 10 years, and have an input wattage ≤ 5 Watts or be ENERGY STAR qualified.

Measure Savings

Baseline and retrofit equipment assumptions are presented in the next table. Most lighting retrofits assume an early replacement of existing technologies where the baseline represents the equipment removed. The table shows the wattages used for the savings calculations.

Table 53: Baseline and Retrofit Wattages

Measure	Base Wattage	Retrofit Wattage	Wattage Reduction
Two Incandescent Bulbs (20W each) -> LED EXIT Sign (5W)	40	5	35

The measure savings use the above non-coincident savings.

Table 54: Exit Sign Savings

Peak kW Savings	kWh Savings
0.042	343.4

Measure Savings Analysis

Annual energy savings and the peak coincident demand savings were calculated using the equations below. The coincident diversity factor is 1.0 since the sign is on all the time. The operating hours are 8,760 hours per year. ${ }^{14}$

Table 55: Factors used for Calculating Savings

Annual Operating Hours	Demand Interactive Effects	Coincident Diversity Factors	Energy Interactive Effects
8,760	1.19	1.00	1.12

Non-coincident kW reduction $=\mathrm{kW}$ of existing equipment -kW of replacement equipment
Energy savings are calculated by applying the annual operating hours and the energy interactive effect, according to the following formula:
kWh Reduction = non-coincident kW savings * Annual operating hours * Energy interactive effect
Coincident demand savings are calculated by applying the coincidence factor and the demand interactive effect, according to the following formula:

Coincident kW savings = non-coincident kW savings * Coincidence Factor * Demand interactive effect.

Measure Life and Incremental Measure Cost

The following table provides the measure life and incremental measure cost (IMC) documented for this measure as well as the source of the data.

[^9]Incremental cost is cost difference between the energy efficient equipment and the less efficient option. In this case, the IMC is equal to the full measure cost since the cost of the less efficient option, i.e., not conducting the retrofit, is $\$ 0$.

Table 56: Measure Life and Incremental Measure Cost

	Value	Source
Measure Life	16	DEER
Incremental Measure Cost	$\$ 82.54$	AEP Ohio Potential Study

LED Lamps

Table 57 LED Lamps

Measure Description	LED recessed down lamps or screw-in base lamps qualify. The LED recessed downlight must be ≤ 18 Watts and have a minimum efficacy of 35 lumens per Watt. The product must meet Energy Star Criteria. For screw-in base LED lamps, the wattage must be < 8 Watts.
Units	Per lamp
Base Case Description	100 Watt or less incandescent
Measure Savings	Source: KEMA
Measure Incremental Cost	Source: PG\& E 2006 Work papers
Effective Useful Life	Source: PG\& 2006 Work papers 16 years

LED recessed down lamps or screw-in base lamps qualify. The LED recessed downlight must be ≤ 18 Watts and have a minimum efficacy of 35 lumens per Watt. The product must meet Energy Star Criteria. For screw-in base LED lamps, the wattage must be < 8 Watts.

Measure Savings

The coincident kW and kWh savings are provided in the following table.

Table 58: Measure Savings for LED (per lamp)

Coincident Demand Savings (kW)	Annual Energy Savings (kWh)
0.030	160.9

Measure Savings Analysis

Annual energy savings and the peak coincident demand savings were calculated using the equations below. The annual operation hours, the coincidence factors, and the interactive effect factors are obtained from the DEER database. ${ }^{15}$ Since the AEP SmartGrid program does not vary savings by building type, the savings presented below are averages of savings calculated for these building types.

[^10]Table 59: Factors used for Calculating Lighting Savings

Annual Operating Hours	Demand Interactive Effects	Coincident Diversity Factors	Energy Interactive Effects
4,321	1.19	0.77	1.12

Non-coincident kW reduction $=\mathrm{kW}$ of existing equipment -kW of replacement equipment
Energy savings are calculated by applying the annual operating hours and the energy interactive effect, according to the following formula:
kWh Reduction = non-coincident kW savings * Annual operating hours * Energy interactive effect
Coincident demand savings are calculated by applying the coincidence factor and the demand interactive effect, according to the following formula:

Coincident kW savings = non-coincident kW savings * Coincidence Factor * Demand interactive effect

Baseline and retrofit equipment assumptions are presented in the table below. The fixture wattages were collected from PG\&E's Non-residential Retrofit Program standard fixture wattage table.

Table 60: Baseline and Retrofit Wattages for LED Lamps

Base Case lamps	Base Lamp Wattage	Retrofit Lamp Wattage	Demand Savings per lamp (kW)	Weight Percentages
100 W incandescent	100	8	0.092	5%
75 W incandescent	75	8	0.067	15%
60 W incandescent	60	8	0.052	15%
40 W incandescent	40	8	0.032	15%
25 W incandescent	25	8	0.017	25%
15 W incandescent	15	8	0.007	25%
Weighted Average			0.033	

Measure Life and Incremental Measure Cost

The next table provides the measure life and IMC documented for this measure as well as the source of the data. Incremental cost is cost difference between the energy-efficient equipment and the less efficient option. In this case the lighting measures, the IMC is equal to the full
measure cost since cost of the less efficient option is $\$ 0$. For LED lighting, the IMC was calculated as the average price of 8 LED bulbs ranging from 0.85 to 4.7 W .

The measure life for the LED bulbs is taken from the PG\&E work paper on LED open signs and is 16 years.

Table 61: Measure Life and Incremental Measure Cost

Measure Category	Lamp	Value	Source
Measure Life	LED	16 years	PG\&E LED Open sign Work paper
Incremental Measure Cost	LED	$\$ 30$	Average of 8 LED bulbs sold at CCrane.com

LED Refrigerated Case Lighting

Table 62: LED Refrigerated Case Lighting

Measure Description	Replace fluorescent refrigerated case lighting with light emitting diode (LED) source illumination. Fluorescent lamps, ballasts, and associated hardware are typically replaced with pre- fabricated LED light bars and driver units.
Units	Per door
Base Case Description	Fluorescent refrigerated case lighting
Measure Savings	Source: PG\&E LED Refrigerated Case Lighting Workpaper
Measure Incremental Cost	Source: PG\&E LED Refrigerated Case Lighting Workpaper
Effective Useful Life	Source: PG\&E LED Refrigerated Case Lighting Workpaper 16 years

Replace fluorescent refrigerated case lighting with light emitting diode (LED) source illumination. Fluorescent lamps, ballasts, and associated hardware are typically replaced with pre-fabricated LED light bars and LED driver units. The two LED lamp products, 5' light bars and 6' light bars are eligible.

Measure Savings Analysis

The coincident demand savings is 0.061 KW per door and annual energy savings is 375 kWh per door.

Measure Savings Analysis

The energy and demand savings are derived from an Emerging Technologies (ET) study of the refrigerated case lighting done by PG\&E.

The electricity use (kWh) savings and gross summer peak demand (kW) reduction comprises two factors: reduced lighting load and reduced refrigeration requirements due to reduced heat gain. Reductions in lighting load occur continuously over the expected annual operating period, which includes the summer peak period. Savings due to reduced heat gain are computed assuming those reduced effects occur during the period in which the lighting systems operate, in consideration of the refrigeration compressor COP and the reduced cooling load, under normal operation (i.e., doors closed). Baseline and retrofit equipment assumptions are presented in the next table.

Table 63: Baseline and Retrofit Wattages LED refrigeration Lighting (per door)

	Estimated Energy Savings kWh/yr/door	Estimated Demand Savings kW/door	Weight Percentages
5' LED Light Bar			
Premium Tier	341	0.055	25%
Standard Tier	292	0.047	25%
6' LED Light Bar			
Premium Tier	465	0.075	25%
Standard Tier	403	0.065	25%

Attachment 8 - Prescriptive Lighting Protocols for the work papers that provide

Weighted Average	375	0.061	

Measure Life and Incremental Measure Cost

The table below provides the measure life and IMC documented for this measure as well as the source of the data. Incremental cost is cost difference between the energy-efficient equipment and the less efficient option. In this case the lighting measures, the IMC is equal to the full measure cost since cost of the less efficient option is $\$ 0$.

The EUL for an LED exit sign or retrofit kit is estimated to be 16 years (over 140,000 hours), according to DEER. The core technology, LED sources and driver, are similar for both the established application (exit sign lighting) and the emerging technology (refrigeration case lighting). LED Power (LED equipment manufacturer) provided an expected life of 50,000 hours for the LED low-temperature case lighting, which is much less than the DEER estimate of 16 years for LED exit sign technology. It is well documented that LED life is extended in a lowtemperature environment; therefore the expected useful life of 50,000 hours assumed for this application is probably conservative. Based on the fixture run-time of 6,205 hours annually for the facility in the study, the expected life calculates to 8 years.

Table 64: Measure Life and Incremental Measure Cost

	Measure Category	Value	Source
Measure Life	Fixture life	16	PG\&E Work paper
Incremental Measure Cost	LED Refrigerated Case Lighting	$\$ 266$	PG\&E Work paper

LED Open Signs

Table 65: LED Open Signs

Measure Description	Light-emitting diodes (LED) open signs are eligible under this category.
Units	Per Sign
Base Case Description	Neon open sign
Measure Savings	Source: PG\&E work paper
Measure Incremental Cost	Source: PG\&E work paper
Effective Useful Life	Source: PG\&E work paper 16 years

LED open signs must replace an existing neon open sign. LED drivers can be either electronic switching or linear magnetic, with the electronic switching supplies being the most efficient. The on-off power switch may be found on either the power line or load side of the driver, with the line side location providing significantly lower standby losses when the sign is turned off and is not operating.

Measure Savings

The coincident kW and kWh savings are provided in the following table. Open signs are assumed to be on during the typical operating hours of these buildings.

Table 66: Measure Savings for LED Open Signs (per sign)

Coincident Demand Savings (kW)	Energy Savings (kWh)
0.145	776.7

Measure Savings Analysis

Annual energy savings and the peak coincident demand savings were calculated using the equations below. The annual operation hours, the coincidence factors, and the interactive effect factors are obtained from the DEER database. ${ }^{16}$ Since the AEP SmartGrid program does not vary savings by building type, the savings presented below are averages of savings calculated for these building types.

[^11]Table 67: Factors used for Calculating Lighting Savings

Annual Operating Hours	Demand Interactive Effects	Coincident Diversity Factors	Energy Interactive Effects
4,389	1.19	0.77	1.12

Non-coincident kW reduction $=$ kW of existing equipment -kW of replacement equipment
Energy savings are calculated by applying the annual operating hours and the energy interactive effect, according to the following formula:
kWh Reduction = non-coincident kW savings * Annual operating hours * Energy interactive effect
Coincident demand savings are calculated by applying the coincidence factor and the demand interactive effect, according to the following formula:

Coincident kW savings = non-coincident kW savings * Coincidence Factor * Demand interactive effect

The following table provides the sample retrofit options and demand reduction assumptions used.

Table 68: Demand Reduction for Open Signs

	Demand Savings per Sign	Weight Percentages
Replacement of Neon-Large Neon-Like Appearance	0.169	33%
Replacement of Neon-Small Dot Pattern	0.125	33%
Replacement of Neon-Large Oblong Dot Pattern	0.180	33%
Weighted Average	0.158	

Measure Life and Incremental Measure Cost

The following table provides the measure life and incremental measure cost (IMC) documented for this measure as well as the source of the data. The measure life is assumed to be the same as that of an LED exit sign.

Incremental cost is cost difference between the energy efficient equipment and the less efficient option. In this case the lighting measures, the IMC is equal to the full measure cost since cost of the less efficient option, i.e., of not conducting the retrofit is $\$ 0$.

The actual incremental cost of LED technology over new neon technology with electronic ballasts is about $\$ 50$ to 100 per sign, or $\$ 75$, on average.

Table 69: Measure Life and Incremental Measure Cost

	Value	Source
Measure Life	16	PG\&E work paper
Incremental Measure Cost	$\$ 75$	PG\&E work paper

LED Channel Signs, Indoor

Table 70 LED Channel Signs, Indoor

Measure Description	Retrofit and replacement of inefficient neon and argon-mercury channel letter signs with efficient LED channel letter signs.
Units	Per letter
Base Case Description	Existing signage- Neon (red) channel letter signs and argon- mercury (white) channel letter signs.
Measure Savings	Source: PG\&E workpaper
Measure Incremental Cost	Source: PG\&E workpaper
Effective Useful Life	16 years Source: PG\&E workpaper

LED channel sign incentive is available for retrofitting or replacing incandescent, HID, argonmercury or neon-lighted channel letter signs. Replacement signs cannot use more than 20% of the actual input power of the sign that is replaced.

Measure Savings ${ }^{17}$

The following table summarizes the savings for LED channel signs.

Table 71: Savings for LED Channel Signs

Location	Hours of Operation	Sign Height	Annual Energy Savings kWh/letter	Demand Savings kW/letter	Peak Demand Savings kW/letter
Indoor	4375	$\leq 2 \mathrm{ft}$	147	0.034	0.034
		$>2 \mathrm{ft}$	378	0.086	0.086

Measure Savings Analysis

The calculation methodology used by PG\&E in the LED Channel Sign workpaper is outlined below. All the supporting documentation and spreadsheets are shown in the PG\&E workpaper.
(1) Collected letter schematics showing linear feet of tubing and number of LED modules for each letter of the alphabet, both uppercase and lowercase, for 24 inch high letters and 36 inch high letters.
(2) The base case wattage (W/ft) and the energy efficient case wattage (W/module) input values were collected for each specific letter.

[^12](3) A probability table, showing the frequency each letter appears in the English language, was integrated into the spreadsheet. By multiplying the wattage for each specific letter by the probability, a weighted average wattage per letter was obtained. This single value represents all 26 letters of that height and will be accurate over a range of signs with a weighted average watts/letter for red and white for uppercase and lowercase letters.
(4) This spreadsheet was then modified to account for the average height of signs in each category. (According to sign industry sources, the average height of a sign in the 2 feet or less category is 21 inches. The average height of a sign in the greater than 2 feet high category is 27 inches).
(5) The watts/letter values were then weighted assuming 70\% of letters are uppercase and 30% of letters are lowercase, as well as 50% are red signs and 50% are white signs.

Measure Life and Incremental Measure Cost

Measure life is assumed to be 16 years for the signs. LEDs have a lifetime of 25,000 hours for LEDs. However, to be consistent, DEER uses 16 years for LED exit signs, hence all LEDs are assumed to have a 16 year life.

Incremental cost is cost difference between the energy efficient equipment and the less efficient option. The incremental cost for the retrofit case is the full cost of the LED-lighted sign because the retrofit case assumes the existing lighting is working properly and does not need to be replaced. The incremental cost for the replacement case is the difference between the base case and the energy-efficient alternative. The incremental costs were weighted assuming that 30% of the channel signs will be retrofit and 70% of the channel signs will be new or replacement. Therefore, the incremental cost for signs less than or equal to 2 ft . high is $\$ 35 /$ letter and the incremental cost for signs greater than 2 ft . high is $\$ 154 / \mathrm{letter}$.

Interior Induction Fixtures

Table 72: Interior Induction Fixtures

Measure Description	This measure consists of replacing Mercury Vapor, T12/High Output Fluorescent, T12/Very High Output Fluorescent, Standard Metal Halide, or High Pressure Sodium fixtures with induction fixtures.
Units	Per fixture
Base Case Description	Mercury Vapor, T12/High Output Fluorescent, T12/Very High Output Fluorescent, Standard Metal Halide, or High Pressure Sodium fixtures
Measure Savings	Source: PG\&E 2006 Workpapers
Measure Incremental Cost	Source: PG\&E 2006 Workpapers
Effective Useful Life	Source: PG\&E 2006 Workpapers 16 years

Only new, hard-wired induction fixtures qualify. New fixtures must replace, one for one, existing Incandescent, Mercury Vapor, T12/High Output Fluorescent, T12/Very High Output Fluorescent, Standard Metal Halide, or High Pressure Sodium fixtures in interior installations. The new fixtures must not exceed the maximum Wattage listed in the table below for each range of lamp Wattage being replaced.

Table 73: Wattage Criteria for Induction Lighting Replacement

Basecase Wattage	Replacement Fixture Wattage (Maximum)
≥ 400 Watt	360 W
$176-399$ Watt	180 W
$101-175$ Watt	160 W
≤ 100 Watt	95 W

Measure Savings

The coincident kW and kWh savings are provided in the following table.
Table 74: Measure Savings for Induction Fixtures

Coincident Demand Savings (kW)	Energy Savings (kWh)
0.063	337.7

Measure Savings Analysis

Annual energy savings and the peak coincident demand savings were calculated using the equations below. The annual operation hours, the coincidence factors, and the interactive effect
factors are obtained from the DEER database. ${ }^{18}$ Since the AEP SmartGrid program does not vary savings by building type, the savings presented below are averages of savings calculated for these building types.

Table 75: Factors used for Calculating Lighting Savings

Annual Operating Hours	Demand Interactive Effects	Coincident Diversity Factors	Energy Interactive Effects
4,389	1.19	0.77	1.12

Non-coincident kW reduction $=$ kW of existing equipment -kW of replacement equipment
Energy savings are calculated by applying the annual operating hours and the energy interactive effect, according to the following formula:
kWh Reduction = non-coincident kW savings * Annual operating hours * Energy interactive effect
Coincident demand savings are calculated by applying the coincidence factor and the demand interactive effect, according to the following formula:

Coincident kW savings = non-coincident kW savings * Coincidence Factor * Demand interactive effect
Baseline and retrofit equipment assumptions are presented in the table below.

[^13]Table 76: Baseline and Retrofit Wattages for Induction Lighting

	Base Lamp Wattage	Base Fixture Wattage	Retrofit Lamp Wattage	Retrofit Fixture Wattage	Demand Savings per fixture	Weight Percentages
400 Watt lamp basecase, up to 360 Watt replacement fixture	400	458	330	354	0.104	40%
176-399 Watt lamp basecase, up to 180 Watt replacement fixture	250	295	165	177	0.118	10%
101-175 Watt lamp basecase, up to 160 Watt replacement fixture	150	190	150	160	0.030	40%
100 Watt lamp basecase, up to 95 Watt replacement fixture	100	128	85	95	0.033	10%
Weighted Average					0.069	

Measure Life and Incremental Measure Cost

The next table provides the measure life and IMC documented for this measure as well as the source of the data. The measure life is assumed to be the same as that for HID lighting.
Incremental cost is cost difference between the energy-efficient equipment and the less efficient option. In this case the lighting measures, the IMC is equal to the full measure cost since cost of the less efficient option.

Table 77: Measure Life and Incremental Measure Cost

	Measure Category	Value	Source
Measure Life	All	16	PG\&E Work paper
Incremental Measure Cost	All	$\$ 290$	PG\&E Work paper

Compact Fluorescent Fixtures, Hardwired

Table 78: Compact Fluorescent Fixtures, Hardwired

Measure Description	New fixtures or modular retrofits with hardwired electronic ballasts qualify. The CFL ballast must be programmed start or programmed rapid start with a PF ≥ 90 and THD $\leq 20 \%$.
Units	Per fixture
Base Case Description	Incandescent or HID lamps.
Measure Savings	Source: KEMA
Measure Incremental Cost	Source: KEMA
Effective Useful Life	Source: DEER 12 years

Hardwired CFL incentives apply only to complete new fixtures or modular (pin-based) retrofits with hardwired electronic ballasts. The CFL ballast must be programmed 'start' or programmed 'rapid start' with a PF ≥ 90 and THD ≤ 20 percent.

Measure Savings

Baseline and retrofit equipment assumptions are presented in the table below. Most lighting retrofits assume early replacement of existing technologies where the baseline represents the equipment removed. The following table shows the wattages used for the savings calculations.

Table 79 Baseline and Retrofit Wattages

Measure	Base Wattage	Retrofit Wattage	kW Reduction
29W or Less	100	28	0.072
29W or Less	125	27	0.098
29W or Less	110	27	0.083
29W or Less	100	26	0.074
29W or Less	75	26	0.049
29W or Less	100	25	0.075
29W or Less	75	25	0.05
29W or Less	100	23	0.077
29W or Less	75	20	0.055
29W or Less	75	19	0.056
29W or Less	75	18	0.057
29W or Less	60	18	0.042
29W or Less	60	16	0.044
29W or Less	60	15	0.045
29W or Less	60	14	0.046
29W or Less	60	13	0.047
29W or Less	40	13	0.027
29W or Less	40	9	0.031
30W or Greater	120	30	0.09
30W or Greater	120	40	0.08
30W or Greater	200	55	0.145
30W or Greater	200	65	0.135

Table 80: Wattage Reduction

Wattage Category	Average Wattage Reduction
≤ 29	57
$\geq 30 \mathrm{~W}$	113

The following tables provide the measure savings using the above wattage reduction assumptions.

Table 81 Measure Savings for 29W or less

Annual Operating Hours	Demand Interactive Effects	Coincident Diversity Factors	Energy Interactive Effects	Peak kW Savings	kWh Savings
4,321	1.19	0.77	1.12	0.052	276

Table 82: Measure Savings for $\geq 30 \mathrm{~W}$

Annual Operating Hours	Demand Interactive Effects	Coincident Diversity Factors	Energy Interactive Effects	Peak kW Savings	kWh Savings
4,321	1.19	0.77	1.12	0.103	544

Measure Savings Analysis

Annual energy savings and the peak coincident demand savings were calculated using the equations below. The annual operation hours, the coincidence factors, and the interactive effect factors were all derived from the DEER database. ${ }^{19}$ DEER values by building type were averaged for the AEP Ohio Program.

Non-coincident kW reduction $=\mathrm{kW}$ of existing equipment -kW of replacement equipment
Energy savings are calculated by applying the annual operating hours and the energy interactive effect, according to the following formula:
kWh Reduction = non-coincident kW savings * Annual operating hours * Energy interactive effect

Coincident demand savings are calculated by applying the coincidence factor and the demand interactive effect, according to the following formula:

Coincident kW savings = non-coincident kW savings * Coincidence Factor * Demand interactive effect

Measure Life and Incremental Measure Cost

The table below provides the measure life and IMC documented for this measure as well as the source of the data.

Incremental cost is the cost difference between the energy-efficient equipment and the less efficient option. For lighting measures, the IMC is equal to the full measure cost since the cost of the less efficient option, i.e., not conducting the retrofit, is $\$ 0$.

[^14]Attachment 8 - Prescriptive Lighting Protocols for the work papers that provide all methodologies, protocols and practices used in this application Page 81 of 206

Table 83: Measure Life and Incremental Measure Cost

Wattage Category		Value	Source
All	Measure Life	12	DEER
≤ 29	Incremental Measure Cost	$\$ 95$	KEMA
$\geq 30 \mathrm{~W}$	Incremental Measure Cost	$\$ 132$	KEMA

Cold Cathode
Table 84: Cold Cathode

	All cold cathode fluorescent lamps (CCFLs) must replace incandescent lamps of at least 10 W and not greater than 40 W. Cold cathode lamps may be medium (Edison) or candelabra base. Product must be rated for at least 18,000 average life hours.
Units	Per lamp
Base Case Description	Incandescent
Measure Savings	Source: KEMA, SCE
Measure Incremental Cost	Source: PG\&E
Effective Useful Life	Source: SCE 5 years

All cold cathode fluorescent lamps (CCFLs) must replace incandescent lamps of at least 10 W and not greater than 40 W . Cold cathode lamps may be medium (Edison) or candelabra base. The product must be rated for at least 18,000 average life hours.

Measure Savings

Baseline and retrofit equipment assumptions are presented in table below. Most lighting retrofits assume an early replacement of existing technologies where the baseline represents the equipment removed. The table shows the wattages used for the savings calculations from SCE and KEMA research of cold cathode manufacturers.

Table 85: Baseline and Retrofit Wattages

Measures ${ }^{\text {20 }}$	Base Wattage (Watts)	Retrofit Wattage (Watts)	Wattage Reduction (Watt)
Incandescent (15W) -> Cold Cathode FL (5W)	15	5	10
Incandescent (30W) -> Cold Cathode FL (5W)	30	5	25
Incandescent (40W) -> Cold Cathode FL (8W)	40	8	32
Average			22

The following table provides the measure savings using the above non-coincident savings.

[^15]Table 86: Measure Savings

Annual Operating Hours	Demand Interactive Effects	Coincident Diversity Factors	Energy Interactive Effects	Peak kW Savings	kWh Savings
4,321	1.19	0.77	1.12	0.020	108

Measure Savings Analysis

Annual energy savings and the peak coincident demand savings were calculated using the equations below. The annual operating hours, the coincidence factors, and the interactive effect factors were all derived from the DEER database.

Non-coincident kW reduction $=\mathrm{kW}$ of existing equipment -kW of replacement equipment
Energy savings are calculated by applying the annual operating hours and the energy interactive effect, according to the following formula:
kWh Reduction = non-coincident kW savings * Annual operating hours * Energy interactive effect

Coincident demand savings are calculated by applying the coincidence factor and the demand interactive effect, according to the following formula:

Coincident kW savings = non-coincident kW savings * Coincidence Factor * Demand interactive effect

Measure Life and Incremental Measure Cost

The following table provides the measure life and IMC documented for this measure as well as the source of the data.

Incremental cost is cost difference between the energy-efficient equipment and the less efficient option. In this case, the IMC is equal to the full measure cost since cost of the less efficient option is $\$ 0$..

Table 87: Measure Life and Incremental Measure Cost ${ }^{21}$

	Value	Source
Measure Life	5	SCE WP
Incremental Measure Cost	$\$ 9.68$	PG\&E WP

[^16]
Specialty Screw-In CFL

Table 88: Specialty Screw-In CFL

Measure Description	This measure consists of the replacement of a conventional incandescent lamp with a specialty CFL.
Units	Per lamp
Base Case Description	Conventional, incandescent bulb
Measure Savings	Source: KEMA
Measure Incremental Cost	Source: KEMA \$47
Effective Useful Life	Source: DEER 2008 2.5 years

This measure consists of the replacement of an existing incandescent, metal halide, or induction lamp with a specialty compact fluorescent lamp (CFL). These specialty applications typically include 3-way and dimmable lamps. These lamps must meet ENERGY STAR® criteria, if available for the type of lamp.

Measure Savings

Table 89: Baseline and Retrofit Wattages

Measures	Base Wattage	Retrofit Wattage	Wattage Reduction, kW	Weights
Incandescent (60W) -> CFL (14.5W)	60	14.5	0.046	50%
Incandescent $(75 \mathrm{~W})$-> CFL (20W)	75	20	0.055	25%
Incandescent $(100 \mathrm{~W})$-> CFL $(26.5 \mathrm{~W})$	100	26.5	0.074	25%
Weighted average			$\mathbf{0 . 0 5 5}$	

The savings are presented in the following table. The annual operation hours, the coincidence factors, and the interactive effect factors are obtained from the DEER database. ${ }^{22}$ Since the AEP SmartGrid program does not vary savings by building type, the savings presented below are averages of savings calculated for these building types.

Table 90: Measure Savings, per lamp

Annual Operating Hours	Demand Interactive Effects	Coincident Diversity Factors	Energy Interactive Effects	Peak kW Savings	kWh Savings

[^17]| 4,321 | 1.19 | 0.77 | 1.12 | 0.050 | 266 |
| :--- | :--- | :--- | :--- | :--- | :--- |

Measure Savings Analysis

Annual energy savings and the peak coincident demand savings were calculated using the equations below. The annual operation hours, the coincidence factors, and the interactive effect factors were all obtained from the DEER database.

Non-coincident kW reduction $=\mathrm{kW}$ of existing equipment -kW of replacement equipment
Energy savings are calculated by applying the annual operating hours and the energy interactive effect, according to the following formula:

$$
\text { kWh Reduction }=\text { non-coincident kW savings * Annual operating hours * Energy interactive }
$$

Coincident demand savings are calculated by applying the coincidence factor and the demand interactive effect, according to the following formula:

Coincident kW savings = non-coincident kW savings * Coincidence Factor * Demand interactive effect

Measure Life and Incremental Measure Cost

The following table provides the measure life and IMC documented for this measure as well as the source of the data. Incremental cost is cost difference between the energy efficient equipment and the less efficient option. In this case the IMC is equal to the full measure cost since the cost of the less efficient option, i.e., not conducting the retrofit, is $\$ 0$.

Table 91: Measure Life and Incremental Measure Cost

	Value	Source
Measure Life	2.5	DEER 2008
Incremental Measure Cost	$\$ 47$	KEMA

Permanent Lamp Removal

Table 92: Permanent Lamp Removal

	Incentives are paid for the permanent removal of existing 8', 4', 3' and 2' fluorescent lamps. Unused lamps, lamp holders, and ballasts must be permanently removed from the fixture. This measure is applicable when retrofitting from T12 lamps to T8
Measure Description	lamps or simply removing lamps from a T8 fixture. Removing lamps from a T12 fixture that is not being retrofitted with T8 lamps are not eligible for this incentive.
Units	Per lamp
Base Case Description	Various configurations of fluorescent fixtures before removal of lamps.
Measure Savings	Source: KEMA
Measure Incremental Cost	Source: ICF Portfolio Plan
Effective Useful Life	Source: DEER 11 years

Incentives are paid for the permanent removal of existing fluorescent lamps resulting in a net reduction of the number of foot-lamps. Customers are responsible for determining whether or not to use reflectors in combination with lamp removal in order to maintain adequate lighting levels. Unused lamps, lamp holders, and ballasts must be permanently removed from the fixture. This measure is applicable when retrofitting from T12 lamps to T8 lamps or simply removing lamps from a T8 fixture. Removing lamps from a T12 fixture that is not being retrofitted with T8 lamps is not eligible for this incentive. A Pre-approval Application is required for lamp removal projects in order for KEMA to have the option of conducting a pre-retrofit inspection.

Measure Savings

Non-coincident demand savings are summarized by the following table:

Table 93: Wattage Reduction

Wattage Category	Average Wattage Reduction
8 Foot Lamp Removal	68
4 Foot Lamp Removal	35
2 Foot or 3 Foot Lamp	24
Removal	

Table 94: Measure Savings for 8-Foot Lamp Removal

Annual	Demand	Coinciden	Energy	8-foot
8-foot				

Operating Hours	Interactive Effects	t Diversity Factors	Interactive Effects	Lamp Peak Savings (kW)	Savings (kWh)
4,389	1.19	0.77	1.12	0.062	333.7

Table 95: Measure Savings for 4-Foot Lamp Removal

Annual Operating Hours	Demand Interactive Effects	Coincident Diversity Factors	Energy Interactive Effects	4-foot Lamp Peak Savings (kW)	4-foot Savings (kWh)
4,389	1.19	0.77	1.12	0.032	172.3

Table 96: Measure Savings for 2-Foot or 3-Foot Lamp Removal

Annual Operating Hours	Demand Interactive Effects	Coincident Diversity Factors	Energy Interactive Effects	2-foot or 3-foot Lamp Peak Savings (kW)	2-foot or 3-foot Savings (kWh)
4,389	1.19	0.77	1.12	0.022	119.3

Measure Savings Analysis

Annual energy savings and the peak coincident demand savings were calculated using the equations below. The annual operating hours, the coincidence factors, and the interactive effect factors were all derived from the DEER database. ${ }^{23}$ However, DEER values by building type were averaged for the AEP Ohio Program.

Non-coincident kW reduction $=$ kW of existing equipment -kW of replacement equipment

Energy savings are calculated by applying the annual operating hours and the energy interactive effect, according to the following formula:

[^18]kWh Reduction = non-coincident kW savings * Annual operating hours * Energy interactive effect

Coincident demand savings are calculated by applying the coincidence factor and the demand interactive effect, according to the following formula:

Coincident kW savings = non-coincident kW savings * Coincidence Factor * Demand interactive effect

Baseline assumptions are presented in the next table. Most lighting retrofits assume an early replacement of existing technologies where the baseline represents the equipment removed. The table shows the wattages used for the savings calculations. Weighted average savings values are used when determining deemed savings for each 8 foot or 4 foot lamp permanently removed.

Table 97: Wattages for Eight-foot Lamps

Baseline	Base Wattage	Lamp Removed Wattage	Weight Percentages
Two 8' T12 (60W/75W)	140	70	85%
Two 8' T8 (59W)	111	56	15%
Total Weighted Average		68	

Table 98: Wattages for Four-foot Lamps

Baseline	Base Wattage	Lamp Removed Wattage	Weight Percentages
Two 4' T8 (32W)	65	36	3%
Two 4' T12 (34W/40W)	72	36	8%
Three 4' T8 (32W)	92	31	7%
Three 4' T12 (34W/40W)	115	38	22%
Four 4' T8 (32W)	118	30	15%
Four 4' T12 (34W/40W)	144	36	45%
Total Weighted Average		35	

Table 99: Wattages for Two and Three-foot Lamps

Baseline	Base Wattage	Lamp Removed Wattage	Weight Percentages
Two 3' T12 (30W)	76	38	15%
Two 3' T8 (34W/40W)	48	24	15%
Two 2' T8 (17W)	31	15	30%
Two 2' T12 (20W)	56	28	30%
Three 2' T8 (17W)	46	16	2.5%

Three 2' T12 (20W)	62	21	2.5%
Four 2' T8 (17W)	60	15	2.5%
Four 2' T12 (20W)	112	28	2.5%
Total Weighted Average		24	

Measure Life and Incremental Measure Cost

The following table provides the measure life and incremental measure cost (IMC) documented for this measure as well as the source of the data.

Incremental cost is cost difference between the energy efficient equipment and the less efficient option. For lighting measures, the IMC is equal to the full measure cost since the cost of the less efficient option, i.e., not conducting the retrofit, is $\$ 0$.

Table 100: Measure Life and Incremental Measure Cost

Measure Category		Value	Source
All	Measure Life	11	DEER
8-Foot Lamp Removal	Incremental Measure Cost	$\$ 25.91$	ICF Portfolio Plan
4-Foot Lamp Removal	Incremental Measure Cost	$\$ 25.70$	ICF Portfolio Plan
2-Foot or 3-Foot Removal	Incremental Measure Cost	$\$ 25.70$	KEMA

Occupancy Sensors

Table 101: Occupancy Sensors

Measure Description	Passive infrared, ultrasonic detectors and fixture-integrated sensors or sensors with a combination thereof are eligible. All sensors must be hard-wired and control interior lighting fixtures. The incentive is per Watt controlled.
Units	Per Connected Watt
Base Case Description	No Sensor
Measure Savings	Source: DEER
Measure Incremental Cost	Source: DEER
Effective Useful Life	Source: DEER 8 years

Passive infrared, ultrasonic detectors and fixture-integrated sensors or sensors with a combination thereof are eligible. All sensors must be hard-wired and control interior lighting fixtures. The incentive is per Watt controlled.

Measure Savings

The annual operation hours, the coincidence factors, and the interactive effect factors were all derived from the DEER database.

Table 102: Measure Savings for Occupancy Sensor per Connected Watt

Annual Operating Hours	Demand Interactive Effects	Coincident Diversity Factors	Energy Interactive Effects	Peak Watt Savings	kWh Savings
4,389	1.19	0.77	1.12	0.0003	1.385

Measure Savings Analysis

Annual energy savings and the peak coincident demand savings were calculated using the equations below.

Energy savings are calculated by applying the annual operating hours and the energy interactive effect, according to the following formula:
kWh Reduction = Connected wattage/1000 * Annual operating hours * Energy interactive effect*Occupancy Off Rate

Coincident demand savings are calculated by applying the coincidence factor and the demand interactive effect, according to the following formula:

Coincident kW savings = Connected wattage/1000 * Occupancy Off Rate * Coincidence Factor

* Demand interactive effect

The baseline for this measure is fixtures that do not include any automatic controls, i.e., manual switches. Since the unit is defined as per connected Watt, the baseline demand is one watt. Demand savings depend on whether areas are high or low occupancy. DEER states that occupancy time off rates are at 20 percent for high-occupancy building types and 50 percent for low-occupancy building types. ${ }^{24}$. The table below shows the assumed range of occupancy off rates. Calculations here are performed with the 28% average sensor off rate.

Table 103: Occupancy Off Rate

Average Grouping	Occupancy Sensor Off Rate
Office	20%
School (K-12)	20%
College/University	20%
Retail/Service	20%
Restaurant	20%
Hotel/Motel	20%
Medical	20%
Grocery	20%
Warehouse	50%
Light Industry	50%
Heavy Industry	50%
Average	28%

Measure Life and Incremental Measure Cost

The following table provides the measure life and IMC documented for this measure as well as the source of the data.

Incremental cost is cost difference between the energy efficient equipment and the less efficient option. For lighting measures, the IMC is equal to the full measure cost since the cost of the less efficient option, i.e., not conducting the retrofit, is $\$ 0$.

[^19]Table 104: Measure Life and Incremental Measure Cost

	Value	Source
Measure Life	8	DEER
Incremental Measure Cost	$\$ 0.32$	DEER

Plug Load Occupancy Sensors

Table 105 Plug Load Occupancy Sensors

Measure Description	Installation of an occupancy sensor on a plug load.
Units	Per sensor
Base Case Description	50W of task lighting and a computer monitor with no controls
Measure Savings	Source: DEER
Measure Incremental Cost	Source: DEER
Effective Useful Life	Source: DEER 8 years

This rebate applies to passive infrared and/or ultrasonic detectors only. Plug-load sensors must control electricity using equipment in offices or cubicles, including shared copiers and/or printers.

Measure Savings

The coincident demand savings is 0.091 kW and annual energy savings is 258 kWh per application. The savings are provided for the Office building type (interactive effects are Included in the savings).

Measure Savings Analysis

Annual energy savings and the peak coincident demand savings were calculated using the equations below. The annual operation hours, the coincidence factors, and the interactive effect factor are obtained from the DEER database and shown in the following table. The occupancy sensor is assumed to turn off equipment for 2,450 hours/year. The factors used are for office building.

Table 106: Office Building Factors

Hours	Energy Interactive Effect	Demand Interactive Effects	Coincidence Factor
2,450	1.17	1.25	0.81

Energy savings are calculated by applying the annual operating hours and the energy interactive effect, according to the following formula:

> kWh Reduction $=$ non-coincident kW savings * Annual operating hours * Energy interactive effect

Coincident demand savings are calculated by applying the coincidence factor and the demand interactive effect, according to the following formula. The non-coincident demand reduction is 90 W in this calculation.

Coincident kW savings = non-coincident kW savings * Coincidence Factor * Demand interactive effect

Measure Life and Incremental Measure Cost

The following table provides the measure life and incremental measure cost (IMC) documented for this measure as well as the source of the data. The full measure cost is the cost applicable for this measure.

Table 107: Measure Life and Incremental Measure Cost

	Value	Source
Measure Life	8	DEER
Incremental Measure Cost	$\$ 20$	DEER

Daylighting Controls
Table 108: Daylighting Controls

Measure Description	This measure consists of the installation of daylighting controls.
Units	Per square foot
Base Case Description	No lighting controls
Measure Savings	Source: KEMA, Michigan CI Technologies Workpaper FES-L12
Measure Incremental Cost	Source: Michigan CI Technologies Workpaper FES-L12
Effective Useful Life	Source: DEER 2008 8 years

This measure consists of the installation of daylighting controls. These systems use photoelectric controls to take advantage of available daylight in interior building spaces. These controls can be used to turn lights off/on, A-B switching, or continuous dimming.

Measure Savings

Installation of daylighting controls is assumed to result in 30% savings for most perimeter and open space applications. Assumed average lighting density is 1.3 watts per square foot.

Annual $k W h$ Savings $=\left(\frac{1.3 \text { watts per square foot }}{1000 \text { watts per } k W}\right) \times(30 \%$ savings $) \times($ annual operating hours $) \times($ energy int era

Peak Savings $=(1.3$ watts per square foot $) \times(1$ square foot $) \times($ coincidence factor $) \times($ diversity factor $)$

The savings are presented in the following table. The annual operation hours, the coincidence factors, and the interactive effect factors are obtained from the DEER database. ${ }^{25}$ Since the AEP SmartGrid program does not vary savings by building type, the savings presented below are averages of savings calculated for these building types.

[^20]Table 109: Measure Savings for Daylighting Controls, per sq ft

Annual Operating Hours	Demand Interactive Effects	Coincident Diversity Factors	Energy Interactive Effects	Peak kW Savings, W per sq ft	Peak kW Savings, kW per $\mathbf{1 0 , 0 0 0}$ sq ft	kWh Savings, sq ft
4,389	1.19	0.77	1.12	0.001	11.91	1.92

Measure Life and Incremental Measure Cost

The following table provides the measure life and IMC documented for this measure as well as the source of the data. Incremental cost is cost difference between the energy efficient equipment and the less efficient option. In this case the IMC is equal to the full measure cost since the cost of the less efficient option, i.e., not conducting the retrofit, is $\$ 0$.

The cost assumes a space of 3000 sq ft . Material cost is $\$ 3,000$, and installation cost is estimated at $\$ 1,000$.

Table 110: Measure Life and Incremental Measure Cost, per sq ft

	Value	Source
Measure Life	8	DEER 2008
Incremental Measure Cost	$\$ 1.33$	Michigan CI Technologies Workpaper FES-L12

Bi-level Stairwell/Hall/Garage Light Fixtures

Table 111: Bi-level Stairwell/Hall/Garage Light Fixtures

Measure Description	This measure consists of replacing 2-lamp T12 fixture (full level output only) with a 2-lamp T8 bi-level fixture.
Units	Fixture
Base Case Description	2-lamp T12 fixture (full level output only)
Measure Savings	Source: PG\&E 2006 Work papers
Measure Incremental Cost	Source: PG\&E 2006 Work papers and KEMA
Effective Useful Life	Source: DEER 11 years

Existing fixtures must be a two-lamp T12 fixture. Eligible fixtures are hardwired (including linear) two-lamp T8 fluorescent fixtures with electronic ballasts and manufacturer integrated occupancy sensors used in areas where code requires lighting. 24 hours a day (such as stairwells, halls, and garages). Fixtures with manual on override are not eligible. During occupied periods, the fixture should operate at full light output. During unoccupied periods, the fixture should operate at lower light output and wattage. This measure is not also eligible for the occupancy sensor or T12 to T8 incentive.

Measure Savings

Average annual energy savings is 340 kWh and 0.039 kW savings. Peak demand savings are assumed to be zero. Fixtures are assumed to be in unconditioned spaces so interactive energy and demand effects are not claimed.

Measure Savings Analysis

This measure assumes that an existing 2-lamp T12 fixture (full level output only) will be replaced with a 2-lamp T8 bi-level fixture. At full level output, the existing is at $72 \mathrm{~W} / f i x t u r e ~ a n d ~$ bi-level fixtures consume 58 W . Based on a survey of market-available bi-level fixtures, at low level output, the bi-level fixture would, on average, consume 22 W .

Based on the Final Report of Bi-level Stairwell Fixtures from a California Energy Commission Lighting Research Project, the percentage of time in the low output mode ranged from 62% to 82% on weekdays and 85% to 97% on weekends. Therefore, a conservative calculation of the percentage of time in the low output mode $=[(5)(62 \%)+(2)(85 \%)] / 7=69 \%$.

Average demand of the bi-level fixture is $(58 \mathrm{~W})(0.31)+(22 \mathrm{~W})(0.69)=33 \mathrm{~W}$, or 0.033 kW . Average demand savings $=0.072 \mathrm{~kW}-0.033 \mathrm{~kW}=0.039 \mathrm{~kW}$ per fixture.

Annual energy savings $=(0.039 \mathrm{~kW}$ per fixture $)(8,760$ hours per year $)=340 \mathrm{kWh}$ per fixture.

Measure Life and Incremental Measure Cost

The next table provides the measure life and IMC documented for this measure as well as the source of the data. Incremental cost is cost difference between the energy-efficient equipment
and the less efficient option. In this case the lighting measures, the IMC is equal to the full measure cost since cost of the less efficient option.

Table 112: Measure Life and Incremental Measure Cost

	Measure Category	Value	Source
Measure Life	Lamp and Ballast	11	DEER
Incremental Measure Cost	2 Lamp System	$\$ 150$	PGE workpaper/ KEMA

Sensor-controlled LED Parking Lot Bi-Level Fixture

Table 113: Sensor-controlled LED Parking Lot Bi-Level Fixture

Measure Description	This measure consists of the replacement of a 150W Metal Halide fixture with a 60-lamp sensor-controlled LED Bi-Level Fixture
Units	Per fixture
Base Case Description	150W Metal Halide, (system wattage=190W)
Measure Savings	Source: CLTC, PG\&E Workpaper - PGECOLTG101.1 - Bi-Level Light Fixture
Measure Incremental Cost	Source: California Lighting Technology Center (CLTC) http://cltc.ucdavis.edu/content/view/354/287/. "UC / CSU case study: Bi-level Smart Parking Garage Fixture" \$975
Effective Useful Life	Source: DEER 2008 (same as occupancy sensors) 8 years

Fixture is integrated with occupancy sensor that allows the light to switch between high and low levels based on the presence of vehicle or pedestrian traffic. Switching between high and low light levels based on occupancy maintains sufficient light for security and way-finding while maximizing energy savings. New fixture must be pulse start metal halide, induction, or LED and have lower nominal wattage than existing fixture.

Measure Savings and Analysis

This measure assumes that an existing 150W Metal Halide fixture (190W connected) will be replaced by a 60-lamp Bi-Level SMART LED Fixture. At full output, the bi-level fixture is assumed to consume 110 W , while at low light level the fixture consumes 35 W . The bi-level fixtures are assumed to be in low output mode 50% of the time.

The demand savings are calculated as follows:
Δ Watts/unit $=$ Pre-Retrofit Wattage - Bi-Level Fixture Wattage

Bi-Level Fixture Wattage is calculated by a time-weighted average as follows:

$$
(0.5 * 35 W)+\left(0.5^{*} 110 W\right)=72.5 W
$$

Demand Savings $=190 \mathrm{~W}-72.5 \mathrm{~W}$

$$
\begin{aligned}
& =\underline{117.5 \mathrm{~W}} \\
& \begin{aligned}
& \text { Energy Savings }\left[\mathrm{kWh} / \text { Unit] }=\frac{(\Delta W \text { Watts } / \text { unit }) \times(\text { hours } / \text { day }) \times(\text { days } / \text { year })}{1,000 \mathrm{Watts} / \mathrm{kW}}\right. \\
&=(117.5 \mathrm{~W}) \times(4,100 / \mathrm{yr}) /(1,000 \mathrm{~W} / \mathrm{kW}) \\
&=\underline{\mathbf{4 8 2} \mathbf{~ k W h}}
\end{aligned}
\end{aligned}
$$

Measure Life and Incremental Measure Cost

The following table provides the measure life and IMC documented for this measure as well as the source of the data. Incremental cost is the cost difference between the energy-efficient equipment and the less efficient option.

Table 114: Measure Life and Incremental Measure Cost

	Value	Source
Measure Life	8 (same as occupancy sensors)	DEER 2008
Full Measure Cost	$\$ 975$	CLTC
Incremental Measure Cost	$\$ 975$	CLTC

Sensor-controlled Wallpack Fixtures

Table 115: Sensor-controlled Wallpack Fixtures

Measure Description	This measure consists of the replacement of a 150W Metal Halide fixture with a 60-lamp sensor-controlled LED Bi-Level Fixture
Units	Per fixture
Base Case Description	150W Metal Halide, (system wattage=190W)
Measure Savings	Source: CLTC, PG\&E Workpaper - PGECOLTG101.1 - Bi-Level Light Fixture
Measure Incremental Cost	Source: California Lighting Technology Center (CLTC) http://cltc.ucdavis.edu/content/view/354/287/. "UC / CSU case study: Bi-level Smart Parking Garage Fixture" \$975
Effective Useful Life	Source: DEER 2008 (same as occupancy sensors) 8 years

Bi-level fixtures are typically found in hallways, stairwells, and garages. These fixtures are intended for use in levels where high lighting levels are required when occupied, but are actually unoccupied for the majority of the time. These fixtures employ a motion sensor-type lighting switch to provide lower levels of light while unoccupied, and full illumination while occupied.

These particular fixtures also feature LED lighting sources, which typically require less energy demand than typical HID sources. These fixtures can also incorporate a fully integrated LED night light for illumination during low-output mode.

Measure Savings and Analysis

This measure assumes that an existing 150W Metal Halide fixture (190W connected) will be replaced by a 60-lamp Bi-Level SMART LED Fixture. At full output, the bi-level fixture is assumed to consume 110 W , while at low light level the fixture consumes 35 W . The bi-level fixtures are assumed to be in low output mode 75% of the time.

The demand savings are calculated as follows:

$$
\Delta \text { Watts/unit }=\text { Pre-Retrofit Wattage - Bi-Level Fixture Wattage }
$$

Bi-Level Fixture Wattage is calculated by a time-weighted average as follows:

$$
(0.75 * 35 \mathrm{~W})+(0.25 * 110 \mathrm{~W})=53.75 \mathrm{~W}
$$

$=136.25 \mathrm{~W}$

$$
\text { Energy Savings [kWh/Unit] }=\frac{(\Delta \text { Watts/unit }) \times(\text { hours } / \text { day }) \times(\text { days/year })}{1,000 \text { Watts } / \mathrm{kW}}
$$

$$
\begin{aligned}
& =(136.25 \mathrm{~W}) \times(8760 / \mathrm{yr}) /(1,000 \mathrm{~W} / \mathrm{kW}) \\
& =\underline{\mathbf{1 1 9 4} \mathbf{k W h}}
\end{aligned}
$$

Measure Life and Incremental Measure Cost

The following table provides the measure life and IMC documented for this measure as well as the source of the data. Incremental cost is the cost difference between the energy-efficient equipment and the less efficient option.

Table 116: Measure Life and Incremental Measure Cost

	Value	Source
Measure Life	8 (same as occupancy sensors)	DEER 2008
Incremental Measure Cost	$\$ 975$	CLTC

Exterior LED and Induction Lighting

Table 117 Exterior LED and Induction Lighting

Measure Description	Light emitting diodes and induction lighting can be use for street lighting, and parking lots with significant energy savings compared to HID fixtures. These technologies also have longer useful lives and lower maintenance costs when compared to HIDs.
Units	Per Fixture
Base Case Description	High wattage HID fixtures
Measure Savings	Source: KEMA
Measure Incremental Cost	Source: KEMA
Effective Useful Life	Source: DEER 2005 16 years

This measure applies to the retrofit of high wattage HID or incandescent outdoor light fixtures to LED or Inductions lamps. Both LED and induction lamps offer significant energy savings over their HID options and have longer life spans. The downside of this technology is cost. Prices for LED and induction are still high. Operating hours for exterior lighting may not as high as interior operating hours. There is also no benefit in heat reduction since there is no conditioned space to speak of. The payback period on this measure, as a result is also relatively high.

Measure Savings

The tables below provides the baseline and replacement wattages for induction and LED lamps.
Table 118: Exterior Induction Wattage Reduction

	Peak kW Reduction	Induction kWh Savings	LED kWh Savings	Average kWh Savings
250-400W HID	0	455	617	589
175-250W HID	0	205	344	484
s175W HID	0	135	210	275

Table 119: Garage Induction Wattage Reduction

	Induction Peak kW Reduction	LED Peak kW Reduction	Induction kWh Savings	LED kWh Savings	Average kW Reduction	Average kWh Savings
250-400W HID	0.111	0.151	972	1319	0.131	1258
175-250W HID	0.050	0.084	438	736	0.067	1034
\leq 175W HID	0.033	0.051	289	449	0.042	587

There is no coincident kW savings in this case since lamps are assumed to be off during peak hour in both the base and retrofit conditions. Exterior kWh savings are calculated with annual operating hours of 4,100 , equating to a 12 hour daily use during non-summer days and 9 hour use during summer days. Garage kWh savings are calculated with annual operating hours of 8760, assuming these are on all the time. No interactive effects are used.

Measure Savings Analysis

Energy savings are calculated by applying the annual operating hours and the energy interactive effect, according to the following formula:

> kWh Reduction $=$ non-coincident kW savings * Annual operating hours * Energy interactive effect

For this measure, it is assumed that the lighting is placed in non-conditioned areas so the energy and demand interactive effects are 1.0. Operating hours are 4,100 hours for exterior and 8760 hours for interior usage annually.

Exterior coincident kW savings are 0 since both baseline and retrofit lamps are off during peak hours. Interior garage lighting is on all the time and so coincident kW savings are calculated with a coincident factor of 1 .

The following table shows the wattage reduction assumed for induction lighting retrofits.

Attachment 8 - Prescriptive Lighting Protocols for the work papers that provide all methodologies, protocols and practices used in this application Page 106 of 206

Table 120: Induction Wattage Reduction

	Base Fixture Wattage	Retrofit Fixture Wattage	Non- Coincident kW Reduction
400W HID to Induction	458	354	0.104
250W HID to Induction	295	177	0.118
150W HID to Induction	210	160	0.050
100W HID to Induction	128	95	0.033

The following table summarizes exterior LED retrofits from 3 LED manufacturers.
Table 121 Manufacturer's LED Wattage Reduction ${ }^{26}$

	Manufacturer	Base Fixture Wattage	Retrofit Fixture Wattage
100W HID to LED	Ledtronics	130	25
100W HID to LED	LuxBright	130	42
100W HID to LED	MoonCell	130	55

These figures suggest energy savings of 60-80\%. Forty percent energy savings is also often cited in various publications.

[^21]Attachment 8 - Prescriptive Lighting Protocols for the work papers that provide all methodologies, protocols and practices used in this application Page 107 of 206

We will use the more conservative 40% here but note that savings may actually be greater depending on the application.

Table 122: LED Energy Reduction

	Base Fixture Wattage	kW Reduction
400W HID	458	183
250W HID	295	118
175W HID	210	84
100W HID	128	51

Measure Life and Incremental Measure Cost

The following table provides the measure life and IMC documented for this measure as well as the source of the data.

Table 123: Measure Life and Incremental Measure Cost

	Measure Category	Value	Source
Induction Measure Life	All	16	PG\&E Lighting Work paper
Induction Incremental Measure Cost	All	\$290	PG\&E Lighting Work paper
LED Measure Life	Incremental Measure Cost	16	DEER 2005 (LED Exit Signs)
LED Measure Cost	Incremental Measure Cost	\$265- \$799	KEMA

New T5/T8 Fluorescent Fixtures (Parking Garage)

Table 124: New T5/T8 Fluorescent Fixtures (Parking Garage)

	This measure consists of replacing one or more existing fixtures with new fixtures containing T8 or T5 lamps and electronic ballasts specifically in interior and exterior garages. The T8 or T5 lamps must have a color rendering index (CRI) ≥ 80. The electronic ballast must be high frequency ($\geq 20 \mathrm{kHz}$), UL listed, and warranted against defects for 5 years. Ballasts must have a power factor (PF) ≥ 0.90. Ballasts for 4-foot lamps must have total harmonic distortion (THD) ≤ 20 percent at full light output. For 2- and 3-foot lamps, ballasts must have THD $\leq 32 \%$ at full light output.
Measure Description	Per Watt reduced
Base Case Description	Typically high wattage HID fixtures at interior and exterior garages.
Measure Savings	Source: KEMA
Measure Incremental Cost	Source: KEMA
Effective Useful Life	Source: DEER 11 years

This measure consists of replacing one or more existing fixtures with new fixtures containing T8 or T5 lamps and electronic ballasts. The T8 or T5 lamps must have a color rendering index $(\mathrm{CRI}) \geq 80$. The electronic ballast must be high frequency ($\geq 20 \mathrm{kHz}$), UL listed, and warranted against defects for 5 years. Ballasts must have a power factor (PF) ≥ 0.90. Ballasts for 4 -foot lamps must have total harmonic distortion (THD) ≤ 20 percent at full light output. For 2- and 3foot lamps, ballasts must have THD ≤ 32 percent at full light output.

This section only applies to interior and exterior parking garages and is presented separately from other building types due to the drastic difference in operating hours. We define interior as parking structures that are enclosed where it is reasonable to assume that all lighting fixtures operate 24 hours per day, 7 days a week. ${ }^{27}$ This will include underground parking structures and also stand alone parking structures that may be semi-enclosed. Exterior parking structures are outdoor parking lots where light fixtures do not operate during the day. For other building types refer to savings numbers in the New T5/T8 fluorescent fixture section.

Measure Savings

The savings are provided for interior and exterior parking garages.

[^22]Table 125: Parking Garage Savings for New T8/T5 Fluorescent Fixtures per Watt Reduced

Garage Types	Annual Operating Hours	Demand Interactive Effects	Coincident Diversity Factors	Energy Interactive Effects	Peak Watt Savings	kWh Savings
Interior	8,760	1.00	1	1.00	0.0010	8.7600
Exterior	4,100	1.00	0	1.00	0.0000	4.1000

Measure Savings Analysis

Annual energy savings and the peak coincident demand savings were calculated using the equations below.

Non-coincident kW reduction $=\mathrm{kW}$ of existing equipment -kW of replacement equipment
Energy savings are calculated by applying the annual operating hours and the energy interactive effect, according to the following formula:
kWh Reduction = non-coincident kW savings * Annual operating hours * Energy interactive effect
Coincident demand savings are calculated by applying the coincidence factor and the demand interactive effect, according to the following formula:

Coincident kW savings = non-coincident kW savings * Coincidence Factor * Demand interactive effect

Baseline and retrofit equipment assumptions are variable. Because we define this measure with the number of watts reduced, the non-coincident demand savings will be one watt by definition.

Operating hours vary depending on the parking structure type. Interior garages keep lights on at all times while exterior parking lots operate daily at 12 hours per day, except during the summer when lights are on 3 hours less. These operating hours imply that coincident factors are 1 for interior parking (lights are always in operation) and 0 for exterior parking (lights are only in operation at night). Since parking structures are not conditioned space, interactive effects are set to 1 .

Measure Life and Incremental Measure Cost

The following table provides the measure life and IMC documented for this measure as well as the source of the data.

Incremental cost is cost difference between the energy efficient equipment and the less efficient option. In this case the IMC is equal to the full measure cost since the cost of the less efficient option, i.e., not conducting the retrofit, is $\$ 0$.

Table 126: Measure Life and Incremental Measure Cost

	Value	Source
Measure Life	11	DEER

Incremental Measure Cost 28	$\$ 0.75$	KEMA

[^23]
High Wattage Screw-In CFLs for Parking Structures

Table 127: High Wattage Screw-In CFLs for Parking Structures

Measure Description	High Wattage Scew-In CFLs must be greater than 40W and must replace HIDs or incandescent lamps. CFLs must have lamp/ballast efficacy of ≥ 40 lumens per watt.
Units	Per Lamp
Base Case Description	Incandescent or HID lamps.
Measure Savings	Source: KEMA
Measure Incremental Cost	Source: KEMA
Effective Useful Life	Source: DEER 2.5 years

This incentive applies to screw-in lamps and applies only if an incandescent or high-intensity discharge (HID) lamp is being replaced. Lamp/ballast combination must have an efficacy ≥ 40 lumens per Watt (LPW).

Measure Savings

Most lighting retrofits assume an early replacement of existing technologies where the baseline represents the equipment removed. The table shows the wattage reductions used for the savings calculations. Since incandescent lamps produce lower lumens per watt compared to HIDs, they tend to have higher wattage for a given application. Savings are therefore greater in the incandescent case.

Table 128: High Wattage Screw-in CFLs Wattage Reduction

Measure	Wattage Reduction
Incandescent Baseline	214
HID Baseline	102

The coincident kW and kWh savings are provided by parking structure type below. Interior parking garages will have annual operating hours of 8,760 (24/7) and exterior parking lots will have annual operating hours of $3,640(10 / 7)$. This implies that interior coincidence factors are assumed to be 1 since the lights operate at all times. Similarly, exterior coincidence factors are assumed to be 0 since lights do not operate during daylight.

Table 129: High Wattage Screw-in CFL Savings for Incandescent Baseline

Building Types	Annual Operating Hours	Demand Interactive Effects	Coincident Diversity Factors	Energy Interactive Effects	Peak kW Savings	kWh Savings
Interior Garage	8,760	1.00	1.00	1.00	0.214	1875
Exterior Parking	4,100	1.00	0.00	1.00	0.000	779

Table 130: High Wattage Screw-in CFL Savings for HID Baseline

Building Types	Annual Operating Hours	Demand Interactive Effects	Coincident Diversity Factors	Energy Interactive Effects	Peak kW Savings	kWh Savings
Interior Garage	8,760	1.00	1.00	1.00	0.102	890
Exterior Parking	4,100	1.00	0.00	1.00	0.000	370

Measure Savings Analysis

Annual energy savings and the peak coincident demand savings were calculated using the equations below.

Non-coincident kW reduction $=$ kW of existing equipment -kW of replacement equipment

Energy savings are calculated by applying the annual operating hours and the energy interactive effect, according to the following formula:

> kWh Reduction = Non-Coincident kW Savings * Annual Operating Hours * Energy Interactive

Coincident demand savings are calculated by applying the coincidence factor and the demand interactive effect, according to the following formula:

Coincident kW savings = Non-Coincident kW Savings * Coincidence Factor * Demand Interactive Effect

For this measure, it is assumed that the lighting is placed in non-conditioned areas so the energy and demand interactive effects are 1.0.

Baseline and retrofit equipment assumptions are presented in the following table. Most lighting retrofits assume an early replacement of existing technologies where the baseline represents the equipment removed. The table shows the wattages used for the savings calculations.

Table 131: High Wattage Screw-in CFL Baseline and Retrofit Wattages

Baseline	Base Wattage (Watts)	Retrofit Wattage (Watts)	kW Reductions (kW)
75 MH	85	42	0.043
150 MH	165	68	0.097
175 MH	188	68	0.120
175 MH	203	100	0.103
250 MH	295	150	0.145

200 Inc	200	55	0.145
250 Inc	250	68	0.182
400 Inc	400	85	0.315
Average			0.158

Measure Life and Incremental Measure Cost

The following table provides the measure life and IMC documented for this measure as well as the source of the data.

Incremental cost is cost difference between the energy efficient equipment and the less efficient option. In this case, the IMC is equal to the full measure cost since the cost of the less efficient option, i.e., not conducting the retrofit, is $\$ 0$.

Table 132: Measure Life and Incremental Measure Cost

Measure Category	Measure Life	Value	Source
All	2.5	DEER	
Incandescent Baseline	Incremental Measure Cost	$\$ 28$	KEMA
HID Baseline	Incremental Measure Cost	$\$ 38$	KEMA

Ceramic Metal Halides or Pulse Start Metal Halides (Parking Lots and Garages)

Table 134 Ceramic Metal Halides or Pulse Start Metal Halides (Parking Lots and	
Garages)	

Measure Description

fixtures with either pulse start metal halide or ceramic metal halide

fixtures in parking lots or garages. The new fixture must replace a

higher wattage existing fixture.\end{array}\right|\)| Units | Per Fixture |
| :--- | :--- |
| Base Case Description | Source: KEMA HID fixtures |
| Measure Savings | Source: KEMA |
| Measure Incremental
 Cost | Source: DEER
 16 years |
| Effective Useful Life | |

This incentive applies to retrofits of high-intensity discharge fixtures with either pulse-start metal halide or ceramic metal halide fixtures in parking lots or garages. Total replacement wattage must be lower than existing wattage to ensure energy savings. This measure is subject to possible pre-inspection. Retrofit kits may be used on existing mercury vapor, standard metal halide or high-pressure sodium fixtures only.

Measure Savings

The table below provides the non-coincident savings.
Table 135: Metal Halides Wattage Reduction

Wattage Category	Average Wattage Reduction
100 W or Less	48
$101 \mathrm{~W}-200 \mathrm{~W}$	65
$201-350 \mathrm{~W}$	128
$351-400 \mathrm{~W}$	396

The coincident kW and kWh savings are provided by parking structure type below. Interior parking garages will have an annual operating hours of 8,760 (24/7) and exterior parking lots will have an annual operating hours of 4,100 (12/7 Non-Summer, 9/7 Summer). This implies that interior coincidence factors are assumed to be 1 since the lights operate at all times. Similarly, exterior coincidence factors are assumed to be 0 since lights do not operate during daylight hours.

Table 136: Metal Halides Savings for $\leq 100 \mathrm{~W}$ MH

Building Types	Annual Operating Hours	Peak kW Savings	kWh Savings
Interior Parking Garage	8,760	0.048	423
Exterior Parking Garage	4,100	0.000	198

Table 137 Metal Halides Savings for 101W-200W MH

Building Types	Annual Operating Hours	Peak kW Savings	kWh Savings
Interior Parking Garage	8,760	0.065	569
Exterior Parking Garage	4,100	0.000	267

Table 138: Metal Halides Savings for 201W-350W MH

Building Types	Annual Operating Hours	Peak kW Savings	kWh Savings
Interior Parking Garage	8,760	0.128	1121
Exterior Parking Garage	4,100	0.000	525

Table 139: Metal Halides Savings for 351W-400W MH

Building Types	Annual Operating Hours	Peak kW Savings	kWh Savings
Interior Parking Garage	8,760	0.396	3467
Exterior Parking Garage	4,100	0.000	1,623

Measure Savings Analysis

Annual energy savings and the peak coincident demand savings were calculated using the equations below.

Non-coincident kW reduction $=\mathrm{kW}$ of existing equipment -kW of replacement equipment

Energy savings are calculated by applying the annual operating hours and the energy interactive effect, according to the following formula:
kWh Reduction = non-coincident kW savings * Annual operating hours * Energy interactive effect
Coincident demand savings are calculated by applying the coincidence factor and the demand interactive effect, according to the following formula:

Coincident kW savings = non-coincident kW savings * Coincidence Factor * Demand interactive effect
For this measure, it is assumed that the lighting is placed in non-conditioned areas so the energy and demand interactive effects are 1.0.

Baseline and retrofit equipment assumptions are presented in the following table. Most lighting retrofits assume an early replacement of existing technologies where the baseline represents the equipment removed. The table shows the wattages used for the savings calculations.

Table 140: Metal Halide Baseline and Retrofit Wattages ${ }^{29}$

Measures	Base Wattage	Retrofit Wattage	Wattage Reduction
100W or Less			
Base case => Ceramic MH (20W lamp)	57	22	35
Base case => Ceramic MH (39W lamp)	83	46	37
Base case (100W) => Ceramic MH (25W lamp)	100	27	73
Average 48			
101W-200W			
Base case (250W lamp) => Metal Halide (175W lamp)	295	208	87
Base case (175W lamp) => Metal Halide (150W lamp)	208	185	23
Metal Halide (250W) => Pulse Start Metal Halide (175W)			85
Average			65
201-350W			
Base case (400W lamp) => Metal Halide (320W lamp)	458	365	93
Mercury Vapor (400W) => Pulse Start Metal Halide (250W)	458	295	163
Average			128
351-400W			
Basecase (1000 W) -> Metal Halide (<400W)	1075	458	617
Basecase (700 W) -> Metal Halide (<400W)	780	458	322
Average			396

${ }^{29} 2006$ PG\&E Interior Pulse Start Metal Halide Workpaper, PG\&E Directional Lighting CMH Workpaper, SCE Ceramic Metal Halide Workpaper (WPSCNRLG0054.1), 2005 Database for Energy Efficiency Resources (DEER) Update Study Final Report - Residential and Commercial Non-Weather Sensitive Measures.

Measure Life and Incremental Measure Cost

The following table provides the measure life and IMC documented for this measure as well as the source of the data.

Incremental cost is cost difference between the energy efficient equipment and the less efficient option. In this case the lighting measures, the IMC is equal to the full measure cost since the cost of the less efficient option, i.e., not conducting the retrofit, is $\$ 0$.

Table 141: Measure Life and Incremental Measure Cost

Wattage Category	Measure Life	Value	Source
All	Incremental Measure Cost	16	DEER
100 W or Less	Incremental Measure Cost	$\$ 170$	SCE WP 30
$101-200 \mathrm{~W}$	Incremental Measure Cost	$\$ 266$	PGE WP 31
$201-350 \mathrm{~W}$	Incremental Measure Cost	$\$ 266$	SCE WP 32

${ }^{30}$ WPSCNRLG0054.1 Ceramic Metal Halide Fixtures, Southern California Edison Workpaper, 2008.
${ }^{31} 2006$ PG\&E Interior Pulse Start Metal Halide Workpaper
${ }^{32}$ WPSCNRLG0046.1 Interior Pulse Start Metal Halide Fixtures 251-400W, Southern California Edison Workpaper, 2008.
${ }^{33}$ WPSCNRLG0046.1 Interior Pulse Start Metal Halide Fixtures 251 -400W, Southern California Edison Workpaper, 2008.

LED Channel Signs, Outdoor

Table 142: LED Channel Signs, Outdoor

Measure Description	Retrofit and replacement of inefficient neon and argon-mercury channel letter signs with efficient LED channel letter signs.
Units	Per letter
Base Case Description	Existing signage- Neon (red) channel letter signs and argon-mercury (white) channel letter signs.
Measure Savings	Source: PG\&E workpaper
Measure Incremental Cost	Source: PG\&E workpaper
Effective Useful Life	16 years Source: PG\&E workpaper

LED channel sign incentive is available for retrofitting or replacing incandescent, HID, argonmercury or neon-lighted channel letter signs. Replacement signs can not use more than 20% of the actual input power of the sign that is replaced.

Measure Savings ${ }^{34}$

The following table summarizes the savings for LED channel signs.

Table143 Savings for LED Channel Signs

Location	Hours of Operation	Sign Height	Annual Energy Savings kWh/letter	Demand Savings kW/letter	Peak Demand Savings kW/letter
Outdoor	2750	$\leq 2 \mathrm{ft}$	93	0.034	0
		$>2 \mathrm{ft}$	237	0.086	0

Measure Savings Analysis

The calculation methodology used by PG\&E in the LED Channel Sign workpaper is outlined below. All the supporting documentation and spreadsheets are shown in the PG\&E workpaper.

[^24]1. Collected letter schematics showing linear feet of tubing and number of LED modules for each letter of the alphabet, both uppercase and lowercase, for 24 inch high letters and 36 inch high letters.
2. The base case wattage (W/ft) and the energy efficient case wattage (W/module) input values were collected for each specific letter.
3. A probability table, showing the frequency each letter appears in the English language, was integrated into the spreadsheet. By multiplying the wattage for each specific letter by the probability, a weighted average wattage per letter was obtained. This single value represents all 26 letters of that height and will be accurate over a range of signs with a weighted average watts/letter for red and white for uppercase and lowercase letters.
4. This spreadsheet was then modified to account for the average height of signs in each category. (According to sign industry sources, the average height of a sign in the 2 feet or less category is 21 inches. The average height of a sign in the greater than 2 feet high category is 27 inches).
5. The watts/letter values were then weighted assuming 70% of letters are uppercase and 30% of letters are lowercase, as well as 50% are red signs and 50% are white signs.

Measure Life and Incremental Measure Cost

Measure life is assumed to be 16 years for the signs. LEDs have a lifetime of 25,000 hours for LEDs. However, to be consistent, DEER uses 16 years for LED exit signs, hence all LEDs are assumed to have a 16 year life.

Incremental cost is cost difference between the energy efficient equipment and the less efficient option. The incremental cost for the retrofit case is the full cost of the LED-lighted sign because the retrofit case assumes the existing lighting is working properly and does not need to be replaced. The incremental cost for the replacement case is the difference between the base case and the energy-efficient alternative. The incremental costs were weighted assuming that 30% of the channel signs will be retrofit and 70% of the channel signs will be new or replacement. Therefore, the incremental cost for signs less than or equal to 2 ft . high is $\$ 35 /$ letter and the incremental cost for signs greater than 2 ft . high is $\$ 154 / \mathrm{letter}$.

Photocells

Table 144 Photocells

Measure Description	Photocells can be used to control both outdoor and indoor lamps. When there is enough day lighting, lights are automatically turned off. This workpaper will only apply to outdoor lighting. The primary use is to shut off lights at dawn and on at dusk.
Units	Per Photocell
Base Case Description	High pressure sodium exterior lamps with time clock.
Measure Savings	DEER 2005
Measure Incremental Cost	DEER 2005
Effective Useful Life	8 years (DEER 2008), assumed to be the same as a timeclock or daylighting controls.

Photocells control lighting fixtures by sensing the amount of sunlight in the area and switching lights off when enough sunlight is present. The measure assumes that the existing exterior lights are controlled by a time clock and the measure retrofits those with a new photocell. With a photocell, exterior lights operate approximately 4,100 hours per year. Without the photocell, the lights would operate an additional 280 hours per year (approximately 3 months at 3 hours per day). For this calculation, the photocell controls four 70-watt high-pressure sodium exterior lamps with an effective 95 watts including the ballast.

Measure Savings

Table 145: Photocell Measure Savings

Peak kW Savings	Annual kWh Savings
0	106.4

Measure Savings Analysis

We assume in our calculations that lighting systems with time clocks only will be on 12 hours a day or 4,380 hours annually. Due to seasonal shifts, photocells will shut off an additional 3 hours per day for 3 months. This equates to annual savings of 280 hours.

DEER assumes that each photocell will control 4 lamps at 95W each, effectively 380W per photocell.

Since no interactive effects are considered for exterior lighting, annual kWh savings per photocell is calculated to be 106.4 kWh . On average, the demand in this period will be 0 in both the retrofit and base case.

Measure Life and Incremental Measure Cost

Measure life is assumed to be the same as a timeclock or daylighting controls as listed in DEER.

Table 146: Measure Life and Incremental Measure Cost

	Value	Source
Measure Life	8	DEER 2008
Incremental Measure Cost	$\$ 59.81$	DEER 2005

Time Clocks for Lighting

Table 147: Time Clocks for Lighting

Measure Description	Time clocks are an electrical device that control lighting equipment by turning the equipment on and off according to a set schedule. This measure applies to external lighting. The timeclocks must be installed with a 3 hour battery pack and astronomical controls.
Units	Per Time Clock
Base Case Description	High pressure sodium exterior lamps with no control system
Measure Savings	DEER 2005
Measure Incremental Cost	DEER 2005
Effective Useful Life	8 years (DEER 2008)

Time clocks are an electrical device that control lighting equipment by turning the equipment on and off according to a set schedule. This measure applies to external lighting. These clocks can program lights to switch off during weekends, for example. The time clocks must be installed with a 3 hour battery pack so that schedule information do not get whipped out during any power outages. Time clocks should also include astronomical controls, to adjust the schedule to the appropriate season.

Measure Savings

Table 148: Timeclock Measure Savings

Peak kW Savings	Annual kWh Savings
0	474.24

Measure Savings Analysis

DEER assumes that each time clock will control 4, 70W high pressure sodium lamps. Including the ballast, each lamp has a demand of 95 W or 380 W total.

We assume in our calculations that lighting systems without time clocks will be on 12 hours a day during weekends. This measure would eliminate weekend operation which equates to 1,248 hours annually.

Since no interactive effects are considered for exterior lighting, energy saving is calculated by multiplying 1,248 hours and 380 W . There is no peak demand savings associated with this measure since peak usage are not impacted by time clocks.

Measure Life and Incremental Measure Cost

Table 149: Measure Life and Incremental Measure Cost

Attachment 8 - Prescriptive Lighting Protocols for the work papers that provide all methodologies, protocols and practices used in this application
Page 123 of 206

	Value	Source
Measure Life	8	DEER 2008
Incremental Measure Cost	$\$ 102.78$	DEER 2005

LED Traffic Signals

Table 150: LED Traffic Signals	
Measure Description	Replacement of existing incandescent traffic and pedestrian lamps with LED lamps.
Units	Per Signal
Base Case Description	Incandescent fixtures
Measure Savings	Source: Ohio TRM
Measure Incremental Cost	Source: Michigan Statewide Energy Savings Database
Effective Useful Life	Source: Michigan Statewide Energy Savings Database Traffic Signal: 6 Years Pedestrian Signal: 8 Years

LED traffic signals can save 80-90 percent of the energy typically consumed by incandescent traffic signals and LED signals generally last 5-10 times longer. Since traffic signals operate 24 hours a day, 365 days a year, the opportunity for energy savings is significant, particularly in the peak demand. LED Traffic signals perform better than incandescent models and are a better value. They also have lower maintenance costs because they need to be replaced less frequently.

Signals shall have a maximum LED module wattage of 17. Credits are offered for LED traffic lights on a per-signal basis (including arrows) that replace or retrofit an existing incandescent traffic signal. At minimum, red and green lamps must be retrofitted to qualify for the signal credit. Lights must be hard-wired, with the exception of pedestrian hand signals. Credits are not available for spare lights.

Measure Savings

The energy savings vary for red, green and yellow signals. Savings also vary for round lamps, arrows and pedestrian signals.

Table 151: Measure Savings Traffic and Pedestrian Signals, per signal

Measure Name	kWh	Coincident Peak kW
Green 8 inch ROUND	226.0	0.06
Green 12 inch ROUND	519.8	0.14
Red 8 inch ROUND	298.7	0.06
Red 12 inch ROUND	693.8	0.14
Walk/Don't Walk - 9 inch	946.1	0.081
Walk/Don't Walk - 12 inch	946.1	0.11

Measure Savings Analysis

Operating hours, coincident factors, and baseline and retrofit wattages are from values found in the Ohio TRM (pg 187).

Measure Life and Incremental Measure Cost

The measure life is assumed to be 6 for traffic and 8 years for pedestrian signals. The IMC is $\$ 90$ and $\$ 140$ for traffic and pedestrian signal, respectively. Data is from the Michigan Statewide database 2010.

Lighting Density

Table 153: Lighting Density

Measure Description	Savings for new construction lighting projects will be calculated with lighting density.
Units	Per kW Reduced
Base Case Description	ASHRAE 90.1-2004 Lighting density.
Measure Savings	Source: KEMA
Measure Incremental Cost	Source: NA
Effective Useful Life	Source: DEER 11 Years

This measure applies only to new construction lighting projects and savings are calculated using the ASHRAE 90.1-2004 new construction lighting density as a baseline. The wattages are given on a per square foot basis and vary with business type.

The following table shows the ASHRAE criteria.
Table 154: ASHRAE Building Density Criteria

Building Type	Lighting Power Density $\left(\mathbf{W} / \mathrm{ft}^{\mathbf{2}} \mathbf{)}\right.$	Building Type	Lighting Power Density $\mathbf{(\mathbf { W } / \mathrm { ft } ^ { \mathbf { 2 } })}$
Automotive	0.9	Motion Picture Theatre	1.2
Convention Center	1.2	Multi-Family	0.7
Court House	1.2	Museum	1.1
Dining: Bar Lounge/Leisure	1.3	Office	1.0
Dining: Cafeteria/Fast Food	1.4	Parking Garage	0.3
Dining: Family	1.6	Penitentiary	1.0
Dormitory	1.0	Performing Arts	
Theatre	1.6		
Exercise Center	1.0	Police/Fire Station	1.0
Gymnasium	1.1	Retail	1.5
Health Care	1.0	School/University	1.2
Hospital	1.2	Sports Arena	1.1

Hotel	1.0	Town Hall	1.1
Library	1.3	Transportation	1.0
Manufacturing Facility	1.3	Warehouse	0.8
Motel	1.0	Workshop.	1.4

Applications must calculate the kW reduction using the above numbers, taking into account the business type as well as the actual building square footage. On a per kW reduced basis, the following table shows the energy and coincident savings.

Table 155: Lighting Density Savings

Annual Operating Hours	Demand Interactive Effects	Coincident Diversity Factors	Energy Interactive Effects	Peak Watt Savings	kWh Savings
4,389	1.19	0.77	1.12	0.916	4,914

Measure Savings Analysis

Annual energy savings and the peak coincident demand savings were calculated using the equations below.

Non-coincident kW reduction $=\mathrm{kW}$ of existing equipment -kW of replacement equipment
Energy savings are calculated by applying the annual operating hours and the energy interactive effect, according to the following formula:
kWh Reduction = non-coincident kW savings * Annual operating hours * Energy interactive effect
Coincident demand savings are calculated by applying the coincidence factor and the demand interactive effect, according to the following formula:

Coincident kW savings = non-coincident kW savings * Coincidence Factor * Demand interactive effect

Baseline and retrofit equipment assumptions are variable. Because we define this measure as in the number of watts reduced, the non-coincident demand savings will be one kW by definition.

Measure Life

Attachment 8 - Prescriptive Lighting Protocols for the work papers that provide all methodologies, protocols and practices used in this application
Page 128 of 206

The following table provides the measure life documented for this measure as well as the source of the data.

Table 156: Measure Life

	Value	Source
Measure Life	11	DEER

Cooling

Unitary or Split Air Conditioning Systems and Air Source Heat Pumps

Table 157: Unitary or Split Air Conditioning Systems and Air Source Heat Pumps	
Measure Description	New unitary air conditioning units or air source heat pumps that meet or exceed the qualifying cooling efficiency are eligible for an incentive. They can be either split systems or single package units. Water-cooled systems, evaporative coolers, and water source heat pumps do not qualify under this program but may qualify under the Custom Incentive Program.
Units	Ton
Base Case Description	Federal Minimum or ASHRAE 90.1-2007 Minimum Standard for Unitary or Split AC
Measure Savings	Source: KEMA
Incremental Measure Cost	Source: Updated DEER
Effective Useful Life	Source: DEER 15 years

New unitary air conditioning units or air source heat pumps that meet or exceed the qualifying cooling efficiency shown in the table below are eligible for an incentive. They can be either split systems or single package units. Efficiencies of split systems are based on ARI reference numbers. Water-cooled systems, evaporative coolers, and water source heat pumps do not qualify under this program but may qualify under the Custom Incentive Program. All unitary and split-system cooling equipment must meet Air Conditioning and Refrigeration Institute (ARI) standards (210/240, 320 or $340 / 360$), be UL listed, and utilize a minimum ozone-depleting refrigerant (e.g., HCFC or HFC). All required efficiencies are based on the Consortium for Energy Efficiency (CEE) high-efficiency commercial air conditioning and heat pump specifications (www.cee1.org) ${ }^{36}$. A manufacturer's specification sheet indicating the system efficiency must accompany the application. Disposal of the existing unit must comply with local codes and ordinances.

[^25]Table 158: Program Qualifying Efficiencies

	Unit Size	Minimum Efficiency	
Less than or equal 5 tons	$<65,000$ Btuh	Tier 1	14 SEER
	$\geq 240,000$ Btuh and $<760,000$ Btuh	Tier 2	15 SEER
	$\geq 65,000$ Btuh and $<240,000$ Btuh	12 EER	
	$\geq 760,000$ Btuh	10.8 EER	

Measure Savings

The coincident kW and the annual kWh savings per ton of installed cooling system are provided below.

Table 159: Measure Savings for Unitary or Split Air Conditioning Systems (per ton)

Unit Size	CEE Tier	Peak Demand Reduction	Annual Energy Savings
5 or less	1	0.068	56.4
5 or less	2	0.134	105.2
5 to 10	2	0.089	74.6
10 to 20	2	0.113	82.3
20 to 60	2	0.105	76.8
≥ 60	2	0.080	58.7

Measure Savings Analysis

Savings values are determined for efficiency levels listed for the CEE commercial AC systems. HVAC EER values used in the analysis are provided in the table below. It is important to note that the baseline efficiency listed here is significantly higher than the baselines used in the previous version, with the exception of unit 5 tons or less. These numbers are in accordance with ASHRAE 90.1-2007 (as of 1/1/10) standards instead of ASHRAE 2004. As a result, we will no longer include CEE tier 1 units unless the unit is 5 tons or less (14 SEER).

Table 1: Demand Savings and Efficiency Assumptions

Size (Tons)	Base (S)EER	Tier 2 (S)EER	SEER or EER
5 or less	13	15^{37}	SEER
5 to 10	11	12	EER
10 to 20	10.8	12	EER
20 to 60	9.8	10.8	EER
≥ 60	9.5	10.2	EER

Savings calculations were performed by utilizing DOE-2 models generated with eQUEST software. The models are the same used to generate California's DEER with modifications pertinent to Chicago, regarding climate zone and building construction, as outlined below. Our current assumption is that Chicago weather data is very similar that of Ohio. Since the AEP SmartGrid program does not vary savings by building type, the savings presented below are averages of savings calculated for these building types.

1) Representative models for all building types were obtained from the group that developed DEER.
2) The climate zone was changed to Chicago, which is a feature added to the latest version of eQUEST (version 3.63). Previous versions of eQUEST only included California and Seattle climate zones.
3) Building shell characteristics and lighting power density were changed per ComEd's 2008-2010 Energy Efficiency and Demand Response Plan, Appendix B. The primary building shell characteristics that affect weather sensitive measures include insulation levels and window SHGC and U-value..
4) For each building type, a baseline model included the baseline EER or SEER for the HVAC units.
5) Retrofit cases were determined using the Tier 1 or 2 EER or SEER for the HVAC units.
6) Savings was determined by subtracting the retrofit HVAC energy usage from the baseline usage. Similarly peak demand reductions were determined in the same fashion.

[^26]7) All units with capacities greater than or equal to 10 tons were assumed to be equipped with economizers for both the baseline and retrofit cases. Units smaller than 10 tons were assumed to not have economizers.

The savings values presented are not direct outputs from eQuest. The models still use ASHRAE 2004 baselines. To calculate new savings values, we applied the ratio of efficiency improvements in both cases to the old savings values as described in the following equation.

$$
\text { Saving }_{\text {NEWBaseline }}=\frac{\Delta \text { Efficiency }_{\text {NEWBaseline }} \text { Savings }_{\text {OLDBaseline }}}{\Delta E f i c i e n c y_{\text {OLDBaseline }}}
$$

Measure Life and Incremental Measure Cost

The measure life for packaged units is 15 years according to DEER 2005.
The next table provides incremental measure cost (IMC) documented for this measure.
Incremental cost is cost difference between the energy-efficient equipment and the less efficient option.

Table 161: Package Units Incremental Measure Cost ${ }^{38}$

Measure	Cost
65,000 Btuh or less - Tier 1	$\$ 113$
65,000 Btuh or less - Tier 2	$\$ 172$
65,000 to 240,000 tons - Tier 2	$\$ 97$
240,000 to 760,000 Btuh - Tier 2	$\$ 247$
760,000 Btuh or more - Tier 2	$\$ 203$

[^27]
Water-Cooled Chillers and Air-Cooled Chillers

Table 162 Water-Cooled Chillers and Air-Cooled Chillers	
	Chillers are eligible for an incentive if they have a rated kW/ton for the Integrated Part Load Value (IPLV) that is either 80 or 90 percent of the applicable standard. The chiller efficiency rating must be based on ARI Standard 550/590-2003 for IPLV conditions and not based on full-load conditions. The chillers must meet ARI standards 550/590-2003, be NRTL listed, and use a minimum ozone-depleting refrigerant (e.g., HCFC or HFC). The ARI net capacity value should be used to determine the chiller tons.
Measure Description	Per Ton
Base Case Description	Chillers at IECC 2006 IPLV standards
Measure Savings	Source: KEMA
Measure Incremental Cost	Source: 2008 DEER
Effective Useful Life	Source: DEER 20 years

Chillers are eligible for an incentive if they have a rated kW/ton for the integrated part-load value (IPLV) that is either 80 or 90 percent of the applicable standard. The chiller efficiency rating must be based on ARI Standard 550/590-2003 for IPLV conditions and not based on full-load conditions. The chillers must meet ARI standards 550/590-2003, be NRTL listed, and use a minimum ozone-depleting refrigerant (e.g., HCFC or HFC). The ARI net capacity value should be used to determine the chiller tons. A manufacturer's specification sheet with the rated $\mathrm{kW} /$ Ton-IPLV or COP-IPLV must accompany the application. Qualifying efficiencies for chillers are summarized below:

Table 163: Efficiency Levels for Chillers

Chiller Type	Size	IECC 2006 kW/ton- IPLV	Level 1 kW/ton IPLV	Level 2 kW/ton IPLV
	<150	0.68	0.61	0.54
	150 to 300	0.63	0.57	0.50
	≥ 300	0.57	0.51	0.46
Centrifugal	<150	0.67	0.60	0.54
	150 to 300	0.60	0.54	0.48
	≥ 300	0.55	0.49	0.44
Reciprocating	All	0.70	0.63	0.56
Air Cooled Chiller	All	1.15	1.04	0.92

Measure Savings

Qualifying air cooled chillers must have a kW/ton IPLV of 1.04 that is 10 percent below the IECC 2006 standards.

The coincident kW and the annual kWh savings per ton of installed chiller are provided below.

Table 164: Measure Savings for Chillers

Measure Description	Unit Size	Tier Level	Peak Electric Demand Reduction (kW/ton)	Electric Savings (kWh/ton)
Air Cooled	<150	1	0.101	87.1
Air Cooled	≥ 300	1	0.102	88.7
Air Cooled	$150-300$	1	0.102	88.3
Centrifugal	<150	1	0.068	71.1
Centrifugal	<150	2	0.127	132.0
Centrifugal	≥ 300	1	0.059	63.0
Centrifugal	≥ 300	2	0.109	115.5
Centrifugal	$150-300$	1	0.065	62.4
Centrifugal	$150-300$	2	0.123	124.7
Reciprocating	<150	1	0.067	55.3
Reciprocating	<150	2	0.141	109.2
Reciprocating	≥ 300	1	0.065	53.9
Reciprocating	≥ 300	2	0.134	108.0
Reciprocating	$150-300$	1	0.065	53.8
Reciprocating	$150-300$	2	0.134	107.7
Scroll or Helical Rotary	<150	1	0.068	54.5
Scroll or Helical Rotary	<150	2	0.137	109.1
Scroll or Helical Rotary	≥ 300	1	0.058	48.3
Scroll or Helical Rotary	≥ 300	2	0.112	87.7
Scroll or Helical Rotary	$150-300$	1	0.059	47.2
Scroll or Helical Rotary	$150-300$	2	0.132	102.4

Measure Savings Analysis

Savings values are calculated for both Level 1 and Level 2 efficiency levels with IECC 2006 efficiency standards as the baseline. The same calculation methodology used for "Unitary or Split Air Conditioning Systems and Air Source Heat Pumps" was used with the following additional assumptions:

1) Air handler units were assumed to be Variable Air Volume (VAV) systems with hot water reheat.
2) VAV units include economizers and supply temperature reset controls based on outside air.
3) Condenser water temperature was set to $75^{\circ} \mathrm{F}$.
4) All chillers for pre and post cases were assumed to be constant speed.
5) All measure cases assumed the same type of chiller (screw, centrifugal, etc.) pre and post.

Measure Life and Incremental Measure Cost

The measure life for packaged units is 20 years according to DEER ${ }^{39}$.
The following table provides IMC documented for this measure. Incremental cost is cost difference between the energy efficient equipment and the less efficient option.

Table 165: Chiller Incremental Measure Cost ${ }^{40}$

Measure Name	Level 1	Level 2
Water Cooled Chiller - Scroll or Helical Rotary <150 tons	$\$ 138.53$	$\$ 211.04$
Water Cooled Chiller - Scroll or Helical Rotary 151-300 tons	$\$ 80.89$	$\$ 176.15$
Water Cooled Chiller - Scroll or Helical Rotary >300 tons	$\$ 21.80$	$\$ 49.87$
Water Cooled Chiller - Centrifugal <150 tons	$\$ 138.53$	$\$ 211.04$
Water Cooled Chiller - Centrifugal 151-300	$\$ 80.89$	$\$ 176.15$
Water Cooled Chiller - Centrifugal >300 tons	$\$ 21.80$	$\$ 49.87$
Water Cooled Chiller - Reciprocating	$\$ 80.40$	$\$ 145.69$
Air Cooled Chiller kW/ton-IPLV of 1.04 or lower	$\$ 126.70$	

[^28]
Room Air Conditioners

Table 166: Room Air Conditioners	
Measure Description	Room air conditioning units are through-the-wall (or built-in) self-contained units that are 2 tons or less. A unit must qualify under Super Efficient Home Appliance (SEHA) Tier 1 standards. These units are with and without louvered sides, without reverse cycle (i.e., heating), and casement.
Units	Per Ton
Base Case Description	Variable. See table
Measure Savings	Source: ENERGY STAR, CEE
Measure Incremental Cost	Source: 2009 PG\&E Workpaper - PGECOHVC109.1 - ENERGY STAR Room Air Conditioner Non-Residential
Effective Useful Life	Source: ENERGY STAR 9

Room air conditioning units are through-the-wall (or built-in), self-contained units that are 2 tons or less. This measure consists of the installation of a Room Air Conditioner that falls under Super Efficient Home Appliance (SEHA) Tier 1 standards. The minimum requirements and eligible equipment are listed CEE high-efficiency room air conditioning specifications (www.cee1.org) ${ }^{41}$. These units are with and without louvered sides, without reverse cycle (i.e., heating), and casements. The qualifying efficiencies for both levels are provided below. Disposal of existing unit must comply with local codes and ordinances.

Table 167: Qualifying Efficiencies

Size (Btuh)	October 2000 Federal Standard (EER) Baseline	SEHA Tier 1 Retrofit (EER)
$<8,000$	9.7	11.2
8000 to 13,999	9.8	11.3
14,000 to 19,999	9.7	11.2
$>=20,000$	8.5	9.8

Measure Savings

Below are the coincident kW and the annual kWh savings per ton of installed cooling system.
Table 168: Room A/C Savings (per ton)

[^29]| Size (Btuh) | Demand
 Difference,
 kW | Annual
 Electric
 Savings, $\mathbf{k W h}$ | Demand
 Reduction,
 kW |
| :--- | :---: | :---: | :---: |
| $<8,000$ | 0.166 | 116 | 0.149 |
| 8000 to 13,999 | 0.163 | 114 | 0.146 |
| 14,000 to 19,999 | 0.166 | 116 | 0.149 |
| $>=20,000$ | 0.187 | 131 | 0.169 |

Measure Savings Analysis

Savings values are calculated with the baseline efficiencies shown above, since efficiency levels depend on the size of the unit. The assumed operating hours is 700, which is an average of ENERGY STAR Full-Load Cooling Hours for Chicago and Rockford. The Diversity/Duty Cycle factor is 0.90^{42}. The following is the calculation for daily energy consumption per the PG\&E workpapers.

Δ Watts/unit

The demand difference (watts per unit) is the difference between the electric demand of the base unit and the electric demand of the energy efficient unit.

```
\(\Delta\) Watts/ton= Base Watts/ AC Unit - Energy Efficient Unit Watts/ AC Unit = (12/Baseline EER - 12/Replacement EER)
```


Annual Electric Savings

Energy Savings [kWh/ton] $=(\Delta k W / t o n) \times(O p H r s)$

Demand Reduction

Demand Reduction [kW/ton] $=(\Delta k W / t o n) \times($ Diversity/Duty Cycle)

Measure Life and Incremental Measure Cost

The following table provides the measure life and IMC documented for this measure as well as the source of the data. Incremental cost is the cost difference between the energy-efficient equipment and the less efficient option.

The measure costs for this measure are assumed to be the same as those for packaged terminal air conditioning units of the same capacity. The figures from DEER 2008 were multiplied by the average capacity of available ENERGY STAR® room air conditioners in tons to arrive at the figures below. ${ }^{43}$

[^30]The IMC documented for this measure is the cost difference between the energy efficient equipment and the less efficient option at $\$ 157.12$ per unit.

Table 169: Measure Life and Incremental Measure Cost

	Value	Source
Measure Life	9	ENERGY STAR
Incremental Measure Cost	$\$ 157.12$	PG\&E, DEER 2008

Package Terminal Air Conditioners/Heat Pumps

Table 170: Package Terminal Air Conditioners/Heat Pumps	
	Package terminal air conditioners and heat pumps are through- the-wall self contained units that are 2 tons (24,000 Btuh) or less. Only units that have an EER greater than or equal to $13.08-\left(0.25566^{*}\right.$ Capacity / 1000), where capacity is in Btuh, qualify for the incentive. All EER values must be rated at $95^{\circ} \mathrm{F}$ outdoor dry-bulb temperature.
Measure Description	Per Ton
Units	IECC 2006 EER Efficiencies
Measure Savings	Source: KEMA
Measure Incremental Cost	Source: 2008 DEER \$84/ton
Effective Useful Life	Source: DEER 15 years

Package terminal air conditioners and heat pumps are through-the-wall self contained units that are 2 tons (24,000 Btuh) or less. Only units that have an EER greater than or equal to 13.08 (0.2556 X Capacity / 1000), where capacity is in Btuh, qualify for the incentive. All EER values must be rated at $95^{\circ} \mathrm{F}$ outdoor dry-bulb temperature.

Measure Savings

Below are the coincident kW and the annual kWh savings per ton of installed cooling system. The savings are based on efficiencies 20 percent higher than the IECC 2006 minimum efficiency.

Table 171: Measure Savings for PTAC/HP (per ton)

Peak Electric Demand Reduction (kW/ton)	Electric Savings (kWh/ton)
0.22	219

Measure Savings Analysis

Savings values are calculated for qualifying PTAC/HPs with IECC 2006 efficiency standards as the baseline. Both qualifying efficiency levels and baseline efficiencies are based on the capacity of the unit but, for purposes of calculating savings, we have assumed a baseline of 8.3 EER and a replacement efficiency of 10 EER on average, the efficiencies for a 12,000 Btuh (1ton) unit. The following table provides the efficiencies for a range of PTAC/HP sizes.

Table 172: PTAC/HP Efficiencies

| PTAC size | Federal standard | IECC 2006 | Qualifying EER |
| :--- | :--- | :--- | :--- | :--- |

6000	9.0	9.6	11.5
7000	8.9	9.4	11.3
8000	8.7	9.2	11.0
9000	8.6	9.0	10.8
10000	8.4	8.8	10.5
11000	8.2	8.6	10.3
12000	8.1	8.3	10.0
13000	7.9	8.1	9.8
14000	7.8	7.9	9.5
15000	7.6	7.7	9.2
16000	7.4	7.5	9.0
17000	7.3	7.3	8.7
18000	7.1	7.1	8.5

The same calculation methodology used for "Unitary or Split Air Conditioning Systems and Air Source Heat Pumps" was used with one exception. The coincident kW savings have been calculated using the following equation. The coincident factor assumed for this measure is 0.90 .

$$
\text { kW Savings per ton = (12/Baseline EER - 12/Replacement EER })
$$

Coincident kW Savings = kW Savings x Coincidence Factor

Measure Life and Incremental Measure Cost

The measure life for packaged units is 15 years according to DEER ${ }^{44}$. The IMC documented for this measure is $\$ 84$ per ton ${ }^{45}$, which is the cost difference between the energy-efficient equipment and the less efficient option.

[^31]
Lodging - Guest Room Energy Management System (GREM)

Table 173: Lodging - Guest Room Energy Management System (GREM)

Measure Description	GREM is a multi-purpose Direct Digital Control (DDC) device designed to control HVAC unit in hotel guestrooms.
Units	Per room HVAC controller
Base Case Description	Manual Heating/Cooling Temperature Setpoint and Fan On/Off/Auto Thermostat
Measure Savings	Source: KEMA
Measure Incremental Cost	Source: PY1 and PY2 custom projects ${ }^{46}$ \$260/Unit
Effective Useful Life	Source: DEER 2008 15 years

[^32]
Variable-Speed Drives for HVAC Applications

Table 174	
Variable-Speed Drives for HVAC Applications	
Measure Description	Variable-speed drives (VSDs) which are installed on existing chillers, HVAC fans, or HVAC pumps are eligible for this incentive. New chillers with integrated VSDs are eligible under the chiller incentive. The installation of a VSD must accompany the permanent removal or disabling of any throttling devices such as inlet vanes, bypass dampers, and throttling valves. VSDs for non-HVAC applications may be eligible for a custom incentive.
Units	Per HP
Base Case Description	No VSD installed.
Measure Savings	Source: KEMA
Measure Incremental Cost	Source: DEER and KEMA
Effective Useful Life	Source: DEER 15 years

Variable-speed drives (VSDs) which are installed on existing chillers, HVAC fans, or HVAC pumps are eligible for this incentive. New chillers with integrated VSDs are eligible under the chiller incentive. The installation of a VSD must accompany the permanent removal or disabling of any throttling devices such as inlet vanes, bypass dampers, and throttling valves. VSDs for non-HVAC applications may be eligible for a custom incentive.

Measure Savings

Provided below are the coincident kW savings and the annual kWh savings per hp of installed motor. The coincident kW savings are the same across all building and application types. The annual kWh savings are dependent on building type and application type.

Table 175: VSD for HVAC Demand Savings (per HP)

Cooling Measure Name	kW Savings	Coin kW Savings
VSD for HVAC chillers, fans, and pumps	0.123	0.025

Table 176: VSD for HVAC Motors (Per HP)

Building Type	Pumps and Fans Annual kWh Savings	Chillers Annual kWh Savings
Average $=$ Miscellaneous	503	421

Measure Savings Analysis

Savings values are calculated with an estimate of a 19 percent savings ${ }^{47}$. The motors are assumed to have a load factor of 80 percent and an efficiency of 92.5 percent for calculating the equipment kW.

$$
\mathrm{kW} \text { reduction }=0.19 \times(\mathrm{kW} \text { of existing equipment })
$$

Where kW of equipment is calculated using:

$$
\frac{(\text { Motor HP }) \times(0.746 \mathrm{~kW} / \mathrm{HP}) \times(\text { Load Factor })}{\text { Motor Efficiency }} .
$$

The coincident kW savings are calculated using the following equation. The coincidence factor is assumed to be 0.20 .

$$
\text { Coincident kW reduction }=\mathrm{kW} \text { reduction } \mathrm{x} \text { coincidence factor }
$$

Annual energy savings values were calculated based on run hours for each building type as modeled in our chillers section. Here run hours were obtained from building simulation runs for 150-300 ton centrifugal chillers at baseline efficiencies. Simulations results yield run times for fans, chilled water pumps, hot water pumps, and chillers. Average of fan and pump hours are listed in the table below as well as the chiller run hours. The savings presented here have been averaged over the various building types.

Annual kWh Savings $=$ kW Savings \times Run Hours

Table 177: Chiller Annual Operating Hours

Chillers
3431

Table 178: Pump and Fan Annual Operating Hours

Pumps and Fans
4103

Measure Life and Incremental Measure Cost

The measure life for packaged units is 15 years according to $D E E R^{48}$.
The IMC documented for this measure is $\$ 90$ per horsepower and $\$ 150$ per horsepower for chiller and pump/fan applications respectively ${ }^{49}$.

[^33]
Commercial Kitchen Demand Ventilation Controls

Table 179: Commercial Kitchen Demand Ventilation Controls	
Measure Description	Installation of commercial kitchen demand ventilation controls that vary the ventilation based on cooking load and/or time of day.
Units	Per exhaust fan horsepower
Base Case Description	Exhaust and makeup fans that operate at 100\% speed
Measure Savings	Source: PG\&E 2006 Workpapers
Measure Incremental Cost	Source: PG\&E 2006 Workpapers
Effective Useful Life	Source: California Energy Efficiency Policy Manual (EEPM) Table 4.1 15 years

The measure consists of installing a control system that varies the exhaust rate of kitchen ventilation (exhaust and/or makeup air fans) based on the energy and effluent output from the cooking appliances (i.e., the more heat and smoke/vapors generated, the more ventilation needed). This involves installing a temperature sensor in the hood exhaust collar and/or an optic sensor on the end of the hood that sense cooking conditions which allows the system to automatically vary the rate of exhaust to what is needed by adjusting the fan speed accordingly.

Measure Savings

The following table provides the savings for this measure.
Table 180: Demand and Energy Savings for Demand Ventilation Control (per exhaust horsepower)

Measure Name	Coincident Peak Demand Reduction (kW)	Annual Energy Savings Per Unit (kWh)
DVC Control Retrofit	0.76	4,486
DVC Control New	0.76	4,486

Measure Savings Analysis

Annual energy use was based on monitoring results from five different types of sites, as summarized in PG\&E Food Service Equipment workpaper.

[^34]
Measure Life and Incremental Measure Cost

The following table provides the measure life and IMC documented for this measure as well as the source of the data. The measure life is assumed to be the same as that of variable speed drives. Incremental cost is cost difference between the energy-efficient equipment and the less efficient option. In the retrofit case, the IMC is equal to the full measure cost since cost of the less efficient option is $\$ 0$. The cost for the new system is the incremental (difference in) cost of installing ventilation with and without controls.

Table 181: Measure Life and Incremental Measure Cost

Measure Category		Value	Source
DVC Control Retrofit \& New	Measure Life	15	EEPM
DVC Control Retrofit	Incremental Measure Cost	$\$ 1,988$	PG\&E Work paper
DVC Control New	Incremental Measure Cost	$\$ 1,000$	PG\&E Work paper

Premium Motors

NEMA ${ }^{\circledR}$ Premium-Efficiency Motors

Table 182: NEMA ${ }^{\circledR}$ Premium-Efficiency Motors	
	Motors eligible for an incentive are three-phase AC induction motors, 1-200 hp, of open drip-proof (open) and totally enclosed fan-cooled (closed) classifications. Rewound motors do not qualify. Incentives are based on the motor's nominal full- load efficiencies that meet or exceed the NEMA premium- efficiency standards. The application must include the manufacturer's performance data sheet that at least shows equipment type, equipment size, model number, and efficiency rating.
Measure Description	Per motor
Base Case Description	Minimum efficiency under EPACT-92
Measure Savings	Source: KEMA
Measure Incremental Cost	Source: SCE workpapers
Effective Useful Life	Source: DEER 15 years

Motors eligible for an incentive are three-phase AC induction motors, 1-200 hp, of open dripproof (open) and totally enclosed fan-cooled (closed) classifications. Rewound motors do not qualify. Incentives are based on the motor's nominal full-load efficiencies, tested in accordance with IEEE (Institute of Electrical and Electronics Engineers) Standard 112, method B, that meet or exceed the NEMA premium-efficiency standards on the Motors Incentive Worksheet. The application must include the manufacturer's performance data sheet that at least shows equipment type, equipment size, model number, and efficiency rating. Customers should consider matching water or air flows (GPM, CFM) of the existing pump or fan when installing energy-efficient motors that inherently have higher speeds (less slip), which may increase energy savings.

Measure Savings

The following table provides the measure savings for NEMA premium motors.

Table 183: Measure Coincident kW Savings

	1200 RPM		1800 RPM		3600 RPM	
MOTOR HORSEPOWER	ODP MOTOR Coincident Demand Reduction (kW)	TEFC MOTOR Coincident Demand Reduction $(\mathbf{k W})$	ODP MOTOR Coincident Demand Reduction (kW)	TEFC MOTOR Coincident Demand Reduction $(\mathbf{k W})$	ODP MOTOR Coincident Demand Reduction $\mathbf{(k W) ~}$	TEFC MOTOR Coincident Demand Reduction $(\mathbf{k W})$
1	0.016	0.016	0.018	0.018		0.011
1.5	0.021	0.017	0.021	0.021	0.013	0.013
2	0.022	0.022	0.028	0.028	0.017	0.017
3	0.032	0.032	0.048	0.032	0.026	0.017
5	0.053	0.053	0.053	0.053	0.028	0.027
7.5	0.066	0.057	0.096	0.083	0.040	0.039
10	0.075	0.076	0.111	0.111	0.052	0.036
15	0.113	0.113	0.147	0.103	0.054	0.061
20	0.138	0.150	0.196	0.196	0.081	0.081
25	0.158	0.158	0.229	0.144	0.087	0.087
30	0.172	0.189	0.243	0.172	0.104	0.104
40	0.208	0.208	0.208	0.208	0.137	0.137
50	0.260	0.260	0.353	0.353	0.145	0.145
60	0.253	0.253	0.391	0.391	0.171	0.171
75	0.316	0.316	0.313	0.450	0.214	0.214
100	0.417	0.417	0.600	0.413	0.285	0.235
125	0.521	0.521	0.517	0.517	0.294	0.288
150	0.620	0.546	0.546	0.546	0.353	0.346
200	0.827	0.728	0.728	1.087	0.461	0.365

Table 184: Measure kWh Savings

	1200 RPM		1800 RPM		3600 RPM	
MOTOR HORSEPOWER	ODP MOTOR Annual Savings (kWh)	TEFC MOTOR Annual Savings $\mathbf{k W W h) ~}$	ODP MOTOR Annual Savings $(\mathbf{k W h})$	TEFC MOTOR Annual Savings (kWh)	ODP MOTOR Annual Savings $\mathbf{(k W h) ~}$	TEFC MOTOR Annual Savings $(\mathbf{k W h})$
1	58	58	65	65		40
1.5	79	62	79	79	50	50
2	82	80	106	106	64	64
3	120	118	179	118	96	62
5	196	196	196	196	104	99
7.5	303	262	442	381	184	180
10	344	349	509	509	240	165
15	516	516	673	474	247	277
20	632	688	897	897	370	370
25	867	867	1,259	789	477	477
30	947	1,041	1,335	947	573	573
40	1,144	1,144	1,144	1,144	752	752
50	1,430	1,430	1,942	1,942	794	794
60	1,820	1,820	2,817	2,817	1,233	1,233
75	2,275	2,275	2,251	3,238	1,541	1,541
100	3,002	3,002	4,318	2,977	2,055	1,693
125	3,661	3,661	3,631	3,631	2,065	2,025
150	4,357	3,836	3,836	3,836	2,477	2,431
200	5,809	5,115	5,115	7,640	3,241	2,568

Measure Savings Analysis

The two types of capacity savings estimates discussed here are connected-load reduction achieved by the measure (non-coincident) and demand reduction coincident with the utility's system peak. The non-coincident demand reduction achieved by the measure is estimated from engineering analyses using the following formula:

Non-coincident kW reduction $=$ kW of existing equipment -kW of replacement equipment Where kW is calculated using $\frac{(\text { Motor HP }) \times(0.746 \mathrm{~kW} / \mathrm{HP}) \times(\text { Load Factor })}{\text { Motor Efficiency }}$.

Generally motors are oversized and so the load factor is assumed to be 75 percent. ${ }^{50}$
Energy savings are based on the difference between baseline and efficient equipment connected wattage and annual operating hours, according to the following formula:
kWh Reduction $=(\mathrm{kW}$ of existing equipment -kW of replacement equipment) * (Annual operating hours)

To determine coincident demand reduction, engineering estimates of savings are multiplied by a coincident diversity factor. Coincident diversity factors have been estimated to be 0.74^{51}.

Coincident kW Reduction = Coincident Diversity Factor * Non-coincident reduction with Demand Interactive Effects

DEER uses the most recent data is from a study for the Department of Energy completed in 1998^{52}. The data for Overall Manufacturing, SIC 20 through 39, is used as for the operating hours to represent the industrial market sector. These hours are assumed reasonable for use with all market sectors.

Table 185: Annual Operating Hours ${ }^{53}$

	Operating Hours.
1 to 5 hp	2,745
6 to 20 hp	3,391
21 to 50 hp	4,067
51 to 100 hp	5,329
101 to 200 hp	5,200

[^35]Baseline and retrofit equipment assumptions are presented in the next table. Motor replacement is considered to be a replace on burn-out measure. The baseline represents the nonenergyefficient equipment that would be purchased, which is set at the full-load nominal efficiency as set by the Energy Policy Act of 1992 (EPACT92). This table shows the standard efficiencies used for the savings calculations.

Table 186: Baseline Efficiencies Standard Motors

	1200 RPM		1800 RPM		3600 RPM	
MOTOR HORSEPOWER	Standard Efficiency ODP	Standard Efficiency TEFC	Standard Efficiency ODP	Standard Efficiency TEFC	Standard Efficiency ODP	Standard Efficiency TEFC
1	0.800	0.800	0.825	0.825	Not Avail.	0.755
1.5	0.840	0.855	0.840	0.840	0.825	0.825
2	0.855	0.865	0.840	0.840	0.840	0.840
3	0.865	0.875	0.865	0.875	0.840	0.855
5	0.875	0.875	0.875	0.875	0.855	0.875
7.5	0.885	0.895	0.885	0.895	0.875	0.885
10	0.902	0.895	0.895	0.895	0.885	0.895
15	0.902	0.902	0.910	0.910	0.895	0.902
20	0.910	0.902	0.910	0.910	0.902	0.902
25	0.917	0.917	0.917	0.924	0.910	0.910
30	0.924	0.917	0.924	0.924	0.910	0.910
40	0.930	0.930	0.930	0.930	0.917	0.917
50	0.930	0.930	0.930	0.930	0.924	0.924
60	0.936	0.936	0.936	0.936	0.930	0.930
75	0.936	0.936	0.941	0.941	0.930	0.930
100	0.941	0.941	0.941	0.945	0.930	0.936
125	0.941	0.941	0.945	0.945	0.936	0.945
150	0.945	0.950	0.950	0.950	0.936	0.945
200	0.945	0.950	0.950	0.950	0.945	0.950

Table 187: NEMA Premium Efficiencies

	1200 RPM		1800 RPM		3600 RPM	
MOTOR HORSEPOWER	NEMA Premium Efficiency ODP	NEMA Premium Efficiency TEFC	NEMA Premium Efficiency ODP	NEMA Premium Efficiency TEFC	NEMA Premium Efficiency ODP	NEMA Premium Efficiency TEFC
1	0.825	0.825	0.855	0.855	0.770	0.770
1.5	0.865	0.875	0.865	0.865	0.840	0.840
2	0.875	0.885	0.865	0.865	0.855	0.855
3	0.885	0.895	0.895	0.895	0.855	0.865
5	0.895	0.895	0.895	0.895	0.865	0.885
7.5	0.902	0.910	0.91	0.917	0.885	0.895
10	0.917	0.910	0.917	0.917	0.895	0.902
15	0.917	0.917	0.93	0.924	0.902	0.910
20	0.924	0.917	0.93	0.93	0.910	0.910
25	0.930	0.930	0.936	0.936	0.917	0.917
30	0.936	0.930	0.941	0.936	0.917	0.917
40	0.941	0.941	0.941	0.941	0.924	0.924
50	0.941	0.941	0.945	0.945	0.930	0.930
60	0.945	0.945	0.950	0.950	0.936	0.936
75	0.945	0.945	0.950	0.954	0.936	0.936
100	0.950	0.950	0.954	0.954	0.936	0.941
125	0.950	0.950	0.954	0.954	0.941	0.950
150	0.954	0.958	0.958	0.958	0.941	0.950
200	0.954	0.958	0.958	0.962	0.950	0.954

Measure Life and Incremental Measure Cost

The measure life is assumed to be 15 years. ${ }^{54}$
The following table provides the incremental measure cost. Incremental cost is cost difference between the energy-efficient equipment and the less efficient or standard option. The incremental values are from those presented in the SCE workpaper. Only costs for 1,800-rpm motors are provided since these are the ones most prevalent in the market place. It is assumed the costs for 1200 and 3600 rpm do not differ too much from the 1800 rpm motor.

[^36]Attachment 8 - Prescriptive Lighting Protocols for the work papers that provide all methodologies, protocols and practices used in this application Page 154 of 206

Table 188 Motor Incremental Measure Cost ${ }^{55}$

Measure Category	ODP 1800 RPM	TEFC 1800 RPM
1 HP	$\$ 51$	$\$ 50$
1.5 HP	$\$ 11$	$\$ 73$
2 HP	$\$ 46$	$\$ 65$
3 HP	$\$ 38$	$\$ 73$
5 HP	$\$ 25$	$\$ 99$
7.5 HP	$\$ 71$	$\$ 71$
10 HP	$\$ 43$	$\$ 90$
15 HP	$\$ 21$	$\$ 168$
20 HP	$\$ 100$	$\$ 165$
25 HP	$\$ 116$	$\$ 329$
30 HP	$\$ 46$	$\$ 331$
40 HP	$\$ 226$	$\$ 398$
50 HP	$\$ 246$	$\$ 384$
60 HP	$\$ 285$	$\$ 332$
75 HP	$\$ 100$	$\$ 366$
100 HP	$\$ 129$	$\$ 555$
125 HP	$\$ 262$	$\$ 961$
150 HP	$\$ 342$	$\$ 609$
200 HP	$\$ 614$	$\$ 964$

[^37]
Refrigeration

Strip Curtains

Table 189 Strip Curtains	
Measure Description	New strip curtains or clear plastic swinging doors must be installed on doorways of walk-in boxes and refrigerated warehouses. This incentive is not available for display cases or replacing existing strip curtains that have useful life left. A pre- inspection may be performed. Incentive is based on square footage of doorway.
Units	Per Square Foot
Base Case Description	Walk-in storage without infiltration barriers.
Measure Savings	Source: SCE, KEMA
Measure Incremental Cost	Source: SCE \$7.77
Effective Useful Life	Source: SCE 4 years

Strip curtains can be installed to reduce infiltration in refrigeration storage areas. New strip curtains or clear plastic swinging doors must be installed on doorways of walk-in boxes and refrigerated warehouses to qualify for rebates. This incentive is not available for display cases or replacing existing strip curtains that have useful life left. A pre-inspection may be performed. The incentive is based on square footage of doorway.

Measure Savings ${ }^{56}$

Savings values are obtained from the Southern California Edison (SCE) workpaper for infiltration barriers, which covers all 16 Californian climate zones. SCE savings values were determined using a set of assumed conditions for restaurants, small grocery storage, and large grocery storage. We have used only PG\&E climate zones in calculating our averages and have taken out the drier, warmer climates of southern California. Details on cooling load calculations including refrigeration conditions, can be found in the SCE workpaper.

A baseline is used to calculate savings and incremental cost. In this case, the baseline for this measure assumes that there are no strip curtains installed at the facility.

The following tables are values calculated within the SCE workpaper.

[^38]Table 190: SCE Restaurant Savings

Restaurant				
SCE Workpaper Values	Cooler Strip Curtains		Freezer Strip Curtains	
Northern California Climate Zones	Annual Savings (kWh/sqft)	Peak Demand Reduction (kW/sqft)	Annual Savings (kWh/sqft)	Peak Demand Reduction (kW/sqft)
1	76	0.005	207	0.015
2	118	0.009	336	0.027
3	106	0.008	302	0.023
4	107	0.008	304	0.023
5	97	0.007	273	0.020
11	136	0.011	386	0.032
12	128	0.010	366	0.030
13	134	0.011	381	0.030
16	99	0.008	282	0.023
Average	111	0.009	315	0.025

Table 191: SCE Small Grocery Savings

Small Grocery					
SCE Workpaper Values	Cooler w/ Glass Doors Strip Curtains			Freezer Strip Curtains	
Northern California Climate Zones	Annual Savings (kWh/sqft)	Peak Demand Reduction (kW/sqft)	Annual Savings (kWh/sqft)	Peak Demand Reduction (kW/sqft)	
1	58	0.003	179	0.010	
2	91	0.005	296	0.021	
3	82	0.004	265	0.017	
4	83	0.004	266	0.017	
5	74	0.004	238	0.015	
11	106	0.007	343	0.025	
12	100	0.006	324	0.023	
13	104	0.006	337	0.023	
16	77	0.004	247	0.017	
Average	86	0.005	277	0.019	

Table 192: SCE Medium and Large Grocery Savings

Medium \& Large Grocery						
SCE Workpaper Values	Cooler Strip Curtains		Cooler w/ Glass Doors Strip Curtains		Freezer Strip Curtains	
Northern California Climate Zones	Annual Savings (kWh/sqf)	Peak Demand Reduction (kW/sqft)	Annual Savings (kWh/sqft)	Peak Demand Reduction (kW/sqft)	Annual Savings (kWh/sqf)	Peak Demand Reduction (kW/sqft)
1	58	0.003	57	0.002	182	0.009
2	91	0.005	90	0.005	307	0.019
3	82	0.004	81	0.004	273	0.015
4	82	0.004	82	0.004	274	0.015
5	74	0.004	74	0.003	244	0.013
11	106	0.006	105	0.006	358	0.023
12	100	0.005	99	0.005	337	0.021
13	104	0.006	103	0.005	351	0.021
16	76	0.004	76	0.004	255	0.015
Average	86	0.004	85	0.004	287	0.017

Savings values in the table below are a weighted average of walk-in cooler (80 percent) and freezer (20 percent) applications. The workpapers for the 2006-2008 program years include this distribution of coolers and freezers in their refrigeration measure savings analyses. It is not anticipated that the application of strip curtains outside of the restaurant/grocery sector; however, the average savings value can apply to all other applications. The following table provides the calculated program savings.

Table 193: Strip Curtain Savings Summary

Building Type	Annual Savings (kWh/sqft)	Peak Demand Reduction (kW/sqft)
Restaurant	152	0.012
Grocery	125	0.007
Average	139	0.010

Measure Life and Incremental Measure Cost

The following table provides the measure life and IMC documented for this measure as well as the source of the data.

Incremental cost is cost difference between the energy-efficient equipment and the less efficient option. In this case, the strip curtain measure, the IMC is equal to the full measure cost since the cost of the less efficient option, i.e., not conducting the retrofit, is $\$ 0$.

Table 194: Measure Life and Incremental Measure Cost

	Value	Source
Measure Life	4	SCE
Incremental Measure Cost	$\$ 7.77$	SCE

Anti-Sweat Heater Controls

Table 195: Anti-Sweat Heater Controls	
	For this measure, a device is installed that senses the relative humidity in the air outside of the display case and reduces or turns off the glass door (if applicable) and frame anti-sweat heaters at low-humidity conditions. Technologies that can turn off anti-sweat heaters based on sensing condensation (on the inner glass pane) also qualify. Rebate is based on the total linear footage of the case.
Pescription	Per Linear Foot (width)
Units	No Anti-Sweat Heater controls installed.
Base Case Description	Source: PG\&E, SCE
Measure Savings	Source: PG\&E, SCE \$34
Measure Incremental Cost	

An anti-sweat heater is a device that senses the relative humidity in the air outside of the display case and reduces or turns off the glass door (if applicable) and frame anti-sweat heaters at lowhumidity conditions. Technologies that can turn off anti-sweat heaters based on sensing condensation (on the inner glass pane) also qualify. The rebate is based on the total linear footage of the case.

Measure Savings ${ }^{57}$

Savings values are obtained from the draft Pacific Gas and Electric (PG\&E) workpaper for antisweat heater controls. However, both PG\&E and Southern California (SCE) savings values were determined using a set of assumed conditions for grocery stores. In the workpapers, some of the key assumptions are:

- ASH demand is assumed to be $0.0423 \mathrm{~kW} /$ linear foot
- On average, the control system reduces the run time of the ASH by 86.8 percent.

Details on assumptions and calculations can be found in the workpapers.

The following table is the average values (across PG\&E climate zones) calculated within the PG\&E workpaper.

Table 196: ASH Control Savings

[^39]| | kWh Savings/ft | Coincident kW
 Savings/ft |
| :--- | :---: | :---: |
| Anti-Sweat Heater Controller | 402 | 0.007 |

Both energy and peak kW savings take into account additional savings due to interactive effects.

Measure Life and Incremental Measure Cost

The following table provides the measure life and IMC documented for this measure as well as the source of the data.

Incremental cost is cost difference between the energy-efficient equipment and the less efficient option. In this case the anti-sweat heater controls, the IMC is equal to the full measure cost since the cost of the less efficient option, i.e., not conducting the retrofit, is $\$ 0$.

Table 197: Measure Life and Incremental Measure Cost

	Value	Source
Measure Life	12	SCE
Incremental Measure Cost	$\$ 34$	SCE

Electronically Commutated Motors (ECM)

Table 198 Electronically Commutated Motors (ECM)	
Measure Description	This measure is applicable to the replacement of an existing standard-efficiency shaded-pole evaporator fan motor in refrigerated display cases or fan coil in walk-ins. The replacement unit must be an ECM. This measure cannot be used in conjunction with the evaporator fan controller measure.
Units	Per Motor
Base Case Description	Shaded Pole Motors
Measure Savings	Source: SCE, KEMA
Measure Incremental Cost	Source: SCE, Fisher-Nickel
Effective Useful Life	Source: DEER 15 years

This measure applies to the replacement of an existing standard-efficiency shaded-pole evaporator fan motor in refrigerated display cases or fan coil in walk-ins. The replacement unit must be an electronically commutated motor (ECM). This measure cannot be used in conjunction with the evaporator fan controller measure.

Measure Savings ${ }^{58}$

Savings values are obtained from the SCE workpaper for efficient evaporator fan motors, which covers all 16 California climate zones. SCE savings values were determined using a set of assumed conditions for restaurants and grocery stores. We have used only PG\&E climate zones in calculating our averages and have taken out the drier, warmer climates of southern California.

SCE's savings approach calculates refrigeration demand, by taking into consideration temperature, compressor efficiency, and various loads involved for both walk-in and reach-in refrigerators. Details on cooling load calculations, including refrigeration conditions, can be found in the SCE workpaper. The baseline for this measure assumes that the refrigeration unit has a shaded-pole motor. The following tables are values calculated within the SCE workpaper.

Table 199 SCE Restaurant Savings Walk-In

[^40]| SCE Workpaper
 Values | Cooler | | | Freezer | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Northern
 California Climate
 Zones | kWh Savings
 Per Motor | Peak kW
 Savings Per
 Motor | kWh Savings
 Per Motor | Peak kW
 Savings Per
 Motor | |
| 1 | 318 | 0.0286 | 507 | 0.030 | |
| 2 | 253 | 0.0330 | 263 | 0.037 | |
| 3 | 364 | 0.0315 | 649 | 0.034 | |
| 4 | 365 | 0.0313 | 652 | 0.034 | |
| 5 | 350 | 0.0305 | 605 | 0.033 | |
| 11 | 410 | 0.0351 | 780 | 0.040 | |
| 12 | 399 | 0.0340 | 748 | 0.039 | |
| 13 | 407 | 0.0342 | 771 | 0.039 | |
| 16 | 354 | 0.0315 | 620 | 0.034 | |
| Average | 358 | 0.0322 | 622 | 0.036 | |

Table 200: SCE Grocery Savings Walk-In

SCE Workpaper Values	Grocery			
Northern California Climate Zones	Cooler kWh Savings Per Motor	Peak kW Savings Per Motor	kWh Savings Per Motor	Peak kW Savings Per Motor
1	318	0.0284	438	0.030
2	252	0.0534	263	0.064
3	364	0.0486	552	0.056
4	365	0.0480	553	0.055
5	349	0.0452	516	0.051
11	410	0.0601	656	0.074
12	398	0.0566	631	0.069
13	406	0.0574	649	0.070
16	354	0.0486	528	0.056
Average	357	0.0496	532	0.058

Table 201: SCE Grocery Savings Reach-In

	Grocery			
SCE Workpaper Values	Cooler		Freezer	
Northern California Climate Zones	kWh Savings Per Motor	Peak kW Savings Per Motor	kWh Savings Per Motor	Peak kW Savings Per Motor

1	306	0.031	362	0.031
2	269	0.033	273	0.035
3	331	0.032	421	0.034
4	332	0.032	422	0.034
5	323	0.032	402	0.033
11	357	0.034	476	0.037
12	350	0.034	462	0.036
13	355	0.034	472	0.037
16	325	0.032	409	0.034
Average	328	0.033	411	0.035

Savings values in the following table are an average of walk-in cooler (80 percent) and freezer (20 percent) applications. The workpapers for the 2006-2008 program years include this distribution of coolers and freezers in their refrigeration measure savings analyses. Strip curtains are unlikely to occur outside the restaurant/grocery sector, but if they do the average savings can apply. The following table provides the calculated program savings.

Table 202: ECM Walk-In Savings Values Summary

	kWh Savings/ft	Peak kW Savings/ft
Restaurant	411	0.033
Grocery	392	0.054
Average	401	0.044

Table 203: ECM Reach-In Savings Values Summary

kWh Savings/ft	Peak kW Savings/ft
345	0.033

Measure Life and Incremental Measure Cost

The following table provides the measure life and IMC documented for this measure as well as the source of the data.

Incremental cost is cost difference between the energy-efficient equipment and the less efficient option. We will consider ECM an early replacement measure where the IMC is equal to the full measure cost since the cost of the less efficient option, i.e., not conducting the retrofit, is $\$ 0$.

Table 204: Measure Life and Incremental Measure Cost

	Measure Category	Value	Source
Measure Life	All	15	DEER 59

[^41]| Incremental Measure Cost | Walk-In | $\$ 250$ | Fisher Nickel 60 |
| :--- | :---: | :---: | :---: |
| Incremental Measure Cost | Reach-In | $\$ 184.71$ | SCE |

[^42]
Refrigeration Economizer

Table 205: Refrigeration Economizer	
Measure Description	Installation of an outside air refrigeration economizer
Units	Per compressor horsepower
Base Case Description	Refrigeration system without an economizer.
Measure Savings	Source: Efficiency Vermont
Measure Incremental Cost	Source: Efficiency Vermont
Effective Useful Life	Source: Efficiency Vermont 15 years

This measure is for the installation of outside air economizers for walk-in coolers. The economizers allow the use of outside airs rather than operating the compressor. Sufficient controls must be installed with the economizer.

Measure Savings

The coincident peak demand savings is 0 kW (i.e., no summer time savings). The coincident demand savings is 0.385 kW and annual energy savings is $1,135 \mathrm{kWh}$ per economizer.

Measure Savings Analysis

Annual energy savings were calculated based on the methodology presented in Efficiency Vermont Technical User Reference Manual (No. 2004-29). The following are the equations used (see the reference for references of assumed values):

Demand Savings = kWh savings $/$ Hours
Energy Savings $=\left[\mathrm{HP} \times \mathrm{kWh}_{\text {Cond }}\right]+\left[\left(\left(\mathrm{kW}_{\text {Evap }} \times \mathrm{n}_{\text {fans }}\right)-\mathrm{kW}_{\text {Circ }}\right) \times\right.$ Hours $\left.\times \mathrm{FC} \times \mathrm{DC}_{\text {Comp }} \times \mathrm{BF}\right]-\left[\mathrm{kW}_{\text {Econ }} \times \mathrm{DC}_{\text {Econ }} \times\right.$ Hours $]$ Where:

HP = Horsepower of compressor (assumes 5 HP)
$\mathrm{kWh}_{\text {cond }}=$ Condensor unit savings, assumed on average $1,138 \mathrm{kWh} / \mathrm{HP}$
$\mathrm{kW}_{\text {Evap }}=$ Evaporator fan connected load (0.123 kW)
$\mathrm{n}_{\text {fans }}=$ Number of evaporator fans (assume two)
$\mathrm{kW}_{\text {Circ }}=$ Circulating fan connected load (0.035 kW)
Hours = Number of annual hours that economizer operates, 2944 hours based on $39^{\circ} \mathrm{F}$ cooler set point, Chicago weather data

FC = Fan control factor, assumed to be 1 for fan controls
$\mathrm{DC}_{\text {comp }}=$ Duty cycle for compressor (50\%)

BF = Interactive effects for reduced cooling load from reduced hours of evaporator fan operation (1.3)
$\mathrm{kW}_{\text {Econ }}=$ Economizer fan connected load (0.227 kW)
$D C_{\text {Econ }}=$ Duty cycle for economizer fan (63\%)

Measure Life and Incremental Measure Cost

The following table provides the measure life and incremental measure cost (IMC) documented for this measure as well as the source of the data.

Incremental cost is cost difference between the energy efficient equipment and the less efficient option.

Table 206: Measure Life and Incremental Measure Cost

	Value	Source
Measure Life	15	Efficiency Vermont
Incremental Measure Cost	$\$ 511.60$	Efficiency Vermont

Evaporator Fan Control

Table 207: Evaporator Fan Control					
	This measure is for the installation of controls in medium- temperature walk-in coolers. The controller reduces airflow of the evaporator fans when there is no refrigerant flow. The measure must control a minimum of $1 / 20$ HP where fans operate continuously at full speed. The measure also must reduce fan motor power by at least 75% during the off cycle. This measure is not applicable if any of the following conditions apply: 1) The compressor runs all the time with high duty cycle 2) The evaporator fan does not run at full speed all the time				
Measure Description	3) The evaporator fan motor runs on poly-phase power 4) The evaporator fan motor is not shaded-pole or permanent split capacitor				
	5) Evaporator does not use off-cycle or time-off defrost.				
Units	Per Motor				
Cooler with continuously running evaporator fan.					
Base Case Description	Source: DEER				
Measure Savings	Source: DEER \$291				
Measure Incremental Cost					

This measure is for the installation of controls in medium temperature walk-in coolers. The controller reduces airflow of the evaporator fans when there is no refrigerant flow. The measure must control a minimum of $1 / 20 \mathrm{HP}$ where fans operate continuously at full speed. The measure also must reduce fan motor power by at least 75 percent during the off cycle.

This measure is not applicable if any of the following conditions apply:

1) The compressor runs all the time with high duty cycle
2) The evaporator fan does not run at full speed all the time
3) The evaporator fan motor runs on poly-phase power
4) The evaporator fan motor is not shaded-pole or permanent split capacitor
5) Evaporator does not use off-cycle or time-off defrost.

Measure Savings ${ }^{61}$

[^43]Savings for this measure were obtained from the DEER database and are summarized in the following table. The baseline is assumed to be evaporator fans that run continuously with either a permanent split capacitor or shaded-pole motors. In the energy-efficient case the fan is still assumed to operate even with the evaporator inactive.

Table 208: Evaporative Fan Control Savings

Northern California Climate Zones	kWh Savings Per Motor	Peak kW Savings Per Motor
1	480	0.057
2	476	0.064
3	479	0.062
4	475	0.061
5	477	0.056
11	476	0.058
12	476	0.065
13	476	0.061
16	483	0.061
Average	478	0.060

DEER provides savings numbers for building vintages and grocery only. The numbers above are averages of these vintages. We are assuming that this measure will be applicable for all building types.

Measure Life and Incremental Measure Cost

The following table provides the measure life and IMC documented for this measure as well as the source of the data.

Incremental cost is cost difference between the energy efficient equipment and the less efficient option. We will consider evaporator fan controllers a new technology measure where the IMC is equal to the full measure cost since the cost of the less efficient option, i.e., not conducting the retrofit, is $\$ 0$.

Table 209: Measure Life and Incremental Measure Cost

	Value	Source
Measure Life	16	DEER
Incremental Measure Cost	$\$ 291.50$	DEER

Automatic Door Closer for Walk-In Coolers

Table 210: Automatic Door Closer for Walk-In Coolers	
Measure Description	This measure is for installing an auto-closer to the main insulated opaque door(s) of a walk-in cooler. The auto-closer must firmly close the door when it is within 1 inch of full closure.
Units	Per closer
Base Case Description	No auto door closer or non-operational door closer
Measure Savings	Source: PGECOREF110.1 - Auto-Closers for Main Cooler or Freezer Doors
Measure Incremental Cost	Source: DEER 2008 \$156.82
Effective Useful Life	Source: DEER 2008 8 years

This measure consists of the installation of an automatic, hydraulic-type door closer on main walk-in cooler doors. These closers save energy by reducing the infiltration of warm outside air into the refrigeration itself.

Measure Savings

Savings calculations are based on values from through PG\&E's Workpaper PGECOREF110.1-Auto-Closers for Main Cooler or Freezer Doors. Savings are averaged across all California climate zones and vintages. Annual savings are 943 kWh and 0.137 kW .

Measure Life and Incremental Measure Cost

The following table provides the measure life and IMC documented for this measure as well as the source of the data. Incremental cost is cost difference between the energy-efficient equipment and the less efficient option. In this case the IMC is equal to the full measure cost since the cost of the less efficient option, i.e., not conducting the retrofit, is $\$ 0$.

Table 211: Measure Life and Incremental Measure Cost

	Value	Source
Measure Life	8	DEER 2008
Incremental Measure Cost	$\$ 156.82$	DEER 2008

Automatic Door Closer for Walk-in Freezers

Table 212: Automatic Door Closer for Walk-in Freezers	
Measure Description	This measure is for installing an auto-closer to the main insulated opaque door(s) of a walk-in freezer. The auto-closer must firmly close the door when it is within 1 inch of full closure.
Units	Per closer
Base Case Description	No auto door closer or non-operational door closer
Measure Savings	Source: PGECOREF110.1 - Auto-Closers for Main Cooler or Freezer Doors
Measure Incremental Cost	Source: DEER 2008 \$156.82
Effective Useful Life	Source: DEER 2008 8 years

This measure is for installing an auto-closer to the main insulated opaque door(s) of a walk-in freezer. The auto-closer must firmly close the door when it is within 1 inch of full closure.

Measure Savings

Savings calculations are based on values from through PG\&E's Workpaper PGECOREF110.1-Auto-Closers for Main Cooler or Freezer Doors. Savings are averaged across all California climate zones and vintages. Annual savings are 2307 kWh and 0.309 kW .

Measure Life and Incremental Measure Cost

The following table provides the measure life and IMC documented for this measure as well as the source of the data.

Incremental cost is cost difference between the energy-efficient equipment and the less efficient option. We will consider the incremental cost of door closers as full cost.

Table 213: Measure Life and Incremental Measure Cost

	Value	Source
Measure Life	8	DEER 2008
Incremental Measure Cost	$\$ 156.82$	DEER 2008

Door Gaskets

Table 214: Door Gaskets	
Measure Description	This measure consists of the replacement of weak, worn out refrigeration door gaskets with new, better fitting gaskets.
Units	Per linear feet of gasket
Base Case Description	Non-sealing leaking gasket
Measure Savings	Source: NCPA 2009 - Refrigerated Door Gasket Replacement Energy Savings - Keep Your Cool Program, SCE WPSCNRRN0001.1, SCE WPSCNRRN0004.1
Measure Incremental Cost	Source: DEER 2008 \$9.61
Effective Useful Life	Source: DEER 2008 4 years

This measure consists of the replacement of weak, worn out refrigeration door gaskets with new, better fitting gaskets. Tight-fitting gaskets inhibit the infiltration of warm and moist air from the surrounding environment.

These gaskets must be installed on a glass or solid walk-in or reach-in cooler or freezer door which opens to an unrefrigerated space. The replacement gaskets must meet the case/door manufacturer's installation specifications in regards to dimensions, materials, attachment method, gasket profile, compression, and magnet placement.

Measure Savings

Savings calculations are based on SCE's work papers WPSCNRRN0001.1 - Door Gasket for Main Doors of Walk-In Coolers \& Freezers and WPSCNRRN0004.1 - Door Gaskets for Glass Doors of Walk-In Coolers. Adjustments were made to accommodate field observations made during NCPA's Keep Your Cool Program, which found a ratio of 2 inches of damaged gasket per foot of gasket (0.17) replaced, instead of one foot of every 45 feet of gasket replaced (0.02). every 45 feet of gasket replaced (0.02). Other assumptions include:

1. Hinge repair was provided with gasket repair but is not captured in the savings estimate calculation.
2. Of gasket replacements, 90% were found in medium temperature applications (cooler) and 10% were low temperature applications (freezer).
3. SCE work papers based results on missing gaskets only versus damaged or worn gaskets. This analysis assumes 67% heat loss for damaged or worn gaskets, compared to missing gaskets.

Savings are averaged across all CA climate zones. Annual savings are 48 kWh and 0.011 kW .

Measure Life and Incremental Measure Cost

The following table provides the measure life and IMC documented for this measure as well as the source of the data. Incremental cost is cost difference between the energy-efficient equipment and the less efficient option. In this case the IMC is equal to the full measure cost since the cost of the less efficient option, i.e., not conducting the retrofit, is $\$ 0$.

Table 215: Measure Life and Incremental Measure Cost

	Value	Source
Measure Life	4	DEER 2008
Incremental Measure Cost	$\$ 9.61$	DEER 2008

LED Refrigerated Case Lighting

Table 216: LED Refrigerated Case Lighting	
Measure Description	Replace fluorescent refrigerated case lighting with light emitting diode (LED) source illumination. Fluorescent lamps, ballasts, and associated hardware are typically replaced with pre- fabricated LED light bars and driver units.
Units	Per door
Base Case Description	Fluorescent refrigerated case lighting
Measure Savings	Source: PG\&E LED Refrigerated Case Lighting Workpaper
Measure Incremental Cost	Source: PG\&E LED Refrigerated Case Lighting Workpaper
Effective Useful Life	Source: PG\&E LED Refrigerated Case Lighting Workpaper 16 years

Replace fluorescent refrigerated case lighting with light emitting diode (LED) source illumination. Fluorescent lamps, ballasts, and associated hardware are typically replaced with pre-fabricated LED light bars and LED driver units. The two LED lamp products, 5' light bars and 6' light bars are eligible.

Measure Savings Analysis

The coincident demand savings is 0.061 KW per door and annual energy savings is 375 kWh per door.

Measure Savings Analysis

The energy and demand savings are derived from an Emerging Technologies (ET) study of the refrigerated case lighting done by PG\&E.

The electricity use (kWh) savings and gross summer peak demand (kW) reduction comprises two factors: reduced lighting load and reduced refrigeration requirements due to reduced heat gain. Reductions in lighting load occur continuously over the expected annual operating period, which includes the summer peak period. Savings due to reduced heat gain are computed assuming those reduced effects occur during the period in which the lighting systems operate, in consideration of the refrigeration compressor COP and the reduced cooling load, under normal operation (i.e., doors closed). Baseline and retrofit equipment assumptions are presented in the next table.

Table 217: Baseline and Retrofit Wattages LED refrigeration Lighting (per door)

	Estimated Energy Savings kWh/yr/door	Estimated Demand Savings kW/door	Weight Percentages	
5' LED Light Bar	341			
Premium Tier	292	0.055	25%	
Standard Tier		0.047	25%	
6' LED Light Bar	465	0.075	25%	
Premium Tier	403	0.065	25%	
Standard Tier	375	0.061		
Weighted Average				

Measure Life and Incremental Measure Cost

The table below provides the measure life and IMC documented for this measure as well as the source of the data. Incremental cost is cost difference between the energy-efficient equipment and the less efficient option. In this case the lighting measures, the IMC is equal to the full measure cost since cost of the less efficient option is $\$ 0$.

The EUL for an LED exit sign or retrofit kit is estimated to be 16 years (over 140,000 hours), according to DEER. The core technology, LED sources and driver, are similar for both the established application (exit sign lighting) and the emerging technology (refrigeration case lighting). LED Power (LED equipment manufacturer) provided an expected life of 50,000 hours for the LED low-temperature case lighting, which is much less than the DEER estimate of 16 years for LED exit sign technology. It is well documented that LED life is extended in a lowtemperature environment; therefore the expected useful life of 50,000 hours assumed for this application is probably conservative. Based on the fixture run-time of 6,205 hours annually for the facility in the study, the expected life calculates to 8 years.

Table 218: Measure Life and Incremental Measure Cost

	Measure Category	Value	Source
Measure Life	Fixture life	16	PG\&E Work paper
Incremental Measure Cost	LED Refrigerated Case Lighting	$\$ 266$	PG\&E Work paper

Beverage Machine Controls

Table 219: Beverage Machine Controls	
Measure Description	The beverage machine is assumed to be a refrigerated vending machine that contains only nonperishable bottled and canned beverages. The controller must include a passive infrared occupancy sensor to turn off fluorescent lights and other vending machine systems when the surrounding area is unoccupied for 15 minutes or longer. For the beverage machine, the control logic should power up the machine at 2-hour intervals to maintain product temperature and provide compressor protection.
Units	Per machine
Base Case Description	No controls
Measure Savings	Source: DEER 2005
Measure Incremental Cost	Source: DEER 2005 $\$ 180$
Effective Useful Life	Source: DEER 2005 10 years

The beverage machine is assumed to be a refrigerated vending machine that contains only nonperishable bottled and canned beverages. The controller must include a passive infrared occupancy sensor to turn off fluorescent lights and other vending machine systems when the surrounding area is unoccupied for 15 minutes or longer. For the beverage machine, the control logic should power up the machine at 2-hour intervals to maintain product temperature and provide compressor protection.

Measure Savings

Beverage machine controls savings are taken from the DEER database. It is assumed that controls are only effective during off-peak hours and so have no peak-kW savings. The annual energy savings are $1,612 \mathrm{kWh}$ per year. ${ }^{62}$

Measure Life and Incremental Measure Cost

The measure life is 10 years. ${ }^{63}$ The IMC documented for this measure is $\$ 180$ per unit. ${ }^{64}$ For this measure, the beverage machine controls, the IMC is equal to the full measure cost since the cost of the less efficient option, i.e., not conducting the retrofit, is $\$ 0$.

[^44]
Snack Machine Controls

Table 220: Snack Machine Controls	
Measure Description	The controller must include a passive infrared occupancy sensor to turn off fluorescent lights and other vending machine systems when the surrounding area is unoccupied for 15 minutes or longer.
Units	Per machine
Base Case Description	No controls
Measure Savings	Source: DEER 2005
Measure Incremental Cost	Source: DEER 2005 \$80
Effective Useful Life	Source: DEER 2005 10 years

The snack machine controller must include a passive infrared occupancy sensor to turn off fluorescent lights and other vending machine systems when the surrounding area is unoccupied for 15 minutes or longer.

Measure Savings

Snack machine controls savings are taken from the DEER database. It is assumed that controls are only effective during off-peak hours and so have no peak-kW savings. The annual energy savings are 387 kWh per year. ${ }^{65}$

A baseline is used to calculate savings and incremental cost. In this case, the baseline for this measure assumes that there are controls installed for the machine.

Measure Life and Incremental Measure Cost ${ }^{66}$

The measure life is 10 years. The IMC documented for this measure is $\$ 80$ per unit. For this measure, the beverage machine controls, the IMC is equal to the full measure cost since the cost of the less efficient option, i.e., not conducting the retrofit, is $\$ 0$.

[^45]
ENERGY STAR Refrigerated Beverage Vending Machine

Table 221: ENERGY STAR Refrigerated Beverage Vending Machine	
Measure Description	ENERGY STAR beverage vending machines qualify for an incentive. Qualifying machines can be found at http://www.energystar.gov/ia/products/prod_lists/vending_machines prod_list.pdf.
Units	Per Machine
Base Case Description	Standard Unit
Measure Savings	Source: ENERGY STAR
Effective Useful Life	Source: ENERGY STAR 14 years

Qualifying beverage vending machines must be ENERGY STAR rated. Qualifying machines can be found at http://www.energystar.gov/ia/products/prod lists/vending machines prod list.pdf.

Measure Savings ${ }^{67}$

Beverage machine savings are taken from the ENERGY STAR savings calculator and summarized in the following table. ENERGY STAR provides savings numbers for machines with and without control software. The average savings are calculated here. It is assumed that controls are only effective during off-peak hours and so have no peak-kW savings.

Table 222: ENERGY STAR Vending Machine Savings

Vending Machine Capacity (cans)	kWh Conventiona I Machine	kNh SERGY STAR software w/o	kWh ENERGY STAR Machine w/ software	kWh Savings Per Machine w/o software	kWh Savings Per Machine w/ software
<500	3,113	2,014	1,454	1,099	1,659
500	3,916	2,162	1,685	1,754	2,231
699	3,551	2,309	1,800	1,242	1,751
799	4,198	2,457	1,915	1,741	2,283
$800+$	3,318	2,605	2,030	713	1,288
Average	3,619	2,309	1,777	1,310	1,842
Total Average	1,576				

Measure Life and Incremental Measure Cost
The measure life is 14 years according to ENERGY STAR.

[^46]
High-Efficiency Icemakers

Table 223: High-Efficiency Icemakers	
	The rebate covers ice machines that generate 60 grams (2 oz.) or lighter ice cubes, flaked, crushed, or fragmented ice. Only air-cooled machines qualify (self contained, ice making heads, or remote condensing). The machine must have a minimum capacity of 101 lb of ice per 24-hour period (per day). The minimum efficiency required is per ENERGY STAR or CEE Tier 2. ${ }^{68}$ A manufacturer's specification sheet must accompany the application that shows rating in accordance to ARI standard 810.
Units	Per icemaker
Base Case Description	0.10% less efficient than CEE Tier 1 qualifying icemaker
Measure Savings	Source: KEMA calculation
Measure Incremental Cost	Source: PG\&E workpapers
Effective Useful Life	Source: DEER 2005 12 years
The	

The rebate covers ice machines that generate 60 grams (2 oz.) or lighter ice cubes, flaked, crushed, or fragmented ice. Only air-cooled machines qualify (self-contained, ice-making heads, or remote condensing). The machine must have a minimum capacity of 101 lb of ice per 24hour period (per day). The minimum efficiency required is per ENERGY STAR or CEE Tier 2^{69}. A manufacturer's specification sheet must accompany the application that shows rating in accordance to ARI standard 810.

Measure Savings ${ }^{70}$
Savings values are obtained from the PG\&E workpaper for the food service sector. Annual operating hours are assumed to be 8,760 .

Table 224: Ice Maker Savings (per unit)

Size (lb / 24 hrs)	Peak kW Savings	Annual kWh Savings
$101-200$	0.118	1029
$201-300$	0.177	1551
$301-400$	0.210	1840
$401-500$	0.229	2004
$501-1,000$	0.363	3176
$1,001-1,500$	0.573	5019

[^47]| $>1,500$ | 0.638 | 5585 |
| :--- | :--- | :--- |

Measure Savings Analysis

The savings methodology for this measure is based on the method presented in PG\&E's 20062008 Food Service Equipment workpapers. The savings are based on the difference of the ice harvest rate (IHR) which is expressed as kWh per 100 lb . Icemaker sizes are expressed by the rate of their production in lb per 24 -hour period. The following are the equations used to calculate the savings.

Annual kWh Savings = (Baseline IHR - Retrofit IHR) x Size x 365 days per year/ 100 lb
The baseline IHR assumed for this workpaper are units that have an IHR 110 percent of the CEE Tier 1 qualifying equipment (also the FEMP recommended efficiency). The following table provides the Tier 1 and the program's baseline IHR.

Table 225: Baseline Ice Harvest Rate

Size (Ibs / 24 hrs)	CEE Tier 1 IHR	Program Baseline IHR
$101-200$	9.4	10.34
$201-300$	8.5	9.35
$301-400$	7.2	7.92
$401-500$	6.1	6.71
$501-1,000$	5.8	6.38
$1,001-1,500$	5.5	6.05
$>1,500$	5.1	5.61

The qualifying efficiencies (CEE Tier 2) are provided in the table below.
Table 226: Qualifying Icemakers

Size (lb / 24 hrs)	Qualifying kWh per $\mathbf{1 0 0} \mathbf{~ l b}$
$101-200$	8.5
$201-300$	7.7
$301-400$	6.5
$401-500$	5.5
$501-1000$	5.2
$1001-1500$	5.0
>1500	4.6

Measure Life and Incremental Measure Cost

The measure life for icemakers is 12 years based on the DEER study assumption for food service equipment.

The following table provides the IMC documented for this measure. For some measures the IMC is equal to the full measure cost. These are replace-on-burnout measures or measures that are a new technology. Retrofit measures generally dictate IMC, which is the cost difference between the retrofit and baseline technology. Installing high-efficiency icemakers is typically a retrofit that occurs as a replace on burnout; hence, the incremental measure cost is the difference between the retrofit and baseline equipment.

The PG\&E workpapers have different assumptions of qualifying equipment. They qualify equipment that meets FEMP-recommended kWh per 100 lb ice-making rate (CEE Tier 1). Their baseline is based on the lower 25 percentile of available equipment as listed in the ARI directory. It is assumed the incremental cost of the icemaker that qualifies in the Smart Ideas Program as compared to the baseline calculated here is comparable to the difference in cost (IMC) to the units discussed in the PG\&E workpapers.

Table 227: Ice Maker Incremental Measure Cost

Size (lbs / 24 hrs)	\$ per unit
$101-200$	$\$ 296$
$201-300$	$\$ 312$
$301-400$	$\$ 559$
$401-500$	$\$ 981$
$501-1,000$	$\$ 1,485$
$1,001-1,500$	$\$ 1,821$
$>1,500$	$\$ 2,194$

Food Service

ENERGY STAR® Steam Cooker

Table 228: ENERGY STAR® Steam Cooker	
Measure Description	This measure consists of the replacement of a conventional Steam Cooker unit with an ENERGY STAR rated unit.
Units	Per cooker
Base Case	Conventional, non ENERGY STAR unit
Description	Source: ENERGY STAR
Measure Savings	Source: 2009 PG\&E Workpaper - PGECOFST104.1 - Commercial Steam Cooker - Electric and Gas \$2,490
Measure Incremental Cost	
Effective Useful Life	Source: ENERGY STAR 12 years

This measure consists of the replacement of a conventional Steam Cooker unit with an ENERGY STAR rated unit. Steamer performance is determined by applying the ASTM Standard Test Method for the Performance of Steam Cookers (F1484), ${ }^{71}$ considered to be the industry standard for quantifying the efficiency and performance of steamers. The following table is the ENERGY STAR standards for electric steam cookers. The standard is version 1.1, current as of August 2003.

Table 229. ENERGY STAR Steam Cooker Standards

Pan Capacity	Cooking Energy Efficiency	Idle Rate (watts)
3-pan	50%	400
4-pan	50%	530
5-pan	50%	670

[^48]| $6-$ pan and larger | 50% | 800 |
| :--- | :---: | :---: |

Measure Savings

The savings for this measure is calculated using ENERGY STAR methodology, with updates based upon research done at the Food Service Technology Center. Measure data for savings calculations are based on average equipment characteristics. Annual energy use is calculated based on preheat, idle, and potato cooking energy efficiency and production capacity test results from applying ASTM F1484.

The following is the calculation for daily energy consumption per the PG\&E workpapers.

$$
\begin{gathered}
\text { EDay }=L B F o o d * \frac{E F o o d}{\text { Efficiency }}+\text { IdleRate } *\left(\text { OpHrs }-\frac{\text { LBFood }}{P C}-\frac{\text { TpreHT }}{60}\right)+\text { EpreHT } \\
\text { Average Demand }=\frac{\text { EDay }}{\text { OpHrs }}
\end{gathered}
$$

Table 230: Steam Cooker Variable Assumptions ${ }^{72}$

Variable	Variable Description (Units)	Value Assumed (Baseline)	Value Assumed (ENERGY STAR)
EDay	Daily Energy Consumption (kWh/day)	23.7	11.6
LBFood	Pounds of Food Cooked per Day (lb/day)	100	100
Efood	ASTM Energy to Food (kWh/lb) $=\mathrm{kWh} /$ pound of energy absorbed by food product during cooking	0.0308	0.0308
Efficiency	Heavy Load Cooking Energy Efficiency \%	26%	50%
IdleRate	Idle Energy Rate (kW)	1.0	0.4
OpHrs	Operating Hours/Day (hr/day)	12	12
PC	Production Capacity (lbs/hr)	70	50

[^49]| TPreHt | Preheat Time (min/day) | 15 | 15 |
| :--- | :--- | :---: | :---: |
| EPreHt | Preheat Energy (kWh/day) | 1.5 | 1.5 |

Savings assume a 3-pan steam cooker, operating 12 hours a day, 365 days per, with one preheat daily. The annual savings calculated for an ENERGY STAR steam cooker is $4,419 \mathrm{kWh}$. Average demand savings is 1 kW .

Measure Life and Incremental Measure Cost

The following table provides the measure life and IMC documented for this measure as well as the source of the data. Incremental cost is the cost difference between the energy-efficient equipment and the less efficient option.

Table 231: Measure Life and Incremental Measure Cost

	Value	Source
Measure Life	12	ENERGY STAR
Incremental Measure Cost	$\$ 2,490$	PG\&E

ENERGY STAR® Combination Oven

Table 232 ENERGY STAR® Combination Oven

Measure Description	This measure consists of the replacement of a conventional Combination Oven unit with an ENERGY STAR rated unit.
Units	Per oven
Base Case Description	Conventional, non ENERGY STAR unit
Measure Savings	Source: ENERGY STAR
Measure Incremental Cost	Source: 2009 PG\&E Workpaper - PGECOFST100.1 - Commercial Combination Oven - Electric and Gas \$3,824
Effective Useful Life	Source: DEER 2008 12 years

This measure consists of the replacement of a conventional Combination Oven unit with an ENERGY STAR rated unit. Oven performance is determined by the ASTM Standard Test Method for the Performance of Combination Ovens defined in standard F1639-05, ${ }^{73}$ considered to be the industry standard for quantifying combination oven efficiency and performance. ${ }^{74}$ Savings calculations for combination ovens assume they meet or exceed heavy-load cooking energy efficiencies of $>60 \%$, utilizing the ASTM standard F1639.

Measure Savings

The savings for this measure is calculated using ENERGY STAR methodology, with updates based upon research done at the Food Service Technology Center. Measure data for savings calculations are based on average equipment characteristics, as established by ENERGY STAR. Annual energy use was calculated based on preheat, idle, and cooking energy efficiency and production capacity test results from applying ASTM F1639.

[^50]The following is the calculation for daily energy consumption per the PG\&E workpapers.

$$
\begin{gathered}
\text { EDay }=\text { LBFood } * \frac{\text { EFood }}{\text { Efficiency }}+\text { IdleRate } *\left(\text { OpHrs }-\frac{\text { LBFood }}{P C}-\frac{\text { TpreHT }}{60}\right)+\text { EpreHT } \\
\text { Average Demand }=\frac{E D a y}{O p H r s}
\end{gathered}
$$

Table 233: Combination Oven Variable Assumptions ${ }^{75}$

Variable	Variable Description (Units)	Value Assumed (Baseline)	Value Assumed (Energy Efficient)
EDay	Daily Energy Consumption (kWh/day)	106	55
LBFood	Pounds of Food Cooked per Day (lb/day)	200	200
Efood	ASTM Energy to Food (kWh/lb) = kWh/pound of energy absorbed by food product during cooking	0.0732	0.0732
Efficiency	Heavy Load Cooking Energy Efficiency \%	44%	60%
IdleRate	Idle Energy Rate (kW)	7.5	3.0
OpHrs	Operating Hours/Day (hr/day)	12	12
PC	Production Capacity (lbs/hr)	80	100
TPreHt	Preheat Time (min/day)	15	15
EPreHt	Preheat Energy (kWh/day)	3.0	1.5

Savings assume a 10-pan steam cooker, operating 12 hours a day, 365 days per, with one preheat daily. The annual savings calculated for an ENERGY STAR steam cooker is $4,208 \mathrm{kWh}$. Average demand savings is 0.96 kW .

Measure Life and Incremental Measure Cost

The following table provides the measure life and IMC documented for this measure as well as the source of the data. Incremental cost is cost difference between the energy-efficient equipment and the less efficient option.

Table 234: Measure Life and Incremental Measure Cost

	Value	Source
Measure Life	12	DEER2008
Incremental Measure Cost	$\$ 3,824$	PG\&E

[^51]
ENERGY STAR® Hot Food Holding Cabinet

Table 235 ENERGY STAR® Hot Food Holding Cabinet	
Measure Description	This measure consists of the replacement of a conventional Hot Food Holding Cabinet unit with an ENERGY STAR rated unit.
Units	Per cabinet
Base Case Description	Conventional, non ENERGY STAR unit
Measure Savings	Source: ENERGY STAR
Measure Incremental Cost	Source: PG\&E Full Size: $\$ 1,891$ Three-Quarter Size: $\$ 1,497$ Half Size: $\$ 707$
Effective Useful Life	Source: DEER 2008 12 years

This measure consists of the replacement of a conventional Hot Food Holding Cabinet unit with an ENERGY STAR rated unit. Hot-food holding cabinets that meet current ENERGY STAR specifications are 60% more energy-efficient than standard models and must meet a maximum idle energy rate of 40 watts $/ \mathrm{ft}^{3}$. All operating energy rates' savings assumptions are used in accordance with American Society for Testing and Materials' (ASTM) Standard F2140. Energy-usage calculations are based on 15 hours-a-day, 365 days-per-year operation (5,475 hours) at a typical temperature setting of $150^{\circ} \mathrm{F}$ (based on ENERGY STAR assumptions).

To estimate energy savings, hot food holding cabinets are categorized into three size categories, as in the following table.
Table 236. Cabinet Size Assumptions ${ }^{76}$
Size
Internal volume \quad Average volume for calculations

[^52]| Full-size | $>15 \mathrm{ft}^{3}$ | $20 \mathrm{ft}^{3}$ |
| :--- | :---: | :---: |
| Three-quarter size | $10-15 \mathrm{ft}^{3}$ | $12 \mathrm{ft}^{3}$ |
| Half size | $<10 \mathrm{ft}^{3}$ | $8 \mathrm{ft}^{3}$ |

The following is the calculation for daily energy consumption per the ENERGY STAR Hot Food Holding Cabinet calculator.

$$
\begin{gathered}
\text { EDay }=\frac{\text { InternalVolume } *(\text { IdleRate }) *(\text { OpHrs })}{1000} \\
\text { Average Demand }=\frac{\text { EDay }}{\text { OpHrs }}
\end{gathered}
$$

Measure Savings

The savings based on ENERGY STAR savings methodology are summarized in the table below.

Table 237: Hot Holding Cabinet Savings by Size

	Full-size	Three-quarter size	Half size
Energy (kWh/year)	9,308	3,942	2,628
Demand (kW)	2.125	0.900	0.600

Measure Life and Incremental Measure Cost

The estimate useful life of this measure is 12 years (DEER 2008). The following table provides the IMC documented for this measure. Cost data is taken from PG\&E workpapers. Incremental cost is cost difference between the energy-efficient equipment and the less efficient option.

Table 238: Incremental Measure Cost

	Full-size	Three-quarter size	Half size
Full Measure Cost	4160	3743	2295
Incremental Measure Cost	1891	1497	707

ENERGY STAR® Solid Door Reach-In Freezer

Table 239 ENERGY STAR® Solid Door Reach-In Freezer			
Measure Description	This measure consists of the replacement of a conventional Solid Reach-In Freezer unit with an ENERGY STAR rated unit.		
Units	Per freezer		
Base Case	Conventional, non ENERGY STAR unit		
Description	Source: ENERGY STAR		
Measure	Savings		Source: PG\&E Workpaper PGECOFST107.1 - Commercial Glass Door
:---			
Measure Incremental Cost			
S804.75			

This measure consists of the replacement of a conventional Solid Reach-In Freezer unit with an ENERGY STAR rated unit. Only units with built-in refrigeration systems are qualified. Units with remote refrigeration systems or units do not qualify. Customers must provide proof that the appliance meets the CEE Tier II efficiency specifications using ASHRAE Standard 117$1992\left(38^{\circ} \mathrm{F} \pm 2^{\circ} \mathrm{F}\right)$.

Table 240: ENERGY STAR Qualified Commercial Solid Door Freezers (kWh per day) ${ }^{77}$

Product Volume, cubic feet	Freezer
$0<\mathrm{V}<15$	$\leq 0.250 \mathrm{~V}+1.250$
$15 \leq \mathrm{V}<30$	$\leq 0.400 \mathrm{~V}-1.000$
$30 \leq \mathrm{V}<50$	$\leq 0.163 \mathrm{~V}+6.125$
$50 \leq \mathrm{V}$	$\leq 0.158 \mathrm{~V}+6.333$

[^53]
Measure Savings

The savings for this measure is calculated using ENERGY STAR methodology. Savings are calculated using an average volume for all qualified Solid Door Reach-In Freezer units, which is 39.61 cubic feet. The estimated annual savings is 1695 kWh and 0.193 kW . Actual savings will vary based on equipment type and volume.

Measure Life and Incremental Measure Cost

The following table provides the measure life and IMC documented for this measure as well as the source of the data. Incremental cost is cost difference between the energy-efficient equipment and the less efficient option.

Costs are averaged across unit volumes. The units modeled in PG\&E's work papers have slightly different efficiency requirements, but incremental costs are assumed to be similar.

Table 241: Measure Life and Incremental Measure Cost

	Value	Source
Measure Life	12	DEER2008
Full Measure Cost	$\$ 5624.00$	PG\&E Workpaper
		PG\&E Workpaper
Incremental Measure Cost	$\$ 804.75$	PGECOFST107.1

ENERGY STAR® Solid Door Reach-In Freezer

Table 242 ENERGY STAR® Solid Door Reach-In Freezer

Measure Description	This measure consists of the replacement of a conventional Glass Reach-In Freezer unit with an ENERGY STAR rated unit.
Units	Per freezer
Base Case Description	Conventional, non ENERGY STAR unit
Measure	Source: ENERGY STAR
Savings	Source: PG\&E Workpaper PGECOFST106.1 - Commercial Glass Door Reasure Mefrigerators Incremental Cost
Effective	Source: DEER 2008 Useful Life 12 years

This measure consists of the replacement of a conventional Glass Reach-In Freezer unit with an ENERGY STAR rated unit. Only units with built-in refrigeration systems are qualified. Units with remote refrigeration systems or units do not qualify. Customers must provide proof that the appliance meets the CEE Tier II efficiency specifications using ASHRAE Standard 117$1992\left(38^{\circ} \mathrm{F} \pm 2^{\circ} \mathrm{F}\right)$.

Table 243. Efficiency Standards for ENERGY STAR Qualified Commercial Glass Door Freezers (kWh per day) ${ }^{78}$

Product Volume, cubic feet	Freezer
$0<\mathrm{V}<15$	$\leq 0.607 \mathrm{~V}+0.893$
$15 \leq \mathrm{V}<30$	$\leq 0.733 \mathrm{~V}-1.000$
$30 \leq \mathrm{V}<50$	$\leq 0.250 \mathrm{~V}+13.500$

[^54]| $50 \leq \mathrm{V}$ | $\leq 0.450 \mathrm{~V}+3.500$ |
| :--- | :--- |

Measure Savings

The savings for this measure is calculated using ENERGY STAR methodology. Savings are calculated using an average volume for all qualified Glass Door Reach-In Freezer units, which is 52.09 cubic feet. The estimated annual savings is 5923 kWh and 0.676 kW . Actual savings will vary based on equipment type and volume.

Measure Life and Incremental Measure Cost

The following table provides the measure life and IMC documented for this measure as well as the source of the data. Incremental cost is cost difference between the energy-efficient equipment and the less efficient option.

Costs are averaged across unit volumes. Costs are assumed to be comparable to Glass Door Reach-In Refrigerators.
Table 244: Measure Life and Incremental Measure Cost

	Value	Source
Measure Life	12	DEER2008
Full Measure Cost	$\$ 4241.00$	PG\&E Workpaper PGECOFST106.1
Incremental Measure Cost	$\$ 163.25$	PG\&E Workpaper
PGECOFST106.1		

Miscellaneous

Engineered Nozzle

Table 245 Engineered Nozzle

Measure Description	This measure consists of the installation of engineered nozzles onto a standard efficiency compressed air system.
Units	Per nozzle
Base Case Description	Standard efficiency compressed air system
Measure Savings	Source: Michigan CI Technologies Workpaper FES-I1
Measure Incremental Cost	Source: Michigan CI Technologies Workpaper FES-I1 \$99
Effective Useful Life	Source: Michigan CI Technologies Workpaper FES-I1 15 years

Engineered nozzles reduce the amount of air required to blow off parts or for drying. These nozzles utilize the coanda effect to pull in free air to accomplish tasks for up to 70% less compressed air. Engineered nozzles often replace simple copper tubes. Engineered nozzles have the added benefits of noise reduction and improved safety in systems with greater than 30 psig.

Measure Savings

The baseline for these savings estimates is a standard efficiency compressed air system operating at an efficiency of 0.16 $\mathrm{kW} / \mathrm{scfm}$ for a minimum of 2,000 hours per year. Nozzle flow rates are averages based on existing nozzle models. The estimated annual savings is 7343 kWh with demand savings of 3.68 kW .

Measure Life and Incremental Measure Cost

The following table provides the measure life and IMC documented for this measure as well as the source of the data. Incremental cost is cost difference between the energy efficient equipment and the less efficient option. In this case the IMC is equal to the full measure cost since the cost of the less efficient option, i.e., not conducting the retrofit, is $\$ 0$.

Table 246: Measure Life and Incremental Measure Cost

	Value	Source
Measure Life	15	Michigan CI Technologies Workpaper FES-I1

Variable-Speed Drives for Compressed Air

Table 247 Variable-Speed Drives for Compressed Air	
Measure Description	Only new oil-flooded rotary screw and rotary vane compressors are eligible. Only single compressor systems are eligible. Only compressors operating at 145 psi or below are eligible. Primary storage required on all system projects. Compressors must operate a minimum of 1,500 hours annually to be eligible for an incentive.
Units	Per HP
Base Case Description	No VSD installed.
Measure Savings	Source: KEMA
Measure Incremental Cost	Source: DEER and KEMA
Effective Useful Life	Source: DEER 15 years

Only new oil-flooded rotary screw and rotary vane compressors are eligible. Only single compressor systems are eligible. Only compressors operating at 145 psi or below are eligible. Primary storage required on all system projects. Compressors must operate a minimum of 1,500 hours annually to be eligible for an incentive.

Measure Savings

Provided below are the coincident kW savings and the annual kWh savings per hp of installed motor. The coincident kW savings are the same across all compressed air application types.

Table 248: VSD for Air Compressor Motor Savings (per HP)

kW	kWh per year
0.129	393

[^55]
Measure Savings Analysis

Savings values are calculated with an estimate of a 17.3 percent savings (savings fraction) ${ }^{79}$. The motors are assumed to have a load factor of 80 percent and an efficiency of 92 percent for calculating the equipment kW. Run hours are assumed to be 3,500 hours.

$$
\text { Peak kW reduction }=0.129 \times \mathrm{HP}
$$

Where kW of equipment is calculated using:

$$
\begin{gathered}
\frac{(\text { Motor HP }) \times(0.746 \mathrm{~kW} / \mathrm{HP}) \times(\text { Load Factor })}{\text { Motor Efficiency }} x \text { Savings Fraction } \\
\text { Annual kWh Savings }=k W \text { Savings } x \text { Run Hours }
\end{gathered}
$$

Measure Life and Incremental Measure Cost

The measure life for packaged units is 15 years according to DEER ${ }^{80}$.
The IMC documented for this measure is $\$ 150$ per horsepower for pump/fan applications (assumed to be the same as installing a drive on a HVAC motor) ${ }^{81}$.

[^56]
Network PC Management Software

Table 249 Network PC Management Software	
Measure Description	Network PC management software allows network administrators to control the power settings on all network computers. Power settings include "on", "standby", "sleep" and "off" modes. Energy savings can be achieved, as network administrators can put computers on low power settings during off hours.
Units	Per Workstation
Base Case Description	Computers without network power management software.
Measure Savings	200 kWh per year
Measure Incremental Cost	$\$ 23 /$ workstation
Effective Useful Life	10 years

Network PC management software allows network administrators to control the power settings on all network computers. Most computers come with power settings that include "on", "standby", "sleep" and "off" modes, each of which can be set to activate during periods of inactivity. These modes however may not be set properly. This measure can achieve savings by allowing network administrators to put all network computers on low power settings during appropriate hours.

Measure Savings

Table 250: Network PC Management Savings

Peak kW Savings	Annual kWh Savings
0	200

Measure Savings Analysis

Various studies have been conducted on the savings achieved by central computer power management systems. Savings depend on both the baseline conditions as well as the usage type of the computers. The analysis in this paper is based on papers done by Beacon Consultants Network Inc ${ }^{82}$ and Northwest Energy Efficiency Alliance prepared by Quantec ${ }^{83}$.

The Quantec paper summarizes a number of verification studies at various sites, including both schools and office building, using the following table of demand assumptions.

Table 251: Assumed Power Demand (Watts) ${ }^{84}$

Mode	Flat Panel Monitors	CRT Monitors	Desktop Computers	Laptop Computers
On	31.7	65	50.8	12.0
Suspend/Sleep	0.6	5	1.8	1.9
Off	0.6	1	1.2	1.2

The paper concludes that average annual savings are $129 \mathrm{kWh} /$ workstation for office computers and $317 \mathrm{kWh} /$ workstation for those in computer labs. The higher savings in the latter case result from higher idle times.

On a per site basis, the annual savings vary from $350 \mathrm{kWh} /$ workstation to as low as $34 \mathrm{kWh} /$ workstation. The large range reflects both the differences in baseline behavioral conditions and differences in the demands of laptops and desktops, as well as CRT monitors and flat panel monitors (as shown in the above table). The phase out of CRT monitors should also be noted. For the reasons of uncertainty stated above, there is good reason to be conservative with our savings figure. The stated conservative case is an annual savings of $200 \mathrm{kWh} /$ workstation. ${ }^{85}$

[^57]There is no peak demand saving for this measure, since at peak times it is assumed that the computers are on.

Measure Life and Incremental Measure Cost

Measure life indicates the license life and so goes beyond the useful life of the computer itself (usually 3-5 years).
Table 252: Measure Life and Incremental Measure Cost

	Value	Source
Measure Life	10	Northwest Energy Efficiency Alliance
Incremental Measure Cost	$\$ 23$	Northwest Energy Efficiency Alliance

Addendum: Savings Multipliers for Business Types
Savings claimed in the 2010 AEP GridSMART Program varies by business type. Savings presented in this document are averages across different business types. To calculate savings for a particular building type the appropriate multiplier need to be applied to the average savings value. The following table presents these KEMA calculated multipliers. The multipliers can vary across business and measure types. They also can differ for kW and kWh savings given a single measure type and business type.
For Light Industrial, Heavy Industrial and Warehouse business types, further breakdowns are used. Since these sectors present a wide range of operating hours, multipliers have been determined for $24 / 7,16 / 5$ and $8 / 5$ facility schedules.

Table 253: Measure and Building Type Multipliers

BusinessTypelD	Shift	Data	Exterior Lighting	Food Service	Garage Lighting	Interior CFL Lighting	Interior Non CFL Lighting	Miscellaneous	Motors	None	$\begin{aligned} & \text { VFD for } \\ & \text { HVAC } \\ & \text { Chillers } \\ & \hline \end{aligned}$	VFD for HVAC Fans	$\begin{aligned} & \hline \text { VFD for } \\ & \text { HVAC } \\ & \text { Pumps } \\ & \hline \end{aligned}$
College/University		kW Savings Multiplier	1.00	1.00	1.00	0.92	0.83	1.00	1.00	1.00	1.00	1.00	1.00
		kWh Savings Multiplier	1.00	1.00	1.00	0.82	0.80	1.00	1.00	1.00	1.02	1.03	1.03
Grocery		kW Savings Multiplier	1.00	1.00	1.00	1.12	1.08	1.00	1.00	1.00	1.00	1.00	1.00
		kWh Savings Multiplier	1.00	1.00	1.00	1.36	1.34	1.00	1.00	1.00	1.70	1.42	1.42
Heavy Industry		kW Savings Multiplier	1.00	1.00	1.00			1.00	1.00	1.00	1.00	1.00	1.00
		kWh Savings Multiplier	1.00	1.00	1.00			1.00	1.00	1.00	1.28	0.87	0.87
	16/5	kW Savings Multiplier				1.17	1.17						
		kWh Savings Multiplier				1.06	1.06						
	24/7	kW Savings Multiplier				1.17	1.17						
		kWh Savings Multiplier				1.85	1.85						
	8/5	kW Savings Multiplier				1.17	1.17						

		kWh Savings Multiplier				0.44	0.44						
Hotel/Motel		kW Savings Multiplier	1.00	1.00	1.00	0.84	0.83	1.00	1.00	1.00	1.00	1.00	1.00
		kWh Savings Multiplier	1.00	1.00	1.00	1.16	1.15	1.00	1.00	1.00	0.98	1.67	1.67
Light Industry		kW Savings Multiplier	1.00	1.00	1.00			1.00	1.00	1.00	1.00	1.00	1.00
		kWh Savings Multiplier	1.00	1.00	1.00			1.00	1.00	1.00	0.88	0.60	0.60
	16/5	kW Savings Multiplier				1.17	1.17						
		kWh Savings Multiplier				1.06	1.06						
	24/7	kW Savings Multiplier				1.17	1.17						
		kWh Savings Multiplier				1.85	1.85						
	8/5	kW Savings Multiplier				1.17	1.17						
		kWh Savings Multiplier				0.44	0.44						
Medical		kW Savings Multiplier	1.00	1.00	1.00	1.02	1.00	1.00	1.00	1.00	1.00	1.00	1.00
		kWh Savings Multiplier	1.00	1.00	1.00	1.58	1.55	1.00	1.00	1.00	0.77	1.67	1.67
Miscellaneous		kW Savings Multiplier	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
		kWh Savings Multiplier	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Office		kW Savings Multiplier	1.00	1.00	1.00	1.12	1.08	1.00	1.00	1.00	1.00	1.00	1.00
		kWh Savings Multiplier	1.00	1.00	1.00	0.63	0.67	1.00	1.00	1.00	0.36	0.43	0.43
Restaurant		kW Savings Multiplier	1.00	1.00	1.00	0.94	0.92	1.00	1.00	1.00	1.00	1.00	1.00
		kWh Savings Multiplier	1.00	1.00	1.00	1.14	1.23	1.00	1.00	1.00	1.54	1.14	1.14
Retail/Service		kW Savings Multiplier	1.00	1.00	1.00	1.14	1.08	1.00	1.00	1.00	1.00	1.00	1.00
		kWh Savings Multiplier	1.00	1.00	1.00	0.94	0.95	1.00	1.00	1.00	0.98	0.84	0.84
School		kW Savings Multiplier	1.00	1.00	1.00	0.56	0.58	1.00	1.00	1.00	1.00	1.00	1.00
		kWh Savings Multiplier	1.00	1.00	1.00	0.44	0.44	1.00	1.00	1.00	0.55	0.54	0.54

Warehouse		kW Savings Multiplier	1.00	1.00	1.00			1.00	1.00	1.00	1.00	1.00	1.00
		kWh Savings Multiplier	1.00	1.00	1.00			1.00	1.00	1.00	0.94	0.79	0.79
	16/5	kW Savings Multiplier				1.00	1.00						
		kWh Savings Multiplier				1.08	1.08						
	24/7	kW Savings Multiplier				1.00	1.00						
		kWh Savings Multiplier				1.89	1.89						
	8/5	kW Savings Multiplier				1.00	1.00						
		kWh Savings Multiplier				0.45	0.45						
Other		kW Savings Multiplier								1.00			
		kWh Savings Multiplier								1.00			

This foregoing document was electronically filed with the Public Utilities

Commission of Ohio Docketing Information System on

12/29/2010 10:47:24 AM
in

Case No(s). 10-1865-EL-EEC

Summary: Application of Fifth Third Bank and Columbus Southern Power Company for approval of a special arrangement agreement with a mercantile customer electronically filed by Mr. Matthew J Satterwhite on behalf of Columbus Southern Power Company

[^0]: TCP, Inc.
 325 Campus Drive | Aurora, Ohio 44202 | P: 800-324-1496 | F: 330-995-6188 | tcpi.com
 ©TCP, Inc. 2008/03127

[^1]: ${ }^{1} 2005$ Database for Energy Efficiency Resources (DEER) Update Study Final Report - Residential and Commercial Non-Weather Sensitive Measures

[^2]: ${ }^{2}$ AEP Ohio 2009 to 2028 Energy Efficiency, Peak Demand Reduction Potential Study, Volume 2. Page 48. Summit Blue Consulting, Inc. August 13, 2009.

[^3]: ${ }^{3} 2005$ Database for Energy Efficiency Resources (DEER) Update Study Final Report - Residential and Commercial Non-Weather Sensitive Measures

[^4]: ${ }^{4} 2005$ Database for Energy Efficiency Resources (DEER) Update Study Final Report - Residential and Commercial Non-Weather Sensitive Measures

[^5]: ${ }^{6} 2005$ Database for Energy Efficiency Resources (DEER) Update Study Final Report - Residential and Commercial Non-Weather Sensitive Measures

[^6]: ${ }^{7} 2005$ Database for Energy Efficiency Resources (DEER) Update Study Final Report - Residential and Commercial Non-Weather Sensitive Measures

[^7]: ${ }^{9}$ WPSCNRLG0054.1 Ceramic Metal Halide Fixtures, Southern California Edison Workpaper, 2008.
 ${ }^{10} 2006$ PG\&E Interior Pulse Start Metal Halide Workpaper
 ${ }^{11}$ WPSCNRLG0046.1 Interior Pulse Start Metal Halide Fixtures 251 -400W, Southern California Edison Workpaper, 2008.

[^8]: ${ }^{12} 2005$ Database for Energy Efficiency Resources (DEER) Update Study Final Report - Residential and Commercial Non-Weather Sensitive Measures

[^9]: ${ }^{14} 2005$ Database for Energy Efficiency Resources (DEER) Update Study Final Report - Residential and Commercial Non-Weather Sensitive Measures

[^10]: ${ }^{15} 2005$ Database for Energy Efficiency Resources (DEER) Update Study Final Report - Residential and Commercial Non-Weather Sensitive Measures

[^11]: ${ }^{16} 2005$ Database for Energy Efficiency Resources (DEER) Update Study Final Report - Residential and Commercial Non-Weather Sensitive Measures

[^12]: ${ }^{17}$ PGE LED Channel Sign work paper

[^13]: ${ }^{18} 2005$ Database for Energy Efficiency Resources (DEER) Update Study Final Report - Residential and Commercial Non-Weather Sensitive Measures

[^14]: ${ }^{19} 2005$ Database for Energy Efficiency Resources (DEER) Update Study Final Report - Residential and Commercial Non-Weather Sensitive Measures

[^15]: ${ }^{20}$ Southern California Edison Company, Cold Cathode Fluorescent Lamp Workpaper WPSCNRLG0063. 2007.

[^16]: ${ }^{21}$ Southern California Edison Company, Cold Cathode Fluorescent Lamp Workpaper WPSCNRLG0063. 2007, Pacific Gas \& Electric, Lighting WP.doc, 2006.

[^17]: ${ }^{22} 2005$ Database for Energy Efficiency Resources (DEER) Update Study Final Report - Residential and Commercial Non-Weather Sensitive Measures

[^18]: ${ }^{23} 2005$ Database for Energy Efficiency Resources (DEER) Update Study Final Report - Residential and Commercial Non-Weather Sensitive Measures

[^19]: ${ }^{24} 2005$ Database for Energy Efficiency Resources (DEER) Update Study Final Report - Residential and Commercial Non-Weather Sensitive Measures

[^20]: ${ }^{25} 2005$ Database for Energy Efficiency Resources (DEER) Update Study Final Report - Residential and Commercial Non-Weather Sensitive Measures

[^21]: 26 "Technology Assessment of Light Emitting Diodes (LED) for Street and Parking Lot Lighting Applications" Prepared for San Diego Regional Energy Office, Public Agency Energy Partnership Program. Prepared by Tetra Tech EM Inc. Aug 2003.

[^22]: ${ }^{27}$ PG\&E Lighting WP 2006

[^23]: ${ }^{28}$ Based on the assessment of active projects in the 2008-09 ComEd Smart Ideas Program.

[^24]: ${ }^{34}$ PGE LED Channel Sign work paper

[^25]: ${ }^{36}$ This website also has a list of eligible systems.

[^26]: ${ }^{37}$ Tier 1 is 14 SEER

[^27]: ${ }^{38} 2008$ DEER, www.deeresources.com

[^28]: ${ }^{39} 2005$ Database for Energy Efficiency Resources (DEER) Update Study Final Report
 ${ }^{40} 2008$ DEER, www.deeresources.com

[^29]: ${ }^{41}$ This website also has a list of eligible units.

[^30]: ${ }^{42} 2009$ PG\&E Workpaper - PGECOHVC109. 1
 ${ }^{43} 2009$ PG\&E Workpaper - PGECOHVC109.1

[^31]: ${ }^{44} 2005$ Database for Energy Efficiency Resources (DEER) Update Study Final Report
 ${ }^{45} 2008$ DEER, www.deeresources.com

[^32]: ${ }^{46}$ Custom GREM projects from Smart Ideas for Your Business Incentive Program Year 1 \& 2

[^33]: ${ }^{47}$ This percentage is a conservative estimate. DEER on average calculated over 30% savings for installing a VSD.
 ${ }^{48} 2005$ Database for Energy Efficiency Resources (DEER) Update Study Final Report

[^34]: ${ }^{49} 2005$ Database for Energy Efficiency Resources (DEER) Update Study Final Report from assessment of several measures that include a VSD retrofit.

[^35]: ${ }^{50} 2005$ Database for Energy Efficiency Resources (DEER) Update Study Final Report - Residential and Commercial Non-Weather Sensitive Measures
 ${ }^{51} 2005$ Database for Energy Efficiency Resources (DEER) Update Study Final Report - Residential and Commercial Non-Weather Sensitive Measures
 ${ }^{52}$ Xenergy, United States Industrial Electric Motor Systems Market Opportunities Assessment. Burlington, MA, 1998. Hours are from Page B-2 for Overall Manufacturing (SIC 20-39).
 ${ }^{53} 2005$ Database for Energy Efficiency Resources (DEER) Update Study Final Report - Residential and Commercial Non-Weather Sensitive Measures referencing the Xenergy study.

[^36]: ${ }^{54} 2005$ Database for Energy Efficiency Resources (DEER) Update Study Final Report - Residential and Commercial Non-Weather Sensitive Measures

[^37]: ${ }^{55}$ Southern California Edison Premium Motors Workpaper WPSCNPR0008. 2007

[^38]: ${ }^{56}$ "Infilltration Barriers- Strip Curtains," Workpaper WPSCNRRN0002. Southern California Edison Company. 2007.

[^39]: ${ }^{57}$ "Anti-Sweat Heater Controls," Workpaper WPSCNRRN0009. Southern California Edison Company. 2007. PG\&E uses the same method as SCE, but the workpaper is not yet published, ASH Controls PGECOREF108.

[^40]: 58 "Efficient Evaporator Fan Motors (Shaded Pole to ECM)," Workpaper WPSCNRRN0011. Southern California Edison Company. 2007.

[^41]: ${ }^{59} 2005$ Database for Energy Efficiency Resources (DEER) Update Study Final Report

[^42]: ${ }^{60}$ "GE ECM Evaporator Fan Motor Energy Monitoring" Food Service Technology Center, Fisher-Nickel Inc. 2006. Prepared for PG\&E.

[^43]: ${ }^{61} 2005$ Database for Energy Efficiency Resources (DEER) Update Study Final Report

[^44]: ${ }^{62} 2005$ Database for Energy Efficiency Resources (DEER) Update Study Final Report - Residential and Commercial Non-Weather Sensitive Measures
 ${ }^{63} 2005$ Database for Energy Efficiency Resources (DEER) Update Study Final Report - Residential and Commercial Non-Weather Sensitive Measures
 ${ }^{64} 2005$ Database for Energy Efficiency Resources (DEER) Update Study Final Report - Residential and Commercial Non-Weather Sensitive Measures

[^45]: ${ }^{65} 2005$ Database for Energy Efficiency Resources (DEER) Update Study Final Report - Residential and Commercial Non-Weather Sensitive Measures
 ${ }^{66} 2005$ Database for Energy Efficiency Resources (DEER) Update Study Final Report - Residential and Commercial Non-Weather Sensitive Measures

[^46]: ${ }^{67}$ ENERGY STAR Savings Calculator.
 http://www.energystar.gov/index.cfm?c=vending_machines.pr_vending_machines

[^47]: ${ }^{68}$ The websites have a list of qualifying model numbers, www.energystar.gov or www.cee1.org.
 ${ }^{69}$ The websites have a list of qualifying model numbers, www.energystar.gov or www.cee1.org.
 70 "Food Service Equipment Workpapers; Ice Machine -Commercial Air Cooled," Pacific Gas and Electric. 2005.

[^48]: ${ }^{71}$ American Society for Testing and Materials. 2005. Standard Test Method for the Performance of Steam Cookers. ASTM Designation F1484-05, in Annual Book of ASTM Standards, West Conshohocken, PA.

[^49]: ${ }^{72}$ ENERGY STAR Commercial Steam Cooker Calculator

[^50]: ${ }^{73}$ American Society for Testing and Materials. "Standard Test Method for the Performance of Convection Ovens." ASTM Designation F1639-05. in Annual Book of ASTM Standards, West Conshohocken, PA.
 ${ }^{74}$ PG\&E Food Service

[^51]: ${ }^{75}$ PG\&E Food Service Equipment Workpapers (October 2005)

[^52]: ${ }^{76}$ ENERGY STAR Commercial Hot Food Holding Cabinet Calculator based on PG\&E FSTC research

[^53]: ${ }^{77}$ www.energystar.gov, Note: $\mathrm{V}=$ Internal volume in ft^{3}

[^54]: ${ }^{78}$ www.energystar.gov, Note: $\mathrm{V}=$ Internal volume in ft^{3}

[^55]: $=0.746 / .92^{*} \mathrm{hp}$ * 2000 hours * 0.3 (30\% savings and 0.92 is motor eff)

[^56]: ${ }_{80}$ Savings percentage is from Pennsylvania Technical Reference Manual, May 2009.
 ${ }^{80} 2005$ Database for Energy Efficiency Resources (DEER) Update Study Final Report
 ${ }^{81} 2005$ Database for Energy Efficiency Resources (DEER) Update Study Final Report from assessment of several measures that include a VSD retrofit.

[^57]: ${ }^{82}$ J. Michael Walker, Beacon Consultants Network Inc. "Power Management for Network Computers: A Review of Utility Incentive Programs." Updated July 14, 2009
 83 "Surveyor Network Energy Manager, Market Progress Evaluation Report, No 2," Prepared by Quantec for Northwest Energy Efficiency Alliance. January 19, 2005.
 ${ }^{84}$ "Surveyor Network Energy Manager, Market Progress Evaluation Report, No 2," Prepared by Quantec for Northwest Energy Efficiency Alliance. Section V. Verification of Surveyor Functionality and Energy Savings. January 19, 2005.
 ${ }^{85}$ J. Michael Walker, Beacon Consultants Network Inc. "Power Management for Network Computers: A Review of Utility Incentive Programs." Updated July 14, 2009

