LARGE FILING SEPARATOR SHEET

CASE NUMBER: 08-1094-EL-SSO 08-1095-EL-ATA 08-1096-EL-AAM 08-1097-EL-UNC

FILE DATE: 10/10/2008

SECTION: (Part 4 of 6)

NUMBER OF PAGES: 208

DESCRIPTION OF DOCUMENT:

Application of Dayton Power and Light Company

THE DAYTON POWER AND LIGHT COMPANY	Case No. 08-1094-EL-SSO	Book II - Customer Conservation and Energy Management	Demand Side Management Program - Non-Residential Prescriptive Rebates
------------------------------------	-------------------------	---	---

Data: 12 Montits Forrcast Type of Filing: Original Work Paper Reference No(s).: WPG-1.10a

WPG-1.10 Page 1 of 1 Witness Responsible: Maria Bubp

Line										
No.	Description	2009	2010	2011	2012	2013	2014	2015	Total	Source
	(A)	(B)	(C)	(1)	(E)	(F)	(0)	(H)	(] = Sum (B:H))	(1)
-	Forecast Number of Measures Completed	62,288	66,684	71,370	76,402	81,655	81,655	81,655	521,709	WPG-1.10a, Line 78
7	Annual Prescriptive Rebates	\$1,305,904	160,092,18	\$1,897,646	\$2,268,886	\$2,719,210	\$2,807,580	\$2,898,827	\$15,488,084	WPG-1.10a, Line 78
'n	Marketing and Administration % of Incentive	44.00%								Average of Duke, ComEd, Ameren, PEPCO
4	Armual Marketing and Administration	\$574,598	\$699,614	\$834,964	\$998,310	\$1,196,452	\$1,235,335	\$1,275,484	\$6,814,757	Line 2 * Line 3
Ś	Armual Program Budget	\$1,880,502	\$2,289,645	\$2,732,610	\$3,267,196	\$3,915,662	\$4,042,915	\$4,174,311	\$22,302,841	Line 2 + Line 4
Ŷ	Annual Energy Savings (kWh)	20,453,522	24,140,470	28,223,448	32,868,215	38,423,383	38,423,383	38,423,383		WPG-1.10a, Line 78
r	Cumulative Annual Energy Savings (kWh)	20,453,522	44,593,992	72,817,440	105,685,655	144,109,038	182,532,421	220,955,804		Cumulative Total From Line 6
80	Annuel Demand Savings (kWh)	5,540.5	6,538.2	7,643,4	8,901.8	10,405.4	10,405.4	10,405.4		WPG-1.10a, Line 78
6	Cumulative Annual Demand Savings (kWh)	5,540.5	12,078.7	19,722.1	28,623.9	39,029.3	49,434.7	59,840.1		Cumulative Total From Line 8

6	

THE DAYTON POWER AND LIGHT COMPANY Case No. 08-1094-EL-SSO Book II - Customer Conservation and Energy Management Demand Side Management Program - Non-Residential Prescriptive Rebates

Data: Type o Work I	2 Mondis Forozszt f Filing: Original Paper Reference No(3).: None														Witness	WPG-1.10a Page 1 of 4 Responsible: Maria Bubp
Line No.	Description	2009	2010	2011	2012	2013	2014	2015		2009	2010	2011	2012	2013	2014	2015
	(A)	(B)	Û	â	(B)	ઉ	(D)	(H)	()	6	(K)	(T)	(M)	Ê)	6)	(L)
	<u>C&I Prescriptive Rebates</u> Muture and Drivee			Fefimatec	l Particina	tim			kWh Per Measure			Annu	al Enerov Savi	1165		
4 17	$20.250 \text{ hm} \sim ave for economic$	80	106	178	153	183	183		853	716.51	90.418	109.184	130.509	156.099	156.099	156,099
- ৰ	1-5 HP motors - incentives per HP	43	532	638	766	616	616	616	8	42,528	51,072	61,248	73,536	88,224	88,224	88,224
÷	7.5 - 20 HP motors - incentives per HP	1,329	1,595	1,914	2,297	2,756	2,756	2,756	291	386,739	464,145	556,974	668,427	801,996	801,996	801,996
Ŷ	High Efficiency Pumps HP 10	c	D.	11	12	15	15	15	756	5,292	6,804	8,316	9,072	11,340	11,340	11,340
r~ 0	High Efficiency Pumps HP 15	r -	o, -	= -	2 -	5	51 C	2 r	1,135	7,945	10,215	1513	13,620	17,025	17,025 3,026	17,025 3.026
• •	Variable Freenency Funge fif 20 Variable Freenency Drive Purns HP 5	- 4	- 4	- •71	- 00	1 F	• •	• ~	7,726	30,904	30,904	38,630	46,356	54,082	54,082	54,082
2	VFD HP 7.5	• च	. 4	. .		٢	r.	1	11,706	46,824	46,824	58,530	70,236	81,942	81,942	81,942
11	VFD HP 10	ſ	5	11	12	15	51	15	15,452	108,164	139,068	169,972	185,424	231,780	231,780	231,780
12	VFD HP 15	1	o ,	11	12	15	5	51	23,412	163,884	210,708	257,532	280,944	351,180	351,180	351,180
1	VFD HP 20	4	4	'n	ø	~	-	•	31,216	124,864	124,864	156,080	187,296	218,512	218,512	218,512
4	VPD HP 25	0	-	-	-	н	-	I	39,020	0	0Z0,9E	39,020	39,020	39,020	39,020	39,020
n	VFD HP 30	0	-	-	-	- • ·	-		46,824	0	46,824	46,824	46,824	46,824	46,824	46,824
16	VFD HP 40	0	-	-	- •		-	_ . .	62,432	0	62,432	6 2,432	62,432	02,432	62, 6 32 50,544	02,432
5	VFD HP 50	0	-	-	-	-		-	78,041	0	78,041	180'8/	140'8/	18,041	18,041	18,041
	Compressed Air Factories No		146	210	201	154	147	454	14 707	730 FYL 1	1 012 067	4 601 \$33	5 601 367	6 1 0 1 0 4	6 721 000	6 721 090
2 ;	Hinginected Nozzles	777	8	212 212	5 F	ç e	ĵ S	<u>}</u>			200,217,6		100°00'00	620 PUI	220 FUI	0104 073
3 2	Zone Stution Valves Maisture Tama - Condennate Dasin Valve	H+	2 22	8 8	187	7 9	720	76	1-11	2.41.9RU	070 070	347.710	417.470	500.310	500.310	\$00,310
4 6	Daw Doint Controlled Designment Doors	1			1	ì	}¥) ¥	41.217	188,953	475 387	518.604	601.038	691.472	691.472	691.472
1 5	DOW I OLIN COUNCILS DEPARTMENT PLACE	•	:	1	-	2	2	2								
3 🕇	Packaged Terminal AC	195	230	266	319	372	372	372	778	151,710	178,940	206,948	248,182	289,416	289,416	289,416
2	Packaged Terminal HP															
8	Unitary AC Rooftop & HP Rooftop															
21	<65,000 BTUH Phase															
58	<65,000 BTUH 3 Phase															
ង	65-135,000 BTUH															
2 2																
5 2	Crowned Source HP Classed Loop															
1	Water Source HP Building Loop															
#	ES Window AC under 14,000 Bru/hr	44	3	â	26	92	8	8	j,	3,080	3,710	4,480	5,320	6,440	6,440	6,440
35	ES Window AC over 14,000 Bru/hr	4	53	2	22	92	C,	8	185	8,140	9,805	11,840	14,060	17,020	17,020	17,020
36	ES Sieeve AC under 14,000 Btu/hr	22	23	32	38	46	\$	46	80	1,760	2,160	2,560	3,040	3,680	3,680	3,680
37	ES Sieeve AC over 14,000 Btu/hr	ដ	ы	2	8 2	\$	\$	\$	190	4,180	5,130	6,080	7,220	8,740	8,740	8,740
38	HP Water Heater 500 gal/day	13	2	19	33	28	ន	28	21,635	281,255	346,160	411,065	497,605	605,780	605,780	605,780
66	HP Water Heater 1000 gal/day	च	5	¥C	•	00	*	~	43,637	174,548	218,185	261,822	305,459	349,096	349,096	349,096
ද :	HP Water Heater 1500 gal/day		ŝ	œ۴	t t	2 OCO	8 0 <u>50</u>	8 020	65,639 6 4 4 5	202,550	328,195	393,834 A 208 260	439,475	211,626	211,626	211°CZC
79		ş f	, t	1 6	Į P	44	1	44		60 010		101.606	117 596	130.837	130 835	140.812
14	Supply All Need - Comme Unocumied Cycle - Controls	12	18	13	; A	4	名	: 4	102,953	2,470,872	2,882,684	3,500,402	4,013,167	4,735,838	4,735,838	4,735,838
!		I	1										•	•		•

	•			Dema	THE Book II od Side M	DAYTO	N POWE ase No. 01 er Comser f Program	R AND LIG 8-1094-EL- vation and a - Non-Res	HT COMPA SSO Energy Mana idential Preso	NY gement criptive Rebate	8					
Data: Type o Work	2 Months Forecast f Filing: Original 'aper Reference No(5).: None														Witness	WPG-1.10a Page 2 of 4 Responsible: Maria Bubp
Line No.	Description	2009	2010	2011	2012	2013	2014	2015		2009	2010	2011	2012	2013	2014	2015
	(¥)	(B)	Û	Q	(E)	(F)	(<u></u> 0)	(H)	Ξ	ŝ	(K)	(T)	(M)	(Z)	(o)	(b)
4	Lie h time			Estimate	d Particin	tion			kWh Per Measure			Ann	ual Enerov Sav	vin os		
:	8 ft. I-2 Lamp T-8/E Ballast	48,730	50,502	52,274	54,046	55,818	5,818	55,818	55	2,680,150	2,777,610	2,875,070	2,972,530	3,069,990	3,069,990	3,069,990
4 4 4 6 7 4 8 6	8 ft HO 1 & 2 T-8/EB 4 ft 1-4 T-8/EB 3 ft 1-4 T-8/EB 2 ft 1-4 T-8/EB															
8 5	LED Etit Signs New/Electronic	3 6 45	1.017	31416	3.049	4 660	4 \$60	4 560	178	471 174	71 J T J	611.064	PPL 606	<u>811 680</u>	811 680	211 680
: 2		2000	210,0			000		00C'#	9/1			106,110	100,100	000'TTO	011,000	000110
7 5	LEU Auto Trattic Nguais Pulse Start Metal Halide (retrofit only)	89 99 99 99	487	92. 92.	15C,1	277 230	052'I	858,I 040	272 430	245,050	209.410	304,870 304,870	2006'000	399,900	069,606 399,900	399,900
2	CFL Fixture	316	369	433	209	602	602	602	368	116,288	135,792	159,344	187,312	221,536	221,536	221,536
SS	Occupancy Sensors under 500 ft2	115	133	154	180	210	210	210	427	49,105	56,791	65,758	76,860	89,670	89,670	89,670
36	Hi Bay fluorescent 4LT5HO	72	115	136	162	192	192	1 22	923	89,531	106,145	125,528	149,526	177,216	177,216	177,216
51	Hi Bay Fluorescem 6LF32T8	2	115	136	162	192	192	192	871	84,487	100,165	118,456	141.102	167,232	167,232	167,232
×	Plug Load Occupancy Sensors Document Stations	8	106	128	152	184	184	181	803	71,467	85,118	102,784	122,056	147,752	147,752	147,752
ŝ	Occupancy Sensors over 500 ft3	8	71	3	g	110	110	011	1,068	66,216	75,828	87,576	100,392	117,480	117,480	117,480
9	T-5 with Elec Ballast replacing T-12	3	62	2	88 85	101	101	101	66	5,247	6,138	7,227	8,415	666'6	66666	666'6
61	T-5 HO with Elec Ballast replacing T-12	27		36	43	5	5	51	109	2,943	3,379	3,924	4,687	5,559	5,559	5,559
83	Lighting Controls Control I intrine Control	ě	113	P L L	040	190	190	UDI	11 500	002 600 (1 160 500	1 541 000	1 878 500	000 581 6	2 185 000	7 195 000
32	Switching Controls for Multilevel Lighting	5 2	EII	5 5	159	61	86	5	9,000	855,000	1,017.000	1,206,000	1,431,000	1,710,000	1,710,000	1,710,000
S :	Daylight Sensor controls	93	111	132	158	138	188	881	14,800	1,376,400	1,642,800	1,953,600	2,338,400	2,782,400	2,782,400	2,782,400
8 5	Other Measures	4 420	5 316	CUC 3	1 080	400 L	4C0 C	7 074	2		63 703	NCN NC	04 046	04 682	00 Y 00	96 690
89	Vendino Equipment Controller	\$ }	443	496	549	620	620	620	1 008	319-200	354,400	196.800	439.200	496.000	496.000	496.000
69	Commercial Clothes Washer & Electric Drver	266	319	383	439	551	5	155	950	252.700	303.050	363,850	436.050	523,450	523,450	523.450
2	Economizer Cycle - Controls	93	111	132	158	188	188	188	1,330	123,690	147,630	175,560	210,140	250,040	250,040	250,040
71	Barrel Wraps (Inj Mold & Extruders)	4	8	2	76	2	55	22	2,501	110,044	132,553	160,064	190,076	230,092	230,092	230,092
2	Chilled Water Reset	27	ΙE	36	42	40	6	49	4,784	129,168	148,304	172,224	200,928	234,416	234,416	234,416
F I	Optimal Start/Stop - Controls	24	38	A 1	5	46	46	46	4,038	96,912	113,064	137,292	157,482	185,748	185,748	185,748
2	Pellet Dryer Tanks and Ducts	ដ	5	2	5	\$:	\$	4 :	86	2,156	2,646	3,136	3,626	4,312	4,312	4,312
5	Head Pressure Control	2	2 : 2	: :	16	<u>e</u> :	6[:	<u>s</u> :	37,486	374,860	449,832	487,318	599,776	712,234	712,234	712,234
21	Air Flow Restriction Curtains	. .	= `	2 5	<u>+</u> 4	9 9	9	91 5	14,640	131,760	161,040	175,680	204,960	234,240 27 070	234,240	234,240
: #	ELLOCAR COLORING KEINGARDT Preseriptive Rebate Totals	62,288	66,684	71,370	76,402	31,655 8	1,655	10 81,655	0,161	20,453,522	40,420 24,140,470	28,223,448	01,V05 32,868,215	38,423,383	38,423,383	01,07U 38,423,383

; i

i

:

į

)				T Boo emand Sid	HE DAY1 k II - Custs e Managen	ON POWE Case No. (mer Conse wert Progra	R AND LIG 8-1094-EL rvation and m - Non-Re	3HT COMPA) -SSO Energy Manag sidential Preso	vY gement riptive Rebates						ŀ	
Data: I Type of Work F	l Months Forecast Filing: Original tper Reference No(6).: None															Witness	WPG-1.10a Page 3 of 4 Responsible: Maria Bubp
Line No.	Description		2009	2010	2011	2012	2013	2014	2015		2009	2010	2011	2012	2013	2014	2015
	(A)	(B)	<u></u> 0	<u>(</u>	(E)	(F)	6)	(H)	8	(1)	(K)	(1)	(W)	(Ż	0	(4)	6
- 6	<u>. & Prescriptive Rebates</u> fotors and Drives	KW Per Measure			Annual	Demand S	evings			Cost Per Measure			Ţ	ncentive Costs			
1 113	20-250 hp - avg for group	0.23	20.5	24.4	29.4	35.2	42.1	42.1	42.I	\$257	\$22,873	\$28,127	\$35,069	\$43,281	\$53,450	\$55,187	\$56,980
જ પ	1-5 HP motors - incentives per HP	0.03	6.El 1.	16.0	1.61	23.0	27.6 720.5	27.6	27.6 27.6	\$10 52	\$13,290 \$150 480	\$16,479 \$197,621	\$20,404 \$244 857	\$25,294 \$103 198	\$31,333 \$175,855	\$32,351 \$388.071	\$33,402 \$400.683
n vo	1.5 - 20 Hr motors - incontres per fir High Efficiency Pumps HP 10	0.21	15	6.1	53	2.5	3.5		3.2	\$260	\$1,820	\$2,416	\$3,049	\$3,434	\$4,432	\$4,576	\$4,725
•	High Efficiency Pumps HP 15	16.0	2.2	2.8	3,4	3.7	14	4	4.7 0.0	\$300	\$2,100 100	\$2,788	\$3,518	53,963	\$5,114 eneo	\$5,280	55,452 ¢060
00 G	High Efficiency Pumps HP 20	0.41	4 4	4.0 4.4	4. Q	0.4 4 c	0.8 14.7	0.8 7 7 7	0.8	2400 71 71	3400 58 706	3413 CK 080	079C	0940 S14 174	2040 217.315	512.878	\$18.459
× ≘	VED HP 7.5	3.18	12.7	12.7	15.9	1.61	ន	12.3	22.3	\$2,752	511,006	S11,364	\$14,666	\$18,172	\$21,889	\$22,600	\$23,335
11	VFD HP 10	4,19	29.3	37.7	46.1	50.3	63	62.9	62.9	52,864	520,048	\$26,614	\$33,585	\$37,829	\$48,823	\$50,410	\$52,048
4:	VFD HP 15	0.30	44.1	56.7	(9) (9)	75.6	5 8 5	94.5 50.2	94.5 5 92	53,581	525,064	533,272 S16 646	\$41,987 \$21,484	\$47,293 \$26.61\$	SV2 064	\$03,021 \$33,106	500,009 534.182
J 7	VED HP 25	10.59	0.0	10.6	10.6	10.6	10.6	10.6	10.6	54,706	05	\$4,858	\$5,016	\$5,179	\$5,348	\$5,521	\$5,701
5	VFD HP 30	12.71	0.0	12.7	12.7	12.7	12.7	12.7	12.7	\$5,414	20	\$5,590	\$5,772	\$5,959	\$6,153	\$6,353	\$6,539
9 !	VFD HP 40	16.91	0.0	16.9	16.9	16.9	16.9	16.9	16.9 21.2	45,685 67 130	<u>,</u>	55,870	\$6,061 67 600	\$6,257 e2 e46	\$6 ,46] \$8,46]	\$6,671 \$6,244	\$6,88 8 49 636
<u>-</u> •	VFD HP 50	21,18	0.0	7 87	217	717	7'17	717	7'17	31,145	D¢	000'/\$		01+0*/ 0	101,00,	105'00	000,000
<u>.</u>		3.99	885.8	1,061.3	1.272.8	5202	1,823.4	1.823.4	1.823.4	540	\$3,880	\$10,986	\$13,603	\$16,775	\$11,002	\$21,450	\$22,147
ន	Zone Shutoff Valves	0.31	13.6	16.4	5.61	24.2	28.5	28.5	28.5	\$236	510,384	S12,915	\$15,850	\$20,262	\$24,675	\$25,477	\$26,305
31	Moisture Traps - Condensate Drain Valve	0:30	66.6	79.8	95.7	114.9	137.7	137.7	137.7	288	\$19,425	524,031	\$29,756	\$36,887	\$45,644	\$47,127	\$48,659
ង រ	Dew Point Controlled Desiceant Dryers	11.73	105.6	129.0	140.8	164,2	187.7	187.7	187.7	\$2,500	\$22,500	\$28,394	\$31,982	\$38,525	\$45,459	\$46,936	\$48,402
ង ភ	JVAC Packaged Terminal AC	0.21	41.0	48.3	55.9	67.0	78.1	78.1	78.1	9653	\$77.220	S94,040	\$112,294	\$139,045	5167,417	\$172,858	\$178,475
ង	Packaged Terminal HP										•	•					
88	Unitary AC Rooftop & HP Rooftop <66 n/n RTTH 1 Phece																
3 8	<55,000 BTUH 3 Phase																
8	65-135,000 BTUH																
87	155-760,000 BTUA 760,000 + BTI IH																
: 2	Ground Source HP Closed Loop																
33	Water Source HP Building Loop			ć								076.14		100 14	1 1 J 14	000 v4	CA 707
3 2	ES Window AC under 14,000 Btu/hr ES Window AC over 14,000 Btu/hr	0.06	2.0 5.7	5.9	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	9,9 9,9	2.0 12.0	2.0 12.0	50 120	c7t	\$1,100 \$2,200	\$2,736	\$1,700 \$3,411	\$4,183	\$3,228	32,099 \$5,398	35,573
8	ES Sleeve AC under 14,000 Btu/hr	0.06	1	91 	6.1	2.3	2.8	7 .8	2.8	\$23	\$530	\$697	\$853	\$1,046	\$1,307	51,349	S1,393
37	ES Siecve AC over 14,000 Btu/hr HP Water Heater 500 pal/day	0.13	57 78,1	25.0	42	4.9 135.0	0.0 164.4	0.0 164.4	0.0 164.4	005.62	\$1,100	\$57,820	00/ 14 £68'04\$	\$88,607	\$111,375	\$114,994	5118,732
\$	HP Water Heater 1000 gal/day	11.84	4.7.4	59.2	71.0	82.9	94.7	94.7	94.7	\$5,000	\$20,000	\$25,813	531,982	\$38,525	\$45,459	\$46,936	548,462
9 ;	HP Water Heater 1500 gal/day Sether/Demonstructure	13.81	71.2	89.1 000 1	1 176.0	124.7	142.5	142.5 1643 3	142.5 1 643 3	57,000 \$10	\$28,000 \$24,350	\$36,138 \$29,478	544,774 \$35,819	\$ 53,934 \$4 3,698	\$03,043 \$53,358	\$65,092	307,847 \$56,882
4 4	Supply Air Reset - Controls	0.86	18.9	222	27.5	31.8	37.8	37.8	37.8	0075	54,400	\$5,576	\$6,823	\$8,145	210,001	\$10,326	\$10,662
43	Unoccupied Cycle - Controls	27.94	670.6	782.3	950.0	1,089.7	1,285.2	1,285.2	1,285.2	\$200	\$4,800	\$5,782	\$7,249	58,585	\$10,456	\$10,795	\$11,146

1

. . .

ļ

	THE DAYTON POWER AND LIGHT COMPANY	Case No. 08-1094-EL-SSO	Book II - Customer Conservation and Energy Management	Demand Side Management Program · Non-Residential Prescriptive Rebates	
--	------------------------------------	-------------------------	---	---	--

Data: Type (Work	12 Months Forecast f Filing: Original 2aper Reference No(s).: None			-	Demand Si	de Manage	nent Progra	n - Non-Re	sidential Prese	riptive Rebate						Witnes	WPG-1.10a Page 4 of 4 i Responsible: Maria Bubp
Line	Descretation		2009	2010	3011	¢10¢	2013	2014	2015		2009	2010	2011	2012	2013	2014	2015
	(Y)	(B)	(C)	â	9	Ð	(0)	(H)	(I)	9	(K)	Ē	(W)	Ê	0	(B)	(0)
4	Liebting	KW Per Mensure			Amual	Demand S	avines.			Cost Per Measure			_	incentive Costs			
27 97 6 8	8 ft -2 Lamp T-8/E Ballast 8 ft HO 1 & 7-8/EB 4 ft -4 T-8/EB 3 6 1.4 T-8/EB	0.015	731.0	757.5	784. <u>1</u>	810.7	837.3	837.3	837.3	2	\$282,634	\$302,431	\$323,217	\$345,034	\$367,928	5379,885	\$392,232
4 6	2 ft. 1-4 T-8/EB LED Exit Signs New/Electronic																
5	CFL Screw in	0.05	132.9	150.6	171.9	197.4	228.0	228.0	228.0	33	\$5,316	\$6,220	\$7,330	169'85	\$10,365	\$10,702	\$11,049
2	LED Auto Traffic Signals	0.07	62.0	74.4	£03	107.2	128.7	128.7	128.7	\$13	\$11,075	\$13,719	\$17,004	\$21,065	\$26,111	\$26,959	\$27,835
: ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	Pulse Start Metal Halide (retrofit only)	0.12	91.6 2 1.9	584 4 8	85.1	111.6	111.6	111.6	0111 202	5	56,650 64,651	\$12,571 \$6 3 90	518,896	525,591	520,423	\$27,282 \$15 \$41	528,108 616 046
t 23	CFL Fixture Occursticy Sensors under 500 ft2	0.10	9776 13.8	202 160	43.5	21.6	25.2	25.2	55.2 25.2	774	\$5,750	\$6,866	58.209	906'6 \$	100,014	\$12,321	S12,721
20	Hi Bay fluorescent 4LT5HO	0.25	24.3	28.8	34.0	6 0	48.0	48.0	48.0	\$96	29,212	\$11,399	\$13,918	\$17,118	\$20,948	\$21,628	\$22,331
5	Hi Bay Finorescent 6LF32T8	0.24	23.3	27.6	32.6	38.9	46.1	46.1	46.1	\$80	\$7,760	\$9 499	\$11,599	\$14,265	\$17,456	518,024	\$18,609
28	Phig Load Occupancy Sensors Document Stations	0.04	3.6	4	5.1	6.1	7.4	7.4	7.4	\$25	\$2,225	\$2,736	\$3,411	\$4,183	\$5,228	\$5,398	\$5,573
8	Occupancy Sensors over 500 fl3	0.29	18.0	20.6	23.8	27.3	31.9	31.9	31.9	818	\$6,200	\$7,331	\$ 8,742	\$10,347	\$12,501	\$12,908	\$13,327
8 0	T-5 with Elec Ballast replacing T-12	0.03	91	1.9	5.7	5.6	0.6	0.5	9.0	8 t	\$292	5352	54 28 6740	5515 5215	\$631 \$177	\$652 ¢100	5400 5400
5	I-5 HU WITH ERCE BALLAST TOPIACING 1-12	5U.U	9-0	6.0	1.1	Ĵ.	1	נ	1	À		0075	643 6	0000			1010
3 3	Ligating Control Central Lishting Control	3.12	296.4	352.6	418.1	496.1	592.8	592.8	592.8	\$1,350	\$128,250	\$157,508	\$192,850	\$236,266	\$291,506	\$300,980	\$310,762
64	Switching Controls for Multilevel Lighting	2.44	231.8	275.7	327.0	388.0	463.6	463.6	463.6	\$900	\$85,500	\$105,005	S128,566	\$157,511	\$194,337	\$200,653	\$207,175
65	Daylight Sensor controls	4:02	373.9	446.2	530.6	635.2	755.8	755.8	755.8	2006\$	\$ 83,700	\$103,147	\$126,647	\$156,520	\$192,292	\$198,541	\$204,994
85	Other Measures Window Eilm	000	00	00	00	00	00	00	00	5	098 83	¢10.079	\$12.772	515 KM4	618176	518 714	\$19 122
5 %	Vending Environment Controller	0.22	87.8	97.5	1.601	120.8	136.4	136.4	0.0	\$50	\$19.950	\$22.870	\$26.438	\$30,214	\$35,231	\$36.376	\$37,558
69	Commercial Clothes Washer & Electric Dryer	0.26	69.2	82.9	9.66	119.3	143.3	143.3	143.3	\$50	\$13,300	\$16,468	\$20,415	\$25,261	\$31,310	\$32,327	\$33,378
۶	Economizer Cycle - Controls	0.36	33.5	40.0	47.5	56.9	61.7	67.7	67.7	\$200	\$18,600	522,922	528,144	\$34,782	\$42,731	\$44,120	\$45,554
٢	Barrel Wraps (Inj Mold & Extruders)	0.68	29.9	36.0	43.5	51.7	62.6	62.6	62.6	\$55	\$1,540	\$16'1\$	\$2,388	\$2,928	\$3,659	\$3,778	106'£\$
P	Chilled Water Reset	<u>97</u> 1	35.1	40.3	45.8	54.6	63.7	63.7	63.7	\$550	\$14,850	\$17,604	\$21,108	\$25,426	\$30,628	\$31,623	\$32,651
R	Optimal Start/Stop - Controls	01.1	26.4	30.8	37.4	42.9	50.6	50.6	50.6	002\$	\$ 4,800	\$5,782	\$7,249	58,585	\$10,456	\$10,795	\$11,146
2	Peller Dryer Tanks and Ducts	0.03	0.7	99.D	1.0	1.1	<u>n</u>	บ	3	23	S594	\$753	\$921	S1,100	51,350	\$1,394	\$1,439
5	Head Pressure Control	10.17	101.7	122.0	132.2	162.7	193.2	193.2	193.2	\$1,600	\$16,000	519,824	S22,174	\$28,178	534,549	\$35,672	\$36,831
21	Air Flow Restriction Curtains	3.97	35.7	43.7	47.6	55.6	63.5	63.5	63.5	\$1,200	510,800	513,629	\$15,351	518,492	521,820	5 22,529	\$23,262
- 1	Efficient condensor Keingerator	1.84	2.6	11.0 x 220 X	12.9	10.0 P 001 0	18.4	18.4 7.406.4	18.4	2/00	UUC,64	100,001 14	477'CC 477 LUG 13	40,934 en neo eos	605'/¢	36,214 67 007 500	401,401 61 808 817
2	Freechberg websie I otals			Torrin		·		·				1		00010009190	******	2011 100 mg	

•

THE DAYTON POWER AND LIGHT COMPANY Case No. 08-1094-EL-SSO Book II - Customer Conservation and Energy Management Demand Side Management Program - Non-Residential Custom Rebates

> Data: 12 Months Forecast Type of Filing: Original Work Paper Reference No(s).: None

WPG-1.11 Page 1 of 1 Witness Responsible: Maria Bubp

Line Xo	Description	2009	2010	2011	2012	2013	2014	2015	Total	Source
	(A)	(B)	Q	ê	(2)	Ð	9	(H)	(I = Sum (B:H))	(1)
-	Forecast Total Non-Residential Sales (MWH)	10,050,419	10,106,853	10,161,566	10,212,329	10,260,743	10,318,312	10,384,919		DP&L IRP Forecast
3	Incentive Budgeted Per MWH of Sales	\$ 0.026	\$0.108	\$0.139	\$0.144	\$0.149	\$ 0.154	\$0,159		Based on ComEd DSM Filing
÷	Custom Rebate Incentive Budget	\$261,311	S1,091,540	\$1,412,458	\$1,470,575	\$1,528,851	\$1,589,020	\$ 1,651,202	\$9,004,957	Line 1 * Line 2
4	Marketing and Admin. % of Incentive	55%								Based on ComEd DSM Filing
Ś	Marketing and Administration	S143,721	\$600,347	\$776,852	\$\$08,\$16	\$840,868	S 873,961	\$908,161	\$4,952,726	Line 3 * Line 4
Ŷ	Annual Program Budget	\$405,032	\$1,691,887	\$2,189,310	S2,279,39 1	\$2,369,719	\$2,462,981	\$2,559,363	\$13,957,683	Line 3 + Line 5
1	Cost per kWh of First Year Savings	00060'0\$	\$0.09293	\$0.09595	20,09907	\$0.10229	\$0.10561	S0.10904		Based on ComEd DSM Filing
90	Amual Energy Savings (kWh)	2,903,456	11,745,830	14,720,771	14,843,797	14,946,241	15,046,113	15,143,085		Line 3 / Line 7
9	Cumulative Annual Energy Savings (hWh)	2,903,456	14,649,286	29,370,057	44,213,854	59,160,095	74,206,208	89,349,293		Cumulative Total From Line 8
10	Cost per KW of First Year Savings	\$483.00	\$498.70	\$514.91	\$531.64	\$548.92	\$566.76	\$585.18		Based on ComEd DSM Filing
11	Annual Demand Savings (KW)	541.0	2,188.8	2,743.1	2,766.1	2,785.2	2,803.7	2,821.7		Line 3 / Line 10
12	Curnulative Annual Demand Savings (KW)	541.0	2,729.8	5,472.9	8,239.0	11,024.2	13,827.9	16,649.6		Cumulative Total From Line 11

THE DAYTON POWER AND LIGHT COMPANY Case No. 08-1094-EL-SSO Book II - Customer Conservation and Energy Management Demand Side Management Program - Non-Residential Direct Load Control

> Data: 12 Months Forceast Type of Filing: Original Work Paper Reference No(s).: None

WPG-1.12 Page 1 of 1 Witness Responsible: Maria Bubp

Line No.	Description 2(600	2010	2011	2012	2013	2014	2015	Total	Source
	(v)	(B)	(C)	â	(E)	Ð	6)	(H)	(I = Sum (B:H))	(1)
-	Non-Residential Customers with AMI	1,182	7,173	16,330	30,597	46,436	62,644	63,381		Non-Residential Cust * Percent of AMI Meters Installed
7	Armual Percentage of Participation	0.00%	1.12%	1.12%	1.12%	1.12%	1.12%	1.12%		Non-residential Survey
6 71	Incremental Customers on Direct Load Control	0	80	183	343	520	702	710		Line 1 * Line 2
4	Cumulative Customers on Direct Load Control	0	08	263	606	1,126	1,828	2,538		Cumulative Total From Line 3
v	Average Cost Per Thermostat Installed		\$ 343.44	\$352.94	S311.97	3 317.35	\$322.83	\$328.61		Based on Industry RFP
Ŷ	Armual Cost for Programable Thermostats	80	\$ 27,475	\$64,588	\$ 107,006	\$165,022	\$226,627	\$233,313	\$824,031	Line 3 * Line 5
۲	Average Marketing and Admin Cost Per Thermostat		\$ 658,00	\$161.15	5 45.33	\$54.24	\$37.50	S29.03		Based on Industry RFP
90	Marketing and Administration	3 0	\$\$2,640	\$29,490	\$15,548	\$28,205	\$26,325	\$20,611	\$172,819	Line 3 * Line 7
6	Operations and Maintenance % of Installed Base	\$%								DP&L Estimate
10	Programable Thermostat Maintenance	9	\$1,374	\$4,641	\$9,453	\$17,867	\$29,507	\$41,701	\$104,542	Line 4 * Line 5 * Line 9
11	Armual Program Budget	20	581,489	\$98,719	\$132,007	\$211,094	\$282,459	\$295,625	\$1,101,392	Line 6 + Line 8 + Line 10
12	Annual Energy Savings Per Apphance (kWh)	518								Based on Ameren DSM Filing
13	Arrnual Energy Savings (kWh)	0	41,440	94,794	177,674	269,360	363,636	367,780		Line 3 * Line 12
14	Cumulative Armual Energy Savings (kWh)	0	41,440	136,234	313,908	583,268	946,904	1,314,684		Cumulative Total From Line 13
15	Demand Sarvings Per Appliance (KW)	1.93								Based on Ameren DSM Filing
16	Annual Demand Savings (KW)	0:0	154.4	353.2	662.0	1,003.6	1,354.9	1,370.3		Line 3 * Line 15
11	Currulative Amual Demand Savings (KW)	0.0	154.4	507.6	1,169.6	2,173.2	3,528.1	4,898.4		Cumulative Total From Line 16

THE DAYTON POWER AND LIGHT COMPANY	Book II - Customer Conservation and Energy Management
Case No. 08-1094-ELSSO	Demand Side Management Program - Non-Residential Time of Use Pricing

Deta: 12 Months Forecast Type of Filing: Original Work Paper Reference No(s).: WPG-1.12

WPG-1.13 Page 1 of 1 Withess Responsible: Maria Bubp

Line No	Description	2009	2010	2011	2012	2013	2014	2015	Total	Source
	(4)	Ê	0	ê	(B)	(F)	(0)	(H)	(] = Sum (B;H))	(1)
1	Non-Residential Customers with AMI	1,182	7,173	16,330	30,597	46,436	62,644	63,381		WPG-1.12, Line 1
3	Annual Percentage of Incremental Participation	\$000	0.00%	1.20%	1.20%	1.20%	1.20%	1.20%		Non-residential Survey
m	lacremental Amual Earollment	0	۰	961	367	557	752	761		Lánci * Lina 2
*	Customers on TOU Program	0	۰	196	563	1,120	1,872	2,633		Cumulative Total from Line 3
ŝ	Marketing, Administration and Pilot Evaluation			\$250,000	\$258,125	\$266,514	\$275,176	\$284,119	\$1,333,934	DP&L Estimate
æ	Average Demand per Castomer	31.90								2007 Avg Demand Per Nou-Residential Customer
1	Percentage Reduction in Demand	4.9%								California Statewide Pricing Pilot
~	Demand Savings per Customer	1.56	95'1	1,56	1.56	1.56	1,56	1.56		Line 6 * Line 7
٠	Incremental Annual Demand Savings	0.0	0.0	305.8	\$72.5	868.9	1,173.1	1,187.2		Line 3 * Line 8
9	Cumulative Annual Demand Savings	0.0	0.0	305.8	878.3	1,747.2	2,920.3	4,107.5		Line 4 * Line 8

٠

.

THE DAYTON POWER AND LIGHT COMPANY Case No. 08-1094-EL-SSO Book II - Customer Conservation and Energy Management Demand Side Management Program - Non-Residential Tune of Use + Critical Peak Pricing

Dats: 12 Months Forecast Type of Filing: Original Work Paper Reference No(s).: WPG-1.12

WPG-1.14 Page 1 of 1 Witness Responsible: Maria Bubp

Source	0	WPG-1.12, Line 1	Non-residential Survey	Line 1 • Line 2	Cumulative Total from Line 3	DP&L Estimate	WPG-1,13, Line 6	Pepco MD filing	Line 6 - Line 7	Line 3 * Line 8	Line 4 * Line 8
Total	(j = Sum (B:H))					\$1,333,934					
2015	(H)	63,381	1.20%	191	2,633	\$284,119			19.1	1,453.5	5,029.0
2014	G	62,644	1.20%	752	1,872	\$ 275,176			1.91	1,436.3	3,575.5
2013	Ð	46,436	1.20%	537	1,120	5 266,514			16.1	1,063.9	2,139.2
2012	(E)	30,597	1.20%	367	563	\$258,125			16.1	701.0	1,075.3
1102	ê	16,330	1.20%	961	196	\$250,000			16.1	374,4	374.4
2010	(C)	7,173	0.00%	0	o				16.1	0.0	0'0
2009	(B)	1,182	0000	o	0		31.90	6.0%	16'1	0.0	0.0
Description	(V)	Non-Residential Customers with AMI	Annual Percentage of Incremental Participation	Incremental Annual Enrolment	Customers on TOU-CPP Program	Marketing, Administration and Pilot Evaluation	Average Demand per Customer (KW)	Percentage Reduction in Demand	Demand Savings per Castomer (KW)	incremental Annual Demand Savings (KW)	Cumulative Annuel Demand Savings (KW)
Line		1	3	'n	4	÷	9	"	-	6	10

1

THE DAYTON POWER AND LIGHT COMPANY Case No. 08-1094-EL-SSO Book II - Customer Conservation and Energy Management Demand Side Management Program - Education and Outreach

Data: 12 Months Forecast Type of Filing: Original Work Paper Reference No(s).: None

WPG-1.15 Page 1 of 1 Witness Responsible: Maria Bubp

Source	Ξ	DP&L Commitment	DP&L Estimate	DP&L Commitment	Based on DP&L 2007 FERC Form 1	Based on ComEd DSM Filing	Line 4 * Line 5	Line l	Line 2 + Line 3 + Line 6
Total] = Sum (B:H))	\$500,000	\$ 325,458	\$3,367,866			\$8,066,000	\$500,000	\$11,759,324
2015) (H)	S 0	\$58,671	\$568,237	\$1,348,348	0.09%	\$1,214,000	8	\$1,840,908
2014	0)	\$0	\$56,824	\$550,351	\$1,305,906	%60.0	\$1,175,000	80	\$1,782,175
2013	(F)	\$0	\$55,035	\$533,028	\$1,264,800	%60.0	\$1,138,000	\$0	\$1,726,063
2012	9	\$0	\$53,303	\$516,250	\$1,224,988	%60.0	\$1,102,000	\$0	\$1,671,553
2011	â	\$0	\$51,625	\$500,000	\$1,186,429	%60.0	\$1,068,000	\$0	\$1,619,625
2010	(0)	\$500,000	\$50,000	\$400,000	\$1,149,084	%60'0	\$1,034,000	\$500,000	\$1,484,000
2009	(B)	2 0	80	\$300,000	\$1,112,914	0,12%	000'522'15	9\$	\$1,635,000
Descrittion	(A)	Energy Efficient Home Showcase	Enegy Efficient Home Maintenance Expense	Program Development and Proof of Concept	DP&L Revenue (\$000's)	Budget % for Education Programs	Annual Budget for Education Programs	Annual Program Capital Budget	Annual Program Operations and Maintenance Budget
Line	·21	-	ы	e	4	ŝ	ç	7	30

THE DA YTON POWER AND LIGHT COMPANY Case No. 08-1094-EL-SSO Book II - Customer Conservation and Energy Management Demand Side Management Program - Smart Orid

Dara: 12 Months Forecast Type of Filing: Original Wock Paper Reference No(s):: WPL-1.1

WPG-1,16 Page 1 of 1 Witness Responsible: Maria Bubp

	ວັບແຕະ	9	RP Forecast	MWB-01	l - Line 2	Line 30 / 453	} * Linc 4	15 * 1%	RP Forecast	, Estimate	7 - Line 8	ine 4	• Line 10	%I * I 1
	ŝ		DP&LI	Exhibit	Line	WPI-1.1,	Line	Line	DP&LI	DP&L	Line	L	Line 9	Line
	Total	(1 – Sum (B:H))												
	2015	(H)	16,508,838	770,939	15,737,899	15.9%	2,502,326	25,023	3,519	176	3,343	15.9%	532	5.5
	2014	6	16,356,225	622,682	15,733,543	5.3%	833,878	8,339	3,489	152	3,337	\$0.5	177	1.8
	2013	£	16,215,061	474,424	15,740,637	44	692,585	6,926	3,459	128	3,331	4,4%	147	<u>*</u>
	2012	ê	16,077.757	340,992	15,736,765	3.5%	550,787	5,508	3,427	104	3,323	3.5%	116	61
	2011	ē	15,938,541	222,386	15,716,155	2.6%	408,620	4,086	3,397	80	3,317	2.6%	36	00
	2010	Q	15,801,230	118,606	15,682,624	1.8%	282,287	2,823	1,364	36	306,5	1.8%	Q)	06
	2009	æ	15,660,138	44,933	15,615,205	0.9%	140,537	1,405	£££,£	12	105'6	0.9%	30	6.0
	Description	(Y)	DP&L Sales Forecast (MwH)	Ohio Legislative Energy Efficiency Targets (MwH)	Forecast of MwH Sales Net of BE and DR	Percentage of System with Distribution Automation	System Sales in MwH with Distribution Automation	1% MWH Savings from Line Loss Reductions	DP&L Demand Forecast - Mw	DSM Reductions in Denand - Mw	Forecast of MW Demand Net of EE and DR	Percentage of System with Distribution Automatics	System Demand with Distribution Automation (Mw)	المتعادي والمستعمل والمست
Line	ź			ы	n	4	÷	vo	1	00	ß	0	11	2

.

Data: I. Type of Work P.	2 Months Forceast Filing: Original aper Reference No(s).: WPG-1.1, WPH-1.1									WPG-1.17 Page 1 of 1 Witness Responsible: Jeff Teuscher
Line No.	Description	2009	2010	2011	2012	2013	2014	2015	Total	Source
	(V)	(B)	6)	(()	(E)	Ð	(C)	(H)	(] = Sum (B:H))	(1)
-	Number of Residential Customers	459,819	461,393	462,972	464,557	466,146	467,742	469,343		WPG-1.1, Line 1
ĊI	Percentage of AMI Meters Installed	2%	12%	27%	50%	%52	N001	100%		WPH-1.1, Line 1
n	AMI Meters in Field	9,196	53,367	125,002	232,279	349,610	467,742	469,343		Line 2
4	% of customers with AMI receiving HED	30%								DP&L Estimates
ŝ	Cuttitutative HED Devices in Field		16,610	37,501	69,684	104,883	140,323	140,323		Line 3 • Line 4
9	Average Savings per Customer	5% 5								ACEEE Emerging Technologies Report "In-Home Energy Use Displays"
٢	Average Annual Residential Energy (kWh)	12,120								2007 FERC Form I
80	Average Savings per Customer (kWh)	909								line 6 • fine 7
6	Amual Energy Savings (kWh)	o	10,065,660	22,725,606	42,228,504	860,822,63	85,035,738	85,035,738		Line 5 * Line 8

PO-1

THE DAYTON POWER AND LIGHT COMPANY Case No. 06-1094-EL-SSO Book II - Customer Conservation and Energy Management Energy Displays Capital + O&M

THE DAYTON POWER AND LIGHT COMPANY Case No. 08-1094-EL-SSO Book II - Customer Conservation and Ensrgy Management Total Resource Cost Test - Results

Data: 12 Monthe Forecast Type of Filing: Original Work Paper Reference No(5).: WPG-1.19, WPG-1.20

WPG-1.18 Page 1 of 4 Witness Responsible: Scott Michaelson

ů Ž	s Program Description	Present Value of Measure Costs	Present Value of Measure Banefits	TRC Ratio
	(A)	(8)	(2)	(D=C/B)
-	Residentia			
2	Lighting	\$1,715,216	\$8,325,57 3	4.9
e	HVAC Diagnostic and Tune-Up	5841,490	\$1,243,084	1.5
4	HVAC Rebates	\$442,859	\$543,524	1.2
ŝ	Appliance Recycling	\$135,525	\$271,073	2.0
Q	Appliance Rebates	\$69,319	\$227,130	3.3
~	Direct Load Control	\$169.789	\$300,800	1.8
60				
a	Nan-Residential			
,	Prescriptive Incentives	\$3,106,467	\$12,019,147	39
F	Custom Incentives	\$665,690	\$1,798,230	2.7
õ	Direct Load Control	\$47,841	\$116,890	2.4
	Notes			
	Column B is based on WPG-1,19, Column I			
	Column C is based on WPG-1.20, Column X			

Data: 12 Months Forecast Type of Filing: Original Work Paper Reference No(s):: WPG-1.19, WPG-1.20

WPG-1.18 Page 2 of 4 Witness Responsible: Scott Michaelson

		:		
Ż	Program Description	Participation	Incremental Cost	Fotal Incremental Cost
	(A)	(B)	Û	(D = C / B)
13	Residential Apoliance Recycling			
4	Refriderator	\$25 283	\$236.022	en G
5	Freazer	413.905	531.117	i c
9	Room Air Conditioner Turn In	\$2,140	53,933	1 00 1
13	Program Total	\$31.329	\$271.073	1
<u>8</u>				
61	Residential Appliance Rebates			
2	Energy Star Celling Fan	\$739	\$5.840	7.9
2	Energy Star De-Humidifier	9	\$50,703	>10
ន	Energy Star Distruzsher	3	\$68,191	×10
8	Energy Star Freezer	\$17.774	\$61 405	
2	Energy Star Window A/C	\$732	\$10.680	15.0
8	Program Total	\$19.246	\$227,130	
8				
N	C&I Prescriptive Rebates			
8	Motors and Orives			
8	20-250 hp - ava for aroup	S21.958	349 788	50
8	1-5 HP motors • incentives per HP	\$12.758	\$28.751	
2	7.5 - 20 HP motors - incentives per HP	S153.101	3254.594	1.7
8	High Efficiency Pumps HP 10	\$2,231	13.491	9
8	High Efficiency Pumps HP 15	\$3.831	55.224	6
2	High Efficiency Pump HP 20	\$316	5983	12
8	Variable Fraquency Drive Pumps HP 5	\$15,716	\$20,289	12
8	VFD HP 7.6	\$21,132	\$30,753	15
3	VFD HP 10	\$38,492	\$71,014	1.8
8	VFD HP 15	\$48,122	\$107,436	20
8	VFD HP 20	\$30,954	\$81,988	2.6
q	VFD HP 25	\$9,035	\$25,622	2.8
Ŧ	VFD HP 30	\$10,305	\$30,748	3.0
9	VFD HP 40	\$10,915	\$40 , 984	3.8
4	VFD HP 50	\$13,686	\$51,245	3.7
\$	Compressed Air			
\$	Engineered Nozzles	\$17,050	\$2,143,777	125.7
ŧ	Zone Shutoff Valves	\$19,937	532,973	1.7
ŧ	Moisture Traps - Condensete Drein Valve	\$37,296	\$117,079	3.1
Ŷ	Dew Point Controlled Desiccent Dryers	\$43,200	\$255,410	5.9
	Notes			
	Column B is based on MPG-1.19. Column I			
	Column C is haused on WPG-1.20. Column K			

•

Data: 12 Months Ecrecast Type of Filing: Original Work Paper Reference No(s),: WPG-1.19, WPG-1.20

WPG-1.18 Page 3 of 4 Witness Responsible: Scott Michaelson

ŀ				
Š 2	B Prorram Description	Barticication	tacremental Cost	Total Incremental Cost
	(A)	(R)		
64	HVAC		101	
3	Packaged Terminel AC	\$74,131	8100 159	14
5	Packaced Terminal HP			
3	Unitery AC Rooftop & HP Rooftop			
ß	<65,000 BTUH 1 Phase			
2	<65,000 BTUH 3 Phase			
18	65-136,000 BTUH			
ጽ	135-780,000 BTUH			
6	760,000 + BTUH			
ß	Ground Source HP Closed Loop			
8	Water Source HP Building Loop			
8	ES Window AC under 14,000 Bluthr	\$634	\$2,032	3.2
5	ES Window AC over 14,000 Btu/hr	\$4,224	84,998	12
8	ES Slaeve AC under 14,000 Bturbr	\$317	\$1,105	3.5
8	ES Sieeve AC over 14,000 Btuthr	\$2,112	\$2.544	1
2	HP Water Heater 500 gal/day	\$67 ,360	\$185.871	1.2
5 3	HP Water Heater 1000 gelidery	\$28,400	8115,353	30
\$	HP Water Heater 1500 gal/day	\$53,760	\$173,515	20
6	Setback/Prognammable Thermostat	\$109,867	\$1,783,470	16.1
8	Supply Air Reset - Controls	\$9,448	533,959	4.0
8	Unoccupied Cycle - Controls	\$9,216	\$1,200,712	130.3
2	Lighding			
2	8 ft. 1-2 Lamp T-8/E Bajiast	\$271,329	\$1,408,601	5.2
R	8 R. HO 1 & 2 T-8/EB			
r	4 th. t-4 T-8/EB			
2	3 14 1-4 1-60/06			
15	2 ft. 1 - 4 T-6/CB			
2	LED Exit Signs New/Electronic			
2	CPL Screw in	\$12,758	\$211,419	16.6
28	LED Auto Traffic Signals	\$4 2,52B	\$117,163	2.8
8	Pulse Start Metal Halide (retrofit only)	\$38,304	\$76,006	20
8	CFL Fixture	\$13,651	\$76,873	5.6
2	Occupancy Sensors under 500 ft2	\$11,040	\$19,763	1.8
엻	Hi Bay fluorescent 41. T5HO	\$17,879	\$46,998	2.6
8	Hi Bay Fluorescent 6LF32T8	\$14,899	544.484	·3.0
2	Plug Load Occupancy Sansors Document Stations	\$12,818	\$30,027	2.3
8	Occupancy Sensors over 500 ft3	\$11,904	526,517	2.2
8	T-5 with Elec Baltast replacing T-12	31,119	\$2,811	2.5
87	T-5 HO with Elec Baltast replacing T-12	3570	\$1,549	2.7
	Mintee.			

Notes Column B is based on WPG-1.19, Column I Column C is based on WPG-1.20, Column K

Data: 12 Months Forecast Type of Filing: Original Work Paper Reference No(s): WPG-1.19, WPG-1.20

WPG-1,18 Page 4 of 4 Witness Responsible: Scott Michaelson

5				
g	Program Description	Participation	Incremental Cost	Total Incremental Cost
	(Y)	(8)	0	(D=C/B)
88	Lighting Centrols	,		•
88	Central Lighting Control	\$246,240	\$688,072	2.8
8	Switching Controls for Multilevel Lighting	\$273,600	\$538,418	2.0
6	Daylight Sensor controls	\$267,840	209,807	4.0
8	Other Measures			
8	Window Film	\$9,058	\$21,482	2,4
2	Vending Equipment Controller	\$61,285	\$155,114	2.5
8	Commercial Clothes Weshers - Electric Dryer & Washer	\$82,992	\$159,078	1.0
8	Economizer Cycle - Controls	\$36,712	\$81,630	2.3
6	Barrei Wraps (inj Mold & Extruders)	\$2,967	\$53,374	18.1
8	Chilled Water Reset	\$28,512	\$62,643	2.2
8	Optimal Start/Stop - Controls	\$9,216	\$47,019	5.1
Ş	Pallat Dryer Tanka and Ducts	\$1,140	\$1.457	1.8
ē	Head Pressure Control	\$30,720	\$247.198	8.0
ŝ	Air Flow Restriction Curtains	\$20,736	133,437	1.6
8	Efficient condensor Refrigerator	\$6,720	\$22,375	0.0
ģ	Program Total	\$2,426,721	\$12,018,147	
	Notes			
	Column B is based on WPG-1.19, Column i			
	Column C is based on MPG-1.20, Column K			

ļ

:

1

THE DAYTON POWER AND LIGHF COMPANY Case No. 08-1004-EL-SSO Bock II - Customer Conservation and Energy Management Total Resource Cost Test - Cost Summary

Dala: 12 Months Forectast Type of Filing: Original Work Paper Reference No(s).: WPG-1.11, WPG-1.22

WPG-1.19 Page 1 of 4 Wrtness Responsible: Scott Michaelson

Line Mo	Participation	Incremental Cost	Total Incremental Cost	NTG	Net Incremental Cost	Mea	EM&V	Total	Source
(V)	(B)	<u>0</u>	(O = B + C)	Ú)	(F = D * E)	(G)	(H)	((H:=) wnS =))	Ĵ
1 Residential	504 663	52 OS	\$1 026 279	908 90%	\$821.023	\$794,303	048,623	\$1,715,216	Duke DSM Filing - NPV of avoided builbs
3 HVAC Disprovelic and Tune-Lio	5.288	\$127.04	\$671,788	%08	\$537,430	\$264,400	\$39,660	\$841,490	DEER ID Nos. D03-408 and D03-409
4 HVAC Rehales	2,200	\$92.62	\$212,933	¥08	\$170,347	\$243,004	\$29,508	\$442,85 9	DEER ID No. DC3-403
5 Anthance Recycling	920	\$89.29	\$82,146	ŝ	\$31,329	597,132	\$7,064	\$135,525	Detailed on Lines 14 through 16
R Anniance Pahatte	2,759	24.12	\$24,057	500	\$19,246	\$44,183	55,891	\$69,319	Detailed on Lines 20 through 24
7 Direct Load Control	268	\$243.44	\$137,946	100%	\$137,946	\$17,175	\$14,668	\$169,789	DP&L RFP Results + NPV of ongoing O&M
60									
9 Non-Residential	000 00		002 and 04	000	102 307 V4	CEDE AVE	505 730	53 106 AB7	Detailed on Lines 29 through 103
10 Prescriptive Incentives	262,292	54U.D0	000 000 78	8	171,024,340				
11 Custom knoenlives			\$522,622	888 8	11/1008	177,2718	707'07t	100000	
12 Diffect Load Control	80	\$343.44	\$38,319	100%	\$38,319	\$5,447	\$4,074	547,841	NASU REFUSE + NAV OF COROLOGY HAVE
Notes									

THE DAYTON POWER AND LIGHT COMPANY Case No. 08-1094-EL-SSO Book II - Customer Conservation and Energy Management Total Resource Cost Test - Cost Summary

Data: 12 Months Forecast Type of Filing: Original Work Paper Reference No(s).: WPG-1.10a

WPG-1.19 Page 2 of 4 Witness Responsible: Scott Michtaelson

Line No. Program Description	Participation	Incramental Cost	Total Incremental Cost		Nat Incremental Cost	MEA	CARV	Total		9
(M)	(B)	(C)	(D=8+C)	Û	(F = 0 + E)	9	Ĵ.	(= Sum (F:H))		2
13 Residential Appliance Recycling										
14 Refrigerator	436	\$97.76	\$72,237	35%	525,283			\$25,293	ComEd DSM Filing	
15 Freezer	2	\$27.75	\$7,234	54%	\$2,906			\$3,906	Comed DSM Filing	
16 Room Air Conditioner Tum In	107	\$25,00	\$2,675	200 200	校 140			\$2,140	Local Market	
17 Program Total	820	\$89.23	\$\$2,146	38%	\$31,329			11,329	Sum Lines 14 through	9
19 Residential Appliance Rebates										
20 Energy Star Celling Fan	4	\$12.00	\$924	308	87.20			9228	Local Market	
21 Energy Star De-Humidflier	- 6	808	05		5					
22 Energy Ster Dishwasher	1,156	80.05	3	200	ន			08	Local Market	
23 Einengy Star Freezer	8	\$23.00	\$22.218	80%	517.774			\$17.774	Local Market	
24 Energy Star Window A/C	1 9	\$15.00	\$915	808	22/5			\$732	ComEd DSM Faing	
26 Program Total	2,769	\$6.72	124,057	208	\$19,246			\$19,246	Sum Lines 20 through	
20 27 C&I Prescriptive Rehetes										
28 Motors and Drives										
29 20-250 hp - ang for group	8	\$257.00	\$22.873	96%	521,666			\$21,958	Duke DSM Filma	
30 1-5 HP motors - inventives per HP	143 143	\$30.00	\$13,280	%90	\$12.768			\$12,758	Duke DSM Filing	
31 7.5 - 20 HP motors - incentives per HP	1,329	\$120.00	\$159,480	% 8	\$153,101			\$153,101	Duke DSM Filing	
32 High Ethicancy Pumps HP 10	~	\$2552.00	\$2,324	%98 %	\$2,231			12.23	Duke DSM Filing	
33 High Efficiency Pumps HP 15	~	\$585.00	54,085	%9 8	\$3,831			53,801	Duke DSM Filing	
34 High Efficiency Pump HP 20	-	\$850,00	2950	*8	\$816			\$616	Duke DSM Filing	
36 Veriebte Frequency Drive Pumps HP 5	4	14, 363, 00	\$17,412	% 8 6	\$16,716			\$16,716	Duke DSM Filing	
	-11	15,503.00	\$22,012	88	521,132			\$21,132	Dute DSM Filing	
	~ 1	22/22/02	100 000		\$538,4922			538,492	Duke DSM Filing	
	• •	57, Teri 00	350,127		122			548 , 122	Duke DSM Filing	
	4 4	55,051.00	522.244	898 898	130,854			530,664	Duke DSM Filing	
			114,94	2 2 2 2 2	980'89				Duke USM Hing	
			879'DL\$	8	380 380			510,395	Duke DSM FIIng	
			0/2°11\$	8	510, 915			\$10,915	Duke DSM Filmg	
43 YFL FIF 30 44 Constitueedd Afr	-	\$14,200.00	\$14,200	%9 %	\$13,686			\$13,686	Duke DSM Filing	
45 Engineered Nozzles	22	\$80.00	\$17.760	96%	\$17.050			\$17,050	Dute DSM Filmo	
46 Zone Shutoff Valves	4	\$472.00	\$20,768	3696	\$19 937			219 917	Dute DSM Filles	
47 Moisture Traps - Condensate Drain Valve	222	\$175.00	\$38,850	88	237 296			337 296	Duke DSM Filing	
48 Dew Point Controlled Desiccant Dryers	σ	\$5,000.00	\$45,000	% 96	\$43,200			\$43,200	Duke DSM Filing	

Notas Colume Sib based on fina yee participation far each measura regardiese of the year The scurae for octum C is NormBied Colume J Colume E is based on California Database of Energy Effectmony Resources

Matrix 1. Units for statistication	osi M&A EM&V Total (G) (H) (I≈Sum (F;H))
Math Example of the control of the contro	ost M&A EW&V Total (G) (H) (I ≈ Sum (F1H))
(N) (0) (0) (0) (1) (1-5,10) (1)	(C) (H) (E:H))
Manual Control 17.20 17.20 17.20 17.20 17.10	
F T (SG002 SUE 1) (SG02	31 ST4,151 Duke DSM Filing
C E Window K. under vi. (000 Bulk view) 41 51.00 56.00 57.21 200 Bulk view 37.31 201 Bulk view 37.31 201 Bulk view 37.31 201 Bulk view 37.31 201 Bulk view	
6 5	3d \$534 Local Market 24 \$524 Due DEM Filing 317 Local Jankee
66 F. P. Ware Franser 1000 5530,000 5531,000 <td>12 S2 112 Duke DSM Filing 90 S87,380 Duke DSM Filing</td>	12 S2 112 Duke DSM Filing 90 S87,380 Duke DSM Filing
Construction Second State of Programments (New Contraction) Second Seco	239,400 Duke DSM Film
11 11<	67 67 5100,867 Duke DSM Filmo 58,448 Duke DSM Filmo 59,245 Duke DSM Filmo 16
7 CLLD Ext Signals \$12,759 Statute \$12,759 Date CSM Filmo 7 CLLD Ext Signals \$55,00 \$13,200 \$65,5 \$14,500 \$55,750 Date CSM Filmo 7 CLLD Ext Signals \$55,00 \$54,500	29 Duke DSM Filing
78 LED Auto Traffe. Signals 550.00 554.300 556.33 550.00 554.300 556.33 550.00 556.33 550.00 556.33 550.00 556.33 550.00 556.33 550.00 556.33 550.00 556.33 550.00 556.33 550.00 556.33 550.00 556.33 550.00 556.33 550.00 556.33 550.00 556.33 550.00 556.33 550.00 556.33 550.00 556.33 550.00 556.33 550.00 556.33 550.00 556.33 550.00	58 Duke DSM Filing
0. CULT Fourier 310.00 311.200 500 311.200 500 311.200 500 311.200 500 311.200 500 311.200 500 311.200 500 311.200 500 311.200 500 311.200 500 311.200 500 311.200 500 311.200 </td <td>28 S42,628 Duke DSM Filmy 338,304 Duke DSM Filmy 204</td>	28 S42,628 Duke DSM Filmy 338,304 Duke DSM Filmy 204
Si H Bay Fluorescent 6L*3273 Si A 316.00 \$16.00 \$16.00 \$14.895 Date DSM Fling SM Pug Load Conceptency Streams Comment Stations Si \$16.00 \$17.815 Date DSM Fling SM Conceptency Streams Comment Stations Si \$17.805 \$17.815 Date DSM Fling SM Conceptency Streams Comment Stations Si \$17.815 Date DSM Fling \$17.816 SM Fling Streams Comment Stations Si \$17.904 \$17.904 \$17.904 ST - 5 with Eleo Statist replacing 1-12 S2 \$22.00 \$1.165 \$664 \$665 \$1.1104 \$1.1904 \$1.1904 ST - 6 with Eleo Statist replacing 1-12 S2 \$22.00 \$1.165 \$664 \$665 \$1.1104 \$1.1904 \$1.1904 \$1.1904 St - 6 with Eleo Statist replacing 1-12 Z7 \$22.200 \$1.165 \$664 \$665 \$570	51 513,651 Duke DSM Film9 40 \$11,040 Duke DSM Film9 43 \$17,829 Duke DSM Film9
B5 Concentrery Sensors four 500 ft3 E2 \$200.00 \$11,804 \$11,904 Date D5M Filing 86 T-6 with Eleo Balast molecing T-12 53 \$22.00 \$1,169 \$1,199 Date D5M Filing 87 T-6 With Eleo Balast molecing T-12 27 \$22.00 \$1,169 \$1,119 \$1,190 \$1,000 \$1,190 \$1,000 <td>514,899 Durie DSM Filmg 514,899 Durie DSM Filmg 512,816 Durie DSM Filmg</td>	514,899 Durie DSM Filmg 514,899 Durie DSM Filmg 512,816 Durie DSM Filmg
Notes Notes Caum Bis besed an start year participation for each measure regardless of the year The cause of a start week on the start of the year	11 State Date Date Date Date Date Date Date
are source for evaluation of the meaning of control of the source of the source of the source of the placed of the source of the	

I

ł

Dets: 12 Months Forecast Type of Filing: Original Work Paper Reference No(s).: WPG-1,10a

WFG-1.19 Page 4 of 4 Witness Responsible: Scott Michaelson

Line									
No. Program Description	Participetion	Incremental Cost	Total Incremental Cost	DIN	Net Incremental Cost	M&A	EM&V	Total	Source
(¥)	(B)	Q	(D = B + C)	Ũ	(F = D • E)	0	Ē	(+:-) (+:+))	(1)
88 Lighting Controls			•	,			•		•
89 Central Lighting Control	8	\$2,700.00	\$256,500	3 <u>6</u> %	\$246,240			S246.240 Duke DS	sin Flang
PO Switching Controls for Multilevel Lighting	9 6	53,000.00	\$285,000	%96	\$273,600			5273,600 Duka DS	in Filing
91 Dayight Sensor controls	8	\$3,000.00	\$279,000	%96	\$267,840			\$267,840 Duke DS	the Filing
92 Other Measures									
83 Wandow Film	4,430	\$2.13	\$9,436	%96	\$9,058			\$9,058 DEERID	5 No. D03-443
94 Vending Equipment Controller	398	\$180.00	563,640	96%	561,286			\$61.286 Duke DS	im Filmo
96 Commercial Clothes Washers - Electric Dryer & Wesher	266	\$225.00	586,450	36%	286 285			\$82,992 Duke DS	im Filino
96 Economizer Cycle - Controls	8	\$400.00	\$37,200	%96	£35,712			\$35.712 Duke DS	M Faing
97 Barnel Wraps (Inj Mold & Extruders)	3	\$70.00	080,53	%96 %96	\$2,867			\$2,967 Duke DS	W Filling
SB Chilled Water Reget	2	\$1,100,00	529,700	8	\$28,512			528,512 Duke DS	in Filing
99 Optimal Start/Stop - Controls	24	\$400.00	\$9,600	%96	59.216			\$9.216 Duke DS	SM Filing
100 Pellet Dryer Tarks and Ducts	2	554.00	\$1,188	%96	\$1,140			\$1,140 Duke DS	SM Filling
101 Head Pressure Control	₽	\$3,200.00	532,000	×8	\$30,720			\$30,720 Duke DS	sin Filing
102 Air Flow Restriction Curtains	•	\$2,400.00	\$21,600	303X	92.03			\$20,736 Duke DS	M Faing
103 Efficient condensor Refrigerator	Ð	\$1,400.00	\$7,000	%86	\$6,720			\$6,720 Duto DS	the Filting
104 Program Total	62,292	\$40.56	\$2,528,793	%B6	\$2,426,721			\$2,426,721 Sum Linu	es 29 through 103
Notes									

Column Bis Isbaevd on that year participation for each measure regardees of the year. The source for column C is tidentified Calumn J Column E is based on California Database at Energy Efficiency Resources

•

THE DAYTON POWER AND LICHT COMPANY Case No. 08-1094 EL-SSO Book II - Customer Conservation and Energy Management Total Resource Cost Test - Benefit Summary

Data: 12 Months Forecest Type of Filing: Original Work Paper Reference No(s): WPG-1.1, WPG-1.2, WPG-1.3, WPG-1.7, WPG-1.11, WPG-1.12, WPH-1.10

WPG-1.20 Page 1 of 4 Witness Responsible: Scott Michaelson

Line	Measure		KWh Saved		KW Saved	Total KW	Present Value of		Net PV of	
No. Program Description	Life	Participation	Per Measure	Totel Energy Savings	Per Measure	Savings	Lifetime Savings	NTG	Savings	Source
(A)	(8)	0	Ô	(E=C,D)	£	(G=C*F)	Ĥ	e	(I . H = f)	ß
1 Residential										
2 Lighting	69	501,663	47	23.578.161	0.004	2.006.7	\$10,406,906	% 88	\$8.326.573	WPG-1.1. Lines 9 and 12
3 HVAC Diagnostic and Tune-Up	₽	5,289	1000	2,086,472	0.35	1.850.8	\$1,553,855	80%	\$1,243,084	WPG-1.2. Lines 9 and 12
4 HVAC Rebates	1 3	2,299	280	643,720	0.26	574.8	5679,405	8	5543.524	WPG-1.3, Lines 8 and 12
5 Appliance Recycling	₽	920	1,707	1,570,119	0.27	245.0	\$736,890	388 8	\$271,073	Detailed on Lines 14 through 16
6 Appliance Rebates	1	2,759	207	570,997	80	69.4	\$283,913	80%	\$227,130	Detailed on Lines 20 through 24
7 Direct Load Control	ŝ	288	370	106,560	8 8. 1	397.4	5300,800	10% 10%	\$300,800	WPG-1.7, Lines 12 and 15
s Non-Residential										
10 Prescriptive Incentives		62,292	<u>7</u> 2	20,679,839	0.0	5,601.6	\$12.519.945	90%	\$12.019.147	Detailed on Lines 29 through 103
11 Custom Incentives	15			2,903,456		541.0	\$1,873,157	% 9 6	\$1,798,230	WPG-1.11, Lines 8 and 11
12 Direct Load Cantrol	5	8	518	41,440	1.93	154.4	\$116,880	100%	\$115,890	WPG-1.12, Lines 12 and 15
Notes										

Column C in based on find year participation for each measure regardines of the year The source for column D and F are identified in column K Column H is based on Sei present value of first year servings over the life of the individual measure valued at capacity and energy prices on WPH-1.10 Column 1 is based on California Database of Energy Efficiency Pascources

THE DAYTON POWER AND LICHT COMPANY Case No. 08-1084-EL-SSO Book B - Oustomer Conservation and Energy Management Total Resource Cost Test - Benefit Summary

Deta: 12 Monifins Forecast Type of Filling: Chiginal Work Paper Reference No(e),: WPG-1.10a, WPH-1.10

WPG-1.20 Page 2 of 4 Witness Responsible: Scott Michaelson

5g	e Program Description	Q.	Participation	kWh Saved Per Measure	Tritel Energy Savinos	KW Saved Per Messure	Total KW Savince	Present Value of Lifetime Servinge	NTO	Net PV of Sevence	Source	
	(A)	(8)	Q	œ	(E = C ⁻ D)	(F)	(G = C * F)	(H)	e	(I = H = I)	(K)	
Ω.	Residential Appliance Recycling											
¥ 9	Refrigerator Freezer	₽₽	98/ 72	1,946	1,438,634	0.300	221.8	\$674,349 * E7 E 7E	35%	5236,022	Comed DSM Filing	
\$	Room Air Conditionar Turn In	2 2	Ę	8	92.9	040	4.5	54,916	5 8 5 8	53.903	Comed DSM Films	
₽ ₽	Program Total		920	1,707	1,670,118	0.266	245.0	\$736,890	38%	\$271,073	Sum Lines 14 through 16	
• ≏ :	Residential Appliance Rebates											
នរ	Erergy Star Celling Fan	2 :	F	£	13,365	0.070	5.4	27,300	\$608	\$6.840	Ameren DSM Filing	
ទន	Energy over Dernumketer Energy Ster Distrivitioner	25	85	262 1947	124,845	0.000	35.0	503,379 EBE 7790	%08 %08	\$50,703 \$50,703	Ameren DSM Filing	
ន	Eriergy Ster Freezer	:=		247	238.516	0000		5114 257		\$01 406	America DSM Films	
2	Energy Star Window AC	\$	2	₽	26,493	0.160	67	\$13.738	8	\$10,990	American Communication	
28	Program Total		2,769	102	670,997	0.025	68.4	\$283,813	80%	\$227,130	Sum Lines 20 through 24	
888	Cal Prescriptive Rebates Motors and Drives											
8	20-250 hp - avg for group	15 1	8	823	715,917	0.230	20.5	\$51.862	%96	540.788	Duke DSM Filing	
8	1-5 HP motors - Incentives per HP	15	5	8	42,528	0:030	13.3	\$29,949	96%	\$28,751	Duke DSM Filing	
5	7.5 - 20 HP motors - Incertives per HP	5	1,329	291	386,739	0.080	106.3	202,3852,202	96%	\$254,594	Duke DSM Filing	
8	High Emicency Pumps HP 10	₽ :	~ -1	756	5,292	0.210	1.5	\$3,636	38 8	\$3,491	Duke DSM Filing	
35	righ Enidericy Funds fill 10 List Binders: Durit 10 20	5	•••	1,135	2946/2	0.310	55	55.441	8	5 5,224	Duke DSM Filing	
5 2	ruge celebroy rusty cir 20 Venisha Fransance Adva Burne HD 6	2 ¥	4	510,1 2017 5	1,513	0.410		51,036		\$66\$	Duke DSM Filing	
38	VED HP 7.5	<u>o 40</u>	* *1			21001	4.5	CH1,128		550'288	Duke DSM Filing	
37	VFD HP 10	. स्ट	• ••	15,452	108,164	4190	202	\$73.973		S71 D14	Duka (JSM Filim	
8	VFD HP 15	15	2	23,412	163,884	6.300	4	S111,913	%96	\$107,436	Duke DSM Filling	
89	VFD HP 20 VFD HP 25	5 2	4	31,216	124,864	6.470	33.9	\$85,404	% 0 6	531.930	Duke DSM Filing	
1		2 :	- 1	020'92	98,020	10.990	10.6	226,650	9696	\$25,622	Duke DSM Filing	
ç Ç		5	- •	46,824	46,824	12.710	127	3 32,029	30%	\$30,748	Duke DSM Filing	
2		ម្ភ រ		62,432	62,432	18.040	16.9	\$42,702	96%	540.994	Duka DSM Filing	
2 ¥	Commented Atr	2	-	78,041	78,041	21.180	21.2	\$ 53,361	8 88	\$51.246	Duka DSM Filing	
\$	Engineered Nozzles	č	222	14.707	3.764.954	3,500	885.8	52 233 IM	00%	52 142 TT	Crite DSM Files	
\$	Zone Shutofi Valves	1 2	\$	1,141	50.204	0.310	13.6	240,447	100	532.073	Duke DSM Film	
4	Moisture Treps - Condensate Drain Valve	õ	8	1080	241,980	0.300	999	\$121,958	% 68	\$117,079	Duke DSM Filing	
¥	Dew Point Controlled Desiccent Dryets	5	æ	43,217	368,963	11.730	105.6	\$266,052	900K	\$255,410	Duke DSM Filing	
	Notes											

Castum C is based on first year participation for each monaute regardiese of the year. The source for columna D and F are identified in column K. Calumn H is treased on the present value of first year sawings over the life of the individual measure valued at explority and energy palces on WGH-1, 10 Galumn 1 is based on California Detabase of Energy Efficiency Resources

.

THE DAYTON POWER AND LIGHT COMPANY Case No. 02-10424EL-SSO Book II - Customer Conservation and Energy Management Total Resources Cost Test - Benefit Summary

Data: 12 Months Forecast Type of Filing: Original Work Paper Reference No(s): WPG-1.10a, WPH-1.10

WPG-1.20 Page 3 of 4 Witness Responsible: Scott Michaelson

Line No Downey Description		Darticication	kWh Saved	Total Energy Rouinae	KW Saved	Total KW	Present Value of	QEA	Net PV of		
(A)	(8)	(C)	(D)	$(E = C \cdot D)$	(F)	(G = C + F)		E	(1 - H = r)	(X)	
49 HVAC 50 Packaged Terminal AC	5	195	877	161.710	0.210	41.0	\$104,333	%96	\$100,159	Duke DSM Filing	
ol rexaged terminan Fr 52 Unitary AC Rochop & HP Rochop 53 As Ann brits to the an											
64 460,000 BTUH 1 Prisse 64 460,000 BTUH 3 Prisse 654 435 400 BTUH 3											
56 135-780,000 BTUH											
57 760,000 + BTUH 58 Grand Sruns HP Closed Loop											
69 Water Source HP Building Loop											
60 ES Window AC under 14,000 Blufts	우	4:	R	3,080	0.080	2.6	\$2,117	%98	52,002	Duke DSM Filing	
67 ES Simera AC OVER 14,000 ECUIT 67 ES Simera AC Invitar 14,000 Ecuit	52	4 5	081 08	041.8 044.1	0.130	5.7	\$5,206 e4 464	3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	54 998 14 105	Duke DSM Faing	
63 ES Sieeve AC over 14,000 Bluffr	2	នេ	9 <u>6</u>	1,180	0,130	202	\$2,650	88	50.544	Duke DSM Filmo	
64 HP Water Heater 500 gel/dey	15	\$	21,635	281,255	5.870	78.3	\$103,015	\$ 9 6	\$185,871	Ouke OSM Filing	
65 HP Water Heater 1000 gal/day	<u>ة ة</u>	4	199	174,648	11.840	47.4	\$120,159	%96	\$115,353	Duke DSM Filing	
00 THP WRING MOREN 1500 GB/049 67 Gallast/Deconstructio Thermostal	5 5	4 Č	00,039	262,506	17,810	71.2	\$180,745	96%	\$173,515	Duke DSM Filing	
de Supply Air Reset - Controls	¥ \$	≩ R	821°S	0,100,100 00,915	0.860	607.3 18.9	\$1,630,947 \$35,374		\$33,059 \$33,059	Duke DSM Flind	
69 Unocupied Cycle - Controls	ę	5	102,953	2,470,872	27, 840	6/0/9	51,250,742	%8	\$1,200,712	Duke DSM Faing	
70 Lughting	ł	-	ł								
7. 91. 1.4 LATTO 1.47 BORRES. 7.9 AF HO 1.8.7 LATER	F	46./30	8	2,680,150	41 770	131.0	\$1,467,283	3°96	51,406,601	Ouke OSM Feing	
73 4R 14 14 14EB											
74 3111-41-81EB											
76 LED Exit Stone New/Electronic											
77 CPL Screwin	0	2,658	178	473,124	0.060	132.9	622/0223	¥96	\$211,419	Duke DSM Filing	
78 LED Auto Traffic Signals	9 !	988 1	275	243,660	0.070	62.0	\$122,065	96%	\$117,183	Duke DSM Filing	
79 Putte Start Merki Halide (reform only)	<u>لة</u>		\$	114,380		31.9	\$79,175	% 8	\$76,008	Dute DSM Filing	
ou urt Fixure 81 Ornamory Semana Hinder 500 82	ęα	515 115	- C	110,205 40 406	8	9.10 9.10	\$90°018		\$76,873 * 40 700	Ouke OSM Filing	
22 Hi Bav furnersent Al 17940	, .	6	18		1260	5 V C	200,000				
60 Hi Bay Fluorescent 0LF3218	:=	5	12	BA, 487	0.240	28.5	\$46.337	* 96 76	244.484	Oute DSM Filmo	
84 Plug Load Occupancy Sensors Document Stations	9	8	508	74,467	0,040	3.6	812.153	¥.96	\$30,027	Duke DSM Film	
85 Uccupancy Sensors over 500 TIS	æ ;	68	1.068	66,218 - 2 13	0.290	18.0	\$27,622	3° 20	\$20,517	Duke DSM Filing	
67 T-5 HO with Elec Ballast represent 1-12	= =	3 F3	82	2,943	00010	8.0	32,928 \$1,614	***	\$2,811 \$1,549	Duke DSM Filing Duke DSM Filing	
Notes											

Colume C is based on first year participation for each measure regardines of he year. The source for outmont D and F and each in makems K colume H is bested on the present value of RF are reduced on the Individual measure valued at capacity and energy prices on WPH-1.19 Column 1 is based on California Database of Energy Efficiency Resources.

Data: 12 Months Forecast Type of Filing: Original VVork Paper Reterence No(s).: WPG-1.10a, WPH-1.10

ł

WPG-1.20 Page 4 of 4 Witness Responsible: Scott Michaelson

Line			kwn Saved		KW Saved	Total KW	Present Value of		Net PV of	
No. Program Description		Participation	Per Measure	Total Energy Savings	Per Measure	Savings	Lifetime Sevings	NTG	Sayings	Source
()	(B)	0	Ô	(E=C'D)	£	(G=C-F)	£	3	(I.H=ſ)	8
88 Lighting Controls										
59 Central Lighting Control	4	8	11,500	1,092,500	3.120	296.4	\$716,742	%96 %	3686,072	Duke DSM Filing
90 Switching Controls for Muttlevel Lighting	4	3 8	9,000	855,000	2.440	231.5	\$ 50 0,852	%96	\$538,418	Ouke DSM Filing
91 Daylight Sensor controls 52 Other Measures	1Ĝ	8	14,800	1,378,400	4.020	373.8	\$947,716	898 8	\$909,807	Duke DSM Filing
83 Window Film	ę	4,430	12	53,160	•	•	\$22,388	%96	\$21,482	Duke DSM Filing
24 Vending Equipment Controller	6	880	88	319.200	0.220	87.8	\$161.577	*98	\$155,114	Duke DSM Filing
95 Commercial Clothas Washers - Electric Dryer & Washer	4	5 8 2	020	252,700	0.260	69.2	\$165,706	%96	\$159,078	Duka DSM Filing
95 Economizer Cycle - Controls	ដំ	8	1,330	123,690	0.360	33.5	5694 827	886	381,630	Duke DSM Filing
97 Bernel Whaps (inj Mold & Extruders)	ç	4	2,601	110,044	0.690	29.9	867 998	%96	\$53,374	Duke DSM Filing
28 Critted Water Reset	₽	23	4,784	129,168	1.300	1.22	1927,294	%96 %	500 G43	Duke DSM Filing
99 Optimal Start/Stop - Controls	ę	R	4,038	96,912	1.100	7 BZ	\$48,979	%96	S47,019	Duka DSM Filing
100 Pellet Dryer Tanks and Ducts	ສ	ង	8	2,166	0.030	0.7	\$1,518	96%	\$1,457	Dute DSM Filing
101 Head Pressure Control	ð	₽	37,486	374,860	10.170	101.7	\$257,468	%9 6 %	\$247,198	Duite DSM Filing
102 Air Flow Restriction Curtains	'n	¢n	14,640	131,780	3.970	36.7	009 723	%9¢	\$30,437	Duke DSM Filing
103 Efficient condensor Refrigerator	1 8	40	6,787	30,935	1.840	9.2	\$23,307	88% %98	\$22,375	Duke DSM Fäing
104 Program Total		62,292	332	20,679,838	0:090	5,601.6	\$12,519,945	36%	\$12,018,147	Sum Lines 29 through 103

Notes Colume C is based on first year participation for each measure regardiest of the year The source for colume C and F are identified in column K Column H is bread on the present trable of first year satisfys over the life of the individual measure valued at capacity and coracy prices on WPH-1.10 Column H is bread on California Detablese of Energy Efficiency Peacurces

THE DAYTON POWER AND LIGHT COMPANY Cess No. 08-1094-EL-SSO Book II - Customer Conservation and Energy Management Total Resource Cost Tost - Marketing and Administrative Expenses

l

Data: 12 Monthe Forecast Type of Filing: Original Work Peper Reference No(s): WPG-1.1, WPG-1.2, WPG-1.3, WPG-1.4, WPG-1.7, WPG-1.10a, WPG-1.11, WPG-1.12

WPG-1.21 Page 1 of 1 Witness Responsible: Scott Michaelson

Source (J)	WPG-1.1, Lines 5, 6 and 7 WPG-1.2, Lines 5, 6 and 7 WPG-1.3, Lines 5, 6 and 7 WPG-1.4, Lines 5, 6 and 7 WPG-1.5, Lines 5, 6 and 7 WPG-1.5, Lines 5, 6 and 7 WPG-1.7, Lines 5, 6 and 7	See Note Betow WPG-1.11, Lines 3, 4 and 5 WPG-1.12, Lines 4, 8 (7 Yr Avg M&A per Install * 2010 Participation)
M&A Expenses (D = B + C)	\$794,303 \$264,400 \$243,004 \$87,132 \$44,183 \$44,183	\$585,016 \$143,721 \$5,447
Marketing and <u>Administantion Percentage</u> (C)	66% 70% 220% 60%	44% 55%
Totef Incentives (3)	\$1,203,490 \$528,800 \$347,149 \$73,638 \$73,638 \$73,638	\$1,329,682 \$261,311 \$27,476
Program Description (A)	Residential Lybring HVAC Disprostic and Tune-Up HVAC Rebates Appliance Rebates Appliance Rebates Direct Load Control	N <u>Dn-Residential</u> Presarbitive Incentives Custom Incentives Direct Load Control
er ing	- (N (N) (T N) (D) (- 0	60555

Notes Prescriptive incentives identified shove include all 2009 incombres with the addison of 2010 incentives for measures not forecasted to take place until 2010, these incombres are identified in WPG1: 100, Page 3 of 4, Laines 14 - 17, Column L

THE DAYTON POWER AND LIGHT COMPANY Case No. 08-1034-EL-SSO Book II - Customer Conservation and Energy Management Total Resource Cost Test - Evaluation Measurement and Valuation Expense

Data: 12 Months Forecast Type of Filing: Oríginal Work Paper Reference Nc(s).: WPG-1, WPG-1,7, WPG-1,12, WPG-1,21

WPG-1.22 Page 1 of 1 Witness Responsible: Scott Michaelson

Note Column & is based on WPG-1, Line 18

.

Data: 7 Year Forecast Type of Filing: Original Work Paper Reference No(s).: WPH 1.1 - 1.8

WPH-1 Page 1 of 1 Witness Responsible: Jeff Teuscher

Line	Description	0000	0100	1100	eroe			2100		
	(¥)	(B)	(C)	(æ	(E)	(E)	(0)	(H)	(] = Sum (B:H))	
	<u>Capital Costs</u>									
-	Meters	\$5,809,402	\$12,148,452	\$14,462,527	\$19,488,035	\$18,981,517	\$18,930,040	\$675,34 3	5 90,495,316	WPH-1.1
ы	Home Energy Devices	Q\$	\$1,668,142	\$ 2,056,121	53,104,146	\$3,327,147	\$3,282,929	3 0	\$13,438,486	WPH-1.2
'n	Communications	230,011,707	516,775,233	\$ 2,551,256	\$2,500,995	\$2,356,231	\$1,128,761	20	\$55,324,182	C.I-HYW
4	Subtoral of T&D Capital Costs	\$35,821,109	\$30,591,827	\$19,069,905	\$25,093,175	\$24,664,895	\$23,341,729	\$675,343	\$159,257,984	sum of lines 1 - 3
Ś	JT	524,133,196	\$23,814,338	\$21,974,828	\$12,111,736	\$9,526,633	53,418,843	E08'6113	775,957,8 0 2	WPH-1.4
÷	Total T&D + IT Capital Costs	\$\$9,954,305	\$54,406,165	\$41,044,733	\$37,204,912	\$34,191,528	\$26,760,572	\$1,455, 146	5255,017,361	sum of lines 4 - 5
•	Q&M Costs									
46	Meters	\$506,885	\$1,284,659	\$1,819,522	\$2,124,535	52,286,175	52 ,444,442	\$2,097,929	\$12,564,146	S.1-H9W
Ð,	Home Energy Devices	\$0	\$33,407	\$186,213	\$341,420	\$207,778	\$671,924	\$671,924	\$2,462,667	WPH-1.2
0	Communications	\$273,579	\$1,100,130	\$1,700,916	\$1,734,760	51,766,495	\$1,777,125	51,788,074	\$10,141,080	9°1-H4M
Ξ	Subtotal of O&M Cests	\$780,464	\$2,468,196	\$3,706,651	54,200,715	54,560,448	\$4,893,492	\$4,557,927	\$25,167,893	sum of lines 8 - 10
12	ť	101,522	00016018	\$4,789,216	\$7,202,230	\$7,701,528	58 ,175,079	\$8,336,662	\$37,589,811	WPH-1.4
13	Total T&D & IT O&M Costs	\$1,074,231	\$3,\$59,526	58,495,867	\$11,402,945	\$12,261,975	\$13,068,571	\$12,894,590	\$63,057,704	line 11 + line 12
±	<u>Benefits</u>									
15	Méters	\$109,147	\$764,320	\$2 ,130, 987	\$4,245,609	\$6,956,941	\$9,830,443	\$11,350,907	\$35,388,354	L'I-HAW
16	Communications	2 0	\$ 48,986	\$158,625	\$281,139	\$343,000	\$343,000	\$343,000	\$1,517,750	8.1-H9W
	Ш	8	8	2	\$1,556,765	\$1,614,265	\$1,675,827	51,741,813	\$6,588,670	WPH-1.4
18	Depreciation Savings from Early Retirement of Capitul	5 8,336	5241,377	\$528,604	156'965'1\$	\$1,875,216	\$05°£26°1\$	188'866'15	58,217,855	Schedule B-5
19	Total T&D & IT Benefits	\$117,483	51,054,683	\$2,818,216	\$7,680,445	\$10,789,423	\$13,822,779	\$15,429,601	\$51,712,630	sum of lines 15 - 18

.

.

THE DAYTON POWER AND LIGHT COMPANY	CASE NO. 01-1094-EL-SSO	BOOK II - Customer Conservation and Energy Management	A.M.I. Meters
------------------------------------	-------------------------	---	---------------

Data: 7 Type of Work P	Year Rovewast Filing: Origiuad wer Reference Nic(s).: Na									WPH-I, I Page 1 of I Witness Responsible: Net Touscher
Na.	Description (A)	2009 (B)	2010	301	2012 (E)	2013 ED	2014 (G)	2015 (H)	Total (1 = Sum (B-H))	Source
-	# of Residential Meters	10,037	50,183	15.274	115,420	125,457	125,457	1.716	\$03,542	# of meters in field
7	Cost per Residential Metter (Hardware)	\$125.40	06'611\$	\$117.70	\$114,40	\$114.40	\$114.40	\$1 14.40	B/U	RPP Response
m	Total Residential Meter Hardware Costs	\$1,258,580	\$6,016,894	38,859,738	\$13,204,046	\$14,352,224	\$14,352,224	\$196,33\$	\$58,240,043	lane 1 • fine 2
-	Cost per Residential Meter (Install)	\$16.50	\$16,83	\$17.17	\$17.51	817.36	\$18.22	\$18,5\$	a'u	RFP Respanse
¥n.	Total Residential Meter Install Costs	\$165,603	515,445	\$1,292,197	\$2,020,996	\$2,240,669	\$2,285,483	16 8'165	58,881,412	tine 1 * line 4
vo	Total Residential Meter Installed Costs	\$1,424,182	56,861,467	\$10,151,935	515,225,042	\$16,592,893	\$16,637,706	\$228,229	\$67,121,454	kine 4 kine 4
	# of C.&I Meters	369	l,847	2,771	4,249	4,619	4,619	•	18,474	# of polyphase + form 128 maters in field
80	Cost per C&I Mate (Hardware)	\$246.95	\$230.45	\$226.60	5513,95	\$213.95	\$213.95	55,612	7 IVa	LFP Response (Average Polyphase Meter + form 125 Meter Cost)
c,	Total C&I Motar Hardware Costs	\$91,243	3425,733	166'1295	\$20,902	5988, 128	5988, 12 8	S 0	\$4,030,242	kine 7 * Line 8
2	Cost per C &I Manu (Install)	\$16.50	\$16, 8 3	\$17.17	\$17.51	\$17.86	\$18.22	518.58	1 /11	R.F.P. Rasponse
Ξ	Total C&I Meter Install Costs	\$6,096	260'12\$	\$47,370	\$74,400	582,487	124,137	8	\$328,782	tine 7 * tine to
2	Total C&I Meter Installed Costs	645,240	\$456,825	\$675,502	\$983,478	\$1,070,615	\$1,072,265	3	54,356,024	fine 9 + line 11
1	# of Power Quality Meters	91	8 0	22	115	521	125	o	995 0	Top 1% of energy users in field today
Ξ	Cost per Power Quality Meter (Polyphase Meter + 2 Way Voice/Dain Coum Card)	1683	5864	2358	9685	98 85	9239	3 836	цур	R.F.P. Response
5	Total Power Quality Meter Hardware Costa	616,82	\$43,175	\$64,350	\$96,140	\$104 [,] 500	S104,500	8	\$421,575	iune 13 * time 14
91	Cost per Power Quality Meter (Install)	\$16.50	\$16.83	\$17.17	15712	\$17,86	518.22	\$18.58	1 74	RFP Response
5	Total Power Quality Meter lastall Costs	\$165	\$842	\$1,287	52,014	62 7 23	\$2,277	8	\$8,817	line 13 * line 16
2	Total Powes Quality Meter lastalled Coars	\$9,075	\$44,017	\$65,637	\$51'865	\$106,733	\$106,777	8	\$4 30,39 2	kine 15 + kine 17
61	Toxal # of Massers	10,416	52,080	78,120	119,784	130,200	130,206	911/1	522,516	tine 1 + line 7 + line 13
50	Total Meter Hardware Costs	\$1,358,733	56,485,802	\$9,552,019	\$14,209,264	\$15,444,852	\$15,444,852	S196,338	\$ 62,691, 8 59	litte 3 + litte 9 +line 15
31	Total Meter Installation Costs	\$171,864	\$376,506	\$1,341,055	017'00'23	\$2,325,389	\$2,371,897	168'16\$	110'312'6\$	time 5 + line 11 + time 17
2	# of Engineers (Capital)	7	2	7	3	-	-	٠	4 20	DP&L Estimates
53	Loaded Salary for Engineer (With Benefits) per year	\$102,123	2105,187	5108,342	£65'111 \$	\$ 114,940	685'8115	SI21,940	e/u	DP&L Estimates
a	# of Project Managers (Capital)		2	۲	4	Ŷ	ę	÷	a's	DP&L Estimates
2	Loaded Salary for Project Manager (With Benefits) per year	\$124,817	235,4512	\$132,418	106,301	\$140,423	\$144' 68 7	5149,038	eju	DP&L Estimates
26	Total Capital Engineering & Project Management Salary	51,077,965	\$1,110,304	51,143,613	\$1,177,921	\$957,83 6	\$986,571	\$447,114	\$6,901,325	Ene 22 * line 23 + line 24 * line 25
2	Facility Lease Costs	949'056\$	\$675,840	1675, 340	\$253,440	0++*6525	\$126,720	9	52,936,120	DP&L Estimates
38	Total Capital Engineering + Project Management	\$31,025,105	\$1,786,144	\$1,819,453	\$1,431,361	51,211,276	\$1,113,291	\$447,114	59,837,44S	line 26 + line 27
29	Sto	\$2,250,000	000'000'8\$	\$1,750,000	\$1,750,006	8	8	8	\$3,750,000	DP&L Estimates
8	Totai AMI Meter Capital Cont	\$5,809,402	\$12,148,452	\$14,462,527	\$19,488,035	\$18,981,517	\$18,930,040	S675,343	916,299,082	lize 20 + line 21 + line 28 + line 29

|

ļ

Data: 7 Year Forecast Type of Filing: Original Work Paper Reference No(s).: n/a

WPH-1.2 Page 1 of 1 Witness Responsible: Jeff Teuscher

`

Source	ω	Based on 30% of Residential Customers with AML (WPG- 1.17)	RFP Responses	line 1 ⁴ line 2	5% of instatled Energy Display capital
Toni	(I = Sum (B:H))	140,323	a/ u	\$13,438,486	\$2,462,667
2015	(H)	0	\$20.78	95	\$671,924
2014	(0)	35,440	5 92.63	\$3,282,929	\$671,924
1013	(E)	35,199	594.52	\$3,327,147	\$507,778
2002	(E)	32,183	\$96.45	53,1 04,146	\$ 341,420
2614	ê	20,891	\$98.42	\$2,056,121	5186,213
3010	0	16,610	\$100.43	\$1,668,142	\$83,407
6004	(B)	o	\$100.43	30	3 0
Descriation	(V)	# Home Eacrgy Display Devices	Average Cost per Device	Total Home Energy Display Capital Costs	Total Home Entergy Display D&M Cost
Line	ŝ	1	7	r,	-

THE DAYTON POWER AND LIGHT COMPANY	CASE NO. 08-1094-11. 550	BOOK II - Customer Conservation and Energy Management	AMI Consuminations Capital
------------------------------------	--------------------------	---	----------------------------

Duta: 7 Year Forceast Type of Filing: Original Work Paper Reference No(s): 11/1

WPH-1 3 Page 1 of 1 Witnese Responsible: Jeff Teuscher

ļ										51 HQ/
32	Description	5008	0100	2011	2012	2013	2014	2015	Total	Source
	(V)	8	0	ê	9	6	(g)	Ē	(I – Sum (B:H))	9
-	2-Way Voice/Data Frequency Acquisition Cost	\$660,000	8	2	8	80	8	8	3660,000	RFP Response
4	Tous 12 - Way VolceData Pase Station Cost	\$2,174,119	\$1,144,273	05	8	3 0	05	8	26231532	KFP Response
•7	2-Way System Back Office (Data Switch, EMS, Wide Area Con	\$3,920,643	51,100,000	0 \$	8	9	20	\$0	\$5,020,648	RFP Response
*	2- Way System Spares	\$481,896	8	8	2	3 0	\$0	9	3481,596	RFP Response
÷	Total 2-Wey VoiesThis Hardware & Software	£7,236,662	51,244,273	9	8	30	8	2	\$9,480,93 <i>5</i>	sum of times 1 - 4
φ	2-Way Verdor Engineering, Project Management, end Laskallakien Services	512,971,52	165'1EE'1 \$	\$175,049	5180,300	\$0	ŝ	8	\$3,865,154	RFP Roopdara
7	Total Cost of New Yehioular Radios	21,061,508	\$212,500	8	8	9	8	8	\$1,273,800	RFP Response
-	Total Cost of New Portable Stadios	260,665	\$60,665	\$60,665	8	8	2	8	\$181,995	RFP Response
æ	2-Way VoicetData Mohiles & Fortables	81,122,165	\$272,965	\$99798	03	3	8	8	\$1,455,795	line 7 + June 8
8	Total 2 Way Vaice + Data	\$10,538,042	62318725	112'5228	2180,300	8	96	3	514,902,885	lune 5+ kine 6 + kine 9
=	Miscrewave Yendor Project Nanagement	21,760 ,000	\$440,000	8	3	8	2	3	52,200,000	RFP Response
2	Misnewswe Vendor Engineering Support	1380,000	000 0225	3 0	8	2	8	8	000'001'15	RFP Response
2	Microwave Vender Eagineering Integration (EMS, Routers, Alarea, Etc.)	\$1,056,000	1264,000	9	8	8	8	8	51.328,008	NP Response
Ξ	Missovave Dosumentation, Training, Sparce	2275,000	\$275,000	8	8	8	\$	8	\$550,000	KFP Response
51	IP Enabling Excisting Fiber Resources	S440,000	Ş	ş	#	8	8	8	S440,000	DP&L Extimate
2	Network Management System (Namage All Equipment and Managed by Thrustations of Distribution SCADA System)	000'1845	\$500,500	8	8	8	9	8	005'197'15	DPAL Estimate
5	Total IP Uppede Con for existing Microwave Berkheets Stan	00001010155	\$1,633,500	â	9	8	8	8	54,659,800	Response
8	Total Cant for IP Microwave to Sires without Existing Microwave Equipment	3904,590	025'011'23	8	\$	8	2	8	33,015,100	R.P. Response
6	Total Cast to Prepare Filter Substations that need Tevren	\$520,520	101,101,120	Ş	8	2	R	8	023'123'13	R.FP Response
8	Coal for Reachinal to Remote 2.Way Volce/Data Slass Not in Substantions	\$104,500	8	8	93	â	8	8	005,4012	R.T. Response
21	Cost of Broadhand Menh Caterrys on IP Bushbone Stien (Supply Communications to Subublican with out Fiber or	\$704,000	\$528,000	8	05	â	8	8	000/252/15	R.F.P. Response
2	Total Missionnee	510,442,850	003'717'83	8	2	8	8	8	\$17,715,720	sum of line 11 - line 21
2	Total Mürrownye + 2 Way Vrijse Data	\$26,980,892	\$11,121,699	\$17,255\$	8000815	8	8	8	332,518,605	line (0 + line 22
3	Abili bianagenesa, System	51,122,115	\$114°2%	5171,864	\$263,525	5286,440	1285,440	8	22,245,760	RFP Response
2	AMI Veador Project hizzagement and Engineering Support	\$1,144,000	000'869\$	\$294,000	\$396,000	\$396,000	000'96 23	8	53,619,000	RFP Response
8	Cost of AME Communication Equipment in DPL Substations	\$359,700	800'6715	202'141'1\$	\$1,240,470	81,240,470	8	8	\$4,961,880	RFP Response
7	Total Substation Preparation Costs	3574,200	006'6995	윩	ឆ	8	8	8	\$1,244,100	RFP Response and DPL Estimates
2	Coat of AMI Busideus to Substatican	000'66\$	3115,500	20	8	\$	8	9	\$214,500	DPR, Batimates
\$	ALE Backhaul Project Management	2385,000	000 1813	8	8	9	9	9	\$170,000	DPAL Estimate
8	AMI Beckhaul Engineering Support	000'0623	000'001\$	8	8	8	8	8	\$660,000.	DP&L Estimate
E	Total AMI Bucklistel Costs	\$4,245,815	\$3,056,944	51,907,096	\$66'66\$'1\$	016'225'15	\$682,440	. 8	\$13,715,240	starta of line 24 - Line 30
11	Core Telecom Outseuroed Bagineeries for AMI	\$4,785,000	21,596,550	5408, 447	\$420,700	122,5592	\$446,321	8	355,040,62	DP4L Estimate
Ħ	Total AMI Communications Capital	202,110,052	516,775,233	952,152,23	\$1,500,995	52,356,231	51,128,761	8	\$55,324,182	line 23 + line 31 + lize 32

Data: 7 Year Forceast Type of Filing: Original Work Paper Reference No(s): WPH-1.4.1 - WPH-1.4.8

l na										
Ž	Description	2009	2010	1102	2012	2013	2014	2015	Total	Source
	(4)	(8)	(0)	ê	Ê	9	(5)	(H)	(I = Sum (B.H))	0
_	<u>Summery of Capital Costs</u>									
ы	Customer Information System	811,130,380	\$17,534,290	511,882,913	80	80	20	2 0	\$40,547,582	WPH-1.4.1
•	eServices (W ebsite)	7ET,81T2	\$959,885	\$683,017	30	3 0	95	S 0	\$2,361,640	WPH-1.4.2
4	Meter Data and Load Management System	53,490,530	\$ 3,121,851	\$2,593,288	9	80	0\$	2 0	\$9,205,669	WPH-1,4.3
'n	Outage Management System (OMS)	\$0	05	\$2,225,200	\$6,963,406	\$177,268	55	95	\$9,365,874	WPH-1.4.4
-0	Distribution Management System (DMS)	20	\$0	\$2,895,355	876,299,58	\$1,326,693	\$310,279	\$134,257	\$8,658,962	WPH-1.4.5
~	Mobile Workforce Management (MWM)	20	8	8	8	\$6,897,618	\$2,233,160	\$266,344	\$9,397,123	WPH-1,4.6
~	SOA	\$1,816,943	\$348,289	\$654,465	\$873,288	\$801,145	\$437,343	20	54, 931,473	WPH-1.4.7
•	Infrastructure	56,711,799	51,176,276	\$ 0	8	8	95	93	\$7,888,075	WPH-1.4.8
_	Subtotal Capital Costs	\$23,868,389	\$23,140,591	\$20,934,239	\$11,829,071	\$9,202,724	\$2,980,782	\$400,601	\$92,356,397	sum of lines 2-9
_	AFUDC	\$264,807	141,513,747	51,040,589	\$282,565	506'625\$	\$438,061	202,8762	\$3,402,980	Schedule B-6
~	Total Capital Costs	524,133,196	\$23,814,338	\$21 ,974,828	\$12,111,736	\$9,526,633	\$3,418,843	\$779,803	\$95,759,377	line 10 + line 11
m	Summary of O&M Costs									
-	Customes Information System	\$206,987	\$140,638	\$1,524,500	\$1,349,809	\$1,673,852	\$1,675,790	\$1,677,790	\$8,249,365	WPH-1.4.1
~	eServices (Website)	51,416	\$32,336	\$197,567	\$355,566	\$355,965	116,828	\$356,803	\$1,658,031	WPH-1.4.2
6	Meter Data and Load Management System	518,337	\$146,500	\$752,863	\$918,616	2919,647	\$920,712	118'1265	\$4,598,484	WPH-1.4.3
~	Outage Management System (ObfS)	\$0	20	\$56,021	\$671,328	\$516,339	\$696,326	851'159\$	\$2,637,171	WPH-1.4.4
60	Distribution Management System (DMS)	20	8	\$45,835	\$242,323	10£'16# 5	\$492,270	\$661,237	192,933,367	WPH-1.4.5
~	Mobile Workfurce Management (MWM)	05	8	8	30	\$75,322	\$360,654	\$344,530	\$780,506	WPH-1.4.6
•	SOA	\$ 32,165	5310,862	<i>611</i> ,1623	\$554,198	\$554,820	\$555,463	\$\$\$6,126	\$2,795,433	WPH-1.4.7
-	knfrastructure	\$32,842	\$760,995	51,980,651	\$3,110,390	53,113,882	\$3,117,486	\$3,121,208	\$15,237,454	WPH-1.4.8
2	Total O&M Casts	\$293,767	51,391,330	312/38/316	\$7,202,230	\$7,701,528	175,079	58, 336, 66 2	118,889,811	sum of lines 14-2
n	Ammuel Systems Servines									
	Ansual Mainframe O&M	20	8	8	\$1,556,765	\$1,614,265	\$1,675,827	\$1,741,813	\$6,588,670	WPH-1.4.1
n	Total Anaual Systems Savings	95	8	8	S 1,556,765	\$1,614,265	\$1,675,827	\$1,741,813	\$6,588,670	líne 24

WPH-1. 4 Page 1 of 1 Witness Responsible: Karen Garrison

Data: 7 Type ol Work P	Vear Forecast Piling: Original uper Reference No(s).: N/A	-								WPH-1.4.1 Page 1 of 1 Witness Responsible: Karen Garrison
Line No	Description	2009	2010	2011	2012	2013	2014	2015	Total	Source
	(Y)	(8)	0	(Î)	(E)	Ð	(0)	(H)	(] = Sum (B:H))	0
-	Summary of CIS Capital Costs									
17	Solution Implementation Costs	\$6,142,837	\$15,107,978	\$10,079,497	05	8	95	20	216'930'315	DPL IT Budget Estimate, Customer Information System (CIS) Estimate Package
~	Labor Expenses	\$ 761,317	\$1,872,743	\$1,249,434	05	2	\$0	80	\$3,883,495	DPL IT Budget Estimate; Customet Information System (CIS) Estimate Package
4	Hardware Purchases	\$1,002,952	8	â	20	8	8	2 0	\$1,002,952	DPL IT Budget Estimate: Customet Information System (CIS) Estimate Package
\$	Software Purchases	\$3,223,274	8	0\$	20	3	20	8	5 3,223,274	DPL IT Budget Estimate: Customer Information System (CIS) Estimate Package
v	Software Maintenance	80	\$\$\$3,569	\$553,981	20	20	9	2 0	\$1,107,550	DPL IT Budget Estimate: Customer Information System (CIS) Estimate Package
۲	Subtotal	055'051'115	\$17,534,290	\$11,882,913	8	8	\$0	8	\$40,547,5\$2	sum of lines 2-6
80	AFUDC	\$127,760	\$419,987	\$752,816	8	8	3	0 5	\$1,300,563	Schedule B-6
6	Total CIS Capital Costs	\$11,258,140	\$17,954,277	\$12,635,729	20	8	30	0 5	\$41,848,145	line 7+ line 8
9	Summary of CIS O&M Costs									
Ξ	Solution Implementation Costs	\$184,236	8	\$654,865	03	8	05	ŝ	\$839,101	DPL IT Budget Estimate
12	Lebor Expenses	\$22,750	9	\$80,896	8	8	20	8	\$103,647	DPL IT Budget Estimate
2	Hardware Maintenance	20	\$140,638	\$145,105	\$145,263	5145,426	\$145,594	\$145,768	\$867,793	DPL IT Budget Estimate
Ξ	Software Maintenance	25	8	8	\$560,212	144'0955	\$361,490	\$562,161	\$2,244,704	DPL IT Budget Estimate
15	Maintenance Labor (DPL oaly)	2 0	8	\$643,633	\$644,334	\$967,585	\$968,705	2969,862	34,194,119	DPL, IT Budget Estimate
91	Total CIS O&M Costs	\$206,987	\$140,638	\$1,524,500	\$1,349,809	\$1,673,852	\$1,675,790	\$1,677,790	\$8,249,365	sum offines []-15
1	Annual Systems Savings									
<u>60</u>	Annual Mainframe O&M	80	93	3	\$1,556,765	51,614,265	\$1,675,827	\$1,741,813	\$6,583,670	DPL IT Budget Estimate (2008 O&M Mainflame Budget tab and Mainflame O&M Savings tab)
6	Total Annual Systems Savings	8	3	8	\$1,556,765	\$1,614,265	\$1,675,827	\$1,741,813	\$6,588,670	

THE DAYTON POWER AND LIGHT COMPANY CASE NO. 08:1094-EL-SSO BOOK IT - Customer Cosservation and Emergy Management Information Technology - CIS System Summary

Data: 7 Type of Work P

	Description	2009	2010	2011	2012	2013	2014	2015	Total	Source
	(Y)	(a)	0	(a)	(E)	Ð	(0)	(I)	(I = Sum (B.H))	Θ
Sur	ummer of estervices Capital Costs									
Sol	olution Implementation Costs	5348,411	5839,271	\$592,926	2 0	20	2 0	3	\$1,780,609	DPL IT Budget Estimate; eServices Estimate Paci
3	abor Expenses	543,181	\$104,034	\$73,498	0	95	8	8	\$220,712	DPL IT Budget Estimate; eServices Estimate Pach
Ha	ardware Purchases	52 30,602	3	80	2 0	8	8 0	8	\$230,602	DPL IT Budget Estimate; cServices Estimate Paci
3	stware Porchases	\$96,544	8	\$0	80	8	3 0	20	\$96,544	DPL IT Budget Estimate; eServices Estimate Paci
Sot	stware Maintenance	80	316,583	\$16,593	8	9	\$0	9	223,177	DPL IT Budget Estimate; eServices Estimate Pac
Sci	sbiotal	\$718,737	\$959,885	\$683,017	8	35	20	0	\$2,361,640	sum of lines 2-6
ΥĿ	FUDC	\$5,690	121,767	\$40,318	80	3	20	9	\$67,775	Schedule B-6
ă,	xal eServices Capital Costs	\$724,427	\$981,652	\$££'6Z4 \$	05	8	80	04	\$15,429,415	line 7+ line 8
ans	immary of eServices O&M Costs								·	
Sol	lation Implementation Costs	\$3,041	8	\$2,934	2	05	8	50	55,974	DPL IT Budget Estimate
Lat	thor Expenses	\$375	20	1362	3	05	8	9 8	\$738	DPL IT Budget Estimate
Ηw	urdware Maintenance	80	532,336	\$33,363	\$33,399	\$ 33,437	533,475	\$13,515	\$199,526	DPL IT Budget Estimate
Sof	utuare Maint en ance	\$0	2 0.	8	8	8	8	\$0	8	DPL IT Budget Bstimate
Ma	aintenance Labor (DPL only)	\$0	\$0	\$160,908	\$322,167	\$122,528	\$322,902	\$323,287	264'15 1'15	DPL JT Budget Estimate
٦ ۲	viai eServices O&M Costs	53 416 53	517 116	6107 ECH						

THE DA YTON POWER AND LIGHT COMPANY CASE NO. 08-1094-EL-550 BOOK II - Customer Conservation and Energy Management Information Technology - eServices Summary

Date: 7 Year Forcest Type of Filing: Original Work Paper Reference No(

WPH-1.4.2

THE DAYTON POWER AND LIGHT COMPANY	CASE NO. 08-1094-EL-SSO	BOOK II - Customer Conservation and Energy Management	Information Technology - MDM & LMS Systems Summary
------------------------------------	-------------------------	---	--

Data: 7 Year Forcest Type of Filing: Onginal Work Paper Reference No(s).: N/A

1

WPH-1.4.3 Page 1 of 1 Witness Responsible: Karen Garrison

Line										
Ś	Description	2009	2010	2011	2012	2013	2014	2015	Total	Source
	(Y)	ê	0	ê	(E)	£	(D)	£	(] = Sum (B:H))	(1)
-	<u>Summary of MDM & LMS Capital Corre</u>									
ы	Solution Implementation. Costs	\$\$72.780	\$ 2,334,745	\$2,025,391	20	8	8	05	55.2 32.916	DPL IT Budget Estimate; Meter Data Management (MDM) & Load Manasement (JMS) Estimate Package
	Labor Expenses	•			;		:			DPL IT Budget Estimate: Merer Data Management (MDM) &
~		\$130,471	\$332,815	5288,119	80	8	20	80	\$751,405	Load Management (LMS) Estimate Package
4	Hardware Purchases	\$988, 148	\$65,609	\$0	20	\$0	8	05	\$1,053,758	DPL IT Budget Estimate, Meter Dala Management (MDM) & Load Management (LMS) Estimate Package
~	Software Purchases	\$ 1,499,13 1	\$131,219	8	80	05	80	23	\$1,630,350	DPL IT Budget Estimate, Meter Data Management (MDM) & Load Management (LMS) Estimate Package
v	Software Mainteansee	8	\$257,462	\$279,778	\$0	20	20	80	142,7622	DPL IT Budget Estimate, Meter Data Management (MDM) & Load Management (LMS) Estimate Package
	Subtreal	5 3,490,530	53,121,851	882'665'2\$	05	8	3	9	\$9,205,669	sum of lines 2-6
*0	AFUDC	\$4 1,095	\$68,900	2+0'151\$	20	0 5	95	0\$	1281,037	Schedule B-6
¢.	Total MDM & LMS Capital Costs	\$3,531,625	53,210,751	\$2,744,330	\$0	\$	80	\$ 0	\$9,486,706	line 7+ line 8
5	Summery of MDM & LMS O&M Costs									
Ξ	Solution Implementation Costs	\$16,321	\$7,065	\$104,904	9	30	0 %	05	\$128,290	DPL IT Budget Estimate
13	Labor Expenses	\$2,015	\$872	\$12,959	80	30	3	0\$	\$15,847	DPL IT Budget Estimate
13	Hatdware Maintenance	80	\$138,562	\$152,275	5152,441	\$152,612	5152,788	5 152,971	5901,649	DPL IT Budget Estimate
4	Software Maintenance	8	8	8	\$282,925	\$283,243	\$283,571	606,E822	\$1,133,647	DPL IT Budget Entimate
15	Maintenance Labor (DPL only)	2	30	\$482,725	\$483,250	S4 83,793	3484,353	5484,931	\$2,419,051	DPL IT Budget Estimate
91	Total MDM & LMS O&M Costs	5 18,337	\$146,500	\$752,863	\$918,616	\$919,647	\$920,712	118'1265	\$4,598,484	sum of lines 11-15

Dets: 7 Year Forecast Type of Filing: Original Work Paper Reference No(s).: NA

WPH-1.4.4 Page 1 of 1 Witness Responsible Karen Garrison
THE DAYTON POWER AND LIGHT COMPANY	CASE NO. 08-1094-EL-SSO	BOOK II - Customer Conservation and Energy Management	Information Technology - DMS System Summary
------------------------------------	-------------------------	---	---

Dua: 7 Year Forecurt Type of Tiling: Original Work Paper Reference No(s).: NVA

K. E	Description	2009	2010	107	2012	2013	2014	2015	Total	Source
	(Y)	ê	0	(i)	(a)	E	(0)	Ð	(I = Sum (B.H))	6
-	Summary of DMS. Capital Costs									
ы	Solution Implementation Costs	8	3	\$1,145,620	\$3,387,494	\$1,022,456	\$124,043	\$119,238	\$5,798,851	DPL IT Budget Estimate, Distribution Maragement System (DMS) Estimate Package
5	Labor Expenses	20	2	5142,009	\$438,827	\$138,049	116'615	\$15,019	\$753,815	DPL IT Budget Estimate. Distribution Management System (DMS) Estimate Package
प	Hardware Purchases	2	0\$	\$622,899	â	8	8	3	\$623 [,] 899	DPL IT Budget Estimate, Distribution Management System (DMS) Estimate Package
'n	Software Purchases	0	20	5 984,828	8	8	\$	8	\$984,828	DPL IT Budget Estimate, Disztibution Management System (DMS) Estimate Package
νū	Software Maintenance	\$0	25	0 3	\$166,057	\$166,188	\$166,325	8	\$498,570	DPL IT Budget Estimate. Distribution Management System (DMS) Estimate Package
٢	Subsocal	8	8	\$2,895,355	\$1,992,378	\$1,326,693	\$310,279	\$134,257	\$8,658,962	sum of lines 2-6
œ	AFUDC	80	9	\$25,587	\$95 ,178	\$155,023	\$176,043	\$184,585	\$636,516	Schedule B6
a	Total DMS Capital Costs	8	3	\$2,920,942	\$H,087,556	51,481,716	5 486,322	\$318 ,942	59 ,295,478	line 7+ line 8
0	Summary of DMS ORM Costs									
И	Solution Inplementation Costs	8	3 0	340,796	\$136,962	04	2 0	8	\$177,758	DPL. IT Budget Estimate
12	Labor Expenses	80	\$0	\$5,040	\$16'313	8	3 0	2	\$21,959	DPL IT Budget Estimate
13	Hardware Mainteaance	<u>8</u>	8	20	588,441	\$88,541	\$\$8,643	588,74 9	\$354,374	DPL IT Budget Estimate
ł	Software Maintenance	8	3 0	3 0	8	20	3 0	\$168,379	\$168,379	DPL IT Budget Estimate
15	Maintenance Labor (DPL only)	8	8	2 5	8	\$403,161	\$403,627	\$404,109	\$1,210,897	DPL IT Budget Estimate
91	Total DMS O&M Costs	8	%	\$45,835	\$242,323	101,1012	\$492,270	\$661,237	\$1,933,367	sum of lines 11-15

WPH-1.4.5 Page 1 of 1 Witness Responsible: Karen Garrison

Data: 7 Year Forecast Type of Filing: Original Work Paper Reference No(s): N/A

WPH-1.4.6 Page 1 of 1 Witness Responsible: Karen Garrison

Line No.	Description	2009	2010	2011	2012	2013	2014	2015	Total	Source
	(A)	(8)	Q	ê	9	(J.)	6)	(H)	(I = Sum (B.H))	9
-	Summary, of MWM Capital Costs									
ы	Solution Implementation Costs	3 0	5	30	8	54,094,617	81,750,098	8	55,844,715	DPL IT Budget Estimate, Mobile Workforce Management (MWM) Estimate Pachage
m	Labor Expenses	0\$	8	\$	20	\$507,567	\$216,943	05	\$724,510	DPL IT Budget Estimate, Mobile Workförce Management (MWM) Estimate Package
4	Hadware Purchases	\$0	្ល	9 0	9 5	\$717,403	\$	20	5717,403	DPL IT Budget Estimate, Mobile Workforce Management (MNM) Estimate Package
'n	Software Purchases	3 0	8	20	5	\$1,578,031	0\$	95	\$1°23,031	DPL IT Budget Estimate, Mobile Workforce Management (MWM) Estimate Package
Q	Software Maintenance	8	8	20	8	80	\$266,119	\$266,344	\$532,464	DPL IT Budget Estimate, Mobile Workforze Management (MWM) Estimate Package
٢	Subsca	8	3 0	8	8	\$6,897,618	32 ,233,160	\$266,344	521,792,62	sum of lines 2-6
70	AFUDC	8	2 0	8	20	\$68,673	\$163,421	\$194,511	\$426,605	Schedule B-6
6	Total MWM Capital Coets	8	8	8	0 5	\$6,966,291	\$2,396,581	\$460,855	39,823,728	line 7+ line 8
0	Summary of MWM O&M Costs									
11	Solution Implementation Costs	8	9	05	8	\$67,040	\$122,491	8	\$189,531	DPL IT Budget Estimate
12	Labor Expanses	2	2 0	8	8	58,282	\$15,132	20	\$23,414	DPL IT Budget Estimate
£	Hardware Maintenance	3	9	3 5	09	20	5101,943	\$102,064	\$204,007	DPL IT Budget Estimate
14	Software Maintenance	3	8	8	8	8	0 \$	8	8	DPL II Budget Estimate
15	Maintenance Labor (DPL only)	8	8	8	8	%	\$121,088	\$242,465	\$363,554	DPL II Budget Estimate
16	Total MWM O&M Costs	8	С¢	8	8	\$75,322	\$360,654	\$344,530	\$780,506	sum of lines 11-15

Data: 7 Year Forecast Type of Filing: Original Work Paper Reference No(5).: N/A

WPH-I.4.7 Page 1 of 1 Witness Responsible: Karen Garrison

Line No.	Description	2009	2010	2011	2012	2013	2014	2015	Total	Source
	(A)	(8)	(C)	ê	E	£	(0)	(H)	(I = Sum (B:H))	0
1	Summary of SOA Capital Costs									
н	Solution Implementation Costs	\$351,550	\$309,878	\$582,287	\$776,975	\$712,788	501'5885	8	53,122,586	DPL IT Budget Estimate, Service Oriented Architecture (SOA) Estimate Package
'n	Labor Expenses	\$43,570	\$38,412	\$ 72,179	\$96,313	\$88,357	\$48,234	8	X3 87,064	DPL IT Budget Estimate; Service Oriented Architecture (SOA) Estimate Package
4	Hardware Purchases	\$520,748	80	5	8	20	80	3	\$5.20,748	DPL IT Budget Estimate; Service Oriented Architecture (SOA) Estimate Package
د ه	Software Purchases	\$201,075	8	\$0	30	8	30	8	\$901,075	DPL IT Budget Estimate; Service Oriented Architecture (SOA) Estimate Package
v	Software Maintenance	24	30	20	8	95	80	5	05	DPL IT Badget Estimate: Service Oriented Architecture (SOA) Estimate Package
٢	Subtotal	\$1,816,943	5348,289	\$654,456	\$873,288	\$801,145	\$437,343	\$0	54 ,931,473	sum of lines 2-6
50	Arunc	\$23,813	\$13,648	54 5,418	\$63,223	550'585	\$98,483	\$0	\$347,618	Schedule B-6
6	Total SOA Capital Costs	\$1,840,756	5381,937	188'6695	\$936,511	\$884,178	\$535,826	05	160'612'55	line 7+ line 8
10	Summary of SUA O&M Costs									
Ħ	Solution Implementation Costs	\$28,648	\$76,741	8	2 0	8	20	8	\$105,389	DPL IT Budget Estimate
12	Labor Expenses	\$3,538	59,476	8	3 0	8	20	20	\$13,014	DPL IT Budget Estimate
13	Hardware Maintenance	8	\$73,021	\$75,241	\$75,423	7 75,507	\$15,595	\$75,685	3450,571	DPL IT Budget Estimate
14	Software Mai ntenance	8	5151,623	\$156,439	5156,609	\$156,785	\$156,956	\$157,154	\$935,575	DPL IT Budget Estimate
15	Maimenance Lahor (DPL only)	8	8	8	\$322,167	5322,528	2057203	\$323,287	\$1,290,884	DPL, IT Budget Estimate
19 1	Total SOA O&M Costs	\$32,185	298,0152	644'164\$	\$\$54,198	\$554,820	\$555,463	\$556,126	\$2,795,433	num of lines 11-15

THE DAYTON POWER AND LIGHT COMPANY	CASE NO. 08-1094-EL-SSO	BOOK II - Customer Conservation and Energy Management	Information Technology - Infrastructure Summary	
------------------------------------	-------------------------	---	---	--

Data: 7 Year Forecast Type of Filing: Original Work Paper Reference No(s).: N/A

WPIF-1.4.8 Page 1 of 1 Witness Responsible: Karen Garrison

Line No.	Description	2009	2010	2011	2012	2013	2014	2015	Total	Source
	(v)	Ð	0	í.	Ē	(E)	(9)	(H)	(] = Sum (B:H))	0
-	Summary of Infrastructure Capital Costs									
7	Solution Implementation Costs	\$2,021,828	\$1,046,549	2 0	8	30	20	95	\$3,068,376	DPL IT Budget Estimate; Infrastructure Estimate Package
	Labor Expenses	\$250,577	\$129,727	\$0	8	20	30	ŝ	\$380,304	DPL IT Budget Estimate; Infrastructure Estimate Package
4	Flardware Purchases	\$2,673,287	05	20	8	80	05	8	\$2,673,287	DPL 17 Budget Esúraste; Infrastructure Estimate Package
.	Software Purchases	51,766,107	8	95	ß	95	05	8	\$1,766,107	DPL IT Budget Estimate; Infrastructure Estimate Package
ų	Software Maintenance	8	9	3 0	ន	8	8	8	8	DPL IT Budget Estimate; Infrastructure Estimate Package
2	Subtoral	\$6,711,799	51,176,276	3 0	9 5	8	8	8	\$7,888,075	sum of lines 2-5
85	AFUDC	\$66,449	\$109,445	leat	S475	1 825	5114	8	5177,704	Schedule B-6
0	Total Infrastructure Capital Costs	\$6,178,248	51,285,721	166\$	\$475	\$284	\$114	8	\$\$,065,779	line 7+ linc 8
0	Summary of Inframenter OAM, Costs									
11	Solution Implementation Costs	212,922	871,978	0\$;;	8	20	\$0	\$108,410	DPL IT Budget Estimate
13	Labor Expenses	\$3,610	59,777	3 0	3	8	3 0	8	\$13,387	DPL IT Budget Estimate
8	Hardware Maintenance	95	658'94 6\$	\$386,765	3387,186	5387,621	\$388,069	\$388,533	\$2,313,033	IPPL IT Budget Estimate
Ξ	Software Maintenance	8	181'160	\$306,620	\$306,953	\$62,705\$	\$307,654	\$308,021	\$1,833,726	DPL IT Budget Estimate
15	Maintenance Labor (DPL only)	5	20	51,287,266	\$2,416,251	\$2,418,963	52,421,763	\$2,424,655	\$10,968,898	DPL IT Budget Estimate
16	Total Infrastructure O&M Costs	532,842	\$760,995	159'086'15	060'011'03	23,113,882	\$3,117,486	\$3,121,208	\$15,237,454	sum of lines 11-15

THE DAYTON POWER AND LIGHT COMPANY	BOOK II - Customer Contervation and Energy Management
CASE NO. 05-1094-EL-SSO	AMI Meter O&M

Duta: 7 Year Fored Type of Filing: On Work Paper Refere	ass ignal race No(s): n/a									WPH-I.5 Page 1 of 1 Witness Responsible: Jeff Teuscher
Line No.	Description	2009	2010	2011	2012	2013	2014	2015	Total	Source
	(Y)	1	0	ê	Ð	(F)	6	Ð	(] = Sum (BHJ)	Ð
1	AMI related Call Center Volume	5,208	26,040	39,060	59,892	65,100	65,100	858	261,258	DP&L Estimate
7	Average Cost per Cali	52.42	\$2.42	\$2.42	\$2.42	\$2.42	52.42	5 2.42	52 ,42	DP&L Estimate
	Total Call Center Costs	\$12,603	210'59\$	\$25,948	\$144,939	3 157,542	\$157,542	\$2,077	632,245	line 1 * line 2
-	Outsourced Engineering	\$175,000	\$356,439	\$367,132	\$378,146	\$283,610	\$283,610	5283,610	\$2,127,548	DP&L Estimate
~	Additional Engineers	-	~	47	14	69	4	14	n/a	DP&L Estimate
ę	Average Engineeting Salary (Loaded)	\$102,123	5105,187	\$108,342	655'111\$	SI 14,94 0	\$118,389	\$121,940	S 121,940	DP&L Estimate
۲	Total Engineering Costs	\$102,123	5210,373	5216,685	\$81'622\$	188'677\$	TTT,852	\$243,880	\$1,462,904	line 5 * line 6
8	Number of Additional Telecom and System Operation. Techs	N	ť	3	m	m	en.	-	n/a	DP&L Estimate
Q,	Average Technician Salary (Loaded)	625'801 \$	5111,837	5 115,192	\$118,647	\$122,207	\$125,873	\$129,649	\$ 129,649	DP&L Estimate
10	Total System Tech Costs	\$217,158	015'5655	\$345,575	2355,942	\$366,621	\$377,619	\$129,649	\$2,128,074	line 8 • line 9
11	Telecontrutaication Equipment Maintenance Cost	50	\$309,945	\$533,104	\$672,322	\$\$11,022	3 94	51,001,213	54 ,279,000	Approvinssely 7% of cumulative AMI infrastructure Costs (squipment maintenance expenses only)
12	AND ORM	5506,885	\$1,275,284	\$1,557,022	\$1,774,535	\$1,848,675	\$2,006,942	\$1,660,429	\$10,629,771	line $3 + 1$ ine $4 + 1$ ine $7 + 1$ ine $10 + 1$ ine 11
13	GIS Maimenance	\$ 0	\$2 5 ,975	\$262,500	2350,000	\$437,500	\$437,500	\$437,500	\$1,914,375	DP&L Estimate
¥1	Totai AMI Meter O&M Cost	5506,885	\$1,284,659	\$1,819,522	\$2,124,535	\$2,286,175	5 2,444,442	\$2,097,929	\$12,564,146	line 12 + line 13

THE DAYTON POWER AND LIGHT COMPANY CASE NO. 08-1094-EL-580 BOOK II - Customer Conservation and Energy Management AMI Communications O&M

Data: 7 Year Forecast Type of Filing: Original Work Paper Reference No(s): n/a

WPH-1.6 Page 1 of 1 Witness Responsible: Jeff Teuscher

Source	9	ıf cumulative Capital (equipment maintenance expenses, veludes fully loaded Additional DPL headcount, etc.)	of cumulative Telco Capital Equipment (not including Vendor project management and Engineering)	Line] + Line 2
Total	((H-31mm (B-H))	5% r 6,244,543 li	3% 3,896,537	\$10,141,080
2015	E	1,067,288	\$720,786	120'884'1S
2014	(0)	6EE'950'1	\$720,786	\$1,777,125
2013	(L)	1,045,709	\$720,786	\$1,766,495
2012	(E)	1,013,974	\$720,786	S1 ,734,760
2011	ê	980,130	\$720,786	\$1,700,916
2010	Q	807,523	1097622	\$1,100,130
2009	ê	273,579	2 0	\$273,579
Detcription	(?)	2-Way Voice and Data Maintenance Cost	Backbone Telecommunication Maintenance Cost	Total O&M Cost
Line No.		-	н	m

•

Dana: 7 Year Font Type of Filing: On Work Paper Refer	nteaust Migituel sectore Nou(s).: Inis									W7H-1.7 Wares Responsible Witness Responsible Met Teacher
R C	Description	5002	2010	2013	2012	2013	2014	2015	Total	Source
•	(A)	8	ē	ê	Ø	6	0	ŧ	((H,E),mu(S =))	6
-	Baseline meter mading expense	\$3,267,000	000'/97'6\$	\$3,272,000	000 19E ES	\$3,466,000	100'595'65	S3,668,000	цų	DP&L Estimate
4	Average % of meters installed during year	Χ̈́.	*	20%	3996	63%	88%	2001	п/а	DP&L Esumate
n	Reduction in meter reading expense	\$32,670	\$228,650	\$638,040	\$1,296,295	. \$2,166,250	915,011,6 2	COO 899 ES	SI1,149,321	Jine 1 + Line 2
-	Average revenue per residential customer	\$1,073	\$1,073	\$1,073	51,073	51,073	£10,12	51,073	rva.	2006 residential revenues# residential customers
÷	forpaovencen factor - reduction in energy (left due to AMI)	ž	%	*	×1	%]	%1	1%	rı/a	DP&L Estimate
9	Average # of meters installed	802,2	36,436	955'101	200,503	005'686	453,700	521,698	e/a	DP&L Evimete
7	Reduction in energy theft	\$27,950	193,647	\$19'575'018	1 076 061	\$1,746,852	\$2,443,593	\$2,799,569	169'92'8'8	kine 4 + time 5 + time 6
-	Total Cost of Ursellected Accounts	000'205\$	\$307,000	\$307,000	\$307,000	5307,000	000'1003	000/1005	₽/U	DP&L Estimate
e	Reduction in uncollected accounts	\$3,070	069'123	\$98'66\$	\$116,195	\$191,875	\$268,625	000'L01\$	12040130	tine 3 + tine 3
9	Outsign Chrin Cost	\$138,756	\$142,919	\$147,206	239'ISIE	\$156,171	\$160,836	\$165,682	μ. Α	DPAL Estimate
=	Reduction on no ounge calls	51 ,388	\$10,004	\$28,705	\$58,375	109,742	\$140,74 9	\$165,682	505'205\$	time 2 * Une 10
ü	Potential Workmarts Comp Sarriage	\$600,000	\$600,000	\$600,000	\$600,000	000'009\$	000'0095	\$600,000	Ψ.	DP&L Estimate
5	Reduction in Worker's Comp Costs	\$6,000	\$42,000	\$117,000	\$231,000	1375,000	\$525,000	2600,000	\$1,896,000	tine 2 * tine 12
<u>a</u>	Additional Revenue due to elimination of electro-mechanical meters	0.40%	0.40%	0.40%	0,40%	0.40%	0.40%	0.48%	r/a	D.P.R.E. Estimate
51	Additional Revenue with improved bill accuracy of new metern	096 125	\$156,51\$	5436,014	\$360,849	\$\$,397,482	\$1,956,475	5576273	EEE,980,72	liane 4 * linc á * line 14
2	Decretes in Billing Processing (Significant reduction in emergion processing costs)	\$ 8 3,000	000'585	285,000	000'53\$	\$45,000	\$45,000	\$65,000	£	DPAct, Galimane
11	Reduction of bill processing (Lown Exceptions)	\$\$50	056,83	\$16,575	\$17,55\$	3 53,125	\$74,375	0a0'53\$	\$268,600	tine 2 ° has 16
18	Reduction in Field Service Costs (Lower Field Service Origin)	51,100,000	S1,100,000	51,100,000	000'001'15	\$1,100,000	\$1,100,000	\$1,100,000	R,43	- DPALL Externate
61	Reduction of Field Service	000'11S	000'115	5214,500	005°EZHS	1687,500	005'2965	\$1,100,000	\$3,476,000	kine 2 * line 18
я	Reduction in arrange capital costs	\$25,000	\$25,008	000/575	523,000	\$25,090	\$25,000	\$25,000	μ,	DP&L Betimate
21	Defemal of Capital Costs	0628	052,15	54,875	53,625	\$15,625	121,875	\$25,000	000/6/15	Line 2 * time 20
ជ	Reductins in Call Center Costs (Rettor Ounge Information and Lovert Etiling Inquiries)	2006,000	\$206,000	\$206,000	206,000	\$206,080	\$206,000	\$206,000	5	DPAL Buinar
2	Reduction of Call Center Costs (Fower Calls and shorter calls)	22,060	514,420	04.1'0 # 5	015648	\$128,750	\$160,250	1206,000	096'059\$	line 2 + line 22
3	Potential depresses in seenal Lossi Research	000'007\$	\$100,000	000'0015	000'0015	000'001\$	000'001\$	100'001\$	đ	D P & L Testimeta
2	Redaction of load research costs	21,000	17,000	006'61\$	\$38,500	\$62,500	065,738	\$100,000	2315,000	ling 2 * ling 24
Å	Reduction of Cests to deliver power to unoccupied premises.	000'515	\$25,000	009'555	235,000	5 35,000	335,000	000 555	ł	DP&L Estimate
12	Recherchen of costs from power delivered to mnecorpled premises	8339	\$2,490	56,825	517'A15	528'125	529'065	\$35,000	\$110,600	line 2+ tine 26
\$	Rechtschan in cont to that new meter shipuetas as they are in DPL	000'025	000'063	000'825	20,000	\$20,000	\$20,000	010'02\$	ł	DP&L Estimate
2	Rathetion of instar wedge cost for now motor physicans	0025	\$1,400	006,52	21,700	\$12,500	\$17,500	\$20,600	\$63,200	Line 2 * time 30
8	Total AMU Benefits	271 6013	5764,320	\$2,130,987	54 ,245,609	96,936,941	\$9,830,443	200'055'115	\$32'32B'324	time 3 + time 7 + time 9 + time 31 + time 13 + time 15 + time 17 + time 19 + time 21 + time 23 + time 25 + time 27 + time 39

Data: 7 Year Forecast Type of Filing: Original Work Paper Reference No(s): 11/2

WPH-LS Page 1 of 1 Witness Responsible: feff Teuscher

	ĺ	Com	Exis Main	Redi	Ğ	Poter	Tota	Total
Description	(A)	pletion of Core Telecom Rotlaut (End of Year)	ing 2 Way Radio System and Microwave System nearce Cost	ection in Existing Two Way Radio System and Existing oware System Maintenance	pletion of Core Telecom Rotiout (Midyear)	nial Field Crew Savings (c.g., fuel, overtime)	Field Crew Savings	AMI Communications Benefits
2009	(B)	%0	\$143,000	\$0	š	\$200,000	80	8
2010	0	14%	\$143,000	\$20,423	14%	\$200,000	528,563	\$48,986
2011	(0)	46%	\$143,000	\$66,132	46%	\$200,000	\$ 92,493	\$158,625
2012	(E)	82%	\$143,000	\$117,210	82%	000 [°] 002X	\$161,930	\$281,139
2013	(£)	100%	5143,000	S143,000	100%	\$200,000	\$200,000	\$343,000
2014	6	100%	\$143,000	\$143,000	100%	\$200,000	8200,000	\$343,000
2015	(H)	100%	\$143,000	5143,000	100%	2200,000	\$200,000	\$ 343,000
Total	([= Sum (B:H))	n/a	e/u	\$6 32,765	8/11	a/a	\$884,986	\$1,517,750
Source	ε	DP&L Rollout Schedule	DP&L Estimate	line 1 * line 2	DP&L Rollour Plan	DP&L Estimate	line 4 # line 5	line 3 + line 6

.

Dem: Type Work:	7 Yaar Pisooset of Elitype Onginal Paper Reference NEC(): #4															WPH-IS Paulo IS1 Witaua Responsibit: Keina fall
÷ ż	benezőjetken	2009	3010	2011	2012	2013	2014	2015	2016	2017	2018	6102	2020	2021	202	2023 Source
	(y)	(B)	ŝ	(q)	(2)	(E)	Ð	(H)	(1)	(1)	(x)	(r)	(W)	(M)	6	(1) (4)
	Direct Load Control Constants I International Constants and Constants I International Constants I International Constants Constants (Constants Constants Con	02 02 02 02 02 02 02 02 02 02 02 02 02 0	01E'9645 514'5915 08 10E'9645	\$91,916 \$0 \$1,53,606 \$61,423 \$1,506,946	52,529,677 815,045 52,298,235 \$152,158 \$152,528	5673,498 563,310 564,725 515,754 516,725 516,725	51,612,553 5297,755 525,797 542,556,59 58,666,234 5	52,658,220 \$825,593 \$8,072,316 \$8,072,316 \$8,072,319 \$12,319,237	202.7597.202 102.121.002 102.5282 100.5282 100.5282 100.5282 100.5282 100.5282 100.5282 100.5	\$4,\$25,235 \$2,459,706 \$10,243,112 \$11,96,846 \$11,415,899	\$5,510,724 \$1,405,904 \$1,405,904 \$1,443,209 \$21,728,515	56, 556, 430 54, 354, 824 512, 634, 623 51, 716, 626 51, 716, 626	£1,665,472 \$5,384,982 \$1,04,119,237 \$2,006,581 129,176,272	58,241,026 56,491,026 515,495,066 513,495,555 513,465,555	669'828'68 881'20'29'28 624'29'29'28 624'29'28	11,403,500 WF14-1.10 18,801 68,00 PF04-1.10 18,261,154 VF04-1.10 18,261,164 Band F14-1 22,261,164 Band F14-1 NBV refixed for what as first 7
0 8 3 2 2 3 X 3	Control of the second state of the second s	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	E) 14928788 04276895 045	02 02,206,405 51,426,403 51,426,412	11, 121, 121 519, 296, 248 51, 757, 135 233, 385, 335	22,336,105 211,055,223 21,026,000 224,020 224,020 224,020	\$4,425,097 534,971,814 \$5,913,169 \$44,970,080	708,000,000,000 708,000,000,000 108,001,000	410,215,233,202 545,202,502 565,232 565,235	511,314,972 \$54,793,469 \$6,500,154 \$76,608,595	\$13,604,476 \$68,300,574 \$5,708,669 \$88,515,719 \$	2 265'120'101 196'120'121' 2 26'120'121' 2 265'120'101	\$18,579,923 \$\$0,358,267 \$7,146,269 \$1,15,084,440	521,278,432 599,574,245 57,378,762 1.28,228,540	\$24,126,299 \$11,335,063 \$7,612,735 \$143,074,000	01.1-1494 WPM-110 25.125.4291 WPH-110 25.125.4201 001.1-1470 26.111.8019 Dotte: 011.12 26.17.17.182
2020A	 Restriction and the second seco	16,542,090 514,405 69														DPat. system disa FERC system disa like 11 / Size 9
# #	a Average residential customer lensefs per minute from relaced outleges	10.01														"Churselerizing und Quandifying the Sociotal Benefits Attributable ta Sasart Metaring Innectuserta." EPRI,
8	. તેમક્કારી ઉલેકે આગળાના કાર્યકારી છેક સંદરક્ષ દિવસા ત્વેલકથી આગ્રાકર	a														2008. "Characteriera and Quantifying the Societal Secondar Attributable to Smurt Motoring Areatments." EPRL
3	।	ŝ														2008. "Characterizing and Quantifying the Smoleul Benefits Actobutable to Beaut Metaring Investments." EPRI.
***	 Total Rendermind Concrements Total Sensiti Call Conference Total Large Call Conference 	613,624 122,72 122,72	152'1 268'25 158'1	506'1 085'86 246'10	474,557 59,269 1,925	477,147 59,967 1,946	172,742 50,573 1,971	466'1 486'19 1966'1	2,0982 62,109 2,0918	482,637 62,840 2,041	484,278 62,590 2,065	455,934 456,143 2,098	487,596 65,086 2,114	419,264 65,852 2,139	490,937 66,627 2,164	902,6(10 DP&L.Commarr.Foretal 87,4(11 DP&L.Commarr.Foretal 7,4(10 DP&L.Commarr.Foretal 7,190 DP&L.Commarr.Foretal
*********	Single Give Barcoversents 5. So incoversents on solution with advance bits 5. Incoversents on solutions 7. Incard Owaye Reductions Transl Owaye Reductions DA Relation per Communer (incomes) DA Relation per Communer (incomes) DA Relation per Communer (incomes)	46 7 7 7 7 1 7 1 7 1 7	¥ E	4	50 1970	4 1 10.0	355 77.0	17%	#2Z #42	37% 5.67	2014 Let	ž,	469 850	264 264	20% 87.51	DPAL Extinues DPEL Entinesse Ins 20 / Inu 31 TRC Din 1932 Unc 31 - Inu 34
86389444 8638	Add Intercontential Range of Foundaria/Mathabitay Improvements Average Estimative of Radiability Improvements Average Estimation pro Customer (minutes) Add Rubines Stockadas	2011-301 2012-301 2010-301 2012-301 200	12% 12	255	50% 11.3	73%. 2.6	1001 3.6	100% 3.5	100% 3.5	2001 1	4001 8.E	1001 21	36001 8:5	100 14 3.5	100% 3.5	Vendor Enlimente (Presnut, Sallivan & Co) Average of Vendor Estimates I and 20 Music Estimates 100% ANI Rollow Plan 3.5 Nos 40 * Ens 41
14786 40 80	Registrating Semanary Trad Charge Sciences per Constraint (minetes) Trad Charge Sciences Value as Residential Constrantors Tradi Charge Reduction Value as Resid Cell Constrantors Tradi Charge Reduction Value as Large Cell Constrantors Tradi Value of Constraint Anti as Large Cell Constrantors Tradi Value of Constraints	121425 12145 1214	7.0 2.05,602,13 2.05,602,13 2.05,602,13	14 \$28,635 51,737,913 \$611,435 \$611,435 \$611,435	2.2 2.4,422 2.2,924 2.2,924 21,024 210,270,42	3.2 2.61,013 2.61,140,613 2.1,440,723 2.51,643,723	11 11 11 11 11 11 11 11 11 11 11 11 11	6.1 8117,436 84,012,336 1. 942,547,138 1. 942,547,138 1. 801,719,013	74 \$147,584 \$18,53,090 \$15,53,090 \$25,532,007	1.9 1.77,036 512,343,014 512,343,014 514,365 514,365	10.1 5211,050 514,752,531 514,752,531 52,146,531 53,146,531	121 200,2003 200,200000000	0.41 \$279,528 561,62,236 561,622,236 561,622,520 561,622,520 561,520,520,520,520 561,520,520,520,520,520,520,520,520,520,520	8.81 \$300,700 \$22,740,522 \$22,860,622 \$28,860,952	17.3 2341,918 234,721,82 136,000,83 232,800,136 232,800,136	(8, 1im 23 + 1im 42 \$\$37,150 1im 22 + 1im 42 \$\$7,531 540 1im 22 * 1im 45 * 1im 45 \$\$9,431,600 1im 24 * 1im 27 * 1im 45 \$\$7,101,117 1im 01 1im 40 1im 45
ដ្ឋភ្លេង	Mrs. Statistics and August Mrs. Statistics from Demond Response Mrs. Statistics from Science Allighteding Reflectors A 2005 Review Resp. Statistics Microsch Reflectors	- - - - - - - - - - - - - - - - - - -	10.121 121.121 1212	23,442 210,889 210,889 4,036	43,971 1995,711 3,500	76,864 559,525 559,53	90,436 496,562 8,319	92,540 580,433 25,623	94.756 673,948 41,688	96,895 768,747 58,147	90,929 864,075 75,006	101,002 916,929 90,505	100,250 1,862,548 100,209	106.541 1,146.743 121.099	107.625 1.242.021 135.683	109,833 DP&L Every Efficiency & Demued Revrouse Plan 109,833 DP&L Every: Efficiency & Demued Revrouse Plan 130,033 DP&L Every Cristing
	 Total MYA Survey. Average CCT Basilous per MYA Total COC Basilous Average Valmed COC Basilous 	55,014 1.422 56,347 16,5	141,216	244,020	345, 190 357, 3 96	ef6,723 447,926	915,317 808,328	246,895 21,842	140,0018	923,900 P45,703	1,038,009 1,062,462	1,175,815	511,200,J	54C,477.1	0502,002,1	1,397,486 Gao \$4 + Gao \$5 + Kino \$6 1,897,486 Gao \$1 Emissions 1,833,007 Lan \$1 * Eno \$1 1,833,007 Lan \$1 * Eno \$1 Architecturkan \$5 Meant Maxweine Investments * EPOL \$
333	Traul COS Valve 1 Net Premat Value	947219'508'583 190'6265	enthers	HOT YOD HA	20'245'65	917,050,01	1016/25/0015	: 95F'H8113	\$13,679,77¥	315,644,996	012,529,640	656'009'613	621,484,673	155 607 123	113,630,822	2008. 520,577,9416 Une 59.º Une 60 VBV of Une 62 tenedor Une 8
462223	 Construction Statistication Market Statistical Statistics (Construction Statistics) Construction Statistics (Construction Statistics) Construction Statistics (Construction Statistics) (Co	915,1263,022 210,178 912,126,022	50 5179,864 5179,864	9151555 9151555 915	520,200 5350,417 5360,602	\$34,641 \$467,849 \$522,490	\$96,105 \$381,456 \$677,561	5143,614 2140,144 2130,1442,123	946'496'193 206'669'193 197'669'193	\$\$\$0,942 \$4,474,872 \$5,023,714	665'7986 571'355'79 765'7986	51,366,007 51,21,26,99 58,767,21,28	81,817,046 85,858,439 910,785,534	62,301,666 510,542,603 512,844,270	52,825,702 51,21,97,775 51,2,020,475	11,11,11,11,11,11,11,11,11,11,11,11,11,
52	9) Tional Net Pressae Value	211,199,8272														Euro 8 + l ipe 15 + line 50 + line 62 + line 68

THE DAYTON POWER AND LIGHT COMPANY CARE NO HUNGHEL ASO BOOK D - Custons Construction and Energy Management Societae Boondia

Datu: 15 Year Forntaut Type of Filing: Original Work Paper Reference Na(s): a's

WPH-1.10 Page 1 of 2 Winness Responsibles: Kevin Hell

Line V. Mariation	9902		- IVF	-										5	tion -	142	Lorense -
(V)	ê	(9)	ê	9	6	(0)	(1)) (j)	(K)		(M)		0	(b) (c)	1- Sum (B:P))	(8)
t in the second s																	
 Restingential Lighthern Reserves A summer Vision and Austrian Action 	E H	51,007 2000	199-jut 199-jut	100,094 141	187,795	14,11	194,4901	c) Hi	aster H	1217	112,072	74),67	516/121	85 ⁻⁰⁸⁷	430,054 804	DPAL Range Milloimey Commercial Description	& Denus / Reports Phy.
5 Total Restored Lighting Rounds Value	1001141,12	365,655,63	165'996'55	500'115'11	120,625,62	\$12'\$0\$'EL\$	1445913	\$11,262,675 \$	115'911'021	597,111,122	08 (1) 22/323	910/251/620	HELL'EGF'ER	11,04,117	101,ATQ.577	\$243,919,793 he 3 " he 4	
6 Rowinshiel Ale Cherdmenter Tume-Up Zuragy Borings 7 Avenue: Yoshin Bitt Avoidad Advin	2,043	940,5 938	020	60°11	1671 15	100/11	219,02 722	600'11 0111	23.024 512	61.93 28	51715 123	INC.CC	ELC INC.	41,4405 806	19 19 19 19 19 19 19 19 19 19 19 19 19 1	DP&L Early Efferment Commercial Develops	e Domund Response Phys
F Total Ruddarford HVAC Tangengy Value Sciences Sciences and Sciences Sciences Sciences	0142.72 IS	110'050	110,04,03	100 1221	94, ata, 756	11.772.12	\$1, 549, 545	61.004,101	16 172 28	CB1/104	82, 809, 856	51,172,129	D133710	894,966,EE	615'LSE'HS	\$30,096,244 fac 5 * jac 7	
10 Average Value Per Average MOND	1	505	ä	E	22	54	1	086	i i i	54	281	968	101 101	908	405	Compression Decretions	and a service of the second
 Taug Raddaultic New and Reptoment HVAC Systems Edengy Value (2) Residentic Applicate Records States Invites. 	114 120 11570	516).06(3 55(1,4)	i je	110.477	SEA, SEE	14 T/G	217.3434 217.42	171,892	168704118		015,554,610 417,64	11,700,579 11,700,579	11/2012/104	101,626,52	51,643,124 51,134	St6.291.323 Ion 9 + line 14 COAL Roman Withdows	- di Demisia di Romaniar Phen
13 Average Values per Average Meth	3	1	X	2			5	f	đ	6	6	Ĩ	Å	li	8	Commercial Operations	
es i con research agus a regenera regenera regenera i con esta de la regenera de regener	E	(11)	HOZ I	1252	0110	5, 152	391.7	P2134		000'9482'75	6121121 10.070	10,000,00	12,059 12,059	1760'F1	14,053	THE REAL OF MALLS CARE IN THE REAL PROPERTY.	& Domast Ropense Phys
16 Average Value per Avoided AJWA	W	ī	3	2	200	2	Ē	6	Ē	6	£	8	ì	ĥ	90	Contracted Operation	
FT I FORM MAXIMUM ARMANY AND	101.1	1410		1211'L		102,01	11,437	2020,6106	1924	12,051	19279	20,432	51,011,070 22,171	10,111,000	1052,002,13	AL203.211 Met 12 * Ann 19 19 AL Early Bhilingy	A Demaid Response Phil
19 Avrenge Vacco per Avreided Mitchs	2	3	Ŧ	3	à	1	â	ŝ	£	5	ī	Z	9	ĥ	14	Constructed Operations	
20 – Toma Kamputa Liwa Mandal Agroquadity inforgy video 21 – Mon-Raudianiai Pre-arphi-a Rabata Zhangi daringa		112,412	11111	100,746		\$708,447 142,532	117,177 110,176	129'ELD'15	31, 166, 140 397,408	302,722,920	E10'11'5'11	11,700,244	51,710,622 411,497	62.111.966 449.919	595,454 596,654	alo,415,616 had 13 ° George 19 2040, Edistry Elfinimetr	& Densed Regimes Plan
22 Average Variet per Averation Defects	994 194	31	a i i	3	3	191	2	61	E	5	6	8	â	5	005	Commission Operations	
24 Note-American Cranto Materia Lange and a super-	2006'2 1006'2	14,749	0151	12,14	011185	100.11	191'SI	1107110111	2010/011		110,011	177,017	101/102	11C,1241	565712	adin (1971) jan 1962 (1 - 1962) Deret, Swarjji Efficiency	· 2: Dehuit Rapare Plan
25 - Austrya Value per Aveiled LANA 26 - Frant Van J. automini Cherne Reparts Romery Value	NA Entro de la	188 Steel OD	121 21.7h5 062	265 201 Ion 25		196 196	170 171 Ave	21 21	1/1 1/1	108 041 041	EN CONTRACT	1911 - 1917 15	1	785 197 101 101	045 173 056	Comparison Operations 1135 274 274 Edu 74 - Enu 74	
27 Hanne Brange Warting Bartrage		10,076	11,736	4776	stru	1006	19,006	15,036	13,056	15,036	15,034	11,016	9(0)20	15.0M	15,006	DPAL Early Efficiency	A. Densed Response P.In.
20 Average Velor per Averber MAVI 29 Total Have Sherry Chinky Ranger Vake		100 M 10	141 1.416,410	501 ZSZ 728	2009-7916-745	613 613 116 56	572 SE 02-407	EZN.	572 161-500,154	52 10 201203	121 12172612	574 57.145.248	201 STC 20	9627119748	507°657'13	Connected Operations 174,218,241 [ine 27 * ine 24	
30 Early Effective Fragment Rough Value	10,119,044	521,001,02	\$11.286.469	\$19,196,248	11 CAP 923	112.725.723	000 S 10 UN	505,000,505	131,779,469	944, 242, 574	105'116'111	147 356 BIS		EDOTFEE II II	NOT MAY SET OF	3326,474,47) Bae 5 + Bae 5 + Bae 5 + Bae 5 +	time (4 + Line) 7 = time 10 + Line 13 +
 Moran Borrgy University Materia Total Borreet Value from from the Reference 	8 7 4 6	012,9208 014 014 01	51, AQA 489 214 732 612	201,707,202 201,102,202	000-356,400 000-302-102	63, 813, 149 646, 864, 646	56 (02,607 107 240 240	MC254,200	26/500 (34	And they have	106,629,241	97, 146, 149 116, 504, 113	52,75,762 2010, 210	562'019'01	\$17,057,469 \$111,241,000		
2.2																	
25 Restantial Lybring Capacity Servings 26 Build and Standard	۳.	•		•	= ,	± ,	= .	۹.	ដ	2	R,	Ħ.,	п.	¥.,	₹,	DPath Bangy Efficiency Commonial Constitutes	de Demanal Response Phan
25 Average Vate pa Averated Mile		112 123	1267604	HIGH	360.712	240,617	992.244	1100.177	C12.80 H	ALC:NOTA	616,6012	8112,460	3HC,3H 12	\$119.713	CU'CIN	Connertal Operations	
24 – Total Randomini Liputhy Capatery Vietos 39 – Rothaniai Air Canadhinana Tung-Un Capately Derriga	8-1	ii -	a	R <u>e</u>	2 12	£ <u>-</u> 2	8 #	88	8 a	6 %	^ន រា	8 7	8 3	a ș	2 5	90 New 35 * Une 17 DPath Runner Efficancy	de Decrete Response Plan
u) Buddadu Dugtani 1 tourne bitter a tourist tota	. 	, interest		- 5	-	2	2	2	2	81	1	3	8	A	2	Commercial Operations	
st Tomikudisti NVAC Tanong Capacity Value	a				ELL'DOME	140 Mar	065"111"19	STRACT	CIP/96/13		101,0042,122	551,919,228		51, 743, 6FT	54,198,314	Commercial Update and a mineral	
43 - Reditadd New mi Reptonent HYAC fromt		۹.	•,	•			9 r	= "	25	x =	2 2	22	2 3	8 2	# 2	DPAL Rouge Silleiner Commercial Decembers	& Demand Reporte Fizz
45 Arrendes Value per Aveided MDP	ន/ដែ ដែ	120 221	_16'er1	1997 199	800,712	LIQ.05	3776	STORE STORE	CIT OF	INA, NO	100.00	1112-000	111,200	119.13	123,225	Compacial Operations	
47 Residential Applicator Respecting Capacity Entrings	1 -	1-	1-				7.00/11/101		-	192411 H		ill'int	i i i i i i i i i i i i i i i i i i i		6	DPAL Control Control Control	& Demard Regnance Plan
43 Buttade Deraum 49 Avenues Value per Avanded MUP	96,101		110,917	199'ens	1	10.042	- 261-161	100,175	LIC.IOH		5 (12,50)(2	4 112.060	5116.246	14,013	12,2218	Commercial Operations Commercial Operations	
50 Tead Remotestal Appleton Registing Capacity Velov 51 Boutanie Romme das Assistance Boutan Concern Radian	8 -	3.	3 <	11.12		ETLAND	C ME 1975	121,656	201,746	1474, 167	144 0055	647 B-51	205 11:05	110,040	11	\$5,452,320 fies at a line 49 Note: 16	
12 Butterich Consult	•.	•	• . !	* *	- 0		• -						• -	• -]	4 -	Commethi Operation	till stocks where a
31 - Arumage Value per Atonénd MTP 34 - Taul Ramideniki Efreny Jiar Agyilance Rabutan Capacity Value	9, 9 2	127720 90	01 01	197 H	510,712 510,211	110,017 311,310	2017 FA	1000,175 202,025	005,201 ACI,071	107,101	215,5002 212,5002	11 12,1460	3114,246 5141,545	\$1.19,133 \$160,467	517,4218 179,4618	Communication Operations [1, 049,205 line 32 * line 33	
55 Remission Low Jeremon Addressibility Capability Sectings 56 Batchable Descard	۳.	۰.	۰.	- 0								M -			-	DPAL Sargy Bilwmey Cammedd Cherates	& Densard Responses Plan
 Average Value per Averaged ACF True hardword Ace for the Average According to the Average Accor	2,5 1	1970) 1	105/6041 10	Cold and	112 200	10,012	an a	100	CIC INIS	106.301	51570055	112,200	\$116,246	119,611	112,215 112,215	Communit Operation	
19 Nov. Residential Franciscian Robotin Capacity Serings	i u i	ig i	۶,	8	A	Ŧ	8	2	i i	F	101	E I	H	3	2	DPUL Early Editancy	A Durned Rospinse Plus
51 Approximate particular Mile	101,779		LDS'etvi			EID,012	25(10)	1100/112		110,001	115,901		tere, and	116,731		Contribution Operations	
52 Total Non-Revision Protochings Related Capably Value 53 Non-Revision Controls Substate Capably Substat		. "	•	605,759 1	1.222.000 11	HS TEST	3,721,699 17	640,C24,4	6,130,457 22	11072472	14[[[]]] 22	10,276,412	11, 794, 454 14	11,194,200	112.670.21 04	105.874,056 Line 60 * line 61 DPAL Electry Elifetensy	& Defined Remotion Plan
			Lineti	- 98	5	-	= 2	1	41	1	8	ង	R	1	2	Certamonial Operations	
16 Total Non-Reviewed Canton Rainin Capitaly Value	8	R	3	246,1511	101	1-0-00	61471 6D/43	641/205719	R.720,021	20, 270, 905	229 700 24	M.1.241.04	13-261.047	51. AUT. 16	S4,17,390	500, 754,940 Has 61 = 150 65	:
er Plance Stourge Diegeley Careerings 68 Behöhnin Demond		• •	• •						<u>.</u> .		• •			• •	. •	EiPall Exerge Eiffedenry Communical Oper Vireto	2. Durind Rapida Flat
d) – Avenge Visio yn Aveidid MMV Vi – Yaai Roma Raasty Diadar Denaad Velaa	82.91 82.91	2297253		Column Column	100°112	100,0001 10	9776 6	2100,275 54	an tar	130(JBL)	512,904g	1112,080 10	and and a	4116,711 26	स्टल्स श	Commercial Operations SC Commercial Convertients	
1 Every Mistary Property Casely, Value	8	8	*	196-111.M	11,206,141	111,029,02	TICHAN	1	ו משורוו	113,604,675	STOLOTS	CONSTIN	IN THE OF	102/12/1703	101.221.122	A 100 MOL (102 Hau 14 + 1am 41 + 1am 45	(+ line 30 + line 34 + line 34 + line 42
 Manta Capacely Uniplice Coperity Value Toma Capacely Yahan Stens Engineered Unitables Hillinings 	# B	8 R	82	1967181'NS 08	21 YOTT	140'5339'YB	456 ⁷ 666 ⁵ 55	an titotifas A	1 244/16/11	20 204,476	16,424.075 116,424.075	100 000 000 000 000 000 000 000 000 000	23,472, ISI	101,351,451 04	1735'0E 6'L C35 04	90 Mar 70 - 10- 72 - 10- 72	
a Burning St								:									
76. Testa Branzy and Coperty Value of Energy 500 kinety. 27. Testa Branzy and Coperty Value of Renet Branz. 28. Testa Comments America (London 10 Kinetica 10 Kinetica	545,457,43 24 24 24 24 24 24 24 24 24 24 24 24 24 2	941 (Pet), 12 943, 9638 941 (Pet) 249	913, 294, 402 91, 424 (160 11, 423 (11	201,721,205 127,737,105 201,445,105	ALL STATES	SALPHE, PIL	101,025,197 164,102,507 164, 174, 164	154,055,117 14,205,107 14,305,107	210,101,441 14,100,114 14,500,114	101,107,050 15,701,669 14,414,900	893,902,617 16,902,661 16,902,661	107.918.190 5 57.146.700 57.146.740		241,126,121 411,236,124 410,136,124	1150,914,365 1150,512,122 1151,122,122	14 mail + 04 mail 1992, 2012 (2002) 15 mail - 16 mail - 16 mail 1972 (2012) 15 mail - 16 mail - 16 mail 1972 (2012)	
		•		a la francés de la francés	N.Y. LANS									~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	41/4/14/42PE		

R A T COMPANY	bt-f	evation tas Energy Managemen	emand Valuations	
HE DAYTON POWE	CASE NO. 1	KII-Customer Come	Energy & D	
Ĥ		ĝ		

-

Dans 13 Year Porzess Type of Filing: Onginel Work Puper Reference No(3): 140

i

WPFL-1.10 Pare 2 of 2 Withersy Resonantide. Kenn Hall

Sourc	() ()	to a Diseased Revealed Plan	and a lotter raying the		iansy & Derputed Response Phen	interest of the second s					areas & Demand Roundon Plat				there at Denund Aughase Plan	j	Maa Mara	and a Demon Barrense Pine	to vary of law (47	ADDS.	:				tictory & Domanul Response Plan	responsed from 113		blie Domend Resource Lursey Runnis",	CP2L Buints				V line (1)		8				;	4		anger 41 Lienword Kasterrich 1101	•		:	entre La companya de la com	uks						=	
Total	(Q) - Bern (B:P))		Commenced Commenced Commence	Cid 140 025 [cm 13 * far Ed	Di M. Every Bille	Commentations Constrained	Lineal of Statistic Control of Statistics				Cold. Town offic		Campaigneet	\$52. (60. JEZE Jino 95 - Jino 94	CARL Brenzy Still	Casewood Operation	Cambridge Operation		Atomic of Provide the	Crumbertial System	510, 144, 101 have 165 * the 10d	UPEE Press of same life	Concernent Ones	\$15,212,546 time lot " time ick	OPEL Grand Lines	Average of prior the		Work American U	Burnach Blue, 1805		the state of the second s		THE ALL ST CONTRACTOR AND A	PISAIS, Inc. Toward	7) - 211 angly own 200,000,000		210,705,130 have 19 + (are 112	541,415,653, Nor 119	II 33.415.104 fa= 120	1. • HE I JANG JO WIN 2011 (1945 1376 1	1	Diffet forenti Effici	511-542 * 151 and 262(29);07(E79,309,00.0 ime 134	1	Contracted Diversity Lives	Commandal Onicial	54 9.797,450 invo 34 4 invo 46		ter in the first first in the		11	51,400,406,545 sam of lines 149 -11	
2023	£		147.02		4506	215	71,0,1112	E2,911,155			i	2 7	121.121	50,336,034	2	5	125.421	016'2'91'2E	\$ 2	10,014	52.373.478	29	11.11.11	51,956,792	2	*		14 002 T	5	5		11.470.055	L CHA DAM	H2'995'50t	231.646,UTQ		214,325,104	1.916,064	610,244,012	B42, 667, M44		200025	513.421.5 M	517,921,5 IG			RECOTES	de l'ALX'EX			174Tof72 10	141,467,144	UCA,202,011 201,042,012	
TENT	(a)		11.93 1		10.4	1114	115 245	52.637, 149			,	R 9	62.810V	11,207,241	2	2	\$119,733	06.1°E 12'15	9 5	111,2112	\$1,009,423	ุล ;		52. MOL 92-4	2	8		10 7 94 74	ļ	<u>8</u>	514'01 B			ETT, TEL, TE	141,191,462		000.017.018	114 139 1	67.6°2.09°2.4%	427, 124 , 439		135,551	01,791,LEID	112,107,773		. 1	5112,713	194,428,28	74/2715			537, 528, 639	2195,000,005 2195,000,200	- LOWING P
1202	6	1	12.24			â	8427,548	1211001			l	F 1		12 25 22	3	Ξ	\$110,246	51, JULY 13	2 :	2116.246	223,500	1 7	12	124.124.51	*	8	116,246		3	135	21 IK, 345	son'osti'tit		31 5.45M.066	151, CC1, ANA		E11.279.00K	247 479	315,005,046	211, 2 61,15		0001121	514.442.403	514 HIZ 243		R P	1116.246	2020.0100.022	25,201.56G		0.27 Her 22.0	240'127'12 M	112,644,209 1172,120,504	
0000	(M)		14, 971		110	0105	121,122	11000.50	100'000'25		:	38, 1	e 9110	16, 297, 767	21	2	GA 12,060	BUC, 762, 11		SALE TEN	110,450,11	7	-	1 010 05	7	F	112,056		2	521	111.1600		21 080 ¹	204114237	9037, 160, e60		10 472 Ch	THE WEIGHT	SI4119,223	502° I TH. 272		100,000		201,940,409		2>	1112.000	AND THE R.	910/215119		10,761,514	0++/M0/5118	\$10,715,534 1111,125,554	J'support of
6102	6		587'61	40 F		19	219(,912	SI, 716,046	11,714,046		:	4	• 6	IN STATE	-	=	0109,471	21.143.470	<u> </u>	(Et soft	51, PG, 615	8	=	AURILIAN AND	8	2	\$10d37	11, 150, 770	•	\$1 8	5109.57			\$11, Aug. 425	11,566,177				112,604,613	116,115,13		80°84	1411.00	PLCI 10		8 9	11 cons	11 344,007	100,000, 10		51,767,216	100,122,0012 100,110,111	34,717,216 511 676 763	14 MEDINES
3102	3		11,434	NO IS	N. 117.17	NI3	761.021	900° (144'13)	604° Em+* 15			3	1			•	146,3412	12 T L L S	2 '	time and	2474.000	=	=		1	12	100,34818	22.01.12	10	6	Siets, MI	406'94/'IB	1010	ACCUMPTION OF	200-215,405				111.406,804	111,724,615		11,004	and the fact	191 816 23		¥.	tion and		1944, Tou		66,414,919	900,515,710 201,721,615	10'114'0E	61711267
2017	s		8,716		266'986\$	1013	5209,834	\$1,195,346	51° 1 96' 840			5	1				100,201	EP46.3453	± ·	•	1027.401	2	-			. a	SI 09,203	Ldl'Yswell	ŧ	£	FIC 'SO IT	FIQ.248.113		11. 10. T	CE0,912,512				510,144,112	10,11,200		714,112	11			=		1550,142	121,0421		11,015,714	200°200°200	611.250.84	5600.050,364
2016	e		126,1	105		e i	112.212	10/3°,419	910'ESGE			9	3	212,2042			SIGUETS	1 in Urity S	-	100 AUS	No Tota	2	•			•	\$100,275	011-12585	¥	8	212,001275	197,191,54	1,501,002	11.002.1					Int later	16,186,648		41,566	5	145 1400 TM		٠	1		44°UIS		11,101,176	619756'5H	197.04	\$94,071,649
2015	(1)		1,129	ã	\$684,875		2022/0218	571()178	10102			8	8	900°085			301,176	100 (See	4	2	016 July	-	•			• •	96E.bat	00072651	8	2	950,050	21012,315	166.10		211.965,123				10,000	122,978,257		520°52	62	444,100,12		•			11,12,12		11,544,004	100,717,924	10,140,14	168,031, h43
PAR	6		4.453	ŝ	11,150 11,150	Į	060,711	010,040	000 6675			-	•	ED0.047			\$50,CH7	\$25,555	·	- 10	19113	~	-				SECJORY	\$1.74 O6)	=	7	SEA, CHT	TT2.622.00	1,63.65				1		TTO SELVE	10111		E.339	6	201 000		~	- [SOC.MA	201, MAL		195,1794	0407016794	197 11.95	254,253,475
1.186	Ð		1772	965 5	104419	2	122.474	19171228	\$51°2.145			Ð.	0 .	216.062		• ,	360.712	3118, 745	~	0		6	•			ı –	2000,712	101°155	¢	¢	111,055	62072F745	11/12		21 JON 617			2421045		25,400,132		6, P25	2	471'2985		-		Section 1	117/102		1522.490	127.007.001		101,713,902
	(2)		1,429	5	DIG PUS	₹ Ì	141	102.256	392,5213			•	•				141.067	2012-111	e	-		•	D		<i>2</i>	• •	1444,6657	100	\$	8	(397°114		110,121					Str Ford	COLUMN COLUMN	1975973		5, 161	2	1300,447		-	-	100.001	02.52		The set	012,133,134 11,111,112	LAO VEES	ACTIVE YES
DAL 1	ê		Ę	ä	559.633	1	1174	1051,423	269,423			~	-	110,014			111.000	212.146	9		116,604	La	,	i to an	8 -		114,042	*	8	6	712,844	11,155,646	916,112		11.100,100	Harden in		0+7'66 19		\$4,505,946		4.016	3	257.276		-	•	126,000	เล		11(1155	514,723,011		
u u	0			I	30,465	Ŧ		513,612	611,585			U	Ð	111,612	APCEIS		107.01	523, 14				۰.		841. KE	9		252.623	2	-	51	\$52,622	1045, 775						10,555		5104110		1.121	3			-	•	10,018	1 9		6170, 164	SR,123,412	596,310 5777,154	20, 100, 116
ever	(8)			100	2	.	3	8	8					4C12 ¹ 158	3		210	a	,		111.111	ł		611, MIL	8		101,720	8	*	J	111,709	55'6723				acc's374		8		165'0113			8	5207168		-		21,720	6		11.1 L	10,121,12	100, 200 101, 700	
	Ubersingteon (A)		etanger Vielee 1944-1945 - Distant Brannel Branne, Summer	estatedat Direct Lots Constant antegy Arright Januar Value der Aveillet Mitten	ALL & CARACTERIAL DIRECT LOAD CONTROL PARTY VAILE	on Randentei Direct Louis Control Energy Zaverge	neruga Vaine per Aveided Millin		but Energy Vide from Demond Reported	1	ispectify Value ————————————————————————————————————	ugan sa magang manakan Jan katu Dibert Land Camada Canada Savinan	iddukis Damund	Arright Villin har Avenued 2004	r sail Russiendel Divers Lond Control Liverand Vigtue	ion-Randoniai Derost Land Control Cupiery Swatp	jadata in Chennedal 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 -	And age within par A Matuch (Mar And 1954 Building David Line and Discourt Discourt) (Adam	nas services constructions and the service services and the	Mahle Demind	With the part of the standard bull		generates years a state in product of sound of a stategy of the stateg	versus Values per Avmisted MRW	auth V beautions and the Dense of Lange	on Standartust Time-of-Club Capturey, Servings	and the full Deep ware American Strategy and American Ballar	out Non-Maniput Time-sf-U er Derverd Veles	hiel Party Curulinum: Capacity Series		antara Leman Jeras Value ne Antika M(V	sal Third Part Curaiment Cameiry Value	yest Lond Control Construct Value	the Bused Pricing Capacity Yakes	ries Party Covering and Country Value	dal Cupathy Volue door Durand Rappade Profess		لتطعين أممالك ومعقاب لامله ولازينا ومعادلا وتعصبن ومراجع للبل	with Research and Capacity Walks of Tran-Brand Prints	aial Boongy and Capacity Value of Taind Party Cartainnes yial Biology and Capacity Yakine Rum Damand Rospicers Products			ACTURE REPEAT VALUE	tint Land Land Binning Visits 1944 - Andre Anne, Printford Nichtand Stiftmann		unitari 	vidiable Dernard	Window put Awaited MW	ous SAVC Superity Veloc solid Capacity Veloci from Description New rold Efficiency		unanary dal fangge tal Capacity V sing êras Dischasts National Subjacts	ing and a support of the support of	stal Banger and Capacity Voive from Descard Rangemen Products 24 Sectors - 14 Constable Voive from Description Network Rangement	idel Banky and Chiptely Yana and Lancates Manual Manual Annual Chiptel

THE DAYTON POWER AND LIGHT COMPANY CASE NO. 03-1094-EL-SSO BOOK II - Customer Conservation and Buegy Management Summary of Smart Grid Development Workpapers WPI-1 Page 1 of 1 Witness Responsible: Jeff Teuscher

Data: 7 Year Forec Type of Filing: Of Work Paper Refere	zas iginal nace No(5).: n/s									With
Line No.	Description	2009	2010	102	2012	2013	2014	2015	Total	
	(Y)	(B)	(C)	ê	(E)	Ð	6	(H)	(1 = Sum (B:F1))	
	<u>Capital Costs</u>									
-	Distribution Automation	\$1,643,261	\$1,817,976	\$1,840,162	\$1,844,183	\$11,818,15	\$1,796,869	\$8,768,997	S19,529,56 3	I.I.JqW
4	Substation Automation	\$5,895,123	\$5,409,807	\$3,262,554	\$1,945,521	\$1,385,234	\$1,673,764	\$2,500,938	522,072,941	WPI-1.2
Ę	Total of Capitul Costs	\$7,538,384	\$7,227,783	\$5,102,715	53,789,704	\$3,203,350	\$3,470,632	\$11,269,935	\$41,602,503	line l + line 2
4	<u>O&M Cett</u>									
s.	Distribution Automation	\$108,579	\$131,884	\$154,908	299'2218	\$200,278	5222,641	\$244,762	\$1,240,715	E.1-jqW
v	Substation Automation	80	5363,8 40	\$474,160	\$540,395	\$572,889	\$577,806	\$582,871	\$3,111,961	WPI-1.4
٢	Total of O&M Costs	\$108,579	\$4 95,724	\$629,068	820,8172	731,E772	5800,447	5 827,633	54,352,677	line 5 + linc ó
8	Benchig									
đ	Distribution Automation	56,614	\$13,614	\$29,768	\$42,352	\$55,036	\$68,000	110'0515	\$369,396	\$.1-Iqw
0	Substation Automation	\$16,244	\$44,983	574,972	5104,961	\$134,950	\$167,438	\$214,921	\$758,470	9.1-14M
H	Total T&D Benefits	522,858	\$ 65,598	\$104,740	\$147,314	\$189,986	\$235,438	\$364,932	\$1,127,866	line 9 + line 10

THE DAYTON POWER AND LIGHT COMPANY CASE NO. 68-109-4EL-550 BOOK II - Castome Conservation and Every Management Distribution Automation Capital

> Data: 7 Year Forecast Type of Filing: Original Work Paper Rehernoe No(s).: n/a

Line No	Description	2005	2010	2011	2012	2013	2014	2015	Total	Source
	(A)	(8)	0	ê.	Ð	6	(5)	ß	(] = Sum (B:H))	0
-	# of DA/SA Rday Engineers	-	-	1	-	I	-	1	e'u	DP &L Estimate
2	# of Design Engineers	1	-	1	-	-	-	1	N'A	DP&L Estimate
3	# of DA RTU/SCADA Engineers	0	0	I	-		-	-	e/u	DP&L Estimate
4	# of instantial SCADA Engineers for DA & SA	7	7	2	7	7	7	7	Ma	DP&L Estimate
÷	Total Engineers	4	4	•	¥1	ŝ	₽î.	¥n	'n⁄a	lime 1+ time 2 + lime 3 +lime 4
÷	Avertue Engineer Salary (Loaded)	\$102,123	\$105,187	\$108,342	\$111,593	\$114,940	\$118,389	\$121,940	т/а	DP&L Estimate
۲	Total Engineering Cast	\$408,492	\$420,747	\$541,711	\$557,963	\$574,702	5491,943	101,9082	\$3.705.258	lighe 5* kine 6
20	# of Project Managers	-	1	-	1		-	7	a)to	DP&L Estimate
6	Average Project Menager Salary (Loaded)	\$124,817	295'8215	\$132,418	5136,391	5140,483	26944(2	5149,038	ц	DPA:L Estimate
10	Total Project Management Cost	\$124,817	\$128,562	\$132,418	165'9818	5140,483	\$144,697	\$298,076	\$1,105,444	litse 8 * hine 9
=	incremental DPL Justallation Technicians	-	-	-	-	1	-	~	N.N.	ರಿಕಿಷಿಟ ನಡಗವಾಣ
2	Average Technician Salary (Loaded)	\$108,579	\$111\$	\$115,192	\$118,647	\$122,207	\$125,873	5129,649	n/a	DP&L Estimate
11	Total Technician Cost	5108,579	\$111,837	\$115,192	249'8118	5122,207	5125,673	842,9238	\$961,633	kine 11 + kine 12
Ŧ	Total DP.R.L Engineering & Project Management Cost	5641,988	\$661,145	578 9,321	100'6185	166'283	\$162,513	\$1,167,076	55,777,335	El anil + Cl anil + C anil
51	Outsourood Engineering Costs	\$322,123	\$490,187	\$396,350	5385,600	5346,500	\$311,850	5280,665	\$2,532,875	DP&L Estimate
2	Number of New Poles	¥1	۹	S	۴î	÷	•0	5 5	85	DP&L Estimate
5	Cost per Pole	\$2,200	82,200	51,200	\$2,200	\$2,200	\$2,200	\$2,200	n'n	DP&L Estimate
18	Total Cost of New Pokes	\$11,000	211,000	000'115	\$11,000	11,000	511,000	2121,000	S187,000	line 16 * line 17
19	# of Underground Circuits Autometed	0.0	0.0	0.0	02	0.2	0.3	2.4	3.0	DP&L Estimate
គ	# of Recioners per Underground Circuit	2.0	2.0	2.0	2.0	2.0	2.0	2.0	Ма	DP&L Estimate
R	Cost per Underground Reciseer	\$64,330	\$63,063	\$61,802	\$60,556	\$59,354	\$58,167	\$57,004	n'a Curre	at Vendor Costs + DP&L Labor and Installation Estimates
ជ	Total Underground Rectorer Cost	20	8	80	\$24,226	\$23,742	123,267	\$273,619	5144,834	line 19 * line 20 * Line 21
8	# of Overhead Circuits Automated	4.0	4.6	4.0	3.5	1.8	3.8	45.6	0.28	DP&L Estimete
*	# of Recioners per Overhead Circult	70	2.0	2.0	2.0	2.0	2.0	2.0	n'a	DP&L Edimete
R	Cost per Overhead Rectoser	\$36,850	£36,113	168'983	\$34,683	686'123	633,309	519755	aria Curre	nt Vendor Costs + DP&L Labor and Jactafiation Estimators
ম	Total Overhead Accloser Cost	\$294,800	106'3823	\$283,126	\$263,590	\$258,318	521,522,152	\$2,977,068	54 ,618,959	line 23 * line 24 * line 25
F	# of Air Break Switch Controls	9	4,0	0 .A	4,0	4.0	4.0	4.0	ΝΆ	DP&L Estimate
ĸ	Cost per Installed Air Break Switch Control	060'93	626'5'5	\$5,810	\$5,694	33,580	69P'53	65 E SS	eva Curre	ni Vendar Casis + DP&L Labhr and Installation Estimates
Ŕ	Total Cost of Air Break Switch Controls	\$96,800	198'.B61	292,967	586,552	584,821	\$83,125	\$977.545	\$1,516,673	line 23 + line 27 + line 28
R	# of Cinvairs Automated	4.0	4.0	0.4	4.0	4.0	0.4	0.94	72.0	DP&L Estimate

THE DAYTON POWER AND LIGHT COMFANY CASE NO. 09-1094-EL-SSO BOOK IT - Canasanar Conservation and Earsy Management Distribution Anomation Capital
--

ς)μ Data: 7 Year Forcuard Type of Films: Original Work Paper Reference No(6): 1/2

line 14 + fine 15 + line 18 + line 22 + line 26 + line 29 + line 33 + line 37 + jiae 40 + jiae 42 + line 48	19,529,563	5 8,768,997	693'961'13	\$1,818,116	\$1,844,183	\$1,840,162	3/6/118/15	\$ 1,643,261	Total DA Capital	43
(line 44 - line 41 * (line 43 + line 46)) * line 47	\$673,200	\$447,48 0	0627153	062'15\$	067'158	\$37,950	056753	056'/E\$	Total Cost of 2-way. Voice/Data Madana for DA Devices	4
RFP Response	ц	\$825	5285	5265	57B\$	\$285	57 FS	503	Cost per 2-way Voice/Data Modem for DA Device	47
DP&L Extimate	6.69	45.6	3.8	3.6	3.6	4.0	4.0	4.0	# of Overhead Circuit Circuits Automated	46
DP&L Estimate	0.E	2.4	0.2	0.2	0.2	9.6	0.0	0.0	# of Undergrowed Circuit Circuits Automated	\$
DP&L Extruste	1680	1118	56	55	66	8	56	2	# of DA Devices installed	4
line 34 ° line 41 ° line 42	\$3.62,646	3361,270	5 47,727	\$48,701	\$49,695	\$50,709	191,744	\$52,600	Total Cost of Single Phase Sensors	â
Vendor Hardware Redictates & DP&L Installation Estimator	4 72	11.65	+665	\$10'1\$	\$1,035	\$1,056	51,078	\$1,100	Cost per installed Single Phata Sensor	4
DP&L Estimate	2	12,0	12.0	12.0	12.0	12.0	12.0	12.0	# of Single Phase Sensors per Cirruit	¥
tine 30 + tine 32 + Line 39	\$197,690	\$128,624	266'015	1 91'11 \$	\$ 11'388	\$11,621	\$11,65\$	\$12,100	Cost of Peel Mounted Switchgeer	Q\$
Current Vertice Costs + DP&L Labor and installation Estimates	a/a C	65E'5\$	\$5,469	085,23	\$5,694	918'55	626'5\$	\$6,050	Cost per installed Pad Mounted Switchgeur	30
DP&L Estimate		0.5	0.5	0.5	0.5	6.9	0.5	0.5	# of Pad Mounted Switchgoar	38
line 30 * Jine 34 * Jine 35 * Line 36	331,eret	5 244,386	520,781	\$21,205	\$21,638	292,522	914,523	\$24,200	Total Cost of Vohage Ragalator Controls	37
Current Vession Costs + DP&L Labor and Installation Estimates	n da C	85,339	\$3,469	\$5,580	\$3,694	\$5,810	\$5,929	36,0 50	Cost per Installed Voltage Regulator Control	36
DP&L Estimate	a'n	0.1	011	1.0	0'1	0.1	L.0	0.1	# of Voltage Regulators per Circuit	ñ
DP&CL Estimate	B/M	%56	9656	%56	95%	100%	%001	%09T	% of Circuits O vert ead	¥
line 30 * i me 31 * line 32	\$2,444,163	\$1,590,264	135,227	986'2615	\$140,802	5143,676	5146,603	\$149,600	Total Cost of Capacitor Bank Controls	8
Carrent Vendus Costs + DP&L Labou and Installation Estimates	n'a C	58,283	58,452	\$8,624	005'35	01633	191°63	05E83	Cost per installed Capacitor Bank Control.	a
DP&L Estimate	a/a	4.0	4,0	6.0	4.0	1,0	4,0	4.0	# Capacitor Banks per circuit	16
Source	Tetal	2015	2014	2013	2012	2011	2010	2909	Description	Ē옷
Joff Teuscher									ence No(s).; r/a	Paper Retin

WP1-1.1 Page 2 of 2 Witness Responsible:

THE DAYTON POWER AND LIGHT COMPANY CASE NO. 08-1094-EL-S50 BOOK II - Customer Conservation and Energy Management Substation Automation Capital

Data: 7 Type of Work Pa	Yaar Foresast Filling: Original sper Reference No(s).: n/a									WPI-1.2 Page 1 of 1 Witness Responsible: Jeff Teuscher
Line	Description	2009	2010	2011	2012	2013	2014	2015	Total	Source
	(v)	(B)	(C)	â	(3)	(F)	(0)	(H)	() = Sum (B:H))	(1)
-	Outsourced Engineering Costs	\$495,000	\$571,032	\$588,163	\$605,808	\$623,982	\$642,702	\$661,983	54,188,669	DP&L Estimate
6	Additional Field Technicians	-	7	1	6	2	7	~	n/a	· DP&L Estimate
r n	Average Technician Salary (Loaded)	\$108,579	\$111,837	\$115,192	\$118,647	\$122,207	\$125,873	\$129,649	n/a	DP&L Estimate
*	Installation / Testing Cost	\$108,579	\$223,673	\$230,383	\$537,295	\$244,414	\$251,746	\$388,948	\$1,685,038	fine 2 * line 3
'n	# of DA/SA Relay Engineers	o	-	1	1	-	-	-	ufa	DP&L Estimate
ę	# of SA Planning Engineers	-	-	~	–	-	-	-	ก/ล	DP&L Estimate
٢	Total Engineers	1	4	61	"	ч	4	6	n/a	line 5 + line 6
60	Average Engineer Salary (Loaded)	\$102,123	\$105,187	5108,342	\$111,593	\$114,940	5118,389	\$121,940	n/a	DP&L Estimate
¢,	DP&L Engineering and Techniciae Costs	\$210,702	\$4 34,047	\$447,068	\$460,480	\$4 74,294	\$488,523	\$632,828	53,147,942	line 7 * Ilne 8 + line 4
10	Upgrade Pilot Wire	\$2,640,000	\$660,000	\$0	2 0	8	20	ŝ	\$3,300,000	Existing Verdors + DP&L Installation Estimate
Ξ	# of Substations w/o IP Backbone	12.0	20.0	20.0	0'6			·	nía	Existing Substation Configurations
1	# of Substations w/ IP Backhone	54.4	13.6	•	•	·	٠	•	លវង	Existing Substation Configurations
CI	Cost per Substation Communication Gateway	\$11,000	511,000	\$11,000	511,00 0	2 11,000	311,000	\$11,000	n/a	Existing Vendors
Ξ	Total Cost of Substation Communication Gateways	\$730,400	\$369,600	\$220,000	000'66\$	8	95	8	\$1,419,000	(tine 1 + tine 12) • tixe 13
13	# cf Substations Requiring Real-Time SCADA Communication	12	8	50	6	•	0	0	n /a	Existing Substation Configurations
16	Total Cost for SA Telecorn Equipment	328,171	1,717,939	616,135	448,379		•	•	\$3,110,624 lin	e 10 + line 14 + DP&L Estimates for Broadband Equipment
1	Total Installation Cost of SA Telecom Equipment	578,229	744,569	478,567	7,021	·		•	\$1,808,387	DP&L Estimates
*	SA Telecom Bquipneent & Installation	906,400	2,462,50\$	1,094,702	455,400	·		•	24,919,010	li ne 16+ li ne 17
61	# of Substation Relays Replaced	v	v	Ċ	9	Ŷ	•	12	49	DP&L Estimates
8	Total Cost of New Relays	5912,621	5912,621	\$ 912,621	\$ 324, \$ 33	\$286,95\$	\$542,539	\$1,206,127	616,860,22	DP&L Estimates
31	Total SA	\$5,8 95,123	\$5,409,807	\$3,262,554	\$1,945,521	51,385,234	\$1,673,764	\$2,500,938	522,072,941	line 1 + line 9 + line 10 + line 14 + line 18 + line 20

Data: 7 Year Forecast Type of Filing: Original Work Paper Reference No(s).: Ma

WPL-1, J Page 1 of 1 Witness Responsible: Jeff Teuscher

Line No.	Description	2009	2010	2011	2012	2013	2014	2015	Total	Source
	(A)	(B)	(0)	(D)	(E)	(F)	(0)	(H)	(I = Sum (B.H))	(1)
-	Total Underground Recloser Cost	20	8	8	524,226	\$23,742	\$23,267	5273,6 19	\$344,854	DA Capital Worksheet
7	Total Overhead Reoloser Cost	\$294,800	£288,904	\$283,126	\$263,590	\$258,318	\$253,152	\$2,977,068	\$4,618,959	DA Capital Worksheer
m	Air Break Switch Equipment Cost	\$96,800	\$94,864	\$92,967	\$86,552	584,821	583,125	\$977,545	\$1,516,673	DA Capital Worksheet
4	Capacitor Controls Equipment Cost	\$149,600	\$146,608	\$143,676	\$140,802	\$137,986	\$135,227	\$1,590,264	\$2,444,163	DA Capital Worksheet
ŝ	Voltage Regulator Controls Equipment Cost	\$24,200	\$23,716	\$23,242	\$21,638	\$21,205	\$20,781	5244,386	\$379,168	DA Capital Worksheet
ŵ	Pad Mounted Switchgear Cost	\$12 ,100	\$11,858	\$11,621	\$35,112	511,161	510,937	5128,624	5197,690	DA Capital Worksheet
٢	Single Phase Sensors Equipment Cost	\$52,800	\$51,744	\$\$0,709	\$49,695	\$48,701	\$47,727	\$561,270	5362,646	DA Capital Worksheet
~	Narrowband 800MB12 Modem Equipment Costs	056'26\$	\$37,950	\$37,950	3 7,290	\$37,290	\$37,290	\$447,480	\$673,200	DA Capital Workshect
a,	Total DA Device Costs	\$668,250	\$655,644	5643,290	\$635,182	\$623,224	905'l19 \$	\$7,200,256	\$11, 037,353	sum of lines 1-8
10	Cumulative Previous DA Device Capital		\$668,250	\$1,323,894	SI ,967, 1 84	\$2,602,365	\$3,225,591	960"283'65	511,0 37,353	line 10
=	Maintenance Cost (% of Cumulative Capital)	9%E	3%6	%E	346	%E	%£	3%6	n/e	DP&L Estimate
2	Total DA Device Maintenance Costs	05	\$20,048	111,952	\$59,016	578,071	\$96,768	\$11,5118	\$408,731	line 10 * line 11
13	# of Telecom Technicians	L	1	-	-	-	-	-	n/a	DP&L Estimate
ž	Average Technician Salary (Loaded)	\$108,579	\$111,837	\$115,192	5118,647	\$122,207	\$125,873	\$129,649	n/a	DP&L Estimate
13	Telecom and Engintering HC Expense	\$108,579	\$111,837	\$115,192	\$118,647	\$122,207	\$125,873	S129,6 49	\$\$31,984	line 13 * line 14
16	Tolal DA O&M	\$108,579	\$131,884	\$154,908	\$177,663	\$200,278	\$222,641	5244,762	\$1, 240,715	line 15 + line 12

.

.

Data: 7 Year Forecast Type of Filing: Original Work Paper Reference No(s).: n/s

WPI-J 4 Page L of I Witness Responsible: Jeff Teuscher

Source	e	SA Capital Worksheet	line 1	upproximately 5% of line 2	DP&L Estimate	line 3 + line 4
Total	(] = Sum (B:H))	010,919,619	n/a	\$2,141,700	\$ 970,261	196'111'53
2015	Ð	80	010'516'#\$	\$408,980	168'1215	\$582,871
2014	6	30	010'616'7\$	\$408,980	\$168,826	\$\$77,806
2013	(L)	25	010'615' 11 5	\$408,980	\$163,909	\$572,889
2012	(E)	\$455,400	54,463,610	\$381,260	\$159,135	\$540,395
2011	ê	\$1,094 ,702	\$3,368,908	099'61 25	\$154,500	\$474,160
2010	C	\$2,462,508	\$906,400	\$213,840	\$150,000	\$363,840
2009	æ	\$906,400		20	S 0	8
Description	(Y)	SA Telecom Equipment & Installation	Cumulative Previous DA Device Capital	Total SA Telco Maintenance Costs	Outsourced O&M HC Costs	Total SA O&M
Ż		-	5	•	4	*

ta: 7 /pe of ork P:	Year Porceast Filing: Original aper Reference No(6): a/a									WPL-1. Page 1 of Witness Responsible
Line No.	Description	2009	2010	2011	2012	2013	2014	2015	Total	Source
	(Y)	(8)	Q	ê	(E)	(F)	(0)	(H)	(] = Sum (B:H))	0
-	% of Calls Outage Related on DA Enabled Feeders	7,00%	7.00%	7.00%	7.00%	7.00%	7.00%	7.00%	n/a	DPL Estimate
м	Reduction in Outage Related Calts	0.15%	% 35%	0.66%	0.93 %	1.19%	1,46%	3.18%	n/a	Based on Rollout of DA and DPL Estimate for reduction in Outage Calls on DA enabled circuits
~	Reduction in Total Call Volume	0.01%	0.02%	0.05%	0.06%	0.08%	0.10%	0.22%	u/a	line 1 • line 2
4	Baseline Call Volume	1,029,090	1,029,090	1,029,090	050'050'1	1,029,090	1,029,090	060'620'1	n/a	DPL Estimate
~	Cost per Call	\$1.38	\$1.38	\$1.38	8518	\$1,3\$	\$6.12	\$1.38	n/a	DPL Actual Costs in 2007
Ŷ	Savings from Reduction in Outage Related Calls	\$15 4	\$346	3658	\$ 922	\$1,185	\$I,44\$	63,160	\$7,873	line 3 • line 4 • líne 5
2	% Improvement • Crew Productivity • Fault Location	3.00%	3.00%	3.00%	%00°E	3.00%	3.00%	3.000.E	1 /1	DPL. Estimate
**	Average % Circuits Automated During Year	0.55%	1.32%	2.21%	3.09%	3.97%	4.86%	10.60%	nla	DP&L Rollout Plan
0	Cost Center 51 Restoration Services	\$1,624,000	\$1,624,000	\$1,624,000	\$1,624,000	51,624,000	\$1,624,000	\$1,624,000	∎/u	DPL 2007 Costa
2	Cost Center 142 - 24/7 Operations & Trouble	\$8,100,0 00	\$9,307,000	\$9,342,000	000'865'6\$	\$9,598,000	\$9,598,000	\$9,598,000	n/n	DPL 2007 Costs adjusted for growth
Ξ	Savings from increased Crew Productivity	\$1,503	\$ 4 [,] 343	\$7,262	\$10,405	\$13,377	816,350	535,673	£16'88\$	line 7 * line 8 * (linc 9 + line 10)
1	Reduction in Canacitor Bank and Switch Canizai	\$200,000	200'000	\$200,000	\$200,000	\$200,000	\$200,000	52 00,000	etu	Based on Kollout of DA and DPL Estimate for reduction in Capacitor and Switch Capital Expenditures on DA enabled estentis
5	Deferral of Capital Costs (Switches, Cap Banks, etc.)	050,18	\$2,649	54,415	1 6,181	\$7,947	612,98	521,192	\$53,127	line 8 = line 12
1	Capacitor Baak Maintenance Cost	\$447,346	\$460,767	\$474,590	\$488,827	\$\$03,492	5518,5 97	\$ \$34,155	n/a	Based on Rollout of DA and DPL Estimate for reduction in Capacitor Bank Maintenance on DA enabled circuits
2	Reduction of Capacitor Bank Manual Inspection	\$2,304	5 6,103	\$10,477	\$15,107	\$20,006	\$25,186	\$56,599	\$135,782	line 8 * line 14
2	Cumulative # of Meters Installed	536,459	536,459	536,459	536,459	536,459	536,459	536,459	n/a	DP&L Rollout Plan (15 yrs)
1	Lost Revenue Per Customer par Year Due to Outages	SO .06	\$0.06	\$0.06	30 ,06	\$0.06	\$0 .06	\$0.06	₽/ 8	Based on Rollout of DA and DPL Estimate for reduction in Customer Outages on DA enabled chrouits
18	Increase in DPL Revenue due to DA Related Reduced Outage Time	\$152	2668	\$653	\$163	2 1'12	\$1,436	\$3,132	\$7,852	line 8 * line 16 * line 17
19	Potential Reduction in Transformer Replacement due to leas overleading of transformers	1285,537	105,5852	2285,537	\$285,537	5385,537	72 85,537	\$285,537		Based on Rollout of DA and DPL Estimate for reduction in Transformer failures on DA enabled circuits
8	Reduction in Transformer Replacement Capital	51,471	\$3,782	\$6,303	\$8,825	\$11,346	\$13,867	\$30,256	\$75,849	liae 18 ° line 19
5	Total DA Bensfits	\$6,614	\$17,614	\$29,768	\$42,352	\$55,036	\$58,000	\$150,011	\$369,396	lize 6 + line 1] + line 13 + line 15 + line 18 + line 20

÷

THE DAYTON POWER AND LIGHT COMPANY CASE NO. 08-1094-EL-SSO BOOK II - Customer Conservation and Energy Management Distribution Automation Benefits

Data: 7 Type of Work P. Line No.

Data: 7 Year Forecast Type of Filing: Original Work Paper Reference No(s).: n/a

THE DAYTON POWER AND LIGHT COMPANY CASE NO, 08-1094-EL-SSO BOOK II - Castonner Conservation and Energy Management Substation Automation Benefits WPI-1.6 Page 1 of 1 Witness Responsible: Jeff Teuscher

Line									Ĩ	
2	Detectionen (A)	(B)	(C)	(D)	28(2 (E)	Tul 5 (F)	(0)	(H)	(I = Sum (B:H))	(1)
-	Average % of Substations Automated	2%	6%	10%	14%	19%	23%	30%	n/a	DP&L Rollout Plan
8	Potential Substation Cost Reductions	\$500,000	\$500,000	\$\$00,000	\$500,000	\$\$00,000	\$500,000	\$500,000	n/a	DP&L Estimate
e	Reduction of Planned Substation Capital Costs	2 11 , 207	\$31,034	\$51,734	572,414	2 01, 2 22	\$115,517	\$148,276	\$523,276	line 1 * line 2
Ţ	Reduced RTU Maintenance Costs	13	15	15	15	15	15	15	a/a	DP&L Estimate
*1	# of Minutes per Year	\$25,960	\$25,960	525,960	\$23,960	525,960	525,960	525,960	e/u	365.25 days * 24 hours * 60 minutes
ø	Average Revenue per Residencial Customer	£10,1 2	\$1,073	51,073	£1,073	\$1,073	\$1,073	\$1,073	2 /8	2006 residential revenues/# residential customers
r	Total AMI Meters Installed	527,700	527,700	527,700	527,700	527,700	527,700	527,700	e/n	DP&L Rollout Plan (10 yrs)
95	Increased DPL Revenue from SA Related Reduced Outage Time	\$362	\$1,003	\$1,671	\$2,339	\$3,00\$	51/12	54 ,790	\$16,905	Bne 1 * line 6 * Bae 7 * (line 4 / Line 5)
5	Potential Reduction in RTU Maintenance Costs	\$108 [,] 579	\$108,579	\$108,579	\$108,579	\$108,579	\$108,579	5108,579	a/a	DP&L Estimate
91	Reduced RTU Maintenance Cost	\$2,434	\$6,739	511,232	\$15,725	\$20,218	\$25,086	5 32,199	\$113,634	ling 1 * line 9
Ξ	Reduced SA Capital due to less overloading	000'0015	\$100°000	000'00 IS	2100,000	\$100,000	000'0015	5100,000	n'n	DP&L Estimate
12	Better Utilization of Substation Capital	\$2,241	\$6,207	510,345	514,483	\$18,621	523,103	\$29,655	\$104,655	line 1 * line 1
13	Toldi SA Benefits	\$16,244	\$44,983	\$74,972	196'901\$	\$134,950	\$167,438	\$214,921	\$758,470	line 3 + line 8 + line 10 + line 12

BEFORE THE

PUBLIC UTILITIES COMMISSION OF OHIO

THE DAYTON POWER AND LIGHT COMPANY CASE NO. 08-1094-EL-SSO CASE NO. 08-1095-EL-ATA CASE NO. 08-1096-EL-AAM CASE NO. 08-1097-EL-UNC

BOOK II – Customer Conservation and Energy Management Programs

DIRECT TESTIMONY

BEFORE THE

PUBLIC UTILITIES COMMISSION OF OHIO

THE DAYTON POWER AND LIGHT COMPANY CASE NO. 08-1094-EL-SSO

BOOK II – Customer Conservation and Energy Management Programs

DIRECT TESTIMONY

OF MARIA W. BUBP

D MANAGEMENT POLICIES, PRACTICES, AND ORGANIZATION

- RATE BASE
- **ALLOCATIONS**
- **RATE OF RETURN**
- **RATES AND TARIFFS**
- OTHER

BEFORE THE

PUBLIC UTILITIES COMMISSION OF OHIO

DIRECT TESTIMONY OF

MARIA W. BUBP

ON BEHALF OF THE DAYTON POWER AND LIGHT COMPANY

TABLE OF CONTENTS

I.	INTRODUCTION	. 1
II.	PROGRAM OVERVIEW	.3
Ш.	RESIDENTIAL LIGHTING	. 8
IV.	RESIDENTIAL HVAC DIAGNOSTIC & TUNE-UP	10
V.	RESIDENTIAL HVAC REBATES	12
VI.	RESIDENTIAL APPLIANCE RECYCLING	13
VII.	RESIDENTIAL APPLIANCE REBATE	14
VIII.	RESIDENTIAL LOW INCOME AFFORDABILITY	15
IX.	RESIDENTIAL DIRECT LOAD CONTROL	18
Х.	RESIDENTIAL TIME-OF-USE PRICING	20
XI.	RESIDENTIAL PEAK TIME REBATE PRICING	21
XII.	NON-RESIDENTIAL PRESCRIPTIVE REBATES	23
XIII.	NON-RESIDENTIAL CUSTOM REBATES	24
XIV.	NON-RESIDENTIAL DIRECT LOAD CONTROL	27
XV.	NON-RESIDENTIAL TIME-OF-USE PRICING	28
XVI.	EDUCATION AND AWARENESS	30
XVII.	PROGRAM IMPLEMENTATION	32

XVIII	EVALUATION AND MEASUREMENT	. 34
XIX.	2016 - 2023 FORECASTED ENERGY/DEMAND REDUCTIONS	. 34
XX.	SCHEDULES AND WORKPAPERS	35
XXI.	CONCLUSION	35

.

1 I. INTRODUCTION

- 2 Q. Please state your name and business address.
- A. My name is Maria Bubp. My business address is 1900 Dryden Road, Dayton, Ohio
 4 45439.
- 5 Q. By whom and in what capacity are you employed?
- A. I am employed by The Dayton Power and Light Company ("DP&L" or "Company") as a
 Director of Operations.
- 8 Q. How long have you been in your present position?
- 9 A. I assumed my present position in January, 2008. Prior to that position, I was a Manager
 10 of Operations where I oversaw the operations of customer service field personnel (such
 11 as Meter Readers and Service Technicians), budgeting activities for the transmission and
 12 distribution business unit and some PJM settlement activities. Before this, I held a
 13 variety of positions including managing the Company's gas transportation program,
 14 supervising regulatory activities and purchasing natural gas and associated interstate
 15 pipeline services.
- 16 Q. What are your responsibilities in your current position and to whom do you report?
- 17 A. In my current position, I am responsible for developing DP&L's demand side
- 18 management programs and overseeing the implementation preparations for DP&L's
- 19 Customer Conservation and Energy Management initiative. I report to DP&L's Senior
- 20 Vice President of Service Operations.
- 21 Q. Will you describe briefly your educational and business background?

1 A. I received an MBA from the University of Dayton in 1994 and a B.S. in Marketing from 2 Wright State University, Dayton, Ohio, in 1988. I have worked for DP&L for a total of 3 16 years. Through my tenure with the Company, I was involved in selling DP&L's 4 natural gas business to the Indiana Gas Company as it was merging with Southern Indiana 5 Gas and Electric Co. to form Vectren Energy Holdings. Like other employees involved 6 with DP&L's gas business, I became an employee of Vectren upon the sale of the gas 7 business. I served as Vectren's Director of Customer Programs where I oversaw 8 Vectren's regulated gas services and developed Vectren's Ohio gas choice tariff.

9

Q. What is the purpose of this testimony?

10 Α. The purpose of this testimony is to show how DP&L will meet the energy and demand reduction targets set out in Am. Sub. S.B. 221 and to support the energy efficiency and 11 12 demand response programs and other initiatives proposed by the Company to meet these 13 targets. This testimony provides insights into how the initial suite of programs was 14 selected along with the anticipated cost and energy/demand reductions associated with 15 each program. I will also explain how the effectiveness of each program shall be 16 evaluated and provide an overview of the additional staff to be hired to support the 17 programs.

18

Q. What Chapter, Exhibits, Schedules and Workpapers are you supporting?

A. I am supporting Chapter II, the "Energy Efficiency and Demand Response Plan 20092015" of The Dayton Power & Light Company and Exhibits MWB-1, MWB-2 and
MWB-3. I also support Schedule B-2 lines 3 – 8, Schedule B-3 lines 3 - 8, Schedule B4 lines 5 -8, Schedule B-5 lines 5 - 8, as well as Workpapers G-1 and G-1.1 through G1.16 relating to DP&L's programs and other initiatives to reduce electric energy and/or

demand. In addition, I support the energy and demand reduction volumes contained in
 WPF-1.

3 II. PROGRAM OVERVIEW

6

4 Q. Am. Sub. S.B. 221 requires electric distribution utilities to implement demand side

5 management programs to achieve prescribed energy and demand reduction targets.

What are DP&L's targets under that Bill and how are they calculated?

7 Α. As shown in Exhibit MWB-1, DP&L calculated the annual energy reduction targets using 8 the Company's baseline sales, which is the average of the weather-normalized sales during the calendar years of 2006 through 2008, adjusted for known, significant load 9 changes between such baseline year and the year for which the target is being calculated. 10 11 Each year's energy reduction target is then calculated by applying the cumulative savings 12 requirement set out in Am. Sub. S.B. 221 against the respective year's baseline sales. 13 The demand reduction targets were calculated in the same manner, with the exception 14 that actual system peak demand is used rather than weather-normalized sales. At the time 15 that this testimony is being finalized, the Commission's final rules regarding targets are not available; therefore, the Company reserves the right to file supplemental testimony 16 17 addressing this subject.

18 Q. How did DP&L calculate the energy and demand reductions to be achieved through 19 this filing?

A. In addition to the energy and demand reduction impacts of the various customer
 programs supported in this testimony, reductions in the form of line losses associated
 with the Smart Grid Development (calculated at 1% of sales utilizing enhanced

23 distribution lines) were incorporated as well as energy reductions attributable to customer

behavioral changes associated with home energy displays (calculated at 5% of overall
 energy usage for customers with this infrastructure). Finally, the anticipated demand
 reduction associated with direct participation of non-residential customers in PJM's
 Demand Response programs was also incorporated.

5 Q. Will the programs and measures you are proposing meet the targets you have 6 calculated?

A. As graphically depicted in Exhibit MWB-2, based on the calculations outlined above, the
programs and initiatives contained in this filing should meet the energy and demand
reduction targets the Company has calculated, given that technology advances will make
additional cost-effective opportunities reasonably available to achieve additional
reductions beginning by at least 2013. The Company is committed to meeting the targets,
and shall continue to explore additional opportunities made available through technology
developments, infrastructure enhancements and additional customer programs.

Q. Can you please provide a summary of the proposed suite of energy efficiency and demand response programs as well as infrastructure enhancements contained in the filing?

A. Yes. DP&L's filing contains energy efficiency and demand response programs for
residential and non-residential customers as well as educational outreach initiatives to
build and expand consumer energy management awareness. Following is a list of the
various programs, with program-specific estimated costs and energy/demand reductions
contained in Exhibit MWB-3:

The residential portfolio includes lighting, HVAC diagnostic & tune-up, HVAC
 rebates, appliance recycling, appliance rebates, low-income affordability, direct

1	load control, time-of-use pricing and peak-time-rebate pricing. The total amount
2	committed to this portfolio is \$61 million with an anticipated seven-year
3	cumulative energy reduction of 1,058 GWh and a seventh year anticipated
4	demand reduction of 87,217 kW.
5	• The non-residential portfolio is comprised of prescriptive rebates, custom rebates,
6	direct load control and time-of-use pricing (with and without a critical peak
7	pricing component). The total amount committed to this portfolio is \$40 million
8	with an anticipated seven-year cumulative energy reduction of 1,108 GWh and a
9	seventh year anticipated demand reduction of 90,525 kW.
10	• Education and outreach efforts include enhancements to DP&L's website as well
11	as the introduction of new general education efforts, school and community
12	presentations and the development and use of an energy efficiency showcase and
13	educational facility. DP&L is committing \$12.3 million to this effort over the
14	seven-year period.
15	In addition to these programs, energy and demand reductions shall be achieved through
16	the Smart Grid Development and home energy displays indicated in Workpapers WPI-1
1 7	WPH-1.2 and supported by Mr. Teuscher. The anticipated seven-year cumulative energy
18	reduction of 363 GWh and a seventh-year anticipated demand reduction of 5,300 kW are
19	attributable to these initiatives. Overall, DP&L also intends to spend \$5.7 million over
20	the seven years on evaluation, measurement and verification activities.

21 Q. How were these programs selected?

A. The principles guiding our selection process were that the programs be relevant for all
 customer classes, be modeled after programs proven to be effective at other utilities, and

1		should enable the Company to meet the targets for energy and demand reduction set forth
2		in Am. Sub. S.B. 221. The Company thoroughly reviewed best-practice energy
3		efficiency and demand response programs from across the nation and tested these
4		programs with a sample of DP&L's residential and non-residential customers to
5		determine local relevance and estimated participation levels. Finally, as described in the
6		testimony of Mr. Michaelson, all short-listed measures were tested for cost effectiveness
7		using the Total Resource Cost test as defined by the California Standard Practice
8		Manual to arrive at our list of programs.
9	Q.	Please describe the process used to identify and review "best practice" programs.
10	А.	The evaluated programs were drawn from a review of a number of well-respected
11		assessments of program best practices such as The American Council for an Energy
12		Efficient Economy's (ACEEE) "Compendium of Champions: Chronicling Exemplary
13		Energy Efficient Programs from Across the U.S." and reviews of program best practices
14		sponsored by the California Public Utilities Commission and the Energy Trust of Oregon.
15		The initial list is also based on a review of the types of programs implemented by utilities
1 6		often considered to be leaders in the field such as Xcel Energy, Northeast Utilities,
17		Pacific Gas & Electric, and the Wisconsin Focus on Energy. Finally, the services of the
18		Bridge Strategy Group, a consulting firm with experience in evaluating and developing
19		demand side management programs, were utilized throughout the identification and
20		review process.
21	Q.	Do you anticipate that this initial suite of programs will be adjusted over time?

22 А. Yes. DP&L believes that this suite of programs is the best for our customers, and we 23 intend to learn from experience. Therefore, over time, we may make revisions to

individual programs, add new programs or potentially discontinue a program based on
 customer participation levels, realized energy and demand reductions relative to the
 targets prescribed in Am. Sub. S.B. 221, current market conditions or advances in
 technology.

5 Q. The participation levels, estimated demand/energy reductions and costs associated 6 with several other utilities' programs and filings were relied upon to develop the 7 sections that follow. Could you please provide a listing of these utilities and explain 8 why you relied upon data from their programs and filings?

9 A. The Company referenced the filings of Ameren, the Anaheim Public Utility filing by San
10 Diego Gas and Electric, Connecticut Light & Power, Commonwealth Edison, Duke of
11 Ohio, Narragansett Electric Company, Pacific Gas & Electric, Pepco, Wisconsin Electric
12 Power and Wisconsin Public Service. The Company relied upon data from those utility
13 filings when it was the best available data as to estimated demand/energy reductions and
14 costs.

Q. What philosophy did you follow in determining the penetration rates for the energy
 efficiency and demand response programs?

A. The Company used primary market research when possible and benefited from the
experience of other utilities. Overall, we adopted penetration rates from the most
aggressive programs to reflect our pursuit of the statutory targets. However, for those
programs for which DP&L has little experience, we used less-aggressive penetration
rates.

Q. What overarching principles were used to determine the energy and demand impact
for the various program measures?

A. As a general principle DP&L utilized California's Database for Energy Efficiency
 Resources (DEER) for estimates of energy and demand impact. When programs were
 weather-sensitive, DP&L used energy and demand impacts from utilities in the region.
 Since regional information on time-based pricing was not available, we used a
 compendium of benchmarks from programs throughout the country to estimate measure
 impacts.

7

Q. What principles were followed to determine incentive costs?

8 A. Our preference was to set incentive levels using data gathered from our primary market
9 research. In addition, we used the incentive levels that corresponded to the programs
10 from which we also used the penetration rates. Finally, the thermostat costs included as
11 part of the Direct Load Control program were determined based on industry RFPs.

12 Q. How did you determine marketing and administration costs?

A. For our efficiency programs, we utilized other utilities' filings and experience to
 determine marketing and administration costs. In cases where we used penetration rates
 from a specific utility, we also used that utility's marketing and administrative costs to
 reflect the promotional efforts required to achieve those penetration rates. Where the
 penetration rates were based on DP&L market research, we used an average
 marketing/administration rate of programs in the region.

19 III. <u>RESIDENTIAL LIGHTING</u>

20 Q. Will you describe the Residential Lighting program, as reflected in WPG-1.1?

A. Yes. This program is designed to increase the number of Energy Star qualified compact
 fluorescent lamp (CFL) bulbs sold by providing incentives to decrease consumer costs.

1The program should increase consumer awareness and acceptance of energy-efficient2lighting technology through education and has an educational component to promote3proper disposal of CFL bulbs. Although the initial focus is on CFL bulbs, this program4will evolve to encompass new residential energy efficient lighting technologies as5appropriate.

6

Q. Please describe your target market for this program.

A. This program is designed for residential customers who purchase bulbs through retail
 channels. All customers taking delivery service from DP&L are eligible for this program
 regardless of their choice of supplier.

10 Q. What is your implementation plan for this program?

A. DP&L and implementation partners selected through an RFP process will negotiate
 discounts with bulb manufacturers, establish partnerships with retailers and/or their
 suppliers, oversee the implementation of cooperative advertising, audit retail outlets to
 confirm that appropriate promotions are being implemented and track the number of
 bulbs purchased and recycled. DP&L anticipates paying an average of \$2.92 per CFL
 bulb from 2009 through 2015.

17 Q. What are the estimated energy and demand reductions associated with this 18 program?

A. Measure impacts of 47 kWh and 0.004 kW per bulb have been used, and were obtained
 form the California DEER. These impacts were applied to the forecasted number of
 bulbs implemented (based on surveys of DP&L's residential customers and industry

1		benchmarks) to determine the cumulative energy reductions of 195 GWh and cumulative
2		year 7 demand savings is 16.6 MW as shown on WPG1.1.
3	Q.	Are you familiar with the requirements of the Energy Independence and Security
4		Act of 2007 (42 U.S.C. § 6295(i)(1)(B)) relating to availability of incandescent
5		bulbs?
6	А.	Yes. It is my understanding that incandescent bulbs will begin to be phased out in 2012.
7	Q.	How does DP&L plan to continue to achieve energy savings from its residential
8		lighting program when traditional incandescent are no longer available?
9	A.	DP&L will continue to offer rebates for the most efficient lighting technology. DP&L's
10		focus will initially be on CFLs as long as they are more efficient than bulbs with
11		dominant market share. However, the Company will focus on ensuring that as new
12		technology emerges it is made available to our customers and DP&L expects to provide
13		rebates for the most efficient lighting technology.
14	Q.	What are the estimated costs for this program, and how were these estimate
15		developed?
1 6	A.	The 7-year total cost of this program is \$20.1 million as identified on line 8 of WPG-1.1.
17		The 7-year incentive costs are \$12.1 million and the marketing and administration
18		expense is \$8.0 million.
19	IV.	RESIDENTIAL HVAC DIAGNOSTIC & TUNE-UP
20	Q.	Will you describe the Residential HVAC Diagnostic and Tune-Up program as

21 reflected in WPG-1.2?

A. Yes. This program promotes summer period energy and demand savings by increasing
 the efficiency of residential central air conditioner units. Under this program, DP&L will
 pay a portion of the cost of a specific diagnostic and tune-up services performed by
 HVAC contractors that are certified by a third party to perform such tune-ups. Among
 other points, the tune-up will verify the unit's refrigerant charge and air flow.

6 Q. Pl

Please describe your target market for this program.

7 A. This program is designed for residential customers with central air conditioning units in
8 owner-occupied, single-family residential dwellings. All targeted customers taking
9 delivery service from DP&L are eligible for this program regardless of their choice of
10 supplier.

11 Q. What is your implementation plan for this program?

A. Channel partners must undergo training and certification provided by an approved third
 party prior to being able to provide this service to DP&L's customers under this program.
 Customers may schedule appointments directly with the approved HVAC contractors and
 DP&L will pay a \$100 incentive after completion of the HVAC tune-up. This incentive
 is available for a qualifying account every three years.

17 Q. What are the estimated energy and demand reductions associated with this
18 program?

A. Measure impacts of 394 kWh and 0.35 kW have been used, and were applied to the
anticipated participation levels to obtain the 7-year cumulative energy reductions of 20
GWh and cumulative year 7 demand savings of 17.8 MW.

Q. What are the estimated costs for this program, and how were these estimates
developed?

3 A. The total 7-year expenses for this program are \$8.4 million as set out on line 8 of WPG-

- 4 1.2. This figure is comprised of a 7-year incentive amount of \$5.6 million and marketing
 5 and administration expense of \$2.8 million.
- 6 V.

RESIDENTIAL HVAC REBATES

7 Q. Will you describe the Residential HVAC Rebate program, as reflected in WPG-1.3?

- 8 A. Yes. There are substantial energy efficiency and demand reduction opportunities 9 associated with the proper sizing and installation of new central HVAC systems, as well 10 as with the installation of premium efficiency equipment. This program provides a rebate 11 to qualifying customers that serves to pay for a portion of a new HVAC unit.
- 12 Q. Please describe your target market for this program.
- A. This program is designed for any homeowner or landlord purchasing an HVAC unit that
 will be installed at a residence within the DP&L service territory. All targeted customers
 taking delivery service from DP&L are eligible for this program regardless of their
 choice of supplier.
- 17 Q. What is your implementation plan for this program?
- A. DP&L plans to partner with HVAC contractors that become certified to participate in the
 program and sign a partnership agreement. Contractor incentives will be provided for
 documented installations that meet the requirements. DP&L anticipates paying an
 average of \$168 per central HVAC system from 2009 through 2015.

1	Q.	What are the estimated energy and demand reductions associated with this	
2		program?	
3	A.	Measure impacts of 280 kWh and 0.25 kW have been used, and when applied to the	
4		projected participation levels, they generate cumulative 7-year energy savings of 10.8	
5		GWh and cumulative year 7 demand savings of 9.6 MW as shown on WPG-1.3.	
6	Q.	What are the estimated costs for this program, and how were these estimates	
7		developed?	
8	A.	The 7-year expense for this program is \$11.0 million as set out on line 8 of WPG-1.3,	
9		which is comprised of \$6.5 million in incentives and \$4.5 million in marketing and	
10		administration costs.	
11	VI.	RESIDENTIAL APPLIANCE RECYCLING	
11 12	VI. Q.	RESIDENTIAL APPLIANCE RECYCLING Will you describe the Residential Appliance Recycling program, as reflected in	
11 12 13	VI. Q.	RESIDENTIAL APPLIANCE RECYCLING Will you describe the Residential Appliance Recycling program, as reflected in WPG-1.4?	
11 12 13 14	VI. Q. A.	RESIDENTIAL APPLIANCE RECYCLING Will you describe the Residential Appliance Recycling program, as reflected in WPG-1.4? Yes. DP&L will pay the customer an incentive of \$50 for an inefficient second	
11 12 13 14 15	VI. Q. A.	RESIDENTIAL APPLIANCE RECYCLING Will you describe the Residential Appliance Recycling program, as reflected in WPG-1.4? Yes. DP&L will pay the customer an incentive of \$50 for an inefficient second refrigerator or freezer and \$25 for an inefficient window air conditioner. DP&L will also	
11 12 13 14 15 16	VI. Q. A.	RESIDENTIAL APPLIANCE RECYCLING Will you describe the Residential Appliance Recycling program, as reflected in WPG-1.4? Yes. DP&L will pay the customer an incentive of \$50 for an inefficient second refrigerator or freezer and \$25 for an inefficient window air conditioner. DP&L will also arrange for and fund the removal and recycling of the inefficient units. To qualify, the	
 11 12 13 14 15 16 17 	VI. Q. A.	RESIDENTIAL APPLIANCE RECYCLING Will you describe the Residential Appliance Recycling program, as reflected in WPG-1.4? Yes. DP&L will pay the customer an incentive of \$50 for an inefficient second refrigerator or freezer and \$25 for an inefficient window air conditioner. DP&L will also arrange for and fund the removal and recycling of the inefficient units. To qualify, the appliance must be in working condition.	
 11 12 13 14 15 16 17 18 	VI. Q. A.	RESIDENTIAL APPLIANCE RECYCLING Will you describe the Residential Appliance Recycling program, as reflected in WPG-1.4? Yes. DP&L will pay the customer an incentive of \$50 for an inefficient second refrigerator or freezer and \$25 for an inefficient window air conditioner. DP&L will also arrange for and fund the removal and recycling of the inefficient units. To qualify, the appliance must be in working condition. Please describe your target market for this program.	
 11 12 13 14 15 16 17 18 19 	VI. Q. A. Q.	RESIDENTIAL APPLIANCE RECYCLING Will you describe the Residential Appliance Recycling program, as reflected in WPG-1.4? Yes. DP&L will pay the customer an incentive of \$50 for an inefficient second refrigerator or freezer and \$25 for an inefficient window air conditioner. DP&L will also arrange for and fund the removal and recycling of the inefficient units. To qualify, the appliance must be in working condition. Please describe your target market for this program. This program is designed for residential customers with working inefficient room air	
	1		delivery service from DP&L are eligible for this program regardless of their choice of
---	--------	------	---
	2		supplier.
	3	Q.	What is your implementation plan for this program?
	4	А.	DP&L will work with a third party that will remove the qualifying unit, arrange for the
	5		appropriate recycling and provide to DP&L the customer information to facilitate the
	6		rebate. The vendor(s) will be selected through an RFP process.
	7 8	Q.	What are the estimated energy and demand reductions associated with this
	U		program.
	9	А.	Measure impacts of 1,707 kWh and 0.267 kW have been used, which translate to
	10		cumulative 7-year energy reductions of 24 GWh and year 7 cumulative demand savings
	11		of 3.9 MW as shown on WPG-1.4.
	12	Q.	What are the estimated costs for this program, and how were these estimate
	13		developed?
	14	А.	The total 7-year expense for this program is \$2.5 million as set out on line 8 of WPG-1.4.
	15		This is comprised of \$772,000 of incentives and \$1.7 million of marketing administrative
	16		charges.
	17	VII.	RESIDENTIAL APPLIANCE REBATE
	18	Q.	Will you describe the Residential Appliance Rebate program, as reflected in WPG-
	19		1.5?
)	20	А.	Yes. Specific incentives will be awarded to customers who purchase qualifying Energy

Yes. Specific incentives will be awarded to customers who purchase qualifying Energy Α.

21 Star ceiling fans, room air conditioners, dishwashers, freezers and dehumidifiers. 1

Q. Please describe your target market for this program.

A. This program is designed for residential customers in existing and new homes within the
 DP&L service territory, regardless of their choice of energy supplier.

4 Q. What is your implementation plan for this program?

- A. The delivery strategy will focus on generating participation from appliance retailers
 within DP&L's service territory, and participating customers will mail in the appropriate
 information to receive a rebate. DP&L expects to partner with a fulfillment party to
 contact appliance outlets and to generate the customer refunds. DP&L anticipates paying
 an average of \$30 per appliance from 2009 2015.
- 10Q.What are the estimated energy and demand reductions associated with this11program?
- A. Measure impacts of 207 kWh and .025 kW have been used, which yield the 7-year
 cumulative energy savings of 6.2 GWh and year 7 cumulative demand savings of 744.0
 MW as shown in WPG-1.5.
- Q. What are the estimated costs for this program, and how were these estimates
 developed?
- A. The 7-year expenses for this program are \$1.4 million a set out on line 8 of WPG-1.5, and
 is comprised of \$883,000 of incentives and \$530,000 of marketing and administration
 expenses.
- 20 VIII. RESIDENTIAL LOW INCOME AFFORDABILITY
- 21 Q. Will you describe the Residential Low Income program, as reflected in WPG-1.6?

1 Α. Yes. Low-income electric customers meeting the program guidelines may undergo an 2 energy audit where the auditor will review the energy efficiency of the home and provide 3 feedback on areas of improvement. The auditor will then work with the customer to 4 create a mutually beneficial plan for improving the energy efficiency of the home. Those 5 electric solutions that are found to have a benefit / cost ratio better than 1.0 will be funded 6 through this program. The cost of the efficiency solutions funded through this program 7 can be a maximum for any single family home of \$5,000, and a multi-family home of 8 \$50,000.

9

Q.

Please describe your target market for this program.

A. This program is available to low-income residential electric customers within the DP&L
service territory with household incomes up to 200% of the federal poverty level.
Eligible households include single-family homes and multi-family homes where 80% of
the tenants meet the income requirements of the program. This program is available to
all qualifying electric customers taking delivery service from DP&L, regardless of their
choice of supplier.

16 Q. How will DP&L determine eligibility for this program?

A. Any cost-effective energy efficiency solution that is recommended by the auditor and that
passes the benefit / cost ratio test may be included. The expected types of solutions
include efficient lighting, new refrigerator, new freezer, window air conditioner
replacement; HVAC tune-up and/or replacement, caulking, insulation and education.

- DP&L will fund new equipment purchases when the removal of the inefficient equipment
 has been accomplished.
- 23 Q. What is your implementation plan for this program?

1	А.	DP&L will partner with local non-profit agencies to bring to low-income customers the
2		benefits of this program. The Department of Energy Home Weatherization Assistance
3		Program, the Ohio Electric Partnership Program (EPP) and the Community Action
4		Partnership (CAP) agencies have been involved in energy efficiency activities for years.
5		Through this new program DP&L will help to fund the agencies, audits and solutions to
6		expand the reach of these programs and to help to make electricity more affordable to the
7		qualifying low-income customers within the Company's service territory.
8	Q.	What are the estimated energy and demand reductions associated with this
9		program?
10	А.	Measure impacts of 1,999 kWh and 0.151 kW have been used. Multiplying these
11		impacts against the anticipated annual number of homes completed (based on the EPP
12		forecast) yields a 7-year cumulative energy savings of 11.9 GWh and a year 7 cumulative
13		demand savings of 901.6 kW as shown on WPG-1.6.
14	Q.	What are the estimated costs for this program, and how was this estimate
15		developed?
16	А.	A total of \$1 million per year, adjusted for inflation, is committed to this program. Of
17		this total, 21% is allocated to administrative costs (as calculated from the Ohio Electric
18		Partnership Program's Impact Evaluation report dated June 30, 2006), with the remainder
19		allocated to home efficiency upgrades. The 7-year total cost for this program is \$7.7
20		million as shown on line 6 of WPG-1.6.

1 IX. RESIDENTIAL DIRECT LOAD CONTROL

- 2 Q. Will you describe the Residential Direct Load Control program, as reflected in
 3 WPG-1.7?
- A. Yes. The Direct Load Control program provides eligible participants with a
 programmable thermostat that is installed at no cost, and can be programmed via the
 internet. During peak summer conditions or periods of regional operating constraints,
 DP&L can signal the thermostat to cycle the air conditioner on and off, which will reduce
 load on DP&L's system and result in a temperature increase of only a few degrees
 Fahrenheit.
- 10 Q. Please describe your target market for this program.
- A. This program targets residential customers within the DP&L service territory who have
 central air conditioning. This program is available to all qualifying electric customers
 taking delivery service from DP&L, regardless of their choice of supplier.
- 14 Q. What is your implementation plan for this program?

A. DP&L plans to finalize the specific terms and conditions of the program in 2009 to begin
implementation in the summer of 2010 for customers who have advanced meter
infrastructure in place. Based on the success of this effort, DP&L intends to make this
service available to all residential customers with advanced metering infrastructure
commencing the summer of 2011. DP&L anticipates that it will pay \$324 per household
to install a programmable thermostat from 2010 through 2015.
DP&L will choose a qualified implementation partner through an RFP process. The

22 selected vendor(s) or contractor(s) will work with DP&L to deliver services to the area.

1		Elements or the vendors' role may include customer recruitment, thermostat installation,
2		demand response implementation, and quality control inspection.
3	Q.	What are the estimated energy and demand reductions associated with this
4		program?
5	A.	Measure impacts of 370 kWh and 1.38 kW have been used. When applied to the
6		estimated number of participants, as determined through a survey of a sample of DP&L's
7		residential customers and factoring in the phasing of the AMI system, the 7-year
8		cumulative energy savings is 6.2 GWh and the cumulative year 7 demand reduction is
9		23.1 MW.
10 11	Q.	What are the estimated costs for this program, and how were these estimates developed?
12	A.	The total cost of this program is \$7.1 million over 7 years as set out on line 11 of WPG-
13		1.7. The cost of an installed thermostat and the associated marketing and administrative
14		expenses were determined based on the results of an industry RFP. These costs were
15		applied to the estimated participation level, which was established based on the survey
16		results of DP&L's residential customers and the planned AMI roll-out schedule, to
17		generate a 7-year total installed thermostat expense of \$5.4 million and
18		marketing/administration evaluation expense of \$1 million. In addition, DP&L
19		anticipates that it will incur \$678,000 in incremental operating and maintenance costs
20		associated with the program.

1 X. RESIDENTIAL TIME-OF-USE PRICING

- Q. Will you describe the Residential Time-of-Use Pricing program, as reflected in
 WPG-1.8?
- A. Yes. The Time-of-Use Pricing tariff encourages participating customers to shift electric
 usage from peak to off-peak hours, particularly during the summer season. The time-ofuse rates will be designed so that the price per kWh during the peak summer season will
 be higher during the peak hours and lower during the off-peak hours. Those customers
 who reduce consumption during peak periods or who switch their consumption to offpeak hours should see a lower annual energy bill.
- 10 Q. Please describe your target market for this program.
- A. This program is available to all residential customers taking delivery service from DP&L
 who elect to purchase transmission and generation service from DP&L.
- 13 Q. What is your implementation plan for this program?

14A.Prior to 2011, DP&L will conduct rate design studies needed to establish the revenue-15neutral prices and will determine the specific terms and conditions of the program, such16as defining the applicable months as well as the on- and off-peak hours and rates. DP&L17plans to offer the Time-of-Use Pricing program beginning in 2011 to customers that have18advanced metering infrastructure in place. Based on the success of this effort, DP&L19intends to make this service available to all residential customers with advanced metering20infrastructure.

Q. What are the estimated energy and demand reductions associated with this
program?

		5
1	А.	An average impact of 0.42 kW has been used, which represents a 13.4% reduction in the
2		average demand per residential customer. The estimated cumulative year 7 demand
3		savings are 6 MW as set out on WPG-1.8. For purposes of this filing, DP&L assumes no
4		energy savings from this program, as the emphasis is on shifting electric consumption.
5	Q.	What are the estimated costs for this program, and how were these estimates
6		developed?
7	А.	The estimated 7-year total budget for this program is \$1.3 million as set out on line 5 of
8		WPG1.8, which reflects the estimated marketing, administration and pilot evaluation
9		costs. Since this is a revenue-neutral rate, there are no incentive expenses associated with
10		this pricing option.
11	XI.	RESIDENTIAL PEAK TIME REBATE PRICING
12	Q.	Will you describe the Residential Peak Time Rebate Pricing program, as reflected in
13		WPG-1.9?
14		

14A.Yes. The Peak Time Rebate rider gives customers a rebate per kWh for curtailing energy15below a pre-established baseline projection during peak conditions. The amount of16curtailed energy is based on actual consumption during the applicable hours compared17with a customer's baseline, which is calculated as the average energy consumed during18comparable days preceding the day of peak conditions. Customers will receive advanced19notification of a peak event, which will occur only on a weekday during the summer20period.

21 Q. Please describe your target market for this program.

1A.This program is targeted towards all residential customers taking delivery service from2DP&L. This program is available to all qualifying electric customers, regardless of their3choice of supplier or DP&L tariff option.

4

Q.

What is your implementation plan for this program?

5 A. Prior to 2011, DP&L will conduct the rate design studies needed to establish the refund 6 value and will determine the specific terms and conditions of the program, such as how 7 the customer-specific baseline calculation will be conducted. DP&L will introduce the 8 Peak Time Rebate program beginning in 2011 to customers who have advanced metering 9 infrastructure in place. Based on the success of this effort, DP&L intends to make the 10 Peak Time Rebate program available to all residential customers with advanced metering 11 infrastructure.

12 Q. What are the estimated energy and demand reductions associated with this 13 program?

A. An average impact of .37 kW has been used, with a cumulative year 7 demand savings of
8.5 kW. For purposes of this filing, DP&L assumes no energy savings from this
program, as the emphasis is on shifting electric consumption.

17 Q. What are the estimated costs for this program, and how was this estimate 18 developed?

A. The 7-year budget for this program is \$1.3 million as set out in WPG-1.9 and is
 comprised of marketing, administration and pilot evaluation expenses.

XII. NON-RESIDENTIAL PRESCRIPTIVE REBATES

- Q. Will you describe the Non-Residential Prescriptive Rebates program, as reflected in
 WPG-1.10?
- 4 A. Yes. The Non-Residential Prescriptive Rebates program is designed to provide a simple 5 set of solutions for non-residential customers who wish to become more energy efficient. 6 The initial set of solutions and corresponding incentive rebates (as contained in WPG-7 1.10a) represent proven products that provide energy savings over the standard products 8 in each category. Rebate amounts are determined based on cost effectiveness and will 9 not exceed 50% of the measure cost. The rebate listing will be available on DP&L's 10 website and will be updated periodically to account for new and improving technologies. 11 DP&L does not envision placing a cap on the amount that a customer may receive under 12 this program.
- 13 Q.

1

Please describe your target market for this program.

A. This program is designed for all non-residential customers seeking to improve the energy
 efficiency of their new and existing facilities within the DP&L service territory. The
 program may be utilized by all non-residential customers regardless of their choice of
 energy supplier.

18 **Q**.

Will DP&L target any specific industry sectors when promoting this program?

- A. Approximately sixty percent of DP&L's non-residential customers fall into the segments
 of office space, retail and manufacturing. Therefore, specific outreach efforts will be
 directed to these segments.
- 22 Q. What is your implementation plan for this program?

1	A.	Upon completion of a qualifying project, the customer will file a rebate application,
2		which will identify the measure taken and document the project's costs. DP&L's
3		marketing efforts for this program will focus heavily on educating channel partners about
4		the incentive program and the qualifying measures. In addition to these activities, DP&L
5		will focus specific efforts on reaching its key non-residential customer segments, which
6		account for significant load and savings opportunities. The incentives and marketing
7		strategy will change based on customer response, market prices and
8		manufacturer/distributor co-funding. A random sampling of applications and every
9		rebate application over \$10,000 will be subject to on-site verification prior to any
10		payment being made.
11	Q.	What are the estimated energy and demand reductions and participation levels
13	A.	They are shown in WPG-1.10a.
14	Q.	What are the estimated costs for this program, and how was this estimate
15		developed?
16	А.	The 7-year budget for this program is \$22.3 million as set out in WPG-1.10. This total is
17		comprised of \$15.5 million of incentives and \$6.8 million of marketing/administration
18		expenses.
19	XIII.	NON-RESIDENTIAL CUSTOM REBATES

20 Q. Will you describe the Non-Residential Custom Rebates program, as reflected in
21 WPG-1.11?

1	А.	Yes. This program provides financial assistance to non-residential customers to support
2		implementation of efficiency opportunities available for new equipment purchases,
3		facility modernization and industrial process improvement. The incentive will be
4		calculated based on expected demand and energy savings. As an optional part of the
5		program, DP&L will establish an audit program to assist customers in evaluating the
6		energy efficiency opportunities available to them.

7 Q. Please describe your target market for this program.

A. This program is targeted to existing non-residential customers with cost-effective
efficiency opportunities that do not qualify for prescriptive rebates, but nonetheless
provide efficiency opportunities that are worthy of implementing. This program is
available to qualifying customers taking delivery service from DP&L regardless of their
choice of supplier.

13

Q. What is your implementation plan for this program?

The program will employ both incentive reservation and application stages. Prior to 14 Α. 15 undertaking a project, applicants must submit a rebate reservation form that provides all 16 data necessary to determine an incentive level. The Company will review the reservation 17 and verify the incentive. For large projects, DP&L reserves the right to perform a site 18 visit to verify baseline conditions. If approved, DP&L will reserve the incentive amount 19 and approve the level of funding to support the project. Upon completion of the project, 20 the customer will file a rebate application, which will be similar to the reservation 21 application but will also require documentation of project costs. On-site verification 22 prior to any payment will be performed for both a random sampling of applications and 23 every rebate application over \$10,000.

2		DP&L's marketing efforts for the custom rebate program will focus heavily on educating
3		trade allies about the incentive program. In addition to these activities, DP&L will focus
4		specific efforts on reaching the key non-residential customer segments mentioned earlier,
5		which account for significant load and savings opportunities. Finally, DP&L anticipates
6		making audits available to non-residential customers to identify energy efficiency
7		opportunities.
8 9	Q.	How will the Custom Rebate program interrelate with the Prescriptive Rebate
10	А.	The two programs are designed to complement each other, with the custom program
11		providing rebate opportunities for the less-common measures that are not set out in the
12		prescriptive program. Also, as a common measure is recognized through the custom
13		program, this measure may be added to the prescriptive program.
14	Q.	What are the estimated energy and demand reductions associated with this
15		program?
16	А.	The cumulative 7-year energy savings is 89 GWh and the year 7 cumulative demand
17		savings is 16.6 MW.
18	Q.	What are the estimated costs for this program, and how were these estimates
19		developed?
20	А.	The seven-year expense for this program is \$14.0 million as set out in WPG-1.11. The
21		custom rebate incentive expense is \$9.0 million, and the marketing/administrative
22		expense is \$5 million.

1 XIV. NON-RESIDENTIAL DIRECT LOAD CONTROL

Q. Will you describe the Non-Residential Direct Load Control program, as reflected in
 WPG-1.12?

4 A. Yes. The Direct Load Control program provides eligible participants with a

programmable thermostat that is installed at no cost, and can be programmed via the

internet. During peak summer conditions or periods of regional operating constraints,

7 DP&L can signal the thermostat to cycle the air conditioner on and off, which will reduce

load on DP&L's system and result in a temperature increase of only a few degrees

Fahrenheit.

5

6

8

9

10 Q. Please describe your target market for this program.

A. This program targets small non-residential customers within the DP&L service territory
 who have central air conditioning units. This program is available to all qualifying
 electric customers taking delivery service from DP&L, regardless of their choice of
 supplier or DP&L tariff option.

15 Q. What is your implementation plan for this program?

A. DP&L plans to finalize the specific terms and conditions of the program in 2009 and
 introduce the program beginning the summer of 2010 to customers that have advanced
 meter infrastructure in place. Based on the success of this effort, DP&L intends to make
 this service available to all non-residential customers with advanced metering

20 infrastructure commencing the summer of 2011.

DP&L will choose a qualified implementation partner through an RFP process. The
 selected vendor(s) or contractor(s) will work with DP&L to deliver services to the area.

1		Elements of the vendor's role include customer recruitment, thermostat installation,
2		demand response implementation, and quality control inspection.
3	Q.	What are the estimated energy and demand reductions associated with this
4		program?
5	А.	Measure impacts of 518 kWh and 1.93 kW has been used, with the 7-year cumulative
6		energy savings of 1.3 GWh and cumulative year 7 demand reductions of 4.9 MW.
7	Q.	What are the estimated costs for this program, and how were these estimates
8		developed?
9	А.	The total estimated cost of this program is \$1.1 million over 7 years as set out in WPG-
10		1.12. The cost of an installed thermostat and the associated marketing and administrative
11		expenses were estimated based on the results of an industry RFP. These costs were
12		applied to the estimated participation levels, which were established by survey results of
13		DP&L's non-residential customers and the planned AMI roll-out schedule, to generate an
14		estimated 7-year total installed thermostat expense of \$824,000 and
15		marketing/administration/pilot evaluation expense of \$173,000. In addition, DP&L
16		estimates that it will incur \$105,000 in incremental operating and maintenance costs
17		associated with the program.
18	XV.	NON-RESIDENTIAL TIME-OF-USE PRICING

Q. Will you describe the Non-Residential Time-of-Use Pricing program with the
optional Critical Peak Pricing option, as reflected in Workpapers G-1.13 and G1.114?

1 A. Yes. The Time-of-Use rates encourage participating customers to shift electric usage 2 from peak to off-peak hours, particularly during the summer peak season. The Time-of-3 Use rates will be designed so that the price per kWh during the peak summer season will 4 be higher during the peak hours and lower during the off-peak hours. Those customers 5 that are able to reduce consumption during peak periods or to shift their consumption to 6 off-peak hours should see a lower annual energy bill. This program differs from the 7 Residential Time-of-Use Pricing program in that non-residential customers may elect the 8 Critical Peak Pricing (CPP) option, whereby the rate for power consumed on the off-peak 9 hours is further reduced in exchange for a significantly higher rate during critical peak 10 events. Customers will receive prior notification of a CPP event. Workpaper G-1.13 11 contains information for participation in the Time-of-use pricing program without the 12 CPP option, and Workpaper G-1.14 contains information on the CPP option. 13 Q. Please describe your target market for this program. 14 A. This program is available to all non-residential customers taking delivery service from 15 DP&L that elect to purchase transmission and generation service from DP&L. 16 0. What is your implementation plan for this program?

A. Prior to 2011, DP&L will conduct the rate design studies needed to establish the revenueneutral prices and will determine the specific terms and conditions of the program, such
as defining the critical peak pricing differential. DP&L plans to introduce the Time-ofUse Pricing program beginning in 2011 to customers that have advanced metering
infrastructure in place. Based on the success of this effort, DP&L intends to make this
service available to all non-residential customers with advanced metering infrastructure.

1	Q.	What are the estimated energy and demand reductions associated with this
2		program?
3	A.	Measure impacts of 1.56 kW for Time of Use (WPG-1.13) and 1.91 kW for Critical Peak
4		Pricing (WPG-1.14) have been used.
5	Q.	What are the estimated levels of participation for this program?
6	А.	The estimated level of participation for each program is identical and is based on survey
7		results of DP&L's non-residential customers, adjusted to reflect the planned AMI roll-out
8		schedule.
9	Q.	What are the estimated costs for this program, and how were these estimates
10		developed?
11	А.	The total estimated cost of this program is \$2.7 million over 7 years, which reflects the
12		marketing and administrative costs of the both the Time of Use and Critical Peak Pricing
13		components. The marketing and administrative costs for each of these components are
14		estimated at \$250,000 in 2011 and are increased annually by the cost of inflation.
15	XVI.	EDUCATION AND AWARENESS
16	Q.	Will you describe the Education and Awareness program, as reflected in WPG-
17		1.15?
18	А.	Yes. The program will use education and outreach activities as well as energy efficiency
19		enhancements to the Company's website to educate customers, community leaders and
20		children. The education and outreach activities will be targeted to schools, government
21		leaders, civic organizations and local media. Significant enhancements will be made to

1		the Company's website and will feature tools for conserving energy, custom applications
2		that grant customers insights into the usage characteristics of their premises as well as
3		detailed information on DP&L's programs and participating channel partners.
4	Q.	Please describe your target market for this program.
5	А.	This program is designed for all customers taking delivery service from DP&L,
б		regardless of their choice of supplier.
7	Q.	What is your implementation plan for this program?
8	A.	The education and outreach activities will be performed by DP&L employees and
9		selected channel partners. Additional features will be made available on DP&L's website
10		once the appropriate systems are acquired and/or developed.
11	Q.	What are the estimated energy and demand reductions associated with this
12		program?
13	А.	As we believe that providing customers educational opportunities along with tools creates
14		an environment which drives energy reductions, DP&L has not forecasted any energy or
15		demand savings at this time.
16	Q.	What are the estimated costs for this program?
17	А.	The 7-year O&M budget for the education effort is \$8.1 million as shown in WPG-1.15.
18	Q.	Are there any other education-related costs contained in Workpaper G-1.15?
19	A .	Yes. DP&L intends to study and, if the customer benefits are sound, to implement
20		innovative energy-efficient programs and services. Therefore, \$300,000 is budgeted in

1 2009 for program development efforts, such as exploring new energy/demand reducing 2 technologies. This amount will increase by \$100,000/year in both 2010 and 2011, and 3 escalated by inflation thereafter. In addition, \$500,000 of capital and \$325,000 of expenses are budgeted for the joint construction and operation of an educational facility 4 5 to showcase new energy efficiency technologies. б Q. Are there any sources of energy or demand reductions that will be employed by 7 DP&L to meet the targets set out in Am. Sub. S.B. 221 in addition to the 8 aforementioned programs?

9 Yes. As referenced in WPG-1.16, through the Smart Grid Development initiative Α. 10 discussed by Mr. Teuscher in his testimony, DP&L anticipates reducing its line loss by 11 1% of the sales utilizing the distribution lines enhanced through this initiative. This will 12 result in the energy and demand reductions set out on lines 6 and 12, respectively, of WPG-1.16. The Company will make available home energy displays to those customers 13 14 with access to the advanced metering infrastructure. As shown in WPG-1.17, DP&L anticipates a 5% energy usage reduction by those customers that utilize the home energy 15 16 displays. Finally, DP&L will continue to explore additional opportunities to reduce 17 energy and demand.

18 XVII. PROGRAM IMPLEMENTATION

19 Q. What is the planned implementation timeline?

A. We plan to phase in those energy efficiency and demand reduction programs <u>not</u>
 requiring infrastructure enhancements (i.e., all programs except Direct Load Control, the
 new pricing tariffs and some features of the website) starting in January 2009. We plan

1 to begin to offer the Direct Load Control programs during the summer of 2010 and the 2 pricing tariffs soon thereafter. These programs will then be expanded as appropriate. 3 Q. Please describe the marketing activities that will be utilized to promote the 4 programs. 5 Α. DP&L plans to utilize multiple communications channels to promote the programs to 6 maximize customer engagement. Those channels include television, radio, print ads, bill 7 stuffers, direct mail, telemarketing, enhancements to the website as well as outreach 8 activities by DP&L employees through community presentations, personal visits with 9 business customers and educational activities geared toward children. DP&L is working 10 with an advertising agency to develop a branding, education and promotional campaign 11 to maximize the effectiveness of the advertising budget. 12 Q. Could overall spending associated with the programs exceed the amount sought in 13 the filing? 14 А. Yes. DP&L used its best effort to estimate the spending level needed to achieve the 15 energy and demand reduction targets set out in Am. Sub. S.B. 221. However, the 16 Company's actual expenditures will be influenced by customer action, with the Company 17 adjusting the amount of promotion and incentives as appropriate to meet the S.B. 221 18 targets, provided such activities are cost-effective. 19 Q. Do you anticipate hiring additional personnel associated with these programs? 20 A.

A. Yes. We anticipate hiring an additional 8 full-time employees to support the demand side
 management programs. These employees will join the two individuals currently working
 on program development to have a total staff of 10. These new positions include

managers over the DSM programs and vendor relationships, field sales personnel and analysts.

XVIII. EVALUATION AND MEASUREMENT 3

1

2

4 Q. How and by whom will the effectiveness of each program be evaluated in the future?

5 Α. On a regular basis, DP&L will evaluate the actual participation, energy/demand reduction 6 and costs of each program in comparison to the estimates contained in the filing. In 7 addition, DP&L shall engage an evaluation and measurement firm to aid in this effort. 8 The cost for the EM&V effort is identified on line 18 of WPG-1 and is set at 5% of the 9 total operating costs associated with the programs.

10 Q. To meet the energy efficiency and demand reductions targets set out in Am. Sub.

11 S.B. 221, do you anticipate the need to make any changes to individual programs or 12 your program suite over time?

13 Α. Yes. As I stated earlier, we expect to refine the initial programs, add new programs and 14 delete any under-performing programs to respond to changes in technology, economic 15 conditions and consumer preferences. We must also evaluate additional infrastructure 16 investments that can generate energy or demand reductions.

XIX. 2016 - 2023 FORECASTED ENERGY/DEMAND REDUCTIONS 17

18 Q. What energy and demand reductions do you attribute to the programs and other 19 initiatives for the years 2016 through 2023, and how were these determined?

- 20 Α. Please see WPF-1 for the projected annual energy and demand reductions for the 15-year 21
 - period ending 2023. The reductions for the first 7 years were obtained from WPG-1.

1	DP&L forecasts the 2015 incremental annual penetration rates will continue from 2016
2	through 2023 for all programs and initiatives. It is worth noting, however, that given the
3	requirements of the Energy Independence and Security Act of 2007 relating to the
4	availability of incandescent bulbs discussed earlier in my testimony, the incremental
5	energy and demand savings per bulb under the Residential Lighting program is forecasted
6	at half of the 2015 level for the years 2016 through 2023 to reflect a more efficient
7	baseline (e.g. CFLs to LEDs instead of incandescent to CFLs).

8 XX. SCHEDULES AND WORKPAPERS

9 Q. Are you responsible the Energy Efficiency and Demand Response Plan contained in
10 Section F, lines 3 – 8 of Schedule B-2, lines 3 – 8 of Schedule B-3, lines 5 – 8 of
11 Schedule B-4, lines 5 – 8 of Schedule B-5, Workpaper G-1, Workpapers G-1.1
12 through G-1.16 and the energy and demand reduction volumes contained in
13 Workpaper F-1?

A. Yes. I am. Workpapers G-1.1 through G-1.16 have been explained earlier in my
testimony. Workpaper G-1 is a summary of the cost and energy/demand reduction
information from the other workpapers and these costs appear on lines 3 – 8 of Schedule
B-2, lines 3 – 8 of Schedule B-3, lines 5 – 8 of Schedule B-4, lines 5 – 8 of Schedule B-5.
Workpaper F-1 contains a 15-year summary of DP&L's projected energy and demand
reduction volumes. Finally, the Energy Efficiency and Demand Response Plan contained
in Section F is a summary of the information contained in my testimony.

21 XXI. CONCLUSION

22 Q. Please summarize your testimony.

1	А.	In summary, DP&L has developed a suite of reasonable programs to empower customers
2		to reduce their energy and peak demand needs. This suite along with the infrastructure
3		enhancements should allow DP&L to meet the energy and demand reduction targets set
4		out in Am. S.B. 221 given that technology advances will make additional cost-effective
5		opportunities reasonably available to achieve additional reductions beginning by at least
6		2013. The Company is committed to meeting the targets, and shall continue to explore
7		additional cost-effective opportunities made available through technology developments,
8		infrastructure enhancements and additional customer programs. The programs that
9		comprise this initial suite were selected due to their relevance for all customer classes and
10		effectiveness at other utilities. DP&L has developed reasonable implementation plans
11		and estimates of avoided demand/energy and costs associated with each program, and the
12		suite of programs will be revised as needed based on experience and changes in
13		technology.

14

Does this conclude your direct testimony?

15 A. Yes, it does.

Q.

-

Energy and Demand Reduction Targets

ł

Baseline Calculations	2006	2007	2008	Average			
Energy (MWb)							
Weather Normalized Sales	15,110,170	15,001,267	15,467,655				
Adjustments for 2009	-285.771	-219.477	-140,658				
2009 MWh Baseline	14,824,399	14,781,790	15,326,997	14,977,729			
Adjustments for 2010 & Beyond	<u>-451,974</u>	<u>-377.823</u>	<u>-272.043</u>				
2010 & Beyond Baseline	14,658,196	14,623,444	15,195,612	14,825,751			
Demand (MW)							
System Peak	3,240	3,270	3,299				
Adjustments for 2009	<u>-60</u>	-45	<u>-33</u>				
2009 MW Baseline	3,180	3,225	3,266	3,224			
Adjustments for 2010 & Beyond	<u>-93</u>	-77	<u>-62</u>				
2010 & Beyond Baseline	3,147	3,193	3,237	3,192			
Target Calculations	2009	2010	2011	2012	2013	2014	2015
Emergy (MWh)							
Baseline	14.977.729	14.825.751	14,825,751	14,825,751	14,825,751	14,825,751	14,825,751
Annual Savings Requirement	0.30%	0.50%	0.70%	0.80%	0.90%	1.00%	1.00%
Cumulative Savings Requirement	0.30%	0.80%	<u>1.50%</u>	<u>2.30%</u>	3.20%	4.20%	<u>5.20%</u>
Target (Cumulative)	44,933	118,606	222,386	340,992	474,424	622,682	770,939
Demand (MW)							
Baseline	3,224	3,192	3,192	3,192	3,192	3,192	3,192
Annual Savings Requirement	1.00%	0.75%	0.75%	0.75%	0.75%	0.75%	0.75%
Cumulative Savings Requirement	<u>1.00%</u>	<u>1.75%</u>	<u>2,50%</u>	<u>3.25%</u>	<u>4.00%</u>	<u>4.75%</u>	<u>5.50%</u>
Target (Cumulative)	32	56	80	104	128	152	176

Comparison of Targets and Anticipated Savings

EXHIBIT WB-2

ł

Summary of Program Costs and Energy/Demand Savings

	7-Year	7-Year	7-Year Energy	Yr. 7 Demand
Program/Initiative	O&M Costs	Capital Costs	Savings (KwH)	Savings (Kw)
Residential Portfolio				
Residential Lighting	\$20,143,118		765,028,964	16,637.7
Residential HVAC Diagnostic & Tune-Up	\$8,442,276		77,165,688	17,779.7
Residential HVAC Rebate	\$11,030,628		39,977,000	9,649.5
Residential Appliance Recycling	\$2,470,570		89,448,507	3,850.3
Residential Appliance Rebates	\$1,413,207		23,023,161	744.0
Residential Low Income Affordability	\$7,715,198		47,744,118	901.6
Residential Direct Load Control	\$7,101,913		15,467,850	23,083.2
Residential Time of Use Pricing	\$1,333,934			6,076.1
Residential Peak Time Rebates	<u>\$1,333,934</u>		-	<u>8.494.5</u>
Subtotal	\$60,984,778		1,057,855,286	87,216. 6
Non-Residential Portfolio				
Non-Residential Prescriptive Rebates	\$22,302,841		791,147,872	59,840.1
Non-Residential Custom Rebates	\$13,957,683		313,852,249	16,649.6
Non-Residential Direct Load Control	\$1,101,392		3,336,438	4,898.4
Non-Residential Time of Use Pricing	\$1,333,934			4,107.5
Non-Residential Critical Peak Pricing	<u>\$1.333.934</u>			<u>5,029.0</u>
Subtotal	\$40,029,784		1,108,336,559	90,524.6
Education and Outreach				
Education and Outreach	\$11,759,324	\$500,000)	
Other				
Distribution Automation System Enhancements	*	*	54,110,000	5,300.0
Home Energy Display	*		308,650,344	ł
Evaluation Measurement and Verification	\$5,663,694			
Subtotal	\$5,663,694	-	362,760,344	5,300.0
	\$118,437,580	\$500,000	2,528,952,189	183,041.2

* The costs associated with these initiatves are supported in the AMI and Smart Grid chapters of this filing.

BEFORE THE

PUBLIC UTILITIES COMMISSION OF OHIO

THE DAYTON POWER AND LIGHT COMPANY CASE NO. 08-1094-EL-SSO

BOOK II – Customer Conservation and Energy Management Programs

DIRECT TESTIMONY

OF GREGORY S. CAMPBELL, CPA

- **D** MANAGEMENT POLICIES, PRACTICES, AND ORGANIZATION
- OPERATING INCOME
- RATE BASE
- **ALLOCATIONS**
- **D** RATE OF RETURN
- □ RATES AND TARIFFS
- D OTHER

BEFORE THE

PUBLIC UTILITIES COMMISSION OF OHIO

DIRECT TESTIMONY OF

GREGORY S. CAMPBELL, CPA

ON BEHALF OF THE DAYTON POWER AND LIGHT COMPANY

TABLE OF CONTENTS

I.	INTRODUCTION	1
II.	METHODOLOGY	3
III.	SCHEDULES	4
IV.	REVENUE DEFERRAL	0
V.	CONCLUSION	0

1 I. INTRODUCTION

- 2 Q. Please state your name and business address.
- 3 A. My name is Gregory S. Campbell. My business address is 1065 Woodman Drive,
- 4 Dayton, Ohio.
- 5 Q. By whom and in what capacity are you employed?
- A. I am employed by The Dayton Power and Light Company ("DP&L" or "Company") as
 Director, Accounting Policy and External Reporting.
- 8 Q. How long have you been in your present position?
- 9 A. I assumed my present position on June 18, 2008. Prior to that, I had been employed from
 10 1981 through 2008 by American Electric Power, serving in a number of accounting and
 11 financial positions with that company.
- 12 Q. What are your responsibilities in your current position and to whom do you report?
- 13 A. In my current position, I am responsible for financial reporting to certain regulatory
- 14 bodies, including the SEC and FERC. I am also responsible for reviewing certain
- 15 accounting transactions to insure adherence to Generally Accepted Accounting
- 16 Principles. I report to the Assistant Controller of DP&L.
- 17 Q. Will you describe briefly your educational and business background?
- 18 A. I received a Bachelor of Business Administration degree in Accounting from the College
- 19 of William and Mary in 1977, and am a Certified Public Accountant. From 1977 to
- 20 1981, I worked for two large public accounting firms: Coopers and Lybrand, and Peat,

)	1		Marwick and Mitchell. During the years 1981 through 1984, I worked in the Accounting
	2		Department of one of American Electric Power's electric operating subsidiaries,
	3		Appalachian Power Company. From 1984 until 2008, I worked for the American
	4		Electric Power Service Corporation in a variety of jobs, including Accounting Policy and
	5		Research for fourteen years, accounting for fiber optic operations, and accounting and
	6		financial analysis for regulated and non-regulated operations. In June 2008, I accepted
	7		my current position at DP&L.
	8 9	Q.	Have you previously provided testimony before the Public Utilities Commission of Ohio ("PUCO" or the "Commission")?
	10	А.	Yes. I have sponsored testimony before the PUCO in a number of cases on behalf of
)	11		Columbus Southern Power and Ohio Power Company, two subsidiaries of American
,	12		Electric Power. My previous testimony included both base rate and fuel cases.
	13	Q.	What is the purpose of this testimony?
	14	А.	The purpose of this testimony is to support and explain the accounting treatments
	15		associated with the Customer Conservation and Energy Management ("CCEM")
	16		Programs. My testimony addresses the future accounting impacts.
	17	Q.	What Schedules are you supporting?
	18	А.	I am supporting Schedules B-2 through B-6 and Schedules C-2 through C-3.1. I am also
	1 9		sponsoring Workpapers WPB-2 through WPB-6 and Workpapers WPC-2 through WPC-
	20		3.2.

II. METHODOLOGY

1

Q. What is the source of the information shown in Schedules B-2 through B-6 and
Schedules C-2 through C-3.1?

A. The Company developed the business case for three components of the CCEM Programs:
 Delivery, Energy Efficiency & Demand Response, and Information Technology (IT). My
 responsibility was to consolidate the estimates for each of those components, allocate
 costs and benefits to the appropriate accounts, and produce integrated accounting
 statements.

- *Delivery.* Included estimates for Advanced Metering Infrastructure (AMI) and
 Smart Grid Development Plan (Smart Grid) Projects. These figures included
 estimates of: capital costs; Operations and Maintenance (O&M) expense; inservice dates, any early retirement dates; depreciation rates for new equipment (if
 different from previous DP&L accounting practices); and operational savings
 from deployment of new technology.
- *Energy Efficiency and Demand Response.* Included estimates for all proposed
 programs included in DP&L's Energy Efficiency & Demand Response Plan.
 These figures included estimates of costs associated with developing and running
 the proposed suite of programs; estimated demand and energy savings associated
 with the operation of those programs; and estimates of new capital costs.
- IT. Included estimates for all IT systems required to support AMI, Smart Grid,
 and Energy Efficiency & Demand Response Programs; capital costs; O&M
 expense; in-service dates, any early retirement dates; and operational savings
 from deployment of new systems.

	1	Q.	Did you ensure that all data/estimates were reported in a consistent manner and in
	2		accordance with PUCO guidelines?
	3	A.	Yes. I reviewed the standard PUCO accounting schedules and identified the schedules
	4		relevant to the initiatives proposed as part of CCEM. I then developed a template to
	5		collect data for each part of CCEM in a standardized format that would feed into those
	6		schedules.
	7	Q.	What is the basis for translating projections into future year dollars?
	8	А.	The analyses assume an annual inflation rate of 3.25-percent which is appropriate and
	9		reasonable when compared to the increases in the Consumer Price Index for all Urban
	10		Customers (CPI-U) for the last three calendar years 2005 through 2007.
}	11	ш.	SCHEDULES
	12	Q.	Please list the schedules for which you are responsible.
	13	A.	I am responsible for the following schedules. Please note that all these Schedules include
	14		subtotals for Energy Efficiency and Infrastructure, except for Schedule B-6. Schedule B-
	15		6 uses the same Allowance for Funds Used During Construction (AFUDC) rate for both
	16		Energy Efficiency and Infrastructure.
	17		Schedule B-2: Plant In-Service - New Property. This Schedule shows the year-end
	18		balances in Account 101, Electric Plant In-Service.
	19		Schedule B-3: Reserve for Accumulated Depreciation and Amortization – New Property.
)	20		This Schedule shows the year-end balances in Account 108, Reserve for Accumulated
	21		Depreciation and Account 111, Reserve for Accumulated Amortization.

1		Schedule B-4: Construction Work In-Progress. This Schedule shows the year-end
2		balances in Account 107, Construction Work In-Progress.
3		Schedule B-5: Net Book Value of Assets Prematurely Retired. This Schedule shows the
4		amount of annual retirements.
5		Schedule B-6: Allowance for Funds Used During Construction.
6		Schedule C-2: Total Operations and Maintenance Expense and Related Fringe Benefits
7		by Account. Decreased O&M costs are shown on Schedule C-2.1
8		Schedule C-3: Total Depreciation and Amortization Increased Costs. Decreased
9		depreciation and amortization costs are shown on Schedule C-3.1
10	Q.	How did you categorize CCEM program costs that were submitted to you?
11	A.	Once I received the figures, I identified and appropriately accounted for capital versus
12		O&M expenses based on the requirements contained within the FERC Uniform System
13		of Accounts. A summary of total CCEM O&M is provided in Schedules C-2 through C-
14		3.1.
15	Q.	Can you describe the process that you used to calculate the operations and
16		maintenance expense amounts shown in Schedules C-2 and C-2.1?
17	А.	Yes. Operations and maintenance expenses were submitted in the templates I provided.
18		These amounts are identified as incremental charges for new activities, less savings
19		resulting from the elimination or reduction of current activities in future periods. The
20		dollar amounts are expressed in future year dollars and are a measurement of the

projected effect upon operations and maintenance expenditures that results directly from
 the implementation of the CCEM Programs.

Q. Please explain how you treated new capital investments required for CCEM Programs as summarized in Schedules B-2 and B-4.

5 A In Schedules B-2 and B-4, I classify all new capital line items as either "in service" or 6 "in construction" at each year-end based on the start date of construction and the time 7 required to complete the construction activities.

8 I identified the appropriate property account to which the cost items relate based on 9 FERC guidelines and DP&L practices. To develop Schedule B-3, I used the appropriate 10 depreciation rate to forecast depreciation expense on an annual basis, based upon the 11 original property account.

12 The original cost less accumulated depreciation constitutes the property component of the 13 year-end rate base.

Q. Can you describe the process that you used to calculate the depreciation and
 amortization expense amounts summarized in Schedule B-3?

A. Yes. The amounts of the annual construction expenditures were provided to me. The
 depreciation expense amounts associated with this property are generally based on
 applying the Company's present depreciation rates to the capital property which is
 expected to be acquired or constructed for the CCEM Programs. The new AMI meters
 are an exception to the use of the Company's present depreciation rates. These new AMI
 meters are expected to have a useful life significantly different from the Company's

existing meters. Therefore, I used a higher depreciation rate based on the expected
 relatively shorter life of the new AMI meters.

Q. In developing Schedule B-3, you used an "average expected useful life" for AMI
 meters of fifteen years. How was this life determined?

5 A. DP&L believes that these meters have an estimated useful life of about fifteen years.

6 Consolidated Edison Company of New York and PEPCO have both filed with their

7 commissions for approval of a fifteen year depreciable life for AMI meters. These cases

- 8 are still in process. This average life expectancy of fifteen years has also been reviewed
- 9 for reasonableness at our request by the actuarial firm of Management Applications

10 Consulting, Inc., which is located in Reading, Pennsylvania.

11 Q Did you calculate AFUDC for new capital?

A. Yes. The AFUDC computation is based upon inclusion in rate base of 75% of
 construction value. The amount of Construction Work In-Progress (CWIP) in rate base is
 summarized in Schedule B-4. The earnings impact of the annual AFUDC accruals is
 contained in the same Schedule.

Q. Did you consider the potential need to retire existing capital early as a result of
 CCEM Programs?

A. Yes. Some initiatives will involve the retirement of assets at dates prior to that which
 would otherwise have been expected. Details of all premature retirements associated
 with CCEM Programs are identified in Schedule B-5. I was provided with information as
 to which capital assets will need to be retired. Then I identified the property account that
 applies to the retired property. For each retirement, I identified the appropriate

depreciation rate that was applicable in order to calculate depreciation savings and
 forecasted the net book value based on the in-service date of the property through to the
 projected date of retirement.

4 Q. How were the amounts of assets prematurely retired that are associated with
5 property determined in Schedule B-5?

A. The assets prematurely retired calculation pertains to the early retirement of capital
property as noted earlier. The accumulated depreciation for this property was calculated
by applying the depreciation rates in effect for each asset that is expected to be retired, to
the original cost of the asset over the time in which it has been in service. The
depreciation rates exclude the cost of the future removal of the asset. The remaining undepreciated net book value was reduced by the projected amount of salvage proceeds that
are expected to result from the disposition of the asset.

Q. What did you do to obtain the employee fringe benefits and tax expense amounts shown in Schedule C-2?

A. I was provided with the workforce requirements of the CCEM Programs. Then the dollar impact on the Company's base payroll cost was calculated. This information, with which I was provided, was used in developing the earnings summary in Schedule C-2. The projected fringe benefits were based on the cost per employee or a percentage of the payroll dollars. As examples, the medical insurance was based on the average medical cost to the Company for each employee, while the pension expense was based on a percentage of the employees' payroll costs.

The effect upon employee taxes is based on applying the present FICA rate of 7.65% to the portion of the incremental dollars of the Company payroll charges which would be
	1		charged to operations and maintenance costs as a result of the CCEM Programs. I also
	2		included federal and state unemployment taxes, FUTA and SUTA, respectively, in the
	3		employee taxes based on their current rates.
	4	Q.	What did you do to obtain the decreased costs shown in Schedule C-2.1?
	5	A.	The forecasted cost reductions are based on specific savings anticipated from the CCEM
	6		Programs.
	7	Q.	What did you do to obtain the increased depreciation and amortization expense
	8	•	summarized in Schedule C-3?
	9	A.	These amounts were taken from the detailed workpapers that were used to calculate the
)	10		reserve for accumulated depreciation and amortization shown on Schedule B-3.
	11	Q.	What did you do to obtain the decrease in depreciation and amortization expense
	12		amounts shown in Schedule C-3.1?
	13	А.	These amounts were developed by taking the depreciation and amortization rates that
	14		would have been charged to the assets that were prematurely retired and multiplying
	15		those rates times the original cost of those assets.
	16	Q.	Are the calculations shown in the referenced schedules reasonable?
	17	А.	Yes, the results are based on the researched costs of specific activities that have been
	18		projected by the Company. The Company's present depreciation rates have been used to
	19		quantify the impact on depreciation expense, other than the previously-noted proposed
)	20		new depreciation rate for the new AMI meters. The dollar amount of property
	21		retirements is based on the original capitalized cost of the property.

1 IV. <u>REVENUE DEFERRAL</u>

	2	Q.	Will a portion of the revenue associated with the levelization of the infrastructure
	3		revenue be deferred in the early years of the seven-year period?
	4	А.	Yes. As discussed by witness Seger-Lawson, we are requesting the levelization of the
	5		infrastructure revenue over a seven-year period. We will defer the levelized revenue in
	6		excess of each calendar year's unlevelized revenue requirement in Account 254, Other
	7		Regulatory Liabilities. This deferred revenue will be fed back to revenue in the later
	8		years when the levelized revenue level is less than the annual unlevelized revenue
	9		requirement. We would also record deferred federal income taxes associated with this
	10		revenue levelization.
	11	v.	CONCLUSION
	12	Q.	Please summarize your testimony.
	13	A.	In summary, the projected dollar expenditures (both incremental and savings) are based
	14		on specific activities and asset purchases. The depreciation costs associated with new
	15		assets are based on established rates, except in the case of new AMI meters for which
	16		Commission approval is being sought for the application of a new rate of depreciation for
	17		these meters. Depreciation reductions are based on the original costs of equipment to be
	18		retired. Premature asset retirement cost measurements are based on the net book value of
	19		equipment to be retired less estimated salvage.
)	20	Q.	Does this conclude your direct testimony?

21 A. Yes, it does.

BEFORE THE

PUBLIC UTILITIES COMMISSION OF OHIO

THE DAYTON POWER AND LIGHT COMPANY CASE NO. 08-1094-EL-SSO

BOOK II – Customer Conservation and Energy Management Programs

DIRECT TESTIMONY

OF KAREN R. GARRISON

D MANAGEMENT POLICIES, PRACTICES, AND ORGANIZATION

- **OPERATING INCOME**
- □ RATE BASE
- D ALLOCATIONS
- **RATE OF RETURN**
- □ RATES AND TARIFFS
- OTHER

BEFORE THE

PUBLIC UTILITIES COMMISSION OF OHIO

DIRECT TESTIMONY OF

KAREN R. GARRISON

ON BEHALF OF THE DAYTON POWER AND LIGHT COMPANY

TABLE OF CONTENTS

I.	INTRODUCTION	.1
Π.	OVERVIEW OF SCOPE OF PROJECTS	. 4
III.	CUSTOMER INFORMATION SYSTEM PROJECT	19
IV.	eSERVICES PROJECT	22
v.	METER DATA MANAGEMENT AND LOAD MANAGEMENT SYSTEMS PROJECT	25
VI.	OUTAGE MANAGEMENT SYSTEM PROJECT	27
VII.	DISTRIBUTION MANAGEMENT SYSTEM PROJECT	30
VIII.	MOBILE WORKFORCE MANAGEMENT SYSTEM PROJECT	32
IX.	SERVICE ORIENTED ARCHITECTURE PROJECT	35
X.	INFRASTRUCTURE PROJECT	38
XI.	WORKPAPERS WPH-1.4 – WPH-1.4.8	40
XII.	CONCLUSION	47

1 I. INTRODUCTION

- 2 Q. Please state your name and business address.
- A. My name is Karen R. Garrison. My business address is 1900 Dryden Road, Dayton,
 Ohio 45439.
- 5 Q. By whom and in what capacity are you employed?
- 6 A. I am employed by DPL Inc. as Director, Corporate Information Systems.
- 7 Q. How long have you been in your present position?
- 8 A. I assumed my present position in February 2001. Prior to that time, I was a consultant
 9 working for PCMS Datafit in Cincinnati OH. I worked primarily on packaged system
 10 implementations. I have 23 years of experience working in various types of business in
 11 an Information Technology role.
- 12 Q. What are your responsibilities in your current position and to whom do you report?
- A. In my current position, I am responsible for all aspects of Information Technology (IT)
 for The Dayton Power and Light Company ("DP&L" or "Company"). My department is
 responsible for all IT infrastructure and applications throughout DP&L. I report to the
 CFO of DP&L.
- 17 Q. Will you describe briefly your educational and business background?
- A. I received a BS degree in Computer Management from West Virginia Institute of
 Technology in 1985. I received an MBA with a concentration in Operations
 Management from the University of Cincinnati in 2002. I worked at the Hamilton County

)	1		Department of Human Services from 1985 to 1997. I held a variety of roles beginning as
	2		a programmer and progressed to analyst, project manager and programming manager. I
	3		then worked for Clopay Corporation as an Applications Development manager from
	4		1997 to 2000. I worked for PCMS Datafit as a senior consultant from 2000 to 2001.
	5		During that time, I worked at a variety of companies providing implementation services
	6		for package systems. I was engaged by DP&L in July of 2000 to work on its Enterprise
	7		Resource Planning (ERP) system. I was hired by DP&L as a full-time employee in
	8		February of 2001. I held the application development manager role, responsible for ERP,
	9		and I then took responsibility for all corporate applications including the customer
	10		information system. In April 2007, I took responsibility for all IT at DP&L.
1	11	Q.	What is the purpose of this testimony?
	12	A.	The purpose of this testimony is to support and explain the IT systems required to
	13		implement DP&L's Customer Conservation and Energy Management ("CCEM")
	13 14		Programs. I am also providing facts about the functionality and cost of these systems.
	13 14 15		Implement DP&L's Customer Conservation and Energy Management ("CCEM") Programs. I am also providing facts about the functionality and cost of these systems. This testimony relates specifically to the IT Systems (e.g., Meter Data Management
	13 14 15 16		 Implement DP&L's Customer Conservation and Energy Management ("CCEM") Programs. I am also providing facts about the functionality and cost of these systems. This testimony relates specifically to the IT Systems (e.g., Meter Data Management (MDM) and supporting systems) that will be used to process the new data captured by the
	13 14 15 16 17		 Implement DP&L's Customer Conservation and Energy Management ("CCEM") Programs. I am also providing facts about the functionality and cost of these systems. This testimony relates specifically to the IT Systems (e.g., Meter Data Management (MDM) and supporting systems) that will be used to process the new data captured by the Advanced Meter Infrastructure (AMI) system.
	 13 14 15 16 17 18 	Q.	 Implement DP&L's Customer Conservation and Energy Management ("CCEM") Programs. I am also providing facts about the functionality and cost of these systems. This testimony relates specifically to the IT Systems (e.g., Meter Data Management (MDM) and supporting systems) that will be used to process the new data captured by the Advanced Meter Infrastructure (AMI) system. What Workpapers are you supporting?
	 13 14 15 16 17 18 19 	Q. A.	 Implement DP&L's Customer Conservation and Energy Management ("CCEM") Programs. I am also providing facts about the functionality and cost of these systems. This testimony relates specifically to the IT Systems (e.g., Meter Data Management (MDM) and supporting systems) that will be used to process the new data captured by the Advanced Meter Infrastructure (AMI) system. What Workpapers are you supporting? I am supporting:
	 13 14 15 16 17 18 19 20 	Q. A.	 implement DP&L's Customer Conservation and Energy Management ("CCEM") Programs. I am also providing facts about the functionality and cost of these systems. This testimony relates specifically to the IT Systems (e.g., Meter Data Management (MDM) and supporting systems) that will be used to process the new data captured by the Advanced Meter Infrastructure (AMI) system. What Workpapers are you supporting? I am supporting: Workpaper WPH-1.4 – Information Technology – All Systems Summary

)	1		3. Workpaper WPH-1.4.2 – Information Technology – eServices Summary
	2		4. Workpaper WPH-1.4.3 - Information Technology - MDM & LMS Systems
	3		Summary
	4		5. Workpaper WPH-1.4.4 – Information Technology – OMS System Summary
	5		6. Workpaper WPH-1.4.5 - Information Technology - DMS System Summary
	6		7. Workpaper WPH-1.4.6 - Information Technology - MWM System Summary
	7		8. Workpaper WPH-1.4.7 - Information Technology - SOA Summary
	8		9. Workpaper WPH-1.4.8 – Information Technology – Infrastructure Summary
)	9	Q.	Have you prepared a glossary of terms used in this testimony?
	10	А.	Yes, as follows:
	11		AMI - Advanced Metering Infrastructure
	12		BAM – Business Activity Monitoring
	13		BPM – Business Process Management
	14		CIS – Customer Information System
	15		DMS – Distribution Management System
	16 17 18		DSM – Demand Side Management - Influencing the level of demand for electricity, <u>e.g.</u> , through conservation programs and education related to home insulation, energy efficient appliances, <u>etc</u> .
	19 20		EPMM - Enterprise Project Management Methodology
	21		ERP – Enterprise Resource Planning
	22		eServices – Internet Services

1 IVR – Interactive Voice Response

- 2 LMS Load Management System
- 3 MDM Meter Data Management
- 4 MWM Mobile Workforce Management
- 5 OMS Outage Management System
- 6 PMO Program Management Office
- 7 SOA Service Oriented Architecture

8 II. OVERVIEW OF SCOPE OF PROJECTS

- 9 Q. Please describe DP&L's plan for implementing IT systems to support CCEM
 - Programs.

10

A. As part of the CCEM initiative, DP&L has developed a detailed, multi-year plan for the
upgrading and implementation of new automation systems intended to improve back
office functions, streamline utility operations, improve transmission and distribution
network reliability and enhance customer service. Among the systems to be implemented
under this plan are:

- 16 Customer Information System (CIS)
- eServices (e.g., web services for customer interaction)
- 18 MDM System & Load Management System (LMS)
- 19 Outage Management System (OMS)
- Distribution Management System (DMS)

• Mobile Work Force System (MWM)

1 • Service Oriented Architecture (SOA)

2

• IT Infrastructure (e.g., Hardware, Software)

3 The system estimates sponsored in this testimony include the hardware, software,

4 associated maintenance, and labor required to implement and deliver these systems.

5 Although not within my scope of testimony, DP&L will also be installing an AMI system

6 as the centerpiece of its plans to pursue its CCEM vision. Together, these new systems

7 and technologies will position DP&L to pursue the Smart Grid concept and to help meet

8 the energy efficiency and alternative energy requirements of S.B. 221.

9 Q. What is in the scope of DP&L's estimates from a phase perspective (change 10 management, conversion, testing, etc.)?

11 A. DP&L's estimates include the cost of implementing a system completely through delivery

12 to the end user. The estimates also included the costs of ongoing maintenance (e.g.,

13 hardware, software and labor) to support the CCEM operations going forward. The

14 figure below shows the work flows and project phases that were estimated:

- Q. Do DP&L's estimates include modifications to existing systems or replacement with
 new systems?
- A. DP&L's estimates were based upon replacement of existing systems or implementation of
 new systems where the function did not exist in the past. Replacement systems include
 CIS, OMS and MWM. New systems include MDM, LMS, eServices, and DMS. SOA
 and the IT Infrastructure components are required to enable a seamless implementation of
 the integrated systems to support the CCEM vision.
- 9 Q. Why has DP&L chosen to replace systems versus upgrading/modifying existing
 10 systems?
- A. We assessed each system independently to determine whether or not we would replace
 the system or modify the existing system. In some cases, those decisions were fairly
 straight-forward, as DP&L did not have an existing system that supported the needed

1 functionality (e.g., Meter Data Management, Load Management, Distribution 2 Management). As we assessed the existing legacy systems, it became apparent that the 3 cost of upgrading, modifying and maintaining those legacy systems would outweigh the 4 cost of implementing newer, more flexible applications. There are several key 5 circumstances that led us to this decision. First, the requirements for CCEM Programs 6 are expansive and will affect a large percentage of the individual systems that we need to 7 replace (e.g., CIS, OMS). Second, the systems that we currently maintain were 8 developed on older technology that is not easy to modify. Third, the existing systems are 9 highly customized and were not specifically developed to support the Demand Response 10 and Smart Grid requirements that are generally new to the industry as a whole. Finally, 11 DP&L's previous studies support the approach of replacing these older systems versus 12 continuing to modify. This decision aligns with the DP&L IT Department's philosophy 13 of deploying open-architecture and standards-based IT technology that is useful across 14 the largest possible set of users, that can serve as the foundation for more specialized 15 services and applications, and that is secure, stable, reliable, robust, timely, well-16 documented, and easy to integrate.

17 Q. Please describe the team that created DP&L's estimates.

A. The team consisted of a project lead from DP&L's IT department and a lead from an
 external consulting practice with expertise in the utility industry and the development of
 IT estimates. Providing direct support to those team leads were key DP&L business and
 IT resources and external consulting firm team members, which included senior
 leadership, project management and subject matter specialists. The team used existing

data, interviews, meetings and/or workshops to collaborate with the key stakeholders
 within the business units and functions served.

3 Q. What was the process for creating DP&L's estimates?

4 Α. The approach used a blended consulting / DP&L team, working together to provide the estimates for the systems discussed earlier. The team used existing and historical data, 5 interviews, and meetings to collaborate directly with the DP&L subject matter specialists 6 7 and key stakeholders within the business units. The external consulting team members 8 provided day-to-day industry knowledge by providing subject matter specialists to 9 support, the development of the estimates, consistent with DP&L's vision. Furthermore, 10 DP&L followed the industry standard estimating methodology and practices used by the 11 consulting firm to deliver estimates that took into consideration the time-value of money 12 and met the high-level functional requirements needed for each system.

Q. Can you please describe the quality assurance methods that DP&L has in place to
 provide complete and accurate deliverables for this project?

15 Α. One of the DP&L IT Department's core functions is estimating and delivering projects. 16 DP&L assigned subject matter specialists for each of the designated areas within CCEM. 17 These DP&L employees worked with the subject matter specialists from the external 18 consultant to determine future requirements and estimate costs. In addition DP&L has its 19 own internal standard documentation and estimating methodology that has been 20 developed from years of experience. The estimating components created for CCEM were 21 compared against this estimating methodology. Finally, DP&L also has a formal project 22 management office established to ensure standard and reliable methods are used to 23 estimate and execute projects.

	1	Q.	Are you familiar with the quality assurance methods that the external consultant
	2		assisting DP&L with CCEM Programs used to provide completeness and accuracy?
	3	A.	Yes, I became familiar with that process through my extensive work with that external
	4		consultant. The external consultant has a formal and clearly-defined quality assurance
	5		methodology that it employs for each project that it executes. This quality assurance
	6		methodology is standard across all projects it performs to ensure uniformity and clarity
	7		across its global organization. The intent of this rigorous quality assurance methodology
	8		is to improve predictability of delivery and reduce risk of things such as project budget
	9		overruns. The external consultant employed this methodology throughout the estimation
	10		process.
	11	Q.	What are the major components and variables that make up DP&L's estimates (e.g.,
)	12		Rates, Workdays, Complexity, Number of widgets)?
	13	А.	The major components and variables that make up DP&L's estimates include:
	14		• Number of widgets (reports, databases, forms, business processes, interfaces, etc.)
	15		• Required labor, both internal and external
	16		• Hardware
	17		• Software
	18	Q.	What Software and Hardware are included in DP&L's estimates?
	19	A.	The estimates include the hardware, applications and operating software necessary to
	20		satisfy the requirements as defined by the business. Generally, the hardware and software
)	21		included are:

- Vendor software required for the operation of the infrastructure such as database and operating system software and protocols
- Application, network, communications and database servers
- Hubs, routers, work stations, printers, cables and other devices
- 5 Voice, data and network management systems and communications
- 6 Web servers and web hosting software

1

2

3

4

7

8

- Third party software including Windows, Linux, UNIX, DB2, IBM and other proprietary platforms and applications
- 9 MDM, CIS, WMS, OMS, LMS and other proprietary software applications and licenses
- Data storage software and licenses such as Oracle, SQL and associated database access
 tools and protocols
- Ancillary tools and products needed in support of the implementation and ongoing
 operations of the systems (e.g., development tools, backup and recovery software, system
 monitoring tools, etc.)
- 15 Q. What is the largest cost component?
- 16 A. The largest cost component is labor. If examined on a per-system basis, the largest cost
- 17 component is for the CIS system. The significant labor cost for the CIS results from the
- 18 need to design and configure the complex functionality inherent in a CIS as necessary to
- 19 support a broad range of interactive customer service functions for a regulated utility
- 20 operating in a competitive market.
- 21 Q. What resources will be needed to implement the IT systems?

A. The implementation team will be comprised of a mix of internal staff (IT and Business)
 as well as external consultants. The following figure shows an estimate of the total
 staffing required by quarter for the first seven years. At the peak, DP&L anticipates that
 99 total Full Time Equivalents (FTEs) will be working on the implementation.

5 Q. What types of resources will be needed to implement these systems?

A. The implementation of these systems will require a variety of resources including project
 managers, IT strategy personnel, technical architects, and business process designers.

```
8 Q. How will the increase in operating and applications software and equipment affect
```

the IT department's overall O&M expenditures once these systems are

10 implemented?

9

A. DP&L has estimated that upon completion, a total of 35 additional IT employees will be
 required to support the new IT architecture and operating platform. This total number of

1 additional resources is necessary to support the increase in network and data center 2 infrastructure hardware and operating systems, and databases and application software 3 that will be implemented and must then be maintained and periodically upgraded. To 4 validate further the IT resource increase. DP&L contacted a utility of similar size that 5 currently operates systems similar to those in DP&L's estimates. Although the DP&L 6 total IT staffing requirements were slightly lower overall than that of the comparable 7 utility, we found that our total resource requirements were closely aligned by functional 8 area. Ongoing support of the implemented systems is included in future O&M 9 projections.

10

Q. Are the implementation estimates and timelines appropriate and reasonable?

11 A. Yes. DP&L has adopted a multi-year implementation strategy that takes into 12 consideration the relative complexities and interdependencies of the various systems and 13 interfaces that will be required to achieve the CCEM vision. Some parts of the plan, such 14 as the IT infrastructure improvements, are targeted for earlier phases, while others, such 15 as the Outage Management and Mobile Work Force Management Systems, will come 16 later and will benefit from new functionality that will be provided by AMI with its new 17 communications links and the GIS. The IT infrastructure upgrades will provide the up-18 to-date hardware platforms, security and governance improvements needed to position 19 DP&L for the forthcoming replacement of its legacy CIS system. DP&L's plan is 20 designed to build upon previous phases and to capitalize on the initial stages of deployment to meet the upcoming energy efficiency and demand response requirements. 21

Q. Can you please describe the review process that the estimates went through during
the planning of CCEM Programs?

1 Α. There were multiple levels of review that occurred throughout the estimating process. 2 The project team reviewed the estimates, the project managers reviewed estimates and 3 then the executive sponsors of the project reviewed and provided feedback on the 4 estimates. From a process perspective, one of the most important components of the 5 review process was peer reviews. The external consultant scheduled meetings with 6 multiple peer groups within its organization to review the assumptions, requirements and 7 estimates. These peer reviews are a methodical examination of work product by 8 objective peers to identify defects and recommend changes to assist in a more accurate 9 and complete product. During these peer reviews, the CCEM program estimates were 10 compared with project implementation actuals that contained similar attributes (e.g., 11 scope, functionality, scale, etc.). The estimates were compared on a variety of 12 dimensions. Examples of these dimensions included workdays, dollars, implementation 13 timeframes, number of resources required and percentage of workdays per 14 implementation phase. If there were differences among the dimensions, estimates and 15 requirements, they were discussed within the project team and adjustments were made as 16 appropriate.

Q. Can you please provide examples of quality assurance project roles that ensured
 completeness and accuracy?

A. Both the external consultant and DP&L had project managers assigned to the project.
 One responsibility of the project manager was to define the project review and iteration
 process. Another project manager responsibility was to review the estimates using
 established estimating models, leading practices and past experiences. DP&L and
 external consulting subject matter specialists also played a key role in analyzing the

estimates for completeness and accuracy. The external consultant employed a Quality
 Assurance director within the process. This is a senior executive role with quality
 assurance responsibilities. These responsibilities include verifying the external
 consultant methodology is used on the project, as well as reviewing the key deliverables
 of the project for completeness and accuracy.

6

Q.

How do DP&L's estimates compare to costs for similar projects in the marketplace?

7 Α. The figures that DP&L has developed are consistent with those developed by other 8 utilities, although the scope and timing may be different. While no two utilities are 9 exactly alike in terms of service area, customer mix, deregulation state and retail supplier 10 access requirements, these estimates are in line with implementations executed at other 11 similarly-sized utility firms that have similar operating and customer service 12 requirements. The project team used Gartner, a leading information technology research 13 and advisory company, to validate the estimates. The research included gathering 14 current, applicable white papers for the team to use as reference data points. We also 15 scheduled conference calls with industry analysts to discuss the DP&L plans and how 16 they correlate to others.

17

Q. Please describe DP&L's planned implementation sequence.

A. DP&L's plan provides a logical installation sequence that begins to upgrade the IT
 infrastructure and moves to an open-architecture platform through SOA before moving to
 other system installations. Early project initiatives for AMI, CIS and MDM, involve
 multi-year planning and installation horizons that will provide sufficient time for the
 planned IT upgrades to take place prior to final testing and implementation. DP&L will

1	then proceed with the later phases of its CCEM Programs including installation of
2	systems such as outage and distribution management that have a heavy reliance on AMI.

3 Q. Is the sequence of implementations consistent with DP&L's overall CCEM strategy?

4	А.	Yes. The aggressive energy efficiency targets and timetables established in S.B. 221
5		dictate that DP&L move rapidly to establish the mechanisms for achieving the required
6		results. DP&L's CCEM timeline is structured to bring AMI and load management
7		functions on line as soon as reasonably possible given the complexity of the CCEM
8		Programs. As these systems begin to contribute the desired benefits, DP&L will then
9		target the additional operating and network reliability improvements that will come from
10		implementing OMS and DMS.

11 Q. Are there controls in place to ensure project success?

A. Yes. Consistent with program and project management principles, there are mechanisms
and processes to manage the project effectively to facilitate success. These processes
include but are not limited to: quality management, status reporting, effective work
planning, issue/risk management, scope and change management, budget/benefit and
financial management.

17 The IT department at DP&L has developed and instituted an Enterprise Project

- 18 Management Methodology (EPMM) that will be followed for the CCEM Programs to
- 19 ensure successful completion. The EPMM is managed by the IT Department's PMO.
- 20 DP&L's EPMM is currently in use to control, monitor, and support the successful
- 21 execution and completion of all enterprise technology initiatives. IT PMO resources are
- 22 using the EPMM to achieve success.

1Q.Can you further describe the EPMM and how it will be used for the CCEM2Programs?

3	А.	The DP&L IT EPMM solution establishes controls throughout the life cycle of the
4		project. The controls are in place from planning through post implementation. During
5		planning, the EPMM ensures that project objectives, risks, scope, etc. are confirmed. All
6		roles and responsibilities are defined, a project work plan is created, all resources are
7		identified, and a communications plan is developed. During implementation, the
8		structured and rigorous EPMM is followed from requirements gathering and design
9		through testing and implementation. The DP&L IT EPMM is established for all aspects
10		of project management. The IT EPMM process manages: master implementation plan
11		development and the work breakdown structure, the project's budget, issues, risks, scope,
1 2		change control management, resources, integration and dependencies, quality,
13		communications, knowledge, status reporting, benefits realization, and performance
14		management.
14 15	Q.	management. Can you describe the responsibilities of the IT work stream Coordinator?
14 15 16	Q. A.	management. Can you describe the responsibilities of the IT work stream Coordinator? Yes. The responsibilities of that role include:
14 15 16 17	Q. A.	 management. Can you describe the responsibilities of the IT work stream Coordinator? Yes. The responsibilities of that role include: Assisting with the roll-up of program management processes, methods associated
14 15 16 17 18	Q. A.	 management. Can you describe the responsibilities of the IT work stream Coordinator? Yes. The responsibilities of that role include: Assisting with the roll-up of program management processes, methods associated with the IT work stream
14 15 16 17 18 19	Q. A.	 management. Can you describe the responsibilities of the IT work stream Coordinator? Yes. The responsibilities of that role include: Assisting with the roll-up of program management processes, methods associated with the IT work stream Ensuring work stream deliverables are consistent with the overall management of the stream
14 15 16 17 18 19 20	Q. A.	 management. Can you describe the responsibilities of the IT work stream Coordinator? Yes. The responsibilities of that role include: Assisting with the roll-up of program management processes, methods associated with the IT work stream Ensuring work stream deliverables are consistent with the overall management of the total CCEM initiative
14 15 16 17 18 19 20 21	Q. A.	 management. Can you describe the responsibilities of the IT work stream Coordinator? Yes. The responsibilities of that role include: Assisting with the roll-up of program management processes, methods associated with the IT work stream Ensuring work stream deliverables are consistent with the overall management of the total CCEM initiative Oversceing the work plan, and the financial, resource, issue, quality, scope and risk
14 15 16 17 18 19 20 21 21 22	Q. A.	 management. Can you describe the responsibilities of the IT work stream Coordinator? Yes. The responsibilities of that role include: Assisting with the roll-up of program management processes, methods associated with the IT work stream Ensuring work stream deliverables are consistent with the overall management of the total CCEM initiative Overseeing the work plan, and the financial, resource, issue, quality, scope and risk management issues associated with the IT work stream
14 15 16 17 18 19 20 21 21 22 23	Q. A.	 management. Can you describe the responsibilities of the IT work stream Coordinator? Yes. The responsibilities of that role include: Assisting with the roll-up of program management processes, methods associated with the IT work stream Ensuring work stream deliverables are consistent with the overall management of the total CCEM initiative Overseeing the work plan, and the financial, resource, issue, quality, scope and risk management issues associated with the IT work stream Developing communications needed for program leadership

1		Assuring that the IT decisions are consistent across all work streams and aligned with
2		the CCEM vision
3		• Ensuring necessary individuals are included and bought into the solution
4	Q.	What process will DP&L use to manage the CCEM IT program schedule?
5	А.	The IT work team will manage a work plan with clear start and end dates, precedence,
6		order, dependencies, and resources needed for all activities. The work plan will be
7		monitored continuously by the PMO and project leadership to ensure that it is
8		comprehensive, sound and logical.
9	Q.	What process will DP&L use to manage the CCEM IT budget?
10	A.	Financial Management is a key component of IT's EPMM project management process.
11		EPMM will control and manage the project's budget and other finances, as well as the
12		financial reporting for the program/project. This process encompasses establishing
13		budget amounts and tracking mechanisms, and tracking all budget amounts, actual
14		amounts incurred, forecasts, and variances for both internal and external project
15		activities. Requiring that the team provide forecasts allows for corrections to be made
16		along the project timeline to minimize budget impacts and overruns.
17	Q.	What process will DP&L use to manage the risks and issues related to delivery of
18		the CCEM IT systems?
19	A.	Risk Management is the process of identifying, measuring, and assessing risk impacts,
20		and developing strategies to manage those impacts. IT's EPMM Issue Management
21		practice covers the process for the identification, analysis, resolution, reporting, and
22		escalation of the project's issues. The EPMM will enable the program leadership to
23		create strategies and effectively address potential barriers to program success. The

PMO's risk and issue monitoring responsibilities include scheduled reporting to inform
 program leadership of the project's risk profile (impact, probability, level of control, risk
 prioritization) and establishing a target date, owner and corrective action plan for issues
 that arise. The IT PMO's methodology also includes a central tool during project
 implementation phase to allow anyone on the project to raise issues and risks.

6

Q.

What method will DP&L use to manage the scope of the IT work stream?

7 Α. Scope Management is the process by which changes to the original approved content and 8 work breakdown areas for a development project are established and controlled. The IT 9 EPMM manages scope by defining and documenting program scope early in the planning 10 stages and obtaining agreement to that scope. The scope is tied to requirements and downstream deliverables to enable continuous understanding throughout the life cycle of 11 12 the project. An important piece of managing scope is defining the impact when there are 13 needed changes to the overall programs and teams. The decision criteria used by the 14 PMO to consider a change in scope are impact on cost, schedule, resources and benefits.

15

Q.

What process will DP&L use to manage the quality of CCEM IT work stream?

A. The IT Department's method for Quality Management ensures that the program's
 expectations and quality requirements are understood and actively managed. DP&L's
 quality management monitoring practice for a project consists of identifying quality
 objectives based on stakeholder expectations. Peer reviews and formal sign-offs are
 conducted for each deliverable and each phase.

21

Q. What process will DP&L use to manage IT work stream resources?

A. Resource management is a core process within the EPMM. This process involves
 forecasting the project's needs, assigning project personnel, managing changes to
 resource needs, and performance management.

4

Q.

What process will DP&L use to manage IT work stream milestones and status?

5 A. Weekly reports are due from each of the project area leads within the IT work stream that 6 track issues, milestones, progress, budget, schedule, delivery, provide accomplishments 7 for the week, and plans for next week. The weekly reports from the project leads are 8 scheduled to be reviewed by the coordinators before being submitted to the PMO for 9 consolidation. The coordinators have an opportunity to resolve any issues before the 10 weekly report is submitted to the PMO for inclusion in the consolidated status report that 11 will be delivered to the CCEM sponsors and leadership.

12 Q. Describe the oversight that DP&L will provide for the IT work stream.

A. There are multiple levels of oversight that IT's EPMM employs to facilitate success. At
 the working level, there is a project coordinator assigned to the IT work stream. The IT
 work stream coordinator and the IT PMO will integrate their project management tools
 with those of the overall PMO for the CCEM Programs. There is also a steering
 committee for the overall effort that reviews program progress. The steering committee
 meets quarterly and receives status notifications monthly.

19 III. CUSTOMER INFORMATION SYSTEM PROJECT

20 Q. Can you describe the Customer Information System Project?

1 Α. Yes. Although DP&L's current legacy CIS is capable of performing the traditional 2 meter-to-cash functions required for today's service levels, the features and functions that 3 will be necessary to support increased customer service functions enabled by the CCEM 4 initiative will require a new CIS. A more flexible and configurable architecture will 5 allow DP&L to quickly and more affordably make the changes necessary to deliver the 6 value created by AMI, now and in the future. The new and improved CIS features will 7 become increasingly important as we offer new demand response options to our 8 customers to help achieve energy efficiency and load control targets. This new system 9 will be flexible, scalable and configurable, which will allow DP&L to focus on designing 10 creative solutions to meet needs caused by future unpredictable business conditions, 11 while having the tools in place to make technical changes quickly and efficiently.

12

Q.

Why is DP&L replacing CIS as part of the CCEM project?

13 A. Although DP&L's current IT systems are functional in the existing business environment, 14 the advent of AMI will require a more flexible set of IT systems and platforms. 15 Extensive and costly modifications to the legacy CIS would be necessary to offer time-16 of-use and real-time billing options, to build interfaces to other CCEM applications and 17 to track customer participation in demand response programs and energy product 18 offerings. Further, current functionality does not support the customer segmentation that 19 will be necessary to target customers that are most likely to participate in various 20 efficiency programs. The existing CIS system will become increasingly difficult and 21 costly to maintain and operate, and the customized code and tightly integrated nature of 22 the system make it inflexible to modify and maintenance-intensive. The system is limited 23 as to the scalability of its exception processing capabilities and would be overly

1	dependent upon use of labor-intensive business processes required to integrate it with
2	newer off-the-shelf applications and operating platforms that will be implemented
3	through CCEM. Cumulatively, the changes that would be required to the current CIS
4	system to meet future requirements are so extensive as to necessitate replacement of the
5	entire system. Further, as part of an audit by the PUCO, in December, 2004, Utilipoint
б	stated "Although UtiliPoint International has determined that the decision to modify the
7	existing billing system and the associated expenditures for those modifications were
8	prudent in the late 1990's, it is strongly recommended that DP&L undertake a proactive
9	look at market alternatives in 2005 for more efficient ways to perform the billing
10	function." The system described above meets this need.

11

Q. Please explain DP&L's plan for implementing the CIS project.

12 A. DP&L plans to implement a new open-standards-based CIS packaged software solution 13 over a three-year period. A comprehensive, formal RFP process will be utilized to 14 evaluate and select the CIS system that will best meet DP&L's current and future 15 operating requirements. A project team consisting of both internal DP&L resources and 16 external consultants with experience specific to CIS implementations will be selected to 17 develop and execute a project plan that will follow the standard system development 18 lifecycle (analyze, design, build, test, deploy) methodology used by DP&L to implement 19 large IT projects. Business processes will be re-designed to minimize system 20 customizations and to maximize post-implementation performance. A project 21 management team will be used to manage cross-project goals, to eliminate conflicts 22 related to schedule, budget, functionality and risk. Critical success factors will be

- 1 established to measure continually the success of the project and to ensure that it is 2 meeting DP&L's objectives. 3 Q. When does DP&L expect work on the CIS project to begin and to be completed? 4 Α. DP&L expects to begin implementation of a packaged CIS solution upon approval by this 5 Commission with an anticipated completion date three years thereafter. 6 Q. What investments does DP&L anticipate making to implement the CIS project? 7 Α. DP&L anticipates that it will need \$41,848,145 in capital over a three-year period from 8 2009 through 2011 to implement a new CIS. This figure includes the hardware, software, 9 associated maintenance, and labor required to implement and deliver a new CIS system. 10 DP&L anticipates that it will need to spend \$8,249,365 in O&M expenses over a sevenyear period from 2009 through 2015 for hardware, software and labor to support CIS 11 12 operations going forward. Given the size and makeup of the customer base and 13 recognizing the large number of design variables that must be considered, DP&L's 14 proposed CIS system cost estimate is reasonable. 15 Q. Is there a Workpaper associated with the CIS project? 16 А. Yes. Workpaper WPH-1.4.1 - Information Technology - CIS System Summary provides
 - 17 details of the scope and cost of the CIS project.

18 IV. <u>eSERVICES PROJECT</u>

19 Q. Can you describe the eServices Project?

1 Α. Yes. eServices is the name given by DP&L to the set of customer focused web-based 2 services proposed as part of the CCEM project. As DP&L customers become more 3 interested in controlling their own energy use, we must make available to them the tools 4 to assist in doing so. Via an interactive web portal, DP&L plans to offer a variety of 5 easily accessible and easy-to-use eServices programs designed to educate its customers 6 about its energy management product offerings and energy consumption patterns and to 7 make it easy for them to participate. Customers will be able to view their past energy 8 use, billing information and historical interval usage patterns along with associated 9 pricing data as part of DP&L's eServices offering. In addition, DP&L plans to 10 implement outbound web-notification of energy events related to direct load control, 11 programmable thermostats, home energy displays, scheduled load reduction and critical 12 peak pricing programs, which will encourage eligible customers to participate in these 13 load-reduction events.

14 Q. Please explain DP&L's plan for implementing the eServices Project.

15 A. DP&L plans to procure and configure the components necessary to support the web 16 portal and eServices program offerings planned for our customers as part of our CCEM 17 vision. A comprehensive, formal RFP process will be followed to evaluate and select the 18 eServices components that will best meet our current and future operating requirements. 19 A project team consisting of both internal DP&L resources and external consultants with 20 experience specific to eServices implementations will be selected to develop and execute 21 a project plan that will follow the standard system development lifecycle (analyze, 22 design, build, test, deploy) methodology used by DP&L to implement large IT projects. 23 Business processes will be created or re-designed to define and support DP&L's desired

)	1		web services "customer experience" while using these tools. A project management team
	2		will be used to manage cross-project goals, to eliminate conflicts related to time, budget,
	3		functionality and risk. Critical success factors will be established to measure continually
	4		the success of the project and to ensure that it is meeting DP&L's objectives.
	5	Q.	When does DP&L expect work on the eServices Project to begin and to be
	6		completed?
	7	Α.	DP&L expects to begin implementation of a packaged eServices solution in June 2009
	8		with an expected completion date of December 2011.
	9	Q.	What investments does DP&L anticipate making to implement the eServices
	10		Project?
)	11	A.	DP&L anticipates that it will need \$2,429,415 in capital over a three-year period from
	12		2009 through 2011 to implement the new eServices programs and functionality. This
	13		figure includes the hardware, software, associated maintenance and labor required to
	14		implement and deliver a new eServices system. DP&L anticipates that it will need to
	15		spend \$1,658,031 in O&M expenses over a seven-year period from 2009 through 2015
	16		for hardware, software and labor to support eServices operations. DP&L has identified
	17		the timeline and essential scope requirements for implementing a web services portal,
	18		including various entry screens and web services necessary to support the functions
	19		described above, resulting in an eServices cost estimate that is reasonable.
	20	Q.	Is there a Workpaper associated with the eServices Project?
	21	А.	Yes. Workpaper WPH-1.4.2 - Information Technology - eServices Summary provides
	22		detailed information related to project scope and cost.

1 V. METER DATA MANAGEMENT AND LOAD MANAGEMENT 2 SYSTEMS PROJECT

Q. Can you describe the Meter Data Management and Load Management System Project?

5 Α. Yes. DP&L will utilize a new Meter Data Management system (MDM) to provide a 6 repository designed specifically to accommodate the massive amounts of data that will be 7 obtained from the AMI system. The MDM will evaluate meter readings provided by the 8 AMI system through use of its validation, estimation and editing function. In addition, it 9 will generate the billing determinants to be sent to CIS that provide the ability to bill 10 time-differentiated incentive-based rates. As the repository for historical energy usage 11 data, the MDM can be accessed by other applications or eServices to review consumption 12 patterns for various classes of customers, thereby improving trend analysis and accuracy 13 of rate design and load forecasting.

14 The Load Management System (LMS), which will interface with CIS, MDM and AMI, 15 will perform various load control functions and will monitor the activation and 16 restoration of load control equipment consistent with DP&L's load control programs. An 17 important function of an LMS is to store data related to various in-home load control 18 devices, programmable thermostats, and home energy display devices installed 19 throughout DP&L's service territory that will enable homeowners to better control their 20 energy use. An LMS coupled with effective marketing campaigns and implementation of 21 demand response functions through integration with CIS will allow DP&L to initiate 22 demand response events, effectively lowering peak demand requirements during high 23 usage or emergency curtailment periods. DP&L also plans to improve the reliability of

its transmission/distribution system by implementing programs that support voluntary
 load shedding during system duress periods that occur as a result of accidental or storm related equipment failures.

4

Q.

Please explain DP&L's plan for implementing the MDM and LMS projects.

5 Α. DP&L plans to implement packaged software solutions for both MDM and LMS over a б three-year period. A comprehensive, formal RFP process will be followed to evaluate 7 and select MDM and LMS software packages that will best meet our current and future 8 operating requirements. A project team consisting of both internal DP&L resources and 9 external consultants with experience specific to MDM and LMS implementations will be 10 selected to develop and execute a project plan that will follow the standard system 11 development lifecycle (analyze, design, build, test, deploy) methodology employed by 12 DP&L for large-scale IT projects. Business processes will be created or re-designed to 13 minimize system customizations and maximize upgradeability and adaptability to future 14 requirements. A project management team will be used to manage cross-project goals, to 15 eliminate conflicts related to time, budget, functionality and risk. Critical success factors 16 will be established to measure continually the success of the project and to ensure that it 17 is meeting DP&L's objectives. As DP&L proceeds with the implementation of AMI, the 18 availability of the MDM and LMS is essential to capturing the full range of AMI benefits. 19 Since a working MDM is required to perform a complete vertical test of the meter data 20 collection, data validation and time-of-use rate billing process, DP&L plans to have the 21 MDM fully operational by the later stages of the AMI implementation, when sufficient 22 quantities of AMI-enabled meters are available to generate interval data. Similarly,

)	1		DP&L plans to have a fully operational LMS system by the later stages of the AMI
	2		implementation to enable comprehensive testing of various demand response initiatives.
	3	Q.	When does DP&L expect work on the MDM and LMS projects to begin and to be
	4		completed?
	5	Α.	DP&L expects to begin implementation of both a packaged MDM and LMS solution
	6		upon approval by this Commission with an anticipated completion date three years
	7		thereafter.
	8	Q.	What investments does DP&L anticipate making to implement the MDM and LMS
•	9		projects?
	10	A.	DP&L anticipates that it will need \$9,486,706 in capital over a three-year period from
	11		2009 through 2011 to implement new MDM and LMS systems. This figure includes the
	12		hardware, software, associated maintenance and labor required to implement and deliver
	13		new MDM and LMS systems. DP&L anticipates that it will need to spend \$4,598,484 in
	14		O&M expenses over a seven-year period from 2009 through 2015 for hardware, software
	15		and labor to support the MDM and LMS operations.
	16	Q.	Is there a Workpaper associated with the MDM and LMS projects?
	17	A.	Yes. Workpaper WPH-1.4.3 - Information Technology - MDM & LMS Systems
	18		Summary provides details of the associated scope and cost.
	19	VI.	OUTAGE MANAGEMENT SYSTEM PROJECT

20 Q. Can you describe the Outage Management System Project?

1 Α. Yes. An important objective of DP&L's CCEM initiative is to improve network 2 reliability by evaluating power outage data in real time from sources such as AMI, 3 substation automation, SCADA and the IVR and then using this data to locate power outages more rapidly and shorten restoration time. DP&L plans to replace its legacy 4 5 custom outage management system with a more flexible and robust packaged Outage 6 Management System (OMS) capable of processing outage alarms, restoration alarms, and 7 low- and high-voltage alarms generated in real time from the new AMI system. This real 8 time information combined with customer status and location information provided from 9 DP&L's SCADA and mapping systems will allow the new OMS to deploy work crews in 10 the most efficient manner in order to respond efficiently to power outages. The new 11 OMS will receive and process various inputs for outage analysis, outage location 12 predictions, crew management, and dynamic circuit model changes, and will help DP&L 13 work crews to respond more rapidly to identified outages. Restoration alarms received 14 by the OMS from the AMI system will help DP&L to confirm that power has been 15 restored at affected customer locations so that line crews can be more efficiently 16 dispatched during storm conditions. When linked with MWM, the two systems should 17 produce operating synergies that will significantly improve outage response time while 18 utilizing the utility workforce in the most efficient manner.

19

Q. Please explain DP&L's plan for implementing the OMS project.

A. DP&L plans to implement a packaged OMS software solution over a three-year period.
 A comprehensive, formal RFP process will be followed to evaluate and select the OMS
 system that will best meet our current and future operating requirements. A project team
 consisting of both internal DP&L resources and external consultants with experience

ļ	1		specific to OMS implementations will be selected to develop and execute a project plan
	2		that will follow the standard system development lifecycle (analyze, design, build, test,
	3		deploy) methodology employed by DP&L for large-scale IT projects. Business processes
	4		will be created or re-designed to minimize system customizations and maximize the
	5		significant new functionality available in the new OMS system. A project management
	6		team will be used to manage cross-project goals, to eliminate conflicts related to time,
	7		budget, functionality and risk. Critical success factors will be established to measure
	8		continually the success of the project and to ensure that it is meeting DP&L's objectives.
	9		Without a new OMS, DP&L would not be able to take advantage of much of the
	10		available new outage data coming from its AMI system, or be in a position to manage
	11		outage events through MWM and DMS. Utilities such as Puget Sound Energy,
ł	12		Duquesne Light and PECO Energy are already benefiting from integration of their OMS
	13		with AMI. DP&L's planned upgrades of its telecommunications infrastructure and
	14		implementation of a new MWM should serve to further leverage the capabilities of OMS.
	15	Q.	When does DP&L expect work on the OMS project to begin and to be completed?
	16	A.	DP&L expects to begin implementation of the OMS project in January 2011 with an
	17		expected completion date of December 2013.
	18	Q.	What investments does DP&L anticipate making to implement the OMS project?
	19	A.	DP&L anticipates that it will need \$9,531,036 in capital over a three-year period from
	20		2011 through 2013 to implement a new OMS. This figure includes the hardware,
)	21		software, associated maintenance and labor required to implement and deliver a new
	22		OMS. DP&L anticipates that it will need to spend \$2,637,171 in O&M expenses over a
	23		five-year period from 2011 through 2015 for hardware, software and labor to support

1		OMS operations. DP&L has identified key operational aspects of OMS design and has
2		considered other interfaces and system objects such as screen designs and reports to
3		result in an OMS estimate that is reasonable.
4	Q.	Is there a Workpaper associated with the OMS project?
5	A.	Yes. Workpaper WPH-1.4.4 - Information Technology - OMS System Summary
6		provides details of project scope and cost.
7	VII.	DISTRIBUTION MANAGEMENT SYSTEM PROJECT
8	Q.	Can you describe the Distribution Management System Project?
9	А.	Yes. As DP&L's other systems become more sophisticated and are increasingly more
10		capable of providing load monitoring and status in near real time, a specialized system is
11		needed to help manage circuit loading to optimize network performance and improve
12		overall network reliability. A Distribution Management System (DMS) will allow DP&L
13		to efficiently perform: (1) scenario/contingency analysis of planned work, (2) plan daily
14		operations by helping DP&L to understand recent system events, and (3) anticipate future
15		events that could affect system integrity. The DMS system will provide the necessary
16		functionality to manage utility circuit loading and switching operations from both internal
17		and external sources such as wind and solar so that circuits can be balanced properly and
18		transformer and circuit overload conditions, energy losses and equipment failures can be
19		minimized. In addition, a DMS will provide the capability to generate switching orders,
20		streamline clearance management, and optimize DP&L's distribution system through
21		equipment condition monitoring, load surveys and feeder load balancing. By using the
22		load data and network reliability information provided by the OMS, DP&L will be able

to make informed decisions leading to significant savings through reductions in
 unplanned outages and system technical losses, as well as reductions in future capital
 expenditures for distribution infrastructure through right sizing of conductors,
 substation/distribution transformers, and appropriate timing for circuit/substation
 upgrades due to load growth.

6 **Q**.

Please explain DP&L's plan for implementing the DMS project.

7 Α. DP&L plans to implement a packaged DMS software solution over a five-year period 8 beginning in 2011. A comprehensive, formal RFP process will be followed to evaluate 9 and select the DMS system that will best meet DP&L's current and future operating 10 requirements. A project team consisting of both internal DP&L resources and external 11 consultants with experience specific to DMS implementations will be selected to develop 12 and execute a project plan that will follow the standard system development lifecycle 13 (analyze, design, build, test, deploy) employed by DP&L and others in the industry, for 14 large-scale IT projects. Business processes will be created or re-designed to minimize 15 system customizations and maximize use of the functionality provided by the new DMS 16 system. A project management team will be used to manage cross-project goals to 17 eliminate conflicts related to time, budget, functionality and risk. Critical success factors 18 will be established to measure continually the success of the project and to ensure that it 19 is meeting DP&L's objectives. DP&L plans for DMS to be implemented in the later 20 stages of its CCEM plan, since DMS performance is heavily reliant on the availability of 21 other systems such as the OMS and the field data collection improvements to GIS. In 22 addition, DMS's effective use of real time incoming outage and load data from other 23 systems and external power sources cannot be accomplished until DP&L has completed

	1		the IT Infrastructure and SOA installations and upgrades that will provide the IT platform
	2		for delivery of real time data to the various CCEM applications.
	3	Q.	When does DP&L expect work on the DMS project to begin and to be completed?
	4	А.	DP&L expects to begin implementation of a packaged DMS solution in January 2011
	5		with an expected completion date of December 2015.
	6	Q.	What investments does DP&L anticipate making to implement the DMS project?
	7	A.	DP&L anticipates that it will need \$9,295,478 in capital over a five-year period from
	8		2011 through 2015 to implement a new DMS. This figure includes the hardware,
	9		software, associated maintenance and labor required to implement and deliver a new
	10		DMS. DP&L anticipates that it will need to spend \$1,933,367 in O&M expenses over a
)	11		five-year period from 2011 through 2015 for hardware, software and labor to support
	12		DMS operations. DP&L has captured the essential business processes and configuration
	13		requirements resulting in a DMS estimate that is appropriate for the level of functionality
	14		that will be provided.
	15	Q.	Is there a Workpaper associated with the DMS project?
	16	A.	Yes. Workpaper WPH-1.4.5 - Information Technology DMS System Summary
	17		provides details of scope and cost information.
	18	VIII.	MOBILE WORKFORCE MANAGEMENT SYSTEM PROJECT
	19	Q.	Can you describe the Mobile Workforce Management System Project?

19 **Q**.
1 Α. Yes. While DP&L's existing custom-developed mobile workforce management system 2 provides a level of efficiency for distributing and collecting field service orders generated 3 by CIS, it does not allow real-time dispatch of priority service orders, service order 4 completion, or generation/dispatch of outage-related service orders. A new Mobile 5 Workforce Management system (MWM) will take advantage of the latest advances in 6 mobile devices, handheld PCs, wireless communication and mobile software applications 7 to maximize the utilization and productivity of DP&L's workforce. Automated 8 scheduling and resource optimization, dynamic routing and workflow management, and 9 global positioning and e-maps, combined with real-time communications between 10 DP&L's operations center, call center, CIS, and field service order staff, will result in 11 superior customer service and outage restoration.

12 Q. Please explain DP&L's plan for implementing the MWM project.

13 A. DP&L plans to implement a packaged MWM software solution over a three-year period 14 beginning in 2013. A comprehensive, formal RFP process will be followed to evaluate 15 and select the MWM system that will best meet our current and future operating 16 requirements. A project team consisting of both internal DP&L resources and external 17 consultants with experience specific to MWM implementations will be selected to 18 develop and execute a project plan that will follow the standard system development 19 lifecycle (analyze, design, build, test, deploy) methodology employed by DP&L and 20 others in the industry for large-scale IT projects. Business processes will be created or 21 re-designed to minimize system customizations and maximize the use of new 22 functionality provided by the MWM system. A project management team will be used to 23 manage cross-project goals, to eliminate conflicts related to time, budget, functionality

þ	1		and risk. Critical success factors will be established to measure continually the success
	2		of the project and to ensure that it is meeting DP&L's objectives. Achieving the full
	3		benefits of the new MWM is highly dependent on the completion of planned IT
	4		infrastructure, SOA and telecommunications upgrades, as well as availability to receive
	5		information from other new systems that are part of the CCEM plan. Implementing the
	6		MWM too soon would add additional complexity to the overall plan without providing
	7		the ability to capture most benefits. By scheduling MWM implementation in the later
	8		stages of DP&L's 7-year planning horizon, DP&L will be able to more closely align the
	9		implementation costs and system benefits.
	10	Q.	When does DP&L expect work on the MWM project to begin and to be completed?
	11	А.	DP&L expects to begin implementation of a packaged MWM solution in January 2013
,	12		with an expected completion date of December 2015.
	13	Q.	What investments does DP&L anticipate making to implement the MWM project?
	14	А.	DP&L anticipates that it will need \$9,823,728 in capital over a three-year period from
	15		2013 through 2015 to implement a new MWM system. This figure includes the
	16		hardware, software, associated maintenance and labor required to implement and deliver
	17		a new MWM system. DP&L anticipates that it will need to spend \$780,506 in O&M
	18		expenses over a three-year period from 2013 through 2015 for hardware, software and
	19		labor to support MWM operations. The current MWM estimate is reasonable considering
	20		the complexity of the large number of interactive functions, data entry screens and reports
)	21		included as part of the MWM service order process.

_ ._ ._

22 Q. Is there a Workpaper associated with the MWM project?

A. Yes. Workpaper WPH-1.4.6 - Information Technology - MWM System Summary
 provides details of the scope and cost information.

3 IX. SERVICE ORIENTED ARCHITECTURE PROJECT

4 Q. Can you describe the Service Oriented Architecture Project?

5 Α. Yes. A Service Oriented Architecture (SOA) is an IT architectural approach to system 6 design that is being implemented to support efficient system interoperability through use 7 of standardized messages that are grouped to form business services that transfer data 8 from one system to another, enabling easy automation, data capture and real-time 9 measurement of high-value DP&L business processes. SOA permits different services to 10 be run on distributed IT architecture and accessed across different networks. Using SOA, 11 DP&L and third parties will be able to view processes and manipulate process data in 12 real-time regardless of the multiple applications, systems and business units that they 13 span. SOA relies on point-to-point communications using widely accepted open 14 standards, an Enterprise Service Bus that allows a network of disparate systems to 15 interact as one unified enterprise system, an Orchestration Engine and Business Process 16 Management (BPM) to create integrated enterprise-level business processes, and 17 Business Activity Monitoring (BAM) for end-to-end performance monitoring and control 18 of DP&L business processes. Examples of high-value business processes from which the 19 customer and DP&L would benefit as a result of implementing SOA automation are end-20 to-end efficiency and demand response program management, real-time outage 21 management (OMS) and customer experience management (eServices).

- 22
- Q. Is it reasonable for DP&L to include SOA?

1 Α. Yes. The demands of CCEM Programs and similar future Smart Grid initiatives dictate 2 that a flexible, open-standards-based design architecture be implemented so that future 3 system changes and upgrades can be efficiently implemented. The SOA distributed 4 computing model developed by DP&L will support interoperability of services so that 5 future business applications can be added without requiring major modifications to 6 existing hardware and operating platforms. The decision to begin implementation of 7 SOA along with AMI, MDM, CIS and eServices is a logical approach to prepare for the 8 introduction of major operating changes to DP&L's enterprise level systems.

9

Q.

What value will DP&L gain from the SOA implementation?

A. Moving to a flexible, open-standards-based IT architectural design will position DP&L
not only for implementation of its planned CCEM projects, but also will help to ensure
that additional future Smart Grid improvements and system upgrades will be more easily
and efficiently integrated with AMI and these other new systems. SOA's business
process design methodology is built to accommodate the interoperability of services and
design flexibility that will provide continuing benefits as DP&L implements new Smart
Grid technologies in the future.

17

Q.

Please explain DP&L's plan for implementing the SOA project.

A. DP&L plans to procure and configure the components necessary to support SOA for key business processes. A comprehensive, formal RFP process will be followed to evaluate and select the SOA components that will best meet DP&L's current and future operating requirements. A project team consisting of both internal DP&L resources and external consultants with experience specific to SOA implementations will be selected to develop and execute a project plan that will follow the standard system development lifecycle

)	1		(analyze, design, build, test, deploy) methodology employed by DP&L and others in the
	2		industry for its large-scale IT projects. Business processes will be created or re-designed
	3		to minimize system customizations and maximize the value achieved from implementing
	4		SOA. A project management team will be used to manage cross-project goals to
	5		eliminate conflicts related to time, budget, functionality and risk. Critical success factors
	6		will be established to measure continually the success of the project and to ensure that it
	7		is meeting DP&L's objectives. DP&L has established a 5-6 year timetable to achieve
	8		high level operational performance built around its new SOA best practices design
	9		approach. During the first 3 years, DP&L will develop its service delivery platform and
	10		common data model, and acquire the necessary hardware and software, so that it is
	11	,	prepared to design and test interfaces to new systems as they begin to come online in
	12		2010 - 2011.
	13	Q.	When does DP&L expect work on the SOA project to begin and to be completed?
•	13 14	Q. A.	When does DP&L expect work on the SOA project to begin and to be completed? DP&L expects to begin implementation of SOA architecture upon approval by this
•	13 14 15	Q. A.	When does DP&L expect work on the SOA project to begin and to be completed? DP&L expects to begin implementation of SOA architecture upon approval by this Commission with an expected completion date of five years thereafter.
•	13 14 15 16	Q. A. Q.	When does DP&L expect work on the SOA project to begin and to be completed? DP&L expects to begin implementation of SOA architecture upon approval by this Commission with an expected completion date of five years thereafter. What investments does DP&L anticipate making to implement the SOA project?
•	13 14 15 16 17	Q. A. Q. A.	When does DP&L expect work on the SOA project to begin and to be completed?DP&L expects to begin implementation of SOA architecture upon approval by thisCommission with an expected completion date of five years thereafter.What investments does DP&L anticipate making to implement the SOA project?DP&L anticipates that it will need \$5,279,091 in capital over a five-year period from
•	13 14 15 16 17 18	Q. A. Q. A.	When does DP&L expect work on the SOA project to begin and to be completed? DP&L expects to begin implementation of SOA architecture upon approval by this Commission with an expected completion date of five years thereafter. What investments does DP&L anticipate making to implement the SOA project? DP&L anticipates that it will need \$5,279,091 in capital over a five-year period from 2009 through 2013 to implement SOA automation. This figure includes the hardware,
•	13 14 15 16 17 18 19	Q. A. Q. A.	When does DP&L expect work on the SOA project to begin and to be completed?DP&L expects to begin implementation of SOA architecture upon approval by thisCommission with an expected completion date of five years thereafter.What investments does DP&L anticipate making to implement the SOA project?DP&L anticipates that it will need \$5,279,091 in capital over a five-year period from2009 through 2013 to implement SOA automation. This figure includes the hardware,software, associated maintenance and labor required to implement and deliver SOA
•	13 14 15 16 17 18 19 20	Q. A. Q.	When does DP&L expect work on the SOA project to begin and to be completed?DP&L expects to begin implementation of SOA architecture upon approval by thisCommission with an expected completion date of five years thereafter.What investments does DP&L anticipate making to implement the SOA project?DP&L anticipates that it will need \$5,279,091 in capital over a five-year period from2009 through 2013 to implement SOA automation. This figure includes the hardware,software, associated maintenance and labor required to implement and deliver SOAautomation. DP&L anticipates that it will need to spend \$2,795,433 in O&M expenses
•	13 14 15 16 17 18 19 20 21	Q. A. Q.	When does DP&L expect work on the SOA project to begin and to be completed?DP&L expects to begin implementation of SOA architecture upon approval by thisCommission with an expected completion date of five years thereafter.What investments does DP&L anticipate making to implement the SOA project?DP&L anticipates that it will need \$5,279,091 in capital over a five-year period from2009 through 2013 to implement SOA automation. This figure includes the hardware,software, associated maintenance and labor required to implement and deliver SOAautomation. DP&L anticipates that it will need to spend \$2,795,433 in O&M expensesover a seven-year period from 2009 through 2015 for hardware, software and labor to

Q. Is there a Workpaper associated with the SOA project?

- A. Yes. Workpaper WPH-1.4.7 Information Technology SOA Summary provides details
 of the scope and cost information.
- 4 X. INFRASTRUCTURE PROJECT
- 5 Q. Can you describe the Infrastructure Project?

6 A. Yes. Implementation of AMI and transition to the Smart Grid require use of advanced IT 7 systems with an enterprise architecture orientation that supports business process design, 8 and plays a key role in running the business. IT infrastructure improvements are needed 9 to support installation and operation of the complex additional IT systems that are part of 10 the CCEM vision. IT infrastructure to support AMI and other systems is comprised of 11 three elements: (1) hardware to run applications; (2) disaster recovery and system 12 management software to achieve the required user experience; and (3) reengineered IT 13 infrastructure governance and processes to meet required IT service levels. Servers and storage with adequate capacity are necessary to ensure a reasonable response time for 14 15 users in a production environment, while also supporting development, testing and 16 disaster recovery environments. New system software and operating platforms are 17 required to enable efficient management of applications (e.g., help desk, network 18 monitoring, job scheduling, backup/recovery etc.). More robust security, identity and 19 access management processes and procedures are required to deal with the increased 20 number of new applications, networks, and communication channels that could pose 21 unsecured entry risks. To take advantage of robust new capabilities of the infrastructure 22 improvements, IT processes must be reengineered to accommodate more users asking 23 more questions about a greater number of systems that are central to doing their jobs in a cost-effective manner. The infrastructure project will provide an enterprise level
 foundation as well as the overarching support for all other system implementations. The
 company is taking an enterprise approach to system implementation, rather than a
 system-by-system approach, because it better supports system integration and is more
 cost efficient.

6 Q.

Is it reasonable for DP&L to include the Infrastructure Project?

A. Yes. Implementing DP&L's CCEM Programs require integrated, secure, and reliable
hardware and operating systems, and robust IT governance. The complex challenge of
implementing several major new systems including AMI and CIS will require additional
service desk, database and application support resources necessary to test new systems,
perform change management and ensure that security requirements and user access are
managed properly.

13 **O**

Q. Please explain DP&L's plan for implementing the Infrastructure Project.

14 A. DP&L plans to procure and configure the components necessary to build the strong IT 15 infrastructure required to support the new systems proposed as part of the CCEM vision. 16 A comprehensive, formal RFP process will be followed to evaluate and select the 17 infrastructure components that will best meet our current and future operating 18 requirements. A project team consisting of both internal DP&L resources and external 19 consultants with experience specific to infrastructure redesign will be selected to develop and execute a project plan that will follow the standard system development lifecycle 20 21 (analyze, design, build, test, deploy) methodology employed by DP&L and others in the 22 industry for large-scale IT projects. A project management team will be used to manage 23 cross-project goals, to eliminate conflicts related to time, budget, functionality and risk.

1		Critical success factors will be established to measure continually the success of the
2		project and to ensure that it is meeting DP&L's objectives.
3	Q.	When does DP&L expect work on the Infrastructure Project to begin and to be
4		completed?
5	А.	DP&L expects to begin implementation of a new IT Infrastructure upon approval by this
6		Commission with an anticipated completion date two years thereafter.
7	Q.	What investments does DP&L anticipate making to implement the Infrastructure
8		Project?
9	А.	DP&L anticipates that it will need \$8,065,779 in capital over a two year-period from
10		2009 through 2010 to implement a new infrastructure. This figure includes the hardware,
11		software, operating systems, associated maintenance and labor required to implement and
12		deliver a new infrastructure. DP&L anticipates that it will need to spend \$15,237,454 in
13		O&M expenses over a seven-year period from 2009 through 2015 for hardware, software
14		and labor to support infrastructure operations going forward.
15	Q.	Is there a Workpaper associated with the Infrastructure Project?
16	А.	Yes. Workpaper WPH-1.4.8 - Information Technology - Infrastructure Summary
17		provides details of scope and cost information.
18	XI.	WORKPAPERS WPH-1.4 WPH-1.4.8
19	Q.	Can you describe the process that you used to calculate the figures shown on

20 Workpapers WPH-1.4 – WPH-1.4.8?

1 Α. Yes. The process used a blended consulting / DP&L team, working together to provide 2 the estimates for the systems discussed throughout this testimony. Included in the team 3 were subject matter experts knowledgeable in each of the areas that would be affected by 4 the CCEM requirements. The team created a list of system requirements needed to execute successfully the demand response and other programs included in this filing. 5 6 Those requirements were then mapped to DP&L's people, process and technology 7 components to determine their current and future impacts. Those impacts consisted of 8 items such as changes in the way we do business (i.e., business process change), 9 modifications or implementation of new systems, and changes to staffing levels and/or 10 skills. Those impacts were then translated into changes in the number and type of 11 tangible components (e.g., number of reports, configuration components, interfaces, etc.). 12 To determine the labor requirement, we then applied workday counts based on our 13 knowledge and available industry-wide information concerning execution of the same or 14 similar work. From the workday counts, we applied labor rates to come up with the 15 implementation costs. To determine the software costs we used an averaged software cost 16 based on input from multiple software companies. The hardware costs were also 17 averaged based on multiple hardware options on the market.

18 Q. Are y

Are you responsible for Workpapers WPH-1.4 - WPH-1.4.8?

- A. Yes. I am responsible for those workpapers and for the computations to arrive at the
 costs for the IT systems related to each workpaper.
- 21 Q. What is shown on Workpaper WPH-1.4?
- A. Workpaper WPH-1.4 depicts the summarized Capital and O&M costs by IT system, by
 year for 2009 through 2015. This sheet is a summary of Workpapers WPH-1.4.1 through

1.4.8. The total capital expenditure for all IT systems for 2009 through 2015 is
 \$95,759,377. The total O&M expenditure for all IT systems for 2009 through 2015 is
 \$37,889,811.

4

Q. What is shown on Workpapers WPH-1.4.1 – WPH-1.4.8?

5 Å. Workpapers WPH-1.4.1 - WPH-1.4.8 depict the Capital and O&M costs by IT system, 6 by year for 2009 through 2015. Capital costs include the solution implementation costs, 7 labor expenses, hardware purchases, software purchases, and software maintenance 8 expenses associated with the implementation of the related system and realized during the 9 implementation phase of that system. O&M costs include solution implementation costs, 10 labor expenses, hardware maintenance, software maintenance, and maintenance labor 11 associated with the ongoing support of the related system. In addition, if there are annual 12 savings associated with a given system, those dollars are shown under the Annual 13 Systems Savings heading.

14

15

Q. In Workpapers WPH-1.4.1 – WPH-1.4.8, under "Summary of [Project] Capital Costs," how is "Solution Implementation Costs" calculated?

16 Α. Solution Implementation Costs under the Capital Costs heading for each system are 17 comprised of capitalized labor costs (both internal and external) that represent the labor 18 required to implement that particular system. Capitalized labor costs are calculated by 19 applying a labor rate to the estimated number of days required to implement the given 20 system. The number of estimated work days to implement the system is calculated based 21 on analysis of the specific business requirements developed during team sessions. The 22 labor rate is a blended rate of internal staff rates and external consulting rates specific to 23 the skills and staff required to support a specific system implementation.

Q. In Workpapers WPH-1.4.1 – WPH-1.4.8, under "Summary of [Project] Capital Costs," how is "Labor Expenses" calculated?

A. Labor expenses include expenses related to travel and project work such as
transportation, lodging, project supplies, etc. Each IT System's capital labor expenses
figure is the result of multiplying the capital solution implementation costs by a figure
within the industry accepted range of standard rates (12%-16%) for calculating expenses
associated with large scale, multi-year projects such as CCEM. DP&L used a slightly
higher than average rate for the MDM,LMS and DMS system estimates due to increased
labor expenses associated with these more complex and evolving technologies.

10 Q. In Workpapers WPH-1.4.1 – WPH-1.4.8, under "Summary of [Project] Capital
 11 Costs," how is "Hardware Purchases" calculated?

12 Α. Hardware purchases to support each of the project system implementations include 13 components such as servers, hubs, routers, work stations, printers, storage, etc for 14 production, development and disaster recovery environments and the associated taxes. 15 The hardware purchases figures were driven by the IT department philosophy of 16 standardization of platforms, open systems, and open standards. Servers and storage 17 were estimated utilizing industry best practices to determine hardware capacity and user 18 requirements for typical IT system implementations. The team then took an enterprise 19 view of the hardware purchases required for each system, and utilized methods such as 20 virtualization and consolidation to ensure that the servers and storage are sized efficiently 21 without wasted capacity while ensuring adequate growth capability.

22

23

Q. In Workpapers WPH-1.4.1 – WPH-1.4.8, under "Summary of [Project] Capital Costs," how is "Software Purchases" calculated? 1A.Software purchases to support each of the project system implementations include2application and database software licenses and ancillary end user data query tools and the3associated taxes. The software purchases figures were driven by the IT department4philosophy of standardization of platforms, open systems, and open standards. The5figures used for our Capital cost Summary are vendor-neutral and represent a blended6cost of reputable industry-established software packages.

7 Q. In Workpapers WPH-1.4.1 – WPH-1.4.8, under "Summary of [Project] Capital 8 Costs," how is "Software Maintenance" calculated?

9 Α. Software Maintenance includes the fees payable to the software company to provide 10 maintenance and support needed to maintain current system functionality. Software 11 maintenance is calculated using 18% of the pre-tax Software Purchases Costs, The 18% 12 figure is a widely-recognized standard amount charged by software vendors for ongoing 13 maintenance of their systems. The software maintenance is included in the Summary of 14 [Project] Capital Costs if the costs are incurred during the implementation. Software 15 maintenance costs incurred after the software is installed and has been placed into 16 production are included in Summary of [Project] O&M Costs.

In Workpapers WPH-1.4.1 -- WPH-1.4.8, under "Summary of [Project] O&M
 Costs," how is "Solution Implementation Costs" calculated?

A. Under the O&M Costs heading, Solution Implementation Costs are comprised of noncapitalized labor costs (both internal and external) associated with the planning and
training tasks necessary to support each system implementation. These costs can be as
low as 1% and as high as 8% of the capitalized Solution Implementation Costs. In one
year in particular, the costs for SOA are as high as 24% due to the increased planning and

	1		training efforts required to establish the direction for future SOA deliverables. Utilizing
	2		this methodology to determine non-capitalizable labor costs is a widely-accepted practice
	3		within the Information Technology community.
	4	Q.	In Workpapers WPH-1.4.1 – WPH-1.4.8, under "Summary of [Project] O&M
	5		Costs," how is "Labor Expenses" calculated?
	6	A.	Labor expenses include expenses related to travel and project work such as
	7		transportation, lodging, project supplies, etc. Each IT System's O&M cost labor expense
	8		figure is the result of multiplying the capital solution implementation costs by the
	9		industry-accepted range of standard rates (12%-16%) for calculating expenses associated
	10		with large scale, multi-year IT projects such as CCEM.
)	11	Q.	In Workpapers WPH-1.4.1 – WPH-1.4.8, under "Summary of [Project] O&M
	12		Costs," how is "Hardware Maintenance" calculated?
	13	A.	Hardware Maintenance includes the fees payable to the hardware vendor to provide
	14		maintenance and support needed to maintain the servers and storage systems. Hardware
	15		maintenance is calculated using 15% of the pre-tax Hardware Purchases Costs. The 15%
	1 6		is a widely recognized standard amount charged by hardware vendors to estimate the
	17		hardware maintenance costs associated with large scale, multi-year IT projects.
	18	Q.	In Workpapers WPH-1.4.1 – WPH-1.4.8, under "Summary of [Project] O&M
	19		Costs," how is "Software Maintenance" calculated?
	20	А.	Software Maintenance includes the fees payable to the software company to provide
)	21		maintenance and support needed to maintain current system functionality. Software
	22		maintenance is calculated using 18% of the pre-tax Software Purchases Costs, The 18%

is a widely-recognized standard amount charged by software vendors for ongoing
maintenance and routine software support of licensed vendor software. The software
maintenance costs are included in the Summary of [Project] Capital Costs if the costs are
incurred during the implementation. Software maintenance costs incurred after the
software has been installed, tested and is placed into production, are included in
Summary of [Project] O&M Costs.

7

8

Q. In Workpapers WPH-1.4.1 – WPH-1.4.8, under "Summary of [Project] O&M Costs," how is "Maintenance Labor" calculated?

9 Α. Maintenance Labor includes the incremental DP&L labor costs needed to maintain the systems necessary to fulfill the CCEM vision. The calculations for maintenance labor for 10 each system were based on a fully-loaded hourly rate multiplied by the number of FTEs 11 required to support the specific systems. This total number of additional resources is 12 13 necessary to support the increase in IT infrastructure, databases and associated 14 equipment, and to provide ongoing application support. To validate the IT resource 15 increase, we contacted a utility of similar size which currently operates systems similar to 16 those in our estimates. We found that the DP&L total IT staffing requirements were 17 slightly lower overall than that of the comparative utility, but that our total resource 18 requirements align closely when analyzed by functional area.

19

What is the source of the information shown on Workpapers WPH-1.4. - WPH-

20 1.4.8?

Q.

A. The information contained in Workpapers WPH-1.4 - WPH-1.4.8 was developed using a
 typical IT system estimating methodology recognized throughout the IT industry that
 uses as input, the parameters and logical assumptions developed as a result of defining a

set of high-level system requirements by DP&L IT and business subject matter experts.
 The DP&L team used historical and industry data, interviews, meetings, and vendor
 information, and conducted workshops directly involving key DP&L stakeholders in
 addition to drawing on the extensive experience of an external consulting firm to arrive at
 system designs that meet our business requirements and are consistent with DP&L's
 CCEM vision.

Q. Are the investments outlined in the Workpapers that you have provided, WHP-4.1 8 WHP-4.1.8 reasonable and prudent?

9 Α. Yes. DP&L has conducted extensive analysis of business needs and available solutions, 10 and considers the dollar investments outlined in Workpapers WHP-4.1 - WHP-4.1.8 to 11 be reasonable and prudent. As stated above, DP&L assembled a team of subject matter 12 specialists to arrive at solid business requirements for each system, incorporating logical 13 and well thought-out plans. Using an industry-accepted bottom-up estimation approach, 14 a final estimate for each system was developed. Each system estimate was then subjected 15 to several reviews for reasonableness by soliciting the opinions of internal and external 16 experienced software project managers and estimating specialists. DP&L will further 17 refine its IT system costs upon completion of a comprehensive, formal RFP process that 18 will be employed to evaluate and select the IT systems required to support the business 19 needs of the CCEM projects and best meet its current and future operating requirements.

- 20 XII. CONCLUSION
- 21

Q. Please summarize your testimony.

)	1	Α.	In summary, the IT systems that DP&L proposes to implement to achieve its Customer
	2		Conservation and Energy Management vision over the next 7 years will enable its
	3		customers to receive the near term significant benefits which AMI offers today, and will
	4		also lay the foundation for implementation of additional smart grid technologies with
	5		additional capabilities that provide even greater operational efficiencies, increased
	6		reliability and new customer services. DP&L's IT system architecture was developed
	7		specifically to support AMI implementation as part of the overall CCEM initiative. In
	8		addition to enabling DP&L to implement a wide range of energy efficiency programs,
	9		these systems will provide real-time data about the DP&L distribution network extending
	10		all the way to the customer's premise. The availability and use of this data will provide
	11		us with a comprehensive view and better understanding of our distribution system.
	12		Working together, the proposed supporting IT systems make it possible for DP&L to
·	13		establish new rates based on time-differentiated consumption data, and to improve outage
	14		detection and restoration capabilities available through AMI. Furthermore, they will
	15		enable transmission and distribution operations personnel to sense, monitor, and analyze
	16		information from many data sources at various levels of system granularity, which will
	1 7		allow system planners to utilize this information to optimize use of DP&L's assets.
	18		Finally, by establishing a strong web presence, and offering a variety of beneficial
	19		eService options, DP&L will be able to increase customer satisfaction by enabling our
	20		customers to better control their own energy use.

Does this conclude your direct testimony?

22 A. Yes, it does.

23 200078.1

Q.

BEFORE THE

PUBLIC UTILITIES COMMISSION OF OHIO

THE DAYTON POWER AND LIGHT COMPANY CASE NO. 08-1094-EL-SSO

BOOK II – Customer Conservation and Energy Management Programs

DIRECT TESTIMONY

OF KEVIN L. HALL

- □ MANAGEMENT POLICIES, PRACTICES, AND ORGANIZATION
- □ RATE BASE
- □ ALLOCATIONS
- □ RATE OF RETURN
- □ RATES AND TARIFFS

BEFORE THE

PUBLIC UTILITIES COMMISSION OF OHIO

DIRECT TESTIMONY OF

KEVIN L. HALL

ON BEHALF OF THE DAYTON POWER AND LIGHT COMPANY

TABLE OF CONTENTS

I.	INTRODUCTION	. 1
II.	APPROACH TO QUANTIFYING SOCIETAL BENEFITS	. 3
III.	WORKPAPERS	.9
IV.	CONCLUSION	10

1 I. INTRODUCTION

- 2 Q. Please state your name and business address.
- 3 A. Kevin L. Hall, 1900 Dryden Rd., Dayton, Ohio 45439.

4 Q. By whom and in what capacity are you employed?

- A. I am employed by the Dayton Power and Light Company ("DP&L") as its Director of
 Transmission and Distribution Engineering.
- 7 Q. How long have you been in your present position?
- 8 A. I have been in my present position since July 2007.

9 Q. What are your responsibilities in your current position and to whom do you report?

A. I have responsibility for the distribution planning function for the Company along with its
 distribution, substation and transmission line engineering areas, as well as several of the
 Company's technical operations including the metering department, downtown electric
 network operations, substation maintenance and construction group, and the test
 department. I report to the Senior Vice President, Service Operations.

15

Q. Briefly describe your professional experience prior to your current position.

A. I have been continuously employed by DP&L since June 1991. From 1991 through
 1995, I was assigned to the substation and transmission maintenance/construction groups
 as a maintenance engineer, project manager and group leader. In 1996, I was named
 Manager of System Operating and had the responsibility of leading the real-time grid

operations group through wholesale transmission access change.

In 2004, I was designated as the Project Manager responsible for the Company's integration into the PJM Regional Transmission Organization (RTO). In 2005, I became the Director of Design Engineering, with responsibility for the design and engineering of the Company's distribution facilities. I also have responsibility for implementation of the North American Electric Reliability Corporation's Critical Infrastructure Protection Standards (CIP).

8

Q. Will you describe briefly your educational and business background?

- 9 A. I hold a Bachelor's degree in Electrical Engineering from the University of Cincinnati
 10 along with a Masters in Business Administration from the University of Dayton. I am a
 11 registered professional engineer in the State of Ohio.
- 12 Q. Have you previously provided testimony before the Federal Energy Regulatory
 13 Commission ("FERC")?
- 14 A. Yes. I have previously provided written testimony before the FERC regarding DP&L's
 15 Open Access Transmission Tariff.

16 Q. What is the purpose of this testimony?

A. The purpose of my testimony is to support the definition and calculation of the societal
benefits attributable to DP&L's Customer Conservation and Energy Management
("CCEM") proposal. Societal benefits are those benefits that accrue directly or indirectly
to customers or society, rather than to the utility.

Q. Describe your role in the development of this CCEM proposal.

A. I was the Company representative during the Commission-Ordered Workshops
Regarding Smart Metering Deployment (Case No. 07-646-EL-UNC). At the conclusion
of the workshop proceedings, Staff encouraged the Ohio utilities to continue work on
their AMI and smart grid initiatives. Staff also welcomed the development of estimates
for societal benefits by the utilities. Subsequently, the four Ohio utilities commissioned a
study of societal benefits with the Electric Power Research Institute ("EPRI"). I
continued to be the Company representative during the EPRI study period as well.

- 9 Q. What Exhibits are you supporting?
- 10 A. I am supporting exhibits KLH A-1 and KLH B-1.

11 II. APPROACH TO QUANTIFYING SOCIETAL BENEFITS

12 Q. Please describe the methodology used to value societal benefits.

A. DP&L joined three other Ohio utilities to commission a report from EPRI to provide a
 framework and methodology for valuing the societal benefits associated with advanced
 metering infrastructure ("AMI"). Exhibit KLH A-1 shows our approach. Societal benefits
 are divided into seven categories:

17 **1) Den**

Demand Response Products

Universal deployment of AMI enables greater demand response by making all consumers
 potential participants in time-varied pricing or load control programs. Increased
 participation in demand response programs results in both capacity and energy savings.

2

3

4

5

6

7

2) Improved Utilization Efficiency

CCEM improves end-use efficiency in two ways: (1) the rollout of AMI and corresponding Home Energy Displays provides consumers with timely and readily available information about their electricity usage pattern and the corresponding cost, which knowledge will result in a reduction in the overall use of electricity; and (2) DP&L's proposed energy efficiency programs provide incentives to curtail energy consumption. Improved utilization efficiency results in both energy and capacity savings.

8 9

10

11

12

3) Other Products and Services

EPRI's analysis shows that new revenue streams may become viable from supplemental services enabled by AMI. DP&L is not seeking recovery for any investment associated with new products and services at this time.

13

4) Enhanced Service Quality

14The source of this benefit is advanced metering and smart grid capabilities that enable the15utility to reduce the frequency or duration of electrical outages.

16

Macroeconomic Impacts

EPRI's analysis shows that changes in regional economic output, such as employment and wages, may be attributable to AMI. It would be speculative to quantify such impacts at this time.

20 6) Externalities

5)

Externalities are secondary benefits associated with kW and kWh impacts attributable to another benefit source, such as demand response or feedback. For the purposes of quantifying externalities from CCEM, DP&L has estimated the value of reduced carbon emissions associated with demand response, energy efficiency programs, and reduced

line losses from smart grid development.

2

3

4

5

6

7) Distribution Network Efficiency

This category accounts for the reduction in energy and peak demand associated with DP&L's smart grid investments. In particular, DP&L's investments in distribution and substation automation will reduce line losses and allow reductions in peak demand via dynamic voltage control.

Q. Did DP&L modify the framework proposed by EPRI to incorporate benefits associated with DP&L's integrated vision for the CCEM Programs?

9 A. Yes. DP&L's CCEM Programs include AMI, demand response and energy efficiency
programs, and smart grid development. Therefore, the Company modified EPRI's
framework in two ways. In the category of improved utilization efficiency the Company
included benefits associated with DP&L's proposed energy efficiency programs as well
as those benefits associated directly with AMI. Second, DP&L added a new category of
benefits, distribution network efficiency, which is not included in EPRI's framework.
This new category captures the societal benefits of DP&L's smart grid development plan.

16 Q. How did you estimate the benefits of demand response products?

17 A. There are two components of benefits associated with demand response products. The 18 first component is the value of avoided peak capacity stemming from direct load control, 19 time-based pricing programs, and C&I curtailment programs. The second component is 20 the value of avoided energy usage resulting from MWh savings from the same programs.

Q. Why have you included societal benefits for C&I curtailment programs when
DP&L does not plan to offer those programs?

A. DP&L decided not to offer C&I curtailment programs because the Company believes that
 the market is already mature, with third-party firms offering such services. However,
 their curtailment services are enabled by DP&L's AMI infrastructure. Consequently, the
 third-party curtailment benefits derive in part from the AMI deployment, which is why
 the Company included those benefits in its calculations.

6 Q. How did you estimate the capacity reduction resulting from third-party C&I 7 curtailment?

8 A. Industry benchmarks show that utilities with mature interruptible programs can shed up 9 to 8% of C&I peak capacity from C&I curtailment programs. For DP&L's service 10 territory, this number results in a total reduction potential of 170 MW. DP&L estimates 11 that third-party curtailment providers will achieve one-half of this reduction within the 12 next five years, and the remainder will be achieved in the subsequent ten years. Given 13 the rapid growth of the curtailment market, the Company believes this figure to be a 14 reasonable, indeed conservative, estimate.

15 Q. How did you put a monetary value on the cost of avoided peak capacity and energy?

A. For demand, the Company multiplied the total number of peak megawatts saved by the market price for peak capacity. For energy, we multiplied the megawatt-hour savings by the market price of energy. We used this same methodology for all energy and demand valuations associated with societal benefits. For detail on how the demand and energy savings were determined, please refer to testimony provided by Ms. Bubp. For detail on how the prices of avoided energy and capacity were determined, please refer to the testimony of Ms. Marrinan.

Q.

How did you determine the value of improved utilization efficiency?

A. Improved utilization efficiency represents the value of avoided energy and peak capacity
 associated with DP&L's energy efficiency programs as well as that associated with the
 deployment of Home Energy Devices. Again, for demand, the Company multiplied the
 total number of peak megawatts saved by the market price for peak capacity. For energy,
 we multiplied the megawatt-hour savings by the market price of energy.

7 Q. How did you determine the value of enhanced service quality?

A. First, the Company estimated the outage time reduction potential from the AMI and
Smart Grid programs. Based on vendor estimates, the Company believes that it can
reduce average outage time by 5% for customers with AMI meters. Moreover, the
Company believes that it can reduce average outage time by 22% once the Smart Grid is
fully deployed. The detailed sources and calculations can be found in WPH-1.9. The
combined average outage time reduction is 19 minutes per year.

14 To determine the monetary value of this reduction, we used values provided by EPRI for 15 an average outage cost per hour for residential, small C&I and large C&I customers. For 16 C&I customers, these costs reflect the out-of-pocket and opportunity costs associated 17 with an outage (e.g., lost productivity). For residential customers, the costs were based 18 on the amount that customers would be willing to pay to avoid an outage or, conversely, 19 their willingness to accept payment for the interruption. We assumed that the outage 20 time reduction is consistent across all customer groups. Detailed calculations can be 21 found in WPH-1.9.

Q.

How did you determine the value of the externalities?

2 Α. While many externalities exist, the only externality that is both significant and reasonably 3 quantifiable is the value of emissions. Consequently, DP&L valued reduced carbon 4 emissions as part of our societal benefits analysis. Reduced carbon emissions are a 5 function of the total megawatt-hour reduction associated with DP&L's demand response 6 products, improved utilization efficiency and distribution network efficiency. The 7 Company multiplied those numbers by its CO₂ emission per megawatt hour generated to 8 get the total eliminated carbon tonnage.

9 To determine the dollar value for the eliminate carbon emissions, the Company used the 10 guidelines given by California regulators as quoted in the EPRI report. Detailed 11 calculations can be found in WPH-1.9.

12 Q. How did you determine the value of distribution network efficiency?

A. One effect of the Company's smart grid development plan is improved efficiency of the
distribution network. The Company will reduce line losses and build the capability to
deploy dynamic load control during times of peak demand. The testimony of Mr.
Teuscher provides details of how energy and demand savings from network efficiency
were determined.

18 Q. Why are societal benefits based on a fifteen-year period?

A. Both AMI and smart grid have considerable up-front costs and benefits that stretch out
 over a number of years. Therefore, it is necessary to take a longer-term view of the
 initiatives to determine accurately and fairly their true value to society. The Company

1 needs to select an appropriate period to measure the societal benefits from the program. 2 The Company selected fifteen years because that period coincides with the depreciable 3 life of the AMI meters and with the end of the program's expenditures for this project. 4 Q. What is the combined value of all of these societal benefits? 5 A. DP&L estimates that its CCEM Programs will generate \$682 million in societal benefits. 6 Please see exhibit KLH B-1 for a detailed breakdown. **III.** 7 WORKPAPERS 8 **Q.** For what workpapers are you responsible? 9 I am responsible for WPH-1.9 A. 10 What information is provided in WPH-1.9? Q. 11 Α. This workpaper provides the detailed calculations upon which our societal benefit 12 estimates are based. It shows the net present value of each of the individual benefit categories discussed in Section II. The demand response product section (lines 1 - 8) 13 14 shows the cost savings from avoided capacity and energy stemming from DP&L direct 15 load control and time-based pricing, as well as from third-party curtailment programs. 16 The improved utilization efficiency section (lines 10-15) shows the cost savings 17 associated with avoided energy and capacity stemming from DP&L's energy efficiency 18 programs and Home Energy Displays. The enhanced service quality section (lines 17 -19 50) shows how the Company calculated the reduction in outage time and determined the 20 associated monetary value, including the average hourly cost of outage reductions by 1 customer class, as well as the source for this information. The externalities section (lines 2 53 - 62) shows how the Company calculated total carbon emissions and determined the 3 associated monetary value. This section includes DP&L's CO₂ emissions per ton and the 4 monetary value per ton of CO₂, as well as the source for this information. Last, the 5 distribution network efficiency section (lines 64 - 68) shows the cost savings from avoided capacity and energy stemming from DP&L's smart grid initiative.

7 IV. CONCLUSION

8 Q. Please summarize your testimony.

9

10

11

A. In summary, the Company estimates that DP&L's CCEM Programs will generate \$682 million in societal benefits. In combination with operational benefits for the utility, this value more than justifies the expense associated with DP&L's CCEM Programs.

12 DP&L's approach to estimating societal benefits is sound and conservative for several 13 reasons. First, every component of the Company's estimates was tailored to DP&L's 14 service territory and customer base. Whenever possible, the Company built bottom-up 15 estimates of the potential opportunity for societal benefits. When benchmarks were 16 necessary, the Company selected highly conservative ones and then applied them as 17 specifically as possible to its service territory and customer base. Moreover, it excluded 18 those benefits that could not be calculated with a meaningful degree of precision. Last, 19 the Company's evaluation approach is based on EPRI's recommended framework, which 20 is also being utilized by other Ohio utilities. Given EPRI's considerable experience in 21 this area and the Company's active participation in the process of developing the 22 methodology, DP&L is confident of its soundness.

Kevin L. Hall Page 11 of 11

1 Q. Does this conclude your direct testimony?

2 A. Yes, it does.

Sourced: Based on Framework Developed by EPRI

CCEM Societal Benefits Analysis 15-Year-NPV (millions of dollars)

Net Benefit
Distribution Network Efficiency
Externalities
Enhanced Service Quality
Improved Utilitization Efficiency
Demand Response Products
Operational Benefits
Total Costs
O&M Costs
Capital Costs

BEFORE THE

PUBLIC UTILITIES COMMISSION OF OHIO

THE DAYTON POWER AND LIGHT COMPANY CASE NO. 08-1094-EL-SSO

BOOK II – Customer Conservation and Energy Management Programs

DIRECT TESTIMONY

OF CHRIS T. HERGENRATHER

D MANAGEMENT POLICIES, PRACTICES, AND ORGANIZATION

- OPERATING INCOME
- RATE BASE
- □ ALLOCATIONS
- **RATE OF RETURN**
- □ RATES AND TARIFFS
- D OTHER

BEFORE THE

PUBLIC UTILITIES COMMISSION OF OHIO

DIRECT TESTIMONY OF

CHRIS T. HERGENRATHER

ON BEHALF OF THE DAYTON POWER & LIGHT COMPANY

TABLE OF CONTENTS

I.	INTRODUCTION	1
II.	GROSS REVENUE CONVERSION FACTOR	3
III.	DEFERRED TAXES	4
IV.	PROPERTY TAXES	6
v.	CONCLUSION	7

Direct Testimony of Chris T. Hergenrather Page 1 of 7

1 I. INTRODUCTION

2 Q. Would you please state your name and business address for the record?

3 A. My name is Chris T. Hergenrather. My business address is 1065 Woodman Drive,

4 Dayton, Ohio 45432.

5 Q. By whom and in what capacity are you employed?

A. I am employed by The Dayton Power and Light Company ("DP&L") as Senior Manager,
Tax.

8 Q. Would you describe briefly your educational and business background?

9 A. I am a 1981 graduate of Wright State University with a Bachelor of Science in 10 Accounting and received a Masters of Business Administration in Management in 1988, 11 also from Wright State University. I am also a member of the Edison Electric Institute's 12 Taxation Subcommittee. I joined DP&L in September 1981, and worked until 1992 in 13 various accounting positions. In February 1992, I moved into DP&L's Tax Department 14 in a staff position. In 2000, I was promoted to Supervisor, and in 2002 I was promoted to 15 Tax Manager. In 2007, I was promoted to Senior Manager, Tax. In my current position I 16 am responsible for matters related to DP&L's tax liabilities.

17 Q. What are the purposes of your testimony?

A. The purposes of my testimony are to support and explain (1) the calculation of the gross
 revenue conversion factor; (2) changes in DP&L's property tax liabilities resulting from
 the Customer Conservation and Energy Management ("CCEM") property investments;

Direct Testimony of Chris T. Hergenrather Page 2 of 7

- 21 and (3) changes in DP&L's deferred taxes due to changes in DP&L's rate base as a result
- 22 of the CCEM investment.

23 24 Α. I am sponsoring Schedule A-4, Schedule B-7, Schedule C-4, Schedule C-4.1 and the 25 26 27 28 II. 29 30 Q. 31 Α. 32 33 34

Q. What schedules and workpapers do you sponsor?

- associated workpapers. These schedules and workpapers were prepared based on information provided in Schedule B-2, Schedule B-3 and Schedule B-5 relating to DP&L's anticipated investment in Transmission and Distribution Infrastructure and Energy Efficiency property.
 - **GROSS REVENUE CONVERSION FACTOR**

Can you explain the purpose of a gross revenue conversion factor?

Yes. DP&L, like most businesses, has uncollectible accounts, and pays taxes on its profits. The purpose of a gross revenue conversion factor is to determine how much total revenue DP&L must receive so that DP&L will receive its revenue requirements after accounting for uncollectibles and taxes. DP&L's revenue requirement is thus multiplied 35 by the gross revenue conversion factor to determine the total revenue DP&L is entitled to 36 receive.

37 Q. Can you explain how you calculated the gross revenue conversion factor in this 38 matter?

39 Yes. That calculation is shown on Summary Schedule A-4. The gross revenue Α. 40 conversion factor is used to determine incremental revenue requirements by identifying 41 and quantifying incremental costs (such as uncollectibles) and tax changes that vary with 42 revenue. DP&L's historic rate of uncollectible accounts and applicable statutory income 43 tax rates are used in the calculations and all tax percentages include the effects of other
taxes on the incremental rate. Dona Seger-Lawson sponsors the workpaper showing the
 calculation of the uncollectible rate.

46 Q. Please describe why Summary Schedule A-4 shows two different gross revenue

- 47 conversion factors.
- 48 Α. The gross revenue conversion factor is used on Schedule A-2 to increase the Revenue 49 Requirement exclusive of Income Taxes. The O&M/Debt gross revenue conversion 50 factor excludes the tax components of the factor recognizing that the items included in 51 the O&M/Debt Revenue Requirement exclusive of Income Taxes are deductible for tax 52 purposes. In other words, for each incremental dollar of revenue required there is an 53 offsetting dollar of expenses deducted and no additional revenues are needed to cover 54 incremental increases in tax. The O&M/Debt gross revenue conversion factor 55 compensates only for uncollectible expense. The Equity Revenue Requirement exclusive 56 of Income Taxes is not tax deductible, so each incremental dollar of revenue required will 57 result in additional income tax. Therefore, the Equity gross revenue conversion factor is 58 needed to increase the Revenue Requirement to compensate for the incremental income 59 tax in addition to the uncollectible expense.
- 60 **III.**

DEFERRED TAXES

61 Q. Can you explain what deferred taxes are and how they affect DP&L's rate base?

A. Yes. Deferred taxes represent the tax effect of timing differences in the recognition of
 income and deductions for tax and when income and deductions are recognized for
 books. Generally, Financial Accounting Standards Board Statement No. 109 requires
 deferred taxes to be measured by the difference between the net tax basis (gross tax asset

	66		or liability less accumulated tax depreciation) and the net book basis (gross book asset or
	67		liability less accumulated book depreciation). In DP&L's case, deferred taxes arise due
	68		to the fact that tax laws generally permit a utility to depreciate its assets at a faster rate
	69		than the utility can depreciate those assets on its regulatory books. The accelerated tax
	70		depreciation permits a utility to recognize increased expenses on its tax returns, and thus
	71		pay lower taxes. Since a utility has received the benefit of paying lower taxes, that
	72		benefit is used to reduce the utility's rate base.
	73	Q.	Will DP&L experience a change in deferred taxes as a result of the CCEM project?
	74	А.	Yes. Schedule A-4 shows that DP&L will invest in a significant amount of new property
	75		which will increase rate base. DP&L will depreciate this property on its tax books at a
)	76		rate faster than DP&L will depreciated the property on its regulatory books. As
	77		explained above, that accelerated depreciation creates deferred taxes.
	78	Q.	Can you describe how you calculated the change in deferred taxes that DP&L
	79		experienced between the base period and the test period?
	80	A.	Yes. That calculation is shown on Schedule B-7. Schedule B-7 computes the deferred
	81		tax balances related to new investment in Transmission and Distribution Infrastructure
	82		and Energy Efficiency property utilizing the net tax basis shown on Workpaper WPB-7.1
	83		and Workpaper WPB-7.2. Workpapers WPB-7.1.1, WPB-7.2.1, WPB-7.2.2, and WPB-
	84		7.2.3 compute net tax basis using the current tax depreciation methodology to arrive at
	85		the net tax basis. The net tax basis of retirements of infrastructure is computed on
	86		Workpaper WPB-7.4 and is netted against the tax basis of the new investment to arrive at
	87		the net tax basis on Workpaper WPB-7.2. Net book basis was computed using gross

Direct Testimony of Chris T. Hergenrather Page 6 of 7

plant additions from Schedule B-2 and the accumulated depreciation from Schedule B-3.
Net book basis of retirements is shown on Schedule B-5. Schedule B-2, Schedule B-3,
and Schedule B-5 are sponsored by Greg Campbell. The difference between the net tax
basis and the net book basis times the current tax rate provides the deferred tax balance
by year.

93

IV.

PROPERTY TAXES

94 Q. Are there any O&M changes related to taxes as a result of the CCEM project?

A. Yes. The CCEM project consists of a significant investment in new property which will
be subject to Ohio's public utility property tax. This investment will cause a significant
increase in property tax expense to DP&L as shown on Schedule C-4 and a reduction in
property tax expense to DP&L as a result of the retirement of property as shown on
Schedule C-4.1.

100 Q. Can you explain how you quantified the changes to DP&L's expenses due to changes 101 in personal property tax?

102 Α. Yes. The results of my calculations are summarized on Workpaper WPC-4. My 103 calculations are shown on Workpapers WPC-4.1, WPC-4.2, and WPC-4.3. Those 104 schedules quantify the effect of the additional investment on DP&L's expenses on a year-105 by-year basis. The public utility property tax provides statutory depreciation factors for 106 different classes of property. Those schedules apply the statutory depreciation factors to 107 the amount of property placed in service annually. The public utility property tax also 108 assesses the property tax on a percentage of the depreciated value. This percentage, 109 known as the listing percentage or assessment percentage, is 84% for transmission and

Direct Testimony of Chris T. Hergenrather Page 7 of 7

110 distribution property. The resulting assessed value is multiplied by the average property 111 tax rate, as determined on Workpaper WPC-4.4, to arrive at the property taxes. DP&L 112 has also recognized that as property is retired DP&L will realize a reduction in its current 113 property tax obligation. Schedule C-4.1 shows the reduction in property tax as a result of 114 the retirement of property due to the CCEM project. The results of my calculations 115 supporting the reduction in property tax expense are summarized on Workpaper WPC-116 4.5. Workpapers WPC-4.5.1 and WPC-4.5.2 show the calculations of the property tax 117 reduction. Those workpapers apply the statutory depreciation factors to the amount of 118 property after determining the estimated age of the property retired. The public utility 119 property tax also assesses the property tax on a percentage of the depreciated value. This 120 percentage, known as the listing percentage or assessment percentage, is 84% for 121 transmission and distribution property. The resulting assessed value is multiplied by the 122 average property tax rate, as determined on Workpaper WPC-4.4, to arrive at the property 123 taxes.

- 124 V. <u>CONCLUSION</u>
- 125 Q. Please summarize your testimony.

A. This testimony explains and supports: (1) the calculation of DP&L's gross revenue
 conversion factor; (2) the changes in deferred taxes on the capital investment and their
 effect on rate base; and (3) the effect of property taxes on DP&L's O&M costs.

- 129 Q. Does this conclude your direct testimony?
- 130 A. Yes it does.

BEFORE THE

PUBLIC UTILITIES COMMISSION OF OHIO

THE DAYTON POWER AND LIGHT COMPANY CASE NO. 08-1094-EL-SSO

BOOK II – Customer Conservation and Energy Management Programs

DIRECT TESTIMONY

OF SCOTT J. KELLY

□ MANAGEMENT POLICIES, PRACTICES, AND ORGANIZATION

- □ RATE BASE
- □ ALLOCATIONS
- □ RATE OF RETURN
- □ RATES AND TARIFFS

BEFORE THE

PUBLIC UTILITIES COMMISSION OF OHIO

DIRECT TESTIMONY OF

SCOTT J. KELLY

ON BEHALF OF THE DAYTON POWER AND LIGHT COMPANY

TABLE OF CONTENTS

I.	INTRODUCTION	1
Π.	OVERVIEW OF DP&L'S CUSTOMER CONSERVATION AND ENERGY MANAGEMENT PROJECT	2
III.	BUSINESS CASE	12
IV.	CONCLUSION	16

1 I. INTRODUCTION

2	Q.	Please state your name and business address.	
3	A.	My name is Scott J. Kelly. My business address is 1065 Woodman Drive, Dayton, OH	
4		45432.	
5	Q.	By whom and in what capacity are you employed?	
6	A.	I am employed by The Dayton Power and Light Company ("DP&L" or "Company") as	
7		Senior Vice President, Service Operations.	
8	Q.	How long have you been in your present position?	
9	A.	I assumed my present position in March, 2007. Prior to that, I was Director of	
10		Engineering and Business Development (1/2002 - 3/2007), Customer Business Manager	
1 1		(6/2001 - 1/2002), Customer Group Manager (1/1997 - 6/2001), Operations Manager,	
12		Marysville (12/1995 – 12/1996), Assistant Manager, Centerville (4/1995 – 12/1995) and	
13		Assistant Manager assigned to Special Project Team (11/1994 – 4/1995).	
14	Q.	What are your responsibilities in your current position and to whom do you report?	
15	А.	In my current position, I am responsible for delivering reliable and quality service to	
16		Dayton Power and Light's 500,000 customers located throughout West Central Ohio. I	
17		report to the President and Chief Executive Officer of DP&L.	
18	Q.	Will you describe briefly your educational and business background?	
19	А.	I received a Bachelor of Science degree in Mechanical Engineering from Carnegie	
20		Mellon in 1988 and a Master of Business Administration from Xavier University in 2006.	

1	Prior to DP&L, I spent six years at Rockwell International, holding various Manager-
2	level positions.

- 3 Q. What is the purpose of this testimony?
- 4 A. The purpose of this testimony is to support and explain DP&L's request for approval of
- 5 its plan for the Customer Conservation and Energy Management ("CCEM") Programs. I
- will provide a high-level overview of the project and subsequent testimony will cover key
 components in more detail.
- 8 Q. Describe your role in the development of this CCEM proposal.
- 9 A. I provided overall leadership and oversight in the preparation of the business case for the
 10 CCEM project.
- 11 Q. What chapter and Exhibits are you supporting?
- 12 A. I am supporting Chapter 1, "Executive Summary of The Dayton Power & Light
- Company's Customer Conservation and Energy Management Programs." I also support
 Exhibits SJK A-1, A-2, B-1, B-2, and B-3.

15 II. OVERVIEW OF DP&L'S CUSTOMER CONSERVATION AND

- 16 ENERGY MANAGEMENT PROJECT
- 17 Q. Can you please describe DP&L's Customer Conservation and Energy Management
 18 ("CCEM") project?
- A. Yes. By means of this Application, DP&L proposes a seven-year roadmap for
 establishing the necessary building blocks for what the Company envisions as the

1		Customer Conservation and Energy Management ("CCEM") Programs. The three	
2		fundamental building blocks of DP&L's CCEM Programs are:	
3		• Energy Efficiency & Demand Response. Establishment of a robust set of energy	
4		efficiency and demand response programs targeted toward giving customers the	
5		ability to control their own energy usage and expenditures.	
6		• Delivery System Modernization. Building an Advanced Metering Infrastructure	
7		("AMI") and developing key elements of the smart grid such as distribution and	
8		substation automation.	
9		• Enabling Infrastructure. Addressing gaps in DP&L's existing information	
10		technology and telecommunications infrastructure to be able to support and realize	
11		the full potential of both AMI and smart grid functionality.	
12		Exhibit SJK A-1 summarizes this roadmap for building DP&L's CCEM Programs.	
13	Q.	What are you requesting from the Commission?	
14	A.	The Company is seeking approval to spend and to recover in rates \$297M in capital and	
15		\$186M in O&M over 7 years to implement energy efficiency & demand response	
16		programs, to build AMI, and launch a smart grid development plan. DP&L is seeking	
17		recovery of O&M costs, depreciation of and return on capital, and shared savings.	
18	Q.	What time period are you covering in this application?	
19	A.	Seven years starting upon Commission approval.	
20	Q.	Please identify the principal components of DP&L's CCEM proposal to the	
21		Commission.	

1 A. DP&L has provided the Commission with detailed documentation in support		DP&L has provided the Commission with detailed documentation in support of its	
	2		CCEM roadmap. The roadmap consists of four chapters:
	3		• Chapter 1: Executive Summary of The Dayton Power & Light Company's Customer
	4		Conservation and Energy Management Programs,
	5		• Chapter 2: The Dayton Power & Light Company's Energy Efficiency and Demand
	6		Response Plan,
	7		• Chapter 3: The Dayton Power & Light Company's Advanced Metering Infrastructure
	8		Plan, and
	9		• Chapter 4: The Dayton Power & Light Company's Smart Grid Development Plan.
	10		The executive summary briefly summarizes the integrated CCEM plan. Each subsequent
	11		chapter provides a description of the proposed program or delivery system modernization
	12		initiative and provides detail regarding any enabling infrastructure investment required to
	13		support the program or initiative. I will briefly describe the major components of the
	14		CCEM plan. Additional testimony will be provided by DP&L representatives and
	15		external consultants to support each module in greater detail.
	16		1) Energy Efficiency and Demand Response Programs
	17		The objective of DP&L's Energy Efficiency and Demand Response Plan is to enhance
	18		our customers' energy value. Customers will immediately be able to exercise more
	19		control over their energy usage and expenditures. The programs will also help us
	20		achieve the targets set out in S.B. 221. The Plan has three primary elements.

1	• Residential Portfolio of Programs. The residential portfolio of programs offers
2	customers multiple opportunities to better control their energy usage and costs
3	while promoting comprehensive actions that can create the most value for
4	customers. Specific program elements include:
5	- Residential Lighting point of purchase buy downs,
6	- Residential Heating, Ventilation and Air Conditioning ("HVAC") Diagnostics
7	& Tune-Up discount,
8	- Residential HVAC Rebates,
9	- Residential Appliance Recycling,
10	- Residential Appliance Rebates,
11	- Residential Low Income Energy Audits and Funding for Initiatives that have a
12	Benefit-to-Cost Ratio Better than 1.0,
13	- Residential Direct Load Control,
14	 Residential Time of Use Pricing,
15	- Residential Peak Time Rebate Pricing, and
16	- Home Energy Displays ("HED").
17	DP&L will also continue to explore opportunities to influence the efficiency of the
18	new housing stock via partnering with home builders and architects; however, given
19	low new home growth at this time, the Company does not plan to launch a broad-
20	scale new construction program. As circumstances change the Company will re-
21	evaluate based on the estimated value proposition to our customers from such
22	programs. In the meantime, DP&L plans to pursue small opportunities with existing
23	residential homes to gather energy consumption and premise-performance data that

1	will help us to refine and refresh the overall program portfolio. The Company is
2	evaluating an innovative energy information system that will allow customers to
3	monitor the efficiency of their end-use activities and equipment.
4	• Non-Residential Portfolio of Programs. The portfolio includes a wide variety of
5	individual technology and/or device incentives. Specific program elements include:
6	- Prescriptive Rebates for lighting, HVAC, motors & drives, and
7	compressed air;
8	- Custom Rebates;
9	- Non-Residential Direct Load Control; and
10	- Non-Residential Time of Use Pricing.
11	• Education / Awareness / Market Transformation Activities. DP&L recognizes the
12	importance of customer education. The Company will implement educational
13	outreach initiatives to build and expand consumer energy management awareness.
14	DP&L plans to launch these programs as soon as possible following Commission
15	approval of DP&L's request. DP&L will use and enhance existing energy education
16	venues and networks such as its website, various customer communications
17	modalities and school presentations to maximize the public's exposure to these
18	initiatives. The Company will also explore partnering with energy efficiency vendors
19	and channel partners to build an energy efficiency showcase and educational facility.

2) AMI and Enabling Infrastructure

20

1	The objective of the Company's plan to implement AMI is to introduce new functionality
2	that will support the improvement of operations and provide greater value to customers.
3	The key functionality AMI will provide for DP&L customers include:
4	• The availability of interval data and accurate load shapes that can be made
5	available to customers to help them manage energy costs.
6	• The enabling technology for the success of demand response by providing reliable
7	interval data necessary to measure and verify load reductions and the creation of a
8	platform to engage customers in demand response.
9	• The ability to quickly and accurately recognize service restoration needs, allowing
10	improved crew dispatch, reduction in unneeded trips to customers whose service
11	has already been restored, and improved communications with customers and the
12	community.
13	• The fundamental enabling component of the smart grid. Much of the benefit to
14	implementing a smart grid infrastructure relies on the capture of data detailed and
15	timely enough to communicate the status of the utility distribution system to
16	process-intelligent controls for the distribution equipment.
17	There are four primary components necessary for AMI system configurations which
18	make up our AMI implementation plan.
10	
19	Meters and Modules. The proposed AMI system calls for the replacement of all
20	residential and commercial meters with digital electronic meters and meter module
2 1	combinations that provide full AMI functionality.
22	Communications Network & Equipment. The AMI communications solution
23	consists of communications hardware and software and associated system and data
24	management software that create a two-way communications network between AMI

1 2 meters and utility business systems which allow collection and distribution of information to customers and the utility.

Home Energy Displays. DP&L's plan includes support for a customer Home Area
 Network (HAN) and includes energy display devices that are easy to access and to use.
 These devices will show customers their energy usage, trends, and current energy
 prices. DP&L will make energy displays available to customers who do not have
 Internet access.

IT Systems. Effective implementation of AMI technology requires the acquisition and
 implementation of supporting IT systems including a customer information system
 ("CIS"), meter data management system ("MDMS") and e-Services. These system
 investments are required to make it possible for DP&L to manage the enhanced
 operational environment as well as to allow customers to access data and interact with
 DP&L.

14

23

3) Smart Grid Development

15The Company's long-term vision of a Smart Grid includes a fully network-connected16system that identifies and communicates the status of the power grid and automates17distribution decision-making systems. Expected results from planned Smart Grid18implementation will be a greatly improved delivery system that reduces line losses,19maximizes customer service and system reliability, allows for operational savings for20DP&L and generates substantial benefits for society at large.

21 Smart Grid infrastructure is expected to create an energy system that will enhance both 22 operational performance and improve outcomes by allowing DP&L to:

• Detect and address emerging problems on the system before they affect service;

1	• Respond to local and system-wide inputs and provide additional information	
2	about broader system problems;	
3	• Incorporate extensive measurements, rapid communications, centralized	
4	advanced diagnostics, and feedback control that quickly return the system to a	
5	stable state after interruptions or disturbances;	
6	Automatically adapt protective systems to accommodate changing system	
7	conditions,	
8	• Re-route power flows, change load patterns, improve voltage profiles, and take	
9	other corrective steps within seconds of detecting a problem;	
10	• Enable distributed energy resources and demand response loads to be integrated	
11	into operations;	
12	• Improve reliability and security; and	
13	• Provide system operators with advanced visualization tools to enhance their	
14	ability to oversee, manage, and troubleshoot the system, for improved reliability	
15	for customers.	
16	By means of this Application the Company is proposing a 7 year quart grid development	
10	By means of any Application me company is proposing a 7-year small grit development	
17	plan which involves the deployment of a sub-set of smart grid technologies, primarily	
18	pertaining to distribution and substation automation. Smart grid development in	
19	combination with AMI systems and demand response programs will achieve operational,	
20	reliability, and efficiency benefits. Following this 7-year development phase DP&L	
21	expects to submit an expanded proposal for full deployment of an integrated smart grid	
22	implementation plan.	

	1		The 7-year smart grid development plan will focus on effective implementation of
	2		distribution automation technology which requires the installation of a series of controls,
	3		switches and monitors as well as a supporting communications infrastructure.
	4		
	5		In addition, the Company proposes to automate all substations by upgrading relay
	6		protection and communication systems in substations to enable fault isolation and load
	7		redistribution.
	8	Q.	When will the CCEM project be implemented?
	9	A.	Exhibit SJK A-2 provides detail as to the expected implementation of the key
	10		components of CCEM. Most initiatives will be launched within 30 days of Commission
	11		approval, and for purposes of this exhibit we assume implementation begins in January,
)	12		2009. However some components cannot be implemented until the underlying
	13		infrastructure is in place; consequently, some CCEM components have a staged
	14		deployment. In summary, DP&L expects that the following components will be
	15		implemented at the following times:
	1 6		1) Energy Efficiency and Demand Response Programs
	17		Energy efficiency programs will be launched in January of 2009. Direct Load Control,
	18		however, is dependent upon AMI meters being in place along with supporting
	19		telecommunications infrastructure. Therefore Direct Load Control will be launched in
	20		June of 2010 when a sufficient number of meters are in the field. Full deployment of
	21		Direct Load Control is expected in June of 2011. Similarly, Time-of-Use Pricing and
	22		Peak Time Rebates are dependent upon AMI meters, a telecommunications

infrastructure, as well as a flexible billing system capable of supporting time-based rates.
 Consequently, Time-of-Use Pricing and Peak Time Rebates will be launched in 2011.

3

2) AMI and Enabling Infrastructure

4 The Company plans to begin installing AMI meters upon Commission approval and the 5 deployment is expected to be complete in six years. The supporting communications 6 network infrastructure which is necessary for two-way communication between the 7 meters and the utility will be deployed alongside the new meters and is expected to be 8 complete in four years. Home Energy Displays will be deployed starting in 2010 and 9 deployment will be complete after five years. Deployment of the IT systems necessary to 10 support meter data collection and analysis as well as customer interfaces and bill 11 presentment will begin immediately upon Commission approval. IT system deployment 12 will be managed over a three-year time period with the exception of the Infrastructure 13 Solution module which will be completed in the first year-and-a-half and Service 14 Oriented Architecture which will continue through year-end 2013. Two additional IT 15 systems, Outage Management System/Distribution Management and Mobile Workforce 16 will not be deployed until 2011 and 2012 respectively, as they require not only AMI 17 meters to be in place but also a subset of circuits to be fully automated using smart grid technologies. 18

19

3) Smart Grid Development

In years 2009 through 2014, DP&L plans to automate 4 circuits per year and in 2015 will automate 30-50 circuits as part of the distribution automation development plan. Circuits will be prioritized based on reliability and customer impact. Also in years 2009 through 2014, DP&L plans to automate 6-7 substations per year and 12 substations in 2015 as part

2	
3	
4	

1

BUSINESS CASE

Q. What investments does DP&L anticipate making to implement the CCEM Programs?

substation control will be immediately felt by customers.

of the substation automation development plan. The customer reliability benefits of

7 A. Detail of spending by module is summarized in Exhibit SJK B-1. In summary DP&L 8 anticipates it will need to invest \$297.1M in capital and \$185.8M in O&M over the seven 9 years covered in this Application. The majority of capital expenditure, \$255.0M is in 10 support of AMI deployment, \$41.6M is required for smart grid development and only 11 \$0.5M in capital is necessary to support our energy efficiency & demand response 12 programs. \$118.4M in O&M is required for energy efficiency & demand response 13 program implementation, \$63.1M in O&M will go toward AMI, and \$4.3M toward smart 14 grid development.

15 Q.

Is that investment reasonable and prudent?

16 А. Yes. Over the past year DP&L has evaluated the various technologies to implement AMI 17 and smart grid. Technology vendors have given presentations to cross-functional teams 18 within the Company. DP&L employees attended several conferences and visited utilities 19 that have implemented different components of AMI and smart grid technologies to gain 20 a broader knowledge of the successes and pitfalls which others have experienced in the 21 implementation of these technologies. DP&L also engaged an external consulting firm, 22 Bridge Strategy Group, to assist the Company in research and analysis to develop a 23 feasible and cost-effective CCEM strategy.

1		The information for estimating meter, communication equipment, and installation costs
2		was developed from proposals provided by vendors based on a formal request for
3		proposal ("RFP") process. DP&L also worked with a third-party consulting firm,
4		Accenture, to develop the IT, IT related infrastructure and IT integration requirements
5		necessary to support the future CCEM capabilities.
6		The methodology for estimating costs for energy efficiency & demand response
7		programs included:
8		 Benchmarking program costs at leading utilities;
9		• Conducting market research to identify program take-up rates;
10		• Issuing price elasticity surveys to identify appropriate incentive levels; and
11		• Issuing RFPs for direct load control vendors.
12		
13	Q.	How did DP&L determine which elements of the existing infrastructure and/or
14		systems need to be replaced?
15	A.	The Company built a blueprint of the systems and infrastructure required to support the
16		energy efficiency, safety, and reliability capabilities of the CCEM Programs. Analysis
17		was conducted to determine whether existing infrastructure and systems could be
18		expanded or modified in a cost effective manner, or whether it would be necessary to
19		replace them. Detail of the specific assessments regarding telecommunication
20		infrastructure and IT systems are supported in the testimony of DP&L witnesses
21		Teuscher and Garrison.

Q. Can you identify the amount of energy and peak demand that DP&L believes can be
 saved through the CCEM project?

1	А.	Yes. Exhibit SJK B-3 provides a breakout of energy and peak demand savings expected
2		as a result of CCEM. In summary, based on our seven-year development plan the
3		Company expects to reduce energy consumption by 2,528,952 MWh and reduce peak
4		demand by 183MW in 2015.
5	Q.	How much will this increase rates for the various classes of consumers?
6		DP&L estimates that CCEM will result in a 7-year compound annual growth rate of 1.2%
7		for residential customers, 1.5% for commercial customers, and 1.9% for industrial
8		customers. The Company expects that in many cases customers will actually be able to
9		lower their energy bills by utilizing the enhanced energy management infrastructure
10		made available to them as part of CCEM.
11	Q.	What are the benefits to the consumer of CCEM?
12	А.	The Customer Conservation and Energy management Programs will provide customers
13		with the following benefits.
14		• Improved power reliability;
15		• Greater billing accuracy;
16		• Less intrusive meter reading and service connection/disconnection;
17		• Improved outage response;
18		• Empowerment to control usage and expenditure; and
19		• More customer information and choices via:
20		- Time-of-Use Pricing,

_

	1		- Demand response, and
	2		– eServices.
	3		It is worth noting that some of these benefits and other benefits that accrue to society at
	4		large can be quantified. Mr. Hall's testimony will discuss DP&L's approach to
	5		quantifying this category of "societal benefits."
	6	Q.	What are the benefits of CCEM to the Company and its shareholders?
	7	A.	Exhibit SJK B-2 provides a summary of operational benefits as a result of CCEM. Total
	8		operational benefits to the Company and shareholders are \$53M over seven years, \$52M
	9		from AMI and \$1M from development of distribution and substation automation
	10		technologies.
)	11		Examples of the sources of these operational benefits to the company and shareholders
	12		from CCEM include the following:
	13		• Reduction in meter reading and other service expense,
	14		• Reduction in energy theft,
	15		• Improved meter accuracy,
	16		• Reduction in field service,
	17		• Lower load research costs,
	18		• Elimination of false outage dispatches, and
	19		• Lower bill processing costs from fewer exceptions.

	T		The benefits from the CCEM Programs have been conservatively stated. Additional
	2		benefits to the Company and shareholders that DP&L did not attempt to quantify at this
	3		early stage include:
	4		• Rapid fault isolation and load distribution from automated switches,
	5		• Improved substation monitoring and remote control,
	6		• Enriched power quality monitoring through sensors,
	7		• Improved power factor and lower line losses from automated capacitors, and
	8		• Enablement of distributed generation.
	9	IV.	CONCLUSION
)	10	Q.	Please summarize your testimony.
	10 11	Q. A.	Please summarize your testimony. This testimony supports DP&L's request for approval of its plan for the Customer
) : :	10 11 12	Q. A.	Please summarize your testimony. This testimony supports DP&L's request for approval of its plan for the Customer Conservation and Energy Management ("CCEM") Programs. Further testimony will be
) 1 1 1 1	10 11 12 13	Q. A.	Please summarize your testimony. This testimony supports DP&L's request for approval of its plan for the Customer Conservation and Energy Management ("CCEM") Programs. Further testimony will be provided by DP&L personnel and third party consultants in order to give enhanced detail
) 1 1 1 1 1	10 11 12 13 14	Q. A.	Please summarize your testimony. This testimony supports DP&L's request for approval of its plan for the Customer Conservation and Energy Management ("CCEM") Programs. Further testimony will be provided by DP&L personnel and third party consultants in order to give enhanced detail in the following areas:
	10 11 12 13 14	Q. A.	Please summarize your testimony. This testimony supports DP&L's request for approval of its plan for the Customer Conservation and Energy Management ("CCEM") Programs. Further testimony will be provided by DP&L personnel and third party consultants in order to give enhanced detail in the following areas: • Energy Efficiency & Demand Response Programs
	10 11 12 13 14 15	Q. A.	Please summarize your testimony. This testimony supports DP&L's request for approval of its plan for the Customer Conservation and Energy Management ("CCEM") Programs. Further testimony will be provided by DP&L personnel and third party consultants in order to give enhanced detail in the following areas: • Energy Efficiency & Demand Response Programs • Program Selection and Cost and Benefits Estimates
	10 11 12 13 14 15 16	Q. A.	Please summarize your testimony. This testimony supports DP&L's request for approval of its plan for the Customer Conservation and Energy Management ("CCEM") Programs. Further testimony will be provided by DP&L personnel and third party consultants in order to give enhanced detail in the following areas: • Energy Efficiency & Demand Response Programs • Program Selection and Cost and Benefits Estimates • Total Resource Cost Tests
	10 11 12 13 14 15 16 17	Q. A.	Please summarize your testimony. This testimony supports DP&L's request for approval of its plan for the Customer Conservation and Energy Management ("CCEM") Programs. Further testimony will be provided by DP&L personnel and third party consultants in order to give enhanced detail in the following areas: • Energy Efficiency & Demand Response Programs • Program Selection and Cost and Benefits Estimates • Total Resource Cost Tests • Valuation of Demand and Energy

_

1		IT System Investments
2		Proposed Cost and Revenue Recovery Model
3		Customer Rate Impact
4		Cost of Capital
5		• Tax Treatment
6		Accounting Treatment
7	Q.	Does this conclude your direct testimony?

8 A. Yes, it does.

9

10 200162.1

	3		k. A							
	۲r	the office the set			Vienie alemanie alemanie ad			<u></u>		
	*	a management of the								
	2 I	en entre Vice								
		1000 Address		*						
	۲7									
	~						ىلىرىكىيە، بولىدىكىرى ^{لىر} ىكى	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-	
	-	A THE WALL								
	9									
-	Υr					<u></u>	<u></u>		_	
	5									
	Υr									
						· · · · ·				
		nc								
	ίr 4	ntatio								
		eme								
		laml								
		ram						in an ann an Anna an An		
	r 3	Prog		-						
	\mathbf{Y}	nse								-
		odse								
		d Re		<u>a</u>						
	2	man		uctu						2 2
	Υr	d De		rastr					ent	
		y an		g inf					lopn	
		ienc		ablin					Jeve	
		Effic		Εľ					nd	
	(r 1	ergy		ll anc					an G	
		Ш		AM					ωg	

Exhibit SJK B-1

•

Line N(o. Description	2009	2010	2011	2012	2013	2014	2015	Total
()	(B)	(C)	(<u>a</u>)	(<u>a</u>)	(F)	(C)	(H)	(j)	(J) = (sum(C;I))
-	<u>Capital (\$000)</u>								
2	Energy Efficiency & Demand Response	•	505	•	٠	•	,	'	505
ų	AMI	59,954	54,406	41,045	37,205	34,192	26,761	1,455	255,017
4	Smart Grid Development	7,538	7,228	5,103	3,790	3,203	3,471	11,270	41,603
'n	Total Capital	67,493	62,139	46,147	40,995	37,395	30,231	12,725	297,125
9	·								
7	O&M (5000)								
80	Energy Efficiency & Demand Response	8,988	13,513	16,465	17,752	19,539	20,723	21,457	118,438
9	AMI	1,074	3,860	8,496	11,403	12,262	13,069	12,895	63,058
10	Smart Grid Development	109	496	629	718	773	800	828	4,353
П	Total O&M	10,171	17,868	25,590	29,873	32,574	34,592	35,179	185,848

Work Paper Reference No(s): WPG-1, WPH-1, WPI-1

ļ

Line No). Description	2009	2010	2011	2012	2013	2014	2015	Total
(¥)	(B)	(C)	í.	E	(F)	(C)	(H)	Ξ	(J) = (sum(C:I))
-	Operational Benefits (\$000)								
. 01	Energy Efficiency & Demand Response								•
64 3	AMI	117	1,055	2,818	7,680	10,789	13,823	15,430	51,713
- 7	Smart Grid Development	23	8	105	147	190	235	365	1,128
⊦vo.	Total Operational Benefits	140	1,117	2,923	7,828	10,979	14,058	15,795	52,840

Work Paper Reference No(s): WPG-1, WPH-1, WPI-1

Exhibit SJK B-3

Line No	o. Description	2009	2010	2011	2012	2013	2014	2015	Total
(Y)	(B)	(C)	ê	(E)	(F)	(Ð)	(H)	((J) = (sum(C:I))
- 14 m	<u>Energy Savings (MWh)</u> Energy Efficiency & Demand Response AMI	53,509 2	138,280	234,220	342,382	458,685	575,896	671,870	2,474,842
4	Smart Grid Development	1,405	2,823	4,086	5,508	6,926	8,339	25,023	- 54.110
5 10	Total Energy Savings	54,914	141,103	238,306	347,890	465,61]	584,235	696,893	2,528,952
~	<u>Demand Savings (MW)</u>								
00 O	Energy Efficiency & Demand Response AMI	11	27	48	73	105	141	178	
9	Smart Grid Development		•	•	• •••	• 7	' 2	' ' N	
	Total Demand Savings	11	28	49	74	106	143	183	

Work Paper Reference No(s): WPG-1