Large Filing Separator Sheet

CASE NUMBER:

$$
\begin{aligned}
& 09-1089-E L-P O R \\
& 09-1090-E L-P O R
\end{aligned}
$$

FILE DATE: $\quad \||12| 09$
section: Part 3 of 3

NUMBER OF PAGES:

DESCRIPTION OF DOCUMENT:
SEPARATELY BOUND EXHIBIT
JFW-2 (Vaumes 1-3) of LON: F. WILLIAMS (TESTIMONY) On BEHALF OF COLS. SOUTHERN politer co. \& OHO PowEr co.
Table 34. Mobile Home Measure Characteristics (net at meter savings)

Baseline Description	DSM Measure Description	Effective Useful Life	Energy Savings - kWh			Demand Savings - kWh			Incremental Costs	
			Gas Heating	Electric Heating	Heat Pump Heating	Gas Heating	Electric Heating	Heat Pump Heating	New/ROB	Retrofit
Lighting									Material Only	Labor
40 W incandescent	13 Watt Screw-in CFL $<=800$ lumens	6	24	13	19	0.0038	0.0012	0.0024	\$1.94	\$2.56
B0W incandescent	13 Watt Screw-rn $\mathrm{CFL} \times 800$ lumens	6	41	23	33	0.0067	0.0021	0.0042	\$7.90	\$2.56
75 W Incandoscent	20 Watt Screw-in CFL	6	48	27	38	0.0078	0.0024	0.0049	\$1.99	\$2.65
100W incandescent	30 Wvatl Screw-in CFL	5	61	34	49	0.0099	0.0031	0.0062	\$3.35	\$4.07
120 W incandescent	40 Watt Screw-in CFL	,	70	39	55	0.0114	0.0035	0.0071	\$5.84	\$8.24
40% incandescent	13 Watt Pin Eased CFL $:=800$ lumens	6	24	13	19	0.0038	0.0012	0.0024	\$12.31	\$45,26
60W incandescent	13 Watt Pin Based CFL >800 lumens	6	41	23	33	0.0067	0.0021	0.0042	\$11.35	\$45.26
$75 W$ Incandescent	20. Watt Pin Based CFL	6	48	27	38	0.0078	0.0024	0.0049	\$13.61	$\$ 48.96$
100W Incandescent	30 Watt Pin Based CFL	6	61	34	49	0.0099	0.0031	0.0062	\$16.74	\$55 43
120W incandescent	40 Watt Pin Based CFL	6	70	39	55	0.0114	0.0035	0.0071	\$27.62	\$68.71
200W incandescent	55 Watt Pin Based CFL	6	127	71	101	0.0206	0.0063	0.0129	\$32.22	\$7598
250W Incandescent	65 Watt Pin Based CFI	6	118	66	94	0.0192	00059	0.0120	\$35.15	$\$ 8696$
40W incandescent	13 Watt Screw-in CFL-Outdoor $<=800$ lumens	8	31	31	31	0.0000	00000	0.0000	\$3 32	\$3.94
60 W incandescent	13 Watt Screw-in CFL - Outdoor >800 lumens	8	53	53	53	0.0000	0.0000	0.0000	\$3.28	\$394
75 W incandescen	20 Watt Screw-in CFL-Outdoor		62	62	62	0.0000	0.0000	0.0000	\$3.37	\$403
100W Incanciescent	30 Watt Screw-in CFL - Outdoor	8	79	79	79	0.0000	0.0000	0.0000	$\$ 5.43$	\$6.09
120W Incandescent	40 Watt Screw-in CFL - Outdoar	8	124	124	124	0.0000	0.0000	0.0000	\$10.12	\$12.52
40W incandescent	13 Watt Pin Based CFL . Outcloor $<=800$ lumens	8	31	31	31	0.0000	0.0000	0.0000	31.94	$\$ 34.89$
60W incandescent	13 Watt Pin Based CFL - Outdoor >800 lumens	8	53	53	53	0.0000	0.0000	0.0000	\$0.98	\$34.89
75 W Incandescent	20 Watt Pin Based CFL-Outcoor	8	62	62	62	0.0000	0.0000	0.0000	52.20	$\$ 37.55$
100W Incandescent	30 Watt Pin Based CFL - Outdoor	8	79	79	79	0.0000	0.0000	0.0000	53.11	\$4180
120 W Incandescent	40 Watl Pin Based CFL - Outcour	8	91	91	91	0.0000	0.0000	0.0000	\$9.45	\$50.54
200W Incanctescent	55 Watt Pill Based CFL - Outdoor	8	164	164	164	0.0000	0.0000	0.0000	\$11.56	\$55.32
250W Incandescent	65 Wati Pin Basodi CFL-Outdoor	8	209	209	209	0.0000	00000	0.0000	\$11.74	\$62.54
200 W lne	55 WCFL	8	153	85	121	0.0247	0.0137	0.0196	\$5.09	\$82.92
300 W Inc (halogen)	55 WCFL	8	258	143	204	0.0418	0.0232	0.0330	\$1.57	\$59.40
75 W Inc	20 WCFL	8	48	27	38	0.0078	0.0024	0.0049	-\$4.48	\$54.23
100 W inc.	25 WCFL	8	66	36	52	0.0107	0.0033	0.0067	\$12.61	\$64.61
12, W W inc.	30 WCFL	8	79	44	62	0.0128	0.0039	0.0080	\$5.24	\$6662
200 W inc	55 WCFL	8	127	71	101	0.0206	0.0063	0.0129	\$10.03	\$124.58
Occupancy Sesor for Common Area	No sensor	8	226	125	178	00111	0.0062	0.0088	\$88.53	$\$ 8390$
Lighting Photocell controls for Common Area	No sensor	8	500	277	395	00000	0.0000	00000	\$172 50	\$17250
LED Exit Signs for Multi-family	Incandescent Fxit Sign	16	333	181	263	0.0380	00210	0.0300	\$22.00	\$101.50
7 W Incandescent Light	1 W LED light	16	18	10	15	00000	0.0000	0.0000	\$3.00	\$300
$300 \times 0.48 \mathrm{~W}$ Incandescent Lights	300×008 W LED Lights	15	18	18	18	0.0000	0.0000	0.0000	\$10.00	\$10.00

D. 3 Non-Residential DSM Measure Characterizations

D.3.1 Sources used for the analysis

1. eQUEST (DOE-2.2 engine) simulations based on the market profiles described in the previous section.
2. Advance Transformer 1 catalog $\therefore \quad . \quad \therefore \quad . \quad 2008$.
3. California Database for Energy Efficient Resources (DEER), 2004-2005 version 2.01. $\therefore \quad \vdots . \quad$. . . . $\quad \therefore$ cost and savings estimates.
4. California Database for Energy Efficient Resources (DEER), 2008 update. Unpublished data. Cost and savings estimates.
5. Minnesota Deemed Savings Database, unpublished data.
6. Michigan Deemed Savings Database, unpublished data.
7. RS Means Mechanical Cost Data, 2005.
8. 2007 ASHRAE Fundamentals Handbook, HVAC applications.
9. Xcel Energy - MN, Conservation Improvement Plan 2007-2009, July 2006.

This section describes the non-residential energy efficiency measures analyzed for this study and the methods used to estimate savings. The section is organized by major end-uses such as lighting, heating, ventilation and air-conditioning ("HVAC"), and refrigeration. This section focuses on prescriptive measures, which are generally straight-forward measures that have largely uniform energy and peak demand savings on a per unit basis from application to application. However, even prescriptive measures' savings will have some variability, depending on the specific application and bascline equipment replaced.

Summit Blue chose to represent the commercial sector with three segments, office buildings, retail and restaurants. These three segments include a significant portion of the commercial floor area and consumption (see Market Profile in Volume 2) and diverse energy end-uses.

Savings estimates are based on secondary resources such as evaluations and deemed savings estimates from other jurisdictions (CA, MN, and MI), and engineering calculations for climate independent measures. For measures that are climate dependent Summit Blue used hourly simulations executed with DOE2-2 simulation software. For indoor lighting measures a combination of the techniques is used. Engineering calculations estimate direct energy savings from lighting measures and simulations are used to estimate the indirect savings from interaction with HVAC equipment. Each service territory was modeled with appropriate weather sites and the baseline models were calibrated against the Market Profiles developed earlier in the project.

In the industrial sector the measure focus is on lighting, compressed air, drivepower and HVAC measures. All other measures are aggregated into the custom line item. There are no HVAC interactive effects assumed for industrial indoor lighting. Custom Measures have more variable energy and peak demand savings on a per unit basis from application to application and might involve any qualifying technology. Ex Post results from a large Midwestern utility company's Custom Progran calibrate the custom measure
savings estimates. Custom measures might include, process or control improvements and holistic renovations of systems.

Cost estimates are largely based on the CA-Database of Energy Efficient Resources (DEER) with costs adjusted with RS Means Mechanical Cost Data factors for Ohio. Measures can either be installed as retrofits or replace on burn-out ("ROB"). In the former the cost includes labor and material costs. In the latter, the measure costs generally exclude labor costs since those would still be incurred in the event of replacement with non-qualifying equipment. Some measures are strictly ROB applications.

D.3.2 Lighting Measures - Non-Residential

The following lighting measures are often part of utilities' prescriptive non-residential lighting energy efficiency programs. The major inputs for the impact estimates are the same for both baseline and efficient technologies: equipment connected Watts, hours of operation and interaction with HVAC equipment for commercial applications.

Measure costs and measure lives are based on the Califormia DEER database. Costs are adjusted to the APCo Retail company area by regional cost factors from RS Means Cost Data.

Compact Fluorescent Lamp - Screw-in and Hard-wired Fixtures

Compact fluorescent lamps (CFLs) are the most common alternatives to standard incandescent lamps. CFLs are generally about four times as efficient as incandescent lamps, and last about 10 times as long. CFLs can either be screw-in replacements for incandescent lamps or plug-in lamps in fixtures specifically designed around CFL technology. The measure life for a screw-in CFL is the life of the bulb or two to three years depending on the application. Plug-in lamps in CFL fixtures are assumed to last the life of the fixture, because failed lamps must be replaced with comparable CFLs.

T8 Lamps and Electronic Ballasts - Premium

Premium T8 lamps and electronic ballasts have the same market as regular T8 systems. They gain efficiency over regular T8 systems by the co-development of lamps and ballasts that optimize the efficiency of both when used together. Premium T8 technology is compared versus both a T12 and standard T 8 baseline. This measure qualifies under the general lighting category, and indirect heating and cooling impacts are included and are estimated by eQuest simulations.

T5 Lamps and Electronic Ballasts

T5 lamps and electronic ballasts are a newer alternative linear fluorescent lighting system. T5 fluorescent lamps are $5 / 8$ of an inch in diameter, thimer than both T 8 lamps and T 12 lamps. T5 lighting systems are primarily used in new construction, and are not appropriate for most retrofit situations, as the lamps are only generally available in metric lengths. This measure qualifies under the general lighting category, and indirect heating and cooling impacts for the Commercial sector are included and are estimated by eQuest simulations.

Daylight Sensors

Lighting systems are designed assuming no contribution from ambient daylight. In areas where daylight is available, artificial light may be unnecessary and possibly detrimental to occupant comfort. Daylight sensors measure the contribution of ambient daylight and either turn-off or dim the lamps of the artificial lighting system. Savings were determined by eQuest simulations, assuming that perimeter zone (less than

12 feet from an exterior fenestrated wall) lighting is controlled by daylight sensors to maintain required lighting levels with continuous lighting level control. eQuest input data include location specification for the solar incidence angles and hourly cloud cover to describe available sunlight. Commercial HVAC interactions are included in the estimates.

Occupancy Sensors

Occupancy sensors automatically turn off the lights in a room or an area when the area is unoccupied. Occupancy sensors are an alternative to standard wall mounted on/off lighting switches. Savings were determined with interaction factors from eQuest simulations assuming that 10% of lighting is controlled by occupancy sensors with an average reduction of four hours of use per day.

Delamping

The definition of delamping used for this project is replacing a removing one lamp in a three-lamp, fourfoot fluorescent lighting fixture, and re-aligning the lamps in the fixture. This measure is intended for areas that are currently over-lit. I.ighting reflectors are often used as part of delamping projects. The measure life for this measure is shorter because the fixture is assumed to have been in place for a period of time already. Savings from Commercial HVAC interactions were determined by eQuest simulation.

LED Exit Signs

LED exit signs are among the most efficient types of exit signs on the market. They generally only draw about two to three watts of power, compared to 15 Watts or more for CFLs, or 25 Watts or more for incandescent exit signs. Weighting of the baseline technologies was based on primary data collected for this project. Savings from Commercial HVAC interactions were determined by eQuest simulation.

High-Bay Fluorescent Lights

High-bay lighting is used in industrial settings for general ambient light. T5 and T8 fluorescent lamps can be used in place of more traditional high-intensity discharge (HID) lamps in specially designed fixtures. The advantages include higher efficacy (lumens/Watt), greater lumen maintenance over the lamp life and better controllability. Savings are determined with engineering calculations, no HVAC interactive effects and 20% fewer operating hours due to control benefits.

Pulse-Start HIDs

Metal Halide pulse-start technology is a slightly more efficient type of HID lighting compared to traditional metal halide and high-pressure sodium HTDs. Special lamps and ballasts generate equivalent illumination in the same light fixture at lower power requirements. Savings are determined with engineering calculations and no HVAC interactive effects.

D.3.3 Non-Residential Motors and Other

The following measures are either common and cut across cnd-use categories or they are specialized but generally found to be cost effective.

Motor Efficiency

Motor efficiency improvements can be achieved effectively during system specification and installation when new motors are purchased. Premium efficiency motors can be installed in place of motors that only
meet minimum federal efficiency standards detailed in the Energy Policy Act. Since many larger motors (greater than 30 horsepoewr "HP") are rewound after failure rather than replaced, an additional opportunity exists by ensuring rewinds are performed to maintain motor efficiency. Steps like close control of baking temperatures, careful winding removal, and use of high-quality materials will help ensure that efficiency will not diminish during rewinds. Premium motors typically exceed mandated Eenrgy Policy Act ("EPACT") efficiencies by $1-3 \%$ depending on the motor size. Motor cost data are based on surveys of motor manufacturers (Baldor, Lesson, Marathon, GE, US Motors, Dayton) prepared for the 2008 update to the California DEER.

VFDs for HVAC Application

VFDs for HVAC applications are listed separately because they take advantage of the fluid affinity laws that show a cube relationship between speed and power. These applications also have a more predictable use pattern than VFDs in industrial processes and conveyance applications. The latter examples would be included with custom measures. The baseline technologies for HVAC VFDs is flow throttling for liquid systems and vortex dampers for air applications.

Compressed Air Controls

Frequently call the fourth utility (after electricity, gas, and water) compressed air systems have many savings opportunities, including: leak repair, efficient motors and compressors and staging, pressure optimization and receiver installation. These measures could be legitimately included in "Custom" due to the site specific nature of savings. We have estimated savings for Compressed air with benchmarks from the Compressed Air Challenge program run by the U.S. Department of Energy, and on a Midwestern utility custom compressed air program results and conservation plan ${ }^{15}$. Savings are listed per system horsepower.

Convection Ovens

These ovens circulate air inside the oven to enhance heat transfer to the food. As a result cooking times are shorter and lower temperatures are needed to cook food.

Spray Nozzles

Pre-wash nozzles remove excess food debris from plates and reduce the use of hot water inside the dish washer.

Hot Water Circulation Pump Control

Small pumps will circulate domestic hot water throughout a facility contintously so that hot water is almost immediately available at the tap. Controls, which turn off the pump at night, save pumping energy and reduce stand by losses in the water distribution system.

D.3.4 Non-Residential HVAC Measures

In the AEP Ohio Commercial and Industrial sectors space heating is split between natural gas and electric heat - primarily heat pumps. Summit Blue analyzed savings with both heating types for the market segments. HVAC Savings can occur through reducing the amount of heating/cooling required with

[^0]insulation and setting back thermostat settings or by improving the efficiency of the equipment and/or distribution process.

Since HVAC savings are climate dependent, all of the savings for the following measures were determined with eQuest computer energy simulations. The measure baselines are derived from the calibrated models derived with the Market Profile. Savings are the difference between the simulation with the efficient technology and the simulation with the standard or code-compliant technology. Incremental costs are mostly based on the DEER database adjusted with RS Means Mechanical Cost Data 'location factors' to reflect Ohio labor and/or equipment costs. ${ }^{17}$

Measure life for these items are base on the American Society of Heating Refrigeration and AirConditioning Engineers, Inc. ("ASHRAE") depreciation lives and the California DEER database.

Variable Frequency Drives ("VFDs") for HVAC Application

VFDs for HVAC applications are listed separately because they take advantage of the fluid affinity laws that show a cube relationship between speed and power. These applications also have a more predictable use pattern than VFDs in industrial processes and conveyance applications. The latter examples would be included with custom measures. The baseline technologies for HVAC VFDs are flow throttling for liquid systems and vortex dampers for air applications.

Efficient Packaged Commercial Air Conditioning Systems

Standard efficiency units are specified as units with EER ratings of 10.1. Efficient units are specified as units with EER ratings of 10.4-13.0 depending on the equipment size. Summit Blue characterized a high efficiency unit with an EER of 12.2.

Energy Management Systems (EMS)

EMSs can effectively reduce energy consumption by optimizing equipment operation and/or scheduling equipment use by the time of day and/or time of year. Savings vary based on controlled equipment and the comprehensiveness of the EMS hardware and programming

Economizers

Economizers use outside air for cooling instead of operating the air conditioning compressors on mild days, particularly during the spring and early fall seasons. The analysis assumed an integrated economizer where 100% outdoor air is used up to $65^{\circ} \mathrm{F}$ ambient temperature. During peak summer conditions economizers produce no peak demand savings.

Programmable Thermostats

Programmable thermostats allow temperatures to be automatically set warmer or colder during unoccupied periods to reduce heating and cooling energy use when facilities are unoccupied. We analyzed $5^{\circ} \mathrm{F}$ setbacks (set-ups in the summer). Since the impact of set-backs is typically off-peak, these thermostats have minimal peak benefits.

[^1]
Window Film

Polymer films are applied to the interior of glazing to enhance the glazing attributes. Films will have any combination of the following effects: reduced visible and radiant energy from the sun (solar heat gain and shading), lower glazing U -factor and lower emissivity to keep heat in the building in the winter

Cool Roof

Light-colored or white roofs have a lower solar absorptance, thereby reducing the energy gains through the roof. This behavior reduces summer cooling loads, but can increase winter heating requirements.

Efficient Water Chillers

Minimum efficiency standards for water chillers are established by state codes. Primarily through the use of variable speed drives and over-sized heat exchangers, standard equipment can be made more efficient for energy savings.

D.3.5 Refrigeration and Custom Non-Residential Measures

Refrigeration Measures improve the efficiency of the cooling plant and/or reduce the cooling loads that the system must satisfy. Measures that do not fit in the categories listed above are that have savings that are highly project-specific we group in this category. Custom measures is a catch-all category that might include special lighting systems, building controls, exceptional HVAC equipment or process improvements at a factory, for a few examples. Experience of other utilities informs this measure category.

Motor cost data for Custom measures are based on surveys of motor manufacturers (Baldor, Lesson, Marathon, GE, US Motors, Dayton) prepared for the 2008 update to the California DEER.

ECM motors

Electronically commutated motors ("ECM) are DC motors that are more efficient than the permanent split capacitor motors they replace. Since they are used inside refrigeration cases they have the indirect effect of reducing refrigeration loads.

Multi-Line compressors

Instead of one compressor per refrigeration unit, a multi-line system has several compressors that stage optimally to serve many pieces of equipment on the retail floor.

Oversized condensers

Oversized condensers more efficiently reject heat from the refrigeration system and reduce the compressor loads.

High Efficiency Compressors

HE compressors provide gains over standard machines, primarily through the use of VFDs to modulate compressors to match loads.

Evaporator Fan Controllers

Most walk-in cooler evaporator fan motors run continuously. Controllers allow the fans to cycle based on cooling demand.

Strip Curtains, Night Covers and Glass Doors

Strip curtains, night covers and glass doors are used to reduce losses from the refrigerated zones and products to the rest of the retail zones. They are particularly deployed at night when they do not inhibit access to refrigerated products.

Anti-sweat Controls

To keep glass clear of condensation so the merchandise is visible, anti-sweat heaters typically run continuously. Controls cycle heaters based on humidity sensors and or on a timed basis.

Floating Head Pressure Controls

When outdoor temperatures are mild, condensed refrigerant can be cooled below default settings to reduce the loads on compressors.

Custom efficiency

"Custom" is a generic name for consumer-specific conservation projects. The magnitude of estimated potential savings is scaled to kW saved and is based on Midwestern utility custom program results and conservation plan ${ }^{18}$. Costs and measure lives are based on the same source.

[^2]D.3.6 Columbia Southern Power
Table 36. Commercial Measure Characteristics (at meter savings)

Table 37. Commercial Measure Characteristics (at meter savings) (Continued)

Measure Description	Aaseline Measure Description	Office				Retail				Restaurant				EUL үears	Cost		Coincidence Factors		
		Gac Hoat		Eloc Heat		Gas Hoat		Elec He		Gas Heat		Elac Heat			$\begin{aligned} & \text { Incramental } \\ & \text { RET } \end{aligned}$	Incremental . NEW/ROB	Office	Ratail	Restaurant
		Sum_kw	kWh	Sum_hw	kWh														
Motors \& Other																			
Prem Matar < - Ti HP	EPACT $<=10 \mathrm{HP}$	0.02	77	0.02	77	0.02	77	0.02	77	002	77	0.02	3	15	\$27d 68	$\$ 3985$	0.75	0.75	0.75
Prem Mator $>101 \mathrm{lP}$	EPACT $>10 \mathrm{HP}$	001	34	001	34	0.11	34	0.01	34	0.01	34	0.01	34	15	566.78	\$10.67	0.75	0.75	0.75
Adjustable Speed Drives for Faris \& Pusips	No ASD	0.00	920	0.00	920	0.00	94 a	0.00	949	000	950	0.00	${ }^{3} 50$	15	\$224.50	\$212.55	038	0.38	0.38
Compressed Air Controls	No control	000	222	a.co	222	0.00	222	0.00	222	000	222	0.00	222	15	\$1,006 00	\$216.00	N/A	N/A	N/A
Convection Oven	Standard Oven	N/A	0.41	1821	0.41	1821	10	\$4,804.00	\$554. 50	0.20	0.20	0.20							
Spray Nozzles for Food Sericice	No spray nozzte	N/A	NiA	0.31	3723	D. 31	3723	5	\$147.54	\$.147.54	N/A	N/A	N/A						
Hat Water Ciraulation Purap 'ime Clock	No time clock	0.00	997	0.00	997	0.60	1154	0.00	1154	0.007	1109	000	1109	15	\$346 19	\$346. 19	N/A	N/A	N/A
Retrocommissioning	No retrocommissioning	011	1367	014	20:8	010	1190	0.10	1961	0.10	1843	0.10	2112	10	\$1.500.00	\$1,500.00	1.00	100	1.00
HVAC \& Shell																			
Packaged Rcoflop AL 12 EER	Packaged A/C 10.1 LLR	017	205	017	207	016	152	017	154	0.15	203	0.15	203	15	\$1,340.05	\$207.00	0.56	0.72	0.75
L.vs System	No EMS	000	207%	000	2792	000	928	0.00	2654	0.00	971	0.00	1180	15	\$507.58	\$507. 58	N/4	N/A	N/A
Programable Therrrostat	Standard : hermostat	-0.78	1048	-0.08	1815	0.00	512	0.00	2233	-0.06	520	-0.06	1538	11	\$14450	\$82 80	N/A	N/A	N/A
Ecranomizer	No Economizer	0.00	583	000	585	0 O 0	159	000	162	0.00	245	0.00	256	10	\$155.28	\$155.28	0.56	0.72	0.75
Reflective Window Film	No Film	027	692	027	592	0.17	257	0.11	38	0.07	26	0.02	1	10	\$1612	\$1612	0.56	0.72	0.75
Cool Roof	Standard Root	0.04	104	0.04	130	0.00	10	0.00	4	0.01	13	0. 04	15	15	\$3.22	\$0 85	056	072	0.15
Eftcient Centutugal Chillet	ASHRAEOTC.Ciller - C $59 \mathrm{~kW} /$ ton	012	177	0.12	177	012	118	0.12	118	NA	N/	n/	NA	20	\$673 21	\$169.04	0.56	0.72	0.75
Efficient Scraw Chiller	ASHRAED1Chiller - $0.63 \mathrm{~kW} /$ ton	010	155	010	155	C 10	104	0.10	104	NA	NA	Na	NA		667321	3169.04	0.55	072	0.75
Efficient AirCaolea' Chiller	ASHRAEO1Chiler-115 kVVAtan	0.15	205	015	285	019	190	0.19	190	NA	NA	NA	NA		\$6732t	${ }^{\$ 169.04}$	056	022	0.15
I une-up/Advanceu Diagnostics	None	006	94	0.06	04	006	62	0.08	62	0.08	83	006	${ }^{8} 3$	7	\$130 / 6	\$136.75	0.56	0.72	0.75
Refrigeration																			
Mator Lupgraoe tar Fang \& Compressors	Shadea pole motors	N/A	N/A	N/A	N/A	N/A	N/A	N/iA	N/A	0.36	1573	${ }^{0} 36$	1573	15	N/A	\$3723	N/A	N/A	0.40
Single Line to Multiplex Compressor	Single line compresser	N/A	NiA	003	553	0.03	6E3	12	N/A.	53.012 .78	N/A	N/A	0.40						
Muliplex syster: with oversized condenser	Mulitiplex system witil standaid condenser	N/A	N/A.	N/A	N/A	N/A	N/A	N/A	NiA	0.01	68	0.01	58	12	\$424.38	NiA	N/A	N/A	D 40
Highefliciency, law temperalure compresser	Low temperature compresser - EER 4.86	N/A	0.18	1106	0.8	1 106	12	N/A	\$883 57	N/A	N/A	0.40							
Evap Fan Controllee for Mea Temp Waik-in	No controlier for cyeling	NA	N/A	N/A	N/A	N/A	N/A	NiA	NiA	0.46	2487	016	2487	10	\$101.75	N/A	N/A	N/A	0.40
Strip Curtalins	No strip curtans	N/A	N/A	N/A	N/A	N/A	N/A	NiA	NiA	0.03	271	0.03	271	4	57.50	N/A	N/A	N/i4	1.00
Night Covers	No night cavers	N/A	0.07	15	007	15	12	937.63	N/A	N/A	N/A	N/A							
Anti-sweat Heater Controls	No controls	N/A	N/A	NA	N/A	N/A	N/A	N/A	NiA	002	144	002	744	12	\$1868 23	N/A	N/A	N/A	0.40
Fisating Head Pressure Controls	No controis	N/A	N/A	N/A	N/A	N/A	N/A	NiA	N/A	0.00	1339	0.00	1385	12	\$44 15	N/A	N/A	N/A	0.40
Cilass Doors on Low and Med Temperature	No doors	N/A	N:A	0.02	161	002	161	12	\$906 28	N/A	N/A	NiA	0.40						

Table 38. Industrial Measure Characteristics (at meter savings)

DSM Measure	Baseline Measure	Industrial		EUL	Costs		Coincidence	
				Incremental RET	Incremental NEWIROB	Industrial		
		Sum_kW	kWh					Years
Lighting								
LED Exit	Incandescent Exit Sign	0.02	166	16	\$80.99	\$22.91		1
T8/T5 w/Electronic Ballast	T12	0.02	88	15	\$54.02	\$2.18		0.9
50 W MH HID	150W Incandescent	0.08	415	15	\$144.99	\$127.18		0.9
75 W MH HID	100W Mercury Vapor	0.03	130	15	\$144.99	\$106.06		0.9
100W MH HID	170W Mercury Vapor	0.07	359	15	\$150.25	\$71.40		0.9
175W PS MH HID	500W incandescent	0.29	1460	15	\$167.07	\$65.37		0.9
250W PS MH HID	400W Mercury Vapor	0.17	855	15	\$180.30	\$69.69		0.9
50W MH HID	150W Incandescent	0.04	147	15	\$144.99	\$127.18		0
75 W MH HID	100W Mercury Vapor	0.01	47	15	\$144.99	\$106.06		0
100W MH HID	170W Mercury Vapor	0.04	128	15	\$150.25	\$71.40		0
175W PS MH HID	500W Incandescent	0.15	517	15	\$167.07	\$65.37		0
250W PS MH HID	400W Mercury Vapor	0.08	306	15	\$180.30	\$69.69		0
Outdoor Lighting Controls	No controls	0.00	121	8	\$101.78	\$101.78		0
T5 Interior High Bay Flourescent Fixture	400W Mercury Vapor	0.22	1124	15	\$271.04	\$128.45		0.9
T5 Interior High Bay Flourescent Fixture	400W MH or HPS	0.11	564	15	\$321.45	\$178.86		0.9
Motors \& Other								
Prem Motor $<=10 \mathrm{HP}$	EPACT $<=10 \mathrm{HP}$	0.02	88	15	\$206.11	\$39.53		0.75
Prem Motor $>10 \mathrm{HP}$	EPACT > 10 HP	0.01	40	15	\$65.34	\$10.64		0.75
Adjustable Speed Drives for Fans \& Pumps	No ASD	0.17	851	15	\$215.97	\$206.02		0.38
Compressed Air Optiization	status quo	0.03	336	15	\$205.46	\$205.46		N/A
Custom								
Custom Measure	Old technology	39.00	405286	15	\$253,000.00	\$253,000.00		0.95
HVAC \& Shell								
Hi Efficiency Roof Top Units (Cooling Only)	9.7-10.1 EER	0.20	275	15	\$1,311.06	\$206.38		0.95

Appendix E. References

AEP Ohio. 2006 AEP Ohio Residential Appliance Saturation Survey, January 10 - February 24, 2006.
Arizona Public Service. (2008, September 15). Semiannual report summaries, June 2008. From personal correspondence with Roger Krouse at Arizona Public Service.

Efficiency Maine. (2007, December 15). 2007 Annual report. From
http://www.efficiencymaine.com/documents_reports.htm
Efficiency Vermont. (2008, October 15). Year 2007 annual report and annual energy savings claim. From http://www.efficiencyvermont.com/pages/Common/AboutUs/AnnualReport/

Energy Information Administration, Department of Energy. (2007, November). Form ELA-861 data file - final - YR 2007. From http://www.eia.doe.gov/cneaf/electricity/page/eia861.html

Energy Information Administration, Department of Energy. (2007, November). Form EIA-861 data file - final - YR 2006. From http://www.eia.doe.gov/cneaf/electricity/page/eia861.html

Interstate Power and Light Company, Iowa. (2008, May 1). Energy efficiency plan annual report for program year 2007. Docket No. EEP-02-38. From personal correspondence with Alliant Energy.

Interstate Power and Light Company, Minnesota. (2008, April 1). 2006-2007 Minnesota electric and gas conservation improvement plan (CIP). Docket No. E,G001/CIP-05-581. From https://www.edockets.state.mn.us/EFiling/home.jsp

Komor, P. (2006, November). Best practices in residential direct load control programs. E Source, 12-17.

Maine Public Utilities Commission. (2007, March 9). Inquiry into new conservation programs and developing a plan for using increases in the conservation fund. Docket 2006-446. From http://www.efficiencymaine.com/documents reports.htm

MidAmerican Energy Company, Iowa. (2008, May 1). Energy-efficiency plan 2007 annual report. EEP-03-1. From personal correspondence with lowa Utilities Board.

Minnesota Power. (2008, March 31). 2007 Conservation improvement program consolidated filing. Docket No. E 015/M-08-349. From https://www.edockets.state.mn.us/EFiling/home.jsp

National Grid. (2008, August 1). 2007 Energy efficiency annual report. From http://db.state.ma.us/dpu/qorders/frmDocketFind.asp

NSTAR. (2008, August 29). 2007 Energy efficiency report. Docket 08-46. From http://db.state.ma.us/dpu/qorders/frmDocketFind.asp

Otter Tail Power Company. (2008, April 1). 2007 CIP status report. Docket No. E-017/CIP-051125.03. From https://www.edockets.state.mn.us/EFiling/home.jsp

Southwestern Electric Power Company. (2008, May 1). 2008 Energy efficiency plan and report project No. 35440. From http://interchange.puc.state.tx.us/WebApp/Interchange/application/dbapps/filings/pgSear ch.asp

Violette, D., \& Sedano, R. (2006, January 30). Demand-side management: Determining appropriate spending levels and cost-effectiveness testing Appendix A: Summaries by jurisdiction. Prepared for the Canadian Association of Members of Public Utility Tribunals (CAMPUT).

Wisconsin Focus on Energy. (2007, November 1). Focus on energy evaluation semiannual report (FY 07, year-end). From http://www.focusonenergy.com/EvaluationReports/General_Reports.aspx.

Xcel Energy (CO). (2008, September 16). DSM programs monitoring and evaluation report for activity in 2007. From personal correspondence with Rachel Sours-Page at Xcel Energy (CO).

Xcel Energy (MN). (2008, April 1) 2007 Status report and associated compliance filings, Minnesota natural gas and electric conservation improvement program. Docket No. E,G002/CIP-06-80. From https://www.edockets.state.mn.us/EFiling/home.jsp

[^0]: ${ }^{16}$ Xcel Energy - Minnesota Conservation Improvement Plan 2007-2009.

[^1]: ${ }^{17}$ RS Means Mechanical Cost Databook, 2006.

[^2]: ${ }^{18}$ Xcel Energy - Minnesota Conservation Improvement Plan 2007-2009.

