

Juliet Solar

Exhibit I

PJM Interconnection Studies

Case No. 20-1760-EL-BGN

Generation Interconnection Feasibility Study Report for Queue Project AF1-064 WESTON 69 KV 33.4 MW Capacity / 50 MW Energy

January, 2020

Table of Contents

1 l	Introdu	ction	4
2	Preface		4
3 (General	l	6
3.1	. Poi	int of Interconnection	7
3	3.1.1	Primary POI	7
	3.1.2	Secondary POI	7
3.2	2 Cos	st Summary	7
4	Transm	ission Owner Scope of Work	9
5	Attachn	nent Facilities	9
6 I	Direct C	Connection Cost Estimate	10
7 I	Non-Dir	rect Connection Cost Estimate	10
8 9	Schedul	le	11
9	Transm	ission Owner Analysis	12
10	Inter	connection Customer Requirements	13
10	.1 Sys	stem Protection	13
10	.2 Coi	mpliance Issues and Interconnection Customer Requirements	13
10	.3 Pov	wer Factor Requirements	14
11	Reve	nue Metering and SCADA Requirements	15
11	.1 PJN	/ Requirements	15
	11.1.1	Meteorological Data Reporting Requirement	15
11	.2 AT	SI Requirements	15
12	Netw	ork Impacts – Primary POI	16
12	.1 Gei	neration Deliverability	18
12	.2 Mu	Iltiple Facility Contingency	18
12	.3 Coi	ntribution to Previously Identified Overloads	18
12	.4 Pot	tential Congestion due to Local Energy Deliverability	18
12	.5 Sys	stem Reinforcements	19
12	.6 Flo	w Gate Details	20
12	.7 Ind	lex 1	21
12	.8 Ind	lex 2	23
12	.9 Aff	ected Systems	25

12.9.	1 LG&E	25
12.9.	2 MISO	25
12.9.	3 TVA	25
12.9.	4 Duke Energy Progress	25
12.9.	5 NYISO	25
12.10	Contingency Description	26
12.11	Short Circuit	28
13 Ne	etwork Impacts – Secondary POI	29
13.1	Generation Deliverability	31
13.2	Multiple Facility Contingency	31
13.3	Contribution to Previously Identified Overloads	31
13.4	Potential Congestion due to Local Energy Deliverability	31
13.5	Flow Gate Details	32
13.6	Index 1	33
13.7	Index 2	35
13.8	Affected Systems	
13.8.	1 LG&E	
13.8.	2 MISO	
13.8.	3 TVA	
13.8.	4 Duke Energy Progress	
13.8.	5 NYISO	
13.9	Contingency Description	
13.10	Short Circuit	40
14 At	tachment One: One Line Diagram	41

1 Introduction

This Feasibility Study has been prepared in accordance with the PJM Open Access Transmission Tariff, 36.2, as well as the Feasibility Study Agreement between the Interconnection Customer (IC), and PJM Interconnection, LLC (PJM), Transmission Provider (TP). The Interconnected Transmission Owner (ITO) is American Transmission Systems, Inc. (ATSI – Toledo Edison zone).

2 Preface

The intent of the feasibility study is to determine a plan, with ballpark cost and construction time estimates, to connect the subject generation to the PJM network at a location specified by the Interconnection Customer. The Interconnection Customer may request the interconnection of generation as a capacity resource or as an energy-only resource. As a requirement for interconnection, the Interconnection Customer may be responsible for the cost of constructing: (1) Direct Connections, which are new facilities and/or facilities upgrades needed to connect the generator to the PJM network, and (2) Network Upgrades, which are facility additions, or upgrades to existing facilities, that are needed to maintain the reliability of the PJM system.

In some instances a generator interconnection may not be responsible for 100% of the identified network upgrade cost because other transmission network uses, e.g. another generation interconnection, may also contribute to the need for the same network reinforcement. Cost allocation rules for network upgrades can be found in PJM Manual 14A, Attachment B. The possibility of sharing the reinforcement costs with other projects may be identified in the feasibility study, but the actual allocation will be deferred until the impact study is performed.

The Interconnection Customer seeking to interconnect a wind or solar generation facility shall maintain meteorological data facilities as well as provide that meteorological data which is required per Schedule H to the Interconnection Service Agreement and Section 8 of Manual 14D.

PJM utilizes manufacturer models to ensure the performance of turbines is properly captured during the simulations performed for stability verification and, where applicable, for compliance with low voltage ride through requirements. Turbine manufacturers provide such models to their customers. The list of manufacturer models PJM has already validated is contained in Attachment B of Manual 14G. Manufacturer models may be updated from time to time, for various reasons such as to reflect changes to the control systems or to more accurately represent the capabilities turbines and controls which are currently available in the field. Additionally, as new turbine models are developed, turbine manufacturers provide such new models which must be used in the conduct of these studies. PJM needs adequate time to evaluate the new models in order to reduce delays to the System Impact Study process timeline for the Interconnection Customer as well as other Interconnection Customers in the study group. Therefore, PJM will require that any Interconnection Customer with a new manufacturer model must supply that model to PJM, along with a \$10,000 fully refundable deposit, no later than three (3) months prior to the starting date of the System Impact Study (See Section 4.3 for starting dates) for the Interconnection Request which shall specify the use of the new model.

The Interconnection Customer will be required to submit a completed dynamic model study request form (Attachment B-1 of Manual 14G) in order to document the request for the study.

The Feasibility Study estimates do not include the feasibility, cost, or time required to obtain property rights and permits for construction of the required facilities. The project developer is responsible for the right of way, real estate, and construction permit issues. For properties currently owned by Transmission Owners, the costs may be included in the study.

3 General

The Interconnection Customer (IC), has proposed a Solar generating facility located in Wood County, Ohio. The installed facilities will have a total capability of 50 MW with 33.4 MW of this output being recognized by PJM as Capacity. The proposed in-service date for this project is March 31, 2022. This study does not imply a TO commitment to this in-service date.

Queue Number	AF1-064
Project Name	WESTON 69 KV
State	Ohio
County	Wood
Transmission Owner	ATSI
MFO	50
MWE	50
MWC	33.4
Fuel	Solar
Basecase Study Year	2023

3.1 Point of Interconnection

3.1.1 Primary POI

The interconnection of the project at the Primary POI will be accomplished by expanding the FirstEnergy Weston 69 kV substation into a four (4) breaker ring bus station and providing a 69 kV line exit to the Primary POI. The IC will be responsible for acquiring all easements, properties, and permits that may be required to construct both the new interconnection line tap and the associated attachment facilities.

Attachment 1 shows a one-line diagram of the proposed primary direct connection facilities for the AF1-064 generation project to connect to the FirstEnergy ("FE") transmission system. IC will be responsible for constructing all of the facilities on its side of the POI, including the attachment facilities which connect the generator to the FE transmission system's direct connection facilities.

3.1.2 Secondary POI

The interconnection of the project at a Secondary POI can be accomplished by constructing a new 69 kV three (3) breaker ring bus substation and looping the Midway-Bowling Green 69 kV line into the new ring bus substation. A 69 kV line exit would then be extended from the new ring bus substation to the Secondary POI. The new substation would be located approximately 0.16 miles from Weston 69 kV substation and 7.9 miles from Grand Rapids 69 kV substation. A full scope of work or estimated cost is not provided for the proposed Secondary POI.

3.2 Cost Summary

The AF1-064 project will be responsible for the following costs:

Description	Total Cost
Attachment Facilities	\$470,500
Direct Connection Network Upgrade	\$0
Non Direct Connection Network Upgrades	\$6,696,300
Total Costs	\$7,166,800

In addition, the AF1-064 project may be responsible for a contribution to the following costs

Description	Total Cost
System Upgrades	\$23,600,000

Cost allocations for these upgrades will be provided in the System Impact Study Report.

The Feasibility Study is used to make a preliminary determination of the type and scope of Attachment Facilities, Local Upgrades, and Network Upgrades that will be necessary to accommodate the Interconnection Request and to provide the Interconnection Customer a preliminary estimate of the time that will be required

to construct any necessary facilities and upgrades and the Interconnection Customer's cost responsibility. The System Impact Study provides refined and comprehensive estimates of cost responsibility and construction lead times for new facilities and system upgrades. Facilities Studies will include, commensurate with the degree of engineering specificity as provided in the Facilities Study Agreement, good faith estimates of the cost, determined in accordance with Section 217 of the Tariff,

- (a) to be charged to each affected New Service Customer for the Facilities and System Upgrades that are necessary to accommodate this queue project;
- (b) the time required to complete detailed design and construction of the facilities and upgrades; and

(c) a description of any site-specific environmental issues or requirements that could reasonably be anticipated to affect the cost or time required to complete construction of such facilities and upgrades.

The costs provided above exclude the Contribution in Aid of Construction ("CIAC") Federal Income Tax Gross Up charge. If at a future date it is determined that the CIAC Federal Income Tax Gross charge is required, the Transmission Owner shall be reimbursed by the Interconnection Customer for such taxes.

The required Attachment Facilities and Direct and Non-Direct Connection work for the interconnection of the AF1-064 generation project to the FE Transmission System is detailed in the following sections. The associated one-line with the generation project Attachment Facilities and the Primary Direct and Non-Direct Connection facilities are shown in Attachment 1.

4 Transmission Owner Scope of Work

Primary POI

The interconnection of the project at the Primary POI will be accomplished by expanding the FirstEnergy Weston 69 kV substation into a four (4) breaker ring bus station and providing a 69 kV line exit to the Primary POI. The IC will be responsible for acquiring all easements, properties, and permits that may be required to construct both the new interconnection line tap and the associated attachment facilities.

Attachment 1 shows a one-line diagram of the proposed primary direct connection facilities for the AF1-064 generation project to connect to the FirstEnergy ("FE") transmission system. IC will be responsible for constructing all of the facilities on its side of the POI, including the attachment facilities which connect the generator to the FE transmission system's direct connection facilities

5 Attachment Facilities

The total preliminary cost estimate for the Attachment work is given in the table below. These costs do not include CIAC Tax Gross-up.

Description	Total Cost
Install SCADA and MOAB for the New Line Exit @	\$393,700
Weston	
Customer drawings and Nameplates @ AF1-064	\$76,800
Total Attachment Facility Costs	\$470,500

6 Direct Connection Cost Estimate

No Direct Connection work is required.

7 Non-Direct Connection Cost Estimate

The total preliminary cost estimate for the Non-Direct Connection work is given in the table below. These costs do not include CIAC Tax Gross-up.

Description	Total Cost
Reconfigure 69kV to 4-Breaker Ring Bus @ Weston	\$6,377,700
Upgrade Line Relaying @ Midway	\$318,600
Total Non-Direct Connection Facility Costs	\$6,696,300

8 Schedule

Based on the scope of work for the Attachment Facilities and the Direct and Non-Direct Connection facilities, it is expected to take a minimum of **24 months** after the signing of an Interconnection Construction Service Agreement to complete the installation. This includes the requirement for the IC to make a preliminary payment that compensates FE for the first three months of the engineering design work that is related to the Attachment Facilities. Full initial deposit will be required for the Non-Direct Connection work. This assumes that there will be no environmental issues with any of the new properties associated with this project, that there will be no delays in acquiring the necessary permits for implementing the interconnection work and network upgrades, and that all transmission system outages will be allowed when requested.

The schedule for the required Network Impact Reinforcements will be more clearly identified in future study phases. The estimate elapsed time to complete each of the required reinforcements is identified in the "System Reinforcements" section of the report.

9 Transmission Owner Analysis

FE performed an analysis of its underlying transmission <100 kV system. The AF1-064 project did not contribute to any overloads on the FE transmission system.

10 Interconnection Customer Requirements

10.1 System Protection

The IC must design its Customer Facilities in accordance with all applicable standards, including the standards in FE's "Requirements for Transmission Connected Facilities" document located at: <u>http://www.pjm.com/planning/design-engineering/to-tech-standards/private-firstenergy.aspx</u>. Preliminary Protection requirements will be provided as part of the Facilities Study. Detailed Protection Requirements will be provided once the project enters the construction phase.

The IC has requested a non-standard GSU transformer winding configuration. This transformer is in violation of section 14.2.6 of FE's "Requirements for Transmission Connected Facilities" document and will not be accepted. The GSU transformer must have a grounded wye connection on the high (utility) side and a delta connection on the low (generator) side.

10.2 Compliance Issues and Interconnection Customer Requirements

The proposed Customer Facilities must be designed in accordance with FE's "Requirements for Transmission Connected Facilities" document located at: <u>http://www.pjm.com/planning/design-engineering/to-tech-standards/private-firstenergy.aspx</u>. In particular, the IC is responsible for the following:

- 1. The purchase and installation of a fully rated 69 kV circuit breaker to protect the AF1-064 generator lead line. A single circuit breaker must be used to protect this line; if the project has several GSU transformers, the individual GSU transformer breakers cannot be used to protect this line.
- 2. The purchase and installation of the minimum required FE generation interconnection relaying and control facilities. This includes over/under voltage protection, over/under frequency protection, and zero sequence voltage protection relays.
- 3. The purchase and installation of supervisory control and data acquisition ("SCADA") equipment to provide information in a compatible format to the FE Transmission System Control Center.
- 4. Compliance with the FE and PJM generator power factor and voltage control requirements.
- 5. The execution of a back-up service agreement to serve the customer load supplied from the AF1-064 generation project metering point when the units are out-of-service. This assumes the intent of the IC is to net the generation with the load.

The IC will also be required to meet all PJM, ReliabilityFirst, and NERC reliability criteria and operating procedures for standards compliance. For example, the IC will need to properly locate and report the over and under voltage and over and under frequency system protection elements for its units as well as the submission of the generator model and protection data required to satisfy the PJM and ReliabilityFirst audits.

Failure to comply with these requirements may result in a disconnection of service if the violation is found to compromise the reliability of the FE system.

10.3 Power Factor Requirements

The IC shall design its solar Customer Facility with the ability to maintain a power factor of at least 0.95 leading (absorbing VARs) to 0.95 lagging (supplying VARs) measured at the high-side of the facility substation transformer(s) connected to the FE transmission system.

11 Revenue Metering and SCADA Requirements

11.1 PJM Requirements

The Interconnection Customer will be required to install equipment necessary to provide Revenue Metering (KWH, KVARH) and real time data (KW, KVAR) for IC's generating Resource. See PJM Manuals M-01 and M-14D, and PJM Tariff Section 8 of Attachment O.

11.1.1 Meteorological Data Reporting Requirement

The solar generation facility shall provide the Transmission Provider with site-specific meteorological data including:

- Temperature (degrees Fahrenheit)
- Atmospheric pressure (hectopascals)
- Irradiance
- Forced outage data

11.2 ATSI Requirements

The IC will be required to comply with all FE revenue metering requirements for generation interconnection customers which can be found in FE's "Requirements for Transmission Connected Facilities" document located at: <u>http://www.pjm.com/planning/design-engineering/to-tech-standards/private-firstenergy.aspx</u>

12 Network Impacts – Primary POI

The Queue Project AF1-064 was evaluated as a 50.0 MW (Capacity 33.4 MW) injection at the Weston 69 kV substation in the ATSI area. Project AF1-064 was evaluated for compliance with applicable reliability planning criteria (PJM, NERC, NERC Regional Reliability Councils, and Transmission Owners). Project AF1-064 was studied with a commercial probability of 53%. Potential network impacts were as follows:

Summer Peak Load Flow

12.1 Generation Deliverability

(Single or N-1 contingencies for the Capacity portion only of the interconnection)

None

12.2 Multiple Facility Contingency

(Double Circuit Tower Line, Fault with a Stuck Breaker, and Bus Fault contingencies for the full energy output)

None

12.3 Contribution to Previously Identified Overloads

(This project contributes to the following contingency overloads, i.e. "Network Impacts", identified for earlier generation or transmission interconnection projects in the PJM Queue)

ID	FROM BUS#	FROM BUS	kV	FRO M BUS ARE A	TO BUS#	TO BUS	kV	TO BUS ARE A	CK T ID	CONT NAME	Туре	Ratin g MVA	PRE PROJEC T LOADIN G %	POST PROJEC T LOADIN G %	AC D C	MW IMPAC T
409640 16	23887 4	02LAKVE W	138. 0	ATSI	23876 8	02GRNFL D	138. 0	ATSI	1	ATSI-P7-1-TE-345- 027A	tower	316.0	113.89	114.4	DC	3.53
437202 94	24300 9	05FRMN T	138. 0	AEP	24300 8	05FREM CT	138. 0	AEP	1	AEP_P2- 2_#517_05FOSTOR 345_1	bus	251.0	104.93	105.43	DC	2.76
437206 47	24300 9	05FRMN T	138. 0	AEP	24300 8	05FREM CT	138. 0	AEP	1	AEP_P4_#517_05FOS TOR 345_A1	break er	251.0	104.93	105.43	DC	2.76

12.4 Potential Congestion due to Local Energy Deliverability

PJM also studied the delivery of the energy portion of this interconnection request. Any problems identified below are likely to result in operational restrictions to the project under study. The developer can proceed with network upgrades to eliminate the operational restriction at their discretion by submitting a Merchant Transmission Interconnection request.

Note: Only the most severely overloaded conditions are listed below. There is no guarantee of full delivery of energy for this project by fixing only the conditions listed in this section. With a Transmission Interconnection Request, a subsequent analysis will be performed which shall study all overload conditions associated with the overloaded element(s) identified.

None

12.5 System Reinforcements

ID	Index	Facility	Upgrade Description	Cost
43720647,437 20294	2	05FRMNT 138.0 kV - 05FREMCT 138.0 kV Ckt 1	AEPO0020e (364) : Fremont-Fremont CT 138 kV Line: A sag study will be required on the 4.0 miles of ACSR ~ 795 ~ 45/7 ~ TERN - Conductor Section 1 to mitigate the overload. Depending on the sag study results, the cost for this upgrade is expected to be around \$20,000 (no remediation required, just sag study) and \$6 million (complete line reconductor/rebuild). New rating after sag study: S/N:251 S/E: 335 MVA. Time Estimate: a) Sag Study: 6-12 months. b) Rebuild: The standard time required for construction differs from state to state. An approximate construction time would be 24 to 36 months after signing an interconnection agreement. Project Type : FAC Cost : \$20,000 Time Estimate : Sag Study : 6 - 12 months Months	\$20,000
40964016	1	02LAKVEW 138.0 kV - 02GRNFLD 138.0 kV Ckt 1	OEC-011-B (665) : Greenfield-Lakeview 138 KV Line: Reconductor roughly 13.1 miles (currently bundled 336 ACSR) with 795 ACSS conductor. Replace two 1200A line switches with 2000A line switches. Upgrade 500 CU substation conductor at Greenfield to exceed line ratings of 795 ACSS. Upgrade RT for B-242 to exceed line ratingsa of 795 ACSS. Project Type : Facility Cost : \$23,580,000 Time Estimate : 24.0 Months	\$23,580,000
			TOTAL COST	\$23,600,000

12.6 Flow Gate Details

The following indices contain additional information about each flowgate presented in the body of the report. For each index, a description of the flowgate and its contingency was included for convenience. However, the intent of the appendix section is to provide more information on which projects/generators have contributions to the flowgate in question. Although this information is not used "as is" for cost allocation purposes, it can be used to gage other generators impact. It should be noted the generator contributions presented in the appendices sections are full contributions, whereas in the body of the report, those contributions take into consideration the commercial probability of each project.

12.7 Index 1

ID	FROM BUS#	FROM BUS	FROM BUS AREA	TO BUS#	TO BUS	TO BUS AREA	CKT ID	CONT NAME	Туре	Rating MVA	PRE PROJECT LOADING %	POST PROJECT LOADING %	AC DC	MW IMPACT
40964016	238874	02LAKVEW	ATSI	238768	02GRNFLD	ATSI	1	ATSI-P7- 1-TE- 345- 027A	tower	316.0	113.89	114.4	DC	3.53

Bus #	Bus	MW Impact
238601	02FRMENG 1	2.4779
238602	02FRMENG 2	2.4779
238603	02FRMENG 3	4.4733
238979	02NAPMUN	2.0225
247548	V4-010 C	1.4243
247551	U4-028 C	0.6092
247552	U4-029 C	0.6092
247940	U4-028 E	4.0769
247941	U4-029 E	4.0769
247947	V4-010 E	9.5322
931951	AB1-107 1	20.5456
931961	AB1-107 2	33.5314
934251	AD1-052 C1	0.1839
934252	AD1-052 E1	0.5861
934261	AD1-052 C2	0.1839
934262	AD1-052 E2	0.5861
934461	AD1-070 C O1	1.5612
934462	AD1-070 E O1	7.3290
934891	AD1-118	3.6670
937021	AD2-136 C O1	2.1931
937022	AD2-136 E O1	14.6767
937381	AD2-191 C	1.0356
937382	AD2-191 E	6.9307
938911	AE1-119	28.8120
941741	AE2-174 C	1.0119
941742	AE2-174 E	4.7370
941781	AE2-181 C	1.5331
941782	AE2-181 E	1.0221
942661	AE2-282 C O1	2.3557
942662	AE2-282 E O1	1.2396
943961	AF1-064 C O1	1.0626
943962	AF1-064 E O1	0.5281
944551	AF1-120 C	0.7565
944552	AF1-120 E	0.3811
945401	AF1-205 C O1	0.6953
945402	AF1-205 E O1	0.4635
945411	AF1-206 C O1	3.3957
945412	AF1-206 E O1	2.2638
LGEE	LGEE	0.7188
CPLE	CPLE	0.1528

Bus #	Bus	MW Impact
WEC	WEC	0.5758
CBM-W2	CBM-W2	10.4095
NY	NY	0.6564
CBM-W1	CBM-W1	33.7395
TVA	TVA	1.3510
O-066	O-066	6.8410
CBM-S2	CBM-S2	2.2947
CBM-S1	CBM-S1	8.6904
G-007	G-007	1.0494
MADISON	MADISON	0.6713
MEC	MEC	2.5615

12.8 Index 2

ID	FROM BUS#	FROM BUS	FROM BUS AREA	TO BUS#	TO BUS	TO BUS AREA	CKT ID	CONT NAME	Туре	Rating MVA	PRE PROJECT LOADING %	POST PROJECT LOADING %	AC DC	MW IMPACT
43720647	243009	05FRMNT	AEP	243008	05FREMCT	AEP	1	AEP_P4_#517_05FOSTOR 345_A1	breaker	251.0	104.93	105.43	DC	2.76

Bus #	Bus	MW Impact				
238601	02FRMENG 1	4.2033				
238602	02FRMENG 2	4.2033				
238603	02FRMENG 3	7.5883				
244357	05GRANGER EL	-0.1970				
931951	AB1-107 1	14.5634				
931961	AB1-107 2	26.0324				
934251	AD1-052 C1	0.3119				
934252	AD1-052 E1	0.9941				
934261	AD1-052 C2	0.3119				
934262	AD1-052 E2	0.9941				
934891	AD1-118	3.0553				
938911	AE1-119	24.0061				
941761	AE2-176 C	8.1397				
941762	AE2-176 E	5.4265				
943961	AF1-064 C O1	0.8300				
943962	AF1-064 E O1	0.4125				
DUCKCREEK	DUCKCREEK	0.2833				
NEWTON	NEWTON	0.4255				
FARMERCITY	FARMERCITY	0.0175				
G-007A	G-007A	0.0743				
VFT	VFT	0.2193				
CBM-W1	CBM-W1	10.1331				
PRAIRIE	PRAIRIE	0.9867				
COFFEEN	COFFEEN	0.1866				
EDWARDS	EDWARDS	0.0798				
СНЕОАН	СНЕОАН	0.2462				
TILTON	TILTON	0.2218				
MADISON	MADISON	1.1592				
GIBSON	GIBSON	0.2741				
CALDERWOOD	CALDERWOOD	0.2455				
BLUEG	BLUEG	1.0590				
TRIMBLE	TRIMBLE	0.3422				
САТАШВА	САТАШВА	0.1561				

Affected Systems

12.9 Affected Systems

12.9.1 LG&E

LG&E Impacts to be determined during later study phases (as applicable).

12.9.2 MISO

MISO Impacts to be determined during later study phases (as applicable).

12.9.3 TVA

TVA Impacts to be determined during later study phases (as applicable).

12.9.4 Duke Energy Progress

Duke Energy Progress Impacts to be determined during later study phases (as applicable).

12.9.5 NYISO

NYISO Impacts to be determined during later study phases (as applicable).

12.10 Contingency Description

Contingency Name	Contingency Definition
AEP_P2-2_#517_05FOSTOR 345_1	CONTINGENCY 'AEP_P2-2_#517_05FOSTOR 345_1' OPEN BRANCH FROM BUS 241901 TO BUS 242936 CKT 1 / 241901 02LALLEND
ATSI-P7-1-TE-345-027A	CONTINGENCY 'ATSI-P7-1-TE-345-027A' /* DB - X1-027A & DB - HAYES 345 DISCONNECT BRANCH FROM BUS 238654 TO BUS 907060 CKT 1 /* 02DAV-BE 345 X1-027A_AT12 345 DISCONNECT BRANCH FROM BUS 238654 TO BUS 239289 CKT 1 /* 02DAV-BE 345 02HAYES 345 END
AEP_P4_#517_05FOSTOR 345_A1	CONTINGENCY 'AEP_P4_#517_05FOSTOR 345_A1' OPEN BRANCH FROM BUS 241901 TO BUS 242936 CKT 1 / 241901 02LALLEND

Short Circuit

12.11 Short Circuit

The following Breakers are overduty:

None

13 Network Impacts – Secondary POI

The Queue Project AF1-064 was evaluated as a 50.0 MW (Capacity 33.4 MW) injection tapping the Midway-Bowling Green 69 kV Line (between Weston and Grand Rapids 69 kV substations) in the ATSI area. Project AF1-064 was evaluated for compliance with applicable reliability planning criteria (PJM, NERC, NERC Regional Reliability Councils, and Transmission Owners). Project AF1-064 was studied with a commercial probability of 53%. Potential network impacts were as follows:

Summer Peak Load Flow

13.1 Generation Deliverability

(Single or N-1 contingencies for the Capacity portion only of the interconnection)

None

13.2 Multiple Facility Contingency

(Double Circuit Tower Line, Fault with a Stuck Breaker, and Bus Fault contingencies for the full energy output)

None

13.3 Contribution to Previously Identified Overloads

(This project contributes to the following contingency overloads, i.e. "Network Impacts", identified for earlier generation or transmission interconnection projects in the PJM Queue)

ID	FROM BUS#	FROM BUS	kV	FRO M BUS ARE A	TO BUS#	TO BUS	kV	TO BUS ARE A	CK T ID	CONT NAME	Туре	Ratin g MVA	PRE PROJEC T LOADIN G %	POST PROJEC T LOADIN G %	AC D C	MW IMPAC T
409640 16	23887 4	02LAKVE W	138. 0	ATSI	23876 8	02GRNFL D	138. 0	ATSI	1	ATSI-P7-1-TE-345- 027A	tower	316.0	113.86	114.37	DC	3.53
437202 94	24300 9	05FRMN T	138. 0	AEP	24300 8	05FREM CT	138. 0	AEP	1	AEP_P2- 2_#517_05FOSTOR 345_1	bus	251.0	104.89	105.39	DC	2.76
437206 47	24300 9	05FRMN T	138. 0	AEP	24300 8	05FREM CT	138. 0	AEP	1	AEP_P4_#517_05FOS TOR 345_A1	break er	251.0	104.89	105.39	DC	2.76

13.4 Potential Congestion due to Local Energy Deliverability

PJM also studied the delivery of the energy portion of this interconnection request. Any problems identified below are likely to result in operational restrictions to the project under study. The developer can proceed with network upgrades to eliminate the operational restriction at their discretion by submitting a Merchant Transmission Interconnection request.

Note: Only the most severely overloaded conditions are listed below. There is no guarantee of full delivery of energy for this project by fixing only the conditions listed in this section. With a Transmission Interconnection Request, a subsequent analysis will be performed which shall study all overload conditions associated with the overloaded element(s) identified.

None

13.5 Flow Gate Details

The following indices contain additional information about each flowgate presented in the body of the report. For each index, a description of the flowgate and its contingency was included for convenience. However, the intent of the appendix section is to provide more information on which projects/generators have contributions to the flowgate in question. Although this information is not used "as is" for cost allocation purposes, it can be used to gage other generators impact. It should be noted the generator contributions presented in the appendices sections are full contributions, whereas in the body of the report, those contributions take into consideration the commercial probability of each project.

13.6 Index 1

ID	FROM BUS#	FROM BUS	FROM BUS AREA	TO BUS#	TO BUS	TO BUS AREA	CKT ID	CONT NAME	Туре	Rating MVA	PRE PROJECT LOADING %	POST PROJECT LOADING %	AC DC	MW IMPACT
40964016	238874	02LAKVEW	ATSI	238768	02GRNFLD	ATSI	1	ATSI-P7- 1-TE- 345- 027A	tower	316.0	113.86	114.37	DC	3.53

Bus #	Bus	MW Impact				
238601	02FRMENG 1	2.4779				
238602	02FRMENG 2	2.4779				
238603	02FRMENG 3	4.4733				
238979	02NAPMUN	2.0225				
247548	V4-010 C	1.4243				
247551	U4-028 C	0.6092				
247552	U4-029 C	0.6092				
247940	U4-028 E	4.0769				
247941	U4-029 E	4.0769				
247947	V4-010 E	9.5322				
931951	AB1-107 1	20.5456				
931961	AB1-107 2	33.5314				
934251	AD1-052 C1	0.1839				
934252	AD1-052 E1	0.5861				
934261	AD1-052 C2	0.1839				
934262	AD1-052 E2	0.5861				
934461	AD1-070 C O1	1.5612				
934462	AD1-070 E O1	7.3290				
934891	AD1-118	3.6670				
937021	AD2-136 C O1	2.1931				
937022	AD2-136 E O1	14.6767				
937381	AD2-191 C	1.0356				
937382	AD2-191 E	6.9307				
938911	AE1-119	28.8120				
941741	AE2-174 C	1.0119				
941742	AE2-174 E	4.7370				
941781	AE2-181 C	1.5331				
941782	AE2-181 E	1.0221				
942661	AE2-282 C O1	2.3557				
942662	AE2-282 E O1	1.2396				
943961	AF1-064 C O2	1.0626				
943962	AF1-064 E O2	0.5281				
944551	AF1-120 C	0.7565				
944552	AF1-120 E	0.3811				
945401	AF1-205 C O2	0.6909				
945402	AF1-205 E O2	0.4606				
945411	AF1-206 C O2	3.4092				
945412	AF1-206 E O2	2.2728				
LGEE	LGEE	0.7188				
CPLE	CPLE	0.1528				

Bus #	Bus	MW Impact				
WEC	WEC	0.5758				
CBM-W2	CBM-W2	10.4095				
NY	NY	0.6564				
CBM-W1	CBM-W1	33.7395				
TVA	TVA	1.3510				
O-066	O-066	6.8410				
CBM-S2	CBM-S2	2.2947				
CBM-S1	CBM-S1	8.6904				
G-007	G-007	1.0494				
MADISON	MADISON	0.6713				
MEC	MEC	2.5615				

13.7 Index 2

ID	FROM BUS#	FROM BUS	FROM BUS AREA	TO BUS#	TO BUS	TO BUS AREA	CKT ID	CONT NAME	Туре	Rating MVA	PRE PROJECT LOADING %	POST PROJECT LOADING %	AC DC	MW IMPACT
43720647	243009	05FRMNT	AEP	243008	05FREMCT	AEP	1	AEP_P4_#517_05FOSTOR 345_A1	breaker	251.0	104.89	105.39	DC	2.76

Bus #	Bus	MW Impact				
238601	02FRMENG 1	4.2033				
238602	02FRMENG 2	4.2033				
238603	02FRMENG 3	7.5883				
244357	05GRANGER EL	-0.1970				
931951	AB1-107 1	14.5634				
931961	AB1-107 2	26.0324				
934251	AD1-052 C1	0.3119				
934252	AD1-052 E1	0.9941				
934261	AD1-052 C2	0.3119				
934262	AD1-052 E2	0.9941				
934891	AD1-118	3.0553				
938911	AE1-119	24.0061				
941761	AE2-176 C	8.1397				
941762	AE2-176 E	5.4265				
943961	AF1-064 C O2	0.8300				
943962	AF1-064 E O2	0.4125				
DUCKCREEK	DUCKCREEK	0.2833				
NEWTON	NEWTON	0.4255				
FARMERCITY	FARMERCITY	0.0175				
G-007A	G-007A	0.0743				
VFT	VFT	0.2193				
CBM-W1	CBM-W1	10.1331				
PRAIRIE	PRAIRIE	0.9867				
COFFEEN	COFFEEN	0.1866				
EDWARDS	EDWARDS	0.0798				
СНЕОАН	СНЕОАН	0.2462				
TILTON	TILTON	0.2218				
MADISON	MADISON	1.1592				
GIBSON	GIBSON	0.2741				
CALDERWOOD	CALDERWOOD	0.2455				
BLUEG	BLUEG	1.0590				
TRIMBLE	TRIMBLE	0.3422				
САТАШВА	САТАШВА	0.1561				

Affected Systems

13.8 Affected Systems

13.8.1 LG&E

LG&E Impacts to be determined during later study phases (as applicable).

13.8.2 MISO

MISO Impacts to be determined during later study phases (as applicable).

13.8.3 TVA

TVA Impacts to be determined during later study phases (as applicable).

13.8.4 Duke Energy Progress

Duke Energy Progress Impacts to be determined during later study phases (as applicable).

13.8.5 NYISO

NYISO Impacts to be determined during later study phases (as applicable).

13.9 Contingency Description

Contingency Name	Contingency Definition
AEP_P2-2_#517_05FOSTOR 345_1	CONTINGENCY 'AEP_P2-2_#517_05FOSTOR 345_1' OPEN BRANCH FROM BUS 241901 TO BUS 242936 CKT 1 / 241901 02LALLEND
ATSI-P7-1-TE-345-027A	CONTINGENCY 'ATSI-P7-1-TE-345-027A' /* DB - X1-027A & DB - HAYES 345 DISCONNECT BRANCH FROM BUS 238654 TO BUS 907060 CKT 1 /* 02DAV-BE 345 X1-027A_AT12 345 DISCONNECT BRANCH FROM BUS 238654 TO BUS 239289 CKT 1 /* 02DAV-BE 345 02HAYES 345 END
AEP_P4_#517_05FOSTOR 345_A1	CONTINGENCY 'AEP_P4_#517_05FOSTOR 345_A1' OPEN BRANCH FROM BUS 241901 TO BUS 242936 CKT 1 / 241901 02LALLEND

Short Circuit

13.10 Short Circuit

The following Breakers are overduty:

None

14 Attachment One: One Line Diagram

Generation Interconnection System Impact Study Report for Queue Project AF1-064 WESTON 69 KV 33.4 MW Capacity / 50 MW Energy

August 2020

Table of Contents

1	Int	roduction	4
2	Pre	eface	
3	Ge	neral	5
4	Poi	int of Interconnection	6
5	Cos	st Summary	6
6	Tra	ansmission Owner Scope of Work	
7	Scł	hedule	9
8	Tra	ansmission Owner Analysis	9
9	Int	erconnection Customer Requirements	9
9	.1	System Protection	9
9	.2	Compliance Issues and Interconnection Customer Requirements	9
9	.3	Power Factor Requirements	
10	I	Revenue Metering and SCADA Requirements	
1	0.1	PJM Requirements	
1	0.2	Meteorological Data Reporting Requirements	
1	0.3	Interconnected Transmission Owner Requirements	11
11	S	Summer Peak Analysis	12
1	1.1	Generation Deliverability	12
1	1.2	Multiple Facility Contingency	12
1	1.3	Contribution to Previously Identified Overloads	12
1	1.4	Steady-State Voltage Requirements	12
1	1.5	Potential Congestion due to Local Energy Deliverability	12
1	1.6	System Reinforcements	13
1	1.7	Flow Gate Details	14
	11.	.7.1 Index 1	15
1	1.8	Queue Dependencies	16
1	1.9	Contingency Descriptions	17
12	Ι	Light Load Analysis	
13	9	Short Circuit Analysis	19
14	9	Stability and Reactive Power	19
15	I	Affected Systems	19

16	Attachment 1: One Line Diagram	.20

1 Introduction

This System Impact Study has been prepared in accordance with the PJM Open Access Transmission Tariff, 205, as well as the System Impact Study Agreement between the Interconnection Customer (IC), and PJM Interconnection, LLC (PJM), Transmission Provider (TP). The Interconnected Transmission Owner (ITO) is ATSI.

2 Preface

The intent of the System Impact Study is to determine a plan, with approximate cost and construction time estimates, to connect the subject generation interconnection project to the PJM network at a location specified by the Interconnection Customer. As a requirement for interconnection, the Interconnection Customer may be responsible for the cost of constructing: Network Upgrades, which are facility additions, or upgrades to existing facilities, that are needed to maintain the reliability of the PJM system. All facilities required for interconnection of a generation interconnection project must be designed to meet the technical specifications (on PJM web site) for the appropriate transmission owner.

In some instances an Interconnection Customer may not be responsible for 100% of the identified network upgrade cost because other transmission network uses, e.g. another generation interconnection or merchant transmission upgrade, may also contribute to the need for the same network reinforcement. The possibility of sharing the reinforcement costs with other projects may be identified in the Feasibility Study, but the actual allocation will be deferred until the System Impact Study is performed.

The System Impact Study estimates do not include the feasibility, cost, or time required to obtain property rights and permits for construction of the required facilities. The project developer is responsible for the right of way, real estate, and construction permit issues. For properties currently owned by Transmission Owners, the costs may be included in the study.

The Interconnection Customer seeking to interconnect a wind or solar generation facility shall maintain meteorological data facilities as well as provide that meteorological data which is required per Schedule H to the Interconnection Service Agreement and Section 8 of Manual 14D.

3 General

The Interconnection Customer (IC), has proposed a Solar generating facility located in Wood County, Ohio. The installed facilities will have a total capability of 50 MW with 33.4 MW of this output being recognized by PJM as Capacity. The proposed in-service date for this project is March 31, 2022. This study does not imply a TO commitment to this in-service date. The interconnection customer has requested cost to accelerate the supplemental project s1953¹ in order to reduce the direction connection cost for AF1-064. FE will proceed with accelerating the supplemental project s1953 with a signed Interim ISA that is to be developed by PJM and the Interconnection Customer.

Queue Number	AF1-064
Project Name	WESTON 69 KV
State	Ohio
County	Wood
Transmission Owner	ATSI
MFO	50
MWE	50
MWC	33.4
Fuel	Solar
Basecase Study Year	2023

Any new service customers who can feasibly be commercially operable prior to June 1st of the basecase study year are required to request interim deliverability analysis.

¹ Supplemental Project s1953 for Richland Substation Upgrades and New Richland-Weston 69 kV line in the ATSI zone is currently scheduled for completion by 12.31.2023. The customer is requesting to accelerate the completion to May 31, 2023.

4 Point of Interconnection

AF1-064 will interconnect with the ATSI on transmission system at the Weston 69 kV substation.

The interconnection of the project at the selected POI will be accomplished by expanding Weston 69 kV Substation into a five (5) breaker ring bus substation and loop in the Bowling Green No2-Midway 69 kV Line to eliminate the three terminal line. The ring bus will provide a line exit for the AF1-064 project. The interconnection customer has requested the cost to accelerate the supplemental project s1953 in order to reduce the direct connection cost for AF1-064. FE will proceed with accelerating the supplemental project s1953 with a signed Interim ISA that is to be developed by PJM and the interconnection customer.

Attachment 1 shows a one-line diagram of the proposed primary Direct Connection facilities for the AF1-064 generation project to connect to the FirstEnergy ("FE") Transmission System. The IC will be responsible for constructing the facilities on its side of the POI, including the Attachment Facilities which connect the generator to the FE Transmission System's Direct Connection facilities.

5 Cost Summary

The AF1-064 project will be responsible for the following costs:

Description	Total Cost
Total Physical Interconnection Costs	\$4,299,400
Allocation towards System Network Upgrade	\$0 (See Note 2)
Costs*	
Total Costs	\$4,299,400

*As your project progresses through the study process and other projects modify their request or withdraw, then your cost allocation could change.

This cost excludes a Federal Income Tax Gross Up charges. This tax may or may not be charged based on whether this project meets the eligibility requirements of IRS Notice 88-129. If at a future date it is determined that the Federal Income Tax Gross charge is required, the Transmission Owner shall be reimbursed by the Interconnection Customer for such taxes.

Note 1: PJM Open Access Transmission Tariff (OATT) section 217.3A outline cost allocation rules. The rules are further clarified in PJM Manual 14A Attachment B. The allocation of costs for a network upgrade will start with the first Queue project to cause the need for the upgrade. Later queue projects will receive cost allocation contingent on their contribution to the violation and are allocated to the queues that have not closed less than 5 years following the execution of the first Interconnection Service Agreement which identifies the need for this upgrade.

Note 2: For customers with System Reinforcements listed: If your present cost allocation to a System Reinforcement indicates \$0, then please be aware that as changes to the interconnection process occur, such

as prior queued projects withdrawing from the queue, reducing in size, etc, the cost responsibilities can change and a cost allocation may be assigned to your project. In addition, although your present cost allocation to a System Reinforcement is presently \$0, your project may need this system reinforcement completed to be deliverable to the PJM system. If your project comes into service prior to completion of the system reinforcement, an interim deliverability study for your project will be required.

6 Transmission Owner Scope of Work

The interconnection of the project at the Primary POI will be accomplished by expanding Weston 69 kV Substation into a five (5) breaker ring bus substation and loop in the Bowling Green No2-Midway 69 kV Line to eliminate the three terminal line. The ring bus will provide a line exit for the AF1-064 project. The interconnection customer has requested the cost to accelerate the supplemental project s1953 in order to reduce the direct connection cost for AF1-064. FE will proceed with accelerating the supplemental project s1953 with a signed Interim ISA that is to be developed by PJM and the interconnection customer.

The total physical interconnection costs is given in the table below:

Description	Total Cost
Install SCADA and MOAB for the New Line Exit at Weston Substation	\$82,600
Provide a 69 kV Line Exit at Weston Substation for AF1-064	\$743,200
Provide assistance to the developer on the customer-owned revenue metering design, perform a remote meter checkout, and facilitate the meter's installation in the FE MV-90 system.	\$2,500
Project Management	\$284,900
Drawing review, nameplates, and CD drawing update; add to HV circuit diagram at AF1-064 Customer Sub	\$30,600
Acceleration of s1953 to accommodate AF1-064.	\$3,155,600
Total Physical Interconnection Costs	\$4,299,400

7 Schedule

Based on the scope of work for the interconnection facilities, it is expected to take a minimum of **24 months** after the signing of an Interconnection Construction Service Agreement and construction kickoff call to complete the installation. This assumes that there will be no environmental issues with any of the new properties associated with this project, that there will be no delays in acquiring the necessary permits for implementing the defined Direct Connection and network upgrades, and that all transmission system outages will be allowed when requested.

The schedule for any required Network Impact Reinforcements will be more clearly identified in future study phases. The estimated time to complete each of the required reinforcements is identified in the "System Reinforcements" section of the report.

8 Transmission Owner Analysis

FE performed an analysis of its underlying transmission <100 kV system. The AF1-064 project did not contribute to any overloads on the FE transmission < 100 kV system.

9 Interconnection Customer Requirements

9.1 System Protection

The IC must design its Customer Facilities in accordance with all applicable standards, including the standards in FE's "Requirements for Transmission Connected Facilities" document located at: http://www.pjm.com/planning/design-engineering/to-tech-standards/private-firstenergy.aspx. Preliminary Protection requirements will be provided as part of the Facilities Study. Detailed Protection Requirements will be provided once the project enters the construction phase.

The IC has requested a non-standard GSU transformer winding configuration. This transformer is in violation of section 14.2.6 of FE's "Requirements for Transmission Connected Facilities" document and will not be accepted. The GSU transformer must have a grounded wye connection on the high (utility) side and a delta connection on the low (generator) side.

9.2 Compliance Issues and Interconnection Customer Requirements

The proposed Customer Facilities must be designed in accordance with FE's "Requirements for Transmission Connected Facilities" document located at: <u>http://www.pim.com/planning/design-engineering/to-tech-standards/private-firstenergy.aspx</u>. In particular, the IC is responsible for the following:

 The purchase and installation of a fully rated 69 kV circuit breaker to protect the AF1-064 generator lead line. A single circuit breaker must be used to protect this line; if the project has several GSU transformers, the individual GSU transformer breakers cannot be used to protect this line.

- 2. The purchase and installation of the minimum required FE generation interconnection relaying and control facilities. This includes over/under voltage protection, over/under frequency protection, and zero sequence voltage protection relays.
- 3. The purchase and installation of supervisory control and data acquisition ("SCADA") equipment to provide information in a compatible format to the FE Transmission System Control Center.
- 4. Compliance with the FE and PJM generator power factor and voltage control requirements.
- 5. The execution of a back-up service agreement to serve the customer load supplied from the AF1-064 generation project metering point when the units are out-of-service. This assumes the intent of the IC is to net the generation with the load.

The IC will also be required to meet all PJM, ReliabilityFirst, and NERC reliability criteria and operating procedures for standards compliance. For example, the IC will need to properly locate and report the over and under voltage and over and under frequency system protection elements for its units as well as the submission of the generator model and protection data required to satisfy the PJM and ReliabilityFirst audits. Failure to comply with these requirements may result in a disconnection of service if the violation is found to compromise the reliability of the FE Transmission System.

9.3 Power Factor Requirements

The IC shall design its solar Customer Facility with the ability to maintain a power factor of at least 0.95 leading (absorbing VARs) to 0.95 lagging (supplying VARs) measured at the high-side of the facility substation transformer(s) connected to the FE transmission system.

10 Revenue Metering and SCADA Requirements

10.1 PJM Requirements

The Interconnection Customer will be required to install equipment necessary to provide Revenue Metering (KWH, KVARH) and real time data (KW, KVAR) for IC's generating Resource. See PJM Manuals M-01 and M-14D, and PJM Tariff Section 8 of Attachment O.

10.2 Meteorological Data Reporting Requirements

The solar generation facility shall provide the Transmission Provider with site-specific meteorological data including:

- Back Panel temperature (Fahrenheit)
- Irradiance (Watts/meter2)
- Ambient air temperature (Fahrenheit) (Accepted, not required)
- Wind speed (meters/second) (Accepted, not required)

• Wind direction (decimal degrees from true north) – (Accepted, not required)

10.3 Interconnected Transmission Owner Requirements

The IC will be required to comply with all FE revenue metering requirements for generation interconnection customers which can be found in FE's "Requirements for Transmission Connected Facilities" document located at: <u>http://www.pjm.com/planning/design-engineering/to-tech-standards/private-firstenergy.aspx</u>

11 Summer Peak Analysis

The Queue Project AF1-064 was evaluated as a 50.0 MW (Capacity 33.4 MW) injection at the Weston 69 kV substation in the ATSI area. Project AF1-064 was evaluated for compliance with applicable reliability planning criteria (PJM, NERC, NERC Regional Reliability Councils, and Transmission Owners). Project AF1-064 was studied with a commercial probability of 100%. Potential network impacts were as follows:

11.1 Generation Deliverability

(Single or N-1 contingencies for the Capacity portion only of the interconnection)

None

11.2 Multiple Facility Contingency

(Double Circuit Tower Line, Fault with a Stuck Breaker, and Bus Fault contingencies for the full energy output)

None

11.3 Contribution to Previously Identified Overloads

(This project contributes to the following contingency overloads, i.e. "Network Impacts", identified for earlier generation or transmission interconnection projects in the PJM Queue)

ID	FROM BUS#	FROM BUS	kV	FRO M BUS ARE A	TO BUS#	TO BUS	kV	TO BUS ARE A	CK T ID	CONT NAME	Туре	Ratin g MVA	PRE PROJEC T LOADIN G %	POST PROJEC T LOADIN G %	AC D C	MW IMPAC T
437202 94	24300 9	05FRM NT	138. 0	AEP	24300 8	05FREM CT	138. 0	AEP	1	AEP_P2- 2_#517_05FOSTOR 345_1	bus	251. 0	106.05	107.65	AC	2.76
437206 47	24300 9	05FRM NT	138.	AEP	24300 8	05FREM CT	138. 0	AEP	1	AEP_P4_#517_05FOS TOR 345 A1	break er	251.	106.05	107.65	AC	2.76

11.4 Steady-State Voltage Requirements

To be determined in Facilities Study phase.

11.5 Potential Congestion due to Local Energy Deliverability

PJM also studied the delivery of the energy portion of this interconnection request. Any problems identified below are likely to result in operational restrictions to the project under study. The developer can proceed with network upgrades to eliminate the operational restriction at their discretion by submitting a Merchant Transmission Interconnection request.

Note: Only the most severely overloaded conditions are listed below. There is no guarantee of full delivery of energy for this project by fixing only the conditions listed in this section. With a Transmission Interconnection Request, a subsequent analysis will be performed which shall study all overload conditions associated with the overloaded element(s) identified.

None

11.6 System Reinforcements

ID	ldx	Facility	Upgrade Description	Cost	Cost Allocated to AF1- 064	Upgrade Number
43720647,4372 0294	1	05FRMNT 138.0 kV - 05FREMCT 138.0 kV Ckt 1	AEP: A sag study will be required on the 4.0 miles of ACSR ~ 795 ~ 45/7 ~ TERN - Conductor Section 1 to mitigate the overload. Depending on the sag study results, the cost for this upgrade is expected to be around \$20,000 (no remediation required, just sag study) and \$6 million (complete line reconductor/rebuild). New rating after sag study: S/N:251 S/E: 335 MVA. Time Estimate: a) Sag Study: 6-12 months. b) Rebuild: The standard time required for construction differs from state to state. An approximate construction time would be 24 to 36 months after signing an interconnection agreement. Project Type : FAC Cost : \$20,000 New Ratings : 251/335 Time Estimate : 6-12 Months	\$200,000	\$0	N6297.1
			TOTAL COST	\$200,000	\$0	

Note: For customers with System Reinforcements listed: If your present cost allocation to a System Reinforcement indicates \$0, then please be aware that as changes to the interconnection process occur, such as prior queued projects withdrawing from the queue, reducing in size, etc, the cost responsibilities can change and a cost allocation may be assigned to your project. In addition, although your present cost allocation to a System Reinforcement is presently \$0, your project may need this system reinforcement completed to be deliverable to the PJM system. If your project comes into service prior to completion of the system reinforcement, an interim deliverability study for your project will be required.

11.7 Flow Gate Details

The following indices contain additional information about each facility presented in the body of the report. For each index, a description of the flowgate and its contingency was included for convenience. The intent of the indices is to provide more details on which projects/generators have contributions to the flowgate in question. All New Service Queue Requests, through the end of the Queue under study, that are contributors to a flowgate will be listed in the indices. Please note that there may be contributors that are subsequently queued after the queue under study that are not listed in the indices. Although this information is not used "as is" for cost allocation purposes, it can be used to gage the impact of other projects/generators. It should be noted the project/generator MW contributions presented in the body of the report are Full MW Impact contributions which are also noted in the indices column named "Full MW Impact", whereas the loading percentages reported in the body of the report, take into consideration the PJM Generator Deliverability Test rules such as commercial probability of each project as well as the ramping impact of "Adder" contributions. The MW Impact found and used in the analysis is shown in the indices column named "Gendeliv MW Impact".

11.7.1 Index 1

ID	FROM BUS#	FROM BUS	FRO M BUS AREA	TO BUS#	TO BUS	TO BUS ARE A	CK T ID	CONT NAME	Туре	Ratin g MVA	PRE PROJECT LOADIN G %	POST PROJECT LOADIN G %	AC D C	MW IMPAC T
4372064 7	24300 9	05FRMN T	AEP	24300 8	05FREMC T	AEP	1	AEP_P4_#517_05FOST R 345_A1	TO breake r	251.0	106.05	107.65	AC	2.76
	D			Due				- DAVA/ June of the		T		F	/////	*
	Bus #			Bus		G		iv MW Impact		Туре			/IW Impa	act
	238601			02FRME				5.3360		50/50			5.3360	
	238602			02FRME				5.3360		50/50			5.3360	
	238603			02FRME				9.6331		50/50			9.6331	
	244357		(5GRANG				-0.1967		Adder			-0.23	
	931951			AB1-10				14.5816		Adder			17.15	
	931961 934251			AB1-10 AD1-05				26.0727 0.3960		Adder 50/50			30.67).3960	
	934251			AD1-05										
	934252			AD1-05			0.9946			50/50 50/50			0.9946	
	934262			AD1-05			0.3960 0.9946			50/50		0.3960		
	934202		AD1-032 E2				3.0595			Adder			3.6	
	938911		AD1-118 AE1-119			-	24.0388			Adder			28.28	
	941761		AE2-176 C				8.1465			50/50			8.1465	
	941762		AE2-176 E				5.4310			50/50			5.4310	
	943961		AF1-064 C 01				1.5683			Adder			1.85	
	943962		AF1-064 E O1				0.7794			Adder			0.92	
	NEWTON	1	NEWTON				0.4169			Confirmed LTF			0.4169	
FA	RMERCI	ТҮ	FARMERCITY				0.0171			firmed LT	F	(0.0171	
	G-007A		G-007A				0.0647			Confirmed LTF			0.0647	
	VFT			VFT			0.1935			Confirmed LTF			0.1935	
	PRAIRIE			PRAIRIE			0.9686			Confirmed LTF			0.9686	
	COFFEEN			COFFE	EN		0.0688			Confirmed LTF			0.0688	
	CHEOAH			CHEO	٩H			0.2427	Confirmed LTF			0.2427		
E	DWARD	s		EDWAF	RDS			0.0770	Cor	firmed LT	F	().0770	
	TILTON			TILTO	N			0.2167	Cor	firmed LT	F	().2167	
r	MADISON	N		MADIS	ON			1.1592	Cor	firmed LT	F	-	L.1592	
	GIBSON		GIBSON					0.2697	Cor	firmed LT	F	0.2697		
CA	LDERWO	OD	(CALDERV	/00D			0.2420	Cor	firmed L1	F	0.2420		
	BLUEG			BLUE	G			1.0451	Cor	firmed LT	F	1.0451		
	TRIMBLE			TRIME	LE			0.3378	Cor	firmed L1	F	0.3378		
C	CATAWB	4		CATAW	/BA			0.1540	Cor	firmed LT	F	().1540	
	CBM-W1			CBM-\	V1			10.1331	Cor	firmed L1	F	1	0.1331	

11.8 Queue Dependencies

The Queue Projects below are listed in one or more indices for the overloads identified in your report. These projects contribute to the loading of the overloaded facilities identified in your report. The percent overload of a facility and cost allocation you may have towards a particular reinforcement could vary depending on the action of these earlier projects. The status of each project at the time of the analysis is presented in the table. This list may change as earlier projects withdraw or modify their requests.

Queue Number	Project Name	Status
AB1-107	Bayshore-GM Powertrain 138 kV & Lallendorf 345kV	Engineering and Procurement
AD1-052	Freemont Energy Center	Under Construction
AD1-118	Lemoyne	Active
AE1-119	Lemoyne 345 kV	Active
AE2-176	Groton 138 kV Solar	Active
AF1-064	Weston 69 kV	Active

11.9 Contingency Descriptions

Contingency Name	Contingency Definition	
AEP_P2-2_#517_05FOSTOR 345_1	CONTINGENCY 'AEP_P2-2_#517_05FOSTOR 345_1' OPEN BRANCH FROM BUS 241901 TO BUS 242936 CKT 1	/ 241901 02LALLEND
AEP_P4_#517_05FOSTOR 345_A1	CONTINGENCY 'AEP_P4_#517_05FOSTOR 345_A1' OPEN BRANCH FROM BUS 241901 TO BUS 242936 CKT 1	/ 241901 02LALLEND

12 Light Load Analysis

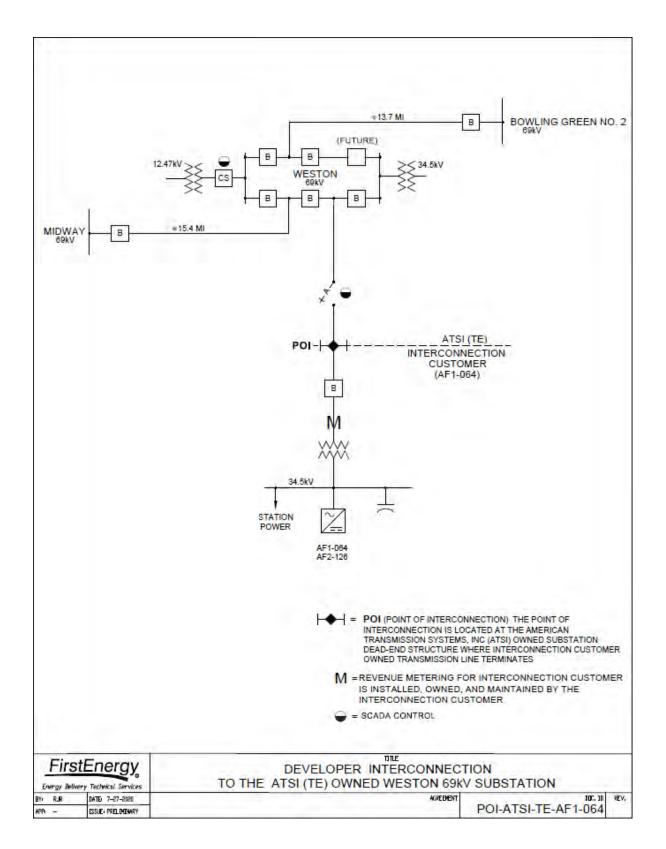
Not required for solar projects.

13 Short Circuit Analysis

The following Breakers are overdutied:

None

14 Stability and Reactive Power


(Summary of the VAR requirements based upon the results of the dynamic studies)

To be determined in the Facilities Study Phase.

15 Affected Systems

None

16 Attachment 1: One Line Diagram

Generation Interconnection Feasibility Study Report for Queue Project AF2-126 WESTON 69 KV II 40.1 MW Capacity / 60 MW Energy

July 2020

Table of Contents

1	Intr	oduction	
2	Pre	face	
3	Gen	ieral	5
4	Poir	nt of Interconnection	6
5	Cos	t Summary	6
6	Tra	nsmission Owner Scope of Work	6
7	Sch	edule	7
8	Tra	nsmission Owner Analysis	7
9	Inte	erconnection Customer Requirements	
9.	1	System Protection	
9.	2	Compliance Issues and Interconnection Customer Requirements	
9.	3	Power Factor Requirements	9
10	R	evenue Metering and SCADA Requirements	9
10).1	PJM Requirements	9
10).2	Meteorological Data Reporting Requirements	9
10).3	Interconnected Transmission Owner Requirements	9
11	S	ummer Peak - Load Flow Analysis	
11	l.1	Generation Deliverability	
11	1.2	Multiple Facility Contingency	
11	1.3	Contribution to Previously Identified Overloads	
11	1.4	Potential Congestion due to Local Energy Deliverability	
11	1.5	System Reinforcements - Summer Peak Load Flow - Primary POI	11
11	1.6	Flow Gate Details	13
	11.6	6.1 Index 1	14
	11.6	6.2 Index 2	16
	11.6	6.3 Index 3	19
	11.6	6.4 Index 4	21
	11.6	6.5 Index 5	23
11	1.7	Queue Dependencies	24
11	1.8	Contingency Descriptions	26
12	S	hort Circuit Analysis	27

13	Affected Systems
13.1	NYISO
13.2	2 MISO
14	Attachment 1: One Line Diagram

1 Introduction

This Feasibility Study has been prepared in accordance with the PJM Open Access Transmission Tariff, 36.2, as well as the Feasibility Study Agreement between the Interconnection Customer (IC), and PJM Interconnection, LLC (PJM), Transmission Provider (TP). The Interconnected Transmission Owner (ITO) is American Transmission Systems, Inc. (ATSI).

2 Preface

The intent of the feasibility study is to determine a plan, with ballpark cost and construction time estimates, to connect the subject generation to the PJM network at a location specified by the Interconnection Customer. The Interconnection Customer may request the interconnection of generation as a capacity resource or as an energy-only resource. As a requirement for interconnection, the Interconnection Customer may be responsible for the cost of constructing: (1) Direct Connections, which are new facilities and/or facilities upgrades needed to connect the generator to the PJM network, and (2) Network Upgrades, which are facility additions, or upgrades to existing facilities, that are needed to maintain the reliability of the PJM system.

In some instances a generator interconnection may not be responsible for 100% of the identified network upgrade cost because other transmission network uses, e.g. another generation interconnection, may also contribute to the need for the same network reinforcement. Cost allocation rules for network upgrades can be found in PJM Manual 14A, Attachment B. The possibility of sharing the reinforcement costs with other projects may be identified in the feasibility study, but the actual allocation will be deferred until the impact study is performed.

The Interconnection Customer seeking to interconnect a wind or solar generation facility shall maintain meteorological data facilities as well as provide that meteorological data which is required per Schedule H to the Interconnection Service Agreement and Section 8 of Manual 14D.

An Interconnection Customer with a proposed new Customer Facility that has a Maximum Facility Output equal to or greater than 100 MW shall install and maintain, at its expense, phasor measurement units (PMUs). See Section 8.5.3 of Appendix 2 to the Interconnection Service Agreement as well as section 4.3 of PJM Manual 14D for additional information.

The Feasibility Study estimates do not include the feasibility, cost, or time required to obtain property rights and permits for construction of the required facilities. The project developer is responsible for the right of way, real estate, and construction permit issues. For properties currently owned by Transmission Owners, the costs may be included in the study.

3 General

The Interconnection Customer (IC) has proposed an uprate to a planned/existing Solar generating facility located in Wood, Ohio. This project is an increase to the Interconnection Customer's AF1-064 project, which will share the same point of interconnection. The AF2-126 queue position is a 60 MW uprate (40.1 MW Capacity uprate) to the previous project. The total installed facilities will have a capability of 110 MW with 73.5 MW of this output being recognized by PJM as Capacity. The proposed in-service date for this uprate project is December 31, 2021. This study does not imply a TO commitment to this in-service date.

Queue Number	AF2-126
Project Name	WESTON 69 KV II
State	Ohio
County	Wood
Transmission Owner	ATSI
MFO	110
MWE	60
MWC	40.1
Fuel	Solar
Basecase Study Year	2023

Any new service customers who can feasibly be commercially operable prior to June 1st of the basecase study year are required to request interim deliverability analysis.

4 Point of Interconnection

The interconnection of the project at the Primary POI will be accomplished by expanding the FirstEnergy Weston 69 kV substation into a five (5) breaker ring bus station and providing a 69 kV line exit to the Primary POI. The interconnection will be completed in the AF1-064 generation project. The IC will be responsible for acquiring all easements, properties, and permits that may be required to construct both the new interconnection line tap and the associated attachment facilities.

Attachment 1 shows a one-line diagram of the proposed primary direct connection facilities for the AF2-126 generation project to connect to the FirstEnergy ("FE") transmission system. IC will be responsible for constructing all of the facilities on its side of the POI, including the attachment facilities which connect the generator to the FE transmission system's direct connection facilities.

5 Cost Summary

The AF2-126 project will be responsible for the following costs:

Description	Total Cost
Total Physical Interconnection Costs	\$ 40,000
Total Transmission Owner Analysis Impacts (<100 kV/Non-BES)	\$ 8,509,569 ¹
Total System Network Upgrade Costs	\$ 36,439,750
Total Costs	\$ 44,989,319

This cost excludes a Federal Income Tax Gross Up charges. This tax may or may not be charged based on whether this project meets the eligibility requirements of IRS Notice 88-129. If at a future date it is determined that the Federal Income Tax Gross charge is required, the Transmission Owner shall be reimbursed by the Interconnection Customer for such taxes.

Cost allocations for any System Upgrades will be provided in the System Impact Study Report.

6 Transmission Owner Scope of Work

The interconnection of the project at the Primary POI will be accomplished by expanding the FirstEnergy Weston 69 kV substation into a five (5) breaker ring bus station and providing a 69 kV line exit to the Primary POI. The interconnection will be completed in the AF1-064 generation project. The IC will be responsible for

¹The transmission owner identified overloads will be reviewed by PJM and FirstEnergy in the Impact Study phase to determine whether the queue customer has a cost responsibility to these overloads.

acquiring all easements, properties, and permits that may be required to construct both the new interconnection line tap and the associated attachment facilities.

The total physical interconnection costs is given in the table below:

Description	Total Cost
Update relaying settings and testing at Midway 69 kV.	\$ 20,000
Update relaying settings and testing at Bowling Green No2 69 kV (relays are owned by FE).	\$ 20,000
Total Physical Interconnection Costs	\$ 40,000

7 Schedule

Based on the scope of work for the Attachment Facilities and the Direct and/or Non-Direct Connection facilities, it is expected to take a minimum of 12 months after the signing of an Interconnection Construction Service Agreement to complete the installation. This includes the requirement for the IC to make a preliminary payment that compensates FE for the first three months of the engineering design work that is related to the construction of the interconnection substation. This assumes that there will be no environmental issues with any of the new properties associated with this project, that there will be no delays in acquiring the necessary permits for implementing the defined Direct Connection and network upgrades, and that all transmission system outages will be allowed when requested.

If the customer is ultimately responsible for any network upgrades, then the schedule for those upgrades will be refined in future study phases. The customer would need to wait for those upgrades to be completed prior to commercial operation unless determined deliverable by an interim deliverability study.

8 Transmission Owner Analysis

At the Primary POI, the AF2-126 project contributes to overloads on the FE Transmission <100 kV System as shown below. The estimated cost of system reinforcements required by FirstEnergy to mitigate these overloads is \$8,509,569. Bowling Green and AMPT will be notified of First Energy's analysis results and will need to conduct their own evaluation of these overloads during the Impact Study Phase.

These transmission owner identified overloads will be reviewed by PJM and First Energy in the Impact Study phase to determine whether the queue customer has a cost responsibility to these overloads.

Contingency Description	Overloaded Element	Rating (MVA)	AF2-126 MW Contrib.	FE Comments/Reinforcements
----------------------------	-----------------------	-----------------	---------------------------	----------------------------

Midway-Weston 69 kV CK 1 Line Outage	Tontogany-Bowling Green No2 69 kV Line Section	64	26.5	The supplemental project s1953 has been included in the model when performing the Gen Deliverability analysis. The mitigation is to reconductor the line section from Tontogany-Bowling Green No2 69 kV and the line drop at Bowling Green No2 69 kV with 556.5 26/7 ACSR, replace				
Brim-Bowling Green No5 69 kV CK1 Line Outage	Tontogany-Bowling Green No2 69 kV Line Section	64	10.5	PJM will notify Bowling Green and AMPT that First Energ identified overloads on their facilities.				
Bowling Green No5- Bowling Green No7 69 kV CK1 Line Outage	Bowling Green No2- Bowling Green No3 69 kV Line	52	3.3	PJM will notify Bowling Green and AMPT that First Energy identified overloads on their facilities.				

9 Interconnection Customer Requirements

9.1 System Protection

The IC must design its Customer Facilities in accordance with all applicable standards, including the standards in FE's "Requirements for Transmission Connected Facilities" document located at: http://www.pjm.com/planning/design-engineering/to-tech-standards/private-firstenergy.aspx. Preliminary Protection requirements will be provided as part of the Facilities Study. Detailed Protection Requirements will be provided once the project enters the construction phase.

The IC has requested a non-standard GSU transformer winding configuration. This transformer is in violation of section 14.2.6 of FE's "Requirements for Transmission Connected Facilities" document and will not be accepted. The GSU transformer must have a grounded wye connection on the high (utility) side and a delta connection on the low (generator) side.

9.2 Compliance Issues and Interconnection Customer Requirements

The proposed Customer Facilities must be designed in accordance with FE's "Requirements for Transmission Connected Facilities" document located at: <u>http://www.pjm.com/planning/design-engineering/to-tech-standards/private-firstenergy.aspx</u>. In particular, the IC is responsible for the following:

- 1. 1. The purchase and installation of a fully rated 69 kV circuit breaker to protect the AF2-126 generator lead line. A single circuit breaker must be used to protect this line; if the project has several GSU transformers, the individual GSU transformer breakers cannot be used to protect this line.
- 2. The purchase and installation of the minimum required FE generation interconnection relaying and control facilities. This includes over/under voltage protection, over/under frequency protection, and zero sequence voltage protection relays.
- 3. The purchase and installation of supervisory control and data acquisition ("SCADA") equipment to provide information in a compatible format to the FE Transmission System Control Center.
- 4. Compliance with the FE and PJM generator power factor and voltage control requirements.

5. The execution of a back-up service agreement to serve the customer load supplied from the AF2-126 generation project metering point when the units are out-of-service. This assumes the intent of the IC is to net the generation with the load.

The IC will also be required to meet all PJM, ReliabilityFirst, and NERC reliability criteria and operating procedures for standards compliance. For example, the IC will need to properly locate and report the over and under voltage and over and under frequency system protection elements for its units as well as the submission of the generator model and protection data required to satisfy the PJM and ReliabilityFirst audits. Failure to comply with these requirements may result in a disconnection of service if the violation is found to compromise the reliability of the FE Transmission System.

9.3 Power Factor Requirements

The IC shall design its non-synchronous Customer Facility with the ability to maintain a power factor of at least 0.95 leading (absorbing VARs) to 0.95 lagging (supplying VARs) measured at the high-side of the facility substation transformer(s) connected to the FE Transmission System.

10 Revenue Metering and SCADA Requirements

10.1 PJM Requirements

The Interconnection Customer will be required to install equipment necessary to provide Revenue Metering (KWH, KVARH) and real time data (KW, KVAR) for IC's generating Resource. See PJM Manuals M-01 and M-14D, and PJM Tariff Section 8 of Attachment O.

10.2 Meteorological Data Reporting Requirements

The solar generation facility shall provide the Transmission Provider with site-specific meteorological data including:

- Back panel temperature (Fahrenheit)
- Irradiance (Watts/meter²)
- Ambient air temperature (Fahrenheit) (Accepted, not required)
- Wind speed (meters/second) (Accepted, not required)
- Wind direction (decimal degrees from true north) (Accepted, not required)

10.3 Interconnected Transmission Owner Requirements

The IC will be required to comply with all FE revenue metering requirements for generation interconnection customers which can be found in FE's "Requirements for Transmission Connected Facilities" document located at: <u>http://www.pjm.com/planning/design-engineering/to-tech-standards/private-firstenergy.aspx</u>

11 Summer Peak - Load Flow Analysis

The Queue Project AF2-126 was evaluated as a 60.0 MW (Capacity 40.1 MW) uprate to AF1-064 which is an injection at the Weston 69 kV substation in the ATSI area. Project AF2-126 was evaluated for compliance with applicable reliability planning criteria (PJM, NERC, NERC Regional Reliability Councils, and Transmission Owners). Project AF2-126 was studied with a commercial probability of 53.0 %. Potential network impacts were as follows:

11.1 Generation Deliverability

(Single or N-1 contingencies for the Capacity portion only of the interconnection)

None

11.2 Multiple Facility Contingency

(Double Circuit Tower Line, Fault with a Stuck Breaker, and Bus Fault contingencies for the full energy output)

None

11.3 Contribution to Previously Identified Overloads

(This project contributes to the following contingency overloads, i.e. "Network Impacts", identified for earlier generation or transmission interconnection projects in the PJM Queue)

ID	FRO M BUS#	FROM BUS	kV	FRO M BUS ARE A	TO BUS#	TO BUS	kV	TO BUS ARE A	CK T ID	CONT NAME	Туре	Ratin g MVA	PRE PROJEC T LOADI NG %	POST PROJEC T LOADI NG %	AC D C	MW IMPA CT
1005480 68	2388 74	02LAKVE W	138. 0	ATSI	2387 68	02GRNFL D	138. 0	ATSI	1	ATSI-P7-1-TE-345- 027A	tower	316.0	118.31	118.91	DC	4.22
9527812 7	2388 89	02LEMO YN	345. 0	ATSI	2429 36	05FOST OR	345. 0	AEP	1	ATSI-P2-3-TE-345- 034T	break er	1409. 0	120.81	121.84	DC	14.42
1005480 75	2390 30	02OTTA WA	138. 0	ATSI	2388 74	02LAKVE W	138. 0	ATSI	1	ATSI-P7-1-TE-345- 027A	tower	380.0	115.2	115.7	DC	4.22
9527794 3	2391 54	02W.FRE M	138. 0	ATSI	2430 09	05FRMN T	138. 0	AEP	1	AEP_P2- 2_#517_05FOSTOR 345_1	bus	361.0	117.46	117.97	DC	4.06
9527813 4	2391 54	02W.FRE M	138. 0	ATSI	2430 09	05FRMN T	138. 0	AEP	1	AEP_P4_#517_05FO STOR 345_A1	break er	361.0	117.46	117.97	DC	4.06
9570305 5	2430 09	05FRMN T	138. 0	AEP	2430 08	05FREM CT	138. 0	AEP	1	AEP_P2- 2_#517_05FOSTOR 345_1	bus	251.0	106.0	106.61	DC	3.32
9570325 5	2430 09	05FRMN T	138. 0	AEP	2430 08	05FREM CT	138. 0	AEP	1	AEP_P4_#517_05FO STOR 345_A1	break er	251.0	106.0	106.61	DC	3.32

11.4 Potential Congestion due to Local Energy Deliverability

PJM also studied the delivery of the energy portion of this interconnection request. Any problems identified below are likely to result in operational restrictions to the project under study. The developer can proceed with network upgrades to eliminate the operational restriction at their discretion by submitting a Merchant Transmission Interconnection request.

Note: Only the most severely overloaded conditions are listed below. There is no guarantee of full delivery of energy for this project by fixing only the conditions listed in this section. With a Transmission Interconnection

Request, a subsequent analysis will be performed which shall study all overload conditions associated with the overloaded element(s) identified.

ID	FROM BUS#	FROM BUS	kV	FRO M BUS AREA	TO BUS#	TO BUS	kV	TO BUS ARE A	CK T ID	CONT NAM E	Туре	Ratin g MVA	PRE PROJECT LOADIN G %	POST PROJECT LOADIN G %	AC D C	MW IMPAC T
9527839 7	23888 9	02LEMOY N	345. 0	ATSI	24293 6	05FOSTO R	345. 0	AEP	1	ATSI- P1-2- TE- 345- 602T	operatio n	1409. 0	119.78	120.8	DC	14.26

11.5 System Reinforcements - Summer Peak Load Flow - Primary POI

ID	ldx	Facility	Upgrade Description	Cost
95277943,9527 8134	4	02W.FREM 138.0 kV - 05FRMNT 138.0 kV Ckt 1	AEPAEPO0026b (450) : Replace 1200 A Switch at FremontProject Type : FACCost : \$200,000Time Estimate : 12-18 monthsAEPO0026d (452) : Replace three Sub Cond 1590 AAC 61 Str at FremontProject Type : FACCost : \$300,000Time Estimate : 12-18 monthsAEPO0026f (454) : Rebuild 7 miles of 138 kV line between Fremont Centerand First Energy's West Fremont station with a bundled 795 ACSRconductor (Replacing ACSR ~ 1033.5 ~ 45/7 ~ ORTOLAN conductor).First Energy will need to be consulted due to the fact that they own aportion of the line conductor that limits the branch.Project Type : FACCost : \$10,500,000Time Estimate : 24-36 monthsATSITE-012A (817) : For the Fremont-West Fremont 138 kV Line, reconductorthe line drop at West Fremont with 954 ACSS. Reconductor the existingsection of the 954 ACSR 48/7 with 954 ACSS. AEP would need to replacetheir section of limiting conductor and provide estimates for theirreplacement.Project Type : FACCost : \$1,761,750Time Estimate : 18.0 months	\$12,761,750

ID	ldx	Facility	Upgrade Description	Cost
95278127	2	02LEMOYN 345.0 kV - 05FOSTOR 345.0 kV Ckt 1	AEP AEPO0032a (473) : Sag study is required on 19.5 mile double circuit line between Forstoria Central and Lemoyn . The cost is expected to be 78,000.New ratings after sag Mitigation S/N: 1409 MVA , S/E: 1887MVA. Rebuild/Recondcutor cost: \$29.2 million. Project Type : FAC Cost : \$78,000 Time Estimate : Sag Study : 6 - 12 months ATSI Not a violation for ATSI portion	\$78,000
100548075	3	02OTTAWA 138.0 kV - 02LAKVEW 138.0 kV Ckt 1	ATSI b3033 (737) : Ottawa-Lakeview 138 kV Reconductor and Substation Upgrades. Projected in-service date: 12/01/2023 Months Project Type : FAC Cost : \$0	\$0
95703255,9570 3055	5	05FRMNT 138.0 kV - 05FREMCT 138.0 kV Ckt 1	AEP AEPO0020e (426) : A sag study will be required on the 4.0 miles of ACSR ~ 795 ~ 45/7 ~ TERN - Conductor Section 1 to mitigate the overload. Depending on the sag study results, the cost for this upgrade is expected to be around \$20,000 (no remediation required, just sag study) and \$6 million (complete line reconductor/rebuild). New rating after sag study: S/N:251 S/E: 335 MVA. Time Estimate: a) Sag Study: 6-12 months. b) Rebuild: The standard time required for construction differs from state to state. An approximate construction time would be 24 to 36 months after signing an interconnection agreement. Project Type : FAC Cost : \$20,000 Time Estimate : Sag Study : 6 - 12 months	\$20,000
100548068	1	02LAKVEW 138.0 kV - 02GRNFLD 138.0 kV Ckt 1	ATSI OEC-011-B (773) : Reconductor roughly 13.1 miles of the Greenfield- Lakeview 138 kV Line (currently bundled 336 ACSR) with 795 ACSS conductor. Replace two 1200A line switches with 2000A line switches. Upgrade 500 CU substation conductor at Greenfield to exceed line ratings of 795 ACSS. Upgrade RT for B-242 to exceed line ratingsa of 795 ACSS. Project Type : Facility Cost : \$23,580,000 Time Estimate : 24.0 months	\$23,580,000
			TOTAL COST	\$36,439,750

11.6 Flow Gate Details

The following indices contain additional information about each facility presented in the body of the report. For each index, a description of the flowgate and its contingency was included for convenience. The intent of the indices is to provide more details on which projects/generators have contributions to the flowgate in question. All New Service Queue Requests, through the end of the Queue under study, that are contributors to a flowgate will be listed in the indices. Please note that there may be contributors that are subsequently queued after the queue under study that are not listed in the indices. Although this information is not used "as is" for cost allocation purposes, it can be used to gage the impact of other projects/generators. It should be noted the project/generator MW contributions presented in the body of the report are Full MW Impact contributions which are also noted in the indices column named "Full MW Impact", whereas the loading percentages reported in the body of the report, take into consideration the PJM Generator Deliverability Test rules such as commercial probability of each project as well as the ramping impact of "Adder" contributions. The MW Impact found and used in the analysis is shown in the indices column named "Gendeliv MW Impact".

11.6.1 Index 1

ID	FROM BUS#	FROM BUS	FROM BUS AREA	TO BUS#	TO BUS	TO BUS AREA	CKT ID	CONT NAME	Туре	Rating MVA	PRE PROJECT LOADING %	POST PROJECT LOADING %	AC DC	MW IMPACT
100548068	238874	02LAKVEW	ATSI	238768	02GRNFLD	ATSI	1	ATSI- P7-1- TE-345- 027A	tower	316.0	118.31	118.91	DC	4.22

Bus #	Bus	Gendeliv MW Impact	Туре	Full MW Impact	
238979	02NAPMUN	2.0137	Adder	2.37	
247548	V4-010 C	1.4173	Adder	1.67	
247551	U4-028 C (Suspended)	0.6058	Adder	0.71	
247552	U4-029 C (Suspended)	0.6058	Adder	0.71	
247940	U4-028 E (Suspended)	4.0539	Adder	4.77	
247941	U4-029 E (Suspended)	4.0539	Adder	4.77	
247947	V4-010 E	9.4848	Adder	11.16	
931951	AB1-107 1	20.4819	Adder	24.1	
931961	AB1-107 2	33.3903	Adder	39.28	
934252	AD1-052 E1	0.4965	Adder	0.58	
934262	AD1-052 E2	0.4965	Adder	0.58	
934461	AD1-070 C O1	1.5523	Adder	1.83	
934462	AD1-070 E O1	7.2874	Adder	8.57	
934891	AD1-118	3.6503	Adder	4.29	
937021	AD2-136 C O1	2.1807	Adder	2.57	
937022	AD2-136 E O1	14.5942	Adder	17.17	
937381	AD2-191 C (Withdrawn : 06/03/2020)	1.0298	Adder	1.21	
937382	AD2-191 E (Withdrawn : 06/03/2020)	6.8917	Adder	8.11	
938911	AE1-119	28.6811	Adder	33.74	
941741	AE2-174 C	1.8997	Adder	2.23	
941742	AE2-174 E	8.8934	Adder	10.46	
941781	AE2-181 C	1.5261	Adder	1.8	
941782	AE2-181 E	1.0174	Adder	1.2	
942661	AE2-282 C O1	2.3452	Adder	2.76	
942662	AE2-282 E O1	1.2341	Adder	1.45	
943961	AF1-064 C O1	1.9970	Adder	2.35	
943962	AF1-064 E O1	0.9925	Adder	1.17	
944551	AF1-120 C	1.4210	Adder	1.67	
944552	AF1-120 E	0.7159	Adder	0.84	
945401	AF1-205 C O1	1.3062	Adder	1.54	
945402	AF1-205 E O1	0.8708	Adder	1.02	
945411	AF1-206 C O1	6.3786	Adder	7.5	
945412	AF1-206 E O1	4.2524	Adder	5.0	
958321	AF2-126 C	1.2707	Adder	2.82	
958322	AF2-126 E	0.6306	Adder	1.4	
960301	AF2-321 C	2.3259	Adder	5.16	
960302	AF2-321 E	1.5506	Adder	3.44	
960841	AF2-375 C O1	1.7771	Adder	3.94	
960842	AF2-375 E O1	1.1847	Adder	2.63	

Bus #	Bus	Gendeliv MW Impact	Туре	Full MW Impact
960951	AF2-386 C O1	0.1705	Adder	0.38
960952	AF2-386 E O1	0.2354	Adder	0.52
WEC	WEC	0.5683	Confirmed LTF	0.5683
LGEE	LGEE	0.7057	Confirmed LTF	0.7057
CPLE	CPLE	0.1449	Confirmed LTF	0.1449
CBM-W2	CBM-W2	10.1802	Confirmed LTF	10.1802
NY	NY	0.6371	Confirmed LTF	0.6371
CBM-W1	CBM-W1	33.3392	Confirmed LTF	33.3392
TVA	TVA	1.3230	Confirmed LTF	1.3230
O-066	O-066	6.5184	Confirmed LTF	6.5184
CBM-S2	CBM-S2	2.2137	Confirmed LTF	2.2137
CBM-S1	CBM-S1	8.5115	Confirmed LTF	8.5115
G-007	G-007	1.0015	Confirmed LTF	1.0015
MADISON	MADISON	0.6733	Confirmed LTF	0.6733
MEC	MEC	2.5249	Confirmed LTF	2.5249

11.6.2 Index 2

ID	FROM BUS#	FROM BUS	FROM BUS AREA	TO BUS#	TO BUS	TO BUS AREA	CKT ID	CONT NAME	Туре	Rating MVA	PRE PROJECT LOADING %	POST PROJECT LOADING %	AC DC	MW IMPACT
95278127	238889	02LEMOYN	ATSI	242936	05FOSTOR	AEP	1	ATSI- P2-3- TE-345- 034T	breaker	1409.0	120.81	121.84	DC	14.42

Bus #	Bus	Gendeliv MW Impact	Туре	Full MW Impact	
238564	02BAYSG1	6.0928	50/50	6.0928	
238670	02DVBSG1 (Deactivation :	26.8333	50/50	26.8333	
	31/05/2020)				
238885	02LEMOG1	9.2520	50/50	9.2520	
238886	02LEMOG2	9.2520	50/50	9.2520	
238887	02LEMOG3	9.2520	50/50	9.2520	
238888	02LEMOG4	9.2520	50/50	9.2520	
238979	02NAPMUN	7.2307	Adder	8.51	
239293	02BS-PKR	0.5319	50/50	0.5319	
241902	Y1-069 GE	34.5794	50/50	34.5794	
244357	05GRANGER EL	-0.4435	Adder	-0.52	
247549	V3-028 C	-0.7293	Adder	-0.86	
925131	AB2-170 C O1	-4.7407	Adder	-5.58	
927181	AC1-212 C	-0.1107	Adder	-0.13	
927183	AC1-212 BAT	1.3643	Merchant Transmission	1.3643	
931951	AB1-107 1	61.8433	50/50	61.8433	
931961	AB1-107 2	140.5647	50/50	140.5647	
932791	AC2-103 C	5.9676	Adder	7.02	
932792	AC2-103 E	39.9438	Adder	46.99	
934252	AD1-052 E1	0.6594	Adder	0.78	
934262	AD1-052 E2	0.6594	Adder	0.78	
934761	AD1-103 C O1	10.0337	Adder	11.8	
934762	AD1-103 E O1	67.1485	Adder	79.0	
934891	AD1-118	23.4661	50/50	23.4661	
936722	AD2-091 BAT	5.6450	Merchant Transmission	5.6450	
938911	AE1-119	184.3765	50/50	184.3765	
941761	AE2-176 C	8.8173	Adder	10.37	
941762	AE2-176 E	5.8782	Adder	6.92	
941781	AE2-181 C	5.0290	Adder	5.92	
941782	AE2-181 E	3.3527	Adder	3.94	
942042	AE2-216 BAT	6.2095	Merchant Transmission	6.2095	
942661	AE2-282 C O1	7.8429	Adder	9.23	
942662	AE2-282 E O1	4.1269	Adder	4.86	
943012	AE2-324 BAT	2.2397	Merchant Transmission	2.2397	
943951	AF1-063 C O1	1.1198	Adder	1.32	
943952	AF1-063 E O1	0.6208	Adder	0.73	
943961	AF1-064 C O1	8.0247	50/50	8.0247	
943962	AF1-064 E O1	3.9883	50/50	3.9883	
944551	AF1-120 C	4.7522	Adder	5.59	
944552	AF1-120 E	2.3940	Adder	2.82	
945341	AF1-199	0.2948	Adder	0.35	

Bus #	Bus	Gendeliv MW Impact	Туре	Full MW Impact	
945401	AF1-205 C O1	4.6902	Adder	5.52	
945402	AF1-205 E O1	3.1268	Adder	3.68	
945411	AF1-206 C O1	21.3312	Adder	25.1	
945412	AF1-206 E O1	14.2208	Adder	16.73	
945623	AF1-227 BAT	7.6910	Merchant Transmission	7.6910	
946052	AF1-270 BAT	4.2155	Merchant Transmission	4.2155	
946141	AF1-279 C	7.4213	Adder	8.73	
946142	AF1-279 E	4.9475	Adder	5.82	
946203	AF1-285 BAT	2.0972	Merchant Transmission	2.0972	
950311	G934 C	2.4678	PJM External (MISO)	2.4678	
950312	G934 E	9.8712	PJM External (MISO)	9.8712	
950351	J466	3.8355	PJM External (MISO)	3.8355	
950791	J201 C	0.4628	PJM External (MISO)	0.4628	
950792	J201 E	1.8510	PJM External (MISO)	1.8510	
950871	J246 C	0.1249	PJM External (MISO)	0.1249	
950872	J246 E	0.4995	PJM External (MISO)	0.4995	
950942	J325 E	0.5268	PJM External (MISO)	0.5268	
951531	J533 C	3.5680	PJM External (MISO)	3.5680	
951532	J533 E	14.2720	PJM External (MISO)	14.2720	
951571	J535 E	3.9219	PJM External (MISO)	3.9219	
951572	J538 E	15.6876	PJM External (MISO)	15.6876	
951941	J602 C	3.4554	PJM External (MISO)	3.4554	
951942	J602 C	18.6946	PJM External (MISO)		
			, , ,	18.6946 2.9456	
952201	J589 C J589 E	2.9456	PJM External (MISO)	15.9364	
952202		15.9364	PJM External (MISO)		
952312	J646 E	0.2274	PJM External (MISO)	0.2274	
952401	J752 C	1.9542	PJM External (MISO)	1.9542	
952402	J752 E	10.5728	PJM External (MISO)	10.5728	
952611	J717 C	3.2570	PJM External (MISO)	3.2570	
952612	J717 E	17.6214	PJM External (MISO)	17.6214	
952761	J728 C	3.0290	PJM External (MISO)	3.0290	
952762	J728 E	16.4096	PJM External (MISO)	16.4096	
952881	J758	15.7180	PJM External (MISO)	15.7180	
952971	J793	187.6579	PJM External (MISO)	187.6579	
953071	J794 C	0.1930	PJM External (MISO)	0.1930	
953072	J794 E	1.0442	PJM External (MISO)	1.0442	
953271	J701 C	0.9516	PJM External (MISO)	0.9516	
953272	J701 E	5.1484	PJM External (MISO)	5.1484	
953291	J796	25.9028	PJM External (MISO)	25.9028	
953321	J799	32.2585	PJM External (MISO)	32.2585	
953361	J806	14.3860	PJM External (MISO)	14.3860	
953771	J832	9.0250	PJM External (MISO)	9.0250	
953781	J833	17.4510	PJM External (MISO)	17.4510	
953811	J839 13.8170 PJM External (MISO)		13.8170		
953941	J857 10.9781 PJM External (MISO)		PJM External (MISO)	10.9781	
954111	J875	23.2140	PJM External (MISO)	23.2140	
955071	J984 C	2.5665	PJM External (MISO)	2.5665	
955072	J984 E	13.8855	PJM External (MISO)	13.8855	
955121	J989	9.8408	PJM External (MISO)	9.8408	
955181	J996	14.4680	PJM External (MISO)	14.4680	
955261	J1005	21.6620	PJM External (MISO)	21.6620	
955591	J1043 C	1.3966	PJM External (MISO)	1.3966	

Bus #	Bus	Gendeliv MW Impact	Туре	Full MW Impact	
955592	J1043 E	24.7478	PJM External (MISO)	24.7478	
955781	J1062	35.4870	PJM External (MISO)	35.4870	
955861	J1071	6.2790	PJM External (MISO)	6.2790	
956011	J1088	16.4145	PJM External (MISO)	16.4145	
956021	J1089	18.7544	PJM External (MISO)	18.7544	
956031	J1090	10.9080	PJM External (MISO)	10.9080	
956161	J1103	2.4898	PJM External (MISO)	2.4898	
956741	J1172	5.8955	PJM External (MISO)	5.8955	
956751	J1173	12.8360	PJM External (MISO)	12.8360	
956801	J1178	7.1201	PJM External (MISO)	7.1201	
957031	AF2-004 1	0.4413	Adder	0.98	
957041	AF2-004 2	0.4413	Adder	0.98	
957051	AF2-004 3	0.4413	Adder	0.98	
957061	AF2-004 4	0.4413	Adder	0.98	
957111	AF2-005	0.3743	Adder	0.83	
958321	AF2-126 C	9.6344	50/50	9.6344	
958322	AF2-126 E	4.7812	50/50	4.7812	
958331	AF2-127 C	0.7657	Adder	1.7	
958332	AF2-127 E	0.4028	Adder	0.89	
960301	AF2-321 C	7.2712	Adder	16.14	
960302	AF2-321 E	4.8475	Adder	10.76	
960951	AF2-386 C O1	0.5568	Adder	1.24	
960952	AF2-386 E O1	0.7690	Adder	1.71	
NEWTON	NEWTON	1.3163	Confirmed LTF	1.3163	
FARMERCITY	FARMERCITY	0.0477	Confirmed LTF	0.0477	
G-007A	G-007A	0.1534	Confirmed LTF	0.1534	
VFT	VFT	0.4709	Confirmed LTF	0.4709	
CALDERWOOD	CALDERWOOD	0.8563	Confirmed LTF	0.8563	
CBM-W1	CBM-W1	52.7922	Confirmed LTF	52.7922	
PRAIRIE	PRAIRIE	3.0273	Confirmed LTF	3.0273	
CHEOAH	CHEOAH	0.8594	Confirmed LTF	0.8594	
EDWARDS	EDWARDS	0.1589	Confirmed LTF	0.1589	
TILTON	TILTON	0.6439	Confirmed LTF	0.6439	
MADISON	MADISON	5.2154	Confirmed LTF	5.2154	
GIBSON	GIBSON	0.9315	Confirmed LTF	0.9315	
BLUEG	BLUEG	3.7862	Confirmed LTF	3.7862	
TRIMBLE	TRIMBLE	1.2265	Confirmed LTF	1.2265	
CATAWBA	САТАШВА	0.5492	Confirmed LTF	0.5492	

11.6.3 Index 3

ID	FROM BUS#	FROM BUS	FROM BUS AREA	TO BUS#	TO BUS	TO BUS AREA	CKT ID	CONT NAME	Туре	Rating MVA	PRE PROJECT LOADING %	POST PROJECT LOADING %	AC DC	MW IMPACT
100548075	239030	02OTTAWA	ATSI	238874	02LAKVEW	ATSI	1	ATSI- P7-1- TE-345- 027A	tower	380.0	115.2	115.7	DC	4.22

Bus #	Bus	Gendeliv MW Impact	Туре	Full MW Impact
238979	02NAPMUN	2.0137	Adder	2.37
247548	V4-010 C	1.4173	Adder	1.67
247551	U4-028 C (Suspended)	0.6058	Adder	0.71
247552	U4-029 C (Suspended)	0.6058	Adder	0.71
247940	U4-028 E (Suspended)	4.0539	Adder	4.77
247941	U4-029 E (Suspended)	4.0539	Adder	4.77
247947	V4-010 E	9.4848	Adder	11.16
931951	AB1-107 1	20.4819	Adder	24.1
931961	AB1-107 2	33.3903	Adder	39.28
934252	AD1-052 E1	0.4965	Adder	0.58
934262	AD1-052 E2	0.4965	Adder	0.58
934461	AD1-070 C O1	1.5523	Adder	1.83
934462	AD1-070 E O1	7.2874	Adder	8.57
934891	AD1-118	3.6503	Adder	4.29
937021	AD2-136 C O1	2.1807	Adder	2.57
937022	AD2-136 E O1	14.5942	Adder	17.17
937381	AD2-191 C (Withdrawn : 06/03/2020)	1.0298	Adder	1.21
937382	AD2-191 E (Withdrawn : 06/03/2020)	6.8917	Adder	8.11
938911	AE1-119	28.6811	Adder	33.74
941741	AE2-174 C	1.8997	Adder	2.23
941742	AE2-174 E	8.8934	Adder	10.46
941781	AE2-181 C	1.5261	Adder	1.8
941782	AE2-181 E	1.0174	Adder	1.2
942661	AE2-282 C O1	2.3452	Adder	2.76
942662	AE2-282 E O1	1.2341	Adder	1.45
943961	AF1-064 C O1	1.9970	Adder	2.35
943962	AF1-064 E O1	0.9925	Adder	1.17
944551	AF1-120 C	1.4210	Adder	1.67
944552	AF1-120 E	0.7159	Adder	0.84
945401	AF1-205 C O1	1.3062	Adder	1.54
945402	AF1-205 E O1	0.8708	Adder	1.02
945411	AF1-206 C O1	6.3786	Adder	7.5
945412	AF1-206 E O1	4.2524	Adder	5.0
958321	AF2-126 C	1.2707	Adder	2.82
958322	AF2-126 E	0.6306	Adder	1.4
960301	AF2-321 C	2.3259	Adder	5.16
960302	AF2-321 E	1.5506	Adder	3.44
960841	AF2-375 C O1	1.7771	Adder	3.94
960842	AF2-375 E O1	1.1847	Adder	2.63

Bus #	Bus	Gendeliv MW Impact	Туре	Full MW Impact
960951	AF2-386 C O1	0.1705	Adder	0.38
960952	AF2-386 E O1	0.2354	Adder	0.52
WEC	WEC	0.5683	Confirmed LTF	0.5683
LGEE	LGEE	0.7057	Confirmed LTF	0.7057
CPLE	CPLE	0.1449	Confirmed LTF	0.1449
CBM-W2	CBM-W2	10.1802	Confirmed LTF	10.1802
NY	NY	0.6371	Confirmed LTF	0.6371
CBM-W1	CBM-W1	33.3392	Confirmed LTF	33.3392
TVA	TVA	1.3230	Confirmed LTF	1.3230
O-066	O-066	6.5184	Confirmed LTF	6.5184
CBM-S2	CBM-S2	2.2137	Confirmed LTF	2.2137
CBM-S1	CBM-S1	8.5115	Confirmed LTF	8.5115
G-007	G-007	1.0015	Confirmed LTF	1.0015
MADISON	MADISON	0.6733	Confirmed LTF	0.6733
MEC	MEC	2.5249	Confirmed LTF	2.5249

11.6.4 Index 4

ID

FROM FROM

FRO TO TO BUS TO CK

D	BUS#	BUS	M BUS AREA	BUS#	10 803	BUS ARE A	T ID	CONTINAME	Type	g MVA	PROJECT LOADIN G %	PROJECT LOADIN G %	C	IMPAC T
9527813 4	23915 4	02W.FRE M	ATSI	24300 9	05FRMN T	AEP	1	AEP_P4_#517_05F05 R 345_A1	STO breake r	361.0	117.46	117.97	DC	4.06
	Bus #			Bus		G	endel	iv MW Impact		Туре		Full N	/IW Impa	act
	238601		(2FRME	IG 1			6.3641		50/50		ť	5.3641	
	238602		(2FRMEN	IG 2			6.3641		50/50		6.3641		
	238603		(2FRME	IG 3		1	1.4892		50/50		1	1.4892	
	238979			02NAPM	UN			1.8059		Adder			2.12	
	244357		0	5GRANG	ER EL		-	-0.2410		Adder			-0.28	
	931951			AB1-107	1		1	17.8671		Adder			21.02	
	931961			AB1-107	2		3	31.9600		Adder			37.6	
	932791			AC2-103	3 C			1.6818		Adder			1.98	
	932792			AC2-103	3 E		1	1.2572		Adder			13.24	
	934251			AD1-052	C1			0.4723		50/50		(0.4723	
	934252			AD1-052	E1			1.2180		50/50			1.2180	
	934261			AD1-052	C2			0.4723		50/50		0.4723		
	934262			AD1-052	E2			1.2180	50/50			1.2180		
	934761		Δ	D1-103	01			2.8277	Adder			3.33		
	934762		A	D1-103	E 01	18.9		18.9241		Adder		22.26		
934891			AD1-11			3.7497		Adder			4.41			
	938911			AE1-11			29.4618		Adder			34.66		
941761				AE2-176	5 C		9.9818		50/50			ç	9.9818	
	941762			AE2-176	5 E			6.6545		50/50		6.6545		
	941781			AE2-183	LC			1.2507	Adder			1.47		
	941782			AE2-18				0.8338	Adder			0.98		
	942661			E2-282 (1.9699	Adder			2.32		
	942662			E2-282		1.0365		Adder			1.22			
	943961			\F1-064 (1.9214		Adder		2.26		
	943962		4	AF1-064 I		_		0.9550	Adder			1.12		
	944551			AF1-120				1.1936	Adder		1.4			
	944552			AF1-120				0.6013		Adder			0.71	
	945401			F1-205 (1.1714		Adder			1.38	
	945402			F1-205				0.7809		Adder			0.92	
	945411			AF1-206 (_		5.3577		Adder			6.3	
	945412		4	AF1-206 I				3.5718		Adder			4.2	
	958321			AF2-126				1.2226		Adder			2.71	
-	958322			AF2-126				0.6067		Adder	-		1.35	
	NEWTON			NEWTO				0.5093		firmed LT			0.5093	
FA	RMERCI	I Y		ARMER				0.0208		firmed LT			0.0208	
	G-007A			G-007	4			0.0456		firmed LT			0.0456	
<u></u>	VFT	00	-		000			0.1354		Confirmed LTF		0.1354		
			C					0.2952		firmed LT			0.2952	
	CBM-W1			CBM-W				1 1820		firmed LT			2.4224	
	PRAIRIE			PRAIR				1.1830		firmed LT			1.1830	
	CHEOAH			CHEOA				0.2963		firmed LT			0.2963	
E	DWARD	3		EDWAR	ני			0.0941	con	firmed LT	F	l	0.0941	

CONT NAME

Type Ratin

PRE

POST AC|D MW

Bus #	Bus	Gendeliv MW Impact	Туре	Full MW Impact
TILTON	TILTON	0.2652	Confirmed LTF	0.2652
MADISON	MADISON	1.4193	Confirmed LTF	1.4193
GIBSON	GIBSON	0.3298	Confirmed LTF	0.3298
BLUEG	BLUEG	1.2760	Confirmed LTF	1.2760
TRIMBLE	TRIMBLE	0.4129	Confirmed LTF	0.4129
CATAWBA	CATAWBA	0.1879	Confirmed LTF	0.1879

11.6.5 Index 5

ID	FROM BUS#	FROM BUS	FRO M BUS AREA	TO BUS#	TO BUS	TO BUS ARE A	CK T ID	CONT NAME		Туре	Ratin g MVA	PRE PROJECT LOADIN G %	POST PROJECT LOADIN G %	AC D C	MW IMPAC T
9570325 5	24300 9	05FRMN T	AEP	24300 8	05FREMC T	AEP	1	AEP_P4_#517_05FOS R 345_A1	STO Ł	breake r	251.0	106.0	106.61	DC	3.32
	Bus #			Bus		G		iv MW Impact			уре			1W Impa	act
	238601			02FRME				5.1993			0/50			5.1993	
	238602			02FRME	-	_		5.1993			0/50			5.1993	
	238603			02FRME				9.3862			0/50		-	9.3862	
	244357		Ĺ	5GRANG				-0.1965			dder			-0.23	
	931951 931961			AB1-10				14.5975			dder ddor			17.17 30.72	
	931961			AB1-10				26.1079			dder 0/50				
	934251			AD1-052 AD1-052				0.3858 0.9951					0.3858		
	934252			AD1-052				0.3858	50/50			0.9951			
	934262			AD1-052		-	0.3858 50/50 0.9951 50/50				0.3858				
	934891			AD1 052			3.0643		Adder			3.61			
			AE1-1			24.0763		Adder			28.33				
	941761 AE2-176 C				8.1525		50/50			8.1525					
941762		AE2-176 E			5.4350		50/50			5.4350					
	943961		AF1-064 C O1				1.5703	Adder				1.85			
	943962			AF1-064	E 01		0.7804 Adder			0.92					
	958321			AF2-12	6 C		0.9992 Adder				2.22				
	958322			AF2-12	6 E			0.4959	Adder			1.1			
	NEWTON	I		NEWT	NC			0.4115	Confirmed LTF		F	0.4115			
FA	RMERCI	ТҮ		FARMER	СІТҮ			0.0168		Confir	med LT	F	(0.0168	
	G-007A			G-007	'A		0.0336		Confirmed LTF		F	(0.0336		
	VFT			VFT			0.1032		Confirmed LTF		F	0.1032			
CA	LDERWO	OD	(CALDERW	/00D		0.2401		Confirmed LTF		F	().2401		
	CBM-W1			CBM-V	V1		-	10.1957		Confir	med LT	F	1	0.1957	
	PRAIRIE			PRAIR	IE			0.9557		Confir	med LT	F	().9557	
	CHEOAH			CHEOA				0.2407		Confir	med LT	F).2407	
E	DWARD	S		EDWAF	-			0.0753			med LT			0.0753	
	TILTON			TILTO	N			0.2136			med LT			0.2136	
Γ	MADISON	J		MADIS				1.1592			med LT			.1592	
	GIBSON			GIBSO			0.2670		Confirmed LTF				0.2670		
	BLUEG			BLUE	-			1.0364	Confirmed LTF			1.0364			
	TRIMBLE			TRIMB				0.3350	Confirmed LTF			0.3350			
C	CATAWB	4		CATAW	/BA			0.1530		Confir	med LT	F	(0.1530	

11.7 Queue Dependencies

The Queue Projects below are listed in one or more indices for the overloads identified in your report. These projects contribute to the loading of the overloaded facilities identified in your report. The percent overload of a facility and cost allocation you may have towards a particular reinforcement could vary depending on the action of these earlier projects. The status of each project at the time of the analysis is presented in the table. This list may change as earlier projects withdraw or modify their requests.

Queue Number	Project Name	Status
AB1-107	Bayshore-GM Powertrain 138 kV & Lallendorf 345kV	Engineering and Procurement
AB2-019	Erie West 345kV	Engineering and Procurement
AB2-170	East Lima-Marysville 345kV	Under Construction
AC1-051	Willard-S. Greenwich 69kV	Active
AC1-212	Minster 69kV	Engineering and Procurement
AC2-015	Chatfield-Howard 138kV	Active
AC2-103	Beaver-Davis Besse 345 kV I	Active
AD1-052	Freemont Energy Center	Under Construction
AD1-070	Fostoria Central 138 kV	Active
AD1-101	Continental 69 kV	Active
AD1-103	Beaver-Davis Besse 345 kV II	Active
AD1-118	Lemoyne	Active
AD2-075	Segreto 345kV	Active
AD2-091	Hardin Tap 345kV	Active
AD2-136	Melmore Tap 138kV	Active
AD2-191	Melmore 138kV	Withdrawn
AE1-119	Lemoyne 345 kV	Active
AE1-146	Ebersole #2-Fostoria Central 138 kV	Active
AE2-072	East Leipsic-Richland 138 kV	Active
AE2-174	Seneca 138 kV	Active
AE2-176	Groton 138 kV Solar	Active
AE2-181	Snyder 69kV	Active
AE2-216	Hardin Switch 345 kV	Active
AE2-282	East Fayette 138 kV	Active
AE2-324	Galion-Roberts South II 138 kV	Active
AF1-063	Lockwood Road 138 kV	Active
AF1-064	Weston 69 kV	Active
AF1-120	East Fayette 2 138 kV	Active
AF1-199	Avon Lake 10 138 kV	Partially in Service - Under Construction
AF1-205	Napolean Muni 138 kV	Active
AF1-206	Fayette-Lyons 138 kV	Active
AF1-227	Marysville-East Lima 345 kV	Active
AF1-229	Galion-South Berwick 345 kV	Active
AF1-270	Blue Jacket-Kirby 138 kV	Active
AF1-279	Carlisle 138 kV	Active
AF1-285	Gunn Road 345 kV	Active
AF2-004	Beaver 345 kV	Active
AF2-005	Beaver 138 kV	Active

Queue Number	Project Name	Status
AF2-126	Weston 69 kV II	Active
AF2-127	Lockwood Road 138 kV	Active
AF2-209	South Hicksville 138 kV	Active
AF2-321	Stryker-Ridgeville 138 kV	Active
AF2-375	Fostoria Central 138 kV	Active
AF2-386	Bryan 69 kV	Active
U1-059	Ada-Dunkirk 69kV	In Service
U4-028	Fostoria Central-Greenlawn-Howard 138kV	Suspended
U4-029	Fostoria Central-Greenlawn-Howard 138kV	Suspended
V3-028	East Lima-Marysville 345kV	Under Construction
V4-010	Tiffin Center 138kV	Engineering and Procurement
W1-056	Ada-Dunkirk 69kV	In Service
Y1-069	Bay Shore-Fostoria Central 345kV & Bayshore-Monroe 345kV	In Service
Y3-092	Erie West 345kV	Engineering and Procurement
J1005	MISO	MISO
J1043	MISO	MISO
J1062	MISO	MISO
J1071	MISO	MISO
J1088	MISO	MISO
J1089	MISO	MISO
J1090	MISO	MISO
J1103	MISO	MISO
J1172	MISO	MISO
J1173	MISO	MISO
J1178	MISO	MISO
J201	MISO	MISO
J246	MISO	MISO
J325	MISO	MISO
J466	MISO	MISO
J533	MISO	MISO
J538	MISO	MISO
J589	MISO	MISO
J602	MISO	MISO
J646	MISO	MISO
J701	MISO	MISO
J717	MISO	MISO
J728	MISO	MISO
J752	MISO	MISO
J758	MISO	MISO
J793	MISO	MISO
J794	MISO	MISO
J796	MISO	MISO
J799	MISO	MISO
J806	MISO	MISO
J832	MISO	MISO
J833	MISO	MISO
J839	MISO	MISO
J857	MISO	MISO
J875	MISO	MISO
J984	MISO	MISO
J989	MISO	MISO
J996	MISO	MISO

11.8 Contingency Descriptions

Contingency Name	Contingency Definition
AEP_P4_#517_05FOSTOR 345_A1	CONTINGENCY 'AEP_P4_#517_05FOSTOR 345_A1' OPEN BRANCH FROM BUS 241901 TO BUS 242936 CKT 1 / 241901 02LALLEND
AEP_P2-2_#517_05FOSTOR 345_1	CONTINGENCY 'AEP_P2-2_#517_05FOSTOR 345_1' OPEN BRANCH FROM BUS 241901 TO BUS 242936 CKT 1 / 241901 02LALLEND
ATSI-P7-1-TE-345-027A	CONTINGENCY 'ATSI-P7-1-TE-345-027A' /* DB - X1-027A & DB - HAYES 345 DISCONNECT BRANCH FROM BUS 238654 TO BUS 907060 CKT 1 /* 02DAV-BE 345 X1- 027A_AT12 345 DISCONNECT BRANCH FROM BUS 238654 TO BUS 239289 CKT 1 /* 02DAV-BE 345 02HAYES 345 END
ATSI-P1-2-TE-345-602T	CONTINGENCY 'ATSI-P1-2-TE-345-602T' /*LINE OUTAGE: LALLEND
ATSI-P2-3-OEC-345-026	CONTINGENCY 'ATSI-P2-3-OEC-345-026' /* BEAVER 345KV BRK B-182 DISCONNECT BRANCH FROM BUS 238569 TO BUS 907060 CKT 1 /* 02BEAVER 345 X1- 027A TAP 345 DISCONNECT BRANCH FROM BUS 238569 TO BUS 239171 CKT 1 /* 02BEAVER 345 02WLORG-2 14 DISCONNECT BRANCH FROM BUS 238569 TO BUS 239172 CKT 1 /* 02BEAVER 345 02WLORG-3 14 DISCONNECT BRANCH FROM BUS 238569 TO BUS 239173 CKT 1 /* 02BEAVER 345 02WLORG-4 14 DISCONNECT BRANCH FROM BUS 238569 TO BUS 239174 CKT 1 /* 02BEAVER 345 02WLORG-5 14 REMOVE MACHINE 2 FROM BUS 239171 /* 02WLORG-2 14 REMOVE MACHINE 3 FROM BUS 239172 /* 02WLORG-3 14 REMOVE MACHINE 3 FROM BUS 239173 /* 02WLORG-3 14 REMOVE MACHINE 4 FROM BUS 239174 /* 02WLORG-5 14 DISCONNECT BUS 239171 /* 02WLORG-5 14 DISCONNECT BUS 239171 /* 02WLORG-5 14 DISCONNECT BUS 239172 /* 02WLORG-5 14 DISCONNECT BUS 239173 /* 02WLORG-5 14 DISCONNECT BUS 239173 /* 02WLORG-5 14 DISCONNECT BUS 239173 /* 02WLORG-5 14 DISCONNECT BUS 239174 /* 02WLORG-5 14 DISCONNECT BUS 239173 /* 02WLORG-5 14 DISCONNECT BUS 239174 /* 02WLORG-5 14 DISCONNECT BUS 239173 /* 02WLORG-5 14 DISCONNECT BUS 239173 /* 02WLORG-5 14 DISCONNECT BUS 239174 /* 02WLORG-5 14 END
ATSI-P2-3-TE-345-034T	CONTINGENCY 'ATSI-P2-3-TE-345-034T' /* LALLEND

12 Short Circuit Analysis

Short circuit analysis will be provided in the System Impact Study report.

13 Affected Systems

13.1 NYISO

NYISO Impacts to be determined during later study phases (as applicable).

13.2 MISO

MISO Impacts to be determined during later study phases (as applicable).

14 Attachment 1: One Line Diagram

Generation Interconnection System Impact Study Report for Queue Project AF2-126 WESTON 69 KV II 34 MW Capacity / 51 MW Energy

February 2021

Table of Contents

1 Ir	ntroduction	4
2 P	Preface	4
3 G	General	5
4 P	Point of Interconnection	6
5 C	Cost Summary	6
6 T	ransmission Owner Scope of Work	8
7 S	chedule	9
8 T	ransmission Owner Analysis	9
8.1	Transmission Owner Identified Network Impacts to Distribution Facilities	9
8.2	Transmission Owner Identified Network Impacts to Sub-Regional Facilities	9
8.3	System Reinforcements on Distribution Facilities	9
8.4	System Reinforcements on Sub-Regional Facilities	10
9 C	Customer Requirements	10
9.1	System Protection	10
9.2	Compliance Issues and Interconnection Customer Requirements	10
9.3	Power Factor Requirements	11
10	Revenue Metering and SCADA Requirements	11
10.1	1 PJM Requirements	11
10.2	2 Meteorological Data Reporting Requirements	11
10.3	3 Interconnected Transmission Owner Requirements	12
11	Summer Peak Analysis	13
11.1	1 Generation Deliverability	13
11.2	2 Multiple Facility Contingency	13
11.3	3 Contribution to Previously Identified Overloads	13
11.4	4 Steady-State Voltage Requirements	13
11.5	5 Potential Congestion due to Local Energy Deliverability	13
11.6	6 System Reinforcements	14
11.7	7 Flow Gate Details	16
1	1.7.1 Index 1	17
1	1.7.2 Index 2	19
11.8	8 Queue Dependencies	20

11.	9 Contingency Descriptions	21
12	Light Load Analysis	23
13	Short Circuit Analysis	23
14	Stability and Reactive Power	23
15	Affected Systems	23
15.	1 NYISO	23
15.	2 MISO	23
16	Attachment 1: One Line Diagram	24

1 Introduction

This System Impact Study has been prepared in accordance with the PJM Open Access Transmission Tariff, 205, as well as the System Impact Study Agreement between the Interconnection Customer (IC), and PJM Interconnection, LLC (PJM), Transmission Provider (TP). The Interconnected Transmission Owner (ITO) is ATSI.

2 Preface

The intent of the System Impact Study is to determine a plan, with approximate cost and construction time estimates, to connect the subject generation interconnection project to the PJM network at a location specified by the Interconnection Customer. As a requirement for interconnection, the Interconnection Customer may be responsible for the cost of constructing: Network Upgrades, which are facility additions, or upgrades to existing facilities, that are needed to maintain the reliability of the PJM system. All facilities required for interconnection of a generation interconnection project must be designed to meet the technical specifications (on PJM web site) for the appropriate transmission owner.

In some instances an Interconnection Customer may not be responsible for 100% of the identified network upgrade cost because other transmission network uses, e.g. another generation interconnection or merchant transmission upgrade, may also contribute to the need for the same network reinforcement. The possibility of sharing the reinforcement costs with other projects may be identified in the Feasibility Study, but the actual allocation will be deferred until the System Impact Study is performed.

The System Impact Study estimates do not include the feasibility, cost, or time required to obtain property rights and permits for construction of the required facilities. The project developer is responsible for the right of way, real estate, and construction permit issues. For properties currently owned by Transmission Owners, the costs may be included in the study.

The Interconnection Customer seeking to interconnect a wind or solar generation facility shall maintain meteorological data facilities as well as provide that meteorological data which is required per Schedule H to the Interconnection Service Agreement and Section 8 of Manual 14D.

An Interconnection Customer with a proposed new Customer Facility that has a Maximum Facility Output equal to or greater than 100 MW shall install and maintain, at its expense, phasor measurement units (PMUs). See Section 8.5.3 of Appendix 2 to the Interconnection Service Agreement as well as section 4.3 of PJM Manual 14D for additional information.

3 General

The Interconnection Customer (IC) has proposed an uprate to a planned solar generating facility located in Wood, Ohio. This project is an increase to the Interconnection Customer's AF1-064 project, which will share the same point of interconnection. The AF2-126 queue position is a 51 MW uprate (34 MW Capacity uprate) to the previous project. The total installed facilities will have a capability of 101 MW with 67.4 MW of this output being recognized by PJM as Capacity. The proposed in-service date for this uprate project is December 31, 2021. This study does not imply a TO commitment to this in-service date.

Queue Number	AF2-126
Project Name	WESTON 69 KV II
State	Ohio
County	Wood
Transmission Owner	ATSI
MFO	101
MWE	51
MWC	34
Fuel	Solar
Basecase Study Year	2023

Any new service customers who can feasibly be commercially operable prior to June 1st of the basecase study year are required to request interim deliverability analysis.

4 **Point of Interconnection**

AF2-126 will interconnect with the ATSI on transmission system as an uprate to AF1-064 at the Weston 69 kV Substation. The IC will be responsible for acquiring all easements, properties, and permits that may be required.

Attachment 1 shows a one-line diagram of the proposed primary Direct Connection facilities for the AF2-126 generation project to connect to the FirstEnergy ("FE") transmission system. IC will be responsible for constructing all of the facilities on its side of the POI, including the Attachment Facilities which connect the generator to the FE transmission system.

5 Cost Summary

The AF2-126 project will be responsible for the following costs:

Description	Total Cost
Total Physical Interconnection Costs	\$300,200
Total System Network Upgrade Costs (PJM Identified)	\$0
Total System Network Upgrade Costs (TO Identified)	\$75,472
Total Costs	\$375,672

*As your project progresses through the study process and other projects modify their request or withdraw, then your cost allocation could change.

This cost excludes a Federal Income Tax Gross Up charges. This tax may or may not be charged based on whether this project meets the eligibility requirements of IRS Notice 88-129. If at a future date it is determined that the Federal Income Tax Gross charge is required, the Transmission Owner shall be reimbursed by the Interconnection Customer for such taxes.

Note 1: PJM Open Access Transmission Tariff (OATT) section 217.3A outline cost allocation rules. The rules are further clarified in PJM Manual 14A Attachment B. The allocation of costs for a network upgrade will start with the first Queue project to cause the need for the upgrade. Later queue projects will receive cost allocation contingent on their contribution to the violation and are allocated to the queues that have not closed less than 5 years following the execution of the first Interconnection Service Agreement which identifies the need for this upgrade.

Note 2: For customers with System Reinforcements listed: If your present cost allocation to a System Reinforcement indicates \$0, then please be aware that as changes to the interconnection process occur, such as prior queued projects withdrawing from the queue, reducing in size, etc, the cost responsibilities can change and a cost allocation may be assigned to your project. In addition, although your present cost allocation to a

System Reinforcement is presently \$0, your project may need this system reinforcement completed to be deliverable to the PJM system. If your project comes into service prior to completion of the system reinforcement, an interim deliverability study for your project will be required.

6 Transmission Owner Scope of Work

AF2-126 will interconnect with the ATSI on transmission system as an uprate to AF1-064 at the Weston 69 kV Substation. No additional interconnection facilities are required. The IC will be responsible for acquiring all easements, properties, and permits that may be required.

If the AF1-064 project withdraws from the New Services Queue, the AF2-126 project will be responsible for the interconnection facilities identified in the AF1-064 Facilities Study Agreement.

The total physical interconnection costs is given in the table below:

Description	Total Cost
Review drawings, nameplates, relay settings at AF2-126 Gen	\$14,000
Relay settings changes at Midway	\$95,400
Relay settings changes at Bowling Green No2	\$95,400
Relay settings changes at Weston	\$95,400
Total Physical Interconnection Costs	\$300,200

7 Schedule

Based on the scope of work for the interconnection facilities, it is expected to take a minimum of **6 months** after the signing of an Interconnection Construction Service Agreement and construction kickoff call to complete the installation of the physical connection work. This assumes that there will be no environmental issues with any of the new properties associated with this project, that there will be no delays in acquiring the necessary permits for implementing the defined interconnection work, and that all system outages will be allowed when requested.

The schedule for any required Network Impact Reinforcements will be more clearly identified in future study phases. The estimated time to complete each of the required reinforcements is identified in the "System Reinforcements" section of the report.

8 Transmission Owner Analysis

8.1 Transmission Owner Identified Network Impacts to Distribution Facilities

Potential TO identified network impacts to Transmission Owner distribution facilities were as follows:

None

8.2 Transmission Owner Identified Network Impacts to Sub-Regional Facilities

Potential TO identified network impacts to Transmission Owner Sub-Regional facilities were as follows:

ldx	Overloaded Element	Contingency	Rating [MVA]	Loading Before %	Loading After %	Contribution [MW]
37	240843 02BG2 69.0 240844 02BG3 69.0 1	ATSI-P1-2-TE-69-008[OP]	52	92.79%	104.23%	5.95
34	240902 02TNTGON 69.0 240843 02BG2 69.0 1	ATSI-P1-2-TE-69-009[OP]	52	86.40%	110.62%	15.51

8.3 System Reinforcements on Distribution Facilities

None

ldx	Facility	Upgrade ID	Upgrade Description	Cost	Cost Allocated to AF2-343	Queue Dependencies
37	240843 02BG2 69.0 240844 02BG3 69.0 1	TBD	Not FE Owned. This equipment is owned by Bowling Green. Will be evaluated during Facility Study.	TBD	TBD	N/A
34	240902 02TNTGON 69.0 240843 02BG2 69.0 1	TE-AG1-F-0008	ATSI TE-AG1-F-0008: Replace existing sections of 250 CU 19 subconductor circular at Bowling Green -2 with a conductor able to meet or exceed 83 MVA STE. Reconductor existing sections of 3/0 ACSR 6/1 at Tontogany T - Bowling Green -2 with a conductor able to meet or exceed 83 MVA STE. Replace (1) 5.5 A relay thermal at Sharon. Time Estimate: 12 Cost: \$75,472	\$75,472	\$75,472	N/A
			TOTAL COST	\$75,472	\$75,472	

8.4 System Reinforcements on Sub-Regional Facilities

9 Customer Requirements

9.1 System Protection

The IC must design its Customer Facilities in accordance with all applicable standards, including the standards in FE's "Requirements for Transmission Connected Facilities" document located at: http://www.pim.com/planning/design-engineering/to-tech-standards/private-firstenergy.aspx. Preliminary Protection requirements will be provided as part of the Facilities Study. Detailed Protection Requirements will be provided once the project enters the construction phase.

All new generator only and new generator plus load facilities must be isolated from the FE transmission System by a Power Transformer. Section 14.2.6 of FE's "Requirements for Transmission Connected Facilities" document specifies the winding configurations of the transformer connecting to a non-effectively grounded portion of the FE Transmission system shall be determined by FE on a case-by-case basis.

9.2 Compliance Issues and Interconnection Customer Requirements

The proposed Customer Facilities must be designed in accordance with FE's "Requirements for Transmission Connected Facilities" document located at: <u>http://www.pjm.com/planning/design-engineering/to-tech-standards/private-firstenergy.aspx</u>. In particular, the IC is responsible for the following:

 The purchase and installation of a fully rated 69 kV circuit breaker to protect the AF2-126 generator lead line. A single circuit breaker must be used to protect this line; if the project has several GSU transformers, the individual GSU transformer breakers cannot be used to protect this line.

- 2. The purchase and installation of the minimum required FE generation interconnection relaying and control facilities. This includes over/under voltage protection, over/under frequency protection, and zero sequence voltage protection relays.
- 3. The purchase and installation of supervisory control and data acquisition ("SCADA") equipment to provide information in a compatible format to the FE Transmission System Control Center.
- 4. Compliance with the FE and PJM generator power factor and voltage control requirements.
- 5. The execution of a back-up service agreement to serve the customer load supplied from the AF2-126 generation project metering point when the units are out-of-service. This assumes the intent of the IC is to net the generation with the load.

The IC will also be required to meet all PJM, ReliabilityFirst, and NERC reliability criteria and operating procedures for standards compliance. For example, the IC will need to properly locate and report the over and under voltage and over and under frequency system protection elements for its units as well as the submission of the generator model and protection data required to satisfy the PJM and ReliabilityFirst audits. Failure to comply with these requirements may result in a disconnection of service if the violation is found to compromise the reliability of the FE system.

9.3 **Power Factor Requirements**

The IC shall design its non-synchronous Customer Facility with the ability to maintain a power factor of at least 0.95 leading (absorbing VARs) to 0.95 lagging (supplying VARs) measured at the high-side of the facility substation transformer(s) connected to the FE transmission system.

10 Revenue Metering and SCADA Requirements

10.1 PJM Requirements

The Interconnection Customer will be required to install equipment necessary to provide Revenue Metering (KWH, KVARH) and real time data (KW, KVAR) for IC's generating Resource. See PJM Manuals M-01 and M-14D, and PJM Tariff Section 8 of Attachment O.

10.2 Meteorological Data Reporting Requirements

The solar generation facility shall provide the Transmission Provider with site-specific meteorological data including:

- Back Panel temperature (Fahrenheit) (Required for plants with Maximum Facility Output of 3 MW or higher)
- Irradiance (Watts/meter²) (Required for plants with Maximum Facility Output of 3 MW or higher)
- Ambient air temperature (Fahrenheit) (Accepted, not required)

- Wind speed (meters/second) (Accepted, not required)
- Wind direction (decimal degrees from true north) (Accepted, not required)

10.3 Interconnected Transmission Owner Requirements

The IC will be required to comply with all Interconnected Transmission Owner's revenue metering requirements for generation interconnection customers located at the following link:

http://www.pjm.com/planning/design-engineering/to-tech-standards/

11 Summer Peak Analysis

The Queue Project AF2-126 was evaluated as a 51.0 MW (Capacity 34.0 MW) injection as an uprate to AF1-064 at the Weston 69 kV substation in the ATSI area. Project AF2-126 was evaluated for compliance with applicable reliability planning criteria (PJM, NERC, NERC Regional Reliability Councils, and Transmission Owners). Project AF2-126 was studied with a commercial probability of 100.0 %. Potential network impacts were as follows:

11.1 Generation Deliverability

(Single or N-1 contingencies for the Capacity portion only of the interconnection)

None

11.2 Multiple Facility Contingency

(Double Circuit Tower Line, Fault with a Stuck Breaker, and Bus Fault contingencies for the full energy output)

None

11.3 Contribution to Previously Identified Overloads

(This project contributes to the following contingency overloads, i.e. "Network Impacts", identified for earlier generation or transmission interconnection projects in the PJM Queue)

ID	FRO M BUS#	FROM BUS	kV	FRO M BUS ARE A	TO BUS#	TO BUS	kV	TO BUS ARE A	CK T ID	CONT NAME	Туре	Ratin g MVA	PRE PROJEC T LOADIN G %	POST PROJEC T LOADIN G %	AC D C	MW IMPA CT
1005480	23887	02LAKVE	138.	ATSI	23876	02GRNF	138.	ATSI	1	ATSI-P7-1-TE-345-	tower	316.	111.9	113.08	AC	3.6
68	4	W	0		8	LD	0			027A		0				
9570305	24300	05FRMN	138.	AEP	24300	05FREM	138.	AEP	1	AEP_P2-	bus	251.	107.13	108.77	AC	2.82
5	9	Т	0		8	СТ	0			2_#517_05FOSTOR		0				
										345_1						
9570325	24300	05FRMN	138.	AEP	24300	05FREM	138.	AEP	1	AEP_P4_#517_05FOS	break	251.	107.13	108.77	AC	2.82
5	9	Т	0		8	СТ	0			TOR 345_A1	er	0				

11.4 Steady-State Voltage Requirements

To be determined in the Facilities Study phase.

11.5 Potential Congestion due to Local Energy Deliverability

PJM also studied the delivery of the energy portion of this interconnection request. Any problems identified below are likely to result in operational restrictions to the project under study. The developer can proceed with network upgrades to eliminate the operational restriction at their discretion by submitting a Merchant Transmission Interconnection request.

Note: Only the most severely overloaded conditions are listed below. There is no guarantee of full delivery of energy for this project by fixing only the conditions listed in this section. With a Transmission Interconnection Request, a subsequent analysis will be performed which shall study all overload conditions associated with the overloaded element(s) identified. None

11.6 System Reinforcements

ID	ldx	Facility	Upgrade Description	Cost	Cost Allocated to AF2- 126	Upgrade Number
95703255,9570 3055	2	05FRMNT 138.0 kV - 05FREMCT 138.0 kV Ckt 1	 AEP Projectid : n6297.1 (AEPO0020e) Description : A sag study will be required on the 4.0 miles of ACSR ~ 795 ~ 45/7 ~ TERN - Conductor Section 1 to mitigate the overload. Depending on the sag study results, the cost for this upgrade is expected to be around \$20,000 (no remediation required, just sag study) and \$6 million (complete line reconductor/rebuild). New rating after sag study: S/N: 251 S/E: 335 MVA. Time Estimate: a) Sag Study: 6-12 months. b) Rebuild: The standard time required for construction differs from state to state. An approximate construction differs from state to 36 months after signing an interconnection agreement. Type : FAC Total Cost : \$20,000 Time Estimate : Sag Study : 6 - 12 Months Ratings : 251.0/335.0 This constraint is driven by a prior queue. Per PJM cost allocation rules, Queue Project AF2-126 presently does not receive cost allocation for this upgrade. Note 1: as changes to the interconnection process occur, such as prior queued projects withdrawing from the queue, reducing in size, etc, Queue Project AF2-126 may not have cost responsibility for this upgrade, Queue Project AF2-126 may not have cost responsibility for this upgrade, Queue Project AF2-126 will need an interim study. 	\$20,000	\$0	n6297.1

ID	ldx	Facility	Upgrade Description	Cost	Cost Allocated to AF2- 126	Upgrade Number
100548068	1	02LAKVEW 138.0 kV - 02GRNFLD 138.0 kV Ckt 1	ATSI Projectid : n6481 (OEC-011B-R1) Description : Reconductor roughly 13.58 miles of the Greenfield-Lakeview 138 kV Line. Replace two line switches. Upgrade substation conductor at Greenfield and upgrade relaying for B-242. Type : FAC Total Cost : \$52,740,000 Time Estimate : Sag Study : 54 Months Ratings : 435.0/500.0/547.0 Per PJM cost allocation rules, Queue Project AF2-126 presently does not receive cost allocation for these upgrades. Note 1: as changes to the interconnection process occur, such as prior queued projects withdrawing from the queue, reducing in size, etc, Queue Project AF2-126 could receive cost allocation. Note 2: Although Queue Project AF2-126 may not have cost responsibility for this upgrade, Queue Project AF2-126 may need this upgrade in-service to be deliverable to the PJM system. If Queue Project AF2-126 comes into service prior to completion of the upgrade, Queue Project AF2-126 will need an interim study.	\$52,740,000	\$0	n6481
			TOTAL COST	\$52,760,000	\$0	

Note : For customers with System Reinforcements listed: If your present cost allocation to a System Reinforcement indicates \$0, then please be aware that as changes to the interconnection process occur, such as prior queued projects withdrawing from the queue, reducing in size, etc, the cost responsibilities can change and a cost allocation may be assigned to your project. In addition, although your present cost allocation to a System Reinforcement is presently \$0, your project may need this system reinforcement completed to be deliverable to the PJM system. If your project comes into service prior to completion of the system reinforcement, an interim deliverability study for your project will be required.

11.7 Flow Gate Details

The following indices contain additional information about each facility presented in the body of the report. For each index, a description of the flowgate and its contingency was included for convenience. The intent of the indices is to provide more details on which projects/generators have contributions to the flowgate in question. All New Service Queue Requests, through the end of the Queue under study, that are contributors to a flowgate will be listed in the indices. Please note that there may be contributors that are subsequently queued after the queue under study that are not listed in the indices. Although this information is not used "as is" for cost allocation purposes, it can be used to gage the impact of other projects/generators. It should be noted the project/generator MW contributions presented in the body of the report are Full MW Impact contributions which are also noted in the indices column named "Full MW Impact", whereas the loading percentages reported in the body of the report, take into consideration the PJM Generator Deliverability Test rules such as commercial probability of each project as well as the ramping impact of "Adder" contributions. The MW Impact found and used in the analysis is shown in the indices column named "Gendeliv MW Impact".

11.7.1 Index 1

ID	FROM BUS#	FROM BUS	FROM BUS AREA	TO BUS#	TO BUS	TO BUS AREA	CKT ID	CONT NAME	Туре	Rating MVA	PRE PROJECT LOADING %	POST PROJECT LOADING %	AC DC	MW IMPACT
100548068	238874	02LAKVEW	ATSI	238768	02GRNFLD	ATSI	1	ATSI- P7-1- TE-345- 027A	tower	316.0	111.9	113.08	AC	3.6

Bus #	Bus	Gendeliv MW Impact	Туре	Full MW Impact
238601	02FRMENG 1	2.9833	50/50	2.9833
238602	02FRMENG 2	2.9833	50/50	2.9833
238603	02FRMENG 3	5.3858	50/50	5.3858
238979	02NAPMUN	2.0238	Adder	2.38
247548	V4-010 C	1.4246	Adder	1.68
247551	U4-028 C (Suspended)	0.6094	Adder	0.72
247552	U4-029 C (Suspended)	0.6094	Adder	0.72
247940	U4-028 E (Suspended)	4.0783	Adder	4.8
247941	U4-029 E (Suspended)	4.0783	Adder	4.8
247947	V4-010 E	9.5336	Adder	11.22
931951	AB1-107 1 (Suspended)	20.5547	Adder	24.18
931961	AB1-107 2 (Suspended)	33.5515	Adder	39.47
932791	AC2-103 C	-2.1800	Adder	-2.56
934251	AD1-052 C1	0.2214	50/50	0.2214
934252	AD1-052 E1	0.5861	50/50	0.5861
934261	AD1-052 C2	0.2214	50/50	0.2214
934262	AD1-052 E2	0.5861	50/50	0.5861
934461	AD1-070 C O1	1.5618	Adder	1.84
934462	AD1-070 E O1	7.3319	Adder	8.63
934891	AD1-118	3.6694	Adder	4.32
937021	AD2-136 C O1	2.1939	Adder	2.58
937022	AD2-136 E O1	14.6820	Adder	17.27
938911	AE1-119	28.8307	Adder	33.92
941741	AE2-174 C	1.9095	Adder	2.25
941742	AE2-174 E	8.9392	Adder	10.52
941781	AE2-181 C	1.5341	Adder	1.8
941782	AE2-181 E	1.0228	Adder	1.2
942661	AE2-282 C O1	2.3572	Adder	2.77
942662	AE2-282 E O1	1.2403	Adder	1.46
943961	AF1-064 C O1	2.0060	Adder	2.36
943962	AF1-064 E O1	0.9970	Adder	1.17
944551	AF1-120 C	1.4283	Adder	1.68
944552	AF1-120 E	0.7195	Adder	0.85
945401	AF1-205 C O1	1.3127	Adder	1.54
945402	AF1-205 E O1	0.8752	Adder	1.03
945411	AF1-206 C O1	6.4111	Adder	7.54
945412	AF1-206 E O1	4.2741	Adder	5.03
958321	AF2-126 C	2.0421	Adder	2.4
958322	AF2-126 E	1.0210	Adder	1.2
960301	AF2-321 C	4.4126	Adder	5.19
960302	AF2-321 E	2.9417	Adder	3.46

Bus #	Bus	Gendeliv MW Impact	Туре	Full MW Impact
WEC	WEC	0.5774	Confirmed LTF	0.5774
LGEE	LGEE	0.7217	Confirmed LTF	0.7217
CPLE	CPLE	0.1607	Confirmed LTF	0.1607
CBM-W2	CBM-W2	10.4095	Confirmed LTF	10.4095
NY	NY	0.6326	Confirmed LTF	0.6326
TVA	TVA	1.3608	Confirmed LTF	1.3608
O-066	O-066	6.5654	Confirmed LTF	6.5654
CBM-S2	CBM-S2	2.3525	Confirmed LTF	2.3525
CBM-S1	CBM-S1	8.7415	Confirmed LTF	8.7415
G-007	G-007	1.0067	Confirmed LTF	1.0067
MADISON	MADISON	0.6733	Confirmed LTF	0.6733
MEC	MEC	2.5694	Confirmed LTF	2.5694
CBM-W1	CBM-W1	33.7019	Confirmed LTF	33.7019

11.7.2 Index 2

ID	FROM BUS#	FROM BUS	FRO M BUS AREA	TO BUS#	TO BUS	TO BUS ARE A	CK T ID	CONT NAME	Туре	Ratin g MVA	PRE PROJECT LOADIN G %	POST PROJECT LOADIN G %	AC D C	MW IMPAC T	
9570325 5	24300 9	05FRMN T	AEP	24300 8	05FREMC T	AEP	1	AEP_P4_#517_05FOST R 345 A1	TO break r	251.0	107.13	108.77	AC	2.82	
J	3	1		0	I			N 343_AI							
	Bus #			Bus		G	endel	iv MW Impact		Туре		Full N	/IW Impa	act	
	238601			02FRME	NG 1			5.0626		50/50			5.0626		
	238602			02FRME				5.0626		50/50			5.0626		
	238603			02FRME	NG 3			9.1395		50/50		(9.1395		
	244357		C	5GRANG	ER EL			0.1967		Adder			-0.23		
	931951		AB1-:	107 1 (Su	spended)			4.5793		Adder			17.15		
	931961				ispended)		1	26.0676		Adder			30.67		
	934251			AD1-052				0.3757		50/50		().3757		
	934252			AD1-05	2 E1			0.9946		50/50		().9946		
	934261			AD1-052	2 C2			0.3757		50/50		().3757		
	934262		AD1-052 E2				0.9946			50/50			0.9946		
	934891		AD1-118				3.0595			Adder		3.6			
	938911		AE1-119			24.0388		Adder			28.28				
	941761		AE2-176 C			8.1457			50/50		8.1457				
	941762		AE2-176 E					5.4305		50/50		Į	5.4305		
	943961		AF1-064 C O1				1.5683			Adder			1.85		
	943962		AF1-064 E O1				0.7794			Adder			0.92		
	958321		AF2-126 C				1.5964			Adder			1.88		
	958322		AF2-126 E				0.7982			Adder			0.94		
	NEWTON	l		NEWT	ЛО		0.4180			Confirmed LTF			0.4180		
	BLUEG			BLUE	G		1.0468			Confirmed LTF			L.0468		
	G-007A			G-007	'A		0.0623			firmed LT	F	(0.0623		
	VFT			VFT				0.1870	Co	firmed LT	F		0.1870		
	PRAIRIE			PRAIR				0.9712		firmed L1).9712		
	COFFEEN			COFFE				0.0690	Co	firmed L1	F		0.0690		
	CHEOAH			CHEO				0.2432		firmed L1).2432		
E	EDWARD	S		EDWAF	-			0.0774		firmed L1			0.0774		
	TILTON			TILTO				0.2173		firmed L1).2173		
1	MADISON	J		MADIS				1.1592		firmed L1			L.1592		
GIBSON				GIBSC			0.2703			firmed L1		0.2703			
CALDERWOOD			(CALDERW				0.2425		firmed L1		0.2425			
FARMERCITY				FARMER			0.0171		Confirmed LTF			0.0171			
TRIMBLE				TRIMB				0.3384		firmed L1		0.3384			
CATAWBA				CATAW				0.1544		firmed L1		0.1544			
	CBM-W1			CBM-V	V1			10.1081	Co	firmed L1	F	1	0.1081		

11.8 Queue Dependencies

The Queue Projects below are listed in one or more indices for the overloads identified in your report. These projects contribute to the loading of the overloaded facilities identified in your report. The percent overload of a facility and cost allocation you may have towards a particular reinforcement could vary depending on the action of these earlier projects. The status of each project at the time of the analysis is presented in the table. This list may change as earlier projects withdraw or modify their requests.

Queue Number	Project Name	Status
AB1-107	Bayshore-GM Powertrain 138 kV & Lallendorf 345kV	Suspended
AC1-181	Richland 138kV	In Service
AC2-103	Beaver-Davis Besse 345 kV I	Engineering and Procurement
AD1-052	Freemont Energy Center	Under Construction
AD1-070	Fostoria Central 138 kV	Active
AD1-118	Lemoyne	Active
AD2-136	Melmore Tap 138kV	Active
AE1-119	Lemoyne 345 kV	Active
AE2-072	East Leipsic-Richland 138 kV	Active
AE2-174	Seneca 138 kV	Active
AE2-176	Groton 138 kV Solar	Active
AE2-181	Snyder 69kV	Active
AE2-282	East Fayette 138 kV	Active
AF1-047	Mark Center 69 kV	Active
AF1-064	Weston 69 kV	Active
AF1-120	East Fayette 2 138 kV	Active
AF1-205	Napoleon Muni 138 kV	Active
AF1-206	East Fayette 138 kV	Active
AF2-126	Weston 69 kV II	Active
AF2-321	Stryker-Ridgeville 138 kV	Active
U4-028	Fostoria Central-Greenlawn-Howard 138kV	Suspended
U4-029	Fostoria Central-Greenlawn-Howard 138kV	Suspended
V4-010	Tiffin Center 138kV	Engineering and Procurement

11.9 Contingency Descriptions

Contingency Name	Contingency Definition	
AEP_P1-2_#10755-A	CONTINGENCY 'AEP_P1-2_#10755-A' OPEN BRANCH FROM BUS 243029 TO BUS 243086 CKT 1 243086 05S HICK 138 1 OPEN BRANCH FROM BUS 243086 TO BUS 959180 CKT 1 959180 AF2-209 TAP 138 1 OPEN BRANCH FROM BUS 243086 TO BUS 243179 CKT 1 243179 05S HICKSV 69.0 1 END	/ 243029 05LCKWRD 138 / 243086 05S HICK 138 / 243086 05S HICK 138
AEP_P4_#517_05FOSTOR 345_A1	CONTINGENCY 'AEP_P4_#517_05FOSTOR 345_A1' OPEN BRANCH FROM BUS 241901 TO BUS 242936 CKT 1	/ 241901 02LALLEND
AEP_P2-2_#517_05FOSTOR 345_1	CONTINGENCY 'AEP_P2-2_#517_05FOSTOR 345_1' OPEN BRANCH FROM BUS 241901 TO BUS 242936 CKT 1	/ 241901 02LALLEND
AEP_P2-2_#6817_05E.LPSC 138_2- B	CONTINGENCY 'AEP_P2-2_#6817_05E.LPSC 138_2-B' OPEN BRANCH FROM BUS 940840 TO BUS 242993 CKT 1 242993 05E.LPSC 138 1 OPEN BRANCH FROM BUS 242993 TO BUS 245792 CKT 1 245792 05E.LEIPSC 69.0 1 END	/ 940840 AE2-072 TAP 138 / 242993 05E.LPSC 138
AEP_P1-2_#7097-B	CONTINGENCY 'AEP_P1-2_#7097-B' OPEN BRANCH FROM BUS 940840 TO BUS 242993 CKT 1 242993 05E.LPSC 138 1 END	/ 940840 AE2-072 TAP 138
ATSI-P7-1-TE-345-027A	CONTINGENCY 'ATSI-P7-1-TE-345-027A' /* DB - DISCONNECT BRANCH FROM BUS 238654 TO BUS 907060 CKT 1 027A_AT12 345 DISCONNECT BRANCH FROM BUS 238654 TO BUS 239289 CKT 1 02HAYES 345 END	
Base Case		

Contingency Name	Contingency Definition	
AEP_P4_#8101_05E.LPSC 138_G	CONTINGENCY 'AEP_P4_#8101_05E.LPSC 138_G' OPEN BRANCH FROM BUS 940840 TO BUS 242993 CKT 1 242993 05E.LPSC 138 1 OPEN BRANCH FROM BUS 242993 TO BUS 245456 CKT 1 245456 05NEWBERY 138 1 OPEN BRANCH FROM BUS 242993 TO BUS 245792 CKT 1 245792 05E.LEIPSC 69.0 1 REMOVE SWSHUNT FROM BUS 242993 END	/ 940840 AE2-072 TAP 138 / 242993 05E.LPSC 138 / 242993 05E.LPSC 138 / 242993 05W WOOSTE 69.0
AEP_P4_#6817_05E.LPSC 138_B	CONTINGENCY 'AEP_P4_#6817_05E.LPSC 138_B' OPEN BRANCH FROM BUS 940840 TO BUS 242993 CKT 1 242993 05E.LPSC 138 1 OPEN BRANCH FROM BUS 242993 TO BUS 245792 CKT 1 245792 05E.LEIPSC 69.0 1 END	/ 940840 AE2-072 TAP 138 / 242993 05E.LPSC 138
AEP_P7-1_#10984-B	CONTINGENCY 'AEP_P7-1_#10984-B' OPEN BRANCH FROM BUS 940840 TO BUS 242993 CKT 1 242993 05E.LPSC 138 1 OPEN BRANCH FROM BUS 242957 TO BUS 243080 CKT 1 243080 05RILEYC 138 1 OPEN BRANCH FROM BUS 243083 TO BUS 242989 CKT 1 242989 05E LIMA 138 1 OPEN BRANCH FROM BUS 243083 TO BUS 243121 CKT 1 243121 05ROCKPO 138 1 OPEN BRANCH FROM BUS 243080 TO BUS 247000 CKT 1 247000 05YELLWC 138 1 END	/ 940840 AE2-072 TAP 138 / 242957 05BASEL8 138 / 243083 05CAMPSS 138 / 243083 05CAMPSS 138 / 243080 05RILEYC 138

12 Light Load Analysis

Light load analysis is not required for solar projects.

13 Short Circuit Analysis

The following Breakers are overdutied:

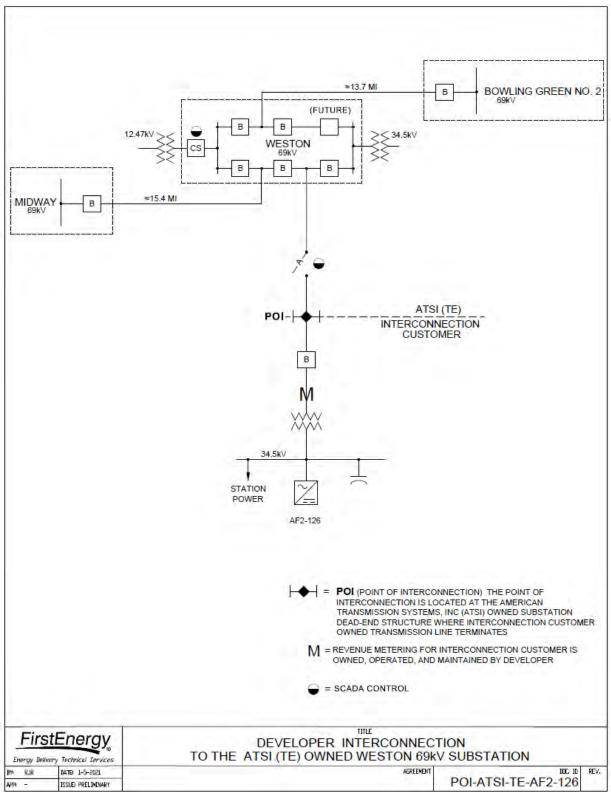
None

14 Stability and Reactive Power

(Summary of the VAR requirements based upon the results of the dynamic studies)

To be determined in the Facilities Study Phase.

15 Affected Systems


15.1 NYISO

NYISO Impacts to be determined during later study phases (as applicable).

15.2 MISO

MISO Impacts to be determined during later study phases (as applicable).

16 Attachment 1: One Line Diagram

This foregoing document was electronically filed with the Public Utilities

Commission of Ohio Docketing Information System on

3/12/2021 2:29:43 PM

in

Case No(s). 20-1760-EL-BGN

Summary: Application Exhibit I - PJM Interconnection Studies electronically filed by Teresa Orahood on behalf of Dylan F. Borchers