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Abstract 

This study analyzes the impact of Duke Energy Ohio’s Power Manager program on electricity 
demand for a range of weather conditions and dispatch hours under normal and emergency 
operation protocols. Power Manager is a voluntary demand response program that provides 
incentives to residential customers who allow Duke Energy to reduce the use of their central air 
conditioner’s outdoor compressor and fan on summer days with high energy usage. The impacts 
were evaluated using a randomized control trial design. Each customer was randomly assigned 
to one of six groups at the start of the summer—a primary group with 75% of the population 
(approximately 30,000 customers) and five research groups, each with 5% of the population 
(2,000 customers per group). During each event, a control group of approximately 2,000 
households was withheld to establish the baseline absent activation of Power Manager. In 
addition, as part of the evaluation, Nexant collected air conditioner end use data for 95 units 
in 89 homes, conducted a visual inspection of 103 load control devices, surveyed participants 
immediately after an event and control day, and interviewed program staff and implementers.  
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1 Executive Summary 
This report presents the results of the 2016 Power Manager impact and process evaluations for the Duke 
Energy Ohio territory. Power Manager is a voluntary demand response program that provides incentives 
to residential customers who allow Duke Energy to reduce the use of their central air conditioner’s 
outdoor compressor and fan on summer days with high energy usage. During normal events, the 
signal to load control devices to reduce air conditioner use is phased in over the first half hour and 
the reduction is sustained through the remainder of the event and phased out over the half hour 
immediately after the event. During emergency operations, all devices are instructed to instantaneously 
shed loads and deliver larger demand reductions (75% cycling).  

1.1 Impact Evaluation Key Findings 
The impact evaluation is based on a randomized control trial. Each customer who had an addressable 
load control device at the start of the summer was randomly assigned to one of six groups—a primary 
group with 75% of the population and five research groups, each with 5% of the population. During 
each event, a control group of approximately 2,000 households was withheld to provide an estimate 
of energy load profiles absent activation of Power Manager. 1 In addition, as part of the evaluation, 
Nexant collected air conditioner end use data for 95 units in 89 homes and conducted a visual inspection 
of 103 load control devices. While Nexant also analyzed impacts for customers with end-use data loggers 
via regression methods, the randomized control trial results are the primary evaluation results. They 
are more precise, require no modeling, and rely on what is indisputably the best evaluation method. 

During the summer of 2016, between 48,105 and 48,178 air conditioner units were actively 
participating in Power Manager and had load control devices. The average household had 1.06 
load control devices installed.  

Figure 1-1 summarizes the demand reductions for the 2016 general population and emergency test 
curtailment events as a function of weather. Table 1-1 summarizes the reductions attained during each 
event in 2016, as estimated using the randomized control trial. The July 21, 2016 event included a side-
by-side test of demand reduction under different dispatch hours during which 75% of customers were 
dispatched for the 3:30pm to 4:00pm event and four research groups were dispatched at different times. 
The July 25, 2016 event included side-by-side tests of emergency and normal operations in order to 
estimate the incremental demand reductions due to emergency operations. 

A few key findings are worth highlighting: 

 Demand reductions were 0.79 kW per household for the average general population event.

 Peak day impacts under normal operations were 1.01 kW per household on July 25, 2016, when
max temperatures reached 93˚F.

1  A total of 45,152 customers with 47,675 load control devices – all customers enrolled in Power Manager in spring of 
2016 - were randomly assigned to the six groups. The analysis was implemented with smart meter data for 39,804 
customers. The difference in counts is due the combination of customer turnover (primarily due to moving) and the ability 
of Duke Energy Ohio to extract the smart meter data. 
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 Emergency operations produced larger impacts than normal operations, 1.49 kW vs. 1.05 kW
per household for the same hour on the hottest day in 2016, when the daily maximum
temperature reached 93˚F. Reductions from emergency operations exceeded those from
normal operations by 41.9%.

 The magnitude of impacts varies slightly by dispatch window. Demand reductions ranged
from 0.67 to 0.84 kW per household on July 21, when different randomly assigned groups
were dispatched at different times. As a percentage of loads, the demand reductions varied
less, ranging from 21.0% to 23.4%, suggesting that most of the differences by event window
are a function of the underlying amount of air conditioner load.

 Demand reductions grow larger in magnitude when temperatures are hotter and resources are
needed most.

 The difference in impacts between customers who signed up for the lower and higher load
control options was minimal.

 There is no evidence that customers compensate for air conditioner curtailments by increasing
other end uses—whole building impacts are no different than end use impacts.

 The randomized control trial using smart meter data produced highly precise estimates, enabled
side-by-sides tests, and should be the primary evaluation method.

Figure 1-1: Demand Reduction by Load Control Option as a Function of Weather 
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Table 1-1: Randomized Control Trial Demand Reductions for Individual Events 

Event Date Start Time End Time 
Load 

without 
DR 

Impact 
Std. 

Error 

90% Confidence 
Interval % 

Impact 

90% Confidence 
interval Daily 

Max 

Avg. 
Daily 
Temp Lower 

bound 
Upper 
bound 

Lower 
Bound 

Upper 
Bound 

7/21/2016 

11:30 AM 2:00 PM 2.84 -0.67 0.05 -0.59 -0.74 -23.4% -20.7% -26.2%

90 80.3 

1:30 PM 4:00 PM 3.24 -0.73 0.05 -0.65 -0.80 -22.4% -20.0% -24.8%

3:30 PM 6:00 PM 3.59 -0.84 0.04 -0.78 -0.90 -23.3% -21.6% -25.0%

5:30 PM 7:00 PM 3.64 -0.82 0.05 -0.74 -0.91 -22.6% -20.4% -24.9%

6:30 PM 8:00 PM 3.50 -0.74 0.05 -0.65 -0.82 -21.0% -18.7% -23.4%

7/22/2016 2:30 PM 5:00 PM 2.87 -0.54 0.03 -0.50 -0.58 -18.9% -17.4% -20.3% 87 79.9 

7/25/2016 
3:30 PM 6:00 PM 3.86 -1.01 0.04 -0.95 -1.07 -26.1% -24.5% -27.7%

93 83.0 
4:00 PM 5:00 PM 3.82 -1.49 0.05 -1.41 -1.57 -39.0% -36.9% -41.1% 

8/25/2016 3:30 PM 6:00 PM 3.52 -0.81 0.04 -0.75 -0.87 -23.0% -21.3% -24.6% 90 81.7 

8/29/2016 3:30 PM 6:00 PM 3.39 -0.83 0.04 -0.77 -0.89 -24.6% -22.8% -26.3% 89 78.8 

9/7/2016 3:30 PM 6:00 PM 3.52 -0.92 0.04 -0.86 -0.98 -26.2% -24.6% -27.9% 89 78.9 

Average General Population Event 3.42 -0.79 0.02 -0.77 -0.82 -23.2% -22.4% -24.0% 89 80.4 

1.2 Device Operability and Site Performance 
A significant opportunity to improve load control programs is by identifying nonperforming devices or 
sites. These can be due to broken or disconnected control devices or because some devices fail to receive 
control event paging signals. They also can occur because of broken air conditioner units or because 
some customers do not use their air conditioners during event hours. As part of the evaluation, Nexant 
undertook two distinct initiatives to identify underperforming sites. First, a field study was implemented 
during which 103 devices were inspected and tested, with the goal of quantifying the share of inoperable 
devices. This estimate, however, does not factor in paging network communication failures or sites 
that do not have their air conditioner on during event hours. Second, Nexant used smart meter 
data in conjunction with data analytics to identify sites that underperform or do not deliver demand 
reductions and delivered to Duke Energy Ohio (DEO) a dataset with 39,627 customers, identifying which 
sites were underperforming and likely had missing or failing devices, paging network issues, or did not use 
air conditioning during afternoon hours on hotter days.  

Key findings from the device operability and site performance analysis include: 

 Based on field tests, 95 out of the 103 (92.2%) devices tested were operational, with a 90%
confidence interval of ±4.34%.
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 Most sites with inoperable devices have multiple failures.

 Not all customers demonstrated a load reduction pattern during events. The event day load
profiles suggest that 6,956 of the 39,627 (17.6%) sites analyzed did not exhibit a demand
reduction pattern. This can be due to failing or missing devices, paging network issues, or
lack of air conditioner loads.

 Efforts to inspect paging network strength and repair devices are missing or failing should focus
on larger customers. They are less prone to misdiagnosis and more cost effective.

1.3 Process Evaluation Key Findings 
The process evaluation was designed to inform efforts to continuously improve programs by 
identifying program strengths and weaknesses, opportunities to improve program operations, 
program adjustments likely to increase overall effectiveness, and sources of satisfaction or dissatisfaction 
among participating customers. The process evaluation consisted of interviews with key program 
managers and implementers, post-event surveys implemented immediately after events, and control 
day surveys implemented on days with similar temperature but when customer’s air conditioners were 
not established. 

Key findings from the process evaluation include: 

 121 Power Manager participants were interviewed within 24 hours of the July 21 event, which
had a high temperature of 91°F with a heat index of 95°F.

 92 Power Manager participants were interviewed during a hot nonevent day (a control day), July
14, which had a high of 88°F with a heat index of 92°F. The control day surveys were used to
establish a baseline for comfort, event awareness, and other key metrics.

 A strong majority of all respondents, 75%, reported that they are familiar with the Power
Manager program.

 Only 13% of respondents on the event day reported that their homes were uncomfortable,
while all of them experienced a load control event that afternoon. By comparison, 7% of Power
Manager customers surveyed on a hot nonevent day reported they felt uncomfortably hot.
While more respondents of the post-event survey stated that their home was uncomfortable
that day than respondents of the nonevent survey (13% vs. 7%, respectively), the difference is
not statistically significant and the difference in reported thermal discomfort cannot be ascribed
to the Power Manager event.

 Over three quarters of participants would recommend the Power Manager program to others.

 The Power Manager staff and vendors are customer focused and undertake a number of
activities both during the load control season and afterward to ensure that participants are
satisfied with their Power Manager program experience.
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2 Introduction 
This report presents the results the 2016 Power Manager impact and process evaluation for the Duke 
Energy Ohio (DEO) territory. Power Manager is a voluntary demand response program that provides 
incentives to residential customers who allow DEO to reduce the use of their central air conditioner’s 
outdoor compressor and fan on summer days with high energy usage.  

Because DEO has full deployment of smart meters and access to Power Manager customers’ interval 
data, the impact evaluation is based on a randomized control trial that randomly assigned customers 
to six different groups. During each event, at least one of the groups was withheld to serve as a control 
group and provide an estimate of customer’s energy profiles absent activation of Power Manager. The 
randomized control trial was employed during normal Power Manager operations and during specific 
tests designed to address key research questions. In addition, DEO launched a field study to collect air 
conditioner end use data, assess device operability, and assess if customers were compensating for the 
air conditioner curtailments by increasing utilization of fans or other end uses.  

The process evaluation was designed to inform efforts to continuously improve the program by 
identifying program strengths and weaknesses, opportunities to improve program operations, 
program adjustments likely to increase overall effectiveness, and sources of satisfaction or dissatisfaction 
among participating customers. The process evaluation consisted of interviews with key program 
managers and implementers, post-event surveys implemented immediately after events, and control- 
day surveys implemented on days with similar temperature but when customer’s air conditioners were 
not controlled by the Power Manager program.  

2.1 Key Research Questions 
The study data collection and analysis activities were designed to address the main impact evaluation and 
process evaluation research questions.  

Impact Evaluation Research Questions 

 What were the demand reductions achieved
during each event called in 2016?

 Did impacts vary for customers in moderate
(1.0 kW) and high (1.5 kW) load control
options?

 Were impacts at the whole building level (net)
different from AC end use demand reductions
(gross)?

 Do impacts vary based on the hours of
dispatch and/or weather conditions? If
so, how?

 What is the device failure rate?

Process Evaluation Research Questions 

 What is the extent to which participants are
aware of events, bill credits, and other key
program features?

 What is the participant experience
during events?

 What are the motivations and potential
barriers for participation?

 What are the processes associated with
operations and program delivery?

 What are program strengths and areas for
potential improvement?
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2.2 Program Description 
Power Manager is a voluntary demand response program that provides incentives to residential 
customers who allow DEO to reduce their central air conditioner’s outdoor compressor and fans on 
summer days with high energy usage. All Power Manager participants have a load cycling switch device 
installed on at least one outdoor unit of qualifying air conditioners. The device enables the customer’s air 
conditioner to be cycled off and on to reduce load when a Power Manager event is called. DEO initiates 
events by sending a signal to all participating devices through a corporate paging network. The signals 
instruct the switch devices to cycle the air conditioning system on and off, reducing the run time of the 
unit during events.  

The program participates in the energy and capacity markets of the PJM market, but DEO generally limits 
participation in the energy market to days when the wholesale price exceeds $65/MWh. Duke regularly 
bids Power Manager into the capacity market, which means that the program must be available for PJM 
emergency events. Absent an emergency, the DEO operations team schedules and calls events for local 
emergency, economic, or testing reasons. 

Power Manager events typically occur between May and September in DEO territory. Participants receive 
financial incentives for their participation that depend on the amount of load control they experience 
during an event. At enrollment, Power Manager customers elect one of two load control options that 
are available—moderate or high load control. Approximately 85% of Power Manager devices in DEO are 
enrolled in the normal option and the remaining 15% are enrolled in the higher load control option.2 The 
payments received by participants include a one-time installation credit of $25 for the moderate load 
control option ($35 for high load control) plus bill credits for each cycling event that occurs. The minimum 
bill credit for 2016 participation was $5 for customers enrolled in the moderate option and $8 for 
customers enrolled in the high load control option. 

Starting in 2017, DEO will begin using a new cycling algorithm known as true cycle algorithm. The 
algorithm uses learning days to estimate the run time (or duty cycle) of air conditioners as a function 
of hour of day and temperature at each specific site and aims to curtail use by a specified amount. Events 
in 2016, however, were based on the target cycle algorithm. 

2.3 Participant Characteristics 
The Duke Energy Ohio service territory is in the Southern portion of Ohio and centered in the Cincinnati 
area. By the end of summer 2016, slightly over 48,105 air conditioner units were part of Power Manager. 
Of those units, 14.9% enrolled in the higher load control option. On average, customers enroll 1.06 air 
conditioner units per site.  

DEO serves approximately 760,000 residential customers. To enroll on Power Manager, customers must 
be in DEO territory, own their single family home, and have a functional central air conditioning unit with 

2 Customers who ask to de-enroll are offered a low load control option to minimize attrition. Less than 1/15th of one 
percent of devices are enrolled in the low load control option.  
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an outside compressor. Based on the program rules and a residential appliance saturation survey Duke 
Energy implemented in 2013, approximately 54.7% of customers meet the eligibility criteria.3 To date, 
DEO has enrolled approximately 10.9% of eligible customers. Figure 2-1 visualizes enrollment in Power 
Manager over time.  

Figure 2-1: Power Manager Participation Over Time 

3 71.4% of residential customer in the territory own single family homes and, of those, 76.6% have central air conditioners. 
The estimate does not include heat pumps.  
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Figure 2-2: Distribution of Air Conditioner Peak Period Loads 

One of the advantages of end use data collection is the ability to assess whether customers use their 
air conditioner units during key hours on hotter days. By design, the events were not called on all of 
the hottest days, enabling us to assess air conditioner use absent load curtailment events. A total of 19 
nonevent days were identified with daily maximum temperatures exceeding 88˚F and averaging 89.4˚F 
(vs. 89.7˚F for actual events). For simplicity, these days are referred to as control days. 

Figure 2-2 shows the distribution of air conditioner demand across customers on hot nonevent days. 
We isolated the 4 to 6pm period because it aligns with the time period for most Power Manager events. 
Air conditioner use by Power Manager participants varied substantially, reflecting different occupancy 
schedules, comfort preferences, and thermostat use and settings. Roughly 40% of air conditioner 
loads exceeded 1.5 kW. As with any program, some customers who enrolled use little or no central 
air conditioners during late afternoon hours on hotter days. They are, in essence, free riders. The bulk 
of the costs for recruitment, equipment, and installation have already been sunk for these customers and, 
as a result, removing these customers may not improve cost effectiveness substantially. However, given 
the availability of smart meter data, we recommend assessing nonparticipant afternoon loads on hotter 
days prior to marketing in order to target customers who are cost effective to enroll.  

Figure 2-3 provides additional detail and shows the hourly air conditioner end use loads for different 
customer groups. The customers were classified into 10 equally sized groups, known as deciles, based 
on their air conditioner use during hot nonevent days. Each line represents the hourly air conditioner 
loads for the average customer in each decile. 
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Figure 2-3: Air Conditioner End-use Hourly Loads by Size Decile 

2.4 2016 Event Characteristics 
In 2016, DEO dispatched Power Manager six times in addition to the PJM test event. The general 
population events occurred between 3:30 and 6:00pm, except for the July 22, 2016 event, which 
started at 2:30 and lasted until 5:00pm. DEO bids Power Manager resources into the PJM market 
during those time periods. The PJM event was prescheduled well in advance and happened to land on 
a cooler day with a daily maximum temperature of 78˚F. During a PJM event, Power Manager customer 
loads needed to be less than the peak load contribution (PLC) minus the magnitude of DR resources bid 
into the capacity market.  

Table 2-1: 2016 Event Operations and Characteristics 

Event Date Start Time End Time Daily Max 
(˚F) 

Type of 
Event 

# of Devices  Devices  
dispatched 

Control 
group 

Notes 

7/21/2016 3:30 PM 6:00 PM 90 
General 

Population 
(GP) 

48,178 36,134 2,409 Group 3 held back as 
control 

7/21/2016 

11:30 AM 2:00 PM 

90 Research 48,178 

2,409 2,409 Group 1 dispatched 

1:30 PM 4:00 PM 2,409 2,409 Group 2 dispatched 

3:30 PM 6:00 PM 36,134 2,409 Group 0 dispatched 

5:30 PM 7:00 PM 2,409 2,409 Group 4 dispatched 

6:30 PM 8:00 PM 2,409 2,409 Group 5 dispatched 

7/22/2016 2:30 PM 5:00 PM 87 GP Event 48,178 43,360 2,409 
Groups 1 and 2 held 
back 
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7/25/2016 3:30 PM 6:00 PM 93 
GP Event  + 
Emergency 

shed 
48,178 43,360 2,409 Group 2 held back 

8/25/2016 3:30 PM 6:00 PM 90 GP Event 48,128 45,722 2,406 Group 4 held back 

8/29/2016 3:30 PM 6:00 PM 89 GP Event 48,128 45,722 2,406 Group 5 held back 

9/1/2016 4:00 PM 5:00 PM 78 PJM System 
Test Event 

48,108 48,108 0 All customers 
dispatched 

9/7/2016 3:30 PM 6:00 PM 89 GP Event 48,105 45,700 2,405 Group 1 held back 

In addition, DEO overlaid two research experiments alongside the general population events on July 21 
and July 25. On July 21, DEO implemented a side-by-side test of five groups to assess if and how demand 
reductions varied for different dispatch periods. On July 25, a research group was dispatched using 
emergency shed operations side-by-side with a control group and a group that experienced normal 
operations. The objective was to assess how the magnitude of the emergency shed compares to 
traditional operations. Emergency operations reflect the full demand reduction capability of the 
program, but are employed judiciously.  

With the exception of emergency shed tests, the control of the air conditioner units is phased in, at 
random, over the first 30 minutes. Likewise, at the end of an event, instructions to resume normal 
operations are gradually sent to individual air conditioners. The demand reductions reported in this study 
are for the time period when units’ full load reduction were achieved—that is, the phase in and phase out 
periods are excluded since they do not reflect the demand reduction capability.  

In comparison to the past 25 years, 2016 was a relatively cool year in DEO territory. Figure 2-4 shows how 
the maximum temperature in 2016 compares to historical annual maximum temperatures. Overall, nearly 
70% of historical years experienced hotter temperatures.  
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Figure 2-4: Comparison of 2016 Maximum Temperature to Historical Years 
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3 Methodology and Data Sources 
This section details the study design, data sources, sample sizes, and analysis protocols for both the 
impact and process evaluations. For clarity, we provide details about the methodology separately for 
the impact and process evaluation.  

3.1 Impact Evaluation Methodology 
The 2016 Power Manager evaluation included four main activities designed to meet the research 
objectives. The primary evaluation results are based on a randomized control trial, which included the 
entire Power Manager participant population in Ohio. The additional data collection and analysis were 
supplemental and designed to address specific research questions. Because of this, the focus of the 
methodology discussion is on the randomized control trial design and analysis.  

Table 3-1: Summary of Impact Evaluation Components 

Evaluation Component Description 

Randomized control trial using 
smart meters 

 Primary evaluation results
 Population with addressable devices (39,804) randomly assigned to

six groups, one with 75% of population and five research groups, each
with 5% of the population

 During events, at least one group withheld to serve as a control group
and establish the baseline

 Comparison of means between treatment and control

Air conditioner end use meter 
sample  

 Data loggers installed on 95 devices at 89 households, 61 households
used for analysis4

 Spot measurements of voltage, amps, kW, and connected load
conducted at 54 sites

 Used to compare end use  to whole building demand reductions and
assess if customers compensated for air conditioner curtailments

 Used nonevent days to infer the baseline
 Regression model selected based on out of sample testing of

multiple models

Whole building data for customers 
with end use metered air 

conditioners  

 Whole house meter installed for same household with air conditioner
end use data loggers

 Used to compare end use to whole building demand reductions and
assess if customers compensated for air conditioner curtailments

 Used nonevent days to infer the baseline

 Regression model selected based on out of sample testing of
multiple models

Device operability inspections and 
analysis 

 Field inspection of 103 devices, 8 (7.8%) were inoperable

 Event day shape analysis for all customers to identify devices that are
and are not curtailing loads during events

4 Some device loggers either did not record data for the full summer or did not download data. Expected losses are around 
25% but were higher in Duke Ohio 
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3.2 Randomized Control Trial Design and Analysis 
Randomized control trials are well recognized as the gold standard for obtaining accurate impact 
estimates and have several advantages over other methods: 

 They require fewer assumptions than engineering-based calculations;

 They allow for simpler modeling procedures that are effectively immune to any kind of model
specification error; and

 They are guaranteed to produce accurate and precise impact estimates with proper
randomization and large sample sizes.

The RCT design randomly separated the DEO Power Manager population into two groups—treatment 
and control—for each event day. On an event day, all load control devices in the treatment group were 
activated, while none of the devices in the control group were activated. Because of random assignment, 
the only systematic difference between the two groups is that one set of customers was curtailed and the 
other group was not. During research events, distinct operation strategies were employed to enable side- 
by-side testing, but in all instances a control group was withheld. Figure 3-1 shows the conceptual 
framework of the random assignment.  

Figure 3-1: Randomized Control Trial Design 

The Power Manager participant population with addressable load control devices was randomly assigned 
into six distinct groups prior the 2016 summer based on the last two digits of the device serial number.5  

5 Some households have multiple load control devices. In these instances the homes were randomly assigned and all 
devices are home were in the same group.  
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At the beginning of the summer, the main general population group includes 75% of participants – 
approximately 30,000 participants. The remaining five research groups each include 5% of participants, 
or roughly 2,000 customers each. Before implementation, Nexant conducted simulation based power 
analysis using smart meter data for load control participants and concluded the sample sizes were 
sufficient to provide a ±2% Margin of Error with 90% confidence. The purpose of creating six distinctive 
randomly assigned groups was twofold. First, it allowed side-by-side testing of cycling strategies, event 
start times, or other operation aspects to help optimize the program. Second, it also allowed DEO to 
alternate the control group, increasing fairness but also helping avoid exhausting individual customers 
by dispatching them too often solely for research purposes.  

To ensure the randomization was properly implemented, the loads for each of the six groups were 
compared to each other on all days when none of the groups experienced an event. Figure 3-2 shows 
hourly loads for each group on the hottest, nonevent day (July 23). The customer loads are nearly 
identical, which provides strong evidence that the assignment of devices into the six different groups 
was indeed random. It also reflects the precision of control group as a method for estimating the 
counterfactual.  

Figure 3-2: Validation of Random Assignment and Precision — Loads on the Hottest Nonevent Day 

For each event, one of the five research groups was withheld to serve as a control group and establish 
the counterfactual or baseline—the electricity load patterns in the absence of curtailment. Within the 
experimental framework of an RCT, the average usage for control group customers provides an unbiased 
estimate of what the average usage for treatment customers would have been if an event had not been 
called. Because of this, estimating the load impacts for an event requires simply calculating the difference 
in loads between the treatment and control groups during each 15 minute interval, including the event 
period and hours following the event when snapback can occur. The demand reductions reflect net 
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impacts and account for customer use of fans to compensate for curtailment of air conditioners, device 
failures, and paging network communication issues. 

 The standard error, used to calculate the confidence bands, is calculated using the formula shown in 
Equation 1. 

Equation 1: Standard Error Calculations for Randomized control trial 

𝑺𝑺𝑺𝑺𝑺𝑺.𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 𝑬𝑬𝒐𝒐 𝑫𝑫𝑫𝑫𝒐𝒐𝒐𝒐𝑫𝑫𝑬𝑬𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 𝒃𝒃𝑫𝑫𝑺𝑺𝒃𝒃𝑫𝑫𝑫𝑫𝑫𝑫 𝑴𝑴𝑫𝑫𝑴𝑴𝑫𝑫𝑴𝑴𝑫𝑫 = �
𝑴𝑴𝑺𝑺𝑫𝑫𝟐𝟐

𝑫𝑫𝑫𝑫
+
𝑴𝑴𝑺𝑺𝑺𝑺𝟐𝟐

𝑫𝑫𝑫𝑫
 

Where sd is the stand deviation, n is the sample size, t and c are the treatment and 
control groups respectively, and i refers to individual time intervals 

3.3 Analysis Protocol for End Use Metered Customers 
As noted earlier, the DEO study also included end use metering for a sample of 95 air conditioner units 
at 89 households. The main purpose was to asses if whole house demand reductions matched end use 
demand reductions or if customers were compensating for air conditioner curtailments by increasing the 
use of fans or other equipment.  

Nexant used regression analysis to model the relationship between weather and demand on nonevent 
days in order to establish what customer energy use patterns would have been absent curtailments—
known as the counterfactual. This approach works because the intervention—air conditioner 
curtailments—is introduced on some days and not on others, making it possible to observe load 
patterns with and without demand reductions. The repeated, or ON/OFF pattern, enables the evaluator 
to assess whether the outcome—electricity use—rises or falls with the presence or absence of event 
dispatch instructions. This approach hinges on having comparable nonevent days. When all of the hottest 
days are event days, the counterfactual is based on extrapolating trends beyond the range of nonevent 
temperatures, producing less accurate and less unreliable impact estimates for the hottest days. By 
design, DEO avoided dispatching Power Manager resources on all of the hottest days.  

Figure 3-3 illustrates the underlying concept using actual DEO end use load data. The blue circles reflect 
the individual nonevent weekdays and the orange line shows the trend between peak hour loads and 
weather. The green X’s show the load during event days. The regression modeling calculates the demand 
reduction as the difference between the estimated loads, absent air conditioners and actual loads during 
event days. The example below is simplified for illustration purposes. In practice, regression modeling 
typically includes other explanatory variables besides weather such as day of week effects and seasonal, 
or month effects.  

A key question every evaluator must address is how to decide which model produces the most accurate 
and precise counterfactual. In many instances, multiple counterfactuals are plausible but provide 
different estimated demand reductions. The model selection was based on testing 10 distinct model 
specifications and employing a systematic approach to identify the most accurate and precise estimation 
method, described in Appendix A.  
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Figure 3-3: Illustration of Within-subject Regression Models with 2016 Duke Energy Ohio Data 

Figure 3-4: Model Out-of-Sample Validation and Selection 
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The process for model selection relied on out-of-sample placebo tests. First, the model specifications are 
defined. The models tested are summarized in Appendix A. Second, hotter days when air conditioners 
were not curtailed are defined as placebo days. Because load control devices were not activated during 
those days, the impacts are by definition zero. Any estimated impact by models is in fact due to model 
error. Third, we run each of the 10 models using nonevent data but leave out a single placebo event. The 
regression model is used to predict electricity use on the withheld placebo event day—an out-of-sample 
prediction. We repeated the process for each placebo event and record the actual and predicted loads 
for each placebo event. For DEO, a total of 20 placebo days were employed. Fourth, the out-of-sample 
predictions are compared to actual electricity use observed on that day, which is used to calculate 
metrics for bias and precision. Fifth, the best model is identified by first narrowing the candidate models 
to the three with least bias and then selecting the model with the highest precision. Finally, the best 
performing model is used to estimate the counterfactual for actual event days.  

Table 3-2 summarizes metrics for bias and precision.6  Table 3-3 summarizes the results for each model 
tested. Bias metrics measure the tendency of different approaches to over or under predict and are 
measured over multiple days. The mean percent error describes the relative magnitude and direction 
of the bias. A negative value indicates a tendency to under predict and a positive value indicates a 
tendency to over predict. This tendency is best measured using multiple days. The precision metrics 
describe the magnitude of errors for individual events days and are always positive. The closer they are 
to zero, the more precise the results. The mean percentage error was used to narrow down to the three 
models with the least bias. The CV(RMSE) metric was used to identify the most precise and final model 
among the remaining candidates. The best performing model (#7) incorporated both the temperature 
during the time period and the heat buildup in six hours immediately prior.  

Table 3-2: Definition of Bias and Precision Metrics 
Type of 
Metric 

Metric Description Mathematical Expression 

Bias 

Average Error Absolute error, on average A𝐸𝐸 = 1
𝑛𝑛
∑ (𝑦𝑦�𝑖𝑖𝑛𝑛
𝑖𝑖=1 − 𝑦𝑦𝑖𝑖)

Mean Percentage 
Error (MPE) 

Indicates the percentage by which the 
measurement, on average, over or underestimates 

the true demand reduction. 
𝑀𝑀𝑀𝑀𝐸𝐸 =

1
𝑛𝑛 ∑ (𝑦𝑦�𝑖𝑖𝑛𝑛

𝑖𝑖=1 − 𝑦𝑦𝑖𝑖)
𝑦𝑦�

Precision 

Root mean 
squared error 

Measures how close the results are to the actual 
answer in absolute terms, penalizes large errors 

more heavily 
RMSE = �

1
𝑛𝑛
�(𝑦𝑦�𝑖𝑖 − 𝑦𝑦𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1

 

CV(RMSE) 

Measures the relative magnitude of errors across 
event days, regardless of positive or negative 

direction. It can be though us as the typical percent 
error, but with heavy penalties for large errors. 

𝐶𝐶𝐶𝐶(𝑅𝑅𝑀𝑀𝑅𝑅𝐸𝐸) =
𝑅𝑅𝑀𝑀𝑅𝑅𝐸𝐸
𝑦𝑦�

6 Bias is also referred to as accuracy. Precision is sometimes called goodness-of-fit. 
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Table 3-3: Out of Sample Bias and Precision Metrics for Each Model Tested 

1
- Pre-event load (11 am to 1 pm)
- Cooling degree hours (Base 70F)
- Day of week and month

-0.01 -0.7% 0.15 10.7% -0.02 -0.6% 0.23 7.7%

2
- Pre-event load (11 am to 1 pm)
- Cooling degree days (Base 65F)
- Day of week and month

-0.02 -1.3% 0.16 11.7% -0.01 -0.2% 0.24 7.9%

3
- Pre-event load (11 am to 1 pm)
- Maximum temperature for day
- Day of week and month

-0.01 -0.7% 0.17 12.2% 0.00 -0.1% 0.24 7.8%

4
- Pre-event load (11 am to 1 pm)
- Avg. temperate in prior 24 hours
- Day of week and month

-0.03 -2.2% 0.17 12.4% -0.03 -1.1% 0.24 8.0%

5
- Pre-event load (11 am to 1 pm)
- CDH and CDD
- Day of week and month

-0.01 -0.6% 0.15 10.8% -0.01 -0.2% 0.24 7.8%

6
- Pre-event load (11 am to 1 pm)
- Avg. temperate in prior 24 hours and current CDH
- Day of week and month

-0.01 -0.7% 0.15 10.9% -0.01 -0.4% 0.24 7.8%

7
- Pre-event load (11 am to 1 pm)
- Average CDH in prior 6 hours and current CDH
- Day of week and month

0.00 0.0% 0.14 10.4% 0.00 0.1% 0.23 7.5%

8
- Pre-event load (11 am to 1 pm)
- Average CDH in prior 12 hours and current CDH
- Day of week and month

0.00 -0.3% 0.15 10.7% 0.00 0.0% 0.23 7.7%

9
- Pre-event load (11 am to 1 pm)
- Average CDH in prior 18 hours and current CDH
- Day of week and month

-0.01 -0.6% 0.15 10.7% -0.01 -0.2% 0.24 7.7%

10
- Pre-event load (11 am to 1 pm)
- Average CDH in prior 24 hours and current CDH
- Day of week and month

-0.01 -0.7% 0.15 10.9% -0.01 -0.4% 0.24 7.8%

VariablesModel

End -Use Whole building

Bias Precision Bias Precision

Normalized 
RMSE

Root mean 
square error

Mean Percent 
Error

Avg. ErrorAvg. Error
Mean Percent 

Error
Root mean 

square error
Normalized 

RMSE
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3.4 Device Operability Testing Protocols 
As part of the study, Nexant was responsible for all fieldwork related to recruiting customers for end 
use data collection and installation and collection of data loggers. The customers were recruited from 
a random sample of the Power Manager participant population. Prior to installing data loggers on air 
conditioners, Nexant tested whether load control devices were functional.  

The inspection consisted of: 

 Onsite spot measurements of the kW, voltage, amperage, and power factor;

 Information about the AC unit;

 Inspection of the load control device for presence, proper installation, physical condition, and
operability; and

 Inspection of the load control device connection wires, including presence, physical condition,
and whether the connection was secure.

End use data loggers were only installed on air conditioner units with functional load control devices. In 
total, 89 out of the 95 (93.7%) devices inspected had functional load control devices.  

3.5 Process Evaluation Methodology 
The process evaluation included four main activities: 

 A survey of Power Manager participants in the 24 hours immediately following an event;

 A survey of Power Manager participants on a hot, nonevent day (a control day). By design, the
survey mirrored the event day survey and served to establish the baseline response, absent
curtailments,  for customer responses about comfort, awareness, and other program features;

 Interviews with program managers and implementers; and

 A review of the data files, enrollment, and operation processes.

Table 3-4 lists the overarching objectives and the related process evaluation activity. Data collection 
included a mix of interviews and surveys designed to obtain information sufficient to understand the 
experience of Duke Energy staff, implementation staff, and participating customers. Surveys included 
both post-event and nonevent data collection to enable comparison of participant responses with regard 
to comfort level, other cooling strategies, and the extent to which these experiences are attributed to 
Power Manager. Based on power analysis, Nexant concluded that the sample of 68 participants during 
the event and the hot nonevent days was sufficient to deliver 90/10 precision. By design, the goal was to 
collect 50% of the responses via telephone and 50% online. In practice, the survey targets were exceeded 
by a substantial amount because the response to telephone surveys was quick, with most phone surveys 
completed within three hours immediately after the event. Online response, on the other hand, tended 
to occur late at night or early in the morning.  
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Table 3-4: Process Evaluation Research Objectives and Data Sources 

Process Evaluation Objective Interviews with 
Key Contacts 

Post-event Survey Nonevent Survey 

Assess customer awareness   

Understand participant experience    

Identify potential barriers to participation   

Document current program processes associated with 
recruitment, enrollment, and curtailment 

 

Identify program strengths and potential improvements    
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4 Randomized Control Trial Results 
The goals of this study include understanding the load impacts associated with the Power Manager 
program under a variety of conditions. General population event dates were selected to understand 
the available load reduction capacity under a variety of temperature conditions during normal operations, 
while emergency shed events demonstrated the available capacity for short-duration events during 
extreme conditions. In addition, one test day was used to understand how load reduction capacity varied 
as a function of dispatch window by signaling different customer groups at different times of day. This 
section presents the results for these event days. A comparison of load impacts by dispatch option 
(moderate versus high load control) is also presented. 

4.1 Overall Program Results 
The load impact estimates derived from the randomized control trial analysis for the general population 
events, as well as the emergency shed test that occurred side-by-side with normal operation of the 
program on July 25, are presented in Table 4-1. Results for the July 25 emergency event are presented 
as a separate event from the general population event. The load impacts presented here, along with 
the accompanying confidence intervals, are the average changes in load during the indicated dispatch 
windows, excluding the first 30 minutes of dispatch for the normal operation events since this is the time 
period when devices are phased-in at random.  

Table 4-1: Randomized Control Trial per Customer Impacts 

Event Date Start Time End Time 
Load 

without 
DR 

Impact 
Std. 

Error 

90% Confidence 
Interval % 

Impact 

90% Confidence 
interval Daily 

Max 

Avg. 
Daily 
Temp Lower 

bound 
Upper 
bound 

Lower 
Bound 

Upper 
Bound 

7/21/2016 

11:30 AM 2:00 PM 2.84 -0.67 0.05 -0.59 -0.74 -23.4% -20.7% -26.2%

90 80.3 

1:30 PM 4:00 PM 3.24 -0.73 0.05 -0.65 -0.80 -22.4% -20.0% -24.8%

3:30 PM 6:00 PM 3.59 -0.84 0.04 -0.78 -0.90 -23.3% -21.6% -25.0%

5:30 PM 7:00 PM 3.64 -0.82 0.05 -0.74 -0.91 -22.6% -20.4% -24.9%

6:30 PM 8:00 PM 3.50 -0.74 0.05 -0.65 -0.82 -21.0% -18.7% -23.4%

7/22/2016 2:30 PM 5:00 PM 2.87 -0.54 0.03 -0.50 -0.58 -18.9% -17.4% -20.3% 87 79.9 

7/25/2016 
3:30 PM 6:00 PM 3.86 -1.01 0.04 -0.95 -1.07 -26.1% -24.5% -27.7%

93 83.0 
4:00 PM 5:00 PM 3.82 -1.49 0.05 -1.41 -1.57 -39.0% -36.9% -41.1% 

8/25/2016 3:30 PM 6:00 PM 3.52 -0.81 0.04 -0.75 -0.87 -23.0% -21.3% -24.6% 90 81.7 

8/29/2016 3:30 PM 6:00 PM 3.39 -0.83 0.04 -0.77 -0.89 -24.6% -22.8% -26.3% 89 78.8 

9/7/2016 3:30 PM 6:00 PM 3.52 -0.92 0.04 -0.86 -0.98 -26.2% -24.6% -27.9% 89 78.9 

Average General Population Event 3.42 -0.79 0.02 -0.77 -0.82 -23.2% -22.4% -24.0% 89 80.4 
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Overall load impacts for the average customer in the test group ranged between 0.54 kW and 1.01 kW 
during normal operations. The wide range in impacts was primarily driven by differences in temperature 
during the event days, as will be discussed in more detail in a subsequent section of this report. By 
design, events were called under different weather conditions and for different operating hours to 
better estimate the demand reduction capability under different conditions. The emergency shed 
event had a much higher load impact of 1.49 kW. 

Except for the PJM test, at most, 95% of the sites were dispatched since at least 5% of the population 
was withheld to serve as a control group and establish the baseline. Had all resources been dispatched 
under normal operation on July 25, the hottest event day, the program would have delivered 46.1 MW. If 
instead, all resources had been dispatched using emergency operations, reduction would have been 68.0 
MW, despite a relatively cool weather year.  

Since all of the analysis included customers with inoperable devices, the results implicitly take device 
inoperability into account. Because we used random assignment, each of the test groups accurately 
represent the percentage of customers with inoperable devices among the entire population and the 
estimated load impacts are appropriately de-rated by the nonworking devices included in the test groups. 

These same impacts are shown graphically in Figure 4-1, along with the average customer load profiles 
for the test and control groups. Compared to the control group load profile, there is a clear drop in test 
group load during the dispatch period, along with a small snapback in energy usage immediately after the 
events. Note that, based on the control group load profiles, there is more load available for reduction on 
hotter days.



Randomized Control Trial Results 

23 

Figure 4-1: Load Profiles of Average Test and Control Group Customers on General Population Event Days 
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4.2 Normal Operations Versus Emergency Shed Test 
Impacts for the July 25 event are presented in Figure 4-2 for both normal and emergency operations. 
As shown in the graph, the group that was dispatched via normal operations had a 30 minute period (3:30 
to 4pm) during which devices were phased in randomly, whereas all of the devices in the emergency shed 
test group were dispatched simultaneously at the start of the 4pm event and instructed to implement 
75% cycling (AC unit is off ¾ of each hour). As a result, the magnitude of the overall load reduction was 
much greater for customers in the emergency shed group. 

Emergency operations produced larger impacts than normal operations, 1.49 kW vs. 1.05 kW 
per household for the common dispatch hour from 4 to 5pm (average load reduction for normal 
operations during the entire two hour event window was 1.01 kW). Reductions from emergency 
operations exceeded those from normal operations by 41.9%. 

The emergency shed event ended at 5pm, after which time the load for this dispatch group returned to 
nearly the same level as the control group, with some additional snapback. The normal operation group 
continued to show steady load drop until the end of its dispatch window at 6pm.  

Figure 4-2: Load Profiles for Emergency and Normal Operations on July 25 Event 

4.3 Impacts by Dispatch Period 
Load profiles for the various test groups for the July 21 cascading event test are presented in Figure 4-3, 
along with the load profile for the control group. The plot shows the load reduction and accompanying 
snapback associated with each group’s dispatch, as compared to the control group. As can be seen from 
the plot and from the prior table, there were slight differences in the estimated load impacts with larger 
per customer impacts occurring in the late afternoon hour, up until the last event which began at 7pm 
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(excluding the 30 minute ramp-in period at the beginning of the event). Impacts during all dispatch 
windows were fairly steady throughout the events. While the magnitude of impacts varied slightly by 
dispatch window (between 0.67 and 0.84 kW per household), the percent load reduction was actually 
quite similar for each group. As a percentage of loads, the demand reductions varied less, ranging from 
21.0% to 23.4%, suggesting that most of the differences by event window are a function of the underlying 
amount of air conditioner load. 

Figure 4-3: Load Profiles for July 21 Dispatch Window Test 

The point estimates for the load impacts, along with the 90% confidence intervals, for each test group 
is presented in Figure 4-4. The results are broken down by program option (moderate versus high load 
control), as well as for program participants in general. Note that the width of the confidence intervals 
are largely driven by the sample sizes, and thus the confidence intervals for the higher load control option 
customers are much wider because only 15% of customers sign up for it and, as a result, treatment and 
control group sample sizes were smaller.  

In all cases, the load impacts show the same pattern with average load reduction increasing for later 
dispatch windows until the last event. However, the difference in impacts is not great enough to rule 
out the possibility that it could be explained by estimation error, as indicated by the overlapping 
confidence intervals for the various dispatch windows. 

-1.0

0.0

1.0

2.0

3.0

4.0

5.0

kW

12
 A

M

3 
A

M

6 
A

M

9 
A

M

12
 P

M

3 
P

M

6 
P

M

9 
P

M

12
 A

M

Control (5%)
11:30 to 2pm (5%)
1:30 to 4pm (5%)
3:30 to 6pm (75%)
5:30 to 7pm (5%)
6:30 to 8 pm (5%)

7/21/2016 Max Temp 90 (F)



Randomized Control Trial Results 

26 

Figure 4-4: Point Estimates and Confidence Intervals for July 21 Cascading Events 

4.4 PJM System Test 
In addition to the general population events, the cascading event, and the emergency load shed event, 
DEO dispatched all resources on September 1 for a pre-scheduled PJM test event. Because no customers 
were withheld for a control group, it was not possible to calculate impacts for this event using the 
randomized control trial method. However, the load profile for the event in Figure 4-5 includes a clear 
load drop. Because the test occurred on a fairly cool day (maximum temperature of only 78°F), there was 
relatively little load to drop. As such, the load shed appears to be of much smaller magnitude than those 
observed on hotter days. 

For PJM events, the objective is to keep loads below a specific threshold. The threshold is based on the 
aggregate peak load contribution of participants under 1-in-2 weather year planning conditions minus 
the amount of resources bid into PJM. When events are called on cooler days, less reduction is needed 
to maintain loads below the threshold. For DEO Power Manager participants, the peak load contribution 
value is 3.19 kW per household—loads were kept substantially below the target threshold during the PJM 
test event.  
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Figure 4-5: PJM System Event 

4.5 Weather Sensitivity of AC Load and Demand Reductions 
The load reduction capacity of Power Manager is dependent on weather conditions, as shown in Figure 
4-6. The plot shows the estimated average customer impact for each event as a function of
daily maximum temperature. There is a clear correlation between higher temperatures and greater load
reduction capacity, with the greatest load reductions occurring on the hottest day. Both emergency and
normal operation impacts are displayed on this plot for that day, with the greater magnitude impacts
attributable to the emergency operations customers.

While the weather correlation is clear, the question remains: How much of the bigger reduction capacity 
is due to larger air conditioners loads versus larger demand reductions? Both percent reduction and air 
conditioner loads grow with hotter temperatures. The whole house reductions were 18.9% on the coolest 
event day (87°F) and 26.1% on the hottest day (93°F). Figure 4-7 shows the weather sensitivity of whole 
house load for the average customer in Power Manager. All nonevent weekdays with a daily high above 
70°F were classified into two degree temperature bins. The plot shows how the loads vary by hour as 
temperatures grow hotter.   

The key finding is simple. Demand reductions grow larger in magnitude when temperatures are hotter 
and resources are needed most. Because peak loads are driven by central air conditioner use, the 
magnitude of air conditioner loads available for curtailment grows in parallel with the need for resources. 
Not only are air conditioner loads higher, but the program performs at its best when it is hotter.  



Randomized Control Trial Results 

28 

Figure 4-6: Weather Sensitivity of Load Reduction based on Randomized Control Trial Analysis 

Figure 4-7: Weather Sensitivity of Average Customer Loads 

4.6 Impacts by Customer Load Control Option 
Figure 4-8 compares the load impact estimates for customers enrolled in the moderate versus high load 
control option, along with the 90% confidence intervals for each event. In general, point estimates for 
load reduction are greater for high load control option customers on any given event day. However, 
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because there were relatively fewer customers in the high load control option subgroup, the confidence 
intervals for these point estimates are quite wide. While the differences are statistically significant 
for a few of the days, for many days the difference in load impact estimates falls within the range 
of uncertainty.  

The difference in impacts between customers who signed up for the lower and higher load control 
options was minimal. Because customers self-select into the option, a key question is whether customers 
who use less air conditioning tend to sign up for the higher load control options. Figure 4-8 compares the 
control group loads and reductions for customers on the moderate and high load control options for the 
hottest day in 2016, July 25. Customers who signed up for lower load control option do have larger loads, 
but the difference is small and does not explain why the higher load control option did not deliver larger 
load reductions. The remaining explanation of the lack of the difference is the implementation of the 
cycling algorithm.  

Starting in 2017, DEO will begin using a new cycling algorithm but retain the option for customers to 
sign up for the lower and higher load control options. A key question is whether the transition to the new 
algorithm will lead to clear differences in the magnitude of demand reductions between customers who 
elect the lower and higher load control options.  

Figure 4-8: Comparison of Load Impact Results by Control Option for all Events 
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Figure 4-9: Comparison of Hourly Loads by Control Option on Peak Day 

4.7 Impacts by Customer Size 
As noted earlier, air conditioner use by Power Manager participants varies substantially, reflecting 
different occupancy schedules, home sizes, comfort preferences, and thermostat use and settings. Table 
4-2 shows the Power Manager demand impacts for customers of different sizes. For the comparison,
customers were classified into 10 equally sized groups, known as deciles, based on their 4 to 6pm
electricity use during hot nonevent days.

Customers with larger loads delivered larger demand impacts. Customers among the smallest 10th on 
average reduced demand by 0.23 kW per household; while customers among the largest group on 
average reduced demand by 1.40 kW. While the pattern of larger impacts among larger customers is 
clear, the reductions as a percent of whole house loads are very similar for nearly all groups, except the 
smallest ones. Within each size group, customers delivered larger demand impacts with hotter weather, 
as summarized in Figure 4-10.  
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Table 4-2: Average Event Impacts by Customer Size 

Figure 4-10: Customers within Each Size Group Deliver Larger Impacts with Hotter Weather 

4.8 Key Findings 
A few key findings are worth highlighting: 

 Demand reductions were 0.79 kW per household for the average general population event.

 Peak day impacts under normal operations averaged 1.01 kW per household over the course of
the two hour dispatch window on July 25, 2016, when the daily maximum temperature was 93˚F.
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 Emergency operations produced larger impacts than normal operations, 1.49 kW vs. 1.05 kW
per household for the same hour on the hottest day in 2016. Reductions from emergency
operations exceeded those from normal operations by 41.9%.

 The magnitude of impacts varied slightly by dispatch window in absolute terms, but not so
much as a percentage of available load. Demand reductions ranged from 0.67 to 0.84 kW per
household on July 21, with larger impacts generally occurring later in the day. As a percentage of
loads, the demand reductions varied less, ranging from 21.0% to 23.4%, suggesting that most of
the differences by event window are a function of the underlying amount of air conditioner load.

 Demand reductions grow larger in magnitude when temperatures are hotter and resources are
needed most.

 The difference in impacts between customers who signed up for the lower and higher load
control options was within the range of uncertainty.
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5 Whole Building Versus End Use Impacts 
Along with randomized control trial analysis, the Power Manager program in DEO’s territory was 
evaluated using within-subjects regression of load data collected from a sample of program participants. 
This analysis was applied to end use data collected from customers’ AC units, as well as to the whole 
building Smart Meter data for the same group of customers. The same regression model was applied 
to both sets of data to ensure consistency in the analysis and allow for a valid comparison between the 
two sets of results. 

The purpose for this was to compare whether whole building impacts would predict similar impacts to 
those derived from the end use data. Any deviation between the two would imply that customers were 
offsetting load reductions through other end uses. However, the study found that both evaluation 
methods produced similar impact estimates. 

5.1 Comparison of Load Impacts by Method 
Hourly load impact estimates for general population events derived from regression analysis of end use 
and whole building data for the same group of customers, as well as results derived from randomized 
control trial analysis, are compared in Figure 5-1. Hourly load impacts are similar for all analysis 
methods presented, though the two sets of results produced by regression analysis exhibit considerably 
more noise, likely due to the relatively small sample size and the inherent uncertainty associated with 
modeling. However, the overall magnitude of the load impacts was essentially the same regardless of 
data source and analysis method. 
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Figure 5-1: Comparison of Load Profiles by Analysis Method 
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The average load impacts during the event windows are plotted against maximum daily temperature in 
Figure 5-2. The results are broken down by control option (as well as overall average impacts across both 
groups), and are differentiated for each analysis method. The estimated load impacts are similar to one 
another at each temperature level, though the randomized control trial results also include the impacts 
for the emergency shed event, which was not evaluated by regression analysis due to a lack of customers 
in the emergency dispatch group among the customers in the end use sample. 

The same load impacts are estimated by three different analysis methods, providing a high degree of 
confidence in the results. Furthermore, the fact that similar load impacts are predicted by whole building 
and end use data indicates that Power Manager customers are not offsetting AC load reductions by 
increasing usage of other end uses. Furthermore, the weather sensitivity implications produced by 
the randomized control trial results are confirmed by the end use and whole building regression analysis. 

Figure 5-2: Load Impacts vs. Temperature for Each Analysis Method 

5.2 Air Conditioner End Use Metered Customer Load Impacts 
Details of the ex post results derived from regression analysis of end use data are provided in Table 5-1. 
As with the randomized control trial results, these load impacts are the average values for load reduction 
during the event windows indicated, minus the initial 30 minute phase-in period. Overall, load impacts 
are similar to the results predicted by randomized control trial analysis and display the same weather 
sensitivity presented previously. Average impact over all of the general population events is 0.74 
kW/customer, as compared to the randomized control trial average of 0.79 kW/customer. As noted 
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earlier, the confidence intervals are somewhat larger for this analysis compared to the randomized 
control trial analysis due to the substantially smaller sample size involved.  

Table 5-1: End Use Load Impacts Based on Regression Analysis 

Event Date Start  
Time 

End 
Time 

Load 
without 

DR 
Impact Std. 

Error 

90% Confidence 
Interval 

% Impact 

90% Confidence 
interval Daily 

Max 

Avg. 
Daily 
Temp Lower 

Bound 
Upper 
Bound 

Lower 
Bound 

Upper 
Bound 

7/21/2016 3:30 PM 6:00 PM 1.83 -0.77 0.15 -0.52 -1.03 -42.4% -28.6% -56.2% 90 80.3 

7/22/2016 2:30 PM 5:00 PM 1.43 -0.67 0.16 -0.41 -0.92 -46.7% -28.9% -64.6% 87 79.9 

7/25/2016 3:30 PM 6:00 PM 2.07 -0.96 0.17 -0.69 -1.24 -46.6% -33.2% -60.0% 93 83.0 

8/25/2016 3:30 PM 6:00 PM 1.59 -0.60 0.15 -0.36 -0.85 -38.0% -22.5% -53.5% 90 81.7 

8/29/2016 3:30 PM 6:00 PM 1.54 -0.68 0.15 -0.43 -0.93 -44.2% -27.9% -60.4% 89 78.8 

9/7/2016 3:30 PM 6:00 PM 1.63 -0.76 0.17 -0.48 -1.04 -46.9% -29.5% -64.2% 89 78.9 

Average General Population Event 1.68 -0.74 0.08 -0.61 -0.87 -44.2% -36.5% -51.8% 90 80.4 

Figure 5-3: Load Impacts and Confidence Intervals for End Use by Option 

These results are also presented in Figure 5-3, along with a breakdown by control option. Comparing 
the results for customers enrolled in the moderate and high load control option, the results are close 
enough to one another for each event day that they can be explained by estimation error using this 
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analysis method. Any differences that exist between the two control options were not picked up due to 
the small sample size. 

5.3 Whole Building Impacts for Customers with Metered Air Conditioners 
Similar to the end use derived results, the details of the load impacts estimated by regression modeling 
of whole building data is presented in Table 5-2. The results are similar enough to the end use results that 
the difference could be attributed to estimation error. The whole building analysis estimates an average 
impact of 0.81 kW/customer across the events, versus 0.74 kW/customer as predicted by the end use 
data. This indicates that customers are not offsetting AC load reductions through other end uses. 

Table 5-2: Whole Building Load Impacts Based on Regression Analysis 

Event Date 
Start  
Time 

End 
 Time 

Load 
without 

DR 
Impact 

Std.  
Error 

90% Confidence 
Interval % 

Impact 

90% Confidence 
interval Daily 

Max 

Avg. 
Daily 
Temp Lower 

Bound 
Upper 
Bound 

Lower 
Bound 

Upper 
Bound 

7/21/2016 3:30 PM 6:00 PM 3.68 -0.70 0.24 -0.31 -1.08 -18.9% -8.4% -29.5% 90 80.3 

7/22/2016 2:30 PM 5:00 PM 3.18 -0.67 0.23 -0.29 -1.04 -21.0% -9.1% -32.8% 87 79.9 

7/25/2016 3:30 PM 6:00 PM 4.04 -1.09 0.25 -0.67 -1.51 -26.9% -16.6% -37.3% 93 83.0 

8/25/2016 3:30 PM 6:00 PM 3.24 -0.63 0.23 -0.25 -1.01 -19.5% -7.8% -31.3% 90 81.7 

8/29/2016 3:30 PM 6:00 PM 3.34 -0.87 0.23 -0.49 -1.25 -26.1% -14.8% -37.4% 89 78.8 

9/7/2016 3:30 PM 6:00 PM 3.42 -0.89 0.27 -0.45 -1.34 -26.2% -13.0% -39.3% 89 78.9 

Average General Population 
Event 

3.48 -0.81 0.11 -0.62 -1.00 -23.2% -17.8% -28.6% 90 80.4 

The point estimates and confidence intervals for the load impacts are presented in Figure 5-4, with the 
results also broken down by control option. Compared to the end use results, there is considerably more 
uncertainty for the estimates derived from whole building data even though the samples are identical. 
This is due to the additional noise introduced by the additional end uses that are measured by whole 
building data. However, all impact estimates are statistically significant. 

Comparing the results for moderate and high load control customers, there is simply too much 
uncertainty around the point estimates to draw any conclusions on how the control options compare 
using this analysis technique. 
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Figure 5-4: Load Impacts and Confidence Intervals for Whole Building by Option 

5.4 Key Findings 
A few key findings are worth highlighting: 

 There is no evidence that customers compensate for air conditioner curtailments by increasing
other end uses—whole building impacts are no different than end use impacts.

 Findings were consistent across analysis methods, providing a high degree of confidence in
the results.

 Regression analyses produced similar results to the randomized control trial analysis, but were
much less precise.
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6 Device Operability and Site Level Performance 
A significant problem in load control programs is nonperforming devices or sites. These can be due to 
broken or disconnected control devices or because some devices fail to receive control event paging 
signals. They also can occur because of broken air conditioner units or because some customers do not 
use their air conditioners during event hours. Due to the significant cost of direct verification of device 
operation, it is not financially feasible to blindly send service technicians to every property to check 
device operation. Up until recently, with no way to identify broken devices, it has just been easier, and 
more cost effective, to recruit new customers. If DEO is able to remotely identify sites that underperform 
due to broken or missing devices, or because of paging network communication failures, it could increase 
the aggregate impacts of the program without as much cost as new customer acquisition. 

Using 15 minute interval data from DEO’s air conditioning cycling load control program, Power Manager, 
Nexant undertook the task of creating methods to identify probable broken or missing devices. Our effort 
involved two main steps: 

 A field study designed to physically test whether load control devices were functional. The main
purpose of this study component was to quantify the share of inoperable devices. This estimate,
however, does not factor in paging network communication failures or sites that do not have
their air conditioner on during event hours. As we discuss later, the incidence rate is one of the
critical components that affects the precision of efforts to identify broken or missing devices.

 Use of data analytics to develop methods that identify sites that underperform or do not deliver
demand reductions. A device that is not functional does not reduce air conditioner demand over
multiple events.

The field study was implemented in tandem with the installation of air conditioner data loggers and 
serves to quantify the device failure base rate. While data analytics was used to identify underperforming 
sites, a separate verification test to determine the precision of the diagnosis has not yet been 
implemented. Our expectation is that using whole building smart meter data to identify nonperforming 
or missing devices will lead to substantial improvements over blindly sending technicians to assess if 
devices are performing. These efforts, however, are most precise if they are restricted to households 
that clearly use air conditioners during hotter weather conditions. These customers also provide the most 
value since they use air conditioners during peaking conditions. Diagnosis of nonperforming devices is less 
accurate when it is applied to sites with low or no air conditioner use during peak hours of hotter days.  

6.1 Device Operability Field Test 
As part of the study, Nexant was responsible for all fieldwork related to recruiting customers for end 
use data collection and installation and collection of data loggers. The customers were recruited from 
a random sample of the Power Manager participant population. Prior to installing data loggers on air 
conditioners, Nexant tested whether load control devices were functional. The inspection consisted of: 

 Onsite spot measurements of the kW, voltage, amperage, and power factor;

 Information about the AC unit;

 Inspection of the load control device for presence, proper installation, physical condition,
and operability; and
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 Inspection of the load control device connection wires, including presence, physical condition,
and whether the connection was secure.

End use data loggers were only installed on air conditioner units with functional load control devices. 
Based on field tests, 95 out of the 103 (92.2%) devices are operable, with a 90% confidence interval 
of ±4.34%. The estimate represents a lower bound for performance improvement because it does not 
account for devices that do not perform due to paging network issues or because the air conditioner is 
not in use during afternoon peak hours on hotter days.  

Table 6-1: Device Operability Field Study Results 

Metric Value 

Devices inspected 103 

Inoperable devices 8 

Operable devices 
(i.e., loggers installed) 

95 

Device failure rate 7.8% 

6.2 Use of Smart Meter Data to Identify Underperforming Sites 
DEO smart meters collect residential whole building data for each 15 minute interval. To identify 
underperforming sites, it is necessary to assess whether air conditioner units are on when load control 
events are called and whether or not the devices lead to reduction in the air conditioner load control 
demand. There are two related challenges for doing so with whole building data: air conditioner use 
varies substantially across households and the footprint of air conditioner use is often not clearly 
identifiable with hourly data on individual days. Before detailing the method used to identify 
nonperforming sites and the results, it is useful to understand some of the fundamental challenges 
in diagnosis.  

6.2.1 Fundamentals of Diagnosis 
The accuracy of any diagnosis depends on the answer to three questions: 

 Are failures common? Technically, this is the incidence rate or base rate of failures. Based on the
field inspection it is approximately 7.8%.

 How well does the test identify failures when there is indeed a failure? This is technically referred
to as sensitivity.

 How often does the test incorrectly diagnose a failure when none occurred? Technically, this is
the false positive rate. The inverse of the false positive rate is known as specificity.

In describing diagnostic tests, it is common to focus on how well the test identifies failures when there 
are indeed failures—sensitivity. It is also possible, however, for the diagnosis to misclassify devices that 
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are, in fact, operable as failing.7 The right question is: what fraction of all devices classified as failing is 
indeed failing? The answer to this question is known as precision.8 Diagnosis is inherently difficult when 
failures are uncommon. When that occurs, a well-designed diagnostic test with high sensitivity and high 
specificity may still over diagnose.  

One way to improve the precision of diagnosis is to apply the test only to populations where the 
diagnostic test is known to perform well or populations that are expected to have higher failure 
rates (e.g., older devices). The risk of misdiagnosis is highest among customers who rarely use their air 
conditioner during peaking conditions and who should not be targeted for reactivation in the first place. 
Customers who use their air conditioners during peaking conditions should be less prone to misdiagnosis. 
These customers are also more valuable and cost effective to reactivate. Older devices are also expected 
to have higher failure rates and, as a result, a lower rate of misdiagnosis.  

The main takeaway is that using whole building interval data to identify underperforming devices can be 
very successful under the right settings. The method should not be applied blindly to all sites but should 
ideally focus on customers with higher air conditioner use and/or sites with older control devices.  

6.2.2 Classification Algorithm 
Devices that are functional and receiving the paging signal reduce demand or notch the load shape during 
the load control events. Devices that are nonperforming do not alter the load shape. There were four 
main components to the algorithm:  

 Use of whole building load shape over multiple events where the event start and end times are
standardized;

 Load drop when the event begins—air conditioner units are phased in over time;

 Snapback immediately after control of the air conditioner is released; and

 A high correlation between temperature and loads during hotter nonevent days.

7 For example, assume 10,000 devices, out of which 500 are failing (5%). A test that correctly identifies 95% of failing 
devices (475) is highly sensitive. However, if that same test misclassifies 5% of the 9,500 devices that are operable (475), 
it is not very precise. In total, 950 devices will have been identified as failing, but only 475 (50%) are correctly classified. 
Another 25 failing devices are missed entirely.  
8 Precision = True Positives / (True Positives + False Positives) 
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Figure 6-1: Process for Developing Algorithm to Detect Underperforming Sites 

Figure 6-1 describes the process used to develop the algorithm. First, the data was narrowed to six hours 
for each general population event day—two hours immediately preceding the event, two hours of actual 
full reduction, and two post event hours. Next, the time intervals were standardized so full reduction 
capability occurred at time zero. This was necessary to account for slight differences in dispatch times.9  
Third, the average load shape by time interval was calculated for each household in Power Manager with 
smart meter data. We focused on the average event day load shape across multiple events to reduce the 
risk of misdiagnosis. A device that does not respond to multiple events is easier to identify than a device 
that does not respond to a single event. Over 99% of the 39,627 sites analyzed experienced 2 or more 
events and 73% of sites experienced 6 events.  

The core of the algorithm is the fourth step—the use of cluster analysis on event day load shape data. 
Cluster analysis is an exploratory data analysis technique used to classify customers into natural groupings 
(or clusters) based on a specific set of observable characteristics. The customers within a cluster are 
similar to each other based on the observed variables and, at the same time, differences between 
the groups are maximized. To isolate load shapes from customer size, the loads for each time period 
were normalized as percentage consumption over the six hour period—that is, for each customer the 
normalized event day load shape added up to 100%. Each customer was then assigned to one of six load 
shapes through cluster analysis. Customers with distinct load drops during events and snapback after the 

9 For example, if an event started at 3:30pm, it attained full reduction by 4pm because load control devices are phased in 
randomly; thus 4pm was considered time zero. If the event instead started at 2:30, 3pm was considered time zero after 
accounting for the load control phase in. 
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event were grouped together; while customers who did not experience a clear load drop were grouped 
with similar customers.  

The final step was to combine the load shape classification with the customer size data in order to avoid 
misdiagnosis. Customers who do not use their air conditioner much during peak hours (4 to 6pm) on 
hotter days are more prone to miscategorization. The lack of air conditioner use can be mixed with a 
lack of event response.  

6.2.3 Results 
Figure 6-2  illustrates the six prototypical load shapes produced by the cluster analysis. The shape for 
customers in groups 2, 3, and 4 suggests a distinct load drop. Customers in groups 1 and 5 have smaller 
but still distinct load drop shapes. The shape for group 6 suggests no load reduction took place for these 
customers during events despite the automation. This could be due to missing or failing devices, paging 
network gaps, or lack of air conditioner loads.  

Figure 6-2: Prototypical Event Day Load Shapes (Cluster Analysis) 

Figure 6-2 visualizes the categorization for a random sample of 200 sites. The customers in each group 
follow the prototypical shapes but sometimes differ in size due to the fact that the algorithm isolated 
shapes. In total, 6,956 of the 39,627 sites analyzed (17.6%) did not exhibit a demand reduction 
pattern and another 13.5% were assigned to group 5, which delivered smaller percent load reductions. 
Customers may exhibit little or no reduction pattern due to inoperable devices (7.8%), paging network 
communication failures, or because those customers rarely use air conditioning during event hours. It 
is important to separate performance from weather sensitivity and customer size. Smaller customers 
may be underperformers due to the lack of air conditioners and are less cost effective, even with a 
functional device. Thus, we recommend focusing direct verification efforts on larger customers. 
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Figure 6-3: Ohio Cluster Analysis – Individual Sites Classified Based on Event Day Load Shapes 
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6.3 Key Findings 
Key findings from the investigation into device operability, include: 

 End use data loggers were only installed on air conditioner units with functional load
control devices.

 Based on field tests, 95 out of the 103 (92.2% )devices tested are operable, with a 90%
confidence interval of ±4.34%.

 Most sites with inoperable devices have multiple failures.

 The event day load profiles suggest that 6,956 of the 39,627 sites analyzed, 17.6% did not exhibit
a demand reduction pattern. This can be due to failing or missing devices, paging network issues,
or lack of air conditioner loads.

 Efforts to inspect paging network strength and verify if devices are missing or failing should focus
on larger customers. They are less prone to misdiagnosis and more cost effective.
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7 Process Evaluation 
Process evaluation, particularly when combined with the insight obtained from impact evaluation, 
informs efforts to continuously improve programs by identifying program strengths and weaknesses, 
opportunities to improve program operations, program adjustments likely to increase overall 
effectiveness, and sources of satisfaction or dissatisfaction among participating customers. The 
primary objectives for the process component of the evaluation include: 

 Assessing the extent to which participants are aware of events, bill credits, and other key
program features;

 Understanding the participant experience during events: comfort, occupancy, thermostat
adjustments, and strategies employed to mitigate heat;

 Identifying motivations and potential barriers for participation, including expectations, sources
of confusion or concern, intention to stay enrolled, and likelihood of recommending the program
to others;

 Documenting the operations, recruitment, enrollment, outreach, notification, and curtailment
activities associated with program delivery; and

 Identifying program strengths and potential areas for improvement.

7.1 Survey Disposition 
Nexant developed a survey for customers participating in the Power Manager program that was deployed 
immediately following a Power Manager event. The survey was administered via phone and email to 
maximize response rates in the 24 hour window directly following a Power Manager event. The post-
event survey addressed the following topics: 

 Awareness of the specific event day;

 Any actions that increased household comfort during a Power Manager event. Do participants
report changing AC settings, using other equipment (including window units, portable units, or
ceiling fans) to mitigate heat buildup? Were participants home during the event? Are they usually
home during that time period?

 Satisfaction with the Power Manager program and bill credits earned;

 Expectations and motivations for enrolling. What did participants expect to gain from
enrollment? To what extent are they motivated to earn incentive payments versus altruistic
motivations such as helping to address electricity shortfalls during periods of high peak demand
and/or reducing the environmental effects of energy production?

 Do participants expect to remain enrolled in the program in future years?

In addition to the post-event survey, a nonevent survey was also deployed immediately following a 
hot, nonevent day. This nonevent day survey was nearly identical to the post-event survey to facilitate 
comparison with the results of the event day survey, with only references to specific event awareness 
removed. Both the event and nonevent surveys were administered to Power Manager participants, 
providing a treatment and control day structure to apply to the data collected. Since event awareness 
and thermal comfort are primary areas of inquiry for the survey, the control data (from the nonevent 
surveys) provides the opportunity to net out any propensity for thermal discomfort or belief that a Power 
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Manager event is occurring that would naturally happen on any hot day of the summer. In this way, it 
is possible to evaluate whether statistically significant differences in event awareness and reports of 
thermal discomfort exist between customers who actually experience a Power Manager event and 
customers who do not. 

The survey was completed by 121 customers on an event day (the treatment group) and 92 customers on 
a hot nonevent day (the control group). The overall response rate was 6%. All surveys were conducted on 
the day of the event or the nonevent. The plan was to survey about 50% of people by phone and 50% by 
email, but on the event day we could not reach 50% by phone; we note that telephone response rates 
in Ohio for the event day survey were likely impacted by the Republican National Convention that was 
taking place that day in Cleveland. The distribution of phone calls and emails, with response rates, is 
shown in Table 7-1. All responses in this section summarizing survey results have been weighted to 
reflect the survey design for 50% of completions by phone and email each. 

The temperature on the event day was a high of 91°F with a heat index of 95°F, which was somewhat 
higher than the temperature on the nonevent day, which was a high of 88°F with a heat index of 92°F. 
Table 7-1 outlines the treatment and control group survey dispositions. 

Table 7-1: Survey Disposition 

Total Responses Group Size Date Temp 
Phone/ 

Email Distribution 
Response 

Rate 

213 
Responses 

121 Event Day 
Thursday, 

July 21 
high 91°F  

(heat index 95° F) 
36% Phone 7% 
64% Email 5% 

92 Control day 
Thursday, 

July 14 
high 88°F  

(heat index 92°F) 
49% Phone 11% 
51% Email 5% 

Nearly all survey respondents—95% of both groups—own their residence. More than half of households 
surveyed have two or fewer residents, but 26% of treatment and 14% of control households have four 
or more residents. There was no apparent systematic difference in the age of respondents between 
the treatment and control groups. The mean age of respondents is 58 years and the most commonly 
reported level of education was a bachelor’s degree: 29% of respondents said that they graduated from 
college. Nearly as many (28%) have a graduate or professional degree and 20% graduated from high 
school but not college. 

7.2 Program and Event Awareness 
The customer surveys were designed with the key objective of evaluating participants’ awareness of 
Power Manager events, but a few questions were also included to gauge participants’ general awareness 
of the program and its key features. Every respondent who was contacted to complete the survey was 
a Power Manager participant at the time of the survey, and a strong majority of the respondents, 75%, 
reported that they are in fact familiar with the Power Manager program. However, participants are not as 
aware of a key feature of the program, the option to decline to participate in a Power Manager event on 
a specific day; only 52% of respondents reported that they are aware of that option. Respondents also 
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reported on whether or not they had seen Power Manager event credits on their bill. Relatively few 
respondents affirmed that they have seen credits on their bill: 13% of respondents reported that they 
have seen a credit, while 57% reported that they had not, and the balance of respondents, 31%, reported 
that they did not know. It is possible that due to the timing of the survey, which was midseason, these 
customers did not receive credits in 2016 at the time of the survey. Duke Energy also screened the list of 
customers who said they did not receive bill credits to make sure errors were not made; no customers in 
fact did not receive a bill credit when they should have.  

All three of these questions were asked of both the treatment group and the control group. That is, the 
questions were asked of a group of customers that had experienced a Power Manager event that day and 
a group of customers who had not. It would not be expected that there would be significant differences 
in these questions addressing program awareness between these groups. Indeed, the responses to these 
three questions do not significantly differ across treatment and control customers. 

Both the opt-out feature and bill credits are designed to be program features that enhance customer 
satisfaction with the program; with only about half of respondents aware of the event opt-out option 
and less than 15% of respondents recalling receiving a bill credit, an opportunity exists to improve 
participants’ awareness of these customer-friendly program features. 

Every Power Manager participant that was randomly selected to receive the post-event survey, i.e., 
the treatment group, experienced an actual Power Manager event that day, Thursday, July 21. A total of 
121 customers completed the post-event survey. Only 13% of the treatment group respondents reported 
that their homes were uncomfortable that day, while all of them experienced a load control event that 
afternoon. As a program with no pre-event notification, a decrease in thermal comfort in the home is the 
key factor for assessing event awareness. In Ohio, with only 13% of respondents stating that they were 
uncomfortable the day of the event, event awareness by that measure is quite low. However, it could also 
be that a number of those respondents would say that their home was uncomfortably hot at times on any 
hot day of the year, regardless of whether or not the Power Manager program had a load control event. 
To control for this possibility, another randomly selected group of Power Manager participants were also 
surveyed on a hot day when a Power Manager event did not occur, Thursday, July 14. A total of 7% of 
respondents reported that their home was uncomfortable on this nonevent day. While more respondents 
of the post-event survey stated that their home was uncomfortable that day than respondents of the 
nonevent survey (13% vs. 7%, respectively), the difference is not statistically significant. Put simply, the 
increase in reported thermal discomfort cannot be ascribed to the Power Manager event. It is small 
enough that it could reasonably have occurred by chance. The response frequencies are tabulated in 
Table 7-2. 
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Table 7-2: Was there any time today when the temperature in your home was uncomfortable? 
Response Frequencies Weighted by Mode, Nt = 121 and Nc = 92 

Response Treatment Control 

Yes 13% 7% 
No 71% 81% 

Don't know 16% 11% 

Of those relatively few customers (17 post-event and 7 nonevent survey respondents) who reported 
that they were uncomfortable at some time during the day of the survey, all but one reported that they 
started feeling thermal discomfort between the hours of noon and 6pm.10 Asked when the period of 
thermal discomfort in their home ended, there was a slight shift in responses towards later in the day, 
where all but two respondents reported that their home stopped feeling uncomfortable during the 
period of 5 to 11pm.11 

These customers who reported thermal discomfort were also asked to rate their discomfort using a 
five-point scale, where 1 represents “not at all uncomfortable” and 5 represents “very uncomfortable.” 
Frequencies of the responses are summarized in Figure 7-1, which shows an unexpected result: the 
distribution of responses tends toward the upper end of the discomfort spectrum for the control 
customers. It would be expected that treatment customers would be more uncomfortable both because 
they experienced a load control event and because the treatment day was hotter than the control day.12 
The statistical test for the difference in distribution is called the chi-squared test, and it shows that the 
difference between the two groups is significant at the 90% confidence level. However, it is important 
to be cautious about statistical significance in this case, since only seven control customers answered 
the question—one control respondent rated their discomfort at level one, and the other six rated their 
discomfort at three, four, or five.  

10 The one respondent reported feeling uncomfortable starting at 11am.  
11 The two respondents reported feeling uncomfortable ending at 11am and 11pm. 
12 The event day had a high of 91°F. The nonevent day had a high of 88°F. 
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Figure 7-1: Please rate your discomfort using a scale of one to five, where one means “not at all 
uncomfortable” and five means “very uncomfortable.”  

Response Frequencies Weighted by Mode, Nt = 17 and Nc = 7 

Those respondents who reported that their homes had been uncomfortably hot that day were asked to 
state in their own words what they think caused the discomfort. The most commonly reported rationale 
is that the discomfort in their home was due to the weather being hot; 45% of these 24 respondents gave 
that reason. The next most common reason was a range of responses grouped into the category “other” 
because they have no defining characteristic. The responses range from “Power went out” to “I had a 
new installation this winter, they put in new siding, and the AC runs all day.” The third most reported 
reason given for thermal discomfort was that the air conditioning unit was not on, where 17% of 
respondents gave that reason. Notably, ascribing thermal discomfort to Duke Energy controlling the 
air conditioner was only the fourth most common response: only 11% of respondents gave that reason. 
Table 7-3 summarizes the responses given to this survey question, across treatment and control 
customers and altogether. The totals may not add up to 100% because respondents could cite more 
than one reason. Also, none of the differences between treatment and control are statistically significant, 
which is not unexpected given the small sample size. 

Table 7-3: What do you think caused the temperature to be uncomfortable? 
Response Frequencies Weighted by Mode, Nt = 17 and Nc = 7 

Reason Treatment Control All 

Air conditioner unit was not on 19% 12% 17% 
Duke Energy was controlling air conditioner 11% 12% 11% 

It was a very hot day 46% 41% 45% 
Other 30% 17% 26% 

Air conditioner doesn't work properly 0% 17% 5% 
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All survey respondents were also asked directly whether or not they thought a Power Manager event had 
been called in the past few days. The most common response was “don’t know,” where 56% of treatment 
customers and 67% of control customers stated that they didn’t know if there was a Power Manager 
event in the past few days. The prevalence of “don’t know” responses here is not surprising in light of 
the fact that Duke Energy does not actively notify participants of load control events. Figure 7-2 presents 
response frequencies for treatment and control respondents; the differences between treatment and 
control responses to this question were not statistically significant. Across all respondents together, 
61% did not know if there was a Power Manager event recently, 13% thought that there was an event 
recently, and 26% did not think that there was an event recently. 

Figure 7-2: Do you think a Power Manager event occurred in the past few days? 
Response Frequencies Weighted by Mode, Nt = 121 and Nc = 92 

The relatively few respondents (17 treatment and 12 control) who thought there was a Power Manager 
event recently were asked a few questions about the event(s) that they perceived to have happened. 
First, when asked what day they thought the event occurred on, only 41% of the treatment customers 
correctly stated that there was an event that day; for comparison, 15% of control customers said there 
was an event day that day, and the difference between treatment and control customers identifying 
“today” as a Power Manager event day was not significant. Thus, we can’t conclude from this survey 
that actually experiencing a Power Manager event makes a customer any more likely to correctly identify 
when a Power Manager event takes place. These customers were also asked to describe how they 
determined that a Power Manager event was occurring, and the responses are summarized in Table 7-4. 
The most common response, given by 60% of respondents, is that they concluded an event was occurring 
because the temperature inside their home went up. The next most commonly reported rationale 
was because it was hot outside (17% of respondents giving this reason) and the third most common 
response was that they did not hear the air conditioning running the way they normally do, with 14% 
of respondents stating that reason. There were no statistically significant differences between the 
response patterns of treatment customers and control customers for this question. 
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Table 7-4: How did you determine that an event was occurring? 
Response Frequencies Weighted by Mode, Nt = 17 and Nc = 12 

Reason Treatment Control All 

It was a hot day outside - I knew from the temperature outside 18% 15% 17% 
It got warmer inside - the inside temperature went up 59% 59% 59% 

Did not hear the air conditioner running like I knew it should 18% 8% 14% 
Some other way 7% 8% 7% 

Don't know 10% 18% 14% 

Respondents who thought there was a Power Manager event recently were also asked what time they 
thought the event occurred and whether or not they were home at that time. More than half of both the 
treatment group and control group customers said that they first noticed the event during the period of 
noon to 7pm; differences in the response pattern between the treatment and control groups are not 
statistically significant. One hundred percent of these respondents affirmed that they were home at the 
time they thought the event was occurring. 

Figure 7-3: About what time did you first notice this event? 
Response Frequencies Weighted by Mode, Nt = 17 and Nc = 12 

7.3 Program Experience 
Aside from occasional program communications to program participants, the primary way that Duke 
Energy customers experience the Power Manager program is during load control events. A large majority 
of survey respondents, 83%, stated that there is normally someone home between the hours of noon to 
6pm on weekdays. Similarly large proportions of respondents also report that they are frequent users 
of their air conditioning systems. Table 7-5 shows the percentage of respondents who reported that they 
use their air conditioners every day for four different time period and day type combinations. Generally, 
between 80% and 90% of Power Manager survey respondents reported using their air conditioners 
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every day, considering both weekdays and weekends, during both the afternoon and the evening. 
Statistically significant differences in response patterns were not observed here. 

These survey responses confirm that Power Manager participants are in fact largely at home and using 
their air conditioners during the times that the program is likely to be launched when the need arises to 
use the program resource. As such, monitoring participant comfort levels is confirmed to be an important 
evaluation activity so that thermal comfort can be maintained at high enough levels to retain customer 
participation. 

Table 7-5: How frequently do you or someone else in your household use your air conditioning system? 
Response Frequencies Weighted by Mode, Nt = 121 and Nc = 92 

Day and Time 
% of Treatment Responding 

“every day” 
% of Control Responding 

“every day” 
...weekday afternoons (12-6 PM) 86% 83% 
...weekend afternoons (12-6 PM) 86% 90% 

…weekday evenings (6 PM-12 AM) 85% 83% 
…weekend evenings (6 PM-12 AM) 86% 86% 

In addition to occupancy patterns and frequency of air conditioning usage, Power Manager participants’ 
experience with the program is affected by how they operate their air conditioning systems. Beginning 
with the type of thermostat(s) installed in the home, survey responses show that there is a mix of both 
manual and programmable thermostats installed in the homes of Power Manager participants. Figure 6-4 
summarizes the types of thermostat(s) that survey respondents reported. More than half, 64%, have a 
programmable thermostat, while 32% of respondents say that they have a manual thermostat.  

Figure 7-4: What type of thermostat(s) do you have? 
Response Frequencies Weighted by Mode, Nt = 121 and Nc = 92 
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Among the customers that have a programmable thermostat, 35% reported using the programmability 
feature to allow the thermostat to cool to different temperatures at different times, and a further 44% 
of customers set their thermostat at a constant temperature, representing 78% of respondents. Among 
customers without programmable thermostats, 53% say that they keep their thermostat set at a constant 
temperature. This relatively high incidence of using a thermostat setpoint should encourage thermal 
comfort associated with events. If during the course of an event, the home’s internal temperature 
rises by one or two degrees, when the event is over, the thermostat will reliably detect the higher 
temperature and automatically cool the home to the desired temperature, without relying on the 
customer to feel uncomfortable first and manually turn the air conditioning on themselves. These 
reported air conditioning usage behaviors are supportive of the earlier finding that, on the whole, 
Power Manager participants are not aware of events when they occur. 

In a similar vein, we asked customers who reported that they thought there was a Power Manager 
event recently whether or not they took any actions as a result of the perceived event. One only 
customer (of 17 who said that they thought there was a Power Manager event) said they did something 
different because of the event. This customer reported that they did stay home (they didn’t leave 
because of the event) and that they used a “homemade” fan. Responses to these questions also provide 
consistent evidence that Power Manager events are not disruptive to participants and do not result in an 
increase in using other appliances for cooling that also use electricity. 

7.4 Motivation and Potential Barriers for Program Participation 
Respondents were provided with a list of possible reasons for enrolling and asked which reason was most 
important to them, and the survey responses reveal that Power Manager participants are motivated to be 
a part of the program for a diverse set of interests. The most frequently reported motivation are the bill 
credits; with 33% of respondents citing this as their most important motivator. The second-highest 
motivator is helping the environment—nearly as many respondents cited this reason as cited the first 
highest reason; 27% of respondents said helping the environment was the most important reason for 
enrolling. The remaining 40% of respondents were nearly equally split in among the remaining possible 
answers, including “don’t know.” Between 12% and 17% of respondents reported that they are 
participating in Power Manager because they want to “do their part for Duke Energy Ohio,” or avoid 
electric service interruptions, or that they don’t know what motivated them. Table 7-6 summarizes the 
survey responses. Differences in response patterns between treatment and control customers are not 
statistically significant. 

Table 7-6: Which of the following reasons was most important to you when enrolling? 
Response Frequencies Weighted by Mode, Nt = 121 and Nc = 92 

Reason Treatment Control All 

Earning a credit on my bill 30% 36% 33% 

Doing my part for DEO 10% 14% 12% 

Helping the environment 27% 27% 27% 

Avoiding electrical service interruptions 12% 11% 12% 

Don't know 20% 13% 17% 
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Customers were asked to rate, on a scale of 1 to 5, their agreement with various positive statements 
about Power Manager. Customers widely agreed that they would recommend the Power Manager 
program to others; that Power Manager events do not affect the overall comfort in their home; and that 
the number of Power Manager events is reasonable. Over 70% of both treatment and control customers 
agreed with those statements. But only 40% of treatment customers and 47% of control customers agree 
that the bill credits are sufficient. The distribution of responses for those who answered each question is 
shown in Figure 7-5. 

Figure 7-5: How would you rate the following statements about Power Manager? 
Response Frequencies Weighted by Mode, Nt = 121 and Nc = 92 

The survey concluded with an opportunity for customers to provide free form suggestions on how they 
think the Power Manager program might be improved. Only 39% of respondents (83 of 213) offered 
suggestions. Among those offering suggestions for improvement, there were three common requests. 
The first, mentioned by 18 of 83 people, reflected a desire for more bill credits. The second, also 
mentioned by 18 people, expressed desire for feedback after an event. Most of these customers 
requested a more prominent notification of their bill credits. They say they didn’t know an event 
occurred, and they would like to know if an event occurred and how much they earned in credit: 

 “Periodically, reminders of credits applied. I forget to look for them.”

 “I hadn't noticed anything on the bill, so highlight the credits.”

 “If it would tell you on the bill how many times they had an event at the end of the summer.”

 “Make the credits more obvious by notifying by email when the credit is issued in addition to
showing on the bill.”

The third most common comment, reported by 17 people, is the desire for warning before an event 
occurs or during the event: 

 “Send me a text when an event occurs so I don't think my air conditioner is broken.”
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 “Alert consumers to when the event is happening.”

 “Some people might not be home during the day, but that doesn't mean that their beloved
animals aren't. I'd be upset if I found out that Duke turned my air conditioning down without a
notice or text/email.”

 “It would be nice to have a schedule of the occurrences to prepare for them.”

Other comments centered on the AC cycling pattern or praise for the program: 

 “Do not leave it off as long as it does, shorter intervals.”

 “None, look into putting more in areas where there is time for high call and automatically be able
to cycle.”

 “Works fine for me.”

 “Could do it more often.”

 “The Power Manager program is so efficient that I do not know these events occur!”

Table 7-7 summarizes categorizations of the freeform responses. Suggestions categorized as “other” 
include requests to lower the overall cost of electricity, thanking the interviewer for the phone call, and 
concern for specific family members. Many respondents gave more than one comment, and often they 
gave one comment that fit into a category and one that did not. Since the answers often fit into multiple 
categories, the percentages add up to more than 100%. 

Table 7-7: What suggestions do you have to make the Power Manager program work better for you? 
Response Frequencies Weighted by Mode, Nt = 49 and Nc = 34 

Statement Treatment Control All 

Other 39% 31% 36% 
I want more credits 19% 24% 21% 

I want more feedback 15% 29% 21% 
I want more notification 19% 18% 19% 

It's a good program 10% 2% 7% 
Change the cycling strategy 5% 7% 6% 

Responses were positive when participants were asked to rate the likelihood of staying enrolled in Power 
Manager, with the large majority of respondents saying that they intend to stay in the program. Fully 71% 
of treatment and 74% of control respondents said they would “very likely” remain enrolled. Responses 
are tabulated in Table 7-8. Those customers, five respondents in total, who said they were not at all likely 
to stay enrolled were asked why, gave five disparate answers, which are tabulated in Table 7-9. 
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Table 7-8: How likely is it that you will stay enrolled in Power Manager? Would you stay…? 
Response Frequencies Weighted by Mode, Nt = 121 and Nc = 92 

Response Treatment Control All 

Not at all likely 4% 0% 22% 
Somewhat likely 14% 13% 14% 

Very likely 71% 74% 72% 
Don't know 11% 13% 12% 

Table 7-9: Why are you not at all likely to stay enrolled in Power Manager? 
Response Frequencies Weighted by Mode, Nt = 5 and Nc = 0 

Response Group 

It doesn't save me enough to warrant being a part of it Treatment 

Moved to a new house and installed geothermal Treatment 

I have already withdrawn from the program  
[because of the discomfort associated occasionally when we had guests] 

Treatment 

Because it is not working for my household, and I wasn't even aware I was enrolled in it Treatment 

Discontinued at recommendation of my AC supplier Treatment 

7.5 Interview Findings 
Power Manager is a mature demand side resource that is actively used in the course of operating Duke 
Energy Ohio’s electric system. The demand savings delivered by Power Manager are made possible 
through the teamwork of internal and external stakeholders that manage the program’s budget and 
goals, communicate with participants, maintain the Yukon event dispatch software, and interact with 
the customer at every stage of the program lifecycle, from enrollment, to device installation, to device 
removal. Three primary stakeholder groups, the Duke Energy program management team, Eaton 
Power Systems, and GoodCents, work together to deliver Power Manager to DEO customers. Nexant 
interviewed seven individuals from these organizations. Overall, through the course of our conversations, 
we observe that Power Manager maintains a customer focused orientation and is currently engaged in a 
number of initiatives to improve program operations and customer service. The remainder of this section 
will describe the Power Manager offering at DEO and what Duke Energy’s activities are to bring in new 
program participants and support annual enrollment goals. A description of Duke Energy’s activities to 
maintain Power Manager as a reliable system resource follows, which is followed in turn by an outline 
of work that continues after each load control season concludes to ensure Power Manager’s continued 
success. This section concludes with a review of the activities that are planned or currently underway to 
further improve program operations and participating customer experience. 

7.5.1 Program Offer and Enrollment Goals 
Work to recruit new Duke Energy Ohio participants into Power Manager is concentrated in spring, just 
prior to the load control season. DEO’s enrollment goal for 2016 was 1,040 participants, which was 
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reached. The majority of recruitment into Power Manager takes place through outbound calling, fulfilled 
by the third party call center provider, CustomerLink. In some years, there are also direct mail and 
email recruitment campaigns initiated and managed by Duke Energy. For DEO, year round recruitment 
campaigns aren’t necessary; the relatively small enrollment goals are achievable by targeted campaigns 
each spring. 

As an outbound call center, CustomerLink is prepared to address common questions or concerns that 
DEO customers who are not familiar with the program may have, in addition to describing the basic 
features of the program, many of which are friendly to the program participants. Outbound callers 
are ready to speak to the fact that Duke Energy’s customer research has shown that 85% of customers 
who are home during an event don’t notice it, that there are generally only 5 to 7 events each summer, 
and that events typically end by 6pm, which is when many customers are just coming home from 
work. Another participant friendly aspect of the program is that air conditioning units enrolled in 
the program are cycled rather than completely curtailed.13 Power Manager is also not called on weekends 
or weekday holidays. The load control devices used by the program, switches that directly control the air 
conditioner’s compressor, are a proven technology that does no harm to the customer’s air conditioner 
or the home’s electric distribution system. Further, Duke Energy Ohio customers have the ability to opt-
out of one Power Manager event per month without any penalty with respect to their incentive. Figure 
7-6 provides an example of recent Power Manager marketing collateral used in the DEO jurisdiction.

Figure 7-6: Excerpt from Power Manager Direct Mail Marketing Collateral 

The Duke Energy Ohio program offer provides for two different cycling levels—a moderate and high 
load control—determined by how much load shed the switches will yield during events through cycling 
(by cycling the air conditioner compressor’s operation more or less during any given event hour). 14 
Customers are encouraged to enroll in Power Manager through a one time sign up incentive, provided 
as a bill credit on their Duke Energy bill: $20 for the moderate option, and $35 for the high load control 

13 Unless a load control event is called as a result of a system emergency. In that case air conditioning units would 
experience full load shed. Emergency Power Manager events are extremely rare. 
14 There is also a low load control option, however it is not marketed. The low load control option is offered only to 
customers who are considering exiting the program in order to improve retention. 
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option. Further, Duke Energy Ohio Power Manager participants receive small annual payments that 
depend on the number and duration of events called during the summer. The annual payments are 
typically around $5 for moderate load control and $8 for the high load control option. In the realm of 
electric utility air conditioning cycling programs, these financial participation incentives are relatively 
small. Therefore, Duke Energy (and CustomerLink) emphasize messaging around community and 
environmental benefits to generate customer interest in the program. The program offer, which centers 
on the use of the outdoor switch, rather than an indoor programmable communicating thermostat, is 
found generally to be most successful with customer segments that are attracted to “set-it-and-forget-it” 
arrangements and those customers who would prefer not to have a service provider enter the home. 
Duke Energy has found that these preferences are correlated with older, higher income, and higher 
education demographics. 

GoodCents is a third party provider that manages Power Manager customer care, handling participants’ 
inquiries about the programs or requests for customer service, and also all fieldwork. Power Manager 
fieldwork ranges from scheduling and routing load control device installations, training and managing a 
staff of device installers, responding to any device service calls, and responding to customer requests to 
remove load control devices. GoodCents reports that most new device installations are handled within 30 
days of the customer’s enrollment, and that most customers don’t request installation appointments to 
work around pets or access issues. As a result, most installation appointments can be fulfilled using cost-
effective routing and scheduling. GoodCents also manages and staffs all quality assurance inspections and 
fieldwork. 

7.5.2 Power Manager Program Operation and Maintenance 
In terms of maintaining Power Manager as a reliable system resource for the Duke Energy Ohio system 
operators, Eaton Power System plays an important role as a resource to assist Duke Energy program staff 
keep the Yukon software system running smoothly, managing firmware issues that can arise, addressing 
the switches, training GoodCents’ switch installers, and monitoring and managing the program’s 
communications links, which are provided through paging networks. An annual all-hands Spring Training 
event hosted by Duke Energy brings all the Power Manager program stakeholders together to discuss the 
upcoming load control season’s work. Also particular to 2016, a large scale quality assurance audit effort 
of load control switches was undertaken and staffed by GoodCents.  

When it’s time to start calling events during the summer load control season, there is no proactive 
customer notification for each event. However, customers may call a toll-free number to get updates 
on the status of whether or not Duke Energy plans to call or has called a Power Manager event. At Duke 
Energy Ohio, program managers must decide when load control events will be called by 10:30am on a 
day-ahead basis. This day-ahead dispatch plan supports the program’s bid into the PJM market. Here, 
both strike prices and weather factor in to the decision to call load control events. The event calling 
team involves staff in system operations and fuels in addition to demand response operations. However, 
overall, demand response operations staff maintain control of the decision to call nonemergency events. 
Power Manager is viewed as an important resource for the Duke Energy Ohio system that depends on 
the participating customers’ willingness to remain enrolled. Therefore, all events are called with a view 
towards whether or not it will be a detriment to the experience of the participants. Considerations taken 
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in this area are the number of events that have already been called during the current summer, or, during 
heat spells, during that week. Demand response operations staff also consider other finer points that lie 
outside of the program rules that are indicative of customers’ willingness to continue to participate in 
the program; for example, whether or not Power Manager event hours have frequently gone late into 
the afternoon.  

7.5.3 Program Monitoring and Postseason Program Maintenance 
Duke Energy undertakes a number of activities both during the load control season and afterward 
to ensure that participants are satisfied with their Power Manager program experience and that the 
program is on track to provide an excellent customer experience going forward.  

GoodCents, as the third party contractor that manages Power Manager customer contacts, has service 
level agreements in place with Duke Energy that outline service benchmarks, with both penalties for 
nonperformance and opportunities for incentives when benchmarks are exceeded. There are specific 
benchmarks in place to ensure that, during event days in particular, customer calls coming into 
GoodCents are handled quickly, efficiently, and that accurate information is provided to the customers 
calling in. Additionally, Duke Energy program managers monitor the number of calls coming in to the toll-
free notification line, in addition to the number of calls coming into the GoodCents call center to detect 
any emerging issues associated with the program experience. Device removal requests are also tracked 
for this purpose. 

Duke Energy uses seasonal reminder or thank you cards that are sometimes sent before the load control 
season, or sometimes after, to provide Power Manager tips for having a comfortable experience with the 
program. These cards are also sometimes used to recognize the program’s megawatt contributions to 
reducing system load that year. Duke Energy’s jurisdictions in the Midwest, including Ohio, typically have 
not used these mailings in the past. However, DEO plans to employ one of these program mailings this 
year to communicate upcoming program changes. 

In 2016, DEO program managers are also leveraging smart meter interval data to identify Power Manager 
participants that may have broken or removed load control switches. Another effort that is currently 
underway to improve program performance is to look for missing switches in the homes of Power 
Manager participants who have recently received a rebate for a new heating ventilation and air 
conditioning system (HVAC); when these new systems are installed, the Duke Energy load control 
switch is usually left disconnected from the new system. 

7.5.4 Upcoming Program Changes and Initiatives 
Duke Energy is also engaged in a number of initiatives to change the program offering to make it more 
attractive to customers and to improve program performance. Emergency load control for customers on 
the moderate cycling program option will be moved from 75% to 66% in recognition that these customers 
selected moderate cycling due to the fact that they are at home and have more air conditioning usage 
during hot afternoons than those on the higher cycling option. The availability of event notification on the 
Duke Energy Ohio website will be evaluated, with a goal of making it easier for customers to access 
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information about Power Manager events. Finally, Duke Energy is also engaged in a study to identify and 
change out certain models of older switches that are known to have high failure rates. 

7.6 Key Findings 
Key findings from the process evaluation include: 

 121 Power Manager participants were interviewed within 24 hours of the July 21 event, which
had a high temperature of 91°F with a heat index of 95°F.

 92 Power Manager participants were interviewed during a hot nonevent day (a control day),
July 14, which had a high of 88°F with a heat index of 92°F. The control day surveys were used
to establish a baseline for comfort, event awareness, and other key metrics.

 A strong majority of all respondents, 75%, reported that they are familiar with the Power
Manager program.

 Only 13% of respondents on the event day reported that their homes were uncomfortable,
while all of them experienced a load control event that afternoon. By comparison, 7% of Power
Manager customers surveyed on a hot nonevent day reported they felt uncomfortably hot.
While more respondents of the post-event survey stated that their home was uncomfortable
that day than respondents of the nonevent survey (13% vs. 7%, respectively), the difference is
not statistically significant and the difference in reported thermal discomfort cannot be ascribed
to the Power Manager event.

 Over three quarters of participants would recommend the Power Manager program to others.

 The Power Manager staff and vendors are customer focused and undertake a number of
activities both during the load control season and afterward to ensure that participants are
satisfied with their Power Manager program experience.
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Appendix A Regression Models Tested 
All regression models were performed and the average customer loads throughout the summer using 
15 minute interval data. The same sample of customers was analyzed using whole house interval and air 
conditioner end use data. The analysis only included days when maximum temperature exceeded 75˚F.  

For the individual event day impacts (ex post), the regression equation took  the general form of Equation 
1, which will be estimated using a dataset made up of hourly observations of the average load in the 
M&V sample. Equation 2 describes the model used to estimate average event impacts for the general 
population events. The average event impacts were estimated separately to account for the effect of 
repeated treatments on confidence intervals.  

Equation 1 and Equation 3 represents a within-subjects approach in which the observations on nonevent 
days are used to predict the counterfactual load for Power Manager customers on event days. A few 
points are noteworthy. The models were run separately for each 15 minute interval (equivalent to a 
fully interacted model) to account for occupancy patterns and produce different weather coefficients 
and constants. The only component that varied across the 10 models tested was how the weather 
variables were specified. Table A-1 shows the weather variables and explains the underlying concept 
for each model tested. To improve precision, same-day loads for the pre-event hours of 11am to 1pm 
were included to capture any differences between event and nonevent days that are not reflected in the 
model. The pre-event same day load variable functions as a same-day adjustment and is included because 
customers are not notified of the event in advance. 

Equation 2: Ex Post Regression Model Individual Events 
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Equation 3: Ex Post Regression Model Average Event (General Population Events) 
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Where: 

 a Is the constant  or intercept 
𝑏𝑏𝑖𝑖,𝑗𝑗  Represents the treatment effect of Power Manager during each interval, i, and each event 

day, j.  
c-f Are other model coefficients 

i, k, l i, k and l are indicators that represent individual 15 minute intervals (96 in a day), days of 
the week, and months of the year 

t Represents each date in the analysis dataset 

event Is a binary variable indicating whether Power Manager was dispatched on that day 

preeventKW Represents the same-day loads for the pre-event hours of 11am to 1pm. The variable 
functions as a same-day adjustment and is included because customers are not notified 
of the event in advance. 

weather 10 different ways to specify weather were tested. Those are detailed in Table A-1.  

dayofweek Are a set of mutually exclusive  binary variables to capture day of week effects  

month Are a set of mutually exclusive  binary variables to capture monthly or seasonal effects 

ε Represents the error term 

Table A-1: Weather Variables by Model Tested 

Model Weather variables Concept 
1 Cooling Degree Hour Base 

70˚F (CDH)  
The same hour temperature drives electricity use but air conditioner loads are 
only linear when temperatures are above 70˚F 

2 Cooling Degree Day Base 
65˚F (CDD) 

The overall daily average temperature drives electricity use but air conditioner 
loads are only linear when average daily temperatures exceed 65˚F 

3 Daily Maximum 
Temperature 

The daily maximum temperature drives air conditioner electricity use 

4 Average temperature over 
the 24 hours immediately 
prior 

Heat buildup over the 24 hours immediately prior to time period drives 
electricity use  

5 CDH and CDD Both the daily average temperatures and same hour temperatures drive air 
conditioner electricity use  

6 Same hour CDH and 
average temperature 
over the 24 hours 
immediately prior 

Air conditioner use if influenced both by the temperature during that hour and 
by average temperature over the 24 hours immediately prior 

7 Same hour CDH and 
average CDH over the 6 
hours immediately prior 

Air conditioner use if influenced both by the temperature during that hour and 
by heat buildup, as measured by CDH, over the 6 hours immediately prior 

8 Same hour CDH and 
average CDH over the 12 
hours immediately prior 

Air conditioner use if influenced both by the temperature during that hour and 
by heat buildup, as measured by CDH, over the 12 hours immediately prior 

9 Same hour CDH and 
average CDH over the 18 
hours immediately prior 

Air conditioner use if influenced both by the temperature during that hour and 
by heat buildup, as measured by CDH, over the 18 hours immediately prior 

10 Same hour CDH and 
average CDH over the 24 
hours immediately prior 

Air conditioner use if influenced both by the temperature during that hour and 
by heat buildup, as measured by CDH, over the 24 hours immediately prior 


	1 Executive Summary
	1.1 Impact Evaluation Key Findings
	1.2 Device Operability and Site Performance
	1.3 Process Evaluation Key Findings

	2 Introduction
	2.1 Key Research Questions
	2.2 Program Description
	2.3 Participant Characteristics
	2.4 2016 Event Characteristics

	3 Methodology and Data Sources
	3.1 Impact Evaluation Methodology
	3.2 Randomized Control Trial Design and Analysis
	3.3 Analysis Protocol for End Use Metered Customers
	3.4 Device Operability Testing Protocols
	3.5 Process Evaluation Methodology

	4 Randomized Control Trial Results
	4.1 Overall Program Results
	4.2 Normal Operations Versus Emergency Shed Test
	4.3 Impacts by Dispatch Period
	4.4 PJM System Test
	4.5 Weather Sensitivity of AC Load and Demand Reductions
	4.6 Impacts by Customer Load Control Option
	4.7 Impacts by Customer Size
	4.8 Key Findings

	5  Whole Building Versus End Use Impacts
	5.1 Comparison of Load Impacts by Method
	5.2 Air Conditioner End Use Metered Customer Load Impacts
	5.3 Whole Building Impacts for Customers with Metered Air Conditioners
	5.4 Key Findings

	6  Device Operability and Site Level Performance
	6.1 Device Operability Field Test
	6.2 Use of Smart Meter Data to Identify Underperforming Sites
	6.2.1 Fundamentals of Diagnosis
	6.2.2 Classification Algorithm
	6.2.3 Results

	6.3 Key Findings

	7 Process Evaluation
	7.1 Survey Disposition
	7.2 Program and Event Awareness
	7.3 Program Experience
	7.4 Motivation and Potential Barriers for Program Participation
	7.5 Interview Findings
	7.5.1 Program Offer and Enrollment Goals
	7.5.2 Power Manager Program Operation and Maintenance
	7.5.3 Program Monitoring and Postseason Program Maintenance
	7.5.4 Upcoming Program Changes and Initiatives

	7.6 Key Findings

	Appendix A Regression Models Tested
	Blank Page



