

Application to Commit Energy
Efficiency/Peak Demand
Reduction Programs
(Mercantile Customers Only)

Case No.: <u>18 -1054 -</u> EL-EEC

Mercantile Customer: Bethesda Hospital

Electric Utility: **Duke Energy**

Program Title or

Description: Building Automation System (BAS)

Rule 4901:1-39-05(F), Ohio Administrative Code (O.A.C.), permits a mercantile customer to file, either individually or jointly with an electric utility, an application to commit the customer's existing demand reduction, demand response, and energy efficiency programs for integration with the electric utility's programs. The following application form is to be used by mercantile customers, either individually or jointly with their electric utility, to apply for commitment of such programs in accordance with the Commission's pilot program established in Case No. 10-834-EL-POR

Completed applications requesting the cash rebate reasonable arrangement option (Option 1) in lieu of an exemption from the electric utility's energy efficiency and demand reduction (EEDR) rider will be automatically approved on the sixty-first calendar day after filing, unless the Commission, or an attorney examiner, suspends or denies the application prior to that time. Completed applications requesting the exemption from the EEDR rider (Option 2) will also qualify for the 60-day automatic approval so long as the exemption period does not exceed 24 months. Rider exemptions for periods of more than 24 months will be reviewed by the Commission Staff and are only approved up the issuance of a Commission order.

Complete a separate application for each customer program. Projects undertaken by a customer as a single program at a single location or at various locations within the same service territory should be submitted together as a single program filing, when possible. Check all boxes that are applicable to your program. For each box checked, be sure to complete all subparts of the question, and provide all requested additional information. Submittal of incomplete applications may result in a suspension of the automatic approval process or denial of the application.

Any confidential or trade secret information may be submitted to Staff on disc or via email at <u>ee-pdr@puc.state.oh.us</u>.

Section 1: Mercantile Customer Information

Name: Bethesda Hospital

Principal address: 4310 Cooper Rd BLDG: 4360

Cincinnati, OH 45242

Address of facility for which this energy efficiency program applies:

4310 Cooper Rd BLDG: 4360 Cincinnati, OH 45242

Name and telephone number for responses to questions:

Andrew Taylor, (317) 838-2096

Electricity use by the customer (check the box(es) that apply):

- ✓ The customer uses more than seven hundred thousand kilowatt hours per year at the above facility. (**Refer to Appendix A for documentation**.)
- ☐ The customer is part of a national account involving multiple facilities in one or more states. (Please attach documentation.)

Section 2: Application Information

- A) The customer is filing this application (choose which applies):
 - □ Individually, without electric utility participation.
 - ✓ Jointly with the electric utility.
- B) The electric utility is: **Duke Energy**
- C) The customer is offering to commit (check any that apply):
 - □ Energy savings from the customer's energy efficiency program. (Complete Sections 3, 5, 6, and 7.)
 - □ Capacity savings from the customer's demand response/demand reduction program. (Complete Sections 4, 5, 6, and 7.)
 - **✓** Both the energy savings and the capacity savings from the customer's energy efficiency program. (Complete all sections of the Application.)

Section 3: Energy Efficiency Programs

A)	The customer's energy efficiency program involves (check those that	apply):

Early replacement of fully functioning equipment with new equipment. (Provide the date on which the customer replaced fully functioning equipment, and the date on which the customer would have replaced such equipment if it had not been replaced early. Please include a brief explanation for how the customer determined this future replacement date (or, if not known, please explain why this is not known)).

Installed new Building Automation System (BAS) controlling lighting and HVAC systems in December 2016.

Installation of new equipment to replace equipment that needed to be
replaced The customer installed new equipment on the following date(s):

Insta	llation of new equip	ment	for new con	struct	ion o	r facility ex	pansion.
The	customer installed	new	equipment	on	the	following	date(s):

- □ Behavioral or operational improvement.
- B) Energy savings achieved/to be achieved by the energy efficiency program:
 - 1) If you checked the box indicating that the project involves the early replacement of fully functioning equipment replaced with new equipment, then calculate the annual savings [(kWh used by the original equipment) (kWh used by new equipment) = (kWh per year saved)]. Please attach your calculations and record the results below:

Annual savings: 220,294 kWh Refer to Appendix B for calculations and supporting documents

2) If you checked the box indicating that the customer installed new equipment to replace equipment that needed to be replaced, then calculate the annual savings [(kWh used by less efficient new equipment) – (kWh used by the higher efficiency new equipment) = (kWh per year saved)]. Please attach your calculations and record the results below:

Please describe any less efficient new equipment that was rejected in favor of the more efficient new equipment.

3)	If you checked the box indicating that the project involves equipment for new construction or facility expansion, then calculate the annual savings [(kWh used by less efficient new equipment) – (kWh used by higher efficiency new equipment) = (kWh per year saved)]. Please attach your calculations and record the results below:
	Annual savings:kWh
	Please describe the less efficient new equipment that was rejected in favor of the more efficient new equipment.
4)	If you checked the box indicating that the project involves behavioral or operational improvements, provide a description of how the annual savings were determined. Annual savings:kWh

Section 4: Demand Reduction/Demand Response Programs

- A) The customer's program involves (check the one that applies):
 - ✓ Coincident peak-demand savings from the customer's energy efficiency program.
 - □ Actual peak-demand reduction. (Attach a description and documentation of the peak-demand reduction.)
 - □ Potential peak-demand reduction (check the one that applies):
 - □ The customer's peak-demand reduction program meets the requirements to be counted as a capacity resource under a tariff of a regional transmission organization (RTO) approved by the Federal Energy Regulatory Commission.
 - ☐ The customer's peak-demand reduction program meets the requirements to be counted as a capacity resource under a program that is equivalent to an RTO program, which has been approved by the Public Utilities Commission of Ohio.
- B) On what date did the customer initiate its demand reduction program?

The BAS was installed in December, 2016.

C) What is the peak demand reduction achieved or capable of being achieved (show calculations through which this was determined):

0.0 kW

Refer to Appendix B for calculations and supporting documentation.

Section 5: Request for Cash Rebate Reasonable **Arrangement (Option 1) or Exemption from Rider (Option 2)**

Under this section, check the box that applies and fill in all blanks relating to that choice.

Note utomatic s by the appi Com

	All	2 is selected, the application will not qualify for the 60-day automatic applications, however, will be considered on a timely basis by the
The	custon	ner is applying for:
✓	Optio	on 1: A cash rebate reasonable arrangement.
OR		
	-	n 2: An exemption from the energy efficiency cost recovery anism implemented by the electric utility.
OR		
	Comr	nitment payment
The	value (of the option that the customer is seeking is:
Opti	on 1:	A cash rebate reasonable arrangement, which is the lesser of (show both amounts):
		✓ A cash rebate of \$7,160. Refer to Appendix C for documentation. (Rebate shall not exceed 50% project cost.
Opti	ion 2:	An exemption from payment of the electric utility's energy efficiency/peak demand reduction rider.
		An exemption from payment of the electric utility's energy efficiency/peak demand reduction rider for months (not to exceed 24 months). (Attach calculations showing how this time period was determined.)
		OR
		□ A commitment payment valued at no more than \$ (Attach documentation and

A)

B)

calculations showing how this payment amount was determined.)

OR

Ongoing exemption from payment of the electric utility's energy efficiency/peak demand reduction rider for an initial period of 24 months because this program is part of the customer's ongoing efficiency program. (Attach documentation that establishes the ongoing nature of the program.) In order to continue the exemption beyond the initial 24 month period, the customer will need to provide a future application establishing additional energy savings and the continuance of the organization's energy efficiency program.)

Section 6: Cost Effectiveness

The program is cost effective because it has a benefit/cost ratio greater than 1 using the (choose which applies):

Total Resource Cost (TRC) Test.	The calculated TRC value is:	
(Continue to Subsection 1, then ski	ip Subsection 2)	

\checkmark	Utility Cost Test (UCT) . The calculated UCT value is 5.13 (Skip to
	Subsection 2.) Refer to Appendix D for calculations and supporting
	documents

Subsection 1: TRC Test Used (please fill in all blanks).

The TRC value of the program is calculated by dividing the value of our avoided supply costs (generation capacity, energy, and any transmission or distribution) by the sum of our program overhead and installation costs and any incremental measure costs paid by either the customer or the electric utility.

The electric utility's avoided supply costs were	·
Our program costs were	
The incremental measure costs were	

Subsection 2: UCT Used (please fill in all blanks).

We calculated the UCT value of our program by dividing the value of our avoided supply costs (capacity and energy) by the costs to our electric utility (including administrative costs and incentives paid or rider exemption costs) to obtain our commitment.

Our avoided supply costs were \$68,026.

The utility's program costs were \$6,104.

The utility's incentive costs/rebate costs were \$7,160.

Refer to Appendix D for calculations and supporting documents.

Section 7: Additional Information

Please attach the following supporting documentation to this application:

Narrative description of the program including, but not limited to, make, model, and year of any installed and replaced equipment.

A copy of the formal declaration or agreement that commits the program or measure to the electric utility, including:

- 1) any confidentiality requirements associated with the agreement;
- 2) a description of any consequences of noncompliance with the terms of the commitment;
- 3) a description of coordination requirements between the customer and the electric utility with regard to peak demand reduction;
- 4) permission by the customer to the electric utility and Commission staff and consultants to measure and verify energy savings and/or peak-demand reductions resulting from your program; and,
- 5) a commitment by the customer to provide an annual report on your energy savings and electric utility peak-demand reductions achieved.

Refer to Offer Letter following this application

A description of all methodologies, protocols, and practices used or proposed to be used in measuring and verifying program results. Additionally, identify and explain all deviations from any program measurement and verification guidelines that may be published by the Commission.

Total		718,712
06/27/2016	30	80,360
07/27/2016	32	84,984
08/25/2016	29	72,807
09/26/2016	30	64,029
10/25/2016	31	44,129
11/23/2016	29	40,360
12/28/2016	35	70,126
01/27/2017	30	62,179
02/27/2017	29	57,479
03/28/2017	31	54,569
04/27/2017	30	46,067
05/26/2017	29	41,623
Date	Days	Actual KWH
CINCINNATI, OH 45242		
4310 COOPER RDBLDG: 4360		
BETHESDA HOSPITAL		
44602055 01		

	Baseline	Used		Post Project Actual			Savings		Savings
			Summer Coincident	· ·		Summer Coincident	Hours of	Annual	Summer Coincident
	Description	Annual kWh	kW	Description	Annual kWh	kW	Operation	kWh	kW
ECM - 1	Standard/Manual HVAC and Lighting controls	838,745		New Building Automation System (BAS) controlling HVAC and Lighting	618,451	215	8,760	220,294	0.0
Notes:	Energy consumption baseline	, demand base	line and pos	t project energy consumption basis are outlined in the following pa	ges.				
	After consideration of line loss	es, total energ	y savings are	236,155 kWh and 0.0 summer coincident kW. These values in	may also reflect	minor DSMo	re modeling s	oftware rou	anding error.

Appendix C -Cash Rebate Calculation

Bethesda Hospital New HVAC/Lighting BAS

Measure	Quantity	Cash Rebate Rate	Cash Rebate
New Building Automation System (BAS) controlling HVAC		50% of incentive that would be offered by	
and Lighting	1	the Smart \$aver Custom program	\$7,160
			\$7,160

Appendix D -UCT Value

Bethesda Hospital New HVAC/Lighting BAS

Measure	Total Avoided Cost	Program Cost	Incentive	Quantity	Measure UCT
New Building Automation System (BAS)					
controlling HVAC and Lighting	\$68,026	\$6,104	\$7,160	1	5.13
Tota	ls \$68,026	\$6,104	\$7,160	1	

Total Avoided Supply Costs	\$68,026	Aggregate Application UCT	<i>5.13</i>
Total Program Costs	\$6,104		
Total Incentive	\$7,160		

phone: 866.380.9580 fax: 980.373.9755

customprocessing@duke-energy-energyefficiency.com

4/5/2018

Diane Mattson
BETHESDA HOSPITAL ATTN: R BRADY 40 A - 4460205501
4310 COOPER RD BLDG 4360
CINCINNATI OH 45242-5613

Subject: Your Application for a Duke Energy Mercantile Self-Direct Rebate CMO17-0000129053

Dear Diane Mattson,

Thank you for your Duke Energy Mercantile Self Direct rebate application. As noted in the Energy Conservation Measure (ECM) chart on page 2, a total rebate of \$7,160.00 has been proposed for your project completed in the 2016 calendar years. All Self Direct Rebates are contingent upon approval by the Public Utilities Commission of Ohio (PUCO).

At your earliest convenience, please indicate if you accept this rebate by:

providing your signature on Page 2

completing the PUCO-required affidavit on Page 3

Please return the documents to my attention via fax at 513.629.5572 or email to customprocessing@duke-energy-energyefficiency.com. Upon receipt, Duke Energy will submit the necessary documentation to PUCO. Following PUCO's approval, Duke Energy will remit payment.

We value your business and look forward to working with you on this and future energy efficiency projects. We hope you will consider our Smart \$aver® incentives, when applicable. Please contact me if you have any questions.

Sincerely,

Andrew Taylor Program Manager Custom Incentives

CC:

Mike Heath Dave Behne

BETHESDA HOSPITAL ATTN: R BRADY 40 A - 4460205501 - CMO17-0000129053 Custom Incentive Offer Letter 4/5/2018 Page 2

	within 30 days of receipt.	onse to this rebate offer	
	Rebate is accepted.	☐Rebate is declined.	
		HOSPITAL ATTN: R BRADY 40 A - 4460 fficiency projects listed on the following nse and/or energy efficiency programs.	
	applicant in any future filings necessary	ATTN: R BRADY 40 A - 4460205501 al y to secure approval of this arrangement orting requirements imposed by rule or as	t as required by PUCO and
	submitted to Duke Energy pursuant to t include, but not be limited to, project	R BRADY 40 A - 4460205501 affirms that this rebate offer is true and accurate. In a scope, equipment specifications, equand the quantity of energy conservation	formation in question would ipment operational details,
	If rebate is accepted, will you use the projects? ☐ Yes ☐ No wse	monies to fund future energy efficiency	y and/or demand reduction
_	Dandro ates /	SANDRA LOBERT	5/8/18
	Customer Signature	Printed Name	Date

BETHESDA HOSPITAL ATTN: R BRADY 40 A - 4460205501 - CMO17-0000129053 Custom Incentive Offer Letter 4/5/2018 Page 3

Proposed Rebate Amounts

Measure ID	Energy Conservation Measure	Proposed Rebate Amount
ECM-1	Installation of New BAS for Lighting and HVAC System	\$7,160.00 per project X 1
	Total	\$7,160.00

(Mercantile Customers Only)

Application to Commit

Energy Efficiency/Peak Demand Reduction Programs

Case No.:EL-EEC 18-1054-EL-EEC
State of Phio:
Sanded Lober Affiant, being duly sworn according to law, deposes and says that:
1. I am the duly authorized representative of: Buttesda Hospital DBA Hospita Minamate [INSERT CUSTOMER OR EDU COMPANY NAME AND ANY APPLICABLE NAME (S) DOING BUSINESS AS]
2. I have personally examined all the information contained in the foregoing application, including any exhibits and attachments. Based upon my examination and inquiry of those persons immediately responsible for obtaining the information contained in the application, I believe that the information is true, accurate and complete.
3. I am aware offines and penalties which may be imposed under Ohio Revised Code Sections 2921.11, 2921.31, 4903.02, 4903.03, and 4903.99 for submitting false information. SIGNATURE OF AFFIAMLE TITLE
Sworn and subscribed before me this 8th day of May , 2018 WONTH VEAR DOTIS S, FOW SIGNATURE OF OFFICIAL ADMINISTERING DATH FRINT NAME AND THE
My commission expires on Doris S. Fow Notary Public, State of Ohio My Commission Expires 09-26-2020

To: Duke Energy Smart \$aver Custom Incentive Program

Subject: Authorization for Duke Energy Smart \$aver Custom Application Number CM017-0000129053

Date: 9/05/2017

Authorization is granted for a period of two years from date noted above.

Hospice of Cincinnati, Inc. has a facility located in your utility territory. Cushman & Wakefield U.S., Inc. (fka Cassidy Turley Commercial Real Estate Services, Inc.) is an authorized representative working on behalf of Hospice of Cincinnati, Inc.

This transmittal authorizes Cushman & Wakefield U.S., Inc. (fka Cassidy Turley Commercial Real Estate Services, Inc.) to perform the activities associated with securing incentives and/or evaluating the potential of incentives from your utility or agency for energy conservation projects. Cushman & Wakefield U.S., Inc. (fka Cassidy Turley Commercial Real Estate Services, Inc.) may act on our behalf to:

• receive rebate or incentive checks at their company address, made payable to "our name" HOSPICE OF CINCINNAT

transmit and receive utility incentive program correspondence, authorizations and approvals

- sign grant and/or incentive applications
- obtain past utility consumption history, Utility energy studies, analysis and reports
- obtain other Utility account information applicable to evaluating incentive program participation

In the event that your utility or agency cannot fulfill the scope of this authorization, we request to be notified immediately in writing of the limitation of this authorization as detailed above, and that a copy of this written notification be sent to Cushman & Wakefield U.S., Inc. (fka Cassidy Turley Commercial Real Estate Services, Inc.) at 10495 Montgomery Road, Cincinnati, Ohio 45242.

In the event there are questions concerning the validity of this authorization, please contact me. Both Hospice of Cincinnati, Inc. and Cushman & Wakefield U.S., Inc. (fka Cassidy Turley Commercial Real Estate Services, Inc.) look forward to working together to implement energy-saving projects in your territory and assist you in meeting your energy efficiency conservation goals.

Thank you for your assistance.

Sincerely,

Sandra Lobert

President and CEO, Hospice of Cincinnati, Inc.

Ohio Mercantile Self Direct Program

Application Guide and Cover Sheet

Questions? Call 866.380.9580 or visit duke-energy.com.

Email this form along with <u>completed Mercantile Self Direct Prescriptive or Custom applications</u>, proof of payment, energy savings calculations and spec sheets to <u>SelfDirect@Duke-Energy.com</u>. You may also fax to 513.629.5572.

Mercantile customers, defined as using at least 700,000 kilowatt-hours (kWh) annually or having an account in multiple locations are eligible for the Mercantile Self Direct program. Indicate which applies:

⊠ a single [☐ an accou	Duke Energy Ohio account with multiple location	unt with 700,000 kWh anr s	nual usage
	rgy account numbers ber utilities as required):	elow (attach listing of mul	tiple accounts and/or
Account Number	Annual Usage	Account Number	Annual Usage
44602055016	850,000		
		İ	

Self Direct rebates are available for completed Custom projects that have not previously received a Duke Energy Smart \$aver® Custom Incentive. Self Direct rebates are applicable to Prescriptive measures that were installed more than 90 days prior to submission to Duke Energy and have not previously received a Duke Energy Prescriptive rebate.

Self Direct program rules allow for, though do not require, certain projects that are Prescriptive in nature under the Smart \$aver program to be evaluated using the Custom process in the Self Direct program. Use the list on page two as a guide to determine which Self Direct program best fits your project(s). Apply for Self Direct projects using the appropriate application forms in conjunction with this cover sheet.

Self Direct program rules also allow for behaviorally based and/or no cost and low cost projects to receive rebates.

Please check each box to indicate completion/inclusion of the following program requirements:

All sections of appropriate application(s) are completed	Proof of payment.*	Manufacturer's Spec sheets	Energy model/calculations and detailed inputs for Custom applications

Page 1 Rev 09/16

^{*}if a single payment record is intended to demonstrate the costs of both Prescriptive and Custom projects, please include an additional document with an estimated breakout of costs for each Prescriptive and Custom energy conservation measure.

**Behavioral energy efficiency and demand reduction projects must be both measurable and verifiable. Provide justification with your application. Rebates for such projects may be small in magnitude.

Application Type	Prescriptive Measures with Option	al Custom Processing
Heating and Cooling and Window Films, Programmable Thermostats, and	☐ ENERGY STAR® Window/Sleeve/Room AC ☐ Central Air Unit	Air Source Heat Pump Water Heater
Guest Room Energy Management Systems	☐ Setback/Programmable Thermostat ☐ Guestroom Energy Management Control	☐ Window Film
Chillers	☐ Air Cooled Chiller	☐ Water Cooled Chiller
Motors, Pumps and Variable Frequency Drives (VFDs)	☐ VFD applied to Process Pump ☐ VFD applied to HVAC Pump	☐ VFD – applied to HVAC Fan
Food Service	☐ ENERGY STAR Hot Food Holding Cabinet ☐ Night Covers for Display ☐ ECM Cooler, Freezer, and Display Case Motors ☐ ENERGY STAR Solid or Glass Door Reach-in Freezer of	☐ Anti-Sweat Heater Control ☐ Cooking Equipment ☐ ENERGY STAR los Machine or Refrigerator
Process Equipment	☐ Engineered Nozzle – Compressed Air ☐ Air Compressor Equipped with VFD	Pellet Dryer Duct Insulation
Chiller Tune-ups	Air Cooled Chiller tune-up	☐ Water Cooled Chiller tune-up

Please indicate above any Prescriptive energy conservation measures to be evaluated through the Custom process. Only Prescriptive measures listed above are eligible for this option. To receive a Self Direct Custom rebate, a detailed analysis of pre-project and post-project energy usage and project costs must be included in the application.

Although some Self Direct Prescriptive measures are eligible for evaluation through Custom processes, such an approach may not be most effective for certain measures.

Proposed energy efficiency measures may be eligible for Self Direct Custom rebates if they clearly reduce electrical consumption and/or demand as compared to the appropriate baseline.

Before you complete this application, please note the following important criteria:

- Submitting this application does not guarantee a rebate will be approved.
- Rebates are based on electricity conservation only.
- Electric demand and/or energy reductions must be well documented with auditable calculations.
- Incomplete applications cannot be reviewed; all fields are required.

Refer to the complete list of Instructions and Disclaimers, beginning on page 6.

Notes on the Application Process

If you have any questions concerning how to complete any portion of the application or what supplementary information is required, please contact your Duke Energy Ohio, Inc. account manager or the Duke Energy Self Direct team at 866.380.9580.

Every application must include calculations of the baseline electrical usage and the electrical usage of the proposed high-efficiency equipment/system. These calculations are performed and submitted by the Duke Energy Ohio customer, or your designated equipment vendor / engineer. Application Part 2 worksheets and page 6 of this application contain additional guidance on acceptable calculations. Complex or unique projects may require the use, at the applicant's expense, of modeling software. Please contact the Duke Energy Self Direct team with questions about these requirements.

If you do not receive an acknowledgement email within 1 day of submitting an application via online, email, or fax, please call 866.380.9580. The acknowledgement email will provide with an estimated response time based on an initial assessment of your application. The application review may include some communication to resolve any questions about the project or to request additional information. Applications that are received complete without missing information have a faster review time.

There are two ways to submit your completed application form and excel worksheets.

Email: Complete, sign, scan and send this application form and attachments to: SelfDirect@duke-energy.com (note attachment size limit is applicable)

Fax: 513.629.5572

Page 3 Rev 09/16

1. Contact Information (Required)

City

Duke Energy Custome	r Contact In	formation ¹						
Company Name (as it appears on your bill)	Bethesda	Bethesda Hospital						
Address	4360 Coop	4360 Cooper Road						
City	Cincinnati	Cincinnati State Ohio ZIP Cod		ZIP Code	45242			
Project Contact	Diane Matt	Diane Mattson						
Office Phone	513-865- 5267	Mobile Phone 513-518-9811						
Email Address	diane.mattson@cushwake.com							

Equipment Vendor / Contractor / Architect / Engineer Contact Information							
Company Name	DeBra-Kue	DeBra-Kuempel					
Address	3976 South	3976 Southern Ave					
City	Cincinnati		State	Ohio	ZIP Code	45227	
Project Contact	Dave Behn	Dave Behne, M.S.,P.E.					
Office Phone	513-527- 8124 Mobile Phone						
Email Address	dbehne@debra-kuempel.com						

		· · · · · · · · · · · · · · · · · · ·	
Payment Information			
If an incentive is awarded	i, who should rece	eive payment?3	
			nt ⁴ must sign below)
*If the payee is the vendo on the invoice and includ			ount of the incentive to the customer
Tax ID Number for Payer	(provide W-9)	31-0917155	
Mailing Address for Paye	e (if different from	above)	
Street			

State

ZIP Code

Who is the primary point of contact for technical questions?² Dave Behne, M.S., P.E.

¹ Provided customer information should match the Duke Energy customer of record and W-9 form provided with this application, if the customer entity is a business affiliate of the Duke Energy customer of record, documentation must be provided that demonstrates the business affiliation.

² Note that if the vendor is the primary point of contact, the customer will still be copied on all application correspondence. If the customer does not wish to be copied, the customer must provide a signed letter of authorization on customer letterhead indicating an entity is acting as an agent for the customer. Duke Energy does not act as an agent.

³ If payment is to be made to an entity other than the Duke Energy account holder or the vendor, a payment waiver is required and will be provided for customer signature.

⁴ If an outside agent is acting on behalf of the Duke Energy customer of record, a letter of authorization on customer letterhead and signed by an authorized employee of the customer must be provided.

2. Project Information (Required)

A.	Please indicate project type: New construction Expansion at an existing facility (existing Duke Energy account number) Replacing equipment due to equipment failure Replacing equipment that is estimated to have remaining useful life of two years or less Replacing equipment that is estimated to have remaining useful life of more than two
yea	ars ☑ Behavioral, operational and/or procedural programs/projects
В.	Please describe your project, or attach a detailed project description that describes the project.
scr	See attached detailed Summary: Replaced 45 Fan Powered Boxes with new using ECmotors, electric reheat and Automated Logic Control System.
C.	When did you start and complete implementation? Start date 05/2016 (mm/yyyy) End date 12/2016 (mm/yyyy)
D.	Are you also applying for Self Direct Prescriptive rebates and, if so, which one(s) ⁵ ? No
E.	Please indicate which worksheet(s) you are submitting for this application (check all that apply): Lighting Variable Frequency Drive (VFD) Compressed Air Energy Management System (EMS) General (for projects not easily submitted using one of the above worksheets)
F.	List all assumptions about the baseline and proposed equipment energy use and operation schedule, or attach a document listing that information. Attach specification sheets for all proposed new equipment. See Attached
G.	Attach a supplier or contractor invoice(s) and/or other equivalent information documenting the Implementation Cost for each project listed in your application. Does the Implementation Cost include any internal labor 8?

⁵ If your project involves some equipment that is eligible for prescriptive rebates and some equipment that is likely eligible for custom rebates, and if it is feasible to separate the equipment for the energy analysis, then the equipment will be evaluated separately. If it is not feasible to separate the equipment for analysis, then the equipment will be evaluated together in the custom application.

If yes, please specify which costs are internal labor.

3. Attestation, Terms and Conditions, and Signature (Required)

Attestation

By signing below, I agree to the following:

I have read and agree to the below Terms and Conditions of the Duke Energy Ohio's Mercantile Self Direct Program.

I certify that I meet the eligibility requirements of the Duke Energy Ohio's Mercantile Self Direct Program, as applicable, and that all information provided within my application is correct to the best of my knowledge.

I certify that the taxpayer identification number provided in my application is current and correct. I am not subject to backup withholding because: (a) I am exempt from backup withholding; or (b) I have not been notified by the IRS that I am subject to backup withholding as a result of a failure to report all interest or dividends; or (c) the IRS has notified me that I am no longer subject to backup withholding. I am a U.S. citizen (includes a U.S. resident alien).

Instructions/Terms/Conditions

Note: Please keep for your records

- Energy service companies or contractors may assist in preparing the application, but an authorized representative of the customer must sign this application to be eligible to participate in the Mercantile Self Direct Program. Completion of this application does not guarantee the approval of a Self Direct Custom Rebate.
- Once all documentation requested in this application is received by Duke Energy Ohio, Inc., and any follow-up information requested by Duke Energy is received, the rebate amount for each Energy Conservation Measure (ECM) will be communicated to the customer. The rebate amount will be based on ECM energy savings and ECM incremental installation cost.
- All rebates require approval by the Public Utilities Commission of Ohio (PUCO). Duke Energy Ohio, Inc. will submit an application for rebate on the customer's behalf upon customer attestation to program terms, conditions and requirements as outlined in the

Internal labor costs cannot be counted in the Incremental Project Cost for purposes of analysis.

rebate offer letter and upon customer completion of attestation documents required by the Public Utilities Commission of Ohio.

- Duke Energy Ohio, Inc. will issue a Self Direct Custom Rebate check, based on the approved rebate amount for each ECM, upon receiving approval from the PUCO. Duke Energy Ohio, Inc. does not guarantee PUCO approval.
- 5. With the application, the customer must provide a list of all sites where the ECMs were installed. Duke Energy Ohio, Inc. requests that sites of similar size, hours of operation and energy consuming characteristics be grouped together in one application for the determination of the rebate amount. The application should identify the site where each unique ECM was installed.
- Based on the information submitted with the application and the information gathered both before and after the initial installation of the ECM, *Duke Energy Ohio, Inc.* will calculate the rebate amount for each ECM.
- Duke Energy Ohio, Inc. may conduct random site inspections of a sample of the locations
 where the ECMs are installed to verify installation and operability of the ECMs and to obtain
 information needed to calculate the Approved Rebate Amount.
- Customers are encouraged to retain copies of all forms, invoices and supporting documentation for their records.
- Approved rebates are valid for six months from the date communicated to the customer by Duke Energy Ohio, Inc., subject to the expiration of measure eligibility based on project completion dates and application submission deadlines as defined by PUCO. Customers are encouraged to execute their rebate offer contracts and PUCO-required affidavits promptly to ensure eligibility is not forfeited.
- 10. Duke Energy Ohio, Inc. reserves the right to recover all unrecoverable costs associated with the project approval if the customer decides not to execute the rebate contract, after the project is approved by Duke Energy Ohio, Inc.
- 11. Projects financially supported by other funding sources will be evaluated on a case-by-case basis for potential partial funding from *Duke Energy Ohio*, *Inc.*
- 12. Participants must be *Duke Energy Ohio, Inc.* nonresidential, mercantile customers with the project sites in the *Duke Energy Ohio, Inc.* service territory.
- 13. Customers or trade allies may not use any *Duke Energy* logo without prior written permission.
- 14. Only trade allies registered with Duke Energy are eligible to participate.
- 15. All equipment must be new. Used or rebuilt equipment is not eligible for rebates. All old existing equipment must be removed on retrofit projects.

- 16. Disclaimers: Duke Energy Ohio, Inc.
 - does not endorse any particular manufacturer, product or system design within the program;
 - b. will not be responsible for any tax liability imposed on the customer as a result of the payment of rebates;
 - does not expressly or implicitly warrant the performance of installed equipment (contact your contractor for details regarding equipment warranties);
 - d. is not responsible for the proper disposal/recycling of any waste generated or obsolete or old equipment as a result of this project;
 - e. is not liable for any damage caused by the installation of the equipment nor for any damage caused by the malfunction of the installed equipment; and
 - f. reserves the right to change or discontinue this program at any time. The acceptance of program applications is determined solely by *Duke Energy Ohio, Inc.*

CUSTOMER SIGNATU	RE REQU	IRED			
By signing below, I certi Attestation and Terms a			gree to the	above Merc	antile Self Direct
Customer Signature	Da	india	Thee /	, CEO	9
Print Name	SAN	DEA LO	BERT	Date	7/14/17
TRADE ALLY SIGNATI	URE (REC	UIRED ONLY	IF TRADE	ALLY IS PA	YEE)
By signing below, I certificate Attestation and Terms a			gree to the	above Merc	antile Self Direct
Trade Ally Signature	4	40			
Print Name	TIM	YOUPG	_	Date	7-31-17
CUSTOMER - AUTHOR	RIZATION	TO DESIGNA	TE TRADE	E ALLY AS P	AYEE
If an incentive is awarde the customer must sign					
Required: Final invoice for customer. If the itemized will be changed to the cu	l invoice de				
					,
Customer Signature					
Print Name				Date	

Page 1 of 2

List of Sites (Required)

App No. CMO17-0000129053 Rev.

Provide a list of sites addressed by this custom incentive application **Duke Energy Electric Account** Annual Conditioned Facility Site ID Number(s) List of Proposed Projects at Hours of Square Square Age (see note 2) Facility Address each site Operation Footage Footage (years) Example: 123 Main Street, Anywhere USA 12345 Project Name(s) 44602055016 4360 Copper Rd, Blue Ash, Ohio 45242 New HVAC controls 8,760 35,163 35,163 New VAV fan motor to ECM New time scheduling of building lights New time scheduling of building HVAC

Nonresidential Custom Incentive Application GENERAL WORKSHEET - CLASSIC CUSTOM GENERAL CALCULATIONS Page 2 of 2 rev 2/16

App No. CM017-0000129053 For each project, answer the following questions (use one worksheet per project) Project Name: Tri-Health 4360 Copper Rd, Blue Ash, Ohio 45242 How would you classify this project? (Place an x in all boxes that apply.)

Lighting	Heating/Cooling	X	Air Compressor	Energy Management System	X
VFD	Motors/Pumps		Process Equipment	Other, describe below:	X
				VAV Box and VAV fan motor to	ECM

Brief Project Description

Describe the Baseline Equipment/System (see note 3) with NO controls on the HVAC systems. The system is a large AHU with electric reheat in the AHU and electric reheat in all the VAV box that have a fan in them and the motors for the fan are

Describe the Proposed High Efficiency Project The current building design was 7 days a week / 24 hours per day The new building design was 5 days a week / 11 hours per day with NO weekend but system can be used in an manual override based on 2 hours per after hours request. All new bulding controls on the HVAC systems. The HVAC upgrade included new Building automation controls, lighting controls, and new VAV fan motor changes to ECM type.

If Existing Equipment is the Baseline, how many years of useful life remain or how many years until replacement? Detailed Project Description Attached? (Required) Yes

Operating Hours (see note 4)

							Weeks of Use in	
1	١	Weekday	Satu	ırday	Sun	day	Year	Total Annual
24 x 7	Start Hour	End Hour	Start Hour	End Hour	Start Hour	End Hour	(see note below)	Hours of Use
Yes	12:00 AM	12:00 AM	12:00 AM	12:00 AM	12:00 AM	12:00 AM	52	8,760

If the equipment is not in use 52 weeks during the year (for example, during holiday or summer break), provide an explanation of when Equipment never turned off unless power fauilure usage is not expected and why:

Energy Savings	Baseline			
	(see note 3)	Proposed	Savings	Describe how energy numbers were calculated
Annual Electric Energy	950,000 kWh	430,000 kWh	520,000 kWh	
Electric Demand	226 kW	226 kW	0 kW	Use Trane 700 energy software. Demand will not change due to using the same weather conditions with the same building conditions. Only the time of usage and upgrade of controls alls for the kWh
Calculations attached	Yes	Yes	(Required)	savings. See the attached energy software and summary sheets.

Simple Payback

Simple Payback					
Average electric rate (\$/kWh) on the applicable	e accounts	(see note 5)		\$0.10	
Estimated annual electric savings				\$52,000	
Other annual savings in addition to electric sav	ings, such as operatio	ons, maintenance, of	ther fuels	\$35,000.00	
Incremental cost to implement the project (eq	uipment & installatio	n)	(see note 6)	\$247,792.00	
Copy of vendor proposal is attached	(see note 7)			Yes	
Simple Electric Payback in years	4.765230769		Total Payback in years		2.848183908
(see note 8)					_

DeBra-Kuempel Inc. 3976 Southern Avenue Cincinnati, OH 45227 Phone: 513.271.6500 Fax: 513.271.4676 www.debra-kuempel.com

January 11, 2018

Equal Opportunity Employer

Tri-Health 4360 Copper Rd. Cincinnati, Ohio 45242

RE: Engineering Analysis Report for Design Comparison

The purpose of this letter is to define the engineering analysis report and input parameters. The base design is for 7 days a week -24 hours/day, NO controls on existing system. The alternate design was new VAV control boxes, new control lighting and new HVAC controls along with total commissioning of the alternate with operating hours of Monday-Friday 7am-6pm, NO Weekends. The design is to maintain 75F in the summer and 70F in the winter, with dead band high limit at 85F and the low limit at 65F.

The report are based on use Trane 700 engineering software to simulate Cincinnati, Ohio weather with the building model as 3 floor and 44 zone (approx. 15 per floor). 35,163 sqft for the total building.

The report data attached to this letter is in the following format: Must read report in a landscape mode, in the upper right corner will be the title for that section of the report.

Section 1	Title	Title page	1 page
Section 2	Report A	System Psychrometric State Points	8 pages
Section 3	Report B	System Summary – Design Airflow Quantities	1 page
Section 4	Report C	System Summary - Design Cooling Capacity	1 page
Section 5	Report D	System Summary - Design Heating Capacity	2 pages
Section 6	Report E	System Load Profile	8 pages
Section 7	Report F	Building Cool Heat Demand	12 pages
Section 8	Report G	Building Temperature Profile	16 pages
Section 9	Report H	Monthly Energy Consumption	1 page
Section 10	Report I	Equipment Energy Consumption	4 pages
Section 11	Report J	Electrical Peak Checksums	1 page
Section 12	Report K	Energy Consumption Summary (7-24-365)	1 page
Section 13	Report L	Energy Consumption Summary (Designed)	1 page

Yearly Energy Design Summary:

Section 12	кероп к	Base Design / days a week-24 hrs/day 946,419 kwh	1
Section 13	Report M	Modified M-F 7am-6pm - No Weekends 429,117 kWh	1
		Net Savings 517,302 kWh	1
		. 55% Saving	as

DeBra-Kuempel Inc.

3976 Southern Avenue Cincinnati, OH 45227 Phone: 513.271.6500 Fax: 513.271.4676 www.debra-kuempel.com

Equal Opportunity Employer

The Trane Tracer 700 program modeled showed an energy saving of 517,302 kWh which is similar the energy saving shown on the Duke Energy bills from 2016 thru 2017.

Should you have any questions, please feel free to contact me by email at dbehne@debra-kuempel.com or call me at 513-678-3011.

Sincerely,

DEBRA-KUEMPEL

David M. Behne, P.E. Project Engineer

P: 502.368.0454 • F: 502-384-8140

SYSTEM PSYCHROMETRIC STATE POINTS

By Trial

_
$\overline{}$
•
-
00
_
-
ш
-
die
w
per
\sim
Ε
_
ē
œ
-
30
S
-
S
T

System per Floor -1					Series Fa	Series Fan-Powered VAV
	Dry Bulb F	Wet Bulb °F	Relative Humidity %	Humidity Ratio gr/lb	Enthalpy Btu/lb	Temperature Difference °F
Space	75.0	62.2	49.2	65.8	28.3	
Main System						
Return Fan						50
Return Air	76.5	62.7	46.9	65.8	28.6	3
Return Air Heat Pickup						60
Outdoor Air	84.8	67.2	40.6	74.9	32.1	
Enfering OA preconditioning	84.8	67,2	40.6	74.9	32.1	
Leaving OA preconditioning	84.8	67.2	40.6	74.9	32.1	
Return/Outdoor Air Mix	77.2	63.1	46.4	9.99	28.9	
Blow Through Fan						0.0
Entering Coil	77.2	63.1	46.4	9.99	28.9	9
Leaving Coil	59.9	56.5	81.8	65.0	24.5	
Draw Through Fan						0.4
Fan Frictional Heat						0.7
Supply Duct Heat Gain						0.0
Reheat Device						0.0
Cold Deck Supply Air	61.0	67.0	78.7	65.0	24.7	;
Supply Air	61.0	67.0	78.7	65.0	24.7	
Percent Outside Air	8.31 %					
Sensible Heat Ratio (SHR)	0.95					
Coll Airflow	20,730 cfm					

TRACE® 700 v6.3.3 calculated at 08:41 PM on 01/04/2018 Alternative - 1 System Psychrometric Report Page 2 of 6

Tri-Heatth A This is good for 7-24.trc

Project Name: Dataset Name:

SYSTEM PSYCHROMETRIC STATE POINTS

By Trial

System per Floor 2					Series Fa	Series Fan-Powered VAV
i	Dry Bulb 휴	Wet Bulb °F	Relative Humldity %	Humidity Ratio azilb	Enthalpy Bfu/lb	Temperature Difference °F
Space	75.0	62.4	49.9	66.7	28.4	
Main System						
Return Fan						0.5
Return Air	76.5	62.9	47.4	66.7	28.8	•
Return Air Heat Pickup						1.0
Outdoor Air	88.4	66.7	32.2	66.5	31.7	2
Entering OA preconditioning	88.4	2.99	32.2	66.5	31.7	
Leaving OA preconditioning	88.4	299	32.2	66.5	31.7	
Return/Outdoor Air Mix	77.5	63.2	45.8	9.99	29.0	
Blow Through Fan						0.0
Entering Coil	77.5	63.2	45.8	66.6	29.0	}
Leaving Coif	6.09	57.1	80.0	65.8	24.8	
Draw Through Fan						0.4
Fan Frictional Heat						0.7
Supply Duct Heat Gain						0.0
Reheat Device						0.0
Cold Deck Supply Air	62.0	57.5	77.0	65.8	25.1	
Supply Air	62.0	57.5	77.0	65.8	25.1	
Percent Outside Air	8.51 %					
Sensible Heat Ratio (SHR) Coll Airflow	0.94 18,763 cfm					

TRACE® 700 v6.3.3 calculated at 08.41 PM on 01/04/2018 Alternative - 1 System Psychrometric Report Page 3 of 6

Tri-Health A This is good for 7-24.trc

Project Name: Dataset Name:

SYSTEM PSYCHROMETRIC STATE POINTS

¢	٩)
1		
ì	į	2
ū	į	
The same	1	
ú		

System per Floor 3					Series Fa	Series Fan-Powered VAV
i	Dry Bulb	Wet Bulb	Relative Humidity %	Humidity Ratio ar/lb	Enthalpy Btu/lb	Temperature Difference
Space	75.0	62.4	49.8	9.99	28.4	
Main System						
Return Fan						0.5
Retum Air	83.1	65.1	38.2	66.6	30.4	3
Return Air Heat Pickup						7.5
Outdoor Air	88.4	66.7	32.2	66.5	31.7	2
Entering OA preconditioning	88.4	66.7	32.2	66.5	31.7	
Leaving OA preconditioning	88.4	66.7	32.2	66.5	31.7	
Return/Outdoor Air Mix	83.5	65.2	37.7	9.99	30.5	
Blow Through Fan						0
Entering Coll	83.5	65.2	37.7	98.6	30.5	3
Leaving Coil	61.0	57.2	79.7	62.9	24.9	
Draw Through Fan						0.4
Fan Frictional Heat						
Supply Duct Heat Gain						
Reheat Device						00
Cold Deck Supply Air	62.1	57.6	76.7	62.9	25.2	;
Supply Air	62.1	57.6	76.7	62.9	25.2	
Percent Outside Air	7.69 %					
Sensible Heat Ratio (SHR)	0.95					
Coil Airflow	20,774 cfm					

TRACE® 700 v6.3.3 calculated at 08:41 PM on 01/04/2018 Afternative - 2 System Psychrometric Report Page 4 of 6

Tri-Health A This is good for 7-24.trc

Project Name: Dataset Name:

SYSTEM PSYCHROMETRIC STATE POINTS

_
•
-
-
_
n
=
Floor
_
=
De
0
_
-
Ĕ
ω
æ
10
/stei
-
ທົ

System per Floor 1					Series Fa	Series Fan-Powered VAV
	Dry Bulb ۴	Wet Bulb °F	Relative Humidity %	Humidity Ratio ar/Ib	Enthalpy Btu/lb	Temperature Difference °F
Space	75.0	62.2	49,2	65.8	28.3	
Main System						
Return Fan						0.5
Return Air	76.5	62.7	46.9	65.8	28.6	}
Return Air Heat Pickup						60
Outdoor Air	84.8	67.2	40.6	74.9	32.1	}
Enfering OA preconditioning	84.8	67.2	40.6	74.9	32.1	
Leaving OA preconditioning	84.8	67.2	40.6	74.9	32.1	
Return/Outdoor Air Mix	77.2	63.1	46.4	9.99	28.9	
Blow Through Fan						0.0
Entering Coil	77.2	63.1	46.4	98.6	28.9	ł
Leaving Coll	59.9	56.5	81.8	65.0	24.5	
Draw Through Fan						0.4
Fan Frictional Heat						0.7
Supply Duct Heat Gain						0.0
Reheat Device						0.0
Cold Deck Supply Air	61.0	57.0	78.7	65.0	24.7	!
Supply Air	61.0	57.0	78.7	65.0	24.7	
Percent Outside Air Sensible Heat Ratio (SHR) Coll Airflow	8.33 % 0.95 20,681 ofm					

TRACE® 700 v6.3.3 calculated at 08:41 PM on 01/04/2018 Alternative - 2 System Psychrometric Report Page 5 of 6

Tri-Health A This is good for 7-24.trc

Project Name: Dataset Name:

SYSTEM PSYCHROMETRIC STATE POINTS

By Trial

N
I
00
正
per
Ε
ä
ž
w

System per Floor – 2					Series Fa	Series Fan-Powered VAV
	Dry Bulb °F	Wet Bulb °F	Relative Humidity %	Humidity Ratio gr/lb	Enthalpy Btu/lb	Temperature Difference °F
Space	75.0	62.4	49.9	66.7	28.4	
Main System Retum Fan						0.5
Return Air	76.5	62.9	47.4	66.7	28.8	
Return Air Heat Pickup						1.0
Outdoor Air	88.4	66.7	32.2	66.5	31.7	
Entering OA preconditioning	88.4	66.7	32.2	96.5	31.7	
Leaving OA preconditioning	88.4	66.7	32.2	66.5	31.7	
Return/Outdoor Air Mix	77.5	63.2	45.8	66.6	29.0	
Blow Through Fan						0.0
Entering Coil	77.5	63.2	45.8	66.6	29.0	
Leaving Coil	60.9	57.1	80.0	65.8	24.8	
Draw Through Fan						40
Fan Frictional Heat						0.7
Supply Duct Heat Gain						0.0
Reheat Device						0.0
Cold Deck Supply Air	62.0	57.5	77.0	65.8	25.1	
Supply Air	62.0	57.5	77.0	65.8	25.1	
Decree Ortoide Air	20					
Consider Death Option (CLD)						
Coil Airflow	18 763 cfm					

SYSTEM PSYCHROMETRIC STATE POINTS

System per Floor 3					Series Fa	Series Fan-Powered VAV
	Dry Bulb F	Wet Bulb °F	Relative Humidity %	Humidity Ratio arilb	Enthalpy Btu/lb	Temperature Difference °F
Space	75.0	62.4	49.8	9'99	28.4	
Main System						
Return Fan						0.5
Return Air	83.1	65.1	38.2	9.99	30.4	ł
Return Air Heat Pickup						7.5
Outdoor Air	88.4	66.7	32.2	66.5	31.7	2
Enfering OA preconditioning	88.4	66.7	32.2	66.5	31.7	
Leaving OA preconditioning	88.4	66.7	32.2	66,5	31.7	
Return/Outdoor Air Mix	83.5	65.2	37.7	9'99	30.5	
Blow Through Fan						0.0
Entering Coil	83.5	65.2	37.7	66.6	30.5	}
Leaving Coil	61.0	57.2	79.7	62.9	24.9	
Draw Through Fan						0.4
Fan Frictional Heat						0.7
Supply Duct Heat Gain						0.0
Reheat Device						0.0
Cold Deck Supply Air	62.1	57.6	78.7	62.9	25.2	
Supply Air	62.1	57.6	7.8.7	65.9	25.2	
Percent Outside Air	% 69.2					
Sensible Heaf Ratio (SHR)	0.95					
Coil Airflow	20,774 cfm					

SYSTEM SUMMARY DESIGN AIRFLOW QUANTITIES

			MA	MAIN SYSTEM			Auxillary System	Room
System Description	System Type	Outside Airflow cfm	Cooling Airflow cfm	Heating Airflow cfm	Return Airflow cfm	Exhaust Airflow cfm	Supply Airflow cfm	Exhaust Airflow cfm
Alternative 1								
System per Floor 1	Series Fan-Powered VAV	1,723	20.730	20.730	20 730	1 723		
System per Floor – 2	Series Fan-Powered VAV	1,597	18,763	22,099	22,099	1.597		· c
System per Floor 3	Series Fan-Powered VAV	1,597	20,774	23,754	23,754	1,597	0	0
Totals		4,918	60,267	66,583	66,583	4,918	0	0
Alternative 2								the second secon
System per Floor 1	Series Fan-Powered VAV	1,723	20,681	20,681	20.681	1.723	c	
System per Floor – 2	Series Fan-Powered VAV	1,597	18,763	22,094	22,094	1,597		0
System per Floor – 3	Series Fan-Powered VAV	1,597	20,774	23,754	23,754	1,597	0	0
Totals		4,918	60,218	66,529	66,529	4,918	0	٥

Note: Airflows on this report are not additive because they are each taken at the time of their respective peaks. To view the balanced system design airflows, see the appropriate Checksums report (Airflows section). Report C

SYSTEM SUMMARY DESIGN COOLING CAPACITIES

By Trial

Alternative 1

Building Airside Systems and Plant Capacities

				Peak P	Plant Loads	sp						ă	ock Plant Loads	t Loads			
					Stg 1	Stg 2			Time					Stg 1	Stg 2		
	Main	Aux	Opt Vent	Misc	Desic	Desic	Base	Peak	δ	Main	Aux	Opt Vent	Misc	Desic	Desic	Base	Block
	ဒီ	i S	<u>5</u>	Load	Cond	Cond	Utility	Total	Peak	Soll Soll	Coil	Co	Load	Cond	Cond	Utility	Total
Plant System	tou	ton	ton	тo	tou	ton	ton	ton	mo/hr	tou	ton	ton	ton	ton	ton	tou	Ę
Building Main AHU	100.0	0.0	0'0	0.0	0.0	0.0	0.0	100.0	6/16	100.0	0'0	0.0	0.0	0.0	0.0	0.0	100.0
System per Floor 1	31.6	0.0	0.0	0.0	0.0	0.0	0.0	31.6	6/16	31.6	0.0	0.0	0.0	0.0	0.0	0.0	31.6
System per Floor 2	27.7	0.0	0.0	0.0	0.0	0.0	0.0	27.7	6/16	27.7	0.0	0.0	0.0	0.0	0.0	0.0	27.7
System per Floor 3	40.7	0.0	0.0	0.0	0.0	0.0	0.0	40.7	6/16	40.7	0.0	0.0	0.0	0.0	0.0	0.0	40.7
Building totals	1000	0.0	0.0	0.0	0.0	00	0.0	100.0		100.0	00	00	0.0	0.0	0.0	00	100.0
	Building peak load is 100.	seak loa	d is 100.0 to	ns.					Buildir	3uilding maxim	um bloc	k load of	100.0 to	IS occur	ul ui s	occurs in June at hour 16	16
									based o		n system simul	atton.					

Alternative 2

Building Airside Systems and Plant Capacities

								ĺ								İ	
				Feak -	lant Loads	SB						ğ	3lock Plant Load	t Loads			
					Stg 1	Stg 2		_	Time						Stg 2		
	Main	Aux	ℴ	Misc	Desic	Desic	Base	Peak	ъ	Main	Aux	Opt Vent			Desic	Base	Block
	Col	ဒီ	Coll	Load	Cond	Cond	Utility	Total	Peak	Coi	Col	Coil			Cond	Utility	Total
Plant System	tou	ton	ton	ton	ton	ton	ton	ton	mo/hr	ton	ton	ton			to	to	top
Building Main AHU	100.0	0.0	00	0.0	0.0	0.0	0.0	100.0	5/16	100.0	0.0	0.0	0.0	0.0	0.0	00	1000
System per Floor ~ 1	31.6	0.0	0.0	0.0	0.0	0.0	0.0	31,6	5/16	31.6	0.0	0.0			0.0	0.0	31.6
System per Floor – 2	27.7	0.0	0.0	0.0	0.0	0.0	0.0	27.7	5/16	27.7	0.0	0.0			0.0	0.0	27.7
System per Floor – 3	40.7	0.0	0.0	0.0	0.0	0.0	0.0	40.7	5/16	40.7	0.0	0.0			0.0	0.0	40.7
Building fotals	100.0	00	00	00	0.0	00	0.0	100.0		100.0	0.0	0.0			0.0	0.0	100 0
	Reilding	neak hoa	milding neak head is 100 0 to	900					0.1141			A CONTRACT C					1

Building peak load is 100,0 tons.

Bullding maximum block load of 100.0 tons occurs in May at hour 16 based on system simulation.

SYSTEM SUMMARY DESIGN HEATING CAPACITIES

By Trial

Alternative 1

System Coil Capacities

ating tals	284,134 197,849 298,527 780,511
またの	2 0 0 2
Stg 2 Frost Prevention Btu/h	0000
Stg 1 Frost Prevention I	0000
Stg 2 Deslc Regen F Btu/h	0000
Stg 1 Desic Regen Btu/h	0000
Optional Vent Btu/h	000
Humld. Btu/h	000
Reheat Btu/h	-70,098 -67,578 -71,841
Preheat Btu/h	-100,634 -94,923 -95,189
Aux System Btu/h	0000
Main System Btufh	-183,500 -102,926 -203,338 -489,764
System Type	Series Fan-Powered VAV Series Fan-Powered VAV Series Fan-Powered VAV
System Description	System per Floor 1 System per Floor 2 System per Floor 3 Totals

Building Plant Capacities

			İ											
	_					Peak	Peak Loads							_
								Stg 1	Stg 2	Stg 1	Stg 2			
	Main	Preheat	Reheat	Humld.	Aux	Opt Vent	MIsc	Desic.	Desic.	Frost	Frost	Base	Absorption	
	Coil	ဒီ	Coll	ဗ	Coil	00	pao	Regen	Region	Prev	Drov	¥	Peol	
Plant System	MBh	MBh	MBh	MB	MBh	MBh	MBh	MBh	MBh	MBh	MBh	MBh	MBh	
Building Main AHU - Reheat	428	254	0	0	6	c	6	-	5	-	6	٠		
System per Floor 1	160	88	0	0	c	c			o c	, c				
System per Floor 2	06	8	0	0	0	Þ			· c	ے د	•	0 0	o c	
System per Floor 3	178	83	0	0	0	Q	0	0	0	0	•	0	00	

Building peak load is 682.6 MBh.

Alternative 2

System Coil Capacities

Heating	Totals Btu/h	-233 070	-192,117	-334,661	-759,848
Stg 2 Frost	revention Btu/h	c	0	0	0
Stg 1 Frost	Prevention P Btu/h		0	0	0
Stg 2 Desic	_		٥	0	۰
Stg 1 Desk	Regen Btu/h	0	0	0	0
Optional	Vent Btu/h	0	0	0	0
	Humld. Btu/h	0	0	0	0
	Reheat Btu/h	0	٥	0	0
	Preheat Btu/h	-100,634	-94,923	-95,189	-290,747
Aux	System Btu/h	0	0	0	0
Main	System Btu/h	-132,436	-97,193	-239,472	-469,101
	System Type	Series Fan-Powered VAV	Series Fan-Powered VAV	Series Fan-Powered VAV	
	System Description	System per Floor 1	System per Floor 2	System per Floor – 3	Totals

Project Name: Tri-Health Dataset Name: A This is good for 7-24.trc

TRACE® 700 v6.3.3 calculated at 08:41 PM on 01/04/2018 Design Capacity Quantities report Page 1 of 2

					Peak	eak Loads						
							Stg 1	Stg 2	Stg 1	Stg 2		
Main	Ē	_	Humid.	Aux	Opt Vent	Misc	Desic.	Desic.	Frost	Frost	Base	Absorption
Coil	Coll	Coil	Coll	Coll	Coi	Load	Regen.	Reden.	Prev.	Prev.		load
Plant System	•		MBh	MBh	MBh	MBh	MB,	MB.	MBh	MBh	MBh	MBh
Building Main AHU - Reheat		٥	0	o	0	0	0	0	6	٥	6	c
System per Floor 1		0	0	O	0	0	0	0	0	c	c	· c
System per Floor 2 87	85	0	0	0	0	0	0	0	0	0	, c	Ċ
System per Floor 3 215		0	0	0	0	0	0	0	0	o	0	0

Building peak load is 682,6 MBh.

This is for 7-24 operation System per Floor -- 1

flow	Hours	0	0	0	0	0	0	24	251	286	503	798	22	512	178	414	636	1,483	156	202	3,265	0
ing Air	Hours (%)	0	0	0	0	0	0	0	ო	es	9	6	-	9	2	9	7	17	2	2	37	0
Heating Airflow-	(C)		2,073.0	3,109.6	4,146,1	5,182.6	6,219.1	7,255.6	8,292.2	9,328.7	10,365.2	11,401.7	12,438.2	13,474.7	14,511,3	15,547.8	16,584.3	17,620.8	18,6573	19,693.9	20,730.4	0.0
wol	Hours		0	807	1,023	760	1,009	1,500	734	395	512	601	632	340	176	164	107	0	0	0	0	o
ing Airf	Hours (%)	0	0	6	12	6	12	17	œ	ю	ဖွ	7	7	4	7	7	-	0	0	0	0	0
Cooling Airflow	Cap Cfm)	1,036.5	2,073.0	3,109.6	4,146.1	5,182.6	6,219.1	7,255.6	8,292,2	9,328.7	10,365.2	11,401.7	12,438.2	13,474.7	14,5113	15,547.8	16,584 3	17,620.8	18,657,3	19,693.9	20,730.4	0.0
oad	Hours	1,159	360	157	204	221	372	0	0	0	0	0	0	0	0	0	0	0	0	0	0	6,287
iting L	Hours (%)	47	15	9	æ	6	5	0	0	0	0	0	0	0	0	0	0	0	0	٥	0	0
Heating Load	Cap. (Btuh)	-12,424.6	-24 849 1	-37,273.7	-49,698.3	-62,122.8	-74,547.4	-86,972.0	-99,396.5	-111,821.1	-124,245.6	-136,670.2	-149,094,8	-161,519,3	-173,943,9	-186,368.5	-198,793.0	-211,217.6	-223,642,1	-236,066.7	-248,491.3	0.0
Cooling Load	Hours		737	543	520	456	380	582	532	399	374	357	337	293	377	232	214	186	45	108	0	1,780
ling L	Hours (%)	4	7	œ	7	7	ď	œ	φ	9	S	S	ഗ	4	က	က	က	ო	-	7	0	0
Co	Cap. (Tons)	1.6	3.2	4.7	6.3	6.7	9.5	11.1	12.7	14.2	15.8	17.4	19.0	20.6	22.1	23.7	25.3	26.9	28.5	30.0	31.6	0.0
Percent	Design Load	0-5	5-10	10 - 15	15 - 20	20 - 25	25 - 30	30 - 35	35 - 40	40 - 45	45 - 50	50 - 55	55 - 60	60 - 65	65 - 70	70 - 75	75 - 80	80 - 85	82 - 90	90 - 92	95 - 100	Hours Off

TRACE® 700 v6.3.3 calculated at 08:41 PM on 01/04/2018 Alternative - 1 System Load Profiles report Page 1 of 8

This is for 7-24 operation System per Floor -- 2

flow	SINOL	0	0	0	0	0	0	0	42	140	407	729	482	152	510	128	222	2,490	42	0	3,416	0
ing Ai	s (%)	0	0	0	0	0	0	0	0	2	Ŋ	00	9	2	9	-	ო	28	0	0	33	0
Œ	(C)		2,209.9	3,3148	4,419.8	5,524.7	6,629.6	7,7346	8,839.5	9,944 5	11,049.4	12,154.3	13,259.3	14,364.2	15,469.1	16,574.1	17,679.0	18,7840	19,888.9	20,993.8	22,098.8	0.0
low	Sinon	0	0	279	807	937	712	1,053	1,363	701	417	549	581	568	353	164	102	152	22	0	0	0
ng Airf		0	0	က	6	1	80	12	16	80	2	9	7	ġ	4	2	-	7	0	0	0	0
Cooling Airflow	(CEE)	938,1	1,876.3	2,814.4	3,752.5	4 690 7	5,628.8	6,567.0	7,505.1	8,443.2	9,381.4	10,319.5	11,257.6	12,195.8	13,133.9	14,072.0	15,010.2	15,948.3	16,886.4	17,824.6	18,762.7	0.0
oad	S IBOL	1,011	201	137	204	131	276	186	0	0	0	0	0	0	0	0	0	0	0	0	0	6,614
ting L	<u>1</u> 8	47	ග	9	10	9	13	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Can Hours Hours	(Btuh)	-8,6515	-17,303.0	-25,954 5	-34,606.0	-43,257.5	-51,909.0	-60,560 5	-69,212.0	-77,863.5	-86,515.0	-95,166.4	-103,817.9	-112,469.4	-121,120.9	-129,772.4	-138,423.9	-147 075 4	-155,726.9	-164,378 4	-173,029.9	0.0
pi	e inoli	403	569	545	562	455	552	366	530	483	451	287	391	270	308	290	253	148	138	109	147	1,503
ng Loa	, (%)	9	80	œ	æ	9	80	ß	7	7	9	4	S)	4	4	4	က	7	7	7	8	0
Can Hours Hours	(Tons)	4	2.8	4.2	5.5	6.9	8.3	8.7	11.1	12.5	13.9	15.2	16.6	18.0	19.4	20.8	22.2	23.6	24.9	26.3	27.7	0.0
Percent	Load	0-5	5 - 10	10 - 15	15 - 20	20 - 25	25 - 30	30 - 35	35 - 40	40 - 45	45 - 50	50 - 55	25 - 60	60 - 65	65 - 70	70 - 75	75 - 80	80 - 85	85 - 90	90 - 95	95 - 100	Hours Off

This is for 7-24 operation System per Floor -- 3

Heating Airflow	Hours		72	174	678	428	311	364	182	312	265	26	317	116	415	20	72	2,813	0	0	2.124	0
ting A	Hours (%)	0	~	8	ø	2	4	4	2	4	က	-	4	-	5	0	_	32	0	0	24	0
Hea	Cap Cem)	1,187.7	2,375.4	3,563.0	4,750 7	5,938.4	7,126 1	8,313.8	9,501.4	10,689.1	11,8768	13,064.5	14,252.2	15,439.8	16,627.5	17,815.2	19,002 9	20,190.6	21,378.2	22,565.9	23,753.6	0.0
wo	Hours	• • •	676	518	494	583	738	646	412	351	300	348	365	358	326	207	133	87	92	0	0	26
ing Airf	Hours (%)	54	œ	9	ю	_	8	7	ĸ	4	က	4	4	4	4	2	2	_	-	0	0	0
Cooling Airflow	ය් ල්ල් ල්ල්	1,038.7	2,077.4	3,116.1	4,154,7	5,193.4	6,232.1	7,270.8	8,309.5	9,348.2	10,3869	11,425.5	12,464.2	13,502.9	14,541 6	15,580.3	16,619.0	17,657.7	18,696 4	19,735.0	20,773,7	0.0
oad	Hours	283	2,089	845	198	29	17	7	0	0	0	0	0	0	0	0	0	0	0	0	0	5,262
iting L	Hours (%)	60	9	54	9	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Hea	Cap. Hours Hours (Btuh) (%)	-13,053.9	-26,107,9	-39,161.8	-52,215.8	-65,269.7	-78,323.7	-91,377.6	-104,431.5	-117,485.5	-130,539.4	-143,593.3	-156,647.3	-169,701.2	-182,755,2	-195,809.1	-208,863,1	-221,917.0	-234,970,9	-248,024.9	-261,078,8	0.0
	Hours	394	486	412	573	493	297	289	347	267	352	206	222	190	209	160	131	81	111	29	2	3,506
ng Loa	ours F (%)	7	o	හ	=	o	9	9	7	2	7	4	4	4	4	က	7	2	2	-	0	0
— Cooli	Cap. Hours Hours (Tons) (%)	2.0	4.1	6.1	8 1	10.2	12.2	14.2	16.3	18.3	20.3											
Percent	Design Load	0-5	5-10	10 - 15	15 - 20	20 - 25	25 - 30	30 - 35	35 - 40	40 - 45	45 - 50	50 - 55	55 - 60	90 - 65	65 - 70	70 - 75	75-80	80 - 82	85 - 30	90-92	95 - 100	Hours Off

This is for 7-24 operation System Totals

Heating Airflow	Hours	0	0	0	0	0	21	205	478	760	444	352	122	358	362	277	323	1,697	103	1,134	2,124	. 0
ting A	Hours (%)	0	0	٥	0	0	0	7	5	σ	3	4	-	4	4	ო	4	19	-	13	24	0
Hea	(C)	3,329 1	6,658.3	9,987.4	13,316.6	16,645.7	19,974.8	23,304.0	26,633.1	29,962.2	33,291.4	36,620 5	39,949.6	43,278.8	46,607.9	49,937 1	53,266.2	56,595.3	59,924.5	63,253.6	66,582.7	0'0
wol	Hours	0	479	1,208	834	744	832	1,167	286	427	435	432	526	457	233	158	177	65	0	0	0	0
ng Airf	Hours (%)	0	5	4	5	00	6	13	۲	2	2	2	ဖ	ĸ	က	7	7	-	0	0	0	0
Cooling Airflow	Cap (Cfm)	3,013.3	6,026.7	9,040.0	12,053.4	15,066.7	18,080.0	21,093.4	24,106.7	27,120,1	30,133.4	33,146.7	36,160.1	39,173.4	42,186.8	45,200.1	48,213.4	51,2268	54,240.1	57,253.5	60,266.8	0.0
ad	Hours	1,765	744	299	320	363	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5,262
ting Lc	Hours (%)	22	7	6	6	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Heating Load	- Btuh) (Btuh)	-34,130.0	-68,260.0	-102,390.0	-136,520.0	-170,650.0	-204,780.0	-238,910.0	-273,040.0	-307,170.0	-341,300.0	-375,430.0	-409,560.0	-443,690.0	-477,820.0	-511,950,0	-546,080.0	-580,210,0	-614,339.9	-648 470 0	-682,600.0	0.0
per	Hours	963	828	685	422	401	526	479	410	344	294	357	286	306	254	169	182	147	114	06	0	1,503
ling Lo	Hours (%)	13	7	6	9	9	7	7	9	co	4	2	4	4	4	2	က	2	7	-	0	0
Coo	Cap. Hours Hours (Tons) (%)	5.0	10.0	15.0	20.0	25.0	30.0	35.0	40.0	45.0	50.0	55.0	0.09	65.0	70.0	75.0	80.0	85.0	0.06	95.0	100.0	0.0
		9 - 0			15 - 20	20 - 25	25 - 30	30 - 35	35 - 40	40 - 45	45 - 50	50 - 55	25 - 60	60 - 65	65 - 70	70 - 75	75-80	80 - 82	85 - 90	90 - 95	95 - 100	Hours Off

5 DAYS A WEEK 7AM-6PM Schedule System per Floor - 1

flow Hours	494	297	235	1,618	226	97	42	202	5 8	107	122	321	100	11	229	389	237	163	114	1 209	2,421
ing Air Hours (%)	8	5	4	26	4	2	-	ო	0	£1	2	2	8	7	4	g	4	ო	2	19	0
Heating Airflow Cap. Hours Hour (Cfm) (%)	_	2,068 1	3,102.2	4,136.2	5,170.3	6,204 4	7,238.4	8,272.5	9,306.5	10,340.6	11,374.6	12,408 7	13,442.8	14,476.8	15,510.9	16,5449	17,579.0	18,613.1	19,647.1	20 681 2	0.0
Cooling Airflow Cap. Hours Hours (Cfm) (%)	1,770	312	313	283	297	310	272	318	198	166	92	462	370	111	127	88	15	ro	0	0	3,248
ling Airl Hours (%)	32	B	Q	τĊ	2	9	ιO	9	4	က	8	00	7	2	7	2	0	0	0	0	0
Cap. (Cfm)	1,034.1	2,068.1	3,102.2	4,136.2	5,170.3	6,204.4	7,238.4	8,272.5	9,306.5	10,340,6	11,374.6	12,408 7	13,442.8	14,476.8	15,510.9	16,544.9	17,579.0	18,613.1	19,647.1	20,681.2	0.0
Heating Load Cap. Hours Hours Btuh) (%)	666	330	180	161	167	53	42	16	33	ო	0	7	37	0	0	0	0	0	0	0	6,732
ating L Hours (%)	49	16	Ģ	ø	∞	ო	2	-	7	0	0	0	7	0	0	0	0	0	0	0	0
Cap. (Bruh)	-10,468.8	-20,937.5	-31,406.3	-41,875.1	-52,343.9	-62,812.6	-73,281.4	-83,750.2	-94,218.9	-104,687 7	-115,156.5	-125,625.3	-136,094.0	-146,562.8	-157,031.6	-167,500 3	-177,969.1	-188,437.9	-198,906.7	-209,375.4	0.0
Cooling Load Cap. Hours Hours Tons) (%)		498	452	341	151	193	151	191	81	71	140	91	110	203	152	219	128	22	115	70	3,444
ooling Lo Hours (%)	98	6	6	9	9	4	ო	4	7	-	ო	7	8	4	ო	4	7	-	7	0	0
Cap. (Tons)	1.6	3.2	4.7	6.3	6.7	9.5	11.1	12.6	14.2	15.8	17.4	19.0	20.6	22.1	23.7	25.3	26.9	28.5	30.0	31.6	0.0
Percent Design Load	0-2	5-10	10 - 15	15-20	20 - 25	25 - 30	30-35	35 - 40	40 - 45	45 - 50	50 - 55	25-60	60 - 65	65 - 70	70 - 75	75-80	80 - 85	85 - 90	90 - 92	95 - 100	Hours Off

5 DAYS A WEEK 7AM-6PM Schedule System per Floor -- 2

Heating Airflow	Hours		275	22	1,841	123	90	240	105	20	87	7	86	373	83	23	372	559	4	89	1,313	2,521
ting Ai	Hours (%)	7	4	0	30	2	-	4	8	-	-	-	7	9	_	~	9	O	0	-	21	0
Heal	Cap. (Cfm)	1,104 7	2,209.4	3,314.1	4,418.8	5,523 5	6,628.2	7,732.9	8,837.6	9 942 3	11,047.0	12,1517	13,256.4	14,361.1	15,465.8	16,570.5	17,675.2	18,7798	19,884.5	20,989 2	22,093.9	0.0
low	Hours		448	293	291	171	208	308	192	307	195	197	119	345	418	143	88	91	65	34	2	3,248
ng Airf	Hours (%)	29	&	ιĐ	ıc	က	4	9	ဗ	9	4	4	2	9	8	ო	2	7	-	-	0	0
Cooling Airflow	Cap (Cfm)	938 1	1,876.3	2,814.4	3,752.6	4.690.7	5,628.8	6,567.0	7,505.1	8,443.3	9,381.4	10,319.5	11,257.7	12,195.8	13,134.0	14,072.1	15,010.2	15,948 4	16,886.5	17,824.7	18,762.8	0.0
pe	Hours	791	268	150	207	96	22	24	62	7	4	0	ღ	41	0	0	0	0	0	0	0	7,050
ting Lo	dours (%)	46	16	go.	12	9	က	-	4	0	0	0	0	2	0	0	0	0	0	0	0	0
Hea	Cap. Hours Hours (Btuh) (%)	-8,629 3	-17,258.6	-25,887,8	-34,517.1	-43,146.4	-51,775.7	-60,405.0	-69,034.3	-77,663.5	-86,292.8	-94,922,1	-103,551,4	-112,180.7	-120,809.9	-129,439.2	-138,068.5	-146,697.8	-155,327.1	-163,956.3	-172,585.6	0.0
pa	Hours	1,868	429	531	263	224	157	144	183	164	73	20	128	125	107	200	125	191	125	83	173	3,417
ing Lo	Hours (%)	32	œ	10	S	4	ო	က	က	ტ.	_	-	7	7	7	4	2	4	7	2	က	0
Cooling Load	Cap. Tons)	1.4	2.8	4.2	5.5	6.9	8.3	2.6	11.1	12.5	13.9	15.2	16.6	18.0	19.4	20.8	22.2	23.6	24.9	26.3	27.7	0.0
Percent	Design Load	0-5	5-10	10 - 15	15-20	20 - 25	25-30	30 - 35	35 - 40	40 - 45	45 - 50	50 - 55	55 - 60	60 - 65	65 - 70	70 - 75	75 - 80	80 - 82	82 - 90	90 - 92	95 - 100	Hours Off

5 DAYS A WEEK 7AM-6PM Schedule System per Floor -- 3

Heating Airflow	s Hours		265	281	581	107	190	147	206	96	28	96	136	75	53	22	213	348	25	7.	1.189	4.108
rting A	Hours (%)	Ξ	9	9	12	2	4	က	4	7	-	7	က	2	_	0	2	7	-	7	28	0
Hes	(Can	1,187.7	2,375 4	3,563.0	4,750.7	5,938.4	7,126.1	8,313.8	9,5014	10,689.1	11.876.8	13,064.5	14,252.2	15,439.8	16,627.5	17,815.2	19,002.9	20,190.6	21,378.2	22,565.9	23,753.6	0.0
wol	Hours	921	180	385	177	136	102	132	114	64	116	83	99	137	306	304	83	106	106	18	65	5.159
ina Air	Hours (%)	56	ĸ	7	ιΩ	4	က	4	က	2	ဗ	2	2	4	œ	80	2	က	က	0	2	0
Cooling Airflow	Cap.	1,038.7	2,077.4	3,116.1	4,154.7	5,193.4	6,232.1	7,270.8	8,309.5	9,348.2	10,386 9	11,425.5	12,464.2	13,502.9	14,541.6	15,580.3	16,619.0	17,657.7	18,696.4	19,735.0	20,773.7	0.0
ad	Hours	452	436	309	157	06	125	144	7	49	7	5	25	11	c c	17	0	0	0	0	0	6,918
ting Lc	Hours (%)	25	24	17	6	S	7	æ	0	က	0	0	-	-	0	₹-	0	0	0	0	0	0
Hea	Cap. Hours Hours (Btuh) (%)	-15,032.0	-30,063.9	-45,095.8	-60,127.8	-75,159.7	-90,191.7	-105,223.6	-120,255.6	-135,287.5	-150,319.5	-165,351.4	-180,383.4	-195,415.3	-210,447.3	-225,479.2	-240,511.2	-255,543.1	-270,575.1	-285,607.0	-300,638.9	0.0
pe	Hours	566	177	216	183	88	104	125	94	102	35	81	141	203	56	132	125	45	88	53	83	6,022
ing Lo	Hours (%)	7	9	œ	7	4	4	2	က	4	ო	က	c,	7	-	2	S.	8	က	7	3	0
Cooling Load	Cap. Tons			6.1	8	10.2	12.2	14.2	16.3	18.3	20.3	22.4	24.4	26.5	28.5	30.5	326	34.6	36.6	38.7	40.7	0.0
Percent	Design Load	0-2	5 - 10	10 - 15	15 - 20	20 - 25	25 - 30	30 - 35	35 - 40	40 - 45	45 - 50	50 - 55	22-60	60 - 65	65 - 70	70 - 75	75 - 80	80 - 85	85 - 90	90 - 95	95 - 100	Hours Off

TRACE® 700 v6.3.3 calculated at 08:41 PM on 01/04/2018 Alternative - 2 System Load Profiles report Page 8 of 8

SYSTEM LOAD PROFILES

By Trial

5 DAYS A WEEK 7AM-6PM Schedule System Totals

woll	Hours		435	1,468	512	120	92	90	103	8	38	133	133	142	184	163	219	322	75	93	1,176	2,417
ing Ai	Hours (%)	00	7	23	œ	7	_	-	2	-	5	7	7	8	က	က	ო	5	_	_	19	0
Heating Airflow	Cap. (Cfm)	3,326.4	6,652.9	9,979.3	13,305.7	16,632.2	19,958.6	23,285.0	26,611.5	29,937.9	33,264.4	36,590.8	39,917.2	43,243.7	46,570.1	49,896.5	53,223.0	56,549 4	59,875.8	63,202.3	66,528.7	0.0
flow	Hours	1,941	363	330	339	331	192	182	210	199	87	121	109	398	346	84	105	114	41	20	0	3,248
ing Air	Hours (%)	35	7	9	9	9	က	3	4	4	2	7	2	7	9	7	7	7	-	0	0	0
Cooling Airflow	Com Com Com Com Com Com Com Com Com Com	3,010.9	6,021.8	9,032.7	12,043.5	15,054.4	18,065.3	21,076.2	24,087.1	27,098.0	30,108.8	33,119.7	36,130.6	39,141.5	42,152.4	45,163.3	48,174.2	51,185.0	54,195.9	57,2068	60,217.7	0.0
oad	Hours	1,015	405	235	161	87	181	0	က	o	56	25	10	0	7	0	0	0	0	0	0	6,569
iting L	Hours (%)	46	18	Ξ	7	4	80	0	0	0	-	7	0	0	0	0	0	0	0	0	o	0
Heating Load	Cap. (Btuh)	-34,130.0	-68,260.0	-102,390.0	-136,520.0	-170,650.0	-204,780.0	-238,910.0	-273,040.0	-307,170.0	-341,300.0	-375,430.0	-409,560.0	-443,690.0	~477,820.0	-511,950.0	-546,080.0	-580,210.0	-614,340.0	-648,470.0	-682,600.0	0.0
pac	Hours	2,238	611	388	215	174	128	121	170	53	88	167	42	161	194	82	183	%	82	151	40	3,417
ling L	Hours (%)	45	=	7	4	က	7	7	ო	τ-	-	က	-	က	4	2	ო	7	7	က	-	0
Coo	Cap. Hours Hours (Tons) (%)	5.0	10.0	15.0	20.0	25.0	30.0	35.0	40.0	45.0	50.0	55.0	0.09	65.0	70.0	75.0	80.0	85.0	90.0	95.0	100.0	0.0
Percent	Design Load	0-5	5 - 10	10 - 15	15 - 20	20 - 25	25-30	30 - 35	35 - 40	40 - 45	45 - 50	50 - 55	25-60	60 - 65	65 - 70	70-75	75 - 80	80 - 85	85 - 90	90 - 95	95 - 100	Hours Off

Actor F

BUILDING COOL HEAT DEMAND By Trial

Monday	Clg (Tons)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	12.7	5.4	00	-	. 4	e e	2.6	4.0	200	9.6	11.5	4.	4.0	0.0	0.0	0.0	0.0	0.0	dav	Cla (Tons)		3 6	0.0	00	0.0	0.0	0.0	12.9	2.0	0.5	5.4	7.4	8.5	9.2	1.1	14.0	18.4	12.1	100 m	3,4	6.0	e. c	0.0	?
Mor	Htg (Btuh)	-140,790	-153,992	-157,868	-161,916	-167,609	-155,959	-159,409	-56,389	-99 611	-100 168	-29.837	36 368	-19.512	50,601	00/00	24 226	052,12-	-22,072	-35,625	-34,405	-58,796	-76,786	-90,728	-111,561	-132,480	Monday	Hta (Btuh)	53 205	-74 542	-90.200	-100,984	-105.488	-105 499	-107,006	41,357	-74,088	-27,071	-30,573	-26,749	-41,276	-21,460	-7,640	0	0	-12,960	0	-18,891	-32,360	-29,452	-34,327	11.
ay	Clg (Tons)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	2.4	41	4.8	2 0	0 0	o o	Q.9	4	1,2	0.0	0.0	0.0	0.0	0.0	av	Clq (Tons)	00	000	0.0	000	0.0	0.0	0.0	0.0	0.0	0.0	3.3	5.0	0.0	6.5	4.0	12.1	16.1	15.9	17.1	n (2 (C	200	90	,
Sunday	Htg (Btuh)	-140,790	-160,373	-162,000	-161,942	-167,609	-156,098	-159,146	-135,912	-122,374	-84 243	-33.272	-25,710	-18.603	46 083	-25,157	20,107	20,707	40,365	-35,625	-30,487	-58,796	-76.786	-90,728	-111,561	-132,480	Sunday	Htg (Btuh)	53 205	-74.542	-90,200	-100 984	-105,488	-105 499	-107,006	-101,267	-84,805	41,962	-29,347	-25,479	43,729	-27,876	-20.137	-17,734	-20,216	-12,960	200	-18,891	-32,300	-20,715 24,207	-34,32/	J
day	Clg (Tons)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	2.4	4	8	. 4 . 0	e u	0 0	0.0	F.4	0.4	0.0	0.0	0.0	0.0	0.0	lay	Clg (Tons)	00	000	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3,3	2.0	0.0	9	7.8	9.5	12.3	12.1	o (5-0	න ල ට	9 0	0.0	;
Saturday	Htg (Btuh)	-140,790	-159,937	-153,637	-171,303	-158,318	-162,142	-148,433	-143,656	-112,601	-86.327	-32,929	-27 106	-18,603	-46 083	35 157	26, 20,	101,01	000,04	-35,625	-34.405	-58,796	-76,786	-90,728	-111,561	-132,480	Saturday	Htg (Btuh)	-53 295	74.542	-90,200	-100,984	-105,488	-105,499	-107,006	-101,267	-84,805	41.962	-29,347	-25,479	43,729	-27,876	-20,137	-17,734	-20,210	-12,960	2	-18,891	-32,360	54,715	-34,327	1
day	Clg (Tons)	0.0	00	0.0	0.0	0.0	00	0.0	0.0	5.8	0.0	1.6	4.6	6,3	7.2	0.7	9 4	2.5	9.				0.0	0.0	0.0	0.0	day	Clg (Tons)	00	0.0	0.0	0.0	0.0	0.0	0.0	7	7.0	e :	4.	4.7	4.0	9.5	1.1	14,0	4.0	12.1	9 0	4 6	D C	? 6	9.0	,
Weekday	Htg (Btuh)	-122,351	-140,459	-144,286	-150,149	-141,038	-146,823	-142,070	-131,943	-74,041	-63,155	-30,878	-21 838	-27.427	-50,601	-28 475	21.28	25.00	270,22-	070'02-	04,45 001,00	-58 796	-76,786	-90,728	-111,561	-132,480	Weekday	Htg (Btuh)	-50.883	-66 490	-83,755	-96,637	-103,857	-105,282	-105,965	-38,031	-67,772	-30 080	-21,521	-26,749	977.76	-20,558	-7,640	0 0	0	-12,960	700	-18,891	22,300	24 452	-34,327	
lgin :	Clg (Tons)	0.0	0.0	0.0	0.0	0.0	0,0	0.0	0.0	0.0	9.0	8.0	13.4	17.6	20.9	24.3	30.5	28.5	7007	0 0	0 0	0.0	0.0	0.0	0.0	0.0	ub	Clg (Tans)	0.0	0.0	0.0	0.0	0.0	00	0.0	0.0	11.1	10.4	15.9	22.5	20.8	28.8	34.7	0.84	0.00	36.7	5.0.5	7.6	ار 4- ہر	9.5	- 0	
Design	Htg (Btuh)	-42,736	-86,314	-142.704	-161,467	-147,905	-153,835	-143,336	-142,145	-73,112	-20,433	-16,452	-20,459	-3,359	0	0					1	-32 / 74	-62,446	-57.167	-61,005	-67,925	Design	Htg (Btuh)	-60.035	-63,348	-70,149	-67,551	-73,188	-74,844	689'99-	-60,350	49,329	918/11-	-15,200	-	> 0	٥.	0	٥ د	0 (.	> <	> 0	25 545	42.25	-33.940	
Typical Weather (°F)	OAWB	18.6	18.5	18.6	79.5	20.3	21.7	73.7	25.0	26.9	28.6	30.2	31.3	32.1	32.7	32.9	32.0	32.5		2 6	20.0	8 17	25.7	23.2	21.1	19.3	Typical Weather (*F)	OAWB	28.6	27.0	26.0	24.9	24.1	23.9	24.5	25.6	0.72	20.0	80.8	32.0	0.4.0	202	3/.2	9.75	000	37.9 7.7	0.00	0 00	20.00	3.5	30.5	!!!!
Typical W	OADB	20.5	20.1	20.3	20.9	5.5	23.2	7.47	26.5	28.3	30.1	31,9	33.5	34.8	35.8	36.4	36.6	36.2	100	20.00	2000	90.0	28.3	25.8	23.5	21.6	Typical ₩	OADB	31.3	29.6	28.1	27.0	26.3	26.1	26.4	27.4	2000	9.00	55.	4.0	37.7	29.0	41.1		10	7.7		20.4	20.0	35.2	2 E	!
January	Hour	-	2	m.	4 -	n •	(O I		20	ക	9	Ξ	12	13	4	15	9	4	÷ 4	5 6	<u> </u>	2 2	7.5	72	23	24	February	Hour	-	2	က	4	'n	ဖ	٠,	xo c	D 5	2;	= \$	7.5	2;	<u> </u>	ភូមុ	2 1	- 5	∞	e 6	3 5	- 6	3 %	24	

TRACE® 700 v6.3.3 calculated at 08:41 PM on 01/04/2018 Alternative - 1 System Load Profiles report Page 1 of 12

BUILDING COOL HEAT DEMAND

By Trial

	clg (Tons)		9 5	- 6	9 6	9.0	90		2.5		2.0	2 0	4.0	12.0	4.4	16.8	19.3	24.2	30.3	22.0	17.7	10.7		. 00	9 6				Clg (Tons)	9.0	7.6	5.7	-	4.6	4.2	4.5	29.1	24.2	20.1	23.2	29.2	35.1	39.6	47.3	51.7	53.4	40.3	35.7	27.2	19.6	15.0	12.3	9.9
Monday	Htg (Btuh)	-03 840	24.470	201.00	25,75	40,040	52,243	60,04	58,00	11 754	1 2 2	78,007	185,03-	918,81-	0	0	0	O	C				-1415	-18 739	28.365	-28,619	vebuoM	1	Htg (Btuh)	0	-8,389	-17,134	-24,104	-27,591	-23,911	-21,459	0	0	0	0	0	0	0	0	0	0	٥	0	0	0	0	O	0
70	Clg (Tons)	80	9 -	200	90	200	90	000	200	3 6	200	4. c	7.0	10.8	12.6	4.4	16.2	20.4	25.8	27.3	21.4	13.1	7.1	4	. 4	2.5		, i	Clg (Tans)	9.0	7.6	5.7	5.1	4.6	4.2	4.5	63	6.6	13,8	20.4	26.7	32.3	36.1	42.8	464	50,4	490	42.9	32.0	22.3	16.4	13.6	11.2
Seption	Htg (Btuh)	-23 845	21 470	28 106	25,11	40.040	53.343	-60,887	48,008	33 135	24.046	046.17-	00460	CC0,02-	-2,528	0	0	0	0	0	0	-	-1.415	-18 739	-28.365	-28.619	Sunday	5	Htg (Btuh)	0	-8,389	-17,134	-24,104	-27,591	-23,911	-21,459	-20,667	-24,970	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Š	clg (Tons)	90	200	000	00	200		000	200	000		7 0	0.0	2.6	9.01	12.4	13.7	17.1	23.5	27.3	21.3	13.1	2.0	4	4.0	2.5		() · · · · · · · · · · · · · · · · · ·	Cig (Tons)	7.8	6.4	4.6	4 .0	3.5	3.2	3.4	5.1	9.6	12.2	18.6	24.6	59.9	35.8	44.1	46.7	47.6	45.8	40.5	30,6	21.7	16.3	13.6	11.2
Saturday	Htg (Btuh)	-23 842	24 559	-28 106	-35 111	49.049	-53,343	-60,887	48,008	-33 135	21.048	10 405	120,00	CCD 07-	-2,528	9	0	0	0	Q	0	0	-1.415	-18.739	-28.365	-28,619	Saturday		Htg (Btuh)	0	-8,389	-17,134	-24,104	-27,591	-23,911	-21,459	-20,667	-24,970	0	0	0	0	0	0	0	0	0	0	o	0	0	0	o
i ve jo	Clg (Tons)	90	0.0	0		0	000	000	14.2	10.5	2 4	† *	1.0	0.2.	4.4	9.01	19,3	24.2	30.3	22.9	17.7	10.7	5.7	3.8	3.0	7.5		1	Cig (Tons)	7.8	6.4	4.6	8.4	4,5	4.2	5.5	24.2	23,6	18.9	22.5	29.5	35.1	39.6	47.3	51.7	53.4	40.3	35.7	27.2	19.6	15.0	12,3	6.6
Meekday	Htg (Btuh)	-23 842	24 559	-28 106	-33 364	41.591	-53 456	-54.780	-30.351	-11.763	40.858	26,307	10,037	080'01-	> 0	-	0	0	0	0	0	0	-1.415	-18.739	-28.365	-28,619	Weekday	11,40,41	Httg (Btun)	0	-8,389	-17,134	-24,104	-27,591	-23,911	-21,459	0	0	0	0	0	٥	0	٥	o	0	O	0	0	0	0	0	0
9	Clg (Tons)	1.8		12	-	6	10	<u></u>	7.4	19.8	17.0	25.3	2.5	200	30.0	4 i	50.4	9.09	67.7	51.4	38.5	22.9	12.0	6.7	3.5	2.9		(ame)	Cig (Tons)	8.8	7.6	6.7	6.4	6.3	6.4	7.5	22.1	41,4	32	41.6	48.5	53.7	58.7	67.2	77.1	82.9	6.79	59.2	42.7	28.4	19.9	15.7	12.9
Design	Htg (Btuh)	-22 470	-23 009	-20.349	-25 250	-22 474	-28 435	-24 532	-20,109	-18.172	-0.474	,		> 0	> 0	> 0	0	0	0	0	0	0	0	0	-8.476	-23,336	Design	[-] (-) (-) (-) (-) (-) (-) (-) (-) (-) (-)	Hig (Biun)	0	0	-1.524	-6,758	-10,200	-11,629	-9,632	0	٥.	0	0	0	0	0	0	0	0	0	0	0	0	0	0 (5
Twical Weather (*F)	OAWB	34.6	33.4	32.4	31.2	30.7	30.2	30.2	30.5	315	32.6	33.50	9 6	0.00	0.00	4.00	39.6	40.3	40.7	40.6	40.3	40.2	39.7	38.7	37.4	36.0	Typical Weather (°F)	QVVV C	CAWB	42.3	410	40.3	39.3	38.6	38.3	38.3	39.0	10.1	8 18	4.2	46.4	48.7	49.8	49.5	49.3	48.4	47.3	46.4	46.1	46.4	45.8	8.5	43.5
Tvnícel W.	OADB	38.7	37.1	35.7	34.5	33.7	33.1	32.9	33.3	34.3	38.0	38.0	900	200	0.24	9 9	46.3	47.3	47.7	47.5	46.9	46.1	4.9	43,5	41.9	40.3	Typical We	90,00	OAUB	48.3	46.6	45.1	43.9	43.0	42.5	42.3	43.0	45.1	48.3	52.1	55.8	59.0	61.2	61.9	617	61.2	60.2	59.0	57.5	55.8	54.0	52.1	50.Z
March	Hour	-	~	cr;	4	IC.	9	7	- 60	0	Ė	÷ +	÷	4 5	5 5	<u> </u>	5	16	17	8	19	20	2,	22	23	24	April	110	INOL.	-	81	m	4	ιņ	φ	_ `	9 0 (on ;	2 :	=	12	13	4	ن	9	11	8	19	20	24	55	23	57

BUILDING COOL HEAT DEMAND

By Trial

	iday Cla (Tope)	(all 1) all 2	32.8	29.6	20.3	23.5	21.5	9	21.2	52.3	46.4	43.3	47.4	51.9	57.9	65.1	74.4	80.2	82.4	67.2	63.9	26.0	484	7.07	2 8	. 25 5. 5.		,	Cig (Tons)	36.4	33.0	30.0	27.9	C.97	20.00	808	18.0	55.4	60.6	65.7	71.1	78.4	83.6	80.8	91.9	75.0	0.50	55.2	47.4	41.4	37.3
:	Monday Htg (Bhih)	(imp) fair	0	۰ د	5 6	.	0	0	0	0	0	٥	0	0	O	0	c	0	0	0	0	c				. 0	Monday		(ping) Bin	0	0	0	0 0	0	o c	o c	· c		0	0	0	0	0	0	00	0 0	00	•	o	0	0
	uay Clo (Tons)	(SIGN) BIS	32.8	287	2.00	23.5	21.5	19.9	21.2	24.6	29.0	35.6	43.0	49.7	55.5	62.5	71.3	76.8	78.7	77.3	73.2	63.0	53.0	45.6	412	36.8		Cla (Tone)	Cig (Toris)	36.4	33.0	0.00	5/ B	7 CO CO	283	33.4	39.1	47.3	55.9	63.3	68.4	712	78.7	85.0	96.5	200	71.5	60.5	51.3	44.8	41.6
á	Sunday Htn (Bluh)	(inter) Sur.	00	> 0	0 0	-	-	0 (0	0	0	0	0	0	0	0	0	0	0	0	0	C	0	0	0	0	vebruis	144 (Di. h)	rig (Diali)	0	0 (> (0 0	0 6				0	0	0	0	0	0	0 (0	0 6		0	0	Ó	٥
	saturosy Ih) Clo (Tons)	(a) (a) (b) (a)	30.3	4 6	7.4.7	5.1	7.67	20.5	4.6	70.4	31.1	36.8	43.4	49.2	54.4	60.7	68.8	73.6	82.1	79.0	73.2	63.1	53.0	45.6	41.2	36.8		Cla (Tone)	Cell (TOTIS)	33.7	30.5	7.77	22.7	8.77	28.2	34.0	39.2	46.9	55.0	61.8	9.99	69.0	75.8	89 5	9.00	0.08 7.08	7.5	60.5	51.3	44.8	41.5
by Irlai	Hta (Btuh)	(in)	> <			> 0	5 6	5 C	5 (.	0	0	0	Ö	0	0	0	0	0	0	0	0	0	0	0	0	Saturday	Hts (Rhib)	(ima) Sin	0	0	-		9 0	• •	0	a	0	٥	0	0	0 (0	0 0	- 0	- 0		0	Ö	01	0
D)	Cla (Tons)		4.00	200	200	2.53	4.1.4	200	2,12	200	48.2	43.2	46.7	51.9	57.9	65.1	74.4	80.2	82.4	67.2	63.9	26.0	48.4	42.7	38.5	34.3	kday	Clo (Tone)	(2101) 810	35.1	32.3	22.0	0.72	25.5	28.1	70.0	59.6	55.4	60.7	65.5	7.1	76.4	83.6	8.88	. u	7.7	- 62	55.2	47.4	41.4	37.3
200	Mta (Btuh)				•	> 0	0	0 0	> 0	> <	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Weekday	Hfa (Rtub)	(m) 8:-	0	06	0 0	0 0	o C	٥	0	0	o	0	0	0	٥	0	0 0		-		0	0	0 (5
25,000	Cla (Tons)	28.2	246	25.7	25.5	2.5.2	7.77	27.0	4.73	4 6	58.5	66.6	65,1	71.5	77.2	83.4	92.4	99.2	986	92.6	82.2	0.89	50.5	42.5	37.4	33.5	ign	Cla (Tons)	(eller) file	35.4	32.6	20.00	28.0	32.0	38.3	76.8	72.2	70.4	71.5	78.3	85.5 6.5	200	97.2	0 001	0.00	0, C	80.2	65.7	52.6	43.9	39.9
è	Hta (Btuh)			• •	, c		> 0	> 0	5 0	> 0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Design	Hia (Blub)	funcial Ruis	0 (00	5 6	o c	0 0	0	0	0	0	0	0	0 (90	0	J C	00	0 0	0	0	0	0	o
Tuning Maghar (95)	OAWB	84.2	200	20.00	99	9.0	0.00	200		9 5	50.3	56.2	58.4	209	63.2	65.6	66.7	6.99	999	66.3	65.7	66.3	67.0	66.4	65.0	63.1	Typical Weather (°F)	OAWB		62.9	0 0 0	20.0	1005	58.7	59.1	59.9	61.0	63.2	65.4	67.4	69.1	202	70.3	70.0	0.08	68.2	67.6	68.0	67.4	65.8	04.o
At lonimat	OADB	64.7	i c	8 6	50.5	4 6 6		1 4	27.0	9 10	780	62.6	299	70.0	73.5	76.4	78.3	79.0	78.8	78.1	76.9	75.4	73.5	71.4	69.2	6.99	Typical W	OADB		66.7	9.45 9.45 1.50	60.5	51.5	4.19	62.0	63.8	66.7	70.1	73.8	77.2	80.0	2 2	87.5	37.7	0, C	79.0	77.2	75.2	73.0	70.8	92.
Max	Hour	•		1 (*		- 4		91	- 0	0 0	n :	2	=======================================	12	<u>ئ</u>	4	15	16	17	18	19	50	21	22	23	24	June	Hour	i	- - ⟨	N 60	. 4	ר עכן	ω	7	œ	တ	9	=	12	13	4 1	១	2 1	- c	<u> </u>	20	21	22	3 23	5 7

TRACE® 700 v6.3.3 calculated at 08.41 PM on 01/04/2018 Alternative - 1 System Load Profiles report Page 3 of 12

	Monday n) Cld (Tons)	46.2	40.6	2.06	7 96.	700	4.00	31.5	32.7	62.7	57.6	53.9	57.4	8,10	67.9	1 2	- 6	7.70	4. 6	5.45	5.1	75.7	4.69	60.5	6.43	50.6	46.5	Monday	Cla (Tone)	(SIOL) 610	43.5	40.2	35.3	32.0	29.4	27.7	4.72	0,70	30.	3 6	5. F.	7 8 9	7.00	84.2	9 6	. 6	78.3	72.0	828	56.7	52.4	47.9	8.
į	Ma (Btuh)		> <		•	0 6		0	9	0	0	0	0					> 0			> 0	0	-	0	0	Ó	0	Mor	Hfn (Bfuh)	(imid) fire	0 (0	0	0	01	0.0	> 0		> <	,				· c	•	•	•	0		0	0	0	0
	uay Cla (Tons)	76.3	40.5	30.5	38.7	200	100	6 F	32.1	35.7	39.8	45.8	52.7	59.5	64.7	20.6	2 4		† c	000	0 / 0	2.02	0.03	279	59.2	54.0	50.1	day	Cla (Tone)	(eno.) five	43.5	40.2	50.00	32,0	4.87	7.77	20.4	1 4 5	42.5	202	200	2 4	71.0	78.8	84.8	87.1	088.0	4.18	8.69	62.2	56.0	51.4	46.8
ć	Suriday Htg (Btuh)				• =	• c		> 0	- (0	0	0	0	0	· C	· c		•		•	> 0	> 0	> <	> 0	0	0	0	Sunday	Hfn (Rhuh)	(mid) fair	0 (-	> 0	- 0	0 0	- 0	-	-					0 0			c	· c	٥٥	0	0	0	0	0
1	cla (Tons)	42 B	30.7	20.5	38.0	34.3	1 6	32.0	32.9	35.7	39.5	45.2	51.7	58.1	63.0	88.5	74.0	7 7		0 7 60	4,70	900.0	70.7	5.70	59.2	54.0	50.1	day	Clo (Tons)	(ello) Bio	41.0	200	32.3	23.0	7.7	4.00	24.3	36.5	42.5	5.5	27.7	642	969	76.0	87.3	68	880	41.8	8.69	62.2	26.0	51.4	46.8
Dy IIIdi Satu	Htg (Btuh) C	5	0 0		• =			> 0	> 0	0	0	0	0	0	0				o c		> 0	5 6	> 0	-	5	0	0	Saturday	Hta (Blub)	(ma) Bu	0	> c	> c	5 C	3 C	,	.	o c	• •				· c	0		0		0	0	0	0	0	0
	Cla (Tons)	44.8	7	37.0	349	300	0.00	90,8	75.7	723	60.9	53.9	57.8	61.7	67.2	733	82.2	9 5	2.0	2.5	2 2 2	7.02	4.00	00.0	9. i	50.6	46.5	day	Cla (Tons)	(SIDE) BD	41.1	2000	4. 5	0.00	9 0	27.5	. 88	2 25	50.5	255.2	610	68.4	75.3	84.2	28	92.1	76.3	72.0	62.8	56.7	52.4	47.9	44.8
Mindalan	Wee							- 0	> 0	0	0	0	0	0	0				o C		0 0	50	.	5 6	ه د	0	0	Weekday	Htg (Bhuh)	(interest State	00	- 0			0 0			•		c			0	0	c	0	0	0	0	0	0	0 :	0
5	Glg (Tons)	30.1	38.5	34.0	37.3	36.7	28.2	20.7	† ¢	/8.3	7.77	73.1	75.9	82.0	87.2	92.3	0 80	1000	90	2 20	0.00	0.00	0.00	0.0	7.00		46.2	g	Cla (Tons)	/a (61)	39.7	0.4.0 T. 14.00	2.5	2 7	36.7	27.7	23.5	7.16	693	73.1	79.7	86.2	91.7	98'6	100.0	100.0	949	5.19	74.6	58.8	48.6	45.6	41./
C	Htg (Btuh)	-							> 0	-	0	0	0	0	0	0			• =		o c	> 0		o c	5 6	9	0	Design	Hta (Btuh)	(mar) 6 m ;	00	00) c	> C	.	o c	, –	• =	• •	· c	0		0	0	0	0	0	0	0	0	0	0	o
Tunion Monther (°E)	OAWB	68.0	88.2	64.8	63.4	62.4	0 10	0 4	0.0	71.5	61.4	62.0	63.4	65.5	67.4	69.4	70.5	71.8	× ×	ο α - Κ	2 5	7.2.2	100	7.5	3 Y	11.1	69.9	eather (°F)	OAWB		65.5 63.5	83.0	80.7	000	0.00	20.00	28.5	20.3	60.2	62	64.1	67.0	68.8	8.69	8 69	69.5	69.4	69.2	70.8	72.9	71.8	69.4	67.3
Transcal 144	OADB	715	60.4	67.6	98.0	8	2.0	2.5	0.00	4.4	65.8	67.9	9'02	73.6	992	79.3	2,5	820	833	2.5	3.0	81.5	1 6	7.0.1	0.1	20,0	73.6	Typical Weather (°F)	OADB		71.0	66.7	90.0	200	200	626	63.4	65.5	68.7	72.6	76.8	80.7	83.9	86.0	86.7	86.5	85.7	84.4	82.8	80.7	78.4	76.0	4.6
2	Hour	-	٠.	1 65	4	· Lr	9	9 10	~ 0	xo i	ത	9	Ξ	12	13	4	5	, c	1	ğ	5 5	2 2	3 7	- 66	3 8	3	24	August	Hour		← α	4 6	, 4	י ל		4 0	- 00	, G	, C	1	12	5	4	15	19	17	60	19	20	72	8	23	77

Monday h) Cla (Tons)		7.77	19.2	16.5	7.47	130	200	2,5	. 6 . 7	38.5	35.9	32.7	37.8	45.5	52.9	58.9	53.5	66.7	67.8	9.5	93.0	2.5	B 6	33.9	40.4	27.0	23.7	veb		Clg (Tons)	12.2	10.0	8.3	7.3	9.0	5.7	5.8	35.9	26.8	23.1	25.2	30.6	34.7	38.5	45.7	50.5	52.5	37.3	303	25.1	22.0	19.0	16.1	13.3
Mor Htg (Btuh)		5	0	0	c	. ~		> <		3 (o 1	0	0	0	0	0	o	c		0 0	o c	5 6	5 6	5 0	3	0 (0	Monday	17.70, 19.1	Hig (Blun)	0	0	-2,846	-12,397	-18,950	-23,131	-23,250	0	0	0	0	0		0		. 0	0	. ~		0	0	0	0	0
Sunday h) Cig (Tons)		5.77	19.2	16.6	14.7	13.0	12.0	1 2 2	, t	5.0	9.0	25.2	33.7	426	49.5	57.2	62.9	65.0	650	7.5	2 7	2 - 67	7 2 2	200	32./	29.1	25.8	Sunday	Carried Control	Cig (Tons)	12,2	100	8.3	7.3	5.9	5.7	5.8	7.1	10.7	16.6	22.1	28.3	32.2	35.4	41.6	45.6	47.1	417	33.4	27.0	23.6	20.6	17.7	14.7
Su Htg (Btuh)		•	0	0	0				0 0	5 6	> 0	0	0	o	0	0	Ç	0	0		•				5	0 0	0	Sur	(4:40)	(unic) bi⊔	0	0	-2.846	-12,397	-18,950	-23,131	-23,250	-20,066	-7,687	0	O	0	0	0	0	Ö	0	c	0	0	0	0	0	0
Saturday Jh) Clg (Tons)	6 00	20.5	17.5	14.9	13.1	11.6	10.6	100	12.0	77.0	0.7.0	23.1	31.4	40.0	52.6	58,8	80.8	61.9	61.9	7.87	40.1	73.5	100	5.00	2.55	4.92	797	Saturday	Cla (Tons)	Ceg (Toris)	10.9	80 80	7.1	6.1	4.8	4.6	4.7	0.9	6.0	15.0	20.4	26.4	30.1	32.8	38.1	50.7	50.2	42.4	33.7	27.1	23.6	20.6	17.7	14.7
Sar Htg (Btuh)		> <	9	0	0	0	-			> 0		9	0	0	0	0	0	0	0	0	· c		• •	0 0	> 0	> c	5	Sat	Him (Dink)	(iinia) Biri	0	0	-2,846	-12,397	-18,950	-23,131	-23,250	-20,066	-7,687	0	0	0	0	0	0	C	c	0	0	O	0	O	0	o
Weekday uh) Clg (Tons)	404	101	1/1	14.8	13.1	11.6	106	10.0	43.3	2.5	0.6	33.8	36.9	45.9	53.1	29.0	63.6	8.99	67.9	53.0	449	37.0	330	. C	100	27.7	73.7	Weekday	Clar (Lone)	(ei o i) 8io	10.9	8,8	7.1	6.1	4.8	4.6	4.7	26.2	30.3	21.5	24.1	30.8	35.0	38.6	45.8	50.5	52.5	37.3	30.3	25.1	22.0	19.0	16.1	13.3
We Htg (Btuh)			-	0	0	0	0	c			> 0	> 0	0	0	0	0	0	٥	٥	0	o		· c		> <	5 C	>	We	Hts /Rub)	(ima) bii	0	0	-2,846	-12,397	-18,950	-23,131	-23,250	-20,066	0	0	0	0	٥	0	0	0	٥	0	0	0	0	0	0	D
Design h) Clg (Tons)	23.0	0.04	0.6	18.2	17.2	16.6	16.5	18.7	55.8	20.00	1.00	4 70	90.9	63.5	69.1	74.9	83.7	92.5	94.6	74.9	59.3	43.9	24.5	2000	2.02	4.0.6		Design	Cla (Tone)		13.5	12.1	11.0	10.1		9 5	10.0	36.4	41.1	38.6	44.2	51.4	56.5	62.3	70.7	78.7	80.4	54.8	40.3	29.4	23.7	20.0	17.2	15.1
Htg (Btu	۔		3	0	0	0	0	0			•	> 0	5	> 0	0	0	0	٥	0	٥	0	C		· c		0 0	>		Hfo (Bluin)	(mar) Sur	0	0 (0	•	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ó	0	0	D
al Weather ("F 3B OAWB	, RA 4					.9 49.8	3 49.3						4 1	o,			4 62.8	2 62.2	6 61.5	5 60.7		4 614	5 619		8 8	2 8	ò	Typical Weather (°F)	B OAWR	1			•			4		3 44.7	6 46.2		0 49.7	3 51.0	3 53.0			7 55.3				9 56.0		3 53.6		6 49.7
September Typical Weather (*F) Hour OADB OAWB	1	- 0	76 7	3 95	4 54.0	5 52.9	6 52.3	7 52.1		90		2	2.50	72 67	13 71.1	14 73.6	15 74,4	16 74.2	17 73.6	18 72.5	19 71.1	20 69.4	21 67	22 65.4		24 811		October Typics	Hour OADB	i	1 51.3	2.04	3 47.6	46.	5 45.5	6 45.2			9.64	10 52.6	11 56.0	12 59.3		14 64.6								22 58.3	23 56.0	24 53.6

TRACE® 700 v6.3.3 calculated at 08.41 PM on 01/04/2018 Alternative - 1 System Load Profiles report Page 5 of 12

	V Clar (Tone)	(8)(1)(8)	0.0	0.0	0.0	0.0	0.0	0.2	0.5	20.8	12.1	0	3,5	0 4	17.4	a	. c	0.00	20.0	0.0	- 6	50.3		20.0	2,4	0.0	2		Clg (Tons)	00	0.0	0.0	0.0	0.0	00	0.0	12.0	6.6	0.0	1.7	4.6	6.7	7.8	9.6	10.5	1.5	3.7	0.5	0.0	0.0	0.0	0.0	0.0
3	Monday		-35,946	-36 161	-38,107	-42,439	-36,074	-35,343	-24,595	-26.767	-8.503	-23 957	-17 278	100	c			> <			> 0	7 37 1	10.17	20,070	-30,678	31,638	-02,00	Monday	Htg (Btuh) C	i	-133,717	-154,623	-154,625	-174,682	-157,223	-164,284	-72,627	-102,112	-109,161	-41,841	-30,260	-24.909	42,323	-21,450	-16,597	-20,836	-33,241	-29,773	44,834	-56,205	-72,053	-91,176	-114,348
	y Gla (Tone)	(a) (1) (a)	0.0	0.0	0.0	0.0	0.0	0.2	0.5	2.3	3.7	28	12.2	13.8	15.5	4	2 2 2	20.7	22.0	200	0.00	7.5	2 4	9.0	3 C				Clg (Tons)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	2.5	4.5	5.2	5.3	63	7.0	3.7	0.5	0.0	0.0	0.0	0.0	0.0
i je	Sunday Htn (Btuh)	(inch Sir	-35.946	20.101	-38,10/	42,439	-36,074	-35,343	-24,595	-26,767	-18,143	-13 926	-12.318	-6.428	0		• =					1 247	10,14	20,107	24,620	25,030	10410		Htg (Btuh)		-133,717	-146.409	-162,247	-164,287	-167,190	-154,006	-163,512	-126,722	-98,928	-35,430	-28,618	-24,603	41,568	31,399	-33, 194	-39,305	-33,241	-29,773	44,834	-56,205	-72,053	-91,176	-114,040
ž	ay Cla (Tons)	(allo 1) Rio	0.0	0.0	0.0	0.0	0.0	0.5	0.5	4.	2.7	9.9	10.9	12.3	14.0	14.7	16.3	19.5	203	16.2	10.0	7.1	- 0		÷ u	5.0		ay.	Clg (Tons)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	2.5	5.5	5.2	5,3	6.3	0.7	3.7	0.5	0.0	0.0	0.0	0.0	2
oy ilidir Sahimday	Hta (Bhuh)	(1000)	-35,946	-30,101	-20,10/	42,439	-36.0/4	35,343	-24,595	-26,767	-18,143	-13.926	-12,318	-6,428	0	0	Ç					-1317	17 707	30.678	24,070	-25.281	Columba	מומר	Htg (Btuh)	-128,711	-133,784	-146,409	-154,625	-164,287	-157,223	-154,307	-151,853	-134,931	-93,52/	44,274	28.618	-24,603	41,568	-31,389	-33,194	-39,305	-33,241	-29,773	44,834	-56,205	55,175	444.949	5+5·F
	Cla (Tons)	/200	0.0	0.0	3 6	0.0	0.0	0,2	0.0	6.0	14.0	9.2	13,3	14.9	17.4	18.8	21.6	26.3	27.6	16.1	10.3	5 °C	· «	2.6	1 0	0.0			Clg (Tons)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	20.00	0 !	<u>-</u> :	14	201	800	g.6	10.5	5.5	3.7		0.0	0.0	0.0	0.0	2
Model	Week. Hta (Btuh)	20.004	-55,85	20.70	00,00	20.493	-35,17/	-24,529	-23,90/	-26,799	-24,162	-17,121	-17,315	-1,093	0	0	0	0	0	0		-1.317	-17 707	-30,678	34,638	-30.984	Weekday		Htg (Btuh)	-113,673	-129,667	-132,507	-153,738	-149,656	-162,653	-149,722	-147,108	-87,780	73,837	-31,461	-29,834 0,001	-24,997	-41.240	570,02-	-16,597	20,836	-33,241	-29,773	44,834	-56,205	-12,000	114 346	21.2 F
Ę	Cla (Tons)	7.0	† C	P 4	7 4		4. 4		Ø. I	6.	19.5	16.1	24.4	30.8	35.6	42.4	50.1	57.3	55.4	32.2	20.6	13.1	76		4.4	8			Clg (Tons)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	910	7:0	0 1	0. 4	- 1	18.7	27.0	50.5	80.8	D 4	1.67	- 4	0.0	0.0) c	9 6	2
Decion	Hta (Btuh)	000.00	087,87-	044.42	20,02-	20,00	D 00'.'-	-10/88	-14,448	-12,989	4,866	-13,633	0	0	0	0	0	0	0	0	0	0	c		-13 004	-22,777	Design		Htg (Btuh)	-68,089	-74,581	-88,235	-100,631	-97,077	212.00	//6/66-	-92,039	010,10	0/7/47-	0.4.01	7 0 0	ارد در ا	> 0		> 0	> 0	0 0	000	50,000	-57,191	-07 100 62 001	-70,963	200
eather (°E)	OAWB	24.0	9 6	0 0	5 6	0.20	0.0	20.0	200.0	38.8	40.3	418	43.0	43.6	4.1	43	7.44	44.6	44.4	44.1	43.5	41,3	38.9	36.5	34.2	32.5	sather (°F)	2000	CAWB	19.6	 	17.7	1/3	6.7	20.00	4.02	0 17	24.0	0.00	7000	20.00	20.0	0 5	35.0	32.2	0 t	51.5	0.10	24.6	27.0	22.5	216	:
Tvnical Weather (°E)		0 FC	200	2.5	5 2	5	9 0	200	0.00	40.9	42.9	45.0	46.9	48.5	50.0	51.1	51.8	52.0	51.6	50.3	48.3	45.7	42.9	40.1	37.6	35.6	Typical Weather (°F)	200	OADB	22.0	20.5	19.6	193	0.00	20.0	22.0	20.00	20.1	30.0	20.00	200	7 00	40.6	5.00	37.0	2.00	34.0	9.00	0.00	20.00 40.00	26.1	23.0	i
November	Hour		- c	1 0	•	.	D 6	9 10	- 0	x 0 (o .	9	=	12	5	4	5	16	17	9	19	20	2	22	23	24	December		Hour	•	7	77	4-4	0	۰ ۱	~ 0	0 0	p 5	2 7	- 5	7 5	2 3	ţ	<u>.</u>	<u>.</u>	- 5	<u>o</u>	<u>n</u> ç	3.5	7 %	12	2 72	

/ Clo (Tope)	(SIOI) BIO	0.0	0	0	9 6	0.0	0.0	0.0	0.0	6.0	7	0	200	200	0 1	5.0	0.	2.2	7.1	9.6	2.3	ì	9 6	9 6	9.0	0.0	0.0	0.0		Cla (Tons)	00	0.0	9 6	200	3.0	30	9.0	5 7	2.7	+ 0	9.0	200	2 4	5 1	6.7	ر م		15.6	10.1	0.0	0.0	0.0	0.0	0.0	0.0
Monday Htm (Rtub)		-173,775	-182 285	187 832	102,001	100,04	-180,113	-193,233	-188,391	-343,637	-376,013	445 137	217 000	107.00	000,701-	-107,989	-105'SD/	-111,301	-116,022	-93,856	45.621			5 6	> 0	٥,	0	-2,254	Monday	Hta (Btuh)		2000	118 644	124 720	130 743	144.018	148.041	338 287	270,507	207 000	250,448	4E0 E74	10,01	04A' /A-	400,143	-108.980	-94,033	46,567	-56,544	0 (0	0 (0	0	0
ay Clo (Tons)	600	0.0	00	0		9 6	0.0	0.0	0.0	0.0	0.0	0.0		0 0	5 6	200	0,0	0.0	0.0	0.0	0.0	0	9 4	2 6	9 6	9 6	0.0		Æ	Clq (Tons)	00	9 6	9 6	0		9.0		200		0.0	2 6	200	3 6	0.0	3 6	0.7	20.0	e 1	5.1	80 t	2.6	7.5	ر ان	 	Ç.
Sunday Htg (Btuh)	(inch St.	-148,728	-161.579	-173 510	470 774	100 500	102.303	-180,946	-178,497	-172,277	-154.081	-122 399	103 710	80 141	100	010.07	667.00	-29,484	-22,378	-22,465	-25.405	-29.805	24.750	27.73	1000	-100,314	-128,298	960,961-	Sunday	Htg (Btuh)	-21 471	47 681	-03.672	102 080	100,53	118 427	-122 608	-127 718	-111 758	103 857	85,008	70,536	040	000 TO	-20,10	204,0	766,9-	000,0	-9,030	-12,161	-16,303	-20 584	-24,834	-30,019	-00,000
rday Clo (Tons)	(20.) 815	0.0	0.0	c	0	9 6	9 6	9 6	0.0	00	0.0	0.0	0	200	3 6	200	0.0	0.0	0.0	0.0	0.0	0.0		2 0	9 6	000	0.0		day	Clg (Tans)	6		30	c	000	200	200			36	000	300	9 6	900	000	9.0	000	9.0	000	6.0	6.7	9.1	c .		D.
Saturday Hta (Bluh) C	(man) C	-7,024	-28 742	-43 40B	52 373	72 676	0000	960'69-	-100,098	-106,266	-95,260	-74 941	-70 577	81 581	200	20,900	000	-15,743	-10,596	-12,795	-14 766	-17.226	-10,748	22 000	21,002	080	427,283	817,401-	Saturday	Htg (Btuh)	c	-1 534	5 298	-11 975	-26 586	-35 716	42.258	-54 922	54 342	42 245	35 408	-32 371	27 223	18. 25.	10,207	200	1,739	040,1-	C42,2-	710,9-	-9.450	-11,027	-12,475	210,41	010,01-
day Clo (Tons)	, , ,	0.0	0.0	00	0	200	200	0.0	0.0	0.0	2.9	0.0	00	4.5	9 1	, or	9 0	0.0	9.6	11.6	4.2	0.0	00		9 0	9 6	0.0		day	Clg (Tons)	0.0		0	0.0	0	0	0	00	4.0	20		0	2.2	2.7	ç	7 -	20.7	7.0	77.7	9.0	0.0	0.0	0.0	0.0	2.0
Weekday Hta (Btuh) C		0	0	c	_		0 0	000	-3,20/	-356,014	-185,138	-171,838	-56.191	27 909	200	37 330	000.00	-39,072	-32,242	-33,668	-11,162	0	C		0.0		200	107.2	Weekday	Htg (Btuh)	0		0	0		0		-147 698	-125 684	-88 690	-25 564	-13 278	28 207	20.00	15,023	7000	0 0	200	4ca,ol-	5 6	2 6	> c	0.0	> C	>
Design h) Cla (Tons)		0.0	0.0	0.0	0	0	9 6	2.6	2.	4	2.7	5.8	12.4	17.3	2.5	25.1	7 7 7	51.7	39.5	42.1	20,9	0.0	0		200	200	0.0		ign	Clg (Tons)	0.0	0.0	0.0	0.0	0	0.0	0.0	80	141	13.3	18.4	24.5	20.5	20.03	717		20.7	0.00	38.0	9.5	4.0	200	0.0	9.0	9
Des Hta (Btuh)		-344.264	344,264	-236.755	-254 098	-238 955	220,000	000,877-	-232,318	-163,390	-172,084	-99,991	-109 170	-34 595	1 673	10.		۰ د	۵,	0	Ó	-344,264	-344 264	328 335	217,713	200,700	200,432	10,002	Design	Htg (Btuh)	-344.264	-344 264	-344.264	-344 264	-344.264	-342,833	-336.944	-105 352	-125,000	-102 624	-61 481	-52.713	-34 459	-23 175	200		-	0 0	2000	202,014	711 607-	-200,283	-200,253	264,530	-204,024
Typical Weather (°F) OADB OAWB			18.5	-					7.62					313													70.7	2	ş	3 OAWB		27.0					24.5					32.6			37.5							30.0 24.0		9.26.4 4.76	
	8	20.5	20	20.	20.5	21.5	300	22.5	7.4.7	7,6	28.	3	31.5	33.5	37.8	35.8	900	200	300	36.2	35.0	33.2	30.5	283	25.8	200	21.5			OADB	31.3	29.6	28.1	27.0	26.3	26.1	26.4	27.4	28.9	30.8	33.1	35.4	37.7	39.6	411		42.4	42.5	146.6		1.0	20.00	37.75	23.2	3
January Hour		-	N	6	4	ıc	o c	40	~ (00	o	5	=	12	7	4	<u> </u>	2 5	2!	1	9	19	20	7	3	3 8	3 2		February	Hour	-	2	ო	4	Ç	9	7	00	ð	9	11	12	Ţ.	4	, t	ā	2 ₽	- 4	9 5	<u> </u>	3 5	<u>1</u> 8	35	3 2	i

TRACE® 700 v6.3.3 calculated at 08:41 PM on 01/04/2018 Alternative - 2 System Load Profiles report Page 7 of 12

BUILDING COOL HEAT DEMAND

By Trial

day Cla (Tons)		9.	9	.5	1.5	1.5	7.		12.1		200	5.5	- 0	0 0	0.0		6.21	16.9	22.0	16.4	0.0	0.0	0.0	0.0	200	0.0			Cig (Tons)	1.6	1.6	1.5	5.	5.	4	5.5	19.2	7.7	÷ 0	0.0	200	20.2	303	49.4	9	39.7	0.0	0.0	0.0	0.0	0.0	0.0
Monday Htg (Bluh) C		-12,640	-15,365	-16,965	-18,418	-19,711	-50,170	98 16-	-365.374	-335 112	358,230	178 621	120,031	120,493	-90,013	080,27	4/1/00-	-34 458	-23,083	0	0	0	0	c	. =	00	Monday	15 (F) (F)	(DING) BILL	0	0	0	0	0	0	0,100	-2/4 992	-96,887	40 554	50,51	80		c		• 0	0	0	0	0	0	0	n
day Clg (Tons)		90	9.1	.5	5	10.	1.5	ıc	10	1.7	. 0	2.5	ic	2.0	0.0	n c	0,0	4. O	ያ ያ	6.0	5.0	3,5	2.1	1.7	1.7	17	· veb	Cla Clans	olg (Tons)	1.6	9		5	t.	c.		9.		2 6	1.0	1 4	- 80	62	, c	1.4	10.1	12.1	8.6	4.0	7-1	7:7	9
Sunday Htg (Btuh) (-3,8/3	4 294	4,707	-9.234	-10.358	-28 597	-57.970	-57 962	-55 623	46.746	35,334	24,627	7 4 3 7	,	> 0	> 0	٠ د	0	0	-1,577	-2,370	4.586	-5,255	-8.271	-10,228	Sunday	4.40, 27	(inia) fiiu	0	0	0	0	0	0	0 0	-	> <		•	• •	0	-		0	0	٥	٥	٥	١٥٥	0 (>
day Clg (Tons)		2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	00	200		96	9 0	9 6	200	9.0	9.	4.7	2.7	4.7	3.2	6,	1.6	1.7	16	day	Cla (Tone)	Cello I Gillo	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0 0	2.0	90	90	0	7.8	7.3	ur.	7.5	7.2	4.8	6.4	3.2	1.7	7:1	J.,
Saturday Htg (Bluh) C		9	0	0	0	-1,304	-9.265	-16.376	-14.366	-11.432	12 776	902 6-	101	1,5	-	0 0	0 0	> (0	0	0	0	-2,344	-2.711	-3.071	-3,467	Saturday	Life (Brith)	(imid) fairi	0	0	0	، د	۰ د	9 (> 0	> c	- C				0	0	0	0	0	0	0	0	0 (0 (>
day Clg (Tons)		0.0	0.0	0.0	0.0	0.0	0.0	0.0	16.8	7.1	2.6	7.3	, v	100	18.7	100	2.50	C.4.2	30.5	22.9	0.0	0.0	0.0	0.0	0.0	0.0	veb	Cla (Tone)	Cello I Sico	0.0	0.0	0.0	4.	1.5	c'.	6.5	200	20.0	2.50	200	34.0	39.8	47.7	51.0	53.6	40.5	0,0	0.0	0.0	0.0	0.0	9.
Weekday Htg (Btuh) C		0	0	0	0	0	0	0	-98.030	-34,993	41 785	-25.408	-15,333	20,0	• •			> 0	5	0 (0	0	0	0	a	٥	Weekday	Hts (Rhib)	ring (cimin)	0	0 (-	-	0	> 6	46 773	1 462	564.	• =		0	0	0	0	0	0	0	0	0	D	0	>
ign Clg (Tons)		0.0	0.0	0.0	0.0	0.0	0.0	0.0	10.1	22.5	20.1	27.4	33.0	30.0	44.0	ž.	2.0	0 0	6.70	ວຸເລ	0.0	4.3	0.0	0'0	0.0	0.0	ign	Clo (Tone)	(elle) Sie	0.0	0.0	0.0	0.0	0.0	0.0	2.5	10.0	9 00	44.1	49.8	54.2	59.1	67.4	77.3	83.0	68.1	2.3	14.2	4,4	0.0	0.0	
Design Htg (Btuh) C	7007	-344,204	344,264	-344,264	-344,264	-344,264	-331 768	-316,034	-56.415	-65.747	-38.824	-34.459	-10.583	2			•	> 0	> 0	9	-307,546	-215,052	-211,642	-226,579	-231,306	-234,475	Design	Hfo (Rhih)	(ma) fam	-344,264	-344,264	344,264	-338 138	-322.249	250, 939	24 450	45.505	200		c	0	0	0	0	0	0	-272,296	-183,821	-142,441	-156,752	-175,616	-1/4,400
Typical Weather ("F) OADB OAWB	0,70	9,	33.4	32.4	31.2	30.7	30.2	30.2	30.5	31.5	32.6	33.6	35.3	36.8	38.4	30.5	45.5	2 5	40.7	5.5	50.3	40.2	39.7	38.7	37.4	36.0	Typical Weather (*F)	OAWR		42.3	0.14	. 0.0 . 0.0	200	33.0	200	20.0	39.04	46.4	48.7	49.8	49.5	49.3	48.4	47.3	46.4	46.1	46.4	45.8	6.44 0.10	\$0.0
Typical V	1	30.7	37-1	35.7	34.5	33.7	33.1	32.9	33.3	34.3	36.0	38.0	40.3	42.6	44.6	48.3	47.3	1 5	- 1	67.5	46.9	46.1	44.9	43.5	41,9	40.3	Typical V	OADB		48.3	46.6	10.0	4.0	45.0	4. 0.74	5.5	7	48.3	52.1	55.8	59.0	61.2	61.9	61.7	61,2	60.2	59.0	57.5	55.8	0.40	52.7	30.5
March Hour	•		2	3	4	2	g	7	۵	o.	10	-	12	i G	4	. t.	2 2	1 ⊆	- 5	2 5	<u> </u>	20	21	55	23	54	April	. E		← (N	,	4 L	0	10	~ 0		, t	÷	12	5	14	5	16	17	48	19	50	7	88	3 2	5 7

TRACE® 700 v6.3.3 calculated at 08.41 PM on 01/04/2018 Alternative - 2 System Load Profiles report Page 8 of 12

	iday Clo (Tons)	(SIO) BA	2.5	2.4	2.3	2.0	1.9	5	2	7 1	514		20.5	. 00.	52.5	50,0	9.5	74.5	80.2	82.4	67.2	0.0	2.1	D. C	0.0	0.0		7	Cig (Tons)	2.7	272	7 0	2.0	2.0	2.1	89.8	68.2	4.00	- 66	200	78.6	85.2	91.2	93.4	76.3	3.1	3.1	e c	0.0
•	Monday Htg (Btub)	hamal Sur	0	0	0	0	0	· C	· c			•	> 0	> 0	-	50	> 0	5	0	0	0	0 (0 (0	٥ د	-	Monday	(Q, (Q)	(initial filtre	0 (0 0	,	00	0	0	0	0 0	> c	> c	o c		. 0	0	0	00	0	0	00	0
	Sunday h) Clo (Tons)	(august Big	2.5	2.4	2.2	19	6.	6	20	2.1	. 6	0.00	9 0	0.5	2.4	. ć	0 0	13.0	19.5	28.6	¥ 8	31.2	21.9	0,		8.C		Cla (Tone)	Call (lons)	2.7	0.7 0.4		20	2.0	2.1	2.5	3.0	o ç	12.0	12.4	12.5	17.7	30.1	38.0	38.5	28.6	18.6	4.0. 4.0.	2.8
å	Hta (Blufn)	(mar) 6:	0	0	0	0	0	0	•	c			> <	5 6	> 0	> 0	3 0	> 0	-	> c	0 0	0	> 0	0 0	9	00	Sunday	Hts (Brit)	(imid) fill	0 0		•	0	0	0	0	0	> <	0.0	• =	0	0	0	0	0 0	00	ò	00	00
1	odiuiday ih} Clo (Tons)	(auto 1) Bio	0.0	0.0	0.0	0.0	0.0	0.0	00	8	· ·	. 6	i r	9	. n	5,1		D. C.	2.3	7.07	4.05	20.5	0.17		4. c	2,0		Cla (Tone)	(8101)80	0.0	200	200	4.3	2.6	5.6	2.7	9 17	, h	10.7	0	9 00	11.6	29.5	4.55	33.00 20.00 33.00	26.4	17.0	ဆုံ ရ ကို ရ	2.8
2	Hta (Bfuh)	franch Ba	0	0	0	0	0	0			0	• =	• •	0 0	> 0	00		> 0	-	5 6	0 0		5 C	> C	5 6	00	Saturday	Hfo (Rf. b)	(mag) Sin	00	> C	0 0	0	O	0	0	ə c				0	0	0	0	0		0	00	0
Vinetam:	Cla (Tons)	()	2.1	2.0	2.0	6.	6.	6	2.0	85.8	64.0	53.1	23.5	3.64	50.0	4.10	7 7	4.0.4	7 5 6	93.1	0.00	2.5	- 0	6.0	9 6	000		Cla (Tone)	(alb) (B)	, io		200	2.0	2.0	2.1	92.3	9,87	4.00	70.5	75.1	79.2	85.8	91.7	83.8 41.9		3.5	3.1	 	0.0
9 4 4 4	Hta (Btuh)	/	0	0	0	0	0	0	0	0	0				.	0 0	0 0	0 0	> 0	0 0	00	2 6	.	5 C	.	00	Weekday	Hto (Bhith)	(mar) Sin	00	c	0	0	0	0	0	5 C	•	• •		0	0	0	00		0	0	00	0
c c	Cla (Tons)	/	0.0	0.0	0.0	0.0	0.0	0.0	6,1	966	86.6	80.1	710	78.0	2 6	95.4 85.4	200	- 6	100.0	2.00	7.05 2.7	5.5	1.07	. «	9 0	2.2	Design	Cla (Tons)	/august Ban	0.0	200	0.0	0.0	4.5	4.4	100.0	900	2.50	. 40 5 K	87.0	806	98.0	100.0	99,4	90.4 0.4	26.3	21.4	74.5	2.9
č	Hta (Bfuh)		344,264	-338,124	-297,958	-230,798	-195,791	-181 341	-141,791	0	0	Ģ		• •		0 0	o c	o c	5 6	> c	-245 R33	125,033	02.410	75,410	10,44	-50,855	Dei	Hta (Btuth)	(mar) Sur.	-314,921	-173.245	-156,204	-148,960	-142,836	-105,239	0					0	0	0	0	230 288	-119,039	-67,177	-21,991 -9,676	-680
(To) so discolation (To)	OAWB		61.3	60.0	58.1	56.9	56.0	55.2	55.1	55.1	55.3	56.2	58.4	1 1 2	62.5	85.25 8.75 8.75	200	99	8 9 9	000	65.7		2,73	2.09	85.1 1.0	63.1	Typical Weather ("F)	OAWB		62.9	000	59.4	59.0	58.7	59.1	59.9	63.0	85.4	67.4	69.1	70.2	70.3	70.0	69.7	0.8.0	67.6	68.0	67.4 65.8	64.5
Tuning	OADB		64.7	62.6	60.7	59.2	58.1	57.4	57.1	57.8	59.7	62.6	66.2	100	2,50	78.5	707	2007	70.0	70.0	76.9	20.4	100	2.5	600	6.99	Typical W	OADB		66.7	63.4	62.3	61.6	614	62.0	63.8	700.7	800	77.2	80.0	81.8	82,5	82.2	0. 0.	70.0	77.2	75.2	0.07	68.7
Mon	Hour		-	2	ო	4	ĸ	φ	_	00	φ	10	; =	12	1 4	2 7	Ť.	2 4	2 Ç	- 0	2 4	2 5	3.5	3 2	3 8	2 2	June	Hour		- ^	1 (7)	4	9	9	٠,	∞ (n ⊊	2 =	7	5	4	15	9	_ 0	<u> </u>	8	7	38	24

nav Tav	Clg (Tons)	3.5		000	ic	. 4	2,5	t * c	# 9 e	72.7	979	0 0 0	99.9	7.00	0.07	0.00	3 5	7 30	4 6	7.10	9 6	0.0			0.0		Clo (Tone)	(2013)	7.5	8.2	, c	4.5	23	2.3	94.1	66.5	60.3	9.09	2.5	77.1	85.4	90.3	92.6	76.7	0.0	250	1.0	0.0
Monday	Htg (Btuh)	0	• •										> <	0	-			5 6	5 6	5 c	> 0		5 C	> C	00	Monday	Ha (Btub)	/ man An -	00	0 0	oc	0	0	0	0	0		> <	00	P	0	0	Q I	0 0	-	. 0	0	00
dav	Cfg (Tons)	3.2		0.0	ic	2.6	10	7 6	r u	2,0	100		5.6	2.5	4.00	5 5	30.0	30.05	0.00	0 00	900	20.00	10.0	3 4	. 4 		Cla (Tons)	(SIGE) RIO	 	2.0	25	2.4	2.3	2.3	2.4	, , , , , , , , , , , , , , , , , , ,	0.0	- 4	9 60	15.2	20.7	32.0	39.5	363	2.5	15.1	6.6	7.6 4.3
Sunday	Htg (Btuh)	0			, c					o c	• •		•	- 0			0 0		•			•	-	> <	•	Sunday	Hta (Bhuh)	(and) Su	00	0 0	0	0	0	0	0	0	0	00	• 0	0	0	٥	٥	-	0 0	٥٥	0	00
Saturday	Clg (Tons)	0.0		30	2.5	2.5	200	2.5	2.0		2 5	o o		- 0	n c	1.01	30.5	200	9.7.0	25.7	7.70	18.0	5.5	20	9.6	Saturday	Cla (Tons)	(21) 81)	0.0	90	0.0	0.0	5.2	2.8	2.7	2.0	7 C	2,5	112	11.9	14.4	29.0	36.4	38.9	24.4	15.0	9.6	7.5 3.2
Saft	Htg (Btuh)	0								• •		-	0 0	0 0	00		0 0	o c	0 0	0 0	0 0	0 0	0 0	0 0	00	Satu	Hta (Btuh)	(inc.) 6	00	•	0	0	0	0	0	0	5 6	9 0	0	0	0	0 (0 (> C		0	0	00
cdav	Clg (Tons)	2.2	2.5	2.1	21	,	2	,	- a	86.7		9.5	67.3		2.57	84.5	5.5	95.7	. 6	2 0	, r	9 60	, ,	0	0.0	dav	Cla (Tons)	(min c) Gin	Vi 0	2.5	2.2	2.2	2.1	2.1	94.3	78.0	02.0	66.5	72.6	77.9	86.3	91.5	93.7	7.7	2.0	2.0	1.0	0.0
Weekday	Htg (Btuh)	٥		c			· c		o C	0 0	· c	o c) C	o c	00		0 0		0 0	· c					0	Weekday	Hta (Btuh)	(1)	00		0	0	0	0	0	00	•		0	0	0	0	0	> <	0 0	0	0	00
ian	Clg (Tons)	0.0	00	0	3.5	2.4	2.6	42	100	99.3	908	86.8	87.3	2 6	95.1	6	1000	0.00	98.7	117	25.7	20.5	143	. cc	4.1	la	Cla (Tons)	1	0.0	2.5	2.5	2.6	2.6	2.7	100.0	98.6	93.0	5.58	89.1	94.0	99.3	100.0	5.55	20.5	2.5	13.7	8.5	2.7
Design	Htg (Btuh)	-276.517	-183 808	-149 748	-132 580	-128 864	-116 284	-84 160	5			· C				· C	• 0			-230,602	-115 954	46.262	-13,308	-5.689	-683	Design	Hta (Btuh)	100	-264.453	-151,540	-138,105	-135,155	-122,933	-101,691	0 1	00	•		0	0	0	0 (3 (0 -232 511	-123 767	-67,748	-34,570	-12,863 -5,402
Tvoical Weather (°F)	OAWB	68.0	66.7	848	63.4	62.4	819	61.0	2,5	614	62.0	63.4	65.5	67.4	69.4	70.5	8 7	2	2	12.	72.2	73.2	72.9	717	669	Typical Weather (°F)	OAWB		63.5 83.5	62.0	2.09	59.3	59.0	58.9	58.0	59.3	81.8	64.1	67.0	68.8	8.69	8.69	66.5	4.00	70.5	72.9	71.8	69.4 67.3
Typical W	OADB	71.5	69.4	67.6	98	2	64.2	100	F4 4	65.8	67.9	70.6	73.6	76.6	79.3	2.5	8	833	83.1	20.00	812	7.67	77.8	75.8	73.6	Typical W	OADB	1	0.1.0	999	64.9	63.7	62.9	62.5	63.4	65.5	726	76.8	80.7	83.9	86.0	86.7	9 0	7 CP	82.8	80.7	78.4	76.0 73.4
July	Hour	-		ı en	4	· LC	ų (¢	^	- α	· თ	10	-	12	1 6	4	10	5	17	. 62	5	2 5	2.5	55	23	24	August	Hour		- 0	ım	4	S.	9	7	x	an É	= =	12	ί.	4	15	φţ		<u>.</u>	25	7	22	88

TRACE® 700 v6.3.3 calculated at 08.41 PM on 01/04/2018 Atternative - 2 System Load Profiles report Page 10 of 12

	day Cla (Taxa)	Cig (Tons)	6.	0		9 00	0 0	9 0	- -	24.4	21.0	200	24.5	0.0	5.75	90.0	2,4	5.9	27.0	2.5	30	9 6	90	200	3 6	88		Clo (Tone)	oig (Tons)	1.8	17	1.7	16	1.6	16	1.6	24.1	7.7	¥ 6	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	24.4	29.4	37.0	47.0	51.4	36.4	200	0.0	0.0	0.0	0.0
1	Monday	(Dimi)	0			• •	0 0	9 6	o c	21 650	000) C	> C		> 0	9 6	0 0	0 0	•			• •				0	Monday	(4) (4) (4) (4) (4) (4) (4) (4) (4) (4)	(imid) fiir	0	0	0	0	0	0	0	-292,216	-137,149	58.445	7 237	į o	• 0	0	0	0	00	> C		o	P	o
,	day Cla (Tens)	Cig (Toris)	2.2	0	σ.	, c	9 00	2 0	, <u>, , , , , , , , , , , , , , , , , , </u>	- α	200	2 6	3 6	j 0		2.7	- 1- 7		, e	20.00	- L	. c	, c	9 00	2.4	, c,		Cla (Tone)	call (TOTIS)	8.	1,7	1.7	9	9.	6.	æ.	9	- c	200	9.0	2.7	28	8.2	7.9	7.8	5.9	2,0	2.0	1,9	1,9	8
1	Sunday	(Inita) (BILLI)	0	-	-									•	0 0	o c	0 0		0.0	00	• 0		00	•	o C	0	Sunday	Hfr (Rfuh)	(inita) fiiri	o	0	0	0	0	0 (٥.	5	9 6				0	0	0	0	0 0	9 6	0	0	0	0
	Saturday (h) Cla (Tone)	Cig (1018)	0.0	00	00		000	000	000	000	000		200	9.0	, 0	7 7	7	80	7	13.2	11.2	o o		000	2,6	2.5		Cla (Tons)	(SIGL) SIG	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	9 0	0.0	6	2.4	4.1	10.9	6.7	2 4	4.0	2.0	1.9	1.9	80
Ē	Satura (Patrik)	(uma) filu	0	c	c				00	0	• •		· C		• <		• =	0 0			0	c		, c		0	Saturday	Hta (Birih)	(ima) Si	0	0 (0	0	0	0 (5 6	> 0	> 0		c	0	0	0	O I	0 6	- 0	00	0	0	0	D
à .	weekday	(SIIO I) filo	0.0	0.0	C	00			000	61.1	55.9	413	416	49.8	2.0	80.2	63.0	67.0	68.0	53.1	0.0	00	0.0	0.0	0.0	0.0	cdav	Clo (Tons)	(SIGN) BIO	0.0	0.0	0.0	00	0.0	0.0) (a)	55.50	93.4	243	29.5	33.1	36.8	46.3	50.7	52.6	37.50	000	0.0	0.0	0.0	0.0
:	Wee	(ima) fin	0	C	0	0	· C		0	. 0	0			· c		· c	· C	0	0	0	0	0	0	0	0	0	Weekday	Hta (Bluh)	6000	0 (0 (٥.	ا د	۵ (> c	2	-8,5 24	2		0	0	0	0	0	0	90	0	0	0	0	o
	Design h) Cla (Tone)	(ello) filo	0.0	0.0	0.0	0.0	00	0	, r.	100.0	82.9	65.5	62.6	68.5	73.0	77.5	85.8	94.2	92.6	75.9	0.0	6.4	-	0.0	0.0	0.0	ign	Cla (Tons)	(min i) Sin	0.0	0.0	0.0	0.0	0.0	0.0	2 5	80.Z	0.04	50.6	5.43	58.5	63.5	71.4	79.0	90.08	2.0	1.2	0.0	0.0	0.0	0.0
ć	Hfs (Rhih)	(imid) Bir	-318.523	-275 815	-215.217	-201 008	-193,175	180,303	-178,473	0	0	0	0			0		0	0	0	-299,648	-163,190	-122.087	-113.586	-120,525	-119,078	Design	Hfa (Btuh)	í Barrio	-344,264	407,445	-327,670	520, 105-	709,667-	-231,281	77,112-	20	, c	0	0	0	0	0	0 (-	-334 080	-254 109	-174,272	-175,130	-183,814	-183,121
	September (ypical weather (r) Hour DADB DAMB		55.1	53.2	51.6	50.7	49.8	49.3	48.8	49.5	51.2	53.2	55.9	58.6	609	62.2	62.8	62.2	61.5	2.09	60.4	614	61.9	60,3	58.8	57.2	Typical Weather (°F)	OAWB		47.4	0.04 0.04	0.4	0.0	42.8	42.0	2.5	1 4	47.8	49.7	51.0	53.0	54.4	55.4	55.3	55.0	55.6	56.0	55.3	53.6	52.0	9.6
	y lead y		59.0	57.0	55.3	54.0	52.9	52.3	52.1	52.9	55.3	59.0	63.2	67.5	71.1	73.6	74.4	74.2	73.6	72.5	71.1	69.4	67.5	65.4	63.2	61.1	Typical V	OADB		51.3	446.3	47.0	010	45.5	4.04	10.7	5.04	52.6	56.0	59.3	62.3	64.6	66.2	299	900.4	6.00	62.6	60.6	58.3	38.0 0.0	33.5
	Septembe	mon.	-	2	က	4	ĸ	œ	^	00	6	10	£	12	į.	4	15	16	17	18	19	20	2	23	ន	24	October	Hour	,	- 0	7 6		4 (s c	10	~ 0	00	, C	Ξ	12	13	4	ا	19	- 0	ō <u>ō</u>	20	21	22	23	47

TRACE® 700 v6.3.3 calculated at 08.41 PM on 01/04/2018 Alternative - 2 System Load Profiles report Page 11 of 12

>=	Clg (⊤ons)	5.5	1.5	1.5	5.	9.	9.	1.6	16.3	4.0	0.0	4.0	6.6	6.7	11,0	15.3	19.8	20.0	10.5	0.0	0.0	0.0	0.0	0.0		day	Clg (Tons)	00	0.0	0.0	0.0	0.0	0.0	0.0	5.7	0.0		90	2.5	4	2.4	8.3	9.6	6. G	200	0.0	900	0.0	0.0
Monday	Htg (Btuh)	-17.181	-25,821	-69,657	-73,577	-78,109	-91,548	-90,099	-336,287	-331,126	-311,969	-157,031	-97,919	-87,818	-04.415	-45,518	-34,459	-23,646	4,931	0	Q (0	0	٥	5	Monday	Htg (Btuh)	-157.411	-169,699	-178,665	-185,219	-193,044	-197.064	-194,731	-342,458	-377,520	207,083	-166 724	-109.080	-106,280	-112,377	-116,120	-94,733	44,729	> c	00	0	0	0
dav	Clg (Tons)	1.5	1.5	1.5	1.5	9.	9.	, j	7	8,	2.0	2.1	2.3	2,3	Z. Z	3.5	4 4. i	4.7		2.6	00	ب من ز	17	9.	9 [lay	Clg (Tons)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	200	200	0.0	0.0	0.0	00	0.0	0.0	200	90	200	0.0	0.0
Sunday	Htg (Btuh)	4.829	-6,477	-34,578	44,017	-57,417	-67,290	-09.477	440	45,628	-33,627	22,073	12.177	-3,969	> (-	0 (0 (-	0	-3,096	-5,625	-9,861	-12,610	nen'e L-	Sunday	Htg (Btuh)	-132.483	-151 626	-164,892	-171,366	-179,149	-183,338	-183,217	-179,900	-162,189	108 020	979 19-	-77.538	-55.824	-26,260	-21,329	-21,497	-24,187	150,82-	49 927	-83 423	-111,151	-132,749
vebu	Clg (Tons)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5 6	0.0	0.0	2.0	0.0	900	7.7	2.0	1.7	<u>0</u>	day	Clg (Tons)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	9 0	200	0.0	0.0	0.0	0.0	0.0	0.0	9.0	0.0	0.0	0.0	0.0
Saturday	Htg (Btuh)	0	0	0	0	6,278	-19,247	-20,380	-20,911	-12,932	-9 195	061.4-	-3.561	Ţ S	> 0	5 6	90	50	> (5	-1,459	2,290	2,972	-3,661	167.4-	Saturday	Hfg (Btuh)	-5.542	-14 595	-37,383	-46,843	-68,139	-85,346	-98,362	400.000	-100,680	-71 247	-63 531	-52,129	-34,697	-12,656	-9,927	-12,103	-13,869	10,00	-33 337	-63,560	-81,703	-109,229
cdav	Clg (Tons)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	20.	0.1	127	707	9 00	7.02	5.03	787	7.0	0,0	0,0	0,0	0.0	0.0		day	Clg (Tons)	0:0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	N C	90	4	6.6	6.2	9.2	10.5	9.5	m c	200	0.0	0.0	0.0	0.0
Weekday	Htg (Btuh)	0	0	0	0	0	00	0,00	-64,603	40,707	62/1/-	Z8Z,01-	/Z8'LL-	> c	0 0	2 6	o c	> 0	5	5 6	> 0	0	20	0 0	>	Weekday	Htg (Btuh)	0	0	0	0	0	0	2,526	492,294	-183,525	-62 430	-35,220	-22,750	-36,185	-32,684	-28,678	-32,826	-6'/63	o c	00	0	0	0
ig	Clg (Tons)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	290	5 5	21.5 6.15	20.3	5,45 50,00	08.0	. T	0.10	0.00	00.0	4.70	9 6	9 6	9 6	2 6	0.0		E G	Clg (Tans)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6.7	12.7	16.7	20.9	25.0	32.4	38.5	30.8	0.0	000	000	0.0	0.0	0.0
Design	Htg (Btuh)	-344,264	-344,264	-344,264	-340,202	-327,134	-310,884	101,467-	2,7	14/0	-3,780	470	> 0	00	0 0	0 0	.		044.004	222 500	-000,000	270,70	200,302	-254,901	0071447-	Design	Htg (Btuh)	-344.264	-344,264	-344,264	-344,264	-344,264	-342,833	-330,944	420,975	-130,340	-102,448	-58.713	-36,420	-15,619	0	0	> 0	344.264	-344 264	-335,112	-323,199	-313,460	-300,371
Typical Weather (°F)	OAWB	31.6	31.7	81.8	32.5	33.0	30.0	200,	0 0	2.5	4 .	5.0	9.54		7 7		;	1.	107	5.5	- 60	5 0 0 0 0	0.00	34.2		Typical Weather ("F)	OAWB	19.6	18.3	17.7	17.5	17.9	20.0	4 .02	277	26.5	28.2	29.5	30.6	31.5	32.0	32.2	5.0	2 2 5	200	27.8	25.9	23.7	21.6
	OADB	8.3	33.9	7	20.0	000	200	90.0	2.0	47.3	0.00	20.00	4 0 0 0	2.5	- u	20.00	2,72	0.0	200	40.0 7.0 7.0	0.0	46.9	100	37.0			OADB	22.0	20.5	19.6	9 6,0	19.6	20.5	27.0	2.6	28.4	30.8	33.0	34.9	36.4	37.3	37.6	6.75	4.05	33.5	30.8	28.4	26.1	23.9
November	Hour	-	2	, co	4 1	0 0	70	~ 0	00	e Ç	2;	= \$	7 \$	5 2	<u> </u>	<u>5</u> &	2 5		5 5	<u> </u>	3 5	22	3 6	2,53		December	Hour	-	7	m	4	ı,	10	~ 0	0 0	<i>p</i> 5	÷-	12	13	4	15	16	- 5	5 6	2 - 2	21	22	23	24

TRACE® 700 v6.3.3 calculated at 08:41 PM on 01/04/2018 Afternative - 2 System Load Profiles report Page 12 of 12

All hours - Alternative 1

	Unmet							:	:	,	!	1								- Unmet	*
	Clg Load	Ξ	Maximum				ı	 Number of Hours at each Temp Range ("F) 	r 01 H0	ursatee	ich Tem	p Range	(F)				ì	Minimum	Ę	Htg Load	pe
System/Room Description	Hours	Temp	Temp Mo Hr Day	Jay >100	٠.	100-95 9	95-90	90-85 8	85-80	80-75	75-70	70-65	65-60	60-55	55-50	< 50°	Temp Mo Hr Day	율	1 Day		so.
System per Floor 1											i									1	
Zone - A	0	29		Degn	_	0	0	0	0	65	8,312	383	0	0	0	٥	69	-		6	0
Zone - B	o	8		Sun	_	ο Θ	215 1	860	885	_	2,359	0	0	0	0	Q	7.	-	Mon 8	. 5	0
Zone - C	0	92	8	Dsgn	_	0	0	0	0	_	8,416	o	0	0	0	Q	2	-	1 Ds	5	0
Zone - D	0	72	4	Dsgn	_	0	0	0	0		8,760	0	0	0	0	0	20	-	1 Ds	5 6	0
Zone - E	0	1	ឧ	Sat	_	0	0	0	0	_	8,340	0	0	0	0	0	7	-	1 Dson		0
Zone - F	0	72	10 11 E	Dsgn (_	0	0	0	0		7 991	692	0	9	-	Ç	9	-			0
Zone - G	0	78	8	Sat	_	0	0	0	0		8 106			0			3 5		3 6		2
Zone - H	0	6.	49	Dsan		, C					8,684		0 0	, c	> 0		- 6		36	Ę, :	5 0
Zone - I		0.		Dean		, ,		, -	0 0		1000	> <	0 0	> 0	> 0	> 0	2 6	- ,	3	LI.	5 (
Zone		2 0	2 2	200		, ,					500	> 0	> 0	> 0	ه د	۰ د	2 1	_ ,	2	F6	0
Zone - K	•			100						00/00	> 6	5 6	٥ (> (3	0	2	-	<u>.</u>	댦	O
7 2016 - IV	> 0	2 5		100		> 0	> 0	۰ د			0	5	0	φ,	٥	0	73	-	- 5	E.	0
7-9107	9 1	2 1		Sat	_		0	0			0	0	0	0	0	0	73	—	- 0	TE.	0
Zone - M	0	78	24	Sat	_	0	0	0			0	0	o	0	0	0	73	_	1 Dsgn	. =	0
Zone - N	0	6	6	Degn 0	_	0	0	0	o	49	5,995	1,716	0	0	0	0	69	-	1 Dagn	. =	0
Zone - 0	0	92	5	Dsgn 0	_	0	0	0	0	0	6,337	2,423	0	0	0	0	69	_	Dan 1	. =	0
Zone - P	0	28	6	Dsgn 0	_	0	0	0	0	448	8,312	0	0	0	0	0	2		Ded 1	. =	0 0
System per Floor 2														•	,	•					,
Zone - A2	0	78	7 18 5	Dsan 0	_	0	c	c	c		408	353	-	-	<	-	ď	,		,	•
Zone - B2	•	8	1 2				215 1	go	234	1257	0.450	ģ		> 0	,		3 6			F. 1	> <
Zone - C2		4	9 0				2	3	3 9		0,00	> 0		0 0	> 0	> 0	- 1	- •	ngan i	E.	۰.
Zone - D2		2 12							,		0,750	> 0	-	٥ د	> 0	D (2		J S	E .	0
Zone - DZ	> 6	2 6	2 5				٠ د	.	-		3,760	0	0	٥	0	o	2	ς-	1 Dsi	E.	0
22- EC	5 0	e f	<u> </u>					0	0		8,661	o	0	0	0	0	7	-	1 Dsgn	ᄠ	0
2	D (9	= :		_	0	0	0	0		3,038	722	0	0	0	0	69	-	1 Dsgn	Ę	0
Zone - 62	0	77	13		_	0	0	0	0		3,661	0	0	o	0	0	7	-	1 Dsan	. <u>F</u>	0
Zone - HZ	c	28	€	Dsgn 0	_	0	0	0	0		3,760	0	Ö	O	0	0	20	-	1 Ds(, <u>s</u>	_
Zone - 12	0	%	8	Dsgn 0	_	٥	0	0	0		3,760	0	0	0	0	0	2		200		_
Zone - J2	0	28	24	Sat	_	0	0	0	0	10	7.015	Q	0	0	0		2				0
Zone - K2	0	78	7 24	Sat 0	_	٥	0	0	0		7.015	0	0			, ,	2 2		2 5		0 0
Zone - L2	0	28	7 24	Sat 0	_	٥	0	0	0		7 0 1 5	0	0				2 2				0 0
Zone - M2	Ó	28			_	0	0	0	0		7.015				· c						o c
Zone - N2	0	28	9	Dsan 0	_				0		7 088	672			o c	, ,	2 0		560	= 5	> c
System per Floor – 3						,			,		}	1	>	•	•	>	5	-	ŝ	Ξ.	>
Zone - A3	0	92	7 17 0	Dsan 0				0	0		2 999	761	_	-	_	5	9	-	O Dega	9	<
Zone - B3	0	92	4 17			•		505	020	503	3 474	20.5	74		0 0) c	84			. s	> <
Zone - C3	0	75	7 17 0				0	0			8.652	108			o ¢	, –	5 8			2 5	> 0
Zone - D3	0	75									2,715	45	0 0	o c	o c	,	2 6			E. 5	0 0
Zone - E3	0	75	17	Dsan 0							780	2 c			o c		2 0	- T		E. 9	5 0
Zone - F3	0	75	17					0	. 0		7 983	777			0 0	o c	9 6	- +		E 9	0 0
Zone - G3	0	75	17								540	211		· c	o c	0 0	9 0	- +		E 1	> 0
Zone - H3	0	92	17								318	CA4	0 0			o c	0 0			E 9	> 0
Zone - 13	0	92	17				0				348	C#4				0 0	9 6		500		2 0
Zone - J3	0	92	200			0	0	0	0		760	ļ	, ,		, c		8 8			E 9	0 0
Zone - K3	0	76				0	0	0			760	. 0					2 5			E 6	0
Zone - L3	0	92	9			0	0	0	0		760	. 0	. 0				2 2		ے گ		, ,
Zone - M3	0	9/	18	Dsgn 0		0	0	0	0		8,760	0	0	0	0	0	2.2	٠,			
Desirate Manager 412 111 - 114				,									i						ĺ	i)

By Trial

All hours - Alternative 1

	Unmet																Unmet
	Clg Load MaxImum	— <u>M</u> a	-wn-wp				EN H	Number of Hours at each Temp Range (°F) —	urs at e	ach Tem	p Range	(F)				Minimum Htg Load	Htg Load
System/Room Description	Hours Temp Mo Hr Day >100°	Temp M	o Hr Day	y >100°	100-9	95-90	5 95-90 90-85 85-80 80-75 75-70 70-65 65-60 60-55 55-50 < 50* 7	85-80	80-75	75-70	59-02	65-60	60-55	55-50	. 20	Temp Mo Hr Day Hours	Hours
Zone - N3	0	76 7	7 17 Dsgn C	0 us	0	o	0	٥	0	6,904	1,856	٥	0	٥	0	69 1 12 Dsg	0

TRACE® 700 v6.3.3 calculated at 08.41 PM on 01/04/2018 Alternative - 1 System Temp Profiles Report Page 2 of 16

By Trial

Occupied hours only - Alternative 1

	Unmet		No.	[Ž	umbero	f Hours	at each '	Temp Ra	- Number of Hours at each Terms Range (°E)				'		,	Unmet
System/Room Description	Hours	Temp	Mo	Temp Mo Hr Day	×100°	100-95	95-90		35 85-80	30 80-75	75 75-70	0 70-65	65-60	60-55	55-50	< 50°	Temp Mo Hr Day	Minimum emo Mo Hr Day		Htg Load Hours
System per Floor 1												1								
Zone - A	0	79	7	19 Dsgn		0							0	0	0	0	69	-	Dsgn	C
Zone - B	0	8	-	19 Sun		0			98 885				0	0	0	0	7		Mon	0 0
Zone - C	0	92	7 2	20 Dsgn		0		0				0 9	0	0	٥	0	2	. —	Dsan	
Zone - D	0	75	10	14 Dsgn		0							0	0	٥	Ö	2	-	OSG	
Zone - E	0	77	7	20 Sat		0							0	0	0	0	, 1			
Zone - F	0	75	10 1	11 Dsan		0								· C			2			
Zone - G	0	78				0								0 0) C	3 6			
Zone - H	0	79				0							• •	0 0	0 0	0 0	- 6			
Zone - I	0	79											•	0 0		> 0	2 6			
Zone - J	0	62				0							> <	> <	> c	> 0	2 ¢	- •	2 2 1 2 1	
Zone - K	0	6	. 1		· •	0		00	0 0	8,780	8 6	> c	> 0	> <	> 0	> c	2 5	- +	P 6	D
Zone - L		2				0 0							•	> 0	> 0	> c	2 6	_ ,	nsgn G	
Z000 - M		2 6				9 0							0 (> c	э і	.	2	_	Dsg	
Zone	0 0	9 9				90								0	0	0	73	-	Dsgn	
Zone I		9 9				9 (0	0	0	69	· -	Dsgn	0
700e-0	> (9	ا م		0	0				0	6,337	7 2,423		0	0	0	69	-	Dsgn	0
7-9007	P	78		19 Dsgn		0								0	0	0	2	F.	Dsgn	٥
System per Floor – 2)	
Zone - A2	0	78	7	18 Dsgn	0	0			0	0	8.408		0	0	0	c	69	-	Dsg	<
Zone - B2	0	95	-	19 Sun		0	3.215			1.257			c		· C		7.	. +	In Dean	•
Zone - C2	0	9/	7	19 Dsan		0							0 0	· c) C	, ,	. 6			> 0
Zone - D2	0	76	7 1			0							0	· c	0 0	•	2 5		500	0 0
Zone - E2	0	76	7			C							0		> <		2 *	- +		0 6
Zone - F2	0	28					-	0	0 0		800		o c	> <	0 0		- a			5 6
Zone - G2	0	11	7	_									0	۰ د	o c		2 5	- +		
Zone - H2	0	78				0				3 <			> <		0 0	0	- 6		5	0 0
Zone - 12		2 0				, c							0 0	> 0	5 6	> 0	2 6			> 0
Znne12		2 2								•			> 0	> 0	> 0	> 0	2 8	- ,		7
7000 - K2		2 0				0 0							o (> 0	Э (5 (21		E S	0
Zono - 1.2		2 6	- 1			0 0							0	٥ (> (5	<u>ت</u> ا	_	L Sgu	0
Zone - M2		0 6				0							0	> (-	o (2	-	Dsd	0
Zone - M2	0	0 0	- 1	_		0					610,7 et	0,0	0 0	o (0	0 (2	_	Dsg	0
Suppose nor Floor	>	0	-			0							>	0	0	0	69	-	Dagu	0
Security of FIGOL - S	•	í	1			•														
Zana Ba	> 0	2 5	-	1. Usgn		0	o ?	ه د ا		,			0	0	0	0	69	-	_	0
Zone - 53	-					0 (1.65		_	_	3,474		74	0	0	0	2	-		o
Z 23	0 1	€ ¦				0	0		0	0			0	o	0	0	2	۳		0
Zone - 133	0	72				٥	0		0	0			0	¢	0	0	2	<u>ا</u>		0
Zone - E3	0	75				0	0		0	٥			0	0	0	o	69	~ ∞	Dsgn	0
Zone - F3	٥	75				Ó	0		0	0			0	0	0	Q	69	-		0
Zone - G3	٥	75	7			0	0		0	0			0	0	0	0	69	1		0
Zone - H3	0	9/				O	0		0	0		-	0	0	0	0	69	ر		0
Zone - 13	0	92				0	0		0	0		Ī	0	0	0	0	69			0
Zone - J3	O	92	7		0 4	¢	0	0	0	٥			0	o	0	0	2	-	Dsdn	0
Zone - K3	0	9/				٥	0		0	0			0	0	0	Ċ	02	_		0
Zone - L3	0	92		18 Dsgn		0	0		0	0			0	0	0	0	02	_	Dson	-
Zone - M3	0	92		18 Dsgn		٥	0		0	0	8,760	0	0	0	0	0	2	<u>_</u>	Dsdn	0
																	•			•

Project Name: Tri-Health Dataset Name: A This is good for 7-24.trc

TRACE® 700 v6.3.3 calculated at 08:41 PM on 01/04/2018 Alternative - 1 System Temp Profiles Report Page 3 of 16

By Trial

Occupied hours only - Alternative 1

	Unmet										•		i			Unmet
	Clg Load	Clg Load Maximum				ESZ	Number of Hours at each Temp Range ("F)	ours at e	ach Ten	p Rang	e (F)				Minimum Htg Load	Htg Load
System/Room Description	Hours	Hours Temp Mo Hr Day >100°	>100	100-95	95-90	90-85	85-80	80-75	75-70	70-65	65-60	100-95 95-90 90-85 85-80 80-75 75-70 70-65 65-60 60-55 55-50 < 50* 1	25-50	. 20.		Hours
Zone - N3	0	76 7 17 Dsgn	0	o	0	0	0	0	6,904	1,856	0	0	o	6	69 1 12 Ds	0

TRACE® 700 v6.3.3 calculated at 08:41 PM on 01/04/2018 Alternative - 1 System Temp Profiles Report Page 4 of 16

By Trial

All hours - Alternative 2

	Unmet												i							Ilmmof
	Clg Load	2		ļ			·	- Numb	er of Ho	urs at ea	Number of Hours at each Temp Range (°F)	Range	(°F)				- Windmun-	almun.		Htalload
System/Room Description	Hours	Temp	Temp Mo Hr Day	Day >10	è	100-95	95-90	90-85	85-80	80-75	75-70	70-65	65-60	60-55	55.50	< 50° 1	Temp Mo Hr Day	보으		Hours
System per Floor 1																				
Zone - A	0	82	4 20		0	0	0	0	1,741	1,279	3,339	871	494	386	670	0	22	3	Sat	70
Zone - B	0	92	1 19		0	0	3,215	1.098	885	1,203	2,359	0	0	0	0	0	7	1 9	Mon	0
Zone - C	0	\$			0	0	0	0	1,397	2,813	2,989	661	458	351	91	0	22	1 21	Sun	120
Zone - D	0	82	5 18		0	0	0	0	1,662	1,536	4,016	780	337	279	150	0	22	1 6	Sat	28
Zone - E	0	82			0	0	0	0	1,686	2,456	3,038	568	398	307	307	0		1 6	Sun	4
Zone - F	0	82			0	0	٥	9	1,403	1,426	3,738	820	625	286	423	0	22	1 2	Sat	78
Zone - G	0	82	6 21	Dsgn	0	0	0	0	1,216	2,344	3,012	672	425	234	857	0	22	11	Sat	72
Zone - H	0	85			0	0	0	0	1,849	1.276	3,459	778	357	449	592	0	, 15	4	ies:	1 5
Zone - I	0	85			0	0	0	0	1.849	1276	3.459	178	357	449	203		100	4	i to	2 5
Zone - J	0	2			0	0	¢	0	1 923	6.837		2	3 0	} <	, }	, c	3 5			2 9
Zone - K	0	2	1 24				. 0		1 923	6.837	, c			o c		> <	7 7	- +	500	> 0
Zone - L	0	2	, 24				0 0		1 023	6.837				o c	> c	> 0	- 7		500	9 0
Zone - M	0	2	1 24						1023	8 837					> 0	> 0		- •		9 0
Zone - N		, LC	0				0 0		718	100,	200	130	002	978	2 6	o c	- 1	- c	5	,
Zone - O		2			, c		o C	o c	2 00	1412	2,01	303	000	7 4	0 2	> 0	B H	1 I	i de	0/2
Zone - P	00	8	2		, c		o c	o c	080	1 802	2,017	3.5	564	200	1,132	0 0			vvkoy	777
System per Floor - 2	•	3	3		,	•	,	•	8	460	2	7	3	602	900	5	8	+	Sal	00
Zone - 42	c	40	4			c	•	c	745	270		2	2	,		•		,	į	:
2000 - DO) H	3 8) 4 0 4	_		> c	2 0	000	£ (2	147,	2000	253	254	4/6	9,0	٥,	S S	<u>ب</u>	Sat	114
Zara 02) u	3 2	•			5 0	0,4,0	980	25	1,430	Z,358	- }	0 !	-	- ;	<u>.</u>		2 15	Dsgn	0
Zone - C2	0.6	\$ 8	3 5	ב		٥ د	-	5 0	0.7,	, y	3,205	100	458	351	6	0	22	2	Sun	120
Z	.	8 8			۰ د	ه د	> •	5 (248	1,533	3,981	922	381	279	30	0		9	Sat	99
Z - EZ	n	S S			.	5 6	0 (ο,	1,362	2,202	3,616	268	398	307	307	0	, 22	9	Sun	69
Zure - r.z	וכ	8 3			,	э (۰ د	4 1	328	1447	3,688	894	290	361	422	0	9	2	Sat	116
2006 - GZ	חמ	2 5	2 2		.	ə (٥ (0,1	1,124	1,803	3,663	654	425	234	857	0	33	7	Sat	72
2016 - HZ	.	g ;		E S S	٥,	3 1	5 1	0	3,825	1.249	3,439	807	395	453	265	0	SJ	4	Sat	80
Z - = 1Z	5 (2	4 i	Dsg.	0 (٥ (0	0	1,825	1,249	3,439	807	395	453	292	0	33	4	Sat	80
Zr - auo7	n I	50	7 7		0	Ç.	0	0	398	8,362	0	0	0	0	0	0	2	-	Dsgn	0
Zone - K2	ın ı	 	7		0	0	0	0	398	8,362	0	0	0	0	0	0	5	1	Dsgn	0
Zone - L2	ומו	.	7 24		0	0	0	0	398	8,362	0	0	0	0	0	0	5	-	Dagn	0
Zone - MZ	ഗ	8	7		0	0	0	0	1,581	7,179	0	0	0	0	0	0	20	-	Dsgn	0
	0	9	202	Dsgn	0	0	0	0	1,789	1,250	2,888	142	593	383	705	0	22	7	Sat	165
System per Floor 3																				
Zone - A3	15	82	4 20	Dsgn	0	0	0	o	1,917		3,125	907	257	477	616	0	55	1 7	Sat	61
Zone - B3	79	92			0	0	1,685	542	983		3,474	200	74	0	0,	0	2	12	Sun	7
Zone - C3	79	82			0	0	0	0	1,394		2,673	906	312	47	464	0	55	23	Sat	202
Zone - D3	9	82	2		0	0	0	0	1,634		3,743	510	364	588	240	0	55	=	Sat	68
Zone - E3	4	32			0	0	0	0	1,390		2,991	740	391	355	545	0	55	1 16	Sat	166
Zone - F3	0	32			0	0	0	0	1,609		3,529	808	1	415	362	0	55	9	Sat	46
Zone - G3	79	82	27		0	0	0	0	1,260		2,898	956	497	257	825	0	55	10	Sat	176
Zone - H3	52	82			0	0	0	0	1,893		3,436	631	250	452	619	0	55	8	Sat	4
Zone - I3	25	82	4 20	Dsgn	0	0	0	0	1,893		3,436	631	250	452	619	0	55	&	Sat	29
Zone - J3	79	82			0	0	0	0	1,248		2,652	902	366	435	458	0	2	2 10	Sun	195
Zone - K3	79	82		Dsgn	0	0	0	0	1,215		2,713	714	366	435	458	0	22	2 10	Sun	198
Zone - L3	23	82	6 22		0	0	0	0	1,215	2,859	2,713	714	366	435	458	0	2 2	2 10	Sun	198
Zone - M3	6/	g G	6 22	Dsgn	0	0	٥	0	1,215		2,713	714	366	435	458	0	25	2 10	S	198

Project Name: Tri-Health Dataset Name: A This is good for 7-24.trc

TRACE® 700 v6.3.3 calculated at 08:41 PM on 01/04/2018 Afternative - 2 System Temp Profiles Report Page 5 of 16

By Trial

All hours - Alternative 2

	Unmet																		Unmet
	Clg Load Mi	Maximum	Ţ				Num	ber of H	ours at e	ach Tei	np Ranç	Number of Hours at each Temp Range ("F)				¥	nlmur	±	Minimum Htg Load
System/Room Description	Hours	tours TermpMoHrDay>10	Day >1	8,	00° 100-95 95-90	95-90	90-85	85-80	80-75	75-70	70-65	65-60	3 90-85 85-80 80-75 75-70 70-65 65-60 60-65 65-50 < 50° Temp Mo Hr Day Hours	65-50	× 50°	Temp N	보	Day	Hours
Zone - N3	0	85 3 20	Dagn	0	o	0	0	1,830	1,830 1,396 2,905 1,149 390	2,905	1,149	390	427	663	0	55	4	Sat	43

TRACE® 700 v6.3.3 calculated at 08.41 PM on 01/04/2018 Alternative - 2 System Temp Profiles Report Page 6 of 16

By Trial

Occupied hours only - Alternative 2

	Unmet																			Unmet	
	Clg Load	1	Maximum-	1				Num	Number of Hours at		ach Ten	each Temp Range ("F)	- (F)				Minimum	nimu		Hto Load	
System/Room Description	Hours	Temp	Mo	Temp Mo Hr Day	×100°	100-95	95-90	90-85	85-80	80-75	75-70	70-65	65-60	60-55	55-50	< 50°	Temp Mo Hr Day	₹		Hours	
System per Floor - 1												İ									
Zone - A	0	80	` -	18 Dsgn	0	0	0	0	0	0	2,507	248	18	10	0	0	29	12 8		70	_
Zone - B	0	92	-	19 Sun	0	0	3,215	1,098	885	1,203	2,359	0	0	0	0	0	71	1 9		O	_
Zone - C	0	\$			0	0	0	0	162	943	1,515	79	54	30	٥	0	26	7	Mon	120	_
Zone - D	0	78			0	0	0	0	0	co	2,694	2	4	9	٥	0	29			28	
Zone - E	0	83	φ		0	0	0	0	96	895	1,701	45	88	9	0	0	27			6	
Zone - F	0	28			0	0	0	0	0	0	2,595	136	6	က	0	0	9			78	
Zone - G	0	83			0	0	0	0	0	838	1,798	102	27	6	٥	0	22			72	
Zone - H	0	2			0	0	0	0	0	0	2,593	162	4	7	0	0	29			20	
Zone - I	0	62			0	0	O	0	o	0	2,593	162	7	4	0	0	50			202	
Zone - J	0	83		8 Dsgn	0	0	o	0	481	2,302	0	0	0	0	0	0	75	•			
Zone - K	0	83	~		0	0	0	0	481	2,302	0	0	0	0	0	0	22	•			
Zone - L	0	83	~		0	0	0	0	481	2 302	0	0		0	0		7.5	•			
Zone - M	0	83	7		0	0	0	0	481	2,302	0	0		Ċ	0		7.5	•		, c	
Zone - N	0	8	,		0	0	0	0	o	0	2 140	53.	102	9	0		20.00			175	
Zone - O	0	80	9		0	0	o	0	o	0	2.013	649	1	4	0	. 0	28	1 6	-	222	
Zone - P	0	83	9	8 Dsgn	o	0	0	0	0	425	2.079	197	64	. 82	0	0	22			156	
System per Floor – 2				,						İ		į	;	2	,	1	5			2	
Zone - A2	0	78	00	18 Dson	0	0	0	_	c	c	2 507	210	48	0,	0	_		17.0	Mon	117	
Zone - B2	ıc	95	, -			0	3 2 1 5	98	853	1 235	2,00	2 0	} =	2 <	0 0	٥ د		7 0	MON C	= <	
Zone - C2	ı ka	8	_	_		o c	,	3	13.5	27.	171	2 6	· [2 5		.		7 -	1687	2 5	
Zone - D2		5 5	.		· c	0 0	, ,			ď	2 644	5 5	5 5	3 5		o c		- £	N N	2 9	
Zone - E2	ı	8	. «		, ,			ه د	ģ	7 2	2,0	2 4	2 2	2 0		o c				8 8	
Zona - E2	0 0	5 6			> <	0 0		> 0	5 9	2 -	2,101	2 5	9 6	2 3	> 0	> c				202	
Zone - G2	o ko	2 6			, ,	0 0		0	> <	ğ	20,0	+ 5	3 6	‡ \$	> 0	> 0				91	
Z016 - 02	o c	3 8	σ	~	> <	o c	0 0	00	,	ē c	2,573	2 5	7 0	0 0	> 0	> c				2 8	
Zone - 19		9 0				ء د	> 0	0 0	> 0	> 0	2,000	2 5	٥ ۽	0 5	٥ د	> 0				200	
Z000 - 12	o u	0 6		nger of	0 0	o c	o c	> 0	> 3	240	000,7	5	<u>o</u>	<u>×</u>	0 0	0 0		Z ,		8 6	
2010-202	י נ	8 8	- 1		> 0	> c	> (۰ د	\$ 2	2,743	5	۰ د	-		۰,	>				0	
2005 - AZ	0 1	200	- 1		o 6	> c	.	9 (\$ 2	2,749	0	٥,	0	0	0	٥				0	
Zono 845	กน	2 5	- 1		- 0	٥ د	> 0	5 (\$ {	2,748	0	9 (> •	¬ (٥ (0 1				0	
Zone - 1912 Zone - N2	0 5	8 8	- 0	O VVKGY	0 0	> 0	> <	5 C	<u></u>	4 6 7	5	2	<u>ا</u> د	>	٥ د	.	e 8	, ,	Dsgn	0 5	
System ner Floor 3	2	9	0	libera o	-	>	>	0	5	>	2 38	140	o O	<u>o</u>	0	5		2	Mon	165	
Zone - A3	5	6/	7	B Dsan	_	c	0	Ç	c	02	9 2 7 8	380	80	4	-	c	7	ď	Mon	ŭ	
Zone - B3	62	S	4			· c	1 685	542	280	1 502	3.474	3 6	2 7	2 c	٥ د	0 0	5 6	- +		5 ^	
Zone - C3	62	8	. ~	8 Dsan	0	0	0	0	135	830	1537	38	. 8	5.	o c		1		M	202	
Zone - D3	61	 			0	0	0	0	0	83	2,556	83	8 8	2 2						88	
Zone - E3	4	83		8 Dsgn	0	0	0	0		639	1.829	134	20	6	0	0			-	166	
Zone - F3	0	4			0	0	0	0	0	2	2,506	171	8	8	0	0			_	46	
Zone - G3	79	83		8 Dsgn	0	0	0	0	34	459	1,863	302	72	53	0	0				176	
Zone - H3	25	80			0	0	0	0	0	62	2,495	155	53	25	0	0			_	29	
Zone - 13	25	80		8 Dsgn	0	0	0	0	٥	62	2,495	155	83	52	۵	0			_	2	
Zone - J3	79	82	00		0	0	0	0	113	1,029	1,384	120	82	75	٥	0		12 8	_	195	
Zone - K3	79	82			0	0	0	0	113	979	1,426	128	62	75	0	0			_	198	
Zone - L3	£ £	92		8 Wkdy	0 0	0	0 0	0	73	979	1,426	128	25	72	0	0	32	12 8	Mon	198	
Zone - M3	R	20	_	s wkdy	>	>	>	>	2113	6/6	1,426	128	23	£.	0	0		2 8	Мол	198	

Project Name: Tri-Health Dataset Name: A This is good for 7-24.trc

TRACE® 700 v6.3.3 calculated at 08:41 PM on 01/04/2018 Alternative - 2 System Temp Profiles Report Page 7 of 16

By Trial

Occupied hours only - Alternative 2

	Unmet										:						Unmet
	Clg Load	Clg Load Maximum				En N	ber of H	ours at e	ach Ter	np Rang	 Number of Hours at each Temp Range ("F) 				Minir	WIN-	Minimum Htg Load
System/Room Description	Hours	lours Temp Mo Hr Day >100°	×100°	100-95	95-90	90-85	85-80	80-75	75-70	70-65	65-60	100-95 95-90 90-85 85-80 80-75 75-70 70-65 65-60 60-55 55-50 < 50*	55-50	. 20,	emp Mo	H Day	Temp Mo Hr Day Hours
Zone - N3	0	77 7 8 Dsgn	0	o	0	0	0	8	2,054	2,054 675	18	18	0	0	58 12	8 Mo	43

TRACE® 700 v6.3.3 calculated at 08:41 PM on 01/04/2018 Alternative - 2 System Temp Profiles Report Page 8 of 16

By Trial

-
62
<u>.ĕ</u> ∣
넒
E
의
₹I
2
ᇹ
Ĭ
ᅙ
≞
8
ŏ
ᇷ
Ĕ
5

System/Room Description	Hr in Day ≕>	_	21	e e	4	5	2 9	e 0	03	10	£	12	5	4	5	91	17	8	9	20	7	22	23	Unmet 24 hours
System per Floor – 2 Zone - B2																							i	
July Zone - C2		0		0	0	0	0	co.	0	0	0	0	0	٥	0	0	0	0	0	6	٥	0	0	0 Mon
July Zone - E2		0		0	0	0	0	5	0	0	0	0	0	٥	0	0	0	0	0	٥	٥	0	0	0 Mon
July Zone - G2		0	0	0			0	ro.	0	0	0	0	٥	0	0	0	0	0	0	0	0	0	0	0 Mon
July Zone - J2		0	0	٥			0	5	0	0	0	0	c	0	0	0	0	0	0	٥	0	0	0	0 Mon
July Zone - K2		0	0	0			0	5	0	0	٥	٥	0	0	0	0	0	0	0	0	0	0		0 Mon
July Zone - L2		0	6	٥	0		0 0	5	0	٥	٥	0	0	0	0	0	0	0	0		0	0	6	0 Mon
July Zone - M2		0		0	0		0	5	0	٥	٥	0	0	0	0	0	0	٥	0	0	0	0	6	0 Mon
July System per Floor 3 Zone - A3		0	0	0	0	0	0	rc.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 Mon
July Zone - B3		0	0	0	0		0	15	0	0	0	0	0	0	0	0	0	0	0	0	٥	0	٥	0 Wkdy
May June		00	00							00	00	0 0	0 0	0 0	ه ه	00	0 0	0.0	0 0	0.0	0 0	0.0		1
July		. 0	. 0							0	0	0	0	0	00	0	. 0	0	0	0	0	00		Wkdy
August Annual Total		00	o c	00	00	00	00	2 23	00	00	00	00	00	00	00	00	0 0	0 0	0	0 0	00	00	0.0	0 Wkdy
Zone - C3		>	,							>	>	-	>	5	2	>	>	0	>	>	5	5		vvkdy
May June		00	0 0	00	00	00	00	20 20 €	00	00	00	00	00	00	00			00	00	00	00			Wkdy
July		0	0							0	0	0	0	o	0	0	0	0	0	0	0	0		
August Annual Total Zone - D3		00	00							00	00	00	00	00	00	00	00	00	00	00	00	00	00	0 Wkdy 0 Wkdy
June		0	0							0	0	0	0	0	0	0	0	0	0	٥	0	0		
July August Annual Total		000	000	000	000	000	000	23 61 61	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000	0 Wkdy 0 Wkdy
May			0					8		0	0	0	P	0	0	0	0	٥	0	0	0	0		
June		0 0	0 0	0.0	0 0	00	00	₩ 6	0 0	0 0	0 0	0	o o	0	0	0	0	0	0	0	0			0 Wkdy
ouly August		00	00					3 8		0	o c	> 0	5 0	0	o c	00	0 0	00	00	o c	00	0 0		Wkdy
Annual Total		•						1					, ,	,	,	} (} (•	,	,		

*Note: Applying an optimum start schedule of "Available (100%)" may help to reduce the occurrence of unmet loads if they happened during morning pickup or pulldown hours.

TRACE® 700 v6.3.3 calculated at 08:41 PM on 01/04/2018 Allemative - 2 System Temp Profiles Report Page 9 of 16

Unmet Cooling Hours - Alternative 2

March March <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>WITH MOSI</th></th<>																									WITH MOSI
	System/Room Description	Hr in Day ⇒	~	2	es					5	7	12	13	4	15	91	17	5	19	20	2	22	23	24	United H
	May		0	o	0	0	i			İ	0	С	C	c	c	C			-	c	c	-	٩	٦	MACA
	June		0	0	0	0					0	C	C	· C	· C	0	c	0 0	· c	0	0	•	0 0	0 0	1
	July		0	c	¢	-								•	•	•	•	9 6	•	0	0	•	•	0	
	Amust		, ,								0	0	9 0	•	0 0	0	> 0	> 0	9 (0 (۰ د	•	0	0	VKG
	Annual Total		0 0		00						9 0	0	9 0	0	0	0 0	0 0	3 (9 (0	0	-	0	Ç	Wkd.
	Zone - H3		,	,	,	,					•	>	•	>	>	>	2	>	>	>	2	5	0	0	WKdy
	June		0	0							9	0	ے ا	٥	0		c	٩	9	•	9	6	6	1	140.4
	Aluk			. 0							0	0 0	0	9 0	0	0 0	2 0	9 0	•	0	0	0	> 0	> 0	VVKG
	Audust		, ,								•	0	•	0	> 0	5 6	0	9	•	۰ د	> (۱ د	0	9	VKG
	Approx Total		, (,							> 0	9	יכ	9	5 1	9	-	5	0	0	0	0	0	o	₩
	Zono - 13		,	>				-			0	0	0	~	0	0	0	0	0	0	0	0	0	0	₹Ġ
	eun!		-							١	٩	١		1	•	•	•	ľ	,	ŀ	١.		ľ	1	
	July									•	0	0	ם כ	> 0	9 0	0	0	0	5 0	> 0	ه د	> (9 (9 (Š.
	Avaust									•	0	0 0	2 0	0 0	0	0	0	0	0 0	0 0	ه د	0	> 0	9	WKg.
	Annual Total									0	0	2 0	9 0	0 0	0	0	0	0	0	5 0	5 (9 0	9	0 (VKQ.
	Zone - J3		,	,						>	2	>	2	2	>	>	>	2	>	0	3	3	9	•	¥6
	May		0						ĺ	6	-	6		6	-	6	٥	lc	٩	9		•	9	6	Manh
	June		0	0						0	0	0	c	· C	· c	•	0	0	0	0	, ,	0	9 0	9 0	7444
a	July		0	0						0	0	0	0	0	0	0	c	· c) C	0 0	0	0 0	-	9 0	MARCA
al al a large and	August		0	٥						Ó	0	0	0	0	0	0	0	0	C	0	•	0	•	, c	Med
al al a constant and	Annual Total		0	0						0	0	o	0	0	0	0	o	0	o	0	0	0	0	0	Wkd
al	One - K3																								
al al a control of the control of th	May		0	0						0	0	0	0	0	0	0	O	0	0	0	0	0	0	٥	Wkdv
al selection of the control of the c	June		٥.	0						0	0	0	0	0	0	0	O	0	0	0	0	0	0	0	Wkdy
al all all all all all all all all all	July		0 (ο,						٥	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Wkdy
al al a control of the control of th	August		.	0 (0	0	0	0	0	0	0	Ö	0	0	0	0	0	0	¢	Wkdy
al al al al al al al al al al al al al a	Zone - L3		5	>						0	0	0	0	0	0	0	0	0	0	0	0	0	Ö	0	Wkdy
al al al al al al al al al al al al al a	May				ŀ			180		0	0	0	0	0	0	0	0	c	0	6	-	c	-	٩	March
al al al al al al al al al al al al al a	June							18		0	0	0	0	a	Q	0	0	c	c	c	0	0 0	¢	Ç	Med
al 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	July							20		0	0	0	0	o	٥	Ó	0	0	0	0	ċ	0	0	0	Wkdv
al 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	August							23		0	0	0	0	٥	0	0	0	0	0	٥	0	0	c	0	Wind
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Annual Total Cone - M3							79		0	0	0	o	0	0	o	0	0	0	0	0	0	0	0	Wkdy
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	May				İ		i	18		0	-	6	0	0	6	•	-	6	c		9	9	-	٦	MANA
set	June							18		0	0	0	0	O	0	0	0	0	0	0	0	0	•	, c	Wkd
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	July							20		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Wkdv
	August							23		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Wkdy

"Note: Applying an optimum start schedule of "Available (100%)" may help to reduce the occurrence of unmet loads if they happened during morning pickup or pulldown hours.

2	
Alternative	
7	
Hours	
Heating	
Unmet	

## Dody 14 14 15 15 15 15 15 15	## ## ## ## ## ## ## ## ## ## ## ## ##																									
200000 000000 000000 000000 000000 000000	4	System/Room Description	Hr In Day ≍>		8	ဗ				Ø	10	Ξ	12	13	4	5	16	17	9	19	20	7	22	23	2	2
### ## ## ## ## ## ## ## ## ## ## ## ##	### ## ## ## ## ## ## ## ## ## ## ## ##	System per Floor - 1																i								
######################################		Zone - A						i																		
## # # # # # # # # # # # # # # # # # #	### ### ### #### #####################	January		0 (0 (0 (0	0	0	0	0	0	0	0	0	0	٥	0	0	٥	0	Wc
### ### #### #########################	## # # # # # # # # # # # # # # # # # #	Mench		,							0 0	0 (0 0	0 6	0 (0 (0 (0 (0	0	0	0	0	0	0	ğ
	### ### ### ### ### ### ### ### ### ##	Majori		> <		> <					۰ د	-	0	0	>	9	ο.	0	0	0	٥	٥	0	0	0	Mon
## ## ## ## ## ## ## ## ## ## ## ## ##		December		٠.							0	0	0	0 0	0 0	0 (0 0	0 (0 1	0	0	0	0	0	0	Mon
### ### ### ### ### ### ### ### ### ##	##8 #8 #8 #8 #8 #8 #8 #8 #8 #8 #8 #8 #8	Annual Total		, c						•	9 0	> c	> <	ם כ	> 0	> <	00	0 0	0 0	0 0	0 0	0 6	0 0	0 0	0 0	Š.
### ### ### ### ### ### ### ### ### ##		Zone - C		,	,	,					>	•	>	2	>	>	>	>	>	>	>	>	>	>	2	Mon
		January									4	4	4	4	4		٦	٦	6	١	-	٦	۲	•	٩	M
### ### ### ### ### ### ### ### ### ##		February									•	r or	re	~	ro	۳ ۳	•	0	9 6	2 0	> c	> C	0 0	> 0	> <	S 2
		March		0							4	4	7	0 0	•	, c	0	0	• •	> <	0	9 0	9 0	> 0	> <	5 5
		November		0							4	4	4	0	•	•	0	0	۰ د	> 0	9 0) C	> <	> <	> <	
		December		0	0						'n	'n	. w	6	(7)		0	00	0	0	0	o C	0 0	0	-	5 5
		Annual Total		0	0					•	8	18	8	9	유	9	0	0	0	0		0	0	•	0	N
		Zone - D																				•	•	•	•	
		January		0	0						0	0	0	0	0	0	٥	0	0	0	0	٥	0	0	0	Mon
		February		0 1	0 (0	0	o	0	0	0	0	o	0	0	0	0	0	0	0	Mon
		March		0 0	0 6						0	0 (O (0	0	0	0	0	0	o	0	0	0	0	0	Mon
		December		5 6	,						э с	0 (0 (0 1	0 (0 (0	0 1	φ,	0	0	0	0	0	0	
	The control of the co	Applied Total		5 6	> <				·	•	0 (0 0	0 (0 (0 (0 (0 (0	0 (0 (0	0	0	0	0	MoN.
The control of the co	Original Control of the control of t	Zone - E		5	5						>	Ó	0	9	0	0	ò	٥	٥	0	0	0	0	0	0	Mon
oral state of the control of the con	ordal The control of the control of	January		0	ļ	ĺ					4	4	c	6	-	6	C	c	0	c	6	-	-	٥	9	No.
otal state of the control of the con	orial The control of the control of	February		o	0						m	n	0	0	0	0	0	• •	0	0	0	0	0	0	0	Mo
otal The state of the state of	or of the control of	March		0	0						4	0	0	0	0	0	0	0	0	0	0	0	¢	0	0	Mon
otal The state of the state of	otal Otal	November		0	0						4	o	0	0	0	0	0	0	0	0	0	0	O	0	0	Mon
otal if T	otal Continue Con	December		0 (0 (ი :	က	0	0	0	0	0	0	0	0	0	0	0	O	0	Mon
or of the control of	oral state of the control of the con	Zone - E		5	5						9	9	0	0	0	0	0	0	0	0	0	0	0	o	0	Mon
otal otal otal otal otal otal otal otal	of a control of a	January									c	-	9	c	6	9	٥	-	6	9	6	-	4	<	5	14 A.a.
otal otal	otal otal	February									0	0	0	0	0	9 0	0	9 0	o c	o c	o c	> <	> C	> 0	9 9	X X
otal Otal	otal O	March									0	0	0	0	0	0	0	0	0	0	•	0	0 0	0	0	N N
otal O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	otal O	November									0	0	0	O	0	0	0	0	0	0	0	0	0	0	0	Mo
Otal Otal	oral oral oral oral oral oral oral oral	December									0	0	0	0	o	0	0	0	0	0	0	0	0	0	0	Wkd
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Annual Total									0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Wkd
7 9 9 9 9 9 9 9 9 9 9 9 9 9	y y y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Zone - G																İ			ĺ				ĺ	
	Friedrich Properties	January							40	40	40	0 0	0	0	0 (0 0	0	0	0	0	0 (0 (0	0	0	Mo Mo S
ber	Per O O O O O O O O O O O O O O O O O O O	March							2 4	٠,	o 4	0	5 C	> 0	> 6	0 0	-	9 0	•	2 (5	9 0	9	o	9	<u>و</u>
Der Milber O O O O O O O O O O O O O O O O O O O	The mater 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	April							1 4	1 4	t C	9 6	> C	-	00	0 0	9 0	> <	-	3 0	> <	> <	> C	0	0 0	N 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	October							·	r un	0	0	0	0	0	-	9 0	0	2	3 0	> C	> C	> =	0 0	0	2 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	November							4	4	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	M
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	December							က	ო	e	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Mon

*Note: Applying an optimum start schedule of "Available (100%)" may help to reduce the occurrence of unmet loads if they happened during morning pickup or pulldown hours.

TRACE® 700 v6.3.3 calculated at 08:41 PM on 01/04/2018 Alternative - 2 System Temp Profiles Report Page 11 of 16

By Trial

2
- Alternative
Hours
Heating
Unmet

System/Room Description Zone - H January February March November Annual Total Zone - I January February March November	Hr in Day =>					•		æ	c									ā.						with most Unmet
Zone - H January February March November December Annual Total Zone - I January February March November		_	2	3 4	ın	Ф	7	5	ກ	9	Ξ	12	13	4	15	16				20 21	?	23	24	
January February March November December Annual Total Zone - I January February March																								
February March November December Annual Total Zone - I January February March November							٥	21	4	٥	0	0	0	0	0	0						l	0	Wkdv
March November December Annual Total Zone - I January February March November		0	0	0	0	0	0	ო	ო	0	0	0	o	0	0	0				0		0	0	Mo
November December Annual Total Zone - I January February March							0	4	4	0	0	0	0	0	0	0							•	Mon
December Annual Total Zone - I January February March November							0	4	4	0	0	0	0	o	0	0							0	Mon
Annual Totat Zone - I January February March November							0	20	က	0	0	0	0	0	0	0							0	Wkdy
January February March November							0	22	₩	0	0	0	0	0	0	0							0	Mon
February March November							0	21	4	0	0	0	0	0	0								١٩	Wkdv
March November							0	62	c	0	0	0	0										0	M
November		0	0	0	0	0	0	4	4	0	0	, Q	0										٥ د	M
							0	4	4	c	c	0	· C										0 0	
December							0	50	٠	0	0	0	0	0	0) C	Monk
Annual Total							0	52	13	0	0	0	0	0	0	0	0	. 0		0		0	0	Mo
Zone - N										ĺ														
January		0		0		0	0	21	7	o	0	0	0	0	0							٥	٥	Š
February						0	0	13	19	0	o	0	0	0	0							0	0	Š
March						0	0	23	4	0	0	0	0	0	0							0	٥	Š
November			0	0	0	0	0	21	4	0	0	0	0	0	o	0	•	0	0 0	0	0	0	0	Š
December						0	٥	50	20	က	0	0	0	0	0							0	0	Š
Annual Total						0	0	104	88	က	0	0	0	0	0							٥	0	Wkdy
Zone - O							j																	
January						0	o	7	2	21	0	0	0	0	0								0	Wkdv
February						0	0	6	19	0	0	0	0	0	0								0	Wkdy
March			0 (0 0	٥	0 0	0 (g,	4	0	0 (0	0	0	0	0	0	0	0	0	-	0	0	Wkdy
April	-					0 (0 (4 :	0	0 1	0	0	0	0	0								0	ŏ
October	-					0	0 (נם ;	٥,	0	0	0	0	0	Ó								0	Š
Novernoer						٥ د	0 (7 6	4 8	0 6	•	0 (0 1	Φ.	0								0	Š
December Appres Total						o c	0	3 5	200	2 5	-	0 0	0 0	0 0	0 0								0	Š:
Zone - P						•	>	2	9	Ŧ	,	>	>	,	,								>	Š
January						0	0	24	21	4	0	0	0	0	0							0	•	N.
February	_					O	0	19	6	m	0	0	0	0	. 0							0	0	Wkdy
March	-	0	0	0	0	0	o	4	4	4	0	0	0	0	0	0	0	0	0	0	0	0	0	Mon
April	_					0	o	4	4	0	0	0	o	0	0							0	0	Mo
October						0	Ö	ç,	S	0	0	o	o	0	0							0	0	Mon
November	_					0	0	4	4	4	0	o	0	0	0							0	0	Mo
December	_					0	0	50	20	ო	0	0	0	0	0							0	0	Wkdy
	_					0	0	77	6	82	Ó	0	0	0	0							0	0	Wkdy
System per Floor – 2																								
Zone - A2																								
January	-				0	0	0	21	21	4	0		0	0	0							0	٥	W
February	_				0	0	0	ო	က	က	0	0	٥	0	0							0	٥	Š
March	'	0	0	0	0	0	0	4	4	0	0	0	ပ	C	0	0	0	0 0	0	0	0	0	0	Mon
November	-				0	0	0	4	4	o	0	0	ပ	0	0							0	0	Mo

*Note: Applying an optimum start schedule of "Available (100%)" may help to reduce the occurrence of unmet loads if they happened during morning pickup or pulldown hours.

TRACE® 700 v6.3.3 calculated at 08:41 PM on 01/04/2018 Atlemative - 2 System Temp Profiles Report Page 12 of 16

By Trial

ative 2
s - Altern
ing Hour
nmet Heat
_

Total Hr in Day => 1	m cc ccccc ccccc	4 00 00000 00000 00	w 00 000	2 0 0	8 20 1	9 20 52	5 6 5	= 0	27	£ 0	4 0			[]	3 19			22	23		with most Unmet hours
							w 5	0	6	6	0							0	0	٥	
								•	> 0	> 0		0	0 0	0 0		•	0 0	•	•	•	Wkdy
	000000 000000 000000	000000 000000 00					2	>	5	9	5							0	>	9	Mon
				0		4	4	4	4	4	4	4					0	0	0	0	Mon
						ო .	ტ .	m ·	ლ .	en (er e	es .					0	0	0	0	Mon
	000000 000000			00	4 4	4 4	4 4	4 -	4 -	00	0 0	0 0	00	00	00	0	0 0	0 0	0 0	0	MoM :
	000000 000000	000000				t (t (+ ~	4 6	، د	، د	ۍ د					0	0 0	0 0	5	MON :
	000000 000000	000000				2	2	, ç	, 4	, C	ء د	۶ د					0	0	9 0	> 0	MOIN
	000000 000000	000000				<u> </u>	2	2	2	2	≥	2					>	>	>	2	MON
	00000	00000					0	0	0	0	0	0					0	-	٥	c	Wkdv
	0000 000000	0000 00	0	0 0	<u>س</u>	G	0	0	0	0	0	0		0	0	0	0	0	0	0	Mon
	000 000000						0	0	0	0	0	0					0	0	O	0	Mon
	0000000						0	0	0	0	0	0					0	٥	0	0	Mon
	0000000						o	0	0	0	0	0					0	٥	0	0	Wkdy
Fal	000000	0 0					0	0	0	0	0	٥					0	٥	0	0	Mon
	000000	0				4	4	4	0	6							0	0	6	c	Mo
lai lai	00000					۳,	٠,				, c						0 0	0 0	9 0	0	
lai	0000	0				4	4	, c	,	o c) C						5 0	0 0	> 0	> C	
	000	0				Ċ	· c) C						0 0	0 0	0 0	9 0	No.
	00	. 0	0	0	4	4	4	0	0	0	0	00		, 0		0	0 0	c	0	, c	200
	0	0				60	60	က	0	۵	0						0	0	0	0	Mon
D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0			.,	130	18	9	0	0	0						0	٥	0	0	Mon
ial	ŀ																				
ial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	0				2	0	0	0	0	0						0	0	0	0	Wkdy
lai	0	0				က	0	0	0	0	0						٥	0	0	0	Wkdy
ial 0 0 0	0 0	0 0	0 0	00	4 4	0 1	0	0	0 6	0 0	0 0	00	00	0		0	0	0	0 (0 (W.
lal O O O O	0	٥ د				4 5	0	> 0	> 0	.	¬ (5 (¬ (9	o (MON.
	0					8 8	0	-	.	00	> C						00	0 0	0 0	0 0	AKG.
0 0	•	,				?	•	>	•	,	•						>	>	,	•	V VAC
0 0	0	0				4	4	٥	٥	0	0						0	0	0	0	Mon
	0	0	0	0	က	9	က	0	0	Ö	0	0	0 0	0	0	0	0	0	0	0	Mon
0 0	0	0				4	4	0	0	0	0						0	0	0	0	Mon
0 0	0	0				4	0	0	0	0	0						0	0	0	0	Mon
0 0	0	0				'n	0	0	0	o	0						o	0	0	0	Mon
0 0	0	0				4	4	0	0	Ç	0						0	0	0	0	Mon
0 0	0	0				က	က	0	0	o	0						0	0	0	0	Mon
tal 0 0	0	0				27	9	0	0	o	0						0	0	0	0	Mon
71	6															1					
Seherany 0 0 0 C	5 0	5 6	00		7 "	4 "	4 0	> 0	> 0	-	-	5 0	00	00	0 0	0 0	0 0	0	0 0	0	VKd.
	ے د	o c				2 4	0 0	o c	> c	٥ د						0	0	0	0 0	> C	Mon
0 0 0	• 0					4	0 0	0	0							0 0	0 0	0	0	0 0	W S
0	0	0				en.	(7)	0	0	0						0	0	0	0	0	Wkd

of Available (100%). May help to reduce the occurrence of unmet loads if they happened during morning pickup or pulldown hours. Note: Applying an optimum start sor

Project Name: Tri-Health Dataset Name: A This is good for 7-24.trc

TRACE® 700 v6.3.3 calculated at 08:41 PM on 01/04/2018 Alternative - 2 System Temp Profiles Report Page 13 of 16

BUILDING TEMPERATURE PROFILES

Daytype with most

Unmet Heating Hours - Alternative 2

Total and the control of the control	System/Room Description	Hr in Day ≕>	1	7	,	١	,	,									!		•	2	1			i	i	5
-3 -3 -13 -14 -15 -15 -15 -15 -15 -15 -15	Annual Total Zone - I2		0	0	0	0	0	٥								0	0	0	0	0	0	0	0	0	0	Mon
-34 -44 -45 -45 -45 -45 -45 -45 -45 -45 -4	January		00	00	0	00	00	0 0			İ					00	00	00	0 0	00	00	00	0 0	0 0	0 0	Wkdy
### 1	March		0					0 0								0	00	•	•	0	0 0	0 0	> <	> c	0 0	NON I
1	November		0	0	0	0	0	0								• •	0	0	0	0	00	0 0	0	9 0	9 0	N N
### 1	December		0	0	0	0	0	0								0	· c	0	0	0 0	0 0	'n	, c	, ,	9 6	700
1.2 1	Annual Total		0	0	0	0	٥	0		•	-					0	0	0	0	0	0	0	0	, 0	0	Mon
	Zone - N2																			ı		•	1	•	•	
1	January		0	0	٥	٥	0							O	0	0	0	0	٥	0	0	0	-	0	0	Š
1	February		0	0	0	٥	0							0	0	0	0	0	٥	0	0	0	0	0	0	Š
-3 -3 -13 -14 -15 -15 -15 -15 -15 -15 -15	March		0	0	0	0	0							0	0	0	0	0	0	0	Q	0	0		0	Wkd
	November		0	0	0	0	0							0	Q	0	0	0	0	0	0	0	0	0		M
-3 -3 -3 -3 -3 -3 -3 -3 -3 -3	December		0	0	0	0	0							0	0	0	0	0	0	0	0	0	0	0	0	×
			0	0	0	0	0				•	_		0	0	0	0	0	0	0	0	0	0	0	0	Wkd
Tall 1912 1	ı																									
Tall State of the control of the con	Zone - A3																									
[a] [a] [a] [a] [a] [a] [a] [a] [a] [a]	January		0	0	0	0	0							0	0	0	0	o	٥	0	0	0	0	-	0	Mon
Tail 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	February		0	0	0	0	0							0	0	0	0	0	0	o	0	0	0	0	0	Mo
Tall 19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	March		0	0	0	0	0							0	0	0	0	0	0	o	0	0	0	0	0	P
Tail and the control of the control	November		٥	0	0	0	0							0	0	0	0	0	0	0	0	0	0	0	0	Mon
[a] [b] [b] [c] [c] [c] [c] [c] [c] [c] [c] [c] [c	December		0	0	0	0	0							0	0	0	Ó	0	0	0	0	0	0	0	0	Mor
tal 100000000000000000000000000000000000	Annual Total		٥	0	0	0	0		•		Ì			0	0	0	٥	0	0	0	0	0	0	0	0	Mon
tal 1	Zone - B3																									
tal (a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	January		0	0		0	0							0	0	0	0	0	0	0	0	0	0	٥	0	Mon
Tall (a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	December		0	0		0	0							0	0	0	0	0	0	0	0	0	0	0	¢	Mon
tal Columbia Colu	Annual Total		o	0		0	0							0	0	0	0	0	0	0	0	٥	0	٥	O	Mon
tal 1	Zone - C3																									
tal 1	January			0		0								4	4	4	4	4	4	0	0	0	0	o	٥	Mon
tal 1	February			0		0								ო	ო	ო	ო	က	0	0	0	0	0	0	0	Mon
tal 1	March			0		0								4	4	4	4	0	0	0	0	0	0	o	0	ఠ
tal 1	April			0		0								0	0	0	0	0	0	0	0	0	0	o	0	慢
tal 1	October			0		0								0	0	0	0	0	0	0	٥	ò	٥	0	o	Mod
tal 0 0 0 0 0 0 0 0 3 3 3 3 3 3 3 3 3 3 3	November			0		0								4	4	4	4	0	0	0	0	Ó	0	0	0	Mon
tal 0 0 0 0 0 0 0 27 27 23 18 18 18 18 18 10 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	December			0		0								B	က	က	ო	က	က	0	0	0	0	0	0	Mon
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Annual Total			0		0							•	18	9	9	8	9	7	0	Q	¢	0		0	Mon
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Zone - D3																:			•		1	1	,	•	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	January			0		ĺ								0	0	0	0	0	0	٥	0	0	6	-	6	N
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	February			0										0	0	0	0	0	0	0	0	c	· c			Š
tal 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	March			0										0	0	0	0	0	0	0	0	0	· c			5
tal 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	November			0										0	0	0	0	0	0	0	0	0	0			Ş
tal 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	December			0										Ó	0	0	0	0	0	0	٥	0	0	0		Mon
	Annual Total			0						•				0	0	0	0	0	0	0	0	0	0	0		Mon
	Zone - E3																									

"Note: Applying an optimum start schedule of "Available (100%)" may help to reduce the occurrence of unmet loads if they happened during morning pickup or pulldown hours.

Alternative - 2 System Temp Profiles Report Page 14 of 16 TRACE® 700 v6.3.3 calculated at 08:41 PM on 01/04/2018

Project Name: Tri-Health Dataset Name: A This is good for 7-24.trc

BUILDING TEMPERATURE PROFILES

By Trial

Unmet Heating Hours - Alternative 2	ternative 2																								Davtvbe	
Svetem/Roam Description	Hrin Dav≡y		۰	e	4	L.	Œ		α		5			3	ŧ.	4	1	ģ.	9	6	5	3	3		with most	. #
detailing in peaculation	THE DAY	_ ,	۱,	,		,	5	.					-	-		-	=	2	2	P	7	77	23	42	Dours	ı
reordary		50	> 0	-	5	٥ د	٥ د	0 0	· ·	· ·	e .	e .	m ·	ტ,	n	٥	0 (0	0	0 (0	0	0	0	Mon	
Mai Ci			> 0	> 0	5	٠,	٥ (٥ د								5	<u>ن</u>	0	9	0	0	0	0	¢	Mon	
April		5 1	٠.	,	0	>	0	5								0	0	0	0	0	0	0	0	0	Mon	
October		0	0	0	0	0	0	0								0	0	0	0	0	0	0	0	o	Mon	
November		o	0	0	0	0	٥	0								O	0	0	0	٥	0	0	0	0	Mon	
December		0	0	0	0	0	0	0								က	0	0	0	0	0	0	0	0	Mon	
Annual Total		0	0	0	0	0	٥	0					,			^	0	0	0	0	0	0	o	0	Mon	
Zone - F3					,																					
January		0	0	0	0	0	٥	0							٥	0	0	0	0	٥	٥	0	0	0	Mon	1
February		0	0	0	0	0	0	0	က	en en	3 0				0	0	0	0	0	0	O	0	0	0	Mon	
March		0	0	0	0	٥	0	0							0	0	0	0	0	0	0	0	0		Mon	
November		0	0	0	o	0	0	0							0	0	0	0	0	0	0	0	0		Mon	
December		0	0	0	0	o	0	0							0	0	0	0	0	0	0	0	0		Mon	
Annual Total		0	0	0	0	o	0	0			_	0	0	0	0	0	0	0	0	0	0	0	0	0	Mon	
Zone - G3																				•	,	1	•			
January		0	0	0	O	٥	٥								4	c	0	Ċ	c	c	c	-	-	-	Mon	ı
February		0	0	0	O	0	0								٠,	· c	· c	· c	0 0	•	0	0	0	, ,	Mon	
March		0	0	o	0	0	0								0	0	· c	0	0	0	0	0	0 0	0		
April		0	0	0	0	c	0								0	0		۰ د	· c	•	•	0 0	0 0	0 0	Non I	
October		. 0	. 0	0	0	0	0	. 0	מו	- 43	20	•	0	0	0	0 0	9 0	0 0	0 0	•	•	0 0	٥ د	5 0	Mon	
November		0	0	0	c	c	· c								0 0	0 0	0	0 0	0 0	•	0	0	٥ د		5 5	
December		0	0	0	0	0	0								0.00	0 0	0 0	> C	0	•	0	0 0	9 0		Mon	
Annual Total		0	0	0	0	0			-					•	5	0	c	0	0	0	0 0	0 0	9 0		M Co	
Zone - H3						,	,								-)	•	,	•	•	•	•	>			
January	•	ö	٥	0	0	0	0							0	0	0	0	c	0	6	c	0	c		Mon	ı
February		0	0	0	o	0	0							0	0	0	Ċ	· c	-	• •	· c	0	0		S S	
March		0	0	o	0	0	0	0	4	4	4		0	0	0	0	0	0	0	0	0 0	0) c	o c	Mon	
November		0	0	0	0	0	0							0	0	Q	Q	0	0	0	0	0	0		Mon	
December		0	0	0	0	0	0							٥	Ó	0	o	0	0	0	0	O	0		Mon	
Annual Total		0	0	0	0	0	0					_		٥	٥	0	0	0	0	0	0	0	0		Mon	
Zone - 3										ĺ				i												
January		0	0	0	0	0	0						0	0	٥	٥	0	0	0	٥	٥	0	0		Mon	ı
February		Ö	0	0	0	0	0	0	e	9	3	0	0	0	0	0	0	0	0	٥	0	0	0	0	Mon	
March		0	o	0	0	0	0						0	٥	0	O	0	0	0	٥	0	0	0		Mon	
November		0	0	0	0	0	0						0	0	0	0	0	0	0	٥	0	0	0		Mon	
December		0	0	0	0	0	0						o	0	0	o	0	0	0	٥	0	0	٥		Mon	
Annual Total		0	0	0	0	0	0			•		_	0	0	0	0	0	0	0	0	0	o	0		Mon	
Zone - J3			ļ																			,	1			
January		0	0	0	0	0	0				ĺ				4	4	4	4	0	0	0	0	0	ı	Mon	ı
February		0	0	0	0	٥	0								n	n	0	0	0	0	0	0	0		Mon	
March		0	0	0	0	0	0								4	0	0	0	0	0	0	0	0		Mon	
April		0	0	0	٥	0	o								0	0	0	0	o	0	0	0	0		Mon	
October		0 (0 0	0 (0 (0 (0 (0	0	0	٥	0	0	0	0	0		Mon	
November			0 0	0 0	0 0	00	0 0	.	4 (4 0	4 4	4 4	4 (4 (4	0	0	0	01	01	01	0	0	0	Mon	
Annual Total			> c	> c	> c	.	٥ د							•	ω ę	n \$	1 (7)	∞ I	0 0	0 0	0 0	0 0	0 0		Mon	
"Note: Ambing an optimity start schedule of "Avai	et	7 10	יונ‰ויי.	, wav	an to	, ed	, t	. 6	Ę	1	£	3	9	ŧ	2 60	2 2		, e	ء د	> 1	>	>	>		5	

"Note: Applying an optimum start schedule of "Available (100%)" may help to reduce the occurrence of unmet loads if they happened during morning pickup or pulldown hours.

TRACE® 700 v6.3.3 calculated at 08:41 PM on 01/04/2018 Allemative - 2 System Temp Profiles Report Page 15 of 16

Project Name: Tri-Health Dataset Name: A This is good for 7-24.trc

BUILDING TEMPERATURE PROFILES

By Trial

Unmet Heating Hours - Alternative 2

Unmet Heating Hours - Alternative 2	Iternative 2																								Davtvne
System/Room Description	Hr in Day =>	←	01	ო	4	5	9		, ac	6	11	1 12	5	4	2.	, <u>c</u>	1	=	2	5	7	3	8	8	with most
Zone - K3																i		2	2			1	3	5	e logi
January			0	0	0	0	٥								4		4	4	0	c	6	-	6		Mon
February		0	0	0	0	0	0										. 60	. 0	0	0	0	o c		o c	N N
March		0	0	0	0	0	0								4		0	0	0	0	0	0	0	0 0	No.
April		o	0	0	0	0	٥								0		0	0	0	· c	0	· c	0	, C	2
October		0	0	0	0	0	Ó								Ó		0	0	0	0	0	¢	0	0	Mon
November		0	0	0	0	0	0	0	4	4	4	4	4	4	4	0	0	0	0	0	0	¢	• •	0	Mon
December		0	0	0	0	0	0								6		m	n	0	0	0	o	, c	0	Mon
Annual Total		0	0	0	0	0	0								8		5	_	0	0	0	0	0	0	Mon
January		-	6	6		6	6					i				1	1		•		•	•	•	١,	
February) C	, ,								1 0	1 0	.	4 (> 0	o 0	5 (,	5	0 (Mon :
March					0 0	0 0) Ç								3.	9 0	no	0 (> 0	0 (0 (0 (0 (0	Mon
April			0	¢	0) C	, c								4 0	0	> c	0	0	0 0	0 (0 0	0 (0 (<u> </u>
October			0	c	0	0									0	0 0	o c	5 6	5 0	> 0	0 0	٥ د	> 0	5	Mon.
November		0	0	0	0	0	. 0								7	0 0	9 0	o c	o c	٥ د	0 0	5 6	٥ د	0	Mon
December		0	0	0	0	0	. 0	. 0	· 60		. 60		- (*)	† e*;	r 65	'n	o e	o e	9 0	0 0	0	٥ د	> 0	o c	Mon
Annual Total		0	0	0	0	0	0			27 2	27 18	8 18			, c	9	, 은	۸,	0	0	0	0	0	0	Mon
Zone - M3																							,	1	
January		0	0	o	o	0								4	4	4	4	4	0	0	-	0	0	0	Mon
February		0	o	o	0	0								r	ო	ო	e	0	0	0	0	0	٥	0	Mon
March		0	Ó	0	0	0								4	4	0	0	0	0	0	0	0	0	0	Mon
April		0	0 (0	0	0								0	0	0	0	0	0	0	0	0	0	0	Mon
October		0 1	0 (0 (0 (0								0	0	0	0	0	0	0	o	0	0	0	Mon
December		> c	>	> c	.	0 0	0 0		4 (4 (4 0	4 0	4 (₹ (4	01	0	0	0	0	0	o	0	o	Mon
Approal Total				> 0	,									ი ;	n ;	n ;	۳» !	n 1	0	٥	٥	0	0	0	Mon
Zone - N3		,	>	>	>	5			•					18	38	19	10	^	0	0	0	0	0	0	Mon
on and															ľ		1	,							
February		-	٥ د	0 0	.	5 C								0 0	0	0	0	0	0	0	0	0	0	0	Мол
March				٥	,	,								0 0	-	0 0	0	0 0	0 (0 0	0 0	0 (0	0 (Mon
November			. 0	0	. 0	, 0								0 0	-	90	9 0	> c	> c	00	> 0	-	> c	¬ •	Mon
December		0	0	0	0	0	0	0	e	. 60	3		0	0	0	0	0	0	0	0	0	0	0	0	Mon
Annual Total		0	0	0	0	0								0	0	0	0	0	0	0	0	0	0	0	Mon

"Note: Applying an optimum start schedule of "Available (100%)" may help to reduce the occurrence of unmet loads if they happened during moming pickup or pulldown hours.

TRACE® 700 v6.3.3 calculated at 08:41 PM on 01/04/2018 Allemative - 2 System Temp Profiles Report Page 16 of 16

Project Name: Tri-Health Dataset Name: A This is good for 7-24,trc

Keport H

MONTHLY ENERGY CONSUMPTION

By Trial

Afternative: 1 This is for 7-24 operation Apr Alternative: 1 App Alternative: 1 Apr Alternative: 1 App							Monthly Energy Consumption	ly Energy	Consum	ption	ı				
tive: 1 This is for 7-24 operation B9,809 94,251 100,629 99,146 77,900 72,194 63,202 75,087 On-Pk Cons. (kWh) 75,797 62,160 66,424 69,821 89,809 94,251 100,629 99,146 77,900 72,194 63,202 75,087 On-Pk Demand (kW) 123 135 152 179 218 221 224 226 206 177 135 124 Energy Consumption Environmental Impact Analysis CO2 1,710,728 Ibm/year 1,710,728 Ibm/year SO2 1,710,728 Ibm/year s 275,612 Btu/(ft2-year) SO2 1,710,728 Ibm/year NOX 2,967 gm/year Nea 35,163 ft2 35,163 ft2 124 226 206 177 135 124	Utility		Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Total
On-Pk Cons. (kWh) 75,797 62,160 66,424 69,821 89,809 94,251 100,629 99,146 77,900 72,194 63,202 75,087 On-Pk Demand (kW) 123 135 152 179 218 221 224 226 206 177 135 124 Energy Consumption B 91,862 8tu/(ft2-year) Environmental Impact Analysis CO2 1,710,728 Ibm/year 3 275,612 8tu/(ft2-year) SO2 11,710,728 Ibm/year NOX 2,967 gm/year 2,967 gm/year	Alternative:		This	is for 7-2	4 operation	Ę									
On-Pk Cons. (kWh) 75,797 62,160 66,424 69,821 89,809 94,251 100,629 99,146 77,900 72,194 63,202 75,087 On-Pk Demand (kW) 123 135 179 218 221 224 226 206 177 135 124 Dn-Pk Demand (kW) 123 152 179 221 226 206 177 135 124 Energy Consumption CO2 1,710,728 lbm/year CO2 1,710,728 lbm/year 11,872 gm/year 11,872 gm/year PO3 22,967 gm/year 2,967 gm/year 2,967 gm/year 2,967 gm/year 2,967 gm/year	Electric							:							
Energy Consumption 91,862 Btu/(ft2-year) 275,612 Btu/(ft2-year) ea 35,163 ft2	On-P	'k Cons. (kWh) c Demand (kW)	75,797 123	62,160 135	66,424 152	69,821 179	89,809 218	94 ,251 221	100,629 224		77,900 206	72,19 4 177	63,202 135	75,087 124	946,419 226
91,862 Btu/(ft2-year) 275,612 Btu/(ft2-year) ea 35,163 ft2	Ш	nergy Consum	ption			En	ironmenta	Il Impact /	Analysis						
35,163 ft2	Building Source	91,862 275,612	Btu/(ff2-ye Btu/(ff2-ye	sar) sar)	•	SSSS	2 2 X	10,728 lbm/ 1,872 gm/ye ,967 gm/ye	year ar ar						
	Floor Area	35,163	#2												
	Alternative: 2	2	5 DA	5 DAYS A WEEK		7AM-6PM Schedule	hedule	G						·	

	429,117	227					
	34,841	205					
	27,659	187					
	30,603	185					
	33,102	208					
	48,523	227					
	44,321	225	Analysis	rear	ā	ar	
	46,270	222	Environmental Impact Analysis	775,663 lbm/year	5,383 gm/ye	1,345 gm/year	
	41,496	218	ironment	~			
	28,506	179	Ē	S	SOS	XON	
	29,787	196		-			
	27,567	197		ar)	ar)		
	36,442	203	ption	41,651 Btu/(ft2-year)	Btu/(ft2-ye		<u>2</u>
	s. (kWh)	and (kW)	Energy Consumption	41,651	124,966		35,163 ft2
Electric	On-Pk Cons. (kWh)	On-Pk Demand (kW)	Energ	Building	Source		Floor Area

EQUIPMENT ENERGY CONSUMPTION By Trial

Alternative: 1 This is for 7-24 operation

				I.	Mon	Monthly Consumption	mption	1					
Equipment - Utility	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Total
Lights Electric (kWh) Peak (kW)	h) 26,161.3 V) 35.2	3 23,629.5	26,161.3 35.2	25,317.4 35.2	26,161.3 35,2	25,317.4 35.2	26,161.3 35.2	26,161.3 35.2	25,317.3 35,2	26,161.3 35.2	25,317.4 35.2	26,161.3 35.2	308,027.9 35.2
Misc. Ld Electric (kWh) Peak (kW)	h) 25,357.8 V) 34.1	3 22,903.7	25,357.8 34.1	24,539.7 34.1	25,357.7 34.1	24,539.8 34.1	25,357.7	25,357.8	24,539.7	25,357.7	24,539.7	25,357.7	298,566.8
Cooling Coil Condensate Recoverable Water (1000gal) Peak (1000gal/Hr)	a) 0.1	0.0	0.2	0.0	0.0	8.1 0.0	10.5	7.8	2.8 0.0	0.7	0.0	0.0	36.4
Cpl 1: Building Main AHU [Sum of dsn coil capacities=100 tons] Air cooled DX unit - 100 tons - split [Clg Nominal Capacity/F.L.Rate=100 tons / 98.30 kW] Electric (kWh) 713.3 1,255.5 2,929.1 7,767.5 21,823.2 26,664.9 Peak (kW) 18.0 28.0 36.6 55.9 88.5 92.7	U [Sum of d tons - split [h) 713.3 v) 18.0	Isn coil capa [Clg Nomina 1,255.5 28.0	icities=100 t I Capacity/F 2,929.1 36.6	tons] F.L.Rate=10 7,767.5 55.9	30 tons / 93 21,823.2 88.5	8.30 kW] 26,664.9 92.7	(Cooling E 29,827.1 93.5	(Cooling Equipment) 29,827.1 28,837.2 93.5 96.4	14,537.6 77.6	8,649.5	2,656.2	706.3 16.1	146,367.3 96.4
Condenser fan for MZ rooftop [Design Heat Rejection/F.L.Rate=128.0 tons / 10.75 kW] Electric (kWh) 153.3 269.8 627.6 1,519.7 3,434.9 3,924 Peak (kW) 3.6 5,3 6.6 8.3 10.5 10.6	ooftop [Desiç h) 153.3 v) 3.6	gn Heat Reje 269.8 5.3	ection/F.L.R 627.6 6.6	tate=128.0 i 1,519.7 8.3	tons / 10.7 3,434.9 10.5	75 KW] 3,924.0 10.6	4,330.4	4,140.9	2,469.6 9.8	1,646.3 8.1	569.8 5.5	151.8 3.3	23,238.1 10.7
Cntl panel & interlocks - 0.125 KW [F.L.Rate=0.12 kW] Electric (kWh) 38.0 49.1 71.6 Peak (kW) 0.1 0.1 0.1	0.125 KW [l h) 38.0 v) 0.1	F.L.Rate=0. 49.1 0.1		(Misc Accessory Equipment) 90.0 93.0 90.1 0.1 0.1 0.1	sory Equip 93.0 0.1	ment) 90.0 0.1	93.0 0.1	93.0 0.1	90.0	93.0 0.1	68.6 0.1	37.8 0.1	907.1
Hpl 1: Building Main AHU - Reheat [Sum of dsn coil capacities=682.6 mbh] Electric Duct Heater [Nominal Capacity/F.L.Rate=682.6 mbh / 200 kWj (the state (kWh) 18,934.8 9,057.1 4,335.7 1,211.3 0.74 Peak (kW) 50.2 31.4 17.8 8.1 0.74	U - Reheat [minal Capad h) 18,934.8 v) 50.2	[Sum of dsn city/F.L.Rate 9,057.1	coil capacit e=682.6 mbl 4,335.7 17.8	ies=682.6 n h / 200 kWJ 1,211.3 8.1	nbh] (Heatir 0.0	ր (Heating Equipment) 0.0 0.0 0.0 0.0	nt) 0.0 0.0	0.0	0.0	905.0 6.8	3,741.9	18,161.5 51.2	56,347.2 51.2
Sys 1: System per Floor 1 BI Centrifugal var spd mtr [DsnAirflow/F.L.Rate=20,730 cfm / 12.44 kW] Electric (kWh) 1,208.6 1,274.5 1,618.1 1,991.3 Peak (kW) 4.7 6.0 6.9 7.8	rr [DsnAirflo h) 1,208.6 v) 4.7	w/F.L.Rate= 1,274.5 6.0	=20,730 cfm 1,618.1 6.9	1/12.44 kW 1,991.3 7.8	2,	(Main Clg Fan) 560.4 2,738.7 8.6 8.8	3,035.4 9.5	2,935.5 9.1	2,216.1 8.3	1,989.0	1,506.2	1,224,1	24,297.8 9.5
Series Fan Powered VAV [DsnAirflow/F.L.Rate=20,730 cfm / 0.00 kW] Electric (kWh) 0.1 0.1 0.2 0.2	.V [DsnAirflo	:w/F.L.Rate= 0.1	=20,730 cfm 0.2	1 / 0.00 kWJ 0.2		(Main Htg Fan) 0.2 0.2	0.2	0.2	0.2	0.2	0.2	0.1	2.2

Project Name: Dataset Name:

Tri-Health A This is good for 7-24.trc

TRACE® 700 v6.3.3 calculated at 08:41 PM on 01/04/2018 Alternative - 1 Equipment Energy Consumption report page 1 of 4

EQUIPMENT ENERGY CONSUMPTION By Trial

Alternative: 1 This is for 7-24 operation

					Mont	Monthly Consumption	notidu	1					
Equipment - Utility	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Total
Sys 1: System per Floor - 1	-1												
FC Centrifugal var freq drv [DsnAirflow/F.L.Rate=20,730 cfm / 8.08 kW]	(DsnAirflo	w/F.L.Rate	=20,730 cfn	1/8.08 kW]		(Main Return Fan)							
Electric (KWh)	785.6	828.2	1,051.7	1,294.2	1,664.2	1,780.2	1,973.0	1,908.1	1,440.5	1,292.9	979.0	795.6	15,793.1
Peak (kW)	3.0	3.9	4.5	5.0	5.6	5.7	6.2	5.9	5.4	4.9	3.6	2.8	6.2
Sys 2: System per Floor – 2	2												
BI Centrifugal var spd mtr [DsnAirflow/F.L.Rate=18,762 cfm /	[DsnAirflow	//F.L.Rate=	18,762 cfm	/11.26 kWJ		(Main Clg Fan)							
Electric (kWh)	1,268.6	1,334.9	1,685.7	2,028.1	2,601.3	2,707.7	3,021.0	2,921.4	2,279.3	2,037.4	1,569.5	1,285.1	24,740.0
Peak (kW)	5.6	7.3	8.4	9.7	11.0	10.4	11.3	11.3	10.7	9.1	6.4	5.0	11.3
Series Fan Powered VAV High Efficiency [DsnAirflow/F.L.Rate=22,098 cfm / 0.00 kW]	High Efficie	ancy [DsnA	irflow/F.L.R	ate=22,098 (cfm / 0.00		(Main Htg Fan)	÷					
Electric (KWh)	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	4.
FC Centrifugal var freq drv [DsnAirflow/F.L.Rate=22,098 cfm /	(DsnAirflo	w/F.L.Rate	=22,098 cfr	1 / 8.62 kW]	(Main F	(Main Return Fan)							
Electric (kWh)	846.2	0.688	1,118.9	1,323.0	1,638.5	1,684.8	1,857,3	1,806.3	1,458.9	1,336.0	1,046.4	857.0	15,862.3
Peak (kW)	3.3	4.1	4.6	5.2	5.8	5.5	5.9	5.9	5.6	4.9	3.7	3.0	5.9
Sys 3: System per Floor 3	3												
BI Centrifugal var spd mtr [DsnAirflow/F.L.Rate=20,773 cfm /	DsnAirflow	//F.L.Rate=	20,773 cfm	/12.46 kW]		(Main Clg Fan)							
Electric (kWh)	199.5	404.6	879.6	~	2,738.6	2,956.9	3,059.6	3,068.5	2,160.1	1,644.9	723.5	211.1	19,708.7
Peak (kW)	4 .0	6.7	9.4	11.3	12.5	12.5	12.5	12.5	12.3	10.4	6.6	4,0	12.5
Series Fan Powered VAV [DsnAirflow/F.L.Rate=23,753 cfm / 0.00 kW]	[DsnAirflow	//F.L.Rate=	:23,753 cfm	/ 0.00 kW]	(Main Htg Fan)	tg Fan)							
Electric (kWh)	0.1	0.1	0.1	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.1	0.1	6.1
FC Centrifugal var freq drv [DsnAirflow/F.L.Rate=23,753 cfm /	DsnAirflo	w/F.L.Rate	=23,753 cfm	1/9.26 kWJ	(Main F	(Main Return Fan)							
Electric (KWh)	129.7	263.5	586.7	1,076.9	1,734.8	1,846.5	1,912.6	1,915.4	1,389.9	1,080.3	483.3	137.2	12,556.8
Peak (KW)	2.6	4.0	5.3	6.2	6.7	6.7	6.7	6.7	6.6	5.8	3.9	2.5	6.7

TRACE® 700 v6.3.3 calculated at 08:41 PM on 01/04/2018 Alternative - 1 Equipment Energy Consumption report page 2 of 4

Tri-Health A This is good for 7-24.trc

Project Name: Dataset Name:

EQUIPMENT ENERGY CONSUMPTION By Triat

Alternative: 2 5 DAYS A WEEK 7AM-6PM Schedule

					İ	Mont	Monthly Consumption	mption —	ı					
Equipment - Utility	Utility	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Total
Lights														
		9,969.5	9,015.9	10,663.9	9,535.9	10,316.7	10,230.3	9,622.3	10,663.9	9,535.9	10,316.7	9,883.1	9,622.3	119,375.9
	Peak (kW)	35.2	35.2	35.2	35.2	35.2	35.2	35.2	35,2	35.2	35.2	35.2	35.2	35.2
Misc. Ld														
	Electric (kWh)	9,165.9	8,290.1	9,860.3	8,758.3	9,513.1	9,452.7	8,818.7	9,860.3	8,758.3	9,513.1	9,105.5	8,818.7	109,915.1
	Peak (kW)	34.1	34.1	34.1	¥.	34.1	34.1	34.1	34.1	34.1	34.1	34.1	2.	34.1
Cooling Coil	Cooling Coil Condensate													
Recoverable	Recoverable Water (1000gal)	0.1	0.1	0.3	0.3	2.4	3.7	3.5	3.0	9.1	9.0	0.2	0.0	15.8
ď	Peak (1000gal/Hr)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Cpl 1: Buildii	Cpl 1: Building Main AHU [Sum of dsn coil capacities=100 tons]	ım of dsn	coil capaci	ities=100 tc	ins]									
Air cooled D.	Air cooled DX unit - 100 tons - split [Clg Nominal Capacity/F.L.Rate=100 tons / 98.30 kW]	- split [Cl	y Nominal	Capacity/F.	L.Rate=10	0 tons / 98	3.30 kW	(Cooling Equipment)	quipment)					
	Electric (kWh)	457.1	748.0	1,776.1	4,297.2	12,348.7	16,069.9	15,473.4	16,831.4	8,005.5	4,702.4	1,659.2	415.2	82,784.1
	Peak (KW)	20.2	29.3	36.7	56.1	89.5	92.7	93.5	96.4	78.7	56.9	35.6	18.1	96.4
Condenser f	Condenser fan for MZ rooftop [Design Heat Rejection/F.L.Rate=128.0 tons / 10.75 kW]	(Design	Heat Rejed	ction/F.L.R	ate=128.0 t	ons / 10.7	5 kW]							
	Electric (kWh)	98.2	160.7	380.3	827.2	1,865.8	2,229.0	2,169.2	2,300.8	1,305.0	873.4	355.6	89.2	12,654.4
	Peak (kW)	4.0	5,5	9.9	8.3	10.5	10.6	10.6	10.7	10.1	6 0	6.4	3.7	10.7
Cntl panel &	Cntl panel & interlocks - 0.125 KW [F.L.Rate=0.12 kW]	5 KW [F.L	Rate=0.1		(Misc Accessory Equipment)	ory Equipn	nent)							
	Electric (kWh)	22.5	30.6	50.6	61.5	78.5	79.8	84.3	81.9	53.3	55.6	49.4	20.0	6.2.9
	Peak (kW)	0.1	0.1	0,1	1,0	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Hpl 1: Buildir	Hpl 1: Building Main AHU - Reheat [Sum of dsn coil capacities=682.6 mbh]	eheat [Su	m of dsn c	oil capacitie	≥s=682.6 m	[hdr								
Electric Duct	Electric Duct Heater [Nominal Capacity/F.L.Rate=682.6 mbh / 200	l Capacity	//F.L.Rate=	±682.6 mbh	/ 200 kW]		(Heating Equipment)	£						
	Electric (kWh) 1	15,111.7	7,397.6	3,945.6	653.8		0.0	0.0	0.0	19.0	846.8	3,970.1	14,342.1	46,286.7
	Peak (kW)	130.4	115.5	107.1	100.9	100.9	92.3	81.0	77.5	93.3	100.9	100.9	132.3	132.3
Sys 1: Syste	Sys 1: System per Floor - 1													
Bl Centrifuga	BI Centrifugal var spd mtr [DsnAirflow/F.L.Rate=20,681 cfm / 12.41 kW]	:nAirflow/	F.L.Rate=2	0,681 cfm,	12.41 kW		(Main Clg Fan)							
		447.0	497.0	719.6	917.9	1,425.0	1,568.0	1,584.2	1,674.6	1,080.4	906.3	637.2	421.5	11,878.6
	Peak (kW)	4.8	0.9	6.9	9.1	12.3	12.5	12.5	12.5	12.0	11,4	5.6	4.4	12.5
Series Fan F	Series Fan Powered VAV [DsnAirflow/F.L.Rate=20,681 cfm / 0.00 kW]	:nAirflow/	⁻.L.Rate=2	0,681 cfm ,	0.00 kWJ	(Main Htg Fan)	tg Fan)							
	Electric (KWh)	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	1.0

Tri-Health A This is good for 7-24.trc Project Name: Dataset Name:

TRACE® 700 v6.3.3 calculated at 08:41 PM on 01/04/2018 Alternative - 2 Equipment Energy Consumption report page 3 of 4

EQUIPMENT ENERGY CONSUMPTION By Trial

Alternative: 2 5 DAYS A WEEK 7AM-6PM Schedule

				Ī	- Mon	Monthly Consumption	uottou						
Equipment - Utility	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Total
Sys 1: System per Floor 1	_												
FC Centrifugal var freq drv [DsnAirflow/F.L.Rate=20,681 cfm /	[DsnAirflow	/F.L.Rate=	-20,681 cfm	/ 8.07 kWJ		(Main Return Fan)	_						
Electric (KWh)	290.6	323.0	467.7	596.6	926.3	1,019.2	1,029.7	1,088.5	702.2	589.1	414.2	274.0	7,721.1
Peak (kW)	3.1	3.9	4.5	5.2	8.0	6.1	8.1	8.1	7.8	7.4	3.6	2.9	8.1
Sys 2: System per Floor – 2	~												
BI Centrifugal var spd mtr [DsnAirflow/F.L.Rate=18,762 cfm /	JsnAirflow/F	L.Rate=1	18,762 cfm	711.26 kW]		(Main Clg Fan)							
Electric (kVVh)	456.0	515.6	744.6	958.3	1,494.6	1,654.6	1,675.3	1,799.7	1,151.0	958.4	659.5	429.9	12.497.4
Peak (kW)	5.6	7.3	8.4	9.7	11.3	11.3	11.3	11.3	11.3	11.3	6.4	9.0	11.3
Series Fan Powered VAV High Efficiency [DsnAirflow/F.L.Rate=22,093 cfm / 0.00 kW]	ligh Efficien	cy [DsnAir	flow/F.L.Ra	te=22,093	o,00 / mJ		(Main Htg Fan)	<u>-</u>					
Electric (kWh)	0.0	0.0	0.0	0.1	0.1		0.1	0.1	0.1	0.1	0.0	0.0	90
FC Centrifugal var freq drv [DsnAirflow/F.L.Rate=22,093 cfm /	[DsnAirflow/	/F.L.Rate≃	22,093 cfm	/ 8.62 kW]	(Main F	(Main Return Fan)						}	•
Electric (KWh)	307.7	343.4	490.3	604.6	911.3	992.0	1,004.2	1,072.0	712.2	608.2	436.5	290.1	7,772.4
Peak (kW)	3,3	4.1	4.6	5.2	5.9	5.9	5.9	5.9	5.9	5.9	3.7	3.0	5.9
Sys 3: System per Floor 3													
BI Centrifugal var spd mtr [DsnAirflow/F.L.Rate=20,773 cfm / 1	SnAirflow/F	.L.Rate=2	0,773 cfm /	12.46 kWJ		(Main Clg Fan)							
Electric (kVVh)	70.3	148.4	413.3		1,635.1	1,871,2	1,794.8	1,983.0	1,098.7	748.9	293.5	7.1.7	10,919.8
Peak (kW)	5.4	7.6	9.4	11.3	12.5	12.5	12.5	12.5	12.5	11.0	8.4	9.4	12.5
Series Fan Powered VAV [DsnAirflow/F.L.Rate=23,753 cfm / 0.00 kW])snAirflow/F	:L.Rate=2	3,753 cfm /	' 0.00 kWJ	(Main Htg Fan)	tg Fan)							
Electric (kWh)	0.0	0.0	0.1	0.1	1.0	0.1	0.1	0.1	0.1	0.1	0.0	0.0	0.8
FC Centrifugal var freq drv [DsnAirflow/F.L.Rate=23,753 cfm / 9.26 kW]	DsnAirflow/	F.L.Rate=	23,753 cfm	/ 9.26 kW]	(Main F	(Main Return Fan)							}
Electric (KWh)	45.7	96.4	274.6	503.4	980.6	1,103.6	1,064.7	1,166.7	680.0	483.7	195.7	46.6	6,641.6
Peak (kW)	e.	4.4	5.3	6.2	6.7	6.7	6.7	6.7	6.7	6.1	8.8	2.9	6.7

TRACE® 700 v6.3.3 calculated at 08:41 PM on 01/04/2018 Alternative - 2 Equipment Energy Consumption report page 4 of 4

Tri-Health A This is good for 7-24.trc

Project Name: Dataset Name:

ELECTRICAL PEAK CHECKSUMS

By Trial

Alternative 1 This is for 7-24 operation

Yearly Time of Peak 17(Hr) 8(Month)

Equipment Description		Electrical Demand (kw)	Percent of Total (%)
Cooling Equipment			
Air cooled DX unit - 100 tons - split		105.68	46.68
	Sub total	105.68	46.68
Fan Equipment			
Sys 3: System per Floor 3		19.23	8.49
Sys 2: System per Floor 2		17.16	7.58
Sys 1: System per Floor 1		15.07	6.66
	Sub total	51.46	22.73
Miscellaneous			
Misc Equipment		34.08	15.06
Base Utilities		0.00	0.00
Lights		35.16	15.53
	Sub total	69.24	30.59
	Total	226.38	100

Alternative 2 5 DAYS A WEEK 7AM-6PI

Yearly Time of Peak: 17(Hr) 8(Month)

Equipment Description		Electrical Demand (kw)	Percent of Total (%)
Cooling Equipment			<u> </u>
Air cooled DX unit - 100 tons - split		105.55	46.44
	Sub total	105.55	46.44
Fan Equipment			
Sys 3: System per Floor 3		19.23	8.46
Sys 2: System per Floor 2		17.16	7.55
Sys 1: System per Floor 1		16.08	7.07
	Sub total	52.47	23.08
Miscellaneous			
Misc Equipment		34.08	15.00
Base Utilities		0.00	0.00
Lights		35.16	15.47
	Sub total	69.24	30.47
	Total	227.26	100

Project Name: Tri-Health

Dataset Name: A This is good for 7-24.trc

ENERGY CONSUMPTION SUMMARY

By Trial

	Elect Cons. (kWh)	% of Total Building Energy	Total Building Energy (kBtu/yr)	Total Source Energy* (KBtu/yr)
Alternative 1				
Primary heating				
Primary heating	56,347	% 0.9	192,313	576,996
Other Htg Accessories		% 0.0	0	0
Heating Subtotal	56,347	% 0.9	192,313	576,996
Primary cooling				
Cooling Compressor	146,367	15.5 %	499,551	1,498,804
Tower/Cond Fans	23,238	2.5 %	79,312	237,959
Condenser Pump		% 0:0	O	0
Other Clg Accessories	206	0.1 %	3,096	9,289
Cooling Subtotal	170,512	18.0 %	581,959	1,746,052
Auxiliary				
Supply Fans	112,964	11.9 %	385,547	1,156,757
Pumps		% 0.0	0	0
Stand-alone Base Utilities		% 0.0	0	0
Aux Subtotal	112,964	11.9 %	385,547	1,156,757
Lighting				
Lighting	308,028	32.6 %	1,051,299	3,154,213
Receptacle				
Receptacles	298,567	31.6 %	1,019,009	3,057,332
Cogeneration				
Cogeneration		% 0.0	0	0
Totals				
Totals**	946,419	100.0 %	3,230,127	9,691,350
	Chidina I Paidn			

Project Name: Tri-Health Dataset Name: A This is good for 7-24.trc

TRACE® 700 v6.3.3 calculated at 08:41 PM on 01/04/2018 Alternative - 1 Energy Consumption Summary report page 1

^{*} Note: Resource Utilization factors are included in the Total Source Energy value. ** Note: This report can display a maximum of 7 utilities, If additional utilities are used, they will be included in the total.

Report L

ENERGY CONSUMPTION SUMMARY

By Trial

	Elect Cons. (KVM)	% of Total Building Energy	Total Building Energy (kBtu/yr)	Total Source Energy* (KBtu/vr)
Alternative 2				
Primary heating				
Primary heating	46,287	10.8 %	157,976	473.976
Other Htg Accessories		% 0.0	0	0
Heating Subtotal	46,287	10.8 %	157,976	473,976
Primary cooling				
Cooling Compressor	82,784	19.3 %	282,542	847.711
Tower/Cond Fans	12,654		43,189	129,581
Condenser Pump		% 0.0	0	0
Other Cig Accessories	968	0.2 %	2,279	6,839
Cooling Subtotal	96,106	22.4 %	328,011	984,131
Auxiliary				
Supply Fans	57,433	13.4 %	196,020	588.117
Pumps			0	0
Stand-alone Base Utilities		% 0.0	0	0
Aux Subtotal	57,433	13.4 %	196,020	588,117
Lighting				
Lighting	119,376	27.8 %	407,430	1,222,412
Receptacle				
Receptacles	109,915	25.6 %	375,140	1,125,533
Cogeneration				
Cogeneration		% 0.0	0	0
Totals				
Totals***	429,117	100,0 %	1,464,577	4,394,170
	10000 W () 114			
	,			

Project Name: Tri-Health Dataset Name: A This is good for 7-24.trc

TRACE® 700 v6.3.3 calculated at 08:41 PM on 01/04/2018 Alternative - 2 Energy Consumption Summary report page 1

Note: Resource Utilization factors are included in the Total Source Energy value.
 ** Note: This report can display a maximum of 7 utilities. If additional utilities are used, they will be included in the total.

1

Invoice

Controlled Air, Inc.

12009 Tramway
Cincinnati, Ohio 45241
(513) 769-6600 Fax (513) 769-6633
www.controlled-air.com

DEBRA - KUEMPEL SVC

3976 SOUTHERN AVE Cincinnati, OH 45227

Invoice Number: R131342-IN

Invoice Date: 4/29/2016

Salesperson: GREG

Tax Schedule: EX

Job Number: G2045

Customer Number: 10 248

Customer P.O.: 879687

Terms: 2% 10th Net 30

Item Code	Description	UM	Quantity	Price	Amount
JOB	HOSPICE COOPER ROAD	LOT	0.000	0.000	0.00
DIS	DTFS 12" TAG: 1-01	LOT	1,000	0.000	0.00
DIS	DTFS 08" TAG 1-02	LOT	1.000	0.000	0.00
DIS	DTFS 10" TAG: 1-03	LOT	1.000	0.000	0.00
DIŞ	DTFS 10" TAG: 1-04	LOT	1.000	0.000	0.00
DIS	DFTS 10" TAG: 1-05	LOT	1.000	0.000	0.00
DIS	DTFS 10" TAG: 1-06	LOT	1.000	0.000	0.00
DIS	DTFS 08" TAG: 1-07	LOT	1.000	0.000	0.00
DIS	DTFS 10" TAG: 1-08	LOT	1.000	0.000	0.00
DIS	DTFS 08" TAG: 1-09	LOT	1.000	0.000	0.00
DIS	DTFS 10" TAG: 1-10	LOT	1.000	0.000	0.00
DIS	DTFS 10" TAG: 1-11	LOT	1,000	0.000	0.00
DIS	DTFS 12" TAG: 1-12	LOT	1.000	0.000	0.00
DIS	DTFS 12" TAG: 1-13	LOT	1.000	0.000	0.00
DIS	DTFS 10" TAG: 1-14	LOT	1,000	0.000	0.00
DIS	DTFS 08" TAG: 1-15	LOT	1.000	0.000	0.00
DIS	DTFS 06" TAG: 1-16	LOT	1.000	0.000	0.00
DIS	DTFS 10" TAG: 2-01	LOT	1.000	0.000	0.00
DIS	DTFS 10" TAG: 2-02	LOT	1.000	0,000	0.00
DIS	DTFS 10" TAG: 2-03	LOT	1.000	0.000	0.00
DIS	DTFS 10" TAG: 2-04	LOT	1,000	0.000	0.00
DIS	DTFS 10" TAG: 2-05	LOT	1.000	0.000	0.00
DIŞ	DTFS 08" TAG: 2-06	LOT	1.000	0.000	0.00
DIŞ	DTFS 10" TAG: 2-07	LOT	1.000	0.000	0.00
DIS	DTFS 10" TAG: 2-08	LOT	1.000	0.000	0.00
DIS	DTFS 10" TAG: 2-09	LOT	1.000	0.000	0.00
DIS	DTFS 08" TAG: 2-10	LOT	1.000	0.000	0.00
DIS	DTFS 08" TAG: 2-11	LOT	1.000	0.000	0.00
DIS	DTFS 08" TAG: 2-12	LOT	1,000	0.000	0.00
DIS	DTFS 08" TAG: 2-13	LOT	1.000	0.000	0.00
DIS	DTFS 10" TAG: 2-14	LOT	1.000	0.000	0.00

Continued

Invoice

Controlled Air, Inc. 12009 Tramway Cincinnati, Ohio 45241 (513) 769-6600 Fax (513) 769-6633

www.controlled-air.com

DEBRA - KUEMPEL SVC 3976 SOUTHERN AVE Cincinnati, OH 45227

Invoice Number: R131342-IN

Invoice Date: 4/29/2016

Salesperson: GREG

Tax Schedule: EX

Job Number; G2045

Customer Number: 10 248

Customer P.O.: 879687

Terms: 2% 10th Net 30

Item Code	Description	UM	Quantity	Price	Amount
DIS	DTFS 10" TAG: 3-01	LOT	1,000	0.000	0.00
DIS	DTFS 08" TAG: 3-02	LOT	1.000	0.000	0.00
DIS	DTFS 10" TAG: 3-03	LOT	1.000	0.000	0.00
DIS	DTFS 10" TAG: 3-04	LOT	1.000	0.000	0.00
DIŞ	DTFS 08" TAG: 3-05	LOT	1.000	0.000	0.00
DIS	DTFS 10" TAG: 3-06	LOT	1.000	0.000	0.00
DIS	DTFS 10" TAG: 3-07	LOT	1.000	0.000	0.00
DIS	DTFS 08" TAG: 3-09	LOT	1,000	0.000	0.00
DIS	DTFS 08" TAG: 3-10	LOT	1.000	0.000	0.00
DIS	DTFS 10" TAG: 3-11	LOT	1.000	0.000	0.00
DIS	DTF\$ 08" TAG: 3-12	LOT	1,000	0.000	0.00
DIS	DTFS 08" TAG: 3-13	LOT	1.000	0.000	0.00
DIS	DTFS 10" TAG: 3-14	LOT	1.000	0.000	0.00
DIS	DTFS 10" TAG: 3-15	LOT	1.000	0.000	0.00
DIS	TOTAL FOR ABOVE	LOT	1.000	55,800.000	55,800.00

THANK YOU FOR YOUR BUSINESS!

Net Invoice: 55,800.00 Freight: 0.00 Sales Tax: 0.00 55,800.00 Invoice Total:

phone: 866.380.9580 fax: 980.373.9755

customprocessing@duke-energy-energyefficiency.com

4/5/2018

Diane Mattson
BETHESDA HOSPITAL ATTN: R BRADY 40 A - 4460205501
4310 COOPER RD BLDG 4360
CINCINNATI OH 45242-5613

Subject: Your Application for a Duke Energy Mercantile Self-Direct Rebate CMO17-0000129053

Dear Diane Mattson,

Thank you for your Duke Energy Mercantile Self Direct rebate application. As noted in the Energy Conservation Measure (ECM) chart on page 2, a total rebate of \$7,160.00 has been proposed for your project completed in the 2016 calendar years. All Self Direct Rebates are contingent upon approval by the Public Utilities Commission of Ohio (PUCO).

At your earliest convenience, please indicate if you accept this rebate by:

- providing your signature on Page 2
- completing the PUCO-required affidavit on Page 3

Please return the documents to my attention via fax at 513.629.5572 or email to customprocessing@duke-energy-energyefficiency.com. Upon receipt, Duke Energy will submit the necessary documentation to PUCO. Following PUCO's approval, Duke Energy will remit payment.

We value your business and look forward to working with you on this and future energy efficiency projects. We hope you will consider our Smart \$aver® incentives, when applicable. Please contact me if you have any questions.

Sincerely.

Andrew Taylor Program Manager Custom Incentives

cc: Mike Heath Dave Behne

Customer Signature

BETHESDA HOSPITAL ATTN: R BRADY 40 A - 4460205501 - CMO17-0000129053 Custom Incentive Offer Letter 4/5/2018 Page 2

Please indicate your response to this rebate offer within 30 days of receipt. Rebate is declined. Rebate is accepted. By accepting this rebate, BETHESDA HOSPITAL ATTN: R BRADY 40 A - 4460205501 affirms its intention to commit and integrate the energy efficiency projects listed on the following pages into Duke Energy's peak demand reduction, demand response and/or energy efficiency programs. Additionally, BETHESDA HOSPITAL ATTN: R BRADY 40 A - 4460205501 also agrees to serve as joint applicant in any future filings necessary to secure approval of this arrangement as required by PUCO and to comply with any information and reporting requirements imposed by rule or as part of that approval. Finally, BETHESDA HOSPITAL ATTN: R BRADY 40 A - 4460205501 affirms that all application information submitted to Duke Energy pursuant to this rebate offer is true and accurate. Information in question would include, but not be limited to, project scope, equipment specifications, equipment operational details, project costs, project completion dates, and the quantity of energy conservation measures installed. If rebate is accepted, will you use the monies to fund future energy efficiency and/or demand reduction projects? ☐ Yes ☐ No

Printed Name

Date

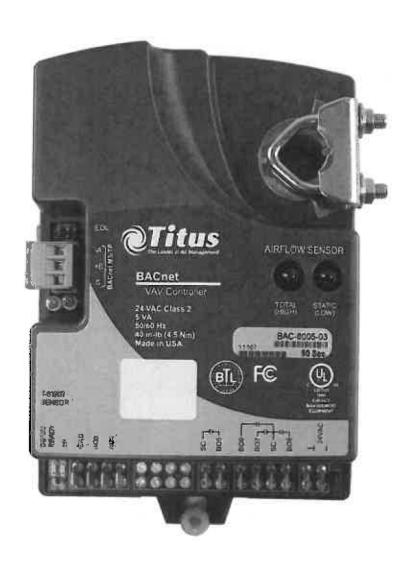
BETHESDA HOSPITAL ATTN: R BRADY 40 A - 4460205501 - CMO17-0000129053 Custom Incentive Offer Letter 4/5/2018 Page 3

Proposed Rebate Amounts

Measure ID	Energy Conservation Measure	Proposed Rebate Amount
ECM-1	Installation of New BAS for Lighting and HVAC System	\$7,160.00 per project X 1
	Total	\$7,160.00

(Mercantile Customers Only)

Application to Commit


Energy Efficiency/Peak Demand Reduction Programs

Case No.:EL-EEC		
State of:		
, Affiant, being duly th at: 1. I am the duly authorized representative of:	sworn according to	law, deposes and says
[INSERT CUSTOMER OR EDU COMPANY NAME AND ANY AP 2. I have personally examined all the infor		-
including any exhibits and attachments. Bas persons immediately responsible for obtaining believe that the information is true, accurate a	g the information co	* *
3. I am aware offines and penalties which ma Sections 2921.11, 2921.31, 4903.02, 4903.03	• •	
SIGNATURE OF AFFIANT & TITLE	_	
Sworn and subscribed before me this	day of	, _{VEAD}
DAY	MONTH	YEAR
SIGNATURE OF OFFICIAL ADMINISTERING OATH	PRINT NAME AND	TITLE
My commission expires on		

Titus Alpha BAC-8005 and BAC-8205 VAV Controller

Installation Guide

Contents

Section 1	
About the controllers	
Specifications	
Accessories	
Safety considerations	
Section 2	
Installing the controllers	
Setting the rotation limits	9
Mounting	
Connecting inputs	
Connecting outputs	
Connecting to sensors	14
Connecting to an MS/TP network	15
Connecting an airflow sensor	18
Connecting power	19
Application drawings	20
Section 3	
Setting up VAV controllers	
Network communications	25
Setting temperature setpoints	
Setting airflow setpoints	
Setting the VAV terminal unit parameters	
Setting up local lighting control	29
Balancing airflow	

About the controllers

This section provides a description of the Titus Alpha Controller BAC-8005 and BAC-8205 VAV controllers. It also introdeces safety information. Review this material before installing or operating the controllers.

The BAC-8005 and BAC-8205 are native BACnet, direct digital controllers designed for VAV terminal units. An integrated actuator and the supplied programs make these ideal controllers for temperature setback, overrides, reheat and other HVAC sequences. Install these versatile controllers in stand-alone environments or networked to other BACnet devices. As part of a complete facilities management system, the BAC-8005 and BAC-8205 controllers provide precise monitoring and control of connected points.

- BACnet MS/TP compliant
- Standard VAV control sequences are incorporated to provide pressure independent control of VAV unit
- Five reheat applications included
- On-board airflow sensor for use with a single or multi-point differential pressure measuring station or pitot tube.
- Control local lighting

Specifications

Analog inputs	All inputs are configured as analog objects
Active inputs	1
Passive inputs	3
Air flow sensor	1
Key features	Standard units of measure. Overvoltage input protection
Connector	Spade connectors, 0.25 inch
Conversion	12-bit analog-to-digital conversion
Input range	0–12 volts DC

Outputs, analog	2
Key features	Output short protection
	Configured as BACnet analog objects. Standard units of measure
Connector	Spade connectors, 0.25 inch
Conversion	12-bit analog-to-digital conversion
Output voltage	0–10 volts DC
Output current	30 mA per output, 30 mA total for all analog
	outputs
Outputs, binary	4 triacs for external equipment
Var fastures	2 for the internal actuator
Key features Conversion	Optically isolated triac output
Connector	12-bit analog-to-digital conversion
_	Spade connectors, 0.25 inch
Output range	Maximum switching 24 VAC at 3 amperes
Communications	
BACnet MS/TP	EIA-485 operating at rates up to 76.8 kilobaud.
	Removable screw terminal block. Wire size 12–24 AWG
Sensor jack	
Sensor jack	RJ-45 jack compatible with model STE-8000 and STE-6000 models with RJ-45 jacks
Supported objects	See PIC statement for supported BACnet objects
Control Basic	5 program areas in BAC-8005 6 program areas in BAC-8205
PID loop objects	2
Value objects	60 analog, 32 binary, and 12 multistate
Memory	Programs and program parameters are stored in
	nonvolatile memory. Auto restart on power failure
Applications programs	Titus Controls supplies the BAC-8x07
	with programming sequences for
	dual-duct VAV applications:
	 Cooling VAV with modulating, time proportional, two-stage, three-stage, and tri-stage
	reheat
	◆ Monitor CO2 to control indoor air quality
	Control local lighting with motion sensing Fan control
	◆ Fan control◆ Balancing
	• UL 864 smoke controll (BAC-8205 only)
	(

Air flow sensor features	Configured as BACnet analog input object. CMOS differential pressure 0-2 inches of water (0-500 Pa) measurement range. Internally linearized and temperature compensated. Span accuracy 4.5% of reading. Barbed connections for 1/4 FR tubing. Range dependent upon DP pickup, tubing size/length and connections.
Actuator specifications	
Torque	40 in-lb. (4.5 N•m)
Angular rotation	0 to 95° Adjustable end stops at 45° and 60° rotation
Motor timing, BAC-8005	90 sec./90° at 60 Hz 108 sec./90° at 50 Hz
Motor timing, BAC-8205	60sec./90° at 60 Hz 72 sec./90° at 50 Hz
Shaft size	Directly mounts on 3/8 to 5/8 inch (9.5 to 16 mm) round or 3/8 to 7/16 inch (9.5 to 11 mm) square damper shafts.
Regulatory	UL 916 Energy Management Equipment FCC Class B, Part 15, Subpart B BACnet Testing Laboratory listed as an application specific controller (ASC). UL 864 smoke controls (BAC-8205 only)
Installation	
Supply voltage	24 volts AC, -15%, +20% 5 VA
Weight	13.2 ounces (376 grams)
Case material	Flame retardant plastic
Environmental limits	
Operating	32 to 120°F (0 to 49°C)
Shipping	−4 0 to 140° F (−4 0 to 60° C)
Humidity	5–95% relative humidity (non-condensing)
Models	
BAC-8005	Cooling VAV controller with 90 second actuator and reheat
BAC-8205	Cooling VAV controller with 60 second actuator, reheat, and UL 864 smoke control application

Dimensions

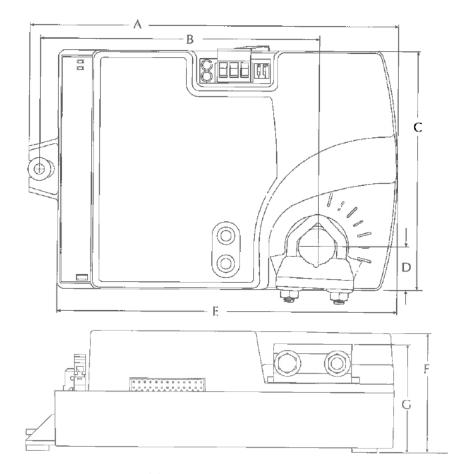


Table 1-1 BAC-8000 dimensions

Α	В	C	D	E	F	G
6.53 in,	4.89 in.	4.25 in.	0.77 in.	6.00 in.	2.14 in.	1.92 in.
166 mm	124 mm	108 mm	19 mm	152 mm	54 mm	49 mm

Accessories

Power transformer	
XEE-6111-40	Transformer, 120-to-24 VAC, 40 VA, single-hub
XEE-6112-40	Transformer, 120-to-24 VAC, 40 VA, dual-hub
XEE-6112-100	Transformer, 120-to-24 VAC, 96 VA, dual-hub (the XEE-6112-100 must be used in smoke control applications)
Surge suppressors	
HPO-xxx	BAC-8000 input transient suppressor board
HPO-xxx	BAC-8000 output transient suppressor board
KMD-5567	EIA-485 surge suppressor

Connectors and bulbs

xxx-xxx-xxx

Replacement three-pin removable terminal block

HPO-0054 HPO-0063

Replacement two-pin jumper

Replacement bulb

Safety considerations

Titus assumes the responsibility for providing you a safe product and safety guidelines during its use. Safety means protection to all individuals who install, operate, and service the equipment as well as protection of the equipment itself. To promote safety, we use hazard alert labeling in this manual. Follow the associated guidelines to avoid hazards.

Danger

Danger represents the most severe hazard alert. Bodily harm or death will occur if danger guidelines are not followed.

Warning

Warning represents hazards that could result in severe injury or death.

Caution

Caution indicates potential personal injury or equipment or property damage if instructions are not followed.

Note

Notes provide additional information that is important.

Detail

Provides programing tips and shortcuts that may save time.

SECTION 2

Installing the controllers

This section provides important instructions and guidelines for installing the BAC-8005 and BAC-8205 controllers. Carefully review this information before installing the controllers.

Installing a VAV controller includes the following topics that are covered in this section.

- Setting the rotation limits on page 12
- Mounting on page 12
- ◆ Connecting inputs on page 14
- ♦ Connecting outputs on page 15
- ◆ Connecting to an MS/TP network on page 18
- Connecting an airflow sensor on page 21
- Connecting power on page 22

In addition to the topics, see the section Application drawings on page 23.

Setting the rotation limits

Before mounting the controller, set the rotation limits with the supplied stop screw. Installing the stop screw limits the shaft rotation to either 45 or 60 degrees.

Caution

Before setting the rotation limits on the controller, refer to the damper position specifications in the VAV control box to which the controller will be attached. Setting rotation limits that do not match the VAV damper may result in improper operation or equipment damage.

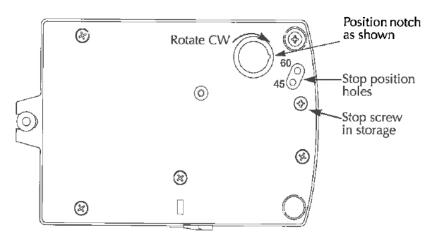


Illustration 2-1 Controller stop selections

To set the rotational limits:

- 1. Turn the controller over so you have access to the back.
- 2. Manually rotate the actuator fully clockwise as viewed from the back.
- 3. Remove the stop screw from its storage location and clean any debris from the threads.
- 4. Insert the screw into the correct stop position hole.
- 5. Tighten the screw only until the head touches the plastic in the bottom of the recess.

Mounting

Mount the controller inside of a metal enclosure. To maintain RF emissions specifications, use either shielded connecting cables or enclose all cables in conduit.

Mount the controller directly over the damper shaft. A minimum shaft length of 2.0 inch (51 mm) is required.

Note

The controller is designed to directly mount to 3/8 to 5/8 inch (9.5 to 16mm) round or 3/8 to 7/16 (9.5 to 11mm) square damper shafts.

Mount the controller close enough to the pitot tubes to keep the tubing length to a minimum. In typical installations the controller's inputs and sensors are within 24 inches of each other.

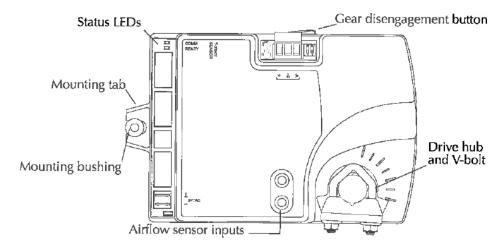


Illustration 2-2 Controls and indicators

Mount the controller as follows:

- 1. Loosen the nuts on the U-bolt until the shaft can fit through the collar.
- Place the controller on the damper shaft in the approximate final position. Position the controller loosely against the mounting surface so that the mounting bushing can float freely in the mounting tab.
- 3. Center the mounting bushing in the slot of the mounting tab and secure it using a #8 self-tapping screw.
- 4. Manually position the damper in the full open position.
- 5. Adjust the drive hub as follows:
 - a. If the damper rotates counter clockwise to close, depress the gear disengagement button and rotate the drive hub to the full clockwise position then release the button.
 - b. If the damper rotates clockwise to close, depress the gear disengagement button and rotate the drive hub to the full counter clockwise position then release the button.
- 6. Lock the hub to the shaft by evenly tightening the V-bolt nuts to 30 to 35 in-lbs.

Connecting inputs

The BAC-8005 and BAC-8205 controllers have preconfigured analog inputs to support the supplied programs. The inputs cannot be changed to binary or accumulator inputs. Only one input has an externally available physical terminal. All of the inputs are preconfigured for the application programs supplied in the controllers and are listed in Table 2-1.

Object	Function	Name	Unit	Location	Pull up
AI1	Discharge Air Temperature	DISCHARGE AIR	°F	Terminal block	10kΩ
Al2	Space Sensor	SPACE SENSOR	٥F	RJ-45	10kΩ
A!3	Space Setpoint	SPACE SETPOINT	۰F	RJ-45	10kΩ
Al4	Primary Duct Pressure	PRIMARY DUCT	wc	Internal airflow sensor	N/A
AI5	Primary Damper Position	PRIMARY POSITION	Volts	Internal damper position	N/A

Table 2-1 BAC-8005 and BAC-8205 input objects

Discharge air temperature Connect a $10k\Omega$, Type 3 thermistor temperature probe to the discharge air temperature input. The input includes the internal pull-up resistor. An STE-1405 sensor is suitable for this application. Follow the instructions supplied with the sensor for installation. See <u>Setting temperature</u> <u>setpoints on page 30</u> for setting up discharge air temperature limiting that requires this input sensor.

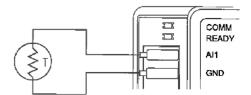


Illustration 2-3 Discharge air temperature

Space Temperature Input The space temperature input is connected only through the RJ-45 thermostat and sensor input jack. It is a configured as an analog input for STE-6010, STE-6014, and STE-6017 sensors. If an STE-8000 sensor is connected to the controller, this input is ignored. See <u>Connecting to sensors</u> on page 17.

Space Setpoint The space setpoint input is connected only through the RJ-45 thermostat and sensor input jack. It is a configured for the setpoint dials on STE-6014 or STE-6017 sensors. If an STE-6010 or STE-8000 sensor is connected to the controller, this input is ignored. See *Connecting to sensors* on page 17.

Primary Duct Pressure The primary duct pressure input is an internal measurement from the airflow sensor.

Primary Damper Position (BAC-8205 only) The primary damper position input is preconfigured as an analog input that represents the position of the internal damper.

Connecting outputs

The BAC-8005 and BAC-8205 controllers have eight preconfigured outputs to support the supplied programs. Only six have externally available physical terminals. All of the outputs are preconfigured for the application programs supplied in the in the dual-duct controllers and are listed in Table 2-2.

Object	Function	Name	False value	True value	Default value	Туре
BO1	Damper Clockwise	DAMPER CW	Neutral	Clockwise	Neutral	Internal
BO2	Damper Counter Clockwise	DAMPER CCW	Neutral	Counterclockwise	Neutral	Internal
AO3	Analog Heat	ANALOG HEAT			0	0-10 VDC
AO4	Fan Speed	FAN SPEED			0	0-10 VDC
BO5	Fan	FAN	On	Off	Off	Triac
BO6	Heating Stage 1	HT STAGE 1				Triac
BO7	Heating Stage 2	HT STAGE 2				Triac
BO8	Heating Stage3/Lite	HT STAGE 3/LITE				Triac

Table 2-2 BAC-8005 and BAC-8205 output objects

Damper Clockwise and Clockwise The damper outputs are binary output objects that control the motion of the internal damper.

Analog Heat The analog heat output controls modulating analog reheat. This output is active only if the controller is set up for reheat. For staged reheat applications, see the topic *Application drawings* on page 23.

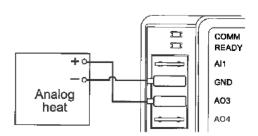


Illustration 2-4 Modulating heat output

Fan Speed Controls the speed of a variable speed fan if the controller is set up for fan operation.

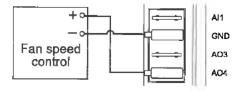


Illustration 2-5 Fan speed output

Fan The fan start output is preconfigured to either start or stop a single speed fan or enable a multispeed fan. The output is a triac that can switch up to 1 ampere at 24 volts AC.

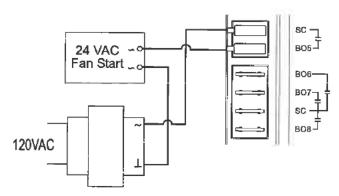


Illustration 2-6 Fan start output

Heating stages 1, 2, and 3 The three heating outputs are for various types of reheat. The connection diagrams for each type of reheat are covered in the following topics.

- Modulating reheat on page 23
- <u>Two-stage reheat on page 24</u>
- Time proportional reheat on page 24
- ◆ Floating reheat on page 26
- Three stage reheat on page 27

When local lighting controls is used, three stage reheat is not available.

Local lighting The lighting output is preconfigured to work with the motion sensor in an STE-8201 sensor to automatically control lights located in the same space as the VAV. The output is a triac that can switch up to 1 ampere at 24 volts AC.

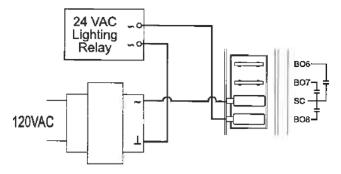


Illustration 2-7 Lighting output

Connecting to sensors

Connect any of the following sensors to the RJ-45 thermostat and sensor jack.

- STE-8001
- STE-8201
- STE-6010
- STE-6014
- STE-6017

Link the controller to sensors with standard straight-through Ethernet cables up to 75 feet long. See the installation guide supplied with the sensors for complete sensor installation instructions.

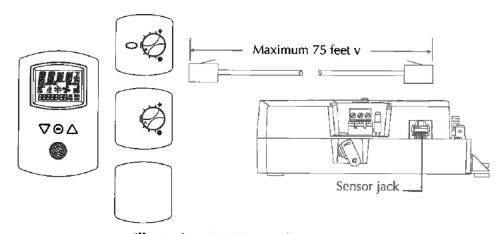


Illustration 2-8 Connecting to a sensor

No programming or configuration is required for the supported sensors. The controller is configured to automatically detect which type of sensor is connected to it.

Connecting to an MS/TP network

The BAC-8000 series controllers are BACnet MS/TP compliant controllers. Connect them only to a BACnet MS/TP network.

See Application Note AN0404A, *Planning BACnet Networks* for additional information about installing controllers.

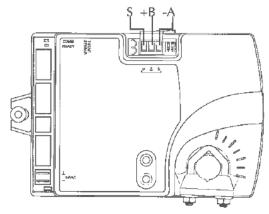


Illustration 2-9 MS/TP network connection

Connections and wiring

Use the following principles when connecting a controller to an MS/TP network:

- Connect no more than 128 addressable BACnet devices to one MS/TP network. The devices can be any mix of controllers or routers.
- To prevent network traffic bottlenecks, limit the MS/TP network size to 60 controllers.
- Use 18 gauge, twisted pair, shielded cable with capacitance of no more than 51 picofarads per foot for all network wiring. Belden cable model #82760 meets the cable requirements.
- Connect the -A terminal in parallel with all other terminals.
- Connect the +B terminal in parallel with all other + terminals.
- Connect the shields of the cable together at each controller. For KMC BACnet controllers use the S terminal.
- Connect the shield to an earth ground at one end only.
- Use a KMD-5575 repeater between every 32 MS/TP devices or if the cable length will exceed 4000 feet (1220 meters). Use no more than four repeaters per MS/TP network.
- Place a KMD-5567 surge surpressor in the cable where it exits a building.

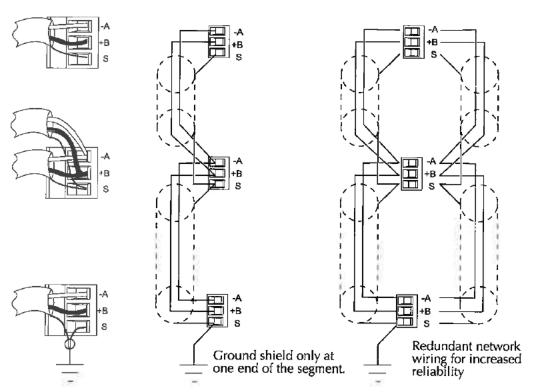


Illustration 2-10 MS/TP network wiring

Note

The MS/TP terminals are labeled -A, +B and S. The S terminal is provided as a connecting point for the shield. The terminal is not connected to the ground of the controller. When connecting to controllers from other manufacturers, verify the shield connection is not connected to ground.

End of line termination switches

The controllers on the physical ends of the EIA-485 wiring segment must have end-of-line termination installed for proper network operation. Set the end-of-line termination to *On* using the *EOL* switches.

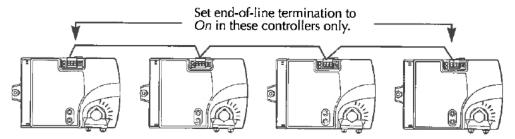


Illustration 2-11 End of line termination

Illustration 2-12 shows the position of the BAC-8000 End-of-Line switches associated with the MS/TP inputs.

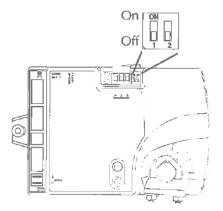


Illustration 2-12 Location of EOL switch

Connecting an airflow sensor

An airflow sensor is incorporated as one of the inputs to the controller. Remove the plugs and connect the tubing from the pitot assembly to the airflow sensor inputs next to the drive hub. (See Illustration 2-13). The airflow sensor is programmed as Input 4.

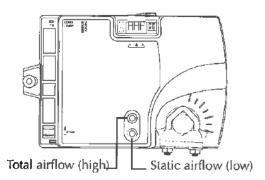


Illustration 2-13 Airflow sensor inputs

Connecting power

The controllers require an external, 24 volt, AC power source. Use the following guidelines when choosing and wiring transformers.

- Use a Class-2 transformer of the appropriate size to supply pwer to the controllers. Titus recommends powering ony one controller from each transformer.
- Do not run 24 volt, AC power from within an enclosure to external controllers.

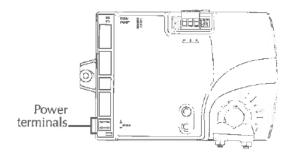


Illustration 2-14 Power terminals and jumper

Connect the 24 volt AC power supply to the power terminal block on the lower right side of the controller near the power jumper. Connect the ground side of the transformer to the ground terminal I and the AC phase to the phase ~ terminal. Power is applied to the controller when the transformer is powered.

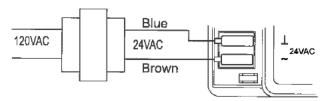


Illustration 2-15 Power connections

Application drawings

The BAC-8005 and BAC-8205 VAV controllers include several options for reheat. The following application drawings show the connections for each type of reheat.

- Modulating reheat
- <u>Two-stage reheat on page 24</u>
- ◆ Time proportional reheat on page 24
- Floating reheat on page 26
- ◆ Three stage reheat on page 27

Modulating reheat

When modulating reheat is selected, local lighting is also available. The analog reheat output varies between 0 and 10 volts DC.

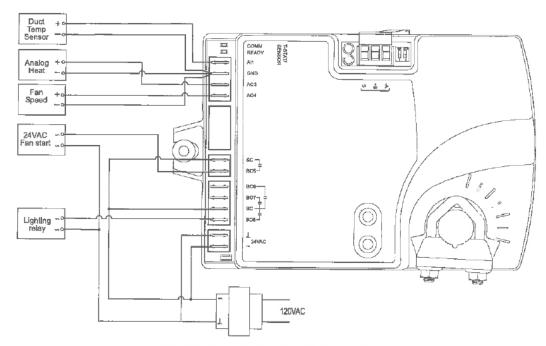


Illustration 2-16 Modulating reheat

Two-stage reheat

Two stage electric reheat connects to the triac outputs at BO6 and BO7. Local lighting is also available. The reheat and lighting outputs are triacs that can switch up to 1 ampere at 24 volts AC.

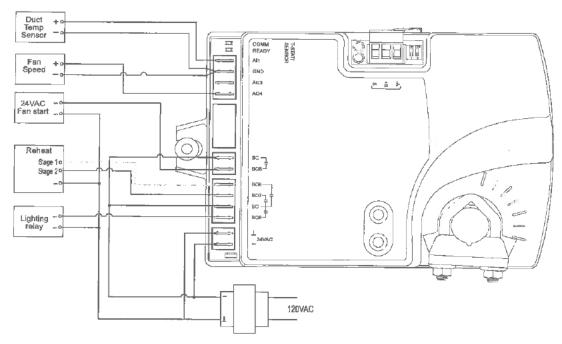


Illustration 2-17 Two-stage reheat

Time proportional reheat

Time proportional reheat option is typically used in hydronic systems with a hot water reheat coil and a wax top control valve. The reheat and lighting outputs are triacs that can switch up to 1 ampere at 24 volts AC.

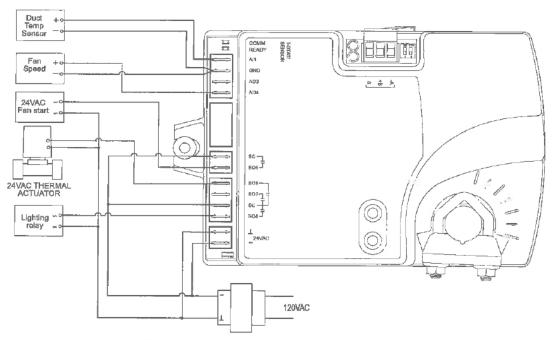


Illustration 2-18 Time proportional reheat

Floating reheat

Use the tristate reheat option in hydronic systems that are controlled by a tristate actuator. The reheat and lighting outputs are triacs that can switch up to 1 ampere at 24 volts AC.

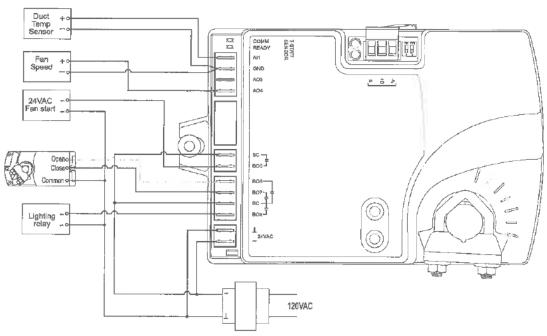


Illustration 2-19 Floating reheat

Three stage reheat

Three stage electric reheat connects directly to reheat units that can be controlled with 24 volts AC. If local lighting is enabled only two stage reheat is available.

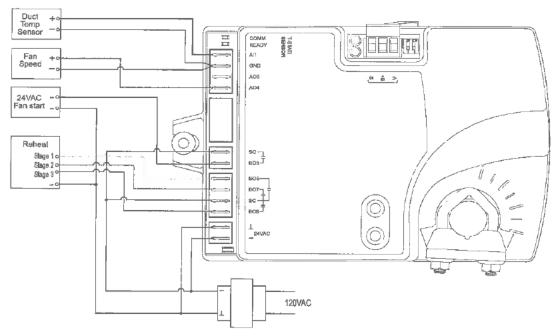


Illustration 2-20 Three-stage reheat

Setting up VAV controllers

The topics in this section cover setting up the BAC-8005 and BAC-8205 for controllers for VAV operation. These are advanced topics for controls technicians and engineers.

The BAC-8005 and BAC-8205 VAV controllers are set up by the manufacturer to operate as soon as they are connected to external equipment and power is applied. Installation and connection instructions are covered in the section *Installing the controllers* on page 11.

Setting up the controllers may include setting BACnet objects with a BACnet Operator Workstation such as TotalControl. The objects may also be set up with a STE-8001 or STE-8201. The following topics are covered in this section.

- Setting temperature setpoints on page 30
- Setting airflow setpoints on page 31
- Setting the VAV terminal unit parameters on page 32
- Setting up local lighting control on page 33
- Network communications on page 29

Caution

Change only the present values of the objects listed in this section. Changing any other objects or properties will result in improper operation.

Network communications

Before connecting the controller to a BACnet MS/TP network, configure the following network parameters with either a BACnet operator workstation or temporarily connecting an STE-8001 or STE-8201 to the controller.

Device instance—Set from 0 to 4,194,302. A device instance number must be unique across the BACnet internetwork.

Baud—Valid baud settings are 9600, 19200, 38400, and 76800.

MAC—Set from 0 to 127. Must be unique on the MS/TP network to which the controller is connected.

Setting temperature setpoints

The space temperate setpoints listed in Table 3-1, "Temperature setpoints," on page 30 are used to control the controller VAV operation. The temperature setpoints have default values, but may be manipulated depending on which type of wall sensor is connected to the controller.

Occupied cooling and heating setpoints These setpoints are user controlled space setpoints that originate from an attached sensor. If no sensor is attached the values for these setpoints are manually entered by a controls technician.

Unoccupied cooling and heating setpoints The unoccupied setpoints are manually entered values to set the heating and cooling temperature when the space is unoccupied.

Minimum cooling setpoint A manually entered value to limit the occupied cooling setpoint regardless of the value entered by the user.

Maximum heating setpoint A manually entered value to limit the occupied heating setpoint regardless of the value entered by the user.

Minimum setpoint differential Sets the minimum temperature separation between occupied heating and cooling setpoints.

Standby differential This differential is added or subtracted from the occupied temperature setpoints to calculate the standby setpoints.

SAT changeover temperature Sets the supply air temperature at which the controller will change from heating to cooling. The changeover takes place when the supply air temperature is 2° above or below the discharge air temperature setpoint.

Table 3-1 Temperature setpoints

Object	Description	Name	Default
AV5	Occupied Cooling Setpoint	OCC CL STPT	74°F
AV6	Occupied Heating Setpoint	OCC HT SPT	70°F
AV7	Unoccupied Cooling Setpoint	UNOCC CL STPT	80°F
AV8	Unoccupied Heating Setpt	UNOCC HT STPT	64°F
AV9	Minimum Cooling Setpt	MIN CL STPT	70°F
AV10	Maximum Heating Setpoint	MAX HT STPT	76°F
AV11	Minimum Setpoint Differential	MIN STPT DIFF	4°F
AV12	Standby Differential	STBY DIFF	3°F
AV37	SAT Changeover Temp	SAT CHANGEOVER	75°F

Setting airflow setpoints

The airflow setpoints are limits for VAV unit operation. All values are entered by a controls technician.

Minimum and maximum cooling airflow Sets the airflow limits through the VAV unit when in the cooling mode.

Minimum and maximum heating airflow Sets the airflow limits through the VAV unit when in the heating mode.

Minimum and maximum fan speed Sets the limits on the fan speed. See <u>Connecting outputs on page 15</u> for details for controlling a fan that is part of the VAV unit.

Table 3-2 Airflow setpoints

Object	Description	Name	Defaults
AV13	Min Cooling Airflow	MIN COOL FLOW	0 CFM
AV14	Max Cooling Airflow	MAX COOL FLOW	400 CFM
AV15	Min Heating Airflow	MIN HEAT FLOW	0 CFM
AV16	Max Heating Airflow	MAX HEAT FLOW	400 CFM
AV32	Minimum Fan Speed	MIN FAN SPEED	0%
AV33	Maximum Fan Speed	MAX FAN SPEED	100%

Setting the VAV terminal unit parameters

Terminal unit parameters set basic operating parameters and enable options such as reheat and series or parallel fan operation.

Reheat Enables and sets the type of reheat. Choose from the available types of reheat from the following list. All reheat options except modulating reheat use the 24-volt AC triac outputs.

None—Reheat is not enabled.

Staged, with lighting—If lighting is enabled the staged reheat is set to two

Staged, without lighting—If lighting is not enabled, three reheat stages are

Modulating—The reheat output varies from 0-10 volts.

Floating—The reheat outputs control a tristate actuator.

Time proportional—Controls a thermal wax valve with a 24-volt triac

Reheat equipment is connected to the controller as described in the topic Connecting outputs on page 15 and Application drawings on page 23.

Damper direction to close Defines which direction the damper will turn to

CCW—The actuator turns counterclockwise to close the damper.

CW—The actuator turns clockwise to close the damper.

Primary duct K-factor A property of the specific VAV unit and airflow sensor to which the primary controller is attached. This constant is supplied by the VAV

Fan operation Sets the type of VAV fan in the VAV terminal unit.

None—No fan is connected to the controller.

Series—The VAV unit includes a series fan. The fan runs during a fresh air purge, when the space is occupied or in standby.

Parallel—The VAV unit includes a parallel fan. The fan runs when there is a call for heat during a fresh air purge, when the space is occupied, or in

Table 3-3 Unit parameters

ObjectDescriptionNameDefaultMSV3Reheat TypeREHEATNoneAV18Primary K factorPR K FACT904BV10Clockwise CloseCLOCKWISE CLOSECCWMSV2Fantype ConfigurationFAN CONFIGNone			nt parameters	
AV18 Primary K factor PR K FACT 904 BV10 Clockwise Close CLOCKWISE CLOSE CCW MSV2 Fantype Configuration FAN CONFIG	Object			
AV18 Primary K factor PR K FACT 904 BV10 Clockwise Close CLOCKWISE CLOSE CCW MSV2 Fantype Configuration FAN CONFIG	MSV3	Reheat Type		Default
BV10 Clockwise Close CLOCKWISE CLOSE CCW MSV2 Fantype Configuration FAN CONFIG	AV18	• •	REHEAT	None
MSV2 Fantype Configuration FAN CONFIG			PR K FACT	
rantype Configuration FAN CONFIG	_	Clockwise Close	CLOCKWISE CLOSE	
None None	MSV2	Fantype Configuration		CCW
			17114 COMPIG	None

Setting up local lighting control

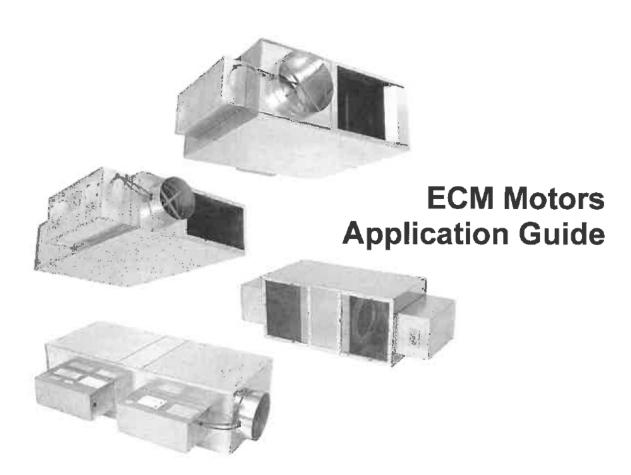
Automatic local lighting can controlled by the motion sensor in an STE-8201 connected to the controller. Local lighting is set up either with software or an attached STE-8201.

Lighting control enable When enabled, local lights will be turned on or off based on motion detected by an STE-8201. If lighting control is enabled the staged reheat is limited to two stages.

Light off delay Sets the interval local lights will remain turned on after the last motion is detected by an STE-8201.

Table 3-4 Local lighting options

Object	Description	Name	Default
BV11	Lighting Control Enable	LIGHTING CONTROL	Enable
AV42	Light off delay	LITE OFF DELAY	15 minutes


Lighting equipment is connected to the controller as described in the topic *Connecting outputs* on page 15.

Balancing airflow

An airflow balancing program is included in BAC-8000 series controllers. See the manual *STE-8000 and STE-8201 Sensor Installation Guide* for balancing instructions.

AG-ECM-07 January 8, 2009

Titus, the Titus Spiral, The Leader in Air Management, Titus Iterative Test & Analysis Network, and TITAN are trademarks of Titus. LEED and the Green Building Rating System are trademarks of the U.S. Green Building Council. GE and ECM are trademarks of General Electric Company. All other trademarks, noted or not, are the property of their respective owners.

Contents	Page
General	1
Introduction	1
ECM Features and Associated Benefits	1
Energy Savings Potential	1
ECM vs. PSC Watt Comparison	2
TITAN [™] ECM Programming Process The History of ECM Motors in	
Commercial HVAC Process Summary	3
Building Codes	
Suggested Specification	
Abbreviations	5
Appendix – State Energy Code Requirements	6

General

This document provides application highlights covering Electronically Commutated Motors (ECM™).

Additional information may be found at the Titus website, its address is www.titus-hvac.com.

Introduction

The ECM motor is a high efficiency, brushless DC motor with a unique microprocessor based motor controller. Motor efficiencies of 70% or better across the entire operating range of the motor saves considerable electrical energy when compared to conventional induction motors. The motor controller, when tuned to a Titus TQS fan powered terminal, provides a large turn down ratio and constant volume airflow regardless of changes in downstream static pressure operating against the fan. Additionally, Titus has developed a proprietary fan speed control that enables easy field adjustment of the unit if rebalancing is required. With the ECM motor, factory setting of the fan CFM is now possible.

ECM Features and Associated Benefits

 70% motor efficiency across the entire operating range of the motor yields substantial electrical savings ... payback in less than two years!

- Microprocessor based internal motor control maintains constant airflow regardless of changes in downstream static pressure.
- Motor operates efficiently down to 300 rpm providing a wide operating range covering most applications.
- Increased application flexibility due to larger operating range.
- Unique fan speed control provides simple manual or remote adjustment through the unit direct digital controls (DDC).
- Factory preset fan airflows minimize fan terminal balancing efforts.
- Ball bearing design and low heat rise characteristics substantially increase motor life.

Energy Savings Potential

The ECM motor when applied to a Titus TQS fan powered terminal offers significant energy savings over time to the owner when compared to conventional induction motors. However, the initial payback of the motor must be considered when applying ECM technology. Several variables will impact the payback of the ECM motor. Some of these are local electric rates, fan settings, whether occupancy schedules are in place for operating hours and the sizes of units installed in the application. Titus has evaluated an actual field trial and confirmed through bench testing an example of the potential energy savings when using the ECM motor. The following charts show the watt reduction associated with the ½ hp and 1 hp ECM motor when compared to standard TQS units of equivalent application range.

Titus retrofitted a floor of an existing building with ECM motors to conduct an energy comparison of ECM motors vs. standard permanent split capacitor (PSC) motors. The following charts (Figures 1 and 2) show the energy usage at several CFM points over the period of 12-18 months.

TQS Size 6 with 1 hp ECM motor watt comparison to standard permanent split capacitor motor. The average watt reduction over the above range is 335 watts.

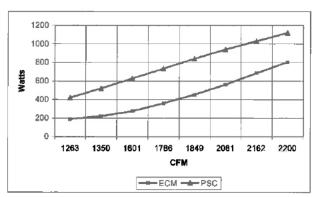


Figure 1. TQS Size 6 - 1 hp ECM Motor

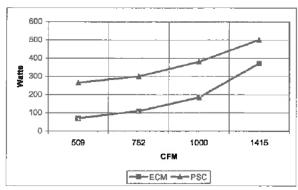


Figure 2. TQS Size 4 - 1/2 hp ECM Motor

TQS Size 4 with ½ hp ECM motor kW comparison to standard permanent split capacitor motor. The average watt reduction over the above range is 178 watts.

When evaluating this reduction in watts for energy usage the following table shows, at various usage rates, the annual savings per motor. Annual savings assume a run time of 3000 hours per year (250 days at 12 hours/day).

Table 1. Annual Dollar Savings

Usage	kV	//hr Reductio	ns
Rate	0.2872	0.35	0.405
\$0.05	\$43.08	\$52.50	\$60.75
\$0.06	\$51.70	\$63.00	\$72.90
\$0.07	\$60.31	\$73.50	\$85,05
\$0.08	\$68.93	\$84.00	\$97.20
\$0.10	\$86.16	\$105.00	\$121.50
\$0.12	\$103.29	\$126.00	\$145.80
\$0.14	\$120.62	\$147.00	\$170.10

Reduction in demand charges must also be considered. Typically, demand charges are calculated during a 15-minute peak window. Some utilities will qualify the peak demand to only the summer months and use this peak as the monthly charge throughout the remainder of the year while other utilities will calculate demand charges using that month's peak kW requirement. The savings associated with reduced demand charges are substantial, as demand charges are usually several dollars per kW.

As an example, a typical multi-story office application may require 200 fan terminals. Each fan terminal equipped with an ECM motor may have a power reduction of approximately 0.4 kW. This translates to an 80 kW reduction in demand and with a demand rate of \$10.00 per kW equates to a potential \$800 per month reduction in the demand charges. While this model is simplistic, it is indicative of the payback potential of the motor. Utilities will vary not only in price but also in calculation methods with contract kW's versus actual kW usage therefore, actual savings must be calculated according to local market conditions.

Coupling the usage and demand savings associated with the ECM motors can provide a payback of the motor in less than two years to the owner and provide substantial savings then throughout the life of the building.

ECM motors may also be considered for the Leadership Energy and Environmental Design (LEED™) Optimize Energy Performance credit. The ECM motor has efficiencies of up to 70% across its entire operating (300-1200 rpm) and 80% over 400 rpm.

ECM vs. PSC Watt Comparison

The following table shows a watt comparison for the TQS size 4 and 6 vs. the appropriate size TQS with a standard PSC motor at various CFMs. As you turn down the ECM motor, the energy savings increases when compared to a standard motor operating at the same airflow.

For example, turning a size 4 TQS with ECM motor down to 509 CFM uses 75% less energy than a TQS size 2 operating at the same CFM. The ECM motor would be operating at a much lower rpm than the standard motor at this CFM.

Table 2. TQS Size 4 with ECM Motor

Fan CFM	Standard Box Size	ECM Watts	Standard Watts	% Energy Savings
509	2 (1/6 hp)	67	265	75%
752	2 (1/6 hp)	110	280	61%
1000	3 (1/4 hp)	180	380	53%
1415	3 (1/4 hp)	390	498	22%
1547	4 (1/3 hp)	490	520	6%

Table 3. TQS Size 6 with ECM Motor

Fan CFM	Standard Box Size	ECM Watts	Standard Watts	% Energy Savings
1263	5 (1/3 hp)	190	514	63%
1601	5 (1/3 hp)	330	610	46%
2162	6 (3/4 hp)	670	1040	36%
2387	6 (3/4 hp)	900	1130	20%
2626	6 (3/4 hp)	1200	1240	3%

TITAN[™] ECM Programming Process

Any manufacturer can <u>purchase</u> the ECM motor. The difference is in the development and programming of the ECM motor to operate effectively and efficiency within the specific fan powered terminal's design and configuration. The ECM motor only provides a benefit if it is developed and programmed correctly within the specific fan box.

Titus uses the Titus Iterative Test & Analysis Network™ (TITAN™) ECM Programming Process in its ISO 9001:2000 certified lab, the Harold Straub Research & Training Center. The TITAN process ensures the performance of the ECM motor in all of the Titus fan-powered terminals.

The History of ECM Motors in Commercial HVAC

Titus has been programming ECM motors for almost a decade. In early 1995, General Electric (GE™) contacted Titus about helping them bring their ECM motors into the commercial heating ventilation and air conditioning (HVAC) market. Titus provided GE with the requirements of the commercial market such as required motor voltages (the ECM motor was not available in 277V at the time) and market size and ECM motor potential.

Understanding that the ECM motor was a significant price increase over standard PSC motors, Titus retrofitted one floor of the Oryx Energy Tower in Dallas, TX with ECM motors and compared the energy usage of that floor against a floor with PSC motors over an eighteen month period to prove the energy savings would provide an acceptable payback of three years or less.

Titus shipped the first ECM fan powered terminal to a school district in Houston in 1997. Titus has been shipping ECM motors ever since. This extensive history and commitment to the development of the ECM motor for commercial applications, makes Titus an expert in ECM development. This expertise is the basis of the TITAN ECM Programming Process.

Process Summary

The TITAN ECM Programming Process is an iterative process of developing constants for the ECM motor to operate at the optimum efficiency and provide pressure independent airflow. Up to a dozen test runs are preformed using the GE ECM motor programming interface equipment to ensure the correct motor constants. Developing the correct motor constants allows optimal control of the speed and torque of the motor in the particular fan box design.

The minimum and maximum fan curves are determined based on minimum and maximum rpm of the ECM motor (300 rpm and 1200 rpm respectively). The GE interface unit plots rpm versus torque of the motor and determines the difference between measured venturi CFM and the ECM calculated CFM. This test is repeated until the difference in venturi CFM and the ECM calculated CFM equals zero. Once the CFM difference is zero, or as close to zero as possible, the ECM constants are saved for that unit's airflow characteristics.

All Titus fan-powered terminals with ECM motors are provided with a factory installed pulse width modulation (PWM) controller. The PWM voltage signal is calibrated to provide 100% fan at full voltage (10.0V) and minimum fan at minimum voltage (1.0V). The calibrated PWM allows the ECM motor to operated as programmed by Titus regardless of what manufacturer's DDC controller provides the voltage signal to the PWM controller. This ensures the pressure independent operation of the motor with any DDC controller. The PWM

signal can also be controlled manually using two dial pots much like a SCR on a standard PSC motor.

The TITAN ECM Programming Process extends from the lab to the ISO 9001:2000 certified factories where individual ECM motors are programmed with the appropriate ECM program for each order.

Building Codes

With energy considerations growing, there has been an increased interest in "green" buildings, sustainable design, and energy savings. Thirty-two states have mandatory energy codes. Most state energy codes are based on the International Energy Conservation Code (IECC) or ASHRAE/IESNA 90.1.

The IECC covers design of energy-efficient building envelopes and the installation of energy-efficient mechanical, lighting and power systems through requirements emphasizing performance. Chapter 7 of the IECC references ASHRAE/IESNA 90.1. The standard ASHRAE/IESNA 90.1 was developed to provide minimum requirements for the energy-efficient design of buildings except low-rise residential buildings. Section 6 of the standard covers Heating, Ventilation, and Air Conditioning.

Although the U.S. Green Building Council is not a government agency, many local governing bodies are requesting, and in some cases requiring, green design features into their new construction requirements. Some states and cities offer tax incentives for buildings that meet green building codes or become LEED certified and other will most likely offer incentives in the future.

New York was the first state to implement a green building tax program. The credit allows builders who meet energy goals and use environmentally preferable materials to claim up to \$3.75 per square foot for interior work and \$7.50 per square foot for exterior work against their state tax bill. Maryland has implemented green building a tax credit program and Massachusetts is currently reviewing a green building program. Oregon's tax credit program uses LEED certification levels to determine the level of tax credit.

The Seattle Energy Code specifies ECM motors in Chapter 14, Building Mechanical Systems states that Fan motors less than 1 hp in series terminal units shall be either electronically-commutated motors, or have a minimum motor efficiency of 65% when rated in accordance with National Electrical Manufacturers Association (NEMA) Standard MG-1 at full load rating conditions.

The appendix shows the state energy code requirements (as of May 2004).

Suggested Specification

Fan motor assembly shall be forward curved centrifugal fan with a direct drive motor. Motors shall be General Electric ECM, variable-speed. DC, brushless motors specifically designed for use with single phase, 277 volt (or 120 volt), 60 hertz electrical input. Motor shall be complete with and operated by a single-phase integrated controller/inverter that operates the wound stator and senses rotor position to electronically commutate the stator. All motors shall be designed for synchronous rotation. Motor rotor shall be permanent magnet type with near zero rotor losses. Motor shall have built-in soft start and soft speed change ramps. Motor shall be able to be mounted with shaft in horizontal or vertical orientation. Motor shall be permanently lubricated. with ball bearings. Motor shall be direct coupled to the blower. Motor shall maintain a minimum of 70% efficiency over its entire operating range. Provide manual (or optional remote) fan speed output control for field adjustment of the fan airflow setpoint. Inductors shall be provided to minimize harmonic distortion and line noise. Provide isolation between fan motor assembly and unit casing to eliminate any vibration from the fan to the terminal unit casing. Provide a motor that is designed to overcome reverse rotation and not affect life expectancy.

The terminal unit manufacturer shall provide a factory installed PWM controller for either manual or DDC controlled fan CFM adjustment. The manual PWM controller shall be field adjustable with a standard screwdriver. The remote PWM controller shall be capable of receiving a 0-10 Vdc signal from the DDC controller (provided by the controls contractor) to control the fan CFM. When the manual PWM controller is used, the factory shall preset the fan CFMs as shown on the schedule.

Abbreviations

The following table lists abbreviations used within this document.

Abbrev.	Term
ASHRAE	American Society of Heating, Refrigeration, and Air-Conditioning Engineers
CFM	cubic feet per minute
DC	Direct Current
DDC	Direct digital control
ECM	Electronically Commutated Motor
GE	General Electric
hp	horsepower
HVAC	Heating Ventilation and Air Conditioning
IECC	International Energy Conservation Code
IESNA	Illuminating Engineering Society of North America
ISO	International Standards Organization
LEED	Leadership Energy and Environmental Design
NEMA	National Electrical Manufacturers Association
PSC	Permanent Split Capacitor
PWM	Pulse Width Modulation
rpm	revolutions per minute
TITAN	Titus Iterative Test & Analysis Network
USGBC	United States Green Building Council
٧	Voit
Vdc	Volt direct current

Appendix – State Energy Code Requirements

Updated	1/8/09
---------	--------

State	Website	Current Status Commercial	Mandatory Statewide
AK	http://www.ahfc.state.ak.us	None statewide.	No
AL	http://www.bsc.auburn.edu/aderhrw2/codes/	The Alabama Building Energy Conservation Code (ABECC) is a mandatory building code for state government buildings. The code is based on ASHRAE/IESNA 90.1 – 2001	Yes
AR	http://www.1800arkensas.com/energy/	2003 IECC including ASHRAE/IESNA 90.1- 2001	Yes
AZ	http://www.azcommerce.com/Energy/default.asp	ASHRAE/IESNA 90.1-1999 mandatory for state-owned and state funded buildings only	Yes
CA	http://www.energy.ca.gov/title24/index.html	State developed code, Title 24, Part 6, meets or exceeds ASHRAE/IESNA 90.1-2004 (Updated Title 24 goes into effect August 2009	Yes
CO	http://www.coloradoenergy.org	Voluntary state provisions are based on 2003 IECC/ASHRAE/IESNA 90.1-2001	No
CT	http://www.opm.state.ct.us/default.htm	2003 IECC	Yes
DC	www.dcenergy.org	Builders may use either the 2008 D.C. Construction Codes (based on ASHRAE 90.1-2007) OR the previous code adopted in 2003 (which is based on the 2000 IECC)	Yes
DE	N/A	ASHRAE/IESNA 90.1-1999	Yes
FL	http://www.floridabuilding.org	State developed code, Chapter 13 of the Florida Building Code, meets or exceeds ASHRAE 90.1-2004	Yes
GΑ	http://www.gefa.org/energy_program.html	ASHRAE/IESNA 90.1-2004	Yes
HI	http://www.hawaii.gov/dbedt/ert/model_ec.html	ASHRAE/IESNA 90.1-1989 with modifications, mandatory in Hawaii County. Honolulu, Kauai and Maui Counties have adopted ASHRAE 90.1-1999	No
IA	http://www.state.ia.us/government/dnr/energy/	2006 IECC, referencing ASHRAE 90.1-2004	Yes
ID	http://www.state.id.us/dbs/energy/energy_code.html	2006 IECC	Yes
IL	http://www.commerce.state.il.us/com/energy/	2006 IECC and ASHRAE 90.1-2004 statewide	Yes
IN	http://www.state.in.us/sema/press_newcodes.html	State-developed code that does not meet ASHRAE/IESNA 90.1-1989	Yes
KS	http://www.kcc.state.ks.us/energy/energy.htm	Kansas has adopted the 2006 IECC as the applicable energy efficiency standard for commercial and industrial structures in the state. No enforcement mechanism is provided in the statute	Yes
KY	http://www.state.ky.us/agencies/cppr/dhbc/index.htm	2006 IECC and 2006 IBC	Yes
LA	http://www.dps.state.la.us/sfm/energycd.htm	ASHRAE/IESNA 90.1-2004, and 2006 IECC for buildings not covered by ASHRAE	Yes
MA	http://www.state.ma.us/bbrs/energy.htm	Seventh Edition, MA Basic Building Code (780 CMR) Chapter 13 calls for compliance with either the 2006 IECC becomes mandatory April; 6, 2009	Yes
MD	http://www.energy.state.md.us/	2006 IECC	Yes
ME	http://www.state.me.us/spo/ceo/ceohome.htm	2003 IECC or ASHRAE/IESNA 90.1-2004	Yes
MI	http://www.cis.state.mi.us/opla/eo/resid/	ASHRAE/IESNA 90.1-1999	Yes
MN	http://www.admin.state.mn.us/buildingcodes/	MN State Energy Code, exceeds ASHRAE/IESNA 90.1-1989	Yes
МО	http://www.dnr.state.mo.us/de/homede.htm	None statewide. State owned buildings must comply with ASHRAE/IESNA 90.1-1989	No
MS	http://www.mississippi.org/programs/energy/energy_overview.htm	ASHRAE 90-1975, mandatory for state owned buildings, public buildings, and high-	Yes

State	Website	Current Status Commercial	Mandatory Statewide
		rise buildings	
MT	http://discoveringmontana.com/dii/bsd/bc/index.htm	2003 IECC with reference to ASHRAE 90.1- 2001	Yes
NC	http://www.ncdoi.com/http://www.ncdoi.com/OSFM/default.asp	State-developed code based on the 2003 IECC and references the ASHRAE 90.1- 2004	Yes
ND	http://www.state.nd.us/dcs	ASHRAE/IESNA 90.1-1989, voluntary	No
NE	http://www.nol.org/home/NEO/	2003 IECC All state-owned and state-funded buildings must comply with 2003 IECC	Yes
NH	http://www.puc.state.nh.us/energypg.html	New Hampshire Energy Code, references the 2006 IECC	Yes
NJ	http://www.state.nj.us/dca/codes/	ASHRAE/IESNA 90.1-2004	Yes
NM	http://www.emnrd.state.nm.us/ecmd	ASHRAE 90.1-2004 mandatory statewide	Yes
NV	http://www.energy.state.nv.us	2003 IECC mandatory for all jurisdictions that have not adopted an energy code; Jurisdictions in southern Nevada have adopted the 2006 Southern Nevada Energy Code, which is based on the 2006 IECC with amendments	No
NY	http://www.dos.state.ny.us/code/energycode/nyenergycode.htm	State-developed code (ECCCNYS) based on IECC 2003 and referencing ASHRAE 90.1- 2004	Yes
ОН	http://www.odod.state.ch.us/cdd/oee/	2006 IECC referencing ASHRAE 90.1-2004	Yes
OK	http://www.state.ok.us	2003 IECC mandatory for jurisdictions that do not adopt their own code and for state- owned and -leased facilities	Yes
OR	http://www.energy.state.or.us/code/codehm.htm	2007 Oregon Structural Specialty Code (OSSC) for non-residential buildings, based on the 2006 IBC, is mandatory statewide. Chapter 13 for energy efficiency is certified by the USGBC and is 1-2% more stringent than 90.1-2004.	Yes
PA	http://www.dli.state.pa.us/landi/cwp/view.asp?a=124&Q=61120%20	2006 IECC with reference to ASHRAE 90.1- 2004	Yes
RI	N/A	2006 IECC amended to include ASHRAE/IESNA 90.1-2004	Yes
SC	http://www.state.sc.us/energy	2006 IECC	Yes
SD	N/A	None	No
TN	N/A	ASHRAE 90A-1980 and 90B-1975 is voluntary. Jurisdictions can adopt a more stringent code; IECC 2000 with 2001 amendments is an option	No
TX	http://www.seco.cpa.state.tx.us	2000 IECC with 2001 Supplement, with reference to ASHRAE 90.1-2001, mandatory for all buildings. Jurisdictions may adopt a more recent code. ASHRAE 90.1-2004 mandatory for state-funded buildings	Yes
UT	http://www.energy.utah.gov/	2006 IECC mandatory statewide including ASHRAE/IESNA 90.1- 2004	Yes
VA	http://www.mme.state.va.us/de/	2006 IECC	Yes
VT	http://www.state.vt.us/psd/ee/ee19.htm	202005 Vermont Guidelines for Energy Efficient Commercial Construction based upon amendments to the IECC 2004 Supplement and an alternative path of ASHRAE 90.1-2004 with amendments	No
WA	http://www.energy.wsu.edu	State-developed code that is equivalent to ASHRAE/IESNA 90.1-2004 for most commercial buildings	Yes
WI	http://www.commerce.state.wi.us/sb/sb-homepage.html	2000 IECC	Yes

State	Website	Current Status Commercial	Mandatory Statewide
WV	http://www.wvdo.org/community/eep.htm	2006 IECC	Yes
WY	N/A	1989 MEC may be adopted and enforced by local jurisdictions	No