Large Filing Separator Sheet Case Number: 10-503-EL-FOR File Date: 10/7/2010 Section: 1 of 2 Number of Pages: 102 Description of Document: DUKE ENERGY OHIO INC REVISED 2010 LONG-TERM FORECAST REPORT AND RESOURCE PLAN

This is to certify that the mages appearing are an accurate and complete reproduction of a case file jocument delivered in the regular course of business pechnician _____ Date Processed $\frac{10-7-2}{10-7-2}$

N. 4.

FILE

RECEIVED-DOCKETING BIV

Public

2010 OCT -7 PM 3: 01

PUCO

TO THE PUBLIC UTILITIES COMMISSION OF OHIO

DUKE ENERGY OHIO, INC. REVISED 2010 ELECTRIC LONG-TERM FORECAST REPORT AND RESOURCE PLAN

CASE NO. 10-503-EL-FOR

STATEMENT OF JULIA S. JANSON PRESIDENT, DUKE ENERGY OHIO, INC.

I, Julia S. Janson, President of Duke Energy Ohio, Inc., hereby certify that the statement and modifications set forth in the REVISED 2010 DUKE ENERGY OHIO LONG-TERM ELECTRIC FORECAST REPORT AND RESOURCE PLAN as submitted to the Public Utilities Commission of Ohio are true and correct to the best of my knowledge and belief.

I further certify that the requirements of Ohio Administrative Code §4901:5-1-03, paragraphs (F) to (I) will be met.

Iang

President Duke Energy Ohio, Inc.

CERTIFICATE OF SERVICE

I hereby certify that a true and accurate copy of Duke Energy Ohio, Inc.'s Revised 2010 Long-Term Forecast Report and Resource Plan was served by First Class U.S. Mail, postage prepaid, this day of October, 2010 upon the following:

Jeffrey L. Small Office of the Ohio Consumers' Counsel 10 West Broad Street, Suite 1800 Columbus, OH 43215-3485 small@occ.state.oh.us

Will Reisinger Nolan Moser Trent A. Dougherty Megan De Lisi Ohio Environmental Council 1207 Grandview Avenue, Suite 201 Columbus, Ohio 43212-3449 will@theoec.org nolan@theoec.org trent@theoec.org megan@theoec.org

Henry W. Eckhart 50 West Broad Street, # 2117 Columbus, Ohio 43215 henryeckhart@aol.com Shannon W. Fisk Senior Attorney 2 North Riverside Plaza, Suite 2250 Chicago, Illinois 60660 <u>sfisk@nrdc.org</u>

Robert Kelter Environmental Law & Policy Center 35 East Wacker Drive, Suite 1600 Chicago, IL 60601 <u>rkelter@elpc.org</u>

Terrence O'Donnell Thomas J. O'Brien Bricker & Eckler LLP 100 South Third Street Columbus,OH 43215-4291 todonnell@bricker.com tobrien@bricker.com

Furthermore, a Letter of Notification was sent by First Class U.S. Mail to each

library listed in the report.

(HWatty

Elizabeth H. Watts Assistant General Counsel Duke Energy Business Services

Libraries Receiving a Letter of Notification

Regarding Duke Energy Ohio, Inc.'s Revised 2010 Long-Term Forecast Report and Resource Plan

County	Library	Address
Adams	Manchester Branch Library	401 Pike St.
		Manchester, Ohio 45144
Brown	Mary P. Shelton Library	200 West Grant Avenue
		Georgetown, Ohio 45121
Butler	Lane Public Library	300 North Third Street
		Hamilton, Ohio 45011
Butler	Middletown Public Library	125 South Broad Street
		Middletown, Ohio 45044
Clermont	Clermont County Public Library	180 South Third Street
		Batavia, Ohio 45103
Clinton	Wilmington Public Library	268 North South Street
		Wilmington, Ohio 45117
Hamilton	Public Library of Cincinnati and	800 Vine Street
	Hamilton County	Cincinnati, Ohio 45202
	University of Cincinnati	2600 Clifton Avenue
	Library Reference Division	Cincinnati, Ohio 45221
Highland	Highland County District Library	10 Willettsville Pike
		Hillsboro, Ohio 45133
Montgomery	Dayton and Montgomery County Public	215 East Third Street
	Library	Dayton, Ohio 45402
Preble	Preble County District Library	301 North Barron Street
		Eaton, Ohio 45320
Warren	Lebanon Public Library	101 South Broadway
		Lebanon, Ohio 45036

TABLE OF CONTENTS

SECTION I – FORECAST REPORT REQUIREMENTS1
A. SUMMARY OF THE LONG-TERM FORECAST REPORT1
B. FORECAST SUMMARY & ASSUMPTIONS5
1. Service Area Economy6
2. Electric Energy Forecast6
3. Specific17
D. FORECAST DOCUMENTATION18
1. Economic Data
2. Energy and Peak Models
3. Forecast Data23
4. Load Research and Market Research Efforts24
E. MODELS
1. Specific Analytical Techniques24
2. Relationships Between The Specific Techniques26
3. Alternative Methodologies
4. Changes In Methodology26
5. Equations27
6. Computer Software53
SECTION II FORECASTS FOR ELECTRIC TRANSMISSION OWNERS
A. GENERAL GUIDELINES54
B. ELECTRIC TRANSMISSION FORECAST54
C. THE EXISTING TRANSMISSION SYSTEM90
D. THE PLANNED TRANSMISSION SYSTEM102
E. SUBSTANTIATION OF THE PLANNED TRANSMISSION SYSTEM116

F. REGIONAL AND BULK POWER REQUIRMENTS118		
G. CRITICAL ENERGY INFRASTRUCTURE INFORMATION		
SECTION III – ELECTRIC DISTRIBUTION FORECAST		
1. Service Area Energy Forecasts119		
2. System Seasonal Peak Load Forecast		
3. Controllable Loads120		
4. Load Factor129		
5. Substantiation of the Planned Distribution System		
SECTION IV - DUKE ENERGY OHIO 2010 RESOURCE PLAN133		
A. EXECUTIVE SUMMARY133		
1. Uncertainties in the Planning Process		
2. Planning Process Results136		
B. INTRODUCTION141		
C. PLANNING ASSUMPTIONS143		
D. RESOURCE PLANNING PROCESS145		
1. Existing Assets146		
E. AVAILABILITY AND MAINTENANCE149		
1. Fuel Supply150		
2. Fuel Prices		
3. Retirement Assessment152		
F. IMPACT OF ENVIRONMENTAL REGULATIONS154		
1. Air Quality154		
2. Clean Air Interstate Rule (CAIR)154		
3. Utility Boiler MACT154		

I.

4. National Ambient Air Quality Standards	155
5. Global Climate Change	156
6. Water Quality	157
7. Waste Issues	1 59
G. POOLING AND BULK POWER AGREEMENTS	160
H. ENERGY EFFICIENCY/DSM PROGRAMS	161
I. ALTERNATIVE ENERGY RESOURCES	177
1. Requirements	177
2. Qualified Renewable Resources	178
3. Qualified Advanced Energy Resources	179
4. Discussion of Renewable Compliance Strategy	179
5. Renewable Energy in the Resource Planning Model	181
6. Intermittency and Capacity Factors	184
7. Biomass	
J. SUPPLY SIDE RESOURCES	186
1. Overview	186
2. Selected Supply Side Technologies	187
K. RESOURCE PLAN	189
L. SYSTEM OPTIMIZER RESOURCE PORTFOLIO ALTERNAT	TIVES190
M. RESOURCE PORTFOLIO ALTERNATIVE EVALUATION RI	ESULTS194

SECTION I – FORECAST REPORT REQUIREMENTS

A. SUMMARY OF THE LONG-TERM FORECAST REPORT

Duke Energy Ohio provides electric service to approximately 683,000 customers in an area covering some 2,500 square miles in Southwestern Ohio. Duke Energy Ohio's service territory includes the cities of Cincinnati and Middletown, Ohio. Duke Energy Kentucky provides electric service in the Northern Kentucky area contiguous to the Southwestern Ohio area served by Duke Energy Ohio. Duke Energy Kentucky serves approximately 135,000 electric customers in its 500 square mile service territory. Duke Energy Kentucky's service territory includes the cities of Covington and Newport, Kentucky. Duke Energy Ohio and Duke Energy Kentucky operate within the regional economy as defined by the Cincinnati Primary Metropolitan Statistical Area (PMSA). Therefore, the Company prepares the forecast for the entire region encompassing both utility service areas. This consolidated forecast is then allocated to each service area. Subsequently, this report covers the forecast for Duke Energy Ohio only.

As of December 2009, the transmission system of Duke Energy Ohio consisted of approximately 403 circuit miles of 345 kV lines (including Duke Energy Ohio's share of jointly-owned transmission) and 724 circuit miles of 138 kV lines. Portions of the 345 kV transmission system are jointly owned with Columbus Southern Power Company and/or the Dayton Power & Light Company. Duke Energy Ohio is interconnected with five other transmission providers (including Duke Energy Indiana).

The electric energy and peak demand forecasts of the Duke Energy Ohio franchised service territory are prepared each year as part of the planning process.

The general framework of the Electric Energy and Peak Load Forecast involves a national economic forecast, a service area economic forecast, and the electric load forecast.

The national economic forecast provides information about the prospective growth of the national economy. This involves projections of national economic and demographic concepts such as population, employment, industrial production, inflation, wage rates, and income. The national economic forecast is obtained from Economy.com, a national economic consulting firm.

Similarly, the history and forecast of key economic and demographic concepts for the service area economy is obtained from Economy.com. The service area economic forecast is used along with the energy and peak models to produce the electric load forecast.

Energy sales projections are prepared for the residential, commercial, industrial, and other sectors. Those components plus electric system losses are aggregated to produce a forecast of net energy.

Table 1-1 below, provides information on the Duke Energy Ohio System projected annual growth rates in energy for the major customer classes as well as net energy and peak demand before implementation of any new or incremental energy efficiency programs. The growth rates are consistent with the forecast presented in the FE-D forms in Section 3 and represent the full distribution forecast regardless of who supplies the energy. The forecast has been reduced for the anticipated impacts of the Energy Independence and Security Act of 2007 (EISA).

TABLE 1-1 Duke Energy Ohio System

ELECTRIC ENERGY AND PEAK LOAD

FORECAST: ANNUAL GROWTH RATES

2010-2030

Residential MWH	0.1%
Commercial MWH	0.6%
Industrial MWH	0.9%
Net Energy MWH	0.4%
Summer Peak MW	0.3%
Winter Peak MW	0.0%

The forecast of energy is graphically depicted on Figure 1-1, and the summer and winter peak forecasts are shown on Figure 1-2.

Please note that the FE-T forms in Section II represent the load supplied by the regulated utility. These forecasts of energy and peak demand provide the starting point for the development of the Integrated Resource Plan. As such, the first two years of the forecast reflect energy and peak reduced for current switching levels, i.e. load supplied by the regulated utility. The remaining years of the forecast reflect the assumption that all load returns to the regulated utility and the end of the ESP.

Changes In Methodology

There were no significant changes to the forecast methodology. The Company uses the latest historical data available and relies on recent economic data and forecasts from Economy.com.

Figure2.2

DUKE ENERGY OHIO SYSTEM PEAKS 2005 - 2030

ş

The electric energy and peak demand forecasts of the Duke Energy Ohio service territory are prepared each year as part of the planning process by a staff that is shared with the other Duke Energy affiliated utilities, using the same methodology. Duke Energy Ohio does not perform joint load forecasts with non-affiliated utility companies, and the forecast is prepared independently of the forecasting efforts of non-affiliated utilities.

B. FORECAST SUMMARY & ASSUMPTIONS

The forecast methodology is essentially the same as that presented in past Electric Long-Term Forecast Reports Plans filed with the Public Utilities Commission of Ohio (Commission). Energy is a key commodity linked to the overall level of economic activity. As residential, commercial, and industrial economic activity increases or decreases, the use of energy, or more specifically electricity, should increase or decrease, respectively. It is this linkage to economic activity that is important to the development of long-range energy forecasts. For that reason, forecasts of the national and local economies are key ingredients to energy forecasts.

The general framework of the Electric Energy and Peak Load Forecast involves a national economic forecast, a service area economic forecast, and the electric load forecast. The national economic forecast provides information about the prospective growth of the national economy. This involves projections of national economic and demographic concepts such as population, employment, industrial production, inflation, wage rates, and income. The national economic forecast is obtained from Moody's Economy.com, a nationally recognized vendor of economic forecasts. In conjunction with the forecast of the national economy, the Company also obtains a forecast of the service area economy from Moody's Economy.com.

The Duke Energy Ohio service area is located in southwestern Ohio adjacent to the service area of Duke Energy Kentucky. The economy of southwestern Ohio is contained within the Cincinnati Primary Metropolitan Statistical Area (PMSA) and is an integral part of the regional economy. The service area economic forecast is used along with the energy and peak models to produce the electric load forecast.

1. Service Area Economy

There are several sectors to the service area economy: employment, income, inflation, production, and population. Forecasts of employment are provided by North American Industry Classification System (NAICS) and aggregated to major sectors such as commercial and industrial. Income for the local economy is forecasted in several categories including wages, rents, proprietors' income, personal contributions for social insurance, and transfer payments. The forecasts of these items are summed to produce the forecast of income less personal contributions for social insurance. Inflation is measured by changes in the Consumer Price Index (CPI). Production is projected for each key NAICS group by multiplying the forecast of productivity (production per employee) by the forecast of employment. Population projections are aggregated from forecasts by age-cohort. This information serves as input into the energy and peak load forecast models.

2. Electric Energy Forecast

The forecast methodology follows economic theory in that the use of energy is dependent upon key economic factors such as income, production, energy prices, and the weather. The projected energy requirements for Duke Energy Ohio's retail electric customers are determined through econometric analysis. Econometric models are a means of representing economic behavior through the use of statistical methods, such as regression analysis.

The Duke Energy Ohio forecast of energy requirements is included within the overall forecast of energy requirements of the Greater Cincinnati and Northern Kentucky region. The Duke Energy Ohio sales forecast is developed by allocating percentages of the total regional forecast for each customer group. These groups include residential, commercial, industrial, governmental or other public authority (OPA), and street lighting energy sectors. In addition, forecasts are also prepared for three minor categories: interdepartmental use (Gas Department), Company use, and losses. In a similar fashion, the Duke Energy Ohio peak load forecast is developed by allocating a share from the regional total. Historical percentages and judgment are used to develop the allocations of sales and peak demands.

The following sections provide the specifications of the econometric equations developed to forecast electricity sales for the franchised service territory.

<u>Residential Sector</u> - There are two components to the residential sector energy forecast: the number of residential customers and kWh energy usage per customer. The forecast of total residential sales is developed by multiplying the forecasts of the two components. That is:

(1) Residential Sales =

Number of Residential Customers * Use per Residential Customer.

Econometric relationships are developed for each of the component pieces of total residential sales.

<u>Customers</u> - The number of electric residential customers (households) is affected by real per capita income. This is represented as follows:

(2) Residential Customers =

f (Real Per Capita Income)

Where: Real Per Capita Income = (Personal Income/Population/CPI).

While changes in per capita income are expected to alter the number of residential customers, the adjustment relating to real per capita income is not immediate. The number of customers will change gradually over time as a result of a change in real per capita income. This adjustment process is modeled using a lag structure.

<u>Residential Use per Customer</u> - The key ingredients that impact energy use per customer are per capita income, real electricity prices and the combined impact of numerous other determinants. These include the saturation of air conditioners, electric space heating, other appliances, the efficiency of those appliances, and weather.

(3) Energy usage per Customer =

f (Real Income per Capita * Efficient Appliance Stock,

Real Electricity Price * Efficient Appliance Stock,

Saturation of Electric Heating Customers,

Saturation of Customers with Central Air Conditioning,

Saturation of Window Air Conditioning Units,

Efficiency of Space Conditioning Appliances,

Billed Cooling and Heating Degree Days).

The derivation of the efficient appliance stock variable and the forecast of appliance saturations are discussed in the data section.

<u>Commercial Sector</u> - Commercial electricity usage changes with the level of local commercial employment, real electricity price, and the impact of weather. The model is formulated as follows:

(4) Commercial Sales =

f (Commercial Employment,

Marginal Electric Price/Consumer Price Index,

Billed Cooling and Heating Degree Days).

<u>Industrial Sector</u> - Duke Energy Ohio produces industrial sales forecasts by NAICS classifications. Electricity use by industrial customers is primarily dependent upon the level of industrial production and the impacts of real electricity prices, electric price relative to alternate fuels, and weather. The general model of industrial sales is formulated as follows:

(5) Industrial Sales =

f (Industrial Production,

Real Electricity Price,

Electricity Price/Alternate Fuel Price,

Billed Cooling and Heating Degree Days).

<u>Governmental Sector</u> - The Company uses the term Other Public Authorities (OPA) to indicate those customers involved and/or affiliated with federal, state or local government. Two categories comprise the electricity sales in the Other Public Authority (OPA) sector: sales to OPA water pumping customers and sales to OPA non-water pumping customers. In the case of OPA water pumping, electricity sales are related to the number of residential electricity customers, real price of electricity demand, precipitation levels, and heating and cooling degree days. That is:

(6) Water Pumping Sales =

f (Residential Electricity Customers, Real Electricity Demand Price,

Precipitation,

Cooling Degree Days).

Electricity sales to the non-water pumping component of Other Public Authority is related to governmental employment, the real price of electricity, the real price of natural gas, and heating and cooling degree days. This relationship can be represented as follows:

(7) Non-Water Pumping Sales =

f (Governmental Employment,

Marginal Electric Energy Price/Natural Gas Price,

Billed Cooling and Heating Degree Days).

The total OPA electricity sales forecast is the sum of the individual forecasts of sales to water pumping and non-water pumping customers.

<u>Street Lighting Sector</u> - For the street lighting sector, electricity usage varies with the number of street lights and the efficiency of the lighting fixtures used. The number of street

lights is associated with the population of the service area. The efficiency of the street lights is related to the saturation of mercury and sodium vapor lights. That is:

(8) Street Lighting Sales =

f (Population,

Saturation of Mercury Vapor Lights,

Saturation of Sodium Vapor Lights).

<u>Total Electric Sales</u> - Once these separate components have been projected - Residential sales, Commercial sales, Industrial sales, Other Public Authority sales, and Street Lighting sales - they can be summed along with Inter-department sales to produce the projection of total electric sales.

<u>Total System Sendout</u> - Upon completion of the total electric sales forecast, the forecast of total energy can be prepared. This requires that all the individual sector forecasts be combined along with forecasts of Company use, and system losses. After the system sendout forecast is completed, the peak load forecast can be prepared.

<u>Peak Load</u> - Forecasts of summer and winter peak demands are developed using econometric models.

The peak forecasting model is designed to closely represent the relationship of weather to peak loads. Only days when the temperature equaled or exceeded 90 degrees are included in the summer peak model. For the winter, only those days with a temperature at or below 10 degrees are included in the winter peak model.

<u>Summer Peak</u> - Summer peak loads are influenced by the current level of economic activity and the weather conditions. The primary weather factors are temperature and humidity; however, not only are the temperature and humidity at the time of the peak important, but also the morning low temperature, and high temperature from the day before. These other temperature variables are important to capture effect of thermal buildup.

The summer equation can be specified as follows:

(9) Peak =

f (Weather Normalized Sendout,

Weather Factors).

<u>Winter Peak</u> - Winter peak loads are also influenced by the current level of economic activity and the weather conditions. The selection of winter weather factors depends upon whether the peak occurs in the morning or evening. For a morning peak, the primary weather factors are morning low temperature, wind speed, and the prior evening's low temperature. For an evening peak, the primary weather factors are the evening low temperature, wind speed, and the morning low temperature, wind speed, and the morning low temperature.

The winter equation is specified in a similar fashion as the summer:

(10) Peak =

f (Weather Normalized Sendout,

Weather Factors).

The summer and winter peak equations are estimated separately for the respective seasonal periods. Peak load forecasts are produced under specific assumptions regarding the type of weather conditions typically expected to cause a peak.

<u>Weather-Normalized Sendout</u> - The level of peak demand is related to economic activity. The best indicator of the combined influences of economic variables on peak demand is the level of base load demand exclusive of aberrations caused by non-normal weather. Thus, the first step in developing the peak equations is to weather normalize historical monthly sendout.

The procedure used to develop historical weather normalized sendout data involves two steps. First, instead of weather normalizing sendout in the aggregate, each component is weather normalized. In other words, residential, commercial, industrial, and other public authority, are individually adjusted for the difference between actual and normal weather. Street lighting sales are not weather normalized because they are not weather sensitive. Using the equations previously discussed, the adjustment process is performed as follows:

Let: KWH(N) = f(W(N))g(E)

KWH(A) = f(W(A))g(E)

Where: KWH(N) = electric sales - normalized

W(N) = weather variables - normal

E = economic variables

KWH(A) = electric sales - actual

W(A) = weather variables - actual

Then: KWH(N) = KWH(A) * f(W(N))g(E)/f(W(A))g(E)

=KWH(A) * f(W(N))/f(W(A))

With this process, weather normalized sales are computed by scaling actual sales for each class by a factor from the forecast equation that accounts for the impact of deviation from normal weather. Industrial sales are weather normalized using a factor from an aggregate industrial equation developed for that purpose.

Second, weather normalized sendout is computed by summing the weather normalized sales with non-weather sensitive sector sales. This weather adjusted sendout is then used as a variable in the summer and winter peak equations.

<u>Peak Forecast Procedure</u> - The summer peak usually occurs in August in the afternoon and the winter peak occurs the following January in the morning. Since the energy model produces forecasts under the assumption of normal weather, the forecast of sendout is "weather normalized" by design. Thus, the forecast of sendout drives the forecast of the peaks. In the forecast, the weather variables are set to values determined to be normal peak-producing conditions. These values are derived using historical data on the worst weather conditions in each year (summer and winter).

National Economy

It is generally assumed that the Duke Energy Ohio service area economy will tend to react much like the national economy over the forecast period. Duke Energy Ohio uses a long-term forecast of the national and service area economy prepared by Moody's Economy.com.

No major wars or energy embargoes are assumed to occur during the forecast period. Even if minor conflicts and/or energy supply disruptions, such as those caused by hurricanes, occur during the forecast period, the long-range path of the overall forecast would not be dramatically altered.

A major risk to the national and regional economic forecasts and hence the electric load forecast is the continued economic growth in the U.S. economy. While the national and local economies have been experiencing the effects of a decline in economic activity since the fourth quarter of 2007, there are strong signs that the economy is recovering. The ultimate outcome in the near term is dependent upon the success of the economy moving forward out of this slow period.

With extensive economic diversity, the Cincinnati area economy, including Northern Kentucky, is well structured to withstand an economic slowdown and make the adjustments necessary for growth. In the manufacturing sector, its major industries are food products, paper, printing, chemicals, steel, fabricated metals, machinery, and automotive and aircraft transportation equipment. In the non-manufacturing sector, its major industries are life insurance and finance. In addition, the Cincinnati area is the headquarters for major international and national market-oriented retailing establishments.

In late 2007, President Bush signed the Energy Independence and Security Act part of which sets new efficiency standards for lighting starting in 2012.

According to a white paper from the Lighting Controls Association, "New Energy Law to Phase Out Today's Common Incandescent Lamps, Probe-Start Metal Halide Magnetic Ballasted Fixtures" by Craig DiLouie, the new legislation "virtually eliminates the manufacture of most common general-service incandescent lamps..." and "Lamps that do not comply on or after the effective dates cannot be manufactured or imported." According to the Association, they believe that compact fluorescent light bulbs (CFLs) will capture the entire general incandescent market. Therefore, the Company estimated the impact of this legislation on lighting load and reduced the forecast accordingly.

Local Economy

Forecasts of employment, local population, industrial production, and inflation are key indicators of economic and demographic trends for the Duke Energy Ohio service area. The majority of the employment growth over the forecast period occurs in the non-manufacturing sector. This reflects a continuation of the trend toward the service industries and the fundamental change that is occurring in manufacturing and other basic industries. The rate of growth in local employment expected over the forecast will be below the national level: 0.3 percent locally versus 1.0 percent nationally.

Duke Energy Ohio is also affected by national population trends. The average age of the U.S. population is rising. The primary reasons for this phenomenon are stagnant birth rates and lengthening life expectancies. As a result, the portion of the population of the Duke Energy Ohio service area that is "age 65 and older" increases over the forecast period. Over the period 2010 to 2030, Duke Energy Ohio's population is expected to increase at an annual average rate of 0.3 percent. Nationally, population is expected to grow at an annual rate of 0.9 percent over the same period.

For the forecast period, local industrial production is expected to increase at a 0.5 percent annual rate, while 1.2 percent is the expected growth rate for the nation.

The residential sector is the largest in terms of total existing customers and total new customers per year. Within the Duke Energy Ohio service area, many commercial customers serve local markets. Therefore, there is a close relationship between the growth in local residential customers and the growth in commercial customers. The number of new industrial customers added per year is relatively small.

3. Specific

<u>Commercial Fuels</u> - Natural gas and oil prices are expected to increase over the forecast period. The projected annual growth rate 2010 to 2030, in nominal terms, is 1.2 percent for the price of electricity, 3.2 percent for the price of natural gas and 2.3 percent for the price of oil (residual fuel oils.)

Regarding availability of the conventional fuels, nothing on the horizon indicates any severe limitations in their supply, although world reserves of natural gas and oil are believed to be dwindling. There are unknown potential impacts from future changes in legislation or a change in the pricing or supply policy of oil producing countries that might affect fuel supply. However, these cannot be quantified within the forecast. The only non-utility information source relied upon is Moody's Economy.com.

<u>Year End Residential Customers</u> - In the following table, historical and projected total year-end residential customers for the entire Ohio service area are provided.

NUMBER OF YEAR-END RESIDENTIAL CUSTOMERS

2005	605,891
2006	610,648
2007	612,766
2008	610,603
2009	610,482
2010	608,670
2011	613,539
2012	619,082
2013	624,859
2014	630,331

2015	635,208
2016	639,625
2017	643,942
2018	648,159
2019	652,249
2020	656,273
2021	660,282
2022	664,231
2023	668,076
2024	671,871
2025	675,746
2026	679,715
2027	683,724
2028	687,834
2029	691,984
2030	696,054

Appliance Efficiencies - Trends in appliance efficiencies, saturations, and usage patterns have an impact on the projected use per residential customer. Overall, the forecast incorporates a projection of increasing saturation for many appliances including heat pumps, air conditioners, electric space heating equipment, electric water heaters, electric clothes dryers, dish washers, and freezers. In addition, the forecast embodies trends of increasing appliance efficiency consistent with standards established by the federal government.

D. FORECAST DOCUMENTATION

In the following sections, information on forecast related databases is provided for Duke Energy Ohio. The first step in the forecasting process is the collection of relevant information and data. The database discussion is broken into three parts:

- a) Economic Data,
- b) Energy and Peak Data, and
- c) Forecast Data.

1. Economic Data

The major groups of data in the economic forecast are employment, demographics, income, production, inflation and prices. National and local values for these concepts are available from Moody's Economy.com and company data.

Employment - Employment numbers are required on both a national and service area basis. Quarterly national and local employment series by industry are obtained from Moody's Economy.com. Employment series are available for manufacturing and non-manufacturing sectors.

<u>**Population</u></u> - National and local values for total population and population by age-cohort groups are obtained from Moody's Economy.com.</u>**

<u>Income</u> - Local income data series are obtained from Moody's Economy.com. The data is available on a county level and summed to a service area level. This includes data for personal income; dividends, interest, and rent; transfer payments; wage and salary disbursements plus other labor income; personal contributions for social insurance; and nonfarm proprietors' income.

<u>Consumer Price Index</u> - The local CPI is equivalent to the national CPI obtained from Moody's Economy.com.

<u>Electricity and Natural Gas Prices</u> - The average price of electricity and natural gas is available from Company financial reports. Data on marginal electricity price (including fuel cost) is collected for each customer class. This information is obtained from Company records and rate schedules.

2. Energy and Peak Models

The majority of data required to develop the electricity sales and peak forecasts is obtained from the Duke Energy Ohio service area economic data provided by Moody's Economy.com, from Duke Energy Ohio financial reports and research groups, and from national sources. With regard to the national sources of information, generally all national information is obtained from Moody's Economy.com. However, local weather data are obtained from the National Oceanic and Atmospheric Administration (NOAA).

The major groups of data that are used in developing the energy forecasts are: kilowatt-hour sales by customer class, number of customers, use-per-customer, electricity prices, natural gas prices, appliance saturations, and local weather data. The following are descriptions of the adjustments performed on various groups of data to develop the final data series actually used in regression analysis.

<u>Kilowatt hour Sales and Revenue</u> - Duke Energy Ohio collects sales and revenue data monthly by rate class. For forecast purposes this information is aggregated into the following categories: residential, commercial, industrial, OPA, and the other sales categories. In the industrial sector, sales and revenue for each manufacturing NAICS are collected. From the sales and revenue information, average electricity prices by sector can be calculated. The other public authorities (OPA) sales category is analyzed in two parts: water pumping and OPA less water-pumping sales.

<u>Number of Customers</u> - The number of customers by class is obtained on a monthly basis from Company records.

<u>Use Per Customer</u> – Average use per customer is computed on a monthly basis by dividing residential sales by total customers.

Local Weather Data - Local climatologic data are provided by NOAA for the Cincinnati/Covington airport reporting station. Cooling degree days and heating degree days are calculated on a monthly basis using temperature data. The degree day series are required on a billing cycle basis for use in regression analysis.

<u>Appliance Stock</u> - To account for the impact of appliance saturations and federal efficiency standards, an appliance stock variable is created. This variable is composed of three parts: appliance efficiencies, appliance saturations, and appliance energy consumption values.

The appliance stock variable is calculated as follows:

(11) Appliance Stock₁=

SUM (K_i * SAT_{i,t} * EFF_{i,t}) for all i

Where: t = time period

i = end-use appliance

 K_i = fixed energy consumption value for appliance i,

 $SAT_{i,t}$ = saturation of appliance i in period t, and

$EFF_{i,t}$ = efficiency of appliance i in period t.

The appliances included in the calculation of the Appliance Stock variable are: electric range, frost-free refrigerator, manual-defrost refrigerator, food freezer, dish washer, clothes washer, clothes dryer, water heater, microwave, color television, black and white television, room air conditioner, central air conditioner, electric resistance heat, and electric heat pump.

Appliance Saturation and Efficiency - In general, information on historical appliance saturations for all appliances is obtained from Company Appliance Saturation Surveys.

Data on historical appliance efficiency are obtained from the Association of Home Appliance Manufacturers (AHAM), Air-Conditioning & Refrigeration Institute (ARI), and the Gas Appliance Manufacturers Association. Information on average appliance life is obtained from <u>Appliance Week</u>.

The forecast of appliance saturations and efficiencies is obtained from data provided by ITRON Inc., a forecast consulting firm. They have developed Regional Statistically Adjusted End-use (SAE) Models, an end-use approach to electric forecasting that provides forward looking levels of appliance saturations and efficiencies.

<u>Peak Weather Data</u> - The weather conditions associated with the monthly peak load are collected from the hourly and daily data recorded by the National Oceanic and Atmospheric Administration. The weather variables which influence the summer peak are maximum temperature on the peak day and the day before, morning low temperature, and humidity on the peak day. The weather influence on the winter peak is measured by the

low temperatures and the associated wind speed. The variables selected are dependent upon whether it is a morning or evening winter peak load.

An average of extreme weather conditions is used as the basis for the weather component in the preparation of the peak load forecast. Using historical data for the single worst summer weather occurrence and the single worst winter weather occurrence in each year, an average extreme weather condition can be computed.

3. Forecast Data

Projections of exogenous variables in Duke Energy Ohio's models are required in the following areas: national and local employment, income, industrial production, and population, as well as natural gas and electricity prices.

Employment -The forecast of employment by industry is provided by Moody's Economy.com.

Income -The forecast of income is provided by Moody's Economy.com.

Industrial Production - The forecast of industrial production is also provided by Moody's Economy.com.

<u>Population</u> - Duke Energy Ohio's population forecast is derived from data provided by Moody's Economy.com. Population projections for the service area are prepared by first collecting county-level population forecasts for the counties in the Company's service area and then summing.

<u>Prices</u> - The projected change in electricity and natural gas prices over the forecast interval is provided by the Company's Financial Planning and Analysis department and Moody's Economy.com.

4. Load Research and Market Research Efforts

Duke Energy Ohio is committed to the continued development and maintenance of a substantive class load database of typical customer electricity consumption patterns and the collection of primary market research data on customers.

Load Research – Complete load profile information, or 100% sample data, is maintained on commercial and industrial customers whose average annual demand is greater than 500 kW, served at primary distribution voltage or served at transmission voltage. Additionally, the Company continues to collect whole premise or building level electricity consumption patterns on representative samples of the various customer classes and rate groups whose annual demands are less than 500 kW.

Periodically, the Company monitors selected end-uses or systems associated with energy efficiency evaluations performed in conjunction with energy efficiency programs. These studies are performed as necessary and tend to be of a shorter duration.

<u>Market Research</u> - Primary research projects continue to be conducted as part of the ongoing efforts to gain knowledge about the Company's customers. These projects include customer satisfaction studies, appliance saturation studies, end-use studies, studies to track competition (to monitor customer switching percentages in order to forecast future utility load), and related types of marketing research projects.

E. MODELS

Specific analytical techniques have been employed for development of the forecast models.

1. Specific Analytical Techniques

<u>Regression Analysis</u> - Ordinary least squares is the principle regression technique employed to estimate economic/behavioral relationships among the relevant variables.

This econometric technique provides a method to perform quantitative analysis of economic behavior.

Ordinary least-squares techniques were used to model electric sales. Based upon their relationship with the dependent variable, several independent variables were tested in the regression models. The final models were chosen based upon their statistical strength and logical consistency.

Logarithmic Transformations - The projection of economic relationships over time requires the use of techniques that can account for non-linear relationships. By transforming the dependent variable and independent variables into their "natural logarithm", a non-linear relationship can be transformed into a linear relationship for model estimation purposes.

<u>Polynomial Distributed Lag Structure</u> - One method of accounting for the lag between a change in one variable and its ultimate impact on another variable is through the use of polynomial distributed lags. This technique is also referred to as Almon lags. Polynomial Distributed Lag Structures derive their name from the fact that the lag weights follow a polynomial of specified degree. That is, the lag weights all lie on a line, parabola, or higher order polynomial as required.

This technique is employed in developing econometric models for most of the energy equations.

<u>Serial Correlation</u> - It is often the case in forecasting an economic time series that residual errors in one period are related to those in a previous period. This is known as serial correlation. By correcting for this serial correlation of the estimated residuals,

forecast error is reduced and the estimated coefficients are more efficient. The Gauss-Newton technique is employed to correct for the existence of autocorrelation.

<u>Qualitative Variables</u> - In several equations, qualitative variables are employed. In estimating an econometric relation using time series data, it is quite often the case that "outliers" are present in the historic data. These unusual deviations in the data can be the result of problems such as errors in the reporting of data by particular companies and agencies, labor-management disputes, severe energy shortages or restrictions, and other perturbations that do not repeat with predictability. Therefore, in order to identify the true underlying economic relationship between the dependent variable and the other independent variables, qualitative variables are employed to account for the impact of the outliers.

2. Relationships Between The Specific Techniques

The manner in which specific methodologies for forecasting components of the total load are related is explained in the discussion of specific analytical techniques above.

3. Alternative Methodologies

The Company continues to use the current forecasting methodology as it has for the past several years. The Company considers the forecasting methods currently utilized to be adequate.

4. Changes In Methodology

There were no significant changes to the forecast methodology. The Company uses the latest historical data available and relies on recent economic data and forecasts from Economy.com.

5. Equations

Following is a display of all the relevant equations used in the forecast. Specifically, for each of the equations in the Electric Energy Forecast Model and Electric Peak Load Model the following information is included:

Equation Estimation Results - The results of the estimation of each of the stochastic equations in the models is provided. Included are the estimated coefficients and the results of appropriate statistical tests. Those equations which required a correction for serial correlation are so indicated.

The computer output for each variable lists the estimated coefficient, standard error, and the t statistic. Lagged variables are denoted with the \N symbol, "N" being the number of periods lagged.

The use of Polynomial Distributed Lags (PDL) is indicated by the expression:

PDL (Variable, Degree of Polynomial, Length of Lag, Restrictions). The restrictions may constrain the PDL such that the end values of the distributed lag are close to zero. The computer output for each PDL variable lists the estimated lag weights and their associated standard errors. There is also a plot of the distributed lag. In addition to the individual lag weights, statistics are presented on the sum and average of the lag weights.

<u>Mnemonic Definition</u> - Following the equation estimation results is a definition of the mnemonics for each variable used in the equation.

Forecast Error - Following the equation mnemonics definition is the forecast error as measured by the mean of the forecast standard errors over the forecast period.

RELEVANT EQUATIONS USED IN FORECAST

Service Area Electric Customers - Residential

Dependent Variable: LOG(CUSRES_OH_KY) Method: Least Squares Date: 02/22/10 Time: 10:18 Sample: 1989M10 2009M12 Included observations: 243 Convergence achieved after 10 iterations

Variable	Coefficient	Std. Error	t-Statistic	Prob.
@MONTH=]	14.58843	2.078216	7.019689	0.0000
@MONTH=2	14.58910	2.078233	7.019953	0.0000
@MONTH=3	14.58905	2.078231	7.019937	0.0000
@MONTH=4	14.58747	2.078216	7.019226	0.0000
@MONTH=5	14.58475	2.078191	7.018001	0.0000
@MONTH=7	14.58117	2.078143	7.016441	0.0000
@MONTH=8	14,57984	2.078129	7.015849	0.0000
@MONTH=9	14,57937	2.078122	7.015647	0.0000
@MONTH=10	14 58122	2.078134	7.016497	0.0000
(@MONTH=6)+(@MONTH=11)	14 58284	2.078161	7.017184	0.0000
@MONTH=12	14 58619	2.078186	7.018716	0.0000
D 1994M05	-0.005462	0.001101	-4 961302	0 0000
D 2001M02	0.028679	0.001420	20 19249	0,0000
D_2001M02	. 0.020017 0.000079	0.001420	1 083318	0.0000
D_2001M03	0.003240	0.001722	1 017947	0.0000
D_2001004	0.007440	0.001099	15 82501	0.0001
D_2001/003	0.026301	0.001706	10.04790	0.0000
D_2001W06	0.013420	0.001400	2 020207	0.0000
D_2003M12	-0.004899	0.001200	-3.808297	0.0001
D_2004M01	0.003142	0.001209	2.4/3/21	0.0141
D_2005M02	-0.003286	0.001101	-2.984363	0.0032
D_2006M02	-0.002576	0.001101	-2.339372	0.0202
D_2007M04	-0.002632	0.001100	-2.393759	0.0175
D_2009M05	-0.005885	0.001101	-5.345608	0.0000
PDL01	0.006876	0.002626	2.617864	0.0095
AR(1)	0.999192	0.001773	563,5811	0.0000
R-squared	0.999545	Mean dependent	t var	13.41617
Adjusted R-squared	0.999495	S.D. dependent	Var	0.067260
S.E. of regression	0.001512	Akaike info crite	erion	-10.05400
Sum squared resid	0.000498	Schwarz criterio	n	-9.694632
Log likelihood	1246.561	Durbin-Watson	stat	1.851842
Inverted AR Roots	1.00	<u></u>	<u></u>	<u> </u>
Lag Distribution of LOG(YP_OH_KY/N_OH_KY/CPI) i	Coefficient	Std. Error	t-Statistic
* 1	······	0.00625	0.00220	2 61796
· I •• I	1	0.00025	0.00237	2.01786
· *	1	0.01123	0.00430	2.61700
· *	4		0.00373	7 61794
• ` */		0.01/30	0.00009	2.01/00 761702
· [] 81	2	0.01075	0.00710	2.01700
· · · · · · · · · · · · · · · · · · ·		0.01073	0.00710	2.01/00 7.6170/
、 · · * 1	0	0.01730	0.00009	2.01/00
		0.01000	0.00575	2.01/00
*	۵ پ	0.01125	0.00430	2.61786
		0 12763	0.05262	261794
	Sum of Lags	0.13752	0.05233	2.01700
KWH USE PER CUSTOMER - RESIDENTIAL

Dependent Variable: LOG(KWHRES_OH_KY/CUSRES_OH_KY) Method: Least Squares Date: 03/01/10 Time: 09:48 Sample: 1998M01 2009M12 Included observations: 144 Convergence achieved after 12 iterations

Variable	Coefficient	Std. Error	t-Statistic	Prob.
	-0.160119	1.093956	-0.146367	0.88.99
LOG(APPLS1K_EFF_OH_KY*(YP_OH_KY/N_OH_KY/CPI))	0.897731	0.144727	0.202938	0.0000
(D_DJF)*(SAT_ER_EFF)*HDDB_OH_KY_59_0_500	0.003431	0.000152	42.31333	0.0000
(I-D_DJF)*(SAT_EH_EFT)*HDDB_OH_KY_59_0_500	0.002969	0.000181	10.41009	0.0000
(U_DJF)*(SAT_EH_EFF)*HDDB_OH_KY_59_500	0.002451	0.000118	20.77798	0.0000
$(1-D_D)F$ (SAT_EH_EFF)*HDDB_OH_KY_59_500	0.003431	0.000284	12.07579	0.0000
	0.003714	0.000357	10.40497	0.0000
	0.000110	0.000274	18.07020	0.0000
	0.000832	0.000201	3.201027	0.0013
	0.000700	0.000320	2.334327	0.0213
$(D_JIAT(@MONID-J)T(@MONID-J)T(B$	0.111250	0.000419	9.003010	0.0000
	0.111539	0.000921	10.09093	0.0000
@MONTH=3	-0.031246	0.010212	+3.067034	0.0000
	0.070247	0.010905	4745710	0.0000
WMUNIJ-6	0.003317	0.013748	7 940445	0.0000
D 2001M04	0.070917	0.009012	2 200622	0.0000
D_2001/004	0.040033	0.021039	-2.200037	0.0244
D_2001M05	-0.104211	0.022340	-4.003333	0.0000
D_2002M05TD_2004M05	-0.001481	0.014719	4.177022	0.0001
D_2003M01	0.070932	0.019007	4.047374	0.0001
D_2007/903	-0.050100	0.020580	-4.201240	0.0000
D_2007WT0	0.083213	0.020004	4.133701	0.0001
D_2006M12	0.043229	0.021539	2.023930	0.0455
D_2000M01UD_2000M02	-0.001377	0.019532	-3.152003	0.0021
D 2009M01	0.040794	0.019607	2.039373	0.0710
D_20091000 D_100	-0.043069	0.019333	-2.339124	0.0210
F12LV) A D71A	-0.023417	0.011060	7 15/0/2	0.0010
	0.300329	0.073130	1.1.1-1.0-1.3	0.0000
R-squared	0.991577	Mean depend	lent var	6.884401
Adjusted R-squared	0.989616	S.D. depende	ent var	0.203052
S.E. of regression	0.020691	Akaike info o	criterion	-4.745563
Sum squared resid	0.049662	Schwarz crite	erion	-4.168100
Log likelihood	369.6806	F-statistic		505.7634
Durbin-Watson stat	1.886307	Prob(F-statis	tic)	0.000000
Inverted AR Roots	.57		•	<u> </u>
Lag Distribution of LOG(APPLSTK_EFF_OH_KY*(MP_RES_OH_KY/CPI))	i	Coefficient	Std. Error	t-Statistic
*	······	0 0 02280	A 01557	-7 17605
~ *	, i	-0.03369 1 -0.03549	0.01337	-2 17605
*		0.02542	0.01100 0.00770	-2 17605
* _		3 -0.00847	0.00389	-2.17605
	Sum of Lags	-0.08472	0.03893	-2.17605

KWH SALES - COMMERCIAL

Dependent Variable: LOG(KWHCOM_OH_KY) Method: Least Squares Date: 03/01/10 Time: 09:47 Sample: 1986M01 2009M12 Included observations: 288 Convergence achieved after 21 iterations Backcast: 1985M12

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	10 20250	0 789083	12,92957	0.0000
LOG(ECOM OH KY)	1.452768	0.120583	12.04789	0.0000
LOG(DS KWH COM OH KY(-1)/CPI(-1))	-0.040173	0.018815	-2.135180	0.0337
(@MONTH=IJ)*HDDB OH KY 59	7.20E-05	2.64E-05	2,729863	0.0068
(@MONTH=12)*HODB_OH_KY_59	0.000186	1.23E-05	15.08407	0.0000
(@MONTH=1)*HDDB OH KY 59	0.000193	8.78E-06	22.00401	0.0000
(@MONTH=2)*HDDB_OH_KY_59	0.000128	9.34E-06	13,70607	0.0000
(@MONTH=3)*HDDB_OH_KY_59	0.000107	1.19E-05	9.004544	0.0000
(@MONTH=4)*HDDB_OH_KY_59	8.02E-05	2.17E-05	3.689445	0.0003
(@MONTH=5)*CDDB_OH_KY_65	0.001027	0 0001 70	6 056236	0.0000
$(@MONTH=6)*CDDB_OH_KY_65_0_100$	0.001354	9 00E-05	15.03865	0.0000
(@MONTH=6)*CDDB_OH_KY_65_100	0.000714	934E-05	7 645193	0.0000
(@MONTH=7)*CDDB OH KY 65 0 100	0.001850	0.000175	10.59468	0.0000
$(@MONTH=7)*CDDB_OH_KY_65_100$	0.001000	851F-05	5 596115	0.0000
(@MONTH=8)*CDDB OH KY 65 0 100	0.000470	0.000133	11 10303	0.0000
$(@MONTH=8)*CDDB_OH_KY_65_100$	0.001473	5 52E-05	10 22004	0.0000
	0.000373	0.000100	16 31 247	0.0000
	0.001775	6375-05	7 040500	0.0000
$(@MONTH=I0)*CDDB_OH_KY_65$	0.0007734	0.37E-05	7 526006	0.0000
	0.0007.04	0.000852	7.520000	0.0000
	0.027046	0.009633	4.035175	0.0000
D_1002M00	0.070725	0.019399	-4 720120	0.0000
D 1002M104D 2004M124D 2007M04	0.053507	0.015513	4 734447	0.0000
D 1005M04	0.034083	0.011330	3 130706	0.0000
D_1905M05	-0.072791	0.019691	-3 976031	0.0012
	-0.076771	0.020009	-3.720031	0.0001
D_2000M011D_2000M07	-0.001741	0.014000	4.302441	0.0000
D_2002M04	0.0000000	0.019020	3 741270	0.0000
ען די געטעגעטאר איזעגעטער איזעגעטער איזעגעטער איזעגעטער איזעגעטער די געעגעטער די געעגעטער איזעגעטעגעטער איזעגעטענ	0.0442.30	0.019742	5 706417	0.0239
D_1995W11TD_2002M08TD_2004W11TD_2004W03TD_2005W02TD_2005W08	-0.049402	0.006323	2 101100	0.0000
D_1991(0)11	0.002904	0.019712	2.121102	0.0010
D_199000000	0.030348	0.019331	2.072290	0.0042
	-0.034092	0.015654	*4.40440Z	0.0144
	0.043400	0.019942	4.470071	0.0230
AR(1)	0.936/61	0.021721	99.14123	0.0000
MA(I)	-0.582901	0.062511	-9.324633	0.0000
R-squared	0.991691	Mean depe	ndent var	20.04565
Adjusted R-squared	0.990574	S.D. depen	dent var	0.216657
S.E. of regression	0.021034	Akaike inf	o criterion	-4.771830
Sum squared resid	0.111939	Schwarz cr	iterion	-4.326678
Log likelihood	722.1435	F-statistic		888.1058
Durbin-Watson stat	1.736074	Prob(F-stat	listic)	0.000000
Inverted AR Roots	.96			
Inverted MA Roots	.58			

MWH SALES - INDUSTRIAL - FOOD, BEVERAGE AND TOBACCO

Dependent Variable: LOG(MWHN311_312_OH_KY) Method: Least Squares Date: 03/01/10 Time: 09:50 Sample (adjusted): 1977Q4 2009Q4 Included observations: 129 after adjustments Convergence achieved after 14 iterations

ļ

Variable	Coefficient	Std. Error	t-Statistic	Prob.
@OUARTER=1	ID 99144	0.338067	32,51261	0.0000
@OUARTER-2	10.91696	0.335354	32.55356	0.0000
(@OUARTER=3)+(@OUARTER=4)	10.99079	0.335374	32,77174	0.0000
CDDB OH KY 65	9.50E-05	2.51E-05	3,788483	0.0002
HDDB OH KY 59	-5.8IE-05	1.84E-05	-3,151539	0.0021
D 1976O1 1989O2	-0.135596	0.039074	-3.470266	0.0007
D 196501 199004	-0 269857	0.037723	-7.153688	0.0000
D 199101	-0.166486	0.041623	-3,999885	0.0001
D_2000Q4	0 11 1023	0.037784	2,938385	0.0040
D 2004O2	0 129923	0.037484	3.466069	0.0007
D 200702	0.084322	0.037200	2.266702	0.0253
D_200704	0 121505	0.037192	3.266967	0.0014
D 2009O1	0 172151	0.037630	4 974860	0.0000
PDLAL	0 116189	0.050654	2 688610	0.0083
PD1 02	-0.4\$3359	0.000004	-2 600705	0.0106
PDI 03	-0.403337	0.026793	.2 056759	0.0420
AR(1)	0.585833	0,085280	6.869499	0.9000
R-smared	n 98098 i	Mean dependent var		11,28661
Adjusted R-souared	6 978264	S.D. dependent var		0,286661
S.F. of repression	0.042263	A keike info enterior		3 367564
Sum constraint resid	0 200049	Schwarz criterion		7 990689
Log likelihood	234 2079	Darbin-Watson stat		2 020299
	234.2017			
Inverted AR Roots	.59			
Lag Distribution of LOG(JQINDN311_312_OH_KY)	, , ,	Coefficient	Std. Error	t-Statistic
		0.20428	0.07598	2,68861
•	ĩ	0 13610	0.05065	2 68861
•	2	0.06809	0.02533	2.68861
	Sum of Lags	0.40857	0.15196	2.68861
Lag Distribution of LOG(DS_KW_IND_OH_KY)/CPI	i	Coefficient	Std. Error	t-Statistic
*	0	-0.44883	0 17258	-2.60070
*		-0.97867	031861	2 60070
*		1 13035	0 43 809	-2 60070
*	- -	-1 38103	0 53 102	-2 60070
•	4	-1 55365	0.50740	-2.60070
*	*	-1.45793	0 41777	-2 60070
*	L 2	-1.63723	0.65050	-2.60070
*	3	1 65702	0.63722	-2.60070
▲ I	,	-1.03723	0.50740	2.60070
· · · · ·	8	-1.33303	0.57107	2.00070
	9	*1.36103 1.12035	0.33102	2.00070
	I I	•1.13733	0.43607	-2.00070
*		1 -0.82802 2 -0.82992	0.31801	•2.00079 .2.60070
	L.	2 -0.94863	0.17200	-2.00070
	Sum of Lags	-15,7092	6.04035	-2.60070
Lag Distribution of LOG(DS_KWH_IND_OH_KY/CPI)		Coefficient	Std. Error	t-Statistic
* _	n	-0 05511	0.02679	-2.05676
* .	1	-0.02755	0.01340	-2.05676
	Sum of Lags	-0.08266	0.04019	-2.05676

MWH SALES - INDUSTRIAL - PAPER, PLASTIC AND RUBBER

Dependent Variable: LOG(MWHN322_326_OH_KY) Method: Least Squares Date: 03/01/10 Time: 09:51 Sample: 1978Q1 2009Q4 Included observations: 128 Convergence achieved after 10 iterations

Variable	Coefficient	Std. Error	t-Statistic	Prob.
@QUARTER=1	10.47560	0.489789	21.38799	0.0000
QUARTER=2	10.52590	0.490017	21.48070	0.0000
@QUARTER=3	10.54469	0.489865	21.52568	0.0000
@QUARTER=4	10.51457	0.489785	21.46771	0.0000
D_1992Q1+D_1993Q1+D_2006Q1	0.045880	0.013624	3.367471	0.0010
D_2001Q2	-0.120663	0.026298	-4 588 339	0.0000
D_2003Q4	-0.123810	0.022632	-5.470431	0.0000
D_1996Q3+D_1988Q4+D_1978Q1	-0.062875	0.012944	-4.857408	0.0000
D_2000Q3+D_2005Q1	0.108910	0.016040	6.790013	0.0000
D_1999Q1_2001Q2	-0.133608	0.026094	-5.120199	0.0000
D_1980Q2+D_2003Q1+D_1989Q3+D_1979Q3	-0.041504	0.011313	-3.668733	0.0004
PDL01	0.289293	0.111377	2.597431	0.0106
PDL02	-0.061909	0.022973	-2.694820	0.0081
PDL03	-0.038417	0.017942	-2.141160	0.0344
AR(1)	0.936703	0.031810	29.44645	0.0000
R-squared	0.969763	Mean depende	ent var	11.96228
Adjusted R-squared	0.966017	S.D. depender	ot var	0.165338
S.E. of regression	0.030479	Akaike info cr	iterion	-4.033802
Sum squared resid	0.104976	Schwarz criter	ion	-3.699579
Log likelihood	273.1633	Durbin-Watso	n stat	1.857079
Inverted AR Roots	.94		,	
Lag Distribution of LOG(JQINDN322_326_OH_KY)	j	Coefficient	Std. Error	t-Statistic
. *) 0.28929	0.11138	2.59743
, *	1	0.14465	0.05569	2.59743
	Sum of Lags	0.43394	0.16706	2.59743
Lag Distribution of LOG(DS_KW_IND_OH_KY/CPI)	 	Coefficient	Std. Error	t-Statistic
* .	(0 -0.09286	0.03446	-2.69482
* .	1	-0.06191	0.02297	-2.69482
* .	2	2 -0.03095	0.01149	- 2.6948 2
	Sum of Lags	-0.18573	0.06892	-2.69482
Lag Distribution of LOG(DS_KWH_IND_OH_KY/CP!)	i	Coefficient	Std. Error	t-Statistic
			0.00 (0)	A 1 4 1 1 2
	(J -0.05763	0.02691	-2.14110
· · · ·	[-0.03842	0.01794	-2.14110
~ .]		2 -0.01921	0.00897	-2.14110
	Sum of Lags	-0.11525	0.05383	-2.14116

MWH SALES - INDUSTRIAL - CHEMICALS

Dependent Variable: LOG(MWHN325_OH_KY) Method: Least Squares Date: 03/01/10 Time: 09:51 Sample (adjusted): 1973Q4 2009Q4 Included observations: 145 after adjustments Convergence achieved after 9 iterations

Variable	Coefficient	Std. Error	t-Statistic	Prob.
CDDB_OH_KY_65 (1-D_1965Q1_1985Q4)*((@QUARTER=1)+(@QUARTER=4))*HDDB_OH_KY_59 D_1983Q3+D_1992Q3+D_1997Q3 D_2003Q4+D_2000Q4 D_1999Q4+D_2002Q4 D_1997Q1 D_2009Q3 @QUARTER=1 @QUARTER=2 @QUARTER=3 @QUARTER=3 @QUARTER=3 @QUARTER=3 @QUARTER=4 PDL01 PDL02 AR(1)	0.000155 1.42E-05 0.059172 0.084827 -0.095132 -0.093260 0.111849 10.01416 10.04427 9.995057 10.05406 0.035496 -0.065042 0.876814	3.73E-05 5.72E-06 0.019352 0.023366 0.023432 0.033168 0.033572 0.749633 0.749402 0.750247 0.749402 0.750247 0.749360 0.010717 0.021505 0.046473	4.156072 2.488766 3.057730 3.630348 +4.059923 -2.811743 3.331588 13.35876 13.40304 13.32235 13.41686 3.312083 -3.024564 18.86709	0.0001 0.0141 0.0027 0.0004 0.0001 0.0057 0.0011 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0012 0.0030 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	0.972024 0.969248 0.042484 0.236442 259.6158	Mean depende S.D. dependen Akaike info en Schwarz eriten Durbin-Watson	nt var t var iterion ion n stat	12.29124 0.242265 -3.387804 -3.100395 2.026167
Inverted AR Roots	.88		<u></u>	
Lag Distribution of LOG(JQINDN325_OH_KY)	i	Coefficient	Std. Error	t-Statistic
	0 1 2 3 4 5 6	 0.03106 0.05324 0.06656 0.07099 0.06656 0.05324 0.05324 0.03106 	0.00938 0.01608 0.02009 0.02143 0.02009 0.01608 0.00938	3.31208 3.31208 3.31208 3.31208 3.31208 3.31208 3.31208 3.31208
	Sum of Lags	0.37271	0.11253	3.31208
Lag Distribution of LOG(TS_KWH_IND_OH_KY/CPI)	i	Coefficient	Std. Error	t-Statistic
* .] * .] * .]	0 	-0.05203 -0.07805 -0.07805 -0.05203	0.01720 0.02581 0.02581 0.01720	-3.02456 -3.02456 -3.02456 -3.02456 -3.02456
	Sum of Lags	-0.26017	0.08602	-3.02456

MWH SALES - INDUSTRIAL - PRIMARY METALS - BUTLER

Dependent Variable: LOG(MWHN331_BUTLER-BASE) Method: Least Squares Date: 03/01/10 Time: 09:55 Sample: 1976Q1 2009Q4 Included observations: 136 Convergence achieved after 14 iterations

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	6.484435	1.504336	4.310496	0.0000
LOG(JQINDN331_BUTLER)	0.820709	0.199343	4.117072	0.0001
LOG(TS_KW_IND_OH_KY(-5)/CPI(-5))	-0.467892	0.191855	-2.438775	0.0162
(1-D_1965Q1_1985Q4)*LOG(TS_KWH_IND_OH_KY/CPI)	-0.067541	0.017706	-3.814594	0.0002
LOG(TS_KWH_IND_OH_KY(-5)/APGIND_OH_KY(-5))	-0.343374	0.132493	-2.591635	0.0107
D_1965Q1_1995Q4	-0.968507	0.143152	-6.765580	0.0000
D_1976Q4	-0.366447	0.168713	-2.172011	0.0318
D_1979Q4+D_1980Q1	-0.716506	0.187472	-3.821929	0.0002
D_1980Q2	-0.616838	0.190726	-3.234158	0.0016
D_1985Q1	0.383093	0.168614	2.272014	0.0249
D_1986Q3	-0.578113	0.168531	-3.430314	0.0008
D_1990Q2	-0.56175 1	0.168679	-3.330290	0.0012
D_1991Q1	-0.409409	0.168559	-2.428881	0.0166
D_1991Q4	0.694418	0.170899	4.063335	0.0001
D_2009Q2	-1.952609	0.172042	-11.34963	0.0000
AR(1)	0.703965	0.071391	9.860759	0.0000
R-squared	0.927667	Mean dep	endent var	11.28639
Adjusted R-squared	0.918626	S.D. depe	ndent var	0.720713
S.E. of regression	0.205592	Akaike in	fo criterion	-0.215720
Sum squared resid	5.072146	Schwarz	criterion	0.126946
Log likelihood	30.66894	F-statistic	;	102.6003
Durbin-Watson stat	1.953179	Prob(F-st	atistic)	0.000000
Inverted AR Roots	.70			

MWH SALES - INDUSTRIAL - PRIMARY METALS - LESS BUTLER

Dependent Variable: LOG(MWHN331LARM_OH_KY) Method: Least Squares Date: 03/01/10 Time: 09:52 Sample: 1987Q1 2009Q4 Included observations: 92 Convergence achieved after 11 iterations

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C D_1999Q1 D_1988Q4 D_1996Q3+D_1997Q3 D_1998Q3_2001Q2 D_1965Q1_1998Q2 D_2002Q1 PDL01 PDL02 AR(1)	7.785634 -0.420639 -0.199063 -0.251308 0.771287 1.112706 0.255912 0.101648 -0.078857 0.514801	1.293738 0.083965 0.083864 0.059452 0.066722 0.055617 0.084153 0.032332 0.035282 0.098368	6.017937 -5.009672 -2.373641 -4.227045 11.55980 20.00664 3.041049 3.143861 -2.235011 5.233403	0.0000 0.0000 0.0200 0.0001 0.0000 0.0000 0.0032 0.0023 0.0231 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.967981 0.964467 0.093828 0.721903 92.44972 2.025476	Mean dependen S.D. dependen Akaike info cri Schwarz criteri F-statistic Prob(F-statistic	nt var var terion on	11.13353 0.497752 -1.792385 -1.518278 275.4404 0.000000
Inverted AR Roots	.51			
Lag Distribution of LOG(JQINDN331_CMSA)	i	Coefficient	Std. Error	t-Statistic
* * * * *	0 	0.08132 0.12198 0.12198 0.08132	0.02587 0.03880 0.03880 0.03880 0.02587	3.14386 3.14386 3.14386 3.14386 3.14386
	Sum of Lags	0.40659	0.12933	3.14386
Lag Distribution of LOG(TS_KWH_IND_OH_KY/CPI)	i	Coefficient	Std. Error	1-Statistic
* _ * _ * _	0 1 2 3	-0.06309 -0.09463 -0.09463 -0.06309	0.02823 0.04234 0.04234 0.02823	-2.23501 -2.23501 -2.23501 -2.23501 -2.23501
	Sum of Lags	-0.31543	0.14113	-2.23501

MWH SALES - INDUSTRIAL - FABRICATED METALS

Dependent Variable: LOG(MWHN332_OH_KY) Method: Least Squares Date: 03/01/10 Time: 09:52 Sample: 1974Q1 2009Q4 Included observations: 144 Convergence achieved after 12 iterations

Variable	Coefficient	Std. Error	t-Statistic	Prob.
LOG(JQINDN332_OH_KY)*D_1965Q1_1988Q3	0.464507	0.166506	2.789732	0.0061
LOG(JQINDN332_OH_KY)*(1-D_1965Q1_1988Q3)	0.495959	0.158676	3.125617	0.0022
LOG(DS_KW_IND_OH_KY(-1)/CPI(-1))	-0.126755	0.055492	-2.284214	0.0240
LOG(DS_KWH_IND_OH_KY/WP10561)	-0.055346	0.021601	-2.562235	0.0115
D_1965Q1_2000Q2+D_2000Q3_2001Q2	0.164696	0.040308	4.085934	0.0001
D_1978Q1	-0.071313	0.032100	-2.221564	0.0280
D_2009Q2	-0.075550	0.034089	-2.216235	0.0284
@QUARTER=1	10.40668	0.251229	41.42309	0.0000
@QUARTER=2	10.41767	0.251506	41.42119	0.0000
@QUARTER=3	10.44644	0.251567	41.52546	0.0000
@QUARTER=4	10.40697	0.251379	41.39946	0.0000
AR(1)	0.880200	0.043375	20.29296	0.0000
R-squared	0.842062	Mean depen	ident var	11.27728
Adjusted R-squared	0.828901	S.D. depend	lent var	0.101773
S.E. of regression	0.042098	Akaike info	criterion	-3.418000
Sum squared resid	0.233931	Schwarz cri	terion	-3.170516
Log likelihood	258.0960	Durbin-Wat	son stat	2.050762
Inverted AR Roots	.88			

MWH SALES - INDUSTRIAL - MACHINERY

Dependent Variable: LOG(MWHN333_OH_KY) Method: Least Squares Date: 03/01/10 Time: 09:53 Sample: 1973Q4 2009Q4 Included observations: 145 Convergence achieved after 13 iterations

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	8.924550	0.640529	13.93309	0.0000
LOG(DS_KW_IND_OH_KY(-1)/CPI(-1))	-0.119897	0.056499	-2.122099	0.0357
CDDB_QH_KY_65*D_1965Q1_1986Q4	6.13E-05	1.79E-05	3.418275	0.0008
CDDB_OH_KY_65*(1-D_1965Q1_1986Q4)	0.000148	1.46E-05	10.07506	0.0000
HDDB_OH_KY_59	4.51E-05	1.17E-05	3.866798	0.0002
@QUARTER=1	-0.054214	0.017748	-3.054706	0.0027
D_1965Q1_2001Q2	0.159845	0.040451	3.951588	0.0001
D_1978Q1	-0.113671	0.035379	-3.212984	0.0017
D_1978Q2	-0.077206	0.034565	-2.233642	0.0272
D_2005Q2+D_2004Q4	-0.056609	0.019065	-2.969308	0.0036
D_2000Q2	-0.238683	0.027900	-8.555023	0.0000
D_2009Q1	-0.081215	0.027932	-2.907555	0.0043
PDL01	0.093842	0.025507	3.679117	0.0003
PDL02	-0.011086	0.004262	-2.600982	0.0104
AR(1)	1.054536	0.087974	11.98684	0.0000
AR(2)	-0.202773	0.088697	-2.286129	0.0239
R-squared	0.905745	Mean depend	ent var	10.81836
Adjusted R-squared	0.894785	S.D. depende	nt var	0.124386
S.E. of regression	0.040347	Akaike info c	riterion	-3.478847
Sum squared resid	0.209993	Schwarz crite	rion	-3.150379
Log likelihood	268.2164	F-statistic		82.64206
Durbin-Watson stat	1.926548	Prob(F-statist	tic)	0.000000
Inverted AR Roots	.80	.25		
Lag Distribution of LOG(JQINDN333_OH_KY)	i	Coefficient	Std. Error	t-Statistic
* ;		0 14076	0.03826	3 67912
*	I	0.11730	0.03188	3 67912
· } *	י ר	0.11750	0.02551	3.67010
	2	0.09364	0.02551	2 67012
· · · .	с И	0.07036	0.01913	2.07912
*	5	0.02346	0.00638	3.67912
	Sum of Lags	0.49267	0.13391	3.67912
Lag Distribution of LOG(DS_KWH_IND_OH_KY/APGIND_OH_KY)		Coefficient	Std. Error	t-Statistic
* .	0	-0.00985	0.00379	-2.60098
*]	-0.01724	0.00663	-2.60098
*	2	-0.02217	0.00852	-2.60098
*	3	-0.02464	0.00947	-2.60098
* _	4	-0.02464	0.00947	-2.60098
* .1	S	-0.02217	0.00852	-2.60098
*	6	-0.01724	0.00663	2.60098
* .	7	-0.00985	0.00379	-2.60098
	Sum of Lags	-0.14781	0.05683	-2.60098

MWH SALES - INDUSTRIAL - COMPUTER AND ELECTRONICS

Dependent Variable: LOG(MWHN334_OH_KY) Method: Least Squares Date: 03/01/10 Time: 09:53 Sample: 1977Q1 2009Q4 Included observations: 132 Convergence achieved after 12 iterations

Variable	Coefficient	Std. Error	t-Statistic	Prob.
LOG(JQINDN334 OH KY)	0.103672	0.021928	4.727940	0.0000
D_1980Q2+D_2002Q4	-0.061380	0.023773	-2.581943	0.0110
D 1986Q3	-0.073705	0.033655	-2.190030	0.0305
D_1988Q4+D_2000Q3+D_2000Q4	0.084534	0.023950	3.529593	0.0006
D_2002Q1	-0.093523	0.033613	-2.782338	0.0063
D_2009Q1	-0.102808	0.033934	-3.029613	0.0030
@QUARTER=1	9.009685	0.595921	15.11894	0.0000
@QUARTER=2	9.023146	0.596413	15.12903	0.0000
@QUARTER=3	9.095812	0.596276	15.25437	0.0000
@QUARTER=4	9.030445	0.595998	15.15181	0.0000
PDL01	-0.066958	0.022805	-2.936078	0.0040
AR(1)	0.841380	0.053027	15.86692	0.0000
R-squared	0.973132	Mean depen	dent var	10.73068
Adjusted R-squared	0.970669	S.D. depend	lent var	0.252282
S.E. of regression	0.043206	Akaike info	criterion	-3.359152
Sum squared resid	0.224014	Schwarz crit	terion	-3.097079
Log likelihood	233.7041	Durbin-Wat	son stat	1.794576
Inverted AR Roots	.84			
Lag Distribution of LOG(DS_KWH_IND_OH_KY/CPI)	i	i Coefficient	Std. Error	t-Statistic
* .	(0 -0.10044	0.03421	-2.93608
* .		1 -0.06696	0.02281	-2.93608
* .	2	2 -0.03348	0.01140	-2.93608
	Sum of Lags	-0.20087	0.06842	-2.93608

MWH SALES -- INDUSTRIAL -- ELEC. EQUIPMENT, APPLIANCE & COMPONENT

Dependent Variable: LOG(MWHN335_OH_KY) Method: Least Squares Date: 03/01/10 Time: 09:54 Sample: 1975Q3 2009Q4 Included observations: 138 Convergence achieved after 11 iterations

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D 1976Q1+D 1977Q2	0.069580	0.020185	3.447132	0.0008
D 1976Q4+D_1988Q3+D_2002Q4+D 1982Q4+D 2008Q2	-0.050425	0.012943	-3.896002	0.0002
D 2009Q1	-0.124418	0.034619	-3.593903	0.0005
D_2009Q2	-0.207778	0.033860	-6.136368	0.0000
@QUARTER=1	8.557458	0.617135	13.86642	0.0000
@OUARTER=2	8,572038	0.617306	13.88622	0.0000
©OUARTER=3	8.601234	0.617399	13.93141	0.0000
₩ Ŵ ÛUARTER=4	8.576424	0.617268	13.89416	0.0000
Č PDL01	0.100214	0.025543	3.923310	0.0001
PDL02	-0.021911	0.010826	-2.023929	0.0451
PDL03	0 029079	0.010113	-2.875462	0.0047
AR(1)	0.869125	0.040024	21.71497	0.0000
R-squared	0.970787	Mean depender	nt var	10,46031
Adjusted R-squared	0.968237	S.D. dependent	t var	0.210034
S.E. of regression	0.037433	Akaike info cri	terion	-3.649592
Sum squared resid	0 176554	Schwarz criteri	ion	-3.395048
Log likelihood	263.8218	Durbin-Watsor	stat	1.980544
Inverted AR Roots	.87		·	
Lag Distribution of LOG(JQINDN335_OH_KY)	i	Coefficient	Std. Error	t-Statistic
*	î	0 16702	0.04257	3 92331
· I * I	1	0.13362	0.03406	3 02331
* 1	7	0.10021	0.02554	3 02331
	2	0.10021	0.02.3.94	2 0 2 2 2 1
*	4	0.03340	0.00851	3.92331
	Sum of Lags	0.50107	0.12772	3.92331
Lag Distribution of LOG(DS_KWH_IND_OH_KY/CPI)	i	Coefficient	Std. Error	t-Statistic
* .	0	-0.03834	0.01895	-2.02393
* _	1	-0,03287	0.01624	-2.02393
* _	2	-0.02739	0.01353	-2.02393
* .	3	-0.02191	0.01083	-2.02393
* .1	4	-0.01643	0 00812	-2.02393
*	5	-0.01096	0.00541	-2.02393
*	6	-0.00548	0.00271	-2.02393
	Sum of Lags	-0.15337	0.07578	-2.02393
Lag Distribution of LOG(DS_KWH_IND_OH_KY/WPI0561)	i	Coefficient	Std. Error	t-Statistic
* .)	0	-0.04362	0.01517	-2.87546
*	l	-0.02908	0.01011	-2.87546
• .j	2	-0.01454	0.00506	-2.87546
	Sum of Lags	-0.08724	0.03034	-2.87546

MWH SALES - INDUSTRIAL - MOTOR VEHICLES AND PARTS

Dependent Variable: LOG(MWHN3361_3362_3363_OH_KY) Method: Least Squares Date: 03/01/10 Time: 09:54 Sample: 1978Q1 2009Q4 Included observations: 128 Convergence achieved after 13 iterations Backcast: 1977Q2 1977Q4

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C LOG(TS_KWI!_IND_OH_KY(-6)/WPI0561(-6)) CDDB_OH_KY_65 @QUARTER=2 D_1999Q1 D_1965Q1_1980Q2 D_2000Q1 D_2000Q1 D_2004Q4 D_1965Q1_2005Q1 D_2008Q3 PDL01 PDL01 PDL02 AR(1) MA(3)	8.276906 -0.098257 0.000122 0.037927 0.541812 -0.167135 0.233041 -0.291215 0.259784 -0.151776 0.095142 -0.136912 0.532645 0.257896	0.618147 0.040479 1.84E-05 0.012395 0.067341 0.060887 0.067586 0.067660 0.057534 0.069783 0.025075 0.036573 0.036573 0.084977 0.097471	13.38987 -2.427358 6.636288 3.059979 8.045754 -2.745007 3.448095 -4.342620 4.515330 -2.174969 3.794260 -3.743512 6.268102 2.645868	0.0000 0.0168 0.0000 0.0028 0.0000 0.0070 0.0008 0.0000 0.0000 0.0317 0.0002 0.0003 0.0003 0.0003
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.863634 0.848083 0.077433 0.683521 153.2576 1.988767	Mean dependen S.D. dependent Akaike info crit Schwarz criteric F-statistic Prob(F-statistic)	t var var erion M	11.41699 0.198665 -2.175901 -1.863960 55.53721 0.000000
Inverted AR Roots Inverted MA Roots	.53 .32+.55i	.3255i	-,64	
Lag Distribution of LOG(JQINDN3361_62_63_OH_KY)	Ì	Coefficient	Std. Error	I-Statistic
* * * * * * * * * * * * * * * * * * *	0 1 2 3	0.12686 0.09514 0.06343 0.03171	0.03343 0.02508 0.01672 0.00836	3.79426 3.79426 3.79426 3.79426 3.79426
	Sum of Lags	0.31714	0.08358	3.79426
Lag Distribution of LOG(TS_KWH_IND_OH_KY/APGIND_OH_KY)	i	Coefficient	Std. Error	t-Statistic
* . * .]	0 1	-0.13691 -0.06846	0.03657 0.01829	-3.74351 -3.74351
	Sum of Lags	-0.20537	0.05486	-3.74351

MWH SALES - INDUSTRIAL - AEROSPACE PRODUCTS AND PARTS

Dependent Variable: LOG(MWHN3364_OH_KY) Method: Least Squares Date: 03/01/10 Time: 09:54 Sample: 1975Q1 2009Q4 Included observations: 137 Convergence achieved after 27 iterations

Variable	Coefficient	Std. Error	t-Statistic	Prob.
CDDB_OH_KY_65 D_1976Q3	0.000108	4.13E-05 0.037403	2.622576 -3.322399	0.0099 0.0012
D_1978Q1+D_2006Q4	-0.097376	0.026174	-3.720256	0.0003
D_1992Q1	-0.249084	0,036805	-6.767732	0.0000
D_2000Q3	-0.308499	0.030304	-8.339439 4.603606	0.0000
D_2001Q2	0,170828	0.030390	9.093000	0.0000
D_2003Q4	-0.320287	0.026124	-0.331007	0.0000
D_1391Q4	0.160607	0.0307114	4.070397	0.0000
D_2004Q1	0.234192	0.037414	0.237.107	0.0000
D_2007Q1	•0.103951	0.040387	5 210493	0.0113
	0.177231	0.037433	11 92009	0.0000
(@QOARTER-1 (A) IAPTER-2	0.031331	0.000302	13 25447	6.0000
QUARTER-2	0.001/11	0.000012	12.00447	0.0000
@QUARTER=3 @QUARTER=4	8,843238 8,932828	0,088141	12.00.002	0.0000
WQUARTER=4	8.820008	V.066624	JZ.01200	0.0000
PDL01	0.038621	0.017684	2.183947	0.0310
PDL02	-0.051066	0.020526	-2.48/823	0.0143
PDL03	-0.049801	0.023042	-2.161.304	0.0327
AR(1)	0.454090	0.084731	5.359198	0.0000
AR(2)	0.513790	0.085761	5.990930	0.0000
R_compred	0.020204	Mann depende	of vor	11 12054
Adjusted R-senated	0.7.10204	S D dependen	HI VAL L VOR	0 151380
S E of maronsian	0.710007	Alerite inferen	t vat	2 216477
S.E. OFFERESSION	0.043116	Akaike into ch	nerion	-3,313377 2,990302
Lea blabbood	0.217323	Schwarz chief	1011	-2.667202
	247.1170	Liuroin-watso		2.0.30521
Inverted AR Roots	.98	52		
Lag Distribution of LOG(JQINDN3364_OH_KY)	i	Coefficient	Std. Error	t-Statistic
*	C	0.03218	0,01474	2.18395
	1	0.05150	0.02358	2.18395
. *	2	0.05793	0.02653	2.18395
a /	3	0.05150	0.02358	2.18395
· • •	4	0.03218	0.01474	2.18395
	Sum of Lags	0.22529	0.10316	2.18395
Lag Distribution of LOG(TS_KWH_IND_OH_KY/CPI)	i	Coefficient	Std. Error	I-Statistic
*	C	-0.06809	0.02737	-2.48782
* .	1	-0.05107	0.02053	-2.48782
* .	2	-0.03404	0.01368	-2.48782
* .]	3	-0.01702	0.00684	-2.48782
	Sum of Lags	-0.17022	0.06842	-2.48782
Lag Distribution of LOG(TS_KWH_1ND_OH_KY(-5)/APG1ND_OH_KY(-5))	ĺ	Coefficient	Std. Error	t-Statistic
*		-0 04980	0.02304	-2 16130
* .]	I	-0.02490	0.01152	-2.16130
	Sum of Lags	-0.07470	0.03456	-2.16130

MWH SALES -- INDUSTRIAL -- MISCELLANEOUS

Dependent Variable: LOG(MWHNAOl_OH_KY) Method: Least Squares Date: 03/01/10 Time: 09:55 Sample: 1978Q1 2009Q4 Included observations: 128 Convergence achieved after 8 iterations

Variable	Coefficient	Std. Error	t-Statistic	Prob.
LOG(JQINDNAOI_OH_KY)	0.550485	0.237162	2.321135	0.0221
CDDB_OH_KY_65	0.000146	3.44E-05	4.232864	0.0000
@QUARTER=1	11.42288	0.606596	18.83110	0.0000
@QUARTER=2	11.42603	0.606941	18.82559	0.0000
@QUARTER=3	11.43871	0.607706	18.82277	0.0000
@QUARTER=4	11.43744	0.607091	18.83976	0.0000
D_1965Q1_2001Q3	0.241725	0.040747	5.932274	0.0000
D_2003Q4	-0.069382	0.028922	-2.398918	0.0181
D_2004Q4	0.129828	0.033797	3.841445	0.0002
D_2005Q1	-0.158780	0.033560	-4.731207	0.0000
D_2001Q2+D_2005Q4	-0.074246	0.020460	-3.628854	0.0004
D_2008Q3	0.129324	0.035279	3.665787	0.0004
D_2008Q4	0.107763	0.034568	3.117422	0.0023
D_2000Q2	-0.129800	0.033480	-3.876937	0.0002
D_2000Q3	-0.074474	0.033901	-2.196810	0.0301
PDL01	-0.083721	0.040454	-2.069554	0.0408
AR(1)	0.980247	0.014179	69.13346	0.0000
R-squared	0.984403	Mean depen	dent var	12.42024
Adjusted R-squared	0.982155	S.D. depend	ent var	0.297130
S.E. of regression	0.039692	Akaike info	criterion	-3.492210
Sum squared resid	0.174875	Schwarz crit	erion	-3.113425
Log likelihood	240.5014	Durbin-Wat	son stat	1.912650
Inverted AR Roots	.98			
Lag Distribution of LOG(DS_KWH_IND_OH_KY(- 4)/CPI(-4))	i	Coefficient	Std. Error	t-Statistic
* .1		0 -0.08372	0.04045	-2.06955
* -		I -0.04186	0.02023	-2.06955
	Sum of Lags	-0.12558	0.06068	-2.06955

KWH SALES - OTHER PUBLIC AUTHORITIES - WATER PUMPING

Dependent Variable: LOG(KWHOPAWP_OH_KY) Method: Least Squares Date: 03/01/10 Time: 09:49 Sample: 1976M01 2009M12 Included observations: 408

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	6 799541	0 673817	10.09108	0.0000
D 1965M01 2001M12*LOG(CUSRES OH KY)	0.705017	0.048791	14.44986	0.0000
(1-D 1965M01 2001M12)*LOG(CUSRES OH KY)	0.664885	0.047975	13.85910	0.0000
LOG(DS KW OPA OH KY/CPI)	-0.047508	0.017169	-2.767092	0.0059
((@MONTH=5)+(@MONTH=6)+(@MONTH=7)+(@MONTH=8))*(PRECIP_OH_KY+PRECIP_OH_KY(-}))	-0.003723	0.001133	-3,286811	0,0011
((@MONTH=4)+(@MONTH=9)+(@MONTH=10)+(@MONTH=11))*(PRECIP_OH_KY+PRECIP_OH_KY(-1))	-0.003101	0.001088	-2.851317	0,0046
{(@MONTH=6)+(@MONTH=7))*CDD_OH_KY_65	0.000703	4.26E-05	16.50613	0.0000
(@MONTH=B)*CDD_OH_KY_65	0.000787	4.80E-05	16.39056	0.0000
(1-((@MONTH=6)+(@MONTH=7)+(@MONTH=8)))*CDD_OH_KY_65	0.001201	8.44E-05	14.24274	0.0000
D_1988M05_1988M08	0.160612	0.033378	4.811904	0.0000
D_1982M06	0.832193	0.065796	12.64815	0,9000
D_1991M12+D_1992M06+D_1992M07	-0.209483	0.038130	-5.493974	0.0000
D_1992M03+D_1993M07	-0.205431	0.046830	-4.386726	0.0000
D_1997M10	0.255022	0.065650	3.884538	0.0001
D_1998M08	-0,258645	0,047330	-5.464675	0.0000
	-0.364656	0.065663	-8.099234	0.0000
	0.223622	0.065772	3.399960	0.0007
	-0,812884	0,003891	-12.33084	0.0000
	0.341731	0.000178	2.104144	0.0000
	-0,090291	0.000004	-10.40969	0.0000
	-0.449507	0.000170	-17.45557	0.0000
	-0.748419	0.021333	-3 658311	0.0000
D 2060M12	0 288264	0.067991	-4 239603	0.0000
D_2001M07	-0 929625	0.068604	-13.55060	0.0000
D 2001M09 2002M06	-0 184492	0.023329	-7.908269	0.0000
D_2002M07_2003M01	0.325518	0.031727	10,26010	0.0000
D 2002MID	-0.446044	0.071951	-6.199239	0.0000
D_2003M0)	0.474567	0.071797	6.609868	0.0000
D_2003M12	-0,262374	0.066323	-3.955994	0.0003
D_2004M01	0.381923	0.066319	5.758901	0.0000
D_2004M03	0.791156	0.066318	11.92977	0.0000
D_2006M09	-0. 466 264	0.067221	-6.936322	0.0000
D_2006M10	0.363220	0.067638	5.370063	0.0000
D_1965M01_2005M12	0.098859	0.019005	5,201696	0.0000
D_1965M01_2007M09	0.137266	0.019904	6.896295	0.0000
D_2008M11	-0,159336	0.066499	-2.396051	0.0171
				
P connerd	0.013107	\		16 46004
K-Squarcu	0.947136	Mean de	pendent var	30.430/24
	0.942005	S.D. dept	naeni var	0.270716
Sum regression	0.063194	Akaike mi	o criterion	+4,350001 0.170824
	1.5/0830	Scatwarzs	entenon	10/ 2019
Log Involution	224.4000	Prob(E of	atictial	0.0000/0
Long (ph)= 17 at 50,01 (but)	1.679302	r100(r•S)	ausiic)	W.WURAUU

KWH SALES - OTHER PUBLIC AUTHORITIES - LESS WATER PUMPING

Dependent Variable: LOG(KWHOPALWP_OH_KY) Method: Least Squares Date: 03/04/10 Time: 10:56 Sample: 1978M01 2009M12 Included observations: 384 Convergence achieved after 11 iterations Backcast: 1977M01 1977M12

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	9.326034	0,465310	20.04262	0.0000
LOG(DS_KWH_OPA_OH_KY/CPI)	-0.150672	0.035477	-4.247045	0.0000
LOG(DS_KWH_OPA_OH_KY(-11)/APGOPA_OH_KY(-11))	-0.078112	0.021782	-3,586080	0.0004
CDDB_OH_KY_65*D_1976M01_1984M12	0.000305	9.22E-05	3.306630	0.0010
CDDB_OH_KY_65*(1-D_1976M01_1984M12)	0.000590	5.22E-05	11.31688	0.000
HDDB_OH_KY_59*D_1976M01_1984M12	0.000112	2.90E- 05	3.868701	0.0001
HDDB_OH_KY_59*(1-D_1976M01_1984M12)	0.000100	2.01E-05	4.971366	0.0000
@MONTH=6	0.033430	0.010855	3.079645	0.0022
@MONTH=11	-0.035132	0.010998	-3.194495	0.0015
D_1993M11	-0.175674	0.043763	-4.014206	0.0001
D_1994M01	-0,128589	0.048962	-2.6263 32	0,0090
D_1994M02	0.211284	0.048494	4.356885	0.0000
D_1995M08	-0.222826	0.044160	-5.045850	0.0000
D 1996M09	-0.176397	0.044410	-3.972020	0.0001
D_1999M06	-0.221383	0.044123	-5.017400	0.0000
D_1999M10	0.210863	0.049950	4,221504	0.0000
D 1999M11	-0 147833	0.056129	2 633796	0.0088
D 1999M12	0.212065	0.051715	4 100672	0.0001
D_2000M04	-0.489081	0.045520	-10 76405	0.000
D_2000M07	-0.200320	0.043520	-4 460715	0.0000
D_2000M07	0,200310	0.044717	-4.400713 4 672777	0,0000
D_2000M12	0.20007	0.031330	3.023773	0.0000
D_2001N00	-0.230823	0.0497.30	-4,041003	0,0000
D_2001M04	-0.288778	0.040000	-0.339324	0.0000
D_1999M08+D_2001M08	0.097873	0.0.30232	3.23/3/1	0.0013
D_2002M12	-0.2017.30	0.043523	-4.032009	0.0000
D_2003M02	-0.189503	0.043093	-4.338494	0.0000
D_2003M05	0.204101	0.048425	4.214757	0.0000
D_2003M06	0 200766	0.049538	4.052766	0.0001
D_2004M07	-0.148820	0.043902	-3.389836	0.0008
D_2004M09	0.225249	0.048327	4.660892	0.0000
D_2004M10	0.133893	0.048304	2.771867	0.0059
D_2009M09	0.123567	0.045545	2,713092	0.0070
PDL01	0.493321	0.046213	10.67541	0.000
AR(I)	0.604604	0.045200	13.37611	0.0000
MA(12)	0.312347	0.054762	5.703677	0.0000
R-squared	0.959108	Mean dependent	var	18.50513
Adjusted R-squared	0.955124	S.D. dependent v	211	0.250175
S.E. of regression	0.052997	Akaike info crite	rion	-2.950441
Sum squared resid	0.980231	Schwarz criterio	D	-2.590356
Log fikelihood	601.4846	F-statistic		240.7534
Durbin-Watson stat	2.224068	Prob(F-statistic)		0.000000
Inverted AR Roots	.60			
Inverted MA Roots	.8823i	.88+.23i	.6464i	.64+.64i
	.23 88 i	.23+.88i	23+ 88i	2388i
	- 64- 64i	- 64- 64i	8823i	88+.23i
			<u>`</u>	
Lag Distribution of LOG(E90X_OH_KY)	i	Coefficient	Std. Error	t-Statistic
*		0.72009	0.06027	10 6754
		0.49337	0.04621	10.6754
• •	2	0.24666	0.02311	10.6754
	Sum of Laes	1.47996	0,13863	10.6754
	·····			

KWH SALES – STREET LIGHT

Dependent Variable: LOG(KWHSL_OH_KY) Method: Least Squares Date: 02/22/10 Time: 10:20 Sample: 1975M01 2009M12 Included observations: 420 Convergence achieved after 14 iterations

Variable	Coefficient	Std. Error	t-Statistic	Prob.
	6 844609	0.912383	7 501901	0.0000
LOGON OF KYD	1 168040	0.103906	11.24129	0.0000
D 1965M01 2002M12*@MONTH=1	0 132215	0.005570	23 73551	0.0000
D 1965M01 2002M12*@MONTH=2	-0.015958	0.005307	-3.006946	0.0028
D 1965M01 2002M12*@MONTH=4	-0.125359	0.005151	-24 33517	0 0000
D 1965M01 2002M12*@MONTH=5	-0 182994	0.005632	-32,49291	0.0000
D 1965M01 2002M12*@MONTH=6	-0.273780	0.006377	-42.92930	0.0000
D 1965M01 2002M12*@MONTH=7	-0.226069	0.006591	-34.30105	0.0000
D 1965M01 2002M12*@MONTH=8	-0 142760	0.006661	-21.43210	0.0000
D 1965M01 2002M12*@MONTH=9	-0.075370	0.006702	-11.24577	0.0000
D 1965M01 2002M12*@MONTH=10	0.029384	0.006637	4.427282	0.0000
D 1965M01 2002M12*@MONTH=11	0.084070	0.006478	12.97829	0.0000
D 1965M01 2002M12*@MONTH=12	0.148240	0.006124	24.20773	0.0000
D 1980M02	-0.162543	0.021380	-7.602473	0.0000
D 1991M06	-0.366416	0.023009	-15.92457	0.0000
D 1999M06	0.527559	0.021371	24.68527	0.0000
D 1999M11	-0.215284	0.021363	-10.07733	0.0000
D 2001M02	-0.754842	0.022289	-33.86571	0.0000
D 2001M03	0.415677	0.022588	18.40284	0.0000
D 2001M05	-0.315874	0.022040	-14.33212	0.0000
D 2001M07+D 2002M07	0.193412	0.015986	12.09868	0.0000
D 2002M06	-0.145848	0.021775	-6.697929	0.0000
D 1991M03	-0.140898	0.021526	-6.545478	0.0000
D_2007M02	-0.134584	0.021031	-6.399201	0.0000
D ^{2007M05}	-0.105156	0.022196	-4.737561	0.0000
D_2007M06	0.056068	0.021789	2.573195	0.0104
D_2002M02	0.104776	0.021637	4.842547	0.0000
D_2006M02	0.084111	0.021080	3.990107	0.0001
D 1965M01 2007M09	0.049651	0.014302	3.471605	0.0006
PDL01	-0.115514	0.057677	-2.002772	0.0459
AR(1)	0.449125	0.055380	8.109935	0.0000
AR(2)	0.238951	0.053447	4.470826	0.0000
R-squared	0.980290	Mean dependent v	ar	15.93340
Adjusted R-squared	0.978715	S.D. dependent va	t	0.161105
S.E. of regression	0.023504	Akaike info criteri	on	-4.590150
Sum squared resid	0.214348	Schwarz criterion		-4.282321
Log likelihood	995.9314	F-statistic		622.4986
Durbin-Watson stat	2.050687	Prob(F-statistic)		0.000000
Inverted AR Roots	.76	31		
Lag Distribution of LOG(SAT_SL_OH_KY)	, <u>, , , , , , , , , , , , , , , , , , </u>	Coefficient	Std. Error	1-Statistic
	 			
* ,[(-0.15402	0.07690	-2.00277
	1	-0.11551	0.05768	-2.00277
* .	2	-0.07701	0.03845	-2.00277
* .	3	-0.03850	0.01923	-2.00277
	Sum of Lags	-0.38505	0.19226	-2.00277

SERVICE AREA – SUMMER PEAK

Dependent Variable: LOG(MWSPEAK_OH_KY) Method: Least Squares Date: 03/22/10 Time: 11:53 Sample: 1970M01 1999M10 Included observations: 358

Variable	Coefficient	Std. Error	t-Statistic
	-2.936786	0.321290	-9.140596
(1-M741902)*MJUN	-3.051508	0.319561	-9.549068
M741902*MJUL	-3.272114	0.290805	-11.25191
(1-M741902)*MJUL	-3.590044	0.187629	-19.13372
M741902*MAUG	-1.577271	0.244648	-6.447092
(1-M741902)*MAUG	-4.294807	0.235495	-18.23732
MSEP	-3.845338	0.288032	-13.35040
(M741902)*(MJUN+MSEP)*LOG(KWHSENDNORM OH KY/1000/DAYS)	0.902509	0.018292	49.33874
(1-M741902)*(MJUN+MSEP)*LOG(KWHSENDNORM OH KY/1000/DAYS)	0.913549	0.018106	50.45627
(M741902)*(MJUL)*LOG(KWHSENDNORM OH KY/1000/DAYS)	0.915045	0.024667	37.09543
(1-M741902)*(MJUL)*LOG(KWHSENDNORM OH KY/1000/DAYS)	0.941170	0.013726	68.56721
(M741902)*(MAUG)*LOG(KWHSENDNORM OH KY/1000/DAYS)	0.748490	0.020373	36.73936
(1-M741902)*(MAUG)*LOG(KWHSENDNORM OH KY/1000/DAYS)	0.992985	0.019119	51.93598
(MJUN)*PMHIGH	0.006611	0.002611	2.531835
(MJUL+MAUG+MSEP)*PMHIGH	0.010161	0.001124	9.037381
(MJUN+MJUL+MAUG+MSEP)*PREVPMHIGH	0.002646	0.000611	4.332929
(MJUN+MAUG)*AMLOW	0.005196	0.000811	6.409587
MJUL*AMLOW	0.003094	0.000962	3.217875
MSEP*AMLOW	0.013312	0.002780	4.788846
(MJUN+MJUL+MAUG+MSEP)*PMHUMIDATHIGH	0.000795	0.000306	2.596490
JULY4WEEK*PMHIGH	-0.000318	7.84E-05	-4.053786
M715	-0.104701	0.036584	-2.861906
M717	-0.132527	0.036588	-3.622107
M8411	-0.110483	0.035762	-3.089373
M906	-0.122190	0.035853	-3.408055
M918	0.106161	0.047754	2.223089
M922	-0.097897	0.035875	-2.728857
M926	-0.077772	0.036025	-2.158808
@ISPERIOD("1991M04")	0.109121	0.035620	3.063488
@ISPERIOD("1991M05")	0.108509	0.035858	3.026099
M969983	-0.090000	0.011610	-7.752040
@ISPERIOD("1998M05")	0.083946	0.037578	2.233950
	0.080774	N faan d	
N-syllatou A divisited R-solution	0.700774 0.070044	S D dance	ndent var
Aujusicu N-squarcu	0.776742 0.024734	S.D. uepei	nucht val
S.E. OF regression	0.034724	ANAINE INI	oritorior
Jaw Bhallport	0.393083	Durbin W	
LUE INCLINED	1167738	Darûm-W	વાઝભા કાંચા

SERVICE AREA – WINTER PEAK

Dependent Variable: LOG(MWWPEAK_OH_KY) Method: Least Squares Datc: 03/09/10 Time: 15:47 Sample: 1975M04 1991M03 Included observations: 192

Variable	Coefficient	Std. Error	t-Statistic	Prob.
AMPEAK*(MDEC+MJAN+MFEB+MMAR)	-1,440853	0.173027	-8.327338	0.0000
AMPEAK*(MDEC+MIAN+MFEB+MMAR)*LOG(KWHSENDNORM OH KY W/1000/DAYS)	0.869852	0.015682	55.46925	0.0000
AMPEAK*(MDEC+MJAN+MFEB+MMAR)*AMLOW	-0.003821	0.000662	-5.770433	0.0000
AMPEAK*(MDEC+MJAN+MFEB+MMAR)*WINDAM	0.001587	0.000774	2.050410	0.0419
AMPEAK*(MDEC+MJAN+MFEB+MMAR)*PREVPMLOW	-0.001318	0.000562	-2.346848	0.0201
PMPEAK*(MDEC+MJAN+MFEB+MMAR)	-1.415024	0.266862	-5.302465	0.0000
PMPEAK*(MDEC+MMAR)*LOG(KWHSENDNORM_OH_KY_W/1000/DAYS)	0.870265	0.024244	35.89640	0.0000
PMPEAK*(MJAN+MFEB)*LOG(KWHSENDNORM_OH_KY_W/1000/DAYS)	0.867854	0.024221	35.83018	0.0000
PMPEAK*(MDEC+MJAN+MFEB+MMAR)*PMLOW	-0.004509	0.000682	-6.612049	0.0000
AMPEAK*XMAS	-0.034433	0.013636	-2.525108	0.0125
PMPEAK*XMAS	-0.054970	0.015967	-3.442768	0.0007
M863	-0.190879	0.037093	-5.145999	0.0000
M858	-0.095777	0.036891	-2.596214	0.0103
M882	-0.103164	0.036844	-2.800030	0.0057
M874	-0.167364	0.037111	-4.509890	0.0000
M888	-0.122949	0.036367	-3.380778	0.0009
M889	-0.204194	0.036924	-5.530150	0.0000
M901	-0.116963	0.035683	-3.277873	0.0013
M891	-0.099551	0.035399	-2.812293	0.0055
@ISPERIOD("1976m12")	-0.065217	0.035020	-1.862277	0.0643
@ISPERIOD("1977m10")	-0.088827	0.036422	-2.438865	0.0158
@ISPERIOD(*1977m]1*)	-0.096275	0.034807	-2.765930	0.0063
@ISPERIOD("1978m01")	-0.092340	0.037666	-2.451533	0.0153
@ISPERIOD("1978m10")	-0.092495	0.034951	-2.646414	0.0089
@ISPERIOD("1991m01")	-0.099366	0.035231	-2.820437	0.0054
P. coupred	0.066556	hdana daar		9 116705
Adjusted Resourced	0.900330	E D depe	adaat war	6.110/UD
SE of represeion	0.024463	S.D. Gepe	nucht var	0.170103
Sum contract recid	0.034433	Akaike ini	oritorion	-3.111314
Lag likelihood	297 6411	SURVAIZ	officer stat	-3.3333330
Sof avenuou	207.0411	Dui bin+w	તાંકના કાર્યા	1.222363

Mnemonics Definitions

VARIABLE DESCRIPTION @ISPERIOD("1976M12") QUALITATIVE VARIABLE - PEAK MODEL @ISPERIOD("1977M10") QUALITATIVE VARIABLE - PEAK MODEL @ISPERIOD("1977M11") **OUALITATIVE VARIABLE - PEAK MODEL** @ISPERIOD(*1978M01*) QUALITATIVE VARIABLE - PEAK MODEL QUALITATIVE VARIABLE - PEAK MODEL @ISPERIOD("1978M10") @ISPERIOD(*1991M01*) QUALITATIVE VARIABLE - PEAK MODEL QUALITATIVE VARIABLE - PEAK MODEL @ISPERIOD("1991M04") @ISPERIOD("1991M05") QUALITATIVE VARIABLE - PEAK MODEL @ISPERIOD("1998M05") QUALITATIVE VARIABLE - PEAK MODEL @MONTH=1 QUALITATIVE VARIABLE - JANUARY QUALITATIVE VARIABLE - OCTOBER @MONTH=10 @MONTH=11 QUALITATIVE VARIABLE - NOVEMBER QUALITATIVE VARIABLE - DECEMBER @MONTH=12 @MONTH=2 QUALITATIVE VARIABLE - FEBRUARY QUALITATIVE VARIABLE - MARCH @MONTH=3 @MONTH=4 QUALITATIVE VARIABLE - APRIL @MONTH=5 **QUALITATIVE VARIABLE - MAY** QUALITATIVE VARIABLE - JUNE @MONTH=6 QUALITATIVE VARIABLE - JULY @MONTH=7 **OUALITATIVE VARIABLE - AUGUST** @MONTH=8 QUALITATIVE VARIABLE - SEPTEMBER @MONTH=9 QUALITATIVE VARIABLE - FIRST QUARTER QUALITATIVE VARIABLE - SECOND QUARTER @OUARTER=1 @QUARTER=2 QUALITATIVE VARIABLE - THIRD QUARTER @QUARTER=3 QUALITATIVE VARIABLE - FOURTH QUARTER @QUARTER=4 MINIMUM HOURLY TEMPERATURE - MORNING **ÃMLOW** QUALITATIVE VARIABLE - MORNING PEAK AMPEAK APGIND_OH_KY SERVICE AREA AVERAGE PRICE OF GAS FOR INDUSTRIAL CUSTOMERS APGOPA OIL KY SERVICE AREA AVERAGE PRICE OF GAS FOR OPA CUSTOMERS EFFICIENT APPLIANCE STOCK APPLSTK EFF OH KY BUTLER COUNTY BASE AMOUNT OF MWH SALES - INDUSTRIAL - PRIMARY METAL BASE INDUSTRIES CDD OII KY 65 COOLING DEGREE DAYS BILLING COOLING DEGREE DAYS CDDB_OH_KY_65 =MINIMUM(CDDB_OH_KY,100) =MAXIMUM(CDDB_OH_KY-100,0) CDDB_OH_KY_65_0_100 CDDB_OH_KY_65_100 CPI CONSUMER PRICE INDEX (ALL URBAN) - ALL ITEMS SERVICE AREA ELECTRIC CUSTOMERS - RESIDENTIAL CUSRES_OH_KY D_1965M01_2001M12 D_1965M01_2002M12 QUALITATIVE VARIABLE - JANUARY, 1965 THRU DECEMBER, 2001 QUALITATIVE VARIABLE - JANUARY, 1965 THRU DECEMBER, 2002 QUALITATIVE VARIABLE - JANUARY, 1965 THRU DECEMBER, 2005 D_1965M01_2005M12 QUALITATIVE VARIABLE - JANUARY, 1965 THRU SEPTEMBER, 2007 D 1965M01 2007M09 QUALITATIVE VARIABLE - FIRST QUARTER, 1965 TO SECOND QUARTER, 1980 D_1965Q1_1980Q2 D_1965Q1_1985Q4 D_1965Q1_1986Q4 QUALITATIVE VARIABLE - FIRST QUARTER, 1965 TO FOURTH QUARTER, 1985 QUALITATIVE VARIABLE - FIRST QUARTER, 1965 THRU FOURTH QUARTER, 1986 QUALITATIVE VARIABLE - FIRST QUARTER, 1965 THRU THIRD QUARTER, 1988 D 1965O1 1988O3 QUALITATIVE VARIABLE - FIRST QUARTER, 1965 THRU FOURTH QUARTER, 1990 D_1965Q1_1990Q4 D_1965Q1_1995Q4 D_1965Q1_1998Q2 QUALITATIVE VARIABLE - FIRST QUARTER, 1965 TO FOURTH QUARTER, 1995 QUALITATIVE VARIABLE - FIRST QUARTER, 1965 TO SECOND QUARTER, 1998 D 1965O1 2000O2 QUALITATIVE VARIABLE - FIRST QUARTER, 1965 THRU SECOND QUARTER, 2000 QUALITATIVE VARIABLE - FIRST QUARTER, 1965 TO SECOND QUARTER, 2001 D_1965Q1_2001Q2 D_1965Q1_2001Q3 D_1965Q1_2005Q1 QUALITATIVE VARIABLE - FIRST QUARTER, 1965 THRU THIRD QUARTER, 2001 QUALITATIVE VARIABLE - FIRST QUARTER, 1965 THRU FIRST QUARTER, 2005 D_1976M01_1984M12 QUALITATIVE VARIABLE - JANUARY, 1976 THRU DECEMBER, 1984 QUALITATIVE VARIABLE - FIRST QUARTER, 1976 D_1976Q1 QUALITATIVE VARIABLE - FIRST QUARTER, 1976 TO SECOND QUARTER, 1989 QUALITATIVE VARIABLE - THIRD QUARTER, 1976 D_1976Q1_1989Q2 D 1976Q3 QUALITATIVE VARIABLE - FOURTH QUARTER, 1976 D 1976O4 QUALITATIVE VARIABLE - FIRST QUARTER, 1977 D 1977Q1 QUALITATIVE VARIABLE - SECOND QUARTER, 1977 D_1977Q2 D 1978Q1 QUALITATIVE VARIABLE - FIRST QUARTER, 1978 D 1978O2 QUALITATIVE VARIABLE - SECOND QUARTER, 1978 D_1979Q3 QUALITATIVE VARIABLE - THIRD QUARTER, 1979 D_197904 QUALITATIVE VARIABLE - FOURTH QUARTER, 1979 VARIABLE DESCRIPTION

D_1980M02

QUALITATIVE VARIABLE - FEBRUARY, 1980

D_1980Q1	QUALITATIVE VARIABLE - FIRST QUARTER, 1980
D_1980Q2	QUALITATIVE VARIABLE - SECOND QUARTER, 1980
D_1982M06	QUALITATIVE VARIABLE - JUNE, 1982
D_1982Q4	QUALITATIVE VARIABLE - FOURTH QUARTER, 1982
D_1985Q3	QUALITATIVE VARIABLE - THIRD QUARTER, 1983
D 1986O3	OUALITATIVE VARIABLE - FIRST QUARTER, 1965
D 1988M05 1988M08	OUALITATIVE VARIABLE - MAY, 1988 THRU AUGUST, 1988
D 1988Q3	QUALITATIVE VARIABLE - THIRD QUARTER, 1988
D_1988Q4	QUALITATIVE VARIABLE - FOURTH QUARTER, 1988
D_1989Q3	QUALITATIVE VARIABLE - THIRD QUARTER, 1989
D_1990Q2	QUALITATIVE VARIABLE - SECOND QUARTER, 1990
D_1991M03	QUALITATIVE VARIABLE - MARCH, 1991
D 1991M04	QUALITATIVE VARIABLE - AFKIL, 1991 OLIALITATIVE VARIABLE - BINE 1001
D 1991M11	Ollal ITATIVE VARIABLE - JONE, 1991
D 1991M12	QUALITATIVE VARIABLE - DECEMBER, 1991
D_1991Q1	QUALITATIVE VARIABLE - FIRST QUARTER, 1991
D_1991Q4	QUALITATIVE VARIABLE - FOURTH QUARTER, 1991
D_1992M03	QUALITATIVE VARIABLE - MARCH, 1992
D_1992M06	QUALITATIVE VARIABLE - JUNE, 1992
D_1992M07	QUALITATIVE VARIABLE - JULY, 1992
D_1992Q1	QUALITATIVE VARIABLE - FIRST QUARTER, 1992
D 1993M07	OLALITATIVE VARIABLE - THIRD QUARTER, 1992 OLALITATIVE VARIABLE - THIRD QUARTER, 1992
D 1993M09	OUALITATIVE VARIABLE - SEPTEMBER, 1993
D_1993M10	QUALITATIVE VARIABLE - OCTOBER, 1993
D_1993M11	QUALITATIVE VARIABLE - NOVEMBER, 1993
D_1993Q1	QUALITATIVE VARIABLE - FIRST QUARTER, 1993
D_1994M01	QUALITATIVE VARIABLE - JANUARY, 1994
D_1994M02	QUALITATIVE VARIABLE - FEBRUARY, 1994
D 1995M04	QUALITATIVE VARIABLE - MAY, 1994 ANATIVE VARIABLE - APRIL 1995
D 1995M05	OUALITATIVE VARIABLE - MAY, 1995
D_1995M08	QUALITATIVE VARIABLE - AUGUST, 1995
D_1996M09	QUALITATIVE VARIABLE - SEPTEMBER, 1996
D_1996Q3	QUALITATIVE VARIABLE - THIRD QUARTER, 1996
D_1997M10	QUALITATIVE VARIABLE - OCTOBER, 1997
D 199703	QUALITATIVE VARIABLE - DECEMBER, 1997 OLIALITATIVE VARIABLE - TURD OLIAPTER, 1007
D 1998M05	Ollal ITATIVE VARIABLE - INIKO QUARTER, 1997
D 1998M06	OUALITATIVE VARIABLE - JUNE, 1998
D_1998M08	QUALITATIVE VARIABLE - AUGUST, 1998
D_1998M10	QUALITATIVE VARIABLE - OCTOBER, 1998
D_1998Q3_2001Q2	QUALITATIVE VARIABLE - THIRD QUARTER, 1998 THRU SECOND QUARTER, 2001
D_1999M02	QUALITATIVE VARIABLE - FEBRUARY, 1999
D_19991000	QUALITATIVE VARIABLE - JUNE, 1999
D 1999M10	QUALITATIVE VARIABLE - AUGUST, 1999 OHALITATIVE VARIABLE - OCTOBER 1999
D 1999M11	OUALITATIVE VARIABLE - NOVEMBER, 1999
D_1999M12	QUALITATIVE VARIABLE - DECEMBER, 1999
D_1999QI	QUALITATIVE VARIABLE - FIRST QUARTER, 1999
D_1999Q1_2001Q2	QUALITATIVE VARIABLE - FIRST QUARTER, 1999 THRU SECOND QUARTER, 2001
D_1999Q4	QUALITATIVE VARIABLE - FOURTH QUARTER, 1999
D 2000M04	QUALITATIVE VARIABLE - JANUARY, 2000 OUALITATIVE VARIABLE - ADDIL 2000
D 2000M05	OUALITATIVE VARIABLE - MAY 2000
D 2000M06	OUALITATIVE VARIABLE - JUNE, 2000
D_2000M07	QUALITATIVE VARIABLE - JULY, 2000
D_2000M08_2001M12	QUALITATIVE VARIABLE - AUGUST, 2000 THRU DECEMBER, 2001
D_2000M10	QUALITATIVE VARIABLE - OCTOBER, 2000
D_2000M11	QUALITATIVE VARIABLE - NOVEMBER, 2000
D 200001	QUALITATIVE VARIABLE - DECEMBER, 2000 OTTALITATIVE VARIABLE - EIDST OLLADTED 2000
D 2000Q2	OUALITATIVE VARIABLE - FIRST QUARTER, 2000
VARIABLE	DESCRIPTION
D 200002	
D_2000Q3	QUALITATIVE VARIABLE - THIRD QUARTER, 2000
D 2000Q3_2001Q2	QUALITATIVE VARIABLE - THIRD QUARTER, 2000 THRU SECOND QUARTER, 2001
D 2001M01	OUALITATIVE VARIABLE - I OURTH QUARTER, 2000
D_2001M02	QUALITATIVE VARIABLE - FEBRUARY, 2001
D_2001M03	QUALITATIVE VARIABLE - MARCH, 2001

D_2001M04	
D_2001M05	
D_2001M06	
D_2001M07	
D_2001M08	
D_2001M09_3	2002M06
D_2001Q2	
D_2002M02	
D_2002M04	
D_2002M05	
D_2002M06	
D_2002M07	
D 2002M07	2003M01
D_2002M07_2	20001-101
D_2002M10	
D_2002M10	
D_2002M12	
D_2002Q1	
D_2002Q4	
D_2003M01	
D_2003M02	
D_2003M05	
D_2003M06	
D_2003M12	
D 2003Q1	
D_2003O4	
D 2004M01	
D_2004M03	
D 2004M05	
D 2004M07	
D 2004M09	
D_2004M10	
D_2004M11	
D_2004M11	
D_2004M12	
D_2004Q1	
D_2004Q2	
D_2004Q4	
D_2005M01	
D_2005M02	
D_2005M03	
D_2005M08	
D_2005Q1	
D_2005Q2	
D_2005Q4	
D_2006M02	
D_2006M09	
D_2006M10	
D_2006O1	
D 200604	
D 2007M07	
D_2007M04	
D 20073405	
D_2007M05	
D 2007M00	
D_2007M10	
D_2007Q1	
D_2007Q2	
D_ 2007Q4	
D_2008M10	
D_2008M11	
D_2008M12	
D_2008Q2	
VARIABLE	
N. B00055	
D_2008Q3	
D_2008Q4	
D_2009M01	
D_2009M02	
D_2009M05	
D_2009M09	
D_2009Q1	
D 2009Q2	
D 2009O3	
D DJF	
DIIA	

QUALITATIVE VARIABLE - APRIL, 2001 QUALITATIVE VARIABLE - MAY, 2001 QUALITATIVE VARIABLE - JUNE, 2001 QUALITATIVE VARIABLE - JULY, 2001 QUALITATIVE VARIABLE - AUGUST, 2001 QUALITATIVE VARIABLE - SEPTEMBER, 2001 THRU JUNE, 2002 QUALITATIVE VARIABLE - SECOND QUARTER, 2001 QUALITATIVE VARIABLE - FEBRUARY, 2002 **QUALITATIVE VARIABLE - APRIL, 2002** QUALITATIVE VARIABLE - MAY, 2002 QUALITATIVE VARIABLE - JUNE, 2002 QUALITATIVE VARIABLE - JULY, 2002 QUALITATIVE VARIABLE - JULY, 2002 THRU JANUARY, 2003 QUALITATIVE VARIABLE - AUGUST, 2002 QUALITATIVE VARIABLE - OCTOBER, 2002 QUALITATIVE VARIABLE - DECEMBER, 2002 QUALITATIVE VARIABLE - FIRST QUARTER, 2002 QUALITATIVE VARIABLE - FOURTH QUARTER, 2002 QUALITATIVE VARIABLE - JANUARY, 2003 QUALITATIVE VARIABLE - FEBRUARY, 2003 QUALITATIVE VARIABLE - MAY, 2003 QUALITATIVE VARIABLE - JUNE, 2003 QUALITATIVE VARIABLE - DECEMBER, 2003 QUALITATIVE VARIABLE - FIRST QUARTER, 2003 QUALITATIVE VARIABLE - FOURTH QUARTER, 2003 QUALITATIVE VARIABLE - JANUARY, 2004 QUALITATIVE VARIABLE - MARCH, 2004 QUALITATIVE VARIABLE - MAY, 2004 **OUALITATIVE VARIABLE - JULY, 2004** QUALITATIVE VARIABLE - SEPTEMBER, 2004 QUALITATIVE VARIABLE - OCTOBER, 2004 QUALITATIVE VARIABLE - NOVEMBER, 2004 QUALITATIVE VARIABLE - DECEMBER, 2004 QUALITATIVE VARIABLE - FIRST QUARTER, 2004 QUALITATIVE VARIABLE - SECOND QUARTER, 2004 QUALITATIVE VARIABLE - FOURTH QUARTER, 2004 QUALITATIVE VARIABLE - JANUARY, 2005 QUALITATIVE VARIABLE - FEBRUARY, 2005 **OUALITATIVE VARIABLE - MARCH, 2005** QUALITATIVE VARIABLE - AUGUST, 2005 QUALITATIVE VARIABLE - FIRST QUARTER, 2005 QUALITATIVE VARIABLE - SECOND QUARTER, 2005 QUALITATIVE VARIABLE - FOURTH QUARTER, 2005 QUALITATIVE VARIABLE - FEBRUARY, 2006 QUALITATIVE VARIABLE - SEPTEMBER, 2006 **QUALITATIVE VARIABLE - OCTOBER, 2006** QUALITATIVE VARIABLE - FIRST QUARTER, 2006 **QUALITATIVE VARIABLE - FOURTH OUARTER, 2006** QUALITATIVE VARIABLE - FEBRUARY, 2007 QUALITATIVE VARIABLE - APRIL, 2007 QUALITATIVE VARIABLE - MAY, 2007 QUALITATIVE VARIABLE - JUNE, 2007 QUALITATIVE VARIABLE - OCTOBER, 2007 QUALITATIVE VARIABLE - FIRST QUARTER, 2007 QUALITATIVE VARIABLE - SECOND QUARTER, 2007 QUALITATIVE VARIABLE - FOURTH QUARTER, 2007 QUALITATIVE VARIABLE - OCTOBER, 2008 QUALITATIVE VARIABLE - NOVEMBER, 2008 QUALITATIVE VARIABLE - DECEMBER, 2008 QUALITATIVE VARIABLE - SECOND QUARTER, 2008 DESCRIPTION **OUALITATIVE VARIABLE - THIRD OUARTER, 2008** QUALITATIVE VARIABLE - FOURTH QUARTER, 2008 QUALITATIVE VARIABLE - JANUARY, 2009 QUALITATIVE VARIABLE - FEBRUARY, 2009 QUALITATIVE VARIABLE - MAY, 2009 QUALITATIVE VARIABLE - SEPTEMBER, 2009 QUALITATIVE VARIABLE - FIRST QUARTER, 2009 QUALITATIVE VARIABLE - SECOND QUARTER, 2009 QUALITATIVE VARIABLE - THIRD QUARTER, 2009 =(@MONTH=12+@MONTH=1+@MONTH=2) =(@MONTH=6+@MONTH=7+@MONTH=8)

DAYS NUMBER OF DAYS IN THE MONTH DS_KW_IND_OH_KY SERVICE AREA DS RATE FOR DEMAND FOR INDUSTRIAL CUSTOMERS SERVICE AREA DS RATE FOR DEMAND FOR OTHER PUBLIC AUTHORITIES CUSTOMERS DS KW OPA OH KY DS KWH_COM_OH_KY SERVICE AREA DS RATE FOR USAGE FOR COMMERCIAL CUSTOMERS DS KWH IND OH KY SERVICE AREA DS RATE FOR USAGE FOR INDUSTRIAL CUSTOMERS SERVICE AREA DS RATE FOR USAGE FOR OTHER PUBLIC AUTHORITIES CUSTOMERS DS KWH OPA OH KY E90X_OH_KY SERVICE AREA EMPLOYMENT - STATE AND LOCAL GOVERNMENT ЕСОЙ ОН КУ SERVICE AREA EMPLOYMENT - COMMERCIAL EFFICIENCY OF CENTRAL AIR CONDITIONING UNITS IN SERVICE AREA EFF CAC OH KY EFF EHP OH KY EFFICIENCY OF ELECTRIC HEAT PUMP UNITS IN SERVICE AREA EFFICIENCY OF WINDOW AIR CONDITIONING UNITS IN SERVICE AREA EFF_RAC_OH_KY HDDB_OH_KY_59 HDDB_OH_KY_59_0_500 BILLING HEATING DEGREE DAYS =MINIMUM(HDDB OH KY,500) HDDB OH KY 59 500 =MAXIMUM(HDDB_OH_KY-500,0) SERVICE AREA INDUSTRIAL PRODUCTION INDEX - FOOD AND PRODUCTS JQINDN311_312_OH_KY JQINDN322_326_OH_KY JQINDN325_OH_KY SERVICE AREA INDUSTRIAL PRODUCTION INDEX - PAPER AND PRODUCTS SERVICE AREA INDUSTRIAL PRODUCTION INDEX - CHEMICALS AND PRODUCTS JQINDN331_BUTLER BUTLER COUNTY INDUSTRIAL PRODUCTION INDEX - PRIMARY METAL INDUSTRIES JÕINDN331 CMSA CINCINNATI CMSA INDUSTRIAL PRODUCTION INDEX - PRIMARY METAL INDUSTRIES JQINDN332_OH_KY SERVICE AREA INDUSTRIAL PRODUCTION INDEX - FABRICATED METALS JQINDN333_OH_KY JQINDN334_OH_KY SERVICE AREA INDUSTRIAL PRODUCTION INDEX - INDUSTRIAL MACHINERY & EQUIPMENT SERVICE AREA INDUSTRIAL PRODUCTION INDEX - COMPUTER AND ELECTRONICS JOINDN335 OH KY SERVICE AREA INDUSTRIAL PRODUCTION INDEX - ELECTRICAL EQUIPMENT JQINDN3364_OH_KY SERVICE AREA INDUSTRIAL PRODUCTION INDEX - AIRCRAFT AND PARTS SERVICE AREA INDUSTRIAL PRODUCTION INDEX - MOTOR VEHICLES AND PARTS JQINDN361_62_63_OH_KY JQINDNAOI_OH_KY SERVICE AREA INDUSTRIAL PRODUCTION - ALL OTHER INDUSTRIES JULY4WEEK QUALITATIVE VARIABLE FOR THE WEEK OF JULY 4TH KWHCOM_OH_KY SERVICEA KWH SALES - COMMERCIAL KWHOPALWP_OH_KY SERVICE AREA KWH SALES - OPA LESS WATER PUMPING KWHOPAWP OH KY SERVICE AREA KWH SALES - OPA WATER PUMPING KWHRES OH KY SERVICE AREA KWH SALES - RESIDENTIAL KWHSENDNORM OH KY SERVICE AREA KWH SENDOUT - WEATHER NORMALIZED SERVICE AREA KWH SALES - STREET LIGHTING KWHSL_OH_KY M715 QUALITATIVE VARIABLE - PEAK MODEL QUALITATIVE VARIABLE - PEAK MODEL M717 M741902 **QUALITATIVE VARIABLE - PEAK MODEL** M8411 QUALITATIVE VARIABLE - PEAK MODEL M858 QUALITATIVE VARIABLE - PEAK MODEL M863 QUALITATIVE VARIABLE - PEAK MODEL M874 QUALITATIVE VARIABLE - PEAK MODEL M882 QUALITATIVE VARIABLE - PEAK MODEL M888 QUALITATIVE VARIABLE - PEAK MODEL M889 QUALITATIVE VARIABLE - PEAK MODEL M891 QUALITATIVE VARIABLE - PEAK MODEL M901 QUALITATIVE VARIABLE - PEAK MODEL M906 QUALITATIVE VARIABLE - PEAK MODEL M918 QUALITATIVE VARIABLE - PEAK MODEL M922 QUALITATIVE VARIABLE - PEAK MODEL M926 QUALITATIVE VARIABLE - PEAK MODEL M969983 QUALITATIVE VARIABLE - PEAK MODEL MAUG QUALITATIVE VARIABLE - AUGUST QUALITATIVE VARIABLE - DECEMBER MDEC MFEB **QUALITATIVE VARIABLE - FEBRUARY** QUALITATIVE VARIABLE - JANUARY MJAN MJUL QUALITATIVE VARIABLE - JULY VARIABLE DESCRIPTION MJUN **QUALITATIVE VARIABLE - JUNE** MMAR QUALITATIVE VARIABLE - MARCH MP RES OH KY MARGINAL PRICE OF ELECTRICITY - RESIDENTIAL QUALITATIVE VARIABLE - SEPTEMBER MSEP MWHN311_312 OH KY SERVICE AREA MWH SALES - INDUSTRIAL - FOOD AND PRODUCTS MWHN322_326_OH_KY SERVICE AREA MWH SALES - INDUSTRIAL - PAPER AND PRODUCTS MWHN325 OH KY SERVICE AREA MWH SALES - INDUSTRIAL - CHEMICALS AND PRODUCTS BUTLER COUNTY MWH SALES - INDUSTRIAL - PRIMARY METAL INDUSTRIES MWHN331_BUTLER SERVICE AREA MWH SALES LESS BUTLER COUNTY - INDUSTRIAL - PRIMARY METAL MWHN331LARM_OIL_KY INDUSTRIES SERVICE AREA MWH SALES - INDUSTRIAL - FABRICATED METALS MWHN332 OH KY MWHN333_OH_KY SERVICE AREA MWH SALES - INDUSTRIAL - INDUSTRIAL MACHINERY AND EQUIPMENT MWHN334 OH KY SERVICE AREA MWH SALES - INDUSTRIAL - COMPUTER AND ELECTRONICS MWHN335 OH KY SERVICE AREA MWH SALES - INDUSTRIAL - ELECTRICAL EQUIPMENT MWHN3361 3362_3363_OH_KY SERVICE AREA MWH SALES - INDUSTRIAL - MOTOR VEHICLES AND PARTS MWHN3364_OH_KY SERVICE AREA MWH SALES - INDUSTRIAL - TRANSPORTATION EQUIPMENT

MWHN3364 OH KY OTHER THAN MOTOR VEHICLES AND PARTS MWHNAOI OH KY SERVICE AREA MWH SALES - INDUSTRIAL - ALL OTHER INDUSTRIES MWSPEAK_OH_KY MWWPEAK_OH_KY SERVICE AREA MW PEAK - SUMMER SERVICE AREA MW PEAK - WINTER N OH KY SERVICE AREA TOTAL POPULATION PMHIGH **MAXIMUM HOURLY TEMPERATURE - AFTERNOON HUMIDITY - AFTERNOON** PMHUMIDATHIGH PMLOW MINIMUM HOURLY TEMPERATURE - EVENING PMPEAK QUALITATIVE VARIABLE - EVENING PEAK PRECIP OH KY SERVICE AREA PRECIPITATION PREVPMHIGH MAXIMUM HOURLY TEMPERATURE - PREVIOUS AFTERNOON PREVPMLOW MINIMUM HOURLY TEMPERATURE - PREVIOUS AFTERNOON SAT_CAC_EFF SAT_CACNHP_OH_KY =EFF CAC OH KY*(SAT EHP OH KY+SAT CACNHP OH KY) SERVICE AREA SATURATION OF CENTRAL AIR CONDITIONING WITHOUT HEAT PUMP SAT_EH_EFF =(SAT_ER_OH_KY+(SAT_EHP_OH_KY*EFF_EHP_OH_KY)) SERVICE AREA SATURATION OF ELECTRIC HEAT PUMPS - RESIDENTIAL SAT_EHP_OH_KY SAT_ER_OH_KY SAT_RAC_EFF SATURATION RATE OF ELECTRIC RESISTANCE HEATERS IN SERVICE AREA =EFF_RAC_OH_KY*SAT_RAC_OH_KY SAT RAC OH KY SERVICE AREA SATURATION OF WINDOW AIR CONDITIONING SERVICE AREA SAT_SL_OH_KY =(0.5*SATMERC_OH_KY)+(0.5*SATSODVAP_OH_KY) SATMERC_OH_KY SERVICE AREA SATURATION OF MERCURY VAPOR STREET LIGHTING SATSODVAP OH KY SERVICE AREA SATURATION OF SODIUM VAPOR STREET LIGHTING TS KW IND OH KY SERVICE AREA TS RATE FOR DEMAND FOR INDUSTRIAL CUSTOMERS TS KWH IND OH KY SERVICE AREA TS RATE FOR USAGE FOR INDUSTRIAL CUSTOMERS WINDAM WIND SPEED - MORNING WHOLESALE PRICE INDEX FOR CRUDE PETROLEUM WPI0561 XMAS **QUALITATIVE VARIABLE - CHRISTMAS WEEK** ΥΡ_ΟΗ_ΚΥ SERVICE AREA PERSONAL INCOME

Forecast Error

EQUATION FORECAST ERROR				
MEASURED BY				
MEAN OF THE STANDARD ERRORS				
SERVICE AREA ELECTRIC CUSTOMERS – RESIDENTIAL	8,671			
KWH USE PER CUSTOMER – RESIDENTIAL	23.952	кwн		
KWH SALES - COMMERCIAL	26,441,613	кwн		
MWH SALES – INDUSTRIAL – FOOD, BEVERAGE AND TOBACCO	5,927	мwн		
MWH SALES - INDUSTRIAL - PAPER, PLASTIC AND RUBBER	6,444	мwн		
MWH SALES – INDUSTRIAL – CHEMICALS	21,508	MWH		
MWH SALES INDUSTRIAL PRIMARY METALS BUTLER	23,153	MWH		
MWH SALES - INDUSTRIAL - PRIMARY METALS - LESS BUTLER	2,673	MWH		
MWH SALES – INDUSTRIAL – FABRICATED METALS	6,444	мwн		
MWH SALES INDUSTRIAL MACHINERY	3,507	MWH		
MWH SALES - INDUSTRIAL - COMPUTER AND ELECTRONICS	4,310	MWH		
MWH SALES - INDUSTRIAL - ELEC. EQUIPMENT, APPLIANCE & COMPONENT	2,839	мwн		
MWH SALES - INDUSTRIAL - MOTOR VEHICLES AND PARTS	8,571	MWH		
MWH SALES - INDUSTRIAL - AEROSPACE PRODUCTS AND PARTS	6,951	MWH		
MWH SALES - INDUSTRIAL - MISCELLANEOUS	40,410	MWH		
KWH SALES - OTHER PUBLIC AUTHORITIES - WATER PUMPING	593,764	кwн		
KWH SALES - OTHER PUBLIC AUTHORITIES - LESS WATER PUMPING	8,983,746	KWH		
KWH SALES – STREET LIGHT	287,682	KWH		
SERVICE AREA – SUMMER PEAK	188	MW		
SERVICE AREA – WINTER PEAK	156	М₩		

6. Computer Software

1

The computer software package employed in the preparation of the forecast is called Eviews. It

is a licensed software product utilized on microcomputers.

SECTION II FORECASTS FOR ELECTRIC TRANSMISSION OWNERS

A. GENERAL GUIDELINES

No Response Required.

B. ELECTRIC TRANSMISSION FORECAST

This section of the 2010 Electric Long-Term Forecast Report contains the

transmission forecast forms FE-T1 through FE-T10 as required by OAC 4901:5-5-04.

Γ	11-11			1			Į	F			T	1	-7		-	. 1	٦	
	EXELEM OUTSIDE OHIO LOADS CONNECTED TO THE ENERGY DELIVERIES FOR (13)	4,332,128	4,059,541	4,502,844	4,399,647	4,167,497	4,051,814	4,079,695	4,162,187	4,166,369	4,175,644	4,169,027	4,169,481	4,170,884	4,181,357	4,187,488	4,200,613	
	(12) ENERGY DELIVERIES FOR LOADS CONNECTED TO THE SYSTEM INSIDE OHIO	24,352,787	23,573,015	24,535,599	23,542,249	22,131,394	12,824,742	12,219,339	22,050,374	22,073,644	22,127,600	22,096,692	22,104,800	22,122,545	22,186,316	22,230,018	22,308,352	
	(11) TOTAL ENERGY DELIVERIES FOR LOAD CONNECTED TO THE SYSTEM CONNECTED TO THE SYSTEM	28,684,915	27,632,556	29,038,443	27,941,896	26,298,891	16,876,556	16, 299, 034	26,212,561	26,240,012	26,303,244	26,265,720	26,274,281	26,293,429	26,367,673	26,417,505	26,508,965	
	TOTAL ENERGY DELIVERIES AT INTERCONNECTIONS 8+9	14,600,947	15,570,326	14,314,966	18,496,700	15,759,392												
	(9) ENERGY DELIVERIES AT INTERCONNECTIONS WITH OTHER TRANSMISSION COMPANIES OUTSIDE OHIO	151,195	306,588	327,267	184,035	235,746												
	(8) ENERGY DELIVERIES AT INTERCONNECTIONS WITH OTHER TRANSMISSION COMPANIES INSIDE OHIO	14,449,752	15,263,738	13,987,699	14,712,665	15,523,646												
	(۲) דסדאן בעפאקא הבכפופדק 3 + 6	43,285,862	43,202,882	43,353,409	42,838,596	42,058,283												
-	4+2 INTERCONNECTIONS (6)	15,102,191	14,738,882	18,035,954	18,384,471	16,719,793											-	
	(S) ENERGY RECEIPTS AT INTERCONNECTIONS WITH OTHER TRANSMISSION COMPANIES OUTSIDE OHIO	1,153,815	581,918	926,439	1,199,563	863,773												×
	(4) ENERGY RECEIPTS AT INTERCONNECTIONS WITH OTHER TRENSMISSION COMPENIES INSIDE OHIO	13,948,376	14,156,964	17,109,515	17,184,908	15,856,020												rating in Ohlo.
	(3) TOTAL ENERGY RECEIPTS FROM GENERATION SOURCES (3)	28,183,671	28,464,000	25,317,455	24,454,125	25,338,490												tion owners ope
	OUTSIDE OHIO CONNECTED TO THE SYSTEM GENERATION SOURCES ENERGY RECEIPTS FROM	3,705,966	4.972.870	3,794,386	4.241.387	4,278,054												lectric transmiss
	(1) ENERGY RECEIPTS FROM GENERATION SOURCES CONNECTED TO THE OWNER'S SYSTEM INSIDE OHIO	24,477,705	23.491.130	21,523,069	20.212.738	21.060,436			-				.	-		-	-	be filled out by e
	YEAR	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	(a) To I
		10	4	ļ 🖓	?	7	0	-	~	m	4	5	ف	r	00	٩	12	

FORM FE-T1: TRANSMISSION ENERGY DELIVERY FORECAST (Megawatt Hours/Year) (a)

SS

PUCO Form FE-T2 : ETO System Seasonal Peak Load Demand Forecast										
(Megawatts)(a)										
Before DSM (e) (f)										
	Native Load (b) Internal Load (c)									
	Year	Summer	Winter (d)	<u>Summer</u>	Winter (d)					
-5	2005	4,228	3,224	4,228	3,224					
-4	2006	4,366	3,551	4,366	3,551					
-3	2007	4,436	3,505	4,459	3,505					
-2 2008 4,074 3,526 4,074 3,526										
-1	-1 2009 3,675 2,271 3,675 2,27									
0	2010	2,709	1,982	2,854	2,083					
1	2011	2,593	3,410	2,756	3,522					
2	2012	4,323	3,415	4,495	3,535					
3	2013	4,328	3,424	4,505	3,548					
4	2014	4,329	3,426	4,506	3,550					
5	2015	4,301	3,421	4,478	3,545					
6	2016	4,305	3,425	4,482	3,549					
7	2017	4,307	3,427	4,484	3,551					
8	2018	4,317	3,434	4,494	3,558					
9	2019	4,319	3,439	4,496	3,563					
10	2020	4,328	3,446	4,505	3,570					
(a) To	be filled ou	ut by electric transmissi	ion owners op	erating in Ohio.						
Lave.		(11 1 1								

(b) Excludes interruptible load.

(c) Includes interruptible load.

(d) Winter load reference is to peak loads which follow the summer peak load.

(e) Includes historical DSM impacts.

(f) Historical company peaks not necessarily coincident with system peak

PUCO Form FE-T2 : ETO System Seasonal Peak Load Demand Forecast							
(Megawatts)(a)							
		Afte	r DSM (e) (f)				
		Native Load (b)		Internal Load (c)			
	Year	Summer	Winter (d)	Summer	Winter (d)		
-5	2005	4,228	3,224	4,228	3,224		
-4	2006	4,366	3,551	4,366	3,551		
3	2007	4,436	3,505	4,459	3,505		
-2	2008	4,074	3,526	4,074	3,526		
-1	2009	3,675	2,271	3,675	2,271		
0	2010	2,688	1,952	2,833	2,053		
1	2011	2,550	3,351	2,713	3,463		
2	2012	4,259	3,325	4,431	3,445		
3	2013	4,231	3,292	4,408	3,416		
4	2014	4,202	3,264	4,379	3,388		
5	2015	4,147	3,229	4,324	3,353		
6	2016	4,124	3,204	4,301	3,328		
7	2017	4,098	3,152	4,275	3,276		
8	2018	4,083	3,131	4,260	3,255		
9	2019	4,059	3,108	4,236	3,232		
10	2020	4,042	3,091	4,219	3,215		
(a) To	be filled ou	at by electric transmissi	on owners op	erating in Ohio.			
(b) Ex	cludes inter	rruptible load.					
(c) Inc	(c) Includes interruptible load.						
(d) Winter load reference is to peak loads which follow the summer peak load.							
(e) lno	(e) Includes historical DSM impacts.						
(f) His	storical com	pany peaks not necessa	arily coinciden	t with system peak			

PUCO Form FE-T3	: ETO Total Monthly Energy Forecast (MWh)
	After DSM (a)
Voor0	
January	1 267 421
February	1.049.127
March	1.028.680
April	911,842
May	949.345
June	1,115,522
July	1,243,673
August	1,259,295
September	999,664
October	916,121
November	899,807
December	1,112,026
Year 1	
January	1,164,788
February	967,902
March	944,025
April	833,745
May	873,657
June	1,043,030
July	1,183,114
August	1,213,487
September	971,738
October	895,945
November	878,997
December	1,084,230
(a) Includes DSM impacts.	

PUCO Form FE-T4: ETO Monthly Internal Peak Load Forecast (Megawatts)				
	After DSM (a)			
Vear 0				
January	2,207			
February	2,072			
March	1,960			
April	1,770			
May	2,167			
June	2,646			
July	2,833			
August	2,801			
September	2,437			
October	1,899			
November	1,729			
December	2,013			
Year 1				
January	2,053			
February	1,916			
March	1,805			
April	1,620			
May	1,997			
June	2,481			
July	2,713			
August	2,707			
September	2,377			
October	1,863			
November	1,689			
December	1,962			
(a) Includes DSM impacts.				

Form FE-T5 - As of February 1, 2002 The Midwest Independent Transmission System Operator (MISO) took over functional control of the transmission system. It is Duke Energy Ohio (DEO) opinion that this form is no longer pertinent to DEO since DEO no longer sells transmission or tracks the firmness thereof. For this reason, DEO cannot guarantee the accuracy of the numbers in firm and non-firm "transmission to transmission service."

FORM FE-T5 MONTHLY ENERGY TRANSACTIONS (TOTAL MWH/MONTH) FOR THE MOST RECENT YEAR

PART A: SOURCES OF ENERGY

Reporting Month

Jan-09

1. Energy Receipts from all sources by type: (MWH)

	Firm Transmission Service	Non-Firm Transmission Service	Total
Energy Receipts from Power Plants directly connected to the Electric Transmission Owner's transmission system	2,300,082		2,300,082
Energy Receipts from other sources	(232,591)		(232,591)
Total Energy Receipts	2,067,491	0	2,067,491

PART B: DELIVERY OF ENERGY

Reporting Month

Jan-09

1. Energy deliveries to all points connected to the Electric Transmission Owner's system (MWH)

	Firm Transmission Service	Non-Firm Transmission Service	Total
For Distribution service:			
Affiliated Electric Utility Companies	2,285,037,450	0	2,285,037,450
Other Investor-Owned Electric Utilities			
Cooperative-Owned Electric System	48,887		48,887
Municipal-Owned Electric Systems	47,535		47,535
Federal and State Electric Agencies			
Other end user service			
For Non Distribution service (transmission to transmission service)	1,484,249		1,484,249
Total Energy Delivery	2,286,618,121	0	2,286,618,121

Reporting Month

Jan-09

2. Energy deliveries to all points connected to the Electric Transmission Owner's system located in Ohio (MWH)

	Firm Transmission	Non-Firm Transmission	
	Service	Service	Total
For Distribution service:			
Affiliated Electric Utility Companies	1,909,548,263	0	1,909,548,263
Other Investor-Owned Electric Utilities			
Cooperatively-Owned Electric System	31,740		31,740
Municipally-Owned Electric Systems	47,535		47,535
Federal and State Electric Agencies			
Other end user service	-		
For Non Distribution service (transmission to transmission service)	1,466,992		1,466,992
Total Energy Delivery	1,911,094,530	0	1,911,094,530

PART C: LOSSES AND UNACCOUNTED FOR (MWH)

REPORTING MONTH

Jan-09

		Non-Firm	
	Firm Transmission	Transmission	
	Service	Service	Total
Sources minus Delivery (a)	(2,284,550,630)	0	(2,284,550,630)

(a) FE-T5: Part A minus Part B (1)

PART A: SOURCES OF ENERGY

Reporting Month

Feb-09

1. Energy Receipts from all sources by type: (MWH)

	Firm Transmission Service	Non-Firm Transmission Service	Total
Energy Receipts from Power Plants directly connected to the Electric Transmission Owner's transmission system	1,815,666	0	1,815,666
Energy Receipts from other sources	(274,668)	····	(274,668)
Total Energy Receipts	1,540,998	0	1,540,998

PART B: DELIVERY OF ENERGY

Reporting Month

Feb-09

1. Energy deliveries to all points connected to the Electric Transmission Owner's system (MWH)

	Firm Transmission	Non-Firm Transmission	T -4-4
	Service	Service	Iotal
For Distribution service:			
Affiliated Electric Utility Companies	2,089,076,666	0	2,089,076,666
Other Investor-Owned Electric Utilities			
Cooperative-Owned Electric System	39,726	0	39,726
Municipal-Owned Electric Systems	49,855		49,855
Federal and State Electric Agencies		 I	
Other end user service			
For Non Distribution service (transmission to transmission service)	1,245,681		1,245,681
Total Energy Delivery	2,090,411,928	0	2,090,411,928

Reporting Month

Feb-09

2. Energy deliveries to all points connected to the Electric Transmission Owner's system located in Ohio (MWH)

	Firm Transmission Service	Non-Firm Transmission Service	Total
For Distribution service:			
Affiliated Electric Utility Companies	1,745,950,956	0	1,745,950,956
Other Investor-Owned Electric Utilities			
Cooperatively-Owned Electric System	24,242		24,242
Municipally-Owned Electric Systems	49,855	0	49,855
Federal and State Electric Agencies			
Other end user service			-
For Non Distribution service (transmission to transmission service)	1,216,896	0	1,216,896
Total Energy Delivery	1,747,241,949	0	1,747,241,949

PART C: LOSSES AND UNACCOUNTED FOR (MWH)

REPORTING MONTH

Feb-09

		Non-Firm	
	Firm Transmission	Transmission	
	Service	Service	Total
Sources minus Delivery (a)	(2,088,870,930)	0	(2,088,870,930)

(a) FE-T5: Part A minus Part B (1)

PART A: SOURCES OF ENERGY

Reporting Month

Mar-09

1

1. Energy Receipts from all sources by type: (MWH)

	Firm Transmission Service	Non-Firm Transmission Service	Totai
Energy Receipts from Power Plants directly connected to the Electric Transmission Owner's transmission system	1,631,118	0	1,631,118
Energy Receipts from other sources	(437,130)	0	(437,130)
Total Energy Receipts	1,193,988	0	1,193,988

PART B: DELIVERY OF ENERGY

Reporting Month

Mar-09

1. Energy deliveries to all points connected to the Electric Transmission Owner's system (MWH)

		Non-Firm	
	Firm Transmission	Transmission	
	Service	Service	Total
For Distribution service:			
Affiliated Electric Utility Companies	1,878,099,818	0	1,878,099,818
Other Investor-Owned Electric Utilities			
Cooperative-Owned Electric System	36,914	0	36,914
Municipal-Owned Electric Systems	46,660	0	46,660
Federal and State Electric Agencies			
Other end user service			·
For Non Distribution service (transmission to transmission service)	1,246,241	0	1,246,241
Total Energy Delivery	1,879,429,633	0	1,879,429,633
Reporting Month

Mar-09

2. Energy deliveries to all points connected to the Electric Transmission Owner's system located in Ohio (MWH)

	Firm Transmission	n Transmission Transmission	
	Service	Service	Total
For Distribution service:			
Affiliated Electric Utility Companies	1,571,525,640	0	1,571,525,640
Other Investor-Owned Electric Utilities			
Cooperatively-Owned Electric System	21,304		21,304
Municipally-Owned Electric Systems	46,660	0	46,660
Federal and State Electric Agencies			
Other end user service			
For Non Distribution service (transmission to transmission service)	1,238,908	0	1,238,908
Total Energy Delivery	1,572,832,512	0	1,572,832,512

PART C: LOSSES AND UNACCOUNTED FOR (MWH)

REPORTING MONTH

Mar-09

		Non-Firm	
	Firm Transmission	Transmission	
	Service	Service	Total
Sources minus Delivery (a)	(1,878,235,645)	0	(1,878,235,645)

PART A: SOURCES OF ENERGY

Reporting Month

Apr-09

1. Energy Receipts from all sources by type: (MWH)

	Firm Transmission Service	Non-Firm Transmission Service	Total
Energy Receipts from Power Plants directly connected to the Electric Transmission Owner's transmission system	1,545,660	0	1,545,660
Energy Receipts from other sources	(369,326)	0	(389,326)
Total Energy Receipts	1,176,334	0	1,176,334

PART B: DELIVERY OF ENERGY

Reporting Month

Apr-09

	Firm Transmission Service	Non-Firm Transmission Service	Total
For Distribution service:			
Affiliated Electric Utility Companies	1,711,126,189	0	1,711,126,189
Other Investor-Owned Electric Utilities		-	
Cooperative-Owned Electric System	34,192	0	34,192
Municipal-Owned Electric Systems	53,144	0	53,144
Federal and State Electric Agencies			
Other end user service			
For Non Distribution service (transmission to transmission service)	1,194,332	0	1,194,332
Total Energy Delivery	1,712,407,857	0	1,712,407,857

Reporting Month

Apr-09

2. Energy deliveries to all points connected to the Electric Transmission Owner's system located in Ohio (MWH)

	Firm Transmission Service	Non-Firm Transmission Service	Total
For Distribution service:			· · · · · · · · · · · · · · · · · · ·
Affiliated Electric Utility Companies	1,426,956,177	0	1,426,956,177
Other Investor-Owned Electric Utilities			
Cooperatively-Owned Electric System	18,322		18,322
Municipally-Owned Electric Systems	53,144	0	53,144
Federal and State Electric Agencies			
Other end user service			<u>, </u>
For Non Distribution service (transmission to transmission service)	1,192,509	0	1,192,509
Total Energy Delivery	1,428,220,152	0	1,428,220,152

PART C: LOSSES AND UNACCOUNTED FOR (MWH)

REPORTING MONTH

Apr-09

		Non-Firm	
	Firm Transmission	Transmission	
	Service	Service	Total
Sources minus Delivery (a)	(1,711,231,523)	0	(1,711,231,523)

PART A: SOURCES OF ENERGY

Reporting Month

May-09

1. Energy Receipts from all sources by type: (MV/H)

	Firm Transmission Service	Non-Firm Transmission Service	Totai
Energy Receipts from Power Plants directly connected to the Electric Transmission Owner's transmission system	1,527,478	0	1,527,478
Energy Receipts from other sources	(472,492)	0	(472,492)
Total Energy Receipts	1,054,986	0	1,054,986

PART B: DELIVERY OF ENERGY

Reporting Month

May-09

	Firm Transmission Service	Non-Firm Transmission Service	Total
For Distribution service:			
Affiliated Electric Utility Companies	1,704,955,648	0	1,704,955,648
Other Investor-Owned Electric Utilities			
Cooperative-Owned Electric System	33,128	0	33,128
Municipal-Owned Electric Systems	37,638	0	37,638
Federal and State Electric Agencies			
Other end user service			
For Non Distribution service (transmission to transmission service)	1,138,648	0	1,138,648
Total Energy Delivery	1,706,165,062	0	1,706,165,062

Reporting Month

May-09

2. Energy deliveries to all points connected to the Electric Transmission Owner's system located in Ohio (MWH)

	Firm Transmission Service	Non-Firm Transmission Service	Total
For Distribution service:			
Affiliated Electric Utility Companies	1,424,414,579	0	1,424,414,579
Other Investor-Owned Electric Utilities			
Cooperatively-Owned Electric System	16,978		16,978
Municipally-Owned Electric Systems	37,638	0	37,638
Federal and State Electric Agencies			
Other end user service			
For Non Distribution service (transmission to transmission service)	1,134,608	0	1,134,608
Total Energy Delivery	1,425,603,803	0	1,425,603,803

PART C: LOSSES AND UNACCOUNTED FOR (MWH)

REPORTING MONTH

May-09

		Non-Firm	
	Firm Transmission	Transmission	
	Service	Service	Total
Sources minus Delivery (a)	(1,705,110,076)	0	(1,705,110,076)

PART A: SOURCES OF ENERGY

Reporting Month

Jun-09

1. Energy Receipts from all sources by type: (MWH)

	Firm Transmission Service	Non-Firm Transmission Service	Total
Energy Receipts from Power Plants directly connected to the Electric Transmission Owner's transmission system	2,380,708	0	2,380,708
Energy Receipts from other sources	26,441	0	26,441
Total Energy Receipts	2,407,149	0	2,407,149

PART B: DELIVERY OF ENERGY

Reporting Month

Jun-09

		Non-Firm		
	Firm Transmission	Transmission		
	Service	Service	Total	
For Distribution service:				
Affiliated Electric Utility Companies	1,956,658,509	0	1,956,658,509	
Other Investor-Owned Electric Utilities				
Cooperative-Owned Electric System	38,638	0	38,638	
Municipal-Owned Electric Systems	39,246	0	39,246	
Federal and State Electric Agencies			l	
Other end user service				
For Non Distribution service (transmission to transmission service)	1,323,729	0	1,323,729	
			4 050 000 400	
Liotal Energy Delivery	1,958,060,122	U	1_1,958,060,122	

Reporting Month

Jun-09

2. Energy deliveries to all points connected to the Electric Transmission Owner's system located in Ohio (MWH)

		Non-Firm	
	Service	Service	Total
For Distribution service:			
Affiliated Electric Utility Companies	1,633,815,449	0	1,633,815,449
Other Investor-Owned Electric Utilities			
Cooperatively-Owned Electric System	20,984		20,984
Municipally-Owned Electric Systems	39,246	0	39,246
Federal and State Electric Agencies			
Other end user service			
For Non Distribution service (transmission to transmission service)	1,301,642	0	1,301,642
Total Energy Delivery	1,635,177,321	0	1,635,177,321

PART C: LOSSES AND UNACCOUNTED FOR (MWH)

REPORTING MONTH

Jun-09

		Non-Firm	
	Firm Transmission	Transmission	
	Service	Service	Total
Sources minus Delivery (a)	(1,955,652,973)	0	(1,955,652,973)

(a) FE2-T5: Part A minus Part B (1)

PART A: SOURCES OF ENERGY

Reporting Month

Jul-09

1. Energy Receipts from all sources by type: (MWH)

	Firm Transmission Service	Non-Firm Transmission Service	Total
Energy Receipts from Power Plants directly connected to the Electric Transmission Owner's transmission system	2,517,162	0	2,517 <u>,162</u>
Energy Receipts from other sources	205,597	0	205,597
Total Energy Receipts	2,722,759	0	2,722,759

PART B: DELIVERY OF ENERGY

Reporting Month

Ju∔09

	Firm Transmission	Non-Firm Transmission	
	Service	Service	Total
For Distribution service:			
Affiliated Electric Utility Companies	2,150,199,729	0	2,150,199,729
Other Investor-Owned Electric Utilities			
Cooperative-Owned Electric System	39,228	0	39,228
Municipal-Owned Electric Systems	35,516	0	35,516
Federal and State Electric Agencies			
Other end user service			
For Non Distribution service (transmission to transmission service)	1,388,284	0	1,388,284
Total Energy Delivery	2,151,662,757	0	2,151,662,757

Reporting Month

Jul-09

2. Energy deliveries to all points connected to the Electric Transmission Owner's system located in Ohio (MWH)

	Firm Transmission	Non-Firm Transmission	
	Service	Service	Totat
For Distribution service:			
Affiliated Electric Utility Companies	1,799,051,805	0	1,799,051,805
Other Investor-Owned Electric Utilities			
Cooperatively-Owned Electric System	20,954		20,954
Municipally-Owned Electric Systems	35,516	0	35,516
Federal and State Electric Agencies			
Other end user service			· · · ·
For Non Distribution service (transmission to transmission service)	1,348,827	0	1,348,827
Total Energy Delivery	1,800,457,102	0	1,800,457,102

PART C: LOSSES AND UNACCOUNTED FOR (MWH)

REPORTING MONTH

Jul-09

		Non-Firm	
	Firm Transmission	Transmission	
	Service	Service	Total
Sources minus Delivery (a)	(2,148,939,998)	0	(2,148,939,998)

PART A: SOURCES OF ENERGY

Reporting Month

Aug-09

1. Energy Receipts from all sources by type: (MWH)

	Firm Transmission Service	Non-Firm Transmission Service	Total
Energy Receipts from Power Plants directly connected to the Electric Transmission Owner's transmission system	2,572,048	0	2,572,048
Energy Receipts from other sources	63,266	0	63,266
Total Energy Receipts	2,635,314	0	2,635,314

PART B: DELIVERY OF ENERGY

Reporting Month

Aug-09

1	 Energy deliveries tr 	o all points co	onnected to the Elec	tric Transmission C	Jwner's system (MW	H)
						_

	Firm Transmission	Non-Firm Transmission		
	Service	Service	Total	
For Distribution service:				
Affiliated Electric Utility Companies	2,094,894,407	0	2,094,894,407	
Other Investor-Owned Electric Utilities				
Cooperative-Owned Electric System	41,824	0	41,824	
Municipal-Owned Electric Systems	41,895	0	41,895	
Federal and State Electric Agencies				
Other end user service				
For Non Distribution service (transmission to transmission service)	1,438,159	0	1,438,159	
Total Energy Delivery	2,096,416,285	0	2,096,416,285	

Reporting Month

Aug-09

2. Energy deliveries to all points connected to the Electric Transmission Owner's system located in Ohio (MWH)

	Firm Transmission	Non-Firm Transmission	
	Service	Service	Total
For Distribution service:			
Affiliated Electric Utility Companies	1,751,899,872	0	1,751,899,872
Other Investor-Owned Electric Utilities			
Cooperatively-Owned Electric System	22,998		22,998
Municipally-Owned Electric Systems	41,895	0	41,895
Federal and State Electric Agencies			
Other end user service			
For Non Distribution service (transmission to transmission service)	1,423,872	0	1,423,872
Total Energy Delivery	1,753,388,637	0	1,753,388,637

PART C: LOSSES AND UNACCOUNTED FOR (MWH)

REPORTING MONTH

Aug-09

		Non-Firm	
	Firm Transmission	Transmission	
	Service	Service	Total
Sources minus Delivery (a)	(2,093,780,971)	0	(2,093,780,971)

PART A: SOURCES OF ENERGY

Reporting Month

Sep-09

1. Energy Receipts from all sources by type: (MWH)

	Firm Transmission Service	Non-Firm Transmission Service	Total
Energy Receipts from Power Plants directly connected to the Electric Transmission Owner's transmission system	2,201,461	0	2,201,461
Energy Receipts from other sources	74,954	0	74,954
Total Energy Receipts	2,276,415	0	2,276,415

PART B: DELIVERY OF ENERGY

Reporting Month

Sep-09

	Firm Transmission	Non-Fim		
	Service	Service	Total	
For Distribution service:				
Affiliated Electric Utility Companies	2,105,416,839	0	2,105,416,839	
Other Investor-Owned Electric Utilities				
Cooperative-Owned Electric System	34,739	0	34,739	
Municipal-Owned Electric Systems	37,626	0	37,626	
Federal and State Electric Agencies				
Other end user service				
For Non Distribution service (transmission to transmission service)	1,181,757	0	1,181,757	
Total Energy Delivery	2,106,670,961	0	2,106,670,961	

Reporting Month

Sep-09

2. Energy deliveries to all points connected to the Electric Transmission Owner's system located in Ohio (MWH)

	Firm Transmission	Non-Firm on Transmission	
	Service	Service	Total
For Distribution service:			
Affiliated Electric Utility Companies	1,759,069,773	0	1,759,069,773
Other Investor-Owned Electric Utilities			
Cooperatively-Owned Electric System	18,062		18,062
Municipally-Owned Electric Systems	37,626	0	37,626
Federal and State Electric Agencies			
Other end user service			
	0		
For Non Distribution service (transmission to transmission service)	1,168,339	0	1,168,339
Total Energy Delivery	1,760,293,800	0	1,760,293,800

PART C: LOSSES AND UNACCOUNTED FOR (MWH)

REPORTING MONTH

Sep-09

		Non-Firm	
	Firm Transmission	Transmission	
	Service	Service	Total
Sources minus Delivery (a)	(2,104,394,546)	0	(2,104,394,546)

PART A: SOURCES OF ENERGY

Reporting Month

Oct-09

1. Energy Receipts from all sources by type: (MWH)

	Firm Transmission Service	Non-Firm Transmission Service	Total
Energy Receipts from Power Plants directly connected to the Electric Transmission Owner's transmission system	2,493,348	0	2,493,348
Energy Receipts from other sources	461,418	0	461,418
Total Energy Receipts	2,954,766	0	2,954,766

PART B: DELIVERY OF ENERGY

Reporting Month

Oct-09

1. Energy deliveries to all points connected to the Electric Transmission Owner's system (MWH)

		Non-Firm	
	Firm Transmission	Transmission	
	Service	Service	Total
For Distribution service:			
Affiliated Electric Utility Companies	1,782,982,518	0	1,782,982,518
Other Investor-Owned Electric Utilities			
Cooperative-Owned Electric System	34,257	0	34,257
Municipal-Owned Electric Systems	55,707	0	55,707
Federal and State Electric Agencies			
Other end user service			
For Non Distribution service (transmission to transmission service)	1,433,178	0	1,433,178
Total Energy Delivery	1,784,505,660	0	1,784,505,660

Reporting Month

Oct-09

2. Energy deliveries to all points connected to the Electric Transmission Owner's system located in Ohio (MWH)

	Firm Transmission Service	Non-Firm Transmission Service	Total
For Distribution service:			
Affiliated Electric Utility Companies	1,495,733,571	0	1,495,733,571
Other Investor-Owned Electric Utilities			
Cooperatively-Owned Electric System	19,327		19,327
Municipally-Owned Electric Systems	55,707	0	55,707
Federal and State Electric Agencies			
Other end user service			
For Non Distribution service (transmission to transmission service)	1,419,678	0	1,419,678
Total Energy Delivery	1,497,228,283	0	1,497,228,283

PART C: LOSSES AND UNACCOUNTED FOR (MWH)

REPORTING MONTH

Oct-09

	Firm Transmission Service	Non-Firm Transmission Service	Totai
Sources minus Delivery (a)	(1,781,550,894)	0	(1,781,550,894)

PART A: SOURCES OF ENERGY

Reporting Month

Nov-09

1. Energy Receipts from all sources by type: (MWH)

	Firm Transmission Service	Non-Firm Transmission Service	Total
Energy Receipts from Power Plants directly connected to the Electric Transmission Owner's transmission system	2,398,908	0	2,398,908
Energy Receipts from other sources	400,332	0	400,332
Total Energy Receipts	2,799,240	0	2,799,240

PART B: DELIVERY OF ENERGY

Reporting Month

Nov-09

		Non-Firm	
	Firm Transmission	Transmission	
	Service	Service	Total
For Distribution service:			
Affiliated Electric Utility Companies	1,725,413,147	0	1,725,413,147
Other Investor-Owned Electric Utilities			
Cooperative-Owned Electric System	35,773	0	35,773
Municipal-Owned Electric Systems	54,635	0	54,635
Federal and State Electric Agencies			
Other end user service			·
For Non Distribution service (transmission to transmission service)	1,379,718	0	1,379,718
Total Energy Delivery	1,726,883,273	0	1,726,883,273

Reporting Month

Nov-09

2. Energy deliveries to all points connected to the Electric Transmission Owner's system located in Ohio (MWH)

	Firm Transmission	im Transmission Transmission	
·	Service	Service	Total
For Distribution service:			
Affiliated Electric Utility Companies	1,449,444,868	0	1,449,444,868
Other Investor-Owned Electric Utilities			
Cooperatively-Owned Electric System	21,069		21,069
Municipally-Owned Electric Systems	54,635	0	54,635
Federal and State Electric Agencies			
Other end user service			
For Non Distribution service (transmission to transmission service)	1,363,862	0	1,363,862
Total Energy Delivery	1,450,884,434	0	1,450,884,434

PART C: LOSSES AND UNACCOUNTED FOR (MWH)

REPORTING MONTH

Nov-09

		Non-Firm	
	Firm Transmission	Transmission	
	Service	Service	Total
Sources minus Delivery (a)	(1,724,084,033)	0	(1,724,084,033)

PART A: SOURCES OF ENERGY

Reporting Month

Dec-09

1. Energy Receipts from all sources by type: (MWH)

	Firm Transmission Service	Non-Firm Transmission Service	Total
Energy Receipts from Power Plants directly connected to the Electric Transmission Owner's transmission system	1,966,907	O	1,966,907
Energy Receipts from other sources	(406,206)	0	(406,206)
Total Energy Receipts	1,560,701	0	1,560,701

PART B: DELIVERY OF ENERGY

Reporting Month

Dec-09

		Non-Firm	
	Firm Transmission	Transmission	
	Service	Service	Total
For Distribution service:			
Affiliated Electric Utility Companies	2,033,277,074	0	2,033,277,074
Other Investor-Owned Electric Utilities			
Cooperative-Owned Electric System	46,397	0	46,397
Municipal-Owned Electric Systems	42,394	0	42,394
Federal and State Electric Agencies			
Other end user service			
For Non Distribution service (transmission to transmission service)	1,262,777	0	1,262,777
Total Energy Delivery	2,034,628,642	0	2,034,628,642

Reporting Month

•

Dec-09

2. Energy deliveries to all points connected to the Electric Transmission Owner's system located in Ohio (MWH)

	Firm Transmission Service	Non-Firm Transmission Service	Total
For Distribution service:			
Affiliated Electric Utility Companies	1,696,862,715	0	1,696,862,715
Other Investor-Owned Electric Utilities			
Cooperatively-Owned Electric System	28,744		28,744
Municipally-Owned Electric Systems	42,394	0	42,394
Federal and State Electric Agencies	0		
Other end user service			
For Non Distribution service (transmission to transmission service)	1,247,513	0	1,247,513
Total Energy Delivery	1,698,181,366	0	1,698,181,366

PART C: LOSSES AND UNACCOUNTED FOR (MWH)

REPORTING MONTH

Dec-09

		Non-Firm	
	Firm Transmission	Transmission	
	Service	Service	Total
Sources minus Delivery (a)	(2,033,067,941)	0	(2,033,067,941)

As of February 1, 2002 the Midwest ISO took over the function of managing DEO's Transmission Service Requests. As such, the allocation of AFC is the sole responsibility of the Midwest ISO.

FORM FE-T6: CONDITIONS AT TIME OF MONTHLY PEAK

Reporting Month JANUARY

Megawatts	3,651	Day of Week	FRI	Day of Mor	nth 16	Hour of	Peak 9:00
CURTAILMENT PR	IORITY CLAS	SSES		Firm Transmission Service	Non-Firm Transmission Service	Total	
Number of Requests				63	1	64	
Requests (MW)	20,035	360	20395				
		_					
Number of requests a	accepted			28	0	28	
Requests accepted (I	MW)			13,812	0	13812	
							Reason for non-delivery
Requests not accept delivery	oted (MW) ar	id reason for no	t accepting	6,223	360	6583	Withdrawn/ Invalid/ Refused/ Declined/ Annulled/ Retracted

Reporting Month FEBRUARY

Megawatts	3,514	Day of Week	THUR	Day of Mor	oth :	5	Hour of	Peak	8:00
CURTAILMENT PR	IORITY CLAS	SES		Firm Transmission Service	Non-Firm Transmission	Service	Total		
Number of Requests	65		2	67					
Requests (MW)	19,455		368	19,823					
Number of requests :	accepted			28		I	29		
Requests accepted (I	MW)			13,132		8	13,140		
								Reas	on for elivery
Requests not accep delivery	oted (MW) an	d reason for no	t accepting	6,323		360	6,683	With inv Refi Dec Ann Retr	drawn/ alid/ used/ lined/ ulled/ acted

Reporting Month MARCH

Megawatts	3,206	Day of Week	TUES	Day of Mor	nth 3	Hour of	Peak 8:00
CURTAILMENT PR	ORITY CLA	SSES	Firm Transmission Service	Non-Firm Transmission Service	Total		
Number of Requests			64	2	- 66		
Requests (MW)	19,393	366	19759				
Number of requests a	ccepted			29	1	30	
Requests accepted (N	4W)			13,170	6	13176	
							Reason for non-delivery
Requests not accep delivery	ted (MW) ai	nd reason for no	accepting	6,223	360	6583	Withdrawn/ Invalid/ Refused/ Declined/ Annulled/ Retracted

.

Reporting Month APRIL

Megawatts	2,860	Day of Week	MON	Day of Mo	nth 27	Hourof	Peak 16:00
CURTAILMENT PR	IORITY CLAS	SES	-	Firm Transmission Service	Non-Firm Transmission Service	Total	
Number of Requests				66	4	70	
Requests (MW)	19,777	381	20,158				
Number of requests a	iccepted			28	1	29	
Requests accepted (I	MW)			13,229	15	13,244	
							Reason for non-delivery
Requests not accep delivery	ited (MW) an	id reason for no	t accepting	6,548	366	6,914	Withdrawn/ Invalid/ Refused/ Declined/ Annulled/ Retracted

FORM FE-T6: CO	NDITIONS AT 1	TME OF MONTH	ILY PEAK	· · · · ·				· · · · · ·
Reporting Month	MAY			· · · ·	• • •			Viene and the Viene Viene -
		Day of Week	TUES	Day of Mo	nth 26	Hourof	Peak	17:00
CURTAILMENT P	RIORITY CLAS		· · · · · · · · · · · · · · · · · · ·	Firm Transmission Service	Non-Firm Transmission Service	Total		
Number of Request	s			60	5	65		
Requests (MW)				19,190	393	1958 3		
Number of requests accented					2	20		
Requests accepted	13 182	2	13209					
Requests not accepted (MW) and reason for not accepting				6,008	366	6374	Reas non-d With	on for elivery drawn/
delivery							Inv Refi Dec Ann Retr	alid/ used/ lined/ ulled/ acted
Reporting Month	JUNE	· · · · · · · · · · · · · · · · · · ·			· · ·		-	
	<u> </u>	Day of Week	THUR	Day of Mo	nth 25	Hour of	Peak	15:00
CURTAILMENT P	RIORITY CLAS		· · · · ·	Firm Transmission Service	Non-Firm Transmission Service	Total		
Number of Request	s			62	4	66		
Requests (MW)				19,708	401	20,109		•••••••
Number of requests	accented				1	31		
Requests accepted	(MW)	····		13,732	35	13,767		
Requests not accepted (MW) and reason for not accepting delivery				5,976	366	6,342	Reas non-c With Inv Refi	on for lelivery drawn/ alid/ used/
							Dec Ann Reti	nned/ ulled/ acted

Reporting Month JULY

Megawatts	3,607	Day of Week	THUR	Day of Mor	nth 16	Hourof	Peak 16:00
CURTAILMENT PR	IORITY CLAS	SSES	Firm Transmission Service	Non-Firm Transmission Service	Total		
Number of Requests	Number of Requests					69	
Requests (MW)	19,608	497	20105				
Number of requests a Requests accepted ()	Accepted			28	4	32 13663	
· · · · · · · · · · · · · · · · · · ·		,		,			Reason for non-delivery
Requests not accep delivery	oted (MW) an	nd reason for no	et accepting	5,976	466	6442	Withdrawn/ Invalid/ Refused/ Declined/ Annulled/ Retracted

Reporting Month AUGUST

Megawatts	4,018	Day of Week	MON	Day of Mor	nth 10	Hourof	Peak 14:00
CURTAILMENT PR	ORITY CLAS	SSES		Firm Transmission Service	Non-Firm Transmission Service	Total	
Number of Requests				60	5	65	
Requests (MW)				19,608	406	20,014	
Number of requests a	ccepted			28]	29	
Requests accepted (N	4W)			13,632	30	13,662	
							Reason for non-delivery
Requests not accep delivery	ted (MW) ar	nd reason for no	t accepting	5,976	376	6,352	Withdrawn/ Invalid/ Refused/ Declined/ Annulled/ Retracted

Reporting Month SEPTEMBER

Megawatts	3,254	Day of Week	TUES	Day of Mor	nth 22	Hour of]	Peak 17:00
CURTAILMENT PR	Firm Transmission Service	Non-Firm Transmission Service	Total				
Number of Requests	Number of Requests					70	
Requests (MW)	19,959	396	20355				
Number of requests a	ccepted			30	4	34	
Requests accepted (I	MW)			13,833	30	13863	
							Reason for non-delivery
Requests not accep delivery	ied (MW) an	d reason for no	ot accepting	6,126	366	6492	Withdrawn/ Invalid/ Refused/ Declined/ Annulled/ Retracted

Reporting Month OCTOBER

Megawatts	2,590	Day of Week	MON	Day of Mor	nth 19	Hour of	Peak 8:00
CURTAILMENT PR	ORITY CLAS	SES		Firm Transmission Service	Non-Firm Transmission Service	Total	
Number of Requests			63	4	67		
Requests (MW)			19,829	374	20,203		
Number of requests a	ccepted			31	1	32	
Requests accepted (N	4W)			13,852	8	13,860	
							Reason for non-delivery
Requests not accep delivery	ted (MW) an	d reason for no	t accepting	5,977	366	6,343	W ithdrawn/ Invalid/ Refused/ Declined/ Annulled/ Retracted

Reporting Month NOVEMBER

Megawatts	2,794	Day of Week	THUR	Day of Mor	nth 30	Hourof	Peak 19:00
CURTAILMENT PR	IORITY CLA	SSES		Firm Transmission Service	Non-Firm Transmission Service	Total	
Number of Requests				63	4	67	
Requests (MW)	· · ·			19,826	387	20213	
Number of requests a	accepted			31	1	32	
Requests accepted (I	MW)			13,850	21	13871	
							Reason for non-delivery
Requests not accep delivery	oted (MW) a	nd reason for no	t accepting	5,976	366	6342	Withdrawn/ Invalid/ Refused/ Declined/ Annulled/ Retracted

÷

Reporting Month DECEMBER

Megawatts	3,284	Day of Week	MON	Day of Mor	ath 10	Hourof	Peak 21:00
CURTAILMENT PR	IORITY CLAS	SES		Firm Transmission Service	Non-Firm Transmission Service	Total	
Number of Requests				63	4	67	
Requests (MW)	·			20,314	382	20,696	
Number of requests :	accepted			32	1	33	
Requests accepted (MW)			14,338	16	14,354	
							Reason for non-delivery
Requests not accept delivery	oted (MW) an	d reason for no	ot accepting	5,976	366	6,342	Withdrawn/ Invalid/ Refused/ Declined/ Annulled/ Retracted

(C) The Existing Transmission System

(1) General Description - The Duke Energy-Ohio (DEO) transmission system above 125 kV consists of 138 kV and 345 kV systems. The 345 kV system generally serves to distribute power from the larger, base load generating units which are connected to the DEO transmission system, and to interconnect the DEO system with other systems. These interconnections enable the transmission of power between systems as required to meet the service area load requirements and they provide capacity for economy and emergency power transfers. The 345 kV system is connected to the 138 kV system distributes power received through the transformers and also from several smaller generating units which are connected directly at this voltage level. This power is distributed to substations which supply lower voltage sub-transmission systems, distribution circuits, or serve a number of large customer loads directly.

As of December 2009, the transmission system of DEO and its subsidiary companies consisted of approximately 403 circuit miles of 345 kV lines (including DEO's share of jointly owned transmission) and 724 circuit miles of 138 kV lines. Portions of the 345 kV transmission system are jointly owned with Columbus Southern Power (CSP) and/or Dayton Power & Light (DP&L).

(a) A summary of the characteristics of existing transmission lines are shown on the following forms FE-T7, Characteristics of existing Transmission lines. The forms are separated into several groups. The first group is of lines designed to operate at 138 kV. The second group is of wholly owned lines designed to operate at 345 kV. The remaining groups are of lines designed to operate at 345 kV which are jointly owned with other utilities. The line numbers correspond to those shown on the schematic diagrams and geographic maps of section 4901:5-5-04 (C)(2).

	SUBSTATIONS ON THE LINE											nervet corp.	cumminaviile, vaarnage os / Wette Bewer Dist																					1940TH															Collingville					accented for	h(131kin	Beckett		
NUMBER	OF CIRCUITS	-	1	ч	~	4	7	51	,	י ר		N 6	N		7	2	-	ч	-	N			-	-+ (N	•	1 1	,	ñ	-		- 67		•		• 0	14	~1	-		(• •	• •	0	I	-1	-		~		-	~	~	•1	~	C 1		P3
	SUPPORTING	Stee] Tower		Wood Fole	Steel Tower	Wood Pole	Steel Tower	Steel Tower		Steel Tower	TEMOT TEEDE	Invol Table			Steel Tower	Steel Tower	Underground	Chderground	Steel Tower	Steel Tower	Steel Tower 5	Wood Pole	Wood B-Frame	OTOA DOCM	TOMOT TOODS	Steel Towar	Wood Pole		Steel Tower	Wood N-Frame		Btael Tower	MOOD FOLD	ADD N-1 LEND	a too boom	Steel Tower	Statl Tower	Steel Tower	Wood Pole 4	Tower	Steel Tower	Jamoi Taata	Stael Tower	Stael Tower		Wood Pole	Wood Pole	Staal Tower	stael Towar	MOOD H-RIFE	Mood RePear	Stanl Towne	Steel Tower	Steel Tower	steel Tower	Steel Tower	Wood Pole	Steel Tower
	WIDTE (Fert)	8		100	100	100	100	100		100			hot		100	100	100	100	100	100	100	;	100		OOT	Q,			100	100		61		0nt			DOT	100	50	Breel	100	8	100	100	2	1.00	100	100	100	9	500	9	3	100	100	100	01	100
я-0-и	(MILES)			1,34	2.37	1.40	1,09	16.45	:	4.20	3:	10.0	81.6		1.30	8	1.11	1.12	0.30	6E.39	0.85		8.0	X .	8.16	44 0	1.20		5.03	0.60		9.30	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.13	c -	0.25	0.32	5.84	0.39		0.22			96.99		5.02	4.86	2.77	24.11	76 - E	94	22.74	6.59	14.30	9°.60	9.69	. 99 .	2.90
E (KV)	DESIGN	86.5)	136	BET	861	BET	861					BEL		338	118	136	136	136		138		138	301		961		2	136	138		138	138	ACT	96.5		136	136	1001 1001		138					1.36	B 671	136	1.38		120	136	130	138	961	136	138	198
VOLTAGI	OPER. LEVEL		2	138	138	138	138	138	;	69			138		8F.1	12	138	138	138	69	821		001	BET	138	09		5	138	138		138	861	138	956	128	136	136	136		1.38	5		0	5	136	136	59	238	9113	90 F	136	138		138	138	138	138
ABILITY (MVA)	energen of Fating	580		336	336	369	421	42T		136	221		343		C Pa	E VE	277	277	336	123	679		181	336	336				243	343		940	949	349			245	421	478		478	123	207	169		378	378	225	225	252		26.2	310	282	390	390	377	142
WINTER CAP	NORMAL RATING	665		302	302	349	377	377		123	122	312	308		e ue		267	267	202	111	679		181	302	302		35		308	308		312	312	212			221	575	478		478			151	1	339	909	TIT	203	227	500	172	916	227	390	085	909	
ABILITY (HVA)	emergency Rating	306	B > 4	275	275	318	343	343		1	8	284	280		080	280	245	245	275	101	500		136	275	275	2		76	280	280		284	284	284			201	343	478		47B	101	1 01	137		308	308	101	164	206	ž	206	310	206	304	204	308	280
MMER CAP	NORMAL RATING	01.5	2	226	226	261	282	282		8	R ;	234	230				462	234	226	100	500		136	226	226	F	- 1	2	230	530		234	9E2	234		253	166	282	478		478					253	253	63	153	0/ 1		175		121	106	306	253	230
8	TERMINUS		TOWER NO.			Terninal	Red Bank	Backjord		Brighton	Tower No. 28	Terninal	West End	6-61 at 1 at 1			West Prot	Wast Root	Main/Wor St Line	Tewar No. 30	0hio/Ind. St. Line		blio/Ry. St. Line	bitami Fort GT	Morgan	Terring		G) arrol ar			tipe to set				Chic/Ky, St. Line		Obio/Kv.St.Line	Tobasco	Pierce		Pierce	Ohio/Ky. St. Line	Clinton County	and the second	Ford No. 50	1		TOWER No. 17	Ohio/Ind. St. Line	#17130123B	645 A		electrical d	Willey	Todhun terr	Tedhun ter	City of Remilton	Red Bank
	NIDINO		e repuera			Elmwood	Oaltav	Cakley		Mitchell	Tower No. 37	M1 tchell	Mitchell				charles	Charles		Miami Fort	Miami Fort		Miami Fort	Miand Fort	Miami Fort	Trenton		i en tarañ			Terninal				Back jord		Herknord	Deck tord	Beck jord	•	Beckjord	Brighton	MALEGN		Tadamentila Padamentila			Towar No.1	Trenton	Structure	696	Trenton	Bort Chion	Part Union	Port Union	Port Union	Port Union	Lateral
	LINE NAME		evendaletek kan ved Timmta vettel		Section 2	Elmwood-Terminal	Daklev-Red Bank	Cakley-Beck jord		Mi tohell -Brighton	Centrel-Ashland	hit tohell -Terminal	Mittchell-West End	44 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4			Charles Eset End				Miani Fort-Greendale		Miani Fort-Clifty Creek	Miami Fort-MGT	Miami Fort-Morgan	Trenton-Terminal	Dection 1		Maintar Gran	Bection 2	Terminal about the set	Section 1	Section 2	Section 3	Beckjord-Silver Grove	Bection 1	Bection 6		Beck ford-Pasterce		Beckjord-Pierce	Brighten-Wilder	Warren-Clinton County	MIANT FOR UNITATIA	CENTRAL FORCE (1) AUROPA	dention 1	Section 2	Trenton-Middletown Oxygen	Trenton-College Corner	W/W		Trenton-Todnunter	Port The survey of a la	bort Union-Willey	Port Union-Todhunter	Port Union-Todiunter	Part Union-City of Samilton	Lateral-Red Bank
	CIRCUIT NO. DEO-P.	ļ	654 4 0 0	-		683	288	986		1263	1269	1264	1286		1 0071		1 305			1666	1691		1682	1689	1689	1762		1763			1783				1980		1 96 1	1 895	1887		1889	2156	2381	2082				3263	3261	3283				50000 90000	3887	中野会ら	3839	4187

DUNE EMERAY OHIO 4901:5-5-04 (C) (1) (a) FORM FE-17: CHARANCTERIETICS OF EXISTING TRANSMISSION LINUS

.

1

WHOLLT OWNED TRANSMISSION LINES DESIGNED FOR 138 KV OPERATIONS

DUKE ENERGY ONID 4901:5-5-04 (C) (1) (2) FORM FE-TT: CHARACTERISTICS OF EXISTING TRANSMISSION LINES

WHOLLY OWNED TRANSMISSION LINES DESIGNED FOR 138 KY OPENATION

INTEGRAVA IS ONT ONE NEUTRER GENER WITERSTREAMYT (2006) IT

SUBSTATIONS ON THE LINE				Dimentaly Montacherv	Twenty Mile, Cornell	Simpson, Socialville		Montgomery		Obannonville	Maineville		Lato tN				Dicks Creek															Kleeman	Vin dway	Deer Fark														So. Cent Per Lastwood	Faidman, Marda Corner		Linnia (mari	Mt. Bealthy. Finewtown) •••		
NUMBER OF CIRCUITS	6			-	6	. 4		0	-	-		→.	, - ,	• ~		2	r i	ы	-1	N	+	ศ	ต	61	-1	¢		• •	• •	•	1	N	-	ч	(N 7	•		64	-	-	,	4 -	4		++	r-1	н	N (14	٠	4 - 4	~	-	
guppo rti ng Structures	Steel Towar		Steel Pole	BTOJ DOOM	Steel Tower	Wood Pole		Steel Tower	Macd Pole	Nood Pole	e Tod poom	Steel Tower	Mond B-Frank	Steel Towar		Steel Tower	Steel Tower	Steel Fole	Wood Pole	Staal Tower	ansig-H boom	Wood H-Frame	Steel Tower	Steel Tower	Wood Pole	1 - 1	Steed Bala	Starl Trunt	Starl Towar		Wood H-Frame	Steel Tower	Wood H-Frame	Wood Pole	1 - 1	STORE TOWER	Underground		Steel Tower	Wood Pole	Dinderground		TOWER FOR	Underground		Wood Fole	Wood Pole	Wood pole	Starl Towar	Steel Tower	Same T-France	Wood Pole	Stael Towar		Hood n-frame Steel Tower
HIDTH (FEET)	100	i	2	5	100	100		00 E	100	100	100		201	, 91 1		100	100	50	100	100	001	100	8	100	00 1	10,		3		2 -	100	100	100	100	1		100	1	100	100	001		33	001		0 01	901 T	20	83	001	201	38	10 0	1	38
R-O-W HIGHA (MILES)	06.0		0.67	BG' AT	01.0	8.39		13.40	4.45	12.23	8.70	2, 1		2.34		2.34	65.0	0.63	6.05	16.50	13.00	21.16	0.20	Q.37	1.70						0.60	15.07	0.12	9.10	:		4.24		9.64	0.07	8.08		0 U 0 C 1 F	1.32		4.97	1.50	9.63	19.08	14 · 52		11.71	0.50	2	24,06
JE (KV) DESIGN LEVEL	138		138	897	138	138		138	138	136	138	2		9E 1		138	136	138	136	138	138	138	118		138				136	2	961	138	138	138	!	87			136	1.38	1,36	ş		97		138	138	1.16		1	%	13	138		81
VOLTAN OPER. LEVEL	59		951	P71	138	136		136	138	136	136	» (136		138	138	138	138	138	130	138	196	138	8					}	136	136	1 38	130	-		138		9E T	138	961 1	, ,		136		136	138	136	BET		1 30		136	-	861
PABILITY (MVA) Emergency Rating	123	1	478	1 97	336	378		376	252	376	978 - 10		252	300		300	252	478	378	245	910 91	349	351	336	122		966				342	342	273	518			DOE		421	421	318			31.6		378	378	362	310	244	325	100	336		1 4 4 6 1 5 2 1 5 2
WINTER CAL NORMAL RATING	111		878 705	187	302	955		6CE	227	666	0	5	100	300		300	227	478	339	221	339	213	339	305	111		515		EL C	•	308	308	246	463			240	1	378	878	307	107	ŝ	307		935	5EE	382		1 2 2	202	100	302		127
Maility (MVA) Engergency Rating	101	i		197	275	308		306	206	308	BOB	151	101	300		300	206	478	308	201	806	285	287	275	101		280		546	8	248	280	22	623	1	005	300		344	34	282		100 100	282		104	306	306	ote		9.TE	275	275		206
BURNER CAI NORMAL RATING	8			187	226	253		253	0/T	253	253		155	000		205	170	814	253	166	253	234		226	(m) 19				100		230	230	58T	344		082	240	1	282	262	269		100	234		253	253	306	10	2 47	200	226	226		22
TERMINUS	Tower No. 5		Rockies Express continut	carijele Port finion			Rent ngton			Cedarvílie	Warren	TOWER NO. 20		AK Steel	AK Steel			Rockies Express	City of Hamilton	Horgan	Eastwood	Stuart	West End	Backjord	Ver 1 av	MLARI FORT		Beckhord	Mi ami Eort	Mani Fort				Terminal	Ashland			Tobasco			Charles	Terminal			Ford			Eas twood	Beakjord	Miami Fort : maaring	THUTUJ Q.T.				Tower 129
ORIGIN	Tower No. 1		Structure 698	KOCK168 5Xpress Wheter			Foster			Foster	Foster	TT .DU JONOT	Toology to the t	Todhuntar	Todhunter			Structure 69B	Fairfield	Fairfield	Brown	Brown	Chic/Ky. St. Line	Chio/Ry. St. Line	Pale No. 601	192919261		Sumor of As	Chin/Rv. Bt. 14he	dienview				Nad Bark	Red Bank			Red Bank			Rochelle	Rochelle			Bastwood			Millorest	Renington	ABCITM .	L efttm				Thenton Inter
A LINE NAME	Ivorydal e-Terminal	Shaker Run-Rockies Express	Section 1	Bostar-Dort Thion	Section 1	Section 2	Fester-Remington	Section 1	Section 2	Foster-C eda rville	Foster-Marren	Todhunter-Manchatter	lounder off and states at some	Tedhunter-AK Steel	Todhunter-AK Steel	Section 1	Bection 2	Todhunter-Rochies Express	Fairfield-City of Hamilton	Fairfield-Morgan	Brown-Eastwood	Brown-Stuart	Wilder-West End	Wilder-Beckjord	Tobasco-Harkley	Ebenezer-Miami Fort	Section 1	a hotoba Annaraida dan dan toto	Creater Falling Fort	Glenview-Miami Fort	Bection 1	Section 2	Section 3	Red Bank-Terminal	Red Bunk-Ashiand		Section 3	Red Bank -Tobasco	Section 1	Section 2	Rochelle-Charles	Rochelle-Terminal		Section 3	Eastwood-Ford	Section 1	Saction 2	院上】」。G FB BE T -EXACCO	Remington - Backjord	Thilley within Fort	Teutuset-Selita	section 2 Section 2	Section 3	Hutchings-College Corner	section 1 Section 2
CIRCULT NO. DEO-4	4861	5381		C H P S	2		5487			5489	5464			1682	5695			1 6895	5781 1	5783	5985	5885	6059 1	9061 1	6365	4AA9		608.6	TDRF	1284				1481	7484			7489			6583	8286			648T			6892	9482					1 60861	

DURE ENERGY OWIO 1901:5-5-04(6)(1)(a) 1908 FE-TT: CHARACTERISTICS OF EXTRITIG TRANSMISSION LINES WHOLLY OWNED TRANSMISSION LINES DESIGNED FOR 345 KV OFERATION

	SUBSTATIONS ON THE LINE																Martin and Annual State	Nevcovr		1	12-how					Park, Bethany			JOURN ITCM	Cooper
NUMBER	OF CIRCUITS	2		0	-	,	-	evi	ţ	. V	2	ſIJ	N	ŝ		-	4 4	N		-	N		- 1		0	~	61		N	~
	SUPPORTING STRUCTURES	Steel Tower		Steel Tower	Steel Tower	1 • ;	Steel Tower	Steel Tower		Tempi Teens	Steel Tower	Stool Tower	Steel Tower	Steel Tawer		Starl Tamer		START TARTS	Total Total		IGNOI TOOLE			18MD7 7880 9	Steel Towar	Steel JOWER	Steel Tower		OTOJ TOOR	steel Towar
	HICIN (FEET)	150		150	150	i	150	150		201	150	150	150	150		0.81		150	0		190			150	150	150	150		150	150
8-0-W	LENGTE (MILLES)	0.32		11.65	0.24		0.46	9.65		14.84	0.32	15.79	14.84	4.68		000	0.00	13.82			5.48		12.0	4.02	2.62	10.29	6.44	:	5, 72	0,90
(IVV) 3E	design Level	345		545	10 P M		345	5 7 6		5 7 0	946	9 4 5	04B	345		740		345			972		1 1 1	345	000 P	345	345		540	345
VOLTA	OPER. LEVEL	345		345	345		345	345		5	345	345	345	345			851	851		861	861		138	138	138	138	861		861	138
ABILITY (MVA)	EMERGENCY RATING	824		1315	1315		1315	1315		1315	1315	1315	1315	1315			421	421		818	518		382	382	478	385	478		518	336
WINTER CAP	NORMAL	717		1195	1195		1195	1195		1195	1195	1195	1195	1195			118	978 1		463	463		382	392	818	345	478		463	302
ABILITY (MVA)	RMERGENCY RATING	824		1315	1315		1315	1315		1315	1315	1315	1315	1315	2414		344 244	344		423	423		382	382	478	314	478		423	274
SUMMER CAP	NORMAL	717		1195	1195		3911	1195		1195	1195	36TT	1195	2011	1		283	282		344	946		382	382	478	259	478		344	226
	TERMENTS	Ohio/Ky. St. Line	Foster			Port Union				Chio/Ny. St. Lune	Chio/Kv, St. Line	Todhunter	Terminal	Tellinetor		Red Bank			Port Union			Terninal			Rockies Express	Shaker Run	Structure 592	Terminal		
	ORIGIN	Miand Fort	Port Union			Terminal				Ten Large	Miami Fort	Foster	Chic/KV St. Line			pack jord			Svendale			Evendalt			structure 69A	Foster	Todhunter	Red Bank		
	ALTAN ANAG	Mizmi Fort-Tanners Creek	Port Union-Foster	Gention 1	section 2	Terminal-Port Union	Section 1	Section 2	Miani Fort-Terminal	Section 1	Section 2	Weter-Tothunter	Cart BandaTanana		ACCORDS T STOLDARD	Beckjord-Red Bank	Section 1	Section 2	Evendale-Port Union	Section 1	Section 2	Evenda le-Terminal	Section 1	Saction 2	Shakar Dun-Bookles Express	Foster-Shaker Bur	Todimeer-Rocking Embrand	Had Bank-Terminal	Section 1	Section 2
	CIRCUIT NO PEOLE	 04	e o	;		Ę	;		14			5		9	22	1683			4683			4685			5,201		2600	7481		

		UBSTATIONS ON THE LINE																																									
		NUMBER OF CIRCUITS	1	~		1	61 -	r i	7	7	-1	- - ,	+ (4	-1	ťV				• •		-14	N.	n	-1	ſ	N 7	4	8	-1		-1-6	1.4	,	2	64	ŗ	4 -	•	•	1	1	
		SUPPORTING STRUCTURES	Steel Tower	Steel Tower	Steel Tower	Steal Tower	Steel Tower	Steal Tover	Steel Tower	Steel Tower	Steel Tower	Stael Tower	Janol Taata		Steel Tower	Steel Tower	Wood B-Fram		STORE TOWNS	Wood B-Fram		Steel Tower	3840T. 1983 R	Steel Tower	Steel Tower	antis la sta	JENOI TEELE		Stael Tower	Steel Tower	ו •	Steel Tower Steel Tower	Steel Tower		steel Pole	Steel Towar		MELA-H POUN	Steel Tower	Stenl Tower	Stanl Towar	Staal Towar	
		(1334)	150	150	150	150	150	150	150	150	150		, (, ,		150	150	150		2	ទ្ធ		ទីខ្ល	ł	150	150		3 5	2	150	150	!	35	150		150	150		150	5		150	150	
		R-O-W Length (Miles)	0.32	93.38	0.57	8.30	3.66	45.34	63.16	a. 52	80.38	13.13		CC	4.69	8,52	18.36	5	0.00	0.48		31. 77	90	9, 68	25.22	5			35,88	10.03	:	32	08.0		5.75	0.90		0.5 1	10.55	65.00	26.36	10.86	
63	is Lven	TEVEL (XV) 1.5	345	345	345	345	345	345	596	345	570	19 40 19 40 19 40		0	345	1990) 1990)	345		1.00	570		345	1 J	345	345	976	0 5 7 7	1	345	345	1	9 4 9 4 9 4 9 4	345	•	345	345			345	1	940	345	
NII NOISS	L COMPANIE NILEAGE G	VOLTAG OPER. LEVEL	345	396	345	345	345	345	345	345	590	945 1	n 1	9	345	345	345	•	5 u 4	1		345	A#2	345	345	245	0 u 4 p	1	345	345			345	1	345	045		1 1 1	146		345	345	
HIO 1) (2) (ISTING TRANSMI), CSP AND DP41 Izrship, Total	Ability (mur) Emergency Rating	500	1 31 5	1315	1315	1315	1315	1315	1315	1315	iais Stei			1,334	1338	1673		1374 1374	1374		1315	A181	1281	1281		4/5T		1315	1315		1215	1315		1315	1315		610T	2121	1315	201	1315	
E ENERGY O 5-5-04 (C) (stics of F2	SION - DEC	MINTER CAP NORMAL RATING	500	1105	1195	56 1 1	1195	651t	1195	1195	1195	2015			1042	1042	1302			9611		1195	0×11	1042	1042	10.11	0.11		1195	1195			1195		1195	1195		2021	1105	1995	EGLT	1195	
DUK 4901: -77: CHARACTERIE	LY OWNED TRANSMITS	ABILITY (MVA) EMERGENCY RATING	500	1915	1315	1315	1315	1315	1315	1315	1315	31E1		1001	1338	1336	1673		5/51	1374		1315	61¢1	1281	1281		1.01 P		1315	1315		1036	1315		1315	1315		1673	1315	1915	1551	1315	
FORM PE	COMMON TENANTS I	SUMMER CAL NORMAL RATING	500	1195	1195	1195	1195	1195	1195	1195	1195	96 T T		1671	2002	1042	1302		9611	1195		21195	5611	1042	1042	2	-611 		1195	1195		1264	11 95		1195	1195		2051	1105	1105	1951	1195	
		SUNIMASI	87.erce	Foster		Greene	Agenty .		Åog to		eueere	Xillen Tap	160-10TTTU	sugaroreer Ri rhv	to a		Corridor	Ryatt			Z î.mone r		:	Bascy		λqx ta		Port Union			;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	Chie/Ny, St. Line Towny Vo. 34	Dhie/Kv. At. Line	Terminel			Kirk		Manual a	ationte	Foster	gruart	
		ORIGIN	Beck jord	Plarce		Sugarcreek	0L0010		ernbaru		Stuart	e criment		Reatty			Rick	Conesville			Ohio/Ky. St. Line			ALLANCA		Conserille		Z LINNEL			i	Stames Dari Darit	Tower No. 23	Red Bank			Bixday		Miller Ten	stuart	gillerest.	Ohic/Ey. St. Line	
		LINE NAME	Beck jord-Flerce	Plaros-Foster Easting 1	Section 2	Sugarcreek-Greene	Greeken 1 Section 1	Section 2	narguta-stroy Section 1	Section 2	Stuart-Greene	Stuert-Killen	Stuart-Billiorest	to o the structure of t	T COTTO	Section 2	Kirk-Corridor	Conseville-Eystt			Spurlock-Simer	Section 1	Section 2	Atlanta-Beatly Section 1	Section 2	Consavi 1 Le-Rixby	Section 1	Zimmer-Port Union	Section 1	Section 2	struct-red Bank	Section 1		Red Bank-Terminal	Section 1	Section 2	BLADY-KLAR	I UDIIIUMO	a Hornesse Fill an - Marcald	stration-restgate Stuart-billante	MA() Lorest - Poster	Spur Look – Stuart	
		CIRCULT NO. CCD-B	10	05		6	2	5	ì		60	91	= :	•	5		en en	40			41		;	42		43		44		!	45			46			47		10		1 4	2	

94

i

'n