
DB2® IBM DB2 Content Manager Enterprise Edition 

IBM DB2 Information Integrator for Content 

IBM DB2 Content Manager for z/OS

Application Programming Guide 

Version  8 Release  3 

SC27-1347-04  

 

  

���





DB2® IBM DB2 Content Manager Enterprise Edition 

IBM DB2 Information Integrator for Content 

IBM DB2 Content Manager for z/OS

Application Programming Guide 

Version  8 Release  3 

SC27-1347-04  

 

 

 

���



Note 

Before  using this information  and the product it supports, read the information  in “Notices”  on page 567.

Fifth  Edition  (January  2005)  

This  edition  applies  to version  8, release  3 of IBM  DB2  Content  Manager  Enterprise  Edition  (product  number  

5724-B19),  version  8, release  3 of IBM  DB2  Content  Manager  for z/OS  (product  number  5697-H60),  and  version  8, 

release  3 of IBM  DB2  Information  Integrator  for  Content  (product  number  5724-B19)  and  to all subsequent  releases  

and  modifications  until  otherwise  indicated  in new  editions.  

Copyright  © 1990-2004  Captiva  Software  Corporation  and/or  its licensors,  10145  Pacific  Heights  Blvd.,  San  Diego,  

CA  92121  U.S.A.  All  rights  reserved.  

Outside  In® Image  Export  © 1992-2004  Stellent  Chicago,  Inc.  All  rights  reserved.  

Copyright  © 2000  The  Apache  Software  Foundation.  All rights  reserved.  This  product  includes  software  developed  

by  the  Apache  Software  Foundation  (http://www.apache.org/).  

Redistribution  and  use  in binary  form,  with  or without  modification,  are  permitted  provided  that  the  following  

conditions  are  met:  1.  Redistributions  of source  code  must  retain  the  above  copyright  notice,  this  list of conditions  

and  the  following  disclaimer.  2. Redistributions  in binary  form  must  reproduce  the  above  copyright  notice,  this  list 

of conditions  and  the  following  disclaimer  in the  documentation  and/or  other  materials  provided  with  the  

distribution.  3. The  end-user  documentation  included  with  the  redistribution,  if any,  must  include  the  following  

acknowledgment:“This  product  includes  software  developed  by the  Apache  Software  Foundation  

(http://www.apache.org/).”  Alternately,  this  acknowledgment  may  appear  in the  software  itself,  if and  wherever  

such  third-party  acknowledgments  normally  appear.  4. The  names  “Apache”  and  “Apache  Software  Foundation”  

must  not  be used  to endorse  or promote  products  derived  from  this software  without  prior  written  permission.  For 

written  permission,  please  contact  apache@apache.org.  5. Products  derived  from  this  software  may  not  be called  

“Apache”,  nor  may  “Apache”  appear  in their  name,  without  prior  written  permission  of the  Apache  Software  

Foundation.  

THIS  SOFTWARE  IS PROVIDED  “AS  IS”  AND  ANY  EXPRESSED  OR  IMPLIED  WARRANTIES,  INCLUDING,  BUT  

NOT  LIMITED  TO,  THE  IMPLIED  WARRANTIES  OF  MERCHANTABILITY  AND  FITNESS  FOR  A PARTICULAR  

PURPOSE  ARE  DISCLAIMED.  IN  NO  EVENT  SHALL  THE  APACHE  SOFTWARE  FOUNDATION  OR  ITS  

CONTRIBUTORS  BE  LIABLE  FOR  ANY  DIRECT,  INDIRECT,  INCIDENTAL,  SPECIAL,  EXEMPLARY,  OR  

CONSEQUENTIAL  DAMAGES  (INCLUDING,  BUT  NOT  LIMITED  TO,  PROCUREMENT  OF  SUBSTITUTE  

GOODS  OR  SERVICES;  LOSS  OF  USE,  DATA, OR  PROFITS;  OR  BUSINESS  INTERRUPTION)  HOWEVER  

CAUSED  AND  ON  ANY  THEORY  OF  LIABILITY,  WHETHER  IN CONTRACT,  STRICT  LIABILITY,  OR  TORT 

(INCLUDING  NEGLIGENCE  OR  OTHERWISE)  ARISING  IN ANY  WAY OUT  OF  THE  USE  OF  THIS  SOFTWARE,  

EVEN  IF ADVISED  OF  THE  POSSIBILITY  OF  SUCH  DAMAGE.  

Redistributions  in binary  form  must  reproduce  the  above  copyright  notice,  this  list of conditions  and  the above  

disclaimer  in the  documentation  and/or  other  materials  provided  with  the  distribution.  The  end-user  

documentation  included  with  the  redistribution,  if any,  must  include  the  following  acknowledgment:  “This  product  

includes  software  developed  by  the  Apache  Software  Foundation  (http://www.apache.org/).”  Alternately,  this  

acknowledgment  may  appear  in the  software  itself,  if and  wherever  such  third-party  acknowledgments  normally  

appear.  The  names  “The  Apache  Logging  Services  Project”  “log4j”  and  “Apache  Software  Foundation”  must  not  be  

used  to endorse  or  promote  products  derived  from  this  software  without  prior  written  permission.  For  written  

permission,  please  contact  apache@apache.org.  Products  derived  from  this  software  may  not  be called  “Apache”,  

nor  may  “Apache”  appear  in their  name,  without  prior  written  permission  of the  Apache  Software  Foundation.  

Document  Viewer,  © 1991-2004  MS  Technology,  Inc.  Charlotte,  NC.  All  Rights  Reserved.  

IBM  XSLT Processor  

Licensed  Materials  - Property  of IBM  

© Copyright  IBM  Corp.,  1999-2004.  All  Rights  Reserved.  

US  Government  Users  Restricted  Rights  - Use,  duplication,  or disclosure  restricted  by GSA  ADP  Schedule  Contract  

with  IBM  Corp.  

 



Copyright  © 1998-2003  The  OpenSSL  Project.  All  rights  reserved.  

Redistribution  and  use  in source  and  binary  forms,  with  or without  modification,  are  permitted  provided  that  the  

following  conditions  are  met:  Redistributions  of source  code  must  retain  the  above  copyright  notice,  this  list of 

conditions  and  the  following  disclaimer.  Redistributions  in binary  form  must  reproduce  the  above  copyright  notice,  

this  list  of conditions  and  the  following  disclaimer  in the documentation  and/or  other  materials  provided  with  the 

distribution.  All advertising  materials  mentioning  features  or use  of this  software  must  display  the  following  

acknowledgment:  “This  product  includes  software  developed  by the  OpenSSL  Project  for use  in the OpenSSL  

Toolkit.  (http://www.openssl.org/).”  The  names  “OpenSSL  Toolkit”  and  “OpenSSL  Project”  must  not  be used  to  

endorse  or promote  products  derived  from  this  software  without  prior  written  permission.  For  written  permission,  

please  contact  openssl-core@openssl.org.  Products  derived  from  this  software  may  not  be called  “OpenSSL”  nor  

may  “OpenSSL”  appear  in their  names  without  prior  written  permission  of the OpenSSL  Project.  Redistributions  of 

any  form  whatsoever  must  retain  the  following  acknowledgment:  “This  product  includes  software  developed  by the  

OpenSSL  Project  for  use  in the  OpenSSL  Toolkit (http://www.openssl.org/).”  

THIS  SOFTWARE  IS PROVIDED  BY THE  OpenSSL  PROJECT  “AS  IS”  AND  ANY  EXPRESSED  OR  IMPLIED  

WARRANTIES,  INCLUDING,  BUT  NOT  LIMITED  TO,  THE  IMPLIED  WARRANTIES  OF  MERCHANTABILITY  

AND  FITNESS  FOR  A PARTICULAR  PURPOSE  ARE  DISCLAIMED.  IN NO  EVENT  SHALL  THE  OpenSSL  

PROJECT  OR  ITS  CONTRIBUTORS  BE LIABLE  FOR  ANY  DIRECT, INDIRECT,  INCIDENTAL,  SPECIAL,  

EXEMPLARY,  OR  CONSEQUENTIAL  DAMAGES  (INCLUDING,  BUT  NOT  LIMITED  TO,  PROCUREMENT  OF  

SUBSTITUTE  GOODS  OR  SERVICES;  LOSS  OF  USE,  DATA, OR  PROFITS;  OR  BUSINESS  INTERRUPTION)  

HOWEVER  CAUSED  AND  ON  ANY  THEORY  OF  LIABILITY,  WHETHER  IN CONTRACT,  STRICT  LIABILITY,  OR  

TORT  (INCLUDING  NEGLIGENCE  OR  OTHERWISE)  ARISING  IN ANY  WAY OUT  OF  THE  USE  OF  THIS  

SOFTWARE,  EVEN  IF ADVISED  OF  THE  POSSIBILITY  OF  SUCH  DAMAGE.  

====================================================================  

This  product  includes  cryptographic  software  written  by Eric  Young (eay@cryptsoft.com).  This  product  includes  

software  written  by  Tim Hudson  (tjh@cryptsoft.com).  

Copyright  © 1995-1998  Eric  Young (eay@cryptsoft.com)  All rights  reserved.  

This  package  is an SSL  implementation  written  by Eric  Young (eay@cryptsoft.com).  The  implementation  was  written  

so as to conform  with  Netscape’s  SSL.  

This  library  is free  for  commercial  and  non-commercial  use  as long  as the following  conditions  are  adhered  to. The  

following  conditions  apply  to all code  found  in this  distribution,  be it the  RC4,  RSA,  lhash,  DES,  etc.,  code;  not just  

the  SSL  code.  The  SSL  documentation  included  with  this  distribution  is covered  by the  same  copyright  terms  except  

that  the  holder  is Tim Hudson  (tjh@cryptsoft.com).  

Copyright  remains  Eric  Young’s,  and  as such  any  Copyright  notices  in the  code  are  not  to be removed.  If this  

package  is used  in  a product,  Eric  Young should  be given  attribution  as the  author  of the  parts  of the  library  used.  

This  can  be in the  form  of a textual  message  at program  startup  or in documentation  (online  or textual)  provided  

with  the  package.  

Redistribution  and  use  in source  and  binary  forms,  with  or without  modification,  are  permitted  provided  that  the  

following  conditions  are  met:  Redistributions  of source  code  must  retain  the  copyright  notice,  this  list of conditions  

and  the  following  disclaimer.  Redistributions  in binary  form  must  reproduce  the  above  copyright  notice,  this  list  of 

conditions  and  the  following  disclaimer  in the  documentation  and/or  other  materials  provided  with  the  

distribution.  All advertising  materials  mentioning  features  or use  of this  software  must  display  the  following  

acknowledgement:  “This  product  includes  cryptographic  software  written  by Eric  Young (eay@cryptsoft.com).”  The  

word  ’cryptographic’  can  be left  out  if the  routines  from  the  library  being  used  are  not  cryptographic  related.  If you  

include  any  Windows  specific  code  (or  a derivative  thereof)  from  the apps  directory  (application  code)  you  must  

include  an acknowledgement:  “This  product  includes  software  written  by  Tim Hudson  (tjh@cryptsoft.com).”  

THIS  SOFTWARE  IS PROVIDED  BY ERIC  YOUNG  “AS  IS”  AND  ANY  EXPRESS  OR  IMPLIED  WARRANTIES,  

INCLUDING,  BUT  NOT  LIMITED  TO,  THE  IMPLIED  WARRANTIES  OF  MERCHANTABILITY  AND  FITNESS  

FOR  A PARTICULAR  PURPOSE  ARE  DISCLAIMED.  IN NO  EVENT  SHALL  THE  AUTHOR  OR  CONTRIBUTORS  

BE  LIABLE  FOR  ANY  DIRECT,  INDIRECT,  INCIDENTAL,  SPECIAL,  EXEMPLARY,  OR  CONSEQUENTIAL  

DAMAGES  INCLUDING,  BUT  NOT  LIMITED  TO,  PROCUREMENT  OF  SUBSTITUTE  GOODS  OR  SERVICES;  

LOSS  OF  USE,  DATA, OR  PROFITS;  OR  BUSINESS  INTERRUPTION).  HOWEVER  CAUSED  AND  ON  ANY  

THEORY  OF  LIABILITY,  WHETHER  IN  CONTRACT,  STRICT  LIABILITY,  OR  TORT  (INCLUDING  NEGLIGENCE  

OR  OTHERWISE)  ARISING  IN  ANY  WAY OUT  OF  THE  USE  OF  THIS  SOFTWARE,  EVEN  IF ADVISED  OF THE  

POSSIBILITY  OF  SUCH  DAMAGE.  

The  licence  and  distribution  terms  for  any  publicly  available  version  or derivative  of this  code  cannot  be changed.  

i.e.  this  code  cannot  simply  be  copied  and  put  under  another  distribution  licence  [including  the  GNU  Public  

Licence.]  

CUP  Parser,  © 1996-1999  by  Scott  Hudson,  Frank  Flannery,  C. Scott  Ananian,  All  Rights  Reserved.  

 

 iii



Permission  to use,  copy,  modify,  and  distribute  the CUP  Parser  Generator  software  and  documentation  for  any  

purpose  and  without  fee  is hereby  granted,  provided  that  the above  copyright  notice  appear  in all copies  and  that  

both  the  copyright  notice  and  this  permission  notice  and  warranty  disclaimer  appear  in supporting  documentation,  

and  that  the  names  of the  authors  or  their  employers  not  be used  in advertising  or publicity  pertaining  to 

distribution  of the  software  without  specific,  written  prior  permission.  

The  authors  and  their  employers  disclaim  all  warranties  with  regard  to this  software,  including  all implied  

warranties  of merchantability  and  fitness.  In no  event  shall  the  authors  or their  employers  be liable  for any  special,  

indirect  or consequential  damages  or any  damages  whatsoever  resulting  from  loss  of use,  data  or profits,  whether  

in an action  of contract,  negligence  or other  tortious  action,  arising  out  of or in connection  with  the  use or 

performance  of this  software.  

This  product  includes  software  developed  by  the Eclipse  Project  (http://www.eclipse.org/).  

© Copyright  International  Business  Machines  Corporation  1996,  2005.  All rights  reserved.  

US  Government  Users  Restricted  Rights  – Use,  duplication  or disclosure  restricted  by GSA  ADP  Schedule  Contract  

with  IBM  Corp.

 

iv Application  Programming Guide



Contents  

About this guide . . . . . . . . . . . xi 

Who  should  use  this  guide   . . . . . . . . . xii  

Where  to find  more  information   . . . . . . . xii 

Information  included  in your  product  package  xii 

Support  available  on  the  Web  . . . . . . . xiv 

How  to send  your  comments   . . . . . . . xv 

What’s  new  in IBM  DB2  Content  Manager  

Enterprise  Edition  Version  8 Release  3  . . . . . xv  

What’s  new  in DB2  Content  Manager  Version  8 

Release  3 for  z/OS   . . . . . . . . . . . . xx  

Chapter 1. Information Integrator for 

Content application programming 

concepts  . . . . . . . . . . . . . . 1 

Understanding  data  access  through  content  servers   . 1  

Understanding  dynamic  data  object  concepts   . . . 1 

Dynamic  data  objects  (DDO)   . . . . . . . . 2  

Extended  data  objects  (XDO)   . . . . . . . . 2 

Representing  multimedia  content   . . . . . . 3  

Understanding  content  servers  and  DDOs   . . . 3  

Comparing  DDO/XDOs  with  attribute  values  and  

item  parts   . . . . . . . . . . . . . . 3 

Understanding  persistent  identifiers  (PID)   . . . 4 

Chapter 2. Working with a federated 

content server and federated searching  . 5 

Federated  schema  mapping   . . . . . . . . . 7 

Using  federated  content  server  mapping  components  7 

Running  federated  queries  . . . . . . . . . . 8  

Federated  query  syntax  . . . . . . . . . . 9  

Storing  query  results  in federated  folders  (Java  

only)   . . . . . . . . . . . . . . . 11 

Working  with  system  administration   . . . . . . 12 

Customizing  the  Information  Integrator  for 

Content  system  administration  client   . . . . . 12  

Chapter 3. Programming with the 

application programming interfaces 

(APIs)  . . . . . . . . . . . . . . . 13 

Understanding  differences  between  the  Java  and  

C++  APIs   . . . . . . . . . . . . . . . 13 

Understanding  client/server  architecture  (Java  only)  13 

Packaging  for the  Java  environment   . . . . . . 14  

Programming  tips   . . . . . . . . . . . 14  

Setting  up the  Java  environment  (Java  only)   . . . 15  

Setting  the  Java  environment  variables  for 

Windows   . . . . . . . . . . . . . . 15  

Setting  the  Java  environment  variables  for AIX  15 

Setting  the  Java  environment  variables  for Solaris  

and  Linux   . . . . . . . . . . . . . . 15  

Setting  the  Java  environment  variables  for z/OS  

USS   . . . . . . . . . . . . . . . . 16 

Using  Remote  Method  Invocation  (RMI)  with  

content  servers   . . . . . . . . . . . . 16  

Setting  up the  C++  environment  (C++  only)   . . . 17  

Setting  the C++  environment  variables  for 

Windows   . . . . . . . . . . . . . . 18  

Setting  the C++  environment  variables  for AIX  18 

Building  C++  programs   . . . . . . . . . 18  

Setting  the console  subsystem  for code  page  

conversion  on Windows   . . . . . . . . . 19 

Understanding  multiple  search  options   . . . . . 19 

Tracing  . . . . . . . . . . . . . . . . 20  

Tracing text  queries  using  DB2  Text Information  

Extender   . . . . . . . . . . . . . . 20 

Tracing parametric  queries   . . . . . . . . 21  

Handling  exceptions   . . . . . . . . . . 21  

Constants   . . . . . . . . . . . . . . . 22 

Connecting  to content  servers   . . . . . . . . 23  

Establishing  a connection  . . . . . . . . . 23 

Connecting  and  disconnecting  from  a content  

server  in a client  . . . . . . . . . . . . 24  

Setting  and  getting  content  server  options   . . . 24  

Listing  content  servers  . . . . . . . . . . 25 

Listing  the  entities  and  attributes  for a content  

server   . . . . . . . . . . . . . . . 26  

Working  with  dynamic  data  objects  (DDOs)   . . . 28 

Creating  a DKDDO  . . . . . . . . . . . 28 

Adding  properties  to a DDO   . . . . . . . 30 

Creating  a persistent  identifier  (PID)   . . . . . 30 

Working  with  data  items  and  properties  . . . . 31  

Getting  the DKDDO  and  attribute  properties   . . 33  

Displaying  the  whole  DDO   . . . . . . . . 35  

Deleting  a DDO  (C++  only)   . . . . . . . . 36  

Working  with  extended  data  objects  (XDOs)   . . . 37  

Using  an XDO  persistent  identifier  (PID)   . . . 37 

Understanding  XDO  properties  . . . . . . . 37  

DB2  and  ODBC  configuration  strings  (C++  only)  38 

Java  programming  tips   . . . . . . . . . 38  

C++  programming  tips   . . . . . . . . . 39 

Programming  an XDO  as a part  of DDO   . . . 39 

Programming  a stand-alone  XDO   . . . . . . 41  

Examples  of working  with  an XDO   . . . . . 45  

Creating  documents  and  using  the DKPARTS  

attribute   . . . . . . . . . . . . . . . 67  

Creating  folders  and  using  the  DKFOLDER  attribute  70 

Using  DKAny  (C++  only)   . . . . . . . . . 72 

Using  type  code  . . . . . . . . . . . . 73 

Managing  memory  in DKAny   . . . . . . . 73  

Using  constructors   . . . . . . . . . . . 73  

Getting  the type  code   . . . . . . . . . . 74  

Assigning  a new  value  to DKAny   . . . . . . 74 

Assigning  a value  from  DKAny   . . . . . . 74  

Displaying  DKAny   . . . . . . . . . . . 75 

Destroying  DKAny   . . . . . . . . . . . 75 

Programming  tips   . . . . . . . . . . . 76 

Using  collections  and  iterators   . . . . . . . . 76 

Using  sequential  collection  methods   . . . . . 76 

Using  the  sequential  iterator  . . . . . . . . 77  

Managing  memory  in collections  (C++  only)   . . 78 

 

© Copyright  IBM Corp. 1996, 2005 v

||

|
||



Sorting  the  collection   . . . . . . . . . . 79  

Understanding  federated  collection  and  iterator  80 

Querying  a content  server   . . . . . . . . . 81  

Differences  between  dkResultSetCursor  and  

DKResults  . . . . . . . . . . . . . . 82 

Using  parametric  queries  . . . . . . . . . 82  

Using  text  query  . . . . . . . . . . . . 88  

Using  the  result  set cursor   . . . . . . . . . 99  

Opening  and  closing  the  result  set cursor  to 

rerun  the  query  . . . . . . . . . . . . 100 

Setting  and  getting  positions  in a result  set 

cursor   . . . . . . . . . . . . . . . 100  

Creating  a collection  from  a result  set cursor  102 

Querying  collections   . . . . . . . . . . . 103  

Getting  the  result  of a query   . . . . . . . 103 

Evaluating  a new  query   . . . . . . . . . 104 

Using  queryable  collection  instead  of combined  

query   . . . . . . . . . . . . . . . 105  

Chapter 4. Working with DB2 Content 

Manager Version 8.3  . . . . . . . . 107 

Understanding  the  DB2  Content  Manager  system  107 

Understanding  DB2  Content  Manager  concepts   . . 108  

Items   . . . . . . . . . . . . . . . 108 

Attributes   . . . . . . . . . . . . . 109  

Item  types   . . . . . . . . . . . . . 109  

Root  and  child  components  . . . . . . . . 109  

Objects   . . . . . . . . . . . . . . 110  

Links  and  references   . . . . . . . . . . 110 

Documents   . . . . . . . . . . . . . 111 

Folders   . . . . . . . . . . . . . . 111 

Versioning   . . . . . . . . . . . . . 112  

Access  control   . . . . . . . . . . . . 113  

Planning  a DB2  Content  Manager  application   . . 116  

Determining  the  features  of your  application  117 

Handling  errors   . . . . . . . . . . . 117 

Working  with  the  DB2  Content  Manager  samples  118 

The  insurance  scenario  sample   . . . . . . 119 

Creating  a DB2  Content  Manager  application  . . . 119 

Understanding  the  software  components   . . . 119 

Representing  items  using  DDOs   . . . . . . 120  

Connecting  to the  DB2  Content  Manager  system  120 

Working  with  items   . . . . . . . . . . 122  

Working  with  folders  . . . . . . . . . . 148  

Defining  links  between  items   . . . . . . . 154 

Working  with  access  control   . . . . . . . . 156 

Creating  a privilege   . . . . . . . . . . 157  

Creating  a privilege  set  . . . . . . . . . 158 

Displaying  privilege  set properties   . . . . . 160 

Defining  an access  control  list  (ACL)   . . . . 161  

Retrieving  and  displaying  ACL  information   . . 163  

Assigning  an ACL  to an item  type   . . . . . 164  

Assigning  an ACL  to an item   . . . . . . . 165 

Library  server  and  federated  database  limitations  166 

Working  with  the  resource  manager  . . . . . . 167  

Working  with  resource  manager  objects   . . . 167 

Confidential  retrieval  of resource  objects   . . . 168 

Removing  resource  object  contents   . . . . . 169  

Understanding  asynchronous  replication  in a 

z/OS  resource  manager   . . . . . . . . . 170  

Managing  documents  in DB2  Content  Manager  173 

Creating  the  document  management  data  model  174  

Creating  a document  item  type   . . . . . . 174 

Creating  a document   . . . . . . . . . . 176  

Updating  a document   . . . . . . . . . 178  

Retrieving  and  deleting  a document  . . . . . 180  

Versioning  of parts  in the  document  

management  data  model   . . . . . . . . 180 

Working  with  transactions   . . . . . . . . . 181 

Things  to consider  when  designing  transactions  

in your  application   . . . . . . . . . . 182 

Caution  when  using  transactions   . . . . . . 182  

Using  check-in  and  check-out  in transactions  183  

Processing  transactions   . . . . . . . . . 183  

New  explicit  transactions  behavior  in Version  

8.3  . . . . . . . . . . . . . . . . 184 

Transaction  behavior  when  deleting  a user  does  

not  belong  in a group   . . . . . . . . . 185 

Chapter 5. Searching for data  . . . . 187 

Querying  the DB2  Content  Manager  server   . . . 187  

Applying  the  query  language  to the  DB2  Content  

Manager  data  model   . . . . . . . . . . . 189  

Understanding  parametric  search  . . . . . . . 190  

Understanding  text  search   . . . . . . . . . 191 

Searching  for object  contents   . . . . . . . 192  

Searching  for documents   . . . . . . . . 192  

Making  user-defined  attributes  text  searchable  192  

Understanding  text  search  syntax  . . . . . . 192  

Creating  combined  parametric  and  text  search   . . 194  

Example  searches  using  the  query  language   . . . 196  

Query  examples   . . . . . . . . . . . 199 

Using  escape  sequences  in your  queries   . . . . 206  

Using  escape  sequences  with  comparison  

operators  . . . . . . . . . . . . . . 207  

Using  escape  sequences  with  the  LIKE  operator  207  

Using  escape  sequences  with  advanced  text  

search   . . . . . . . . . . . . . . . 208 

Using  escape  sequences  with  basic  text  search  

(contains-text-basic  and  score-basic  functions)   . 210 

Using  escape  sequences  in Java  and  C++   . . . 211 

Understanding  row-based  view  filtering  in query  211 

Sample  usage  scenario   . . . . . . . . . 212  

Description  of behavior   . . . . . . . . . 213  

Performance  considerations  . . . . . . . . 214  

Database  Index  on each  filtered  attribute   . . . 215  

Security  implications   . . . . . . . . . . 216  

The  query  language  grammar   . . . . . . . . 216 

Chapter 6. Routing a document 

through a process  . . . . . . . . . 221 

Understanding  the  document  routing  process   . . 221  

Understanding  document  routing  enhancements  in 

Version  8.3  . . . . . . . . . . . . . . 222  

Understanding  Version  8.3  compatibility  with  

Version  8.2  . . . . . . . . . . . . . 224  

Understanding  document  routing  classes   . . . . 224  

Creating  document  routing  service  objects  . . . 227 

Defining  a new  regular  work  node   . . . . . 228 

Listing  work  nodes   . . . . . . . . . . 230  

Defining  a new  collection  point   . . . . . . 231  

 

 

vi Application  Programming Guide

||

||
||
|
||

 |
 | |
 |
 | |

 | |
 | |
 | |
 | |
 | |
 | |

 |
 | |
 |
 | |



Defining  a work  list   . . . . . . . . . . 234 

Listing  worklists   . . . . . . . . . . . 235  

Defining  a new  process  and  associated  route  236  

Starting  a document  routing  process  . . . . . 239  

Ending  a process   . . . . . . . . . . . 240  

Continuing  a process  . . . . . . . . . . 240  

Suspending  a process  . . . . . . . . . . 241 

Resuming  a process   . . . . . . . . . . 241  

Listing  work  package  persistent  identifier  

strings  in a worklist   . . . . . . . . . . 242  

Retrieving  work  package  information   . . . . 243  

Listing  document  routing  processes   . . . . . 244 

Ad  hoc  routing  . . . . . . . . . . . . 245  

Document  routing  example  queries   . . . . . 246 

Granting  privileges  for document  routing   . . . 246 

Working  with  access  control  lists  for document  

routing   . . . . . . . . . . . . . . 247 

Programming  document  routing  user  exits   . . 248  

Document  routing  constants   . . . . . . . 251 

Chapter 7. Understanding prefetching 

in DB2 Content Manager for z/OS . . . 253 

Prefetching  objects  . . . . . . . . . . . . 253  

Table definitions  related  to prefetching   . . . . 255  

Chapter 8. Working with other content 

servers  . . . . . . . . . . . . . . 259 

Working  with  earlier  DB2  Content  Manager   . . . 261  

Handling  large  objects   . . . . . . . . . 261 

Using  DDOs  to represent  earlier  Content  

Manager  content   . . . . . . . . . . . 262 

Creating,  updating,  and  deleting  documents  or 

folders  . . . . . . . . . . . . . . . 263 

Retrieving  a document  or folder   . . . . . . 271 

Understanding  text  searching  (DB2  Text 

Information  Extender)   . . . . . . . . . 274 

Searching  images  by content   . . . . . . . 295 

Using  image  search  applications   . . . . . . 298  

Establishing  a connection  in QBIC   . . . . . 302  

Listing  image  search  servers   . . . . . . . 303 

Listing  image  search  databases,  catalogs,  and  

features   . . . . . . . . . . . . . . 304 

Representing  image  search  information  with  a 

DDO   . . . . . . . . . . . . . . . 307 

Working  with  image  queries   . . . . . . . 307  

Using  the  image  search  engine   . . . . . . 311 

Indexing  an existing  XDO  using  search  engines  311 

Using  combined  query   . . . . . . . . . 314  

Understanding  the  earlier  DB2  Content  Manager  

workflow  and  workbasket  functions  . . . . . 318 

Working  with  OnDemand   . . . . . . . . . 326 

Representing  OnDemand  servers  and  

documents   . . . . . . . . . . . . . 327  

Connecting  to  and  disconnecting  from  the  

OnDemand  server  . . . . . . . . . . . 327  

Listing  information  on  OnDemand   . . . . . 328 

Retrieving  an OnDemand  document  . . . . . 330 

Enabling  the  OnDemand  folder  mode   . . . . 337 

Asynchronous  search  . . . . . . . . . . 337  

OnDemand  folders  as search  templates  . . . . 338 

OnDemand  folders  as native  entities   . . . . 338 

Create  and  modify  annotations   . . . . . . 338 

Tracing  . . . . . . . . . . . . . . 338 

Working  with  Content  Manager  ImagePlus  for  

OS/390   . . . . . . . . . . . . . . . 340  

Listing  entities  and  attributes   . . . . . . . 340  

ImagePlus  for OS/390  query  syntax  . . . . . 345 

Working  with  DB2  Content  Manager  for  AS/400  347  

Listing  entities  (index  classes)  and  attributes   . . 347 

Running  a query   . . . . . . . . . . . 349  

Running  a parametric  query   . . . . . . . 354  

Working  with  Domino.Doc   . . . . . . . . . 355  

Listing  entities  and  subentities  . . . . . . . 357  

Listing  cabinet  attributes   . . . . . . . . 359 

Building  queries  in Domino.Doc   . . . . . . 359 

Using  query  syntax   . . . . . . . . . . 359 

Working  with  relational  databases   . . . . . . 360 

Connecting  to relational  databases   . . . . . 360 

Listing  entities  and  entity  attributes   . . . . . 362 

Running  a query   . . . . . . . . . . . 365  

Creating  custom  content  server  connectors   . . . 368  

Developing  custom  content  server  connectors  368  

Using  the  FeServerDefBase  class  (Java  only)   . . 382 

Chapter 9. Building Information 

Integrator for Content workflow 

applications  . . . . . . . . . . . . 385 

Connecting  to workflow  services   . . . . . . . 385 

Starting  a workflow   . . . . . . . . . . . 386  

Terminating  a workflow  . . . . . . . . . . 387  

Listing  all the workflows   . . . . . . . . . 388 

Suspending  a workflow   . . . . . . . . . . 389  

Resuming  a workflow   . . . . . . . . . . 390 

Listing  all the worklists   . . . . . . . . . . 390 

Accessing  a worklist   . . . . . . . . . . . 391 

Accessing  work  items   . . . . . . . . . . 392 

Moving  items  in the  workflow   . . . . . . . 393 

Listing  all the workflow  templates   . . . . . . 394  

Creating  your  own  actions  (Java  only)   . . . . . 394  

Working  with  the  Information  Integrator  for 

Content  workflow  JavaBeans   . . . . . . . . 395 

Prerequisites  . . . . . . . . . . . . . 395 

Setting  up the  sample  data  model   . . . . . 396 

Using  the  workflow  JavaBeans  in your  

application   . . . . . . . . . . . . . 401 

Chapter 10. Building applications with 

non-visual and visual JavaBeans . . . 403 

Understanding  basic  beans  concepts  . . . . . . 403 

Using  JavaBeans  in builders   . . . . . . . . 404  

Using  IBM  Websphere  Studio  Application  

Developer   . . . . . . . . . . . . . 404  

Invoking  the Information  Integrator  for Content  

JavaBeans   . . . . . . . . . . . . . . 405  

Working  with  the  non-visual  beans   . . . . . . 405  

Non-visual  bean  configurations   . . . . . . 406 

Understanding  the  non-visual  beans  features  406  

Non-visual  beans  categories   . . . . . . . 407  

Considerations  when  using  the  non-visual  beans  411 

Changing  locale  in display  names   . . . . . 412 

 

 

Contents  vii

||

|
||
||
||

 |
 | |
 | |
 | |
 |
 | |

 | |



Tracing and  logging  in the  beans   . . . . . . 413 

Understanding  properties  and  events  for  

non-visual  beans   . . . . . . . . . . . 413  

Building  an application  using  non-visual  beans  413 

Working  with  visual  beans   . . . . . . . . . 414  

CMBLogonPanel  bean   . . . . . . . . . 414  

CMBSearchTemplateList  bean   . . . . . . . 416  

CMBSearchTemplateViewer  bean  . . . . . . 417 

Validating  or editing  fields  of the  

CMBSearchTemplateViewer  . . . . . . . . 417 

CMBSearchPanel  bean   . . . . . . . . . 417 

CMBSearchResultsViewer  bean   . . . . . . 418  

Overriding  pop-up  menus   . . . . . . . . 419  

CMBFolderViewer  bean   . . . . . . . . . 419  

CMBDocumentViewer  bean   . . . . . . . 420  

Viewer  specifications   . . . . . . . . . . 421  

Default  viewers   . . . . . . . . . . . 422 

Launching  external  viewers   . . . . . . . 422  

CMBItemAttributesEditor  bean   . . . . . . 422 

Vetoing  changes  in the  

CMBItemAttributesEditor   . . . . . . . . 423 

CMBVersionsViewer  bean   . . . . . . . . 423 

General  behaviors  for visual  beans   . . . . . 423 

Replacing  a visual  bean   . . . . . . . . . 424  

Building  an application  using  visual  beans   . . 425  

Chapter 11. Working with XML 

services (Java only)  . . . . . . . . 429 

Understanding  how  XML  services  work  with  other  

DB2  Content  Manager  programming  layers   . . . 429 

Importing  and  exporting  DB2  Content  Manager  

metadata  using  XML  services   . . . . . . . . 432  

Importing  and  exporting  administration  objects  

as XML   . . . . . . . . . . . . . . 433 

Importing  and  exporting  DB2  Content  Manager  

data  model  objects  as XML  schema  files  (XSD)   . 434  

Importing  and  exporting  DB2  Content  Manager  

data  instance  objects  as XML   . . . . . . . . 454  

Exporting  DB2  Content  Manager  DDO  items  as 

XML  items   . . . . . . . . . . . . . 455  

Importing  XML  items  as DB2  Content  Manager  

DDO  items   . . . . . . . . . . . . . 456  

Importing  and  exporting  XML  object  dependencies  457 

Extracting  content  from  different  XML  sources   . . 458  

Mapping  a user-defined  schema  to a storage  

schema  with  the  XML  schema  mapping  tool   . . . 458 

Programming  runtime  operations  through  the  XML  

JavaBeans   . . . . . . . . . . . . . . 461  

Listing  DB2  Content  Manager  servers  with  

ListServerRequest   . . . . . . . . . . . 464  

Authenticating  Web service  requests  for  security  465 

Changing  a password  with  XML  requests   . . . 466 

Listing  DB2  Content  Manager  entities  with  

ListSchemaRequest   . . . . . . . . . . 466  

Creating  DB2  Content  Manager  items  with  

CreateItemRequest   . . . . . . . . . . 468  

Searching  DB2  Content  Manager  items  with  

RunQueryRequest  . . . . . . . . . . . 469 

Retrieving  DB2  Content  Manager  items  with  

RetrieveItemRequest   . . . . . . . . . . 472  

Viewing  your  user  privileges  with  XML  requests  476 

Working  with  DB2  Content  Manager  folders  

through  XML  requests   . . . . . . . . . 477 

Updating  DB2  Content  Manager  items  with  an 

XML  UpdateItemRequest   . . . . . . . . 480  

Deleting  DB2  Content  Manager  items  with  

DeleteItemRequest  . . . . . . . . . . . 487  

Checking  DB2  Content  Manager  items  out  and  

in with  CheckoutItemRequest  and  

CheckinitemRequest   . . . . . . . . . . 488  

Linking  DB2  Content  Manager  items  with  

CreateLinkRequest  or DeleteLinkRequest   . . . 490  

Moving  DB2  Content  Manager  items  between  

entities  with  MoveItemRequest   . . . . . . 492 

Accessing  DB2  Content  Manager  document  

routing  using  XML-based  requests   . . . . . 493 

Batching  multiple  requests  in XML  requests   . . 509  

Chapter 12. Working with the Web 

services . . . . . . . . . . . . . . 513 

Web services  overview   . . . . . . . . . . 513 

Understanding  the  DB2  Content  Manager  Web 

services  implementation  . . . . . . . . . . 515 

Working  with  the  Web service  in development  

tools   . . . . . . . . . . . . . . . 516 

Integrating  basic  Web services  into  your  

applications  or processes   . . . . . . . . . 517 

Getting  started  with  the Web services  in a .NET  

environment  . . . . . . . . . . . . . 518 

Programming  Web services  requests  in a .NET  

environment  . . . . . . . . . . . . . 519 

Getting  started  with  the Web services  in a Java  

environment  . . . . . . . . . . . . . 520 

Programming  Web services  requests  in a Java  

environment  . . . . . . . . . . . . . 521 

Authenticating  Web services  requests  for  

security   . . . . . . . . . . . . . . 523  

Creating  a new  instance  of an item  through  Web 

services   . . . . . . . . . . . . . . 524 

Chapter 13. Working with the Java 

document viewer toolkit . . . . . . . 529 

Viewer  architecture   . . . . . . . . . . . 530 

The  document  engines   . . . . . . . . . 531 

The  annotations  engine   . . . . . . . . . 532  

Example  viewer  architectures   . . . . . . . 532 

Creating  a document  viewer   . . . . . . . . 534  

Creating  a standalone  viewer  application  or 

applet   . . . . . . . . . . . . . . . 534 

Working  with  documents  and  annotations  . . . 536  

Customizing  the  viewer   . . . . . . . . . 537 

Working  with  the  annotation  services   . . . . . 543  

Using  annotation  services  interfaces   . . . . . 543 

Understanding  annotation  editing  support   . . 544  

Building  an application  using  the annotation  

services   . . . . . . . . . . . . . . 545 

Adding  a custom  annotation  type  to your  

application   . . . . . . . . . . . . . 545  

Working  with  the  page  manipulation  functions  546  

 

 

viii Application  Programming Guide

|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
||
||
|
||
|
||
|
||
||
||
|
||
|
||
|
||
|
||
||

 |
 | |
 |
 | |
 |
 | |
 |
 |
 | |
 |
 | |
 |
 | |
 |
 | |
 | |

 |
 | |
 | |
 |
 | |
 |
 | |
 |
 | |
 |
 | |
 |
 | |
 |
 | |
 |
 | |
 |
 | |
 |
 | |

 |
 | |
 | |
 | |
 | |
 | |
 | |
 |
 | |
 | |
 | |
 | |
 | |
 | |
 |
 | |
 |
 | |
 | |



Chapter 14. Working with the JSP tag 

library and controller servlet . . . . . 549 

Setting  up the  tag  library  and  servlet   . . . . . 549 

Using  the  tag  library   . . . . . . . . . . . 549  

Conventions  used  in the  tag  library   . . . . . . 550  

Tag summary   . . . . . . . . . . . . . 550 

Connection  related  tags   . . . . . . . . . 550 

Schema  related  tags   . . . . . . . . . . 551 

Search  related  tags   . . . . . . . . . . 552 

Item  related  tags   . . . . . . . . . . . 552 

Folder  related  tags  . . . . . . . . . . . 553  

Document  related  tags   . . . . . . . . . 553  

Information  Integrator  for Content  controller  

servlet  . . . . . . . . . . . . . . . . 554  

What  the  servlet  can  do  . . . . . . . . . . 554 

Servlet  reference   . . . . . . . . . . . 555 

Servlet  toolkit  function  matrix  . . . . . . . . 560 

Chapter 15. Troubleshooting  . . . . . 563 

Receiving  an  error  when  compiling  C++  

applications  that  are  Unicode  enabled   . . . . . 563  

Receiving  an  error  when  using  reference  attributes  563  

Cannot  add,  store,  retrieve,  or update  a resource  

item   . . . . . . . . . . . . . . . . 564 

Cannot  import  a DKDDO  object  from  XML   . . . 564 

Receiving  an  error  when  updating,  reorganizing,  or 

using  text  indexes  for text  searchable  components   . 565 

Notices  . . . . . . . . . . . . . . 567 

Trademarks   . . . . . . . . . . . . . . 569 

Glossary  . . . . . . . . . . . . . 571 

Index  . . . . . . . . . . . . . . . 581

 

 

Contents  ix

 |
 | |



x Application  Programming Guide



About  this  guide  

This  guide  describes  how  to  use  the  Java™, JavaBeans™, and  C++  application  

programming  interfaces  (APIs)  provided  with  Information  Integrator  for  Content  

Version  8 Release  3 and  DB2  Content  Manager  Version  8 Release  3. The  APIs  and  

beans  provide  building  blocks  for  creating  applications  that  access  content  stored  

in  heterogeneous  content  servers.  

In  earlier  versions,  DB2  Content  Manager  andInformation  Integrator  for  Content  

kept  separate  application  programming  guides.  In  Version  8 Release  3,  the  two  

products  share  many  of  the  APIs  and  are  based  on  many  of  the  same  

programming  concepts.  Also,  because  much  of  the  new  functionality  in  

Information  Integrator  for  Content  Version  8 Release  3 involves  the  new  connector  

to  DB2  Content  Manager  Version  8 Release  3,  the  two  guides  merged  into  one.  

This  guide  includes:  

v   An  introduction  to Information  Integrator  for  Content  and  DB2  Content  

Manager  application  programming  concepts,  including  dynamic  data  object  

concepts  in the  context  of Java  and  C++  

v   A  description  of the  function  accessible  through  the  DB2  Content  Manager  

Version  8 Release  3 connector  

v   Documentation  on  all  other  Information  Integrator  for  Content  connectors  to  

content  servers  

v   Updates  to  visual  and  non-visual  JavaBeans  

v   Updates  to  programming  information  for  Information  Mining,  IBM® Web 

Crawler,  and  workflow

Illustrations  referring  to  DB2  Content  Manager  imply  both  pre-Version  8.1  and  

Version  8 Release  3 of  the  product.  

Important  information  for  Linux  users:  

This  manual  is  provided  for  your  reference  and  might  contain  documentation  

about  the  following  components  not  supported  on  Linux:  

v   IBM  DB2  Information  Integrator  for  Content  

v   DB2  Information  Integrator  for  Content  advanced  workflow  

v   All  C++  connectors  

v   Remote  Java  connectors  

v   IBM  Content  Manager  Version  7 Release  1 connector  

v   Content  Manager  ImagePlus  for  OS/390® connector  

v   Lotus® Domino.Doc® connector  

v   Relational  database  connectors  (DB2® UDB,  JDBC,  ODBC)

The  specific  product  versions  in  the  list  below  are  supported  on  the  Linux  

platform:  

v   Content  Manager  OnDemand  for  Multiplatforms  Version  7 Release  1 

v   Content  Manager  OnDemand  for  iSeries  Version  5 Release  1 and  Version  5 

Release  2 

v   Content  Manager  OnDemand  for  z/OS® and  OS/390® Version  2 Release  1 and  

Version  7 Release  1

 

© Copyright  IBM Corp. 1996, 2005 xi

|
|

|
|
|

|

|

|

|

|

|

|

|

|
|

|

|
|

|
|



Who should use this guide 

This  guide  is  intended  for  application  programmers  with  some  or  all  of the  

following  skills:  

v   Experience  with  either  C++,  Java,  JavaBeans,  or  HTML  

v   Familiarity  with  relational  database  concepts  

v   Knowledge  of the  DDO/XDO  protocol

Where to find more information 

Your product  package  provides  access  to  a complete  set  of information  to  help  you  

plan  for, install,  administer,  and  use  your  system.  Product  documentation  and  

support  are  also  available  on  the  Web. 

Information included in your product package 

The  product  package  contains  a browser-based  information  center  and  publications  

in  portable  document  format  (.PDF).  

The information center 

The  product  package  contains  an  Eclipse-based  information  center  that  you  can  

install  when  you  install  the  product.  You can  install  and  use  the  information  center  

locally  on  a single  workstation  or  you  can  install  it on  a server.  The  information  

center  is also  available  on  the  Internet  at:  

http://publib.boulder.ibm.com/infocenter/cm83  

Starting  the  information  center:    The  information  center  automatically  starts  as a 

service/daemon  Web server  on  the  machine  where  you  install  it.  You can  view  it 

from  a different  machine,  by  launching  a Web browser  and  entering:  

http://hostname:8081.  You can  view  it from  the  same  machine,  by  launching  a 

Web browser  and  entering:  http://localhost:8081.  (The  default  port  number  is 8081,  

but  you  can  change  it in  the  IBMCMROOT/config/cmcfgic.ini  file.)  

If the  information  center  fails  to  start  as  a service/daemon,  you  can  manually  start  

it by  running  the  IBMCMROOT/infoctr/web-start  script.  The  process  will  continue  

to  run in  the  background  until  you  run the  IBMCMROOT/infoctr/web-end  script.  

You can  also  start  the  information  center  with  a randomly  generated  port  number  

(known  as  standalone  client  mode)  by  running  the  IBMCMROOT/infoctr/local-
start  script  (local-end  stops  the  information  center).  You cannot  run these  two  

modes  simultaneously.  

Information  center  content:    Depending  on  what  you  install,  the  information  

center  includes  some  or  all  of  the  documentation  for  DB2  Content  Manager,  DB2  

Information  Integrator  for  Content,  and  DB2  Content  Manager  VideoCharger™. 

When  you  open  the  information  center,  the  Welcome  page  displays.  The  Welcome  

page  provides  links  to  product  orientation  material  both  within  the  information  

center  and  beyond,  and  also  provides  instructions  for  using  the  information  center  

effectively.  The  Welcome  page  links  to information  roadmaps,  which  in  turn  link  to  

task-specific  information  both  within  the  information  center  and  beyond.  

Within  the  information  center,  information  is organized  by  task  (for  example,  

Administering).  In  addition  to  the  provided  navigation  mechanism  and  indexes,  a 

search  facility  also  aids  retrievability.  When  you  use  a local  version,  you  can  also  

take  advantage  of  bookmarks  to  return  to  frequently  used  topics.  

 

 

xii Application  Programming Guide

|

|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|

|
|
|
|
|

|
|
|
|



When  you  first  open  the  local  or  intranet  information  center,  it  does  not  include  

the  planning  and  installation  information.  Instructions  are  provided  for  

downloading  this  material  and  including  it in  your  information  center.  You can  

review  this  material  at any  time  by  viewing  the  information  center  on  the  Web at:  

http://publib.boulder.ibm.com/infocenter/cm83  

In  Version  8.3,  the  information  center  includes  the  DB2  Content  Manager  and  DB2  

Information  Integrator  for  Content  system  administration  help.  When  system  

administrators  click  Help  in  the  System  Administration  Client,  the  appropriate  

topic  displays  in  of the  information  center  in  context  with  all  other  system  

administration  information.  The  content  of  the  DB2  Content  Manager  PDF  

publication,  System  Administration  Guide,  is identical  to the  content  displayed  in  the  

information  center.  

Also  in  Version  8.3,  the  Javadoc  application  programming  reference  information,  

which  was  formerly  displayed  in  EDO  (Enterprise  Documentation  Online)  is 

included  in  the  information  center.  The  samples  (Java,  C++,  and  Web services)  are  

also  included  in  the  information  center.  

PDF publications 

You can  view  the  PDF  files  online  using  the  Adobe  Acrobat  Reader  for  your  

operating  system.  If  you  do  not  have  the  Acrobat  Reader  installed,  you  can  

download  it from  the  Adobe  Web site  at www.adobe.com.  

Table  1 shows  the  publications  for  IBM  DB2  Content  Manager  Enterprise  Edition  

(which  includes  DB2  Information  Integrator  for  Content  and  DB2  Content  Manager  

VideoCharger)  and  IBM  DB2  Content  Manager  for  z/OS.  

 Table 1. IBM  DB2  Content  Manager  Version  8.3  solution  publications  

Path\file  name  Title For  products:  

Publication  

number  

CM\admincm  System  Administration  Guide  v   DB2  Content  Manager  

Enterprise  Edition  

v   DB2  Content  Manager  

for z/OS  

v   DB2  Information  

Integrator  for Content  

SC27-1335-06  

CM\apg  Application  Programming  Guide  v   DB2  Content  Manager  

Enterprise  Edition  

v   DB2  Content  Manager  

for z/OS  

v   DB2  Information  

Integrator  for Content  

SC27-1347-04  

CM\ecliinst  Installing,  Configuring,  and  Managing  the 

eClient  

v   DB2  Content  Manager  

Enterprise  Edition  

v   DB2  Content  Manager  

for z/OS  

v   DB2  Information  

Integrator  for Content  

SC27-1350-05  

 

 

About  this guide xiii

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|

||

|||
|
|

|||
|

|
|

|
|

|

|||
|

|
|

|
|

|

||
|
|
|

|
|

|
|

|



Table 1. IBM  DB2  Content  Manager  Version  8.3 solution  publications  (continued)  

Path\file  name  Title  For  products:  

Publication  

number  

CM\messcode  Messages  and  Codes  v   DB2  Content  Manager  

Enterprise  Edition  

v   DB2  Content  Manager  

for z/OS  

v   DB2  Information  

Integrator  for Content  

SC27-1349-05  

Not  on the  documentation  CD1 Migrating  to DB2  Content  Manager  

Version 8 

DB2  Content  Manager  

Enterprise  Edition  

SC27-1343-02  

Not  on the  documentation  CD1 Migrating  to DB2  Content  Manager  

Version 8 for  z/OS  

DB2  Content  Manager  

for z/OS  

GC18-7699-01  

CM\wincli  Client  for  Windows  Programming  

Reference  

v   DB2  Content  Manager  

Enterprise  Edition  

v   DB2  Content  Manager  

for z/OS  

v   DB2  Information  

Integrator  for Content  

SC27-1337-03  

Not  on the  documentation  CD1 Planning  and  Installing  Your  Content  

Management  System  

v   DB2  Content  Manager  

Enterprise  Edition  

v   DB2  Information  

Integrator  for Content  

GC27-1332-03  

Not  on the  documentation  CD1 Planning  and  Installing  Your  Content  

Management  System  for z/OS  

DB2  Content  Manager  

for z/OS  

GC18-7698-01  

VC\adminvc  System  Administration  Guide  DB2  Content  Manager  

VideoCharger  

SC27-1351-03  

VC\installvc  Planning  and  Installing  DB2  Content  

Manager  VideoCharger  

DB2  Content  Manager  

VideoCharger  

GC27-1353-03  

VC\vcprogref  Programmer’s  Reference  DB2  Content  Manager  

VideoCharger  

SC27-1352-03  

Note:   

1.   Available  for viewing  here:  http://publib.boulder.ibm.com/infocenter/cm83  

Also  available  for  download.
  

Support available on the Web  

Product  support  is available  on  the  Web. Click  Support  from  the  product  Web sites  

at:  

www.ibm.com/software/data/cm/  

www.ibm.com/software/data/eip/  

www.ibm.com/software/data/videocharger/  

The  documentation  is included  in  softcopy  with  the  product.  To access  product  

documentation  on  the  Web, go  to  the  IBM  Publications  Center  at  

www.ibm.com/shop/publications/order.  The  IBM  Publications  Center  is also  

linked  from  the  product  support  pages.  

 

 

xiv Application  Programming Guide

|

|||
|
|

|||
|

|
|

|
|

|

||
|
|
|
|

||
|
|
|
|

||
|
|
|

|
|

|
|

|

||
|
|
|

|
|

|

||
|
|
|
|

|||
|
|

||
|
|
|
|

|||
|
|

|

|

|
|

|



How to send your comments 

Your feedback  helps  IBM  to provide  quality  information.  Please  send  any  

comments  that  you  have  about  this  publication  or  other  DB2  Content  Manager,  

DB2  Information  Integrator  for  Content,  or  DB2  Content  Manager  VideoCharger  

documentation.  You can  use  either  of the  following  methods  to  provide  comments:  

v   Send  your  comments  from  the  Web. Visit  the  IBM  Data  Management  Online  

Reader’s  Comment  Form  (RCF)  page  at:  

www.ibm.com/software/data/rcf  

You can  use  the  page  to enter  and  send  comments.  

v   Send  your  comments  by  e-mail  to comments@us.ibm.com.  Be  sure  to include  the  

name  of  the  product,  the  version  number  of  the  product,  and  the  name  and  part  

number  of  the  book  (if  applicable).  If  you  are  commenting  on  specific  text,  

include  the  location  of  the  text  (for  example,  a chapter  and  section  title,  a table  

number,  a page  number,  or  a help  topic  title).

What’s new in IBM DB2 Content Manager Enterprise Edition Version  8 

Release 3 

Version  8.3:  Version  8.3  continues  to deliver  a real  return  on  investment  to  

customers.  Version  8.3  focuses  on  five  areas:  integration,  open  systems,  autonomic  

systems,  resiliency,  and  ease  of  use.  These  highlights,  and  other  enhancements  to  

the  Version  8.3  product,  are  summarized  below:  

    

Support  for  Oracle  databases  

DB2  Content  Manager  Version  8.3  adds  support  for  Oracle  databases  

managing  the  metadata  stored  in  both  library  server  and  resource  

manager.  Migration  tools  are  included  for  Oracle  users  of DB2  Content  

Manager  Version  7.  

Remote  database  server  for  DB2  Universal  Database™ and  Oracle   

You can  now  help  reduce  workload  by  installing  the  DB2  Content  

Manager  resource  manager  database  on  a different  machine  than  the  

resource  manager  application.  

Web services  support  

DB2  Content  Manager  provides  a self-contained,  self-describing  

modular  interface,  a Web services  interface,  that  you  can  use  within  

your  applications,  with  other  Web services,  or  in  complex  business  

processes  to  seamlessly  access  items  stored  in DB2  Content  Manager.  

The  Web services  interface  allows  you  to  integrate  dynamically  your  

applications  with  DB2  Content  Manager,  regardless  of the  programming  

language  they  were  written  in  and  the  platform  they  reside  in.  

XML  support  

The  system  administration  client  enables  you  to  export  your  system  

administration  data  into  an  XML  readable  file  and  import  that  data  

from  an  XML  file.  This  capability  allows  you  to copy  administrative  

settings  from  one  server  to  another  by  exporting  the  information  and  

importing  it into  the  systems.  You can  also  use  the  new  XML  capability  

to  get  the  list  of  system  administration  objects  from  one  DB2  Content  

Manager  or  DB2  Information  Integrator  for  Content  system  to  another.  

Document  routing  enhancements  

DB2  Content  Manager  document  routing  is enhanced  in  Version  8.3  to  

include  decision  points,  actions,  action  lists,  parallel  routing,  and  user  

 

 

About this guide xv



exit  support.  In addition,  a new  graphical  builder  within  the  system  

administration  client  helps  you  easily  define  your  document  routing  

processes.  

Query  (search)  enhancements  

The  query  function  is enhanced  to  include  the  following  support:  

–   Query  on  checked-out  items  

–   Row-based  view  filtering  in  query  

–   Get  the  count  of query  results  without  getting  the  results  themselves  

–   Use  of  the  IN  operator  to compare  an  attribute’s  value  to  a list  of  

values  

–   Internal  query  optimization  to  reduce  the  length  of  the  generated  

SQL  statements

Similar  characteristics  for  logging  and  tracing  

Version  8.3  provides  logs  with  similar  characteristics,  which  cover  most  

system  components:  

–   The  system  administration  client  now  provides  the  log  control  utility,  

which  you  can  use  to  set  log  and  trace  parameters  for  multiple  

system  components  

–   A default  common  directory  for  all  log  files  

–   A standard  log  file  timestamp  format  using  Greenwich  Mean  Time  

–   Logging  information  related  to  a single  user  ID  

–   A unique  log  ID  that  is common  among  across  different  system  

component  log  files

Installation  improvements  

–   The  installation  programs  for  DB2  Content  Manager,  DB2  

Information  Integrator  for  Content,  and  DB2  Content  Manager  

eClient  are  redesigned  to provide  commonality  for  all  operating  

systems,  consistent  product  interoperability,  and  an  improved,  more  

robust,  installation  experience.  

–   You can  selectively  install  features  of  the  products  and  some  features  

are  sharable  among  the  products.  

–   The  installation  programs  for  DB2  Content  Manager  and  DB2  

Information  Integrator  for  Content  now  include  time  saving  Typical  

installation  paths,  which  greatly  reduce  the  complexity  of  user  input  

for  common  installations.  The  Custom  paths  are  reorganized  to  

improve  clarity  and  consistency.  

–   Silent  installation  capability  is consistently  supported  for  all  products  

and  operating  systems,  allowing  for  the  full  range  of  installation  

options.  

–   Pre-requisite  checking  is redesigned  to  be  more  flexible  and  precise,  

thus  facilitating  a wider  range  of installation  topologies,  and  

allowing  the  flexibility  to  extend  capabilities.  

–   Version  8.3  now  automatically  configures  the  Secure  Sockets  Layer  

(SSL)  of the  IBM  HTTP  Server  shipped  with  WebSphere® Application  

Server  Version  5.1  and  used  by  the  DB2  Content  Manager  resource  

manager.  

–   Online  help  is  available  for  installation  panels  that  provides  

information  about  default  values  and  limitations  for  fields,  and  

relevant  background  information.

 

 

xvi Application  Programming Guide



Discontinued  and  deprecated  function  

The  following  function  is no  longer  supported  in  DB2  Information  

Integrator  for  Content  in  V8.3:  

–   Extended  Search  

–   IBM  Content  Connector  for  Panagon  Image  Services  

–   Information  mining  

–   IBM  Web Crawler  

–   Connectors  for:  

-   Information  Catalog  Manager  

-   Extended  Search  

-   DataJoiner® 

-   ActiveX  versions  of the  following  connectors:  Content  Manager  V7  

(DL),  Lotus  Domino  Doc  (DD),  OnDemand  (OD),  Extended  Search  

(DES),  VisualInfo™/400® (V4),  Image  Plus/390(IP)  and  Federated  

(Fed))

Accessibility  improvements  

Accessibility  features  help  users  with  a physical  disability,  such  as 

restricted  mobility  or  limited  vision,  to  use  software  products  

successfully.  Version  8.3  enhances  product  accessibility  features.  For  

example,  new  shortcuts  have  been  added  to  help  you  operate  all  

features  using  the  keyboard  instead  of  the  mouse.

Version  8.2:  Version  8.2  includes  a variety  of enhancements  from  Version  8.1.  

Version  8.2  adds  support  for  Linux,  more  workflow  features  to the  eClient,  

increases  resource  management  function,  and  supports  the  latest  in  database  and  

client  technology,  including  DB2  Universal  Database  Version  8.1  and  WebSphere  

Version  5.  These  highlights,  and  other  enhancements  to the  Version  8.2  product,  are  

summarized  below:  

    

Support  for  Linux  

DB2  Content  Manager  V8.2  now  supports  Linux.  The  following  changes  

are  also  new  for  the  Linux-supported  product:  

–   The  system  administration  client  runs natively  on  Linux.  

–   You are  not  required  to have  a C compiler  on  your  library  server  

machine.  

–   You can  install  the  library  server  and  resource  manager  on  Linux.

Information  Integrator  for  Content  name  change  to  IBM  Information  

Integrator  for  Content  

Information  Integrator  for  Content  has  been  renamed  to  Information  

Integrator  for  Content.  Although  the  names  of the  books  have  changed  

for  Version  8.2,  the  text  within  the  books  continues  to  show  the  product  

name  Information  Integrator  for  Content.  When  searching  the  Web for  

more  information,  you  can  continue  to  use  Information  Integrator  for  

Content,  or  EIP,  until  the  transition  to the  new  name  is  complete.  

Replication  

DB2  Content  Manager  V8.2  includes  resource  manager  replication,  

which  is the  ability  to  store  objects  in  multiple  locations,  managed  by  

replication  resource  managers.  Object  replicas  will  behave  as LAN  

cache  objects  for  improved  load  balancing.  

 

 

About  this guide xvii



LAN  cache  

LAN  cache  support  in  DB2  Content  Manager  V8.2  provides  

application-transparent  caching,  using  local  servers  as  defined  by  the  

system  administrator.  

Support  for  DB2  UDB  V8.1  

DB2  Content  Manager  V8.2  and  Information  Integrator  for  Content  V8.2  

supports  DB2/UDB  V8.1.  The  connection  concentration  feature  of  DB2  

V8.1  provides  increased  scalability  for  two-tier  applications  and  clients  

(such  as the  DB2  Content  Manager  V8  Client  for  Windows).  DB2/UDB  

V8.1  has  replaced  the  DB2  Universal  Database  Text Information  

Extender  (TIE)  with  Net  Search  Extender  (NSE).  

Support  for  WebSphere  Application  Server  Version  4 and  Version  5 

WebSphere  Application  Server  Version  5 introduces  server  deployment  

and  data  access  and  management  from  any  web  browser.  

Federated  folders  

eClient  now  has  the  ability  to  organize  documents  and  native  folders  

from  multiple  repositories  into  a single  federated  folder  and  start  that  

folder  on  a workflow.  Federated  folders  also  allows  users  to  persistently  

store  search  results  in  the  EIP  federated  database  where  users  can  

retrieve  them  at  any  time.  Full  CRUD  (create,  retrieve,  update,  and  

delete)  operations  are  available  against  these  federated  folders  without  

re-indexing.  

Advanced  workflow  collection  points  

Workflow  is now  fully  supported  on  AIX® and  Solaris.  The  workflow  

builder,  APIs,  Collection  Points  Monitor,  and  JavaBeans  provide  

improved  workflow  function  and  usability.  

Microsoft® Visual  Studio  .NET  for  building  applications  

The  DB2  Content  Manager  and  Information  Integrator  for  Content  8.1  

and  later  APIs  now  support  Microsoft  Visual  Studio  .NET  for  writing  

content  management  applications  or  to  integrate  applications  built  

using  Microsoft  Visual  Studio  .NET.

Version  8.1:  Version  8.1  begins  a legacy  of  integration  and  versatility.  One  of the  

many  highlights  and  improvements  from  previous  Content  Manager  products  is  

the  new  data  model  structure  which  allows  for  more  document  customization.  The  

changes  to  the  DB2  Content  Manager  product  in  Version  8.1  are  summarized  

below:  

    

Improved  performance  

The  library  server  and  resource  manager  use  DB2  stored  procedures  

and  leverage  DB2  technology  to  significantly  reduce  network  traffic  and  

improve  performance  and  scalability.  

Support  for  Sun  Solaris  

Both  the  library  server  and  resource  manager  can  be  installed  on  Sun  

Solaris.  

Enhanced  data  model  

The  new  hierarchical  data  model  provides  the  basis  for  customized  

compound  document  management  solutions.  

 

 

xviii Application  Programming Guide



Improved  workflow  

Through  integrated  document  routing,  workflow  capabilities  have  been  

improved  with  sequential  routing,  dynamic  routing,  and  collection  

points.  

Integrated  text  search  

In  addition  to  attribute-based  searching,  client  users  can  now  perform  

full-text  searching  on  text-based  document  information.  The  text  search  

function  now  uses  the  DB2  Universal  Database  Text Information  

Extender,  which  contributes  to  a streamlined  process  for  setting  up  text  

searching.  

Common  system  administration  

A  single  client  application  provides  separate  access  to  Content  Manager  

and  Information  Integrator  for  Content.  Within  Content  Manager,  

administrative  domains  provide  a way  to  limit  administrative  access  to  

subsections  of  the  library  server.  

Full-function  desktop  client  and  enhanced  eClient  

Client  enhancements  provide  users  with  an  out-of-the-box  application  

for  rapid  deployment  or  line  of business  application  integration.  The  

Client  for  Windows® supports  integrated  text  search,  document  routing,  

the  hierarchical  data  model  (to  a single  child  component  level),  

versioning,  and  index  during  import.  The  eClient  includes  integrated  

text  search,  EIP  advanced  workflow,  version  control,  and  multi-valued  

attributes.  

Easier  installation  

Installation  is consistent  across  supported  operating  systems  and  

customized  installation  information  is provided  by  the  Start  Here  CD’s  

Planning  Assistant.  

Information  center  

The  browser-based  information  center  includes  the  documentation  for  

DB2  Content  Manager,  Information  Integrator  for  Content,  and  Content  

Manager  VideoCharger.  Topic-based  information  is organized  by  

product  and  by  task  (for  example,  Administration).  In  addition  to the  

provided  navigation  mechanism  and  indexes,  a search  facility  also  aids  

retrievability.  

Accessibility  

Accessibility  features  help  a user  who  has  a physical  disability,  such  as  

restricted  mobility  or  limited  vision,  to  use  software  products  

successfully.  The  major  accessibility  features  for  this  product  include:  

–   The  ability  to  operate  all  features  using  the  keyboard  instead  of the  

mouse.  

–   Support  for  enhanced  display  properties.  

–   Options  for  video  and  audio  alert  cues.  

–   Compatibility  with  assistive  technologies  

–   Compatibility  with  operating  system  accessibility  features  

–   Accessible  documentation  formats

PeopleSoft  and  Siebel  integrations  

Users  of  PeopleSoft  and  Siebel  applications  can  now  configure  these  

applications  to  access  content  stored  in  a variety  of  content  servers  

using  the  eClient.

 

 

About this guide xix



What’s new in DB2 Content Manager Version 8 Release 3 for z/OS 

Version  8.3  for  z/OS:  Version  8.3  continues  to  deliver  a real  return  on  investment  

to  customers.  Version  8.3  focuses  on  five  areas:  integration,  open  systems,  

autonomic  systems,  resiliency,  and  ease  of use.  These  highlights,  and  other  

enhancements  to  the  Version  8.3  product,  are  summarized  below:  

    

DB2  Content  Manager  for  z/OS  support  for  Tivoli® Storage  Manager  

application  programming  interfaces  

In  Version  8.3  the  capabilities  of the  DB2  Content  Manager  resource  

manager  for  z/OS  expands  its  storage  options  with  the  introduction  of  

Tivoli  Storage  Manager  support.  Tivoli  Storage  Manager  support  allows  

customers  to not  only  store  objects  to a DB2  datastore  using  the  Object  

Access  Method  (OAM),  but  also  leverage  the  function  provided  by  the  

Tivoli  Storage  Manager  application  programming  interfaces.  Storing  

objects  to  a resource  manager  on  z/OS  and  a Tivoli  Storage  Manager  

collection  increases  the  maximum  object  size  currently  supported  and  

offers  a higher  degree  of  concurrency  than  can  be  achieved  using  OAM.  

IBM  DB2  Content  Manager  Toolkit  for  z/OS  

The  DB2  Content  Manager  Toolkit  provides  connectivity  to Content  

Manager  systems  running  on  all  supported  platforms  to  clients  running  

under  z/OS  UNIX®. These  clients  include  Java  applications  that  run in  

batch  under  z/OS  UNIX  or  Web applications  that  run in  the  WebSphere  

for  z/OS  application  server.  

Query  (search)  enhancements  

The  query  function  now  includes  the  following  support:  

–   Query  on  checked-out  items  

–   Row-based  view  filtering  in  query  

–   Get  the  count  of query  results  without  getting  the  results  themselves  

–   Use  of  the  IN  operator  to compare  an  attribute’s  value  to  a list  of  

values  

–   Internal  query  optimization  to  reduce  the  length  of  the  generated  

SQL  statements

Document  routing  enhancements  

DB2  Content  Manager  document  routing  is enhanced  in  Version  8.3  to 

include  decision  points,  actions,  action  lists,  parallel  routing,  and  user  

exit  support.  In addition,  a new  graphical  builder  within  the  system  

administration  client  helps  you  easily  define  your  document  routing  

processes.  

Similar  characteristics  for  logging  and  tracing  

Version  8.3  provides  logs  with  similar  characteristics,  which  cover  most  

system  components:  

–   The  system  administration  client  now  provides  the  log  control  utility,  

which  you  can  use  to  set  log  and  trace  parameters  for  multiple  

system  components.  

–   A default  common  directory  for  all  log  files.  

–   A standard  log  file  timestamp  format  using  Greenwich  Mean  Time.  

–   Logging  information  related  to  a single  user  ID.  

–   A unique  log  ID  that  is common  among  across  different  system  

component  log  files.

 

 

xx Application  Programming Guide



Version  8.2  for  z/OS  and  OS/390:  Content  Manager  Version  8.2  and  higher  extends  

a legacy  of  integration  and  versatility  to z/OS  and  OS/390  customers.  One  of  the  

many  highlights  and  improvements  from  Content  Manager  Version  2.3  and  

ImagePlus  Version  3.1  is the  new  data  model  structure,  which  allows  for  more  

document  customization.  The  changes  to the  DB2  Content  Manager  product  in 

Version  8.2  and  later  for  z/OS  and  OS/390  are  summarized  below:  

Enhanced  data  model  

The  new  hierarchical  data  model  provides  the  basis  for  customized  

compound  document  management  solutions.  

Improved  workflow  

Through  integrated  document  routing,  workflow  capabilities  have  been  

improved  with  sequential  routing,  dynamic  routing,  and  collection  points.  

Continued  use  of  OAM  

ImagePlus  for  OS/390  stores  objects  using  the  Object  Access  Method  

(OAM),  which  is  now  a component  of DFSMS.  Content  Manager  Version  

8.2  and  later  for  z/OS  and  OS/390  will  continue  to use  OAM  for  object  

storage  and  retrieval,  so  movement  of  actual  objects  for  migration  is 

unnecessary.  In  addition,  you  can  continue  your  current  strategy  for  using  

OAM,  including  the  OSMC  component.  

Improved  performance  over  Content  Manager  Version  2.3  for  OS/390  

The  library  server  and  resource  manager  use  DB2  stored  procedures  and  

leverage  DB2  technology  to  significantly  reduce  network  traffic  and  

improve  performance  and  scalability.  The  resource  manager  for  OS/390  is  

implemented  as a fast  CGI  program  running  on  the  IBM  HTTP  Server;  

WebSphere  Application  Server  for  OS/390  is not  required.  

Common  system  administration  

A single  client  application  provides  separate  access  to Content  Manager  

and  Information  Integrator  for  Content.  Within  Content  Manager,  

administrative  domains  provide  a way  to limit  administrative  access  to  

subsections  of the  library  server.  

Full-function  desktop  client  and  enhanced  eClient  

Client  enhancements  provide  users  with  an  out-of-the-box  application  for  

rapid  deployment.  The  Client  for  Windows  supplies  direct  access  to  

Content  Manager  Version  8.2  and  later  for  z/OS  and  OS/390.  This  client  

supports  Content  Manager  Version  8 document  routing,  the  hierarchical  

data  model  (to  a single  child  component  level),  versioning,  and  it  provides  

federated  access  to Content  Manager  Version  8 and  ImagePlus  for  OS/390  

servers.  

 The  Web-based  eClient  also  supplies  direct  access  to Content  Manager  for  

z/OS  and  OS/390  servers  and  includes  Information  Integrator  for  Content  

advanced  workflow,  version  control,  multi-valued  attributes,  and  federated  

access  to  heterogeneous  backend  server  types,  including  ImagePlus  for  

OS/390.  

Migration  utilities  

Utilities  to  aid  migration  are  available  for  customers  who  have  either  

Content  Manager  Version  2.3  for  OS/390  with  applied  PTFs  or  the  

following  ImagePlus  product  components:  

v   Object  Distribution  Manager  Version  2.2  or  Version  3 

v   Folder  Application  Facility/Application  Programming  Interface  Version  

2.2  or  Version  3 

 

 

About this guide xxi



v   Folder  Application  Facility/Folder  Workflow  Application  Version  2.2.1  or  

Version  3

You do  not  migrate  data  from  Content  Manager  Version  8.2  to  DB2  

Content  Manager  Version  8.3.  

Uses  UNIX  System  Services   

CICS® is  not  required  for  Content  Manager  Version  8.2  and  later.

 

 

xxii Application  Programming Guide



Chapter  1.  Information  Integrator  for  Content  application  

programming  concepts  

Information  Integrator  for  Content  offers  object-oriented  (OO)  application  

programming  interfaces  (APIs)  that  you  can  use  to  create  query  applications  that  

access  and  display  relational  data  as  well  as  multimedia  data.  This  chapter  

provides  a brief  overview  of how  these  APIs  fit  into  the  Information  Integrator  for  

Content  architecture,  and  describes  the  object-oriented  programming  concepts  on  

which  the  APIs  are  based.  

Understanding data access through content servers 

A  content  server  is  a data  repository  that  is  compatible  with  the  DDO/XDO  

protocol.  A content  server  supports  user  sessions,  connections,  transactions,  

cursors,  and  queries.  Applications  using  the  application  programming  interfaces  

(APIs)  and  class  libraries  described  in  this  book  can  perform  functions  supported  

by  the  content  servers,  such  as  add,  retrieve,  update,  and  delete  DDOs.  

Information  Integrator  for  Content  supports  the  following  content  servers:  

v   DB2  Content  Manager  Version  8 Release  3 

v   DB2  Content  Manager  Version  7 Release  1 

v   Domino.Doc  

v   ImagePlus  for  OS/390  

v   Content  Manager  OnDemand  

v   VisualInfo  for  AS/400® 

v   DB2  UDB  

v   JDBC/ODBC  servers

Applications  that  use  Information  Integrator  for  Content  can  create  a federated  

content  server,  which  acts  as a common  server.  Information  Integrator  for  Content  

federated  classes  enable  federated  searching,  retrieval,  and  updating  across  several  

content  servers.  

The  Information  Integrator  for  Content  federated  content  server  and  each  of the  

content  servers  have  different  schemas.  Integrating  multiple  heterogeneous  content  

servers  into  a federated  system  requires  conversion  and  mapping.  

Schema  mapping  functions  provide  the  schema  information  for  each  content  

server.  The  information  provided  by  schema  mapping  is  used  during  federated  

searching,  federated  collection,  and  DB2  Information  Integrator  for  Content  system  

administration.  Information  Integrator  for  Content  keeps  the  schema  and  

mappings,  as  well  as  other  administration  information  in  its  administration  

database.  

Understanding dynamic data object concepts 

In  compliance  with  Object  Management  Groups’  (OMG)  CORBA  Persistent  Object  

Service  and  Object  Query  Service  Specification,  Information  Integrator  for  Content  

provides  an  implementation  of  the  dynamic  data  object  (DDO)  and  its  extension,  

the  extended  data  object  (XDO),  which  are  part  of  the  CORBA  Persistent  Data  

Service  (PDS)  protocols.  The  concepts  of  DDO  and  XDO  are  not  specific  to  any  one  

 

© Copyright  IBM Corp. 1996, 2005 1



content  server,  and  can  be  used  to  represent  data  objects  in  any  database  

management  system  supported  by  Information  Integrator  for  Content.  

The  dynamic  data  object  is an  interface  used  to  move  data  in  and  out  of a content  

server.  DDOs  exist  in  the  application  as  runtime  objects,  and  therefore  do  not  exist  

after  an  application  terminates.  

Dynamic data objects (DDO) 

DDO  is  a content  server-neutral  representation  of  an  object’s  persistent  data.  Its  

purpose  is  to  contain  all  of the  data  for  a single  persistent  object.  It’s  also  an  

interface  to  retrieve  persistent  data  from,  or  load  persistent  data  into,  a content  

server.  

A DDO  has  a single  persistent  ID  (PID),  an  object  type,  and  a set  of data  items  

whose  cardinality  is  called  the  data  count.  Each  data  item  can  have  a name,  a 

value,  an  ID,  one  or  more  data  properties,  and  data  property  count.  Each  data  

property  can  have  an  ID,  a name,  and  a value.  

For  example,  a DDO  can  represent  a row  of  a database  table  whose  columns  are  

represented  by  DDO’s  data  items  and  their  properties.  A DDO  can  contain  one  or  

more  extended  data  objects  (XDOs)  that  represent  non-traditional  data  types.  

Figure  1 shows  dynamic  data  objects  and  data  items.  

   

Extended data objects (XDO) 

An  XDO  is  a representation  of  complex  multimedia  data,  for  example  a resource  

item  storing  an  image  or  document  in  DB2  Content  Manager  or  a new  data  type  

introduced  by  a relational  database’s  object-relational  facilities,  such  as IBM  DB2  

Extenders.  

XDOs  complement  DDOs  by  storing  multimedia  data  of  complex  types  and  

offering  functions  that  implement  the  data  type’s  behaviors  in  the  application.  

XDOs  can  be  contained  in,  or  owned  by,  a DDO  to  represent  a complex  

multimedia  data  object.  

XDOs  have  a set  of  properties  to  represent  such  information  as  data  types  and  IDs.  

XDOs  can  also  be  stand-alone  dynamic  objects.  Figure  2 on  page  3 shows  an  

example  of  XDOs.  

 

  

Figure  1. Dynamic  data  objects  and  items

 

 

2 Application  Programming Guide



Representing multimedia content 

DDOs  and  XDOs  can  represent  data  objects  of  any  type  and  structure.  For  

example,  a movie  can  be  represented  by  a DDO.  This  DDO  contains  multiple  data  

items,  which  represent  attributes  of the  movie  such  as  Director_Name  or  

Movie_Title, and  multimedia  XDOs,  which  represent  the  movie’s  multimedia  data  

such  as video  clips  or  still  images.  

In  DB2  Content  Manager  8.3,  a DDO  consists  of all  the  metadata  that  describes  the  

object,  such  as  a document  or  image.  An  XDO  extends  the  DDO  functionality  

further  to  support  resource  content.  Resource  content  is any  type  of content  

ranging  from  binary  data  or  text  to  video  and  audio  streams.  An  item  that  

implements  (and  should  be)  an  XDO  is also  a DDO  and  supports  all  of  the  

functionality  provided  by  a DDO  plus  the  additional  functionality  that  is provided  

by  (and  should  be)  an  XDO.  

Understanding content servers and DDOs 

DDOs  are  created  and  dynamically  associated  with  a content  server.  The  

association  between  a DDO  and  a content  server  is established  with  the  DDOs  PID.  

In  general,  an  Information  Integrator  for  Content  application  goes  through  the  five  

steps  listed  below  to  move  data  in and  out  of  a content  server:  

1.   Create  a content  server.  

2.   Establish  a connection  to  the  content  server.  

3.   Create  the  DDOs  to  be  operated  on,  and  associate  the  content  server  with  the  

DDOs.  

4.   Add,  retrieve,  update,  and  delete  the  DDOs  using  appropriate  methods.  

5.   Close  the  connection  and  destroy  the  content  server.

Comparing DDO/XDOs with attribute values and item parts 

A  DDO  corresponds  to  an  item  in  Information  Integrator  for  Content.  The  DDO’s  

object  type  corresponds  to  the  item’s  associated  item  type.  The  data  items  of  a 

DDO  correspond  to  an  item’s  attributes.  For  example,  in  DB2  Content  Manager  an  

item  type  is created  using  a set  of attributes,  and  an  item  is always  indexed  by  an  

item  type.  

A  DDO  can  hold  one  or  more  XDOs  that  correspond  to  item  parts  in  Information  

Integrator  for  Content.  

  

Figure  2. Extended  data  objects  (XDOs)

 

 

Chapter  1. Information  Integrator  for Content  application  programming concepts  3



Understanding persistent identifiers (PID) 

The  persistent  identifier  (PID)  uniquely  identifies  a persistent  object  in any  content  

server.  A DDO’s  PID  consists  of  an  item  ID,  a content  server  name,  and  other  

related  information.  When  a DDO  is added  to a content  server,  the  system  assigns  

a unique  PID  to  the  DDO.  

Because  a DDO  is a dynamic  interface  to persistent  data  that  is moved  in  or  out  of  

content  servers,  different  DDOs  can  represent  the  same  persistent  data  entities,  and  

therefore  the  DDOs  can  have  the  same  PID.  For  example,  a DDO  can  be  created  to 

move  a data  entity  into  a content  server  to store  data  persistently,  and  another  

DDO  can  be  created  to hold  the  same  data  entity  that  is  checked  out  from  the  

same  content  server  for  modification.  In  this  case,  these  two  DDOs  share  the  same  

PID  value.  

 

 

4 Application  Programming Guide



Chapter  2.  Working  with  a federated  content  server  and  

federated  searching  

Federated  searching  is the  process  of  searching  for  data  in  one  or  more  content  

servers.  You use  a DKDatastoreFed  object  for  a federated  search.  Federated  search  

works  with  classes  that  are  specific  implementations  of  dkDatastore,  

dkDatastoreDef,  and  other  related  classes  that  support  federated  searches.  The  

specific  federated  classes  work  together  with  other  common  classes,  such  as  those  

for  queries,  collections,  and  data  objects  and  are  part  of  the  Information  Integrator  

for  Content  framework.  

Federated  classes  work  across  different  content  servers,  such  as  Content  Manager  

ImagePlus  for  OS/390  or  Domino.Doc.  The  classes  provide  a set  of  generic  

functions  for  federated  search  and  access  across  the  content  servers.  This  common  

view, called  federated  document  model, is illustrated  in  Figure  3.  

 

 An  item  can  be  a document  or  a folder.  A document  can  contain  zero  or  more  

parts.  A folder  can  have  zero  or  more  items  which  can  be  documents  or  other  

folders.  

Not  all  content  servers  can  support  the  federated  document  model.  For  example,  a 

DB2  database  does  not  have  folders  or  parts.  An  item  maps  to  a row  in  a DB2  or  

other  relational  database  table,  and  is used  if a content  server  does  not  support  

documents  or  folders.  

In  general,  a document  is represented  in  your  program  by  a dynamic  data  object  

(DDO),  which  is a self-describing  data  object  for  transferring  data  into  and  out  of a 

content  server.  The  DDO  itself  has  a general  structure  and  supports  a variety  of  

models.  It is  not  limited  to  the  federated  document  model.  This  flexibility  allows  a 

DDO  to  represent  data  in  different  content  servers,  each  with  its  own  data  model.  

An  entity  is  a content  server  object  comprised  of attributes.  An  attribute  is a label  

used  for  metadata  in  content  servers,  for  example,  profiles,  fields,  or  keywords  are  

attributes  in Domino.Doc  content  servers.  

  

Figure  3. Federated  document  view

 

© Copyright  IBM Corp. 1996, 2005 5



Each  content  server  has  its  own  terminology  to explain  the  model  it  is supporting.  

Table  2 relates  the  terminology  used  for  various  content  servers  to  the  federated  

model:  

 Table 2. Mapping  terminology  for  each  content  server  

Content  server  Data  source  Entity  Attribute  View  

DB2  Content  

Manager  8.3  

library  server  item  type  attribute  item  type  view  

or item  type  

subset  

DB2  Content  

Manager  7.1  

library  server  index  class  v   attribute  

v   key  attribute  

index  class  view  

OnDemand  OnDemand  

server  

v   application  

group  

v   folder  

v   field  

v   criteria  

N/A  

ImagePlus  ImagePlus  for 

OS/390  server  

entity  attribute  N/A  

DB2  Content  

Manager  for 

AS/400  

DB2  Content  

Manager  for 

AS/400  server  

index  class  attribute  index  class  view  

Domino.Doc  Domino  server  

   library  

   room  

   cabinet  

   binder  

   profile  

   field  

   keyword  

N/A  

Relational  

database  

IBM  DB2  UDB,  

JDBC,  ODBC,  

table  column  view  

Federated  content  

server  

mapping  

server  

mapped  

federated  entity  

mapped  

federated  

attribute  

search  template  

Federated  content  

server  that  can  

hold  federated  

folders  

server  federated  entity  federated  

attribute  

federated  folder

  

Figure  4 on  page  7 illustrates  a federated  search.  The  federated  search  uses  the  

Information  Integrator  for  Content  federated  content  server,  working  through  

search  templates.  The  federated  content  server  then  calls  the  searches  for  the  

individual  content  servers  to  perform  the  actual  search  on  the  content  servers.  This  

association  is  established  by  schema  mapping.  

 

 

 

6 Application  Programming Guide



The  federated  content  server  can  use  either  local  or  remote  connectors  to  connect  

to  the  content  servers,  and  can  use  RMI  for  this  communication.  You can  also  

develop  applications  on  top  of  the  API  classes.  

Federated schema mapping 

A  schema  mapping  represents  a mapping  between  the  schema  in the  content  server  

and  the  structure  of  the  items  the  user  wants  to  process  in  the  application.  A 

federated  schema  is  the  conceptual  schema  of  an  Information  Integrator  for  Content  

federated  content  server  and  defines  an  information  mapping  between  the  concepts  

in  the  federated  content  server  and  concepts  in  each  participating  content  server.  

The  schema  mapping  handles  the  difference  between  how  the  data  is physically  

stored  and  how  the  user  wants  to process  the  data  in  an  application.  

The  mapping  information  is  represented  in  memory  in  schema  mapping  classes.  

Using federated content server mapping components 

In  addition  to  schema  mapping  information  for  mapping  the  entities  and  

attributes,  a federated  content  server  must  also  have  access  to  the  following  

information:  

User  ID  and  password  mapping  

To support  a single  logon  feature,  each  user  ID  in  the  Information  

Integrator  for  Content  can  be  mapped  to  the  corresponding  user  ID  on  

each  content  server.  

Content  server  registration  

Each  content  server  must  be  registered  so  that  it can  be  located  and  logged  

on  to  by  the  Information  Integrator  for  Content.

The  user  ID  and  content  server  information  is maintained  in  the  Information  

Integrator  for  Content  administration  database.  

  

Figure  4. Structure  of federated  searches

 

 

Chapter 2. Working  with a federated  content server and federated  searching 7



Running federated queries 

To run a federated  search  using  the  APIs,  start  by  creating  a federated  query  string.  

You can  then  create  and  run the  query  by  passing  the  query  string  to the  execute  

or  evaluate  method  of the  federated  content  server  to  process  the  query  directly.  

The  query  string  is  parsed  into  a federated  query  form,  which  is  essentially  a 

content  server  neutral  representation  of  the  query.  

If the  query  comes  from  a graphical  user  interface  (GUI)  based  application,  the  

query  does  not  need  to  be  parsed  and  the  corresponding  federated  query  form  can  

be  directly  constructed.  

As  a federated  search  is processed,  Information  Integrator  for  Content  performs  the  

following  steps:  

v   Translate  the  query  canonical  form  into  several  native  queries  that  run on  each  

content  server.  The  translation  information  is obtained  from  the  schema  

mapping.  

v   Convert  federated  entities  and  attributes  into  native  entities  and  attributes  for  

each  of  the  content  servers.  This  process  uses  the  mapping  and  conversion  

mechanisms  described  in the  schema  mapping.  

v   Filter  only  the  relevant  data  during  the  construction  of  native  queries.  

v   Form  native  queries  and  submit  them  to  the  individual  content  servers.

Each  content  server  runs the  submitted  query.  The  results  are  returned  to  the  

federated  query,  which  can  process  them  as  following:  

v   Convert  native  entities  and  attributes  into  federated  entities  and  attributes  

according  to  the  mapping  information.  

v   Filter  the  results  to  include  only  the  requested  data.  

v   Merge  the  results  from  several  content  servers  into  a federated  collection.

The  result  of  a federated  search  is returned  as  a federated  collection.  You can  create  

an  iterator  to  access  the  individual  collection  members.  Each  call  to  the  next  

method  in the  iterator  returns  a DKDDO  object,  which  is a content  server  neutral  

dynamic  data  object.  

The  federated  collection  provides  the  facility  to separate  the  query  results  

according  to  the  content  server.  Create  a sequential  iterator  by  invoking  the  

createMemberIterator  method  in  the  federated  collection.  Using  this  sequential  

iterator,  you  can  access  each  member  collection,  which  is a DKResults  object,  and  

process  it separately.  

The  components  of  a federated  search  and  their  relationships  are  illustrated  in  

Figure  5 on  page  9. 

 

 

 

8 Application  Programming Guide



Federated query syntax 

When  you  create  a federated  query,  it  must  be  in the  proper  syntax,  as shown  

below.  The  federated  content  server  does  not  support  image  query.  

 PARAMETRIC_SEARCH=([ENTITY=entity_name,]  

                      [MAX_RESULTS=maximum_results,]  

                      [COND=(conditional_expression)]  

                      [; ...]  

                         ); 

             [OPTION=([CONTENT=yes_no_attronly]  

                             )]  

  

       [and  

  

    TEXT_SEARCH=(COND=(text_search_expression)  

                     ); 

            [OPTION=([SEARCH_INDEX={search_index_name  | (index_list)  };] 

                      [ASSOCIATED_ENTITY={associated_entity_name)};]  

                      [MAX_RESULTS=maximum_results;]  

                      [TIME_LIMIT=time_limit]  

                       )] 

       ] 

The  NOT  operator  is not  supported  in  federated  searches.  

Examples  of  federated  query  strings  

Federated  parametric  query  using  the  LIKE  operator  

"PARAMETRIC_SEARCH  = (ENTITY  = F_DGSAMP71,  MAX_RESULTS  = 5, 

COND  = (fName  LIKE  ’%’))"  

Native
query-1

Native
datastore-1

Native
datastore-2

Native
datastore-n

Native
query-2

Native
query-n

Schema
mapping

FQ results
processor

Native
query-1

Native
query-2

Query
canonical

form

User query
input

. . .

. . .

. . .

Query
resultsFederated query

string

Graphical
User

Interface

Federated
query
parser Enterprise

Information
Portal

databaseFederated
query

processor

Native
query-n

Federated
collection

  

Figure  5. Federated  query  processing

 

 

Chapter 2. Working  with a federated  content server and federated  searching 9



Federated  parametric  query  using  the  LIKE  and  > operator  

"PARAMETRIC_SEARCH  = ( ENTITY  = F_ICMNLSDB_Journal,  MAX_RESULTS  = 5, 

COND  = (fJTitle  LIKE  ’Java%’  AND  fJNumPages  > 20)  )" 

Federated  parametric  query  using  the  LIKE  and  < operator  

"PARAMETRIC_SEARCH  = ( ENTITY  = F_ICMNLSDB_Journal,  MAX_RESULTS  = 5, 

COND  = (fJTitle  LIKE  ’Java%’  AND  fJNumPages  < 20)  )" 

Federated  parametric  query  using  the  BETWEEN  operator  

"PARAMETRIC_SEARCH  = ( ENTITY  = F_ICMNLSDB_Journal,  MAX_RESULTS  = 0, 

COND  = (fJNumPages  BETWEEN  5 200)  )" 

MAX_RESULTS  returns  all  results  when  set  to  zero.  

Federated  parametric  query  using  the  NOTBETWEEN  operator  

"PARAMETRIC_SEARCH  = ( ENTITY  = F_ICMNLSDB_Journal,  MAX_RESULTS  = 0, 

COND  = (fJNumPages  NOTBETWEEN  5 100)  )" 

Federated  parametric  query  using  the  IN  operator  

"PARAMETRIC_SEARCH  = ( ENTITY  = F_ICMNLSDB_Journal,  MAX_RESULTS  = 0, 

COND  = (fJArticleTitle  IN (’Java’,  ’Multi-Disk  B-trees.’,  

’On  Beyond  Data.’,  ’IBM’))  )" 

Federated  parametric  query  using  the  NOTIN  operator  

"PARAMETRIC_SEARCH  = ( ENTITY  = F_ICMNLSDB_Journal,  MAX_RESULTS  = 0, 

COND  = (fJArticleTitle  NOTIN  (’Java’,  ’Multi-Disk  B-trees.’,  

’On  Beyond  Data.’,  ’IBM’))  )" 

Federated  parametric  query  using  the  ==  operator  

"PARAMETRIC_SEARCH  = ( ENTITY  = F_ICMNLSDB_Journal,  MAX_RESULTS  = 0, 

COND  = (fJEditorName  == ’Harth’)  )" 

Federated  parametric  query  using  the  <>  operator  

"PARAMETRIC_SEARCH  = ( ENTITY  = F_ICMNLSDB_Journal,  MAX_RESULTS  = 0, 

COND  = (fJSectionTitle  <> ’not  available’)  )" 

Federated  parametric  query  using  the  AND  and  OR  operators  

"PARAMETRIC_SEARCH  = ( ENTITY  = F_ICMNLSDB_Journal,  MAX_RESULTS  = 0, 

COND  = ((fJTitle  LIKE  ’%Java%’)  OR ((fJEditorName<>NULL)  AND 

(fJArticleTitle  LIKE  ’Computer%’)))  ); OPTION  = (CONTENT  = YES)"  

Federated  parametric  query  using  the  CONTAINS_TEXT_IN_CONTENT  

operator  

This  example  searches  for  text  in  the  content.  The  content  can  be  a word  or  

a phrase.  This  is only  valid  when  the  text-searchable  federated  entity  

(FedTextResource)  is mapped  to a Content  Manager  Version  8 

text-searchable  item  type  or  an  Extended  Search  text-searchable  entity.  

"PARAMETRIC_SEARCH  = ( ENTITY  = FedTextResource,MAX_RESULTS  = 6, 

COND  = ( CONTAINS_TEXT_IN_CONTENT  ’XML’  ) );  OPTION  = 

( CONTENT  = YES  )" 

Federated  parametric  query  using  the  CONTAINS_TEXT  operator  

Searches  for  text  in attribute  values.  The  text  can  be  a word  or  a phrase.  

This  is  only  valid  when  the  text-searchable  federated  attribute  (fJTitle)  is 

mapped  to  a Content  Manager  Version  8 text-searchable  attribute  or  a 

Extended  Search  text-searchable  attribute.  

"PARAMETRIC_SEARCH  = ( ENTITY  = F_ICMNLSDB_Journal,  MAX_RESULTS  = 0, 

COND  = (fJTitle  CONTAINS_TEXT  ’Java’)  )" 

Federated  text  query  

Searches  for  text  in content.  The  text  can  be  a word  or  a phrase.  The  

ASSOCIATED_ENTITY  keyword  is  only  applicable  when  a federated  entity  

is  text-searchable.  This  is only  valid  when  the  text-searchable  federated  

 

 

10 Application  Programming Guide



entity  (FedEntity)  is mapped  to a Content  Manager  Version  8 

text-searchable  item  type  or an  Extended  Search  text-searchable  entity.  

"TEXT_SEARCH  = ( COND  = (’XML’)  ); OPTION  = ( ASSOCIATED_ENTITY=FedEntity  )" 

Federated  text  query  

Searches  for  text  in  the  content.  This  can  be  a word  or  a phrase.  The  

federated  text  index,  FedTMINDEX,  is mapped  to a Content  Manager  

Version  7 Text Miner  search  index.  The  SEARCH_INDEX  keyword  is only  

applicable  for  this  type  of  mapping.  To specify  a word  or  a phrase  in the  

condition  you  must  set  the  configuration  string  to  GENFEDTEXTQRY=YES  

when  defining  a Content  Manager  Version  7 server  that  supports  text  

search.  

"TEXT_SEARCH  = ( COND  = (’operating  system’)  ); 

OPTION  = ( SEARCH_INDEX  = FedTMINDEX)"  

Federated  text  query  

Searches  for  text  in  content  across  Content  Manager  Version  7,  Content  

Manager  Version  8,  and  Extended  Search.  This  can  be  a word  or  a phrase.  

The  federated  text  index,  FedTMINDEX,  is mapped  to  a Content  Manager  

Version  7 Text Miner  search  index.  The  SEARCH_INDEX  keyword  is only  

applicable  for  this  type  of  mapping.  To specify  a word  or  a phrase  in the  

condition  you  must  set  the  configuration  string  to  GENFEDTEXTQRY=YES  

when  defining  a Content  Manager  Version  7 server  that  supports  text  

search.  The  ASSOCIATED_ENTITY  keyword  is only  applicable  when  a 

federated  entity  is  text-searchable.  This  is only  valid  when  the  

text-searchable  federated  entity  (FedTextResource)  is mapped  to  a Content  

Manager  Version  8 text-searchable  item  type  or  an  Extended  Search  

text-searchable  entity.  

"TEXT_SEARCH  = ( COND  = ( ’operating  system’  ) ); OPTION  = 

( SEARCH_INDEX  = FedTMINDEX;  ASSOCIATED_ENTITY  = FedTextResource;  

MAX_RESULTS  = 5 )" 

Federated  parametric  and  text  query  using  the  OR  operator  

"PARAMETRIC_SEARCH  = ( ENTITY  = FedTextResource,  

AX_RESULTS  = 0,COND  = (FedTextResourceJTitle  LIKE ’%test%’  

) ) OR TEXT_SEARCH  =( COND  = (’UNIX’)  ); 

OPTION  = ( ASSOCIATED_ENTITY  = 

FedTextResource;  MAX_RESULTS  = 4 )" 

Federated  parametric  and  text  query  using  the  AND  operator  

"PARAMETRIC_SEARCH  = ( ENTITY  = FedTextResource,  COND  = 

(FedTextResourceJTitle  LIKE  ’%test%’)  ) AND TEXT_SEARCH  = 

( COND  = (’UNIX’)  ); OPTION  = ( ASSOCIATED_ENTITY  = 

FedTextResource)"  

Federated  parametric  and  text  query  on  attributes  using  the  OR  operator  

"PARAMETRIC_SEARCH  = ( ENTITY  = F_ICMNLSDB_Journal,  

COND  = (fJTitle  LIKE  ’Java%’  OR fJArticleTitle  

CONTAINS_TEXT  ’Database’)  );OPTION  = ( CONTENT  = ATTRONLY  )" 

Federated  parametric  and  text  query  on  attributes  using  the  OR  operator  

"PARAMETRIC_SEARCH  = ( ENTITY  = F_ICMNLSDB_Journal,  

COND  = (fJTitle  LIKE  ’Java%’  OR fJArticleTitle  

CONTAINS_TEXT  ’Database’)  );OPTION  = ( CONTENT  = YES  )" 

Storing query results in federated folders (Java only) 

Enterprise  Information  Portal  Version  8 Release  3 now  provides  special  federated  

entities  that  can  hold  federated  folders. These  federated  folders  can  store  the  

combined  results  from  a federated  query,  such  as  a document  from  Content  

Manager  and  a related  document  from  OnDemand.  You can  then  send  the  results  

directly  into  a workflow.  

 

 

Chapter  2. Working  with a federated  content server and federated  searching 11



Information  Integrator  for  Content  stores  the  folders  as  DDOs,  which  you  can  add  

to  a DKFolder  collection.  You can  also  store  the  folders  as  XDOs  in  a DKParts  

collection.  

The  special  federated  entity  uses  additional  tables  to hold  the  folders.  All  other  

functionality  (such  as  queries,  APIs,  and  attributes)  behaves  identically  to  a normal  

federated  entity.  The  special  entity  only  stores  DDO  PIDs  in  the  folders.  

If you  choose  not  to  map  a special  federated  entity,  then  the  federated  query  only  

searches  special  federated  entitites.  If  you  choose  to  map  a special  federated  entity  

to  other  native  entities,  then  the  federated  query  additionally  searches  those  

entitites.  

For  code  samples,  see  the  samplesdirectory.  

Working  with system administration 

Enterprise  Information  Portal  provides  the  classes  and  APIs  for  you  to access  

system  administration  functions.  See  the  Application  Programming  Reference  for  

information  on  the  specific  classes.  

Customizing the Information Integrator for Content system 

administration client 

The  Information  Integrator  for  Content  system  administration  client  supports  

extending  the  system  administration  application  to  include  custom  functions:  

v   You can  replace  the  user  and  user  group  dialogs  in  the  Information  Integrator  

for  Content  system  administration  client  with  your  own  dialogs.  

v   You can  add  new  nodes  to  the  hierarchy  in the  Information  Integrator  for  

Content  system  administration  client.  

v   You can  add  new  menu  items  to  the  Tools menu  in the  system  administration  

client.

You can  call  user  exits  before  and  after  you  log  on  to the  Information  Integrator  for  

Content  system  administration.  

 

 

12 Application  Programming Guide



Chapter  3.  Programming  with  the  application  programming  

interfaces  (APIs)  

The  application  programming  interfaces  (APIs)  are  a set  of classes  that  access  and  

manipulate  either  local  or  remote  data.  This  section  describes  the  APIs,  the  

implementation  of  multiple  search  functions,  and  Internet  connectivity.  

The  APIs  support:  

v   A  common  object  model  for  data  access.  

v   Multiple  search  and  update  across  a heterogeneous  combination  of  content  

servers.  

v   A  flexible  mechanism  for  using  a combination  of search  engines;  for  example,  

the  Content  Manager  text  search  feature.  

v   Workflow  capability.  

v   Administration  functions.  

v   Client/server  implementation  for  Java  applications.

Multistream  support  for  the  Java  APIs  is  fully  enabled  for  Windows  servers  only.  

AIX  servers,  clients,  and  Windows  clients  cannot  support  multistreaming.  

Understanding differences between the Java and C++ APIs 

The  list  below  describes  differences  between  the  IBM  DB2  Information  Integrator  

for  Content  Java  and  C++  API  sets:  

v   The  operators  defined  in  the  C++  API  are  not  defined  in  the  Java  API.  They  are  

supported  as  Java  functions.  

v   The  Java  class  object  (java.lang.Object)  is used  in  place  of the  C++  class  DKAny  

to  represent  a generic  object.  

v   Common  and  global  constants  are  defined  in the  interface  DKConstant  in the  

Java  API;  in  C++  they  are  in DKConstant.h. 

v   The  Java  APIs  use  Java’s  garbage  collector.  

v   The  Java  functions  DKDDO.toXML()  and  DKDDO.fromXML()  are  not  available  

in  C++.  

v   The  XML  classes  are  only  available  in  Java.

Understanding client/server architecture (Java only) 

The  APIs  provide  a convenient  programming  interface  for  application  writers.  APIs  

can  reside  on  both  the  Information  Integrator  for  Content  server  and  the  client  

(both  provide  the  same  interface).  The  client  API  communicates  with  the  server  to 

access  data  through  the  network  via  Java  RMI  (Remote  Method  Invocation).  

Communication  between  the  client  and  the  server  is performed  by  classes;  it is not  

necessary  to  add  any  additional  programs.  

API  classes  consist  of  the  following  packages:  server,  client,  cs,  and  common.  The  

client  and  server  classes  provide  the  same  APIs,  but  have  different  

implementations.  

v   The  server  package  is com.ibm.mm.sdk.server. The  classes  in  the  server  package  

communicate  directly  with  the  federated  or  backend  content  server.  

 

© Copyright  IBM Corp. 1996, 2005 13



v   The  client  package  is com.ibm.mm.sdk.client. The  classes  in  the  client  package  

communicate  with  the  classes  in  the  server  package  via  RMI.  

v   The  common  classes  are  shared  by  both  the  client  and  server.  Sometimes  an  

application  does  not  know  where  the  content  resides.  For  example,  an  

application  can  have  content  residing  on  the  client  at one  time  and  the  server  at  

another  time.  The  cs  package  connects  the  client  and  server  dynamically.  

The  client  application  must  import  the  client  package,  the  dynamic  application  

must  import  the  cs  package,  and  server  application  must  import  the  server  

package.  

Although  the  same  API  is provided  for  the  client  and  server,  the  client  package  has  

an  additional  exception  item  because  it communicates  with  the  server  package.  

Note,  however,  that  the  client/server  interface  is not  supported  for  all  the  

connectors.  For  example,  this  is not  supported  by  CM  V8.  

Packaging for the Java environment 

The  Information  Integrator  for  Content  APIs  are  contained  in  four  packages  as  part  

of  com.ibm.mm.sdk: common, server, client, and  cs.  

server  (com.ibm.mm.sdk.server)  

Access  and  manipulate  content  server  information  

client  (com.ibm.mm.sdk.client)  

Communicate  with  the  server  package  using  Remote  Method  Invocation  

(RMI)  

common  (com.ibm.mm.sdk.common)  

Common  classes  for  both  the  server  package,  client  package,  and  the  cs  

package  

cs  (com.ibm.mm.sdk.cs)  

Connect  the  client  or  server  dynamically

Your  application  must  use  the  common  with  either  the  server  package  for  local  

applications,  or  the  client  package  for  applications  that  access  the  remote  server,  

or  the  cs  package.  

Programming tips 

Do  not  import  client  and  server  packages  in  the  same  program.  If  you  are  

developing  a client  application,  import  the  client  package.  Otherwise,  import  the  

server  package.  If  you  do  not  know  where  the  content  resides,  then  use  the  cs  

package  (with  the  server  or  client  packages).  Importing  multiple  packages  can  

result  in  compile  errors.  

Some  connectors  contain  calls  to C code  in  the  implementation.  For  these  

connectors,  use  the  client  package  for  Web applications  that  require  pure  Java  

interfaces.  The  client  package  is created  with  pure  Java  programs;  the  server  

package  can  include  JNI  calls.  

Because  a client  requires  the  exception,  java.rmi.RemoteException, always  attach  

this  exception  in  the  application  whether  the  application  runs on  a server  or  client.  

 

 

14 Application  Programming Guide



Setting up the Java environment (Java only) 

When  you  set  up  your  Windows,  AIX,  Solaris,  or  Linux  environment,  you  must  

have  imported  the  following  packages:  

server  package  

Import  when  a content  server  and  application  are  on  the  server  side  

v   com.ibm.mm.sdk.common  

v   com.ibm.mm.sdk.server

client  package  

Import  when  a content  server  and  application  are  on  the  client  side.  

v   com.ibm.mm.sdk.common  

v   com.ibm.mm.sdk.client

cs  package  

Import  when  a content  server  location  is different  from  the  application  

location.  

v   com.ibm.mm.sdk.common  

v   com.ibm.mm.sdk.cs

Setting the Java environment variables for Windows 

You can  run cmbenv81.bat  in a Windows  command  prompt  to set  up  the  

environment.  

If  you  want  to  modify  your  environment  variables,  change  the  following:  

PATH Ensure  your  PATH contains  %IBMCMROOT%  

CLASSPATH  

Make  sure  your  CLASSPATH  contains  %IBMCMROOT%

Setting the Java environment variables for AIX 

In  the  AIX  environment,  you  can  use  a shell  script,  cmbenv81.sh, to  set  up  your  

development  environment  for  developing  Information  Integrator  for  Content  

applications.  

If  you  do  not  use  the  script,  you  must  set  the  following  environment  variables:  

PATH Make  sure  your  PATH contains  /opt/IBM/db2cmv8  

LIBPATH  

Make  sure  your  LIBPATH contains  /opt/IBM/db2cmv8  

LD_LIBRARY_PATH  

Make  sure  your  LD_LIBRARY_PATH  contains  /opt/IBM/db2cmv8/lib  

CLASSPATH  

Make  sure  your  CLASSPATH  contains  /opt/IBM/db2cmv8/lib/xxx where  

xxx  are  the  .jar  files,  (for  example,  cmbfed81.jar)

Setting the Java environment variables for Solaris and Linux 

In  the  Solaris  environment,  you  can  use  a shell  script,  cmbenv81.sh, to  set  up  your  

development  environment  for  developing  Information  Integrator  for  Content  

applications.  

If  you  do  not  use  the  script,  you  must  set  the  following  environment  variables:  

 

 

Chapter  3. Programming  with the application  programming interfaces  (APIs)  15

|

|



PATH Make  sure  your  PATH contains  /opt/IBM/db2cmv8/lib  

LIBPATH  

Make  sure  your  LIBPATH  contains  /opt/IBM/db2cmv8/lib  

LD_LIBRARY_PATH  

Make  sure  your  LD_LIBRARY_PATH  contains  /opt/IBM/db2cmv8/lib  

CLASSPATH  

Make  sure  your  CLASSPATH  contains  /opt/IBM/db2cmv8/lib/xxx where  

xxx  are  the  .jar  files,  (for  example,  cmbfed81.jar)

Setting the Java environment variables for z/OS USS 

In  the  z/OS  USS  environment,  you  can  use  a shell  script  (cmbenv81.sh)  to  set  up  

your  development  environment  for  developing  DB2  Information  Integrator  for  

Content  applications.  

If you  do  not  use  the  script,  you  must  set  the  following  environment  variables:  

   PATH 

Ensure  that  your  PATH contains  $IBMCMROOT/cmgmt,  

$IBMCMROOT/cmgmt/connectors,  $IBMCMROOT/lib  

   LIBPATH  

Ensure  that  your  LIBPATH  contains  $IBMCMROOT/lib  

   LD_LIBRARY_PATH  

Ensure  that  your  LD_LIBRARY_PATH  contains  $IBMCMROOT/lib  CLASSPATH  

Ensure  that  your  CLASSPATH  contains  $IBMCMROOT/lib/xxx  where  xxx  are  the  

.jar  files,  for  example,  cmbcm81.jar.

Using Remote Method Invocation (RMI) with content servers 

Because  the  client  classes  in  the  Java  APIs  need  to  communicate  with  the  server  

classes  to  access  data  through  the  network,  both  the  server  and  client  must  be  

prepared  for  client/server  execution.  On  the  server  machine,  the  RMI  server  must  

be  running  to  receive  the  request  from  the  client  using  a specified  port  number.  

The  client  program  requires  the  server  name  and  port  number.  For  

communications  between  client  and  server,  the  client  must  know  the  port  number  

of  the  server  it  needs  to connect  to.  

An  RMI  server  can  connect  to an  infinite  number  (limited  only  by  system  

resources)  of content  servers,  but  each  server  must  be  connected  to  at  least  one  

content  server.  A  master  RMI  server  can  refer  to  other  RMI  servers  in  the  server  

pool.  When  an  RMI  client  first  searches  for  a content  server,  it starts  an  RMI  server.  

If the  content  server  is not  found  there,  the  RMI  pool  servers  are  searched  next.  

If the  same  RMI  client  searches  for  the  content  server  again,  the  client  searches  the  

RMI  server  where  it found  the  content  server  the  first  time.  

To start  the  RMI  server,  use  cmbregist81.bat  on  Windows  or  cmbregist81.sh  on  

AIX  or  Solaris.  Before  starting  the  RMI  server,  define  the  correct  port  number  and  

server  type.  For  information  on  configuring  and  administering  RMI  servers,  see  

Planning  and  Installing  Information  Integrator  for  Contentand  Managing  Information  

Integrator  for  Content. 

 

 

16 Application  Programming Guide

|

|
|
|

|

|
|
|

|
|

|
|
|
|



Setting up the C++ environment (C++ only) 

When  you  set  up  your  Windows  or  AIX  environment,  you  must  establish  the  

settings  described  in  this  section.  Table 3 lists  Library,  AIX  shared  and  DLL  

requirements.  

Requirement:  To use  C++,  you  must  install  DB2  Client  support  and  the  Client  

Configuration  Assistant  on  all  remote  servers  accessing  the  Information  Integrator  

for  Content  database.  The  user  ID  and  password  used  to connect  to  the  database  

must  be  the  same  user  ID  and  password  you  use  with  the  Information  Integrator  

for  Content  database.  For  details,  see  the  Managing  Information  Integrator  for  

Content. 

Attention:  cmbcm81x.lib  is for  release  build  and  cmbcm81xd.lib  is for  debug  build,  

where  x represents  either  Microsoft  Visual  C++  .net  Version2002  (7)  or  Microsoft  

Visual  C++  .net  Version2003  (71)  compiler.  

Also,  to  compile  DB2  Content  Manager  applications  using  the  .NET  2003  compiler,  

you  must  add  the  MSVC71  compile  flag  in  the  .mak  files  or  in  the  project  files.  For  

example,  in  the  compile  flag  definitions,  add  /D  MSVC71. If  you  do  not  define  the  

compiler  flag,  your  application  will  not  compile.  

 Table 3. Shared  objects  and  DLL  environment  information  

Connector  Library  Windows  DLLs  Shared  objects  for  AIX  

Common  

Note:  This  is not  a 

connector.  It is a 

common  set  of APIs  

used  by  all of the  

connectors.  

cmbcm81x.lib  

cmbcm81xd.lib  

cmbcm81x.dll  

cmbcm81xd.dll  

libcmbcm816.a  

DB2  Content  

Manager  Version  8.3 

cmbicm81x.lib  

cmbicm81xd.lib  

cmbicm81x.dll  

cmbicm81xd.dll  

cmbicmfac81x.dll 

cmbicmfac81xd.dll 

libcmbicm816.a  

libcmbicmfac816.so  

Content  Manager  

Version  7.1  

cmbdl81x.lib 

cmbdl81xd.lib  

cmbdl81x.dll 

cmbdl81xd.dll  

cmbdlfac81x.dll  

cmbdlfac81xd.dll  

de_db2.dll  

de_db2_d.dll  

de_ora.dll  

de_ora_d.dll  

libcmbdl816.a  

libcmbdlfac816.so  

Federated  cmbfed81x.lib  

cmbfed81xd.lib  

cmbfed81x.dll  

cmbfed81xd.dll  

cmbfedfac81x.dll 

cmbfedfac81xd.dll 

libcmbfed816.a  

libcmbfedfac816.so  

DB2  Universal  

Database  Version  8.1 

cmbdb281x.lib  

cmbdb281xd.lib  

cmbdb281x.dll  

cmbdb281xd.dll  

cmbdb2fac81x.dll 

cmbdb2fac81xd.dll 

libcmbdb2816.a  

libcmbdb2fac816.so  

ODBC  cmbodbc81x.lib  

cmbodbc81xd.lib  

cmbodbc81x.dll  

cmbodbc81xd.dll  

cmbodbcfac81x.dll 

cmbodbcfac81xd.dll 

Not  supported  

 

 

Chapter  3. Programming  with the application  programming interfaces  (APIs)  17



Table 3. Shared  objects  and  DLL  environment  information  (continued)  

Connector  Library  Windows  DLLs  Shared  objects  for  AIX  

OnDemand  cmbod81x.lib 

cmbod81xd.lib  

cmbod81x.dll  

cmbod816xd.dll  

cmbodfac81x.dll  

cmbodfac81xd.dll  

libcmbod816.a  

libcmbodfac816.so  

ImagePlus  for  

OS/390  

cmbip81x.lib 

cmbip81xd.lib  

cmbip81x.dll  

cmbip81xd.dll  

cmbipfac81x.dll  

cmbipfac81xd.dll  

Not  supported  

VisualInfo  cmbv481x.lib  

cmbv481xd.lib  

cmbv481x.dll  

cmbv481xd.dll  

cmbv4fac81x.dll  

cmbv4fac81xd.dl  

Not  supported  

Domino.Doc® cmbdd81x.lib  

cmbdd81xd.lib  

cmbdd81x.dll  

cmbdd81xd.dll  

cmbddfac81x.dll 

cmbddfac81xd.dll 

Not  supported

  

Setting the C++ environment variables for Windows 

You can  run CMBenv81.bat  in  a DOS  command  prompt  to  set  up  the  environment.  

If you  want  to  modify  your  environment  variables,  change  the  following:  

PATH set  PATH=%PATH%;x:\%IBMCMROOT%\DLL  if you  want  to  include  the  DLL  

directory  to  PATH. 

INCLUDE  

set  INCLUDE=%INCLUDE%;x:\%IBMCMROOT%

Setting the C++ environment variables for AIX 

See  the  sample  MAK  files  in  the  samples  directory  for  more  information.  

Set  the  following  environment  variables:  

In  the  AIX  environment,  you  can  use  the  cmbenv81.sh  batch  file  to set  up  your  

development  environment.  

If you  do  not  use  the  script,  set  the  following  environment  variables:  

NLS  path  

export  NLSPATH=${NLSPATH}:/opt/IBM/db2cmv8/msg/En_US/%N  

PATH 

PATH=${PATH}:/opt/IBM/db2cmv8/lib  

LIBPATH  

export  LIBPATH=${LIBPATH}:/opt/IBM/db2cmv8/lib  

Building C++ programs 

Follow  the  procedures  for  your  compiler  and  development  environment  to create  

the  MAK  files  and  build  your  application.  

When  building  an  application  using  the  C++  APIs  that  you  will  use  for  debugging,  

link  your  application  with  the  debug  version  of  the  API  libraries,  that  is,  the  

 

 

18 Application  Programming Guide



*d.libor *.lib  if you  are  on  Windows.  If you  are  on  AIX,  link  to  lib*816.a. There  is 

no  debug  build  on  AIX  since  it is not  needed.  

Restriction:  The  Content  Manager  V8  C++  APIs  do  not  support  Unicode.  For  more  

information  see  “Receiving  an  error  when  compiling  C++  applications  that  are  

Unicode  enabled”  on  page  563.  

Working with Microsoft Visual Studio .NET 

The  DB2  Information  Integrator  for  Content  and  DB2  Content  Manager  versions  

8.2  and  later  APIs  support  Microsoft  Visual  Studio  .NET.  When  using  Microsoft  

Visual  Studio  .NET  to  build  your  applications,  however,  you  must  link  to  the  

appropriate  library,  which  is determined  by  the  connector  and  Visual  Studio  C++  

version  you  are  using,  at  compile  time.  

To determine  the  library  that  you  need  to  connect  to,  at compile  time,  use  the  

format  connector  name817.lib  when  using  Microsoft  Visual  Studio  .NET, as  

demonstrated  in  the  table  below.  

 Table 4. Microsoft  Visual  Studio  .NET  library  names  

Connector  Library  

Common  cmbcm817.lib  

Content  Manager  8.1 and  later  cmbicm817.lib  

Federated  cmbfed817.lib
  

Setting the console subsystem for code page conversion on 

Windows 

 

 

C++  

#include  <DKConstant.h>  

#include  <DKEnvironment.hpp>  

  

void  main(int  argc,  char  *argv[])  

{ 

   // set  sub  system  to console  at the  beginning  of program  this  

   // will  cause  the code  page  that  the  error  messages  are  returned  

   // in by DKExceptions  to be converted  from  the Windows  Graphical  

   // User  Interface  (ANSI  format)  to the  Console  (OEM  format)  

   // If this  is not  specified  the  default  is DK_SS_WINDOWS  

   DKEnvironment::setSubSystem(DK_SS_CONSOLE);  

   ... 

} 

Understanding multiple search options 

Searches  may  be  performed  based  on  virtually  any  of  piece  of an  item  or 

component,  text  within  an  item  or  component,  or  text  within  resource  content  

Content  Manager  Version  8 offers  an  integrated  text  feature,  which  no  longer  

requires  a separate  text  search  facility  (earlier  Content  Manager  still  does).  See  

“Understanding  text  search”  on  page  191.  

Use  the  multiple  search  options  to search  within  a given  content  server,  using  one  

or  a combination  of  supported  queries,  listed  below,  or  search  on  the  results  of  a 

 

 

Chapter  3. Programming  with the application  programming interfaces  (APIs)  19



previous  search.  Each  search  type  is supported  by  one  or  more  search  engines.  Not  

all  content  servers  support  multiple  search  options.  

Parametric  search  

Searches  text  such  as item  and  component  properties,  attributes,  references,  

links,  folder  contents.  For  example,  You use  a parametric  query  to  search  

for  documents  using  a customer’s  name.  The  query  requires  an  exact  

match  on  the  condition  specified  in  the  query  predicate  and  the  data  

values  stored  in  the  content  server.  

Text  search  

Searches  any  text  marked  as textSearchable(true)  using  a text  search  

engine  such  as  DB2  Net  Search  Extender.  The  query  is based  on  the  

content  of text  fields  for  approximate  match  with  the  given  text  search  

expression;  for  example,  the  existence  (or  nonexistence)  of certain  phrases  

or  word-stems.  

 Note:  The  DB2  Net  Search  Extender  was  named  DB2  Text Information  

Extender  in  earlier  versions  of DB2  Universal  Database.  

Image  search  

Searches  characteristics  within  images.  The  query  is based  on  the  content  

of  images  for  approximate  match  with  the  given  image  search  expression;  

for  example,  the  presence  of  a certain  color  in the  images.  

Combined  search  

Searches  using  both  parametric  and  text  search.

Content  Manager  only:  CM  has  one  search  engine  and  three  choices  for  how  and  

when  searches  should  be  executed  (and  results  returned):  Execute,  Evaluate,  and  

Execute  with  Callback.  See  the  SSearchICM  sample  for  table  and  explanations.  

Tracing 

To handle  problems  that  arise  in  your  API  applications,  you  can  use  tracing  and  

exception  handling.  

Tracing text queries using DB2 Text  Information Extender 

The  DB2  Text Information  Extender  (TSE)  and  all  of its  functions  can  only  be  used  

with  earlier  DB2  Content  Manager.  Content  Manager  Version  8 offers  an  integrated  

text  feature,  which  does  not  require  a separate  text  search  facility.  See  

“Understanding  text  search”  on  page  191.  

The  following  environment  variable  setting  writes  the  trace  for  a DB2  Text 

Information  Extender  query,  in  binary  format,  to  a specified  file:  

CMBTMDSTREAMTRACE=fileName  

(for  example,  .\tm.out  for  Windows  or  ./tm.out  for  AIX)  

The  following  environment  variable  settings  writes  the  trace  for  the  DB2  Text 

Information  Extender  API  calls  used  during  a text  query  to a specified  file:  

CMBTMTRACE=fileName 

The  following  environment  setting  writes  the  text  search  terms  to  a specified  file:  

CMBTMTERM=fileName  (for  example,.\tmterm.out) 

 

 

20 Application  Programming Guide



Note:   DB2  Content  Manager  Version  8 uses  an  integrated  text  search.  If  you  are  

using  earlier  IBM  Content  Manager,  you  can  still  use  the  Text Search  Engine  

(TSE).  

Tracing parametric queries 

For  earlier  Content  Manger  using  the  Text Search  Engine,  use  the  following  

environment  variable  setting  to  write  the  parametric  query  passed  to the  folder  

manager:  

CMBDLQRYTRACE=fileName  

(for  example,  <.\dlqry.out>  for  Windows  or  <./dlqry.out>  for  AIX)  

Handling exceptions 

When  the  APIs  encounter  a problem,  they  throw  an  exception.  Throwing  an  

exception  creates  an  exception  object  of  DKException  class  or  one  of  its  subclasses.  

When  a DKException  is created,  the  connector  layer  logs  diagnostic  information  

into  a log  file,  assuming  the  default  logging  configuration  is used.  See  Messages  and  

Codes  for  more  information  on  the  log  and  configuration  files  used  by  the  

Information  Integrator  for  Content  APIs.  

When  a DKException  is caught,  it allows  you  to  see  any  error  messages,  error  

codes,  and  error  states  that  occurred  while  running.  When  an  error  is caught,  an  

error  message  is issued  along  with  the  location  of  where  the  exception  was  thrown.  

Additional  information  such  as  error  ID  are  also  given.  The  code  below  shows  an  

example  of  the  throw  and  catch  process  for  Information  Integrator  for  Content  and  

CM:  

 

 

Java  

try{  

    ...  EIP  API  Operations  ...  

} 

catch  (DKException  exc){  

    // NOTE:  Print  Function  Provided  in SConnectDisconnectICM  API  Sample.  

    System.out.println("");  

    System.out.println("XXXXXXXXXXXXXXXXXXXXXXXXXXXX");  

    System.out.println("X      !!!  Exception  !!!     X");  

    System.out.println("XXXXXXXXXXXXXXXXXXXXXXXXXXXX");  

    System.out.println("        Name:  " + exc.name());  

    System.out.println("     Message:  " + exc.getMessage());  

    System.out.println("  Message  ID:  " + exc.getErrorId());  

    System.out.println("Error  State:  " + exc.errorState());  

    System.out.println("  Error  Code:  " + exc.errorCode());  

    exc.printStackTrace();  

    System.out.println("----------------------------------");  

} catch  (Exception  exc)  { 

    // NOTE:  Print  Function  Provided  in SConnectDisconnectICM  API  Sample.  

    System.out.println("");  

    System.out.println("XXXXXXXXXXXXXXXXXXXXXXXXXXXX");  

    System.out.println("X      !!!  Exception  !!!     X");  

    System.out.println("XXXXXXXXXXXXXXXXXXXXXXXXXXXX");  

    System.out.println("     Name:  " + exc.getClass().getName());  

    System.out.println("  Message:  " + exc.getMessage());  

    exc.printStackTrace();  

    System.out.println("----------------------------------");  

} 

 

 

Chapter  3. Programming  with the application  programming interfaces  (APIs)  21



C++  

try{  

    ...  EIP  API  Operations  ...  

} 

catch  (DKException  &exc){  

    // NOTE:  Print  Function  Provided  in SConnectDisconnectICM  API  Sample.  

    cout  << endl;  

    cout  << "XXXXXXXXXXXXXXXXXXXXXXXXXXXX"                << endl;  

    cout  << "X      !!!  Exception  !!!     X"               << endl;  

    cout  << "XXXXXXXXXXXXXXXXXXXXXXXXXXXX"                << endl;  

    cout  << "       Name:  " << exc.name()                 << endl;  

    cout  << " Message  ID:  " << exc.errorId()              << endl;  

    cout  << "Error  State:  " <<  exc.errorState()           << endl;  

    cout  << " Error  Code:  " << exc.errorCode()            << endl;  

    // Print  API  Location(s)  Detecting  Error  

for(unsigned  int  j=0;  j < exc.locationCount();  j++){  //Print  all  locations  

        const  DKExceptionLocation*  p = exc.locationAtIndex(j);  

        cout  << " Location  " << j << ": " << p->fileName()    << "::"  

             << p->functionName()  << ’[’   << p->lineNumber()  << ’]’  << endl;  

    } 

    if(exc.textCount()<=0)  // Write  statement  if no locations.  

        cout  << "  Locations:  <none>  "                   << endl;  

    // Error  Message(s)  

    for(unsigned  int  i=0;  i < exc.textCount();  i++)  // Print  All Messages  

        cout  << "  Message  " << i << ": " <<  exc.text(i)  << endl;  

    if(exc.textCount()<=0)  // Notify  user  if no messages.  

        cout  << "   Messages:  <none>  "                   << endl;  

    cout  << "----------------------------------------"    << endl;  

} 

 For  more  information  on  error  detection  and  handling,  see  the  

SConnectDisconnectICM  API  education  sample.  

Constants 

The  constants  specified  are  in  the  form  of DK_CM_  (Common  constants)  or  DK_XX_ 

(where  the  XX  indicates  different  content  servers).  See  Table 5 on  page  23  for  a list  

of  the  extensions  (extensions  appended  to each  DKDatastore).  

When  you  specify  DDO  constants,  use  DK_CM_DATAITEM_TYPE_  ...  (for  example,  

DK_CM_DATAITEM_TYPE_STRING) for  property  types.  For  attribute  types,  use  the  

DK_CM_...type constants  (for  example,  DK_CM_INTEGER).  

 

 

Java  

Common  constants  are  defined  in  DKConstant.java. You can  also  review  a 

text  version  of  these  constants  in  DKConstant.txt. Constants  for  specific  

content  servers  are  defined  in  DKConstantXX.java; for  example,  constants  

unique  to  Content  Manager  are  in  DKConstantICM.java.

 

 

22 Application  Programming Guide

|
|



C++  

Common  constants  are  defined  in  DKConstant.h. For  a list  of  constants  and  

corresponding  values,  view  DKConstant2.h  (but  do  not  include  this  in  your  

program).  Constants  for  specific  content  servers  are  defined  in  header  files  of 

the  form  DKConstantXX.h;  for  example,  constants  unique  to Content  Manager  

are  in DKConstantICM.h.

Connecting to content servers 

An  object  of  the  class  DKDatastorexx  (where  xx  indicates  a specific  content  server)  

represents  and  manages  a connection  to  a content  server,  provides  transaction  

support,  and  runs server  commands.  See  Table  5 for  the  exact  extensions.  

If  your  application  terminates  abruptly  or  abnormally,  such  as when  a user  enters  

Crtl-C  against  the  application,  you  must  ensure  that  any  datastores  that  are  

connected  get  disconnected  by  your  application  . 

 Table 5. Server  type  and  class  name  terminology  

Content  server  Class  name  

DB2  Content  Manager  Version  8.3 DKDatastoreICM  

Earlier  IBM  Content  Manager  DKDatastoreDL  

Content  Manager  OnDemand  DKDatastoreOD  

DB2  Content  Manager  for AS/400  (VisualInfo  

for  AS/400)  

DKDatastoreV4  

Content  Manager  ImagePlus  for OS/390  DKDatastoreIP  

Domino.Doc  DKDatastoreDD  

Relational  databases  DKDatastoreDB2,  DKDatastoreJDBC  (for  

Java)  DKDatastoreODBC  (for  C++)
  

Establishing a connection 

Each  DKDatastorexx class  provides  methods  for  connecting  to it and  disconnecting  

from  it.  The  following  example  uses  a DB2  Content  Manager  library  server  named  

ICMNLSDB, the  user  ID  ICMADMIN  and  password  PASSWORD. For  information  on  

Content  Manger,  see  Connecting  to  the  DB2  Content  Manager  system;  for  other  

content  servers,  see  Chapter  8,  “Working  with  other  content  servers.”  The  example  

creates  a DKDatastoreICM  object  for  the  CM  content  server,  connects  to  it,  works  

with  it,  then  disconnects  from  it.  

 

 

Chapter  3. Programming  with the application  programming interfaces  (APIs)  23



Java  

DKDatastoreICM  dsICM  = new  DKDatastoreICM();  //Create  datastore  object  

dsICM.connect("ICMNLSDB","ICMADMIN","PASSWORD","");   //Connect  to datastore  

  

System.out.println("Connected  to datastore  dbase:  ’"+dsICM.datastoreName()+  

                   "’,  UserName  ’"+dsICM.userName()+"’).");  

  

dsICM.disconnect();  // Disconnect  from  datastore  

dsICM.destroy();  // Destroy  reference  

For  the  complete  sample  application,  refer  to the  SConnectDisconnectICM.java  

sample.  

 

 

C++  

DKDatastoreICM*  dsICM  = new  DKDatastoreICM();  //Create  datastore  object  

dsICM->connect("ICMNLSDB","ICMADMIN","PASSWORD","");  //Connect  to datastore  

  

cout  <<  "Connected  to datastore  dbase:  ’" << dsICM->datastoreName()  << 

        "’,  UserName  ’" << dsICM->userName()  << "’)."  << endl;  

  

dsICM->disconnect();   //Disconnect  from  datastore  

delete(dsICM);         //Destroy  reference  

For  the  complete  sample  application,  refer  to the  SConnectDisconnectICM.cpp  

sample.  

 When  connecting  to  a content  server  you  must  be  aware  of  the  requirements  for  

each  content  server;  for  example,  the  password  for  ImagePlus  for  OS/390  can  be  

no  more  than  eight  characters  in  length.  

Connecting and disconnecting from a content server in a 

client 

You use  the  same  code  in  “Establishing  a connection”  on  page  23 to  access  a 

content  server  from  a client  application.  To do  so,  simply  replace  import  

com.ibm.mm.sdk.server.*;  with  import  com.ibm.mm.sdk.client.*;. Your client  

application  must  handle  any  communications  errors  incurred.  

Setting and getting content server options 

You can  access  or  set  the  processing  options  on  a content  server  using  the  methods  

in  DKDatastorexx.  The  following  example  shows  how  to  set  and  get  the  option  for  

establishing  an  administrative  session  on  a DB2  Content  Manager  library  server.  

See  the  Application  Programming  Reference  for  the  list  of options  and  their  

descriptions.  

In  this  example  for  setting  and  getting  a content  server  option  in  Content  Manager,  

caching  is  turned  off.  For  content  servers  supporting  this  option,  it is  

recommended  that  the  default  (ON)  be  used.  Requirement:  A  valid  

DKDatastoreICM  object  is already  created  in  a variable  called  dsICM. 

 

 

24 Application  Programming Guide



Java  

dsICM.setOption(DKConstant.DK_CM_OPT_CACHE,  

  new  Integer(DKConstant.DK_CM_FALSE));  

Object  val  = dsICM.getOption(DKConstant.DK_CM_OPT_CACHE);  

 

 

C++  

DKAny  inVal   = DK_CM_FALSE  

DKAny  outVal;  

dsICM->setOption(DK_CM_OPT_CACHE,inVal);  

dsICM->getOption(DK_CM_OPT_CACHE,outVal);  

When  getting  a content  server  option,  output_option  usually  is an  integer,  but  you  

can  cast  it to  be  an  object.  

Listing content servers 

DKDatastorexx  provides  a method  to  list  the  servers  that  it can  connect  to.  The  list  

of  servers  are  returned  in a DKSequentialCollection  of DKServerDefxx  objects  

(where  xx  identifies  the  specific  content  server).  

Restriction:  The  Domino.Doc  content  server  does  not  provide  a method  that  lists  

the  servers.  

After  you  obtain  a DKServerDefxx  object  you  can  retrieve  the  server  name  and  

server  type,  and  use  the  server  name  to  establish  a connection  to it.  

The  following  example  lists  the  servers  that  you  are  configured  to connect  to.  

 

 

Java  

DKDatastoreICM  dsICM  = new  DKDatastoreICM();     // Create  a datastore  object  

dkCollection     coll  = dsICM.listDataSources();  // Obtain  data  source  list  

dkIterator       iter  = coll.createIterator();    // Create  an iterator  

while(iter.more()){                              // While  there  are more  

    DKServerDefICM  srvrDef  = (DKServerDefICM)  iter.next();  

    System.out.println("Found  server  ’"+srvrDef.getName()+"’");  

} 

 

 

C++  

DKDatastoreICM*  dsICM  = new  DKDatastoreICM();    // Create  a datastore  object  

dkCollection*  coll  = (dkCollection*)dsICM->listDataSources();  // Obtain  list  

dkIterator*       iter  = coll->createIterator();  // Create  an iterator  

while(iter->more()){                             // While  there  are  more  

    DKServerDefICM*  srvrDef  = (DKServerDefICM*)  iter->next()->value();  

    cout  << "Found  server  ’" << srvrDef.getName()  << "’" << endl;  

    delete(srvrDef);                             // Free  memory  

} 

delete(iter);                                    // Free  memory  

delete(coll);  

delete(dsICM);  

 

 

Chapter  3. Programming  with the application  programming interfaces  (APIs)  25



Listing the entities and attributes for a content server 

DKDatastorexx  provides  methods  for  listing  the  entities  and  their  attributes,  for  a 

content  server.  Each  attribute  name  is part  of  a name  space.  The  default  name  

space  is  used  for  all  attributes  where  a name  space  is not  specified.  

The  list  of  entities  is  returned  in  a DKSequentialCollection  object  of  dkEntityDef  

objects.  The  attributes  for  an  entity  are  returned  in  a DKSequentialCollection  object  

of  dkAttrDef  objects.  After  you  obtain  a dkAttrDef  object,  you  can  retrieve  

information  about  the  attribute,  such  as  its  name  and  type,  and  use  the  information  

to  form  a query.  

For  further  details  about  these  two  methods,  see  the  Application  Programming  

Reference.  

The  following  example  shows  how  to  retrieve  the  list  of item  types  as  well  as  the  

list  of  attributes  from  a DB2  Content  Manager  server.  

 

 

Java  

. . . 

try  { 

  DKSequentialCollection  pCol  = null;  

  dkIterator  pIter  = null;  

  DKSequentialCollection  pCol2  = null;  

  dkIterator  pIter2  = null;  

  DKServerDefICM  pSV  = null;  

  String  strServerName  = null;  

  String  strItemType  = null;  

  DKComponentTypeDefICM  itemTypeDef  = null;  

  DKAttrDefICM  attrDef  = null;  

  DKDatastoreDefICM  dsDefICM  = null;  

  int  i = 0; 

  int  j = 0; 

  // ------  Create  the  datastore  and connect  (assumes  the  

  //     parameters  for  the  connection  are  previously  set)  

  DKDatastoreICM  dsICM  = new  DKDatastoreICM();  

  dsICM.connect(db,userid,pw,"");  

  // -----  List  the  item  types  

  pCol  = (DKSequentialCollection)  dsICM.listEntities();  

  pIter  = pCol.createIterator();  

  i = 0; 

  while  (pIter.more()  == true)  

  { 

    i++;  

    itemTypeDef  = (DKComponentTypeDefICM)pIter.next();  

    strItemType  = itemTypeDef.getName();  

    System.out.println("item  type  name  [" + i + "] - " + strItemType);  

    System.out.println("    type  " + itemTypeDef.getType());  

    System.out.println("    itemTypeId  " + itemTypeDef.getId());  

    System.out.println("    compID  " + itemTypeDef.getComponentTypeId());  

    //continued  . . . 

 

 

26 Application  Programming Guide



Java  (continued)  

// -----  List  the  attributes  

    pCol2  = (DKSequentialCollection)  dsICM.listEntityAttrs(strItemType);  

    pIter2  = pCol2.createIterator();  

    j = 0; 

    while  (pIter2.more()  == true)  

    { 

      j++;  

      attrDef  = (DKAttrDefICM)pIter2.next();  

      System.out.println("Attr  name  [" + j + "] - " + attrDef.getName());  

      System.out.println("       datastoreType  " + attrDef.datastoreType());  

      System.out.println("       attributeOf  " + attrDef.getEntityName());  

      System.out.println("       type  " + attrDef.getType());  

      System.out.println("       size  " + attrDef.getSize());  

      System.out.println("       id " + attrDef.getId());  

      System.out.println("       nullable  " + attrDef.isNullable());  

      System.out.println("       precision  " + attrDef.getPrecision());  

      System.out.println("       scale  " + attrDef.getScale());  

      System.out.println("       stringType  " + attrDef.getStringType());  

      System.out.println("       sequenceNo  " + attrDef.getSequenceNo());  

      System.out.println("       userFlag  " + attrDef.getUserFlag());  

    } 

  } 

  dsICM.disconnect();  

  } 

  catch(DKException  exc)  

  { 

// -----  Handle  the  exceptions  

 A  complete  sample,  SItemTypeRetrievalICM, includes  how  to list  item  type  

definitions.  Another  complete  sample,  SAttributeDefinitionRetrievalICM, includes  

how  to  list  attribute  definitions.  Both  samples  are  available  in  the  samples  

directory.  

The  following  C++  example  shows  how  to retrieve  the  list  of  index  classes  and  

attributes  from  a DB2  Content  Manager  server:  

 

 

C++  

// Get  a collection  containing  all Item  Type  Definitions.  

DKSequentialCollection*  itemTypeColl  = (DKSequentialCollection*)  

    dsICM->listEntities();  

// Accessing  each  and printing  the name  & description.  

cout  << "\nItem  Type  Names  in System:  

     (" << itemTypeColl->cardinality()  <<  ’)’ << endl;  

// Create  an iterator  to iterate  through  the collection  

dkIterator*  iter  = itemTypeColl->createIterator();  

// while  there  are  still  items  in the list,  continue  

while(iter->more()){  

    DKItemTypeDefICM*  itemType  = (DKItemTypeDefICM*)  iter->next()->value();  

    cout  << " - " <<  itemType->getName()  << ": " << 

        itemType->getDescription()  << endl;  

    delete(itemType);  //  Free  Memory  

  

cout  << endl;  

delete(iter);  

delete(itemTypeColl);  

 

 

Chapter  3. Programming  with the application  programming interfaces  (APIs)  27



For  more  information,  see  the  SItemTypeRetrievalICM  sample,  which  includes  how  

to  list  item  type  definitions.  The  SAttributeDefinitionRetrievalICM,  includes  how  to 

list  attribute  definitions.  The  samples  are  available  in  the  samples  directory.  

 

 

C++  

...  

pCol2->apply(deleteDKAttrDefICM);  

delete  pCol2;  

...  

Working  with dynamic data objects (DDOs) 

This  section  describes  how  to use  a DDO  and  contains  examples  that  help  you  

learn  how  to:  

 1.   Associate  a DKDDO  with  a content  server.  

 2.   Create  a DKDDO.  

 3.   Create  Persistent  Identifiers  (PIDs)  for  DKDDO  attributes.  

 4.   Add  attributes  and  define  attribute  properties.  

 5.   Define  the  DKDDO  as  a folder  or  as a document.  

 6.   Set  and  view  values  for  the  attribute  properties.  

 7.   Check  the  DKDDO  properties.  

 8.   Check  the  attribute  properties.  

 9.   Display  the  DKDDO  content.  

10.   Delete  the  DKDDO.

You use  the  DKDDO  class  for  dynamic  data  objects  (DDOs)  in your  IBM  DB2  

Information  Integrator  for  Content  applications.  A DKDDO  object  represents  an  

item,  which,  for  example,  could  be  a DB2  Content  Manager  document  or  a folder  

or  a user-defined  object.  A DKDDO  object  contains  attributes.  Each  attribute  has  a 

name,  a value,  and  properties.  Each  attribute  is identified  by  a data  ID.  Attributes  

are  numbered  consecutively  starting  with  1; the  attribute  number  is the  data  ID.  

Because  the  name,  value,  and  property  of  an  attribute  can  vary,  DKDDO  provides  

flexible  mechanisms  to represent  data  originating  from  a variety  of  content  servers  

and  formats.  For  example,  items  from  different  item  types  in  DB2  Content  

Manager,  or  rows  from  different  tables  in  a relational  database.  The  DKDDO  itself  

can  have  properties  that  apply  to  the  whole  DKDDO,  instead  of  to  only  one  

particular  attribute.  

You associate  a DKDDO  with  a content  server  before  calling  the  add, retrieve,  

update  and  delete  methods  to  put  its  attributes  into  the  content  server  or  retrieve  

them.  You set  the  content  server  either  as a parameter  when  you  create  the  

DKDDO  object  or  by  calling  setDatastore  method.  

Every  DKDDO  has  a persistent  object  identifier  (PID),  which  contains  information  

for  locating  the  attributes  in the  content  server.  

Creating a DKDDO 

DKDDO  has  several  constructors.  You can  create  a DKDDO  by  calling  its  

constructor  without  any  parameters.  

 

 

28 Application  Programming Guide



Java  

DKDDO  ddo  = new  DKDDO();  

 

 

C++  

DKDDO  ddo;  

 This  DDO  ddo  must  grow  dynamically  to  accommodate  more  attributes.  For  a 

more  efficient  constructor,  pass  in  the  exact  number  of  attributes  you  want  (for  

example,  ten):  

 

 

Java  

DKDDO  ddo  = new  DKDDO(10);  

 

 

C++  

DKDDO  ddo  = new  DKDDO((short)10);  

Important:  In  APIs  such  as  DKDatastoreICM  and  DKDatastoreOD,  create  a 

DKDDO  by  using  other  constructors  (such  as the  createDDO()  method  in  the  

DKDatastore  XX  class).  The  following  example  creates  a DKDDO  by  passing  in 

both  content  server  and  object  type  for  Content  Manager  Version  8:  

 

 

Java  

//create  a CM datastore  

DKDatastoreICM  dsICM  = new  DKDatastoreICM();  

//create  a DDO  to hold  an object  type  

DKDDO  ddo=dsICM.createDDO("ICMSAMPLE",  DKConstant.DK_CM_DOCUMENT);  

For  more  information  about  DDO  creation,  refer  to the  SItemCreationICM  

sample.  

 

 

C++  

// create  a Content  Manager  datastore  

DKDatastoreICM*  dsICM  = new  DKDatastoreICM();  

// create  a DDO  to hold  an object  type  

DKDDO*  ddo  = dsICM->createDDO("ICMSAMPLE",  

DK_CM_DOCUMENT);  

For  more  information  about  DDO  creation,  refer  to the  SItemCreationICM  

sample.  

 For  other  connectors  (such  as  earlier  Content  Manager),  you  can  create  a DKDDO  

by  supplying  content  server  and  object  type  with  the  following  example:  

 

 

Chapter  3. Programming  with the application  programming interfaces  (APIs)  29



Java  

DKDatastoreDL  dsDL=new  DKDatastoreDL();  //create  a CM datastore  

DKDDO  ddo=new  DKDDO(dsDL,  "DLSAMPLE");   //create  a DDO  to hold  an object  type  

                                        //DLSAMPLE  in dsDL  

 

 

C++  

//  create  an earlier  DB2  Content  Manager  datastore  

DKDatastoreDL  dsDL;  

//  create  a DDO  to hold  an object  type  DLSAMPLE  in dsDL  

DKDDO*  cddo  = new  DKDDO(&dsDL,  "DLSAMPLE");  

 Which  constructor  you  use  depends  on  your  application;  see  the  Application  

Programming  Reference  for  information  on  the  constructors.  

Adding properties to a DDO 

When  creating  a DKDDO  object  to  represent  a DDO,  you  have  to  specify  its  item  

type  property  (a  document,  folder,  or  item).  

You can  pass  this  property  as  one  of the  options  in  the  

DKDatastoreXX.createDDO(itemTypeName,itemPropertyType/SemanticType) method.  

DKDatastoreICM.createDDO(itemTypeName,itemPropertyType/SemanticType)  

Or, if you  already  created  the  DKDDO  without  setting  its  item  type  property,  you  

can  use  the  following  example  to  set  the  type  of DDO  to  a ″document″. 

 

 

Java  

//-----  Add  the  property  that  it is a document  

ddo.addProperty(DK_CM_PROPERTY_ITEM_TYPE,  new  Short(DK_CM_DOCUMENT));  

 

 

C++  

any  = DK_CM_DOCUMENT;                              // it is  a document  

ddo->addProperty(DK_CM_PROPERTY_ITEM_TYPE,  any);  

Creating a persistent identifier (PID) 

Each  DDO  must  have  a persistent  identifier  (PID).  The  PID  contains  information  

about  the  content  server’s  name,  type,  ID,  and  object  type.  The  PID  identifies  the  

DDO’s  persistent  data  location.  For  example,  in  earlier  DB2  Content  Manager  

content  server,  the  PID  is the  item  ID.  The  item  ID  is one  of  the  most  important  

parameters  for  the  retrieve, update, and  delete  functions.  In DB2  Content  

Manager  V8,  the  PID  has  five  parts  (see  Chapter  4,  “Working  with  DB2  Content  

Manager  Version  8.3,”  on  page  107  for  more  information).  

For  the  add  function,  the  content  server  creates  and  returns  the  item  ID.  For  

example,  connectors  that  provide  the  DKDatastoreXX.createDDO()  method  

automatically  create  the  PID  object  in  the  DKDDO.add()  operation.  

The  following  example  creates  a DDO  for  retrieving  a known  item:  

 

 

30 Application  Programming Guide



Java  

// Given  a connected  DKDatastoreICM  object  named  "dsICM"  

// Create  a new  DDO 

DKDDO  ddo  = dsICM.createDDO("book",DKConstant.DK_CM_DOCUMENT);  

// PID  automatically  created  by the  function  above.  

ddo.add();  // Add  the new  item  to the datastore.  

// PID  Completed  by the  System  

DKPidICM  pid  = (DKPidICM)  ddo.getPidObject();  

 

 

C++  

// Given  a connected  DKDatastoreICM  object  named  "dsICM"  

// Create  a new  DDO 

DKDDO*  ddo  = dsICM->createDDO("book",DK_CM_DOCUMENT);  

// PID  automatically  created  by the  function  above.  

ddo->add();  // Add  the new item  to the  datastore.  

// PID  Completed  by the  System  

DKPidICM*  pid  = (DKPidICM*)  ddo->getPidObject();  

 Connect  to  the  content  server  and  call  the  retrieve  function  to  retrieve  the  DDO  

created  in  the  example.  

DB2  Content  Manager  8.3  connector  has  a PID  class  that  is  a subclass  of DKPid.  It 

is  called  DKPidICM  which  is the  pid  used  by  the  DKDDOs  and  dkResources.  

Working  with data items and properties 

DKDDO  provides  methods  to add  attributes  and  attribute  properties  to a DKDDO  

object.  

Suppose  an  item  type  NameOfItemType  has  the  attributes  Name  of type  integer  and  

is  defined  to  be  nullable  in  the  CM  V8  repository.  You create  a DKDDO  object  to 

handle  an  item  of  that  entity,  and  you  want  to  add  two  data  items  to  the  DKDDO.  

The  following  example  creates  an  item,  sets  attribute  properties,  and  saves  to the  

persistent  content  server  in  Content  Manager.  Requirement:  Assumes  that  you  

have  a connected  DKDatstoreICM  in  variable  dsICM. The  user-defined  item  type  

S_withChild  must  be  defined  with  varchar  S_varchar, long  integer  S_integer, 

short  integer  S_short, and  time  S_time, as  defined  in  the  SItemTypeCreationICM  

ICM  API  education  sample.  

 

 

Chapter  3. Programming  with the application  programming interfaces  (APIs)  31



Java  

//  Create  a new  item  in memory  

DKDDO  ddo  = dsICM.createDDO("S_withChild",  DKConstant.DK_CM_DOCUMENT);  

  

//  Set  attributes   (Additional  attributes  set  in SItemCreationICM  sample)  

ddo.setData(ddo.dataId(DKConstant.DK_CM_NAMESPACE_ATTR,"S_varchar"),  

  "abcdefg");  

ddo.setData(ddo.dataId(DKConstant.DK_CM_NAMESPACE_ATTR,"S_integer"),  

            new  Integer("123"));  

ddo.setData(ddo.dataId(DKConstant.DK_CM_NAMESPACE_ATTR,"S_short"),  

            new  Short("5"));  

ddo.setData(ddo.dataId(DKConstant.DK_CM_NAMESPACE_ATTR,"S_time"),  

            java.sql.Time.valueOf("10:00:00"));  

  

//  Add  to datastore  

ddo.add();  

This  example  was  taken  SItemCreationICM  sample.  

 

 

C++  

//  Create  a new  item  in memory  

DKDDO*  ddo  = dsICM->createDDO("S_withChild",  DK_CM_DOCUMENT);  

  

//  Set  attributes   (Additional  attributes  set  in SItemCreationICM  sample)  

//  NOTE:  Values  below  are  automatically  converted  to type  DKAny  

ddo->setData(ddo->dataId(DK_CM_NAMESPACE_ATTR,"S_varchar"),  

             DKString("this  is a string  value"));  

ddo->setData(ddo->dataId(DK_CM_NAMESPACE_ATTR,"S_integer"),  

             (long)  123);  

ddo->setData(ddo->dataId(DK_CM_NAMESPACE_ATTR,"S_short"),  

             (short)  5); 

ddo->setData(ddo->dataId(DK_CM_NAMESPACE_ATTR,"S_time"),  

             DKTime("10.00.00"));  

  

//  Add  to datastore  

ddo->add();  

This  example  was  taken  from  the  SItemCreationICM  sample.  

 You must  set  the  property  type  for  an  attribute;  nullable  and  other  properties  are  

optional.  

The  following  example  accesses  attribute  values  of  a DDO.  

 

 

32 Application  Programming Guide



Java  

// Cast  operations  will  enable  access  as subclass  of Object  type  returned.  

// NOTE:  Additional  attributes  accessed  in  SItemRetrievalICM  sample.  

  

String   attrVal1  = (String)  ddo.getData(ddo.dataId(  

                   DKConstant.DK_CM_NAMESPACE_ATTR,"S_varchar"));  

Integer  attrVal2  = (Integer)ddo.getData(ddo.dataId(  

                   DKConstant.DK_CM_NAMESPACE_ATTR,"S_integer"));  

Short    attrVal3  = (Short)  ddo.getData(ddo.dataId(  

                   DKConstant.DK_CM_NAMESPACE_ATTR,"S_short"));  

Time     attrVal4  = (Time)    ddo.getData(ddo.dataId(  

                   DKConstant.DK_CM_NAMESPACE_ATTR,"S_time"));  

  

System.out.println("Attr  ’S_varchar’  value:  "+attrVal1);  

System.out.println("Attr  ’S_integer’  value:  "+attrVal2);  

System.out.println("Attr  ’S_short’    value:  "+attrVal3);  

System.out.println("Attr  ’S_time’     value:  "+attrValr);  

This  example  was  taken  from  the  SItemRetrievalICM  sample.  

 

 

C++  

// Assignment  and  cast  operations  coverts  values  from  DKAny  to each  type.  

// NOTE:  Additional  attributes  accessed  in  SItemRetrievalICM  sample.  

  

DKString  attrVal1  = ddo->getData(ddo->dataId(DK_CM_NAMESPACE_ATTR,  

                    DKString("S_varchar"))).toString();  

long      attrVal2  = (long)  ddo->getData(ddo->dataId(DK_CM_NAMESPACE_ATTR,  

                    DKString("S_integer")));  

short     attrVal3  = (short)  ddo->getData(ddo->dataId(DK_CM_NAMESPACE_ATTR,  

                    DKString("S_short")));  

DKTimestamp  attrVal4  = (DKTimestamp)  ddo->getData(ddo->dataId(  

                        DK_CM_NAMESPACE_ATTR,  DKString("S_time")));  

  

cout  << "Attr  ’S_varchar’  value:  " << attrVal1  << endl;  

cout  << "Attr  ’S_integer’  value:  " << attrVal2  << endl;  

cout  << "Attr  ’S_short’    value:  " << attrVal3  << endl;  

cout  << "Attr  ’S_time’     value:  " << attrVal4  << endl;  

This  example  was  taken  from  the  SItemRetrievalICM  sample.  

Getting the DKDDO and attribute properties 

When  processing  a DKDDO,  you  must  first  know  its  type:  document,  folder,  or  

item.  The  following  sample  code  demonstrates  how  to determine  the  DDO  type:  

 

 

Chapter  3. Programming  with the application  programming interfaces  (APIs)  33



Java  

short  prop_id  = ddo.propertyId(DK_CM_PROPERTY_ITEM_TYPE);  

if  (prop_id  > 0) { 

    short  type  = ((Short)  ddo.getProperty(prop_id)).shortValue();  

    switch(type)  { 

       case  DK_CM_DOCUMENT:  

         // ---  process  a document  

         ....  

         break;  

       case  DK_CM_FOLDER:  

         // ---  process  a folder  

       case  DK_CM_ITEM:  

         // ---  Process  an item  in Content  Manager  

         ....  

         break;  

    } 

} 

For  more  information  on  accessing  item  type  properties,  refer  to  the  

SItemRetrievalICM  API  Education  Sample.  

 

 

C++  

unsigned  short  prop_id  = 

    ddo->propertyId(DK_CM_PROPERTY_ITEM_TYPE);  

if  (prop_id  > 0) { 

    unsigned  short  type  = (unsigned  short)  ddo->getProperty(prop_id);  

    switch(type)  { 

        case  DK_CM_DOCUMENT:  

        // process  document  

        ...  

        break;  

        case  DK_CM_FOLDER:  

        // process  folder  

        ...  

        break;  

    } 

} 

For  more  information  on  accessing  item  type  properties,  refer  to  the  

SItemRetrievalICM  API  Education  Sample.  

To retrieve  properties  of  an  attribute,  you  must  get  the  data_id  of the  attribute;  

then  you  can  retrieve  the  properties.  

Both  the  data_id  and  property_id  start  from  1.  If you  specify  0, then  you  receive  

an  exception.  

 

 

34 Application  Programming Guide



Java  

data_id  = ddo.dataId("Title");   // get  data_id  of Title  

// -----  Get  the  number  of properties  for  the  attribute  

short  number_of_data_prop  = ddo.dataPropertyCount(data_id);  

// -----   Display  all  data  properties  belonging  to this  attribute  

//        using  a loop;  the  index  starts  at 1 

for(short  i = 1; i <= number_of_data_prop;  i++)  { 

   System.out.println(i  + " Property  Name  = " + 

           ddo.getDataPropertyName(data_id,i)  

                       + "  value  = " + ddo.getDataProperty(data_id,i));  

   } 

For  the  complete  sample  application,  refer  to  the  SItemRetrievalICM  sample.  

 

 

C++  

// get  data_id  of Title  

data_id  = ddo->dataId("Title");  

// how  many  props  does  it have?  

unsigned  short  number_of_data_prop  = ddo->dataPropertyCount(data_id);  

// displays  all  data  properties  belonging  to this  attribute  

// notice  that  the  loop  index  starts  from  1, where  

// 1 <= i <= number_of_data_prop  

for  (unsigned  short  i = 1; i <= number_of_data_prop;  i++)  { 

    cout  << i << "  Property  Name  = " << ddo->  

    getDataPropertyName(data_id,  i)  <<  "  value  = "   << ddo->  

    getDataProperty(data_id,  i) << endl;  

} 

For  the  complete  sample  application,  refer  to  the  SItemRetrievalICM  sample.  

Displaying the whole DDO 

During  application  development,  you  might  need  to  display  the  contents  of  a 

DKDDO  for  debugging  purposes.  

 

 

Chapter  3. Programming  with the application  programming interfaces  (APIs)  35



Java  

short  number_of_attribute  = ddo.dataCount();  

short  number_of_prop       = ddo.propertyCount();  

short  number_of_data_prop;  

//  list  DDO  properties  

for  (short  k = 1; k <= number_of_prop;  k++)  { 

     System.out.println(  k + " Property  Name  = " + ddo.getPropertyName(k)  + 

                         ",\t    value  = " + ddo.getProperty(k));  

} 

//  list  data-items  and  their  properties  

for  (short  i = 1; i <= number_of_attribute;  i++)  { 

     System.out.println(  i + " Attr.  Name  = " + ddo.getDataName(i)  + 

                         ",\t    value  = " + ddo.getData(i));  

     number_of_data_prop  = ddo.dataPropertyCount(i);  

     for  (short  j = 1; j <= number_of_data_prop;  j++)  { 

          System.out.println(  "\t"  + j + " Data  Prop.  Name  = " + 

                             ddo.getDataPropertyName(i,j)     + 

                             ",\t    value  = "                 + 

                             ddo.getDataProperty(i,j));  

     } 

} 

For  a complete  example  of  accessing  and  printing  a DDO  (and  all  

subcomponents),  refer  to  SItemRetrievalICM  and  its  printDDO()  static  

function.  

 

 

C++  

unsigned  short  number_of_attribute  = ddo->dataCount();  

unsigned  short  number_of_prop;  

unsigned  short  number_of_data_prop;  

//  list  DDO  properties  

for  (short  k = 1; k <= number_of_prop;  k++)  { 

     cout  << k << " Property  Name  = " << ddo->getPropertyName(k)  << 

     ",\t    value  = " << ddo->getProperty(k)   << endl;  

} 

//  list  data-items  and  their  properties  

for  (unsigned  short  i = 1; i <= number_of_attribute;  i++)  { 

     cout  << i << " Attr.  Name  = " << ddo->getDataName(i)  << 

     << ",\t    value  = " << ddo->getData(i)  << endl;  

     number_of_data_prop  = ddo->dataPropertyCount(i);  

     for  (unsigned  short  j = 1; j <= number_of_data_prop;  j++)  { 

          cout  << "\t"  << j << " Data  Prop.  Name  = " 

               << ddo->getDataPropertyName(i,  j) 

               << ",\t    value  = " << ddo->getDataProperty(i,  j) 

               << endl;  

     } 

} 

For  a complete  example  of  accessing  and  printing  a DDO  (and  all  

subcomponents),  refer  to  SItemRetrievalICM  and  its  printDDO()  static  

function.  

Deleting a DDO (C++ only) 

A DKDDO  has  two  representations:  the  one  in  memory,  and  the  persistent  copy.  To 

delete  the  DKDDO  from  memory,  call  its  destructor.  Note  that  this  still  leaves  the  

persistent  copy  unchanged  in  the  content  server.  

 

 

36 Application  Programming Guide



You delete  the  persistent  copy  in  the  content  server  with  the  dkddo:del()  function  

(delete  dkddo;  ). This  does  not  affect  the  DKDDO  representation  in memory  (the  

attribute  values  are  in  a DKAny  object).  The  destructor  deletes  object  references  to  

dkCollection  and  dkDataObjectBase,  including  references  to  DKParts,  DKFolder,  

DKDDO,  and  DKBlob.  

Working  with extended data objects (XDOs) 

An  XDO  represents  a component  that  can  store  resource  content,  such  as  a 

resource  item  or  document  part.  

Resource  items  (XDOs)  extend  non-resource  items  (DDOs).  You create  resource  

items  much  like  the  regular  ones.  Resource  Items  area  created  just  as  regular  Items  

are.  Depending  on  the  type  of  resource  Item,  the  XDO  can  be  extended  further.  

 

 

Java  

        Class  Hierarchy  

            Type      DDO        XDO        Extension  

            -----    -----     --------     -----------  

            Lob      DKDDO  ->  DKLobICM  

            Text     DKDDO  -> DKLobICM  -> DKTextICM  

            Image    DKDDO  -> DKLobICM  -> DKImageICM  

            Stream   DKDDO  ->  DKLobICM  -> DKStreamICM  

 DB2  Content  Manager  only:  Since  CM  8 requires  XDOs  to  be  of  the  correct  

subclass,  DKDDOs  should  always  be  created  using  the  DKDatastoreICM’s  

createDDO()  methods.  This  allows  the  system  to  automatically  set  up  important  

information  in the  DKDDO  structure,  and  provides  greater  functionality  such  as 

resources,  CM  document  model,  and  folders.  Items  of  type  resource  (returned  from  

DKDatastoreICM.createDDO)  can  be  cast  to  the  correct  XDO  or  subclass  depending  

on  the  XDO  classification.  For  more  information  on  creating  items  in  general  and  

the  DKDatastoreICM.createDDO()  function,  see  the  SItemCreationICM  sample.  

To create  an  XDO  for  binary  objects  use  DKBlobxx,  where  xx  is  the  suffix  

representing  the  specific  server.  For  example,  use  DKBlobICM  for  DB2  Content  

Manager,  DKBlobOD  for  OnDemand,  or  DKBlobIP  for  ImagePlus  for  OS/390.  

When  you  create  a DKBlobxx  object,  you  must  pass  it  the  content  server  

DKDatastorexx.  For  Content  Manager,  you  use  DKLobICM  to  create  the  XDO.  

Using an XDO persistent identifier (PID) 

An  XDO  needs  a PID  to  store  its  data  persistently.  To use  an  XDO  to  locate  and  

store  data,  you  must  supply  a PID  for  the  DKBlobxx,  using  a DKPidXDOxx. 

Relational  Databases  require  the  table,  column,  and  data  predicate  string  to locate  

the  persistent  data  in  a content  server.  For  relational  databases  (RDB),  the  table  

name,  column  name  and  data  predicate  are  required  for  DKPidXDOxx. 

In  the  ICM  Connector,  use  DKPidICM  to represent  the  pid  of a dkResource  object  

which  is an  XDO.  

Understanding XDO properties 

Use  the  methods  of  the  DKBlobxx  to set  the  properties  of  an  XDO  where  they  

apply;  all  properties  are  not  available  for  all  content  servers.  When  loading,  default  

values  for  the  properties  are  set  if specific  values  are  not  specified.  For  example,  

the  following  defaults  are  use  with  earlier  DB2  Content  Manager:  

 

 

Chapter  3. Programming  with the application  programming interfaces  (APIs)  37



RepType  (representation  type)  

The  default  is FRN$NULL.  For  VisualInfo  for  AS/400,  you  must  use  " ", 

eight  blank  spaces  surrounded  by  leading  and  trailing  quotation  marks.  

ContentClass  

The  default  is DK_CM_CC_UNKNOWN.  For  the  valid  values,  see  

DKConstant2DL.h  in  the  \ Program  FilesIBM‡B2CMV8  \include  directory  for  

Information  Integrator  for  Content.  

AffiliatedType  

The  default  is:  DK_DL_BASE.  

AffiliatedData  

The  default  is:  NULL.

To  index  object  content  with  earlier  DB2  Content  Manager  correctly,  you  must  set  

SearchEngine,  SearchIndex,  and  SearchInfo  in  the  extension  object  

DKSearchEngineInfoDL.  

For  working  with  XDOs  in Content  Manger,  see  “Working  with  items”  on  page  

122.  

C++  Tip:  For  the  valid  values  of  ContentClass,  See  the  file  

INCLUDE/DKConstant2DL.h  provided  with  DB2  Content  Manager.  

DB2 and ODBC configuration strings (C++ only) 

This  section  defines  the  C++  DB2  and  ODBC  configuration  strings.  

CC2MIMEFILE=(filename)  

Specify  the  cmbcc2mime.ini  file  (optional).  

DSNAME=(content  server  name)  

Specify  the  content  server  name  (optional).  When  this  content  server  is 

used  by  Federated,  this  option  is set  automatically.  

AUTOCOMMIT=ON  | OFF  

Specify  autocommit  is on  or  off.  Default  is off  (optional).  When  this  content  

server  is used  by  Fed  autocommit  is always  on.  This  is set  automatically.

 This  section  defines  the  C++  DB2  and  ODBC  connect  strings.  

NATIVECONNECTSTRING=(native  connect  string)   

Specify  a native  connect  string  to be  passed  to  the  native  connect  call  

(optional).  

SCHEMA=name  

Specify  schema  to be  used  for  listEntities, listEntityAttrs, 

listPrimaryKeyNames, listForeignKeyNames  functions  (optional).

Java programming tips 

For  Content  Manager  V8  and  later, an  XDO  is a dkResource  object.  You use  

DKPidICM  to  represent  the  PID  of  the  resource  object.  

For  earlier  Content  Manager,  DB2  Content  Manager  for  AS/400,  and  IP  390,  you  

identify  an  XDO  by  the  combination  of item  ID,  part  ID  and  the  RepType.  For  

RDB,  the  key  to  identify  an  XDO  is combination  of table,  column  and  data  

predicate  string.  To handle  a stand-alone  XDO,  you  provide  the  item  ID  and  part  

ID.  The  RepType  is optional  since  the  system  provides  a default  value  for  it.  

 

 

38 Application  Programming Guide



Use  the  add  method  of  DKBlobxx  to add  the  current  content  to  a content  server.  

You can  retrieve  the  part  ID  value  after  add  if you  want  to do  some  other  operation  

with  that  object  later. 

Use  the  getPidObject()  method  on  dkXDO  to  get  the  DKPid  object.  

You can  use  the  following  statement  after  add  to  obtain  the  system  assigned  part  

ID:  

 

 

Java  

int  partID  = ((DKPidXDOICM)(axdo.getPidObject())).getPartId();  

 Attention:  In  earlier  Content  Manager,  you  need  a valid  part  ID  to  add  a part  to  be  

indexed  by  the  search  manager  (you  cannot  set  the  part  ID  to 0).  

In  this  release,  two  methods  in  dkXDO  have  been  modified:  DKPid  

dkXDO.getPid()  is  deprecated  and  replaced  by  getPidObject.  DKPid  

dkXDO.getPidObject()  These  methods  use  to  return  a DKPidXDO  now  they  return  

a DKPid  object.  

C++ programming tips 

For  DB2  Content  Manager,  VI400  and  IP390,  you  identify  an  XDO  by  the  

combination  of  item  ID,  part  ID,  and  RepType.  For  Relational  Databases,  the  

combination  of  table  name,  column  name  and  datapredicate  is  the  key  to identify  

an  XDO.  For  a standalone  XDO,  you  must  provide  the  item  ID  and  part  ID.  

RepType  is  optional,  because  the  system  provides  a default  value  (FRN$NULL).  

For  the  add  function,  you  must  provide  a part  ID.  You can  retrieve  the  part  ID  

value  after  add  if you  want  to  do  some  other  operation  with  that  object  later.  

Important:  When  adding  a part  for  the  search  manager  to  index  on  a DB2  Content  

Manager  content  server,  you  must  have  a valid  part  ID  and  cannot  set  the  part  ID  

to  0. 

Programming an XDO as a part of DDO 

An  XDO  represents  a single  part  object,  if you  have  a DDO  representing  a 

document,  which  is a collection  of  resource  content  objects.  You can  manipulate  the  

XDO  as  a component  of the  DDO  or  as  a stand-alone  object.  When  you  access  the  

XDO  as  a part  of  the  DDO,  the  DDO  provides  the  item  ID.  When  using  the  XDO  

as  a stand-alone  object,  you  use  the  existing  item  ID  for  the  XDO.  

The  following  example  creates  a document  and  adds  document  parts  in Content  

Manager.  Requirement:  The  user-defined  item  type,  S_docModel, must  be  defined  

in  the  system,  classified  as  Document  Model,  and  supports  ICMBASE  and  

ICMBASETEXT  part  types,  as  defined  in  the  SItemTypeCreationICM  ICM  API  

education  sample.  

 

 

Chapter  3. Programming  with the application  programming interfaces  (APIs)  39



Java  

//  Create  a document  

DKDDO  ddoDocument  = dsICM.createDDO("S_docModel",  DKConstant.DK_CM_DOCUMENT);  

  

//  Create  parts  

DKLobICM   base       = (DKLobICM)   dsICM.createDDO("ICMBASE",  

                      DKConstantICM.DK_ICM_SEMANTIC_TYPE_BASE);  

DKTextICM  baseText1  = (DKTextICM)  dsICM.createDDO("ICMBASETEXT",  

                      DKConstantICM.DK_ICM_SEMANTIC_TYPE_BASETEXT);  

DKTextICM  baseText2  = (DKTextICM)  dsICM.createDDO("ICMBASETEXT",  

                      DKConstantICM.DK_ICM_SEMANTIC_TYPE_BASETEXT);  

  

//  Set  parts’  MIME  type      (SResourceItemMimeTypesICM.txt  sample)  

base.setMimeType("application/msword");  

baseText1.setMimeType("text/plain");  

baseText2.setMimeType("text/plain");  

  

//  Load  content  into  parts   (SResourceItemCreationICM  sample)  

base.setContentFromClientFile("SResourceItemICM_Document1.doc");  

//  Load  file  

baseText1.setContentFromClientFile("SResourceItemICM_Text1.txt");  

//  into  memory  

baseText2.setContentFromClientFile("SResourceItemICM_Text2.txt");  

  

//  Access  the  DKParts  attribute  

DKParts  dkParts  = (DKParts)  ddoDocument.getData(ddoDocument.dataId(  

        DKConstant.DK_CM_NAMESPACE_ATTR,DKConstant.DK_CM_DKPARTS));  

  

//  Add  parts  to document  

dkParts.addElement(base);  

dkParts.addElement(baseText1);  

dkParts.addElement(baseText2);  

  

//  Add  new  document  to persistent  datastore  

ddoDocument.add();  

For  the  complete  sample  application,  refer  to the  SDocModelItemICM.java  

sample.  SResourceItemCreationICM  shows  more  examples  of  XDO  use.  

 

 

40 Application  Programming Guide



C++  

// Create  a document  

DKDDO*  ddoDocument  = dsICM->createDDO("S_docModel",  DK_CM_DOCUMENT);  

// Create  Parts  

DKLobICM*    base       = (DKLobICM*)   dsICM->createDDO("ICMBASE",  

                                         DK_ICM_SEMANTIC_TYPE_BASE);  

DKTextICM*   baseText1  = (DKTextICM*)  dsICM->createDDO("ICMBASETEXT",  

                                         DK_ICM_SEMANTIC_TYPE_BASETEXT);  

DKTextICM*   baseText2  = (DKTextICM*)  dsICM->createDDO("ICMBASETEXT",  

                                         DK_ICM_SEMANTIC_TYPE_BASETEXT);  

  

// Set  parts’  MIME  type      (SResourceItemMimeTypesICM.txt  sample)  

base->setMimeType("application/msword");  

baseText1->setMimeType("text/plain");  

baseText2->setMimeType("text/plain");  

// Load  content  into  parts   (SResourceItemCreationICM  sample)  

 // Load  the  file  into  memory.  

base->setContentFromClientFile("SResourceItemICM_Document1.doc");  

baseText1->setContentFromClientFile("SResourceItemICM_Text1.txt");  

baseText2->setContentFromClientFile("SResourceItemICM_Text2.txt");  

// Access  the  DKParts  attribute  

DKParts*  dkParts  = (DKParts*)(dkCollection*)  ddoDocument->getData(  

         ddoDocument->dataId(DK_CM_NAMESPACE_ATTR,DK_CM_DKPARTS));  

  

// Add  parts  to document  

dkParts->addElement((dkDataObjectBase*)(DKDDO*)base);  

dkParts->addElement((dkDataObjectBase*)(DKDDO*)baseText1);  

dkParts->addElement((dkDataObjectBase*)(DKDDO*)baseText2);  

// Add  new  document  to persistent  datastore  

ddoDocument->add();  

For  the  complete  sample  application,  refer  to  the  SDocModelItemICM.java  

sample.  SResourceItemCreationICM  shows  more  examples  of XDO  use.  

Programming a stand-alone XDO 

All  of  the  following  examples  are  specific  to  DB2  Content  Manager  8.2.  For  

examples  for  earlier  Content  Manager  and  other  content  servers,  see  “Representing  

items  using  DDOs”  on  page  120,  Chapter  8,  “Working  with  other  content  servers,”  

on  page  259,  and  see  the  sample  programs  in  the  samples  directory.  

Adding an XDO from the buffer 

This  example  shows  how  to  add  an  XDO  from  a buffer  in Content  Manager.  It 

creates  an  XDO,  loads  content  into  memory,  and  stores  persistently  content  from  

memory.  Requirement:  The  user-defined  item  type  S_lob  of  classification  resource  

must  be  defined  in  the  system,  as  defined  by  the  SItemTypeCreationICM  API  

education  sample.  Additionally,  the  resource  manager  and  SMS  collection  

definitions  must  be  set  up  and  set  as  default  for  the  item  type  or  for  the  user,  as  

performed  in  the  SResourceMgrDefCreationICM, SSMSCollectionDefCreationICM, 

SResourceMgrDefSetDefaultICM, and  SSMSCollectionDefSetDefaultICM  samples.  

 

 

Chapter  3. Programming  with the application  programming interfaces  (APIs)  41



Java  

//  Create  an empty  resource  object  

DKLobICM  lob  = (DKLobICM)  dsICM.createDDO("S_lob",  DKConstant.DK_CM_DOCUMENT);  

  

//  Set  the  MIME  type  (SResourceItemMimeTyesICM.txt  sample)  

lob.setMimeType("application/msword");  

  

//  Load  content  into  item’s  local  memory  

lob.setContentFromClientFile("SResourceItemICM_Document1.doc");  

  

//  Add  to datastore  with  content  already  in memory  

lob.add();  

For  the  complete  sample  application,  refer  to the  SResourceItemCreationICM  

sample.  

 

 

C++  

//  Create  an empty  resource  object  

DKLobICM*  lob  = (DKLobICM*)  dsICM->createDDO("S_lob",  DK_CM_DOCUMENT);  

  

//  Set  the  MIME  type  (SResourceItemMimeTyesICM.txt  sample)  

lob->setMimeType("application/msword");  

  

//  Load  content  into  item’s  local  memory  

lob->setContentFromClientFile("SResourceItemICM_Document1.doc");  

  

//  Add  to datastore  With  content  already  in memory  

lob->add();  

For  the  complete  sample  application,  refer  to the  SResourceItemCreationICM  

sample.  

Adding an XDO from a file 

The  following  example  adds  an  XDO  to the  content  server  (storing  the  content  

directly  from  file)  in  Content  Manager.  Requirement:  The  user-defined  item  type  

S_lob  of classification  resource  must  be  defined  in  the  system,  as defined  by  the  

SItemTypeCreationICM  API  education  sample.  Additionally,  the  resource  manager  

and  SMS  collection  definitions  must  be  set  up  and  set  as  default  for  the  item  type  

or  for  the  user,  as  performed  in  SResourceMgrDefCreationICM, 

SSMSCollectionDefCreationICM, SResourceMgrDefSetDefaultICM, and  

SSMSCollectionDefSetDefaultICM  samples.  

 

 

42 Application  Programming Guide



Java  

// Create  an empty  resource  object  

DKTextICM  text  = (DKTextICM)  dsICM.createDDO("S_text",  DKConstant.DK_CM_ITEM);  

  

// Set  the  MIME  type  (SResourceItemMimeTyesICM.txt  sample)  

text.setMimeType("text/plain");  

  

// Store  content  directly  from  a file  

text.add("SResourceItemICM_Text1.txt");  

For  the  complete  sample  application,  refer  to  the  SResourceItemCreationICM  

sample.  

 

 

C++  

// Create  an empty  resource  object  

DKTextICM*  text  = (DKTextICM*)  dsICM->createDDO("S_text",  DK_CM_ITEM);  

  

// Set  the  MIME  type  (SResourceItemMimeTyesICM.txt  sample)  

text->setMimeType("text/plain");  

  

// Store  content  directly  from  a file  

text->add("SResourceItemICM_Text1.txt");  

For  the  complete  sample  application,  refer  to  the  SResourceItemCreationICM  

sample.  

Adding an annotation object to an XDO 

The  following  example  adds  an  annotation  part  to a document  in  Content  

Manager.  

Requirement:  The  user-defined  item  type,  S_docModel, must  be  defined  in  the  

system,  classified  as  Document  Model,  and  support  the  ICMANNOTATION  part  

type,  as  defined  in the  SItemTypeCreationICM  sample.  Assume  that  you  are  given  

an  instance  of  a document  already  stored  persistently  in  the  ddoDocument  variable.  

Also,  assume  that  you  are  given  a connected  DKDatastoreICM  object  in variable  

dsICM. 

 

 

Chapter  3. Programming  with the application  programming interfaces  (APIs)  43

|
|
|
|
|
|
|
|



Java  

//  Check  out  / lock  the  item  for  update  

dsICM.checkOut(ddoDocument);  

  

//  Create  annotation  part  

DKLobICM   annot  = (DKLobICM)  dsICM.createDDO("ICMANNOATATION",  

                             DKConstantICM.DK_ICM_SEMANTIC_TYPE_ANNOTATION);  

  

//  Set  annotatoin  MIME  type  (SResourceItemMimeTypesICM.txt  sample)  

annot.setMimeType("image/bmp");  

  

//  Load  content  into  parts   (SResourceItemCreationICM  sample)  

annot.setContentFromClientFile("myAnnotation.bmp");  

  

//  Access  the  DKParts  attribute  

DKParts  dkParts  = (DKParts)  ddoDocument.getData(ddoDocument.dataId(  

        DKConstant.DK_CM_NAMESPACE_ATTR,DKConstant.DK_CM_DKPARTS));  

  

//  Add  parts  to document  

dkParts.addElement(annot);  

  

//  Save  the  changes  to the persistent  datastore  

ddoDocument.update();  

  

//  Check  in / unlock  the  item  after  update  

dsICM.checkIn(ddoDocument);  

For  the  complete  sample  application,  refer  to the  SDocModelItemICM  sample.  

 

 

C++  

//  Check  out  / lock  the  item  for  update  

dsICM->checkOut(ddoDocument);  

  

//  Create  annotation  part  

DKLobICM*  annot  = (DKLobICM*)  dsICM->createDDO("ICMANNOTATION",  

                              DK_ICM_SEMANTIC_TYPE_ANNOTATION);  

  

//  Set  annotatoin  MIME  type  (SResourceItemMimeTypesICM.txt  sample)  

annot->setMimeType("image/bmp");  

  

//  Load  content  into  parts   (SResourceItemCreationICM  sample)  

annot->setContentFromClientFile("myAnnotation.bmp");  

  

//  Access  the  DKParts  attribute  

DKParts*  dkParts  = (DKParts*)(dkCollection*)  ddoDocument->getData(  

         ddoDocument->dataId(DK_CM_NAMESPACE_ATTR,DK_CM_DKPARTS));  

  

//  Add  parts  to document  

dkParts->addElement((dkDataObjectBase*)(DKDDO*)annot);  

  

//  Save  the  changes  to the prsistent  datastore  

ddoDocument->update();  

  

//  Check  in / unlock  the  item  after  update  

dsICM->checkIn(ddoDocument);  

For  the  complete  sample  application,  refer  to the  SDocModelItemICM  sample.  

 

 

44 Application  Programming Guide



Examples of working with an XDO 

The  following  examples  illustrate  using  a stand-alone  XDO.  

Retrieving, updating, and deleting an XDO 

To retrieve,  update  or  delete  an  object  in  a content  server,  you  provide  the  correct  

item  ID,  part  ID  and  RepType  for  the  XDO  that  represents  the  object.  

The  following  example  retrieves,  updates,  and  deletes  an  XDO  in  Content  

Manager.  Requirement:  The  user-defined  item  type  S_text  of classification  

resource  must  be  defined  in  the  system,  as  defined  by  the  SItemTypeCreationICM  

API  education  sample.  Additionally,  the  resource  manager  and  SMS  collection  

definitions  must  be  set  up  and  set  as  default  for  the  item  type  or  for  the  user,  as  

performed  in  SResourceMgrDefCreationICM, SSMSCollectionDefCreationICM, 

SResourceMgrDefSetDefaultICM, and  SSMSCollectionDefSetDefaultICM  samples.  

Additionally,  assume  that  you  are  given  a PID  string  in  variable  pidString  for  a 

resource  item  that  already  exists  in  the  content  server.  

 

 

Java  

// Given:  String  pidString  

  

// Re-create  Blank  DDOs  for Existing  Item  (SItemRetrievalICM  sample)  

  

DKLobICM  lob  = (DKLobICM)  dsICM.createDDO(pidString);  

  

// Retrieve  the  item  with  the  resource  content  

lob.retrieve(DKConstant.DK_CM_CONTENT_YES);  

  

// Check  out  / lock  the  item  for  update   (SItemUpdateICM  sample)  

dsICM.checkOut(lob);  

  

// Set  the  new  MIME  type  (SResourceItemMimeTypesICM.txt  sample)  

lob.setMimeType("application/msword");  

  

// Update  datastore  with  new content  

lob.update("SResourceItemICM_Document2.doc");  

  

// Check  in / unlock  the item  after  update  

dsICM.checkIn(lob);  

  

// Delete  item  

lob.del();  

This  code  sample  comes  from  SResourceItemRetrievalICM, 

SResourceItemUpdateICM, and  SResourceItemDeletionICM  sample.  

 

 

Chapter  3. Programming  with the application  programming interfaces  (APIs)  45



C++  

//  Given:  DKString  pidString  

  

//  Re-create  Blank  DDOs  for Existing  Item  (SItemRetrievalICM  sample)  

DKLobICM*  lob  = (DKLobICM*)  dsICM->createDDO(pidString);  

  

//  Retrieve  the  item  with  the  resource  content  

lob->retrieve(DK_CM_CONTENT_YES);  

  

//  Check  out  / lock  the  item  for  update   (SItemUpdateICM  sample)  

dsICM->checkOut(lob);  

  

//  Set  the  new  MIME  type  (SResourceItemMimeTypesICM.txt  sample)  

lob->setMimeType("application/msword");  

  

//  Update  datastore  with  new  content  

lob->update("SResourceItemICM_Document2.doc");  

  

//  Check  in / unlock  the  item  after  update  

dsICM->checkIn(lob);  

  

//  Delete  item  

lob->del();  

  

//  Free  Memory  

delete(lob);  

This  code  sample  comes  from  SResourceItemRetrievalICM, 

SResourceItemUpdateICM, and  SResourceItemDeletionICM  sample.  

Invoking an XDO function 

This  example  demonstrates  how  to  test  the  DKBlob  class  using  an  earlier  DB2  

Content  Manager  server.  For  this  example,  you  must  know  the  item  ID  and  part  ID  

of  the  XDO.  

 

 

46 Application  Programming Guide



Java  

public  class  txdomiscDL  implements  DKConstantDL  

{ 

  public  static  void  main(String  args[])  

  { 

    int     partId  = 5; 

    String  itemId  = "GAWCVGGVFUG428UJ";  

    String  repType  = "";  

    // Check  the  number  of arguments  for  main  and  determine  what  to do 

    if (args.length  == 3) 

    { 

      partId  = (short)Integer.parseInt(args[0],  10);  

      repType  = args[1];  

      itemId  = args[2];  

      System.out.println("You  enter:  java  txdomiscDL  " + 

       + partId  + " " + repType  + " " + itemId);  

    } 

    if (args.length  == 2) 

    { 

      partId  = (short)Integer.parseInt(args[0],  10);  

      repType  = args[1];  

      System.out.println("You  enter:  java  txdomiscDL  " + 

       + partId  + " " + repType);  

    } 

    if (args.length  == 1) 

    { 

      partId  =(short)Integer.parseInt(args[0],  10);  

      System.out.println("You  enter:  java  txdomiscDL  " + partId  ); 

      System.out.println("The  supplied  default  repType  = " + repType);  

      System.out.println("The  supplied  default  itemId  = " + itemId);  

    } 

    if (args.length  == 0) 

    { 

      System.out.println("invoke:  java  txdomiscDL    ");  

      System.out.println("No  parameter,  following  defaults  provided:");  

      System.out.println("      default  partId  = " + partId);  

      System.out.println("      default  repType  = " + repType);  

      System.out.println("      default  itemId  = " + itemId);  

    } 

  

    try  

    { 

       DKDatastoreDL  dsDL  = new  DKDatastoreDL();  

       System.out.println("connecting  to  datastore");  

       dsDL.connect("LIBSRVRN","FRNADMIN","PASSWORD","");  

       System.out.println("datastore  connected");  

  

       DKBlobDL  axdo  = new  DKBlobDL(dsDL);  

       DKPidXDODL   apid  = new  DKPidXDODL();  

       apid.setPartId(partId);  

       apid.setPrimaryId(itemId);  

       apid.setRepType(repType);  

       axdo.setPidObject(apid);  

       System.out.println("repType="  + apid.getRepType());  

       System.out.println("itemid="  + apid.getItemId());  

       System.out.println("partId="  + apid.getPartId());  

// continued...  

 

 

Chapter  3. Programming  with the application  programming interfaces  (APIs)  47



Java  (continued)  

       // -----  Before  retrieve  

 System.out.println("before  retrieve:");  

 System.out.println("   contentclass="  + axdo.getContentClass());  

 System.out.print("   content  length="  + axdo.length());  

 System.out.println("  (the  length  of this  object  instance  - in memory)");  

 System.out.print("   getSize="  + axdo.getSize());  

 System.out.println("  (get  the  object  size  without  retrieving  object)");  

 System.out.println("   createdTimestamp="  + axdo.getCreatedTimestamp());  

 System.out.println("   updatedTimestamp="  + axdo.getUpdatedTimestamp());  

 axdo.retrieve();  

  

 //  -----  After  retrieve  

 System.out.println("after  retrieve:");  

 System.out.println("   contentclass="  + axdo.getContentClass());  

 System.out.print("   content  length="  + axdo.length());  

 System.out.println("  (the  length  of this  object  instance  - in memory)");  

 System.out.print("   getSize="  + axdo.getSize());  

 System.out.println("  (get  the  object  size  without  retrieving  object)");  

 System.out.println("   createdTimestamp="  + axdo.getCreatedTimestamp());  

 System.out.println("   updatedTimestamp="  + axdo.getUpdatedTimestamp());  

 System.out.println("   affiliatedTyp="  + axdo.getAffiliatedType());  

 if  (axdo.getAffiliatedType()  == DK_DL_ANNOTATION)  

 { 

    DKAnnotationDL  ann  = 

 (DKAnnotationDL)(axdo.getExtension("DKAnnotationDL"));  

    System.out.println("affil  pageNumber="  + ann.getPageNumber());  

    System.out.println("affil  X=" + ann.getX());  

    System.out.println("affil  Y=" + ann.getY());  

 } 

 System.out.println("about  to do open()...");  

 axdo.setInstanceOpenHandler("notepad",  true);  

 int  cc = axdo.getContentClass();  

 if  ( cc == DK_DL_CC_GIF)  

    axdo.setInstanceOpenHandler("lviewpro",  true);  

 else  if (cc  == DK_DL_CC_ASCII)  

    axdo.setInstanceOpenHandler("notepad",  true);  

 else  if (cc  == DK_DL_CC_AVI)  

    axdo.setInstanceOpenHandler("mplay32  ", true);  

 axdo.open();  

 dsDL.disconnect();  

       dsDL.destroy();  

  

    } 

    catch  (DKException  exc)  

    { 

  // ------  Handle  the  exceptions  

} 

 

 

48 Application  Programming Guide



C++  

void  main(int  argc,  char  *argv[])  

{ 

  DKDatastoreDL  dsDL;  

  long  hsession;  

  DKString  itemId,  repType;  

  int  partId;  

  itemId  = "GAWCVGGVFUG428UJ";  

  repType  = "FRN$NULL";  

  partId  = 2;  

  

 cout  <<"argc  is "<<argc<<endl;  

 if (argc  ==  1) 

 { 

    cout<<"invoke:  txdomisc  <partId>  <repType>  <itemId>"<<endl;  

    cout<<"  no parameter,  following  default  will  be  provided:"<<endl;  

    cout<<"The  supplied  default  partId  = "<<partID<<endl;  

    cout<<"The  supplied  default  repType  = "<<repType<<endl;  

    cout<<"The  supplied  default  itemId  = "<<itemId<<endl;  

 } 

 else  if (argc  == 2) 

 { 

   partId  = atoi(argv[1]);  

   cout<<"you  enter:  txdomisc  "<<argv[1]<<endl;  

   cout<<"The  supplied  default  repType  = "<<repType<<endl;  

   cout<<"The  supplied  default  itemId  = "<<itemId<<endl;  

 } 

 else  if (argc  == 3) 

 { 

    partId  = atoi(argv[1]);  

    repType  = DKString(argv[2]);  

    cout<<"you  enter:  txdomisc  ""<<argv[1]<<"  "<<argv[2]<<endl;  

    cout<<"The  supplied  default  itemId  = "<<itemId<<endl;  

 } 

 else  if (argc  == 4) 

 { 

    partId  = atoi(argv[1]);  

    repType  = DKString(argv[2]);  

    itemId  = DKString(argv[3]);  

 cout<<"you  enter:  txdomisc  ""<<argv[1]<<"  "<<argv[2]<<"  "<<argv[3]<<endl;  

 } 

    cout  << connecting  Datastore"  << endl;  

    try  

    { 

       dsDL.connect("LIBSRVRN","FRNADMIN","PASSWORD");  

       cout  <<  "datastore  connected"  << endl;  

       hsession  = (long)  (dsDL.connection()->handle());  

       cout  <<  "datastore  handle"  << hsession  <<endl;  

// continued...  

 

 

Chapter  3. Programming  with the application  programming interfaces  (APIs)  49



C++  (continued)  

       DKBlobDL*  axdo  = new DKBlobDL(&dsDL);  

       DKPidXDODL*   apid  = new  DKPidXDODL;  

       apid  ->setPartId(partId);  

       apid  ->setPrimaryId(itemId);  

       apid  ->setRepType(repType);  

       axdo  ->setPidObject(apid);  

       cout<<"itemId=  "<<axdo->getItemId()<endl;  

       cout<<"partId=  "<<((DKPidXDODL*)  (axdo->getPidObject()))  

         ->getPartId()<<endl;  

       cout<<"repType=  "<<axdo->getRepType()<<endl;  

  

       //==  before  retrieve  

       cout<<"before  retrieve:"<<endl;  

       cout<<"  content  class="<<axdo->getContentClass()<<endl;  

       cout<<"  content  length="<<axdo->length();  

       cout<<"  (the  length  of this  object  instance  - in memory)"<<endl;  

       cout<<"  getSize="<<axdo->getSize();  

       cout<<"  (get  the object  size  without  retrieving  object)"<<endl;  

       cout<<"  createdTimestamp="<<axdo->getCreatedTimestamp()<<endl;  

       cout<<"  updatedTimestamp="<<axdo->getUpdatedTimestamp()<<endl;  

       axdo->retrieve();  

  

       //==  after  retrieve  

       cout<<"after  retrieve:"<<endl;  

       cout<<"  content  class="<<axdo->getContentClass()<<endl;  

       cout<<"  content  length="<<axdo->length();  

       cout<<"  (the  length  of this  object  instance  - in memory)"<<endl;  

       cout<<"  getSize="<<axdo->getSize();  

       cout<<"  (get  the object  size  without  retrieving  object)"<<endl;  

       cout<<"  createdTimestamp="<<axdo->getCreatedTimestamp()<<endl;  

       cout<<"  updatedTimestamp="<<axdo->getUpdatedTimestamp()<<endl;  

       cout<<"  mimeType="<<axdo->getMimeType()<<endl;  

       int  atype  = axdo->getAffiliatedType();  

       cout<<"  affiliatedType=  "<<axdo->getAffiliatedType()<<endl;  

       if (atype  == DK_DL_ANNOTATION)  

       { 

        DKAnnotationDL*  ann=(DKAnnotationDL*)axdo  

          ->getExtension("DKAnnotationDL");  

        cout  <<"   pageNumber=  "<<ann->getPageNumber()<<endl;  

        cout  <<"   partId=  "<<ann->getPart()<<endl;  

        cout  <<"   X=<<ann->getX()<<endl;  

        cout  <<"   Y=<<ann->getY()<<endl;  

        } 

        //==  open  content  

        int  concls  = axdo->getContentClass();  

        if (concls  == DK_DL_CC_ASCII)  

           axdo->setInstanceOpenHandler("notepad",  TRUE);  

        else  if (concls  == DK_DL_CC_GIF)  

           axdo->setInstanceOpenHandler("lviewpro",  TRUE);  

        else  if (concls  == DK_DL_CC_AVI)  

           axdo->setInstanceOpenHandler("mplay32",  TRUE);  

        axdo->open();  

//  continued...  

 

 

50 Application  Programming Guide



C++  (continued)  

       delete  apid;  

       delete  axdo;  

       dsDL.disconnect();  

       cout<<"datastore  disconnected"<<endl;  

     } 

     catch(DKException  &exc)  

    { 

     cout  << "Error  id" << exc.errorId()  << endl;  

     cout  << "Exception  id " << exc.exceptionId()  << endl;  

     for(unsigned  long  i=0;i<  exc.textCount();i++)  

     { 

      cout  << "Error  text:"  << exc.text(i)  << endl;  

     } 

     for  (unsigned  long  g=0;g<  exc.locationCount();g++)  

     { 

      const  DKExceptionLocation*  p = exc.locationAtIndex(g);  

      cout  << "Filename:  " << p->fileName()  << endl;  

      cout  << "Function:  " << p->functionName()  << endl;  

      cout  << "LineNumber:  " << p->lineNumber()  << endl;  

     } 

     cout  << "Exception  Class  Name:  " << exc.name()  << endl;  

    } 

  cout  << "done  ..."  << endl;  

} 

Adding an XDO media object in earlier DB2 Content Manager 

For  every  media  object  added,  an  entry  is created  in  the  FRN$MEDIA  table.  This  

entry  contains  the  information  about  the  media  user  data.  The  physical  media  

object  is stored  in  the  VideoCharger  content  server  specified  in  the  network  table.  

For  the  following  example,  you  must  know  the  item  ID  of  the  XDO.  

 

 

Chapter  3. Programming  with the application  programming interfaces  (APIs)  51



Java  

public  class  txdoAddVSDL  implements  DKConstantDL  

{ 

//  -----  Main  method  

public  static  void  main(String[]  args)  

{ 

    String   fileName  = "/icing1.mpg1";         //a media  object  

    String  itemId  = "K1A04EWBVHJAV1D7";        //a  known  itemId  

    int  partId  = 45;  

    // -----  Check  the arguments  for  main  

    if (args.length  == 3) 

    { 

      fileName  = args[0];  

      partId  = (int)Integer.parseInt(args[1],  10);  

      itemId  = args[2];  

      System.out.println("You  enter:  java  txdoAddVSDL  " + 

      fileName  + " " + partId  + " " + itemId);  

    } 

    if (args.length  == 2) 

    { 

      fileName  = args[0];  

      partId  =(int)Integer.parseInt(args[1],  10);  

      System.out.println("You  enter:  java  txdoAddVSDL  " + 

      fileName  + " " + partId  ); 

      System.out.println("The  supplied  default  itemId  = " + itemId);  

    } 

    if (args.length  == 1) 

    { 

      fileName  = args[0];  

      System.out.println("You  enter:  java  txdoAddVSDL  " + fileName);  

      System.out.println("The  supplied  default  partId  = " + partId);  

      System.out.println("The  supplied  default  itemId  = " + itemId);  

    } 

    if (args.length  == 0) 

    { 

System.out.println("invoke:  java  txdoAddVSDL  <filename>  <part  ID>  <item  ID>");  

System.out.println("No  parameter,  following  defaults  will  be  provided:");  

System.out.println("      default  fileName  = " + fileName);  

System.out.println("      default  partId  = " + partId);  

System.out.println("      default  itemId  = " + itemId);  

    } 

    // -----  Processing  

    try  

    { 

      // -----  connect  to datastore  

      DKDatastoreDL  dsDL  = new  DKDatastoreDL();  

      // replace  following  with  your  library  server,  userid,  password  

      System.out.println("connecting  to datastore...");  

      dsDL.connect("LIBSRVRN","FRNADMIN","PASSWORD","");  

      System.out.println("datastore  connected");  

      // -----  create  xdo  and pid 

      DKBlobDL  axdo  = new  DKBlobDL(dsDL);  

      DKPidXDODL   apid  = new DKPidXDODL();  

      apid.setPartId(partId);  

      apid.setPrimaryId(itemId);  

      axdo.setPidObject(apid);  

      // you  must  use the  content  class  DK_DL_CC_IBMVSS  for a media  object  

      axdo.setContentClass(DK_DL_CC_IBMVSS);  

      System.out.println("contentClass="  + axdo.getContentClass());  

      System.out.println("partId  = " + axdo.getPartId());  

//  continued...  

 

 

52 Application  Programming Guide



Java  (continued)  

      // -----  set  up  DKMediaStreamInfoDL  

      DKMediaStreamInfoDL  aVS  = new  DKMediaStreamInfoDL();  

      aVS.setMediaFullFileName(fileName);  

      // if fileName  contain  a list  of  media  segments  then  use  following  

      //       aVS.setMediaObjectOption(DK_VS_LIST_OF_OBJECT_SEGMENTS);  

      aVS.setMediaObjectOption(DK_DL_VS_SINGLE_OBJECT);  

      aVS.setMediaHostName("<insert  hostname  here>");  

      aVS.setMediaUserId("<insert  user  ID  here>");  

      aVS.setMediaPassword("<insert  password  here>");  

      // following  are  optional,  if not  set  default  value  will  be provided  

      aVS.setMediaNumberOfUsers(2);  

      aVS.setMediaAssetGroup("AG");  

      // -----  same  as defined  in VideoCharger  server  

      aVS.setMediaType("MPEG1");  

      aVS.setMediaResolution("SIF");  

      aVS.setMediaStandard("NTSC");  

      aVS.setMediaFormat("SYSTEM");  

      axdo.setExtension("DKMediaStreamInfoDL",  (dkExtension)aVS);  

      System.out.println("about  to call  add()");  

      axdo.add();  

      System.out.println("add  successfully.....");  

      System.out.println("after  added  check  for  status:");  

      boolean  flag2  = axdo.isCategoryOf(DK_DL_MEDIA_OBJECT);  

      if (flag2)  

      { 

       DKMediaStreamInfoDL  media  = (DKMediaStreamInfoDL)  

                          axdo.getExtension("DKMediaStreamInfoDL");  

       System.out.println("  mediaformat="  + media.getMediaFormat());  

       System.out.println("  mediaBitRate="  + media.getMediaBitRate());  

       System.out.println("  mediastate(dynamic)="  + 

                          axdo.retrieveObjectState(DK_MEDIA_OBJECT));  

      } 

      dsDL.disconnect();  

      dsDL.destroy();  

    } 

    catch  (DKException  exc)  { 

       try  { 

             dsDL.destroy();  

       } 

           catch  (Exception  e) 

           { 

              e.printStackTrace();  

           } 

          System.out.println("Exception  name  " + exc.name());  

          System.out.println("Exception  message  " + exc.getMessage());  

          exc.printStackTrace();  

    } 

    catch  (Exception  exc){  

       try  { 

             dsDL.destroy();  

           } 

           catch  (Exception  e) 

           { 

              e.printStackTrace();  

           } 

       System.out.println("Exception  message  " + exc.getMessage());  

       exc.printStackTrace();  

    } 

  } 

} 

 

 

Chapter  3. Programming  with the application  programming interfaces  (APIs)  53



C++  

void  main(int  argc,  char  *argv[])  

{ 

  DKString  itemId,  fileName;  

  int  partId;  

  itemId  = "K1A04EWBVHJAV1D7";  

  partId  = 22;  

  fileName  = "/icing1.mpg1";  

  if (argc  == 1) 

  { 

    cout<<"invoke:  txdoAddVSDL  <fileName>  <partId>  <itemId>"<<endl;  

    cout<<"  no parameter,  following  default  will  be provided:"<<endl;  

    cout<<"The  supplied  default  fileName  = "<<fileName<<endl;  

    cout<<"The  supplied  default  partId  = "<<partId<<endl;  

    cout<<"The  supplied  default  itemId  = "<<itemId<<endl;  

 } 

  else  if (argc  == 2) 

 { 

    fileName  = DKString(argv[1]);  

    cout<<"you  enter:  txdoAddVSDL  "<<argv[1]<<endl;  

    cout<<"The  supplied  default  partId  = "<<partId<<endl;  

    cout<<"The  supplied  default  itemId  = "<<itemId<<endl;  

 } 

  else  if (argc  == 3) 

 { 

    fileName  = DKString(argv[1]);  

    partId  = atoi(argv[2]);  

    cout<<"you  enter:  txdoAddVSDL  "<<argv[1]<<"  "<<argv[2]<<endl;  

    cout<<"The  supplied  default  itemId  = "<<itemId<<endl;  

 } 

  else  if (argc  == 4) 

 { 

    fileName  = DKString(argv[1]);  

    partId  = atoi(argv[2]);  

    itemId  = DKString(argv[3]);  

cout<<"enter:  txdoAddVSDL  "<<argv[1]<<"  "<<argv[2]<<"  "<<argv[3]<<endl;  

 } 

  try  

 { 

  // connect  to datastore  

  cout  << "Connecting  datastore  ..."  << endl;  

  DKDatastoreDL  dsDL;  

  // replace  following  with  your  library  server,  user  ID,  password  

  dsDL.connect("LIBSRVRN","FRNADMIN","PASSWORD");  

  cout  << "datastore  connected"  << endl;  

  // ***  create  xdo  and pid  

  DKBlobDL*  axdo  = new  DKBlobDL(&dsDL);  

  DKPidXDODL*   apid  = new  DKPidXDODL;  

  apid  ->setPartId(partId);  

  apid  ->setPrimaryId(itemId);  

  axdo  ->setPidObject(apid);  

  // you  must  use  the  content  class  DK_DL_CC_IBMVSS  for a media  object  

  axdo  ->setContentClass(DK_DL_CC_IBMVSS);  

  cout  <<"itemId=  "<<axdo->getItemId()<<endl;  

  cout  <<"partId=  "<<axdo->getPartId()<<endl;  

  cout  <<"repType=  "<<axdo->getRepType()<<endl;  

  cout  <<"content  class="<<  axdo->getContentClass()<<endl;  

//  continued...  

 

 

54 Application  Programming Guide



C++  (continued)  

  // ***  setup  DKMediaStreamInfoDL  

  DKMediaStreamInfoDL  aVS;  

  aVS.setMediaFullFileName(fileName);  

  aVS.setMediaObjectOption(DK_DL_VS_SINGLE_OBJECT);  

  aVS.setMediaHostName("<insert  hostname  here>");  

  aVS.setMediaUserId("<insert  user  ID here>");  

  aVS.setMediaPassword("<insert  password  here>");  

  

  //following  are  optional,  if not  set  then  default  value  will  be provided  

  aVS.setMediaNumberOfUsers(1);  

  aVS.setMediaAssetGroup("AG");  

  // ***  same  as  defined  in VideoCharger  server  

  aVS.setMediaType("MPEG1");  

  aVS.setMediaResolution("SIF");  

  aVS.setMediaStandard("NTSC");  

  aVS.setMediaFormat("SYSTEM");  

  

  axdo  ->setExtension("DKMediaStreamInfoDL",  (dkExtension*)&aVS);  

  cout  <<"about  to do add()"<<endl;  

  axdo  ->add();  

  cout<<"Object  added  successfully  "<<endl;  

  

  cout<<"after  added  check  for  status:"<<endl;  

  DKBoolean  flag2  = axdo->isCategoryOf(DK_DL_MEDIA_OBJECT);  

  if (flag2)  

  { 

    DKMediaStreamInfoDL*  mediaInfo  = (DKMediaStreamInfoDL*)  

                 axdo->getExtension("DKMediaStreamInfoDL");  

    cout<<"  copyRate="<<mediaInfo->getMediaCopyRate()<<endl;  

    cout<<"  mediaType="<<mediaInfo->getMediaType()<<endl;  

    cout<<"  mediaFrameRate="<<mediaInfo->getMediaFrameRate()<<endl;  

    cout<<"  mediaState="<<mediaInfo->getMediaState()<<endl;  

    cout<<"  mediaTimestamp="<<mediaInfo->getMediaTimestamp()<<endl;  

    cout<<"  MediaState(dynamic)="<<  

      axdo->retrieveObjectState(DK_MEDIA_OBJECT)<<endl;  

  } 

  dsDL.disconnect();  

  cout<<"datastore  disconnected"<<endl;  

 } 

  catch(DKException  &exc)  

 { 

   cout  << "Error  id" << exc.errorId()  << endl;  

   cout  << "Exception  id " << exc.exceptionId()  << endl;  

   for(unsigned  long  i=0;i<  exc.textCount();i++)  

   { 

    cout  << "Error  text:"  << exc.text(i)  << endl;  

   } 

   for (unsigned  long  g=0;g<  exc.locationCount();g++)  

   { 

    const  DKExceptionLocation*  p = exc.locationAtIndex(g);  

    cout  << "Filename:  " << p->fileName()  << endl;  

    cout  << "Function:  " << p->functionName()  << endl;  

    cout  << "LineNumber:  " << p->lineNumber()  << endl;  

   } 

   cout  << "Exception  Class  Name:  " << exc.name()  << endl;  

  } 

  cout  << "done  ..."  << endl;  

} 

 

 

Chapter  3. Programming  with the application  programming interfaces  (APIs)  55



Deleting an XDO media object 

The  following  example  shows  how  to  delete  an  XDO  media  object.  For  this  

example  you  must  know  the  item  ID,  part  ID,  and  RepType  (representation  type)  

of  the  XDO.  

 

 

56 Application  Programming Guide



Java  

public  class  txdoDelVSDL  implements  DKConstantDL  

{ 

 public  static  void  main(String  args[])  

 { 

    int   partId  = 45;  

    String  repType  = "";  

    String  itemId  =  "K1A04EWBVHJAV1D7";  

    if (args.length  == 3) 

    { 

      partId  = (short)Integer.parseInt(args[0],  10);  

      repType  = args[1];  

      itemId  = args[2];  

      System.out.println("You  enter:  java  txdoDelVSDL  " + 

       + partId  + " " + repType  + " " + itemId);  

    } 

    // -----  Check  the  arguments  for  main  

    if (args.length  == 2) 

    { 

      partId  = (short)Integer.parseInt(args[0],  10);  

      repType  = args[1];  

      System.out.println("You  enter:  java  txdoDelVSDL  " + 

       + partId  + " " + repType);  

    } 

  

    if (args.length  == 1) 

    { 

      partId  =(short)Integer.parseInt(args[0],  10);  

      System.out.println("You  enter:  java  txdoDelVSDL  " + partId  ); 

      System.out.println("The  supplied  default  repType  = " + repType);  

      System.out.println("The  supplied  default  itemId  = " + itemId);  

    } 

    if (args.length  == 0) 

    { 

System.out.println("invoke:  java  txdoDelVSDL  <part  ID> <RepType>  <item  ID>");  

System.out.println("No  parameter,  following  defaults  will  be provided:");  

System.out.println("      default  partId  = " + partId);  

System.out.println("      default  repType  = " + repType);  

System.out.println("      default  itemId  = " + itemId);  

    } 

  

    // -----  Processing  

    try  

    { 

      DKDatastoreDL  dsDL  = new DKDatastoreDL();  

      System.out.println("connecting  to datastore...");  

      // replace  following  with  your  library  server,  userid,  password  

      dsDL.connect("LIBSRVRN","FRNADMIN","PASSWORD","");  

      System.out.println("datastore  connected");  

  

      DKBlobDL  axdo  = new  DKBlobDL(dsDL);  

      DKPidXDODL   apid  = new DKPidXDODL();  

      apid.setPartId(partId);  

      apid.setPrimaryId(itemId);  

      apid.setRepType(repType);  

      axdo.setPidObject(apid);  

      boolean  flag2  = axdo.isCategoryOf(DK_DL_MEDIA_OBJECT);  

      System.out.println("isMediaObject?="  + flag2);  

// continued...  

 

 

Chapter  3. Programming  with the application  programming interfaces  (APIs)  57



Java  (continued)  

      if (flag2)  

      { 

        DKMediaStreamInfoDL  media  = (DKMediaStreamInfoDL)  

                      axdo.getExtension("DKMediaStreamInfoDL");  

        System.out.println("  mediaformat="  + media.getMediaFormat());  

        System.out.println("  mediaBitRate="  + media.getMediaBitRate());  

        System.out.println("  mediastate(dynamic)="  + 

                      axdo.retrieveObjectState(DK_MEDIA_OBJECT));  

        // -----  set  delete  option  for media  object  

        axdo.setOption(DK_DL_OPT_DELETE_OPTION,  

          (Object)new  Integer(DK_DL_DELETE_NO_DROPITEM_MEDIA_AVAIL));  

        System.out.println("The  delete  option  =" + 

          (Integer)(axdo.getOption(DK_OPT_DL_DELETE_OPTION)));  

      } 

  

      System.out.println("about  to call  del()..  ");  

      axdo.del();  

      System.out.println("del  successfully.....");  

      flag2  = axdo.isCategoryOf(DK_DL_MEDIA_OBJECT);  

      System.out.println("after  delete  isMediaObject?  = " + flag2);  

      System.out.println("about  to call  dsDL.disconnect()");  

      dsDL.disconnect();  

      dsDL.destroy();  

    } 

    // ------  Handle  exceptions  

    catch  (DKException  exc)  { 

       try  { 

             dsDL.destroy();  

       } 

           catch  (Exception  e) 

           { 

              e.printStackTrace();  

           } 

          System.out.println("Exception  name  " + exc.name());  

          System.out.println("Exception  message  " + exc.getMessage());  

          exc.printStackTrace();  

    } 

    catch  (Exception  exc){  

       try  { 

             dsDL.destroy();  

           } 

           catch  (Exception  e) 

           { 

              e.printStackTrace();  

           } 

       System.out.println("Exception  message  " + exc.getMessage());  

       exc.printStackTrace();  

     } 

  } 

} 

 

 

58 Application  Programming Guide



C++  

void  main(int  argc,  char  *argv[])  

{ 

  DKDatastoreDL  dsDL;  

  DKString  itemId,  repType;  

  int  partId;  

  itemId  = "Y68M1I@VYDG8SPQ4";  

  partId  = 1;  

  repType  = "FRN$NULL";  

  if (argc  ==  1) 

  { 

    cout<<"invoke:  txdoDelVSDL  <partId>  <repType>  <itemId>"<<endl;  

    cout<<"  no parameter,  following  default  will  be  provided:"<<endl;  

    cout<<"The  supplied  default  partId  = "<<partId<<endl;  

    cout<<"The  supplied  default  repType  = "<<repType<<endl;  

    cout<<"The  supplied  default  itemId  = "<<itemId<<endl;  

 } 

  else  if (argc  == 2) 

 { 

    partId  = atoi(argv[1]);  

    cout<<"you  enter:  txdoDelVSDL  "<<argv[1]<<endl;  

    cout<<"The  supplied  default  repType  = "<<repType<<endl;  

    cout<<"The  supplied  default  itemId  = "<<itemId<<endl;  

 } 

  else  if (argc  == 3) 

 { 

    repType  = DKString(argv[2]);  

    partId  = atoi(argv[1]);  

    cout<<"you  enter:  txdoDelVSDL  "<<argv[1]<<"  "<<argv[2]<<endl;  

    cout<<"The  supplied  default  itemId  = "<<itemId<<endl;  

 } 

  else  if (argc  == 4) 

 { 

    itemId  = DKString(argv[3]);  

    repType  = DKString(argv[2]);  

    partId  = atoi(argv[1]);  

    cout<<"you  enter:  txdoDelVSDL  "<<argv[1]<<"  "<<argv[2]<<"  " 

      <<argv[3]<<endl;  

 } 

  

  try  

  { 

    cout  << "Connecting  datastore  ..."  << endl;  

    // replace  following  with  your  library  server,  user  ID,  password  

    dsDL.connect("LIBSRVRN","FRNADMIN","PASSWORD");  

    cout  << "datastore  connected"  << endl;  

  

    DKBlobDL*  axdo  = new  DKBlobDL(&dsDL);  

    DKPidXDODL*   apid  = new  DKPidXDODL;  

    apid  ->setPartId(partId);  

    apid  ->setPrimaryId(itemId);  

    apid  ->setRepType(repType);  

    axdo  ->setPidObject(apid);  

    cout  <<"itemId=  "<<axdo->getItemId()<<endl;  

    cout  <<"partId=  "<<((DKPidXDODL*)(axdo->getPidObject()))  

      ->getPartId()<<endl;  

    DKBoolean  flag2  = axdo->isCategoryOf(DK_DL_MEDIA_OBJECT);  

    cout  <<"isMediaObject?  = "<<flag2<<endl;  

// continued...  

 

 

Chapter  3. Programming  with the application  programming interfaces  (APIs)  59



C++  (continued)  

    if (flag2)  

    { 

      DKMediaStreamInfoDL*  mediaInfo  = (DKMediaStreamInfoDL*)  

                    axdo->getExtension("DKMediaStreamInfoDL");  

      cout<<"  copyRate="<<mediaInfo->getMediaCopyRate()<<endl;  

      cout<<"  mediaType="<<mediaInfo->getMediaType()<<endl;  

      cout<<"  mediaFrameRate="<<mediaInfo->getMediaFrameRate()<<endl;  

      cout<<"  mediaState="<<mediaInfo->getMediaState()<<endl;  

      cout<<"  mediaTimestamp="<<mediaInfo->getMediaTimestamp()<<endl;  

      cout<<"  MediaState(dynamic)=  

         "<<axdo->retrieveObjectState(DK_MEDIA_OBJECT)<<endl;  

  

      cout<<"about  to set  the delete  option  for media  object..."<<endl;  

      DKAny  delOpt  = DK_DL_DELETE_NO_DROPITEM_MEDIA_AVAIL;  

      axdo->setOption(DK_DL_OPT_DELETE_OPTION,  delOpt);  

      DKAny  opt;  

      axdo->getOption(DK_DL_OPT_DELETE_OPTION,  opt);  

      long  lopt  = opt;  

      cout<<"The  setted  delete  option  = "<<lopt<<endl;  

  

    } 

    cout<<"about  to do del()"<<endl;  

    axdo->del();  

    cout<<"del  successfully..."<<endl;  

    flag2  = axdo->isCategoryOf(DK_DL_MEDIA_OBJECT);  

    cout<<"after  delete  isMediaObject?  = "<<flag2<<endl;  

    delete  axdo;  

    delete  apid;  

    dsDL.disconnect();  

    cout<<"datastore  disconnected"<<endl;  

 } 

  catch(DKException  &exc)  

 { 

   cout  << "Error  id"  << exc.errorId()  << endl;  

   cout  << "Exception  id " << exc.exceptionId()  << endl;  

   for(unsigned  long  i=0;i<  exc.textCount();i++)  

   { 

    cout  << "Error  text:"  << exc.text(i)  << endl;  

   } 

   for  (unsigned  long  g=0;g<  exc.locationCount();g++)  

   { 

    const  DKExceptionLocation*  p = exc.locationAtIndex(g);  

    cout  << "Filename:  " << p->fileName()  << endl;  

    cout  << "Function:  " << p->functionName()  << endl;  

    cout  << "LineNumber:  " << p->lineNumber()  << endl;  

   } 

   cout  << "Exception  Class  Name:  " << exc.name()  << endl;  

  } 

  cout  << "done  ..."  << endl;  

} 

Retrieving an XDO media object 

The  following  example  shows  how  to  retrieve  an  XDO  media  object.  The  retrieved  

object  contains  only  the  media  metadata,  not  the  media  object  itself.  For  this  

example  you  must  know  the  item  ID  and  part  ID  of the  XDO.  

 

 

60 Application  Programming Guide



Java  

public  class  txdoretxsDL  implements  DKConstantDL  

{ 

 public  static  void  main(String  args[])  

 { 

    int     partId  = 45;  

    String  itemId  = "K1A04EWBVHJAV1D7";  

    String  repType  = "";  

    System.out.println("Processing  using  the  following  values:  ");  

    System.out.println("      Part  Id = " + partId);  

    System.out.println("      RepType  = " + repType);  

    System.out.println("      Item  Id = " + itemId);  

    try  

    { 

      DKDatastoreDL  dsDL  = new DKDatastoreDL();  

      System.out.println("connecting  to datastore...");  

      // -----  replace  following  with  your  library  server,  userid,  password  

      dsDL.connect("LIBSRVRN","FRNADMIN","PASSWORD","");  

      System.out.println("datastore  connected");  

      DKBlobDL  axdo  = new  DKBlobDL(dsDL);  

      DKPidXDODL   apid  = new DKPidXDODL();  

      apid.setPartId(partId);  

      apid.setPrimaryId(itemId);  

      apid.setRepType(repType);  

      axdo.setPidObject(apid);  

      System.out.println("repType="  + apid.getRepType());  

      System.out.println("objectType="  + axdo.getObjectType());  

      System.out.println("itemid="  + apid.getItemId());  

      System.out.println("partId="  + apid.getPartId());  

  

      boolean  flag  = axdo.isCategoryOf(DK_DL_INDEXED_OBJECT);  

      boolean  flag2  = axdo.isCategoryOf(DK_DL_MEDIA_OBJECT);  

      System.out.println("isIndexedObject?="  + flag);  

      System.out.println("isMediaObject?="  + flag2);  

      if (flag)  

      { 

       DKSearchEngineInfoDL  srch  = (DKSearchEngineInfoDL)  

                          axdo.getExtension("DKSearchEngineInfoDL");  

       System.out.println("   serverName="  + srch.getServerName());  

       System.out.println("   textIndex="  + srch.getTextIndex());  

       System.out.println("   timeStamp="  + srch.getSearchTimestamp());  

       System.out.println("   searchIndex="  + srch.getSearchIndex());  

       System.out.println("   indexedState="  + 

                          axdo.retrieveObjectState(DK_INDEXED_OBJECT));  

      } 

 

 

Chapter  3. Programming  with the application  programming interfaces  (APIs)  61



Java  (continued)  

      if (flag2)  

      { 

        DKMediaStreamInfoDL  media  = (DKMediaStreamInfoDL)  

                          axdo.getExtension("DKMediaStreamInfoDL");  

        System.out.println("  mediaformat="  + media.getMediaFormat());  

        System.out.println("  mediaBitRate="  + media.getMediaBitRate());  

        System.out.println("  mediastate(dynamic)="  + 

                          axdo.retrieveObjectState(DK_MEDIA_OBJECT));  

      } 

      System.out.println("before  retrieve......");  

      System.out.println("  lob length="  + axdo.length());  

      System.out.println("  size="  + axdo.getSize());  

      System.out.println("  createdTimestamp="+axdo.getCreatedTimestamp());  

      System.out.println("  updatedTimestamp="+axdo.getUpdatedTimestamp());  

      // -----   Perform  the retrieve  call  

      axdo.retrieve();  

  

      System.out.println("after  retrieve......");  

      System.out.println("  lob length="  + axdo.length());  

      System.out.println("  size="  + axdo.getSize());  

      System.out.println("  mimeType="  + axdo.getMimeType());  

      System.out.println("  createdTimestamp="  + axdo.getCreatedTimestamp());  

      System.out.println("  updatedTimestamp="  + axdo.getUpdatedTimestamp());  

      System.out.println("affiliatedTyp="  + axdo.getAffiliatedType());  

      if (axdo.getAffiliatedType()  == DK_DL_ANNOTATION)  

      { 

        DKAnnotationDL  ann  = 

          (DKAnnotationDL)(axdo.getExtension("DKAnnotationDL"));  

        System.out.println("affil  pageNumber="  + ann.getPageNumber());  

        System.out.println("affil  X="  + ann.getX());  

        System.out.println("affil  Y="  + ann.getY());  

      } 

      System.out.println("about  to do open()...");  

      axdo.setInstanceOpenHandler("notepad",  true);  //default  for Windows  

      int  cc = axdo.getContentClass();  

      if ( cc == DK_DL_CC_GIF)  

        axdo.setInstanceOpenHandler("lviewpro  ", true);   //use  lviewpro  

      else  if (cc  == DK_DL_CC_AVI)  

        axdo.setInstanceOpenHandler("mplay32  ", true);    //use  mplay32  

      else  if (cc  == DK_DL_CC_IBMVSS)  

        axdo.setInstanceOpenHandler("iscoview  ", true);   //use  iscoview  

      axdo.open();  

  

      dsDL.disconnect();  

      dsDL.destroy();  

    } 

    catch  (DKException  exc)  

    { 

       ...  \\ handle  exceptions  and destroy  the  datastore     + 

    } 

  } 

} 

 

 

62 Application  Programming Guide



C++  

void  main(int  argc,  char  *argv[])  

{ 

  DKDatastoreDL  dsDL;  

  DKString  itemId,  repType;  

  int  partId;  

  itemId  = "K1A04EWBVHJAV1D7";  

  partId  = 1;  

  repType  = "FRN$NULL";  

  if (argc  ==  1) 

  { 

    cout<<"invoke:  txdoRetxsDL  <partId>  <repType>  <itemId>"<<endl;  

    cout<<"  no parameter,  following  default  will  be  provided:"<<endl;  

    cout<<"The  supplied  default  partId  = "<<partId<<endl;  

    cout<<"The  supplied  default  repType  = "<<repType<<endl;  

    cout<<"The  supplied  default  itemId  = "<<itemId<<endl;  

 } 

  else  if (argc  == 2) 

 { 

    partId  = atoi(argv[1]);  

    cout<<"you  enter:  txdoRetxsDL  "<<argv[1]<<endl;  

    cout<<"The  supplied  default  repType  = "<<repType<<endl;  

    cout<<"The  supplied  default  itemId  = "<<itemId<<endl;  

 } 

  else  if (argc  == 3) 

 { 

    repType  = DKString(argv[2]);  

    partId  = atoi(argv[1]);  

    cout<<"you  enter:  txdoRetxsDL  "<<argv[1]<<"  "<<argv[2]<<endl;  

    cout<<"The  supplied  default  itemId  = "<<itemId<<endl;  

 } 

  else  if (argc  == 4) 

 { 

    itemId  = DKString(argv[3]);  

    repType  = DKString(argv[2]);  

    partId  = atoi(argv[1]);  

    cout<<"you  enter:  txdoRetxsDL  "<<argv[1]  

      <<"  "<<argv[2]<<"  "<<argv[3]<<endl;  

 } 

  try  

 { 

    cout  << "Connecting  datastore  ..."  << endl;  

    // replace  following  with  your  library  server,  userid,  password  

    dsDL.connect("LIBSRVRN","FRNADMIN","PASSWORD");  

    cout  << "datastore  connected"  << endl;  

  

    DKBlobDL*  axdo  = new  DKBlobDL(&dsDL);  

    DKPidXDODL*   apid  = new  DKPidXDODL;  

    apid  ->setPartId(partId);  

    apid  ->setPrimaryId(itemId);  

    apid  ->setRepType(repType);  

    axdo  ->setPidObject(apid);  

    cout  <<"itemId=  "<<axdo->getItemId()<<endl;  

    cout  <<"partId=  "<<((DKPidXDODL*)  

          (axdo->getPidObject()))->getPartId()<<endl;  

// continued...  

 

 

Chapter  3. Programming  with the application  programming interfaces  (APIs)  63



C++  (continued)  

    DKBoolean  flag  = axdo->isCategoryOf(DK_DL_INDEXED_OBJECT);  

    DKBoolean  flag2  = axdo->isCategoryOf(DK_DL_MEDIA_OBJECT);  

    cout  <<"isIndexed?  = "<<flag<<endl;  

    cout  <<"isMediaObject?  = "<<flag2<<endl;  

    if (flag)  

    { 

      DKSearchEngineInfoDL*  srchInfo  = (DKSearchEngineInfoDL*)  

                    axdo->getExtension("DKSearchEngineInfoDL");  

      cout<<"  ServerName="<<srchInfo->getServerName()<<endl;  

      cout<<"  TextIndex="<<srchInfo->getTextIndex()<<endl;  

      cout<<"  srchEngine="<<srchInfo->getSearchEngine()<<endl;  

      cout<<"  srchIndex="<<srchInfo->getSearchIndex()<<endl;  

      cout<<"  indexedState="<<axdo  

        ->retrieveObjectState(DK_DL_INDEXED_OBJECT)<<endl;  

    } 

  

    if (flag2)  

    { 

      DKMediaStreamInfoDL*  mediaInfo  = (DKMediaStreamInfoDL*)  

                   axdo->getExtension("DKMediaStreamInfoDL");  

      cout<<"  copyRate="<<mediaInfo->getMediaCopyRate()<<endl;  

      cout<<"  mediaType="<<mediaInfo->getMediaType()<<endl;  

      cout<<"  mediaFrameRate="<<mediaInfo->getMediaFrameRate()<<endl;  

      cout<<"  mediaState="<<mediaInfo->getMediaState()<<endl;  

      cout<<"  mediaTimestamp="<<mediaInfo->getMediaTimestamp()<<endl;  

      cout<<"  MediaState(dynamic)=  " 

           <<axdo->retrieveObjectState(DK_DL_MEDIA_OBJECT)<<endl;  

    } 

  

     cout<<"before  retrieve..."<<endl;  

     cout  <<"  length  of lobdata  = "<<axdo->length()<<endl;  

     cout<<"  size  of  lobdata  = "<<axdo->getSize()<<endl;  

     cout<<"  created  Timestamp  = "<<axdo->getCreatedTimestamp()<<endl;  

     cout<<"  updated  Timestamp  = "<<axdo->getUpdatedTimestamp()<<endl;  

     axdo->retrieve();  

     cout<<"after  retrieve..."<<endl;  

     cout  <<"  length  of lobdata  = "<<axdo-><length()<<endl;  

     cout  <<"  mimeType  = "<<axdo->getMimeType()<<endl;  

     cout  <<"  size  of lobdata  = "<<axdo->getSize()<<endl;  

     cout<<"  created  Timestamp  = "<<axdo->getCreatedTimestamp()<<endl;  

     cout<<"  updated  Timestamp  = "<<axdo->getUpdatedTimestamp()<<endl;  

//  continued...  

 

 

64 Application  Programming Guide



C++  (continued)  

     int  atype  = axdo->getAffiliatedType();  

     cout  <<"affiliatedType=  "<<axdo->getAffiliatedType()<<endl;  

     if (atype  == DK_ANNOTATION)  

     { 

       DKAnnotationDL*  ann  = 

         (DKAnnotationDL*)axdo->getExtension("DKAnnotationDL");  

       cout<<"   pageNumber=  "<<ann->getPageNumber()<<endl;  

       cout<<"   partId=  "<<ann->getPart()<<endl;  

       cout<<"   X= "<<ann->getX()<<endl;  

       cout<<"   Y= "<<ann->getY()<<endl;  

     } 

     cout<<"about  to do open()..."<<endl;  

     axdo->setInstanceOpenHandler("notepad",  TRUE);  

                              //default  use Notepad  in Windows  

     int  concls  = axdo->getContentClass();  

     if (concls  == DK_DL_CC_GIF)  

      axdo->setInstanceOpenHandler("lviewpro",  TRUE);  

                              //use  lviewpro  in Windows  

      else  if (concls  == DK_DL_CC_AVI)  

       axdo->setInstanceOpenHandler("mplay32",  TRUE);  

                              //use  mplay32  in Windows  

       else  if  (concls  ==  DK_DL_CC_IBMVSS)  

        axdo->setInstanceOpenHandler("iscoview",  TRUE);  

                             //use  iscoview  in Windows  

      axdo->open();  

  

    delete  axdo;  

    delete  apid;  

    dsDL.disconnect();  

    cout<<"datastore  disconnected"<<endl;  

  } 

   catch(DKException  &exc)  

  { 

   cout  << "Error  id" << exc.errorId()  << endl;  

   cout  << "Exception  id " << exc.exceptionId()  << endl;  

   for(unsigned  long  i=0;i<  exc.textCount();i++)  

   { 

    cout  << "Error  text:"  << exc.text(i)  << endl;  

   } 

   for (unsigned  long  g=0;g<  exc.locationCount();g++)  

   { 

    const  DKExceptionLocation*  p = exc.locationAtIndex(g);  

    cout  << "Filename:  " << p->fileName()  << endl;  

    cout  << "Function:  " << p->functionName()  << endl;  

    cout  << "LineNumber:  " << p->lineNumber()  << endl;  

   } 

   cout  << "Exception  Class  Name:  " << exc.name()  << endl;  

  } 

  cout  << "done  ..."  << endl;  

} 

Adding an XDO to a storage collection 

To add  an  XDO  object  associated  with  user  defined  storage  collection  names,  use  

the  extension  object  DKStorageManageInfoxx, where  xx  is the  suffix  representing  

the  specific  server.  

The  following  example  uses  DKStorageManageInfoDL,  for  an  earlier  DB2  Content  

Manager  server;  for  Content  Manager  Version  8 and  later, see  Chapter  11, 

“Working  with  XML  services  (Java  only),”  on  page  429.  

 

 

Chapter  3. Programming  with the application  programming interfaces  (APIs)  65



Java  

String  fileName  = "e:\\test\\notepart.txt";  //file  for  add 

int     partId  = 0;                       //let  system  decide  the  partId  

String  itemId  = "V5SPB$WBLOHIQ4YI";            //an  existing  itemId  

DKDatastoreDL  dsDL  = new  DKDatastoreDL();      //required  datastore  

dsDL.connect("LIBSRVRN","FRNADMIN","PASSWORD","");  //connect  to dstore  

DKBlobDL  axdo  = new  DKBlobDL(dsDL);            //create  XDO  

DKPidXDODL   apid  = new  DKPidXDODL();           //create  PID  

apid.setPartId(partId);                        //set  partId  

apid.setPrimaryId(itemId);                     //set  itemId  

axdo.setPidObject(apid);                       //set  PID  object  

axdo.setContentClass(DK_DL_CC_ASCII);          //set  ContentClass  

  

//  -----  Create  the  DKStorageManageInfoDL  

StorageManageInfoDL  aSMS  = new  DKStorageManageInfoDL();  

aSMS.setRetention(888);                        //optional  

aSMS.setCollectionName("TESTCOLLECT1");        //already  defined  in DL SMS  

aSMS.setManagementClass("TESTMGT1");           //optional  

aSMS.setStorageClass("FIXED");                 //optional  

axdo.setExtension("DKStorageManageInfoDL",  (dkExtension)aSMS);  

axdo.add(fileName);                            //add  from  file  

System.out.println("after  add  partId  = " + axdo.getPartId());  

                                           //display  the  partId  after  add 

dsDL.disconnect();              // disconnect  from   and  destroy  datastore  

dsDL.destroy();  

//   ------   Handle  the  exceptions  

 

 

C++  

DKString  fileName="e:\\test\\notepart.txt";  //file  for  add  

int     partId  = 0;                   //let  system  decide  the partId  

DKString  itemId  = "V5SPB$WBLOHIQ4YI";          //an  existing  itemId  

DKString  rtype  = "FRN$NULL";                   //optional  

DKDatastoreDL  dsDL;                            //required  datastore  

dsDL.connect("LIBSRVRN","FRNADMIN","PASSWORD");  //connect  to  dstore  

DKBlobDL*  axdo  = new  DKBlobDL(&dsDL);          //create  XDO 

DKPidXDODL*   apid  = new  DKPidXDODL;            //create  Pid  

apid->setPartId(partId);                       //set  partId  

apid->setPrimaryId(itemId);                    //set  itemId  

apid->setRepType(rtype);                       //set  repType  

axdo->setPidObject(apid);                      //set  pid  object  

axdo->setContentClass(DK_DL_CC_ASCII);         //set  ContentClass  

  

//---set  DKStorageManageInfoDL-----  

DKStorageManageInfoDL  aSMS  = new DKStorageManageInfoDL();  

aSMS.setRetention(888);                        //optional  

aSMS.setCollectionName("TESTCOLLECT1");  //already  defined  in DL SMS  

aSMS.setManagementClass("TESTMGT1");           //optional  

aSMS.setStorageClass("FIXED");                 //optional  

axdo->setExtension("DKStorageManageInfoDL",  (dkExtension)aSMS);  

axdo->add(fileName);                           //add  from  file  

System.out.println("after  add  partId  = " + axdo->getPartId());  

                                      //display  the partId  after  add 

dsDL.disconnect();                     //disconnect  from  datastore  

System.out.println("datastore  disconnected");  

 See  the  following  code  samples  in  the  samples  directory  for  examples  of  adding  

search  indexed  objects  and  media  objects  to  Content  Manager.  

v   TxdoAddBsmsDL  

v   TxdosAddBsmsDL  

 

 

66 Application  Programming Guide



v   TxdoAddFsmsDL  

v   TxdosAddFsmsDL  

v   TxdomAddsmsDL

Changing the storage collection of an XDO 

You can  change  the  storage  collection  of an  existing  XDO.  After  setting  up  the  

extension  object  DKStorageManageInfoDL, call  the  changeStorage  method.  

 

 

Java  

System.out.println("about  to call  changeStorage()......");  

axdo.changeStorage();  

System.out.println("changeStorage()  success......");  

 

 

C++  

System.out.println("about  to call  changeStorage()......");  

axdo->changeStorage();  

System.out.println("changeStorage()  success......");  

 

Creating documents and using the DKPARTS  attribute 

The  DKPARTS  attribute  in  a DDO  represents  the  collection  of  parts  in  a document.  

The  value  of  this  attribute  is a DKParts  object,  which  is a collection  of DKPart  

objects.  DKPart  objects  are  items  from  document  part  classified  item  types,  and  

contain  resource  content.  

DB2  Content  Manager  only:  A document  is an  item  that  can  be  stored,  retrieved,  

and  exchanged  among  Content  Manager  systems  and  users  as a separate  unit.  An  

item  given  the  document  semantic  type  is expected  to  contain  information  that  

forms  a document,  but  does  not  rigidly  mean  an  implementation  of a specific  

document  model.  An  item  created  from  a document  (also  known  as  a document  

model)  classified  item  type  means  that  the  item  will  contain  document  parts,  a 

specific  implementation  of  a document  model  provided  by  Content  Manager.  

Document  classified  item  types  can  create  items  given  either  the  document  or  

folder  semantic  type.  The  document  parts  can  include  varied  types  of content,  

including  for  example,  text,  images,  and  spreadsheets.  

The  following  example  creates  a document  and  adds  document  parts  in Content  

Manager.  Requirement:  The  user-defined  item  type,  S_docModel, must  be  defined  

in  the  system,  classified  as  Document  Model.  It must  also  support  ICMBASE  and  

ICMBASETEXT  part  types,  as  defined  in  the  SItemTypeCreationICM  API  education  

sample.  

 

 

Chapter  3. Programming  with the application  programming interfaces  (APIs)  67

|
|



Java  

//  Create  a document  

DKDDO  ddoDocument  = dsICM.createDDO("S_docModel",  DKConstant.DK_CM_DOCUMENT);  

  

//  Create  parts  

DKLobICM   base       = (DKLobICM)   dsICM.createDDO("ICMBASE",  

                      DKConstantICM.DK_ICM_SEMANTIC_TYPE_BASE);  

DKTextICM  baseText1  = (DKTextICM)  dsICM.createDDO("ICMBASETEXT",  

                      DKConstantICM.DK_ICM_SEMANTIC_TYPE_BASETEXT);  

DKTextICM  baseText2  = (DKTextICM)  dsICM.createDDO("ICMBASETEXT",  

                      DKConstantICM.DK_ICM_SEMANTIC_TYPE_BASETEXT);  

  

//  Set  parts’  MIME  type      (SResourceItemMimeTypesICM.txt  sample)  

base.setMimeType("application/msword");  

baseText1.setMimeType("text/plain");  

baseText2.setMimeType("text/plain");  

  

//  Load  content  into  parts   (SResourceItemCreationICM  sample)  

base.setContentFromClientFile("SResourceItemICM_Document1.doc");  

//  Load  file  

baseText1.setContentFromClientFile("SResourceItemICM_Text1.txt");  

//  into  memory  

baseText2.setContentFromClientFile("SResourceItemICM_Text2.txt");  

  

//  Access  the  DKParts  attribute  

DKParts  dkParts  = (DKParts)  ddoDocument.getData(ddoDocument.dataId(  

        DKConstant.DK_CM_NAMESPACE_ATTR,DKConstant.DK_CM_DKPARTS));  

  

//  Add  parts  to document  

dkParts.addElement(base);  

dkParts.addElement(baseText1);  

dkParts.addElement(baseText2);  

  

//  Add  new  document  to persistent  datastore  

ddoDocument.add();  

For  information  on  creating  documents  with  parts,  refer  to  the  

SDocModelItemICM  API  Education  Sample.  

 

 

68 Application  Programming Guide



C++  

// Create  a document  

DKDDO*  ddoDocument  = dsICM->createDDO("S_docModel",  DK_CM_DOCUMENT);  

  

// Create  Parts  

DKLobICM*    base       = (DKLobICM*)   dsICM->createDDO("ICMBASE",  

                                         DK_ICM_SEMANTIC_TYPE_BASE);  

DKTextICM*   baseText1  = (DKTextICM*)  dsICM->createDDO("ICMBASETEXT",  

                                         DK_ICM_SEMANTIC_TYPE_BASETEXT);  

DKTextICM*   baseText2  = (DKTextICM*)  dsICM->createDDO("ICMBASETEXT",  

                                         DK_ICM_SEMANTIC_TYPE_BASETEXT);  

  

// Set  parts’  MIME  type      (SResourceItemMimeTypesICM.txt  sample)  

base->setMimeType("application/msword");  

baseText1->setMimeType("text/plain");  

baseText2->setMimeType("text/plain");  

  

// Load  content  into  parts   (SResourceItemCreationICM  sample)  

base->setContentFromClientFile("SResourceItemICM_Document1.doc");  

// Load  the  file  into  memory.  

baseText1->setContentFromClientFile("SResourceItemICM_Text1.txt");  

baseText2->setContentFromClientFile("SResourceItemICM_Text2.txt");  

  

// Access  the  DKParts  attribute  

DKParts*  dkParts  = (DKParts*)(dkCollection*)  ddoDocument->getData(  

          ddoDocument->dataId(DK_CM_NAMESPACE_ATTR,DK_CM_DKPARTS));  

  

// Add  parts  to document  

dkParts->addElement((dkDataObjectBase*)(DKDDO*)base);  

dkParts->addElement((dkDataObjectBase*)(DKDDO*)baseText1);  

dkParts->addElement((dkDataObjectBase*)(DKDDO*)baseText2);  

  

// Add  new  document  to persistent  datastore  

ddoDocument->add();  

For  information  on  creating  documents  with  parts,  refer  to the  

SDocModelItemICM  API  Education  Sample.  

 The  DDO  owns  all  parts  in  the  parts  collection.  Update  and  delete  parts  through  

the  document  DDO.  

The  following  example  shows  how  to  retrieve  and  access  parts  from  a DDO.  

 

 

Chapter  3. Programming  with the application  programming interfaces  (APIs)  69



Java  

//  NOTE:  Print  function  provided  in  SDocModelItemICM  sample  

  

//  Get  the  DKParts  object.  

short  dataid  = ddoDocument.dataId(DKConstant.DK_CM_NAMESPACE_ATTR,  

if(dataid==0)  

  throw  new  Exception("No  DKParts  Attribute  Found!  Either  item  type  does  not  

    support  parts  or the  document  has  not  been  explicitly  retrieved.");  

DKParts  dkParts  = (DKParts)  ddoDocument.getData(dataid);  

  

//  Go through  part  list  

dkIterator  iter  = dkParts.createIterator();   // Create  an Iterator  

while(iter.more()){                           // While  there  are  items  left  

    DKDDO  part  = (DKDDO)  iter.next();         // Move  pointer  & return  next  

System.out.println("Item  Id: "+((DKPidICM)part.getPidObject()).getItemId()");  

} 

For  the  complete  sample  application,  refer  to SDocModelItemICM  sample.  

 

 

C++  

//  NOTE:  Print  function  provided  in  SDocModelItemICM  sample  

  

//  Get  the  DKParts  object.  

short  dataid  = ddoDocument->dataId(DK_CM_NAMESPACE_ATTR,DK_CM_DKPARTS);  

if(dataid==0)  

  throw  DKException("No  DKParts  Attribute  Found!  Either  item  type  does  not  

    support  parts  or the  document  has  not  been  explicitly  retrieved.");  

DKParts*  dkParts  = (DKParts*)(dkCollection*)  ddoDocument->getData(dataid);  

  

//  Go through  part  list  

dkIterator*  iter  = dkParts->createIterator();   // Create  an Iterator  

while(iter->more()){                            // While  there  are  items  

 DKDDO*  part  = (DKDDO*)  iter->next()->value();  // Move  pointer  & return  next  

 cout  << "Item  Id:"  << ((DKPidICM*)part->getPidObject())->getItemId()<<  endl;  

} 

delete(iter);                                      // Free  Memory  

For  information  on  creating  documents  with  parts,  refer  to  the  

SDocModelItemICM  API  Education  Sample.  

Creating folders and using the DKFOLDER attribute 

In  a folder  DDO,  you  use  the  DKFOLDER  attribute  to represent  the  collection  of  

documents  and  other  folders  that  belong  to the  folder.  The  value  of  this  attribute  is 

a DKFolder  object,  which  is a collection  of DDOs.  As  shown  below,  the  DKFolder  

attribute  is  set  as  the  DKParts  attribute  is set.  

DB2  Content  Manager  only:  A  folder  is an  item  of any  item  type,  regardless  of  

classification,  with  the  folder  semantic  type.  Any  item  with  the  folder  semantic  type  

will  contain  specific  folder  functionality  provided  by  Content  Manager,  in  addition  

to  all  non-resource  item  capabilities  and  any  additional  functionality  available  from  

an  item  type  classification  such  as  document  model  or  resource.  Folders  may  

contain  any  number  of  items  of  any  type,  including  documents  and  subfolders.  A 

folder  is indexed  by  attributes.  

 

 

70 Application  Programming Guide



The  following  example  creates  a folder  and  adds  contents  in  Content  Manager.  

Requirement:  The  user-defined  item  type,  S_simple, must  be  defined  in  the  

system,  as  defined  in  the  SItemTypeCreationICM  API  education  sample.  

 

 

Java  

// Create  new  folder  in memory  

DKDDO  ddoFolder  = dsICM.createDDO("S_simple",  DKConstant.DK_CM_FOLDER);  

  

// Create  and  save  contents  to place  in folder  

DKDDO  ddoDocument  = dsICM.createDDO("S_simple",  DKConstant.DK_CM_DOCUMENT);  

DKDDO  ddoFolder2   = dsICM.createDDO("S_simple",  DKConstant.DK_CM_FOLDER);  

DKDDO  ddoItem      = dsICM.createDDO("S_simple",  DKConstant.DK_CM_ITEM);  

ddoDocument.add();  

ddoItem.add();  

ddoFolder2.add();  

  

// Access  the  DKFolder  attribute  

DKFolder  dkFolder  = (DKFolder)  

ddoFolder.getData(ddoFolder.dataId(DKConstant.DK_CM_NAMESPACE_ATTR,  

                                   DKConstant.DK_CM_DKFOLDER));  

  

// Add  contents  to folder  

dkFolder.addElement(ddoDocument);  

dkFolder.addElement(ddoItem);  

dkFolder.addElement(ddoFolder2);   // Note,  Folders  can  contain  sub-folders.  

  

// Save  the  folder  in the persistent  datastore.  

ddoFolder.add();  

For  more  information  on  creating  Folders,  refer  to  the  SFolderICM  API  

Education  Sample.  

 

 

C++  

// Create  new  folder  in memory  

DKDDO*  ddoFolder  = dsICM->createDDO("S_simple",  DK_CM_FOLDER);  

  

// Create  and  save  contents  to place  in folder  

DKDDO*  ddoDocument  = dsICM->createDDO("S_simple",  DK_CM_DOCUMENT);  

DKDDO*  ddoFolder2   = dsICM->createDDO("S_simple",  DK_CM_FOLDER);  

DKDDO*  ddoItem      = dsICM->createDDO("S_simple",  DK_CM_ITEM);  

ddoDocument->add();  

ddoItem->add();  

ddoFolder2->add();  

  

// Access  the  DKFolder  attribute  

DKFolder*  dkFolder  = (DKFolder*)(dkCollection*)  ddoFolder->getData(  

                     ddoFolder->dataId(DK_CM_NAMESPACE_ATTR,DK_CM_DKFOLDER));  

  

// Add  contents  to folder  

dkFolder->addElement(ddoDocument);  

dkFolder->addElement(ddoItem);  

dkFolder->addElement(ddoFolder2);   // Note,  Folders  can  contain  sub-folders.  

  

// Save  the  folder  in the persistent  datastore.  

ddoFolder->add();  

For  more  information  on  creating  Folders,  refer  to  the  SFolderICM  API  

Education  Sample.  

 

 

Chapter  3. Programming  with the application  programming interfaces  (APIs)  71



In  DB2  Content  Manager  Version  8, the  folder  item  does  not  own  the  folder  

contents.  An  item  may  be  added  to  multiple  folders.  Removing  an  item  from  a 

folder  simply  breaks  the  folder-content  relationship  managed  by  the  system.  Items  

in  the  folder  must  be  updated  and  deleted  independently.  In  earlier  versions  of 

Content  Manager,  the  DDO  owns  the  contents  in  the  collection.  

The  following  example  shows  how  to  retrieve  and  access  folder  contents  from  a 

DDO.  

 

 

Java  

//  NOTE:  Print  function  provided  in  SFolderICM  API  Education  Sample  

  

//  Get  the  DKFolder  object.  

short  dataid  = folder.dataId(DKConstant.DK_CM_NAMESPACE_ATTR,  

                             DKConstant.DK_CM_DKFOLDER);  

if(dataid==0)  

 throw  new  Exception("No  DKFolder  Attribute  Found!   DDO  is either  not  a 

  Folder  or Folder  Contents  have  not been  explicitly  retrieved.");  

DKFolder  dkFolder  = (DKFolder)  folder.getData(dataid);  

  

//  Access  contents  

dkIterator  iter  = dkFolder.createIterator();  // Create  an Iterator  

while(iter.more()){                           // While  there  are  items  left  

 DKDDO  ddo  = (DKDDO)  iter.next();          // Move  to & return  next  element  

 System.out.println("Item  Id:  "+((DKPidICM)ddo.getPidObject()).getItemId()");  

} 

For  the  complete  sample  application,  refer  to the  SFolderICM  education  

sample.  

 

 

C++  

//  NOTE:  Print  function  provided  in  SFolderICM  API  Education  Sample  

  

//  Get  the  DKFolder  object.  

short  dataid  = folder->dataId(DK_CM_NAMESPACE_ATTR,DK_CM_DKFOLDER);  

if(dataid==0)  

 throw  DKException("No  DKFolder  Attribute  Found!  DDO  is either  not  a Folder  

  or Folder  Contents  have  not  been  explicitly  retrieved.");  

DKFolder*  dkFolder  = (DKFolder*)(dkCollection*)  folder->getData(dataid);  

  

//  Access  contents  

dkIterator*  iter  = dkFolder->createIterator();  //Create  an Iterator  

while(iter->more()){                            //While  there  are  items  left  

 DKDDO*  ddo  = (DKDDO*)  iter->next()->value();  //Move  to & return  next  element  

 cout  << "Item  Id:  " << ((DKPidICM*)ddo->getPidObject())->getItemId()<<  endl;  

} 

For  the  complete  sample  application,  refer  to the  SFolderICM  education  

sample.  

Using DKAny (C++ only) 

DKAny  contains  any  object  whose  type  can  vary  at run time.  A  DKAny  object  can  

be  any  of  the  following  types:  

v   null  

v   (unsigned)  short  

 

 

72 Application  Programming Guide



v   short  

v   (unsigned)  long  

v   long  

v   float  

v   double  

v   char  

v   TypeCode  

v   DKBoolean  

v   DKString  

v   DKDate  

v   DKTime  

v   DKTimestamp  

v   DKByteArray  

v   DKDecimal  

v   DKNVPair

A DKAny  can  only  be  NULL  if it  has  not  been  assigned  a value  or  the  

DKAny::setNull()  method  has  been  called  (DKAny  1969  any).  After  it has  been  

assigned  a value,  1970  DKAny::isNull()  returns  FALSE.  

In  addition  to  the  above  types,  a DKAny  object  can  also  contain  the  following  

object  reference  types:  

v   dkDataObjectBase*  

v   dkCollection*  

v   void*

Using type code 

You can  determine  the  current  type  of  a DKAny  object  by  calling  the  typeCode  

function,  which  returns  a TypeCode  object,  that  is,  tc_null  for  null,  tc_short  for  

short,  and  so  forth.  See  the  Application  Programming  Reference  for  a complete  

listing  of  type  codes.  

Managing memory in DKAny 

DKAny  manages  the  memory  for  the  object  it contains,  unless  the  contained  object  

is  an  object  reference  type.  Copy  related  operations  involving  object  references  will  

create  a copy  of  the  pointer  only.  You need  to  keep  track  of object  reference  types  

during  copying  and  deletion.  

Using constructors 

DKAny  provides  a constructor  for  each  type  it  supports.  The  following  example  

shows  how  to  create  a DKAny  object  that  contains  some  of the  types  listed  in the  

previous  section.  

 

 

Chapter  3. Programming  with the application  programming interfaces  (APIs)  73



C++  

DKAny  any1((unsigned  short)  10);              // contains  unsigned  short  10 

DKAny  any2((long)  200);                       // contains  long  200 

DKAny  any3(DKString("any  string"));           // contains  DKString  

DKAny  any4(DKTime(10,20,30));                 // contains  DKTime  

DKAny  any5((dkDataObjectBase*)  new DKDDO);    // contains  DKDDO  

DKAny  any6(new  MyObject(5,"abc"));            // contains  MyObject  

DKAny  any7(new  DKDDO);                        // shorter  form  of any5  

Getting the type code 

Use  the  typeCode  function  to find  the  type  code  of  the  object  inside  DKAny.  

 

 

C++  

DKAny::TypeCode  type_code;  

type_code  = any1.typeCode();  // type_code  is tc_ushort  

type_code  = any4.typeCode();  // type_code  is tc_time  

type_code  = any5.typeCode();  // type_code  is tc_dobase  (object  ref)  

type_code  = any6.typeCode();  // type_code  is tc_voidptr  since  

                       // MyObject  is not  recognized  by DKAny  

Assigning a new value to DKAny 

To assign  a new  value  to  an  existing  DKAny  object,  use  the  equal  sign  (=)  

assignment  operator.  DKAny  provides  an  assignment  for  each  type  code.  

 

 

C++  

DKAny  any;         // any  contains  null  

long  vlong  = 300;  

DKTimestamp  vts(1997,8,28,10,11,12,999);  

dkDataObjectBase*  dobase  = 

(dkDataObjectBase*)  new  DKDDO;  

any  = vlong;      //  any  contains  long  300 

any  = vts;        // any  contains  timestamp  

any  = dobase;     // any  contains  ddo  

any  = new  DKDDO;  // any  contains  ddo 

Assigning a value from DKAny 

Assigning  a DKAny  back  to a regular  type  requires  a cast  operator.  For  example:  

 

 

C++  

vlong       = (long)  any2;                          // sets  vlong  to 200 

DKTime  at  = (DKTime)  any4;                        //  sets  at to (10,20,30)  

DKDDO*  ddo  = (DKDDO*)  ((dkDataObjectBase*)  any5);  // extract  the  ddo  

dkDataObjectBase*  dobase  = any7;                   // extract  the  DDO  

 You will  get  an  invalid  type  conversion  exception  if the  type  does  not  match.  

Therefore,  you  must  check  the  type  code  before  converting  DKAny  to  a regular  

type:  

 

 

74 Application  Programming Guide



C++  

if (any5.typeCode()  == DKAny::tc_dobase)  

    dobase  = (dkDataObjectBase*)  any5;  

You can  create  a case  statement  to check  the  type  of DKAny,  as  follows:  

 

 

C++  

       switch(any.typeCode())  { 

          case  DKAny::tc_short:  

               // operation  for short  

               ...  

               break;  

          case  DKAny::tc_ushort:  

               // operation  for unsigned  short  

               ...  

               break;  

          ...   etc.  

       } 

 If  the  DKAny  object  contains  an  object  reference,  you  can  get  the  DKAny  content  

as  a void  pointer,  then  cast  it to  the  proper  type.  However,  use  this  operation  only  

if you  know  the  type  code  that  is used  inside  DKAny:  

 

 

C++  

// knows  exactly  any5  contains  DKDDO  

ddo  = (DKDDO*)  any5.value();  

Displaying DKAny 

You can  use  cout  to  display  the  content  of a DKAny  object:  

 

 

C++  

cout  << any3  << endl;    // displays  "any  string"  

cout  << any4  << endl;    // displays  "10:20:30"  

cout  << any5  << endl;    // displays  "(dkDataObjectBase*)  <address>",  

                        // where  address  is the  memory  location  of the  ddo  

Destroying DKAny 

Because  DKAny  can  hold  an  object  reference  but  does  not  manage  memory  for  

object  reference  types,  you  must  manage  the  memory  for  these  types.  The  

following  example  manages  the  memory  for  a DKAny  object:  

 

 

Chapter  3. Programming  with the application  programming interfaces  (APIs)  75



C++  

DKDDO*  ddo  = new  DKDDO;               //  creates  a DKDDO  in the  heap  

DKAny  anyA((dkDataObjectBase*)ddo);  

DKAny*  anyB  = new  DKAny(anyA);        // creates  anyB  in the  heap  

                                     // anyA  and  anyB  contains  a 

                                     // reference  to  the  same  ddo  

...  

delete  anyB;                          // delete  anyB,  does  not  delete  ddo  

if  (anyA.typeCode()  == DKAny::tc_dobase)  

    delete  ((dkDataObjectBase*)  anyA.value());  // deletes  the  ddo 

The  last  delete  statement  must  be  performed  before  exiting  the  scope,  otherwise  

anyA  is deleted,  leaving  the  DDO  as a memory  leak.  

Programming tips 

Recommendation:  When  converting  an  integer  literal  to DKAny,  it is advisable  to 

state  the  type  explicitly  to avoid  an  undesirable  type  conversion.  Turn to  

 

 

C++  

any  = 10;                       // ambiguous  

any  = (unsigned  long)  10;       // unambiguous  

any  = (short)  4;               // unambiguous  

Using collections and iterators 

dkCollection  is an  abstract  class  providing  the  methods  for  working  with  a 

collection.  DKSequentialCollection  is the  concrete  implementation  of  dkCollection.  

Other  collections  are  implemented  as  subclasses  of  DKSequentialCollection.  These  

collections  contain  the  data  objects  as members.  

Collection  members  are  usually  objects  of the  same  type;  however,  a collection  can  

contain  members  of different  types.  

C++  only:  When  a new  member  is added,  the  collection  owns  it.  When  the  

member  is  retrieved,  you  get  a pointer  to  a DKAny  object  inside  the  collection.  

This  object  belongs  to  the  collection,  meaning  that  the  collection  manages  the  

memory  for  its  DKAny  members.  A  DKAny  object  can  hold  an  object  reference  but  

cannot  manage  memory  for  object  reference  types,  you  must  manage  the  memory  

for  those.  

Using sequential collection methods 

DKSequentialCollection  provides  methods  for  adding,  retrieving,  removing,  and  

replacing  its  members.  In  addition,  it also  has  a sort  method.  The  following  

example  illustrates  how  to  add  a new  member  to  a collection  (the  addElement  

method  takes  an  object  as  the  parameter).  

 

 

Java  

DKSequentialCollection  sq = new DKSequentialCollection();  

String  str  = " first  member  "; 

sq.addElement(str);          //  add  a new element  at the  last  position  

 

 

76 Application  Programming Guide



C++  

DKSequentialCollection  sq;  

DKAny  any  = DKString("  first  member  "); 

sq.addElement(any);          // add  a new element  at last  position  

                            // any  will  be copied  into  the collection  

                            // you  own  the original  any,  the collection  

                            // owns  the  copy  

Using the sequential iterator 

You iterate  over  collection  members  using  iterators.  The  APIs  have  two  types  of  

iterators:  dkIterator  and  DKSequentialIterator.  

 

 

Java  

dkIterator,  the  base  iterator,  supports  the  next, more, and  reset  methods.  The  

subclass  DKSequentialIterator  contains  more  methods.  You create  an  iterator  

by  calling  the  createIterator  method  on  the  collection.  After  creating  the  

iterator  you  may  use  the  methods  below  to traverse  the  collection.  The  

following  example  shows  how  to  use  an  iterator:  

dkIterator  iter  = sq.createIterator();  // create  an iterator  for  sq 

Object  member;  

while(iter.more())  { // While  there  are  more  members  

member  = iter.next();  // move  to the  next  member  and  get  it 

System.out.println(member);  

....  

} 

 

 

C++  

Iterators  are  provided  to let  you  iterate  over  collection  members.  There  are  

two  types  of iterators:  the  base  iterator  dkIterator,  which  supports  the  next, 

more, and  reset  functions;  and  its  subclass  DKSequentialIterator,  which  

contains  more  functions.  An  iterator  is created  by  calling  the  createIterator  

function  on  the  collection.  This  function  creates  a new  iterator  and  returns  it 

to  you.  Use  the  following  code  to  iterate  over  a collection:  

dkIterator*  iter  = sq.createIterator();    // create  an iterator  for  sq 

DKAny*  member;  

                                          // while  there  are more  members  

                                          // get the  current  member  and 

                                          // advance  iter  to the  next  member  

while(iter->more())  { 

    member  = iter->next();  

  

    cout  << *member  << endl;               // display  it,  if you  want  to 

    ...                                    // do other  processing  

    } 

delete  iter;                               // do not  forget  to delete  iter  

 This  code  allows  you  to perform  some  operations  on  the  current  member  before  

moving  to  the  next  member.  Such  an  operation  could  be  replacing  a member  with  

a new  one,  or  removing  it.  

 

 

Chapter  3. Programming  with the application  programming interfaces  (APIs)  77



Java  

String  st1  = "the  new  first  member";  

sq.replaceElementAt(st1,  iter);    // replace  current  member  with  a new  one  

....                               // or 

sq.removeElementAt(iter);          // remove  the current  member  

....  

 

 

C++  

any  = DKString("the  new  first  member");  

  

sq.replaceElementAt(any,  *iter);    // replace  current  member  with  a new one  

...                                 // or 

sq.removeElementAt();               // remove  the  current  member  

...  

 Tip:  When  you  remove  the  current  member,  the  iterator  is advanced  to the  next  

member.  When  removing  a member  inside  a loop,  check  it as  in  the  following  

example.  You should  create  a new  iterator  when  an  item  is deleted  from  the  

iterator.  

 

 

Java  

   ....  

   if (removeCondition  == true)  

     sq.removeElementAt(iter);  // remove  current  member,  do not  advance  the  

                               //   iterator  since  it  is advanced  to the  next  

                               //   after  the  removal  operation  

   else  

        iter.setToNext();       // if no removal,  advance  the  iterator  to the 

   ....                         //   next  position  

 

 

C++  

...  

if  (removeCondition  == TRUE)  

    sq.removeElementAt(*iter);    // remove  current  member,  do not advance  iter  

                                 // since  it is advanced  to the next  after  

                                 // the  removal  operation  

else  

    iter->setToNext();            // no removal,  advance  the  iterator  

...                               // to the  next  position  

Managing memory in collections (C++ only) 

The  collection  manages  the  memory  for  its  members,  which  are  DKAny  objects.  

The  same  rules governing  DKAny  objects  apply  here,  if the  object  inside  DKAny  is 

an  object  reference  type  then  you  are  responsible  for  managing  the  memory  when  

you  are:  

v   Destroying  the  collection.  

v   Replacing  a member.  

v   Removing  a member.

 

 

78 Application  Programming Guide



This  example  shows  how  to  manage  the  memory  in  these  situations:  

 

 

C++  

  // retrieve  the  member  and  hang-on  to it 

  member  = iter->at();  

  

  // code  to handle  this  member  as to prevent  memory  leaks  

  if (member->typeCode()  == DKAny::tc_dobase)  { 

      // delete  it if  no longer  needed  

      delete  ((dkDataObjectBase*)  member->value());  

   } 

  

  sq.removeElementAt(*iter);            // remove  it from  the  collection  

 Instead  of  deleting  the  member  you  can  add  it into  another  collection.  You should  

take  similar  steps  before  using  replaceElementAt  and  removeAllElement  functions.  

Before  destroying  a collection,  delete  its  members.  You can  write  a function  to  

perform  this  task  and  pass  this  function  to  the  apply  function  for  the  collection.  

Suppose  you  have  a collection  of DKAny  objects  containing  DKAttributeDef  

objects.  The  following  example  deletes  the  collection:  

 

 

C++  

DKDatastoreICM  dsICM;  

...  

DKAny  any  = dsICM.listSchemaAttributes("GRANDPA");  

dkCollection*  acoll  = (dkCollection*)  any;  

...                                          //  use the  attributes  

acoll->apply(deleteDKAttributeDef);                 // deletes  all  members  

delete  acoll;  

 In  this  example,  deleteDKAttributeDef  is a function  that  takes  the  DKAny  object  as 

a parameter.  It is defined  as follows:  

 

 

C++  

void  deleteDKAttributeDef(DKAny&  any)  { 

    delete  ((DKAttributeDef*)  any.value());  

    any.setNull();                           // good  practice  

} 

 You could  write  your  own  delete  function  to  delete  your  collection  or  remove  some  

members  before  deleting  the  collection.  

The  destructors  for  some  known  collections,  like  DKParts,  DKFolder,  and  

DKResults,  perform  these  necessary  clean-up  steps.  However,  they  do  not  manage  

storage  when  running  replaceElementAt, removeElementAt, or  removeAllElement  

functions.  

Sorting the collection 

Use  the  sort  function  to sort  collection  members  in  either  ascending  or  descending  

order  based  on  a specified  key.  You must  pass  a sort  object  and  the  desired  order. 

The  interface  for  sort  objects  is defined  in  dkSort.java  (Java)  or  dkSort.hpp  (C++).  

 

 

Chapter  3. Programming  with the application  programming interfaces  (APIs)  79



You can  write  your  own  sort  function  for  sorting  your  specific  collection.  The  

following  example  illustrates  how  to  sort  a collection  of  DDOs:  

 

 

Java  

DKResults  rs;  

....                   // Execute  a query  to fill  DKResults  with  DDOs  

....  

DKSortDDOId  sortId;    // Declare  the  sort  function  object;  sort  on item-id  

rs.sort(sortId);       //    by default,  sort  in ascending  order  

....  

 

 

C++  

DKResults*  rs;  

....  

//  Execute  a query  to fill  DKResults  with  DDOs  

....  

DKSortDDOId*  sortId;  // Declare  the  sort  function  object;  sort  on item-id  

rs->sort(sortId);  // by default,  sort  in ascending  order  

....  

 Tip:  The  sort  object  is created  in  the  stack,  so  it does  not  have  to  be  explicitly  

deleted.  The  function  is reentrant,  meaning  that  a single  copy  can  be  shared,  

reused,  or  passed  to  another  function.  

Understanding federated collection and iterator 

Use  a federated  collection  in  your  application  to  process  data  objects  resulting  from  

a query  as  a collection.  The  federated  collection  preserves  the  sub-grouping  

relationships  that  exist  between  the  data  objects.  

A federated  collection  is a collection  of  DKResults  objects.  It is  created  to  hold  the  

results  of  DKFederatedQuery,  which  can  come  from  several  heterogeneous  content  

servers.  Each  DKResults  object  contains  the  search  results  from  a specific  content  

server.  A federated  collection  can  contain  an  infinite  number  of  nested  collections.  

To step  through  a federated  collection,  create  and  use  a dkIterator  or  

DKSequentialIterator.  Then  create  another  dkIterator  to step  through  each  

DKResults  object  to  iterate  over  it  and  process  it  according  to  its  originating  

content  server.  

You can  also  create  a federated  iterator,  dkFederatedIterator,  and  use  it to  step  

through  all  collection  members,  regardless  of  which  content  server  the  result  came  

from.  

Restriction:  You cannot  query  a federated  collection.  

Figure  6 on  page  81  shows  the  structure  and  behavior  of DKFederatedCollection.  

 

 

 

80 Application  Programming Guide



In  Figure  6, the  rectangle  represents  the  DKFederatedCollection  containing  several  

smaller  circles  which  are  DKResults  objects.  The  dkFederatedIterator  traverses  

collection  boundaries  and  returns  a DDO  each  time.  

The  first  dkIterator  is an  iterator  for  the  DKFederatedCollection  and  returns  a 

DKResults  object  each  time.  The  second  dkIterator  is  an  iterator  for  the  second  

DKResults  object;  it  returns  a DDO  for  each  member  of the  DKResults  collection.  

The  setToFirstCollection  function  in  dkFederatedIterator  sets  the  position  to  the  

first  DDO  of DKFederatedCollection.  In  this  case,  it is the  first  element  of the  first  

DKResults  collection  object.  At  this  point,  if the  setToNextCollection  function  is  

invoked,  it sets  the  iterator  position  to the  first  DDO  of  the  second  DKResults  

collection.  

The  setToLastCollection  function  in dkFederatedIterator  sets  the  iterator  position  

to  the  last  DDO  of DKFederatedCollection.  In  this  case,  it is the  last  element  of  the  

last  DKResults  collection  object.  If  the  setToPreviousCollection  function  is 

invoked,  it sets  the  iterator  position  to the  last  DDO  of  the  previous  DKResults  

collection.  

Querying a content server 

You can  search  a content  server  and  receive  results  in  a dkResultSetCursor  or  

DKResults  object.  For  some  servers,  you  can  create  a query  object  to represent  your  

query,  then  invoke  the  execute  function  or  evaluate  function  of  the  query  object.  

With  the  help  of  its  content  servers,  the  query  object  performs  query  processing  

tasks,  such  as preparing  and  executing  a query,  monitoring  the  status  of  a query  

execution,  and  storing  the  results.  Some  content  servers  support  using  a query  

object  as  an  alternative;  earlier  Content  Manager  and  the  federated  content  server  

are  two  of these.  

For  the  content  servers  that  support  query  objects,  there  are  four  types  of  query  

objects:  parametric,  text,  image  and  combined.  The  combined  query  is composed  of 

both  text  and  parametric  queries.  Not  all  content  servers  can  perform  combined  

queries.  Earlier  DB2  Content  Manager  supports  image  query.  

  

Figure  6. Structure  and  behavior  of DKFederatedCollection

 

 

Chapter  3. Programming  with the application  programming interfaces  (APIs)  81



For  Content  Manager  parametric  and  text  queries  are  integrated.  You should  not  

use  query  objects;  for  information  on  how  to  query  in  Content  Manager,  see  

“Querying  the  DB2  Content  Manager  server”  on  page  187.  For  information  about  

querying  an  earlier  DB2  Content  Manager  server,  see  Chapter  8,  “Working  with  

other  content  servers,”  on  page  259.  

A content  server  uses  two  methods  for  running  a query:  execute  and  evaluate. 

The  execute  function  returns  a dkResultSetCursor  object,  the  evaluate  function  

returns  a DKResults  object.  The  dkResultSetCursor  object  is used  to  handle  large  

result  sets  and  perform  delete  and  update  functions  on  the  current  position  of the  

result  set  cursor.  You can  use  the  fetchNextN  function  to  retrieve  a group  of  objects  

into  a collection.  

dkResultSetCursor  can  also  be  used  to  rerun a query  by  calling  the  close  and  open  

methods.  This  is  described  in  “Using  the  result  set  cursor”  on  page  99.  

DKResults  contains  all  of the  results  from  the  query.  You can  iterate  over  the  items  

in  the  collection  either  forward  or  backward  and  can  query  the  collection  or  use  it  

as  a scope  for  another  query.  

See  “Opening  and  closing  the  result  set  cursor  to rerun the  query”  on  page  100  for  

more  information.  

Restriction:  When  you  query  a Domino.Doc  content  server,  a DKResults  object  is 

returned.  However,  you  cannot  query  it nor  use  it as  a scope  for  another  query.  

Differences between dkResultSetCursor and DKResults 

A dkResultSetCursor  and  a DKResults  collection  have  the  following  differences:  

v   The  dkResultSetCursor  works  like  a content  server  cursor;  it  can  be  used  for  

large  result  sets  because  the  DKDDOs  it contain  are  fetched  one  at a time.  It can  

also  be  used  to  run a query  again  to  get  the  latest  results.  

Restriction:  You cannot  rerun  a query  on  a Domino.Doc  content  server  even  

when  using  a dkResultSetCursor.  

v   The  DKResults  contains  the  entire  result  set  and  supports  a bi-directional  

iterator.  

v   Leaving  a dkResultSetCursor  open  for  long  periods  of  time  may  degrade  

performance  of  concurrent  users  for  some  content  servers.

Using parametric queries 

A parametric  query  is a query  requiring  an  exact  match  on  the  condition  specified  

in  the  query  predicate  and  the  data  values  stored  in  the  content  server.  

Note:  The  query  examples  in  the  following  sections  apply  to  earlier  Content  

Manager.  For  query  information  about  DB2  Content  Manager  V8,  see  Querying  the  

DB2  Content  Manager  server, in Working  with  DB2  Content  Manager  8.2.  

Formulating a parametric query string 

To create  a query  you  first  formulate  a query  string.  In  the  following  example,  the  

query  string  is defined  to  represent  a query  on  the  index  class  named  GP2DLS2  in  

earlier  DB2  Content  Manager.  For  examples  of  query  string  in  Content  Manger,  see  

“Example  searches  using  the  query  language”  on  page  196.  The  condition  of  the  

query  is to  search  for  all  documents  or  folders  where  the  attribute  

 

 

82 Application  Programming Guide



DLSEARCH_DocType  is not  null. The  maximum  number  of  results  returned  is  

limited  to  five,  and  the  content  is set  to  YES  so  that  contents  of the  document  or 

folder  are  returned.  

 

 

Java  

String  cmd  = "SEARCH=(INDEX_CLASS=GP2DLS2,"   + 

                      "MAX_RESULTS=5,"   + 

                      "COND=(DLSEARCH_DocType  > null));"   + 

                      "OPTION=(CONTENT=YES;"        + 

                      "TYPE_QUERY=DYNAMIC;"    + 

                      "TYPE_FILTER=FOLDERDOC)";  

 

 

C++  

DKString  cmd  = "SEARCH=(INDEX_CLASS=DLSAMPLE,";  

cmd  +=  "MAX_RESULTS=5,";  

cmd  +=  "COND=(DLSEARCH_DocType  <> NULL));";  

cmd  +=  "OPTION=(CONTENT=YES;";  

cmd  +=  "TYPE_QUERY=DYNAMIC;";  

cmd  +=  "TYPE_FILTER=FOLDERDOC)";  

 The  example  specifies  that  an  earlier  DB2  Content  Manager  server  uses  dynamic  

SQL  for  this  query  and  that  all  folders  and  documents  be  searched.  Different  

content  servers  use  different  query  string  syntax;  federated  has  its  own  query  

string  syntax.  See  the  information  on  the  content  server  you  want  to  search  or  the  

Application  Programming  Reference  for  more  inforamtion.If  the  attribute  name  has  

more  than  one  word  or  is in  a DBCS  language,  it should  be  enclosed  in  

apostrophes  (’).  If  the  attribute  value  is in  DBCS,  it should  be  enclosed  in  double  

quotation  marks  (″).  

Formulating a parametric query on multiple criteria 

You can  specify  more  than  one  search  criteria  for  a parametric  query.  The  following  

example  shows  how  to specify  a query  on  two  index  classes  for  earlier  DB2  

Content  Manager:  

 

 

Java  

String  cmd  = "SEARCH=(INDEX_CLASS=GP2DLS1,MAX_RESULTS=3,"   + 

                      "COND=(DLSEARCH_DocType  <> null);"   + 

                      "INDEX_CLASS=GP2DLS1,MAX_RESULTS=8,"  + 

                      "COND=(’First  name’==\"Robert\"));"   + 

                      "OPTION=(CONTENT=YES;"   + 

                      "TYPE_QUERY=DYNAMIC;"   + 

                      "TYPE_FILTER=FOLDERDOC)";  

 

 

C++  

DKString  cmd  = "SEARCH=(INDEX_CLASS=DLSAMPLE,MAX_RESULTS=3,";  

cmd  +=  "COND=(DLSEARCH_DocType  <> NULL);";  

cmd  +=  "INDEX_CLASS=DLSAMPLE,MAX_RESULTS=8,";  

cmd  +=  "COND=(’First  name’  == \"Robert\"));";  

cmd  +=  "OPTION=(CONTENT=YES;";  

cmd  +=  "TYPE_QUERY=DYNAMIC;";  

cmd  +=  "TYPE_FILTER=FOLDERDOC)";  

 

 

Chapter  3. Programming  with the application  programming interfaces  (APIs)  83



Executing a parametric query 

After  you  have  a query  string  you  create  the  query  object.  The  DKDatastorexx that  

represents  a content  server  contains  a method  for  creating  a query  object.  You use  

the  query  object  to  execute  the  query  and  obtain  the  results.  The  following  

example  shows  how  to  create  a parametric  query  object  and  execute  the  query  on  

an  earlier  DB2  Content  Manager  server;  you  should  not  use  a query  object  with  

Content  Manger  Version  8 or  later. Once  the  query  is executed,  the  results  are  

returned  in  a DKResults  collection.  

Attention:  When  you  delete  a DKResults  object,  all  of  its  members  are  also  deleted.  

Make  sure  that  you  do  not  delete  the  element  twice.  

 

 

Java  

//  -----  Create  the  datastore,  the  query  object,  and  the  results  set  

DKDatastoreDL  dsDL  = new  DKDatastoreDL();  

dkQuery  pQry  = null;  

DKResults  pResults  = null;  

DKNVPair  parms[]  = null;  

//  -----  Connect  to the  datastore  

dsDL.connect(libSrv,userid,pw,"");  

//  -----  Formulate  the  query  string  

String  cmd  = "SEARCH=(INDEX_CLASS=DLSAMPLE,"  + 

                      "MAX_RESULTS=5,"  + 

                      "COND=(DLSEARCH_DocType  <> NULL));"  + 

                      "OPTION=(CONTENT=YES;"        + 

                              "TYPE_QUERY=STATIC;"  + 

                              "TYPE_FILTER=FOLDERDOC)";  

//  -----  Create  the  query  using  the  query  string  

pQry  = dsDL.createQuery(cmd,  DK_CM_PARAMETRIC_QL_TYPE,  parms);  

//  -----  Execute  the  query  

pQry.execute(parms);  

//  -----  Process  the  results  

pResults  = (DKResults)pQry.result();  

processResults((dkCollection)pResults);  

//  -----  Disconnect  when  you  are through  

dsDL.disconnect();  

dsDL.destroy();  

This  example  was  taken  from  the  TSamplePQryDL.java  sample.  

 

 

84 Application  Programming Guide



C++  

DKDatastoreDL  dsDL;  

dkQuery*  pQry;  

DKAny  any;  

DKResults*  pResults;  

  

cout  << "connecting  to datastore"  << endl;  

dsDL.connect(libsrv,userid,pw);  

cout  << "datastore  connected  libsrv:  "<<libsrv<<"  userid:  "<<userid<<endl;  

  

DKString  cmd  = "SEARCH=(INDEX_CLASS=DLSAMPLE,";  

cmd  += "MAX_RESULTS=5,";  

cmd  += "COND=(DLSEARCH_DocType  <> NULL));";  

cmd  += "OPTION=(CONTENT=YES;";  

cmd  += "TYPE_QUERY=STATIC;TYPE_FILTER=FOLDERDOC)";  

cout  << "query  string  " << cmd  << endl;  

cout  << "create  query"  << endl;  

pQry  = dsDL.createQuery(cmd);  

cout  << "executing  query"  << endl;  

pQry->execute();  

cout  << "query  executed"  << endl;  

cout  << "get  query  results"  << endl;  

any  = pQry->result();  

pResults  = (DKResults*)((dkCollection*)  any);  

  

processResults(pResults);  

  

dsDL.disconnect();  

This  example  was  taken  from  the  TSamplePQryDL.cpp  sample.  

Executing a parametric query from a content server 

The  DKDatastorexx that  represents  a content  server  has  a method  to  execute  a 

query.  The  following  example  shows  how  to  execute  a parametric  query  on  an  

earlier  DB2  Content  Manager  content  server.  After  the  query  is  executed,  the  

results  are  returned  in a dkResultSetCursor  object.  

 

 

Chapter  3. Programming  with the application  programming interfaces  (APIs)  85



Java  

//  -----  Create  the  datastore  and cursor  

DKDatastoreDL  dsDL  = new  DKDatastoreDL();  

dkResultSetCursor  pCur  = null;  

DKNVPair  parms[]  = null;  

//  -----  Connect  to the  content  server  

dsDL.connect(libSrv,userid,pw,"");  

//  -----  Formulate  the  query  string  

String  cmd  = "SEARCH=(INDEX_CLASS=DLSAMPLE,"  + 

                      "MAX_RESULTS=5,"  + 

                      "COND=((DLSEARCH_DocType  <>  NULL)"  + 

                      "AND  (DLSEARCH_Date  >= 1995)));"  + 

                      "OPTION=(CONTENT=YES;"        + 

                              "TYPE_QUERY=DYNAMIC;"  + 

                              "TYPE_FILTER=FOLDERDOC)";  

...  

//  -----  Execute  the  query  using  the  query  string  

pCur  = dsDL.execute(cmd,  DK_CM_PARAMETRIC_QL_TYPE,  parms);  

//  -----  Process  query  results  as you  want  

...  

//  -----  When  finished  with  the  cursor,  delete  it, and  disconnect  

pCur.destroy();  

dsDL.disconnect();  

dsDL.destroy();  

This  example  was  taken  from  the  TExecuteDL.java  sample.  

 

 

C++  

...  

DKDatastoreDL  dsDL;  

dkResultSetCursor*  pCur  = 0; 

cout  <<  "Datastore  DL created"  << endl;  

cout  <<  "connecting  to  datastore"  << endl;  

dsDL.connect(libsrv,userid,pw);  

cout  <<  "datastore  connected  " << libsrv  << " userid  - " << userid  << endl;  

//  DKString  cmd  = "SEARCH=(COND=(’DLSEARCH_DocType’  == \"html\"));";  

DKString  cmd  = "SEARCH=(INDEX_CLASS=DLSAMPLE,";  

cmd  += "MAX_RESULTS=5,";  

cmd  += "COND=(DLSEARCH_DocType  <> NULL));";  

cmd  += "OPTION=(CONTENT=YES;";  

cmd  += "TYPE_QUERY=STATIC;TYPE_FILTER=FOLDERDOC)";  

cout  <<  "query  string  " << cmd << endl;  

cout  <<  "executing  query"  <<  endl;  

pCur  = dsDL.execute(cmd);  

cout  <<  "query  executed"  << endl;  

...  

...  

if  (pCur  != 0) 

delete  pCur;  

dsDL.disconnect();  

...  

This  example  was  taken  from  the  TExecuteDL.cpp  sample.  

 

 

86 Application  Programming Guide



Evaluating a parametric query from a content server 

The  DKDatastorexx that  represents  a content  server  has  a method  to  evaluate  a 

query.  The  results  are  returned  in  a DKResults  collection.  The  following  example  

shows  how  to  evaluate  a parametric  query  on  an  earlier  DB2  Content  Manager  

content  server.  

 

 

Java  

// ------  Create  the query  string  

String  cmd  = "SEARCH=(INDEX_CLASS=DLSAMPLE,"  + 

                  "COND=((DLSEARCH_Date  >= \"1995\")  AND " + 

                   "(DLSEARCH_Date  <= \"1996\")));"  + 

                   "OPTION=(CONTENT=NO;"        + 

                         "TYPE_QUERY=DYNAMIC;"  + 

                         "TYPE_FILTER=FOLDERDOC)";  

DKNVPair  parms[]  = null;  

DKDDO  item  = null;  

// -----  Create  the  datastore  and connect  

//  replace  following  with  your  library  server,  user  ID, 

// password  DKDatastoreDL  dsDL;  

dsDL.connect("LIBSRVRN","FRNADMIN","PASSWORD");  

  

// -----  Call  evaluate,  get the  results,  and create  an 

iterator  to process  them  

DKResults  pResults  = 

  (DKResults)dsDL.evaluate(cmd,DK_CM_PARAMETRIC_QL_TYPE,parms);  

dkIterator  pIter  = pResults.createIterator();  

while  (pIter.more())  { 

       item  = (DKDDO)pIter.next();  

        ...  // ------  Process  the  DKDDO  as appropriate  

      } 

dsDL.disconnect();  

dsDL.destroy();  

 

 

C++  

DKDatastoreDL  dsDL;  

dsDL.connect("LIBSRVRN",  "FRNADMIN",  "PASSWORD");  

DKAny  *element;  

DKDDO  *item;  

DKString  cmd  = "SEARCH=(INDEX_CLASS=GP2DLS5,";  

cmd  +=  "COND=((DLSEARCH_Date  >= \"1995\")  AND "; 

cmd  +=  "(DLSEARCH_Date  <= \"1996\")));";  

cmd  += "OPTION=(CONTENT=NO;";  

cmd  += "TYPE_QUERY=DYNAMIC;TYPE_FILTER=FOLDERDOC)";  

  

...  

DKAny  any  = dsDL.evaluate(cmd);  

DKResults*  pResults  = (DKResults*)((dkCollection*)  any);  

dkIterator*  pIter  = pResults->createIterator();  

while  (pIter->more())  { 

       element  = pIter->next();  

       item  = (DKDDO*)element->value();  

       //  Process  the  DKDDO  

} 

delete  pIter;  

delete  pResults;  

dsDL.disconnect();  

 

 

Chapter  3. Programming  with the application  programming interfaces  (APIs)  87



Using text query 

In  Content  Manager  Version  8 and  later, text  and  parametric  queries  are  integrated;  

see  “Creating  combined  parametric  and  text  search”  on  page  194.  

In  earlier  DB2  Content  Manager,  you  can  perform  text  and  parametric  searches.  

Text searches  query  the  text  indexes  created  by  the  DB2  Text Information  Extender  

to  search  the  actual  document  text.  

Formulating a text query string 

You start  a text  search  by  formulating  a query  string.  In  the  following  example,  a 

query  string  is created  representing  a query  against  the  TMINDEX  text  index.  The  

query  string  contains  criteria  to search  for  all  text  documents  with  the  word  UNIX  

or  member.  The  maximum  number  of  results  returned  is five.  

 

 

Java  

String  cmd  = "SEARCH=(COND=(UNIX  OR member));"  + 

             "OPTION=(SEARCH_INDEX=TMINDEX;  MAX_RESULTS=5)";  

 

 

C++  

DKString  cmd  = "SEARCH=(COND=(UNIX  OR member));";  

cmd  += "OPTION=(SEARCH_INDEX=TMINDEX;MAX_RESULTS=5)";  

Formulating a text query on multiple indexes 

You can  use  text  query  to  search  more  than  one  index.  The  following  example  

shows  how  to  specify  a query  for  two  indexes.  

Important:  If  you  specify  more  than  one  text  search  index  in  the  query,  the  indexes  

must  be  the  same  type.  For  example,  you  can  specify  two  precise  indexes  in  the  

query,  but  you  cannot  specify  a precise  index  and  a linguistic  index  within  the  

query.  

 

 

Java  

DKString  cmd  = "SEARCH=(COND=(UNIX  OR member));";  

cmd  += "OPTION=(SEARCH_INDEX=(TMINDEX,TMINDEX2);  MAX_RESULTS=5)";  

 

 

C++  

String  cmd  = "SEARCH=(COND=(UNIX  OR member));"  + 

             "OPTION=(SEARCH_INDEX=(TMINDEX,  INDEX2);  MAX_RESULTS=5)";  

Running a text query 

After  you  have  a text  query  string  you  create  the  query  object.  The  DKDatastorexx 

that  represents  a content  server  contains  a method  for  creating  a query  object.  The  

results  are  returned  in  a DKResults  collection.  You use  the  query  object  to  execute  

the  query  and  obtain  the  results.  The  following  example  shows  how  to  create  a text  

query  object  and  execute  a query.  

 

 

88 Application  Programming Guide



Java  

// -----  Create  the  datastore;  declare  query  and  the  results  

DKDatastoreTS  dsTS  = new  DKDatastoreTS();  

dkQuery  pQry  = null;  

DKResults  pResults  = null;  

DKNVPair  parms[]  = null;  

// -----  Connect  to the  datastore  

//      for  example,  dsTS.connect("zebra","7502",DK_CTYP_TCPIP);  

dsTS.connect(srchSrv,"","","");  

// -----  Formulate  the query  string  

String  cmd  = "SEARCH=(COND=(member  AND UNIX));"  + 

                     "OPTION=(SEARCH_INDEX=TMINDEX)";  

// -----  Create  and  execute  the  query  

pQry  = dsTS.createQuery(cmd,  DK_CM_TEXT_QL_TYPE,  parms);  

pQry.execute(parms);  

// ----  Process  the  results  

pResults  = (DKResults)pQry.result();  

processResults((dkCollection)pResults);  

// ------  When  finished,  disconnect  

dsTS.disconnect();  

dsTS.destroy();  

This  example  was  taken  from  the  TSampleTQryTS.java  sample.  

 

 

C++  

DKDatastoreTS  dsTS;  

dkQuery*  pQry;  

DKAny  any;  

DKResults*  pResults;  

  

cout  << "connecting  to datastore"  << endl;  

//dsTS.connect("zebra","7502",DK_CTYP_TCPIP);  

dsTS.connect(srchSrv,"","");  

cout  << "connected  to datastore  srchSrv:  " << srchSrv  << endl;  

  

DKString  cmd  = "SEARCH=";  

cmd  += "(COND=(UNIX  OR member));";  

cmd  += "OPTION=(SEARCH_INDEX=";  

cmd  += srchIndex;  

cmd  += ")";  

cout  << "query  string  " << cmd  << endl;  

cout  << "create  query"  << endl;  

pQry  = dsTS.createQuery(cmd);  

cout  << "executing  query"  << endl;  

pQry->execute();  

cout  << "query  executed"  << endl;  

cout  << "get  query  results"  << endl;  

any  = pQry->result();  

pResults  = (DKResults*)((dkCollection*)  any);  

  

processResults(pResults);  

  

dsTS.disconnect();  

This  example  was  taken  from  the  TSampleTQryTS.cpp  sample.  

 

 

Chapter  3. Programming  with the application  programming interfaces  (APIs)  89



Running a text query from a content server 

The  DKDatastorexx  used  to represent  a content  server  provides  a method  to  run a 

query.  The  results  are  returned  in  a dkResultSetCursor  object.  The  following  

example  shows  how  to  run a text  query  against  an  earlier  DB2  Content  Manager  

server:  

 

 

Java  

//  -----  Create  the  datastore;  declare  query  and the results  

DKDatastoreTS  dsTS  = new  DKDatastoreTS();  

dkResultSetCursor  pCur  = null;  

DKNVPair  parms[]  = null;  

//  -----  Connect  to the  datastore  

//        for  example,  dsTS.connect  

("zebra","7502",DK_TS_CTYP_TCPIP);  

dsTS.connect(srchSrv,"","","");  

  

//  -----  Formulate  the  query  string  

String  cmd  = "SEARCH=(COND=(internet  OR UNIX));"  + 

               "OPTION=(SEARCH_INDEX=TMINDEX;"  + 

                "MAX_RESULTS=5)";  

...  

//  -----  Execute  the  query  and  process  the  results  

as  appropriate  

pCur  = dsTS.execute(cmd,DK_CM_TEXT_QL_TYPE,parms);  

...  

//  -----  When  finished,  delete  the  cursor  and  disconnect  

pCur.destroy();  

dsTS.disconnect();  

dsTS.destroy();  

This  example  was  taken  from  the  TExecuteTS.java  sample.  

 

 

C++  

DKDatastoreTS  dsTS;  

dsTS.connect("TM",  "", ’ ’);  

DKString  cmd  = "SEARCH=(COND=(’UNIX  operating’  AND system));";  

cmd  += "OPTION=(SEARCH_INDEX=TMINDEX)";  

...  

  

dkResultSetCursor*  pCur  = dsTS.execute(cmd);  

DKDDO  *item  = 0; 

while  (pCur->isValid())  { 

       item  = pCur->fetchNext();  

       if (item  != 0) { 

           // Process  the  DKDDO  

          ...  

          delete  item;  

       } 

} 

delete  pCur;  

dsTS.disconnect();  

This  example  was  taken  from  the  TExecuteTS.cpp  sample.  

 

 

90 Application  Programming Guide



Evaluating a text query from a content server 

The  DKDatastorexx that  you  use  to represent  a content  server  provides  an  evaluate  

method  to  run a query  and  return  a DKResults  collection.  The  following  example  

shows  how  to  evaluate  a text  query  against  an  earlier  DB2  Content  Manager  

content  server.  

 

 

Java  

// -----  Create  the  datastore  and the  query  string  

DKDatastoreTS  dsTS  = new  DKDatastoreTS();  

String  cmd  = "SEARCH=(COND=($MC=*$  UN*));"  + 

             "OPTION=(SEARCH_INDEX=TMINDEX)";  

  

DKNVPair  parms[]  = null;  

DKDDO  item  = null;  

DKDatastoreTS  dsTS;  

// -----  Connect  to the  datastore  

dsTS.connect("TM","",  ’ ’); 

...  

// -----  Call  evaluate,  get the  results,  and process  

as appropriate  

DKResults  pResults  = (DKResults)dsTS.evaluate(cmd,DK_CM_TEXT_QL_TYPE,parms);  

dkIterator  pIter  = pResults.createIterator();  

while  (pIter.more())  { 

       item  = (DKDDO)pIter.next();  

       //  -----  Process  the  individual  DKDDO  objects  

      } 

// -----  Disconnect  

dsTS.disconnect();  

dsTs.destroy();  

 

 

C++  

DKDatastoreTS  dsTS;  

dsTS.connect("TM",  "",  ’ ’); 

DKAny  *element;  

DKDDO  *item;  

DKString  cmd  = "SEARCH=(COND=(’UNIX  operating’  AND  system));";  

         cmd  += "OPTION=(SEARCH_INDEX=TMINDEX)";  

  

...  

DKAny  any  = dsTS.evaluate(cmd);  

DKResults*  pResults  = (DKResults*)((dkCollection*)  any);  

dkIterator*  pIter  = pResults->createIterator();  

while  (pIter->more())  { 

       element  = pIter->next();  

       item  = (DKDDO*)  element->value();  

       //  Process  the  DKDDO  

       ...  

} 

delete  pIter;  

delete  pResults;  

dsTS.disconnect();  

Getting match highlighting information 

The  match  information  contains  the  text  of the  document  and  the  highlighting  

information  for  every  match  of  the  corresponding  query.  

When  formulating  the  query  string  you  set  MATCH_INFO  and  MATCH_DICT  

options.  Set  MATCH_INFO  to  YES  to return  the  match  highlighting  information.  

 

 

Chapter  3. Programming  with the application  programming interfaces  (APIs)  91



The  MATCH_DICT  option  specifies  whether  the  highlighting  information  will  be  

obtained  using  a dictionary.  The  match  information  is returned  in  the  

DKMATCHESINFO  attribute  in the  DKDDO  returned  from  a text  query.  The  value  

of  the  DKMATCHESINFO  attribute  will  be  a DKMatchesInfoTS  object.  

Getting  match  highlight  information  is time  consuming  because  the  document  is 

retrieved  from  the  content  server  and  analyzed  linguistically  to determine  potential  

matches.  Running  this  process  impacts  the  performance  of a text  query.  

Getting  match  highlighting  information  for  each  text  query  result  item:    The  

following  example  retrieves  match  highlighting  information  for  each  text  query  

result  item  during  a text  query.  Because  the  MATCH_DICT  option  is set  to  NO,  the  

dictionary  is not  used.  

 

 

Java  

//  -----  Create  the  datastore  

DKDatastoreTS  dsTS  = new  DKDatastoreTS();  

dkResultSetCursor  pCur  = null;  

DKNVPair  parms[]  = null;  

//  -----  Connect  to the  content  server  

//      replace  following  with  your  library  server,  

user  ID,  password  

dsTS.connect("TM","","","LIBACCESS=(LIBSRVRN,  

FRNADMIN,  PASSWORD)");  

//  -----  Formulate  the  query  string  

String  cmd  = "SEARCH=(COND=(’UNIX  operating’  AND  system));"  + 

             "OPTION=(SEARCH_INDEX=TMINDEX;  MAX_RESULTS=5;  + 

             "MATCH_INFO=YES;  MATCH_DICT=NO)";  

  

...  

  

pCur  = dsTS.execute(cmd,DK_CM_TEXT_QL_TYPE,parms);  

DKDDO  item  = null;  

DKMatchesInfoTS  pMInfo  = null;  

DKMatchesDocSectionTS  pMSect  = null;  

DKMatchesParagraphTS  pMPara  = null;  

DKMatchesTextItemTS   pMText  = null;  

int  i = 0; 

int  j = 0; 

int  k = 0; 

int  m = 0; 

int  lCCSID  = 0; 

int  lLang  = 0; 

int  lOffset  = 0; 

int  lLen  = 0; 

int  numberSections  = 0; 

int  numberParagraphs  = 0; 

int  numberTextItems  = 0; 

int  numberNewLines  = 0; 

String  strDoc  = "";  

String  strSection  = "";  

String  strText  = "";  

Object  anyObj  = null;  

while  (pCur.isValid())  

{ 

   // -----  Get  the  next  DKDDO  

   item  = pCur.fetchNext();  

   if (item  != null)  

   { 

//  continued...  

 

 

92 Application  Programming Guide



Java  (continued)  

     // -----  Process  the DKDDO  

     for  (i = 1; i <= item.dataCount();  i++)  

    { 

        anyObj  = item.getData(i);  

        if (anyObj  instanceof  String)  

        { 

           ...  

        } 

        else  if (anyObj  instanceof  Integer)  

        { 

           ...  

        } 

        else  if (anyObj  instanceof  Short)  

        { 

           ...  

        } 

        else  if (anyObj  instanceof  DKMatchesInfoTS)  

        { 

            pMInfo  = (DKMatchesInfoTS)anyObj;  

            // -----  process  the  Match  Hightlighting  information  

            if (pMInfo  != null)  

            { 

               strDoc  = pMInfo.getDocumentName();  

                 numberSections  = pMInfo.numberOfSections();  

               // -----  loop  thru  document  sections  

               for  (j = 1; j <= numberSections;  j++)  

               { 

                  pMSect  = pMInfo.getSection(j);  

                  strSection  = pMSect.getSectionName();  

                  numberParagraphs  = pMSect.numberOfParagraphs();  

                  // -----  loop  thru  section  paragraphs  

                    for (k = 1; k <= numberParagraphs;  k++)  

                    { 

                     pMPara  = pMSect.getParagraph(k);  

                     lCCSID  = pMPara.getCCSID();  

                     lLang  = pMPara.getLanguageId();  

                     numberTextItems  = pMPara.numberOfTextItems();  

                     // -----  loop  thru  paragraph  text  items  

                     for  (m = 1; m <= numberTextItems;  m++)  

                     { 

                        pMText  = pMPara.getTextItem(m);  

                        strText  = pMText.getText();  

                        // -----   if  match  found  in text  item  get  offset  

                        //      and  length  of match  in text  item  

                        if (pMText.isMatch()  == true)  

                          { 

                           lOffset  = pMText.getOffset();  

                           lLen  = pMText.getLength();  

                        } 

                        numberNewLines  = pMText.numberOfNewLines();  

                     } 

                   } 

                 } 

               } 

            } 

          } 

       } 

} 

dsTS.disconnect();  

 

 

Chapter  3. Programming  with the application  programming interfaces  (APIs)  93



C++  

DKDatastoreTS  dsTS;  

dsTS.connect("TM","","","LIBACCESS=(LIBSRVRN,FRNADMIN,PASSWORD)");  

DKString  cmd  = "SEARCH=(COND=(’UNIX  operating’  AND system));"  

cmd  += "OPTION=(SEARCH_INDEX=TMINDEX;MAX_RESULTS=5;  

  MATCH_INFO=YES;MATCH_DICT=NO)";  

...  

dkResultSetCursor*  pCur  = dsTS.execute(cmd);  

DKDDO  *item  = 0; 

DKAny  anyObj;  

dkDataObjectBase  *pDOBase  = 0; 

DKMatchesInfoTS  *pMInfo  = 0; 

DKMatchesDocSectionTS  *pMSect  = 0; 

DKMatchesParagraphTS  *pMPara  = 0; 

DKMatchesTextItemTS   *pMText  = 0; 

long  i = 0; 

long  j = 0; 

long  k = 0; 

long  m = 0; 

long  lCCSID  = 0; 

long  lLang  = 0; 

long  lOffset  = 0; 

long  lLen  = 0; 

long  numberSections  = 0; 

long  numberParagraphs  = 0; 

long  numberTextItems  = 0; 

long  numberNewLines  = 0; 

DKString  strDoc;  

DKString  strSection;  

DKString  strText;  

while  (pCur->isValid())  

 { 

  item  = pCur->fetchNext();  

  if (item  != 0) 

  { 

   // Process  the  DKDDO  

   for  (i = 1;  i <= item->dataCount();  i++)  

   { 

    anyObj  = item->getData(i);  

    switch  (anyObj.typeCode())  

    { 

     case  DKAny::tc_string  : 

     { 

      ...  

      break;  

     } 

     case  DKAny::tc_long  : 

        { 

         ...  

         break;  

        } 

        case  DKAny::tc_short  : 

        { 

         ...  

         break;  

        } 

        case  DKAny::tc_dobase  : 

        { 

//  continued...  

 

 

94 Application  Programming Guide



C++  (continued)  

         // process  the Match  Hightlighting  information  

         pDOBase  = a; 

         pMInfo  = (DKMatchesInfoTS*)pDOBase;  

   if (pMInfo  != 0) 

   { 

     strDoc  = pMInfo->getDocumentName();  

     numberSections  = pMInfo->numberOfSections();  

          // loop  thru  document  sections  

        for  (j = 1; j <= numberSections;  j++)  

        { 

         pMSect  = pMInfo->getSection(j);  

         strSection  = pMSect->getSectionName();  

         numberParagraphs  = pMSect->numberOfParagraphs();  

            // loop  thru  section  paragraphs  

         for  (k = 1; k <= numberParagraphs;  k++)  

         { 

          pMPara  = pMSect->getParagraph(k);  

          lCCSID  = pMPara->getCCSID();  

          lLang  = pMPara->getLanguageId();  

          numberTextItems  = pMPara->numberOfTextItems();  

            // loop  thru  paragraph  text  items  

        for  (m = 1; m <= numberTextItems;  m++)  

        { 

         pMText  = pMPara->getTextItem(m);  

         strText  = pMText->getText();  

             // if match  found  in text  item  get  offset  and  

             // length  of match  in text  item  

         if (pMText->isMatch()  == TRUE)  

         { 

          lOffset  = pMText->getOffset();  

          lLen  = pMText->getLength();  

              } 

             numberNewLines  = pMText->numberOfNewLines();  

            } 

           } 

          } 

         } 

         break;  

        } 

        default  : 

        { 

         break;  

        } 

       } 

      } 

      ...  

      delete  item;  

    } 

} 

delete  pCur;  

dsTS.disconnect();  

Getting  match  highlighting  information  for  a particular  text  query  result  item:   

 The  following  example  retrieves  the  match  highlighting  information  for  a specific  

item  returned  from  a text  query.  The  dkResultSetCursor  passed  to this  routine  

must  be  in an  open  state.  

 

 

Chapter  3. Programming  with the application  programming interfaces  (APIs)  95



Java  

DKDatastoreTS  dsTS  = new  DKDatastoreTS();  

dkResultSetCursor  pCur  = null;  

DKNVPair  parms[]  = null;  

  

dsTS.connect("TM","","","LIBACCESS=(LIBSRVRN,FRNADMIN,PASSWORD)");  

String  cmd  = "SEARCH=(COND=(’UNIX  operating’  AND  system));"  + 

             "OPTION=(SEARCH_INDEX=TMINDEX;MAX_RESULTS=5)";  

...  

pCur  = dsTS.execute(cmd);  

DKDDO  item  = null;  

Object  anyObj  = null;  

DKMatchesInfoTS  pMInfo  = null;  

DKMatchesDocSectionTS  pMSect  = null;  

DKMatchesParagraphTS  pMPara  = null;  

DKMatchesTextItemTS   pMText  = null;  

int  i = 0; 

int  j = 0; 

int  k = 0; 

int  m = 0; 

int  lCCSID  = 0; 

int  lLang  = 0; 

int  lOffset  = 0; 

int  lLen  = 0; 

int  numberSections  = 0; 

int  numberParagraphs  = 0; 

int  numberTextItems  = 0; 

int  numberNewLines  = 0; 

String  strDoc;  

String  strSection;  

String  strText;  

String  strDID  = "";  

String  strXNAME  = ""; 

String  strDataName  = "";  

DKPid  pid  = null;  

while  (pCur.isValid())  

{ 

 item  = pCur.fetchNext();  

 if  (item  != null)  

 { 

  pid  = item.getPid();  

  // Process  the  DKDDO  

  for  (i = 1; i <= item.dataCount();  i++)  

  { 

   anyObj  = item.getData(i);  

   strDataName  = item.getDataName(i);  

   if (strDID.equals(""))  

   { 

    strDID  = pid.getId();  

   } 

   if (strXNAME.equals(""))  

   { 

    strXNAME  = p.getObjectType();  

   } 

   ...  

  } 

//  continued...  

 

 

96 Application  Programming Guide



Java  (continued)  

  // Get  Match  Highlighting  Information  

  pMInfo  = dsTS.getMatches(pCur,strDID,strXNAME,false);  

  strDID  = "";  

  strXNAME  = "";  

  if (pMInfo  != null)  

  { 

   strDoc  = pMInfo.getDocumentName();  

   numberSections  = pMInfo.numberOfSections();  

   // loop  thru  document  sections  

   for (j = 1; j <= numberSections;  j++)  

   { 

    pMSect  = pMInfo.getSection(j);  

    strSection  = pMSect.getSectionName();  

    numberParagraphs  = pMSect.numberOfParagraphs();  

    // loop  thru  section  paragraphs  

    for  (k = 1; k <=  numberParagraphs;  k++)  

    { 

     pMPara  = pMSect.getParagraph(k);  

     lCCSID  = pMPara.getCCSID();  

     lLang  = pMPara.getLanguageId();  

     numberTextItems  = pMPara.numberOfTextItems();  

     // loop  thru  paragraph  text  items  

     for  (m = 1; m <= numberTextItems;  m++)  

     { 

      pMText  = pMPara.getTextItem(m);  

      strText  = pMText.getText();  

      // if match  found  in  text  item  get  offset  and  

      // length  of match  in text  item  

      if (pMText.isMatch()  == true)  

      { 

       lOffset  = pMText.getOffset();  

       lLen  = pMText.getLength();  

      } 

      numberNewLines  = pMText.numberOfNewLines();  

     } 

    } 

   } 

  } 

 } 

} 

dsTS.disconnect();  

dsTS.destroy();  

 

 

Chapter  3. Programming  with the application  programming interfaces  (APIs)  97



C++  

DKDatastoreTS  dsTS;  

dsTS.connect("TM","","","LIBACCESS=(LIBSRVRN,FRNADMIN,PASSWORD)");  

DKString  cmd  = "SEARCH=(COND=(’UNIX  operating’  AND system));"  

cmd  += "OPTION=(SEARCH_INDEX=TMINDEX;MAX_RESULTS=5)";  

...  

dkResultSetCursor*  pCur  = dsTS.execute(cmd);  

DKDDO  *item  = 0; 

DKAny  anyObj;  

dkDataObjectBase  *pDOBase  = 0; 

DKMatchesInfoTS  *pMInfo  = 0; 

DKMatchesDocSectionTS  *pMSect  = 0; 

DKMatchesParagraphTS  *pMPara  = 0; 

DKMatchesTextItemTS   *pMText  = 0; 

long  i = 0; 

long  j = 0; 

long  k = 0; 

long  m = 0; 

long  lCCSID  = 0; 

long  lLang  = 0; 

long  lOffset  = 0; 

long  lLen  = 0; 

long  numberSections  = 0; 

long  numberParagraphs  = 0; 

long  numberTextItems  = 0; 

long  numberNewLines  = 0; 

DKString  strDoc;  

DKString  strSection;  

DKString  strText;  

DKString  strDID;  

DKString  strXNAME;  

DKString  strDataName;  

DKPid  pid;  

while  (pCur->isValid())  

 { 

   item  = pCur->fetchNext();  

   if (item  != 0) 

   { 

    pid  = item->getPid();  

    // Process  the  DKDDO  

    for  (i = 1; i <= item->dataCount();  i++)  

    { 

     anyObj  = item->getData(i);  

     strDataName  = item->getDataName(i);  

     if (strDataName  == "")  

     { 

      strDID  = pid.getId();  

     } 

     if (strXNAME  ==  "") 

     { 

      strXNAME  = p->getObjectType();  

     } 

     switch  (anyObj.typeCode())  

     { 

      ...  

     } 

    } 

//  continued...  

 

 

98 Application  Programming Guide



C++  (continued)  

    // Get  Match  Highlighting  Information  

    pMInfo  = dsTS.getMatches(pCur,strDID,strXNAME,FALSE);  

    strDID  = "";  

    strXNAME  = "";  

    if (pMInfo  != 0) 

    { 

     strDoc  = pMInfo->getDocumentName();  

     numberSections  = pMInfo->numberOfSections();  

     // loop  thru  document  sections  

     for  (j = 1; j <= numberSections;  j++)  

     { 

      pMSect  = pMInfo->getSection(j);  

      strSection  = pMSect->getSectionName();  

      numberParagraphs  = pMSect->numberOfParagraphs();  

      // loop  thru  section  paragraphs  

      for  (k = 1; k <= numberParagraphs;  k++)  

      { 

       pMPara  = pMSect->getParagraph(k);  

       lCCSID  = pMPara->getCCSID();  

       lLang  = pMPara->getLanguageId();  

       numberTextItems  = pMPara->numberOfTextItems();  

       //  loop  thru  paragraph  text  items  

       for  (m = 1; m <= numberTextItems;  m++)  

       { 

        pMText  = pMPara->getTextItem(m);  

        strText  = pMText->getText();  

        // if match  found  in text  item  get  offset  and  

        // length  of match  in text  item  

        if (pMText->isMatch()  == TRUE)  

        { 

         lOffset  = pMText->getOffset();  

         lLen  = pMText->getLength();  

        } 

        numberNewLines  = pMText->numberOfNewLines();  

       } 

      } 

     } 

     delete  pMInfo;  

    } 

    ...  

   delete  item;  

   } 

} 

delete  pCur;  

dsTS.disconnect();  

Using the result set cursor 

The  dkResultSetCursor  is a content  server  cursor  that  manages  a virtual  collection  

of  DDO  objects.  This  means  that  the  collection  does  not  materialize  until  you  fetch  

an  element  from  it.  The  collection  is the  resulting  set  of  a items  that  met  the  

criteria  of  the  query.  When  you  are  finished  using  the  cursor,  call  the  destroy  

method  to  free  the  memory  it used.  

Important:  The  information  in  this  section  does  not  apply  to  DB2  Content  Manager  

8.3.  See  Chapter  11, “Working  with  XML  services  (Java  only)”  for  details.  

 

 

Chapter  3. Programming  with the application  programming interfaces  (APIs)  99



Opening and closing the result set cursor to rerun the query 

When  you  create  a result  set  cursor,  it is in  an  open  state.  To rerun  the  query,  close  

and  reopen  the  cursor.  

 

 

Java  

String  cmd  = "SEARCH=(INDEX_CLASS=DLSAMPLE);"   + 

                      "OPTION=(CONTENT=YES;"    + 

                       "TYPE_QUERY=DYNAMIC;"    + 

                       "TYPE_FILTER=FOLDERDOC)";  

DKNVPair  parms[]  = null;  

...  

  

dkResultSetCursor  pCur  = dsDL.execute(cmd,DK_CM_PARAMETRIC_QL_TYPE,parms);  

  

pCur.close();  

pCur.open();           //re-execute  the  query  

 

 

C++  

DKString  cmd  = "SEARCH=(INDEX_CLASS=DLSAMPLE);";  

cmd  +=   "OPTION=(CONTENT=YES;";  

cmd  +=   "TYPE_QUERY=DYNAMIC;"  ; 

cmd  +=   "TYPE_FILTER=FOLDERDOC)";  

...  

  

dkResultSetCursor*  pCur  = dsDL.execute(cmd);  

//  re-execute  the  query  

pCur->close();  

pCur->open();  

Setting and getting positions in a result set cursor 

You can  use  the  result  set  cursor  to  set  and  get  the  current  position.  The  following  

example  creates  and  executes  a query.  Inside  a while  loop,  the  cursor  position  is set  

to  the  first  (or  next)  valid  position.  Then  a DDO  is fetched  from  that  position.  A  

null  is  returned  from  the  fetchObject  method  if the  cursor  is past  the  last  item.  

 

 

100 Application  Programming Guide



Java  

// -----  Formulate  the query  string  

String  cmd  = "SEARCH=(INDEX_CLASS=DLSAMPLE);"   + 

                      "OPTION=(CONTENT=YES;"    + 

                       "TYPE_QUERY=DYNAMIC;"    + 

                       "TYPE_FILTER=FOLDERDOC)";  

DKNVPair  parms[]  = null;  

DKDDO  item  = null;  

int  i = 0; 

...  

// -----  Execute  the query;  the  result  cursor  is returned  

dkResultSetCursor  pCur  = dsDL.execute(cmd,DK_CM_PARAMETRIC_QL_TYPE,parms);  

// -----  Use  a while  loop  to iterate  thru  the collection  

while  (pCur.isValid())  

{ 

   pCur.setToNext();  

   item  = pCur.fetchObject();  

   if (item  != null)  

   { 

      i = pCur.getPosition();  

   } 

} 

 

 

C++  

DKString  cmd  = "SEARCH=(INDEX_CLASS=DLSAMPLE);";  

cmd  +=   "OPTION=(CONTENT=YES;";  

cmd  +=   "TYPE_QUERY=DYNAMIC;"  ; 

cmd  +=   "TYPE_FILTER=FOLDERDOC)";  

pCur  = 0; 

DKDDO  *item  = 0; 

long  i = 0; 

...  

  

dkResultSetCursor*  pCur  = dsDL.execute(cmd);  

while  (pCur->isValid())  { 

       pCur->setToNext();  

       item  = pCur->fetchObject();  

       if  (item  != 0) { 

           i = pCur->getPosition();  

           delete  item;  

       } 

} 

delete  pCur;  

 Another  way  to  do  this  is:  

 

 

Java  

Object  a = null;  

pCur  = dsDL.execute(cmd,DK_CM_PARAMETRIC_QL_TYPE,parms);  

while  (pCur.isValid())  { 

   pCur.setPosition(DK_CM_NEXT,a);  

   item  = pCur.fetchObject();  

   if (item  != null)  { 

      i = pCur.getPosition();  

    } 

 } 

 

 

Chapter  3. Programming with the application  programming  interfaces  (APIs) 101



C++  

DKAny  a; 

pCur  = dsDL.execute(cmd);  

while  (pCur->isValid())  { 

       pCur->setPosition(DK_CM_NEXT,a);  

       item  = pCur->fetchObject();  

       if (item  != 0) { 

           i = pCur->getPosition();  

           delete  item;  

       } 

} 

delete  pCur;  

You can  use  relative  positioning  when  iterating  through  the  items.  The  following  

example  skips  every  other  item  in  the  result  set  cursor.  

 

 

Java  

Object  a = null;  

pCur  = dsDL.execute(cmd,DK_CM_PARAMETRIC_QL_TYPE,parms);  

a = new  Integer(2);  

while  (pCur.isValid())  { 

   pCur.setPosition(DK_CM_RELATIVE,a);    //  move  cursor  2 positions  forward  

   item  = pCur.fetchObject();          //    from  the  current  podition  

   if (item  != null)  {                //    (relative)  

      i = pCur.getPosition();  

   } 

 } 

 

 

C++  

DKAny  a; 

long  increment  = 2; 

pCur  = dsDL.execute(cmd);  

a = increment;  

while  (pCur.isValid())  { 

       pCur->setPosition(DK_CM_RELATIVE,a);  

       item  = pCur->fetchObject();  

       if (item  != 0) { 

           i = pCur->getPosition();  

           delete  item;  

      } 

} 

delete  pCur;  

Creating a collection from a result set cursor 

You can  use  a result  set  cursor  to  populate  a collection  with  a specified  number  of 

items  from  the  result  set  cursor.  The  first  parameter  of the  fetchNextN  method  

specifies  how  many  items  to  put  into  the  collection.  Passing  a zero  in  the  first  

parameter  to  indicates  that  all  items  will  be  put  into  the  collection.  

In  the  following  example,  all  items  from  the  result  set  cursor  are  fetched  into  the  

sequential  collection.  If fItems  is TRUE, at least  one  item  was  returned.  

 

 

102 Application  Programming Guide



Java  

DKSequentialCollection  seqColl  = new  DKSequentialCollection();  

boolean  fItems  = false;  

int  how_many  = 0; 

fItems  = pCur.fetchNextN(how_many,seqColl);  

 

 

C++  

DKSequentialCollection  seqColl;  

DKBoolean  fItems  = FALSE;  

long  how_many  = 0; 

fItems  = pCur->fetchNextN(how_many,seqColl);  

Querying collections 

A  queryable  collection  is a collection  that  can  be  queried  further,  thus  providing  a 

smaller  set  and  more  refined  results.  A concrete  implementation  of a queryable  

collection  is a DKResults  object,  returned  as  the  results  of a query  evaluation.  

DKResults  is a subclass  of  dkQueryableCollection  and  is  a collection  of DDOs.  

Getting the result of a query 

The  following  example  illustrates  how  to  submit  a parametric  query  and  get  

results.  The  results  are  in  rs,  which  is a DKResults  object.  You can  use  previous  

code  examples  to  process  the  collection  and  get  the  DDO.  

 

 

Java  

// -----  Create  a datastore  and  establish  a connection  

DKDatastoreDL  dsDL  = new  DKDatastoreDL();  

dsDL.connect("LIBSRVRN","FRNADMIN","PASSWORD");  

  

// -----  Create  and  execute  a query  object  

String  query1  = "SEARCH=(INDEX_CLASS=GRANDPA,COND=(Title  <> null));";  

DKParametricQuery  pq = 

 (DKParametricQuery)  dsDL.createQuery(query1,DK_CM_PARAMETRIC_QL_TYPE,  null);  

pq.execute();  

// -----  Get  the  reuslt  

DKResult  rs = (DKResults)  pq.result();  

 

 

C++  

// establish  a connection  

DKDatastoreDL  dsDL;  

dsDL.connect("LIBSRVRN","FRNADMIN","PASSWORD");  

// create  a query  object  

DKString  query1  =  "SEARCH=(INDEX_CLASS=GRANDPA,COND=(Title  <> NULL));";  

DKParametricQuery*  pq =(DKParametricQuery*)  

dsDL.createQuery(query1,DK_PARAMETRIC_QL_TYPE,  NULL);  

pq->execute();  

DKAny  any  = pq->result();  

DKResult*  rs = (DKResults*)  any.value();  

 

 

Chapter  3. Programming with the application  programming  interfaces  (APIs) 103



Evaluating a new query 

You can  query  the  result  from  a query  to  further  refine  it.  The  following  code,  

based  on  the  previous  example,  shows  re-evaluating  a query:  

 

 

Java  

String  query2  = "SEARCH=(INDEX_CLASS=GRANDPA,  COND=(Subject  == ’Mystery’));";  

Object  obj  = rs.evaluate(query2,DK_CM_PARAMETRIC_QL_TYPE,  null);  

....  

 

 

C++  

DKString  query2="SEARCH=(INDEX_CLASS=GRANDPA,  COND=(Subject==’Mystery’));";  

         any  = rs->evaluate(query2,DK_PARAMETRIC_QL_TYPE,  NULL);  

         ...  

 The  second  query  returns  obj, a DKResults  object  containing  the  refined  results.  

The  combined  results  of  both  queries  would  be  equivalent  to:  

"SEARCH=(INDEX_CLASS=GRANDPA,  COND=(Title  <> NULL  AND  Subject  == ’Mystery’));"  

You can  repeat  the  query  until  you  get  satisfactory  results.  After  you  start  with  one  

type  of  query,  the  subsequent  queries  must  be  of the  same  type.  If you  mix  query  

types,  the  result  might  be  null.  

The  following  example  shows  sequential  text  queries:  

 

 

Java  

DKDatastoreTS  dsTS  = new  DKDatastoreTS();  

dsTS.connect("TM","","","");  

  

//  -----  The  first  query  

String  tquery1  = "SEARCH=(COND=(IBM));  OPTION=(SEARCH_INDEX=TMINDEX)";  

DKTextQuery  tq = 

    (DKTextQuery)  dsTS.createQuery(tquery1,  DK_CM_TEXT_QL_TYPE,  null);  

tq.execute();  

DKResults  trs  = (DKResults)  tq.result();  

//  -----  The  second  query  

String  tquery2  = "SEARCH=(COND=(Tivoli));  OPTION=(SEARCH_INDEX=TMINDEX)";  

Object  obj  = trs.evaluate(tquery2,  DK_CM_TEXT_QL_TYPE,  null);  

 

 

C++  

DKDatastoreTS  dsTS;  

dsTS.connect("TM","","","");  

  

DKString  tquery1  = "SEARCH=(COND=(IBM));  OPTION=(SEARCH_INDEX=TMINDEX)";  

DKTextQuery*   tq = 

  (DKTextQuery*)  dsTS.createQuery(tquery1,DK_TEXT_QL_TYPE,  NULL);  

tq->execute();  

any  = tq->result();  

DKResults*  trs  = (DKResults*)  any.value();  

  

DKString  tquery2  = "SEARCH=(COND=(Tivoli));OPTION=(SEARCH_INDEX=TMINDEX)";  

any  = trs->evaluate(tquery2,DK_TEXT_QL_TYPE,  NULL);  

 

 

104 Application  Programming Guide



The  second  query  returns  obj, a DKResults  object  containing  the  refined  results.  

The  combined  results  of both  queries  would  be  equivalent  to:  

"SEARCH=(COND=(IBM  AND Tivoli));OPTION=(SEARCH_INDEX=TMINDEX)";  

Using queryable collection instead of combined query 

A  combined  query  provides  the  flexibility  to submit  a combination  of  parametric  

and  text  queries,  with  or  without  scopes.  However,  all  of these  queries  must  be  

submitted  at  once,  not  one  at a time  as  you  would  when  evaluating  a queryable  

collection.  

A  combined  query  returns  a DKResults  object;  however,  you  cannot  evaluate  

another  parametric  query  against  it.  You cannot  use  combined  queries  on  all 

content  servers.  

Evaluating  a queryable  collection  with  subsequent  queries  provides  the  flexibility  

to  refine  the  results  of  a previous  query,  step  by  step,  until  you  get  a satisfactory  

final  result.  Subsequent  queries  are  useful  for  browsing  a content  server  

dynamically  and  formulating  the  next  query  based  on  the  previous  results.  

However,  if you  know  the  total  query  in  advance,  it is more  efficient  to  submit  the  

complete  query  once  or  use  a combined  query.  

 

 

Chapter  3. Programming with the application  programming  interfaces  (APIs) 105



106 Application  Programming Guide



Chapter  4.  Working  with  DB2  Content  Manager  Version  8.3  

This  section  describes  the  DB2  Content  Manager  Version  8 Release  3 connector  

(ICM  connector)  application  programming  interfaces  (APIs).  The  ICM  connector  is 

an  extension  of the  Information  Integrator  for  Content  framework,  so  it is essential  

that  you  understand  the  Information  Integrator  for  Content  framework  concepts  

described  in  Chapter  1,  “Information  Integrator  for  Content  application  

programming  concepts,”  on  page  1 before  continuing  with  this  information.  

You can  use  the  ICM  connector  APIs  to build  and  deploy  custom  applications  that  

access  a DB2  Content  Manager  content  server.  You can  also  use  the  APIs  to 

integrate  your  existing  applications  into  a DB2  Content  Manager  content  server.  

This  section  contains  the  following  information:  

v   Understanding  the  DB2  Content  Manager  system  

v   Understanding  DB2  Content  Manager  concepts  

v   Planning  a DB2  Content  Manager  application  

v   Creating  a DB2  Content  Manager  application  

v   Controlling  access  to  information  

v   Processing  transactions  

v   Searching  for  items

Understanding the DB2 Content Manager system 

The  main  components  of  the  DB2  Content  Manager  system  include  a library  server,  

one  or  more  resource  managers,  and  a set  of  object-oriented  application  

programming  interfaces  (APIs).  To administer  your  DB2  Content  Manager  system,  

you  are  also  provided  with  a Java-based  system  administration  client.  

The  library  server  provides  you  with  flexible  data  modeling  capabilities,  secure  

access  to  your  system,  efficient  managing  of content,  and  other  features.  The  

library  server  manages  the  relationships  between  items  in  the  system  and  controls  

access  to  all  of  the  system  information,  including  the  information  stored  in  the  

resource  manager.  

The  resource  manager  is the  component  that  stores  the  actual  content  of any  binary  

object,  like  a scanned  image,  an  office  document,  or  video.  You can  integrate  other  

resource  managers,  like  Content  Manager  VideoCharger  or  other  non-IBM  

products,  into  your  DB2  Content  Manager  system.  With  the  resource  manager  you  

can  complete  the  following  tasks:  

v   Automatically  move  content  from  costly  high-speed  media  to slower  less  

expensive  media  using  System  Managed  Storage  (SMS).  

v   Access  the  resource  manager  directly  from  a Web browser.  

v   Retrieve  all  or  part  of  an  object.  

v   Synchronize  your  data  with  the  library  server.

The  APIs  provide  applications  with  access  to  the  DB2  Content  Manager  system.  

The  APIs  are  available  for  Java  and  C++.  Using  the  APIs,  your  applications  can  

 

© Copyright  IBM Corp. 1996, 2005 107



take  advantage  of  all  of the  DB2  Content  Manager  functionality,  such  as data  

modeling,  integrated  parametric  and  text  search,  third-party  data  access  and  

delivery,  and  so  forth.  

The  diagram  in  Figure  7 illustrates  how  the  system  components  fit  together.  Keep  

in  mind  that  this  is  only  one  implementation  of  a DB2  Content  Manager  system.  In  

another  system  configuration  you  might  have  four  resource  managers  for  example.  

   

Understanding DB2 Content Manager concepts 

This  section  describes  important  DB2  Content  Manager  concepts.  It is imperative  

that  you  understand  the  DB2  Content  Manager  concepts  before  you  proceed  to the  

programming  tasks.  The  information  described  in  this  section  includes:  

v   Items.  

v   Attributes.  

v   Item  types.  

v   Root  and  child  components.  

v   Objects.  

v   Links  and  References.  

v   Documents.  

v   Folders.  

v   Versioning.  

v   Access  control.  

v   Document  management  data  model.

Items 

An  item  is the  basic  entity  managed  by  the  library  server.  Examples  of  items  

include  a policy,  claim,  phone  number,  and  so forth.  An  item  is  a generic  term  for  

an  instance  of  an  item  type.  If  an  object  is a discrete  piece  of digital  content,  then  

an  item  is a representation  of that  object.  The  item  is  not  the  object,  but  it 

thoroughly  identifies  it and  how  to  find  it.  In  the  system,  items  represent  objects  

including  documents  and  folders.  To define  business  objects,  like  a document,  you  

work  with  item  definitions.  

When  an  application  creates  an  item,  DB2  Content  Manager  assigns  the  item  

several  system-defined  attributes  and  allows  you  to define  your  own  attributes.  

The  system-defined  attributes  include  a creation  time  stamp  and  an  item  identifier  

(item  ID).  The  item  ID  is unique  for  every  item.  The  itemID  is stored  by  DB2  

  

Figure  7. System  configuration

 

 

108 Application  Programming Guide



Content  Manager  and  used  to locate  the  item  within  the  library  server.  When  

writing  your  application,  you  use  the  itemID  to  access  all  of the  data  associated  

with  the  item.  

Attributes 

An  attribute  is a unit  of  data  that  describes  a certain  characteristic  or  property  (for  

example,  name,  address,  age,  and  so  forth)  of  an  item,  and  it can  be  searched  on  to  

locate  the  item.  

You can  group  attributes  to  make  attribute  groups.  For  example,  the  address  

attribute  can  be  made  up  of a group  of attributes  including  street,  city,  state,  and  

zip  code.  

You can  also  define  attributes  that  have  multiple  values.  Such  attributes  are  called  

multi-valued  attributes,  which  are  implemented  as  child  components.  For  example,  

you  can  store  multiple  addresses,  home  address,  work  address,  and  so  forth  for  a 

policy  owner.  

For  additional  information,  see  the  SAttributeDefinitionCreationICM  sample.  

Item types 

An  item  type  (index  class  in  earlier  DB2  Content  Manager  versions)  is essentially  a 

template  for  defining  and  later  locating  like  items.  An  item  type  consists  of  a root  

component,  zero  or  more  child  components,  and  a classification.  An  item  type  is 

the  overall  structure  containing  all  the  components  and  associated  data.  For  

example,  in  an  insurance  scenario  a policy  item  type  contains  items  with  attributes  

like  policy  number,  name,  claim,  and  so  forth.  

In  Content  Manager,  there  are  four  classifications  of item  types:  non-resource,  

resource,  document  (also  known  as  document  model),  and  document  part.  A  

non-resource  item  type  represents  entities  that  are  not  stored  in  a resource  

manager.  A  resource  item  type  represents  objects  stored  in  a resource  manager,  like  

files  in  a file  system,  video  clips  in  a video  server,  LOBs  (large  objects)  in  database  

tables,  and  so  forth.  A  document  item  type  represents  entities  that  contain  

document  parts  that  contain  resource  content  just  as  a single  resource  item  type  

does.  A document  part  item  type  represents  objects  stored  in  the  resource  manager  

, but  are  parts  of  a document,  contained  and  owned  by  a document  item  type.  DB2  

Content  Manager  provides  a base  set  of  resource  item  types:  LOB,  text,  image,  

stream,  and  video  objects.  

For  more  information  about  item  types,  see  the  SItemTypeCreationICM  sample.  

Root and child components 

An  item  type  is composed  of components:  a root  component  and  any  number  of  

child  components,  which  are  optional.  

A  root  component  is the  first  or  only  level  of  a hierarchical  item  type.  An  item  type  

consists  of  both  system-  and  user-defined  attributes.  Internally,  the  most  basic  item  

type  contains  only  one  component.  

A  child  component  is an  optional  second  or  lower  level  of  a hierarchical  item  type.  

Each  child  component  is directly  associated  with  the  level  above  it.  Figure  8 on  

page  110 shows  the  diagram  of  the  DB2  Content  Manager  meta-model.  It shows  

 

 

Chapter  4. Working  with DB2 Content  Manager  Version  8.3 109



root  and  child  components  and  their  relationships  in forming  an  item  hierarchy.  

The  diagram  also  shows  links,  references,  resource  items,  and  resource  objects.  

 

 Figure  9 shows  an  example  of a data  model  for  an  insurance  application  with  

policy  as  the  root  component  having  claim,  police  report,  and  damage  estimate  as  

child  components.  

 

 For  more  information  about  DB2  Content  Manager  data  modeling  concepts,  the  

SItemTypeCreationICM  sample.  

Objects 

An  object  (also  known  as  resource  content)  is  any  digital  content  that  a user  can  

store,  retrieve,  and  manipulate  as  a single  unit  (for  example,  JPEG  images,  MP3  

audio,  AVI  video,  and  a text  block  from  a book).  An  object  is always  stored  in a 

resource  manager.  Access  to  an  object  is controlled  by  the  library  server.  

For  more  information,  see  the  SResourceItemCreationICM  sample.  

Links and references 

You can  use  a link  to  model  one  to  many  associations  between  items.  As  shown  in  

Figure  8,  links  can  only  be  used  to associate  root  components  of  items.  Links  do  

not  refer  to  a particular  version  of an  item.You  can  define  any  number  of links.  

Links  are  a flexible  way  to  link  a source  to  a target.  A  link  simply  associates  two  

References or
links other root
components

has parts (resource object)

has dependent(s)

has dependent(s)

Item hierarchy

Root
component

Child
component

Aggregation
Composite aggregation

Part
(on Resource
Manager)

  

Figure  8. The  DB2  Content  Manager  meta-model:  A logical  view.

  

Figure  9. Components  hierarchy

 

 

110  Application  Programming Guide



items  and  provides  the  means  to  access  the  items  it links  or  to other  items  that  

might  link  to  those  two  items.  Usage  of links  is determined  at runtime  by  the  user  

application.  You can  use  any  number  of links  in  your  application.  

Links  are  open  and  non-restrictive,  flexible  building  blocks  that  you  can  use  in 

your  applications.  As  such,  you  have  the  option  of placing  any  further  restrictions  

on  links  within  your  application.  

One  of  the  ways  that  you  can  use  a link  is to represent  the  foldering  or  

container-containee  relationship.  If you  choose  to  implement  foldering  using  links,  

remember  that  the  container  does  not  own  the  containee,  which  means  that  the  

items  in  the  container  are  not  deleted  when  the  container  is deleted.  For  more  

information  about  links,  see  the  SLinksICM  sample.  

A  reference  is between  a component  (either  root  or  child)  and  another  root  

component.  A  reference  is represented  as  a reference  attribute  in  a component  

defined  at  design-time.  A  component  definition  can  have  any  number,  specified  

during  component  type  definition,  of reference  attributes  that  refer  to other  root  

components.  A reference  usually  does  not  indicate  ownership,  but  you  can  

implement  an  ownership  relationship  if necessary.  

When  you  add  a reference  to a component  type,  items  of  that  component  type  can  

refer  to  another  item.  In  terms  of  the  DDO,  the  DDO  has  an  attribute  that  is 

identified  by  the  name  of the  reference.  The  attribute’s  value  can  be  set  to another  

DDO.  The  attribute  value  for  the  DDO  is the  DDO  that  is referred  to by  the  

reference.  

References  can  be  defined  in  both  root  and  child  component  types  referring  to  

another  root  component  type,  see  Figure  8 on  page  110..  References  also  refer  to  a 

specific  version  of  an  item,  whereas  links  refer  to  all  versions.  For  more  

information  about  reference  attributes,  see  the  SReferenceAttrDefCreationICM  

sample.  

Documents 

There  are  two  types  of documents  that  you  might  have  in  your  system.  The  first  

type  of  document  is an  item  of the  semantic  type  document, which  is expected  to 

contain  information  that  forms  a document.  This  type  of document  can  stand  alone  

or  contain  parts  if you  have  implemented  the  document  model  in  your  data  model.  

For  more  information  on  this  type  of document,  see  the  SItemCreationICM  sample  

in  the  samples  directory.  

The  other  type  of  document  is an  item  created  from  a document  classified  item  type  

(also  known  as  the  ″document  model″).  This  type  of  document  contains  document  

parts,  a specific  implementation  of  the  DB2  Content  Manager  document  model.  In  

the  document  model,  items  are  an  extension  of  non-resource  items.  Document  

model  parts  are  resource  items.  The  document  parts  can  include  various  types  of  

content  including  text,  images,  and  spreadsheets  for  example.  For  more  

information  about  the  document  model,  see  the  SDocModelItemICM  sample.  

Folders 

A  folder  is an  item  that  may  contain  other  items  of  any  type.  This  may  also  include  

other  folders.  In  DB2  Content  Manager  Version  8, the  concept  of  folders  is 

implemented  by  using  link  relationships  between  items.  Items  can  contain  other  

items  to  form  a containment  hierarchy,  called  a folder  hierarchy.  For  example,  a 

policy  item  belongs  to  the  policy  item  type,  and  potentially  has  many  claims,  

 

 

Chapter  4. Working  with DB2 Content  Manager  Version  8.3 111

|
|
|
|
|
|
|



making  policy  a folder  that  holds  other  items  such  as  a photo,  a social  security  

number,  and  so  forth.  Folders  are  very  flexible  because  any  item  can  be  a folder  

and  can  contain  any  number  of other  items.  For  more  information,  see  the  

SFolderICM  sample.  

Versioning 

Versioning  is the  ability  to  store  and  maintain  multiple  versions  of an  item,  

including  versions  of  the  item’s  child  components.  You specify  versioning  rules 

when  you  define  an  item  type.  If an  item  type  is enabled  for  versioning,  all  items  

in  that  item  type  are  versioned.  

There  are  two  types  of  versioning,  always  or  by  application.  When  an  item  is 

enabled  for  versioning  always,  a new  version  of  the  item  is created  automatically  

every  time  the  item  is updated  and  stored  into  the  content  server.  When  an  item  is 

enabled  for  versioning  by  application,  the  system  only  creates  a new  version  when  

specified  by  the  user  application.  

Versioning  is handled  by  the  DB2  Content  Manager  library  server.  Each  version  of  

an  item,  whose  content  is  stored  in  the  resource  manager  , will  have  its  own  copy  

of  the  content.  The  following  is a list  of important  versioning  characteristics  of  

versioning:  

v   Versioning  involves  a root  component  and  its  entire  hierarchy.  

v   Item  types  can  have  one  of three  possible  versioning  policies:  version-always,  

version-  never  (the  default),  and  application-controlled  versioning.  

v   All  the  versions  of  an  item  in  the  system  are  searchable  and  retrievable.  

v   Any  version  of  an  item  can  be  updated  and  deleted.  

v   For  item  types  with  application-controlled  versioning,  when  the  item  is updated,  

the  user  has  the  option  of applying  the  updates  to  the  existing  version  or  

creating  a new  version  based  on  the  updates.  

v   Each  version  of  an  item  has  its  own  persistent  identifier  (PID).  The  PID  has  

several  parts  of which  two  are  relevant  in  the  current  context.  The  first  relevant  

part  is  the  ItemID  which  is the  same  across  all  different  versions  of  the  item.  The  

other  is the  version  number.  Each  version  of the  item  has  a different  version  

number  that  can  be  retrieved  and  set  as  a string.  Below  is a sample  that  

demonstrates  how  to  work  with  version  numbers.  

DKPidICM  pid  = (DKPidICM)ddo.getPidObject();  

String  version  = pid.getVersionNumber();  

....  

pid.setVersionNumber(version);  

v   An  item  type  can  be  configured  to  keep  only  a limited  number  of  versions  for  

each  item.  If  an  update  to  an  item  exceeds  the  maximum  number  of allowed,  the  

oldest  saved  version  is dropped  and  a new  version  is created  by  the  system.  

v   If  a version-enabled  item  is reindexed,  all  previous  versions  of the  item  are  

automatically  deleted.  

v   Child  components  of an  item  inherit  the  version  of  their  parent  component.  

v   The  version  of  a child  component  type  cannot  be  changed,  since  it follows  the  

versioning  of  its  parent  type.  

v   Part-level  versioning  rules  can  be  obtained  from  the  item  type  relation  object  

that  represents  the  types.

For  detailed  information  about  versioning,  see  the  SItemUpdateICM  and  the  

SItemTypeCreationICM  sample.  

 

 

112  Application  Programming Guide



Access control 

The  DB2  Content  Manager  access  control  model  is comprised  of the  following  

fundamental  elements:  

v   Privileges  and  privilege  sets.  

v   Controlled  entities.  

v   Users  and  user  groups.  

v   Access  control  lists.

The  various  access  control  elements  work  as  follows.  Each  DB2  Content  Manager  

user  is  granted  a set  of  user  privileges.  These  privileges  define  the  operation  a user  

can  perform.  A user’s  effective  access  rights  will  never  exceed  the  user’s  defined  

privileges.  

The  access  control  model  of  DB2  Content  Manager  is  applied  to  the  controlled  

entity.  A controlled  entity  is a unit  of protected  user  data.  In  DB2  Content  Manager,  

the  controlled  entity  can  be  at the  level  of item,  item-type,  or  at the  level  of  the  

entire  library.  For  example,  you  can  bind  an  ACL  to an  item  type  to  enforce  access  

control  at  the  item  type  level.  Operations  on  controlled  entities  are  regulated  by  

one  or  more  control  rules,  called  access  control  lists  (ACLs).  Every  controlled  entity  

in  Content  Manager  system  must  be  bound  to  an  ACL.  

When  a user  initiates  an  operation  on  an  item,  the  system  checks  the  user’s  

privilege  and  the  ACL  bound  to the  item  to  determine  if the  user  has  the  right  to  

do  such  an  operation  on  the  item.  Logically,  the  right  to access  an  item  also  

requires  the  right  to  access  the  item  type,  where  the  item  is defined.  Figure  10  

shows  an  example  of  how  the  system  determines  user’s  access  rights  to  an  item  

based  on  privileges  and  ACLs.  

   

Privileges and privilege sets 

Privileges  allow  a user  to  perform  a specific  action  on  an  item  in  the  system,  such  

as  create  or  delete  it.  Every  DB2  Content  Manager  user  is granted  a set  of  user  

privileges.  The  privileges  define  the  maximum  operations  a user  can  perform  on  

information  in the  DB2  Content  Manager  system.  A user’s  access  rights  do  not  

exceed  the  defined  user  privileges  for  the  user. 

DB2  Content  Manager  provides  a number  of pre-defined  privileges  that  you  cannot  

change,  called  system-defined  privileges.  You can  also  define  your  own  privileges,  

called  user-defined  privileges.  You enforce  user-defined  privileges  in  your  

application  using  user  exit  routines.  

User 1 Profile

Authorized privileges
a, b, c, d

Item x bound to ACL y

ACL y authorizes:
user1:c

user2: b, c

result user 1 can perform
c on item x

User 2 Profile

Authorized privileges
a, e

Item x bound to ACL y

ACL y authorizes:
user1:c

user2: b, c

result user 2 cannot perform
any function on item x

  

Figure  10.  Access  control  diagram

 

 

Chapter  4. Working  with DB2 Content  Manager Version 8.3 113



Every  privilege  has  a system-generated,  unique  code  called  a privilege  definition  

code.  The  privilege  definition  codes  0 to  999  are  reserved  for  system-defined  

privileges.  You can  use  codes  of  1000  and  above  for  user-defined  privileges.  

The  system-defined  privileges  are  classified  into  two  categories:  system  

administration  privileges,  and  data  access  privileges.  You can  use  the  system  

administration  privileges  to model  user  data  and  administer  and  maintain  the  DB2  

Content  Manager  system.  You need  system  administration  privileges  to  complete  

tasks  such  as  configuring  the  system,  managing  the  library  server  configuration,  

and  managing  item  types.  You can  use  the  data  access  privileges  to  access  and  

change  the  system  data,  like  items  and  item  types.  

A group  of  privileges  assigned  to  a user  is a privilege  set.  For  example,  one  

privilege  set  can  contain  the  privileges  create,  update,  and  delete.  Privilege  sets  

allow  for  easier  system  administration.  You must  group  privileges  into  a set  before  

you  can  use  them.  There  is no  limitation  on  the  number  of  privileges  a set  can  

contain.  

The  DB2  Content  Manager  pre-defined  privilege  sets  include:  System  Admin  

privilege  

AllPrivSet;  PrivSetCode:  1 

A  user  with  this  privilege  set  can  perform  all  functions  on  all  DB2  Content  

Manager  entities.  The  privileges  contained  in  this  privilege  set  include:  

All  system-defined  and  user-defined  privileges.  

NoPrivSet;  PrivSetCode:  2 

Users  with  this  privilege  set  cannot  perform  any  functions  on  any  DB2  

Content  Manager  entities.  The  privileges  contained  in  this  privilege  set  

include:  

None.  

SystemAdminPrivSet;  PrivSetCode:  3 

Users  with  this  privilege  set  can  perform  all  DB2  Content  Manager  system  

administration  and  data  modeling  functions.  The  privileges  contained  in  

this  privilege  set  include:  

ItemAdminPrivSet;  PrivSetCode:  4 

Users  with  this  privilege  set  can  perform  all  DB2  Content  Manager  data  

modeling  and  item  access  functions.  The  privileges  contained  in  this  

privilege  set  include:  

v   System  define  item  type  privilege  

v   Item  SQL  select  privilege  

v   Item  type  query  privilege  

v   Item  query  privilege  

v   Item  add  privilege  

v   Item  set  user  defined  attr  privilege  

v   Item  set  system  defined  attr  privilege  

v   Item  delete  privilege  

v   Item  move  privilege  

v   Item  link  to  privilege  

v   Item  linked  privilege  

v   Item  own  privilege  

v   Item  owned  privilege  

 

 

114  Application  Programming Guide



v   Item  add  link  privilege  

v   Item  change  link  privilege  

v   Item  remove  link  privilege  

v   Item  check  out  privilege

 Table 6. Privilege  Codes  

Privilege  name  Code  

ICMLogon  1 

SystemAdmin  40  

SystemDefineItemType  45  

ItemSQLSelect  121  

ItemTypeQuery  122  

ItemQuery  123  

ItemAdd  124  

ItemSetUserAttr  125  

ItemSetSysAttr  126
  

Users and user groups 

Most  likely,  you  have  a group  of  users  that  require  the  same  type  of access  to the  

system.  For  example,  all  of  the  underwriters  in  an  insurance  company  require  

search,  retrieve,  and  update  privileges  to  the  claims  item  type.  You can  group  the  

underwriters  and  any  other  users  with  common  access  needs  into  a user  group.  

You cannot,  however,  put  one  user  group  into  another  user  group.  

A  user  group  is  solely  a convenience  grouping  of  individual  users  who  perform  

similar  tasks.  A  user  group  consists  of  zero  or  more  users.  You do  not  assign  a user  

group  a privilege  set.  Each  user  in  a user  group  has  a privilege  set.  A  user  group  

makes  it easier  to  create  access  control  lists  for  objects  in  your  system.  A user  

group  cannot  belong  to  other  groups.  

Access control lists (ACLs) 

When  a user  creates  an  item  in  the  DB2  Content  Manager  system,  that  user  must  

define  the  access  that  other  users  will  have  to  that  item,  and  what  operations  they  

can  perform  on  that  item.  The  list  of users  that  have  access  to  the  item  and  the  

operations  that  they  can  perform  on  the  item  is called  an  access  control  list  (ACL).  

An  ACL  can  contain  one  or  more  individual  user  IDs  or  user  groups  and  their  

associated  privileges.  You can  associate  items,  item  types,  and  worklists  with  an  

ACL.  Privilege  sets  define  an  individual’s  maximum  ability  to  use  the  system,  an  

ACL  restricts  that  individual’s  access  to an  item.  For  example,  if its  ACL  allows  the  

photograph  item  to  be  deleted  but  John  doesn’t  have  the  delete  privilege  in his  

privilege  set,  then  John  cannot  delete  the  photograph.  

A  controlled  entity  is bound  to a specific  ACL  through  the  ACL  code.  When  

associated  with  controlled  entities,  ACLs  define  the  authorization  of the  bound  

entities  and  do  not  circumvent  the  user  privileges.  An  ACL  is enforced,  and  user  

privileges  are  checked.  

The  users  specified  in  access  control  rules can  be  individual  users,  user  groups,  or  

public.  The  interpretation  is determined  by  the  UserKind  field  of a rule. The  types  

of  rules, for  illustration  purposes,  can  be  given  the  names  ACL  Rule  for  User, ACL  

Rule  for  Group,  and  ACL  Rule  for  Public  respectively.  By  specifying  public,  the  

ACL  Rule  for  Public  authorizes  all  the  users  to perform  operations  specified  in the  

 

 

Chapter  4. Working  with DB2 Content  Manager Version 8.3 115



ACL  Privileges  on  the  bound  entity,  provided  the  users  pass  their  User  Privileges  

check.  The  ACL  privileges  on  the  bound  entity  to  Public  can  be  configured  in  the  

System  level.  The  capability  of  opening  a bound  entity  to  Public  can  be  configured  

system-wide.  The  configuration  parameter  is named  PubAccessEnabled  (defined  in  

table  ICMSTSysControl). When  disabled,  all  the  ACL  Rules  for  Public  are  ignored  

during  the  access  control  process.  

Within  the  same  ACL,  a user  can  be  specified  in more  than  one  type  of  rule. The  

precedence  of  the  three  types,  from  highest  to lowest,  is ACL  Rule  for  Public,  ACL  

Rule  for  User, and  ACL  Rule  for  Group.  When  applying  ACL  checks,  if any  

higher-precedence  rule type  passes,  the  authorization  is resolved  and  the  process  

stops.  If  the  check  for  ACL  Rule  for  Public  failed,  the  checking  process  will  

continue  on  the  lower-precedence  rule types.  

If the  check  for  ACL  Rule  for  the  User  failed,  however,  the  checking  stops.  The  

ACL  Rule  for  Group  is  not  checked.  There  is no  need  to continue  the  check  on  the  

Group  type  because  if a user  does  an  individual  user  check,  the  user  will  be  

excluded  from  the  group  type  access  based  on  the  access  control  algorithm.  The  

access  control  check  for  individual  User  type  and  Group  type  is  not  a sequential  

process.  It  is  an  either-or  situation,  even  though  there  is no  harm  in  doing  a 

sequential  check.  

If the  user  has  failed  to pass  an  individual  user  type  check  (or  the  user  does  not  

have  a rule in the  Access  List  table),  the  checking  process  will  continue  to the  

group  type.  If  the  user  belongs  to one  of  the  groups  and  the  check  of  the  privilege  

passes,  the  authorization  is resolved  and  the  process  stops.  Otherwise,  access  is 

denied  and  the  process  also  stops.  When  a user  is specified  in  more  than  one  ACL  

Rule  for  a Group,  the  user  is authorized  by  the  union  of  all  those  rules’  ACL  

Privileges.  A user  is never  specified  in  more  than  one  ACL  Rule  for  User. 

The  CM  system  provides  the  following  pre-configured  ACLs:  SuperUserACL, 

NoAccessACL  and  PublicReadACL. 

SuperUserACL  

This  ACL  consists  of  a single  rule that  authorizes  the  CM  pre-configured  

user  ICMADMIN  to  perform  all  CM  functions  (AllPrivSet)  on  the  bound  

entities.  

NoAccessACL  

This  ACL  consists  of  a single  rule that  specifies,  for  all  CM  users  (public),  

no  actions  (NoPrivSet)  is allowed.  

PublicReadACL  

This  ACL  consists  of  a single  rule that  specifies,  for  all  CM  users  

(ICMPUBLC),  the  read  capability  (ItemReadPrivSet)  is  allowed.  This  is the  

default  value  assigned  to  a user’s  DfltACLCode.

Planning a DB2 Content Manager application 

This  section  helps  you  identify  requirements  for  creating  a DB2  Content  Manager  

application  and  provides  information  about  how  DB2  Content  Manager  operates.  A  

key  part  of planning  your  application  is  creating  a data  model  that  meets  the  

needs  of  your  business.  For  more  information  about  the  DB2  Content  Manager  

data  model,  see  Planning  and  Installing  Your  Content  Management  System  and  the  

tSItemTypeCreationICM  sample  in  the  samples  directory.  

The  following  topics  are  covered  in  this  section:  

 

 

116  Application  Programming Guide



v   Determining  the  features  of your  application.  

v   Handling  errors.

Determining the features of your application 

The  approach  you  take  to  develop  your  application  varies  based  on  the  needs  of  

your  organization.  To produce  an  effective  application,  all  interested  parties  in  your  

organization  should  contribute  to  the  planning  and  design  of  the  application.  For  

additional  help  with  planning,  see  Planning  and  Installing  Your  Content  Management  

System. 

Before  you  can  create  your  application,  you  should  be  able  to answer  all  or  most  of 

the  following  questions:  

v   What  types  of documents  does  your  organization  use?  

v   What  type  of  content  is  in your  existing  documents?  

v   How  do  you  process  documents?  

v   Can  you  automate  your  document  process?  

v   How  do  you  receive,  display,  store,  and  distribute  documents?  

v   How  often  do  you  retrieve  documents  after  they  are  stored?  

v   What  is  the  volume  of documents  that  your  organization  manages?  

v   What  types  of storage  media  do  you  want  to  use  to  store  your  large  objects?  

v   Are  there  other  applications  your  organization  uses?  

v   How  many  users  and  what  type  of access  control  do  you  plan  to  have?

Use  the  answers  to  the  questions  above  to  help  you  determine  which  features  to 

include  in  your  application.  

Handling errors 

When  handling  errors,  the  most  important  exception  to catch  is the  DKException  

class.  Do  not  use  exceptions  for  program  logic,  and  do  not  rely  on  catching  

exceptions  to  detect  if something  exists  in  the  content  server  or  for  any  reason  

other  than  for  truly exceptional  cases.  Using  exceptions  in  program  logic  decreases  

performance  and  can  render  tracing  and  log  information  useless  for  debugging  and  

support.  

Carefully  review  all  of the  exception  information.  There  are  numerous  sub-classes  

of  DKException  and  depending  on  the  program,  it might  be  best  to  handle  each  

exception  individually.  Table 7 contains  DKException  information.  

 Table 7. DKException  information  

DKException  Description  

Name  Exception  Class  Name.  Contains  sub-class  name.  

Message  A specific  message  explains  the  error.  The  message  can  contain  a 

lot of information,  sometimes  encapsulating  important  variable  

states  at the  time  the  error  was detected.  

Message  ID A unique  Message  ID identifies  this  error  type  and  matches  it to a 

core  message  used  above.  

 

 

Chapter  4. Working  with DB2 Content  Manager Version 8.3 117



Table 7. DKException  information  (continued)  

DKException  Description  

Error  State  Might  contain  additional  error  information  about  the  state  of the 

OO API  or library  server  error. If the library  server  detects  an 

error,  the  following  four  pieces  of information  are  packaged  here:  

   Return  code  

   Reason  code  

   Ext / SQL  return  code  

   Ext / SQL  reason  code  

Error  Code  Might  contain  the  library  server  return  code.  

Stack  Trace Important  information  indicating  the  failure  point  in the user  

program  and  exactly  where  the error  was  last  detected  or handled  

by the  OOAPI.
  

When  working  in  Java,  you  must  also  handle  the  java.lang.Exception.  The  

SConnectDisconnectICM  sample  in  the  samples  directory  demonstrates  how  to catch  

and  print  errors.  For  information  about  logging  and  tracing,  see  Messages  and  

Codes. 

Working  with the DB2 Content Manager samples 

Content  Manager  provides  a comprehensive  set  of  code  samples  to  help  you  

complete  key  DB2  Content  Manager  tasks.  The  samples  are  a great  source  of ICM  

API  education  because  they  provide  reference  information,  programming  guidance,  

API  usage  examples,  and  tools.  

You can  view  the  samples  in  the  Application  Programming  Reference, in  the  product  

Information  Center.  Additionally,  the  samples  are  located  in  the  

IBMCMROOT/samples/cpp/icm  and  IBMCMROOT/samples/java/icm  directories.  Note,  

however,  that  you  must  have  selected  the  Samples  and  Tools component  during  

Information  Integrator  for  Content  installation  in  order  to  have  the  samples  in the  

directory.  

Important:  The  DB2  Content  Manager  Express  samples  are  located  in the  following  

directory:  \samples\java\cmx  and  \samples\cpp\cmx  

To get  the  most  out  of  the  samples,  be  sure  to read  the  Samples  Readme.  It  

contains  a complete  reference  index  to  help  you  quickly  find  the  sample  that  

contains  the  concept,  or  topic,  that  you  are  looking  for. Every  sample  is thoroughly  

documented  and  provides  in-depth  conceptual  information  and  an  explanation  of  

each  task  step.  Additional  information  contained  in  each  sample  includes:  

v   Detailed  header  information  explaining  the  concepts  shown  in the  sample.  

v   A description  of  the  sample  file  including  prerequisite  information  and  

command  line  usage.  

v   Fully  commented  code  that  you  can  easily  cut,  customize,  and  use  in  your  

applications.  

v   Utility  function  that  you  can  use  when  developing  your  applications.

The  Getting  Started  section  in  the  Samples  Readme  helps  you  to  quickly  learn  how  

to  complete  the  following  general  tasks:  

v   Data  modeling.  

v   Connecting  to  a server  and  handling  errors.  

 

 

118  Application  Programming Guide



v   Defining  attributes  and  attribute  groups.  

v   Working  with  reference  attributes.  

v   Defining  your  data  model.  

v   Working  with  items.  

v   Working  with  resource  items.  

v   Working  with  folders.  

v   Working  with  links.  

v   Defining  the  . 

v   Defining  an  SMS  collection.  

v   Searching  for  items.

The insurance scenario sample 

DB2  Content  Manager  provides  code  samples  for  one  possible  ″real  world″ 

implementation  using  an  insurance  company.  The  information  used  to  create  the  

insurance  company  sample  is fabricated  and  created  only  to  help  explain  key  

Content  Manager  features.  For  a complete  list  of the  samples  that  make  up  the  

insurance  scenario,  see  the  Samples  Readme.  

Creating a DB2 Content Manager application 

The  APIs  that  implement  DB2  Content  Manager  Version  8 Release  3 functionality  

are  grouped  into  what  is called  the  ICM  connector.  The  ICM  connector  APIs  have  

an  ICM  suffix,  as  in  the  example  DKDatastoreICM. 

This  information  in  this  section  includes:  

v   Understanding  the  software  components.  

v   Representing  items  using  DDOs.  

v   Connecting  to  the  DB2  Content  Manager  system.  

v   Working  with  items.

Understanding the software components 

For  conceptual  purposes,  you  can  categorize  the  OO  APIs  into  the  following  

groups  of services:  

v   Data  and  document  modeling.  

v   Search  and  retrieve.  

v   Data  import  and  delivery.  

v   System  management.  

v   Document  routing.

The  data  and  document  modeling  module  contains  the  APIs  that  enable  you  to  

map  your  business  data  model  to  the  underlying  DB2  Content  Manager  

hierarchical  data  model.  For  example,  an  insurance  company’s  data  model  includes  

policies, which  in  the  DB2  Content  Manager  data  model  are  essentially  items.  The  

data  and  document  modeling  module  APIs  provide  interfaces  to  define  items  that  

represent  policies. 

The  search  and  retrieve  module  processes  requests  about  managed  items  like  

documents  and  folders.  The  search  module  APIs  enable  you  to  perform  combined  

text  and  parametric  searches  for  items  contained  in  the  DB2  Content  Manager  

system.  The  search  results  are  returned  to  the  application  in  the  form  of search  

result  sets.  

 

 

Chapter  4. Working  with DB2 Content  Manager Version 8.3 119



The  data  import  and  delivery  module  provides  the  APIs  that  enable  you  to  import  

data  into  your  system  and  deliver  that  data  through  various  media,  like  a network  

or  the  Web. 

The  system  management  module  provides  you  with  the  interfaces  to configure  and  

maintain  an  efficient,  secure  DB2  Content  Manager  system.  For  example,  you  can  

incorporate  the  system  management  APIs  into  your  application  to  allow  you  to 

adjust  the  system  control  settings,  manage  users,  assign  users  privileges,  allow  

access  to  the  system,  and  so forth.  

The  document  routing  module  APIs  help  you  to  route  business  objects,  like  

documents,  through  a process,  as  defined  by  the  needs  of your  business.  

Representing items using DDOs 

Before  you  can  create  an  application,  you  must  understand  the  DDO/XDO  

protocol  concepts  explained  in  the  “Understanding  dynamic  data  object  concepts”  

on  page  1.  The  information  in  this  section  is specific  to DB2  Content  Manager  

Version  8 Release  3.  

A DDO  is  essentially  a container  of attributes.  An  attribute  has  a name,  value,  and  

several  properties.  One  of  the  most  important  properties  of  attributes  is the  

attribute  type.  A DDO  has  a persistent  identifier  (PID)  to  indicate  the  location  

where  the  object  resides  in  persistent  storage.  A DDO  has  some  methods  to 

populate  itself,  and  corresponding  methods  to  retrieve  an  item’s  information.  The  

DDO  methods  include  add,  retrieve,  update,  and  delete.  You use  these  methods  to  

move  an  item’s  data  in and  out  of  persistent  storage,  like  DB2  Content  Manager.  

In  memory,  DB2  Content  Manager  items  are  represented  as  DDOs.  Item  attributes  

are  represented  as DDO  attributes  with  a name,  type,  and  a value.  Links  and  

references  are  represented  as  special  types  of  attributes.  The  difference  between  a 

link  attribute  and  a reference  attribute,  however,  is that  a reference  attribute  refers  

to  another  (single)  DDO  or  XDO,  and  a link  attribute  refers  to a collection  

(multiple)  of  DDOs  or  XDOs.  XDOs  are  used  to  represent  large  objects  (LOBs).  

A reference  to  an  item,  either  to  an  XDO  or  another  DDO,  has  a name  with  the  

type  property  set  to  object  reference,  and  value  set  to refer  to  the  instance  of  the  

referenced  object.  Child  components  and  links  are  also  represented  as DDO  

attributes  with  the  type  property  set  to  a collection  of data  objects,  and  value  set  to  

a collection  of  DDOs.  In  the  case  of a child  component,  the  attribute  name  is the  

name  of  the  child  component.  The  value  is the  collection  of  child  components  

belonging  to  the  root  component.  If the  root  item  is deleted,  all  of  the  child  

components  of  the  root  item  are  also  deleted.  

Connecting to the DB2 Content Manager system 

One  of  the  first  things  that  you  need  to  do  when  you  build  a DB2  Content  

Manager  application  is connect  to  the  server.  This  section  helps  you  with  the  

various  tasks  involved  in  connecting  to,  and  disconnecting  from,  a DB2  Content  

Manager  server.  

To access  the  DB2  Content  Manager  server,  your  application  needs  to  create  a 

content  server,  which  acts  as  a common  server.  To create  and  connect  to  a content  

server:  

1.   Create  a content  server  object.  

 

 

120 Application  Programming Guide



Java  

DKDatastoreICM  dsICM  =new  DKDatastoreICM();  

 

 

C++  

DKDatastoreICM  *dsICM  =new  DKDatastoreICM();  

2.   Set  up  the  connection  parameters.  

 

 

Java  

String  database  = "icmnlsdb";  

String  userName  = "icmadmin";  

 String  password  = "password";  

 

 

C++  

char  * database  = "icmnlsdb";  

char  * userName  = "icmadmin";  

char  * password  = "password";  

3.   Call  the  connect  operation  on  the  content  server.  databaseNameStr  is the  name  

of  the  database  you  want  to  connect  to.  

 

 

Java  

dsICM.connect(databaseNameStr,usridStr,pwStr,"");  

 

 

C++  

dsICM->connect(database,  userName,  password,  "");  

Depending  on  your  system  configuration,  you  might  have  several  library  servers  

and  resource  managers  that  you  can  connect  to.  To see  a list  of  the  names  of  the  

library  servers  that  you  can  connect  to,  use  DKDatastoreICM  and  call  the  

listDataSourceNames()  method,  and  then  the  listDataSources()  method.  The  

listDataSources()  method  lists  the  library  servers  that  are  currently  available  to  

connect  to.  

After  you  connect  to a library  server,  use  the  DKRMConfiguration  and  call  the  

listResourceMgrs()method,  to  get  the  list  of  resource  managers  associated  with  

that  library  server.  

To disconnect  from  the  system,  call  the  disconnect  operation  in  the  content  server.  

For  more  information,  see  SConnectDisconnectICM, the  complete  sample  from  

which  the  above  code  snippets  were  extract.  

 

 

Chapter  4. Working  with DB2 Content  Manager  Version  8.3 121



Changing a password 

You can  allow  users  to  change  their  password  each  time  they  begin  a new  library  

server  session.  To implement  the  change  password  option,  use  DKDatastoreICM  and  

call  the  changePassword()  method.  

 

 

Java  

changePassword(String  userID,  String  oldPwd,  String  newPwd)  

 

 

C++  

changePassword(const  char*  userID,  const  char*  oldPwd,  const  char*  newPwd)  

Working  with items 

This  section  describes  how  to create,  update,  and  delete  items.  

For  additional  information  about  working  with  items,  see  the  SItemCreationICM  

sample.  

Creating an item type 

Before  you  can  create  any  items,  you  must  have  already  created  item  types,  which  

are  much  like  categories,  to  place  the  items  under.  For  example,  a claim  item  can  

be  placed  under  the  item  type  policy.  You can  think  of  this  relationship  as  a 

parent-child  relationship  where  the  child  is the  item,  or  the  claim, and  the  parent  is 

the  item  type,  or  the  policy.  

When  you  create  an  item  type,  you  can  define  a classification  for  the  item  type.  An  

item  type  classification  is a categorization  within  an  item  type  that  further  identifies  

the  items  of  that  item  type.  All  items  of the  same  item  type  have  the  same  item  

type  classification.  Content  Manager  supplies  the  following  item  type  

classifications:  item,  resource  item,  docmodel,  and  docpart.  If  you  do  not  specify  an  

item  type  classification  when  you  create  an  item  type,  the  item  type  classification  

defaults  to  item  (DDO).  The  pre-defined  item  type  classifications  and  the  

corresponding  ID  constant  are  listed  in  Table  8. 

 Table 8. Item  type  classifications  

Classification  ID Constant  Number  Description  

Item  DK_ICM_ITEMTY  

PE_CLASS_ITEM  

0 A standard  item  (DDO).  

Resource  DK_ICM_ITEMTY  

PE_CLASS_RES  

OURCE_ITEM  

1 A resource  item  that  describes  and  

contains  data  that  is stored  in the 

resource  manager.  Video,  images,  

documents,  and  other  data  archived  

in the  resource  manager  are  

examples  of resource  items.  

Document  model  DK_ICM_ITEMT  

YPE_CLASS_DOC  

_MODEL  

2 An item  that  models  documents  

using  parts.  A document  is composed  

of any  number  of parts,  which  are  

contained  in the  attribute  

DKConstant.DK_CM_DKPARTS. 

Part  DK_ICM_ITEMTY  

PE_CLASS_DOC_  

PART 

3 Items  (parts)  in the  document  model  

classification.  

 

 

122 Application  Programming Guide



Table 8. Item  type  classifications  (continued)  

Classification  ID  Constant  Number  Description  

Note:  Constants  are  located  in com\ibm\mm\sdk\common\DKConstantICM.java  for Java  and  

dk\icm\DKConstantICM.h  for  C++.
  

To create  an  item  type  (see  code  example  below):  

1.   Create  an  item  type  and  pass  it a reference  to  the  content  server.  

2.   Give  the  item  type  a name.  Item  type  names  should  be  less  than  15  characters  

in length.  The  item  type  name  is used  to  create  DDOs  of  the  item  type.  

3.   Add  attributes  to  the  item  type,  and  set  any  desired  qualifiers,  like  nullable, 

textsearchable,  and  unique. 

4.    Add  the  item  type  to  the  persistent  content  server.
 

 

Java  

//This  example  creates  an item  type  definition  and  names  it.  

//The  item  type  name  must  be less  than  15  characters  in length.  

DKItemTypeDefICM  bookItemType  = new  DKItemTypeDefICM(dsICM);  

        bookItemType.setName("book");  

        bookItemType.setDescription("This  is an example  item  type  name.");  

//Below,  a text-searchable  attribute  called  book  title  is added.  The  

//attribute  is defined  to require  a unique  name  and also  a value.  The  value  

//does  not  have  to be unique.  

DKAttrDefICM  attr  = (DKAttrDefICM)_dsDefICM.retrieveAttr("book_title");  

        attr.setTextSearchable(true);  

attr.setUnique(true);  

attr.setNullable(false);  

bookItemType.add(attr);  

//Here,  a book_num_pages  attribute  is added  to the  book  item  

//type  with  the  following  characteristics:  text  searchable,  unique,  

//and  a value  is not required.  

DKAttrDefICM  attr  = (DKAttrDefICM)_dsDefICM.retrieveAttr("book_num_pages");  

attr.setTextSearchable(false);  

attr.setUnique(false);  

attr.setNullable(false);  

        bookItemType.addAttr(attr);  

        bookItemType.add();  

 

 

Chapter  4. Working  with DB2 Content  Manager  Version  8.3 123



C++  

DKDatastoreICM*  pDs;  

DKDatastoreICM*  pDs;  

...  

DKDatastoreDefICM*  dsDefICM  = (DKDatastoreDefICM*)pDs->datastoreDef();  

//create  new  ItemType  

DKItemTypeDefICM  * bookItemType  = new DKItemTypeDefICM(pDs);  

bookItemType->setName("book");  

bookItemType->setDescription("This  is an example  item  type  name.");  

//Create  new  Attribute;  add  it to datastore  and  to the  ItemType  

DKAttrDefICM  * attr  = (DKAttrDefICM  *)dsDefICM->createAttr();  

  attr->setName("book_title");  

  attr->setType(DK_CM_VARCHAR);  

  attr->setSize(80);  

  attr->setTextSearchable(TRUE);  

  attr->setUnique(TRUE);  

  attr->setNullable(FALSE);  

//Persist  the  attribute  to the  datastore  

attr->add();  

//Add  the  newly  created  attribute  to the  item  type.  

bookItemType->addAttr(attr);  

//Create  new  Attribute;  add  it to datastore  and  to ItemType  

  attr  = (DKAttrDefICM  *)dsDefICM->createAttr();  

  attr->setName("book_num_pages");  

  attr->setType(DK_CM_INTEGER);  

  attr->setTextSearchable(FALSE);  

  attr->setUnique(FALSE);  

  attr->setNullable(FALSE);  

  attr->add();  

bookItemType->addAttr(attr);  

//Add  the  entity,  bookItemType,  to the  datastore.  

bookItemType->add();  

 See  the  SitemTypeCreationICM  sample  for  more  information.  

Listing item types 

To get  a list  of  available,  defined  item  types:  

1.   Connect  to  a DKDatastoreICM  content  server.  

2.   Get  a reference  to  the  content  server  definition.  

3.   Call  the  listEntityNames  method  on  the  content  server  definition  object  to  get  

a string  array  of  the  names  of the  item  types.  

4.   Use  a loop  to  list  all  of the  names.
 

 

Java  

String  itemTypeName[]  = dsICM.listEntityNames();  

DKSequentialCollection  itemTypeColl  = 

  (DKSequentialCollection)  dsICM.listEntities();  

dkIterator  iter  = itemTypeColl.createIterator();  

while(iter.more()){  

dkEntityDef  itemType  = (dkEntityDef)  iter.next();  

System.out.println("  Item  type  name  : " + itemType.getName());  

} 

 

 

124 Application  Programming Guide



C++  Example  1 

long  larraySize  = 0; 

DKString  * itemTypeName  = dsICM->listEntityNames(larraySize);  

   for (int  i = 0; i < larraySize;  i++)  { 

           cout  <<(char*)itemTypeName[i]  <<endl;  

    } 

   delete  [] itemTypeName;  

 

 

C++  Example  2 

DKSequentialCollection  * itemTypeColl  = 

                            (DKSequentialCollection  *) 

            dsICM->listEntities();  

dkIterator  * iter  = itemTypeColl->createIterator();  

  while  (iter->more())  { 

dkEntityDef*  itemType=(dkEntityDef*)((void*)(*iter->next()));  

   cout  <<(char*)itemType->getName()  < delete(itemType);  

  } 

  delete(iter);  

  delete(itemTypeColl);  

 For  more  information,  see  the  SItemTypeRetrievalICM  sample.  

Creating attributes 

Attributes  in  DB2  Content  Manager  are  created  as  independent  objects  and  have  

generic  properties.  When  creating  an  item  type,  you  determine  which  attributes  to 

include  into  the  item  type.  Once  an  attribute  is included  in an  item  type,  you  can  

further  define  the  attribute  properties  for  that  particular  item  type.  For  example,  

you  can  set  the  attribute  ISBN  under  the  item  type  Journal  to nullable,  but  under  

the  item  type  Book, you  can  set  it to  non-nullable.  Other  properties  that  you  can  

specify  for  an  item  type  include  readable,  writable,  text-searchable,  uniqueness,  

representative  property,  and  so  forth.  See  the  Application  Programming  Reference  

for  the  complete  list  of  properties  that  you  can  specify  in  an  attribute.  

To create  an  attribute,  complete  the  following  steps:  

1.   Create  an  attribute  definition  object  using  the  DKAttrDefICM  class.  

2.   Describe  the  object  that  you  create  by  setting  its  name,  description,  type,  size,  

and  so  forth.  Attribute  names  are  limited  to  15  characters.  If  you  need  to 

include  more  information,  use  the  description  field.  The  following  table  

contains  examples  of  types  of attributes  that  you  can  create:  

 Table 9. Attribute  types  

Type Constant  Object  

BLOB  DKConstant.DK_CM_BLOB  byte  bytes[]  

Char  DKConstant.DK_CM_CHAR  java.lang.String  

CLOB  DKConstant.DK_CM_CLOB  java.lang.String  

Date  DKConstant.DK_CM_DATE  java.sql.Date  

Decimal  DKConstant.DK_CM_DECIMAL  java.math.BigDecimal  

Double  DKConstant.DK_CM_DOUBLE  java.lang.Double  

Integer  DKConstant.DK_CM_INTEGER  java.lang.Integer  

Short  DKConstant.DK_CM_SHORT  java.lang.Short  

 

 

Chapter  4. Working  with DB2 Content  Manager  Version  8.3 125

|
|
|
|
|
|
|
|
|

|
|
|
|

||

|||

|||

|||

|||

|||

|||

|||

|||

|||



Table 9. Attribute  types  (continued)  

Type Constant  Object  

Time  DKConstant.DK_CM_TIME  java.sql.Time  

Timestamp  DKConstant.DK_CM_TIMESTAMP  java.sql.Timestamp  

Varchar  DKConstant.DK_CM_VARCHAR  java.lang.String
  

3.   Add  the  new  attribute  definition  to  the  persistent  content  server.
 

 

Java  

//This  example  defines  an attribute  for  the  title  of  a book.  

attr  = new  DKAttrDefICM(dsICM);  

attr.setName("book_title");  

attr.setDescription("The  title  of the  book.");  

attr.setType(DKConstant.DK_CM_VARCHAR);  

attr.setSize(100);  

attr.add();  

//This  example  defines  an attribute  for  the  number  of pages  in  a book.  

attr  = new  DKAttrDefICM(dsICM);  

        attr.setName("book_num_pages");  

        attr.setDescription("The  number  of pages  in the  book.");  

attr.setType(DKConstant.DK_CM_INTEGER;  

        attr.setMin((short)  0);  

        attr.setMax((short)  100000);  

    attr.add();  

 

 

C++  

//This  example  defines  an attribute  for  the  title  of  a book.  

DKDatastoreICM  * dsICM;  ..........  

  DKAttrDefICM  * attr  = new  DKAttrDefICM(dsICM);  

       attr->setName("book_title");  

       attr->setDescription("The  title  of the book.");  

       attr->setType(DK_CM_VARCHAR);  

       attr->setSize((long)  100);  

       attr->add();  

//This  example  defines  an attribute  for  the  number  of pages  in  a book.  

DKAttrDefICM  * attr  = new  DKAttrDefICM(dsICM);  

       attr->setName("book_num_pages");  

       attr->setDescription("The  number  of pages  in the  book.");  

       attr->setType(DK_CM_INTEGER);  

       attr->setMin((long)  0);  

       attr->setMax((long)  100000);  

       attr->add();  

 For  more  information  about  creating  attributes,  see  the  

SAttributeDefinitionCreationICM  sample.  

Creating, updating, and deleting attribute groups 

Attribute  groups  make  it easier  for  you  to add  entire  groups  of  attributes  to items  

and  sub-components.  An  attribute  can  belong  to any  number  of attribute  groups,  

from  zero  to  any  number.  An  attribute  can  be  added  to multiple  attribute  groups.  

A data  item  (DDO)  can  contain  multiple  attribute  groups.  The  same  attribute  name  

can  appear  in  the  DDO,  but  each  attribute  is completely  separate,  based  on  the  

namespace.  When  an  attribute  is added  to an  attribute  group,  it impacts  only  the  

 

 

126 Application  Programming Guide

|

|||

|||

|||

|||
|

|



component  types  that  are  created  after  the  addition.  Pre-existing  component  types  

remain  unchanged.  The  following  example  demonstrates  how  to  create  an  attribute  

group:  

 

 

Java  

// Create  a datastore  definition  object  given  the  connected  datastore  

DKDatastoreDefICM  dsDefICM  = (DKDatastoreDefICM)  dsICM.datastoreDef();  

//Creating  a new  attribute  group  

DKAttrGroupDefICM  attrGroup  = new  DKAttrGroupDefICM(dsICM);  

// Set  a name,  maximum  15 characters  

attrGroup.setName("Book_Details");  

//Set  a description  for  the new  attribute  group  

attrGroup.setDescription("Detailed  book  information");  

// Retrieve  the  definition  of an attribute  that  will  be 

//added  to this  attribute  group.  

DKAttrDefICM  title  = (DKAttrDefICM)  dsDefICM.retrieveAttr("book_title");  

// Retrieve  the  definition  of another  attribute  that  will  be added  

//to  this  attribute  group.  

DKAttrDefICM  publisher  = (DKAttrDefICM)  dsDefICM.retrieveAttr("publisher");  

// Add  the  Attribute  Definitions  to the Attribute  Group  

attrGroup.addAttr(title);  

attrGroup.addAttr(publisher);  

// add  it to  the  persistent  datastore  

attrGroup.add();  

 

 

C++  

// Create  a datastore  definition  object  given  the  connected  datastore  

DKDatastoreDefICM*  dsDefICM  = (DKDatastoreDefICM*)  dsICM->datastoreDef();  

//Creating  a new  attribute  group  

DKAttrGroupDefICM*  attrGroup  = new  DKAttrGroupDefICM(dsICM);  

// Set  a name,  maximum  15 characters  

 attrGroup->setName("Book_Details");  

//Set  a description  for  the new  attribute  group  

attrGroup->setDescription("Detailed  book  information");  

// Retrieve  the  definition  of an attribute  that  will  be 

//added  to this  attribute  group.  

DKAttrDefICM*  title  = 

  (DKAttrDefICM  *) dsDefICM->retrieveAttr("book_title");  

// Retrieve  the  definition  of another  attribute  that  will  be added  

//to  this  attribute  group.  

DKAttrDefICM*  publisher  = 

  (DKAttrDefICM  *) dsDefICM->retrieveAttr("publisher");  

// Add  the  Attribute  Definitions  to the Attribute  Group  

attrGroup->addAttr(title);  

attrGroup->addAttr(publisher);  

// add  it to  the  persistent  datastore  

attrGroup->add();  

  

delete(attrGroup);  

 To update  the  name  and  description  of an  attribute  group,  call  the  update()  

method  in  DKAttrGroupDefICM  and  provide  an  array  of  new  attribute  IDs.  If this  

attribute  group  has  already  been  associated  with  a component  type,  then  you  can’t  

update  this  attribute  group.  

To delete  an  attribute  group  you  also  work  with  the  DKAttrGroupDefICM  class.  

When  you  delete  the  attribute  group,  the  primary  attributes  that  used  to make  up  

the  attribute  group  remain  in  the  library  server.  The  following  exceptions  apply  

when  you  delete  an  attribute  group:  

 

 

Chapter  4. Working  with DB2 Content  Manager  Version  8.3 127



v   An  attribute  group  cannot  be  deleted  if it is associated  with  a component  type  

and  is  persistent.  

v    An  attribute  can  not  be  removed  from  an  attribute  group  if the  attribute  group  

is associated  with  a component  type  and  is persistent.  

v   You cannot  add  an  attribute  to  an  attribute  group  if the  attribute  group  is 

associated  with  a component  type  and  is persistent.

For  more  information,  see  the  SAttributeGroupDefCreationICM  sample.  

Listing the attributes in a content server 

The  following  example  demonstrates  how  to  get  a list  of attributes  in a content  

server.  

 

 

Java  

DKDatastoreICM  dsICM;  

DKDatastoreDefICM  dsDefICM=DKDatastoreDefICM)dsICM.datastoreDef();  

//Get  a collection  containingall  Attribute  Definitions.  

DKSequentialCollection  attrDefColl  = 

  (DKSequentialCollection)dsDefICM.listAttrs();  

if  ((attrDefColl!=null)  &&(attrDefColl.cardinality()>0)){  

  //Create  an iterator  to iterate  through  the  collection  

  dkIterator  iter  = attrDefColl.createIterator();  

  while(iter.more()){  

    //while  there  are  still  items  in the  list,continue  

    dkAttrDef  attrDef  = (dkAttrDef)  iter.next();  

    System.out.println("-"+attr.getName()+":"+attr.getDescription());  

  } 

} 

 

 

C++  

DKDatastoreICM  * dsICM;  .........  

  DKDatastoreDefICM*dsDefICM  =(DKDatastoreDefICM  *)dsICM->datastoreDef();  

//Get  a collection  containingall  Attribute  Definitions.  

DKSequentialCollection*attrDefColl  = 

        (DKSequentialCollection  *)dsDefICM->listAttrs();  

if  (attrDefColl  &&(attrDefColl->cardinality()>0)){  

   //Create  an iterator  to iterate  through  the  collection  

   dkIterator*iter  =attrDefColl->createIterator();  

   while(iter->more()){  

     //while  there  are still  items  in  the list,continue  

    dkAttrDef*  attrDef  =(dkAttrDef  *)iter->next()->value();  

    cout  <<"-"<<attrDef->getName()<<":"<<attrDef->getDescription()<<endl;  

    delete(attrDef);  

  } 

  delete(iter);  

  delete(attrDefColl);  

} 

delete(dsDefICM);  

Listing attribute names for an item type 

The  following  example  demonstrates  how  to  get  a list  of attribute  names  for  an  

item  type.  For  more  information,  see  the  SItemTypeRetrievalICM  ICM  API  

education  sample.  

 

 

128 Application  Programming Guide



Java  

//Get  a collection  containing  all  attr.  defs  for  the  Item  Type.  

DKSequentialCollection  attrColl  = (DKSequentialCollection)  

    dsICM.listEntityAttrs(itemTypeName);  

//Accessing  attribute  each  and  printing  the  name  and description.  

System.out.println("\nAttributes  of Item  Type  ’"+itemTypeName+"’:  

    ("+attrColl.cardinality()+’)’);  

//Create  an iterator  to iterate  through  the  collection  

dkIterator  iter  = attrColl.createIterator();  

while(iter.more())  { 

    //while  there  are still  items  in the  list,  continue  

    DKAttrDefICM  attr  = (DKAttrDefICM)iter.next();  

    System.out.println("-"+attr.getName()+":"+attr.getDescription());  

} 

 

 

C++  

//Get  a collection  containingall  Attribute  Definitions  for the Item  Type.  

DKSequentialCollection*attrColl  =(DKSequentialCollection*)  

   dsICM->listEntityAttrs(itemTypeName);  

//Accessing  attribute  each  and  printing  the  name  and description.  

cout  <<"\nAttributes  of Item  Type  ’"<<itemTypeName  <<"’:  

   ("<<attrColl->cardinality()<<’)’<<  

//Create  an iterator  to iterate  through  the  collection  

dkIterator*  iter  =attrColl->createIterator();  

while(iter->more())  { 

   //while  there  are  still  items  in the list,  continue  

DKAttrDefICM*  attr  =(DKAttrDefICM*)iter->next()->value();  

cout  <<"-"<<attr->getName()<<":"<<attr->getDescription()<<endl;  

delete(attr);  

} 

delete(iter);  

delete(attrColl);  

Creating an item 

An  item  is  the  entire  tree  of component  DDOs,  with  at least  one  root  component.  

That  root  component  DDO  must  be  assigned  an  Item  Property  Type or  Semantic  

Type.  When  you  create  an  item,  you  must  assign  it an  item  type  property.  The  

valid  itemtype  properties  are  document,  folder,  or  item.  You must  specify  the  item  

type  property  as  the  second  parameter  of  the  content  server’s  createDDO  function.  

The  value  for  the  property  type  is stored  in the  DDO’s  property  named,  

DK_CM_PROPERTY_ITEM_TYPE.  Do  not  confuse  this  item  type  property  with  the  

overall  item  type  definition  that  describes  the  structure  of  the  item.  Table  10 shows  

a list  of available  item  property  types.  

 Table 10. Item  type  property  definitions  

Property  type  Constant  Definition  

Document  DK_CM_DOCUMENT  Item  represents  a document  or stored  data.  

The  information  contained  in this  item  might  

form  a document.  This  item  can  be considered  

a common  document  since  it does  not  rigidly  

mean  an implementation  of a specific  

document  model.  

 

 

Chapter  4. Working  with DB2 Content  Manager  Version  8.3 129



Table 10.  Item  type  property  definitions  (continued)  

Property  type  Constant  Definition  

Folder  DK_CM_FOLDER  Item  represents  an object  containing  or 

referencing  contents  or objects.  This  item  can  

be considered  a common  folder  since  it does  

not  rigidly  mean  an implementation  of a 

specific  document  model.  

Item  (default)  DK_CM_ITEM  Generic  item.  This  item  does  not  fit system  

defined  or user  defined  semantic  types.
  

Items  are  created  as DKDDOs.  Always  use  the  DKDatastoreICM’s  createDDO()  

methods  to  create  DKDDOs  because  the  system  uses  the  DKDatastoreICM’s  

createDDO  methods  to  automatically  setup  important  information  in  the  DKDDO  

structure.  

When  you  create  an  item,  you  define  the  components  that  make  up  the  item.  For  

example,  if you  choose  to  create  a hierarchical  item,  you  must  create  child  

components.  

1.   Using  the  content  server’s  createDDO  and  createChildDDO  methods,  create  an  

item  DDO  and  set  all  of  its  attributes  and  other  required  information.  This  

example  uses  the  logged  on,  connected  DKDatastoreICM  object  named  dsICM. 

2.   Create  a root  component.  

 

 

Java  Example  1 

DKDDO  myDocumentDDO  = dsICM.createDDO("EmployeeDoc",  

   DKConstantICM.DK_CM_DOCUMENT);  

 

 

Java  Example  2 

DKDDO  myFolderDDO    = dsICM.createDDO("DeptFolder",  

   DKConstantICM.DK_CM_FOLDER);  

 

 

C++  Example  1 

DKDDO*  myDocumentDDO  = dsICM->createDDO("EmployeeDoc",DK_CM_DOCUMENT);  

 

 

C++  Example  2 

DKDDO*  myFolderDDO  = dsICM->createDDO("DeptFolder",DK_CM_FOLDER);  

3.   Create  a child  component  under  the  root  component  ″EmployeeDoc″,  for  

example,  ″Dependent″. 

 

 

Java  

DKDDO  myDDO  = dsICM.createChildDDO("EmployeeDoc","Dependent");  

 

 

130 Application  Programming Guide



C++  

DKDDO*  myDDO  = dsICM.createChildDDO("EmployeeDoc","Dependent");  

4.   Add  the  child  component  to  the  parent.  

 

 

Java  

short  dataid  = myDocumentDDO.dataId(DK_CM_NAMESPACE_CHILD,"Dependent");  

DKChildCollection  children  = 

  (DKChildCollection)  myDocumentDDO.getData(dataid);  

children.addElement(myDDO);  

 

 

C++  

short  dataid  = myDocumentDDO->dataId(DK_CM_NAMESPACE_CHILD,"Dependent");  

DKChildCollection*  children  = 

  (DKChildCollection*)(dkCollection*)  

myDocumentDDO->getData(dataid);  

children->addElement(myDDO);  

5.   Use  the  setData  method  to  populate  the  DDO  with  the  appropriate  values.  

 

 

Java  

myDDO.setData(.....);  

 

 

C++  

myDDO->setData(.....);  

6.   Save  the  item  into  the  persistent  store.  

 

 

Java  

myDocumentDDO.add();  

 

 

C++  

myDocumentDDO->add();  

In  the  preceding  example,  the  last  step  created  a document  in the  content  server.  

When  a document  DDO  is added  to a content  server,  all  of  its  attributes  are  added,  

including  all  of  the  parts  inside  the  DKParts  collection.  When  a document  DDO  is 

added  to  a content  server,  all  of its  attributes  are  added,  including  all  children,  and  

all  parts  inside  the  DKParts  collection.  

Semantic  type  defines  the  usage  or  rules for  an  item.  Content  Manager  comes  with  

some  pre-defined  semantic  types,  but  you  can  also  define  your  own  semantic  

types.  

 

 

Chapter  4. Working  with DB2 Content  Manager  Version  8.3 131



You can  specify  the  semantic  type  as  the  second  parameter  of the  content  server’s  

createDDO  function.  The  semantic  type  value  is stored  in  the  DDO’s  property  

DKConstantICM.DK_ICM_PROPERTY_SEMANTIC_TYPE,  which  can  contain  the  

same  value  as  the  item  property  type.  The  ICM  connector  supports  folder  and  

document  semantic  types.  You can  also  create  your  own  semantic  types.  Table 11 

lists  the  available  semantic  types.  

 Table 11. Pre-defined  semantic  types  

Semantic  type  Constant  Definition  

Document  DK_ICM_SEMANTIC_TYPE  

_DOCUMENT  

Indicates  that  this  item  is a document  

Folder  DK_ICM_SEMANTIC_TYPE  

_FOLDER  

Indicates  that  this  item  is a folder  

Annotation  DK_ICM_SEMANTIC_TYPE  

_ANNOTATION  

Indicates  that  this  item  or part  is an 

annotation  to the base  part  

Container  DK_ICM_SEMANTIC_TYPE  

_CONTAINER  

Indicates  that  this  item  is a container,  

which  can  contains  other  items.  The  

container-containee  relationship  is 

represented  using  links.  

History  DK_ICM_SEMANTIC_TYPE  

_HISTORY  

Indicates  that  this  item  or part  is a 

history  of the  base  part.  

Note  DK_ICM_SEMANTIC_TYPE  

_NOTE  

Indicates  that  this  item  or part  is a note  

to the  base  part.  

Base  DK_ICM_SEMANTIC_TYPE  

_BASE  

Indicates  that  this  item  or part  is the 

base  part  that  may  have  an annotation,  

note,  or history  associated  with  it. 

User  defined  User  defined  A user  defined  semantic  type  interpreted  

by the  application.  

Notes:  

v   In Java,  the  constants  are  defined  in DKConstantICM.java.  

v   In C++,  the  constants  are  defined  in DKConstantICM.h.  

v   In Content  Manager  Version  7, semantic  type  is called  affiliated  type.
  

If you  create  an  item  in  an  item  type  that  has  been  defined  as  a resource  item  type,  

the  correct  XDO  is returned.  For  more  information  about  resources,  see  the  

SResourceItemCreationICM  sample.  You might  also  find  it  useful  to  review  the  

information  about  item  creation  in  the  SItemCreationICM  sample.  

Setting and retrieving item attribute values 

The  following  example  demonstrates  how  to  set  and  retrieve  item  attribute  values.  

 

 

132 Application  Programming Guide



Java  

Attribute  values  are  stored  and  retrieved  as  java.lang.Objects.  To set  or  

retrieve  attribute  values,  use  the  DDO’s  setData  and  the  getData()  methods  

respectively.  Set  the  value  using  an  object  with  the  type  corresponds  to the  

attribute  type.  

Example:  

ddo.setData(ddo.dataId(DKConstant.DK_CM_NAMESPACE_ATTR,  

     nameOfAttrStr),valueObj);  

Object  obj  = ddo.getData(ddo.dataId(DK_CM_NAMESPACE_ATTR,nameOfAttrStr));  

The  above  statement  sets  the  attribute  value  to  the  value  passed  in  as  a 

java.lang.Object  valueObj.  The  nameOfAttrStr  is the  string  name  of the  

attribute.This  attribute  was  defined  and  specified  in  the  item  type  when  the  

item  type  of  this  DDO  was  defined.  valueObj  is the  value  you  must  set  and  it 

must  be  of  the  right  type  for  this  attribute.

 

 

C++  

When  setting  values  for  individual  attributes,  use  the  individual  attribute  

definition  name.  In  order  to  access  attributes  that  belong  to  an  attribute  

group,  use  this  format:  <Attribute  Group  Name>.<Attribute  Name>. 

Example:  

//The  code  snippet  below  shows  the value  of the  character  attribute  

//"book_title"  for  the  item  represented  by  the DDO  ddoDocument  is set to 

//the  value  "Effective  C++"  

ddoDocument->setData(ddoDocument->dataId(DK_CM_NAMESPACE_ATTR,  

                    DKString("book_title")),DKString("Effective  C++"));  

//The  code  snippet  below  shows  the value  of the  integer  attribute  

//"book_num_pages"  for  the  item  represented  

//by  the  DDO  ddoDocument  is set  to the  value  "250"  

ddoDocument->setData(ddoDocument->dataId(DK_CM_NAMESPACE_ATTR,  

                      DKString("book_num_pages")),(long)250);  

//This  code  snippet  shows  how  the value  of the  "book_title"  attribute  of the 

//item  represented  by the  DDO  ddoDocument  is retrieved  into  the "title"  

//string  variable.  

DKString  title  =(DKString)  ddoDocument->getData(ddoDocument->  

   dataId(DK_CM_NAMESPACE_ATTR,DKString("book_title")));  

 DB2  Content  Manager  Version  8 Release  3 

Setting and retrieving foreign key attribute values 

In  DB2  Content  Manager  Version  8 Release  3, you  can  pre-define  foreign  key  

attribute  values  to  populate  client  drop-down  menus  with  specific  choices.  These  

values  would  be  associated  with  an  attribute  of  an  item  type.  For  example,  an  auto  

claims  item  type  could  have  a city  attribute  with  the  drop-down  values  of  New  

York and  Chicago.  Similarly,  a life  claim  item  type  could  have  a city  attribute  with  

drop-down  values  of  Boston,  Atlanta,  and  Dallas.  

DB2  Content  Manager  Version  8 Release  3 provides  methods  in the  

DKForeignKeyDefICM  class  that  can  retrieve  foreign  key  attribute  values  for  an 

item.  Starting  with  Version  8.3,  the  system  administration  client  and  library  server  

can  support  multiple  attribute  definitions  in  a foreign  key  constraint.  

Additionally,  you  can  cascade  relationships  between  the  drop-down  lists.  For  

example,  if you  select  California  for  the  State  attribute  value,  then  this  could  

 

 

Chapter  4. Working  with DB2 Content  Manager  Version  8.3 133

|
|
|
|
|
|
|

|
|
|
|

|
|



populate  the  City  drop-down  with  San  Jose  and  Los  Angeles.  To accomplish  this,  

you  could  define  a foreign  key  item  type  called  StateCity  with  two  attributes:  State  

and  City.  You could  then  define  items  for  all  valid  combinations  of state  and  city.  

Other  item  types  that  have  State  and  City  attributes  can  use  the  StateCity  item  type  

as  a foreign  key,  and  restrict  the  values  allowed  for  city  and  state.  You can  return  

the  foreign  key  fields  will  be  returned  in  the  order  of precedence  (State  then  City).  

Foreign  keys  can  consist  of one  or  more  attribute  relationships,  which  use  the  

following  concepts:  

Column  sequence  number  

A  unique  identifier  that  you  assign  to describe  the  source  and  target  

attribute  relationship  in  a foreign  key.  

Source  attribute  name  

Reference  to  an  attribute  in  a source  item  or  table.  For  example,  State.  

Target  attribute  name  

Reference  to  an  attribute  in  a target  item  or  table.  For  example,  City.  

Display  flag  

Boolean  value  that  tags  the  foreign  key  attributes  to populate  into  

drop-down  menus.  If you  set  this  to  false,  then  a text  entry  field  displays  

instead.

 The  following  examples  use  getSpecificAttrsForForeignKey()  to  return  an  a set  of 

results  based  on  a search  of  provided  attribute  (column)  names  in  foreign  key  and  

their  corresponding  values.  This  method  can  only  be  used  in  conjunction  with  

foreign  keys  related  to DB2  Content  Manager  defined  tables.  

 

 

Java  

ArrayList   getSpecificAttrsForForeignKey(DKNVPair[]  fkeyValues,  

String[]  columnNames  ) throws  Exception,  DKException  

Returns  an  ArrayList  of  String  arrays.  

 

 

C++  

dkCollection  * getSpecificAttrsForForeignKey(DKNVPair[]fkeyValues,  

long  fkeyValuesLen,  char  * columnNames[],  long  numOfColumns)  

Returns  a dkCollection  of  SpecificAttrResults  objects,  where  each  object  

would  contain  a char*  result[]  containing  the  results  for  each  column  and  the  

length  of  this  results  array.  You must  can  then  retrieve  the  results  using  

getResultArray()  and  getNumOfResults()  by  creating  an  instance  of  the  

SpecificAttrResults  class:  

DKExport  void  SpecificAttrResults  (long  no_of_results)  //constructor  

DKExport  void  addResult(  char  * res)   //adds  a string  to the results[]  

char  *[]  getResultArray()   //retrieves  the  results[]  for traversing  

long  getNumOfResults()      //retrieves  the  number  of length  of no_of_array  

~ SpecificAttrResults()   //destructor  

 The  DKNVPair  parameter  represents  an  array  of  DKNVPairs  containing  the  names  

of  attributes  (columns)  in  the  foreign  keys  and  their  corresponding  values  that  will  

be  used  to  formulate  a query.  You can  optionally  specify  attributes  in  the  

columnNames  parameter  to  restrict  which  multi-column’ed  values  to  return.  The  

 

 

134 Application  Programming Guide

|
|
|
|
|
|

|
|

|
|
|

|
|

|
|

|
|
|
|

|
|
|
|
|

|

|
|

||||
|

|

|
|

|
|
|
|
|

|
|
|
|
||||

|
|
|
|



default  is  to  return  all  results.  For  an  example  of  results,  see  Table 12.  

 Table 12. Example  results  for parameters  passed  into  getSpecificAttrsForForeignKey()  

DKNVPairs  Attribute  names  Result  

DKNVPair  fKeyValues[0](“Country”,  

“US”);  

columnNames[0]  = 

“city”  

Returns  the names  of all 

cities  in the  U.S.  

DKNVPair  fKeyValues[0](“Country”,  

“US”)  

DKNVPair  fKeyValues[1](“State”,  

“California”)  

columnNames[0]  = 

“City”  

columnNames[1]  = 

“Zip”  

Returns  the names  of all 

cities  (and  their  zip codes)  

in the  state  of California  

only  

DKNVPair  fKeyValues[0](“Country”,  

“US”)  

DKNVPair  fKeyValues[1](“State”,  

“California”)  

DKNVPair  fKeyValues[2](“City”,  “San  

Jose”)  

columnNames  = null;  Given  that  the  foreign  key  

contains  the  attributes:  

Country,  State,  City,  

addresses,  zip,  and  phone  

number,  then  returns  all 

values  for  address,  zip,  and  

phone  number.
  

The  following  examples  return  foreign  key  string  arrays  in  the  following  order:  

column  sequence  number,  source  attribute,  target  attribute,  and  display  flag  value.  

 

 

Java  

public  Vector  listForeignKeyAttrDetails(  ) throws  Exception,  DKException  

 

 

C++  

dkCollection*  listForeignKeyAttrDetails()  

 The  following  examples  define  new  associations  between  attributes  of two  

component  types  into  a foreign  key  definition.  

 

 

Java  

public  void  addSrcAndTgtAttrName(String  srcAttrName,  String  tgtAttrName,  

int  columnSeq,  boolean  displayFlag)  throws  Exception,  DKException  

 

 

C++  

void  addSrcAndTgtAttrName(char  * srcAttrName,  char*   tgtAttrName,  long  

columnSeq,  DKBoolean  displayFlag)  

 The  following  examples  update  the  value  of  the  display  flag  in  the  in-memory  

foreign  key  definition  for  the  attribute  relation  designated  by  the  column  sequence  

number.  The  foreign  key  definition  still  needs  to be  updated  in persistent  storage  

to  make  the  new  value  permanent.  This  method  can  only  be  used  in  conjunction  

with  foreign  keys  related  to  DB2  Content  Manager  defined  tables.  

 

 

Chapter  4. Working  with DB2 Content  Manager  Version  8.3 135

|

||

|||

|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|
|

||
|
|
|
|
|
|
|

|
|
|

|

||||
|

|

||||

|
|
|

|

|
||||
|

|

|
||||

|
|
|
|
|



Java  

public  void  setDisplayFlag(int  columnSeq,  boolean  displayFlag)  

throws  Exception,  DKException  

 

 

C++  

void  setDisplayFlag(long  columnSeq,  DKBoolean  displayFlag)  

 The  following  examples  return  the  boolean  value  for  the  display  flag  (from  the  

foreign  key  definition)  for  the  attribute  relation  denoted  by  the  column  sequence  

number.  

 

 

Java  

public  boolean  getDisplayFlag(int  columnSeq)  throws  Exception,  DKException  

 

 

C++  

DKBoolean  getDisplayFlag(long  columnSeq)  

 In  addition,  you  can  use  the  following  CMBAttribute  methods  to  determine  

predefined  values,  which  are  values  assigned  to the  source  attribute  that  can  be  

referenced  later. For  example,  the  City  attribute  can  have  predefined  values  such  as  

Los  Angeles  and  New  York that  could  display  in  a drop-down  menu.  

hasPredefinedValues()  

Boolean  value  that  indicates  whether  an  attribute  has  pre-defined  values.  

getPredefinedValues()  

Returns  predefined  values  for  an  attribute.  

getDependentValues()  

Returns  a list  of  CMBAttributes  whose  predefined  values  depend  on  this  

attribute.  

getControllingAttributes()  

Returns  a list  of  CMBAttributes  that  the  predefined  values  of this  attribute  

depend  on.

 For  more  information  on  these  methods,  see  the  TGetPreDefValues.java  and  

TGetPreDefValues.cpp  samples.  

Modifying an item’s attributes 

To modify  an  item’s  attributes,  use  the  DDO’s  setData  method  and  set  it to  the  

required  value  by  specifying  that  value  using  the  java.lang.Object,  as shown  in  the  

example  below.  In  the  example  below,  nameOfAttrStr  is the  string  name  of  the  

attribute  and  valueObj  is the  value.  

 

 

136 Application  Programming Guide

|

|

|
||||
|

|

||||

|
|
|
|

|

||||
|

|

||||

|
|
|
|

|
|

|
|

|
|
|

|
|
|

|
|



Java  

ddo.setData(ddo.dataId(DKConstant.DK_CM_NAMESPACE_ATTR,  

  nameOfAttrStr),valueObj);  

 

 

C++  

ddoDocument->setData(ddoDocument->dataId(DK_CM_NAMESPACE_ATTR,"book_title"),  

  DKString("More  Effective  C++"));  

Updating an item 

To update  an  item:  

1.   Retrieve  an  item  or  create  an  item  and  add  it to  the  content  server.  

2.   Modify  the  item,  its  attributes,  link  collections,  and  so  forth.  

3.   Call  the  DDO’s  update  operation.  

 

 

Java  

ddo.update();  

 

 

C++  

ddo->update();  

If  an  item  is  enabled  for  versioning,  you  can  create  a new  version  of the  item  

instead  of  updating  the  current  item,  as  shown  in  the  following  example:  

 

 

Java  

ddo.update(DKConstant.DK_CM_VERSION_NEW);  

 

 

C++  

ddo->update(DK_CM_VERSION_NEW);  

 To update  the  latest  version  of an  item,  use  the  format  shown  in  the  following  

example:  

 

 

Java  

ddo.update(DKConstant.DK_CM_VERSION_LATEST);  

 

 

C++  

ddo->update(DK_CM_VERSION_LATEST);  

 

 

Chapter  4. Working  with DB2 Content  Manager  Version  8.3 137



You can  also  update  a DDO  by  calling  the  updateObject  method  on  

DKDatastoreICM  with  the  appropriate  options,  as  shown  in  the  example  below:  

 

 

Java  

//  Connected  DKDatastoreICM  object  named  ds; 

//  DKDDO  object  named  ddo;  

int  options  = DK_CM_VERSION_NEW  + DK_CM_CHECKIN;  

ds.updateObject(ddo,  options);  

 

 

C++  

int  options  = DK_CM_VERSION_NEW  + DK_CM_CHECKIN;  

ds->updateObject(ddo,  options);  

 Important:  You must  check  out  the  item  before  calling  the  update  method  and  

check  the  item  back  in  when  your  are  done  updating  it. See  “Checking  in  and  

checking  out  items”  on  page  145.  For  more  information  on  updating  items,  see  the  

SItemUpdateICM  ICM  API  education  sample.  

Defining a resource item type 

A resource  item  is an  item  with  additional  system  defined  attributes  that  define  the  

location,  type,  size,  and  so  forth,  of the  object  that  the  item  represents.  The  object  is 

sometimes  called  a ″resource″  and  can  be  a video  file,  an  image,  a word  processor  

document,  and  so  forth.  For  additional  information,  see  the  SItemTypeCreationICM  

sample  (in  the  samples  directory).  

The  steps  below  take  you  through  the  process  of  defining  a resource  item  type.  

1.    Get  the  content  server  definition  object  from  the  connected  content  server.  

 

 

Java  

DKDatastoreDefICM  dsDefICM  = (DKDatastoreDefICM)dsICM.datastoreDef();  

 

 

C++  

DKDatastoreDefICM*  dsDefICM  = (DKDatastoreDefICM*)  dsICM->datastoreDef();  

2.   Create  a new  item  type  definition.  

 

 

Java  

DKItemTypeDefICM   itemType  = new DKItemTypeDefICM(dsICM);  

itemType.setName("SampleResource");  

itemType.setDescription("Simple  Resource  Lob  Item  Type");  

 

 

C++  

DKItemTypeDefICM*  itemType  = new  DKItemTypeDefICM(dsICM);  

itemType->setName("SampleResource");  

itemType->setDescription("Simple  Resource  Lob Item  Type");  

 

 

138 Application  Programming Guide



3.   Add  an  attribute.  

 

 

Java  

DKAttrDefICM  attr  =(DKAttrDefICM)dsDefICM.retrieveAttr("S_varchar");  

itemType.addAttr(attr);  

//Resource  classification  indicates  that  this  class  will  

//contain  data  file  

itemType.setClassification  

  (DKConstantICM.DK_ICM_ITEMTYPE_CLASS_RESOURCE_ITEM);  

 

 

C++  

DKAttrDefICM  * attr  = (DKAttrDefICM*)  dsDefICM->retrieveAttr("S_varchar");  

itemType->addAttr(attr);  

// Resource  classification  indicates  that  this  class  will  contain  

//data  file  

itemType->setClassification(DK_ICM_ITEMTYPE_CLASS_RESOURCE_ITEM);  

4.    Specify  the  XDO  class  and  type  of resource  for  this  item  type.  

 

 

Java  

itemType.setXDOClassName(DKConstantICM.DK_ICM_XDO_LOB_CLASS_NAME);  

itemType.setXDOClassID(DKConstantICM.DK_ICM_XDO_LOB_CLASS_ID);  

itemType.add();  

 

 

C++  

itemType->setXDOClassName(DK_ICM_XDO_LOB_CLASS_NAME);  

itemType->setXDOClassID(DK_ICM_XDO_LOB_CLASS_ID);  

itemType->add();  

Creating a resource item 

Creating  resource  items  is very  similar  to  creating  regular  items.  XDOs  extend  

DDOs,  and  depending  on  the  type  of  resource  item,  the  XDO  can  be  extended  

further.  Table 13  contains  the  resource  item  types  and  the  class  hierarchy  used  to  

create  them.  For  more  information,  see  the  SResourceItemCreationICM  sample  (in  

the  samples  directory).  

 Table 13. Resource  item  type  class  hierarchy  

Type DDO  XDO  Extension  

LOB  DKDDO  -> DKLobICM  

Text DKDDO  -> DKLobICM  -> DKTextICM  

Image  DKDDO  -> DKLobICM  -> DKImageICM  

Stream  DKDDO  -> DKLobICM  -> DKStreamICM  

Video  stream  DKDDO  -> DKLobICM  -> DKVideoStreamICM
  

The  steps  below  take  you  through  the  process  of creating  resource  item.  There  are  

multiple  ways  to  set  and  store  resource  content.  The  following  process  is an  

example  for  storing  directly  from  file  at the  time  the  item  is added  to  the  content  

server.  

 

 

Chapter  4. Working  with DB2 Content  Manager  Version  8.3 139



1.   Create  the  resource  item.  Note  that  it  can  be  any  semantic  type  and  that  the  

DKDatastoreICM::createDDO  call  is also  used  to  create  a resource  item  in  the  

same  way  that  it is used  to  create  a regular  item.  

The  of  type  resource  returned  from  DKDatastoreICM.createDDO  is cast  to  the  

correct  sub-class  (in  this  case  DKLobICM)  based  on  the  XDO  classification  

defined  during  the  creation  of  the  item  type  on  which  this  resource  item  is  

based.  

 

 

Java  

DKLobICM     lob  = (DKLobICM)dsICM.createDDO  

           ("SampleResource",DKConstant.DK_CM_DOCUMENT);  

 

 

C++  

DKLobICM*      lob  = (DKLobICM*)  

   dsICM->createDDO("SampleResource",DK_CM_DOCUMENT);  

2.   Set  the  content  or  data  into  the  object.  Once  the  lob  is created,  you  can  set  the  

MIME  type  for  the  resource.  In  this  case,  the  resource  is a MS  Word  document.  

The  MIME  type  describes  the  type  of  content  that  is being  stored.  

 

 

Java  

lob.setContentFromClientFile(fileName);  

lob.setMimeType("application/msword");  

 

 

C++  

lob->setContentFromClientFile(fileName);  

lob->setMimeType("application/msword");  

For  additional  information  about  MIME  types,  see  the  

SResourceItemMimeTypesICM  sample.  

3.   Add  the  data  to  the  content  server.  In  this  case,  a sample  Word document.  Note  

that  the  resource  item  content  is stored  in  . 

 

 

Java  

lob.add("SResourceItemICM_Document1.doc");  

 

 

C++  

lob->add("SResourceItemICM_Document1.doc");  

Important:  In  C++,  you  must  clean  up  the  memory.  

delete(lob);  

For  more  information,  see  the  SItemUpdateICM  sample.

Searching for items 

To find  items  that  match  a set  of  criterion,  complete  the  following  steps:  

1.   Connect  to  a DKDatastoreICM  object.  

 

 

140 Application  Programming Guide



2.   Process  the  correct  query.  Make  sure  that  your  query  conforms  to the  query  

language.  For  more  information  see  the  Searching  for  data  section.  

3.   Save  the  query  results  in  a DKResult  object.
 

 

Java  

DKNVPair  options[]  = new  DKNVPair[3];  

options[0]  = 

  new  DKNVPair(DKConstant.DK_CM_PARM_MAX_RESULTS,  "0");  // No Max  (Default)  

options[1]  = new  DKNVPair(DKConstant.DK_CM_PARM_RETRIEVE,  

  new  Integer(DKConstant.DK_CM_CONTENT_ATTRONLY));  

options[2]  = new  DKNVPair(DKConstant.DK_CM_PARM_END,  null);  

DKResults  results  = (DKResults)dsICM.evaluate(query,  

  DKConstantICM.DK_CM_XQPE_QL_TYPE,  options);  

 

 

C++  

DKNVPair  *options     = new  DKNVPair[3];  

// only  one  result  will  be returned  

options[0].set(DK_CM_PARM_MAX_RESULTS,  "1");//  Retrieve  only  one item  

options[1].set(DK_CM_PARM_RETRIEVE  , (long)DK_CM_CONTENT_ATTRONLY);  

// Last  option  has  to be this  value  

options[2].set(DK_CM_PARM_END  , NULL);  

//Note  if a query  is expected  to return  more  than  one  result,  

//the  DKDatastoreICM::execute  method  

//should  be used.  The execute  method  returns  a dkResultSetCursor.  

DKResults*  results  = (DKResults*)(dkCollection*)dsICM->evaluate  

  (query,  DK_CM_XQPE_QL_TYPE,  options);  

 For  additional  information,  see  the  SSearchICM  sample.  

Retrieving an item 

To ly retrieve  an  item  or  refresh  an  item  retrieved  through  a query,  you  must  have  

access  to  the  PID  object  or  PID  string  of  the  item  to  be  retrieved  or  refreshed.  If 

only  know  the  ItemID,  you  can  perform  a query  to  retrieve  the  complete  PID  

information.  Given  the  item  type  name  and  item  ID,  the  following  scenario  shows  

how  to  retrieve  the  DDO  if you  want  to retrieve  ly.  

 

 

Chapter  4. Working  with DB2 Content  Manager  Version  8.3 141



Java  

1.   After  connecting  to  a datastoreICM  object,  search  for  the  item  using  the  

appropriate  item  ID.  For  information  about  writing  queries,  see  “Querying  

the  DB2  Content  Manager  server”  on  page  187.  

2.   Save  the  query  results  in  a DKResults  object.  In  the  code  example  below,  

queryStr  is the  search  string  in  the  correct  query  language  

format.DKResults  results  = (DKResults)dsICM.evaluate(queryStr,  

DKConstantICM.DK_CM_XQPE_QL_TYPE,  null);  

3.   Create  an  iterator  on  DKResults  and  use  it to  get  DDOs,  which  you  can  

now  retrieve  one  by  one.  

ddo.retrieve();  

4.   Suppose  you  have  a PID  string  that  you  obtained  from  a DDO  as  shown  

in this  example:  

DKPidICM  pid  = ddo.getPidObject();  

String   pidStr  = pid.pidString();  

Using  the  PID  string,  you  can  perform  a retrieve  by  completing  the  following  

steps.  

1.   Create  a DDO  using  the  DKDatastoreICM’s  createDDO  method.  Do  not  

use  the  DKDDO  constructor.  In  the  example  below,  the  object  dsICM  is 

already  connected  to a DB2  Content  Manager  datastore.  Also,  the  PID  is a 

string  named  pidStr.  

DKDDO  ddo  = dsICM.createDDO(pidStr);  

2.   Call  the  DDO’s  retrieve  operation.  

ddo.retrieve();  

 

 

C++  

1.   After  connecting  to  a datastoreICM  object,  search  for  the  item  using  the  

appropriate  item  ID.  For  information  about  writing  queries,  see  “Querying  

the  DB2  Content  Manager  server”  on  page  187.  

2.   Save  the  query  results  in  a DKResult  object.  In  the  code  example  below,  

queryStr  is  the  search  string  in  the  correct  query  language  format.  

DKResults*  results  = (DKResults*)(dkCollection*)  

   dsICM->evaluate(queryStr,  DK_CM_XQPE_QL_TYPE,NULL);  

3.   Create  a DDO  using  the  DKDatastoreICM’s  createDDO  method.  Do  not  

use  the  DKDDO  constructor.  In  the  example  below,  the  object  dsICM  is 

already  connected  to a Content  Manager  datastore.  Also,  the  PID  is a 

string  named  pidStr.  

DKDDO*  ddo  = dsICM->createDDO(pidStr);  

4.   Call  the  DDO’s  retrieve  operation.  

ddo->retrieve();  

 If an  item  is  enabled  for  versioning,  you  can  retrieve  a specific  version  of  the  item  

by  using  the  retrieve  method  of  the  DKDDO  class  with  the  appropriate  options.  To 

retrieve  the  latest  version  of an  item,  use  the  constant  DK_CM_VERSION_LATEST  

as  the  retrieve  option.  By  default  (if  no  options  are  specified),  ddo.retrieve()  

retrieves  the  latest  version  of  an  item.  

 

 

142 Application  Programming Guide



Example:  

DKDDO  ddo  = ds.createDDO(...);  

   ....  ddo.retrieve(DK_CM_VERSION_LATEST);  

You can  also  retrieve  a DDO  by  calling  the  retrieveObject  method  on  the  

DKDatastoreICM  object.  

Example:  

DKDatastoreICM  ds =new  DKDatastoreICM();  

//connect,etc  ...  

DKDDO  ddo  =ds.createDDO(itemType,option);  

//sets  the  PID  as shown  above...  

ds.retrieveObject(ddo);  

For  more  information  on  retrieving  items,  see  the  SItemRetrievalICM  and  

SResourceItemRetrievalICM  ICM  API  education  samples  and  samples  readme  file.  

If  an  item  is  enabled  for  versioning  and  you  want  to  retrieve  the  latest  version,  

including  its  attributes  and  children,  use  the  following  format:  

 

 

Java  

int  options  =DK_CM_CONTENT_ATTRONLY  + DK_CM_CONTENT_CHILDREN  + 

                                  DK_CM_VERSION_LATEST;  

ds.retrieveObject(ddo,options);  

 

 

C++  

DKDDO  * ddo;  

long  options  = 

  DK_CM_CONTENT_ATTRONLY  +DK_CM_CONTENT_CHILDREN  +DK_CM_VERSION_LATEST;  

dsICM->retrieveObject(ddo,options);  

 When  retrieving  items,  the  system  default  is to  retrieve  items  using  uncommitted  

reads.  Prior  to  DB2  Content  Manager  Version  8.3,  the  DB2  Content  Manager  

system  used  committed  reads  when  retrieving  an  item.  The  exposure  for  

performing  an  uncommitted  read  in  this  situation  is very  small.  An  example  of  an  

uncommitted  read  is where  a user  might  view  partially  committed  data  for  a 

document  in  a multi-level  item  type,  and  then  only  if the  retrieval  is done  while  

another  update  to  the  exact  same  item  is in progress  by  another  user. 

If  you  want  to  revert  back  to  behavior  that  was  available  before  fix  pack  7 when  

performing  retrieve  operations,  follow  one  of the  two  following  methods:  

v   Use  the  new  API  flag  

DK_CM_CONTENT_RETRIEVE_USING_COMMITTED_READ  

You can  use  the  API  flag  DK_CM_CONTENT_RETRIEVE_USING_COMMITTED_READ  with  

the  retrieve  APIs  to  indicate  that  committed  reads  should  be  performed  by the  

library  server  when  retrieving  an  item.  If  this  flag  is passed  (as  a bitmask)  as  

part  of  the  option  argument,  the  library  server  performs  committed  reads  when  

performing  the  retrieve  operation.  By  using  this  option,  applications  can  get  the  

same  behavior  that  is  available  before  DB2  Content  Manager  Version  8.2  fix pack  

7 when  performing  retrieve  operations.  

v   Set  the  environment  variable  ICM_RETRIEVE_OPTION  

 

 

Chapter  4. Working  with DB2 Content  Manager  Version  8.3 143

|
|
|
|
|
|
|

|
|

|
|

|
|
|
|
|
|
|

|



Set  the  environment  variable  ICM_RETRIEVE_OPTION  on  the  library  server  

machine.  On  the  Windows  operating  system,  set  the  ICM_RETRIEVE_OPTION  

as  an  environment  variable.  On  UNIX  operating  systems,  set  

the  ICM_RETRIEVE_OPTION  in  the  <instance_home>/sqllib/profile.env  and  

userprofile  file  in the  same  manner  as  other  DB2  Content  Manager  variables,  

such  as  ICMROOT.

A new  flag  called  DK_CM_CONTENT_RETRIEVE_IGNORE_ACL_NAME  is available  with  the  

retrieve  APIs.  If  this  flag  is  passed  (as  a bitmask),  as  part  of the  option  argument,  

the  retrieve  APIs  will  not  attempt  to fetch  the  ACL  name  associated  with  the  item  

being  retrieved.  The  DK_ICM_PROPERTY_ACL  property  associated  with  the  retrieved  

DDO  object  will  be  an  empty  string.  Using  this  option  can  improve  performance  in 

situations  where  the  ACL  name  associated  with  an  item  is not  important  to an  

application.  The  performance  benefit  is applicable  only  in  situations  where  the  

ACL  name  has  already  not  been  fetched  and  cached.  Not  having  to  fetch  the  ACL  

name  (if  it  already  is  not  cached)  will  reduce  a stored  procedure  call  to the  library  

server.  Applications  can  fetch  the  ACL  name  associated  with  an  item  (at  a later  

time,  if you  want)  by  using  the  projection  mechanism  to  retrieve  system  attributes  

For  more  information  about  retrieve,  such  as  retrieval  options,  see  the  

SItemRetrievalICM  sample.  

Deleting items 

Use  the  delete  method  in  the  DDO  to  delete  an  item  from  the  content  server.  

 

 

Java  

ddoDocument.del();  

 

 

C++  

ddoDocument->del();  

 The  DDO  must  have  its  item  ID  and  object  type  set,  and  have  a valid  connection  

to  a content  server.  

For  more  information  about  deleting  items,  see  the  SItemDeletionICM  ICM  API  

education  sample.  

Deleting versioned items 

If you  enabled  an  item  for  versioning,  remember  that  you  have  various  versions  of  

that  item  that  you  can  work  with.  If you  want  to  completely  delete  a versioned  

item,  you  must  delete  all  of the  item’s  versions.  This  section  describes  how  to  

delete  all  versions  of  an  item  or  individual  versions  of a versioned  item.  

To delete  individual  versions  of  an  item,  search  for  all  of the  items  matching  some  

search  criteria,  such  as  the  ITEMID.  If you  don’t  specify  a version  or the  latest  

version,  all  versions  matching  the  search  criteria  are  returned.  If ITEMID  is the  

only  criteria  you  specify,  all  versions  of that  item  are  returned.  You can  then  loop  

through  the  results  collection  and  delete  each  item  individually.  

To delete  all  versions  of an  item  at once,  specify  the  

DKConstantICM::DK_ICM_DELETE_ALL_VERSIONS  option  when  deleting  any  

individual  item  version.  It is important  to  specify  the  

 

 

144 Application  Programming Guide

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|



DKConstantICM::DK_ICM_DELETE_ALL_VERSIONS  because  if you  do  not,  only  

the  item  version  represented  by  the  root  component  DDO  is  deleted.  

To see  example  code  that  uses  search  and  delete,  see  the  SItemDeletionICM  sample  

in  the  samples  directory.  

Checking in and checking out items 

To prevent  two  users  from  making  changes  to  the  same  item  at the  same  time,  you  

must  check  out  an  item  before  updating  it.  Checking  out  an  item  grants  exclusive  

update  rights  to  the  user  who  has  the  item  checked  out.  When  you  check  out  an  

item  you  hold  a persistent  write  lock  on  that  item.  The  entire  item  is locked  and  

unlocked  as  a whole,  including  all  versions  and  child  components.  Linked  and  

referenced  items,  however,  are  not  locked  with  the  item.  The  persistent  lock  on  the  

item  is  released  when  you  check  in  the  item.  

To check  items  in  and  out,  use  the  DKDatastoreICM’s  checkIn  and  checkOut  

operations,  as  shown  in  example  below.  

1.   Having  connected  to  a DKDatastoreICM  object  named  dsICM, and  using  a DDO  

called  myDataObject, check  out  the  item.  

 

 

Java  

dsICM.checkOut(myDataObject);  

 

 

C++  

dsICM->checkOut(myDataObject);  

2.   Check  in  the  item.  

 

 

Java  

dsICM.checkIn(myDataObject);  

 

 

C++  

dsICM->checkIn(myDataObject);  

For  more  information  on  checking  items  in  and  out,  see  the  SItemUpdateICM  ICM  

API  education  sample.  

Setting and getting an item’s versioning properties 

The  example  below,  demonstrates  how  to  set  an  item’s  versioning  properties  and  

how  to  retrieve  and  item’s  versioning  properties.  

 

 

Chapter  4. Working  with DB2 Content  Manager  Version  8.3 145

|
|

|
|



Java  

DKPidICM  pid  = (DKPidICM)ddo.getPidObject();  

//  Accessing  version  information  

String  version  = pid.getVersionNumber();  

...  

//  Setting  the  version  number  in the  DDO  

pid.setVersionNumber(version);  

 

 

C++  

DKPidICM  * pid  = (DKPidICM  *)ddo->getPidObject();  

//  Accessing  version  information  

DKString  version  = pid->getVersionNumber();  

....  

//Setting  the  version  number  for  the  PID  associated  with  an item  (DDO).  

pid->setVersionNumber((char  *)version);  

Working with item versions 

You can  keep  multiple  versions  of  items  and  objects  by  enabling  the  versioning  

options  provided  by  DB2  Content  Manager.  For  example,  if an  item  has  the  

versioning  option  set  to always,  a new  version  is created  each  time  the  item  is 

updated  instead  of  updating  the  original  or  existing  version.  There  are  things  that  

you  can  do  to  ensure  that  you  set  the  version  policy  that  is  best  meets  your  needs.  

For  example,  you  can  turn  off  version  control  for  attributes,  and  leave  the  version  

control  for  resource  content.  You can  also  allow  an  end  user  application  to  specify  

when  a new  version  is created.  

This  section  provides  examples  to help  you  work  with  versioning  properties.  

Retrieving  the  version  control  policy  of  an  item  type  

An  item  has  a version  control  policy,  which  contains  the  versioning  

property  for  the  item.  Following  is the  list  of  the  three  versioning  

properties  available  and  the  value  used  to represent  each  property  in  the  

version  control  policy.  

DK_ICM_VERSION_CONTROL_ALWAYS  

Versioned-always.  

DK_ICM_VERSION_CONTROL_NEVER  

Versioning  is not  supported  for  this  item  type  (default).  

DK_ICM_VERSION_CONTROL_BY_APPLICATION  

The  application  determines  the  versioning  scheme.
 

 

Java  

short   versionControlPolicy;  

DKItemTypeDefICM  item  = newDKItemTypeDefICM();  

....  

versionControlPolicy  = item.getVersionControl();  

 

 

146 Application  Programming Guide

|
|
|
|
|
|
|
|



C++  

short  versionControlPolicy  = 0; 

DKItemTypeDefICM  * item     = NULL;  

...  

versionControlPolicy  = item->getVersionControl();  

Setting  version  control  for  an  item  type  

 

 

Java  

DKItemTypeDefICM  item  = new  DKItemTypeDefICM();  

short  versionControl  = DK_ICM_VERSION_CONTROL_ALWAYS;  

....  

item.setVersionControl(versionControl);  

 

 

C+  

DKItemTypeDefICM  * item  = NULL;  

short  versionControl     = DK_ICM_VERSION_CONTROL_ALWAYS;  

...  

item->setVersionControl(versionControl);  

For  a complete  sample  that  accesses  version  control  information  of item  

type  definitions  in the  system,  see  the  SItemTypeRetrievalICM  ICM  API  

education  sample.  

Getting  the  maximum  number  of  versions  allowed  for  an  item  type  

 

 

Java  

short   versionMax;  

DKItemTypeDefICM  item  = new  DKItemTypeDefICM();  

....  

versionMax  = item.getVersionMax();  

 

 

C++  

 short  versionMax      = 0; 

DKItemTypeDefICM  * item  = NULL:  

....  

versionMax  = item->getVersionMax();  

Setting  the  maximum  number  of  versions  allowed  for  an  item  type  

In  this  example,  only  ten  versions  of an  item  that  is based  on  this  item  

type  are  maintained  by  the  system.  

 

 

Java  

short   versionMax=10;  

DKItemTypeDefICM  item  = new  DKItemTypeDefICM();  

...  

item.setVersionMax(versionMax);  

 

 

Chapter  4. Working  with DB2 Content  Manager  Version  8.3 147



C++  

short  versionMax     = 10; 

DKItemTypeDefICM  * item  = NULL;  

 ....  

item->setVersionMax(versionMax);  

Setting  the  value  of  the  versioning  type  for  an  item  type  

 

 

C++  

DKItemTypeDefICM  * item  = NULL;  

short  versionType  = DK_ICM_ITEM_VERSIONING_OPTIMIZED;  

...  

item->setVersioningType(versioningType);  

Working  with folders 

A folder  is a fully  supported  DDO  that  represents  an  item.  A folder  has  the  full  

hierarchical  data  structure  of  the  item  type  that  it is created  in.  A folder  is a DDO  

of  semantic  type  folder  and  has  an  attribute,  DKConstant.DK_CM_DKFOLDER,  

that  contains  a DKFolder,  regardless  of the  item  type’s  classification.  The  DKFolder  

object,  a DKSequentialCollection,  can  contain  any  number  of  root  component  

DDOs  representing  other  items.  

The  procedures  below  include  code  fragments  for  informational  purposes  only.  Do  

not  copy  these  code  fragments  and  paste  them  directly  into  your  application  

program,  because  they  will  not  work  in  their  current  form.  For  a complete  folders  

sample  that  you  can  run, see  the  SFolderICM  sample  in  the  samples  directory.  

Creating a folder 

The  DKDatastoreICM.createDDO()  method  is used  to  create  DDOs  at runtime.  As  

shown  in  the  SItemCreationICM  sample  (in  the  samples  directory),  when  creating  

folder  items,  the  item  property  type  or  semantic  type  needs  to  be  specified  as 

DKConstant.DK_CM_FOLDER.  

A folder  item  is  created  using  the  DKDatastoreICM.createDDO  method  with  the  

DK_CM_FOLDER  semantic  type.  You can  create  a folder  by  specifying  the  

DKConstant.DK_CM_FOLDER  as  the  second  parameter  to  the  createDDO  method.  

 

 

Java  

DKDDO  ddoFolder   = dsICM.createDDO("S_simple",  DKConstant.DK_CM_FOLDER);  

 

 

C++  

DKDDO*  ddoFolder  = dsICM->createDDO("S_simple",  DK_CM_FOLDER);  

 Use  setData  method  to  populate  the  ddoFolder. Once  the  folder  DDO  is created,  it  

is saved  to  the  persistent  content  server.  

 

 

148 Application  Programming Guide



Java  

ddoFolder.add();  

 

 

C++  

ddoFolder->add();  

Adding contents to a folder 

All  contents  that  are  to  be  placed  in  the  DKFolder  must  be  persistent  in  the  content  

server  before  you  call  the  add()  or  update()  method  on  the  folder  DDO.  To make  

the  contents  persistent,  call  their  DKDDO.add()  methods.  

To add  items  to  a folder,  use  the  DKFolder’s  addElement()  function.  When  you  

have  added  enough  members  into  the  folder,  you  can  call  the  add  or  update  

method  to  save  the  folder-content  relationships  into  the  persistent  store.  This  

groups  any  number  of folder  modifications  and  into  a single  call  to  the  library  

server.  When  adding  items  to a folder,  do  not  add  multiple  copies  of  the  same  item  

to  DKFolder.  Since  all  folder  modifications  are  tracked,  do  not  cause  conflicting  or  

duplicate  modifications.  For  example,  do  not  add  multiple  copies  of  the  same  item  

to  the  folder.  

Follow  the  steps  below  to add  contents  to  a folder.  Note  that  a folder  can  contain  

another  folder  (sub-folder)  as one  of  its  content  items.  

 

 

Chapter  4. Working  with DB2 Content  Manager  Version  8.3 149



Java  

1.   Create  three  new  items.  These  items  will  be  added  to a folder  as  its  

contents.  Folder  contents  can  be  of any  semantic  type.  

DKDDO  ddoDocument=dsICM.createDDO("S_simple",DKConstant.DK_CM_DOCUMENT);  

DKDDO  ddoFolder2=dsICM.createDDO("S_simple",DKConstant.DK_CM_FOLDER);  

DKDDO  ddoItem=dsICM.createDDO("S_simple",DKConstant.DK_CM_ITEM);  

2.   Use  the  setData  method  to  populate  the  DDOs.  Items  that  are  to  be  added  

as folder  contents  need  to  be  persisted  into  the  datastore.  

ddoDocument.add();  

ddoItem.add();  

ddoFolder2.add();  

3.   Retrieve  the  dkFolder  attribute  of the  previously  created  and  persisted  

folder  DDO.  

short  dataid  = ddoFolder.dataId  

   (DKConstant.DK_CM_NAMESPACE_ATTR,DKConstant.DK_CM_DKFOLDER);  

dkFolder  = (DKFolder)  ddoFolder.getData(dataid);  

4.   The  folder  must  be  checked  out  of  the  datastore  before  it is updated  (by  

adding  contents).  

dsICM.checkOut(ddoFolder);  

5.   Add  the  previously  created  items  to the  folder.  

dkFolder.addElement(ddoDocument);  

dkFolder.addElement(ddoItem);  

dkFolder.addElement(ddoFolder2);  

6.   Commit  the  changes  to  the  folder  and  explicitly  check  in the  changes.  

ddoFolder.update();  

dsICM.checkIn(ddoFolder);  

 

 

150 Application  Programming Guide



C++  

1.    Create  the  items  that  will  be  added  to  the  folder.  

DKDDO  * ddoDocument  = dsICM->createDDO("book",  DK_CM_DOCUMENT);  

DKDDO  * ddoFolder2   = dsICM->createDDO("book",  DK_CM_FOLDER);  

DKDDO  * ddoItem      = dsICM->createDDO("book",  DK_CM_ITEM);  

2.   Persist  the  created  items  to  the  datastore.  

ddoDocument->add();  

ddoItem->add();  

ddoFolder2->add();  

3.   Retrieve  the  DKFolder  attribute  for  the  folder.  

DKFolder  * dkFolder;  

short  dataid  = ddoFolder->dataId(DK_CM_NAMESPACE_ATTR,DK_CM_DKFOLDER);  

if (dataid!=0)  dkFolder  = 

  (DKFolder*)(dkCollection*)  ddoFolder->getData(dataid);  

4.   Check  out  the  folder  (A  folder  must  be  checked  out  before  it is update)  

dsICM->checkOut(ddoFolder);  

5.   Add  the  created  items  to  the  folder.  

dkFolder->addElement(ddoDocument);  

dkFolder->addElement(ddoItem);  

dkFolder->addElement(ddoFolder2);  // Folders  can contain  sub-folders.  

6.   Update  the  folder.  This  implictly  also  checks  in  the  folder  (unlocks  it).  

ddoFolder->update();  

7.   Explicitly  check  in the  folder.  

dsICM->checkIn(ddoFolder);  

Removing contents from a folder 

Items  can  be  removed  from  a folder  in  one  of two  ways.  A  deferred  removal  (the  

actual  removal  is done  when  the  folder  DDO  is  updated  and  multiple  content  

server  calls  are  combined  into  one)  is  done  using  the  removeElementXX  method(s).  

An  immediate  (and  expensive  since  multiple  calls  are  made  to the  content  server)  

removal  can  be  done  using  the  dkFolder.removeMember  method.  See  the  

SFolderICM  sample  (in  the  samples  directory)  for  further  details  on  working  with  

folders.  

Complete  the  following  steps  to  remove  contents  from  a folder:  

 

 

Chapter  4. Working  with DB2 Content  Manager  Version  8.3 151



Java  

1.   Check  out  the  folder  DDO  from  which  we  want  to  remove  an  item.  

dsICM.checkOut(ddoFolder);  

2.   Look  for  the  item  to  remove.  In  this  case,  look  for  the  docItem  DDO  

created  earlier.  Create  an  iterator  to  iterate  through  the  folder’s  content.  

dkIterator  iter  = dkFolder.createIterator();  

String  itemPidString  = ddoItem.getPidObject().pidString();  

while(iter.more())  { 

   // Move  the  pointer  to next  element  and  return  that  object.  

   // Compare  the  PID  trings  of the DDO  returned  from  the  iterator  

   // with  the  DDO that  is to be removed.  

   DKDDO  ddo  =(DKDDO)iter.next();  

   if(ddo.getPidObject().pidString().equals(itemPidString))  { 

      // The  item  to be removed  is found.  

      // Remove  it (current  element  in the iterator)  

      dkFolder.removeElementAt(iter);  

   } 

} 

3.   Persist  the  change  and  check  in  the  folder  DDO.  

ddoFolder.update();  

dsICM.checkIn(ddoFolder);  

 

 

C++  

1.   Create  an  item  and  add  it to  a folder.  Note  that  the  folder  was  created  

earlier.  

DKDDO  * ddoItem    = dsICM->createDDO("book",  DK_CM_ITEM);  

ddoItem->add();  

DKFolder  * dkFolder;  

short  dataid  = ddoFolder->dataId(DK_CM_NAMESPACE_ATTR,DK_CM_DKFOLDER);  

if (dataid!=0)  dkFolder  = 

  (DKFolder*)(dkCollection*)  ddoFolder->getData(dataid);  

dsICM->checkOut(ddoFolder);  

dkFolder->addElement(ddoItem);  

ddoFolder->update();  

2.   Explicitly  check  in  the  folder.  

dsICM->checkIn(ddoFolder);  

3.   Create  an  iterator  for  the  folder.  

dkIterator*  iter  = dkFolder->createIterator();  

4.   Iterate  through  the  contents  of  the  folder  until  the  item  that  is to  be  

removed  is found.  Remove  the  item.  

while(iter->more())  

{ 

            DKDDO*  ddo = (DKDDO*)  iter->next()->value();  

          if  ( ((DKPidICM*)  ddo->getPidObject())->pidString()  == 

          ((DKPidICM*)  ddoItem->getPidObject())->pidString()  ) 

              { 

          //Found  the element  to  be removed.  Remove  it 

              dkFolder->removeElementAt(*iter);  

          //  Now  that  we found  the ddoItem,  remove  it.  

              } 

  } 

  

 delete(iter);  

 

 

152 Application  Programming Guide



Tips for adding and removing folder contents 

You can  streamline  the  process  for  adding,  updating,  and  removing  folder  contents  

by  remembering  the  following  points:  

   Use  element  methods  to  group  multiple  updates  into  a single  update  

The  most  efficient  way  to add  or  remove  any  amount  of  folder  contents  is to  

group  all  additions  and  modifications  into  a single  update  to  the  library  server.  

Use  the  DKFolder  add  element  or  remove  element  functions.  When  all  

modifications  are  complete,  call  the  DKDDO’s  add()  or  update()  method.  

   Use  single,  periodic  create  and  delete  because  immediate  methods  provide  

the  best  performance  

If  you  add  or  remove  items  one  at a time  without  making  any  other  changes  to  

the  folder,  the  immediate  methods  work  best  because  they  avoid  the  additional  

operations  that  occur  in  a DKDDO::update(). For  immediate  results,  use  the  

DKFolder.addMember()  or  removeMember()  or  DKDatastoreExtICM’s  

addToFolder()  or  removeFromFolder()  functions,  which  make  the  changes  

persistent  immediately  at the  cost  of one  call  to the  library  server  for  every  

change.  However,  this  becomes  time  consuming  if you  add  or  delete  more  than  

one  item.

Retrieving a folder’s contents 

To retrieve  folder  contents,  you  must  set  the  retrieval  option.  By  default,  the  

retrieval  option  is  not  set.  If you  do  not  set  the  retrieval  option,  the  object  will  not  

contain  a DKFolder  or  a DK_CM_DKFOLDER  attribute  until  retrieve  is called  and  

the  correct  options  are  set.The  retrieval  options  include  the  following:  

v   DKConstant.DK_CM_CONTENT_LINKS_OUTBOUND  

v   DKConstant.DK_CM_CONTENT_ITEMTREE

To retrieve  a folder  item  with  the  DKFolder  attribute  collection  with  Outbound  

Links  specified,  use  the  following  format:  

 

 

Java  

ddoFolder.retrieve(DKConstant.DK_CM_CONTENT_LINKS_OUTBOUND);  

 

 

C++  

ddoFolder->retrieve(DK_CM_CONTENT_LINKS_OUTBOUND);  

 To retrieve  a folder  item  where  the  item  tree  includes  links  and  folder  contents,  use  

the  following  format:  

 

 

Java  

ddoFolder.retrieve(DKConstant.DK_CM_CONTENT_ITEMTREE);  

 

 

C++  

ddoFolder->retrieve(DK_CM_CONTENT_ITEMTREE);  

 

 

Chapter  4. Working  with DB2 Content  Manager  Version  8.3 153

|
|
|

|

|
|
|
|

|
|

|
|
|
|
|
|
|
|



Obtaining all folders containing a specific DDO 

Multiple  folders  can  contain  the  same  item  (DDO).  This  allows  you  to associate  the  

item  with  different  applications  or  users.  To determine  which  folders  currently  

contain  a specific  DDO,  see  the  example  below.  

The  following  steps  demonstrate  how  to find  folders  that  contain  a ddoDocument  

object  that  was  previously  created.  See  the  SFolderICM  sample  (in  the  samples  

directory)  for  additional  details  about  working  with  folders.  

 

 

Java  

1.   Retrieve  the  datastore  extension  object.  

DKDatastoreExtICM  dsExtICM  =(DKDatastoreExtICM)  

                dsICM.getExtension(DKConstant.DK_CM_DATASTORE_EXT);  

2.   Call  the  getFoldersContainingDDO  method  on  the  extension  object  to find  

the  folders  containing  the  ddoDocument  object.  This  returns  a collection  

of  DDOs  where  each  returned  DDO  is  a folder  containing  the  

ddoDocument  object.  

DKSequentialCollection  list  = 

  dsExtICM.getFoldersContainingDDO(ddoDocument);  

3.    Create  an  iterator  to  cycle  through  the  returned  collection  of  folders.  

iter  =list.createIterator();  

while(iter.more())  { 

      // Move  iterator  to next  element  and return  that  object.  

      DKDDO  ddo  =(DKDDO)  iter.next();  

      // Print  out the  item  Id of the  folder  DDO in order  to identify  

      // the  returned  folder  object.  

      System.out.println("-Item  ID:  " + 

         ((DKPidICM)ddo.getPidObject()).getItemId());  

   } 

 

 

C++  

DKDDO*  ddoDocument  = ....;  

//Create  datastore  object,connect  to datastore,create  DDO  etc.  

....  

//Create  a new  datastore  extension  object  from  the  connected  object  

DKDatastoreExtICM*  dsExtICM  = (DKDatastoreExtICM*)  

                              dsICM->getExtension(DK_CM_DATASTORE_EXT);  

//Retrieve  the  PID  for  the  created  DDO 

DKPidICM*  pid  = (DKPidICM*)  ddoDocument->getPidObject();  

//Retrieve  a list  of folders  containing  the  DDO  created  earlier.  

DKSequentialCollection  *list  = 

  dsExtICM->getFoldersContainingDDO(ddoDocument);  

//Create  a iterator  for  the returned  DDO  collection  

dkIterator*  iter  =list->createIterator();  

while(iter->more())  { 

  DKDDO*  ddo  =(DKDDO*)  iter->next()->value();  

  pid  = (DKPidICM*)  ddo->getPidObject();  

  cout  << "-Item  ID:"  << pid->getItemId()  << endl;  

  delete  ddo;  

} 

delete  iter;  

Defining links between items 

You can  use  links  to  associate  a source  item  to  a target  item  with  an  optional  

description  item.  You define  links  in  DKLink  objects,  where  you  can  specify  the  

 

 

154 Application  Programming Guide



following  types  of  link  elements:  

 Table 14. Link  data  structure  

DKLink  Definition  

LinkTypeName  The  type  of link.  

Source  The  source  item  of a link.  

Target The  target  item  of a link.  

LinkItem  The  description  item.  Optional.
  

Since  a link  represents  a one  to  many  relationship,  it is represented  in  a DDO  by  a 

data-item  under  LINK  namespace,  of value  DKLinkCollection.  For  more  

information  about  working  with  links,  see  the  SLinksICM  sample  in  the  samples  

directory.  

A  link  itself  does  not  belong  to  either  the  source  or  the  target.  A link  just  connects  

a source  and  target.  For  example,  if source  A is linked  to  target  B,  A  is always  the  

source  and  B is always  the  target,  regardless  of  which  DDO,  A  or  B, is being  

referenced.  

In  memory,  both  the  source  and  the  target  DDOs  contain  copies  of  the  same  

DKLink  object.  Since  the  DKLink  object  contains  a reference  to  both  the  source  and  

the  target,  a DDO  containing  a link  also  contains  a link  that  refers  to  itself  as  well  

as  to  another  DDO.  For  example,  if Source  A is linked  to Target  B, both  A  and  B 

contain  the  same  link,  as  shown  in  the  example  in  Table 15.  

 Table 15. DKLink  definition  example  

DKLink  Defined  for  A to B DDO  A DDO  B 

Source  is A Source  is A Source  is A 

Target is B Target is B Target is B
  

When  you  add  or  remove  links  in  the  persistent  store,  you  only  have  to perform  

the  operation  on  one  of  the  two  items,  source  or  target.  The  link  is automatically  

updated  for  the  other  item.  

For  more  information  about  links  and  a complete  links  sample  that  you  can  run, 

see  the  SLinksICM  sample  in  the  samples  directory.  

Inbound and outbound links 

When  using  links  to  reference  a particular  DDO,  either  the  source  or  the  target,  

you  can  consider  the  links  to  be  inbound  or  outbound.  When  considering  a link  from  

the  perspective  from  a particular  DDO,  if that  DDO  is the  target,  then  that  DDO  

considers  it  an  inbound  link.  Meanwhile,  the  DDO  at the  other  end  of  that  link  

considers  the  same  link  to  be  outbound  from  its  perspective.  

In  the  example  in  Table 15,  the  link  from  DDO  A  to DDO  B is outbound  link,  while  

the  same  link  to  DDO  B is the  inbound  link.  

Link type names 

Link  relationships  have  names.  Within  a DDO,  links  are  grouped  into  link  

collections.  There  are  system  defined  link  type  names  and  you  can  also  define  your  

own.  You can  use  any  number  of  user-defined  link  type  names  or  system-defined  

link  type  names.  The  following  system  defined  link  type  names  include:  

 

 

Chapter  4. Working  with DB2 Content  Manager  Version  8.3 155



Link  type  name  contains  

Java  Constant: DKConstant.DK_ICM_LINKTYPENAME_CONTAINS  

 C++  Constant: DK_ICM_LINKTYPENAME_CONTAINS  

Link  type  name:  DKFolder  

Java  Constant  : DKConstant.DK_ICM_LINKTYPENAME_DKFOLDER  

 C++  Constant  : DK_ICM_LINKTYPENAME_DKFOLDER

The  DKFolder  link  type  name  is provided  and  used  by  the  system  to manage  

folders.  The  DKFolder  object  is a simplified  interface  to  an  outbound  link  collection  

to  make  folders  easy  to  work  with.  Therefore,  you  should  not  use  the  DKFolder  

link  type  name  to  define  or  delete  links.  You should  also  not  use  the  DKFolder  link  

type  name  in any  way  with  a DKLinkCollection.  However,  you  must  specify  the  

DKFolder  link  type  name  in  order  to  search  folders  using  links.  

See  the  SLinksICM  sample,  in  the  IBMCMROOT/samples/cpp/icmor 

IBMCMROOT/samples/java/icmdirectory,  for  additional  information  about  links.  For  

information  on  creating  user-defined  link  types,  see  the  

SLinkTypeDefinitionCreationICM  sample.  

Retrieving linked items 

When  you  retrieve  links,  you  have  the  option  of  retrieving  only  inbound,  only  

outbound,  or  both  types.  In  order  to  retrieve  inbound  and  outbound,  you  must  set  

a retrieve  option.  You can  set  the  following  options  to retrieve  links:  

Java  

v   DKConstant.DK_CM_CONTENT_LINKS_OUTBOUND  

v   DKConstant.DK_CM_CONTENT_LINKS_INBOUND  

v   DKConstant.DK_CM_CONTENT_LINKS_OUTBOUND  + 

DKConstant.DK_CM_CONTENT_LINKS_INBOUND  

v   DKConstant.DK_CM_CONTENT_ITEMTREE

C++  

v   DK_CM_CONTENT_LINKS_OUTBOUND  

v   DK_CM_CONTENT_LINKS_INBOUND  

v   DK_CM_CONTENT_LINKS_OUTBOUND  + 

DK_CM_CONTENT_LINKS_INBOUND  

v   DK_CM_CONTENT_ITEMTREE

Remember  that  before  you  make  a call  to  the  DDO  add()  or  update()  methods,  all  

the  items  that  are  associated  with  links  must  already  be  persistent.  

Working  with access control 

If you  have  access  to  either  the  DB2  Content  Manager  system  administration  client  

or  to  the  DB2  Content  Manager  APIs  for  writing  your  own  administration  

program,  you  can  use  the  access  control  functions  to  control  access  to  the  

information  in  your  DB2  Content  Manager  system.  The  various  access  control  APIs  

allow  you  to  control  access  to the  entire  system,  to a closely  related  set  of 

operations  on  the  system,  or  to  an  individual  item.  

Some  of  the  tasks  that  you  can  complete  using  the  access  control  APIs  include:  

v   Creating  privileges.  

v   Associate  a list  of  actions  with  information  in  the  system.  

 

 

156 Application  Programming Guide



v   Give  permission  to  users  to perform  actions  on  the  information  in  the  library  

server.

Creating a privilege 

A  privilege  is represented  by  the  class  DKPrivilegeICM.  The  following  steps  and  

code  examples  show  you  how  to create  a new  privilege  object,  make  it persistent,  

and  retrieve  a privilege.  To create  a privilege,  follow  the  steps  below:  

 

 

Java  

1.   Connect  to  a datastore  

DKDatastoreICM  ds = new DKDatastoreICM();  

ds.connect("ICMNLSDB","icmadmin",password,"");  

dkDatastoreDef  dsDef  =(dkDatastoreDef)ds.datastoreDef();  

DKDatastoreAdminICM  dsAdmin  =(DKDatastoreAdminICM)dsDef.datastoreAdmin();  

2.   Retrieve  a DKAuthorizationMgmtICM  object.  This  class  handles  

authorization  management  tasks.  

DKAuthorizationMgmtICM  aclMgmt  = (DKAuthorizationMgmtICM)  

        dsAdmin.authorizationMgmt();  

3.   Create  a new  privilege  object.  

DKPrivilegeICM  priv  = new  DKPrivilegeICM(ds);  

4.   Assign  a name  to the  privilege  object.  

priv.setName("UserPriv");  

5.   Assign  a description  to  the  privilege  object.  

priv.setDescription("This  is user-defined  privilege");  

6.   Add  the  new  privilege  to  the  authorization  manager  object.  

aclMgmt.add(priv);  

7.   Retrieve  the  newly  created  privilege  from  the  authorization  manager  

object.  

dkPrivilege  aPriv  = aclMgmt.retrievePrivilege("UserPriv");  

8.   Display  information  about  the  privilege  object.  

System.out.println("privilege  name  = " + aPriv.getName());  

System.out.println("privilege  description  = " + aPriv.getDescription());  

 

 

Chapter  4. Working  with DB2 Content  Manager  Version  8.3 157



C++  

1.   Create  the  datastore  object  as  well  as all  the  related  administration  

management  objects.  

//Create  the  datastore  object  

DKDatastoreICM  * ds = new DKDatastoreICM();  

//Connect  to the  underlying  datastore  

ds->connect("ICMNLSDB",  "icmdmin",  "password",  "");  

//Retrieve  the  datastore  definition  object  (used  to access  

//and  manipulate  CM meta-data)  

dkDatastoreDef  * dsDef  = (dkDatastoreDef  *) ds->datastoreDef();  

//Create  the  class  used  to represent  and process  datastore  

//administration  functions.  

DKDatastoreAdminICM  * dsAdmin  = (DKDatastoreAdminICM  *) 

            dsDef->datastoreAdmin();  

//Retrieve  the  class  used  to represent  and manage  the  authorization  

//related  functionality  of the  ICM  datastore  

DKAuthorizationMgmtICM  * aclMgmt  = (DKAuthorizationMgmtICM  *) 

                  dsAdmin->authorizationMgmt();  

2.   Create  a new  privilege  object  and  set  its  properties  

DKPrivilegeICM  * priv  = new  DKPrivilegeICM(ds);  

//Set  the  name  of the privilege  object  

priv->setName("UserPriv");  

//Set  the  privilege  description  

priv->setDescription("This  is user-defined  privilege");  

3.   Add  the  privilege  to the  datastore  via  the  authorization  management  

object.  

aclMgmt->add(priv);  

Creating a privilege set 

A privilege  set  is represented  by  the  class  DKPrivilegeSetICM.  Before  you  can  

begin  creating  privilege  sets,  you  must  be  connected  to  a content  server.  To create  a 

privilege  set,  complete  the  following  steps:  

 

 

158 Application  Programming Guide



Java  

1.   Create  new  privileges  (or  retrieve  privileges)  to  

add  to  the  new  privilege  set.  

DKPrivilegeICM  priv_1  = new  DKPrivilegeICM(ds);  

priv_1.setName("ItemCheckOut");  

DKPrivilegeICM  priv_2  = new  DKPrivilegeICM(ds);  

priv_2.setName("ItemQuery");  

DKPrivilegeICM  priv_3  = new  DKPrivilegeICM(ds);  

priv_3.setName("ItemAdd");  

2.   Create  a new  privilege  set.  

DKPrivilegeSetICM  privSet1  = new  DKPrivilegeSetICM(ds);  

3.   Assign  a name  to the  privilege  set.  

privSet1.setName("UserPrivSet");  

4.   Assign  a description  to  the  privilege  set.  

privSet1.setDescription("This  is a user-defined  priv  set");  

5.   Add  the  privileges  to the  privilege  set.  

privSet1.addPrivilege(priv_1);  

privSet1.addPrivilege(priv_2);  

privSet1.addPrivilege(priv_3);  

6.   Add  the  newly  created  privilege  set  to  the  authorization  manager.  

AclMgmt.add(privSet1);  

7.   Display  information  about  the  newly  created  privilege  set.  

DKPrivilegeSetICM  aPrivSet  = (DKPrivilegeSetICM)  

        aclMgmt.retrievePrivilegeSet("UserPrivSet");  

System.out.println("privilege  set  name  = " + aPrivSet.getName());  

System.out.println("privilege  set  description="  + 

  aPrivSet.getDescription());  

dkCollection  coll  = aPrivSet.listPrivileges();  

dkIterator  iter  = coll.createIterator();  

while  (iter.more())  { 

   DKPrivilegeICM  _priv  = (DKPrivilegeICM)  iter.next();  

   System.out.println("   privilege  name  = " + _priv.getName());  

} 

 

 

Chapter  4. Working  with DB2 Content  Manager  Version  8.3 159



C++  

1.   1.  Create  the  datastore  object  as  well  as  all  the  related  administration  

management  objects.  

//Create  the  datastore  object  

DKDatastoreICM  * ds = new DKDatastoreICM();  

//Connect  to the  underlying  datastore  

ds->connect("ICMNLSDB",  "icmdmin",  "password",  "");  

//Retrieve  the  datastore  definition  object  

//(used  to access  and  manipulate  CM meta-data)  

dkDatastoreDef  * dsDef  = (dkDatastoreDef  *) ds->datastoreDef();  

//Create  the  class  used  to represent  and process  datastore  administration  

// functions.  

DKDatastoreAdminICM  * dsAdmin  = (DKDatastoreAdminICM  *) 

             dsDef->datastoreAdmin();  

//Retrieve  the  class  used  to represent  and manage  the  authorization  

//related  functionality  of the  ICM  datastore  

DKAuthorizationMgmtICM  * aclMgmt  = (DKAuthorizationMgmtICM  *) 

             dsAdmin->authorizationMgmt();  

2.   Create  three  privileges  and  set  their  properties.  

DKPrivilegeICM  * priv_1  = new  DKPrivilegeICM(ds);  

priv_1->setName("ItemCheckOut");  

DKPrivilegeICM  * priv_2  = new  DKPrivilegeICM(ds);  

priv_2->setName("ItemQuery");  

DKPrivilegeICM  * priv_3  = new  DKPrivilegeICM(ds);  

priv_3->setName("ItemAdd");  

3.   Create  a new  privilege  set  and  set  its  properties.  

DKPrivilegeSetICM  * privSet1  = new  DKPrivilegeSetICM(ds);  

privSet1->setName("UserPrivSet");  

privSet1->setDescription("This  is a user-defined  priv  set");  

4.   Add  the  created  privileges  to  the  new  privilege  set.  

privSet1->addPrivilege(priv_1);  

privSet1->addPrivilege(priv_2);  

privSet1->addPrivilege(priv_3);  

5.   Add  the  privilege  set  to the  datastore  using  the  authorization  

management  object.  

aclMgmt->add(privSet1);  

Displaying privilege set properties 

The  example  below  demonstrates  how  to  display  a privilege  set’s  properties.  

 

 

160 Application  Programming Guide



C++  

//Retrieve  a privilege  set  using  its  name  

DKPrivilegeSetICM  * sPrivSet  = (DKPrivilegeSetICM  *) 

   aclMgmt->retrievePrivilegeSet("UserPrivSet");  

//Display  privilege  set properties  

cout<<"privilege  set  name  = "<<  (char  *)sPrivSet->getName()  << endl;  

cout<<"priv  set  descrip="<<  (char  *)sPrivSet->getDescription()  <<  endl;  

//Retrieve  the  list  of privileges  that  are  a part  of this  privilege  set  

dkCollection  * coll  = sPrivSet->listPrivileges();  

dkIterator  * iter  = coll->createIterator();  

while  (iter->more())  

{ 

    DKPrivilegeICM*  _priv  = (DKPrivilegeICM  *)(void  *)(*iter->next());  

    cout<<"   privilege  name  = "<<  (char  *)_priv->getName()  << endl;  

} 

delete(iter);  

Defining an access control list (ACL) 

The  DB2  Content  Manager  access  control  model  is applied  at the  level  of the  

controlled  entity.  A  controlled  entity  is a unit  of protected  user  data.  A  controlled  

entity  can  be  an  individual  item,  item-type,  or  the  entire  library.  Operations  on  

controlled  entities  are  regulated  by  one  or  more  control  rules. The  ACL  is the  

container  for  these  control  rules.  The  DKAccessControlListICM  class  represents  an  

ACL.  Every  controlled  entity  in  a DB2  Content  Manager  system  must  be  bound  to  

an  ACL.  

The  examples  below  demonstrate  how  to define  an  ACL.  

 

 

Chapter  4. Working  with DB2 Content  Manager  Version  8.3 161



Java  

//Define  a new  DKACLData  object.  

//A  DKACLData  class  is  used  to hold  ACL  related  data.  

DKACLData  aclData1  = new  DKACLData();  

//set  the  user  group  name  for  the  ACL 

aclData1.setUserGroupName("ICMADMIN");  

//set  ACL  patron  type.  

aclData1.setPatronType(DK_CM_USER_KIND_USER);  

//Set  the  privilege  set  associated  with  this  ACL 

aclData1.setPrivilegeSet(privSet_1);  

//Create  another  DKACLData  object.  

DKACLData  aclData2  = new  DKACLData();  

aclData2.setUserGroupName("ICMPUBLC");  

aclData2.setPatronType(DK_CM_USER_KIND_GROUP);  

aclData2.setPrivilegeSet(privSet_2);  

//Create  a new  ACL.  A DKAccessControlListICM  represents  a CM v8.3.  ACL  

DKAccessControlListICM  acl1  = new DKAccessControlListICM(ds);  

//Assign  a new  to the  newly-created  ACL  

acl1.setName("UserACL");  

//Assign  a description  to the  newly-created  ACL  

acl1.setDescription("This  is a user-defined  ACL");  

//Add  the  previously  created  ACL  data  objects  to the ACL 

acl1.addACLData(aclData1);  

acl1.addACLData(aclData2);  

//Add  the  newly-created  ACL  to the  authorization  manager  

aclMgmt.add(acl1);  

//Retrieve  and  display  information  about  the newly  created  ACL 

DKAccessControlListICM  acl_1  = (DKAccessControlListICM)  

aclMgmt.retrieveAccessControlList("UserACL");  

System.out.println("ACL  name   = " + acl_1.getName());  

System.out.println("     desc   = " + acl_1.getDescription());  

dkCollection  coll  = acl_1.listACLData();  

dkIterator  iter  = coll.createIterator();  

while  (iter.more())  { 

   DKACLData  aclData  = (DKACLData)  iter.next();  

   DKPrivilegeSetICM  _privSet  = (DKPrivilegeSetICM)  aclData.getPrivilegeSet();  

   System.out.println("   PrivSet  name   = " + _privSet.getName());  

   System.out.println("   PrivSet  desc   = " + _privSet.getDescription());  

   String  usrGrpName  = aclData.getUserGroupName();  

   System.out.println("     UserGroupName  = " + usrGrpName);  

   short  patronType  = aclData.getPatronType();  

   System.out.println("     Patron  type    = " + patronType);  

} 

 

 

162 Application  Programming Guide



C++  

1.   Define  new  DKACLData  objects.  Each  DKACLData  object  is used  to hold  

ACL  related  data.  

DKACLData  * aclData1  = new  DKACLData();  

// set  the  name  of the  user  group  to be associated  with  this  ACL  

aclData1->setUserGroupName("ICMADMIN");  

// Set   the  ACL  patron  type.  Can  be  one of 3 possible  

//values:DK_CM_USER_KIND_USER  or DK_CM_USER_KIND_GROUP  or 

//DK_CM_USER_KIND_PUBLIC.  

aclData1->setPatronType(DK_CM_USER_KIND_USER);  

// Set  the  privilege  set  associated  with  the  ACL.  

DKPrivilegeSetICM  * privSet_1  = (DKPrivilegeSetICM  *) 

   aclMgmt->retrievePrivilegeSet("UserPrivSet");  

aclData1->setPrivilegeSet(privSet_1);  

2.   Create  another  DKACLdata  object.  

DKACLData  * aclData2  = new  DKACLData();  

aclData2->setUserGroupName("ICMPUBLIC");  

aclData2->setPatronType(DK_CM_USER_KIND_GROUP);  

DKPrivilegeSetICM  * privSet_2  = (DKPrivilegeSetICM  *) 

  aclMgmt->retrievePrivilegeSet("PublicPrivSet");  

aclData2->setPrivilegeSet(privSet_2);  

3.   Create  a new  ACL.  Set  property  values  for  this  new  ACL.  

DKAccessControlListICM  * acl1  = new  DKAccessControlListICM(ds);  

//Assign  a new  name  to the newly-created  ACL.  

acl1->setName("UserACL");  

// Assign  a description  to the  newly-created  ACL.  

acl1->setDescription("This  is a user-defined  ACL");  

4.   Add  the  ACL,  created  in  step  three,  data  objects  to  the  ACL.  

acl1->addACLData(aclData1);  

acl1->addACLData(aclData2);  

5.   Add  the  ACL,  created  in  step  three,  to the  authorization  manager.  

aclMgmt->add(acl1);  

 The  complete  sample  program  is in the  samples  directory.  

Retrieving and displaying ACL information 

To retrieve  and  display  ACL  information,  complete  the  following  steps.  

1.   Retrieve  the  ACL  from  the  authorization  management  object  using  the  ACL’s  

name.  

 

 

C++  

DKAccessControlListICM  * acl_1  = (DKAccessControlListICM  *) aclMgmt->  

                        retrieveAccessControlList("UserACL");  

cout<<"ACL  name  = "<<  (char  *)acl_1->getName()  <<  endl;  

cout<<"     desc  = "<< (char  *)acl_1->getDescription()  << endl;  

2.   Retrieve  the  ACL  data  associated  with  the  ACL.  

 

 

Chapter  4. Working  with DB2 Content  Manager  Version  8.3 163



C++  

dkCollection  * coll  = acl_1->listACLData();  

dkIterator  * iter  = coll->createIterator();  

char  szpatronType[12]  = {0x00};  

while  (iter->more())  

{ 

       DKACLData  * aclData  = (DKACLData  *)(void  *)(*iter->next());  

       DKPrivilegeSetICM  * _privSet  = (DKPrivilegeSetICM  *)aclData->  

                                        getPrivilegeSet();  

       cout<<"privSet  name  = "<<  (char  *)_privSet->getName()  << endl;  

       cout<<"privSet  desc="<<  (char  *)_privSet->getDescription()  << endl;  

       DKString  usrGrpName  = aclData->getUserGroupName();  

       cout<<"     UserGroupName  = "<<  (char  *)usrGrpName  << endl;  

       short  patronType  = aclData->getPatronType();  

       sprintf(szpatronType,  "%d",  patronType);  

       cout<<"     Patron  type    = "<< szpatronType  << endl;  

} 

delete(iter);  

Assigning an ACL to an item type 

Once  an  ACL  is  created,  you  can  associate  it to a specific  item  type.  Following  are  

the  steps  you  follow  to assign  an  ACL  to an  item  type:  

1.   Set  up  anew  item  type.  

 

 

Java  

DKItemTypeDefICM   it = new  DKItemTypeDefICM(dsICM);  

//Assign  a name  to this  item  type  

it.setName("TextResource1");  

//Assign  a description  to this  item  type  

it.setDescription("CMv8.3  Text  Resource  Item  Type.");  

//Assign  an ACL  code  to  this  item  type  

it.setItemTypeACLCode((int)DK_ICM_ITEMACL_BIND_AT_ITEM);  

....  

it.add();   // make  the  item  type  persistent  

...  

 

 

C++  

DKItemTypeDefICM  * itemType  = new DKItemTypeDefICM(dsICM);  

// Assign  a name  to this  item  type.  

itemType->setName("TextResource1");  

// Assign  a description  to this  item  type.  

itemType->setDescription("CMv8.3  Text  Resource  Item  Type.");  

2.   Retrieve  the  ACL  data  associated  with  the  ACL.  

 

 

164 Application  Programming Guide



Java  

int  itemTypeACLCode  = it.getItemTypeACLCode();  

// By setting  the  item  type’s  ACL flag  to TRUE(1)  we confirm  that  ACL  

// binding  is at the item  type  level.  By setting  the  item  type’s  ACL  

// flag  was  set  to FALSE(0),  we would  be saying  that  the  ACL binding  

// is not  at the  item  type  level  

it.setItemLevelACLFlag(1);  // - true  

//Determine  whether  the  ACL  binding  is at the item  type  level  or not 

int  itemTypeACLFlag  = it.getItemLevelACLFlag();  

 

 

C++  

itemType->setItemTypeACLCode((long)  1);  

// By setting  the  item  type’s  ACL flag  to TRUE  (1),  

//we  confirm  that  ACL  binding  is at the item  type  level.  

//By  setting  the item  type’s  ACL  flag  to FALSE(0),  

// we would  be saying  that  the  ACL  binding  is not at  the item  type  level.  

itemType->setItemLevelACLFlag((short)1);  

itemType->add();  

// make  the  item  type  persistent.  

The  complete  sample  program  is available  in the  samples  directory.  

Assigning an ACL to an item 

To enable  item  level  access  control,  you  must  bind  an  ACL  to  the  item.  To do  this,  

you  must  create  the  item  using  the  add()  method  on  the  DDO,  as  shown  in  the  

code  fragment  below.  In  the  code  fragment  below,  it is assumed  that  you  already  

have  a connection  to the  content  server  and  have  created  the  ACL.  The  complete  

program  is in  the  samples  directory.  

 

 

Java  

// Assume  that  an ACL  (Access  Control  List)  named  "MyACL"  

// already  exists  in the  system.  Add  a new  property  to the DDO.  

//This  property  will  be called  DK_ICM_PROPERTY_ACL  

int  propId  =ddoItem.addProperty(DK_ICM_PROPERTY_ACL);  

//Set  the  previously  created  (or  retrieved)ACL  as the value  of this  property  

ddoItem.setProperty(propId,"MyACL");  

//Persist  the  DDO  into  the data  store  

ddoItem.add();  

 

 

Chapter  4. Working  with DB2 Content  Manager  Version  8.3 165



C++  

1.   Create  a new  item  (DDO)  based  on  an  existing  item  type.  

DKDDO  * ddoItem  = dsICM->createDDO("book",  DK_CM_ITEM);  

2.   Assume  that  an  ACL  (Access  Control  List)  with  name  ″MyACL″  already  

exists  in the  system.  

3.   Add  a new  property  to  the  DDO.  This  property  will  be  called  

DK_ICM_PROPERTY_ACL.  

ushort  propId  = ddoItem->addProperty(DK_ICM_PROPERTY_ACL);  

4.   Set  the  ACL,  created  above,  as the  value  for  this  property.  Note  that  a user  

can  choose  to  retrieve  an  existing  ACL  and  use  it as  the  ACL  this  item.  

ddoItem->setProperty(propId,  "MyACL");  

5.   Persist  the  DDO  into  the  data  store.  

ddoItem->add();  

Library server and federated database limitations 

When  you  connect  to  a library  server  using  a DB2  Content  Manager  or  federated  

database  user  ID  that  is not  a database  user  ID,  the  connector  will  try  to  connect  to  

the  database  using  that  user  ID  and  the  connection  will  fail.  The  connector  will  

then  connect  using  the  database  connect  user  ID,  and  pass  the  DB2  Content  

Manager  or  federated  database  user  ID  to  the  server.  

To prevent  the  database  connection  from  failing  when  using  a DB2  Content  

Manager  or  federated  database  user  ID  which  is not  a database  user  ID,  you  can  

do  the  following:  

v   For  a federated  database:  

Update  the  FEDSERVERREPTYPE  value  to  DB2CON  instead  of  DB2  for  a particular  

federated  database  in  the  cmbds.ini  file.  It  should  look  like  this:  

FEDSERVERREPTYPE=DB2CON.  

Modifying  the  FEDSERVERREPTYPE  to DB2CON  will  cause  the  connector  to  

log  on  using  the  database  connect  ID  first,  and  the  connector  will  then  pass  the  

federated  database  user  ID  to the  server  for  that  federated  database.  If  the  

federated  database  user  ID  is  also  a database  user  ID,  the  call  to  the  server  will  

fail.  The  connector  will  automatically  disconnect  from  the  database  and  

reconnect  using  the  federated  user  ID  to  log  on  to  the  database  and  then  pass  

the  federated  database  user  ID  to the  server.  

For  the  Java  and  C++  DKDatastoreFed  connector  connect  method,  there  is 

another  connect  string  option  that  the  you  can  specify  so  that  a particular  

instance  of  the  datastore  has  the  behavior  mentioned  above.  The  option  is 

REPTYPE=DB2CON  

v   For  a DB2  Content  Manager  Version  8 database:  

Update  the  ICMSERVERREPTYPE  value  to  DB2CON  instead  of  DB2  for  a 

particular  DB2  Content  Manager  Version  8 database  in  the  cmbicmsrvs.ini  file,  

like  this:  ICMSERVERREPTYPE=DB2CON  

Once  you  change  the  ICMSERVERREPTYPE  value,  the  DB2  Content  Manager  

connector  will  log  on  to  the  server  using  the  database  connect  ID  first,  and  then  

pass  the  DB2  Content  Manager  Version  8 user  ID  to  the  server  for  that  DB2  

Content  Manager  Version  8 database.  If the  DB2  Content  Manager  Version  8 user  

ID  is also  a database  user  ID,  the  call  to  the  server  will  fail.  The  connector  will  

 

 

166 Application  Programming Guide

|

|
|
|
|
|

|
|
|

|

|
|
|

|
|
|
|
|
|
|

|
|
|
|

|

|
|
|

|
|
|
|
|



automatically  disconnect  from  the  database  and  reconnect  using  the  DB2  

Content  Manager  Version  8 user  ID  to log  on  to  the  database,  and  then  pass  the  

DB2  Content  Manager  Version  8 user  ID  to the  server.  

For  the  Java  and  C++  DKDatastoreICM  connector  connect  method,  you  can  

specify  a connect  string  option,  so  that  a particular  instance  of the  datastore  has  

the  behavior  mentioned  above.  The  option  is 

REPTYPE=DB2CON  

Working  with the resource manager 

A  DB2  Content  Manager  resource  manager  controls  a collection  of  managed  

resources  (objects).  It also  manages  the  necessary  storage  and  Hierarchical  Storage  

Management  (HSM)  infrastructure,  but  you  must  first  configure  the  resource  

manager  to  support  HSM.  Resource  managers  have  facilities  to  support  

type-specific  services  for  more  than  one  type  of  object,  such  as  streaming,  zipping,  

unzipping,  encrypting,  encoding,  transcoding,  searching,  or  text  mining.  

A  single  resource  manager  is used  exclusively  by  one  library  server.  Each  resource  

manager  delivered  by  the  DB2  Content  Manager  system  provides  a common  

subset  of  native  data  access  APIs  through  which  it  is accessible  by  the  controlling  

library  server,  by  other  DB2  Content  Manager  components,  and  by  applications,  

either  locally  (on  the  same  network  node)  or  remotely.  

Other  data  access  APIs  allow  remote  access  to  a resource  manager  using  the  

resource  manager’s  own  client  support  or  a standard  network  access  protocol  such  

as  CIFS,  NFS,  or  FTP.  For  remote  access,  use  a client-server  connection.  Clients  

communicate  with  Content  Manager  resource  managers  using  HTTP  through  the  

use  of  a standard  Web server.  Data  delivery  is  based  on  HTTP, FTP,  and  FS  data  

transfer  protocols.  Using  HTTP,  any  application  or  Content  Manager  component  

that  needs  to  access  Content  Manager-managed  content  can  dynamically  form  a 

triangle  with  a library  server  and  resource  manager.  This  triangle  forms  a direct  

data  access  path  between  the  application  and  each  resource  manager,  and  a control  

path  between  the  library  server  and  the  resource  manager.  You can  map  this  

conceptual  triangle  to  any  network  configuration,  ranging  from  a single-node  

configuration  to  a geographically  distributed  one.  

The  new  architecture  also  accommodates  resource  managers  that  an  application  is 

not  able  to  access  directly,  such  as a host-based  subsystem,  a single-user  system  

that  does  not  handle  access  control,  or  a system  containing  highly  sensitive  

information  where  direct  access  by  an  application  is not  allowed  by  business  

policy.  In  this  case,  access  to  such  resource  managers  is indirect.  Both  the  pull  and  

the  push  paradigms  of data  transfer  are  accommodated  by  the  Content  Manager  

system  as  well  as  synchronous  and  asynchronous  calls.  

For  information  about  how  to  configure  a resource  manager  see  Planning  and  

Installing  Your  Content  Management  System  and  the  SResourceMgrDefCreationICM  

sample  in  the  samples  directory.  

Working  with resource manager objects 

Within  DB2  Content  Manager,  every  managed  entity  is called  an  item.  Items  come  

in  two  types,  the  type  that  represent  pure  logical  entities,  such  as  documents  or  

folders,  or  entities  that  represent  physical  data  objects,  such  as  the  text  data  of a 

word  processing  document,  the  scanned  image  of a claim  or  the  video  clip  of an  

automobile  accident.  Objects  have  a special  state  and  behavior  needed  to  handle  

the  physical  data  associated  to  a logical  document.  

 

 

Chapter  4. Working  with DB2 Content  Manager  Version  8.3 167

|
|
|

|
|
|

|

|



Resource  objects  also  represent  things  like  files  in  a file  system,  video  clips  in a 

video  server,  and  BLOBs.  At  run time,  resource  objects  are  used  to access  the  

physical  data  they  point  to.  For  that  reason,  resource  objects  in  Content  Manager  

have  a type.  That  is,  they  have  a specific  state  and  behavior.  The  library  server  and  

the  resource  manager  share  a schema  to  store  the  state  of an  object.  The  base  object  

types  provided  by  Content  Manager  are:  generic  BLOBs  or  CLOBs,  Text, Image,  

and  Video  content  objects.  You can  also  create  sub-classes  of the  pre-defined  types.  

A resource  object  can  also  have  user-defined  attributes,  which  are  used  for  search  

and  retrieval.  

From  the  Content  Manager  system  perspective,  each  object  is represented  by  a 

unique  logical  identifier,  its  Uniform  Resource  Identifier  (URI).  The  library  server  

manages  the  URI  name  space.  On  request,  the  library  server  maps  URIs  onto  

Uniform  Resource  Locators  (URL).  URLs  are  used  to gain  access  to  the  physical  

data.  URLs  do  not  point  directly  to a storage  area  managed  by  the  resource  

manager.  Instead,  the  resource  manager  uses  a local  name  space  to  convert  logical  

object  names  to  physical  file  names.  Object  URIs  are  created  by  the  specific  

resource  manager.  The  library  server  or  the  end-user  can  suggest  an  object  URI  (its  

name),  but  the  decision  is made  by  the  resource  manager.  

You can  access  an  object  using  the  DB2  Content  Manager  resource  manager  APIs  

(store,  retrieve,  update,  delete,  and  so  forth).  In  some  cases,  you  can  use  APIs  that  

are  native  to  the  object  (stream,  multicast,  and  stage)  or  file  system.  

For  information  about  how  to  work  with  resource  manager  objects,  see  the  

SResourceItemCreationICM  sample  in  the  samples  directory,  

IBMCMROOT/samples/java/icm  or  IBMCMROOT/samples/cpp/icm. 

Confidential retrieval of resource objects 

DB2  Content  Manager  supports  Secure  Sockets  Layer  (SSL)  through  the  Java  APIs  

for  communications  between  thin  client  or  applet  applications  and  the  resource  

manager.  You should  use  SSL  if your  application  accesses  resource  manager  objects  

and  runs outside  of  a secure  boundary,  like  a firewall.  

Important:  Before  you  use  your  application  to  communicate  with  the  resource  

manager  through  SSL,  ensure  that  the  HTTP  server  on  the  resource  manager  is 

enabled  for  SSL.  For  the  eClient  viewer  applet,  ensure  that  the  eClient  Server  is 

configured  to  use  an  HTTPS  connection.  

When  you  call  the  DKLobICM.getContentURLs  Java  API  within  your  application,  

it returns  a URL.  If the  URL  returned  by  DKLobICM.getContentURLs  is an  HTTPS  

URL,  SSL  is  enabled.  If  the  URL  is an  HTTP  URL,  SSL  is not  enabled.  To enable  

SSL,  go  to  the  cmbrm.ini  file,  which  you  can  find  in the  same  directory  as  other  

properties  files.  You can  also  find  the  cmbrm.ini  file  by  checking  the  

cmbcmenv.properties  file,  which  contains  an  entry  called  CMCFGDIR  that  points  to  

the  location  of cmbrm.ini  file.  Open  the  cmbrm.ini  file  and  set  the  

RM_SSL_FOR_URL_RETRIEVE  setting  to 1. If  the  setting  does  not  exist,  add  it.  

Once  you  have  verified  that  the  RM_SSL_FOR_URL_RETRIEVE  setting  is correct,  

your  application  can  use  the  HTTPS  URL  to  securely  communicate  with  the  

resource  manager  (or  LAN  cache).  Note  that  RM_SSL_FOR_URL_RETRIEVES  is a 

global  setting,  and  that  once  it is set  to 1,  all  URL-based  retrieves  with  all  resource  

managers  in  the  system  will  use  SSL.  That  means  that  if your  system  is setup  to  

work  with  multiple  resource  managers,  all  the  resource  managers  must  support  

SSL.  

 

 

168 Application  Programming Guide

|

|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|



Removing resource object contents 

When  you  delete  the  content  associated  with  a resource  item,  you  can  

irrecoverably  destroy  that  content.  This  function,  called  irrecoverable  destroy,  is 

only  supported  in  the  DB2  Content  Manager  Version  8 connector  for  objects  stored  

on  a fixed  disk  within  a multiplatform  (Windows,  AIX,  Solaris)  resource  manager.  

To use  this  function,  the  DB2  Content  Manager  Version  8 connector,  library  server,  

and  resource  manager  must  be  at the  DB2  Content  Manager  Version  8.2  fix  pack  

level  seven  or  later. If any  of  the  DB2  Content  Manager  components  are  at 

previous  level,  irrecoverable  destroy  is processed  as  a normal  delete.  

To use  irrecoverable  destroy,  you  must  specify  the  DKConstant  option  

DK_CM_DESTROY_DELETE  in  operations  that  result  in  the  deletion  of an  object.  

Following  is  a list  of  the  operations  that  delete  objects,  and  where  you  can  specify  

irrecoverable  destroy:  

v   When  calling  delete  on  a resource  item  or  document.  

v   When  calling  update  to  delete  a document  part  or  when  updating  a resource  

item  from  content  to  no-content.  

v   When  calling  update  for  a resource  item  that  has  versioning  enabled.  In  this  

case,  when  the  maximum  number  of  stored  versions  is exceeded,  and  the  earliest  

version  is  to  be  deleted,  the  earliest  version  is also  destroyed.  

v   When  an  item  is being  reindexed  into  a new  item  type,  the  item  from  the  

original  item  type  is destroyed.

See  the  Application  Programming  Reference  for  detailed  information  about  the  

methods  and  options  you  work  with  to delete  objects.  Following  is a list  that  

summarizes  the  APIs  and  associated  methods  where  you  can  specify  irrecoverable  

destroy:  

v   DKDatastoreICM:  

   updateObject(dkDataObject  ddo,  int  option)  

   deleteObject(dkDataObject  ddo,  int  option)  

   moveObject(dkDataObject  sourceDDO,  dkDataObject  destinationDDO,  int  

options)

v   DKLobICM:  

   del(int  option)  

   update(InputStream  is,long  length,int  option)  

   update(DKThirdPartyServerDef  thirdpartyObject,  int  option)  

   update(int  option)  

   update(String  aFullFileName,int  option)  

   update(int  option,DKRMSMSPairDefICM[]  rmsmspairs)  

   updateFrom(  String  hostname,  String  userid,  String  passwd,  String  

protocol,  int  port,  String  filename,int  option)  

   updateFrom(int  option)  

   updateFromAsync(  String  hostname,  String  userid,  String  passwd,  String  

protocol,  int  port,  String  filename,int  option)  

   updateFromAsync(int  option)

v    DKDDO:  

   update(int  option)  

   update(DKNVPair[]  option)  

   del(int  option)  

 

 

Chapter  4. Working  with DB2 Content  Manager  Version  8.3 169

|

|
|
|
|
|
|
|
|

|
|
|
|

|

|
|

|
|
|

|
|

|
|
|
|

|

|

|

|
|

|

|

|

|

|

|

|

|
|

|

|
|

|

|

|

|

|



del(DKNVPair[]  option)

In  most  cases  you  can  combine  DK_CM_DESTROY_DELETE  with  other  options,  

except  in  the  case  of  a delete.  For  delete  operations,  this  flag  must  be  specified  

exclusively.  When  the  content  associated  with  all  versions  of a resource  item  must  

be  destroyed,  you  must  substitute  the  DK_CM_DESTROY_DELETE  option  with  

the  DK_ICM_DESTROY_ALL_VERSIONS  option.  The  option  

DK_ICM_DESTROY_ALL_VERSIONS  is available  only  for  delete.  

Understanding asynchronous replication in a z/OS resource 

manager 

Asynchronous  replication  copies  an  object  from  one  DB2  Content  Manager  

resource  manager  to  another.  For  objects  that  you  want  to  replicate,  You must  

create  replication  rules and  associate  the  rules with  the  collection  where  the  objects  

will  be  stored.  You must  do  this  before  storing  objects  into  DB2  Content  Manager.  

In  the  event  objects  were  stored  to  DB2  Content  Manager  before  the  creation  and  

association  of  replication  rules,  DB2  Content  Manager  provides  a utility  called  

IMPORTREPLICA  for  this  purpose.  

Asynchronous  replication  functionality  is encapsulated  in  a standalone  module  of 

the  z/OS  resource  manager.  Its  current  implementation  is asynchronous.  To 

complete  an  asynchronous  replication  process,  complete  the  following  steps:  

1.   1. Run  the  ICMMRMAP.JCL  to start  the  asynchronous  replication  process,  

ICMMOSAP.  The  input  parameter  list  passed  into  ICMMOSAP  from  

ICMMRMAP.JCL  is then  verified.  The  input  parameter  list  is as  follows:  

DB2SUBSYID  (DB2C)  

4bytes:  The  DB2SUBSYSID  indicates  the  location  where  the  z/OS  

RMDB  is  located.  

CM  Library  Server  Database  (NQADB2C)  

Alias  used  to  locate  a given  database  within  the  specified  DB2  

subsystem.  

Library  Server  Location  (LOCAL/REMOTE)  

This  value  indicates  whether  the  Library  Server  database  reside  

“locally”  within  the  same  DB2  subsystem  as  that  of the  z/OS  RM,  or  

resides  externally.  

Plan  Name  (OSAPFVTA)  

8 bytes:  The  bind  plan  for  the  asynchronous  replication  process.  

User  ID  (IFVTA)  

: The  Content  Manager  user  with  System  Administrator  authority.  

User  Password  (IFVTA1)  

The  Content  Manager  System  Administrator  password.  

Resource  Manager  Name  (IMWEBSR1)  

: This  name  indicates  to which  z/OS  RM  the  asynchronous  process  is 

associated.  

Sleep  Value  (300)  

The  duration  of time  in  seconds  for  the  process  to  pause  before  

reprocessing  items  marked  for  deletion.  

Tracelevel  (0 – 3)  

Log  level.  The  current  supported  values  are  0,  1, 2,  and  3.

 

 

170 Application  Programming Guide

|

|
|
|
|
|
|

|

|

|
|
|
|
|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|
|

|
|

|
|

|
|

|
|
|

|
|
|

|
|



a.   At  level  0:  ERROR  Logs  only  the  Asynchronous  Replicate  Summary  Report  

and  errors  

b.    At  level  1: INFO  Logs  the  function  entry/exit  status  plus  ERROR.  

c.   At  level  2: DETAIL  Logs  function  input/output,  success/failure  results  and  

INFO.  

d.    At  level  3: DEBUG  Logs  verbose  statements  used  for  debugging  and  INFO.
2.    If  all  the  input  parameters  are  valid,  then  the  asynchronous  replication  process  

proceeds  to  connect  to  the  Library  server’s  database  to  retrieve  the  

data-collection  and  resource  manager  (RM)  information  in  the  system  to  set  up  

for  the  replication  process.  In  addition,  the  readToBeReplicated  function  is 

called  to  fetch  the  information  of the  items  to  be  replicated  in  the  RM  Asynch  

table  and  store  them  in  the  ReplicaItemStruct  struct.  This  is  the  struct  that  

drives  the  asynchronous  replication  process.  

3.    Once  the  ReplicaItemStruct  struct  has  been  populated,  asynchronous  

replication  calls  on  the  several  helper  functions  to complete  its  tasks.  The  most  

important  functions  and  their  functionalities  are  the  following:  

mapRMData()  

This  function  takes  the  ReplicaItemStruct  struct  as  one  of its  parameters  

and  use  the  information  in  it to validate  the  RM(s)  listed  in  the  Asynch  

table  against  the  RM  information  retrieved  from  the  LS  to ensure  that  

they  exist.  If the  verification  is successful,  then  the  source  and  target  

RMs  are  mapped  appropriately  in  the  ReplicaItemStruct  struct.  

mapCollData()  

This  function  also  takes  the  ReplicaItemStruct  struct  as  one  of  its  

parameters  and  use  the  information  in  it to  validate  the  collection(s)  

listed  in  the  Asynch  table  against  the  collection  information  retrieved  

from  the  LS  to  ensure  that  they  exist.  If the  verification  is successful,  

then  the  source  and  target  collections  are  mapped  appropriately  in the  

ReplicaItemStruct  struct.  Note:  this  function  is called  only  after  the  

source  and  target  RMs  are  mapped  successfully.  

checkOutItems()  

This  function  also  takes  the  ReplicaItemStruct  struct  as  one  of  its  

parameters  and  use  the  information  in  it to  check  out  the  items  to be  

replicated.  When  an  item  is checked  out,  not  only  is it  locked  but  its  

information  is also  written  into  the  CHECK  OUT  table  in  the  LS.  

sendReplicasToTargetRM()  

This  function  takes  the  ReplicaItemStruct  struct  as  one  of its  parameters  

and  use  the  information  in  it to determine  which  item  needs  to  be  

replicated  and  from  which  RM/collection  to  which  RM/collection.
4.    In  greater  detail,  sendReplicasToTargetRM()  accomplishes  its  tasks  in several  

steps.  First,  it checks  with  OAM  to determine  if the  object  exists  or  not.  If the  

object  exists,  then  it attempts  to  retrieve  the  object.  Second,  it determines  which  

target  RM/collection  this  object  needs  to  be  sent  to.  Finally,  an  HTTP  request  

with  the  target  RM/collection  information  and  the  object  is sent  to the  target  

RM/collection.  Hence,  the  object  is replicated.  NOTE:  asynchronous  replication  

only  happens  as  described  above  if asynchronous  replication  is enabled  on  

beforehand.  If  asynchronous  replication  is not  enabled  and  the  user  would  like  

to  replicate  an  object,  the  user  must  send  an  request  with  an  IMPORTREPLICA  

order.

 

 

Chapter  4. Working  with DB2 Content  Manager  Version  8.3 171

|
|

|

|
|

|

|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|



Table definitions and column descriptions 

 Table 16.  ICMRMCONTROL  

ICMRMCONTROL  

. . . 

STOPREPLICATOR  SMALLINT  NOT  NULL,  

. . . 

STOPREPLICATOR:  (e.g.  (0/1))  The  REPLICATOR  bit determines  if the  ICMMRMAP  

asynchronous  replication  process  will  stop  processing  entries  after  one  round  or not  and  is 

also  the  method  by  which  the Asynchronous  Replication  process  is stopped.  If it’s  set  to 1, 

then  it will  stop  after  1 round  of processing.  If it’s  set  to 0, then  it depends  on the  sleep  

value  to  determine  how  long  the  process  should  pause  before  it starts  to process  again.
  

 Table 17.  ICMRMASYNCH  

ICMRMASYNCH  

ITEMID  CHAR  (26)  NOT  

NULL,  

VERSIONID  CHAR  (5)  NOT  

NULL,  

OBJID  CHAR  (44)  NOT  

NULL,  

COLLNAME  CHAR  (44)  

NOT  NULL,  

PRIMARY  KEY  (OBJID)  

  

ITEMID  

Example:  A1001001A03L09B64813I92553  The  ItemId  value  is  that  generated  

by  the  Library  Server  (LS)  during  the  object  store  transaction.  

VERSIONID  

Example:  1 In  the  case  where  versioning  is enabled,  this  value  denotes  a 

given  instance  of an  object.  

OBJID  

Example:  A1001001.A03L09.B64813.I92553.V001  The  ObjID  is the  itemid  

and  versioned  combined  and  “.”  delimited  and  represents  a unique  

Content  Manager  (CM)  object  locator  within  Object  Access  Method  (OAM).  

COLLNAME  

Example:  CLLCT001  The  sourcecollname  is the  collection  under  which  the  

object  was  originally  stored  and  is  the  source  of the  prefetch  operation.

 Table 18.  ICMSTITEMSTODELETE  

ICMSTITEMSTODELETE  

ITEMID  CHAR  (26) NOT  NULL,  

VERSIONID  SMALLINT  

RCODE  SMALLINT  

 

 

 

172 Application  Programming Guide

|

||

||||

|

||||

||||

||||

|
|
|
|
|
|

||

||||

|

|
|
|||

|
|
|||

|
|
|||

|
|
|||

||||
|

|
|
|

|
|
|

|
|
|
|

|
|
|

||

||||

||||

||||

||||

||||
|



ITEMID  

Example:  A1001001A03L09B64813I92553  The  ItemId  value  is that  generated  

by  the  Library  Server  (LS)  during  the  object  store  transaction.  

VERSIONID:  

Example:  1 

In  the  case  where  versioning  is enabled,  this  value  denotes  a given  instance  

of  an  object.  

RCODE  

Example:  1 

RM  name,  given  by  the  user, is used  to  map  to  RCODE,  which  in  turn  

points  to  an  entry  in  the  table.

Managing documents in DB2 Content Manager 

DB2  Content  Manager  implements  a flexible  document  management  data  model  

that  you  can  use  for  managing  business  objects.  The  basic  elements  of  the  data  

model  includes  folders,  documents,  and  objects.  

As  mentioned  earlier,  documents,  folders,  and  other  objects  are  all  represented  by  

items  in  the  DB2  Content  Manager  system.  From  the  API  level,  the  only  difference  

between  a document  and  a folder  is the  semantic  type  and  the  respective  DKFolder  

functionality.  A  document  is comprised  of  attributes,  or  metadata,  that  describe  the  

document,  including  single  valued  attributes  (document  name,  date,  subject),  

multi-valued  attributes  (keywords),  and  collections  of  multi-valued  attributes  

(address,  consisting  of street,  city,  state,  and  zip).  

The  document  management  data  model  uses  document  parts  to  associate  objects  

(resource  items)  with  the  document.  This  model  supports  more  than  one  part  to 

construct  a document.  For  example,  each  page  could  be  a separate  part.  In  order  

for  an  application  to  determine  the  order  of the  parts  that  make  up  a document,  a 

part  number  is  stored  in  the  document  parts.  The  document  parts  contains  a 

pointer  to  the  object  (a  reference  attribute)  which  contains  other  information  about  

the  part  such  as MIME  type,  size,  the  resource  manager  ID  which  contains  the  

part,  the  collection  name  on  that  resource  manager  and  so  forth.  Every  object  can  

have  different  attributes.  For  example,  an  annotation  might  have  X and  Y 

coordinates,  while  a note  log  might  have  the  CCSID  of  the  text  of the  note.  

To better  understand  the  document  management  data  model,  consider  the  

following  scenario  of  a user  who  imports  a document  using  a client  application:  

v   A  window  is displayed  to the  user. 

v   The  user  enters  (or  selects)  the  name  of the  file  to import  into  the  system.  For  

example,  a police  report.  

v   The  user  selects  the  type  of  document  (memo,  claim,  design).  

v   A  new  window  opens,  where  the  user  can  enter  attributes  that  describe  the  

document.  The  date,  a claim  number,  and  insurance  policy  number,  for  example.  

v   The  user  defines  a document  parts  and  enters  some  values  for  the  attributes.  The  

police  report  is  a document  parts  of  a claim,  for  example.  

v    The  user  finishes  entering  the  document  descriptions  and  completes  the  task.  

The  police  report  is created.

Using  either  the  APIs  or  the  JavaBeans,  the  client  application  then  connects  to  the  

library  server  and  the  resource  manager.  The  system  creates  two  items  (a 

non-resource  item  and  a resource  item)  to  store  the  document.  Two items  are  

 

 

Chapter  4. Working  with DB2 Content  Manager  Version  8.3 173

|
|
|

|
|
|
|

|
|
|
|



created  because  the  police  report  contains  a photograph,  which  is stored  in  the  

resource  manager.  The  document  is created  with  a single  API  call.  The  object  is 

then  stored  in  the  resource  manager  and  the  resource  manager  returns  the  

timestamp,  and  other  metadata  for  the  object.  The  resource  manager  creates  a 

reference  attribute  for  the  object,  and  inserts  the  reference  attribute  into  the  child  

component  of  the  document.  A final  call  to  the  library  server  is made  to  store  the  

child  component  and  to update  the  attributes.  The  entire  process  is  bound  by  a 

transaction  so  that  any  API  failure  does  not  result  in  a partially  created  document.  

After  you  create  a document,  you  can  update  it. You can  perform  two  types  of 

updates:  change  the  metadata  or  change  the  content.  The  library  server  

automatically  creates  a new  item  record  with  the  next  version  number  (if  the  item  

is version-enabled)  and  copies  all  of  the  child  components  associated  with  the  item.  

Creating the document management data model 

This  section  helps  you  complete  the  main  tasks  associated  with  the  document  

management  data  model:  

v   Creating  a document  item  type.  

v   Create  a document.  

v   Updating  a document.  

v   Retrieving  and  deleting  a document.  

v   Versioning  of  parts  in  the  document  management  data  model.

Creating a document item type 

 Java:   

1.   Create  a document  ItemType  with  ItemType  classification  = 

DK_ICM_ITEMTYPE_CLASS_DOC_MODEL,  set  the  following.  

docItemTypeDef.setVersionControl  

    ((short)DKConstantICM.DK_ICM_VERSION_CONTROL_ALWAYS);  

docItemTypeDef.setVersioningType  

  (DKConstantICM.DK_ICM_ITEM_VERSIONING_FULL);  

docItemTypeDef.setDeleteRule(DKConstantICM.DK_ICM_DELETE_RULE_CASCADE);  

2.   Create  ItemType  relation  to  add  Parts  to  document.  Retrieve  EntityDef  for  each  

Part.  

Parttype  = (DKItemTypeDefICM)  dsDef.retrieveEntity(PartName);  

3.   For  each  part,  create  a ItemType  Relation  and  set  the  values.  

DKItemTypeRelationDefICM  itRel  = new DKItemTypeRelationDefICM(ds);  

itRel.setTargetItemTypeID(PartName);  

itRel.setDefaultRMCode((short)1);  

itRel.setDefaultACLCode(DKConstantICM.DK_ICM_SUPER_USER_ACL);  

itRel.setDefaultCollCode((short)1);  

itRel.setDefaultPrefetchCollCode((short)1);  

itRel.setVersionControl(DK_ICM_VERSION_CONTROL_NERVER);  

4.   Add  the  ItemType  relation  to the  Document  (Source).  

docItemTypeDef.addItemTypeRelation(itRel);  

5.   Add  the  document  ItemType  to  persistent  store.  

docItemTypeDef.add();  

 C++:   

 1.   Retrieve  the  content  server  definition  object.  

DKDatastoreDefICM  * dsDefICM  =  (DKDatastoreDefICM  *)dsICM->datastoreDef();  

 

 

174 Application  Programming Guide



2.   Retrieve  the  content  server  administration  object.  

DKDatastoreAdminICM  * pdsAdmin  = 

  (DKDatastoreAdminICM  *)dsDefICM->datastoreAdmin();  

DKItemTypeDefICM  *itemType  = NULL;  

DKItemTypeRelationDefICM  *itemTypeRel  = NULL;  

DKAttrDefICM*  attr  = NULL;  

 3.   Retrieve  an  attribute  for  the  document  item  type.  If  the  attribute  does  not  

exist,  create  it. 

dkAttrDef  *pAttr  = dsDefICM->retrieveAttr("docTitle1");  

if(pAttr  == NULL)  

{ 

     attr  = new  DKAttrDefICM(dsICM);  

     attr->setName("docTitle1");  //attribute  name  column  name  

     attr->setType(DK_CM_CHAR);  

     attr->setSize(100);  

     attr->setNullable(false);  

     attr->setUnique(false);  

     attr->add();  

     pAttr  = attr;  

} 

itemType  = new  DKItemTypeDefICM(dsICM);  

itemType->setName("DocModelTest");  

itemType->setDescription("This  is a test  Item  Type");  

itemType->setClassification(DK_ICM_ITEMTYPE_CLASS_DOC_MODEL);  

itemType->setAutoLinkEnable(false);  

itemType->setVersionControl((short)DK_ICM_VERSION_CONTROL_ALWAYS);  

itemType->setVersioningType(DK_ICM_ITEM_VERSIONING_FULL);  

itemType->addAttr(pAttr);  

 4.   Create  a relation  between  the  document  that  you  just  created  and  part1.  To do  

that,  first  retrieve  EntityDef  for  each  Part.  

DKItemTypeDefICM  *itemTypePart1  = (DKItemTypeDefICM  *) 

   dsDefICM->retrieveEntity("ICMBASE");  

//int  part1ITypeid  = itemTypePart1->getItemTypeId();  

int  part1ITypeid  = itemTypePart1->getIntId();  

 5.   For  each  part,  create  an  item  type  relation  and  set  the  values.  

DKItemTypeRelationDefICM  *itemTypeRelPart1=  

  new  DKItemTypeRelationDefICM(dsICM);  

itemTypeRelPart1->setTargetItemTypeID(part1ITypeid);  

//sets  the  default  resource  manager  

itemTypeRelPart1->setDefaultRMCode((short)1);  

//sets  the  default  ACL  code  

itemTypeRelPart1->setDefaultACLCode(1);  

 6.   Set  the  default  collection  where  item  resources  pertaining  to  this  item  type  are  

to  be  stored.  

itemTypeRelPart1->setDefaultCollCode((short)1);  

 7.   Set  the  default  prefetch  collection  where  item  resources  pertaining  to  this  item  

type  are  to  be  stored.  

itemTypeRelPart1->setDefaultPrefetchCollCode((short)1);  

itemTypeRelPart1->setVersionControl((short)DK_ICM_VERSION_CONTROL_NEVER);  

itemTypeRelPart1->setSourceItemTypeID(itemType->getIntId());  

 8.   add  the  item  type  relation  to  the  document  (source).  

itemType->addItemTypeRelation(itemTypeRelPart1);  

 9.   Create  a relation  between  the  document  that  you  just  created  and  part2.  To do  

that,  first  retrieve  EntityDef  for  each  part.  

DKItemTypeDefICM  *itemTypePart2  = (DKItemTypeDefICM  *) 

   dsDefICM->retrieveEntity("ICMANNOTATION");  

int  part2ITypeid  = itemTypePart2->getIntId();  

10.   For  each  part,  create  an  item  type  relation  and  set  values.  

 

 

Chapter  4. Working  with DB2 Content  Manager  Version  8.3 175



DKItemTypeRelationDefICM  * itemTypeRelPart2=  new 

  DKItemTypeRelationDefICM(dsICM);  

itemTypeRelPart2->setTargetItemTypeID(part2ITypeid);  

itemTypeRelPart2->setDefaultRMCode((short)1);  

itemTypeRelPart2->setDefaultACLCode(1);  

itemTypeRelPart2->setDefaultCollCode((short)1);  

itemTypeRelPart2->setDefaultPrefetchCollCode((short)1);  

  

itemTypeRelPart2->setVersionControl((short)DK_ICM_VERSION_CONTROL_NEVER);  

  

itemTypeRelPart2->setSourceItemTypeID(itemType->getIntId());  

11.   Add  the  item  type  relation  to  the  document  (source).  

itemType->addItemTypeRelation(itemTypeRelPart2);  

12.   Update  the  definition  of the  item  type  in  the  library  server.  

itemType->add();  

For  additional  information,  see  the  SItemTypeCreationICM  sample.  

Creating a document 

An  item  with  the  ″Document″ semantic  type  can  contain  attributes  (like  items  of 

other  semantic  types)  and  multiple  ″parts″ (unlike  items  of  other  semantic  types)  

inside  it.  The  steps  below  take  you  through  the  process  of  creating  an  item  (based  

on  a pre-defined  document  item  type)  that  contains  one  attribute  and  one  ″part″. 

Note  that  in  the  steps  below,  it  is assumed  that  an  item  type  called  ″s_simple,″ 

with  one  attribute,  called  ″S_varchar,  ″ and  one  part  (″ICMBASE″) has  already  been  

defined.  

 

 

176 Application  Programming Guide



Java  

1.   Create  the  document  DDO.  

DKDDO  ddoDocument  = dsICM.createDDO("S_simple",  

       DKConstant.DK_CM_DOCUMENT);  

short     dataId    = 0; 

String  attrValue   = "Test";  

2.   Set  the  document’s  attribute.  In  this  case,  we  assume  that  the  item  type  

has  only  one  attribute.  

dataId  = ddoDocument.dataId(DKConstant.DK_CM_NAMESPACE_ATTR,"S_varchar");  

ddoDocument.setData(dataId,attrValue);  

DKParts   parts     = null;  

// Document’s  parts  

3.   Access  the  document’s  parts  collection.  

dataId  = ddoDocument.dataId(DKConstant.DK_CM_NAMESPACE_ATTR,  

     DKConstantICM.DK_CM_DKPARTS);  

if (dataId  == 0) { 

    dataId  = ddoDocument.addData(DKConstant.DK_CM_NAMESPACE_ATTR,  

       DKConstantICM.DK_CM_DKPARTS);  

    parts  = new  DKParts();  

    ddoDocument.setData(dataId,  parts);  

} 

else  

{ 

    parts  = (DKParts)ddoDocument.getData(dataId);  

    if (parts  == null)  

    { 

        parts  = new  DKParts();  

        ddoDocument.setData(dataId,  parts);  

    } 

} 

4.    Create  a part  of  pre-defined  type  ″ICMBASE″. This  part  will  be  added  to  

the  created  document.  It is assumed  that  the  document  created  below  is 

based  on  an  item  type  with  only  one  part.  

DKLobICM  pLobPart  = (DKLobICM)  dsICM.createDDO("ICMBASE",  

   DKConstantICM.DK_ICM_SEMANTIC_TYPE_BASE);  

pLobPart.setPartNumber(1);  

// Set  the  mime  type  for  added  part  

pLobPart.setMimeType("text/plain");  

String  partValue  = "This  is a base  part";  

pLobPart.setContent(partValue.getBytes());  

5.   Add  the  created  part  to  the  ″parts″ collection.  Note  that  this  is a deferred  

save  (the  change  is not  committed  to  the  datastore  until  the  document  

DDO  is  persisted).  

parts.addElement((dkDataObjectBase)((DKDDO)  pLobPart));  

6.   Persist  document  to the  datastore.  

ddoDocument.add();  

 

 

Chapter  4. Working  with DB2 Content  Manager  Version  8.3 177



C++  

DKDatastoreDefICM*  pdsDef  = (DKDatastoreDefICM*)  dsICM->datastoreDef();  

//  Create  a new  DDO  of type  DocModelTest  and semantic  type  DK_CM_DOCUMENT  

DKDDO*  ddoDocument  = dsICM->createDDO("DocModelTest",DK_CM_DOCUMENT);  

ddoDocument->setData(ddoDocument->dataId(DK_CM_NAMESPACE_ATTR,  

      DKString("docTitle1")),DKString("this  is  a string  value"));  

DKItemTypeDefICM*  itemType  = (DKItemTypeDefICM*)  

      pdsDef->retrieveEntity("DocModelTest");  

//  Retrieve  the  collection  of  DKItemTypeRelationDefICM  object  for  given  source  

//  item  type  from  the  persistent  store  

dkCollection*  pRelationColl  = itemType->retrieveItemTypeRelations();  

dkIterator*  pIter  = pRelationColl->createIterator();  

int  noOfPartsToCreate  = pRelationColl->cardinality();  

DKParts*  pPartColl=  NULL;  

//  Create  the  parts  collection  for  the object  if it does  not exist  

short  dataId  = ddoDocument->dataId(DK_CM_NAMESPACE_ATTR,DK_CM_DKPARTS);  

if  (dataId  ==0)  { 

  dataId  = ddoDocument->addData(DK_CM_NAMESPACE_ATTR,DK_CM_DKPARTS);  

  pPartColl  = new  DKParts();  

  ddoDocument->setData(dataId,pPartColl);  

} 

else  { 

  pPartColl  =(DKParts*)  (ddoDocument->getData(dataId).value());  

  if (pPartColl  ==NULL)  { 

  pPartColl  = new  DKParts();  

  ddoDocument->setData(dataId,pPartColl);  

} 

} 

int  i=0;  

DKItemTypeRelationDefICM*  itemTypeRelPart  =NULL;  

DKItemTypeDefICM*  pEnt  =NULL;  

//  CV v8 BLOB  

DKLobICM*  pPart  =NULL;  

DKString  str  = "This  is to test  the  document  model  with  two parts";  

while(pIter->more())  { 

i=i+1;  

itemTypeRelPart=(DKItemTypeRelationDefICM*)  pIter->next()->value();  

pEnt  =(DKItemTypeDefICM*)  

     ((DKDatastoreDefICM*)  pdsDef)->retrieveEntity(  

             (long)itemTypeRelPart->getTargetItemTypeID());  

pPart  =(DKLobICM*)  dsICM->createDDO(pEnt->getName(),  DK_CM_RESOURCE);  

pPart->setPartNumber(i);  

pPart->setContent(str);  

  

DKAny  any  = (dkDataObjectBase*)  pPart;  

pPartColl->addElement(any);  

} 

//Add  the  DDO  to the  datastore  

ddoDocument->add();  

 For  more  information,  see  the  SDocModelItemICM  sample.  

Updating a document 

The  steps  below  take  you  through  the  process  of  updating  an  item  of  semantic  

type  ″Document.″ In  the  steps  below,  a new  part  is added  and  the  attribute  value  

is updated.  

 

 

178 Application  Programming Guide



Java  

1.   Update  the  attribute  value  for  the  document  item.  

String  attrValue  = "New  Value";  

short  dataId=ddoDocument.dataId  

  (DKConstant.DK_CM_NAMESPACE_ATTR,"S_varchar");  

ddoDocument.setData(dataId,attrValue);  

2.   Access  the  document’s  parts  collection.  

DKParts   parts       = null;  

// Document’s  parts  

dataId  = ddoDocument.dataId(DKConstant.DK_CM_NAMESPACE_ATTR,  

    DKConstantICM.DK_CM_DKPARTS);  

if (dataId  == 0) { 

    dataId  = ddoDocument.addData(DKConstant.DK_CM_NAMESPACE_ATTR,  

      DKConstantICM.DK_CM_DKPARTS);  

    parts  = new  DKParts();  

    ddoDocument.setData(dataId,  parts);  

} 

else  

{ 

    parts  = (DKParts)ddoDocument.getData(dataId);  

    if (parts  == null)  

    { 

        parts  = new  DKParts();  

        ddoDocument.setData(dataId,  parts);  

    } 

} 

3.   Create  data  for  the  new  part.  

String  partValue  = "This  is an annotation";  

4.   Create  a part  of  pre-defined  type  ″ICMANNOTATION″. This  part  will  be  

added  to  the  created  document.  Here,  it is assumed  that  the  document  

being  created  is  based  on  an  item  type  with  only  one  part.  Once  the  new  

part  is  added,  the  document  will  have  two  parts.  

DKLobICM  pLobPart  = (DKLobICM)dsICM.createDDO("ICMANNOTATION",  

   DKConstantICM.DK_ICM_SEMANTIC_TYPE_BASE);  

pLobPart.setContent(partValue.getBytes());  

pLobPart.setPartNumber(2);  

5.   Add  the  created  part  to  the  ″parts″ collection.  Note  that  this  is a deferred  

save  (the  change  is not  committed  to  the  datastore  till  the  document  DDO  

is  persisted).  

parts.addElement((dkDataObjectBase)((DKDDO)  pLobPart));  

6.   Persist  the  changed  document  to  the  datastore.  

ddoDocument.update();  

 

 

Chapter  4. Working  with DB2 Content  Manager  Version  8.3 179



C++  

DKDatastoreDefICM*  pdsDef  = (DKDatastoreDefICM*)  dsICM->datastoreDef();  

//  Create  a Document  DDO  from  a PID  string  

DKString  pidString  = ....;  

//...  

DKDDO*  ddoDocument  = dsICM->createDDO(pidString);  

DKPidICM*  pPID  = (DKPidICM*)  ddoDocument->getPidObject();  

DKString*  pstrItemType  = &pPID->getObjectType();  

//  Retrieves  the  definition  for the  item  type  "DocModelTest"  from  the  

//  persistent  datastore.  The  definition  is returned  as a the  *dkEntityDef  

//  object  that  is in turn  typecast  to a DKItemTypeDefICM  object  

DKItemTypeDefICM*  itemType  = (DKItemTypeDefICM*)  

          pdsDef->retrieveEntity(*pstrItemType);  

ddoDocument->setData(ddoDocument->dataId(  

                     DK_CM_NAMESPACE_ATTR,DKString("docTitle1")),  

                     DKString("this  is a new  string  value"));  

  

DKString  updateString  = "This  is updated  part";  

DKSequentialIterator*  pSeqIter  = NULL;  

DKLobICM*  pPart  = NULL;  

short  dataId  = ddoDocument->dataId  (DK_CM_NAMESPACE_ATTR,  DK_CM_DKPARTS);  

DKParts*  pParts  = (DKParts*)  &ddoDocument->getData(dataId);  

if  (pParts  != NULL)  { 

   pSeqIter  = (DKSequentialIterator*)  pParts->createIterator();  

} 

else  return;  // quit  

pPart  = (DKLobICM  *) pSeqIter->next();  

//  Update  the  existing  part  with  the  new  content  

pPart->setContent(updateString);  

//  Add  a new  part  to the Document  

DKLobICM*  pPart1  = 

  (DKLobICM*)  dsICM->createDDO  ("ICMNOTELOG",  DK_CM_RESOURCE);  

pPart1->setPartNumber(3);  

DKString  pTempData  = "This  is  to test  the  document  model  with  two  parts";  

pPart1->setContent(pTempData);  

DKAny  any  = (dkDataObjectBase*)(DKDDO*)  pPart1;  

pParts->addElement(any);  

//Update  the  DDO  information  in the  datastore.  

ddoDocument->update();  

delete  pSeqIter;  

 For  additional  information,  see  the  SDocModelItemICM  sample.  

Retrieving and deleting a document 

To retrieve  a document,  call  ddo.retrieve(option).  If you  set  option  to  

DK_ICM_CONTENT_YES,  the  parts  TOC  list,  as  well  as the  parts,  is retrieved.  

Otherwise,  only  the  TOC  list  of the  parts  is retrieved.  

To delete  a document,  call  ddo.del().  The  document  and  its  attached  parts  is  

deleted.  For  more  information  about  retrieving  and  deleting  documents  with  parts,  

see  the  SDocModelItemICM  API  sample.  

Versioning of parts in the document management data model 

Versioning  properties  of  document  parts  are  determined  by  the  versioning  

properties  of  the  item  type  relation  to each  part  type  selected  in  the  document’s  

item  type.Versioning  characteristics  of document  parts  include  the  following:  

 

 

180 Application  Programming Guide



v   Like  regular  documents,  parts  can  have  one  of  three  versioning  models:  

versioned-always,  versioned-never  (default)  and  application-controlled  

versioning.  

v   If  an  item  type  has  a version  policy  of versioned-never,  its  parts  also  have  a 

versioning  policy  of versioned-never.  

v   If  an  item  type  T has  a version-policy  of  versioned-always  and  an  item  I of  item  

type  T and  you  modify  (by  adding/deleting  or  updating  a part)  either  its  

attributes  or  its  parts  collection,  a new  version  of item  I is created.  

v   Parts  of  documents,  unlike  documents  themselves,  do  not  have  a maximum  

number  of  versions.  

v   You can  obtain  part-level  versioning  rules  from  the  item  type  relation  object  for  

the  part  of interest  (base,  note,  annotation  etc.).

The  examples  below  show  how  to  get  the  versioning  rules for  an  item  type’s  base  

part.  

 

 

Java  

String  itemTypeName=”book”;   //example  item  type  

long  partId  = DK_ICM_PART_BASE;  

DKItemTypeDefICM  item  =null;  

DKDatastoreICM  ds = new  DKDatastoreICM();  

...  

item  = (DKItemTypeDefICM)ds.datastoreDef.retrieveEntity(itemTypeName;  

DKItemTypeRelationDefICM  itemRelation  = 

(DKItemTypeRelationDefICM)item.retrieveItemTypeRelation(partId);  

versionControlPolicy  = itemTypeRelation.getVersionControl();  

 

 

C++  

DKString  itemTypeName="book";   //example  item  type  

//Specify  the  part  id for  which  we need  versioning  information  

long  partId  = DK_ICM_PART_BASE;  

DKItemTypeDefICM   * itemType;  

//Retrieve  the  entity  corresponding  to the  "book"  item  type  

itemType  = 

 (DKItemTypeDefICM  * )dsICM->datastoreDef()->retrieveEntity(itemTypeName);  

//Retrieve  the  relation  object  for the  specified  part  id 

DKItemTypeRelationDefICM  * itemTypeRelation  = 

  (DKItemTypeRelationDefICM*)itemType->retrieveItemTypeRelation(partId);  

//Retrieve  the  version  control  policy  for  the specified  part  

int  versionControlPolicy  = itemTypeRelation->getVersionControl();  

Working  with transactions 

Transactions  allow  DB2  Content  Manager  to  maintain  consistency  between  the  

library  server  and  any  adjoining  resource  manager.  A transaction  is a 

user-determined,  recoverable,  unit  of work,  that  consists  of one  or  more  

consecutive  API  calls  made  through  a single  connection  to  the  library  server.  The  

sequence  of  consecutive  DKDatastoreICM  method  calls  are  made  either  directly  or  

indirectly,  through  the  DDOs  and  XDOs.  

The  scope  of  a transaction  and  the  amount  of  work  within  that  transaction  is by  

default  the  work  performed  by  a single  API  method  (implicit  transaction).  This  

type  of  transaction  is recommended  and  is the  best  performing  scope  of  a 

transaction.  You can,  however,  change  the  scope  of a unit  of work,  making  it larger  

 

 

Chapter  4. Working  with DB2 Content  Manager  Version  8.3 181



to  include  multiple  method  calls  ( transaction),  but  using  this  type  of  transaction  

can  introduce  some  performance  overhead.  

When  a transaction  ends,  the  entire  transaction  is  either  committed  or  rolled  back.  

If it is  committed,  all  of  the  Content  Manager  server  changes  made  by  API  calls  

within  the  transaction  are  permanent.  If a transaction  is rolled  back  or  fails,  all  the  

changes  made  within  the  transaction  are  reversed  during  rollback  processing.  

The  commit  and  rollback  of  a transaction  are  done  automatically  in  the  case  of 

implicit  transactions.  The  Content  Manager  system  initiates  a rollback  when  a 

severe  error  occurs  or  when  it  is necessary  to  resolve  a deadlock  between  the  

library  server  and  the  database.  

Within  a transaction,  uncommitted  resource  manager  changes  are  not  visible  to  the  

application  that  made  the  changes  until  the  transaction  is committed.  For  example,  

you  make  changes  to  a resource  manager  item  and  you  store  it.  If you  retrieve  that  

item  before  the  transaction  is committed,  the  item  will  not  reflect  the  changes  that  

you  just  made.  You will  not  see  the  updated  item  until  the  transaction  is 

committed.  

Concurrent  or  overlapping  transactions  through  a single  library  server  connection  

are  not  supported.  To maintain  concurrent  transactions,  you  must  make  multiple  

connections  between  the  library  server  and  the  database,  or  initiate  multiple  client  

processes  or  threads  if you  are  working  with  a client  application.  Applications  like  

IBM  WebSphere  

® Application  Server  handle  processes,  connections,  and  sessions.  

The  execute()  and  executeWithCallback()  methods  in  DKDatastoreICM  

automatically  create  an  additional  connection  to  the  database  when  invoked.  The  

new  database  connection  is then  used  to execute  the  query.  Since  queries  use  a 

separate  database  connection,  they  also  have  a separate  transaction  scope  from  

other  content  server  operations.  The  connection  to  the  database  is closed  (or  

returned  to  the  pool,  if pooling  is enabled)  when  the  DKResultSetCursor  is closed.  

Things to consider when designing transactions in your 

application 

If a client  node  or  library  server  fails  before  the  transaction  is committed,  the  

database  recovery  function  rolls  back  the  transaction  on  the  library  server  

immediately.  The  resource  manager  changes  made  during  the  failure  are  undone  

immediately  if the  client  node  and  resource  manager  are  both  active.  If the  client  

node  itself  failed,  you  should  put  the  resource  manager  through  a cycle  of the  

Asynchronous  Recovery  Utility  in  order  to restore  consistency  between  the  

resource  manager  and  the  library  server.  Before  the  utility  runs, the  servers  still  

have  data  integrity.  What  is affected  are  operations  on  the  in-progress  items  that  

had  the  failure,  which  will  be  rejected  until  the  RM  is recovered.  Failure  during  

in-progress  update  of an  object  prevents  another  update  of  that  same  object,  until  

the  first  failure  is  reconciled.  

If the  resource  manager  fails,  you  should  run the  asynchronous  recovery  utility  to  

remove  inconsistencies.  On  OS/390,  the  resource  manager  has  native  transaction  

capabilities,  such  as  Object  Access  Method  (OAM),  which  are  used  to  recover  more  

expediently.  

Caution when using transactions 

For  transactions,  where  you  control  the  transaction  scope  using  

DKDatastoreICM.startTransaction()  and  DKDatastoreICM.commit(),  use  caution  

 

 

182 Application  Programming Guide



when  developing  an  application  where  you  work  with  Content  Manager  

Documents  with  parts  and  when  performing  DKLobICM  create,  retrieve,  update,  

and  delete  (CRUD)  operations.  When  performing  these  operations,  you  should  

perform  CRUD  operations  as  close  as possible  to  the  end  of the  transaction.  You 

should  also  keep  a transaction  as  short  as  possible,  since  a long  transaction  

increases  the  potential  for  database  locking  problems.  

Locking  problems  are  most  apparent  when  updating  an  item,  and  the  application  

chooses  to  not  commit  the  transaction  immediately.  As  long  as the  transaction  is 

not  committed,  the  item  that  is being  updated,  is still  visible  to  other  applications.  

When  another  user  attempts  to access  or  view  the  item,  that  user  is  locked  out  

until  the  update  transaction  is  committed.  The  same  problem  (database  locking)  

occurs  when  creating  new  items  in  a folder.  If the  folder  is visible  to another  user, 

and  that  user  attempts  to  retrieve  the  new  item,  the  user  is  locked  out  until  the  

transaction  is  committed.  The  amount  if time  prior  to the  transaction  commit  is the  

amount  of  time  the  user  is locked  out.  

The  best  approach  to  avoiding  database  locking  is to  commit  transactions  often  

and  to  avoid  long  running  transactions.  If  you  must  perform  CRUD  operations  

within  a transaction,  it  is recommended  that  you  perform  these  operations  when  it 

is  understood  that  no  one  else  will  access  the  items  being  updated.  

Using check-in and check-out in transactions 

Content  Manager  supports  check-out  and  check-in  operations  on  items.  The  

check-out  operation  is called  to  acquire  a persistent  write  lock  for  items.  When  an  

item  is  checked  out  by  a user, other  users  can  not  update  it although  they  can  still  

retrieve  and  view  it.  You need  to  call  the  check-out  operation  prior  to  updating  or 

re-indexing  an  item,  regardless  of the  transaction  mode  (implicit  or  ) that  you  use.  

When  you  are  done  with  the  item,  call  the  check-in  operation  to release  the  

persistent  lock  and  make  the  item  available  for  other  users  to update.  After  you  

create  an  item,  you  have  the  option  to  keep  it in  checked  out  state  to  prevent  other  

users  from  changing  it until  you  are  completely  done  with  the  work.  If you  

check-out  (or  check-in)  an  item  using  an  transaction,  the  checkout  is undone  if the  

transaction  is  rolled  back.  If you  check-out  an  item  using  an  implicit  transaction,  

the  checkout  is  committed.  It is  the  application’s  responsibility  to  check  the  item  

back  in,  using  checkin  options  or  methods.  

Processing transactions 

The  transaction  scope  can  be  controlled  by  a client  API  call,  but  it must  be  

designed  carefully.  To group  a set  of  API  calls  into  a transaction,  you  must  build  it  

ly  by  completing  the  following  steps:  

1.   Call  the  startTransaction()  method  of the  DKDatastoreICM  class.  You work  

with  the  DKDatastoreICM  methods  to  complete  all  the  transaction  steps.  

2.   Call  all  of  the  APIs  that  you  want  to include  in  the  transaction  in  the  order  that  

you  want  them  called.  

3.   Call  the  commit  or  rollback  methods  to  end  the  transaction.

All  of  the  API  calls  made  between  the  startTransaction()  and  either  commit()  or  

rollback(),  are  treated  as  one  transaction.  

All  APIs  can  be  included  in  transactions,  unless  specifically  noted.  See  the  

Application  Programming  Reference  for  details.  Some  administrative  APIs  cannot  

be  included  in  transactions.  For  example,  the  method  to  define  or  update  item  

types.  

 

 

Chapter  4. Working  with DB2 Content  Manager  Version  8.3 183



Below  is  the  list  of  class  methods  involved  in Content  Manager  transactions  in  

relation  to  item  creation  and  update.:  

DKDatastoreICM.startTransaction()  

Starts  an  transaction.  

DKDatastoreICM.commit()   

Commits  transaction  changes  to  the  database.  

DKDatastoreICM.rollback()  

Rolls  back  or  removes  transaction  changes  from  the  database.  

DKDatastoreICM.checkOut()  

Acquires  a persistent  write  lock  on  an  item.  

DKDatastoreICM.checkIn()  

Releases  a previously  acquired  persistent  write  lock.  

DKDatastoreICM.add()  

Creates  a new  item  in  the  database.  

DKDatastoreICM.updateObject()  

Updates  an  item.  The  item  must  be  checked  out  prior  to  calling  this  

method.  

DKDatastoreICM.retrieveObject()  

Retrieves  an  item  from  the  database.  

DKDatastoreICM.deleteObject()  

Deletes  an  item  from  the  database.  

DKDatastoreICM.moveObject()  

Re-index  an  item.  Moves  an  item  from  one  item  type  to another  item  type.  

The  item  must  be  checked  out  prior  to calling  this  method.

Another  source  for  information  about  transactions  is the  SItemUpdateICM  sample.  

New explicit transactions behavior in Version 8.3 

If the  DB2  Content  Manager  system  detects  an  error  during  a persistent  operation,  

the  system’s  default  behavior  is to always  automatically  roll  back  an  explicit  

transaction.  For  example,  XYZ  Insurance  has  an  online  policy  payment  system,  and  

a user  submitted  their  credit  card  information  for  processing,  but  the  power  

suddenly  goes  out.  The  credit  card  charge  and  the  payment  update  to  the  policy  

are  undone  by  the  system.  

Automatic  rollback  of  explicit  transactions  is important  because  you  cannot  rely  on  

your  application  to  reverse  a series  of  updates  that  it  made  prior  to  a failed  

operation,  especially  for  important  operations.  Perhaps  the  connection  is lost  or  

your  system  crashed  due  to  a power  failure  and  you  cannot  undo  the  prior  

transactions.  Your application  might  not  remember  what  it was  doing  before  the  

crash  if it did  not  have  a logging  and  recover  mechanism.  With  a transaction,  you  

tell  the  system  to  start  recording  your  changes,  but  drop  them  if you  do  not  

explicitly  tell  it  that  you  are  done.  

If you  want  to  override  the  system’s  default  behavior  for  explicit  transactions,  see  

the  STransactionsRollbackChangeICM  sample.  

 

 

184 Application  Programming Guide

|

|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|



Transaction behavior when deleting a user does not belong in 

a group 

By  default,  if you  attempt  to  delete  a user  from  a group,  and  that  user  does  not  

exist  (or  belong)  in  that  group,  the  DKUserMgmt::update  method  rolls  back  the  

transaction.  If  you  do  not  want  the  default  behavior  in  your  application,  and  you  

want  to  be  able  to delete  a user,  even  if they  do  not  belong  in  the  group,  you  can  

use  a new  method.  You can  find  the  new  method  in  DKUserMgmt.  Following  is 

the  method  signature:  

public  void  update(dkUserGroupDef  userGroup,  Vector  v, int action,  int option)  

The  constant  DK_ICM_DO_NOT_ROLLBACK_ON_ERROR, from  DKConstantICM.java, allows  

you  to  override  the  default  behavior.  If  the  value  for  the  action  argument  is 

ACTION_DELETE  and  you  pass  zero  as  the  value  for  the  option  argument,  this  

method  behaves  the  same  as  the  current  update  method,  which  has  the  following  

signature:  

public  void  update(dkUserGroupDef  userGroup,  Vector  v, int action)  

If  the  value  for  the  action  argument  is ACTION_DELETE,  and  the  value  for  the  option  

argument  is  DK_ICM_DO_NOT_ROLLBACK_ON_ERROR, the  new  update  method  does  not  

roll  back  the  transaction,  even  if the  user  being  deleted  from  the  group  does  not  

belong  to  the  group.  Again,  the  default  behavior  (if  user  does  not  belong  to  the  

group)  is  to throw  a DKNotExistException  exception.  

For  more  information  see  the  DKUserMgmt  API  in  the  Application  Programming  

Reference.  

 

 

Chapter  4. Working  with DB2 Content  Manager  Version  8.3 185

|

|

|
|
|
|
|
|

|

|
|
|
|
|

|

|
|
|
|
|

|
|



186 Application  Programming Guide



Chapter  5.  Searching  for  data  

When  an  application  searches  for  items  stored  in  the  DB2  Content  Manager  

system,  the  underlying  engine  processes  the  search  based  on  a query  that  you  

compose.  To efficiently  traverse  DB2  Content  Manager’s  hierarchical  data  model,  

you  compose  queries  using  the  DB2  Content  Manager  query  language,  a powerful  

XML-based  query  language.  The  query  language  provides  the  following  benefits:  

v   Supports  the  full  data  model.  

v   Supports  searching  for  a specific  version,  such  as  the  most  current  version.  

v   Enables  searches  within  component  type  view  hierarchies  across  linked  items,  

and  references.  

v   Combines  parametric  and  text  search.  

v   Provides  sorting  capabilities,  using  SORTBY.  

v   Enforces  DB2  Content  Manager  access  control.  

v   Conforms  to  XQuery  Path  Expressions  (XQPE)  standards,  a subset  of  the  W3C  

XML  Query  working  draft.  

v   Completes  high  performance  searches.

The  Content  Manager  query  language  is an  XML-based  query  language  that,  

unlike  proprietary  languages,  conforms  to  XQuery  Path  Expressions  (XQPE),  a 

subset  of  the  W3C  XML  Query  working  draft.  Using  the  query  language,  you  can  

search  hierarchical  item  types  and  locate  items  quickly  and  easily.  To begin  writing  

queries,  you  must  understand  the  query  language  concepts,  syntax,  and  grammar.  

All  queries  are  done  on  component  type  views.  Therefore,  the  names  that  you  use  

for  root  components  or  child  components  in  your  query  strings  can  be  the  names  

of  either  base  component  type  views  that  are  created  for  you  by  the  system  (for  

example,  Journal,  Journal_Article)  or the  names  of user-defined  component  type  

views  (for  example,  My_Journal,  My_Book_Section).  Note  that  in  the  system  

administration  client,  component  type  views  are  called  component  type  subsets.  

When  you  submit  a query  for  a document,  folder,  object,  and  so forth,  your  request  

is  directed  to  the  DB2  Content  Manager  query  engine.  The  engine  processes  the  

query  and  translates  it to the  appropriate  SQL.  The  library  server  then  adds  in the  

security  checks  (ACLs)  and  runs the  query.  

Important:  Query  and  search  are  used  interchangebly  in  this  section,  and  have  

essentially  the  same  meaning.  

Querying the DB2 Content Manager server 

When  you  query  the  DB2  Content  Manager  library  server,  you  complete  the  

following  main  steps:  

1.   Create  a query  string  to represent  your  search  conditions.  

2.   Call  the  evaluate,  execute,  or  executeWithCallback  method  with  your  query  

string  and  query  options  to  get  the  results  or  call  the  executeCount  method  to  

get  the  count  of the  results.  

3.   Receive  the  results  through  a DKResults  object,  a dkResultSetCursor,  or  a 

dkCallback  object.

 

© Copyright  IBM Corp. 1996, 2005 187



The  query  APIs  perform  the  query  processing  tasks,  such  as  preparing  and  

executing  a query,  monitoring  the  status  of  a query  execution,  and  retrieving  the  

results.  

You can  build  queries  that  perform  three  main  types  of  searches:  parametric,  text,  

and  combined  parametric  and  text.  A parametric  query  uses  conditions  such  as  

equality  and  comparison.  A text  query  uses  text  search  functions,  which  makes  the  

search  more  thorough.  A combined  query  is composed  of  both  text  and  parametric  

conditions.  

To run a query,  you  can  use  one  of  the  following  methods:  evaluate,  execute,  or  

executeWithCallback.  The  evaluate  method  returns  all  results  as a collection  of  

DDO’s.  With  the  default  options,  this  works  well  for  result  sets  that  are  relatively  

small,  200  items  or  less.  When  working  with  larger  results  sets,  you  can  specify  the  

IDONLY  retrieve  option  to  prevent  attribute  data  from  being  stored  in  the  DDOs  

that  are  returned.  In this  case,  you  must  explicitly  retrieve  the  attribute  data  for  the  

DDOs  as the  data  is  needed  by  the  application.  Also  note  that  you  can  limit  the  

result  set  size  using  the  max  results  option.  The  execute  method  returns  a 

dkResultSetCursor  object,  which  has  the  following  characteristics:  

v   The  dkResultSetCursor  works  like  a content  server  cursor.  

v   You can  use  it for  large  result  sets  because  the  DDOs  it returns  are  retrieved  in 

blocks  as  the  user  requests  them.  

v   You can  use  dkResultSetCursor  to  rerun a query,  by  calling  the  close  and  open  

methods.  

v   You can  use  the  dkResultSetCursor  to delete  and  update  the  current  position  of  

the  result  set  cursor.  

v   The  dkResultSetCursor  holds  a database  cursor  open  to fetch  rows  as  they  are  

needed  from  the  database.  

v   To prevent  locking  and  transaction  problems,  a new  database  connection  is used  

to  execute  the  query.  This  means  that  your  application  might  use  two  

connections  while  the  cursor  remains  open.  To avoid  this  additional  connection,  

use  the  evaluate  method  to  run the  query.

The  executeWithCallback  method  executes  a query  in  an  asynchronous  manner  

and  sends  the  results  to the  specified  callback  object  in  blocks.  As  such,  the  

executeWithCallback  method  frees  up  the  main  thread  of execution  from  the  task  

of  retrieving  query  results.  For  more  information  on  query  methods,  see  the  

SSearchICM  sample.  See  the  Application  Programming  Reference  for  the  evaluate,  

execute,  and  executeWithCallback  methods  in  DKDatastoreICM  class.  

Starting  with  DB2  Content  Manager  Version  8 Release  3,  you  can  get  the  count  of  

query  results  without  getting  the  results  themselves.  There  are  two  ways  that  you  

can  do  this.  One  is  through  the  executeCount  method  in  DKDatastoreICM,  and  the  

other  is  through  the  cardinality  method  in  dkResultSetCursor.  The  executeCount  

method  in DKDatastoreICM  takes  in  a query  string  and  options  and  returns  the  

estimated  count  of  the  results  of  the  query.  The  cardinality  method  in  

dkResultSetCursor,  implemented  in  the  DB2  Content  Manager  Version  8 connector,  

allows  you  to  obtain  the  count  when  you  already  have  a dkResultSetCursor.  This  

call  requires  a separate  trip  to  the  server  to  evaluate  the  count.  

Note  that  the  count  of  query  results  can  be  different  from  the  number  of  results  

that  you  would  get  when  running  the  query  and  getting  the  results.  This  is 

because  the  count  is only  accurate  at  an  instant  in  time.  Items  might  be  added  or  

deleted  between  the  time  the  count  is retrieved  and  when  the  results  are  retrieved.  

 

 

188 Application  Programming Guide

|
|
|
|
|
|
|
|
|

|
|
|
|



There  are  also  a few  cases  in  which  query  might  return  the  ID  of  an  item,  but  the  

retrieve  API  cannot  access  that  item.  In  these  cases  the  count  will  also  be  

inaccurate.  Also  note  that  to  get  the  count,  a server  call  must  be  made  to  evaluate  

the  query.  This  means  that  if you  want  the  count  and  then  the  results,  you  must  

make  two  trips  to  the  server.  

Applying the query language to the DB2 Content Manager data model 

To help  you  understand  the  query  language,  you  can  conceptually  view  the  library  

server  as an  XML  document.  The  XML  document  analogy  is used  only  for  the  

purpose  of  explaining  the  query  language.  Therefore,  it is very  important  to  

remember  that  the  XML  representation  of  the  library  server  is only  a virtual  

representation  and  items  in  a library  server  are  not  XML  elements,  nor  do  you  get  

XML  elements  when  you  perform  a query.  In  the  XML  representation  of the  library  

server,  DB2  Content  Manager  data  model  elements  are  represented  as  follows:  

Items  In  general,  each  CM  item  is represented  by  nested  XML  elements,  where  

the  top  level  XML  element  represents  the  root  component  and  the  nested  

XML  elements  represent  the  descendent  components.  The  nesting  of  XML  

elements  thus  represents  the  component  hierarchy.  

Root  components  

A root  component  is represented  by  the  first  level  of an  XML  element.  A 

root  component  has  the  following  XML  attributes:  ID  ITEMID, STRING  

COMPONENTID, INTEGER  VERSIONID, INTEGER  SEMANTICTYPE, and  any  other  

user-defined  attributes  of  the  component.  In  the  library  server,  the  ITEMID  

is unique.  

 Root  components  can  contain  an  ICMCHECKEDOUT  element  to indicate  

an  item’s  ″checked  out″ status.  It has  two  attributes:  ICMCHKOUTUSER  to  

indicate  which  user  checked  out  the  item,  and  ICMCHKOUTTS,  which  is 

the  timestamp  for  when  the  item  was  checked  out,  for  example  

2003-08-02-17.29.23.977001).

Child  components  

A child  component  is represented  by  a nested  XML  element  and  has  the  

following  attributes:  STRING  ITEMID, STRING  COMPONENTID, INTEGER  

VERSIONID, and  any  other  user-defined  attributes  of  the  component.  

 Note  that  COMPONENTID  alone  is only  unique  within  a DB2  Content  

Manager  component.The  ITEMID  and  the  VERSIONID  are  exactly  the  same  as  

the  child’s  root  component  ITEMID  and  VERSIONID. 

User-defined  attributes  

Each  user-defined  attribute  is  represented  by  a nested  XML  attribute  within  

the  XML  element  representing  the  containing  component.

Links  Although  the  inbound  and  outbound  links  are  not  a part  of  an  item  itself  

in  the  CM  data  model,  for  the  purpose  of  querying  it is very  convenient  to  

conceptually  think  of them  as  being  a part  of  the  XML  element  

representing  the  item.  This  relieves  applications  from  writing  joins  

explicitly  in the  queries.  You can  use  links  to model  a many-to-many  

relationship  between  items.  Note  that  this  relationship  is only  between  root  

components  (a  link  cannot  originate  or  end  in  a child  component).  

 The  links  originating  at  an  item  are  represented  by  <OUTBOUNDLINK>  

XML  elements  with  the  following  attributes:  IDREF  LINKITEMREF,  IDREF  

TARGETITEMREF  and  STRING  LINKTYPE.  The  LINKITEMREF  is a 

reference  to  an  item  that  contains  meta-data  for  the  link.  The  

TARGETITEMREF  is  a reference  to the  item  pointed  to  by  the  link.  The  

 

 

Chapter  5. Searching  for data 189

|
|
|
|
|

|
|
|
|
|



LINKTYPE  is the  type  of  the  link  Similarly,  links  pointing  to an  item  are  

represented  by  <INBOUNDLINK>  XML  elements  with  the  following  

attributes:  IDREF  LINKITEMREF,  IDREF  SOURCEITEMREF  and  STRING  

LINKTYPE.  The  SOURCEITEMREF  is a reference  to  the  item  where  the  

link  originates.  For  more  information  on  link  semantics,  see  the  SLinksICM  

and  SSearchICM  samples.  

References  (reference  attributes)  

 Reference  attributes  are  represented  by  XML  attributes  of  type  IDREF.  A 

reference  represents  a one-to-one  relationship  between  an  item  or  a 

component  and  another  item.  Therefore,  the  target  of a reference  can  only  

be  a root  component,  not  a child.  A reference  attribute,  however,  can  

originate  in  either  root  or child  components.  

 Reference  attributes  can  be  either  system-defined  (SYSREFERENCEATTRS)  

or  user-defined  (PublicationRef  in  sample  queries  below).  References  can  

be  traversed  in  both  directions.  

 Reverse  traversal  of references  is performed  in  a way  similar  to  reverse  

traversal  of  links,  as described  above.  You can  conceptually  think  of the  

item  that  is  being  referenced  as  having  an  XML  element  called  

REFERENCEDBY  that  contains  an  XML  attribute  called  REFERENCER  (of  

type  IDREF),  which  points  to  the  component  that  references  this  item.  This  

is  similar  to  the  INBOUNDLINK  element  with  the  SOURCEITEMREF  

attribute  for  reverse  traversal  of  links.  

 References  also  support  delete  semantics  (restrict,  cascade,  set  null,  or no  

action).  For  more  information  on  reference  attributes,  see  the  

SReferenceAttrDefCreationICM  and  SSearchICM  samples.  

Documents  

Folder  functionality  provided  in  Content  Manager  through  the  DKFolder  is 

stored  as  a set  of  links  of  the  ″DKFolder″ 

(DK_ICM_LINKTYPENAME_DKFOLDER)  link  type.  Each  folder-content  

relationship  is modeled  as an  outbound  link  from  the  folder  and  an  

inbound  link  to  the  contents  making  the  folder  the  source  and  the  contents  

the  targets  of each  link.  Follow  the  semantics  of searching  and  traversing  

links  in  order  to search  and  traverse  folders.  For  more  information,  see  the  

SFolderICM  and  SSearchICM  samples.

Understanding parametric search 

Items  are  often  retrieved  by  initiating  a search  on  selected  attributes.  A  single  

query  can  examine  both  system-defined  and  user-defined  attributes  of  the  items  in  

the  content  server.  Simple  search  conditions  consist  of an  attribute  name,  an  

operator,  and  a value  that  are  combined  into  a clause.  DB2  Content  Manager  

provides  you  with  many  comparison  operators  to complete  parametric  searches.  

The  operators  include:  

    ″=″  

    ″<  ″ 

    ″<=″  

   ″>″  

   ″>=″  

   ″!=″  

   ″LIKE″ 

   ″NOT  LIKE″ 

 

 

190 Application  Programming Guide



″BETWEEN″ 

   ″NOT  BETWEEN″ 

   ″IS  NULL″ 

   ″IS  NOT  NULL″ 

   ″IN″  

   ″NOT  IN″

You  can  specify  complex  search  conditions  by  combining  simple  search  conditions  

into  a clause  using  the  Boolean  operators  AND,  OR,  and  NOT. See  the  query  

examples  for  more  details.  

Understanding text search 

The  DB2  Content  Manager  Version  8 Release  3 supports  two  types  of  text  search:  

text  search  of  attributes  that  contain  text  in  components  and  text  search  of objects.  

The  main  difference  between  the  two  types  of  text  search  is  how  the  content  is 

stored.  When  you  define  an  attribute  to  be  text  searchable,  you  are  indicating  that  

one  can  search  text  contained  in  the  column  of  that  attribute.  

For  example,  Fred,  a system  administrator,  creates  an  item  type  called  Journal  that  

has  a child  component  type  view  Journal_Article, which  he  wants  to enable  for  

text  search.  One  of  the  attributes  for  Journal_Article  is Title, which  Fred  enables  

for  text  search.  When  Lily,  an  underwriter,  searches  for  Title  that  contains  the  

word  ″Java″, the  system  searches  the  Title  text  index  for  any  hits  on  ″Java″. 

To make  an  attribute  (column)  text  searchable,  you  must  create  text  indexes  on  

item  type  content  or  specific  attributes  using  either  the  system  administration  client  

or  system  administration  APIs.  

A  text  index  holds  information  about  the  text  that  is to  be  searched.  This  

information  is  used  to  perform  text  search  efficiently.  Version  8 Release  3 now  uses  

the  following  class  hierarchy  to  represent  these  text  indexes:  

dkTextIndexICM  

Class  interface  that  represents  a text  index.  

dkDB2TextIndexICM  

Class  interface  that  extends  dkTextIndexICM,  and  represents  the  text  index  

for  IBM  DB2  Universal  Database  Net  Search  Extender.  This  was  formerly  

known  as  IBM  DB2  Universal  Database  Text Information  Extender  in DB2  

Content  Manager  Version  8.1.  In  the  discussion  of  text  search  in  the  ICM  

query  language,  DB2  Net  Search  Extender  and  DB2  Text Information  

Extender  are  used  interchangeably.  From  the  perspective  of  the  ICM  query  

language,  DB2  Net  Search  Extender  and  DB2  Text Information  Extender  do  

not  differ  in  text  search  syntax  or  functionality.  

 For  information  about  DB2  Text Information  Extender,  seeIBM DB2  

Universal  Database:  Text  Information  Extender  Administration  and  User’s  Guide. 

For  information  about  DB2  Net  Search  Extender  used  in  DB2  Content  

Manager  Version  8.2  or  higher,  see  IBM  DB2  Universal  Database:  Net  Search  

Extender  Administration  and  User’s  Guide  in the  DB2  UDB  Information  

Center.  

dkOracleTextIndexICM  

Class  interface  that  extends  dkTextIndexICM,  and  represents  an  OracleText  

index.

 

 

Chapter  5. Searching  for data 191

|
|
|

|
|
|

|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

http://publib.boulder.ibm.com/infocenter/db2help/
http://publib.boulder.ibm.com/infocenter/db2help/


Note  that  Version  8 Release  3 still  supports  Version  8 functionality  such  as  the  

definition  class  DKTextIndexDefICM  and  the  methods  using  DKTextIndexDefICM  

of  DKItemTypeDefICM  and  DKAttrDefICM.  However,  the  old  functionality  is  not  

supported  with  OracleText.  

Searching for object contents 

Searching  for  contents  of  objects  works  a little  differently.  Instead  of  indexing  a 

column  directly,  the  system  uses  a reference  to the  object’s  location  on  a resource  

manager.  NSE  uses  the  reference  to fetch  the  content  when  it  creates  a text  index.  

An  end  user  performing  a search  does  not  notice  any  difference  when  searching  

for  objects  stored  in  a resource  manager.  A system  administrator,  however,  has  to  

set  up  a text  resource  item  type  view  in  order  for  the  search  mechanism  to locate  

the  content  in  the  resource  manager.  The  text  search  is performed  on  the  resource  

item  type’s  attribute  ″TIEREF″,  which  refers  to the  contents  stored  on  the  resource  

manager  for  text  search  purposes.  

Searching for documents 

You can  perform  text  search  on  the  contents  of  document  parts.  A virtual  

component  type  view  ″ICMPARTS″ is supported  in  query  as a child  of every  

document  in  the  system.  The  ″TIEREF″  attribute  under  the  ″ICMPARTS″ 

component  type  view  refers  to  the  contents  of all  the  text-searchable  parts  of  that  

document  for  text  search  purposes.  See  the  query  examples  for  specific  usage  of  

this  functionality.  

Making user-defined attributes text searchable 

You can  make  your  user-defined  attributes  text  searchable  by  using  the  

DKAttrDefICM  and  DKItemTypeDefICM  APIs.  Default  properties  of  the  created  

text  index  can  be  modified  by  using  the  dkDB2TextIndexICM  or  

dkOracleTextIndexICM  interfaces.  For  more  information  on  the  APIs,  see  the  

Application  Programming  Reference  or  the  SItemTypeCreationICM  sample.  

Understanding text search syntax 

You can  perform  text  search  queries  by  using  either  basic  or  advanced  text  search  

syntax.  

Basic text search 

Since  the  majority  of  text  searches  are  done  by  simply  listing  a few  words  one  after  

the  other, basic  (simplified)  text  search  syntax  was  designed  specifically  to make  

this  most  common  case  easy  for  users.  The  syntax  also  allows  for  use  of ″+″  and  

″-″,  as well  as  for  use  of quoted  phrases.  Basic  search  is supported  on  both  IBM  

DB2  UDB  and  Oracle  library  servers.  

Simplified  text  search  is done  by  using  the  advanced  text  search  functions.  The  

″contains-text-basic″ function  is used  to  search  within  attributes  or  within  content  

of  resources  or  documents.  The  ″score-basic″ function  uses  the  same  syntax  as  the  

″contains-text-basic″ function,  and  is used  for  sorting  results  based  on  the  rank  of 

the  text  search  results.  Remember  to  equate  the  ″contains-text-basic″ function  to 1 

to  check  if it  is  true, and  to  equate  it  to  0 to  check  if it is false.  See  the  query  

examples  for  information  about  how  to use  these  functions.  

Additional  information  about  basic  text  search  syntax  includes  the  following:  

v   You must  use  advanced  search  to  perform  case-sensitive  search.  

v   Terms  within  quotes  are  assumed  to be  a phrase.  

 

 

192 Application  Programming Guide

|
|
|
|



v   Use  of  + (plus)  - (minus)  

–   +  (plus)  = document  must  include  this  word.  

–   - (minus)  =  document  must  not  include  this  word.  

–   When  a + or  - is not  specified,  the  query  engine  uses  an  algorithm  to  match  

the  words  to  the  text.
v    Boolean  operators  (AND,  OR,  NOT)  are  not  valid  and  are  ignored.  

v   Parentheses  in  the  basic  syntax  are  not  supported.  

v   Valid wildcards  

–   ? (question  mark)  = represents  a single  character  

–    * (asterisk)  = represents  any  number  of  arbitrary  characters

For  more  information  on  basic  text  search,  see  the  SSearchICM  sample.  

Advanced text search 

Advanced  text  search  syntax  is used  to  allow  the  user  to  specify  more  complex  

conditions  for  text  search.  It allows  such  powerful  features  as  proximity  search  and  

fuzzy  search.  

Advanced  text  search  syntax  uses  database-specific  functions  similar  to  the  way  the  

″contains-text-basic″ and  ″score-basic″ functions  are  used  for  basic  text  search.  

Advanced  search  uses  the  search  syntax  supported  by  the  underlying  text  engine  

(DB2  Net  Search  Extender  for  DB2  UDB  and  OracleText  for  Oracle),  so  the  search  

syntax  will  be  different.  

contains-text-db2  and  score-db2  

Uses  NSE  text  search  syntax  with  one  exception:  you  must  change  double  

quotes  to  single  quotes,  and  vice-versa.  For  example,  the  CONTAINS  

(description,’  "IBM"  ’)=1  condition  in  NSE  would  become  

contains-text-db2(@description,  " ’IBM’  ")=1  in  the  DB2  Content  

Manager  query  language.  This  needs  to be  done  to  support  simplicity  of 

writing  queries  with  minimal  use  of  escape  characters.  Remember  to  

equate  the  ″contains-text-db2″ function  to 1 to  check  if it is true, and  to  

equate  it to  0 to  check  if it is false.  See  the  query  examples  for  more  details  

on  advanced  text  search.  

 Example:  

/Book[contains-text-db2(@Title,  "ibm")=1]  SORTBY(score-db2(@Title,  "ibm")  

For  backward  compatibility  with  DB2  Content  Manager  Version  8 Release  

2, the  advanced  text  search  functions  ″contains-text″ and  ″score″ are  still  

supported.  These  functions  are  identical  to  ″contains-text-db2″ and  

″score-db2″ functions.  

contains-text-oracle  and  score-oracle  

Uses  OracleText  search  syntax.  Performs  the  same  quote  translation  as  

contains-text-db2. For  more  information  about  supported  syntax  see  

OracleText  documentation.  

 Example:  

/Book[contains-text-oracle(@Title,  "ibm",1)  > 0] SORTBY(score-oracle(1))  

The  contains-text-oracle  function  contains  the  optional  third  parameter:  

label  name,  which  is used  as the  parameter  to  score-oracle.

 For  more  information  on  advanced  text  search,  see  the  SSearchICM  sample.  

 

 

Chapter  5. Searching  for data 193

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|

|

|
|
|
|

|
|
|
|

|

|

|
|



Creating combined parametric and text search 

Searches  can  be  performed  on  virtually  any  piece  of  an  item  or  component,  text  

within  an  item  or  component,  or  text  within  resource  content.  Search  can  be  one  of  

the  following  types:  

Parametric  search  

Searching  is  based  on  item  and  component  properties,  attributes,  

references,  links,  folder  contents,  and  so forth.  

Text  Search  

Searching  within  text.  

Combined  Search  

Searching  using  both  parametric  and  text  search.

Follow  the  steps  below  to  create  a combined  parametric  and  text  search.  

 

 

Java  

1.   Create  an  ICM  datastore  and  connect  to it.  

2.   Generate  the  combined  query  string.  

String  queryString  = 

       "//Journal_Article  [Journal_Author/@LastName  = \"Richardt\""  + 

       " AND  contains-text  (@Text,  \" ’Java’  & ’XML’  \")=1]";  

3.   If you  want  to  use  retrieve  options  that  are  different  from  the  defaults,  use  

the  DKNVPair  array  to  package  the  options.  

DKNVPair  parms[]  = new  DKNVPair[3];  

String  strMax  = "5";  

parms[0]  = new  DKNVPair(DKConstant.DK_CM_PARM_MAX_RESULTS,  strMax);  

parms[1]  = new  DKNVPair(DKConstant.DK_CM_PARM_RETRIEVE,  

DKConstant.DK_CM_CONTENT_ATTRONLY  | 

  DKConstant.DK_CM_CONTENT_LINKS_OUTBOUND);  

parms[2]  = new  DKNVPair(DKConstant.DK_CM_PARM_END,  null);  

4.   Execute  the  combined  query  in  one  of three  different  ways:  evaluate,  

execute,  and  executeWithCallback.  

DKResults  resultsCollection  = 

(DKResults)dsICM.evaluate(queryString,  

DKConstant.DK_CM_XQPE_QL_TYPE,  parms);  

5.   Process  the  results.  The  procedure  for  handling  the  results  depends  on  

which  execution  method  you  used.

 For  a complete  sample  and  additional  documentation,  see  the  SSearchICM  ICM  API  

education  sample  in  IBMCMROOT/samples/java/icm. 

 

 

194 Application  Programming Guide



C++  

1.   Specify  the  search  options.  Note  that  the  options  array  always  has  to have  

an  end  element.  For  example,  if you  want  to  specify  two  options,  the  

options  array  must  have  three  elements.  

DKNVPair  * parms  = new DKNVPair[3];  

DKNVPair  * pparm  = NULL;  

DKString  strMax   = "5";  

DKAny  * anyNull   = new  DKAny();  

//Allow  a maximum  of 5 items  to be returned  from  the  search  

pparm  = new  DKNVPair(DK_CM_PARM_MAX_RESULTS,  strMax);  

parms[0]  = *pparm;  

delete  pparm;  

//Specify  what  content  is to be retrieved  

pparm  = new  DKNVPair((long)DK_CM_PARM_RETRIEVE,  

  DK_CM_CONTENT_ATTRONLY  | DK_CM_CONTENT_LINKS_OUTBOUND);  

parms[1]  = *pparm;  

delete  pparm;  

pparm  = new  DKNVPair(DK_CM_PARM_END,  *anyNull);  

parms[2]  = *pparm;  

delete  pparm;  

2.   Execute  the  search.  There  are  three  ways  to  execute  a search:  

evaluate  

Returns  all  the  results  as  a collection;  good  for  small  sets.  

execute  

Returns  a result  set  cursor,  which  the  caller  uses  to  iterate  over  the  

results.  

executeWithCallback  

Creates  a thread  that  iterates  over  the  result  set  and  calls  the  

callback  object  for  each  block  of  results.  Caller  uses  the  callback  

object  to  get  the  results

In  the  example  below,  only  five  results  are  desired,  so  the  

DKDatastoreICM.evaluate  method  is used.  

DKResults  * resultsCollection  = (DKResults  *)(dkCollection  *) 

        dsICM->evaluate(queryString,DK_CM_XQPE_QL_TYPE,  parms);  

3.   Display  the  results  of  the  search.  

// Create  an iterator  to go through  Results  collection.  

dkIterator*  iter  = resultsCollection->createIterator();  

  

cout  << "Results:"  << endl;  

cout  << "     - Total:   " << results->cardinality()  << endl;  

  

while(iter->more())  

{ 

    //Each  element  in the  returned  array  is an item  (DDO)  

    DKDDO*  ddo  = (DKDDO*)  iter->next()->value();  

  cout  << "     - Item  ID:   " << ((DKPidICM*)ddo->getPidObject())  

  ->getItemId()  << "  (" <<     ((DKPidICM*)ddo->getPidObject())  

  ->getObjectType()  << ")"  << endl;  

} 

4.   Clean  up.  

delete(iter);  

delete[]  parms;  

....  

 

 

Chapter  5. Searching  for data 195



For  a complete  sample  and  additional  documentation,  see  the  SSearchICM  ICM  API  

education  sample  in  IBMCMROOT/samples/cpp/icm. 

Example searches using the query language 

To help  you  better  understand  the  query  language  and  to  get  you  started  with  

writing  queries,  this  section  provides  you  with  the  following  information:  

v   A sample  data  model  

v   An  XML  document  representation  of  the  data  model  

v   Sample  queries  

v   Query  language  grammar

The  sample  queries  in  the  following  sections  are  based  on  the  query  examples  data  

model  outlined  in  Figure  11 on  page  197..  See  the  data  model  illustration  when  you  

review  the  sample  queries.  

For  additional  query  syntax  and  examples  based  on  an  alternate  data  model,  see  

the  SSearchICM  sample.  

 

 

 

196 Application  Programming Guide



The  XML  document  below  is a representation  of the  data  model  in  figure  Figure  11. 

XML  representation  of  the  query  examples  data  model:  

<Journal  (ID  ITEMID,  STRING  COMPONENTID,  INTEGER  VERSIONID,  

                  INTEGER  SEMANTICTYPE,  Title,  Organization,  Classification,  

          PublishDate,  PublisherName,  NumPages,  Cost)>  

    <Journal_Editor  (STRING  ITEMID,  STRING  COMPONENTID,  INTEGER  VERSIONID,

  

Figure  11. Query  examples  data  model

 

 

Chapter  5. Searching  for data 197



LastName,  Address,  Affiliation)>  

        </Journal_Editor>  

        ...  (repeating  <Journal_Editor>)  

  

    <Journal_Article  (STRING  ITEMID,  STRING  COMPONENTID,  

               INTEGER  VERSIONID,Title,  Classification,  Text)>  

                <Journal_Section  (STRING  ITEMID,  STRING  COMPONENTID,  

                                      INTEGER  VERSIONID,  Title,  SectionNum)>  

            <Journal_Figure  (STRING  ITEMID,  STRING  COMPONENTID,  

                                       INTEGER  VERSIONID,  FigureNum,  Caption)>  

            </Journal_Figure>  

                        ...(repeating  <Journal_Figure>)  

        </Journal_Section>  

        ...  (repeating  <Journal_Section>)  

  

                <Journal_Author  (STRING  ITEMID,  STRING  COMPONENTID,  

                           INTEGER  VERSIONID,  LastName,  Address,  Affiliation)>  

        </Journal_Author>  

                ...  (repeating  <Journal_Author>)  

        </Journal_Article>  

    ...  (repeating  <Journal_Article>)  

  

    <OUTBOUNDLINK  (IDREF  LINKITEMREF,  IDREF  TARGETITEMREF,  

                   STRING  LINKTYPE)  > 

        </OUTBOUNDLINK>  

        ...  (repeating  <OUTBOUNDLINK>)  

  

        <INBOUNDLINK  (IDREF  LINKITEMREF,  IDREF  SOURCEITEMREF,  

                  STRING   LINKTYPE)>  

        </INBOUNDLINK>  

        ...  (repeating  <INBOUNDLINK>)  

  

    <REFERENCEDBY  (IDREF  REFERENCER)>  

        </REFERENCEDBY>  

        ...  (repeating  <REFERENCEDBY>)  

    <ICMCHECKEDOUT  (STRING  ICMCHKOUTUSER,  TIMESTAMP  ICMCHKOUTTS)  

    </ICMCHECKEDOUT>  

    ...(repeating  <ICMCHECKEDOUT>)  

  

</Journal>  

...(repeating  <Journal>)  

  

<Book  (ID  ITEMID,  STRING  COMPONENTID,  INTEGER  VERSIONID,  INTEGER  

       SEMANTICTYPE,             Title,  PublishDate,  NumPages,  Cost)>  

        <Book_Author  (STRING  ITEMID,  STRING  COMPONENTID,  INTEGER  VERSIONID,  

                  LastName,  Address,  Affiliation)>  

        </Book_Author>  

            ...  (repeating  <Book_Author>)  

  

        <Book_Chapter  (STRING  ITEMID,  STRING  COMPONENTID,  INTEGER  VERSIONID,  

                   Title,  ChapterNum)>  

                <Book_Section  (STRING  ITEMID,  STRING  COMPONENTID,  

                                   INTEGER  VERSIONID,  Title,  SectionNum)>  

                </Book_Section>  

                ...  (repeating  <Book_Section>)  

    </Book_Chapter>  

        ...  (repeating  <Book_Chapter>)  

  

        <OUTBOUNDLINK  (IDREF  LINKITEMREF,  IDREF  TARGETITEMREF,  

                   STRING  LINKTYPE)  > 

        </OUTBOUNDLINK>  

        ...  (repeating  <OUTBOUNDLINK>)  

  

        <INBOUNDLINK  (IDREF  LINKITEMREF,  IDREF  SOURCEITEMREF,  

                              STRING   LINKTYPE)>  

        </INBOUNDLINK>  

        ...  (repeating  <INBOUNDLINK>)

 

 

198 Application  Programming Guide

|
|
|



<REFERENCEDBY  (IDREF  REFERENCER)>  

        </REFERENCEDBY>  

        ...  (repeating  <REFERENCEDBY>)  

</Book>  

...  (repeating  <Book>)  

  

<SIG  (ID  ITEMID,  STRING  COMPONENTID,  INTEGER  VERSIONID,  

      INTEGER  SEMANTICTYPE,              Title,  Region)>  

        <OUTBOUNDLINK  (IDREF  LINKITEMREF,  IDREF  TARGETITEMREF,  

                               STRING   LINKTYPE)  > 

        </OUTBOUNDLINK>  

        ...  (repeating  <OUTBOUNDLINK>)  

  

        <INBOUNDLINK  (IDREF  LINKITEMREF,  IDREF  SOURCEITEMREF,  

                              STRING   LINKTYPE)>  

        </INBOUNDLINK>  

        ...  (repeating  <INBOUNDLINK>)  

  

        <REFERENCEDBY  (IDREF  REFERENCER)>  

        </REFERENCEDBY>  

        ...  (repeating  <REFERENCEDBY>)  

  

        <ICMCHECKEDOUT  (STRING  ICMCHKOUTUSER,  TIMESTAMP  ICMCHKOUTTS)  

        </ICMCHECKEDOUT>  

    ...(repeating  <ICMCHECKEDOUT>)  

  

</SIG>  

...  (repeating  <SIG>)  

  

<TextResource  (ID  ITEMID,  STRING  COMPONENTID,  INTEGER  VERSIONID,  

                       INTEGER  SEMANTICTYPE,  JTitle,  JYear)>  

        <OUTBOUNDLINK  (IDREF  LINKITEMREF,  IDREF  TARGETITEMREF,  

                  STRING   LINKTYPE)  > 

        </OUTBOUNDLINK>  

        ...  (repeating  <OUTBOUNDLINK>)  

  

        <INBOUNDLINK  (IDREF  LINKITEMREF,  IDREF  SOURCEITEMREF,  

                              STRING  LINKTYPE)>  

        </INBOUNDLINK>  

        ...  (repeating  <INBOUNDLINK>)  

  

        <REFERENCEDBY  (IDREF  REFERENCER)>  

        </REFERENCEDBY>  

        ...  (repeating  <REFERENCEDBY>)  

</TextResource>  

...  (repeating  <TextResource>)  

Query examples 

The  sample  queries  provided  in this  section  are  based  on  the  sample  data  model,  

Figure  11 on  page  197,  and  the  sample  XML  document  on  page  197.  Here  are  some  

hints  to  help  you  understand  the  query  examples:  

v   Follow  the  query  string  as  you  would  follow  a directory  structure  

v    ″/″  single  slash  indicates  a direct  child  relationship  

v    ″//″  double  slash  indicates  either  a child  relationship  or  a descendant  

relationship  

v    ″.″  (DOT)  represents  the  current  component  in  the  hierarchy  

v    ″..″  (DOT-DOT)  represents  the  parent  of  the  current  component  

v    ″@″  (AT sign)  denotes  an  attribute  

v   ″[  ]″  (square  brackets)  denote  a conditional  statement  or  a list  

 

 

Chapter  5. Searching  for data 199

|
|
|



v   ″=>″  (DEREFERENCE  operator)  represents  linking  or  referencing  action  

v   The  result  of  the  query  must  be  a component  (for  example,  an  attribute  cannot  

be  the  last  thing  in  the  path)

Additional  examples  and  documentation  are  provided  in  the  SSearchICM  sample.  

Example  1:  access  to  components  

This  query  finds  all  journals.  

/Journal  

Explanation:  

The  “/”  starts  at the  implicit  root  of  the  XML  document,  which  in  this  case  

is  the  entire  library  server.  Each  item  type  is an  element  under  this  root.  If 

LS.xml  is the  XML  document  that  contains  the  entire  model  as  described  

above,  then  the  explicit  document  root  is document  (LS.xml).  

Example  2:  access  to  attributes   

This  query  finds  all  journal  articles  with  a total  of  50  pages  in  them.  

/Journal[@NumPages=50]  

Explanation:  

The  predicate  @NumPages  = 50  evaluates  to  true for  all  journals  that  have  

the  Content  Manager  attribute  “NumPages”set  to  50.  

Example  3:  multiple  item  types  

This  query  finds  all  books  or  journals  that  have“Williams”  as one  of  the  

authors  and  have  a section  title  beginning  with  “XML”.  

(/Book  | /Journal)  

[(.//Journal_Author/@LastName  = "Williams"  

OR .//Book_Author/@LastName  = "Williams")  

AND  (.//Book_Section/@Title  LIKE  "XML%"  

OR .//Journal_Section/@Title  LIKE  "XML%")]  

OR  

(/Book[.//Book_Author/@LastName  = "Williams"  

AND  .//Book_Section/@Title  LIKE  "XML%"])  

| (/Journal[.//Journal_Author/@LastName  = "Williams"  

 AND  .//Journal_Section/@Title  LIKE  "XML%"])  

Explanation:  

The  above  two  queries  produce  the  same  result.  “.//Journal_Author”  

means  that  a component  Journal_Author  should  be  found  either  directly  

under  the  current  component  in  the  path  (which  in  the  first  case  is either  a 

Book  or  a Journal)  or  somewhere  deeper  in  the  hierarchy.  Note  that  the  

LIKE  operator  is  used  in  conjunction  with  a wildcard  character,  in  this  

case“  %”.  

Example  4:  arithmetic  operations  in  conditions  

This  query  finds  all  journals  with  the  number  of  pages  between  45  and  

200.  

/Journal[@NumPages  BETWEEN  49-4  AND  2*100]  

Explanation:  

Note  that  you  can  perform  arithmetic  operations  to  calculate  the  resulting  

values  to  be  used  with  the  BETWEEN  operator.  

Example  5:  traversal  of  links  in  the  forward  direction  

This  query  finds  all  articles  in  journals  edited  by  “Williams”  that  are  

contained  in SIGs  with  title  “SIGMOD”.  

 

 

200 Application  Programming Guide



/SIG[@Title  = "SIGMOD"]/OUTBOUNDLINK  

 [@LINKTYPE  = "contains"]/@TARGETITEMREF  => 

 Journal[Journal_Editor/@LastName  = "Williams"]  

 /Journal_Article  

Explanation:  

This  is  an  example  of following  links  in  the  forward  direction.  The  virtual  

XML  component  OUTBOUNDLINK  and  its  attribute  TARGETITEMREF  are  

used  to  traverse  to all  Journals  and  then  finally  the  underlying  

Journal_Articles.  The  last  component  in  the  path  is what  is returned  as  the  

result  of the  query.  The  result  can  be  constrained  by  traversing  only  

specific  link  types  (“contains”  in  this  example)  to  a specific  type  of items  

(Journal  in this  example).  Since  the  conceptual  XML  representation  of  the  

library  server  looks  at  inbound  and  outbound  links  as being  parts  of items,  

the  dereferencing  operator  can  be  used  to relieve  applications  from  writing  

explicit  joins.  

Example  6:  traversal  of  links  in  the  backward  direction  

This  query  finds  all  items  of any  type  that  have  journals  which  cost  less  

than  five  dollars  with  articles  by  author“  Nelson”.  

/Journal[@Cost  < 5 

AND  .//Journal_Author/@LastName  = "Nelson"]  

/INBOUNDLINK[@LINKTYPE  = "contains"]  

/@SOURCEITEMREF  => * 

Explanation:  

This  is  an  example  of following  links  in  the  backward  direction.  The  

wildcard“*”,  following  the  dereference  operator  “=>”  ensures  that  items  of  

ANY  type  are  returned  as  the  result.  

Example  7:  advanced  text  search  (contains-text  and  score  functions)   

This  query  finds  journal  articles  with  author“  Richardt”  that  contain  the  

text  “Java”  and  the  text  “XML”.  The  results  are  ordered  by  the  text  search  

score.  

 

 

DB2  

//Journal_Article[Journal_Author/@LastName  = "Richardt"  

AND  contains-text-db2(@Text,  " ’Java’  & ’XML’  ")=1]  

SORTBY(score(@Text,  " ’Java’  & ’XML’  "))  

 

 

Oracle  

//Journal_Article[Journal_Author/@LastName  = "Richardt"  

AND  contains-text-oracle(@Text,  " ’Java’  & ’XML’  ", 1)>0]  

SORTBY(score(1))  

 Explanation:  

This  is  an  example  of performing  text  search  with  the  contains-text-db2  or  

contains-text-oracle  functions.  For  the  syntax  supported  by  this  function,  

see  the  IBM  DB2  Universal  Database:  Net  Search  Extender  Administration  and  

User’s  Guide  in  the  DB2  UDB  Information  Center.  Note  that  the  

contains-text-db2  function  should  be  equated  with  1 to be  true and  0 to  be 

false.  The  score  function  uses  the  ranking  information  returned  by  NSE,  

which  is used  in  this  case  to  sort  the  resulting  journal  articles  through  

SORTBY.  

 

 

Chapter  5. Searching  for data 201

|
|
|
|
|

|

|
|
||||
|

|

|
|
||||

|
|
|
|
|
|
|
|
|

http://publib.boulder.ibm.com/infocenter/db2help/


Example  8:  text  search  (contains-text  function  and  attribute  sorting)   

This  query  finds  all  journals  that  have  either  the  word  “Design”  or  the  

word“  Index”  in  their  title  and  sorts  the  results  in  descending  order  by  

their  title.  

 

 

DB2  

/Journal  

[Journal_Article[contains-text-db2(@Title,  " ’Design’  | 

  ’Index’   ")=1]]  

SORTBY  (@Title  DESCENDING)  

 

 

Oracle  

/Journal  

[Journal_Article[contains-text-oracle(@Title,  " ’Design’  | 

  ’Index’   ")>0]]  

SORTBY  (@Title  DESCENDING)  

 Explanation:  

This  is  another  example  of performing  text  search  using  the  contains-text  

function.  The  sorting  in  this  case  uses  the  DESCENDING  operator  on  the  

“Title  ”attribute.  The  default  for  the  SORTBY  is ASCENDING.  

Example  9:  text  search  (contains-text-basic  and  score-basic  functions)   

This  query  finds  all  journal  articles  that  contain  the  text  “Java”  and  the  text  

“JDK  1.3”  but  not  the  text  “XML”  using  the  simplified  (basic)  text  search  

syntax  and  sort  the  results  by  the  text  search  score.  

//Journal_Article  

[contains-text-basic(@Title,  " +Java  -XML  +’JDK  1.3’")=1]  

SORTBY  (score-basic(@Title,  " +Java  -XML  +’JDK  1.3’  "))  

Explanation:  

This  is  an  example  of  performing  text  search  using  the  simplified  text  

search  syntax.  Use  a“  +”  to  indicate  the  words  or  phrases  that  should  be  

present  in the  attribute“  Title”,  and,  similarly,  use  a “-”  to exclude  other  

words  or  phrases.  The  score-basic  function  works  similarly  to the  score  

function  in  the  previous  example,  but  uses  a simplified  syntax.  

Example  10:  text  search  on  resource  items  

This  query  finds  text  resources  in  a text  resource  item  type  “TextResource”  

that  contain  the  text  “Java”  and  the  text  “XML”.  

 

 

DB2  

/TextResource[contains-text-db2(@TIEREF,  " ’Java’  & ’XML’  

")=1]  

 

 

Oracle  

/TextResource[contains-text-oracle(@TIEREF,  " ’Java’  & ’XML’  

")>0]  

 

 

202 Application  Programming Guide

|
|
|
|

|

|
|
|
||||
|

|

|
|
|
||||

|
|
|
|

|
|
|

|

|
||||
|

|

|
||||



Explanation:  

This  is  an  example  of performing  text  search  inside  of  the  resources  in the  

resource  manager.  Note  that  the  “TIEREF”  attribute  is used  as a 

representation  of the  resource  that  is represented  by  the  item  of  type  

“TextResource”.  DB2  Text Information  Extender  syntax  is used  as  usual  in 

this  case  inside  the  contains-text-db2  function.  For  the  syntax  supported  by  

this  function,  see  the  IBM  DB2  Universal  Database:  Net  Search  Extender  

Administration  and  User’s  Guide  in  the  DB2  UDB  Information  Center.  

Example  11: traversal  of  references  in  the  forward  direction  

This  query  finds  all  the  frequently  asked  questions  for  conferences,  for  

which  the  conference  notes  refer  to  books  with  titles  mentioning  

Information  Integrator  for  Content.  

 /Conference/Conference_Note  [@PublicationRef  => 

Book[@Title  LIKE  "%EIP%"]]  

/Conference_FAQ  

Example  12:  traversal  of  references  in  the  forward  direction  

This  query  finds  all  chapters  of books  referenced  in  the  notes  of 

conferences  related  to  Internet.  

/Conference[@Title  LIKE  "%Internet%"]  

/Conference_Note/@PublicationRef  => 

*/Book_Chapter  

Example  13:  traversal  of  references  in  the  reverse  direction  

This  query  finds  all  the  components  that  have  references  pointing  to any  

books.  

/Book/REFERENCEDBY/@REFERENCER  => * 

Example  14:  traversal  of  references  in  the  reverse  direction  

This  query  finds  all  the  frequently  asked  questions  under  conference  notes  

that  refer  to  books  about  XML.  

/Book[@Title  LIKE  "XML"]/REFERENCEDBY/@REFERENCER  => 

Conference_Note/Conference_FAQ  

Explanation:  

Note  that  since  the  reference  attributes  originate  inside  of  the  

Conference_Note  component,  this  is the  component  that  must  appear  as  

the  first  component  after  the  dereference  operator.  This  query  produces  an  

empty  result  set  if, for  example,  Conference  follows  the“  =>”  operator.  

Example  15:  traversal  of  references  in  the  reverse  direction  

This  query  finds  all  the  components  that  contain  XML  in  their  remarks  and  

that  have  references  pointing  to books.  

/Book/REFERENCEDBY/@REFERENCER  => 

*[@Remark  LIKE  "%XML%"]  

Example  16:  latest  version  function  

This  query  finds  all  the  journals  of the  latest  version.  By  default,  all  

versions  of  the  indicated  component  type  view  that  match  the  query  are  

returned.  VERSIONID  is a system-defined  attribute  that  is  contained  in 

every  component  type.  

/Journal[@VERSIONID  = latest-version(.)]  

Example  17:  latest  version  function  on  the  target  of  the  dereference  

This  query  finds  all  the  books  of  the  latest  version  that  are  referenced  in 

the  notes  of any  conferences.  

/Conference/Conference_Note/@SYSREFERENCEATTRS  =>  

Book[@VERSIONID  = latest-version(.)]  

 

 

Chapter  5. Searching  for data 203

|
|
|
|
|
|
|
|

http://publib.boulder.ibm.com/infocenter/db2help/


Example  18:  latest  version  function  on  wildcard  components  

This  query  finds  all  the  components  of the  latest  version  that  have  

references  pointing  to any  books.  

/Book/REFERENCEDBY/@REFERENCER  => * 

[@VERSIONID  = latest-version(.)]  

Example  19:  system-defined  attributes  

This  query  finds  all  the  root  components  with  a specific  item  ID.  

/*[@ITEMID  = 

"A1001001A01J09B00241C95000"]  

Example  20:  text  search  on  document  model   

This  query  finds  all  documents  that  contain  the  word  “XML”  in  any  one  of  

its  parts.  

 

 

DB2  

/Doc[contains-text-db2(.//ICMPARTS/@TIEREF,  " ’XML’  ")=1]  

 

 

Oracle  

/Doc[contains-text-oracle(.//ICMPARTS/@TIEREF,  " ’XML’  ")>0]  

 Explanation:  

The  query  language  offers  a virtual  component  “ICMPARTS”  that  allows  

access  to  all  the  ICM  Parts  item  types  contained  under  a specific  item  type  

of  Document  classification.  

Example  21:  document  model  (access  to  ICM  Parts)  

This  query  finds  all  the  parts  of the  document  with  the  storage  ID  of  555.  

/Doc[@ArchiveID  = 555]/ICMPARTS/  

@SYSREFERENCEATTRS  => * 

Example  22:  document  model  (access  to  ICM  Parts)  

This  query  finds  all  the  parts  in  all  of  the  documents  in  the  system.  

 //ICMPARTS/@SYSREFERENCEATTRS  => * 

Explanation:  

Because  both  the  Doc  and  Paper  item  types  have  been  defined  as  being  

Documents  in the  system,  the  ICM  Parts  from  both  of them  are  returned  in  

the  result.  

Example  23:  existence  of  attributes  

This  query  finds  all  root  components  that  have  a title.  

  /*[@Title]  

Explanation:  

To eliminate  the  restriction  that  only  root  components  should  be  returned,  

the  query  can  be  rewritten  to start  with  a double-slash  

//*[@Title]  

Example  24:  list  of  both  literals  and  expressions  

This  query  finds  all  journals  that  have  a title  that  is equal  to  either  its  

article’s  title,  its  section’s  title,  or  ″IBM  Systems  Journal″. 

/Journal[@Title  = [Journal_Article/@Title,  

.//Journal_Section/@Title,"IBM  Systems  Journal"]]  

 

 

204 Application  Programming Guide

|
|
|

|

||||
|

|

||||

|
|
|
|



Example  25:  list  of  literals  

This  query  finds  all  books  that  cost  either  $10,  $20,  or  $30.  

/Book[@Cost  IN (10,  20,  30)]  

Although  it is possible  to  perform  the  same  query  using  the  list  operator,  

as  in /Book[@Cost  = [10,  20,  30]]         (sub-optimal),  for  a large  

number  of literals  this  approach  might  lead  to  errors  because  the  generated  

SQL  would  be  too  long  or  too  complex.  If  all  the  elements  in  the  list  are  

literals,  always  use  the  IN  operator  for  the  best  performance  and  the  

shortest  SQL.  You can  use  the  IN  operator  for  literals  of  any  type,  

including  non-numeric  types.  

Example  26:  list  of  a result  of  query  

This  query  finds  all  journals  or  all  books  with  the  title  “Star  Wars”.  

 [/Journal,  /Book[@Title  = "Star  Wars"]]  

Example  27:  attribute  groups  

This  query  finds  all  details  on  documents  in  which  the  description  is at  

least  20  pages  long.  

/Doc[Doc_Description/@PageSummary.NumPages  >= 

20]//Doc_Details  

Explanation:  

Note  that  if an  attribute  (for  example,  “NumPages”)  is contained  in  an  

attribute  group  (for  example,  “PageSummary”),  then  you  must  refer  to  that  

attribute  as GroupName.AttrName  (for  example,  

PageSummary.NumPages).  The  attribute  “@NumPages”  would  not  be  

found  under  Doc_Description.  

Example  28:  checked  out  items  

This  query  finds  all  items  of the  “Journal”  item  type  that  are  currently  

checked  out.  

/Journal  [ICMCHECKEDOUT]  

Explanation:  

The  ICMCHECKEDOUT  XML  element  is a sub-element  of only  the  root  

components,  but  not  of the  descendant  components.  Therefore,  if the  

ICMCHECKEDOUT  element  is written  in a query  as  a condition  of  a child  

component  (for  example,  //Journal_Author  [ICMCHECKEDOUT]), then  no  

results  return.  

 Whenever  an  item  is  checked  out,  all  versions  of that  item  are  checked  out.  

Therefore,  when  an  ICMCHECKEDOUT  element  is  applied  to  a checked  

out  item,  all  currently  available  versions  will  be  returned.  To retrieve  a 

specific  version,  you  can  still  use  the  @VERSIONID  query  syntax  (for  

example,  /Journal  [ICMCHECKEDOUT  AND  @VERSIONID  = 4]  ). For  the  latest  

version,  you  can  use  the  latest-version()  function.  

Example  29:  checked  out  items  by  person  

This  query  finds  all  items  checked  out  by  “SMITH”:  

/Journal  [ICMCHECKEDOUT/@ICMCHKOUTUSER  = "SMITH"]  

Explanation:  

The  value  for  ICMCHKOUTUSER  must  be  entered  in  upper  case  in  a 

query.  Since  the  content  servers  store  userIDs  as  uppercase,  all  queries  

must  query  for  userIDs  using  upper  case.  All  attribute  data  pertaining  to  

userIDs  must  store  them  in  upper  case  as well.  

 

 

Chapter  5. Searching  for data 205

|
|
|

|

|
|
|
|
|
|

|
|
|
|
|
|

|
|

|

|
|
|
|
|



Example  30:  checked  out  items  by  timestamp  

This  query  finds  all  items  checked  out  after  “2003-08-02-17.29.23.977001”  

/Journal  [ICMCHECKEDOUT/@ICMCHKOUTTS  > "2003-08-02-17.29.23.977001"]  

Intermediate  results  obtained  by  INTERSECT/EXCEPT  cannot  be  combined  with  

arithmetic  (unary/binary)  or  comparison  operators.  They  can  be  combined  by  set  

operators  (UNION/INTERSECT/EXCEPT)  or  appear  by  themselves.  

Examples  of  valid  usage  of UNION/INTERSECT/EXCEPT:  

1.    (/Journal/Journal_Article[@Title  = "Content  Management"]  

EXCEPT  

//Journal_Article[@Classification  = 

"Security"])/Journal_Section  

This  query  is valid  because  the  result  of  the  EXCEPT  is the  result  of  the  entire  

query  - it  is  not  combined  using  any  operators.  

2.   /Journal[(Journal_Editor/@LastName  

UNION  .//Journal_Author/@LastName)  = "Davis"]  

This  query  is valid  because  there  is no  restriction  on  UNION  operator.  

3.   /Journal[Journal_Article[Journal_Section/@Title  INTERSECT  

.//Journal_Figure/@Caption]/@Title  = "Content  Management"]  

This  query  is valid  because  the  result  of  INTERSECT  is not  combined  using  any  

operator.  

4.   /Journal[@Title  = "VLDB"]  

UNION  /Journal[@Cost  = 20] 

INTERSECT  /Journal[@Organization  = "ACM"]  

This  query  is valid  because  the  result  of  INTERSECT  operator  is combined  

using  a set  operator  (UNION).

Examples  of  invalid  usage  of  INTERSECT/EXCEPT:  

1.   /Journal[(Journal_Editor/@LastName  

INTERSECT  .//Journal_Author/@LastName)  = "Davis"]  

This  query  is invalid  because  the  result  of  INTERSECT  operator  is combined  

using  a comparison  operator  (=).  

2.   /Journal[(.//Journal_Section/@SectionNum  

EXCEPT  .//Journal_Figure/@FigureNum)  + 5 = 10]  

This  query  is invalid  because  the  result  of  EXCEPT  is combined  using  an  

arithmetic  operator  (+).

Using escape sequences in your queries 

To support  advanced  features  of  the  query  language  (like  the  wildcards  ″%″  or  ″_″  

inside  of  text  strings),  escape  sequences  are  used  to  differentiate  between  the  cases  

when  wildcards  are  treated  as  regular  characters  versus  when  they  are  given  the  

special  meaning  of  wildcard  characters.  For  the  user, it is important  to know  which  

characters  are  used  as wildcards  because  wildcard  characters,  when  intended  to  be  

treated  as  regular  characters,  must  be  preceded  by  an  escape  character.  Escape  

sequences  are  also  used  to handle  single  and  double  quotes.  

You need  to  add  escape  sequences  when  the  strings  used  in  queries  contain  either  

special  characters  (double-quote,  apostrophe)  or  wildcard  characters  (percent  sign,  

underscore,  star, question  mark)  or  a default  escape  character  (a backlash).  This  

 

 

206 Application  Programming Guide

|
|

|



handling  is the  simplest  for  strings  used  in  comparison  conditions  and  becomes  a 

bit  more  involved  for  the  LIKE  operator  and  text  search  functions.  Proper  handling  

of  special  characters  will  ensure  successful  execution  of  queries  and  correctness  of 

query  results.  

Important:  Use  wildcard  characters  sparingly  as  using  them  in  your  queries  can  

increase  the  size  of your  result  list  significantly,  which  can  decrease  performance  

and  return  unexpected  search  results.  

Using escape sequences with comparison operators 

Double  quotation  mark  ″ 

Precede  your  double  quote  with  another  double  quote.  

 Example:  

 //Journal_Article[@Title  = "Analysis  of  ""The  Time  Machine""  by H. 

G.  Wells  himself"]  

 Since  the  article’s  title  contains  the  name  of  the  book  in double  quotes,  

″The  Time  Machine″,  these  internal  double  quotes  need  to  be  escaped.  

Single  quotation  mark  (apostrophe)  ’ 

You do  not  need  to  escape  in  this  case.  

 Example:  

 /Book[@Title  != ″Uncle  Tom’s Cabin″]

Using escape sequences with the LIKE operator 

Double  quotation  mark  ″ 

Precede  your  double  quote  with  another  double  quote.  

 Example:  

 //Journal_Article[@Title  LIKE  "Analysis  of  ""The  Time  Machine""  %"]  

 Since  the  article’s  title  contains  the  name  of  the  book  in double  quotes,  

″The  Time  Machine″,  these  internal  double  quotes  need  to  be  escaped.  

Single  quotation  mark  (apostrophe)  ’ 

You do  not  need  to  escape  in  this  case.  

 Example:  

  /Book[@Title  LIKE  "Uncle  Tom’s  Cabin"]  

Wildcards  (″%″,  ″_″)  

The  percent  sign  ″%″  is a wildcard  character  used  to  represent  any  number  

of  arbitrary  characters  in a string  used  with  the  LIKE  operator.  

The  underscore  ″_″  is a wildcard  character  used  to represent  a single  

arbitrary  character.  If you  want  these  wildcard  characters  to  be  treated  as  

regular  characters,  you  need  to do  the  following:  

1.   Precede  the  wildcard  character  with  an  escape  character  

2.   Add  an  ESCAPE  clause  with  the  escape  character  after  the  LIKE  

phrase.

Example  A:  

 /Book[@Title  LIKE  "Plato%s%S_mposium"]  

 This  example  shows  how  wildcards  ″%″  and  ″_″  are  used  to  find  a book  

whose  title’s  spelling  is  uncertain.  

 

 

Chapter  5. Searching  for data 207



Example  B:  

 //Journal_Article[@Title  LIKE  "Usage  of  underscore  !_  in  query"  

ESCAPE  "!"]  

 Since  the  search  string  in  this  example  contains  the  underscore  ″_″  as a 

regular  character  (not  a wildcard),  you  can  escape  the  underscore  with  an  

exclamation  point  character  ″!″.  Any  single  character  can  be  used  as  an  

escape  character.  

 Example  C:  

 //Journal_Article[@Title  LIKE  "_sage  of  underscore  \_  in%"  ESCAPE  

"\"]  

 In  this  query,  wildcard  characters  are  used  as both  regular  characters  (″_″  

escaped  by  ″\″)  and  as  wildcards  (″_″  ) to  catch  both  uppercase  and  

lowercase  versions  of the  word  ″Usage″,  as  well  as  ″%″  to catch  multiple  

endings  of  the  string.  

 Example  D:  

 //Journal_Article[@Title  LIKE  "Usage  of  underscore  !_  on  Yahoo!!"  

ESCAPE  "!"]  

 You can  also  use  an  escape  character  as  a regular  character.  To do  so,  

precede  the  escape  character  with  itself,  as  in  the  example  to  search  for  

″Yahoo!″ below.

Using escape sequences with advanced text search 

Double  quotation  mark  ″ 

Precede  your  double  quote  with  another  double  quote.  

 Example:  

 

 

DB2  

//Journal_Article[contains-text-db2  (@Title,  " ’Analysis  of  

""The  Time  Machine""  %’  ")=1]

 

 

Oracle  

//Journal_Article[contains-text-oracle  (@Title,  " ’Analysis  of  

""The  Time  Machine""  %’  ")>0]

 Since  the  article’s  title  contains  the  name  of the  book  in  double  quotes,  

″The  Time  Machine″,  these  internal  double  quotes  need  to  be  escaped.  

Single  quotation  mark(apostrophe)  ’ 

Precede  the  apostrophe  with  another  apostrophe.  A single  apostrophe  is 

not  allowed  in  advanced  text  search  because  a set  of  apostrophes  is used  to 

enclose  a term  or  a phrase.  If  an  apostrophe  appears  inside  a term,  then  

the  apostrophe  needs  to be  escaped  to  differentiate  it from  the  apostrophe  

that  ends  the  term  or  the  phrase.  

 Example  A:  

 

 

208 Application  Programming Guide



DB2  

/Book[contains-text-db2  (@Title,  " ’Uncle  Tom’’s  Cabin’  ")=1]  

        SORTBY  (score-db2  (@Title,  " ’Uncle  Tom’’s  Cabin’  "))

 

 

Oracle  

/Book[contains-text-oracle  (@Title,  " ’Uncle  Tom’’s  Cabin’  

")>0]          SORTBY  (score-oracle  (@Title,  " ’Uncle  Tom’’s  

Cabin’  "))

 Note  that  Tom’’s  has  two  apostrophes.  

 Example  B:  

 

 

DB2  

/Book[contains-text-db2  (@Title,  " (’Greek’  & ’Plato’’s  

Symposium’)  & NOT  ’ Socrates’  ")=1]  SORTBY  (score-db2  (@Title,  

" (’Greek’  & ’Plato’’s  Symposium’)  & NOT  ’ Socrates’  "))

 

 

Oracle  

/Book[contains-text-oracle  (@Title,  " (’Greek’  & ’Plato’’s  

Symposium’)  & NOT  ’ Socrates’  ")=1]  SORTBY  (score-oracle  

(@Title,  " (’Greek’  & ’Plato’’s  Symposium’)  & NOT  ’ Socrates’  

"))

 Note  that  Plato’’s  has  two  apostrophes.  

Wildcards  (″%″,  ″_″)  

Just  as  the  LIKE  operator,  advanced  syntax  uses  ″%″  and  ″_″  as wildcards.  

The  percent  sign  ″%″  is a wildcard  character  used  to  represent  any  number  

of  arbitrary  characters.  The  underscore  ″_″  is a wildcard  character  used  to  

represent  a single  arbitrary  character.  If you  want  a wildcard  character  to  

be  treated  as  a regular  character,  you  need  to  do  the  following:  

1.    Precede  the  wildcard  character  with  an  escape  character  

2.   Add  an  ESCAPE  clause  after  EACH  term  where  you  use  the  escape  

character

Example  A:  

 /Book[contains-text-db2  (@Title,  " ’Usage  of  underscore  !_  in  query’  

ESCAPE  ’!’  ")=1]      SORTBY  (score-db2  (@Title,  " ’Usage  of  

underscore  !_  in  query’  ESCAPE  ’!’  "))  

 In  this  example,  an  exclamation  mark  ″!″  is used  as  an  escape  character  

before  the  underscore.  

 Example  B:  

 /Book[contains-text-db2  (@Title,  " ’Usage  of  underscore  !_  in  query’  

ESCAPE  ’!’  | ’Yahoo!  For  Dummies’  | ’Usage  of  underscore  !_  on  

Yahoo!!’  ESCAPE  ’!’  | ’War  and  Peace’  ")=1]  

 

 

Chapter  5. Searching  for data 209



Note  that  an  ESCAPE  clause  must  be  added  after  every  term  in  your  text  

search  string  where  you  escape  wildcards,  even  if the  escape  character  is 

the  same  in  all  the  terms.

Using escape sequences with basic text search 

(contains-text-basic and score-basic functions) 

Double  quotation  mark  ″ 

Precede  your  double  quote  with  another  double  quote.  

 Example:  

 //Journal_Article[contains-text-basic  (@Title,  "Analysis  of  ’""The  

Time  Machine""’  ")=1]  

 Since  the  article’s  title  contains  the  name  of the  book  in  double  quotes,  

″The  Time  Machine″,  these  internal  double  quotes  need  to  be  escaped.  The  

book  title  is  inclosed  in  apostrophes  to  keep  it as  a phrase.

Single  quotation  mark  (apostrophe)  ’ 

Precede  the  apostrophe  with  another  apostrophe.  Basic  text  search  syntax  

allows  terms  enclosed  within  single  quotes,  so  that  a term  can  contain  a 

space.  The  doubling  of  the  apostrophe  is  therefore  necessary  to  

differentiate  the  case  of an  apostrophe  occurring  within  a term  from  the  

case  of  an  apostrophe  starting  a new  term.  

 Example  A:  

 /Book[contains-text-basic  (@Title,  "Uncle  Tom’’s  Cabin")=1]         

SORTBY  (score-basic  (@Title,  "Uncle  Tom’’s  Cabin"))  

 Note  that  Tom’’s  has  two  apostrophes.  

 Example  B:  

 /Book[contains-text-basic  (@Title,  " +Greek  +’Plato’’s  Symposium’  

-Socrates  ")=1]          SORTBY  (score-basic  (@Title,  " +Greek  

+’Plato’’s  Symposium’  -Socrates  "))  

 Note  that  Plato’’s  has  two  apostrophes  and  ’Plato’s  Symposium’  is 

enclosed  in  single  quotes  since  it is a phrase.  

Wildcards  (″*″,  ″?″  and  ″\″)  

Precede  ″*″,  ″?″,  and  ″\″  characters  with  a backslash  ″\″  if these  characters  

are  not  to  be  treated  as wildcards.  

Star  ″*″  is a wildcard  character  used  to  represent  any  number  of  arbitrary  

characters  in  basic  text  search  for  the  functions  contains-text-basic  and  

score-basic.  The  question  mark  ″?″  is a wildcard  character  used  to  represent  

a single  arbitrary  character.  For  basic  text  search,  the  query  language  

provides  an  escape  character  backslash  ″\″  to  be  used  when  the  term  to  be  

searched  contains  the  wildcard  character  in  it  and  you  want  to  treat  that  

wildcard  character  as  a regular  character.  

 Example  A:  

 /Book[contains-text-basic  (@Title,  " +Greek  +’Plato*s*S?mposium’  

-Socrates  ")=1]          SORTBY  (score-basic  (@Title,  " +Greek  

+’Plato*s*S?mposium’  -Socrates  "))  

 This  example  shows  how  to  use  basic  text  search  when  the  spelling  of a 

term  is not  certain.  The  ″*″  and  ″?″  characters  are  meant  to be  wildcards  in 

this  case,  so  they  are  not  escaped.  

 

 

210 Application  Programming Guide



Example  B:  

 /Book[contains-text-basic  (@Title,  "Why  forgive\?")=1]          

SORTBY  (score-basic  (@Title,  "Why  forgive\?"))  

 In  this  example,  the  title  contains  the  question  mark  ″?″  as  a normal  

character,  so  this  character  can  be  escaped  with  a backslash.  

 Example  C:  

 //Journal_Section[contains-text-basic  (@Title,  

"C:\\OurWork\\IsNeverDone")=1]          SORTBY  (score-basic  (@Title,  

"C:\\OurWork\\IsNeverDone"))  

 Each  backslash  that  naturally  occurs  in  the  search  

term"C:\OurWork\IsNeverDone"  must  be  escaped  with  another  backslash.

Using escape sequences in Java and C++ 

Precede  special  characters  (for  example,  double  quotes  and  backslash)  with  a 

backslash.  

Example:  

Query:  

/Book[contains-text-basic  (@Title,  ″Why  forgive\?″)=1] 

 

 

Java  

String  query  = "/Book[contains-text-basic  (@Title,  \"Why  forgive\\?\")=1]";  

 

 

C++  

DKString  query  ("/Book[contains-text-basic  (@Title,  \"Why  forgive\\?\")=1]");  

 Note  how  the  internal  double  quotes  and  the  backslash  before  the  question  mark  

are  preceded  by  a backslash.  This  handling  is inherent  to  Java  and  C++  

programming  languages.  For  more  information,  see  the  specifications  for  these  

languages.  

Understanding row-based view filtering in query 

With  row-based  view  filtering,  you  can  filter  a component  based  on  the  contents  of  

one  of  the  component’s  attributes.  By  having  different  views  on  the  same  item  type  

with  different  filtering  conditions,  you  can  separate  the  data  for  an  item  type  into  

logical  blocks,  allowing  users  to  view  only  certain  data,  depending  on  which  view  

is  used  to  access  the  data.  Therefore,  in  query,  row-based  view  filtering  helps  to  

automatically  limit  the  amount  of  data  retrieved  for  a given  view. 

Caution:
Improperly  using  row-based  view  filtering  can  result  in  a significant  increase  in  the  

length  of  the  generated  SQL  and  a decrease  in  query  performance.  In the  DB2  

Content  Manager  system,  your  query  gets  converted  to a SQL  query  string  that  is 

executed  on  the  underlying  database  tables.  Since  database  systems  have  a limit  on  

the  length  of  the  SQL  query  string,  improper  usage  of  filtering  can  cause  this  string  

 

 

Chapter 5. Searching for data 211

|

|
|
|
|
|
|

|
|
|
|
|
|



to  become  so  long  that  it  can  exceed  the  limit  and  prevent  successful  execution  of 

your  query.  You should  review  the  performance  discussion  before  you  decide  to  

use  this  feature.  

Sample usage scenario 

This  section  provides  a simple  scenario  that  describes,  from  a high-level  

perspective,  how  row-based  view  filtering  can  be  used  in  the  DB2  Content  

Manager  system.  Following  are  the  steps  involved  in  the  scenario:  

1.    Define  an  item  type  called  Journal.  

2.   Add  some  items  to  this  item  type.  

3.    Define  an  item  type  view  called  MyJournal  with  the  following  filter:  

@Organization  = "IBM"  

4.    Execute  a query  against  the  item  type  view  MyJournal. 

5.    Display  the  results  of the  query  to  the  user. Only  journals  for  the  IBM  

organization  are  returned.

 

  

Figure  12. Sample  data  model  for  query  row-based  view  filtering

 

 

212 Application  Programming Guide

|
|
|

|

|
|
|

|

|

|
|

|

|
|

|



Table 19. Sample  definition  of views  with  filters  

User  Component  Type View  Base  Component  Type Filter  Condition  

MyJournal  Journal  @Organization  = ″IBM″ 

MyJournal_Article  Journal_Article  @Classification  = ″Public″ 

MyJournal_Section  Journal_Section  None  

MyJournal_Figure  Journal_Figure  @FigureNum  = 5 

MyJournal_Author  Journal_Author  @Affiliation  = ″Almaden″ 

MyJournal_Editor  Journal_Editor  @Affiliation  = ″Almaden″ 

MySIG  SIG  @Region  = ″USA″
  

Description of behavior 

Row-based  filtering  in  DB2  Content  Manager  query  is applied  on  component  type  

views  explicitly  mentioned  in  the  query  string  or  implicitly  indicated  by  a wildcard  

or  a query  on  one  of  the  view  attributes.  The  following  list  describes  how  

row-based  view  filtering  behaves  depending  on  the  type  of  query  that  you  want  to  

perform.  

Root  filters  

You can  use  a filter  on  the  root  component  type  view  to filter  the  contents  

of  the  whole  item  if the  root  component  type  view  is explicitly  mentioned  

in  the  query.
Example:  

There  are  1,000,000  components  of  the  component  type  Journal  in  the  

system.  1,000  of  these  components  have  "IBM"  in  the  Organization  

attribute.  You execute  the  following  query  to  get  all  journals  associated  

with  the  view  MyJournal:"/MyJournal"  

Result:  Only  1,000  components  are  returned  from  the  query  since  the  user  

query  is  equivalent  to  "/MyJournal  [@Organization  = "IBM"]". The  results  

do  not  include  items  for  which  the  row-based  filter  on  Organization  does  

not  match  the  data.  For  example,  items  that  have  Microsoft  and  Sun  in the  

Organization  attribute  are  not  returned.  The  benefit  is that  you  do  not  

need  to  specify  the  filtering  conditions  explicitly  since  they  are  applied  

automatically  based  on  which  view  you  query.  

Important:  A component  cannot  be  filtered  based  on  the  filters  of its  

children.  Filters  are  not  applied  down  the  tree  hierarchy.  Note  that  neither  

MyJournal_Editor’s  nor  MyJournal_Figure’s  filters  are  applied  for  the  

above  "/MyJournal"  query. 

Child  filters  

When  you  use  a child  component  type  view  in  a query,  the  specific  filter  

for  that  particular  child  view  is applied.
Example:  

You execute  the  following  query  to  get  all  journal  articles  available  to  an  

individual:  "//MyJournal_Article"  

Result:  The  filter  condition  @Classification  = "Public"  is  applied  on  

MyJournal_Article. Therefore,  only  the  articles  for  public  consumption  are  

retrieved,  but  whitepapers  and  other  articles  that  might  not  be  approved  

for  public  viewing  are  ignored.  

 Note  that  a component  cannot  be  filtered  based  on  the  filters  of  its  parent.  

For  example,  for  the  query  "//MyJournal_Article", only  the  filter  on  

MyJournal_Article  is applied.  A  filter  on  the  parent  view  MyJournal  is not  

applied.  

 

 

Chapter  5. Searching  for data 213

||

|||

|||

|||

|||

|||

|||

|||

|||
|

|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|



If  you  want  a parent  filter  to  be  applied,  you  can  take  one  of  the  two  

following  approaches:  

v   Rewrite  the  query  to  go  through  the  root,  as  in  this  example:  

"/MyJournal/MyJournal_Article"  

v   Add  the  same  filter  attribute  and  filter  condition  to  the  child  that  you  

added  to  the  root  when  designing  the  item  type  and  populate  the  value  

for  the  child  filter  attribute  with  the  same  data  as  the  root  filter  attribute.  

For  example,  you  can  add  the  attribute  Organization  to  

MyJournal_Article  with  the  following  filtering  condition:  @Organization  

= "IBM". 

Note  that  a component  cannot  be  filtered  based  on  the  filters  of  its  siblings  

or  distant  relatives.  For  example,  for  the  query  "//MyJournal_Editor", only  

the  filter  on  MyJournal_Editor  is applied.  Filters  on  MyJournal_Article  or  

on  any  of  its  children  (MyJournal_Author  and  MyJournal_Figure)  are  not  

applied.  

Filters  on  intermediates  

Using  the  DB2  Content  Manager  query  language,  you  can  traverse  through  

links  and  references  before  getting  to the  final  component.  Filters  are  

applied  on  any  components  involved  in  such  intermediate  traversals.
Example:  

You execute  the  following  query  to  get  all  special  interest  groups  that  have  

links  to  publications  by  a specific  publisher:  "/MyJournal  [@PublisherName  

= "Acme  Publishing"]/INBOUNDLINK/@SOURCEITEMREF  =>  MySIG"  Result:  

Even  though  no  journals  are  returned  as  results  of  this  query,  a filtering  

condition  (@Organization  = "IBM") is applied  on  the  Journal  component  

type,  therefore  filtering  out  any  SIGs  that  have  links  to journals  of other  

organizations.  

Filters  on  wildcards  

Since  a wildcard  refers  to  all  active  component  type  views  for  a given  user, 

filtering  conditions  are  applied  on  any  such  views  if filters  are  defined  on  

them.
Example:  

You execute  the  following  query  to  find  all  items  that  are  linked  from  

special  interest  groups  named  ″XML″: "/MySIG  [@Title  = 

"XML"]/OUTBOUNDLINK/@TARGETITEMREF  =>  *"  Result:  The  wildcard  (*)  is 

expanded  to  represent  all  active  component  type  views,  and  filtering  

conditions  are  added  on  MyJournal  and  MySIG  views  to  ensure  that  only  

journals  corresponding  to  IBM  and  only  SIGs  in  the  USA  are  considered  as  

final  results.

Performance considerations 

This  section  contains  recommendations  for  ensuring  the  best  query  performance.  

Make  your  filters  highly  restrictive  

A  restrictive  filter  matches  only  a small  portion  of  the  total  number  of  rows  

for  a component  type.  Using  restrictive  filters  generally  leads  to  better  

execution  plans  for  your  database  queries.
Example:  

In  the  earlier  example,  the  filter  on  MyJournal’s  Organization  attribute  is a 

restrictive  filter  since  only  1,000  components,  out  of a total  of  1,000,000  

components,  have  Organization  = "IBM". 

Minimize  the  use  of  wildcards  in  your  queries  

Minimizing  the  use  of  wildcards  in  your  queries  is always  a good  idea.  

 

 

214 Application  Programming Guide

|
|

|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|

|

|
|
|
|
|
|
|
|

|
|



Specifically,  since  application  of  each  filter  generally  involves  adding  extra  

conditions  and  joins  to  your  queries,  the  combination  of this  extra  

complexity  can  be  significant  when  you  use  wildcards.  Because  a wildcard  

refers  to  all  of  a user’s  active  views  in  the  system,  your  query  can  get  large  

as  the  number  of  filtered  views  increases.  Whenever  possible,  use  a specific  

component  type  view  instead  of a wildcard.
Example:  

If  you  know  that  in  your  data  model  SIG  items  link  only  to  Journals  or  

Books,  use  the  specific  names  of those  component  type  views  in  your  

query  instead  of the  wildcard  to  indicate  the  target  of  link  traversal.  For  

example,  to  find  all  items  that  are  linked  from  special  interest  groups  

named  ″XML″, rewrite  your  query  as  follows:  Sub-optimal:  "/MySIG  

[@Title  = "XML"]/OUTBOUNDLINK/@TARGETITEMREF  =>  *"  

Optimal:  "/MySIG  [@Title  = "XML"]/OUTBOUNDLINK/@TARGETITEMREF  => 

MyJournal   UNION  /MySIG  [@Title  = "XML"]/OUTBOUNDLINK/@TARGETITEMREF  

=>  MyBook"  

Avoid  defining  too  many  filters  in  your  system  

The  more  filtered  views  you  have  in  the  system,  the  more  complex  your  

final  database  queries  become  when  you  use  wildcards.  If you  decide  to  

use  filters,  define  these  filters  only  on  the  views  that  really  require  such  

filtering  or  avoid  using  wildcards.  

 Example:  

The  simple  query  "/*  [@ITEMID  = "myItemID"]"  to  retrieve  an  item  with  a 

specific  ITEMID  can  result  in  a complex  final  SQL  query  if you  have,  for  

example,  30  root  item  type  views  in  the  system  with  25 of  them  having  

filters  defined  on  them.  For  each  filter, extra  conditions  and  joins  must  be  

added  to  your  database  query.  If  you  know, for  example,  that  your  item  

belongs  to  either  a Journal  or  a SIG  item  type,  rewrite  your  query  in the  

following  way:  "(Journal  | SIG)  [@ITEMID  = "myItemID"]"  

 Since  there  is a limit  on  the  length  of  the  SQL  query  string  that  the  

database  can  process,  some  of your  queries  might  throw  an  exception  if 

you  have  a lot  of filters  defined  and  you  use  wildcards.

Database Index on each filtered attribute 

This  section  describes  the  relationship  between  database  indexes  and  performance  

of  row-based  view  filtering  queries.  

Indexes  automatically  defined  by  the  DB2  Content  Manager  system  

When  a row-based  filter  is defined  on  a component  type  view, the  library  

server  automatically  tries  to  create  a database  index  on  the  column  

corresponding  to  the  filter  attribute.  This  index  should  help  to  improve  the  

performance  for  complex  queries  that  are  written  against  a data  model  that  

uses  row-based  view  filtering.  The  database  system  can  use  the  index  to  

come  up  with  a better  access  plan  to  execute  a complex  query.
Example:  

If  the  Organization  attribute  is specified  as a filter  attribute  during  creation  

of  the  user  view  MyJournal  on  the  item  type  Journal, a database  index  is 

created  on  the  column  corresponding  to  the  Organization  attribute  in the  

table  of  the  base  component  type  for  Journal.
An  index  is created  on  the  filter  attribute  regardless  of  whether  the  

component  type  view  in  which  this  attribute  exists  is a root  view  or one  of 

the  child  views.  Also,  the  library  server  relies  on  the  database  system  to 

determine  whether  an  index  can  be  created.  In  some  cases  the  index  might  

not  be  created  if an  index  already  exists,  for  example.  To verify  that  an 

 

 

Chapter  5. Searching  for data 215

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|

|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|



index  has  been  created  on  the  Organization  filter  attribute  for  Journal,  for  

example,  a system  administrator  can  go  to  DB2  Content  Manager  System  

Administration  Client  ->  Data  Modeling  ->  Item  Types ->  Journal  ->  

Database  Indexes  and  look  for  a listing  of  an  index  on  the  Organization  

attribute.  

Indexes  that  a system  administrator  can  define  to  improve  performance  

To improve  performance  of some  wildcard  queries  on  a DB2  Content  

Manager  system  that  has  filtered  views,  a system  administrator  can  define  

indexes  on  the  following  columns  in  system  tables:  

   ICMSTITEMS001001.COMPONENTTYPEID  

   ICMSTITEMVER001001.COMPONENTTYPEID  

   ICMSTRI001001.SOURCECOMPTYPEID

For  DB2  Content  Manager  user  component  tables  (ICMUT*  tables)  that  

have  reference  attributes  in  them,  you  can  create  indexes  on  the  

RTARGETCOMPTYPEID  column  (for  the  SYSREFERENCEATTRS  reference  

attribute)  or  any  ATTRXXXXX00110  columns  (for  user-defined  reference  

attributes),  such  that  XXXXX  is the  attribute  group  ID  of  the  reference  

attribute,  for  example,  01005.

Security implications 

Although  you  can  use  row-based  view  filtering  to  mimic  a security  mechanism,  

there  are  some  limitations  you  should  consider  before  using  this  feature.  It is 

important  to  understand  exactly  how  filtering  is applied  in  query  and  in  other  

parts  of  the  system.  For  query,  there  are  cases  for  which  the  filters  are  not  applied.  

Besides  query,  the  user  might  have  access  to database  views  that  allow  them  to see  

filtered  data.  An  application  might  also  be  able  to  retrieve  child  components  

directly  using  other  parts  of  the  API  if the  PIDs  of the  components  are  known  

ahead  of  time.  

The query language grammar 

The  query  language  formal  grammar,  described  in  the  Extended  Backus-Naur  

Form  (EBNF)  notation,  is as  follows:  

v   (* keywords  *)  

v   AND  =  (″a″  | ″A″),  (″n″  | ″N″),  (″d″  | ″D″)  ; 

v   ASCENDING  = (″a″  | ″A″),  (″s″  | ″S″),  (″c″  | ″C″),  (″e″  | ″E″),  (″n″  | ″N″),  (″d″  

| ″D″),  (″i″  | ″I″),  (″n″  | ″N″),  (″g″  | ″G″)  ; 

v   BETWEEN  = (″b″  | ″B″),  (″e″  | ″E″),  (″t″  | ″T″),  (″w″  | ″W″),  (″e″  | ″E″),  (″e″  | 

″E″),  (″n″  |  ″N″)  ; 

v   DESCENDING  = (″d″  | ″D″),  (″e″  | ″E″),  (″s″  | ″S″),  (″c″  | ″C″),  (″e″  | ″E″),  (″n″  

| ″N″),  (″d″  |  ″D″),  (″i″  | ″I″),  (″n″  | ″N″),  (″g″  | ″G″)  ; 

v   DIV  = (″d″  |  ″D″),  (″i″  | ″I″),  (″v″  | ″V″)  ; 

v   EXCEPT  =  (″e″  |  ″E″),  (″x″  | ″X″),  (″c″  | ″C″),  (″e″  | ″E″),  (″p″  | ″P″),  (″t″  | ″T″)  

; 

v   INTERSECT  =  (″i″  | ″I″),  (″n″  | ″N″),  (″t″  | ″T″),  (″e″  | ″E″),  (″r″  | ″R″),  (″s″  | 

″S″),  (″e″  | ″E″),  (″c″  | ″C″),  (″t″  | ″T″)  ; 

v    LIKE  = (″l″  | ″L″),  (″i″  | ″I″),  (″k″  | ″K″),  (″e″  | ″E″)  ; 

v    MOD  = (″m″  | ″M″),  (″o″  | ″O″),  (″d″  | ″D″)  ; 

v   NOT  = (″n″  | ″N″),  (″o″  | ″O″),  (″t″  | ″T″)  ; 

v   OR  = (″o″  | ″O″),  (″r″  | ″R″)  ; 

 

 

216 Application  Programming Guide

|
|
|
|
|

|
|
|
|

|

|

|

|
|
|
|
|
|

|

|
|
|
|
|
|
|
|



v   SORTBY  = (″s″  | ″S″),  (″o″  | ″O″),  (″r″  | ″R″),  (″t″  | ″T″),  (″b″  | ″B″),  (″y″  | ″Y″)  

; 

v   UNION  =  (″u″  | ″U″),  (″n″  | ″N″),  (″i″  | ″I″),  (″o″  | ″O″),  (″n″  | ″N″)  ; 

v   IS  = (″i″  |  ″I″),  (″s″  | ″S″);  

v   NULL  = (″n″  |  ″N″),  (″u″  | ″U″),  (″l″  | ″L″),  (″l″  | ″L″);  

v   IN  =  (″i″  | ″I″),  (″n″  | ″N″);  

v   ESCAPE_KEYWORD  = (″e″  | ″E″),  (″s″  | ″S″),  (″c″  | ″C″),  (″a″  | ″A″),  (″p″  | 

″P″),  (″e″  | ″E″);  

v   KEYWORD  = ( AND  | ASCENDING  | BETWEEN  | DESCENDING  | DIV  

| EXCEPT  |  INTERSECT  | LIKE  | MOD  | NOT  | OR  | SORTBY  | UNION  | 

IS  

| NULL  |  IN);
v    (*  literals  *) 

v   DIGIT  = (″0″  | ″1″  | ″2″  | ″3″  | ″4″  | ″5″  | ″6″  | ″7″  | ″8″  | ″9″)  ; 

v   NONZERO_DIGIT  = (″1″  | ″2″  | ″3″  | ″4″  | ″5″  | ″6″  | ″7″  | ″8″  | ″9″)  ; 

v   Exponent  = (e  | E),  [ ″+″  | ″-″  ], DIGIT,  { DIGIT  } 

v   INTEGER_LITERAL  = ″0″  | NONZERO_DIGIT,  {DIGIT}  ; 

v   FLOAT_LITERAL  = DIGIT,  { DIGIT  }, ″.″,  { DIGIT  }, [ Exponent  ] 

| [ ″.″  ], DIGIT,  { DIGIT  }, [ Exponent  ] ; 

v   (*  UNICODE_CHARACTER  is the  set  of all  unicode  characters  and  escape  

sequences.  It’s  definition  is not  included  in this  document  *) (*  String  literals  are  

delimited  by  double  quotes  and  can  contain  any  character  except  double  quote.  

To include  a double  quote  as  the  part  of  the  string  literal,  specify  two  

consecutive  double  quotes  i.e.  a double  quote  is escaped  by  another  double  

quote.  These  will  be  treated  as  one  double  quote  character  *) 

v   STRING_LITERAL  = ’″’,  { (UNICODE_CHARACTER  - ’″’)  | (’″’,  ’″’)  } , ’″’ ; 

v   (*  Escape  sequence  is a single  character  delimited  by  double  quotes.  To specify  a 

double  quote  itself  as  the  escape  character,  specify  two  consecutive  double  

quotes,  as  in  a double  quote  is escaped  by  another  double  quote.  These  will  be  

treated  as  one  double  quote  character.  For  the  complete  explanation  of the  legal  

values  for  ESCAPE_CHARACTER,  see  the  IBM  DB2  Universal  Database:  SQL  

Reference  Volume  1 section  on  the  LIKE  Predicate.  *) 

v   ESCAPE_LITERAL  = ’″’,  ((ESCAPE_CHARACTER  - ’″’)  | (’″’,  ’″’)),  ’″’;  

v   LETTER  = ( ″a″  | ″b″  | ″c″  | ″d″  | ″e″  | ″f″  | ″g″  | ″h″  | ″i″  | ″j″  | ″k″  | ″l″  | 

″m″  | ″n″  |  ″o″  | ″p″  | ″q″  | ″r″  | ″s″  | ″t″  | ″u″  | ″v″  | ″w″  | ″x″  | ″y″  | ″z″  

| ″A″  | ″B″  |  ″C″  | ″D″  | ″E″  | ″F″  | ″G″  | ″H″  | ″I″  | ″J″  | ″K″  | ″L″  | ″M″  | 

″N″  |  ″O″  |  ″P″  | ″Q″  | ″R″  | ″S″  | ″T″  | ″U″  | ″V″  | ″W″  | ″X″  | ″Y″  | ″Z″  | 

″_″  | ″$″  ) ; 

v   (*  An  IDENTIFIER  begins  with  a letter  (a-z,  A-Z)  or  an  underscore  or  a dollar  

character,  followed  by  zero  or  more  letters,  underscores,  dollar  characters  or  

digits  (0-9).  A  keyword  can  be  an  IDENTIFIER  only  if it  is enclosed  within  single  

quotes  *)  

v    IDENTIFIER  = ( LETTER,  { LETTER  | DIGIT  } ) - KEYWORD  | ″’″,  LETTER,  { 

LETTER  | DIGIT  }, ″’″;  

v   ExpressionWithOptionalSortBy  = LogicalOrSetExpression,  

SORTBY,  ″(″,  SortSpecList,  ″)″  

| Expression;  

v   Expression  =  LogicalOrSetExpression  ; 

v   SortSpecList  = SortSpec,  { ″,″,  SortSpec  } ; 

v    SortSpec  = Expression,  [ASCENDING  | DESCENDING]  ; 

 

 

Chapter  5. Searching  for data 217



v   LogicalOrSetExpression  = LogicalOrSetTerm  

| LogicalOrSetExpression,  (OR  | UNION  | ″|″  | EXCEPT),  

LogicalOrSetTerm  ; 

v   LogicalOrSetTerm  = LogicalOrSetPrimitive  

| LogicalOrSetTerm,  (AND  | INTERSECT),  LogicalOrSetPrimitive  ; 

v   LogicalOrSetPrimitive  = [NOT],  SequencedValue  ; 

v   SequencedValue  = ValueExpression  ; 

v   ValueExpression  =  Comparison  ; 

v   Comparison  =  ArithmeticExpression  

| Comparison,  CompareOperator,  ArithmeticExpression,  ESCAPE_KEYWORD,  

ESCAPE_LITERAL  

| Comparison,  CompareOperator,  ArithmeticExpression  | Comparison,  [NOT],  

BETWEEN,  ArithmeticExpression,  AND,  ArithmeticExpression  

| Comparison,  [NOT],  IN,  ″(″,  OptionalExpressionList,  ″)″;  

v   ArithmeticExpression  = ArithmeticTerm  

| ArithmeticExpression,  (″+″  | ″-″),  ArithmeticTerm  ; 

v   ArithmeticTerm  =  ArithmeticFactor  

| ArithmeticTerm,  (″*″  | DIV  | MOD),  ArithmeticFactor  ; 

v   ArithmeticFactor  = ArithmeticPrimitive  

| (″+″  | ″-″),  ArithmeticFactor  ; 

v   ArithmeticPrimitive  = BasicExpression,  OptionalPredicateList  

| PathExpression  ; 

v   PathExpression  = Path  

| (″/″  | ″//″),  Path  

| BasicExpression,  OptionalPredicateList,  (″/″  | ″//″),  Path  ; 

v    Path  =  Step  

| Path,  (″/″  |  ″//″),  Step  ; 

v    Step  = NodeGenerator,  OptionalPredicateList  ; 

v   NodeGenerator  = NameTest  

| ″@″,  NameTest  

| ″@″,  NameTest,  ″=>″,  NameTest  

| ″..″  ; 

v    OptionalPredicateList  = {Predicate}  ; 

v   Predicate  ::=  [″,  Expression,  ″]″  ; 

v   BasicExpression  =  Literal  

| FunctionName,  ″(″,  OptionalExpressionList,  ″)″  

| ″(″  Expression  ″)″  

| ListConstructor  

| ″.″  ; 

v   FunctionName  =  QName  ; 

v   Literal  =  STRING_LITERAL  

| INTEGER_LITERAL  

| FLOAT_LITERAL  ; 

v   OptionalExpressionList  = [ ExpressionList  ] ; 

v   ExpressionList  =  Expression,  {″,″,  Expression  } ; 

v   ListConstructor  = ″[″,  [ListContent],  ″]″  ; 

v   ListContent  = Expression,  {″,″,  Expression  } ; 

v   NameTest  =  QName  

| ″*″  ; 

v   QName  = LocalPart  ; 

 

 

218 Application  Programming Guide



v   LocalPart  = IDENTIFIER;  

v   CompareOperator  = 

″=″  

| ″<  ″ 

| ″<=″  

| ″>″  

| ″>=″  

| ″!=″  

| [NOT]  LIKE;

 

 

Chapter  5. Searching  for data 219



220 Application  Programming Guide



Chapter  6.  Routing  a document  through  a process  

DB2  Content  Manager  provides  an  integrated  document  routing  service  to  help  

you  route  documents  through  a business  process.  The  document  routing  APIs  

enable  you  to  build  new  applications  using  document  routing,  or  add  document  

routing  functionality  into  your  existing  applications.  Document  routing  provides  

you  with  the  following  features:  

v   Synchronization  of all  items  in a document  routing  process  because  document  

routing  functions  are  included  in  DB2  Content  Manager  transactions.  

v   Presentation  of  only  the  work  that  the  user  can  access.  

v   Single  audit  trail  that  includes  records  for  document  creation,  modification,  and  

routing.

For  basic  document  routing  concepts  and  terminology,  see  the  System  

Administration  Guide. Also  refer  to  the  samples  for  additional  document  routing  

information.  

Understanding the document routing process 

Document  routing  consists  of  processes,  work  nodes,  work  lists,  and  work  

packages.  The  system  administrator  creates  the  work  nodes,  processes,  and  work  

lists  through  the  system  administration  client.  A  process  consists  of work  nodes.  

Each  work  node  in  the  process  is a separate  step  in  the  process.  You can  create  a 

process  that  branches  out  in  several  directions.  The  user  determines  which  branch  

the  work  node  goes  to  next.  The  user  can  choose  from  a list  of  possible  selections  

that  the  system  administrator  defines.  You can  define  a server  exit  when  you  

define  a work  node.  You can  define  server  exits  for  entering  a work  node,  leaving  

a work  node,  and  to notify  the  user  when  the  overload  limit  is reached.  When  a 

process  is started,  a work  package  is created.  The  work  package  is the  routing  

element  and  contains  the  attributes  of the  work.  The  attributes  of  the  work  

package  consist  of the  item  PID,  priority,  owner,  and  so  forth.  

Collection  points  are  work  nodes  with  additional  function.  A  work  package  at  a 

collection  point  node  continues  to  the  next  work  node  in the  process  once  the  

specified  number  of items  of a specified  item  type  exist  in  the  specified  folder.  

Work  lists  define  the  work  packages  assigned  to  a user.  You can  have  one  or  more  

work  lists.  Each  work  list  can  include  one  or  more  work  nodes.  You can  specify  the  

order  of  the  work  packages  in the  work  list  by  priority,  or  date.  You can  also  

define  the  order  of  work  nodes  in  the  work  list.  

When  you  retrieve  work  lists,  you  can  filter  the  results  to  include  or  exclude  

suspended  work.  Work packages  can  also  be  in  notify  state.  Notify  state  is when  

work  packages  have  been  at the  node  for  longer  than  the  time  specified  by  the  

administrator.  Remember  that  a work  node  can  be  in  more  than  one  worklist.  The  

number  of  packages  returned  in  a work  list  is defined  by  the  system  administrator.  

The  basic  operations  you  can  perform  using  document  routing  include:  

v   Start  a process  

v   End  a process  

v   Continue  a process  

v   Suspend  a process  

 

© Copyright  IBM Corp. 1996, 2005 221



v   Resume  a process  

v   Get  work  from  a work  list  

v   Get  the  next  item  from  a work  list  

v   Define,  update,  and  delete  a process  

v   Define,  update,  and  delete  work  node  

v   Define,  update,  and  delete  a work  list

Understanding document routing enhancements in Version 8.3 

DB2  Content  Manager  features  the  following  document  routing  enhancements  in  

Version  8.3:  

Graphical  builder  

A  new  graphical  and  content-centric  workflow  builder  is included  in  DB2  

Content  Manager  Version  8.3.  You can  use  it to model  your  document  

flows  of  business  processes.  To define  document  routing  processes  in  DB2  

Content  Manager  Version  8.3,  you  must  use  the  provided  graphical  

workflow  builder.  Before  a document  routing  process  definition  can  be  

used  to  route  documents,  it needs  to  be  verified  by  the  graphical  workflow  

builder.  See  the  System  Administration  Guide  for  usage  details.  

XML  of  process  (diagram)  import  and  export  

The  graphical  builder  can  import  and  export  a process  diagram  in  its  XML  

format.  This  feature  is useful  when  you  want  to  transport  a diagram  from  

one  system  to  another  system.  The  system  administration  client  can  also  

import  and  export  Content  Management  objects  in  XML  format.  This  

feature  is  useful  for  transporting  a process  definition,  including  its  related  

definition  objects  (such  as work  nodes)  from  one  system  to  another  system.  

For  more  information  on  XML  document  routing,  see  “Accessing  DB2  

Content  Manager  document  routing  using  XML-based  requests”  on  page  

493.  

Parallel  routing  

Parallel  routing  is a scheme  that  can  replicate  a work  package  into  multiple  

linked  copies  and  forward  them  into  parallel  routes.  Parallel  routing  starts  

with  a split  node  and  ends  with  a join  node.  Split-joins  work  like  

parentheses  in  a mathematical  expression.  It is a one-to-one  mapping.  You 

can  have  nested  parallel  routes.  

 The  following  example  illustrates  a parallel  routing:  

              /----(WN2)----\  

             /               \ 

--(WN1)--(split)---(WN3)----(join)--(WN6)  

             \               / 

              \----(WN4)----/  

1.   The  work  package  leaves  node  (WN1).  The  split  node  routes  the  

package  to  multiple  work  nodes  (WN2,  WN3,  and  WN4).  

2.   If  the  work  package  is updated  in WN2,  WN3,  or  WN4,  then  all  three  

copies  mirror  the  same  update.  

3.   Later  in the  process,  the  work  package  joins  together  at  a single  join  

node  before  continuing  to  the  next  work  node  (WN6).

No  route  should  ever  breach  the  enclosure  within  a split-join  pair.  For  

example,  connecting  a route  between  WN4  and  WN6  would  be  illegal  

because  it would  breach  the  envelope  between  the  split-join  pair  enclosure.  

However,  you  could  connect  a direct  route  between  WN2  and  WN3  

because  this  does  not  violate  the  parallel  routing  enclosure  rule. 

 

 

222 Application  Programming Guide

|

|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|

|
|
|
|
|

|
|

|
|

|
|

|
|
|
|
|



Decision  point  

A decision  point  is  a ″staffless″  worknode  in  the  process  that  decides  which  

of  several  possible  routes  that  the  work  package  should  proceed  through.  

You can  base  these  decisions  on  system-defined  values,  document  

attributes,  and  workflow  container  variables.  Whenever  a work  package  

reaches  a decision  point,  DB2  Content  Manager  tests  the  work  package  

against  decision  expressions  associated  with  the  routes.  These  routes  are  

tested  in  the  order  of their  assigned  precedence,  i.e.,  1,  2,  3. The  work  

package  continues  down  the  first  expression  that  returns  a TRUE  value.  An  

otherwise  route  (precedence  0)  is required  for  a decision  point.  A work  

package  cannot  be  sent  down  more  than  one  route.  

 When  modeling  a decision  point  node,  make  sure  to correctly  define  all of 

the  nodes  prior  to  the  decision  point.  Otherwise,  a decision  could  be  made  

on  the  work  node  variables  defined  in  workbaskets,  collection  points,  and  

sub-process  nodes  (where  workbaskets  and  collection  points  are  part  of  the  

process)  that  cannot  be  reached  prior  to the  decision  point.  

 When  the  user  displays  the  decision  branch,  it lists  all  of  the  work  node  

variables  that  the  decision  point  can  be  defined  for. This  list  accumulates  

the  variables  as  the  work  package  traverses  from  the  start  node  to each  

connected  node  prior  to  decision  point  node.  

 Caution:  An  error  can  occur  if the  decision  point  node  cannot  read  the  

work  node  variables  that  it needs  (for  example,  from  a workbasket,  

collection  point,  or  sub-process).  A couple  of scenarios  can  cause  this  to 

happen:  

v   Updating  or  deleting  a workbasket,  collection  point,  or  sub-process  

without  updating  or  deleting  its  corresponding  decision  in the  decision  

point  node.  

v   Basing  a decision  on  work  node  variables  that  have  not  been  assigned  

yet.  For  example,  if the  work  package  skipped  over  certain  nodes  due  to  

branching  or  parallel  routing.

Business  application  node  (LOB  node)  

Business  application  nodes  are  process  steps  where  the  library  server  

invokes  a user  exit  DLL  to  run lines  of  business  applications.  For  details  

about  user  exits,  see  “Programming  document  routing  user  exits”  on  page  

248.  

Workflow  action  

Using  workflow  action  objects,  you  can  customize  workflow  applications  

to  integrate  DB2  Content  Manager  with  external  systems.  For  example,  the  

workflow  action  object  can  refer  to  an  external  DLL  or  Java  class  to retrieve  

and  e-mail  a document.  The  application  integrator  is responsible  for  

invoking,  validating,  and  implementing  the  external  DLL  or  Java  class  

described  by  the  workflow  action.  DB2  Content  Manager  never  acts  on  any  

of  the  workflow  actions  in  the  objects.  DB2  Content  Manager  merely  holds  

the  workflow  actions  in  the  objects  for  a seperate  application  to read.  

Workflow  action  list  

An  actionList  represents  a collection  of  workflow  actions  that  you  can  

associate  with  worknodes  in  a process.  When  a work  package  reaches  such  

a worknode,  a client  application  can  retrieve  the  actionList  and  show  all of  

the  workflow  actions  that  a user  can  select.  

Workflow  container  variables  

Workflow  container  variables  represent  instances  of name-value  pairs  

(strings)  within  work  packages.  The  variables  serve  as helper  objects  that  

 

 

Chapter 6. Routing  a document  through a process 223

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|

|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|



can  describe  data  types  and  expected  runtime  behavior  (for  example,  

name,  prompt,  and  display  to  user).  These  helper  objects  can  formulate  

decision  expressions  for  a decision  point.  They  can  also  be  used  by  the  

client  to  interpret  expected  behavior  for  displaying  that  workflow  container  

variables  during  runtime.  Note  that  DB2  Content  Manager  does  not  

enforce  any  semantic  checking  or  validation  for  the  name-value  pairs  

against  their  corresponding  container  variable  definitions.  

Subprocesses  

Subprocesses  are  processes  within  another  process.  After  you  define  a 

process,  you  can  re-use  that  same  process  with  another  process  definition.  

Subprocess  are  modeled  by  using  worknode  of  specific  type  

DK_ICM_DR_SUB_PROCESS_NODE_TYPE.

 For  further  information  about  the  new  document  routing  functionality,  see  the  

following  sections:  

v   “Understanding  Version  8.3  compatibility  with  Version  8.2”  

v   “Understanding  document  routing  classes”  

v   “Document  routing  constants”  on  page  251

Understanding Version 8.3 compatibility with Version 8.2 

Document  routing  processes  created  in  Version  8.2  will  continue  to  work  in Version  

8.3.  After  updating  your  Version  8.2  library  server  to  Version  8.3,  you  can  use  the  

graphical  builder  to  modify  existing  processes  that  were  created  using  Version  8.2  

APIs  or  Version  8.2  system  administration  client.  The  graphical  builder  displays  

those  previously  defined  Version  8.2  processes  graphically  and  gives  you  the  

option  to  rearrange  the  diagram  layout.  After  re-arranging  the  diagram  layout,  you  

need  to  re-verify  the  diagram  before  you  can  save  it. 

If you  make  modifications  to existing  Version  8.2  processes  or create  new  processes  

that  take  advantage  of  Version  8.3  functionality  (i.e.  parallel  routing,  business  

application  node,  decision  point,  and  subprocess),  you  must  update  your  clients  to  

Version  8.3.  Version  8.2  clients  will  not  work  with  Version  8.3  library  server  that  

contains  processes  taking  advantage  of Version  8.3  document  routing  

enhancements.  

Understanding document routing classes 

There  are  12  classes  that  you  can  use  to implement  document  routing  functionality  

into  your  application.  You can  find  the  details  about  these  classes  and  methods  in 

the  online  API  reference.  The  document  routing  APIs  include:  

DKDocRoutingServiceICM  

This  class  provides  the  methods  for  routing  and  accessing  workpackages  

and  container  data  through  a process.  For  instance,  start,  terminate,  

continue,  suspend,  resume,  listWorkPackages,  and  

setWorkPackageContainerData.  

DKDocRoutingServiceMgmtICM  

This  class  provides  the  methods  to manage  the  document  routing  

definition  classes:  DKProcessICM,  DKWorkNodeICM,  and  

DKWorkListICM,  DKWorkFlowActionICM,  DKWorkFlowActionListICM.  

 Retrieving  a copy  of  the  DKDocRoutingServiceMgmtICM  object  from  the  

DKDocRoutingServiceICM  object  is more  efficient  than  creating  a 

DKDocRoutingServiceMgmtICM  object  of  your  own  because  the  API  can  

internally  share  the  same  copy  of workflow  definition  data.  

 

 

224 Application  Programming Guide

|
|
|
|
|
|
|

|
|
|
|
|

|
|

|

|

|

|

|
|
|
|
|
|
|

|
|
|
|
|
|



DKProcessICM  

This  class  represents  a process  definition  which  contains  a collection  of  

interconnecting  routes  that  describe  the  steps  and  flows  of a process  (in  

addition  to  other  attributes  such  as timelimit)  and  description  of a process.  

 It is  possible  to  create  Version  8.3  document  routing  process  definitions  

with  API  directly.  But  you  should  avoid  doing  so  if at  all  possible.  Because  

creating  document  routing  process  with  the  Version  8.3  APIs  risks  

unexpected  behavior  (such  as  creating  illegal  parallel  routing  construct)  

and  damage  to the  system,  the  graphical  workflow  builder  averts  this  by  

validating  a process  before  it is saved  into  the  library  server.  

 The  capability  to  save  the  process  relies  on  the  definition  of three  premises:  

Process  state  

Indicates  whether  the  process  has  been  verified  or  is  still  in  draft  

state.  You can  retrieve  this  status  with  the  getState  method  in 

DKProcessICM.  This  returns  either  

DK_ICM_DR_PROCESS_DRAFT_STATE  (0)  or  

DK_ICM_DR_PROCESS_VERIFIED_STATE  (1).  Although  you  can  

toggle  this  status  with  the  setState  method,  you  should  allow  the  

graphical  workflow  builder  to  handle  this  to  avoid  any  damage  to 

the  system.  

Diagram  definition  

Defines  the  graphical  appearance  of  the  process  in  an  array  of 

bytes  . The  maximum  length  is 1 Mb.  The  two  DKProcessICM  

methods:  setDiagramDefinition(byte[]  diagram_definition)  and  

getDiagramDefinition(byte[]  diagram_definition)  set  and  get  the  

diagram  definition.  

Route  definition  

Defines  the  route.  The  extended  DKRouteListEntryICM  connects  

the  following  types  of work  nodes:  

v   Workbasket:  DK_ICM_DR_WB_NODE_TYPE  (0),  

v   Collection  point  node:  DK_ICM_DR_CP_NODE_TYPE  (1)  

v   Business  application  node:  DK_ICM_DR_BA_NODE_TYPE  (2)

DKRouteListEntryICM  also  connects  the  following  virtual  nodes:  

v   Split  node:  DK_ICM_DR_SPLIT_NODE_TYPE  (3)  

v   Join  node:  DK_ICM_DR_JOIN_NODE_TYPE  (4)  

v   Decision  point  node:  DK_ICM_DR_DP_NODE_TYPE  (5)  

v   Subprocess  node:  DK_ICM_DR_SUB_PROCESS_NODE_TYPE  (6)  

v   Start  node:  DK_ICM_DR_START_NODE_TYPE  (7)  

v   End  node:  DK_ICM_DR_END_NODE_TYPE  (8)

Virtual  nodes  are  used  by  the  system  to  facilitate  process  

navigation.  They  are  called  virtual  nodes  because  the  document  

routing  APIs  do  not  return  work  packages  for  them.  You can,  

however,  query  for  the  location  of  work  packages  (in  their  raw  

DDO  format).  

 The  DKRouteListEntryICM  methods:  setDecisionRuleExternal,  

getDecisionRuleExternal,  setDecisionRuleInternal,  setPrecedence,  

and  getPrecedence  set  date  for  routes  originating  from  decision  

points.  DecisionRuleExternal  points  are  used  by  the  graphic  

workflow  builder  to  display  decision  rules to  users;  

 

 

Chapter 6. Routing  a document  through a process 225

|
|
|

|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

|

|

|

|

|

|

|

|

|

|

|
|
|
|
|

|
|
|
|
|



DecisionRuleInternal  points  are  used  by  the  library  server  to  

evaluate  decision  rule outcome  during  runtime.

 The  listProcessNames()  and  listProcesses()  methods  in  

DKDocRoutingServiceMgmtICM  just  list  verified  processes.  Processes  in  

draft  state  will  not  be  returned.

 The  add(DKProcessICM  process)  and  update(DKProcessICM  process)  

methods  can  only  save  processes  that  passed  the  graphic  workflow  builder  

verification.  Therefore,  the  add  and  update  methods  only  work  in  the  

following  scenarios:  

v   The  process  is in  the  draft  state,  and  the  route  list  is undefined;  but  the  

diagram  definition  is defined.  

v   The  process  is in  the  verified  state;  the  diagram  is undefined;  and  the  

route  list  is  defined.  

v   The  process  is in  the  verified  state,  and  both  the  diagram  and  the  route  

list  are  defined.

In these  scenarios,  the  graphic  workflow  builder  will  regulate  the  proper  

combinations  of  process  attributes  before  it is saved  in  order  to  ensure  

system  data  correctness.  The  process  cannot  be  saved  for  any  other  

combination.  See  Table 20  for  all  possible  combinations.  

 Table 20.  Combinations  that  the add(DKProcessICM  process)  and  update(DKProcessICM  

process)  method  can  save  

Process  state  Diagram  definition  Route  definition  Can  be saved  

Draft  (0)  No  No No 

Draft  (0)  No  Yes No 

Draft  (0)  Yes No Yes 

Draft  (0)  Yes Yes No 

Verified  (1)  No  No No 

Verified  (1)  No  Yes Yes 

Verified  (1)  Yes No No 

Verified  (1)  Yes Yes Yes
  

DKWorkNodeICM  

This  class  represents  a work  node  definition  which  details  the  expected  or  

applicable  tasks  (such  as  Workflow  ActionList  and  library  server  exit)  to 

perform  at  that  particular  step  in a process.  

 Note  that  a subprocess  is recorded  as  a work  node  of  type  

DK_ICM_DR_SUB_PROCESS_NODE_TYPE.  The  subprocess  and  the  

worknode  share  the  same  name.  

DKWorkNodeContainerDefICM  

This  class  serves  as  a helper  that  describes  the  intended  data  type  and  

expected  runtime  behavior  (such  as  name,″prompt,  and  display  to  user)  for  

workflow  container  data  routed  along  a workpackage.  

 Note  that  the  actual  container  data  are  instances  of  name-value  pair  (type  

string).  The  instances  of container  data  are  child  components  of 

workpackage  instances,  not  instances  of  this  

DKWorkNodeContainerDefICM  class.  DB2  Content  Manager  does  not  

 

 

226 Application  Programming Guide

|
|

|
|
|

|
|
|
|

|
|

|
|

|
|

|
|
|
|

||
|

||||

||||

||||

||||

||||

||||

||||

||||

||||
|

|
|
|
|

|
|
|

|
|
|
|

|
|
|
|



enforce  any  semantic  checking  and  validation  for  those  name-value  pairs  

against  their  corresponding  container  variable  definitions.  

DKWorkFlowActionICM  

This  class  records  details  (such  as file  name  and  function  name)  of  an  

external  DLL  or  Java  class  to  be  run at  the  API  client  side.  DB2  Content  

Manager  does  not  automatically  invoke  the  exit  that  you  specify  in the  

DKWorkFlowActionICM  object.  A custom  application  must  invoke,  

validate,  and  implement  the  workflow  action.  

 DB2  Content  Manager  pre-defines  several  workflow  actions.  They  

primarily  help  IBM  clients  (such  as  eClient  and  pClient)  display  available  

menu  selections  at a worknode.  Note  that  DB2  Content  Manager  does  not  

automate  or  enforce  any  of  these  system-defined  workflow  actions.  

DKWorkFlowActionListICM  

This  class  records  a collection  of workflow  actions  and  its  name  is  returned  

along  with  the  retrieval  of a worknode.  This  enables  client  application  to  

display  applicable  workflow  actions  at a worknode.  

DKWorkListICM   

This  class  represents  a filtered  view  (based  on  criteria  such  as  worknode  

and  priority)  for  a collection  of  workpackages  that  route  documents  to  

which  users  have  access.  

DKRouteListEntryICM  

This  class  defines  the  route  that  a process  can  take  (as  in  from  or  to).  A 

process  object  (DKProcessICM)  contains  a collection  of  route  entry  objects  

(DKRouteListEntryICM).  

 Certain  fields  (decision  rule and  precedence)  facilitate  the  construction  of 

decision  rules for  routes  that  leave  the  decision  nodes.  

 Recommendation:  You can  write  a program  that  uses  the  APIs  to  retrieve  

and  examine  the  value  set  by  the  graphical  builder,  but  do  not  set  those  

decision  rules by  yourself  for  risk  of creating  an  invalid  decision  rule. 

DKCollectionResumeListEntryICM  

This  class  represents  an  entry  in  the  resume  list  for  the  collection  point  

work  nodes.  

DKResumeListEntryICM  

This  class  represents  an  entry  of  resume  list  to  set  whenever  a suspended  

work  package  waits  for  the  arrival  of certain  documents  (not  necessarily  at 

a collection  point)  in  order  to resume.  

DKWorkPackageICM  

This  class  represents  a work  package  for  a routing  task.  It contains  a 

persistent  identifier  for  the  document  to  route,  and  information  on  the  

routing  state  (such  as  process  name,  worknode  name,  and  completion  

time).  

 When  a process  starts,  one  or  more  work  packages  are  created  as  a result  

of  the  API  call.

Creating document routing service objects 

The  examples  below  demonstrate  how  to create  a document  routing  object.  

 

 

Chapter 6. Routing  a document  through a process 227

|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|

|
|
|
|

|
|



Java  

//  The  DKDocRoutingServiceICM  class  provides  the  core  routing  services  

//  like  starting,  terminating,  continuing,  suspending,  and resuming  a process.  

DKDocRoutingServiceICM  routingService  = new DKDocRoutingServiceICM(dsICM);  

  

//  The  DKDocRoutingServiceMgmtICM  object  is a helper  class  that  provides  

//  methods  to manage  DKProcessICM,  DKWorkNodeICM,  and  DKWorkListICM  

//  and  the  meta-data  required  to define  these  objects  

//  

//  Retrieving  the  DKDocRoutingServiceMgmtICM  from  DKDocRoutingServiceICM  has 

//  the  benefit  of reducing  cache  footprint  by sharing  definition  objects  

//  between  these  two  classes.  

DKDocRoutingServiceMgmtICM  routingMgmt=  

  routingService.getDocRoutingServiceMgmt();  

 

 

C++  

//  The  DKDocRoutingServiceICM  class  provides  the  core  routing  services  

//  like  starting,  terminating,  continuing,  suspending,  and resuming  

//  a process.  

DKDocRoutingServiceICM*  routingService  = new  

  DKDocRoutingServiceICM(dsICM);  

  

//  The  DKDocRoutingServiceMgmtICM  object  is a helper  class  that  provides  

//  methods  to manage  DKProcessICM,  DKWorkNodeICM,  and  DKWorkListICM  

//  and  the  meta-data  required  to define  these  objects  

//  

//  Retrieving  the  DKDocRoutingServiceMgmtICM  from  DKDocRoutingServiceICM  

//  has  the  benefit  of reducing  cache  footprint  by sharing  definition  

//  objects  between  these  two  classes.  

//  

//  Deleting  routingService  object  will  also  clean  up memory  allocated  

//  for  routingMgmt  

DKDocRoutingServiceMgmtICM*  routingMgmt  = 

  routingService->getDocRoutingServiceMgmt();  

 For  a complete  sample,  refer  to the  SDocRoutingDefinitionCreationICM  sample.  

Defining a new regular work node 

A work  node  is a step  in  a document  routing  process  definition.  It may  be  

completed  to  continue  to  the  next  step  by  a customer  application  at any  time.  The  

application  is  responsible  for  validating  its  own  completion  criteria.  

 

 

228 Application  Programming Guide



Java  

// Create  new  Work  Node  Object.  

 DKWorkNodeICM  workNode1  = new  DKWorkNodeICM();  

//Choose  a Name  that  is 15 characters  or less  length  

workNode1.setName("S_fillClaim");  

//Choose  a Description  for  more  information  than  the name.  

workNode1.setDescription("Claimant  Fills  Out  Claim");  

// Sets  the  value  of the  maximum  time  that  an item  can  spend  at this  

// work  node  (in  minutes).  

workNode1.setTimeLimit(100);  

// Specify  the  threshold  that  activates  overload  user  

// exit  when  the  number  of work  packages  at this  node  

// is greater  than  the  threshold.  

// Note  that  the  number  of workpackages  at this  worknode  

// is not  limited  to the  threshold.  

workNode1.setOverloadLimit(200);  

workNode1.setOverloadUserDll("C:\\USEREXIT\\exitOverload.dll");  

workNode1.setOverloadUserFunction("callOverload");  

  

// Set  the  type  to  be a regular  work  node  

workNode1.setType(0);  

  

//Add  the  new  work  node  definition  to the  document  routing  

//managment  object  

routingMgmt.add(workNode1);  

 

 

C++  

// Create  new  Work  Node  Object.  

 DKWorkNodeICM*  workNode1  = new  DKWorkNodeICM();  

// Choose  a Name  that  is 15 characters  or  less  length  

 workNode1->setName("ValidateCreditCard");  

// Choose  a Description  for more  information  than  the  name.  

workNode1->setDescription("Buyer’s  credit  card  is validated  with  

                 the  credit  card  agency");  

  

// Sets  the  value  of the  maximum  time  that  an item  can  spend  at 

//this  work  node  (in minutes).  

workNode1->setTimeLimit(100);  

  

// Specify  the  threshold  that  activates  overload  user  

// exit  when  the  number  of work  packages  at this  node  

// is greater  than  the  threshold.  

// Note  that  the  number  of workpackages  at this  worknode  

// is not  limited  to the  threshold.  

workNode1->setOverloadLimit(200);  

workNode1->setOverloadUserDll("C:\\USEREXIT\\exitOverload.dll");  

workNode1->setOverloadUserFunction("callOverload");  

  

// Set  the  type  to  be a regular  work  node  

workNode1->setType(0);  

  

//Add  the  new  work  node  definition  to the  document  routing  

//management  object  

routingMgmt->add(workNode1);  

  

// Free  memory.  This  object  will  no longer  be needed.  

delete(workNode1);  

 For  a complete  example  creating  work  notes,  refer  to the  

SDocRoutingDefinitionCreationICM  sample.  

 

 

Chapter 6. Routing  a document  through a process 229



Listing work nodes 

The  listWorkNodeNames  method  lists  work  node  names  in  the  library  server.  If no  

specific  worknode  type  parameter  is requested  then  all  work  nodes  of type  work  

basket,  collection  point,  and  business  application  node  are  listed  by  default.  

The  listWorkNodes  method  returns  a collection  of DKWorkNodeICM  objects  

representing  work  nodes  in  the  library  server.  

 

 

Java  

//  Obtain  the  document  routing   management  object.  

 //  Obtain  the  Routing  Management  object.  

DKDocRoutingServiceMgmtICM  routingMgmt  = new  

   DKDocRoutingServiceMgmtICM(dsICM);  

  

//  Obtain  all  Work  Nodes  in the System.  

dkCollection  workNodes  = routingMgmt.listWorkNodes();  

System.out.println("Work  Nodes  in System:  ("+workNodes.cardinality()+")");  

dkIterator  iter  = workNodes.createIterator();  

while(iter.more())  

{ 

            DKWorkNodeICM  workNode  = (DKWorkNodeICM)  iter.next();  

        if(workNode.getType()==0)  

           System.out.println("   Normal  Node  - "+workNode.getName()+":  

                 "+workNode.getDescription());  

        else  

               System.out.println("  Collection  Pt - "+workNode.getName()+":  

                  "+workNode.getDescription());  

} 

 

 

230 Application  Programming Guide

|
|
|



C++  

// Obtain  the  document  routing   management  object.  

DKDocRoutingServiceMgmtICM*  routingMgmt  = 

  new  DKDocRoutingServiceMgmtICM(dsICM);  

  

// Obtain  the  collection  containing  all  the   work  nodes  in the  system.  

dkCollection*  workNodes  = routingMgmt->listWorkNodes();  

if (workNodes  &&  ( workNodes->cardinality()>0)  ) 

{ 

        cout  << "Work  Nodes  in System:  (" << workNodes->cardinality()  << ")" 

      << endl;  

        dkIterator*  iter  = workNodes->createIterator();  

        while(iter->more())  

    { 

        DKWorkNodeICM*  workNode  = (DKWorkNodeICM*)iter->next()->value();  

                if(workNode->getType()==0)  

                { 

                      cout  << " Normal  Node  - " 

               << workNode->getName()  << ": " << 

                      workNode->getDescription()  << endl;  

                } 

                else  

                { 

                      cout  << " Collection  Pt - " 

               << workNode->getName()  << ": " << 

                  workNode->getDescription()  << endl;  

                } 

                delete(workNode);  

      } 

          delete(iter);  

          delete(workNodes);  

} 

delete(routingMgmt);  

 For  more  information  on  listing  work  nodes,  refer  to  the  SDocRoutingListingICM  

sample.  

Defining a new collection point 

A  collection  point  is a work  node  that  enforces  document  availability  as  the  

completion  criteria  (specifically  applicable  to  routing  folders).  In  a collection  point,  

you  can  specify  requirements  to  meet  before  the  process  can  resume  or  advance  

past  this  point  by  the  system.  Alternatively,  you  can  call  continueProcess  to force  a 

work  package  to  move  out  of  the  collection  point  without  satisfying  the  document  

availability  requirements.  

 

 

Chapter 6. Routing  a document  through a process 231



Java  

//  Create  a new  Work  Node  Object.  This  will  be 

//the  collection  point  

DKWorkNodeICM  collectionPoint  = new  DKWorkNodeICM();  

  

//  Choose  a Name  with  15 characters  or less.  

collectionPoint.setName("S_gatherAll");  

  

//  Choose  a Description  for more  information  than  the  name.  

collectionPoint.setDescription("Gather  Claim,Police  Report,Policy,&  Photos");  

  

//  Sets  the  value  of the  maximum  time  that  an item  can  spend  at this  

//  work  node  (in  minutes).  

 collectionPoint.setTimeLimit(100);  

  

//  Specify  the  threshold  that  activates  overload  user  

//  exit  when  the  number  of work  packages  at this  node  

//  is greater  than  the  threshold.  

//  Note  that  the  number  of workpackages  at this  worknode  

//  is not  limited  to the  threshold.  

collectionPoint.setOverloadLimit(200);  

collectionPoint.setOverloadUserDll("C:\\USEREXIT\\exitOverload.dll");  

collectionPoint.setOverloadUserFunction("callOverload");  

  

//  Set  the  type  of node  to be a collection  point.  

collectionPoint.setType(1);  

  

//  Create  the  "Resume"  List,  which  is the  list  of document  types  

//that  the  process  must   wait  for  before  moving  on to the  next  node.  

//A  list  will  be created  to  hold  "resume  entries"  which  are descriptions  

//of  requirements  that  must  be met  before  the  process  can move  on.  

//  Create  a List/Collection  to hold  all  Resume  Entries.  

dkCollection  resumeList  = new  DKSequentialCollection();  

//  Create  as many  requirements,  or  "Resume  List  Entries",  which  

//specify  what  Item  Types  it  must  wait  for.   The process  cannot  

//pass  this  collection  point  unless  the  specified  number  of Item  

//(DDO)  of the  specified  Item  Type  reaches  this  collection  point.  

DKCollectionResumeListEntryICM  resumeRequirement  = new  

     DKCollectionResumeListEntryICM();  

//  Set  the  Item  Type  Name  Folder  Item  that  is being  routed.  

resumeRequirement.setFolderItemTypeName("S_simple");  

//  Make  the  collection  wait  for  an Item  of the  specified  Item  Type  

//to  be  added  to the  folder  before  proceeding.  

resumeRequirement.setRequiredItemTypeName("S_autoClaim");  

//  Specify  the  number  of Items  of the specified  Item  Type  that  it 

//must  wait  for.  

resumeRequirement.setQuantityNeeded(1);  

//  Add  the  requirement  (Entry)  to the  List  of Requirements  (Resume  List).  

resumeList.addElement(resumeRequirement);  

resumeRequirement  = new  DKCollectionResumeListEntryICM();  

resumeRequirement.setFolderItemTypeName("S_simple");  

resumeRequirement.setRequiredItemTypeName("S_policeReport");  

resumeRequirement.setQuantityNeeded(1);  

//  When  all  requirements  (resume  list  entries)  have  been  added  to the 

//list  of requirements  (resume  list),  set  the  resume  list  in the  

//collection  point.  

collectionPoint.setCollectionResumeList(resumeList);  

//  Add  the  new  collection  point  definition  to the  document  routing  

//  managment  object  

routingMgmt.add(collectionPoint);  

 

 

232 Application  Programming Guide



C++  

// Create  a new  Work  Node  Object.  This  will  be  the collection  point  

DKWorkNodeICM*  collectionPoint  = new  DKWorkNodeICM();  

// Choose  a Name  with  15 characters  or less.  

collectionPoint->setName("GatherOrderDetails");  

// Choose  a Description  for more  information  than  the  name.  

collectionPoint->setDescription("Gather  all the  information  related  to the  

  order,  shipping  mechanism  and  shipping  address");  

// Sets  the  value  of the  maximum  time  that  an item  can  spend  at this  

//work  node  (in  minutes).  

 collectionPoint->setTimeLimit(100);  

  

// Specify  the  threshold  that  activates  overload  user  

// exit  when  the  number  of work  packages  at this  node  

// is greater  than  the  threshold.  

// Note  that  the  number  of workpackages  at this  worknode  

// is not  limited  to the  threshold.  

collectionPoint->setOverloadLimit(200);  

collectionPoint->setOverloadUserDll("C:\\USEREXIT\\exitOverload.dll");  

collectionPoint->setOverloadUserFunction("callOverload");  

  

// Set  the  type  of  node  to be a collection  point.  

collectionPoint->setType(1);  

// Create  the  "Resume"  List,  which  is the  list  of document  types  

//that  the  process  must   wait  for  before  moving  on to the  next  node.  

//A  list  will  be created  to  hold  "resume  entries"  which  are descriptions  

//of  requirements  that  must  be met before  the process  may move  on. 

// Create  a List  / Collection  to hold  all  Resume  Entries.  

dkCollection*  resumeList  = new  DKSequentialCollection();  

// Create  as many  requirements,  or "Resume  List  Entries",  which  specify  

//what  Item  Types  it must  wait  for.  The  process  cannot  pass  this  

//collectionpoint  unless  the  specified  number  of Item  (DDO)  of the  

//specified  Item  Type  reaches  this  collection  point.  

 DKCollectionResumeListEntryICM*  resumeRequirement  = new  

    DKCollectionResumeListEntryICM();  

// Set  the  Item  Type  Name  Folder  Item  that  is being  routed.  

resumeRequirement->setFolderItemTypeName("book");  

  

// Make  the  collection  wait  for  an Item  of the  specified  Item  Type  to  

//be  added  to the  folder  before  proceeding.  

resumeRequirement->setRequiredItemTypeName("AnItemType");  

  

//Specify  the  number  of Items  of the  specified  Item  Type  that  

//it  must  wait  for.  

resumeRequirement->setQuantityNeeded(1);  

  

// Add  the  requirement  (Entry)  to the  List  of Requirements  (Resume  List).  

resumeList->addElement(resumeRequirement);  

resumeRequirement  = new DKCollectionResumeListEntryICM();  

resumeRequirement->setFolderItemTypeName("book");  

resumeRequirement->setRequiredItemTypeName("AnotherItemType");  

resumeRequirement->setQuantityNeeded(1);  

resumeList->addElement(resumeRequirement);  

  

// continued...  

 

 

Chapter 6. Routing  a document  through a process 233



C++  (continued)  

//  When  all  requirements  (resume  list  entries)  have  been  added  to 

//the  list  of requirements  (resume  list),  set  the resume  list  in the  

//collection  point.  

collectionPoint->setCollectionResumeList(resumeList);  

//  Add  the  new  collection  point  definition  to the  document  routing  

//  managment  object  

routingMgmt->add(collectionPoint);  

  

//Free  the  memory  associated  with  this  collection  point  

/ Note  that  the  resumeRequirement  collection  becomes  a part  of the  

//  collectionPoint  object  once  the  affinity  between  those  two objects  

//  are  established.  Deleting  the  collectionPoint  object  cleans  up 

//  memory  allocated  for  resumeRequirement  object.  

delete(collectionPoint);  

 For  more  information  on  defining  collection  points,  refer  to  the  

SDocRoutingDefinitionCreationICM  sample.  

Defining a work list 

A worklist  consists  of  one  or  more  work  nodes  from  which  a user  obtains  a list  of 

work  packages  or  the  ″next″ work  package.  A work  node  can  be  in more  than  one  

worklist.  Using  a worklist  allows  an  administrator  or  a user  application  to  

dynamically  change  work  assignments  without  contacting  end  users.  

 

 

Java  

//  Create  a new  work  list.  

 DKWorkListICM  workList  = new  DKWorkListICM();  

//  Choose  a name  of 15 characters  or less.  

workList.setName("S_fillClaimWL");  

workList.setDescription("Work  List  Covering  Fill/Submit  Claim  Work  Node.");  

//Specify  that  work  packages  returned  by the  work  list  will  be  sorted  by time  

workList.setSelectionOrder(DKConstantICM.DK_ICM_DR_SELECTION_ORDER_TIME);  

//Specify  that  the  work  packages  returned  will  be the  one that  are  not  

//  in the  suspend  state  

workList.setSelectionFilterOnSuspend  

    (DKConstantICM.DK_ICM_DR_SELECTION_FILTER_NO);  

  

//Specify  that  work  packages  returned  are  not  the  ones  in  the notify  state  

workList.setSelectionFilterOnNotify  

     (DKConstantICM.DK_ICM_DR_SELECTION_FILTER_NO);  

  

//  Specify  that  at most  100 work  packages  should  be listed  in 

//  this  work  list  

workList.setMaxResult(100);  

String[]  wnNames  = {"S_fillClaim"};  

workList.setWorkNodeNames(wnNames);  

  

//Add  the  new  work  list  definition  to the  document  routing  

//management  object  

routingMgmt.add(workList);  

 

 

234 Application  Programming Guide



C++  

// Create  a new  worklist.  

 DKWorkListICM*  workList  = new  DKWorkListICM();  

//Choose  a name  of 15 characters  or less.  

workList->setName("ValidateWorkList");  

workList->setDescription("worklist  Covering  the  credit  card  

   validation  work  node.");  

  

//Specify  that  work  packages  returned  by the  worklist  will  be 

//sorted  by time  

workList->setSelectionOrder(DK_ICM_DR_SELECTION_ORDER_TIME);  

  

//Specify  that  the  work  packages  returned  will  be the  one that  are not  

//in  the  suspend  state  

workList->setSelectionFilterOnSuspend(DK_ICM_DR_SELECTION_FILTER_NO);  

  

//Specify  that  work  packages  returned  are  not the  ones  in the notify  state  

workList->setSelectionFilterOnNotify(DK_ICM_DR_SELECTION_FILTER_NO);  

  

//Specify  that  at most  100 work  packages  should  be listed  in this  worklist  

workList->setMaxResult(100);  

  

DKString*  wnNames  = new  DKString[1];  

wnNames[0]  = "ValidateCreditCard";  

//Add  the  work  node  to the worklist  

workList->setWorkNodeNames(wnNames,1);  

  

//Add  the  new  worklist  definition  to the document  routing  management  

//object  

routingMgmt->add(workList);  

  

//Free  the  memory  associated  with  this  worklist  

delete(workList);  

 For  more  information  on  defining  work  lists,  refer  to  the  

SDocRoutingDefinitionCreationICM  sample.  

Listing worklists 

The  listWorkListNames  method  lists  names  of  worklists  to  which  the  logged  in  

user  has  access.  The  listWorkLists  method  returns  a collection  of DKWorkListICM  

objects  representing  worklists  in  the  library  server.  

 

 

Java  

// Obtain  the  document  routing  management  object.  

// Obtain  the  Routing  Management  object.  

DKDocRoutingServiceMgmtICM  routingMgmt  = 

  new  DKDocRoutingServiceMgmtICM(dsICM);  

// Obtain  all  Work  Lists  in the  System.  

dkCollection  workLists  = routingMgmt.listWorkLists();  

System.out.println("Work  Lists  in System:   ("+workLists.cardinality()+")");  

dkIterator  iter  = workLists.createIterator();  

while(iter.more())  

      { 

               DKWorkListICM  workList  = (DKWorkListICM)  iter.next();  

           System.out.println("      - "+workList.getName()+":  

              "+workList.getDescription());  

       } 

 

 

Chapter 6. Routing  a document  through a process 235



C++  

dkCollection*  workLists  = routingMgmt->listWorkLists();  // Obtain  all  

//  Work  Lists  in the  System.  

  

if  (workLists  &&  (workLists->cardinality()>0)  ) 

{ 

    cout<<"Work  Lists  in System:  ("<<  workLists->cardinality()<<")"<<endl;  

    dkIterator*  iter  = workLists->createIterator();  

    while(iter->more()){  

        DKWorkListICM*  workList  = (DKWorkListICM*)  iter->next()->value();  

        cout  << " - " << workList->getName()  <<  ": " 

          << workList->getDescription()  << endl;  

        delete(workList);  // Free  Memory  

    } 

    delete(iter);  // Free  Memory  

    delete(workLists);  

} 

 For  the  complete  example,  see  the  SDocRoutingListingICM  sample.  

Defining a new process and associated route 

A document  routing  process  consists  of  defined  routes  that  a work  package  

follows.  Multiple  routing  processes  can  reuse  the  same  nodes  and  you  can  also  use  

multiple  routes  between  nodes.  

Caution:  Although  you  can  create  Version  8.3  document  routing  process  definitions  

with  the  APIs,  you  should  avoid  doing  this  for  risk  of  damaging  the  system  with  

unexpected  behavior  (such  as  creating  an  illegal  parallel  routing  construct).  The  

graphical  workflow  builder  averts  this  by  validating  a process  before  saving  it into  

the  library  server.  

 

 

236 Application  Programming Guide

|
|
|
|
|



Java  

// Create  a new  Process  Definition  

DKProcessICM  process  = new  DKProcessICM();  

process.setName("S_claimProcess");  

process.setDescription("Process  for an Insurance  Claim");  

  

// Define  all  possible  Routes.  

  

// Create  a list  of all  possible  routes  between  nodes.  

dkCollection  routes  = new  DKSequentialCollection();  

  

// Connect  the  Work  Nodes  using  Route  List  Entries.   A simple  route  

//between  two  work  nodes  is specified  by associating  a ’From’  work  

//node  and  a ’To’  work  node.  

// A Route  List  Entry  simply  connects  two  nodes  with  an implied  direction.  

// Multiple  routes  may exist  between  nodes.   A specific  route  may  be selected  

// by a user-defined  "selection"  keyword.   Examples  might  be "Continue",  "Go",  

// "Accept",  "Reject",  "Complete",  etc.  

// Create  a new  connection  between  two nodes.  

DKRouteListEntryICM  nodeRoute  = new  DKRouteListEntryICM();  

  

// Every  process  must  start  with  the  start  node.  

nodeRoute.setFrom(DKConstantICM.DK_ICM_DR_START_NODE);  

nodeRoute.setTo("S_fillClaim");  

// Choose  any  user-defined  name  for  an action  that  will  make  the  

//transition  from  the  1st  node  to the  second  

nodeRoute.setSelection("Continue");  

  

// Add  the  individual  route  to the  collection  of all  possible  routes.  

routes.addElement(nodeRoute);  

nodeRoute  = new  DKRouteListEntryICM();  

nodeRoute.setFrom("S_fillClaim");  

nodeRoute.setTo("S_gatherAll");  

// Choose  any  user-defined  name  for  an action  that  will  make  the  

// transition  take  place.  

nodeRoute.setSelection("Continue");  

  

// Add  the  individual  route  to the  collection  of all  possible  routes.  

routes.addElement(nodeRoute);  

nodeRoute  = new  DKRouteListEntryICM();  

nodeRoute.setFrom("S_gatherAll");  

nodeRoute.setTo(DKConstantICM.DK_ICM_DR_END_NODE);  

  

// Choose  any  user-defined  name  for  an action  that  will  make  

//the  transition  take  place.  

nodeRoute.setSelection("Complete");  

// Add  the  individual  route  to the  collection  of all  possible  routes.  

routes.addElement(nodeRoute);  

// Set  the  route  in the  process.  

process.setRoute(routes);  

// Add  the  process  to the  routing  Management.  

routingMgmt.add(process);  

 

 

Chapter 6. Routing  a document  through a process 237



C++  

//A  document  routing  process  is the  defined  routes  that  a work  

//package  being  routed  will  follow.  Multiple  routing  processes  may  

//re-use  the  same  nodes  and multiple  routes  between  nodes   may  be used.  

  

//  Create  a new  Process  Definition  

DKProcessICM*  process  = new  DKProcessICM();  

process->setName("Buy_Book");  

process->setDescription("Purchase  a book  online");  

//  Define  all  possible  Routes.  

  

//  Create  a list  of all  possible  routes  between  nodes.  

dkCollection*  routes  = new  DKSequentialCollection();  

  

//  Connect  the  Work  Nodes  using  Route  List  Entries.   A simple  route  

//  between  two  work  nodes  is specified  by associating  a ’From’  work  node  

//  and  a ’To’  work  node.  

//  A Route  List  Entry  simply  connects  two  nodes  with  an implied  direction.  

//  Multiple  routes  may  exist  between  nodes.   A specific  route  may  be selected  

//  by a user-defined  "selection"  keyword.   Examples  might  be "Continue",  "Go",  

//  "Accept",  "Reject",  "Complete",  etc.  

  

//  Create  a new  connection  between  two nodes.  

DKRouteListEntryICM*  nodeRoute  = new  DKRouteListEntryICM();  

  

//  Every  process  must  start  with  the  start  node.  

nodeRoute->setFrom(DK_ICM_DR_START_NODE);  

nodeRoute->setTo("ValidateCreditCard");  

//  Choose  any  user-defined  name  for  an action  that  will  make  the  transition  

//  from  the  1st  node  to the  2nd  

nodeRoute->setSelection("Continue");  

  

//  Add  the  individual  route  to the  collection  of all  possible  routes.  

routes->addElement(nodeRoute);  

  

nodeRoute  = new  DKRouteListEntryICM();  

nodeRoute->setFrom("ValidateCreditCard");  

nodeRoute->setTo("GatherShippingDetails");  

  

//  Choose  any  user-defined  name  for  an action  that  will  make  the  transition  

//  take  place.  

nodeRoute->setSelection("Continue");  

  

//  Add  the  individual  route  to the  collection  of all  possible  routes.  

routes->addElement(nodeRoute);  

  

nodeRoute  = new  DKRouteListEntryICM();  

nodeRoute->setFrom("GatherOrderDetails");  

nodeRoute->setTo(DK_ICM_DR_END_NODE);  

  

//  Choose  any  user-defined  name  for  an action  that  will  make  the  transition  

//  take  place.  

nodeRoute->setSelection("Complete");  

  

//  Add  the  individual  route  to the  collection  of all  possible  routes.  

routes->addElement(nodeRoute);  

  

//  Set  the  route  in the  process.  

process->setRoute(routes);  

  

//  Add  the  process  to the routing  Management.  

routingMgmt->add(process);  

  

delete(process);  

 

 

238 Application  Programming Guide



For  the  complete  example,  see  the  SDocRoutingDefinitionCreationICM  sample.  

Starting a document routing process 

The  startProcess  method  starts  a process  with  the  name,  item  PID,  priority,  and  

owner  name  that  you  specify.  It returns  a PID  of  the  work  package  created  by  this  

method.  The  work  package  begins  at  the  first  work  node  of the  given  process.  

The  example  below  shows  you  how  to start  a document  routing  process.  

 

 

Java  

//First  create  a document  or folder  that  will  be routed.  

//An  item  type  of name  "s_simple"  must  be pre-defined  before  a 

// DDO  of that  name  can  be created.  

  

DKDDO  ddoFolder  = dsICM.createDDO("S_simple",  DKConstant.DK_CM_FOLDER);  

  

// Save  the  created  folder  to the  persistent  datastore.  

ddoFolder.add();  

  

//Create  the  core  document  routing  service  object.  

DKDocRoutingServiceICM  routingService  = new  DKDocRoutingServiceICM(dsICM);  

  

//Start  a process  with  the name  "S_claimProcess"  which  must  be pre-defined.  

// The  PID  string  of the  work  package  as  a result  of the startProcess  API 

// call  is returned.  

// Note  that  the  PID string  may  be  an empty  string  if multiple  

// workpackages   are created  by parallel  routing.  

String  workPackagePidStr  = routingService.startProcess  

    ("S_claimProcess",  ddoFolder.getPidObject().pidString(),1,"icmadmin");  

 

 

C++  

//First  create  a document  or folder  that  will  be routed.  

//An  item  type  of name  "book"must  be pre-defined  before  a DDO of 

// that  name  can  be created.  

DKDDO*  ddoFolder  = dsICM->createDDO("book",  DK_CM_FOLDER);  

  

// Save  the  created  folder  to the  persistent  datastore.  

ddoFolder->add();  

  

//Set  the  priority  for this  document  routing  process  

int  Priority  = 1; 

  

//Create  the  core  document  routing  service  object.  

DKDocRoutingServiceICM*  routingService  = new  DKDocRoutingServiceICM(dsICM);  

  

//Start  a process  with  the name  "Buy_Book"  (which  must  be pre-defined.  

// The  PID  string  of the  work  package  as  a result  of the startProcess  API 

// call  is returned.  

// Note  that  the  PID string  may  be  an empty  string  if multiple  

// workpackages  are  created  by parallel  routing.  

DKString  workPackagePidStr=routingService->startProcess("Buy_Book",  

  ((DKPidICM*)  

   ddoFolder->getPidObject())->pidString(),  Priority,  "icmadmin");  

 For  the  complete  example,  see  the  SDocRoutingProcessingICM  sample.  

 

 

Chapter 6. Routing  a document  through a process 239



Ending a process 

You can  explicitly  terminate  a process  before  it reaches  the  end  node  by  specifying  

its  work  package  PID  in  the  terminateProcess  method.  When  you  terminate  a 

process,  all  work  packages  in  the  process  (including  workpackages  on  parallel  

routes  and  from  subprocesses)  are  removed  from  the  system.  

The  method  also  checks  in  the  item  referenced  in  the  work  package  if the  item  was  

checked  out.  

 

 

Java  

routingService.terminateProcess(workPackagePidStr);  

 

 

C++  

routingService->terminateProcess(workPackagePidStr);  

 For  more  information  on  terminating  a process,  refer  to the  

SDocRoutingProcessingICM  sample.  

Continuing a process 

The  continueProcess()  method  routes  the  item  referenced  by  the  item  PID  in  the  

specified  work  package  from  the  current  work  node  to  the  next  work  node  that  is 

determined  by  the  selection.  The  specified  work  package  is removed  from  the  

library  server,  and  a new  work  package  is created  for  the  specified  owner.  The  

item  referenced  by  the  item  PID  stays  checked  out  if it has  been  checked  out.  

The  PID  of  the  new  work  package  is returned.  In the  Java  API,  a null  string  is 

returned  if the  process  has  ended,  or  if the  process  continued  onto  a split  node  

(parallel  routes).  In the  C++  API,  an  empty  string  is returned  if the  process  has  

ended,  or  if the  process  continued  onto  a split  node  (parallel  routes).  

In  the  code  snippet  below,  the  name  of the  selection  that  will  cause  

the  transition  from  the  current  work  node  to  the  next  work  node  is  ″Continue″. 

Note  that  the  work  package  PID  string  of  the  current  work  package  is  specified  in  

the  method  call.  The  method  call  either  returns  the  PID  string  of  the  new  work  

package,  or  an  empty  string.  

 

 

Java  

workPackagePidStr  = routingService.continueProcess  

     (workPackagePidStr,  "Continue",  "icmadmin");  

 

 

C++  

char  * userName  = "icmadmin";  

  

workPackagePidStr  = routingService->continueProcess(workPackagePidStr,  

   "Continue",  userName);  

 For  the  complete  example,  see  the  SDocRoutingProcessingICM  sample.  

 

 

240 Application  Programming Guide

|
|
|
|

|
|
|
|



Suspending a process 

The  suspendProcess  method  can  suspend  an  instance  of a document  routing  work  

package  for  a specific  duration  (in  minutes),  or  for  a given  resume  list.  The  method  

sets  the  suspend  flag  of  the  specified  work  package  to  true. 

The  duration  specifies  how  long  to  keep  the  suspend  flag  at true. The  resume  list  

is  a set  of  requirements  that  instructs  a folder  to  wait  for  the  arrival  of  certain  item  

types  and  quantities  (specified  in  a sequential  collection  of  

DKResumeListEntryICM  objects).  When  the  duration  elapses,  or  when  the  resume  

list  is satisfied,  then  the  system  resets  the  work  package  suspendState  flag  from  

true (1)  to  false  (0).  You can  also  force  the  work  package  to  prematurely  move  to  

the  next  work  node  by  calling  the  continueProcess  API.  

Suspending  a package  does  not  affect  the  state  of  other  packages  on  the  same  

process.  

The  suspendProcess  API  does  not  relate  to  processes  and  threads  in a 

programming  environment.  The  thread  or  process  in  the  C++  runtime  environment  

will  not  be  stopped.  

The  DOCROUTINGUPDATE  field  in  the  system  control  table  controls  the  

scheduled  time  to  re-evaluate  the  suspend  flag  of  a work  package.  The  default  

time  interval  is 10  minutes.  

 

 

Java  

dkCollection   requirements  = new  DKSequentialCollection();  

//Process  will  be suspended  for  2 minutes.  

routingService.suspendProcess(workPackagePidStr,  2, requirements);  

 

 

C++  

dkCollection  * requirements  = new  DKSequentialCollection();  

//If  no requirements  are  to be provided  and the  process  is only  to  be  

//suspended  for  a fixed  period  of time,  the user  can  also  pass  in a 

//NULL  collection  to this  method.  

//dkCollection  * requirements  = NULL;  

  

//Process  will  be suspended  for  2 minutes.  

routingService->suspendProcess(workPackagePidStr,  2, requirements);  

delete(requirements);  

 For  the  complete  example,  see  the  SDocRoutingProcessingICM  sample.  

Resuming a process 

A  process  in the  suspended  state  can  resume  in three  ways:  

v   Implicitly  after  the  specified  time  expired.  

v   Implicitly  after  the  defined  requiements  have  been  met.  

v   Explicitly  through  the  resumeProcess  method.  This  method  resumes  the  work  

package  before  the  specified  duration  elapses  or  before  resume  list  is satisfied.

The  resume  resets  the  work  package  suspend  flag  to false  and  returns  the  process  

to  normal  operation.  No  routing  or  checkout  of the  associated  work  item  is  

performed.  

 

 

Chapter 6. Routing  a document  through a process 241

|
|



Java  

routingService.resumeProcess(workPackagePidStr);  

 

 

C++  

routingService->resumeProcess(workPackagePidStr);  

 For  more  information  on  resuming  a process,  refer  to  the  

SDocRoutingProcessingICM  sample.  

Listing work package persistent identifier strings in a worklist 

The  listWorkPackagePidStrings  method  returns  the  work  package  PIDs  of all  work  

packages  in the  specified  work  list.  Based  on  the  setting  in  the  system  

administration  for  the  work  list,  the  owner  field  in  the  listWorkPackagePidStrings  

method  can  return  differents  lists  of  work  packages  as  shown  in  Table  21.  

 Table 21.  listWorkPackagePidStrings  API  results  based  on owner  

System  

administration  

setting  for a work  

list  owner=empty  

owner=logged  on 

user  ID  

owner  = a user  ID  other  

than  the logged  on  user  

ID 

Filter  on  owner  is 

not  checked  

Returns  all work  

packages  in the  

work  list.  

Returns  all work  

packages  in  the  work  

list.  

Returns  work  packages  of 

the  specified  user  ID in 

the  work  list if the  

ICM_PRIV_ITEM_GET  

_ASSIGN_WORK  

privilege  is set. 

Filter  on  owner  is 

checked  

Returns  work  

packages  of the 

logged  on user  ID 

in the work  list.  

Returns  work  

packages  of the  

logged  on  user  ID  in 

the  work  list.  

Returns  work  packages  of 

the  specified  user  ID in 

the  work  list if the  

ICM_PRIV_ITEM_GET  

_ASSIGN_WORK  

privilege  is set.
  

The  following  code  sample  shows  how  to list  the  PID  strings  for  all  the  work  

packages  in a specified  worklist.  

 

 

Java  

String[]  workPackagePIDs  = 

  routingService.listWorkPackagePidStrings(workListName,processOwner);  

  

//  Print  Work  Package  PIDs  

System.out.println(Work  Packages  in  Work  List:  (+workPackagePIDs.length+));  

for(int  i=0;  i< workPackagePIDs.length;  i++)  

    System.out.println(  - PID:  +workPackagePIDs[i]);  

 

 

242 Application  Programming Guide



C++  

long  arraySize  = -1; // Size  to be set  by the  API.  

DKString*  workPackagePIDs  = routingService->  

  listWorkPackagePidStrings("workListName",processOwner,arraySize);  

  

// Print  Work  Package  PIDs  

cout  << "Work  Packages  in Work  List:  (" << arraySize  << ")"  <<  endl;  

for(int  i=0;  i< arraySize;  i++)  

    cout  << " - PID:  " <<  workPackagePIDs[i]  << endl;  

  

delete[]  workPackagePIDs;  // Free  Memory  

 For  the  complete  example,  see  the  SDocRoutingListingICM  sample.  

Retrieving work package information 

When  an  instance  of  a document  routing  process  is in  progress,  a work  package  is 

the  vehicle  through  which  an  item  (instance  of an  item  type)  moves  along  through  

the  routing  process.  A work  package  contains  all  the  necessary  information  about  

the  process  and  about  the  item  that  it is  transporting.  The  work  package  is the  

object  that  an  application  uses  and  manipulates  as  required.  

The  retrieveWorkPackage  method  returns  the  DKWorkPackageICM  object  

referenced  by  the  specified  work  package  PID  (wpPidStringStr). 

 

 

Java  

//Use  an established  document  routing  service  

//Specifying  false  in this  method  call  makes  sure  that  the  work  package  

// is not  checked  out  

DKWorkPackageICM  workPackage  = 

        routingService.retrieveWorkPackage(workPackagePidStr,false);  

System.out.println("----------------------------------------");  

System.out.println("                 Work  Package");  

System.out.println("----------------------------------------");  

System.out.println("  Process  Name:   " + workPackage.getProcessName());  

System.out.println("   work  Node  Name:   " + workPackage.getWorkNodeName());  

System.out.println("            Owner:   " + workPackage.getOwner());  

System.out.println("         Priority:   " + workPackage.getPriority());  

System.out.println("  User  Last  Moved:   " + workPackage.getUserLastMoved());  

System.out.println("  Time  Last  Moved:   " + workPackage.getTimeLastMoved());  

System.out.println("    Suspend  State:   " + workPackage.getSuspendState());  

System.out.println("     Notify  State:   " + workPackage.getNotifyState());  

System.out.println("      Notify  Time:   " + workPackage.getNotifyTime());  

System.out.println("      Resume  Time:   " + workPackage.getResumeTime());  

System.out.println("Work  Package  Pid:   " + workPackage.getPidString());  

System.out.println("      Item  Pid:   " + workPackage.getItemPidString());  

 

 

Chapter 6. Routing  a document  through a process 243



C++  

cout  <<  "---------------------------------------------"  << endl;  

cout  <<  " Work  Package"  << endl;  

cout  <<  "---------------------------------------------"  << endl;  

cout  <<  " Process  Name:  " << workPackage->getProcessName()  << endl;  

cout  <<  " work  Node  Name:  " << workPackage->getWorkNodeName()  << endl;  

cout  <<  " Owner:  " << workPackage->getOwner()  << endl;  

cout  <<  " Priority:  " << workPackage->getPriority()  << endl;  

cout  <<  " User  Last  Moved:  " << workPackage->getUserLastMoved()  << endl;  

cout  <<  " Time  Last  Moved:  " << workPackage->getTimeLastMoved()  << endl;  

cout  <<  " Suspend  State:  " << workPackage->getSuspendState()  << endl;  

cout  <<  " Notify  State:  " << workPackage->getNotifyState()  << endl;  

cout  <<  " Notify  Time:  " << workPackage->getNotifyTime()  << endl;  

cout  <<  " Resume  Time:  " << workPackage->getResumeTime()  << endl;  

cout  <<  "Work  Package  Pid:  " << workPackage->getPidString()  << endl;  

cout  <<  " Item  Pid:  " << workPackage->getItemPidString()  << endl;  

 For  the  complete  example,  see  the  SDocRoutingProcessingICM  sample.  

Listing document routing processes 

The  following  example  shows  you  how  to  list  document  routing  processes.  

Important:  The  listProcessNames()  and  listProcesses()  methods  in  

DKDocRoutingServiceMgmtICM  now  just  list  verified  processes  by  default,  unless  

the  process  state  information  is explicitly  requested.  Processes  in  draft  state  are  not  

returned  by  default.  For  details  on  verified  processes,  see  “Understanding  Version  

8.3  compatibility  with  Version  8.2”  on  page  224.  

 

 

Java  

//The  listProcessNames  method  lists  all process  names  in the 

//Library  Server,  and  the listProcesses  method  returns  a collection  

//of  DKProcessICM  objects  representing  a process  in the Library  Server.  

//  Obtain  the  document  routing  management  object.  

DKDocRoutingServiceMgmtICM  routingMgmt  = 

  new  DKDocRoutingServiceMgmtICM(dsICM);  

 //  Obtain  the  list  of all  running  document  routing  processes  

//  Obtain  the  Routing  Management  object.  

DKDocRoutingServiceMgmtICM  routingMgmt  = 

  new  DKDocRoutingServiceMgmtICM(dsICM);  

//  Obtain  list  of all  routing  processes  running.  

dkCollection  processes  = routingMgmt.listProcesses();  

System.out.println("Running  Processes:   ("+processes.cardinality()+")");  

  

dkIterator  iter  = processes.createIterator();  

while(iter.more())  

{ 

//  Move  pointer  to next  element  and  obtain  that  next  element.  

DKProcessICM  proc  = (DKProcessICM)  iter.next();  

     System.out.println("  - "+proc.getName()+":  "+proc.getDescription());  

} 

 

 

244 Application  Programming Guide

|
|
|
|
|



C++  

// Obtain  the  document  routing  management  object.  

DKDocRoutingServiceMgmtICM*  routingMgmt  = 

  new  DKDocRoutingServiceMgmtICM(dsICM);  

  

// Obtain  the  list  of all  running  document  routing  processes  

dkCollection*  processes  = routingMgmt->listProcesses();  

if (processes  && (processes->cardinality()>0))  

{ 

       cout  <<  "Running  Processes:  (" << processes->cardinality()  << ")" 

     << endl;  

       dkIterator*  iter  = processes->createIterator();  

       while(iter->more())  

       { 

             DKProcessICM*  proc  = (DKProcessICM*)  iter->next()->value();  

         cout  << " - " << proc->getName()  << ": " 

       <<  proc->getDescription()  << endl;  

         delete(proc);  

       } 

       delete(iter);  

       delete(processes);  

} 

delete(routingMgmt);  

 A  print  function  is  provided  in the  SDocRoutingListingICM  sample.  

Ad hoc routing 

Below  is  an  ad  hoc  routing  example  procedure.  In  the  example,  the  system  

administration  client  is used  to set  up  the  work  nodes,  processes,  and  worklists.  

1.   Create  two  work  nodes,  N1  and  N2  for  example.  

2.   Create  two  one-node  processes,  P1  and  P2  such  that  P1  has  one  work  node,  N1  

and  P2  has  one  work  node,  N2.  

P1  looks  like  this:  

 From:  Action:  To:  

START Continue  N1 

N1  Continue  END
  

P2  looks  like  this:  

 From:  Action:  To:  

START Continue  N2 

N2  Continue  END
  

3.   Create  two  worklists,  WL1  and  WL2  such  that  WL1  has  one  work  node,  N1  

and  WL2  has  one  work  node,  N2.

At  run time,  complete  the  following  steps  to  implement  ad-hoc  routing:  

1.   Start  process  P1  with  a document  PID  (Example,  ABC).  A  work  package,  WP1,  

is created.  The  worklist  WL1  displays  the  work  package  WP1  at work  node  N1.  

2.   To move  the  document  ABC  from  process  P1  to process  P2,  terminate  work  

package  WP1  and  start  process  P2  with  the  same  document  (ABC).  Work 

package  WP2  is created.

 

 

Chapter 6. Routing  a document  through a process 245



The  worklist  WL2  shows  the  work  package  WP2  at  work  node  N2.  

To see  additional  examples,  see  the  SDocRoutingDefinitionCreationICM  sample.  

Document routing example queries 

This  sections  contains  example  queries.  For  more  information  about  writing  

queries,  see  the  section  on  Searching  for  data.  

Example  1 

Returns  car  documents  whose  associated  work  packages  are  active  (not  

suspended).  

/Car[@VERSIONID  = latest-version(.)  AND  @SEMANTICTYPE  = 

1]/REFERENCEDBY/@REFERENCER  => WORKPACKAGE[@SUSPENDFLAG  = 

0] 

Example  2 

Returns  car  documents  whose  associated  work  packages  are  in  the  

AccidentInvestigation  process.  

/Car[@VERSIONID  = latest-version(.)  AND  @SEMANTICTYPE  = 

1]/REFERENCEDBY/@REFERENCER  => WORKPACKAGE[@PROCESSITEMID  = 

/ROUTINGPROCESS[@PROCESSNAME  = 

"AccidentInvestigation"]/@ITEMID]  

Example  3 

Returns  car  documents  where  the  name  is Honda, and  documents’  

associated  work  packages  are  in  the  AccidentInvesigation  process.  

/Car[@Name  = "Honda"  AND  @VERSIONID  = latest-version(.)  AND 

@SEMANTICTYPE  = 1]/REFERENCEDBY/@REFERENCER  => 

WORKPACKAGE[@PROCESSITEMID  = /ROUTINGPROCESS[@PROCESSNAME  = 

"AccidentInvestigation"]/@ITEMID]  

Example  4 

Returns  car  documents  whose  associated  work  packages  are  in  the  

UnderReview  step  of  the  AccidentInvestigation  process.  

/Car[@VERSIONID  = latest-version(.)  AND  @SEMANTICTYPE  = 

1]/REFERENCEDBY/@REFERENCER  => WORKPACKAGE[@PROCESSITEMID  = 

/ROUTINGPROCESS[@PROCESSNAME  = "AccidentInvestigation"]/@ITEMID  

AND  ../@WORKNODENAME  =  "UnderReview"]  

Example  5 

Returns  car  documents  whose  associated  work  packages  are  suspended  in  

the  UnderReview  step  of the  AccidentInvestigation  process.  

/Car[@VERSIONID  = latest-version(.)  AND  @SEMANTICTYPE  = 

1]/REFERENCEDBY/@REFERENCER  => WORKPACKAGE[@PROCESSITEMID  = 

/ROUTINGPROCESS[@PROCESSNAME  = "AccidentInvestigation"]  

/@ITEMID  AND  ../@WORKNODENAME  = "UnderReview"  AND 

@SUSPENDFLAG  = 1] 

Granting privileges for document routing 

In  order  for  a user  to  perform  document  routing  operations,  the  user  must  have  

the  appropriate  privileges.  The  privileges  associated  with  document  routing  are  

listed  in  the  following  table.  The  general  privileges  for  items  are  applicable  to  

processes,  work  nodes,  and  worklists.  

 

 

246 Application  Programming Guide



Table 22. Document  routing  privileges  

Privilege  Description  Related  API  

ICM_PRIV_ITEM  

_UPDATE_WORK  

Used  to see  if the  user  is 

authorized  to do the  

following  for a work  

package:  

   set  the  priority  

   set  the  owner  

   set  the  resume  list 

   set  the  duration  for  

suspension  

suspendProcess  

resumeProcess  

setWorkPackagePriority  

setWorkPackageOwner  

ICM_PRIV_ITEM  

_ROUTE_START  

Used  to see  if the  user  is 

authorized  to start  a process.  

startProcess  

ICM_PRIV_ITEM  

_ROUTE_END  

Used  to see  if the  user  is 

authorized  to terminate  a 

process.  

terminateProcess  

ICM_PRIV_ITEM  

_GET_WORKLIST  

Used  to see  if the  user  is 

authorized  to get the  count  

or work  packages  from  a 

worklist.  

getCount  

listWorkPackagePidStrings  

ICM_PRIV_ITEM  

_GET_WORK  

Used  to see  if the  user  is 

authorized  to get a work  

package.  

getNextWorkPackagePidString  

getNextWorkPackage  

checkOutItemInWorkPackage  

retrieveWorkPackage  

ICM_PRIV_ITEM  

_GET_ASGN_WORK  

Used  to see  if the  user  is 

authorized  to get a work  

package  that  is owned  by a 

different  a different  user.  

getNextWorkPackagePidString  

getNextWorkPackage  

getCount  

listWorkPackagePidStrings  

ICM_PRIV_ITEM  

_ROUTE  

Used  to see  if the  user  is 

authorized  to route  a work  

package.  

continueProcess

  

Working  with access control lists for document routing 

When  an  ACL  is  defined  for  a document  routing  entity  such  as  a process,  work  

node,  and  worklist,  the  operations  allowed  on  the  entity  are  impacted.  The  effect  of  

ACLs  on  DB2  Content  Manager  document  routing  entity  and  their  associated  

privileges  are  listed  in  the  following  table.  

 Table 23. Access  control  lists  and  document  routing  

Objects  Related  methods  Privileges  

Process  startProcess  ICM_PRIV_ITEM_ROUTE_START  

Work node  continueProcess  

suspendProcess  

resumeProcessterminateProcess  

setWorkPackagePriority  

setWorkPackageOwner  

ICM_PRIV_ITEM_ROUTE  

ICM_PRIV_ITEM_ROUTE_END  

ICM_PRIV_ITEM_UPDATE_WORK  

Worklist  getNextWorkPackagePidString  

getNextWorkPackage  

getCount  

listWorkPackagePidStrings  

checkOutItemInWorkPackage  

ICM_PRIV_ITEM_GET_WORK  

ICM_PRIV_ITEM_GET_ASGN_WORK  

ICM_PRIV_ITEM_GET_WORKLIST

 

 

 

Chapter 6. Routing  a document  through a process 247



Programming document routing user exits 

A document  routing  user  exit  is a custom  programming  application  (DLL  file)  that  

you  can  create  specifically  for  a work  node.  You can  set  a work  node  to  call  a 

specific  function  in  a specific  DLL  file  under  the  following  situations:  

v   Whenever  a work  package  is created  and  started  on  a process.  

v   Whenever  a work  package  moves  to the  work  node.  

v   Whenever  a work  package  leaves  the  work  node.  

v   Whenever  a collection  point  reaches  a specific  overload  limit.  

Whenever  DB2  Content  Manager  calls  a user  exit,  you  can  retrieve  the  work  

package  from  the  work  package  table  using  the  ComponentID  in  the  myExit  API.  

To pass  work  package  data  (including  container  data)  to and  from  the  user  exit,  

use  the  following  ICMUSERSTRUCT  (in  this  example,  included  in  the  

WXV2UserExitSample.h):  

 

 

WXV2UserExitSample.h  

typedef  struct  ICMCONTAINERDATA_STRUCT  

{ 

  char   szContainerName[33];  

  char   szContainerVal[255];  

}ICMCONTAINERDATA_STRUCT;  

  

typedef  struct  ICMUSERSTRUCT  

{ 

    long    lUserEvent;  

    char    szWPCompID[19];  

    char    szWPItemID[27];  

    short   sWPVersionID;  

    char    szRouteSel[33];  

    short   sUpdateFlag;  

    short   sNumContainerData;  /* no. of icmcontainer  data  structs*/  

    struct  ICMCONTAINERDATA_STRUCT  **ppContainerDataStruct;  

} ICMUSERSTRUCT;  

 You can  include  this  header  when  compiling  your  own  function  into  a DLL  

file--for  example,  WXV2UserExitSample.dll.  The  following  C example  includes  the  

header  file  and  defines  a custom  function  called  WXV2UserExitSample.  

The  first  part  of  WXV2UserExitSample  lists  the  work  package’s  current  number  of  

container  data  variables,  its  component  ID,  and  its  item  ID  into  a text  file  

IBMCMROOT/CM83_DR_User_Exit.txt. 

 

 

248 Application  Programming Guide

|

|
|
|

|

|

|

|

|
|

|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||

|
|
|

|
|
|



WXV2UserExitSample.c  

#include  <stdio.h>  

#include  <string.h>  

#include  <stdlib.h>  

#include  "WXV2UserExitSample.h"  

#if  defined  (WIN32)  

   #include  <windows.h>  

   #include  <process.h>  

#elif  defined  (AIX)  || defined  (Solaris)  

   #include  <dlfcn.h>  

#endif  

extern  long  WXV2UserExitSample  (ICMUSERSTRUCT  *pCMStruct)  { 

#ifndef  MVS  

    char  envStr[256];  

    int  i; 

    ICMCONTAINERDATA_STRUCT  * pContainerDataStruct;  

    FILE  *_file;  

#if  defined  (WIN32)  

    strcpy(envStr,  getenv("IBMCMROOT"));  

    strcat(envStr,  "\\CM83_DR_User_Exit_Sample_Output.txt");  

#elif  defined  (AIX)  || defined  (Solaris)  

    strcpy(envStr,  getenv("IBMCMROOT"));  

    strcat(envStr,  "/CM83_DR_User_Exit_Sample_Output.txt");  

#endif  

_file  = fopen(envStr,  "aw");  

fprintf(_file,  "CM83  Document  Routing  user  exit  sample.\n");  

fprintf(_file,  "The  number  of  container  data  structures  

  passed  to this  user  exit:  %d \n",  pCMStruct->sNumContainerData);  

fprintf(_file,"The  work  package  component  ID passed  to  

  this  user  exit:  %s \n",  pCMStruct->szWPCompID  ); 

fprintf(_file,"The  work  package  Item  ID passed  to this  

  user  exit:  %s \n",  pCMStruct->szWPItemID  ); 

#else  

printf("CM83  Document  Routing  user  exit  sample.\n");  

printf("The  number  of container  data  structures  passed  to 

  this  user  exit:  %d \n",  pCMStruct->sNumContainerData);  

printf("The  work  package  component  ID passed  to this  

  user  exit:  %s \n",  pCMStruct->szWPCompID  ); 

printf("The  work  package  Item  ID passed  to this  user  

  exit:  %s \n",  pCMStruct->szWPItemID  ); 

#endif  

 Next,  WXV2UserExitSample  updates  three  work  package  container  variables  by  

setting  sUpdateFlag  to  1 (true),  specifying  the  number  of  container  variables  in  

sNumContainerData, specifying  each  variable  name  in  szContainerName, and  

specifying  each  variable  value  in  szContainerVal. 

 

 

Chapter 6. Routing  a document  through a process 249

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||

|
|
|
|



WXV2UserExitSample.c  

/*Create  the  container  data  to be returned  to  the  LS.  */ 

/*  On return  the  LS will  update  the  work  package  container  data.*/  

pCMStruct->sUpdateFlag  = 1; /* update  the  container  data  */ 

pCMStruct->sNumContainerData=3;  /* no.  cont  data  structs  returned.*/  

pContainerDataStruct  = (ICMCONTAINERDATA_STRUCT  *) 

malloc(sizeof(ICMCONTAINERDATA_STRUCT)*  pCMStruct->sNumContainerData);  

#ifndef  MVS  

  fprintf(_file,  "Returning  container  data  structures  to LS. 

  Number  of container  data  structures  being  returned:  %d  \n",  

  pCMStruct->sNumContainerData  ); 

#else  

  printf("Returning  container  data  structures  to LS.  Number  of 

  container  data  structures  being  returned:  %d  \n",  

  pCMStruct->sNumContainerData  ); 

#endif  

strcpy(pContainerDataStruct[0].szContainerName,  "Loan  amount");  

strcpy(pContainerDataStruct[0].szContainerVal,  "1000");  

strcpy(pContainerDataStruct[1].szContainerName,  "First  name");  

strcpy(pContainerDataStruct[1].szContainerVal,  "Carly");  

strcpy(pContainerDataStruct[2].szContainerName,  "Last  name");  

strcpy(pContainerDataStruct[2].szContainerVal,  "Morreale");  

 Then,  WXV2UserExitSample  sets  which  route  that  the  work  package  should  follow.  

In  this  example,  szRouteSel  is set  to the  Reject  route.  

 

 

WXV2UserExitSample.c  

strcpy(pCMStruct->szRouteSel,"Reject");  /* On return  from  

this  user  exit,  the  LS will  send  the work  package  on this  route.*/  

#ifndef  MVS  

  for  (i = 0; i < pCMStruct->sNumContainerData;  i++)  

  { 

  fprintf(_file,"Container  data  name  at %d is:  %s \n",  i, 

    pContainerDataStruct[i].szContainerName  ); 

  fprintf(_file,"Container  data  value  at %d is:  %s \n",  i, 

    pContainerDataStruct[i].szContainerVal  ); 

  } 

/*  Updated  the  route,   the LS will  send  the  wp on this  route.*/  

fprintf(_file,"Returning  the route  to the  LS, the work  package  

  should  take  this  route:  %s \n",  pCMStruct->szRouteSel);  

  fclose(_file);  

#else  

  for  (i = 0; i < pCMStruct->sNumContainerData;  i++)  

  { 

  printf("Container  data  name  at %d is:  %s \n",  i, 

    pContainerDataStruct[i].szContainerName  ); 

  printf("Container  data  value  at %d is:  %s \n",  i, 

    pContainerDataStruct[i].szContainerVal  ); 

  } 

/*  Update  the  route  the  work  package  is to take  on return  

  from  this  user  exit.  */ 

printf("Returning  the  route  to the  LS,  the work  package  

  should  take  this  route:  %s \n",  pCMStruct->szRouteSel);  

#endif  

 Finally,  WXV2UserExitSample  updates  the  container  variables  and  logs  the  process  

in  IBMCMROOT/CM83_DR_User_Exit.txt. 

 

 

250 Application  Programming Guide

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||

|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||

|
|



WXV2UserExitSample.c  

pCMStruct->ppContainerDataStruct=(ICMCONTAINERDATA_STRUCT  **) 

malloc(sizeof(ICMCONTAINERDATA_STRUCT  *) * 

  pCMStruct->sNumContainerData);  

for  (i = 0; i < pCMStruct->sNumContainerData;  i++)  

  { 

  pCMStruct->ppContainerDataStruct[i]  = &pContainerDataStruct[i];  

  } 

  return  0; 

 } 

 Because  all  work  node  user  exits  are  only  supported  as a synchronous  process  (as  

a shared  library),  you  should  try  to minimize  the  application’s  run time.  

Otherwise,  the  library  server  times  out  if the  exit’s  running  transaction  takes  too  

long.  

Alternatively,  to  run the  user  exit  as  an  asynchronous  process,  you  can  program  

the  exit  DLL  to  spawn  a process  that  continues  the  business  transaction  seperately  

from  the  library  server.  

Document routing constants 

You define  document  routing  constants  in  DKConstantICM.  DKConstantICM  

contains  the  following  document  routing  constants:  

Worklist  filtering  parameters:  

v   public  final  static  int  DK_ICM_DR_SELECTION_FILTER_NO  = 0; 

v   public  final  static  in  DK_ICM_DR_SELECTION_FILTER_YES  = 1;  

v   public  final  static  int  DK_ICM_DR_SELECTION_FILTER_EITHER  = 2;  

v   public  final  static  int  DK_ICM_DR_SELECTION_ORDER_PRIORITY  = 0;  

v   public  final  static  int  DK_ICM_DR_SELECTION_ORDER_TIME  = 1; 

v   public  final  static  int  DK_ICM_DR_MAX_RESULT_ALL  = 0;

Workflow  container  variable  data  types:  

v    public  final  static  short  DK_ICM_DR_WNV_TYPE_CHARACTER  = 0; 

v   public  final  static  short  DK_ICM_DR_WNV_TYPE_INTEGER  = 1;  

v   public  final  static  short  DK_ICM_DR_WNV_TYPE_TIMESTAMP  = 2;

Work  node  types:  

v   public  final  static  short  DK_ICM_DR_WB_NODE_TYPE  = 0; 

v   public  final  static  short  DK_ICM_DR_CP_NODE_TYPE  = 1; 

v   public  final  static  short  DK_ICM_DR_SPLIT_NODE_TYPE  = 2; 

v   public  final  static  short  DK_ICM_DR_JOIN_NODE_TYPE  = 3;  

v    public  final  static  short  DK_ICM_DR_DP_NODE_TYPE  = 4;  

v    public  final  static  short  DK_ICM_DR_SUB_PROCESS_NODE_TYPE  = 5;  

v    public  final  static  short  DK_ICM_DR_BA_NODE_TYPE  = 6;

Process  states:  

v   public  final  static  short  DK_ICM_DR_PROCESS_VERIFIED_STATE  = 0; 

v   public  final  static  short  DK_ICM_DR_PROCESS_DRAFT_STATE  = 1

 

 

Chapter 6. Routing  a document  through a process 251

|

|

|
|
|
|
|
|
|
|
||||

|
|
|
|

|
|
|

|

|

|

|

|

|

|

|

|

|

|

|



252 Application  Programming Guide



Chapter  7.  Understanding  prefetching  in DB2  Content  

Manager  for  z/OS  

The  Prefetch  feature  enables  you  to  move  objects  that  are  currently  located  on  

slower  media,  like  optical  or  tape,  to  faster  media,  like  direct  access  storage  devices  

(DASD),  or  vice  versa.  This  makes  objects  readily  available  for  users  to  access.  For  

example,  XYZ  Insurance  has  just  been  informed  that  they  will  be  audited,  and  that  

they  must  provide  records  for  the  past  seven  years.  The  company  policy  is to  

migrate  policies  belonging  to  customers  that  have  gone  to other  insurance  

companies  to  optical  tape.  In  this  scenario,  the  DB2  Content  Manager  system  

administrator  must  prefetch  the  policies  of previous  customers,  and  restore  those  

policies  to  DASD.  The  policies  can  then  be  retrieved  quickly  in  case  an  auditor  

wants  to  see  them.  

Prefetching objects 

To use  the  prefetch  feature,  you  call  the  DKLobICM  and  DKDatastoreICM  APIs  

within  your  application.  When  calling  the  APIs,  you  specify  that  you  want  a 

particular  item,  or  in  the  case  of  batch  operations,  a collection  of  items,  to  be  

pre-fetched.  The  APIs  send  a request  to  the  resource  manager  to  pre-fetch  the  

object  from  the  collection  it resides  in  and  place  it in  the  collection  that  you  

specified  as  the  pre-fetch  collection  at  define  time.  Figure  13  on  page  254  depicts  

the  flow  of  a prefetch  transaction:  

 

 

© Copyright  IBM Corp. 1996, 2005 253

|

|

|

|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|



Prefetching  from  the  resource  manager  is an  asynchronous  transaction.  Therefore,  

the  successful  completion  of a prefetch  transaction  consists  of the  two  parts  

described  below.  

1.   The  application  calls  the  resource  manager  using  a prefetch  order.  The  prefetch  

order  is then  processed  by  the  resource  manager,  inserting  an  entry  into  the  

ICMRMPREFETCH  table.  If this  table  insert  is successful,  a 0 return  code  is 

sent  back  to  the  calling  application.  At  this  stage,  the  object  only  exits  in  its  

original  location  or  source  collection.  The  table  update  process  is as  follows:  

a.    An  entry  is inserted  into  the  ICMRMPREFETCH  table.  

b.   The  requesttimestamp  and  statetimestamp  are  set  to the  current  timestamp.  

c.   The  prefetchstate  is set  to  INITIATED.

  

Figure  13.  Flow  of a prefetch  transaction

 

 

254 Application  Programming Guide

|
|
|

|
|
|
|
|

|

|

|



1.   The  actual  processing,  which  is copying  an  object  from  the  source  to  the  

prefetch  collection,  is done  by  the  ICMMOSAP  asynchronous  process.  This  

process  performs  a select  on  the  ICMRMCONTROL  table  for  

PREFETCHENABLED.  If this  value  is set  to 1,  ICMMOSAP  processes  the  

entries  in  the  ICMRMPREFETCH  table  if any  exist.  This  process  is as  follows:  

a.   The  prefetchstate  is  updated  to  WORKING  and  the  statetimestamp  is 

updated  with  the  current  timestamp.  

b.   An  OAM_Query  is performed  to see  if the  object  exists  within  OAM  by 

searching  on  its  extobjname  and  source  collection  name.  

c.   If  the  object  exists  within  OAM,  an  OAM_Retrieve  operation  is performed.  

d.   Once  retrieved,  an  OAM_Store,  for  the  existing  extobjname, within  OAM  at 

the  prefetch  collection  name,  is performed.  

e.   If the  OAM_Store  is successful,  the  prefetchstate  is updated  to  COMPLETE  

and  the  statetimestamp  is updated  with  the  current  timestamp.  

f.   If  a failure  occurs,  Oamreturncode  and  oamreasoncode  are  updated  with  error  

codes  from  OAM,  and  prefetchstate  is  updated  to  FAILED. 

Support  for  the  prefetch  APIs  is limited  to  the  Java  APIs  only.  The  APIs  below  are  

the  APIs  you  work  with  to  prefetch  an  object:  

v   DKDatastoreICM  

public  dkCollection  prefetchObjects(dkCollection  prefetchColl,DKNVPair[]  

nvPairs)  throws  DKException,Exception  

v    DKLobICM  

public  boolean  prefetchContent(DKNVPair[]  nvPairs)  throws  DKException,  

java.lang.Exception  public  boolean  prefetchContent(DKNVPair[]  nvPairs)  

throws  DKException,  java.lang.Exception

For  more  specific  information  about  the  APIs,  see  the  Application  Programming  

Reference.  

Table  definitions related to prefetching 

 Table 24.  ICMRMCONTROL  

PREFETCHENABLED  SMALLINT  NOT  NULL,
  

 Table 25.  ICMRMPREFETCH  

ITEMID  CHAR(26)  NOT  NULL  

VERSIONID  SMALLINT  

VERSIONID  SMALLINT  

EXTOBJNAME  CHAR(44)  NOT  NULL  

SOURCECOLLNAME  CHAR(44)  NOT  NULL  

PREFETCHCOLL  NAME  CHAR(44)  NOT  NULL  

REQUESTTIMESTAMP  TIMESTAMP  NOT  NULL  

STATETIMESTAMP  TIMESTAMP  NOT  NULL  

OAMRETURNCODE  SMALLINT  

OAMREASONCODE  CHAR(8)  

VOLSER  CHAR(6)  

OPERATION  VARCHAR(128)  NOT  NULL  

PREFETCHSTATE  VARCHAR(128)  NOT  NULL  

 

 

Chapter  7. Understanding  prefetching  in DB2 Content  Manager  for z/OS 255

|
|
|
|
|

|
|

|
|

|

|
|

|
|

|
|

|
|

|
|
|

|
|
|
|

|
|

|

||

|||
|

||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||



Table 25.  ICMRMPREFETCH  (continued)  

ITEMID  CHAR(26)  NOT  NULL  

PRIMARY  KEY  (EXTOBJNAME)  

  

ITEMID  

Generated  by  the  library  server  during  the  object  store  transaction.  

Example  ITEMID:  A1001001A03L09B64813I92553.  

VERSIONID  

When  versioning  is enabled,  this  value  denotes  a given  instance  of  an  

object.  Example  VERSIONID:  1 

EXTOBJNAME  

The  EXTOBJNAME  is  the  ITEMID  and  VERSIONID  combined  and  “.”  

delimited,  and  represents  a unique  DB2  Content  Manager  object  locator  

within  Object  Access  Method  (OAM).  Example  EXTOBJNAME:  

A1001001.A03L09.B64813.I92553.V001  

SOURCECOLLNAME  

The  name  of  the  collection  that  the  object  was  originally  stored  under  and,  

the  source  of  the  prefetch  operation.  Example  SOURCECOLLNAME:  

CLLCT001  

PREFETCHCOLLNAME  

Generally  represents  a collection  backed  by  a fast  access  medium  such  as 

DASD  and  is the  target  of  a prefetch  operation.  Example  

PREFETCHCOLLNAME:  CLLCT002  

REQUESTTIMESTAMP  

The  time  when  a request  was  made  to  prefetch  an  object.  Example  

REQUESTTIMESTAMP:  2003-12-09  21:48:22.778167000  

STATETIMESTAMP  

Reflects  the  time  the  PREFETCHSTATE  was  modified.  For  example,  when  

an  object  is  initially  requested  to  be  prefetched,  the  REQUESTTIMESTAMP  

and  the  STATETIMESTAMP  are  the  same  and  the  prefetchstate  is 

INITIATED.  Once  the  processing  of  the  prefetch  request  begins,  the  

PREFETCHSTATE  is updated  to  WORKING.  The  STATETIMESTAMP  is 

also  updated  to reflect  the  time  the  prefetch  processing  began.  If  the  

prefetch  processing  completes  successfully,  the  PREFETCHSTATE  is 

updated  to  COMPLETE.  If there  is a failure,  the  PREFETCHSTATE  is 

updated  to  FAILED.  In  either  case,  the  STATETIMESTAMP  is also  updated  

with  the  current  timestamp.  Example  STATETIMESTAMP:  2003-12-09  

21:48:22.778167000  

OAMRETURNCODE  

An  integer  value  that  represents  the  return  code  from  an  OAM  operation.  

Prefetching  an  object  requires  multiple  calls  to the  OAM  interface.  

Therefore,  the  return  code  from  OAM  indicates  the  success  or  failure  of  a 

given  prefetch  operation.  Since  the  prefetch  function  currently  runs 

asynchronously,  the  calling  application  has  no  way  of knowing  the  status  

of  a given  prefetch  operation,  therefore  it is important  to store  this  status  

information  persistently  for  later  status  query.  Example  

OAMRETURNCODE:  8 

OAMREASONCODE  

Provides  detailed  information  about  the  OAMRETURNCODE  failure  and  is 

 

 

256 Application  Programming Guide

|

|||

|||

|||
|

|
|
|

|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|



the  character  representation  of  the  hexadecimal  value  used  to  locate  the  

reason  code  description  in the  DFSMSdfp  Diagnosis  Reference  Guide  

(GY27-7618-03).  Example  OAMREASONCODE:  2C040100  

VOLSER  (for  future  use)  

Represents  the  tape  volume  on  which  a given  object  can  be  stored.  This  

value  is  included  for  the  purpose  of  grouping  prefetch  requests  according  

to  the  tape  volume  where  they  reside  to  prevent  “thrashing”  of  the  tape  

drives.  

OPERATION  

This  value  indicates  the  operation  that  is to be  performed.  Currently,  the  

only  valid  value  for  this  column  is PREFETCH.  The  operation  column  is  

included  for  future  extendibility  and  therefore  will  contain  other  values  in 

the  future.  Example  OPERATION:  PREFETCH  

PREFETCHSTATE  

Indicates  the  progress  of a prefetch  transaction.  The  list  below  provides  the  

valid  values  for  this  column:  

v   INITIATED:  The  initial  state  when  a prefetch  request  is inserted  into  the  

ICMRMPREFETCH  table.  

v   WORKING:  The  updated  state  indicating  that  the  prefetch  process  has  

started  processing  the  given  object’s  prefetch  request.  

v   COMPLETE:  The  updated  state  indicating  that  the  prefetch  process  has  

ended  successfully.  

v   FAILED:  The  updated  state  indicating  that  the  prefetch  process  returned  

with  a non-zero  error  condition.

 

 

Chapter  7. Understanding  prefetching  in DB2 Content  Manager  for z/OS 257

|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|

|
|

|
|

|
|

|
|



258 Application  Programming Guide



Chapter  8.  Working  with  other  content  servers  

You use  the  dkDatastore  classes  to  define  an  appropriate  content  server  for  the  

content  servers  in  your  application.  The  content  server  is the  primary  interface  to 

the  Information  Integrator  for  Content.  Each  content  server  has  a separate  content  

server  class.  

To create  a content  server,  use  the  DKDatastorexx classes,  where  xx  identifies  the  

specific  content  server.  Table 5 on  page  23  shows  these  classes.  

 Table 26. Server  type  and  class  name  terminology  

Content  server  Class  name  

DB2  Content  Manager  Version  8.3 DKDatastoreICM  

Earlier  DB2  Content  Manager  DKDatastoreDL  

Content  Manager  OnDemand  DKDatastoreOD  

DB2  Content  Manager  for AS/400  (VisualInfo  

for  AS/400)  

DKDatastoreV4  

Content  Manager  ImagePlus  for OS/390  DKDatastoreIP  

Domino.Doc  DKDatastoreDD  

Relational  databases  DKDatastoreDB2,  DKDatastoreJDBC  (for  

Java),  DKDatastoreODBC
  

When  creating  a content  server  for  a content  server,  implement  each  of the  

following  classes  and  interfaces:  

dkDatastore  

Represents  the  content  server  and  manages  the  connection,  

communications,  and  execution  of  content  server  commands.  dkDatastore  

is an  abstract  version  of  the  query  manager  class.  It supports  the  evaluate  

method.  

dkDatastoreDef  

Uses  the  methods  to access  items  stored  in  the  content  server.  Also  creates,  

lists,  and  deletes  its  entities.  It maintains  a collection  of dkEntityDefs.  

Examples  of  concrete  classes  for  this  interface  are:  

v   DKDatastoreDefDL  

v   DKDatastoreDefOD

dkEntityDef  

Uses  the  methods  to access  entity  information.  Also  creates  and  deletes  

entities  and  attributes.  The  methods  of  this  class  support  accessing  

multiple-level  entities.  If a content  server  does  not  support  subentities,  they  

generate  DKUsageError  objects.  If a content  server  supports  multiple-level  

entities,  you  must  implement  methods  to overwrite  the  exceptions  for  

subclasses  for  these  content  servers.  Examples  of  concrete  classes  for  the  

dkEntityDef  interface  are:  

v   DKIndexClassDefDL  

v   DKAppGrpDefOD

 

© Copyright  IBM Corp. 1996, 2005 259



The  class  hierarchy  for  an  entity  definition  is illustrated  in  Figure  14:  

 

dkAttrDef  

Defines  methods  to  access  attribute  information  and  to create  and  delete  

attributes.  Examples  of  concrete  classes  for  dkAttrDef  are:  

v   DKAttributeDefDL  

v   DKFieldDefOD

dkServerDef   

Defines  methods  to  access  server  information.  Examples  of concrete  classes  

for  dkServerDef  are:  

v   DKServerDefDL  

v   DKServerDefOD

dkResultSetCursor  

Creates  a content  server  cursor  that  manages  a collection  of  DDO  objects.  

To use  the  addObject,  deleteObject,  and  updateObject  methods,  set  the  

content  server  option  DK_CM_OPT_ACCESS_MODE  to  DK_CM_READWRITE. 

dkBlob  

Declares  a common  public  interface  for  binary  large  object  (BLOB)  data  

types  in  each  content  server.  The  concrete  classes  derived  from  dkBlob  

share  this  common  interface,  allowing  processing  of  BLOBs  from  

heterogeneous  content  servers.  Examples  of concrete  classes  for  dkBlob  are:  

v   DKBlobDL  

v   DKBlobOD

 The  data  definition  classes  and  their  class  hierarchy  are  represented  in  Figure  15 on  

page  261:  

 

  

Figure  14. Class  hierarchy

 

 

260 Application  Programming Guide



For  more  information  on  dkDatastore  and  other  common  classes,  see  “Developing  

custom  content  server  connectors”  on  page  368.  

Working  with earlier DB2 Content Manager 

This  section  describes  how  to access  data  in  DB2  Content  Manager  servers,  and  

how  to  perform  the  following  tasks:  

v   Handle  large  objects  

v   Use  DDOs.  

v   Use  XDOs  in a search  engine  

v   Use  combined  query.  

v   Use  DB2  Text Information  Extender.  

v   Use  image  search  (QBIC®). 

v   Use  workflows  and  workbaskets.

Handling large objects 

In  the  earlier  DB2  Content  Manager  connector,  you  can  retrieve  large  objects  piece  

by  piece  using  asynchronous  retrieval.  For  the  sample  application,  see  

TxdoAsyncRetDL  in  the  Samples  directory.  

Setting Java heap size (Java only) 

Java  has  a limitation  for  the  default  initial  and  maximum  heap  size.  The  default  

initial  heap  size  is  1 048  576   and  the  default  maximum  heap  size  is 16  777  216   

bytes.  If  your  Java  application  program  tries  to  use  objects  larger  than  the  heap  

size,  your  program  will  fail  during  execution.  To increase  maximum  heap  size  for  

your  application,  use  the  -mx  option  when  you  execute  your  Java  application  

program.  For  example:  

 

 

Java  

java  -mx40000000  yourApplication  

  

Figure  15.  Data  definition  class  hierarchy

 

 

Chapter 8. Working  with other content  servers  261



Using DDOs to represent earlier Content Manager content 

A DDO  associated  with  DKDatastoreDL  has  some  specific  information  to  represent  

the  Information  Integrator  for  Content  document  model:  document,  folder,  parts,  

item,  item  ID,  rank,  and  so  forth.  The  following  sections  describe  how  you  access  

this  information.  

DDO properties 

The  type  of  an  item,  whether  it is a document  or  folder,  is a property  under  the  

name  DK_CM_PROPERTY_ITEM_TYPE. To get  the  item  type  of  the  DDO,  you  call:  

 

 

Java  

  DKDDO  addo  = new  DKDDO(dsDL,  pid);  

  Object  obj  = addo.getPropertyByName(DK_CM_PROPERTY_ITEM_TYPE);  

  if (obj  != null)  { 

    short  item_type  = ((Short)  obj).shortValue();  

  } 

 

 

C++  

DKAny  any  = cddo->getPropertyByName(DK_CM_PROPERTY_ITEM_TYPE);  

if  (!any.isNull())  { 

    unsigned  short  item_type  = (unsigned  short)  any;  

}    ...             // do something  

 After  the  property  is called,  the  item_type  is equal  to  DK_CM_DOCUMENT  for  a 

document,  or  DK_CM_FOLDER  for  a folder.  The  if statement  ensures  that  the  property  

exists.  See  “Adding  properties  to  a DDO”  on  page  30  and  “Getting  the  DKDDO  

and  attribute  properties”  on  page  33  for  more  information.  

Persistent identifier (PID) 

The  PID  contains  important  pieces  of  information  specific  to  Information  Integrator  

for  Content:  the  object  type  indicates  the  index  class  the  DDO  belongs  to;  the  PID  

contains  the  item  ID  of the  associated  item  from  the  content  server.  See  “Creating  a 

persistent  identifier  (PID)”  on  page  30.  

Representing documents 

A DDO  representing  a document  has  the  property  DK_CM_PROPERTY_ITEM_TYPE  set  to 

DK_CM_DOCUMENT. Its  PID  contains  the  index  class  name  as  the  object  type.  The  PID  

ID  the  same  as  the  item  ID.  

The  parts  inside  a document  are  represented  as DKPartsDL  objects,  which  are  

collections  of  binary  large  objects  (BLOBs),  each  of which  is represented  as  a 

DKBlobDL  object.  

A document  DDO  has  a specific  attribute  named  DKPARTS,  whose  value  is a 

DKParts  object.  

To get  to  each  part  in  a document,  retrieve  the  DKParts  first,  then  create  an  iterator  

to  iterate  over  the  parts.  If  the  document  does  not  have  any  parts,  DKParts  is null  

or  the  cardinality  of  DKParts  is zero.  

Documents  associated  with  a combined  query  (a  combination  of a parametric  and  

text  query)  can  have  a transient  attribute  named  DKRANK, whose  value  is an  object  

containing  an  integer  rank  computed  by  the  DB2  Text Information  Extender.  

 

 

262 Application  Programming Guide



For  more  information  on  creating  and  processing  a DKParts  object,  see  “Creating,  

updating,  and  deleting  documents  or  folders,”  “Retrieving  a document  or  folder”  

on  page  271,  and  “Creating  documents  and  using  the  DKPARTS  attribute”  on  page  

67.  

Representing folders 

A  DDO  representing  a folder  has  a property  DK_CM_PROPERTY_ITEM_TYPE  equal  to  

DK_CM_FOLDER. Similar  to  a document  DDO,  its  PID  contains  the  index  class  name  

as  the  object  type,  and  item  ID  in  the  PID’s  ID.  

A  DKFolder  object  represents  the  table  of  contents  inside  a folder.  A  DKFolder  

object  is a collection  of  DDOs.  Each  DDO  represents  an  item  in  the  folder,  either  a 

document  or  another  folder.  A folder  DDO  has  an  attribute  named  DKFOLDER, 

whose  value  is a DKFolder  object.  

To get  to  each  DDO  member  of  the  folder,  retrieve  the  DKFolder  object  first;  then  

create  an  iterator  to  access  each  item  member.  If the  folder  does  not  have  a 

member,  DKFolder  is null,  but  the  DKFOLDER  attribute  is always  present  in  a folder  

DDO  created  by  the  content  server.  

For  more  information  on  creating  and  processing  a DKFolder  object,  see  “Creating,  

updating,  and  deleting  documents  or  folders,”  “Retrieving  a document  or  folder”  

on  page  271,  and  “Creating  folders  and  using  the  DKFOLDER  attribute”  on  page  

70.  

Creating, updating, and deleting documents or folders 

This  section  describes  the  processes  involved  in  creating,  updating,  and  deleting  

documents  and  folders.  

Creating a document 

To create  a document  and  save  its  persistent  data  in  a content  server,  you  must  

create  a DDO  and  set  all  of  its  attributes  (and  other  information)  except  for  the  

item  ID.  The  item  ID  is assigned  and  returned  by  the  content  server.  Some  of  the  

previous  examples  are  combined  in  the  following  example:  

 

 

Chapter 8. Working  with other content  servers  263



Java  

//  -----  Step  1: create  a datastore  and  connect  to it 

DKDatastoreDL  dsDL  = new  DKDatastoreDL();  

dsDL.connect("LIBSRVRN","FRNADMIN","PASSWORD");  

  

//  -----  Step  2: create  a document  (or folder)  DDO  

//          and  set  all  its  attributes  and  other  required  information  

DKPid  pid  = new  DKPid();  

pid.setObjectType("GRANDPA");     // Set  the  index-class  name  it belongs  to 

DKDDO  ddo  = new  DKDDO(dsDL,pid);  //  Create  a DDO  with  PID  and 

...                               //   associate  it to dsDL  

  

//  -----  Step  2.a:  add  attributes  according  to  index  class  GRANDPA  

Object  obj,  vstr;  

Boolean  yes  = new  Boolean(true);  

Boolean   no = new  Boolean(false);  

  

short  data_id  = cddo.addData("Title");   // add  new  attribute  "Title"  

vstr  = new  Short(DK_CM_DATAITEM_TYPE_STRING);  

//  -----  Add  type  properties  VSTRING  and  nullable  

cddo.addDataProperty(data_id,  DK_CM_PROPERTY_TYPE,  vstr);  

cddo.addDataProperty(data_id,  DK_CM_PROPERTY_NULLABLE,  no);  

  

data_id  = cddo.addData("Subject");   // add  new  attribute  "Subject"  

cddo.addDataProperty(data_id,  DK_CM_PROPERTY_TYPE,vstr);  

cddo.addDataProperty(data_id,  DK_CM_PROPERTY_NULLABLE,yes);  

  

//  -----  Add  some  more  attributes  as necessary  

  ....  

  

//  -----  Step  2.b:  add  DKPARTS  attribute  

DKParts  parts  = new  DKParts();   // create  a new DKParts,  collection  of parts  

DKBlobDL  blob  = new  DKBlobDL(dsDL);    // create  a new XDO  blob  

DKPidXDODL  pidXDO  = new  DKPidXDODL();  // create  PID  for  this  XDO  object  

  

pidXDO.setPartId(5);                           // set  part  number  to 5 

blob.setPidObject(pidXDO);                     // set  the  PID for the  XDO  blob  

blob.setContentClass(DK_DL_CC_GIF);            // set  content  class  type  GIF 

blob.setRepType(DK_REP_NULL);                  // set  rep  type  for  the  part  

blob.setContentFromClientFile("choice.gif");   // set  the  blob’s  content  

blob.setInstanceOpenHandler("xv");             // the viewer  program  on AIX  

  

parts.addElement(blob);                // add the  blob  to the parts  collection  

  

....                                   // create  and  add  some  more  blobs  to 

....                                   // to the  collection  as necessary  

  

//  -----  Create  DKPARTS  attribute  and set  it to refer  to the DKParts  object  

short  data_id  = ddo.addData(DKPARTS);         // add  attribute  "DKParts"  

obj  = new  Short(DK_CM_COLLECTION_XDO);        // add type  property  

ddo.addDataProperty(data_id,DK_CM_PROPERTY_TYPE,obj);  

ddo.addDataProperty(data_id,DK_CM_PROPERTY_NULLABLE,yes);  / add nullable  prop  

ddo.setData(data_id,  parts);                  // sets  the attribute  value  

  

//  -----  Step  2.c:  sets  the item  type  : document  

obj  = new  Short(DK_CM_DOCUMENT);  

ddo.addProperty(DK_CM_PROPERTY_ITEM_TYPE,  obj);  

  

//  -----  Step  3: make  item  persistent;  add  item  to the datastore  

ddo.add();                                 // document  created  in datastore  

 

 

264 Application  Programming Guide



C++  

// step  1: create  a datastore  and  connect  to it  

DKDatastoreDL  dsDL;  

dsDL.connect("LIBSRVRN","FRNADMIN","PASSWORD");  

  

// step  2: create  a document  (or folder)  DDO  

//         and  set  all its  attributes  and other  required  information  

//         See  the  section  on "Using  DDO"  

DKPid  pid;  

// set  the  index-class  name  it belongs  to 

pid.setObjectType("GRANDPA");  

// create  a DDO  with  PID  and associated  with  dsDL  

DKDDO*  ddo  = new  DKDDO(&dsDL,pid);  

  

// step  2.a:  add  attributes  according  to index-class  GRANDPA  

DKAny  any;  

DKBoolean  yes  = TRUE;  

DKBoolean  no = FALSE;  

// add  a new  attribute  named  "Title"  

unsigned  short  data_id  = cddo->addData("Title");  

// add  type  property  VSTRING  

any  = DK_VSTRING;  

cddo->addDataProperty(data_id,  DK_CM_PROPERTY_TYPE,  any);  

// add  nullable  property:  non-nullable  

any  = no;  

cddo->addDataProperty(data_id,  DK_CM_PROPERTY_NULLABLE  , any);  

  

// add  a new  attribute  named  "Subject"  

data_id  = cddo->addData("Subject");  

  

any  = DK_VSTRING;  

cddo->addDataProperty(data_id,  DK_CM_PROPERTY_TYPE,  any);  

any  = yes;  

cddo->addDataProperty(data_id,  DK_CM_PROPERTY_NULLABLE  , any);  

  

// add  some  more  attributes  as necessary  

//  ...  

  

// step  2.b:  add  DKPARTS  attribute  

// create  a new  XDO blob  

DKParts*  parts  = new DKParts;  

DKBlobDL*  blob  = new DKBlobDL(&dsDL);  

  

DKPidXDODL  pidXDO;                      // create  PID  for  this  XDO  object  

  

pidXDO.setPartId(5);                    // set  part  number  to 5 

blob->setPid(&pidXDO);                  // set the  PID  for  the XDO blob  

blob->setContentClass(DK_CC_GIF);       // set content  class  type  GIF 

blob->setRepType(DK_REP_NULL);          // set  rep type  for  the  part  

blob->setContentFromClientFile("choice.gif");  // set  the  blob’s  content  

  

DKAny  any  = (dkDataObjectBase*)  blob;  

parts->addElement(any);                // add  the  blob  to the  parts  collection  

  

...                                      // create  and add some  more  blobs  

...                                      // to the  collection  as necessary  

// continued...  

 

 

Chapter 8. Working  with other content  servers  265



C++  (continued)  

//  create  DKPARTS  attribute  and sets  it  to refer  to the DKParts  object  

//  add  attribute  "DKParts"  

unsigned  short  data_id  = ddo->addData(DKPARTS);  

any  = DK_COLLECTION_XDO;  

//  add  type  property  

ddo->addDataProperty(data_id,DK_CM_PROPERTY_TYPE,any);  

any  = (DKBoolean)  TRUE;  

//  add  nullable  property  

ddo->addDataProperty(data_id,DK_CM_PROPERTY_NULLABLE  ,any);  

any  = (dkCollection*)  parts;  

//  sets  the  attribute  value  

ddo->setData(data_id,  any);  

  

//  step  2.c:  sets  the  item  type  : document  

any  = DK_CM_DOCUMENT;  

ddo->addProperty(DK_CM_PROPERTY_ITEM_TYPE,  any);  

  

//  step  3: make  it persistent  

//  a document  is created  in the datastore  

ddo->add();  

 The  last  step  of  the  preceding  example  created  a document  in the  content  server  

(with  the  information).  Whenever  a document  DDO  is added  to  a content  server,  

all  of  its  attributes  are  added,  including  all  of  the  parts  inside  the  DKParts  

collection.  

You use  the  same  process  for  adding  a folder  DDO.  The  DKFOLDER  collection  

members  are  added  to  the  content  server  as  a component  of the  folder.  The  folder  

contains  a table  of  contents  of its  members,  which  are  existing  documents  and  

folders.  Therefore,  create  all  folder  members  in  the  content  server  before  adding  a 

folder  DDO.  

 

 

Java  

You can  add  the  same  document  to  a different  content  server  of the  same  

type.  To add  this  document  to  the  DB2  Content  Manager  server  LIBSRVRN, 

which  has  an  index  class  LIBSV2  with  the  same  structure  as  LIBSV, use  the  

following  example:  

//  -----  Create  datastore  and  connect  to  LIBSRVRN  

DKDatastoreDL  dsN  = new  DKDatastoreDL();  

dsN.connect("LIBSRVRN",  "FRNADMIN",  "PASSWORD");  

  

//  -----  Update  the  PID  

pid  = ddo.getPidObject();  

pid.setObjectType("LIBSV2");         // set  the new  index  class  

pid.setPrimaryId("");                // make  the  item  ID blank  

pid.setDatastoreName("LIBSRVRN");    // set  the  new datastore  name  

ddo.setPidObject(pid);               // update  the  PID  

ddo.setDatastore(dsN);               // re-associate  the  DDO  with  dsN  

ddo.add();                           // add  the  DDO 

 

 

266 Application  Programming Guide



C++  

You can  add  the  same  document  to a different  content  server  of  the  same  

type.  For  example,  to add  the  document  to  the  server  LIBSRVRN, which  has  an  

index  class  GRANDPA2  with  the  same  structure  as  GRANDPA: 

// create  datastore  and  connect  to LIBSRVRN  

DKDatastoreDL  dsN;  

dsN.connect("LIBSRVRN","FRNADMIN","PASSWORD");  

// update  the  Pid  

pid  = ddo->getPid();  

pid.setObjectType("GRANDPA2");               // set  the  new index-class  

pid.setId("");                               // blank  the item-id  

pid.setDatastoreName("LIBSRVRN");            // set  the new datastore  name  

ddo->setPid(pid);                            // update  the PID 

ddo->setDatastore(&dsN);                     // re-associate  it with  dsN 

ddo->add();                                  // add it 

Updating a document or a folder 

To update  a document  or  folder:  

1.   Set  the  item  ID  and  the  object  type.  

2.   Update  the  appropriate  attributes,  or  add  to the  DKParts  collection.  

3.   Call  the  update  method  to  store  the  change.
 

 

Java  

// -----  Update  the  value  of attribute  Title  

String  newTitle  = "Accident  Report";  

short  data_id  = ddo.getDataByName("Title");  

ddo.setData(data_id,  newTitle);  

ddo.update();  

 

 

C++  

// update  the  value  of attribute  Title  

DKAny  any  = DKString("Guess  who  is behind  all this");  

unsigned  short  data_id  = ddo->getDataByName("Title");  

ddo->setData(data_id,  any);  

ddo->update();  

 After  the  call  to  the  update  method,  the  value  of  the  attribute  Title  in the  content  

server  is  updated.  The  parts  in  this  document  are  not  updated  unless  their  content  

has  changed.  The  connection  to  the  server  must  be  valid  when  you  call  the  update  

method.  

Update  a folder  DDO  using  similar  steps:  update  the  attribute  values,  or  add  or  

remove  elements  from  DKFolder;  then  call  the  update  method.  

Updating parts 

Represent  the  collection  of  parts  in  a document  using  a DKParts  object.  

DKParts  is a subclass  of DKSequentialCollection.  In  addition  to  inheriting  the  

sequential  collection  functions,  DKParts  has  two  additional  methods  for  adding  a 

part  to,  and  removing  a part  from,  the  collection.  These  methods  also  immediately  

save  the  changes  to  the  content  server.  

 

 

Chapter 8. Working  with other content  servers  267



The  document  must  already  exist  in  the  content  server.  

Adding  and  removing  a member:    The  following  examples  add  a part  to a 

document.  

 

 

Java  

DKDDO  addo  = new  DKDDO();     // create  a document  DDO  

DKBlobDL  newPart  = new  DKBlobDL();    // create  the  new part  to be added  

....                                  // initialized  the  DDO  and  new  part  

DKParts  parts  = (DKParts)  addo.getDataByName(DKPARTS);   // get DKParts  

parts.addMember(ddo,  newPart);        // assume  none  of these  values  are  NULL  

 

 

C++  

//  a document  DDO  

DKDDO*  ddo;  

//  a new  part  to be added  

DKBlobDL*  newPart;  

//  ddo  and  newPart  are  

//  initialized  somewhere  along  the  line  

...  

...  

//  get  DKParts  

DKAny  any  = ddo->getDataByName(DKPARTS);  

DKParts*  parts  = (DKParts*)  any.value();  

//  assume  none  of these  values  are  NULL  

parts->addMember(ddo,  newPart);  

 To remove  newPart  from  the  collection  and  the  content  server,  you  would  use:  

 

 

Java  

parts.removeMember(addo,  newPart);  

 

 

C++  

parts->removeMember(ddo,  newPart);  

 The  removeMember  method  in DKParts  actually  deletes  the  persistent  copy  of  the  

part  from  the  content  server.  

Differences  between  update,  add,  and  remove  on  a document  DDO:    The  

addMember  and  removeMember  methods  of DKParts  provide  conveniences  for  

adding  and  removing  a part  in  the  collection  and  the  content  server.  They  are  

faster  than  the  update  method  in  a document  DDO.  The  update  method  on  a DDO  

updates  all  of  the  attributes  in  the  DDO,  including  DKParts  and  all  of its  members  

that  changed.  The  steps  are:  

 

 

268 Application  Programming Guide



Java  

....  

// -----  Get  DKParts,  assume  it exists  and  not  null  

DKParts  parts  = (DKParts)  addo.getDataByName(DKPARTS);  

parts.addElement(newPart);           // add a new  part  to parts  

addo.update();                       // updates  the  whole  ddo  

....  

 

 

C++  

...  

DKAny  any  = ddo->getDataByName(DKPARTS);  

// get  DKParts,  assume  it exists  

DKParts*  parts  = (DKParts*)  any.value();  

// assume  it is not  NULL  

any  = (dkDataObjectBase*)  newpart;  

parts->addElement(any);  

// updates  the  whole  ddo  

ddo->update();  

...  

Updating folders 

You represent  the  collection  of  documents  and  folders  within  a folder  using  a 

DKFolder  object.  In  the  content  server,  a folder  holds  a table  of contents  referring  

to  its  objects  instead  of keeping  the  actual  objects.  

DKFolder  is a subclass  of  DKSequentialCollection.  In  addition  to inheriting  the  

sequential  collection  methods,  it has  two  additional  members  for  adding  a member  

(a  document  or  a folder)  to,  or  removing  a member  from,  the  collection  and  

immediately  stores  those  changes.  

The  document  or  folder  to  be  added  or  removed  must  already  exist  in  the  content  

server.  

Adding  and  removing  a member:    The  following  example  illustrates  adding  

another  document  or  folder  DDO  to a folder  DDO:  

 

 

Java  

DKDDO  folderDDO  = new DKDDO();   // Created  the  folder  DDO  

DKDDO  newMember  = new DKDDO();   // Create  the  new DDO  to be added  

....                             // The folder  DDO and  newMember  are 

....                             //    initialized  

// -----  Get  the  DKFolder,  assuming  it exists,  and the  value  not  null  

DKFolder  folder  = (DKFolder)  folderDDO.getDataByName(DKFOLDER);  

folder.addMember(folderDDO,  newMember);  

 

 

Chapter 8. Working  with other content  servers  269



C++  

//  a folder  DDO  

DKDDO*  folderDDO;  

//  a new  DDO  to be added  as  a member  of this  folder  

DKDDO*  newMember;  

...       // folderDDO  and  newMember  are 

...       // initialized  somewhere  along  the  line  

DKAny  any  = folderDDO->getDataByName(DKFOLDER);  

//  get  DKFolder,  assume  it exists  

DKFolder*  folder  = (DKFolder*)  any.value();  

//  assume  non  NULL  

folder->addMember(folderDDO,  newMember);  

 Both  newMember  and  folderDDO  must  exist  in  the  content  server  for  another  

document  or  folder  to  be  added  to  it. 

Similarly,  to  remove  newMember  from  the  collection  and  the  content  server  use  the  

following  example:  

 

 

Java  

folder.removeMember(folderDDO,  newMember);  

 

 

C++  

folder->removeMember(folderDDO,  newMember);  

 Important:  Removing  a member  from  a folder  only  removes  that  member  from  the  

folder  table  of  contents.  If you  use  the  removeElementAt, then  function  it  does  not  

delete  the  member  from  memory  or  from  the  content  server.  

Differences  between  update,  add,  and  remove  on  a folder  DDO:    The  

addMember  and  removeMember  methods  of DKFolder  provide  conveniences  for  

adding  and  removing  a document  or  folder  in  the  collection  and  in  the  content  

server.  They  are  faster  than  the  update  method  in  a folder  DDO  

The  update  method  on  a DDO  updates  all  of  the  attributes  in  the  DDO,  including  

DKFolder  and  all  of  its  members,  whereas  the  addMember  and  removeMember  

methods  only  add  or  remove  a member  in  the  folder  table  of contents.  

Deleting a document or a folder 

Use  the  del  method  in  the  DDO  to  delete  a document  or  folder  from  the  content  

server.  

 

 

Java  

ddo.del();  

 

 

C++  

ddo->del();  

 

 

270 Application  Programming Guide



The  DDO  must  have  its  item  ID  and  object  type  set,  and  have  a valid  connection  

to  the  content  server.  

Use  the  statement  above  to  delete  a folder  as  well.  Only  persistent  data  is  deleted,  

the  in-memory  copy  of the  DDO  does  not  change.  Therefore,  you  can  add  this  

DDO  back  to  the  same  or  different  content  server  later, in  the  application.  See  

“Creating  a document”  on  page  263  for  more  information.  

Retrieving a document or folder 

To retrieve  a document  from  a DKDatastoreDL  (representing  an  earlier  DB2  

Content  Manager  content  server),  you  must  know  the  document’s  index  class  name  

and  item  ID.  You also  must  associate  the  DDO  with  a content  server  and  establish  

a connection.  

 

 

Java  

DKDDO  ddo  = new  DKDDO(dsDL,pid);  

// -----  Create  the  datastore  and establish  a connection  

DKDatastoreDL  dsDL  = new  DKDatastoreDL();  

dsDL.connect("LIBSRVRN","FRNADMIN","PASSWORD");  

  

DKPid  pid  = new  DKPid();  

pid.setObjectType("Claim");  // set the index-class  name  it belongs  to 

pid.setPrimaryId("LN#U5K6ARLGM3DB4");   // set  the  item-id  

// -----  create  a DDO  with  the PID  and  associated  with  the  datastore  

  

ddo.retrieve();  //  retrieve  the  document  

 

 

C++  

DKDatastoreDL  dsDL;  

dsDL.connect("LIBSRVRN","FRNADMIN","PASSWORD");  

DKPid  pid;  

// set  the  index-class  name  it belongs  to 

pid.setObjectType("GRANDPA");  

// set  the  item-id  

pid.setId("LN#U5K6ARLGM3DB4");  

// create  a DDO  with  pid  and associated  to dsDL  

DKDDO*  ddo  = new  DKDDO(&dsDL,  pid);  

// retrieve  it 

ddo->retrieve();  

 After  a call  to  retrieve,  all  of  the  DDO’s  attribute  values  are  set  to  the  value  of  the  

persistent  data  stored  in  the  content  server.  If the  document  has  parts,  the  DKPARTS  

attribute  is set  to  a DKParts  object.  However,  the  content  of  each  part  in  this  

collection  is not  retrieved.  Because  a part  might  be  large,  you  should  not  retrieve  

all  of  them  into  memory  at once.  It is better  to  explicitly  retrieve  the  part  you  

want.  

If  the  DDO  is  a parametric  query  result  that  ran  with  the  query  option  CONTENT=NO, 

the  DDO  is  empty  (does  not  have  the  attribute  values).  However,  all  information  

required  to  retrieve  it is already  set.  

Retrieving parts 

After  you  retrieve  a DDO,  you  can  retrieve  its  parts  that  are  stored  in  the  DKPARTS  

attribute,  as  follows:  

 

 

Chapter 8. Working  with other content  servers  271



Java  

DKParts  parts  = (DKParts)  ddo.getDataByName(DKPARTS);  

 

 

C++  

DKAny  any  = ddo->getDataByName(DKPARTS);  

DKParts*  parts  = (DKParts*)  any.value();  

This  example  assumes  that  the  DKPARTS  attribute  exists.  If it does  not  exist,  an  

exception  is generated.  See  “Retrieving  a folder”  on  page  273  for  an  example  of  

extracting  an  attribute  value  by  getting  the  data  ID  first  and  testing  it for  zero.  

To retrieve  each  part,  you  must  create  an  iterator  to  step  through  the  collection  and  

retrieve  each  part.  See  “Creating  documents  and  using  the  DKPARTS  attribute”  on  

page  67.  

 

 

Java  

//  -----  Create  an iterator  and  process  the  part  collection  members  

if  (parts  != null)  { 

    DKBlobDL  blob;  

    dkIterator  iter  = parts.createIterator();  

    while  (iter.more())  { 

           blob  = (DKBlobDL)  iter.next();  

           if (blob  != null)  { 

               blob.retrieve();   // retrieve  the  blob’s  content  

               blob.open();  

            ....                  // other  processing,  as  needed  

           } 

    } 

} 

 

 

C++  

//  create  iterator  and  process  the  part  collection  member  one  by one  

if  (parts  != NULL)  { 

    DKAny*  element;  

    DKBlobDL*  blob;  

    dkIterator*  iter  = parts->createIterator();  

    while  (iter->more())  { 

           element  = iter->next();  

           blob  = (DKBlobDL*)  element->value();  

           if (blob  != NULL)  { 

               // retrieve  the  blob’s  content  

               blob->retrieve();  

               // other  processing,  as  needed  

               blob->open();  

            } 

    } 

    delete  iter;  

} 

 

 

272 Application  Programming Guide



Similar  to  the  DDO  results  of  a parametric  query,  each  part  XDO  inside  the  

DKParts  collection  is  empty  (does  not  have  its  content  set).  However,  it has  all the  

information  needed  for  retrieval.  To bring  its  content  and  related  information  into  

memory,  call  the  retrieve  method:  

 

 

Java  

blob.retrieve();  

 

 

C++  

blob->retrieve();  

Retrieving a folder 

Retrieve  a folder  DDO  in the  same  way  that  you  retrieve  a document  DDO.  After  

being  retrieved,  the  folder  DDO  has  all  of  its  attributes  set,  including  the  attribute,  

DKFOLDER. This  attribute  value  is set  to  a DKFolder  object,  a collection  of  the  DDO  

members  in  the  folder.  Like  the  parts  in  a DKParts  object,  these  member  DDOs  

contain  only  enough  information  to retrieve  them.  You can  retrieve  a folder  DDO  

as  follows:  

 

 

Java  

data_id  = ddo.dataId(DKFOLDER);       // get  DKFOLDER  data-id  

if (data_id  == 0)                    //  folder  not  found  

    throw  new  DKException("  folder  data-item  not  found");  

  

DKFolder  fCol  = (DKFolder)  ddo.getData(data_id);  // get  the folder  collection  

  

// -----  Create  iterator  and process  the DDO collection  members  one  by one  

if (fCol  != null)  { 

   DKDDO  item;  

   dkIterator  iter  = fCol.createIterator();  

   while  (iter.more())  { 

      item  = (DKDDO)   iter.next();  

      if (item  != null)  { 

        item.retrieve();      // retrieve  the  member  DDO  

         ....                 // other  processing  

       } 

   } 

 } 

 

 

Chapter 8. Working  with other content  servers  273



C++  

//  get  DKFOLDER  data-id  

data_id  = ddo->dataId(DKFOLDER);  

//  folder  not  found  

if  (data_id  == 0) { 

    DKException  exc("  folder  data-item  not found");  

    DKTHROW  exc;  

} 

//  get  the  folder  collection  

any  = ddo->getData(data_id);  

DKFolder*  fCol  = (DKFolder*)  any.value();  

//  create  iterator  and  process  the  DDO collection  member  one  by  one  

if  (fCol  != NULL)  { 

    DKAny*  element;  

    DKDDO*  item;  

    dkIterator*  iter  = fCol->createIterator();  

    while  (iter->more())  { 

           element  = iter->next();  

           item  = (DKDDO*)  element->value();  

           if (item  != NULL)  { 

               // retrieve  the  member  DDO  

               item->retrieve();  

               // other  processing  

               ...  

           } 

    } 

    delete  iter;  

} 

 See  also  “Creating  folders  and  using  the  DKFOLDER  attribute”  on  page  70.  

Understanding text searching (DB2 Text  Information Extender) 

The  DB2  Text Information  Extender  product  supports  various  query  types:  

v   “Boolean  query”  on  page  275  

v   “Free  text  query”  on  page  275  

v   “Hybrid  query”  on  page  275  

v   “Proximity  query”  on  page  276  

v   “Global  text  retrieval  (GTR)  query”  on  page  276

You  can  use  the  text  search  item  ID,  part  number,  and  ranking  information  

(returned  by  the  query)  to  create  an  XDO  that  retrieves  the  document  from  an  

earlier  DB2  Content  Manager  server.  

Use  a DKDatastoreTS  object  to represent  the  DB2  Text Information  Extender.  DB2  

Text Information  Extender  does  not  actually  store  the  data,  it merely  indexes  the  

data  stored  in  earlier  DB2  Content  Manager  to  support  a text  search  on  them.  The  

result  of  a text  search  is an  item  identifier  describing  the  location  of  the  document  

in  DB2  Content  Manager.  Use  these  identifiers  to  retrieve  the  document.  

The  DKDatastoreTS  object  does  not  support  add, update, retrieve, and  delete  

functions.  You can  query  this  content  server.  See  “Loading  data  to  be  indexed  by  

DB2  Text Information  Extender”  on  page  284  for  information  on  adding  data  to 

DB2  Content  Manager  that  is indexed  by  DB2  Text Information  Extender.  

 

 

274 Application  Programming Guide



Boolean query 

A  boolean  query  is made  up  of  words  and  phrases,  separated  by  boolean  

operators.  Enclose  a phrase  in  single  quotes  (’).  Phrases  are  treated  as a literal  

strings.  

The  following  example  creates  a query  string  to search  for  all  text  documents  with  

the  word  www  or  the  phrase  web  site  in  the  TMINDEX  text  search  index:  

 

 

Java  

String  cmd  = "SEARCH=(COND=(www  OR ’web  site’));"  + 

             "OPTION=(SEARCH_INDEX=TMINDEX)";  

 

 

C++  

DKString  cmd   = "SEARCH=(COND=(www  OR ’web  site’));";  

         cmd  += "OPTION=(SEARCH_INDEX=TMINDEX)";  

Free text query 

A  free  text  query  is  made  up  of  words,  phrases,  or  sentences  enclosed  in braces  ({ 

}).  The  words  are  not  required  to be  adjacent  to  each  other. The  following  example  

creates  a query  string  to  search  for  all  text  documents  with  the  free  text  web  site  

in  the  TMINDEX  text  search  index:  

 

 

Java  

String  cmd  = "SEARCH=(COND=({web  site}));"  + 

             "OPTION=(SEARCH_INDEX=TMINDEX)";  

 

 

C++  

DKString  cmd   = "SEARCH=(COND=({Web  site}));";  

         cmd  += "OPTION=(SEARCH_INDEX=TMINDEX)";  

Hybrid query 

A  hybrid  query  is  made  up  of  a boolean  query  followed  by  a free  text  query.  The  

following  example  creates  a query  string  to  search  for  all  text  documents  with  the  

words  IBM  and  UNIX, as well  as the  free  text  web  site  in  the  TMINDEX  text  search  

index:  

 

 

Java  

String  cmd  = "SEARCH=(COND=(IBM  AND UNIX  {web  site}));"  + 

             "OPTION=(SEARCH_INDEX=TMINDEX)";  

 

 

C++  

DKString  cmd   = "SEARCH=(COND=(IBM  AND  UNIX  {Web  site}));";  

         cmd  += "OPTION=(SEARCH_INDEX=TMINDEX)";  

 

 

Chapter 8. Working  with other content  servers  275



Proximity query 

A proximity  query  looks  for  a sequence  of  search  arguments  found  in  the  same  

document,  paragraph,  or  sentence.  The  following  example  creates  a query  string  to  

search  for  all  text  documents  with  the  phrase  rational  numbers  and  the  word  math  

in  the  same  paragraph  using  the  TMINDEX  text  search  index:  

 

 

Java  

String  cmd  = "SEARCH=(COND=($PARA$  {’rational  numbers’  math}));"  + 

             "OPTION=(SEARCH_INDEX=TMINDEX)";  

 

 

C++  

DKString  cmd   = "SEARCH=(COND=($PARA$  {’rational  numbers’  math}));";  

         cmd  +=  "OPTION=(SEARCH_INDEX=TMINDEX)"  

 This  type  of  query  requires  at least  two  search  arguments.  

Global text retrieval (GTR) query 

A GTR  query  is  optimized  for  double-byte  character  set  (DBCS)  languages  like  

Japanese  or  Chinese.  GTR  also  supports  single-byte  character  set  (SBCS)  languages.  

Enclose  all  double-byte  characters  in single  quotes  (’).  Make  sure  that  the  phrase  to  

be  searched  for  is  in  the  specified  character  code  set  and  language.  

The  following  example  shows  a GTR  search  for  all  text  documents  that  contain  the  

phrase  IBM  marketing. The  MATCH  keyword  is  set  to  indicate  the  degree  of  

similarity  for  the  phrase.  

 

 

Java  

String  cmd  = "SEARCH=(COND=($CCSID=850,LANG=6011,MATCH=1$  " + 

             "’IBM  marketing’));"  + 

             "OPTION=(SEARCH_INDEX=TMINDEX)";  

 

 

C++  

DKString  cmd  = "SEARCH=(COND=($CCSID=850,  LANG=6011,MATCH=1$  "; 

         cmd  +=  "’IBM  marketing’));";  

         cmd  +=  "OPTION=(SEARCH_INDEX=TMGTRX)";  

 Make  sure  that  the  text  search  content  server  options  DK_OPT_TS_CCSID  (coded  

character  set  identifiers)  and  DK_OPT_TS_LANG  (language  identifiers)  are  set  properly.  

The  default  for  DK_OPT_TS_CCSID  is  DK_CCSID_00850. The  default  for  DK_OPT_TS_LANG  

is DK_LANG_ENU. These  values  are  used  as  the  global  defaults  for  the  text  query.  For  

more  information,  see  the  Application  Programming  Reference.  

You can  also  enter  specific  CCSID  and  LANG  information  as  shown  in the  following  

example.  You must  specify  both  CCSID  and  LANG; one  value  cannot  be  specified  

without  the  other. 

 

 

276 Application  Programming Guide



Representing DB2 Text Information Extender information using 

DDOs 

You use  a DDO  (associated  with  a DKDatastoreTS  object)  to  represent  the  results  

from  text  searches.  

DKDastastoreTS  does  not  have  a property  item  type  as a DKDatastoreDL  object  

does.  The  format  of  its  ID  is also  different.  A DDO  resulting  from  a text  query  

corresponds  to  a text  part  inside  an  item.  It  contains  the  following  standard  

attributes:  

DKDLITEMID  

The  item  ID  that  this  text  is part  of.  Use  this  item  ID  to  retrieve  the  whole  

item  from  the  content  server.  

DKPARTNO  

An  integer  part  number  for  this  text  part.  Use  the  part  number  with  the  

item  ID  to  retrieve  the  text  part  from  the  content  server.  

DKREPTYPE  

The  RepType  of this  text  part.  Use  this  attribute  with  the  item  ID  and  part  

number  to  retrieve  the  text  part  from  the  content  server.  

DKRANK  

An  integer  rank  signifying  the  relevance  of this  part  to  the  results  of  a text  

query.  A higher  rank  means  a better  match.  See  the  Application  

Programming  Reference  for  further  information.  

DKDSIZE  

An  integer  number  representing  word  occurrences  (in  the  results  of 

boolean  queries).  See  the  Application  Programming  Reference  for  further  

information.  

DKRCNT  

An  integer  number  representing  boolean  search  matches.  See  the  

Application  Programming  Reference  for  further  information.

The  PID  for  a text  search  DDO  has  the  following  information:  

content  server  type  

TS.  

content  server  name  

The  name  used  to connect  to  the  content  server.  

object  type  

DB2  Text Search  Extender  index.  

ID  DB2  Text Information  Extender  document  ID.

Establishing a connection 

The  DKDatastoreTS  object  provides  two  functions  for  connecting  and  a function  

for  disconnecting.  Normally,  you  create  a DKDatastoreTS  object,  connect  to  it, run 

a query,  and  then  disconnect  when  done.  The  following  example  shows  the  first  

connection  function  using  the  text  search  server  . 

 

 

Chapter 8. Working  with other content  servers  277



Java  

//  -----  Create  the  datastore  

DKDatastoreTS  dsTS  = new  DKDatastoreTS();  

dsTS.connect("TM",  "", "", "");  

....                      // run  a query  

dsTS.disconnect();  

 

 

C++  

DKDatastoreTS  dsTS;  

dsTS.connect("TM","","","");  

...                    // do some  work  

dsTS.disconnect();  

The  following  example  shows  the  second  connection  function  using  the  text  search  

server  with  the  hostname  apollo, port  number  7502, and  TCP/IP  communication  

type  DK_CTYP_TCPIP:  

dsTS.connect("apollo",  "7502",  DK_CTYP_TCPIP);  

The  following  example  shows  the  first  connection  function  using  the  text  search  

server  hostname  apollo, port  number  7502, communication  type  T (TCP/IP):  

dsTS.connect("apollo",  "",  "", "PORT=7502;  COMMTYPE=T");  

The  following  example  shows  the  first  connect  method  using  the  text  search  server  

name  TM  and  using  library  server  LIBSRVR2, user  ID  FRNADMIN  and  password  

PASSWORD: 

The  following  example  shows  the  first  connection  function  using  the  text  search  

server  name  TM,  library  server  LIBSRVRN, user  ID  FRNADMIN, and  password  PASSWORD: 

dsTS.connect("TM",  "",  "",  "LIBACCESS=(LIBSRVRN,  FRNADMIN,  PASSWORD)");  

You can  use  the  last  parameter  LIBACCESS, also  called  the  connect  string,  to  pass  a 

sequence  of parameters.  

Tip:  To prevent  the  DB2  Text Information  Extender  connection  from  timing  out,  

connect  to  DB2  Text Information  Extender,  run your  queries,  and  immediately  

disconnect.  Do  not  leave  the  connection  open.  

Getting and setting text search options 

DB2  Text Search  Extender  provides  some  options  that  you  can  set  or  get  using  its  

functions.  See  the  Application  Programming  Reference  for  the  list  of options  and  

their  descriptions.  The  following  example  shows  how  to  set  and  get  the  option  for  

a text  search  character  code  set.  

 

 

Java  

DKDatastoreTS  dsTS  = new  DKDatastoreTS();  

Integer  input_option   = new Integer(DK_TS_CCSID_00850);  

Integer  output_option  = null;  

  

dsTS.setOption(DK_TS_OPT_CCSID,  input_option);  

output_option  = (Integer)  dsTS.getOption(DK_OPT_TS_CCSID);  

 

 

278 Application  Programming Guide



C++  

DKAny  input_option  = DK_CCSID_00850;  

DKAny  output_option;  

dsTS.setOption(DK_OPT_TS_CCSID,input_option);  

dsTS.getOption(DK_OPT_TS_CCSID,output_option);  

 The  ouput_option  is an  object,  but  is usually  cast  to an  Integer. 

Tips:  The  search  options  CCSID  and  LANG  go  together.  If one  is specified,  the  other  

must  also  be  specified.  The  default  CCSID  and  LANG  are  specified  by  the  

DKDatastoreTS  options,  DK_OPT_TS_CCSID  and  DK_OPT_TS_LANG. See  the  Application  

Programming  Reference  for  the  list  of the  content  server  options  and  their  

descriptions.  

You can  specify  more  than  one  search  option  for  a query  term.  The  search  options  

are  separated  by  commas.  An  example  of multiple  search  terms  is given  in  “Global  

text  retrieval  (GTR)  query”  on  page  276.  

If  both  the  SC  (single  required  character)  and  the  MC  (sequence  of  optional  

characters)  search  options,  you  must  specify  the  SC  search  option  first.  For  

example,  $SC=?,MC=*$  U?I*. 

Listing servers 

The  DKDatastoreTS  object  provides  a function  to list  the  text  search  servers  that  it 

can  connect  to.  The  following  example  shows  how  to  retrieve  the  list  of  servers.  

 

 

Java  

DKServerDefTS  pSV  = null;  

DKIndexTS  pIndx  = null;  

String  strServerName  = null;  

char    chServerLocation  = ’ ’;  

String  strLoc  = null;  

String  strIndexName  = null;  

String  strLibId  = null;  

int  i = 0; 

DKDatastoreTS  dsTS  = new  DKDatastoreTS();  

System.out.println("list  servers");  

pCol  = (DKSequentialCollection)dsTS.listDataSources();  

pIter  = pCol.createIterator();  

while  (pIter.more()  == true)  

{ 

   i++;  

   pSV = (DKServerDefTS)pIter.next();  

   strServerName  = pSV.getName();  

   chServerLocation  = pSV.getServerLocation();  

   if (chServerLocation  == DK_TS_SRV_LOCAL)  

      strLoc  = "LOCAL  SERVER";  

   else  if (chServerLocation  == DK_TS_SRV_REMOTE)  

      strLoc  = "REMOTE  SERVER";  

   System.out.println("Server  Name  [" + i + "]  - " + strServerName  + 

              " Server  Location  - " + strLoc);  

} 

The  complete  sample  application  from  which  this  example  was  taken  

(TListCatalogTS.java) is  available  in the  samples  directory.  

 

 

Chapter 8. Working  with other content  servers  279



C++  

DKDatastoreTS  dsTS;  

DKSequentialCollection  *pCol  = 0; 

dkIterator  *pIter  = 0;  

DKString  strServerName;  

char  chServerLocation  = ’ ’;  

DKString  strLoc;  

DKServerDefTS  *pSV  = 0;  

long  i = 0; 

DKAny  a; 

cout  <<  "list  servers"  << endl;  

a = dsTS.listDataSources();  

pCol  = (DKSequentialCollection*)((dkCollection*)a);  

pIter  = pCol->createIterator();  

while  (pIter->more()  == TRUE)  

 { 

   i++;  

   pSV  = (DKServerDefTS*)((void*)(*pIter->next()));  

   strServerName  = pSV->getName();  

   chServerLocation  = pSV->getServerLocation();  

   if (chServerLocation  == DK_SRV_LOCAL)  

   { 

     strLoc  = "LOCAL  SERVER";  

    } 

   else  if (chServerLocation  == DK_SRV_REMOTE)  

   { 

     strLoc  = "REMOTE  SERVER";  

    } 

    cout  << "Server  Name  [" <<  i << "] - " << strServerName  

         <<   " Server  Location  - " << strLoc  << endl;  

    delete  pSV;  

  } 

delete  pIter;  

delete  pCol;  

The  complete  sample  application  from  which  this  example  was  taken  

(TListCatalogTS.cpp)  is available  in  the  directory.  

 The  list  of  servers  is  returned  in  a DKSequentialCollection  of DKServerInfoTS  

objects.  After  you  get  a DKServerInfoTS  object,  you  can  retrieve  the  server  name  

and  location.  You can  then  use  the  server  name  to  establish  a connection  to it.  

Listing schema 

A DKDatastoreTS  object  provides  functions  for  listing  the  schema.  For  text  search,  

these  are  text  search  indexes.  The  following  example  shows  how  to retrieve  the  

index  list.  

The  list  of  indexes  is  returned  in a DKSequentialCollection  object  of  DKIndexTS  

objects.  After  you  get  a DKIndexTS  object,  you  can  retrieve  information  about  the  

index,  such  as  its  name  and  library  ID,  which  you  can  use  to form  a query.  

 

 

280 Application  Programming Guide



Java  

tsCol  = (DKSequentialCollection)  dsTS.listEntities();  

tsIter  = pCol.createIterator();  

int  i = 0; 

while  (tsIter.more())  { 

   i++;  

   TsIndx  = (DKSearchIndexDefTS)tsIter.next();  

   strIndexName  = TsIndx.getName();  

   strLibId  = TsIndx.getLibraryId();  

   ...            \\  Process  the  list  as appropriate  

} 

The  complete  sample  application  from  which  this  example  was  taken  

(TListCatalogTS.java) is  available  in the  samples  directory.  

 

 

C++  

DKDatastoreTS  dsTS;  

DKSequentialCollection  *pCol  = 0; 

dkIterator  *pIter  = 0; 

DKString  strIndexName;  

DKString  strLibId;  

DKServerDefTS  *pSV  = 0; 

DKSearchIndexDefTS  *pIndx  = 0;  

long  i = 0; 

DKAny  a; 

cout  << "connecting  to datastore"  << endl;  

dsTS.connect("TM","","");  

cout  << "list  search  indexes"  << endl;  

pCol  = (DKSequentialCollection*)((dkCollection*)dsTS.listEntities());  

pIter  = pCol->createIterator();  

i = 0; 

while  (pIter->more()  == TRUE)  

 { 

   i++;  

   pIndx  = (DKSearchIndexDefTS*)((void*)(*pIter->next()));  

   strIndexName  = pIndx->getName();  

   strLibId  = pIndx->getLibraryId();  

   cout  << "index  name  [" << i << "] - " << strIndexName  

        << " Library  - " << strLibId  << endl;  

   delete  pIndx;  

  } 

delete  pIter;  

delete  pCol;  

dsTS.disconnect();  

The  complete  sample  application  from  which  this  example  was  taken  

(TListCatalogTS.cpp) is available  in  the  samples  directory.  Also,  refer  to 

“Managing  memory  in  collections  (C++  only)”  on  page  78 for  information  

about  deleting  the  collection.  

Indexing XDOs by search engine 

Before  searching  data  items  with  the  DB2  Text Information  Extender  and  image  

search,  you  must  first  index  the  data.  Indexes  require  three  values:  SearchEngine,  

SearchIndex  and  SearchInfo.  

The  value  of  the  SearchIndex  property  is a combination  of  two  names:  the  search  

service  name  and  search  index  name.  For  example,  if you  defined  a text  search  

 

 

Chapter 8. Working  with other content  servers  281



server  named  TM  in  the  system  administration  client  and  a search  index  named  

TMINDEX  associated  with  it, the  value  for  the  SearchIndex  is TM-TMINDEX. 

For  an  object  that  is  to  be  indexed  by  DB2  Text Information  Extender,  the  value  of  

SearchEngine  must  be  SM,  for  a data  item  to  be  indexed  by  query  by  image  search,  

the  value  of  SearchEngine  must  be  QBIC  (for  more  on  image  search,  see  

“Understanding  image  search  terms  and  concepts”  on  page  296).  

The  SearchIndex  for  QBIC  is a combination  of  three  values:  QBIC  database  name,  

QBIC  catalog  name,  and  QBIC  server  name.  For  example,  if the  QBIC  database  

name  is  SAMPLEDB, the  QBIC  catalog  name  is SAMPLECAT, and  the  QBIC  server  name  

is QBICSRV,  then  the  correct  value  for  the  SearchIndex  would  be  

SAMPLEDB-SAMPLECAT-QBICSRV. 

See  LoadSampleTSQBICDL  and  LoadFolderTSQBICDL  in  the  Samples  directory  for  

examples  of  how  to  load  data,  or  create  a folder  and  load  data.  

Important:  When  adding  a part  object  to  be  indexed  by  a search  engine,  don’t  set  

the  RepType.  Currently,  the  DB2  Text Information  Extender  works  only  with  the  

default  RepType  FRN$NULL. 

Adding  an  XDO  to  be  indexed  by  DB2  Text  Information  Extender:    The  

following  example  shows  how  to add  an  XDO  that  is to be  indexed:  

 

 

Java  

//  -----  Declare  variables  for  part  ID,  item  ID,  and  file  

  int     partId  = 20;  

  String  itemId  = "CPPIORH4JBIXWIY0";  

  String  fileName  = "g:\\test\\testsrch.txt";  

  try  { 

    DKDatastoreDL  dsDL  = new DKDatastoreDL();  // create  datastore  

     ...                                       // connect  to datastore  

    dsDL.connect("LIBSRVRN","FRNADMIN","PASSWORD","");  

    DKBlobDL  axdo  = new  DKBlobDL(dsDL);       // create  XDO  

    DKPidXDODL   apid  = new  DKPidXDODL();      // create  PID  

    apid.setPartId(partId);                   // set  partId  

    apid.setPrimaryId(itemId);                // set  itemId  

    axdo.setPidObject(apid);                  // setPid  to XDO  

    axdo.setContentClass(DK_DL_CC_ASCII);     // set  ContentClass  to text  

  

    // ---  set  the  searchEngine  

    DKSearchEngineInfoDL  aSrchEx  = new DKSearchEngineInfoDL();  

    aSrchEx.setSearchEngine("SM");  

    aSrchEx.setSearchIndex("TM-TMINDEX");  

    aSrchEx.setSearchInfo("ENU");  

    axdo->setExtension("DKSearchEngineInfoDL",  (dkExtension)aSrchEx);  

    ...  

    // -----  Set  file  content  to buffer  area  

    axdo.setContentFromClientFile(fileName);  

    axdo.add();                               //add  from  buffer  

    ...  

    // -----  Display  the  partId  after  add  

    System.out.println("after  add partId  = " + ((DKPidXDODL)  

             (axdo.getPidObject())).getPartId());  

  

    dsDL.disconnect();                       //disconnect  from  datastore  

    dsDL.destroy();  

  } 

  // -----  Catch  any  exception  

  catch  (...)  

 

 

282 Application  Programming Guide



C++  

void  main(int  argc,  char  *argv[])  

{ 

  DKDatastoreDL  dsDL;  

  DKString  itemId,  repType;  

  int  partId;  

  itemId  = "N2JJBERBQFK@WTVL";  

  repType  = "FRN$NULL";  

  partId  = 10;  

  if (argc  ==  1) 

  { 

    cout<<"invoke:  indexPartxsDL  <partId>  <repType>  <itemId>"<<endl;  

    cout<<"  no parameter,  following  default  will  be  provided:"<<endl;  

    cout<<"The  supplied  default  partId  = "<<partId<<endl;  

    cout<<"The  supplied  default  repType  = "<<repType<<endl;  

    cout<<"The  supplied  default  itemId  = "<<itemId<<endl;  

 } 

  else  if (argc  == 2) 

 { 

    partId  = atoi(argv[1]);  

    cout<<"you  enter:  indexPartxsDL  "<<argv[1]<<endl;  

    cout<<"The  supplied  default  repType  = "<<repType<<endl;  

    cout<<"The  supplied  default  itemId  = "<<itemId<<endl;  

 } 

  else  if (argc  == 3) 

 { 

    partId  = atoi(argv[1]);  

    repType  = DKString(argv[2]);  

    cout<<"you  enter:  indexPartxsDL  "<<argv[1]<<"  "<<argv[2]<<endl;  

    cout<<"The  supplied  default  itemId  = "<<itemId<<endl;  

 } 

  else  if (argc  == 4) 

 { 

    partId  = atoi(argv[1]);  

    repType  = DKString(argv[2]);  

    itemId  = DKString(argv[3]);  

 cout<<"you  enter:  indexPartxsDL  "<<argv[1]<<"  "<<argv[2]<<"  "<<argv[3]<<endl;  

 } 

    cout  << "connecting  Datastore"  << endl;  

    try  

 { 

    //replace  following  with  your  library  server,  user  ID, password  

    dsDL.connect("LIBSRVN","FRNADMIN","PASSWORD");  

  

    cout  << "datastore  connected"  << endl;  

  

    DKBlobDL*  axdo  = new  DKBlobDL(&dsDL);  

    DKPidXDODL*   apid  = new  DKPidXDODL;  

    apid  ->setPartId(partId);  

    apid  ->setPrimaryId(itemId);  

    apid  ->setRepType(repType);  

    axdo  ->setPidObject(apid);  

    cout<<"itemId=  "<<axdo->getItemId()<<endl;  

    cout<<"partId=  "<<axdo->getPartId()<<endl;  

    cout<<"repType=  "<<axdo->getRepType()<<endl;  

  

// continued...  

 

 

Chapter 8. Working  with other content  servers  283



C++  (continued)  

    //---  set  searchEngine  -----  

    cout<<"set  search  engine  and  setToBeIndexed()"<<endl;  

    DKSearchEngineInfoDL  aSrchEx;  

    aSrchEx.setSearchEngine("SM");  

    aSrchEx.setSearchIndex("TM-TMINDEX");  

    aSrchEx.setSearchInfo("ENU");  

    axdo->setExtension("DKSearchEngineInfoDL",  (dkExtension*)&aSrchEx);  

    axdo->setToBeIndexed();  

    cout<<"setToBeIndexed()  done..."<<endl;  

  

    delete  apid;  

    delete  axdo;  

    dsDL.disconnect();  

    cout<<"datastore  disconnected"<<endl;  

 } 

  catch(DKException  &exc)  

 { 

   cout  << "Error  id"  << exc.errorId()  << endl;  

   cout  << "Exception  id " << exc.exceptionId()  << endl;  

   for(unsigned  long  i=0;i<  exc.textCount();i++)  

   { 

    cout  << "Error  text:"  << exc.text(i)  << endl;  

   } 

   for  (unsigned  long  g=0;g<  exc.locationCount();g++)  

   { 

    const  DKExceptionLocation*  p = exc.locationAtIndex(g);  

    cout  << "Filename:  " << p->fileName()  << endl;  

    cout  << "Function:  " << p->functionName()  << endl;  

    cout  << "LineNumber:  " << p->lineNumber()  << endl;  

   } 

   cout  << "Exception  Class  Name:  " << exc.name()  << endl;  

  } 

  cout  << "done  ..."  << endl;  

} 

 Important:  When  adding  a part  object  to  be  indexed  by  a search  engine,  don’t  set  

the  RepType  (representation  type).  The  DB2  Text Information  Extender  works  only  

with  the  default  RepType  FRN$NULL. 

Loading  data  to  be  indexed  by  DB2  Text  Information  Extender:    To load  data  

into  DB2  Content  Manager  to be  indexed  by  DB2  Text Information  Extender,  you  

must  create  both  an  index  and  a text  search  index.  

Before  you  can  create  a text  search  index,  the  text  search  server  must  be  running.  

Make  sure  that  your  environment  is properly  set  up.  To do  so,  you  can  customize  

and  run the  samples:  TListCatalogDL  and  TListCatalogTS  in  the  Samples  directory.  

To create  parts  in  DB2  Content  Manager  that  are  indexed  by  the  DB2  Text 

Information  Extender,  see  “Working  with  extended  data  objects  (XDOs)”  on  page  

37.  

After  the  data  is  loaded  into  DB2  Content  Manager,  use  the  wakeUpService  function  

in  the  DKDatastoreDL  class  to  place  the  documents  on  the  document  queue.  This  

function  takes  a search  engine  name  as  a parameter.  

Then  from  the  DB2  Content  Manager  text  search  Administration  window,  complete  

the  following  steps:  

 

 

284 Application  Programming Guide



1.   Double-click  the  text  search  server.  

2.   Double-click  the  text  search  index.  

3.   Click  INDEX.

This  indexes  the  documents  on  the  document  query.  After  the  indexing  is 

complete,  you  can  perform  text  search  queries.  

For  more  information  on  text  search  administration,  see  the  System  Administration  

Guide. 

Using text structured document support 

Text structured  documents  are  composed  of  tagged  text  (for  example,  an  HTML  

file).  A  document  model  defines  the  structure  of  the  document,  and  the  DB2  Text 

Information  Extender  can  search  on  words  or  phrases  between  the  tags.  

You can  perform  text  queries  on  structured  documents  as  follows:  

1.   Create  a document  model.  The  document  model  contains  sections,  and  each  

section  includes  the  section  name  and  document  tag  used.  For  example:  

<HTML>  

<HEAD>  

<TITLE>Acme  Corp<br></TITLE>  

</HEAD>  

<BODY>  

<H1>Acme  Corp<BR></H1>  

<P><B>Acme  Corp<BR></B><BR>  

<P>John  Smith  <BR>  

<P><ADDRESS>Acme  Corporation<BR></ADDRESS>  

<HR>  

<H2>Acme  Corp  Business  Objectives</H2>  

<HR>  

<P>  

<H2><A  NAME="Header_Test"  HREF="#ToC_Test">Marketing</A></H2>  

<P>We  need  to increase  our  time  to  market  by 25%.  

<P>We  need  to meet  our  customers  needs.  

</BODY>  

</HTML>  

2.   Create  a text  search  index  that  uses  the  DB2  Content  Manager  document  

model.  

3.   Set  the  indexing  rules for  the  text  search  index  and  specify  the  default  

document  format  (for  example,  DK_TS_DOCFMT_HTML  for  HTML  files)  

4.   Add  parts  objects  to  the  DB2  Content  Manager  server.  

5.   Start  the  indexing  process  for  the  text  search  index.

This  example  shows  how  to  list  the  document  models  defined  in  your  system.  

 

 

Chapter 8. Working  with other content  servers  285



Java  

//  -----  Initialize  the  variables  

DKSequentialCollection  pCol  = null;  

DKDatastoreDefTS  dsDef  = null;  

DKDatastoreAdminTS  dsAdmin  = null;  

dkIterator  pIter  = null;  

DKDocModelTS  pDocModel  = null;  

int  ccsid  = 0; 

String  strDocModelName  = null;  

int  i = 0; 

  

//  -----  Create  the  datastore  and connect  

DKDatastoreTS  dsTS  = new  DKDatastoreTS();  

dsTS.connect(srchSrv,"",’  ’);  

  

dsDef  = (DKDatastoreDefTS)dsTS.datastoreDef();  

dsAdmin  = (DKDatastoreAdminTS)dsDef.datastoreAdmin();  

  

//  -----  Get  list  of document  models  

pCol  = (DKSequentialCollection)  dsAdmin.listDocModels("");  

pIter  = pCol.createIterator();  

i = 0; 

while  (pIter.more()  == true)  

{ 

   i++;  

   pDocModel  = (DKDocModelTS)pIter.next();  

   strDocModelName  = pDocModel.getName();  

   ccsid  = pDocModel.getCCSID();  

} 

dsTS.disconnect();  

The  complete  sample  application  from  which  this  example  was  taken  

(TListDocModelsTS.java) is available  in  the  samples  directory.  

 

 

286 Application  Programming Guide



C++  

DKDatastoreTS  dsTS;  

DKDatastoreDefTS*  dsDef  = 0; 

DKDatastoreAdminTS*  dsAdmin  = 0; 

DKDocModelTS*  docModel  = 0; 

DKSequentialCollection  *pCol  = 0; 

long  ccsid  = 0; 

DKString  strDocModelName;  

dkIterator  *pIter  = 0; 

long  i = 0; 

DKAny  a; 

  

dsTS.connect(srchSrv,"","");  

  

dsDef  = (DKDatastoreDefTS*)dsTS.datastoreDef();  

dsAdmin  = (DKDatastoreAdminTS*)dsDef->datastoreAdmin();  

  

// list  document  models  

pCol  = (DKSequentialCollection*)dsAdmin->listDocModels("");  

pIter  = pCol->createIterator();  

while  (pIter->more()  == TRUE)  

 { 

   i++;  

   docModel  = (DKDocModelTS*)((void*)(*pIter->next()));  

   strDocModelName  = docModel->getName();  

   ccsid  = docModel->getCCSID();  

   delete  docModel;  

 } 

delete  pIter;  

delete  pCol;  

  

dsTS.disconnect();  

The  complete  sample  application  from  which  this  example  was  taken  

(TListDocModelsTS.cpp) is available  in  the  samples  directory.  

The  following  example  shows  how  to  create  a document  model:  

 

 

Chapter 8. Working  with other content  servers  287



Java  

//  -----  Create  datastore  and  connect  

DKDatastoreTS  dsTS  = new  DKDatastoreTS();  

DKDatastoreDefTS  dsDef  = null;  

DKDatastoreAdminTS  dsAdmin  = null;  

  

//  -----  Create  an instance  of a document  model  object  

DKDocModelTS  docModel  = new  DKDocModelTS();  

  

//  -----  Create  2 instances  of a document  section  objects  for the  model  

DKDocSectionTS  docSection  = new DKDocSectionTS();  

DKDocSectionTS  docSection2  = new DKDocSectionTS();  

  

//  -----  Describe  the document  model  for  text  document  structure  

//        for  files  like  tstruct.htm  above  

docModel.setCCSID(DK_TS_CCSID_00850);  

docModel.setName(docModelName);  

docSection.setName("SAMPTITLE");  

docSection.setTag("TITLE");  

docModel.addDocSection(docSection);  

docSection2.setName("SAMPCORPBODY");  

docSection2.setTag("BODY");  

docModel.addDocSection(docSection2);  

  

dsTS.connect("TMMUF","","","");  

  

dsDef  = (DKDatastoreDefTS)dsTS.datastoreDef();  

dsAdmin  = (DKDatastoreAdminTS)dsDef.datastoreAdmin();  

  

//  -----  Create  the  document  model  

dsAdmin.createDocModel("",docModel);  

  

dsTS.disconnect();  

dsTS.destroy();  

Refer  to  TCreateDocModelTS.java  and  TCreateStructDocIndexTS.java  in  the  

samples  directory  for  more  examples.  

 

 

288 Application  Programming Guide



C++  

DKDatastoreTS  dsTS;  

DKDatastoreDefTS*  dsDef  = 0; 

DKDatastoreAdminTS*  dsAdmin  = 0; 

  

// create  an instance  of a document  model  object  

DKDocModelTS*  docModel  = new DKDocModelTS();  

  

// create  2 instances  of a document  section  objects  for the  model  

DKDocSectionTS*  docSection  = new DKDocSectionTS();  

DKDocSectionTS*  docSection2  = new  DKDocSectionTS();  

  

// Describe  the  document  model  for text  document  structure  

// for  files  like  tstruct.htm  above  

  

docModel->setCCSID(DK_TS_CCSID_00850);  

docModel->setName("SAMPCORPMOD");  

docSection->setName("SAMPCORPTITLE");  

docSection->setTag("TITLE");  

docModel->addDocSection(docSection);  

docSection2->setName("SAMPCORPBODY");  

docSection2->setTag("BODY");  

docModel->addDocSection(docSection2);  

  

dsTS.connect("TMMUF","","","");  

  

dsDef  = (DKDatastoreDefTS*)dsTS.datastoreDef();  

dsAdmin  = (DKDatastoreAdminTS*)dsDef->datastoreAdmin();  

  

// create  doc  model  

dsAdmin->createDocModel("",docModel);  

  

// delete  document  model  & sections  

delete  docModel;  

  

dsTS.disconnect();  

The  complete  sample  application  from  which  this  example  was  taken  

(TCreateDocModelTS.cpp) and  (TCreateStructDocIndexTS.cpp) are  available  in  

the  samples  directory.  

The  following  example  shows  how  to  create  and  set  the  indexing  rules for  a text  

search  index  that  uses  a document  model:  

 

 

Chapter 8. Working  with other content  servers  289



Java  

//  -----  Create  the  datastore  and index  rules  object  

DKDatastoreTS  dsTS  = new  DKDatastoreTS();  

DKDatastoreDefTS  dsDef  = null;  

DKDatastoreAdminTS  dsAdmin  = null;  

DKIndexingRulesTS  indexRules  = new  DKIndexingRulesTS();  

  

//  -----  Create  an instance  of a document  model  object  

DKDocModelTS  docModel  = new  DKDocModelTS();  

  

//  -----  Create  2 instances  of a document  section  objects  for the  model  

DKDocSectionTS  docSection  = new DKDocSectionTS();  

DKDocSectionTS  docSection2  = new DKDocSectionTS();  

  

//  -----  Create  the  document  model  instance  for  indexing  rules  

DKDocModelTS  docModel2  = new  DKDocModelTS();  

docModel2.setCCSID(DK_TS_CCSID_00850);  

docModel2.setName("SAMPCORPMOD");  

  

//  -----  Describe  the document  model  for  text  document  structure  

//        for  files  like  tstruct.htm  above  

docModel.setCCSID(DK_TS_CCSID_00850);  

docModel.setName("SAMPCORPMOD");  

docSection.setName("SAMPTITLE");  

docSection.setTag("TITLE");  

docModel.addDocSection(docSection);  

docSection2.setName("SAMPCORPBODY");  

docSection2.setTag("BODY");  

docModel.addDocSection(docSection2);  

  

//  -----  Connect  to the  datastore  

dsTS.connect("TMMUF","","","");  

  

dsDef  = (DKDatastoreDefTS)dsTS.datastoreDef();  

dsAdmin  = (DKDatastoreAdminTS)dsDef.datastoreAdmin();  

  

DKSearchIndexDefTS  pEnt  = new  DKSearchIndexDefTS((dkDatastore)dsTS);  

pEnt.setName("TSTRUCT");  

pEnt.setIndexType(DK_TS_INDEX_TYPE_PRECISE);  

pEnt.setIndexProperty(DK_TS_PROPERTY_SECTIONS_ENABLED);  

pEnt.setLibraryId("LIBSUM");  

pEnt.setLibraryClientServices("IMLLSCDL");  

pEnt.setLibraryServerServices("IMLLSSDL");  

String  strIndexFileDir  = "e:\\tsindex\\index\\tstruct";  

//  -----  For  AIX  us the  following  form  for the  file  

//     String  strIndexFileDir  = "/home/cltadmin/tsindex/tstruct";  

pEnt.setIndexDataArea(strIndexFileDir);  

String  strWorkFileDir  =  "e:\\tsindex\\work\\tstruct";  

//  -----  For  AIX  us the  following  form  for the  file  

//      String  strWorkFileDir  = "/home/cltadmin/work/tstruct";  

pEnt.setIndexWorkArea(strWorkFileDir);  

  

//  -----  Associate  document  model  with  index  

pEnt.addDocModel(docModel);  

  

//  -----  Create  text  search  index  that  supports  sections  

dsDef.add((dkEntityDef)pEnt);  

  

//  continued...  

 

 

290 Application  Programming Guide



Java  (continued)  

indexRules.setIndexName("TSTRUCT");  

indexRules.setDefaultDocFormat(DK_TS_DOCFMT_HTML);  

indexRules.setDefaultDocModel(docModel2);  

  

dsAdmin.setIndexingRules(indexRules);  

  

dsTS.disconnect();  

dsTS.destroy();  

The  complete  sample  application  from  which  this  example  was  taken  

(TCreateStructDocIndexTS.java) is  available  in  the  samples  directory.  

 

 

C++  

DKDatastoreTS  dsTS;  

DKDatastoreDefTS*  dsDef  = 0; 

DKDatastoreAdminTS*  dsAdmin  = 0; 

DKIndexingRulesTS*  indexRules  = new  DKIndexingRulesTS();  

  

// create  an instance  of a document  model  object  

DKDocModelTS*  docModel  = new DKDocModelTS();  

  

// create  2 instances  of a document  section  objects  for the  model  

DKDocSectionTS*  docSection  = new DKDocSectionTS();  

DKDocSectionTS*  docSection2  = new  DKDocSectionTS();  

  

// doc  model  instance  for  indexing  rules  

DKDocModelTS*  docModel2  = new  DKDocModelTS();  

docModel2->setCCSID(DK_TS_CCSID_00850);  

docModel2->setName("SAMPCORPMOD");  

  

// Describe  the  document  model  for text  document  structure  

// for  files  like  tstruct.htm  above  

  

docModel->setCCSID(DK_TS_CCSID_00850);  

docModel->setName("SAMPCORPMOD");  

docSection->setName("SAMPCORPTITLE");  

docSection->setTag("TITLE");  

docModel->addDocSection(docSection);  

docSection2->setName("SAMPCORPBODY");  

docSection2->setTag("BODY");  

docModel->addDocSection(docSection2);  

  

// continued...  

 

 

Chapter 8. Working  with other content  servers  291



C++  (continued)  

dsTS.connect("TMMUF","","","");  

  

dsDef  = (DKDatastoreDefTS*)dsTS.datastoreDef();  

dsAdmin  = (DKDatastoreAdminTS*)dsDef->datastoreAdmin();  

  

DKSearchIndexDefTS*  pEnt  = new  DKSearchIndexDefTS(&dsTS);  

  

pEnt->setName("TSTRUCT");  

pEnt->setIndexType(DK_TS_INDEX_TYPE_PRECISE);  

  

//  This  index  is text  structure  document  section  enabled  

pEnt->setIndexProperty(DK_TS_PROPERTY_SECTIONS_ENABLED);  

  

pEnt->setLibraryId("LIBSUM");  

pEnt->setLibraryClientServices("IMLLSCDL");  

pEnt->setLibraryServerServices("IMLLSSDL");  

DKString  strIndexFileDir  = "e:\\tsindex\\index\\tstruct";  

//****  for  AIX  ***************************************  

//DKString  strIndexFileDir  = "/home/cltadmin/tsindex/index/tstruct";  

pEnt->setIndexDataArea(strIndexFileDir);  

DKString  strWorkFileDir  = "e:\\tsindex\\work\\tstruct";  

//****  for  AIX  ***************************************  

//DKString  strWorkFileDir  = "/home/cltadmin/tsindex/work/tstruct";  

pEnt->setIndexWorkArea(strWorkFileDir);  

  

//  Associate  document  model  with  index  

pEnt->addDocModel(docModel);  

  

//  Create  text  search  index  that  supports  sections  

dsDef->add(pEnt);  

  

delete  pEnt;  

  

indexRules->setIndexName("TSTRUCT");  

indexRules->setDefaultDocFormat(DK_TS_DOCFMT_HTML);  

indexRules->setDefaultDocModel(docModel2);  

dsAdmin->setIndexingRules(indexRules);  

  

delete  indexRules;  

  

dsTS.disconnect();  

The  complete  sample  application  from  which  this  example  was  taken  

(TCreateStructDocIndexTS.cpp) is available  in  the  samples  directory.  

The  following  example  shows  how  to  start  the  indexing  process,  which  is 

asynchronous.  Using  the  system  administration  program,  you  can  start  the  

indexing  process  and  check  its  status.  

 

 

292 Application  Programming Guide



Java  

// -----  Declare  datastore  and  administration  

DKIndexFuncStatusTS  pIndexFuncStatus  = null;  

DKDatastoreTS  dsTS  = new  DKDatastoreTS();  

DKDatastoreDefTS  dsDef  = null;  

DKDatastoreAdminTS  dsAdmin  = null;  

  

dsTS.connect("TMMUF","","","");  

  

dsDef  = (DKDatastoreDefTS)dsTS.datastoreDef();  

dsAdmin  = (DKDatastoreAdminTS)dsDef.datastoreAdmin();  

  

// -----  Start  the  indexing  process  

dsAdmin.startUpdateIndex(indexName);  

  

// -----  Get  indexing  status  

pIndexFuncStatus  = dsAdmin.getIndexFunctionStatus(indexName,  

                     DK_TS_INDEX_FUNCID_INDEX_DOCUMENTS);  

....   //  Process  the  status  as appropriate  

  

// -----  Show  the  scheduled  document  queue  

System.out.println("*getScheduledDocs  " 

    + pIndexFuncStatus.getScheduledDocs());  

  

// -----  Show  the  primary  document  queue  

System.out.println("*getDocsInPrimaryIndex  " 

    + pIndexFuncStatus.getDocsInPrimaryIndex());  

  

// -----  Shows  the  secondary  document  queue  

System.out.println("*getDocsInSecondaryIndex  " + 

   pIndexFuncStatus.getDocsInSecondaryIndex());  

System.out.println("*getDocMessages  " 

    + pIndexFuncStatus.getDocMessages());  

if (pIndexFuncStatus.isCompleted()  == true)  

{ 

   // ----  Processing  if indexing  is completed  

} 

  

if (pIndexFuncStatus.getReasonCode()  != 0) 

{ 

   dsAdmin.setIndexFunctionStatus(indexName,  

      DK_TS_INDEX_FUNCID_INDEX_DOCUMENTS,  DK_TS_INDEX_ACTID_RESET);  

} 

  

dsTS.disconnect();  

dsTS.destroy();  

The  complete  sample  application  from  which  this  example  was  taken  

(TIndexingTS.java) is  available  in the  samples  directory.  

 

 

Chapter 8. Working  with other content  servers  293



C++  

DKDatastoreTS  dsTS;  

DKDatastoreDefTS*  dsDef  = 0; 

DKDatastoreAdminTS*  dsAdmin  = 0; 

DKIndexFuncStatusTS*  pIndexFuncStatus  = 0; 

  

dsTS.connect(srchSrv,"","");  

  

dsDef  = (DKDatastoreDefTS*)dsTS.datastoreDef();  

dsAdmin  = (DKDatastoreAdminTS*)dsDef->datastoreAdmin();  

  

//  starts  the  indexing  process  

dsAdmin->startUpdateIndex(srchIndex);  

  

//  Get  indexing  status  

pIndexFuncStatus  = dsAdmin->getIndexFunctionStatus(srchIndex,  

                   DK_TS_INDEX_FUNCID_INDEX_DOCUMENTS);  

  

cout  <<  "*****  index  status  *****"  << endl;  

cout  <<  "*isCompleted  " << pIndexFuncStatus->isCompleted()  << endl;  

cout  <<  "*getEnabledId  " << pIndexFuncStatus->getEnabledId()  << endl;  

cout  <<  "*getReasonCode  " <<  pIndexFuncStatus->getReasonCode()  

     << endl;  

cout  <<  "*getFuncStopped  " <<  pIndexFuncStatus->getFunctionStopped()  

     << endl;  

cout  <<  "*getStartedLast  " <<  pIndexFuncStatus->getStartedLast()  

     << endl;  

cout  <<  "*getEndedLast  " << pIndexFuncStatus->getEndedLast()  << endl;  

cout  <<  "*getStartedExecution  " << pIndexFuncStatus->getStartedExecution()  

     << endl;  

cout  <<  "*getScheduledDocs  " << pIndexFuncStatus->getScheduledDocs()  

  

     << endl;  

cout  <<  "*getDocsInPrimaryIndex  " << pIndexFuncStatus->getDocsInPrimaryIndex()  

     << endl;  

cout  <<  "*getDocsInSecondIndex  " << pIndexFuncStatus->getDocsInSecondIndex()  

     << endl;  

cout  <<  "*getDocMessages  " <<  pIndexFuncStatus->getDocMessages()  

     << endl;  

  if (pIndexFuncStatus->isCompleted()  == TRUE)  

      { 

      // indexing  completed  

      } 

      if (pIndexFuncStatus->getReasonCode()  != 0) 

      { 

       dsAdmin->setIndexFunctionStatus(srchIndex,  

         DK_TS_INDEX_FUNCID_INDEX_DOCUMENTS,DK_TS_INDEX_ACTID_RESET);  

      } 

delete  pIndexFuncStatus;  

dsTS.disconnect();  

The  complete  sample  application  from  which  this  example  was  taken  

(TIndexingTS.cpp) is available  in  the  samples  directory.  

SeeTCheckStatusTS  in  the  Samples  directory  for  an  example  of checking  status.  The  

example  checks  whether  a queued  request  has  been  moved  from  the  scheduled  

document  queue  to  the  primary  or  secondary  queues.  If an  indexing  error  occurs,  

then  you  can  check  the  imldiag.log  file  in  the  text  search  instance  directory.  

The  following  example  shows  how  to  execute  a structure  document  text  query  

based  on  the  document  model  and  the  text  search  index  defined  above.  

 

 

294 Application  Programming Guide



Java  

// -----  Create  the  datastore  

DKDatastoreTS  dsTS  = new  DKDatastoreTS();  

dkResultSetCursor  pCur  = null;  

DKNVPair  parms[]  = null;  

// -----  Connect  

dsTS.connect("TMMUF","","","");  

// -----  Generate  the query  string  

String  cmd  = "SEARCH=(COND=($CCSID=850,"  + 

             "DOCMOD=(DOCMODNAME=SAMPCORPMOD,"  + 

             "SECLIST=(SAMPCORPTITLE,SAMPCORPBODY))$  Corp));"  + 

             "OPTION=(SEARCH_INDEX=TMSTRUCT;MAX_RESULTS=5)";  

// -----  Execute  the query  

pCur  = dsTS.execute(cmd,DK_CM_TEXT_QL_TYPE,parms);  

  

// -----  Process  the results  

.....  

dsTS.disconnect();  

dsTS.destroy();  

The  complete  sample  application  from  which  this  example  was  taken  

(TExecuteStructDocTS.java) is available  in  the  samples  directory.  

 

 

C++  

DKDatastoreTS  dsTS;  

dkResultSetCursor*  pCur  = 0; 

  

dsTS.connect("TMMUF","","","");  

  

DKString  cmd  = "SEARCH=(COND=($CCSID=850,";  

cmd  += "DOCMOD=(DOCMODNAME=SAMPCORPMOD,";  

cmd  += "SECLIST=(SAMPCORPTITLE,SAMPCORPBODY))$  Corp));";  

cmd  += "OPTION=(SEARCH_INDEX=TSTRUCT;MAX_RESULTS=5)";  

  

pCur  = dsTS.execute(cmd);  

  

// process  the  results  

  

dsTS.disconnect();  

The  complete  sample  application  from  which  this  example  was  taken  

(TExecuteStructDocTS.cpp) is available  in  the  samples  directory.  

Searching images by content 

The  Image  Search  server  can  search  for  stored  images  when  you  specify  the  image  

type,  or  provide  an  example  of  the  image.  

Figure  16  on  page  296  shows  a sample  application  that  connects  to the  image  

search  server.  The  image  search  server  uses  Query  by  Image  Content  (QBIC)  

technology  to  search  for  similar  colors,  layouts,  and  patterns.  

 

 

 

Chapter 8. Working  with other content  servers  295



Understanding image search terms and concepts 

This  section  describes  the  image  search  components:  the  server,  databases,  catalogs,  

and  the  relationship  of  the  image  search  server  to earlier  DB2  Content  Manager.  It  

also  describes  features  that  are  the  searchable  visual  characteristics  of  images.  

Understanding  image  search  servers,  databases,  and  catalogs:    Earlier  DB2  

Content  Manager  uses  an  image  search  server  to  search  for  images.  DB2  Content  

Manager  applications  store  image  objects  in  the  object  server.  The  image  search  

server  analyzes  and  indexes  the  image  information.  The  image  search  server  does  

not  store  images  themselves.  

A content  server  defined  by  a DKDatastoreQBIC  object  represents  the  image  search  

server.  The  results  of  an  image  search  include  identifiers  (item  IDs)  that  describe  

the  location  of the  image  in  the  DB2  Content  Manager  server.  You can  use  these  

identifiers  with  other  results,  such  as the  part  number  and  RepType,  to  retrieve  the  

image.  

You can  perform  queries  on  the  content  server.  However,  the  content  server  for  

image  search  does  not  support  add,  update,  retrieve,  and  delete  operations.  

Figure  17  on  page  297  shows  an  example  of an  image  search  server.  

 

  

Figure  16. Image  search  sample  client

 

 

296 Application  Programming Guide



The  image  search  server  can  contain  one  or  more  databases.  Each  database  can  

contain  one  or  more  catalogs,  which  hold  information  about  the  visual  features  of  

images.  These  four  image  search  features  are:  

v   Average  color.  

v   Histogram  color.  

v   Positional  color  (color  layout).  

v   Texture.

Understanding  image  search  features:    The  four  image  search  features  and  their  

purposes  are  defined  in  this  section:  

Average  color  Use  average  color  to  search  for  images  that  have  a predominant  

color. Images  with  similar  predominant  colors  have  similar  average  

colors.  For  example,  images  that  contain  equal  portions  of red  and  

yellow  have  an  average  color  of orange.  

 QbColorFeatureClass  if the  feature  name  for  average  color. 

Histogram  color  

Measures  the  percentages  of  color  distribution  of  an  image.  

Histogram  analysis  separately  measures  the  different  colors  in an  

image.  For  example,  an  image  of the  countryside  has  a histogram  

color  that  shows  a high  frequency  of  blue,  green,  and  gray.  

 Use  histogram  color  to  search  for  images  that  contain  a similar  

variety  of colors.  QbColorHistogramFeatureClass  is the  feature  

name  for  histogram  color. 

  

Figure  17.  An  image  search  server  in an earlier  DB2  Content  Manager  system

 

 

Chapter 8. Working  with other content  servers  297



Positional  color  (color  layout)  

Positional  colors  measure  the  average  color  value  for  the  pixels  in 

a specified  area  of  an  image.  For  example,  images  with  bright  red  

objects  in  the  middle  have  a positional  color  of bright  red.  

 QbDrawFeatureClass  is  the  feature  name  for  positional  color.  

Texture  Use  texture  to search  for  images  that  have  a particular  pattern.  

Texture  measures  the  coarseness,  contrast,  and  directionality  of an  

image.  Coarseness  indicates  the  size  of  repeating  items  in  an  

image.  Contrast  identifies  the  brightness  variations  in  an  image.  

Directionality  indicates  whether  a direction  predominates  in  an  

image.  For  example,  an  image  of  a wood  grain  has  a similar  

texture  to  other  images  that  contain  a wood  grain.  

 QbTextureFeatureClass  is the  feature  name  for  texture.

Using image search applications 

Image  search  client  applications  create  image  queries,  run them,  and  then  evaluate  

the  information  returned  by  the  image  search  server.  Before  an  application  can  

search  images  by  content,  the  images  must  be  indexed,  and  the  content  

information  must  be  stored  in  an  image  search  database.  

Restriction:  You cannot  index  existing  images  in  your  object  server.  You can  index  

only  the  images  you  create  in  your  object  server  after  you  install  the  image  search  

server  and  client.  Figure  18  shows  an  example  of  the  client  and  retrieve  images.  

 

 To perform  an  image  search:  

1.   A client  builds  a QBIC  query  string  and  sends  it  to  an  image  search  server.  

  

Figure  18. How  image  search  clients  search  and  retrieve  images

 

 

298 Application  Programming Guide



2.   Image  search  server  receives  the  query  string  and  searches  the  cataloged  

images  for  matches.  

3.   Client  receives  the  matches  as  a list  of  identifiers.  The  identifier  for  each  

matching  image  consists  of the:  

v   Item  ID.  

v   Part  number.  

v   RepType.  

v   Rank.
4.   Client  requests  the  image  part  and  index  information  from  a library  server.  

5.   Library  server  returns  index  information,  such  as  a text  description,  to the  

client.  The  library  server  also  requests  that  an  object  server  send  specified  

image  parts  to  the  client.  

6.   Object  server  sends  image  parts  and  the  client  acknowledges  receiving  them.

Creating queries 

When  you  create  queries,  you  construct  a query  string  that  the  application  passes  

to  the  image  search  server.  An  image  query  is a character  string  that  specifies  the  

search  criteria.  The  search  criteria  consists  of:  

An  image  query  is a character  string  that  specifies  the  search  criteria.  The  search  

criteria  consists  of:  

Feature  name  The  features  used  in  the  search.  

Feature  value  The  values  of  those  features.  Table 27  on  page  300  shows  the  image  

search  feature  names  and  the  values  that  can  be  passed  in  a query  

string.  

Feature  weight  

The  relative  weight  or  emphasis  placed  on  each  feature.  The  

weight  of  a feature  indicates  the  emphasis  that  the  image  search  

server  places  on  the  feature  when  calculating  similarity  scores  and  

returning  results  for  a query.  The  higher  the  specified  weight,  the  

greater  the  emphasis.  

Maximum  results  

In  addition  to  defining  the  type  of  images  a query  will  look  for, 

you  can  specify  the  maximum  number  of  matches  that  the  query  

will  return.

A  query  string  has  the  form:  feature_name  value, where  feature_name  is an image  

search  feature  name,  and  value  is a value  associated  with  the  feature.  If you  use  

more  than  one  feature  in  a query,  then  you  must  specify  a feature  name-value  pair  

for  each  feature.  The  string  ″and″ separates  each  pair.  

Image  search  queries  have  the  following  syntax:  

feature_name  value  

feature_name  value  weight  

You cannot  repeat  a feature  within  a single  query.  You can  specify  multiple  features  

in  a query.  When  you  specify  multiple  features  in  a query,  you  can  assign  a weight  

to  one  or  more  of  the  features.  Queries  that  include  the  emphasis  for  each  feature  

have  the  form:  feature_name  value  weight, where  feature_name  is an  image  search  

feature  name,  value  is a value  associated  with  the  feature,  and  weight  is the  weight  

assigned  to  the  feature.  weight  is  the  combination  of  the  keyword  weight, an  equal  

sign  (=),  and  a real  number  greater  than  0.0.  

 

 

Chapter 8. Working  with other content  servers  299



You can  also  specify  the  maximum  number  of  matches  that  a query  returns.  To 

specify  the  maximum  results,  append  and  max_results  to  your  query.  max_results  

consists  of  the  keyword  max, an  equal  sign  (=),  and  an  integer  greater  than  0.  

Table  27  describes  feature  names  and  values.  

 Table 27.  Image  search  query:  valid  feature  values  

Feature  name  Values  

QbColorFeatureClass  or 

QbColor  

color  = < rgbValue  , rgbValue  , rgbValue  > 

where  rgbValue  is an integer  from  0 to 255.  

file  = < fileLocation  , ″ fileName  ″ > 

where  fileLocation  is either  server  or client, 

fileName  is the  complete  file path  specified  in  

the  format  appropriate  for  the  system  on which  

the  file resides.  For example,  you  can  search  

using  an average  color  and  a texture  value.  The  

texture  value  is provided  by an  image  in a client  

file.  The  weight  of the texture  is twice  that  of the 

average  color:  

QbColorFeatureClass  color=  

<50,  50,  50>  and  QbTextureFeatureClass  

 file=<client,  "\patterns\pattern1.gif">  

 weight=2.0  

QbColorHistogramFeatureClass  

or QbHistogram  

histogram  = < histList  > 

where  histList  consists  of one  or more  

histClause  separated  by a comma  (,). 

 A histClause  is specified  as ( histValue,  

rgbValue  , rgbValue  , rgbValue  ), where  

histValue  is an integer  from  1 to 100  (a 

percentage  value),  and  rgbValue  is an integer  

from  0 to 255.  

file  = < fileLocation  , ″ fileName  ″ > 

where  fileLocation  is either  server  or client, 

fileName  is the  complete  file path  specified  in  

the  format  appropriate  for  the  system  on which  

the  file resides.  

 

 

300 Application  Programming Guide



Table 27. Image  search  query:  valid  feature  values  (continued)  

Feature  name  Values  

QbDrawFeatureClass  or 

QbDraw  

description  = < ″ descString  ″ >  

where  descString  is a special  encoded  string  

describing  a picker  file.  Format  of the  description  

string:  

1.   Dw,h specifies  the  outer  dimensions  of the 

image  itself  with  width  w and  height  h. 

2.   Rx,y,w,h,r,g,b  specifies  that  a rectangle  of 

width  w and  height  h is to be positioned  

with  its upper  left corner  at the  coordinates  

(x,y)—with  respect  to an origin  in the upper  

left corner  of the  image  rectangle—and  this  

rectangle  should  have  color  values  r (red),  g 

(green),  and  b (blue).  

3.   Use  the  colon  character  (:) is used  as a 

separator.

For example,  you can  search  for color  layout  

(QbDrawFeatureClass)  described  by the  

description  string:  

QbDrawFeatureClass  description=  

<"D100,50:R0,0,50,50,255,0,0"  

file = < fileLocation  , ″ fileName  ″ > 

where  fileLocation  is either  server  or client, 

fileName  is the  complete  file path  specified  in 

the format  appropriate  for the  system  on which  

the file  resides.  

QbTextureFeatureClass  or 

QbTexture  

file = < fileLocation  , ″ fileName  ″ > 

where  fileLocation  is either  server  or client, 

fileName  is the  complete  file path  specified  in 

the format  appropriate  for the  system  on which  

the file  resides.
  

Query  examples:   

1.   Search  for  average  color  red:  

QbColorFeatureClass  color=<255,0,0>  

2.   Search  using  a histogram  of three  colors,  10%  red,  50%  blue,  and  40%  green:  

QbColorHistogramFeatureClass  histogram=  

<(10,  255,  0, 0)  (50,  0, 255,  0),  (40,  0, 0, 255)>  

3.   Search  using  an  average  color  and  a texture  value.  The  texture  value  is 

provided  by  an  image  in  a file  on  the  client.  The  weight  of the  texture  is twice  

that  of  the  average  color:  

QbColorFeatureClass  color=  

<50,  50,  50>  and  QbTextureFeatureClass  file=<client,  "\patterns\pattern1.gif">  

 weight=2.0  

4.   Search  for  the  described  color  layout:  

QbDrawFeatureClass  description=<"D100,50:R0,0,50,50,255,0,0">  

5.   Search  for  average  color  red  and  limiting  the  returned  matches  to five:  

QbColorFeatureClass  color=<255,0,0>  and max=5  

 

 

Chapter 8. Working  with other content  servers  301



Running queries and evaluating search results 

Applications  use  the  image  search  API  to  issue  queries  and  evaluate  search  results.  

If information  in  the  image  search  database  matches  the  image  search  criteria,  then  

an  identifier  of  the  matching  image  or  images  is returned.  This  identifier  is a 

dynamic  data  object  (DDO)  that  corresponds  to  an  image  part  inside  a DB2  

Content  Manager  object.  

Establishing a connection in QBIC 

Image  search  provides  functions  for  connecting  and  disconnecting  to  the  content  

server.  The  following  example  shows  how  to  connect  to an  image  search  server  

named  QBICSRV  using  the  user  ID  QBICUSER  and  the  password  PASSWORD. 

 

 

Java  

  DKDatastoreQBIC  dsQBIC  = new  DKDatastoreQBIC();  

  dsQBIC.connect("QBICSRV",  "QBICUSER",  "PASSWORD",  "");  

    ...                     //   Process  as appropriate  

  dsQBIC.disconnect();  

The  complete  sample  application  from  which  this  example  was  taken  

(TConnectQBIC.java) is available  in  the  samples  directory.  

 

 

C++  

    DKDatastoreQBIC  dsQBIC  = new  DKDatastoreQBIC();  

    dsQBIC.connect("QBICSRV",  "QBICUSER",  "PASSWORD",  "");  

    ...                                // do some  work  

    dsQBIC.disconnect();  

The  complete  sample  application  from  which  this  example  was  taken  

(TConnectQBIC.cpp) is available  in  the  samples  directory.  

 The  image  search  connection  allows  an  application  to  connect  to  an  image  search  

server.  

After  connecting,  your  program  can  use  functions  that  access  the  image  search  

server,  except  for  the  functions  that  are  not  related  to image  search  catalogs,  such  

as  listDatabases. An  openCatalog  function  is required  to open  a catalog  for  

processing.  A closeCatalog  function  is called  after  processing  is done.  The  

following  example  shows  how  to connect,  open  a catalog,  close  the  catalog,  and  

disconnect.  

 

 

Java  

  // -----  Create  a QBIC  datastore  and  connect  

  DKDatastoreQBIC  dsQBIC  = new  DKDatastoreQBIC();  

  dsQBIC.connect("QBICSRV",  "QBICUSER",  "PASSWORD",  "");  

  // -----  open  the  catalog  

  dsQBIC.openCatalog("DEMO",  "QBIC0725");  

    ...                  //   Do some  processing  

  dsQBIC.closeCatalog();  

  dsQBIC.disconnect();  

  dsQBIC.destroy();  

 

 

302 Application  Programming Guide



C++  

    DKDatastoreQBIC  dsQBIC  = new  DKDatastoreQBIC();  

    dsQBIC.connect("QBICSRV",  "QBICUSER",  "PASSWORD",  "");  

    dsQBIC.openCatalog("DEMO",  "QBIC0725");  

    ...                                // do  some  work  

    dsQBIC.closeCatalog();  

    dsQBIC.disconnect();  

Listing image search servers 

The  image  search  server  provides  a function  for  listing  the  image  search  servers  

that  it can  connect  to.  The  following  example  shows  how  to  retrieve  (in  a 

DKSequentialCollection  object)  the  list  of servers  that  contain  DKServerInfoQBIC  

objects.  After  you  get  a DKServerInfoQBIC  object,  you  can  retrieve  the  server  

name,  the  host  name,  and  the  port  number.  

 

 

Java  

 DKDatastoreQBIC  dsQBIC  = new  DKDatastoreQBIC();  

  .....  

 DKServerInfoQBIC  pSV  = null;  

 String  strServerName  = null;  

 String  strHostName  = null;  

 String  strPortNumber  = null;  

 pCol  = (DKSequentialCollection)dsQBIC.listDataSources();  

 iter  = pCol.createIterator();  

 while  (iter.more())  { 

     srvDef  = (DKServerDefQBIC)iter.next();  

      .....       // Process  each  server  as appropriate  

 } 

The  complete  sample  application  from  which  this  example  was  taken  

(TListCatalogQBIC.java) is available  in  the  samples  directory.  

 

 

Chapter 8. Working  with other content  servers  303



C++  

DKDatastoreQBIC  dsQBIC;  

DKSequentialCollection  *pCol  = 0; 

dkIterator  *pIter  = 0;  

DKServerDefQBIC  *pSV  = 0; 

DKString  strServerName;  

DKAny  a; 

long  i = 0; 

cout  <<  "list  servers"  << endl;  

a = dsQBIC.listDataSources();  

pCol  = (DKSequentialCollection*)((dkCollection*)a);  

pIter  = pCol->createIterator();  

while  (pIter->more()  == TRUE)  

 { 

   i++;  

   pSV  = (DKServerDefQBIC*)((void*)(*pIter->next()));  

   strServerName  = pSV->getName();  

   cout  << "Server  Name  [" << i << "] - " << strServerName  << endl;  

   delete  pSV;  

  } 

delete  pIter;  

delete  pCol;  

The  complete  sample  application  from  which  this  example  was  taken  

(TListCatalogQBIC.cpp) is available  in  the  samples  directory.  

Listing image search databases, catalogs, and features 

DKDatastoreQBIC  provides  a function  for  listing  all  of  the  image  search  databases,  

catalogs,  and  features  on  an  image  search  server.  The  list  is returned  in  a 

DKSequentialCollection  object  that  contains  DKIndexQBIC  objects.  After  you  get  a 

DKIndexQBIC  object,  you  can  retrieve  the  database,  catalog,  and  feature  name.  The  

following  example  shows  how  to retrieve  the  list  of  databases,  catalogs,  and  

features.  

 

 

304 Application  Programming Guide



Java  

 // -----  Create  the datastore  and  connect  

 DKDatastoreQBIC  dsQBIC  = new  DKDatastoreQBIC();  

 dsQBIC.connect("QBICSRV",  "QBICUSER",  "PASSWORD",  "");  

  

 // ----  Get  the  list  of servers  

 col  = (DKSequentialCollection)dsQBIC.listDataSources();  

 iter  = col.createIterator();  

 while  (iter.more())  { 

    srvDef  = (DKServerDefQBIC)iter.next();  

    .....       // Process  each  server  as appropriate  

 } 

  

// -----  Get  the  list  of  QBIC  Databases  

col  = (DKSequentialCollection)dsQBIC.listEntities();  

iter  = col.createIterator();  

while  (iter.more()){  

   dbDef  = (DKDatabaseDefQBIC)iter.next();  

   // -----  Get  the  list  of catalogs  for  the  database  

   col2  = (DKSequentialCollection)dbDef.listSubEntities();  

   iter2  = col2.createIterator();  

   while  (iter2.more()){  

      catDef  = (DKCatalogDefQBIC)iter2.next();  

      // -----  Get  the  list  of features  for  the catalog  

      col3  = (DKSequentialCollection)catDef.listAttrs();  

      iter3  = col3.createIterator();  

      while  (iter3.more()){  

            featDef  = (DKFeatureDefQBIC)iter3.next();  

            ....  // Process  the features  as appropriate  

      } 

   } 

 } 

dsQBIC.disconnect();  

dsQBIC.destroy();  

....  

The  complete  sample  application  from  which  this  example  was  taken  

(TListCatalogQBIC.java) is available  in  the  samples  directory.  

 

 

Chapter 8. Working  with other content  servers  305



C++  

DKDatastoreQBIC  dsQBIC;  

DKSequentialCollection  *pCol  = 0; 

dkIterator  *pIter  = 0;  

DKSequentialCollection  *pCol2  = 0; 

dkIterator  *pIter2  = 0;  

DKSequentialCollection  *pCol3  = 0; 

dkIterator  *pIter3  = 0;  

DKDatabaseDefQBIC  *pEntDB  = 0; 

DKCatalogDefQBIC  *pEntCat  = 0; 

DKString  strCatName;  

DKString  strDBName;  

DKString  strFeatName;  

DKFeatureDefQBIC  *pAttr  = 0; 

DKAny  a; 

DKAny  *pA  = 0; 

long  i = 0; 

long  j = 0; 

long  k = 0; 

cout  <<  "connecting  to  datastore"  << endl;  

dsQBIC.connect("QBICSRV","USERID","PW");  

cout  <<  "list  databases  " << endl;  

pCol  = (DKSequentialCollection*)((dkCollection*)dsQBIC.listEntities());  

pIter  = pCol->createIterator();  

i = 0; 

while  (pIter->more()  == TRUE)  

 { 

   i++;  

   pEntDB  = (DKDatabaseDefQBIC*)((void*)(*pIter->next()));  

   strDBName  = pEntDB->getName();  

   cout  << "database  name  [" << i <<  "] - " << strDBName  << endl;  

   cout  << "  list  catalogs  for  DB " << strDBName  << endl;  

   pCol2=(DKSequentialCollection*)((dkCollection*)pEntDB->listSubEntities());  

   pIter2  = pCol2->createIterator();  

   j = 0;  

   while  (pIter2->more()  == TRUE)  

    { 

      j++;  

      pA = pIter2->next();  

      pEntCat  = (DKCatalogDefQBIC*)  pA->value();  

      strCatName  = pEntCat->getName();  

      cout  << "catalog  name  [" << j << "]  - " << strCatName  << endl;  

      pCol3=(DKSequentialCollection*)((dkCollection*)pEntCat->listAttrs());  

        pIter3  = pCol3->createIterator();  

        k = 0; 

        while  (pIter3->more()  == TRUE)  

        { 

         k++;  

         pA = pIter3->next();  

         pAttr  = (DKFeatureDefQBIC*)  pA->value();  

         cout  << "    Attribute  name  [" << k << "] - " 

              <<  pAttr->getName()  << endl;  

         cout  << "      datastoreName  " << pAttr->datastoreName()  

              <<  endl;  

         cout  << "      datastoreType  " << pAttr->datastoreType()  

              <<  endl;  

         cout  << "      attributeOf    " << pAttr->getEntityName()  

              <<  endl;  

         delete  pAttr;  

        } 

//  continued...  

 

 

306 Application  Programming Guide



C++  (continued)  

     delete  pIter3;  

     delete  pCol3;  

     delete  pEntCat;  

    } 

  cout  << "  " << j << " features  listed  for  catalog:  " 

       <<  strCatName  << endl;  

  delete  pIter2;  

  delete  pCol2;  

  delete  pEntDB;  

 } 

delete  pIter;  

delete  pCol;  

cout  << i <<  " databases  listed"  <<  endl;  

dsQBIC.disconnect();  

The  complete  sample  application  from  which  this  example  was  taken  

(TListCatalogQBIC.cpp) is available  in  the  samples  directory.  

Representing image search information with a DDO 

A  DDO  associated  with  DKDatastoreQBIC  contains  specific  information  for  

representing  image  search  results.  A DDO  resulting  from  an  image  query  

corresponds  to  an  image  part  inside  an  item;  it  has  the  following  set  of standard  

attributes:  

DKDLITEMID  

The  item  ID  for  the  item  to  which  this  image  part  belongs.  Use  the  item  ID  

to  retrieve  the  whole  item  from  the  content  server.  

DKPARTNO  

An  integer  part  number  of this  image  part.  Use  this  with  the  item  ID  to  

retrieve  this  part  from  the  content  server.  

DKREPTYPE  

A string  for  representation  type  (RepType).  The  default  value  is FRN$NULL. 

This  attribute  is reserved.  

DKRANK  

An  integer  rank  indicating  the  relevance  of this  part  to  the  results  set  of 

the  image  query.  The  rank  is within  the  range  0 to  100.  A higher  rank  

means  a better  match.

The  PID  for  an  image  search  DDO  has  the  following  information:  

content  server  type  

QBIC.  

content  server  name  

The  server  name  used  to connect  to  the  content  server.  

ID  The  zero-based  sequence  number  of  the  DDO  in  the  results  set.

 As  a convention,  the  attribute  value  is always  an  object.  

Working  with image queries 

This  section  describes  how  to run and  evaluate  image  queries.  

 

 

Chapter 8. Working  with other content  servers  307



Running an image query 

Using  an  instance  of  dkQuery  from  DKDatastoreQBIC,  you  can  create  a query  

object  to  run the  query  and  obtain  the  results.  The  following  example  shows  how  

to  create  an  image  query  object  and  run it. After  you  run a query,  the  results  are  

returned  in  a DKResults  collection.  

 

 

Java  

  // -----  Generate  a query  string;  then  create  the  datastore  and connect  

  String  cmd  = "QbColor  color=<255,  0, 0>";  

  DKNVPair  parms[]  = null;  

  DKDDO  item  = null;  

  DKDatastoreQBIC  dsQBIC  = new  DKDatastoreQBIC();  

  dsQBIC.connect("QBICSRV",  "QBICUSER",  "PASSWORD",  "");  

   // -----  Open  the  catalog  

  dsQBIC.openCatalog("DEMO",  "qbic0725");  

  

    ...    // Process  as appropriate  

  

  // -----  Create  the  query  and  run it  

  dkQuery  pQry  = dsQBIC.createQuery(cmd,  DK_IMAGE_QL_TYPE,  parms);  

  pQry.execute(parms);  

  // -----  Get  the  results  and process  

  DKResults  pResults  = (DKResults)pQry.result();  

  dkIterator  pIter  = pResults.createIterator();  

  while  (pIter.more())  

  { 

     item  = (DKDDO)pIter.next();  

       // Process  the DKDDO  

   } 

   dsQBIC.closeCatalog();  

   dsQBIC.disconnect();  

   dsQBIC.destroy();  

   ...  

The  complete  sample  application  from  which  this  example  was  taken  

(SampleIQryQBIC.java) is available  in  the  samples  directory.  

 

 

308 Application  Programming Guide



C++  

    DKDatastoreQBIC*  dsQBIC;  

    dsQBIC  = new  DKDatastoreQBIC();  

    dsQBIC->connect("QBICSRV",  "QBICUSER",  "PASSWORD");  

    dsQBIC->openCatalog("DEMO",  "qbic0725");  

    DKAny*  element;  

    DKDDO*  item;  

    DKString  cmd  = "QbColor  color=<255,  0, 0>";  

    dkQuery*  pQry  = dsQBIC->createQuery(cmd);  

    pQry->execute();  

    DKAny  any  = pQry->result();  

    DKResults*  pResults  = (DKResults*)((dkCollection*)any);  

    dkIterator*  pIter  = pResults->createIterator();  

    while  (pIter->more())  

      { 

      element  = pIter->next();  

      item  = (DKDDO*)element->value();  

      // Process  the  DKDDO  

      ...  

      } 

    delete  pIter;  

    delete  pResults;  

    delete  pQry;  

    dsQBIC->closeCatalog();  

    dsQBIC->disconnect();  

The  complete  sample  application  from  which  this  example  was  taken  

(TSampleIQryQBIC.cpp) is  available  in the  samples  directory.  

Running an image query from the content server 

As  an  alternative,  you  can  use  the  execute  function  of DKDatastoreQBIC  to  run a 

query.  The  results  are  returned  in  a dkResultSetCursor  object.  The  following  

example  shows  how  to run an  image  query  on  the  content  server.  Results  are  

returned  in  a dkResultSetCursor  object.  

 

 

Java  

 // -----  Generate  a query  string;  then  create  the  datastore  and  connect  

 String  cmd  = "QbColorFeatureClass  color=<255,  0, 0>";  

  

 DKNVPair  parms[]  = null;  

 DKDDO  item  = null;  

 DKDatastoreQBIC  dsQBIC  = new  DKDatastoreQBIC();  

 dsQBIC.connect("QBICSRV",  "QBICUSER",  "PASSWORD",  "");  

 dsQBIC.openCatalog("DEMO",  "qbic0725");  

  // -----  Execute  the query  from  the  datastore  

  dkResultSetCursor  pCur  = dsQBIC.execute(cmd,  DK_IMAGE_QL_TYPE,  parms);  

  while  (pCur.isValid())  

  { 

     item  = pCur.fetchNext();  

     ....      // Process  the DKDDO  

   } 

   pCur.destroy();  

   dsQBIC.closeCatalog();  

   dsQBIC.disconnect();  

   dsQBIC.destroy();  

The  complete  sample  application  from  which  this  example  was  taken  

(TExecuteQBIC.java) is available  in  the  samples  directory.  

 

 

Chapter 8. Working  with other content  servers  309



C++  

    DKDatastoreQBIC*  dsQBIC;  

    dsQBIC  = new  DKDatastoreQBIC();  

    dsQBIC->connect("QBICSRV",  "QBICUSER",  "PASSWORD");  

    cout  << "datastore  connected"  << endl;  

    dsQBIC->openCatalog("DEMO",  "qbic0725");  

    DKString  cmd  = "QbColorFeatureClass  color=<255,  0, 0>";  

    dkResultSetCursor*  pCur  = dsQBIC->execute(cmd);  

    DKDDO*  item  = 0;  

    while  (pCur->isValid())  

     { 

      item  = pCur->fetchNext();  

      if (item  != 0) 

       { 

         // Process  the DKDDO  

         ...  

         delete  item;  

       } 

     } 

    delete  pCur;  

    dsQBIC->closeCatalog();  

    dsQBIC->disconnect();  

The  complete  sample  application  from  which  this  example  was  taken  

(TExecuteQBIC.cpp) is available  in  the  samples  directory.  

Evaluating an image query from the content server 

DKDatastoreQBIC  also  provides  a function  to  evaluate  a query.  The  following  

example  shows  how  to  evaluate  an  image  query  from  the  content  server.  Results  

are  returned  in  a DKResults  collection.  

 

 

Java  

  // -----  Generate  a query  string;  then  create  the  datastore  and connect  

  String  cmd  = "QbColorFeatureClass  color=<255,  0, 0>";  

  DKNVPair  parms[]  = null;  

  DKDDO  item  = null;  

  DKDatastoreQBIC  dsQBIC  = new  DKDatastoreQBIC();  

  dsQBIC.connect("QBICSRV",  "QBICUSER",  "PASSWORD",  "");  

  dsQBIC.openCatalog("DEMO",  "qbic0725");  

  

  // -----  Use  evaluate  to run the  query  

  DKResults  pResults=(DKResults)  dsQBIC.evaluate(cmd,DK_IMAGE_QL_TYPE,parms);  

  dkIterator  pIter  = pResults.createIterator();  

  while  (pIter.more())  

  { 

      item  = (DKDDO)pIter.next();  

       ...    // Process  the  DKDDO  

  } 

  dsQBIC.closeCatalog();  

  dsQBIC.disconnect();  

  dsQBIC.destroy();  

 

 

310 Application  Programming Guide



C++  

    DKDatastoreQBIC*  dsQBIC;  

    dsQBIC  = new  DKDatastoreQBIC();  

    dsQBIC->connect("QBICSRV",  "QBICUSER",  "PASSWORD");  

    dsQBIC->openCatalog("DEMO",  "qbic0725");  

    DKAny*  element;  

    DKDDO*  item;  

    DKString  cmd  = "QbColor  color=<255,  0, 0>";  

    DKAny  any  = dsQBIC->evaluate(cmd);  

    DKResults*  pResults  = (DKResults*)((dkCollection*)any);  

    dkIterator*  pIter  = pResults->createIterator();  

    while  (pIter->more())  

      { 

      element  = pIter->next();  

      item  = (DKDDO*)element->value();  

      // Process  the  DKDDO  

      ...  

      } 

    delete  pIter;  

    delete  pResults;  

    dsQBIC->closeCatalog();  

    dsQBIC->disconnect();  

Using the image search engine 

You can  use  the  image  search  server  to specify  a query  based  on  one  of  the  

following  features:  average  color, color  percentages,  color  layout,  and  textures.  You 

can  also  specify  multiple  features  in  a query.  The  query  results  contain  the  item  ID,  

part  number,  representation  type,  and  ranking  information.  You can  use  this  

information  to  create  an  XDO  for  retrieving  the  image  contents.  

Loading data to be indexed for image search 

To load  data  into  a DB2  Content  Manager  server  to  be  indexed  by  the  image  search  

server,  you  must  create  a DB2  Content  Manager  index  class,  an  image  search  

database,  and  an  image  search  catalog.  The  database  is a collection  of  image  search  

catalogs.  A  catalog  holds  data  about  the  visual  features  of  images.  

The  image  search  features  need  to  be  added  to the  catalog  for  indexing.  You 

should  add  all  supported  features  to the  catalog.  

The  image  search  server  must  be  running  when  you  create  an  image  search  

database  and  catalog.  Make  sure  your  environment  is set  up  properly.  

After  the  data  is  loaded  into  DB2  Content  Manager,  you  can  place  the  image  in  the  

image  queue.  In  the  system  administration  program,  select  Process  Image  Queue. 

After  the  indexing  is  complete,  you  can  run image  searches.  

Indexing an existing XDO using search engines 

You can  index  an  existing  XDO  using  a specified  search  engine.  The  following  

example  calls  the  setToBeIndexed  function  of the  DKBlobDL  class.  

 

 

Chapter  8. Working  with other content servers 311



Java  

   try  

   { 

       // -----  Create  the  datastore  and connect  

       DKDatastoreDL  dsDL  = new  DKDatastoreDL();  

       dsDL.connect("LIBSRVRN","FRNADMIN","PASSWORD","");  

  

       // -----  Create  the  XDO  and  PID and  set attributes  

       DKBlobDL  axdo  = new  DKBlobDL(dsDL);  

       DKPidXDODL   apid  = new  DKPidXDODL();  

       apid.setPartId(partId);  

       apid.setPrimaryId(itemId);  

       axdo.setPidObject(apid);  

  

       // -----  Set  search  engine  information  

       DKSearchEngineInfoDL  aSrchEx  = new  DKSearchEngineInfoDL();  

       aSrchEx.setSearchEngine("SM");  

       aSrchEx.setSearchIndex("TM-TMINDEX");  

       aSrchEx.setSearchInfo("ENU");  

       axdo.setExtension("DKSearchEngineInfoDL",  (dkExtension)aSrchEx);  

       // -----  Call  setToBeIndexed  on the  XDO 

       axdo.setToBeIndexed();  

  

       dsDL.disconnect();  

       dsDL.destroy();  

   } 

   catch  (DKException  exc)  

   { 

       ...  // Handle  the  DKException  

   } 

   catch  (Exception  exc)  

   { 

       ...  // Handle  the  Exception  

    } 

 

 

312 Application  Programming Guide



C++  

void  main(int  argc,  char  *argv[])  

{ 

  DKDatastoreDL  dsDL;  

  DKString  itemId,  repType;  

  int  partId;  

  itemId  = "N2JJBERBQFK@WTVL";  

  repType  = "FRN$NULL";  

  partId  = 10;  

  if (argc  ==  1) 

  { 

    cout<<"invoke:  indexPartxs  <partId>  <repType>  <itemId>"<<endl;  

    cout<<"  no parameter,  following  default  will  be  provided:"<<endl;  

    cout<<"The  supplied  default  partId  = "<<partId<<endl;  

    cout<<"The  supplied  default  repType  = "<<repType<<endl;  

    cout<<"The  supplied  default  itemId  = "<<itemId<<endl;  

 } 

  else  if (argc  == 2) 

 { 

    partId  = atoi(argv[1]);  

    cout<<"you  enter:  indexPartxs  "<<argv[1]<<endl;  

    cout<<"The  supplied  default  repType  = "<<repType<<endl;  

    cout<<"The  supplied  default  itemId  = "<<itemId<<endl;  

 } 

  else  if (argc  == 3) 

 { 

    partId  = atoi(argv[1]);  

    repType  = DKString(argv[2]);  

    cout<<"you  enter:  indexPartxs  "<<argv[1]<<"  "<<argv[2]<<endl;  

    cout<<"The  supplied  default  itemId  = "<<itemId<<endl;  

 } 

  else  if (argc  == 4) 

 { 

    partId  = atoi(argv[1]);  

    repType  = DKString(argv[2]);  

    itemId  = DKString(argv[3]);  

 cout<<"you  enter:  indexPartxs  "<<argv[1]<<"  "<<argv[2]<<"  "<<argv[3]<<endl;  

 } 

    cout  << "connecting  Datastore"  << endl;  

    try  

 { 

    //replace  following  with  your  library  server,  userid,  password  

    dsDL.connect("LIBSRVRN","FRNADMIN","PASSWORD");  

    cout  << "datastore  connected"  << endl;  

  

    DKBlobDL*  axdo  = new  DKBlobDL(&dsDL);  

    DKPidXDODL*   apid  = new  DKPidXDODL;  

    apid  ->setPartId(partId);  

    apid  ->setId(itemId);  

    axdo  ->setPid(apid);  

    axdo  ->setRepType(repType);  

    cout<<"itemId=  "<<(axdo->getPid())->getId()<<endl;  

    cout<<"partId=  "<<((DKPidXDODL*)(axdo->getPid()))->getPartId()<<endl;  

    cout<<"repType=  "<<axdo->getRepType()<<endl;  

  

// continued...  

 

 

Chapter 8. Working  with other content  servers  313



C++  (continued)  

    //---  set  searchEngine  -----  

    cout<<"set  search  engine  and  setToBeIndexed()"<<endl;  

    DKSearchEngineInfoDL  aSrchEx;  

    aSrchEx.setSearchEngine("SM");  

    aSrchEx.setSearchIndex("TM-TMINDEX");  

    aSrchEx.setSearchInfo("ENU");  

    axdo->setExtension("DKSearchEngineInfoDL",  (dkExtension*)&aSrchEx);  

    axdo->setToBeIndexed();  

    cout<<"setToBeIndexed()  done..."<<endl;  

  

    delete  apid;  

    delete  axdo;  

    dsDL.disconnect();  

    cout<<"datastore  disconnected"<<endl;  

 } 

  catch(DKException  &exc)  

 { 

   cout  << "Error  id"  << exc.errorId()  << endl;  

   cout  << "Exception  id " << exc.exceptionId()  << endl;  

   for(unsigned  long  i=0;i<  exc.textCount();i++)  

   { 

    cout  << "Error  text:"  << exc.text(i)  << endl;  

   } 

   for  (unsigned  long  g=0;g<  exc.locationCount();g++)  

   { 

    const  DKExceptionLocation*  p = exc.locationAtIndex(g);  

    cout  << "Filename:  " << p->fileName()  << endl;  

    cout  << "Function:  " << p->functionName()  << endl;  

    cout  << "LineNumber:  " << p->lineNumber()  << endl;  

   } 

   cout  << "Exception  Class  Name:  " << exc.name()  << endl;  

  } 

  cout  << "done  ..."  << endl;  

} 

Using combined query 

Use  a combined  query  to  execute  a combination  of parametric  and  text  queries,  with  

or  without  a scope.  A  scope  is a DKResults  object  formed  from  a previous  

parametric  or  text  query.  The  result  is an  intersection  between  the  scopes  and  the  

results  of  each  query.  Therefore,  if you  are  not  careful  when  formulating  the  query  

and  including  scopes,  individual  query  results  might  not  intersect  and  the  result  of  

the  combined  query  is empty.  

If there  is  at  least  one  parametric  and  one  text  query,  the  resulting  DDO  has  the  

attribute  DKRANK, which  signifies  the  highest  rank  of the  matching  part  belonging  to  

the  document.  

Restriction:  For  each  query  in  a combined  query,  you  must  use  a different  

connection  to  the  search  engine;  you  cannot  route  multiple  queries  through  the  

same  connection.  

Combined parametric and text queries 

To run a combined  query  made  up  of one  parametric  and  one  text  query,  without  a 

scope,  you  must  create  a combined  query  object  and  pass  the  two  queries  as  input  

parameters  to  be  run by  the  combined  query.  For  example:  

 

 

314 Application  Programming Guide



Java  

// -----  Create  a pre-Version  8.1 Content  Manager  datastore  and connect  

DKDatastoreDL  dsDL  = new  DKDatastoreDL();  

dsDL.connect("LIBSRVRN",  "FRNADMIN",  "PASSWORD");  

// ------  Create  a text  search  datastore  and connect  

DKDatastoreTS  dsTS;  

dsTS.connect("TM",  "",  ’ ’);  // TM is a local  alias  for 

...                          //     the  DB2 Text  Information  Extender  server  

  

// -----  Generate  the parametric  query  string  and  create  the  query  

String  pquery  = "SEARCH=(INDEX_CLASS=GRANDPA,  COND=(DLSEARCH_Date  > 1994));";  

DKParametricQuery  pq = 

 (DKParametricQuery)  dsDL.createQuery(pquery,  DK_CM_PARAMETRIC_QL_TYPE,  null);  

  

// -----  Generate  the text  query  string  and create  the  query  

String  tquery  = "SEARCH=(COND=(Tivoli));  OPTION=(SEARCH_INDEX=TMINDEX)";  

DKTextQuery  tq = 

    (DKTextQuery)  dsTS.createQuery(tquery,  DK_CM_TEXT_QL_TYPE,  null);  

  

// -----  Create  the  combined  query  

DKCombinedQuery  cq  = new  DKCombinedQuery();  

  

// -----  Package  the queries  in DKNVPair  as input  parameters  

DKNVPair  par[]  = new DKNVPair[3];  

par[0].set(DK_PARM_QUERY,  pq);  

par[1].set(DK_TEXT_QUERY,  tq);  

par[2].setName(DK_PARM_END);     // to signal  the  end  of parameter  list  

  

// -----  Execute  the combined  query  

cq.execute(par);  

  

// -----  Get  the  results  

DKResults  res  = (DKResults)  cq.result();  

if (res  != null)  { 

    ...   // process  the results  

} 

 

 

Chapter 8. Working  with other content  servers  315



C++  

DKDatastoreDL  dsDL;  

dsDL.connect("LIBSRVRN","FRNADMIN","PASSWORD");  

  

DKDatastoreTS  dsTS;  

//  TM is a local  alias  for  the DB2 Text  Information  Extender  server  

dsTS.connect("TM","",’  ’);  

//  create  a parametric  query  

DKString  pquery="SEARCH=(INDEX_CLASS=GRANDPA,COND=(DLSEARCH_Date  > 1994));";  

DKParametricQuery*  pq = 

  (DKParametricQuery*)  dsDL.createQuery(pquery,DK_PARAMETRIC_QL_TYPE,  NULL);  

  

//  create  a text  query  

DKString  tquery  = "SEARCH=(COND=(Tivoli));OPTION=(SEARCH_INDEX=TMINDEX)";  

DKTextQuery*  tq = 

    (DKTextQuery*)  dsTS.createQuery(tquery,DK_TEXT_QL_TYPE,  NULL);  

  

//  create  a combined  query  

DKCombinedQuery*  cq = new DKCombinedQuery();  

  

//  package  the  queries  in DKNVPair  as input  parameters  

DKNVPair  par[3];  

par[0].set(DK_PARM_QUERY,  pq);  

par[1].set(DK_TEXT_QUERY,  tq);  

//  to signal  the  end  of parameter  list  

par[2].setName(DK_PARM_END);  

  

//  execute  the  combined  query  

cq->execute(par);  

  

//  get  the  results  

DKAny  any  = cq->result();  

DKResults*  res  = (DKResults*)  any.value();  

if  (res  != NULL)  { 

    // process  the  results  

    ...  

} 

 The  last  if  statement  is necessary  to  ensure  that  the  DKResults  object  is  not  null.  

Using a scope 

If you  have  a DKResults  object  that  you  want  to use  as  the  scope,  pass  it as  an  

additional  query  parameter.  The  following  example  illustrates  using  a DKResults  

object  to  function  as a scope  for  a combined  query:  

 

 

316 Application  Programming Guide



Java  

// -----  This  scope  is the result  of a parametric  query  

DKResults  scope;  

// ------  This  scope  is the  result  of a previous  text  query  

DKResults  tscope;  

  

// -----  Package  the query  in array  if DKNVPairs  as input  parameters  

DKNVPair  par[]  = new DKNVPair[4];  

par[0].set(DK_PARM_QUERY,  pq);  

par[1].set(DK_TEXT_QUERY,  tq);  

par[2].set(DK_SCOPE_DL,  scope);  

par[3].set(DK_SCOPE_TS,  tscope);  

par[4].setName(DK_PARM_END);  

  

// -----  Execute  the combined  query  

cq.execute(par);  

....  

 

 

C++  

DKResults*  scope;     //  assume  that  this  is the  scope  

                     // initialized  somewhere  as a result  of 

                     // some  parametric  query  

DKResults*  tscope     //  assume  that  this  is the  scope  

                     // initialized  somewhere  as a result  of 

                     // some  text  query  

  

  

...  

// package  the  query  in DKNVPair  as input  parameters  

DKNVPair  par[4];  

par[0].set(DK_PARM_QUERY,  pq);  

par[1].set(DK_TEXT_QUERY,  tq);  

par[2].set(DK_SCOPE_DL,  scope);  

par[3].set(DK_SCOPE_TS,  tscope);  

par[4].setName(DK_PARM_END);  

// execute  the  combined  query  

cq->execute(par);  

...  

 The  results  of  one  combined  query  can  also  be  used  as  a scope  for  another  

combined  query,  and  sometimes  you  can  query  the  results.  

Ranking 

If  the  combined  query  contains  at least  one  text  query,  then  the  resulting  DDO  has  

the  attribute  DKRANK. This  attribute  is not  stored,  but  is computed  each  time  by  the  

DB2  Text Information  Extender.  The  value  of the  rank  corresponds  to  the  highest  

rank  of  the  part  in  the  document  that  satisfies  the  text  query  conditions.  

Tips 

If  you  have  several  parametric  queries  and  scopes,  it is more  efficient  to  run one  

complete  query.  This  is  also  true for  text  queries.  

The  query  option  "MAX_RESULTS=nn"  limits  the  number  of returned  results.  Usually,  

this  option  is  more  applicable  to text  queries,  because  the  result  is  sorted  in  

descending  order  by  rank.  If  this  option  is set  to 10,  for  example,  it means  that  the  

caller  only  wants  the  10  highest  matching  results.  

 

 

Chapter 8. Working  with other content  servers  317



The  meaning  of  the  query  option  "MAX_RESULTS=nn"  is different  for  parametric  

queries.  Because  there  is no  notion  of rank,  the  caller  gets  the  first  10  results.  The  

results  are  intersected  with  the  result  from  the  text  query.  Therefore,  when  

combining  parametric  and  text  queries,  it is advisable  not  to  specify  the  query  

option  "MAX_RESULTS=nn"  for  the  parametric  query.  

Understanding the earlier DB2 Content Manager workflow and 

workbasket functions 

This  section  describes  the  earlier  DB2  Content  Manager  workflow  and  workbasket  

functions.  

Understanding the earlier DB2 Content Manager workflow 

service 

A workbasket  is a container  that  holds  documents  and  folders  that  you  want  to  

process.  A  workflow  is an  ordered  set  of workbaskets  that  represent  a specific  

business  process.  Folders  and  documents  move  between  workbaskets  within  a 

workflow,  allowing  your  applications  to create  simple  business  models  and  route  

work  through  the  process  until  completion.  

The  workflow  model  in  DB2  Content  Manager  follows  these  rules: 

v   A workbasket  does  not  need  to  be  located  in  a workflow.  

v   A workbasket  can  be  located  in one  or  more  workflows.  

v   A workbasket  can  be  in  the  same  workflow  more  than  once.  

v   A document  or  folder  can  only  be  stored  in one  workflow  at  a time.  

v   A document  or  folder  can  be  stored  in a workbasket  that  is not  located  in  a 

workflow.

The  DB2  Information  Integrator  for  Content  APIs  provide  classes  to  work  with  

DB2  Content  Manager  workflow.  

The  DKWorkFlowServiceDL  class  represents  the  workflow  service  of  DB2  Content  

Manager.  This  class  provides  the  capability  to  start,  change,  remove,  route,  and  

complete  a document  or  folder  in  a workflow.  Additionally,  you  can  use  the  

DKWorkFlowServiceDL  class  to  retrieve  information  about  workbaskets  and  

workflows.  

The  DKWorkFlowDL  and  DKWorkBasketDL  classes  are  the  object-oriented  

representations  of  a workflow  item  and  a workbasket  item,  respectively.  

Establishing a connection 

You must  establish  a connection  to  a DB2  Content  Manager  server  before  you  can  

use  the  workflow  service.  The  content  server  provides  connection  and  

disconnection  functions.  

The  following  example  shows  how  to  connect  to a DB2  Content  Manager  server  

named  LIBSRVRN, using  the  user  ID  FRNADMIN  and  the  password  PASSWORD. 

 

 

318 Application  Programming Guide



Java  

DKDatastoreDL  dsDL  = new  DKDatastoreDL();  

DKWorkFlowServiceDL  wfDL  = new  DKWorkFlowServiceDL(dsDL);  

dsDL.connect("LIBSRVRN",  "FRNADMIN",  "PASSWORD");  

...                   //  Process  as appropriate  

dsDL.disconnect();  

dsDL.destroy();  

The  complete  sample  application  from  which  this  example  was  taken  

(TListWorkFlowWFS.java) is available  in  the  samples  directory.  

 

 

C++  

DKDatastoreDL  dsDL;  

DKWorkFlowServiceDL  wfDL(&dsDL);  

dsDL.connect("LIBSRVRN",  "FRNADMIN",  "PASSWORD");  

...                                   // do some  work  

dsDL.disconnect();  

The  complete  sample  application  from  which  this  example  was  taken  

(TListWorkFlowWFS.cpp) is available  in  the  samples  directory.  

Creating a workflow 

Use  DKWorkflowServiceDL  to  create  a workflow.  To do  this,  you  typically  

complete  the  following  six  steps:  

1.   Create  an  instance  of  DKWorkFlowDL.  

2.   Set  the  workflow  name  (″GOLF″).  

3.   Set  the  workbasket  sequence  (″NULL″)  to  indicate  that  this  workflow  contains  

no  workbaskets.  

4.   Set  the  privilege  (″All  Privileges″). 

5.   Set  the  disposition  (DK_WF_SAVE_HISTORY).  

6.   Call  the  add  function  add  ().

The  example  follows  the  six  steps  to create  a workflow.  

 

 

Chapter 8. Working  with other content  servers  319



Java  

//  -----  Create  the  datastore  and the  CM workflow  services  

DKDatastoreDL  dsDL  = new  DKDatastoreDL();  

DKWorkFlowServiceDL  wfDL  = new  DKWorkFlowServiceDL(dsDL);  

  

//  -----  Set  the  access  option  and  connect  

Object  input_option  = new Integer(DK_SS_CONFIG);  

dsDL.setOption(DK_OPT_DL_ACCESS,  input_option);  

dsDL.connect("LIBSRVRN",  "FRNADMIN",  "PASSWORD");  

  

//  ------  Create  the  CM workflow  

DKWorkFlowDL  newwf  = new  DKWorkFlowDL(wfDL);  

newwf.setName("Process  claim");  

newwf.setWorkBasketSequence((dkCollection  *)NULL);  

newwf.setAccessList("All  Privileges");  

newwf.setHistoryDisposition(DK_WF_SAVE_HISTORY);  

newwf.add();  

...      //  Processing  as  appropriate  

dsDL.disconnect();  

dsDL.destroy();  

The  complete  sample  application  from  which  this  example  was  taken  

(TCreateDelWorkFlow.java) is  available  in  the  samples  directory.  

 

 

C++  

DKDatastoreDL  dsDL;  

DKAny  input_option  = DK_SS_CONFIG;  

DKWorkFlowServiceDL  wfDL(&dsDL);  

dsDL.setOption(DK_DL_OPT_ACCESS,  input_option);  

dsDL.connect("LIBSRVRN",  "FRNADMIN",  "PASSWORD");  

DKWorkFlowDL  * newwf  = new  DKWorkFlowDL(&wfDL);  

newwf->setName("GOLF");  

newwf->setWorkBasketSequence((dkCollection  *)NULL);  

newwf->setAccessList("All  Privileges");  

newwf->setHistoryDisposition(DK_WF_SAVE_HISTORY);  

newwf->add();  

...                                 // do some  work  

dsDL.disconnect();  

The  complete  sample  application  from  which  this  example  was  taken  

(TCreateDelWorkFlowWFS.cpp) is available  in  the  samples  directory  

 Important:  If  you  connect  to  the  content  server  as  a normal  user  

(DK_SS_NORMAL),  you  do  not  get  the  workflow  defined  after  you  connect.  

Therefore,  this  sample  uses  DK_SS_CONFIG.  

Listing workflows 

DKWorkflowServiceDL  provides  a function  for  listing  the  workflows  in  the  system  

as  shown  in  the  following  example.  The  list  is returned  in  a sequential  collection  of 

DKWorkFlowDL  objects.  

 

 

320 Application  Programming Guide



Java  

DKDatastoreDL  dsDL  = new  DKDatastoreDL();  

DKWorkFlowServiceDL  wfDL  = new  DKWorkFlowServiceDL(dsDL);  

dsDL.connect("LIBSRVRN",  "FRNADMIN",  "PASSWORD");  

// -----  Get  a list  of the  CM workflows  

DKSequentialCollection  wfList=(DKSequentialCollection)wfDL.listWorkFlows();  

if (wfList  != null)  

{ 

   dkIterator  pIter  = wfList.createIterator();  

   DKWorkFlowDL  pwf1;  

   while  (pIter.more())  

   { 

      pwf1  = (DKWorkFlowDL)pIter.next();  

      pwf1->retrieve();  

      ...                        // Process  as appropriate  

   } 

} 

dsDL.disconnect();  

dsDL.destroy();  

The  complete  sample  application  from  which  this  example  was  taken  

(TListWorkFlowWFS.java) is available  in  the  samples  directory.  

 

 

C++  

DKDatastoreDL  dsDL;  

DKWorkFlowServiceDL  wfDL(&dsDL);  

dsDL.connect("LIBSRVRN",  "FRNADMIN",  "PASSWORD");  

DKSequentialCollection  * wfList1  = 

  (DKSequentialCollection  *)wfDL.listWorkFlows();  

if (wfList1  != NULL)  

   { 

      dkIterator  * pIter1  = wfList1->createIterator();  

      DKWorkFlowDL  * pwf1;  

      while  (pIter->more())  

      { 

         pwf1  = (DKWorkFlowDL  *)((void*)(*pIter1->next()));  

         pwf1->retrieve();  

         ...                        // do some  work  

         delete  pwf1;  

      } 

   } 

dsDL.disconnect();  

The  complete  sample  application  from  which  this  example  was  taken  

(TListWorkFlowWFS.cpp) is available  in  the  samples  directory.  

Creating a DB2 Content Manager workbasket 

Use  DKWorkflowServiceDL  to  create  a workbasket.  To do  this,  you  typically  

complete  the  following  steps:  

1.   Create  an  instance  of  DKWorkBasketDL.  

2.   Set  the  workbasket  name  (Hot  Items). 

3.   Set  the  privilege  (All  Privileges). 

4.   Call  the  add  function.

 

 

Chapter 8. Working  with other content  servers  321



The  following  example  follows  these  steps  to  create  a workbasket.  If  you  connect  

to  the  content  server  as  a normal  user  (DK_SS_NORMAL),  you  do  not  get  the  

workbasket  defined  after  you  connect.  Therefore,  this  sample  uses  

DK_SS_CONFIG.  

 

 

Java  

DKDatastoreDL  dsDL  = new  DKDatastoreDL();  

Object  input_option  = new Integer(DK_SS_CONFIG);  

DKWorkFlowServiceDL  wfDL  = new  DKWorkFlowServiceDL(dsDL);  

dsDL.setOption(DK_OPT_DL_ACCESS,  input_option);  

dsDL.connect("LIBSRVRN",  "FRNADMIN",  "PASSWORD");  

//  -----  Create  the  CM workbasket  and  set  properties  

DKWorkBasketDL  newwb  = new  DKWorkBasketDL(wfDL);  

newwb.setName("Hot  Items");  

newwb.setAccessList("All  Privileges");  

newwb.add();  

...      // Process  as appropriate  

dsDL.disconnect();  

dsDL.destroy();  

The  complete  sample  application  from  which  this  example  was  taken  

(TCreateDelWorkBasket.java) is available  in  the  samples  directory.  

 

 

C++  

DKDatastoreDL  dsDL;  

DKAny  input_option  = DK_SS_CONFIG;  

DKWorkFlowServiceDL  wfDL(&dsDL);  

dsDL.setOption(DK_DL_OPT_ACCESS,  input_option);  

dsDL.connect("LIBSRVRN",  "FRNADMIN",  "PASSWORD");  

DKWorkBasketDL  * newwb  = new  DKWorkBasketDL(&wfDL);  

newwb->setName("Hot  Items");  

newwb->setAccessList("All  Privileges");  

newwb->add();  

...                                // do some  work  

dsDL.disconnect();  

The  complete  sample  application  from  which  this  example  was  taken  

(TCreateDelWorkBasket.cpp) is available  in  the  samples  directory.  

Listing workbaskets 

DKWorkflowServiceDL  provides  a function  for  listing  the  workbaskets  in  the  

system  as  shown  in  the  following  example.  The  list  is returned  in  a sequential  

collection  of  DKWorkBasketDL  objects.  

 

 

322 Application  Programming Guide



Java  

DKDatastoreDL  dsDL  = new  DKDatastoreDL();  

DKWorkFlowServiceDL  wfDL  = new  DKWorkFlowServiceDL(dsDL);  

dsDL.connect("LIBSRVRN",  "FRNADMIN",  "PASSWORD");  

DKSequentialCollection  wbList=(DKSequentialCollection)wfDL.listWorkBaskets();  

if (wbList  != null)  

   { 

      dkIterator  pIter  = wbList.createIterator();  

      DKWorkBasketDL  pwb1;  

      while  (pIter1.more())  

      { 

         pwb1  = (DKWorkFlowDL)pIter1.next();  

         pwb1->retrieve();  

         ...                        // do some  work  

      } 

   } 

dsDL.disconnect();  

dsDL.destroy();  

The  complete  sample  application  from  which  this  example  was  taken  

(TListWorkBasketWFS.java) is available  in  the  samples  directory.  

 

 

C++  

DKDatastoreDL  dsDL;  

DKWorkFlowServiceDL  wfDL(&dsDL);  

dsDL.connect("LIBSRVRN",  "FRNADMIN",  "PASSWORD");  

DKSequentialCollection  * wfList1  = 

  (DKSequentialCollection  *)wfDL.listWorkBaskets();  

if (wbList1  != NULL)  

   { 

      dkIterator  * pIter1  = wbList1->createIterator();  

      DKWorkBasketDL  * pwb1;  

      while  (pIter->more())  

      { 

         pwb1  = (DKWorkBasketDL  *)((void*)(*pIter1->next()));  

         pwb1->retrieve();  

         ...                        // do some  work  

         delete  pwb1;  

      } 

   } 

dsDL.disconnect();  

The  complete  sample  application  from  which  this  example  was  taken  

(TListWorkBasketWFS.cpp) is  available  in  the  samples  directory.  

Listing items in an earlier DB2 Content Manager workflow 

DKWorkflowServiceDL  provides  a function  for  listing  the  item  IDs  of  the  items  in 

a workflow  as  shown  in  the  following  example.  The  list  is returned  in  a sequential  

collection  of DKString  objects.  

 

 

Chapter 8. Working  with other content  servers  323



Java  

DKDatastoreDL  dsDL  = new  DKDatastoreDL();  

DKWorkFlowServiceDL  wfDL  = new  DKWorkFlowServiceDL(dsDL);  

dsDL.connect("LIBSRVRN",  "FRNADMIN",  "PASSWORD");  

//  -----  Get  the  list  of CM workflows  

KSequentialCollection  wfList  = (DKSequentialCollection)wfDL.listWorkFlows();  

if  (wfList  != null)  

{ 

  dkIterator  pIter  = wfList.createIterator();  

  while  (pIter.more())  

  { 

    DKWorkFlowDL  pwf1  = (DKWorkFlowDL)pIter.next();  

    // -----  Get  the  list  of items  in the CM workflow  

DKSequentialCollection  itemList=(DKSequentialCollection)pwf1.listItemIDs();  

    if (itemList  != null)  

    { 

       dkIterator  iter1  = itemList.createIterator();  

       String  itemid;  

       while  (iter1.more())  

       { 

          itemid  = (String)iter1.next();  

          // -----  Process  the  items  using  the item  ID 

       } 

    } 

  } 

} 

dsDL.disconnect();  

dsDL.destroy();  

The  complete  sample  application  from  which  this  example  was  taken  

(TListItemsWFS.java)  is available  in  the  samples  directory.  

 

 

C++  

DKDatastoreDL  dsDL;  

DKWorkFlowServiceDL  wfDL(&dsDL);  

DKString  itemIDWF  = DKString("HI7MOPALUPFQ1U47");  

dsDL.connect("LIBSRVRN",  "FRNADMIN",  "PASSWORD");  

DKWorkFlowDL  * wf = new  DKWorkFlowDL(&wfDL,  (char  *)itemIDWF);  

wf->retrieve;  

DKSequentialCollection  * pColDoc1  = 

  (DKSequentialCollection  *)wf->listItemIDs();  

if  (pColDoc1  != NULL)  

   { 

      dkIterator*  pIterDoc1  = pColDoc1->createIterator();  

      DKString  DocID1;  

      while  (pIterDoc1->more()  == TRUE)  

      { 

         DocID1  = (DKString)(*pIterDoc1->next()));  

         ...                        // do some  work  

      } 

   } 

dsDL.disconnect();  

The  complete  sample  application  from  which  this  example  was  taken  

(TListItemsWFS.cpp) is available  in  the  samples  directory.  

 

 

324 Application  Programming Guide



Executing an earlier DB2 Content Manager workflow 

DKWorkflowServiceDL  provides  functions  for  executing  a workflow.  The  following  

example  demonstrates  how  to  start  an  item  in a workflow,  how  to  route  an  item  to 

a workbasket,  and  how  to  complete  an  item  in  a workflow.  To use  this  sample  you  

must  modify  it  to:  

v   Use  a valid  item  ID  instead  of EP8L8OR9MHH##QES. 

v   Use  a valid  workflow  ID  instead  of HI7MOPALUPFQ1U47. 

v   Use  a valid  workbasket  ID  instead  of E3PP1UZOZUFQ1U3M.
 

 

Java  

DKDatastoreDL  dsDL  = new  DKDatastoreDL();  

DKWorkFlowServiceDL  wfDL  = new  DKWorkFlowServiceDL(dsDL);  

DKString  itemID    = new  String("EP8L8OR9MHH##QES");  

DKString  itemIDWF  = new  String("HI7MOPALUPFQ1U47");  

DKString  itemIDWB  = new  String("E3PP1UZOZUFQ1U3M");  

dsDL.connect("LIBSRVRN",  "FRNADMIN",  "PASSWORD");  

wfDL.startWorkFlowItem(itemID,                   // itemID  

                       itemIDWF,                 // itemIDWB  

                       NULL,                     // default  (1st  workbasket)  

                       TRUE,                     // overload  

                       DK_WIP_DEFAULT_PRIORITY   // initial_priority  

                       ); 

...                                          //  do some  work  

wfDL.routeWipItem(itemID,                    // itemID  

                  itemIDWF,                  // itemIDWB  

                  TRUE,                      // overload  

                  DK_NO_PRIORITY_CHANGE      // initial_priority  

                  ); 

...                                          //  do some  work  

wfDL.completeWorkFlowItem(itemID);  

dsDL.disconnect();  

dsDL.destroy();  

The  complete  sample  application  from  which  this  example  was  taken  

(TProcessWFS.java) is  available  in the  samples  directory.  

 

 

Chapter 8. Working  with other content  servers  325



C++  

DKDatastoreDL  dsDL;  

DKWorkFlowServiceDL  wfDL(&dsDL);  

DKString  itemID    = DKString("EP8L8OR9MHH##QES");  

DKString  itemIDWF  = DKString("HI7MOPALUPFQ1U47");  

DKString  itemIDWB  = DKString("E3PP1UZOZUFQ1U3M");  

dsDL.connect("LIBSRVRN",  "FRNADMIN",  "PASSWORD");  

wfDL.startWorkFlowItem(itemID,                    // itemID  

                       itemIDWF,                  // itemIDWB  

                       NULL,                      // default(1st  workbasket)  

                       TRUE,                      // overload  

                       DK_WIP_DEFAULT_PRIORITY    // initial_priority  

                      ); 

...                                          // do some  work 

wfDL.routeWipItem(itemID,                    // itemID  

                  itemIDWF,                  // itemIDWB  

                  TRUE,                      // overload  

                  DK_NO_PRIORITY_CHANGE      // initial_priority  

                      ); 

...                                          // do some  work 

wfDL.completeWorkFlowItem(itemID);  

dsDL.disconnect();  

The  complete  sample  application  from  which  this  example  was  taken  

(TProcessWFS.cpp) is available  in  the  samples  directory.  

Working  with OnDemand 

Information  Integrator  for  Content  provides  a connector  and  related  classes  for  

accessing  content  on  Content  Manager  OnDemand  servers.  The  OnDemand  classes  

and  APIs  allow  you  to:  

v   Connect  to  and  disconnect  from  OnDemand  servers.  

v   List  application  groups  and  application  group  fields.  

v   List  OnDemand  folders.  

v   Query  an  application  group.  

v   Search  and  retrieve  documents  using  the  folder  or  the  application  group  

interface.  

v   Treat  OnDemand  folders  as  native  entities  in  iees.  

v   Search  synchronously  and  asynchronously  in  either  the  application  group  or  

folder  mode.  

v   Retrieve  entire  OnDemand  documents  or  document  segments.  

v   Retrieve  the  logical  view  data  of a given  OnDemand  document.  

v   Retrieve  the  resource  group  for  a given  OnDemand  document.  

v   Retrieve  annotation  data  for  a given  OnDemand  document.  

v   Create  and  modify  annotations.

Restriction:  OnDemand  does  not  support  DB2  Text Information  Extender  and  

QBIC  search  or  Combined  query.  

 

 

326 Application  Programming Guide



Representing OnDemand servers and documents 

You represent  a Content  Manager  OnDemand  content  server  using  a 

DKDatastoreOD  in an  Information  Integrator  for  Content  application,  and  you  

represent  an  OnDemand  document  as  a DDO  using  a DKDDO.  OnDemand  DDOs  

contain  the  following  information:  

v   Document  attribute  names  and  their  values  

v   Document  data  and  annotations  (represented  as  DKParts)  

v   Collection  of  logical  views  for  a document  

v   Resource  group  data

An  OnDemand  document’s  attributes  are  stored  in  a DKDDO  as properties.  An  

OnDemand  document’s  segments  and  notes  are  stored  as  DKParts.  

All  other  document  data  (resource  group  and  views,  both  fixed  and  logical),  are  

stored  as  special  properties  in  an  OnDemand  DDO  with  the  following  property  

names  are  reserved  for  the  OnDemand:  

DKViews  

A collection  of logical  views  

DKFixedView  

Contains  fixed  view  information  

DKResource  

Contains  resource  group  data

Notes:   

1.   An  DB2  Information  Integrator  for  Content  administrator  must  properly  define  

the  OnDemand  connector  by  specifying  the  string  in  the  Additional  Parameters  

field  on  the  Initialization  Parameters  page.  The  string  should  look  like  this:  

ENTITY_TYPE=TEMPLATES;;  Be  sure  to  include  the  two  semicolons.  

2.   In  DB2  Information  Integrator  for  ContentVersion  8.3,  DKViews,  DKFixedView, 

and  DKResource  replace  DKViewDataOD, DKFixedViewDataOD, and  DKResouceGrpOD  

repsectively.

Connecting to and disconnecting from the OnDemand server 

To log  into  an  OnDemand  content  server,  pass  in  the  server  name  (for  example,  

ODServer.mycompany.com), user  ID,  and  password  through  the  connect  method.  

 

 

Java  

DKDatastoreOD  dsOD  = new  DKDatastoreOD();  

System.out.println("connecting  to datastore  ...");  

dsOD.connect(ODServer,  UserID,  Password,  "");  

 

 

C++  

DKDatastoreOD*  dsOD  = new  DKDatastoreOD();  

cout  << "connecting  to datastore  ..."  << endl;  

dsOD->connect(ODServer,  UserID,  Password,  "");  

 Use  the  disconnect  method  to log  out  of the  OnDemand  server.  

 

 

Chapter 8. Working  with other content  servers  327



Java  

System.out.println("disconnecting  from  the  datastore  ...");  

dsOD.disconnect();  

dsOD.destroy();  // Finished  with  the  datstore  

 

 

C++  

cout  <<  "disconnecting  from  the datastore  ..."  << endl;  

dsOD->disconnect();  

delete  dsOD;  

Listing information on OnDemand 

You can  list  application  groups  and  folders  for  OnDemand  servers.  

Listing application groups 

You can  list  application  groups  in  OnDemand  using  the  listEntities()  method  of 

DKDatastoreOD.  The  following  example  illustrates  how  to use  this  method.  

 

 

Java  

...  

pCol  = (DKSequentialCollection)  dsOD.listEntities();  //get  application  groups  

pIter  = pCol.createIterator();  

i = 0; 

while  (pIter.more()  == true)  

{ 

  i++;  

  agDef  = (DKAppGrpDefOD)pIter.next();  

  strAppGrp  = agDef.getName();  

  System.out.println("   app grp  name["  + i + "]:  " + strAppGrp);  

  System.out.println("   show  attributes  for  " + strAppGrp  + " app grp  - "); 

...  

 

 

C++  

  // -----  Show  the  application  groups  

  // -----  First  get  the groups  

  pCol  = (DKSequentialCollection*)dsOD.listEntities();  

  pIter  = pCol->createIterator();  

  int  i = 0; 

  // ----  Process  the  list  

  while  (pIter->more()  == TRUE)  

  { 

    i++;  

    agDef  = (DKAppGrpDefOD*)((void*)(*pIter->next()));  

    strAppGrp  = agDef->getName();  

    cout  << "  app  group  name["  << i << "]: ==>"  << strAppGrp  << endl;  

    . . . 

The  following  example  illustrates  getting  the  attribute  information  for  each  

application  group:  

 

 

328 Application  Programming Guide



Java  

...  

pCol2  = (DKSequentialCollection)  dsOD.listEntityAttrs(strAppGrp);  

pIter2  = pCol2.createIterator();  

j = 0; 

  

while  (pIter2.more()  == true)  

 { 

   j++;  

   attrDef  = (DKFieldDefOD)pIter2.next();  

   System.out.println("     Attribute  name["  + j + "]:  " + attrDef.getName());  

   System.out.println("       datastoreType:  " + attrDef.datastoreType());  

   System.out.println("       attributeOf:  " + attrDef.getEntityName());  

   System.out.println("       type:  " + attrDef.getType());  

   System.out.println("       size:  " + attrDef.getSize());  

   System.out.println("       id:  " + attrDef.getId());  

   System.out.println("       nullable:  " + attrDef.isNullable());  

   System.out.println("       precision:  " + attrDef.getPrecision());  

   System.out.println("       scale:  " + attrDef.getScale());  

   System.out.println("       stringType:  " + attrDef.getStringType());  

 } 

  

 System.out.println("   " + j + " attribute(s)  listed  for  " + 

                    strAppGrp  + " app  grp\n");  

...  

 

 

C++  

  // -----  Get  the  attributes  for each  of the  entities(application  groups)  

  pCol2  = (DKSequentialCollection*)dsOD.listEntityAttrs(strAppGrp);  

  pIter2  = pCol2->createIterator();  

  int  j = 0; 

  // -----  List  the  attributes  

  while  (pIter2->more()  == TRUE)  

  { 

     j++;  

     attrDef  = (DKFieldDefOD*)(void*)(*pIter2->next());  

     cout  << "attribute  name["  << j << "]:  ==>"  << attrDef->getName()  << endl;  

     cout  << "      datastore  type:  " << attrDef->datastoreType()  << endl;  

     cout  << "      attribute  of: " << attrDef->getEntityName()  << endl;  

     cout  << "      type:  " << attrDef->getType()  << endl;  

     cout  << "      size:  " << attrDef->getSize()  << endl;  

     cout  << "      ID:  " << attrDef->getId()  <<  endl;  

     cout  << "      precision:  " << attrDef->getPrecision()  << endl;  

     cout  << "      scale:  " << attrDef->getScale()  << endl;  

     cout  << "      stringType:  " <<  attrDef->getStringType()  << endl;  

     cout  << "      nULLable:  " << attrDef->isNullable()  << endl;  

     cout  << "      queryable:  " << attrDef->isQueryable()  << endl;  

     cout  << "      updatable:  " << attrDef->isUpdatable()  << endl;  

     // -----  Clean  up the  attribute  

     delete  attrDef;  

  } 

  cout  << "  " << j << " attribute(s)  listed  for  the " << strAppGrp  

       <<  " app  group\n"  << endl;  

  // -----  Clean  up the  iterators  and  collections  

  if ( pIter2  ) 

     delete  pIter2;  

  if ( pCol2  ) 

     delete  pCol2;  

   . . . 

 

 

Chapter 8. Working  with other content  servers  329



Listing OnDemand folders 

To get  a list  of  folders  in  an  OnDemand  content  server,  you  use  the  

listSearchTemplates()  function.  

 

 

Java  

...  

dsDef  = (DKDatastoreDefOD)dsOD.datastoreDef();  

pCol  = (DKSequentialCollection)  dsDef.listSearchTemplates();  

pIter  = pCol.createIterator();  

i = 0; 

while  (pIter.more()  == true)  

{ 

   i++;  

   folderName  = (String)pIter.next();  

   ....    // Process  the folder  as appropriate  

} 

dsOD.disconnect();  

dsOD.destroy();  

 

 

C++  

   . . . 

  // -----  List  the  folders  

  dsDef  = (DKDatastoreDefOD*)dsOD.datastoreDef();  

  pCol  = (DKSequentialCollection*)dsDef->listSearchTemplates();  

  pIter  = pCol->createIterator();  

  i = 0; 

  // -----  Process  the  list  of folders  

  while  (pIter->more()  == TRUE)  

  { 

     i++;  

     folderName  = (DKString)(*pIter->next());  

     cout  << "folder  name  [" << i << "] - " << folderName  << endl;  

  } 

  // -----  Disconnect  

  dsOD.disconnect();  

  . . . 

Retrieving an OnDemand document 

In  an  OnDemand  server,  you  can  retrieve  documents.  You can  also  display  

documents  with  their  parts  and  attributes.  

Searching for a particular document 

The  following  example  searches  against  an  application  group  (OnDemand  

Publications) in  the  OnDemand  content  server.  

 

 

330 Application  Programming Guide



Java  

DKDatastoreOD  dsOD  = new  DKDatastoreOD();  

String  appgrp  = "OnDemand  Publications";  

String  SQLcmd  = "where  bookname  LIKE  ’A%’";  

  

DKNVPair[]  parms  = new DKNVPair[3];  

parms[0]  = new  DKNVPair("APPL_GROUP",  appgrp);  

parms[1]  = new  DKNVPair("MAX_RESULTS",  new  String(Integer.toString(5)));  

parms[2]  = new  DKNVPair("CONTENT",  new String("ATTRONLY"));  

  

System.out.println("executing  query");  

dkResultSetCursor  pCur  = dsOD.execute(SQLcmd,DK_CM_SQL_QL_TYPE,parms);  

System.out.println("datastore  executed  query");  

 

 

C++  

DKDatastoreOD*  dsOD  = new  DKDatastoreOD();  

  

cout  << "connecting  to datastore  ..."  << endl;  

dsOD->connect(ODServer,  UserID,  Password,  "");  

  

DKString  appgrp  = "OnDemand  Publications";  

DKString  SQLcmd  = "where  bookname  LIKE  ’A%’";  

  

DKNVPair  parms[4];  

parms[0]  = DKNVPair("APPL_GROUP",  appgrp);  

parms[1]  = DKNVPair("MAX_RESULTS",  DKString(5));  

parms[2]  = DKNVPair("CONTENT",  DKString("ATTRONLY"));  

parms[3]  = DKNVPair(  DK_CM_PARM_END,  DKAny((long)0)  ); 

  

cout  << "executing  query"  << endl;  

dkResultSetCursor*  pCur  = dsOD->execute(SQLcmd,DK_CM_SQL_QL_TYPE,parms);  

cout  << "datastore  executed  query"  << endl;  

if (pCur  != 0) 

  delete  pCur;  

The  following  example  searches  against  an  application  group  (OnDemand  

Publications), and  retrieves  the  documents  returned.  

 

 

Chapter 8. Working  with other content  servers  331



Java  

DKDatastoreOD  dsOD  = new  DKDatastoreOD();  

String  appgrp  = "OnDemand  Publications";  

String  SQLcmd  = "where  bookname  LIKE  ’A%’";  

  

DKNVPair[]  parms  = new  DKNVPair[3];  

parms[0]  = new  DKNVPair("APPL_GROUP",  appgrp);  

parms[1]  = new  DKNVPair("MAX_RESULTS",  new  String(Integer.toString(5)));  

parms[2]  = new  DKNVPair("CONTENT",  new String("ATTRONLY"));  

  

System.out.println("executing  query");  

dkResultSetCursor  pCur  = dsOD.execute(SQLcmd,DK_CM_SQL_QL_TYPE,parms);  

System.out.println("datastore  executed  query");  

  

while  (pCur.isValid())  

{ 

  DKDDO  p = pCur.fetchNext();  

  if (p != null)  

  { 

    String  idstr  = ((DKPid)p.getPidObject()).pidString();  

    System.out.println("  pidString  : " + idstr);  

    DKPid  pid  = new  DKPid  (idstr);  

    DKDDO  ddoold  = p; 

    short  id,  docType  = 0;  

    if ((id  = ddoold.propertyId(DK_CM_PROPERTY_ITEM_TYPE))  > 0) 

      docType  = ((Short)ddoold.getProperty(id)).shortValue();  

    if (docType  == DK_CM_DOCUMENT)  

    { 

      System.out.println("create  a new  DDO  with  a cloned  pid  to  retrieve!");  

      p = dsOD.createDDO(ddoold.getObjectType(),  DK_CM_DOCUMENT);  

      p.setPidObject(pid);  

      try  

      { 

        dsOD.retrieveObject((dkDataObject)p);  

      } 

      catch  (DKException  exc)  

      { 

        System.out.println("Exception  name  " + exc.name());  

        System.out.println("Exception  message  " + exc.getMessage());  

        System.out.println("Exception  error  code  " + exc.errorCode());  

        System.out.println("Exception  error  state  " + exc.errorState());  

        exc.printStackTrace();  

      } 

    } 

  } 

} 

pCur.destroy();  // Finished  with  the  cursor  

 

 

332 Application  Programming Guide



C++  

DKDatastoreOD*  dsOD  = new  DKDatastoreOD();  

DKString  appgrp  = "OnDemand  Publications";  

DKString  SQLcmd  = "where  bookname  LIKE  ’A%’";  

  

DKNVPair  parms[4];  

parms[0]  = DKNVPair("APPL_GROUP",  appgrp);  

parms[1]  = DKNVPair("MAX_RESULTS",  DKString(5));  

parms[2]  = DKNVPair("CONTENT",  DKString("ATTRONLY"));  

parms[3]  = DKNVPair(  DK_CM_PARM_END,  DKAny((long)0)  ); 

  

cout  << "executing  query"  << endl;  

dkResultSetCursor*  pCur  = dsOD->execute(SQLcmd,DK_CM_SQL_QL_TYPE,parms);  

cout  << "datastore  executed  query"  << endl;  

  

if (pCur  != 0) 

{ 

  while  (pCur->isValid())  

  { 

    DKDDO*  p = pCur->fetchNext();  

    DKDDO*  ddoold  = p; 

    DKString  pidStr  = ((DKPid*)ddoold->getPidObject())->pidString();  

    DKPid*  pid  = new  DKPid(pidStr);  

    short  id,  docType  = 0; 

    DKAny  a; 

    if ((id  = ddoold->propertyId(DK_CM_PROPERTY_ITEM_TYPE))  > 0)  

    { 

      a = ddoold->getProperty(id);  

      if (a.typeCode()  == DKAny::tc_ushort)  

        docType  = (short)(USHORT)a;  

      else  

        docType  = a; 

    } 

    if (docType  == DK_CM_DOCUMENT)  

    { 

      cout  << "create  the  DDO from  the  pidstring..."  << endl;  

      p = dsOD->createDDO(ddoold->getObjectType(),  DK_CM_DOCUMENT);  

      p->setPidObject(pid);  

  

      dsOD->retrieveObject((dkDataObject*)p);  

    } 

    delete  pid;  

    delete  ddoold;  

  } 

  delete  pCur;  

} 

Displaying documents and their parts and attributes 

The  following  example  displays  the  documents  found  by  the  query  with  their  parts  

and  attributes:  

 

 

Chapter 8. Working  with other content  servers  333



Java  

//-----For  each  data  item,  get  the  attributes  

//-----numDataItems  is the number  of data  items  

for  (j = 1; j <= numDataItems;  j++)  

{ 

                     a = p.getData(j)  

     strDataName  = p.getDataName(j);  

     System.out.println("     " + j + ". Attribute  Name:  " + strDataName  ); 

            System.out.println("        type:  " + p.getDataPropertyByName  

                                                    (j,DK_PROPERTY_TYPE));  

     System.out.println("        nullable:  " + 

                        p.getDataPropertyByName  (j,DK_PROPERTY_NULLABLE));  

     if (strDataName.equals(DKPARTS)  == false  && 

         strDataName.equals("DKResource")  == false  && 

         strDataName.equals("DKViews")  == false  && 

         strDataName.equals("DKLargeObject")  == false  && 

         strDataName.equals("DKFixedView")  == false  && 

         strDataName.equals("DKAnnotations")  == false)  

{ 

 System.out.println("        attribute  id: "    + 

                    p.getDataPropertyByName(j,DK_PROPERTY_ATTRIBUTE_ID));  

} 

//-----Check  for  the  type  of  the attribute  

if  (a instanceof  String)  

{ 

  System.out.println("       Attribute  Value:  " + a);  

} 

else  if  (a instanceof  Integer)  

{ 

  System.out.println("       Attribute  Value:  " + a);  

} 

else  if  (a instanceof  Short)  

{ 

  System.out.println("       Attribute  Value:  " + a);  

} 

else  if  (a instanceof  DKDate)  

{ 

  System.out.println("       Attribute  Value:  " + a);  

} 

else  if  (a instanceof  DKTime)  

{ 

  System.out.println("        Attribute  Value:  " + a); 

} 

else  if  (a instanceof  DKTimestamp)  

{ 

  System.out.println("        Attribute  Value:  " + a); 

} 

else  if  (a instanceof  dkCollection)  

{ 

  System.out.println("        Attribute  Value  is collection");  

  pCol  = (dkCollection)a;  

  pIter  = pCol.createIterator();  

  i = 0; 

  while  (pIter.more()  == true)  

  { 

    i++;  

    a = pIter.next();  

    pDO  = (dkDataObjectBase)a;  

  

//  continued...  

 

 

334 Application  Programming Guide



Java  (continued)  

    if (pDO.protocol()  == DK_XDO)  

    { 

      System.out.println("      dkXDO  object  " + i + " in collection");  

      pXDO  = (dkXDO)pDO;  

      DKPidXDO  pid2  = pXDO.getPidObject();  

      System.out.println("            XDO pid string:  " + 

                                       pid2.pidString());  

              //-----  Retrieve  and open  instance  handler  for an  XDO 

              pXDO.retrieve();  

              // pXDO.open();  

           } 

         } 

       } 

       else  if  (a != null)  

       { 

         System.out.println("        Attribute  Value:  " + a.toString());  

         if (strDataName.equals("DKResource")   || 

             strDataName.equals("DKFixedView")  ||  

             strDataName.equals("DKLargeObject"))  

         { 

           pDO  = (dkDataObjectBase)a;  

  

           if (pDO.protocol()  == DK_XDO)  

           { 

             System.out.println("          dkXDO  object  ");  

             pXDO  = (dkXDO)pDO;  

             DKPidXDO  pid2  = pXDO.getPidObject();  

             System.out.println("            XDO pid string:  " + 

                                             pid2.pidString());  

             // Retrieve  and  open  instance  handler  for  an XDO 

                pXDO.retrieve();  

             // pXDO.open();  

 

 

Chapter 8. Working  with other content  servers  335



C++  

  DKDDO  *p = 0; 

  DKAny  a; 

   . . . 

  for  (j = 1; j <= numDataItems;  j++)  

  { 

     a = p->getData(j);  

     strDataName  = p->getDataName(j);  

  

     cout  << " " << j <<  ". Attribute  Name:  " << strDataName  << endl;  

     cout<<"type:  "<<  p->getDataPropertyByName(j,DK_PROPERTY_TYPE)<<endl;  

     cout  << "nullable:  " 

       << p->getDataPropertyByName(j,DK_PROPERTY_NULLABLE)  << endl;  

  

     if (strDataName  != DK_CM_DKPARTS    &&  

     strDataName  != "DKResource"     && 

     strDataName  != "DKViews"        && 

     strDataName  != "DKLargeObject"  && 

     strDataName  != "DKPermissions"  && 

     strDataName  != "DKFixedView"    && 

     strDataName  != "DKAnnotations")  

     { 

       cout  << "   attribute  ID:  " 

          << p->getDataPropertyByName(j,DK_PROPERTY_ATTRIBUTE_ID)  << endl;  

     } 

  

     if (a.typeCode()  == DKAny::tc_string)  

     { 

       DKString  astring  = a; 

       cout  << "   attribute  Value  (string):  " << astring  << endl;  

     } 

     else  if . . . 

     { 

        // -----  Handle  each  of  the  other  types  

     } 

     else  if (a.typeCode()  != DKAny::tc_null)  

     { 

       cout  << "       Attribute  Value  (non  NULL):  " << a << endl;  

       if (strDataName  == "DKResource"     || 

       strDataName  == "DKFixedView"    || 

       strDataName  == "DKLargeObject")  

       { 

         pDO  = (dkDataObjectBase*)a;  

         if (pDO->protocol()  == DK_XDO)  

         { 

           cout  << "         dkXDO  object  " << endl;  

           pXDO  = (dkXDO*)pDO;  

           pidXDO  = (DKPidXDOOD*)pXDO->getPid();  

           cout  << "    XDO  PID string:  " << pidXDO->pidString()  << endl;  

           // -----  Retrieve  and open  instance  handler  for  an XDO  

           pXDO->retrieve();  

         } 

      } 

    } 

    else  cout  << " Attribute  Value  is  NULL"  << endl;  

For  the  complete  application,  refer  to  TRetrieveOD.cpp  in  the  samples  

directory.  

 

 

336 Application  Programming Guide



Enabling the OnDemand folder mode 

To enable  the  OnDemand  folder  mode,  the  string  

ENTITY_TYPE=TEMPLATES  

must  be  passed  to  the  OnDemand  connector  as  part  of the  connection  string  or  the  

configuration  string.  An  sample  configuration  string  would  look  like  this:  

 

 

Java  

DKDatastoreOD  dsOD  = new  DKDatastoreOD("ENTITY_TYPE=TEMPLATES");  

 

 

C++  

DKDatastoreOD*  dsOD  = new  DKDatastoreOD("ENTITY_TYPE=TEMPLATES");  

 A  sample  connect  string  would  look  like  this:  

 

 

Java  

DKDatastoreOD  dsOD  = new  DKDatastoreOD();  

dsOD.connect(hostname,  userid,  password,  "ENTITY_TYPE=TEMPLATES");  

 

 

C++  

DKDatastoreOD*  dsOD  = new  DKDatastoreOD("ENTITY_TYPE=TEMPLATES");  

dsOD->connect(hostname,  userid,  password,  "ENTITY_TYPE=TEMPLATES");  

Asynchronous search 

The  OnDemand  connector  supports  both  federated  and  direct  asynchronous  

searches.  An  asynchronous  search  does  not  tie  up  the  main  thread  and  allows  the  

search  to  be  cancelled  at any  time;  press  the  Stop  Search  button  on  the  Search  

Template  Viewer  to terminate  the  search.  The  max  hits  property  on  the  Search  

Template  Viewer  limits  the  maximum  number  of  results  returned.  

The  OnDemand  connector  also  supports  synchronous  and  asynchronous  searches  

in  the  application  group  mode  from  an  AIX  client.  

If  you  use  a search  criterion  such  as  WHERE  userid  LIKE  ’%’,  the  resulting  number  

of  documents  returned  to the  client  can  consume  all  available  memory  on  the  

client’s  machine.  By  issuing  an  asynchronous  search  using  the  

executeWithCallback()  method,  you  can  set  the  value  for  the  maximum  number  of 

documents  returned  and  cancel  the  search  at any  time.  

You may  also  have  to  increase  the  default  Java  Virtual  Machine  (JVM)  stack  size  if 

your  result  set  is  too  large.  The  default  stack  size  for  each  Java  thread  is 400k,  

which  allows  3920  return  items  before  the  stack  overflows.  Increasing  the  JVM  

stack  size  to  800k  doubles  the  capacity  to 7840  items.  If  necessary,  you  can  further  

increase  the  JVM  stack  size.  

To raise  the  JVM  stack  size,  use  the  Java  command  line  option  -oss  followed  

by  nnnK  or  nnM, where  K stands  for  Kilobytes  and  M for  Megabytes.  

 

 

Chapter 8. Working  with other content  servers  337



For  examples  of  using  asynchronous  search,  see  the  TRetrieveWithCallbackOD,  

TRetrieveFolderWithCallbackOD  and  TCallbackOD  sample  programs.  

OnDemand folders as search templates 

Three  of  the  Information  Integrator  for  Content  visual  JavaBeans,  

CMBSearchTemplateList,  CMBSearchTemplateViewer, and  CMBSearchResultsView, use  

Information  Integrator  for  Content  search  templates.  You can  use  these  beans  for  

federated  searches  by  setting  the  CMBConnection  dsType  to Fed.  

You can  use  these  beans  for  direct  searches  on  OnDemand  servers  as  well.  Set  the  

following  properties  before  login:  

connection.setDsType("OD");  

connection.setServerName(<odserver>);  

connection.setConnectString("ENTITY_TYPE=TEMPLATES");  

OnDemand folders as native entities 

The  OnDemand  connector  can  also  map  OnDemand  folders  as  native  entities  by  

specifying  the  connect  string  "ENTITY_TYPE=TEMPLATES". Using  OnDemand  folders  

as  entities  can  be  useful  in  federated  searches,  where  folder  definitions  may  be  

easier  to  work  with  than  OnDemand  application  groups,  the  default  native  entity  

for  OnDemand.  

For  federated  searches,  specify  the  server  definition  in  DB2  Information  Integrator  

for  Content  administration.  You can  then  define  and  map  federated  entities  to  the  

folders  on  the  OnDemand  server.  

Create and modify annotations 

When  using  the  OnDemand  viewer,  which  is launched  by  the  

CMBDocumentViewer  bean,  you  can  create,  modify,  and  delete  annotations  for  

OnDemand  documents  by  using  the  CMBDataManagement  bean  and  the  

associated  CMBAnnotation  class.  

Tracing 

You can  trace  events  with  the  OnDemand  connector.  To enable  the  connector  java  

API  trace,  place  the  trace  INI  file  (cmbodtrace.ini  for  Java  or  cmbodCtrace.inifor 

C++),  in the  root  of  the  C drive.  For  AIX,  place  this  file  in:/opt/IBM/db2cmv8. For  

Solaris,  place  this  file  in  /opt/IBMcmb/cmgmt. For  Linux,  also  place  this  file  in  

/opt/IBM/db2cmv8.  

The  default  output  directory  for  trace  files  is  C:\Ctrace. To write  the  trace  

information  elsewhere,  edit  the  trace  INI  file.  For  AIX,  note  that  the  file  names  

must  be  all  lower  case.  

Make  sure  that  the  path  name  specified  in  the  trace  file  is valid  and  that  the  line  

containing  CMBODTRACEDIR  is not  preceded  with  a # sign.  Here  are  the  sample  trace  

INI  files:  

 

 

338 Application  Programming Guide



Java  

#===============================================================  

# This  is a java  property  file  - not  a real  INI  file!  

# ************************************************************************#  

# For  windows  systems,  make  sure  to use  TWO BACK  SLASH  CHARACTERS  (\\)  

# to separate  the  directory  names!!!     =========================  

# ************************************************************************#  

# 

# **********  On windows  systems,  this  file  must  be located  in c:\  *********  

# 

# OD Trace  File  Directory  Name  property  - CMBODTRACEDIR  

# 

# The  CMBODTRACEDIR  property  defines  the directory  where  the  trace  files  

# will  be written  to.   If the  directory  name  does  not  exist,  it will  be 

# created.  

# 

# Please  make  sure  that  the  directory  names  are  separated  by two  back  slash  

# characters  to avoid  undesirable  results.  

# 

# Please  make  sure  the  path  name  does  not point  to an existing  file  name.  

# Otherwise,  no trace  files  will  be created.  

# 

# The  trace  output  directory  name  can  be changed  to point  to a drive  

# where  more  space  is available.   But it  is recommended  not  to  change  the 

# trace  output  directory  name  in the  middle  of an active  trace  session.  

# 

# CMBODTRACESCOPE  controls  how  much  trace  information  to  generate.  

# 

# CMBODTRACESCOPE=ENTRY_EXIT_JNI_ONLY  

# Trace  the  entry  & exit  points  in  JNI  only.  Produce  the least  amount  

# of trace.  

# 

# CMBODTRACESCOPE=ENTRY_EXIT_ONLY  

# Trace  the  entry  and  exit  points  in Java  methods  and  JNI  functions.  

# 

# CMBODTRACESCOPE=JNI_ONLY  

# Full  trace  for  the JNI  functions  only.  

# 

# If CMBODTRACESCOPE  is missing,  or set to anything  else,  

# a full  trace  will  be taken.  

# 

# To disable  the  trace,  add  a leading  # character  in  column  1. 

# 

# AIX:  change  the  following  line  to CMBODTRACEDIR=/usr/lpp/cmb/cmgmt/trace  

# Sun:  change  the  following  line  to CMBODTRACEDIR=/opt/IBMcmb/cmgmt/trace  

CMBODTRACEDIR=c:\\trace  

 

 

Chapter 8. Working  with other content  servers  339



C++  

#===============================================================  

# OnDemand  Trace  INI  file  

# 

# OnDemand  Trace  File  Directory  Name  key  - CMBODTRACEDIR  

# 

# The  CMBODTRACEDIR  key  defines  the  directory  where  the  trace  files  will  

# be written  to.   If the directory  name  does  not  exist,  it will  be created.  

# 

# Please  make  sure  the  path  name  does  not  point  to an existing  file  name.  

# Otherwise,  no trace  files  will  be created.  

# 

# The  trace  output  directory  name  can  be changed  to point  to a drive  

# where  more  space  is available.   But it is recommended  not to change  

# the  trace  output  directory  name  in the  middle  of an active  trace  

# session.  

# 

# CMBODTRACESCOPE  controls  how  much  trace  information  to generate.  

# 

# CMBODTRACESCOPE=ENTRY_EXIT_ONLY  

# Trace  only  the  entry  and exit  of all  C++  methods  and  functions.  

# 

# If CMBODTRACESCOPE  is missing,  or  set  to anything  else,  a full  trace  

# is taken.  

# 

# To disable  the  trace,  add a leading  # character  in column  1 on 

# the  CMBODTRACEDIR  line.  

# 

[ODCTRACE]  

# For  AIX:  change  next  line  to CMBODTRACEDIR=/usr/lpp/cmb/cmgmt/ctrace  

CMBODTRACEDIR=D:\Ctrace  

#CMBODTRACESCOPE=ENTRY_EXIT_ONLY  

Working  with Content Manager ImagePlus for OS/390 

Information  Integrator  for  Content  APIs  support  the  following  features  when  

working  with  Content  Manager  ImagePlus  for  OS/390  content  servers:  

v   Connecting  and  disconnecting  from  one  or  more  Content  Manager  ImagePlus  for  

OS/390  servers.  

v   Retrieving  categories.  

v   Retrieving  attribute  fields.  

v   Retrieving  folders.  

v   Retrieving  documents.

You represent  an  ImagePlus  for  OS/390  content  server  using  DKDatastoreIP  in 

your  application.  

Restriction:  Content  Manager  ImagePlus  for  OS/390  does  not  support:  

v   DB2  Text Information  Extender  and  QBIC  search  

v   Combined  query  

v   Workbasket  and  workflow

Listing entities and attributes 

After  creating  a content  server  for  an  Content  Manager  ImagePlus  for  OS/390  

content  server  as  a DKDatastoreIP  object  and  connecting,  you  can  check  the  entities  

 

 

340 Application  Programming Guide



and  attributes  for  the  content  server.  The  following  example  lists  all  of the  entities  

for  an  Content  Manager  ImagePlus  for  OS/390  content  server:  

 

 

Java  

// -----  After  creating  a datastore  and connecting  

//          dsIP  is a DKDatastoreIP  object  

DKEntityDefIP  entDef  = null;  

DKAttrDefIP  attrDef  = null;  

  

DKSequentialCollection  pCol  = (DKSequentialCollection)dsIP.listEntities();  

dkIterator  pIter  = null;  

  

if ( pCol  == null  ) 

{ 

   // -----  Handle  if the collection  of entities  is null  

} 

else  

{ 

...  // -----  Process  as appropriate  

The  complete  sample  application  from  which  this  example  was  taken  

(TListCatalogIP.java) is  available  in the  samples  directory.  

 

 

C++  

// List  entities...  

DKEntityDefIP*  docDef  = 0; 

DKAttrDefIP*  attrDef  = 0; 

  

cout  << "---List  entities---"  << endl;  

DKSequentialCollection*  pCol  = (DKSequentialCollection*)(dsIP.listEntities());  

dkIterator*  pIter  = 0; 

  

if ( pCol  == 0 ) 

{ 

  cout  << "collection  of entities  is null!"  <<  endl;  

 } 

else  

{ 

...  

The  complete  sample  application  from  which  this  example  was  taken  

(TListCatalogIP.cpp) is available  in  the  samples  directory.  

The  following  example  lists  all  of the  attributes  associated  with  each  entity  using  

the  getAttr  and  listAttrNames  functions  of DKEntityDefIP.  

 

 

Chapter 8. Working  with other content  servers  341



Java  

//  -----  List  attributes  using  listAttrNames  and getAttr  methods  

  

pIter  = pCol.createIterator();  

while  (pIter.more())  

{ 

   // -----  Iterate  over  the each  entity  

  entDef  = (DKEntityDefIP)pIter.next();  

  System.out.println("  Entity  type      : " + entDef.getType()  ); 

  System.out.println("  Entity  type  name:  " + entDef.getName()  ); 

  

  // -----  Get  a list  of attributes  for  the entity  

  String[]  attrNames  = entDef.listAttrNames();  

  int  count  = attrNames.length;  

  for  (int  i = 0; i < count;  i++)  

  { 

     attrDef  = (DKAttrDefIP)entDef.getAttr(  attrNames[i]  ); 

     System.out.println("    Attr  name      : " + attrDef.getName()  ); 

     System.out.println("    Attr  id       : " + attrDef.getId()  ); 

     System.out.println("    Entity  name    : " + attrDef.getEntityName()  ); 

     System.out.println("    Datastore  name:  " + attrDef.datastoreName()  ); 

     System.out.println("    Attr  type      : " + attrDef.getType()  ); 

     System.out.println("    Attr  restrict  : " + attrDef.getStringType()  ); 

     System.out.println("    Attr  min  val   : " + attrDef.getMin()  ); 

     System.out.println("    Attr  max  val   : " + attrDef.getMax()  ); 

     System.out.println("    Attr  display   : " + attrDef.getSize()  ); 

     System.out.println("    Attr  precision:  " + attrDef.getPrecision()  ); 

     System.out.println("    Attr  scale     : " + attrDef.getScale()  ); 

     System.out.println("    Attr  update    ? " + attrDef.isUpdatable()  );  

     System.out.println("    Attr  nullable  ? " + attrDef.isNullable()  ); 

     System.out.println("    Attr  queryable?  " + attrDef.isQueryable()  ); 

     System.out.println(""  ); 

   } 

} 

 

 

342 Application  Programming Guide



C++  

// Method  1: 

cout  << "List  attributes  using  listAttrNames  and  getAttr  functions"  << endl;  

  

pIter  = pCol->createIterator();  

while  (pIter->more())  

{ 

  docDef  = (DKEntityDefIP*)(pIter->next()->value());  

  cout  << " Document  type      : " << docDef->getType()  << endl;  

  cout  << " Document  type  name:  " << docDef->getName()  <<  endl;  

  

  long  tmpCount;  

  DKString*  attrNames;  

  

// Upon  return,  tmpCount  contains  the  number  of elements  in the  list.  

  attrNames  = docDef->listAttrNames(tmpCount);  

  for  (int  i=0;  i<tmpcoun;  i++)  

  { 

    cout  << "   Attr  name  before  lookup  " << attrNames[i]  << endl;  

    attrDef  = (DKAttrDefIP*)(docDef->getAttr(attrNames[i]));  

    cout  << "   Attr  name  [" << i << "] : " << attrDef->getName()  << endl;  

    cout  << "   Attr  id       : " << attrDef->getId()  << endl;  

    cout  << "   Entity  name    : " <<  attrDef->getEntityName()  << endl;  

    cout  << "   Datastore  name:  " << attrDef->datastoreName()  << endl;  

    cout  << "   Attr  type      : " << attrDef->getType()  << endl;  

    cout  << "   Attr  restrict  : " << attrDef->getStringType()  << endl;  

    cout  << "   Attr  min val   : " <<  attrDef->getMin()  << endl;  

    cout  << "   Attr  max val   : " <<  attrDef->getMax()  << endl;  

    cout  << "   Attr  display   : " << attrDef->getSize()  << endl;  

    cout  << "   Attr  precision:  " << attrDef->getPrecision()  << endl;  

    cout  << "   Attr  scale     : " << attrDef->getScale()  << endl;  

    cout  << "   Attr  update    ? " <<  attrDef->isUpdatable()  << endl;  

    cout  << "   Attr  nullable  ? " << attrDef->isNullable()  << endl;  

    cout  << "   Attr  queryable?  " << attrDef->isQueryable()  << endl;  

    cout  << "" << endl;  

    delete  attrDef;  

   }  // end  for  

  

 delete  [] attrNames;  

  

}  // end  while  

delete  pIter;  

The  following  example  shows  an  alternative  way  to  list  the  attributes  associated  

with  each  entity  by  using  the  listEntityAttrs  method  of DKDatastoreIP.  

 

 

Chapter 8. Working  with other content  servers  343



Java  

//   ---  List  attributes  using  listEntityAttrs  method  

pIter  = pCol.createIterator();  

while  (pIter.more())  

{ 

  entDef  = (DKEntityDefIP)pIter.next();  

  System.out.println("  Entity  type      : " + entDef.getType()  ); 

  System.out.println("  Entity  type  name:  " + entDef.getName()  ); 

  

  DKSequentialCollection  pAttrCol  = 

           (DKSequentialCollection)dsIP.listEntityAttrs(entDef.getName());  

  if ( pAttrCol  == null  ) 

  { 

     // -----  Handle  if the  collection  of attributes  is null  

  } 

  else  

  { 

    dkIterator  pAttrIter  = pAttrCol.createIterator();  

    while  (pAttrIter.more())  

    { 

      attrDef  = (DKAttrDefIP)pAttrIter.next();  

      System.out.println("    Attr  name      : " + attrDef.getName()  ); 

      System.out.println("    Attr  id        : " + attrDef.getId()  ); 

      System.out.println("    Entity  name    : " + attrDef.getEntityName()  ); 

      System.out.println("    Datastore  name:  " + attrDef.datastoreName()  ); 

      System.out.println("    Attr  type      : " + attrDef.getType()  ); 

      System.out.println("    Attr  restrict  : " + attrDef.getStringType()  ); 

      System.out.println("    Attr  min  val  : " + attrDef.getMin()  ); 

      System.out.println("    Attr  max  val  : " + attrDef.getMax()  ); 

      System.out.println("    Attr  display   : " + attrDef.getSize()  ); 

      System.out.println("    Attr  precision:  " + attrDef.getPrecision()  ); 

      System.out.println("    Attr  scale     : " + attrDef.getScale()  ); 

      System.out.println("    Attr  update    ? " + attrDef.isUpdatable()  ); 

      System.out.println("    Attr  nullable  ? " + attrDef.isNullable()  ); 

      System.out.println("    Attr  queryable?  " + attrDef.isQueryable()  ); 

      System.out.println(""  ); 

     } 

  } 

} 

 

 

344 Application  Programming Guide



C++  

//  Method  2: 

cout  << "---List  attributes  using  listEntityAttrs  function---"  << endl;  

  

pIter  = pCol->createIterator();  

while  (pIter->more())  

{ 

  docDef=(DKEntityDefIP*)(pIter->next()->value());  //iterator  returns  DKAny*  

  cout  << " Document  type      : " << docDef->getType()  << endl;  

  cout  << " Document  type  name:  " << docDef->getName()  <<  endl;  

  DKSequentialCollection*  pAttrCol  = (DKSequentialCollection*)  

                                (dsIP.listEntityAttrs(docDef->getName()));  

  if ( pAttrCol  == 0 ) 

  { 

    cout  << "collection  of entity  attrs  is null  for  entity  " 

         << docDef->getName()  

         << endl;  

   } 

  else  

  { 

    int  i=0;  

    dkIterator*  pAttrIter  = pAttrCol->createIterator();  

    while  (pAttrIter->more())  

    { 

      i++;  

      // -----  The  iterator  returns  a pointer  to DKAny  

      attrDef  = (DKAttrDefIP*)(pAttrIter->next()->value());  

      cout  << "   Attr  name  [" << i << "] : " << attrDef->getName()  << endl;  

      cout  << "   Attr  id       : " << attrDef->getId()  << endl;  

      cout  << "   Entity  name    : " << attrDef->getEntityName()  << endl;  

      cout  << "   Datastore  name:  " << attrDef->datastoreName()  << endl;  

      cout  << "   Attr  type      : " << attrDef->getType()  << endl;  

      cout  << "   Attr  restrict  : " << attrDef->getStringType()  <<  endl;  

      cout  << "   Attr  min  val   : " << attrDef->getMin()  <<  endl;  

      cout  << "   Attr  max  val   : " << attrDef->getMax()  <<  endl;  

      cout  << "   Attr  display   : " << attrDef->getSize()  << endl;  

      cout  << "   Attr  precision:  " << attrDef->getPrecision()  << endl;  

      cout  << "   Attr  scale     : " << attrDef->getScale()  <<  endl;  

      cout  << "   Attr  update    ? " << attrDef->isUpdatable()  << endl;  

      cout  << "   Attr  nullable  ? " << attrDef->isNullable()  << endl;  

      cout  << "   Attr  queryable?  " << attrDef->isQueryable()  <<  endl;  

      cout  << "" << endl;  

      delete  attrDef;  

     }  // end  while  

    delete  pAttrIter;  

   } 

  delete  pAttrCol;  

  delete  docDef;  

 }  // end  while  

delete  pIter;  

} 

delete  pCol;  

ImagePlus for OS/390 query syntax 

The  following  example  shows  the  query  syntax  for  ImagePlus  for  OS/390:  

 

 

Chapter 8. Working  with other content  servers  345



Java  

SEARCH  = (COND=(search_expression), ENTITY={entity_name  | mapped_entity_name}  

         [, MAX_RESULTS  = maximum_results]);  

         [OPTION=([CONTENT={YES  | ATTRONLY  | NO};][PENDING={YES  | NO};])]  

 

 

C++  

SEARCH=(COND=(search_expression),ENTITY={entity_name  | mapped_entity_name}  

       [,MAX_RESULTS=maximum_results]);  

       [OPTION=([CONTENT={YES  | ATTRONLY  | NO};][PENDING={YES  | NO};])]  

The  query  uses  the  following  parameters:  

search_expression  

Each  search  expression  consists  of one  or  more  search  criteria.  You can  only  

use  the  boolean  operator  AND  between  search  criteria.  

 The  search  criteria  has  the  form:  

{attr_name  | mapped_attr_name} operator  literal  

where:  

attr_name  

Name  of  the  entity  attribute  on  which  to  base  the  search.  

mapped_attr_name  

Attribute  name  mapped  with  the  attribute  on  which  to  base  the  search.  

operator  

All  attributes  support  equality  (==).  For  attributes  of type  DATE, you  can  use  

the  following  additional  operators:  

>  greater  than  

<  less  than  

>=  greater  than  or  equal  to 

<=  less  than  or  equal  to

literal  

 A  literal.  For  numeric  attributes,  do  not  use  quotation  marks  (″),  for  

example:  

FolderType  == 9 

For  date,  time,  and  timestamp  attributes,  quotation  marks  or  apostrophes  

(’)  are  not  necessary,  but  are  tolerated,  for  example:  

ReceiveDate  == 1999-03-08  

ReceiveDate  == ’1999-03-08’  

For  string  attributes,  quotation  marks  or  apostrophes  (’)  are  not  necessary,  

but  are  tolerated.  If the  string  contains  an  apostrophe  (’),  the  string  must  be  

specified  using  two  apostrophes,  for  example  for  a value  of  Folder’1: 

FolderId  == ’Folder’’1’  

entity_name  

Name  of  the  entity  to  be  searched.  

 

 

346 Application  Programming Guide



mapped_entity_name  

Entity  name  mapped  to  the  entity  to be  searched.  

maximum_results  

Maximum  number  of  results  to  return.

The  option  keywords  are:  

CONTENT  Controls  the  amount  of information  returned  in the  results  

YES  (default)  

Sets  the  PIDs,  attributes  and  their  values  for  a document  or  

folder.  If there  are  parts  in  a document,  the  XDO  PIDs  are  

set.  If there  are  documents  in  a folder,  the  document  PIDs  

are  set.  

NO  Only  sets  the  document  or  folder  PIDs.  

ATTRONLY  

Sets  only  the  PIDs,  attributes  and  their  values  for  a 

document  or  folder.

PENDING  Controls  whether  to include  pending  documents  that  do  not  have  

any  parts.  This  option  only  applies  when  ENTITY  is set  to DOCUMENT  

or  to  an  entity  mapped  to DOCUMENT. 

YES  Includes  pending  documents  in  the  results.  

NO  (default)  

Does  not  include  pending  documents  in the  results.

Working  with DB2 Content Manager for AS/400 

The  API  classes  provided  for  DB2  Content  Manager  for  AS/400  (VisualInfo  for  

AS/400)  are  similar  to  those  provided  for  DB2  Content  Manager.  

Restriction:  DB2  Content  Manager  for  AS/400  does  not  support:  

v   DB2  Text Information  Extender  and  QBIC  search  

v   Combined  query  

v   Workbasket  and  workflow

Listing entities (index classes) and attributes 

You represent  a DB2  Content  Manager  for  AS/400  content  server  as  a 

DKDatastoreV4.  After  creating  the  content  server  and  connecting  to  it,  you  can  list  

the  entities  (index  classes)  and  attributes  for  the  DB2  Content  Manager  for  AS/400  

server  (see  the  example).  

 

 

Chapter 8. Working  with other content  servers  347



Java  

//  -----  After  creating  a datastore  (dsV4)  and  connecting,  get  index  classes  

pCol  = (DKSequentialCollection)  dsV4.listEntities();  

pIter  = pCol.createIterator();  

i = 0; 

while  (pIter.more()  == true)  

{ 

   i++;  

   icDef  = (DKIndexClassDefV4)pIter.next();  

   strIndexClass  = icDef.getName();  

   ...   // ----  Process  the  index  classes  as appropriate  

  // -----  Get  the  attributes  

  pCol2  = (DKSequentialCollection)  dsV4.listEntityAttrs(strIndexClass);  

  pIter2  = pCol2.createIterator();  

  j = 0; 

  

   while  (pIter2.more()  == true)  

   { 

    j++;  

    attrDef  = (DKAttrDefV4)pIter2.next();  

     ...   // -----  Process  the  attributes  

    } 

  } 

  

dsV4.disconnect();  

dsV4.destroy();  

The  complete  sample  application  from  which  this  example  was  taken  

(TListCatalogV4.java) is available  in  the  samples  directory.  

 

 

348 Application  Programming Guide



C++  

cout << "list  index  class(es)..."  << endl;  

pCol = (DKSequentialCollection*)((dkCollection*)dsV4.listSchema());  

pIter  = pCol->createIterator();  

i = 0; 

  

while  (pIter->more()  == TRUE)  

{ 

 i++; 

 a = (*pIter->next());  

 strIndexClass  = a; 

 cout << "index  class name [" << i << "] - " << strIndexClass  << endl;  

 cout << "  list  attribute(s)  for " << strIndexClass  << " index  class:"  << endl;  

 pCol2  = 

  

(DKSequentialCollection*)((dkCollection*)dsV4.listSchemaAttributes(strIndexClass));  

 pIter2  = pCol2->createIterator();  

 j = 0; 

  

 while  (pIter2->more()  == TRUE)  

 { 

  j++; 

  pA = pIter2->next();  

  pDef = (DKAttributeDef*)  pA->value();  

  cout << "    Attribute  name [" << j << "] - " << pDef->name  << endl;  

  cout << "      datastoreType  - " << pDef->datastoreType  << endl;  

  cout << "      attributeOf    - " << pDef->attributeOf  << endl;  

  cout << "      type          - " << pDef->type  << endl;  

  cout << "      size          - " << pDef->size  << endl;  

  cout << "      id            - " << pDef->id  << endl;  

  cout << "      nullable       - " << pDef->nullable  << endl;  

  cout << "      precision      - " << pDef->precision  << endl;  

  cout << "      scale          - " << pDef->scale  << endl;  

  cout << "      string  type   - " << pDef->stringType  << endl;  

 } 

  

 cout << "  " << j << " attribute(s)  listed  for " 

            << strIndexClass  << " index  class"  << endl;  

 pCol2->apply(deleteDKAttributeDef);  

 delete  pIter2;  

 delete  pCol2;  

} 

  

delete  pIter;  

delete  pCol;  

cout << i << " index  class(es)  listed"  << endl;  

dsV4.disconnect();  

cout << "datastore  disconnected"  << endl;  

The  complete  sample  application  from  which  this  application  was  taken  

(TListCatalogV4.cpp) is available  in  the  samples  directory.  

Running a query 

The  following  example  runs a query  in  DB2  Content  Manager  for  AS/400,  and  

processes  the  results.  

 

 

Chapter 8. Working  with other content  servers  349



Java  

//  -----  After  creating  a datastore  (dsV4)  and  connecting,  build  the  

//        query  and  parameters  and  execute  it 

pCur  = dsV4.execute(cmd,DK_CM_PARAMETRIC_QL_TYPE,parms);  

...  

  

if  (pCur  == null)  

{ 

   // ----  Handle  if the  cursor  is null  

} 

  

while  (pCur.isValid())  

{ 

  p = pCur.fetchNext();  

  if (p != null)  

  { 

    cnt++;  

    i = pCur.getPosition();  

    System.out.println("\n=====>  Item  " + i + " <=====");  

    numDataItems  = p.dataCount();  

    DKPid  pid  = p.getPid();  

    System.out.println("   pid  string:  " + pid.pidString());  

    k = p.propertyId(DK_CM_PROPERTY_ITEM_TYPE);  

  

    if (k  > 0) 

    { 

       Short  sVal  = (Short)p.getProperty(k);  

       j = sVal.shortValue();  

       switch  (j)  

       { 

         case  DK_CM_DOCUMENT  : 

         { 

            ...  // Handle  if the  item  is a document  ");  

            break;  

         } 

         case  DK_CM_FOLDER  : 

         { 

             ...   // Handle  if the  item  is a folder  

             break;  

         } 

     } 

 } 

  

 for  (j = 1; j <= numDataItems;  j++)  

 { 

    a = p.getData(j);  

    strDataName  = p.getDataName(j);  

    ...   // Process  the  attributes  as  appropriate  

    if (strDataName.equals(DKPARTS)  == false  

        && strDataName.equals(DKFOLDER)  == false)  

    { 

    System.out.println("        attribute  id:  " 

               + p.getDataPropertyByName(j,DK_CM_PROPERTY_ATTRIBUTE_ID));  

   } 

//  continued...  

 

 

350 Application  Programming Guide



Java  (continued)  

  if (a instanceof  String)  

  { 

      System.out.println("        Attribute  Value:  " + a); 

  } 

  else  if (a instanceof  Integer)  

       ...   // ----  Handle  each  type  for attribute  { 

  else  if (a instanceof  dkCollection)  

  { 

     // ----  Handle  if attribute  value  is a collection  

     pCol  = (dkCollection)a;  

     pIter  = pCol.createIterator();  

     i = 0; 

     while  (pIter.more()  == true)  

     { 

        i++;  

        a = pIter.next();  

        pDO  = (dkDataObjectBase)a;  

  

       if  (pDO.protocol()  == DK_CM_PDDO)  

       { 

          //  Process  a DDO  

          pDDO  = (DKDDO)pDO;  

          ...  

       } 

       else  if  (pDO.protocol()  == DK_CM_XDO)  

       { 

          // Process  an XDO  

          pXDO  = (dkXDO)pDO;  

          DKPidXDO  pid2  = pXDO.getPid();  

          ...  

       } 

     } 

   } 

   else  if (a != null)  

   { 

      //  Process  the  attribute  

   } 

   else  ...  // Handle  if the  attribute  is null  

   } 

  } 

} 

pCur.destroy();  //  Delete  the  cursor  when  you’re  done  

The  complete  sample  application  from  which  this  example  was  taken  

(TExecuteV4.java) is available  in the  samples  directory.  

 

 

Chapter 8. Working  with other content  servers  351



C++  

cout  <<  "executing  query..."  << endl;  

...  

pCur  = dsV4.execute(cmd);  

cout  <<  "  query  executed"  << endl;  

...  

cout  <<  "\n........  Displaying  query  results  .........  \n\n";  

  

...  

while  (pCur->isValid())  

{ 

  p = pCur->fetchNext();  

  

  if (p != 0) 

  { 

    cout  << "==========>  " << "Item  " << cnt  << " <========="  << endl;  

    numDataItems  = p->dataCount();  

    pid  = p->getPid();  

    cout  << "  Pid  String:  " << pid.pidString()  << endl;  

    k = p->propertyId(DK_CM_PROPERTY_ITEM_TYPE);  

  

    if (k  > 0) 

    { 

      a = p->getProperty(k);  

      val  = a; 

      cout  << "  ******************************"  <<  endl;  

  

      switch  (val)  

      { 

        case  DK_CM_DOCUMENT  : 

        { 

          cout  << "  Item  is a document  " <<  endl;  

          break;  

         } 

        case  DK_CM_FOLDER  : 

        { 

          cout  << "  Item  is a folder  " << endl;  

          break;  

         } 

       } 

  

      cout  << "  ******************************"  <<  endl;  

     } 

  

     cout  << "  Number  of Data  Items:  " <<  numDataItems  << endl;  

  

     for  (j = 1; j <= numDataItems;  j++)  

     { 

       a = p->getData(j);  

       strDataName  = p->getDataName(j);  

  

       switch  (a.typeCode())  

       { 

         case  DKAny::tc_string  : 

         { 

           strData  = a; 

           cout  << "  attribute  name:  " << strDataName  

                << ", value:  " << strData  <<  endl;  

           break;  

          } 

//  continued...  

 

 

352 Application  Programming Guide



C++  (continued)  

         case  DKAny::tc_long  : 

         { 

           lVal  = a; 

           cout  << "  attribute  name:  " << strDataName  

                << ", value:  " << lVal  << endl;  

           break;  

          } 

  

         case  DKAny::tc_null  : 

         { 

           cout<<"  attribute  name:  "<<strDataName<<",  value:  NULL  "<< endl;  

           break;  

         } 

  

         case  DKAny::tc_collection  : 

         { 

           pdCol  = a; 

           cout<<strDataName<<"  collection  name:  "<<strDataName  << endl;  

           cout<<"----------------------------------"<<endl;  

           pdIter  = pdCol->createIterator();  

           ushort  b = 0; 

  

           while  (pdIter->more()  == TRUE)  

           { 

             b++;  

             cout  << "  --------------------------------------------"  << endl;  

             a = *(pdIter->next());  

             pDOBase  = a; 

  

             if (pDOBase->protocol()  == DK_PDDO)  

             { 

               pDDO  = (DKDDO*)pDOBase;  

               cout  << "  DKDDO  object  " << b << " in " << strDataName  

                    << " collection  " << endl;  

               k = pDDO->propertyId(DK_CM_PROPERTY_ITEM_TYPE);  

  

               if (k > 0) 

               { 

                 a = pDDO->getProperty(k);  

                 val  = a; 

                 cout  << "  ******************************"  << endl;  

  

  

                 switch  (val)  

                 { 

                   case  DK_CM_DOCUMENT  : 

                   { 

                     cout  << "  Item  is a document  " << endl;  

                     break;  

                    } 

                   case  DK_CM_FOLDER  : 

                   { 

                     cout  << "  Item  is a folder  " <<  endl;  

                     break;  

                    } 

                  } 

                 cout  << "  ******************************"  << endl;  

                } 

              } 

// continued...  

 

 

Chapter 8. Working  with other content  servers  353



C++  (continued)  

             else  if (pDOBase->protocol()  == DK_XDO)  

             { 

               pXDO  = (dkXDO*)pDOBase;  

               cout  << "  dkXDO  object  " << b << " in " << strDataName  

                    << " collection  " << endl;  

  

              } 

          } 

  

         if (pdIter  != 0) 

         { 

           delete  pdIter;  

          } 

  

         if (b  == 0) 

         { 

           cout  << strDataName  << " collection  has no elements  " << endl;  

          } 

  

         cout  << "  --------------------------------------------"  << endl;  

         break;  

        } 

  

       default:  

       cout  << "Type  is not supported\n";  

     } 

  

   cout<<"type:  "<<  p->getDataPropertyByName(j,DK_CM_PROPERTY_TYPE)<<endl;  

   cout<<"nullable:  "<<  p->getDataPropertyByName(j,DK_CM_PROPERTY_NULLABLE)  

         << endl;  

  

    if (strDataName  != DKPARTS  && strDataName  != DKFOLDER)  

    { 

      cout  << "    attribute  id:  " 

       << p->getDataPropertyByName(j,DK_PROPERTY_ATTRIBUTE_ID)  << endl;  

     } 

   } 

  cnt++;  

  delete  p; 

 } 

} 

cout  <<  "Total  Item  count  is " << cnt-1  << endl;  

  

if  (pCur  != 0) 

  delete  pCur;  

The  complete  sample  application  from  which  this  application  was  taken  

(TExecuteV4.cpp) is  available  in  the  samples  directory.  

Running a parametric query 

The  following  example  runs a parametric  query.  

 

 

354 Application  Programming Guide



Java  

// -----  Create  the  query  string  and  the  query  object  

String  cmd  = "SEARCH=(INDEX_CLASS=V4DEMO)";  

pQry  = dsV4.createQuery(cmd,  DK_CM_PARAMETRIC_QL_TYPE,  parms);  

// -----  Run  the  query  

pQry.execute(parms);  

  

System.out.println("number  of query  results  = " + pQry.numberOfResults());  

  

// -----  Processing  the  query  results  

pResults  = (DKResults)pQry.result();  

processResults((dkCollection)pResults);  

...  

The  complete  sample  application  from  which  this  example  was  taken  

(TSamplePQryV4.java) is available  in  the  samples  directory.  

 

 

C++  

cout  << "query  string:  " << cmd  <<  endl;  

cout  << "creating  query..."  << endl;  

pQry  = dsV4.createQuery(cmd);  

cout  << "executing  query..."  << endl;  

pQry->execute();  

cout  << "query  executed"  << endl;  

cout  << "getting  query  results..."  << endl;  

any  = pQry->result();  

pResults  = (DKResults*)((dkCollection*)  any);  

  

processResults(pResults);  

  

dsV4.disconnect();  

cout  << "datastore  disconnected"  <<  endl;  

delete  pQry;  

delete  pResults;  

The  complete  sample  application  from  which  this  application  was  taken  

(TSamplePQryV4.cpp) is available  in  the  samples  directory.  

Working  with Domino.Doc 

Domino.Doc  is the  Lotus  Domino  solution  for  organizing,  managing,  and  storing  

business  documents,  and  making  them  accessible  within  and  outside  of  a business.  

Domino.Doc  supports  the  open  document  management  API  (ODMA),  so that  you  

can  create,  save,  and  retrieve  documents  using  ODMA-enabled  applications.  

ODMA  connects  to  a Domino.Doc  server  using  an  HTTP  or  Lotus  Notes  protocol.  

Domino.Doc  includes  the  following  features:  

v   Connecting  and  disconnecting  from  one  or  more  Domino.Doc  servers.  

v   Ability  to  search  binders.  

v   Ability  to  retrieve  documents.  

v   ODMA  compliance  so  that  users  can  work  in  familiar  applications.

Restriction:  Domino.Doc  does  not  support:  

 

 

Chapter 8. Working  with other content  servers  355



v   Add,  update,  and  delete  document  methods.  

v   DB2  Text Information  Extender  and  QBIC  search.  

v   Combined  query.  

v   Workbasket  and  workflow.

When  using  the  API  to work  with  a Domino.Doc  object,  you  must  build  an  

expression  to  return  the  objects.  This  section  describes  the  design  of  the  

Domino.Doc  API,  how  objects  fit  into  the  hierarchy,  and  how  to  build  the  

expression.  Figure  19  shows  the  relationship  between  the  Domino.Doc  object  model  

and  its  components.  

 

 The  elements  contained  in  Domino.Doc  (and  the  APIs  to represent  them)  are  

arranged  such  that:  

v   The  library  contains  rooms  (DKRoomDefDD  objects)  and  cabinets  

(DKCabinetDefDD  objects).  

v   Each  cabinet  contains  binders  (DKBinderDefDD  object).  

  

Figure  19. Domino.Doc  object  model

 

 

356 Application  Programming Guide



v   Each  binder  contains  a profile  (DKAttrProfileDefDD  object)  and  security.  

v   Each  binder  contains  documents  (DKDocumentDefDD  objects).  

v   Each  document  contains  a profile  (DKAttrProfileDefDD  object)  and  security.  

v   Each  profile  contains  fields  (DKAttrFieldDefDD  objects).  

v   Each  field  can  contain  keywords  (DKAttrKeywordDefDD  objects).

Listing entities and subentities 

The  following  example  lists  the  entities  (in  this  example,  rooms)  in  Domino.Doc  

and  their  subentities  (in  the  example,  cabinets,  binders,  and  documents).  

 

 

Java  

...  

// -----  Get  a list  of rooms  

dkCollection  rooms  = dsDD.listEntities();  

// -----  Iterate  thru  the  rooms  and  their  subEntities  

dkIterator  itRooms  = rooms.createIterator();  

itRooms.reset();  

while(  itRooms.more()  ) { 

   ...  // Process  the  rooms  and  entities  

The  complete  sample  application  from  which  this  example  was  taken  

(TListSubEntitiesDD.java) is available  in  the  samples  directory.  

 

 

C++  

dkCollection*  pColl  = domDoc.listEntities();  

  

long  nbrEnts  = pColl->cardinality();  

  

dkIterator*  itEnts  = pColl->  createIterator();  

while(  itEnts->more()  ) 

{ // For  each  returned  dkEntityDef...  

  DKRoomDefDD*  pEnt  = (DKRoomDefDD*)itEnts->next()->value();  

  cout  << "Room  title:  " << pEnt->getName()  <<  endl;  

  cout  << "  Has  SubEntities:  " << pEnt->hasSubEntities()  << endl;  

  

  // print  subEntities  (Cabinets->Binders->Documents)  

  printSubEnts(pEnt,  domDoc,  1);  

  

  delete  pEnt;  

} 

delete  itEnts;  

delete  pColl;  

The  complete  application  from  which  this  example  was  taken  

(TListEntitiesDD.cpp) is  available  in the  samples  directory.  

 The  following  example  lists  document  attributes  and  keywords:  

 

 

Chapter 8. Working  with other content  servers  357



Java  

...  

DKAttrProfileDefDD  profile  = aDocument.getProfile();  

dkCollection  fields  = profile.getFields();  

  

if((fields  != null)  &&(  fields.cardinality()  > 0 )) 

{ 

   dkIterator  itFields  = fields.createIterator();  

   while(  itFields.more()  ) 

   { 

      DKAttrDefDD  aField  = (DKAttrDefDD)itFields.next();  

      // ----  get  the keywords  

      dkCollection  keywords  = ((DKAttrFieldDefDD)aField).getKeywords();  

      if(  keywords  != null  ) 

      { 

         if(  keywords.cardinality()  > 0 ) 

         { 

           dkIterator  itKeywords  = keywords.createIterator();  

           while(  itKeywords.more()  ) 

           { 

               DKAttrDefDD  aKeyword  = (DKAttrDefDD)itKeywords.next();  

               // -----  Process  the  keyword  

...  

 The  following  example  lists  the  subentities  (cabinets,  binders,  and  documents)  

associated  with  an  entity  (in  this  case  a room).  

 

 

C++  

void  printSubEnts(  DKEntityDefDD*  pEnt,  DKDatastoreDD&  domDoc,  int  indents  ) 

{ 

  // indents:  1=Cabinets;  2=Binders;  3=Documents  

  DKString  indentation  = "";  

  

  for(int  i = 0; i < indents;  i++)  

  { 

    indentation  += "  "; 

  } 

  

  if(  pEnt->hasSubEntities()  ) 

  { 

    dkCollection*  pColl  = pEnt->listSubEntities();  

    long  nbrEnts  = pColl->cardinality();  

    dkIterator*  itEnts  = pColl->  createIterator();  

    while(  itEnts->more()  ) 

    { 

      DKEntityDefDD*  pEnt  = (DKEntityDefDD*)itEnts->next()->value();  

      cout<<  indentation  << "SubEntity  title:  " << pEnt->getName()  << endl;  

      printSubEnts(pEnt,  domDoc,  indents+1);  

      delete  pEnt;  

    } 

    delete  itEnts;  

    delete  pColl;  

  } 

  return;  

} 

 

 

358 Application  Programming Guide



Listing cabinet attributes 

Cabinets  are  the  only  items  that  contain  any  useful  attributes.  If you  try  to list  

entity  attributes  for  rooms,  nothing  will  appear  in the  collection.  Therefore,  when  

DKDatastoreDD  lists  searchable  entities,  it only  lists  cabinets.  

The  following  example  lists  cabinets  and  their  attributes.  

 

 

Java  

...  

dkCollection  cabinets  = dsDD.listSearchableEntities();  

dkIterator  itCabinets  = cabinets.createIterator();  

while(  itCabinets.more()  ) 

{ 

   // -----  For  each  cabinet,  list  it’s  attributes.  

   dkEntityDef  aCabinet  = (dkEntityDef)itCabinets.next();  

   cabinetName  = aCabinet.getName();  

   // -----  List  Document  Profiles  without  sub-attributes  

   System.out.println("\n"  + Me + ": calling  listAttrs  for"  + cabinetName  ); 

   DKSequentialCollection  coll=(DKSequentialCollection)  aCabinet.listAttrs();  

...  

The  complete  sample  application  from  which  this  example  was  taken  

(TListAttributes.java) is available  in  the  samples  directory.  

Building queries in Domino.Doc 

ENTITY=  must  be  the  first  word  in the  query  string  if you  want  to  limit  the  query  to 

one  cabinet.  If  the  ENTITY  parameter  and  its  value  are  missing,  then  the  entire  

library  is searched.  Also,  the  value  must  be  enclosed  in  quotation  marks  (").  For  

example,  "Diane  Cabinet". 

QUERY=  is  a required  parameter.  

In  Domino.Doc  a query  string  looks  like  this:  

"ENTITY=<"cabinetTitle">  QUERY=<"lotusQueryString">"  

Use  the  FTSearch  function  to  query  the  Domino.Doc  content  server.  The  

Domino.Doc  content  server  must  be  fully  text  indexed  for  this  function  to work  

efficiently.  To test  for  an  index,  use  the  IsFTIndexed  property.  To create  an  index,  

use  the  UpdateFTIndex  function.  

The  FTSearch  function  searches  all  of the  documents  in  a content  server—to  search  

documents  within  a particular  view, use  the  FTSearch  function  in  NotesView.  To 

search  documents  within  a particular  document  collection,  use  the  FTSearch  

function  in  NotesDocumentCollection.  

If  you  do  not  specify  a sort  option,  documents  are  sorted  by  relevance.  If you  want  

to  sort  by  date,  you  do  not  get  relevance  scores  with  the  sorted  results.  If you  pass  

the  resulting  DocumentCollection  to a NotesNewsletter  instance,  results  are  sorted  

by  either  the  document  creation  date  or  the  relevance  score,  depending  on  which  

sort  options  you  use.  

Using query syntax 

The  syntax  rules for  a query  are  in the  following  list.  Use  parentheses  to  override  

precedence  and  to  group  operations.  

 

 

Chapter 8. Working  with other content  servers  359



Plain  text  

Use  plain  text  to  search  for  a word  or  phrase  as-is.  Enclose  search  

keywords  and  symbols  in apostrophes  (').  Remember  to  use  quotation  

marks  (")  whenever  you  are  inside  a LotusScript  literal.  

Wildcards  

Use  the  question  mark  (?)  to  match  any  single  character  in any  position  

within  a word.  Use  the  asterisk  (*)  to  match  zero  to  n (where  n is any  

number)  characters  in  any  position  in  a word.  

Logical  operators  

Use  logical  operators  to expand  or  restrict  your  search.  The  operators  and  

their  precedents  are:  

1.   ! (not)  

2.   &  (and)  

3.   , (accrue)  

4.   | (or)

You can  use  either  the  keyword  or  symbol.  

Proximity  operators  

Use  proximity  operators  to search  for  words  that  are  close  to  each  other.  

These  operators  require  word,  sentence,  and  paragraph  breaks  in  a full-text  

index.  The  operators  are:  

v   near  

v   sentence  

v   paragraph

Field  operator  

Use  the  field  operator  to  restrict  your  search  to  a specified  field.  The  syntax  

is  FIELD  field-name  operator, where  operator  is CONTAINS  for  text  and  

rich  text  fields,  and  is one  of  the  following  symbols  for  number  and  date  

fields:  =, >,  >=,  <,  <=  

Exactcase  operator  

Use  the  exactcase  operator  to  restrict  a search  for  the  next  expression  to  the  

specified  case.  

Termweight  operator  

Use  the  termweight  n operator  to  adjust  the  relevance  ranking  of the  

expression  that  follows,  where  n is 0-100.

Working  with relational databases 

The  Information  Integrator  for  Content  API  classes  support  IBM  DB2  Universal  

Database,  and  other  relational  databases  using  Java  Database  Connectivity  (JDBC)  

or  Open  Database  Connectivity  (ODBC)  for  C++.  

Connecting to relational databases 

To represent  a relational  database,  create  a DKDatastorexx object,  where  xx  is DB2  

UDB  for  a DB2  UDB  database,  JDBC  for  Java  Database  Connectivity,  or  ODBC  for  

Open  Database  Connectivity.  The  following  sample  connects  to  the  DB2  UDB  

sample  database:  

 

 

360 Application  Programming Guide



Java  

  dsDB2  = new  DKDatastoreDB2();  

  dsDB2.connect("sample","db2admin","password","");  

  .....  

  dsDB2.disconnect();  

  dsDB2.destroy();  

 

 

C++  

try  {      DKDatastoreDB2  dsDB2;  

      dsDB2.connect("sample",  userid,  pw);  

      . . . 

      dsDB2.disconnect();  

   } 

   catch(DKException  &exc).  . . 

 Use  the  database  name  when  connecting.  

Connection strings 

When  connecting  to  a relational  database,  you  can  specify  a connection  string  and  

pass  it  as a parameter.  If you  specify  multiple  connection  strings,  separate  them  

with  a semi-colon  (;).  Connection  strings  can  take  the  following  forms:  

Connection  strings  for  DB2  UDB  and  ODBC:  

NATIVECONNECTSTRING=(native connect  string) 

Specifies  a native  connect  string  to be  passed  to  the  database  when  

connecting.  Check  the  information  for  your  content  server  to  determine  the  

valid  native  connections  strings.  

SCHEMA=schema  name  

Specifies  the  database  schema  name  to  be  used  when  running  the  

listEntities,  listEntityAttrs,  listPrimaryKeyNames,  listForeignKeyNames  

methods.  

Connection  strings  for  JDBC:  

SCHEMA=schema  name  

Specifies  the  database  schema  name  to  be  used  when  running  the  

listEntities,  listEntityAttrs,  listPrimaryKeyNames,  listForeignKeyNames  

methods.

Configuration strings 

You can  specify  a configuration  string  and  pass  it as  a parameter  to  the  

configuration  method  of.  If  you  specify  multiple  configuration  strings,  separate  

them  with  a semi-colon  (;).  Configuration  strings  have  the  following  forms:  

Configuration  strings  for  DB2  UDB  and  ODBC:  

CC2MIMEURL=(URL) 

Specifies  the  cmbcc2mime.ini  file  as  a uniform  resource  locator  address.  Use  

this  form  of the  configuration  string  or  CC2MIMEFILE,  depending  on  the  

location  of  the  file.  

 CC2MIMEFILE=(filename) 

 

 

Chapter 8. Working  with other content  servers  361



Specifies  the  cmbcc2mime.ini  file  by  name.  

 DSNAME=(content  server  name) 

Specifies  the  name  of the  content  server.  For  federated  queries  and  other  

federated  functions,  Information  Integrator  for  Content  sets  this  

automatically.  

 AUTOCOMMIT=ON  | OFF  

Sets  autocommit  on  or  off.  Default  is off.  When  this  content  server  is used  

for  federated  queries  and  other  federated  functions,  autocommit  is on  by  

default.  

Configurations  strings  for  JDBC:  

CC2MIMEURL=(URL) 

Specifies  the  cmbcc2mime.ini  file  as  a uniform  resource  locator  address.  Use  

this  form  of  the  configuration  string  or  CC2MIMEFILE,  depending  on  the  

location  of  the  file.  

 Specifies  the  cmbcc2mime.ini  file  by  name.  

 JDBCSERVERSURL=(URL)  

Specifies  the  cmbjdbcsrvs.ini  file  in  a uniform  resource  locator  address.  

This  file  contains  the  list  of  JDBC  servers.  

 JDBCSERVERSFILE=(filename) 

Specifies  the  cmbjdbcsrvs.ini  file  that  contains  the  list  of JDBC  servers  as  a 

filename.  

 JDBCDRIVER=(JDBC driver) 

Specifies  the  JDBC  driver  that  you  want  to  use.  This  is automatically  set  

when  you  use  the  system  administration  client  client  program.  

 DSNAME=(content  server  name) 

Specifies  the  name  of the  content  server.  For  federated  queries  and  other  

federated  functions,  Information  Integrator  for  Content  sets  this  

automatically.  

 AUTOCOMMIT=ON  | OFF  

Sets  autocommit  on  or  off.  Default  is off.  When  this  content  server  is used  

for  federated  queries  and  other  federated  functions,  autocommit  is on  by  

default.

Listing entities and entity attributes 

After  creating  the  content  server  for  the  relational  database  and  connecting  to  it,  

you  can  list  the  entity  and  entity  attributes.  The  following  example  shows  how  to 

retrieve  list  and  step  through  it:  

 

 

362 Application  Programming Guide



Java  

 // -----  After  creating  a datastore  and  connecting,  get index  classes  

 pCol  = (DKSequentialCollection)dsDB2.listDataSources();  

 pIter  = pCol.createIterator();  

 while  (pIter.more()  == true)  

 { 

    i++;  

    pSV  = (DKServerDefDB2)pIter.next();  

    strServerName  = pSV.getName();  

    ....  // Use  the server  name  as appropriate  

  } 

  // -----  Connect  to datastore  

  dsDB2.connect(db,  userid,  pw,  "");  

  if (!schema.equals(""))  

  { 

     dsDefDB2  = (DKDatastoreDefDB2)dsDB2.datastoreDef();  

     dsDefDB2.setSchemaName(schema);  

     schema  = dsDefDB2.getSchemaName();  

     System.out.println("  New  Schema  Name  = [" + schema  + "]");  

  } 

  // -----  List  the  tables  

  pCol  = (DKSequentialCollection)  dsDB2.listEntities();  

  pIter  = pCol.createIterator();  

  i = 0; 

  while  (pIter.more()  == true)  

  { 

     i++;  

     tableDef  = (DKTableDefDB2)pIter.next();  

     strTable  = tableDef.getName();  

     // -----  List  attributes  (columns  for the  table)  

     pCol2  = (DKSequentialCollection)  dsDB2.listEntityAttrs(strTable);  

     pIter2  = pCol2.createIterator();  

     j = 0; 

     while  (pIter2.more()  == true)  

     { 

        j++;  

        colDef  = (DKColumnDefDB2)pIter2.next();  

         ....  // Process  the information  as appropriate  

      } 

  } 

  // -----  Commit  and  disconnect  

  dsDB2.commit();  

  dsDB2.disconnect();  

  dsDB2.destroy();  

Refer  to  TListCatalogDB2.java, TListCatalogJDBC.java, and  

TListCatalogDJ.java  in  the  samples  directory  for  complete  examples.  

 

 

Chapter 8. Working  with other content  servers  363



C++  

 try  { 

   DKDatastoreDB2  dsDB2;  

   DKString  schema;  

   DKSequentialCollection  *pCol2  = 0; 

   dkIterator  *pIter  = 0; 

   dkIterator  *pIter2  = 0; 

   DKTableDefDB2  *pEnt  = 0; 

   DKString  strServerName;  

   DKString  strTable;  

   DKColumnDefDB2  *pAttr  = 0; 

   DKDatastoreDefDB2  *dsDefDB2  = 0; 

   DKAny  a; 

   DKAny  *pA  = 0; 

   long  i = 0;  

   long  j = 0;  

  

   // -----  Connect  to datastore  and set value  for  schema  name  

      . . . 

   // -----  Create  a datastore  definition  and  set  the schema  name  

   dsDefDB2  = (DKDatastoreDefDB2  *) dsDB2.datastoreDef();  

   if (schema  != "")  

   { 

     dsDefDB2->setSchemaName(schema);  

   } 

  

   // -----  Get  a list  of  the entities  (tables)  

   pCol  = (DKSequentialCollection*)((dkCollection*)dsDB2.listEntities());  

   pIter  = pCol->createIterator();  

   i = 0;  

   // -----  List  the  attributes  (columns)  for  each  entity  (table)  

   while  (pIter->more()  == TRUE)  

   { 

     i++;  

     pEnt  = (DKTableDefDB2*)((void*)(*pIter->next()));  

     strTable  = pEnt->getName();  

     cout  << "table  name  [" << i << "] - " << strTable  << endl;  

     cout  << "  list  columns  for  " << strTable  << " table"  << endl;  

     pCol2  = 

(DKSequentialCollection*)((dkCollection*)dsDB2.listEntityAttrs(strTable));  

     pIter2  = pCol2->createIterator();  

     j = 0; 

     while  (pIter2->more()  == TRUE)  

     { 

       j++;  

       pA = pIter2->next();  

       pAttr  = (DKColumnDefDB2*)  pA->value();  

       cout  << "    Attr  name  [" << j << "] - " << pAttr->getName()  << endl;  

       cout  << "      datastoreName  " << pAttr->datastoreName()  << endl;  

       cout  << "      datastoreType  " << pAttr->datastoreType()  << endl;  

       cout  << "      attributeOf    " << pAttr->getEntityName()  << endl;  

       cout  << "      type           " <<  pAttr->getType()  << endl;  

       cout  << "      size           " <<  pAttr->getSize()  << endl;  

       cout  << "      id            " << pAttr->getId()  << endl;  

       cout  << "      nullable       " << pAttr->isNullable()  << endl;  

       cout  << "      precision      " << pAttr->getPrecision()  << endl;  

       cout  << "      scale          " << pAttr->getScale()  << endl;  

       cout  << "      string  type    " << pAttr->getStringType()  << endl;  

       cout  << "      primary  key    " << pAttr->isPrimaryKey()  << endl;  

       cout  << "      foreign  key    " << pAttr->isForeignKey()  << endl;  

       delete  pAttr;  

     } 

//  continued...  

 

 

364 Application  Programming Guide



C++  (continued)  

     delete  pIter2;  

     delete  pCol2;  

     delete  pEnt;  

   } 

   delete  pIter;  

   delete  pCol;  

   dsDB2.disconnect();  

 } 

 catch(DKException  &exc)  

   . . . 

Refer  to  TListCatalogDB2.cpp, TListCatalogODBC.cpp, and  

TListCatalogDJ.cpp  in  the  samples,  odbc, and  dj  directories  for  complete  

examples.  

Running a query 

To run a query,  you  must  first  create  the  query  string  and  then  execute  the  query.  

The  following  example  runs a query  and  processes  the  results.  

 

 

Java  

 // -----  After  creating  a datastore  and  connecting,  build  the 

 //       query  and parameters  and execute  it 

 sDB2  = new  DKDatastoreDB2();  

 dkResultSetCursor  pCur  = null;  

 DKNVPair  parms[]  = new  DKNVPair[2];  

 String  strMax  = "5";  

 parms[0]  = new  DKNVPair(DK_CM_PARM_MAX_RESULTS,strMax);  

 parms[1]  = new  DKNVPair(DK_CM_PARM_END,null);  

 // -----  Connect  to datastore  

 dsDB2.connect(database,userid,pw,"");  

 // ---  Create  the query  string  

 String  cmd  = "";  

 cmd  = "SELECT  * FROM  EMPLOYEE";  

  

 DKDDO  p = null;  

 DKDDO  pDDO  = null;  

 dkXDO  pXDO  = null;  

 DKPidXDO  pidXDO  = null;  

 int  i = 0;  

 int  numDataItems  = 0; 

 short  k = 0;  

 short  j = 0;  

 String  strDataName;  

 dkCollection  pCol  = null;  

 dkIterator  pIter  = null;  

 Object  a = null;  

 dkDataObjectBase  pDO  = null;  

 int  cnt  = 0;  

  

// continued...  

 

 

Chapter 8. Working  with other content  servers  365



Java  (continued)  

 //  -----  Execute  the   query  

 pCur  = dsDB2.execute(cmd,DK_CM_SQL_QL_TYPE,parms);  

 if  (pCur  == null)  

 { 

     // Handle  if the  cursor  is null  

 } 

 while  (pCur.isValid())  

 { 

     p = pCur.fetchNext();  

     if (p != null)  

     { 

        cnt++;  

        i = pCur.getPosition();  

        //  Get  item  information  

        numDataItems  = p.dataCount();  

        DKPid  pid  = p.getPidObject();  

        System.out.println("pid  string  " + pid.pidString());  

        System.out.println("Number  of Data  Items  " + numDataItems);  

        for  (j = 1; j <= numDataItems;  j++)  

        { 

          a = p.getData(j);  

          strDataName  = p.getDataName(j);  

          //  Handle  the  attributes  ; 

       if (a instanceof  String)  

       { 

           System.out.println("    Attribute  Value  " + a); 

       } 

       .......   //  Handle  for  various  types  ) 

       else  if (a instanceof  dkDataObjectBase)  

       { 

         pDO  = (dkDataObjectBase)a;  

         if (pDO.protocol()  == DK_PDDO)  

          { 

            System.out.println("     DKDDO  object  ");  

            pid  = ((DKDDO)pDO).getPidObject();  

         } 

         else  if (pDO.protocol()  == DK_XDO)  

          { 

             // dkXDO  object  

            pXDO  = (dkXDO)pDO;  

            pidXDO  = pXDO.getPidObject();  

           } 

       } 

       .......   //  Handle  for  various  types  

       { 

     } 

  } 

  // Delete  the  cursor  when  you’re  done,  commit  and  disconnect  

  pCur.destroy();  // Finished  with  the cursor  

  dsDB2.commit();  

  dsDB2.disconnect();  

  dsDB2.destroy();  

Refer  to  TExecuteDB2.java,TExecuteJDBC.java, and  TExecuteDJ.java  in  the  

samples  directory  for  complete  examples.  

 

 

366 Application  Programming Guide



C++  

  try  { 

    DKDatastoreDB2  dsDB2;  

    dkResultSetCursor*  pCur  = 0; 

    DKNVPair  par[2];  

    DKAny  anyValue;  

    DKString  strMax  = "5";  

    anyValue  = strMax;  

    par[0].set(DK_CM_PARM_MAX_RESULTS,  anyValue);  

    par[1].setName(DK_CM_PARM_END);  

    // ----  Create  a datastore  and  connect  

     . . . 

    // ----   Create  a query  string  containing  the  select  

    DKString  qstrng  = "SELECT  * FROM  EMPLOYEE";  

    // ----  Execute  the  query  

    pCur  = dsDB2.execute(qstrng,  DK_CM_SQL_QL_TYPE,  par);  

    // ----  Declarations  

    DKDDO  *p = 0; 

    dkDataObjectBase  *pDOBase  = 0;  

    DKDDO  *pDDO  = 0; 

    dkXDO  *pXDO  = 0; 

    DKAny  a; 

    ushort  j = 0; 

    ushort  k = 0; 

    ushort  val  = 0; 

    ushort  cnt  = 1; 

    DKString  strData  = ""; 

    DKString  strDataName  = "";  

    dkCollection*  pdCol  = 0; 

    dkIterator*   pdIter  = 0; 

    ushort  numDataItems  = 0; 

    DKString  strPid;  

    DKPid*  pid  = 0; 

    short  sVal  = 0; 

    long  lVal  = 0; 

    while  (pCur->isValid())  

    { 

      p = pCur->fetchNext();  

      if (p !=  0) 

      { 

        cout  << "==========>  " << "Item  " << cnt  << " <========="  << endl;  

        numDataItems  = p->dataCount();  

        pid  = (DKPid*)p->getPidObject();  

        strPid  = pid->pidString();  

        cout  << "pid  string  " << strPid  << endl;  

        k = p->propertyId(DK_CM_PROPERTY_ITEM_TYPE);  

        if (k > 0) 

        { 

          a = p->getProperty(k);  

          val  = a; 

                    switch  (val)  

          { 

            case  DK_CM_DOCUMENT  : 

            { 

              cout  << "Item  is document  " << endl;  

              break;  

               } 

          } 

                  } 

        cout  << "Number  of Data  Items  " << numDataItems  << endl;  

 

 

Chapter 8. Working  with other content  servers  367



C++  (continued)  

        for  (j = 1; j <= numDataItems;  j++)  

        { 

          a = p->getData(j);  

          strDataName  = p->getDataName(j);  

          switch  (a.typeCode())  

          { 

            case  DKAny::tc_string  : 

               { 

               strData  = a; 

               cout  << "attribute  name  : " << strDataName  << " value  : " 

     << strData  << endl;  

               break;  

               } 

            // ----  Handle  each  type  in a similar  fashion  

            . . . 

          } 

     } 

     // -----  Delete  the cursor  and disconnect  

     if (pCur  != 0) 

            delete  pCur;  

     dsDB2.disconnect();  

 } 

 catch(DKException  &exc)  

    . . . 

Refer  to  TExecuteDB2.cpp,TExecuteODBC.cpp, and  TExecuteDJ.cpp  in  the  

sample  directories  for  complete  examples.  

Creating custom content server connectors 

You can  create  your  own  server  definitions  for  custom  content  servers  (that  are  not  

currently  included  in  Information  Integrator  for  Content).  If you  integrate  a custom  

server  into  Information  Integrator  for  Content,  then  you  must  provide  your  own  

Java  or  C++  classes  to  support  the  definition.  

Developing custom content server connectors 

The  object-oriented  API  framework  is  designed  with  the  following  objectives:  

v   Additional  data  storage  systems,  or  content  servers,  can  be  added  into  the  

framework.  

v   Ability  to  map  to  any  complex  content  server  data  type.  

v   A common  object  model  for  all  content  server  data  access.  

v   A flexible  mechanism  to  use  a combination  of  different  types  of search  engines,  

such  as  DB2  Text Information  Extender,  image  search  (QBIC),  and  so forth.  

v   Client/server  implementation  for  Java  application  users.

For  information  on  specific  object-oriented  APIs  see  the  Application  Programming  

Reference.  

If you  are  integrating  a custom  content  server  into  Information  Integrator  for  

Content  you  must:  

v   Import  the  com.ibm.mm.sdk.common  package.  

v   Java  only:  Link  to  the  cmbcm81.jar  (Java)  file  in  order  to access  the  common  

framework.  

 

 

368 Application  Programming Guide



v   C++  only:  Link  to the  cmbcm817.dll, non-debugged  version,  and  cmbcm8167.dll,  

debugged  version,  files  in  order  to  access  the  common  framework.

Information Integrator for Content database infrastructure 

The  dkDatastore  classes  serve  as the  primary  interface  between  Information  

Integrator  for  Content  and  the  content  servers.  Each  content  server  has  a separate  

class  that  implements  the  dkDatastore  class  to  provide  implementation  information  

for  a specific  content  server.  Each  content  server  type  is represented  by  a class  

called  DKDatastorexx,  where  xx  identifies  the  name  or  type  of  the  specific  content  

server.  Table  5 on  page  23  lists  the  current  content  servers  provided  in  Information  

Integrator  for  Content.  

You must  specify  the  DKDatastore  class  you  create  for  your  content  server  in  the  

Information  Integrator  for  Content  system  administration  client  when  you  create  

your  server  definition.  

Common classes in Information Integrator for Content 

dkDDO  

 The  dkDDO  class  provides  a representation  and  a protocol  to define  and  

access  an  object’s  data,  independent  of the  object’s  type.  The  DDO  protocol  

is implemented  as a set  of  functions  to  define,  add,  and  access  each  data  

item  of  an  object.  You can  use  this  protocol  to  dynamically  create  an  object  

and  get  it  from  the  content  server  regardless  of  the  content  server’s  type.  

 When  implementing  a content  server,  you  can  utilize  schema  mapping  

information,  registered  in  the  content  server  class.  The  schema  maps  each  

individual  persistent  data  item  to  its  underlying  representation  in  the  

content  server.  

 A DDO  has  a set  of attributes;  each  attribute  has  a type,  value,  and  

properties  associated  with  it.  The  DDO  itself  can  have  properties  that  

belong  to  the  DDO  as  a whole.  For  example,  you  can  map  which  class  to  

an  item  in  DB2  Content  Manager  content  server,  or  a document  in  

OnDemand.  

 

 

Java  

This  diagram  represents  the  hierarchy  for  the  dkDDO  class:  

java.lang.Object  

   | 

   +----com.ibm.mm.sdk.common.dkDataObjectBase  

           | 

           +----com.ibm.mm.sdk.common.dkDataObject  

                   | 

                   +----com.ibm.mm.sdk.server.DKDDOBase  

                           | 

                           +----com.ibm.mm.sdk.server.DKDDO  

dkXDO  

The  dkXDO  class  represents  complex  user-defined  types  or  large  objects  

(LOBs)  which  can  exist  stand-alone  or  as  a part  of  DDO.  Therefore,  it has  a 

persistent  identifier  (PID)  and  create,  retrieve,  update,  and  delete  functions.  

 The  dkXDO  class  extends  the  public  interface  of dkXDOBase  by  defining  

independent  content  server  access,  create,  retrieve,  update,  and  delete  

functions.  These  functions  enable  an  application  to store  and  retrieve  the  

object’s  data  to  and  from  a content  server  without  the  existence  of an  

associated  DDO  class  object  or  stand-alone  XDO.  

 

 

Chapter 8. Working  with other content  servers  369



You must  set  the  PID  for  a stand-alone  XDO  to locate  its  position  in  the  

content  server.  If you  are  using  the  XDO  with  a DDO,  the  PID  is set  

automatically.  For  example  you  can  map  which  class  to  an  item  for  the  

DB2  Content  Manager  content  servers,  and  mapped  to notes  for  the  

OnDemand  content  servers.  

 

 

Java  

Here  is the  class  hierarchy  for  the  dkXDO  class:  

java.lang.Object  

   | 

   +----com.ibm.mm.sdk.server.dkDataObjectBase  

           | 

           +----com.ibm.mm.sdk.server.dkXDOBase  

                   | 

                   +----com.ibm.mm.sdk.server.dkXDO  

dkCollection  

The  dkCollection  class  is a collection  of objects.  dkCollection  cannot  

evaluate  a query.  A collection  might  have  a name  (the  default  name  is  an  

empty  string).  For  example,  DKParts  is a subclass  of  

DKSequentialCollection,  which  is in  turn  a subclass  of dkCollection.  

DKResults  

DKResults  is a subclass  of dkQueryableCollection,  therefore  it supports  

sorting  and  bi-directional  iterators,  and  it is queryable.  The  element  

members  of  a DKResults  class  are  objects,  instances  of the  dkDDO  class  

that  represent  query  results.  The  iterator  created  by  this  class  is  

dkSequentialIterator.  

 

 

Java  

Here  is the  class  hierarchy  for  the  DKResults  class:  

java.lang.Object  

   | 

   +----com.ibm.mm.sdk.server.DKSequentialCollection  

           | 

           +----com.ibm.mm.sdk.server.dkQueryableCollection  

                   | 

                   +----com.ibm.mm.sdk.server.DKResults  

dkQuery  

dkQuery  is an  interface  for  a query  object  associated  with  a specific  

content  server.  Objects  that  implement  this  interface  are  created  by  content  

server  classes.  The  result  of  a query  is usually  a DKResults  object.  

Examples  of a concrete  implementation  of the  dkQuery  interface  are  

DKParametricQuery,  DKTextQuery  and  DKImageQuery,  which  are  created  

by  their  associated  content  servers.  

dkCQExpr  

The  dkCQExpr  class  represents  a compound  or  combined  query  

expression.  It can  contain  a dkQExpr  query  expressions  tree,  which  can  

contain  a combination  of  parametric,  text,  and  image  query.  If you  want  

each  content  server  to  allow  a federated  search,  the  content  server  must  be  

able  to  process  this  dkCQExpr  object.  

dkSchemaMapping  

dkSchemaMapping  is the  an  interface  that  defines  an  associative  mapping  

 

 

370 Application  Programming Guide



between  a federated  entity  and  a native  entity  in content  server.  The  

content  server  must  understand  this  mapping  class  to  unmap  and  remap  

federated  entities  and  attributes  to native  entities  and  attributes  for  a query  

and  return  results.

dkDatastore and related classes 

You must  implement  one  concrete  class  for  each  of the  following  classes  or  

interfaces  for  your  content  server.  For  example  in an  OnDemand  server,  the  

concrete  class  that  implements  the  dkDatastore  interface  is  DKDatastoreOD.  

dkDatastore  

dkDatastore  represents  and  manages  a connection  to  the  content  server,  its  

transactions  and  commands.  It  supports  the  evaluate  function,  so it can  be  

considered  a subclass  of the  query  manager.  

 The  main  methods  in  the  dkDatastore  interface  are:  

connect()  

Connects  to  the  content  server.  

disconnect()  

Disconnects  from  the  content  server.  

evaluate(),  execute(),  executeWithCallback()  

Queries  the  content  server.  

commit(),  rollback()  

Performs  transactions  in  the  content  server.  

 Restriction:  Some  content  servers  do  not  support  these  functions.  

registerServices(),  unregisterServices()  

Registers  search  engines.  

changePassword(userid,  oldPasswd,  newPasswd)  

Changes  the  login  password  for  the  current  logon  user  ID  from  the  

content  server.  

listDataSources()  

Returns  a collection  of content  server  user  ID  objects  to  use  for  

logon.  You do  not  need  to  be  connected  to the  content  server  to  

use  this  function.  

listDataSourceNames()  

Returns  an  array  of  content  server  names.  

getExtension(String)  

Gets  the  dkExtension  object  from  the  content  server.  If the  given  

extension  does  not  already  exist  but  is supported  by  the  content  

server,  a newly  created  object  is returned,  otherwise,  a null  value  is  

returned.  

addExtension(String,  dkExtension)  

Adds  a new  extension  object  (XDO)  to this  content  server.  

createDDO(String,int)  

Creates  a data  object  based  on  the  given  object  type  and  flag.  

Create  DDO  returns  a new  DKDDO  object  with  all  the  properties  

and  attributes  set.  The  calling  program  must  provide  the  attribute  

values  for  this  data  object.

 The  data  object  manipulation  methods  in  the  dkDatastore  interface  are:  

 

 

Chapter 8. Working  with other content  servers  371



addObject(dkDataObject)  

Adds  a new  document  or  folder  to the  content  server.  

retrieveObject(dkDataObject)  

Retrieves  a document  or  folder  from  the  content  server.  

deleteObject(dkDataObject)  

Deletes  a document  or  folder  from  the  content  server.  

updateObject(dkDataObject)  

Updates  a document  or  folder  in  the  content  server.  

moveObject(dkDataObject,  String)  

Moves  a folder  or  document  from  one  entity  to  another.

 The  schema  mapping  related  methods  in  the  dkDatastore  interface  are:  

registerMapping(DKNVPair) 

Registers  the  mapping  information  to  this  content  server.  

unRegisterMapping(String) 

Removes  the  mapping  information  from  this  content  server.  

listMappingNames()  

Returns  an  array  of  mapping  names  from  this  content  server.  

getMapping(String) 

Returns  a dkSchemaMapping  object.

dkDatastoreDef   

The  dkDatastoreDef  interface  defines  functions  to  access  content  server  

information  and  to  create,  list,  and  delete  its  entities.  It maintains  a 

collection  of  dkEntityDef  objects.  

 Table 28  contains  examples  of  concrete  classes  for  the  dkDatastoreDef  

interface.  

 Table 28.  Concrete  classes  for dkDatastoreDef  

Server  type  Class  name  

DB2  Content  Manager  DKDatastoreDefICM  

OnDemand  DKDatastoreDefOD  

DB2  Content  Manager  for  AS/400  DKDatastoreDefV4  

ImagePlus  for OS/390  DKDatastoreDefIP  

Domino.Doc  DKDatastoreDefDD  

Extended  Search  DKDatastoreDefDES  

IBM  DB2  Universal  Database  DKTableDefDB2  

JDBC  DKTableDefJDBC  

ODBC  DKTableDefODBC  

Earlier  DB2  Content  Manager  DKDatastoreDefDL
  

 The  main  methods  in  the  dkDatastoreDef  interface  are:  

listEntities()  

Lists  entities.  

listEntityAttrs()  

Lists  entity  attributes.  

 

 

372 Application  Programming Guide



addEntity()  

Adds  an  entity.  

getEntity(name)  

Gets  an  entity.

 Each  concrete  class  can  also  have  its  own  content  server-specific  functions  

with  names  that  are  familiar  to  that  content  server.  For  example,  the  

DKDatastoreDefDL  class  contains  these  specific  functions:  

v   listIndexClassNames()  

v   listIndexClasses()  

The  DKDatastoreDefOD  class  contains  these  specific  functions:  

v   listAppGrps()  

v   listAppGrpNames()

dkEntityDef  

The  dkEntityDef  class  defines  functions  to:  

v   Access  entity  information.  

v   Create  and  delete  attributes.  

v   Create  and  delete  the  entity.

In  the  dkEntityDef  class,  all  functions  that  are  related  to subentities  

generate  a DKUsageError  indicating  that  the  default  content  server  does  

not  support  subentities.  However,  if the  content  server  does  support  this  

kind  of  multiple  level  entity,  as  does  Domino.Doc,  for  example,  the  

subclass  for  this  content  server  must  implement  the  proper  functions  to  

overwrite  the  exceptions.  

 Table 29  contains  examples  of concrete  classes  for  the  dkEntityDef  class.  

 Table 29.  Concrete  classes  for dkEntityDef  

Server  type  Class  name  

DB2  Content  Manager  DKItemTypeDefDL  

OnDemand  DKAppGrpDefOD  

DB2  Content  Manager  for AS/400  DKIndexClassDefV4  

ImagePlus  for  OS/390  DKEntityDefIP  

Domino.Doc  DKCabinetDefDD  

Extended  Search  DKDatabaseDefDES  

DB2  Universal  Database  DKTableDefDB2  

JDBC  DKTableDefJDBC  

ODBC  DKTableDefODBC  

Earlier  DB2  Content  Manager  DKIndexClassDefDL
  

 The  main  functions  in  the  dkEntityDef  class  are:  

listAttrs()  

Lists  the  entity  attributes.  

getAttr(String  attrName)  

Gets  a specified  entity  attribute.  

addAttr(DKAttrDef) 

Adds  an  attribute  to  an  entity.  

 

 

Chapter 8. Working  with other content  servers  373



getName()  

Gets  the  name  of the  entity.  

setName(String) 

Sets  the  name  of the  entity.  

hasSubEntities()  

Determines  whether  the  entity  contains  subentities.  

getSubEntity(String) 

Gets  the  subentity.  

addSubEntity(dkEntityDef) 

Adds  a subentity  to  the  entity.  

listSubEntities()  

Lists  the  subentities  of  the  entity.  

removeAttr(String) 

Removes  a subentity  from  the  entity.  

add()  Adds  the  entity  to the  content  server.  

update()  

Updates  the  entity  in  the  content  server.  

retrieve()  

Retrieves  the  entity  values  from  the  content  server.  

del()  Deletes  the  entity  from  the  content  server.

dkAttrDef  

The  dkAttrDef  class  defines  functions  for  accessing  attribute  information  

and  creating  and  deleting  attributes.  Table 30  contains  examples  of concrete  

classes  for  the  dkAttrDef  class.  

  Table 30.  Concrete  classes  for dkAttrDef  

Server  type  Class  name  

DB2  Content  Manager  DKAttrDefDICM  

OnDemand  DKFieldDefOD  

DB2  Content  Manager  for  AS/400  DKAttrDefV4  

ImagePlus  for OS/390  DKAttrDefIP  

Domino.Doc  DKAttrDefDD  

Extended  Search  DKFieldDefDES  

DB2  Universal  Database  DKColumnDefDB2  

JDBC  DKColumnDefJDBC  

ODBC  DKColumnDefODBC  

Earlier  DB2  Content  Manager  DKAttrDefDL
  

 The  main  methods  in  the  dkAttrDef  class  are:  

listAttrs()  

Lists  the  attributes.  

getAttr(String  attrName)  

Gets  a specified  attribute.  

getName()  

Gets  the  name  of the  attribute.  

 

 

374 Application  Programming Guide



getDescription()  

Gets  the  description  of  the  attribute.  

add()  Adds  the  entity  to  the  content  server.

dkServerDef  

The  dkServerDef  class  provides  the  server  definition  information  for  each  

content  server.  Table 31  contains  examples  of concrete  classes  for  the  

dkServerDef  class.  

  Table 31.  Concrete  classes  for dkServerDef  

Server  type  Class  name  

DB2  Content  Manager  DKServerDefICM  

OnDemand  DKServerDefOD  

DB2  Content  Manager  for AS/400  DKServerDefV4  

Domino.Doc  DKServerDefDD  

Extended  Search  DKServerDefDES  

DB2  Universal  Database  DKServerDefDB2  

JDBC  DKServerDefJDBC  

ODBC  DKServerDefODBC  

earlier  DB2  Content  Manager  DKServerDefDL
  

 The  main  functions  in  the  dkServerDef  class  are:  

setDatastore(dkDatastore  ds)  

Sets  the  reference  to  the  content  server  object.  

getDatastore()  

Gets  the  reference  to  the  content  server  object.  

getName()  

Gets  the  name  of  the  content  server.  

setName(String  name) 

Sets  the  name  of  the  content  server.  

datastoreType()  

Gets  the  content  server  type.

dkResultSetCursor  

dkResultSetCursor  is  a content  server  cursor  in the  query  result  set  that  

you  can  use  to  manage  a virtual  collection  of  DDO  objects.  The  collection  

is a query  result  set.  Each  element  of the  collection  is not  created  until  the  

content  server  retrieves  the  element.  

 The  main  functions  in  the  dkResultSetCursor  class  are:  

isScrollable()  

Returns  TRUE  if the  cursor  can  be  scrolled  forward  and  backward.  

isUpdatable()  

Returns  TRUE  if the  cursor  can  be  updated.  

isValid()  

Returns  TRUE  if the  cursor  is valid.  

isBegin()  

Returns  TRUE  if the  cursor  is positioned  at  the  beginning  of the  

result  set.  

 

 

Chapter 8. Working  with other content  servers  375



isEnd()  

Returns  TRUE  if the  cursor  is positioned  at the  end  of the  result  set.  

isInBetween()  

Returns  TRUE  if cursor  is  positioned  between  data  elements  in  the  

result  set.  

getPosition()  

Gets  the  current  position  of the  cursor.  

setPosition(int  position,  Object  value) 

Sets  the  cursor  to  the  specified  position.  

setToNext()  

Sets  the  cursor  to  point  to  the  next  element  in  the  result  set.  

fetchObject()  

Retrieves  the  current  element  from  the  result  set  and  returns  it  as  a 

DDO.  

fetchNext()  

Retrieves  the  next  element  from  the  result  set  and  returns  it as  a 

DDO.  

findObject(int  position,  String  predicate)  

Finds  the  data  object  that  satisfies  the  specified  predicate,  moved  

the  cursor  to  that  position,  and  then  retrieves  the  object.  

addObject(DKDDO  ddo)  

Adds  a new  element  of  the  same  type,  represented  by  the  specific  

DDO,  to  the  content  server.  

deleteObject()  

Deletes  the  current  element  from  the  content  server.  

updateObject(DKDDO  ddo)  

Updates  the  current  element  at the  current  position  in  the  content  

server,  using  the  specified  DDO.  

newObject()  

Creates  an  element  of  the  same  type  and  returns  it as  a DDO.  

open()  Opens  the  cursor,  and  if necessary,  runs the  query  to  create  the  

result  set.  

close()  Closes  the  cursor  and  the  result  set.  

isOpen()  

Returns  TRUE  if the  cursor  is open.  

destroy()  

Deletes  the  cursor;  this  allows  for  cleanup  before  the  cursor  is 

collected  as  garbage.  

datastoreName()  

Gets  the  name  of the  content  server  name  to  which  the  cursor  

belongs.  

datastoreType()  

Gets  the  content  server  type  to which  the  cursor  belongs.  

handle(int  type)  

Gets  the  result  set  handle  that  is  associated  with  the  result  set  

cursor,  by  type.

 

 

376 Application  Programming Guide



Requirement:  In  order  to  use  the  addObject, deleteObject  and  

updateObject  functions,  you  must  set  the  content  server  option  

DK_DL_OPT_ACCESS_MODE  to  DK_READWRITE.  

dkBlob  

dkBlob  is  an  abstract  class  that  declares  a common  public  interface  for  

basic  binary  large  object  (BLOB)  data  types.  The  concrete  classes  derived  

from  the  dkBlob  class  share  this  common  public  interface  which  allows  

polymorphic  processing  of  collections  of  BLOBs  originating  from  

heterogeneous  content  servers.  There  is also  a dkClob  and  a dkDBClob  

class  which  can  have  concrete  classes.  

 Table 32  contains  examples  of concrete  classes  for  the  dkBlob  class.  

 Table 32.  Concrete  classes  for dkBlob  

Server  type  Class  name  

DB2  Content  Manager  DKLobICM  

OnDemand  DKBlobOD  

DB2  Content  Manager  for AS/400  DKBlobV4  

ImagePlus  for  OS/390  DKBlobIP  

Domino.Doc  DKBlobDD  

Extended  Search  DKBlobDES  

DB2  Universal  Database  DBBlobDB2,  DKBlobDB2  

JDBC  DKBlobJDBC,  DKBlobJDBC  

ODBC  DKBlobODBC,  DKBlobODBC  

Earlier  DB2  Content  Manager  DKBlobDL
  

 The  main  methods  in  the  dkBlob  class  are:  

getContent()  

Returns  a byte  array  containing  the  BLOB  data  of the  object.  

getContentToClientFile(String  afileName,  int  fileOption) 

Copies  the  BLOB  data  from  the  object  to the  specified  file.  

setContent(byte[]  aByteArr)  

Sets  the  LOB  data  for  the  object  with  the  contents  of the  byte  array.  

setContentFromClientFile(String  afileName) 

Replaces  the  LOB  data  of  the  object  with  the  contents  of  the  file  

afileName. 

add(String  afileName)  

Adds  the  content  of the  specified  file  to  the  content  server.  

retrieve(String  afileName)  

Retrieves  the  content  of  the  content  server  into  the  specified  file.  

update(String  afileName)  

Updates  the  object  and  the  content  server  with  the  content  of the  

specified  file  

del(boolean  flush)  

Deletes  the  object’s  data  from  the  content  server,  if flush  is TRUE; 

otherwise  the  current  content  is preserved.  

concatReplace(dkBlob  aBlob),  concatReplace(byte[]  aByteArr)  

Concatenates  this  object  with  another  dkBlob  object  or byte  array.  

 

 

Chapter 8. Working  with other content  servers  377



length()  

Returns  the  length  of the  LOB  content  of  the  object.  

indexOf(String  aString,  int  startPos),  indexOf(dkBlob  aBlob,  int  

startPos)  

Starting  the  search  at offset  start  positions,  returns  the  byte  offset  

of  the  first  occurrence  of  the  search  argument  within  this  object.  

subString(int  startPos,  int  length)  

Returns  a string  object  that  contains  a substring  of the  LOB  data  of  

this  object.  

remove(int  startPos,  int  aLength)  

Starting  at  startPos  for  aLength  bytes,  deletes  a portion  of  the  LOB  

data  of this  object.  

insert(String  aString, int  startPos),  insert(dkBlob  aBlob,  int  startPos) 

Inserts  the  argument  data,  following  the  startPos  position  in  the  

LOB  data  of the  object.  

open(String  afileName) 

Unloads  the  object  contents  to  the  file  afileName  and  then  runs a 

default  file  handler.  

setClassOpenHandler(String  aHandler,  boolean  newSynchronousFlag)  

Identifies,  by  executable  program  name,  the  file  handler  for  an 

entire  class.  This  function  also  indicates  whether  to run the  handler  

synchronously  or  asynchronously  for  the  file  object.  

setInstanceOpenHandler(String  aHandler,  boolean  

newSynchronousFlag)  

Identifies,  by  executable  program  name,  the  file  handler  and  

indicates  whether  to  run it  synchronously  or  asynchronously  for  

this  object.  

getOpenHandler()  

Gets  the  executable  program  name  of the  file  handler  for  an  entire  

class.  

isOpenSynchronous()  

Returns  the  current  synchronization  setting  for  the  file  handler.

dkClob  

dkClob  is  an  abstract  class  that  declares  a public  interface  for  storing  

character  large  object  (CLOB)  data  types,  such  as  documents.  

 Table 33  contains  examples  of  concrete  classes  for  the  dkClob  class.  

 Table 33.  Concrete  classes  for dkClob  

Server  type  Class  name  

DB2  Universal  Database  DKClobDB2  

ODBC  DKClobODBC
  

 The  main  functions  in  the  dkClob  class  are:  

open()  Open()  is a member  inherited  from  dkXDOBase.  Open()  will  be  

implemented  or  overridden  by  concrete  subclasses  of  dkClob.  

 

 

378 Application  Programming Guide



dkXDO  Members:  dkXDO&  add(),  dkXDO  retrieve(),  dkXDO  update(),  

dkXDO  del()  

Inherited  as  protected  members  from  dkXDO.  Where  necessary,  

these  protected  members  will  be  implemented  or  overridden  by  

concrete  subclasses  of  dkClob.  

 The  following  list  contains  members  defined  by  dkClob:  

add(String  afileName) 

Adds  the  content  of the  specified  file  to  the  content  server.  

retrieve(String  afileName) 

Retrieves  the  content  of  the  content  server  into  the  specified  file.  

update(String  afileName) 

Updates  the  object  and  the  content  server  with  the  content  of the  

specified  file.  

del(DKBoolean  flush)  

Deletes  the  object’s  data  from  the  content  server,  if flush  is TRUE; 

otherwise  the  current  content  is preserved.  

getContentToClientFile(String  afileName,  int  fileOption) 

Copies  the  CLOB  data  from  the  object  to  the  specified  file.  

setContentFromClientFile(String  afileName) 

Replaces  the  LOB  data  of  the  object  with  the  contents  of  the  file  

afileName. 

indexOf(String&  aString, long  startPos=1),  indexOf(dkClob&  adkClob, 

long  startpos=1)  

Starting  the  search  at  offset  start  positions,  returns  the  byte  offset  

of  the  first  occurrence  of the  search  argument  within  this  object.  

subString(long  startpos,  long  length)  

Returns  a string  object  that  contains  a substring  of  the  LOB  data  of 

this  object.  

remove(long  startpos,  long  aLength) 

Starting  at startPos  for  aLength  bytes,  deletes  a portion  of  the  LOB  

data  of  this  object.  

insert(DKString  aString, long  startpos),  insert(dkClob&  adkClob, long  

startpos)  

Inserts  the  argument  data  following  the  startPos  position  in  the  

CLOB  data  of the  object.  

open(String  afileName) 

Unloads  the  object  contents  to the  file  afileName  and  then  runs a 

default  file  handler.  

setInstanceOpenHandler(String  ahandler,  DKBoolean  

newSynchronousFlag)  

Identifies,  by  executable  program  name,  the  file  handler  and  

indicates  whether  to  run it  synchronously  or  asynchronously  for  

this  object.  

setClassOpenHandler(String  ahandler, DKBoolean  newSynchronousFlag)  

Identifies,  by  executable  program  name,  the  file  handler  for  an  

entire  class.  This  function  also  indicates  whether  to run the  handler  

synchronously  or  asynchronously  for  the  file  object.  

 

 

Chapter 8. Working  with other content  servers  379



getOpenHandler()  

Gets  the  executable  program  name  of the  file  handler  for  an  entire  

class.  

isOpenSynchronous()  

Returns  the  current  synchronization  setting  for  the  file  handler.

dkAnnotationExt  

dkAnnotationExt  is  the  interface  class  for  all  annotation  objects.  If  your  

content  server  supports  annotation  data,  you  must  implement  this  

interface.  This  annotation  object  is  an  extension  of your  DKBlobxx  class,  

where  the  dkBlob  object  is the  representation  of the  binary  annotation  data  

and  the  DKParts  collection.  

dkDatastoreExt  

The  dkDatastoreExt  class  defines  the  standard  content  server  extension  

classes.  

 Table 34  contains  examples  of  concrete  classes  for  the  dkDatastoreExt  class.  

 Table 34.  Concrete  classes  for dkDatastoreExt  

Server  type  Class  name  

DB2  Content  Manager  DKDatastoreExtICM  

OnDemand  DKDatastoreExtOD  

DB2  Content  Manager  for  AS/400  DKDatastoreExtV4  

ImagePlus  for OS/390  DKDatastoreExtIP  

Domino.Doc  DKDatastoreExtDD  

Extended  Search  DKDatastoreExtDES  

DB2  Universal  Database  DKDatastoreExtDB2  

JDBC  DKDatastoreExtJDBC  

Earlier  DB2  Content  Manager  DKDatastoreExtDL
  

 The  main  functions  in  the  dkDatastoreExt  class  are:  

getDatastore()  

Gets  the  reference  to  the  owning  content  server  object.  

setDatastore(dkDatastore  ds)  

Sets  the  reference  to the  owning  content  server  object.  

isSupported(String  functionName)  

Determines  whether  the  specified  function  name  is supported  by  

this  extension.  

listFunctions()  

Lists  all  supported  function  names  for  the  extension.  

addToFolder(dkDataObject  folder,  dkDataObject  member)  

Adds  a member  to  this  folder  and  to  the  content  server.  

removeFromFolder(dkDataObject  folder,  dkDataObject  member)  

Removes  a member  from  this  folder  and  the  content  server.  

checkOut(dkDataObject  item)  

Checks  out  a document  or  folder  item  from  the  content  server.  

While  the  item  is checked  out,  you  have  exclusive  updating  

privileges  to  the  item  and  other  users  have  read  access  only.  

 

 

380 Application  Programming Guide



checkIn(dkDataObject  item)  

Checks  in  a document  or  folder  item  previously  checked  out  from  

the  content  server.  By  checking  in the  file,  you  release  all  write  

privileges  with  this  function.  

getCommonPrivilege()  

Gets  the  common  privilege  of  a specific  content  server.  

isCheckedOut(dkDataObject  item)  

Determines  whether  a document  or  folder  item  was  checked  out  

from  the  content  server.  

checkedOutUserid(dkDataObject  item)  

Gets  the  user  ID  that  checked  out  the  item  from  the  content  server.  

unlockCheckedOut(dkDataObject  item)  

Unlocks  the  item  from  the  content  server.  

changePassword  (String  userId,  String  oldPwd,  String  newPwd)  

Changes  the  password  on  the  content  server  for  the  specified  user  

ID.  

moveObject  (dkDataObject  dataObj,  String  entityName) 

Moves  the  entityName  object  from  one  entity  to  another.  

retrieveFormOverlay(String  id)  

Retrieves  the  form  overlay  object.

DKPidXDO  

The  DKPidXDO  class  represents  the  persistent  identification  of the  BLOB  

data  in  the  content  server.  

 Table 35  contains  examples  of concrete  classes  for  the  DKPidXDO  class.  

 Table 35.  Concrete  classes  for DKPidXDO  

Server  type  Class  name  

Earlier  DB2  Content  Manager  DKPidXDODL  

OnDemand  DKPidXDOOD  

DB2  Content  Manager  for AS/400  DKPidXDOV4  

ImagePlus  for  OS/390  DKPidXDOIP  

Domino.Doc  DKPidXDODD  

Extended  Search  DKPidXDODES  

DB2  Universal  Database  DKPidXDODB2  

JDBC  DKPidXDOJDBC  

ODBC  DKPidXDOODBC
  

dkUserManagement  

The  dkUserManagement  class  represents  and  processes  all  of the  content  

server’s  user  management  functions.  

 Table 36  contains  examples  of concrete  classes  for  the  dkUserManagement  

class.  

 Table 36.  Concrete  classes  for dkUserManagement  

Server  type  Class  name  

DB2  Content  Manager  DKUserMgmtICM  

DB2  Content  Manager  for AS/400  DKUserMgmtV4  

 

 

Chapter 8. Working  with other content  servers  381



Table 36.  Concrete  classes  for dkUserManagement  (continued)  

Server  type  Class  name  

ImagePlus  for OS/390  DKUserMgmtIP  

Earlier  DB2  Content  Manager  DKUserMgmtDL
  

DKConstant  

All  common  constants  are  defined  in  the  DKConstant  class.  Each  content  

server  has  its  own  DKConstantxx class  for  defining  constants  specific  to  

that  content  server.  

 Recommendation:  All  content  servers  use  the  common  messages  whenever  

possible.  

DKMessageId  

All  common  message  IDs  are  defined  in  this  class.  Each  content  server  has  

its  own  DKMessageIdxx  class  for  defining  its  own  message  IDs.  

 Recommendation:  All  content  servers  should  use  the  common  messages  

whenever  possible.  

 These  property  files  contain  common  warning  and  error  messages:  

 For  Java:  

v   DKMessage_en.properties  

v   DKMessage_es.properties  

For  C++:  

v   DKMessage_en_US.properties  

v   DKMessage_es_ES.properties  

Each  content  server  has  its  own  DKMessagexx_yy_zz.properties  files  for  its  

warning  and  error  messages.

Using the FeServerDefBase class (Java only) 

The  FeServerDefBase  class  is the  abstract  class  that  you  must  extend  in  order  to  

create  a custom  server  definition.  The  Java  class  that  extends  this  base  class  must  

have  a constructor  that  accepts  the  following  parameters  and  passes  them  to  the  

super  class:  

String  connectString  

The  connect  string  for  the  server.  

String[]  serverList  

The  list  of  defined  servers.  

String[]  associatedServerList  

The  list  of  servers  associated  with  this  server  (null  if none).  

String[]  serverTypes  

The  list  of  defined  server  type  IDs.  

String[]  serverTypeDescriptions  

The  list  of  descriptions  for  defined  server  types.

When  you  create  the  Java  class  that  extends  the  FeServerDefBase  class  you  must  

determine  how  to  handle  the  data  for  the  new  server  dialog.  You can  use  the  same  

class  or  a separate  model  class.  If the  custom  content  server  requires  more  than  

 

 

382 Application  Programming Guide



fields  for  the  connect  string,  you  must  use  the  Information  Integrator  for  Content  

database  and  Java  APIs  as  a model  in order  for  additional  functions  to perform  

properly.  

When  the  content  servers  are  selected  in  the  Information  Integrator  for  Content  

Administration  program,  the  New  menu  will  contain  the  list  of server  types  stored  

in  the  FASERVERTYPES  table  in  the  Information  Integrator  for  Content  database.  

This  table  contains  the  name  of the  Java  class  to  be  instantiated  when  the  menu  

item  is  selected.  

If  you  support  password  verification,  you  must  place  your  Java  class  in  the  same  

directory  as  the  Information  Integrator  for  Content  Administration  .jar  file,  you  can  

dynamically  instantiate  that  Java  class  and  invoke  the  verify  method  with  the  user  

input  password  as  a parameter.  The  verify  method  will  return  null  for  a valid  

password  or  return  an  array  of  strings  with  the  information  for  an  invalid  

password.  

 

 

Chapter 8. Working  with other content  servers  383



384 Application  Programming Guide



Chapter  9.  Building  Information  Integrator  for  Content  

workflow  applications  

Using  the  Information  Integrator  for  Content  classes  and  APIs,  you  can  create  or 

extend  your  own  applications  to  use  the  Information  Integrator  for  Content  

workflow  support.  Typically,  you  perform  a federated  search,  and  start  the  

workflow  with  the  search  result  (a  content  item  or a folder  of multiple  content  

items).  You use  the  APIs  to  access  a worklist  and  then  to  display  the  worklist  

contents.  As  each  activity  completes,  the  workflow  moves  to the  next  activity  in 

the  workflow.  

Connecting to workflow services 

To use  DB2  Information  Integrator  for  Content  workflow  in your  applications,  start  

by  creating  an  instance  of  DKWorkFlowServicesFed,  then  connect  to  it.  The  

following  example  starts  workflow  services:  

 

 

Java  

// -----  Create  the  strings  for  the  name  of the  

//service,  user  ID and Password  

String  wfsrv  = "icmnlsdb";  

String  userid  = "icmadmin";  

String  pw = "password";  

// -----  Create  a federated  datastore  

DKDatastoreFed  dsFed  = new  DKDatastoreFed();  

dsFed.connect(wfsrv,  userid,  pw,"");  

//-----  Create  the  workflow  service  

DKWorkFlowServiceFed  svWF  =new  DKWorkFlowServiceFed  ();  

// -----  Set  the  datastore  in the  workflow  service  

svWF.setDatastore(dsFed);  

// -----  Connect  to the  service  

svWF.connect  (wfsrv,  userid,  pw,"");  

 

 

C++  

 // -----  Create  the strings  for the  name  of the  service,  user  ID 

// -----     and  Password  

DKString  wfsrv  = "icmnlsdb";  

DKString  userid  = "icmadmin";  

DKString  pw = "password";  

// -----  Create  a federated  datastore  

DKDatastoreFed*  dsFed  = new  DKDatastoreFed();  

dsFed->connect(wfsrv,  userid,  pw,"");  

//-----  Create  the  workflow  service  

DKWorkFlowServiceFed*  svWF  =new  DKWorkFlowServiceFed  ();  

// -----  Set  the  datastore  in the  workflow  service  

svWF->setDatastore(dsFed);  

// -----  Connect  to the  service  

svWF->connect  (wfsrv,  userid,  pw,"");  

 When  you  are  finished  using  the  workflow  service,  you  must  disconnect  by  calling  

the  disconnect()  and  the  delete()  functions.  

 

© Copyright  IBM Corp. 1996, 2005 385



Java  

svWF.disconnect();  

dsFed.disconnect();  

svWF.destroy();  

dsFed.destroy();  

 

 

C++  

svWF->disconnect();  

dsFed->disconnect();  

delete  svWF;  

delete  dsFed;  

Starting a workflow 

After  you  create  the  workflow,  you  must  start  it. To start  a workflow  complete  the  

following  steps:  

1.   Create  a DKWorkFlowFed  object  and  set  the  workflow  name.  

2.   Create  a workflow  instance  using  a valid  workflow  template,  which  is a 

workflow  definition  defined  in the  DB2  Information  Integrator  for  Content  

workflow  builder.  

3.   Set  the  PID  and  priority  in  the  container.  

4.   Start  the  workflow.

The  following  example  uses  these  steps  to start  a workflow:  

 

 

Java  

  // -----  Create  the  DKWorkFlowFed  object  and  set  the name  

  DKWorkFlowFed  WF = new  DKWorkFlowFed(svWF);  

  WF.setName("wfl");  

  // -----  Create  an instance  of a workflow  with  the  workflow  template  name  

  WF.add("WD1");  

  // -----  Refresh  the  workflow  object  

  WF.retrieve();  

  // -----  Construct  the  container  object  for  the workflow  

  DKWorkFlowContainerFed  con  = WF.inContainer();  

  // -----  Retrieve  the  container  data  

  con.retrieve();  

  // -----  Add  a PID string  referring  to an Extended  Search  document  

  con.setPersistentID("45  3 DES4ross10  Notes  Help18  15 Help|23fa");  

  con.setPriority(100);  

  // -----  Update  the  container  

  con.update();  

  // -----  Start  the  workflow  

  WF.start(con);  

 

 

386 Application  Programming Guide



C++  

// - Create  the  DKWorkFlowFed  object  and set the  name  

DKWorkFlowFed*  WF = new  DKWorkFlowFed(svWF);  

WF->setName("wfl");  

//Create  an instance  of a workflow  with  the workflow  template  name  

WF->add("WD1");  

// -----  Refresh  the workflow  object  

WF->retrieve();  

// -----  Construct  the container  object  for  the  workflow  

DKWorkFlowContainerFed*  con = WF.inContainer();  

// -----  Retrieve  the container  data  

con->retrieve();  

// Add  a PID  string  referring  to a content  item  from  Extended  Search  

con->setPersistentID("45  3 DES4ross10  Notes  Help18  15 Help|23fa");  

// -----  Assign  a priority  of 100  

con->setPriority(100);  

// -----  Update  the  container  

con->update();  

// -----  Start  the  workflow  

WF->start(con);  

. . . 

// When  you  are  done,  clean  up  by deleting  the  container  and workflow  

delete  con;  

delete  WF;  

Terminating  a workflow 

You can  terminate  a workflow  by  calling  the  terminate()  or  del()  function  as  shown  

in  the  following  example:  

 

 

Java  

//-----Retrieve  the  status  of  the  workflow  named  WF 

WF.retrieve();  

int  state  =WF.state();  

//-----Check  the  status  and  either  terminate  or delete  

if (state  ==DKConstantFed.DK_FED_FMC_PS_RUNNING  || 

    state  ==DKConstantFed.DK_FED_FMC_PS_SUSPENDED  || 

    state  ==DKConstantFed.DK_FED_FMC_PS_SUSPENDING)  

{ 

    WF.terminate();  

} 

if (state  ==DKConstantFed.DK_FED_FMC_PS_READY  || 

    state  ==DKConstantFed.DK_FED_FMC_PS_FINISHED||  

    state  ==DKConstantFed.DK_FED_FMC_PS_TERMINATED)  

{ 

    WF.del();  

} 

 

 

Chapter 9. Building  Information  Integrator  for Content  workflow  applications  387



C++  

/---Construct  a DKWorkFlowFed  instance  

DKWorkFlowFed*  WF = new  DKWorkFlowFed(svWF,  "Test");  

//-----Retrieve  the  status  of the  workflow  named  WF 

WF->retrieve();  

int  state  = WF->state();  

//---Check  the  status  and either  terminate  or delete  

if  (state  == DK_FED_FMC_PS_RUNNING  || 

state  == DK_FED_FMC_PS_SUSPENDED  || 

state  == DK_FED_FMC_PS_SUSPENDING)  

{ 

WF->terminate();  

} 

if  (state  == DK_FED_FMC_PS_READY  || 

state  == DK_FED_FMC_PS_FINISHED  || 

state  == DK_FED_FMC_PS_TERMINATED)  

{ 

WF->del();  

} 

delete  WF;  

Listing all the workflows 

You can  list  all  the  workflows  in  a workflow  service  by  using  the  listWorkFlows()  

function.  The  following  example  lists  the  name  and  description  of  all  the  

workflows  in  a workflow  service  referenced  by  the  DKWorkFlowSerivceFed  object  

svWF. 

 

 

Java  

//  -----  Call  the  listWorkFlows  method  

DKSequentialCollection  collWF  = (DKSequentialCollection)svWF.listWorkFlows();  

DKWorkFlowFed  WF = null;  

if  (collWF  != null)  

{ 

  dkIterator  iterWF  = collWF.createIterator();  

  while  (iterWF.more()  == true)  

  { 

    WF = (DKWorkFlowFed)iterWF.next();  

    WF.retrieve();  

    System.out.println("name  = " + WF.getName()  + " description  = " 

                                 + WF.getDescription());  

  } 

  iterWF  = null;  

} 

 

 

388 Application  Programming Guide



C++  

// -----  Call  the  listWorkFlows  function  

DKSequentialCollection  *collWF  = 

        (DKSequentialCollection*)svWF.listWorkFlows();  

DKWorkFlowFed  *WF  = NULL;  

if (collWF  != NULL)  

{ 

    dkIterator  *iterWF  = collWF->createIterator();  

    while  (iterWF->more())  

    { 

       WF  = (DKWorkFlowFed*)(void*)((*iterWF->next()));  

       WF->retrieve();  

       cout  <<  "name  = " + WF->getName()  

  << " description  = " << WF->getDescription()  << endl;  

       delete  WF;  

    } 

    delete  iterWF;  

} 

delete  collWF;  

Suspending a workflow 

You can  suspend  a running  workflow  with  either  a specific  time  or  indefinitely.  

The  following  example  shows  how  to  suspend  a workflow  until  a certain  time.  If 

you  provide  a null  DKTimestamp,  then  Information  Integrator  for  Content  

suspends  the  workflow  indefinitely.  

 

 

Java  

// -----  Construct  a DKWorkFlowFed  object  

DKWorkFlowFed  WF = new DKWorkFlowFed(svWF,  "Test");  

WF.retrieve();  

// -----  Call  the  suspend  method  if the  workflow  is in the  running  state  

if (WF.state()  == DKConstantFed.DK_FED_FMC_PS_RUNNING)  

{ 

  // -----  Suspended  until  2000-07-27-16.30.00.000000  

  // -----    The  timestamp  uses  the  base  year  1900;  months  are  

  // -----    numbered  0 to 11 

  DKTimestamp  suspension  = new  DKTimestamp(100,  6, 27,  16,  30, 0, 0);  

  WF.suspend(suspension);  

} 

 

 

C++  

// -----  Construct  a DKWorkFlowFed  instance  

DKWorkFlowFed*  WF = new  DKWorkFlowFed(svWF,  "Test");  

WF->retrieve();  

// -----  Call  the  suspend  function  if the  workflow  is in 

the  running  state  

if (WF->state()  == DK_FED_FMC_PS_RUNNING)  

{ 

  // -----  Suspended  until  2000-07-27-16.30.00.000000  

DKTimestamp*  suspension  = new  DKTimestamp(2000,  7, 

27,  16,  30,  0, 0);  

  WF->suspend(suspension);  

  delete  suspension;  

} 

delete  WF;  

 

 

Chapter 9. Building  Information  Integrator  for Content  workflow  applications  389



Resuming a workflow 

You can  resume  a suspended  workflow  by  calling  the  resume()  function.  The  

following  example  resumes  a suspended  workflow.  

 

 

Java  

//  -----  Construct  a DKWorkFlowFed  object  

DKWorkFlowFed  WF = new  DKWorkFlowFed(svWF,  "Test");  

WF.retrieve();  

//  ----  Call  resume()  if the  workflow  is in the suspended  state  

if  (WF.state()  ==  DKConstantFed.DK_FED_FMC_PS_SUSPENDED)  

{ 

  WF.resume();  

} 

 

 

C++  

//  -----  Construct  a DKWorkFlowFed  instance  

DKWorkFlowFed*  WF = new  DKWorkFlowFed(svWF,  "Test");  

WF->retrieve();  

//  -----  Check  whether  the  workflow  is suspended  and  call  resume  

if  (WF->state()  == DK_FED_FMC_PS_SUSPENDED)  

{ 

  WF->resume();  

} 

delete  WF;  

Listing all the worklists 

You can  list  all  the  worklists  in  a workflow  service  by  calling  the  listWorkLists()  

function  on  the  workflow  service.  The  following  example  lists  the  name  and  

description  of  all  the  worklists  in  a workflow  service  referenced  by  the  

DKWorkFlowServiceFed  instance  svWF. 

 

 

Java  

//  -----  Call  the  listWorkLists  method  

DKSequentialCollection  collWL  = (DKSequentialCollection)svWF.listWorkLists();  

DKWorkListFed  WL = null;  

if  (collWL  != null)  

{ 

  dkIterator  iterWL  = collWL.createIterator();  

  while  (iterWL.more()  == true)  

  { 

    WL = (DKWorkListFed)iterWL.next();  

    WL.retrieve();  

    System.out.println("name  = " + WL.getName()  + " description  = " 

                   + WL.getDescription());  

  } 

  iterWL  = null;  

} 

 

 

390 Application  Programming Guide



C++  

// -----  Call  the  listWorkLists  function  

DKSequentialCollection  *collWL  = 

      (DKSequentialCollection*)svWF.listWorkLists();  

DKWorkListFed  *WL  = NULL;  

if (collWL  != NULL)  

{ 

   dkIterator  *iterWL  = collWL->createIterator();  

   while  (iterWL->more())  

   { 

      WL = (DKWorkListFed*)(void*)((*iterWL->next()));  

      WL->retrieve();  

      cout  << "name  = " << WL->getName()  <<  " description  = " 

             << WL->getDescription()  << endl;  

      cout  << "Threshold  = " <<  WL->getThreshold()  << endl;  

      delete  WL;  

    } 

    delete  iterWL;  

} 

delete  collWL;  

Accessing a worklist 

You can  access  a worklist  by  creating  an  instance  of  DKWorkListFed  that  refers  to  

the  worklist  which  you  created  using  the  system  administration  client.  The  

following  example  accesses  a worklist  named  WL0712  and  displays  the  information  

contained  in  that  worklist.  

 

 

Java  

  // -----  Create  the  DKWorkListFed  

  DKWorkListFed  WL = new DKWorkListFed(svWF,  "WL0712");  

  WL.retrieve();  

  // -----  Display  information  about  the  worklist  

  System.out.println  ("worklist  name  = " + WL.getName());  

  System.out.println  ("description  = " + WL.getDescription()  + 

                    " owner  = " + WL.getOwner()  + 

                    " filter  = " + WL.getFilter()  + 

                    " threshold  = " + WL.getThreshold()  + 

                    " sort  criteria  = " + WL.getSortCriteria());  

 

 

C++  

// -----  Create  the  DKWorkListFed  

DKWorkListFed*  WL = new  DKWorkListFed(svWF,  "WL0712");  

WL->retrieve();  

// -----  Display  information  about  the  worklist  

cout  << "worklist  name  = " <<  WL->getName()  << endl;  

cout  << "description  = " << WL->getDescription()  << 

        " owner  = " << WL->getOwner()  << 

        " filter  = " << WL->getFilter()  << 

        " threshold  = " << WL->getThreshold()  << 

        " sort  criteria  = " << WL->getSortCriteria()  << endl;  

// -----   Delete  the worklist  when  you  are done  

delete  WL;  

 

 

Chapter 9. Building  Information  Integrator  for Content  workflow  applications  391



Accessing work items 

After  you  create  the  DKWorkListFed,  you  can  retrieve  the  work  items  as  a 

collection.  The  following  example  retrieves  the  work  items.  

 

 

Java  

  // -----  Create  a collection  and  an iterator  

  DKSequentialCollection  coll  = (DKSequentialCollection)WL.listWorkItems();  

  dkIterator  iter  = (DKSequentialIterator)  coll.createIterator  (); 

  Object  a; 

  DKWorkItemFed  item;  

  String  nodename;  

  String  workflowname;  

  

  // -----  Step  through  the  collections  

  while  (iter.more  ())  

  { 

    a = iter.next  ();  

    item  = (DKWorkItemFed)  a; 

    if (item  != null)  

    { 

       item.retrieve  (); 

       nodename  = item.name  ();  

       workflowname  = item.workFlowName  ();  

       System.out.println  ("workitem  node  = " + nodename  + 

                 "  workflow  name  = " + workflowname);  

    } 

  } 

  iter  = null;  

 

 

392 Application  Programming Guide



C++  

DKSequentialCollection  *coll;  

      dkIterator  *iter;  

      DKWorkItemFed*  item;  

      DKString  nodename;  

      DKString  workflowname;  

      // -----  Create  a collection  and  an iterator  

      coll  = (DKSequentialCollection*)WL->listWorkItems();  

  

      if (coll  != NULL)  

      { 

         iter  = coll->createIterator();  

         cout  << "listWorkItems"  << endl;  

         // -----  Step  through  the collections  

         while  (iter->more  ()) 

         { 

           item  = (DKWorkItemFed*)((void*)(*iter->next()));  

  

           if (item  != NULL)  

           { 

              //item.retrieve  ();  

              nodename  = item->name();  

              workflowname  = item->workFlowName();  

              cout  << "workitem  node  = " << nodename  

                   << "  workflow  name  = " << workflowname  <<  endl;  

              delete  item;  

           } 

         } 

         delete  iter;  

         delete  coll;  

      } 

Moving items in the workflow 

As  a workflow  advances,  you  move  work  items  from  one  activity  to  the  next  by  

using  the  checkOut()  and  checkIn()  functions.  The  following  example  shows  how  

to  move  the  work  items.  Note  that  only  the  workflow  user  currently  being  

assigned  to  perform  the  work  item  can  check  out  and  check  in  the  work  item.  

 

 

Java  

  DKWorkItemFed  item  =new  DKWorkItemFed(svWF,  "wf1",  "node1",  wfuser);  

  item.retrieve();  

  // -----  Call  the  checkOut  method  to lock  the  workitem  

  item.checkOut();  

  // -----  Call  the  checkIn  method  

  item.checkIn(null);  

 

 

C++  

DKWorkItemFed*  item  =new  DKWorkItemFed(svWF,  "wf1",  "node1",  wfuser);  

item->retrieve();  

// -----  Call  the  checkOut  method  to lock  the  workitem  

item->checkOut();  

// -----  Call  the  checkIn  method  

item->checkIn(NULL);  

delete  item;  

 

 

Chapter 9. Building  Information  Integrator  for Content  workflow  applications  393



Listing all the workflow templates 

You can  list  all  the  workflow  templates  in  a workflow  service  by  calling  the  

listWorkFlowTemplates()  function.  The  following  example  lists  the  name  and  

description  of  all  the  workflow  templates  in  a workflow  service  referenced  by  the  

DKWorkFlowSerivceFed  object  svWF. 

 

 

Java  

//  -----  Call  the  listWorkFlowTemplates  method  

DKSequentialCollection  collWT  = 

            (DKSequentialCollection)svWF.listWorkFlowTemplates();  

DKWorkFlowTemplateFed  WT = null;  

if  (collWT  != null)  

{ 

  dkIterator  iterWT  = collWT.createIterator();  

  while  (iterWT.more()  == true)  

  { 

    WT = (DKWorkFlowTemplateFed)iterWT.next();  

    WT.retrieve();  

    System.out.println("name  = " + WT.name()  + " description  = " 

            + WT.description());  

  } 

  iterWT  = null;  

 } 

 

 

C++  

//  -----  Call  the  listWorkFlowTemplates  function  

DKSequentialCollection  *collWT  = 

      (DKSequentialCollection*)svWF.listWorkFlowTemplates();  

DKWorkFlowTemplateFed  *WT  = NULL;  

if  (collWT  != NULL)  

{ 

    dkIterator*  iterWT  = collWT->createIterator();  

    while  (iterWT->more())  

    { 

       WT = (DKWorkFlowTemplateFed*)(void*)((*iterWT->next()));  

       WT->retrieve();  

       cout  << "name  = " << WT->name()  <<  " description  = " 

                << WT->description()  <<  endl;  

       delete  WT;  

    } 

    delete  iterWT;  

 } 

 delete  collWT;  

Creating your own actions (Java only) 

You can  create  your  own  actions  that  you  can  use  in  a workflow.  You define  the  

actions  and  add  them  to actions  lists  in  DB2  Information  Integrator  for  Content  

Administration.  You create  actions  using  action  objects  (DKWorkFlowActionFed  

objects).  An  action  object  is a meta  data  container  that  records  detailed  instructions  

about  how  a particular  task  is intended  to  be  executed  at the  client  node.  Action  

objects  (meta  data  containers)  only  record  instructions;  they  do  not  initiate  the  

invocation  of  the  tasks  that  are  described  in  the  action  meta  data.  

Actions  can  be  grouped  into  an  action  list  (DKWorkFlowActionListFed).  A  

workflow  container  carries  the  name  of the  action  list  (not  the  contents  of  the  

 

 

394 Application  Programming Guide



action  list)  in  which  a set  of  actions  relating  to the  work  item  are  associated.  A 

client  must  retrieve  the  action  list  and  then  iterate  through  the  entries  (actions)  in 

the  list  and  react  accordingly.  The  sample  below  shows  you  how  to work  with  

actions  and  action  lists.  The  sample  completes  the  following  tasks:  

1.   Retrieves  the  work  item.  

2.   Retrieves  the  container  that  is routed  along  with  the  work  item.  

3.   Retrieves  the  action  list  from  the  container.  

4.   Gets  the  list  of  actions  from  the  action  list.  

5.   Starts  the  actions  accordingly.  

wit.retrieve();  // wit  is a DKWorkItemFed  object  

DKWorkFlowContainerFed  wcn  = wit.inContainer();  

wcn.retrieve();  

String  alName  = wcn.getActionList();  

DKWorkFlowActionListFed  wal  = new DKWorkFlowActionListFed(dsFed);  

wal.setName(alName);  

wal.retrieve();  

dkIterator  iter  = null;  

if  ((coll!=null)  && (coll.cardinality()>0))  

{ 

iter  = coll.createIterator();  

while  (iter.more())  

{ 

DKWorkFlowActionFed  act  = (DKWorkFlowActionFed)  iter.next();  

System.out.println("ACTION  = " + act.getCommand());  

Runtime.getRuntime().exec(act.getCommand());  

} 

} 

else  

System.out.println("NO  ACTION  DEFINED");  

Working  with the Information Integrator for Content workflow 

JavaBeans 

This  section  describes  the  DB2  Information  Integrator  for  Content  workflow  

JavaBeans  that  you  can  use  to  connect  to  a Content  Manager  Version  8 server.  The  

beans  and  exceptions  are  contained  in  the  com.ibm.mm.beans.wcm  package  (see  

Planning  and  Installing  Information  Integrator  for  Content  for  more  information).  You 

can  use  the  JavaBeans  in builders  that  support  them  (see  the  product  

documentation  for  your  builder  for  additional  information).  

The  beans  provide  functionality  for  building  workflow  applications.  For  example,  

you  can  use  the  JavaBeans  in  your  applications  to  start  workflow  processes  that  

follow  a predefined  execution  path  predetermined  by  the  process  manager  defined  

on  your  Content  Manager  server.  

An  example  of  a real-world  use  of  the  JavaBeans  is automating  an  insurance  

process  online,  like  submitting  an  accident  claim.  Using  the  JavaBeans,  you  can  

automate  the  entire  process  from  when  the  claim  gets  submitted  to when  it gets  

closed.  

Prerequisites 

You must  have  the  following  components  installed  and  configured  before  you  can  

work  with  Information  Integrator  for  Content  Workflow  JavaBeans:  

v   IBM  WebSphere  Application  Server  4.0.4  

v   IBM  Information  Integrator  for  Content  V 8.1,  Fix  Pack  1 and  prerequisites  

 

 

Chapter 9. Building  Information  Integrator  for Content  workflow  applications  395

|

|

|
|
|
|
|
|

|
|
|
|

|
|
|
|

|

|
|

|

|



You must  have  installed  Information  Integrator  for  Content  with  the  

workflow  option  and  an  LDAP  server  to enable  user  import  and  user  

authentication.
v   IBM  Content  Manager  8.1,  fixpak  1 and  prerequisites  

   See  the  Planning  and  Installing  Your  Content  Management  System  manual  for  a 

list  of  supported  LDAP  server  and  for  complete  instructions  for  configuring  

your  system  to  interact  with  one  of  the  LDAP  servers.  

   The  userID  selected  as  the  DB2  UDB  connection  userID  (the  default  is 

ICMCONCT)  must  be  properly  configured  at  the  operating  system  level,  and  

have  the  UserDB2TrustedConnect  privilege  set  within  your  IBM  Content  

Manager  system.
v   LDAP  server  supported  by  IBM  Content  Manager  and  WebSphere  Application  

Server

Setting up the sample data model 

To help  you  understand  the  steps  needed  to  set  up  your  data  model,  this  section  

walks  you  through  setting  up  the  data  model  for  a sample.  The  steps  required  to  

set  up  the  sample  data  model  below  are  the  same  general  steps  you  follow  to  set  

up  your  own  data  model.  You must  complete  the  following  steps  using  the  DB2  

Content  Manager  system  administration  client.  

1.   Create  a privilege  set  called  WCMPrivilegeSet  and  add  the  following  privileges:  

v   AllowConnectToLogon  

v   ItemSQLSelect  

v   ItemTypeQuery  

v   ItemQuery  

v   ItemAdd  

v   ItemSetUserAttr  

v   ItemSetSysAttr  

v   ItemDelete  

v   ItemMove  

v   ItemLinkTo  

v   ItemLinked  

v   ItemAddLink  

v   ItemRemoveLink  

v   ItemCheckInOut  

v   ItemAddToDomain  

v   ItemGetWorkList  

v   ItemGetWork  

v   ItemRoute  

v   ItemRouteStart  

v   ItemRouteEnd  

v   ItemUpdateWork  

v   ItemGetAssignedWork  

v   SystemDomainAdmin  

v   SystemDomainQuery  

v   SystemDefineUser  

v   SystemGrantUserPrivs  

v   SystemQueryUserPrivs  

v   SystemDefineGroup  

v   SystemQueryGroup  

v   SystemDefinePrivs  

v   SystemDefineDomain  

v   SystemDefineACL  

v   SystemDefineSemanticType  

 

 

396 Application  Programming Guide

|
|
|

|

|
|
|

|
|
|
|

|
|

|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|



v   SystemSetACL  

v   SystemDefineRM  

v   SystemDefineXdoObject  

v   SystemDefineSMSColl  

v   SystemSetReplicaRule  

v   SystemSetCtrlParm  

v   SystemQueryOtherDomains  

v   SystemDefineNLSLang  

v   SystemBatchCompileACL  

v   SystemDefineMimeType  

v   SystemManageKey  

v   SystemDefineAttrs  

v   SystemGetKey  

v   SystemDefineItemType  

v   SystemDefineNewKywdClass  

v   SystemQueryAllKywdClass  

v   SystemDefineLinkType  

v   SystemQueryItemType  

v   IKFAllPermissions  

v   IKFCreateCatalog  

v   IKFDeleteCatalog  

v   IKFRetrieveCatalog  

v   IKFUpdateCatalog  

v   IKFCreateCategory  

v   IKFRetrieveCategory  

v   IKFUpdateCategory  

v   IKFDeleteCategory  

v   IKFCreateTrainingDoc  

v   IKFRetrieveTrainingDoc  

v   IKFUpdateTrainingDoc  

v   IKFDeleteTrainingDoc  

v   IKFCreateRecord  

v   IKFRetrieveRecord  

v   IKFUpdateRecordIKFDeleteRecord  

v   IKFRunServerTask  

v   IKFRunAnalysisFunc  

v   ClientScan  

v   ClientPrint  

v   ClientImport  

v   ClientExport  

v   ClientSendMail  

v   ClientReceiveMail  

v   ClientReadBasePart  

v   ClientModifyBasePart  

v   ClientAddNewBasePart  

v   ClientDeleteBasePart  

v   ClientReadAnnotation  

v   ClientModifyAnnotation  

v   ClientReadNoteLog  

v   ClientAddToNoteLog  

v   ClientModifyNoteLog  

v   ClientReadHistory  

v   ClientAdvancedSearch  

v   ClientReadFolderContents  

v   WFWorklist  

v   EIPAdminServer  

 

 

Chapter 9. Building  Information  Integrator  for Content  workflow  applications  397

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|



v   EIPAdminEntity  

v   EIPAdminTextEntity  

v   EIPAdminTemplate  

v   EIPAdminInfoMining  

For  help  with  creating  a privilege  set,  see  the  Creating  Privilege  Sets  section  of 

the  Content  Manager  System  Administration  Online  Help. 

2.   Create  the  user  groups  in  the  list  below.  For  help  with  creating  user  groups,  see  

the  Creating  user  groups  section  of the  DB2  Content  Manager  System  

Administration  Online  Help. 

v   Workflow  Participants  

v   Content  Publisher  

v   Project  Lead  

v   Content  Contributor  

v   Domain  Expert

For  now, do  not  add  any  users  to  the  groups.  You can  add  users  to the  groups  

in  later  steps.  

3.   Create  the  access  control  lists  (ACLs)  in  the  table  below.  Note  that  you  should  

create  a different  ACL  for  each  group  of users  that  require  the  same  access  

privileges.  For  help  with  creating  ACLs,  see  the  Creating  access  control  lists  

section  of  the  Content  Manager  System  Administration  Online  Help. 

 Table 37.  Access  Control  Lists  

ACL  name  Group  Privilege  set  

WCMACL  Workflow  Participants  WCMPrivilegeSet  

Content  PublisherACL  Content  Publisher  WCMPrivilegeSet  

Content  ContributorACL  Content  Contributor  WCMPrivilegeSet  

Project  LeadACL  Project  Lead  WCMPrivilegeSet
  

4.   Create  the  attributes,  with  the  characteristics  shown,  in  the  table  below.  Leave  

the  default  values  if they  are  not  specified  below.  See  the  Managing  object  

retrieval  and  Creating  attributes  section  of  the  Content  Manager  System  

Administration  Online  Help  for  additional  information.  

 Table 38.  Attributes  

Name  (case  sensitive)  Attribute  type  Minimum  Maximum  

WCM_Fields  Variable  Character  0 4,096  

WorkPackageACL  Variable  Character  0 500
  

Create  the  item  types,  with  the  characteristics  shown,  in  the  table  below.  Leave  

the  default  values  if they  are  not  specified  below.  See  the  Managing  object  

retrieval  and  Creating  item  types  sections  of the  Content  Manager  System  

Administration  Online  Help  for  help.  

 Table 39.  Item  types  

Name  (case  sensitive)  

Item  type  

classification  Access  Control  Attributes  

WCM_Document  Item  WCMACL  WCM_Fields  

WCM_Folder  Item  WCMACL  WorkPackageACL  

Note:  WCMACL  represents  an ACL  that  contains  all workflow  users.
 

 

 

398 Application  Programming Guide

|
|
|
|

|
|

|
|
|

|

|

|

|

|

|
|

|
|
|
|

||

|||

|||

|||

|||

|||
|

|
|
|
|

||

||||

||||

||||
|

|
|
|
|

||

|
|
|||

||||

||||

|
|



5.   Create  a process  manager.  To create  a process  manager,  you  must  designate  

work  nodes  and  actions  that  define  a new  process.  A work  node  is a step  

within  a process  at which  items  wait  for  actions  to  be  taken  by  end  users  or  

applications,  or  through  which  items  move  automatically.  You can  define  a one  

step  process,  or  you  can  create  one  process  with  several  steps  within  it. 

Restriction:  You must  have  at least  one  work  node  defined  to  create  your  

process.  

a.   Create  the  work  nodes  

Create  the  work  nodes,  with  the  characteristics  shown,  in  the  table  below.  

Leave  the  default  values  if they  are  not  specified  in the  table.  See  the  

Managing  document  routing  and  Creating  workbaskets  and  collection  points  

sections  of  the  Content  Manager  System  Administration  Online  Help  for  more  

help.  

 Table 40. Work  nodes  

Name  (case  sensitive)  Description  Access  Control  List  

Request  Change  Initiate  the  change  request  WCMACL  

Make  Change  Change  the  content  Content  ContributorACL  

Review  Request  Review  the  change  request  Project  LeadACL  

Review  Change  Approve  the  change  Domain  ExpertACL
  

b.   Create  a process  manager  

Create  the  process  manager  listed  below  with  the  characteristics  shown.  

Leave  the  default  values  where  they  are  not  specified.  See  the  Managing  

document  routing  -->  Defining  a new  process  section  of  the  System  

Administration  Guide  for  more  help.  

Name:  Simple  Change  Process  

Description:  Process  model  for  simple  change  process  

Access  control  list:  WCMACL  

 Table 41. Process  manager  

From  node  Selection  To  node  

START Continue  Request  Change  

Request  Change  Continue  Review  Request  

Review  Request  Accept  Make  Change  

Review  Request  Reject  END  

Make  Change  Continue  Review  Change  

Review  Change  Accept  END  

Review  Change  Reject  Make  Change
  

6.   Create  users  

You should  create  users  on  an  LDAP  server,  such  as  IBM  Directory  Server  and  

configure  IBM  WebSphere  Application  Server  to  use  the  LDAP  server  as  its  

authentication  mechanism  in  the  Security  Center. You must  define  users  in  the  

Content  Manager  server.  See  the  Creating  users  section  of  the  System  

Administration  Online  Help  and  follow  the  optional  Obtain  from  LDAP  

instructions.  WebSphere  Application  Server  uses  the  LDAP  uid  attribute  for  

authentication.  By  default,  Content  Manager  uses  the  cn  user  attribute.  For  

compatiblility  purposes,  you  should  change  the  Content  Manager  LDAP  

configuration  to  use  uid  as  the  user  attribute.  You can  also  to  set  the  cn  and  

uid  to  the  same  value  when  creating  the  users  in  LDAP.  

 

 

Chapter 9. Building  Information  Integrator  for Content  workflow  applications  399

|
|
|
|
|

|
|

|

|
|
|
|
|

||

|||

|||

|||

|||

|||
|

|

|
|
|
|

|
|
|

||

|||

|||

|||

|||

|||

|||

|||

|||
|

|

|
|
|
|
|
|
|
|
|
|



Create  the  following  users  on  your  LDAP  server  and  then  import  them  into  

Content  Manager:  

 Table 42.  Users  for sample  

User  Group  

″Tara″ ″Workflow  Participants″,  ″Content  Publisher″ 

″Rob″  ″Workflow  Participants″,  ″Project  Lead″ 

″Greg″ ″Workflow  Participants″,  ″Content  Contributer″ 

″Dave″ ″Workflow  Participants″,  ″Content  Contributer″
  

7.   (Optional)  Adding  user  defined  custom  attributes  to  your  workflow  process  

manager  

Below  is example  code  that  demonstrates  how  to  add  custom  attributes  to  yor  

workflow  process  manager:  

java  CustomAttributeTool  -d datastore  -u user  -p password  -w <worknode>  

 -n <attribute  name>  -v <attribute  value>  [...-n  <attribute  name>  -v  <attribute  

 value>]  

Where  

worknode  -  name  of the work  node  to add  the  custom  attribute(s)  to.  The  work  

 node  must  exist.  

attribute  name  - the  user  defined  name  (this  attribute  need  not  exist  already)  

attribute  value  - the  String  value  to be associated  with  attribute  name.  

Example:  

java  CustomAttributeTool  -w  Review  Change  -n WCM.Promote  -v yes  -n  

WCM.Publish  -v  WCM  Publish  java  AddCustomAttributes  -h for  more  options.  

You can  download  this  tool  from  the  IBM  support  Web site.  

8.   (Optional)  Adding  decision  labels  to  your  workflow  process  manager  

Below  is example  code  that  demonstrates  how  to  add  decision  labels  to  your  

workflow  process  manager.  

java  DecisionLabelTool  -d datastore  -u user  -p  password  -w  <worknode>  

-l <decision  label>  

Where  

worknode  -  name  of the work  node  to add  the  decicion  label  to.  

The  work  node  must  exist.  

decision  label  - text  String  to be shown  as the  decision  label.  

Example:  

java  DecisionLabelTool  -w Review  Change  -l Was  this  change  

implemented  correctly?  

java  DecisionLabelTool  -h for  more  options.  

You can  download  this  tool  from  the  IBM  support  Web site.  

9.   Creating  a work  list  

Create  the  work  list  below  with  the  characteristics  shown.  Leave  the  default  

values  if they  are  not  specified.  For  additional  help,  see  Document  Routing  -->  

Creating  worklists  section  in  the  System  Administration  Guide.  

   Name:  WCM_WL  (case  sensitive)  

   Access  control  list:  WCMACL  

   Nodes:  Add  all  the  work  nodes  that  are  listed  in  the  process  managers’  

routes  (Table  41  on  page  399).  

Optional  sample  setup:  

Add  the  following  work  nodes  from  the  Node  tab:  Request  Change,  Review  

Request,  Make  Change,  Review  Change

 

 

400 Application  Programming Guide

|
|

||

||

||

||

||

||
|

|
|

|
|

|
|
|
|
|
|
|
|

|
|
|

|

|

|
|

|
|
|
|
|
|

|

|
|
|

|

|

|
|
|

|

|

|
|

|
|
|



Using the workflow JavaBeans in your application 

Before  you  call  the  beans,  you  must  set  the  datastore  name  in  the  session.  Begin  

using  the  beans  by  calling  them  from  a servlet  or  JSP  that  runs on  your  Websphere  

Application  Server.  Note  that  an  HttpServletRequest  object  (this  variable  is called  

’request’  in the  example  code  below)  is associated  with  the  servlet.  

Example:  

HttpSession  session  = request.getSession();  

session.setAttribute("com.ibm.mm.beans.wcm.ICMServerName",  "ICMNLSDB");  

In  the  example  above,  ICMNLSDB  is the  datastore  name.  

The  DB2  Information  Integrator  for  Content  workflow  JavaBeans  automatically  

login  to  the  DB2  Content  Manager  server  when  you  instantiate  any  of  the  

workflow  beans  by  calling  the  contsructor.  DB2  Content  Manager  uses  the  userID  

and  password  from  the  LtpaToken  set  by  your  WebSphere  Application  Server.  The  

session  is  reused  if you  use  the  beans  from  different  classes.  You are  automatically  

logged  off  when  you  terminate  the  session  or  the  session  expires.  

Example code snippets 

This  section  contains  example  code  snippets  for  common  tasks  that  you  can  

complete  using  the  DB2  Information  Integrator  for  Content  workflow  JavaBeans.  

The  code  snippets  are  for  your  reference  only  and  might  not  work  in  your  

application  if they  are  used  exactly  as they  appear  below.  

Creating  a workflow  process  

This  servlet  code  snippet  creates  and  starts  a workflow  process  based  on  

the  process  manager  ’Simple  Change  Process’  with  a user-defined  

parameter  of  ’subject’.  

// the  request  variable  has  the  com.ibm.mm.beans.wcm.ICMServerName  

//set  to ICMNLSDB  

WorklistHandlerAccessBean  wb = new  WorklistHandlerAccessBean(  

                            new  WorklistHandlerKey(),request);  

  

java.util.Hashtable  myFields  = new  java.util.Hashtable();  

myFields.put("subject","my  subject");  

String  processName="My  test  job";  

ExtendedActivityAccessBean  activity  = 

    wb.createAndStartProcessAndClaimFirstActivity("Simple  Change  

Process",  processName,  myFields);  

Listing  the  workflow  processes  

//list  all  activities  

Vector  results  = wb.getActivities("SELECT  ACTIVITY,  NAME,  DESCRIPTION,  

STATE,  OWNER,  starttime  from  allactivities",  -1); 

//list  only  activities  I can  claim  

Vector  results  = wb.getActivities("SELECT  ACTIVITY,  NAME,  DESCRIPTION,  

STATE,  OWNER,  starttime  FROM   canclaim",  -1);  

Listing  information  about  a workflow  process  

String  activityId  = "90  3 ICM8  ICMNLSDB11  WORKPACKAGE58  

 26 A1001001A02K06B34535J3113018  A02K21B14457G092121  13 204";  

ExtendedActivityAccessBean  activity  = new  ExtendedActivityAccessBean(new  

      ExecutionObjectKey(activityId),null);  

System.out.println("start  date:  "+ activity.getStartDate());  

System.out.println("unique  job  id:  " + 

     activity.getContainer().getJobId());  

System.out.println("state:  "+ activity.getState());  

System.out.println("Process  Model:  " + activity.getContainer().  

           getManager().getName());  

System.out.println("Process  name:  " +

 

 

Chapter 9. Building  Information  Integrator  for Content  workflow  applications  401

|

|
|
|
|

|

|
|

|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|



activity.getContainer().getName());  

ExtendedDocumentAccessBean  document  = 

       activity.getBinder().getMainDocument();  

System.out.println("subject:"  + document.getField("subject"));  

System.out.println("potential  owners:  ");  

java.util.Vector  potentialOwners  = activity.getPotentialOwners();  

java.util.Enumeration  e = potentialOwners.elements();  

while  (e.hasMoreElements()){  

String  s = e.nextElement().toString();  

System.out.println(s);  

} 

Claiming  and  advancing  a workflow  process  

// the  user  running  this  must  have  authority  to claim  at this  worknode  

String  activityId  = "90  3 ICM8  ICMNLSDB11  WORKPACKAGE58  26 

A1001001A02K06B34535J3113018  A02K21B14457G092121  13 204";  

ExtendedActivityAccessBean  activity  = new  ExtendedActivityAccessBean(new  

    ExecutionObjectKey(activityId),null);  

activity.claim();  

// completing  the  activity  advances  to  the  next  work  node  in the routing  

// process  list  decision  choices  

  

System.out.println("decisionChoices:  "); 

java.util.Vector  v = activity.getDecisionChoices("Decision");  

e = v.elements();  

while  (e.hasMoreElements()){  

  String  s = e.nextElement().toString();  

  System.out.println(s);  

} 

  

// (assuming  node  has  more  than  one decision  choice  for  this  example)  

// make  a decision  

activity.setDecision("Decision","Accept");  

activity.complete();  

Setting  and  getting  fields  in  a workflow  process  

Setting  and  getting  fields  in a workflow  process  

String  activityId  = "90  3 ICM8  icmnlsdb11  WORKPACKAGE58  26 

A1001001A02I30B32323A1048018  A02J04A60100A986431  13 204";  

ExtendedActivityAccessBean  activity  = new  ExtendedActivityAccessBean(new  

     ExecutionObjectKey(activityId),null);  

BinderAccessBean  binder  = activity.getBinder();  

  

 // getMainDocument()  

ExtendedDocumentAccessBean  document  = binder.getMainDocument();  

document.updateField("my  field","my  field  test");  

System.out.println("Successfully  updated.");  

  

// getField(String  fieldName)  

String  fieldValue  = document.getField("my  field");  

System.out.println("my  field  =" + fieldValue);  

 

 

402 Application  Programming Guide

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|



Chapter  10.  Building  applications  with  non-visual  and  visual  

JavaBeans  

This  chapter  describes  the  non-visual  and  visual  JavaBeans  provided  in  

Information  Integrator  for  Content.  

The  Information  Integrator  for  Content  JavaBeans  can  be  divided  into  the  

following  categories:  

   Non-visual  beans  

You can  use  the  non-visual  beans  to  build  Java  and  Web client  applications  that  

require  a customized  user  interface.  The  non-visual  beans  support  the  standard  

bean  programming  model  by  providing  default  constructors,  properties,  events  

and  a serializable  interface.  You can  use  the  non-visual  beans  in  builder  tools  

that  support  introspection.  

   Visual  beans  

The  visual  beans  are  customizable,  Swing-based,  graphical  user  interface  

components.  Use  the  visual  beans  to build  Java  applications  for  Windows.  You 

can  place  them  within  windows  and  dialogs  of  Java-based  applications.  Because  

the  visual  beans  are  built  using  the  non-visual  beans  (as  a data  model),  you  

must  use  them  in  conjunction  with  the  non-visual  beans  when  building  an  

application.

Understanding basic beans concepts 

JavaBeans  (hereinafter  referred  to  as  beans)  are  reusable  software  components  that  

are  written  in  the  Java  programming  language  and  can  be  manipulated  using  

builder  tools  that  are  beans-aware.  Because  the  beans  are  reusable,  you  can  use  

them  to  construct  more  complex  components,  build  new  applications,  or  add  

functionality  to  existing  applications.  You can  do  all  of  this  visually,  using  a 

builder,  or  manually,  by  calling  the  beans  methods  from  a program.  

Beans  are  Java  classes  that  adhere  to  specific  conventions  regarding  property  and  

event  interface  definitions.  By  conforming  to  the  conventions,  you  can  turn  almost  

any  existing  programming  component  or  Java  class  into  a bean.  

Beans  define  a design-time  interface  that  allows  application  designer  tools,  or  

builder  tools,  to  query  components  to  determine  the  kinds  of  properties  these  

components  define  and  the  kinds  of  events  they  generate  or  to which  they  

respond.  You do  not  have  to  use  special  introspection  and  construction  tools  when  

working  with  beans.  The  pattern  signatures  are  well  defined  and  can  be  easily  

recognized  and  understood  by  visual  inspection.  

Beans  have  the  following  characteristics:  

Introspection  

Introspection  is the  process  by  which  a builder  tool  determines  and  

analyzes  how  a bean  works  at  design  and  run time.  Because  the  beans  are  

coded  with  predefined  patterns  for  their  method  signatures  and  class  

definitions,  tools  that  recognize  these  patterns  can  ″look  inside″ a bean  and  

determine  its  properties  and  behavior.  Each  bean  has  a related  bean  

information  class,  which  provides  property,  method,  and  event  information  

 

© Copyright  IBM Corp. 1996, 2005 403

|



about  the  bean  itself.  Each  bean  information  class  implements  a BeanInfo  

interface,  which  explicitly  lists  the  bean  features  that  will  be  exposed  to 

application  builder  tools.  

Properties  

Properties  control  a bean’s  appearance  and  behavior.  Builder  tools  

introspect  on  a bean  to  discover  its  properties  and  to expose  those  

properties  for  manipulation.  This  allows  you  to  change  a bean’s  property  

at  design  time.  

Customization  

The  exposed  properties  of a bean  can  be  customized  at design  time.  

Customization  allows  you  to  alter  the  appearance  and  behavior  of a bean.  

Beans  support  customization  by  using  property  editors  or  by  using  special,  

sophisticated  bean  customizers.  

Events   

Beans  use  the  Java  event  model  to communicate  with  other  beans.  Beans  

can  fire  events.  When  a bean  fires  an  event  it is considered  a source  bean.  

A  bean  can  also  receive  an  event,  in  which  case  it is considered  a listener  

bean.  A listener  bean  registers  its  interest  in  the  event  with  the  source  bean.  

Builder  tools  use  introspection  to determine  those  events  that  a bean  sends  

and  those  events  that  it receives.  

Persistence  

Beans  use  Java  object  serialization,  by  implementing  the  java.io.Serializable  

interface,  to  save  and  restore  states  that  might  have  changed  as  a result  of 

customization.  For  example,  the  state  is saved  when  an  application  

customizes  a bean  in  an  application  builder,  so  that  the  changed  properties  

can  be  restored  at a later  time.  

Methods  

All  bean  methods  are  identical  to  methods  of  other  Java  classes.  Bean  

methods  can  be  called  by  other  beans  or  through  scripting  languages.

Using JavaBeans in builders 

This  section  explains  how  to use  JavaBeans  in  IBM  Websphere  Studio  Application  

Developer,  and  in other  builders.  

To use  builders  other  than  IBM  Websphere  Studio  Application  Developer,  make  

sure  that  the  builder  supports  Java  2. Follow  the  builder’s  instructions  for  adding  

new  jar  files  to  add  the  jars  specified  in  the  instructions  below.  Then,  follow  the  

builder’s  instructions  for  adding  beans  from  a jar  to  add  the  Information  Integrator  

for  Content  beans,  which  are  in  cmb81.jar.  

Important:  To use  the  beans,  you  must  have  at least  Java  JDK  1.4  or  higher.  

The  Samples  directory  contains  code  samples  of the  non-visual  beans.  

Using IBM Websphere  Studio Application Developer 

You can  use  the  non-visual  beans  to  build  servlets  and  JSP  pages  in  Webphere  

Studio  Application  Developer  by  completing  the  following  steps:  

1.   Create  a Web project  for  your  Web application.  

2.   In  the  properties  for  the  project,  in  Java  Build  Path  | Libraries,  specify  the  

following  JAR  files:  

    %IBMCMROOT%\lib\cmb81.jar  

 

 

404 Application  Programming Guide



%IBMCMROOT%\lib\cmbview81.jar  

   %IBMCMROOT%\lib\cmbsdk81.jar  

   \SQLLIB\java\db2java.zip
3.   If you  plan  on  using  the  Information  Integrator  for  Content  servlets  and  JSP  

taglib,  you  must  also  specify  the  following  files:  

   %IBMCMROOT%\lib\cmbservlet81.jar  

   %IBMCMROOT%\lib\cmbtag81.jar

For  the  tag  library,  you  also  need  to  import  the  taglib.tld  file  for  Information  

Integrator  for  Content’s  JSP  taglib  into  your  web  application:  

v    Copy  \%IBMCMROOT%\lib\taglib.tld  to  the  webApplication\WEB-INF  

directory  in  your  web  application.  

v   Configure  the  taglib  in  the  webApplication\WEB-INF\web.xml  file  in  you  

web  application  by  adding  the  following:  

<taglib>  

                     <taglib-uri>cmb</taglib-uri>  

                     <taglib-location>/WEB-INF/taglib.tld</taglib-location>  

</taglib>  

4.   Since  the  JARs  listed  above  contain  J2EE  classes,  you  need  to  include  the  J2EE  

JAR,  usually  located  in:  \Program  Files\IBM\Application  

Developer\plugins\com.ibm.etools.websphere.runtime\lib\j2ee.jar

Invoking the Information Integrator for Content JavaBeans 

The  beans  in  the  Information  Integrator  for  Content  layer  can  be  called  in  one  of 

two  ways.  You can  call  them  directly  by  using  their  public  interfaces  (public  

methods).  In  this  case,  explicit  Java  exceptions  are  thrown  to  indicate  error  events.  

Another  method  for  calling  the  functionality  on  the  session-wide  beans  is to  wire  

any  instances  of this  type  of bean  to  other  Information  Integrator  for  Content  beans  

using  request  and  reply  events.  When  using  this  method,  remember  the  following:  

v   The  CMBConnection  bean  listens  to  connection  request  events  and  replies  by  

firing  connection  reply  events.  

v   The  CMBDataManagement  beans  listens  to  data  request  events  and  fires  data  

reply  events  in  return.  

v    The  CMBSchemaManagement  beans  listens  to  schema  request  events  and  fires  

schema  reply  events  in  return.  

v   The  CMBQueryService  bean  listens  to  search  request  events  and  fires  search  

reply  events  in  return.  

v   The  CMBWorkflowDataManagement  beans  listens  to  workflow  data  request  

events  and  fires  workflow  data  reply  events  in  return.  

v   The  CMBWorkflowQueryService  beans  listens  to  work  list  request  events  and  

fires  work  list  reply  events  in  return.

Working  with the non-visual beans 

Information  Integrator  for  Content  provides  a set  of  non-visual  JavaBeans  that  you  

can  use  to  build  Java  applications.  The  non-visual  beans  are  a set  of  Java  classes  

that  follow  the  beans  conventions.  They  are  built  using  the  Information  Integrator  

for  Content  and  DB2  Content  Manager  Java  connector  classes.  You can  use  the  

beans  to  build  Servlets  or  Java  Server  Pages  (JSP),  although  the  beans  can  also  be  

used  in  a command  line  or  in  Windows  applications.  

 

 

Chapter 10. Building  applications  with non-visual  and visual JavaBeans  405



Following  is  a list  of  the  benefits  of using  the  non-visual  beans:  

v   Provide  a federated  access  mechanism  and  common  programming  model  for  the  

many  different  connectors  that  ship  with  Information  Integrator  for  Content.  

v   Allow  you  to  program  at a higher  level  of  abstraction.  

v   Hide  the  complexity  and  details  of  individual  connectors.  

v   Allow  you  to  leverage  beans  support  built  into  most  commercial  development  

environments.  

v   Make  it easier  for  your  application  to  use  multiple  connectors,  or  to migrate,  

without  having  to  make  big  changes  to  your  application.

Using  the  beans  makes  building  basic  applications  easier,  however,  there  are  some  

limitations  when  using  the  beans.  The  following  is a list  of  functionality  that  the  

beans  do  not  provide:  

v   Administrative  and  configuration  functionality.  

v   Batch  import.  The  beans  only  support  single  item  type  import  capabilities.  If you  

need  batch  processes  for  importing  and  exporting  large  amounts  of  data,  you  

should  use  the  connector  interfaces.  

v   Functionality  that  is server  specific.  For  example,  the  functionality  related  to 

sub-items  within  items  is only  available  in  the  Content  Manager  Version  8 

connector  only.

The  limitations  listed  above  can,  in  some  cases,  be  bridged  by  using  accessor  

methods  that  allow  access  to the  underlying  Java  API’s.  

Important:  The  Information  Integrator  for  Content  beans  are  not  Enterprise  

JavaBeans  (EJB).  Therefore,  they  cannot  be  hosted  directly  inside  the  managed  

environment  provided  by  containers  like  IBM  Websphere.  However,  they  can  been  

used  from  inside  EJBs  as  the  underlying  connection  mechanism  to  unstructured  

data  repositories.  

Non-visual bean configurations 

Non-visual  beans  have  local,  remote  and  dynamic  configurations.  The  

configuration,  however,  is completed  at the  connector  level  and  the  beans  pass  

through  these  settings  to  the  connector.  

local  Connects  directly  to  the  content  server.  

remote  

Connects  to  a content  server  using  an  RMI  server.  

dynamic  

Enables  an  application  that  dynamically  switches  between  local  and  remote  

based  on  the  cmbcs.ini  file.  The  cmbcs.ini  file  specifies  whether  the  

content  server  is local  or  remote.

Understanding the non-visual beans features 

You can  use  the  Information  Integrator  for  Content  beans  in  JSP  since  their  

properties  are  typically  simple  types  like  strings  and  arrays.  In essence,  they  act  as  

the  model  component  for  Web applications  because  they  are  modeled  using  the  

Model  View  Controller  (MVC)  design  pattern.  Note  that  the  view  component  is 

typically  comprised  of JSP  and  the  controller  component  of  servlets  (like  the  ones  

in  the  EJB  servlet  kit).  The  following  is a list  of the  Information  Integrator  for  

Content  non-visual  beans  features:  

v   Provide  access  to  the  schema  definitions  in  the  library  server.  

 

 

406 Application  Programming Guide



v   Provide  CRUD  (create,  retrieve,  update,  delete)  methods  for  documents,  simple  

(non-resource)  items,  and  resource  items  in  all  of the  repositories  supported  by  

Information  Integrator  for  Content.  

v   Provide  functionality  to  search  and  retrieve  documents,  simple  items,  and  

resource  items  in  all  of  the  repositories  supported  by  Information  Integrator  for  

Content.  

v   Support  conversion  of  data  types  to viewable  formats.  

v   Act  as a federating  layer  that  enforces  a consistent  set  of semantics  across  the  

many  content  management  repositories  supported  by  Information  Integrator  for  

Content.  

v   Integrate  and  expose  the  functionality  provided  in  the  Information  Integrator  for  

Content  workflow  services.  

v   Provide  document  extraction  and  conversion  services  as  well  as  support  for  

managing  document  annotations.  

v   Provide  sorting  and  conversion  functionality.  

v   Provide  events  that  are  fired  for  key  actions  occurring  on  the  constituent  beans,  

like  connect  and  disconnect  events,  search  results  notification  events,  and  

content  change  notification  events.

Non-visual beans categories 

The  non-visual  beans  can  be  divided  into  the  following  categories:  

Datastore  beans   

These  beans  exist  across  a typical  user  session  and  present  specialized  

services  to  the  user. The  session-wide  beans  include  the  following:  

CMBConnection  

This  bean  maintains  the  connection  to a backend  server  which  

could  be  a native  content  server  or  a federated  server.  This  bean  is 

required  in  order  to  use  any  of the  JavaBeans.  

CMBSchemaManagement  

Used  to  work  with  repository  metadata.  

CMBDataManagement  

Used  to  work  with  repository  data.  

CMBQueryService  and  CMBSearchResults  

Used  to  run queries  and  work  with  the  results  from  the  queries.  

CMBWorkflowDataManagement  and  CMBWorkflowQueryService  

Used  to  work  with  Information  Integrator  for  Content  advanced  

workflow  processes.  

CMBDocRoutingDataManagement  and  CMBDocRoutingQueryService  

Used  to  work  with  CM  V8  document  routing  processes.  

CMBDocumentServices  

Used  to  provide  document  conversion,  document  manipulation,  

and  annotation  services.

Helper  beans   

The  helper  beans  exist  in  the  context  of one  or  more  of  the  session-wide  

beans  and  are  primarily  used  for  encapsulation  of data  values  and  for  

providing  services  to  the  session-wide  beans.  The  helper  beans  available  

include  the  following:  

CMBEntity  

Represents  data  item  definitions  available  in  content  management  

 

 

Chapter 10. Building  applications  with non-visual  and visual JavaBeans  407



repositories.  For  example,  for  a CM  V8  repository,  a CMBEntity  

represents  both  item  types  and  child  component  definitions,  while  

for  a CM  V7  repository,  a CMBEntity  represents  an  index  class.  

CMBEntity  is a helper  class  for  CMBSchemaManagement.  

CMBAttribute  

Represents  attribute  definitions  in  the  repositories.  CMBAttribute  is 

a helper  class  for  CMBSchemaManagement.  

CMBSearchTemplate  

Represents  a federated  search  template.  CMBSearchTemplate  is a 

helper  class  for  CMBSchemaManagement.  

CMBSTCriterion  

Represents  a search  criterion  that  is  a part  of a federated  search  

template.  CMBSTCriterion  is a helper  class  for  

CMBSchemaManagement.  

CMBItem  

Represents  instances  of  documents,  resource  items  and  

non-resource  items.  CMBItem  is a helper  class  for  

CMBDataManagement.  

CMBObject  

Represents  instances  of  resource  items,  base  parts  and  notelog  

parts.  CMBObject  is also  used  to  represent  BLOB  attributes.  

CMBObject  is a helper  class  for  CMBDataManagement.  

CMBAnnotation  

Represents  instances  of  annotation  parts  for  CM  V8  repositories  

and  notes  for  OnDemand  repositories.  

CMBPrivilege  

Provides  the  functionality  required  to  retrieve  privilege  related  

information  from  a CM  or  Information  Integrator  for  Content  

supported  repository.

Ancillary  beans  

The  ancillary  beans  are  not  essential  in  applications,  but  can  be  useful  for  

enhancing  the  functionality.  Following  is a list  of  the  ancillary  beans.  

CMBConnectionPool  

Used  to provide  pooling  services  to CMBConnection  beans.  The  

Java  API  API  class  DKDatastorePool  is used  to  maintain  the  

DKDatastore  instances  that  are  used  by  CMBConnection  instances.  

By  moving  the  pooling  to  the  Java  API  level,  the  content  servers  

can  be  better  managed,  since  they  can  be  pooled  more  intelligently  

based  on  the  type  of  server.  

CMBUserManagement  

Used  in  connections  to  federated  repositories  to  manage  the  

mappings  of  federated  users  to native  server  users.  

CMBExceptionSupport  

Provides  a framework  for  common  exception  event  handling.  

CMBTraceLog  

Provides  a common  trace  event-handling  framework  and  provides  

listener  capabilities  for  trace  events  fired  by  other  beans.

XML  services  bean  and  helper  classes  

The  XML  bean  takes  messages  in  the  form  of XML  requests  and  replies  to  

 

 

408 Application  Programming Guide

|
|



perform  various  operations  on  DB2  Content  Manager,  including  searching,  

creating,  updating,  batching,  exporting  items  into  XML  format,  export  item  

type  definitions  as XML  schemas,  and  workflow  operations.  The  XML  bean  

leverages  the  XML  support  in  the  API  for  item  import,  item  export,  and  

schema  export  operations.  

CMBXMLServices  

Constructor  for  the  XML  services  bean.  

CMBXMLMessage  

Used  as  a wrapper  class  for  an  XML  document  to  describe  a 

request  or  reply  to the  beans.  It  contains  both  the  XML  source  of  

the  request  document,  and  the  set  of  attachments  associated  with  

the  message.  The  XML  document  may  be  a file,  string,  input  

stream,  or  document  object  model  (DOM).  

CMBXMLAttachment  

Used  together  with  the  CMBXMLMessage  class  to  represent  an  

attachment  in  the  XML  message.  This  object  maps  to a resource  

object  or  a document  part.

Workflow  beans   

The  workflow  beans  provide  workflow  services.  The  workflow  services  

provided  by  the  Information  Integrator  for  Content  beans  layer  support  

two  types  of workflow  systems:  advanced  workflow  and  document  

routing.  Advanced  Workflow  functionality  uses  MQSeries® Workflow,  

while  document  routing  is  a workflow  system  integrated  into  the  Content  

Manager  Version  8 product  and  API  set.  The  beans  layer  provides  the  full  

set  of objects  required  to  create  workflow  definitions,  execute  workflow  

instances  based  on  the  created  definitions,  and  manage  instances  of  

executing  workflows.  The  following  beans  are  the  main  components  of  the  

advanced  workflow  support:  

CMBWorkflowDataManagement  

Use  this  bean  to  create  and  work  with  advanced  workflow  

instances.  An  instance  of  this  bean  can  be  retrieved  from  the  

CMBConnection  object.  This  bean  provides  the  following  

functionality:  

v   Starting,  terminating,  suspending,  and  resuming  a workflow  

instance.  

v   Transferring  work-items  and  work  notifications  from  one  user  to 

another.  

v   Canceling  work  notifications.

CMBWorkflowQueryService  

The  CMBWorkflowQueryService  provides  an  interface  for  querying  

advanced  workflow  related  information.  An  instance  of  this  bean  

can  be  retrieved  from  the  CMBConnection  object.  This  bean  

provides  support  for  retrieving  the  following  information:  

v   Information  on  workflows  in  the  system.  

v   Information  on  the  work  items  moving  through  the  system  as  

part  of active  workflows.  

v   Work list  related  information.  

v   Information  on  all  the  registered  work  notifications.

The  following  beans  are  the  main  components  of the  document  routing  

support.  

 

 

Chapter 10. Building  applications  with non-visual  and visual JavaBeans  409

|
|
|
|
|

|
|

|
|
|
|
|
|

|
|
|
|



CMBDocRoutingManagementICM  

Use  this  bean  to create  and  manage  document  routing  processes.  

You can  obtain  an  instance  of this  bean  from  an  instance  of the  

CMBConnection  object.  This  bean  provides  support  for  the  

following  features:  

v   Starting,  terminating,  suspending  and  resuming  a document  

routing  instance.  

v   Checking  out  a CM  item  contained  inside  a work  package.  

v   Setting  properties  for  work  packages  being  routed  by  a 

document  routing  instance.

CMBDocRoutingQueryServiceICM  

This  bean  provides  an  interface  for  querying  information  related  to 

document  routing  processes.  You can  obtain  an  instance  of  this  

bean  from  an  instance  of  the  CMBConnection  object.  This  bean  

provides  support  for  retrieving  the  following  information:  

v   Information  relating  to the  work  packages  being  routed  through  

the  document  routing  system.  

v   Information  relating  to the  processes  that  are  currently  active  in  

the  system.  

v   Information  on  all  the  work  lists  that  are  present  in  the  system.  

v   All  the  work  nodes  that  are  part  of the  system.

Document  Services  beans   

The  document  services  beans  provide  document  streaming  and  document  

annotation  services.  The  following  beans  and  classes  are  from  the  Java  

viewer  toolkit:  

CMBDocumentServices  

The  CMBDocumentServices  bean  provides  services  needed  when  

working  with  documents,  including  the  functionality  needed  to 

render,  convert,  and  reconstitute  the  pages  of  one  or  more  

documents.  

CMBDocument  

This  class  represents  the  entity  created  when  loading  a document  

using  CMBDocumentServices.  In  essence,  CMBDocument  is a 

container  for  the  pages  in  the  document.  CMBDocument  also  

allows  you  to  query  and  set  properties  that  control  a document’s  

characteristics.  

CMBPage  

This  class  provides  a representation  of  a particular  page  in a 

document.  The  functionality  in this  class  allows  you  to  specify  and  

control  the  properties  of  a set  of  renderable  images  that  can  be  

generated  for  the  page.  

CMBPageAnnotation  

This  class  models  an  annotation  that  can  be  associated  with  a page  

in  a document.  All  supported  annotations  are  modeled  by  

sub-classes  of  this  bean.  Also,  the  CMBPageAnnotation  itself  

contains  properties  like  the  page  the  annotation  is  on  and  the  

annotation  type.  The  sub-classes  include  the  following:  

v   CMBArrowAnnotation  

v   CMBCircleAnnotation  

v   CMBHighlightAnnotation  

 

 

410 Application  Programming Guide



v   CMBLineAnnotation  

v   CMBNoteAnnotation  

v   CMBPenAnnotation  

v   CMBRectAnnotation  

v   CMBStampAnnotation  

v   CMBTextAnnotation

Other  beans  classes  

The  bean  classes  listed  in  this  section  provide  a variety  of  functionality,  as  

described  below.  

BeanInfo  Classes   

Allow  for  explicit  exposure  of the  features  of the  Information  

Integrator  for  Content  beans  in  a separate,  associated  class  that  

implements  the  BeanInfo  interface.  

Exception  classes  

Used  to  encapsulate  exceptions  in  the  beans  layer. All  the  exception  

classes  inherit  from  the  base  class  CMBException.  Each  of the  

sub-classes  of CMBException  indicates  a specific  error  condition.  In 

each  case,  properties  of the  exception  object  can  be  used  to obtain  

detailed  error  information  on  the  error  condition  that  led  to  the  

exception  being  thrown.  When  the  beans  are  used  in  the  

event-driven  fashion,  exceptions  are  set  as  events.  

Event  and  listener  classes  

Implement  the  standard  beans  event  listener  model.  Classes  have  

to  explicitly  request  an  event  by  implementing  the  listener  interface  

associated  with  the  event  and  by  registering  that  listener  interface  

with  the  object  that  generates  an  event.  The  Information  Integrator  

for  Content  beans  layer  provides  event  and  listener  pairs  for  

schema  access  operations,  data  access  operations,  workflow  

operations  and  search  operations.  

Session  listeners  

These  are  the  listener  classes  that  exist  at the  session-wide  level.  In  

the  Information  Integrator  for  Content  beans,  there  are  currently  

session  listeners  that  track  connection  requests  and  connection  

reply  events.

Considerations when using the non-visual beans 

You can  use  the  non-visual  beans  to  enable  general-purpose  applications  with  the  

functionality  required  to  access  content  management  repositories  supported  by  

Information  Integrator  for  Content.  This  section  contains  some  tips  on  specific  

usage  patterns  in  the  beans.  

   Singletons  in  the  beans  

CMBConnection  has  methods  to obtain  access  to  instances  of  the  other  

session-wide  Information  Integrator  for  Content  beans.  When  the  session-wide  

beans  like  CMBSchemaManagement  and  CMBDataManagement  are  obtained  in 

this  way,  they  are  already  wired  to the  CMBConnection  bean  (from  which  they  

are  obtained)  to  be  informed  of a connection  or  a disconnection,  and  to  share  

trace  and  exception  event  handlers.  Only  a single  instance  of each  of the  other  

session-wide  beans  is created.  If these  methods  are  called  repeatedly,  the  same  

instance  is returned  (singleton  design  pattern).  If session-wide  beans  are  created  

in  the  application,  and  not  by  the  CMBConnection  bean,  they  must  be  wired  to  

a CMBConnection  bean  to be  used.  

 

 

Chapter  10. Building applications  with non-visual  and visual JavaBeans  411



Threading  considerations  in  the  beans  

A  single  instance  of the  CMBConnection  bean  can  only  be  used  on  a single  

thread  at  any  point  in  time.  This  restriction  extends  to all  other  beans  that  are  

associated  to  a CMBConnection  bean  (through  the  connection  property  of the  

associated  bean).  That  means  that  you  must  create  separate  connections  for  each  

thread.  Alternatively,  multiple  threads  can  obtain  and  free  connections  using  the  

CMBConnectionPool  bean.  Therefore,  each  thread  should  obtain,  use,  and  free  a 

connection.  

All  the  session-wide  beans  have  affinities  to  an  instance  of the  CMBConnection  

from  which  they  were  retrieved  or  with  which  they  have  been  associated  after  

creation.  This  implies  that  an  instance  of  the  session-wide  beans  such  as 

CMBSchemaManagement  can  only  be  used  by  a single  thread  at any  given  

time.  If  the  session-wide  bean  instance  is used  by  multiple  threads,  you  must  

perform  explicit  synchronization  in  your  application  to  ensure  that  only  a single  

thread  is  actively  using  the  session-wide  bean  instance  at  any  given  time.  

All  session-wide  beans  also  listen  to connection  reply  events  generated  by  the  

CMBConnection  beans.  This  allows  them  to recognize  that  the  underlying  

content  repository  with  which  the  CMBConnection  bean  instance  is associated  

has  changed,  so  that  the  beans  can  take  appropriate  action.  

Unlike  the  CMBConnection,  the  CMBConnectionPool  bean  is  designed  for  

multithreaded  use.  Multiple  threads  can  simultaneously  call  the  methods  

related  to  obtaining  and  freeing  connection  objects.  Any  connection  obtained  

from  the  pool  is  an  instance  of CMBConnection  and  is  restricted  to 

single-thread  access.  Any  connection  obtained  from  the  connection  pool  bean  

should  be  returned  to the  pool  as  soon  as  possible  after  its  use,  so  that  it  may  

be  made  available  to  other  threads  that  might  be  requesting  connections  from  

the  pool.

Changing locale in display names 

Display  names  are  alternate  names  that  you  can  assign  to  entities  and  attributes  to  

make  them  more  descriptive.  For  example,  you  can  assign  a display  name  of  

Insurance  documents  to an  item  type  called  Doc  26  (Doc  26  would  be  considered  

the  non-display  name).  

In  the  DB2  Content  Manager  Version  8.3  connector,  you  can  now  translate  display  

names  for  an  entire  set  of  languages  instead  of  just  one.  To toggle  between  the  

languages,  you  would  call  the  setLocale  API  within  the  CMBConnection  object:  

void  setLocale(java.util.Locale  locale);  

java.util.Locale  getLocale();  

where  the  locale  class  variable  must  contain  the  three-letter  machine  locale.  

Both  CMBEntity  and  CMBAttribute  contain  three  methods  that  control  whether  to  

return  display  names  or  not:  

getNonDisplayName()  

Returns  the  real,  non-display  name.  

getDisplayName()  

Returns  the  display  name  translated  in  your  machine’s  locale.  

getName()  

If  displayNamesEnabled  equals  false  (this  is the  default),  then  getName()  

returns  the  non-display  name.  If  displayNamesEnabled  is set  to true, then  

getName()  returns  the  display  name  (translated  in your  machine’s  locale).

 

 

412 Application  Programming Guide

|

|
|
|
|

|
|
|

|
|

|

|
|

|
|

|
|

|
|
|
|



Tracing and logging in the beans 

You can  enable  tracing  on  all  session-wide  beans  in  the  Information  Integrator  for  

Content  beans  layer.  Enabling  tracing  on  an  instance  of the  CMBConnection  bean  

also  enables  tracing  on  any  Information  Integrator  for  Content  bean  obtained  from  

this  connection  bean,  including  schema  management,  data  management,  query  

service,  and  workflow  beans.  

When  tracing  is  enabled,  tracing  events  are  fired.  A  utility  bean,  CMBTraceLog  can  

listen  to  trace  events  and  write  trace  records  to  a defined  log,  stdout,  stderr,  or  

window  (when  used  with  the  visual  beans).  

All  session-wide  beans  also  listen  to  tracing  events.  The  tracing  functionality  in  the  

beans  writes  logging  information  to  the  same  log  file  as  the  Java  API  if log4j  is 

used  for  logging.  

Understanding properties and events for non-visual beans 

Each  non-visual  bean  provides  the  following:  

v   Imported  properties  

The  property  value  is  determined  by  other  beans  at run time  by  PropertyChange  

or  VetoableChange  events.  Beans  that  have  import  properties  must  listen  to 

PropertyChange  or  VetoableChange  events.  

v   Exported  properties,  vetoable  or  not  

A non-visual  bean  may  have  a constrained  property  and  some  other  beans  might  

have  interest  in  its  value.  Whenever  its  value  is changed,  the  bean  is responsible  

for  generating  a PropertyChange  or  VetoableChange  event.  

v   Stand-alone  properties  

No  other  beans  have  interest  in  this  property  value.  

v   Events  generated  by  this  bean  

v   Events  in  which  this  bean  is interested

Building an application using non-visual beans 

A sample non-Graphical User Interface (GUI) application 

The  example  in  this  section  uses  non-visual  beans  to  create  a sample  non-GUI  

application.  The  sample  application  includes  every  bean  except  the  

CMBUserManagement  bean.  The  complete  sample  application  from  which  this  

example  was  taken  (DemoSimpleAppl.java) is available  in the  Samples  directory.  The  

sample  application  shows  how  to:  

1.   Connect  to  the  Information  Integrator  for  Content  (federated)  server  

2.   Get  a list  of  search  template  names  

3.   Use  the  search  template  name  to get  a list  of  search  criteria  names  

4.   Select  a search  template  and  gets  its  search  criteria  

5.   Complete  the  search  values  and  submits  a query  

6.   Print  the  result  using  the  search  results  bean  

7.   Select  a result  row  and  displays  it 

8.   Disconnect  from  the  server

 

 

Chapter 10. Building  applications  with non-visual  and visual JavaBeans  413



Working  with visual beans 

Visual  beans  allow  you  to  integrate  the  functionality  of  DB2  Information  Integrator  

for  Content  or  other  content  servers  into  Java  applications  based  on  Swing.  Visual  

beans  perform  basic  tasks  that  are  common  to  many  applications,  such  as  logging  

on,  searching,  displaying  and  viewing  results,  updating  documents,  and  viewing  

version  information.  

Each  visual  bean  has  a Connection  property.  This  property  must  reference  an  

instance  of  CMBConnection,  the  nonvisual  bean  that  maintains  the  connection  to  

the  content  servers.  Any  application  built  with  the  Information  Integrator  for  

Content  visual  beans  must  also  contain  an  instance  of the  CMBConnection  

nonvisual  bean.  

CMBLogonPanel  

This  bean  displays  a panel  to login  to  DB2  Information  Integrator  for  

Content  or  to  content  servers  such  as  DB2  Content  Manager  Version  8.3.  It 

also  provides  the  window  where  federated  users  can  modify  the  UserIDs  

and  passwords  on  the  content  servers.  

CMBSearchResultsViewer  

This  bean  displays  search  results.  When  the  search  result  returns  folders,  

use  CMBSearchResultsViewer  bean  to  ″drill-down″ into  the  folder  to  see  its  

contents.  Items  in  the  search  results  or  folders  can  be  selected  and  opened  

for  viewing  in  a Windows  Explorer  style  window  

CMBSearchTemplateList  

For  servers  that  support  search  templates,  this  bean  displays  a list  of  

available  search  templates  and  allows  selection  of  a template.  

CMBSearchTemplateViewer  

For  servers  that  support  search  templates,  this  bean  displays  a search  

template  and  provides  fields  for  users  to  enter  search  criteria.  It performs  a 

search  based  on  those  criteria.  

CMBSearchPanel  

For  all  servers,  the  search  panel  displays  a list  of available  entities,  and  

provides  fields  for  users  to enter  search  criteria.  It  performs  a search  based  

on  those  criteria.  The  CMBSearchPanel  is useful  for  performing  searches  on  

content  servers  that  do  not  support  search  templates.  

CMBFolderViewer  

Displays  the  contents  of one  or  more  folders  in  a Windows  Explorer  style  

window  

CMBItemAttributesEditor  

Displays  a window  where  users  can  update  the  index  class  and  indexing  

attributes  for  an  item  

CMBDocumentViewer  

Displays  one  or  more  documents  by  launching  the  appropriate  viewer.  

CMBVersionsViewer  

Displays  version  information  for  a document,  if versioning  is enabled.

CMBLogonPanel bean 

The  CMBLogonPanel  bean  (see  Figure  20  on  page  415)  displays  a window  that  lets  

users  login  to  a content  server,  update  user  mappings,  and  change  a password.  

 

 

 

414 Application  Programming Guide



In  the  CMBLogonPanel  bean,  when  a user  clicks  Change, the  Change  Password  

window  appears  (see  Figure  21.)  The  user  enters  the  old  password,  and  enters  the  

new  password  twice.  

 

 In  the  CMBLogonPanel  bean,  when  a user  clicks  Update  Mapping  in the  Logon  

window,  the  Update  Userid  Mapping  window  is displayed  (see  Figure  22  on  page  

416).  When  you  Update  Mapping,  you  update  the  user  ID  and  password  specified  

for  a server.  This  function  is available  only  when  logging  on  to  the  DB2  

Information  Integrator  for  Content  federated  database.  

 

  

Figure  20.  CMBLogonPanel  bean  window

  

Figure  21.  Change  Password  window

 

 

Chapter 10. Building  applications  with non-visual  and visual JavaBeans  415



At  the  top  of  the  window  is  a list  of all  servers  and  a corresponding  user  ID.  Users  

can  select  one  or  more  servers  from  the  list.  Click  Select  All  to  select  all  servers.  

Users  can  specify  a new  user  ID  and  (optionally)  password  after  you  select  one  or  

more  servers.  If  you  select  one  server,  the  user  ID  appears  in  the  Userid  field.  If 

users  select  more  than  one  user  ID,  the  Userid  field  is blank.  

Deselect  All  

Removes  all  server  selections.  

Apply  Click  to  apply  mapping  and  password  changes  without  closing  the  

window.  

OK  Click  to  accept  changes  and  close  the  window.  

Cancel  

Click  to  close  window  without  making  changes.

CMBSearchTemplateList  bean 

The  CMBSearchTemplateList  bean  has  three  styles.  The  image  style,  shown  in  

Figure  23,  uses  one  image  for  the  backgrounds  of  the  selected  items  and  another  

for  the  unselected  items.  Figure  24  on  page  417  shows  the  simple  template  list  

style.  Figure  25  on  page  417  shows  the  drop-down  template  list  style.  

  

  

Figure  22. Update  Userid  Mapping  window

  

Figure  23. Image  template  list  style

 

 

416 Application  Programming Guide



CMBSearchTemplateViewer  bean 

The  CMBSearchTemplateViewer  bean  (see  Figure  26)  displays  a window  where  

users  can  specify  search  criteria  according  to  the  search  template  defined  by  the  

system  administrator.  The  CMBSearchTemplateViewer  bean  launches  a search  and  

generates  the  CMBSearchResults  event  to  return  the  search  results.  

 

 The  CMBSearchTemplateViewer  bean  lists  search  criteria  such  as  Source  or  UserID.  

Each  search  criteria  has  a label,  an  operator  drop-down  box,  and  a text  field.  The  

BETWEEN  or  NOTBETWEEN  operator  display  has  two  text  fields.  The  IN  or  NOTIN  

operators  have  a multi-line  text  area.  Each  value  should  be  entered  on  a separate  

line.  

Text  search  areas  

The  CMBSearchTemplateViewer  bean  can  contain  areas  that  allow  users  to  perform  

a search  on  full  text  or  index  attributes.  A full  text  search  area  on  the  template  can  

be  as  simple  as  a text  field  with  a label.  

Users  must  match  the  query  syntax  for  a free  or  boolean  text  search  when  they  

enter  the  query  string  in  the  text  field  (see  the  DKDatastoreTS  class).  Turn to the  

Application  Programming  Reference  for  details.  

Validating or editing fields of the CMBSearchTemplateViewer  

You can  provide  validation  logic  for  the  CMBSearchTemplateViewer  bean  to  

modify  search  criteria  entered  by  the  user. Do  this  by  providing  a handler  for  the  

CMBTemplateFieldChangedEvent.  The  current  values  of the  search  criteria  are  

stored  in  the  CMBTemplate  returned  by  the  getTemplate  method  prior  to  this  event  

being  called.  You can  examine  and  change  the  criteria.  After  the  event  handling  is 

complete,  the  new  values  display.  

CMBSearchPanel bean 

The  CMBSearchPanel  bean  displays  a window  where  users  can  specify  search  

criteria  according  to  the  entities  available  on  the  current  content  server.  The  

  

Figure  24.  Simple  template  list  style

  

Figure  25.  Drop-down  template  list  style

  

Figure  26.  CMBSearchTemplateViewer  bean

 

 

Chapter 10. Building  applications  with non-visual  and visual JavaBeans  417



CMBSearchPanel  bean  launches  a search  and  generates  the  

CMBSearchResultsEvent  to  return  the  search  results.  The  CMBSearchPanel  lists  all 

the  available  entities  in  the  drop-down  list  at the  top  of  the  window.  When  an 

entity  is selected,  the  CMBSearchPanel  displays  the  attributes  of  the  entity.  Each  

attribute  has  a label,  an  operator  drop-down  box,  and  a text  field.  A range  operator  

display,  such  as  BETWEEN  or  NOTBETWEEN,  has  two  text  fields.  An  operator  

that  takes  multiple  values,  such  as  the  IN  or  NOTIN  operator,  has  a multi-line  text  

area.  Each  value  should  be  entered  on  a separate  line  in  the  multi-line  text  area.  

   

CMBSearchResultsViewer  bean 

The  CMBSearchResultsViewer  bean  displays  search  results  in  a window  with  a tree  

pane  and  a details  pane.  Users  can  resize  the  window  by  clicking  and  dragging  on  

the  line  separating  the  panes.  

Figure  28  shows  the  CMBSearchResultsViewer  bean  with  the  Search  Results  folder  

selected.  

 

CMBSearchResultsViewer  Tree  pane  

The  tree  pane  (on  the  left)  contains  a main  folder  labeled  Search  Results.  

Beneath  that  folder  is each  folder  found  in  the  search.  The  tree  pane  is 

optional.  Remove  it by  setting  the  TreePaneVisible  property:  

setTreePaneVisible(false). 

CMBSearchResultsViewer  Details  pane  

The  details  pane  displays  the  contents  of  the  folder  selected  in the  tree  

pane.  When  users  select  the  Search  Results  folder,  a tab  appears  on  the  

notebook  containing  the  search  template  name.  When  users  select  a 

different  folder  within  Search  Results, one  or  more  tabs  display:  one  for  

each  index  class  in  the  folder.  The  tab  names  have  the  form:  

index  class  @ server  

  

Figure  27.  CMBSearchPanel  Bean

  

Figure  28. CMBSearchResultsViewer  bean

 

 

418 Application  Programming Guide



where  index  class  is the  index  class  or  item  type  name  and  server  is the  

content  server  name.  The  table  columns  change  to  display  the  attributes  

according  to  the  index  class  or  item  type.  Multiple  selection  is supported  in 

the  details  pane.  Turn  off  Multiple  selection  by  setting  the  

MultiSelectEnabled  property:  setMultiSelectEnabled(false).
If  an  item  type  is  hierarchical,  the  attribute  values  of the  children  are  

displayed  in  the  table  with  column  headers  of  the  form:  child  component  

name/attribute  name,  where  child  component  name  is the  name  of the  

child  component,  and  attribute  name  is the  name  of the  child  component’s  

attribute.  For  example,  if an  item  type  called  Journal  has  a child  

component  called  Author, and  the  Author  child  component  has  an  attribute  

called  Last  Name, the  column  header  is:  Author/Last  Name.

Pop-up  menus  

A pop-up  menu  offering  Sort  options  appears  when  a user  right-clicks  on  a 

table  column  heading.  Users  click  Sort  Ascending  to  sort  the  items  in  the  

table  in  ascending  order. Users  click  Sort  Descending  to  sort  the  items  in 

descending  order.  Another  pop-up  menu  appears  when  a user  right-clicks  

a folder  other  than  the  Search  Results  folder  in  the  tree  pane,  or  

right-clicks  a document  or  folder  in  the  details  pane.  The  pop-up  menu  lets  

users  View  folder  details  in  the  tree  pane,  or  Edit  Attributes  for  folders.  

 Optional:  Use  the  CMBViewFolderEvent  rather  than  show  the  details  of  

the  folder  within  the  CMBSearchResultsViewer  bean.  Use  the  event  to  

make  the  CMBFolderViewer  bean  display  the  selected  folder’s  contents.

Double-click  action  

Double-clicking  a folder  in the  tree  pane  or  an  item  in  the  details  pane  

performs  the  same  action  as  clicking  in  the  View  pop-up  menu  item.  If 

you  suppress  the  default  item  pop-up  menu,  a CMBItemActionEvent  

occurs.

Overriding pop-up menus 

You can  override  the  pop-up  menus  on  the  CMBSearchResultsViewer  and  

CMBFolderViewer  with  either  a different  pop-up  menu  or  no  pop-up  menu.  To 

turn  off  the  default  menus,  use  setDefaultPopupMenu(false). 

When  the  user  right-clicks  a folder  in the  tree  pane,  a CMBFolderPopupEvent  is  

generated.  When  the  user  right-clicks  an  item  in the  details  pane,  a 

CMBItemPopupEvent  is generated.  You can  use  a handler  to provide  a different  

pop-up  menu.  

CMBFolderViewer  bean 

The  CMBFolderViewer  bean  displays  a tree  pane  that  looks  like  the  

CMBSearchResultsViewer  bean.  There  is no  main  Search  Results  folder.  Figure  29 

on  page  420  shows  the  tree  and  details  panes  of the  CMBFolderViewer  bean.  

 

 

 

Chapter 10. Building  applications  with non-visual  and visual JavaBeans  419



The  CMBFolderViewer  bean  displays  a tree  of folders  on  the  left  pane.  The  right  

pane  displays  a notebook  of tables  of the  documents  contained  by  folder  selected  

in  the  tree  pane.  A resizeable  splitter  separates  the  tree  and  notebook  panes.  

CMBFolderViewer  Tree  pane  

The  tree  pane  contains  folders.  Nested  folders  appear  beneath  each  folder.

CMBFolderViewer  Details  pane  

The  details  pane  contains  the  contents  of the  folder  that  is selected  in  the  

tree  pane.  The  contents  display  in  a notebook  with  a tab  for  each  entity  

(index  class,  item  type,  or  other)  and  server,  that  the  items  in  the  table  are  

indexed  under.  The  tab  names  have  the  form:  index  class  @ server  where  

index  class  is  the  name  of the  index  class  and  server  is the  name  of  the  

server.  Within  each  notebook  page  is a table  displaying  the  documents  and  

folders  within  the  selected  folder.  The  table  columns  change  to  display  the  

attributes  according  to  the  index  class.

 Pop-up  menus  

The  behavior  of  the  pop-up  menus  for  the  folder  viewer  is identical  to that  of the  

search  results  viewer.  

Double-click  action  

Double-clicking  in  the  folder  viewer  is identical  to that  of  the  search  results  viewer.  

CMBDocumentViewer  bean 

The  CMBDocumentViewer  bean  provides  capabilities  to  view  documents  by  either  

launching  or  embedding  content-type  specific  document  viewers.  There  are  two  

types  of  viewers  supported:  

1.   Java-based  viewers.  These  viewers  must  extend  the  class  

CMBJavaDocumentViewer.  

2.   Non-Java  viewers.  Any  executable  may  be  launched  as a viewer  for  a particular  

content-type.

  

Figure  29. CMBFolderViewer  bean

 

 

420 Application  Programming Guide



If  the  Visible  property  is set  to  false,  the  viewer  is always  displayed  in a separate  

window.  If  the  Visible  property  is true, the  viewer  will  be  displayed  within  the  

display  region  of  the  CMBDocumentViewer  bean  if possible.  (Currently,  this  is only  

possible  for  Java-based  viewers.)  

CMBJavaDocumentViewer  is an  abstract  class  extended  by  providers  of Java-based  

document  viewers  that  plug  into  the  CMBDocumentViewer  bean.  These  viewers  

can  display  the  documents  in  the  visible  space  of  the  CMBDocumentViewer  bean  

or  in separate  windows  on  the  screen.  

A  call  to  CMBDocumentViewer  terminate()  waits  until  all  document  closed  events  

are  processed.  If  you  call  terminate()  from  within  the  document  closed  event  

handler,  deadlock  might  occur  and  the  program  hangs.  To avoid  this  problem,  

when  calling  terminate()  from  within  the  

onDocumentClosed(CMBDocumentClosedEvent)  event  handler,  call  the  

CMBDocumentViewer.terminate()  method  using  

SwingUtilities.invokeLater(Runnable).  This  adds  the  terminate()  call  to  the  end  of 

the  event  queue  and  continues  with  the  other  events  in  the  queue  (such  as  

handling  the  other  document  closed  events)  before  calling  the  terminate  method.  

   

Viewer  specifications 

There  are  two  ways  to  specify  viewers:  

  

Figure  30.  CMBDocumentViewer  Bean

 

 

Chapter 10. Building  applications  with non-visual  and visual JavaBeans  421



1.   In  the  system  administration  client,  specify  the  viewers  using  the  MIME  Type 

to  Application  Association  Editor,  by  selecting  the  MIME  to  Appl.  Editor  from  

the  Tools  menu.  For  Java-based  viewers,  the  application  name  should  be  the  

Java  class  name,  including  the  .class  suffix.  For  executables,  the  application  

name  should  be  the  name  of the  executable.  

2.   Using  the  Mime2App  property  on  CMBDocumentViewer.  This  property  can  be  

set  to  an  instance  of a Properties  object  that  maps  the  MIME  types  to 

application  names.

In  cases  where  a viewer  is specified  for  a MIME  type  in  both  Information  

Integrator  for  Content  Administration  and  using  the  Mime2App  property,  the  

specification  using  the  Mime2App  will  take  precedence.  

Default viewers 

If no  viewer  is  specified  for  a particular  content  type,  a default  viewer  will  be  

launched.  For  documents  from  OnDemand,  the  OnDemand  client  (in  view-only  

mode)  is launched  if installed.  Documents  from  all  other  content  servers  will  be  

viewed  using  the  CMBGenericDocViewer  from  the  Java  viewer  toolkit.  To edit  

annotations,  select  ″Edit  Document″ from  the  ″File″ menu  of the  viewer.  

Launching external viewers 

Use  the  Mime2App  property  of  CMBDocumentViewer  to specify  applications  to  

launch  as  document  viewers  for  documents  of certain  MIME  types.  Use  

setMime2App  with  a properties  object  as  the  argument  that  has  names  of  MIME  

types  mapping  to  values  that  are  executable  names.  

CMBItemAttributesEditor bean 

The  CMBItemAttributesEditor  bean  (see  Figure  31)  displays  a window  for  viewing  

and  modifying  the  entity  (item  type)  and  attributes  of  a folder  or  document.  

 

 A list  containing  all  available  entities  appears  at the  top  of the  window.  The  

current  entity  is selected  by  default.  A  list  of attributes  for  that  entity  appears  

beneath  the  entity.  The  text  fields  (first  name,  last  name,  and  so  forth)  initially  

contain  the  current  values  for  the  item.  

If users  select  a new  entity,  any  attributes  with  the  same  names  as  the  

previously-selected  entity  have  their  values  propagated  to  the  like-named  attributes  

in  the  new  entity.  

Clicking  Reset  returns  the  entity  and  attributes  to  their  original  values.  

  

Figure  31. CMBItemAttributesEditor  bean

 

 

422 Application  Programming Guide



Clicking  OK  updates  the  entity  and  attributes  and  triggers  events  before  and  after  

the  update.  You can  use  the  event  before  the  update  to validate  fields  or  complete  

missing  fields  before  the  update  is performed.  This  event  can  veto  the  specified  

update.  

Vetoing changes in the CMBItemAttributesEditor 

You can  provide  additional  validation  logic  to  the  CMBItemAttributesEditor  that  

verifies  attribute  values  entered  by  the  user  and  modifies  them,  or  rejects  an  

update,  if the  values  are  not  valid.  Do  this  by  providing  a handler  for  the  

CMBEditRequestedEvent.  

CMBVersionsViewer  bean 

The  CMBVersionsViewer  bean  displays  a table  of  versioning  attributes  for  a single  

document  or  item.  The  versioning  attributes  displayed  are:  the  version  number,  the  

user  ID  of  the  creator,  the  timestamp  when  the  version  was  created,  the  user  ID  of 

the  latest  updater,  and  the  timestamp  of the  last  update.  From  the  versions  viewer,  

you  can  view  the  different  versions  of  an  item  or  update  the  attributes  of an  item.  

   

General behaviors for visual beans 

The  following  sections  describe  properties  and  behaviors  that  are  common  among  

visual  beans.  

Properties 

This  section  describe  three  properties  shared  by  visual  beans.  

Connection  

Each  bean  has  a Connection  property,  which  refers  to  an  instance  of  the  

CMBConnection  non-visual  bean.  You must  set  the  Connection  property  

for  the  visual  bean  to  operate  correctly.  

CollationStrength  

All  beans  that  perform  sorting  have  a CollationStrength  property.  The  

values  defined  for  CollationStrength  property  are  the  same  values  defined  

for  the  java.text.Collator  class  of Java.  

  

Figure  32.  CMBVersions  Viewer  bean

 

 

Chapter 10. Building  applications  with non-visual  and visual JavaBeans  423



Hiding/Showing  buttons  

You can  hide  or  show  the  buttons  that  appear  on  all  visual  beans.  Use  the  

setnameButtonVisible  property,  where  Name  is the  name  of  the  button.

Save/restore configuration 

The  CMBSearchTemplateViewer,  CMBSearchResultsViewer,  and  CMBFolderViewer  

have  two  methods  - loadConfiguration  and  saveConfiguration- that  can  be  used  

to  save  and  restore  field  values  and  column  sizes  between  application  sessions.  A  

properties  object  is  an  argument  for  all  these  methods.  You can  use  the  same  

properties  object  for  all  three  beans.  The  names  of  the  saved  properties  are  unique  

across  the  beans.  

Support for child component attributes 

The  visual  beans  support  a single  level  (not  nested)  child  components.  This  is 

similar  to  the  Windows  client.  For  details,  see  the  Windows  client  documention.  

Help events 

Each  visual  bean  generates  a CMBHelp  event  when  the  user  requests  help,  either  

by  clicking  the  Help  button  or  pressing  F1.  Some  beans  generate  the  following  

help-related  events  when  users  press  F1  or  Help  from  secondary  windows:  

CMBChangePasswordHelpEvent  

When  Help  is clicked  on  the  Change  Password  window  

CMBUpdateMappingHelpEvent  

When  Help  is clicked  on  the  Update  Mapping  window  

CMBLoginFailedHelpEvent  

When  Help  is clicked  on  the  Server  Logon  Failed  window  

CMBServerUnavailableHelpEvent  

When  Help  is clicked  on  the  Server  Unavailable  window

Tip:    One  possible  method  of  handling  help  from  all  of these  sources  is to create  a 

single  class  that  implements  the  listeners  for  all  of  these  events.  Within  the  onHelp  

method,  additional  logic  might  be  needed  to  determine  which  bean  was  the  source  

of  the  event,  and  display  help  text  appropriate  for  that  bean.  

Replacing a visual bean 

It is  possible  to  replace  one  of the  visual  beans  with  another  bean  or  with  Swing  

components.  To do  this,  the  new  bean  should  implement  the  handlers  for  the  

events  of  the  visual  bean  it is replacing.  It should  also  generate  at least  the  key  

events  of  the  bean  it is replacing.  The  key  events  are  described  in  Table  43.  

 Table 43.  Visual  beans  and  key  events  

Visual  bean  Key  events  

CMBSearchTemplateList  CMBTemplateSelectedEvent  

CMBSearchTemplate  Viewer  CMBSearchStartedEventCMBSearchResults  Event  

CMBSearchResultsViewer  CMBViewDocumentEvent  CMBViewFolderEvent-
CMBEditItemAttributesEvent  

CMBFolderViewer  CMBViewDocumentEvent  CMBEditItem  AttributesEvent  

CMBDocumentViewer  CMBDocumentOpenedEvent  CMBDocument  Closed  

Event  

CMBItemAttributesEditor  none
 

 

 

424 Application  Programming Guide



All  data  needed  for  implementing  the  bean  function  is available  either  from  events  

that  the  bean  is  handling  or  from  the  CMBConnection  non-visual  bean.  

Building an application using visual beans 

A  sample  client  application  that  was  written  using  the  visual  beans  is provided  for  

you.  The  source  files  for  the  sample  are  located  in:  samples.  You should  also  read  

the  readme.html  file  in  this  directory  for  details  about  the  sample  client  and  setup  

requirements.  

The  following  sections  show  how  the  visual  beans  fit  together  when  you  build  an 

application.  

Connecting the visual beans 

This  section  explains  one  scenario  for  connecting  visual  beans  to  create  a simple  

application.  Except  for  the  Search  button,  all  beans  are  connected  by  adding  the  

target  bean  as  a listener  of  the  indicated  event  of the  source  bean.  For  example,  to  

connect  the  SearchTemplateList  to  the  SearchTemplateViewer,  a single  line  of code  

is  needed.  To add  a button  for  launching  searches,  use  a standard  JButton.  Create  

an  inner  class  to  cause  the  action  event  from  the  button  to invoke  the  appropriate  

method.  

InFigure  33,  the  lines  from  each  of  the  beans  to  the  connection  bean  indicate  that  

the  bean  contains  a reference  to  the  connection  bean.  This  is created  by  setting  the  

connection  property  for  each  bean.  For  example,  to create  a reference  from  the  

logon  panel  bean  to  the  connection  bean,  a line  of code  is needed.  

 

 Figure  33  shows  nine  beans.  A  JFrame  or  other  container  bean  would  be  the  parent  

of  all  of  these  beans.  One  possible  order  of events  during  run time  might  be: 

 1.   The  user  enters  a user  ID  and  password  into  the  logon  window  and  clicks  

OK. The  CMBLogonPanel  bean  invokes  the  connect  method  of the  

CMBConnection  bean  to  establish  the  connection  to  the  server.  

 2.   The  connection  bean  establishes  the  connection.  The  CMBSearchTemplateList  

bean  retrieves  and  displays  the  list  of  search  templates  for  that  user  ID.  (No  

methods  need  to be  invoked  to cause  this  to  happen.  The  

CMBSearchTemplateList  bean  is listening  to the  appropriate  events  of  the  

CMBConnection  bean.  CMBSearchTemplateList  sets  up  the  listeners  when  a 

CMBConnection  bean  associated  itself  with  it using  the  setConnection  

method.)  

  

Figure  33.  Visual  bean  connections

 

 

Chapter 10. Building  applications  with non-visual  and visual JavaBeans  425



3.   The  user  selects  a search  template  from  the  list.  The  CMBSearchTemplateList  

bean  generates  a CMBTemplateSelectedEvent.  Both  the  

CMBSearchTemplateViewer  and  the  CMBSearchResultsViewer  are  listening  for  

the  event.  The  CMBSearchTemplateViewer  displays  the  appropriate  template.  

The  CMBSearchResultsViewer  clears  and  displays  columns  in  the  details  pane  

as defined  by  the  template.  

 4.   The  user  completes  the  template,  and  either  presses  Enter  or  clicks  Search. If 

the  user  clicks  Search, the  action  event  handler  invokes  the  startSearch  

method.  If  the  user  presses  Enter, the  startSearch  method  is invoked  

implicitly.  

 5.   The  CMBSearchTemplateViewer  bean  validates  the  template  fields  to  

determine  whether  a search  can  begin.  If  the  search  can  begin,  a 

CMBSearchStartedEvent  is generated.  CMBSearchResultsViewer  listens  for  a 

CMBSearchStartedEvent  and  clears  the  results  in  preparation  for  new  search  

results.  

 6.   As  the  search  progresses,  CMBSearchResultsEvents  are  generated  to  provide  

partial  search  results  to the  CMBSearchResultsViewer.  (When  the  search  is 

completed  the  CMBSearchCompleted  event  is generated.  This  event  can  be 

used  to  enable  the  Search  button  again  if it was  disabled  at  the  start  of  the  

search.)  

 7.   The  user  can  expand  folders  in  the  Search  Results  window,  then  select  a 

document  or  folder  for  viewing.  When  this  is done,  a CMBViewFolderEvent  

or  CMBViewDocumentEvent  is generated.  The  CMBFolderViewer  and  

CMBDocumentViewer  beans  are  listening  to  their  respective  events,  and  

display  the  folder  or  document.  

 8.   From  the  CMBFolderViewer,  users  can  select  a document  to  view. Selecting  a 

document  for  viewing  generates  a CMBViewDocumentEvent.  The  

CMBDocumentViewer  listens  for  this  event  and  displays  the  document  in  the  

appropriate  viewer.  

 9.   Users  can  select  a document’s  or  folder’s  attributes  for  updating  from  the  

CMBSearchResultsViewer  or CMBFolderViewer.  Selecting  a document  

generates  a CMBEditItemAttributesEvent.  

10.   The  CMBItemAttributesEditor  bean  listens  for  an  

CMBEditItemAttributesEvent.  It displays  the  entity  and  attributes  for  the  item.  

The  user  can  then  change  the  entity  and  attributes  and  then  click  OK  to  apply  

the  changes.

Using beans in more than one window or dialog 

You must  provide  additional  code  to  pass  an  event  from  a bean  in  one  window  to  

a bean  in  another  window.  Typically,  the  fact  that  an  event  has  been  sent  is usually  

the  reason  for  displaying  a window.  The  EditAttributesDialog  window  contains  the  

ItemAttributesEditor.  SearchFrame  creates  the  window  when  a 

CMBEditItemAttributesEvent  launches:  

// Invoke  a secondary  dialog  for  edit  attributes  

searchResultsViewer.addEditItemAttributesListener(new  

CMBEditItemAttributesListener()  { 

    public  void  onEditItemAttributes(CMBEditItemAttributesEvent  event)  { 

    EditAttributesDialog  editAttributesDialog  = new  

    EditAttributesDialog(SearchFrame.this,connection,event.getItem());  

    editAttributesDialog.setVisible(true);  

} 

});  

 

 

426 Application  Programming Guide



The  information  that  is normally  passed  to  the  CMBItemAttributesEditor  bean  is 

passed  as  arguments  to the  constructor  of the  window  instead.  Within  the  

constructor,  the  information  is passed  to  the  CMBItemAttributesEditor  bean  by  

setting  the  following  properties:  

itemAttributesEditor.setConnection(connection);  

itemAttributesEditor.setItem(item);  

 

 

Chapter 10. Building  applications  with non-visual  and visual JavaBeans  427



428 Application  Programming Guide



Chapter  11.  Working  with  XML  services  (Java  only)  

The  DB2  Content  Manager  Version  8 Release  3 connector  provides  APIs  in  

cmbxmlservice.jar  that  can  convert  three  types  of system  administration  data  into  

XML:  

v   Administration  metadata  objects,  which  can  include  users,  user  groups,  resource  

manager  configuration,  workflow,  ACL  privileges,  privilege  sets,  library  server  

configuration,  and  the  Information  Integrator  for  Content  search  template  and  

server  configuration.  This  uses  an  XML  schema  called  cmadmin.xsd  (located  in  

IBMCMROOT/config/) to  represent  the  DB2  Content  Manager  Version  8 

administration  objects  in  an  XML  file.  

v    Data  model  metadata  objects  which  define  the  structure  for  item  types,  

component  types,  and  Information  Integrator  for  Content  entities.  These  objects  

are  stored  as  XSD  files  (storage  schemas) that  all  refer  to  element  or  type  

definitions  defined  in  the  cmdatamodel.xsd  file  (located  in IBMCMROOT/config). 

v   Data  instance  objects,  which  can  include  items,  attributes,  and  resource  items  

(binary  attachments).  These  objects  are  stored  as XML  files  that  conform  to  the  

storage  schemas.

By  representing  objects  as  XML,  you  can  import,  store,  update,  retrieve,  and  export  

a wide  variety  of  objects—such  as  documents  or  administrative  data—between  

DB2  Content  Manager  servers  without  developing  separate  interfaces  for  each  

system.  

This  section  explains  the  following  tasks:  

v   “Understanding  how  XML  services  work  with  other  DB2  Content  Manager  

programming  layers”  

v   “Importing  and  exporting  DB2  Content  Manager  metadata  using  XML  services”  

on  page  432  

v   “Importing  and  exporting  DB2  Content  Manager  data  instance  objects  as  XML”  

on  page  454  

v   “Importing  and  exporting  XML  object  dependencies”  on  page  457  

v   “Extracting  content  from  different  XML  sources”  on  page  458  

v   “Mapping  a user-defined  schema  to  a storage  schema  with  the  XML  schema  

mapping  tool”  on  page  458  

v   “Programming  runtime  operations  through  the  XML  JavaBeans”  on  page  461

For  a sample  of  the  XML  import  and  export  functionality,  see  TXMLExport.java, 

TXMLImport.java  and  TXMLList.java  in  the  IBMCMROOT/samples/java/xml  directory.  

Understanding how XML services work with other DB2 Content 

Manager programming layers 

Certain  programming  layers  require  converted  XML  objects  to  work  with  the  DB2  

Content  Manager  connector.  The  layers  include:  

Web Services  

DB2  Content  Manager  HTTP  interface  that  accepts  your  XML  messages  

(defined  by  cmbmessages.xsd) in  a SOAP  envelope  to perform  runtime  

operations  such  as  import,  export,  search,  create,  update,  retrieve,  delete,  

 

© Copyright  IBM Corp. 1996, 2005 429

|

|

|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|

|
|
|
|

|

|
|

|
|

|
|

|

|

|
|

|

|
|

|
|

|

|
|

|
|
|
|



and  document  routing.  The  Web services  automatically  wrap  and  extract  

the  XML  messages  in  the  SOAP  message,  and  send  them  to  the  XML  

messaging  JavaBean.  For  more  information  on  Web services,  see  

Chapter  12,  “Working  with  the  Web services,”  on  page  513  

JavaBeans  (XML)  

Reusable  Java  classes  based  on  the  DB2  Content  Manager  connector  XML  

APIs  and  the  DB2  Information  Integrator  for  Content  JavaBeans.  The  XML  

JavaBeans  perform  runtime  operations  such  as  import,  export,  search,  

create,  update,  retrieve,  delete,  and  document  routing.  In  particular,  the  

CMBXMLMessage  bean  parses  all  XML  messages  based  on  the  

cmbmessages.xsd  schema.  For  more  information  on  the  XML  JavaBeans  see  

“Programming  runtime  operations  through  the  XML  JavaBeans”  on  page  

461.  

Schema  mapping  utility  (XML)  

XML  conversion  tool  that  can  convert  a user-defined  schema  into  the  

storage  schema  that  DB2  Content  Manager  supports.  For  more  information  

on  the  schema  conversion  tool,  see  “Mapping  a user-defined  schema  to a 

storage  schema  with  the  XML  schema  mapping  tool”  on  page  458.  

DB2  Content  Manager  connector  (XML)  

XML  application  programming  interfaces  that  can  import  and  export  data  

model  metadata  objects,  administrative  metadata  objects,  and  data  instance  

objects.

 Figure  34  illustrates  how  these  Version  8 Release  3 XML  layers  relate  to  the  DB2  

Content  Manager  connector.  

 

 Figure  35  on  page  431  depicts  a real-world  scenario  for  communicating  with  DB2  

Content  Manager  through  its  XML  interface:  

 

  

Figure  34.  XML  services  programming  layers

 

 

430 Application  Programming Guide

|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|

|
|
|



1.   The  XYZ  insurance  company  defines  schemas  to hold  its  data,  using  

application  development  tools  like  WebSphere  Application  Developer  (WSAD)  

to  create  them.  The  company  also  chooses  to store  its  data  in  DB2  Content  

Manager  as  items.  

2.   In  an  effort  to  migrate  all  data  to DB2  Content  Manager,  the  XYZ  insurance  

company  uses  the  DB2  Content  Manager  XML  schema  mapping  tool  to  convert  

its  schema  to  ones  that  DB2  Content  Manager  can  parse,  i.e.,  the  storage  

schema.  

3.   The  XYZ  insurance  company,  through  the  XML  schema  mapping  tool,  creates  

the  data  model  definition  corresponding  to the  storage  schema;  then  stores  the  

schema  mapping  into  DB2  Content  Manager.  The  XML  schema  mapping  tool  

internally  invokes  the  ingest()  API  of the  XML  Services  to  create  the  data  model  

definition.  

4.   The  XYZ  insurance  company  writes  a custom  application  that  uses  Web service  

transactions  to  create,  retrieve,  update,  delete,  and  route  data  in  DB2  Content  

Manager.  The  Web services  layer  retrieves  the  schema  mapping  and  transforms  

the  data;  then  invokes  the  XML  beans  to perform  the  operation  that  manages  

data  in  the  DB2  Content  Manager.

Runtime Development Time

Applications

Web Services

XML
Services

DB2 Content
Manager Repository

XML
Services

XML Schema
Mapping Tool

XML Repository
Application

Development Tool

  

Figure  35.  XML  services  communication  flowchart

 

 

Chapter  11. Working  with XML services  (Java only) 431

|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|



Importing and exporting DB2 Content Manager metadata using XML 

services 

You can  import  and  export  two  types  of metadata  using  the  DB2  Content  Manager  

APIs:  

Administration  objects  

Contain  users,  user  groups,  resource  manager  configuration,  workflow,  

ACL  privileges,  and  the  Information  Integrator  for  Content  search  template  

and  server  configuration.  This  uses  an  XML  schema  called  cmadmin.xsd  

(located  in IBMCMROOT/config/) to  define  the  XML  files  containing  DB2  

Content  Manager  Version  8 administration  objects.  

Data  model  objects  

Define  the  structure  of  item  types,  component  types,  and  Information  

Integrator  for  Content  entities.  These  objects  are  stored  as  XSD  files  known  

as  storage  schemas.  Each  storage  schema  imports  a common  file  named  

cmdatamodel.xsd  (located  in IBMCMROOT/config).

By  representing  DB2  Content  Manager  metadata  as  intermediate  files,  you  can  

program  a number  of  scenarios:  

v   Customizing  an  application  to  administer  and  update  data  in  DB2  Content  

Manager  through  the  XML  interface.  

v    Transferring  metadata  from  one  DB2  Content  Manager  system  to another  DB2  

Content  Manager  system  (taking  into  consideration  any  data  conflicts).  

v   Transferring  entities,  search  templates  and  server  configuration  from  one  

Information  Integrator  for  Content  system  to another  Information  Integrator  for  

Content  system  (taking  into  consideration  any  data  conflicts).

These  scenarios  become  important  in  typical  business  situations  such  as:  

v   During  the  deployment  of your  content  management  application,  transferring  

metadata  from  a test  system  to  a production  system.  

v   During  the  extension  of  an  application  or  addition  of  a new  DB2  Content  

Manager  production  system,  transferring  specific  objects  between  development,  

test,  and  production  systems.  In  this  case,  the  existing  data  in  the  target  system  

is updated.  

v   During  troubleshooting  of a production  system,  transferring  specific  objects  from  

a production  system  to  a test  system  in  order  to  diagnose  the  problem.

The  XML  instance  service  class,  DKXMLSysAdminService,  contains  three  new  

Version  8 Release  3 methods  for  importing  and  exporting  DB2  Content  Manager  

metadata:  list(),  ingest(),  and  extract().  The  latter  two  methods  import  and  export  

storage  schemas  (XSD  files)  for  data  model  objects,  and  XML  files  for  

administration  objects  (using  the  pre-defined  cmadmin.xsd  schema).  

The  ingest()  and  extract()  methods  support  the  following  formats:  

XML  input  formats  

v   DKXMLStreamObjectDefs:  input  stream  

v   DKXMLDOMObjectDefs:  DOM

XML  output  formats  

v   DKXMLDOMObjectDefs:  DOM

DKXMLDOMObjectDefs  has  a method  to convert  the  DOM  object  into  an  

output  stream.

 

 

432 Application  Programming Guide

|
|

|

|
|

|
|
|
|
|
|

|
|
|
|
|

|
|

|
|

|
|

|
|
|

|

|
|

|
|
|
|

|
|

|
|
|
|
|

|

|

|

|

|

|

|
|



Additionally,  DKXMLSysAdminService  supports  the  following  ingest()  options:  

DK_CM_XML_IMPORT_CONTINUE_ON_ERROR  

If  you  OR  this  constant,  then  the  ingest()  method  imports  as much  object  

definitions  as  possible.  If  you  neither  specify  nor  OR  this  constant,  then  the  

import  process  aborts  on  any  error. 

DK_CM_XML_IMPORT_CREATE_UPDATE  

If  you  specify  this  constant,  then  the  ingest()  method  replaces  objects  that  

already  exist.  If  you  do  not  specify  this  constant,  then  the  import  fails  with  

an  error  for  any  object  definitions  that  already  exist.

The  DKXMLDOMObjectDefs  class  provides  two  methods,  getSysAdminDefs()  and  

getDataModelDefs(),  to  retrieve  the  exported  data  model  objects  (in  XML  Schema  

format)  and  administrative  objects  (in  XML  format)  separately.  The  

DKXMLExportList  class  can  specify  which  XML  objects  to export  (for  any  objects  

that  require  other  objects  to work,  see  “Importing  and  exporting  XML  object  

dependencies”  on  page  457).  

This  section  explains  the  following  tasks:  

v   “Importing  and  exporting  administration  objects  as  XML”  

v   “Importing  and  exporting  DB2  Content  Manager  data  model  objects  as  XML  

schema  files  (XSD)”  on  page  434  

v   “Unsupported  XML  types  in  the  DB2  Content  Manager  storage  schemas”  on  

page  453

Importing and exporting administration objects as XML 

The  XML  instance  service  class,  DKXMLSysAdminService,  contains  two  new  

Version  8 Release  3 methods  for  importing  and  exporting  DB2  Content  Manager  

metadata:  ingest()  and  extract().  These  methods  import  and  export  XML  files  for  

administration  objects  that  conform  to  the  cmadmin.xsd  schema.  

The  DKXMLDOMObjectDefs  class  provides  two  methods,  getSysAdminDefs()  and  

getDataModelDefs(),  to  retrieve  the  exported  data  model  objects  (in  XML  Schema  

format)  and  administrative  objects  (in  XML  format)  separately.  The  

DKXMLExportList  class  can  specify  which  XML  objects  to export.  

The  following  DB2  Content  Manager  system  administration  objects  (represented  by  

constants  in  the  com.ibm.mm.sdk.common.DKConstant  class)  can  be  converted  to  

and  from  XML:  

v   Administrative  domain  

v   Privilege  definitions  

v   Privilege  groups  

v   Privilege  sets  

v   Users  

v   User  Groups  

v   ACLs  

v   Library  server  configuration  

v   Library  server  language  definition  

v   Link  type  

v   MIME  type  

v   Semantic  type  

 

 

Chapter  11. Working  with XML services  (Java only) 433

|

|
|
|
|

|
|
|
|

|
|
|
|
|
|

|

|

|
|

|
|

|

|
|
|
|

|
|
|
|

|
|
|

|

|

|

|

|

|

|

|

|

|

|

|



v   XDO  class  

v   Resource  manager  objects  

v   Document  Routing  objects

The  following  DB2  Information  Integrator  for  Content  system  administration  

objects  can  be  converted  to and  from  XML:  

v   Server  definition  

v   Federated  entities  

v   Search  templates

The  exported  schema  for  a given  data  model  object  is semantically  equivalent  to 

the  imported  schema  which  creates  it. That  is,  by  exporting  and  importing  an  

object  from  one  system  to  another  system,  all  the  object  properties  should  be  the  

same  to  the  original  exported  one.  However,  the  exported  schema  document  and  

the  imported  schema  document  might  differ  in  syntax.  This  is because  of the  many  

different  ways  for  XML  Schema  to  represent  the  same  information.  

The  following  example  creates  a new  user  (Joshua)  and  a new  group  (XMLDev)  in 

the  DB2  Content  Manager  server:  

 

 

XML  example  

<?xml  version="1.0"  encoding="UTF-8"?>  

<CMSystemAdminDefinitions  

xmlns="http://www.ibm.com/xmlns/db2/cm/api/1.0/schema"  

xmlns:cm="http://www.ibm.com/xmlns/db2/cm/api/1.0/schema"  

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">  

<user  name="JOSHUA"  adminDomainName="SuperDomain"  

defaultRM="RMDB"  

defaultSMSColl="CBR.CLLCT001"  description="Regular  user"  

passwordExpiration="0"  userACL="PublicReadACL"  

userGrantPrivilegeSet="ClientUserReadOnly"  

userPrivilegeSet="AllPrivs">  

<userGroup  name="XMLDEV"/>  

</user>  

<userGroup  adminDomainName="PublicDomain"  

description="XML  Development"  name="XMLDEV"/>  

<groupData  groupName="XMLDEV">  

<user  userName="JOSHUA"/>  

</groupData>  

</CMSystemAdminDefinitions>  

Importing and exporting DB2 Content Manager data model 

objects as XML schema files (XSD) 

The  XML  instance  service  class,  DKXMLSysAdminService,  contains  two  new  

Version  8 Release  3 methods  for  importing  and  exporting  DB2  Content  Manager  

metadata:  ingest()  and  extract().  These  methods  import  and  export  storage  schemas  

(XSD  files)  for  data  model  objects.  

The  DKXMLDOMObjectDefs  class  provides  two  methods,  getSysAdminDefs()  and  

getDataModelDefs(),  to retrieve  the  exported  data  model  objects  (in  XML  Schema  

format)  and  administrative  objects  (in  XML  format)  separately.  The  

DKXMLExportList  class  can  specify  which  XML  objects  to export.  

Generally,  the  following  rules apply  when  your  storage  schema  is imported  into  

DB2  Content  Manager:  

 

 

434 Application  Programming Guide

|

|

|

|
|

|

|

|

|
|
|
|
|
|

|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||

|

|

|
|
|
|

|
|
|
|

|
|



v   A  root  element  declaration  (for  example,  an  insurance  policy)  is mapped  to  an  

XYZ_InsPolicy  item  type.  

<xsd:element  name="XYZ_InsPolicy">  

v   A  child  element  declaration  (for  example,  a vehicle  identification  number)  is 

mapped  to  an  XYZ_VIN  component  type  under  the  corresponding  parent  

component  type  (in  this  example,  the  XYZ_InsPolicy  root  component  type).  

<xsd:element  maxOccurs="unbounded"  minOccurs="0"  name="XYZ_VIN">  

v   An  attribute  inside  of  an  element  declaration  is mapped  to  an  attribute  in  the  

corresponding  component  (for  example,  a policy’s  ID  number  attribute  maps  to  

an  XYZ_PolicyNum  attribute  in  the  policy  item  type).  

<xsd:attribute  name="XYZ_PolicyNum">  

The  following  example  shows  a sample  storage  schema  (XSD)  snippet  for  the  XYZ  

Insurance  policy  item  type:  

 

 

XML  schema  

<?xml  version="1.0"  encoding="UTF-8"?>  

<xsd:schema  xmlns:cm="http://www.ibm.com/xmlns/db2/cm/api/1.0/schema"  

xmlns:xsd="http://www.w3.org/2001/XMLSchema"  

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">  

<xsd:import  namespace="http://www.ibm.com/xmlns/db2/cm/api/1.0/schema"  

schemaLocation="cmdatamodel.xsd"/>  

<xsd:attribute  name="XYZ_VIN"><xsd:annotation><xsd:appinfo>  

  <cm:description  value="Vehicle  Identification  Number  (Content  

  Manager  Sample  Attribute)"  xsi:lang="ENU"/><cm:stringType  

  value="OTHER"/></xsd:appinfo></xsd:annotation><xsd:simpleType>  

  <xsd:restriction  base="xsd:string"><xsd:length  value="17"/>  

  </xsd:restriction></xsd:simpleType></xsd:attribute>  

<xsd:attribute  name="XYZ_InsrdLName">...</xsd:attribute>  

<xsd:attribute  name="XYZ_InsrdFName">...</xsd:attribute>  

<xsd:attribute  name="XYZ_ZIPCode">...</xsd:attribute>  

<xsd:attribute  name="XYZ_City">...</xsd:attribute>  

<xsd:attribute  name="XYZ_State">...</xsd:attribute>  

<xsd:attribute  name="XYZ_Street">...</xsd:attribute>  

<xsd:attribute  name="XYZ_PolicyNum">...</xsd:attribute>  

<xsd:element  name="XYZ_InsPolicy"><xsd:annotation><xsd:appinfo>  

  <cm:description  value="Insurance  Policy  (Content  Manager  Sample  

  Item  Type)"  xsi:lang="ENU"/><cm:ACL  name="XYZInsurancePolicyACL"/>  

  <cm:versionPolicy  value="ALWAYS"/><cm:maximumVersions  value="10"/>  

  <cm:entityType  value="DOCUMENT"/><cm:itemRetention  unit="YEAR"  

  value="0"/><cm:itemACLBinding  flag="0"/><cm:itemEventFlag  value=  

  "0"/><cm:accessModule  name="DUMMY"  status="0"  version="0"/><cm:  

  previousAccessModule  value="DUMMY"/></xsd:appinfo></xsd:annotation>  

  <xsd:complexType><xsd:sequence>  

  <xsd:element  maxOccurs="1"  minOccurs="0"  ref="cm:properties"/>  

  <xsd:element  maxOccurs="1"  minOccurs="0"  ref="cm:links"/>  

  <xsd:element  maxOccurs="unbounded"  minOccurs="0"  name="XYZ_Insured">  

    ...</xsd:element><xsd:element  maxOccurs="unbounded"  minOccurs="0"  

  name="XYZ_VIN">...</xsd:element><xsd:element  maxOccurs="unbounded"  

  minOccurs="0"  ref="ICMBASE">...</xsd:element><xsd:element  

  maxOccurs="unbounded"  minOccurs="0"  ref="ICMBASETEXT">...  

  </xsd:element><xsd:element  maxOccurs="unbounded"  minOccurs="0"  ref=  

  "ICMNOTELOG">...</xsd:element></xsd:sequence>...</xsd:complexType>  

</xsd:element>  

<xsd:element  name="ICMBASETEXT">...</xsd:element>  

<xsd:element  name="ICMNOTELOG">...</xsd:element>  

</xsd:schema>  

 The  exported  schema  for  a given  data  model  object  is semantically  equivalent  to  

the  imported  schema  which  creates  it.  That  is,  by  exporting  and  importing  an  

 

 

Chapter  11. Working  with XML services  (Java only) 435

|
|

|

|
|
|

|

|
|
|

|

|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||

|
|



object  from  one  system  to  another  system,  all  the  object  properties  should  be  the  

same  to  the  original  exported  one.  However,  the  exported  schema  document  and  

the  imported  schema  document  might  differ  in  syntax.  This  is because  of the  many  

different  ways  for  XML  Schema  to  represent  the  same  information.  

DB2  Content  Manager  defines  the  storage  schema  using  the  following  steps:  

1.   DB2  Content  Manager  attempts  to  map  any  available  construct  or  feature  in  the  

XML  schema  to  a DB2  Content  Manager  data  model  concept,  as shown  in 

Table 44.  

2.   If  no  DB2  Content  Manager  concept  directly  corresponds  to  the  XML  schema,  

then  the  concept  is instead  represented  by  a comment  (also  known  as  an  XML  

annotation)  as  shown  in  Table 45  on  page  443.  

3.   DB2  Content  Manager  instances  (for  example,  item-level  ACLs  and  semantic  

types)  are  represented  as XML  elements  (in  the  DB2  Content  Manager  

namespace)  imported  from  the  cmdatamodel.xsd  file.  This  is shown  in Table 45  

on  page  443.

 Table 44.  How  DB2  Content  Manager  data  model  objects  map  to the  storage  schema  constructs  

Object  Data  type  Required  Corresponding  storage  schema  construct  Comments  

Attributes  (global)  This  represents  an XML  attribute  in XML  

schema.  For  example:  <attribute  name=″..″ 

type=″..″/> It is a global  attribute  declaration.  

Local  attribute  are  described  in the  component  

type  section.  

-Name  string  Yes This  represents  an attribute  name  in the  

attribute  declaration.  For  example:  <attribute  

name=″XX″ type=″..″/> 

-Type (possible  

type  as follows)  

short  Yes This  either  maps  to the  built-in  primitive  and  

derived  types,  or with  annotation.  

The  attribute’s  type  

is character, var  char, 

short,  long,  etc. 

--Character:  This  represents  the  derived  string  simple  type  

definition  with  the minLength  and  maxLength  

constraints.  For  example:  <simpleType  

name=″char_100″> 

<restriction  base=″string″> 

<length  value=″100″ />  

</restriction>  

</simpleType>  

Note  that  minLength  and  maxLength  must  be 

the  same.  There  is one  simple  type  definition  

per  each  attribute  type  instance  with  different  

length.  The  simpleType  is tied  to the  attribute  

declaration  in the export  file.  During  import,  

the  simpleType  definition  can  be declared  

globally  or inside  the attribute  declaration.  The  

same  definition  can  be re-used.  Since  the  same  

attribute  can  exist  in different  item  or 

components  with  different  properties  (such  as 

length,  nullable),  it may  not  be possible  to 

reference  the  global  attribute  declaration.  As a 

result,  the  component  has  its own  local  

attribute  declaration.  During  the import,  the  

XML  Services  API  compares  the  definition  and  

check  whether  there  is any  conflict.  

The  length  can  be 

specified.  

--alphabetic  

 

 

436 Application  Programming Guide

|
|
|
|

|

|
|
|

|
|
|

|
|
|
|

||

|||||

||||
|
|
|
|

|

||||
|
|

|

|
|
|||
|
|
|
|

||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|||||



Table 44.  How  DB2  Content  Manager  data  model  objects  map  to the storage  schema  constructs  (continued)  

Object  Data  type  Required  Corresponding  storage  schema  construct  Comments  

--numeric  

--alphanumeric  

--Extended  

alphanumeric  

--other  

-Variable  character  This  represents  the  derived  string  simple  type  

definition  with  the  minLength  and  maxLength  

constraints.  For  example,  <simpleType  

name=″varchar_0,256″> 

<restriction  base=’string’>  

<minLength  value=″0″/> 

<maxLength  value=″256″/>  

</restriction>  

</simpleType>  

The  minimum  and  

max  length  can  be 

specified.  

--alphabetic  

--numeric  

--alphanumeric  

--Extended  

alphanumeric  

--other  

-Short  integer  This  represents  the  short  built-in  derived  type.  This  is a specific  min  

and  max  value.  

-Long  integer  This  represents  the  integer  built-in  derived  

type.  

This  is a specific  min  

and  max  value.  

-Double  This  represents  the  double  built-in  primitive  

type.  

-Decimal  This  represents  the  decimal  built-in  primitive  

type.  

This  is a specific  

length  and  fixed  

places.  

-Date  This  represents  the  date  built-in  primitive  type  

with  facet  value  conversion  (convert  into  the  

facet  format  which  is understood  by  Content  

Manager  and  DB2).  

-Time  This  represents  the  time  built-in  primitive  

type.  

-Timestamp  This  represents  the  dateTime  built-in  primitive  

type  with  facet  value  conversion.  

-BLOB  A regular  string  simple  type  with  a CM  

meta-attribute  namespace.  For example:  

<attribute  name=″..″ type=″base64Binary″> 

<annotation><appinfo>  

<CM:dataType  value=″BLOB″/> 

</appinfo>  

</annotation>  

</attribute>  

The  length  can be 

specified.  

 

 

Chapter  11. Working  with XML services  (Java only) 437

|

|||||

|||||

|||||

|
|
||||

|||||

||||
|
|
|
|
|
|
|
|

|
|
|

|||||

|||||

|||||

|
|
||||

|||||

|||||
|

||||
|
|
|

||||
|
|

||||
|
|
|
|

||||
|
|
|

|

||||
|
|

||||
|
|

||||
|
|
|
|
|
|
|

|
|



Table 44.  How  DB2  Content  Manager  data  model  objects  map  to the  storage  schema  constructs  (continued)  

Object  Data  type  Required  Corresponding  storage  schema  construct  Comments  

-CLOB  This  maps  to a regular  string  simple  type  with  

a CM meta-attribute  namespace.  For  example:  

<attribute  name=″...″ type=″string″> 

<annotation><appinfo>  

<CM:datatype  value=″CLOB″/> 

</appinfo></annotation>  

</attribute>  

The  length  can  be 

specified.  

-max  integer  The  maxInclusive  element  in the  dervied  

simple  type  definition.  For  example:  

<simpleType  name=’integer_max100’>  

<restriction  base=’integer’>  

<maxInclusive  value=″100″/>  </restriction>  

</simpleType>  

This  will create  a new  type.  DB2  Content  

Manager  associates  a property  with  the  

attribute.  

This  is only  for short  

and  integer.  

-min  integer  The  minInclusive  element  in the  derived  

simple  type  definition.  For  example:  

<simpleType  name=’integer_min10’  > 

<restriction  base=’integer’>  

<minInclusive  value=″10″ />  

</restriction>  

</simpleType>  

This  is only  for short  

and  integer.  

-length  integer  The  length  element  in the derived  simple  type  

definition.  For  example:  <simpleType  

name=’char_256’>  

<restriction  base=″string″> 

<length  value=″256″/>  

</restriction>  

</simpleType>  

-scale/precision  integer  The  fractionDigits  and  totalDigits  elements  in 

the  derived  simple  type  definition.  For 

example:  <simpleType  name=’decimal_8,3’>  

<restriction  base=’decimal’>  

<fractionDigits  value=″3″/> 

<totalDigits  value=″8″/> 

</restriction>  

</simpleType>  

This  is only  for 

decimal.  

Attribute  groups  

(global)  

The  attributeGroup  element  in the  XSD.  For  

example:  <xs:attributeGroup  

name=″myAttrGrp″> <xs:attribute  .../>  

... 

</xs:attributeGroup>  

-Name  string  Yes The  name  attribute  in the attributeGroup  

element.  For  example:  <xs:attributeGroup  

name=″myAttrGrp″> <xs:attribute  .../>  

... 

</xs:attributeGroup>  

 

 

438 Application  Programming Guide

|

|||||

||||
|
|
|
|
|
|

|
|

||||
|
|
|
|
|
|
|
|

|
|

||||
|
|
|
|
|
|

|
|

||||
|
|
|
|
|
|

|

||||
|
|
|
|
|
|
|

|
|

|
|
|||
|
|
|
|

|

||||
|
|
|
|

|



Table 44.  How  DB2  Content  Manager  data  model  objects  map  to the storage  schema  constructs  (continued)  

Object  Data  type  Required  Corresponding  storage  schema  construct  Comments  

-Attributes  array  of 

string  

yes  The  child  elements  of the  attributeGroup  

element.  For example,  <xs:attributeGroup  

name=″myAttrGrp″>  <xs:attribute  .../>  

... 

</xs:attributeGroup>  

The  attribute  name  will  have  the attribute  

group  name  as the  prefix.  This  is consistent  

with  how  it is done  in the CM.  For  the  data  

instance,  the  attribute  name  is the  combination  

of both  the  attribute  group  name  and  the 

attribute  name.  For  example,  

myAttrGrp.myStringAttr. 

The  is the  array  of 

attribute  names.  

Reference  

attribute  

This  maps  to a string  attribute  with  a specific  

XML  schema  annotation.  

In the  CM  data  model,  reference  attribute  is 

mapped  to an attribute  group  definition  

because  it comes  with  few  internal  attributes;  

however,  it does  not  match  the  data  model.  So 

instead  of modeling  it as an attributeGroup  in 

XSD,  you  map  it to a regular  attribute.  

-Name  string  yes  Maps  to the  attribute  name.  

Item  Type: 

definition  

A global  element  definition,  with  xs:schema  

element  as the  parent.  For  example:  

<xs:schema  ....>  

<xs:element  name=″elem1″> 

.... 

</xs:element>  

</xs:schema>  

It also  has  a similar  XML  Schema  structure  as 

the ″Component  Type Definition″ because  an 

item  type  is a component  type  based  on the  

DB2  Content  Manager  data  model.  

-Name  string  yes  The  name  attribute  in the  xs:element  

declaration.  For example:  <xs:schema  ....>  

<xs:element  name=″elem1″> 

.... 

</xs:element>  

</xs:schema>  

-Properties  Add  an optional  element  definition  right  

under  the  root  element  for describing  any  

instance-level  property.  It will refer  the  

element  defined  in the cmdatamodel.xsd  

schema  file.  For  example:  <element  

ref=″cm:properties″ minOccurs=″0″  

maxOccurs=″unbounded″> 

Use  in the  item  

instance  to describe  

any  instance-level  

properties  associated  

with  the  item,  such  

as semantic  type,  

ACL,  creation  time,  

etc.  

-Resource  Object  Add  an optional  element  definition  right  

under  the  root  element  for describing  any  

resource  content  associated  with  the  item.  It 

will  refer  the  element  defined  in the  

cmdatamodel.xsd  schema  file.  This  element  

reference  exists  only  if the element  definition  

is describing  a resource  item  type  or a part  

item  type.  <element  ref=″cm:resourceObj″ 

minOccurs=″0″ maxOccurs=″unbounded″> 

Use  in the  item  

instance  to describe  

any  resource  content  

associated  with  the 

item.  

 

 

Chapter  11. Working  with XML services  (Java only) 439

|

|||||

||
|
||
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|||
|
|
|
|
|
|
|

|

|||||

|
|
|||
|
|
|
|
|
|
|
|
|
|

|

||||
|
|
|
|
|

|

||||
|
|
|
|
|
|

|
|
|
|
|
|
|
|

||||
|
|
|
|
|
|
|
|

|
|
|
|
|



Table 44.  How  DB2  Content  Manager  data  model  objects  map  to the  storage  schema  constructs  (continued)  

Object  Data  type  Required  Corresponding  storage  schema  construct  Comments  

-Embedded  Link  

object  

Add  an optional  element  definition  right  

under  the  root  element  for describing  any  

inbound  and  outbound  links  in the  instance  

level.  It will  refer  the element  defined  in the  

cmdatamodel.xsd  schema  file.  This  element  

reference  exists  only  if the element  definition  

is describing  an item  type,  a resource  item  

type  or a document  item  type.  <element  

ref=″cm:links″ minOccurs=″0″ 

maxOccurs=″unbounded″> 

Use  in the  item  

instance  to describe  

all the inbound  and  

outbound  links.  

Item  type  

classification  

v   Non-resource  

item  

v   Resource  item  

v   Document  item  

type  

short  Represents  the  item,  

resource  item,  

document,  or 

document  part.
Use  the  

ItemTypeRelation  

DefICM  to represent  

relationships  to the  

part.  

-Part  type  name  string,int  Add  an optional  element  under  the  root  

element  to reference  the  defined  PART element  

declaration.  For  example:  <element  

ref=″cm:ICMBASE″ minOccurs=″0″ 

maxOccurs=″unbounded″> 

The  part  element  definition  will  have  the  

<cm:referencedOnly>  annotation  element  if the 

part  item  type  is not  part  of the  export  list.  

-Text searchable  

/option  

-ACL  name  string,int  

-RM  name  string,short  

-SMS  coll  name  string,short  

-New  version  

policy  

short  This  never  creates,  

always  creates  or the 

user  chooses  

4. Document  part  

type  

This  represents  a root  element  declaration  (an 

item  type).  Such  root  element  can  only  be 

referred  by a document  type.  No XML  

instance  can  be based  on this  document  type.  

Component  Type: This  maps  to an element  declaration  in XML  

schema.  If the  definition  exists  in a standalone  

fashion  (it means  it does  not  associate  with  

any  itemType),  it maps  to a root  element  

declaration  in the XML  schema  with  a 

cm:entityType  element  with  

value=″component″. Mostly  non-root  

element--children  of another  element.  This  

would  be root  element  if there  is no item  type  

definition  it corresponds  to. This  accepts  only  

″sequence″ , but  not  ″all″,  ″choice″ and  nested  

particle.  The  DB2  Content  Manager  data  

model  does  not  track  the instance  order.  

 

 

440 Application  Programming Guide

|

|||||

|
|
|||
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|

|
|

|

|
|

||||
|
|
|
|
|
|
|
|

||||
|
|
|
|
|
|
|

|

|
|
||||

|||||

|||||

|||||

|
|
||||
|
|

|
|
|||
|
|
|

|

||||
|
|
|
|
|
|
|
|
|
|
|
|

|



Table 44.  How  DB2  Content  Manager  data  model  objects  map  to the storage  schema  constructs  (continued)  

Object  Data  type  Required  Corresponding  storage  schema  construct  Comments  

-Attribute  groups  This  maps  to XSD  attribute  group  definition  

with  ″ref=″ to the  global  attribute  group  

definition.  

The  global  attribute  group  definition  will have  

the name:  <component  type  name>.<attribute  

group  name>.  The  global  attribute  group  

definition  has  the <cm:referencedOnly>  

annotation  element  to distinguish  it from  the  

exported  global  attribute  group.  

-Reference  

attributes  

This  maps  to XSD  attribute  use.  It has  the  

same  local  definition  as the  global  reference  

attribute  definition.  

-Attributes  This  maps  to XSD  attribute  use.  The  local  

attribute  has  its own  type  definition  and  

annotation.  It will  use all the  type  definition  

and  annotations  described  in the global  

attribute,  which  applies  to local.  

-Is  required  boolean  This  represents  the  used  attribute  name  in the  

attribute  declaration.  For  example:  

<xsd:attribute  name=″..″ use=″required″ .../>  

Here  is how  you  map  the  value  of nullable  

attribute  to the  ″use″  and  ″default″ attribute.  

″nullable  -->  use=″optional″ 

″non-nullable  w/o  default  --> use=″required″ 

″non-nullable  w/  default  --> use=″optional″ 

default=″X″ 

-Max  value  integer  This  defines  a new  simpleType  with  a new  

max  value,  such  as the  maxInclusive  element  

in the  derived  simple  type  definition.  For  

example:  <simpleType  

name=’integer_max100’>  <restriction  

base=’integer’>  

<maxInclusive  value=″100″/>  </restriction>  

</simpleType>  

-Min  value  integer  This  represents  the  minInclusive  element  in 

the derived  simple  type  definition.  For  

example:  <simpleType  name=’integer_min10’>  

<restriction  base=’integer’>  

<minInclusive  value=″10″/>  

</restriction>  

</simpleType>  

-Default  value  string  This  represents  the  default  attribute  in the 

attribute  declaration.  For  example:  

<xsd:attribute  name=″..″ default  =″10″  ... />  

Sub-components  / 

child  components  

This  maps  to a child  element  declaration  

(using  sequence)  with  the min  and  max  

occurrence  of a child  component  mapped  to 

the minOccur  and  maxOccur  of the element  

declaration.  

 

 

Chapter  11. Working  with XML services  (Java only) 441

|

|||||

||||
|
|
|
|
|
|
|
|

|

|
|
|||
|
|

|

||||
|
|
|
|

|

||||
|
|
|
|
|
|
|
|

|

||||
|
|
|
|
|
|
|

|

||||
|
|
|
|
|
|

|

||||
|
|

|

|
|
|||
|
|
|
|

|



Table 44.  How  DB2  Content  Manager  data  model  objects  map  to the  storage  schema  constructs  (continued)  

Object  Data  type  Required  Corresponding  storage  schema  construct  Comments  

Item  Type View:  This  maps  to a root  element  definition.  The  

item  type  view  definition  shares  the  same  

definition  as item  type  definition  with  only  the 

annotations  marked  with  scope  = ″VIEW″. It 

also  inherits  the  definition  of the  component  

type  view  because  an item  type  view  itself  is a 

component  type  view. 

This  performs  

projection,  not  

selection.  

Component  Type 

View:  

This  maps  to a child  element  definition  of the  

item  type  view  definition.  

It will have  the same  hierarchy  structure  as 

component  type  definition.  For  example  it 

contains  attributes,  attribute  groups  and  

sub-components.  

This  performs  

projection,  not  

selection.  

-Attributes  Use  the same  representation  as the regular  

attribute  definition  in component  type.  

Federated  entity  This  maps  to a root  element  definition  

Since  this  is a federated  entity,  it cannot  

contain  any  sub-element.  Such  entity  

definitions  can  only  be created  through  the 

Federated  connector.  

-name  string  yes  The  name  attribute  in the xs:element  

declaration.  For  example:  <xs:schema  ....>  

<xs:element  name=″elem1″> 

<xs:annotation><xs:appinfo>  

<xs:entityType  value=″federated″/> 

</xs:appinfo></xs:annotation>  

.... 

</xs:element>  

</xs:schema>  

-Text searchable  boolean  

-Enabled  creating  

the  native  

federated  folder  

boolean  

-Attribute:  This  maps  to an XSD  attribute  declaration  

within  the  element.  

--name  string  The  name  attribute  in the xs:attribute  

declaration.  For  example:  <xs:schema  ....>  

<xs:element  name=″elem1″> 

<xs:annotation><xs:appinfo>  

<xs:entityType  value=″federated″/> 

</xs:appinfo></xs:annotation>  

<xs:complexType>  

<xs:attribute  name=″attr1″...> 

.... 

</xs:element>  

</xs:schema>  

 

 

442 Application  Programming Guide

|

|||||

||||
|
|
|
|
|
|

|
|
|

|
|
|||
|
|
|
|
|

|
|
|

||||
|
|

||||
|
|
|
|

|

||||
|
|
|
|
|
|
|
|

|

|||||

|
|
|

||||

||||
|
|

||||
|
|
|
|
|
|
|
|
|
|

|



Table 44.  How  DB2  Content  Manager  data  model  objects  map  to the storage  schema  constructs  (continued)  

Object  Data  type  Required  Corresponding  storage  schema  construct  Comments  

--datatype  and  

other  attribute  

information,  such  

as length,  

precision,  scale,  

max,  min,  

nullable,  

queryable,  

writeable  

Use  the same  definition  as in the  attribute  

category,  but some  representation  will  not  be 

there  (such  as the  text-searchable  information).  

-Fed  entity  name  string  

-Fed  attr  name  string  

-Native  server  

name  

string  

-Native  server  

type  

string  

-Native  entity  

name  

string  

  

For  Table  45,  the  Scope  of  the  annotation  can  have  the  following  definitions:  

GLOBAL  

The  annotation  applies  if the  property  belongs  to  a global  definition  or  

declaration.  

LOCAL  

The  annotation  applies  if the  property  belongs  to  a local  declaration.  

VIEW  The  annotation  applies  only  if the  property  belongs  to a declaration  which  

is part  of  the  ITEM  TYPE  VIEW.

 Table 45.  How  DB2  Content  Manager  data  model  objects  map  to annotations  in the storage  schema  

Object  Information  specified  in annotation  

Scope  of the  

annotation  Instance-level  information  

Attributes  (global)  

-Type (possible  

type  as follows)  

--Character:  

--alphabetic  You use  the  element  cm:stringType  

with  a value  attribute  in 

enumeration  type  {ALPHA,  

NUMERIC,  ALPHANUMERIC,  

ALPHANUMERIC_EXT,  OTHER},  to 

represent  the  value.  Putting  the  

pattern  element  will  be  optional.  In 

this  case,  <cm:stringType  

value=″ALPHA″/> 

GLOBAL,  

LOCAL,  

VIEW  

--numeric  <cm:stringType  

value=″NUMERIC″/>  

GLOBAL,  

LOCAL,  

VIEW  

--alphanumeric  <cm:stringType  

value=″ALPHANUMERIC″/> 

GLOBAL,  

LOCAL,  

VIEW  

 

 

Chapter  11. Working  with XML services  (Java only) 443

|

|||||

|
|
|
|
|
|
|
|
|

|||
|
|

|

|||||

|||||

|
|
||||

|
|
||||

|
|
||||

|

|

|
|
|

|
|

||
|

||

||
|
||

||||

|
|
|||

||||

||
|
|
|
|
|
|
|
|

|
|
|

|

||
|
|
|
|

|

||
|
|
|
|

|



Table 45.  How  DB2  Content  Manager  data  model  objects  map  to annotations  in the  storage  schema  (continued)  

Object  Information  specified  in annotation  

Scope  of the  

annotation  Instance-level  information  

--Extended  

alphanumeric  

<cm:stringType  

value=″ALPHANUMERIC_EXT″/> 

GLOBAL,  

LOCAL,  

VIEW  

--other  <cm:stringType  value=″OTHER″/> GLOBAL,  

LOCAL,  

VIEW  

-Variable  character  

--alphabetic  Same  as in the  Character  case  

<cm:stringType  value=″ALPHA″/> 

GLOBAL,  

LOCAL,  

VIEW  

--numeric  <cm:stringType  

value=″NUMERIC″/>  

GLOBAL,  

LOCAL,  

VIEW  

--alphanumeric  <cm:stringType  

value=″ALPHANUMERIC″/> 

GLOBAL,  

LOCAL,  

VIEW  

--Extended  

alphanumeric  

<cm:stringType  

value=″ALPHANUMERIC_EXT″/> 

GLOBAL,  

LOCAL,  

VIEW  

--other  <cm:stringType  value=″OTHER″/> GLOBAL,  

LOCAL,  

VIEW  

-Short  integer  

-Long  integer  

-Double  

-Decimal  

-Date  

-Time  

-Timestamp  

-BLOB  <CM:dataType  value=″BLOB″/> GLOBAL,  

LOCAL,  

VIEW  

-CLOB  <CM:dataType  value=″CLOB″/> GLOBAL,  

LOCAL,  

VIEW  

-max  

-min  

-length  

-scale/precision  

-Description  w/  

lang  code  

cm:description  element  with  a value  

attribute  and  xsi:lang  attribute  (to 

indicate  which  language  it belongs  

to).  

GLOBAL  

Attribute  groups  

(global)  

-Name  

 

 

444 Application  Programming Guide

|

||
|
||

|
|
|
|
|
|
|

|

|||
|
|

|

||||

||
|
|
|
|

|

||
|
|
|
|

|

||
|
|
|
|

|

|
|
|
|
|
|
|

|

|||
|
|

|

||||

||||

||||

||||

||||

||||

||||

|||
|
|

|

|||
|
|

|

||||

||||

||||

||||

|
|
|
|
|
|

||

|
|
|||

||||



Table 45.  How  DB2  Content  Manager  data  model  objects  map  to annotations  in the storage  schema  (continued)  

Object  Information  specified  in annotation  

Scope  of the  

annotation  Instance-level  information  

-Attributes  

-Description  w/  

lang  code  

cm:description  element  with  a value  

attribute  and  xsi:lang  attribute  (to 

indicate  which  language  it belongs  

to).  

GLOBAL  

Reference  

attribute  

Indicated  by  an annotation  element,  

cm:referenceAttribute  with  the  

following  attributes:  

GLOBAL,  

LOCAL,  

VIEW  

-Name  

-Reference  delete  

rule  

{cm:referenceAttribute}  

cm:deleteRule=<string>  in 

enumeration  type  {NO_ACTION,  

SET_NULL,  CASCADE,  RESTRICT.  

GLOBAL,  

LOCAL,  

VIEW  

-Reference  

sequence  number  

{cm:referenceAttribute}  

cm:sequenceNumber=<short>  

GLOBAL,  

LOCAL,  

VIEW  

-Description  w/  

lang  code  

cm:description  element  with  a value  

attribute  and  xsi:lang  attribute  (to 

indicate  which  language  it belongs  

to).  

GLOBAL  

Item  Type: 

definition  

-Name  

-Description  w/  

lang  code  

cm:description  element  with  a value  

attribute  and  xsi:lang  attribute  (to 

indicate  which  language  it belongs  

to).  

GLOBAL  

-New  version  

policy  

cm:versionPolicy  element  with  a 

value  attribute  in enumeration  type  

{NEVER,  ALWAYS, 

BY_APPLICATION}.  

GLOBAL  

-Maximum  total  

versions  

cm:maximumVersions  element  with  a 

value  attribute.  

GLOBAL  

-Properties  The  cmdatamodel.xsd  file contains  the 

definition  of the properties.  

-Resource  Object  The  cmdatamodel.xsd3  file contains  the 

definition  of the resourceObj.  

 

 

Chapter  11. Working  with XML services  (Java only) 445

|

||
|
||

||||

|
|
|
|
|
|

||

|
|
|
|
|

|
|
|

|

||||

|
|
|
|
|
|

|
|
|

|

|
|
|
|
|
|
|

|

|
|
|
|
|
|

||

|
|
|||

||||

|
|
|
|
|
|

||

|
|
|
|
|
|

||

|
|
|
|
||

||||
|

||||
|



Table 45.  How  DB2  Content  Manager  data  model  objects  map  to annotations  in the  storage  schema  (continued)  

Object  Information  specified  in annotation  

Scope  of the  

annotation  Instance-level  information  

-Embedded  Link  

object  

The  cmdatamodel.xsd  file contains  the 

definition  of the links,  which  is <element  

name=″links″> 

<complexType>  

<sequence>  

<element  name=″outbound″ 

minOccurs=″0″ maxOccurs=″unbounded″> 

<complexType>  

<attribute  name=″toitem″ type=″string″/> 

<attribute  name=″linktype″ 

type=″string″/> 

<attribute  name=″linkitem″ 

type=″string″/> 

</complexType>  

</element>  

<element  name=″inbound″ minOccurs=″0″ 

maxOccurs=″unbounded″> 

<complexType>  

<attribute  name=″fromitem″ 

type=″string″/> 

<attribute  name=″linktype″ 

type=″string″/> 

<attribute  name=″linkinfoitem″ 

type=″string″/> 

</complexType>  

</element>  

</complexType>  

</element>  

Note  that  this  will  be part  of the  

pre-defined  DB2  Content  Manager  schema  

file,  cmdatamodel.xsd,  to be imported.  

Item  type  

classification  

Implied  by  the  following  elements:  

1. Non-resource  

item  

If cm:entityType  does  not  exist  or 

cm:entityType=″ITEM″. 

GLOBAL,  

VIEW  

2. Resource  item  

(includes  the  

following  info  ) 

A cm:entityType  element  with  the 

value=″RESOURCEITEM″ to indicate  

this  is a resource  item  type.  Also  

there  should  be a 

cm:resourceItemInfo  element  with  

the  following  attributes/elements.  

GLOBAL,  

VIEW  

-XDO  class  name  {cm:resourceItemInfo}  a cm:name  

attribute  in the  cm:XDOClass  child  

element  of cm:resourceItemInfo  

element.  

GLOBAL  

-Text Searchable  {cm:resourceItemInfo}  a 

cm:textSearchable  element,  with  a 

value  attribute  in boolean  type.  

GLOBAL  

 

 

446 Application  Programming Guide

|

||
|
||

|
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|||

|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|

|
|
|

||
|
|
|

||

||
|
|

||



Table 45.  How  DB2  Content  Manager  data  model  objects  map  to annotations  in the storage  schema  (continued)  

Object  Information  specified  in annotation  

Scope  of the  

annotation  Instance-level  information  

-Text Index  Info  {cm:resourceItemInfo}  same  set of 

attributes  in the  cm:textIndexInfo  

element  as the  text  information  in 

the  attribute  declaration.  But  in this  

case,  it will  be in the  item  type  level  

and  the  element  will  be a child  

element  of cm:resourceItemInfo.  

GLOBAL  

-RM  name  {cm:resourceItemInfo}  cm:RM  child  

element  of cm:resourceItemInfo  

element  with  name  and  attributes.  

GLOBAL  

-SMS  coll  name  {cm:resourceItemInfo}  

cm:SMSCollection  child  element  of 

cm:resourceItemInfo  element  with  

name  attributes.  

GLOBAL  

-Prefetch  coll  name  {cm:resourceItemInfo}  

cm:prefetchCollection  element  with  

name  and  attributes.  

GLOBAL  

-an  embedded  

binary  object  (used  

in  the  instance  

level)  

The  cmdatamodel.xsd  contains  the 

definition  of the resourceObject,  which  is  

<element  name=″cm:resourceObject″> 

<complexType>  

<choice>  

<element  name=″content″> 

<complexType>  

<attribute  name=″value″ 

type=″base64Binary″/> 

</complexType>  

</element>  

<element  name=″url″>  

<complexType>  

<attribute  name=″value″ type=″anyURI″/> 

</complexType>  

</element>  

</complexType>  

</element>  

Note  that  the  type  would  be either  

″base64Binary″ or ″hexBinary″.  This  will  

be part  of the  pre-defined  DB2  Content  

Manager  schema  file,  cmdatamodel.xsd,  to 

be imported.  

3.  Document  item  

type  (includes  the  

following  info  ) 

A cm:entityType  element  with  the  

value=″DOCUMENT″ to indicate  this  

element  declaration  is a document  

type.  

GLOBAL,  

VIEW  

There  are  several  pre-defined  ICMPARTs ( 

ICMANNOTATION,  ICMBASE,  

ICMBASETEXT,  ICMBASESTREAM,  

ICMNOTELOG).  They  will  be handled  or 

represented  similar  to the  regular  user  

part,  which  will be part  of the schema  file.  

-Part  type  name  

-Text searchable  

/option  

Same  case  as in the  resource  item  

type  definition,  having  the  same  

cm:textsearchable  and  

cm:textIndexInfo  elements  under  the  

cm:resourceItemInfo  element.  

GLOBAL  

 

 

Chapter  11. Working  with XML services  (Java only) 447

|

||
|
||

||
|
|
|
|
|
|

||

||
|
|

||

||
|
|
|

||

||
|
|

||

|
|
|
|

|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|

|
|
|
|
|
|
|
|

||||

|
|
|
|
|
|
|

||



Table 45.  How  DB2  Content  Manager  data  model  objects  map  to annotations  in the  storage  schema  (continued)  

Object  Information  specified  in annotation  

Scope  of the  

annotation  Instance-level  information  

-ACL  name  cm:ACL  element  with  name  and  

attributes  under  the  referenced  

element.  For  example:  <element  

ref=″cm:ICMBASE″ ...> 

<xsd:annotation>  

<xsd:appinfo>  

<cm:ACL  name=″...″/>  

GLOBAL  

-RM  name  cm:RM  element  with  name  and  

attributes  under  the  reference  

element  name.  

GLOBAL  

-SMS  coll  name  cm:SMSCollection  element  with  

name  and  attributes  under  the  

reference  element  name.  

GLOBAL  

-New  version  

policy  

cm:versionPolicy  element  name  with  

a value  attribute  in enumeration  type  

{NEVER,  ALWAYS, 

BY_APPLICATION}.  

GLOBAL  

4. Document  part  

type  

A cm:entityType  element  with  the 

value=″PART″ to indicate  this  

element  is a document  part  type.  

GLOBAL,  

VIEW  

If a CM  pre-defined  PART type,  it will  be  

in the cmdatamodel.xsd  file. 

-XDO  class  name  cm:XDOClass  element  with  a value  

attribute.  

GLOBAL  

-Text searchable  

/option  

Same  case  as in the  resource  item  

type  definition,  having  the  same  

cm:textsearchable  and  

cm:textIndexInfo  elements  under  the  

cm:resourceItemInfo  element.  

GLOBAL  

Item  retention  

period  

cm:itemRetention  element  with  value  

and  unit  attributes.  The  unit  attribute  

is in enumeration  type  {YEAR,  

MONTH,  WEEK,  DAY}.  

GLOBAL  

Start  item  on  

process  

cm:startProcess  element  with  a name  

attribute.  

GLOBAL  

Default  Priority  cm:defaultPriority  element  with  a 

value  attribute.  

GLOBAL  

Description  cm:description  element  with  a value  

attribute  and  xsi:lang  attribute  (to 

indicate  which  language  it belongs  

to).  

GLOBAL  

Item  type  level  

ACL  Name  

cm:ACL  element  with  name  and  

attributes.  

GLOBAL  

Item  Level  ACL  

Binding  Flag  

cm:itemACLBinding  element  with  a 

flag  attribute.  

GLOBAL  

Auto  Linking  cm:autoLinkEnable  element  with  the  

following  child  elements.  

GLOBAL  

-Auto  Linking  

Rules  

a cm:autoLinkAttributes  element  

with  the  following  attributes:  

-Current  item  type  {cm:autoLinkAttributes}  

sourceItemType=<string>  

GLOBAL  

 

 

448 Application  Programming Guide

|

||
|
||

||
|
|
|
|
|
|

||

||
|
|

||

||
|
|

||

|
|
|
|
|
|

||

|
|
|
|
|

|
|
|
|

||
|
||

|
|
|
|
|
|
|

||

|
|
|
|
|
|

||

|
|
|
|
||

||
|
||

||
|
|
|

||

|
|
|
|
||

|
|
|
|
||

||
|
||

|
|
|
|
||

||
|
||



Table 45.  How  DB2  Content  Manager  data  model  objects  map  to annotations  in the storage  schema  (continued)  

Object  Information  specified  in annotation  

Scope  of the  

annotation  Instance-level  information  

-Item  type  to be 

linked  

{cm:autoLinkAttributes}  

cm:targetItemType=<string  

GLOBAL  

-Auto  linking  

attribute  

{cm:autoLinkAttributes}  

cm:attributeName=<string>  

GLOBAL  

-Auto  linking  

attribute  

{cm:autoLinkAttributes}  

cm:attributeGroupName=<string>  

GLOBAL  

-Link  type  {cm:autoLinkAttributes}  

cm:autoLinkType=<string>  

GLOBAL  

-Auto  Linking  SMS  A cm:autoLinkingSMSRule  element  

with  a value  attribute.  

GLOBAL  

logging  

-Item  type  events  

to  log  

cm:itemEventFlag  element  with  

value  attribute.  

GLOBAL  

Foreign  keys  A cm:foreignKey  element  with  the  

following  attributes:  

GLOBAL  

-Constraint  name  {cm:foreignKey}  

cm:constraintName=<string>  

GLOBAL  

-Update  rule  {cm:foreignKey}  

cm:updateRule={RESTRICT,  

NO_ACTION}  

GLOBAL  

-Delete  rule  {cm:foreignKey}  

cm:deleteRule={RESTRICT,  

CASCADE,  NO_ACTION,  

SET_NULL}  

GLOBAL  

-Source  component  {cm:foreignKey}  

cm:sourceComponent=<string>  

GLOBAL  

-Target  item  type  {cm:foreignKey}  

cm:targetItemType=<string>  

GLOBAL  

-Target  external  

table  

{cm:foreignKey}  

cm:targetTable=<string>  

GLOBAL  

-Attribute  Pairs  A cm:attributePair  element  under  the  

cm:foreignKey  element  with  the  

following  attributes:  

GLOBAL  

-Source  attribute  

group  

{cm:attributePair}  

cm:sourceAttributeGroup=<string>  

GLOBAL  

-Source  attribute  {cm:attributePair}  

cm:sourceAttribute=<string>  

GLOBAL  

-Target  attribute  

group  

{cm:attributePair}  

cm:targetAttributeGroup=<string>  

GLOBAL  

-Target  attribute  {cm:attributePair}  

cm:targetAttribute=<string>  

GLOBAL  

-External  table  

column  name  

{cm:attributePair}  

cm:targetTableColumn=<string>  

GLOBAL  

User  exits  cm:userExit  element  with  the  

following  attributes:  

GLOBAL,  

VIEW  

-Exit  name  {cm:userExit}  cm:name=<string>  GLOBAL,  

VIEW  

 

 

Chapter  11. Working  with XML services  (Java only) 449

|

||
|
||

|
|
|
|
||

|
|
|
|
||

|
|
|
|
||

||
|
||

||
|
||

||||

|
|
|
|
||

||
|
||

||
|
||

||
|
|

||

||
|
|
|

||

||
|
||

||
|
||

|
|
|
|
||

||
|
|

||

|
|
|
|
||

||
|
||

|
|
|
|
||

||
|
||

|
|
|
|
||

||
|
|
|
|

|||
|
|



Table 45.  How  DB2  Content  Manager  data  model  objects  map  to annotations  in the  storage  schema  (continued)  

Object  Information  specified  in annotation  

Scope  of the  

annotation  Instance-level  information  

-Function  name  {cm:userExit}  

cm:functionName=<string>  

GLOBAL,  

VIEW  

-DLL  name  {cm:userExit}  cm:DLLName=<string>  GLOBAL,  

VIEW  

Access  Module  A cm:accessModule  element  with  the  

following  attributes:  

GLOBAL  

-name  {cm:accessModule}  

cm:name=<string>  

GLOBAL  

-result  {cm:accessModule}  

cm:result=<integer>  

GLOBAL  

-status  {cm:accessModule}  

cm:status=<short>  

GLOBAL  

-version  {cm:accessModule}  

cm:version=<short>  

GLOBAL  

Previous  Access  

Module  

A cm:previousAccessModule  element  

with  a version  attribute.  

GLOBAL  

Component  Type: 

-Attribute  groups  

-Reference  

attributes  

-Attributes  

-Text Searchable  A cm:textSearchable  element,  with  a 

value  attribute  in boolean  type.  

GLOBAL,  

LOCAL,  

VIEW  

-Text Index  

Information  

A cm:textIndexInfo  element,  with  the  

following  attributes:.  

GLOBAL,  

LOCAL  

-Commit  count  {cm:textIndexInfo  } 

cm:commitCount=<integer>  

GLOBAL,  

LOCAL  

-Format  {cm:textIndexInfo  } 

cm:format=<integer>  

GLOBAL,  

LOCAL  

-Index  CCSID  {cm:textIndexInfo  } 

cm:CCSID=<integer>  

GLOBAL,  

LOCAL  

-Index  Directory  {cm:textIndexInfo  } 

cm:directory=<string>  

GLOBAL,  

LOCAL  

-Index  Language  

Code  

{cm:textIndexInfo  } 

cm:langCode=<string>  

GLOBAL,  

LOCAL  

-Minimum  changes  {cm:textIndexInfo  } 

cm:minChanges=<integer>  

GLOBAL,  

LOCAL  

-Model  File  {cm:textIndexInfo  } 

cm:modelFile=<string>  

GLOBAL,  

LOCAL  

-Model  Name  {cm:textIndexInfo  } 

cm:modelName=<string>  

GLOBAL,  

LOCAL  

-Model  CCSID  {cm:textIndexInfo  } 

cm:modelCCSID=<integer>  

GLOBAL,  

LOCAL  

-UDF  Name  {cm:textIndexInfo  } 

cm:UDFName=<string>  

GLOBAL,  

LOCAL  

 

 

450 Application  Programming Guide

|

||
|
||

||
|
|
|
|

|||
|
|

||
|
||

||
|
||

||
|
||

||
|
||

||
|
||

|
|
|
|
||

||||

||||

|
|
|||

||||

||
|
|
|
|

|

|
|
|
|
|
|
|

||
|
|
|
|

||
|
|
|
|

||
|
|
|
|

||
|
|
|
|

|
|
|
|
|
|
|

||
|
|
|
|

||
|
|
|
|

||
|
|
|
|

||
|
|
|
|

||
|
|
|
|



Table 45.  How  DB2  Content  Manager  data  model  objects  map  to annotations  in the storage  schema  (continued)  

Object  Information  specified  in annotation  

Scope  of the  

annotation  Instance-level  information  

-UDF  Schema  {cm:textIndexInfo  } 

cm:UDFSchema=<integer>  

GLOBAL,  

LOCAL  

-Update  Frequency  {cm:textIndexInfo  } 

cm:updateFrequency=<string>  

GLOBAL,  

LOCAL  

-Update  Frequency  

Unit  

{cm:textIndexInfo  } 

cm:updateFrequencyUnit=  

<{MINUTE,  HOUR}>  

GLOBAL,  

LOCAL  

-Working  Directory  {cm:textIndexInfo  } 

cm:workingDir=<string>  

GLOBAL,  

LOCAL  

-Is  representing  

item  

cm:representative  element  with  a 

value  attribute  in boolean  type.  

LOCAL  

-Is  unique  cm:unique  element  with  a value  

attribute  in boolean  type.  

LOCAL  

-Is  required  

-Max  value  

-Min  value  

-Default  value  

-Resource  Manager  

attribute  

cm:isResourceManagerAttr  element  

with  a value  attribute  in boolean  

type.  

LOCAL  

-Database  indexes  A cm:databaseIndexInfo  element,  

with  the  following  attributes:  

GLOBAL,  

LOCAL  

--Name  {cm:databaseIndexInfo  } 

cm:name=<string>  

GLOBAL,  

LOCAL  

--Unique  {cm:databaseIndexInfo  } 

cm:unique=<boolean>  

GLOBAL,  

LOCAL  

--Index  Schema  {cm:databaseIndexInfo  } 

cm:indexSchema=<string>  

GLOBAL,  

LOCAL  

--Attributes  A subelement,  cm:indexedAttribute  

element  under  the  same  

cm:databaseIndexInfo  element  with  

the  following  attributes:  

GLOBAL,  

LOCAL  

---Name  {cm:indexAttribute  } 

cm:name=<string>  

GLOBAL,  

LOCAL  

---Index  Order  {cm:indexAttribute  } 

cm:indexOrder={ASCENDING,  

DESCENDING}  

GLOBAL,  

LOCAL  

Delete  rule  A cm:deleteRule  element  with  a 

value  attribute  {RESTRICT,  

CASCADE}.  

LOCAL  

Sub-components/  

child  components  

Item  Type View:  A cm:entityType  element  with  the  

value=″ITEM″ and  a cm:entityView  

element  with  cm:baseEntityType  

attribute  to indicate  which  item  type  

this  refers  to. 

VIEW  

 

 

Chapter  11. Working  with XML services  (Java only) 451

|

||
|
||

||
|
|
|
|

||
|
|
|
|

|
|
|
|
|

|
|
|

||
|
|
|
|

|
|
|
|
||

||
|
||

||||

||||

||||

||||

|
|
|
|
|

||

||
|
|
|
|

||
|
|
|
|

||
|
|
|
|

||
|
|
|
|

||
|
|
|

|
|
|

||
|
|
|
|

||
|
|

|
|
|

||
|
|

||

|
|
|||

||
|
|
|
|

||



Table 45.  How  DB2  Content  Manager  data  model  objects  map  to annotations  in the  storage  schema  (continued)  

Object  Information  specified  in annotation  

Scope  of the  

annotation  Instance-level  information  

Component  Type 

View:  

-Attributes  cm:representative  element  with  a 

value  attribute  in boolean  type  

VIEW  

--readable  cm:readable  element  with  a value  

attribute  in boolean  type.  No such  

concept  exists  in the  XML  schema.  

Only  has  ″fixed″ in term  of the 

value,  or ″prohibited″  in term  of 

attribute  name  definition.  

VIEW  

--writable  cm:writeable  element  with  a value  

attribute  in boolean  type  

VIEW  

--queryable  cm:queryable  element  with  a value  

attribute  in boolean  type  

VIEW  

--excludeRow  cm:excludeRow  element  with  a value  

attribute  in boolean  type  

VIEW  

--View  compare  

value  

cm:viewCompareValue  element  with  

a value  attribute  

VIEW  

--View  operator  cm:viewOperator  element  with  a 

value  attribute  in enumeration  type  

{OPCODE_EQ}  

VIEW  

--View  

sequenceNumber  

cm:viewSequenceNo  element  with  a 

value  attribute  

VIEW  

Federated  entity  A cm:entityType  element  with  the 

value=″federated″ 

-name  

-description  

-Text searchable  

-Enabled  creating  

the  native  

federated  folder  

-Attribute:  

--name  

--description  cm:description  element  with  a value  

attribute  and  xsi:lang  attribute  (to 

indicate  which  language  it belongs  

to)  

GLOBAL  

--datatype  and  

other  attribute  

information,  such  

as length,  

precision,  scale,  

max,  min,  nullable,  

queryable,  

writeable  

Schema  mapping:  One  or  more  cm:schemaMapping  

elements  with  the  following  

attributes:  

GLOBAL  

 

 

452 Application  Programming Guide

|

||
|
||

|
|
|||

||
|
||

||
|
|
|
|
|

||

||
|
||

||
|
||

||
|
||

|
|
|
|
||

||
|
|

||

|
|
|
|
||

||
|
||

||||

||||

||||

|
|
|

|||

||||

||||

||
|
|
|

||

|
|
|
|
|
|
|
|

|||

||
|
|

||



Table 45.  How  DB2  Content  Manager  data  model  objects  map  to annotations  in the storage  schema  (continued)  

Object  Information  specified  in annotation  

Scope  of the  

annotation  Instance-level  information  

-Fed  entity  name  cm:fedEntityName=<string>  GLOBAL  

-Fed  attr  name  cm:fedAttrName=<string>  GLOBAL  

-Native  server  

name  

cm:serverName=<string>  GLOBAL  

-Native  server  type  cm:serverType=<string>  GLOBAL  

-Native  entity  

name  

cm:nativeEntityName=<string>  GLOBAL  

-Native  attr  name  cm:nativeAttrName=<string>  GLOBAL  

  

Unsupported XML types in the DB2 Content Manager storage 

schemas 

The  DB2  Content  Manager  storage  schemas  do  not  support  the  following  primitive  

datatypes:  

v   string  (has  to  be  associated  with  either  length  properties)  

v   boolean  

v   duration  

v   gYearMonth  

v   gYear  

v   gMonthDay  

v   gDay  

v   gMonth  

v   hexBinary  (only  support  base64Binary)  

v   QName  

v   NOTATION

The  DB2  Content  Manager  storage  schemas  do  not  support  the  following  derived  

datatypes:  

v   normalizedString  

v   token  

v   language  

v   NMTOKEN  

v   NMTOKENS  

v   Name  

v   NCName  

v   ID  

v   IDREF  

v   IDREFS  

v   ENTITY  

v   ENTITIES  

v   nonPositiveInteger  

v   negativeInteger  

v   long  

v   byte  

 

 

Chapter  11. Working  with XML services  (Java only) 453

|

||
|
||

||||

||||

|
|
|||

||||

|
|
|||

||||
|

|
|
|
|

|

|

|

|

|

|

|

|

|

|

|

|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|



v   nonNegativeInteger  

v   unsignedLong  

v   unsignedInt  

v   unsignedShort  

v   unsignedByte  

v   positiveInteger

The  following  constraints  also  apply:  

v   The  minLength  and  maxLength  attribute  values  (if  specified)  must  be  the  same,  

which  describes  the  DK_CM_CHAR  data  type.  

v   An  element  name  (which  maps  to  component  name)  cannot  be  used  in  different  

symbol  space.  

v   Any  attribute  with  the  same  name  must  have  the  same  basic  type.  Exception:  

Some  properties  of  the  attributes  with  the  same  name  can  be  different,  such  as  

maxInclusive  and  minInclusive. 

v   The  xsi:type  and  xsi:nil  attributes  are  not  supported  in  the  instance  

document.  

v   No  recursive  type  definition  is allowed.  For  example,  the  following  definition  is 

not  allowed:  

<xs:element  name="Section">  

  <xs:complexType>  

    <xs:sequence>  

      <xs:element  ref="Section"  minOccurs="0"  maxOccurs="unbounded"/>  

    </xs:sequence>  

       <xs:attribute  ref="title"  use="required"/>  

       <xs:attribute  ref="content"  use="required"/>  

    </xs:complexType>  

</xs:element>  

Importing and exporting DB2 Content Manager data instance objects 

as XML 

The  XML  instance  service  class,  DKXMLDataInstanceService,  contains  two  new  

Version  8 Release  3 methods  for  importing  and  exporting  XML  items:  ingest()  and  

extract().  These  methods  take  the  XML  file  which  conforms  to the  storage  schema  

(described  in  “Importing  and  exporting  DB2  Content  Manager  data  model  objects  

as  XML  schema  files  (XSD)”  on  page  434,  which  can  be  exported  through  the  

extract  API  or  the  system  administration  client,  on  any  item  type)  to structure  the  

data  instance  objects  (such  as  items  and  documents  with  parts).  Their  input  and  

return  parameters  work  similarly  to  the  old  Version  8.2  methods,  toXML()  and  

fromXML().  

The  ingest()  and  extract()  methods  support  the  following  formats:  

XML  item  input  formats  

v   DKXMLDOMItem:  document  object  model  (DOM):  

v   DKXMLStreamItem:  input  stream  (processed  using  SAX)  

v   DKXMLStringItem:  string

XML  item  output  formats  

v   DKXMLDOMItem:  DOM  (default)  

v   DKXMLStringItem:  string

 

 

454 Application  Programming Guide

|

|

|

|

|

|

|

|
|

|
|

|
|
|

|
|

|
|

|
|
|
|
|
|
|
|
|

|
|

|

|
|
|
|
|
|
|
|
|

|

|

|

|

|

|

|

|



DKXMLDOMItem  features  a method  that  can  convert  an  XML  item  from  

DOM  format  to Input  stream  format.

 The  following  example  shows  a sample  item  instance  that  conforms  to  the  XYZ  

Insurance  policy  storage  schema:  

 

 

XML  item  instance  

<Item><ItemXML>  

<XYZ_InsPolicy  XYZ_Street="532  Camino  Viejo"  

  XYZ_City="Marina"  XYZ_State="CA"  XYZ_ZIPCode="90546"  

  XYZ_PolicyNum="57904965371"  xmlns="">  

  <XYZ_Insured  XYZ_InsrdFName="Edward"  XYZ_InsrdLName="Smith"  /> 

  <XYZ_Insured  XYZ_InsrdFName="Jennifer"  XYZ_InsrdLName="Smith"  /> 

  <XYZ_VIN  XYZ_VIN="ICLA44P5KL9876543"  /> 

  <ICMBASE><resourceObject  MIMEType="image/tiff"  

  xmlns="http://www.ibm.com/xmlns/db2/cm/api/1.0/schema"><label  

  name="policyForm"  /></resourceObject></ICMBASE>  

</XYZ_InsPolicy>  

</ItemXML></Item>  

 This  section  explains  the  following  tasks:  

v   “Exporting  DB2  Content  Manager  DDO  items  as  XML  items”  

v   “Importing  XML  items  as  DB2  Content  Manager  DDO  items”  on  page  456

Exporting DB2 Content Manager DDO items as XML items 

The  extract()  method  in  DKXMLDataInstanceService  converts  a DDO  (including  all 

child  component  DDOs,  links,  and  references)  into  a DKXMLItem  object.  This  

DKXMLItem  object  contains  the  following  data:  

v   XML  document  that  represents  the  item  version,  including  all  child  components.  

v   Properties,  including  system  attributes,  resource  attributes,  and  links  

information.  

v   Any  binary  resource  part  content.  Recommendation:  Pass  in  the  

DKConstant.DK_CM_XML_EMBED_UNIQUE_IDENTIFIER  to TRUE  in  order  to  

include  the  resource  content’s  part  number.

The  extract()  method  accepts  the  DDO  (and  various  options)  as  the  input  

parameters.  The  various  options  include:  

v   Which  XML  format  to export  the  item  and  its  properties:  

–   DKXMLDOMItem:  DKConstant.DK_CM_XML_DOM_FORMAT  (this  is the  

default)  

–   DKXMLStreamItem:  

DKConstant.DK_CM_XML_RESOURCE_STREAM_FORMAT  

–   DKXMLStringItem:  DKConstant.DK_CM_XML_DOM_FORMAT
v    Which  output  format  to  export  the  resource  content  as  (URL  or  input  stream).  

URL  is  the  default.  If you  select  input  stream,  then  the  system  generates  unique  

labels  to  identify  each  resource.  These  labels  can  be  found  in  the  resource  

properties.  

v   Whether  to  include  the  PID  and  part  number  with  the  XML  item.  

v   Whether  to  export  the  item’s  properties  as  a seperate  XML  document.  You 

would  use  this  option  to  exclude  all  proprietary  Content  Manager  information  

from  the  XML  item.

 

 

Chapter  11. Working  with XML services  (Java only) 455

|
|

|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
||||

|

|

|

|

|
|
|

|

|
|

|
|
|

|
|

|

|
|

|
|

|

|
|
|
|

|

|
|
|



The  following  example  inputs  a ddo  item  and  returns  it as  an  xmlobj  XML  

document  (in  DOM  format  with  the  PID  embedded  in  it);  returns  system  and  

resource  properties  in  a seperate  file;  returns  resource  content  as  an  input  stream.  

 

 

Java  

//create  an instance  of  DKXMLDataInstanceService  

DKXMLDataInstanceService  instService  = new  DKXMLDataInstanceService(dsICM);  

DKXMLDOMItem  xmlObj  = 

(DKXMLDOMItem)  instService.extract(ddo,DKConstant.DK_CM_XML_DOM_FORMAT  + 

DKConstant.DK_CM_XML_SYSTEM_PROPERTY_REFERENCE  + 

DKConstant.DK_CM_XML_RESOURCE_PROPERTY_REFERENCE  + 

DKConstant.DK_CM_XML_RESOURCE_STREAM_FORMAT  + 

DKConstant.DK_CM_XML_EMBED_UNIQUE_IDENTIFIER);  

//get  the  XML  document  representing  item  version  

Document  xmlDocument  = xmlObj.getXMLItem();  

//get  the  XML  document  with  properties  

Document  propertyDocument  = xmlObj.getItemProperties();  

//get  content  labels  

Set  resLabels  = xmlObj.getContentLabels();  

//create  an iterator  

Iterator  iter  = resLabels.iterator();  

//iterate  over  the  set  to get  labels  and  resource  contents  

while  (iter.hasNext())  { 

  //get  the  label  from  the  iterator  

  String  label  = (String)iter.next();  

  // get  resource  content  as input  stream  from  xml  object  

  BufferedInputStream  inStream  = new  

  BufferedInputStream(xmlObj.getContentAsStream(label));  

} 

Importing XML items as DB2 Content Manager DDO items 

The  ingest()  method  in  DKXMLDataInstanceService  converts  a DKXMLItem  object  

into  a DDO  on  the  Content  Manager  server.  These  constructors  extract  content  

from  an  XML  document,  create  a corresponding  DKDDO  and  any  dkXDO  

associated  with  it.  You can  then  call  the  add  method  on  the  DDO  to  add  the  object  

into  DB2  Content  Manager.  The  new  DDO  belongs  to  a DB2  Content  Manager  

Version  8 item  type  or  an  earlier  Content  Manager  index  class  and  can  only  be  

stored  in  DB2  Content  Manager.  Importing  an  XML  file  allows  you  to  store  the  

original  XML  file  as  an  XDO;  that  is,  you  do  not  lose  the  XML  in  the  import  

process,  making  the  XML  itself  available  for  possible  future  use.  

As  you  import  XML  content,  keep  the  following  facts  in  mind:  

v   You can  only  import  into  DB2  Content  Manager  or  earlier  DB2  Content  

Manager.  

v   XML  files  containing  content  for  import  must  conform  to  the  storage  schema  of 

the  corresponding  item  type,  which  you  can  export  through  the  API  described  in 

“Importing  and  exporting  DB2  Content  Manager  data  instance  objects  as  XML”  

on  page  454  or  the  system  administration  client.  

v   XML  import  and  XML  export  are  supported  only  by  the  Java  APIs.

The  input()  method  accepts  the  following  input  parameters:  

v   XML  document  in a DKXMLDOMItem,  DKXMLStreamItem,  or 

DKXMLStringItem.  If you  input  a DKXMLStreamItem,  then  a SAX  handler  

converts  the  input  stream  to  a DDO  object  (not  DOM).  

v   A pre-existing  DDO  to populate  the  XML  data  with  (optional).  

 

 

456 Application  Programming Guide

|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||

|

|
|
|
|
|
|
|
|
|

|

|
|

|
|
|
|

|

|

|
|
|

|



v   Resource  content  as  a DKXMLItem  object  in  input  stream  format.  Using  the  

DKXMLItem.setContentAsStream()  method,  you  can  create  unique  labels  for  the  

resource  properties  for  ingest()  to interpret.  

v   Properties  such  as  system  attributes,  resource  attributes,  and  links  information.  

You can  either  embed  them  in  the  original  XML  document,  or  import  them  as a 

separate  XML  document  from  the  original  XML  document  which  describes  the  

item.  You can  either  provide  this  document  through  the  setItemProperties()  

method  or  in the  constructor.

The  following  example  inputs  both  an  XML  item  XMLFile  and  its  properties  (both  

system  and  resource  in a separate  file  XMLProperties) as  input  streams;  and  returns  

a DB2  Content  Manager  ddo. 

 

 

Java  

//create  file  stream  for  XML document  representing  item  version  

FileInputStream  xmlDocument  = new  FileInputStream(XMLFile);  

//create  file  stream  for  XML document  representing  properties  

//properties  include  system  properties,  resource  properties  

FileInputStream  properties   = new  FileInputStream(XMLProperties);  

//Create  an instance  of DKXMLStreamItem  

DKXMLStreamItem  xmlItem  = new  DKXMLStreamItem(XMLFile,  XMLProperties);  

//set  value  for  resource  content  label  

String  contentLabel  = “AAA”;  

//Set  resource  content  into  xmlItem  

xmlItem.setContentAsStream(contentLabel,  contentStream);  

//create  an instance  of DKXMLDataInstanceService  

DKXMLDataInstanceService  instService  = new  DKXMLDataInstanceService(dsICM);  

//call  ingest  on instance  service  

DKDDO  ddo  = (DKDDO)  instService.ingest(xmlItem,  options);  

ddo.add()  

Importing and exporting XML object dependencies 

Scenarios  can  occur  where  data  model  and  administration  objects  require  the  

existence  of  other  definitions  (dependency  objects) in  the  server.  For  example,  a user  

must  be  defined  before  you  can  define  a user  group  for  it.  

By  default,  the  extract()  method  only  exports  the  object  and  no  dependency  objects.  

In  order  to  prevent  problems  from  missing  dependencies,  you  can  specify  one  of  

the  following  options  for  exporting  objects  to  XML:  

DK_CM_XML_EXPORT_PREREQUISITE  

Exports  all  dependency  objects  with  the  object.  

DK_CM_XML_EXPORT_DM_ONLY_PREREQUISITE  

Exports  all  data  model  dependency  objects  only.  

DK_CM_XML_EXPORT_SA_ONLY_PREREQUISITE  

Exports  all  administration  dependency  objects  only  (including  

authorization,  authentication,  and  library  server  configuration).  

DK_CM_XML_EXPORT_RM_ONLY_PREREQUISITE  

Exports  all  resource  manager  configuration  (in  the  library  server  side)  

dependency  objects  only.  

DK_CM_XML_EXPORT_DR_ONLY_PREREQUISITE  

Exports  all  document  routing  dependency  objects  only.

 

 

Chapter  11. Working  with XML services  (Java only) 457

|
|
|

|
|
|
|
|

|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||

|
|

|
|
|

|
|
|

|
|

|
|

|
|
|

|
|
|

|
|



During  an  import,  if the  dependency  objects  do  not  exist  in  the  target  system,  an  

exception  is logged  or  the  process  is aborted  (depending  on  the  error  handling  

option  set.  

Extracting content from different XML sources 

The  DKDDO  methods  can  extract  content  from  a variety  of XML  sources,  including  

standard  input,  files,  buffers,  and  Web addresses  (URLs).  Call  the  DKDDO  

methods  to  extract  content  from  your  XML  source  and  to  initiate  the  import  

process.  

Here  are  examples  of each  XML  source:  

XML  from  a file  

 

 

Java  

xmlSource  = new  DKNVPair("FILE",  "dlsamp01.xml");  

XML  from  a buffer  

 

 

Java  

File  file  = new File("dlsamp01.xml");  

int  fileSize  = (int)  file.length();  

byte[]  data  = new  byte[fileSize];  

DataInputStream  dis  = new DataInputStream(new  FileInputStream(file));  

dis.readFully(data);  

String  strBuffer  = new  String(data);  

DKNVPair  xmlSource  = new  DKNVPair("BUFFER",  strBuffer);  

int  importOptions=DK_CM_XML_VALIDATION;  

XML  from  a Web address  (URL)  

 

 

Java  

xmlSource  = new  DKNVPair("URL",  "file:////d://myxml//dlsamp01.xml");  

// replace  file:////d://  with  http://www.webaddress.com/  for  URL  

Int   importOptions=0;  

Mapping a user-defined schema to a storage schema with the XML 

schema mapping tool 

DB2  Content  Manager  provides  both  a graphical  interface  and  APIs  to  convert  a 

user-defined  schema  into  a storage  schema  that  can  be  imported  into  the  system.  

The  tool  can  also  generate  an  XSLT query  script  which  can  be  saved  as  part  of a 

mapping  in  a repository.  Using  this  script,  you  can  program  an  application  that  

automatically  converts  XML  documents  from  the  user-defined  schema  to  the  

storage  schema.  For  details  in  the  graphic  interface,  see  the  ″mapping  and  

importing  XML  schemas″  topic  in  the  system  administration  guide.  

The  XML  schema  mapping  tool  supports  the  following  scenarios  when  developing  

your  schema  mapping:  

Creating  schema  mappings  with  a brand-new  storage  schema  

You can  convert  your  user-defined  schema  to  a brand-new  storage  schema,  

 

 

458 Application  Programming Guide

|
|
|

|
|

|
|
|
|

|

|
|

|

||||

|
|

|

|
|
|
|
|
|
|
||||

|
|

|

|
|
||||

|
|

|

|
|
|
|
|
|
|

|
|

|
|



and  you  can  modify  both  the  storage  schema  and  mappings.  You can  then  

create  a new  item  type  from  the  storage  schema,  assign  a mapping  name,  

and  save  the  mapping  in a repository.  

Creating  schema  mappings  with  a pre-existing  storage  schema  

You can  convert  your  user-defined  schema  to  a previously  created  storage  

schema  by  manually  mapping  the  user  schema  to  the  storage  schema.  You 

can  then  invoke  the  tool  function  that  will  generate  a new  XSLT query  

script.  You can  then  assign  a mapping  name  and  save  the  mapping  in  a 

repository.  

Revise  existing  schema  mappings  

You can  re-open  a previously  created  mapping  (using  the  mapping  name),  

and  modify  both  it and  the  storage  schema.  You can  then  save  the  

modified  storage  schema,  user-defined  schema,  and  new  XSLT query  script  

back  to  the  repository.

As  a first  step  in  using  the  APIs,  you  would  use  methods  in  the  DKSchemaConverter  

class  to  convert  your  XML  schema.  The  methods  perform  the  following  tasks:  

convert()  

Converts  the  user-defined  schema  to a storage  schema  and  optionally  saves  

the  mapping  as an  XSLT query  script  in  a repository.  

getStorageSchema()  

Retrieves  the  converted  storage  schema.  

getXSLTQuery()  

Retrieves  the  XSLT query  script  that  can  automatically  convert  XML  

documents  from  the  user-defined  schema  to  the  storage  schema.

 

 

Chapter  11. Working  with XML services  (Java only) 459

|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|

|
|
|

|
|

|
|
|



Java  

import  com.ibm.mm.sdk.common.DKException;  

import  com.ibm.mm.sdk.cs.DKDatastoreICM;  

import  com.ibm.mm.sdk.xml.schema.DKDocumentConverter;  

import  com.ibm.mm.sdk.xml.schema.DKMapperException;  

...  

DKDatastoreICM  cmDatastore  = new DKDatastoreICM();  

    cmDatastore.connect(cmDatabase,  cmUser,  cmPassword,  "");  

    System.out.println("Connected.");  

    File  inputSchema  = new  File  ( inputUserSchema  ); 

    DKSchemaConverter  converter  = new DKSchemaConverter(  cmDatastore  ); 

    if (mapName  == null)  { 

        if (converter.convert(  inputSchema.toURL(),  rootElementName)==false)  

        { 

            System.err.println("dkConvert  returned  null.");  

        } 

    } else  { 

        if (converter.convert(  inputSchema.toURL(),  rootElementName,  

  mapName  ) == false)  

        { 

            System.err.println("dkConvert  returned  null.");  

        } 

    } 

  

    System.out.println("STORAGE  SCHEMA:");  

    System.out.println(  converter.getStorageSchema()  ); 

    System.out.println("XSLT  Scripts");  

    String  scripts[]  = converter.getXSLTQuery();  

    System.out.println(  scripts[0]  ); 

    System.out.println("--------------------------------------------");  

    System.out.println(  scripts[1]  ); 

As  the  second  step  in  using  the  APIs,  you  would  use  methods  in  the  

DKDocumentConverter  class  to  convert  your  XML  documents.  The  methods  perform  

the  following  tasks:  

getSchemaMappingNames()  

Retrieves  the  schema  mapping  names  from  the  repository.  

getXSLTQuery()  

Retrieves  the  XSLT query  script  that  can  automatically  convert  XML  

documents  from  the  user-defined  schema  to  the  storage  schema.  

transformXMLDocument()  

Transforms  an  XML  document  using  the  XSLT query  script  that  you  

retrieved.  

deleteSchemaMapping()  

Deletes  a schema  mapping  from  the  repository.

 

 

460 Application  Programming Guide

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||

|
|
|

|
|

|
|
|

|
|
|

|
|



Java  

import  com.ibm.mm.sdk.common.DKException;  

import  com.ibm.mm.sdk.cs.DKDatastoreICM;  

import  com.ibm.mm.sdk.xml.schema.DKDocumentConverter;  

import  com.ibm.mm.sdk.xml.schema.DKMapperException;  

...  

DKDatastoreICM  cmDatastore  = new DKDatastoreICM();  

    cmDatastore.connect(cmDatabase,  cmUser,  cmPassword,  "");  

    System.out.println("MAPPING  NAMES:");  

    Collection  names=DKDocumentConverter.getSchemaMappingNames(cmDatastore);  

    System.out.println(names);  

    if (mapName  == null)  

        return;  

        String[]  query=DKDocumentConverter.getXSLTQuery(cmDatastore,  mapName);  

    System.out.println("XSLT  Scripts  for " + mapName);  

    if (query  == null)  

        System.out.println("NONE.");  

    else  { 

        for  (int  i = 0;  i < query.length;   i++)  { 

            if (i  > 0) 

                System.out.println("----------------------------------");  

            System.out.println(query[i]);  

        } 

    } 

  

    if (inputXMLDoc  == null)  

        return;  

        File  inputFile  = new  File(  inputXMLDoc  );  

    File  outputFile  = new File(  "APIoutput.xml");  

        DKDocumentConverter.transformXMLDocument(  inputFile.toURL(),  

  query,  outputFile  ); 

    System.out.println("Output  in APIoutput.xml");  

Programming runtime operations through the XML JavaBeans 

The  XML  JavaBeans  are  Java  classes  that  provide  convenient  interfaces  to  the  DB2  

Content  Manager  connector  XML  APIs  and  the  DB2  Information  Integrator  for  

Content  JavaBeans.  They  also  serve  as the  communication  layer  between  the  Web 

services  and  the  connector  APIs.  

The  XML  JavaBeans  can  perform  runtime  operations  such  as  import,  export,  

search,  create,  update,  retrieve,  delete,  and  document  routing.  They  do  not  support  

system  administration  functions.  

If  you  decide  to  program  applications  that  communicate  with  DB2  Content  

Manager  directly  through  the  XML  JavaBeans,  then  you  can  direct  your  XML  

requests  straight  to  the  CMBXMLMessage  bean  (similar  to  what  the  Web services  

would  do).  Your XML  requests  must  follow  the  structure  described  in  the  

cmbmessages.xsd  schema.  

The  following  JavaBean  example  sets  up  a CMBXMLMessage  bean  to  send  an  XML  

search  request  directly  to it:  

 

 

Chapter  11. Working  with XML services  (Java only) 461

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||

|
|

|
|
|
|

|
|
|

|
|
|
|
|

|
|



Java  

public  class  TXMLSearch2  { 

    public  static  void  main(String[]  args)  throws  Exception  { 

//  Create  beans  

CMBXMLServices  xmlServices  = new CMBXMLServices();  

//  Create  the  search  request  message  and  get the  reply  message  

CMBXMLMessage  reply  = search(xmlServices,  dstype,  server,  

  userid,  password,  entity,  condition);  

System.out.println("Search  reply:  " + reply.getAsString());  

   } 

static  public  CMBXMLMessage  search(CMBXMLServices  xmlServices,  

String  dstype,  String  server,  String  userid,  String  password,  

String  entity,  String  condition)  

  throws  CMBException,  Exception  

      { 

          return  search(xmlServices,  dstype,  server,  userid,  password,  

    entity,  condition,  null);  

      } 

static  public  CMBXMLMessage  search(CMBXMLServices  xmlServices,  

String  dstype,  String  server,  String  userid,  String  password,  

String  entity,  String  condition,  String  maxResults)  

  throws  CMBException,  Exception  

  { 

  // Create  the  query  string  

  int      queryType  = CMBBaseConstant.CMB_QS_TYPE_XPATH;  

  String   queryString  = "/"  + entity;  

  queryString  += "["  + condition  + "]";  

  String  connectString  = "";  

  // If the  server  name  is followed  by a parenthesized  string,  

  // use  that  string  for the connect  string.  

  // e.g.  ICMNLSDB(SCHEMA=ICMADMIN)  

  if (server.indexOf("(")  > 0) { 

    connectString  = server.substring(server.indexOf("(")  + 1); 

    server  = server.substring(0,  server.indexOf("("));  

    if (connectString.endsWith(")"))  { 

      connectString  = connectString.substring(0,  

      connectString.length()  - 1); 

    } 

  } 

//  continued...  

 Then  to  send  an  XML  search  request  using  the  above  example,  you  can  pass  in  

your  server  name  (ICMNLSDB  in  the  example)  and  connectString  as  SCHEMA=ICMADMIN: 

 

 

462 Application  Programming Guide

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||

|
|



Java  

StringBuffer  XMLBuffer  = new StringBuffer();  

String  maxResString  = "";  

if (maxResults  != null)  maxResString="maxResults=\\\""  + 

maxResults  + "\\\"";  

XMLBuffer.append("<?xml  version=\"1.0\"  encoding=\"UTF-8\"  ?>");  

XMLBuffer.append("<RunQueryRequest  " + maxResString  + 

" version=\""+  CMBXMLConstant.CMB_LATEST_VERSION  +"\  

" retrieveOption=\""  + CMBXMLConstant.CMB_RETRIEVE_CONTENT  + 

"\"  contentOption=\""  + CMBXMLConstant.CMB_CONTENT_ATTACHMENTS  + 

"\"  " + TXMLTestcase.namespace  + ">");  

XMLBuffer.append("<AuthenticationData  connectString=\""  + 

connectString  + "\"  configString=\"\">");  

    XMLBuffer.append("<ServerDef>");  

    XMLBuffer.append(   "<ServerType>"  + dstype  + "</ServerType>");  

    XMLBuffer.append(   "<ServerName>"  + server  + "</ServerName>");  

XMLBuffer.append("</ServerDef>");  

XMLBuffer.append("<LoginData>");  

XMLBuffer.append(   "<UserID>"  + userid  + "</UserID>");  

XMLBuffer.append(   "<Password>"  + password  + "</Password>");  

XMLBuffer.append("</LoginData>");  

        XMLBuffer.append("</AuthenticationData>");  

XMLBuffer.append("<QueryCriteria>");  

    XMLBuffer.append("<QueryString>"  + queryString  + "</QueryString>");  

XMLBuffer.append("</QueryCriteria>");  

XMLBuffer.append("</RunQueryRequest>");  

System.out.println("XMLRequest:  \n\n"  + XMLBuffer.toString()+  "\n\n");  

CMBXMLMessage  doc  = new  CMBXMLMessage(XMLBuffer.toString(),  null);  

// Search  using  the  makeRequest  method  on the CMBXMLServices  bean  

System.out.println("Performing  search");  

System.out.println(XMLBuffer.toString());  

CMBXMLMessage  reply  = xmlServices.makeRequest(doc);  

System.out.println("Search  reply");  

System.out.println(reply.getAsString());  

TXMLTestcase.printAttachments(reply.getAttachments());  

return  reply;  

  } 

} 

 This  section  contains  the  following  ways  to create  XML  requests  using  the  

cmbmessages.xsd  schema:  

v   “Listing  DB2  Content  Manager  servers  with  ListServerRequest”  on  page  464  

v   “Authenticating  Web service  requests  for  security”  on  page  465  (always  

required)  

v   “Changing  a password  with  XML  requests”  on  page  466  

v   “Listing  DB2  Content  Manager  entities  with  ListSchemaRequest”  on  page  466  

v   “Creating  DB2  Content  Manager  items  with  CreateItemRequest”  on  page  468  

v   “Searching  DB2  Content  Manager  items  with  RunQueryRequest”  on  page  469  

v   “Retrieving  DB2  Content  Manager  items  with  RetrieveItemRequest”  on  page  472  

v   “Viewing  your  user  privileges  with  XML  requests”  on  page  476  

v   “Working  with  DB2  Content  Manager  folders  through  XML  requests”  on  page  

477  

v   “Updating  DB2  Content  Manager  items  with  an  XML  UpdateItemRequest”  on  

page  480  

v   “Deleting  DB2  Content  Manager  items  with  DeleteItemRequest”  on  page  487  

 

 

Chapter  11. Working  with XML services  (Java only) 463

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||

|
|

|

|
|

|

|

|

|

|

|

|
|

|
|

|



v   “Checking  DB2  Content  Manager  items  out  and  in  with  CheckoutItemRequest  

and  CheckinitemRequest”  on  page  488  

v   “Moving  DB2  Content  Manager  items  between  entities  with  MoveItemRequest”  

on  page  492  

v   “Linking  DB2  Content  Manager  items  with  CreateLinkRequest  or  

DeleteLinkRequest”  on  page  490  

v   “Accessing  DB2  Content  Manager  document  routing  using  XML-based  requests”  

on  page  493  

v   “Batching  multiple  requests  in  XML  requests”  on  page  509

Listing DB2 Content Manager servers with ListServerRequest 

To list  all  available  DB2  Content  Manager  servers,  create  a ListServerRequest  that  

identifies  the  following  information  (text  in  brackets  is optional):  

<ListServerRequest>  

  [ <ServerType>ICM</ServerType>  ] 

</ListServerRequest>  

<ListServerRequest>  elements:  

<ServerType>  (optional)  

Identifies  the  types  of  server  definitions  to list.  If you  do  not  specify  a 

<ServerType>,  then  the  request  returns  definitions  of  all  DB2  Content  

Manager  Version  8.3  servers  known  to  the  system.

 The  following  example  lists  all  servers  of  type  ICM: 

 

 

XML  request  

<ListServersRequest  

xmlns="http://www.ibm.com/xmlns/db2/cm/beans/1.0/schema">  

<ServerType>ICM</ServerType>  

</ListServersRequest>  

 As  a result,  DB2  Content  Manager  returns  an  XML  ListServerReply  that  returns  

<ServerDef>  objects  for  all  available  servers.  

 

 

XML  reply  

<ListServersReply  

xmlns="http://www.ibm.com/xmlns/db2/cm/beans/1.0/schema">  

<RequestStatus  success="true"></RequestStatus>  

<ServerDef>  

  <ServerType>ICM</ServerType>  

  <ServerName>icmnlsdb</ServerName>  

</ServerDef>  

<ServerDef>  

  <ServerType>ICM</ServerType>  

  <ServerName>CMA30</ServerName>  

</ServerDef>  

<ServerDef>  

  <ServerType>ICM</ServerType>  

  <ServerName>cma15</ServerName>  

</ServerDef>  

</ListServersReply>  

 

 

464 Application  Programming Guide

|
|

|
|

|
|

|
|

|

|

|
|

|
|
|

|

|
|
|
|

|
|

|

|
|
|
||||

|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||



Authenticating Web  service requests for security 

Every  time  that  you  make  a request  to  the  Web services,  you  must  pass  in  a DB2  

Content  Manager  user  ID  and  password,  or  a WebSphere  credential  token  

associated  with  a DB2  Content  Manager  user. If  a user  does  not  have  the  privilege  

to  perform  the  specific  request,  then  the  request  is not  processed  and  an  error  is 

returned  in  the  SOAP  reply.  For  example,  if a user  wants  to make  change  to an  

insurance  policy,  but  only  has  view  privileges,  the  user  cannot  make  any  changes  

to  the  policy.  

Important:  By  default,  the  user  ID  and  password  passed  in  the  Web services  

request  are  not  encrypted.  This  is not  a big  issue  if all  of  the  Web service  requests  

are  being  processed  within  the  firewall.  However,  if the  client  is outside  the  

firewall,  you  should  use  SSL  to  send  your  SOAP  requests.  

To authenticate  your  Web service  requests,  create  an  AuthenticationData  object.  

You must  then  include  this  object  in  every  request.  

<AuthenticationData  connectString="string" 

  configString="string" 

[ connectToWorkflow="boolean" ] > 

  <ServerDef>  

    <ServerName>string</ServerName>  

  [ <ServerType>ICM</ServerType>  ] 

  </ServerDef>  

  <!--  You  can  specify  either  a user  ID/password  or a WebSphere  SSO  credential:  --> 

  <LoginData>  

    <UserID>string</UserID>  

    <Password>string</Password>  

    <!--  or -->  <Credential>base64Binary</Credential> 

  </LoginData>  

</AuthenticationData>  

<AuthenticationData>  elements:  

<ServerDef>  (required)  

Identifies  your  content  server’s  <ServerName>  (for  example,  concord)  and  

an  optional  <ServerType>  (the  default  is ICM). To get  this  information,  see  

“Listing  DB2  Content  Manager  servers  with  ListServerRequest”  on  page  

464.  

<LoginData>  (required)  

Authenticates  the  user  by  either  user  ID/password  or  by  a WebSphere  SSO  

credential.

 <AuthenticationData>  attributes:  

connectString  (required)  

Passes  a server-specific  property  (beyond  user  ID  and  password)  to  

establish  a connection  to  the  server.  For  the  XML  interface,  always  specify  

SCHEMA=ICMADMIN. 

configString  (required)  

Passes  a CMBConnection  property  value  to help  construct  a dkDatastore  

instance.  

connectToWorkflow  (optional)  

Toggles  an  option  to  connect  to  the  workflow  server.  The  default  is true.

 Example:   

 

 

Chapter  11. Working  with XML services  (Java only) 465

|

|
|
|
|
|
|
|

|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|

|
|
|

|

|
|
|
|

|
|
|

|
|

|



<AuthenticationData  connectString="SCHEMA=ICMADMIN"  

  configString="">  

  <ServerDef><ServerType>ICM</ServerType>  

  <ServerName>icmnlsdb</ServerName></ServerDef><LoginData>  

  <UserID>testuser</UserID><Password>passw0rd</Password></LoginData>  

</AuthenticationData>  

Changing a password with XML requests 

To change  your  password  in  DB2  Content  Manager,  create  a 

ChangePasswordRequest  that  identifies  the  following  XML  schema  information:  

<ChangePasswordRequest>  

  <AuthenticationData>  ... </AuthenticationData>  

  <NewPassword>string</NewPassword>  

</ChangePasswordRequest>  

<ChangePasswordRequest>  elements:  

<AuthenticationData>  (required)  

Identifies  the  content  server  (ServerDef),  a valid  user  ID  (UserID),  and  

password  (Password)--or  a WebSphere  SSO  credential.  For  more  

information  about  authentication  data,  see  “Authenticating  Web service  

requests  for  security”  on  page  465.  

<NewPassword>  (required)  

Specifies  the  new  password  to  replace  the  old  one  in  

<AuthenticationData>.

 The  following  example  changes  the  password  of user  ID  testuser  to  passw0rd2: 

 

 

XML  request  

<ChangePasswordRequest  

xmlns="http://www.ibm.com/xmlns/db2/cm/beans/1.0/schema">  

<NewPassword>passw0rd2</NewPassword>  

<AuthenticationData  connectString="SCHEMA=ICMADMIN"  configString="">  

  <ServerDef><ServerType>ICM</ServerType>  

  <ServerName>icmnlsdb</ServerName></ServerDef><LoginData>  

  <UserID>testuser</UserID><Password>passw0rd</Password></LoginData>  

</AuthenticationData>  

</ChangePasswordRequest>  

 As  a result,  DB2  Content  Manager  returns  an  XML  ChangePasswordReply  that  

indicates  success:  

 

 

XML  reply  

<ChangePasswordReply  

xmlns="http://www.ibm.com/xmlns/db2/cm/beans/1.0/schema">  

<RequestStatus  success="true"></RequestStatus>  

</ChangePasswordReply>  

Listing DB2 Content Manager entities with 

ListSchemaRequest 

To list  all  DB2  Content  Manager  entities  where  schemas  are  required,  create  a 

ListSchemaRequest  that  identifies  the  following  information  (attribute  values  in  

brackets  are  optional):  

 

 

466 Application  Programming Guide

|
|
|
|
|
|

|

|
|

|
|
|
|

|

|
|
|
|
|

|
|
|

|
|

|

|
|
|
|
|
|
|
|
||||

|
|
|

|

|
|
|
||||

|

|

|
|
|



<ListSchemaRequest>  

  <AuthenticationData>  ...  </AuthenticationData>  

  <EntityList  [ all="boolean" ]> 

  [ <Entity  [ name="string" /> ] 

   </EntityList>  

</ListSchemaRequest>  

<ListSchemaRequest>  elements:  

<AuthenticationData>  (required)  

Identifies  the  content  server  (ServerDef),  a valid  user  ID  (UserID),  and  

password  (Password)--or  a WebSphere  SSO  credential.  For  more  

information  about  authentication  data,  see  “Authenticating  Web service  

requests  for  security”  on  page  465.  

<EntityList>  (required)  

Specifies  which  entities  (for  which  schemas  are  required)  to  return.  You can  

either  set  the  all  attribute  to  true  to  return  all  entities  where  schemas  are  

required--or,  you  can  specify  the  exact  <Entity  [ name=″string″ />  objects  

to  return.

 The  following  example  query  lists  all  entities  on  a server  that  require  a schema,  

and  would  additionally  return  an  attachment  of  the  full  schema:  

 

 

XML  request  

<ListSchemaRequest  

xmlns="http://www.ibm.com/xmlns/db2/cm/beans/1.0/schema">  

<AuthenticationData  connectString="SCHEMA=ICMADMIN"  configString="">  

  <ServerDef><ServerType>ICM</ServerType>  

  <ServerName>icmnlsdb</ServerName></ServerDef><LoginData>  

  <UserID>icmadmin</UserID><Password>passw0rd</Password></LoginData>  

</AuthenticationData>  

<EntityList  all="true"></EntityList>  

</ListSchemaRequest>  

 As  a result,  DB2  Content  Manager  returns  an  XML  ListSchemaReply  that  returns  an 

EntityList  of  entities  where  schemas  are  required.  

 

 

XML  reply  

<ListSchemaReply  

xmlns="http://www.ibm.com/xmlns/db2/cm/beans/1.0/schema">  

<RequestStatus  success="true"></RequestStatus>  

<EntityList>  

  <Entity  name="NOINDEX"/><Entity  name="ICMBASE"/>  

  <Entity  name="ICMANNOTATION"/><Entity  name="ICMNOTELOG"/>  

  <Entity  name="ICMSAVEDSEARCH"/><Entity  name="ICMFORMS"/>  

  <Entity  name="ICMDRFOLDERS"/><Entity  name="CLAIM_1047"/>  

  <Entity  name="ICMBASETEXT"/><Entity  name="ICMBASESTREAM"/>  

  <Entity  name="INSURED_1047"/><Entity  name="AGENT_1047"/>  

  <Entity  name="CLAIM2_1047"/><Entity  name="DOC26"/>  

  <Entity  name="XYZ_ClaimFolder"/><Entity  name="XYZ_AdjReport"/>  

  <Entity  name="XYZ_AutoPhoto"/><Entity  name="XYZ_ClaimForm"/>  

  <Entity  name="XYZ_InsPolicy"/><Entity  name="XYZ_PolReport"/>  

</EntityList>  

</ListSchemaReply>  

 

 

Chapter  11. Working  with XML services  (Java only) 467

|
|
|
|
|
|

|

|
|
|
|
|

|
|
|
|
|

|
|
|

|

|
|
|
|
|
|
|
|
||||

|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||



Creating DB2 Content Manager items with CreateItemRequest 

To create  items  in  DB2  Content  Manager,  create  a CreateItemRequest  that  identifies  

the  following  XML  schema  information  (text  in  brackets  is optional):  

<CreateItemRequest>  

  <AuthenticationData>  ... </AuthenticationData>  

  <Item><ItemXML>  ...  </ItemXML></Item>  

</CreateItemRequest>  

<CreateItemRequest>  elements:  

<AuthenticationData>  (required)  

Identifies  the  content  server  (ServerDef),  a valid  user  ID  (UserID),  and  

password  (Password)--or  a WebSphere  SSO  credential.  For  more  

information  about  authentication  data,  see  “Authenticating  Web service  

requests  for  security”  on  page  465.  

<Item>  (required)  

Specifies  an  item  to  create  on  the  DB2  Content  Manager  server.  For  details  

on  how  to  convert  your  item  to XML,  see  Chapter  11, “Working  with  XML  

services  (Java  only),”  on  page  429.

 The  following  example  request  creates  a policy  with  one  TIFF  image  attached,  and  

a policy  number  of  57904965371. 

 

 

XML  request  

<CreateItemRequest  

xmlns="http://www.ibm.com/xmlns/db2/cm/beans/1.0/schema">  

<AuthenticationData  connectString="SCHEMA=ICMADMIN"  configString="">  

  <ServerDef><ServerType>ICM</ServerType>  

  <ServerName>icmnlsdb</ServerName></ServerDef><LoginData>  

  <UserID>icmadmin</UserID><Password>passw0rd</Password></LoginData>  

</AuthenticationData>  

<Item><ItemXML><XYZ_InsPolicy  XYZ_Street="532  Camino  Viejo"  

  XYZ_City="Marina"  XYZ_State="CA"  XYZ_ZIPCode="90546"  XYZ_PolicyNum=  

  "57904965371"  xmlns=""><XYZ_Insured  XYZ_InsrdFName="Edward"  

  XYZ_InsrdLName="Smith"  /><XYZ_Insured  XYZ_InsrdFName="Jennifer"  

  XYZ_InsrdLName="Smith"  /><XYZ_VIN  XYZ_VIN="ICLA44P5KL9876543"  /> 

  <ICMBASE><resourceObject  MIMEType="image/tiff"  

  xmlns="http://www.ibm.com/xmlns/db2/cm/api/1.0/schema"><label  

  name="policyForm"  /></resourceObject></ICMBASE></XYZ_InsPolicy>  

</ItemXML></Item>  

</CreateItemRequest>  

 As  a result,  DB2  Content  Manager  returns  an  XML  CreateItemReply  that  contains  a 

URI  for  the  new  policy.  You can  enter  this  URI  in  a Web browser  to view  the  item’s  

XML  structure  (Restriction:  This  would  not  work  directly  with  the  XML  beans  

because  the  URI  is just  the  PID).  

 

 

XML  reply  

<CreateItemReply  

xmlns="http://www.ibm.com/xmlns/db2/cm/beans/1.0/schema">  

<RequestStatus  success="true"></RequestStatus>  

<Item  URI="http://hostname/CMBGenericWebService/CMBGetPIDUrl?pid=93  

  3 ICM8  icmnlsdb13  XYZ_InsPolicy59  26 A1001001A04I10B33015B9925018  

  A04I10B33015B992501  14 1029&amp;server=icmnlsdb&amp;dsType=ICM"/>  

</CreateItemReply>  

 

 

468 Application  Programming Guide

|

|
|

|
|
|
|

|

|
|
|
|
|

|
|
|
|

|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||

|
|
|
|
|

|

|
|
|
|
|
|
||||



The  following  example  request  creates  a claim  (claim  number  8-123456) with  one  

TIFF  and  one  JPEG  image  attached.  

 

 

XML  request  

<CreateItemRequest  

xmlns="http://www.ibm.com/xmlns/db2/cm/beans/1.0/schema">  

<AuthenticationData  connectString="SCHEMA=ICMADMIN"  configString="">  

  <ServerDef><ServerType>ICM</ServerType>  

  <ServerName>icmnlsdb</ServerName></ServerDef><LoginData>  

  <UserID>icmadmin</UserID><Password>passw0rd</Password></LoginData>  

</AuthenticationData>  

<Item><ItemXML><XYZ_ClaimForm  XYZ_ClaimFName="Joannifer"  

  XYZ_ClaimLName="Smith"  XYZ_ClaimNumber="8-123456"  XYZ_DriversLic=  

  "B12004960"  XYZ_InsrdFName="Nicholas"  XYZ_InsrdLName=  

  "Smith"  XYZ_PolicyNum="57904965371"  XYZ_IncDate="2001-01-20">  

  <ICMBASE><resourceObject  MIMEType="image/tiff"  

  xmlns="http://www.ibm.com/xmlns/db2/cm/api/1.0/schema"><label  

  name="claimForm"  /></resourceObject></ICMBASE>  

  <ICMBASE><resourceObject  MIMEType="image/jpeg"  

  xmlns="http://www.ibm.com/xmlns/db2/cm/api/1.0/schema"><label  

  name="claimPhoto"/></resourceObject></ICMBASE>  

  </XYZ_ClaimForm>  

</ItemXML></Item>  

</CreateItemRequest>  

 As  a result,  DB2  Content  Manager  returns  an  XML  CreateItemReply  that  contains  a 

URI  for  the  new  claim.  You can  enter  this  URI  in a Web browser  to  view  the  item’s  

XML  structure  (Restriction:  This  would  not  work  directly  with  the  XML  beans  

because  the  URI  is  just  the  PID).  

 

 

XML  reply  

<CreateItemReply  

xmlns="http://www.ibm.com/xmlns/db2/cm/beans/1.0/schema">  

<RequestStatus  success="true"></RequestStatus>  

<Item  URI="http://hostname/CMBGenericWebService/CMBGetPIDUrl?pid=93  

  3 ICM8  icmnlsdb13  XYZ_ClaimForm59  26 A1001001A04I10B33016C1746518  

  A04I10B33016C174651  14 1027&amp;server=icmnlsdb&amp;dsType=ICM"/>  

</CreateItemReply>  

Searching DB2 Content Manager items with RunQueryRequest 

To search  for  specific  DB2  Content  Manager  items  and  retrieve  Web links  to  them,  

create  a RunQueryRequest  that  identifies  the  following  XML  schema  information  

(text  in  brackets  is  optional):  

<RunQueryRequest  xmlns="http://www.ibm.com/xmlns/db2/cm/beans/1.0/schema"  

[ retrieveOption="IDONLY" contentOption="URL"  maxResults="integer" 

version="LATEST_VERSION" ]> 

  <AuthenticationData>  ...  </AuthenticationData>  

  <QueryCriteria  [ quertyType="XPATH" ]> 

    <QueryString>string</QueryString>  

  </QueryCriteria>  

</RunQueryRequest>  

<RunQueryRequest>  elements:  

<AuthenticationData>  (required)  

Identifies  the  content  server  (ServerDef),  a valid  user  ID  (UserID),  and  

 

 

Chapter  11. Working  with XML services  (Java only) 469

|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||

|
|
|
|
|

|

|
|
|
|
|
|
||||

|

|
|
|

|
|
|
|
|
|
|
|

|

|
|



password  (Password)--or  a WebSphere  SSO  credential.  For  more  

information  about  authentication  data,  see  “Authenticating  Web service  

requests  for  security”  on  page  465.  

<QueryCriteria>  (required)  

Specifies  search  parameters  for  the  item  or  items  that  you  want  to  retrieve  

in  the  XPATH (default)  query  syntax.  For  example,  

<QueryString>/XYZ_InsPolicy[  

@XYZ_PolicyNum="47809425673"]</QueryString>. For  more  information  

about  query  syntax,  see  “Example  searches  using  the  query  language”  on  

page  196.

 <RunQueryRequest>  attributes:  

retrieveOption  (optional)  

Limits  the  information  in  your  search  results  to  improve  the  response  time.  

Note  that  the  more  content  that  you  request,  the  slower  that  your  search  

will  perform.  Can  have  one  of the  following  values:  

IDONLY  

Only  returns  the  item  IDs,  and  yields  the  fastest  performance.  This  is 

the  default.  For  example,  an  IDONLY  QueryString  of  /XYZ_InsPolicy[  

@XYZ_PolicyNum="47809425673"]  would  search  for  all  XYZ  insurance  

policies  with  a policy  number  of 47809425673. 

ATTRONLY  

Returns  the  item  IDs  and  all  attribute  values  associated  with  them.  

ITEMTREE  

Returns  the  entire  tree  of  information,  including  item  IDs,  attribute  

values,  children,  sub-children,  and  metadata.  ITEMTREE  does  not  

retrieve  links.  

CONTENT  

Returns  all  ITEMTREE  information  plus  all  of  the  content.  The  content  

returns  as a URL  attachment,  depending  on  what  you  specify  in  the  

contentOption  attribute.  This  yields  the  slowest  performance.

contentOption  (optional)  

Specifies  whether  to return  the  item  content  as  a Web address  link  or  a 

binary  attachment.  Only  applies  when  the  retrieveOption  is  set  to 

CONTENT.  Can  have  one  of  the  following  values:  

URL  

Requests  that  a Web address  to  the  item  content  (on  the  resource  

manager)  be  embedded  in  the  XML  description  of the  item.  This  is the  

default.  

ATTACHMENTS  

Requests  that  the  item  content  be  returned  as  a binary  attachment  in  

the  reply  (equivalent  to  the  CMBXMLAttachment  Java  bean).

maxResults  (optional)  

Limits  the  number  of  search  results  to  return.  The  default  value  is 

unlimited  (0).  

version  (optional)  

Specifies  the  version  of the  items  to  search  for.  For  example,  ALL_VERSIONS  

(all  versions  of  the  item),  or  specific  version  such  as  1 or  2. The  default  

value  is  LATEST_VERSION  (the  most  recent  version  of  the  item).

 

 

470 Application  Programming Guide

|
|
|

|
|
|
|
|
|
|

|

|
|
|
|

|
|
|
|
|

|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|

|
|
|

|
|
|
|



The  following  example  query  requests  a list  of all  policies:  

 

 

XML  request  

<RunQueryRequest  

xmlns="http://www.ibm.com/xmlns/db2/cm/beans/1.0/schema"  

maxResults="0"  version="latest-version(.)"  contentOption="URL"  

retrieveOption="ITEMTREE">  

<AuthenticationData  connectString="SCHEMA=ICMADMIN"  configString="">  

  <ServerDef><ServerType>ICM</ServerType>  

  <ServerName>icmnlsdb</ServerName></ServerDef><LoginData>  

  <UserID>icmadmin</UserID><Password>passw0rd</Password></LoginData>  

</AuthenticationData>  

<QueryCriteria>  

  <QueryString>/XYZ_InsPolicy[  @XYZ_State  LIKE  "%"]</QueryString>  

</QueryCriteria>  

</RunQueryRequest>  

 As  a result,  DB2  Content  Manager  returns  an  XML  RunQueryReply  that  contains  a 

list  of  Web addresses  for  all  XYZ  insurance  policies.  You can  enter  the  URI  in  a 

Web browser  to  view  an  item’s  XML  structure  (Restriction:  This  would  not  work  

directly  with  the  XML  beans  because  the  URI  is just  the  PID).  

 

 

XML  reply  

<RunQueryReply  

xmlns="http://www.ibm.com/xmlns/db2/cm/beans/1.0/schema">  

<RequestStatus  success="true"></RequestStatus>  

<ResultSet  count="1">  

<Item  URI="http://hostname/CMBGenericWebService/CMBGetPIDUrl?pid=93  

  3 ICM8  icmnlsdb13  XYZ_InsPolicy59  26 A1001001A04I10B33609D5857118  

  A04I10B33609D585711  14 1029&amp;server=icmnlsdb&amp;dsType=ICM">  

<ItemXML><XYZ_InsPolicy  XYZ_City="Marina"  XYZ_PolicyNum="57904965371"  

  XYZ_State="CA"  XYZ_Street="532  Camino  Viejo"  XYZ_ZIPCode="90546"  

  cm:PID="93  3 ICM8  icmnlsdb13  XYZ_InsPolicy59  26 

  A1001001A04I10B33609D5857118  A04I10B33609D585711  14 1029"  

  xmlns:cm="http://www.ibm.com/xmlns/db2/cm/api/1.0/schema">  

  <cm:properties  type="document">  

  <cm:lastChangeUserid  value="ICMADMIN"/>  

  <cm:lastChangeTime  value="2004-09-10T20:36:09.462"/>  

  <cm:createUserid  value="ICMADMIN"/>  

  <cm:createTime  value="2004-09-10T20:36:09.462"/>  

  <cm:semanticType  value="1"/>  

  <cm:ACL  name="XYZInsurancePolicyACL"/>  

  <cm:lastOperation  name="RETRIEVE"  value="SUCCESS"/>  

  <cm:lastRetrieveOption  value="32"/></cm:properties>  

  <XYZ_Insured  XYZ_InsrdFName="Edward"  XYZ_InsrdLName="Smith"  

  cm:PID="91  3 ICM8  icmnlsdb11  XYZ_Insured59  26 

  A1001001A04I10B33609D5857118  A04I10B33609E627501  14 1030"/>  

  <XYZ_Insured  XYZ_InsrdFName="Jennifer"  XYZ_InsrdLName="Smith"  

  cm:PID="91  3 ICM8  icmnlsdb11  XYZ_Insured59  26 

  A1001001A04I10B33609D5857118  A04I10B33609E637451  14 1030"/>  

  <XYZ_VIN  XYZ_VIN="ICLA44P5KL9876543"  cm:PID="86  3 ICM8  icmnlsdb7  

  XYZ_VIN59  26 A1001001A04I10B33609D5857118  A04I10B33609E646691  14 

  1031"/></XYZ_InsPolicy>  

</ItemXML></Item></ResultSet>  

</RunQueryReply>  

 You can  then  program  your  custom  application  to  display  these  Web links.  

 

 

Chapter  11. Working  with XML services  (Java only) 471

|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
||||

|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||

|



Retrieving DB2 Content Manager items with 

RetrieveItemRequest 

To search  for  specific  DB2  Content  Manager  items  and  retrieve  them  as  either  Web 

links  or  binary  attachments,  create  a RetrieveItemRequest  that  identifies  the  

following  XML  schema  information  (text  in  brackets  is optional):  

<RetrieveItemRequest  retrieveOption="string" 

[ contentOption="URL" version="LATEST_VERSION" 

  checkout="false"> ]> 

  <AuthenticationData>  ... </AuthenticationData>  

  <Item  URI="string" [ version="LATEST_VERSION" ] /> 

</RetrieveItemRequest>  

<RetrieveItemRequest>  elements:  

<AuthenticationData>  (required)  

Identifies  the  content  server  (ServerDef),  a valid  user  ID  (UserID),  and  

password  (Password)--or  a WebSphere  SSO  credential.  For  more  

information  about  authentication  data,  see  “Authenticating  Web service  

requests  for  security”  on  page  465.  

<Item>  (required)  

Specifies  the  item  to retrieve  on  the  DB2  Content  Manager  server.  Can  

contain  the  following  attributes:  

URI  (required)  

Specifies  the  identifier  or  the  PID  of the  item  to  retrieve.  You can  

obtain  the  URI  through  a RunQueryRequest. It also  appears  in  the  

CreateItemReply. 

version  (optional)  

Specifies  the  version  of  the  items  to retrieve.  For  example,  

ALL_VERSIONS  (all  versions  of the  item),  or  specific  version  such  as  

1 or  2.  The  default  value  is LATEST_VERSION  (the  most  recent  

version  of  the  item).

 <RetrieveItemRequest>  attributes:  

retrieveOption  (required)  

Limits  the  information  in  your  search  results  to  improve  the  response  time.  

Can  have  one  of the  following  values:  

ITEMTREE  

Returns  the  entire  tree  of  information,  including  item  IDs,  attribute  

values,  children,  sub-children,  and  metadata.  ITEMTREE  does  not  

retrieve  links.  

CONTENT  

Returns  all  ITEMTREE  information  plus  all  of  the  content.  The  content  

returns  as a URL  attachment,  depending  on  what  you  specify  in  the  

contentOption  attribute.  

CONTENT_WITH_LINKS  

Returns  all  ITEMTREE  information,  all  of the  content,  and  all  of  the  

item’s  inbound  and  outbound  link  information.  The  link  information  

appears  in  the  XML  expression  of the  item.  This  yields  the  slowest  

performance.

contentOption  (optional)  

Specifies  whether  to return  the  item  content  as  a Web address  link  or  a 

 

 

472 Application  Programming Guide

|

|

|
|
|

|
|
|
|
|
|

|

|
|
|
|
|

|
|
|

|
|
|
|

|
|
|
|
|

|

|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|

|
|



binary  attachment.  Only  applies  when  the  retrieveOption  is set  to 

CONTENT  or  CONTENT_WITH_LINKS.  Can  have  one  of  the  following  

values:  

URL  

Requests  that  a Web address  to the  item  content  (on  the  resource  

manager)  be  embedded  in  the  XML  description  of  the  item.  This  is the  

default.  

ATTACHMENTS  

Requests  that  the  item  content  be  returned  as  a binary  attachment  in 

the  reply  (equivalent  to  the  CMBXMLAttachment  Java  bean).

version  (optional)  

Specifies  the  version  of  the  item  to  retrieve.  For  example,  ALL_VERSIONS  (all  

versions  of  the  item),  or  specific  version  such  as  1 or  2. The  default  value  is 

LATEST_VERSION  (the  most  recent  version  of the  item).  

checkout  (optional)  

Toggles  whether  to  check  out  the  item  and  lock  it. The  default  value  is 

false.

 The  following  example  query  retrieves  the  57904965371  policy  and  its  content  part  

URL  location  by  specifying  its  item  URI  (as  returned  from  the  query  search):  

 

 

XML  request  

<RetrieveItemRequest  contentOption="URL"  retrieveOption="CONTENT"  

xmlns="http://www.ibm.com/xmlns/db2/cm/beans/1.0/schema">  

<AuthenticationData  connectString="SCHEMA=ICMADMIN"  configString="">  

  <ServerDef><ServerType>ICM</ServerType>  

  <ServerName>icmnlsdb</ServerName></ServerDef><LoginData>  

  <UserID>icmadmin</UserID><Password>passw0rd</Password></LoginData>  

</AuthenticationData>  

<Item  URI="http://hostname/CMBGenericWebService/CMBGetPIDUrl?pid=93  

  3 ICM8  icmnlsdb13  XYZ_InsPolicy59  26 A1001001A04I10B33015B9925018  

  A04I10B33015B992501  14 1029&server=icmnlsdb&dsType=ICM"/>  

</RetrieveItemRequest>  

 As  a result,  DB2  Content  Manager  returns  an  XML  RetrieveItemReply  that  

contains  the  57904965371  policy  and  a URL  for  its  content  part:  

 

 

Chapter  11. Working  with XML services  (Java only) 473

|
|
|

|
|
|
|

|
|
|

|
|
|
|

|
|
|

|
|
|

|

|
|
|
|
|
|
|
|
|
|
||||

|
|



XML  reply  

<RetrieveItemReply  

xmlns="http://www.ibm.com/xmlns/db2/cm/beans/1.0/schema">  

<RequestStatus  success="true"></RequestStatus>  

<Item  URI="http://hostname/CMBGenericWebService/CMBGetPIDUrl?pid=93  3 

  ICM8  icmnlsdb13  XYZ_InsPolicy59  26 A1001001A04I10B33015B9925018  

  A04I10B33015B992501  14 1029&amp;server=icmnlsdb&amp;dsType=ICM">  

<ItemXML><XYZ_InsPolicy  XYZ_City="Marina"  XYZ_PolicyNum="57904965371"  

  XYZ_State="CA"  XYZ_Street="532  Camino  Viejo  XYZ_ZIPCode="90546"  

  cm:PID="93  3 ICM8  icmnlsdb13  XYZ_InsPolicy59  26 

  A1001001A04I10B33015B9925018  A04I10B33015B992501  14 1029"  

  xmlns:cm="http://www.ibm.com/xmlns/db2/cm/api/1.0/schema"  

  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">  

  <cm:properties  type="document">  

    <cm:lastChangeUserid  value="ICMADMIN"/>  

    <cm:lastChangeTime  value="2004-09-10T20:30:15.363"/>  

    <cm:createUserid  value="ICMADMIN"/>  

    <cm:createTime  value="2004-09-10T20:30:15.363"/>  

    <cm:semanticType  value="1"/>  

    <cm:ACL  name="XYZInsurancePolicyACL"/>  

    <cm:lastOperation  name="RETRIEVE"  value="SUCCESS"/>  

    <cm:lastRetrieveOption  value="288"/>  

  </cm:properties>  

  <XYZ_Insured  XYZ_InsrdFName="Edward"  XYZ_InsrdLName="Smith"  

    cm:PID="91  3 ICM8  icmnlsdb11  XYZ_Insured59  26 

    A1001001A04I10B33015B9925018  A04I10B33015D946781  14 1030"/>  

    <XYZ_Insured  XYZ_InsrdFName="Jennifer"  XYZ_InsrdLName="Smith"  

    cm:PID="91  3 ICM8  icmnlsdb11  XYZ_Insured59  26 

    A1001001A04I10B33015B9925018  A04I10B33015D955181  14 1030"/>  

  <XYZ_VIN  XYZ_VIN="ICLA44P5KL9876543"  cm:PID="86  3 ICM8  icmnlsdb7  

    XYZ_VIN59  26 A1001001A04I10B33015B9925018  A04I10B33015D968631  

    14 1031"/><ICMBASE  cm:PID="85  3 ICM8  icmnlsdb7  ICMBASE58  26  

    A1001001A04I10B33015B9019018  A04I10B33015B901901  13 300"  

    cm:partNumber="1">  

    <cm:properties  type="item"  xsi:type="cm:partPropertyType">  

      <cm:lastChangeUserid  value="ICMADMIN"/>  

      <cm:lastChangeTime  value="2004-09-10T20:30:15.363"/>  

      <cm:createUserid  value="ICMADMIN"/>  

      <cm:createTime  value="2004-09-10T20:30:15.363"/>  

      <cm:lastOperation  name="RETRIEVE"  value="SUCCESS"/>  

      <cm:lastRetrieveOption  value="1"/>  

      <cm:ACL  name="XYZInsurancePolicyACL"/>  

      <cm:semanticType  value="128"/>  

    </cm:properties>  

  <cm:resourceObject  MIMEType="image/tiff"  RMName="rmdb"  SMSCollName=  

    "CBR.CLLCT001"  externalObjectName="  " resourceFlag="2"  size="104137">  

    <cm:URL  value=  

      "http://hostname:9081/icmrm/ICMResourceManager?order=  

      retrieve&amp;item-id=A1001001A04I10B33015B90190&amp;version=  

      1&amp;collection=CBR.CLLCT001&amp;libname=icmnlsdb&amp;update-date=  

      2004-09-10+20%3A30%3A15.486558&amp;token=A4E6.EIGlq_6_csMMiO58LhE;  

      &amp;content-length=0"/>  

  </cm:resourceObject>  

  </ICMBASE></XYZ_InsPolicy>  

</ItemXML></Item>  

</RetrieveItemReply>  

 The  following  example  query  retrieves  the  8-123456  claim  with  binary  content  part  

attached  by  specifying  its  item  URI  (as  returned  from  the  query  search):  

 

 

474 Application  Programming Guide

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||

|
|



XML  request  

<RetrieveItemRequest  contentOption="ATTACHMENTS"  

retrieveOption="CONTENT"  

xmlns="http://www.ibm.com/xmlns/db2/cm/beans/1.0/schema">  

<AuthenticationData  connectString="SCHEMA=ICMADMIN"  configString="">  

  <ServerDef><ServerType>ICM</ServerType>  

  <ServerName>icmnlsdb</ServerName></ServerDef><LoginData>  

  <UserID>icmadmin</UserID><Password>passw0rd</Password></LoginData>  

</AuthenticationData>  

<Item  URI="http://hostname/CMBGenericWebService/CMBGetPIDUrl?pid=93  3 

  ICM8  icmnlsdb13  XYZ_ClaimForm59  26 A1001001A04I10B33016C1746518  

  A04I10B33016C174651  14 1027&server=icmnlsdb&dsType=ICM"/>  

</RetrieveItemRequest>  

 As  a result,  DB2  Content  Manager  returns  an  XML  RetrieveItemReply  that  

contains  the  8-123456  claim  and  binary  attachments  for  its  content  parts:  

 

 

XML  reply  

<RetrieveItemReply  

xmlns="http://www.ibm.com/xmlns/db2/cm/beans/1.0/schema">  

<RequestStatus  success="true"></RequestStatus>  

<Item  URI="http://hostname/CMBGenericWebService/CMBGetPIDUrl?pid=93  3 

  ICM8  icmnlsdb13  XYZ_ClaimForm59  26 A1001001A04I10B33016C1746518  

  A04I10B33016C174651  14 1027&amp;server=icmnlsdb&amp;dsType=ICM">  

<ItemXML><XYZ_ClaimForm  XYZ_ClaimFName="Joannifer"  

  XYZ_ClaimLName="Smith"  XYZ_ClaimNumber="8-123456"  

  XYZ_DriversLic="B12004960"  XYZ_IncDate="2001-01-20"  

  XYZ_InsrdFName="Nicholas"  XYZ_InsrdLName="Smith"  

  XYZ_PolicyNum="57904965371"  cm:PID="93  3 ICM8  icmnlsdb13  

  XYZ_ClaimForm59  26 A1001001A04I10B33016C1746518  

  A04I10B33016C174651  14 1027"  xmlns:cm=  

  "http://www.ibm.com/xmlns/db2/cm/api/1.0/schema"  xmlns:xsi=  

  "http://www.w3.org/2001/XMLSchema-instance">  

  <cm:properties  type="document">  

  ...  

  </cm:properties>  

  <ICMBASE  cm:PID="85  3 ICM8  icmnlsdb7  ICMBASE58  26 

    A1001001A04I10B33016C1816218  A04I10B33016C181621  13  300"  

    cm:partNumber="1">  

    <cm:properties  type="item"  xsi:type="cm:partPropertyType">  

    ...  

    </cm:properties>  

    <cm:resourceObject  MIMEType="image/tiff"  RMName="rmdb"  

      SMSCollName="CBR.CLLCT001"  externalObjectName="  " 

      resourceFlag="2"  size="61578">  <cm:label  name=  

      "A1001001A04I10B33016C18162A04I10B33016C181621"/>  

    </cm:resourceObject>  

  </ICMBASE>  

 

 

Chapter  11. Working  with XML services  (Java only) 475

|

|

|
|
|
|
|
|
|
|
|
|
|
||||

|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||



XML  reply  (continued)  

  <ICMBASE  cm:PID="85  3 ICM8  icmnlsdb7  ICMBASE58  26  

    A1001001A04I10B33016C1887218  A04I10B33016C188721  13 300"  

    cm:partNumber="2">  

    <cm:properties  type="item"  xsi:type="cm:partPropertyType">  

    ...  

    </cm:properties>  

    <cm:resourceObject  MIMEType="image/jpeg"  RMName="rmdb"  

      SMSCollName="CBR.CLLCT001"  externalObjectName="  " 

      resourceFlag="6"  size="0"/>  

  </ICMBASE></XYZ_ClaimForm>  

</ItemXML></Item>  

</RetrieveItemReply>  

Viewing  your user privileges with XML requests 

To view  your  privileges  on  a specific  DB2  Content  Manager  item  (including  user  

privileges),  create  a GetPrivilegesRequest  that  identifies  the  following  XML  

schema  information:  

<GetPrivilegesRequest>  

  <AuthenticationData>  ... </AuthenticationData>  

  <Item  URI="string" /> 

</GetPrivilegesRequest>  

<GetPrivilegesRequest>  elements:  

<AuthenticationData>  (required)  

Identifies  the  content  server  (ServerDef),  a valid  user  ID  (UserID),  and  

password  (Password)--or  a WebSphere  SSO  credential.  For  more  

information  about  authentication  data,  see  “Authenticating  Web service  

requests  for  security”  on  page  465.  

<Item  URI=″string″/> (required)  

Specifies  the  persistent  identifier  for  the  item  that  you  want  to  list  

privileges  for. You can  obtain  the  URI  through  a RunQueryRequest. It  also  

appears  in  the  CreateItemReply.

 The  following  example  request  lists  all  privileges  for  the  57904965371  policy  by  

specifying  its  URI  (as  returned  from  the  query  search):  

 

 

XML  request  

<GetPrivilegesRequest  

xmlns="http://www.ibm.com/xmlns/db2/cm/beans/1.0/schema"  > 

<AuthenticationData  connectString="SCHEMA=ICMADMIN"  configString="">  

  <ServerDef><ServerType>ICM</ServerType>  

  <ServerName>icmnlsdb</ServerName></ServerDef><LoginData>  

  <UserID>icmadmin</UserID><Password>passw0rd</Password></LoginData>  

</AuthenticationData>  

<Item  URI="90  3 ICM8  icmnlsdb10  CLAIM_104759  26 

  A1001001A04I13B04803F2085118  A04I13B04803F208511  14 1007"/>  

</GetPrivilegesRequest>  

 As  a result,  DB2  Content  Manager  returns  an  XML  GetPrivilegesReply  that  

returns  a <Privileges>  list  of all  privileges  associated  with  the  item.  Each  

<Privilege>  object  contains  the  name  (for  example,  VIEW_CONTENT  or  

MODIFY_CONTENT) and  your  authorized  status,  i.e.,  yes, no,  or  unknown.  

 

 

476 Application  Programming Guide

|

|

|
|
|
|
|
|
|
|
|
|
|
||||

|

|
|
|

|
|
|
|

|

|
|
|
|
|

|
|
|
|

|
|
|

|

|
|
|
|
|
|
|
|
|
||||

|
|
|
|



XML  reply  

<GetPrivilegesReply  

xmlns="http://www.ibm.com/xmlns/db2/cm/beans/1.0/schema">  

<RequestStatus  success="true"></RequestStatus>  

<Privileges>  

  <Privilege  authorized="YES"  name="VIEW_CONTENT"/>  

  <Privilege  authorized="NO"  name="MODIFY_CONTENT"/>  

  <Privilege  authorized=""  name="EDIT_ATTRIBUTES"/>  

  ...  

  </Privileges>  

</GetPrivilegesReply>  

Working  with DB2 Content Manager folders through XML 

requests 

A  folder  contains  zero  or  more  DB2  Content  Manager  items  and  zero  or  more  

folders.  The  object  uses  the  following  schema  (text  in  brackets  are  optional):  

<Folder>  

[ <Item  URI="string"><ItemXML>  ...  </ItemXML></Item>  ] 

[ <FolderItems>  

  [ <Item  URI="string"><ItemXML>  ...  </ItemXML></Item>  ] 

  </FolderItems>  ] 

</Folder>  

You can  create  a folder  using  CreateItemRequest  and  the  <cm:properties  

type="folder"  xmlns:cm="http://www.ibm.com/xmlns/db2/cm/api/1.0/schema"/>  

setting  (see  the  example  near  the  end  of  this  section).  

You can  request  the  following  actions  for  folders  in  DB2  Content  Manager.  

 

 

Adding  an  item  into  a folder  

<AddItemToFolderRequest  [ newVersion="false" 

checkin="true" checkout="true" ]> 

  <AuthenticationData>  ...  </AuthenticationData>  

  <Item>the item  to add</Item>  

  <Folder>the folder  to add  the item  to</Folder>  

</AddItemToFolderRequest>  

The  AddItemToFolderRequest  can  optionally  use  the  newVersion, checkout, 

and  checkin  attributes  (see  “Updating  DB2  Content  Manager  items  with  an  

XML  UpdateItemRequest”  on  page  480  for  details  on  these  attributes).  

 

 

Chapter  11. Working  with XML services  (Java only) 477

|

|

|
|
|
|
|
|
|
|
|
||||

|

|

|
|

|
|
|
|
|
|

|
|
|

|
|

|

|
|
|
|
|
|

|
|
||||



Removing  an  item  into  a folder  

<RemoveItemFromFolderRequest[  newVersion="false" 

checkin="true" checkout="true" ]> 

  <AuthenticationData>  ...  </AuthenticationData>  

  <Item>the item  to remove</Item>  

  <Folder>the  folder  to remove  the  item  from</Folder>  

</RemoveItemFromFolderRequest>  

The  RemoveItemFromFolderRequest  can  optionally  use  the  newVersion, 

checkout, and  checkin  attributes  (see  “Updating  DB2  Content  Manager  items  

with  an  XML  UpdateItemRequest”  on  page  480  for  details  on  these  

attributes).  

 

 

Retrieving  all  items  inside  of  a folder  

<RetrieveFolderItemRequest  [ retrieveOption="string" 

contentOption="URL" version="LATEST_VERSION" ] > 

  <AuthenticationData>  ...  </AuthenticationData>  

  <Folder>the  folder  to retrieve  the  items  from</Folder>  

</RetrieveFolderItemsRequest>  

The  RetrieveFolderItemsRequest  can  optionally  use  the  retrieveOption  and  

contentOption  attributes  (see  “Retrieving  DB2  Content  Manager  items  with  

RetrieveItemRequest”  on  page  472  for  details  on  these  attributes)  along  with  

maxItems  to  retrieve  (the  default  is NO_MAX). 

If  successful,  then  DB2  Content  Manager  returns  the  following  reply:  

<RetrieveFolderItemsReply>  

  <FolderItems>  

  <Item>  ...  </Item>  

  ...  

  </FolderItems>  

</RetrieveFolderItemsReply>  

 

 

Retrieving  all  folders  that  an  item  is  in  

<RetrieveFoldersForItemRequest  

  [ retrieveOption="string" contentOption="URL" ] > 

  <AuthenticationData>  ...  </AuthenticationData>  

  <Item>the item  to retrieve  the folders  for</Item>  

</RetrieveFoldersForItemRequest>  

The  RetrieveFoldersForItemsRequest  can  optionally  use  the  retrieveOption  

and  contentOption  attributes.  See  “Retrieving  DB2  Content  Manager  items  

with  RetrieveItemRequest”  on  page  472  for  details  on  these  attributes.  

If  successful,  then  DB2  Content  Manager  returns  the  following  reply:  

<RetrieveFoldersForItemReply>  

  <Folder>  ...  </Folder>  

  ...  

</RetrieveFoldersForItemReply>  

 The  following  example  creates  a folder  and  puts  the  57904965371  policy  into  it by  

specifying  the  item  URI  (as  returned  from  the  query  search).  Important:  You must  

 

 

478 Application  Programming Guide

|

|

|
|
|
|
|
|

|
|
|
||||
|

|

|
|
|
|
|

|
|
|
|

|

|
|
|
|
|
||||
|

|

|
|
|
|
|

|
|
|

|

|
|
|
||||

|
|



specify  <cm:properties  type="folder"  

xmlns:cm="http://www.ibm.com/xmlns/db2/cm/api/1.0/schema"/>  to categorize  the  

new  item  as  a folder.  

 

 

XML  request  

<CreateItemRequest  

xmlns="http://www.ibm.com/xmlns/db2/cm/beans/1.0/schema">  

<AuthenticationData  connectString="SCHEMA=ICMADMIN"  configString="">  

  <ServerDef><ServerType>ICM</ServerType>  

  <ServerName>icmnlsdb</ServerName></ServerDef><LoginData>  

  <UserID>icmadmin</UserID><Password>passw0rd</Password></LoginData>  

</AuthenticationData>  

<Item><ItemXML><XYZ_InsPolicy  XYZ_Street="532  Camino  Viejo"  

  XYZ_City="Marina"  XYZ_State="CA"  XYZ_ZIPCode="90546"  

  XYZ_PolicyNum="57904965371"  xmlns="">  

    <cm:properties  type="folder"  xmlns:cm=  

    "http://www.ibm.com/xmlns/db2/cm/api/1.0/schema"/>  

  </XYZ_InsPolicy>  

</ItemXML></Item>  

</CreateItemRequest>  

 As  a result,  DB2  Content  Manager  returns  an  XML  CreateItemReply  that  contains  

the  URI  for  the  new  folder:  

 

 

XML  reply  

<CreateItemReply  

xmlns="http://www.ibm.com/xmlns/db2/cm/beans/1.0/schema">  

<RequestStatus  success="true"></RequestStatus>  

<Item  URI="http://hostname/CMBGenericWebService/CMBGetPIDUrl?pid=93  

  3 ICM8  icmnlsdb13  XYZ_InsPolicy59  26 A1001001A04I10B45558I8302118  

  A04I10B45558I830211  14 1029&amp;server=icmnlsdb&amp;dsType=ICM"/>  

</CreateItemReply>  

 The  following  example  adds  the  8-123456  claim  to  the  same  folder  by  specifying  

their  URIs:  

 

 

XML  request  

<AddItemToFolderRequest  

xmlns="http://www.ibm.com/xmlns/db2/cm/beans/1.0/schema">  

<AuthenticationData  connectString="SCHEMA=ICMADMIN"  configString="">  

  <ServerDef><ServerType>ICM</ServerType>  

  <ServerName>icmnlsdb</ServerName></ServerDef><LoginData>  

  <UserID>icmadmin</UserID><Password>passw0rd</Password></LoginData>  

</AuthenticationData>  

<Folder  URI="http://hostname/CMBGenericWebService/CMBGetPIDUrl?pid=93  

  3 ICM8  icmnlsdb13  XYZ_InsPolicy59  26 A1001001A04I10B45558I8302118  

  A04I10B45558I830211  14 1029&server=icmnlsdb&dsType=ICM"/>  

<Item  URI="http://hostname/CMBGenericWebService/CMBGetPIDUrl?pid=93  

  3 ICM8  icmnlsdb13  XYZ_ClaimForm59  26 A1001001A04I10B45555F4042518  

  A04I10B45555F404251  14 1027&server=icmnlsdb&dsType=ICM"/>  

</AddItemToFolderRequest>  

 As  a result,  DB2  Content  Manager  returns  an  XML  AddItemToFolderReply  that  

indicates  success:  

 

 

Chapter  11. Working  with XML services  (Java only) 479

|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||

|
|
|

|

|
|
|
|
|
|
||||

|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
||||

|
|



XML  reply  

<AddItemToFolderReply  

xmlns="http://www.ibm.com/xmlns/db2/cm/beans/1.0/schema">  

<RequestStatus  success="true"></RequestStatus>  

</AddItemToFolderReply>  

 The  following  example  deletes  the  folder  by  specifying  its  URI:  

 

 

XML  request  

<DeleteItemRequest  

xmlns="http://www.ibm.com/xmlns/db2/cm/beans/1.0/schema">  

<AuthenticationData  connectString="SCHEMA=ICMADMIN"  configString="">  

  <ServerDef><ServerType>ICM</ServerType>  

  <ServerName>icmnlsdb</ServerName></ServerDef><LoginData>  

  <UserID>icmadmin</UserID><Password>passw0rd</Password></LoginData>  

</AuthenticationData>  

<Item  URI="http://hostname/CMBGenericWebService/CMBGetPIDUrl?pid=93  

  3 ICM8  icmnlsdb13  XYZ_InsPolicy59  26 A1001001A04I10B45558I8302118  

  A04I10B45558I830211  14 1029&server=icmnlsdb&dsType=ICM"  />  

</DeleteItemRequest>  

 As  a result,  DB2  Content  Manager  returns  an  XML  DeleteItemReply  that  indicates  

success:  

 

 

XML  reply  

<DeleteItemReply  

  xmlns="http://www.ibm.com/xmlns/db2/cm/beans/1.0/schema">  

<RequestStatus  success="true"></RequestStatus>  

</DeleteItemReply>  

Updating DB2 Content Manager items with an XML 

UpdateItemRequest 

To update  items  from  DB2  Content  Manager,  create  an  UpdateItemRequest  that  

identifies  the  following  XML  schema  information:  

<UpdateItemRequest  [ newVersion="false" 

checkin="true" checkout="true" ]> 

  <AuthenticationData>  ... </AuthenticationData>  

  <Item  URI="string"> 

  [ <XMLItem>  ...  </XMLItem>  ] 

  </Item>  

</UpdateItemRequest>  

<UpdateItemRequest>  elements:  

<AuthenticationData>  (required)  

Identifies  the  content  server  (ServerDef),  a valid  user  ID  (UserID),  and  

password  (Password)--or  a WebSphere  SSO  credential.  For  more  

information  about  authentication  data,  see  “Authenticating  Web service  

requests  for  security”  on  page  465.  

<Item  URI=″string″> (required)  

Specifies  the  item  to update  in  the  DB2  Content  Manager  server.  

 

 

480 Application  Programming Guide

|

|

|
|
|
||||

|
|

|

|
|
|
|
|
|
|
|
|
|
||||

|
|
|

|

|
|
|
||||

|

|

|
|

|
|
|
|
|
|
|

|

|
|
|
|
|

|
|



<XMLItem>  (optional)  

Replaces  the  entire  item’s  XML  specification,  including  all  its  metadata,  

attributes,  and  child  components.  For  details  on  how  to  convert  your  item  

to  XML,  see  Chapter  11, “Working  with  XML  services  (Java  only),”  on  page  

429.  

 The  following  example  replaces  the  XYZ_InsPolicy  item  specified  in  the  

insPolicy  and  attachments  variables.

 <UpdateItemRequest>  attributes:  

newVersion  (optional)  

Specifies  whether  to  increment  the  version  number  on  the  item  that  you  

update.  The  default  value  is false. 

checkout  (optional)  

Toggles  whether  to  check  the  item  out  (thus  locking  it)  before  performing  

the  update  request  on  it.  The  default  value  is true. 

checkin  (optional)  

Toggles  whether  to  check  an  item  in  after  performing  the  update  request  

on  it.  The  default  value  is true. If  the  item  is  not  checked  out  then  this  

setting  fails.

 You can  specify  the  following  types  of  updates:  

v   “Adding  objects  inside  DB2  Content  Manager  items  with  an  XML  

UpdateItemRequest”  on  page  482  

v   “Replacing  objects  inside  DB2  Content  Manager  items  with  an  XML  

UpdateItemRequest”  on  page  484  

v   “Deleting  objects  inside  DB2  Content  Manager  items  with  an  XML  

UpdateItemRequest”  on  page  486  

The  following  example  batches  all  three  updates  together  to  update  the  

57904965371  policy:  

 

 

Chapter  11. Working  with XML services  (Java only) 481

|
|
|
|
|

|
|

|

|
|
|

|
|
|

|
|
|
|

|

|
|

|
|

|
|

|
|



XML  request  

<UpdateItemRequest  

xmlns="http://www.ibm.com/xmlns/db2/cm/beans/1.0/schema">  

<AuthenticationData  connectString="SCHEMA=ICMADMIN"  configString="">  

  <ServerDef><ServerType>ICM</ServerType>  

  <ServerName>icmnlsdb</ServerName></ServerDef><LoginData>  

  <UserID>icmadmin</UserID><Password>passw0rd</Password></LoginData>  

</AuthenticationData>  

<Item  URI="93  3 ICM8  icmnlsdb13  XYZ_InsPolicy59  26 

  A1001001A04I10B35710G9498818  A04I10B35710G949881  14 1029"  /> 

<Add>  

  <ChildItem  parentURI="93  3 ICM8  icmnlsdb13  XYZ_InsPolicy59  26 

    A1001001A04I10B35710G9498818  A04I10B35710G949881  14 1029">  

    <ItemXML><XYZ_Insured  XYZ_InsrdFName="Alice"  

    XYZ_InsrdLName="Smith"  /></ItemXML></ChildItem>  

</Add>  

<Replace>  

  <Attribute  name="XYZ_Street"><Value>123  Cedar  Rd</Value></Attribute>  

  <Attribute  name="XYZ_ZIPCode"><Value>90543</Value></Attribute>  

  <ChildItem  parentURI="93  3 ICM8  icmnlsdb13  XYZ_InsPolicy59  26 

  A1001001A04I10B35710G9498818  A04I10B35710G949881  14 1029">  

    <ItemXML><XYZ_VIN  

      xmlns:cm="http://www.ibm.com/xmlns/db2/cm/api/1.0/schema"  

      XYZ_VIN="1RIO35P5RU5435209"  cm:PID="86  3 ICM8  icmnlsdb7  

      XYZ_VIN59  26 A1001001A04I10B35710G9498818  A04I10B35710J581901  

      14 1031"  /></ItemXML>  

  </ChildItem>  

  <Content  PID="85  3 ICM8  icmnlsdb7  ICMBASE58  26 

    A1001001A04I10B35710G9582118  A04I10B35710G958211  13 300">  

    <Attachment  content-id="policyForm"/>  

  </Content>  

</Replace>  

<Delete>  

  <ChildItem  URI="91  3 ICM8  icmnlsdb11  XYZ_Insured59  26 

    A1001001A04I10B35710G9498818  A04I10B35710J374681  14 1030"  /> 

</Delete>  

</UpdateItemRequest>  

 As  a result,  DB2  Content  Manager  returns  an  XML  UpdateItemReply  that  contains  

the  URI  for  the  updated  policy:  

 

 

XML  reply  

<UpdateItemReply  xmlns="http://www.ibm.com/xmlns/db2/cm/beans/1.0/schema">  

<RequestStatus  success="true"></RequestStatus>  

<Item  URI="http://hostname/CMBGenericWebService/CMBGetPIDUrl?pid=84  

  3 ICM8  icmnlsdb5  DOC2659  26 A1001001A04I02B22524G4418418  

  A04I02B22524G441841  14 1019&amp;server=icmnlsdb&amp;dsType=ICM"/>  

</UpdateItemReply>  

Adding objects inside DB2 Content Manager items with an XML 

UpdateItemRequest 

Using  the  Add  element  in  an  UpdateItemRequest, you  can  add  the  following  types  

of  XML  schema  values  to existing  DB2  Content  Manager  items  (text  in  brackets  is 

optional):  

<Add>  

[ <ChildItem  parentURI="string"><ItemXML> ...  </ItemXML></ChildItem>  ] 

[ <Content  [ index="int"  ] > 

    <attachment  content-id="string">...</attachment>

 

 

482 Application  Programming Guide

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||

|
|
|

|

|
|
|
|
|
||||

|
|
|
|
|

|
|
|
|



<!--  or -->  <URL>...</URL>  

  </Content>  ] 

[ <Annotation  [ index="string" ] > 

    <attachment  content-id="string">...</attachment>  

    <!--  or -->  <URL>...</URL>  

  </Annotation>  ] 

[ <Notelog  [ index="int"  ]> 

    <attachment  content-id="string">...</attachment>  

    <!--  or -->  <URL>...</URL>  

  </Notelog>  ] 

[ <Part  attrName="string"> 

    <attachment  content-id="string">...</attachment>  

    <!--  or -->  <URL>...</URL>  

  </Part>  ] 

</Add>  

<ChildItem>  (optional)  

Adds  an  existing  child  item  to an  existing  child  component  collection  with  

whatever  you  specify  in  ItemXML.  For  details  on  how  to  convert  your  item  

to  XML,  see  Chapter  11, “Working  with  XML  services  (Java  only),”  on  page  

429.  The  attributes  include:  

parentURI  (required)  

The  persistent  identifier  of  the  parent  item  to  add  the  child  item  to.  

You can  obtain  the  URI  through  a RunQueryRequest. It also  appears  

in  the  CreateItemReply.

<Content>  (optional)  

Adds  an  attachment  or  URL  as  a content  part  to  the  item.  This  is the  same  

as  an  ICM  base  part.  The  attributes  include:  

index  (optional)  

Ranks  where  to add  the  part.  The  default  is to add  the  part  at  the  

end.

<Notelog>  (optional)  

Adds  a note  log  to  the  item,  and  can  include  an  attachment  or  URL.  The  

attributes  include:  

index  (optional)  

Ranks  where  to add  the  annotation.  The  default  is to  add  the  

notelog  at the  end.

<Annotation>  (optional)  

Adds  an  annotation  to  the  item  and  can  include  an  attachment  or  a URL.  

The  attributes  include:  

index  (optional)  

Ranks  where  to add  the  annotation.  The  default  is to  add  the  

annotation  at the  end.

<Part>  (optional)  

Adds  your  own  user-defined  part  with  the  attribute  name  that  you  specify.  

Can  include  either  an  attachment  or  URL.  The  attributes  include:  

attrName  (required)  

Specifies  the  name  of  the  user-defined  attribute  to  add.

 The  following  example  adds  a child  item  to the  57904965371  policy  into  it  by 

specifying  their  item  URIs  (as  returned  from  the  query  search):  

 

 

Chapter  11. Working  with XML services  (Java only) 483

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|

|
|



XML  request  

<UpdateItemRequest  

xmlns="http://www.ibm.com/xmlns/db2/cm/beans/1.0/schema">  

<AuthenticationData  connectString="SCHEMA=ICMADMIN"  configString="">  

  <ServerDef><ServerType>ICM</ServerType>  

  <ServerName>icmnlsdb</ServerName></ServerDef><LoginData>  

  <UserID>icmadmin</UserID><Password>passw0rd</Password></LoginData>  

</AuthenticationData>  

<Item  URI="93  3 ICM8  icmnlsdb13  XYZ_InsPolicy59  26 

  A1001001A04I10B35710G9498818  A04I10B35710G949881  14 1029"  /> 

<Add>  

  <ChildItem  parentURI="93  3 ICM8  icmnlsdb13  XYZ_InsPolicy59  26 

    A1001001A04I10B35710G9498818  A04I10B35710G949881  14 1029">  

    <ItemXML><XYZ_Insured  XYZ_InsrdFName="Alice"  

    XYZ_InsrdLName="Smith"  /></ItemXML></ChildItem>  

</Add>  

</UpdateItemRequest>  

 As  a result,  DB2  Content  Manager  returns  an  XML  UpdateItemReply  that  contains  

the  URI  for  the  updated  policy:  

 

 

XML  reply  

<UpdateItemReply  xmlns="http://www.ibm.com/xmlns/db2/cm/beans/1.0/schema">  

<RequestStatus  success="true"></RequestStatus>  

<Item  URI="http://hostname/CMBGenericWebService/CMBGetPIDUrl?pid=84  

  3 ICM8  icmnlsdb5  DOC2659  26 A1001001A04I02B22524G4418418  

  A04I02B22524G441841  14 1019&amp;server=icmnlsdb&amp;dsType=ICM"/>  

</UpdateItemReply>  

Replacing objects inside DB2 Content Manager items with an 

XML UpdateItemRequest 

Using  the  Replace  element  in  an  UpdateItemRequest, you  can  overwrite  the  

following  types  of  XML  schema  values  within  existing  DB2  Content  Manager  

items:  

<Replace>  

[ <attribute>  ...  </attribute>  ] 

[ <ChildItem  parentURI="string"><ItemXML> ...  </ItemXML></ChildItem>  ] 

[ <Annotation  PID="string"> ] 

    <attachment  content-id="string">...</attachment>  

    <!--  or -->  <URL>...</URL>  

  </Annotation>  ] 

[ <Content  PID="string"> 

    <attachment  content-id="string">...</attachment>  

    <!--  or -->  <URL>...</URL>  

  </Content>  ] 

[ <Notelog  PID="string"> 

    <attachment  content-id="string">...</attachment>  

    <!--  or -->  <URL>...</URL>  

  </Notelog>  ] 

[ <Part  PID="string" attrName="string"> 

    <attachment  content-id="string">...</attachment>  

    <!--  or -->  <URL>...</URL>  

  </Part>  ] 

</Replace>  

<Attribute>  (optional)  

Replaces  attribute  values.  

 

 

484 Application  Programming Guide

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||

|
|
|

|

|
|
|
|
|
||||

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|



<ChildItem>  (optional)  

Replaces  a collection  of  child  items.  The  attributes  include:  

parentURI  (required)  

The  persistent  identifier  of  the  parent  item  to  replace  the  child  item  

in.  You can  obtain  the  URI  through  a RunQueryRequest. It  also  

appears  in  the  CreateItemReply.

<Annotation>  (optional)  

Replaces  an  annotation,  and  can  include  either  an  attachment  or  a URL.  

The  attributes  include:  

PID  (required)  

Specifies  the  persistent  identifier  of the  annotation.

<Content>  (optional)  

Replaces  an  item’s  content  part  with  either  the  attachment  or  URL  that  you  

specify.  This  is the  same  as an  ICM  base  part.  The  attributes  include:  

PID  (required)  

Specifies  the  persistent  identifier  of the  content.

<Notelog>  (optional)  

Replaces  the  note  log,  and  can  include  either  an  attachment  or  URL.  The  

attributes  include:  

PID  (required)  

Specifies  the  persistent  identifier  of the  note  log.

<Part>  (optional)  

Replaces  your  user-defined  part  with  the  attribute  name,  attachment,  or  

content  URL  that  you  specify.  The  attributes  include:  

PID  (required)  

Specifies  the  persistent  identifier  of the  part.  

attrName  (required)  

Specifies  the  name  of  the  user-defined  attribute  to  replace.

 The  following  example  replaces  two  attributes,  a child  item,  and  a content  part  in 

the  57904965371  policy:  

 

 

Chapter  11. Working  with XML services  (Java only) 485

|
|

|
|
|
|

|
|
|

|
|

|
|
|

|
|

|
|
|

|
|

|
|
|

|
|

|
|

|
|



XML  request  

<UpdateItemRequest  

xmlns="http://www.ibm.com/xmlns/db2/cm/beans/1.0/schema">  

<AuthenticationData  connectString="SCHEMA=ICMADMIN"  configString="">  

  <ServerDef><ServerType>ICM</ServerType>  

  <ServerName>icmnlsdb</ServerName></ServerDef><LoginData>  

  <UserID>icmadmin</UserID><Password>passw0rd</Password></LoginData>  

</AuthenticationData>  

<Item  URI="93  3 ICM8  icmnlsdb13  XYZ_InsPolicy59  26 

  A1001001A04I10B35710G9498818  A04I10B35710G949881  14 1029"  /> 

<Replace>  

  <Attribute  name="XYZ_Street"><Value>123  Cedar  Rd</Value></Attribute>  

  <Attribute  name="XYZ_ZIPCode"><Value>90543</Value></Attribute>  

  <ChildItem  parentURI="93  3 ICM8  icmnlsdb13  XYZ_InsPolicy59  26 

  A1001001A04I10B35710G9498818  A04I10B35710G949881  14 1029">  

    <ItemXML><XYZ_VIN  

      xmlns:cm="http://www.ibm.com/xmlns/db2/cm/api/1.0/schema"  

      XYZ_VIN="1RIO35P5RU5435209"  cm:PID="86  3 ICM8  icmnlsdb7  

      XYZ_VIN59  26 A1001001A04I10B35710G9498818  A04I10B35710J581901  

      14 1031"  /></ItemXML>  

  </ChildItem>  

  <Content  PID="85  3 ICM8  icmnlsdb7  ICMBASE58  26 

    A1001001A04I10B35710G9582118  A04I10B35710G958211  13 300">  

    <Attachment  content-id="policyForm"/>  

  </Content>  

</Replace>  

</UpdateItemRequest>  

 As  a result,  DB2  Content  Manager  returns  an  XML  UpdateItemReply  that  contains  

the  URI  for  the  updated  policy:  

 

 

XML  reply  

<UpdateItemReply  xmlns="http://www.ibm.com/xmlns/db2/cm/beans/1.0/schema">  

<RequestStatus  success="true"></RequestStatus>  

<Item  URI="http://hostname/CMBGenericWebService/CMBGetPIDUrl?pid=84  

  3 ICM8  icmnlsdb5  DOC2659  26 A1001001A04I02B22524G4418418  

  A04I02B22524G441841  14 1019&amp;server=icmnlsdb&amp;dsType=ICM"/>  

</UpdateItemReply>  

Deleting objects inside DB2 Content Manager items with an XML 

UpdateItemRequest 

Using  the  Delete  element  in  an  UpdateItemRequest, you  can  delete  the  following  

types  of  XML  schema  values  from  existing  DB2  Content  Manager  items  (this  only  

removes  this  item’s  references  to  the  attribute  values):  

<Delete>  

[ <ChildItem  URI="string"> ...  </ChildItem>  ] 

[ <Annotation  PID="string"> ] 

[ <Content  PID="string"> ] 

[ <Notelog  PID="string"> ] 

[ <Part  PID="string" attrName="string"> ] 

</Delete>  

<ChildItem>  (optional)  

Removes  but  does  not  delete  the  child  component  from  the  collection.  

<Annotation>  (optional)  

Deletes  the  annotation  from  the  item  PID  attribute  that  you  specify.  

 

 

486 Application  Programming Guide

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||

|
|
|

|

|
|
|
|
|
||||

|
|
|
|
|

|
|
|
|
|
|
|

|
|

|
|



<Content>  (optional)  

Deletes  the  attachment  from  the  item  of  the  PID  that  you  specify.  This  is 

the  same  as  an  ICM  base  part.  

<Notelog>  (optional)  

Deletes  the  notelog  from  the  item  PID  attribute  that  you  specify.  

<Part>  (optional)  

Deletes  a user-defined  part  associated  with  the  item  PID  and  attribute  

name  that  you  specify.

The  following  example  deletes  a child  item  from  the  57904965371  policy  into  it by  

specifying  their  item  URIs  (as  returned  from  the  query  search):  

 

 

XML  request  

<UpdateItemRequest  

xmlns="http://www.ibm.com/xmlns/db2/cm/beans/1.0/schema">  

<AuthenticationData  connectString="SCHEMA=ICMADMIN"  configString="">  

  <ServerDef><ServerType>ICM</ServerType>  

  <ServerName>icmnlsdb</ServerName></ServerDef><LoginData>  

  <UserID>icmadmin</UserID><Password>passw0rd</Password></LoginData>  

</AuthenticationData>  

<Item  URI="93  3 ICM8  icmnlsdb13  XYZ_InsPolicy59  26 

  A1001001A04I10B35710G9498818  A04I10B35710G949881  14 1029"  /> 

<Delete>  

  <ChildItem  URI="91  3 ICM8  icmnlsdb11  XYZ_Insured59  26 

    A1001001A04I10B35710G9498818  A04I10B35710J374681  14  1030"  /> 

</Delete>  

</UpdateItemRequest>  

 As  a result,  DB2  Content  Manager  returns  an  XML  UpdateItemReply  that  contains  

the  URI  for  the  updated  policy:  

 

 

XML  reply  

<UpdateItemReply  xmlns="http://www.ibm.com/xmlns/db2/cm/beans/1.0/schema">  

<RequestStatus  success="true"></RequestStatus>  

<Item  URI="http://hostname/CMBGenericWebService/CMBGetPIDUrl?pid=84  

  3 ICM8  icmnlsdb5  DOC2659  26  A1001001A04I02B22524G4418418  

  A04I02B22524G441841  14 1019&amp;server=icmnlsdb&amp;dsType=ICM"/>  

</UpdateItemReply>  

Deleting DB2 Content Manager items with DeleteItemRequest 

To delete  items  from  DB2  Content  Manager,  create  a DeleteItemRequest  that  

identifies  the  following  information  (attribute  values  in  brackets  are  optional):  

<DeleteItemRequest>  

  <AuthenticationData>  ...  </AuthenticationData>  

  <Item  URI="string" /> 

</DeleteItemRequest>  

<DeleteItemRequest>  elements:  

<AuthenticationData>  (required)  

Identifies  the  content  server  (ServerDef),  a valid  user  ID  (UserID),  and  

password  (Password)--or  a WebSphere  SSO  credential.  For  more  

information  about  authentication  data,  see  “Authenticating  Web service  

requests  for  security”  on  page  465.  

 

 

Chapter  11. Working  with XML services  (Java only) 487

|
|
|

|
|

|
|
|

|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
||||

|
|
|

|

|
|
|
|
|
||||

|

|
|

|
|
|
|

|

|
|
|
|
|



<Item  URI=″string″ />  (required)  

Specifies  the  item  to delete  from  the  DB2  Content  Manager  server.

 The  following  example  deletes  the  57904965371  policy  by  specifying  its  item  URI  

(as  returned  from  the  query  search):  

 

 

XML  request  

<DeleteItemRequest  xmlns="http://www.ibm.com/xmlns/db2/cm/beans/1.0/schema">  

<AuthenticationData  connectString="SCHEMA=ICMADMIN"  configString="">  

  <ServerDef><ServerType>ICM</ServerType>  

  <ServerName>icmnlsdb</ServerName></ServerDef><LoginData>  

  <UserID>icmadmin</UserID><Password>passw0rd</Password></LoginData>  

</AuthenticationData>  

<Item  URI="http://hostname/CMBGenericWebService/CMBGetPIDUrl?pid=93  

  3 ICM8  icmnlsdb13  XYZ_InsPolicy59  26 A1001001A04I10B44211H0825818  

  A04I10B44211H082581  14 1029&server=icmnlsdb&dsType=ICM"  />  

</DeleteItemRequest>  

 As  a result,  DB2  Content  Manager  returns  an  XML  DeleteItemReply  that  indicates  

success:  

 

 

XML  reply  

<DeleteItemReply  

xmlns="http://www.ibm.com/xmlns/db2/cm/beans/1.0/schema">  

<RequestStatus  success="true"></RequestStatus>  

</DeleteItemReply>  

Checking DB2 Content Manager items out and in with 

CheckoutItemRequest and CheckinitemRequest 

When  you  check  out  items  from  DB2  Content  Manager,  the  server  locks  the  items  

with  your  user  ID  so  that  no  other  user  can  edit  them.  This  prevents  users  from  

overriding  each  others’  changes.  It is especially  useful  in  batch  requests  when  you  

must  edit  certain  items  for  a long  period  of  time.  

To check  out  items  from  DB2  Content  Manager,  create  a CheckoutItemRequest  that  

identifies  the  following  information  (attribute  values  in  brackets  are  optional):  

<CheckoutItemRequest>  

  <AuthenticationData>  ... </AuthenticationData>  

  <Item  URI="string" /> 

</CheckoutItemRequest>  

<CheckoutItemRequest>  elements:  

<AuthenticationData>  (required)  

Identifies  the  content  server  (ServerDef),  a valid  user  ID  (UserID),  and  

password  (Password)--or  a WebSphere  SSO  credential.  For  more  

information  about  authentication  data,  see  “Authenticating  Web service  

requests  for  security”  on  page  465.  

<Item  URI=″string″ />  (required)  

Specifies  the  item  to check  out  from  the  DB2  Content  Manager  server.

 The  following  example  query  checks  out  the  47809425673  policy  by  specifying  its  

item  URI:  

 

 

488 Application  Programming Guide

|
|

|
|
|

|

|
|
|
|
|
|
|
|
|
||||

|
|
|

|

|
|
|
||||

|

|

|
|
|
|

|
|

|
|
|
|

|

|
|
|
|
|

|
|

|
|



XML  request  

<CheckoutRequest  xmlns="http://www.ibm.com/xmlns/db2/cm/beans/1.0/schema">  

  <AuthenticationData  connectString="SCHEMA=ICMADMIN"  configString="">  

    <ServerDef>  

      <ServerType>ICM</ServerType><ServerName>concord</ServerName>  

    </ServerDef>  

    <LoginData>  

      <UserID>icmadmin</UserID><Password>ecl1ent</Password>  

    </LoginData>  

  </AuthenticationData>  

<Item  URI="http://icmserver/CMBGenericWebService/CMBGetPIDUrl?pid=92  3 

ICM7  concord13  XYZ_InsPolicy59  26 A1001001A04B25B14339H1785918  

A04B25B14339H178591  14 1048&server=concord&dsType=ICM"  /> 

</CheckoutItemRequest>  

 As  a result,  DB2  Content  Manager  returns  an  XML  CheckoutItemReply  that  

indicates  success.  

 

 

XML  reply  

<CheckoutItemReply  xmlns="http://www.ibm.com/xmlns/db2/cm/beans/1.0/schema">  

  <RequestStatus  success="true"></RequestStatus>  

</CheckoutItemReply>  

 To check  items  back  into  DB2  Content  Manager,  create  a CheckinItemRequest  that  

identifies  the  following  information  (attribute  values  in  brackets  are  optional):  

<CheckinItemRequest>  

  <AuthenticationData>  ...  </AuthenticationData>  

  <Item  URI="string" /> 

</CheckinItemRequest>  

<CheckinItemRequest>  elements:  

<AuthenticationData>  (required)  

Identifies  the  content  server  (ServerDef),  a valid  user  ID  (UserID),  and  

password  (Password)--or  a WebSphere  SSO  credential.  For  more  

information  about  authentication  data,  see  “Authenticating  Web service  

requests  for  security”  on  page  465.  

<Item  URI=″string″ />  

Specifies  the  item  to check  into  the  DB2  Content  Manager  server.

 The  following  example  query  checks  in  the  47809425673  policy  by  specifying  its  

item  URI:  

 

 

Chapter  11. Working  with XML services  (Java only) 489

|

|

|
|
|
|
|
|
|
|
|
|
|
|
||||

|
|
|

|

|
|
||||

|
|

|
|
|
|

|

|
|
|
|
|

|
|

|
|



XML  request  

<CheckinRequest  xmlns="http://www.ibm.com/xmlns/db2/cm/beans/1.0/schema">  

<AuthenticationData  connectString="SCHEMA=ICMADMIN"  configString="">  

  <ServerDef><ServerType>ICM</ServerType>  

  <ServerName>concord</ServerName></ServerDef><LoginData>  

  <UserID>icmadmin</UserID><Password>ecl1ent</Password></LoginData>  

  </AuthenticationData>  

<Item  URI="http://hostname/CMBGenericWebService/CMBGetPIDUrl?pid=92  3 

  ICM7  concord13  XYZ_InsPolicy59  26  A1001001A04B25B14339H1785918  

  A04B25B14339H178591  14 1048&server=concord&dsType=ICM"  /> 

</CheckinItemRequest>  

 As  a result,  DB2  Content  Manager  returns  an  XML  CheckinItemReply  that  indicates  

success.  

 

 

XML  reply  

<CheckinItemReply  xmlns="http://www.ibm.com/xmlns/db2/cm/beans/1.0/schema">  

<RequestStatus  success="true"></RequestStatus>  

</CheckinItemReply>  

Linking DB2 Content Manager items with CreateLinkRequest 

or DeleteLinkRequest 

To create  or  delete  links  between  items  in  DB2  Content  Manager,  create  a 

CreateLinkRequest  or  a DeleteLinkRequest  that  identifies  the  following  XML  

schema  information  (text  in brackets  is optional):  

<CreateLinkRequest>  <!--  or -->  <DeleteLinkRequest>  

  <AuthenticationData>  ... </AuthenticationData>  

  <Item  URI="string"> 

    <links>  

      <inbound  fromItem="URI"  linkType="string" 

      [ linkInfoItem="string" ] /> 

      <!--  or -->  

      <outbound  toItem="URI"  linkType="string" 

      [ linkInfoItem="string" ] /> 

    </links>  

  </Item>  

</CreateLinkRequest>  <!--  or --> </DeleteLinkRequest>  

<CreateLinkRequest>  elements:  

<AuthenticationData>  (required)  

Identifies  the  content  server  (ServerDef),  a valid  user  ID  (UserID),  and  

password  (Password)--or  a WebSphere  SSO  credential.  For  more  

information  about  authentication  data,  see  “Authenticating  Web service  

requests  for  security”  on  page  465.  

<Item>  (required)  

Specifies  an  item  to  create  on  the  DB2  Content  Manager  server.  For  details  

on  how  to  convert  your  item  to XML,  see  Chapter  11, “Working  with  XML  

services  (Java  only),”  on  page  429.  

<links>  (required)  

Specifies  the  <inbound>  links  (for  linking  from  an  item  URI)  or  

<outbound>  links  (for  linking  to  an  item  URI)  to  create.

 

 

490 Application  Programming Guide

|

|

|
|
|
|
|
|
|
|
|
||||

|
|
|

|

|
|
||||

|

|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|

|
|
|
|

|
|
|



The  following  example  creates  an  outbound  link  from  the  8-123456  claim  to  the  

57904965371  policy  by  specifying  their  item  URIs  (as  returned  from  the  query  

search):  

 

 

XML  request  

<CreateLinkRequest  

xmlns="http://www.ibm.com/xmlns/db2/cm/beans/1.0/schema">  

<AuthenticationData  connectString="SCHEMA=ICMADMIN"  configString="">  

  <ServerDef><ServerType>ICM</ServerType>  

  <ServerName>icmnlsdb</ServerName></ServerDef><LoginData>  

  <UserID>icmadmin</UserID><Password>passw0rd</Password></LoginData>  

</AuthenticationData>  

<Item  URI="http://hostname/CMBGenericWebService/CMBGetPIDUrl?pid=93  3 

  ICM8  icmnlsdb13  XYZ_InsPolicy59  26 A1001001A04I10B44211H0825818  

  A04I10B44211H082581  14 1029&server=icmnlsdb&dsType=ICM">  

<links  xmlns="http://www.ibm.com/xmlns/db2/cm/api/1.0/schema">  

  <outbound  toItem=  

  "http://hostname/CMBGenericWebService/CMBGetPIDUrl?pid=93  3 ICM8  

  icmnlsdb13  XYZ_ClaimForm59  26 A1001001A04I10B44213F1658218  

  A04I10B44213F165821  14 1027&server=icmnlsdb&dsType=ICM"  

  linkType="Contains"/></links>  

</Item>  

</CreateLinkRequest>  

 As  a result,  DB2  Content  Manager  returns  an  XML  CreateLinkReply  that  indicates  

success.  

 

 

XML  reply  

<CreateLinkReply  

xmlns="http://www.ibm.com/xmlns/db2/cm/beans/1.0/schema">  

<RequestStatus  success="true"></RequestStatus>  

</CreateLinkReply>  

 The  following  example  deletes  the  outbound  link  from  the  8-123456  claim  to  the  

57904965371  policy  by  specifying  their  item  URIs  (as  returned  from  the  query  

search):  

 

 

XML  request  

<DeleteLinkRequest  

xmlns="http://www.ibm.com/xmlns/db2/cm/beans/1.0/schema">  

<AuthenticationData  connectString="SCHEMA=ICMADMIN"  configString="">  

  <ServerDef><ServerType>ICM</ServerType>  

  <ServerName>icmnlsdb</ServerName></ServerDef><LoginData>  

  <UserID>icmadmin</UserID><Password>passw0rd</Password></LoginData>  

</AuthenticationData>  

<Item  URI="http://hostname/CMBGenericWebService/CMBGetPIDUrl?pid=93  3 

  ICM8  icmnlsdb13  XYZ_InsPolicy59  26 A1001001A04I10B44211H0825818  

  A04I10B44211H082581  14 1029&server=icmnlsdb&dsType=ICM">  

<links  xmlns="http://www.ibm.com/xmlns/db2/cm/api/1.0/schema">  

<outbound  toItem=  

  "http://hostname/CMBGenericWebService/CMBGetPIDUrl?pid=93  3 ICM8  

  icmnlsdb13  XYZ_ClaimForm59  26 A1001001A04I10B44213F1658218  

  A04I10B44213F165821  14 1027&server=icmnlsdb&dsType=ICM"  

  linkType="Contains"/></links>  

</Item>  

</DeleteLinkRequest>  

 

 

Chapter  11. Working  with XML services  (Java only) 491

|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||

|
|
|

|

|
|
|
||||

|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||



As  a result,  DB2  Content  Manager  returns  an  XML  DeleteLinkReply  that  indicates  

success.  

 

 

XML  reply  

<DeleteLinkReply  

xmlns="http://www.ibm.com/xmlns/db2/cm/beans/1.0/schema">  

<RequestStatus  success="true"></RequestStatus>  

</DeleteLinkReply>  

Moving DB2 Content Manager items between entities with 

MoveItemRequest 

To move  a DB2  Content  Manager  item  from  one  entity  to  another  (for  modifying  

the  itemtree  of  attribute  and  child  values;  not  document  content),  create  a 

MoveItemRequest  that  identifies  the  following  information  (attribute  values  in  

brackets  are  optional):  

<MoveItemRequest  [ checkout="true" checkin="true" ]> 

  <AuthenticationData>  ... </AuthenticationData>  

  <Item  URI="string"  /> 

  <NewValues  newEntityName="string">  

    <ItemXML><!--  Do not  specify  document  content  here  --></ItemXML>  

  </NewValues>  

</MoveItemRequest>  

<MoveItemRequest>  elements:  

<AuthenticationData>  (required)  

Identifies  the  content  server  (ServerDef),  a valid  user  ID  (UserID),  and  

password  (Password)--or  a WebSphere  SSO  credential.  For  more  

information  about  authentication  data,  see  “Authenticating  Web service  

requests  for  security”  on  page  465.  

<Item  URI=″string″> (required)  

Specifies  the  item  to re-index.  

<NewValues  newEntityName=″string″> (required)  

Specifies  the  new  value  to  set  in  the  entity.  The  value  must  be  an  XML  

specification  of  the  itemtree,  conforming  to  the  DB2  Content  Manager  data  

model.

 <MoveItemRequest>  attributes:  

checkout  (optional)  

Toggles  whether  to  check  the  item  out  (thus  locking  it)  before  performing  

the  move  request  on  it.  The  default  value  is true. 

checkin  (optional)  

Toggles  whether  to  check  an  item  in  after  performing  the  move  request  on  

it.  The  default  value  is true. If the  item  is not  checked  out  then  this  setting  

fails.

 The  following  example  re-indexes  (moves)  an  item  under  CLAIM_1047  to 

CLAIM2_1047:  

 

 

492 Application  Programming Guide

|
|
|

|

|
|
|
||||

|

|

|
|
|
|

|
|
|
|
|
|
|

|

|
|
|
|
|

|
|

|
|
|
|

|

|
|
|

|
|
|
|

|
|



XML  request  

<MoveItemRequest  

xmlns="http://www.ibm.com/xmlns/db2/cm/beans/1.0/schema">  

<AuthenticationData  connectString="SCHEMA=ICMADMIN"  configString="">  

  <ServerDef><ServerType>ICM</ServerType>  

  <ServerName>icmnlsdb</ServerName></ServerDef><LoginData>  

  <UserID>icmadmin</UserID><Password>passw0rd</Password></LoginData>  

</AuthenticationData>  

<Item  URI="90  3 ICM8  icmnlsdb10  CLAIM_104759  26  

  A1001001A04I13B04803F2085118  A04I13B04803F208511  14 1007"/>  

<NewValues  newEntityName="CLAIM2_1047">  

  <ItemXML>  

  <CLAIM2_1047  xmlns:cm="http://www.ibm.com/xmlns/db2/cm/api/1.0/schema"  

  DESC_1047="This  is a claim  regarding  the  accident.">  

    <cm:properties  type="document"/>  

    <VEHICLE2_1047  VIN_1047="38"></VEHICLE2_1047>  

  </CLAIM2_1047>  

  </ItemXML>  

</NewValues>  

</MoveItemRequest>  

 As  a result,  DB2  Content  Manager  returns  an  XML  MoveItemReply  that  contains  the  

brand-new  URI  (for  CLAIM2_1047):  

 

 

XML  reply  

<MoveItemReply  

  xmlns="http://www.ibm.com/xmlns/db2/cm/beans/1.0/schema">  

<RequestStatus  success="true"></RequestStatus>  

<Item  URI="91  3 ICM8  icmnlsdb11  CLAIM2_104759  26  

  A1001001A04I13B04803F2085118  A04I16B41357H241001  14 1016"/>  

</MoveItemReply>  

Accessing DB2 Content Manager document routing using 

XML-based requests 

DB2  Content  Manager  provides  certain  Web services  that  can  help  route  your  

documents  though  a business  process  using  the  APIs.  

Important:  To define  document  routing  processes  in  DB2  Content  Manager  Version  

8.3,  you  must  use  the  provided  graphical  process  builder.  You can  run existing  

processes  that  were  created  using  Version  8.2  APIs  or  Version  8.2  system  

administration  client,  but  you  cannot  modify  them  or  take  advantage  of Version  8.3  

functionality  (for  example,  split  node,  joint  node,  line-of-business  node,  decision  

point,  and  sub-process  node)  without  using  the  graphical  process  builder.  

Furthermore,  the  processes  that  were  created  using  the  graphical  process  builder  

can  run only  on  the  Version  8.3  library  server.  

Caution:  Creating  document  routing  process  with  the  Version  8.3  APIs  risks  

unexpected  behavior  and  damage  to  the  system.  The  graphic  builder  averts  this  by  

validating  a process  before  it is saved  into  the  library  server.  

 

 

Chapter  11. Working  with XML services  (Java only) 493

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||

|
|
|

|

|
|
|
|
|
||||

|

|

|
|

|
|
|
|
|
|
|
|

|
|
|



Listing work nodes with XML requests 

A work  node  refers  to  a step  at which  work  packages  wait  for  actions  to  be  taken  by  

users  or  applications,  or  move  ahead  automatically.  To list  all  of  your  DB2  Content  

Manager  work  nodes,  create  a ListWorkNodesRequest  that  contains  the  following  

information:  

<ListWorkNodesRequest>  

  <AuthenticationData>  ... </AuthenticationData>  

</ListWorkNodesRequest>  

As  a result,  DB2  Content  Manager  returns  an  XML  ListWorkNodesReply  that  

contains  all  work  nodes  in  the  following  format:  

<WorkNode>  

  <WorkNodeName>string</WorkNodeName>  

[ <Description>string</Description>  ] 

  <LongDescription>string</LongDescription>  

  <ACLName>string</ACLName>  

[ <TimeLimit>minutes</TimeLimit>  ] 

[ <OverLoadLimit>nonNegativeInteger</OverLoadLimit>  ] 

[ <ActionListName>string</ActionListName>  ] 

[ <ContainerDefinition>  ...  </ContainerDefinition>  ] 

[ <WorkNodeExt><NameValuePair>  

    <Name>attribute</Name><Value>string</Value> 

  </NameValuePair>  

[ <NameValuePair>  ...  </NameValuePair>  ] 

  </WorkNodeExt>  ] 

[ <Type>0 | 1 | 6</Type>  ] 

  <!--  Type  0 (work  basket)  also  requires:  -->  

[ <EnterUserDLL>fileName</EnterUserDLL>  

    <!--  or -->  <EnterUserFunction>string</EnterUserFunction>  ] 

[ <LeaveUserDLL>fileName</LeaveUserDLL>  

    <!--  or -->  <LeaveUserFunction>string</LeaveUserFunction>  ] 

[ <OverloadUserDLL>fileName</OverloadUserDLL>  ] 

    <!--  or -->  <OverloadUserFunction>string</OverloadUserFunction>  ] 

  <!--  Type  1 (collection  pt),  also  requires:  -->  

[  <CollectionResumeListEntry>  

    <FolderItemTypeName>string</FolderItemTypeName>  

    <RequiredItemTypeName>string</RequiredItemTypeName>  

    <QuantityNeeded>int</QuantityNeeded>  

  </CollectionResumeListEntry>  ] 

</WorkNode>  

<WorkNodeName>  (required)  

Identifies  what  to  call  the  work  node.  

<Description>  (optional)  

Summarizes  the  purpose  of  the  work  node,  and  displays  in  the  system  

administration  client.  The  maximum  is 254  characters.  

<LongDescription>  (required)  

Explains  the  work  node  in  detail,  and  displays  in  the  properties  window.  

The  maximum  is 2048  characters.  

<ACLName>  (required)  

Specifies  the  name  of an  access  control  list  (ACL)  to  limit  which  users  can  

access  items  in  the  work  node.  

<TimeLimit>  (optional)  

Specifies  the  minutes  that  can  elapse  before  work  packages  expire  in  the  

work  node  (which  then  sets  the  notification  flag  to 1).  The  default  value  is 

0 (no  time  limit).  

<OverLoadLimit>  (optional)  

Specifies  the  maximum  number  of  documents  or  folders  that  the  work  

 

 

494 Application  Programming Guide

|
|
|
|
|

|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|

|
|
|

|
|
|

|
|
|
|

|
|



node  can  contain  before  the  system  invokes  the  overload  exit  specified  by  

the  DLL  or  function.  You can  specify  0 if no  limit  is needed.  

<ActionListName>  (optional)  

Specifies  the  list  of  actions  that  a user  can  perform  on  work  items.  You can  

assign  an  action  list  to each  node  in  a process  to  specify  the  actions  that  

the  user  can  take  at that  step  in  the  process.  

<ContainerDefinition>  (optional)  

Defines  a container  that  can  carry  variables  from  one  work  package  to  the  

next  as the  work  package  continues  on  the  process.  Can  contain  the  

following  elements:  

<ReadOnly>false</ReadOnly>  

Indicates  whether  the  work  node  can  be  updated.  The  default  is 

false  (can  be  updated).  If  set  to  true, then  the  work  node  becomes  

read-only.  

<VariableName>string</VariableName>  

Specifies  the  name  for  this  work  node  variable.  The  limit  is 32  

characters.  

<VariableType>0</VariableType>  

Specifies  the  type  of work  node  variable.  Can  be  one  of  the  

following  constants:  

0 (CMB_ICM_TYPE_CHARACTER)  

Character  

1 (CMB_ICM_DR_WNV_TYPE_INTEGER)  

Integer  

3 (CMB_ICM_DR_WNV_TYPE_TIMESTAMP)  

Timestamp

<VariableValue>string</VariableValue>  

Specifies  the  value  for  this  work  node  variable.  The  default  limit  is 

254  characters.  

<VariableLength>0</VariableLength>  

Specifies  the  maximum  length  allowed  for  the  <VariableValue>  of  

this  work  node  variable.  This  attribute  is only  valid  when  the  

″type″ attribute  is if the  <VariableType>  is set  to  0.  The  default  is 0 

length.</xs:documentation>  

<VariablePrompt>string</VariablePrompt>  

Specifies  the  prompt  for  this  work  node  variable.  This  is  used  to  

prompt  the  client  user  for  updating  the  value  attribute  of  this  work  

node  variable.  The  limit  is  32  characters.  

<Required>false</Required>  

Indicates  whether  the  <VariableValue>  of this  work  node  variable  

is  required.  The  default  is false.  If set  to true, then  the  client  

application  should  require  the  user  to  update  the  <VariableValue>  

of  this  work  node  variable.  

<ShowToUser>false</ShowToUser>  

Indicates  whether  this  work  node  variable  should  be  displayed  to  

the  client  user. The  default  is false.  If  the  value  is set  to  true, then  

this  work  node  variable  should  be  displayed  to  the  client  user  for  

updating.

 

 

Chapter  11. Working  with XML services  (Java only) 495

|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|

|
|
|

|
|

|
|

|
|

|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|



<WorkNodeExt>  (optional)  

Extends  a work  node  with  user-defined  attributes.  This  element  can  

contain  one  or  more  <NameValuePair>  elements  for  user-defined  attributes.  

<Type>  (optional)  

The  work  node  type  can  be  0 (work  basket),  1 (collection  point),  or  6 

(business  application  node):  

0 (work  basket)  

A  step  where  the  system  keeps  work  packages  that  are  in  process  

or  waiting  to  be  processed.  A work  basket  does  not  perform  any  

actions  on  the  content.  When  a user  or  application  completes  the  

required  task  on  the  work  package,  it is routed  to the  next  work  

node.  This  is the  default  type  of work  node.  

1 (collection  point)  

A  special  work  node  that  does  not  correspond  to  a business  task,  

and  to  which  users  do  not  have  access.  It  represents  an  area  where  

a folder  waits  for  specified  items  (either  other  folders  or  

documents)  to  be  collected  before  continuing.  The  collection  point  

routes  the  work  package  to  another  work  node  under  two  

conditions:  when  the  folder  is complete,  or  when  the  time  limit  

expires.  

6 (business  application  node)  

A  process  step  where  the  library  server  invokes  a user  exit  DLL  to  

run lines  of business  applications.  For  details  about  user  exits,  see  

“Programming  document  routing  user  exits”  on  page  248.

 All  work  baskets  require  a user  exit  to  determine  the  tasks  that  a work  package  

must  complete  when  entering  a work  basket,  leaving  a work  basket,  or  when  the  

workbasket  becomes  full.  The  user  exit  can  be  either  a dynamic  link  library  (DLL)  

or  function  (depending  on  the  programming  language  used).  The  selections  are:  

<EnterUserDLL>  or  <EnterUserFunction>  (optional)  

Specifies  the  DLL  or  function  to call  when  a work  package  enters  the  work  

node.  

<LeaveUserDLL>  or  <LeaveUserFunction>  (optional)  

Specifies  the  DLL  or  function  to call  when  a work  package  leaves  the  work  

node.  

<OverloadUserDLL>  or  <OverloadUserFunction>  (optional)  

Specifies  the  DLL  or  function  to call  when  a work  node  reaches  its  

overload  limit.

All  collection  points  require  a <CollectionResumeListEntry>  element  to  assign  a 

list  of  item  types  that  the  folder  item  type  must  wait  for  before  continuing  on  the  

process.  The  <CollectionResumeListEntry>  requires  the  following  elements  within  

it:  

<FolderItemTypeName>  (required)  

Identifies  the  name  of the  folder  to gather  items  in.  The  work  package  

must  have  this  folder  type  associated  with  it, or  the  work  package  will  just  

pass  through  this  collection  point.  

<RequiredItemTypeName>  (required)  

Specifies  the  types  of  items  to gather  in  the  folder.  

<QuantityNeeded>  (required)  

Specifies  the  amount  of items  need  to  complete  the  item  type  requirement.

 

 

496 Application  Programming Guide

|
|
|

|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|

|
|
|

|
|
|

|
|
|
|

|
|
|
|

|
|

|
|



Listing document processes with XML requests 

A  process  is  a series  of steps  that  contains  at least  one  start  node,  one  end  node,  

and  one  selection  or  action.  To list  all  of  your  DB2  Content  Manager  processes,  

create  a ListProcessRequest  that  contains  the  following  information:  

<ListProcessRequest>  

  <AuthenticationData>  ...  </AuthenticationData>  

</ListProcessRequest>  

Tip:  Alternatively,  you  can  replace  the  ListProcessRequest  tag  with  

ListProcessNamesRequest  if you  only  want  a list  of the  process  names.  

As  a result,  DB2  Content  Manager  returns  an  XML  ListProcessReply  that  contains  

all  processes  in  the  following  format:  

<Process>  

  <ProcessName>string</ProcessName>  

  <ACLName>string</ACLName>  

  <Route>  

    <RouteDefinition>  

      <From>string</From><To>string</To> 

      <RouteSelected>string</RouteSelected>  

    [ <Extension><NameValuePair>  

        <Name>attribute</Name><Value>string</Value> 

      </NameValuePair>  ...  </Extension>  ] 

    </RouteDefinition>  

  [ <RouteDefinition>  ...  </RouteDefinition>  ] 

  </Route>  

[ <Description>string</Description>  ] 

[ <LongDescription>string</LongDescription>  ] 

[ <TimeLimit>minutes</TimeLimit>  ] 

[ <Extension><NameValuePair>  

    <Name>attribute</Name><Value>string</Value> 

  </NameValuePair>  

[ <NameValuePair>  ...  </NameValuePair>  ] 

  </Extension>  ] 

</Process>  

<Process>  elements:  

<ProcessName>  (required)  

Identifies  what  to  call  the  process.  

<ACLName>  (required)  

Specifies  the  name  of  an  access  control  list  (ACL)  to  limit  which  users  can  

access  the  process.  

<Route>  (required)  

Defines  the  FROM  node,  the  TO  node,  and  the  selection  (which  is  a string).  

If  selection  is chosen,  then  the  work  packages  moves  to  the  work  node  

defined  in  the  TO.  

<Description>  (optional)  

Summarizes  the  purpose  of the  process,  and  displays  in  the  system  

administration  client.  The  maximum  is 254  characters.  

<LongDescription>  (optional)  

Explains  the  process  in  detail,  and  displays  in  the  properties  window.  The  

maximum  is 2048  characters.  

<TimeLimit>  (optional)  

Specifies  the  minutes  that  can  elapse  for  the  process  to  complete.  When  

this  expires,  the  notification  flag  in  the  work  package  is  set  to  1. The  

default  value  is 0 (no  time  limit).  

 

 

Chapter  11. Working  with XML services  (Java only) 497

|
|
|
|

|
|
|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

|
|
|

|
|
|
|

|
|
|

|
|
|

|
|
|
|



<Extension>  (optional)  

Extends  a process  with  user-defined  attributes  (appends  more  columns  to  

the  library  server  table).  This  element  can  contain  one  or  more  

<NameValuePair>  elements  for  user-defined  attributes.  Differs  from  

container  variables  in  that  it is  not  carried  with  the  work  package.

Listing worklists with XML requests 

A worklist  contains  an  ordered  list  of  work  packages  (documents  or  folders)  that  a 

user  must  complete.  Worklists  contain  characteristics  such  as  ordering  (by  priority  

or  date),  filtering  (in  suspend  state  or  notify  state),  and  quantity  to  return.  These  

characteristics  control  how  users  see  their  work.  

To list  all  of  your  DB2  Content  Manager  worklists,  create  a ListWorkListsRequest  

that  contains  the  following  information:  

<ListWorkListsRequest>  

  <AuthenticationData>  ... </AuthenticationData>  

</ListWorkListsRequest>  

Tip:  Alternatively,  you  can  replace  the  ListWorkListRequest  tag  with  

ListWorkListNamesRequest  if you  only  want  a list  of  the  worklist  names.  

As  a result,  DB2  Content  Manager  returns  an  XML  ListWorkListReply  that  

contains  all  processes  in  the  following  format:  

<WorkList>  

  <WorkListName>string</WorkListName>  

  <ACLName>string</ACLName>  

  <WorkNodeNames>string</WorkNodeNames>  

[ <Description>string</Description>  ] 

[ <SelectionOrder>0 | 1</SelectionOrder>  ] 

[ <SelectionFilterOnNotify>0 | 1 | 2</SelectionFilterOnNotify>  ] 

[ <SelectionFilterOnSuspend>0 | 1 | 2</SelectionFilterOnSuspend>  ] 

[ <SelectionFilterOnOwner>0 | 1</SelectionFilterOnOwner>  ] 

[ <WorkPackagesToReturn>nonNegativeInteger</WorkPackagesToReturn>  ] 

</WorkList>  

<WorkList>  elements:  

<WorkListName>  (required)  

Identifies  what  to  call  the  work  list.  

<ACLName>  (required)  

Specifies  the  name  of an  access  control  list  to  limit  which  users  can  access  

work  nodes  and  contained  work  items  in  the  worklist.  

<WorkNodeNames>  (required)  

Specifies  which  work  nodes  to include  in  the  worklist  by  order  of  priority.  

<Description>  (optional)  

Explains  the  work  list.  

<SelectionOrder>  (optional)  

Determines  the  order  that  work  packages  appear  in  the  worklist.  The  

choices  are:  

0 Sorts  and  returns  the  work  packages  by  a user-defined  priority.  

1 Sorts  and  returns  the  work  packages  by  the  date  that  they  were  

created.

<SelectionFilterOnNotify>  (optional)  

Filters  the  work  packages  by  notify  state.  The  choices  are:  

 

 

498 Application  Programming Guide

|
|
|
|
|

|
|
|
|
|

|
|

|
|
|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|

|

|
|

|
|
|

|
|

|
|

|
|
|

||

||
|

|
|



0 Only  returns  work  packages  that  do  not  have  the  notify  flag  

turned  on.  

1 Only  returns  work  packages  that  have  the  notify  flag  turned  on.  

2 Returns  work  packages  regardless  of how  the  notify  flag  is set.

<SelectionFilterOnSuspend>  (optional)  

Filters  the  work  packages  by  suspend  state.  The  choices  are:  

0 Only  returns  work  packages  that  do  not  have  the  suspend  flag  

turned  on.  

1 Only  returns  work  packages  that  have  the  suspend  flag  turned  on.  

2 Returns  work  packages  regardless  of how  the  suspend  flag  is set.

<SelectionFilterOnOwner>  (optional)  

Filters  the  work  packages  by  what  the  user  owns.  The  choices  are:  

0 Returns  work  packages  regardless  of who  owns  them.  

1 Only  returns  work  packages  that  the  user  owns.

<WorkPackagesToReturn>  (optional)  

Specifies  the  maximum  number  of work  packages  to return.  The  default  

value  is  0 (all  work  packages  returned).

Listing work packages with XML requests 

A  work  package  is  a container  for  the  items  inside  a worklist  or  process.  To list  all of  

your  DB2  Content  Manager  work  packages,  create  a ListWorkPackagesRequest  that  

contains  the  following  information  (elements  in  brackets  are  optional):  

<ListWorkPackagesRequest>  

  <AuthenticationData>  ...  </AuthenticationData>  

  <WorkListName>string</WorkListName>  

[ <WorkPackageOwner>string</WorkPackageOwner>  ] 

</ListWorkPackagesRequest>  

<ListWorkPackagesRequest>  elements:  

<AuthenticationData>  (required)  

Identifies  the  content  server  (ServerDef),  a valid  user  ID  (UserID),  and  

password  (Password)--or  a WebSphere  SSO  credential.  For  more  

information  about  authentication  data,  see  “Authenticating  Web service  

requests  for  security”  on  page  465.  

<WorkListName>  (required)  

Specifies  a worklist  to list  all  of  the  work  packages  for. 

<WorkPackageOwner>  (optional)  

Specifies  an  owner  to list  all  of  the  work  package  for.

As  a second  option,  you  can  replace  the  ListWorkPackagesRequest  tag  with  the  

ListNextWorkPackagesRequest  tag  to  return  the  next  work  package  in  the  

<WorkListName>  (required)  and  by  <WorkPackageOwner>  (optional),  and  to 

check  out  the  referenced  item.  If the  item  is hidden  by  a filter  or  already  checked  

out  by  another  user, then  the  request  skips  the  item  and  moves  to  the  next.  If this  

request  is  called  again  and  the  list  of  work  packages  have  remained  the  same,  then  

the  same  work  package  is returned.  

As  a third  option,  you  can  replace  the  ListWorkPackagesRequest  tag  with  the  

ListWorkPackageCheckedOutOptionRequest  tag  to  return  a work  package  by  its  URI  

(and  to  optionally  check  the  item  out):  

 

 

Chapter  11. Working  with XML services  (Java only) 499

||
|

||

||

|
|

||
|

||

||

|
|

||

||

|
|
|

|
|
|
|

|
|
|
|
|

|

|
|
|
|
|

|
|

|
|

|
|
|
|
|
|
|

|
|
|



<ListWorkPackageCheckedOutOptionRequest>  

  <AuthenticationData>  ... </AuthenticationData>  

  <WorkPackageURI>string</WorkPackageURI>  

  <CheckedOutItem>boolean</CheckedOutItem>  

</ListWorkPackageCheckedOutOptionRequest>  

<ListWorkPackageCheckedOutOptionRequest>  elements:  

<AuthenticationData>  (required)  

Identifies  the  content  server  (ServerDef),  a valid  user  ID  (UserID),  and  

password  (Password)--or  a WebSphere  SSO  credential.  For  more  

information  about  authentication  data,  see  “Authenticating  Web service  

requests  for  security”  on  page  465.  

<WorkPackageURI>  (required)  

Specifies  the  persistent  identifier  of the  work  package  to  list.  

<CheckedOutItem>  (required)  

If  set  to  true, then  the  item  associated  with  the  work  package  is checked  

out.

 As  a result  of  one  of the  three  types  of ″list  work  package″  requests,  DB2  Content  

Manager  returns  the  work  package  in  an  XML  ListWorkPackagesReply, 

ListNextWorkPackagesReply, or  ListWorkPackageCheckedOutOptionRequest  using  

the  following  format:  

<WorkPackage>  

  <WorkPackageURI>aniURI</WorkPackageURI>  

  <ItemIDURI>string</ItemIDURI> 

  <ProcessName>string</ProcessName>  

  <WorkNodeName>string</WorkNodeName>  

[ <WorkPackageOwner>string</WorkPackageOwner>  ] 

[ <Priority>nonNegativeInteger</Priority>  ] 

[ <SuspendState>false</SuspendState>  ] 

[ <NotifyState>false</NotifyState>  ] 

[ <NotifyTime>yyyy-mo-dd-hh.mi.ss</NotifyTime> ] 

[ <ResumeList><ResumeListDefinition>  

    <RequiredItemTypeName>string</RequiredItemTypeName>  

      <QuantityNeeded>0</QuantityNeeded>  

    </ResumeListDefinition>  ] 

  </ResumeList>  ] 

[ <ResumeTime>yyyy-mo-dd-hh.mi.ss</ResumeTime> ] 

[ <TimeLastMoved>yyyy-mo-dd-hh.mi.ss</TimeLastMoved>  ] 

[ <UserLastMoved>string</UserLastMoved>  ] 

[ <ProcessCompletionTime>yyyy-mo-dd-hh.mi.ss</ProcessCompletionTime>  ] 

[ <ContainerData><NameValuePair>  

    <Name>attribute</Name><Value>string</Value> 

  </NameValuePair>  

[ <NameValuePair>  ...  </NameValuePair>  ] 

  </ContainerData>  ] 

</WorkPackage>  

<WorkPackage>  elements:  

<WorkPackageURI>  (required)  

Indicates  the  persistent  identifier  of  the  work  package.  

<ItemIDURI>  (required)  

Indicates  the  persistent  identifier  of  the  item  that  the  work  package  is 

associated  with.  

<ProcessName>  (required)  

Indicates  the  name  of  the  process  that  the  work  package  is in.  

 

 

500 Application  Programming Guide

|
|
|
|
|

|

|
|
|
|
|

|
|

|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

|
|
|

|
|



<WorkNodeName>  (required)  

Indicates  the  name  of  the  work  node  that  the  work  package  is currently  

located  at.  

<WorkPackageOwner>  (optional)  

Indicates  the  owner  of the  work  package.  

<Priority>  (optional)  

Indicates  a user-defined,  arbitrary  priority  for  the  work  package.  For  

example,  1,  2, 3...  

<SuspendState>  (optional)  

Indicates  whether  the  work  package  has  been  suspended  in  a process.  

<NotifyState>  (optional)  

Indicates  whether  the  work  package  notifies  users  when  it moves  to 

another  work  node.  

<NotifyTime>  (optional)  

Indicates  the  time  (in  military  format:  yyyy-mo-dd-hh.mi.ss) when  the  work  

package  was  moved  into  notify  state.  

<ResumeList>  (optional)  

Only  applies  to a work  package  folder,  and  requires  a 

<ResumeListDefinition>  tag.  Keeps  the  process  suspended  until  a certain  

item  type  (specified  in  <RequiredItemTypeName>)  of a specific  quantity  

(specified  in  <QuantityNeeded>)  appears  in  the  folder.  The  default  

QuantityNeeded  is  0. 

<ResumeTime>  (optional)  

Indicates  the  time  (in  military  format:  yyyy-mo-dd-hh.mi.ss) when  the  work  

package  was  moved  into  resume  state.  

<TimeLastMoved>  (optional)  

Indicates  the  time  (in  military  format:  yyyy-mo-dd-hh.mi.ss) when  the  work  

package  was  last  moved.  

<UserLastMoved>  (optional)  

Indicates  the  name  of  the  user  that  last  moved  the  work  package.  

<ProcessCompletionTime>  (optional)  

Totals  the  time  (in  military  format:  yyyy-mo-dd-hh.mi.ss) that  the  work  

package  spent  in the  process.  

<ContainerData>  (optional)  

Extends  a work  package  with  user-defined  attributes.  This  element  can  

contain  one  or  more  <NameValuePair>  elements  for  user-defined  attributes.

Listing actions in DB2 Content Manager with XML requests 

An  action  specifies  how  a user  can  manipulate  the  work  packages  at a work  node.  

To list  the  values  of a particular  DB2  Content  Manager  action,  you  can  perform  the  

following  steps:  

1.   Create  a ListActionNamesRequest  that  contains  the  following  information  

(elements  in  brackets  are  optional)  to return  a list  of  all  ActionNames  inside  of 

a particular  ActionList:  

<ListActionNamesRequest>  

  <AuthenticationData>  ... </AuthenticationData>  

  <ActionListName>string</ActionListName>  

</ListActionNamesRequest>  

<ListActionRequest>  elements:  

 

 

Chapter  11. Working  with XML services  (Java only) 501

|
|
|

|
|

|
|
|

|
|

|
|
|

|
|
|

|
|
|
|
|
|

|
|
|

|
|
|

|
|

|
|
|

|
|
|

|
|
|
|

|
|
|

|
|
|
|

|



<AuthenticationData>  (required)  

Identifies  the  content  server  (ServerDef),  a valid  user  ID  (UserID),  and  

password  (Password)--or  a WebSphere  SSO  credential.  For  more  

information  about  authentication  data,  see  “Authenticating  Web service  

requests  for  security”  on  page  465.  

<ActionListName>  (required)  

Specifies  the  name  of the  action  list  to  list  the  action  names  for.
2.   Create  a ListActionRequest  which  contains  the  following  information  (elements  

in  brackets  are  optional)  to list  the  values  of an  ActionName:  

<ListActionRequest>  

  <AuthenticationData>  ... </AuthenticationData>  

  <ActionName>string</ActionName>  

</ListActionRequest>  

<ListActionRequest>  elements:  

<AuthenticationData>  (required)  

Identifies  the  content  server  (ServerDef),  a valid  user  ID  (UserID),  and  

password  (Password)--or  a WebSphere  SSO  credential.  For  more  

information  about  authentication  data,  see  “Authenticating  Web service  

requests  for  security”  on  page  465.  

<ActionName>  (required)  

Specifies  the  name  of the  action  to  list.

As  a result,  DB2  Content  Manager  returns  an  XML  ListActionReply  that  contains  

all  processes  in the  following  format:  

<ListActionReply>  

  <ActionName>string</ActionName>  

  <Predefined>boolean</Predefined>  

[ <AuditComment>string</AuditComment>  ] 

[ <Description>string</Description>  ] 

[ <Icon>string</Icon> ] 

[ <DisplayName>string</DisplayName>  ] 

[ <Shortcut>string</Shortcut>  ] 

[ <FunctionName>string</FunctionName>  ] 

[ <ApplicationName>string</ApplicationName>  ] 

[ <DLLName>string</DLLName>  ] 

</ListActionReply>  

<Action>  elements:  

<ActionName>  (required)  

Specifies  the  name  of the  action.  

<Predefined>  (required)  

If  set  to  true, then  this  action  is a DB2  Content  Manager-defined  action.  If 

set  to  false,  then  this  action  is user-defined.  

<AuditComment>  (optional)  

Specifies  an  audit  trail  comment.  

<Description>  (optional)  

Explains  the  content  in  detail.  

<Icon>  (optional)  

Specifies  the  location  of  the  icon  for  the  client  application  to display  for  

this  action.  For  example,  C:\icon.gif. 

<DisplayName>  (optional)  

Specifies  the  name  for  the  client  application  to  display  as  a menu  choice  to  

the  user. For  example,  Insurance  calculator. 

 

 

502 Application  Programming Guide

|
|
|
|
|

|
|

|
|

|
|
|
|

|

|
|
|
|
|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

|
|
|

|
|

|
|

|
|
|

|
|
|



<Shortcut>  (optional)  

Specifies  keyboard  keys  for  quick  access  to the  action.  For  example,  

Ctrl+Shift+F4. 

<FunctionName>  (optional)  

Specifies  the  function  name  in  the  DLL  to call  when  the  user  selects  this  

action.  For  example,  WXV2UserExitSample. The  function  is  run on  the  client.  

<ApplicationName>  (optional)  

Specifies  the  user  exit  to  call  when  the  user  selects  this  action.  For  example,  

C:\myapp.jsp. The  exit  is run on  the  client  application.  

<DLLName>  (optional)  

Specifies  which  link  library  DLL  to  call  when  the  user  selects  this  action.  

For  example,  C:\WXV2UserExitSample.dll. The  DLL  is run on  the  client  

application.

Updating a work package with UpdateWorkPackageRequest 

To update  certain  objects  inside  a DB2  Content  Manager  work  package,  create  an  

XML  <UpdateWorkPackageRequest>  that  identifies  the  following  information  (text  in 

brackets  is optional):  

<UpdateWorkPackageRequest>  

  <WorkPackageURI>string</WorkPackageURI>  

[ <WorkPackageOwner>string</WorkPackageOwner>  ] 

[ <Priority>nonNegativeInteger</Priority>  ] 

[ <ContainerData><NameValuePair>  

    <Name>attribute</Name><Value>string</Value> 

  </NameValuePair>  

[ <NameValuePair>  ...  </NameValuePair>  ] 

  </ContainerData>  ] 

</UpdateWorkPackageRequest>  

<UpdateWorkPackageRequest>  elements:  

<WorkPackageURI>  (required)  

Specifies  the  persistent  identifier  of  the  work  package  to  update.  

<WorkPackageOwner>  (optional)  

Specifies  the  owner  of  the  work  package.  

<Priority>  (optional)  

Specifies  a user-defined,  arbitrary  priority  for  the  work  package.  For  

example,  1,  2, 3...  

<ContainerData>  (optional)  

Extends  a work  package  with  user-defined  attributes.  This  element  can  

contain  one  or  more  <NameValuePair>  elements  for  user-defined  attributes.

 The  following  example  query  updates  user-defined  ContainerData  for  the  specified  

work  package.  

 

 

Chapter  11. Working  with XML services  (Java only) 503

|
|
|

|
|
|

|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|

|

|
|

|
|

|
|
|

|
|
|

|
|



XML  request  

<UpdateWorkPackageRequest  xmlns=  

"http://www.ibm.com/xmlns/db2/cm/beans/1.0/schema">  

<AuthenticationData  connectString="SCHEMA=ICMADMIN"  configString="">  

  <ServerDef><ServerType>ICM</ServerType>  

  <ServerName>cmdb2ls</ServerName></ServerDef>  

  <LoginData><UserID>icmadmin</UserID><Password>o8rmond</Password>  

  </LoginData>  

</AuthenticationData>  

<WorkPackageURI>89  3 ICM7  cmdb2ls11  WORKPACKAGE58  26 

A1001001A04H17B32803I2340818  A04H17B33216H440631  03 

204</WorkPackageURI>  

<WorkPackageOwner>icmadmin</WorkPackageOwner>  

<Priority>2004</Priority>  

<ContainerData>  

  <NameValuePair><NVPName>Loan  amount</NVPName>  

  <NVPValue>1000</NVPValue></NameValuePair>  

  <NameValuePair><NVPName>last  name  </NVPName>  

  <NVPValue>Latariot</NVPValue></NameValuePair>  

</ContainerData>  

</UpdateWorkPackageRequest>  

 As  a result,  DB2  Content  Manager  returns  an  XML  UpdateWorkPackageReply  that  

indicates  success.  

Starting a document routing process with StartProcessRequest 

To start  a DB2  Content  Manager  through  a document  routing  process,  create  a 

StartProcessRequest  that  identifies  the  following  information  (elements  in  brackets  

are  optional):  

<StartProcessRequest>  

  <AuthenticationData>  ... </AuthenticationData>  

  <ProcessName>string</ProcessName>  

[ <WorkPackageOwner>string<WorkPackageOwner>  ] 

[ <Priority>nonNegativeInteger</Priority>  ] 

  <ItemIDURI>  ...  </ItemIDURL>  

[ <ContainerData>  ...  </ContainerData>  ] 

    </StartProcessRequest>  

<StartProcessRequest>  elements:  

<AuthenticationData>  (required)  

Identifies  the  content  server  (ServerDef),  a valid  user  ID  (UserID),  and  

password  (Password)--or  a WebSphere  SSO  credential.  For  more  

information  about  authentication  data,  see  “Authenticating  Web service  

requests  for  security”  on  page  465.  

<ProcessName>  (required)  

Identifies  what  to  call  the  process.  

<WorkPackageOwner>  (optional)  

Specifies  the  owner  of the  work  package.  

<Priority>  (optional)  

Specifies  a user-defined,  arbitrary  priority  for  the  work  package.  For  

example,  1, 2,  3...  

<ItemIDURI>  (required)  

Specifies  the  persistent  identifier  of the  DB2  Content  Manager  item  to  start  

through  the  process.  

 

 

504 Application  Programming Guide

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||

|
|

|
|
|
|

|
|
|
|
|
|
|
|

|

|
|
|
|
|

|
|

|
|

|
|
|

|
|
|



<ContainerData>  (optional)  

Extends  a work  package  with  user-defined  attributes.  This  element  can  

contain  one  or  more  <NameValuePair>  elements  for  user-defined  attributes.

 The  following  example  query  starts  the  process  ClaimsProcess  and  assigns  

user-defined  ContainerData  to  its  work  package.  

 

 

XML  request  

<StartProcessRequest  xmlns=  

"http://www.ibm.com/xmlns/db2/cm/beans/1.0/schema">  

<AuthenticationData  connectString="SCHEMA=ICMADMIN"  

  configString=""><ServerDef>  

  <ServerType>ICM</ServerType><ServerName>cmdb2ls</ServerName>  

  </ServerDef><LoginData><UserID>icmadmin</UserID>  

  <Password>o8rmond</Password></LoginData>  

</AuthenticationData>  

<ProcessName>ClaimsProcess</ProcessName>  

<Priority>10</Priority>  

<ContainerData><NameValuePair><NVPName>Loan  amount</NVPName>  

  <NVPValue>1000</NVPValue></NameValuePair>  

  <NameValuePair><NVPName>First  name</NVPName>  

  <NVPValue>Carly  </NVPValue></NameValuePair>  

  <NameValuePair><NVPName>Last  name</NVPName>  

  <NVPValue>Morreale</NVPValue></NameValuePair>  

</ContainerData>  

<ItemIDURI>86  3 ICM7  cmdb2ls8  Claims2859  26 

  A1001001A04H17B32800G0799718  A04H17B32800G079971  

  14 1007</ItemIDURI>  

</StartProcessRequest>  

 As  a result,  DB2  Content  Manager  returns  an  XML  StartProcessReply  that  

indicates  success.  

Ending a process with TerminateProcessRequest 

You can  explicitly  terminate  a process  before  it reaches  the  end  node.  This  removes  

the  work  package  (being  routed)  from  the  system.  The  item  referenced  in  the  work  

package  is checked  in  if it is checked  out.  For  parallel  routes  with  many  work  

packages,  any  one  of these  work  packages  can  be  used  to  terminate  a process.  To 

terminate  a process,  create  a TerminateProcessRequest  that  identifies  the  following  

information:  

<TerminateProcessRequest>  

  <AuthenticationData>  ...  </AuthenticationData>  

  <WorkPackageURI>  ...  </WorkPackageURI>  

</TerminateProcessRequest>  

<TerminateProcessRequest>  elements:  

<AuthenticationData>  (required)  

Identifies  the  content  server  (ServerDef),  a valid  user  ID  (UserID),  and  

password  (Password)--or  a WebSphere  SSO  credential.  For  more  

information  about  authentication  data,  see  “Authenticating  Web service  

requests  for  security”  on  page  465.  

<WorkPackageURI>  (required)  

Specifies  the  persistent  identifier  of  the  work  package  being  routed  by the  

process  instance.

 The  following  example  query  terminates  the  process  for  the  specified  work  

package.  

 

 

Chapter  11. Working  with XML services  (Java only) 505

|
|
|

|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||

|
|

|
|
|
|
|
|
|

|
|
|
|

|

|
|
|
|
|

|
|
|

|
|



XML  request  

<TerminateProcessRequest  

xmlns="http://www.ibm.com/software/data/cmb/schemas/">  

<AuthenticationData  connectString="SCHEMA=ICMADMIN"  configString="">  

  <ServerDef><ServerType>ICM</ServerType>  

  <ServerName>icmnlsdb</ServerName></ServerDef>  

  <LoginData><UserID>icmadmin</UserID>  

  <Password>aPassword</Password></LoginData>  

</AuthenticationData>  

<WorkPackageURI>89  3 ICM7  cmdb2ls11  WORKPACKAGE58  26 

A1001001A04H17B32803I2340818  A04H17B33216H440631  03 

204</WorkPackageURI>  

</TerminateProcessRequest>  

 As  a result,  DB2  Content  Manager  returns  an  XML  TerminateProcessReply  that  

indicates  success.  If  the  process  has  ended  then  there  are  no  work  package  URIs  

returned.  

Continuing a process with ContinueProcessRequest 

Continues  the  work  package  (identified  by  the  URI)  to  the  next  work  node.  This  

removes  the  specified  work  package  from  the  system,  and  creates  a new  work  

package  or  many  work  packages  (in  the  case  of a parallel  route).  The  item  

referenced  by  the  item  URI  is checked  in  if it has  been  checked  out.  If  the  process  

has  ended,  then  there  are  no  work  package  URIs  returned.  To start  a DB2  Content  

Manager  item  through  the  document  routing  process,  create  a 

ContinueProcessRequest  that  identifies  the  following  information  (elements  in  

brackets  are  optional):  

<ContinueProcessRequest>  

  <AuthenticationData>  ... </AuthenticationData>  

[ <WorkPackageURI>string</WorkPackageURI>  ] 

  <WorkPackageOwner>string<WorkPackageOwner>  

  <RouteSelected>  ...  </RouteSelected>  

[ <ContainerData>  ...  </ContainerData>  ] 

</ContinueProcessRequest>  

<ContinueProcessRequest>  elements:  

<AuthenticationData>  (required)  

Identifies  the  content  server  (ServerDef),  a valid  user  ID  (UserID),  and  

password  (Password)--or  a WebSphere  SSO  credential.  For  more  

information  about  authentication  data,  see  “Authenticating  Web service  

requests  for  security”  on  page  465.  

<WorkPackageURI>  (optional)  

Identifies  the  persistent  identifier  of  the  work  package  to move  to  the  next  

work  node.  

<WorkPackageOwner>  (required)  

Specifies  the  owner  of the  work  package.  

<RouteSelected>  (required)  

Specifies  the  name  of the  route  that  the  process  should  take.  

<ContainerData>  (optional)  

Extends  a work  package  with  user-defined  attributes.  This  element  can  

contain  one  or  more  <NameValuePair>  elements  for  user-defined  attributes.

 

 

506 Application  Programming Guide

|

|

|
|
|
|
|
|
|
|
|
|
|
||||

|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|

|
|
|
|
|

|
|
|

|
|

|
|

|
|
|



The  following  example  query  assigns  user-defined  ContainerData  to  the  specified  

work  package,  and  continues  it along  the  process.  

 

 

XML  request  

<ContinueProcessRequest  xmlns=  

"http://www.ibm.com/xmlns/db2/cm/beans/1.0/schema">  

<AuthenticationData  connectString="SCHEMA=ICMADMIN"  configString="">  

  <ServerDef><ServerType>ICM<ServerType>  

  <ServerName>cmdb2ls</ServerName></ServerDef>  

  <LoginData><UserID>icmadmin</UserID>  

  <Password>o8rmond</Password></LoginData>  

</AuthenticationData>  

<WorkPackageURI>89  3 ICM7  cmdb2ls11  WORKPACKAGE58  26 

  A1001001A04H17B32803I2340818  A04H17B33130C375901  

  03 204</WorkPackageURI>  

<WorkPackageOwner>icmadmin</WorkPackageOwner>  

<RouteSelected>Accept</RouteSelected>  

<ContainerData><NameValuePair>  

  <NVPName>Loan  amount</NVPName>  

  <NVPValue>1000</NVPValue></NameValuePair>  

  <NameValuePair><NVPName>Last  name</NVPName>  

  <NVPValue>McKenna</NVPValue></NameValuePair>  

</ContainerData>  

</ContinueProcessRequest>  

 As  a result,  DB2  Content  Manager  returns  an  XML  ContinueProcessReply  that  

indicates  success.  

Suspending a process with SuspendProcessRequest 

You can  suspend  the  process  associated  with  a specific  work  package  by  sending  a 

SuspendProcessRequest. This  checks  out  the  item  in  the  work  package,  and  keeps  

the  work  package’s  SuspendState  attribute  at true for  a specific  duration.  For  work  

package  folders,  you  can  define  multiple  ResumeListDefinitions  that  suspend  the  

process  until  certain  item  types  and  quantities  arrive.  

To suspend  a DB2  Content  Manager  document  routing  process,  create  a 

SuspendProcessRequest  that  identifies  the  following  information  (elements  in  

brackets  are  optional):  

<SuspendProcessRequest>  

  <AuthenticationData>  ...  </AuthenticationData>  

  <WorkPackageURI>  ...  <WorkPackageURI>  

[ <Duration>minutes</Duration>  ] 

[ <ResumeListDefinition>  

    <RequiredItemTypeName>string</RequiredItemTypeName>  

    <QuantityNeeded>0</QuantityNeeded>  

  </ResumeListDefinition>  ] 

</SuspendProcessRequest>  

<SuspendProcessRequest>  elements:  

<AuthenticationData>  (required)  

Identifies  the  content  server  (ServerDef),  a valid  user  ID  (UserID),  and  

password  (Password)--or  a WebSphere  SSO  credential.  For  more  

information  about  authentication  data,  see  “Authenticating  Web service  

requests  for  security”  on  page  465.  

<WorkPackageURI>  (required)  

Specifies  the  persistent  identifier  of  the  work  package  in  the  process  that  

you  want  to  suspend.  

 

 

Chapter  11. Working  with XML services  (Java only) 507

|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||

|
|

|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|

|

|
|
|
|
|

|
|
|



<Duration>  (optional)  

Specifies  how  many  minutes  to  suspend  the  process  for. The  default  is 0.  

<ResumeListDefinition>  (optional)  

Only  applies  to a work  package  folder.  Keeps  the  process  suspended  until  

a certain  item  type  (specified  in  <RequiredItemTypeName>)  of  a specific  

quantity  (specified  in <QuantityNeeded>)  appears  in  the  folder.  The  

default  QuantityNeeded  is 0.

 The  following  example  query  keeps  the  specified  work  package  suspended  in  a 

process  based  on  these  rules:  

v   If  the  process  is started  with  the  Policy28  folder,  then  the  work  package  is 

suspended  for  30  minutes  or  whenever  5 items  show  up  in the  Policy28  folder  

(whichever  occurs  first).  

v   If  the  process  is started  with  InsDoc28  folder,  then  the  work  package  is  

suspended  for  30  minutes  or  whenever  25  items  show  up  in  the  InsDoc28  folder  

(whichever  occurs  first).  

v   If  the  process  is started  with  a document  or  folder  other  than  Policy28  or  

InsDoc28, then  the  process  is suspended  for  30  minutes.
 

 

XML  request  

<SuspendProcessRequest  xmlns=  

"http://www.ibm.com/xmlns/db2/cm/beans/1.0/schema">  

<AuthenticationData  connectString="SCHEMA=ICMADMIN"  configString="">  

  <ServerDef><ServerType>ICM</ServerType>  

  <ServerName>cmdb2ls</ServerName></ServerDef><LoginData>  

  <UserID>icmadmin</UserID><Password>o8rmond</Password></LoginData>  

</AuthenticationData>  

<WorkPackageURI>89  3 ICM7  cmdb2ls11  WORKPACKAGE58  26 

A1001001A04H17B32803I2340818  A04H17B33113A150611  03 

204</WorkPackageURI>  

<Duration>30</Duration>  

<ResumeListDefinition>  

  <RequiredItemTypeName>Policy28</RequiredItemTypeName>  

  <QuantityNeeded>5</QuantityNeeded>  

</ResumeListDefinition>  

<ResumeListDefinition>  

  <RequiredItemTypeName>InsDoc28</RequiredItemTypeName>  

  <QuantityNeeded>25</QuantityNeeded>  

</ResumeListDefinition>  

</SuspendProcessRequest>  

 As  a result,  DB2  Content  Manager  returns  an  XML  SuspendProcessReply  that  

indicates  success.  

Resuming a process with ResumeProcessRequest 

You can  force  a suspended  process  to  resume  by  specifying  the  associated  work  

package  in  a ResumeProcessRequest. This  checks  the  work  package  item  back  in,  

and  resets  the  work  package’s  SuspendState  attribute  to  false.  No  routing  or  

checkout  of  the  associated  work  item  is performed.  

To resume  DB2  Content  Manager  document  routing  process,  create  a 

ResumeProcessRequest  that  identifies  the  following  information:  

<ResumeProcessRequest>  

  <AuthenticationData>  ... </AuthenticationData>  

  <WorkPackageURI>  ...  <WorkPackageURI>  

</ResumeProcessRequest>  

 

 

508 Application  Programming Guide

|
|

|
|
|
|
|

|
|

|
|
|

|
|
|

|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||

|
|

|
|
|
|
|

|
|

|
|
|
|



<ResumeProcessRequest>  elements:  

<AuthenticationData>  (required)  

Identifies  the  content  server  (ServerDef),  a valid  user  ID  (UserID),  and  

password  (Password)--or  a WebSphere  SSO  credential.  For  more  

information  about  authentication  data,  see  “Authenticating  Web service  

requests  for  security”  on  page  465.  

<WorkPackageURI>  (required)  

Specifies  the  persistent  identifier  of  the  work  package  in  the  process  that  

you  want  to  resume.

 The  following  example  query  resumes  a process  for  the  specified  work  package.  

 

 

XML  request  

<ResumeProcessRequest  xmlns=  

"http://www.ibm.com/xmlns/db2/cm/beans/1.0/schema">  

<AuthenticationData  connectString="SCHEMA=ICMADMIN"  configString="">  

  <ServerDef><ServerType>ICM</ServerType>  

  <ServerName>cmdb2ls</ServerName></ServerDef><LoginData>  

  <UserID>icmadmin</UserID><Password>o8rmond</Password></LoginData>  

</AuthenticationData>  

<WorkPackageURI>89  3 ICM7  cmdb2ls11  WORKPACKAGE58  26 

  A1001001A04H17B32803I2340818  A04H17B33118B569521  03 

  204</WorkPackageURI>  

</ResumeProcessRequest>  

 As  a result,  DB2  Content  Manager  returns  an  XML  ResumeProcessReply  that  

indicates  success.  

Batching multiple requests in XML requests 

You can  combine  multiple  requests  in  a single  message  using  a BatchRequest  

wrapper  tag.  A batch  request  sequentially  runs each  request  inside  of it  on  the  

same  connection.  It  can  improve  performance  by  decreasing  the  amount  of  

network  traffic  required  for  multiple  requests.  

Batch  requests  use  a single  set  of authentication  data  for  all  sub-requests  (defined  

at  the  batch  request  level).  Any  sub-requests  nested  in  the  batch  request  run on  the  

connection  obtained  using  that  authentication  data.  

If  you  nest  sub-requests  inside  of transaction  tags,  then  all  of  the  sub-requests  roll  

back  if one  of  them  fails.  

To batch  multiple  requests  in  one  message,  create  a BatchRequest  that  identifies  the  

following  information  (text  in brackets  are  optional):  

<BatchRequest>  

  <AuthenticationData>  ...  </AuthenticationData>  

[ <!--  Insert  any  number  of requests  here  -->  ] 

[ <Transaction><!--  Insert  any  number  of requests  here  --></Transaction>  ] 

</BatchRequest>  

<BatchRequest>  elements:  

<AuthenticationData>  (required)  

Identifies  the  content  server  (ServerDef),  a valid  user  ID  (UserID),  and  

 

 

Chapter  11. Working  with XML services  (Java only) 509

|

|
|
|
|
|

|
|
|

|
|

|

|
|
|
|
|
|
|
|
|
|
||||

|
|

|

|
|
|
|

|
|
|

|
|

|
|

|
|
|
|
|

|

|
|



password  (Password)--or  a WebSphere  SSO  credential.  For  more  

information  about  authentication  data,  see  “Authenticating  Web service  

requests  for  security”  on  page  465.  

<Transaction>  (optional)  

Identifies  which  requests  to  undo  during  a failure.  If any  request  within  

the  <Transaction>  tag  fails,  then  all  requests  in  the  same  tag  rollback.  You 

cannot  nest  <Transaction>  tags.

 The  following  example  deletes  one  policy  and  one  claim  in  the  same  BatchRequest: 

 

 

XML  request  

<BatchRequest  

xmlns="http://www.ibm.com/xmlns/db2/cm/beans/1.0/schema">  

<AuthenticationData  connectString="SCHEMA=ICMADMIN"  configString="">  

  <ServerDef><ServerType>ICM</ServerType>  

  <ServerName>icmnlsdb</ServerName></ServerDef><LoginData>  

  <UserID>icmadmin</UserID><Password>passw0rd</Password></LoginData>  

</AuthenticationData>  

<Transaction>  

<Requests>  

  

<DeleteItemRequest  

  xmlns="http://www.ibm.com/xmlns/db2/cm/beans/1.0/schema">  

  <AuthenticationData  connectString="SCHEMA=ICMADMIN"  configString="">  

  ...  

  </AuthenticationData>  

  <Item  URI="http://hostname/CMBGenericWebService/CMBGetPIDUrl?pid=93  

  3 ICM8  icmnlsdb13  XYZ_InsPolicy59  26 A1001001A04I10B44211H0825818  

  A04I10B44211H082581  14 1029&server=icmnlsdb&dsType=ICM"  />  

</DeleteItemRequest>  

  

<DeleteItemRequest  

  xmlns="http://www.ibm.com/xmlns/db2/cm/beans/1.0/schema">  

  <AuthenticationData  connectString="SCHEMA=ICMADMIN"  configString="">  

  ...  

  </AuthenticationData>  

  <Item  URI="http://hostname/CMBGenericWebService/CMBGetPIDUrl?pid=93  

  3 ICM8  icmnlsdb13  XYZ_ClaimForm59  26 A1001001A04I10B44213F1658218  

  A04I10B44213F165821  14 1027&server=icmnlsdb&dsType=ICM"  />  

</DeleteItemRequest>  

  

</Requests>  

</Transaction>  

</BatchRequest>  

 As  a result,  DB2  Content  Manager  returns  an  XML  BatchReply  that  wraps  the  

replies  from  every  XML  request  that  you  batched.  

 

 

510 Application  Programming Guide

|
|
|

|
|
|
|

|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||

|
|



XML  reply  

<BatchReply  

xmlns="http://www.ibm.com/xmlns/db2/cm/beans/1.0/schema">  

<RequestStatus  success="true"></RequestStatus>  

<Transaction>  

<Replies>  

  

<DeleteItemReply  

  xmlns="http://www.ibm.com/xmlns/db2/cm/beans/1.0/schema">  

<RequestStatus  success="true"></RequestStatus>  

</DeleteItemReply>  

<DeleteItemReply  

xmlns="http://www.ibm.com/xmlns/db2/cm/beans/1.0/schema">  

<RequestStatus  success="true"></RequestStatus></DeleteItemReply>  

  

</Replies>  

</Transaction>  

</BatchReply>  

 

 

Chapter  11. Working  with XML services (Java only) 511

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||

|



512 Application  Programming Guide



Chapter  12.  Working  with  the  Web services  

DB2  Content  Manager  provides  a self-contained,  self-describing  modular  interface,  

called  the  Web services  interface,  that  you  can  use  within  your  applications,  with  

other  Web services  interfaces,  or  in  complex  business  processes  to  seamlessly  

perform  actions  against  a DB2  Content  Manager  system.  A Web service  interface  is  

a reusable,  loosely  coupled,  software  component  that  can  be  located,  published  and  

invoked  through  a network,  like  the  Web. 

The  Web services  interface  allows  you  to  dynamically  integrate  your  applications  

with  DB2  Content  Manager,  regardless  of  the  programming  language  they  were  

written  in  and  the  platform  they  reside  in.  You can  use  the  Web services  interface  

to  do  something  as  simple  as  view  a text  document  or  you  can  incorporate  the  

Web services  interface  into  more  complex  business  applications  or processes.  

For  example,  in  an  insurance  scenario,  you  can  incorporate  a Web services  

interfaces  into  an  existing  Web application  that  allows  your  customers  to print  

their  current  auto  policy.  Furthermore,  you  can  incorporate  another  Web services  

interface  into  the  same  application  that  allows  your  customer  to  view  the  current  

Blue  Book  value  of  their  car. 

This  section  provides  the  following  information  about  the  Web services  interface  

offered  by  DB2  Content  Manager:  

v   “Web  services  overview”  

v   “Understanding  the  DB2  Content  Manager  Web services  implementation”  on  

page  515  

v   “Integrating  basic  Web services  into  your  applications  or  processes”  on  page  517

Web  services overview 

Web services  is  an  emerging  technology  that  is becoming  the  technology  of  choice  

for  application  integration.  The  key  attribute  of Web services  is that  they  define  a 

program-to-program,  services-oriented  communications  model  that  is based  on  an  

XML  messaging  format.  The  Web services  model  is built  on  existing  and  emerging  

standards,  such  as  Extensible  Markup  Language  (XML),  Simple  Object  Access  

Protocol  (SOAP),  Hyper  Text Transfer  Protocol  (HTTP),  and  the  Web Services  

Description  Language  (WSDL).  

XML  is an  extensible  tag  language  that  can  describe  complicated  structures  in ways  

that  are  easy  for  programs,  and  people,  to  understand.  Web services  depend  

heavily  on  XML.  XML  uses  textual  data  instead  of binary  data  to represent  things,  

like  integers,  that  are  often  represented  differently  by  the  various  hardware  and  

software  programming  languages  being  used  today.  The  textual  way  that  XML  

represents  data  makes  it language  and  platform  independent.  This  independence  

save  you  time  and  resource  when  integrating  your  applications  with  DB2  Content  

Manager.  

Simple  Access  Object  Protocol  (SOAP)  is an  XML-based  messaging  protocol  that  is 

used  as  the  basis  for  Web services  based  interactions  between  two  applications.  All  

Web services  communication  is  done  by  using  SOAP  messages.  A SOAP  message  

contains  the  following  elements:  

v   Envelope  

 

© Copyright  IBM Corp. 1996, 2005 513

|

|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|

|

|
|

|

|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|

|



v   Header  (optional)  

v   Body  

v   Attachments  (optional)

Typically,  a SOAP  envelope,  with  zero  or  more  attachments,  represents  a SOAP  

message.  The  SOAP  message  envelope  contains  the  header  and  the  body  of the  

message.  The  SOAP  message  attachments  enable  the  message  to contain  data,  

which  can  include  XML  and  non-XML  data  (like  text  and  binary  files).  SOAP  

headers  are  used  to  describe  the  context  and  the  purpose  of  the  message.  SOAP  

headers  also  provide  mechanisms  to  extend  a SOAP  message  for  adding  features  

and  defining  high-level  functionality  such  as  security,  priority,  and  auditing.  

SOAP  allows  you  to  invoke  Web services  in  two  ways:  RPC  (Remote  Procedure  

Call)  messaging  and  document  style  messaging.  The  DB2  Content  Manager  Web 

services  use  the  document  style  method  for  invoking  Web services  because  it  is 

much  more  flexible  than  the  RPC  method.  

In  a service  oriented  architecture,  the  interface  definition  is  crucial.  It is the  

interface  definition  that  serves  as  the  contract  between  what  the  Web service  

provides  and  what  the  client  can  expect.  Web services  use  WSDL,  another  set  of 

XML  tags  that  are  used  to describe  the  Web service  interface.  The  types  of  things  

that  WSDL  describes  are  the  location  of the  Web service,  how  to  connect  to  it, 

which  parameters  must  be  passed  in  the  SOAP  request,  and  which  return  values  

should  come  back.  The  WSDL  also  provides  binding  information.  

The  Web services  model  leverages  the  XML,  HTTP,  SOAP,  and  WSDL  technologies  

and  protocols  to  provide  an  environment  that  makes  application  integration  easier,  

faster, and  more  cost  effective.  Web services  allow  any  network-enabled,  

XML-aware  application  to invoke  a Web service  regardless  of the  programming  

language  or  operating  system  involved.  

Web services  provide  the  following  advantages:  

Flexibility  

Universal  interfaces  do  not  have  to  worry  about  the  inevitable  changes  in 

software  caused  by  changing  business  needs.  

Agility  and  productivity  

Rapid  application  assembly  tools  allow  you  to quickly  integrate  Web 

services  into  new  business  processes  or  experiment  with  new  business  

ideas.  

Cost  savings  

Reduce  staffing  requirements,  replace  paper  processing,  reduce  errors.  

Leverage  existing  investments  

You can  use  old  software  in  new  ways  by  building  a Web services  layer  for  

universal  access.

In  order  to  work  with  the  DB2  Content  Manager  Web services,  you  must  have  a 

working  knowledge  about  them.  To find  out  more  about  the  Web services  

standards,  see  the  World  Wide  Web Consortium  (W3C)  Web site:  

http://www.w3.org.  

 

 

514 Application  Programming Guide

|

|

|

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

|

|
|
|

|
|
|
|

|
|

|
|
|

|
|
|
|



Understanding the DB2 Content Manager Web  services implementation 

The  DB2  Content  Manager  Web services  interface  architecture  is based  on  a 

messaging  communications  model,  in  which  whole  documents  are  exchanged  

between  service  clients  and  servers.  This  messaging  based  model  provides  several  

benefits.  

One  benefit  of  the  document  messaging  based  model  is that  the  XML  specification  

was  developed  to  allow  ordinary  data,  that  is usually  locked  up  in  a proprietary  

format,  to  be  described  in  an  open  format  that  is human  readable,  self-describing,  

and  self-validating.  When  a Web service  uses  document  messaging,  it can  use  the  

full  capabilities  of  XML  to  describe  and  validate  a high-level  business  document.  

Another  benefit  is  that  even  though  enhancements  and  changes  are  made  to the  

XML  schema,  the  calling  application  will  not  break.  

Lastly,  the  document  messaging  model  makes  object  exchange  more  flexible,  

because  the  design  of  a business  document  is often  well  suited  to  object-oriented  

architectures.  As  a result,  two  applications  can  be  designed  to  exchange  the  state  of  

an  object  by  using  XML.  In  contrast  with  object  serialization,  in  an  object  exchange  

each  end  of  the  exchange  is free  to  design  the  object  as  it  sees  fit  as long  as  the  

exchange  conforms  to  the  agreed  upon  XML  document  format.  One  reason  for  not  

using  object  serialization  is to support  client-side  and  server-side  implementations  

of  an  object.  Many  current  industry-specific  XML  schemas  are  designed  as 

client-server  architectures  in which  the  processing  that  is done  at the  client  is 

separate  from  the  processing  intended  at the  server.  As  is often  the  case,  the  client  

is  simply  requesting  or  saving  information  in  a specific  document  format  that  is  

persisted  at  the  server.  

The  main  components  in  the  DB2  Content  Manager  Web services  model  include  

the  requester,  the  Web services  server,  the  XML  beans  layer, and  the  DB2  Content  

Manager  repository.  They  interact  in the  following  steps:  

1.   A  requester  makes  a call  to the  Web services  server.  

2.   The  DB2  Content  Manager  Web services  server  analyzes  and  extracts  the  XML  

message  from  the  SOAP  envelope.  

3.   The  XML  message  is  sent  to  the  DB2  Content  Manager  XML  beans  layer. 

4.   The  XML  beans  transform  the  XML  into  multiple  calls  to  the  underlying  DB2  

Content  Manager  APIs.  

5.   The  APIs  access  the  data  in  the  repository  and  return  values  to  the  XML  beans.  

6.   The  return  values  from  the  APIs  are  transformed  into  an  XML  response  

message  by  the  XML  bean.  This  message  contains  the  request  status,  response  

data  and  attachments,  and  exception  information,  if applicable.  

7.   The  message  is  returned  to  the  DB2  Content  Manager  Web services  server.  

8.   The  Web services  server  creates  a SOAP  message,  which  can  include  

attachments,  from  the  response  data  and  returns  the  message  to  the  requester.  

Figure  36  on  page  516  depicts  the  steps  involved  in document  processing  using  

Web services.  A SOAP  request  is sent  to  the  Web services  server  to  store  an  

insurance  claim.  The  Web server  processes  the  SOAP  request  and  sends  the  data  

onto  the  server.  The  claim  is stored  into  the  library  server  and  pictures  associated  

with  the  claim  are  stored  in  the  resource  manager.  

 

 

 

Chapter  12. Working  with the Web  services 515

|
|

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|

|
|

|

|
|

|

|
|
|

|

|
|

|
|
|
|
|
|



Working  with the Web  service in development tools 

The  DB2  Content  Manager  Web service  is  a messaging-based  communication  

model  that  defines  loosely  coupled  and  document-driven  communication.  The  

client  service  requester  invokes  the  Web service  by  sending  it a complete  XML  

document  that  represents  a particular  request  for  a DB2  Content  Manager  

operation,  such  as  search.  The  DB2  Content  Manager  Web service  provider  receives  

the  document,  processes  it, and  returns  a message,  as an  XML  document.  

When  you  install  of  the  DB2  Content  Manager  Web service,  two  WSDL  locations  

that  describe  the  operations  and  end  points  of  the  Web service  are  provided  by  

DB2  Content  Manager.  Your application  environment  is  the  determining  factor  for  

choosing  which  WSDL  location  to use.  

There  are  a number  of Web services  toolkits  that  can  take  a WSDL  file  and  create  a 

set  of  classes  for  client-  side  representation  of  the  Web service,  the  request,  and  

reply  messages.  The  benefit  of using  development  toolkits  is that  you  do  not  have  

to  create  the  XML  document  yourself  because  toolkits  can  create  classes  that  

generate  the  XML  requests  for  you.  The  toolkit  serializes  the  classes  into  XML  and  

creates  and  exchanges  the  SOAP  messages  with  the  Web service.  This  makes  

client-side  development  much  easier  and  faster. 

In  order  for  a tool  to  create  the  classes,  the  WSDL  must  thoroughly  describe  the  

syntax  of  the  input  and  output  messages,  as  well  as the  operations.  Since  the  

schema  of  the  user  defined  item  types  are  not  necessarily  known  at installation  

time,  you  must  create  the  WSDL  for  the  item  types  after  you  have  completely  

installed  DB2  Content  Manager.  You can  generate  a WSDL  for  any  item  type  using  

the  DB2  Content  Manager  system  administration  client,  and  use  that  WSDL  to  

perform  operations  provided  by  the  Web service.  

XML

XML
Beans

Web
Services
Servlet

Web Services
Server

Claim form
as SOAP request

XML
Claimform

Library
Server

Resource
Manager

SOAP response/
SOAP fault

Accident
Picture

  

Figure  36.  Processing  a document  using  Web  services

 

 

516 Application  Programming Guide

|

|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|



Tools such  as the  WSDL.exe  provided  by  the  Microsoft  .NET  FrameWork  SDK  or  

the  Web Reference  feature  in Microsoft  Visual  Studio  .NET  can  take  a WSDL  file  

and  create  a set  of  classes  that  you  can  use  to  invoke  the  DB2  Content  Manager  

Web service.  The  WSDLs  generated  by  the  DB2  Content  Manager  system  

administration  client  support  clients  built  in  .NET  and  in Java.  Figure  37  illustrates  

the  process  of  creating  WSDLs  for  use  in  a .NET  environment.  

   

Integrating basic Web  services into your applications or processes 

This  section  explains  how  to develop  client  applications  in  order  to interact  with  

the  DB2  Content  Manager  Version  8 Release  3 Web services  interface.  You can  

communicate  with  the  interface  through  the  Web services  Description  Language  

(WSDL)  in  the  following  two  ways:  

WSDL  generation  

You can  write  an  application  that  uses  a WSDL  utility  to automatically  

handle  the  XML/SOAP  requests  and  responses  based  on  the  structure  of  

your  item  types.  

 The  sample  classes  for  this  application  are  written  in  C#.  This  requires  the  

Web service  support  and  wsdl.exe  utility  provided  in  Microsoft  Visual  

Studio  .NET  2003.  All  C#  sample  classes  are  located  in  

IBMCMROOT/samples/webservices/CMWebServiceClient. 

 For  details,  see  “Getting  started  with  the  Web services  in  a .NET  

environment”  on  page  518.  

XML/SOAP  requests  

You can  write  an  application  to  send  your  own  XML  requests  through  a 

Tooling support

Tooling artifacts

Custom .NET apps

.NET (C#, VB,...)
components

Wsdl.exe
(part Of

.NET SDK)

System
Administration

Client

DB2 Content
Manager
meta-data

(item Types)

ASP .NET
applications

Visual .NET
components

.NET
Desktop

applications

Export
WSDL

  

Figure  37.  Tooling support  for  use  in a .NET  environment

 

 

Chapter  12. Working  with the Web  services 517

|
|
|
|
|
|
||

|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|

|
|



SOAP  envelope  to the  Web services  server.  This  server  translates  the  

request  into  calls  on  the  XML  Handler  bean,  and  then  sends  XML/SOAP  

responses  back  to  your  application.  

 The  sample  classes  for  this  application  are  written  in  Java,  which  require  a 

Web services  JAR  file  from  the  WebSphere  Studio  Version  5.1  or  Version  6.0  

Web services  toolkit.  All  sample  Java  classes  are  located  in  

IBMCMROOT/samples/webservices/GenericWebServiceSample. 

 For  details,  see  “Getting  started  with  the  Web services  in  a Java  

environment”  on  page  520.

 WebSphere  Studio  Application  Developer  (WSAD)  only:  If you  need  are  creating  

a Web services  client  using  WebSphere  Studio  Application  Developer  (WSAD)  

Version  5.1,  then  within  that  wizard  you  must  select  Define  custom  mapping  for  

namespace  to  package,  and  specify  a different  package  for  each  of the  namespaces:  

v    http://www.ibm.com/xmlns/db2/cm/api/1.0/schema  

v    http://www.ibm.com/xmlns/db2/cm/beans/1.0/schema  

v   http://www.ibm.com/xmlns/db2/cm/webservices/1.0/schema

and  a package  for  no  namespace,  which  you  can  specify  as  an  empty  string.  

Business  Process  Choreographer  only:  If you  using  the  generated  wsdl  from  the  

System  Admin  application  for  Business  Process  Choreographer,  you  must  edit  the  

cmbmessages_modified.xsd  file  (which  is located  in  the  ZIP  file  along  the  WSDL  

file),  and  change  the  line:  

<xs:import  xmlns="http://www.w3.org/2001/XMLSchema"  

schemaLocation="itemtype_modified.xsd"/>  to <xs:include  

xmlns="http://www.w3.org/2001/XMLSchema"  

schemaLocation="itemtype_modified.xsd"/>. 

Getting started with the Web  services in a .NET environment 

For  .NET  clients,  the  WSDL  does  not  describe  the  syntax  of  the  input  and  output  

of  the  messages.  They  are  defined  as xs:AnyType.  You should  use  the  XML  Beans  

messages  schema  file  (cmbmessages.xsd)  and  the  item  type  schema  files  to 

generate  the  XML  request  documents  and  send  them  to  the  Web service  using  the  

URL  specified  in  the  WSDL  file.  For  details  about  cmbmessage.xsd,  see  

“Programming  runtime  operations  through  the  XML  JavaBeans”  on  page  461  

Toolkits  such  as  the  Microsoft  SOAP  Toolkit,  provide  low-level  APIs  for  generating  

and  exchanging  SOAP  messages.  These  APIs  allow  you  to  specify  an  XML  

document  that  represents  the  body  of  a SOAP  message  and  will  send  the  

document  to  the  Web service  URL  and  return  the  reply  document  as  part  of the  

SOAP  message.  This  is a low  level  interaction  with  the  web  service.  This  type  of 

interaction  allows  the  most  flexibility  since  the  Web service  interface  does  not  

change,  even  if the  XML  schema  changes.  

The  disadvantage  to  using  the  Web service  in  this  manner  is that  there  is the  

burden,  on  the  development  side,  of  generating  XML  messages  and  dealing  with  

low  level  APIs  for  sending  and  receiving  SOAP  messages.  In  this  case,  the  WSDL  is 

only  used  for  specifying  the  end  point  URL  of the  Web service.  

To create  XML/SOAP  requests,  you  can  write  a CMWebServiceClient  application  

that  utilizes  a WSDL  utility.  A WSDL  utility  can  automatically  process  your  

 

 

518 Application  Programming Guide

|
|
|

|
|
|
|

|
|

|
|
|
|

|

|

|

|

|
|
|
|

|
|
|
|

|

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

|
|



XML/SOAP  requests  and  responses  by  representing  them  as  proxy  classes.  For  

example,  Microsoft  provides  a wsdl.exe  utility  that  can  represent  XML  documents  

as  C#  proxy  classes.  

To write  an  application  that  interfaces  with  Microsoft  .NET’s  WSDL  utility,  you  

would  perform  the  following  steps:  

1.   Install  of  the  following  software:  

v   DB2  Content  Manager  Version  8 Release  3 Web services  toolkit  

v   Microsoft  Visual  Studio  .NET  2003  

v   .NET  Framework  SDK  Version  1.1  from  

http://www.microsoft.com/downloads/details.aspx?FamilyID=9b3a2ca6-
3647-4070-9f41-a333c6b9181d&DisplayLang=en  

v    .NET  Web Service  Enhancements  SP1  from  

http://www.microsoft.com/downloads/details.aspx?familyid=06255a94-2635-
4d29-a90c-28b282993a41&displaylang=en

2.   Load  the  First  Steps  XYZ  insurance  samples.  

3.   In  the  %IBMCMROOT%\samples\webservices\CMWebServiceClient  

\CMWebService.cs  file,  replace  all  instances  of  localhost  with  the  name  of  your  

Web services  server.  

4.   Load  the  CMWebServiceClient.csproj  into  Visual  Studio  .Net.  

5.   Program  the  Web services  application  using  CMWebServiceClient.cs  as 

guidance.  For  details  about  programming  Web services  requests  in  C#,  see  

“Programming  Web services  requests  in  a .NET  environment.”  

6.   Run  the  sample  by  entering  the  command:  

CMWebServiceClient.exe  icmnlsdb  icmadmin  password  

where  icmnlsdb  represents  the  DB2  Content  Manager  server,  icmadmin  represents  

your  system  administration  ID,  and  password  represents  the  password.

Programming Web  services requests in a .NET environment 

After  setting  up  your  Java  Web services  environment  in  “Getting  started  with  the  

Web services  in  a Java  environment”  on  page  520,  you  can  use  

CMWebServiceClient.cs  to  walk  you  through  a sample  of  creating  a Web services  

request.  In  summary,  a Java  application  would  contain  the  following  code:  

Creating  a Web service  object  

To instantiate  a Web services  object,  you  can  use  the  following  example:  

CMWebService  webservice  = null;  

webservice  = new  CMWebService();  

webservice.Timeout  = 60000;  

Authenticating  the  Web services  request  

For  security,  you  must  create  an  authentication  object  in each  request.  For  

instructions,  see  “Authenticating  Web services  requests  for  security”  on  

page  523.  

Creating  a new  instance  of  an  item  (if  applicable)  

The  CMWebServiceClient.cs  sample  creates  a new  instance  of  an  

XYZ_InsPolicy  item.  For  details,  see  “Creating  a new  instance  of  an item  

through  Web services”  on  page  524.  

Wrapping  the  XML  request  

The  CMWebServiceClient.cs  sample  specifies  direct  XML  requests  through  

the  WSDL  generation  utility.  For  instance:  

 

 

Chapter  12. Working  with the Web  services 519

|
|
|

|
|

|

|

|

|
|
|

|
|
|

|

|
|
|

|

|
|
|

|

|

|
|

|

|
|
|
|

|
|

|
|
|

|
|
|
|

|
|
|
|

|
|
|



elementRequest  request  = new  RetrieveItemRequest();  

request.AuthenticationData  = authData;  

request.attribute  = elementattribute.att_value; 

elementReply  reply=webservice.element(request);  

For  exact  details  on  the  XML  request  syntax,  see  “Programming  runtime  

operations  through  the  XML  JavaBeans”  on  page  461.  

Attaching  binary  content  (if  applicable)  

You can  use  one  of two  standard  binary  message  formats  to  attach  content  

parts  to  a request.  For  instructions,  see  “Attaching  binary  content  parts  to  

items  in Web services”  on  page  526

The  following  example  wraps  an  XML  request  to  retrieve  the  XYZ  insurance  policy  

(and  a URL  for  its  resource  part)  through  its  persistent  identifier.  

 

 

C#  sample  

public  XYZ_ClaimForm  retrieveClaimWithResourceURL(  

  AuthenticationData  authData,  string  pidURI)  { 

RetrieveItemRequest  request  = new RetrieveItemRequest();  

request.AuthenticationData  = authData;  

request.retrieveOption  = 

  RetrieveItemRequestRetrieveOption.CONTENT_WITH_LINKS;  

request.contentOption  = RetrieveItemRequestContentOption.URL;  

request.Item  = new  RetrieveItemRequestItem();  

request.Item.URI  = pidURI;  

RetrieveItemReply  reply  = webservice.RetrieveItem(request);  

if  (reply.RequestStatus.success  ==  true)  { 

return  reply.Item.ItemXML.XYZ_ClaimForm;  } 

else  { 

Console.WriteLine("Retrieve  Policy  failed.");  

displayErrorInfo(reply.RequestStatus.ErrorData);  

return  null;  } 

} 

Getting started with the Web  services in a Java environment 

You can  customize  your  own  Java  client  to  create  the  XML  requests  to  send  to Web 

services.  For  Java  clients,  there  is  one  operation  called  processXMLRequest,  which  

describes  two  input  parameters.  The  first  parameter  is an  XML  string  that  

represents  the  XML  request  for  the  web  service.  The  second  parameter  is a 

javax.mail.internet.MimeMultipart  object  which  represents  the  attachment  

representing  a document  or  resource  object.  You must  generate  this  XML  string  

using  the  XML  Beans  messages  schema  file  (cmbmessage.xsd)  and  the  item  type  

schema  files.  For  details  about  cmbmessage.xsd,  see  “Programming  runtime  

operations  through  the  XML  JavaBeans”  on  page  461.  

You can  use  any  JAX-RPC  based  client  toolkit  to  generate  the  classes  that  will  

invoke  the  web  service  and  pass  the  parameters  back  and  forth  to  the  web  service.  

WebSphere  Version  5.1  provides  a client-  side  tool  called  WSDL2Java  that  you  can  

use  to  generate  the  client-  side  classes  for  the  Web service.  Since  the  WSDL  file  

does  not  define  the  syntax  of  the  XML  documents,  the  interface  of the  Web service  

does  not  change  if the  XML  schema  for  the  request  changes.  

To write  an  application  in  the  Java  environment,  you  would  perform  the  following  

steps:  

1.   Install  of  the  following  software:  

v   DB2  Content  Manager  Version  8 Release  3 Web services  toolkit  

 

 

520 Application  Programming Guide

|
|
|
|

|
|

|
|
|
|

|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||

|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|

|

|



v   WebSphere  Application  Server  Version  5.1
2.   Load  the  First  Steps  XYZ  insurance  samples.  

3.   In  the  IBMCMROOT/samples/webservices/GenericWebServiceSample/sample/  

CMBGenericWebServiceServiceLocator.javafile, modify  the  

CMBGenericWebService_address  variable  with  the  name  of  your  Web services  

server  rather  than  localhost. 

4.   Program  the  Web services  application  using  GenericWebServiceSample.java  as  

guidance.  For  details  about  programming  Web services  requests  in  Java,  see  

“Programming  Web services  requests  in  a Java  environment.”  

5.   Compile  the  proxy  classes  and  GenericWebServiceSample.java  with  the  

CLASSPATH  with  the  following  WebSphere  JAR  files:  activation.jar,  j2ee.jar,  

mail.jar,  qname.jar,  webservices.jar,  and  wsdl4j.jar.  

6.   Run  the  sample  by  entering  the  command:  

java  GenericWebServiceSample  icmnlsdb  icmadmin  password  

where  icmnlsdb  represents  the  DB2  Content  Manager  server,  icmadmin  represents  

your  system  administration  ID,  and  password  represents  the  password.

Programming Web  services requests in a Java environment 

After  setting  up  your  Java  Web services  environment  in  “Getting  started  with  the  

Web services  in  a Java  environment”  on  page  520,  you  can  use  

GenericWebServiceSample.java  to  walk  you  through  a sample  of  creating  a Web 

services  request.  In  summary,  a Java  application  would  contain  the  following  code:  

Creating  a Web service  object  

To instantiate  a Web services  object,  you  can  use  the  following  example:  

CMBGenericWebServiceService  cs = 

  new  CMBGenericWebServiceServiceLocator();  

cmbservice  = cs.getCMBGenericWebService();  

Authenticating  the  Web services  request  

For  security,  you  must  create  an  authentication  object  in each  request.  For  

instructions,  see  “Authenticating  Web services  requests  for  security”  on  

page  523.  

Creating  a DOM  out  of  an  XML  string  

Building  a DOM  document  out  of an  XML  messag  string  helps  you  read  

the  elements  inside  of  the  XML  replies.  

if (factory  == null)  { 

  factory  = DocumentBuilderFactory.newInstance();  

  } 

builder  = factory.newDocumentBuilder();  

Document  document  = null;  

document=  builder.parse(new  InputSource(new  StringReader(replyXML)));  

Creating  a new  instance  of  an  item  (if  applicable)  

The  GenericWebServiceSample.java  sample  creates  a new  instance  of an  

XYZ_InsPolicy  item.  For  details,  see  “Creating  a new  instance  of  an item  

through  Web services”  on  page  524.  

Wrapping  the  XML  request  

The  GenericWebServiceSample.java  sample  passes  parameters  into  

pre-defined  message  templates  to create  XML  requests.  For  instance:  

String  requestXML  = MessageFormat.format(  

SampleMessageTemplate.TEMPLATE, 

new  Object[]  { authenticationDataXML,  pid  });

 

 

Chapter  12. Working  with the Web  services 521

|

|

|
|
|
|

|
|
|

|
|
|

|

|

|
|

|

|
|
|
|

|
|

|
|
|

|
|
|
|

|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|

|
|
|



CMBXMLResponse  response  = null;  

response  = cmbservice.processXMLRequest(requestXML,  null);  

String  replyXML  = response.getXmlResponseText();  

return  replyXML;  

All  of the  Web services  message  templates  are  defined  in  

SampleMessageTemplate.java. The  basic  operations  templates  include:  

v   AUTHENTICATION_DATA_TEMPLATE  

v   CREATE_ITEM_TEMPLATE  

v   QUERY_TEMPLATE  

v   RETRIEVE_ITEM_WITH_RESOURCE_URL_TEMPLATE  

v   RETRIEVE_ITEM_WITH_ATTACHMENTS_TEMPLATE  

v   UPDATE_CLAIM_TEMPLATE  

v   CREATE_LINKS_TEMPLATE  

v   DELETE_LINKS_TEMPLATE  

v   UPDATE_POLICY_TEMPLATE  

v   UPDATE_POLICY_EXT_TEMPLATE  

v   DELETE_ITEM_TEMPLATE  

v   BATCH_DELETE_TEMPLATE  

v   ADD_TO_FOLDER

The  XML  item  templates  include:  

v   XYZ_InsPolicy_TEMPLATE  

v   XYZ_InsPolicy_FOLDER_TEMPLATE  

v   XYZ_InsPolicy__XYZ_Insured_TEMPLATE  

v   XYZ_InsPolicy__XYZ_VIN_TEMPLATE  

v   ICM_BASE_TEMPLATE  

v   XYZ_ClaimForm_TEMPLATE

The  document  routing  templates  include:  

v   LIST_PROCESS_TEMPLATE  

v   START_PROCESS_TEMPLATE  

v   LIST_WORKPACKAGES_TEMPLATE  

v   CONTINUE_PROCESS_TEMPLATE  

v   TERMINATE_PROCESS_TEMPLATE

For  exact  details  on  the  XML  request  syntax,  see  “Programming  runtime  

operations  through  the  XML  JavaBeans”  on  page  461.  

Attaching  binary  content  (if  applicable)  

You can  use  one  of two  standard  binary  message  formats  to  attach  content  

parts  to  a request.  For  instructions,  see  “Attaching  binary  content  parts  to  

items  in Web services”  on  page  526  

Parsing  the  Web services  request  

The  GenericWebServiceSample.java  sample  contains  various  methods  for  

validating  XML  requests  and  reporting  errors.

The  following  example  wraps  an  XML  request  to  retrieve  the  XYZ  insurance  policy  

(and  a URL  for  its  resource  part)  through  its  persistent  identifier.  

 

 

522 Application  Programming Guide

|
|
|
|

|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|

|
|
|
|

|
|
|

|
|



Java  sample  

public  CMDocument  retrievePolicyWithResourceURL(  

String  authenticationDataXML,  String  pid)  { 

String  requestXML  = MessageFormat.format(  

  SampleMessageTemplate.RETRIEVE_ITEM_WITH_RESOURCE_URL_TEMPLATE,  

  new  Object[]  { authenticationDataXML,  pid  });  

CMBXMLResponse  response  = null;  

// call  the  web  service  with  the xml  request  message  

try  { 

response  = cmbservice.processXMLRequest(requestXML,  null);  

} catch  (RemoteException  e) { 

e.printStackTrace();  

return  null;  

} 

// Get  the  DOM  object  representing  the xml  message  

Document  document  = getDocument(response.getXmlResponseText());  

if (document  == null)  { 

return  null;  

} 

// parse  the  status  of the response  from  web  service  

if (parseRequestStatus(document)  != true)  { 

return  null;  

} 

// return  the  array  of PIDs  for  the  resources  associated  

// with  the  retrieved  document  

Element  policyElement  = getElement(document,  "XYZ_InsPolicy");  

if (policyElement  == null)  { 

return  null;  

} 

CMDocument  policy  = parsePolicy(policyElement);  

return  policy;  

} 

Authenticating Web  services requests for security 

Every  time  you  make  a request  to  the  Web services,  you  must  pass  in  a DB2  

Content  Manager  username  and  password,  or  a WebSphere  credential  token  

associated  with  a DB2  Content  Manager  user. If  a user  does  not  have  the  privilege  

to  perform  the  specific  request,  then  the  request  is not  processed  and  an  error  is 

returned  in  the  SOAP  reply.  For  example,  if a user  wants  to make  change  to an  

insurance  policy,  but  only  has  view  privileges,  the  user  cannot  make  any  changes  

to  the  policy.  

Important:  By  default,  the  username  and  password  passed  in  the  Web services  

request  are  not  encrypted.  This  is not  a big  issue  if all  of  the  Web service  requests  

are  being  processed  within  the  firewall.  However,  if the  client  is outside  the  

firewall,  and  you  should  use  SSL  to  send  your  SOAP  requests.  

To authenticate  your  Web service  requests,  create  an  AuthenticationData  object.  

You must  then  include  this  object  in  every  request.  

The  following  specific  C#  example  returns  an  initialized  AuthenticationData  object  

where  dstype  represents  the  data  source  type  (for  example,  ICM), server  represents  

the  DB2  Content  Manager  hostname  (for  example,  cmdb2ls),  username  represents  

your  DB2  Content  Manager  user  ID  (for  example,  icmadmin), and  password  

represents  your  log  in  password.  

 

 

Chapter  12. Working  with the Web  services 523

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||

|

|
|
|
|
|
|
|

|
|
|
|

|
|

|
|
|
|
|



C#  sample  

public  AuthenticationData  setupAuthenticationData(string  server,  string  

userid,  string  password)  

{ 

AuthenticationData  authData  = new AuthenticationData();  

ServerDef  serverDef  = new ServerDef();  

serverDef.ServerName  = server;  

authData.ServerDef  = serverDef;  

AuthenticationDataLoginData  loginData  = new 

  AuthenticationDataLoginData();  

loginData.UserID  = userid;  

loginData.Password  = password;  

authData.LoginData  = loginData;  

return  authData;  

} 

 The  following  generic  Java  sample  creates  an  authentication  object  where  dstype  

represents  the  data  source  type  (for  example,  ICM), server  represents  the  DB2  

Content  Manager  hostname  (for  example,  cmdb2ls),  username  represents  your  DB2  

Content  Manager  user  ID  (for  example,  icmadmin), and  password  represents  your  

log  in  password.  

 

 

Java  sample  

public  String  createAuthenticationDataXML(  String  dstype,  

  String  server,  String  username,  String  password)  { 

return  MessageFormat.format(  

  SampleMessageTemplate.AUTHENTICATION_DATA_TEMPLATE,  

  new  Object[]  { dstype,  server,  username,  password  }); 

} 

Creating a new instance of an item through Web  services 

For  information  about  how  to  create  an  item  in  DB2  Content  Manager,  see  

“Creating  an  item”  on  page  129.  The  following  examples  create  a new  instance  of  

an  XYZ_InsPolicy  item  called  setupPolicy. 

 

 

524 Application  Programming Guide

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
||||

|
|
|
|
|
|

|

|
|
|
|
|
||||

|

|
|
|



C#  sample  

private  XYZ_InsPolicy  setupPolicy(string[,]  insured,  

string  street,  string  city,  string  state,  string  zip,  

string  policyNumber,  string[]  vins,string[,]  resources)  { 

XYZ_InsPolicy  policy  = new  XYZ_InsPolicy();  

policy.XYZ_City  = city;  

policy.XYZ_Street  = street;  

policy.XYZ_State  = state;  

policy.XYZ_ZIPCode  = zip;  

policy.XYZ_PolicyNum  = policyNumber;  

policy.XYZ_VIN  =  new XYZ_InsPolicyXYZ_VIN[vins.Length];  

for  (int  i=0;  i<vins.Length;  i++)  { 

policy.XYZ_VIN[i]  =  new  XYZ_InsPolicyXYZ_VIN();  

policy.XYZ_VIN[i].XYZ_VIN  = vins[i];  } 

policy.XYZ_Insured  = 

new  XYZ_InsPolicyXYZ_Insured[insured.GetLength(0)];  

for  (int  i=0;  i<insured.GetLength(0);  i++)  { 

policy.XYZ_Insured[i]  = new XYZ_InsPolicyXYZ_Insured();  

policy.XYZ_Insured[i].XYZ_InsrdFName  = insured[i,  0];  

policy.XYZ_Insured[i].XYZ_InsrdLName  = insured[i,  1];  } 

// Document  parts  of the  policy  (ICM  base  parts  only)  

policy.ICMBASE  = new  ICMBASE[resources.GetLength(0)];  

for  (int  i=0;  i<resources.GetLength(0);  i++)  { 

policy.ICMBASE[i]  = new ICMBASE();  

policy.ICMBASE[i].resourceObject  = new  LobObjectType();  

policy.ICMBASE[i].resourceObject.label=new  LobObjectTypeLabel();  

policy.ICMBASE[i].resourceObject.label.name  = resources[i,  0];  

policy.ICMBASE[i].resourceObject.MIMEType  = resources[i,  1];  } 

return  policy;  

} 

 

 

Chapter  12. Working  with the Web  services 525

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||



Java  sample  

public  String  generatePolicyDataXML(String[]  policyInfo,  

String[][]  insured,  String[]  vins,  String[][]  resources)  { 

StringBuffer  insuredXML  = new  StringBuffer();  

StringBuffer  vinsXML  = new  StringBuffer();  

StringBuffer  resourcesXML  = new StringBuffer();  

for  (int  i = 0; i < insured.length;  i++)  

insuredXML.append(  

MessageFormat.format(  

SampleMessageTemplate.XYZ_InsPolicy__XYZ_Insured_TEMPLATE,  

  new  Object[]  { insured[i][0],  insured[i][1]  }));  

for  (int  i = 0; i < vins.length;  i++)  

vinsXML.append(  

MessageFormat.format(  

SampleMessageTemplate.XYZ_InsPolicy__XYZ_VIN_TEMPLATE,  

new  Object[]  { vins[i]  }));  

if  (resources  !=  null)  { 

for  (int  i = 0; i < resources.length;  i++)  

resourcesXML.append(  

MessageFormat.format(  SampleMessageTemplate.ICM_BASE_TEMPLATE,  

  new  Object[]  { resources[i][0],  resources[i][1]  }));  

} else  { 

resourcesXML.append("");  

} 

return  MessageFormat.format(  

SampleMessageTemplate.XYZ_InsPolicy_TEMPLATE,  

new  Object[]  {policyInfo[0],policyInfo[1],policyInfo[2],  

  policyInfo[3],policyInfo[4],insuredXML.toString(),  

  vinsXML.toString(),resourcesXML.toString()});  

} 

Attaching binary content parts to items in Web services 

The  DB2  Content  Manager  Web services  samples  rely  on  a couple  of  standard  

binary  message  formats  to  send  attachments  (such  as  base  parts,  annotations,  or  

notelogs)  inside  XML  requests:  

Multipurpose  Internet  Mail  Extensions  (MIME)  

Standard  messaging  protocol  that  can  identify  binary  files  and  types  

though  the  Content-ID  or  Content-Location  headers  in  a SOAP  envelope.  

XML  items  in  DB2  Content  Manager  use  the  MIMEType  attribute  in  the  

<resourceObject>  element  to  define  the  encoding.  For  example:  

<ICMBASE>  

  <resourceObject  MIMEType="image/jpeg"  

    xmlns="http://www.ibm.com/xmlns/db2/cm/api/1.0/schema">  

    <label  name="image  1" /> 

  </resourceObject>  

</ICMBASE>  

The  Java  Web services  samples  use  MIME  types  to attach  resource  content  

parts.  

 The  following  example  creates  a MimeMultipart  object  to hold  content  

parts  (in  the  resources  array)  within  the  DB2  Content  Manager  items.  

 

 

526 Application  Programming Guide

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|

|
|



Java  sample  

public  MimeMultipart  setupAttachments(String[][]  resourceData)  { 

MimeMultipart  mp = new MimeMultipart();  

for  (int  i = 0; i < resourceData.length;  i++)  { 

MimeBodyPart  mbp  = new MimeBodyPart();  

DataHandler  handle  = 

  new  DataHandler(new  FileDataSource(resourceData[i][2]));  

try  { 

mbp.setDataHandler(handle);  

// we need  to create  a header  called  ID which  matches  the  label  value  

// of the  resourceObject  specified  in the policy  xml on the  server  

// this  ID value  is used  to match  the appropriate  resourceObject  

mbp.addHeader("ID",  resourceData[i][1]);  

mbp.addHeader("MimeType",  resourceData[i][0]);  

} catch  (MessagingException  e) { 

System.out.println(  

"Failed  in creating  a MimeBodyPart  for attachments");  

e.printStackTrace();  

return  null;  

} 

try  { 

mp.addBodyPart(mbp);  

} catch  (MessagingException  e1)  { 

System.out.println(  

"Failed  in creating  a MimeMultiPart  for  attachments");  

e1.printStackTrace();  

return  null;  

} 

} 

return  mp;  

} 

Direct  Internet  Message  Encapsulation  (DIME)  

DIME  is  a Microsoft-defined  protocol  that  can  specify  the  length,  encoding,  

and  payload  of  a file  ahead  of  time  in  the  header  fields  to save  the  time  of 

calculating  it. This  protocol  is best  for  handling  digitally  signed  or  large  

binary  files.  The  C#  Web services  samples  use  DIME  to  attach  resource  

content  parts.

The  following  example  creates  a DIME  attachment  object  to  hold  content  parts  (in 

the  resources  array)  within  the  DB2  Content  Manager  items.  

 

 

C#  sample  

DimeAttachment[]  setupAttachments(string[,]  resources)  { 

DimeAttachment[]  attachments  = 

  new  DimeAttachment[resources.GetLength(0)];  

for  (int  i=0;i<resources.GetLength(0);i++)  { 

// resources[i,0]  is the  ID of the  attachment.  This  should  match  

// the  label  of the  document  part  on the  server  side,  the  ID of the 

// attachment  and  the label  of the  document  part  are  used  to match  

// the  attachment  with  its associated  document  part  

// resources[i,1]  is the  mime  type  of the  document  part  

// resources[i,2]  is the  file  path  to the  document  part  

attachments[i]  = new  DimeAttachment(resources[i,0],  

resources[i,1],  Microsoft.Web.Services.Dime.TypeFormatEnum.MediaType,  

resources[i,2]);  

} 

return  attachments;  

} 

 

 

Chapter  12. Working  with the Web  services 527

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||

|
|
|
|
|
|

|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||



528 Application  Programming Guide



Chapter  13.  Working  with  the  Java  document  viewer  toolkit  

The  document  viewer  toolkit  is a set  of Java  APIs  that  facilitate  displaying  and  

annotating  documents.  The  toolkit  includes  a Swing  based  graphical  class  and  class  

objects  that  provide  document  conversion  and  rendering  capabilities.  You can  

customize  the  existing  graphical  interface  provided  by  the  toolkit  or  you  can  build  

your  own  graphical  interface.  

Using  the  Java  viewer  toolkit,  you  can  create  a custom  document  viewer  that  you  

can  use  to  access  and  annotate  documents  contained  in  your  content  servers.  You 

can  also  create  custom  viewer  applets  and  standalone  applications  that  integrate  

with  DB2  Content  Manager.  The  DB2  Content  Manager  eClient  uses  the  Java  

viewer  toolkit  to  provide  document  viewing  functionality.  The  eClient  contains  

both  an  applet  viewer  and  mid-tier  conversion  (HTML)  viewing  capability  for  TIFF  

and  other  document  formats.  

The  Java  viewer  toolkit  supports  the  following  formats:  

v   TIFF, MODCA  (containing  IOCA,  PTOCA),  GIF, JPEG,  PCX,  Bitmap,  and  text  

documents  that  use  pure  Java  

v   Microsoft  Office  documents  using  a bridge  to the  Stellent  INSO  toolkit

The  Java  viewer  toolkit  provides  the  following  capabilities:  

v   Multiple-document  interface  

v   Thumbnail  view  of the  pages  of a document:  You can  click  on  a thumbnail  view  

of a page  to  move  to that  page.  The  page  displays  surrounded  by  a red  

rectangle.  You can  drag  or resize  the  rectangle  to  move  to a different  section  in 

the  page  or  to  rescale  the  page.  

v   Multiple  selection  of  pages  

v   Configurable  toolbars  

v   Popup  menus  that  you  can  customize  

v   Java  Action  objects  for  all  viewer  actions:  You can  use  the  Action  objects  to  build  

a menu  bar, because  the  viewer  does  not  provide  a menu  bar. 

v   Rotating,  zooming,  inverting,  and  enhancing  pages  

v   Page  and  document  navigation:  First,  next,  previous,  last  page,  and  jump  to  a 

page.  

v   Fit  to  width,  height,  and  to  window  

v   Printing  

v   Copying  and  pasting  

v   Creating  and  editing  graphical  annotations:  The  annotation  graphics  provided  

include  a box,  circle,  line,  arrow,  text,  highlight,  sticky  note,  and  pen.  

v   Page  manipulation:  See  “Working  with  the  page  manipulation  functions”  on  

page  546  for  a detailed  description  of  the  page  manipulation  capabilities.  

v   Page  filtering:  Enables  you  to  display  a subset  of  the  pages  of a document.  This  

capability  is  provided  through  the  programming  interface  only.  

v   Undo  and  redo  for  operations  that  modify  the  document,  such  as  editing  

annotations  and  page  manipulation  

v   Export  dialog  to  write  a document  to the  file  system.  The  document  can  include  

annotations.

 

© Copyright  IBM Corp. 1996, 2005 529

|

|

|
|
|
|
|

|
|
|
|
|
|
|

|

|
|

|

|

|

|
|
|
|

|

|

|

|
|

|

|
|

|

|

|

|
|

|
|

|
|

|
|

|
|



The  Java  viewer  toolkit  provides  many  GUI  classes  that  you  can  use  to build  

Swing-based  applications.  It  also  provides  non-GUI  classes  that  you  can  use  for  

non  Swing-based  document  viewing  applications.  

Figure  38  is an  example  of  a generic  document  viewer  that  uses  all  of the  default  

settings.  

   

Viewer  architecture 

The  Java  viewer  toolkit  contains  a Document  Viewer  and  a Document  Services  

bean.  The  beans  provide  a mechanism  for  integrating  the  viewer  into  applications  

based  on  Information  Integrator  for  Content  JavaBeans.  

The  toolkit  also  contains  the  Generic  Doc  Viewer, Streaming  Doc  Services,  and  

Annotation  Services  classes.  These  classes  enable  you  to  use  the  viewer  in  

applications  where  you  cannot  use  the  beans,  such  as in  standalone  viewing  or  in 

distributed  process  situations  where  the  connection  to  content  stores  is not  local.  

Streaming  Doc  Services  manages  a set  of  document  processing  engines  that  parse  

documents,  render  pages,  and  provide  you  with  the  capability  to  manipulate  the  

pages  of  a document.  The  engines  provide  parsed  document  images  in  various  

formats,  such  as  TIFF  and  IOCA,  as  well  as  text  and  rich  text  documents,  and  

office  formats.  You can  also  write  additional  document  engines  and  plug  them  into  

the  viewer  toolkit  architecture  to support  additional  formats  or  alternative  

rendering  for  document  formats.  

The  Annotation  Services  class  enables  you  to  manipulate  annotations.  The  

annotation  engine  only  parses  DB2  Content  Manager  specific  annotation  formats.  

However,  you  can  write  additional  annotation  engines  to handle  other  annotation  

  

Figure  38. Generic  document  viewer

 

 

530 Application  Programming Guide

|
|
|

|
|
||

|
|

|
|
|

|
|
|
|

|
|
|
|
|
|
|

|
|
|



storage  formats.  The  following  diagram  shows  the  components  that  make  up  the  

Java  Viewer  Toolkit:  

   

The document engines 

Following  is  the  list  of  document  engines  provided  with  the  Java  viewer  toolkit:  

v   MS-Tech  Document  Engine  (CMBMSTechDocumentEngine):  This  engine  renders  

pages  as  images,  and  handles  content  types  typically  found  on  DB2  Content  

Manager.  The  document  types  supported  by  this  engine  include  TIFF  and  

MO:DCA™. This  engine  also  supports  GIF, JPEG,  and  plain  text.  

v   MS-Tech  INSO  Engine  (CMBMSTechInsoEngine):  This  engine  supports  Microsoft  

Office,  Lotus  SmartSuite®, and  other  office  document  formats.  

v   OnDemand  Engine  (CMBODDocumentEngine).  This  engine  converts  line  data  to  

plain  text,  and  combines  AFP™ large  object  documents  into  a single  AFP  

document.  It  also  contains  a bridge  to  the  AFP2Web  toolkit  (available  separately)  

to  convert  pages  of AFP  documents  to  HTML.  

v   Java  Document  Engine:  This  engine  converts  documents  that  are  URL’s  to  

HTML  with  a forwarding  link  to  the  URL.  

The  engines  listed  above  are  public  interfaces,  but  you  should  not  program  directly  

to  them.  Instead,  use  the  interfaces  provided  by  the  Document  Services  bean  or  the  

Streaming  Doc  Services  class  to  access  the  functionality  provided  by  the  document  

engines.  

Some  of  these  engines  are  not  pure  Java  and  have  portability  limitations.  This  can  

restrict  use  of  the  toolkit  on  some  platforms.  The  MS-Tech  Document  Engine  and  

Java  Document  Engine  are  pure  Java,  and  can  be  used  on  most  operating  systems.  

The  other  engines  contain  platform  specific  logic  that  restricts  their  use  to the  

Windows  platform.  

Streaming Doc Services

Rich
Clients

Thin Clients Standalone
Viewer Applet Servlet

Document Viewer
Bean

Annotation
Services

Document Services
Bean

Data
Management

Bean

MSTech
Engine

MSTech
Inso Engine

OnDemand
Engine

Java Document
Engine

Generic
Document

Viewer

MSTech Annotation
Engine

  

Figure  39.  The  components  in the  Java  viewer  toolkit

 

 

Chapter  13. Working  with the Java document  viewer toolkit 531

|
|
||

|

|

|
|
|
|

|
|

|
|
|
|

|
|

|
|
|
|

|
|
|
|
|



The annotations engine 

Information  Integrator  for  Content  provides  the  MS-Tech  annotation  engine  to 

retrieve  and  update  DB2  Content  Manager  annotations.  The  MS-Tech  engine  

supports  DB2  Content  Manager  Version  8.2  and  Version  8.3,  IBM  Content  Manager  

Version  8.1,  Content  Manager  Version  7,  and  VI/400  annotations.  

Example viewer architectures 

To help  you  understand  different  ways  that  you  can  use  the  Java  viewer  toolkit,  

this  section  provides  five  example  architectural  designs  that  use  the  Java  viewer  

toolkit  and  beans.  Note  that  the  examples  in  this  section  are  not  the  only  ways  that  

you  can  use  the  toolkit.  

Standalone viewer 

You can  use  the  Generic  Document  Viewer  to  implement  a standalone  viewer.  You 

can  use  the  standalone  viewer  to  view  files  or  documents  that  you  retrieve  from  

URL’s.  You can  use  a standalone  viewer  as  a pallet  on  a Web page  or  for  viewing  

documents  that  you  obtained  through  e-mail.  The  figure  below  illustrates  a 

standalone  viewer  architecture.  

   

Java application 

To create  a production  Java  application  use  the  Information  Integrator  for  Content  

visual  beans,  which  use  the  CMBDocumentViewer  visual  bean.  This  bean  uses  the  

generic  document  viewer  internally  to display  documents.  The  

CMBDocumentViewer  bean  can  also  launch  other  viewers  to  view  documents.  

Remember  that  these  viewers  can  have  platform  dependencies.  Figure  41  illustrates  

the  architecture  you  can  use  to build  a Java  application.  

   

Application
or Applet

Generic Doc Viewer

Streaming Doc Services

  

Figure  40. Standalone  viewer

Java
Application

Generic Doc Viewer

Streaming Doc Services

Document
Viewer Bean

Data
Management

Bean

  

Figure  41. Java  application

 

 

532 Application  Programming Guide

|

|
|
|
|

|

|
|
|
|

|
|
|
|
|
|
||

|
|
|
|
|
|
|
||



Thin client 

You can  use  the  CMBDocumentServices  bean  to  perform  server-side  document  

conversions  in  a Web-based  application.  You can  convert  documents  from  content  

types  that  are  not  handled  by  the  browser  (documents  that  require  a plug-in  or  

native  application  to  launch)  to  content  types  that  are  handled  by  the  browser  

natively,  such  as  HTML,  GIF, JPEG,  or  for  which  plug-ins  are  readily  available,  

such  as PDF. Figure  42  illustrates  a thin  client  architecture.  

   

Applet or servlet 

A  Web-based  application  can  also  provide  document  viewing  and  annotation  

editing  capabilities  using  an  applet  or  servlet  approach.  The  eClient  viewer  applet  

uses  this  architecture.  The  applet  can  use  the  Generic  Document  Viewer  to view  

the  document.  Some  document  types  are  stored  in  several  parts  on  the  content  

server  to  make  sharing  of  common  information,  such  as  background  forms,  more  

efficient.  The  additional  parts  are  requested  by  the  Generic  Document  Viewer  when  

needed.  The  applet  containing  the  viewer  satisfies  the  requests  by  sending  HTTP  

requests  to  the  servlet.  On  the  servlet  side,  the  content  server  using  the  

CMBDataManagement  bean  obtains  the  requested  information.  Figure  43  illustrates  

an  applet  or  servlet  architecture.  

   

Dual-mode and applet or servlet 

You can  use  a variation  of  the  examples  provided  for  Web based  viewing  

applications.  Use  CMBDocumentServices  on  the  server  and  in  the  applet.  This  

approach  is  useful  when  documents  are  not  rendered  in  the  applet  but  are  

converted  on  the  server.  This  might  happen  when  the  underlying  document  

engines  on  the  applet  and  on  the  server  have  different  capabilities.  

For  example,  if the  server  is Windows  NT® or 2000  and  the  applet  is running  on  

OS/2®, the  applet  might  not  be  able  to render  all  document  types.  The  applet  

renders  document  formats  that  it supports,  like  TIFF. For  types  that  the  applet  

cannot  render,  such  as  Office  formats,  it requests  conversion  from  the  servlet.  From  

the  end  user’s  perspective,  the  same  interface  is presented  with  the  same  

functionality.  However,  server  performance  of  server  side  converted  documents  

might  be  slower  than  for  locally  rendered  documents.  

 

Servlets and JSPs

Streaming Doc Services

Document
Services Bean

Data
Management

Bean

  

Figure  42.  Thin  client

Applet

Streaming Doc Services

Generic Doc Viewer

Data
Management

Bean

Servlet

  

Figure  43.  Applet  or servlet

 

 

Chapter  13. Working  with the Java document  viewer toolkit 533

|
|
|
|
|
|
|
||

|
|
|
|
|
|
|
|
|
|
|
||

|
|
|
|
|
|

|
|
|
|
|
|
|
|



Creating a document viewer 

To create  a document  viewer,  you  work  primarily  with  the  CMBGenericDocViewer  

class,  which  is  the  graphical  user  interface  (GUI)  for  the  document  viewer.  This  

GUI  is  based  on  the  Java  Foundation  Class  (JFC).  By  itself,  the  

CMBGenericDocViewer  is a GUI  that  relies  on  other  classes  to handle  document  

rendering  and  annotation  functions.  These  functions  are  provided  by  two  

non-visual  classes,  the  document  services  class  CMBStreamingDocServices,  and  the  

annotation  services  class  CMBAnnotationServices.  

Creating a standalone viewer application or applet 

As  you  complete  the  following  steps,  see  the  Application  Programming  Reference  

located  in the  information  center.  Also  see  the  standalone  viewer  application,  

TGenericDocViewer.java,  and  the  viewer  applet,  TViewerApplet.java,  samples  

located  in the  samples  directory.  

To begin,  instantiate  the  CMBGenericDocViewer  object.  When  instantiating  the  

CMBGenericDocViewer  object,  you  must  create  an  instance  of  the  

CMBStreamingDocServices  and  CMBAnnotationServices  class  objects  by  

implementing  the  following  callback  classes:  

v   CMBStreamingDocServicesCallbacks  abstract  class  

v   CMBAnnotationServicesCallbacks  abstract  class

The  following  code  shows  how  to create  the  CMBGenericDocViewer  object:  

 

 

Creating  the  CMBGenericDocViewer  object  

//  Create  streaming  doc  services  object  

docServices  = new  CMBStreamingDocServices(  

             new  StreamingDocServicesCallbacks(),  null);  

  

//  Create  annotation  services  object  

annoServices  = new  CMBAnnotationServices(  

     new  AnnotationServicesCallbacks());  

  

//  Create  generic  doc viewer  object  

genericDocViewer  = new  CMBGenericDocViewer(  

     docServices,  annoServices,  configProps);  

  

//  Add  generic  doc  viewer  GUI  to content  pane  

getContentPane().add(genericDocViewer,  BorderLayout.CENTER);  

Applet

Streaming Doc Services

Generic Doc Viewer

Data
Management

Bean

Servlet

Document
Services Bean

Streaming Doc Services

  

Figure  44. Dual-mode  viewer

 

 

534 Application  Programming Guide

|

|
|

|
|
|
|
|
|
|

|

|
|
|
|

|
|
|
|

|

|

|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
||||



1.   Create  a class  that  extends  CMBStreamingDocServicesCallbacks.  This  class  is 

used  by  CMBGenericDocViewer  to  retrieve  and  update  document  parts  and  

resources.  This  includes  methods  to  retrieve  a background  form  for  a 

document  and  the  print  privilege  of a document.  In  the  code  sample,  this  class  

is  called  StreamingDocServicesCallbacks.  

 2.   Create  an  instance  of  CMBStreamingDocServices  using  the  callbacks  

implemented  in  step  one.  In  the  code  sample,  this  is the  docServices  object.  To 

specify  the  document  engine  classes,  other  than  the  default,  see  “Customizing  

the  viewer”  on  page  537.  

 3.   Create  a class  that  extends  CMBAnnotationServicesCallbacks.  This  class  is 

used  by  CMBGenericDocViewer  to  retrieve  and  update  annotations.  You must  

provide  the  implementation  for  the  required  methods,  like  retrieve  and  

update.  You can  ignore  the  methods  that  are  not  relevant  for  the  type  of  

documents  being  viewed.  In the  code  sample,  this  is the  

AnnotationServicesCallbacks  class.  

 4.   Create  an  instance  of  CMBAnnotationServices  using  the  callbacks  

implemented  in  step  three.  In the  code  sample  this  is the  annoServices  object.  

 5.   Create  an  instance  of  CMBGenericDocViewer  and  initialize  it with  the  

CMBStreamingDocServices,  CMBAnnotationServices,  and  the  configuration  

properties  object.  Pass  null  for  the  properties  object  if you  want  to use  the  

default  configuration  object.  The  default  configuration  is constructed  from  the  

default  configuration  file  cmbviewerconfiguration.properties,  contained  in  

cmbview81.jar.  The  message  string  for  this  default  configuration,  like  action  

labels  and  tool  tips,  is read  from  the  language  specific  

cmbViewerMessages.properities  file  in  cmbview81.jar.  See  “Customizing  the  

viewer”  on  page  537  for  information  about  configuration  options.  

 6.   Add  the  viewer  to  the  application’s  or  applet’s  main  frame.  

 7.    Prepare  a menu  bar  by  retrieving  the  actions  from  the  generic  document  

viewer  and  add  the  menu  to  the  application  as  shown  in  the  section  about  

customizing.  

 8.    Implement  the  viewer  listener  interfaces,  such  as  

CMBGenericDocSaveListener  and  CMBGenericDocClosedListener.  Remember  

to  use  the  genericDocSave  method  of CMBGenericDocSaveListener  to save  a 

document  and  annotation  set.  

 9.    Add  the  viewer  listeners  using  the  add  listener  methods  of 

CMBGenericDocViewer,  such  as  addDocSaveListener.  

10.    The  CMBStreamingDocServices  object  relies  on  document  engine  classes  to  

handle  the  manipulation  of  images.  You can  specify  the  engines  and  their  

order  using  the  engine  property  file,  called  cmbviewerengine.properties,  which  

is  contained  in cmbview81.jar.  You can  also  do  this  programmatically  as  

demonstrated  in  the  following  code  snippet:

 

 

Chapter  13. Working  with the Java document  viewer toolkit 535

|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|

|

|
|
|

|
|
|
|

|
|

|
|
|
|
|



Specifying  the  engines  

 //  Create  engine  properties  

engineProperties  = new  Properties();  

engineProperties.put("ENGINES","2");  

engineProperties.put("ENGINE1_CLASSNAME",  

             "com.ibm.mm.viewer.mstech.CMBMSTechDocumentEngine");  

engineProperties.put("ENGINE2_CLASSNAME",  

             "com.ibm.mm.viewer.CMBJavaDocumentEngine");  

//  Create  a streaming  doc  services  object  and  associate  

//  the  document  engine  classes  

docServices  = new  CMBStreamingDocServices(  

         new  StreamingDocServicesCallbacks(),  engineProperties);  

Working  with documents and annotations 

This  section  provides  instructions  for  using  the  viewer  toolkit  components  to  work  

with  documents  and  annotations.  Complete  the  following  steps  to  load  the  

document  and  any  annotations,  and  to view  a document  in  the  viewer:  

1.   Call  loadDocument  in  CMBStreamingDocServices  to load  a document  into  

document  services  and  return  an  instance  of CMBDocument.  Document  

services  is  the  non-visual  layer  of  the  viewer  and  provides  a model  for  working  

with  the  document,  visually  or  non-visually.  

2.   Call  loadAnnotationSet  in  CMBAnnotationServices  to  load  any  annotations  into  

annotation  services  and  return  an  instance  of CMBAnnotationSet.  Annotation  

services  provides  a model  onto  the  annotation  set  for  a document  and  allows  

the  annotations  to  be  manipulated  both  visually  and  non-visually.  

3.   Call  showDocument  in  CMBGenericDocViewer  to  show  the  document  in the  

generic  doc  viewer.  The  generic  doc  viewer  is the  visual  component  for  the  

viewer.  

4.   Call  terminate  in  CMBGenericDocViewer  to  close  the  viewer  application.  This  

closes  all  the  documents  and  cleans  up  the  user  interface.

 

 

536 Application  Programming Guide

|

|

|
|
|
|
|
|
|
|
|
|
||||

|

|
|
|

|
|
|
|

|
|
|
|

|
|
|

|
|



Documents  and  annotations  sample  

// Load  the  document  into  document  services  

CMBDocument  document  = 

      docServices.loadDocument(  

            inStream,  

            nParts,  

            mimetype,  

            mimetype,  

            null,  

            null);  

  

int  position  = document.getAnnotationPosition();  

  

// Load  the  annotations  into  annotation  services.  

CMBAnnotationSet  annotationSet  = 

      annoServices.loadAnnotationSet(  

            annoStream,  

            "application/vnd.ibm.modcap",  

            position,  

            1, 

            0);  

  

// Show  the  document  in the  generic  doc  viewer.  

genericDocViewer.showDocument(document,  annotationSet,  

     filename);  

 You can  customize  the  default  configuration  object,  

CMBViewerConfiguration.properties,  located  in  the  cmbview81.jar  file,  or  you  can  

create  a new  configuration  object.  Whether  you  create  a configuration  object  or 

customize  CMBViewerConfiguration.properties,  you  must  keep  the  same  file  name  

and  place  it  before  cmbview81.jar  in  the  class  path.  

Customizing the viewer 

A  viewer,  provided  by  CMBGenericDocViewer,  is included  with  the  product.  You 

can  customize  the  functionality  provided  by  the  viewer  through  the  configuration  

properties  file.  This  file  contains  a series  of  parameters  that  control  what  toolbars  

display,  where  they  display,  and  the  tool  buttons  that  are  available.  You can  also  

customize  such  features  as  popup  menus  and  the  default  display  resolution.  

You can  customize  the  viewer  by  providing  a custom  configProperties  object  

while  constructing  the  viewer.  To view  an  example  of  a customized  viewer,  see  the  

TGenericDocViewer  viewer  application  sample.  The  sample  viewer  source  code,  

TGenericdocviewer.java,  and  the  custom  property  file  it uses,  

TViewerDefaultConfiguration.properties  are  located  in  the  samples  directory.  When  

reading  through  this  section,  reference  the  TViewerDefaultConfiguration.properties  

often.  

The  viewer  configuration  contains  default  toolbars,  like  Operation, Annotation, 

and  Page, a number  of default  tools,  and  a few  properties  that  control  certain  

viewer  behaviors  like  page  manipulation,  multiple  selection,  and  so  forth.  By  using  

a custom  viewer  configuration  file,  you  can  control  which  toolbars  are  visible,  

customize  existing  toolbars,  create  new  toolbars  and  actions,  and  enable  or  disable  

configurable  viewer  behaviors.  The  following  code  snippet  demonstrates  how  to  

provide  a custom  configProperties  object  to  the  viewer.  

 

 

Chapter  13. Working  with the Java document  viewer toolkit 537

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||

|
|
|
|
|

|

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|



Providing  configProperties  object  to  the  viewer  

//Load  the  custom  configuration  file.  

Properties  customProperties  = null;  

try  { 

                     URL  url = 

         this.getClass().getClassLoader().getResource(  

                  “TViewerDefaultConfiguration.properties”);  

         InputStream  configFile  = null;  

         Properties  defaultProperties  = null;  

         if (url  != null)  { 

                  configFile  = url.openStream();  

                  defaultProperties  = new Properties();  

          defaultProperties.load(configFile);  

                  properties  = defaultProperties;  

         } 

} 

catch  (Exception  e) { 

         System.out.println(e);  

                  e.printStackTrace();  

} 

//  Create  the  generic  doc  viewer  and  add  it to the  window  

genericDocViewer  = 

         new  CMBGenericDocViewer(docServices,  annoServices,  

customProperties);  

 The  following  code  snippet  is the  section  of the  

TViewerDefaultConfiguration.properties  file  that  customizes  the  toolbar.  By  using  

the  various  properties,  you  can  customize  which  toolbars  appear,  their  position,  the  

tools  that  appear,  the  order  in  which  they  appear,  and  their  groupings.  The  

toolbarname.position  property  specifies  the  position  of  the  toolbar  with  respect  to  

the  document.  The  thumbnail  bar  position  is also  specified  in the  same  way.  The  

toolbarname.tools  property  specifies  the  list  of tools,  separated  by  a comma,  that  

appear  on  the  toolbar.  The  tools  appear  on  the  toolbar  in the  same  order  that  you  

specify  them.  To group  tools  together  use  the  key  word  separator. 

 

 

538 Application  Programming Guide

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||

|
|
|
|
|
|
|
|
|



Customizing  the  toolbar  

//The  Toolbar  defines  all  the  toolbars  listed  

Toolbars=OperationToolbar,PageToolbar,AnnoToolbar  

  

//You  cancustomize  the  position  and  the  tools  of each  toolbar  

OperationToolbar.position=NORTH  

OperationToolbar.tools=new_doc,open_doc,save_doc,save_as,separator,  

export_doc,print,separator,cut,copy,paste,separator,undo,redo,separator,  

rotate_90,rotate_180,rotate_270,rotate_pages,separator,zoom_in,zoom_out,  

zoom_custom,separator,  \ 

  

fit_height,fit_width,fit_window,fit_actualsize,separator,enhance,invert,  

separator,hide_show,showhidethumb,separator,close_doc,  

  close_all_doc,separator,help  

  

AnnoToolbar.position=WEST  

AnnoToolbar.tools=selectArea,pointer,separator,Arrow,Circle,Highlight,  

Line,Note,Pen,Rect,Stamp,Text,eraser,separator,  \ 

move_front,send_back,properties  

  

PageToolbar.position=SOUTH  

PageToolbar.tools=page_first,page_prev,goto_page,page_next,page_last,  

separator,  \ 

doc_first,doc_prev,doc_next,doc_last  

  

Thumbnailbar.position=EAST  

 All  the  tools  listed  in  the  Customizing  the  toolbar  code  snippet,  except  open_doc, are  

default  actions  and  the  viewer  implements  them.  The  open_doc  tool  is a custom  

tool  that  you  can  add.  You can  also  specify  where  the  tool  apears  by  adding  the  

open_doc  tool  to  the  OperationToolbar  after  the  new_doc  tool.  The  following  code  

snippet  demonstrates  how  to  add  a custom  tool:  

 

 

Adding  a custom  tool  

open_doc.label=Open  

open_doc.tooltip=Open  Document  

open_doc.icon=OpenDocument_normal.gif  

open_doc.key=control  O 

 After  you  add  the  custom  tool,  the  viewer  creates  an  action  and  a button  for  the  

tool  but  does  not  have  an  implementation  for  the  action.  You must  provide  the  

code  to  implement  the  open_doc  action.  The  following  code  snippet  demonstrates  

how  to  implement  the  action:  

 

 

Chapter  13. Working  with the Java document  viewer toolkit 539

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||

|
|
|
|
|
|

|

|
|
|
||||

|
|
|
|



Implementing  an  action  

//  Add  a toolbar  button  for opening  documents  

//  Get  the  button  for  the ‘open_doc’  tool  

JButton  button  =    (JButton)  

             ((CMBViewerToolbar)  genericDocViewer.getToolBar(  

                      "OperationToolbar")).getComponent(  

                      "open_doc");  

//Create  a new  AbstractAction  providing  implementation  for 

//  actionPerformed  

//This  implementation  calls  openDocument()  implemnted  elsewhere  

Action  openDocAction  = new  AbstractAction("open_doc")  { 

         public  void  actionPerformed(ActionEvent  event)  { 

                  openDocument(null);  

         } 

};  

//Add  newly  created  AbstractAction  as actionListener  on the  button  

button.addActionListener(openDocAction);  

//  Register  Keystrkes  for this  action  

genericDocViewer.registerKeyboardAction(  

         openDocAction,  

         KeyStroke.getKeyStroke(KeyEvent.VK_O,  KeyEvent.CTRL_MASK,  

false),  

         JComponent.WHEN_IN_FOCUSED_WINDOW);  

genericDocViewer.registerKeyboardAction(  

         openDocAction,  

         KeyStroke.getKeyStroke(KeyEvent.VK_O,  KeyEvent.CTRL_MASK,  

 false),  

         JComponent.WHEN_ANCESTOR_OF_FOCUSED_COMPONENT);  

button.setEnabled(true);  

button.requestFocus();  

 You can  add  default  and  custom  viewer  actions  to  other  controls  like  menus  in 

your  application.  The  following  code  snippet  demonstrates  how  to add  a viewer  

action  to  the  menu  bar  of an  application:  

 

 

Adding  viewer  actions  to  an  application  

//create  a menubar  and  menu  

JMenuBar  mainMenuBar  = new  JMenuBar();  

JMenu  viewerMenu  = new  JMenu("Viewer");  

mainMenuBar.add(viewerMenu);  

//  get  an action  object  that  has been  loaded  into  the viewer  

Action  zoomInAction  = genericDocViewer.getAction("zoom_in");  

//  add  the  viewer  action  to the menu  

viewerMenu.add(zoomInAction);  

//  add  the  menu  bar  

getRootPane().setJMenuBar(mainMenuBar);  

 The  viewer  also  provides  popup  menus  that  you  can  customize.  The  popup  

menues  include  Page,  Thumbnail,  Annotation,  Document  Tab, and  Select  Area.  The  

names  of  the  popup  menus  are  fixed  and  signify  where  the  menu  appears.  The  

tools  available  for  each  popup  menu  are  listed  in  the  value  of the  

popupmenuName.items  property,  which  you  can  customize.  The  following  code  

snippet  is  the  popup  menu  section  from  TViewerDefaultConfiguration.properties  

file:  

 

 

540 Application  Programming Guide

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||

|
|
|
|

|

|
|
|
|
|
|
|
|
|
||||

|
|
|
|
|
|
|



Customizing  popup  menus  

//Popup  Menus  

//annotation  popup  

annotationpopup.items=cut,copy,paste,delete,separator,move_front,  

send_back,separator,properties  

//thumbnail  popup  

thumbpopup.items=cut,copy,paste,delete,separator,deselectAll,  

selectAll,separator,rotate  

//page  popup  

pagepopup.items=cut,copy,paste,delete,separator,rotate,zoom,  

fit,navigate,separator,paste  

//doc  tab  popup  (appears  when  right-click  on document  tabs)  

  

doctabpopup.items=close_doc,close_all_doc,separator,save_doc,print  

  

//select  area  popup  

  

selectareapopup.items=copy  

 You can  add  submenus  to  the  popup  menus  by  creating  label  and  item  entries  

for  the  values  in  popupmenuname.item.  The  following  code  snippet  shows  how  to  

add  submenus  for  rotate,  zoom,  fit,  and  navigate:  

 

 

Adding  submenus  

//submenus  (appear  on some  of the popup  menus)  

rotate.label=Rotate  Pages  

zoom.label=Zoom  

fit.label=Fit  

navigate.label=Navigate  

rotate.items=rotate_90,rotate_180,rotate_270  

zoom.items=zoom_in,zoom_out,zoom_custom  

fit.items=fit_height,fit_width,fit_window,fit_actualsize  

navigate.items=page_first,page_prev,goto_page,page_next,  

page_last,showhidethumb  

 Following  is  a list  of  other  veiwer  options  that  you  can  customize.  The  code  

snippet  shows  how  to  customize  other  viewer  behavior  options.  Each  of the  

options  are  explained  in  the  comments  that  accompany  each  property.  

v   Inverting  documents:  Set  the  Document.invert  property  to  true to automatically  

invert  a document  the  first  time  it  is opened.  Set  it to  false,  so  that  documents  

are  not  automatically  inverted  when  first  opened.  Note  that,  by  default  

documents  are  not  inverted.  

Example:  

Document.invert=false  

v   Enhancing  documents:  To automatically  enhance  documents  upon  opening,  set  

the  Document.enhance  property  to true. The  default  is to enhance  documents.  

Note  that  enhancing  certain  image  documents  can  increase  memory  usage.  

Example:  

Document.enhance=true  

v   Rotating  documents:  The  default  behavior  is  to  not  rotate  the  document  when  it  

is opened.  To automatically  rotate  a document  when  it is opened,  set  the  

Document.rotate  property  according  to the  following  degrees:  

–   Do  not  rotate:  rotate_0  

 

 

Chapter  13. Working  with the Java document  viewer toolkit 541

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||

|
|
|
|

|

|
|
|
|
|
|
|
|
|
||||

|
|
|

|
|
|
|
|

|

|
|
|
|

|

|
|
|

|



–   Rotate  90  degrees:  rotate_90  

–   Rotate  180:  rotate_180  

–   Rotate  270:  rotate_270  

–   

Example:  

Document.rotate=rotate_0  

v   Showing  annotations:  To automatically  show  all  annotations  associated  with  the  

document  when  it  is opened,  set  the  Annotations.show  property  to  true. The  

default  setting  is  true. Set  the  property  to  false  if you  want  the  annotations  

hidden  when  the  document  is opened.  

Example:  

Annotations.show=true  

v   Zooming:  To zoom  in  and  out  on  a document,  set  the  Zoom.factor  property  to a 

numeric  value  greater  than  zero  and  less  than  one  hundred.  This  value  

represents  a percentage.  The  default  zoom  value  is ten  percent.  

Example:  

Zoom.factor=10  

v   Fit-to-window:  To fit  the  document  page  to a window,  set  the  Page.fit  property  

according  to  following  options:  

–   fit_width  : Fit  pages  to view  width  

–   fit_height:  Fit  pages  to the  height  of the  view  

–   fit_in_window:  Fit  the  entire  page  within  the  view  

–   fit_none:  Display  the  page  using  the  initial  zoom  (the  default)

Example:  

Page.fit=fit_width  

v   Resizing  Thumbnails:  The  ThumbnailSize  properties  define  the  width  and  

height  of  each  thumbnail  view. The  values  in  the  following  example  are  

appropriate  for  an  8.5x11  inch  page.  

Example:  

ThumbnailSize.width=60  

ThumbnailSize.height=77  

v   Manipulating  pages:  You can  copy,  cut,  paste,  delete,  and  rotate  a page  of a 

document  and  have  all  of  these  changes  automatically  saved.  To save  all  changes  

made  to  a page,  set  the  PageManipulation  property  to  true. 

Example:  

PageManipulation=true  

v   Selecting  multiple  pages:  To select  more  than

 Customizing  viewer  behavior:   

# MultiplePageSelection  enables  multi-select  of pages  within  the  thumbnails.  

MultiplePageSelection=true  

  

# Set  NewDocument.mimetype  property  to  the  MIME  type  to be used  when  creating  

# new  empty  document.  

# Examples  include,  image/gif,  image/jpeg,  image/tiff,  application/pdf,  text/plain,  

# text/richtext,  application/vnd.lotus_wordpro  

NewDocument.mimetype=image/tiff  

  

# Set  NewDocument.annotationtype  property  to a string  constant  for  the 

# type  of annotations  when  creating  a new empty  document.  

# For  example,  ’application/vnd.ibm.modcap’  for IBM  DB2  Content  Manager  annotations  

# or a two  letter  representation  of the  server  type  such  as ’DL’,’OD’,’V4’  

NewDocument.annotationtype=application/vnd.ibm.modcap

 

 

542 Application  Programming Guide

|

|

|

|

|

|

|
|
|
|
|

|

|
|
|
|

|

|
|

|

|

|

|

|

|

|
|
|
|

|
|

|
|
|
|

|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|



#PrintMargins  

#Specify  the  print  margins  for  a mimetype.  

#Default  is 0,0,0,0  (top,  left,  bottom,  right)  

#printmargins.image/tiff=1,1,1,1  

Working  with the annotation services 

The  DB2  Information  Integrator  for  Content  8.1  Java  viewer  toolkit  provides  

capabilities  for  rendering  and  converting  document  annotations.  Similar  to the  

document  services,  pluggable  annotation  engines  provide  additional  facilities  that  

you  can  use  in  your  applications  to  interpret  different  types  of annotations.  

Figure  45  illustrates  how  the  generic  document  viewer  and  document  services  and  

annotation  services  fit  together.  

   

Using annotation services interfaces 

CMBAnnotationServices  provides  the  main  interfaces  used  in  the  Java  viewer  

toolkit.  The  annotation  services  enables  you  to  load,  manipulate,  and  save  

annotation  objects  using  the  annotation  services,  independently  of  backends.  To 

work  with  annotations,  you  need  to  pass  in  annotation  data  as  a stream  and  plug  

in  a suitable  annotation  engine,  which  converts  the  annotation  objects  to 

CMBPageAnnotation  instances.  You can  then  manipulate  and  edit  the  annotations  

and  save  the  annotations  back  into  the  original  backend  in  the  original  format.  

  

Figure  45.  Annotation  services  and  generic  document  viewer  association

 

 

Chapter  13. Working  with the Java document  viewer toolkit 543

|
|
|
|

|
|

|
|
|
|
|
|
||

|

|
|
|
|
|
|
|



Figure  46  shows  the  annotation  services  class  diagram.  

To implement  the  annotation  engine,  you  must  extend  the  abstract  class  

CMBAnnotationEngine.  The  annotation  engine  uses  

CMBAnnotationServicesCallbacks  and  CMBAnnotationEngineCallbacks  interfaces  

to  communicate  with  an  application  and  annotation  services.  The  annotation  

engine  in  Information  Integrator  for  Content  8.1  understands  only  the  DB2  Content  

Manager  annotation  format.  This  annotation  format  is used  by  Content  Manager  

Version  7, DB2  Content  Manager  Version  8.  1, and  VI/400  backends.  

   

Understanding annotation editing support 

The  Model  View  Controller  (MVC)  design  pattern  is used  to  implement  the  

annotations  editing  functionality.  CMBAnnotationSet  acts  as  the  model  that  

represents  the  annotation  data.  CMBAnnotationSet  has  methods  that  operate  on  

the  data,  but  has  no  user  interface.  The  CMBAnnotationSet  class  maintains  the  list  

of  CMBPageAnnotation  objects.  Each  document  is associated  with  a 

CMBAnnotationSet  object  that  represents  its  annotations.  CMBAnnotationView  acts  

as  the  view  that  presents  the  data  from  the  model  to  the  user. CMBAnnotation  

handles  all  the  drawing  of  the  annotations  on  the  view  component  (a 

JComponent).  CMBAnnotationComponent  is a helper  class  that  can  be  used  as  the  

view  component  on  which  the  annotations  are  drawn.  The  controller  is internal  to  

the  viewer  toolkit  and  handles  the  mouse  and  keyboard  events  for  annotation  

creation  and  editing.  

CMBPageAnnotation  is the  base  class  that  describes  a single  annotation  on  a page  

of  a document.  If  you  need  to  define  additional  types  of  graphical  annotations,  you  

must  extend  the  CMBPageAnnotation  class.  There  are  nine  types  of DB2  Content  

Manager  annotation  types  that  you  can  create:  CMBArrowAnnotation,  

CMBCirlceAnnotation,  CMBHighlightAnnotation,  CMBLineAnnotation,  

CMBNoteAnnotation  , CMBPenAnnotation,  CMBRectAnnotation,  

CMBStampAnnotation,  and  CMBTextAnnotation.  

Note:  You can  use  annotation  services  in  non-GUI  applications.  

  

Figure  46. Annotation  services  class  diagram

 

 

544 Application  Programming Guide

|

|
|
|
|
|
|
|
||

|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|



Building an application using the annotation services 

This  section  includes  the  steps  to  follow  and  APIs  to  use  to  build  an  annotation  

services  application.  See  the  Application  Programming  Reference  for  details  about  

API  usage.  

1.   Create  a subclass  of  CMBAnnotationServicesCallbacks  to  implement  the  

abstract  methods  to  handle  annotation  callbacks.  

2.   Create  an  instance  of  CMBAnnotationServices.  

CMBAnnotationServices  annoServices  = new  

CMBAnnotationServices(annoServicesCallbacks);  

3.   Get  an  instance  of  CMBAnnotationSet  by  loading  an  annotation  stream.  

CMBAnnotationSet  annotationSet  = annoServices.loadAnnotationSet(annoStream,  

 format,  documentResolution,  annotationPartNumber  ); 

4.   Prepare  the  annotation  view.  

CMBAnnotationComponent  annoComponent  = new  CMBAnnotationComponent();  

CMBAnnotationViewer  annoView  = annoServices.prepareAnnotationView(  

            annoComponent,  annotationSet  ); 

annoView.refreshEntireDrawingArea();  

5.   Add  the  annotation  component  to a Swing  container  like  Jframe  or  Jpanel  of 

the  application.  

6.   You can  now  use  the  annotation  services  API  to  add  new  annotations,  edit,  or  

delete  existing  annotations.  

annoServices.prepareToAddAnnotation();  

annoServices.addAnnotation()  

annoServices.removeAnnotation();  

annoServices.reorderAnnotation();  

...  

7.   Save  the  modified  annotations.  

annoServices.saveAnnotationset(annotationSet);  

An  Annotation  Services  sample  is provided  in  the  samples  directory.  

Adding a custom annotation type to your application 

To add  a custom  annotation  type  to  the  annotation  services,  complete  the  steps  

below.  See  the  Application  Programming  Reference  for  details  about  API  usage.  

1.   Create  a subclass  of CMBPageAnnotation.public class  TImageAnnotation  

extends  CMBPageAnnotation  

2.    Define  a constant  for  the  custom  annotation  with  a value  larger  than  100.  The  

range  of  1 to  99  is  reserved.  

public  static  final  int  ANN_IMAGE  = 101;  

3.   Override  the  following  methods  of  CMBPageAnnotation:  

    public  void  draw(Graphics2D  g2);  

    public  void  drawOutline(Graphics2D  g2);  

    public  CMBPropertiesPanel  getAnnotationPropertiesPanel();  

4.   Implement  the  CMBAnnotationPropertiesInterface  interface  to create  the  

properties  panel.  The  properties  panel  appears  when  a user  chooses  to edit  the  

custom  annotation  properties.  

5.   Provide  set  and  get  methods  specific  to the  custom  annotation  properties.  

6.   Add  the  custom  annotation  type.  

annoServices.prepareToAddAnnotation(TImageAnnotation.ANN_IMAGE,  

"TImageAnnotation",1);  

 

 

Chapter  13. Working  with the Java document  viewer toolkit 545

|

|
|
|

|
|

|

|
|

|

|
|

|

|
|
|
|

|
|

|
|

|
|
|
|
|

|

|

|

|

|
|

|
|

|
|

|

|

|
|
|

|
|
|

|

|

|
|



The  annotation  type  sample  TImageAnnotation  is included  in  the  samples  directory.  

The  sample  demonstrates  how  to  add  a custom  annotation  type  to the  annotation  

services.  

Working  with the page manipulation functions 

The  Java  viewer  toolkit  provides  capabilities  for  editing  image-paged  documents  at  

the  page  level.  This  functionality  simulates  the  capabilities  of working  with  paper  

documents.  

Full  functionality  includes:  

v   Create,  save,  and  export  

–   Create  document  

–   Save  as  new  document  (not  exposed  in  the  default  toolbar)  

–   Save  modified  document  with  annotations  

–   Export  document,  with  or  without  annotations
v    Multiple  selection  

–   Multiselect  in  thumbnails  using  the  mouse  or  keyboard  

–   Select  all  or  deselect  all
v    Manipulation  

–   Cut,  copy,  and  paste  selected  pages  within  a document  or  across  documents  

–   Delete  selected  pages  

–   Drag  and  drop  selected  thumbnail  pages  to  move  or  copy  

–   Permanently  rotate  pages

Enabling a custom application for page manipulation 

You can  modify  existing  custom  applications  that  contain  the  

CMBGenericDocViewer  to  support  page  manipulation.  By  default,  

CMBGenericDocViewer  does  not  enable  page  manipulation.  

To enable  support  in  a custom  application,  perform  these  steps:  

1.   Set  the  viewer  configuration  property  for  page  manipulation  and  multiple  page  

selection  to  true. In  the  CMBViewerConfiguration.properties  object,  add  the  

following  lines:  

PageManipulation=true  

MultiplePageSelection=true  

2.   Update  the  viewer  configuration  to  add  new  toolbar  and  menu  items  related  to  

page  manipulation.  DB2  Content  Manager  Version  8 Release  3 provides  the  

following  actions:  

new_doc  

Creates  a document.  The  document  created  within  the  viewer  initially  

contains  no  pages.  Saving  the  document  creates  it on  the  server.  

save_as  

Saves  the  document  in  the  viewer  as a new  document  on  the  server.  

export_doc  

Exports  the  document  displayed  in  the  viewer  to  the  file  system.  This  

action  displays  a dialog  that  allows  the  user  to  specify  the  file  name,  

type,  and  directory  location.  A check  box  enables  imprinting  the  

annotations  onto  the  document  pages.
3.   Create  a handler  for  implementing  the  CMBGenericDocSaveEvent  listener.  This  

handler  is registered  with  the  instance  of  CMBGenericDocViewer.  It gains  

 

 

546 Application  Programming Guide

|
|
|

|

|
|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|
|
|

|

|
|
|

|

|

|
|
|

|
|
|

|
|

|
|
|
|
|

|
|



control  whenever  a calling  viewer  action  requires  saving.  The  handler  also  

gains  control  when  saving  the  document  when  the  document  is closed.  

class  SaveHandler  implements  CMBGenericDocSaveListener  

{ 

public  void  genericDocSave(CMBGenericDocSaveEvent  evt)  

{ 

   CMBDocument  document  = evt.getDocument();  

    CMBAnnotationSet  annoSet  = evt.getAnnotationSet();  

    if (evt.getSaveAsNew())  { 

      ..  logic  to save  new  documents  

    } 

 if (document.isModified())  { 

OutputStream  docstream  = .. 

      docServices.setPreferredFormats(  

        new  String[]  { document.getMimeType()});  

      document.write(docstream);  

    } 

    if (annoSet.isDirty())  { 

      OutputStream  annostream  = .. 

      annoSet.write(annostream);  

    } 

    ..other  save  logic  

    document.setModified(false);  

    annoSet.setDirty(false);  

   } 

} 

Typically,  performing  page  manipulation  operations  on  documents  with  

annotations  modifies  the  annotations.  Analyze  the  impact  of  updating  a 

document  and  its  annotations  to  avoid  updating  the  document  and  annotations  

separately  if the  operations  fail.  

A CMBGenericDocSaveEvent  handler  should  save  both  annotations  and  

document  content.  Prior  to  V8.3,  users  used  callbacks  to save  annotations.  

Callbacks  are  used  when  the  isDirty()  flag  for  a CMBAnnotationSet  is true  

and  either  there  are  no  registered  CMBGenericDocSaveEvent  handlers  or  the  

registered  handlers  do  not  reset  the  isDirty()  flag  on  the  annotation  set.  

If the  CMBGenericDocSaveEvent  handler  saves  annotations  in  all  cases,  the  

saving  logic  in  the  callbacks  is optional.  

4.   Add  logic  to  enable  or  disable  page  manipulation  capabilities  according  to  user  

privileges.  The  following  methods  enable  or  disable  page  manipulation  

capabilities  in  CMBGenericDocViewer:  

setPageManipulationEnabled(boolean  enable)  

Enables  or  disables  all  page  manipulation  capabilities  in  the  viewer.  

setPageManipulationPrivilege(CMBDocument  document,  int  privilege,  

boolean  enable)  

This  method  can  enable  and  disable  page  manipulation  on  individual  

documents,  and  enable  and  disable  the  ability  to create  documents.
5.   Add  logic  to  respond  to  page  manipulation  operations  within  the  viewer.  This  

is usually  necessary  if there  is additional  information  that  is maintained  by  the  

application  related  to  document  pages.  When  users  add  or  remove  pages,  the  

application  must  synchronize  the  page-specific  information  with  the  viewer  

information.  

Deleting  pages  in a document  does  not  destroy  those  pages.  Deleting  removes  

pages  and  places  them  into  a removed  pages  object.  Performing  a cut  operation  

places  a removed  pages  object  on  the  clipboard.  Deleting  places  this  removed  

pages  object  on  the  tasks  performed  queue,  for  use  in  an  undo  operation.  To 

allow  saving  application-specific  information,  

CMBGenericDocStateChangedEvent  provides  getRelatedInfo  and  setRelatedInfo  

 

 

Chapter  13. Working  with the Java document  viewer toolkit 547

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|

|
|
|

|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|



methods,  which  allows  an  application  to  associate  a serializable  object  with  

pages  deleted  or  copied  (using  setRelatedInfo)  and  retrieved  when  the  pages  

are  added  (using  getRelatedInfo).  

Adding,  modifying,  or  deleting  pages  triggers  example:  

CMBGenericDocStateChangedEvent.  

gdv.addDocStateChangedListener(new  ChangeHandler());  

  

class  ChangeHandler  implements  CMBGenericDocStateChangedListener  { 

public  void  genericDocStateChanged(CMBGenericDocStateChangedEvent  evt)  { 

if (evt.getChangeType()  == CHANGETYPE_PAGES_DELETED)  { 

.. add  logic  for  pages  deleted  

} else  if (evt.getChangeType()  == CHANGETYPE_PAGES_COPIED)  { 

.. add  logic  for  pages  copied  (to  clipboard)  

} else  if (evt.getChangeType()  == CHANGETYPE_PAGES_ADDED)  { 

.. add  logic  for  pages  added  

     } 

   } 

} 

 

 

548 Application  Programming Guide

|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|



Chapter  14.  Working  with  the  JSP  tag  library  and  controller  

servlet  

Information  Integrator  for  Content  includes  a Java  Server  Pages  (JSP)  tag  library  

and  a servlet  that  you  can  use  when  writing  JSP  or  servlets  for  Web applications.  

Using  the  tag  library  reduces  the  need  for  Java  scriptlets  in  JSP  written  to  the  

Information  Integrator  for  Content  JavaBeans.  

This  tag  library  works  with  the  servlet  which  can  act  as  a controller  of  a 

model-view-controller  design  Web application  and  performs  bean  initialization  and  

other  actions.  

Setting up the tag library and servlet 

You must  install  the  tag  library  and  servlet  on  a Web server  with  IBM  WebSphere  

Application  Server  and  configure  the  Web server  to use  them.  For  information  

about  installing  the  tag  library  and  servlet,  configuring  them,  and  for  information  

about  building  WAR/EAR  files,  see  Planning  and  Installing  Information  Integrator  for  

Content. 

Using the tag library 

The  following  JSP  sample  shows  using  the  search  templates  tag  to  get  a list  of 

search  templates:  

<%@  taglib  uri="cmb"  prefix="cmb"  %> 

<%@  page  import="com.ibm.mm.beans.*"  %> 

<jsp:useBean  id="connection"  scope="session"  

                          class="com.ibm.mm.beans.CMBConnection"  /> 

<%  

    CMBSchemaManagement  schema  = connection.getSchemaManagement();  

    CMBSearchTemplate[]  searchtemplates  = schema.getSearchTemplate();  

    request.setAttribute("searchtemplates",  searchtemplates);  

%>  

<html>  

      <head>  

          <title>Search  Templates  Tag  Test</title>  

      </head>  

  

    <body  bgcolor="white">  

    <table  border=2  cellspacing=3  cellpadding=3>  

          <tr>  

                <td><b>Available  Search  Templates</b></td>  

          </tr>  

          <cmb:searchtemplates>  

      <tr>  

                <td><%=  searchtemplate.getName()  %></td>  

          </tr>  

          </cmb:searchtemplates>  

    </table>  

    </body>  

</html>  

The  taglib  directive  declares  that  the  page  uses  the  Information  Integrator  for  

Content  tag  library  and  associates  the  cmb  prefix  with  it.  Then  the  searchtemplates  

tag  is called  and  the  getName()  method  returns  the  name  of each  search  template.  

 

© Copyright  IBM Corp. 1996, 2005 549

|



Conventions used in the tag library 

The  JSP  tags  have  attributes  to  specify  the  beans  that  they  use  or  generate.  When  

those  attributes  are  not  specified,  default  values  are  used.  These  parameters  are  

optional.  Their  values  are  picked  up  from  local  variables,  and  attributes  in  the  

request  and  session  scope.  When  used  in  conjunction  with  the  servlet  toolkit,  local  

variables,  request  attributes,  or  session  attributes  contain  appropriate  defaults.  

Table  46  shows  the  default  beans  and  the  scope  in  which  they  are  assumed  or 

placed.  These  conventions  are  also  followed  by  the  servlet;  follow  these  

conventions  in  any  other  servlets  that  you  write  to  work  with  the  tag  library.  

 Table 46.  Tag library  conventions  

Scope  Name  Type Description  

application  connectionPool  CMBConnectionPool  The  connection  pool  bean  

that  is shared  across  sessions  

session  connection  CMBConnection  The  instance  of 

CMBConnection  for the  

session  

session  schema  CMBSchemaManagement  Schema  management  bean  

session  data  CMBDataManagement  Data  management  bean  

session  user  CMBUserManagement  User  management  bean  

session  query  CMBQuesryService  Query  service  bean  

session  traceLog  CMBTraceLog  Trace log  bean;  all of the  

other  beans  send  their  trace  

to this  bean  

session  docservices  CMBDocumentServices  Document  services  bean  

request  item  CMBItem  The  last item  that  you  

operated  on 

request  items  CMBItem[  ] Collection  of the  items  that  

you  last  operated  on 

request  searchTemplate  CMBSearchTemplate  The  selected  search  template  

request  searchResults  CMBSearchResults  The  results  from  the  last 

search
  

Tag  summary 

The  following  sections  summarize  the  tag  library:  

Connection related tags 

<cmb:datasources″ connection=″connection″>datasource  ...  </cmb:datasources>  

This  tag  iterates  through  the  available  data  sources.  

connection  

Specify  the  name  of a variable  of  type  CMBConnection  that  

contains  the  connection.  

datasource  

A  string  variable  to  contain  the  data  source  name  as  a string.

 

 

550 Application  Programming Guide



Schema related tags 

<cmb:searchtemplates  searchTemplates=″searchTemplate″>  ...  

</cmb:searchTemplates>  

This  tag  iterates  through  the  available  search  templates.  

searchTemplates  

Specify  the  name  of  an  array  of  type  CMBSearchTemplate[]  to  

contain  the  search  templates.  

searchTemplate  

A  variable  of type  CMBSearchTemplate  to  contain  the  search  

template.

<cmb:searchcriteria  searchTemplate=″searchtemplate″>criterion  ... 

</cmb:searchcriteria>  

This  tag  iterates  through  the  search  criteria  of  a search  template.  

searchTemplate  

Specify  the  name  of  the  search  template.  

criterion  

A  variable  of type  CMBSTCriterion  to  contain  the  search  criterion.

<cmb:displaycriteria  searchTemplate=″searchTemplate″>criterion  ...  

</cmb:displaycriteria>  

This  tag  iterates  through  the  search  criteria  that  can  be  displayed  for  a 

search  template.  

searchTemplate  

Specify  the  name  of  the  search  template.  

criterion  

A  variable  of type  CMBSTCriterion  to  contain  the  search  criterion.

<cmb:allowedoperators  criterion=″criterion″>operator  ... </cmb:allowedoperators>  

This  tag  iterates  through  the  operators  allowed  for  a search  criterion.  

criterion  

Specify  the  name  of  a variable  of type  CMBSTCriterion  to contain  

the  search  criterion.  

operator  

A  string  to  contain  the  value  of  the  operator.

<cmb:predefinedvalues  criterion=″criterion″> value...  </cmb:predefinedvalues>  

This  tag  iterates  through  the  predefined  values  of a search  criterion.  

criterion  

Specify  the  name  of  a variable  of type  CMBSTCriterion  to contain  

the  search  criterion.  

value  A  string  to  contain  the  predefined  value  of the  search  criterion.

<cmb:entities  schema=″schema″>entity  ... </cmb:entities>  

This  tag  iterates  through  the  available  federated  entities.  

schema  Specify  the  name  of  a variable  of type  CMBSchemaManagement  

containing  the  schema.  

entity  A  string  to  contain  the  name  of  the  entity.

<cmb:attributes  entity=″entity″ schema=″schema″>attribute  ... </cmb:attributes>  

This  tag  iterates  through  the  federated  attributes  of  a federated  entity.  

 

 

Chapter  14. Working  with the JSP tag library and controller servlet  551



schema  Specify  the  name  of a variable  of  type  CMBSchemaManagement  to 

contain  the  schema.  

entity  Specify  the  name  of the  entity.

attribute  

A  string  to  hold  the  name  of a variable  of type  CMBAttribute  that  contains  

the  attribute.

Search related tags 

<cmb:searchresults  searchresults=″searchResults″>item ...  </cmb:searchresults>  

This  tag  iterates  through  the  search  results.  

searchResults  

Specify  the  name  of a variable  of  type  CMBSearchResults  that  

contains  the  search  results.

item  A  string  to  contain  the  name  of a variable  of type  CMBItem  to  contain  the  

item  resulting  from  the  search.

Item related tags 

<cmb:itemattributes  item=″item″> attrname  ... attrtype...  attrvalue...  

</cmb:itemattributes>  

This  tag  iterates  through  the  attributes  of an  item.  

item  Specify  the  name  of a variable  of  type  CMBItem  that  contains  the  

item.  

attrname  

A  string  variable  to  contain  the  name  of the  attribute.  

attrtype  

A  string  variable  to  contain  the  attribute  type.  

attrvalue  

A  string  variable  to  contain  the  value  of  the  attribute.

<cmb:itemcontents  ″ data=″data″ item=″item″> content...  </cmb:itemcontents>  

This  tag  iterates  through  the  contents  of an  item.  

data  Specify  the  name  of a variable  of  type  CMBDataManagement.  

item  Specify  the  name  of a variable  of  type  CMBItem  that  contains  the  

item.  

content  

A  variable  of type  CMBObject  for  the  item’s  contents.

<cmb:itemnotelogs  ″ data=″data″ item=″item″>notelog  ...  </cmb:itemnotelogs>  

This  tag  iterates  through  the  note  logs  of  an  item.  

data   Specify  the  name  of a variable  of  type  CMBDataManagement.  

item  Specify  the  name  of a variable  of  type  CMBItem  that  contains  the  

item.  

notelog  

A  variable  of type  CMBObject  to  contain  the  item’s  note  log.

<cmb:itemprivileges  data=″data″ item=″item″>privilege  ... </cmb:itemprivileges>  

This  tag  iterates  through  the  privileges  of  an  item.  

data  Specify  the  name  of a variable  of  type  CMBDataManagement.  

 

 

552 Application  Programming Guide



item  Specify  the  name  of  a variable  of type  CMBItem  that  contains  the  

item.  

privilege  

A  variable  of type  CMBPrivilege  to  contain  the  item’s  privilege.

<cmb:itemresources  data=″datamanagement″ item=″item″> resource...  

</cmb:itemresources>  

This  tag  iterates  through  the  resources  of an  item.  

data  Specify  the  name  of  a variable  of type  CMBDataManagement.  

item  Specify  the  name  of  a variable  of type  CMBItem  that  contains  the  

item.  

resource  

A  variable  of type  CMBResources  to  contain  the  item’s  resource.

<cmb:unmappeditem  data=″data″ 

item=″item″>unmappeditem...</cmb:unmappeditem>  

This  tag  returns  an  unmapped  item  from  the  given  mapped  item.  

data   Specify  the  name  of  a variable  of type  CMBDataManagement.  

item  Specify  the  name  of  a variable  of type  CMBItem  that  contains  the  

mapped  item.  

unmappeditem  

A  variable  of type  CMBItem  to  contain  the  unmapped  item.

<cmb:viewdata  data=″data  ″ item=″item″>viewdata...  </cmb:viewdata>  

This  tag  returns  a view  of  an  item.  

data   Specify  the  name  of  a variable  of type  CMBDataManagement.  

item  Specify  the  name  of  a variable  of type  CMBItem  that  contains  the  

item.  

viewdata  

A  variable  of type  CMBViewData  to  contain  the  viewable  data.

Folder related tags 

<cmb:folderitems  folder=″folder″>  item...  </cmb:folderitems>  

This  tag  iterates  through  the  contents  of  a folder.  

folder  Specify  the  name  of  a variable  of type  CMBItem  to  contain  the  

folder  contents.  

item  A  variable  of type  CMBItem  that  represents  the  folder.

Document related tags 

<cmb:viewerdocuments  docservices=″docservices″>document  ...  

</cmb:viewerdocuments>  

This  tag  iterates  through  the  documents  that  are  currently  loaded.  

docservices  

Specify  the  name  of  a variable  of type  CMBDocumentServices.  

document  

A  variable  of type  CMBDocument  to  contain  the  document.

<cmb:documentpages  document=″document″> docpage...  </cmb:documentpages>  

This  tag  iterates  through  the  pages  of  a document.  

 

 

Chapter  14. Working  with the JSP tag library and controller servlet  553



document  

Specify  the  name  of a variable  of  type  CMBDocument  to contain  

the  document.  

docPage  

A  variable  of type  CMBPage  to  contain  the  page.

Information Integrator for Content controller servlet 

Information  Integrator  for  Content  provides  a servlet  with  pluggable  actions  that  

can  be  used  when  building  Web applications.  This  servlet  acts  as  a controller  of  a 

model-view-controller  design  Web application,  performing  actions  and  initializing  

the  beans  (the  model)  which  are  then  accessed  in  the  JSP  (the  views)  either  directly  

or  indirectly  by  using  the  JSP  tags.  

Actions  are  provided  for  typical  application  tasks:  

v   Log  on  and  log  off.  

v   Search.  

v   Create,  retrieve,  modify,  and  delete  documents.  

v   Create  folders,  and  add  documents  to  or  remove  documents  from  folders.  

v   Launch  documents  and  document  pages  for  viewing.

In  addition,  the  servlet  performs  common  tasks  before  and  after  the  action,  such  as  

management  of  the  connection  to  the  content  server.  After  every  action,  a JSP  is 

invoked  to  format  the  results  and  send  them  back  to  the  browser.  

You can  customize  the  servlet  to  add  new  actions  and  associate  JSPs  with  the  

actions.  

What the servlet can do 

Here  are  some  of  the  aspects  of the  servlet  that  you  can  use:  

Connection  pooling  

 The  controller  servlet  uses  Information  Integrator  for  Content  connection  

pooling  to  provide  high  performance  connection  management.  The  time  in  

which  a connection  is allocated  to  a session  may  be  either  for  the  request  

or  for  the  time  the  session  is logged  on.  Currently  connection  pooling  is at  

the  application  scope.  

Logon  of  Timed-Out  Sessions  

If  a session  has  timed-out,  and  a request  comes  into  the  servlet,  the  logon  

JSP  is  displayed,  allowing  the  user  to  logon  again.  The  original  request  is  

performed  after  successful  logon.  

Clean  up  on  session  termination  

The  servlet  cleans  up  the  session  properly  when  a session  is  terminated,  

either  by  logging  off  or  by  a time-out.  This  means  that  the  connection  is 

destroyed  or  returned  to  the  pool.  All  other  Information  Integrator  for  

Content  beans  created  by  the  servlet  are  terminated  and  their  resources  are  

freed  without  waiting  for  a garbage  collection  cycle  to  occur.  

Locale  The  servlet  insures  that  the  locale  is set  correctly  on  the  underlying  beans,  

so  messages  and  character  strings  are  locale  sensitive.  

Using  different  JSP  sets  

A  properties  file,  named  cmbservletjsp.properties, by  default,  describes  

 

 

554 Application  Programming Guide



the  JSPs  to  use  for  responses  to  servlet  actions.  The  location  of  the  

properties  file  is an  application  parameter.  Therefore,  several  different  web  

applications  could  be  written  using  different  sets  of JSP.  

Extending  the  servlet  

All  actions  known  to  the  servlet  are  defined  in  a properties  file  named  

cmbservlet.properties  (default).  You can  add,  modify,  or  delete  servlet  

actions  by  changing  this  file.  To add  a new  action,  follow  these  steps:  

1.   Implement  a class  to perform  the  action.  The  class  must  extend  

com.ibm.mm.servlets.CMBServletAction. 

2.   Add  the  name  of  the  class  and  the  action  name  to  the  

cmbservlet.properties  file.  This  has  the  following  syntax:  

actions  = list  of actions     action.<action_name>.class  = class_name  

actions  lists  the  actions  understood  by  the  servlet.  For  each  action,  a 

line  within  the  properties  file  defines  the  class  for  the  action.  For  

example,  to  add  an  action  named  replay, in  a class  named  

ReplayAction: 

actions  =...  replay  

    action.replay.class  = ReplayAction  

You can  also  replace  an  action,  or  provide  your  own  action  to  precede  

or  follow  any  predefined  action.  For  example,  to  precede  logon  with  

your  own  action,  to  perform  additional  validation:  

action.logon.class  = MyLogonAction  com.ibm.mm.servlets.CMBLogonAction  

The  naming  convention  used  for  all  predefined  actions  is 

com.ibm.mm.servlets.CMBactionAction, where  action  is the  name  of  the  

action,  with  the  first  letter  in  uppercase.

Servlet reference 

You use  a set  of  application  parameters,  request  parameters,  and  a properties  file  

to  use  the  controller  servlet  in  your  applications.  

Conventions 

The  servlet  defines  the  following  session  and  request  values,  which  can  be  used  in 

other  JSP’s  or  servlets.  These  conventions  are  followed  by  the  JSP  tag  library.  These  

conventions  are  the  same  as those  for  the  Information  Integrator  for  Content  tag  

library.  

Application parameters 

The  servlet  understands  the  following  application  parameters  (an  alternative  is to 

place  these  in  the  cmbservlet.properties  file).  

 Application  parameter  Values  Description  

servletPropertiesURL  URL  The  location  of the  cmbservlet.properties  

file  

defaultServerType  Fed,  ICM,  OD,  DL,  V4,  

IP,  DD,  ... 

Default  logon  information.  This,  along  

with  defaultServer,  defaultUserid,  and  

defaultPassword  can  be used  in 

situations  of shared  user  ID.  Rather  than  

prompting  with  a login  page,  the  default  

logon  information  will  be used  to 

perform  the  logon.  

defaultServer  Default  logon  information.  

defaultUserid  Default  logon  information.  

 

 

Chapter  14. Working  with the JSP tag library and controller servlet  555



Application  parameter  Values  Description  

defaultPassword  Default  logon  information.  

connectionpool  Boolean:  true  | false  To enable  connection  pooling  

maxfreeconnection  integer  Maximum  number  of connections  

available  in a connection  pool.  

minfreeconnection  integer  Minimum  number  of connection  

available  in a connection  pool  

timeout  integer  The  time  duration  (in milliseconds)  after  

which  a free  connection  will  be 

disconnected  and  destroyed.  

noSessionPage  URL  This  is a page  to display  for  logon,  if the  

servlet  is invoked  without  an established  

session  or connection.  This  can  be used  

to prompt  for  logon  and  chain  back  to 

the  original  action,  allowing  

bookmarked  links  into  Information  

Integrator  for  Content  to work  even  if 

the  user  must  log  on.  

timedOutPage  URL  This  is a page  to display  if the  session  

has timed  out  due  to inactivity.  

serverErrorPage  URL  This  is a page  to display  if an error  has 

occurred  in accessing  a server.  

connectFailedPage  URL  This  is a page  to display  if an error  has 

occurred  in connecting  to a server. A 

prompt  could  be displayed  to enter  the  

correct  userid/password  for the server  

and  retry  can  be performed.  

tracelevel  0, 1, or 2 To indicate  the level  of tracing,  as 

follows:  

v   0 - log  nothing  

v   1 - log  exceptions  (default)  

v   2 -log  exceptions,  alert  messages,  

WebSphere  Application  Server  

headers  and  attributes,  Information  

Integrator  for Content  ini files,  JVM  

system  properties,  Information  

Integrator  for Content  internal  trace  

information  

connectiontype  0, 1, or 2 The  location  of the  Information  

Integrator  for  Content  database  and  

content  server  runtimes:  

v   0 - local  (default)  

v   1 - remote  

v   2 -dynamic  

cmbclient  URL  Location  of cmbclient.ini  

cmbcs  URL  Location  of cmbcs.ini  

serviceconnectiontype  0, 1, or 2 Location  of services  runtimes  

v   0 - local  (default)  

v   1 - remote  

v   2 -dynamic  

cmbsvclient  URL  Location  of cmbsvclient.ini  

cmbsvcs  URL  Location  of cmbsvcs.ini  

cmbcc2mime  URL  Location  of cmbcc2mime.ini  

 

 

556 Application  Programming Guide



Application  parameter  Values  Description  

cachedir  name  of a directory  Directory  to cache  documents  during  

document  conversion  

jnitrace  name  of a file File  to  which  to write  the  JNI  trace  

information  for the  JNI  logic  used  in  

document  conversion  (for  IBM  

diagnostic  purposes)  

conversion  Boolean:  true  or false  If true, documents  are  converted  to 

formats  that  can  be displayed  in a 

browser  on middle  tier,  if possible.  If 

false, the original  document,  

unconverted,  is sent  to the browser.  

maxresults  integer  Maximum  hits  returned;  -1 (default)  

means  all hits.  

valuedelimiter  character  Defines  the  character  that  will  delimit  

values  in search  criteria.  The  default  is 

locale  dependent  and  is comma  (,) for 

US  English.  

conversion.<mimetype>  <none  | document  | 

page  > 

Conversion  options  for viewing  

documents  of a specific  mimetype.  This  

affects  the  behavior  of the  

viewDocument  servlet.  Page  means  

attempt  to paginate  the  document.  

Document  means  convert  the  document  

to a form  readable  in a browser. None  

means  perform  no conversion  -- return  

the  document  in its native  form.  

nameseparator  character  Defines  the  character  that  will  separate  

child  component  attribute  from  the 

parent  component  attribute  in qualified  

names.  The  default  is locale  dependent,  

and  is a forward  slash  (/) for  US  

English.
  

Properties File 

The  servlet  looks  for  a properties  file,  cmbservlet.properties. This  file  defines  the  

actions  that  the  servlet  can  use,  including  the  actions  defined  here.  It  also  defines  

the  names  of  the  JSP  files  that  are  used.  

You can  also  define  the  servlet  properties  on  the  Web application  server  (servlet  

engine).  The  syntax  is the  same  as  used  in  the  file.  

The  content  of  cmbservlet.properties  is stored  in  a Properties  object  by  the  control  

servlet.  It  can  be  accessed  through  the  application  attribute  ″cmbServletProperties,″ 

as  shown  in  the  following  example.  

    // check  to see  if connection  pooling  is enabled  

    String  name  = "connectionpool";  

Properties  props  = (Properties)  application.getAttribute  

    ("cmbServletProperties");  

    String  value  = props.getProperty(name);  

//  "true"  if enabled,  "false"  otherwise  

Request parameters 

The  servlet  understands  the  following  request  parameters.  Additional  parameters  

can  be  specified,  for  use  in the  reply  JSP.  

 

 

Chapter  14. Working  with the JSP tag library and controller servlet  557



General  

action=action  

The  action  to be  performed.  Additional  parameters  allowed  are  

based  on  the  action  and  are  described  below.  

 This  parameter  is optional.  If  it is not  specified,  the  reply  page  will  

be  executed  by  the  servlet,  after  performing  standard  setup,  such  

as  checking  the  connection  for  time-out  and  logon.  

reply=<URL>  

Optional.  Forwards  to  the  JSP  specified  in  this  parameter  rather  

than  the  JSP  defined  as the  reply  for  the  action  in  the  

cmbservlet.properties  file.  If the  action  parameter  is not  specified,  

and  reply  is specified,  the  reply  page  is executed  by  the  controller  

servlet  after  performing  standard  setup,  such  as  checking  the  

connection  for  timeout  and  logon.

Connection  Related  

action=logon  serverType=<>  server=<>  userid=<>  password=<>  

[connstring=<>]  [configstring=<>]  

Login  to  a server.  You must  specify  the  server  type,  server  name,  

user  ID,  and  password.  The  connect  string  and  init  string  are  

optional  and  are  different  depending  on  the  type  of  server.  

action=logoff  [endSession=<true|false>]  

Logout  of the  server.  The  session  is also  ended  by  default.

Search  related  

action=searchTemplate  template=<>  {<criterianame>.op=<>  

<criterianame>=<>}   

Perform  a search  using  the  specified  search  template  and  criteria  

values.  

action=searchEntity  entity=<>  {attribute.<attrname>.op=<>  

attribute.<attrname>=<>}  [conjunction=<and|or>]  

Perform  a search  using  an  entity.  The  attributes  values  and  

operators  can  also  be  specified.  Multiple  values  in the  attribute  

value  are  separated  with  the  value  delimiter  as  specified  in  the  

application  parameters.  The  attributes  are  combined  together  to  

form  a query  using  and  (default)  or  or,  as specified  by  the  

conjunction  parameter.  

action=searchQuery  queryString=<>  

{queryParameter.<parametername>=<>}  

Perform  a search  using  the  specified  query  string.  The  query  

syntax  depends  on  the  server  being  searched.  

 Any  number  of  additional  query  parameters  may  be  specified.  

These  are  also  server  dependent.

Item  related  

action=lock  itemId=<>  

Lock  an  item,  typically  for  exclusive  access  while  updating.  

action=unlock  itemId=<>  

Unlock  a locked  item.  

 

 

558 Application  Programming Guide



action=createItem  type=<document|folder>  entity=<>  

{attribute.<attrname>=<attrvalue>} 

Create  an  item.  If  posted,  content  may  be  provided.  

action=retrieveItem  itemId=<>  

Retrieve  an  item’s  attributes  and  content.  This  is useful  to insure  

the  latest  content  as  stored  on  the  server  is  used.  

action=updateItem  itemId=<>  [entity=<>]  

{attribute.<attrname>=<attrvalue>} 

Update  the  attributes  of an  item.  If  entity  is specified,  the  item  is 

reindexed.  Content  is also  updated  if the  servlet  is invoked  

through  a post.  

action=deleteItem  itemId=<>  

Delete  an  item.  

action=addContent  itemId=<>  

Add  a content  part  to an  item.  The  content  data  is posted.  

action=getContent  itemId=<>  contentIndex=<>  

Gets  the  content  part  and  returns  it to the  browser.  

action=updateContent  itemId=<>  contentIndex=<>  

Update  a content  part  on  an  item;  the  content  data  is posted.  If no  

content  exists,  a content  part  is added.  

action=deleteContent  itemId=<>  contentIndex=<>  

Delete  a content  part  for  the  specified  item.  

action=addNoteLog  itemId=<> 

Modifies  the  notelog  on  an  item.  The  text  of the  notelog  is posted.  

action=updateNoteLog  itemId=<>  notelogIndex=<>  

Modifies  the  note  log  of an  item;  the  text  of the  note  log  is posted.  

If  a note  log  does  not  exist,  it is added.  

action=deleteNoteLog  itemId=<>  notelogIndex=<>  

Deletes  the  note  log  text  of an  item.  The  text  of the  note  log  is  

posted.

Folder  related  

action=addItemToFolder  itemId=<>  folderId=<>  

Adds  the  specified  item  to  the  specified  folder.  

action=removeItemFromFolder  itemId=<>  folderId=<>  

Removes  the  specified  item  from  the  specified  folder.

Document  related  

action=viewDocument  itemId=<>  

Retrieves  the  document  and  views  it.  If the  document  is paginated,  

this  action  forwards  to  a JSP  which  generates  the  viewer  frameset.  

If  the  document  is not  paginated,  this  action  returns  the  actual  

content  of the  document.  

action=viewPage  itemId=<>  page=<>  scale=<>  rotation=<>  

annotations=<yes|no>  

Retrieves  a page  of the  document.

 

 

Chapter  14. Working  with the JSP tag library and controller servlet  559



Servlet toolkit function matrix 

 Table 47.  Servlet  function  matrix  

Action  CMv8  CMv7  VI/400  IP/390  OD/Wkstn  OD/390  DD  

logon  Y Y Y Y Y Y Y 

logoff  Y Y Y Y Y Y Y 

searchTemplate  N/A  N/A  N/A  N/A  Y Y N/A  

searchEntity  Y Y Y Y Y Y N/A  

searchQuery  Y Y Y Y Y Y Y 

lock  Y Y Y Y N/A  N/A  N/A  

unlock  Y Y Y Y N/A  N/A  N/A  

createItem  Y Y N/A  N/A  N/A  N/A  N/A  

retrieveItem  Y Y Y Y Y Y Y 

updateItem  Y Y Y Y N/A  N/A  N/A  

deleteItem  Y Y Y Y N/A  N/A  N/A  

addContent  Y Y N/A  N/A  N/A  N/A  N/A  

getContent  Y Y Y Y Y Y Y 

updateContent  Y Y Y Y N/A  N/A  N/A  

deleteContent  Y Y Y Y N/A  N/A  N/A  

addNoteLog  Y Y Y N/A  N/A  N/A  N/A  

updateNoteLog  Y Y Y N/A  N/A  N/A  N/A  

deleteNoteLog  Y Y Y N/A  N/A  N/A  N/A  

addItemToFolder  Y Y Y N/A  N/A  N/A  N/A  

removeItem  

FromFolder  

Y Y Y N/A  N/A  N/A  N/A  

viewDocument  Y Y Y Y Y Y Y 

viewPage  Y Y Y Y Y Y Y 

Y -- Function  is supported  

N/A  -- Function  is not  supported
Note:  

The  logon,  logoff,  getContent,  retrieveitem,viewDocument  and  viewPage  actions  are  supported  on all the  content  

servers.
  

 Table 48.  Servlet  function  matrix  Continued  

Action  DB2  JDBC  Fed  

logon  Y Y Y 

logoff  Y Y Y 

searchTemplate  N/A  N/A  Y 

searchEntity  Y Y Y 

searchQuery  Y Y Y 

lock  N/A  N/A  Y 

unlock  N/A  N/A  Y 

createItem  Y Y N/A  

retrieveItem  Y Y Y 

 

 

560 Application  Programming Guide



Table 48.  Servlet  function  matrix  Continued  (continued)  

Action  DB2  JDBC  Fed  

updateItem  Y Y Y 

deleteItem  Y Y Y 

addContent  N/A  N/A  Y 

getContent  Y Y Y 

updateContent  N/A  N/A  Y 

deleteContent  N/A  N/A  Y 

addNoteLog  N/A  N/A  Y 

updateNoteLog  N/A  N/A  Y 

deleteNoteLog  N/A  N/A  Y 

addItemToFolder  N/A  N/A  N/A  

removeIte  

FromFolder  

N/A  N/A  N/A  

viewDocument  Y Y Y 

viewPage  Y Y Y 

Y -- Function  is supported
N/A  -- Function  is not  supported
Note:  

The  logon,  logoff,  getContent,  retrieveitem,viewDocument  and  viewPage  actions  are  supported  on all the  content  

servers.

 

 

Chapter  14. Working  with the JSP tag library and controller servlet  561



562 Application  Programming Guide



Chapter  15.  Troubleshooting  

This  section  contains  the  following  troubleshooting  topics:  

v   Compiling  a C++  application  that  is  Unicode  enabled  

v   Creating  reference  attributes  

v   Updating  a resource  item  

v   Importing  objects  from  XML

Receiving an error when compiling C++ applications that are Unicode 

enabled 

Possible  cause  

The  Content  Manager  V8  C++  APIs  do  not  support  Unicode  

Action  

When  compiling  C++  applications  that  use  the  Content  Manager  (CM)  Version  8 

C++  APIs,  you  must  compile  with  the  Unicode  flag  set  to  OFF. 

To store  objects  in  a Content  Manager  Unicode  enabled  database  using  the  C++  

APIs,  you  must  meet  the  following  conditions:  

v   The  workstation  where  the  client  is running  must  have  at  least  fix  pack  8 of  the  

DB2  Version  7 Run-Time  Client  installed.  

v   You must  handle  string  conversion  in  your  application.  For  example,  right  to  left  

translation  and  double  byte  handling.  All  the  CM  C++  APIs  can  handle  ASCII  

byte  strings  using  a zero  terminated  character  string.  

v   The  workstation  must  be  running  the  local  language.  The  DB2  Run-Time  Client  

takes  the  zero  terminated  character  string  in  the  local  language  from  the  CM  

C++  API  and  stores  it in  the  Unicode  enabled  library  server  and  resource  

manager.  

v   When  working  with  XDOs,  some  APIs  have  a code  page  parameter  that  must  be  

set  to  the  CCSID  (code  page  number).

Displaying  an  item’s  attribute  descriptions  in  the  local  language  on  a client  

application:
The  CM  product  installs  using  English  as the  default  language.  However,  after  the  

installation  is  complete,  you  can  use  the  system  administration  client  to  define  

other  languages  that  already  exist  in the  system.  When  you  create  a new  attribute  

or  item  type,  you  have  the  option  to display  the  attribute  or  item  type  name  in  any  

of  the  languages  that  are  defined  in  the  system.  

Receiving an error when using reference attributes 

Symptom  

You are  using  a reference  attribute  and  receive  the  following  error  when  you  

update  or  add  an  item:  ″Unexpected  SQL  Error  (RC  7015)″ with  (Ext)  SQL  RC  of 

’-910’  

 

© Copyright  IBM Corp. 1996, 2005 563



Possible  causes  

In  general,  you  cannot  use  reference  attributes  to connect  with  an  item  of the  same  

item  type.  References  are  meant  to  reference  items  of  different  item  types.  You can  

create  a reference  to  an  item  of  the  same  item  type  by  setting  and  modifying  the  

reference  attribute  on  an  item  that  is persistent.  You must  make  persistent  the  

modifications  to  the  reference  attribute  value  only.  

An  Unexpected  SQL  Error  with  SQL  RC  of  -910  occurs  if changes  relating  to  the  

reference  attribute  are  not  made  independently  of  other  changes.  

Action  

To create  a reference  attribute,  complete  the  following  steps:  

1.   Create  DDOs  A and  B. 

2.    Set  any  other  values  in  A and  B,  including  adding  child  components.  

3.   Add  both  A and  B to the  datastore.  

4.   Check  out  or  lock  A.  

5.   Set  A’s  reference  attribute  to B. 

6.   Update  A.

Cannot add, store, retrieve, or update a resource item 

Symptom  

You encounter  errors  when  you  attempt  to  add,  store,  retrieve,  or  update  resource  

items  (items  that  are  stored  in  the  resource  manager)  or  DB2  Content  Manager  

document  model  items  with  parts.  

Possible  cause  

The  most  common  problems  with  being  unable  to  store  resource  items  is that  the  

resource  manager  you  are  attempting  access  is not  running  or  is unavailable.  

Action  

Verify  that  the  resource  manager  you  are  trying  to access  is running.  To do  so,  

modify  the  sample  URL  below  to point  to your  resource  manager  by  replacing  

smith.stl.ibm.com  with  the  host  name  of your  resource  manager.  If  your  resource  

manager  has  a different  port  number  (check  with  your  system  administrator),  

replace  the  number  80  in  the  URL  with  that  number  to  point  to  your  resource  

manager.  

Sample  URL:  http://smith.stl.ibm.com:80/icmrm/ICMResourceManager  

Paste  the  URL  into  a Web browser.  If  a Web page  appears,  the  resource  manager  

server  is  running.  You should  see  a message  similar  to  the  one  shown  below:  

IBM  Content  Manager  V8  

Your request:  null  

Return  Code:  9716  

Cannot import a DKDDO object from XML 

Symptom  

 

 

564 Application  Programming Guide



You are  receiving  an  IllegalArgumentException  with  the  message  DGL0303A:  

Invalid  parameter  

Possible  cause  

You are  using  the  wrong  date,  time,  or  timestamp  format.  

Action  

See  the  Online  Programming  Reference  and  ensure  that  the  date,  time,  and  

timestamp  values  in  your  XML  files  follow  the  DKDate,  DKTime,  and  

DKTimestamp  formats  documented  in  their  valueOf()  method.  

If  you  receive  the  error  in the  example  below,  your  time  value  is not  valid.  Ensure  

that  the  time  value  is specified  in  the  format:  hh.mm.ss.  Ensure  that  you  used  

periods  (.)  instead  of colons  (:).  

Example  Error:
java.lang.IllegalArgumentException:  DGL0303A:  Invalid  parameter  at  

com.ibm.mm.sdk.common.DKTime.valueOf(DKTime.java:98)  at  

com.ibm.mm.sdk.common.DKXMLUtil.processElemDataValue(DKXMLUtil.java:2045)  

...  at  com.ibm.mm.sdk.common.DKXMLUtil.xmlImport(DKXMLUtil.java:237)  at  

com.ibm.mm.sdk.common.DKDDO.fromXML(DKDDO.java:285)  at  

XMLImporter.main(XMLImporter.java:32)  

Receiving an error when updating, reorganizing, or using text indexes 

for text searchable components 

Symptom  

You receive  the  following  error  when  updating,  reorganizing,  or  using  text  indexes  

for  text  searchable  components:  DKUsageError:  DGL5203A:  The  password  is 

invalid  for  the  user  ID  used  to  administer  text  indexes.;  ICM7172:  The  password  

provided  is  invalid  for  this  user  ID,  or  it  is NULL.  (STATE) : [LS  RC  = 7172,  SQL  

RC  =  -1].  

Possible  cause  

The  DB2  Text Information  Extender  (DB2  UDB  Version  7)  or  DB2  Net  Search  

Extender  (DB2  UDB  Version  8) password  is either  not  set,  or  set  incorrectly.  Reset  

the  password  in  the  DB2  Content  Manager  system  administration  client.  

Action  

Complete  the  following  steps  to  set  the  password:  

1.   Log  on  to  the  system  administration  client.  

2.   Expand  the  Library  Server  Parameters  category  in  the  left  pane.  

3.   Select  Configurations  in  the  left  pane.  The  library  server  configuration  

properties  displayin  the  right  pane.  

4.   Click  the  Features  tab.  

5.   Enter  the  correct  DB2  Text Information  Extender  or  DB2  Net  Search  Extender  

user  ID  and  password.

 

 

Chapter  15. Troubleshooting  565

|

|

|

|
|
|
|
|

|

|
|
|

|

|

|

|

|
|

|

|
|



566 Application  Programming Guide



Notices  

This  information  was  developed  for  products  and  services  offered  in the  U.S.A.  

IBM  may  not  offer  the  products,  services,  or  features  discussed  in  this  document  in  

other  countries.  Consult  your  local  IBM  representative  for  information  on  the  

products  and  services  currently  available  in  your  area.  Any  reference  to an  IBM  

product,  program,  or  service  is  not  intended  to state  or  imply  that  only  that  IBM  

product,  program,  or  service  may  be  used.  Any  functionally  equivalent  product,  

program,  or  service  that  does  not  infringe  any  IBM  intellectual  property  right  may  

be  used  instead.  However,  it is the  user’s  responsibility  to  evaluate  and  verify  the  

operation  of  any  non-IBM  product,  program,  or  service.  

IBM  may  have  patents  or  pending  patent  applications  covering  subject  matter  

described  in  this  document.  The  furnishing  of  this  document  does  not  grant  you  

any  license  to  these  patents.  You can  send  license  inquiries,  in  writing,  to:  

IBM  Director  of  Licensing  

IBM  Corporation  

North  Castle  Drive  

Armonk,  NY  10504-1785  

U.S.A.

For  license  inquiries  regarding  double-byte  (DBCS)  information,  contact  the  IBM  

Intellectual  Property  Department  in  your  country  or  send  inquiries,  in  writing,  to:  

IBM  World  Trade  Asia  Corporation  

Licensing  

2-31  Roppongi  3-chome,  Minato-ku  

Tokyo  106-0032,  Japan

The  following  paragraph  does  not  apply  to  the  United  Kingdom  or  any  other  

country  where  such  provisions  are  inconsistent  with  local  law:  

INTERNATIONAL  BUSINESS  MACHINES  CORPORATION  PROVIDES  THIS  

PUBLICATION  “AS  IS”  WITHOUT  WARRANTY  OF  ANY  KIND,  EITHER  

EXPRESS  OR  IMPLIED,  INCLUDING,  BUT  NOT  LIMITED  TO,  THE  IMPLIED  

WARRANTIES  OF  NON-INFRINGEMENT,  MERCHANTABILITY  OR  FITNESS  

FOR  A PARTICULAR  PURPOSE.  Some  states  do  not  allow  disclaimer  of express  or  

implied  warranties  in certain  transactions,  therefore,  this  statement  may  not  apply  

to  you.  

This  information  could  include  technical  inaccuracies  or  typographical  errors.  

Changes  are  periodically  made  to  the  information  herein;  these  changes  will  be 

incorporated  in  new  editions  of  the  publication.  IBM  may  make  improvements  

and/or  changes  in the  product(s)  and/or  the  program(s)  described  in  this  

publication  at  any  time  without  notice.  

Any  references  in  this  information  to  non-IBM  Web sites  are  provided  for  

convenience  only  and  do  not  in  any  manner  serve  as  an  endorsement  of  those  Web 

sites.  The  materials  at those  Web sites  are  not  part  of the  materials  for  this  IBM  

product  and  use  of those  Web sites  is  at your  own  risk.  

IBM  may  use  or  distribute  any  of the  information  you  supply  in  any  way  it 

believes  appropriate  without  incurring  any  obligation  to  you.  

 

© Copyright  IBM Corp. 1996, 2005 567



Licensees  of  this  program  who  wish  to have  information  about  it for  the  purpose  

of  enabling:  (i)  the  exchange  of information  between  independently  created  

programs  and  other  programs  (including  this  one)  and  (ii)  the  mutual  use  of the  

information  which  has  been  exchanged,  should  contact:  

IBM  Corporation  

J46A/G4  

555  Bailey  Avenue  

San  Jose,  CA  95141-1003  

U.S.A.

Such  information  may  be  available,  subject  to  appropriate  terms  and  conditions,  

including  in  some  cases,  payment  of a fee.  

The  licensed  program  described  in  this  document  and  all  licensed  material  

available  for  it are  provided  by  IBM  under  terms  of the  IBM  Customer  Agreement,  

IBM  International  Program  License  Agreement  or  any  equivalent  agreement  

between  us.  

Any  performance  data  contained  herein  was  determined  in  a controlled  

environment.  Therefore,  the  results  obtained  in  other  operating  environments  may  

vary  significantly.  Some  measurements  may  have  been  made  on  development-level  

systems  and  there  is  no  guarantee  that  these  measurements  will  be  the  same  on  

generally  available  systems.  Furthermore,  some  measurements  may  have  been  

estimated  through  extrapolation.  Actual  results  may  vary.  Users  of  this  document  

should  verify  the  applicable  data  for  their  specific  environment.  

Information  concerning  non-IBM  products  was  obtained  from  the  suppliers  of  

those  products,  their  published  announcements  or  other  publicly  available  sources.  

IBM  has  not  tested  those  products  and  cannot  confirm  the  accuracy  of 

performance,  compatibility  or  any  other  claims  related  to non-IBM  products.  

Questions  on  the  capabilities  of  non-IBM  products  should  be  addressed  to  the  

suppliers  of those  products.  

All  statements  regarding  IBM’s  future  direction  or  intent  are  subject  to change  or  

withdrawal  without  notice,  and  represent  goals  and  objectives  only.  

This  information  contains  examples  of data  and  reports  used  in  daily  business  

operations.  To illustrate  them  as  completely  as  possible,  the  examples  include  the  

names  of  individuals,  companies,  brands,  and  products.  All  of  these  names  are  

fictitious  and  any  similarity  to  the  names  and  addresses  used  by  an  actual  business  

enterprise  is  entirely  coincidental.  

COPYRIGHT  LICENSE:  

This  information  contains  sample  application  programs  in  source  language,  which  

illustrate  programming  techniques  on  various  operating  platforms.  You may  copy,  

modify,  and  distribute  these  sample  programs  in  any  form  without  payment  to 

IBM,  for  the  purposes  of developing,  using,  marketing  or  distributing  application  

programs  conforming  to  the  application  programming  interface  for  the  operating  

platform  for  which  the  sample  programs  are  written.  These  examples  have  not  

been  thoroughly  tested  under  all  conditions.  IBM,  therefore,  cannot  guarantee  or  

imply  reliability,  serviceability,  or  function  of  these  programs.  

 

 

568 Application  Programming Guide



Trademarks  

The  following  terms  are  trademarks  of the  International  Business  Machines  

Corporation  in the  United  States,  other  countries,  or  both:  

 IBM  Domino  OS/390  

400  Domino.Doc  OS/400  

Advanced  Function  Presentation  HotMedia  PAL 

AFP  ImagePlus  QBIC  

AIX  IMS  RACF  

AIX  5L  iSeries  Redbooks  

AS/400  Language  Environment  RS/6000  

CICS  Lotus  SecureWay  

Cloudscape  Micro  Channel  SmartSuite  

DataJoiner  Mixed  Object  Document  Content  

Architecture  

Tivoli  

DB2  MO:DCA  VideoCharger  

DB2  Connect  MQSeries  VisualAge  

DB2  Extenders  MVS  VisualInfo  

DB2  Universal  Database  MVS/ESA  WebSphere  

developerWorks  NetView  WordPro  

DFSMSdfp  Notes  z/OS  

DFSORT  OS/2  

  

Intel  and  Pentium  are  trademarks  of  Intel  Corporation  in  the  United  States,  other  

countries,  or  both.  

Microsoft,  Windows,  and  Windows  NT  are  trademarks  of  Microsoft  Corporation  in  

the  United  States,  other  countries,  or  both.  

Java  and  all  Java-based  trademarks  are  trademarks  of Sun  Microsystems,  Inc.  in the  

United  States,  other  countries,  or  both.  

Linux  is  a trademark  of  Linus  Torvalds  in  the  United  States,  other  countries,  or  

both.  

UNIX  is  a registered  trademark  of  The  Open  Group  in  the  United  States  and  other  

countries.  

Other  company,  product,  and  service  names  may  be  trademarks  or  service  marks  

of  others.  

 

 

Notices  569



570 Application  Programming Guide



Glossary  

This  glossary  defines  terms  and  abbreviations  

specific  to  this  system.  Terms  shown  in  italics  are  

defined  elsewhere  in  this  glossary.  

A  

abstract  class.   An  object-oriented  programming  class  

that  represents  a concept;  classes  derived  from  it 

represent  implementations  of the  concept.  You cannot  

construct  an object  of an abstract  class;  that  is, it cannot  

be instantiated.  

access  control.   The  process  of ensuring  that  certain  

functions  and  stored  objects  can  be accessed  only  by 

authorized  users  in authorized  ways.  

access  control  list.   A list  consisting  of one  or more  

user  IDs  or user  groups  and  their  associated  privileges.  

You use  access  control  lists  to control  user  access  to 

items  and  objects  in the  DB2  Content  Manager  system.  

You use  access  control  lists  to control  user  access  to 

search  templates  in the  DB2  Information  Integrator  for 

Content  system.  

action.   (1)  In DB2  Content  Manager  document  routing,  

specifies  how  a user  can  manipulate  the  work  packages  

at  a work  node. DB2  Content  Manager  provides  some  

actions  and  you  can  create  your  own.  Actions  must  be 

included  in an action  list  before  you  can  apply  them  to 

a work  node.  (2) In DB2  Information  Integrator  for 

Content,  specifies  how  a user  can  manipulate  the work  

items  at a node  in  the  workflow. DB2  Information  

Integrator  for  Content  provides  some  actions  and  you  

can  create  your  own.  Actions  must  be  included  in an 

action  list  before  you  can  apply  them  to a node. 

action  list.   (1) In DB2  Content  Manager  document  

routing,  a set  of actions  that  a user  can  perform  on 

work  packages  at a work  node.  The  actions  that  you  

specify  in the  action  list  display  as menu  choices  for 

the  work  packages  in the  client  users’  worklists. (2) In 

DB2  Information  Integrator  for Content,  a set of actions  

that  a user  can  perform  on  work  items  in a workflow. 

The  actions  that  you  specify  in  the  action  list  display  as 

menu  choices  for the  work  items  in the  client  users’  

worklists. 

ad  hoc  process.   In DB2  Content  Manager  document  

routing,  a one  step  process  that  you  define,  usually  to 

“link”  two  other  processes.  

ADSM.   See  Tivoli Storage  Manager.  

API.   See  application  programming  interface.  

application  programming  interface  (API).   A software  

interface  that  enables  applications  to communicate  with  

each  other.  An  API  is the  set of programming  language  

constructs  or statements  that  can  be coded  in an 

application  program  to obtain  the  specific  functions  

and  services  provided  by the  underlying  licensed  

program.  

archive.   Persistent  storage  used  for long-term  

information  retention,  typically  very  inexpensive  for 

each  stored  unit  and  slow  to access,  and  often  in  a 

different  geographic  location  to protect  against  

equipment  failures  and  natural  disasters.  

attribute.   A unit  of data  that  describes  a certain  

characteristic  or property  (for  example,  name,  address,  

age,  and  so forth)  of an item,  and  which  can  be used  to 

locate  that  item.  An  attribute  has  a type,  which  

indicates  the  range  of information  stored  by that  

attribute,  and  a value,  which  is within  that  range.  For 

example,  information  about  a file  in a multimedia  file  

system,  such  as title,  running  time,  or encoding  type  

(MPEG1,  H.263,  and  so forth).  For  DB2  Information  

Integrator  for  Content,  see  also  federated  attribute  and  

native  attribute.  

attribute  group.   Convenience  grouping  of one  or more  

attributes.  For  example,  Address  might  include  the 

attributes  Street,  City,  State,  and  Zip.  

Audio/Video  Interleaved  (AVI).   A RIFF  (Resource  

Interchange  File  Format) file  specification  that  permits  

audio  and  video  data  to be interleaved  in a file.  The  

separate  tracks  can  be accessed  in alternate  chunks  for 

playback  or recording  while  maintaining  sequential  

access  on the  file device.  

AVI.   See  Audio/Video  Interleaved.  

B 

base  attributes.   A set of indexes  that  is assigned  to 

each  object. All  DB2  Content  Manager  objects  have  base  

attributes. 

binary  large  object  (BLOB).   A sequence  of bytes  with  

a size  ranging  from  0 bytes  to 2 gigabytes.  This  string  

does  not  have  an associated  code  page  and  character  

set.  Image,  audio,  and  video  objects  are  stored  in 

BLOBs.  See  also  character  large  object  (CLOB).  

BLOB.   See  binary  large  object.  

business  application.   In DB2  Content  Manager  

document  routing,  a work  node  that  directs  work  to an 

external  business  application  that  you  develop.  The  

business  application  work  node  has  an identified  DLL  

 

© Copyright  IBM Corp. 1996, 2005 571



or shared  library  that  runs  on  the  server  and  can  

launch  an external  business  application,  such  as a CICS  

or IMS™ program.  

C 

cache.   A special-purpose  buffer,  smaller  and  faster  

than  main  storage,  used  to  hold  a copy  of data  that  can  

be accessed  frequently.  Use  of a cache  reduces  access  

time,  but  might  increase  memory  requirements.  See  

also  resource  manager  cache  and  LAN  cache.  

cardinality.   The  number  of rows  in a database  table.  

category.   See  item  type.  

CGI.   See  Common  Gateway  Interface.  

CGI  script.   A computer  program  that  runs  on  a Web 

server  and  uses  the  Common  Gateway  Interface  (CGI)  to 

perform  tasks  that  are  not  usually  done  by  a Web 

server  (for  example,  database  access  and  form  

processing).  A CGI  script  is a CGI  program  that  is 

written  in a scripting  language  such  as Perl.  

character  large  object  (CLOB).   A sequence  of 

characters  (single-byte,  multibyte,  or both)  with  a size  

ranging  from  0 bytes  to  2 gigabytes  less  1 byte.  See  also  

binary  large  object  (BLOB). 

child  component.   Optional  second  or  lower  level  of a 

hierarchical  item  type.  Each  child  component  is directly  

associated  with  the  level  above  it. 

CIF.   See  common  interchange  file.  

CIU.   See  common  interchange  unit.  

class.   In object-oriented  design  or programming,  a 

model  or template  that  can  be instantiated  to create  

objects  with  a common  definition  and  therefore,  

common  properties,  operations,  and  behavior.  An object  

is an instance  of a class.  

client  application.   An application  written  with  the  

DB2  Content  Manager  APIs  to customize  a user  

interface.  An  application  written  with  the  

object-oriented  or  Internet  APIs  to access  content  servers  

from  DB2  Information  Integrator  for Content.  

Client  Application  for Windows.   A complete  object  

management  system  provided  with  DB2  Content  

Manager  and  written  with  DB2  Content  Manager  APIs.  

It supports  document  and  folder  creation,  storage,  and  

presentation,  processing,  and  access  control.  You can  

customize  it with  user  exit  routines  and  partially  

invoke  it with  APIs.  

client/server.   In communications,  the  model  of 

interaction  in distributed  data  processing  in which  a 

program  at one  site  sends  a request  to a program  at 

another  site  and  awaits  a response.  The  requesting  

program  is called  a client;  the  answering  program  is 

called  a server.  

CLOB.   See  character  large  object. 

collection.   A group  of objects  with  a similar  set of 

management  rules.  

collection  event  list.   In DB2  Information  Integrator  for  

Content  advanced  workflow,  the  criteria  that  a 

collection  point  uses  to determine  which  route  the 

federated  folder  must  follow. Corresponds  to a 

specified  amount  of time  or a list of events,  which  are  

event  nodes. Each  collection  point  must  have  at least  two  

collection  event  lists:  one  with  a timeout  period  (the  

timeout  route)  and  the  other  with  a list of events  that  

must  occur  for a federated  folder  to proceed  

(event-driven  route).  

collection  point.   (1) In DB2  Content  Manager  

document  routing,  a special  work  node  at which  a folder  

waits  for arrival  of other  document  or folders,  but  

which  does  not  correspond  to a business  task.  (2)  In 

DB2  Information  Integrator  for  Content  advanced  

workflow,  a special  node  at which  a federated  folder  waits  

for arrival  of other  objects,  such  as documents  or 

folders,  or for specified  conditions  to be  met.  A 

collection  point  consists  of one  collection  node,  one  to 

20 event  nodes, and  two  or more  connectors  called  

collection  event  lists.  

combined  search.   A query  that  combines  one or more  

of the  following  types  of searches:  parametric,  text,  or 

image.  

Common  Gateway  Interface  (CGI).   A standard  for the 

exchange  of information  between  a Web server  and  

programs  that  are  external  to it. The  external  programs  

can  be written  in any  programming  language  that  is 

supported  by  the operating  system  on  which  the  Web 

server  is running.  See  also CGI  script.  

common  interchange  file (CIF).   A file that  contains  

one  ImagePlus  Interchange  Architecture  (IPIA)  data  

stream.  

common  interchange  unit  (CIU).   The  independent  

unit  of transfer  for  a common  interchange  file  (CIF).  It 

is the  part  of the  CIF  that  identifies  the relationship  to 

the  receiving  database.  A CIF  can  contain  multiple  

CIUs.  

component  .  Generic  term  for  a root  component  or a 

child  component.  

connection  manager.   A DB2  Content  Manager  

component  that  helps  maintain  connections  to the 

library  server,  rather  than  starting  a new  connection  for 

each  query.  The  connection  manager  has  an  application  

programming  interface.  

 

 

572 Application  Programming Guide



connector  class.   Object-oriented  programming  class  

that  provides  standard  access  to APIs  that  are  native  to 

specific  content  servers.  

constructor.   In programming  languages,  a method  that  

has  the  same  name  as  a class  and  is used  to create  and  

initialize  objects  of that  class.  

container.   An  element  of the  user  interface  that  holds  

objects.  In the  folder  manager,  an object  that  can  contain  

other  folders  or documents.  

content  class.   See  MIME  type.  

content  server.   A repository  for  multimedia,  business  

forms,  documents,  and  related  data,  and  the  related  

metadata  required  for users  to work  with  that  content.  

DB2  Content  Manager  and  ImagePlus  for  OS/390  are  

examples  of content  servers.  

cursor.   A named  control  structure  used  by an 

application  program  to point  to a specific  row  within  

some  ordered  set of rows.  The  cursor  is used  to retrieve  

rows  from  the  set.  

D  

data  format.   See  MIME  type.  

datastore.   (1)  Generic  term  for  a place  (such  as a 

database  system,  file,  or  directory)  where  data  is stored.  

(2)  In an application  program,  a virtual  representation  

of a content  server.  

DCA.   See  document  content  architecture.  

DDO.   See  dynamic  data  object.  

destager.   A function  of the  DB2  Content  Manager  

resource  manager  that  moves  objects  from  the  staging  area  

to  the  first  step  in the  object’s  migration  policy. 

device  manager.   In a DB2  Content  Manager  system,  

the  interface  between  the  resource  manager  and  one  or 

more  physical  devices.  

document.   An item  that  can  be  stored,  retrieved,  and  

exchanged  among  DB2  Content  Manager  systems  and  

users  as a separate  unit.  An  item  with  the  document  

semantic  type  is expected  to  contain  information  that  

forms  a document,  but  does  not  necessarily  imply  that  

it is an implementation  of the  DB2  Content  Manager  

document  model.  

 An  item  created  from  a document  classified  item  type  

(a specific  implementation  of the  DB2  Content  Manager  

document  model),  must  contain  document  parts.  You 

can  use document  classified  item  types  to create  items  

with  either  the  document  or  folder  semantic  type.  

 Document  parts  can  include  varied  types  of content,  

including  for example,  text,  images,  and  spreadsheets.  

document  content  architecture  (DCA).   An architecture  

that  guarantees  information  integrity  for a document  

being  interchanged  in an office  system  network.  DCA  

provides  the  rule  for specifying  form  and  meaning  of a 

document.  It defines  revisable  form  text  (changeable)  

and  final  form  text  (unchangeable).  

document  routing  process.   In DB2  Content  Manager  a 

sequence  of work  steps,  and  the  rules  governing  those  

steps,  through  which  a document  or folder  travels  while  

it is being  processed.  

document  type  definition  (DTD).   The  rules  that  

specify  the structure  for  a particular  class  of XML  

documents.  The  DTD  defines  the  structure  with  

elements,  attributes,  and  notations,  and  it establishes  

constraints  for  how  each  element,  attribute,  and  

notation  can  be used  within  the  particular  class  of 

documents.  A DTD  is analogous  to a database  schema  

in that  the  DTD  completely  describes  the structure  for a 

particular  markup  language.  

DTD.   See  document  type  definition.  

dynamic  data  object  (DDO).   In an application  

program,  a generic  representation  of a stored  object  that  

is used  to move  that  object  in to, and  out  of, storage.  

E 

element.   An  object  that  the  list  manager  allocates  for an 

application.  

event  node.   In DB2  Information  Integrator  for Content  

advanced  workflow,  the  set of criteria  that  specifies  the 

objects  or conditions  that  are required  by a collection  

node.  Each  collection  point  can  include  up to 20 event  

nodes.  

extended  data  object  (XDO).   In an application  

program,  a generic  representation  of a stored  complex  

multimedia  object  that  is used  to move  that  object  in to, 

and  out  of, storage.  XDOs  are  most  often  contained  

within  DDOs.  

Extensible  Markup  Language  (XML).   A standard  

metalanguage  for defining  markup  languages  that  was  

derived  from,  and  is a subset  of, SGML.  XML  omits  the 

more  complex  and  less-used  parts  of SGML  and  makes  

it much  easier  to write  applications  to handle  

document  types,  author  and  manage  structured  

information,  and  transmit  and  share  structured  

information  across  diverse  computing  systems.  The use 

of XML  does  not  require  the  robust  applications  and  

processing  that  is necessary  for  SGML.  XML  is being  

developed  under  the auspices  of the  World Wide Web 

Consortium  (W3C).  

 

 

Glossary 573



F 

feature.   The  visual  content  information  that  is stored  

in the  image  search  server.  Also,  the  visual  traits  that  

image  search  applications  use  to determine  matches.  

The  four  QBIC  features  are  average  color,  histogram  

color,  positional  color,  and  texture.  

federated  attribute.   A DB2  Information  Integrator  for  

Content  metadata  category  that  is mapped  to native  

attributes  in  one  or more  content  servers.  For example,  

the  federated  attribute,  policy  number, can  be mapped  

to an attribute,  policy  num,  in DB2  Content  Manager  

and  to an attribute,  policy  ID,  in ImagePlus  for  

OS/390.  

federated  collection.   A grouping  of objects  that  results  

from  a federated  search.  

federated  datastore.   Virtual  representation  of any  

number  of specific  content  servers,  such  as DB2  Content  

Manager.  

federated  entity.  A DB2  Information  Integrator  for 

Content  metadata  object  that  is comprised  of federated  

attributes  and  optionally  associated  with  one  or  more  

federated  text  indexes.  

federated  folder.   In DB2  Information  Integrator  for 

Content,  a special-purpose  folder  that  stores  native  

entities  from  one  or  more  content  servers.  

federated  search.   A query  issued  from  DB2  

Information  Integrator  for  Content  that  simultaneously  

searches  for data  in one  or more  content  servers,  which  

can  be heterogeneous.  

federated  text  index.   A DB2  Information  Integrator  for 

Content  metadata  object  that  is mapped  to one  or more  

native  text  indexes  in one  or more  content  servers.  

file  system.   In UNIX  systems,  the  method  of 

partitioning  a hard  drive  for storage.  

folder.   An  item  of any  item  type,  regardless  of 

classification,  with  the  folder  semantic  type.  Any  item  

with  the  folder  semantic  type  contains  specific  folder  

functionality  that  is provided  by DB2  Content  Manager,  

in addition  to all non-resource  item  capabilities  and  any  

additional  functionality  available  from  an item  type  

classification,  such  as document  or resource  item.  

Folders  can  contain  any  number  of items  of any  type,  

including  documents  and  subfolders.  A folder  is 

indexed  by attributes.  

folder  manager.   The  DB2  Content  Manager  model  for 

managing  data  as online  documents  and  folders.  You 

can  use  the  folder  manager  APIs  as the  primary  

interface  between  your  applications  and  the  DB2  

Content  Manager  content  servers.  

H 

handle.   A character  string  that  represents  an object,  

and  is used  to retrieve  the  object.  

history  log.   A file  that  keeps  a record  of activities  for  

a workflow.  

HTML.   See  Hypertext  Markup  Language.  

Hypertext  Markup  Language  (HTML).   A markup  

language  that  conforms  to the  SGML  standard  and  was  

designed  primarily  to support  the  online  display  of 

textual  and  graphical  information  that  includes  

hypertext  links.  

I 

Image  Object  Content  Architecture  (IOCA).   A 

collection  of constructs  used  to interchange  and  present  

images.  

index.   To add  or edit  the attribute  values  that  identify  

a specific  item  or object  so that  it can  be retrieved  later.  

index  class.   See  item  type.  

index  class  subset.   In earlier  DB2  Content  Manager,  a 

view  of an index  class  that  an application  uses  to store,  

retrieve,  and  display  folders  and  objects.  

index  class  view.  In earlier  DB2  Content  Manager,  the 

term  used  in the  APIs  for index  class  subset.  

information  mining.   The  automated  process  of 

extracting  key  information  from  text  (summarization),  

finding  predominant  themes  in a collection  of 

documents  (categorization),  and  searching  for  relevant  

documents  using  powerful  and  flexible  queries.  

inline.   In DB2  Content  Manager,  an object  that  is 

online  and  in a drive,  but has  no active  mounts.  

Contrast  with  mounted. 

interchange.   The  capability  to import  or export  an 

image  with  its index  from  one  ImagePlus  for OS/390  

system  to another  ImagePlus  system  using  a common  

interchange  file  or common  interchange  unit.  

IOCA.   See  Image  Object  Content  Architecture.  

item.   In DB2  Content  Manager,  generic  term  for an 

instance  of an item  type.  For  example,  an  item  might  be 

a folder,  document,  video,  or image.  Generic  term  for  the 

smallest  unit  of information  that  DB2  Information  

Integrator  for Content  administers.  Each  item  has  an 

identifier.  For  example,  an item  might  be a folder  or a 

document.  

item  type.   A template  for defining  and  later  locating  

like  items,  consisting  of a root  component,  zero  or more  

child  components,  and  a classification.  

 

 

574 Application  Programming Guide



item  type  classification.   A categorization  within  an 

item  type  that  further  identifies  the  items  of that  item  

type.  All items  of the  same  item  type  have  the same  

item  type  classification.  

 DB2  Content  Manager  supplies  the  following  item  type  

classifications:  folder,  document,  object,  video,  image,  and  

text;  users  can  also  define  their  own  item  type  

classifications.  

iterator.   A class  or construct  that  you  use  to step  

through  a collection  of objects  one  at a time.  

J 

JavaBeans.   A platform-independent,  software  

component  technology  for building  reusable  Java  

components  called  “beans.”  After  they  are  built,  these  

beans  can  be made  available  for  use  by  other  software  

engineers  or can  be  used  in Java  applications.  Using  

JavaBeans,  software  engineers  can  manipulate  and  

assemble  beans  in a graphical  drag-and-drop  

development  environment.  

Joint  Photographic  Experts  Group  (JPEG).   (1) A 

group  that  worked  to establish  the  standard  for the  

compression  of digitized  continuous-tone  images.  (2) 

The  standard  for  still  pictures  developed  by  this  group.  

JPEG.   See  Joint  Photographic  Experts  Group.  

K  

key  field.   See  attribute.  

L 

LAN.   See  local  area  network.  

LAN  cache.   An area  of temporary  storage  on a local  

resource  manager  that  contains  a copy  of objects  stored  

on a remote  resource  manager.  

library  client.   The  component  of a DB2  Content  

Manager  system  that  provides  a low-level  

programming  interface  for  the  library  system.  The  

library  client  includes  APIs  that  are  part  of the software  

developer’s  kit.  

library  object.   See  item.  

library  server.   The  component  of a DB2  Content  

Manager  system  that  stores,  manages,  and  handles  

queries  on items. 

link.   A directional  relationship  between  two  items:  the  

source  and  the  target.  You can  use  a set of links  to 

model  one-to-many  associations.  Contrast  with  reference.  

local  area  network  (LAN).   A network  in which  a set 

of devices  are  connected  to  one  another  for 

communication  and  that  can be connected  to a larger  

network.  

M  

machine-generated  data  structure  (MGDS).   (1) An  

IBM  structured  data  format  protocol  for passing  

character  data  among  the various  ImagePlus  for  

OS/390  programs.  (2)  Data  extracted  from  an image  

and  put  into  general  data  stream  (GDS)  format.  

management  class.   The  term  used  in the  APIs  for 

migration  policy. 

media  archiver.   A physical  device  that  is used  for  

storing  audio  and  video  stream  data.  The  VideoCharger  

is a type  of media  archiver.  

media  object  class.   Classification  that  describes  the 

data  that  is contained  in an object  and  how  you  can  act  

on that  data.  DB2  Content  Manager  provides  four  

predefined  media  object  classes:  DKLobICM,  

DKStreamICM,  DKTextICM,  and  DKVideoStreamICM.  

Similar  to MIME  type.  

media  server.   An AIX-based  component  of the  DB2  

Content  Manager  system  that  is used  for  storing  and  

accessing  video  files.  

member  function.   C++  operators  and  function  that  

are  declared  as members  of a class.  A member  function  

has  access  to the  private  and  protected  data  members  

and  member  functions  of an object  of its class.  

method.   (1) In  Java  design  or programming,  the 

software  that  implements  the  behavior  specified  by an 

operation.  (2) Synonym  for member  function  in C++.  

MGDS.   See  machine-generated  data  structure.  

migration.   (1) The  process  of moving  data  and  source  

from  one  computer  system  to another  computer  system  

without  converting  the  data,  such  as when  moving  to a 

new  operating  environment.  (2) Installation  of a new  

version  or release  of a program  to replace  an earlier  

version  or release.  

migration  policy.  A user-defined  schedule  for  moving  

objects  from  one  storage  class  to the  next.  It describes  the 

retention  and  class  transition  characteristics  for a group  

of objects  in a storage  hierarchy.  

migrator.   A function  of the  resource  manager  that  

checks  migration  policies  and  moves  objects  to the  next  

storage  class  when  they  are  scheduled  to move.  

MIME  type.   An Internet  standard  for identifying  the  

type  of object  being  transferred  across  the  Internet.  

MIME  types  include  several  variants  of audio,  image,  

and  video.  Each  object  has  a MIME  type.  

 

 

Glossary 575



Mixed  Object  Document  Content  Architecture™ 

(MO:DCA).   An  IBM  architecture  developed  to allow  

the  interchange  of object  data  among  applications  

within  the  interchange  environment  and  among  

environments.  

Mixed  Object  Document  Content  

Architecture–Presentation  (MO:DCA–P).   A subset  

architecture  of MO:DCA  that  is used  as an  envelope  to 

contain  documents  that  are  sent  to the  ImagePlus  for  

OS/390  workstation  for  displaying  or printing.  

MO:DCA.   Mixed  Object  Document  Content  Architecture  

MO:DCA–P.   Mixed  Object  Document  Content  

Architecture—Presentation  

mount.   To place  a data  medium  in a position  to 

operate.  

mounted.   In DB2  Content  Manager,  an object  that  is 

online  and  in a drive,  with  active  mounts. Contrast  with  

inline. 

multimedia.   Combining  different  media  elements  

(text,  graphics,  audio,  still  image,  video,  animation)  for 

display  and  control  from  a computer.  

multimedia  file  system.   A file system  that  is optimized  

for the  storage  and  delivery  of video  and  audio.  

Multipurpose  Internet  Mail  Extensions  (MIME)  .  An 

Internet  standard  for  identifying  the  type  of object  

being  transferred  across  the  Internet.  See  also  MIME  

type.  

N 

native  attribute.   A characteristic  of an object  that  is 

managed  on  a specific  content  server  and  that  is specific  

to that  content  server.  For  example,  the  key  field  policy  

num  might  be a native  attribute  in a DB2  Content  

Manager  content  server,  whereas  the  field  policy  ID 

might  be a native  attribute  in a DB2  Content  Manager  

OnDemand  content  server.  

native  entity.  An object  that  is managed  on  a specific  

content  server  and  that  is comprised  of native  attributes.  

For  example,  DB2  Content  Manager  index  classes  are  

native  entities  comprised  of DB2  Content  Manager  key  

fields.  

native  text  index.   An  index  of the  text  items  that  are  

managed  on  a specific  content  server.  For  example,  a 

single  text  search  index  on  a DB2  Content  Manager  

content  server.  

network-attached  storage.   A technology  in which  an 

integrated  storage  system  is attached  to a messaging  

network  that  uses  common  communications  protocols,  

such  as TCP/IP. 

network  table  file.   A text  file  that  contains  the  

system-specific  configuration  information  for each  node  

in a DB2  Content  Manager  system.  Each  node  in the 

system  must  have  a network  table  file  that  identifies  

the  node  and  lists  the  nodes  that  it needs  to connect  to. 

 The  name  of a network  table  is FRNOLINT.TBL.  

node.   In DB2  Information  Integrator  for Content  

advanced  workflow,  a generic  term  for  any  discrete  

point  in a workflow  process.  

O 

object.   Any  digital  content  that  a user  can  store,  

retrieve  and  manipulate  as  a single  unit,  for  example,  

JPEG  images,  MP3  audio,  AVI video,  and  a text  block  

from  a book.  

Object  Linking  and  Embedding  (OLE).   A Microsoft  

specification  for  both  linking  and  embedding  

applications  so that  they  can  be activated  from  within  

other  applications.  

object  server.   See  resource  manager. 

object  server  cache  .  See  resource  manager  cache.  

OLE.   See  Object  Linking  and  Embedding.  

overlay.  A collection  of predefined  data  such  as lines,  

shading,  text,  boxes,  or logos,  that  can  be merged  with  

variable  data  on a page  during  printing.  

P 

package.   A collection  of related  classes  and  interfaces  

that  provides  access  protection  and  namespace  

management.  

parametric  search.   A query  for objects  that  is based  on  

the  properties  of the  objects.  

part.   See  object.  

patron.   The  term  used  in  the DB2  Content  Manager  

APIs  for user.  

persistent  identifier  (PID).   An identifier  that  uniquely  

identifies  an object,  regardless  of where  it is stored.  The  

PID  consists  of both  an item  ID and  a location.  

PID.   See  persistent  identifier.  

privilege.   The  right  to access  a specific  database  object  

in a specific  way.  Privileges  include  rights  such  as 

creating,  deleting,  and  selecting  objects  stored  in the  

system.  Privileges  are  assigned  by the  administrator.  

privilege  set.  A collection  of privileges  for working  

with  system  components  and  functions.  The  

administrator  assigns  privilege  sets  to  users  (user  IDs)  

and  user  groups. 

 

 

576 Application  Programming Guide



process.   In DB2  Content  Manager  document  routing,  a 

series  of steps  through  which  work  is routed.  A process  

contains  at least  one  start  node,  one  work  node, and  one 

stop  node.  

property.   A characteristic  of an object  that  describes  the  

object.  A property  can  be changed  or modified.  Type 

style  is an example  of a property.  

purger.   A function  of the  resource  manager  that  

removes  objects  from  the  system.  

Q  

QBIC.   See  Query  by Image  Content.  

Query  by  Image  Content  (QBIC).   A query  technology  

that  enables  searches  based  on  visual  content,  called  

features,  rather  than  plain  text.  Using  QBIC,  you  can  

search  for  objects  based  on  their  visual  characteristics,  

such  as color  and  texture.  

query  string.   A character  string  that  specifies  the  

properties  and  property  values  for  a query.  You can  

create  the  query  string  in an application  and  pass  it to 

the  query.  

R  

rank.   An integer  value  that  signifies  the  relevance  of a 

given  part  to the  results  of a query.  A higher  rank  

signifies  a closer  match.  

README  file.   A file  that  should  be  viewed  before  the  

program  associated  with  it is installed  or  run.  A 

README  file  typically  contains  last-minute  product  

information,  installation  information,  or tips  for using  

the  product.  

reference.   Single  direction,  one-to-one  association  

between  a root  or child  component  and  another  root  

component.  Contrast  with  link.  

release.   To remove  suspend  criteria  from  an  item.  A 

suspended  item  is released  when  the  criteria  have  been  

met,  or when  a user  with  proper  authority  overrides  

the  criteria  and  manually  releases  it. 

Remote  Method  Invocation  (RMI).   A set of APIs  that  

enables  distributed  programming.  An  object  in one  Java  

Virtual  Machine  (JVM)  can  invoke  methods  on objects  

in  other  JVMs.  

render.   To take  data  that  is not  typically  

image-oriented  and  depict  or  display  it as an image.  In 

DB2  Content  Manager,  word-processing  documents  can  

be rendered  as images  for display  purposes.  

Resource  Interchange  File  Format  (RIFF)  .  Used  for 

storing  sound  or graphics  for  playback  on  different  

types  of computer  equipment.  

resource  manager.   The  component  of a DB2  Content  

Manager  system  that  manages  objects.  These  objects  are  

referred  to by items  stored  on the library  server.  

resource  manager  cache.   The  working  storage  area  for 

the  resource  manager. Also  called  the staging  area.  

RIFF.   See  Resource  Interchange  File  Format.  

RMI  server.   A server  that  implements  the  Java  Remote  

Method  Invocation  (RMI)  distributed  object  model.  

root  component.   The  first  or only  level  of a 

hierarchical  item  type,  consisting  of related  system-  and  

user-defined  attributes.  

S 

search  criteria.   In DB2  Content  Manager,  attribute  

values  that  are  used  to retrieve  a stored  item.  In DB2  

Information  Integrator  for Content,  specific  fields  that  

an administrator  defines  for  a search  template  that  limit  

or further  define  choices  available  to the  users. 

search  template.   A form,  consisting  of search  criteria  

designed  by an  administrator,  for  a specific  type  of 

federated  search.  The  administrator  also  identifies  the 

users  and  user  groups  who  can  access  each  search  

template.  

semantic  type.   The  usage  or rules  for an item.  Base,  

annotation,  and  note  are  semantic  types  supplied  by  

DB2  Content  Manager;  users  can  also  define  their  own  

semantic  types.  

server  definition.   The  characteristics  of a specific  

content  server  that  uniquely  identify  it to DB2  

Information  Integrator  for Content.  

server  inventory.   The  comprehensive  list  of native  

entities  and  native  attributes  from  specified  content  

servers.  

server  type  definition.   The  list of characteristics,  as 

identified  by the  administrator,  required  to uniquely  

identify  a custom  server  of a certain  type  to DB2  

Information  Integrator  for Content.  

SMS.   See  system-managed  storage.  

staging.   The  process  of moving  a stored  object  from  an 

offline  or low-priority  device  back  to an online  or 

higher  priority  device,  usually  on demand  of the 

system  or on request  of a user.  When  a user  requests  an 

object  stored  in permanent  storage,  a working  copy  is 

written  to the  staging  area. 

staging  area.   The  working  storage  area  for the resource  

manager. Also  referred  to as resource  manager  cache.  

 

 

Glossary 577



stand-alone  system.   A preconfigured  DB2  Content  

Manager  system  that  installs  all  of the  components  of a 

DB2  Content  Manager  system  on  a single  personal  

computer.  

storage  class.   Identifies  the  type  of media  that  an 

object  is stored  on.  It is not  directly  associated  with  a 

physical  location;  however,  it is directly  associated  with  

the  device  manager. Types of storage  classes  include:  

   Fixed  disk  

   VideoCharger  

   Media  archive  

   Tivoli  Storage  Manager  (including  optical,  stream,  

and  tape)

storage  group.   Associates  a storage  system  to  a storage  

class. 

storage  system.   A generic  term  for  storage  in the  DB2  

Content  Manager  system.  See  also  TSM  volume, media  

archiver, and  volume.  

streamed  data.   Any  data  sent  over  a network  

connection  at  a specified  rate.  A stream  can  be one  data  

type  or a combination  of types.  Data  rates,  which  are  

expressed  in bits  per  second,  vary  for  different  types  of 

streams  and  networks.  

subclass.   A class  that  is derived  from  another  class.  

One  or more  classes  might  be between  the  class  and  

subclass.  

subprocess.   In DB2  Content  Manager  document  

routing,  an existing  process  that  you  define  to run  

within  another  process.  

sub-workflow.   In DB2  Information  Integrator  for  

Content  advanced  workflow,  an existing  workflow  

process  that  is checked  in to the  workflow  server  that  

you  define  to  run  within  another  workflow.  

superclass.   A class  from  which  a class  is derived.  One  

or more  classes  might  be  between  the  class  and  

superclass.  

suspend.   To remove  an object  from  its workflow  and  

define  the  suspension  criteria  needed  to activate  it. 

Later  activating  the  object  enables  it to continue  

processing.  

system-managed  storage  (SMS).   The  DB2  Content  

Manager  approach  to storage  management.  The  system  

determines  object  placement,  and  automatically  

manages  object  backup,  movement,  space,  and  security.  

T 

table  of contents  (TOC).   In earlier  Content  Manager  

versions,  the  list  of documents  and  folders  that  are  

contained  in a folder  or workbasket.  Search  results  are  

displayed  as a folder  table  of contents.  

TCP.   See  Transmission  Control  Protocol.  

TCP/IP.   See  Transmission  Control  Protocol/Internet  

Protocol.  

thin  client.   A client  that  has  little  or no installed  

software  but  has  access  to software  that  is managed  

and  delivered  by network  servers  that  are  attached  to 

it. A thin  client  is an alternative  to a full-function  client  

such  as a workstation.  

Tivoli  Storage  Manager  (TSM).   A client/server  product  

that  provides  storage  management  and  data  access  

services  in a heterogeneous  environment.  It supports  

various  communication  methods,  provides  

administrative  facilities  to manage  the  backup  and  

storage  of files,  and  provides  facilities  for scheduling  

backup  operations.  

TOC.   See  table  of contents.  

Transmission  Control  Protocol  (TCP).   A 

communications  protocol  used  in the  Internet  and  in any  

network  that  follows  the  Internet  Engineering  Task 

Force  (IETF)  standards  for internetwork  protocol.  TCP  

provides  a reliable  host-to-host  protocol  between  hosts  

in packet-switched  communications  networks  and  in 

interconnected  systems  of such  networks.  It uses  the 

Internet  Protocol  (IP) as  the underlying  protocol.  

Transmission  Control  Protocol/Internet  Protocol  

(TCP/IP).   The  suite  of transport  and  application  

protocols  that  run  over  the Internet  Protocol.  

TSM.   See  Tivoli  Storage  Manager.  

TSM  volume.   A logical  area  of storage  that  is 

managed  by Tivoli Storage  Manager.  

U 

uniform  resource  locator  (URL).   A sequence  of 

characters  that  represent  information  resources  on a 

computer  or in a network  such  as the  Internet.  This  

sequence  of characters  includes  the  abbreviated  name  

of the  protocol  used  to access  the information  resource  

and  the  information  used  by  the protocol  to locate  the  

information  resource.  For example,  in the  context  of the 

Internet,  these  are  abbreviated  names  of some  protocols  

used  to access  various  information  resources:  http,  ftp, 

gopher,  telnet,  and  news.  

user.  A person  who  requires  the  services  of DB2  

Content  Manager.  This  term  generally  refers  to users  of 

client  applications,  rather  than  the developers  of 

applications,  who  use  the DB2  Content  Manager  APIs.  

In DB2  Information  Integrator  for Content,  anyone  who  

is identified  in the  DB2  Information  Integrator  for 

Content  administration  program.  

user  exit.   A point  in an IBM-supplied  program  at  

which  a user  exit  routine  can  be given  control.  

 

 

578 Application  Programming Guide



user  exit  routine.   A user-written  routine  that  receives  

control  at  predefined  user  exits. 

user  group.   A group  consisting  of one  or  more  

defined  individual  users,  identified  by  a single  group  

name.  

user  mapping.   Associating  DB2  Information  Integrator  

for  Content  user  IDs  and  passwords  to corresponding  

user  IDs  and  passwords  in one  or more  content  servers.  

User  mapping  enables  single  logon  to DB2  Information  

Integrator  for  Content  and  multiple  content  servers. 

utility  server.   A DB2  Content  Manager  component  

that  is used  by  the  database  utilities  for scheduling  

purposes.  You configure  a utility  server  when  you  

configure  a resource  manager  or  library  server. There  is 

one  utility  server  for each  resource  manager  and  each  

library  server.  

V  

virtual  node.   In DB2  Content  Manager  document  

routing,  a distinguishable  point  within  your  process  

diagram  at  which  no  work  is performed  or  decisions  

made,  but  which  is required  to effectively  render  the  

process  flow. Start,  stop,  split,  and  join  are  virtual  

nodes.  

volume.   A representation  of an  actual  physical  storage  

device  or unit  on  which  the  objects  in your  system  are  

stored.  

W  

wildcard  character.   A special  character  such  as an  

asterisk  (*)  or a question  mark  (?)  that  can  be used  to 

represent  one  or  more  characters.  Any  character  or set 

of characters  can  replace  a wildcard  character.  

work  basket.   (1) In DB2  Content  Manager  document  

routing,  a location  at which  work  waits  for action  by a 

user  or an application.  The  action  can  either  be taken  

on the  work  waiting  at  the  work  basket,  or the action  

can  be routing  the  work  to  another  work  node. (2) In 

Content  Manager  Version  7 workflow,  synonymous  

with  worklist. 

workflow.   (1)  In earlier  DB2  Content  Manager,  a 

sequence  of workbaskets  through  which  a document  or 

folder  travels  while  it is  being  processed.  (2) In DB2  

Information  Integrator  for Content,  a series  of work  

steps,  and  the  rules  governing  those  steps,  through  

which  work  is routed.  A workflow  process  contains  at 

least  one  start  node,  one  work  node, and  one  stop  node.  

workflow  coordinator.   In earlier  DB2  Content  

Manager  workflow,  a user  who  receives  notification  

that  a work  item  in the  workflow  has  not  been  processed  

in  some  specified  time.  The  user  is selected  for a 

specific  user  group  or upon  creation  of the  workflow.  

workflow  state.   The  status  of an entire  workflow. 

work  item.   In earlier  DB2  Content  Manager  workflow  

and  DB2  Information  Integrator  for  Content  advanced  

workflow,  a document  or object  that  a user  requires  to 

complete  a workflow  activity.  

work  node.   (1) In DB2  Content  Manager  document  

routing,  a step  within  a process  at which  items  wait  for 

actions  to be completed  by  end  users  or applications,  or 

through  which  items  move  automatically.  Generic  term  

for  one  of the following  three  types  of work  nodes:  

work  basket,  collection  point,  and  business  application.  

(2) In DB2  Information  Integrator  for Content  advanced  

workflow, a step  within  a workflow  where  work  is 

performed  by specified  users  or groups.  

worklist.   (1)  In DB2  Content  Manager  document  

routing,  a filter  of available  work  packages  that  are  

assigned  to a user  or group.  (2)  In DB2  Information  

Integrator  for  Content  advanced  workflow,  a filter  of 

available  work  items  that  are  assigned  to a user  or 

group.  

work  package.   In DB2  Content  Manager  document  

routing,  a system-defined  object  that  references  the item  

that  a user  works  on during  a process.  In addition  to 

the  item  ID,  the  work  package  contains  additional  

information  that  identifies  the process  to which  it 

belongs  and  its priority,  state,  and  resume  time  (if 

suspended).  The  user  is unaware  of a work  package  

because  the user  works  on the  referenced  item,  not on 

the  work  package  itself.  

work  packet.   In Enterprise  Information  Portal  Version  

7.1,  a collection  of documents  that  is routed  from  one  

location  to another. Users  access  and  work  with  work  

packets  through  worklists.  

work  step.   (1) A discrete  point  in a DB2  Content  

Manager  document  routing  process  through  which  an 

individual  work  package  must  pass.  (2) A discrete  point  

in a DB2  Information  Integrator  for  Content  workflow  

through  which  an individual  work  item  must  pass.  

X 

XDO.   See  extended  data  object.  

XML.   See  Extensible  Markup  Language.

 

 

Glossary 579



580 Application  Programming Guide



Index  

A
access  control

assigning  a list to an item  165 

Content  Manager  Version  8 113  

defining  lists (ACLs)  161 

diagram  113  

lists (ACL)  113,  115  

NoAccessACL  116  

PublicReadACL  116  

retrieving  and displaying  lists 

(ACLs) 163 

rules for lists (ACLs) 115  

SuperUserACL  116  

working  with 156 

working  with lists for document  

routing  247 

ActionListName  495 

actions
accessing  lists 394 

creating 394 

DKWorkFlowActionICM  227 

listing in XML 501 

predefined 502 

workflow  223 

ad hoc routing  245 

add, BLOB 377 

AddItemToFolderRequest  477 

additional  parameters  field, 

OnDemand  327 

addObject  371, 376 

addToFolder  380 

administration
object

retrieving  175 

privileges  114 

administration  database
schema mapping  1 

administration  metadata
importing  and exporting  433 

AIX
shared  objects  for C++ 17 

starting the RMI server 16 

AllPrivSet  114, 116 

annotation  scope
GLOBAL  443 

LOCAL  443 

VIEW 443 

annotations
adding  an object  to an XDO 43 

beans 408, 410 

constant  132 

customizing  545 

dkAnnotationExt  class  380 

documents  529 

editing  support  544 

engine  532 

OnDemand  338 

semantic  type 132 

services  543 

services  classes  530 

anyA, DKAny  76 

application  building
creating in Content  Manager  Version  

8 119 

non-visual  beans 413 

planning  116 

using annotation  services 545 

visual beans 425 

application  programming interfaces (API)
Java  13 

architecture 13 

differences from  C++ 13 

multiple  search 19 

packaging  14 

application  programming interfaces 

(APIs)
capabilities  13 

concepts  1 

online  reference 118 

software components  119 

application  programming reference 

(APR)  118 

ApplicationName  503 

arithmetic  query
operations  200 

syntax 218 

ASCENDING  216 

attachments
DIME 527 

MIME  526 

attributes
accessing in a DDO 32 

beans  408, 551, 552 

comparing  with DDOs and XDOs 3 

Content  Manager Version  8 109 

creating in CM 8 125 

defining  260 

definition  109 

deleting  for DKAny  79 

displaying  in beans 414, 422 

grouping  109 

image  search 307 

listing  for an item type 128 

listing  for OnDemand  328 

listing  in CM for AS/400  347 

listing  in IP OS/390  340 

listing  in relational databases  362 

managing  groups in CM8 126 

managing  in the controller 

servlet 558 

modifying  for an item 136 

multi-valued  109 

querying  200 

reference 190 

representing through DDOs 120 

retrieving for a document  item 

type 175 

retrieving properties from  34 

setting and retrieving in CM 8 132 

specific  DK classes for defining 374 

updating  groups in CM 8 127 

user-defined 189 

attributes  (continued)
making  text searchable 192 

versioning  143 

ATTRONLY,  ImagePlus  for OS/390 347 

AuditComment  502 

authentication
Web  services  523 

authentication,  XML 465 

AuthenticationData  465 

AUTOCOMMIT, relational 

databases 361 

average color
definition  297 

query example 301 

valid values 300 

B
BasicExpression 218 

batching  XML requests 509 

BatchRequest  509 

BeanInfo 411 

beans 410 

ancillary  408 

annotation  408 

annotations  410 

batch support 406 

BeanInfo  classes 411 

building  in WebSphere  Studio 

Application  Developer  404 

characteristics
customization  404 

events 404 

introspection 403 

methods 404 

persistence  404 

properties 404 

CMBSchemaManagement  405 

connection  405, 550 

connection  pool
CMBConnectionPool  550 

data management  405, 550 

data source
datasource bean 550 

document  services 410, 550 

documents  553 

event and listener  classes 411 

exception  classes 411 

folders 553 

helper 407 

introduction 403 

invoking  405 

items 550 

JAR files 404 

Java Viewer  related
definition  403 

locale, changing  412 

message schema  461 

Model View  Controller (MVC) 406 

non-visual
building  applications  413 

 

© Copyright  IBM Corp. 1996, 2005 581



beans (continued)
non-visual (continued)

categories  407 

configurations  406 

considerations  411  

definition  403 

events  413 

features  406 

introduction  405 

properties 413 

other builders  404 

query service  550 

requirements  404 

schema  405 

schema  management  550 

search criteria 551 

search request  405 

search results  550 

search template  550, 551 

searching OnDemand  338 

session  listeners  411  

singletons  411 

threading 412 

trace log 550 

tracing  413 

understanding  basic  concepts  403 

user management  550 

using in builders  404 

versioning  414, 423 

visual
attributes  editor 422 

building  applications  425 

collation  strength  423 

connecting  425 

connection  423 

default viewers 422 

definition  403 

document  viewer  420 

external  viewers  422 

folder viewer  419 

general  behaviors  423 

help events  424 

hiding and showing  buttons  423 

introduction  414 

key events  424 

logon panel 414 

names 414 

overriding  pop-up  menus  419 

pop-up menus  419 

replacing  424 

save/restore  configuration  424 

search panel  417 

search results  viewer  418 

search template  list 416 

search template  viewer  417 

specialized  behaviors  424 

text search areas 417 

tree  pane 418 

using in windows  426 

versions  viewer  423 

viewer  specifications  421 

web.xml  405 

workflow  405, 409 

worklist  405 

XML 408 

XML services  461 

BETWEEN  207, 216 

binary  data,
See  XDO 

binary  large object (BLOB)  377 

adding  377 

classes  260 

concatenating  377 

copying  data 377 

creating XDOs for 37 

identifying  the file handler  378 

inserting  argument data 378 

managing  content 377 

methods  377 

opening  asynchronously 378 

retrieving 377 

returning the length  377 

searching 377 

specific  DK classes 377 

specific  DKPidXDO  classes 381 

testing  with an XDO function 46 

updating  377 

binders,  Domino.Doc  356 

BLOB,
See binary large object (BLOB) 

buffer,  adding  an XDO 41 

business  application  node 223 

Business  Process Choreographer 518 

C
C# samples 517 

C++
constants  22 

DKAny  72 

DKConstant.h  13 

DLL  files 17 

error message  property files 382 

escape  sequences  211 

libraries  17 

relational database configuration  

strings 38 

setting  up the environment 17 

shared objects for AIX 17 

XML  support  13 

cabinets,  Domino.Doc  356 

listing  attributes  359 

caching,  controller servlet 557 

callback,  executing  20, 188 

catalogs,  image search 302 

cc2mime.ini  361 

CC2MIMEFILE,  relational databases  361 

CCSID  279 

changePassword 122, 371 

ChangePasswordRequest  466 

character  large object (CLOB)  379 

adding  content  379 

classes  378 

deleting  a portion of 379 

deleting  content 379 

file handler 379 

retrieving content  379 

checked  out item
querying  189 

querying  by person 205 

querying  by timestamp  205 

querying  example 205 

checkedOutUserid  381 

checkin  481 

checkIn,  dkDatastoreExt 380 

CheckinItemRequest  488 

checkout  481 

checkOut,  dkDatastoreExt  380 

CheckoutItemRequest  488 

child components
Content  Manager  Version  8 109 

creating in CM 8 130 

diagram 109 

referencing 111  

representation in the data model 189 

representing as DDO attributes  120 

versioning  112 

class name terminology  259 

CLOB,
See character  large  object (CLOB)  

close, result set cursor  376 

cmadmin.xsd  429 

cmb81.jar  404 

CMBAnnotationPropertiesInterface  546 

CMBAttribute
changing  locale  in display  names  412 

cmbcc2mime.ini  556 

cmbclient.ini  556 

cmbcm81.jar  368 

cmbcm81.lib  17 

cmbcm817.dll  368 

cmbcm817d.dll  368 

cmbcm81d.lib  17 

CMBConnection  338, 405, 550 

cmbcs.ini  406, 556 

CMBDataManagement  405, 550 

CMBDocumentServices  533, 550 

CMBDocumentViewer  414, 420 

specifications  421 

terminating  421 

CMBEntity
changing  locale  in display  names  412 

CMBFolderViewer  414, 419 

CMBItem  550 

CMBItemAttributesEditor  422 

CMBLogonPanel  414 

cmbmessages.xsd  461 

CMBObject  552 

CMBPage  554 

CMBPageAnnotation  544 

CMBQueryService  405, 550 

cmbregist81.bat 16 

cmbregist81.sh 16 

CMBSchemaManagement  550 

CMBSearchPanel 417 

CMBSearchResults  550 

CMBSearchResultsView  338 

CMBSearchResultsViewer  414, 418 

CMBSearchTemplate  550 

CMBSearchTemplateList  338, 414, 416 

CMBSearchTemplateViewer  338, 414, 

417 

cmbservlet.properties  555 

CMBServletAction  555 

cmbservletjsp.properties  554 

CMBSpecificWebService.cs  519 

CMBSTCriterion  551 

cmbsvclient.ini  556 

cmbsvcs.ini  556 

CMBTraceLog 550 

CMBUserManagement  550 

 

 

582 Application  Programming Guide



cmbview81.jar  534 

CMBViewerConfiguration.properties  534 

CMBXMLAttachment  409 

CMBXMLMessage  409 

CMBXMLMessage  bean 461 

cmbxmlservice.jar  429 

CMBXMLServices  409 

cmdatamodel.xsd  429 

CMWebServiceClient.cs  519 

COBRA
Persistent  Data Service  (PDS) 1 

Persistent  Object  Service  1 

code page conversion
setting console  subsystem  in 

Windows  19 

collection  point
defining  231 

description  221 

CollectionResumeListEntry  496 

collections
deleting  79 

dkCollection  class 370 

federated  80 

sorting 79 

collections  and iterators
C++

memory  management  78 

Java 76 

sequential  collection  76 

sequential  iterator  77 

color search
average  297, 300, 301 

histogram  297, 300, 301 

positional  297, 301 

texture 298, 301 

com.ibm.mm.sdk.client  13 

com.ibm.mm.sdk.common  package  368 

com.ibm.mm.sdk.server  13 

combined  query
definition  20 

Combined  query
C++

Programming tips 317 

ranking  317 

Java 194, 314 

parametric  with text 314 

using a scope 316 

common  EIP classes  369 

common  privilege,  dkDatastoreExt  381 

CompareOperator  218 

Comparison  217 

concatReplace  377 

configString  465 

configuration  strings,  relational  

databases  38 

connection  bean 550 

connection  pooling
servlet  554 

servlet  values  555 

connectors
controller servlet  values  555 

customizing  368 

connectString  465 

connectToWorkflow  465 

console  subsystem,  setting in 

Windows  19 

constants  22 

constants  (continued)
common  382 

routing 251 

container variables,  workflow  223 

ContainerData  501 

ContainerDefinition  495 

containers
constant 132 

Content  Manager Version  8 111  

semantic  type 132 

contains-text-basic,  text search 192 

contains-text-db2
query example 201 

contains-text-oracle
query example 201 

contains-text,  text search 193 

CONTENT
ImagePlus  for OS/390 347 

Content  Manager  for AS/400
index  classes 347 

introduction 347 

listing  entities  and attributes  347 

mapping  from federated  6 

running a query 349 

Content  Manager  Version 8
access  control 113 

attributes  109 

basic concepts  108 

checking  items in and out 145 

child components  109 

components  illustration  108 

connecting  to 120 

controlling access
access  lists 115 

user groups 115 

controlling access privileges  113 

creating a content server 120 

creating a document  176 

creating a password 122 

creating an application  119 

creating attributes  125 

creating item types 122 

defining  a resource item type 138 

deleting  a document  180 

document  parts 109 

documents  109, 111 

folders  111  

insurance  scenario sample 119 

introduction 107 

item types 109 

items 108 

library  server 107 

library  server and resource manager  

consistency  181 

linking  items 154 

links 110 

listing  attributes  for an item type 128 

listing  item types 124 

managing  attribute  groups 126 

managing  documents  173 

mapping  from federated  6 

modifying  item attributes  136 

non-resource items 109 

objects 110 

planning  an application  116 

privilege set 114 

query examples 196 

Content  Manager Version  8 (continued)
querying  187 

references 110, 111  

resource items 109 

resource manager 107 

retrieving a document  180 

retrieving items 141 

root components  109 

routing documents  221 

samples 118 

searching for items 140 

setting and retrieving  item 

attributes  132 

System  Managed Storage (SMS) 

server 107 

transactions  181 

understanding  the query 

language  166 

understanding  the search query 187 

updating  documents  178 

versioning  112 

working  with access control 156 

working  with folders 148 

working  with the resource 

manager  167 

Content  Manager,  earlier versions
handling  large  objects 261 

image search 295 

introduction 261 

mapping  from federated  6 

persistent  identifier  (PID) 262 

representing documents  262 

representing folders 263 

representing parts 262 

updating  folders  269 

updating  parts 267 

workflow  318 

content parts
attaching  in Web  services  526 

content servers
accessing  information  on 260 

adding a document  or folder 371 

adding members to folders 380 

beans 407 

changing  password  371 

checking  out documents  or 

folders 380 

class names 259 

connecting  371 

Content  Manager  for AS/400  347 

Content  Manager  Version  8 107 

Content  Manager,  earlier  

versions  261 

controller servlet values 555 

creating 259 

creating a DDO in 371 

customizing  368 

data definition  hierarchy 260 

defining  259 

deleting  a document  or folder 372 

disconnecting  371 

Domino.Doc  355 

dynamic  data object (DDO)  2 

evaluating  a parametric  query 

from 87 

evaluating  a text query from 91 

evaluating  an image  query from 310 

 

 

Index  583



content servers (continued)
extended  data object  (XDO) 2 

extending  FeServerDefBase  for custom  

connectors  382 

extending  objects 371 

extension  classes  380 

federated  5 

getting the common  privilege  381 

identifying  where  result  set cursor 

belongs  376 

image  search 295 

ImagePlus  for OS/390  340 

listing  function  names 380 

managing  binary  data 377 

managing  CLOB  content  379 

managing  data 1 

moving  a document  or folder  372 

OnDemand  326 

perform  transactions  371 

persistent  identifiers  (PIDs)  4 

querying  371 

referring  to 380 

registering  in federated  7 

registering  mapping  information  372 

relational  databases  360 

relationship  to DDOs  3 

removing  members  from  folders  380 

result  set cursor 260 

retrieving  a document  or folder  372 

retrieving  the administration  

object 175 

retrieving  the form overlay  

object 381 

returning  names  371 

returning  the user ID objects 371 

running  a parametric  query  from  85 

running  a text query from 90 

running  an image  query from 309 

servers  supported  by EIP 1 

specific  DK classes  for defining  375 

updating  a document  or folder  372 

user management  classes  381 

using with RMI 16 

XDO classes  381 

contentOption  470 

ContinueProcessRequest  506 

contrast  298 

controlled entities  113  

controller server
defaults  555 

controller servlet
actions  554, 555 

clean up 554 

connection  pooling  554 

connection  pooling  values  555 

conventions  555 

conversion  parameters  557 

extending  555 

JSP sets 554 

locale  554 

names  separator  parameter  557 

pages  that show error messages  556 

parameters  555, 557 

properties file 555, 557 

reference 555 

replay  555 

controller servlet (continued)
request parameters

action 558 

connection  related 558 

document  related 559 

folders  559 

general 557 

items 558 

managing  content  559 

reply  558 

search 558 

service runtimes 556 

session  management  554 

toolkit  function  matrix 560 

tracing  556 

using 554 

convert,  schemas  459 

createChildDDO 130 

createDDO 29 

CreateItemRequest 468 

CreateLinkRequest  490 

creating 131 

criterion,  search, bean 551 

cs package  14 

cursor,  result set
adding elements  376 

checking  validity  375 

closing  376 

deleting  elements
deleteObject  376 

destroying 376 

getting  content  server 

information  376 

getting  the handle 376 

opening  376 

pointing  to an element 376 

positioning  375 

retrieving elements  376 

scrolling 375 

updating  375 

updating  elements
updateObject  376 

custom  connectors
developing  368 

extending  the FeServerDefBase  

class 382 

system  administration  369 

D
data definition  classes 260 

data instances
importing  and exporting  454 

data items,  DDO  31 

data model
applying  the query language  189 

representing  in XML 432 

representing  query in XML 197 

data model objects
importing  and exporting  434 

data_id  34 

databaseNameStr  121 

datastore,
See content  servers 

DB2
client configuration  assistant 17 

client  support 17 

DB2 (continued)
configuration  strings  38 

DB2 DataJoiner  360 

configuration  strings  38 

DB2 Extenders  2 

DB2 Net Search  Engine (NSE) 20 

DB2 Text  Information  Extender
Java

Boolean  query 275 

Free text query 275 

GTR query 276 

Hybrid  query 275 

Load and index data 284 

Programming tip 278 

Proximity query 276 

Setting  heap size 261 

ddoDocument  43 

decision  point  222 

decision  points 225 

del, BLOB 377 

deleteDKAttributeDef  79 

DeleteItemRequest  487 

DeleteLinkRequest  490 

deleteObject  371, 372 

deleteSchemaMapping  460 

deleting  377 

DemoSimpleAppl.java  413 

DESCENDING  216 

destroy, result set cursor 376 

DfltACLCode  116 

diagnostic  information,
See tracing  

diagram  definition  225 

DIGIT  217 

Direct Internet  Message  Encapsulation  

(DIME)  527 

directionality 298 

display  flag, foreign key 134 

display  names
changing  the language  of 412 

DisplayName  502 

displayNamesEnabled  412 

DIV 216 

DK_CM_DOCUMENT  262 

DK_CM_FOLDER  263 

DK_CM_OPT_ACCESS_MODE  260 

DK_CM_PROPERTY_ITEM_TYPE  262, 

263 

DK_CM_READWRITE  260 

DK_CM_VERSION_LATEST  142 

DK_DL_OPT_ACCESS_MODE  377 

DK_OPT_TS_CCSID  279 

DK_OPT_TS_LANG  279 

DK_READWRITE  377 

DK_SS_CONFIG  320, 321 

DK_SS_NORMAL  320, 321 

DK_TS_DOCFMT_HTML  285 

dkAbstractWorkFlowUserExit  394 

dkAnnotationExt  380 

DKAny
assignment  from 74 

assignment  to 74 

checking the type 75 

deleting collections  79 

destroying 75 

display of 75 

memory management  73 

 

 

584 Application  Programming Guide



DKAny  (continued)
programming  tips 76 

type code, getting  74 

Typecode 73 

using inside a collection  76 

using type constructors  73 

dkAttrDef  260 

classes  374 

DKAttrFieldDefDD  356 

DKAttrGroupDefICM  127 

DKAttrKeywordDefDD  356 

DKAttrProfileDefDD  356 

DKBinderDefDD  356 

dkBlob  260 

classes  377 

methods  377 

DKBlobDL
setToBeIndexed  311  

DKCabinetDefDD  356 

dkClob
classes  378 

dkCollection  370 

DKCollectionResumeListEntryICM  226 

DKConstant  22, 382 

DKConstant.h  13 

dkCQExpr  370 

dkDatastore
addObject  371 

changePassword 371 

commit  371 

connect  371 

deleteObject  371, 372 

disconnect  371 

evaluate  371 

execute 371 

executeWithCallback  371 

introduction  371 

listDataSourceNames  371 

listDataSources  371 

listMappingNames  372 

moveObject  372 

registerMapping  372 

registerServices  371 

retrieveObject  371, 372 

rollback  371 

unRegisterMapping  372 

unregisterServices  371 

updateObject  372 

DKDatastore  259 

custom  connectors  369 

DKDatastorexx 259 

dkDatastoreDef  259 

classes  372 

DKDatastoreDef
methods  372 

DKDatastoreDefDL
additional  functions  373 

DKDatastoreDefOD
additional  functions  373 

DKDatastoreDL
Java 23 

connecting  23 

DKDatastoreDL  options  24 

list schema  and schema  

attributes  26 

List servers  25 

dkDatastoreExt
classes 380 

functions  380 

DKDatastoreICM 119 

DKDatastoreIP 340 

DKDatastoreOD 327 

listEntities  328 

DKDatastoreQBIC 296 

DKDatastoreTS
attributes 277 

Java 274 

connecting  277 

DKDatastoreTS options 278 

list schema 280 

list servers 279 

DKDatastoreV4 347 

DKDatstoreIP
listEntityAttrs  343 

DKDatstoreOD
listSearchTemplates  330 

dkDDO 369 

DKDDO,
See dynamic  data object (DDO)  

DKDLITEMID  277 

DKDocRoutingServiceICM  224 

DKDocRoutingServiceMgmtICM  224 

DKDocumentConverter  460 

DKDocumentDefDD  356 

DKDSIZE  277 

dkEntityDef  259 

classes 373 

functions  373 

DkEntityDefIP
getAttr 341 

DKEntityDefIP
listAttrNames  341 

DKException  21, 117 

DKFederatedCollection  80 

dkFederatedIterator  80 

dkFederatedQuery  80 

DKFederatedQuery  8 

DKFixedView  327 

DKFixedViewDataOD  327 

DKFolder  263 

dkIterator  80 

DKLink  154 

DKLinkCollection  156 

DKLITEMID  307 

DKMessage_en_US.properties  382 

DKMessage_en.properties  382 

DKMessage_es_ES.propertie  382 

DKMessage_es.properties  382 

DKMessageId  382 

DKPARTNO  277, 307 

DKParts
earlier CM 262 

DKPidXDO  381 

DKPrivilegeSetICM  158 

DKProcessICM 224 

dkQuery  370 

dkQueryableCollection  370 

DKRANK  262, 277, 307, 314 

DKRCNT  277 

DKREPTYPE  277, 307 

DKResource 327 

DKResourceGrpOD 327 

DKResults  370 

DKResults  (continued)
positioning  the iterator  81 

dkResultSetCursor  260 

functions  375 

DKResumeListEntryICM  227 

DKRMConfiguration  121 

DKRoomDefDD  356 

DKRouteListEntryICM  226 

DKSchemaConverter  459 

dkSchemaMapping  372 

DKSequentialCollection  267, 269, 370 

dkSequentialIterator  370 

dkServerDef  260 

classes 375 

functions  375 

dkSort  79 

DKStorageManageInfo  65 

DKTimestamp
suspending  a workflow  389 

dkUserManagement  381 

DkViewOD  327 

DKViews  327 

DKWorkBasketDL  318 

DKWorkFlowActionICM  227 

DKWorkFlowFed
resume 390 

suspend  389 

DKWorkFlowServiceDL  318 

DKWorkFlowServiceFed
svWf 388 

DKWorkFlowServicesFed  385 

dkWorkFlowUserExit  394 

DKWorkItemFed
checkIn 393 

checkOut  393 

DKWorkListFed  391 

DKWorkListICM  226, 235 

DKWorkNodeContainerDefICM  226 

DKWorkNodeICM  226, 230 

DKWorkPackageICM  227, 243 

dkXDO 378 

dkXDOBase  369 

open 378 

DKXMLExportList  433 

DKXMLSysAdminService
constants 433 

methods  432 

DLL files
C++ 17 

DLLName  503 

DLSEARCH_DocType  82 

doAction  394 

document  model,
See document  parts 

Document  Object Model (DOM)
building  from  an XML message 521 

document  parts
constant  122 

Content  Manager  Version  8 109 

item type 122 

document  routing,
See routing 

document  viewer toolkit
annotation  services  543 

applet or servlet 533 

architecture 530 

creating a generic  viewer 534 

 

 

Index  585



document  viewer  toolkit  (continued)
customizing  the generic  document  

viewer  534 

dual-mode  and applet  or servlet 533 

engines
AFP2Web  document  531 

INSO document  531 

Java document  531 

MS-Tech  Document  531 

example  applications  532 

introduction  529 

Java application  532 

page manipulation  546 

standalone  viewer  532 

thin client 533 

documents  131 

adding  371 

annotating  529 

beans  410, 550, 553 

caching  in the controller servlet  557 

checking  out and in 380 

Content  Manager  Version  8 109, 111  

creating a document  item type 174 

creating in CM 8 176 

creating the management  data model  

in CM 8 174 

deleting  372 

deleting  in CM 8
SDocModelItemICM  180 

differences  in managing  in earlier  

CM 268 

displaying  in beans 414, 420 

Domino.Doc  356 

earlier  CM workflow  318 

managing  in CM 8 173 

moving  372 

representing  in the data model  190 

retrieving  372 

retrieving  in CM 8 180 

routing  through a process 221 

semantic  type 132 

starting  a routing  process 239 

text searching for 192 

updating  372 

updating  in CM 8 178 

versioning  parts in the management  

data model  180 

viewing,
See document  viewer  toolkit  

Domino.Doc
introduction  355 

listing  cabinet  attributes  359 

listing  entities  and subentities  357 

mapping  from  federated  6 

object model 356 

open  document  management  API 

(ODMA)  355 

query syntax 359 

querying  359 

querying  for DKResults  object 82 

DSNAME,  relational  databases  361, 362 

dsType 338 

dynamic  configuration,  beans 406 

dynamic  data object (DDO)
accessing  attributes  32 

accessing  folder contents  72 

adding  properties 30 

dynamic  data object (DDO)  (continued)
attribute  groups in CM 8 126 

COBRA  specification  1 

comparing  with attributes  3 

dkDDO  369 

federated  5 

image  search persistent  ID 307 

image  search result 302 

introduction 2 

obtaining  all folders containing  154 

persistent  identifier  4 

populating  with setData 131 

properties 262 

referencing 111  

relationship with content servers 3 

representing  in image  search 307 

representing  multimedia  content 3 

retrieveObject 143 

retrieving attribute  properties 34 

sorting  a collection  of 79 

Dynamic  Data Object (DDO)
C++

deleting  36 

Java 28 

adding 31 

attribute,  DKPARTS  67, 70 

creating  28 

data item values 31 

displaying  35 

Information,  DB2 Text  Information  

Extender 277 

Information,  Digital Library  120, 

262 

PID 30 

properties 33 

E
EIP workflow  services,

See workflow  

Enterprise  Information  Portal
common  classes 369 

concepts  1 

database  infrastructure 369 

databases  1 

document  engines  531 

dynamic  data objects (DDO)  2 

extended  data objects (XDOs) 2 

organization  diagram  1 

persistent  identifier  (PID) 4 

schema  mapping  1 

supported  content  servers 1 

Enterprise  Java Beans (EJBs) 406 

EnterUserDLL  496 

EnterUserFunction  496 

entities
beans 407, 551 

class  hierarchy 259 

controlled, Content  Manager Version 

8 113 

identifying  4 

ImagePlus  for OS/390  346 

listing  in CM 8 124 

listing  in CM for AS/400  347 

listing  in Domino.Doc  357 

listing  in IP OS/390 340 

listing  in relational databases 362 

entities (continued)
listing in XML 466 

mapping  in federated  5 

moving items through XML 492 

moving objects 381 

native 338, 370 

OnDemand  folders as native  338 

privileges  114 

schema mapping  370 

searching in Domino.Doc  359 

specific DK class names for 

defining  373 

storing federated  folders in 11 

ENTITY_TYPE  327, 337 

EntityList  467 

environment, setting
C++  17 

Java 15 

error messages
property files 382 

ErrorCode 117 

ErrorState 117 

escape sequences,  query examples  206 

ESCAPE_LITERAL  217 

ESCAPE,KEYWORD,  query 217 

evaluating  queries 82 

evaluating  search 20 

events
beans 411 

EXCEPT  206, 216 

exceptions,  handling  21 

executeWithCallback  371 

executing  queries 82 

executing  search 20 

executing  search with callback  20, 188 

exponent,  query 217 

exporting  XML
See extracting  XML 

expression class 370 

expression, query 217 

ExpressionList  218 

expressions, query 204 

ExpressionWithOptionalSortBy  217 

extended  data object,
See  XDO 

Extended  Search
mapping  from  federated  6 

Extenders  2 

extensible  markup  language,
See  XML 

extracting  XML
administration  metadata 433 

data instances  454, 455 

data model metadata 434 

exporting  object dependencies  457 

input and output formats 432 

F
FASERVERTYPES  table 383 

features
image search  296 

maximum  results, image search 299 

name, image  search 299 

value, image  search 299 

weight, image  search 299 

federated  11 

 

 

586 Application  Programming Guide



federated  (continued)
attributes  5 

beans 551 

collection  8 

collections  80 

document  model  5 

entities  5 

folders  11 

image search 9 

items 5 

iterators  80 

layer for beans 407 

mapping  5 

mapping  user IDs 7 

query
creating 8 

examples  9 

processing illustration  8 

results  8 

syntax  9 

registering  content servers  7 

schema  mapping  7 

searching
expression class 370 

illustration  6 

introduction  5 

process 8 

relational  illustration  8 

server definition  base class 382 

system administration  functions  12 

federated  document  model  5 

FeServerDefBase  382 

fetchNext  376 

fetchObject  376 

fields,  Domino.Doc  356 

file, adding  an XDO from  42 

findObject  376 

FLoadSampleTSQBICDL  282 

FLOAT_LITERAL  217 

folders
accessing  72 

adding  371 

adding  contents  to 149 

adding  members  to 380 

beans 553 

checking  out and in 380 

Content  Manager  behavior  72 

Content  Manager  Version  8 111  

creating in CM 8 148 

deleting  372 

displaying  in beans 414, 419 

earlier CM workflow  318 

enabling  the mode in 

OnDemand  337 

listing in OnDemand  330 

managing  in the controller 

servlet 559 

moving  372 

obtaining  all folders  with a specific  

DDO 154 

OnDemand  folders  as native  

entities 338 

removing  contents  from  151 

removing  members  from 380 

representing  in earlier  CM  263 

retrieving  372 

retrieving  contents  153 

folders (continued)
semantic type 132 

updating  372 

updating  in earlier  CM 269 

XML 477 

foreign key attribute values 133 

form overlay  object 381 

fromXML() 454 

FTSearch 359 

FunctionName  218, 503 

G
garbage  collector,  Java 13 

generic  document  viewer,
See  document  viewer toolkit  

GenericWebServiceSample.java  521 

getCommonPrivilege  381 

getContent  377 

getContentToClientFile  377, 379 

getDataModelDefs  433 

getDatastore 380 

getDisplayName()  412 

getLocale  412 

getName()  412 

getNonDisplayName()  412 

getOpenHandler  378, 379 

getPosition  375 

GetPrivilegesRequest  476 

getSchemaMappingNames  460 

getStorageSchema  459 

getSysAdminDefs  433 

getXSLTQuery  459, 460 

GLOBAL  443 

graphical  user interface  (GUI),
See  beans, visual 

H
handle,  result  set cursor 376 

helper beans 407 

Hierarchical Storage  Management  

(HSM) 167 

highlighting,  text search  91 

getting  information  for a particular  

result 95 

getting  information  for each result 92 

histogram  color
definition  297 

query example 301 

valid values 300 

history
constant 132 

semantic  type 132 

I
ICM connector,

See  Content  Manager Version  8 

ICMBASE
representing in Web  services 526 

ICMCHECKEDOUT
attributes 189 

example  205 

ICMCHKOUTTS  205 

ICMCHKOUTUSER  205 

ICMLogon  115 

IDENTIFIER  217 

identifiers
image search 296, 298 

image search  295 

applications  298 

attributes  307 

average  color 297, 300, 301 

catalogs  296, 297 

closeCatalog  302 

connecting  to 302 

creating queries 299 

databases  296, 297 

definition  20 

diagram  296 

disconnecting  from 302 

evaluating  a query from a content  

server 310 

features  296, 299 

federated  9 

histogram  color 297, 300, 301 

identifiers  298 

indexing  an XDO 311 

listDatabases  302 

listing  catalogs 304 

listing  databases 304 

listing  features 304 

listing  servers 303 

loading  data to be indexed 311 

maximum  results 299 

openCatalog  302 

positional  color 297, 301 

query syntax 299 

querying  307 

representing information  with a 

DDO 307 

running  a query from a content  

server 309 

search criteria 299 

texture 298, 301 

ImagePlus  for OS/390
introduction  340 

listing  attributes  340 

listing  entities 340 

mapping  from federated  6 

query parameters  346 

query syntax 345 

imldiag.log  294 

importing  XML
See ingesting  XML 

inbound  links 155 

INBOUNDLINK  190 

indexes
text searching  on 88 

indexing
image search 311 

indexOf  377, 379 

Information  Catalog
mapping from federated  6 

information  center  118 

Information  Mining
beans support  407 

ingesting  XML
administration  metadata  433 

constants  433 

data instances  454, 456 

data model metadata  434 

 

 

Index  587



ingesting  XML (continued)
input and output  formats  432 

initialization  parameters  field, 

OnDemand  327 

insert,  BLOB  378 

INTERGER_LITERAL  217 

INTERSECT  206, 216 

IS 216 

isBegin 375 

isCheckedOut  381 

isEnd 375 

IsFTIndexed  359 

isInBetween  375 

isOpen  376 

isOpenSynchronous  378, 380 

isScrollable  375 

isSupported  380 

isUpdatable  375 

isValid  375 

item classes,
See  item types 

item parts
comparing  with DDOs  and XDOs  3 

item types
classifications  122 

components,  root  and child 109 

Content  Manager  Version  8 109 

creating a definition  138 

creating in Content  Manger  Version  

8 122 

importing  and exporting  as XML 

schemas  434 

listing  124 

listing  attributes  for 128 

querying  multiple  200 

versioning  112, 147 

ItemAdd  115 

ItemAdminPrivSet  114  

ItemQuery  115 

ItemReadPrivSet  116  

items
adding to a folder 149 

beans  408, 550, 552 

checking  in and out 145 

Content  Manager  Version  8 108 

creating a document  item type 174 

creating instances  in Web  

services  524 

federated  5 

importing  and exporting  instances  as 

XML 454 

linking  154 

linking  through folders  111  

managing  with the controller 

servlet  558 

modifying  attributes  136 

referencing  120 

removing  from folders  151 

representation  in the data model  189 

retrieving  in CM 8 141 

retrieving  linked  items  156 

searching for in CM 8 140 

setting  and retrieving  attributes  in CM 

8 132 

tree  constant  153 

versioning  112, 145 

ItemSetSysAttr  115  

ItemSetUserAttr  115 

ItemSQLSelect  115 

ITEMTREE  470 

ItemTypeQuery 115 

iterators
federated  80 

positioning  in DKResults  81 

J
j2ee.jar  405 

Java
constants  22 

creating workflow  actions 394 

DKConstant.h  13 

document  viewer toolkit 529 

error message  property files 382 

escape  sequences  211 

FeServerDefBase  382 

garbage  collector  13 

increasing JVM stack size 337 

packages  13 

setting  up the environment 15 

XML  functions  13 

Java Database  Connectivity  (JDBC) 360 

Java Server Pages (JSPs)
servlet 554 

java.lang.exception  118 

java.lang.objects  132 

JavaBeans,
See beans  

JAX-RPC  based client toolkit 520 

JDBCDRIVER,  relational databases  362 

JDBCSERVERSFILE,  relational 

databases 362 

JDBCSERVERSURL,  relational 

databases 362 

JNI tracing,  servlet 557 

joining  routes  222 

JSPs,
See Java Server Pages (JSPs) 

K
keywords, Domino.Doc  356 

L
LANG  279 

large object (LOB) 120 

handling  in earlier CM 261 

LeaveUserDLL  496 

LeaveUserFunction  496 

length,  BLOB 377 

LETTER  217 

library
C++ listing 17 

Java 15, 17 

Microsoft  Visual  Studio .NET 19 

library  server,  Content  Manager Version  

8 107 

listing  121 

versioning  112 

LIKE 207, 216 

links
attribute  type 120 

links (continued)
Content Manager  Version  8 110 

creating in XML 490 

defining  between items 154 

description  item 154 

inbound and outbound  155 

representation in the data model 189 

retrieving linked items 156 

source 154 

target 154 

traversing  through query 200 

type name constants  155 

type names 155 

LinkTypeName  154 

ListActionNamesRequest  501 

ListConstructor  218 

ListContent  218 

listDataSourceNames 371 

listDataSources 121, 371 

listEntityNames  124 

listFunctions
dkDatastoreExt  380 

listMappingNames  372 

ListNextWorkPackagesRequest  499 

ListProcessNamesRequest  497 

ListProcessRequest 497 

listResourceMgrs  121 

ListSchemaRequest  466 

ListServerRequest  464 

listWorkFlowTemplates  394 

ListWorkListNamesRequest  498 

listWorkLists  390 

ListWorkListsRequest  498 

ListWorkNodesRequest  494 

ListWorkPackagesRequest  499 

literal,  query 218 

literals
ImagePlus  for OS/390 346 

literals,  query 204 

LoadFolderTSQBICDL  282 

LOCAL  443 

locale
beans, changing  in 412 

servlet 554 

LocalPart  218 

logging,
See tracing  

LogicalOrSetExpression  217 

LogicalOrSetPrimitive  217 

LoginData  465 

LorgicalOrSetTerm  217 

M
match highlighting,

See  highlighting,  text search 

MATCH_DICT  91 

MATCH_INFO  91 

maxResults  470 

media object
adding  in earlier  CM 51 

code sample names 66 

deleting 56 

retrieving 60 

member
adding 268 

removing 268 

 

 

588 Application  Programming Guide



messages
DKException  information  117  

property files 382 

Microsoft  SOAP Toolkit  518 

Microsoft  Visual  C++ compiler,
See Visual  C++ compiler  

Microsoft  Visual  Studio .NET
getting  started  in Web  Services  518 

linking to 19 

working  with 19 

MIME  types 526 

setting for a resource  item 140 

Mime2App  property 422 

MimeMultipart  object  526 

MOD 216 

Model  View  Controller  (MVC)  406, 544 

MoveItemRequest  492 

moveObject  372 

moveObject,  dkDatastoreExt  381 

multimedia  content 3 

multiple  characters  (MC) 279 

Multipurpose  Internet  Mail Extensions  

(MIME)  526 

multistreaming 13 

N
nameOfAttrStr  136 

NameText  218 

NATIVECONECTSTRING,  relational  

databases  361 

NewValues  492 

newVersion  481 

NoAccessACL  116  

NodeGenerator  218 

non-display  names  412 

non-resource  items
Content  Manager  Version  8 109 

Non-visual  beans  403 

NONZERO  217 

NoPrivSet  114 

NOT 216 

note
constant  132 

semantic  type 132 

notelog  552 

NotifyState  501 

NotifyTime  501 

NULL,  query 217 

O
object management

Java  263 

creating 129, 263 

deleting  144, 270 

updating  137, 267 

Object  Management  Group (OMG) 1 

objects
beans 552 

Content  Manager  Version  8 110  

managing  in Domino.Doc  356 

storing attribute  values  132 

text searching for contents  192 

updating  in CM 8 138 

OnDemand
annotations  338 

connecting  to 327 

disconnecting  from  327 

displaying  attributes  333 

displaying  documents  333 

enabling  the folder mode 337 

introduction 326 

listing  application  groups 328 

listing  folders 330 

listing  server information  328 

mapping  from federated  6 

property  names 327 

querying  an application  group 331 

representing servers and 

documents  327 

retrieving documents  330 

searching  asynchronously 337 

searching  for a document  330 

tracing  338 

using folders as search template  338 

Open Database  Connectivity  

(ODBC)  360 

configuration  strings  38 

open document  management  API 

(ODMA)  355 

open, BLOB 378 

open, CLOB 378 

open, result  set cursor  376 

operators
Domino.Doc  360 

ImagePlus  for OS/390 query 346 

parametric  search 190 

OptionalExpressionList  218 

OptionalPredicateList  218 

OR 216 

OracleText
query example 201 

outbound  links 153, 155 

output_option  25 

overlay  object 381 

OverLoadLimit  494 

OverloadUserDLL  496 

OverloadUserFunction  496 

P
packages

client and server (cs) 14 

hierarchy in Java 14 

Java client 13 

Java server 13 

page
manipulation

functions 546 

page manipulation
interfaces  546 

pages
beans 554 

parallel routing 222 

parametric  search
definition  20 

evaluating  a query from a content 

server 87 

federated  9 

formulating  a query string 82 

formulating  multiple  criteria  83 

parametric  search (continued)
operators  190 

querying  from a content  server 85 

querying  in CM for AS/400 354 

querying  on multiple  criteria 83 

running  the query 84 

tracing 21 

understanding  190 

parts
earlier CM 262 

updating  in earlier CM 267 

versioning  180 

password
changing 371 

changing  in beans 424 

changing  in XML 466 

creating in Content  Manager  Version 

8 122 

mapping  in federated  7 

pattern 298 

PENDING,  ImagePlus  for OS/390  347 

pEnt, C++ 28 

permissions,
See privileges  

Persistent Data Service (PDS), COBRA 1 

persistent  identifier  (PID)
dynamic  data object (DDO)  2 

extended  data object (XDO) 2 

image search 307 

introduction 4 

routing 242 

versioning  112 

Persistent Object Service,  COBRA  1 

policies example 119 

positional  color
definition  297 

query example 301 

valid values 301 

predefined values 136 

predicate list 218 

priority,  document  routing 501 

privileges
access control lists (ACLs) 115  

beans 408, 553 

codes 115 

Content  Manager  Version  8 113 

creating a set 158 

creating in CM 8 157 

data access 114 

displaying  properties of a set 160 

granting  for routing 246 

pre-configured ACLs 116 

pre-defined Content  Manager Version  

8 sets 114 

set 114 

system-defined  114 

types of sets 114 

users and user groups in CM 8 115 

viewing  in XML 476 

PrivSetCode  114 

process image queue 311  

process state 225 

ProcessCompletionTime  501 

processes
continuing  240 

continuing  in XML 506 

defining  for an associated  route  236 

 

 

Index  589



processes (continued)
DKProcessICM 224 

ending  240 

joining 222 

listing  244 

listing  in XML 497 

resuming  241 

resuming  in XML  508 

routing  224 

splitting  222 

starting  in XML 505 

subprocesses  224 

suspending  241, 507 

profiles, Domino.Doc  356 

PublicReadACL  116  

Q
QbColor  300 

QbColorFeatureClass  297, 300 

QbColorHistogramFeatureClass  297, 

300, 301 

QbDraw  301 

QbDrawFeatureClass  297, 301 

QbHistogram  300 

QbTexture  301 

QbTextureFeatureClass  298, 301 

QName 218 

queries
arithmetic  operations  200 

average  color search 301 

CM for AS/400  349 

combined  expressions  370 

compound  expressions  370 

Content  Manager  Version  8 187 

data model 197 

dkQuery  class 370 

Domino.Doc  359 

Domino.Doc  syntax 359 

escape  sequences  206 

evaluate  82 

examples  196, 199 

execute  82 

federated
processing 8 

federated  collection  80 

image  search 299, 307 

image  search query  syntax 299 

ImagePlus  syntax 345 

language  206 

language  grammar  216 

listing  checked  out items 205 

listing  the result  205 

OnDemand  search 330 

relational  databases  365 

routing  examples  246 

searching structured  documents  285 

syntax  199 

text search 192 

understanding  the language  187 

version  203 

wildcard example  204 

XML items 469 

Query
Java 81 

dkResultSetCursor  vs 

DKResults  82 

Query (continued)
Java (continued)

parametric type 82 

query object types 81 

text type 88 

Query by Image  Content  (QBIC),
See  image  search 

query  language  206 

Queryable  collection
Java 103 

evaluating  104 

getting  results 103 

Programming tips 105 

queryable  vs refined 105 

QueryCriteria  470 

R
reference attributes  190 

REFERENCEDBY  190 

REFERENCER  190 

references
attribute  type 120 

Content  Manager  Version  8 111  

traversing  through query 202 

registerMapping 372 

registerServices 371 

relational databases
configuration strings  361 

connecting  to 360 

connection  strings 361 

introduction 360 

listing  attributes  362 

listing  entities 362 

mapping  from federated  6 

querying  365 

relative positioning,  result  set cursor 102 

remote method  invocation  (RMI)
connecting  with beans 406 

starting  in Java 16 

using with Java APIs 16 

Remote  Procedure Call (RPC)  514 

remove, BLOB
binary large object (BLOB)

removing  a portion 378 

remove, CLOB 379 

removeAllElement  79 

removeFromFolder 380 

RemoveItemFromFolderRequest  478 

removeMember 268 

replaceElementAt 79 

ReplayAction,  servlet 555 

RepType 282 

resource  content,
See  XDO 

resource  items
constant  122 

Content  Manager  Version  8 109 

defining  an item type for 138 

item type 122 

representing  in Web  services  526 

resource  manager,  Content  Manager 

Version  8 107 

listing  121 

versioning  112 

working  with 167 

working  with objects 167 

result set cursor
functions  375 

Result set cursor
Java 99 

creating a collection  102 

open and close 100 

set and get 100 

resume list 227 

ResumeList  501 

ResumeListDefinition  508 

ResumeProcessRequest  508 

ResumeTime  501 

resuming a workflow  390 

Retrieval
C++

parts 272 

Java 271 

folders 273 

parts 271 

retrieve, BLOB 377 

RetrieveFolderItemsRequest  478 

retrieveFromOverlay 381 

RetrieveItemRequest  472 

retrieveObject 371, 372 

retrieveOption 470 

RMI server,
See  remote method  invocation  (RMI)  

rollback 371 

rooms, Domino.Doc  356 

root components
Content Manager  Version  8 109 

creating in CM 8 130 

linking  110 

referencing 111  

representation in the data model 189 

versioning  112 

RouteSelected  506 

routing 410 

access control lists (ACLs) 247 

ad hoc 245 

beans 407, 410 

collection  points 221 

compatibility  with Version 8.2 224 

constants  225, 251 

container  variables  223 

continuing  a process 240 

creating service objects 227 

decision point 222 

decisions  225 

defining  a new collection  point 231 

defining  a new process and associated  

route 236 

defining  a new regular work 

node 228 

defining  a worklist  234 

definition  225 

diagram definition  225 

ending  a process 240 

examples  246 

granting  privileges  246 

graphical  process builder 222 

introduction 221 

joining 222 

listing document  routing 

processes 244 

listing package  PIDs in a 

worklist  242 

 

 

590 Application  Programming Guide



routing  (continued)
listing  work nodes  230 

listing worklists  235 

parallel 222 

process state 225 

resume  list 227 

resuming  a process 241 

retrieving  work package  

information  243 

setting up 224 

splitting  222 

starting 239 

starting in XML 504 

subprocesses  224 

suspending  a process 241 

usre  exits 248 

Version  8.3 APIs 222 

virtual nodes 225 

work nodes 221 

work package  227 

workflow  action 223 

worklist  227 

XML 493 

RunQueryRequest  469 

S
sample  client  295 

sample  files
Content  Manager  Version  8 118  

SampleMessageTemplate.java  522 

SAttributeDefinitionCreationICM  109 

scenario,  insurance  sample  for Content  

Manager  Version  8 119  

schema  mapping
associating  in federated  6 

custom  connectors  369 

dkDatastore  methods  372 

dkSchemaMapping  class 370 

introduction  1 

relational  databases  361 

schemas
beans 550 

cmadmin.xsd  429 

cmdatamodel.xsd  429 

conversion  tool 458 

importing  and exporting  storage  

schemas  434 

unsupported  XML types in storage  

schemas  453 

SConnectDisconnectICM  118  

scope
tag library 550 

transaction  181 

score-basic,  text search 192, 193 

scrolling  the result  set cursor 375 

SDocModelItemICM  111  

SDocRoutingDefinitionCreationICM  228, 

229, 234, 235, 239 

SDocRoutingListingICM  231, 236, 243, 

245 

SDocRoutingProcessingICM  239, 240, 

241, 242, 244 

search engines,  registering  371 

search template,  OnDemand
using folders as 338 

viewer  337 

searching
API modules  119 

beans  408, 550, 552 

DKResults  class 370 

understanding  the query 

language  187 

searchTemplate  bean 551 

SelectionFilterOnNotify  498 

SelectionFilterOnOwner  499 

SelectionFilterOnSuspend  499 

SelectionOrder 498 

semantic type
definition  131 

pre-defined  types 131 

user defined  132 

SequencedValue  217 

ServerType 464 

servlet,
See controller servlet 

session listeners,  beans 411 

sessions
servlet 554 

setClassOpenHandler  378, 379 

setContent  377 

setContentFromClientFile  377, 379 

setData 131 

setDatastore 380 

setInstanceOpenHandler  378, 379 

setLocale  412 

setPosition  375 

settings
C++ environment 17 

Java environment 15 

Settings
C++

Building on NT 18 

Java
Client connect  and disconnect  24 

Client/Server  13 

On NT 15, 18 

Programming tips 14 

Using sample Java applets and 

servlet 549 

Java application  on client 549 

Local access 550 

Remote access 550 

Retrieve  servlet 549 

setToBeIndexed  311 

setToFirstCollection  81 

setToLastCollection  81 

setToNext  376 

setToNextCollection  81 

setToPreviousCollection  81 

SFolderICM  111,  148, 154 

Shortcut  503 

Simple Object Access Protocol 

(SOAP)  513 

single required characters (SC) 279 

SItemCreationICM 111  

SItemDeletionICM  144 

SItemRetrievalICM  144 

SItemTypeCreationICM 109 

SItemTypeRetrievalICM  147 

SItemUpdateICM  140, 145 

SLinksICM  111,  155, 156 

SLinkTypeDefinitionCreationICM  156 

SORTBY 216, 217 

SortSpec  217 

SortSpecList  217 

SOURCEITEMREF  190 

splitting  routes  222 

SReferenceAttrDefCreationICM  111, 190 

SResourceItemMimeTypesICM  140 

SSearchICM 141 

stack trace 117 

StartProcessRequest 504 

Step, query 218 

storage collection
adding  an XDO to 65 

changing  for an XDO 67 

storage schemas
importing  and exporting  434 

unsupported  XML types 453 

streaming doc services 530 

STRING_LITERAL  217 

subentities
listing in Domino.Doc  357 

subprocesses 224 

subString  378, 379 

SuperUserACL  116 

suspending  a process 241 

suspending  a workflow  389 

SuspendProcessRequest  507 

SuspendState  501 

svWF 388 

SYSREFERENCEATTRS  190 

system administration  client
creating worklists  391 

customizing  12 

user exits 12 

System Managed  Storage (SMS), Content 

Manager Version  8 107 

SystemAdmin  115 

SystemAdminPrivSet  114 

SystemDefineItemType  115 

T
tag library

connection  related  550 

document  related  553 

folder related  553 

item related  552 

schema related 551 

search related 552 

tagged  documents
text  search  285 

taglib.tld  405 

TARGETITEMREF  200 

TCallbackOD  337 

TCheckStatusTS  294 

TCP/IP
text search  278 

templates
workflow  394 

TerminateProcessRequest  505 

text information  extender (TIE)
Net  Search Engine  (NSE) 20 

text search
advanced  search 193 

basic query 192 

beans 417 

contains-text  193 

creating the document  model 287 

 

 

Index  591



text search (continued)
definition  20 

evaluating  a query from a content  

server  91 

formulating  a query string 88 

highlighting  91 

listing  the document  model  285 

making  user-defined  attributes  

searchable 192 

management  functions  274 

OnDemand  326 

operators  192 

persistent  identifier  (PID) 277 

query example  201 

query syntax 192 

queryable  collections  104 

querying  from a content  server 90 

querying  multiple  indexes  88 

querying  on multiple  indexes  88 

running  a query  88 

score-basic  193 

searching for documents  192 

searching for object  contents  192 

searching structured  documents  285, 

294 

setting  indexing  rules 289 

starting  the indexing  process 292 

tracing  20 

understanding  191 

wildcards 193 

texture
coarseness  298 

contrast  298 

definition  298 

directionality  298 

query example  301 

valid  values  301 

thin client 533 

TImageAnnotation  546 

timed-out  sessions,  servlet 554 

TimeLastMoved  501 

TimeLimit  494 

tools
Content Manager  Version  8 118  

toXML()  454 

tracing
beans 413, 550 

controller servlet  556 

error state 117 

handling  errors with 

DKException  117 

JNI, servlet  557 

OnDemand  338 

parametric  search 21 

return  code container  117 

sample  tools  118  

stack 117 

text search 20 

transactions,  Content  Manager  Version  

8 181 

caution  about  explicit  

transactions  182 

checking  in and out 183 

considerations  182 

list 184 

processing 183 

transformXMLDocument  460 

TRetrieveFolderWithCallbackOD  337 

TRetrieveWithCallbackOD  337 

troubleshooting
error message  property files 382 

tracing  20 

TxdoAdd  samples 66 

TxdoAsyncRetDL  261 

U
UNICODE_CHARACTER  217 

uniform  resource identifier  (URI) 168 

UNION  206, 216 

unlockCheckedOut  381 

unRegisterMapping  372 

unregisterServices 371 

update,  BLOB  377 

UpdateFTIndex  359 

UpdateItemRequest  480 

updateObject  138, 372 

UpdateWorkPackageRequest
XML messages

updating work packages  503 

updating  content 379 

XDO 45 

user exits
programming  for document  

routing 248 

system  administration  12 

workflow  394 

user ID
mapping  in federated  7 

user privileges
Content  Manager  Version  8 113 

user-defined  attributes  189 

making  text searchable 192 

UserLastMoved  501 

users
controlling access in CM 8 115 

V
valueObj  136 

version  attribute 470 

version,  querying  203 

versioning
application-controlled  112 

attributes  143 

beans  414, 423 

Content  Manager  Version  8 112 

item types 147 

items  142 

parts in the document  management  

data model 180 

persistent  identifier  (PID) 112 

policy  112 

setting  for an item 145 

version  control policies  146 

VideoCharger 107 

VIEW 443 

viewers,  Java document,
See  document  viewer toolkit 

virtual  nodes 225 

Visual  C++ compiler 17 

Visual  Studio .NET
libraries  19 

Visual  Studio .NET (continued)
overview  of WSDL  516 

W
W3C XML Query 187 

wakeUpService  284 

Web  services
advantages  514 

architecture  515 

authenticating  523 

C# walkthrough sample 519 

creating a new item instance  524 

development  tools 516 

getting started in .NET 518 

getting started in a Java 

environment 520 

introduction 513 

Java samples 518 

Java template listing  522 

Java walkthrough sample  521 

overview  513 

programming in .NET 519 

relation to other XML services 429 

samples location  517 

scenario 513 

security 523 

standards 514 

walkthrough  sample 519 

Web  Services Description  Language  

(WSDL) 514 

web.xml 405 

WebSphere Application  Server
authenticating  465 

WebSphere Studio Application  Developer  

(WSAD)
building  beans 404 

creating a Web  services  client 

with 519 

diagram 431 

wildcards
Domino.Doc  360 

query 207 

text search 193 

Windows
C++ DLL files 17 

setting the console  subsystem  19 

starting the RMI server 16 

work items
accessing  392 

work nodes
business  application  223 

constants  225 

decision points 225 

DKWorkNodeContainerDefICM  226 

extending  496 

listing 230 

listing in XML 494 

types 496 

virtual 225 

work note
defining  228 

routing 221 

work packages
DKWorkPackageICM  227 

listing in XML 499 

listing PID strings  in a worklist  242 

 

 

592 Application  Programming Guide



work packages  (continued)
listing the next one in XML 499 

retrieving  information  243 

updating  in XML  503 

user exits 248 

work packet
introduction  385 

workbasket
creating in earlier CM 321 

definition  in earlier  CM  318 

identifying  in earlier  CM 325 

listing in earlier CM 322 

rules 318 

workflow
accessing  work items 392 

accessing  worklists  391 

actions  223 

beans 405 

beans support 407 

connecting  to 385 

container  variables  223 

creating in earlier CM 319 

creating Java actions 394 

definition  in earlier  CM  318 

deleting  387 

disconnecting  from 385 

earlier Content  Manager  service  318 

executing  in earlier  CM 325 

introduction  385 

listing 388 

listing all the templates  394 

listing all the worklists  390 

listing in earlier CM 320 

listing items IDs in earlier  CM 323 

model  318 

moving  items 393 

sending  results  from  a federated  

folder 11 

starting 386 

suspending  389 

terminating  387 

WorkListName  499 

worklists
accessing  391 

accessing  work items 392 

beans 405 

defining  234 

DKWorkListICM  227 

listing 235, 390 

listing in XML 498 

listing package  PIDs 242 

moving  items 393 

WorkPackageOwner  499 

WorkPackagesToReturn  499 

wsdl.exe
getting started  with 519 

overview  516 

WSDL2Java  520 

X
XDO

adding  a media  object  51 

adding  an annotation  object  to 43 

adding  from  a file 42 

adding  from  the buffer  41 

adding  to a storage  collection  65 

XDO (continued)
changing the storage collection  67 

class 369 

class type hierarchy 139 

comparing  with attributes  3 

creating a resource item 139 

deleting  45, 56 

dkBlob 377 

dkXDO  369 

examples  45 

indexing  in earlier CM 38 

indexing  in image search 311 

introduction 2 

invoking  a function 46 

Java 37 

data properties 37 

DDO, part of 39 

indexing  281 

PID 37 

Programming tips 38, 39 

stand-alone  41 

large object 120 

members  378 

objects 110 

representing multimedia  content  3 

retrieving 45 

retrieving a media object 60 

setting the MIME type 140 

specific  DK classes 381 

text searching 202 

updating  45 

XML
administration  metadata 433 

beans  408 

beans  tag library 405 

document  routing 493 

extracting
buffer 458 

file 458 

Web  address 458 

item types 434 

items 454 

Java support  13 

representation of the query examples  

data model 197 

representing metadata 455 

schema  conversion  tool 458 

services  429 

W3C query 187 

XML messages
authenticating 465 

batching  509 

changing  a password 466 

checking  items out and in 488 

continuing  a process 506 

creating an item 468 

deleting  items 487 

ending  a process 505 

linking  items 490 

listing  actions  501 

listing  entitites  466 

listing  processes 497 

listing  servers 464 

listing  work nodes 494 

listing  work packages  499 

listing  worklists  498 

moving  items between entities 492 

XML messages  (continued)
relation to Web  services  515 

resuming a process 508 

retrieving items 472 

searching items 469 

SOAP  513 

starting  a process 504 

suspending  a process 507 

updating  items 480 

viewing  user privileges  476 

working  with folders 477 

XML services
diagram 430 

exporting  object dependencies  457 

importing  and exporting  

metadata 432 

overview  429 

programming layers 429 

programming with JavaBeans  461 

scenarios  432 

unsupported  XML types 453 

XMLItem  455 

XQuery  Path Expressions (XQPE) 187 

XSD files 434 

 

 

Index  593



594 Application  Programming Guide





����

Program  Number: 5724-B19  

5697-H60

  

Printed  in USA 

 

  

SC27-1347-04  

              

 



This document was filed with PUCO Docketing on 

7/18/2006 @ 3:19:01 PM


	Contents
	About this guide
	Who should use this guide
	Where to find more information
	Information included in your product package
	The information center
	PDF publications

	Support available on the Web
	How to send your comments

	What’s new in IBM DB2 Content Manager Enterprise Edition Version 8 Release 3
	What’s new in DB2 Content Manager Version 8 Release 3 for z/OS

	Chapter 1. Information Integrator for Content application programming concepts
	Understanding data access through content servers
	Understanding dynamic data object concepts
	Dynamic data objects (DDO)
	Extended data objects (XDO)
	Representing multimedia content
	Understanding content servers and DDOs
	Comparing DDO/XDOs with attribute values and item parts
	Understanding persistent identifiers (PID)


	Chapter 2. Working with a federated content server and federated searching
	Federated schema mapping
	Using federated content server mapping components
	Running federated queries
	Federated query syntax
	Storing query results in federated folders (Java only)

	Working with system administration
	Customizing the Information Integrator for Content system administration client


	Chapter 3. Programming with the application programming interfaces (APIs)
	Understanding differences between the Java and C++ APIs
	Understanding client/server architecture (Java only)
	Packaging for the Java environment
	Programming tips

	Setting up the Java environment (Java only)
	Setting the Java environment variables for Windows
	Setting the Java environment variables for AIX
	Setting the Java environment variables for Solaris and Linux
	Setting the Java environment variables for z/OS USS
	Using Remote Method Invocation (RMI) with content servers

	Setting up the C++ environment (C++ only)
	Setting the C++ environment variables for Windows
	Setting the C++ environment variables for AIX
	Building C++ programs
	Working with Microsoft Visual Studio .NET

	Setting the console subsystem for code page conversion on Windows

	Understanding multiple search options
	Tracing
	Tracing text queries using DB2 Text Information Extender
	Tracing parametric queries
	Handling exceptions

	Constants
	Connecting to content servers
	Establishing a connection
	Connecting and disconnecting from a content server in a client
	Setting and getting content server options
	Listing content servers
	Listing the entities and attributes for a content server

	Working with dynamic data objects (DDOs)
	Creating a DKDDO
	Adding properties to a DDO
	Creating a persistent identifier (PID)
	Working with data items and properties
	Getting the DKDDO and attribute properties
	Displaying the whole DDO
	Deleting a DDO (C++ only)

	Working with extended data objects (XDOs)
	Using an XDO persistent identifier (PID)
	Understanding XDO properties
	DB2 and ODBC configuration strings (C++ only)
	Java programming tips
	C++ programming tips
	Programming an XDO as a part of DDO
	Programming a stand-alone XDO
	Adding an XDO from the buffer
	Adding an XDO from a file
	Adding an annotation object to an XDO

	Examples of working with an XDO
	Retrieving, updating, and deleting an XDO
	Invoking an XDO function
	Adding an XDO media object in earlier DB2 Content Manager
	Deleting an XDO media object
	Retrieving an XDO media object
	Adding an XDO to a storage collection
	Changing the storage collection of an XDO


	Creating documents and using the DKPARTS attribute
	Creating folders and using the DKFOLDER attribute
	Using DKAny (C++ only)
	Using type code
	Managing memory in DKAny
	Using constructors
	Getting the type code
	Assigning a new value to DKAny
	Assigning a value from DKAny
	Displaying DKAny
	Destroying DKAny
	Programming tips

	Using collections and iterators
	Using sequential collection methods
	Using the sequential iterator
	Managing memory in collections (C++ only)
	Sorting the collection
	Understanding federated collection and iterator

	Querying a content server
	Differences between dkResultSetCursor and DKResults
	Using parametric queries
	Formulating a parametric query string
	Formulating a parametric query on multiple criteria
	Executing a parametric query
	Executing a parametric query from a content server
	Evaluating a parametric query from a content server

	Using text query
	Formulating a text query string
	Formulating a text query on multiple indexes
	Running a text query
	Running a text query from a content server
	Evaluating a text query from a content server
	Getting match highlighting information


	Using the result set cursor
	Opening and closing the result set cursor to rerun the query
	Setting and getting positions in a result set cursor
	Creating a collection from a result set cursor

	Querying collections
	Getting the result of a query
	Evaluating a new query
	Using queryable collection instead of combined query


	Chapter 4. Working with DB2 Content Manager Version 8.3
	Understanding the DB2 Content Manager system
	Understanding DB2 Content Manager concepts
	Items
	Attributes
	Item types
	Root and child components
	Objects
	Links and references
	Documents
	Folders
	Versioning
	Access control
	Privileges and privilege sets
	Users and user groups
	Access control lists (ACLs)


	Planning a DB2 Content Manager application
	Determining the features of your application
	Handling errors

	Working with the DB2 Content Manager samples
	The insurance scenario sample

	Creating a DB2 Content Manager application
	Understanding the software components
	Representing items using DDOs
	Connecting to the DB2 Content Manager system
	Changing a password

	Working with items
	Creating an item type
	Listing item types
	Creating attributes
	Creating, updating, and deleting attribute groups
	Listing the attributes in a content server
	Listing attribute names for an item type
	Creating an item
	Setting and retrieving item attribute values
	Setting and retrieving foreign key attribute values
	Modifying an item’s attributes
	Updating an item
	Defining a resource item type
	Creating a resource item
	Searching for items
	Retrieving an item
	Deleting items
	Deleting versioned items
	Checking in and checking out items
	Setting and getting an item’s versioning properties
	Working with item versions

	Working with folders
	Creating a folder
	Adding contents to a folder
	Removing contents from a folder
	Tips for adding and removing folder contents
	Retrieving a folder’s contents
	Obtaining all folders containing a specific DDO

	Defining links between items
	Inbound and outbound links
	Link type names
	Retrieving linked items


	Working with access control
	Creating a privilege
	Creating a privilege set
	Displaying privilege set properties
	Defining an access control list (ACL)
	Retrieving and displaying ACL information
	Assigning an ACL to an item type
	Assigning an ACL to an item

	Library server and federated database limitations
	Working with the resource manager
	Working with resource manager objects
	Confidential retrieval of resource objects
	Removing resource object contents
	Understanding asynchronous replication in a z/OS resource manager
	Table definitions and column descriptions


	Managing documents in DB2 Content Manager
	Creating the document management data model
	Creating a document item type
	Creating a document
	Updating a document
	Retrieving and deleting a document
	Versioning of parts in the document management data model

	Working with transactions
	Things to consider when designing transactions in your application
	Caution when using transactions
	Using check-in and check-out in transactions
	Processing transactions
	New explicit transactions behavior in Version 8.3
	Transaction behavior when deleting a user does not belong in a group


	Chapter 5. Searching for data
	Querying the DB2 Content Manager server
	Applying the query language to the DB2 Content Manager data model
	Understanding parametric search
	Understanding text search
	Searching for object contents
	Searching for documents
	Making user-defined attributes text searchable
	Understanding text search syntax
	Basic text search
	Advanced text search


	Creating combined parametric and text search
	Example searches using the query language
	Query examples

	Using escape sequences in your queries
	Using escape sequences with comparison operators
	Using escape sequences with the LIKE operator
	Using escape sequences with advanced text search
	Using escape sequences with basic text search (contains-text-basic and score-basic functions)
	Using escape sequences in Java and C++

	Understanding row-based view filtering in query
	Sample usage scenario
	Description of behavior
	Performance considerations
	Database Index on each filtered attribute
	Security implications

	The query language grammar

	Chapter 6. Routing a document through a process
	Understanding the document routing process
	Understanding document routing enhancements in Version 8.3
	Understanding Version 8.3 compatibility with Version 8.2

	Understanding document routing classes
	Creating document routing service objects
	Defining a new regular work node
	Listing work nodes
	Defining a new collection point
	Defining a work list
	Listing worklists
	Defining a new process and associated route
	Starting a document routing process
	Ending a process
	Continuing a process
	Suspending a process
	Resuming a process
	Listing work package persistent identifier strings in a worklist
	Retrieving work package information
	Listing document routing processes
	Ad hoc routing
	Document routing example queries
	Granting privileges for document routing
	Working with access control lists for document routing
	Programming document routing user exits
	Document routing constants


	Chapter 7. Understanding prefetching in DB2 Content Manager for z/OS
	Prefetching objects
	Table definitions related to prefetching


	Chapter 8. Working with other content servers
	Working with earlier DB2 Content Manager
	Handling large objects
	Setting Java heap size (Java only)

	Using DDOs to represent earlier Content Manager content
	DDO properties
	Persistent identifier (PID)
	Representing documents
	Representing folders

	Creating, updating, and deleting documents or folders
	Creating a document
	Updating a document or a folder
	Updating parts
	Updating folders
	Deleting a document or a folder

	Retrieving a document or folder
	Retrieving parts
	Retrieving a folder

	Understanding text searching (DB2 Text Information Extender)
	Boolean query
	Free text query
	Hybrid query
	Proximity query
	Global text retrieval (GTR) query
	Representing DB2 Text Information Extender information using DDOs
	Establishing a connection
	Getting and setting text search options
	Listing servers
	Listing schema
	Indexing XDOs by search engine
	Using text structured document support

	Searching images by content
	Understanding image search terms and concepts

	Using image search applications
	Creating queries
	Running queries and evaluating search results

	Establishing a connection in QBIC
	Listing image search servers
	Listing image search databases, catalogs, and features
	Representing image search information with a DDO
	Working with image queries
	Running an image query
	Running an image query from the content server
	Evaluating an image query from the content server

	Using the image search engine
	Loading data to be indexed for image search

	Indexing an existing XDO using search engines
	Using combined query
	Combined parametric and text queries
	Using a scope
	Ranking
	Tips

	Understanding the earlier DB2 Content Manager workflow and workbasket functions
	Understanding the earlier DB2 Content Manager workflow service
	Establishing a connection
	Creating a workflow
	Listing workflows
	Creating a DB2 Content Manager workbasket
	Listing workbaskets
	Listing items in an earlier DB2 Content Manager workflow
	Executing an earlier DB2 Content Manager workflow


	Working with OnDemand
	Representing OnDemand servers and documents
	Connecting to and disconnecting from the OnDemand server
	Listing information on OnDemand
	Listing application groups
	Listing OnDemand folders

	Retrieving an OnDemand document
	Searching for a particular document
	Displaying documents and their parts and attributes

	Enabling the OnDemand folder mode
	Asynchronous search
	OnDemand folders as search templates
	OnDemand folders as native entities
	Create and modify annotations
	Tracing

	Working with Content Manager ImagePlus for OS/390
	Listing entities and attributes
	ImagePlus for OS/390 query syntax

	Working with DB2 Content Manager for AS/400
	Listing entities (index classes) and attributes
	Running a query
	Running a parametric query

	Working with Domino.Doc
	Listing entities and subentities
	Listing cabinet attributes
	Building queries in Domino.Doc
	Using query syntax

	Working with relational databases
	Connecting to relational databases
	Connection strings
	Configuration strings

	Listing entities and entity attributes
	Running a query

	Creating custom content server connectors
	Developing custom content server connectors
	Information Integrator for Content database infrastructure
	Common classes in Information Integrator for Content
	dkDatastore and related classes

	Using the FeServerDefBase class (Java only)


	Chapter 9. Building Information Integrator for Content workflow applications
	Connecting to workflow services
	Starting a workflow
	Terminating a workflow
	Listing all the workflows
	Suspending a workflow
	Resuming a workflow
	Listing all the worklists
	Accessing a worklist
	Accessing work items
	Moving items in the workflow
	Listing all the workflow templates
	Creating your own actions (Java only)
	Working with the Information Integrator for Content workflow JavaBeans
	Prerequisites
	Setting up the sample data model
	Using the workflow JavaBeans in your application
	Example code snippets



	Chapter 10. Building applications with non-visual and visual JavaBeans
	Understanding basic beans concepts
	Using JavaBeans in builders
	Using IBM Websphere Studio Application Developer

	Invoking the Information Integrator for Content JavaBeans
	Working with the non-visual beans
	Non-visual bean configurations
	Understanding the non-visual beans features
	Non-visual beans categories
	Considerations when using the non-visual beans
	Changing locale in display names
	Tracing and logging in the beans
	Understanding properties and events for non-visual beans
	Building an application using non-visual beans
	A sample non-Graphical User Interface (GUI) application


	Working with visual beans
	CMBLogonPanel bean
	CMBSearchTemplateList bean
	CMBSearchTemplateViewer bean
	Validating or editing fields of the CMBSearchTemplateViewer
	CMBSearchPanel bean
	CMBSearchResultsViewer bean
	Overriding pop-up menus
	CMBFolderViewer bean
	CMBDocumentViewer bean
	Viewer specifications
	Default viewers
	Launching external viewers
	CMBItemAttributesEditor bean
	Vetoing changes in the CMBItemAttributesEditor
	CMBVersionsViewer bean
	General behaviors for visual beans
	Properties
	Save/restore configuration
	Support for child component attributes
	Help events

	Replacing a visual bean
	Building an application using visual beans
	Connecting the visual beans
	Using beans in more than one window or dialog



	Chapter 11. Working with XML services (Java only)
	Understanding how XML services work with other DB2 Content Manager programming layers
	Importing and exporting DB2 Content Manager metadata using XML services
	Importing and exporting administration objects as XML
	Importing and exporting DB2 Content Manager data model objects as XML schema files (XSD)
	Unsupported XML types in the DB2 Content Manager storage schemas


	Importing and exporting DB2 Content Manager data instance objects as XML
	Exporting DB2 Content Manager DDO items as XML items
	Importing XML items as DB2 Content Manager DDO items

	Importing and exporting XML object dependencies
	Extracting content from different XML sources
	Mapping a user-defined schema to a storage schema with the XML schema mapping tool
	Programming runtime operations through the XML JavaBeans
	Listing DB2 Content Manager servers with ListServerRequest
	Authenticating Web service requests for security
	Changing a password with XML requests
	Listing DB2 Content Manager entities with ListSchemaRequest
	Creating DB2 Content Manager items with CreateItemRequest
	Searching DB2 Content Manager items with RunQueryRequest
	Retrieving DB2 Content Manager items with RetrieveItemRequest
	Viewing your user privileges with XML requests
	Working with DB2 Content Manager folders through XML requests
	Updating DB2 Content Manager items with an XML UpdateItemRequest
	Adding objects inside DB2 Content Manager items with an XML UpdateItemRequest
	Replacing objects inside DB2 Content Manager items with an XML UpdateItemRequest
	Deleting objects inside DB2 Content Manager items with an XML UpdateItemRequest

	Deleting DB2 Content Manager items with DeleteItemRequest
	Checking DB2 Content Manager items out and in with CheckoutItemRequest and CheckinitemRequest
	Linking DB2 Content Manager items with CreateLinkRequest or DeleteLinkRequest
	Moving DB2 Content Manager items between entities with MoveItemRequest
	Accessing DB2 Content Manager document routing using XML-based requests
	Listing work nodes with XML requests
	Listing document processes with XML requests
	Listing worklists with XML requests
	Listing work packages with XML requests
	Listing actions in DB2 Content Manager with XML requests
	Updating a work package with UpdateWorkPackageRequest
	Starting a document routing process with StartProcessRequest
	Ending a process with TerminateProcessRequest
	Continuing a process with ContinueProcessRequest
	Suspending a process with SuspendProcessRequest
	Resuming a process with ResumeProcessRequest

	Batching multiple requests in XML requests


	Chapter 12. Working with the Web services
	Web services overview
	Understanding the DB2 Content Manager Web services implementation
	Working with the Web service in development tools

	Integrating basic Web services into your applications or processes
	Getting started with the Web services in a .NET environment
	Programming Web services requests in a .NET environment
	Getting started with the Web services in a Java environment
	Programming Web services requests in a Java environment
	Authenticating Web services requests for security
	Creating a new instance of an item through Web services
	Attaching binary content parts to items in Web services



	Chapter 13. Working with the Java document viewer toolkit
	Viewer architecture
	The document engines
	The annotations engine
	Example viewer architectures
	Standalone viewer
	Java application
	Thin client
	Applet or servlet
	Dual-mode and applet or servlet


	Creating a document viewer
	Creating a standalone viewer application or applet
	Working with documents and annotations
	Customizing the viewer

	Working with the annotation services
	Using annotation services interfaces
	Understanding annotation editing support
	Building an application using the annotation services
	Adding a custom annotation type to your application
	Working with the page manipulation functions
	Enabling a custom application for page manipulation



	Chapter 14. Working with the JSP tag library and controller servlet
	Setting up the tag library and servlet
	Using the tag library
	Conventions used in the tag library
	Tag summary
	Connection related tags
	Schema related tags
	Search related tags
	Item related tags
	Folder related tags
	Document related tags

	Information Integrator for Content controller servlet
	What the servlet can do
	Servlet reference
	Conventions
	Application parameters
	Properties File
	Request parameters


	Servlet toolkit function matrix

	Chapter 15. Troubleshooting
	Receiving an error when compiling C++ applications that are Unicode enabled
	Receiving an error when using reference attributes
	Cannot add, store, retrieve, or update a resource item
	Cannot import a DKDDO object from XML
	Receiving an error when updating, reorganizing, or using text indexes for text searchable components

	Notices
	Trademarks

	Glossary
	Index

