

P.O. Box 1930 Pittsburgh, PA 15230-1930

REC	El	VED
JUL	3	1996

DOCKETING DIVISION Public Utilities Commission of Ohio (412) 393-6000

July 1, 1996

0006

Public Utilities Commission of Ohio 180 East Broad Street Columbus, OH 43266-0573

Attention: Docketing Division

96-210-E1-FOR

Enclosed for filing with the Commission please find ten copies of Duquesne's 1996 Long Term Forecast Report. With the review and approval of the Forecasting Division of the Public Utilities Commission of Ohio, Duquesne is submitting the Company's "Resource Planning Report 1996," as filed with the Pennsylvania Public Utility Commission on July 1,1996, as an appropriate and complete response to the electric long-term forecast reporting requirements of Section 4901 of the Ohio Administrative Code. Duquesne's responses to the 1996 LTFR Special Topics are provided in the Executive Summary of the Enclosure, as follows:

Transmission, pages 10-14 Clean Air Act Amendments, pages 15 and 16.

I certify that the information set forth in the report is true and correct to the best of my knowledge, information, and belief. Please direct any questions to William M. Hayduk, who can be reached on 412-393-6422.

Very truly yours,

3M Rosol F. M. Nadolny

General Manager

Enclosure

cc: Dwight D. Nodes, Esquire (w/enclosure) Kerry M. Stroup, Chief Forecasting Division (w/enclosure)

RECEIVED

JUL 3 1996

DOCKETING DIVISION Public Utilities Commission of Ohio

By capitalizing on the strengths of our core business--

 we are positioning ourselves for growth in a competitive energy services market.

> LONG TERM FORECAST REPORT JULY 1, 1996

By capitalizing on the strengths of our core business--

 we are positioning ourselves for growth in a competitive energy services market.

> EXECUTIVE SUMMARY RESOURCE PLANNING REPORT JULY 1, 1996

Table of Contents

:

	<u>Subject</u>	<u>Page</u>
1.	Overview	1
	Duquesne Capabilities	2
	Integrated Resource Plan Strategies	3
2.	Existing Resources and Capabilities	5
	Generation Resource Portfolio	5
	Fort Martin Sale	7
	Transmission Facilities	8
	Cold-Reserved Facilities	8
	Cost Management Initiatives	9
3.	Major Planning Assumptions	10
	Utility Industry Competition	10
	Transmission Access	11
	Non-Utility Generation	14
	Fuel Prices and Availability	14
	Environmental Compliance	15
	Marketing Initiatives	17
	Economic and Sales Growth	17
4.	Long-Range Integrated Resource Plan	21
	Reserve Margin	21
	Innovative Approaches	21
	Demand-Side Management Programs	22
	Future Least-Cost Resources	23
5.	Implementation Plan	28
	Överview	28
	Fort Martin Sale	29
	Brunot Island Reutilization	29
	Capacity Purchases	30
	Transmission Access	30
	Market Opportunities	30
	Conservation and Demand-Side Management Programs	31

1. Overview

The electric utility industry is facing a tremendous amount of uncertainty. Changing state and federal regulations and new technologies will clearly influence the future of energy services providers. Duquesne Light has implemented several broad-based customer initiatives that continue the Company's commitment to a transition to competitive electric energy markets and target the highest levels of guaranteed customer service in the industry.

In May, 1996, the Pennsylvania Public Utility Commission (PAPUC) approved Duquesne's plan to freeze base rates for five years for all customers. Also included in the plan is a \$5 million annual fuel cost credit to customers and a cap on the Company's fuel clause. This initiative is predicated on the sale of Duquesne Light's interest in the Fort Martin Power Station, an asset that is no longer needed for base load capacity. The proceeds from the sale will be used to further restructure Duquesne's balance sheet.

In addition, Duquesne has recommended to both the Pennsylvania Public Utility Commission (PAPUC) and the Federal Energy Regulatory Commission (FERC) that Duquesne, Allegheny Power System and Penn Power, along with companies in the existing Pennsylvania-New Jersey-Maryland (PJM) power pool, be admitted to a new regional pool, and that this pool be operated by an Independent System Operator (ISO) through which all wholesale electricity would be sold under common terms at market prices. Duquesne expects that the regional pool will ultimately reduce rates through a more efficient wholesale power market. Duquesne has also filed a pricing proposal at the FERC for wheeling through service at marginal cost rates which will eliminate inefficient and non-comparable rate "pancaking" until large ISO's are formed.

By capitalizing on the strengths of the core business - a solid, well-balanced sales mix; improved operating efficiencies; decreased production costs; and stabilized rates - Duquesne is positioning itself for growth in a competitive energy services market. These elements of Duquesne's corporate strategy serve as the foundation for the development of the 1996 integrated resource plan. In support of the strategy, Duquesne's integrated resource plan is based on the following on-going objectives:

 Optimize underutilized generating capacity – Duquesne continues to have underutilized, base-load generating capacity and environmentally clean coldreserved facilities. Duquesne believes that these resources will have significant value for economically serving new and expanding retail customers as well as meeting regional power needs in the competitive wholesale marketplace. Promote competition in the wholesale marketplace -- Initiatives at the federal level under the National Energy Policy Act of 1992 and at the state level in the PAPUC investigation into the role of competition in the Pennsylvania electric utility industry are encouraging wholesale competition as a means for achieving greater levels of efficient use of the nation's energy resources. Duquesne supports wholesale competition as a means to economically meet the energy needs of both retail and wholesale customers with an orderly transition to retail customer choice.

6

- Maintain stable prices -- Customers continue to experience an era of uncertainty, marked by growing competition, a changing regulatory framework and a tightening of financial constraints. Through Duquesne's ongoing aggressive cost containment strategies, resource optimization strategies, and environmental leadership Duquesne will continue to offer price stability, and thus less risk, to all customers during this period of uncertainty. Duquesne's commitment to price stability is clearly demonstrated by the Company's five year rate freeze and fuel clause cap.
- <u>Meet customer-specified levels of service reliability</u> -- Customers consistently name reliability as one of the more important attributes of quality service. A hallmark of Duquesne's quality management framework is to deliver service tailored to the customer's needs in order to maximize value.

Duquesne's 1996 integrated resource plan has been developed with the expectation that wholesale competition will continue to be aggressively implemented through requirements by the FERC for the filing of open access transmission tariffs, retail wheeling is deferred until the benefits of wholesale competition are captured, and the obligations to provide service and to maintain capacity reserve margins are retained by the regulated utility. Duquesne anticipates it will modify this plan based on the outcome of future state and/or federal initiatives to enhance competition which may eliminate our traditional obligation to serve, the emergence of the ISO wholesale market structure, or any other developments which modify the current industry structure.

<u>Duquesne's Capabilities:</u> Duquesne's strengths make it well-positioned to achieve the integrated resource plan objectives.

- Duquesne's base load capacity, when supplemented by peaking resources, can meet anticipated native load growth as well as to continue as a competitive supplier in the wholesale market.
- Duquesne has proven to be a highly reliable supplier, ensuring high capacity factor delivery from its base load facilities.
- Duquesne has low production costs from a broad portfolio of generation resources which support competitive energy prices.

- Duquesne has been and continues to be committed to environmental quality which mitigates the future need for significant expenditures for complying with environmental regulations.
- Duquesne continues to be proactive toward securing firm and non-firm transmission service to those markets which will benefit most from reliable, low-cost generation.
- Duquesne has demonstrated a customer-oriented focus by providing innovative pricing and solutions to add value to its product and service.

Integrated Resource Plan Strategies: Duquesne's integrated resource plan is flexible to be responsive to customer needs.

Duquesne's 1996 integrated resource plan has been designed to continue providing reliable and cost-effective service to retail customers during a period of growing uncertainty in the utility industry, while increasing flexibility and providing options to allow the Company to respond promptly and effectively to increasing competition. Duquesne will meet the expected annual growth of retail customers' peak demand and the needs of potential new major customers through at least 2008, with existing base load resources, the potential for the reutilization of cold-reserved Brunot Island and the purchase of peaking capacity. New resources are not anticipated before 2009. Duquesne's primary resource planning objective in the short range is to continue to maximize the utilization and efficiency of existing resources. This objective will be accomplished over the next five years by aggressively pursuing new retail sales, by implementing wholesale bulk power sales, by continuing to optimize the generation resource portfolio, by purchasing firm and/or spot peaking capacity in the wholesale marketplace, by shaping customer load profiles and by returning cold-reserved facilities

Year	Reactivated Plant (MW)	DSM Programs (MW)	Non-Utility Generators (MW)	Peaking Purchases (MW)	New Resources (MW)
1996		4	(A)		
1997	90	70	35	125	(276)
1998		25			
1999	300 *	8		25	
2000	(90)	8		100	
2001	267	1		(250)	

Table No. 1 Annual Resource Additions

* Actual in-service date of Phillips may be advanced or delayed depending on the timing of bulk power sales.

to service when justified by the economics of the wholesale marketplace. Duquesne's preferred resource plan for the period 1996 through 2001 is summarized in Table No. 1. The plan reflects initiatives targeted at major retail and wholesale power sale opportunities. Duquesne expects to successfully structure and implement innovative power supply arrangements which will be tailored to meet the needs of large customers. Because of Duquesne's abundant and cost-effective base load capacity resources, the Company can be extremely flexible in meeting the needs of a retail customer in the service territory or the needs of a major wholesale customer. Duquesne has implemented innovative pricing under Tariff Rule No. 4 to support the business expansion of existing customers and to attract new retail customers. In the wholesale marketplace Duquesne can offer to potential customers a firm energy sale, a system power sale, a system power sale with specific unit backup, a unit power sale, an asset sale or any other innovative approach to providing capacity and energy. In addition, the duration of delivery to a wholesale customer is negotiable, with short, intermediate or long-term sales available. Major long-term wholesale and/or retail sales will help to continue to optimize existing under-utilized capacity and support the reactivation of existing cold-reserved facilities.

Following the sale of Duquesne's interest in Ft. Martin, for planning purposes, all remaining existing generation facilities are assumed to continue in service over the next 20 years to meet the needs of retail customers and provide resources for wholesale power sales. As shown in Table No. 1, Duquesne expects to meet future short-term needs for resources primarily through the most cost-effective mix of reactivated facilities and peaking purchases. A number of options are being explored for the reactivation of the existing cold-reserved 300 MW Phillips Power Station. For planning purposes, Phillips is proposed to be returned to service in 1999 to supply a long-term firm wholesale power sale. Depending on the outcome of Duquesne's wholesale market efforts the actual in-service date of Phillips may be advanced or delayed. Although there is considerable uncertainty concerning the future of demand-side management programs, for planning purposes, growth in customer peak demand is expected to be moderated through the implementation of selective programs. In addition to the retention of existing and the addition of 55 MW of new peak-shaving capability produced by interruptible rates, other DSM programs are projected to reduce peak demand by at least 60 MW by the end of 2001

Despite the sale of Duquesne's interest in Ft. Martin, the existing mix of capacity continues to include abundant base-load generation resources. In order to continue to balance Duquesne's capacity mix, the Company's long-range planning objective is to supplement the base-load facilities with additional peaking type resources. Duquesne intends to implement additional peak-shaving DSM programs, such as additional interruptible customer loads, and pursue all other least-cost opportunities to acquire peaking resources, such as firm purchases from other utilities or non-utility generation facilities, diversity exchange agreements with other utilities and/or

competitive procurement solicitations, in order to defer or eliminate the need for construction by Duquesne of any power generation facilities.

9

2. Existing Resources and Capabilities

Duquesne's diverse portfolio of in-service generation resources, supplemented with cold-reserved peaking facilities and spot-market peaking purchases will meet expected retail load growth through at least 2008. Duquesne's strong transmission interconnections and its strategic location on the transmission grid are beneficial to Duquesne in supporting service reliability and in allowing the arrangement of firm delivery of low-cost energy and capacity to wholesale power markets. In addition to existing in-service generation facilities, Duquesne has the cold-reserved Phillips Power Station and the Brunot Island Combined Cycle facility which can be cost-effectively reutilized to meet retail load growth and support wholesale power sales. Duquesne is aggressively reducing the overall cost structure of its operations through the more efficient use of all resources. As the result of Duquesne's strong resource position and aggressive management of costs, the Company expects to limit the addition of new resources, freeze retail rates and further strengthen the Company's competitive position in the wholesale power markets.

<u>Generation Resource Portfolio:</u> Duquesne offers a broad portfolio of reliable, economical and environmentally sound generating resources.

At year end 1995, Duquesne owned all or a portion of the generating facilities shown in Table No. 2, with the exception of Beaver Valley No. 2, which is leased. As discussed on page 7, Duquesne's ownership interest in the Ft. Martin Power Station will be sold in late 1996. The table illustrates Duquesne's capacity (1995 summer rating) and net plant output during 1995. For those units which are not wholly-owned by Duquesne, the capacity value shown in Table No. 2 is Duquesne's share of each unit. As shown in the table, Duquesne's in-service capacity line-up is dominated by base load nuclear and coal-fired facilities, which enables Ducuesne to produce energy very cost-effectively. Duquesne has created a broad portfolio of generation facilities through a program of joint construction and ownership of generating units, as shown in Table No. 3. Duquesne jointly owns generating units and transmission facilities through the Central Area Power Coordination Group (CAPCO) in northern Ohio and western Pennsylvania. In addition to Duquesne, CAPCO consists of the Ohio Edison System (Ohio Edison Company (OE) and Pennsylvania Power Company (PP)) and Centerior Energy (Cleveland Electric (Iluminating Company (CEI) and Toledo Edison Company (TE)). There is coordinated maintenance scheduling, a limited and qualified mutual back-up arrangement in the event of outages at the jointly-owned units, and various capacity and energy transactions among the companies. Under the agreements governing the construction and operation of these generating units, the day-to-day operating responsibility is assigned to a specific operating company. Duquesne works closely with the operating

Unit	Fuel	Summer Capacity		Fuel Summer Capacity		Annual	Output
		(MW)	%	(GWh)	%		
Cheswick	Coal	562	20.1%	3,431	22.8%		
Elrama	Coal	474	16.9%	2,412	16.0%		
Bruce Mansfield No. 1	Coal	228	8.2%	1,048	7.0%		
Bruce Mansfield No. 2	Coal	62	2.2%	168	1.1%		
Bruce Mansfield No. 3	Coal	110	3.9%	310	2.1%		
Fort Martin No. 1	Coal	276	9.9%	1,055	7.0%		
Sammis No. 7	Coal	187	6.7%	1,008	6.7%		
Eastlake No. 5	Coal	186	6.7%	896	6.0%		
Total Coal		2,085	74.5%	10,329	68.7%		
Beaver Valley No. 1	Nuclear	385	13.8%	2,598	17.3%		
Beaver Valley No. 2	Nuclear	113	4.0%	856	5.7%		
Perry No. 1	Nuclear	161	5.8%	1,255	8.3%		
Total Nuclear		659	23.6%	4,710	31.3%		
Brunot Island	Oil	54	1.9%	(1)	0.0%		
Total Oil		54	1.9%	(1)	0.0%		
Total		2,798	100%	15,038	100%		

Table No. 2 In Service Generation Resources

10

Table No. 3 Jointly-Owned Generation Resources

Unit	Ownership Share						
	DLC	MP	PE	CEI	OE	PP	TE
Bruce Mansfield No. 1	29.3%		-	6.5%	60.0%	4.2%	•
Bruce Mansfield No. 2	8.0%		•	28.6%	39.3%	6.8%	17.3%
Bruce Mansfield No. 3	13.7%		-	24.5%	35.6%	6.3%	19.9%
Fort Martin No. 1	50.0%	25.0%	25.0%	-	-	-	•
Sammis No. 7	31.2%		-	-	48.0%	20.B	-
Eastlake No. 5	31.2%		•	68.8%	-	-	-
Beaver Valley No. 1	47.5%		-	•	35.0%	17.5%	-
Beaver Valley No. 2	13.7%		-	24.5%	41.9%	-	19.9%
Perry No. 1	13.7%		•	31.1%	30.0%	5.2%	19.9%

Note: Ownership share in **boldface** type indicates the company with operating responsibility.

companies of all jointly-owned units. Co-owners of the jointly owned units are kept fully informed of developments through regular meetings and periodic reporting. Duquesne expects that achieved levels of fossil and nuclear station availability and efficiency will be maintained throughout the planning period.

11

<u>Fort Martin Sale:</u> The sale of Duquesne's ownership interest in the Fort Martin Power Station demonstrates ongoing efforts to optimize the utilization of generation resources.

Duquesne and AYP Capital, Inc., an unregulated subsidiary of the Allegheny Power System, entered into an agreement on November 29, 1995 for the sale of Duquesne's 50 percent ownership interest in Unit 1 of the Fort Martin Power Station, for the sum of \$169 million. On December 20, 1995, Duquesne filed a Petition for Declaratory Order and Application for a Certificate of Public Convenience with the PAPUC requesting approval for the sale in conjunction with a six-point plan to be financed in part by the proceeds of the transaction. The Office of Consumer Advocate (OCA) petitioned to intervene in the approval process for the transaction. Duquesne and the OCA have agreed on certain modifications to the proposal. The PAPUC approved Duquesne's modified proposal on May 23, 1996. On June 6, 1996 the PAPUC approved AYP Capital's petition concerning the transaction.

Under the plan Duquesne will freeze base rates for a period of five years, will contribute beginning in 1997 an annual \$5 million credit to the Company's Energy Cost Rate (ECR), and will establish a ceiling on the ECR of 14.7 mils per kilowatthour, which is the average historical level for the past five years. In the past five years, Duquesne Light's price of electricity has gone down by an inflation-adjusted 25 percent. No increases for the next five years means that the average cost of other goods and services in the Pittsburgh region will have increased 50 percent by the end of the decade relative to the price of electricity. The proceeds from the sale will be used to initiate innovative measures that will enhance Duquesne's competitive position over the next several years.

In addition to the rate freeze, three key points of the plan address Duquesne's nuclear plant investment and include: a one-time reduction of about \$130 million in the value of the Company's nuclear plant investment; increased depreciation of the Company's investment in nuclear facilities by \$25 million per year for the next three years; and an annual increase of \$5 million in contributions to nuclear plant decommissioning funds. In addition, the proceeds of the sale are expected to be used to finance reliability enhancements to the Brunot Island combustion turbines allowing the reutilization of these facilities. The reliability enhancements are contingent on the projects meeting a least-cost test versus other potential sources of peaking capacity. The Brunot Island combustion turbines are expected to provide 135 MW of summer peaking capacity and 168 MW of winter peaking capacity, providing Duquesne greater operational flexibility in meeting system peak demands

and emergency conditions. Finally, an annual \$500,000 contribution will be made to a customer assistance program designed to help low-income customers maintain their bill payment program.

12

<u>Transmission Facilities:</u> Duquesne is strategically located on the transmission grid to arrange firm delivery of low cost energy and capacity.

Duquesne, located in the eastern region of the East Central Area Reliability (ECAR) region of the North American Electric Reliability Council (NERC), has over 4,000 MW of interconnected tie capability which, in combination with ample ECAR baseload capacity, benefits Duquesne customers through adequate reserve levels and high levels of reliability. In addition to transmission facilities within the service territory, Duquesne shares entitlement with OE, PP, CEI and TE in a 345 KV transmission network that interconnects the CAPCO companies. Currently this 345 KV transmission system has transfer capability in excess of 2,000 MW over that needed for native load requirements. In addition, Duquesne, through ties with APS, has access to the Pennsylvania-New Jersey-Maryland Interconnection Association (PJM Companies), a major purchaser of Duquesne and ECAR power. Continuing a trend of more than five years, Duquesne is actively using its transmission tie capabilities in selling short-term economy power to eastern markets. Duquesne, on April 15, 1996, became the first electric utility in the nation to propose charging wholesale customers marginal cost-based rates for transmitting electricity through its system. The proposal is discussed beginning on page 13.

<u>Cold-Reserved Facilities:</u> Duquesne has almost 570 MW of environmentally clean cold-reserved capacity available to be reactivated.

In addition to current active generation facilities, Duquesne has almost 570 MW of environmentally clean cold-reserved capacity. The Phillips Power Station and the Brunot Island facility, as shown in Table No. 4, are licensed and are clean sources of electricity that can be utilized to meet retail load growth and expanding

Unit	Fuel	Capacity (MW)
Phillips	Coal	300
Brunot Island Combustion Turbines	Oil/Gas	135
Brunot Island Steam Turbine	Oil/Gas	132

Table No. 4 Cold-Reserved Generation Units

opportunities in the power markets. The Table illustrates the expected summer capacity of the plants upon return to commercial operation.

The sale of Duquesne's interest in Fort Martin is expected to result in the utilization of the oil-fired combustion turbines at the Brunot Island facility and/or the purchase of peaking capacity. Anticipated growth in peak demand within the service territory is expected to require additional peaking generation. Duquesne expects additional peaking capacity purchases and/or the Brunot Island steam turbine to meet this need. In addition, Duquesne believes that Phillips is an important component in meeting market opportunities to supply long-term bulk power. 13

<u>Cost Management Initiatives:</u> Duquesne is aggressively reducing the overall cost structure of its operations through the more efficient use of all resources.

As competition in the electric energy marketplace increases, so does the importance of cost control. Duquesne had another successful year in this area in 1995. During the year, the Beaver Valley Power Station nuclear generating units both had record refueling outages in terms of the minimum number of days needed for completion. Duquesne's operating plan anticipates continued improvement in the levels of future outages. Re-engineering of business processes, multicrafting at power stations and continued efficiency improvements across the Company during the 1990's have resulted in a 20% increase in the number of customers served per employee. Additionally, annual utility operation and maintenance expenses, excluding energy costs, have been reduced by more than \$10 million in the past two years.

Energy costs have been a major focus of Duquesne's cost reduction efforts since these costs represent approximately 40% of the Company's variable costs. To ensure that energy costs remain competitive, Duquesne manages a portfolio of spot and contract purchases of fossil fuels such that the unit costs out-perform a market index. Nuclear fuel costs, as the result of renegotiated contracts, are expected to decline on average about 7% annually over the next two years. Duquesne anticipates continued success with fuel management practices as discussed in Major Planning Assumptions (Section 3 of this Report) where fuel costs are projected to increase less than the anticipated rate of inflation. Energy costs were lower in 1995, the third time in the last five years. As a result of access to efficient river transportation Duquesne's delivered cost of coal is among the lowest in Pennsylvania. In addition, nuclear fuel cost has been reduced by 36% during the last five years. With these and other cost reductions, Duquesne was able to lower its variable production costs by 12% during the 1990's.

Over the next few years, Duquesne will be implementing a number of initiatives that fundamentally will change the way it does business to enhance customer satisfaction levels that already are among the best in the industry. A state-of-the-art communications service of Itron, Inc., to be installed during the next two years, will provide Duquesne's residential customers with superior levels of service reliability, security and convenience. Itron, a leading supplier of energy information and communication solutions to the utility industry, will own and operate a two-way

wireless communication network that will provide a link through the electric meter to 580,000 customers. The Customer Advanced Reliability System will provide a variety of valuable information. Electric meters can be read and usage communicated electronically to Duquesne's control center. As a result, customer service personnel will have a real-time picture of the status of power delivery across the system and for individual customers. If a customer loses power for any reason, the company will know more quickly than in the past. The customer will not have to report the outage, and Duquesne's efforts to restore power can begin sooner, reducing the time the customer is without power. Customers also will be able to request electric service to start or stop on any hour of any day. And customers who have electric meters inside their homes no longer will have to provide access to have their meters read. In the future, Duquesne Light will be able to profile each customer's consumption of electricity. Coupled with time-of-use and other special rates, this information will help customers realize more value from their use of electricity. As the transition to competition and customer choice begins over the next decade, Itron's technology will enable the Company to implement the needed metering and billing services. The first customers will be connected to the new system beginning in April 1996, and all customers will be on-line in 1997.

14

Duquesne views its long-standing environmental commitment as another competitive advantage. Surveys show that an increasing number of consumers place value on a company's environmental performance. Through the years, Duquesne has earned a reputation as an environmental leader. The Company's commitment is driven by an environmental strategic plan, which stresses compliance, training, issues management, stewardship and communications. Through a comprehensive and innovative approach to environmental excellence in operations and community stewardship programs, Duquesne continues to expand that commitment.

3. Major Planning Assumptions

<u>Utility Industry Competition:</u> Competition in bulk power markets will continue to grow, offering sales opportunities.

The electric utility industry continues to experience fundamental changes in response to open transmission access and increased availability of energy alternatives which have significantly increased competition in the industry. Previously captive customers are now seeking freedom to choose alternative suppliers of energy. These competitive pressures require utilities to offer competitive pricing and terms to retain customers and to develop new markets for the optimal utilization of their generation capacity.

Duquesne supports competition and is proactively responding to the federal and state regulatory initiatives and the resulting business uncertainties, and is

positioning itself to operate in a more competitive environment. Recent enhancements to the rate structure allow flexibility in setting rates in order to retain its customer base and attract new businesses. Duquesne has also taken significant actions to improve the competitive position of the Company's generation portfolio, as evidenced by the Fort Martin sale. Duquesne is confident that open access transmission will offer opportunities to buy and self power on a market basis from or to entities outside the service territory. 15

At the national level, the National Energy Policy Act of 1992 (NEPA), was designed to encourage competition among electric utility companies, to improve energy resource planning and to encourage the development of alternative sources of energy. NEPA authorizes the Federal Energy Regulatory Commission (FERC) to require electric utilities to provide wholesale suppliers of electric energy with nondiscriminatory access to the utility's wholesale transmission system. As discussed in the following section concerning transmission access, recent FERC Orders will have a significant impact on competition.

In Pennsylvania, the Public Utility Commission (PAPUC) has conducted an investigation concerning regulatory reform. The PAPUC staff issued an interim report in August 1995 that recommended that retail wheeling not be implemented at that time because of concerns that retail wheeling would benefit large industrials at the expense of smaller customers and utility shareholders, who would absorb the costs of stranded investments, and that service reliability could be impaired. The report concludes that performance-based ratemaking, wholesale competition and utility cost cutting could provide the benefits of retail wheeling without the attendant disruptions. The PAPUC has indicated an intention to issue a final report to the governor and the Pennsylvania General Assembly in mid-1996.

<u>Transmission Access:</u> The FERC will continue to promote transmission access as a means to enhance the economic efficiency of the industry's resources.

The Federal Energy Regulatory Commission (FERC) on April 24, 1996 issued two closely related final rules and a Notice of Proposed Rulemaking (NOPR). The first rule, Order No. 888, addresses both open transmission access and stranded cost issues. The second rule, Order No. 889, requires utilities to establish electronic systems to share information about available transmission capacity. It also establishes standards of conduct. The NOPR proposes to establish a new system for utilities to use in reserving capacity on their own and others' transmission lines.

Order No. 888 opens wholesale power sales to competition. It requires public utilities owning, controlling, or operating transmission lines to file non-discriminatory open access tariffs that offer others the same transmission service they provide themselves. This will bring lower cost power to electric consumers; ensure continued reliability of the electric power industry; and, provide for open and fair electric transmission services by public utilities. In the open access final rule, the

Commission issued a single pro forma tariff describing the minimum terms and conditions of service to bring about non-discriminatory open access transmission service. All public utilities that own, control, or operate interstate transmission facilities are required to offer service to others under the pro forma tariff. They must also use the pro forma tariffs for their own wholesale energy sales and purchases.

16

The Order also provides for the full recovery of stranded costs, that is, costs that were prudently incurred to serve power customers and that could go unrecovered if these customers use open access to move to another supplier. To be eligible for recovery, stranded costs recoverable under the rule are those associated with wholesale requirements contracts signed before July 11, 1994. After that date, recovery must be specifically provided for in the contract. The FERC ruled that stranded costs should be recovered from a utility's departing customers. The Commission stated that if costs are stranded by retail wheeling, utilities should look to the states first for recovery of those costs. The Commission would become involved only if state regulators lack authority under state law to provide for stranded cost recovery. In cases where retail customers become wholesale purchasers, the FERC said it is the primary forum for recovery.

The second rule, Order No. 889, is known as the Open Access Same-time Information System rule or OASIS rule. It also covers Standards of Conduct. It works to ensure that transmission owners and their affiliates do not have an unfair competitive advantage in using transmission to sell power. This rule requires public utilities to obtain information about their transmission system for their own wholesale power transactions, such as available capacity, in the same way their competitors do, via OASIS on the Internet; and, completely separate their wholesale power marketing and transmission operation functions.

In the newly issued NOPR, the Capacity Reservation Open Access Transmission Tariff investigation, the FERC proposed that each public utility would replace the Open Access Rule pro forma tariff with a capacity reservation tariff (CRT) by December 31, 1997. Under the proposed CRT, utilities and all other power market participants would reserve firm rights to transfer power between designated receipt and delivery points. The FERC explained that the proposed reservation-based service may be more compatible with an open access requirement.

On the issue of Independent System Operators (ISO's), the FERC noted that many transmission providers are considering going beyond separation of generation and transmission, functional unbundling, and turning transmission over to an ISO. Although this is not required under the rule, the FERC offers guidelines for the creation of ISO's that are subject to its approval. Among other things, management and control of ISO's should be completely independent of generation owners and ensure fair access to the transmission system and should eliminate "pancaking" of embedded cost rates.

Duquesne has submitted to the FERC a pro-competitive transmission pricing proposal that will provide wholesale customers comparable access to Duquesne's transmission system as well as Duquesne's rights to use the CAPCO 345 KV system. Duquesne proposes to establish a Point-to-Point Transmission Service Tariff and a network Transmission Service Tariff that promote economic efficiency and eliminate rate "pancaking." Duquesne believes that its model, if adopted by other utilities, would greatly enhance the efficiency of regional bulk power markets. Duquesne's proposal is that each utility charge customers for wheeling out or through the utility's system using marginal-cost only rates. These customers would take service under a marginal cost "point-to-point" tariff. The only customers bearing an embedded cost rate would be the "native load customers" of each utility. These customers would pay one embedded cost charge for the use of the system under a "network"-style tariff. This contribution to the fixed costs of the system would entitle them to use the utility's system to import network resources and economy energy and to sell power off-system at no additional embedded cost charge. Under Duquesne's approach, if adopted by other utilities, these customers also would be permitted the use of the systems of other utilities on a marginal cost basis (using their point-to-point tariffs), thereby eliminating rate "pancaking" between utility systems.

17

This proposal is necessary to eliminate the inefficient method of rate "pancaking" that exists today. In today's bulk power market, the general practice is for each utility to charge customers desiring to wheel through its system an allocated share of its fixed transmission investment. This embedded cost rate may, at some times, be discounted to account for the value of the transaction; however, given that the provision of transmission service is, at present, a monopoly service, the utility will establish a price that maximizes its profits, not societal efficiency. The effect of these "pancaked" embedded cost rates is to reduce the efficiency of regional bulk power markets. Duquesne proposes to implement this pro-competitive pricing proposal using the non-rate terms and conditions of the FERC's pro forma tariffs, with only a few changes. The most significant change proposed by Duquesne is a requirement that customers serving load within Duquesne's system pay an access fee under the Network Tariff. This change is necessary because, without it, a native load (or network) customer of Duquesne could rely entirely on point-to-point service -- which has no embedded cost charge -- and thereby avoid paying a fair share of any embedded transmission costs. Duquesne's proposal envisions that each native load customer would pay one, and only one access fee. Duquesne believes its proposal is the only way to meet FERC's three requirements of revenue adequacy. efficiency, and comparability absent having all utilities belong to one ISO. A copy of Duquesne's request is provided in Appendix C to the "Resource Planning Report 1996"

<u>Non-Utility Generation:</u> IPP/NUG development will continue to be modest in the ECAR region.

18

Duquesne currently purchases capacity and/or energy from five independent power producers and PURPA "qualifying facilities." These facilities, at year end 1995 provided 21 MW of capacity to Duquesne's resource plan. Duquesne has reached an agreement with Zinc Corporation of America, an existing supplier, to increase the firm capacity purchased by Duquesne from the current level of 15 MW to 50 MW. The incremental 35 MW had been available to Duquesne on a non-firm basis from existing Zinc Corporation coal-fired generation facilities. The new agreement makes the 35 MW available on a firm basis. The NUG facilities, beginning in 1996, will provide 56 MW of capacity to Duquesne's resource plan. The 1996 resource plan includes no other firm capacity additions as the result of expected new cogeneration and renewable resource generation facilities in the service area.

Duquesne expects that the introduction of new independent power facilities, qualifying facilities, and exempt wholesale generators will continue to be constrained by power market conditions, especially in the mid-western region. Given the current reserve margins at most midwestern utilities, avoided cost based price offerings to independent projects are significantly lower than the level normally required to justify the development of most projects. An abundance of coal-fired, base-load capacity continues to result in utility levelized avoided energy cost of less than 2 cents, and, in many cases, a minimal or no avoided capacity cost.

Although Duquesne does not expect to add new independent power facilities, the Company continues to evaluate innovative opportunities such as distributed generation options. Distributed generation is an approach to meeting customers' energy needs through small-scale, modular technology which can be sited throughout the service territory close to the customers load and responsive to the economic and environmental characteristics of the site. Examples of emerging distributed generation technologies include photovoltaics, fuel cells and batteries. Siting small-scale generation near customers offers numerous benefits including improved reliability, new options for delivering tailored energy services, potential deferral of costly transmission and distribution system upgrades, and improvements in the efficiency of the distribution system.

<u>Fuel Prices and Availability:</u> Duquesne fuel price increases will track the market and supplies will remain adequate.

Coal continues to be the Company's primary fuel, with approximately 69% of the electric energy generated by Duquesne's system in 1995 produced by coal-fired generating capacity. Duquesne expects that the Company's future coal prices will generally track fuel market conditions and price increases are expected to be modest. Duquesne expects that coal supplies will remain adequate, including supplies of reduced sulfur coal which are key to compliance with emissions control

requirements. On an on-going basis, Duquesne continually monitors and evaluates coal market conditions, particularly low-sulfur coal, and pursues opportunities for cost-effective marketplace purchases and/or fuel contracts.

19

Duquesne expects that low sulfur coal will continue to be available for Duquesne's CAAA Phase I facilities from sources within the region. Duquesne has negotiated contracts for Cheswick that will provide low sulfur coal through at least 2002. Compliance at Sammis #7 is being achieved by burning reduced sulfur coal. Following the expiration of a coal contract in mid-1997, Eastlake #5 will reduce emissions by burning a reduced sulfur coal and/or purchasing emission allowances. Duquesne's Phase II units, the wholly-owned Elrama Power Station and the jointly-owned Mansfield Power Station, are each equipped with scrubbers for reducing emissions. The scrubbers enable these stations to use high sulfur coal, which is expected to be readily available at very competitive prices. Beyond the term of the Company's contracts, price escalation is expected to be modest at an annual rate of about 3.1%. As the result of Duquesne's fuel contracting practices, the Company projects that coal costs will increase at an average rate over the planning period of slightly more than 2.2% per year. Duquesne's coal price forecasts do not reflect potential BTU taxes, carbon taxes or any other as yet unspecified energy taxes.

Adequate supplies of uranium and conversion services are available to meet Duquesne's requirements for its jointly owned/leased nuclear units. Duquesne's nuclear fuel prices are expected to decline in the intermediate term as the result of contract provisions. Beyond the term of the Company's contracts, price escalation is expected to be modest at an annual rate of about 3.5%. As the result of Duquesne's fuel contracting practices, the Company projects that the average rate of increase in the cost of nuclear fuel over the planning period will be less than 2.3% per year.

<u>Environmental Compliance:</u> Environmental compliance will be achieved at a modest cost impact.

Duquesne has a long history of going beyond simply complying with environmental regulations and is proud of maintaining the highest standards in this area of public interest. Although Duquesne has satisfied all of the Phase I requirements of the Clean Air Act Amendments (CAAA), Phase II requires significant additional reductions of sulfur oxides (SO₂) and nitrogen oxides (NO_x) by the year 2000. Duquesne currently has 659 MW of nuclear capacity, 1,174 MW of coal capacity equipped with SO₂ emission reducing equipment (including 300 MW of property held for future use at Phillips) as well as 749 MW of capacity that meets the 1995 standards of the CAAA through the use of low sulfur coal. Duquesne's strategy through the year 2000 utilizes a combination of compliance methods that include fuel switching; increased use of, and improvements in SO₂ emission reducing equipment; low NO_x burner technology; and the purchase of emission allowances. Flue gas conditioning and post combustion NO_x reduction technologies may also be

employed if economically justified. In addition, Duquesne is examining and developing innovative emissions technologies designed to reduce costs. Duquesne continues to work with the operators of its jointly owned stations to implement cost-effective compliance strategies to meet these requirements. NO_x reductions under Title IV of the CAAA were required at Cheswick and completed in 1993. The ozone attainment provisions of Title I of the CAAA also required NO_x reductions by mid-1995 at Cheswick, Elrama and Bruce Mansfield. Duquesne achieved such reductions using innovative combustion system modifications and low NO_x burner technology. Duquesne currently estimates that additional capital costs to comply with CAAA requirements through the year 2000 will be approximately \$20 million. This estimate is subject to the final federal and state regulations ultimately enacted.

20

Duquesne has developed, patented and installed low NO_x burner technology for the Elrama boilers. These cost-effective NO_x reduction systems installed on the Elrama roof fired boilers was specified as the benchmark for the industry for this class of boilers in the EPA's pending Group II rulemaking. Duquesne is also currently evaluating additional low cost, developmental NO_x reduction technologies at Cheswick and Elrama. An artificial neural network control system enhancement, cosponsored by the Electric Power Research Institute and Duquesne, will be demonstrated at Cheswick. The Gas Research Institute and Duquesne are sponsoring a targeted natural gas reburn demonstration at Elrama. Both demonstrations will be completed in 1996.

As required by Title V of the CAAA, Duquesne has filed comprehensive air operating permit applications for Cheswick, Elrama, BI and Phillips during the last half of 1995. Duquesne also filed its Title IV Phase II CAAA compliance plan with the PUC on December 27, 1995. Duquesne is closely monitoring other potential future air quality programs and air emission control requirements, including additional NO_x control requirements that were recommended for fossil fuel plants by the Ozone Transport Commission and the potential for more stringent ambient air quality and emission standards for SO₂ particulates, and other by-products of coal combustion. These potential requirements are in various stages of discussion and consideration. The costs and impacts, if any, cannot be quantified until the final regulations have been implemented.

In 1992, the Pennsylvania Department of Environmental Protection (DEP) issued Residual Waste Management Regulations governing the generation and management of non-hazardous residual waste, such as coal ash. Duquesne is assessing the sites which it utilizes and has developed compliance strategies under review by the DEP. Capital compliance costs of \$3.0 million were incurred by Duquesne in 1995 to comply with these DEP regulations; on the basis of information currently available, an additional \$2.5 million will be incurred in 1996. The expected additional capital cost of compliance through the year 2000 is estimated, based on current information, to be approximately \$25 million. This estimate is subject to the results of ground water assessments and DEP final approval of compliance plans.

<u>Marketing Initiatives:</u> Innovative pricing strategies are expected to continue to attract major new customers and incremental loads at existing facilities.

21

A key strategy in Duquesne's plan for succeeding in an increasingly competitive marketplace is to continue to utilize innovative pricing flexibility to attract new commercial and industrial customers to the region and to maintain Duquesne's competitiveness with customers who add incremental load.

In 1995, Duquesne made use of an innovative tariff modification known as Rule 4. Rule 4 allows Duquesne to compete for new or incremental business by offering economic rates to customers with competitive alternatives. Two examples of new load that were successfully attracted by Duquesne through use of Rule 4 are BOC Gases and J&L Specialty. Each customer could have sited new facilities elsewhere, but through application of Rule 4, will site new load in Duquesne's territory and will create jobs in the Pittsburgh area. BOC Gases will build a new oxygen plant for USX in the Monongahela River Valley, site of USX's only remaining fully integrated steel mill in Pittsburgh. J&L Specialty will add a new finishing mill to their existing steel works in Midland, PA.

At the other end of the customer size spectrum, Duquesne has recently obtained PAPUC approval for a new economic development rider, Rider 20 - Small Business Development Rider, to complement the existing and very successful economic development Riders 8 and 9. Rider 20 is targeted toward existing, small industrial customers with less than 100 kW of existing load that add less than 100 kW of new load and new industrial customers that have less than 100 kW of load. Patterned after Riders 8 and 9, Rider 20 will grant demand charge discounts over 5 years. Rider 20 fills out Duquesne's economic development offerings so that all size customers are eligible for an incentive to grow and locate business in Allegheny and Beaver Counties.

<u>Economic and Sales Growth:</u> Economic growth in the balance of the service territory will be slow to moderate, producing modest growth in sales and peak demand.

Duquesne provides electric service to customers in Allegheny County, including the City of Pittsburgh, and in Beaver County, a service territory of approximately 800 square miles. A map of the service area is shown in Figure No. 1. The population of the area served by Duquesne, based on 1990 census data, is approximately 1,510,000, of whom 370,000 reside in the City of Pittsburgh. Duquesne serves approximately 580,000 customers within this service area. The composition of the Company's 1995 retail energy sales, by customer class, is shown in Table No. 5. The commercial class was the largest component with 46.1% of the Company's retail sales. In 1995, sales to Duquesne's 20 largest customers contributed approximately 14.2% of customer revenues. Sales to USX Corporation, Duquesne's

Figure No. 1 Duquesne Service Area

22

largest customer, accounted for 3.7% of total customer revenues. Duquesne's marketing initiatives targeted at industrial customers, as discussed above, are expected to increase the industrial segment of Duquesne's future sales. Kilowatt-hour sales to retail customers in 1995 increased 2.5% in comparison with 1994 sales levels. As a result of extreme summer and winter weather conditions in 1995, residential and commercial energy sales

Customer Class	(1985)	(1995)
Residential	25.9%	27.2%
Commercial	41.2%	46.1%
Industrial	32.0%	26.0%
Other	0.9%	0.7%

Table No. 5 Energy Sales By Customer Class

increased by 4.9% and 3.0%, respectively. Industrial sales volume in 1995 declined when compared to 1994 because of temporary production facility outages experienced by some of Duquesne's large industrial customers.

Duquesne expects economic growth in the service territory to reflect the recent historic trend of slow to moderate growth, which will result in modest growth in Duquesne's sales and peak demand. Duquesne's 1996 integrated resource plan has been prepared using the Company's base case forecast. This forecast is based on a long-term trend forecast of national economic conditions provided by the WEFA Group. The major Pittsburgh region economic input assumptions for the base case, high case and low case are summarized in Table No. 6. In the judgment

23

	Scenario				
Indicator	Base	Optimistic	Pessimistic		
	Annual Growth Rate				
Real Gross Domestic Product	2.3%	2.8%	1.8%		
Consumer Price Index	3.6%	3.1%	3.9%		
Industrial Production	2.4%	3.2%	1.5%		
Real Per Capita Income	1.5%	1.6%	1.4%		

<u>Table No. 6</u> Forecast Input Assumptions

of Duquesne's forecasters, the base case load forecast produces the most likely level and mix of future national economic activity. The base case outlook is for modest economic growth in Western Pennsylvania. In order to establish a bandwidth for the forecast, high and low case forecasts of energy consumption and peak demand have been prepared. The high case is based on an optimistic scenario for economic growth using WEFA's high growth scenario, while the low case forecast is based on a "pessimistic" forecast of a low level of national

Figure No. 2 Peak Demand Forecast

economic activity. In the base case, weather conditions are assumed to equal the historical mean conditions. The extreme high and low weather conditions actually experienced since 1980 are used in the high case and low case bandwidth forecasts respectively. The base or median case forecast of peak demand for 1996 is 2,537 MW. Base case peak demand is expected to grow at an annual rate of about 0.8% and reach 2,970 MW by 2015, as shown in Figure No. 2. The high case forecast of peak demand for 1996 is 2,678 MW, 5.6% greater than the base case forecast. Peak demand in the high case is expected to grow at an annual rate of about 0.9% and reach 3,203 MW by 2015. The low case forecast of peak demand for 1996 is 2,369 MW, 6.6% below the base case forecast. Peak demand in the low case is expected to grow at an annual rate of about 0.9% and reach 3,203 MW by 2015.

24

The base or median case forecast of energy consumption for 1996 is 13.2 billion kWh. Base case consumption is expected to grow at an annual rate of about 1.4% and reach 17.2 billion kWh by 2015, as shown in Figure No. 3. The high case

Figure No. 3 Energy Forecast

forecast of energy consumption for 1996 is 13.5 billion kWh, 2.3% greater than the base case forecast. Energy consumption in the high case is expected to grow at an annual rate of about 1.7% and reach 18.2 billion kWh by 2015. The low case forecast of energy consumption for 1996 is 12.9 billion kWh, 2.3% below the base case forecast. Consumption in the low case is expected to grow at an annual rate of about 1.3% and reach 16.4 billion kWh by 2015.

4. Long-Range Integrated Resource Plan

<u>Reserve Margin:</u> Reserve margin for retail load will be maintained at a level which will provide adequate reliability.

25

Duquesne uses a planning criterion based on generally maintaining an adequate reserve level above the projected annual peak demand for determining the timing of generation capacity additions. A 22% reserve margin cap is used by Duquesne for planning purposes. Duquesne's 12% to 15% minimum reserve margin guideline for planning purposes reflects the level needed to ensure adequate reliability for retail customers and the need to absorb an increment of capacity while not exceeding the 22% upper limit on reserve margin. The minimum reserve target also reflects Duquesne's substantial transmission import capability, currently in excess of 4,000 MW, Based on an analysis of resources installed in the East Central Area Reliability Coordination region (ECAR), the New York Power Pool (NYPP), and the Virginia-Carolinas region (VACAR), Duquesne believes that spot purchases of energy and/or capacity to support reliability are likely to continue to be available through at least the year 2000. The minimum reserve target also reflects Duquesne's load profile. The magnitude and duration of Duquesne's summer peak indicates the potential for reliance on imported resources during less than 100 hours per year. Duquesne will continue to meet a 6% minimum operating reserve requirement for spinning and quick-start reserves to ensure reliability.

Duquesne normally experiences peak load conditions in the summer. The system peak for 1995 of 2,666 MW, which occurred on August 16, 1995, was the highest retail system peak in Duquesne's history, exceeding, by more than 100 MW, the 2,535 MW peak experienced in 1994. Duquesne's reserve margin in 1995 was 13.2%. The capacity portfolio reflected in Duquesne's reserve margin includes inservice generating capacity, plus 21 MW of capacity provided by non-utility generation contracts, plus a portion of the capacity from "property held for future use" available to meet customer needs during peaking or emergency conditions. The customer peak demand reflected in Duquesne's reserve margin is based on the actual peak demand experienced during the extraordinarily hot 1995 summer weather conditions, less 97 MW of interruptible load resources available from interruptible customers, but not actually interrupted during the peak period.

Innovative Approaches: Innovative approaches toward enhancing supply flexibility and diversity with adequate reserves will continue to be implemented.

A primary objective of Duquesne's integrated resource planning efforts is to optimize underutilized generating capacity. The Company's plans for optimizing generation resources are designed to increase base load generating capacity factors, promote competition in the wholesale marketplace, and maintain stable prices while continuing to meet customer specified levels of service reliability. The Company is committed to exploring firm energy sales to wholesale customers, system power sales, system power sales with specific unit back-up, unit power sales, generating asset sales and any other approach to efficiently managing capacity and energy. The sale of the Company's ownership interest in the Ft. Martin Power Station demonstrates the ongoing efforts to optimize the utilization of generation resources. The sale is expected to reduce power production costs by employing a cost-effective source of peaking capacity through enhanced utilization of the simple cycle units at Brunot Island and/or purchases of peaking capacity. Implementation of the proposed plan will better align the company's generating capabilities with its retail load requirements.

26

As generation resources are required in the future, Duquesne intends to continue to pursue all innovative least-cost opportunities to enhance supply flexibility and diversity, while maintaining an adequate reserve margin. The Company expects to defer or eliminate the need for construction by Duquesne of any power generation facilities. Opportunities such as short-, intermediate- or long-term firm purchases from other utilities, independent producers, or marketers; diversity exchange agreements with other utilities; new non-utility generation facilities; and/or competitive procurement solicitations will continue to be evaluated.

Duquesne and APS have agreed to extend an innovative diversity exchange agreement which meets each Company's needs for seasonal capacity. Duquesne provides APS with 100 MW of system capacity during their winter peak season. In return, Duquesne receives 200 MW of system capacity from APS during the spring and fall seasons when Duquesne is performing major maintenance on large generation facilities. The agreement is structured such that each company provides the same volume of energy over the course of a year. Duquesne intends to continue this exchange with APS and, as additional capacity is needed, pursue similar cost-effective exchanges with other utilities.

In order to maintain the utilization of base load facilities during off-peak periods Duquesne has extended an agreement to sell 200 MW of low cost energy during off-peak periods to APS for pumping power for the Bath County pumped storage hydroelectric facility. The arrangement is beneficial to Duquesne because the Company sells off-peak energy which improves its capacity factor and, in addition, produces incremental proceeds which benefit ratepayers through the Energy Cost Rate. APS benefits because low-cost coal-based energy becomes available from the pumped hydroelectric facility during APS peak periods.

<u>Demand-Side Management Programs:</u> The implementation of new demandside management resources is subject to considerable uncertainty.

In March 1994, Duquesne filed with the Pennsylvania Public Utility Commission a comprehensive Demand-Side Management (DSM) Plan. The Company's Plan

consists of six DSM programs which are primarily aimed at moderating Duquesne's peak demand while minimizing the impact on energy consumption. The Residential High Efficiency Lighting Program is designed to encourage residential customers to use energy efficient, compact fluorescent lighting. The Residential Load Management Pilot Research Program provides an incentive to encourage residential customers to allow utility control of their home air conditioning. The Small/Medium Commercial Load Management Program proposes to market a microprocessor based load control device to national and regional chains. The Cool Storage Program is designed to provide financial incentives to encourage commercial customers having large air conditioning loads to install cool storage systems which shift cooling demand from on-peak to off-peak time periods. The Customer Generator Program, which is targeted at customers having emergency generators with capacity greater than 200 KW, will offer an incentive to make these generators available to Duquesne for dispatchable load management at times of system need. These five DSM programs are expected to produce 61 MW of reductions in summer peak demand by 2001

27

The Long-Term Contract Interruptible Program offers a new interruptible rate having a five-year minimum term and an incentive which reflects Duquesne's avoided capacity cost. Duquesne projects that the existing interruptible tariff provisions, when combined with the new Interruptible Program, will produce a mixture of existing and new interruptible load totaling 163 MW. Duquesne has successfully negotiated interruptible service contracts with two new major customers which will increase interruptible resources by 41 MW in 1997 and an additional 14 MW in 1998. Additional details concerning the programs are provided in Appendix A, Exhibits IRP-ELEC 10A through 10E.

For the purpose of developing Duquesne's 1996 integrated resource plan it is assumed that implementation of the DSM Plan begins in 1996. However, depending on (1) the outcome of the Commission's Investigation Into Electric Power Competition, (2) the resolution of ongoing legal challenges to the Commission's DSM regulations, (3) a Commission final order on DSM regulations, (4) actual load growth in the service territory, and (5) the timing and magnitude of Duquesne's anticipated bulk power sales, the feasibility of the DSM programs will be re-evaluated and programs may be eliminated, added, expanded, advanced or delayed.

<u>Future Least-Cost Resources:</u> New supply-side or demand-side resources will be added, as required, based on least-cost criteria.

Duquesne expects that increasing competition in the energy markets will produce continued uncertainty throughout the remainder of the 1990s. In order to achieve Company objectives during this uncertain period, Duquesne's integrated resource plan for the remainder of the 1990s is focused on maximizing value through planning flexibility and providing varied options. Duquesne expects to maximize the utilization and efficiency of existing resources by:

- Optimizing the use of existing capacity by
 - Aggressively pursuing new retail sales,
 - Aggressively pursuing long-term firm wholesale power sales and/or asset sales,

28

- Participating in profitable short-term wholesale economy sales.
- Returning cold-reserved generation to service.
- Purchasing cost effective summer peaking capacity.
- Shaping customer load profiles through DSM programs.

As the Company moves toward optimizing the utilization of existing generation resources, Duquesne's long-range planning objectives are to:

- Implement least-cost opportunities to acquire peaking resources.
- Seek capacity interchange agreements with other utilities.
- Pursue additional peak-shaving DSM programs.
- Add/purchase supply-side peaking resources, as required.

The Company's preferred Integrated Resource Plan is summarized in Tables 7 through 9. The Company's summer peak demand, reflecting the impact of DSM programs, is expected to grow by 316 megawatts between 1996 and 2015. For planning purposes, Duquesne assumes that all existing capacity other than Fort Martin will remain in service over the 20-year planning period. Duquesne's portfolio of existing underutilized base load generation facilities, supplemented with coldreserved peaking facilities and spot purchases of peaking capacity, is expected to be adequate to meet retail load growth through at least the year 2009. As shown in Table 7, the Company's net summer peak generating capacity is expected to be increased by 606 MW between 1996 and 2015, from the current capacity of 2,819 MW to 3,425 MW. Throughout the planning period Duquesne's generation is expected to be supplemented by up to 250 MW of peaking capacity purchased in the wholesale spot marketplace. Of this 606 MW increase, 300 MW is dedicated to anticipated long-term firm bulk power sales, with the remaining 306 MW and the spot peaking purchases required to serve expected retail customer load growth in Duquesne's service territory and to provide an adequate reserve margin.

Duquesne expects to continue to compete in the bulk power markets and expects to successfully negotiate a long-term sale of at least 300 MW. With the successful implementation of this sale, the 300 MW cold-reserved Phillips Power Station is expected to be returned to operation as required to meet the implementation dates established for the sale. For current planning purposes Phillips is assumed to return to service in 1999, as shown in Table No. 7. Any change in the Phillips reactivation date will have no impact on Duquesne's ability to meet the needs of retail customers.

Duquesne's Brunot Island Combined Cycle (BICC) facility is expected to be utilized to provide peaking and intermediate service capacity for Duquesne's retail customers and will also serve as back-up capacity for long-term firm bulk power sales. The combined summer rating of the BICC combustion turbines and steam turbine will be 267 MW. For current planning purposes the BICC facility is assumed to return to service in stages beginning in the summer of 1997, as shown in Table No. 7. Two of the three combustion turbines, each rated 45 MW summer capacity 29

	System Capacity					
	Summer	Capacity	Peaking	Firm	Net	
Year	Capacity	Additions	Purchase	Sale	Capacity	
	(MW)	(MW)	(MW)	(MW)	(MW)	
1996	2,819				2,819	
1997	2,668	(151)	125		2,793	
1998	2,668		125		2,793	
1999	2,968	300 *	150	300	2,818	
2000	2.87 <mark>8</mark>	(90)	250	300	2,828	
2001	3,145	267	0	300	2,845	
2002	3,145		50	300	2,895	
2003	3,145		50	300	2,895	
2004	3,145		75	300	2,920	
2005	3,145		100	300	2,945	
2006	3,145		125	300	2,970	
2007	3,145		125	300	2,970	
2008	3,145		150	300	2,995	
2009	3,285	140	50	300	3,035	
2010	3,285		50	300	3,035	
2011	3,285		75	300	3,060	
2012	3,285		100	300	3,085	
2013	3,285		125	300	3,110	
2014	3,285		150	300	3,135	
2015	3,425	140	50	300	3,175	

Table No. 7 Preferred Supply-Side Resource Plan

 Actual Phillips in-service date may be advanced or delayed depending on the timing of anticipated bulk power sales.

and 56 MW winter capacity, are expected to be returned to service in 1997. The remaining combustion turbine and the steam turbine generator are expected to be returned to service in 2001. The anticipated reutilization of BICC facilities assumes

that each component meets a least-cost resource test. However, depending on the actual rate of growth in peak demand, the success of DSM programs and the level and timing of the implementation of long-term firm bulk power sales, the reactivation schedule for BICC can be advanced or delayed with minimal impact on the least-cost resource plan.

30

In the long term, in order to continue to move in the direction of an optimized capacity mix, any additional future capacity acquisitions and/or projects are expected to be limited to peaking resources. A gas turbine peaking facility having a summer capacity rating of 140 MW has been established as representative of the Company's preferred supply-side resource for the purpose of establishing the Company's avoided capacity cost. The identification of this peaking facility is presented for planning purposes only and should not be assumed to be a commitment by the Company to pursue this resource at the exclusion of other alternatives. Duquesne intends to aggressively pursue additional DSM programs. which meet market-based avoided cost tests. In addition, the avoided cost of the gas turbine peaking facility establishes a cost cap for the acquisition of non-utility generation and bulk purchases of energy and/or peaking capacity from other utilities, marketers or other potential suppliers. Based on this cost cap, Duquesne intends to pursue all least-cost opportunities to acquire peaking resources, such as firm purchases from other utilities, diversity exchange agreements with other utilities, non-utility generation facilities and/or competitive procurement solicitations, in order to defer or eliminate the need for the construction by Duquesne of any power generation facilities. The timing of the addition of peaking resources will be affected by the actual experience in load growth, the actual results of the Company's DSM programs, the Company's ability to purchase power from other utilities and the availability of new cost-effective cogeneration and renewable resource generation. Based on the use of a gas turbine having a summer rating of 140 MW as a proxy unit to represent the addition of peaking resources, the 1995 preferred resource plan includes the addition of peaking resources in the years 2009 and 2015. As discussed earlier, the Company intends to vigorously pursue all least-cost opportunities which will defer or eliminate the need for the addition of peaking facilities.

Duquesne's annual load factor is currently about 60%. Load factor is an indication of the degree of utilization of existing generation resources. Growth among new and existing retail industrial customers is expected to improve the Company's load factor. The successful implementation of a long-term firm bulk power sale will increase annual energy sales by about 1.7 million MWh resulting in a further improvement in the system load factor. Table 8 summarizes the sources of energy expected to be utilized to meet the future needs of retail and wholesale customers. Throughout the horizon of the resource plan, the majority of the energy, between 59% and 65%, is produced by coal-fired generation. Nuclear generation provides

more than 30% of energy production, with oil, gas and purchases meeting the remaining small portion of Duquesne's energy deliveries. The resource plan recommends the conversion of the Brunot Island Combined Cycle facility to dual

	% of Annual Energy					
Year	Coal	Nuclear	Gas	Oil	Purchases	
1996	65.0	32.3	0.0	0.1	2.6	
1997	62.7	32.8	0.0	0.2	4.3	
1998	59.2	36.4	0.0	0.3	4.2	
1999	62.4	33.8	0.0	0.1	3.7	
2000	61.8	35.9	0.0	0.1	2.3	
2001	61.6	36.0	0.4	0.0	2.0	
2002	63.1	34.1	0.4	0.0	2.3	
2003	63.6	33.4	0.5	0.0	2.5	
2004	60.4	35.7	0.6	0.0	3.3	
2005	64.2	31.8	0.7	0.0	3.2	
2006	63.0	33.1	0.7	0.0	3.2	
2007	62.3	33.3	0.7	0.0	3.7	
2008	64.0	31.7	0.8	0.0	3.5	
2009	64.5	30.9	0.9	0.0	3.6	
2010	60.6	33.0	1.7	0.0	4.7	
2011	64.5	29.6	1.4	0.0	4.5	
2012	63.1	30.8	1.4	0.0	4.7	
2013	62.1	31.0	1.5	0.0	5.4	
2014	63.6	29.4	1.6	0.0	5.4	
2015	63.9	28.8	2.0	0.0	5.4	

Table No. 8 Energy Distribution

oil/gas firing. In addition, future capacity resources, whether purchased or constructed by Duquesne, are likely to be gas-fired. The portion of energy produced by gas increases from none in 1995 to only about 2% by 2015. Natural gas will play an increasing but minor role on Duquesne's system, but not to the level anticipated by some utilities. Duquesne's exposure to the risks associated with price volatility in the gas markets remains limited. Coal and nuclear facilities will provide more than 90% of Duquesne's energy requirements and remain the primary fuels throughout the 20-year planning period.

As shown in Table 9, the resource plan has been developed to generally maintain the Company's reserve margin at an adequate level. The Company's net weather normalized summer peak demand is expected to grow by 316 MW between 1996 and 2015, an annual growth rate of about 0.6%. The load growth is expected to occur in all customer classes: residential, commercial and industrial. The actual

31

expected annual reserve margin, varies between 15 % and 17% depending on the timing of capacity additions and ensuring that the reserve margin upper limit of 22%

	Net	Net		
Year	Summer	System	Reserve	Reserve
	Peak	Capacity	Capacity	Margin
	(MW)	(MW)	(MW)	%
1996	2,425	2,793	368	15.2
1997	2,417	2,793	376	15.6
1998	2,427	2,793	366	15.1
1999	2,437	2,818	381	15.6
2000	2,448	2,828	380	15.5
2001	2,466	2,845	379	15.4
2002	2,484	2,895	411	16.5
2003	2,502	2,895	393	15.7
2004	2,522	2,920	398	15.8
2005	2,542	2,945	403	15.9
2006	2,562	2,970	408	15.9
2007	2,580	2,970	390	15.1
2008	2,600	2,995	395	15.2
2009	2,620	3,035	415	15.8
2010	2,639	3,035	396	15.0
2011	2,659	3,060	401	15.1
2012	2,679	3,085	406	15.2
2013	2,699	3,110	411	15.2
2014	2,720	3,135	415	15.3
2015	2,741	3,175	434	15.8

Table No. 9 Reserve Margin

is not exceeded. In terms of actual reserve capacity, the reserve ranges from 366 MW to 434 MW.

5. Implementation Plan

<u>Overview</u>

Duquesne's implementation plan for the period 1996 through 1997 focuses on (1) implementation of the sale of Duquesne's interest in the Fort Martin Power Station, (2) reutilization of a portion of the cold-reserved Brunot island facility, (3) purchasing

peaking capacity in the wholesale spot marketplace, (4) long-term firm bulk power marketing initiatives and (5) the implementation of DSM resources. Duquesne's recommended implementation plan for the period 1996 through 1997 projects the addition of resources as shown in Table No. 10. The specific

Resource	Year	Fuel	Capacity (MW)
DSM Resources	1996	-	4
Fort Martin Sale	1997	Coal	(276)
Brunot Island Unit No. 2A	1997	Oil	45
Brunot Island Unit No. 2B	1997	Oil	45
Zinc Corporation Contract Amendment	1997	Coal	35
Peaking Power Purchase	1997	-	125
DSM Resources	1997	=	70

Table No. 10 Annual Resource Additions

implementation plans for the strategies outlined in Table No. 10 are discussed in the following sections.

Ft. Martin Sale: The Ft. Martin sale is expected to be concluded during the fourth guarter of 1996.

As discussed on page 7, Duquesne and AYP Capital have entered into an agreement for the sale of Duquesne's ownership interest in the Ft. Martin Power station. The PAPUC has approved the transaction. AYP's petition to the FERC for Exempt Wholesale Generator (EWG) status is expected to be approved during the third quarter of 1996. The transaction is expected to be concluded immediately following all necessary action by the FERC.

<u>Brunot Island Reutilization</u>: Two combustion turbines at the cold-reserved Brunot Island facility will be reutilized to meet peaking requirements.

Duquesne's Brunot Island combined cycle facility consists of three oil-fired combustion turbines and a steam turbine generator. Although the facility is currently in cold-reserved status for regulatory purposes, Units 2A and 2B have been operated infrequently to meet emergency conditions. Each of these combustion turbines is rated 45 MW summer capacity and 56 MW winter capacity. Units 2A, and 2B are expected to be returned to Duquesne's active capacity line-up for the 1997 summer season, although the ultimate utilization of these units will be evaluated on an ongoing basis versus the price and availability of peaking capacity and energy in the wholesale power marketplace.

<u>Capacity Purchases</u>: **Duquesne will purchase capacity from non-utility** generators and peaking capacity in the spot wholesale marketplace.

Duquesne has reached an amended agreement with Zinc Corporation of America, an existing non-utility generator, to purchase capacity on a firm basis that was previously supplied under a non-firm agreement. This amended agreement will increase Duquesne's capacity line-up by 35 MW. Duquesne expects to purchase peaking capacity and/or energy in the spot wholesale power marketplace to supplement in-service capacity as required. Up to 125 MW of capacity is expected to be purchased for the 1997 summer peak season. Duquesne expects to evaluate prices, terms and conditions for the purchase of spot peaking capacity and energy from a wide range of sources in order to ensure the acquisition of the least-cost resource. 34

<u>Transmission Access:</u> Duquesne will gain access to the transmission system to arrange firm delivery of low cost energy and capacity to eastern markets.

As discussed earlier, FERC Order 888 requires utilities to file non-discriminatory open access tariffs that offer others the same transmission service they provide themselves. These tariffs will provide the opportunity for Duquesne to pursue wholesale power sales throughout the region. Duquesne will closely monitor the tariffs filed and pursue options based on expected power market prices, transmission delivery costs and generation costs.

<u>Market Opportunities:</u> Duquesne will respond innovatively to market opportunities by offering unique options and providing flexibility which will add value to the product delivered to the customer.

The sale of Duquesne's ownership interest in the Fort Martin Power Station and the associated addition of peaking capacity to the Company's resource portfolio will be a major step toward the objective of optimizing the utilization of existing base load generation facilities. However, after the Fort Martin transaction is concluded, major retail and wholesale power sales will continue to be a key element of Duquesne's integrated resource plan. Major sales are an opportunity for continuing to optimize the utilization of existing generation and for reactivating existing environmentally clean cold-reserved generation. Duquesne will continue to respond innovatively to market opportunities by offering unique options and by providing flexibility which will add value to the product delivered to the customer.

Duquesne has the capability to make bulk power sales from existing active and cold-reserved generation, with peaking and/or energy support through the Company's extensive transmission ties. Because of Duquesne's abundant and

cost-effective capacity resources, the Company can be extremely flexible in meeting a retail or wholesale customer's needs. Duquesne is committed to developing innovative pricing flexibility to attract new industrial customers and to maintain our competitiveness with large industrial customers who add incremental load. Duquesne can offer to wholesale customers a firm energy sale, a system power sale, a system power sale with specific unit backup, a unit power sale, an asset sale or any other innovative approach to providing capacity and energy. In addition, the duration of a bulk sale is negotiable, with short-, intermediate- or long-term sales available. 35

Duquesne intends to continue to aggressively pursue these markets by offering capacity and energy at prices which are competitive with other potential suppliers. In order to be the supplier of choice Duquesne will tailor product pricing to meet the customers financial objectives, will offer energy services to meet the customers specific, unique requirements, and will offer support services such as maintenance, construction, accounting, billing or other services to support the customer in achieving a least-cost energy service program.

<u>Conservation and Demand-Side Management Programs</u>: **Duquesne will monitor** the progress of regulatory and legal proceedings concerning DSM and implement DSM programs as appropriate.

As discussed previously Duquesne has filed a DSM program with the PAPUC. However, implementation of the formal programs is being delayed pending the outcome of the PAPUC Investigation Into Electric Power Competition, a final order on the DSM regulations, and finally, approval of Duquesne's programs. For planning purposes and the development of Duquesne's 1996 integrated resource plan, the Company's DSM plan, as filed, is assumed to begin in 1996. However, Duquesne intends to re-evaluate the program based on the outcome of the above legal and regulatory proceedings and reserves the right to eliminate, add, expand, advance or delay individual strategies. Duquesne's demand-side management programs, as filed in March, 1994, are focused primarily on peak-shaving, especially interruptible tariff provisions and load-shifting strategies, while minimizing the impact on energy consumption. DSM resources are expected to provide the capability of approximately 112 MW of peak demand moderation in 1996 and grow to approximately 223 MW by the end of 2000.

By capitalizing on the strengths of our core business--

 we are positioning ourselves for growth in a competitive energy services market.

> RESOURCE PLANNING REPORT JULY 1, 1996
Preface

37

This report is filed pursuant to the Rules and Regulations of the Pennsylvania Public Utility Commission Title 52, Public Utilities, Chapter 57, Electric Service, Subchapter L, Annual Resource Planning Report, which became effective on January 14, 1995. The report specifically responds to regulations in Chapter 57, Sections 57.141 through 57.154. Each numbered regulation of Subchapter L corresponds to a section of this report. The first page of each section of this report states the regulation, and succeeding pages provide the response. The response to Section 57.154, which requires a summary of this report, is bound separately and filed concurrently.

As implemented with the establishment of the Subchapter L regulations in January 1995, Duquesne's 1995 <u>"Resource Planning Report"</u> reflects the consolidation of the following prior reporting requirements: <u>"Annual Conservation Report"</u>, 52 Pa. Code Chapter 69.121-122; <u>"Coal Upgrading Report"</u>, 52 Pa. Cde Chapter 57.123(a); <u>"Avoided Cost Data"</u> filing, 52 Pa. Code Chapter 57.33; <u>"Annual Transmission Line Report"</u>, 52 Pa. Code Chapter 57.48.

§57.141. General.

(a) A public utility shall submit to the Commission the Annual Resource Planning Report (ARPR) that contains the information prescribed in §§57.141 - 57.154. An original and seven copies of the report shall be submitted on or before May 1, 1995, and May 1 of each succeeding year. One copy of the report shall be submitted to the Office of Consumer Advocate (OCA), the Pennsylvania Energy Office (PEO), and the Office of Small Business Advocate (OSBA). The name and telephone number of the persons having knowledge of the matters, and to whom inquiries should be addressed, shall be included.

(b) For the purpose of this subchapter, the term "current year" refers to the year in which the fling is being made.

(c) The information contained in this report shall conform to all applicable forms which may be issued by the Commission.

(d) As a condition to receiving a copy of the ARPR, the OCA, PEO, and OSBA shall be obligated to honor and treat as confidential those portions of the report designated by the utility as proprietary.

(1) If the Commission, OCA, PEO, OSBA, or any person challenges the proprietary claim as frivolous or not otherwise justified, the Secretary's Bureau will issue, upon written request, a Secretarial letter directing the utility file a petition for protective order pursuant to 52 Pa. Code §5.423 within fourteen days.

(2) Absent the timely filing of such a petition, the proprietary information claim will be deemed to have been waived. The proprietary claim will be honored during the Commission's consideration of the petition for protective order.

Response.

(a) Duquesne hereby files an original and seven copies of the Annual Resource Planning Report on May 1, 1995. In addition a copy is provided to the Office of Consumer Advocate, the Pennsylvania Energy Office and the Office of Small Business Advocate. Inquiries concerning Duquesne's Annual Resource Planning Report should be addressed to:

Mr. William M. Hayduk (412) 393-6422 or

Mr. John R. Morris (412) 393-6360

Duquesne Light Company 411 Seventh Avenue Pittsburgh, PA 15219 Inquiries by potential developers of qualifying facilities may be addressed to:

Mr. Robert A. Irvin (412) 393-6205

(b) Duquesne's filing is for the year 1996, reflecting 1995 year end results.

(c) The information in this report conforms with the Commission's forms as specified in §57.152.

(d) Duquesne has designated certain portions of the responses to these regulations as confidential and proprietary and is providing these portions under separate cover with a clear "confidential" designation.

41

Section 2

Forecast of Energy Resources, Demands, and Reserves

§57.142. Forecast of energy resources, demands, and reserves.

(a) The ARPR shall include a forecast of energy demand in megawatt-hours per calendar year, annual system peak demand in megawatts, and number of customer (year end) displayed by component parts, as shown in Form-IRP-ELEC 1A, Form-IRP-ELEC 1B, and Form-IRP-ELEC 1C, respectively.

(1) The data presented in Form-IRP-ELEC 1A, Form-IRP-ELEC 1B, and Form-IRP-ELEC 1C shall consist of the following:

(i) The past 5 years actual historical data.

(ii) A 20-year forecast including the current year.

(2) The forecast shall include a minimum of three load growth scenarios: base, low, and high. The base case is the growth scenario which is used by the utility as a basis for its resource planning.

(3) The load growth scenarios shall reflect the effects of existing and projected load modifications resulting from the utility's conservation and load management activities as defined in §57.149.

(4) A description of the methodology and assumptions used by the utility shall also be provided.

(b) A forecast of peak resources, demand, and reserves in megawatts for the 20-year period beginning with the current year (year zero), as indicated in Form-IRP-ELEC 2A and Form-IRP-ELEC 2B, shall be included. The data shall be provided for both summer and winter seasons, the latter being the winter of year 0-1, 1-2, 2-3, and the like.

(c) Reporting utilities which are subsidiaries of a larger electric utility system operated on a coordinated system basis spanning the boundaries of this Commission shall also file Form-IRP-ELEC 1A, Form-IRP-ELEC 2A, and Form-IRP-ELEC 2B for the larger system.

Response.

(a) (1)-(3) Duquesne's historical and forecast energy demand, peak load, and number of customers are shown on Forms IRP-ELEC-1A through 1C in the appendix to this report. Low, Base, and High case forecasts are included for each data set.

(a) (4) Summary of Assumptions:

Duquesne expects economic growth in the service territory to reflect the recent historic trend of slow to moderate growth, which will result in modest growth in Duquesne's sales and peak demand. Duquesne's 1996 integrated resource plan has been prepared using the Company's base case forecast. This forecast is based on a long-term trend forecast of national economic conditions provided by the WEFA Group. In the judgment of Duquesne's forecasters, the base case load forecast produces the most likely level and mix of future national economic activity. The base case outlook is for modest economic growth in Western Pennsylvania. In order to establish a bandwidth for the forecast, high and low case forecasts of energy consumption and peak demand have been prepared. The high case is based on an optimistic scenario for economic growth using WEFA's high growth scenario, while the low case forecast is based on a "pessimistic" forecast of a low level of national economic activity. The major economic input assumptions for the base case, high case and low case are summarized in the following Table.

In the base case, weather conditions are assumed to equal the historical mean conditions. The extreme high and low weather conditions actually experienced since 1980 are used in the high case and low case bandwidth forecasts respectively.

		Scenario	
Indicator	Base	Optimistic	Pessimistic
	A	nnual Growth F	Rate
Real Gross Domestic Product	2.3%	2.8%	1.8%
Consumer Price Index	3.6%	3.1%	3.9%
Industrial Production	2.4%	3.2%	1.5%
Real Per Capita Income	1.5%	1.6%	1.4%

Forecast Input Assumptions

The base or median case forecast of peak demand for 1996 is 2,537 MW. Base case peak demand is expected to grow at an annual rate of about 0.8% and reach 2,970 MW by 2015. The high case forecast of peak demand for 1996 is 2,678 MW, 5.6% greater than the base case forecast. Peak demand in the high case is expected to grow at an annual rate of about 0.9% and reach 3,203 MW by 2015. The low case forecast of peak demand for 1996 is 2,369 MW, 6.6% below the base case forecast. Peak demand in the low case is expected to grow at an annual rate of about 0.8% and reach 3,203 MW by 2015. The low case forecast of peak demand in the low case is expected to grow at an annual rate of about 0.8% and reach 2,739 MW by 2015.

The base or median case forecast of energy consumption for 1996 is 13.2 billion kWh. Base case consumption is expected to grow at an annual rate of about 1.4% and reach 17.2 billion kWh by 2015. The high case forecast of energy consumption for 1996 is 13.5 billion kWh, 2.3% greater than the base case forecast. Energy consumption in the high case is expected to grow at an annual rate of about 1.7% and reach 18.2 billion kWh by 2015. The low case forecast of energy consumption for 1996 is 12.9 billion kWh, 2.3% below the base case forecast. Consumption in the low case is expected to grow at an annual rate of about 1.3% and reach 16.4 billion kWh by 2015.

(a) (4) Forecast Methodology:

A. Introduction

Duquesne Light Company (DLCo) employs a system of energy models in the development of its short- and long-term demand and energy forecasts. The models used are:

- (1) A monthly residential econometric energy model;
- (2) A monthly commercial econometric energy model;
- (3) A quarterly industrial energy model;
- (4) A monthly peak demand model.

The Residential Energy Model produces a rate code-specific monthly forecast of sales to the residential customer class. The Commercial Energy Model produces an SIC-specific monthly forecast of all the customers in the commercial customer class (class codes 1,2, and 4). The industrial model produces a quarterly SIC-specific forecast of sales to those customers classified as industrial (class code 5). This quarterly forecast is then converted to a monthly frequency.

The remainder of this appendix is used to describe the energy models in more detail. The Residential Model is described first followed by a description of the Commercial and Industrial Models and the Peak Demand Model. In addition to the models mentioned above, assumptions are made concerning future sales to other customer classes such as Street Lighting and the Borough of Pitcaim. These are described last.

B. <u>The Residential Model</u>

Model Structure

The modeling of residential energy consumption can be separated into three distinct analyses. The first is estimating the number of residential customers. The second is determining what appliance stocks will these customers have. The third is estimating the intensity at which these appliances are used. The Residential Class is modeled following this general approach. The structure of the model is, however, dictated by the available data. The forecast of the number of customers is based on recent historical trends. The appliance stock decision is simplified to assumptions concerning the saturation of electric space heating and electric heat pumps in the service area because these customers are disaggregated by rate code. The appliance use decision was modeled by econometrically estimating a demand model for the average use per customer by each of the three major residential rate codes.

The purpose of the average use models is to model the changes that have occurred in the utilization rates of the various electric appliances. Since appliance-specific data is not available, the analysis is based on the household's aggregate demand for electricity defined as the electricity consumption by the average customer in each of three groups of customers that have an approximately homogenous set of appliances. The monthly data used by this model disaggregates the residential class into those customers with electric space heat (rate code RH), those with electric heat pumps (rate code RA), and those with neither (rate code RS). Electricity consumption and the number of customers for each of these groups were used to construct the average use per customer for each group and month.

Microeconomic theory indicates that the demand for the services of electric appliances, like the demand for any other commodity, is a function of the real price of the services and the real income of the household. In addition, since the major electricity using appliances are space heaters, water heaters, and air conditioners, some measure of the weather should be included in the specification of the electricity demand equations. This suggests a model specification such as the one below:

[1] $AVE_{j,t} = AVE_{j,t}(HDD_{j,t}, THl_{j,t}, PRICE_{t}, INCOME_{t}, e_{j,t})$

where: AVE = electricity consumption per customer, HDD = heating degree days, THI = temperature humidity index, PRICE = real electricity price, INCOME = real per capita income, e = stochastic error term, j = denotes rate code, t = denotes month.

Model Estimation

The winter weather was incorporated into the models by the use of monthly billing-cycle heating degree days (HDD). The summer weather was incorporated into the model using a billing-cycle temperature-humidity index (THI). These variables were calculated utilizing data from the National Oceanic and Atmospheric Association (NOAA).

The real price of electricity was approximated by calculating the average revenue per kilowatt-hour and deflating it to 1982-dollars utilizing the Consumers' Price Index for All Urban Consumers (CPI-U) for Pittsburgh from the Department of Commerce (DOC). A real per capita income measure was also developed utilizing Bureau of Economic Analysis (BEA) data for the Pittsburgh area and the CPI-U.

A linear model was employed to estimate the demand functions for electricity using ordinary least squares. The general form of the equations that were estimated is

[2] $AVE_{j,t} = AVE_{j,t}(HDD_{j,t}, TH_{j,t}, PRICE_t, INCOME_t, MONTH_t, e_{j,t})$

where: AVE = electricity consumption per customer, HDD = heating degree days, THI = temperature humidity index, PRICE = real electricity price, INCOME = real per capita income, MONTH = vector of eleven binary variables, one for each month except July, e = stochastic error term, j = denotes rate code, t = denotes month 198901-199506.

C. <u>The Commercial and Industrial Models</u>

Model Structure

The modeling of electricity consumption by the commercial and the industrial sectors of the service area economy can be disaggregated into two separate analyses: the projection of future levels of economic activity and how this predicted level of economic activity, along with relative input prices, will affect future electricity consumption.

In order to model electricity sales, the Commercial and the Industrial Energy Models divide the regional economy into two parts. The first is the "export-based" portion of the economy that primarily sells or competes in the national market. Manufacturing and mining are considered to be in this export-based sector. The levels of activity in these industries are affected by national as well as local economic conditions. Electricity sales in the commercial sectors of the economy (wholesale and retail trade, etc.) are

assumed to be affected only by local economic and demographic factors that influence either the demand for commercial services or the energy sales that the demand implies,

47

Electricity sales to the export-based industries is modeled based on the assumption that there is a given level of national demand and that the production that will satisfy this demand is allocated between the service area and the rest of the nation so as to minimize the total cost of production. In algebraic terms, this method of allocating production can be described as minimizing the sum of two cost functions, i.e.,

minimize: $C_{us} = C_{sa}(\underline{X}_{sa}, \underline{Q}_{sa}) + C_{m}(\underline{X}_{m}, \underline{Q}_{m})$

subject to: $Q_{sa} + Q_{m} = Q_{us}$

where: C = Total cost of production, X = Vector of input prices, Q = Output, sa = Service area, rn = Rest of nation, us = United States.

It can be shown that the service area output that is a solution to the above minimization problem is a function of the input prices in the service area relative to the rest of the nation, Xosa, and national output, i.e.,

 $[3] \qquad Q_{SA} = Q_{SA}(\underline{X}^{O}_{SA}, Q_{US}).$

The demand for electricity by the export-based industries, Esa, is assumed to conform to standard economic theory in that it is a function of the output level and input prices:

$$[4] \qquad \mathsf{E}_{sa} = \mathsf{E}_{sa}(\underline{\mathsf{X}}_{sa}, \mathsf{Q}_{sa}).$$

Substituting [3] into [4] yields:

$$[5] \qquad \mathsf{E}_{sa} = \mathsf{E}_{sa}(\underline{\mathsf{X}}_{sa}, \underline{\mathsf{X}}^{o}_{sa}, \mathbf{\mathsf{Q}}_{us})$$

The advantage of this final specification of the demand function is that no service area output measures, and these do not exist, are required for estimation.

Electricity sales to the commercial sectors of the service area are modeled based on the assumption that economic activity in the commercial sector is influenced solely by local factors that influence the demand for the services provided by this sector. These are assumed in the model to be demographic factors such as the number of households or population and either real personal income or per capita income. As a result, output of industries in the commercial sector can be written as: [6] $Q_{sa} = Q_{sa}(DEM_{sa}, INCOME_{sa})$

Electricity sales to the commercial sector, as in the industrial sector, is a function of that sector's output and the relative input prices. However, since much of the commercial electricity use is for HVAC systems the winter and summer weather variables, HDD and THI, were included in the specification. The functional form that was used to model electricity consumption by these customers is

48

[7]
$$E_{sa,t} = E_{sa,t}(X_{sa,t}, DEM_{sa,t}, INCOME_{sa,t}, HDD_{t}, TH_{t}).$$

Model Estimation

For the commercial class of customers (class codes 1,2, and 4) electricity consumption is modeled econometrically for eight industrial classifications: Transportation, Communication, & Public Utilities (TCU); Retail Trade; Finance, Insurance, & Real Estate (FIR); Health Services; Education Services; Government; Other Commercial; and Manufacturing.

The weather variables calculated from the NOAA data were again used in the commercial models. The income measure used in the commercial models was real per capita income for the Pittsburgh MSA from the BEA. The BEA data also served as a source of population estimates for the Pittsburgh MSA. The number of Duquesne Light residential customers was used as a proxy for the number of households. The real price of electricity was also derived from Duquesne Light data.

For the Manufacturing Class of customers (class code 5) electricity models were estimated econometrically for 13 industrial classifications: SIC 20; SIC's 26-28; SIC 30; and SIC's 32-39. In addition, four large steel customers were examined separately. Customers, coded as Class 5, representing three commercial sectors were also studied.

A number of variables were utilized in the estimation of equations for the customers in the manufacturing sector. SIC-specific indices of industrial output were available from the DOC. Relative wage rate data by SIC was calculated from United States Bureau of Labor Statistics and Pennsylvania Department of Labor and Industry data. Relative electricity price was calculated using Edison Electric Institute (EEI) and DLCo data. Binary variables for the first three quarters of the year to capture local seasonality effects were also included.

D. <u>Other Sales</u>

The remainder of DLCo electricity sales, i.e. those to customers that are not in either the Residential, Commercial, or Industrial class make up a very small percentage (1-2 percent) of total sales. The sales to these customers, such as those in the Street Lighting class or the Borough of Pitcairn, are assumed to remain at the levels that occurred during the 12 months ending June 1995. The same assumption is made for Company Use.

49

E. <u>Peak Demand</u>

The Duquesne Peak Demand Model is used to predict the monthly system peaks based on energy sales, weather, and any other information that is known about the load shapes of specific customers. Since Duquesne's four largest industrial customers have very high peaks that can vary substantially from hour to hour, these customers are accounted for separately. The remaining load is modeled based on the assumption that peak demand is, in effect, proportional to monthly energy sales with the proportion affected by the weather patterns. The system peak demand model utilizes two equations, one for the peak in the summer months and one for the winter months. The following specification was estimated for the two models:

[8] $KW_{m,t} = KW_{m,t}(WEATH_{m,t},WEATH_{m,t-12},GEN/d_m)$

where:

KW = Monthly system hourly integrated peak demand less "Big 4" contribution;
WEATH = Hourly HDD in the winter and THI in the summer;
GEN/d = Average daily generation;
m = month;
t = peak hour.

A linear model and data for the 1989-1995 period were utilized to estimate the specification above for the summer (May-September) months and for the winter months.

F. <u>High and Low Alternative Scenarios</u>

Duquesne Light Company's high and low bandwidth energy and peak demand forecasts are developed by varying economic and weather assumptions. The high case economic assumptions are based upon the WEFA Group's "High Growth" Scenario for the national economy. The low case economic assumptions are based upon WEFA's "Low Growth" forecast. This primarily affects the sales to industrial customers. The

weather assumptions used in the high case forecast are based on the coldest winter (1981) and the hottest summer (1995) that have been experienced since 1980. The weather used in the low case forecast is based on the warmest winter (1991) and the coolest summer (1985) experienced during that same period.

50

<u>Alternative</u>	Scenario Foreca	st Assumptions 1996	<u>3 - 2015</u>
	Base	High	Low
	Case	<u>Case</u>	Case
Economic Assumptions (a	n nual averag e ra	te of change)	
Real GDP	2.3	2.8	1.8
CPI	3.6	3.1	3.9
Industrial Production	2.4	3.2	1.5
Real Per Capita Income	1.5	1.6	1.4
Weather Assumptions			
Heating degree days	3,483	4,034	3,012
Temp./Humidity index	152	282	60

(b) Duquesne's forecast of peak resources, demands, and reserves for the planning period may be found on forms IRP-ELEC-2A and 2B in the appendix to this report.

(c) Since Duquesne is not part of a larger utility system, this section is not applicable.

1

Section 12

Formats

§57.152. Formats.

In preparing the Annual Resource Planning Report required by §§57.140-57.151, each public utility shall use the current forms and schedules specified by the Bureau of Conservation, Economics, and Energy Planning, which shall include the following:

- (1) Form-IRP-ELEC 1A Historical and Forecast Energy Demand (MWH); Form-IRP-ELEC 1B - Historical and Forecast Peak Demand (MW); Form-IRP-ELEC 1C -Historical and Forecast Number of Customers (Year End).
- (2) Form-IRP-ELEC 2A Estimated Peak Resources, Demands, and Reserves for the 10-year period (MW); Form-IRP-ELEC 2B - Estimated Peak Demands, Resources, and Reserves for the 10-20 Year Period (MW).
- (3) Form-IRP-ELEC 3 Existing Generating Capability (as of January 1 Current Year).
- (4) Form-IRP-ELEC 4 Future changes and Removals to Existing Generating Capability for the 20-Year Period.
- (5) Form-IRP-ELEC 5 Cogeneration and Small Power Production Facilities.
- (6) Form-IRP-ELEC 6 System Cost Data.
- (7) Form-IRP-ELEC 7A Distribution of Net Generating Capability by Fuel Type for the 20-Year Period (MW); Form-IRP-ELEC 7B - Scheduled Imports and Exports (MW).
- (8) Form-IRP-ELEC 8A Distribution of Net Generation by Fuel Type for the 20-Year Period (GWH); Form-IRP-ELEC 8B - Scheduled Imports and Exports (MWH).
- (9) Form-IRP-ELEC 9 Summary of Demands, Resources, and Energy for the Past Year.
- (10) Form-IRP-ELEC 10A Conservation and Load Management Program Description; Form-IRP-ELEC 10B - Conservation and Load Management Program Summary; Form-IRP-ELEC-10C - Conservation and Load Management Program Cost-Benefit Analysis Inputs; Form-IRP-ELEC 10D Conservation and Load Management Program Cost-Benefit Analysis Results; Form-IRP-ELEC 10E -Assessment of Conservation and Load Management Potential for the 20-Year Period.
- (11) Form-IRP-ELEC 11 Comparison of Cost of Preferred Resource Plan with Alternative Plans.

Response.

(1) - (11) The forms and schedules required by §57.152 are provided in Appendix A to Duquesne's Annual Resource Planning Report, except for certain portions of the responses to these regulations which Duquesne has designated as confidential and proprietary. The confidential and proprietary material is provided under separate cover with a clear "confidential" designation.

4

Section 13

Evaluation Methodology

§57.153. Evaluation Methodology.

A public utility shall utilize cost-benefit methodologies as prescribed by the Bureau of Conservation, Economics, and Energy Planning to evaluate the costs and benefits of conservation and load management programs, and demand-side management programs. the cost-benefit methodologies shall be utilized by the utility during the next program year after they are prescribed. 5

Response.

Duquesne has evaluated the costs and benefits of conservation and load management programs, and demand-side management programs using the costbenefit methodologies submitted to the Commission in Duquesne's DSM program. Duquesne believes that the implementation of demand-side management programs is subject to considerable uncertainty. Implementation of Duquesne's proposed programs is being delayed pending the outcome of the Commission's Investigation Into Electric Power Competition, the resolution of ongoing legal challenges to the Commission's DSM regulations, a Commission final order on the DSM regulations, and finally, Commission final approval of Duquesne's programs. Duquesne intends to monitor these legal and regulatory proceedings, will re-evaluate the propose DSM programs based on the outcome of these proceedings and reserves the right to eliminate, add, expand, advance or delay individual strategies.

6

Section 14

Public Information and Distribution

§57.154. Public Information and Distribution.

The Annual Resource Planning Report shall be accompanied by a summary which is suitable for public distribution. Utilities shall maintain copies of the summary open to public inspection during normal business hours.

(1) The summary shall include a 2-year implementation plan specifying activities scheduled for the acquisition and development of the least-cost resources delineated in this report, which are to take place during the ensuing 2 years.

(2) Informal sessions may be scheduled by the Bureau of Conservation, Economics, and Energy Planning for reviewing the 2-year implementation plans and providing an opportunity for interested parties to participate in the review process.

<u>Response.</u>

(1) - (2) The report summary is provided under separate cover, entitled "Annual Resource Planning Report - 1995 - Executive Summary." The summary includes a 2-year implementation plan specifying activities scheduled for the acquisition and development of the least-cost resources delineated in this report, which are to take place during the ensuing 2 years.

8

Appendix A

REQUIRED FILING FORMS

In Response to Section 57.152

IRP-ELEC 1A. Historical and Forecast Energy Demand (MWH)

Load Growth Scenario (Circle one): BASE

Index	Actual					Sales For	Total	System	Company	Net Energy
Year	Year	Residential	Commercial	Industrial	Other ⁺	Resale	Consumption	Losses	Use	For Load
(a)	(q)	(c)	(q)	(e)	Ð	(8)	(h)	(j)	0	(k)
-5	1661	3,285,561	5,450,145	3,041,679	71,693	12,420	11,861,498	764,634	54,867	12,680,999
4	1992	3,069,087	5,358,492	3,058,651	70,966	11,780	11,568,976	709,687	53,041	12,331,704
ų	1993	3,230,508	5,490,114	3,046,465	71,318	12,224	11,850,628	802,348	51,622	12,704,598
5	1994	3,219,263	5,562,955	3,256,257	71,008	12,356	12,121,839	710,489	47,310	12,879,638
	1995	3,378,533	5,728,904	3,237,130	70,692	12,872	12,428,131	767,458	48,204	13,243,793
0	9661	3,175,244	5,731,753	3,348,821	70,760	12,356	12,338,933	779,013	49,253	13,167,199
	1997	3,166,553	5,757,128	3,717,398	70,760	12,356	12,724,196	822,128	49,253	13,595,577
2	1998	3,170,682	5,823,722	3,940,921	70,760	12,356	13,018,441	839,783	49,253	13,907,477
3	1999	3,175,624	5,909,905	4,013,419	70,760	12,356	13,182,064	849,601	49,253	14,080,918
4	2000	3,181,004	6,004,747	4,085,709	70,760	12,356	13,354,577	859,951	49,253	14,263,781
5	2001	3,186,565	6,102,073	4,160,091	70,760	12,356	13,531,845	870,587	49,253	14,451,685
9	2002	3,192,076	6,197,700	4,235,691	70,760	12,356	13,708,583	881,192	49,253	14,639,028
1	2003	3,197,711	6,295,028	4,313,096	70,760	12,356	13,888,951	892,014	49,253	14,830,218
80	2004	3,203,730	6,399,603	4,392,696	70,760	12,356	14,079,145	903,425	49,253	15,031,823
6	2005	3,209,794	6,504,630	4,474,152	70,760	12,356	14,271,692	914,978	49,253	15,235,923
10	2006	3,215,614	6,602,311	4,556,742	70,760	12,356	14,457,783	926,144	49,253	15,433,180
11	2007	3,221,380	6,697,409	4,639,832	70,760	12,356	14,641,736	937,181	49,253	15,628,171
12	2008	3,227,093	6,789,855	4,721,889	70,760	12,356	14,821,953	947,994	49,253	15,819,200
13	2009	3,233,064	6,886,971	4,803,742	70,760	12,356	15,006,893	959,090	49,253	16,015,236
14	2010	3,238,826	6,978,744	4,885,312	70,760	12,356	15,185,999	969,837	49,253	16,205,089
15	2011	3,244,747	7,073,249	4,969,649	70,760	12,356	15,370,762	980,922	49,253	16,400,937
16	2012	3,250,769	7,168,956	5,055,871	70,760	12,356	15,558,712	992,199	49,253	16,600,164
17	2013	3,256,720	7,265,962	5,141,894	70,760	12,356	15,747,692	1,003,614	49,253	16,800,559
18	2014	3,262,712	7,364,285	5,229,023	70,760	12,356	15,939,137	1,015,168	49,253	17,003,558
19	2015	3,268,761	7,463,943	5,317.792	70,760	12,356	16,133,612	1,026,863	49,253	17,209,728

* 'Other' sales include public street and highway lighting, other sales to public authorities, sales to railroads and milways, and interdepartmental sales.

Pa.PUC Revised Apr-96

Pa.PUC Revised Apr-96 * 'Other' sales include public street and highway lighting, other sales to public authorities, sales to railroads and railways, and interdepartmental sales.

Index	Actual					Sales For	Total	System	COMDADY	Net Energy
Year	Ycar	Residential	Commercial	Industrial	Other*	Resale	Consumption	Losses	Use	For Load
(a)	€	(c)	(d)	(e)	(1)	(g)	(h)	0	0	(k)
ۍ ا	1991	3,285,561	5,450,145	3,041,679	71,693	11,872	11,860,950	764,634	54,867	12,680,451
4	1992	3,069,087	5,358,492	3,058,651	70,966	12,420	11,569,616	709,687	53,041	12,332,344
<u>ئ</u>	1993	3,230,508	5,490,114	3,046,465	71,318	11,780	11,850,184	802,348	51,622	12,704,154
<u>1</u> 2	1994	3,219,263	5,562,955	3,256,257	71,008	12,356	12,121,839	710,489	47,310	12,879,638
-1	1995	3,378,533	5,728,904	3,237,130	70,692	12,872	12,428,131	767,458	48,204	13,243,793
0	1996	3,029,089	5,650,947	3,358,468	70,760	12,356	12,121,621	765,974	49,253	12,936,848
1	1997	3,019,576	5,664,325	3,726,746	70,760	12,356	12,493,763	808,303	49,253	13,351,319
2	8661	3,023,223	5,725,671	3,939,354	70,760	12,356	12,771,364	824,959	49,253	13,645,576
ω	6661	3,027,445	5,801,174	3,995,853	70,760	12,356	12,907,588	833,132	49,253	13,789,973
4	2000	3,032,176	5,889,254	4,055,146	70,760	12,356	13,059,693	842,258	49,253	13,951,204
s	2001	3,037,011	5,977,900	4,115,965	70,760	12,356	13,213,992	851,516	49,253	14,114,761
6	2002	3,041,849	6,066,262	4,177,648	70,760	12,356	13,368,876	608,098	49,253	14,278,938
7	2003	3,046,880	6,158,518	4,240,870	70,760	12,356	13,529,384	870,440	49,253	14,449,076
~	2004	3,052,218	6,256,286	4,305,355	70,760	12,356	13,696,975	880,495	49,253	14,626,723
9	2005	3,057,674	6,356,471	4,371,808	70,760	12,356	13,869,069	890,821	49,253	14,809,143
10	2006	3,062,827	6,447,909	4,437,932	70,760	12,356	14,031,784	900,584	49,253	14,981,621
11	2007	3,067,819	6,534,092	4,502,442	70,760	12,356	14,187,470	909,925	49,253	15,146,648
12	2008	3,072,814	6,619,011	4,564,758	70,760	12,356	14,339,699	919,059	49,253	15,308,010
13	2009	3,077,934	6,705,421	4,624,483	70,760	12,356	14,490,954	928,134	49,253	15,468,341
14	2010	3,082,999	6,789,977	4,682,881	70,760	12,356	14,638,973	937,015	49,253	15,625,241
15	2011	3,088,217	6,876,991	4,742,637	70,760	12,356	14,790,960	946,134	49,253	15,786,347
16	2012	3,093,520	6,964,784	4,803,076	70,760	12,356	14,944,496	955,346	49,253	15,949,096
17	2013	3,098,826	7,053,701	4,861,468	70,760	12,356	15,097,111	964,654	49,253	16,111,018
18	2014	3,104,204	7,143,756	4,919,443	70,760	12,356	15,250,519	974,058	49,253	16,273,830
61	2015	3,109,648	7,234,965	4,977,994	70,760	12,356	15,405,724	983,559	49,253	16,438,536

Company Name: Duquesne Light Company

IRP-ELEC 1A. Historical and Forecast Energy Demand (MWH)

Load Growth Scenario (Circle one): LOW

IRP-ELEC 1A. Historical and Forecast Energy Demand (MWH)

Load Growth Scenario (Circle one): HIGH

Index Attual Company Net lateing System Company Net lateing Year Real Company Loc C)
IndexActualConditionLotaticalIndustrialDeterSales ForTotalSystemYearYear(c)(c)(d)(c)(d)(d)(d)(d)(d)(a)(b)(c)(d)(c)(d)(d)(d)(d)(d)(d)(a)(b)(c)(d)(c)(d)(d)(d)(d)(d)(d)(b)(c)(c)(d)(c)(d)(d)(d)(d)(d)(c)(c)(c)(c)(c)(c)(d)(d)(d)(c)(c)(c)(c)(c)(c)(d)(d)(c)(c)(c)(c)(c)(c)(d)(d)(c)(c)(c)(c)(c)(c)(d)(d)(c)(c)(c)(c)(c)(c)(d)(d)(c)(c)(c)(c)(c)(c)(c)(d)(c)(c)(c)(c)(c)(c)(c)(d)(c)(c)(c)(c)(c)(c)(c)(d)(c)(
Index Actual Sales For Total Vear Year Keaticritial Commercial Industrial Other* Reade Comsumption (a) (b) (c) (c) (c) (d) (d) (a) (b) $3255,611$ 5,490,1145 3,044,657 71,503 11,861,498 -3 1992 3,205,087 5,538,492 3,046,465 71,318 12,524 11,861,498 -2 1994 3,219,263 5,62,955 3,556,257 71,008 12,356 12,121,839 -1 1997 3,050,087 5,636,2955 3,256,257 71,008 12,356 12,677,445 -1 1997 3,356,672 5,863,8242 3,811,945 70,760 12,356 13,770,834 -1 1999 3,376,803 6,040,032 4,517,415 70,760 12,356 14,016,584 -1 1999 3,376,803 6,040,032 4,517,419 70,760 12,356 14,313,419 -1
Index Actual Index Actual Sales For (a) (b) (c) (d) (e) (g) (g) -5 1991 3.245,561 5,450,145 3,041,679 71,693 12,420 -5 1991 3.225,561 5,450,145 3,044,465 71,1318 12,224 -5 1993 3.230,508 5,490,114 3,046,465 71,1318 12,224 -2 1994 3,316,533 5,578,995 3,237,130 70,966 11,780 -1 1995 3,313,633 5,877,742 3,386,954 70,760 12,356 -1 1997 3,365,672 5,868,242 3,811,945 70,760 12,356 -1 1997 3,315,333 5,837,742 3,381,945 70,760 12,356 -1 1996 3,313,633 5,837,742 3,381,945 70,760 12,356 -1 1999 3,313,633 5,837,742 3,381,945 70,760 12,356 -1 </th
IndexActualIndustrialOther* $Year$ YearYearResidentialCommercialIndustrialOther*(a)(b)(c)(d)(c)(f)-519913,285,5615,450,1453,041,67971,693-319923,069,0875,358,4923,058,65170,966-319923,219,2635,490,1143,046,46571,318-219943,219,2635,562,9553,256,25771,008-219943,219,2635,562,9553,237,1423,381,194570,760119973,365,6725,868,2423,811,94570,760219983,370,8265,943,9694,192,87570,760319993,376,8036,040,0324,270,88370,760319993,377,7423,381,0116,208,6094,454,22570,760720033,395,1196,330,7564,517,41970,760720033,401,9376,442,2334,605,51370,760820043,401,9376,554,2524,697,19270,760920053,441,5107,0514,790,44870,7601120073,425,4126,554,2534,697,19270,7601220083,441,5107,0514,790,44870,7601320093,441,5107,0514,790,44870,7601320093,441,5107,051,0455,170,95370,76014
IndexActualIndustrialIndexActualIndustrialYearYearResidential(a)(b)(c)-519913.285,5615,450,1453,041,679-519923,069,0875,358,1453,041,679-419923,219,2635,490,1143,046,465-219943,219,2635,562,9553,237,130-119973,265,6725,868,2423,811,945-119973,365,6725,868,2423,811,945119973,365,6725,868,2423,811,945219983,375,8036,040,0324,192,875219993,375,8036,040,0324,407,888219993,375,8036,040,0324,407,848520013,383,0116,208,6094,454,225620023,3401,9376,442,2334,606,513720033,401,9376,442,2334,606,513720033,415,7496,554,2324,507,192920063,422,5516,772,2994,886,1261120073,422,5516,932,3165,071,4001220083,441,5107,051,0455,170,9531320093,441,5107,051,0455,476,5121320093,441,5107,051,0455,476,5121320093,441,5107,051,0455,476,5121320123,462,0737,358,0155,476,512
IndexActualIndexActualYearYearYearResidential(a)(b) -5 1991 -5 1991 -5 1991 -5 1991 -5 1992 -3 1992 -3 1992 -3 1992 -3 1993 -3 1993 -3 1993 -2 1994 -2 1994 -2 1994 -2 1994 -2 1994 -2 1995 -2 3,219,263 $5,738,533$ 5,7742 -1 1997 $3,378,672$ 5,887,742 -1 1997 $3,376,803$ 6,040,032 $3,106,803$ 6,142,544 5 2001 $3,383,075$ 6,142,544 5 2003 $3,401,937$ 6,208,609 5 5,305,148 6 3,401,937 6 2,003 $3,401,937$ 6,442,233 6 2,003 $3,401,937$ 6,554,252 9 2,006 $3,425,412$ 6,554,252 9 2,2003 $3,415,749$ 6,665,119 10 2,006 $3,425,412$ 6,742,233 10 2,006 $3,425,412$ 6,742,233 11 2,007 $3,425,412$ 6,742,233 12 2,008 $3,434,044$ 6,932,316 12 2,012 $3,448,367$
Index Actual Year Year Residential -5 1991 3,285,561 -4 1992 3,069,087 -3 1991 3,285,561 -4 1992 3,069,087 -3 1993 3,219,263 -1 1999 3,378,533 0 1996 3,378,563 -1 1999 3,378,563 -1 1999 3,376,603 -1 1999 3,376,603 -1 1999 3,376,603 -1 1999 3,376,603 -1 1999 3,376,603 -1 1999 3,376,603 -1 1999 3,376,603 -2 1999 3,376,803 -2 2001 3,385,011 -6 2,003 3,401,937 -7 2,003 3,415,749 10 2,006 3,415,749 11 2,007 3,415,749 12
Index Actual Year Year -5 1991 -3 1993 -4 1992 -1 1993 -2 1993 -1 1993 -1 1993 -1 1995 -1 1995 -1 1995 -1 1995 -1 1995 -1 1995 -1 1995 -1 1995 -1 1995 -1 1995 -1 1995 -1 1995 -2 1999 -3 1999 -1 1995 -2 2 -1 1999 -2 2 2 -3 1999 3 -4 2 2 2 -1 2 2 2 2 1 2 2 2
Acet Acet <th< th=""></th<>

* Other sales include public street and highway lighting, other sales to public authorities, sales to railroads and railways, and interdepartmental sales.

Pa.PUC Revised Apr-96

Pa, PUC Revised Apr-96

* 'Other' sales include public street and highway lighting, other sales to public authorities, sales to railroads and railways, and interde

Index	Actual					Sales For	Total Peak Load	Annual Load
Year	Ycar	Residential	Commercial	Industrial	Other*	Resale	Requirements	Factor
(a)	(b)	(c)	(d)	(e)	6	(g)	(ft)	(i)
<u>د</u>	1991	743	1,193	462	1	3	2,402	60.3%
4	1992	639	1,167	499	1	2	2,308	61.0%
<u>-</u>	1993	780	1,225	490	1	س	2,499	58.0%
	1994	778	1,219	534	1	دي	2,535	58.0%
-	5661	757	1,302	603	-	2	2,666	55.7%
0	1996	766	1,255	513	1	2	2,537	59.2%
	1997	764	1,321	511	-	2	2,599	59.7%
2	8661	765	1,321	544	Ľ	2	2,634	60.3%
<u>۔۔</u>	1999	766	1,332	550	-	2	2,652	60.6%
4	2000	768	1,344	555	1	2	2,671	61.0%
s	2001	769	1,357	560		2	2,690	61.3%
6	2002	770	1,369	566	-	2	2,709	61.7%
7	2003	772	1,381	571	-	2	2,728	62.1%
~	2004	773	1,395	577		2	2,749	62.4%
6	2005	775	1,408	583	1	2	2,769	62.8%
01	2006	776	1,420	685	1	2	2,790	63.2%
11	2007	777	1,432	596	1	2	2,809	63.5%
12	2008	779	1,444	603	г	2	2,829	63.8%
13	2009	780	1,456	609		2	2,849	64.2%
14	2010	782	1,467	616		2	2,868	64.5%
51	2011	783	1,478	623	1	2	2,888	64.8%
<u>ا</u> او	2012	785	1,490	630	744	2	2,908	65.2%
71	2013	786	1,502	637	jund	2	2,928	65.5%
81	2014	787	1,514	644	1	2	2,949	65.8%
61	2015	849	1,508	524	i	2	2,885	66.2%

IRP-ELEC 1B. Historical and Forecast Peak Load (MW)

Company Name: Duquesne Light Company

Load Growth Scenario (Circle one): BASE

IRP-ELEC 1B. Historical and Forecast Peak Load (MW)

Load Growth Scenario (Circle one): LOW

				_	_	_	_						,						_		-					_	_
Annual Load	Factor	(i)	60.3%	61.0%	58.0%	58.0%	55.8%	62.3%	62.7%	63.3%	63.6%	63.9%	64.2%	64.6%	64.9%	65.2%	65.6%	65.9%	66.2%	66.5%	66.8%	67.1%	67.4%	67.7%	67.9%	68.2%	68.5%
Total Peak Load	Requirements	(h)	2,402	2,308	2,499	2,535	2,666	2,369	2,429	2,462	2,476	2,492	2,509	2,525	2,542	2,560	2,578	2,595	2,611	2,627	2,643	2,659	2,675	2,691	2,707	2,723	2,739
Sales For	Resale	(g)	2	m	2	m	7	2	2	7	2	7	2	2	7	2	2	2	7	2	2	7	2	2	2	~	2
	Other*	Θ	1	-	I	I	-		-	-	-	-	1	-	-	-				-	-1	1	1	,	1	1	
	Industrial	(e)	462	499	490	534	603	448	500	522	526	529	533	537	540	544	548	552	556	560	563	567	570	574	577	580	583
	Commercial	(p)	1,193	1,167	1,225	1,219	1,302	1,189	1,195	1,205	1,215	1,226	1,238	1,249	1,261	1,274	1,288	1,299	1,310	1,321	1,332	1,343	1,354	1,366	1,377	1,389	1,401
	Residential	(c)	743	639	780	778	757	729	730	731	732	733	734	735	737	738	739	741	742	743	744	745	747	748	749	750	752
Actual	Үсаг	(0)	1661	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
Index	Year	(a)	-5	4	ņ	-2	-	0		3	m	4	s	9	~	90	6	10	11	12	13	14	15	16	17	18	19

* Other' sales include public street and highway lighting, other sales to public authorities, sales to railroads and railways, and interde

Pa.PUC Revised Apr-96

Pa.PUC Revised

Apr-96

* Other sales include public street and highway lighting, other sales to public authorities, sales to railroads and railways, and interde

							Total	Annual
Index	Actual					Sales For	Peak Load	Load
Year	Year	Residential	Commercial	Industrial	Other*	Resale	Requirements	Factor
(2)	(b)	(c)	(d)	(c)	6	(2)	(h)	0
ų.	1991	743	1,193	462	-	2	2,402	60,3%
4	1992	639	1,167	499	l	ę	2,308	61.0%
ىك	1993	780	1,225	490	Ļ	2	2,499	58.0%
-2	1994	778	1,219	534	1	ω	2,535	58.0%
-	1995	757	1,302	603	F	2	2,666	55.8%
0	966I	814	1,319	541	1	2	2,678	57.7%
1	1997	812	1,403	523	1	2	2,742	58.4%
2	1998	814	1,422	584	1	2	2,823	58.7%
ω	6661	815	1,434	590		2	2,843	59.0%
4	2000	816	1,445	605	1	2	2,840	59,5%
5	2001	818	1,454	607	1	2	2,882	59.8%
6	2002	618	1,471	610	-	2	2,904	60.1%
7	2003	821	1,486	617	1	2	2,927	60. 5%
8	2004	823	1,500	624	1	2	2,950	60.9%
6	2005	824	1,514	631	1	2	2,973	61.3%
10	2006	826	1,527	639	1	2	2,996	61.6%
11	2007	827	1,526	651	1	2	3,007	61.8%
12	2008	829	1,546	658	-	2	3,036	62.3%
13	2009	831	1,561	666	-	2	3,061	69.3%
14	2010	832	1,574	674	I	2	3,084	63.0%
15	2011	834	1,586	684	1	2	3,107	63.4%
16	2012	836	1,598	693	-	2	3,130	63.7%
17	2013	837	1,610	703		2	3,154	64.1%
18	2014	658	1,622	713	1	2	3,178	64.4%
61	2015	841	1,635	724	1	2	3,203	64.8%

Company Name: Duquesne Light Company

JRP-ELEC 1B. Historical and Forecast Peak Load (MW)

Load Growth Scenario (Circle one): HIGH

IRP-ELEC 1C. Historical and Forecast Number of Customers (Year End)

Load Growth Scenario (Circle onc): BASE

Index	Actual					Total
Year	Year	Residential	Commercial	Industrial	Other*	Customers
(a)	(0)	(c)	(q)	(c)	(1)	0
?-	1661	520,016	52,617	2,004	1,846	576,483
4	1992	521,152	52,839	1,987	1,884	577,862
ų	1993	522,353	52,910	1,995	1,832	579,090
-2	1994	522,588	53,617	2,027	1,865	580,097
-	1995	522,922	53,772	2,015	1,882	580,591
0	1996	523,071	56,805	2,091	1,882	583,849
	1997	523,315	58,367	2,123	1,882	585,687
2	8661	523,559	59,089	2,155	1,882	586,685
3	1999	523,803	59,980	2,187	1,882	587,852
4	2000	524,047	60,976	2,219	1,882	589,124
5	2001	524,291	62,000	2,251	1,882	590,424
9	2002	524,535	63,005	2,283	1,882	591,705
7	2003	524,779	64,027	2,315	1,882	593,003
90	2004	525,023	65,125	2,347	1,882	594,377
•	2005	525,267	66,229	2,379	1,882	595,757
10	2006	525,511	67,256	2,411	1,882	597,060
Π	2007	525,755	68,255	2,443	1,882	598,335
12	2008	525,999	69,225	2,475	1,882	599,581
13	2009	526,243	70,245	2,507	1,882	600,877
14	2010	526,487	71,208	2,539	1,882	602,116
15	2011	526,731	72,203	2,571	1,882	603,387
16	2012	526,975	73,207	2,603	1,882	604,667
17	2013	527,219	74,226	2,635	1,882	605,962
8	2014	527,463	75,258	2,667	1,882	607,271
19	2015	527,708	76,305	2,699	1,882	608,594

* Other' sales include public street and highway lighting, other sales to public authorities, sales to railroads and railways

Pa.PUC Revised Apr-96

IRP-ELEC 1C. Historical and Forecast Number of Customers (Year End)

Load Growth Scenario (Circle one): LOW

•

Index	Actual		-			Total
Year	Year	Residential	Commercial	Industrial	Other*	Customers
(a)	(b)	(c)	(d)	(e)	Û	0
<u>د</u>	1991	520,016	52,617	2,004	1,846	574,524
4	1992	521,152	52,839	1,987	1,884	576,527
ىپ	1993	522,353	52,910	1,995	1,832	577,810
-2	1994	522,588	53,617	2,027	1,865	579,123
-1	1995	522,922	53,772	2,059	1,882	580,112
0	9661	523,071	56,558	2,089	1,882	583,600
	1997	523,315	57,990	2,119	1,882	585,306
2	8661	523,559	58,637	2,149	1,882	586,227
ω	1999	523,803	59,432	2,179	1,882	587,296
4	2000	524,047	60,359	2,209	1,882	588,497
S	2001	524,291	61,291	2,239	1,882	589,703
¢	2002	524,535	62,221	2,269	1,882	706,065
7	2003	524,779	63,192	2,299	1,882	592,152
00	2004	525,023	64,220	2,329	1,882	593,454
6	2005	525,267	65,27 4	2,359	1,882	594,782
10	2006	525,511	66,236	2,389	1,882	596,018
11	2007	525,755	67,141	2,419	1,882	597,197
12	2008	525,999	68,033	2,449	1,882	598,363
13	2009	526,243	68,940	2,479	1,882	599,544
14	2010	526,487	69,829	2,509	1,882	600,707
15	2011	526,731	70,743	2,539	1,882	601,895
16	2012	526,975	71,667	2,569	1,882	603,093
17	2013	527,219	72,602	2,599	1,882	604,302
18	2014	527,463	73,550	2,629	1,882	605,524
19	2015	527,708	74,510	2,659	1,882	606,759

* Other sales include public street and highway lighting, other sales to public authorities, sales to railroads and railways

Pa.PUC Revised

Аря-96

IRP-ELEC 1C. Historical and Forecast Number of Customers (Year End)

Load Growth Scenario (Circle one): HIGH

Index	Actual					Total
Year	Ycar	Residential	Commercial	Industrial	Other*	Customers
(a)	(q)	(c)	(þ)	(c)	(I)	0
<u>\$</u>	1661	520,016	52,623	2,004	1,884	576,527
4	1992	521,152	52,839	1,987	1,832	577,810
μ	1993	522,353	52,910	1,995	1,865	579,123
. 7	1994	522,588	53,617	2,027	1,880	580,112
-	1995	522,922	53,772	2,059	1,882	580,635
0	1996	523,071	57,549	2,093	1,882	584,595
1	1997	523,315	59,167	2,127	1,882	586,491
3	1998	523,559	59,965	2,161	1,882	587,567
3	6661	523,803	60,977	2,195	1,882	588,857
4	2000	524,047	62,056	2,229	1,882	590,214
S	2001	524,291	62,752	2,263	1,882	591,188
6	2002	524,535	64,037	2,297	1,882	592,751
2	2003	524,779	65,210	2,331	1,882	594,202
80	2004	525,023	66,388	2,365	1,882	595,658
6	2005	525,267	67,555	2,399	1,882	597,103
10	2006	525,511	68,684	2,433	1,882	598,510
11	2007	525,755	68,805	2,467	1,882	598,909
12	2008	525,999	70,367	2,501	1,882	600,749
13	2009	526,243	71,615	2,535	1,882	602,275
14	2010	526,487	72,709	2,569	1,882	603,647
15	2011	526,731	73,795	2,603	1,882	605,011
16	2012	526,975	74,861	2,637	1,882	606,355
17	2013	527,219	75,942	2,671	1,882	607,714
18	2014	527,463	660'11	2,705	1,882	060'609
19	2015	527,708	78,152	2,739	1,882	610,481

* Other' sales include public street and highway lighting, other sales to public authorities, sales to railroads and railways

Pa.PUC Revised Apr-96

17

IRP-ELEC 2A. Estimated Summer Peak Resources, Loads and Reserves (MW)

					Resources					Peak I	oad			Reserve	
Index	Actual	Total	Inoperable	Operable	Non-Utility	Scheduled	Scheduled	Net	Total Internal	Interruptible	Load	Net Internal	Reserve	Scheduled	Adjusted
Year	Kear	Capability	Capability	Capability	Generators	Imports	Exports	Resources	Peak Load	Load	Management	Peak Load	Margin	Maintenance	Margin
(a)	(0)	(c)	(d)	(e)	(f)	(2)	(h)	Θ	0	(K)	Ð	(m)		(o)	[0]
ċ	1991	3,327	529	2,798	21	0	0	2,819	2,402	93	0	2,309	015	0	510
4	1992	3,327	529	2,798	21	0	o	2,819	2,308	£9	0	2,215	6 04	•	604
చ	1993	3,327	529	2,798	21	0	0	2,819	2,499	93	•	2,406	413	0	413
Ň	1994	3,327	529	2,798	21	0	D	2,819	2,535	22	0	2,442	377	•	377
<u> </u>	1995	3,327	529	2,798	21	•	٥	2,819	2,666	33	0	2,573	246	0	246
0	1996	3,051	439	2,612	36	125	0	2,793	2,537	108	4	2,425	368	0	368
	1997	3,051	439	2,612	56	125	0	2,793	2,399	149	33	2,417	376	Q	376
N	1998	3,051	439	2,612	56	125	٥	2,793	2,634	163	44	2,427	366	0	366
ω	1999	3,026	114	2,912	8	150	300	2,818	2,652	163	52	2,437	185	0	381
4	2000	3,026	204	2,822	8	250	300	2,828	2,671	163	8	2,448	380	0	380 081
Ċh	2001	3,089	0	680'E	56	0	300	2,845	2,690	163	19	2,466	379	•	379
o o	2002	3,089	0	680 6	<u>56</u>	8	300	2,895	2,709	163	62	2,484	411	0	411
7	2003	3,089	0	680'E	56	50	300	2,895	2,728	163	63	2,502	393	0	393
00	2004	3,089	0	3,089	<u>8</u>	75	300	2,920	2,749	163	64	2,522	398	0	866
0	2005	3,089	0	3,089	56	100	300	2,945	2,769	163	94	2,542	403	0	403
10	2006	3,089	0	680'5	56	125	3 0 0	2,970	2,790	163	65	2,562	408	•	408
11	2007	680'E	0	3,089	56	125	300	2,970	2,809	163	8	2,580	390	0	390
12	2008	3,089	0	3,089	56	150	300	2,995	2,829	163	\$	2,600	395	0	395
13	2009	3,229	0	3,229	<u> 5</u> 6	8	300	3,035	2,849	163	8	2,620	415	0	415
14	2010	3,229	0	3,229	56	8	300	3,035	2,868	163	8	2,639	396	0	396
15	2011	3,229	0	3,229	8	75	300	3,060	2,888	163	8	2,659	401	0	401
5	2012	3,229	0	3,229	56	19	3 0	3,085	2,908	163	8	2,679	\$	0	405
17	2013	3,229	0	3,229	56	125	300	3,110	2,928	163	8	2,699	411	0	411
5	2014	3,229	0	3,229	56	150	300	3,135	2,949	163	8	2,720	415	0	415
19	2015	3,369	0	3,369	56	50	300	3,175	2,970	163	8	2,741	434	0	434

Pa.PUC Revised

Jun-96

IRP-ELEC 2B. Estimated Winter Peak Resources, Loads and Reserves (MW)

					Resources	- - - - - -			•	Peak I	<u>oad</u>			Reserve	
tual Total Inoperable Operable Non-Utility	Total Inoperable Operable Non-Utility	Inoperable Operable Non-Utility	Operable Non-Utility	Non-Utility	-	Scheduled	Scheduled	E Z	Total Internal	Interruptible	Load	Net Internal	Reserve	Scheduled	Adjusted
car Capability Capability Capability Generators	Capability Capability Capability Generators	Capability Capability Generators	Capability Generators	Generators		Imports	Exports	Resources	Peak Load	Load 1	Management	Peak Load	Margin	Maintenance	Mangin
b) (c) (d) (e) (f)	(c) (d) (c) (f)	(d) (e) (f)	(e) (f)	Ð	1	(E)	(l)	Ģ	0	સ	θ	(m)	9	(0)	(a)
<u>391 3,409 575 2,834 21 </u>	3,409 575 2,834 21	575 2,834 21	2,834 21	21		.0	0	2,855	1,928	93	0	1,835	1,020	175	845
392 3,409 575 2,834 21 (3,409 575 2,834 21 (575 2,834 21 (2,834 21 (21	-	~	0	2,855	1,894	93	0	1,801	1,054	818	236
393 3,409 575 2,834 21 (3,409 575 2,834 21 (575 2,834 21 (2,834 21 0	21	Č	_	0	2,855	2,028	93	0	1,935	920	162	758
394 3,409 575 2,834 21 (3,409 575 2,834 21 0	575 2,834 21 0	2,834 21 0	21 - 0	0		0	2,855	1,951	93	0	1,858	666	511	486
395 3,409 575 2,834 21 0	3,409 575 2,834 21 0	575 2,834 21 0	2,834 21 0	21 0	0		0	2,855	2,040	93	0	1,947	908	164	744
396 3,133 463 2,670 56 0	3,133 463 2,670 56 0	463 2,670 56 0	2,670 56 0	56 0	0		0	2,726	2,062	108	2	1,952	PLL	175	599
997 3,133 463 2,670 56 0	3,133 463 2,670 56 0	463 2,670 56 0	2,670 56 0	56	0		0	2,726	2,101	149	27	1,925	õ	112	689
308 3,133 463 2,670 56 0	3,133 463 2,670 56 0	463 2,670 56 0	2,670 56 0	8	0		0	2,726	2,126	163	35	1,928	86£	175	623
300 3,108 128 2,980 56 0	3,108 128 2,980 56 0	128 2,980 56 0	2,980 56 0	2 2 2	0		006	2,736	2,152	163	4	1,949	787	8	687
000 3,108 240 2,868 56 0	3,108 240 2,868 56 0	240 2,868 56 0	2,868 56 0	56 0	D		300	2,624	2,179	163	45	1,971	653	(1)	653
001 3,174 0 3,174 56 0	3,174 0 3,174 56 0	0 3,174 56 0	3,174 56 0	0 9S	0		00E	2,930	2,205	163	45	1,997	933	Ξ	933
202 3,174 0 3,174 56 0	3,174 0 3,174 56 0	0 3,174 56 0	3,174 56 0	S6 0	0		8	2,930	2,232	163	45	2,024	<u>8</u>	Ξ	9 06
003 3,174 0 3,174 56 0	3,174 0 3,174 56 0	0 3,174 56 0	3,174 56 0	56	0		<u>300</u>	2,930	2,261	163	45	2,053	877	E	877
004 3,174 0 3,174 56 0	3,174 0 3,174 56 0	0 3,174 56 0	3,174 56 0	5 6 0	¢		80	2,930	2,290	163	45	2,082	848	Ξ	848
005 3,174 0 3,174 56 0	3,174 0 3,174 56 0	0 3,174 56 0	3,174 56 0	56 0	0		300	2,930	2,317	163	45	2,109	821	(1)	821
006 3,174 0 3,174 56 0	3,174 0 3,174 56 0	0 3,174 56 0	3,174 56 0	56 0	0		300	2,930	2,345	163	45	2,137	793	Ξ	793
007 3,174 0 3,174 56 0	3,174 0 3,174 56 0	0 3,174 56 0	3,174 56 0	56 0	0		300	2,930	2,372	163	45	2,164	766	Ξ	766
008 3,174 0 3,174 56 0	3,174 0 3,174 56 0	0 3,174 56 0	3,174 56 0	0	0		300	2,930	2,400	163	45	2,192	738	Ξ	738
009 3,341 0 3,341 56 0	3,341 0 3,341 56 0	0 3,341 56 0	3,341 56 0	56	0		00	3,097	2,427	163	45	2,219	878	Ξ	878
010 3,341 0 3,341 56 0	3,341 0 3,341 56 0	0 3,341 56 0	3,341 56 0	<u>5</u> 6	0		300	3,097	2,454	163	45	2,246	851	Ξ	851
011 3,341 0 3,341 56 0	3,341 0 3,341 56 0	0 3,341 56 0	3,341 56 0	56 0	0		300	700,E	2,483	163	45	2,275	822	(i)	822
012 3,341 0 3,341 56 0	3,341 0 3,341 56 0	0 3,341 56 0	3,341 56 0	\$6 0	0		300	3,097	2,511	163	45	2,303	794	Ξ	ž
313 3,341 0 3,341 56 0	3,341 0 3,341 56 0	0 3,341 56 0	3,341 56	56	Č	~	300	3,097	2,540	163	45	2,332	765	3	765
014 3,341 0 3,341 56 (3,341 0 3,341 56 (0 3,341 56 (3,341 56 (22	Ŭ	_	300	3.097	2,569	163	45	2,361	736	e	736
015 3,508 0 3,508 56 0	3,508 0 3,508 56 0	0 3,508 56 0	3,508 56 0	S6 0	0		300	3.264	2,595	163	45	2,387	877	0	877

(1) Duquesne Light does not schedule maintenance beyond five years in advance.

Pa.PUC Revised

Jun-96

•

Brunot Island 1A Brunot Island 1B Station and Unit No. Brunot Island 1C Peaking Station Phillips 2 Phillips Eiroma 4 Elrama 3 Cheswick Elrame 2 Elrama 1 Phillips 4 Philips 3 Station Station 9 Washington County, Allegheny County, Allegheny County, Allegheny County, South Heights, Pennsylvania Pennsylvania Pennsylvania Pennsylvania Springdale, Pittsburgh, Elrama, Location 9 Mar. 1972 Mar. 1972 Mar. 1972 Sep. 1954 Nov. 1960 Sep. 1950 Jan. 1953 Apr. Jan. 1956 Oct. 1949 Oct. 1942 Installed Date 6 1952 1970 Type Li ରୁ ଦ୍ର ଦ୍ର 2 ST ST ST ST ê 9 Type Fuel 89 **8**9 BIT 뽁 **₽**0 **Primary Fuel** Transp. Method TK-WA TK-WA TK-WA TK-WA TK-WA **TK-WA** TK-WA TK-WA TK-WA *** Θ p. Fuel Transp. Capabilia d Type Method Summer (g) (h) Capability-MW 474 32 88 88 5 D 55 54 18 18 Net Winter 487 ଷ ସ ସ 570 335 8 N N N MW E **Changes** During Past Year Reason Ξ Ownership Share (m) 100% 100% 100% 100% 100% 100% 100% 100% % Notes 92222**3**

IRP-ELEC 3A. Existing Generating Capability (as of January 1 of current year)

Pa.PUC Revised

Jun-96

IRP-ELEC 3A. Existing Generating Capability (as of January 1 of current year)

Station and Unit No. Lo				Priman	v Fuel	Altema	ite Fuel	Ž	1	Cha	inges During	~	
Station and Unit No. Lo		Date	Unit	Fuel	Transp.	Fuel	Transp.	Capabili	NM-WM		Past Ycar	Ownership	
(8) Branct Island 2A Pilk	ocation	Installed	1, the	Type	Method	Type	Method	Summer	Winter	MM	Reason	Share	Notes
Brand Island 24 Pitt	9	0	9	(c)	Ē	181	B			3	m		Ê
	tsburgh,	June 1973	5	F02	WA			45	56			100%	(4)
Brunot Island 2B Afegher	sny County,	June 1973	IJ	F02	WA			45	8			100%	(†)
Brunot Island 3 Penn	risyhvania	June 1973	5	<u>F</u> 02	WA			\$	8			100%	(4)
Brunot Island 4 Combined Cycle		1974 1974	5	WH-FO2	M	<u>. </u>		8 2	29			100%	9 6
Brunot Station						,		528	306				
Fort Martin 1 Mai	aidswille, jalla County, t Virginia	Sep. 1967	ST	Ш	TK-WA			276	276			50%	
Sammis 7 Str Jefferse	tratton, bon County, Chilo	Sep. 1971	ST	Τίθ	TK-WA			167	187			31.2%	
Eesttake 5 Ear Lake	estlake, s County, Ohio	Sep. 1972	S	81	AA AA			188	186			31.2%	
					<u></u>								

Pa.PUC Revised Jun-96

22

.

IRP-ELEC 3A. Existing Generating Capability (as of January 1 of current year)

to support ret gas / oil dual expected to	(5) Duqueshe ex	(4) Unit placed i	(3) Duquesna ex	(2) Unit placed i	(1) Unit placed i	Notes:	Total System	Perry 1	Station	Beaver Valley 2	Beaver Valley 1	Mansfield 1 Mansfield 2 <u>Mansfield 3</u> Station	(a)	Station and Unit No.		
ail load growth and long fining, equipped with ai be 267MW - summer a	pects the Brunot Islan	in cold reserve 5-1-86	pects the Philips Stati	in cold reserve 12-1-87	in cold reserve 1-1-87.			Perry Township, Lake County, Ohio		Beaver County, Pennsylvania	Shippingport,	Shippingport, Beaver County, Pennsytvania	(b)	Location		
herm off-syste ir and water p Ind 306MW -	d Simple Cycl	8 300 MW Sur Heat Rate ar	on to be ne	7. Net capal	Net capabi			Nov. 1987		Nov. 1987	May 1977	June 1978 Oct 1977 Sep. 1980	(c)	Installed	Date	
im sales. ollution a winter.	le Combu	nmer and M Forcer	stored to	oiity valu	lity value			â		2 P	Ŋ	র র ম	(a):	Type	Unit	
The Co batement	istion Tur			es rellec	s reflect			ž		C R	æ	87 명 명	e :	Type	Fuel	Prima
mbined C equipme	bines to	Wintter. H	cial oper	t MW at	MW at 1			TX		ź	¥	TK-WA TK-WA TK-WA	ß	Method	Transp.	2
nt, and n	be neato	iear rate i	attion in 1	the time	the time								(8)	Type	Fuel	
ity will b bactivated	red to or	and torce: Indefined	1998 to su	the unit	the unit								(h)	Method	Transp.	ata Rival
e reflutsishe 1 in 2007. 7	ommercial o	d outage rat	pport long t	t was place	was placed		3327	161	498	113	385	228 82 110	0	Summer	Capabili	Z
ne net cap	operation in i	12 TOY 1894 8	erm off-syst	in cold i	in cold re		3400	164	498	113	385	228 82 110 400	60	Winter	ih-MW	P
valuto natu	2001, 2003	ite Undenti	em sales.	'eselve.	iterve.		 						(k)	MW	e P	
	s, and 2005	ä											Ø	Reason	ast Year	vone During
								13.74%		13,74%	47.50%	28.30% 8.00% 13.74%	(m)	Share	Ownership	
													(n)	Notes		

Pa.PUC Revised Jun-96
IRP-ELEC 3B. Existing Generating Capability (Supplemental Information)

	Average	Maintenance	Forced	Unit			Emission Rate			
	Heat Rate	Outage	Outage	Commitment	Must-Run	sox	XON	C02		
Station and Unit No.	Btu/kwh	Rate (%)	Rate (%)	Type	Order	lbs/MBtu	lbs/MBtu	lbs/MBtu	Notes	
(a)	9	3	(g)	(e)	Ð	(g)	(þ)	9	0	
Elrama	12179	6.42%	9.23%	(9)	(4)	0.3 (1)	0.45-0.5 (3)	203(3)		
Ebrama 2	11887	5.07%	23.01%	(1)	;€	0.3 (1)	0.45-0.5 (3)	203(3)		
Eknara 3	11749	23.27%	6.94%	€	•	0.3 (1)	0.45-0.5 (3)	203(3)		
Elrama 4	11002	13.56%	2.46%	(4)	(4)	(1) [0]	0.45-0.5 (3)	203(3)		
Cheswick	10158	8.97%	5.96%	(4)	(4)	2.5	0.37	203(3)		
Brunot island 1A	15730 (1)	0.00%	0.00%	(+)	(4)			121(3)		
Brunot Island 1B	15730(1)	0.00%	0.00%	(4)	(F)			121(3)		
Brunot Island 1C	15730 (1)	0.00%	0.00%	•	()			121(3)		
Brunot Island 2A	3	3	(2)	(9	(4)	(2)	(2)	(2)		
Brunot Island 2B	2	ଟ୍	(7)	((4)	(2)	ଟି	(3)		
Brunot Island 3	(7)	ନ୍ଦି	<u>(</u> 2)	((P)	(2)	<u>ری</u>	3		
Brunot Island 4	(2)	(2)	(2)	(4)	()	ନ	2	(2)		
Phillips 1	(2)	(2)	(2)	€	Ð	(2)	(2)	(2)		
Phillips 2	8	(2)	(2)	•	(4)	(7)	ତ	3		
Phillips 3	2	ଟ	ନ	E	(4)	ଚ	3	3		
Phillips 4	ନ୍ତି	3	(2)	(4)	£	3	2	(2)		_
Fort Martin 1	9878	23.32%	19.05%	(4)	(4)	2.8	0.7	203(3)		
Sammis 7	10012	17.93 %	4.77%	(€)	(4)	1.5	1.1	203(3)		
										า
 Data represents a plication Phillips and Brunot Isl 	int average. and have beer	n in cold reserve	since 1986/8	7. No current d	ata available.		Ĩ	PaPUC Revised	Apr-96	

Phillips and Brunot Island have been in cold reserve since 1986/87. No current data available.
 Estimated Data
 Commitment and must run order are not done on a unit basis, each unit is made up of several commitment blocks.

IRP-ELEC 3B.
Existing Generating Capability
(Supplemental Information)

Perry 1	Beaver Valley 1 Beaver Valley 2	Mansfield 1 Mansfield 2 Mansfield 3	Eastlake 5	Station and Unit No. (a)
10514	10985 10882	10680 11078 10472	9703	Average Heat Rate Btu/kwh (b)
1.91%	16,50% 12.55%	0.57% 32.76% 34.65%	14.24%	Maintenance Outage Rate (%) (c)
4.76%	5.72% 0.50%	2.94% 1.01% 5.40%	7.99%	Forced Outage Rate (%) (d)
(4)	(4) (4)	444	(4)	Unit Commitment Type (c)
(4)	(4) (4)	(4) (4)	(4)	Must-Run Order (f)
Ð	00	0.15 0.15 0.15	4.6	SOx Ibs/MBau (g)
Q	00	0.31 0.31 0.33 (3)	0.8	Emission Rate NOx Ibs/MBtu (h)
0	00	203(3) 203(3) 203(3)	203(3)	s CO2 Ibs/MBtu (i)
				Notes (j)

(1) Data represents a plant average.
 (2) Phillips and Brunot Island have been in cold reserve since 1986/87. No current data available.

PaPUC Revised

(3) Estimated Data

(4) Commitment and must run order are not done on a unit basis, each unit is made up of several commitment blocks.

Арт-96

IRP-ELEC 4. Future Generating Capability Installations, Changes and Removals 1995-2014

			Primary	v Fuel	Alterna	ate Fuel	Ž	Ŧ			Estimated	%	
		Unit	Fuel	Transp.	Fuel	Transp.	Capabilit	y (MW)	Effective		Plant Cost in	Ownership	
Station and Unit No.	Location	Type 1	Jype I	Method	Type	Method	Summer	Winter) Defe	Status	Current \$/KW	Share	Notes
(8)	(9)	9	9	ອ	Ξ	3	8	0	0	3	8	Ē	Ξ
Fort Martin 1	Manichwille, Manongalia County, wear Vizataia	ST	LIA	TK-WA			-276	-276	96-01	R	600	100%	£
Phillips 1 - 3	waa vuguus South Hoight, Allaghery County, Pransylvenia	5	III	TK-WA			ş	ŝĻ	89	22	450	100%	(3)
Philinge +	South Heights, Allegheny County, Pennsylvamia	ST	BLT	TK-WA			01 -	-10	6-3	Ø	450	3 00%6	(23)
Brunct Teland 2A, 2B, 3	Pitubungh, Allegheany Conurty, Pennsylvamia	ដ	DZ	- 2	FO2	WA	222	8 8 8 8	8 8 0 9 8 9	89 69 69	37	100%	999 (†99 (†99
Brunct faiend 4	Pétuburgh. Allagheny County, Pernayhvania	CA	НМ	×	D X	<u>ج</u>	3	\$	10-9	3	432	100%	(+ 년
Peaking Resource 1	Unication	Phone	02	Ľ			140	167	60-	۵.	300	100%	3
Peaking Resource 2	Unicrowa	Plicer	2 Z	r.			140	167	4-15	٩.	30	100%	(2)

(1) Duquesne's share of the Fort Martin Unit 1 generating station was sold to the AYP Capital subsidiary of Allegheny Power System.

(2) Plant Cost Based on summer rating and in 1995 dollars. Fort Martin cost based on recent sale price.

(3) Phillips units 1-4 will be returned to service from cold reserve, derated from 325/335 MW to 300/310 MW.

(4) BICC will be returned to service from cold reserve. Units 2A, 2B, and 3 will initially be reactivated with oil firing. When Unit 4 is reactivated, the combustion turbines will be converted to duel firing with natural gas/oil. Unit 4 will have only natural gas for auxiliary firing. Plant reactivation cost for Unit 4 includes the cost of the combustion turbine gas conversions.

Pa.PUC Revised Jun-96

٠

IRP-ELEC 5. Cogeneration and Independent Power Production Pacilities

Shadys	Riverv for Jew	Equita	HJ, H	U.S. S Edgar	U.S. (LTV	AES 1 Unince	
aide Hospital	riew Center vish Sentors	ble Gas	(cipz	Steel Thompson	Steel	Steel	Beaver Valley orporated	Facility Name (a)
5230 Center Ave. Pittsburgh PA 15232	52 Genetla Ave. Pittsburgh PA 15217	420 Blvd. of Allies Pittsburgh PA 15217	Pittsburgh PA	Pittsburgh PA	Clairton PA	Pittsburgh PA	Monaca PA	Location (b)
Natural Gas	Natural Gas	Natural Gas	Coal & Natural Gas	Blast Furnace Gas	Coke Oven Gas	Coke Oven Gas	Coal	Energy Source (c)
0	0	0	o	¢	0	14,305,000	(1)	Purchased Energy (KWH) (d)
								Total Generation (KWH) (e)
						17,200		Contract Capacity (KW) (D
1,600	8	700	7,500	50,000	20,000	40,000	125,000	Total Capacity (KW) (g)
							8/28/85	Effective Date(s) (h)
сĘ	იქ	ი₽	°5	c 2	იმ	0 Q	с <mark>Р</mark>	Status and (j)

Pt. FUC Revised

Apr-96

26

.

IRP-ELEC 5. Cogeneration and Independent Power Production Facilities

Facility Name (3)	Location (b)	Energy Source (c)	Purchased Energy (KWH) (d)	Total Generation (KWH) (e)	Contract Capacity (KW) (f)	Total Capacity (KW) (g)	Effective Date(s) (h)	Status and Type (j)
Enertech Windmill (Grieco)	Route 931 Independence Twp. RD #1, Box 116B Imperial PA 15216	Wind	σ.			ы	2/1/80	or
Enertech Windmill (Holloway)	Wilsom Road, Rt. 472 Harrover Township RD #1, Box 265 Clinton PA 15026	Wind	0	****		4	3/1/82	S
Patterson Dam Beaver Valley Power Company	Sixth St. & Second Ave Beaver Falls PA 15010	Hydro	5,140,000			1,800	8/18/82	or S
Townsend Dam Beaver Falls Municipal Authority	1425 Eighth Ave. PO Box 400 Beaver Falls PA 15010	Hydro	17,096,000			5,000	2/28/85	° or
Beechwood Farms Nature Preserve	Fox Chapel PA	Wind & Solar	0			7		ol S
O'Brien Energy Corporation	Clinton PA	Methane	6,676,000		* - • • • - • - • - • - • • • • • • • •	3,000	12/21/89	s
Shenango, Inc.	200 Heville Road Pittsburgh, PA 15225	Coke Oven Gas	0			5,000	10/15/01	s Q

Pa.PUC Revised Apr-96

Facility Name (a)	Location (b)	Energy Source (c)	Purchased Energy (KWH) (d)	Total Generation (KWH) (c)	Contract Capacity (KW) (f)	Total Capacity (KW) (E)	Effective Date(s) (h)	Status and (i)
Cogeneration Systems, Inc.	Clairton PA	Coke Oven Gas	Q			150,000		က နှိ
City of Pittsburgh Frick Park Nature Center	Pittsburgh PA	• Solar	0			6	1/17/92	20 s
Miller Spring Co.	Sharpsburg PA	Cus	0			300		ဂမ္မ
City of Pittsburgh Lock & Dann No. 2	Pittsburgh PA	Hydro	0			11,600		S
County of Allegheny Deshields Dam	Sewickley PA	Hydro	ç			20,000		s bb
Econeco, Inc. Montgomery Dam	Industry PA	Hydro	0			20,000		S
Ensworth Dam	Neville Island PA	Hydro	0			20,000		S
Notes: (1) Energy from this Fac	sility is not purchased by Duquesn	ne. Duquesne pro	vides transmissi	on service only				

IRP-ELEC 5. Cogeneration and Independent Power Production Facilities

Company Name: Duquesne Light Company

Pa.PUC Revised

Apr-96

IRP-ELEC 6. System Cost Data

Projected and Levelized Energy Costs (mills/KWH)

		Annual		Wii	nter	Sum	uner	Sprin	g/Fall
Year	All Hours	On-Peak	Off-Peak	Om-Peak	Off-Peak	On-Peak	Off-Peak	On-Pcak	Off-Peak
Actual 1995									
Projected 1996	14.02	15,40	12.18	16.59	12.73	16.07	12.16	14.32	12.04
1661	15.36	17.08	13.07	17.95	13.87	18.15	13.29	15.90	13.10
8661	16.24	18.08	13.78	18.59	14.00	18.63	13.62	17.42	13.68
5661	16.61	18.47	14.13	18.00	14.12	18.95	14.05	17.64	14,20
2000	15.26	16.37	13.77	15.61	13.70	17.62	13.79	14.58	13.59
2001	15.61	16.93	13.85	17.43	14.23	18.26	13.93	16.35	13.78
2002	16.21	17.69	14.24	17.37	14.69	19.05	14.42	16.82	14.04
2003	17.12	18.76	14.93	20.01	15.81	21.19	15.23	17.41	14.70
2004	18.66	20.82	15.77	22.41	16.13	22.08	15.71	19.55	15.56
2005	19.66	22.26	16.19	24.70	16.97	23.14	16.33	20.91	15.97
Levelized	16,18	17.85	13.95	18.46	14.37	18.91	14.00	16.77	13.84

PaPUC Revised Jun-96

•

IRP-ELEC 7A. Distribution of Net Generating Capability by Fuel Type

Season (Circle One): SUMMER

Index	Actual		Dil/Gas			Piimned	0il	63%	Tratal	Onerable	Net	Z
Year	Year	Cont	Steam	Nuclear	Hydro	Storage	CT/ICE	CT/ICE	Capability	Capability	Transactions	Resources
(a)	(b)	(c)	(d)	(c)	Ð	(g)	(h)	0	0	(k)	0	(m)
s.	1661	2405	0	656	0	0	258	0	3319	2790	456	3246
4	1992	2410	0	659	0	¢	258	0	3327	2798	21	2819
ىئ	1993	2410	0	659	0	0	258	0	3327	2798	21	2819
-2	1994	2410	0	659	0	•	258	0	3327	2798	21	2819
-]	1995	2410	0	659	0	0	258	0	3327	2798	21	2819
0	9661	2134	0	659	0	0	258	0	3051	2,612	181	2793
	1997	2134	0	659	0	0	258	0	3051	2,612	181	2793
2	8661	2134	0	659	0	0	258	0	3051	2,612	181	2793
ω	6661	2109	0	659	0	0	258	0	3026	2,912	-94	2818
4	2000	2109	•	659	0	0	258	0	3026	2,822	6	2828
5	2001	2109	0	659	0	0	5 4	267	6805	680'E	-244	2845
6	2002	2109	0	659	0	0	54	267	3089	3,089	-194	2895
7	2003	2109	¢	659	0	0	54	267	3089	680'E	-194	2895
~	2004	2109	0	659	0	0	54	267	6805	680'E	-169	2920
6	2005	2109	0	659	0	0	54	267	3089	3,089	-144	2945
10	2006	2109	0	659	0	0	54	267	6805	680'E	-119	2970
11	2007	2109	0	659	0	0	54	267	3089	3,089	-119	2970
12	2008	2109	٥	659	0	0	54	267	3089	6 80 °E	- 94	2995
13	2009	2109	0	659	0	0	54	407	3229	3,229	-194	3035
14	2010	2109	0	659	0	0	54	407	3229	3,229	-194	3035
15	2011	2109	0	659	0	0	54	407	3229	3,229	-169	3060
16	2012	2109	0	659	0	0	54	407	3229	3,229	-144	3085
17	2013	2109	0	659	0	0	54	407	3229	3,229	-119	3110
18	2014	2109	0	659	0	0	54	407	3229	3,229	-94	3135
61	2015	2109	0	659	0	0	54	547	3369	3,369	-194	3175

Pa.PUC Revised

Jun-96

IRP-ELEC 7A. Distribution of Net Generating Capability by Fuel Type

Season (Circle One): WINTER

Index Actual Oil/Gas Nuclear Year Year Coal Steam Nuclear -5 1991 2441 0 663 -3 1992 2441 0 663 -3 1992 2441 0 663 -1 1992 2441 0 663 -1 1993 2441 0 662 -1 1993 2441 0 662 -1 1993 2165 0 662 1 1997 2165 0 662 2 1999 21640 0 662 3 1999 2140 0 662 5 2001 2140 0 662 6 2003 2140 0 662 7 2003 2140 0 662 9 2005 2140 0 662 11 2002 2140
Index Actual Oil/Gas Year Year Coal Steam Year Year Coal Steam -5 1991 2441 0 -3 1992 2441 0 -3 1992 2441 0 -3 1993 2441 0 -1 1993 2441 0 -2 1993 2441 0 -1 1995 2441 0 -1 1995 2441 0 -1 1995 2441 0 -1 1995 2441 0 -1 1995 2441 0 -1 1995 2140 0 -1 1997 2165 0 0 -1 1999 2140 0 0 -1 2003 2140 0 0 -1 2004 2140 0 0 10
Index Actual Year Year Coal (a) (b) (c) -5 1991 2441 -3 1992 2441 -3 1993 2441 -1 1993 2441 -1 1995 2441 -1 1995 2441 -1 1995 2441 -1 1995 2441 -1 1995 2441 -1 1995 2165 1 1995 2140 2 1999 2165 3 1999 2165 3 1999 2160 7 2003 2140 10 2005 2140 11 2005 2140 12 2005 2140 13 2005 2140 14 2010 2140 15 2011 2140 16 2013 2140
Index Actual Year Year 13) (b) -5 1991 -3 1992 -3 1993 -1 1995 -2 1995 -1 1999 -1 2001 13 2005 14 2010 15 2013 16<
Index Year Year (a) (b) (c) (c) (c) (c) (c) (c) (c)

Pa.PUC Revised

Jun-96

IRP-ELEC 7B. Scheduled Imports and Exports (MW)

Season (Circle One): SUMMER

, 		Ē	1
	골 콜 톺 쿻	ype Cude	articipant
Totala	Zinc Corporation Existing QF Long Term Sale Firm Capacity	Participant	Name of
181		1996	
181		1997	
181	<u> </u>	1998	
-94		6661	
6	<u></u>	2000	
-244	<u> 8 a 8 a</u>	2001	
-194		2002	
-194		2003	
-169	8.0 Š 15	2004	
-144	විදි ක සි	2005	
-110	<u> </u>	2006	
-110	ŭ Š a S	2007	
÷.	8 a 8	2008	
-194	පි ම පි	2009	
-164	S S a S	2010	_
-169	2 a 2 k	2011	
-144	<u>8888</u>	2012	
-119	<u>ชีชื่อ ช</u>	2013	
84		2014	
-194	88.8	2015	

Ph.PUC Revised Jun-96

32

ł

IRP-ELEC 7B. Scheduled Imports and Exports (MW)

Season (Circle One): WINTER

Participant Proc Code	Name of Participant	9%61	1997	1998	6661	2000	2001	2002	2003	2004	2005	3006	2007	008	1 600	- 010	011 3	2012	2013	2014	2015
				5		5	5	5	5	- 5	5	- 5	5	- 5	5	5		5	5	5	
	St. JOE Eviteinn OF	S "C	3 6	8 6	3 •0	3 60	8 40	, e	3 0	3 00	3 00	3 0	3 10	3 0	, w	3 4	3 60	3 50	3 10	3. 10	2
2	Long Term Sala	Ö	0	0	8	8	8	30	800	000	300	900	300	000	800	200	300	8	800	300	8
																			· · · · · · · · · · · · · · · · · · ·		
	Totats	8	8	8	-24	24	ž	24	244	244	-244	24	- 14	24	244	4	244	*	244	24	4

Pa.PUC Revised Jun-96

3 Net Energy for Load values do not equal those shown on Form 01A due to projected curtailments of interruptible load and energy savings from the DSM program.

The Net Energy Export values for 1999 and beyond include all of the output

for Phillips, which will be reactivated to support a long term sale.

0

18 17 55 4 12 10 ŗ, φ 00 δ 5 - 1 5 A 2001 2002 2011 2012 2013 2006 2004 2015 2010 2008 2000 2005 666[8661 1997 1996 1993 1994 5661 9,816 9,262 8,688 8,946 8,946 8,892 9,232 9,232 9,232 9,426 9,773 9,774 9,774 9,774 9,774 9,774 9,774 9,774 9,774 9,774 9,774 9,774 9,762 11,056 11,294 11,217 10,329 10,461 10,426 10,567 10,425 10,805 10,979 00 000 0 0 00 0 00 0 C 4,950 4,996 **4,848** 5,113 5,196 4,950 4,846 5,110 5,194 4,994 5,358 5,195 5,195 5,195 5,195 5,195 5,344 4,787 3,356 4,239 4,710 4,638 0 C 00000 0 000 ٢ ¢ ¢ 00 ٥ 0 0 00 00000 00 00 00 <u>√⊖ ~ © 2</u>9€ 51242 338 00 0 0 0 0 14,072 13,805 13,919 14,133 15,437 15,031 14,452 14,526 14,730 14,923 14,146 15,814 15,882 15,648 15,245 15,423 15,070 15,458 16,268 16,078 15,038 00000 ¢ 0 00 0 0 0 c 0 0 (2,239) (1,794) (1,905) (176) 329 14,066 14,248 15,805 14,623 14,815 15,017 15,222 15,419 14,437 13,896 12,880 13,244 13,165 13,586 16,990 16,786 16,586 16,387 16,191 15,614 17,195

Company Name: Duquesne Light Company

IRP-ELEC 8A. Distribution of Net Generation by Fuel Type (MWH)

Index Year

Actua

Year

Oil/Gas Steam 6

Nuclea

Hydro

Storage (+) Pumped

CTACE

Gas CT/ICE

Generation Total Net

Pumping Energy (-) (k)

Э

1<u>2</u>(m) (2)

Net Energy Import (Export)(1)

Net Energy For Load

 \mathbf{e}

Ε

8

3,9<u>6</u>

Þ

ů

0 0

0

0

0

14,944

15,831 15,06 e

(3,499) (2,382

12,332 12,705

1992

66 €

(c) 11,130 S

Pa_PUC Revised Jun-96

IRP-ELEC 8B. Scheduled Imports and Exports (MWH)

2	9491	ŝ
م 	<u> </u>	×.
TOR	62,1,46 66,1,46 66,1,46	021 491
2013	1990 1990 1997 1997 1997 1997 1997 1997	367,136
2012	99, 1951 99, 195 99, 195	9447212
1100	91711 9174 6174	84774
20102	112,200 112,000 114,121 114,121	autu
3000	104,101 104,12 104,14	804/622
2008	1944,44 1914,55 1914,191 1914,191 1914,191 1914,191 1914,191 1914,191 1914,191 1914,191 1914,191 1914,191 1914,1914,	M4/175
2001	1947-194 1940-194 1923-194	
X	41.2.14 484, John 444, 14 494, 144, 14 494, 14 494, 144, 14 494, 14 494, 144, 14 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,	WFIR
\$002	PARA PASA PASA PASA PASA PASA PASA PASA	95777
7007		BETTE
1002	416.74 916.44 916.11	199,800
7007	913,12 969,81 890,11 890,11	146,004
1002	01/34 08/34 8	M3.790
8	481,45 481,45 931,85	Instant
6665	412.02 641.02 007.11 0	410 HE
199£		031.69
1997		4267MG)
1996		021, K L
Name of Participant	Zine Corporation J & L Fism Capacity Fism Capacity	Totats
Participant Type Code		

Pa.PUC Revised Aun-96

IRP-ELEC 9. Summary of Demands, Resources and Energy for the Past Year

	Peak	Dav	Calendar	
	Summer	Winter	Year	
	1995	1995/96	1995	Notes
01 Installed Generating Capacity (MW)	3327	3406		
02 Forced Outages (MW)	514	138		
03 Planned/Maintenance Outages (MW)	0	164		
04 Units in Cold Reserve (MW)	529	573		
05 Miscellaneous Unavailable Capacity (MW)	-90-	•		
06 Total Capacity Not Available at Time of Peak (MW) (02+03+04+05)	953	875		
07 Firm Capacity Commitments from Others (MW)	329	33		
08 Firm Capacity Commitments to Others (MW)	0	210		
09 Reliable Capacity for Load (MW) (01-06+07-08)	2703	2354		
10 Peak Load in Season (MW)	2666	2040		
11 Operating Reserve at Time of Peak (MW) (09-10)	37	314		
12 Date and Hour of Peak	8/16/95 1600	2/5/96 1100		
13 Energy Produced by Company (Net MWH)			15,037,874	
14 Energy Received from Interconnection or Affiliated Company (MWH)	· · · · · · · · · · · · · · · · · · ·		1,201,658	
15 Energy Delivered to Interconnection or Affiliated Company (MWH)	· · ·		2,974,797	
16 System Losses and Company Use (MWH)			836,603	
17 Energy Delivered to Company Customers (MWH) (13+14-15-16)	· · · · · · · · · · · · · · · · · · ·		12,428,132	

Pa.PUC Revised

Apr-96

IRP-ELEC 10A. Conservation and Load Management Program Description

Program Name: Smart Comfort (Low Income Usage Reduction Program) Customer Class: Residential Status: Existing <u>x</u> Proposed

Contact Person: Barry Kukovich Phone No: (412) 393-6403

Program Objective:

To help low-income, residential customers reduce energy usage and improve bill paying behavior.

Details of Activity and Implementation Schedule:

The Smart Comfort Program (LJURP) is an ongoing program whereby highly trained Energy Managers (EMs) conduct on-site energy surveys on 600 to 700 residential customer housing units to determine what, if any, usage reduction measures would be appropriate to install During the home visit, the EM educates the customer on no cost / behavior change energy saving methods, performs an energy audit, and decides what measures to employ to save energy. Appliance replacement has become the major focus of the program. Any energy wasting appliance is a candidate for replacement, but refrigerators, water bods and incandescent lighting are the most frequently replaced items.

To be eligible for the program, customers must meet the following criteria: 1.) be a DLCo residential rate customer, 2.) have a household income at or below 150% of the powerty level; 3.) provide proof of income; 4.) own the dwelling or receive permission to participate from the landlord. To participate, oustomers contact DLCo in response to community group appeals, media advertisements, dirct mail and through DLCo representatives referals.

Actual and/or Anticipated Results:

Peak Load |Load Shifted

Monetary and Personnel Resources:

		CaleBonze	d Program Ex	penses (J)	
Estimated Workhours	Payroll	Advertising*	Customer Grants	Other	Total
4,176	\$105,000	\$28,677	\$583,347		\$717.024
4,200	\$105,000	\$26,996	5 512,932		\$644,928
4,200	\$ 105,000	\$ 30,000	\$570,000		\$705,000

Other Results

Coal Tons)

(Gallons)

පුව්

Electric (KWH)

to Off-Peak

Reduction

(KW)

(KW)

Year

Energy Savings Gas Oil X X X

NN N

N N N

1,435,060

A A A Z Z Z

V

1994 1995

1986

,541,800

A N N

,511,100

PA.PUC Revised

*Admin

)hun-96

	•
IRP-ELEC 10A ,	Conservation and Load Management Program Description
Program Name: Customer Class: Status: Existing	Energy Conservation Educational and Information Support Program Residential, Commercial and Industrial x Proposed
Contact Person:	Estella Smith Phone No: (412) 393-6060
Program Objective:	
To support the Compar	ny's Energy Conservation Personal Contact Program and promote among all customer classes the wise and efficient use of electric energy
Details of Activity and Impleme	mation Schedule:

38

The Duquesne Light Speakers Team offers a Safety Demonstration that visually displays the importance of electrical safety. This presentation was delivered to approximately 4500 students in over 50 schools located throughout Allegheny and Beaver Counties. The program was also presented to 53 special emphasis groups including: Boy and Girl Scout Troops, Safety Fairs, Fire Departments and libraries. In addition to the electric demonstrator, Duquesne Light provides videotapes, brochures and paniphiets on efficient energy usage, and energy conservation.

commonsense, home energy management tooliniques to maximize energy efficiency for homeowners. A new presentation topic "Lightening The Load" was developed this year to continue providing valuable information to our customers. This program gives simple,

At Duquesne Light we are committed to providing reliable electric service and to informing our customers about energy efficiency.

Actual and/or Anticipated Results:

	Peak Load	boffit becl		Energy	Savings		
	Reduction	to Off-Peak	Electric	Gas	<u>Oi</u>	Coal	Olha
Year	(KW)	(RW)	(KWH)	(003)	(Galions)	(Tons)	Results
1994	N/A	NIA	NA	N/A	WA	NIA	NIA
•5661	NA	NA	NA	NIA	NIA	NYA	NIA
1996	N/A	N/A	NIA	NVA	NVA	NVA	NVA
	<u></u>						_

"Estimated

Monetary and Personnel Resources:

s56,000 ser tracked	gram are no fong	\$30,000 \$25,000 from this prog	\$26,000 \$27,000 Result	1,250 1,300
Other Total	Customer Grants	Advertising	Paynoll	Estimated Worldhours
1965 (\$)	Program Exper	Categorized		

PA.PUC Revised

Jun-96

IRP-ELEC 10A. Conservation and Load Management Program Description

Business and Industry Energy Conservation Education and Informational Personal Contact Program Commercial and Industrial Proposed × Existing Customer Class: Program Name: Status:

Contact Person: Joseph Zagorski Phone No: (412) 393-2410 Donald Messner (412) 393-2780

Pregram Objective:

Continue to encourage and educate business and industries regarding the wise and efficient use of electric energy. Determine our customer's needs and meet those needs in an innovative, cost efficient manner.

Details of Activity and Implementation Schedule:

consulting engineers, developers and builders who are major users or specifiets of energy end uses. Company reps provided customers with the following: Company reps, backed by a technical support section, made personal one-on-one contacts with medium and large-size outtomers as well as architects,

- * Rate structure information, including utilization of electricity off-peak, economic development discounts, and untransformed service credits
- Power factor recommendations which can increase line capacity and reduce line losses.
- · Economic feasibility studies for engineers, architects, builders and developers.
- * Voltage, lighting and insulation recommendations, as well as onsite energy audits, all intended to provide greater electric energy efficiency to the customer.

Actual and/ar Anticipated Results:

Monetary and Personnel Resources:

Reductions to Off-Peak Electri (KW) (KW) (KW) 094 3,411 N/A N/A 095 3,000 N/A N/A	Peak Electric Gas W) (KWH) (CCI M N/A N/A	9	j j		
ear (KW) (KW) (KWH 094 3,411 N/A N/A 095 3,000 N/A N/A	W) (KWH) (CCF	0	3	Coal	Other
94 3,411 N/A N/A 95 3,000 N/A N/A	VN VN		allons)	(Tons)	Results
95 3,000 N/A N/A			VN	NA	MA
	AN N/A N/A		- AN	NIA	N
96 Results from this	Results from this program.	are hot t	rocked.		

	Total	\$ 33,200 \$ 25,000
penses (\$)	Other	payaou
d Program Ex	Customer Grants	gram are not
Categorize	Advertising	from this pro
	Payroll	533,200 525,000 Resulta
	Estimated Workhowrs	282 200

P.A.P.UC Revised

Jun-96

	Year						Details		Progra			
	Peak Load La Reduction to (KW)	Actual and/or	• Heat pump	 Emphasis 	 Representa 	Company 1	of Activity and I	Continue to en and optimize t	Contact Persor m Objective:	Program Nam Customer Clas Status:	IRP-ELEC	Company Nan
	ad Shifted Off-Peak (KW)	. Anticipat	s are encou	continued t	itives provi	representati	mplement	ncourage ar he use of c	R	e: Existing	10A, C	ne:
Results for a	Electric (KWH)	ed Results:	naged over re	o be placed o	de guidance a	ives continue	lation Schedu	nd create an av ompany facili	Joseph Zago Donald Mes	Residential Residential x	onservatio	Duquesne L
his progra	Energy Cras		sistance he	n Act 222.	ınd advice ı	to encourag	e:	vureness/w Lies.	sner	Energy Con Proposed	n and Lo	ight Comp
are not trac	Savings Oil (Gallons)		ating for cons		egarding the i	e the wise and		nderstanding o	Phone No:	servation Edu	ad Manage	ny
ked	Coal (Tons)		ervation of e		mportance	d efficient u		af wise and 1	(412) 393-2 (412) 393-2	cation and]	ment Pro	
	Other Results		ance gy.		of adequate dv	se of energy w		efficient enegy	;410 ;780	informal Perso	ogram Desc	
	Estimated Workhours	Monetary a			velling insulatio	hen contacting		isa floure asn		mal Contact Pro	ription	
Rea	Payroll	ad Personne			a and the ther	the residential		dential custor		ឲ្យណា		
ulis for this pr	Categorize Advertising	Resources:			mal integrity v	builders, deve		ners, builders,				
ogram are no	d Program Ex Customer Grants				vhen installing	dopers, realtor		developers an				
t tracked	penses (\$) Other		-		3 electric heat.	a and customy		d realtors				
	Total				-	ns.						
BURT 1	<u></u>	i										

40

PA.PUC Revised

Jun-%

IRP-ELEC 10A. Conservation and Load Management Program Description

Cool Storage R & D Project		Proposed x	
Commercial	Commercial		
łame:	Class:	Existing	
Program N	Customer	Status:	

Contact Person: Gary Page Phone No: (412) 393-6497

Pregram Objective:

To create a successful, fully functioning cool storage system in a customer's commercial space and to use as a showcase for other interseted customens.

Details of Activity and Implementation Schedule:

The program was intended to begin in July, 1990 and be completed in January, 1992, but due to construction delay was not installed until late 1994.

Commercial space ecoling is the largest contributor to summer demand peaks. Cool storage offers significant potential for peak demand reduction.

Cool storage uses conventional cooling equipment and a storage tank to create cooling off-peak for on-peak needs. The customer benefits through lower demand charges and the utility benefits through an improved load factor Duquesne Light will invest R&D finds to definy the cost of cool storage, will monitor equipment operation, obtain actual information for case history development and determination of electric profiles and cost reduction.

Actual and/or Anticipated Results:

Monetary and Personnel Resources:

	Load Shifted		Energy	Savings						Categorize	d Program Ex	penses (\$)
to Off-	Peak	Electric	Qas	õ	Coal	Other 0	Estim	nated			Customer	
R	W)	(KWH)	(CCF)	(Gallons)	(Tons)	Results	World	hours	Payroll	Advertising	Grants	Other
Z	I/A	NIA	N/A	N/A	N/A	NIA	Ž	<	NA	N/A	N/A	
-	50	N/A	N A	V N	V N	V N	8	_	\$2,500	3	\$ 40,000	
,	50	NIA	NVA	V N	N/A	N/A	ম		\$ 625	9	80	
												

Year 1994 1995 1995

Total N/A \$42,500 \$625

PA.PUC Revised

Jun-96

						1				_			~				
1971	8	1995	1994	Year						Details o			Program				
÷	NA	NVA	N/A	RWS	Reduction	Peak Load	Actual and	This progra	DLCo will for the custo coupled with	f Activity an	The program and financia	The objectiv reduce their	1 Objective:	Contact Per	Program Na Customer C Status:	IRP-ELE	Company N
NVA	NIA	NYA	N/A	RW	to Off-Peak	Load Shifted	or Anticipat	m is due to be	contract with a smer to call to h a per lamp r	d Implement	n will encoura il incentives.	res of this property consu		5011.	ime: lass: Existing	C 10A. C	lame:
2,189,000	N/A	N/A	N/A	(KWH)	Electric		ed Results:	implemented	a third party to answer quest rebate.	ation Schedu	ige residential The program	gram are to p mption and o		Gary Page	Residential F Residential	onservatio	Duquesne Li
N/A	N/A	N/A	NIA		Gas	Energy		l in 1997 aftı	o provide all ioms about li	<u>F</u>	customens t is intended t	ovide Duqu xsts.			ligh Efficier Proposed	n and Loa	ght Compar
N/A	NA	NVA	WA	(Gallons)	Q	Savings		er DSM appi	services to p ighting and a		io use energy io educate an	esme Light C		Phone No:	sey Lighting X	ıd Manage	Ţ
WA	NA	N/A	N/A	(Tons)	Coal			roval.	process and s pplications.		r efficient con id increase ci	ompany (DI		(4 12) 393-64	DSM Progra	ement Pro	
NA	NA	NVA	N/A	Results	Ollar				hip orders, o The third pa		npact fluores istomer awar	رکم) custome		197	5	gram Desc	
1,272	NNA	NVA	NNA	Workhours	Estimated		Monetary a		ffer a catalog of a rty will offer dic		cent lamps (CFI eness about new	rs with the appo				ription	
nntee	N/A	NVA	N/A	Payroll			nd Personad		energy efficie ounted prices		's) in place o lighting proc	rtunity to pur					
	N/A	N/A	N/A	Advertising		Categorize	l Resources:		nt products, an on applicable		f incandescent lucts and make	chase high effo					
	N/A	N/A	NIA	Grants	Customer	d Program Ex			d provide a to lighting produ		lamps via info the products (iency lighting					
\$210, JV	ANN PLAN	N/A	NVA	Other		penses (S)			il free number jots which wil		ormational easy to obtain	products and					
	A/N	NA	NIA	Total							F						

Keyuod

IRP-ELEC 10A. Conservation and Load Management Program Description

Program Name:	Residential Load Manage	anant Pilot Research Program
Customer Class:	Residential	
Status: Existing	Proposed	×

Contact Person: Gary Page Phone No: (412) 393-6497

Program Objective:

The program is designed to attract up to 1,000 customers to participate in air conditioning load management.

Details of Activity and Implementation Schedule:

Direct marketing will target potential participants in neighborhoods where communication infrastructure exists.

Participents will be selected based on their level of interest and their ability to utilize load management.

This program is due to be implemented in 1997 after DSM approval.

Actual and/or Anticipated Repults:

Monetary and Personnel Resources:

	Peak Load	Load Shifted		Energy	Savings					Categorize	d Program
	Reduction	to Off-Peak	Electric	Gas	BO	Coal	Other	Estimated			Custome
Year	(KW)	(KW)	(KWH)	(CCF)	(Gallons)	(Tons)	Results	Workhours	Payroll	Advertising	Grants
1994	NA	N/A	N/A	N/A	N/A	NA	NA	N/A	NA	N/A	NN
1995	NA	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	N/A	NA
9661	N/A	N/A	NA	NA	N/A	N/A	N/A	NA	NN	N/A	NA
2661	8	NA	N/A	N/A	N/A	N A	A N	2,804	\$79,000	N/A	NN
-							-				

PA.PUC Revised

Jun-96

Total N/A N/A N/A S191,250

Other N/A N/A N/A \$112,250

Expenses (5)

This program	National and	Marketing for	Details of Activity and	To encourage	Program Objective:	Contact Perso	Customer Ca Status:	Program Nam	IRP-ELEC	Company Na	
ogram is due to be implemented in 1997 after DSM approval.	I and regional chains will be targeted because unlike sole proprietors, they p	ing for this program will rely on direct mail pieces and sales calls. DLCo wil	y and Implementation Schedule:	urage chain account customers to install load control devices that limit peak	ve:	Person: Chary Page Phome No: (412) 393-6497	er Class: Existing ProposedX	n Name: Small/Medium Commercial Load Management DSM Proy	LEC 10A. Conservation and Load Management Program I	ny Name: Duquesate Light Company	
	ssess the central (l develop custome		lemand				nın	escription		

44

۰

education brochures to help explain load control.

ecision making that can leverage sales through multiple sites.

.

Actual and/or Anticipated Results:

	4.4	Peak Load	Load Shifted		Energy	Savings		
		Reduction	to Off-Peak	Electric	Gas	<u>0</u>	Coal	Other
Year	_	(KW)	(KW)	(KWH)	(CCF)	(Gallons)	(Ions)	Results
1994	-	XX	N/A	N/A	N/A	N/A	N/A	N/N
1995		NA	N/A	N/A	N/A	NVA	N/A	NVA
9661		NVA	NA	NA	NN	NA	N/A	NVA
1997		300	N/A	N/A	N/A	NA	N/A	N/A

Monetary and Personnel Resources:

		Categorize	d Program Ex	penses (\$)	
Estimated			Customer		
Workbours	Payroll	Advertising	Grants	Other	Total
N/A	N/A	N/A	N/A	N/A	N/A
N/A	NNA	N/A	N/A	N/A	NNA
NA	N/A	NA	NNA	N/A	NVA
3,352	\$112,300	N/A	N/A	\$80,100	\$192,400

PA.PUC Revised Jun-96

IRP-ELEC 10A. Conservation and Load Management Program Description

Cool Storage Program Commercial and Industrial Proposed x	
iame: Class: Existing	
Program N Customer (Status:	

Contact Person: Gary Page Phone No: (412) 393-6497

Program Objective:

The Cool Storage Program is designed to encourage customers with large air conditioning loads to install cool storage systems.

Details of Activity and Implementation Schedule:

Short term emphasis will be placed on raising the awarness lavel of customers, trade allies, vendors through partial funding of studies.

Mid to long term strategies will rely on direct customer contact and use of successfully installed and operating cool storage projects.

This program is due to be implemented in 1997 after DSM approval.

Actual and/or Anticipated Results:

Peak Load Load Shifted Reduction to Off-Peak

(KW)

Year 1994 1995

Monetary and Personnel Resources:

		Categorize	d Program Ex	penses (\$)	
Estimated			Customer		
Workhours	Payroll	Advertising	Grants	Other	Total
N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	NA
N/A	N/A	A /N	N/A	N/A	N/A
3,560	\$157,500	N/A	\$478,350	N/A	\$635,850
•			•		

Other Results

5

Energy Savings

(Gallons) N/A N/A N/A N/A

Electric (KWH) N/A N/A N/A N/A

369 769 769 PA.PUC Revised

Jum-96

																	46
1997	1006	1994	Year							Details o		Progran					
2,000		NA	(KW)	Reduction	Peak Load	Actual and/	This program	Generator in	Target know	of Activity and	To use custa	n Objective:	Contact Pen	Program Na Customer C Status:	IRP-ELE	Company N	
NA		NA	(KW)	to Off-Peak	Load Shifted	or Anticipat	eq ot any si u	stallations wi	n owners of e	l Implement	mer owned g		1011.	me: lass: Existing	C 10A, C	ame:	
200,000	NVA	N/A	(KWH)	Electric		ed Results;	implemented	II be selected	mergency ge	ation Schedu	enerators for o		Gary Page	Customer Gr Commercial	onservatio	Duquesne Li	
N/A		NA	(CCF)	Gas	Energy S		in 1997 afte	that represen	nerators and :	le:	lispatchable		_	and Industri Proposed	and Loa	ght Company	
NA		NA	(Gallons)	<u>0</u>	avings		r DSM appro	it a variety of	solicit their p		load manage		Phone No: (f Program al x	d Manage	Y.	
N/A		NIA	(Toms)	ŝ			val.	emergency s	articipation.		ment at time		412) 393-649		ment Prog		
NIA		NIA	Results	Other				generator ins			s of system n		97		ram Desc		
2,792		NVA	Workhours	Estimated		Monetary a		taliations found			red throughout				ription		
\$102,000	NIA	NNA	Payroll			und Personne		among DLC			the year, thu						
N/A	NA	N/A	Advertising		Categorized	l Resources:		o customers.			reducing syste						
NIA	NIA	NA	Grants	Customer	d Program Ex						ım peak demu						
\$461,800		NA	Other		penses (S)						ınd.					·	
\$563,800		NIA	Total														

PA.PUC Revised

Jua-96

Duquesne Light Company Company Name:

IRP-ELEC 10A. Conservation and Load Management Program Description

Long-Term Contract Interruptible Program × Proposed Industrial Existing Customer Class: Program Name: Status:

Phone No: (412) 393-6497 **Gary Page** Contact Person:

Program Objective:

To retain 100% of the existing interruptible load in the first two years of the program.

Details of Activity and Implementation Schedule

Tangel existing interruptible customers to accept the stricter terms of this new program in exchange for a higher credit.

The first two years will be spent marketing the program benefits through Major Account Managers and Commercial/Industrial Representatives

This program is due to be implemented in 1997 after DSM approval.

Actual and/or Anticipated Results:

Peak Load Load Shifted

Monetary and Personnel Resources:

Energy Savings

õ

Electric

to Off-Peak

Reduction

Gallons) N/A N/A N/A N/A

NA NA CO

NA NA NA

1995

Year 1994 1995

			Categorize	d Program Ex	()	
Other	Estimated			Customer		
Results	Workhours	Payroll	Advertising	Grants	Other	Total
NIA	N/A	N/A	N/A	N/A	N/A	N/A
N/A	NA	N/A	N/A	N/A	N/A	NA
N/A	NA	NIA	NA	N/A	N/A	N/A
N/A	1,653	121,000	N/A	N/A	\$1,350,000	\$1,381,000
			_			
	-					

Revised PA.PUC

S-aul

Note: For DSM Programs, advertising and customer grants are rolled into other.

Totals	П	C, I	C, I	C, I	77	~	С	R	C, I	R	R	Customer Class	
	Long-Term Contract Interruptible Program	Customer Generator Program	Cool Storage Program	S/M Com. Load Management	Resid Load Management Pilot Research Program	Residential High Efficiency Lighting DSM Program	Cool Storage R & D Program	Resid. Energy Conservation Education Prog.	Business and Industry Energy Conservation Education Prog.	Energy Consv. Educational and Info Support Program	Smart Comfort	Program Name	
3,411	N/A	WA	N/A	N/A	N/A	N/A	N/A	N/A	3,411	N/A	N/A	Reduction (KW)	Peak Load
0	N/A	N/A	N/A	N/A	N/A	N/A	Ν/Α	N/A	N/A	N/A	N/A	to Off-Peak (KW)	Load Shifted
1,511,100	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1,511,100	Change (KWH)	Energy
5,708	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	282	1,250	4,176	Allocated Workhours	
\$164,200	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	\$33,200	\$26,000	\$105,000	Payroll	
\$58,677	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	\$30,000	\$28,677	Advertising	Categoriz
\$583,347	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	\$ 583,347	Customer Grants	ed Program Ex
\$0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Other	penses (\$)
\$806,224	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	\$33,200	\$56,000	\$717,024	Total	

48

Company Name:

IRP-ELEC 10B. Conservation and Load Management Program Summary

Duquesne Light Company

Company Name:

Duquesne Light Company

1995

IRP-ELEC 10B. Conservation and Load Management Program Summary

		Peak Load	Load Shifted	Energy Use			Categoriz	d Program Ex	tpenses (S)	
Customer		Reduction	to Off-Peak	Change	Allocated	Darmell		Customer	5	Tatal
R	Smart Comfort	NIA	N/A	1,435,060	4,200	\$105,000	\$26,996	\$512,932	N/A	\$644,928
2	Energy Consv. Educational and Info Support Program	N/A	N/A	N/A	1,300	\$27,000	\$ 25,000	N/A	N/A	\$52,000
C, I	Business and Industry Energy Conservation Education Prog.	3,000	N/A	N/A	200	\$25,000	N/A	N/A	N/A	\$25,000
~	Resid. Energy Conservation Education Prog.	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
C	Cool Storage R & D Program	150	150	N/A	80	\$2,500	N/A	N/A	\$40,000	\$42,500
R	Residential High Efficiency Lighting DSM Program	N/N	N/A	N/A	NA	N/A	N/A	N/A	N/A	NN
2	Resid Load Management Pilot Research Program	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA	NN
C, I	S/M Com. Load Management	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
C, I	Cool Storage Program	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
C, I	Customer Generator Program	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA
1	Long-Term Contract Interruptible Program	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Totals		3,150	150	1,435,060	5,780	\$159,500	\$51,996	\$512,932	\$ 40,000	\$764,428

Note: For DSM Programs, advertising and customer grants are rolled into other.

Apr-96

Revised

PA.PUC

PA.PUC Revised

Apr-96

Note: For DSM Programs, advertising and customer grants are rolled into other.

Teres	<u>-</u>											1	
Totals	Ē	C, I	C, I	C , I	R	R	c	R	C,I	R	R	Customer Class	1
	Long-Term Contract Interruptible Program	Customer Generator Program	Cool Storage Program	S/M Com. Load Management	Resid Load Management Pilot Research Program	Residential High Efficiency Lighting DSM Program	Cool Storage R & D Program	Resid Energy Conservation Education Prog.	Business and Industry Energy Conservation Education Prog.	Energy Consv. Educational and Info Support Program	Smart Comfort	Program Name	
150	N/A	N/A	N/A	N/A	N/A	N/A	150	N/A	N/A	N/A	N/A	Reduction (KW)	Peak Load
150	N/A	N/A	N/A	N/A	N/A	N/A	150	N/A	N/A	N/A	N/A	to Off-Peak (KW)	Load Shifted
1,541,800	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1,541,800	(KWH)	Energy Use
5,520	N/A	N/A	N/A	N/A	N/A	N/A	20	N/A	N/A	1,300	4,200	Allocated Workhours	
\$132,625	N/A	N/A	N/A	N/A	N/A	N/A	\$625	N/A	N/A	\$27,000	\$105,000	Payroll	
\$55,000	N/A	N/A	NVA	N/A	N/A	N/A	Ν/Α	N/A	NA	\$25,000	\$30,000	Advertising	Categoriz
\$570,000	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NIA	N/A	\$570,000	Customer Grants	od Program Ex
5	NVA	WA	N/A	NVA	N/A	N/A	\$0	N/A	N/A	N/A	N/A	Other	penses (\$)
\$757,625	N/A	N/A	N/A	N/A	N/A	N/A	\$625	N/A	N/A	\$52,000	\$705,000	Total	

50

Company Name:

IRP-ELEC 10B. Conservation and Load Management Program Summary

Duquesne Light Company

Company Name:

Duquesne Light Company

1997

IRP-ELEC 10B. Conservation and Load Management Program Summary

		Peak Load	Load Shifted	Energy Use			Categorize	d Program Ex	wenses (\$)	
Customer		Reduction	to Off-Peak	Change	Allocated			Customer		
Class	Program Name	(KW)	(KW)	(KWH)	Workhours	Pavroll	Advertising	Grants	Other	Total
R	Smart Comfort	N/A	N/A	1,541,800	4,200	\$105,000	\$30,000	\$570,000	N/A	\$705,000
X	Energy Consv. Educational and Info Support Program	N/A	N/A	N/A	1,300	\$27,000	\$25,000	N/A	N/A	\$52,000
۲,I	Business and Industry Energy Conservation Education Prog.	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
×	Resid. Energy Conservation Education Prog.	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
U	Cool Storage R & D Program	150	150	N/A	20	\$625	N/A	N/A	\$0	\$625
2	Residential High Efficiency Lighting DSM Program	45	N/A	2,189,000	1,272	000*66\$	NIA	N/A	\$276,150	\$375,150
2	Resid Load Management Pilot Research Program	60	N/A	N/A	2,804	\$79,000	N/A	N/A	\$112,250	\$191,2 50
C, I	S/M Com. Load Management	300	N/A	N/A	3,352	\$112,300	N/A	N/A	\$80,100	\$ 192,400
C, I	Cool Storage Program	1,250	1,250	N/A	3,560	\$157,500	N/A	N/A	\$478,350	\$635,850
C, I	Customer Generator Program	2,000	N/A	200,000	2,792	\$102,000	N/A	N/A	\$461,800	\$563,800
I	Long-Term Contract Interruptible Program	75,000	N/A	N/A	1,653	\$ 31,000	N/A	N/A	\$1,350,000	\$1,381,000
Totals		78,805	1,400	3,930,800	20,953	\$7 13,425	\$55,000	\$570,000	\$2,758,650	\$4,097,075

Note: For DSM Programs, advertising and customer grants are rolled into other.

PA.PUC Revised

Арг-96

52

IRP-ELEC 10C. Conservation and Load Management Program Cost Benefit Analysis Inputs

Program Name: Customer Class: Year From: Year To:

Smart Confort Residential 1994 1997

	 v . 7	2,5	Annual Energy	Cumulative Energy	Energy	Participant Demand	Utility Capacity	Participant	Incentive	Utility		Discour	t Rates		Average Energy	Average Demand	Avoided Energy	Avoided Capacity	Syste
	τ.	\$	Energy	Energy	Energy	Demand	Capacity	Participant	Incentive	Utility		Discour	d Rates		Energy	Demand	Energy	Capacity	යු
	ф Ф	_			•					,									,
		ant.	Savings	Savings	Shift	Savings	Savings	ŝ	Costa	Costs	Par	Non-Par.	Ralepayor	Ş	Coat	Cost	Cost	Cost	ŝ
I Ye	Ë		Ð	(CE)	(ES)	9	ē,	(PC)	9	6	6	3	6	3		<u>}</u>	(MCE)	(MCD)	_
	<u> </u>		KWH	KWH	KWH	KW	KW	5	\$	\$	\$	*	*	*	\$VKWH	SVKW	S/KWH	S/KW	2
5 1 1	9 100	57 I	1,511,100	1,511,100	NIA	VIN	366	A'N	WA	\$717,024	8.0%	1.0%	8.0%	36018	0.05	NIA	D.01795	N.N.	ц,
2 19	9 56	<u>80</u>	1,435,060	2,946,160	NA	NNA	659	NA	NY.	\$644,928	8.0%	1.0%	8.0%	8,0%	0.05	NA	0.01756	XN	ţ,
61 £	× ×	8	1,541,800	4,487,960	NA	WA	1,005	R'Y	NA	\$705,000	8.0%	1.9%	No.	8.0%	8 .05	NIA	0.01826	WW	15
4 19	2	<u>8</u>	1,541,300	6,029,760	NN	NYA	1,350	۲¥۷	NY.	\$705,000	20%		202		5	NN	0.01899	N.V.	15
S 19	7 196	Ψ/A	NY.	6,029,760	27	NNA	1,350	A.M.	WA	NN	¥.0.	4.0%	1.0%	8.0%	NYA	NVA	NY.	NY.	1
6 19	7 100	4×	WA	6,029,760	NA	VW	1,350	NVA	WA	NNA	1.0%	20%	1.0%	F.0%	NIA	NIA	Ŵ	NY.	
7 20	2	Ň	ž	6,029,760	N'N	NN A	1,350	VIN	WA	NA	5.0X	8.0%	1.0%	8.0%	NY.	NVA	N ^W A	NWA.	
*	7	*	N.	6,029,760	N/X	WA	1,350	NIA	NVA	RA A	8.0%	2.9%	5	55	NN	NY.	NWA	NYA	-
9 20	ă 7	5	NY.	6,029,760	NN	WA	1,350	NY.	N.Y.	NIA	8,0%	#9%	#.0%	*0¥	NN	NA	ŴĂ	WA	_
10 20	8	۲×	WA	6,029,760	NN	WA	1,350	A/N	NYA	NN	#.0%	#9#	3.0%	10%	NIA	NN N	NY.	AN N	
11 20	\$ 7	47	AAN	6,029,760	NNA	NA	1,350	N/N	٨Ŵ	NN	96018	2.9%	1.9%	50%	NVA	NA	NY	N N	7
12 20	g 7	Ş	NX	6,029,760	NN	NVA	1,350	NIA	NY.	۲. ۲	#.0%	20%	5	8.0%	NY	NYA	NY	WX	-
13 20	<u>8</u> 7	ž	NVA	6,029,760	NIA	NYA	1,350	NIA	NY.	NA	#.9¥	297	t of	F.0%	NA	NV N	NY.	NVA	7
14 20	<u>9</u> 7	ΨA	NY.	6,029,760	NN	NVA	1,350	N'N	NVA.	NVA	8.0%	2	192	F , 3 %	NIN	NYA	NVA	NVA.	7
15 20	ミ マ	ΨA	NYA	6,029,760	NVA	NVA	1,350	NVA	WA	NVA	1.0%	3.0%	8.0%	8.0%	NIA	NA	NN AN	NNA	7
16 20	3 7	4.N	N/N	6,029,760	A'N	VAN	1,350	VW	NIA	NUA	8.0%	8.0%	2.0%	R.094	NVA	NYA	NY	NA	7
17 20	7	Υ.A.	NVA	6,029,760	NYA	NVA	1,350	NIX	NĂ	NIA	20%	8.0%	E gj	1 ,0%	NIA	NY	NUN	WA	
18 20	<u>E</u> Z	ΨA	NVA	6,029,760	NIA	NVA .	1,350	VIN VIN	NVA	NVA	59%	8.09	#0%	1.02	NN	NYA	NŸA	NA	7
19 20	12	Ϋ́Α	NNA A	6,029,760	NN	N/A	1,350	N'A	WA	NVA	19	8.09	8.0%	K.0%	NIA	NÏA	N'N	WA	7
20 20	2	VA	NYA	6,029,760	NIA	NIA	1,350	NIA	NVA	NVA	1.0%	8.0%	2.9%	8.0%	NIA	NN A	NN NN	NNA	
21 20	- - 	٩N	NVA	6,029,760	N/A	N/A	1,350	VW	WA	NIA	8.0%	8.0%	¥0%	F. 0%	NA	NA	NN	NN	
22 20	<u>3</u> Z	VA.	N'A	6,029,760	NYA	NVA	1,350	NN	MA	NVA	8.0%	59	£.0%	E.0%	NVA	NVA	NN	NVA	
23	2	Ā	NN	6,029,760	NVA	NVA	1,350	N'A	NVA	NVA	8.0%			8.0%	NIA	NVA	NIA	NVA	
24 20	17 7	2	NY N	6,029,760	NIA	NVA	1,350	NY NY	VIN	NVA	8.0%	1.0%	8.0%	1.0%	Z,Y	NY.	NIA	NA	
25 20	5	N.	Niv	6,029,760	NIA	NVA	1,350	٨V	N/A	NVA	8.0%	8.0%	8.0%	1.0%	NNA	NIA	NVA	NN	
26 20	29 7	۳A A	N/A	6,029,760	NWA.	N/A	1,350	NVA	N/A	NVA	8.0%	8,0%	8.0%	8.0%	NX	NYA	NVA	NVA	
27 20	8 7	NA.	NIA	6,029,760	NIA	N/A	1,350	NIA	NIA	NY	8.0%	8.0%	E. 0%	8.0%	NN	NVA	NV	N/A	
28 20	21 N	Ā	NIA	6,029,760	NVA	NIA	1,350	WA	NIA	NVA	8,0%	8.0%	2.0%	8.0%	N'A	NIA	NIA	NA	7
29 20	S Z	ΨA	NïA	6,029,760	ZN N	NVA	1,350	WA	NVA	NA	8,8%	50%	#0%	8.0%	NNA	NA	WA	N/A	
30 20	и И И	NA.	NIA	6,029,760	NVA	NYA	1,350	NIA	NVA	NVA	8.0%	8.0%	1.0%	8.0%	NN	NVA	Ν̈́Α	A'N	Ĺ

PAPUC Revised

Apr-96

Duquesne Light Company Compary Name:

IRP-ELEC 10C. Conservation and Load Management Program Cost Benefit Analysis Inputs

Residential High Efficiency Lighting DSM Program Residential 1997 2001 Program Name: Customer Class: Year From: Year To:

ſ		NLS		Cumulanua		Dartininant	I Indiana								Averade	Avenage	Aunided	Aunded	
		Ź								1 hillin.		Theorem	Dates -			Contract of the second se			
		5	FINCE	LDCTRY	Encergy -		Capacity	rancopan	Sincesitive	Calling .					CUCTEY		CINCIBLY I	Capacity	CUD3540
		Part	Sa vings	Savinga	Shift	Servings	Savings	ti Cost	Costs	Costs	Ę	NG-PST	Retopyer		Т С			Cost	Sales
-	Year		9	(GE)	<u>(3</u>	ê	9	S	e	g	ତ	€	રી	€	(ACE)	(ACD)	(MCE)	(MCD)	<u>ତ</u>
_			KWH	KWH	KWH	KW	KW	s	S	S	γ,	%	%	×	S/KWH	S/KW	S/KWH	S/KW	MWH
F	1995	M	NIA	VA	N/A	VN	VN	V/N	NN	NA	VIN	V N	N'N	N/N	NA	NA	NV	YN I	NA
A	1996	NV	YN	VA	VN	VN	NN	NIA	NA	NN	VN	٧N	NA	NN	VN	NN	NA	VN	N N
ŝ	1997	7500	2,189,000	2,189,000	NN	VN	45	292,500	105,000	218,150	8.0%	8.0%	8°.	10.0 10	0.3174	V N	0.018	YN	15,803,192
-	1998	25600	9,484,000	11,673,000	NN	VN	195	996,525	35,000	119,130	B.0%	8.6%	8:0%	8.0%	0.1174	V N	0.019	VN	15,999,887
\$	66651	12500	13,132,000	24, 105,000	NN	NN	269	402,20 0	173,000	19,400	8.0%	8.0%	8.0%	8.0%	0.1174	NN	0.019	63	16,194,905
6	2000	2500	13,661,000	38,666,000	NN	VN	284	57,368	35,000	67,400	6.0	8.0%	160.8	8.0%	0.1174	VN	0.019	38	106,195,01
1	2001	2500	14,591,000	53,257,000	NVA	VN	62	56,275	35,000	67,400	8.0%	8.0%	8.0%	8.0%	0.1174	NA	0.020	\$	16,590,907
-	2002	VN	14,591,000	67,845,000	N/N	VN	566	(1961/25)	NA	NA	10	8.0%	8:034	g.0%	0.1174	VN	0'050	R	16,792,690
\$	2003	NN.	14,591,000	82,439,000	VN	VA	8	(59,703)	NA	NA	1 0	8.0%	8.0%	36 .8	D.1174	M	0.021	5	16,997,246
0	2004	NA N	13,497,000	94,936,000	NN	VN	111	127,599	NN	٧N	10.8	8.0%	8.0%	8.0%	0.1174	NA	0.021	78	17,205,826
Ξ	2005	٧N	9,849,000	105,7115,000	N/N	VN	202	590,632	NA	VN	B.0%	8.0%	\$60.8	8:0%	0.1174	VAN	0.022	82	17,420,900
q	2006	VN	8,025,000	113,810,000	NN	NN	165	290,312	NA	NVA	B.0%	8.0%	8.0%	8.0%	0.1174	NV	0.022	65	17,640,721
ň	7002	VN	7,660,000	121,470,000	NVA	N N	157	31,918	NA	NVA	5	3	8:0%	8:096	0.1174	N/N	0.022	58	17,863,170
1	2006	VN	7,296,000	128,766,000	NN	V N	120	34,606	NN	NA	6	£.0%	8.0%	8.0%	0.1174	NN	0.023	63	18,090,384
15	2009	VN.	7,296,000	136,062,000	NA	N/N	150	(33,644)	NA	NA	8.0%	8.0%	8.0%	8.0%	0.1174	NN	0.023	57	18,319,937
19	2010	XX	7,296,000	143,356,000	MM	4NZ	81	(36,713)	NN	NVA	5	8.0%	8.0%	8.0%	0.1174	VA	0.024	101	18,552,569
17	2011	×Z	6,74B,0D0	150,106,000	NA	YN.	138	71,466	VN	NV	8.0%	8.0%	8.0%	8.0%	0.1174	NN	0.024	100	16,768,463
38	2012	NN N	4,925,000	155,031,000	NA	VN	101	363,201	V N	NVA	B.0%	8.0%	1.0%	8.0%	0.1174	NA	0.025	111	19,030,149
19	2013	NN	4,013,000	159,044,000	V N	YN.	2	178,524	NN	VN	B.0%	8.0%	1 0%	8.0%	0.1174	NA	0.025	115	19,275,544
8	2014	NA	3,830,000	162,874,000	MN	V N	\$	19,62#	NA	NA	B.0%	8.0%	B.0%	8.0%	0.1174	NA	0.026	121	19,524,363
21	2015	VN	3,648,000	166,522,000	VN	VN	52	21,280	VN	NIA	F 03	8.0%	8:0 1 6	8.0%	0.1174	VA	0.026	126	19,776,649
ដ	2016	MN	3,648,000	170,170,000	N/A	47	3	(21,919)	NA	NVA	8.0%	8:0%	8.0%	8.0%	0.1174	NN	0.027	131	20,032,263
ព	2017	VN	3,648,000	173,818,000	VN	< N	75	(015,22)	NN	NA	8.0%	8.0%	8.0%	8.046	0.1174	NA	0.027	137	20,291,246
ħ	2018	NIA	3,374,000	177,192,000	MN	٧Z	69	48,289	NN	NA	£.0%	8.0%	8.0%	8.0%	0.1174	NA NA	0.028	143	20,553,918
X	2019	NVA	2,462,000	179,654,000	NA	NN.	51	223,346	NA	NVA	R.0%	B.0%	8.0%	8.0%	0.1174	N/A	0.028	150	20,820,961
8	2020	٧N	2,006,000	181,660,000	NA	VN	Ŧ	147,901	٧N	NVA	10	8.0%	8.0%	8.0%	0.1174	N/A	0.029	136	21,091,963
ы	2021	۲N	1,915,000	183,575,000	NN	VN	8	12,110	۲N	VAN	8 08	1.0%	8.0%	8.0 ⁴	0.1174	NA	0:030	8	21,366,605
N	202	VN	1,824,000	185,399,000	NN	N/A	37	13,044	YN.	VN	8.0%	1.0%	8.03¢	08	0.1174	N/A	0:030	170	21,644,933
8	2023	VN	1,824,000	187,223,000	NA N	N.A	37	(64,479)	VN.	VA	8.0%	160'I	8.0%	8.0%	0.1174	Y/N	0.031	128	21,926,903
8	2024	VN	1,687,000	000/0188/910/000	N/A	VIN	37	(13,883)	NA.	NA	808	т Ко;н	8:0%	8.0%	0.1174	N/A	0.031	185	22.212.700

Apr-96

PA.PUC Revised

IRP-ELEC 10C. Conservation and Load Management Program Cost Benefit Analysis Inputs

Program Name: Customer Class: Year From: Year To:

Residential Load Management Pilot Research Program Residential 1997 2024

_1		Ş	Annual	Cumulative		Participent	Uiiiw								Average	Average	Avoided	Avoided	
		2,	Energy	Energy	Energy	Demand	Capacity	Participant	lincenti ve	Utility	_	Discours	t Rates		Energy	Demand	Energy	Copilativ	System
_		Part.	Savings	Savings	Shift	Savinga	Savings	ŝ.	Costa	Cogis	Pan	Non-Pert	Lutopayer		S	ğ	Cost Cost	Cost	Sales
-+	Year		e	(CE)	62	9	9	6	9	දි	6	6	<u>ê</u>	<u>e</u>	(ACE)		(MCE)	(MCD)	8
Ĺ			KWH	KWH	KWH	KW	KW	s	\$		*	*	8	*	SIKWH	SAKW	SYKWH	\$/KW	FLMM
	1995	NN	NA	N'N	NVA	N/N	WA	N/A	N'N	V W	NN N	NY.	NN NN	ž	NN	Ŵ	N/A	NIA	AN
	2001	NY	NA	NIX	R'N	NY.	XX	NN	NY.	NYA	NWA	N.	NVA	NY	N,	NN N	NX	NA	NVA
w	1065	ä	XX	NIA	NWA	75	8	9	1,250	706,950	Ş	1.0	8.0%	1.0%	NX	ž	NIA	NUA	15,005,001
+	ž	956	XVX	N'N	NX	1,500	1,656	0	25,000	46,300	- 20%	5	8.0%	5	NX	Ň	NN N	NN	J6,911,360
5	1999	NUA	XVX	NY NY	N	1,500	1,656	0	25,000	47, 132	5	2	1.03	#0#	NA	NIA	NIA	3	16,219,710
6	2000	Ň	WA	A/N	NVA	1,500	1656	•	25,000	47,997	19	1	8.0%	8.0%	NIA	Y.N	NIA	8	16,430,567
4	2001	NA	NVA	NY N	Ŵ	1,500	1.65	•	25,000	48, 197	8.0%		8.0%	.9	NYA	NY	NVA	69	16,644,164
-90	2002	ž	NA	NIN N	MA	1,500	1,656	•	25,000	49,203	8,0%	1.0	8,0%	8.094	NY.	NIA	NIA	ສ 	36,360,538
ø	2003	Ŵ	NVA	N'N	NN.	1,500	1,656	5	25,000	50,306	8.0%	1.01	1.0%	E.OK	NIX	NYA	NA	2	17,079,725
5	2004	NN	VW	NN	A'N	1,500	1,656	0	25,000	51,819	3.0%	8.0%	8.0%	1.9%	NX	NA	AWA	3	17.301,762
Ξ	2005	NA	AN	22	NWA N	1,500	1,656	0	25,000	\$2,871		2	22	10	NXX	AN	AAN		17,526,645
12	2006	XX	NA	NIA	NY N	1,500	1,656	0	25,000	53,966	20%	10%	l di	10	NA	NY.	N/A	5	17,754,531
3	2007	ž	۳×	ZY.	NA	1,500	1,656	0	25,000	\$5,105	202	.9	1.0%	8.014	NY.	A'N	NIA	8	17,985,340
Ŧ	2004	NY I	NY.	NN NN	NY NY	1,500	1,656	¢	25,000	56,289	1.0%	8.09	1.0%	1 0%	NY.	A.M.	NA	3	18,219,150
5	2009	Ş	AN N	NA	WA	2,300	1,636	¢	23,000	57,521	8.9¥	1.0%	8.0%	192	NA.	NY.	NA NA	97	11.11.225
5	2010	NY.	WA	NY NY	NYA	1,500	1,656	0	25,000	58,801	8.9%	1.9%	8,0%	50	NV.	Ň	XIA XIA	10	18,695,927
7	1 M	NVA	NA	NY.	NVA	1,500	1,656	0	25,000	60,134	8.0%	8.0%	8.0%	195	N.V.	N.	NVA	<u>Š</u>	18,938,974
5	2012	¥	NIN N	N'N	NVA	1,300	1,656	•	25,000	61,159	8.0%	8,9%	EOX	5.0X	NIA	NN NN	NN NN	Ξ	19,185,180
19	2013	NYA	NV	N'N	NVA	1.500	1,656	0	25,000	62,960	101	8.0%	8.0%	6.0%	NN	NYA	Ň	115	19,434,581
8	2014	Ň	NA	NVA	Ŵ	1,500	1,656	0	25,000	64,458	8.0X	1.0%	8.0%	8.0%	N'N	NUA .	NIA	E	19,687,233
21	2015	NIA	NIA	N'N	V V	1,500	1,656	0	25,000	66,016	94018	8.0%	8.0%	8.0%	NWA.	NUX .	VIN	126	19,943,171
5	2016	NYA	WA	NYA	NVA	1,500	1,656	¢	25,000	67,637	1.0%	8.0%	E.0%	8.0%	WA	NY.	XX	131	20,202,433
8	2017	NVA	NVA	NV.A	NIA	1,500	1,656	•	25,000	69,322	8.0%	8.0%	8.0%	8.0%	NVA .	NN	NIN	137	20,465,064
24	2018	WA	N'A	N/A	NVA	1,500	1,656	¢	25,000	71,075	20%	8.0%	5.0%	8.0%	WA	NIA	٨N	Ha	20,731,11
23	2019	NĂ	NIA	NUA	NVA	7,500	1,656	c	25,000	72,898	8.0%	8.0%	8.0%	8.0%	NVA .	NY NY	NIA	130	21,000,61:
8	2020	NN	NUA	NA	ž	2,500	1,656	0	25,000	74,794	8.0%		8.0%	201	N'N	NN	XIX	156	21,273,623
Ц	2021	NY.	NIA	NX	NN.	1,500	1,656	o	25,000	76,766	8.0%	8.0%	8.0%	8.0%	NIA	VIN	NIN A	163	21,550,18
<mark>_2</mark>	2022	NN NN	NA	NA	NN	1,500	1,656	•	25,000	78, 217	8.0%	8.0¥	8.0%	8,9X	A/N	NN	NIA	971	21,130,33;
8	2023	N/A	NIA	NYA	N.Y	1,500	1,656	•	25,000	80,949	8.0%	8.0 %		8.0%	NIA	NIA	NIN N	121	22,114,12
<u> </u> 8	Š	٨Ņ	NIA	NVA J	N'A	1,500	1,636	0	25,000	83,147	1.0%	8.0%	80%	8.09	N/A	N'N	NIA	182	12 401 61

PA.FUC Revised

Am-96

Duquesne Light Company Company Name:

IRP-ELEC 10C. Conservation and Load Management Program Cost Benefit Analysis Inputs

Small/Modium Commercial Load Management DSM Program Commercial [007] Program Name: Customer Class: Vase From:

-	Z	lo. Annual	Currentative		Participent	Unlity								Average	Avenge	Avoided	Avoided	
•••	~	of Energy	Energy	Energy	Dennand	Capacity	Participant	Incentive	Utility		Disconn	it Rates		Energy	Demand	Energy	Capacity	System
	đ	art. Savings	Savings	Shift	Savings	Savings	Cost	Costs	Costs	F	Non-Part.	Rutepriver	A MA	Š	Cost	Cost		Sales
	Year	0	(3) (2)	(ES)	ê	9	ê	ε	g	5	Ð	3	ভ	(YCE)	(ACD)	(MCE)	(MCD)	S
-	-	KWH	KWH	KWH	ΧW	KW	\$	S	4	%	*	8	*	HWX	SKW	S/KWH	S/KW	HWM
-	N 5661	VA NIA	N/N	٧N	VN	NIA	VIN	V/N	VN	MM	NIA	MA	YN.	VAN	18.47	VN	VN	YN N
2	1996 N	NN NN	N/N	N N	YN N	NA	42	N/A	12	٧Ň	NA	¥2	Ň	VN	18.47	NN	VIN	AN A
m	1997 31	VN 0	NN N	۲N	88	22	150,000	0	192,400	8.0M	10.1	8.0.F	£0%	VN	18.47	NN	NN	15,896,083
4	1998	NA NA	VN	MM	1,600	99 3	257,500	•	112,600	107	8,0%	8.0%	10	MM	34.47	V/V	NA	16,011,360
'n	2 6666	NN 0	N/N	N/N	3,000	1,623	371,315	9	112,600	2	3.0%	8.0%	16 3	NVA	18.47	NA	63	16,219,710
	2000 11	VN 80	VN	¥ N	\$,000	2,705	546,364	0	112,600	201	8,094	10X	5.0%	N'A	18.47	VN	\$	16,430,567
-	3001 10	N/A DO	VN.	MM	7,000	3,787	562,734	0	112,600	t.ok	8.0%	8.0%	8.0%	NN	18.47	NN	69	16,644,164
	2002 N	VA NIA	VN	٧N	0006	9419	579,637	•	112,600	8.0¥	8.0%	20 *	8.0M	VN	12.47	NN	72	16,860,538
8	2003 N	VN VIA	V 2	Y _N	11,000	5,952	597,026	•	112,600	8.0%	8-0¥	1	1	YN	18.47	¥Z	52	17,079,725
2	2004 N	VA VA	VN	NA N	13,000	1,001	614,937	0	112,600	10.3	8.0%	101	20	N/N	18.47	VN	R	17.301.762
E	Z 5002	VN VA	VN	VN	14,000	1.575	316,693	•	112,600	¥0;#	8:0%	8.0%	20%	N.A	14.47	MN	82	17,526,685
2	2008	VN VA	VN.	72	35,000	8,116	326,193	•	112,600	10.1	8.0%	101	¥0X	VN	18,47	NN	85	17,754,531
13	7 1007	VN VN	NN.	٧N	16,000	8,657	935,979	•	112,600	2.02	8.0%	8 O.1	F.O.Y	VIN	18.47	N/N	8	17.965.340
2	2008 N	VN VA	ž	YN	16,608	136,1	207,635	0	112,600	8.096	8:0¥	3.0%	8.0%	YN.	11.47	NN	66	16,219,150
2	2009	VN VA	NVA	N/A	17,200	9,306	213,864	0	112,600	£.0%	8.0%	1.0%	5	N/A	18.47	NVA	2	18,455,999
91	2010 N	VA VA	VN	VN	17,800	9,631	220,200	¢	112,600	¥6.	8.0%	8.0%	8.0%	NA	18.47	N/A	101	126'569'81
2	2013 N	VN V7	V/V	VN	17,900	9,631	•	÷	112,600	FO.	8.0%	\$.0%	6	N/A	18.47	VN	ş	18,938,974
38	2012 N	VN VA	VN	VN.	17,800	3,631	0	\$	112,600	10.5	8.0%	8.0%	8.0%	MA	1 B ,47	V/V	111	19,183,180
5	2013 Z	V Z V A	۲Ż	YN.	17,800	6,631	0	-	0	8.0%	8.0%	8.0%	8.0%	ViN	18.47	V/N	115	19,434,588
ຊ	2014	VN NA	VN	VN	17,900	163,6	0	0	•	960' 8	B.0%	*0°8	8.0%	NA	12.47	N/A	121	19,687,237
a	2015 N	VN VA	VIN	VN	17,800	9,631	•	0	¢	8.0%	8.0X	# 0%	£.0%	VN	18.47	ViN	126	171,539,91
a	2016 N	VN VA	VZ	ΥN	17,800	169%	0	¢	0	ŝ	8.0%	\$ 00 F	61	VN	18.47	NN	161	20,202,433
2	Z017	V/N V/	NA	YN	17,800	9,631	0	•	0	%	8.0%	101	80%	N/A	18.47	NA	137	20,465,064
2	2011 N	AN NA	VAN	¥2	17,800	9,631	0	•	ę	10. 1	8.0%	1.0%	£.0%	N/A	18.47	VIN	143	20,731,110
ม	2019 N	VN NA	¥N.	ViN	17,800	9,631	0	•	•	8.0%	8.0%	8.0%	8.0%	N.N.	18.47	NV	150	21,000,615
8	2020 N	VA N/A	NA	VN	17,800	9,631	0	•	•	8:0%	8.0%	\$60'8	#.0%	VN	18.47	NA	951	21,273,623
5	2021 N	VN VA	VIN	YN.	17,800	9,631	0	•	0	8.0%	101 101	8.0%	8.0%	NN	38.47	NN	163	21,550,180
8	2022 N	NN NA	VN	YN.	17,800	10%	0	0	0	8.0%	1.0 3	1.0%	R.0%	N'N	18.47	M	170	21,830,332
2	2023 N	VA NA	VN	VN	17,800	9,631	9	•	•	8.04	8.0%	90°	R ON	N/N	18.47	MM	178	22,114,126
8	N TRUC	VA NA	N/A	SZ.	17,300	9,631	0	9	0	8.0%	8.0%	8.0.8	3.0%	NZ N	18.47	M	185	72 ANI 610

PAPUC Revised

Apr-96

PAPUC Revised Apr-96

* Energy shift eximated from 4 full-load cooling months and 1000 full-load cooling hours.

	≺≺ ⊙ ⊅	rogram unionn car Fn	a Name er Class om:		Cool Storage Commercial 1997 2001	DSM Prog	(9)M													
_			s ş	Annual Energy	Cumulative Energy	Energy	Participant Domand	Utilify Capacity	Participant	Incontive	Utility		Discourt	Rates		Average Energy	Average Demand	Avoided Energy	Avoided Capacity	System
	+	- -	art.	Savings	Savings	Shin*	Sevings	Savings	C S S S	Costa			Non-Part.	Californiyes.		Cost				Salos
-	-	ŝ		KWH	KWH	(Es)	¥S	KW W	\$	¢€	\$	%	* 3	*3	*3	S/KWH	\$/KW	SAKWH	SNKW	HMM
and the second second	1 1	566	NVA	VIN	NN	۷N	ŴÅ	V.N.	N/A	VVN	VW	YW	Ŵ	NN	٧N	NN A	14.04	٨'n	NIA	VIN
_	2	8	ž	NA	NA	NX	NVA	NYA	NA	NVA	VW	NN	Ņ	VN	NY	NY.	14.00	A.N	NIA	NVA
	3	39	د 	NN	NIA	5,464,000	1,250	1,365	\$\$\$,000 .	405,000	\$719,450	8.0%	ş	8.0%		WA	14.08	XX	NX	15,806,081
	*	N.	98	NIA	NIA.	14,340,000	3,350	3,545	973,350	637,313	\$745,993	8.0%	\$	1016	5	NYA	14.08	ž	NA	16,011,560
-		3	9	N'N	NA	24,500,000	5,750	6,125	1,145,772	739,971	\$\$\$3,005	8,0%	7 9	1.0	₽.0¥	N/	14.08	×	8	16,219,710
	<u>, 9</u>	38			NIA	33,828,000	7,950	8,457	1,061,800	688,418	\$805,966		3	, 1	2	NVA		5	88	16,430,367
	<u></u>	<u>8</u> ! ~	2	Z Z	NA	42,320,000	9.950	10,580	0	0	5127,140		5			N	2	N.	2	16,860,538
	5	8	ž	NA	NA	42,320,000	9,950	10,580	•	•	\$132,226	1.0%	5	505	1.0%	NY.	14.98	NY.	2	17,079,725
7	5	ğ	Å	NA	NIA	42,320,000	9,950	10,580	•	•	\$137,515	8.0%	8.9% 8	1.0	1.0%	۸N VN	14.98	ž	78	17.301.762
-	11 2	<u>8</u>	NA	NVA	N/A -	42,320,000	9,950	10, 580	•	0	\$143,015	5,0%	8.9% 8	20%	Ş	NY	14.84	Ň	8	17,526,685
	12 2		5	NA	NYA	42,320,000	9,950	10,580		•	5148,736		5	5	3	NA	14.08	AN	3	17,754,531
•	<u> </u>			22		12,320,000	0 0 00 9 C V V				5134,583			5				27	81	12 310 140
	15 2	<u>0</u>	Š	NA	NVA	42,320,000	0156'6	10,580	•	0	\$167,308	1.0%	5	5	8.0%	NA	14.08	NVA	5 7	18,455,999
-	16 2	(0 I O	AN	NVA	NVA	42,320,000	0,950	10,580	0	•	\$174,000	8.0%	8.0%	10%	8,0%	NN	14.08	NVA	101	18,695,927
	17 2		\$	NA	NIA	42,320,000	026'6	10,580	•	ð	\$180,960	B.0%	1.9%	2	8.0X	NVA	14.08	NVA	ŝ	13,938,974
	18 2	012)	Ś	NA	NIA	42,320,000	9,950	10,580	0	•	\$166,198	8.0%	1.0%		8,0%	NIA	14.08	NY.	111	19,185,140
	15		\$	NY	NA	12,320,000	9,950	10,580	0	•	\$195,726	E.OM	1.0%	203	2	WA	14.0%	NY.	E	19,434,588
T	2 2		Ś	NA	NIA	42,320,000	9,959	10,580	0	•	\$203,555	8.0¥	ş	809	8.0%	Ň	14.08	NN.	<u></u>	19,687,237
			5	NV.	NY	42,320,000	9,950	10,580			5211,698	8.0%	5	5	8.0%	NA		2	5	19,943,171
	ני גי	16		NX	NA	42,320,000	026'6	10,580	• •	•	\$220,166	.9	197	5	8.0%	N'A	14.08	NA	5	20,202,433
	23	017 1	ANY I	NA	NA	42,320,000	026'6	10,580	•	•	\$228,972	8.0%	8.0%		8,0%	N.N.	14.08	NAV	137	28,465,064
	2	018)	Ś	MY	NA	42,320,000	9,950	10,580	0	•	\$238,131	8.0%	2.076	1.09%	8,094	NIX	14.08	NA	F	20,731,110
T	22	610	Ň	WA	NVA	42,320,000	9,950	10,580	•	0	\$247,656	10%	59	, , , , , , , , , , , , , , , , , , , 	8,0%	NiA	16.08	N'N	130	21,000,615
	26 26	1 020	Ś	NVA	NVA	42,320,000	9,950	10,580	9	Ð	\$257,563	E.0%	2.0%	2.0%	8.0%	NIN	14.08	NIA	32	21,273,623
	K 12	21 X	\$	NYA	NVA.	42,320,000	9,950	10,580	0	•	\$267,365	8,094	8.096	2.0%	2.0%	NA	14.08	NVA	163	21,550,180
	28 20	22	\$	WA	NUA	42,320,000	9,950	10,580	٥	•	\$278, 530	2,0%	8.0%	\$,0%	8.0%	۲y ۲	14.08	NA	5	21, 8 30,332
	29 20	23	5	NVA	NVA	42,320,000	9,930	10,580	0	•	\$2,89,723	B ,0%	1.0%	5	8.0%	NA	14,08	NVA	178	22,114,126
-	30 20	024 N	Ś	ΝĂ	NVA	42,320,000	9,950	10,580	0	•	\$301,312	8,0%	1 09	10%	8.0%	NA.	14.08	NVA	185	22 40L610

Company Name: Duquesne Light Company

IRP-ELEC 10C. Conservation and Load Management Program Cost Benefit Analysis Inputs

IRP-ELEC 10C. Conservation and Load Management Program Cost Benefit Analysis Inputs

Program Name: Customer Generator DSM Program Custocret Class: Commercial Year From: 1997 Year To: 2024

			- Kunsteine		DarkAinstell	14,124,1								Attended	Attende	Awind	Awded	
	ġ			ĺ							ī							,
	6	Energy	Energy	Energy	Lemand	Capacity	Participant	Incentive			Discourt	Rates		Factor	Domand	Energy	Capacity	System
	Part	C. Savings	Sevings	Shift	Savings	Savings		Costs	Costs	Ħ	Non-Part	R-shipery of	È.	Cast	Cont	Cost	i S S	Sales
t Ye	ßſ	9	(GC)	(ES)	ê	0	වි	ε	Ð	€	€	રી	€	(ACE)	(ACD)	(MCE)	(MCD)	છ
	_	KWH	KWH	KWH	KW	KW	5	S	s	*	%	*	%	S/KWH	S/KW	S/KWH	SKW	MWH
1 19	VN 56	VAN V	VA	NIA	VN	. V/N	VN	VN	NN	VN	٧N	VN	VN	NN	14.06	٧N	NN	VIN
2 19	NN NN	VN I	VN	NN	NN N	MN	VN	NA	VN	NVA	NA N	N/A	٧N	NN	14.00	NN	N/N	YZ
3 19	4 16	200,000	200,000	VN	VN	2,000	8	30,000	523, EBB	8.0X	8.0%	8.0%	1.0%	NN	14.00	NN	۲Ň	15,805,881
4	98 21	2,700,800	2,900,000	NN	VN	22,000	8	100,000	2,026,638	10.4	\$60.3	8.0%	1.0%	VN	14.06	NN	VN	16,008,660
5 19	<u>8</u>	3,500,000	6,400,000	VN	KN N	35,000	8	520,000	2,393,387	8.0%	8.0%	8.0%	B.0%	NV	14.06	NA	8	16,213,310
8	8	4,000,000	10,400,000	NN	۲Z	40'00 40'00	\$	590,000	2,688,006	*0*	960.8	8.0%	t.0%	VN	14,06	NA	33	16,420,167
7 20	01 5	4,500,000	14,900,000	NN N	YN N	45,000	\$	660,000	3,006,006	8.0%	8:0%	¥0.8	10	N N	14.06	NN	8	16,629,264
8 20	VN 170	1 4,748,000	19,648,000	NA	VN	11,838	\$	660,000	2,964,000	1 6	\$.0%	8.0%	8:036	٨N	14.06	٧N	¢	16,840,890
9 20	VA 160	1 4,748,000	24,396,000	NA	22	47,838	8	660,000	2,964,000	160 160 160	B.0%	10	8.0%	M	14.04	٧N	۴	17,055,379
10 20	VA N	1,748,000	29,144,000	NA	N/N	47,434	8	660,000	2,880,000	8.0%	8.0%	8.0%	B.096	NN	14.06	NV	2	17,272,618
11 20	NN 80	1 4,748,000	33,892,000	VN	VN	17,231	8	660,000	2,880,000	*0¥	8:0%	\$:0M	8,0946	N N	14,00	NVA	22	17,492,793
12 20	VN 90	1 4,741,000	38,640,000	NA	VN	101,11	8	660,000	2,660,000	1 0	8.0%	1 07	8.036	NN	14,04	NN	8	17,715,891
13 20	07 NA	A,748,000	43,388,000	NA	NN NN		8	660,000	2,550,000	8,0%	t.0%	101	8 (3) 1	V N	14.06	NA	8	17,941,952
14 20	VN 80	1 4,748,000	44,136,000	VN	N/N	101'11	3	660,000	2,680,000	8 .0%	8.0%	8.0%	8.0%	NA	14.06	VN	8	11,171,014
15 20	VA 00	4,748,000	52,354,000	NVA	N/A	47,431	8	660,000	2,680,000	8.0%	8.0%	N.C.	B.0%	NA	14.06	NA	۶	18,403,115
16 20	2	1,748,000	57,632,000	Y/N	NN NN	17,838	8	660,000	2,650,000	10.5	8.0%	1.0%	8.0%	VN	14.06	NA	ž	18,638,295
17 20	AN III	1 4,748,000	62,380,000	NA	V N	10,134	3	660,000	2,880,000	8.0%	B.0%	8.0%	8.0%	VN	11.00	VN	×	18,876,594
18 20	12 NA	4,748,000	67,128,000	VN	VN	41,E32	3	660,000	2,660,000	ŝ	8.0%	1.0%	8.0%	V N	11.00	NA	111	19,118,052
19 20	VN EI	1 4,748,000	71,876,000	NA	¥ž	47,438	3	660,000	2,660,000	5	8.0%	1.0%	8.0%	NN	14.08	٨N	115	19,362,712
8	I4 NV	1 4,748,000	76,624,000	NA	N/N	47,834	20	660,000	2,880,000	3 6	8.0%	1.0%	8.0%	N/A	14.08	NA	121	19,610,613
21 20	VIN SI	1 4,748,000	000/246/18	NA	V N	47,338	3	660,000	2,880,000	8,0%	8:0%	#:0#	8.0%	٨N	14.06	NA	126	19,861,799
8	16 NA	1 4,748,000	86,120,000	N/A	NN NN	11,138	3	660,000	2,650,000	¥0¥	8.0%	1 .0%	8.0%	N A	14.08	۲Z	131	20,116,313
23 20	AUN LI	1 4,748,000	90,368,000	NA	V N	47,838	8	660,000	2,880,000	ŝ	B.0%	8 8	8.0%	¥X	14.08	VN	137	20,374,196
24 20	AN BI	1 4,748,000	95,616,000	NA	V N	47,838	8	660,000	2,680,000	3 .0%	8.046	8 .0%	£.0%	YN	14.08	NA	143	20,635,494
22	19 NVA	\ 4,74E,000	100,364,000	NA	N/N	47,838	\$0	660,000	2,880,000	8.0X	8.0%	8.0%	8 .03	٧N	24.08	NA	150	20,900,251
26 20	VN 02	148,000	105,112,000	NA	NA NA	47,836	8	660,000	2,880,000	8,034	960.8	2 .0%	1 60 3	MA	14.08	YN.	156	21, 168, 511
27 20	21 NA	1 4,748,000	109,860,000	NA	VN	47,838	8	660,000	2,880,000	10. 10.	8.0%	8.0%	5	Ň	14.08	NN	163	21,440,320
8	VN ZZ	1 4,748,000	114,608,000	NA	NA NA	47,838	8	660,000	2,810,000	101	80.8	8.0%	8 0	YN	14.08	NA	021	21,715,724
<u>କ୍ଷ</u> କ୍ଷ	23 NV	1,748,000	119,356,000	NA	NN N	47 838	8	660,000	2,880,000	8.0%	8.0%	8.0%	8.0%	ž	14.08	NA	176	21,994,770
30	24 NVA	4,748,000	124,104,000	NA	NA	47,\$36	8	660,000	2,880,000	\$.0%	8.0%	8.0%	8.0%	NA NA	14.08	NA NA	185	22.277,506

Apr-96

•

PA.PUC Revised

IRP-ELEC 10C. Conservation and Load Management Program Cost Benefit Analysis Inputs

Program Name: Customer Class: Year From: Year To:

Long-Term Coatracted Interruptible DSM Program Industrial 1997 2024

		No.	Annual	Cumulative		Participent									Average	Average	Avoided	Avoided	
		2,	Energy	Energy	Energy	Demand	Cupacity	Participent	locentive	Utility		Discour	t Rates		Energy	Demand	Energy	Capacity	System
		Part,	Savings	Savings	Shift	Savings	Savings	Coast	Costs	Costs	Part	Non-Part.	Rutopeyer (ŝ	ŝ	ŝ	ŝ	Sales
-+	Yen	. المرين	6	Ê	(ES)	9	9	PC	9	ලි	ê	e 	6	<u>e</u>	(ACE)	(ACD)	(MCE)	(MCD)	8
			KWH	KWH	KWH	KW	KW	\$	4 9 (5	%	*	*	\$	SYKWH	SVKW	S/K/WH	SIKW	HWW
	1995	ΝŅ	VIN	NVA	N'N	NN	NN	N/A	VN	VV	٨N	NN	МŇ	NNA	NN.	14.08	VW	N/N	XIX
5	1996	٨N	NIA	NA	NN	NVA	NY	NVA	NN N	NVA	ŴĂ	NVA	NA	NN	NY	14.08	NVA	VIN	NA N
دري	1997	Ø,	4,017,400	200,000	NX	NN	81,158	NIA	90,000	1,092,500	\$10.8	8.0%	***	8.0%	NY.	14.08	NVA	VAN	15,805,881
	1998	م	5,677,900	5,877,900	NN	NIA	106,000	NYA	L,272,000	1,304,500	8.0%	8.04		1.0%	ZX	14.08	NVA	NIN	16,005,682
5	1999	۰	5,677,900	11,555,200	NN	NIA	106,000	NVA	1,272,000	1,304,500	8.0%	1.0%	1.0%	8.0%	NY N	14.05	NIA	8	16,208,155
	2000	0	5,677,900	17,233,700	VIN	WA	106,000	٨'n	1,272,000	1,304,500	8.0%	160.1	3.0%	8.0%	NA	14.08	NIN	8	16,413,333
-1	2001	0	3,677,900	22,911,600	NIN	NIA	106,000	NIA	L,272,000	1,304,500	8.0%	8.074	#.0%	1.0X	XX	14.08	NVA	8	16,621,252
-	2002	NNA	5,677,900	28,549,500	NA	N 2	106,000	22	1,272,000	1,304,500	505	8.0%		10%	NY.	14.08	VAN	ส 	16,831,949
s	2003	NN	5,677,900	34,267,400	NIA	N'A	106,000	WA	1,272,000	1,304,500	5	1.0%	#.9¥	191	XX	14.08	NŸA	2	17,045,458
5	2004	ž	5,677,900	39,945,300	NN	NY.	106,000	NY	1,272,000	1,304,500	1.0%	1.0%	. 9%	ş	NY.	14.08	Ň	3	17,261,816
H	2005	Ŵ	5,677,900	45,623,200	NN	NN	106,000	NVA	1,272,000	1,304,500	2094	8.0%	5	8.0%	NN	14.08	NY	8	17,441,061
ដ	2006	WA	5,677,900	51,301,100	NV	NYA	106,000	N'A	1,272,000	1,304,500	101	8.0%	HOX	2	NA	14.08	NVA	5	17,703,230
Ģ	2007	VN	5,677,900	56,979,000	NN.	NA	106,000	NA	L,272,000	1,304,500	R.0%	8.0%	5	5.9%	N.X	14.08	NVA	8	17,928,361
Į.	2008	MA	5,677,900	62,636,900	N	NIN	106,000	NV	L,272,000	1,304,500	F.0%	101	E.OW	191	NVA	14.06	NN	8	18,156,493
5	2009	Ŵ	5,677,900	69,334,900	NIA	NVA	106,000	NN	L, 272,000	1,394,500	8.0%	101	10% 1	1.9%	NIA	14.06	NY.	3	18,387,664
16	2010	VW	5,677,900	74,012,700	NIA	NVA	106,000	NVA	1,272,000	1,304,300	F.0%	1 97	597	8.0%	NIA	14.0	NN	101	18,621,914
13	2011	Ŵ	5,677,900	79,690,600	NIX	ž	106,000	N'N	1,272,000	1,304,500	E.0%	1.0%		8.0%	NIA	14.08	Ň	ğ	18,859,283
ä	2012	NVA	5,677,900	85,368,500	NYA	WA	106,000	NA	1,272,000	1,304,500	2,0%	10%	8.0%	5	NIA	14,08	NIA	111	19,099,812
ÿ	2013	NIA	5,677,900	91,046,400	VIN	NN .	106,000	NYA	1,272,000	1,304,500	E.096	8.0%	5.92	2.0%	NIA	34.04	XN	115	19,343,541
ß	2014	NNA.	5,677,900	96,724,300	NVA .	NX	106,000	NVA	1,272,000	1,304,500	B.094	8.0%	8 .0%	793	NY N	14.04	NN N	121	19,590,513
2	2015	NVA	5,677,900	102,402,200	VIN	NN	106,000	NVA	1,272,000	1,304,500	8.0%	8.0%	940'B	2.0%	NIA	14.08	NVA	176	19,840,769
N	2016	VIN	5,677,900	108,060,100	NY NY	NA	106,000	NVA	1,272,000	1,304,300	#.9¥	R.0%	53	20%	NY.	14,98	NN	131	20,094,353
_ដ	2017	N/A	5,677,900	113,758,000	NIA	NYA	106,000	WA	1,272,000	1,304,500	8.0%	8.0%	8.0%	20%	NĂ	14.08	NA	137	20,351,306
¥	2018	WA	5,677,900	119,435,900	NIA	NVA	106,000	NVA	1,272,000	1,304,500	8.0%	B.0%	8.9%	20%	NIX	14,04	NVA	143	20,611,674
N	2019	٨N	5,677,900	125,113,600	NIA	NIA	106,000	NVA	1,272,000	1,304,500	8.0%	8.0%	;;	8.0%	N'N	14.08	NX NX	š	20,875,501
Я	2020	NN	5,677,900	130,791,700	NIA	NIA	106,000	WA	1,272,000	1,304,500	8.0%	F.0%	8,9%	8.0%	NIA	14.08	NA	961	21,142,431
27	2021	NVA	1,677,900	136,469,600	NIA	NIA	106,000	NVA	1,272,000	1,304,500	8.0%	B.0%	2,0%	8.0%	N'A	14.08	NA	163	21,413,710
28	2022	NYA	5,677,900	142,147,500	NÏA	NXA	105,000	NVA	1,272,000	1,304,500	8,0%	8.0%	10%	1.0%	NYA	14.08	NA	170	21,648,184
N	2023	NN	5,677,900	147,825,400	N'A	NY	106,000	NVA	1,272,000	1,304,500	8.0%	8.0%	8.0%	8.0%	NÏA	14.08	NIA	178	21,966,301
8	Ŋ	ΝŅ	5,677,900	153,503,300	NIA	NVA I	106,000	NVA	1,272,000	1,304,500	8.0%	B.0%	8.9% X	8.0%	NIA	14.02	NIA	185	22.248,107

PAPUC Revised Apr-96
wither finalities

รานนุษณะ เมษณา บาทคุณๆ

IRP-ELEC 10D. Conservation and Load Management Program Cost Benefit Analysis Results

 Program Name:
 Smart Confort (Low Income Usage Reduction Program)

 Present Values Calculated for Year:
 1994

 Period of Analysis:
 Beginning Year:

 Ending Year:
 1994

Participant Test

30	666	1,066,378	0	1,066,378	524	NA	NN	N/A	NN	NN
()	(BCRp)	(NPVp) \$	(Cp)	(dg) \$	(ty)	E 9	(d) ∽	(1 (م	(t) ↔	(dnsi)
Period	Ratio	Value	Costs	Benefits	Requirement	Ratio	Costs	Coet	Costs	Benefits
Payback	Cost	Present	Participant	Participent	Revenue	Sales	Incentive	Reduction	Utility	Utility
Discounted	Benefit	Net	Total	Total	Participant			Revenue		

Nonparticipant Test

Present Cost Value Ratio (NPVnp) (BCRnp) \$	(,752,608) 0.25
Intract Intract Non-Part, (RIMap) \$/MWH	N/A
Incentive Costs (Cinp) \$	0
Revenue Reduction (Crap)	1,392,000
Utility Costs (Cump) \$	N/A
Utility Benefits (Bunp) \$	N/A

Ĩ A D D a to

l	<u> </u>				1
	Benefit	Cost	Ratio	(BCRa)	0.56
	Net	Present	Value	(NPVa) S	(336,330)
1 1 CBT	Total	Ratepayers	Costs	د (ل	762,735
All Katepayer	Total	Ratepayers	Benefits	(Bua) S	426,405

iotal Total Net Net	Katio Vatio	Ratio BCRu)	Katio BCRuj
fotal Total Net Net Utility Utility Incentive Presen	بر 	~~e 	<u>~e</u>
otal Total Incentive	Value	Value (NPVu)	Value (NPVu) \$
tility Utility Incen	ls.	धु (ने	a e
otal Total tulity Utility		3ë	\$j j *
fotal T T T T T T		n în .	(in s
fotal fility nefite		ເດີ	SO S
		Buu)	Buu) \$
		Run)	Kuu) S
reased	;	Ð	

Apr-96 PaPUC Revised

PaPUC Revised

2.62	1,770,663	632,619	1,091,884	2,862,547	0
	5	3	5	\$	4
(BCRu)	(NPVu)	(Ciu)	(Cuu)	(Buu)	(Ruu)
Ratio	Value	Costs	Costs	Benefits	Revenue
Coat	Present	Incentive	Utility	Unitity	increased
Benefit	Net		Total	Total	

Ratepayers Benefits (Bua) \$

Total Ratepayers Costs (Ca)

Present Value (NPVa) S

Benefit Cost Ratio (BCRa)

3,139,566

3,038,949

100,617

1.03

All Ratepayers Test Total T

Zet

0.22	(23,321,396)	0.13	N/A	13,345,000	29,788,203	6,466,808
	\$	\$VMWH	~	*	\$	67
(BCRup	(NPVnp)	(RIMap)	(Ciup)	(Cmp)	(Curp)	(Bump)
Ratio	Value	Non-Part	Conta	Reduction	Coats	Benefits
Cost	Present	Impact	Incentive	Revenue	Utility	Utilisty
Benchi	Na	Rate				

N'A	Utility Benefits (Bup) \$
NIA	Utility Costs (Cup) \$
WA	Revenue Reduction Cost (Crp) \$
N/A	Incentive Costs (Cip) S
NIA	Sales (f) \$
217,343	Participant Revenue Requirement (Rp) \$
14,255,098	Total Participant Benefits (Bp) \$
2,579,684	Total Participant Costs (Cp) \$
11,675,414	Net Present Value (NPVp) S
5.53	Benefit Cost Ratio (BCRp)
8	Discounted Payback Period (yrs)

Participant Test

Program Name: Present Values Calculated for Year: Period of Analysis: Beginning Year: Ending Year:

60

Duquesne Light Company

Company Name:

IRP-ELEC 10D. Conservation and Load Management Program Cost Benefit Analysis Results

Residential High Efficiency Lighting DSM Program Year: 1997

1997 2026

Apr-96

Company Name:

Duquesne Light Company

IRP-ELEC 10D. Conservation and Load Management Program Cost Benefit Analysis Results

 Program Name:
 Residential Load Management Pilot Research Program

 Present Values Calculated for Year:
 1997

 Period of Analysis:
 Beginning Year:
 1097

sst.
H
-
- 22
- 24
-
્ય છે.
- 16-
=
_
а.

Lity	Reduction	Incentive	Sales	Participant Revenue	Total Participant	Total Participant	N o t Present	Benefit Cost	Discounted Payback
Costs	Cost	Costs	Ratio	Requirement	Benchits	Costs	Value	Ratio	Period
ولو م	Ĵ Ĵ	(Cip)	9.	æ.	ê.	ලි•	(dvgv)	(BCRp)	(su)
•	•	•	-	•	~				
N/A	VN	NIA	VN	2,089	285,039	0	285,039	00.666	30

Nenparticipant Test

Utiliky Bernefits (Bump) \$	Utility Coets (Cump) \$	Revenue Reduction (Crrp)	Incentive Costs (Cinp)	Rate Impact Non-Part. (RIMnp) \$/MWH	Net Present Value (NPVnp) \$	Benefit Cost Ratio (BCRup)
4,943,827	2,548,148	0	NA	(0.01000)	2,395,678	1.94

Tool T A B Dah

·····	
Benefit Cost Ratio (BCRa)	1.34
Net Present Value (NPVa) \$	358,282
Total Ratepayers Costs (Ca)	1,052,397
Total Ratepayers Benefits (Bue) \$	1,410,679

	<u>ر ا</u>					
:	Benefit	т С	Ratio	(BCRu)		1.05
	Net	Present	Value	(INPVu)	649	73,243
		Incentive	Costs	(Ciu)	5	285,039
t Teat	Total	Utility	Costs	(Cuu)	5	1,337,346
e Requiremen	Total	Utility	Benefits	(Buu)	6	1,410,679
<u>Jillity Revenu</u>		Increased	Revenue	(Ruu)	*	0

Apr-96 PaPUC Revised

Company Name:

Duquesne Light Company

1

IRP-ELEC 10D. Conservation and Load Management Program Cost Benefit Analysis Results

Ending Year:	Period of Analysis: Beginning Year:	Present Values Calculated for Year: 1997	Program Name: Cool Storage USM Program
2026	1997		I

Participant Test

N/AN/	T STREAM TO L										
UtilityUtilityReductionIncentiveSalesRevenueParticipantParticipantPresentCostCostBenefitsCostsCostCostsCostsRatioRequirementBenefitsCostsValueRatioPerior(Bup)(Cup)(Cip)(Cip)(D)(P)(Bp)(Cp)(PVp)Perior\$\$\$\$\$\$\$\$\$\$N/AN/AN/AN/A94,3959,116,9003,921,4005,195,5002.3230			Revenue			Participant	Total	Total	Net	Benefit	Discounted
BenefitsCostsCostCostsCostsRatioRequirementBenefitsCostsValueRatioPerior(Bup)(Cup)(Cup)(Cip)(D)(D)(Rp)(Dp)(Cp)(NPVp)(BCRp)(ms)\$\$\$\$\$\$\$\$\$\$\$\$\$N/AN/AN/AN/A94,3959,116,9003,921,4005,195,5002.3230	Utility	Utility	Reduction	Incentive	Sales	Revenue	Participant	Participant	Present	Cost	Payback
(Bup) (Cup) (Cip) (Cip) (I) (Rp) (Bp) (Cp) (NPVp) (BCRp) (yrs) 3 5 5 5 5 5 5 5 5 3 (Yrs) (NPVp) (BCRp) (yrs) N/A N/A N/A N/A 94,395 9,116,900 3,921,400 5,195,500 2.32 30	Benefits	Costs	Sec.	Costs	Ratio	Requirement	Benefits	Costs	Value	Ratio	Period
S S	(Bup)	(Cup)	(CIP)	(Cip)	3	(Rp)	(Bp)	Ĵ	(NPVp)	(BCRp)	(yns)
N/A N/A N/A N/A N/A 94,395 9,116,900 3,921,400 5,195,500 2.32 30	5	5	s	\$	\$	~	s	\$	s		
	N/A	NIA	N/A	NIA	WA	94,395	9,116,900	3,921,400	5,195,500	2.32	30

Nonparticipant Test

1.27	10,124,700	(0.07000)	N/A	8,242,000	37,664,300	47,789,000
Benefit Cost Ratio (BCRnp)	Nct Present Value (NPVmp) \$	Rate Impaci Non-Part (RIMnp) \$/MWH	Incentive Costs (Ciup) \$	Revenue Reduction (Cmp) \$	Utility Costs (Cump) \$	Utility Benefits (Bump) \$

All Ratepayers Test Total Total "epayers Ratepayers "ts Costs (Ca) 13,220,100 6,193,900 7,026,200 Present Value (NPVa) S Net Benefit Cost Ratio (BCRa) 2.13

Utility Revenu	te Requiremen	t Test			
	Total	Total		Net	Benefit
Increased	Utility	Utility	Incentive	Present	Cost
Revenue	Benefits	Costs	Costs	Value	Ratio
(Ruu)	(Buu)	(Cuu)	(Ciu)	(NPVu)	(BCRu)
~	*	69	\$	64	
WA	13,122,000	4,763,400	2,641,352	8,358,600	2.75

PaPUC Revised Apr-96

Company Name:

Luquesne Lignt Company

IRP-ELEC 10D. Conservation and Load Management Program Cost Benefit Analysis Results

mang	1997 2026
ustomer Generator DSM Pro pur: 1997	eginning Year: nding Year:
Program Name: Present Values Calculated for Y	Period of Analysis: E

Participant Test

Payback Pariod (yrs)	30	
Benetit Cost (BCRp)	00.666	
Net Present Value (NPVp) S	18,305,100	
Total Participant Costs (Cp)	0	
Total Participant Benefits (Bp) \$	18,305,100	
Participant Revenue Requirement (Rp) \$	910,561	
Sales Ratio S	N/A	
Incentive Costs (Cip) \$	NIA	
Revenue Reduction Cost (Crp) \$	NA	
Utility Costs (Cup)	NA	
Utility Benefits (Bup)	NIA	

Nonparticipan	it Test					
Utility Benefits (Bunp)	Utility Costs (Cunp)	Revenue Reduction (Crup) \$	Incentive Costs (Cinp) \$	Rate Impact Non-Part. (RIMap) \$/MWH	Net Prescrit Value (NPVnp) \$	Beneral Cost Ratio (BCRnp)
194,083,400	158,739,500	12,108,000	NA	(0.24000)	35,343,900	1.22

	Benefit Cost (BCRa) (BCRa)	1.75
	Net Present Value (NPVa) \$	23,622,100
) Test	Total Ratepayers Costs (Ca)	31,504,700
All Reference	Total Ratepayers Bernefits (Bua) \$	55,126,800

£

UNITY REVENU	ie Kequintinen	r 181			
	Total	Total		ra Va	Benefit
Increased	Utility	Utility	Incentive	Present	ta Co Co
Revenue	Benefits	Costs	Costs	Value	Ratio
(Ruu)	(Buu)	(m)	(Ciu)	(PVe)	(BCRu)
64	\$	S	\$	S	
N/A	54,982,800	42,245,900	10,741,228	12,736,900	1.30

Apr-96 PaPUC Revised

PaPUC Revised Apr-96

6.94	92,890,993	15,093,492	15,648,640	108,539,633	N/A
	5	5	68	\$	\$
(BCRu)	(NPVu)	(Ciu)	(Cua)	(Buu)	(Ruu)
Katio	Value	Costs	Costs	Benefits	Revenue
Cost	Present	Incentive	Utility	Uality	Increased
Benefit	Net		Total	Total	
			t Test	ne Requiremen	tillty Revent

108,539,633

555,148

107,984,485

195.51

-

Nonparticipan	t Test					
	-			Rate	Net	Benefit
Utility	Utility	Revenue	Incentive	Impact	Present	Cost
Benefits	Costs	Reduction	Costa	Non-Part	Value	Ratio
(Bunp)	(Cump)		(Cing)	(RIMnp)	(NPVnp)	(BCRmp)
5	\$	s	5	S/MWH	\$	
381,122,813	38,923,000	0	N/A	(2.37000)	342,199,813	9,79
					Titility Revenue	e Requirement
Total	Total	Net	Benefit			Total
Ratepayers	Ratepayers	Present	Cost		Increased	Uality
Benefits	Coats	Value	Ratio		Revenue	Benefits
(Bua)	(Ca)	(NPVa)	(BCRa)		(Ruu)	(Buu)
\$	**	*			\$	*

_	Participant Te	51	Revenue			Participant	Total	Total	Nat	Benefit	Discounter
	Utility	Utility	Reduction	Incentive	Sales	Revenue	Participant	Participant	Present	Cost	Payback
	Benefits	Costs	Cost	Costs	Ratio	Requirement	Benefits	Costs	Value	Ratio	Period
	(Bup)	(Cup)	(C1-6)	(Cip)	3	(Rp)	(Bp)	(Ĉp)	(NPVp)	(BCRp)	(yrs)
	69	\$	~	**	9 9	*	60	**	\$		
	N/A	NIA	N/A	NVA	N/N	(4,636,534)	12,818,139	0	12,818,139	999.99	30
_											

CULLIPHIS เพลนประ

Апальство такополь

IRP-ELEC 10D. Conservation and Load Management Program Cost Benefit Analysis Results

 Program Name:
 Long-Term Contracted Interruptible DSM Program

 Present Values Calculated for Year:
 1997

 Period of Analysis:
 Beginning Year:
 1997

 Ending Year:
 2026

Company Name: Duquesne Light Company

IRP-ELEC 10E. Assessment of Conservation and Load Management Potential

<u> </u>							<i></i>												_		_			1
hility	am Goals	KWH	(u)	N/A	6,406,400	24,268,300	46,578,200	70,117,100	94,886,000	119,902,900	144,919,800	168,842,700	189,117,600	207,568,500	225,654,400	243,376,300	261,098,200	278,820,100	295,994,000	311,344,900	325,783,800	340,039,700	354,113,600	
	Progr	KW	(m)	N/A	84,894	222,540	371,557	529,003	694,669	864,256	1,034,925	1,206,654	1,378,849	1,551,548	1,724,780	1,898,329	2,072,203	2,246,402	2,420,589	2,594,739	2,768,870	2,942,998	3,117,122	
	otal	KWH	Ξ	N/A	6,406,400	24,268,300	46,578,200	70,117,100	94,886,000	119,902,900	144,919,800	168,842,700	189,117,600	207,568,500	225,654,400	243,376,300	261,098,200	278,820,100	295,994,000	311,344,900	325,783,800	340,039,700	354,113,600	
	L	KW	(k)	N/A	84,894	222,540	371,557	529,003	694,669	864,256	1,034,925	1,206,654	1,378,849	1,551,548	1,724,780	1,898,329	2,072,203	2,246,402	2,420,589	2,594,739	2,768,870	2,942,998	3,117,122	
	ber	KWH	(i)	N/A	N/A	N/A	NA	N/A	NIA	NIA	NA	N/A	N/A	N/A	NA	N/A	N/A	N/A	NA	N/A	N/A	N/A	N/A	
	00	KW	Θ	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N N	NIA	N/A	NA	NA	NA	NA	N/A	N/A	NA	NA	N/A	N/A	
	astrial	KWH	(ł)	N/A	4,017,400	9,695,300	15,373,200	21,051,100	26,729,000	32,406,900	38,084,800	43,762,700	49,440,600	55,118,500	60,796,400	66,474,300	72,152,200	77,830,100	83,508,000	89,185,900	94,863,800	100,541,700	106,219,600	
	Ind	KW	(g)	N/A	81,158	187,158	293,158	399,158	851'505	611,158	717,158	823,158	929,158	1,035,158	1,141,158	1,247,158	1,353,158	1,459,158	1,565,158	1,671,158	1,777,158	1,883,158	1,989,158	
	nercial	KWH	(J)	N/A	200,000	2,900,000	6,400,000	10,400,000	000'006'+1	19,648,000	24,396,000	29,144,000	33,892,000	38,640,000	43,388,000	48,136,000	52,884,000	57,632,000	62,380,000	67,128,000	71,876,000	76,624,000	81,372,000	si
	Com	KW	(e)	N/A	3,691	35,142	77,890	129,052	188,419	251,707	316,077	381,529	447,522	514,056	581,131	648,530	716,254	784,303	852,352	920,401	988,450	1,056,499	1,124,548	ulative amount
	sidential	KWH	(q)	N/A	2,189,000	11,673,000	24,805,000	38,666,000	53,257,000	67,848,000	82,439,000	95,936,000	105,785,000	113,810,000	121,470,000	128,766,000	136,062,000	143,358,000	150,106,000	155,031,000	159,044,000	162,874,000	166,522,000	ies shown are curr
	Re	KW	(c)	N/A	45	240	509	5 67	1,092	1,391	1,690	1.967	2,169	2,334	2,491	2,641	2,791	2,941	3,079	3,180	3,262	3,341	3,416	Note: Valu
	Actual	Year	(q)	1996	1997	1998	6661	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	
	Index	Year	(a)	0	-	7	ę	4	\$	9	~	90	6	10	11	12	13	14	15	16	17	81	61	

The impacts for the Residential Load Management Pilot Research Program are not included in IRP-ELEC 10E since the implementation of this program is dependent upon successful negotiation of a multi-vendor research and development contract. Additionally, it should be noted that this estimate of practical and economical energy conservation and load management is valid only if cost recovery, lost revenue recovery and incentives are in place for the electric Planned utility programs attempt to attain the conservation and load management potential as defined in IRP-ELEC 10E with one exception. utilities in Pennsylvania.

Pa.PUC Revised Apr-96

Pa.PUC Revised Apr-96

Note: Duquesne considers revenue requirements to be proprietary business information and is providing this data under separate cover.

			(Constant Dollari	S				
	Pre	ferred	Alta	mativo A	Alter	native	Altern	D D D D D D D D D D D D D D D D D D D
Index Actual	Annual	Cents Per	Annual	Cents Per	Annual	Cents Per	Annual	Cents Per
Year Year	Doilars	KWH Sold	Dollars	KWH Sold	Dollars	KWH Sold	Dollars	KWH Sold
(a) (b)	(c)	(đ)	(e)	(f)	(2)	(h)	0	Û
0 1995								
1 1996								
2 1997								
3 1998								
4 1999								
5 2000								
6 2001								
7 2002								
8 2003								
2004								
10 2005				-				
11 2006								
12 2007								
13 2008						······		
14 2009								
15 2010								
16 2011								
17 2012								
18 2013								
19 2014								
Levelized Cents Per K	WH							

Company Name: Duquesne Light Company

IRP-ELEC 11. Comparison of Costs of Preferred Resource Plan with Alternative Plans

Company Name: Duquesne Light Company

IRP-ELEC 12. Transmission Line Projection

Line Cost (g)	\$ 125,000	\$200,000	
In Service Date (f)	8-95	8-96	
Construction Start Date (e)	4-95	4-96	
Length (d)	0.1 mi.	0.3 mi.	
Design Voltage (c)	138 kV	138 kV	
Location (b)	Ohio Township, Allegheny County	New Sewickley Twp . Beaver County	
Transmission Line Name (a)	1) Crescent - North 138 kV Z-20 Circuit	2) Phillips - Valley 138 kV Z-82 Circuit	

Pa. PUC Revised Apr-96

<u>Appendix B</u>

PROMOD

Generation Production Costing Model

1. INTRODUCTION

69

1.1 Overview

The PROMOD III@ system is a computer software package that simulates the operation of an electric utility power system. It is first and foremost a comprehensive production costing model for projecting future operating costs. It can also be used to evaluate system reliability.

PROMOD III differs from less sophisticated production costing programs in its treatment of generating unit forced outages. It is these forced outages that comprise the major factor in the disruption of fuel budget forecasts, operating cost estimates, and projected utilization of high-cost peaking and mid-range units. Since these outages are random and unpredictable, PROMOD III employs a special mathematical technique to properly consider their resultant impact on fuel requirements and operating costs.

Forced outages are treated within the program by a complete probabilistic model. Generating units can be represented by a seven-state failure model to give explicit consideration to partial loss of unit capability and forced outages of varying severity. All possible failure states of each unit are considered, in combination with all possible failure states of all other units, in order to obtain the best possible forecast of expected fuel consumption, operating costs, and plant capacity factors.

For fuel budget applications and system planning studies, PROMOD III will produce better results than less sophisticated programs because of the comprehensive representation provided for simulating detailed electric utility operations on an hourly basis while recognizing the importance of generating unit full and partial forced outages. Without explicit recognition of these forced outages, accurate recognition of fuel consumption is not possible. PROMOD III also serves as a generation reliability program, since loss-of-load hours and emergency energy requirements are standard outputs. Both measures are needed to determine appropriate reserve levels.

PROMOD III has developed into the most effective tool for studying a host of problems confronting utilities today:

- Making Fuel Budget Forecasts
- Examining New Plant Capacity Additions
- Planning Nuclear Refueling Outages
- Projecting Utility Operating Costs
- Pricing Firm Power and Energy
- Analyzing Fuel Conversion and Restricted Fuel Supplies
- Investigating Demand-Side Management Programs
- Projecting Hourly Marginal Energy Costs
- Calculating Avoided Energy Costs and Cogeneration Rates

Evaluating New Power Supply Technologies

In power system operations, the relative efficiencies (operating costs) of the generating units are used to match generator output with electric demand in the most economical manner. Numerous operating restrictions must be observed: spinning and quick-start reserve requirements, minimum shutdown restrictions, limitations of the transmission network, and deliverability restrictions of fuel suppliers, to mention only a few. These and other operational considerations are explicitly modeled in the PROMOD III program. Its strength lies in the combination of probabilistic production costing techniques with detailed modeling of operating considerations to produce realistic estimates of fuel consumption and operating costs.

70

Critical user features include:

- Flexibility PROMOD III can simulate more generating unit types, utility system characteristics, and operating modes than any other probabilistic production costing program. The user can model various situations with as little or as much detail as required. Computer run time can be controlled by selectively activating only those modeling capabilities that are required for the study.
- Ease of Use PROMOD III has a simple user interface that allows data to be entered in any order. Input override capability facilitates quick setup of change case runs by selective replacement of base case data with changed values.
- Convenient Reporting PROMOD III produces a generalized data base from which
 the user can obtain a wide variety of standard printed reports. The PROMOD III
 system includes post-processors that can transfer model results to corporate and
 financial models, and help the user build customized reports.

1.2 Basic System Description

Figure 1-1 is a simplified block diagram of the PROMOD III system. Basic inputs, shown on the left side of the diagram, are generally described in Chapter 2, "Utility System Representation", and are described in detail in Chapter I, "Input Data". Briefly, these inputs fall into five categories:

- Generating Unit Data unit types, heat rates, fuel types, capacity states, forced outage rates, seasonal derations, maintenance requirements, minimum downtimes, and penalty factors. Specialized data is required for nuclear, pumped hydro, conventional hydro and combined cycle units.
- Fuel Data cost, availability, and inventory information for various fuels used by the generating units.
- Load Data demand and energy forecasts, chronological load shapes, and levels of interruptible load. Historical load data in EEI load data format can be directly input to define chronological load shapes.
- Transaction Data type, capacity, energy, availability, timing, and costs.

Figure 1-1. PROMOD III Block Diagram

 Utility System Operating Data - Operating reserve requirements, target reliability levels, emergency power purchase costs, available tie support, forbidden maintenance periods, and system-wide escalation rates. 72

Major outputs of the program, shown on the right side of Figure 1-1, are described and illustrated in Chapter O, "Output Reports".

Figure 1-1 shows how the optional modules interface with the basic program and with each other. These modules have been developed to:

- Model the behavior of unconventional generation resources, such as combined cycle units or pumped storage plants.
- Model utility system behavior under different operating modes, such as pooling (multi-area dispatch), emission restricted dispatch, and fuel supplies with limitations.
- Support studies by the rates (Houriy Marginal and Average Energy costs) and marketing (Controllable and End Use Load Management modules) departments.
- Develop customized reports and pass PROMOD III results to other models and databases (EXTRAC and Report Writer).

As shown in Figure 1-1, these optional modules usually require additional input data and provide additional output reports. Optional modules can be installed with the initial delivery of PROMOD III, or they may be added at any later time. The full set of optional modules offered is given below. Modules denoted by an asterisk (*) are described in this manual. Other modules have separate user's manuals.

- Hourly Marginal Energy Costing Module
- Hourly Average Energy Costing Module
- Combined-Cycle Unit Module
- Economy Energy Interchange Module
- * Limited Fuel Module
- * Nuclear Energy Allocation Module
- Energy Storage Module (pumped storage)
- Hourly Multi-Area Dispatch and Transmission Module (hourly interchange accounting)
- Multi-Company Reporting Module
- * Environmental Dispatch & Reporting Module End-Use Load Management Module Controllable Load Management Module Multi-Area Reliability Module General Output Interface Module

With these capabilities, PROMOD III can be used to address a broad range of applications within the electric utility industry:

- Production Costing This is the principal application of the program.
- Fuel Budgeting Analyses can be performed on the basis of fuel costs, fuel requirements, fuel burns, inventory requirements or inventory values.

 Reliability Analysis - The program computes the amount of unsatisfied customer load (unserved energy) and the number of hours during which customer curtailments occur. PROMOD III automatically determines the amount of additional generating capacity needed to achieve a user-specified loss-of-load hours target. If capacity reserve levels exceed this acceptable service standard, then PROMOD III will determine the amount of surplus capacity which could be sold to neighboring systems on a firm basis.

- Maintenance Evaluation Alternate maintenance schedules can be analyzed for their impact on production cost or system reliability.
- Generation Planning Future capacity additions can be evaluated for production cost savings and improved system reliability. All types of generating unit alternatives can be studied, including coal, oil, nuclear, combined cycle, combustion turbines, hydro, and energy storage.
- Marginal Energy Cost Analysis The program can report expected hour-by-hour marginal energy costs and hourly loss-of-load probability, key inputs to rate design studies. Interactive post-processing programs can be used in conjunction with these outputs to drive time-of-day and seasonal rates. This application requires the optional Hourly Marginal Energy Costing Module.
- Energy Storage Evaluation The benefits of production cost savings and improved system reliability from pumped-hydro, compressed air energy storage projects, and battery storage can be determined. Selection of optimum capacity and storage reservoir size, and utilization of multiple projects can be studied. These evaluations require the optional Energy Storage Module.
- Evaluation of Contract Transactions PROMOD III offers a number of modeling options for purchase and sale contracts.
- Economy Energy Interchange Evaluation PROMOD III can be used to evaluate the
 effects of economy energy interchange, or changes in the opportunities for such
 interchange, on system operation, production costs and fuel consumption. The
 optional Economy Energy Interchange Module is required. In this case, an hourly
 price profile characterizes the neighboring systems' incremental operating costs for
 each month.
- Hourly Multi-Area Dispatch When a number of utilities are operated as a pool, integrated operations can be analyzed with the PROMOD III Hourly Multiple Area Dispatch and Transmission Module. Centralized pool dispatch and the exchanges of economy energy between areas are modeled recognizing the bulk transmission network limitations. A flexible billing algorithm allows the user to test proposals for allocating the benefits of centralized dispatch & Transmission Module, studies can be performed for a utility member company within a pool as well as for the entire pool. In these instances, fuel budgeting, generation planning, marginal energy cost analyses, energy storage economics and outside-system transaction evaluations can all reflect the benefits of pooled operation. Most importantly, the effects of adding transmission capabilities between areas can be studied.

 Load Management - PROMOD III can be used to analyze load management proposals at varying levels of detail. Overall daily, weekly, and seasonal load management strategies of various types can be modeled with the basic program. More precise study of modifications to user patterns (such as with hot water heaters or air conditioners) can be performed using the optional End-Use Load Management and Controllable Load Management modules. 74

- Fuel Limitations The effects of fuel supply limitations and contractual restrictions on system operations and production costs can be analyzed with PROMOD III using the optional Limited Fuel Module. Minimum burn requirements, maximum available supply limits, take-or-pay contract provisions, maximum hourly consumption rates (e.g., gas flow rates), and suspension of coal deliveries can be modeled.
- Environmental Constraints PROMOD III's optional Environmental Dispatch and Reporting Module calculates the release of atmospheric pollutants from fuel burned at utility plants. Restrictions can be imposed on the dispatch under varying environmental constraints allowing the user to analyze the system effects and direct costs which such conditions impose.

1.3 Illustration Of Probabilistic Modeling

At the heart of PROMOD III is a modeling technique which allows the explicit consideration of randomly occurring forced outages, forced derations and postponable maintenance outages of every generating unit and generation resource alternative. The probabilistic modeling technique accounts not only for the effects of a unit's outages and derations on its own operation, but also for the effects of a unit's outage on the operation of all other units in the utility system.

Probabilistic modeling is necessary from several standpoints:

- 1. Accurate prediction of peaking and mid-range capacity factors requires probabilistic treatment.
- 2. Monte Carlo techniques require prohibitive computer run-times to obtain statistically meaningful results.
- 3. PROMOD III's probabilistic technique, in effect, dispatches every possible configuration of the generation system, from one unit on outage at a time, two units on outage another time, and so on to the very unlikely but disastrous situation of all units on simultaneous outage. The properly weighted average of all such occurrences represents the best estimate of future operating costs.
- Results must be repeatable from run to run. The probabilistic technique produces the best projection of the future; accurate forecasts are now possible in reasonable computer run times.

A simple example has been constructed below to provide an introduction to this technique. In this example, there is a single hour's load to be satisfied by two generating units. The value of the load is 150 MW. The generating unit to be considered first on the basis of cost, has a capacity of 80 MW and an 80% probability of being available, while the second unit has a capacity of 100 MW and an availability of 90%.

75

In Figure 1-2, the loading of the first unit is depicted. The unit may be either available for service (probability 0.8) or unavailable (probability 0.2). In the event the unit is available, it will satisfy 80 MWH of load and leave 70 MWH remaining. In the event the unit is unavailable, it will supply nothing and 150 MWH will remain. The expected generation of unit 1 is therefore 64 MWH, and the expected remaining load is 86 MWH.

In Figure 1-3, the loading of the second generating unit is illustrated. Because of the two possible outcomes from the loading of the first unit, there are now four possibilities for the loading of the second unit. The calculations show that the expected generation of unit 2 is 68.4 MWH and the expected remaining load is 17.6 MWH.

If more units existed, the number of outcomes would continue to expand exponentially. For example, a relatively small system with 32 generating units would have more than 4.2 billion outcomes.

PROMOD III employs a computationally efficient algorithm that produces results identical to those obtained with direct enumeration of all availability states.

The PROMOD III algorithms include much more than a multi-state version of the probabilistic calculation illustrated above. The basic program contains dispatch logic capable of simulating the effect of unit commitment and economic dispatch carried out under detailed utility operating procedures as well as special computations for limited-energy resources including fixed-energy transactions, hydraulic resources and fixed-energy thermal units. The economic dispatch details have been deliberately omitted from the simplified discussion above. Still further complexities in the calculations arise in the extended modeling capabilities of the optional modules.

PROMOD III combines probabilistic modeling with (1) the flexibility to analyze diverse types of generating units and complex purchase and sale arrangements and, (2) the capability to reflect real world utility operating procedures. PROMOD III can quickly supply management with accurate production cost estimates for a wide variety of generation expansion scenarios or operational strategies and soon becomes an indispensable tool for the utility system planner and operational planner. The probabilistic structure, detail and accuracy also make PROMOD III the perfect tool for related applications ranging from supplying cost information for use in rate proceedings to analyzing the benefits of load management programs. PROMOD III enables utility system planners and operators to develop efficiently and accurately the ever-increasing amount of information that is being demanded by management and by regulatory agencies.

Most importantly, the information is developed consistently from analysis to analysis. Users derive additional benefit from the combined experience of the planning staffs of PROMOD III's growing utility base. PROMOD III is continually maintained and enhanced by EMA, making it responsive to new production costing applications and modeling requirements. The continuing evolution of the program and EMA's commitment to keep PROMOD III as the industry standard will extend its useful life indefinitely.

Figure 1-3. Probabilistic View of Loading Two Units

.

77

į

PROMOD III's Method Of Probabilistic Simulation

Appendix C

DUQUESNE LIGHT COMPANY

Federal Energy Regulatory Commission Filing Point to Point and Network Transmission Open Access Tariffs

UNITED STATES OF AMERICA BEFORE THE FEDERAL ENERGY REGULATORY COMMISSION

Duquesne Light Company) Docket No. ER96-___-000

REQUEST FOR ACCEPTANCE OF OPEN ACCESS TRANSMISSION TARIFFS

Duquesne Light Company ("Duquesne") hereby submits an original and six copies of a Point-to-Point Transmission Service Tariff ("PTP Tariff") and a Network Transmission Service Tariff ("Network Tariff") that will provide wholesale customers comparable access to Duquesne's transmission system.

Ξ.

I. INTRODUCTION

Duquesne today is submitting a pro-competitive transmission pricing proposal that, if adopted by other utilities, would greatly enhance the efficiency of regional bulk power markets. Duquesne proposal is that each utility charge customers wheeling out or through the utility's system marginal-cost only rates. These customers would take service under a marginal cost "point-topoint" tariff. The only customers bearing an embedded cost rate would be the "native load customers" of each utility. These customers would pay <u>one</u> embedded cost

charge for the use of the system under a "network"-style tariff. This contribution to the fixed costs of the system would entitle them to use the utility's system to import network resources and economy energy and to sell power off-system at no additional embedded cost charge.¹ Under Duquesne's approach, these customers also would be permitted use the systems of all other utilities on a marginal cost basis (using <u>their</u> point-to-point tariffs), thereby eliminating rate pancaking between utility systems.¹ 81

This proposal is necessary to eliminate the inefficient method of rate pancaking that exists today. In today's bulk power market, the general practice is for each utility to charge customers desiring to wheel. through its system an allocated share of its fixed transmission investment. This embedded cost rate may, at some times, be discounted to account for the value of the transaction; however, given that the provision of transmission service is, at present, a monopoly service, the

Duquesne's proposal eliminates the "headroom" issue because, while a network customer would be required to use the point-to-point tariff to make off-system sales, the point-to-point tariff would not include any embedded cost charges. As a result, all generators using the utility's transmission system would compete for power sales on the same basis: their relative marginal costs.

utility will establish a price that maximizes its profits, not societal efficiency. The effect of these pancaked embedded cost rates is to reduce the efficiency of regional bulk power markets. 82

Duquesne's proposal -- that transmission customers wheeling power out of or across a utility's system pay only marginal usage rates -- is entirely consistent with Commission policy. As the Commission explained in its Transmission Pricing Policy Statement:

To the extent practicable, transmission rates should be designed to reflect marginal costs, rather than embedded costs . . . We favor marginal cost prices in order to promote efficient decisionmaking by both transmission owners and users.

Transmission Policy Statement at 21, III FERC Stats. and Regs. ¶ 31,005, at 31,143 (1994).²

Duquesne proposes to implement this pro-competitive pricing proposal using the non-rate terms and

In the short-run, marginal costs include (i) the cost of transmission losses and (ii) the cost of redispatching generation to relieve transmission congestion. The marginal cost of losses varies with the location of generation and load and the marginal cost of generation that supplies the losses. The marginal cost of redispatch varies with the difference in "system lambda," or marginal generating cost, with and without the existence of the constraint. In the long-run, marginal costs include the cost of constructing new facilities necessary to increase the capacity of the transmission grid.

conditions of the Commission's <u>pro forma</u> tariffs, with only a few changes. The most significant change proposed by Duquesne is a requirement that customers serving load within Duquesne's system pay an access fee under the Network Tariff. This change is necessary because, without it, a native load (or network) customer of Duquesne could rely entirely on point-to-point service -- which has no embedded cost charge -- and thereby avoid paying a fair share of <u>any</u> embedded transmission costs. Duquesne's proposal envisions that each native load customer would pay one -- and only one -- access fee. 83

II. RATES

.

This section provides a detailed discussion of the proposed rates for service, including the reasons why they satisfy the Commission Transmission Pricing Policy Statement.

A. Overview of Duquesne Rate Proposal

The following is a description of the rate methodology used to price each of the services offered in Duquesne's Network and PTP Tariffs.

1. Network Service

Network service will be priced on the same basis as in the Commission's <u>pro forma</u> network tariff. Under this approach, each network customer pays a monthly

demand charge that represents its pro rata share of embedded transmission costs. This pro rata, or "load ratio," share is the ratio of the customer's coincident peak demand to the system coincident peak demand, calculated on a rolling twelve-month basis. The network customer also receives a load ratio share of any system congestion (redispatch) costs, as well as a load ratio share of any revenue credits from the sale of point-topoint service. As to transmission losses, the loss rate is based on an average system loss factor and the customer has the option of supplying the losses itself or purchasing them from Duquesne. 84

In the future, Duquesne anticipates proposing that the transmission usage rates for network customers be based on marginal costs, as opposed, for example, to average system losses. At the present time, however, Duquesne believes that the principle inefficiency in transmission pricing facing the industry today is the pancaking of embedded cost rates across utility control areas. That is a defect related to point-to-point service, not network service. In Duquesne's view, even with complete transmission pricing reform, all network customers would continue to pay an access, or grid connect, fee based on the embedded costs of the transmission system.

The only change to the Commission's network tariff would be the pricing of losses and congestion costs on a marginal, rather than an average, cost basis. While that level of reform is important, it need not delay pricing reform for point-to-point transmission service, which Duquesne can accomplish today. 85

2. Point-to-Point Service

Point-to-point customers on Duquesne's system will pay only marginal cost rates. In the short-run, these marginal costs will consist of line losses and congestion costs. In the long-run, marginal costs represent the cost of incremental facilities necessary to remove transmission constraints. The pricing proposal with respect to each is provided below.³

a. Marginal Line Losses

The marginal rate of transmission losses varies with (i) the location of the generation and the load being served, and (ii) loadings on the transmission lines at the time of the transfer. Duquesne's proposed method-

The following discussion applies principally to firm point-to-point service. Under Duquesne's proposal, non-firm customers will be interrupted at the time of system constraint and thus will not be subject to any congestion charges or incremental facilities charges. These customers will be charged only the marginal cost of transmission losses.

ology accounts for both factors on an <u>ex ante</u> basis. To measure locational differences, Duquesne has modeled transfers to and from various points of delivery and receipt on the Duquesne system.⁴ To account for the variation in losses at different load periods, Duquesne has modeled these receipt and delivery point sets at four different load periods: summer and winter, on- and offpeak. The results of this modeling have been compiled in a set of "look up tables"⁵ that allow the transmission customer to see the marginal line loss factor applicable to its proposed transaction at its proposed delivery and receipt points and load period(s).⁶ 86

If a transaction reduces marginal losses, it will receive a credit.

= :

- ⁵ These look up tables include all transactions that are likely to occur in the future. If a customer requests service for a transaction not covered by the tables, Duquesne will compute the applicable loss factor at that time.
- A necessary component of marginal cost pricing for transmission usage is that the marginal rates must be billed on the basis of actual flows, rather than "scheduled" amounts. Duquesne has developed its transmission usage charges so that customers will be charged only for the transmission losses and congestion costs that are reasonably associated with their transactions, not for the costs that would have been incurred if the full scheduled amounts had flowed over Duquesne's system.

To ensure comparability, Duquesne has used the same modeling techniques for computing marginal line loss factors for its own off-system sales. It has modeled these loss factors for both "slice of system" sales, where the marginal generating unit is deemed to be the point of receipt, and for unit sales. In each case, the look up tables for Duquesne's off-system sales provide Duquesne the same price signals as are provided for point-to-point customers transmitting energy through Duquesne's system. 87

Duquesne also would note that, under its proposal, the customer has the option of providing the marginal losses itself or purchasing them from Duquesne. If the customer chooses to purchase them from Duquesne, Duquesne will charge the customer its "system lambda" (its marginal generating cost). Duquesne will not assess a separate "demand" charge for losses.

In a fully competitive market, such as a PoolCo, generators such as Duquesne will be able to recover only the market clearing price for the energy they generate. Over time, this market clearing price will approach the cost of new capacity, thereby encouraging a sufficient amount of new generation supplies to continue to satisfy customer demand. On Duquesne's system, a reasonable proxy for the market clearing price is Duquesne's system lambda. (The system lambda will be either the cost of the last generator run on the system or the cost of purchased (continued...)

b. Congestion Costs

88

Marginal congestion costs represent the cost of operating generation out of economic merit order to relieve transmission congestion. Marginal congestion costs are, quite simply, the cost of running generation out of economic merit order. Duquesne will charge point-topoint customers the marginal cost of congestion for any transmission service that imposes flows on a constrained transmission facility.

Duquesne has used a load flow simulation to determine the manner in which various point-to-point transactions contribute to certain known constraints. At present, Duquesne has identified three transmission facilities that may be subject to congestion in the future. Using a load flow simulation, Duquesne has identified the point-to-point transfers that would contribute to these known constraints and in what magnitude.⁸ Each transfer is then assigned a "transfer response factor," which represents the portion of the transfer (in percent-

^{&#}x27;(...continued) power.) If Duquesne's system lambda ever exceeded the market clearing price, presumably customers would simply elect to supply the losses themselves.

If constraints other than these arise in the future, Duquesne will provide the same information for these constraints in an amended filing.

age terms) that impacts the constrained facility.' (There are four TRFs for each delivery and receipt point set, reflecting the differing loadings during winter and summer, on- and off-peak conditions.) These TRFs are then listed in a schedule attached to the point-to-point tariff. 89

Using these TRFs, Duquesne will compute marginal congestion costs for point-to-point transactions. The marginal congestion cost rate will be the product of (i) the flow on the constrained facility produced by the, point-to-point transaction, as determined by the product of the TRF and the amount of energy scheduled, and (ii) the marginal cost of operating generation out of economic merit order.

c. Network Upgrades

Duquesne will charge point-to-point customers for the costs of any network upgrades necessitated by their use of the system. Duquesne will calculate the customer's cost responsibility on the basis of a differential revenue requirement calculation that compares the upgrade costs necessary with, and without, the additional

For example, a TRF of 10% would mean that a 100 MW transfer would impact the constrained facility by 10 MW.

point-to-point load. Point-to-point customers will have the option of paying the network upgrade charge even if it is lower than an embedded cost charge. This will ensure that point-to-point customers receive both shortand long-run marginal cost price signals. It also will hold Duquesne's native load customers harmless by reimbursing them for any incremental facilities costs they incur because of a point-to-point customer. 90

3. Ancillary Services

a. Losses

Duquesne's proposal regarding losses was described <u>supra</u>.

b. Reactive Power/Voltage Support

Duquesne is not proposing at this time to "refunctionalize" any embedded generation costs to the transmission revenue requirement to account for the fact that generators provide certain reactive support that benefits wheeling transactions. Duquesne also is not proposing a marginal cost rate to point-to-point customers for the provision of reactive support. Duquesne reserves the right, however, to propose such charges in the future.

c. System Protection/Load Following

91

The system protection and load following services contained in the <u>pro forma</u> tariffs are two services that are difficult to price on a marginal cost basis. Operating reserves (or "system protection") are purely a capacity product; they represent the cost of keeping generation capacity available should a system emergency occur. The cost of load following service is principally a function of the embedded cost of certain automatic generation control and other equipment designed to match generation and load levels on an instantaneous basis.

In the future, these services will likely be provided at market-determined prices, not "cost-based" rates. However, at present, Duquesne will adopt the Commission's "one mill" adder approach. To ensure that each service is separately priced, Duquesne will charge one-third of one mill per kilowatt-hour for each service. Duquesne reserves the right in the future to provide a more exact costing estimate for each service or to request market-based pricing for such services. The pricing is the same whether the customer is a network or point-to-point customer.

d. Energy Imbalance

Duquesne will use the <u>pro forma</u> tariff schedule for energy imbalance service. Unreturned imbalances will be priced at Duquesne's system lambda (marginal energy cost).

e. Scheduling and Dispatching

92

Duquesne is not proposing a separate scheduling and dispatching charge at this time.

B. Overview of Marginal Cost Pricing

. · · ·

- 1- -

Duquesne provides below an overview of marginal cost pricing and the benefits of it as applied to transmission service.

1. Marginal Cost Pricing and Rate Pancaking

Establishing an efficient electric market depends, in significant part, on establishing transmission pricing rules that ensure an economic dispatch of all generators, regardless of their location. The pricing rule that accomplishes this goal is marginal cost pricing. As Professor Kahn has written:

The central policy prescription of microeconomics is the equation of prices and marginal cost. If economic theory is to have any relevance to public utility pricing, that is the point at which the inquiry must begin.

* * *

(W) hy does economic efficiency require prices equal to marginal, instead of, for example, average total costs? The reason is that the demand for all goods and services is in some degree, at some point, responsive to Then, if consumers are to decide intelprice. ligently whether to take somewhat more or somewhat <u>less</u> of any particular item, the price they have to pay for it (and the prices of all other goods and services with which they compare it) must reflect the cost of supplying somewhat more or somewhat less -- in short, <u>marginal</u> opportunity cost. If buyers are charged more than marginal cost for a particular commodity, for example because the seller has monopoly power, they will buy less than the optimum quantity; consumers who would willingly . have had society allocate to its production the incremental resources required, willingly sacrificing the alternative goods and services that those resources could have produced, will refrain from making those additional purchases because the price to them exaggerates the sacrifices.

93

Alfred E. Kahn, The Economics of Regulation 65-67 (empha-

The Commission itself has long encouraged the use of marginal cost pricing. For example, in its notice of inquiry on the regulation or electricity markets, the Commission stated "[w]e are concerned that if prices do not reflect marginal costs, individuals may make purchase decisions that produce benefits that are less than costs. As a result, too few or too many resources may be devoted to electricity production and delivery." <u>Regulation of Electricity Sales-for-Resale and Transmission Service</u>

(Phase II), IV FERC Stats. & Regs. ¶ 35,519, at 35,642 (1985), <u>docket terminated</u>, 61 FERC ¶ 61,371 (1992). More recently, and more pertinent here, the Commission endorsed marginal cost pricing in the context of transmission services, stating: 94

To the extent practicable, transmission rates should be designed to reflect marginal costs, rather than embedded costs . . . We favor marginal cost prices in order to promote efficient decisionmaking by both transmission owners and users.

Transmission Policy Statement at 21, III FERC Stats. and Regs. at 31,143.

A corollary to the proposition that marginal cost pricing is the most efficient method for pricing transmission service is that the pancaking of embedded cost rates across utility systems reduces the efficiency of regional electric markets. Duquesne's proposal reflects the fundamental belief that regional bulk power markets will not realize their maximum efficient state if every utility within a region continues to impose an embedded cost charge for all power transfers across its system. This is not how tight power pools or utility control areas operate today. Rather, power pools and individual control areas dispatch generation on the basis of its relative marginal cost, including the marginal

÷. *

. .:
cost of transmission. Yet, for power transfers <u>across</u> power pools or control areas, this efficient mode of marginal cost dispatch is replaced by an inefficient pancaking of embedded cost rates. 95

Duquesne believes the most direct route to the efficient pricing of transmission service on a regional basis is for each utility to charge point-to-point customers the marginal cost of transmission usage, not embedded costs. Under such a framework, customers wheeling out¹⁰ or through a utility's system would not pay an embedded cost charge. The only customers that would bear an embedded cost rate are the "native load customers" of each utility. These customers would pay <u>one</u> embedded cost charge for the use of that system, not more. This contribution to the fixed costs of the interconnected grid would entitle them to the use of all other systems on a marginal cost basis.

. . .

This model is similar to the result that would occur in a regional "PoolCo" or other region-wide, efficient transmission reform proposal. Each customer would

Wheeling out service would, for example, be service provided to a network customer making off-system sales. The network customer would pay an access fee under the network tariff, but no additional embedded cost charges for off-system sales made under the point-to-point tariff.

bear an allocated portion of the pool's or region's fixed transmission costs and, in return, be permitted to use the entire system at marginal cost.¹¹ The benefits of Duquesne's approach are that it can be implemented on a company-by-company basis today. 96

C. The Commission's Transmission Pricing Policy Statement

Duquesne's transmission pricing proposal meets each of the tests embodied in the Commission's Transmission Pricing Policy Statement.

1. Conforming versus Nonconforming

A "conforming" proposal is one in which "transmission prices [are] based on the costs of the transmission service being provided." Transmission Pricing Policy Statement, III FERC Stats. and Regs. at 31,7141. Duquesne's rates are conforming in every respect. The rate for network service includes a demand charge that allocates to each network customer a portion of Duquesne's embedded cost transmission revenue requirement based on its contribution to monthly system peak demand.

¹¹ The only difference is that, under Duquesne's approach, the embedded cost burden of various groups of customers would vary because the per KW transmission rates of each utility vary. Presumably, under a region-wide approach, each customer would pay a single postage stamp rate based on the rolled in cost of all regional transmission facilities.

This revenue requirement is calculated using a traditional cost of service methodology under which embedded costs are calculated on net book values. The charges to network customers for losses and redispatch costs also are conforming. Network customers are charged average line losses and a pro rata share of congestion costs, as per the <u>pro forma</u> network tariff. 97

The pricing proposal for point-to-point customers also is conforming. Point-to-point customers are charged only marginal costs. This not only is a "conforming" proposal, but is consistent with the Commission's admonition that rates should track marginal costs to the greatest extent practicable. Id. at 31,143. As the Policy Statement recognizes, marginal cost pricing is the most efficient methodology for pricing any service, including transmission service. It sends consumers the correct information regarding the cost of transmitting the next unit of energy, or of avoiding that trans-Its application to the pricing of transmission will fer. greatly enhance the efficiency of regional electric markets. In the future, Duquesne intends to expand its marginal cost pricing proposal to include network customers, which too would receive marginal price signals associated with transmission losses and congestion costs.

2. Comparability

The Policy Statement indicates that the rule of comparability in transmission pricing has essentially three elements: (i) "costs must be allocated between jurisdictional and nonjurisdictional customers in a consistent way," (ii) "when a utility uses its own transmission system to make off-system sales, it should 'pay' for transmission service at the same price that thirdparty customers pay for the same service," and (iii) "[a] transmission customer should have pricing certainty comparable to that of the transmitting utility." <u>Id.</u> at 31,142-43. Duquesne's proposal meets each of these criteria. 98

First, Duquesne is proposing to allocate embedded transmission costs between similarly situated jurisdictional and nonjurisdictional customers in a consistent manner. Both native load and network customers will be charged an embedded cost rate, calculated on the net book value of the transmission system. Duquesne is not proposing, for example, to charge network customers an original cost, "levelized" rate and native load customers a rate based on depreciated book values. In addition,

both groups of customers will be allocated embedded costs on a postage-stamp basis.¹¹ 99

Second, Duquesne will "go on" its PTP tariff for all its off-system sales. This means that Duquesne will pay the same marginal cost rates in selling its power off-system as any competitor would in purchasing point-to-point service. As discussed above, Duquesne has calculated marginal line loss factors and "transfer response factors" for its off-system sales to ensure that it can be charged marginal line loss and congestion costs on the same basis as other point-to-point customers. In accordance with the <u>pro forma</u> point-to-point tariff, Duquesne will book these marginal costs when it uses the PTP Tariff for off-system sales.

Third, point-to-point transmission customers will have the same relative transmission price certainty, and uncertainty, as Duquesne in competing to sell power over the Duquesne transmission system. Duquesne has adopted a pragmatic model of marginal cost pricing that allows the customer to know, in advance, what the margin-

¹² Point-to-point customers are not similarly situated with native load and network customers in the sense that they already have paid an access, or embedded cost, charge to their host utility, and thus should not receive an additional embedded cost charge from Duquesne.

al loss factor will be. As to congestion costs, Duquesne has identified the three transmission constraints that may occur in the future, calculated transfer response factors for each likely point-to-point transaction and has indicated in testimony here the historical cost implications of alleviating transmission congestion. <u>See</u> Direct Testimony of Peter A. Wybierala. Duquesne would not object to putting similar information on a Real-Time Information Network ("RIN"), once the rules for RINs are established. 100]

Finally, Duquesne would note that its proposal, if adopted by other utility systems, would achieve comparability on a regional basis. Under Duquesne's proposal, each generator would receive the same marginal cost transmission price signal in competing to make sales in the bulk power market. This would represent a significant improvement over the status quo. Today in Pennsylvania the generating units of four utility systems (Duquesne, GPU's Pennsylvania Electric Company, Pennsylvania Power Company, and APS' West Penn Power Company) operate within 50 miles of one another, but receive vastly different (and inefficient) price signals in attempting to compete in bulk power markets. Duquesne's

proposal, if adopted by other companies, would end this inefficient and noncomparable practice.

101

3. Economic Efficiency

Duquesne's transmission pricing proposal is economically efficient. As indicated, marginal cost pricing is the most efficient manner in which to price transmission service. Duquesne has implemented marginal cost pricing for point-to-point service and intends to do so in the future for network service.

4. Fairness

The Commission's Pricing Policy Statement indicates that the fairness criterion has two central elements: (i) that retail customers should not subsidize wholesale customers and vice versa, and (ii) that any "economic harm that could be created during a period of transition from one pricing approach to another should be mitigated to the extent practicable." Id. at 31,143-44.

Duquesne's proposal satisfies both tests. First, Duquesne's proposal does not require one group of customers to subsidize another group of customers. Rather, Duquesne's native load customers will continue to pay an allocated share of the system's fixed costs when they convert to transmission only (network: service, and thus will not be able to shift costs to the remaining

native load customers. In addition, network and native load customers will not be required to subsidize PTP customers, as PTP customers will pay the marginal costs of their transmission usage. 102

Second, Duquesne's proposal is sensitive to the fact that the transition to transmission pricing reform should not unfairly burden any existing ratepayers group and that it be focused on increasing economic efficiency, not reallocating sunk costs. As indicated, Duquesne's proposal requires native load customers to continue bearing a share of the system's fixed costs when they convert to transmission-only service from their existing bundled supply arrangements.

5. Practicality

The Policy Statement indicates that "[t]ransmission pricing should be practical and as easy to administer as appropriate . . . " Policy Statement at 22. Duquesne agrees. Marginal cost pricing can be implemented in a number of ways, each varying in complexity. As a general matter, the greater the complexity the more likely the method is to send an accurate price signal. There becomes a point, however, at which the burdens associated with increased complexity outweigh the benefits gained. Duquesne has sought to balance these

considerations in formulating its proposal, recognizing that Duquesne's transmission system is small and that the number of customers expected in the near term are relatively few. 103

For example, Duquesne will not measure marginal loss factors on an hour-by-hour basis. Rather, using load flow analyses, Duquesne will, <u>ex ante</u>, establish a representative marginal loss factor for the summer and winter, peak and off-peak periods. Duquesne has used a similar approach to charging marginal congestion costs. Instead of running hourly power flow simulations to determine each customer's contribution to a constraint in each hour, Duquesne has calculated transfer response factors from a representative peak load flow simulation. This, again, will allow customers to know in advance the whether their transaction will be deemed to contribute to a constraint when one arises.

D. Payment for Usage of CAPCO Facilities

Duquesne is a party to a series of agreements with Cleveland Electric Illuminating Co., Toledo Edison Co. and the Ohio Edison System¹³ that provide for the joint use, and sharing of the costs of, certain transmis-

¹³ The Ohio Edison System consists of Ohio Edison Co. and Pennsylvania Power Co.

sion and generating facilities located in the service territories of these parties. These agreements are commonly referred to as the "CAPCO" agreements. (CAPCO is an acronym for Central Area Power Coordinating Group.) 104

The CAPCO agreements are a series of joint use agreements that predate the rule of open, comparable transmission access. In this respect, the agreements are similar to many other joint use/ownership arrangements in existence today. Given the changes in regulatory rules and market conditions, Duquesne believes that utilities have essentially two choices in applying these agreements to third-party requests for service. They can apply the agreements in a manner that has the effect of granting the signatories transmission services that are unavailable to third parties or they can apply the agreements in a manner that permits the signatories to provide comparable access if that is what the extant regulatory rules require. Duquesne prefers the latter interpretation. The former is, at best, a temporary position that is likely to invite a Section 206 complaint from a customer or the Commission.

Duquesne's PTP and Network tariffs therefore offer to third parties any service that is available to Duquesne under the CAPCO agreements. The following is an

explanation of the manner in which Duquesne will charge third parties for the services it can provide over the CAPCO facilities. 105

There are essentially two categories of transactions that arise under the CAPCO agreements that are relevant here. The first category is power transactions between CAPCO parties. For these transactions, the CAPCO parties charge each other only the cost of losses as a transmission charge. Duquesne will thus charge third parties the CAPCO loss rate for any comparable transactions.¹⁴

An example of such a comparable transaction would be a request that Duquesne wheel power generated by a CAPCO party into Duquesne's system to serve one of Duquesne's network customers. In such an instance, the transmission rate charged will be only the cost of losses and a pro rata share of any congestion costs on Duquesne's system.¹⁵ The converse of this example would

¹⁴ These losses are computed on the same basis as Duquesne's loss charge included in the tariffs filed in this case.

¹⁵ Because Duquesne does not have the right to force the other CAPCO parties to "redispatch" their generation to accommodate a transaction, the only relevant congestion costs would be those occurring on Duquesne's system.

be a generator located within Duquesne's service territory requesting that its power be wheeled to one of the other CAPCO parties. (This is analogous to Duquesne selling power to one of the other CAPCO members.) This transaction also would bear only the cost of losses and congestion costs on Duquesne's system.¹⁴ 106

The second category of transaction is imports or exports of power that use the non-CAPCO interconnection facilities of a CAPCO party other than Duquesne. For these transactions, the CAPCO party providing the transmission service over a non-CAPCO interconnection would charge an embedded cost transmission rate plus the cost of losses. To ensure comparability, Duquesne will charge third parties this embedded cost rate as a passthrough to the transmission customer. As an example, if the Allegheny Power System desired to purchase power from a Michigan utility interconnected with Toledo Edison and have it delivered to the Duquesne-APS interface, Duquesne would charge APS Duquesne's out-of-pocket costs, which is equal to the embedded cost transmission rate levied by

¹⁵ The difference between the two above hypotheticals is that the network customer would receive an average system loss factor, while the point-to-point customer would receive a marginal loss factor.

Toledo Edison plus the cost of losses and any congestion costs being incurred on Duquesne's system.

In sum, in each instance, Duquesne will charge third parties (i) the marginal cost of transmission losses and any congestion costs that are incurred on Duquesne's system, plus (ii) the out-of-pocket costs, if any, it is assessed by any other CAPCO party for the transaction.

III. NON-RATE TERMS AND CONDITIONS OF SERVICE

The non-rate terms and conditions of point-topoint and network service closely follow those contained in the Commission's <u>pro forma</u> tariffs. Duquesne believes that, at the present time, little would be gained by redrafting these tariffs in an effort to improve upon them.¹⁷ Duquesne reserves the right, however, to file appropriate changes to the tariffs in the future, including those necessary to accommodate changes in regional electric markets and/or a move toward customer choice at the retail level.

¹⁷ Duquesne has not drafted language for certain appendices to the two tariffs on the belief that the Commission may provide such language in a Final Rule. If this is not the case, Duquesne will add the necessary appendices whenever the Commission deems it appropriate to do so.

28

In the interim, Duquesne has sought to change the <u>pro forma</u> tariffs only as necessary to adopt its marginal cost pricing proposal. The material changes in this regard are described below. 108

A. Availability of PTP Service

The most noteworthy change to the non-rate terms and conditions of the <u>pro forma</u> tariffs is a requirement that all native load customers of Duquesne that convert to transmission-only service pay an access fee under the Network Tariff. This access fee will allocate to them a pro rata share of Duquesne's embedded transmission costs. This restriction is necessary so that these customers do not take point-to-point service only, and thereby pay only marginal cost rates.

Under Duquesne's PTP Tariff, a point-to-point customer is required to pay for the cost of transmission losses and congestion charges only, <u>not</u> an embedded cost rate. This is a decidedly <u>pro</u>competitive proposal. This proposal will not work, however, if a native load customer of Duquesne could switch to point-to-point service (either from its existing bundled service or network service) and thereby avoid paying an allocated share of the transmission system's embedded costs. Clearly, each transmission customer should pay at least one embedded

cost charge as a contribution to the fixed costs of the regional network. Duquesne believes each customer should pay only <u>one</u> such charge.

In the future, this single charge may be a region-wide, embedded cost rate. At present, however, the only way to ensure fairness and prevent cost-shifting is for each utility to charge its native load customers an embedded cost rate. Duquesne has thus required its native load customers to take service under the network tariff. (Duquesne is retaining, however, the requirement in the <u>pro forma</u> network tariff that all network customers use the PTP tariff for their off-system sales. This will ensure that their off-system sales compete on the same basis as Duquesne's sales, which also will use the PTP tariff.)

This is a critical aspect of Duquesne's proposal. The transition to competition cannot be accomplished smoothly if one group of customers can shift costs to other customers. To be sure, Duquesne's proposal differs somewhat from the <u>pro forma</u> tariffs. Duquesne does not, however, believe the proposal is inconsistent with the cost allocation principles embodied in the <u>pro forma</u> tariffs. Under the <u>pro forma</u> tariffs, a native load customer has the option of taking either network or point-to-

30

point service. However, regardless of which service it takes, the customer will be charged an allocated share of the transmission provider's embedded costs. The only difference in the pricing of point-to-point and network service is the method by which such embedded costs are allocated (1 CP versus 12 CP). 110

Duquesne is asking no more or less of its native load customers in this case. Duquesne is simply asking them to continue bearing a fair share of the embedded costs of the system. Duquesne does not believe that this proposal is in any way prejudicial to native load customers seeking transmission-only service. The Network Tariff is the most flexible service available and it allocates embedded transmission costs to network customers in a manner that is comparable to the way in which costs are allocated to native load customers.¹⁹

¹⁹ If a native load customer sought to switch power suppliers for only part of its requirements (<u>i.e.</u>, become a partial requirements customer), Duquesne would unbundle the remaining portion of its sales to this customer and treat them as "network resources" under the Network Tariff. The customer's "access fee" thus would be based entirely on the network tariff, not a combination of transmission-only and bundled sales service charges.

B. Limitation on Reserved Amounts of Firm PTP Service

It is possible that the marginal cost pricing of point-to-point service will prompt some customers to "game" the system by reserving scarce transmission capacity with an intent to resell it at a mark up. This could occur given that point-to-point customers are only charged for their actual usage, and thus bear no penalty for failing to schedule up to reserved amounts. In theory, a customer could reserve the entire capacity of an interface and then seek to resell it to other customers at a rate that exceeds marginal costs. This would obviously reduce economic efficiency and be unfair to other customers.¹⁹

As a remedy, Duquesne has used the same principle that exists in the <u>pro forma</u> network tariff. There, network customers are entitled to reserve service from network resources only to the extent they have an executed contract for the delivery of the power or can show

.

32

¹⁹ Such a speculative reservation likely would affect only firm transactions. This is because, even if a customer sought to reserve the entire firm capacity of an interface, Duquesne could still offer non-firm service to the extent the firm customer was not using its full reservation. This would allow the economy market to function efficiently, despite the speculative reservation of firm capacity.

that execution of such a contract is contingent upon securing transmission service.⁽¹⁾ Duquesne has added a similar clause to its PTP Tariff, which would be applied <u>only</u> in times of transmission congestion. Duquesne is hopeful, however, that it will not have to use this provision at all -- <u>i.e.</u>, that customers will reserve only the service that is needed for their own transactions.

IV. OTHER MATTERS

A. Reciprocity

Duquesne recognizes that, at present, it is the only utility in the region offering access to its transmission system at marginal cost rates. Thus, at present, Duquesne will be offering third parties access to its system at prices that are not available to Duquesne when it, in turn, seeks to deliver power over the transmission systems of other utilities in the region. To remedy this, Duquesne has carefully considered the option of offering a marginal cost rate only to those systems that would, on a reciprocal basis, offer the same rate to Duquesne.

33

Duquesne has extended this requirement to all firm network uses, given that Duquesne has provided network customers the ability to import non-network resources on a firm basis.

There is much to be said for such a reciprocity requirement, including the incentive it may have on inducing other utilities to adopt more efficient pricing methodologies for their own transmission systems. There also are drawbacks to reciprocity provisions, including the difficulty of applying them when power marketers are the nominal transmission customer. After balancing a number of factors, Duquesne has decided not to impose a reciprocity requirement at this time. Duquesne is hopeful that its proposal will encourage other utilities to file similar proposals. Duquesne reserves the right, however, to add a reciprocity requirement in the future should it become necessary or appropriate.

B. "Sham" Transactions

Duquesne's PTP rate will be the lowest pointto-point rate in the region. Duquesne recognizes that this poses the potential for a "gaming" of the system. It is possible that a transmission customer may take advantage of the marginal cost rates offered by Duquesne and "schedule" its transaction over Duquesne's transmission system despite the fact that other systems carry the predominant flow of power resulting from the transaction. Indeed, because of the configuration and location of Duquesne's transmission system, it may not carry more

=:

34

than 50% of the flows from certain transactions scheduled across its system. It is important to remember, however, that this is not a phenomenon produced by Duquesne's tariff filing; it is one that exists today and would exist no matter what transmission pricing methodology Duquesne were to adopt. 114

The only manner in which such potential gaming can be addressed is for Duquesne to use prevailing North American Electric Reliability Council ("NERC") and East Central Area Reliability Council ("ECAR") criteria in determining whether it can schedule a particular transaction. While these rules today are quite general, and indeed do not specifically address what many utilities call "sham" contract path transactions, there is no other accepted regional or national standard available to Duquesne. Accordingly, Duquesne will apply the NERC and ECAR guides in scheduling its transaction. Duquesne does not believe that this requires any changes to the pro forma tariffs.

V. PROCEDURES

Duquesne has supported its pricing proposal with a detailed explanation here of the reasons why it conforms to all the Commission's rules. Duquesne also has supplied a case-in-chief, consisting of the testimony

of four witnesses, that will provide a basis upon which to build the appropriate evidentiary record in this case. Duquesne trusts that this information is more than sufficient to avoid a "deficiency" letter requesting further data or testimony. Duquesne is hopeful that this case can proceed on a somewhat expedited basis, so that the pricing rules governing the transition to a more competitive market do not lag behind the creation of such a market. Duquesne will use its good faith efforts to expedite this case as much as possible, and is hopeful that the Commission, its staff and the assigned administrative law judge can do so as well.

VI. PART 35 REQUIREMENTS

A. Waiver of Full Filing Requirements

a :

In the <u>AEP</u> guidance order dated June 28, 1995, the Commission held that, for any public utility that does not have open access tariffs on file and that chooses to file such tariffs before the Final Rule issues, the Commission will waive the full filing requirements of 18 C.F.R. § 35.13. <u>American Electric Power Serv. Corp.</u>, 71 FERC ¶ 61,393, at 62,543 (1995). Given that Duquesne does not have transmission tariffs on file, it qualifies for such a waiver and the waiver is hereby requested.

36

B. Other Information Required by Part 35

1. List of Documents Submitted

The following documents are being submitted with this application:

- a form of Federal Register notice;
- the direct testimony of Mark Freise, which provides an overview of Duquesne's transmission proposal;

116

the direct testimony of James Lahtinen, which
discusses the marginal cost rates proposed by
Duquesne;

- the direct testimony of Peter Wybierala, which discusses the manner in which marginal costs will be calculated;
- the direct testimony of James Cater, which provides the embedded cost revenue requirement;
- the proposed point-to-point and network transmission tariffs; and
- a shaded version of the point-to-point and network tariffs that indicate any changes from the Commission's pro forma tariffs.

2. Proposed Effective Date

Duquesne requests that the tariffs take effect in sixty days.

3. Persons to Whom the Filing Has Been Mailed

This filing has been mailed to the Pennsylvania Public Utility Commission and the other CAPCO parties.

4. Brief Description of Rate Filing

The proposed transmission rates, terms and conditions are described in this application and the attached direct testimony.

a. Reasons for the Filing

The filing of the tariff is necessary to ensure that comparable transmission service will be available on Duquesne's system and that the rates for such service are economically efficient.

b. Showing of Requisite Agreements

No agreements were necessary to file the tariffs.

c. Costs Adjudged Illegal, Duplicative or Unnecessary

None of the costs reflected in the tariffs have been adjudged illegal, duplicative or unnecessary costs that are demonstrably the product of discriminatory employment practices.

d. Information Regarding the Effect of the Rate Change

(1) These rates do not constitute a rate change for any customer.

38

(2) No additional facilities are planned to be constructed pursuant to the tariffs at this time and thus no map or single line diagram is attached.

C. Official Service List

Please direct any correspondence or communications regarding this filing to the undersigned and place them on the official service list in this proceeding.

Duquesne appreciates your assistance in this matter.

Respectfully submitted,

118

Naeve

John S. Moot* Kathleen L. Barron Skadden, Arps, Slate, Meagher & Flom 1440 New York Ave., N.W. Washington, D.C. 20005 (202) 371-7310

Victor A. Roque Larry R. Crayne* Duquesne Light Co. 411 Seventh Avenue Pittsburgh, PA 15219 (412) 393-4110

April 15, 1996

* Persons to whom correspondence should be directed.

UNITED STATES OF AMERICA BEFORE THE FEDERAL ENERGY REGULATORY COMMISSION

Duquesne Light Company) Docket No. EC96- -000

NOTICE OF FILING

Take notice that on April 15, 1996, Duquesne Light Company filed a Network Integration Service Tariff and Point-to-Point Transmission Service Tariff.

Copies of the filing were served on the Pennsylvania Public Utility Commission.

Any person desiring to be heard or to protest said filing should file a motion to intervene or protest with Federal Energy Regulatory Commission, 888 First Street, N.E. Washington, D.C. 20426, in accordance with Rules 211 and 214 of the Commission's Rules of Practice and Procedure (18 CFR 285.211 and 18 CFR 385.214) - All such motions or protests should be filed on or before

Protests will be considered by the Commission in determining the appropriate action to be taken, but will not serve to make protestants parties to the proceeding. Any person wishing to become a party must file a motion to intervene. Copies of this filing are on file with the Commission and are available for public inspection.

> Lois D. Cashell Secretary