

155 East Broad Street 20th Floor Columbus, Ohio, 43215 0: 614-222-1330 f: 614-222-1337

October 30, 2020

Ms. Tanowa M. Troupe Ohio Power Siting Board PUCO Docketing Division 180 East Broad Street, 11th Floor Columbus, OH 43215-3716

Re: Case No. 16-253-GA-BTX Staff Report Condition No. 39

Dear Ms. Troupe:

Please find attached the Geotechnical Engineering Report for the Central Corridor Pipeline project.

Duke Energy Ohio sets forth this communication to certify our adherence with Condition No. 39 of the OPSB's Opinion, Order and Certificate pertaining to Case No. 16-253-GA-BTX.

Please contact me if you have any questions.

Sincerely,

Emily A. Olive, CP Paralegal

C350 Central Corridor Pipeline Expansion Cincinnati, Hamilton County, Ohio July 11, 2018; Revised October 7, 2020 Terracon Project No. N1175384

> Prepared for: Duke Energy Corporation, LLC Cincinnati, Ohio

> > Prepared by:

Terracon Consultants, Inc. Cincinnati, Ohio

July 11, 2018; Revised October 7, 2020

Terracon GeoReport

Duke Energy Corporation, LLC 139 East 4th Street Cincinnati, Ohio 45202

- Attn: Mr. James Olberding, PMP Project Engineer E: james.olberding@duke-energy.com
- Re: Geotechnical Engineering Report C350 Central Corridor Pipeline Expansion Cincinnati, Hamilton County, Ohio Terracon Project No. N1175384

Dear Mr. Olberding:

We have completed the Geotechnical Services for the proposed C350 Central Corridor pipeline project. This study was performed in general accordance with Terracon Proposal No. PN1175384 dated October 5, 2017 and April 1, 2020. This report presents the findings of the subsurface exploration and provides geotechnical recommendations concerning miscellaneous structure foundations, earthwork and the installation of pipeline for the project.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning this report, or if we may be of further service, please contact us.

Sincerely, Terracon Consultants, Inc.

Anurupa. Sk

Anurupa S. Kumar, EIT Staff Geotechnical Engineer

Craig M. Davis, P.E. Senior Engineer

murupa. Sk

for: George C. Webb, P.E. Senior Principal

Terracon Consultants, Inc. 611 Lunken Park Drive Cincinnati, Ohio 45226 P (513) 321 5816 F (513) 321 0294 terracon.com

REPORT TOPICS

INTRODUCTION	
SITE CONDITIONS	2
PROJECT DESCRIPTION	
GEOTECHNICAL CHARACTERIZATION	
GEOTECHNICAL OVERVIEW	9
EARTHWORK	
SHALLOW FOUNDATIONS	
SEISMIC CONSIDERATIONS	
FLOOR SLABS	
GENERAL COMMENTS	

Note: This report was originally delivered in a web-based format. Orange Bold text in the report indicates a referenced section heading. The PDF version also includes hyperlinks which direct the reader to that section and clicking on the logo will bring you back to this page. For more interactive features, please view your project online at client.terracon.com.

ATTACHMENTS

EXPLORATION AND TESTING PROCEDURES EXPLORATION PLANS EXPLORATION RESULTS (Boring Logs and Laboratory Data) USDA SOIL SURVEY SUPPORTING INFORMATION (General Notes and Unified Soil Classification System) PHOTOGRAPHS OF SITE CONDITIONS SAFETY RECORDS Geotechnical Engineering Report C350 Central Corridor Pipeline Expansion Cincinnati, Hamilton County, Ohio Terracon Project No. N1175384 July 11, 2018; Revised October 7, 2020

INTRODUCTION

This report presents the results of our subsurface exploration and geotechnical engineering services performed for the proposed Central Corridor pipeline expansion to be located at in Cincinnati, Hamilton County, Ohio. The purpose of these services is to provide information and geotechnical engineering recommendations relative to:

- Subsurface soil and rock conditions
- Short-term groundwater conditions
- Excavation support

- Laboratory testing results
- Utility backfill/Earthwork considerations
- Associated structure foundations

The initial (2017) geotechnical engineering scope of services for this project included the advancement of twenty-four test borings to depths ranging from approximately 20 to 101.5 feet below existing site grades. In 2020, Duke requested that five additional borings (20-2 and 20-4 through 20-7) be completed for additional geotechnical information along the pipeline corridor. Borings 20-4 through 20-7 were advanced to depths ranging from approximately 20 to 25 below existing site grades. Test boring (20-2) was terminated at the request of Duke Energy at a depth of 4.5 feet below existing site grades, upon encountering a gasoline odor in the soil sample collected from 3 to 4.5 feet.

A geotechnical engineering study was completed by Terracon in 2016/2017. Four of the borings from the 2016/2017 study (S-1, B-1, B-2 and B-3) have been included in this report as they are located along the north end of the pipe alignment, which terminates at the proposed Highpoint Park Substation.

Maps showing the site and boring locations are shown in the **Exploration Plan** section. The **Exploration and Testing Procedures** section of this report contains a description of the procedures carried out by Terracon during our field exploration and laboratory testing for this project. The results of the laboratory testing performed on soil samples obtained from the site during the field exploration are included on the boring logs and as separate graphs in the **Exploration Results** section of this report.

C350 Central Corridor Pipeline Expansion Cincinnati, Hamilton County, Ohio July 11, 2018; Revised October 7, 2020 Terracon Project No. N1175384

SITE CONDITIONS

The following description of site conditions is derived from our site visit in association with the field exploration and our review of publicly-available geologic and topographic maps.

Item	Description
Parcel Information	Project is located in Cincinnati, Hamilton County, Ohio. The pipeline will start at an existing pipeline at Highpoint that is north of I-275 and east of Conray Road, heading south along Reed Hartman Highway and then west along Glendale-Milford to US 42. The pipeline then continues in the general south direction along US 42, terminating at a new gas transmission station in Norwood, south of Carthage Court (39.17811°, -84.45460°). See Exploration Plan.
Current Ground Cover	The proposed pipeline has varied ground cover along the alignment consisting of bare ground, grass and concrete and asphalt pavement.

PROJECT DESCRIPTION

Our initial understanding of the project was provided in our proposal and was discussed in the project planning stage. A period of collaboration has transpired since the project was initiated, and our final understanding of the project conditions is as follows:

Item	Description
Information Provided	 Technical Guidelines – Subsurface Investigation and Geotechnical Report – Duke 350 Pipeline and Station Google Earth files of proposed pipeline alignment and proposed geotechnical and environmental boring locations Email and phone correspondence with design team (Burns and McDonell Consultants Inc. and Duke Energy) including boring locations and depths
Proposed Structures	The project consists of the design and installation of a 20-inch diameter stee natural gas pipeline that will span approximately 13 miles. The alignment plans to have 3 major crossings that use horizontal directional drilling (HDD) technology for trenchless installation applications and additional crossings that utilize pilot bore technologies.

C350 Central Corridor Pipeline Expansion Cincinnati, Hamilton County, Ohio July 11, 2018; Revised October 7, 2020 Terracon Project No. N1175384

Item	Description					
	Details of proposed structures to be constructed along the pipeline alignment are listed below.					
	Structure	Axial (kips)	Shear (kips)	Moment (kip-ft.)	Foundation	Location
Proposed Structures	Control Building	28	2.8	20	Slab or Drilled Shaft	Highpoint & Norwood Stations
	Skid	20	1	0.5	Slab or Spread Footer	Highpoint & Norwood Stations
	Heater	100	5	50	Slab or Spread Footer	Highpoint & Norwood Stations
	MLV	10	0.5	2.5	Below Grade Slab	Summit Park and DOW Chemical
Invert Depth		surface	with a min	imum 4 feet	be approximate of cover. The de at this time.	

GEOTECHNICAL CHARACTERIZATION

Subsurface Profile

We have developed a general characterization of the subsurface soil and groundwater conditions based upon our review of the data and our understanding of the geologic setting and planned construction. The geotechnical characterization forms the basis of our geotechnical calculations and evaluation of site preparation, foundation options and pavement options. As noted in **General Comments**, the characterization is based upon widely spaced exploration points across the site, and variations are likely. We divided the pipeline alignment into two general physiographic regions, namely the Highland Area and Lowland Area.

The Highland areas are situated in a glacial ground moraine upland with a variable depth of overburden soil and bedrock. The lowland area is located within the Deep Stage age "Norwood Trough", where a wide variety of natural glacial deposits exist and the depth to bedrock is typically greater than 100 feet deep.

C350 Central Corridor Pipeline Expansion Cincinnati, Hamilton County, Ohio July 11, 2018; Revised October 7, 2020 Terracon Project No. N1175384

Conditions encountered at each boring location are indicated on the individual boring logs shown in the **Exploration Results** section and are attached to this report. Stratification boundaries on the boring logs represent the approximate location of changes in native soil types. In-situ, the transition between materials may be gradual. The following tables provide the general geotechnical characterization per region.

Highland Area

Stratum	Approximate Depth to Bottom of Stratum Material Description (feet)		Consistency /Density	
Surface	1.5 inches	Topsoil	N/A	
	3	Aggregate Base	N/A	
1	2.5 to 5 ¹	Fill: Lean clay, with silt, trace sand and gravel, brown	N/A	
2	10 to 25	Clay: Low to medium plasticity, with sand and gravel, brown	Stiff to very stiff, with some soft zones	
3	30 to 85 ²	 Sandy clay/Lean clay/silty clay: Grayish brown to gray, with sand and gravel seams, with limestone fragments and gravel (Glacial Till) Gravel, sand and silt: Brown/gray, some silt (Glacial Outwash) Fat clay: trace gravel, bluish gray Lean Clay: brown, with limestone fragments, trace gravel and sand (Residuum) 	 Sandy clay/Lean clay/ silty clay: hard Sand and Gravel: medium dense to dense Fat clay: Very stiff with soft/wet seams Lean Clay: hard 	
4	Undetermined: Borings terminated within this stratum at depths ranging from approximately 100 to 102.9 feet	Interbedded Shale and Limestone: brown to gray, completely weathered to highly weathered	Weak to very weak (in terms of rock strength)	

Test Boring locations S1, B1, B2, B3

C350 Central Corridor Pipeline Expansion Cincinnati, Hamilton County, Ohio July 11, 2018; Revised October 7, 2020 Terracon Project No. N1175384

Stratum	Approximate Depth to Bottom of Stratum (feet)	Material Description	Consistency/Density
Surface	4 to 6 inches	Topsoil	N/A
	1	Pavement and Aggregate Base	N/A
1	1.5 to 9 ¹	Fill: Lean to fat clay, trace gravel and sand, some brick fragments	N/A
2	3 to 25 ²	Clay: Low to medium plasticity, with sand and gravel, brown	Medium stiff to very stiff
3	10.5 to 21.5 ³	Lean Clay/Fat Clay: brown, with limestone fragments, trace gravel and sand (Residuum) ²	Very stiff to hard
4	Undetermined: Borings terminated within this stratum at depths ranging from approximately 16.4 to 25 feet	Interbedded Shale and Limestone: brown to gray, completely weathered to highly weathered	Weak to very weak (in terms of rock strength)

Test Boring locations WB-14, WB-15, 20-4, 20-5, 20-6, WB-24 and WB-16

4. Boring WB-14 and 20-4 were terminated at depths ranging from 21.5 feet to 25 feet in Stratum 2.

5. Boring WB-15 was terminated at a depth of 21.5 feet in Stratum 3.

Glacial till is a dense conglomerate of silt, clay, sand and gravel that has been mixed, deposited and consolidated by the actions of glacial ice movement. It is commonly encountered with cobblesize fragments and meltwater channel deposits of silt and sand. These channels occasionally transmit groundwater. Glacial till is typically overconsolidated due to its depositional

Glacial outwash soils are deposited by the meltwater of glaciers in advance of the glacier ice or after periods of recession. Due to this depositional method, these deposits are highly stratified in plan location and elevation. These soils consist of sands and gravels. On occasion, they include cobble and boulder sized fractions. Silt and clay layers may also be encountered amongst otherwise granular soils.

Residual soils are derived by near-surface weathering of the parent bedrock to a cohesive soil and are characterized by a soil-like consistency with trace bedding planes and horizontallyaligned limestone fragments indicative of the parent material.

The USDA National Resources Conservation Service Soil Survey indicated that soil conditions encountered at test boring locations along the pipeline alignment in the Highland area consists of Eden silt clay loam and Jonesboro-Rossmoyne silt loam soils. Based on the estimated top of bedrock and geological literature published by the U. S. Geological Survey and the Ohio Geological Survey, the bedrock encountered along the pipeline alignment consists of both the Ordovician Fairview Formation and Waynesville and Arnheim Formation. The Waynesville and

C350 Central Corridor Pipeline Expansion Cincinnati, Hamilton County, Ohio July 11, 2018; Revised October 7, 2020 Terracon Project No. N1175384

Arnheim Formation is anticipated to be encountered in proximity to test boring WB-16 and typically consists of about 70% of shale and 30% of limestone. The Fairview Formation typically consists of about 35 to 40% of shale, 50% of limestone and 5 to 15% of siltstone.

Lowland Area

The southern portion of the gas main alignment lies within the Deep Stage "Norwood Trough", where glacial meltwater scoured a deep valley. The Norwood Trough is the abandoned section of the major intra-glacial drainage system of the Cincinnati area, having its axis established deep into bedrock. Glacial sediments consisting of outwash sand and gravel, lakebed silt and clay, and glacial clay (till) now fill this broad, deep, and extensive feature. These sediments are the remnants of meltwaters of retreating glaciers, still-water deposits of glacial lakes, and the direct deposits made by invading ice lobes into the valley. The test borings in the lowland area encountered these soils interbedded throughout the test boring depths, indicating several advances and retreats of the glaciers

Stratum	Approximate Depth to Bottom of Stratum (feet) ¹	Material Description	Consistency/ Density
Surface	2 to 10 inches	Topsoil	N/A
Surface	7.5 to 12.5	Fill: Lean clay, mixed brown, with silt and rock fragments	N/A
3	Undetermined: Borings terminated within this stratum at depths ranging from approximately 16.5 to 101.5 feet	 Lean clay: brown/gray, trace gravel and sand Lean clay: brown/gray, trace gravel and sand, varved (Lacustrine) Sandy clay/Lean clay: Brown to gray, with sand and silt seams, trace gravel (Glacial Till) Gravel, sand and silt: Brown/gray, some silt (Glacial Outwash) 	 Lean clay: stiff to hard, with some medium stiff zones Lean clay: stiff to hard Sandy clay/Lean clay: very stiff to hard, some medium stiff to stiff zones Sand and Gravel: medium dense to dense, with some very loose to loose and very dense zones

Test Boring locations WB-1 through WB-13, 20-7, WB-17, WB-18, WB-19, WB-20, WB-22

The USDA National Resources Conservation Service Soil Survey indicated that soil conditions encountered at the lowland area boring locations along the pipeline alignment consists of Eden silt clay loam, Genesee loam and Patton silty clay loam soils. Based on encountered soil

C350 Central Corridor Pipeline Expansion Cincinnati, Hamilton County, Ohio July 11, 2018; Revised October 7, 2020 Terracon Project No. N1175384

conditions up to 12.5 feet of fill was encountered, underlain by native cohesive glacial till soils, interbedded with gravel and sand layers of thickness varying from about 2.5 feet to 20 feet. Some cobbles/boulders were encountered below existing surface grade in the glacial till layer based on the SPT refusal values and the poor sample recovery values.

Corrosivity

Soil minimum electrical resistivity, redox potential, sulfide, and pH tests were performed on one selected representative bulk soil sample collected at planned test boring locations. The tests were performed in accordance with AWWA C105/A21.5 and ASTM A674-10. The values may be used to estimate potential corrosive characteristics of the on-site soils with respect to contact with the various underground materials which will be used for project construction. The minimum electrical resistivity, pH, redox potential and sulfide test results are summarized in the table below and are shown in the **Exploration Results** section of this report.

lest No.	Boring ID	Sample Depth Interval (feet)	Minimum Electrical Resistivity (Ohm-cm)	рН	Redox Potential (mV)	Sulfides
1	WB-1	2.5 to 6.5	5238	7.14	+687	Negative
2	WB-1A	2.5 to 6.5	3540	7.56	+680	Negative
3	WB-2	2.5 to 6.5	3346	7.69	+726	Negative
4	WB-2A	2.5 to 6.5	6790	7.31	+682	Negative
5	WB-3	0.0 to 3.5	1891	7.84	+677	Negative
6	WB-5	4.5 to 7.5	2231	7.82	+675	Negative
7	WB-7	4.5 to 7.5	4462	7.22	+699	Negative
8	WB-9	4.5 to 7.5	2377	7.39	+711	Negative
9	WB-11	2.5 to 6.5	2231	8.14	+669	Negative
10	WB-14	4.0 to 6.5	7372	7.83	+715	Negative
11	WB-16	3.0 to 5.5	4462	7.73	+732	Negative
12	WB-18	3.0 to 5.5	1891	7.08	+686	Negative
13	WB-20	4.5 to 7.5	3346	7.40	+700	Negative
14	WB-22	4.0 to 6.5	1552	7.07	+700	Negative
15	WB-24	4.5 to 7.5	1552	7.20	+702	Negative
16	20-4	8.5 to 10	970	8.11	+687	Negative
17	20-5	8.5 to 10	1164	8.06	+686	Negative
18	20-6	8.5 to 10	2425	7.50	+683	Negative
19	20-7	8.5 to 10	3298	7.55	+684	Negative
20	S1	4.5 to 7.5	1649	8.02	+714	Negative

C350 Central Corridor Pipeline Expansion Cincinnati, Hamilton County, Ohio July 11, 2018; Revised October 7, 2020 Terracon Project No. N1175384

Groundwater Conditions

The boreholes were observed while drilling and after completion for the presence and level of groundwater. In addition, delayed water levels were also obtained in some borings. The water levels observed in the boreholes can be found on the boring logs in **Exploration Results**, and are summarized below.

Boring Number	Approximate Depth to Groundwater while Drilling (feet) ¹	Approximate Depth to Groundwater after Drilling (feet) ¹
WB-1	12.5	Not encountered
WB-1A	Not encountered	14.7 (20 hr. reading)
WB-2A	35	16.9 (120 hr. reading)
WB-3	31	56.6 (1 hr. reading)
WB-3A	Not encountered	25.7 (1 hr. reading)
WB-5	Not encountered	9 (1 hr. reading)
WB-10	Not encountered	20.9 (24 hr. reading)
WB-11	Not encountered	11.6 (1 hr. reading)
WB-12	Not encountered	61.5 (1 hr. reading)
WB-13	Not encountered	13.5 (1 hr. reading)
WB-17	13.5	Not encountered
WB-20	Not encountered	2 (1 hr. reading)
WB-22	17	7.2 (1 hr. reading)
WB-24	Not encountered	16.1 (1 hr. reading)
20-4	Not encountered	Not encountered
20-5	11	9 (1 hr. reading) ²
20-6	Not encountered	4.75 (1 hr. reading) ²
20-7	Not encountered	Not encountered
B1	30.1	13.5 ²
B2	10.1	10.7 ²
B3	16.8	9.2 ²
S1	8.7	5.2

1. Below ground surface.

2. Water was added to boring to facilitate rock coring, and likely affected the water level observed after drilling.

Groundwater was not observed in the remaining borings while drilling, or for the short duration the borings could remain open. However, this does not necessarily mean the borings terminated above groundwater, or the water levels summarized above are stable groundwater levels. Due to the low permeability of the soils encountered in the borings, a relatively long period may be necessary for a groundwater level to develop and stabilize in a borehole. Long term observations in piezometers or

C350 Central Corridor Pipeline Expansion Cincinnati, Hamilton County, Ohio July 11, 2018; Revised October 7, 2020 Terracon Project No. N1175384

observation wells sealed from the influence of surface water are often required to define static groundwater levels in materials of this type.

Groundwater seepage may be encountered in excavations within the existing fill where perched water may be present. Perched groundwater seepage may be encountered at the existing fill/natural soil interface. Seepage should also be expected at the top of bedrock and within the bedrock itself. Based on our test borings, we anticipate that any perched groundwater seepage encountered within open excavations can typically be controlled with conventional sump pumping. Excavations below the groundwater table will likely require dewatering.

Groundwater level fluctuations occur due to seasonal variations in the amount of rainfall, runoff and other factors not evident at the time the borings were performed. Therefore, groundwater levels during construction or at other times in the life of the structure may be higher or lower than the levels indicated on the boring logs.

Gas Pockets/PID Readings

Gas was encountered in test boring WB-1 at a depth of about 34 feet below the ground surface, approximate elevation of 523.5 feet. The gas was observed by the drill crew and then detected using a Photoionization Detector (PID) device, that measures in parts-per-million (ppm). No sampling or testing of the gas was performed at the test borings, but it is expected to be methane, based on Terracon's experience with the area. Drilling was postponed in WB-1 to allow gas pressure to dissipate prior to abandonment. In WB-9, the PID readings was attributed to a possible past, shallow spill and not trapped gas. A PID reading was noted from a depth of about 0.2 to 3 feet below ground but no gas pocket was encountered during drilling.

GEOTECHNICAL OVERVIEW

Based on the proposed pipeline alignment and encountered test boring conditions, the pipeline passes through varied subsurface conditions consisting of cohesive clay/silty clay and non-cohesive silt, sand and gravel soils. Hard glacial till and varved lacustrine deposits were encountered in the lowland borings. Some cobbles and boulders were encountered based on the SPT refusal values and the poor sample recovery values. Bedrock was encountered at test borings 20-5, 20-6, WB-16 and WB-24 at depths ranging from about 10.5 to 15.8 feet.

Lean clay and cohesive silt were encountered. These soils could become unstable during typical earthwork and construction traffic especially after precipitation events. Drainage measures for the control building and other structures along the pipeline alignment should be implemented early in the construction sequence and maintained after construction to avoid potential issues. If possible, the earthwork should be performed during the warmer and drier time of the year. If earthwork is performed during the winter months, an increased risk for possible undercutting and replacement of unstable subgrade will persist.

C350 Central Corridor Pipeline Expansion Cincinnati, Hamilton County, Ohio July 11, 2018; Revised October 7, 2020 Terracon Project No. N1175384

Boring S1 was located in close proximity to the proposed Highpoint Park Substation, a portion of which is to be constructed in an existing wetland area. Based on the wet ground conditions observed at the site and the subsurface conditions encountered in the test boring (S-1), it is anticipated that unstable subgrade conditions will be of particular concern during and after construction. We recommend that precautions be taken to reduce the flow of groundwater from adjacent wetland areas onto the substation site. Temporary dewatering may be required for pipe installation trenches. Equipment pads should be undercut to stiff soils and replaced with low-strength concrete. To provide support of vehicle loads during and after construction, a geosynthetic should be place on the subgrade prior to the aggregate pavement for purposes of reinforcement/separation. Further discussion regarding construction at Highpoint Park Station has been included in our **Earthwork** and **Shallow Foundations** section.

Fat plastic clays were encountered in test boring 20-7 and WB-24, which can be prone to shrinkswell movements due to moisture changes resulting from construction exposure. Fill was encountered in test borings WB-3, WB-3A, WB-4, WB-5, WB-9, WB-10, WB-11, WB-12, WB-13, WB-17, WB-18, WB-19, WB-22, 20-4, 20-5, 20-6 and 20-7 to depths ranging from 1.5 feet to 35 feet.

A gas pocket was encountered in test boring WB-1 at depth of about 34 feet below existing ground surface.

The Geotechnical Characterization section and the individual boring logs in the Exploration Results section of this report can serve as a reference for the subsurface conditions that may be encountered along excavations for pits along the individual pipeline alignment sections. Additional site preparation recommendations for open-cut and trenchless excavation and backfill of pipeline pits are provided in the Earthwork section.

Mr. Craig M. Davis, P.E. of Terracon met with Mr. Gary Hebbeler of Duke Energy on March 26, 2020 to review two areas along the alignment where the design team is concerned with slope stability during the construction of the pipeline. These areas consist of:

1. Area 1 is a 600-foot long section of the alignment that is located on the east side of Roselawn Park, on the west side of the railroad right-of-way. This area is located on an embankment/mound that, based on comparisons of aerial imagery, was likely created during the construction of the adjacent baseball complex. This section of the pipeline will be installed by open-cut methods. The face of the embankment is at a slope of about 4 horizontal to 1 vertical. Soils are expected to consist of cohesive fill. In our opinion, slope instability will not occur as a result of standard open-cut excavation procedures. Care should be taken during construction to prevent standing water, the stockpiling of spoils on the slope, and/or permanent steepening of the embankment. C350 Central Corridor Pipeline Expansion Cincinnati, Hamilton County, Ohio July 11, 2018; Revised October 7, 2020 Terracon Project No. N1175384

2. Area 2 is a 200-foot long section where the railroad crosses Losantiville Road and where the gas main construction will extend alongside the railroad bridge abutment. The slope of the embankment that supports the railroad bridge is about 4H:1V. On the north side of Losantiville Road, west of the railroad, the area is a maintained grass lawn. On the east side of the railroad, the area consists of a lightly-vegetated slope and the driveway to the adjacent properties to the north and east. On the east side of the driveway, a new storm sewer system has been installed, including 2 new catch basins.

On the south side of Losantiville Road, the area consists of a relatively flat driveway extending to commercial properties. Storm water collects in this area and flows into a culvert/inlet into the storm sewer system.

According to Mr. Hebbeler, the pipeline alignment can be adjusted to extend perpendicular to the railroad from the east side to the west side, and then again south down the southern driveway. Horizontal directional drilling will used to extend under the railroad. Open-cut methods will be used through Losantiville Road. With this alignment, the pipeline construction will avoid impacting the foundation system of the railroad bridge abutments.

Site preparation recommendations including subgrade improvement and fill placement are provided in the Earthwork section.

Based on the provided initial loading conditions and structure dimensions for the control building, MLV and skid and heater structures, we recommend that the structures are supported on spread footings. The **Foundations** section addresses support of the building bearing on native stiff to hard lean clay or engineered fill. The **Floor Slabs** section addresses slab-on-grade support of the building.

General Comments section provides an understanding of the report limitations.

EARTHWORK

Site Preparation

Earthwork for the control buildings, MLV, heater and skid strictures along the pipeline alignment will include clearing and grubbing, excavations and fill placement. The following sections provide recommendations for use in the preparation of specifications for the work. Recommendations

C350 Central Corridor Pipeline Expansion Cincinnati, Hamilton County, Ohio July 11, 2018; Revised October 7, 2020 Terracon Project No. N1175384

include critical quality control criteria as necessary to render the site in the state considered in our geotechnical engineering evaluation for foundations, floor slabs, and pipeline construction.

Prior to placing any fill, existing vegetation and root mat should be removed. Complete stripping of the topsoil should be performed in the proposed structure locations. The subgrade should be proof-rolled with a vehicle such as a fully-loaded tandem-axle dump truck. The proof-rolling should be performed under the direction of the Geotechnical Engineer. Areas excessively deflecting under the proof-roll should be delineated and subsequently addressed by the Geotechnical Engineer. Such areas should either be removed, bridged or stabilized depending upon the subgrade support requirements. Excessively wet or dry material should either be removed, or moisture conditioned and recompacted.

At the Highpoint Park substation, it is anticipated that prior to construction, a cut-off trench will be excavated along the north property boundary and backfilled with low-strength concrete (otherwise know as low-strength mortar/controlled low-strength material) to reduce the infiltration of groundwater from the wetland into the substation site. The depth of this cutoff should be field-determined based upon the conditions that exist at that time. Subsequent to the stripping of any vegetation and topsoil, the subgrade stiffness should be evaluated by Terracon to identify areas that may require a geosynthetic separation/reinforcement layer beneath the aggregate pavement. Additional undercutting (up to about 12 inches) may be required to provide sufficient aggregate thickness in conjunction with the geosynthetic. Composite geogrid/geotextile products, such as Tensar TX160FG, are typically applicable to the expected conditions. The aggregate section should be spread over such products in an end-dump-and-push process to reduce vehicle loads on the subgrade.

It is expected that the soils removed by the trenching for the underground utilities at the substation will be soft, saturated and potentially organic. It will be difficult to recompacted these soils as backfill in the trenches. In order to provide support to the aggregate pavement section, underground utilities/pipework at the substation should be backfilled with low-strength concrete.

Existing Fill

Existing fill may be encountered in the four proposed structure locations based on finalized building and structure siting and grading. We consider the existing fill to be uncontrolled and compressible. Support of footings and floor slabs on or above existing fill soils is discussed in this report. However, even with the recommended construction procedures, there is an inherent risk that compressible fill or unsuitable material within or buried by the fill will not be discovered. This risk of unforeseen conditions cannot be eliminated without completely removing the existing fill, but can be reduced by following the recommendations contained in this report.

If Duke Energy elects to construct the footings and floor slabs on existing fill, the following protocol should be followed. Prior to footing and slab placement, the area should be undercut a minimum

C350 Central Corridor Pipeline Expansion Cincinnati, Hamilton County, Ohio July 11, 2018; Revised October 7, 2020 Terracon Project No. N1175384

of 3 feet within the footing area and 1.5 feet within the floor slab area. Once this undercut is performed, and the subgrade has passed the proof-roll test, the existing, and undocumented fill that was removed may be evaluated for reuse as structural fill below the floor slabs.

Fill Material Types

Fill required to achieve design grade should be classified as structural fill and general fill. Structural fill is material used below or within 10 feet of structures or pavements. General fill is material used to achieve grade outside of these areas. Earthen materials used for structural fill should meet the following material property requirements:

Soil Type 1	USCS Classification	Acceptable Location for Placement
Lean Clay	CL (LL<40 & PI>15)	All locations and elevations
Lean Clay	CL (40 <ll<50)< td=""><td>>3 feet below slab-on-grade</td></ll<50)<>	>3 feet below slab-on-grade
Well graded granular and silty gravel	GM-GW GM ²	All locations and elevations, provided adequate drainage is provided.

Controlled, compacted fill should consist of approved materials that are free of organic matter and debris, and have a maximum particle size of 4 inches. Frozen material should not be used. Fill should not be placed on a frozen subgrade. A sample of each material type should be submitted to the geotechnical engineer for evaluation.

2. Similar to ODOT 304 crushed limestone aggregate, limestone screenings, or granular material such as sand, gravel or crushed stone containing at least 15% low plasticity fines.

On-site soils may be used as structural fill provided they meet the material property requirements listed above.

Pipeline Excavations

We anticipate that construction of the horizontal directional drilling (HDD) crossing and the guided bore crossing for the pipe alignment may require excavation of receiving and launching pits for the pilot bores. Anticipating pits for the crossings may be performed in the vicinity of test boring location, the **Geotechnical Characterization** section and the boring logs in the **Exploration Results** section of this report can serve as a reference for the subsurface conditions that mat be encountered along excavations for pits along the individual pipeline alignment sections.

All open excavations for receiving or launching pits should be performed in accordance with OSHA 29 CFR, Part 1926, Subpart P, "Excavations" and its appendices, as well as other applicable codes, and in accordance with any applicable local, state and federal safety regulations. The contractor should be aware that excavation depths and slope inclination should

C350 Central Corridor Pipeline Expansion Cincinnati, Hamilton County, Ohio July 11, 2018; Revised October 7, 2020 Terracon Project No. N1175384

in no instance exceed those specified by these guidelines and regulations. Flatter slopes than those indicated by these guidelines/regulations may be required depending upon the soil conditions encountered and other external factors. Colluvium soils may be encountered which may have comparably low side slope stability in open-cut faces. These guidelines/regulations are strictly enforced and, if not followed, the owner and contractor could be liable and subjected to substantial penalties. Under no circumstances should the information provided below be interpreted to mean that Terracon is assuming responsibility for construction site safety and the contractor's activities. Construction site safety is the sole responsibility of the contractor, who should also be solely responsible for the means, methods and sequencing of construction operations.

Perched groundwater is often encountered at the existing fill/natural soil interface, within existing fill, at the overburden soil/bedrock interface or within seams, bedding planes or fractures within the bedrock. The volume of the groundwater contained within these pockets, seams or layers of silt, sand and gravel will depend upon the thickness and lateral extent of these features. The possibility of groundwater level fluctuations should be considered when developing the design and construction plans for the project.

Low volumes of groundwater, anticipated in the cohesive lean clay soils, can likely be controlled using sumps and pumps. More elaborate dewatering systems such as well points or dewatering wells may likely be required for excavations below the encountered groundwater elevations in the cohesionless granular and silt soils anticipated in along the pipeline alignment, and would need to be designed by a specialty contractor. Excavations performed without dewatering can disturb the pipeline bearing soils, which can result in excessive settlement at the pit locations. In areas where soils sensitive to disturbance and construction traffic are exposed at the bottom of the pits, it would be advantageous to place a concrete mat/pad to protect the exposed soils and provide a suitable working surface for equipment and personnel.

Care should be taken during excavation to protect the structural integrity of any adjacent underground utilities that will remain in-place. The settlement tolerances of adjacent structures or improvements should be considered when determining the excavation methods. Depending upon factors such as the depth of excavation, the location of existing improvements, utilities, groundwater and soil conditions, temporary sheeting, shoring and underpinning may be required. Particular caution should be exercised if excavations are performed near existing underground utility lines. Existing backfill for utility lines is often poorly compacted and the limits of the old excavation can form a ready failure surface. The OSHA trench safety guidelines for adequate side slopes based on soil types may not apply in these situations. Existing underground utilities should be shored and braced as required to maintain their integrity and appropriately designed trench boxes or sheeting and bracing should be used to provide for worker safety. The design of any retention system for launching or receiving pits should not only take into account the lateral forces but also the tolerable lateral deflections. The contractor's "competent person" should also

C350 Central Corridor Pipeline Expansion Cincinnati, Hamilton County, Ohio July 11, 2018; Revised October 7, 2020 Terracon Project No. N1175384

establish a minimum lateral distance from the crest of the slope or excavation for all spoil piles and construction equipment. Likewise, the contractor's "competent person" should establish protective measures for exposed slope faces.

Trenchless Excavations for Pipeline

We understand that the construction of the horizontal directional drilling (HDD) crossings and guided bore installation for the pipeline alignment has been proposed. Location of crossings is unknown at the time of issue of this report. Therefore, it cannot be accurately relied on to determine the soil profile along the alignment during advancement. Due to the variability in the soils conditions encountered it cannot be accurately determined which portions that will require advancing through cohesive and granular soils located along the alignment. The contractor will need to take into consideration that the crossings may need to be performed in both cohesive and granular soil materials (mixed-face conditions). The pipeline installation may also occur below the groundwater table, as indicated by the groundwater levels encountered during subsurface investigation.

Due to the variable subsurface conditions encountered and the highly variable geology along the pipe realignment, the presence of large rock fragments/cobbles/boulders are expected at various elevations within the soil profile. Field exploration methods using test do not reliably characterize the size and spatial variations of particles 1-inch or greater in diameter. The contractor should consider the possibility of encountering large-size inclusions in selecting the appropriate method and equipment. Due to the presence of granular soils, design of any drilling fluids required to maintain the pilot holes or the directional drilling excavations will need to be specified accordingly.

The steel casing should be designed to withstand all jacking loads plus soil loads. Voids should be prevented from forming outside of the pipe as the shield is advanced. Where unavoidable voids are created outside the casing during the advance of the casing, or due to the removal of material at the front of the casing, such voids should be immediately filled with sand, clay bentonite, or other non-decomposable material and rammed into place. When the casing has been completely installed, all voids filled with temporary material should be finally filled with Portland cement grout pumped through the grout holes in the casing by starting at the low end or point along the alignment.

Backfill of Pipeline Pits

After the HDD/guide bore is performed, the launching and receiving pits will need to be backfilled. We recommend that backfill consist of approved materials free of organic matter and debris. Wellgraded granular materials (i.e. sands and gravels) would likely be better suited to backfill the pits having limited room to operate heavy compaction equipment. Compaction of granular backfill materials is typically less sensitive to moisture variations and is usually more readily accomplished in confined excavations where lighter, walk-behind compaction equipment is typically used. If

C350 Central Corridor Pipeline Expansion Cincinnati, Hamilton County, Ohio July 11, 2018; Revised October 7, 2020 Terracon Project No. N1175384

cohesive materials are used to backfill the pits, the lifts may need to be limited to 3 to 4 inches in thickness and more moisture correction of the soil will likely be required. With the exception of topsoil, the majority of the encountered on-site soils are suitable for use as pit backfill. Topsoil and organic soils are not considered suitable for use as backfill material. The compaction requirements for the pit backfill have been listed herein.

Fill Compaction Requirements

Fill for the pipeline pits and structures to be constructed along the pipeline alignment should meet the following compaction requirements.

Item	Structural Fill			
Maximum Lift Thickness	 8-inches or less in loose thickness when heavy, self-propelled compaction equipment is used. 6 inches in loose thickness when hand-guided equipment (i.e. jumping jack or plate compactor) is used. If cohesive soils are used in conjunction with lightweight compaction equipment, the loose lift thickness may need to be reduced to 3 to 4 inches. 			
Minimum Compaction Requirements ^{1, 2}	 Non-structural areas: At least 95%, but not more than 100%, of the material's Standard Proctor maximum dry density (ASTM D698). Structural areas: At least 98%, but not more than 100%, of the material's Standard Proctor maximum dry density (ASTM D698). 			
Water Content Range – Cohesive Soils	Within 3 percentage points of the optimum moisture content value as determined by the Standard Proctor test at the time of placement			
Water Content Range – Granular Materials ³	Workable moisture levels			

been met, the area represented by the test should be reworked and retested as required until the specified moisture and compaction requirements are achieved.
If the granular material is a coarse sand, gravel or crushed stone of uniform size or has a low fines content,

compaction comparison to relative density (ASTM D4235 and D4254) may be more appropriate. In this case, granular materials should be compacted to at least 60% of the materials maximum relative density. Specifically, moisture levels should be maintained low enough to allow for satisfactory compaction to be ableved without the appealance fill material numping when proofeeled

achieved without the cohesionless fill material pumping when proofrolled.

Construction Observation and Testing

We recommend the exposed subgrade and each lift of compacted fill be tested, evaluated and reworked, as necessary, until approved by the geotechnical engineer's representative prior to placement of additional lifts. At a minimum, we recommend that each lift of fill be tested for density and moisture content at a frequency of one test for every 2,500 square feet of compacted fill in

C350 Central Corridor Pipeline Expansion Cincinnati, Hamilton County, Ohio July 11, 2018; Revised October 7, 2020 Terracon Project No. N1175384

the building areas and every 5,000 square feet in pavement areas. We recommend one density and moisture content test for every 50 linear feet of compacted utility trench backfill.

SHALLOW FOUNDATIONS

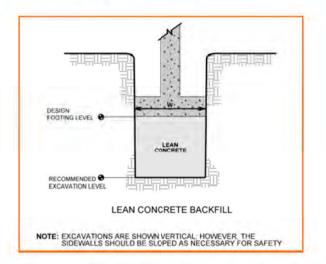
It has been proposed to construct control buildings, skid and heater structures at the Highpoint and Norwood Stations (in proximity to borings B-14 and B-22), supported on spread footings or drilled shafts. MLV structures are also proposed to be constructed at Summit Park and DOW Chemicals (in proximity to borings B-16 and B-5), supported on spread footings. Based on the design loads and structure dimensions provided by Duke Energy, if the site has been prepared in accordance with the requirements noted in **Earthwork** the following preliminary design parameters are applicable for shallow foundations.

Preliminary Design Parameters – Compressive Loads

Item	Description	
Maximum net allowable bearing pressure on existing soils ¹	2,000 psf (foundation bearing on undisturbed at least stiff native cohesive soils)	
Required Bearing Stratum ²	At least stiff native lean clay soils or structural fill. Bearing stratum should be verified by Terracon.	
Minimum Foundation Dimensions	Columns: 30 inches Continuous: 18 inches	
Minimum Embedment below Finished Grade for Frost Protection	30 inches	
Estimated Total Settlement from Structural Loads ³	If the footings are bearing in native, at-least-stiff soils, a tot settlement less than 1-inch may occur. To limit settlement to less than about 1-inch in areas where soft to medium stiff soils are exposed, the footings should bear on about 3 feet of compacted engineered fill.	
Estimated Differential Settlement ³	About 2/3 of total settlement	

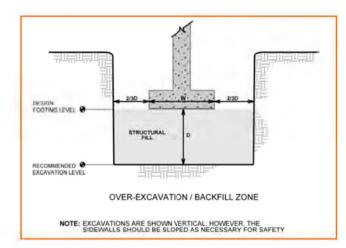
1 Additional test borings can be performed at proposed structure locations, that may allow for a higher allowable bearing pressure recommendation. The maximum net allowable bearing pressure is the pressure in excess of the minimum surrounding overburden pressure at the footing base elevation. The maximum net allowable foundation pressure has been provided in general accordance with the 2015 International Building Code, Chapter 18, Section 1804, Table 1804.2.

2 Unsuitable or soft soils should be undercut, and the footings should be deepened to bear on the competent bearing stratum or could bear on lean concrete (minimum fc=1,000 psf) extending from the foundation base to competent bearing stratum.


3 Settlements as a result of the assumed structural loads as noted in Project Description. No specific loads have been provided to date. Actual settlement will vary based on loading, subgrade conditions, and construction techniques.

C350 Central Corridor Pipeline Expansion Cincinnati, Hamilton County, Ohio July 11, 2018; Revised October 7, 2020 Terracon Project No. N1175384

As noted in **Earthwork**, the footing excavations should be evaluated under the direction of the Geotechnical Engineer. The base of all foundation excavations should be free of water and loose soil, prior to placing concrete. Concrete should be placed soon after excavating to reduce bearing soil disturbance. Care should be taken to prevent wetting or drying of the bearing materials during construction. Excessively wet or dry material or any loose/disturbed material in the bottom of the footing excavations should be removed/reconditioned before foundation concrete is placed.


If unsuitable bearing soils having high plasticity or less than stiff consistency are encountered at the base of the planned footing excavation, the excavation should be extended deeper to suitable soils, and the footings could bear directly on these soils at the lower level or on lean concrete (minimum $f_c=1,000$ psf) backfill placed in the excavations. If highly plastic soils are encountered at the proposed footing bearing level, a minimum 1- foot undercut below proposed footing level is recommended. This is illustrated on the sketch below.

Over-excavation for structural fill placement below footings should be conducted as shown below. The over-excavation should be backfilled up to the footing base elevation, with structural fill material placed, as recommended in the **Earthwork** section.

Terracon GeoReport

At the Highpoint Park Station, it is recommended that footing/equipment pad excavations be extended to stiff soils by undercutting as described above and backfilled with lean concrete to the design bottom-of-footing level.

As an alternative to the deeper trenched footings, the foundation may consist of grade beams and drilled shafts. If additional information is required on the use of drilled shafts and grade beam, please contact Terracon.

Grading and Drainage

All grades must provide effective drainage away from the building and structures during and after construction and should be maintained throughout the life of the structure. Water retained next to the building and structures can result in soil movements greater than those discussed in this report. Greater movements can result in unacceptable differential floor slab and/or foundation movements, cracked slabs and walls, and roof leaks. Estimated movements described in this report are based on effective drainage for the life of the structure. The roof should have gutters/drains with downspouts that discharge into the storm sewers.

Exposed ground should be sloped and maintained at a minimum 5 percent away from the building for at least 10 feet beyond the perimeter of the building. Locally, flatter grades may be necessary to transition ADA access requirements for flatwork. After building construction and landscaping, final grades should be verified to document effective drainage has been achieved. Grades around the structure should also be periodically inspected and adjusted as necessary as part of the structure's maintenance program. Where paving abuts the structure a maintenance program should be established to effectively seal and maintain joints and prevent surface water infiltration.

C350 Central Corridor Pipeline Expansion Cincinnati, Hamilton County, Ohio July 11, 2018; Revised October 7, 2020 Terracon Project No. N1175384

Earthwork Construction Considerations

Shallow excavations for the proposed structures, are anticipated to be accomplished with conventional construction equipment. Upon completion of filling and grading, care should be taken to maintain the subgrade water content prior to construction of floor slabs-on-grade and pavement. Construction traffic over the completed subgrades should be avoided. The site should also be graded to prevent ponding of surface water on the prepared subgrades or in excavations. Water collecting over, or adjacent to, construction areas should be removed. If the subgrade freezes, desiccates, saturates, or is disturbed, the affected material should be removed, or the materials should be scarified, moisture conditioned, and recompacted, prior to floor slab and pavement construction and observed by Terracon.

Trees or other vegetation whose root systems have the ability to remove excessive moisture from the subgrade soils should not be planted next to the building. Soil shrinkage from moisture removal can result in noticeable settlements that can cause distress to the building structural elements and pavements. Trees and shrubbery should be kept away from the exterior edges of the foundation element a distance at least equal to 1.5 times their expected mature height and at least 10 feet from the building, whichever is greater.

Utility Trench Backfill

Utility trenches are a common source of water infiltration and migration. Utility trenches penetrating beneath the building should be effectively sealed to restrict water intrusion and flow through the trenches, which could migrate below the building. The trench should provide an effective trench plug that extends at least 5 feet from the face of the building exterior. The plug material should consist of cementitious flowable fill or low permeability lean clay. The trench plug material should be placed to surround the utility line. If used, the clay trench plug material should be placed to comply with the water content and compaction recommendations for structural fill stated previously in this report.

SEISMIC CONSIDERATIONS

The seismic design requirements for buildings and other structures are based on Seismic Design Category. Site Classification is required to determine the Seismic Design Category for a structure. The Site Classification is based on the upper 100 feet of the site profile defined by a weighted average value of either shear wave velocity, standard penetration resistance, or undrained shear strength in accordance with Section 20.4 of ASCE 7.

C350 Central Corridor Pipeline Expansion Cincinnati, Hamilton County, Ohio July 11, 2018; Revised October 7, 2020 Terracon Project No. N1175384

Description	Value for Highland Area	Value for Lowland Area
2015 International Building Code Site Classification (IBC) ¹	C ²	D ²
Site Latitude (°)	39.25069 to 39.17898	39.17898 to 39.14264
Site Longitude (°)	-84.3762 to -84.3931	-84.39310 to -84.4041
Spectral Acceleration for a Short Period, S _S (g) ³	0.143	0.144
Spectral Acceleration for a 1-Second Period, S ₁ (g) ⁴	0.077	0.077
Site Coefficient, Fa ⁵	1.2	1.6
Site Coefficient, Fv ⁶	1.7	2.4
Spectral Acceleration for a Short Period (Design), S _{DS} (g) ¹	0.115	0.154
S _{D1} = Spectral Acceleration for a 1-Second Period (Design), S _{D1} (g) ¹	0.087	0.123

 Seismic site classification in general accordance with the 2015 International Building Code, which refers to ASCE 7.

2. The 2012 International Building Code (IBC) uses a site profile extending to a depth of 100 feet for seismic site classification. Borings at this site were extended to a maximum depth of 101.3 feet. The site properties below the boring depth to 100 feet were estimated based on our experience and knowledge of geologic conditions of the general area. Additional deeper borings or geophysical testing may be performed to confirm the conditions below the current boring depth.

 These values were obtained using online seismic design maps and tools provided by the USGS (http://earthquake.usgs.gov/hazards/designmaps/).

FLOOR SLABS

Design parameters for floor slabs assume the requirements for **Earthwork** have been followed. Specific attention should be given to positive drainage away from the structure and. positive drainage of the aggregate base beneath the floorslab.

C350 Central Corridor Pipeline Expansion Cincinnati, Hamilton County, Ohio July 11, 2018; Revised October 7, 2020 Terracon Project No. N1175384

Floor Slab Design Parameters

Item	Description	
Floor Slab Support ¹	At least stiff natural soils or at least 1.5 feet of engineered fill soils	
Estimated Modulus of Subgrade Reaction ²	150 pounds per square inch per inch (psi/in) for point loading considerations	
Aggregate base course/capillary break ³	4 inches of free draining granular material	

1. Floor slabs should be structurally independent of building footings or walls to reduce the possibility of floor slab cracking caused by differential movements between the slab and foundation.

2. Modulus of subgrade reaction is an estimated value based upon tested index properties, our experience with the subgrade condition, the requirement noted in Site Preparation, and the floor slab support as noted in this table. It is provided for point loads. For large area loads the modulus of subgrade reaction would be lower.

 Free-draining granular material should have less than 5 percent fines (material passing the #200 sieve). Other design considerations such as cold temperatures and condensation development could warrant more extensive design provisions.

The use of a vapor retarder should be considered beneath concrete slabs-on-grade covered with wood, tile, carpet, or other moisture sensitive or impervious coverings, or when the slab will support equipment sensitive to moisture. When conditions warrant the use of a vapor retarder, the slab designer should refer to ACI 302 and/or ACI 360 for procedures and cautions regarding the use and placement of a vapor retarder.

Saw-cut control joints should be placed in the slab to help control the location and extent of cracking. For additional recommendations refer to the ACI Design Manual. Joints or cracks should be sealed with a water-proof, non-extruding compressible compound specifically recommended for heavy-duty concrete pavement and wet environments.

Where floor slabs are tied to perimeter walls or turn-down slabs to meet structural or other construction objectives, our experience indicates differential movement between the walls and slabs will likely be observed in adjacent slab expansion joints or floor slab cracks beyond the length of the structural dowels. The Structural Engineer should account for potential differential settlement through use of sufficient control joints, appropriate reinforcing, or other means.

Floor Slab Construction Considerations

Finished subgrade within and for at least 10 feet beyond the floor slab should be protected from traffic, rutting, or other disturbance and maintained in a relatively moist condition until floor slabs are constructed. If the subgrade should become damaged or desiccated prior to construction of floor slabs, the affected material should be removed and structural fill should be added to replace the

C350 Central Corridor Pipeline Expansion Cincinnati, Hamilton County, Ohio July 11, 2018; Revised October 7, 2020 Terracon Project No. N1175384

resulting excavation. Final conditioning of the finished subgrade should be performed immediately prior to placement of the floor slab support course.

The Geotechnical Engineer should approve the condition of the floor slab subgrade immediately prior to placement of the floor slab base course, reinforcing steel and concrete. Attention should be paid to high traffic areas that were rutted and disturbed earlier, and to areas where backfilled trenches are located.

GENERAL COMMENTS

Our analysis and opinions are based upon our understanding of the project, the geotechnical conditions in the area, and the data obtained from our site exploration. Natural variations will occur between exploration point locations or due to the modifying effects of construction or weather. The nature and extent of such variations may not become evident until during or after construction. Terracon should be retained as the Geotechnical Engineer, where noted in the final report, to provide observation and testing services during pertinent construction phases. If variations appear, we can provide further evaluation and supplemental recommendations. If variations are noted in the absence of our observation and testing services on-site, we should be immediately notified so that we can provide evaluation and supplemental recommendations.

Our scope of services does not include either specifically or by implication any environmental or biological (e.g., mold, fungi, bacteria) assessment of the site.

Our services and any correspondence or collaboration through this system are intended for the sole benefit and exclusive use of our client for specific application to the project discussed and are accomplished in accordance with generally accepted geotechnical engineering practices with no third party beneficiaries intended. Any third party access to services or correspondence is solely for information purposes to support the services provided by Terracon to our client. Reliance upon the services and any work product is limited to our client, and is not intended for third parties. Any use or reliance of the provided information by third parties is done solely at their own risk. No warranties, either express or implied, are intended or made.

Site characteristics as provided are for design purposes and not to estimate excavation cost. Any use of our report in that regard is done at the sole risk of the excavating cost estimator as there may be variations on the site that are not apparent in the data that could significantly impact excavation cost. Any parties charged with estimating excavation costs should seek their own site characterization for specific purposes to obtain the specific level of detail necessary for costing. Site safety, and cost estimating including, excavation support, and dewatering requirements/design are the responsibility of others. If changes in the nature, design, or location of the project are planned, our conclusions and recommendations shall not be considered valid unless we review the changes and either verify or modify our conclusions in writing.

ATTACHMENTS

C350 Central Corridor Pipeline Expansion Cincinnati, Hamilton County, Ohio July 11, 2018; Revised October 7, 2020 Terracon Project No. N1175384

EXPLORATION AND TESTING PROCEDURES

Field Exploration

Our field exploration work included the coordination, drilling and sampling of 27 exploratory geotechnical borings. However, test borings WB-21 and WB-23 could not be drilled due to utility conflicts. Test boring WB-6 was not drilled, as boring access was not granted by the property owner.

The current and archive field exploration program consisted of the following:

22.5 to 102.9	
22.5 10 102.9	C350 Alignment Borings
20 to 101.5	C350 Alignment Borings
20 to 25	Additional C350 Alignment Borings

Boring Layout and Elevations: We used a handheld GPS equipment to locate borings with an estimated horizontal and vertical accuracy of +/-1 feet.

Subsurface Exploration Procedures: We advanced soil borings with a track-mounted drill rig using hollow-stem augers. Six samples were obtained in the upper 15 feet of each boring and at intervals of 5 feet thereafter. Soil sampling was performed using split-barrel sampling procedures. In the split-barrel sampling procedure, a standard 2-inch outer-diameter split-barrel sampling spoon was driven into the ground by a 140-pound automatic hammer falling a distance of 30 inches. The number of blows required to advance the sampling spoon the last 12 inches of a normal 18-inch penetration was recorded as the Standard Penetration Test (SPT) resistance value. The SPT resistance values, also referred to as N-values, have been indicated on the boring logs at the test depths. The samples were placed in appropriate containers, taken to our soil laboratory for testing, and classified by a geotechnical engineer. In addition, we observed and recorded groundwater levels during drilling and sampling.

Upon encountering bedrock, samples were collected by overdriving the split-barrel sampling spoon. Rock coring was not performed.

Our exploration team prepared field boring logs as part of standard drilling operations including sampling depths, penetration distances, and other relevant sampling information. Field logs include visual classifications of materials encountered during drilling, and our interpretation of subsurface conditions between samples. Final boring logs, prepared from field logs, represent the

C350 Central Corridor Pipeline Expansion Cincinnati, Hamilton County, Ohio July 11, 2018; Revised October 7, 2020 Terracon Project No. N1175384

geotechnical engineer's interpretation, and include modifications based on observations and laboratory tests.

Abandonment: We backfilled the borings with cement-bentonite grout after completion and the pavement surfaces were patched with cold-mix asphalt. Because backfill material often settles below the surface after a period, we recommend boreholes are checked periodically and backfilled, if necessary.

The borings completed in 2020, were backfilled with auger cuttings and then capped with a 18inch concrete plug to mitigate settlement.

Laboratory Testing

The project engineer reviewed field data and assigned various laboratory tests to better understand the engineering properties of various soil and rock strata. Soil minimum electrical resistivity, redox potential, sulfide content and pH testing was also performed in accordance with AWWA C105/A21.5 and ASTM A674-10 to estimate potential corrosive characteristics of the on-site soils with respect to contact with the various underground materials which will be used for project construction. Procedural standards noted below are for reference to methodology in general.

- ASTM D2216 Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass
- ASTM D4318 Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils
- ASTM D422 Standard Test Method for Particle-Size Analysis of Soils
- ASTM D7012 Standard Test Methods for Compressive Strength and Elastic Moduli of Intact Rock Core Specimens under Varying States of Stress and Temperatures
- AWWA 4500 H pH Value Determination Method approved by Standard Methods Committee, 2000
- ASTM C 1580 Standard Test Method for Water-Soluble Sulfate in Soil
- AWWA 4500-S D Presence of Sulfide Determination Method approved by Standard Methods Committee, 2000
- ASTM D512 Standard Test Methods for Chloride Ion in Water
- AWWA 2580 Oxidation-Reduction Potential (ORP) Determination Method approved by Standard Methods Committee, 1997
- AWWA 2540 Total Salts Determination Method approved by Standard Methods Committee, 1997
- ASTM G 57 Standard Test Method for Field Measurement of Soil Resistivity using the Wenner Four-Electrode Method

C350 Central Corridor Pipeline Expansion Cincinnati, Hamilton County, Ohio July 11, 2018; Revised October 7, 2020 Terracon Project No. N1175384

Our laboratory testing program included examination of soil samples by an engineer. Based on the material's texture and plasticity, we have described and classified soil samples in accordance with the Unified Soil Classification System (USCS). Bedrock samples obtained were classified using locally-accepted practices for engineering purpose. Boring log rock classification is determined using our Description of Rock Properties Standards.

Our field exploration work also included the staking, drilling and sampling of 12 environmental borings (E-101 through E-111 and E-114) using a Geo-probe rig. Burns and McDonnel was responsible for the handling and laboratory testing of the samples. Photographs of the site conditions prior to drilling and after drilling are shown in the Photographs of Site Conditions section.

Central Corridor Pipeline C350 Hamilton County, OH June 22, 2018 Terracon Project No. N1175384

DIAGRAM IS FOR GENERAL LOCATION ONLY, AND IS NOT INTENDED FOR CONSTRUCTION PURPOSES

AERIAL PHOTOGRAPHY PROVIDED BY MICROSOFT BING MAPS

Central Corridor Pipeline C350
Hamilton County, OH June 22, 2018
Terracon Project No. N1175384

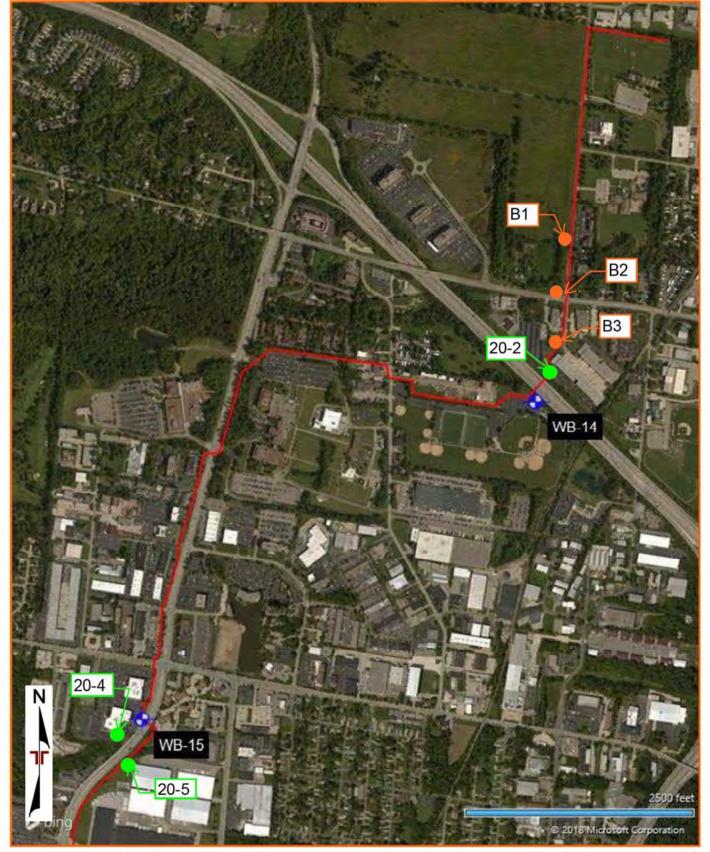


DIAGRAM IS FOR GENERAL LOCATION ONLY, AND IS NOT INTENDED FOR CONSTRUCTION PURPOSES

AERIAL PHOTOGRAPHY PROVIDED BY MICROSOFT BING MAPS

Central Corridor Pipeline C350
Hamilton County, OH June 22, 2018
Terracon Project No. N1175384

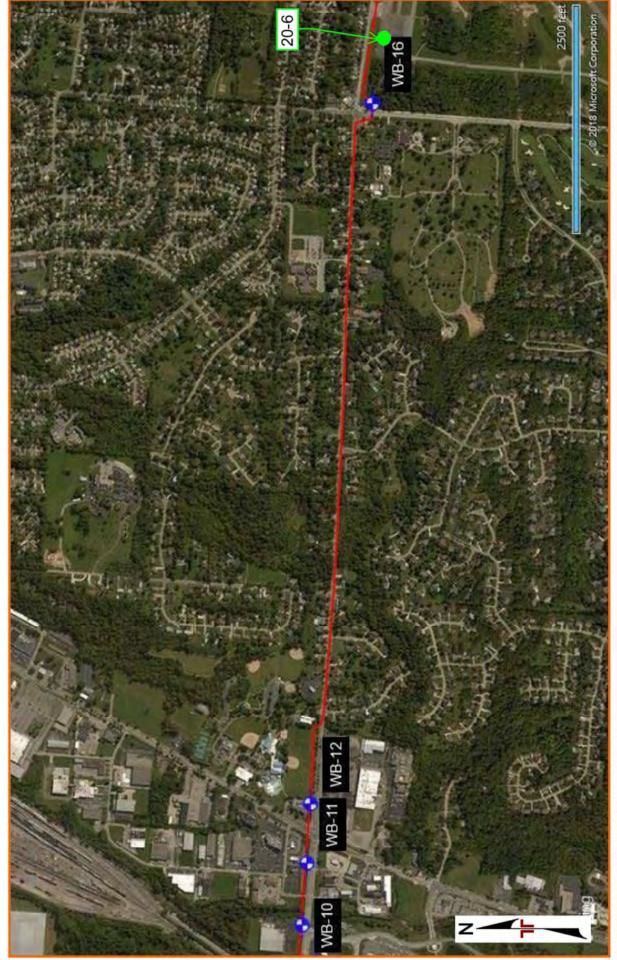


DIAGRAM IS FOR GENERAL LOCATION ONLY, AND IS NOT INTENDED FOR CONSTRUCTION PURPOSES

AERIAL PHOTOGRAPHY PROVIDED BY MICROSOFT BING MAPS

Central Corridor Pipeline C350 = Hamilton County, OH June 22, 2018 = Terracon Project No. N1175384

AERIAL PHOTOGRAPHY PROVIDED BY MICROSOFT BING MAPS

DIAGRAM IS FOR GENERAL LOCATION ONLY, AND IS NOT INTENDED FOR CONSTRUCTION PURPOSES

Central Corridor Pipeline C350 Hamilton County, OH June 22, 2018 Terracon Project No. N1175384

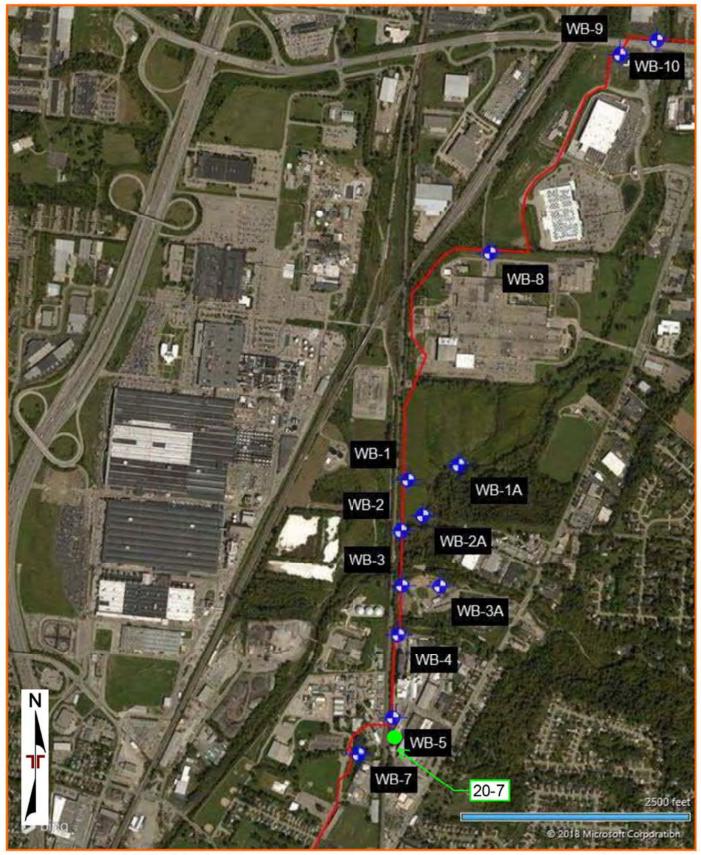


DIAGRAM IS FOR GENERAL LOCATION ONLY, AND IS NOT INTENDED FOR CONSTRUCTION PURPOSES

Central Corridor Pipeline C350 Hamilton County, OH June 22, 2018 Terracon Project No. N1175384

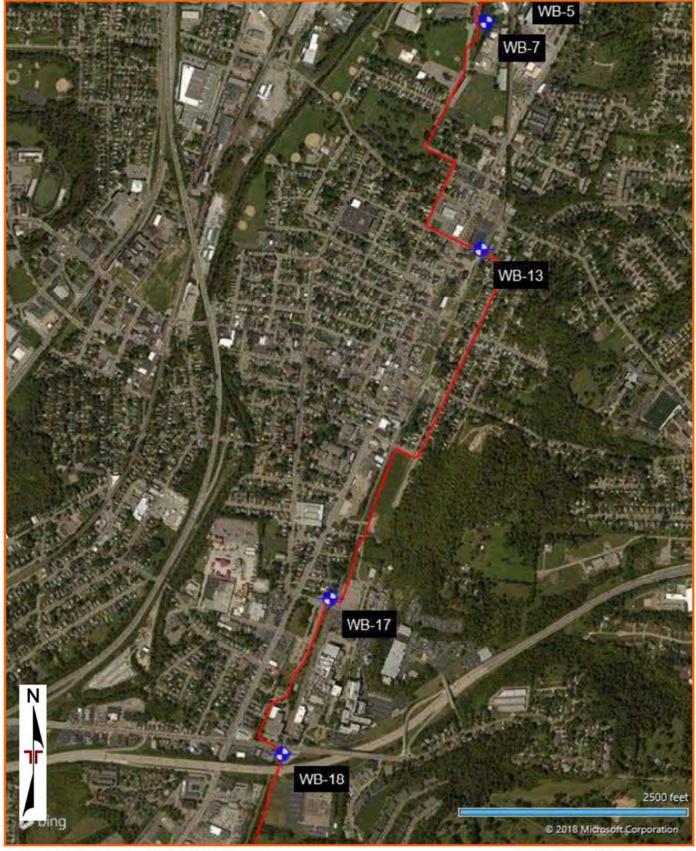


DIAGRAM IS FOR GENERAL LOCATION ONLY, AND IS NOT INTENDED FOR CONSTRUCTION PURPOSES

Central Corridor Pipeline C350 Hamilton County, OH June 22, 2018 Terracon Project No. N1175384

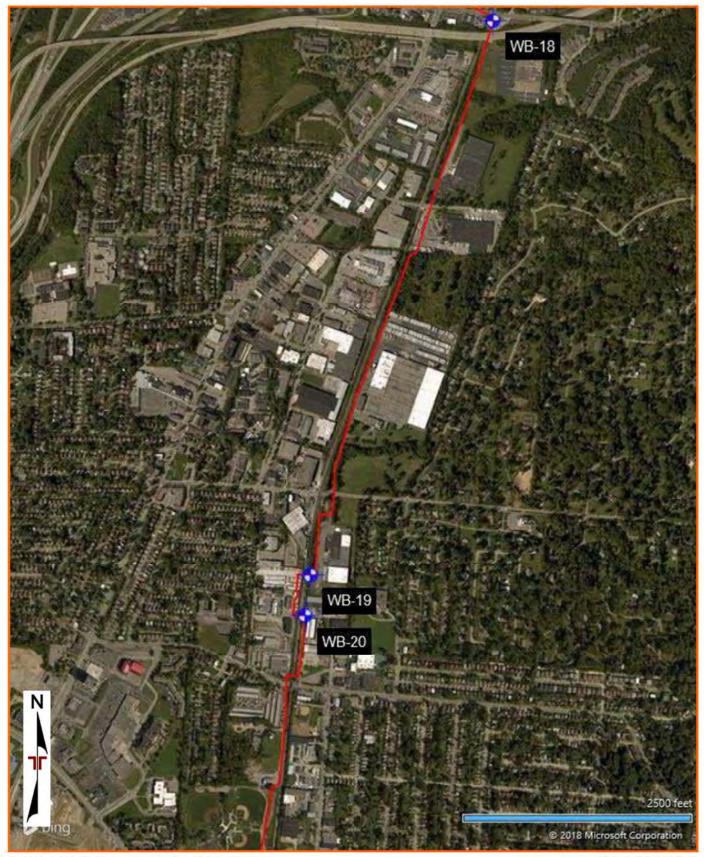


DIAGRAM IS FOR GENERAL LOCATION ONLY, AND IS NOT INTENDED FOR CONSTRUCTION PURPOSES

Central Corridor Pipeline C350 Hamilton County, OH June 22, 2018 Terracon Project No. N1175384

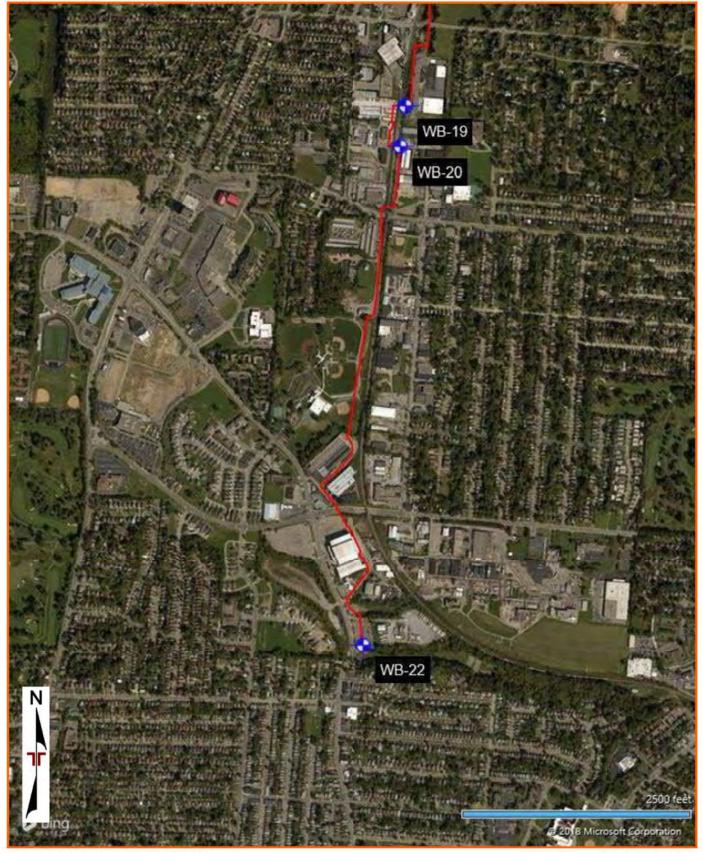


DIAGRAM IS FOR GENERAL LOCATION ONLY, AND IS NOT INTENDED FOR CONSTRUCTION PURPOSES

EXPLORATION RESULTS

1.12	BOR	RING				C.23. 3.1427				F	age	1 of 4
PR	OJECT: Duke C350- Central Corridor Pipeline		ſ	CLIE		Duke Ener Cincinnati,						
SIT	E: Cincinnati, OH											
OG	LOCATION See Exploration Plan		- SS -	u u	(%)	-	-	2	a la la	(9		ATTERB
GRAPHIC LOG	Latitude: 39.283118° Longitude: -84.360281° Northing: 472755.148 Easting: 1441979.264 Surface Elev.: 861.5 (F DEPTH ELEVATION (F		WATER LEVEL	SAMPLETYPE	RECOVERY (%)	FIELD TEST RESULTS	RQD%	LABORATORY HP (tsf)	UNCONFINED COMPRESSIVE STRENGTH (tsf)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	LL-PL-
	FILL - LEAN CLAY (CL), with striations of dark brown, with silt, trace black concretions, light brown, soft	359	-	X	89	2-2-2 N=4	_	0.5 (HP)		26		
	LEAN CLAY (CL), trace sand, trace organics, dark reddish brown to brown, very stiff	539	-	X	100	4-6-9 N=15		4.5+ (HP)		19		
		5	-	X	100	6-8-11 N=19		3.75 (HP)		19		38-17-
			_	X	94	4-7-8 N=15		4.0 (HP)		20		
	10.0 85 <u>LEAN CLAY (CL)</u> , trace sand, trace gravel, light reddish brown with light gray, very stiff	<u>1.5</u> 10	-	X	100	5-7-9 N=16		3.5 (HP)		19		
	15.0 84 LEAN CLAY (CL), with silt, with gravel, dark grayish brown, (sample wet when retrieved)	^{6.5} 15		X	89	6-25-27 N=52				12		
	20.0 84 <u>LEAN CLAY (CL)</u> , with silt, trace sand, with gravel, dark gray, hard, GLACIAL TILL (sample wet)	<u>1.5</u> 20		X	94	15-24-26 N=50		4.5+ (HP)		11		
	POORLY GRADED SAND AND GRAVEL	6.5 25		X	100	9-23-47 N=70		4.5+ (HP)		8		
	Stratification lines are approximate. In-situ, the transition may be gradu	al.	-	F		Hamn	ner Type: Autor		1.9%, 8/1	5/2016		
3.25 Aband	cement Method: " Hollow Stem Auger and NX Rock Core onment Method: ng backfilled with tremie placed grout.	borting Info	ormation	n for e	xplanati		used below 31	.5' to co	re rock.			
-	WATER LEVEL OBSERVATIONS		_			Boring S	Started: 02-06-2	2016	Borin	ig Comp	pleted:	02-06-201
\vee	Water observed @ 30.2' during driling Water observed @ 13.6' after 24 hours	er	ſZ		:0	Drill Rig	Track		Drille	r: J. Ma	athie	

	BORI	NG	LO	G	NC). B1				F	age	2 of 4
12	ROJECT: Duke C350- Central Corridor Pipeline		0	CLIE	NT:	Duke Ener Cincinnati,		(
0.	Cincinnati, OH											
GRAPHIC LOG	LOCATION See Exploration Plan Latitude: 39.283118° Longitude: -84.360281° Northing: 472755.148 Easting: 1441979.264 Surface Elev.: 861.5 (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (%)	FIELD TEST RESULTS	RQD%	LABORATORY HP (tsf)	UNCONFINED COMPRESSIVE STRENGTH (tsf)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	ATTERBERG LIMITS
	DEPTH ELEVATION (Ft.) LEAN CLAY (CL), with gravel, trace sand and limestone fragments, dark gray, very hard to stiff, (sample is wet) (continued) 30.0 831. SHALE, trace limestone, gray, very weak 831. SHALE, gray weak shale interbedded with thin strong gray limestone layers, 831. Limestone layer: 4" @ 33.7' 1.15 Limestone layer: 2" @ 42' 1.15 Limestone layer: 1" @ 42.6' 1.15 Limestone layer: 2" @ 42.6' 1.15 Limestone layer: 2" @ 42.6' 1.15 Limestone layer: 2.25" @ 47.5' 1.16 Limestone layer: 2.25" @ 48.9' 1.16 Limestone layer: 1.75" @ 51.8' 1.16 Limestone layer: 1.25" @ 51.8' 1.16 Limestone layer: 1.75" @ 55.5' 1.16 Limestone layer: 1.75" @ 61.2' 1.175 Limestone layer: 1.75" @ 61.2' 1.16 Limestone layer: 1.75" @ 62.6' 1.175 Limestone layer: 1.2" @ 65.3' 1.16 Limestone layer: 1.2" @ 65.3' 1.16 Limestone layer: 1.2" @ 65.3' 1.16 Limestone layer: 1" @ 65.3' 1.16 Limestone layer: 2" @ 65.3' 1.17 <t< td=""><td>5 30 - - - - - - - - - - - - - - - - - - -</td><td></td><td></td><td>2 100) 42 24 93 100</td><td>50/3"</td><td>6</td><td></td><td>52.66</td><td>9</td><td>139</td><td></td></t<>	5 30 - - - - - - - - - - - - - - - - - - -			2 100) 42 24 93 100	50/3"	6		52.66	9	139	
Adva	Shale: 87% Limestone: 13%" Stratification lines are approximate. In-situ, the transition may be gradual.	50-			93		76 ner Type: Auto	matic, 8	1.9%, 8/1	5/2016		
3.2 Abane	coement Method: 5" Hollow Stem Auger and NX Rock Core See Support See Support donment Method: symbols an ring backfilled with tremie placed grout. See Support				kplanat	Notes:						
	WATER LEVEL OBSERVATIONS		_	_	_	Dailer (Startad: 00.00	2016	Desta	a Carrie	lated	12 06 2040
∇	Water observed @ 30.2' during driling	2		ſ			Started: 02-06-	2016	-		2.5.	02-06-2016
V	Water observed @ 13.6' after 24 hours		unken		Dr	Drill Rig	0		Drille	r: J. Ma	inis	
			cinnati		-	Project	No.: N1165468	3				

PP	BOI OJECT: Duke C350- Central Corridor Pipeline	RING	-	-		B1 Duke Ener	av			F	Page	3 of 4
PR	OJECT: Duke C350- Central Corndor Pipeline			LIC		Cincinnati						
SIT	TE: Cincinnati, OH											
()	LOCATION See Exploration Plan	1	1,00	w	2	1	1	1.	- WE			ATTERB
GRAPHIC LOG	Latitude: 39.283118° Longitude: -84.360281°	(Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (%)	EST	%	LABORATORY HP (tsf)	UNCONFINED COMPRESSIVE STRENGTH (tsf)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	LIMIT
APHIC	Northing: 472755.148 Easting: 1441979.264	(.t.) DEPTH (Ft.)	ERL	РЕ	OVEF	FIELD TEST RESULTS	RQD%	ORA' HP (ts	APRE IPRE	VATE	RY U IGHT	LL-PL
GR	Surface Elev.: 861.5 (WAI	SAN	REC	띮문		LAB	CON	COL	ND ND	
	DEPTH ELEVATION (SHALE, gray weak shale interbedded with thin	1.00		П			1	-		-		-
	strong gray limestone layers,	55-	1	L								
_	Limestone layer: 4" @ 33.7' Limestone layer: 6" @34.3'				100		80					
-	Limestone layer: 2" @ 42' Limestone layer: 1.75" @ 42.6'	1	-	П	100		50					
-	Limestone laver: 1" @ 45.7'		-						340.2	22.6	147	
	Limestone layer: 2" @ 46.2' Limestone layer: 2.25" @ 47.5' Limestone layer: 2.25" @ 48.9'		4					4				
	Limestone layer: 2.25" @ 48.9' Limestone layer: 4.25"@ 51.3'	60-		H								
	Limestone layer: 1.50" @ 51.8'	111										
_	Limestone layer: 1" @ 52.4' Limestone layer: 3.75" @ 54.7'	1.1			100		53					
	Limestone layer: 1" @ 55.5' Limestone layer: 1.75" @ 59.4'											
	Limestone layer: 2" @ 59.9' Limestone layer: 1/4" @ 60.4'											
	Limestone laver: 1.5" @ 61.2'		1	П				1				
-	Limestone layer: 2" @ 61.5' Limestone layer: 1/2" @ 62.4' Limestone layer: 1.25" @ 62.6'	65-	1	ы								
	Limestone layer: 1.25" @ 62.6' Limestone layer: 1" @ 62.9'		1		100		99					
	Limestone layer: 1" @ 64.6' Limestone layer: 2.50" @ 65.3'		-		100		55					
	Limestone layer: 3" @ 67'	1.5	-									
	Limestone layer: 10" @ 67.7' Limestone layer: 5" @ 73.9'		-					-				
-	Limestone layer: 3" @ 74.6' Limestone layer: 2" @ 76.5'	70-	_									
_	Limestone layer: 3" @ 76.8' Limestone layer: 4" @ 78.4'											
_	the second s				100		87					
_	Shale: 87% Limestone: 13%" (continued)											
							1.1					
_			1									
		75-		L								
		2			100		97					
			1		100							
			-					1.1	2303.9	94	154	
1	79.0 7	82.5	-					-				
		80-	-									
-			-									
	Stratification lines are approximate. In-situ, the transition may be grad	ual.	1			Hamr	ner Type: Auto	matic, 8	81.9%, 8/1	5/2016		
	cement Method:	-				Notes					_	_
3.25	5" Hollow Stem Auger and NX Rock Core											
	Ionment Method: symbols	porting Info and abbrev	mation riations.	for ex	planation	n of						
Bori	ing backfilled with tremie placed grout.											
_	WATER LEVEL OBSERVATIONS	-				Boring	Started: 02-06-	2016	Borin	g Com	pleted: (02-06-20
	Water observed @ 30.2' during driling	er	10		0	Drill Rig			-	r: J. Ma		
∇	Water observed @ 13.6' after 24 hours	6111	unken F									

BORING LOG NO. B1

	BO	RINC	GI	-0	G	NO.	B1	_			F	age	4 of 4
PR	OJECT: Duke C350- Central Corridor Pipelin	e		C	LIE		Duke Ener Cincinnati,						
SIT							Sincinati,	onio					
_	Cincinnati, OH	_			_						_		ATTERRET
90	LOCATION See Exploration Plan		-	NS	Ш	(%)	E.		2	UNCONFINED COMPRESSIVE STRENGTH (tsf)	(%	. 6	LIMITS
GRAPHIC LOG	Latitude: 39.283118° Longitude: -84.360281°	(Ft.)		WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (%)	FIELD TEST RESULTS	%(LABORATORY HP (tsf)	FINE SSI	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	
HH	Northing: 472755.148 Easting: 1441979.264	10		H N	P.	OVE	ESU .	RQD%	AP (I	NG BR	VAT	GF.	LL-PL-
GRI	Surface Elev.: 861.5	(Ft.)	5	NAI	SAM	EC	문문		AB	UNCON	CO ^V	NED.	
	DEPTH ELEVATION	(Ft.)	_	-0	0,	u.			-	00		1	_
ī.	LIMESTONE, gray strong fossiliferous interbedded with thin gray very weak shale					100		90					
-	seams,												
_	Shale layer: 1/2"@79.4'		-										
-	84.0 Shale layer: 8"@79.8'	777.5									1.1		
	Shale layer: 2"@80.3'									2498.96	3	154	
-	Shale layer: 2"@81.6' Shale layer: 2"@81.9'	8	5-										
	Shale layer: 4.25"@83.1'		-										
						100		95	6.11				
_	Limestone: 68% Shale: 32% (continued)							1.1					
	SHALE, weak shale interbedded with thin strong gray limestone layers,		-										
	Limestone layer: 3" @ 85.3' Limestone layer: 4" @ 87.0'	-		11									
-	Limestone layer: 1" @ 87.4'	9	어										
-	Limestone layer: 1/2" @ 87.6'		-					1.1					
-	Limestone layer: 3" @ 87.8' Limestone layer: 1.5" @ 91.5'					100		93					
	Limestone layer: 1" @ 91.9'		1			1000							
-	Limestone layer: 2" @ 92.1'		-										
_	Limestone layer: 2.5" @ 92.4' Limestone layer: 2.75" @ 93.1'		_										
-	Limestone layer: 1.25" @ 93.4'												
	Limestone layer: 1" @ 95.4'	9	5										
_	Limestone layer: 3" @ 95.8' Limestone layer: 4" @ 96.4'		-			1.1							
	Limestone layer: 6" @ 97.5'					98		92					
	Limestone layer: 3" @ 98.3' Limestone layer: 2" @ 100.2'												
	Limestone layer: 4" @ 100.5'		-										
	and an and a second for an and		-						-				
1	Shale: 78% Limestone: 22%							11120					
_		10	904			44		38					
	NT A 가장 아름다. 2017년 1월 1989년 1월 1997년 1월 1997년 4월 1997년 4월 1997년 1월 1997년 1월 1997년 1월 1997년 1월 1997년 1월 1997년 1월	760.5	-	-									
	Boring Terminated at 101 Feet								1				
			1		L						F 100 11		
	Stratification lines are approximate. In-situ, the transition may be gra	dual.					Hamn	ner Type: Auto	omatic, 8	1.9%, 8/1	5/2016		
	cement Method:				-		Notes						
3.25	" Hollow Stem Auger and NX Rock Core												
and	onment Method: See St	pporting Ir s and abb	nform	ation	for ex	xplanatio	n of						
	ng backfilled with tremie placed grout.		evid	IUTIS.									
_	WATER LEVEL OBSERVATIONS	-					Boring S	Started: 02-06-	2016	Borin	g Com	pleted: (02-06-201
	Water observed @ 30.2' during driling	P	76			0		5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1	1015	-	-		
7							Drill Dia	Track		1 3 2010 -	r 1 8.8-	athic	
Z	Water observed @ 13.6' after 24 hours			ken P		_	Drill Rig	Track	-	Drille	er: J. Ma	athis	

	BORI	NG	LO	G	NO	. B2				F	Page	1 of 9
PR	OJECT: Duke C350- Central Corridor Pipeline		C	LIE		Duke Energ Cincinnati,					-9-	
SI	E: Cincinnati, OH											
GRAPHIC LOG	LOCATION See Exploration Plan Latitude: 39.281319° Longitude: -84.360661° Northing: 472102.357 Easting: 1441858.16 Surface Elev.: 849.5 (Ft.) DEPTH ELEVATION (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLETYPE	RECOVERY (%)	FIELD TEST RESULTS	RQD%	LABORATORY HP (tsf)	UNCONFINED COMPRESSIVE STRENGTH (tsf)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	ATTERBERG LIMITS LL-PL-PI
	FILL - LEAN CLAY (CL), trace silt, trace sand with gravel, brown with reddish brown, very stiff to hard, moist			X	100	2-3-5 N=8	-	4.5 (HP)		14		
				X	100	3-6-4 N=10		3.25 (HP)		15		
	5.0 844.5 LEAN CLAY (CL), with silt, with gravel, trace limestone fragments, olive brown to blueish gray, stiff, moist	5-	_	X	22	5-4-5 N=9		2.0 (HP)		18		
		-	-	X	94	2-3-5 N=8		1.25 (HP)		27		
	10.0 839.5 LEAN CLAY (CL), with iron concretions, with silt, trace sand, trace gravel, trace limestone fragments, brown, very stiff to hard, moist	10-	- V V	X	100	3-10-11 N=21		4.5+ (HP)		8		25-14-11
	Stratification lines are approximate. In-situ, the transition may be gradual.	-	-			Hamme	r Type: Auto	matic, 8	1.9%, 8/1	5/2016		
	cement Method: " Hollow Stem Auger and NX Rock Core			e.5.1			dded at 45' to	o core ro	ck.			
	onment Method: See Support ng backfilled with tremie placed grout.	abbrev	mation viations	for e	xplanati	on of						
∇	WATER LEVEL OBSERVATIONS Water observed @ 10.1' during driling Water observed @ 10.7 upon completion of drilling			_	0	Boring Sta Drill Rig: 1	arted: 02-08-: Frack	2017	-	g Comp r: J. Ma	2.1	02-09-2017
		Cin	unken l cinnati,	OH	U	Project No	o.: N1165468	3				

	BORI	NG	LO	G	NC). B2				F	Page	2 of 9
PR	OJECT: Duke C350- Central Corridor Pipeline		C	LIE	NT:	Duke Energy Cincinnati, C	/ Dhio					
SIT	E: Cincinnati, OH					omonnuu, e						_
GRAPHIC LOG	LOCATION See Exploration Plan Latitude: 39.281319° Longitude: -84.360661° Northing: 472102.357 Easting: 1441858.16 Surface Elev.: 849.5 (Ft.) DEPTH ELEVATION (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (%)	FIELD TEST RESULTS	RQD%	LABORATORY HP (tsf)	UNCONFINED COMPRESSIVE STRENGTH (tsf)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	ATTERBERG LIMITS LL-PL-PI
	LEAN CLAY (CL), with iron concretions, with silt, trace sand, trace gravel, trace limestone fragments, brown, very stiff to hard, moist (continued)		-					- 4				
	Fine sand, water bearing seam encountered from 15' to 15.5'	15-	-	X	100	6-8-8 N=16		4.5+ (HP)		10		
		20-	-	X	100	16-15-42 N=57		4.5+ (HP)		25		
	Stratification lines are approximate. In-situ, the transition may be gradual.					Hammer	Type: Auto	matic, 8	1.9%, 8/1	5/2016		-
3.28 Aband	cement Method: " Hollow Stem Auger and NX Rock Core onment Method: ng backfilled with tremie placed grout.	ng Infor abbrevi	mation alions.	for ex	planat	Notes:						
V	WATER LEVEL OBSERVATIONS Water observed @ 10.1' during driling Water observed @ 10.7 upon completion of drilling	611 Lu	inken F	Park D		Boring Star Drill Rig: Tr Project No.	rack		-	g Comp r: J. Ma		2-09-2017

	BORI	NG	LO	G	NO). B2				F	Page	3 of 9
PR	OJECT: Duke C350- Central Corridor Pipeline		C	LIE	NT:	Duke Energ						
SI	E: Cincinnati, OH					Cincinnati,	Onio					
GRAPHIC LOG	LOCATION See Exploration Plan Latitude: 39.281319° Longitude: -84.360661° Northing: 472102.357 Easting: 1441858.16 Surface Elev.: 849.5 (Ft.) DEPTH ELEVATION (Ft.) LEAN CLAY (CL), with iron concretions, with	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLETYPE	RECOVERY (%)	FIELD TEST RESULTS	RQD%	LABORATORY HP (tsf)	UNCONFINED COMPRESSIVE STRENGTH (tsf)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	ATTERBERG LIMITS LL-PL-PI
	silt, trace sand, trace gravel, trace limestone fragments, brown, very stiff to hard, moist (continued)	25-	-	X	100	15-40-50/4"		4.5+ (HP)		13		
	30.0 819.5 SANDY LEAN CLAY (CL), trace limestone fragments, bluish gray with olive brown mottles, very stiff, moist		-	X	39	11-22-25 N=47		2.5 (HP)		27		36-18-18
	35.0 814.5 LEAN CLAY (CL), trace fissures, laminations and limestone fragments, tannish brown with gray, very stiff to hard, (RESIDUAL) Stratification lines are approximate. In-situ, the transition may be gradual.	35-	-	X	61	16-21-28 N=49 Hamm Notes:	er Type: Auto	4.5+ (HP) matic, 81	1.9%, 8/1	5/2016		
Aband	" Hollow Stem Auger and NX Rock Core onment Method: ng backfilled with tremie placed grout.	ing Infor abbrevi	mation alions.	for e	xplanati	ion of						
	WATER LEVEL OBSERVATIONS	-				Boring S	tarted: 02-08-3	2017	Borin	g Com	oleted	02-09-2017
∇	Water observed @ 10.1' during driling	26	10		:0	Drill Rig:			-	r: J. Ma		
	Water observed @ 10.7 upon completion of drilling	611 Lu Cine	inken F		Dr		lo.: N1165468					

	BORI	NG	-	_		1.78 A.M.				F	age	4 of 9
PRO	OJECT: Duke C350- Central Corridor Pipeline		C	LIE		Duke Energ Cincinnati,						
SIT												
	Cincinnati, OH		1 10		_		-					ATTER
2	LOCATION See Exploration Plan Latitude: 39.281319° Longitude: -84.360661°	(Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (%)	EST	%	LABORATORY HP (tsf)	UNCONFINED COMPRESSIVE STRENGTH (tsf)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	LIMI
APHIC	Northing: 472102.357 Easting: 1441858.16	DEPTH (Ft.)	ERVA	1PLE	OVEF	FIELD TEST RESULTS	RQD%	HP (ts	APRE	WATE	RY UI	LL-P
_	Surface Elev.: 849.5 (Ft.) DEPTH ELEVATION (Ft.)	ä	WA	SAN	REC	Ξœ		LAB	CON	00	N D	
	LEAN CLAY (CL), trace fissures, laminations and limestone fragments, tannish brown with gray, very stiff to hard, (RESIDUAL) (continued)	-		X								
		-										
		40-										
		_		X	94	8-22-24 N=46		4.5+ (HP)				
				\square			-					
		÷										
		-										
		(\cdot, \cdot)										
	45,3 804	45-		\times	100	50/4"						
				ÎÌ								
		-										
-												
		-		H								
				11	86		60					
		1.6										
1	Stratification lines are approximate. In-situ, the transition may be gradual.					Hamme	er Type: Auto	matic, 8	1.9%, 8/1	5/2016		
	ement Method: ' Hollow Stem Auger and NX Rock Core					Notes:						
	onment Method: See Support symbols and g backfilled with tremie placed grout.	ing Infor I abbrevi	mation ations.	for ex	planati	on of						
7	WATER LEVEL OBSERVATIONS		_		-	Boring St	arted: 02-08-	2017	Borin	g Com	pleted: (2-09-2
7	Water observed @ 10.1' during driling Water observed @ 10.7 upon completion of drilling	26	0	IC	0	Drill Rig:	Track		Drille	er: J. Ma	athis	
-	eserver e terr aport compression of drining	611 Lu Cine	inken F)r	Project N	o.: N1165468	3				

BORING LOG NO. B2

DD	O JECT: Duka C250 Control Corridor Binolina			1 16		Duke Energ					age	5 01 9
14	COJECT: Duke C350- Central Corridor Pipeline		ľ			Cincinnati,						_
31	Cincinnati, OH											
GRAPHIC LOG	LOCATION See Exploration Plan Latitude: 39.281319° Longitude: -84.360661° Northing: 472102.357 Easting: 1441858.16 Surface Elev.: 849.5 (Ft.) DEPTH ELEVATION (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLETYPE	RECOVERY (%)	FIELD TEST RESULTS	RQD%	LABORATORY HP (tsf)	UNCONFINED COMPRESSIVE STRENGTH (tsf)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	ATTERBERG LIMITS
	DEPTH ELEVATION (Ft.) SHALE, gray very weak shale interbedded with thin gray strong fossiliferous limestone layers, Limestone layer: 1.50" @ 45.6' Limestone layer: 1.50" @ 46.2' Limestone layer: 1" @ 46.4' Limestone layer: 2.25" @ 47.5' Limestone layer: 2.25" @ 47.5' Limestone layer: 10.50" @ 48.8' Limestone layer: 23% Shale: 77% Shale: 56% Limestone: 44% (continued)	-	-					-				
			-		100		97		269.5	52 8	143	
		55-	-		100		64		3847.3	91	165	
	Stratification lines are approximate. In-situ, the transition may be gradual. Incement Method: 5" Hollow Stem Auger and NX Rock Core	60-				Hamme Notes:	r Type: Auto	matic, 81	1.9%, 8/1	5/2016	2	-
Abanc	donment Method: ing backfilled with tremie placed grout.	ng Infor abbrev	mation alions.	for ex	xplanatic	on of						
	WATER LEVEL OBSERVATIONS		_			Boring Sta	arted: 02-08-:	2017	Borin	g Com	pleted: ()2-09-2017
$\overline{\mathbb{V}}$	Water observed @ 10.1' during driling Water observed @ 10.7 upon completion of drilling				0	Drill Rig: 1	Frack		Drille	r: J. Ma	this	
-	The source a for approximption of animy		inken F cinnati,		Dr	Project No	o.: N1165468	3				

BORING LOG NO. B2

BOR	ING	LO	G	NC). B2				F	Page 6	6 of 9
PROJECT: Duke C350- Central Corridor Pipeline		C	CLIE	ENT	Duke Energ Cincinnati, (
SITE: Cincinnati, OH											
UCATION See Exploration Plan		20	L.		1		~	oue:	-		ATTERBE
9	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (%)	FIELD TEST RESULTS		LABORATORY HP (tsf)	UNCONFINED COMPRESSIVE STRENGTH (tsf)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	LINITS
Latitude: 39.281319° Longitude: -84.360661° Northing: 472102.357 Easting: 1441858.16	Ĩ	ATA	E.	ER	E UL	RQD%	(tsf	GTI	E	SE	
C Nording, 472102.007 Eduling, 1441000.10	Ld	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	AP	l õ	ELL	L N	100 H	O H N	MAN	Y D	LL-PL-P
Surface Elev.: 849.5 (Ft.) 8	WA	AA	EC	륲╙		P	NOCUL	8		
DEPTH ELEVATION (Ft.)	-0	0,	u.			- 1	00			
SHALE, gray very weak shale interbedded with			11								
thin gray strong fossiliferous limestone layers,											
Limestone layer: 1.50" @ 45.6'											
Limestone layer: 1.50" @ 46.2		_									
Limestone layer: 1" @ 46.4' Limestone layer: 3/4" @ 46.8'											
Limestone layer: 3/4 @ 40.0											
Limestone layer: 2.25" @ 47.5' Limestone layer: 10.50" @ 48.8'											
Limestone layer: 6.50" @ 49.3'		-		875		11.53.95.1					
Limestone: 23% Shale: 77%				100		91					
						11.00					
Shale: 56% Limestone: 44% (continued)											
SHALE, gray very weak shale interbedded with											
thin gray strong fossiliferous limestone layers,											
Limestone layer: 1" @ 53.2'											
Limestone laver: 5" @ 54.4'		I									
Limestone layer: 9.50" @ 55.4'											
Limestone layer: 1" @ 58.7'		1									
64.5 Limestone layer: 8" @ 60.3' 78	35	L									
Limestone layer: 3.25" @ 60.9'	10						4				
Limestone layer: 4" @ 62.4'											
	65	-									
Limestone: 23% Shale: 77%	1.3.7										
SHALE, gray very weak shale interbedded with											
thin gray strong fossiliferous limestone layers,											
Limestone laver: 1" @ 53.2'											
Limestone laver: 5" @ 54.4'											
Limestone layer: 9.50" @ 55.4'			1.1	0.20		1	h	h - 11			
Limestone layer: 1" @ 58.7'											
Limestone layer: 8" @ 60.3'				100		1.5.4					
Limestone layer: 3.25" @ 60.9'				100		94					
Limestone layer: 4" @ 62.4'				1.00							
Limestone: 23% Shale: 77% (continued)							1				
SHALE, gray very weak to weak shale with	1	1									
thin fossiliferous strong limestone layers,											
Limestone layer: 1/2" @ 64.8'		1 I									
Limestone layer: 1" @ 65.2'											
Limestone layer: 5.75" @ 65.8'	1 1	-									
Limestone layer: 1.50" @ 66.4'											
Limestone layer: 1/2" @ 66.5'											
Limestone layer: 2.25" @ 66.8'	1.1			1							
Limestone laver: 1.25" @ 66.9'	70-	-		1.1		1.					
Limestone layer: 2.25" @ 67.1'											
Limestone layer: 1.50" @ 67.4'											
Limestone layer: 2.75" @ 67.7								1270.86		153	
Limestone layer: 2" @ 67.9'	1.11							1270.86	0	153	
Limestone layer: 1.50" @ 68.3'											
Limestone layer: 1.50" @ 68.7'											
Limestone layer: 2.50" @ 68.9'		1									
Limestone layer: 3" @ 69.2'											
				1							
Stratification lines are approximate. In-situ, the transition may be gradua	Ľ	ie i			Hamme	r Type: Auto	omatic, 8	1.9%, 8/1	5/2016		
											_
ancement Method: 3.25" Hollow Stem Auger and NX Rock Core					Notes:						
andonment Method: See Suppo	nd abbrev	rmation	fore	xplana	tion of						
Boring backfilled with tremie placed grout.											
WATER LEVEL OBSERVATIONS		_	-		Destan Ot	ated: 02.02	2047		a Cree	plote d. f	0.00.000
Water observed @ 10.1' during driling	DE			-	Boring Sta	arted: 02-08-	2017	Borin	ng Com	pieted: (2-09-201
Water observed @ 10.7 upon completion of drilling	6111				Drill Rig: 1	rack		Drille	er: J. Ma	athis	
		unken l cinnati,		U	Project No	N116546	8				
			-	-				-			

BORING LOG NO. B2

Page 7 of 9 CLIENT: Duke Energy PROJECT: Duke C350- Central Corridor Pipeline Cincinnati, Ohio SITE: Cincinnati, OH ATTERBERG UNCONFINED COMPRESSIVE STRENGTH (tsf) LOCATION See Exploration Plan WAI ER LEVEL OBSERVATIONS 00 SAMPLE TYPE (%) WATER CONTENT (%) LIMITS LABORATORY HP (tsf) DRY UNIT WEIGHT (pcf) FIELD TEST RESULTS DEPTH (Ft.) Latitude: 39.281319° Longitude: -84.360661° Northing: 472102.357 Easting: 1441858.16 RECOVERY RQD% GRAPHIC LL-PL-PI Surface Elev.: 849.5 (Ft.) DEPTH **ELEVATION (Ft.)** 100 94 Limestone layer: 1.50" @ 70.2' Limestone layer: 1/2" @ 71.4' Limestone layer: 1/2" @ 71.5' Limestone layer: 1/2" @ 71.6' Limestone layer: 1.50" @ 71.8' Limestone layer: 1.75" @ 72.5' Limestone layer: 3.5" @ 73.4' Limestone layer: 3" @ 73.8' 775.5 74.0 Shale: 63% Limestone: 37% SHALE, gray weak shale interbedded with gray strong limestone layers, Limestone layer: 2.75" @ 74.3' 75 Limestone layer: 1.50" @ 74.5' Limestone layer: 3/4" @ 75.3' Limestone layer: 1.50" @ 75.7' Limestone layer: 1"@ 75.9' Limestone layer: 2.25" @ 76.1' Limestone layer: 2.25" @ 77.8' Limestone layer: 8.25" @ 78.6" Limestone layer: 3/4" @ 79.6' Limestone layer: 2.25" @ 80.1' Limestone layer: 3.25" @ 80.5' Limestone layer: 1.25" @ 81.0' 98 91 Limestone layer: 9" @ 82.1' Limestone layer: 3" @ 82.8' Limestone layer: 1.25" @ 83.2' Limestone layer: 1/2" @ 83.8' Limestone layer: 2.75" @ 84.2' Limestone layer: 1.50" @ 84.5' Limestone layer: 2" @ 84.8' Limestone layer: 1.75" @ 85.7' Limestone layer: 1/4" @ 85.9' Limestone layer: 1/4" @ 85.9" Limestone layer: 1" @ 86.2' Limestone layer: 3/4" @ 86.6' Limestone layer: 1.50" @ 86.7' Limestone layer: 2.50" @ 87.2' Limestone layer: 3.75" @ 87.8' Limestone layer: 1.50" @ 88.4' 80 461.65 4 155 Limestone layer: 2.50" @ 88.6' Shale: 56% Limestone: 44% 100 99 Stratification lines are approximate. In-situ, the transition may be gradual. Hammer Type: Automatic, 81.9%, 8/15/2016 Advancement Method Notes: 3.25" Hollow Stem Auger and NX Rock Core See Supporting Information for explanation of Abandonment Method: symbols and abbreviations. Boring backfilled with tremie placed grout. WATER LEVEL OBSERVATIONS Boring Started: 02-08-2017 Boring Completed: 02-09-2017 Water observed @ 10.1' during driling Drill Rig: Track Driller: J. Mathis Water observed @ 10.7 upon completion of drilling 611 Lunken Park Dr Project No.: N1165468 Cincinnati, OH

GEO SMART LOG-NO WELL N1165468.GPJ TERRACON_DATATEMPLATE.GDT 6/22/20 THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT.

BORI	NG	LO	G	NC	. B2				F	Page	8 of 9
PROJECT: Duke C350- Central Corridor Pipeline SITE:		C	LIE	ENT:	Duke Energ Cincinnati,						
Cincinnati, OH			_				_				
OD HAVE LOCATION See Exploration Plan Latitude: 39.281319° Longitude: -84.360661° Northing: 472102.357 Surface Elev.: 849.5 (Ft.) DEPTH ELEVATION (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLETYPE	RECOVERY (%)	FIELD TEST RESULTS	RQD%	LABORATORY HP (tsf)	UNCONFINED COMPRESSIVE STRENGTH (tsf)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	LIMITS
	85-	-									
88.7 761		-		100		98					
LIMESTONE: gray strong fossiliferous limestone with thin gray weak shale seams and layers, Shale layer: 3/4" @ 89.2' Shale layer: 1" @ 89.9' Shale layer: 1" @ 90.2' Shale layer: 3/4" @ 91.0' Shale layer: 3/4" @ 91.0' Shale layer: 3/4" @ 91.3' Shale layer: 3/4" @ 91.8' Shale layer: 5.50 @ 92.1' Shale layer: 5.50 @ 92.1' Shale layer: 6.75" @ 92.9' Shale layer: 6.75" @ 92.9' Shale layer: 4" @ 93.5' Shale layer: 1/2" @ 93.9' Shale layer: 1/2" @ 95.4' Shale layer: 1/2" @ 95.7'	90-	-		100		82		1007.91	5	151	
Shale layer: 1/2" @ 95.9' Shale layer: 2" @ 96.0' Shale layer: 2" @ 96.2' Shale layer: 1/2" @ 96.5' Shale layer: 1/4" @ 97.2' Shale layer: 1/4" @ 98.5' Shale layer: 1/4" @ 99.2' Shale layer: 1/4" @ 100.1' Shale layer: 1/4" @ 100.2' Shale layer: 1" @ 100.6' Shale layer: 2.25" @ 101.8' Shale layer: 2.50" @ 102.2'	95-	-					-				
Stratification lines are approximate. In-situ, the transition may be gradual.		1				er Type: Auto	omatic, 8	 31.9%, 8/1	5/2016		9
Advancement Method: 3.25" Hollow Stem Auger and NX Rock Core Abandonment Method: Boring backfilled with tremie placed grout.				xplanat	Notes:						
WATER LEVEL OBSERVATIONS	0	_			Boring S	tarted: 02-08-	2017	Borin	g Com	pleted: (2-09-2017
✓ Water observed @ 10.1' during driling ✓ Water observed @ 10.7 upon completion of drilling	26	0	C	0	Drill Rig:	Service of the		-	r: J. Ma	3.3	
	611 Lu Cine	inken F		Dr	Project N	No.: N116546	в				

PP	BORI OJECT: Duke C350- Central Corridor Pipeline	NG	-	-		. B2 Duke Energ	v			F	Page	of 9
11			-			Cincinnati,						
31	Cincinnati, OH											
GRAPHIC LOG	LOCATION See Exploration Plan Latitude: 39.281319° Longitude: -84.360661° Northing: 472102.357 Easting: 1441858.16	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (%)	FIELD TEST RESULTS	RQD%	LABORATORY HP (tsf)	UNCONFINED COMPRESSIVE STRENGTH (tsf)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	LL-PL
B	Surface Elev.: 849.5 (Ft.) DEPTH ELEVATION (Ft.)	٥	WA	SAI	REC	Ē.		LAI	STROUM	8	23	
		-	-		100		100		5182,40	0	166	
	102.9 Boring Terminated at 102.9 Feet	100-			67		67					
3.2	Stratification lines are approximate. In-situ, the transition may be gradual. Incement Method: See Support Somment Method: Ing backfilled with tremie placed grout. WATER LEVEL OBSERVATIONS	abbrevi	alions.			on of	er Type: Auto					2.00.20
3.2	donment Method: 5" Hollow Stem Auger and NX Rock Core donment Method: ing backfilled with tremie placed grout.		alions.			on of	tarted: 02-08-		Borin		pleted: 0	2-09-20

1	BORI	NG	LC	G	NC	D. B3				F	Page	1 of 3
PR	OJECT: Duke C350- Central Corridor Pipeline		0	CLIE	ENT	Duke Ene					-90	
SIT	E: Cincinnati, OH					Cincinna	u, onio		_		_	
GRAPHIC LOG	LOCATION See Exploration Plan Latitude: 39.280032° Longitude: -84.360603° Northing: 471633.185 Easting: 1441864.797 Surface Elev.: 862.7 (Ft.) DEPTH ELEVATION (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLETYPE	RECOVERY (%)	FIELD TEST RESULTS	RQD%	LABORATORY HP (tsf)	UNCONFINED COMPRESSIVE STRENGTH (tsf)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	LIMITS
	LEAN CLAY (CL), with trace gravel and oxide	-		X	94	3-4-6 N=10		2.25 (HP)		25		
	nodules, brown and gray mottled, very stiff, moist	5-		X	100	3-6-8 N=14 4-7-10		4.5 (HP)		17		
	7.0 855.5 LEAN CLAY (CL), with trace silt and gravel,	-		Ě	89	N=17	_	4.5 (HP)		19		
	light brown, soft, very moist 853 LEAN CLAY TO SILTY CLAY (CL-ML), with	1.1	V	X	67	3-7-16 N=23		0.25 (HP)		24		
	trace oxide nodules and fine sand, brown, very stiff, moist 13.0 849.5	10-		X	89	7-10-9 N=19		4.5+ (HP)		12		21-14-7
¥	SANDY LEAN CLAY (CL), trace gravel, brown, dense	15		X	94	9-16-24 N=40				14		
	18.0 844.5 LEAN CLAY (CL), with trace gravel, gray, very stiff, moist	20-				11-13-16		4.5+				
	23.0 839.5			X	100	N=29	-	(HP)		12		23-13-10
	SANDY LEAN CLAY (CL), with gravel, gray, medium stiff, moist	25-		X	100	7-19-14 N=33		0.5 (HP)		12		
	28.0 834.5 <u>WELL GRADED SAND (SW)</u> , brown and gray, medium dense to dense, wet	30-		X	100	2-5-7 N=12				25		
		35-		×	89	9-11-11 N=22				21		
		40-		X	94	7-9-11 N=20	_			16		
	Stratification lines are approximate. In-situ, the transition may be gradual.	45-				Han	nmer Type: Auto	omatic, 8	1.9%, 8/1	5/2016		
	cement Method:			_		Note	S:					
3.25 Aband	" Hollow Stem Auger and NX Rock Core See Support symbols and backfilled with tremie placed grout.				xplana							
	WATER LEVEL OBSERVATIONS	_	_			Roder	started: 02-14	2017	Borir	a Com	leted	02-15-2017
∇	Water observed @ 16.8 during driling	2	5)C	10		lig: Track	2017	-	er: J. Ma	2.5.7	02-13-2017
	Water observed @ 9.2' upon completion of drilling	611 Lu		Park			ct No.: N116546	8				_

	BORI	NG	LC	G	NO	. B3				F	Page	2 of 3
-	ROJECT: Duke C350 Central Corridor Pipeline		0	CLIE		Duke Energ Cincinnati,		ï				
SI	TE: Cincinnati, OH											
GRAPHIC LOG	LOCATION See Exploration Plan Latitude: 39.280032° Longitude: -84.360603° Northing: 471633.185 Easting: 1441864.797 Surface Elev.: 862.7 (Ft.) DEPTH ELEVATION (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLETYPE	RECOVERY (%)	FIELD TEST RESULTS	RQD%	LABORATORY HP (tsf)	UNCONFINED COMPRESSIVE STRENGTH (tsf)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	ATTERBER LIMITS
	WELL GRADED SAND (SW), brown and gray, medium dense to dense, wet (continued) 48.0 814.5			X	100	9-17-26 N=43				13		
	SILT (ML), trace clay, gray, dense, very moist	50-		X	100	11-14-17 N=31	-			25		NP
	POORLY GRADED SAND (SP), with trace clay, gray, dense, moist	55-		X	100	3-13-18 N=31				22		
	63.0 799.5	60		X	100	6-11-23 N=34				21		
	<u>SILT (ML)</u> , with trace sand, gray, medium dense to dense, moist	65		X	100	10-14-16 N=30				17		
	73.0 789.5	70-		X	61	6-10-13 N=23				19		
	FAT CLAY (CH), with trace gravel, bluish gray, very stiff, with soft/ wet seams, moist	75-		X	100	7-11-15 N=26		3.5 (HP)		26		
		80-		×	100	8-8-57 N=65		0.25 (HP)		34		
	85.0 777.5	85-		1	98		35		112.40	8	148	
	Stratification lines are approximate. In-situ, the transition may be gradual.	90-		1		Hamme	er Type: Auto	omatic, 8				
	ncement Method: 5" Hollow Stem Auger and NX Rock Core					Notes:			_		-	-
	donment Method: See Support ring backfilled with tremie placed grout.	ing Infor abbrev	mations	for e	xplanati	on of						
∇	WATER LEVEL OBSERVATIONS Water observed @ 16.8 during driling Water observed @ 9.2' upon completion of drilling		_		:0	Boring Sta	arted: 02-14- Track	2017	-	ng Com er: J. Ma		02-15-2017
	water observed to s.2 apoin completion of drifting	611 Lu Cine	unken cinnati		Dr	Project No	o.: N1165468	8				

BORING LOG NO. B3 Page 3 of 3												
PROJECT: Duke C350- Central Corridor Pi	peline	C	LIE	NT:	Duke Energ Cincinnati,							
SITE: Cincinnati, OH					onionnan,							
0	(ita) HILABO V.: 862.7 (Ft.) VATION (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (%)	FIELD TEST RESULTS	RQD%	LABORATORY HP (tsf)	UNCONFINED COMPRESSIVE STRENGTH (tsf)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	ATTERBERG LIMITS LL-PL-PI	
SHALE, with interbedded hard limestone layers, gray, very weak to weak, Limestone layer: 1° @ 85.0° Limestone layer: 1° @ 85.7° Limestone layer: 1.5° @ 86.6° Limestone layer: 1.5° @ 87.2° Limestone layer: 1.5° @ 90.4° Limestone layer: 1.5° @ 90.4° Limestone layer: 1.5° @ 90.4° Limestone layer: 2.5° @ 96.1° Limestone layer: 2.5° @ 96.1° Limestone layer: 3° @ 98.7° Limestone layer: 3° @ 98.7° Limestone layer: 3° @ 98.7° Limestone layer: 3° @ 98.7° Limestone layer: 3° @ 98.7° Boring Terminated at 100 Feet Stratification lines are approximate. In-situ, the transition ma Advancement Method: 3.25° Hollow Stem Auger and NX Rock Core	95-			100	Hamme	43 47	matic, 8	128.76		144		
Abandonment Method: Boring backfilled with tremie placed grout.	- See Supporting Infor symbols and abbrevi	mation iations.	for ex	planat	iion of							
WATER LEVEL OBSERVATIONS V Water observed @ 16.8 during driling V Water observed @ 9.2' upon completion of drilling			Park D	_		arted: 02-14-2 Track o.: N1165468		-	g Comp r: J. Ma		02-15-2017	

_	BORI	NG	-							F	Page	1 of 1
PF	OJECT: Duke C350- Central Corridor Pipeline		ſ	CLIE		Duke Energ Cincinnati,						
Sľ	TE: Cincinnati, OH											
g	LOCATION See Exploration Plan		2SP IL	Ш.	(%)			2	all's	(9	6	ATTERBE
GRAPHIC LOG	Latitude: 39.288353° Longitude: -84.354237° Northing: 474626.293 Easting: 1443728.724 Surface Elev.: 873.7 (Ft.) DEPTH ELEVATION (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (%)	FIELD TEST RESULTS	RQD%	LABORATORY HP (tsf)	UNCONFINED COMPRESSIVE STRENGTH (tsf)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	LL-PL-F
30	FILL ACCRECATE BASE (36") grav			X	67	11-12-6 N=18						
30			-	X	33	13-11-6 N=17						
0	3.0 870.5 LEAN CLAY (CL), trace root hairs, trace silt, gray, soft to medium stiff			X	94	2-2-3 N=5	ĺ.	0.5 (HP)		24		30-19-
	4.5 869 LEAN CLAY (CL), gray with red mottles, stiff, moist	5-	-	X	100	2-3-4 N=7		1.0 (HP)		29		
				Ŕ	100	3-5-6 N=11		2.5 (HP)		21		
				Ŕ	67	3-6-6 N=12	1	2.25 (HP)		20		
		10-		Ŕ	72	3-5-7 N=12		2.5 (HP)		22		
				Ŕ	100	3-6-8 N=14		2.75 (HP)		20		
	12.0 861.5 LEAN CLAY (CL), trace gravel, light gray with reddish and dark brown mottles, very stiff, moist			Ŕ	100	3-5-7 N=12	1	3.0 (HP)		22		44-19-:
			+	Ŕ	16	2-5-6 N=11		1.75 (HP)		21		
		15-		X	89	8-10-12 N=22		3.75 (HP)		12		
				X	89	3-5-8 N=13		3.50 (HP)		15		
	18.0 855.5 LEAN CLAY (CL), trace gravel, brown with reddish-orange mottles, stiff, very moist			X	61	1-3-2 N=5		1.5 (HP)		16		
	19.5 854 SANDY LEAN CLAY (CL), trace gravel, grayish-brown, medium stiff, very moist to wet	20-		X	44	3-10-11 N=21	ĺ			21		
	21.0 852.5 SANDY LEAN CLAY (CL), with gravel,(GLACIAL TILL), gray, very stiff, moist 22.5 851			X	50	1-7-12 N=19	1	4.5+ (HP)		10		
	Boring Terminated at 22.5 Feet											
	Stratification lines are approximate. In-situ, the transition may be gradual.			I		Hamme	er Type: Auto	omatic, 8	1.9%, 8/1	5/2016		Ş
	ncement Method: 5" Hollow Stem Auger					Notes:						
	donment Method: See Supporti ing backfilled with tremie placed grout.	ng Infor abbrev	rmations	fore	xplanati	on of						
	WATER LEVEL OBSERVATIONS		_			Boring St	arted: 01-23	-2017	Borin	ng Com	pleted:	01-23-201
Z	Water observed @ 8.8 ' during drilling	2			:0	Drill Rig:		_	-	er: J. Ma		
V.	Water observed @ 5.2' after 1 hour	611 L	unken cinnati	Park I			o.: N116546	0			000127	

PR	OJECT: Central Corridor Pipeline C350	RING LO	CLIENT	-		_	rav		F	Page	1 of 1
SIT				Ci	nci	nnat	i, OH				
0	Cincinnati, Ohio				ē.						
GRAPH		ace Elev.: 828.9 (Fi		WATER LEVEL OBSERVATIONS	SAMPLETYPE	RECOVERY (%)	FIELD TEST RESULTS	N ₆₀	LABORATORY HP (tsf)	WATER CONTENT (%)	LIMITS
14: <u>.</u>	DEPTH 0.5_6 inches EILL LEAN CLAX trace gravel, cand and brick	ELEVATION (FI) <u>8.5</u>		X	83	2-2-3 N=5	7	1.5 (HP)	19	
	FILL - LEAN CLAY, trace gravel, sand and brick fragments, brown		-		$\langle \rangle$	100	2-2-3 N=5	7	0.5	21	
			-		\bigotimes	27	1-3-4	10	(HP) 1.0	20	
			5-		\bigotimes	100	N=7 4-5-7	18	(HP) 2.0	21	
			1.0		\bigotimes	83	N=12 3-4-3	10	(HP) 2.0	21	-
					\ominus		N=7 2-2-3	7	(HP) 2.0	23	38-13-
	LEAN CLAY, trace sand and gravel, brownish gray,		20		\bigcirc	78 83	N=5 2-3-6	13	(HP) 0.5	25	30-13-
	medium stiff		10-		\bigtriangleup	79	N=9 PUSH TUBE		(HP) 0.5 (HP)	15	
	15.0		-		X	100	4-4-4 N=8	12	(HP) 1.5 (HP)	25	
	LEAN CLAY, trace sand and gravel, gray, hard		- 15 -				4-7-8		4.5		
			20		X	100	N=15	22	(HP)	20	
	25.0 Boring Terminated at 25 Feet	8	- ³⁰⁴ 25-		X	100	4-5-9 N=14	21	4.0 (HP)	22	
	Stratification lines are approximate. In-situ, the transition may be grad	dual.				Han	nmer Type: Automati	ic			
3.25 2-inc	-Inch Continuous-Flight Hollow-Stem Augers descrip bh Split-Barrel Sampler used ar bh thin-walled tube sampler	ploration and Test tion of field and lat nd additional data (pporting Informatic	poratory pro If any).	ocedure	es	Note	S:				
Borin		s and abbreviation									
	WATER LEVEL OBSERVATIONS	-				Boring	Started: 04-03-2020	Bo	ing Com	pleted:	04-03-202
	No water observed during drilling	lerra	C		1		ig: CME 55X	-	ller: KH		
	No water observed after drilling	611 Lunken				Chin IX	a. one out			_	

	BORIN	1							F	Page	1 of 1
PR	ROJECT: Central Corridor Pipeline C350	CI	IENT				rgy i, OH				
SIT	ITE: Hamilton County Cincinnati, Ohio										
GRAPHIC LOG	LOCATION See Exploration Plan Latitude: 39.26734° Longitude: -84.377473° Surface Elev	v.: 825.4 (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (%)	FIELD TEST RESULTS	Neo	LABORATORY HP (tsf)	WATER CONTENT (%)	LIMIT:
		VATION (Ft.)		>ō	s	-	2-4-5	13	2.5	18	
X	1.5 FILL - LEAN CLAY, trace sand, brown LEAN CLAY, trace sand, brown, hard	824	1		\bigcirc	89 61	N=9 4-9-11	30	(HP) 4.0	10	
	3.0 LEAN CLAY, with limestone fragments and relic bedding	822.5	-		\ominus		N=20 8-28-12	59	(HP) 4.5	16	
	planes, brownish gray, hard (Residuum)		5-	10	\ominus	83 89	N=40 9-11-16	40	(HP) 4.5	10	
			-		\ominus	100	N=27 13-14-16	40	(HP) 4.5		5-17-18
					\square	22	N=30 50/4"	44	(HP) 4.5 (HP)	113	5-17-10
			- 10-	V	X	94	20-43-48 N=91	135	4.5 (HP)		
	10.5 INTERBEDDED SHALE AND LIMESTONE : Shale: gray, slightly weathered, extremely weak to very we	815 eak	- 10	V		50	34-50/3"	1			
_	Limestone: light gray, unweathered, strong	ean					04-00/0				
-			-		X	83	23-31-50/3"				
	 15.0 INTERBEDDED SHALE AND LIMESTONE : Shale (75%) :gray, slightly weathered to unweathered, ver weak to weak, bed thickness varies from 1 inch to 8 inches Limestone (25%): light gray, unweathered, strong, bed thickness varies from 1 inch to 5 inches 	810.5 ry s	15- -			51					
			20-			-					
			-			100					
	25.0 Boring Terminated at 25 Feet	800.5	25 –								
3.25 2-in NQ	Stratification lines are approximate. In-situ, the transition may be gradual. ancement Method: 25-inch Continuous-Flight Hollow-Stem Augers inch Split-Barrel Sampler Q2 Rock Core Barrel ndonment Method: See Supporting	field and labor tional data (If a g Information f	atory pro ny).	cedure	es	Harr Note:	imer Typė: Automati	c			9
Bori	ndonment Method: symbols and abbreviations oring backfilled with auger cuttings and surface capped ith concrete plug.						_				
	WATER LEVEL OBSERVATIONS Water observed at 11' during drilling	Gu	CC		1		Started: 01-03-2020 g: CME 55X	-	ing Com	pleted: (04-03-202
∇	Water observed at 9' after 1 hour 611 Lunken Water added to facilitate rock coring. Cincinnat						t No.: N1175384	UII	ISI. INI	-	

DR	OJECT: Central Corridor Pipeline C350	BORING LO	CLIEN			-	rav		F	Page	1 of 1
			CLILIN			nnati					
SIT	E: Hamilton County Cincinnati, Ohio										
GRAPHIC LOG	LOCATION See Exploration Plan Latitude: 39.252147° Longitude: -84.392191°	Surface Elev.: 846.3 (I	('t) DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (%)	FIELD TEST RESULTS	Neo	LABORATORY HP (tsf)	WATER CONTENT (%)	LIMIT
	DEPTH 0.5	ELEVATION (N NO	SA SA	문 50	4-2-5	10	4.5	20	
	FILL - FAT CLAY (CH), with brick and wood grayish brown to gray	fragments,			\bigcirc	67	N=7 2-3-3	9	(HP) 2.0	20	
					$\left \right\rangle$	89	N=6 3-3-5 N=8	12	(HP) 1.25 (HP)	27	
			5 -	V	$\left \right\rangle$	94	3-5-7 N=12	18	(HP) 1.5 (HP)	29	61-16
Ű			-	1	X	100	4-4-8 N=12	18	1.5 (HP)	27	
	9.0	8	-		X	100	4-6-36 N=42	62	1.5 (HP)	27	
	LEAN CLAY, with limestone fragments, gray hard (Residuum)	ish brown,	10-		X	100	42-26-19 N=45	67	4.5 (HP)		
	12.5		-		~	50	50/2"			4	
T	12.5 INTERBEDDED SHALE AND LIMESTONE Shale: gray, slightly weathered, extremely we Limestone: light gray, unweathered, strong	Station and state	834		X	11	50/2"				
	15.0 INTERBEDDED SHALE AND LIMESTONE: Shale (20%): gray, slightly weathered to unw weak to weak, bed thickness varies from 1/2 Limestone (80%): light gray, unweathered, st thickness varies from 1 inch to 4 inches	eathered, very inch to 4 inches rong, bed	. <u>831</u> 5 15-			96					
	20.0 Boring Terminated at 20 Feet	8	^{26.5} 20 -								
	Stratification lines are approximate. In-situ, the transition ma	y be gradual.		-		Ham	mer Type: Automa	tic	1		1
	cement Method: 5-inch Continuous-Flight Hollow-Stem Augers ch Split-Barrel Sampler 2 Rock Core Barrel			ocedur	es	Notes					
3.25 2-in	2 Rock Core Barrel	See Supporting Informat	IUI CADIA			L					
3.2 2-in NQ and Bor	2 Rock Core Barrel onment Method: ng backfilled with auger cuttings and surface capped concrete plug.	See Supporting Informat symbols and abbreviatio									
3.2 2-in NQ band Bor	onment Method: ng backfilled with auger cuttings and surface capped		ns.			Boring	Started: 04-06-2020	D Bo	ring Com	pleted:	04-06-20

PR	OJECT: Central Corridor Pipeline C350	-	LIENT	: Di	uke	Ene			1	Page	1 01 1
SIT	E: Hamilton County Cincinnati, Ohio			CI	nci	nna	ii, OH				
GRAPH	LOCATION See Exploration Plan Latitude: 39.234016° Longitude: -84.436445° Surface Elev.	1999 (M. 1999)	· · · · · · · · · · · · · · · · · · ·	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (%)	FIELD TEST RESULTS	N ₅₀	LABORATORY HP (tsf)	WATER CONTENT (%)	LIMI
	DEPTH ELEV 0.5_6 inches FILL - LEAN CLAY, with concrete and asphalt fragments,	ATION (Ft.	30 -		X	67	2-3-3 N=6	9	0.5 (HP)	10	
	brown		-		\otimes	89	4-5-4 N=9	13	1.0 (HP)	15	
					\bigtriangledown	56	3-2-2 N=4	6	1.5 (HP)	23	
			5-		\bigtriangledown	56	2-1-1 N=2	3	0.5 (HP)	21	
			_		\bigtriangledown	33	1-2-5 N=7	10	0.75 (HP)	24	
	7.5 <u>LEAN CLAY</u> , with cobbles. trace gravel, brownish gray, very siff to hard	5	-			83	PUSH TUBE		3.0 (HP)	19	
			10-		X	0	8-7-10 N=17	25			
					X	67	4-5-9 N=14	21	4.5 (HP)	20	
	13.5 LEAN CLAY, trace sand, gray, medium stiff to stiff	5	15-		X	78	4-3-3 N=6	9	0.75 (HP)	19	
			20-		X	100	3-3-5 N=8	12	2.75 (HP)	25	
	25.0 Boring Terminated at 25 Feet	_ 555	- - 25		X	100	4-3-5 N=8	12	2.5 (HP)	30	
3.25 2-inc 3-inc ando Borin	Stratification lines are approximate. In-situ, the transition may be gradual. cement Method: inch Continuous-Flight Hollow-Stem Augers ch Split-Barrel Sampler ch thin-walled tube sampler comment Method: ng backfilled with auger cuttings and surface capped	ield and lab ional data (I Information	oratory pro f any).	cedure	es	Note	nmer Type: Automati s: Sample collected from		uttings.		
with	WATER LEVEL OBSERVATIONS					Boring	Started: 04-06-2020	Bo	ring Com	pleted: (04-06-20
	No water observed during drilling No water observed after drilling				1	Drill R	ig: CME 55X	Dri	iller: KH		

PR	BORING LO OJECT: Central Corridor Pipeline C350		NT: I	Duke	E	nergy				age	1 of 1
						ati, C					
SI	TE: Hamilton County Cincinnati, Ohio										
0010	LOCATION See Exploration Plan Latitude: 39.2413° Longitude: -84.4358°		(Ft.)	EVEL	TYPE	RY (%)	EST	rory sf)	INED SSIVE 'H (tsf)	ER T (%)	LIMIT
GRAPHIC LOG	Surface Elev.: 559	1. 2. 1. 1.	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (%)	FIELD TEST RESULTS	LABORATORY HP (tsf)	UNCONFINED COMPRESSIVE STRENGTH (tsf)	WATER CONTENT (LL-PL
	DEPTH ELEVATION LEAN CLAY, some silt, trace root hairs, brown, soft to medium stiff stiff	DN (Ft.)	-		X	89	1-2-3 N=5	1.0 (HP)		17	
					X	89	3-4-4 N=8	2.0 (HP)		16	
	7.5	550	5-		X	78	1-2-3 N=5	-		9	-
	7.5 <u>SILTY CLAY (CL-ML)</u> , with sand, occasional sand and gravel seams, grayish-brown with black mottles, very soft to medium stiff	552			X	100	1-2-1 N=3	-		24	
			10-		X	100	0-0-0 N=0	1		25	
			÷		X	89	0-0-5 N=5			22	
	15.0 SILTY CLAY (CL-ML), some sand, trace gravel, gray, very stiff to hard (Glacial Till)	544.5	15		X	100	12-6-9 N=15	3.75 (HP)		16	23-1
			20		X	67	4-9-12 N=21	4.25 (HP)		12	
			25		X	100	3-6-9 N=15	4.0 (HP)		14	
			30-		Х	100	3-4-11 N=15	3.25 (HP)		15	
	35.0 SAND, with cobbles, tannish-brown, medium dense	524.5	35		X	53	6-9-12			10	
	Boring Terminated at 36.5 Feet	523					N=21	T			
_	Stratification lines are approximate. In-situ, the transition may be gradual.)	Hammer	Type: Automatic	;			
Hol	Incement Method: Iow Stem Auger See Exploration and Ter description of field and I used and additional data See Supporting Informat	a (If any).	proced	lures	1.1	lotes: as pocke	et encountered a	t 34 feet.			
Bor	Jonment Method: symbols and abbreviation ing backfilled with cement-bentonite grout upon npletion.	ons.						- 1		_	
7	WATER LEVEL OBSERVATIONS Water observed at 12.5' during drilling						ted: 11-15-2017	Bor	ing Comp	pleted:	11-16-20
	No water observed after drilling. 611 Lunke					II Rig: Tr	ack N1175384	Dri	ller: R. Ma	ann	
_	Cincinn	au, On			Tea	,001 NO.					

	BORIN	IG LOG	N	D. V	VB	-1	A			F	Page	1 of 1
PR	OJECT: Central Corridor Pipeline C350	C	LIE				nergy ati, C					
511	E: Hamilton County Cincinnati, Ohio		1								_	_
GRAPHIC LOG	LOCATION See Exploration Plan Latitude: 39.2418° Longitude: -84.4339° Surfa	face Elev.: 554.4 ELEVATION (DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (%)	FIELD TEST RESULTS	LABORATORY HP (tsf)	UNCONFINED COMPRESSIVE STRENGTH (tsf)	WATER CONTENT	ATTERBER LIMITS
	LEAN CLAY, with silt, trace root hairs, brown, very soft medium stiff, moist		(FL)	-			61	2-3-3 N=6	2.5 (HP)		28	
						X	50	0-0-0 N=0	2.0 (HP)		27	
	5.0 POORLY GRADED SAND (SP), with silty clay and grave olive-brown and gray, very loose to loose		549.5	5 -		X	61	2-1-2 N=3	2.5 (HP)		12	
				1		X	72	1-2-2 N=4	1.5 (HP)		17	
	10.0 LEAN CLAY (CL), some gravel and sand, trace silt, oc sand seams, olive-brown, stiff to very stiff (Glacial Till)		544.5	10-		X	83	3-3-6 N=9	3.0 (HP)		9	
				1 = 1 = 1		X	67	6-45-14 N=59	3.0 (HP)		11	
				15-		X	78	3-5-6 N=11	2.75 (HP)		12	
				20-	15	X	100	3-5-6 N=11	-		14	27-14-13
				25-		X	100	5-6-11 N=17	4.0 (HP)		12	
	Auger cuttings identified granular soil @ 30' 31.5		523	30-								
	Boring Terminated at 31.5 Feet			1		FT	-					
	Stratification lines are approximate. In-situ, the transition may be gradual	1.				ł	Hammer	Type: Automatic				
	ancement Method: See Exploration and description of field a used and additional of the second description of field a second de		any).	proced	ures	N	otes:					
Bor		orting Information nd abbreviations.		planatic	on of							
_	WATER LEVEL OBSERVATIONS			-		Bo	ring Star	ted: 11-16-2017	Bo	ring Com	pleted:	11-16-2017
	No water observed during drilling	erra	C	O	Π	1			-	1000		_
	No water observed after drilling.	611 Lunken F Cincinnati,				-	II Rig: Tr		Dri	ller: R. M	ann	_
			1000			Pro	ject No.	: N1175384				

	BOR	RING LOG N	10.	WE	3-2				F	age	1 of 3
PR	OJECT: Central Corridor Pipeline C350	CLIE	NT:			nerg ati, C					
SIT	E: Hamilton County Cincinnati, Ohio			GIL		iau, v	Л				-
GRAPHIC LOG	LOCATION See Exploration Plan Latitude: 39 2398° Longitude: -84.4361° DEPTH	Surface Elev.: 557.1 (Ft.) ELEVATION (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (%)	FIELD TEST RESULTS	LABORATORY HP (tsf)	UNCONFINED COMPRESSIVE STRENGTH (tsf)	WATER CONTENT (%)	LIMITS
	LEAN CLAY, trace silt, sand and root hairs, brown w mottles, stiff to very stiff	with black	-		X	100	2-3-3 N=6	3.25 (HP)		27	
	5.0	552			X	67	6-7-9 N=16	3.25 (HP)		22	
	LEAN CLAY (CL), some silt and fine sand, gray wit reddish-brown and black mottles, stiff		5-		X	100	4-6-7 N=13	2.0 (HP)		23 3	6-19-17
	8.4 SAND, trace silt, brown, loose	548.5	-		X	100	2-3-3 N=6			16	
	10.0 <u>LEAN CLAY (CL)</u> , with silt lenses, medium plasticit very stiff (Lacustrine)	547 ty, gray,	10 -		X	67	3-4-5 N=9	2.5 (HP)		27 4	9-20-29
	13.3 LEAN CLAY, with silt lenses, brown, stiff (Lacustrine		-	∇	X	89	2-2-6 N=8	1.75 (HP)		37	
	15.0 SAND, some silt, fine grained, brown, medium dens	542 se	15-	_ × _	X	100	8-11-16 N=27			23	
	20.0 LEAN CLAY, with cobbles, sand and silt, gray, very	y stiff	20-		\mathbf{x}	78	7-14-31	3.0		12	
	(Glacial Till)						N=45	<u>(HP)</u>			
			25		Х	16	23-25-38 N=63	-		12	
	30.0	527	30_						_	Ы	
	<u>SILTY SAND (SM)</u> , fine to medium grained, brown, dense to dense	medium	-		X	94	6-11-17 N=28			19	
			35	-	X	100	6-9-12 N=21			22	
	Stratification lines are approximate. In-situ, the transition may be gra	idual.			,	Hammei	r Type: Automatic				
Holl Aband Bori	onment Method: symbol g backfilled with cement-bentonite grout upon	xploration and Testing Pro ption of field and laborator and additional data (If any). upporting Information for e ols and abbreviations.			N	lotes:			-		
V	water observed during drilling Water observed at 14.7' after 20 hour.			n		ring Sta II Rig: T	rted: 11-20-2017 Track	-	ing Comp ller: R. Ma		11-20-2017
	Water observed at 14.1 alter 20 fiour.	611 Lunken Park E Cincinnati, OH	Dr		Pro	oject No	N1175384				

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL N1175384 DUKE C350V PIPELINE.GPJ TERRACON_DATATEMPLATE.GDT 6/21/18

r

PR	OJECT: Central Corridor Pipeline C350	CLIE				nergy					2 of 3
SIT	E: Hamilton County Cincinnati, Ohio			Cinc	inr	nati, C	ЭН				
GRAPHIC LOG	LOCATION See Exploration Plan Latitude: 39.2398° Longitude: -84.4361°		DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (%)	FIELD TEST RESULTS	LABORATORY HP (tsf)	UNCONFINED COMPRESSIVE STRENGTH (tsf)	WATER CONTENT (%)	LIMITS
GR	Su DEPTH	ELEVATION (Ft.)	DE	VAT OBSE	SAM	REC	믭	LAB	CON	COL	
	<u>SILTY SAND (SM)</u> , fine to medium grained, brown, me dense to dense (continued)	edium	40-		X	100	5-6-11 N=17			25	
			45-				3-4-8				
					X	100	N=12			21	
			50-		X	100	8-10-13 N=23			18	
			55-		X	100	10-14-17 N=31			25	
			60- -		X	100	9-14-23 N=37			23	
	65.0 SILT (ML), with clay and cobbles, some sand, brownis to brown, very dense (Glacial Till)	492 sh-gray	65- -		X	100	9-21-24 N=45	3.5 (HP)		10	
			70	-	X	67	26-42-48 N=90	4.0 (HP)		10	16-14
			75		X	94	36-32-27 N=59	4.5+ (HP)		13	
	Stratification lines are approximate. In-situ, the transition may be grade	ual.	-			Hammer	Type: Automatic				
	ow Stem Auger description used and	loration and Testing Pro on of field and laborator d additional data (If any). porting Information for e	y proced	lures	N	lotes:					
Bor		and abbreviations.									
77	WATER LEVEL OBSERVATIONS No water observed during drilling	errac	0	n	-	ring Star	rted: 11-20-2017	-	ring Comp		11-20-20
V.	Water observed at 14.7' after 20 hour.	611 Lunken Park [Cincinnati, OH			-		: N1175384	UII	aser, TX, IVI		

B	ORING LOG N	10.	WB	-2				F	Page	3 of 3
PROJECT: Central Corridor Pipeline C350	CLIE	INT:	Duke Cinci							
SITE: Hamilton County Cincinnati, Ohio			GIIICI		au, v	л				-
OO LOCATION See Exploration Plan Latitude: 39.2398° Longitude: -84.4361° DEPTH SILT (ML), with clay and cobbles, some sand, b	Surface Elev.: 557.1 (Ft.) ELEVATION (Ft.) prownish-gray	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLETYPE	RECOVERY (%)	FIELD TEST RESULTS	LABORATORY HP (tsf)	UNCONFINED COMPRESSIVE STRENGTH (tsf)	WATER CONTENT (%)	LIMITS
to brown, very dense (Glacial Till) <i>(continued)</i> 80.0 <u>SILTY SAND (SM)</u> , with cobbles, fine to mediu brownish-gray, medium dense to very dense	477 Im grained,	80-		X	100	11-16-22 N=38			18	
		85		X	100	14-11-10 N=21			20	
		90-		X	94	17-16-30 N=46	-		12	
		95-		X	100	7-10-16 N=26			17	
100.9 Boring Terminated at 100.9 Feet	456	100		\times	100	30-50/5"			10	
Hollow Stem Auger	be gradual. See Exploration and Testing Pro- description of field and laborato used and additional data (If any)	ry proced		_	ammer	Type: Automatic				
	used and additional data (If any) See Supporting Information for e symbols and abbreviations.		on of							
WATER LEVEL OBSERVATIONS No water observed during drilling	Terrac			Bori	ing Sta	rted: 11-20-2017	Bor	ring Comp	pleted: 1	1-20-2017
Water observed at 14.7' after 20 hour.	611 Lunken Park Cincinnati, OH			-	Rig: T	rack .:: N1175384	Dri	ller: R. Ma	ann	

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL N1175384 DUKE C350V PIPELINE.GPJ TERRACON_DATATEMPLATE.GDT 6/21/18

	BORING LOC	G NO	D. V	VB-	2/	4			F	Page	1 of 3
PR	OJECT: Central Corridor Pipeline C350	CLIE				nergy ati, C				-9-	
SIT	E: Hamilton County Cincinnati, Ohio			SIIIC		iau, c	211			_	
GRAPHIC LOG	LOCATION See Exploration Plan Latitude: 39.2402° Longitude: -84.4353° Surface Elev.: 554		DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (%)	FIELD TEST RESULTS	LABORATORY HP (tsf)	UNCONFINED COMPRESSIVE STRENGTH (tsf)	WATER CONTENT (%)	LIMITS
	DEPTH ELEVATIO LEAN CLAY, with silt, trace to little sand, trace root hairs, brown to tannish-brown with black mottles, medium stiff)N (Ft.)	-		X	89	3-3-3 N=6	1.25 (HP)		23	
					X	100	3-3-4 N=7	1.25 (HP)		18	
	6.0 POORLY GRADED SAND (SP), trace gravel and silt,	549	5-		X	78	3-2-2 N=4			16	
	7.9 reddish-brown to brown, medium dense <u>LEAN CLAY (CL)</u> , with silt, little sand, trace gravel and cobbles, gray, stiff to hard (Glacial Till)	547			X	89	8-9-11 N=20	3.5 (HP)		14	
	Possible cobbles/boulder encountered from 10 feet to 14 feet.		10-		X	16	8-12-12 N=24			13	
			-		X	89	8-10-14 N=24	3.25 (HP)		13	
			15	V	X	100	6-8-9 N=17	4.5+ (HP)		13 2	6-14-12
			20-		X	100	5-5-7 N=12	2.25 (HP)		14	
			25		X	100	2-4-5 N=9	0.75 (HP)		18	
			30-		X	53	3-5-5 N=10	1.0 (HP)		15	
	35.0 SILT (ML), with sand, some clay, gray, medium dense	520	35	V	X	94	3-8-13 N=21	2.75 (HP)		18	
3.	Stratification lines are approximate. In-situ, the transition may be gradual.				ł	Hammer	Type: Automatic				
Holl Aband Bori	cement Method: ow Stem Auger See Exploration and Test description of field and la used and additional data See Supporting Informat symbols and abbreviation pletion.	aboratory (If any).	/ proced	ures	N	lotes:					
	WATER LEVEL OBSERVATIONS		_		Во	ring Star	ted: 11-21-2017	Bor	ing Comp	pleted:	11-22-2017
V	Water observed at 35' during drilling Water observed at 16.9' after 120 hours. 611 Lunke Cincinn		-	Π		II Rig: Tr	rack :: N1175384	Dril	ller: R. Ma	ann	

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL N1175384 DUKE C350V PIPELINE. GPJ TERRACON_DATATEMPLATE.GDT 6/21/18

	BC	ORING LOG	NO.	V	VB	-2/	4			F	Page	2 of 3
PR	OJECT: Central Corridor Pipeline C350	C	LIEN				nergy nati, C					
SI	E: Hamilton County Cincinnati, Ohio				onne		iau, v					
GRAPHIC LOG	LOCATION See Exploration Plan Latitude: 39.2402° Longitude: -84.4353° DEPTH	Surface Elev.: 554.9 (F ELEVATION (F		DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLETYPE	RECOVERY (%)	FIELD TEST RESULTS	LABORATORY HP (tsf)	UNCONFINED COMPRESSIVE STRENGTH (tsf)	WATER CONTENT (%)	LL-PL-PI
0000	<u>SILT (ML)</u> , with sand, some clay, gray, mediun 40.0 (continued) <u>SILTY SAND (SM)</u> , with coarse gravel and co brownish-gray, medium dense to dense		<u>515</u> 4	+0		X	83	12-7-15 N=22			19	
0000000			4	15		X	78	5-11-8 N=19			14	
0000000			5	50		X	33	9-6-8 N=14			23	
			5	55		X	72	12-15-20 N=35			22	
000			6	50- -		X	0	9-13-16 N=29	_			
20	65.0 LEAN CLAY (CL), occasional silt lenses, varve gray, very sitff (Lacustrine)		490 6			X	100	7-8-12 N=20	2.25 (HP)		21	
			7	'0_ 		X	100	7-10-14 N=24	3.0 (HP)		20	23-15-8
			7	5		X	100	6-9-14 N=23	3.25 (HP)		18	
	Stratification lines are approximate. In-situ, the transition may	be gradual.				-	Hammer	Type: Automatic	5			
Hol	onment Method:	See Exploration and Testing description of field and labou used and additional data (If a See Supporting Information symbols and abbreviations.	any). for expla	oced	lures	N	lotes:					
Bor	ng backfilled with cement-bentonite grout upon pletion. WATER LEVEL OBSERVATIONS											
∇ Ψ	Water observed at 35' during drilling Water observed at 16.9' after 120 hours.	Tierra 611 Lunxen P Cincinnati,	Park Dr		n	Dr	ill Rig: T	rted: 11-21-2017 rack	-	ring Com		11-22-2017

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL N1175384 DUKE C350V PIPELINE GPJ TERRACON_DATATEMPLATE GDT 6/21/18

	BORING LOC				-				F	Page	s of 3
PR	OJECT: Central Corridor Pipeline C350	CLIE				ati, C					
SIT	E: Hamilton County Cincinnati, Ohio						-	_			
GRAPHIC LOG	LOCATION See Exploration Plan Latitude: 39.2402° Longitude: -84.4353° Surface Elev.: 554	4.9 (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (%)	FIELD TEST RESULTS	LABORATORY HP (tsf)	UNCONFINED COMPRESSIVE STRENGTH (tsf)	WATER CONTENT (%)	LIMIT
	DEPTH ELEVATION LEAN CLAY (CL), occasional silt lenses, varved structure, gray, very sitff (Lacustrine) (continued)	ON (Ft.)	-	×B	IS .	R		د ا	705	0	
	80.0 SILTY SAND (SM), trace coarse gravel, fine grained, gray, dense to very dense	475	80-		X	100	8-12-29 N=41	-		15	
	85.0 POORLY GRADED SAND (SP), with silt, grayish brown,	470	85		X	100	19-26-33			22	_
	dense to very dense				\land	100	N=59				
			90-		X	100	18-29-34 N=63			14	_
			95-		X	67	9-23-25 N=48			24	_
							N=40				
	101.5 Boring Terminated at 101.5 Feet	453.5	100		X	100	11-15-23 N=38			22	
	Stratification lines are approximate. In-situ, the transition may be gradual.				+	lammer	Type: Automatic				
				_	1	otes:					
Holl	cement Method: See Exploration and Tee ow Stem Auger description of field and used and additional data See Supporting Informat	laboratory a (If any).	proced	lures	N						
Holl band Bori	ow Stem Auger description of field and I used and additional data onment Method: ng backfilled with cement-bentonite grout upon pletion. See Supporting Informat symbols and abbreviatio	laboratory a (If any).	proced	lures							
Holl band Bori	ow Stem Auger description of field and I used and additional data onment Method: ng backfilled with cement-bentonite grout upon	laboratory a (If any). ttion for ex ons.	proced	dures	Bor		ted: 11-21-2017	-	ring Comp		1-22-20

PRO	BORING LO DJECT: Central Corridor Pipeline C350	CLIE			-	-			ŀ	age	1 of 3
1						ati, O					
SIT	E: Hamilton County Cincinnati, Ohio										
0 1	OCATION See Exploration Plan	-		19	ω	(9		~	0 me	_	
2	Latitude: 39.2382° Longitude: -84.4361°		(Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (%)	FIELD TEST RESULTS	LABORATORY HP (tsf)	UNCONFINED COMPRESSIVE STRENGTH (tsf)	WATER CONTENT (%)	LIIVII
HILL	anuue, 59.2302 Longhuue, -04.4301		DEPTH (Ft.)	ERL	PL	OVEF	ESUL SUL	AP (ts	PRE	VATE	LL-P
-	Surface Elev.: 584		DE	WAT	SAM	REC	E R	LAB	COM	CO	
	DEPTH ELEVATION FILL, lean clay, with silt and gravel, trace sand, brown and	ON (Ft.)					3-2-1	3.25			-
	black		-		A	39	N=3	(HP)		10	
			1					-			
	Possible void encountered at 2.5 feet to 6.5 feet (No recovery)		1.1		XI	0	0-0-0 N=0				
			- 1					-			
			5-			0	2-0-0				
					4		N=0	-		_	-
						-	2-2-2	-			-
					X	0	N=4		:		
1	0.0	574.5	10_								
°.	FILL, clayey gravel, with silt and sand, glass and slag, brown with black		1		X	78	4-6-5 N=11	3.0 (HP)	1	22	
2								(-		
30			1		\checkmark	39	2-2-4	1		14	
2							N=6	-		14	_
2			15_				3-3-3	-			
C					XI	44	N=6			21	
2			-	- [
C			-	+							
5											
0			20-			11	5-3-1		· · · · · · ·	25	
6			1.5		Â		N=4			25	
0			-								
D			-	1							
Se l			25						-	-	
0			25-			39	3-1-1 N=2			24	
2					4	-	0.5	-			_
Č											
		-									
C 3	0.0	554.5	30								
_	Stratification lines are approximate. In-situ, the transition may be gradual.				1	lammer	Type: Automatic	-			
	ement Method: See Exploration and Tex	sting Proc	edures	for a		otes.					
Hollo	w Stem Auger description of field and l used and additional data	laboratory	proced	dures							
ando	nment Method: See Supporting Information Symbols and abbreviation		planatio	on of							
Borin	g backfilled with cement-bentonite grout upon letion.										
	WATER LEVEL OBSERVATIONS			_	Per	ing Sta	bod: 11 07 2017	Dec	ing Com	alated: 4	1.08.0
Z					_		ted: 11-07-2017	_	ing Com		11-08-2
Z		DC an Park D			-	Rig: Tr	1.7.5	Dri	ller: R. M	ann	
	Cincinn				Pro	ject No.:	N1175384				

		BORING LO	GN	0.1	NE	3-3				F	age	2 of 3
12222	Central Corridor Pipeline C3	50	CLIE	NT: I			nergy ati, C					
SITE:	Hamilton County Cincinnati, Ohio							-			-	
Latitude: 39	N See Exploration Plan 9.2382° Longitude: -84.4361°	Surface Elev.: 584	1.1.1.1.1.1.1	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (%)	FIELD TEST RESULTS	LABORATORY HP (tsf)	UNCONFINED COMPRESSIVE STRENGTH (tsf)	WATER CONTENT (%)	LL-PL-PI
35.0	, lean clay, with silt, sand, slag and g nents, bluish gray to black	ELEVATIC lass, trace rock	<u>2N (Ft.)</u>	1 11 11 1		Х	94	3-4-3 N=7	2.5 (HP)		22	32-24-8
SILT	35.0 SILTY SAND (SM), with cobbles, trace clay, tannisl and dark gray, medium dense		549.5	35-		X	72	6-8-6 N=14			12	
				40-		X	94	5-11-12 N=23			15	
45.0 SANI	D , some boulder and gravel, brown, r	medium dense	539.5	45 -		X	100	21-50			5	
50.0 LEAI (Glad	<u>N CLAY (CL)</u> , with silt and sand, trace cial Till)	e cobbles, gray, hard	534.5	50		X	16	21-20-37 N=57	4.5+ (HP)		12	
				55	V	X	100	9-15-30 N=45	4.5+ (HP)		11	
Stratificati	on lines are approximate. In-situ, the transitio	on may be gradual.		60-			Hammer	Type: Automatic				
Advancement Meth Hollow Stem Au Abandonment Meth Boring backfilled completion.	ger	See Exploration and Tes description of field and is used and additional data See Supporting Informat symbols and abbreviation	aborator a (If any).	y proced	ures	N	lotes:					
Water of	ER LEVEL OBSERVATIONS bserved at 31' during drilling bserved at 56.6' after 1 hour.	Sill Lurke Cincinn	DC en Park D ati, OH		n	Dri	ll Rig: T	rted: 11-07-2017 rack .: N1175384	-	ring Comp Iler: R. Ma		11-08-2017

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL N1175384 DUKE C350V PIPELINE. GPJ TERRACON_DATATEMPLATE.GDT 6/21/18

	BORING				-	_			F	Page	3 of 3
14	OJECT: Central Corridor Pipeline C350	CLIE	ENT:			nergy nati, C					
SIT	E: Hamilton County Cincinnati, Ohio	_									
GRAPHIC LOG		ev.: 584.4 (Ft.) EVATION (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLETYPE	RECOVERY (%)	FIELD TEST RESULTS	LABORATORY HP (tsf)	UNCONFINED COMPRESSIVE STRENGTH (tsf)	WATER CONTENT (%)	LIMIT
	LEAN CLAY (CL), with silt and sand, trace cobbles, gray, he (Glacial Till) (continued)		-		X	100	9-20-27 N=47	4.5+ (HP)		12	
			- 65-		X	100	10-12-16 N=28	4.5+ (HP)		18 2	9-16-1
											1 1
					X	100	20-23-34 N=57	4.5+ (HP)		14	
			75-		X	100	8-12-16 N=28	4.5+ (HP)		25	
	80.0 SILTY SAND (SM), trace silt, brown, medium dense 81.5 Boring Terminated at 81.5 Feet	504.5 503			X	100	3-7-12 N=19			21	
Holle	Stratification lines are approximate. In-situ, the transition may be gradual. cement Method: ow Stem Auger onment Method: ng backfilled with cement-bentonite grout upon	d and laborator nal data (If any). nformation for e	y proced	lures	_	Hammer lotes:	Type: Automatic	3			
	WATER LEVEL OBSERVATIONS	rac			Во	ring Sta	rted: 11-07-2017	Bor	ing Com	pleted: '	11-08-20
V	Water observed at 56.6' after 1 hour. 61	Lunken Park I Cincinnati, OH	_			ill Rig: T	.: N1175384	Dri	ller: R. M	ann	_

PR	OJECT: Central Corridor Pipeline C350	CLIE				nergy ati, C					
SIT	E: Hamilton County Cincinnati, Ohio										
GRAPHIC LOG		ice Elev.: 576.0 (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (%)	FIELD TEST RESULTS	LABORATORY HP (tsf)	UNCONFINED COMPRESSIVE STRENGTH (Isf)	WATER CONTENT	ATTERB LIMIT
	DEPTH FILL, lean clay, with sand, trace silt, cobbles and rock fragments, brown to black	ELEVATION (Ft.)	-			33	3-4-3 N=7			16	
					X	72	4-3-3 N=6	4.0 (HP)		16	
			5 -		X	94	1-1-2 N=3			18	
					X	0	1-2-1 N=3				
			10-		X	72	1-2-1 N=3	1.25 (HP)		15	
					X	44	3-2-1 N=3			15	
			15	-	X	39	6-8-12 N=20			19	
	Trace nails and plastic fragments encountered at 20 fe	eet	20	-	X	33	49-25-6 N=31			61	
000	25.0 SILTY SAND (SM), with gravel, cobbles and rock fragm brown, medium dense	551 ients,	25-	V	X	22	7-8-11 N=19			9	
	30.0	546	- - 30-	-							
Holle	ow Stem Auger description dused and active set of the s	alión and Testing Pro of field and laborator dditional data (Ifany). ting Information for e d abbreviations.	y proced	dures	_	Hammer	Type: Automatic				
COM	WATER LEVEL OBSERVATIONS	errac	0	n		ring Star II Rig: Tr	ted: 11-07-2017 ack	-	ing Com		1-07-2

SI	COJECT: Central Corridor Pipeline C35		ENT:			nergy nati, C					
01	Cincinnati, Ohio									_	
GRAPHIC LOG	LOCATION See Exploration Plan Latitude: 39.2381° Longitude: -84.4346°	Surface Elev.: 576.0 (Ft.)	1 m m	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (%)	FIELD TEST RESULTS	LABORATORY HP (tsf)	UNCONFINED COMPRESSIVE STRENGTH (Isf)	WATER	LL-PL-PI
	DEPTH <u>LEAN CLAY (CL)</u> , with sand, some silt and gi orange-brown, stiff (Glacial Till)	ELEVATION (Ft.) ravel, mottled	-			94	3-5-6 N=11	2.75 (HP)		13	21-13-8
			- 35- 		X	61	5-8-3 N=11	1.5 (HP)		12	
	40.0 SILTY SAND (SM), light brown, medium dens	53 Se	6 40- - -		X	83	18-12-23 N=35			10	
			45-		X	89	7-8-10 N=18			19	
	51.5 Boring Terminated at 51.5 Feet	524.	- 50 ⁻		Х	100	6-10-11 N=21			80	
	Obratification lines are encrywingth to the bar 10	ube gradius!					Tuno Autorov				
Hol	Stratification lines are approximate. In-situ, the transition may noement Method: low Stem Auger	See Exploration and Testing P description of field and laborate used and additional data (If any See Supporting Information for	bry proced	lures	_	Notes:	Type: Automatic				
Bor	donment Method: ing backfilled with cement-bentonite grout upon npletion.	symbols and abbreviations.									
	WATER LEVEL OBSERVATIONS No water observed during drilling	Terra	-0		Bo	oring Sta	rted: 11-07-2017	Во	ring Com	pleted:	11-07-2017

-	ROJECT: Central Corridor Pipeline C3		ENT:	Duk	e E					0.5	1 of 1
SI	TE: Hamilton County Cincinnati, Ohio										
GRAPHIC LOG	LOCATION See Exploration Plan Latitude: 39.2367° Longitude: -84.4362°	Surface Elev.: 584.2 (Ft.)	DEPTH (FL)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (%)	FIELD TEST RESULTS	LABORATORY HP (tsf)	UNCONFINED COMPRESSIVE STRENGTH (Isf)	WATER	LIMITS
	DEPTH FILL, sand and gravel, cinders and ash, gray	ELEVATION (Ft.)		≥®	ls /		7-6-4	4.5+	⊃ <u>8</u> 2	03	
			-		Å	78	N=10	(HP)		8	
ł	3.0	581			Х	67	2-4-4 N=8			20	
	LEAN CLAY, little sand and silt, tannish-brow (Glacial Till)	vn, stiff to hard			X	83	2-2-5 N=7	3.5 (HP)		14	
			5 -		X	83	3-7-6 N=13	4.25 (HP)		13	
	7.5	576.5	-		X	100	4-5-8 N=13	2.75 (HP)		14	
	LEAN CLAY (CL), with silt, brown with orang stiff to hard (Lacustrine)	e striations, very			X	100	7-8-10 N=18	4.5+ (HP)		19	39-23-16
			10-		X	100	4-7-10 N=17	3.5 (HP)		23	
	12.5 LEAN CLAY, some sand, trace gravel, browr mottles, hard (Glacial Till)	571.5 n with iron			X	100	5-13-15 N=28			11	
000	15.0 SILTY SAND (SM), with gravel, reddish-brow	1.1.6.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	15-		X		10-8-4 N=12			21	
	16.5 Boring Terminated at 16.5 Feet	567.5									
	Stratification lines are approximate. In-situ, the transition ma	y be gradual.				Hamme	Type: Automatic	>			
	ncement Method: Iow Stem Auger	See Exploration and Testing Pro description of field and laboration used and additional data (If any)	ry proce	dures	N	lotes:					
Bo	donment Method: ing backfilled with cement-bentonite grout upon npletion.	See Supporting Information for e symbols and abbreviations.	skpianat	on or							
	WATER LEVEL OBSERVATIONS	70			Во	ring Sta	rted: 11-08-2017	Во	ring Com	pleted:	11-08-2017
	No water observed during drilling No water observed after drilling.	llerrac	_	n				_	1		_
	in the second of the arter and g	611 Lunken Park	20		Dr	ill Rig: T	IACK	Dri	ller: R. M	ann	

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL N1175384 DUKE C350V PIPELINE.GPJ TERRACON_DATATEMPLATE.GDT 6/21/18

_	BOR	ING LOG N	NO.	WB	-5				P	age	1 of 1
PR	OJECT: Central Corridor Pipeline C350	CLI	ENT:			nergy ati, C					
SIT	E: Hamilton County Cincinnati, Ohio					,					
LOG	LOCATION See Exploration Plan		ft.)	VEL	YPE	(%)	sr	ORY	NED SIVE 1 (tsf)	(%)	LIMIT
GRAPHIC LOG		Surface Elev.: 581.3 (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (%)	FIELD TEST RESULTS	LABORATORY HP (tsf)	UNCONFINED COMPRESSIVE STRENGTH (tsf)	WATER CONTENT (%)	LL-PL-
°(DEPTH FILL, sand and gravel, trace silt and brick fragments	ELEVATION (Ft.) s, brown			X	89	6-7-8 N=15			8	
0000			-		X	67	28-16-12 N=28			6	
0.0	3.2 SILTY CLAY (CL-ML), with trace sand and root hair tannish-brown, soft to stiff	57i S,	3 -		X	100	2-3-3 N=6	2.25 (HP)		23	
	6.0	575.	5-		X	100	3-2-2 N=4	0.25 (HP)		20	23-17
	LEAN CLAY, with silt and sand, trace gravel, brown mottles, stiff to very stiff (Glacial Till)		-		X	16	4-6-7 N=13			15	
	9.0	572,	-	V	X	50	4-5-14 N=19	4.25 (HP)		13	
	<u>SILT (ML)</u> , with trace clay, varved structure, brown, t (Lacustrine)	nard	10-		X	100	4-8-11 N=19	4.5 (HP)		19	24-22
	13.5 LEAN CLAY, with silt lenses, varved structure, gray,	56	3		X	100	4-8-11 N=19	4.5+ (HP)		18	
	(Lacustrine)	56	15-	_	X	100	6-7-6 N=13	4.5+ (HP)		23	
	Boring Terminated at 16.5 Feet										
	Stratification lines are approximate. In-situ, the transition may be grad	dual.			ł	lammer	Type: Automatic				
	descrip used au	ploration and Testing Protion of field and laborate nd additional data (If any	ry proced	dures	N	otes:					
Borin	onment Method: symbol g backfilled with cement-bentonite grout upon pletion.	pporting Information for s and abbreviations.	explanation	on of							
_	WATER LEVEL OBSERVATIONS	[manan			Во	ring Star	rted: 11-08-2017	Bor	ing Comp	oleted:	11-08-20
V	No water observed during drilling Water observed at 9' after 1 hour.	lerrad	0	Π	Dri	I Rig: Ti	rack	Dri	ller: R. Ma	ann	
*		611 Lunken Park Cincinnati, OH	Dr		De	lost No	: N1175384				

	BO	RING LOGI	10.	WE	3-1	7			F	Page	1 of 1
PF	OJECT: Central Corridor Pipeline C350	CLIE				nergy nati, C					
Sľ	E: Hamilton County Cincinnati, Ohio			onic		iati, c					
GRAPHIC LOG	LOCATION See Exploration Plan Latitude: 39.2331° Longitude: -84.4378° DEPTH	Surface Elev.: 563.7 (Ft.) ELEVATION (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (%)	FIELD TEST RESULTS	LABORATORY HP (tsf)	UNCONFINED COMPRESSIVE STRENGTH (ISf)	WATER	LL-PL-PI
3 <u>4 14</u> . 3		563			V	100	1-2-1 N=3	1.75 (HP)	-	17	
	brown, very loose	3 , - , , - , , - , , , , , , , , , , , , , , , , , , , 	-		X	100	2-3-3 N=6	1.75 (HP)		15	
	4.5	559			X	53	2-2-2 N=4	0.5 (HP)		13	
	SANDY CLAY (SC), mottled brown, trace gray, s	oft 557.5	5 -		X	89	3-2-1 N=3	0.75 (HP)		36	
	SILT (ML), some clay and gravel, brown, stiff		-		X	78	4-4-5 N=9	2.25 (HP)		12	
	9.0	554.5	-		X	78	4-5-6 N=11	2.0 (HP)		11	NP
	LEAN CLAY, with sand and gravel, brownish gra (Glacial Till) 10.5	y, very stiff 553	10-		X	78	4-6-8 N=14	3.0 (HP)		13	
Adus	Stratification lines are approximate. In-situ, the transition may be				_		Type: Automatic				
Но	low Stem Auger des use set	 Exploration and Testing Pro- cription of field and laborator d and additional data (If any) Supporting Information for en bols and abbreviations. 	ry proce	dures		lotes:					
Bo	ing backfilled with cement-bentonite grout upon pletion.										
	WATER LEVEL OBSERVATIONS No water observed during drilling	Terrac	0	n	Bo	ring Star	ted: 12-04-2017	Bor	ing Com	pleted;	12-04-2017
	No water observed after drilling.	611 Lunken Park Cincinnati, OH	Dr			ill Rig: Tr	ack : N1175384	Dri	ller: R. M	ann	-

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL N1175384 DUKE C350V PIPELINE. GPJ TERRACON_DATATEMPLATE.GDT 6/21/18

DP	BORING LO OJECT: Central Corridor Pipeline C350	CLIE		1.00	-	-	,		F	age	1 of 2
1		ULIL				ati, C					
SIT	E: Hamilton County Cincinnati, Ohio										
GRAPHIC LOG	LOCATION See Exploration Plan Latitude: 39.2481° Longitude: -84.4327° Surface Elev.: 590	5/51	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (%)	FIELD TEST RESULTS	LABORATORY HP (tsf)	UNCONFINED COMPRESSIVE STRENGTH (tsf)	WATER CONTENT (%)	LIMI
	DEPTH ELEVATIO		-	N NO	SA	RE	E.	4	100ES	ŏ	
	0.5 TOPSOIL (6 inches) <u>LEAN CLAY (CL)</u> , with calcareous nodules, brown, medium stiff to stiff	590	-		X	89	2-3-3 N=6	2.25 (HP)		14	
			-		X	44	2-2-1 N=3	1.75 (HP)		18	
	4.5	586			X	53	2-1-1 N=2	2.50 (HP)		16 2	7-14-1
	SILTY CLAY (CL-ML), trace fine sand, brown, stiff		5-		X	67	2-2-3 N=5	2.75 (HP)		19	
			-		X	78	3-3-3 N=6	2.25 (HP)		12	
	9.0	581.5			X	89	3-4-4 N=8	2.50 (HP)		23	
	LEAN CLAY, with sand, trace gravel, brown, very stiff (Glacial Till)	580	10-		X	44	8-10-9 N=19	2.0 (HP)		11	
			- 20		X	89	13-17-19 N=36	4.5 (HP)		8	
	Stratification lines are approximate. In-situ, the transition may be gradual. cement Method; ow Stem Auger See Exploration and Tes description of field and te	sting Proc		fora	_	lammer	Type: Automatic				
ande	onment Method: g backfilled with cement-bentonite grout upon pletion.	(If any). tion for ex									
- 7 5	WATER LEVEL OBSERVATIONS				Bor	ring Star	rted: 12-04-2017	Bor	ring Comp	oleted: 1	12-04-2
	No water observed during drilling No water observed after drilling.	ЭC	O		Dril	I Rig: Ti	rack	Dri	ller: R. Ma	ann	
	611 Lunke	ati, OH	1		Pro	iect No	.: N1175384				

PP	OJECT: Central Corridor Pipeline	BORING L	CLIE		-	-			_	F	age	2 of 2
_	•	C350					ati, C					
SIT	E: Hamilton County Cincinnati, Ohio											
GRAPHIC LOG	LOCATION See Exploration Plan Latitude: 39,2481° Longitude: -84,4327°			DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (%)	FIELD TEST RESULTS	LABORATORY HP (tsf)	UNCONFINED COMPRESSIVE STRENGTH (tsf)	ATER ENT	ATTERBE LIMITS
GRAF	DEPTH	Surface Elev.: 5 ELEVAT	1.	DEP	WATE	SAMP	RECO	FIEL	LABO	UNCO	CONTENT	LL-PL-F
	LEAN CLAY (CL), with sand, occasiona stiff to hard (Glacial Till) (continued)	l silt seams, gray, very		-		1	67	17-11-16 N=27	4.0 (HP)		11	
					-							
1				25-		X	89	12-8-8 N=16	2.75 (HP)		17	31-18-
111	26.5 Boring Terminateo at 20.5 Feet		564		-	$\langle \cdot \rangle$			-	_		
Holl	Stratification lines are approximate. In-situ, the transition comment Method: ow Stem Auger	on may be gradual. See Exploration and T description of field and used and additional da See Supporting Inform symbols and abbreviat	ation for ex	/ proced	dures	_	Hammer lotes:	r Type: Automatic				
Holl	cement Method: ow Stem Auger	See Exploration and T description of field and used and additional da See Supporting Inform symbols and abbreviat	l laboratory ita (If any). ation for ex ions.	/ proced	dures	N	lotes:					12-04-201
Holl	cement Method: low Stem Auger lonment Method: ing backfilled with cement-bentonite grout upon upletion.	See Exploration and T description of field and used and additional da See Supporting Inform	l laboratory ita (If any). ation for ex ions.	/ proced	dures	Bo	lotes:	rted: 12-04-2017	Во	ring Comp		12-04-201

	OJECT: Central Corridor Pipeline C350	CLIE		Duke I Cincir						
SIT	E: Hamilton County Cincinnati, Ohio									
2	LOCATION See Exploration Plan Latitude: 39.2541° Longitude: -84.4276° Surface Elev.: 580	0.5(Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	RECOVERY (%)	FIELD TEST RESULTS	LABORATORY HP (tsf)	UNCONFINED COMPRESSIVE STRENGTH (tsf)	WATER CONTENT	ATTERBEI LIMITS
	DEPTH ELEVATIO			≥ B 0			2	_ <u>2</u> 22	0	
	FILL, silty clay, with sand and gravel, trace asphalt and limestone fragments, brown		-	$ \rangle$	100	2-4-3 N=7	1.25 (HP)		12	
ž			1		100	4-8-9 N=17	4.5+ (HP)		11	
	4.5	576	1		100	7-10-14 N=24	4.5+ (HP)		10	
	FILL, lean clay, with silt and limestone fragments, trace gravel, gray with brown striations		5 -		100	11-12-14 N=26	4.5+ (HP)		8	19-13-
	7.5	573	6 - F		89	6-6-9 N=15	4.5+ (HP)		12	
	LEAN CLAY (CL), trace gravel, gray with brown mottles, stiff (Lacustrine)	571.5	-		100	4-5-10 N=15	1.75 (HP)		28	30-16-1
	LEAN CLAY , with sand, trace silt and gravel, light brown with orangish brown mottles, very stiff (Lacustrine)		10-	\sum	100	6-6-7 N=13	3.25 (HP)		17	
	13.2 LEAN CLAY, with silt, gray, hard	567.5		$\left \right\rangle$	100	7-8-9 N=17	4.5+ (HP)		13	
	15.0 LEAN CLAY, with sand, trace silt and gravel, olive gray, hard	565.5	15-		100	10-9-9 N=18	4.5+ (HP)		16	
	16.5 Boring Terminated at 16.5 Feet	264	1							
	Stratification lines are approximate. In-situ, the transition may be gradual.				Hamr	 ner Type: Automatic				
	ement Method: See Exploration and Tes ow Stem Auger description of field and la used and additional data See Supporting Informati	aboratory a (If any).	proced	tures	below	reading was noted t ground but no ga				
Borin	onment Method: g backfilled with cement-bentonite grout upon oletion.		- san court		drilling.					
	WATER LEVEL OBSERVATIONS				Boring S	Started: 11-01-2017	Во	ring Com	pleted:	11-01-2017
	No water observed during drilling No water observed after drilling.	ЭC	O	n			_			_
	611 Lunke Cincinni		81		Drill Rig	TRICK	Dr	iller: A. M	oore	

PR	OJECT: Central Corridor Pipeline C350	CLIE				nergy ati, C					
511	E: Hamilton County Cincinnati, Ohio	_									
GRAPHIC LOG		ev.: 574.6 (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (%)	FIELD TEST RESULTS	LABORATORY HP (tsf)	UNCONFINED COMPRESSIVE STRENGTH (tsf)	WATER CONTENT (%)	LIMIT
8	0.3 \TOPSOIL (3 inches)	EVATION (Ft.)	-		X	44	3-2-5 N=7	1.75 (HP)		16	
	FILL, lean clay, with silt, sand and rock fragments, brown wit dark brown striations	'n	1010		X	100	6-8-13 N=21	3.0 (HP)		20	
ě			5-		X	5	6-7-6 N=13	3.5 (HP)		17	
			1		X	39	2-2-4 N=6	1.5 (HP)		21	
			10-		X	39	1-7-9 N=16	2.75 (HP)		18	
~	12.5 LEAN CLAY, with silt, dark olive brown, medium stiff (Loess		-		X	67	4-3-3 N=6	0.5 (HP)		24	
	15.0 LEAN CLAY, with silt, trace sand, dark brown, medium stiff	559.5	15		X	39	2-3-4 N=7	1.5 (HP)		22	
	20.0 WELL GRADED SAND (SW), with gravel, some silt, gray, medium dense to dense	554.5	20-	V	X	78	6-8-8 N=16				
			25		X	100	2-4-8 N=12				
	30.0 <u>GRAVEL</u> , some sand, gray, dense	544.5	30		\times	50	10-13-24 N=37				
			35-		X	67	12-18-18 N=36				
. .	Stratification lines are approximate. In-situ, the transition may be gradual.				+	lammer	Type: Automatic	,			
	cement Method: See Exploration of fiel used and addition See Supporting I	d and laborator, hal data (If any).	/ proced	lures	N	otes:					
Bori	Ionment Method: symbols and abb ing backfilled with cement-bentonite grout upon pletion.			STORE'							
	WATER LEVEL OBSERVATIONS No water observed during drilling	rac		n		ring Star II Rig: Tr	ted: 10-30-2017	-	ing Comp		10-31-20
V	Water observed at 20.9' after 24 hours. 61'	1 Lunken Park D Cincinnati, OH	-			2.67	: N1175384	Un	ner, A. Mo	Jore	

GRAPHIC LO	Cincinnati, Ohio LOCATION See Exploration Plan Latitude: 39.2545" Longitude: -84.4262" Surface Elev. DEPTH ELEV. GRAVEL, some sand, gray, dense (continued) LEAN CLAY, with silt, trace coarse sand and gravel, gray, hard (Glacial Till)	: 574.6 (Ft.) ATION (Ft.) 534.5	(F) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (%)	FIELD TEST RESULTS	LABORATORY HP (tsf)	UNCONFINED COMPRESSIVE STRENGTH (Isf)	WATER CONTENT	LIMITS
GRAPHIC LO	Latitude: 39,2545° Longitude: -84.4262° Surface Elev. DEPTH ELEV. 00.0 GRAVEL, some sand, gray, dense <i>(continued)</i> LEAN CLAY, with silt, trace coarse sand and gravel, gray,	ATION (Ft.)	<u></u>	WATER LEVEL OBSERVATION	SAMPLE TYPE	RECOVERY (%	FIELD TEST RESULTS	LABORATORY HP (tsf)	NCONFINED MPRESSIVE RENGTH (tst		LL-PL-F
	LEAN CLAY, with silt, trace coarse sand and gravel, gray,	534.5	40-				and the second s	1	STOC	0ª	
	LEAN CLAY, with silt, trace coarse sand and gravel, gray, hard (Glacial Till)		40-				- Januar				
			-		X	50	10-14-13 N=27	4.5+ (HP)		12	
////			45-		X	39	15-18-22 N=40	4.5+ (HP)		14	
			- 50-			1	0.00.07				
			-		X	100	6-20-27 N=47	3.75 (HP)		14	
			55-		X	100	24-27-39 N=66	4.5+ (HP)		11	
			60-		X	27	17-26-36 N=62			18	
	No sample was recovered at 65' as possible boulders were encountered.		65			0	15-31-50 N=81				
	<u>SAND</u> , fine grained, brown, medium dense	504.5	70		X	100	13-6-6 N=12				
	5.0. SILTY SAND (SM), fine grained, brown, dense to very dense	499.5	75-		Х	72	8-22-38 N=60				
	Stratification lines are approximate. In-situ, the transition may be gradual. ement Method: w Stem Auger See Exploration and description of field a used and additional	data (If any)	y proced	lures	_	Hammer lotes:	Type: Automatic				
Borin	nment Method: See Supporting Info g backfilled with cement-bentonite grout upon letion.		explanatio	on of							
	WATER LEVEL OBSERVATIONS			-	Bo	ring Star	rted: 10-30-2017	Bo	ring Com	oleted: 1	0-31-201
	No water observed during drilling Water observed at 20.9' after 24 hours.	I O C	0		Dri	II Rig: Ti	rack	Dri	ller: A. Mo	oore	

	BORING	GLOGN	0.1	NB	3-1	0			F	Page	3 of 3
PF	ROJECT: Central Corridor Pipeline C350	CLIE				nergy ati, C					
Sľ	TE: Hamilton County Cincinnati, Ohio		_	onic		au, c					_
90	LOCATION See Exploration Plan		(7	EL	PE	(%)	E.	RY	(tst)		LIMITS
GRAPHIC LOG	DEPTH	e Elev.: 574.6 (Ft.) ELEVATION (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (%)	FIELD TEST RESULTS	LABORATORY HP (tsf)	UNCONFINED COMPRESSIVE STRENGTH (tsf)	CONTENT	LL-PL-PI
	SILTY SAND (SM), fine grained, brown, dense to very de (continued)	ense	-								
			80- -		X	94	9-17-22 N=39				
			85-								
					Х	100	22-28-29 N=57	-			
			90-		X	83	20-31-36 N=67				
			1003								
	Medium dense at 95 feet.		95_			100	17-11-12 N=23	-			
						83	6-14-22	-	_		-
	101.5 Boring Terminated at 101.5 Feet	473	100	\vdash	-	00	N=36	-			
											_
dvar	Stratification lines are approximate. In-situ, the transition may be gradual.				_		Type: Automatic				
Hol	liow Stem Auger description o used and add	ion and Testing Pro f field and laboratory ditional data (If any), ng Information for e	y proced	dures		otes:					
Bor	donment Method: symbols and ring backfilled with cement-bentonite grout upon npletion.	abbreviations.									
	WATER LEVEL OBSERVATIONS				Bo	ring Sta	rted: 10-30-2017	Bo	ring Com	pleted 1	10-31-2017
	No water observed during drilling Water observed at 20.9' after 24 hours.	sus	0	Π		II Rig: Ti			ller: A. Me		

THIS BORING LOG IS NOT VALID IF SEPARATED FRCM ORIGINAL REPORT. GEO SMART LOG NO WELL N1175384 DUKE C350V PIPELINE GPJ TERRACON DATATEMPLATE.GDT 6/21/18

PR	DJECT: Central Corridor Pipeline C350		NT: I	Duke	E	nergy			F	age	1 of 3
SIT	E: Hamilton County Cincinnati, Ohio		(Cinc	inn	ati, C	рн				
2	LOCATION See Exploration Plan Latitude: 39.2543° Longitude: -84.4238°		DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (%)	FIELD TEST RESULTS	LABORATORY HP (tsf)	UNCONFINED COMPRESSIVE STRENGTH (tsf)	WATER CONTENT (%)	
		ev.: 568.1 (Ft.) EVATION (Ft.)	DEPT	WATER	SAMPL	RECOVI	FIELD	LABOR	COMPR	CONTE	LL-PL
1. 2	0.8 TOPSOIL (10 inches) <u>FILL</u> , lean clay, with silt, trace root hairs, brown with orange mottles	567.5	-		Х	67	2-3-5 N=8	3.25 (HP)		10	
			-		X	78	9-7-8 N=15	2.5 (HP)		25	
			5-		Х	100	4-5-7 N=12	1.5 (HP)		24 4	7-20-2
£	7.6 Gray sand seam encountered at 7.5 feet. LEAN CLAY, with silt, trace sand and dark brown concretion light olive brown with orange mottles, stiff to very stiff				X	16	2-1-2 N=3	2.0 (HP)		26	
	10.0 GRAVEL, with sand, light brown, medium dense		⁸ 10–	V	X	94	8-13-13 N=26				
	12.5 POORLY GRADED SAND (SP), light brown, very loose to loose	555.5			X	94	4-2-2 N=4			10	
			15-		X	100	3-3-6 N=9				
			20-		Х	100	4-2-3 N=5				
	23.5 GRAVEL, with sand, brown, medium dense to dense	544.5	25-		Х	100	8-8-10 N=18				
			30-		Х	100	4-11-23 N=34				
ivanc	Stratification lines are approximate. In-situ, the transition may be gradual.	and Testing Per	13443	fora	_	Hammer	Type: Automatic	,			
Hollo	w Stem Auger description of fie used and additio See Supporting onment Method: symbols and abb	eld and laborator anal data (If any).	y proced	dures							
Borir	Ig backfilled with cement-bentonite grout upon oletion.			_							
No water observed during drilling Water observed at 11.6' after 1 hour.						ring Sta II Rig: Ti	rted: 10-27-2017 rack	-	ing Comp ller: A. Mo		0-27-2
_	61	1 Lunken Park I Cincinnati, OH)r		Pro	oject No	N1175384				

DPC	OJECT: Central Corridor Pipeline C3		CLIE		-			,		F	Page 2	2 of 3
PRC	DJECT: Central Corridor Pipeline Co	50	CLIE				ati, C					
SITE	E: Hamilton County Cincinnati, Ohio		Ľ.	÷.								
90 L	LOCATION See Exploration Plan			G	/EL	ΡE	(%)	ta co	RY	ED (tsf)	(%)	LIMI
GRAPHIC LOG	Latitude: 39.2543° Longitude: -84.4238°			DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (%)	FIELD TEST RESULTS	LABORATORY HP (tsf)	UNCONFINED COMPRESSIVE STRENGTH (tsf)	WATER CONTENT (%)	
SRAP		Surface Elev.: 568	3.1 (Ft.)	DEP.	VATE	AMP	ECO	RES	ABOF	OMP	WO	LL-PI
	DEPTH	ELEVATIO	DN (Ft.)		×Ö	ŝ	R		2	202	0	
5.	GRAVEL, with sand, brown, medium dens (continued)	e to dense		_					1.1			
				-								
2.				-								
2				1		\bigvee	100	14-11-14	-			
3.				35-		Δ	100	N=25	-		_	
				m-								
2.4				1								
				-		Ц						
2				1		V	100	22-21-21				
0				40-		\triangle		N=42				
				-								
20				-								
				-				_	1.1			
• 4	44.5		523.5	3		Х	100	9-11-21 N=32	4.5+ (HP)			
	LEAN CLAY, with sand and gravel, olive-b (Glacial Till)	prown to gray, hard		45-		()		N-32	((()))			
	(classifier any			1								
				-								
				-			_					
						Х	94	24-22-24 N=46	4.5+ (HP)		11	
				50-					1			
				Ĩ			_	11 10 01	1.5.			-
						Х	83	11-16-21 N=37	4.5+ (HP)	1	11	1
				55-								-
								16-22-24	1			-
				60-		\wedge	89	N=46			14	
_	Stratification lines are approximate. In-situ, the transition	n may be gradual.	_	00		+	lammer	Type: Automatic	-			
						_			_			
	ement Method: w Stem Auger	See Exploration and Tes description of field and la	aboratory	proced	fora	N	otes					
		used and additional data	a (Ifany).									
Boring	onment Method: g backfilled with cement-bentonite grout upon eletion.	See Supporting Informat symbols and abbreviatio		pianatic	11 01							
	WATER LEVEL OBSERVATIONS	76		_		Bo	ring Sta	rted: 10-27-2017	Bor	ring Comp	oleted: 1	10-27-2
No water observed during drilling Water observed at 11.6' after 1 hour.							II Rig: T	COLC EVINES	-	ller: A. Mo		
V_	Water observed at 11.6' after 1 hour.	611 Lunke				-						

	В	ORING LOG	10.1	WE	3-1	1			F	age	3 of 3
PROJ	ECT: Central Corridor Pipeline C35	0 CLI	ENT:			nerg nati, (_
SITE:	Hamilton County Cincinnati, Ohio			Cinc		iau, v	л				
2	CATION See Exploration Plan tude: 39.2543° Longitude: -84.4238° PTH	Surface Elev.: 568.1 (Ft.) ELEVATION (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (%)	FIELD TEST RESULTS	LABORATORY HP (tsf)	UNCONFINED COMPRESSIVE STRENGTH (tsf)	WATER CONTENT	LIMITS
63.5	LEAN CLAY, with sand and gravel, olive-brow (Glacial Till) <i>(continued)</i> SAND, trace silt, gray, dense	vn to gray, hard 504	5 - 65-		X	100	10-15-22 N=37			16	
68.5	ELEAN CLAY, with sand and cobbles, gray, ha	499. rd (Glacial Till)	5 70_		X	75	50/2*			10	
			75_		X	100	21-23-23 N=46	3.5 (HP)		14	
78.5	SAND, trace silt, fine grained, gray, dense	489 48	-			100	25-20-25 N=45			31	
Advanceme Hollow S Abandonm	ent Method: ackfilled with cement-bentonite grout upon	be gradual. See Exploration and Testing P description of field and laborate used and additional data (If any See Supporting Information for symbols and abbreviations.).	dures	_	Hamme lotes:	r Type: Automatic		2		
	WATER LEVEL OBSERVATIONS	16			Во	ring Sta	rted: 10-27-2017	Во	ring Com	oleted: 1	0-27-2017
W	o water observed during drilling ater observed at 11.6' after 1 hour.		_	Π	Dri	ill Rig: T	rack	Dri	ller: A. Mo	oore	
V		611 Lunken Park			0-		- 114476904				

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL N1175384 DUKE C350V PIPELINE. GPJ TERRACON_DATATEMPLATE. GDT 6/21/18

1

Cincinnat, Ohio Option Clark Colspan="2">Option See Equation Plan Lathue: 39:242* Longitude: 39:244* Longitude	-	· · · · · · · · · · · · · · · · · · ·	CLIE				nergy nati, C					
State Construction Tell Lisen clay, with silt, tannish brown to dark brown with Tell Lisen clay, with silt, tannish brown to dark brown with Tell Lisen clay, with silt, tannish brown to dark brown with Tell Lisen clay, with silt, tannish brown to dark brown with Tell Lisen clay, with silt, tannish brown to dark brown with Tell Lisen clay, with silt, tannish brown to dark brown with Tell Lisen clay, with silt, tannish brown to dark brown with Tell Lisen clay, with silt, tannish brown to dark brown, with Tell Lisen clay, tannish brown to dark brown, with Tell Lisen clay, tannish brown, with with clay, tannish brown, with Tell Lisen clay, tannish brown, with Tell Lisen clay, tannish brown, with with clay, tannish brown, we clay and tand tand thrown, tannish brown, we c			100							-		-
State Construction Tell Lisen clay, with silt, tannish brown to dark brown with Tell Lisen clay, with silt, tannish brown to dark brown with Tell Lisen clay, with silt, tannish brown to dark brown with Tell Lisen clay, with silt, tannish brown to dark brown with Tell Lisen clay, with silt, tannish brown to dark brown with Tell Lisen clay, with silt, tannish brown to dark brown with Tell Lisen clay, with silt, tannish brown to dark brown with Tell Lisen clay, with silt, tannish brown to dark brown, with Tell Lisen clay, tannish brown to dark brown, with Tell Lisen clay, tannish brown, with with clay, tannish brown, with Tell Lisen clay, tannish brown, with Tell Lisen clay, tannish brown, with with clay, tannish brown, we clay and tand tand thrown, tannish brown, we c	1	Latitude: 39.2542" Longitude: -84.4215" Surface Elev.: 579		DEPTH (Ft.)	WATER LEVEL DBSERVATIONS	SAMPLE TYPE	RECOVERY (%)	FIELD TEST RESULTS	LABORATORY HP (tsf)	UNCONFINED COMPRESSIVE STRENGTH (tsf)	WATER CONTENT	LIMITS
SANDY LEAN CLAY (CL), with cobbles, brown, medium stift 67 4-6-8 0.75 to very stiff (Glacial Till) 15 15 100 5-6-9 3.5 20.8 SAND, fine grained, olive-brown, loose 554 20 89 4-3-3 4.0 25.0 SANDY LEAN CLAY (CL), with silt, occasional sand seams, gray, very stiff to hard (Glacial Till) 554 25 83 10-10-14 4.5+ 83 10-10-14 4.5+ 100 10-10-14 4.5+ gray, very stiff to hard (Glacial Till) 54 25 30 83 10-10-14 4.5+ Abandonment Method: See Exploration and Testing Procedures for a description of field and laboratory procedures for a symbols send adbitraviation of symbols and abbreation of seghanation of symbols and adbreation of symbols and adbreation of seghanation of symbols and adbreation of symbols and adbreation of seghanation of symbols and adbreation o	-	D4 TOPSOIL (4 inches)			-		78				9	_
SANDY LEAN CLAY (CL), with cobbles, brown, medium stift 67 4-6-8 0.75 to very stiff (Glacial Till) 15 15 100 5-6-9 3.5 20.8 SAND, fine grained, olive-brown, loose 554 20 89 4-3-3 4.0 25.0 SANDY LEAN CLAY (CL), with silt, occasional sand seams, gray, very stiff to hard (Glacial Till) 554 25 83 10-10-14 4.5+ 83 10-10-14 4.5+ 100 10-10-14 4.5+ gray, very stiff to hard (Glacial Till) 54 25 30 83 10-10-14 4.5+ Abandonment Method: See Exploration and Testing Procedures for a description of field and laboratory procedures for a symbols send adbitraviation of symbols and abbreation of seghanation of symbols and adbreation of symbols and adbreation of seghanation of symbols and adbreation of symbols and adbreation of seghanation of symbols and adbreation o				1		_		N=14				
SANDY LEAN CLAY (CL), with cobbles, brown, medium stift 67 4-6-8 0.75 to very stiff (Glacial Till) 15 15 100 5-6-9 3.5 20.8 SAND, fine grained, olive-brown, loose 554 20 89 4-3-3 4.0 25.0 SANDY LEAN CLAY (CL), with silt, occasional sand seams, gray, very stiff to hard (Glacial Till) 554 25 83 10-10-14 4.5+ 83 10-10-14 4.5+ 100 10-10-14 4.5+ gray, very stiff to hard (Glacial Till) 54 25 30 83 10-10-14 4.5+ Abandonment Method: See Exploration and Testing Procedures for a description of field and laboratory procedures for a symbols send adbitraviation of symbols and abbreation of seghanation of symbols and adbreation of symbols and adbreation of seghanation of symbols and adbreation of symbols and adbreation of seghanation of symbols and adbreation o				-			94				15	
SANDY LEAN CLAY (CL), with cobbles, brown, medium stift 67 4-6-8 0.75 to very stiff (Glacial Till) 15 15 100 5-6-9 3.5 20.8 SAND, fine grained, olive-brown, loose 55 20 89 4-3-3 4.0 25.0 SANDY LEAN CLAY (CL), with silt, occasional sand seams, gray, very stiff to hard (Glacial Till) 554 25 25 83 10-10-14 4.5+ Statification lines are approximate. In-situ, the transition may be graduat. 544 25 30 10 100 10 100 10				5 -			100				17	
SANDY LEAN CLAY (CL), with cobbles, brown, medium stift 67 4-6-8 0.75 to very stiff (Glacial Till) 15 15 100 5-6-9 3.5 20.8 SAND, fine grained, olive-brown, loose 554 20 89 4-3-3 4.0 25.0 SANDY LEAN CLAY (CL), with silt, occasional sand seams, gray, very stiff to hard (Glacial Till) 554 25 83 10-10-14 4.5+ 83 10-10-14 4.5+ 100 10-10-14 4.5+ gray, very stiff to hard (Glacial Till) 54 25 30 83 10-10-14 4.5+ Abandonment Method: See Exploration and Testing Procedures for a description of field and laboratory procedures for a symbols send adbitraviation of symbols and abbreation of seghanation of symbols and adbreation of symbols and adbreation of seghanation of symbols and adbreation of symbols and adbreation of seghanation of symbols and adbreation o				1-1			44		4.5+		14	
SANDY LEAN CLAY (CL), with cobbles, brown, medium stift 67 4-6-8 0.75 to very stiff (Glacial Till) 15 16 67 N=14 (HP) 20.8 20 3.5 100 N=15 (HP) 20.8 54 20 89 4-3-3 4.0 20.8 54 20 89 N=6 (HP) 20.8 54 25 100 N=15 (HP) 25.0 SANDy LEAN CLAY (CL), with silt, occasional sand seams, gray, very stiff to hard (Glacial Till) 554 25 25 Statification lines are approximate. In-situ, the transition may be graduat Harmer Type: Automatic Harmer Type: Automatic Advancement Method: See Exploration and Testing Procedures for a description of field and laboratory procedures for a description of metal and laboratory procedures for a description of field and laboratory procedures for a description of				10-			27	3-4-5	4.5+		13	
SANDY LEAN CLAY (CL), with cobbles, brown, medium stift 67 4-6-8 0.75 to very stiff (Glacial Till) 15 67 N=14 (HP) 15 100 5-6-9 3.5 100 N=15 (HP) 20.8 SAND, fine grained, olive-brown, loose 58 20 89 4-3-3 4.0 25.0 SANDY LEAN CLAY (CL), with silt, occasional sand seams, gray, very stiff to hard (Glacial Till) 554 25 83 10-10-14 4.5+ 83 10-10-14 4.5+ - - - - - Statification lines are approximate. In-situ, the transition may be graduat Harmer Type: Automatic Harmer Type: Automatic Notes: Advancement Method: See Supporting Informatory for explanation of symbols and abbraitory procedures for a symbol adbitory additions. Notes: -		12.5	561	1		-		N=9	(HP)			
20.8 SAND, fine grained, olive-brown, loose 55 20 89 4-3-3 4.0 25.0 SANDY LEAN CLAY (CL), with silt, occasional sand seams, gray, very stiff to hard (Glacial Till) 554 25 83 10-10-14 4.5+ 83 10-10-14 4.5+ 83 10-10-14 4.5+ 9 N=24 (HP) 1 1 1 9 N=24 (HP) 1 1 1 9 N=24 (HP) 1 1 1 1 9 N=24 (HP) 1 1 1 1 1 9 See Exploration and Testing Procedures for a description of field and laboratory procedures used and additional data (frany). See Supporting Information for explanation of symbols and abbratory procedures for a description of field and additional data (frany). See Supporting Information of symbols and abbratory procedures for a description of field and additional data (frany). Notes: Notes:		SANDY LEAN CLAY (CL), with cobbles, brown, medium stiff					67				11	
20.8 SAND, fine grained, olive-brown, loose 551 89 4-3-3 4.0 25.0 SANDY LEAN CLAY (CL), with silt, occasional sand seams, gray, very stiff to hard (Glacial Till) 554. 25 83 10-10-14 4,5+ 30 30 83 10-10-14 4,5+ 83 N=24 (HP) 30 30 30 Hammer Type: Automatic Hammer Type: Automatic See Exploration and Testing Procedures for a description of field and laboratory procedures used and additional data (If any). See Supporting Information for explanation of symbols and abbreviations: Notes: Notes:				15			100		3.5 (HP)		15	25-14-1
20.8 SAND, fine grained, olive-brown, loose 551 39 4-3-3 4.0 25.0 SANDY LEAN CLAY (CL), with silt, occasional sand seams, gray, very stiff to hard (Glacial Till) 554. 25 83 10-10-14 4,5+ 30 30 Hammer Type: Automatic 83 10-10-14 4,5+ Stratification lines are approximate. In-situ, the transition may be gradual. Hammer Type: Automatic Hammer Type: Automatic												
25.0 SANDY LEAN CLAY (CL), with silt, occasional sand seams, gray, very stiff to hard (Glacial Till) 554. 25 83 10-10-14 4.5+ gray, very stiff to hard (Glacial Till) 54. 25 83 10-10-14 4.5+ Stratification lines are approximate. In-situ, the transition may be gradual. Hammer Type: Automatic	2		559	20-		_	89		4.0	_	-	
SANDY LEAN CLAY (CL), with silt, occasional sand seams, gray, very stiff to hard (Glacial Till) 25 83 10-10-14 4.5+ gray, very stiff to hard (Glacial Till) 30 10-10-14 4.5+ Stratification lines are approximate. In-situ, the transition may be gradual. Hammer Type: Automatic Advancement Method: See Exploration and Testing Procedures for a description of field and laboratory procedures used and additional data (If any). Notes: Abandonment Method: See Supporting Information for explanation of symbols and abbreviations. Notes:		SAND, fine grained, olive-brown, loose		-	đ			14-0	(HP)			
SANDT LEAN CLAY (CL), with sit, occasional sand seams, gray, very stiff to hard (Glacial Till) 83 10-10-14 4,5+ gray, very stiff to hard (Glacial Till)	2		554.5	25-							_	
Stratification lines are approximate. In-situ, the transition may be gradual. Hammer Type: Automatic Advancement Method: See Exploration and Testing Procedures for a description of field and laboratory procedures used and additional data (If any). Notes: Abandonment Method: See Supporting Information for explanation of symbols and abbreviations. Notes:		gray, very stiff to hard (Glacial Till)		1			83				_	_
Stratification lines are approximate. In-situ, the transition may be gradual. Hammer Type: Automatic Advancement Method: See Exploration and Testing Procedures for a description of field and laboratory procedures used and additional data (If any). Notes: Abandonment Method: See Supporting Information for explanation of symbols and abbreviations. Notes:				304								
Hollow Stem Auger description of field and laboratory procedures used and additional data (If any). Abandonment Method: See Supporting Information for explanation of symbols and abbreviations.	1	Stratification lines are approximate. In-situ, the transition may be gradual.		30-			Hammer	Type: Automatic	,			
Abandonment Method: symbols and abbreviations.		w Stem Auger description of field and la	aborator	y procee		N	lotes:	44.55.22				1
completion.	rin	onment Method: symbols and abbreviation g backfilled with cement-bentonite grout upon		xplanati	on of							
WATER LEVEL OBSERVATIONS Boring Started: 10-25-2017 Boring C			-	_	_	Во	ring Sta	rted: 10-25-2017	Во	ring Com	pleted:	10-26-2017
	No water observed during drilling Water observed at 61.5' after 1 hour.			0	Π	Dri	II Rig: Ti	rack	Dr	iller: A. M	oore	

_	BOI	RINGLO	GN	0.1	NB	5-1	2			F	Page	2 of 3
PR	ROJECT: Central Corridor Pipeline C350		CLIE				nergy nati, C					
SIT	TE: Hamilton County Cincinnati, Ohio											
DOG	LOCATION See Exploration Plan			(1)	VEL	YPE	(%)	s	ORY	(Isf)		ATTERB LIMIT
GRAPHIC LOG	Latitude: 39.2542° Longitude: -84.4215°	Surface Elev.: 57	0.6/51)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (%)	FIELD TEST RESULTS	LABORATORY HP (tsf)	UNCONFINED COMPRESSIVE STRENGTH (Isf)	WATER	LL-PL-
υ	DEPTH	ELEVATIO	10.000	-	N B	SA	R		-	20F	ö	
	<u>SANDY LEAN CLAY (CL)</u> , with silt, occasional sa gray, very stiff to hard (Glacial Till) (continued)	and seams,		-		Х	100	6-9-14 N=23	4.5+ (HP)			
			10-	- 35-	0.000							
						Х	100	5-8-12 N=20	2.5 (HP)		13	24-13-
				40-				4-8-13				
						Χ	100	N=21	3.0 (HP)			
				45-								
				Į		Χ	39	11-12-15 N=27	1.5 (HP)			
				50-								
				-		X	89	9-12-14 N=26	2.0 (HP)			
				55-		X	100	16-15-30 N=45	4.5+ (HP)		10	21-12
				1								
	Stratification lines are approximate. In-situ, the transition may be	radual.		60-			Hammer	Type: Automatic				
	llow Stem Auger dese used	Exploration and Te ription of field and I and additional data	laboratory a (If any).	proced	lures	N	lotes:					
Bor	donment Method: sym ing backfilled with cement-bentonite grout upon npletion.	Supporting Information bols and abbreviation		planatio	on of							
_	WATER LEVEL OBSERVATIONS	Gere	ac			Bo	ring Star	rted: 10-25-2017	Bo	ring Com	pleted:	10-26-20
V	Water observed at 61.5' after 1 hour.	II P C					II Rig: Ti			ller: A. Me		

	E	BORINGLO	GN	0.1	NE	3-1	2			F	Page	3 of 3
PF	OJECT: Central Corridor Pipeline C	350	CLIE									
Sľ	FE: Hamilton County Cincinnati, Ohio				SINC		nati, (JH				
GRAPHIC LOG	LOCATION See Exploration Plan Latitude: 39.2542° Longitude: -84.4215° DEPTH	Surface Elev.: 57 ELEVATI		DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (%)	FIELD TEST RESULTS	LABORATORY HP (tsf)	UNCONFINED COMPRESSIVE STRENGTH (tsf)	WATER CONTENT	ATTERBERG LIMITS LL-PL-PI
	60.8 <u>SANDY LEAN CLAY</u> , with silt and cobbles hard (Glacial Till)	gray, very stiff to	519	-		Х	100	16-34-35 N=69	2.5+ (HP)			
				65-		Χ	100	27-32-50/5"	4.5+ (HP)			
				70-		Χ	100	24-27-45 N=72	4.5+ (HP)			
	Cobbles/boulders encountered at 75 feet			75		X	100	50/3"				
	81.5 Boring Terminated at 81.5 Feet		498	-80 -		X	83	11-26-32 N=58	4.25 (HP)			
Ho Aban Bo	Stratification lines are approximate. In-situ, the transition r neement Method: low Stem Auger donment Method: ing backfilled with cement-bentonite grout upon npletion.	Nay be gradual. See Exploration and Te description of field and used and additional dat See Supporting Informa symbols and abbreviali	laboratory a (If any).	y proced	lures	_	Hamme lotes:	r Type: Automatic				
(13	WATER LEVEL OBSERVATIONS No water observed during drilling	Terr	90	0				arted: 10-25-2017	-			10-26-2017
<u> </u>	Water observed at 61.5' after 1 hour.	611 Lunk	en Park D nati, OH			-	ill Rig: 1	rack	Dri	iller: A. M	oore	_

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL N1175384 DUKE C350V PIPELINE.GPJ TERRACON DATATEMPLATE.GDT 6/21/18

PRO	OJECT: Central Corridor Pipeline C350			-	-	nergy	,			age	1 of 1
						nati, C					
SIT	E: Hamilton County Cincinnati, Ohio										
9010	LOCATION See Exploration Plan		(Ft.)	EVEL	TYPE	(%) X	EST TS	ORY f)	SSIVE H (tsf)	R T (%)	
GRAPHIC LOG	Latitude: 39.2263° Longitude: -84.438°	Surface Elev.: 573.5 (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (%)	FIELD TEST RESULTS	LABORATORY HP (tsf)	UNCONFINED COMPRESSIVE STRENGTH (tsf)	WATER CONTENT (%)	LL-PI
	DEPTH <u>FILL</u> , lean clay, trace sand, tannish brown with mottles	ELEVATION (Ft.) n orangish brown		-0	0	LL.			00		
			-		X	78	2-2-4 N=6	1.0 (HP)		22	
					X	89	4-6-8 N=14	3.0 (HP)		23	
	5.5	568	5-		X	94	3-4-4 N=8	2.75 (HP)		23 3	6-19-1
	FILL, trace gravel, with slag, black		-		X	33	5-3-4 N=7			19	
	8.5	565	-		X	5	2-2-1 N=3			18	
	SILTY SAND (SM), trace gravel, light brown, v	very loose	10-		X	100	0-2-1 N=3	0.25 (HP)		14	
	12.5 <u>LEAN CLAY (CL)</u> , with sand, trace gravel, brow gray, hard (Glacial Till)	561 vn to brownish			X	100	6-11-12 N=23	4.5+ (HP)		12 2	8-15-
			-	1	\square			1			
	16.5	557	15-		X	100	10-29-29 N=58	4.5+ (HP)		7	
	Boring Terminated at 16.5 Feet			1	ñ						
	Stratification lines are approximate. In-situ, the transition may	be gradual.				Hammer	Type: Automatic				
	w Stem Auger	See Exploration and Testing Prodescription of field and laborato used and additional data (If any)	y proced	dures	N	lotes:					
Borin		See Supporting Information for on symbols and abbreviations.	explanati	on of							
	WATER LEVEL OBSERVATIONS No water observed during drilling	Terrac	-		Bo	ring Star	ted: 12-03-2017	Bo	ring Comp	oleted:	12-03-2
Z	Water observed at 13.5' after 1 hour.	Dr		Dr	ill Rig: Tr	rack	Dri	iller: A. Mo	oore		

	BO	RING LO	GN	0.1	WE	3-1	4			1	Page	1 of 1
-	ROJECT: Central Corridor Pipeline C350		CLIE				nergy nati, C					
	Cincinnati, Ohio		1	-								
GRAPHIC LOG	LOCATION See Exploration Plan Latitude: 39.2781° Longitude: -84.3616°	Surface Elev.: 85	9.2(Ft)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (%)	FIELD TEST RESULTS	LABORATORY HP (tsf)	UNCONFINED COMPRESSIVE STRENGTH (Isf)	WATER CONTENT	LIMITS
U	DEPTH	ELEVATIO		5	NO BB	SA	R	æ	2	28F	ŏ	
A // (0.7 ASPHALT (8.75 inches) AGGREGATE BASE (3.25 inches)		858.5									_
	FILL, lean clay, with sand and iron concretions, to 2.5 olive-brown		856.5	4		Д	100	3-4-6 N=10	3.0 (HP)		17	
	LEAN CLAY, with silt, trace sand, light gray with mottles, medium stiff	olive-brown		1		Х	100	4-4-4 N=8	4.5+ (HP)		17	
	5.5		853.	5_		X	100	3-3-4 N=7	2.0 (HP)		27	
	LEAN CLAY, with silt, trace sand, dark brown wi very stiff	th gray, stiff to				X	100	7-7-8 N=15	4.25 (HP)	5	18	
	8.5		850.	1		X	94	4-8-10 N=18	3.75 (HP)	-	17	-
	LEAN CLAY (CL), with silt and sand, trace root I brown and gray with iron mottles, stiff to very stiff	nairs, mottled		10_		X	100	5-5-7-9 N=12	3.0 (HP)		17	36-17-19
	\			1		_						
	12.5 <u>LEAN CLAY</u> , with silt, trace sand, bluish-gray an medium stiff	d brown,	846.5				100	3-3-4 N=7	2.5 (HP)		26	
	15.0		84-	15_								
	LEAN CLAY, with sand, silt and large iron concr gravel, reddish-brown, very stiff	etions, trace		-			100	8-8-12 N=20	4.5+ (HP)		17	
				1								
	20.0 LEAN CLAY (CL), with sand, trace silt, medium brown, stiff 21.5	plasticity,	833	20_			100	4-4-5 N=9	4.5+ (HP)		24	48-19-29
	Boring Terminated at 21.5 Feet		057.									
	Stratification lines are approximate. In-situ, the transition may be	gradual.					Hammer	Type: Automatic			2	
		e Exploration and Te scription of field and				N	lotes:					_
Aban	donment Method: syr	ed and additional data e Supporting Informa nbols and abbreviatio	a (If any). tion for e	- 6.								
Bo	ing backfilled with cement-bentonite grout upon poletion race capped with asphalt. WATER LEVEL OBSERVATIONS	-	_	_		De	rine Of-	tod: 10.02.0047	10-	nne Der	uplote it	10 22 2043
	No water observed during drilling No water observed after drilling.	llerra		-	n	_	ill Rig: Tr	ted: 10-23-2017		iller: A. M		10-23-2017
	and the second	611 Lunke Cincinn	en Park D nati, OH	Dr		-		N1175384	U		JUIC	_

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL N1175384 DUKE C350V PIPELINE.GPJ TERRACON_DATATEMPLATE.GDT 6/2/1/8

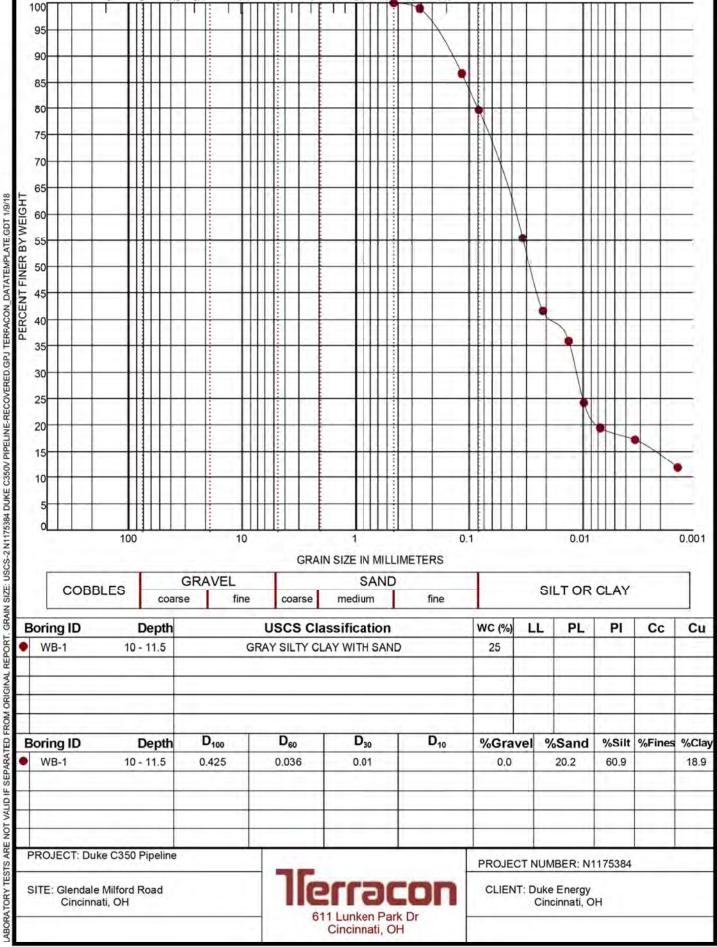
-	BORING LC	-	-	-	-					aye	1 of 1
PR SIT	OJECT: Central Corridor Pipeline C350	CLIE				nergy ati, C					
	Cincinnati, Ohio		_		_						ATCODE
GRAPHIC LOG	LOCATION See Exploration Plan Latitude: 39.2686° Longitude: -84.3768° Approximate Surface Elev: 833 DEPTH ELEVAT	10 A A A A	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (%)	FIELD TEST RESULTS	LABORATORY HP (tsf)	UNCONFINED COMPRESSIVE STRENGTH (Isf)	WATER CONTENT	LIMITS
14: 1	0.6 TOPSOIL (6 inches)	834.5+/-	-		\bigvee	89	0-3-3	2.0		18	
	LEAN CLAY (CL), with sand, trace gravel, brown, medium stiff		107		\mathcal{A}		N=6	(HP)		10	
	3.0	832+/-	-		X	67	1-2-4 N=6	2.0 (HP)		19	32-17-1
	LEAN CLAY (CL), with sand, trace gravel, brown to olive-brown, stiff to very stiff (Glacial Till)		-		X	100	4-7-7 N=14	3.5 (HP)		16	
	6.0	829+/-	5		X	100	4-5-7 N=12	3.75 (HP)		17	34-18-1
	LEAN CLAY, with sand, with iron oxide stains and concretions, brown to reddish brown, stiff to very stiff	GEUT	1		X	100	5-6-8 N=14	4.0 (HP)		14	
					X	100	4-6-9 N=15	4.5+ (HP)		19	
			10-		X	100	3-5-6 N=11	3.75 (HP)		21	
	14.0 <u>LEAN CLAY (CL)</u> , medium plasticity, brown with gray mottles, very stiff to hard	821+/-			X	94	4-7-11 N=18	4.5+ (HP)		16	46-20-2
	19.0 LEAN CLAY, with limestone fragments, medium plasticity, olive-brown, hard (Residuum)	816+/									
	21.5	813.5+/-		Ì	X	100	9-10-15 N=25	4.5+ (HP)		20	
Holl Aband Bori	Boring Terminated at 21.5 Feet Stratification lines are approximate. In-situ, the transition may be gradual. cement Method: ow Stem Auger See Exploration and To description of field and used and additional da conment Method: ng backfilled with cement-bentonite grout upon pletion. See Supporting Inform symbols and abbreviation	laborator ta (If any). ation for e	proced	lures	_	Hammer	Type: Automatic				
	WATER LEVEL OBSERVATIONS			-	Во	ring Star	ted: 01-19-2018	Boi	ring Com	pleted:	01-19-201
	No water observed during drilling No water observed after drilling		.0		Dri	II Rig: Tr	ack	Dri	ller: P. Pa	attison	_
		ken Park D Inati, OH	4				N1175384				

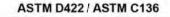
-	OJECT: Central Corridor Pipeline C350	CLIE				nergy ati, C					
SIT	E: Hamilton County Cincinnati, Ohio		÷.				-				
GRAPHIC LOG	LOCATION See Exploration Plan Latitude: 39.2524° Longitude: -84.3944° Surface Elev.: 862 DEPTH ELEVATIO		DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (%)	FIELD TEST RESULTS	LABORATORY HP (tsf)	UNCONFINED COMPRESSIVE STRENGTH (tsf)	WATER CONTENT (%)	LIMIT
h <u>r: .3</u>	0.5 TOPSOIL (6 inches) LEAN CLAY, with silt, trace sand and root hairs,	861.5	_		X	94	2-2-2 N=4	1.5 (HP)		27	
	1.5 tannish-brown, stiff LEAN CLAY (CL), with silt and sand, trace black concretions, brown with light gray striations, hard	000.5	-		X	100	4-7-10 N=17	4.5+ (HP)		16 3	0-17-1
					X	100	5-10-14 N=24	4.5+ (HP)		15	
			5-		X	94	7-8-7 N=15	4.25 (HP)		31	
			_		X	89	5-7-11 N=18	4.0 (HP)		18 4	1-21-2
	7.7 <u>LEAN CLAY</u> , with silt and sand, trace iron concretions, tannish-brown and light gray striations, hard (Residuum)	854.5	-		X	89	21-11-15 N=26	4.5+ (HP)		8	
		10	- 10-		X	72	13-15-14 N=29	4.5+ (HP)		14	
			-								
Ţ	13.4 INTERBEDDED SHALE AND LIMESTONE Shale: Moderately weathered, very weak, olive-brown 15.0 Limestone: Unweathered, strong, light gray	<u>848 5</u> 847			X	100	32-50/4"	4.5+ (HP)			
	INTERBEDDED SHALE AND LIMESTONE Shale: Slightly weathered, very weak, olive-brown to gray Limestone: Unweathered, strong, light gray	847	-	-	\sim	100	.50/5"				
T	20.2	842	20-								
	Boring Terminated at 20.2 Feet	842 2				100	50/2"	<u> </u>			
	Stratification lines are approximate. In-situ, the transition may be gradual. cement Method: ow Stem Auger See Exploration and Tes description of field and la used and additional data	aboratory			_	lammer otes:	Type: Automatic				
Bori	onment Method: See Supporting Information symbols and abbreviation pletion.		kplanatio	on of							
WATER LEVEL OBSERVATIONS No water observed during drilling				n			ted: 10-25-2017	-	ing Comp		10-25-20
	No water observed after drilling. 611 Lunke	n Park D ati, OH	r			II Rig: Tr	ack N1175384	Dri	ler: A. Mo	oore	

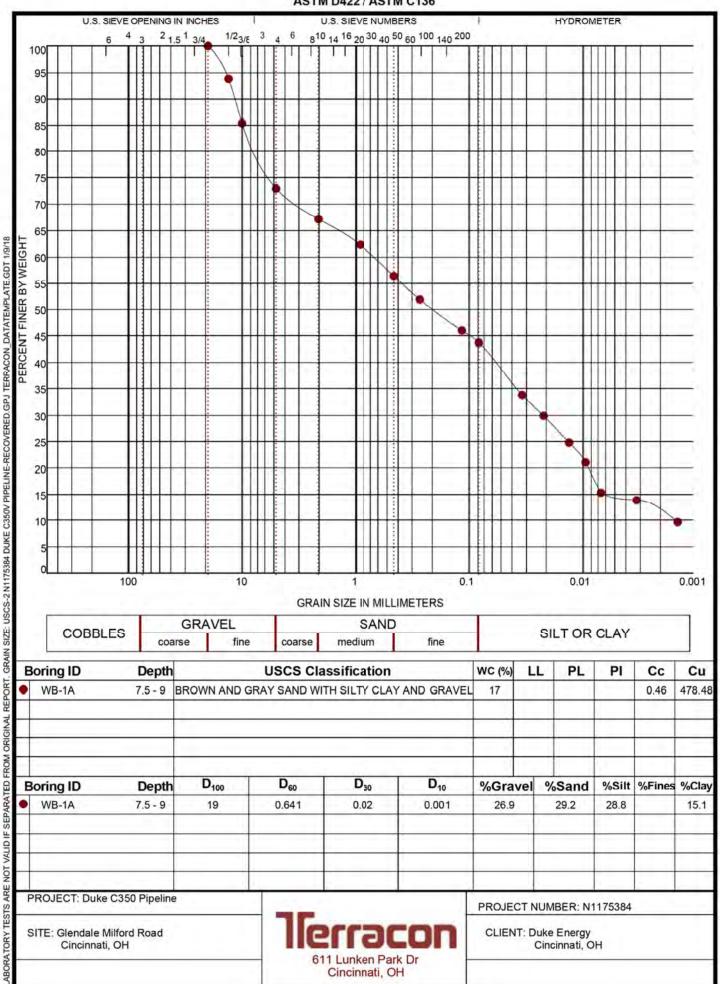
PR	OJECT: Central Corridor Pipeline C350	CLIE	NT: I	Duk	e E	nergy			•	aye	1 of 1
SIT	E: Hamilton County					ati, C					
GRAPHIC LOG	Cincinnati, Ohio LOCATION See Exploration Plan Latitude: 39.2112° Longitude: -84.4457° Surface Elev.: 575 DEPTH ELEVATIO	A	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (%)	FIELD TEST RESULTS	LABORATORY HP (tsf)	UNCONFINED COMPRESSIVE STRENGTH (ISf)	WATER	ATTERBER LIMITS
_	FILL, lean clay, with gravel, trace brick fragments and cinders, brown and black				X	100	6-24-23 N=47	2.0 (HP)		7	
			-		$\left \right\rangle$	78	6-20-16 N=36	4.0 (HP)	j	21	27-18-9
					\overline{X}	22	6-4-3 N=7	0.5 (HP)		12	
	6.0	569	5 -		X	11	2-1-2 N=3	0.50 (HP)		18	
	POORLY GRADED SAND (SP), with silt and clay, brown trace gray, medium dense	203	1 - P		X	53	2-4-14 N=18			14	
	9.0	566	-		X	44	8-7-11 N=18			16	
	LEAN CLAY (CL), with sand, trace gravel, gray and brown, medium stiff to very stiff (Glacial Till)		-10		X	53	4-2-4 N=6	1.5 (HP)		15	
		l	15-		17		700				
	16.5 Boring Terminated at 16.5 Feet	558.6			Х	89	7-9-8 N=17	3.5 (HP)		14	26-15-1
Holle bande Bori	Stratification lines are approximate. In-situ, the transition may be gradual. cement Method: ow Stem Auger comment Method: ng backfilled with cement-bentonite grout upon pletion.	l laboratory ta (If any). ation for ex	proced	lures	_	Hammer lotes:	Type: Automatic				
JUII	WATER LEVEL OBSERVATIONS	ac		n	Bo	ring Sta	rted: 12-05-2017	Bo	ring Com	pleted:	12-07-2017
	No water observed at 2.5 hours after drilling 611 Lunk	ken Park Dr	-			II Rig: T	rack .: N1175384	Dri	ller: R. M	ann	_

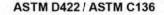
	BORING LC	1			-				F	Page	1 of 1
PR	OJECT: Central Corridor Pipeline C350	CLIE				ati, O					
SIT	E: Hamilton County Cincinnati, Ohio										
GRAPHIC LOG	LOCATION See Exploration Plan Latitude: 39.1946° Longitude: -84.4528° Surface Elev.: 5		DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (%)	FIELD TEST RESULTS	LABORATORY HP (tsf)	UNCONFINED COMPRESSIVE STRENGTH (tsf)	WATER CONTENT (%)	LIMIT
14 <u>1</u>	DEPTH ELEVAT	10N (Ft.) 597			$\overline{\mathbf{A}}$		3-6-6	4.5+			
	FILL, lean clay, with sand, trace root hairs and cinders, dark gray				\langle	100 83	N=12 4-4-5	(HP) 2.25		19 30	
					X	89	N=9 5-4-4 N=8	(HP) 1.0 (HP)		28 3	3-21-1
	4.5 <u>LEAN CLAY (CL)</u> , with sand, orange-brown with gray mottles, stiff to very stiff	593	5-		X	94	2-2-4 N=6	1.0 (HP)		30	
					X	83	4-6-9 N=15	3.0 (HP)		25	
					X	100	9-6-7 N=13	2.5 (HP)		23	
			10-		X	100	5-5-7 N=12	2.5 (HP)		24 4	8-20-2
					X	72	4-5-6 N=11	3.5 (HP)		24	
	15.0 LEAN CLAY (CL), with sand, gravel, iron oxide stains and cobbles, gray and orange-brown, hard (Glacial Till) 16.5 Boring Terminated at 16.5 Feet	582.5 581	15		X	89	4-4-20 N=24		6	23	26-17
Holle Abande Bori	Stratification lines are approximate. In-situ, the transition may be gradual. cement Method: iow Stem Auger lonment Method: ing backfilled with cement-bentonite grout upon npletion. WATER LEVEL OBSERVATIONS	d laboratory ta (If any). tation for ex tions.	proced	dures	No	otes:	Type: Automatic				
	No water observed during drilling	ac		n	-	ing Star	ed: 12-03-2017	-	ller: A. Me		12-03-20
	No water observed after drilling.	ken Park D	-			rug. Th	uvn.	Un	NGL AL IVIO	JUIE	

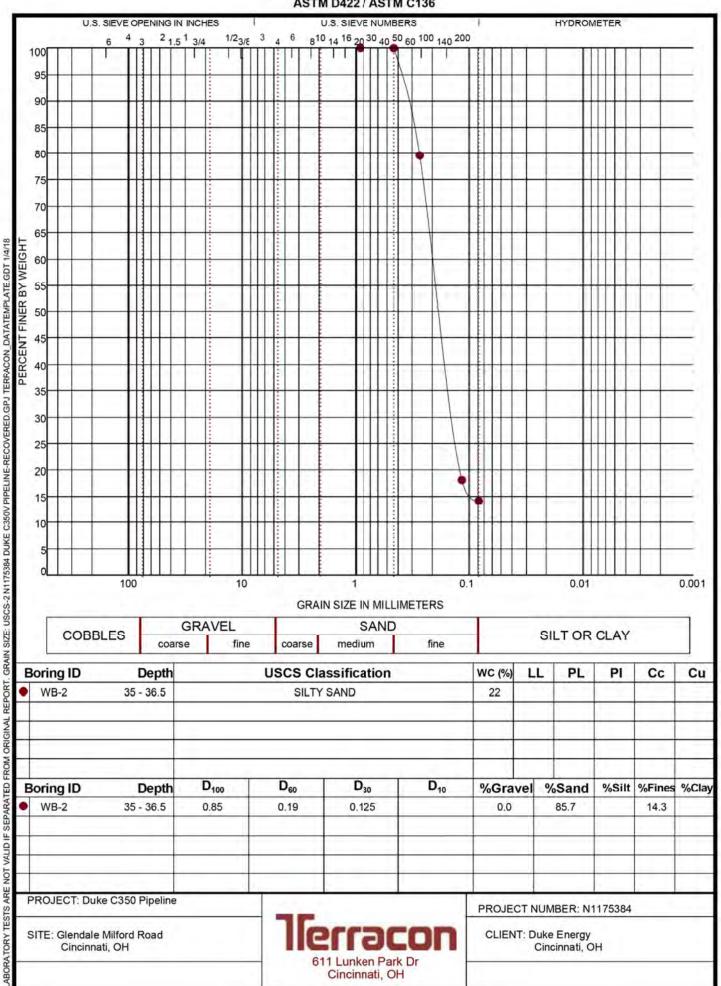
PR	OJECT: Central Corridor Pipeline C350	CLI									
511	E: Hamilton County Cincinnati, Ohio										
GRAPHIC LOG	LOCATION See Exploration Plan Latitude: 39.1934° Longitude: -84.453° Surfac	26 Elev.: 596.6 (Ft.) ELEVATION (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (%)	FIELD TEST RESULTS	LABORATORY HP (tsf)	UNCONFINED COMPRESSIVE STRENGTH (Isf)	WATER CONTENT	LIMITS
	LEAN CLAY (CL), trace gravel and iron concretions, gra trace brown, medium stiff to stiff				X	100	10-13-7 N=20	3.75 (HP)		21	
			-	V	X	100	7-6-6 N=12	1.5 (HP)		25	
			-		X	83	3-2-3 N=5	1.0 (HP)		26	45-21-2
			5-		X	100	4-5-6 N=11	2.0 (HP)		20	
					X	100	4-4-6 N=10	2.75 (HP)		20	48-16-3
			-		X	100	4-5-7 N=12	1.75 (HP)		21	
			10-		X	100	4-5-5 N=10	1.75 (HP)		21	
	12.5 <u>LEAN CLAY (CL)</u> , with sand, trace iron concretions, 13.3 reddish-brown, stiff <u>LEAN CLAY (CL)</u> , with sand, gravel and cobbles, brown gray, hard (Glacial Till)	583. 1 with	1		X	100	3-2-9 N=11	1.75 (HP)		21	39-16-
	15.4	58			_	100	50/5"			7	
	Boring Terminated at 15.4 Feet		15								
	Stratification lines are approximate. In-situ, the transition may be gradual.				_		Type: Automatic				
Holl	ow Stem Auger description o used and add See Supporti	tion and Testing P of field and laborate ditional data (If any ting Information for	pry proce	dures	N	lotes:					
Bori	Ionment Method: symbols and ing backfilled with cement-bentonite grout upon apletion.	l abbreviations.									
	WATER LEVEL OBSERVATIONS No water observed during drilling	erra	-0	n	H	oring Star	ted 12-02-2017	-			12-02-201
	Water observed at 2' after 1 hour.	611 Lunken Park	_		Dr	in rug; If	aux	Un	ller: A. Me	oure	

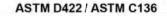

PRO	OJECT: Central Corridor Pipeline C3	CLIENT: Duke Energy Cincinnati, OH										
SIT	E: Hamilton County Cincinnati, Ohio											
2	LOCATION See Exploration Plan Latitude: 39,1784° Longitude: -84,4544°	Surface Elev.: 596	5.8 (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (%)	FIELD TEST RESULTS	LABORATORY HP (tsf)	UNCONFINED COMPRESSIVE STRENGTH (tsf)	WATER CONTENT (%)	LIMI
	DEPTH D.2.\ASPHALT (3 inches)	ELEVATIO	ON (Ft.)		-0					00		
Ivance Borin Surfa	FILL, silt, with sand, gravel and cinders, s grayish-brown	some clay,				X	100	4-5-5 N=10	3.75 (HP)		18	
				-		X	89	6-8-8 N=16	3.5 (HP)		17	
				5 -		X	94	8-6-4 N=10	1.75 (HP)		22	
						X	100	5-8-12 N=20	1.5 (HP)		14 2	5-15-1
				-		X	100	4-4-4 N=8	0.5 (HP)		22	
				-		X	67	2-2-4 N=6	0.5 (HP)		20	
			- 1	10-								
	2.0 LEAN CLAY (CL), with cobbles and sand, trace gravel, gray hard (Glacial Till)		585			X	100	11-12-17 N=29	4.5+ (HP)		12	
				15		\square		11-20				
				-		X	100	14-28-22 N=50	4.5+ (HP)		11	
				1								
	21.5		575.5	- 20- -		X	100	11-15-19 N=34	3.75 (HP)		13 2	6-15-1
	Boring Terminated at 21.5 Feet											
	Stratification lines are approximate. In-situ, the transitio	n may be gradual.		_	<u> </u>	L	Hammer	Type: Automatic		I		
vanc Hollo	ement Method: ww Stem Auger	See Exploration and Tes description of field and I used and additional data	aboratory a (If any).	proced	lures	N	lotes:					
ando Borin	onment Method: ng backfilled with cement-bentonite grout upon pletion. ace canned with asphalt	See Supporting Informal symbols and abbreviatio		planatio	on of							
7	WATER LEVEL OBSERVATIONS	75		_		Bo	ring Sta	rted: 12-02-2017	Bor	ring Comp	oleted:	12-02-2
7	Water observed at 17' during drilling	lerra	DC		Π	Dr	ill Rig: Ti	rack	Dri	ller: A. Mo	oore	
-	Water observed at 7.2' after 1 hour.	611 Lunke						N1175384				

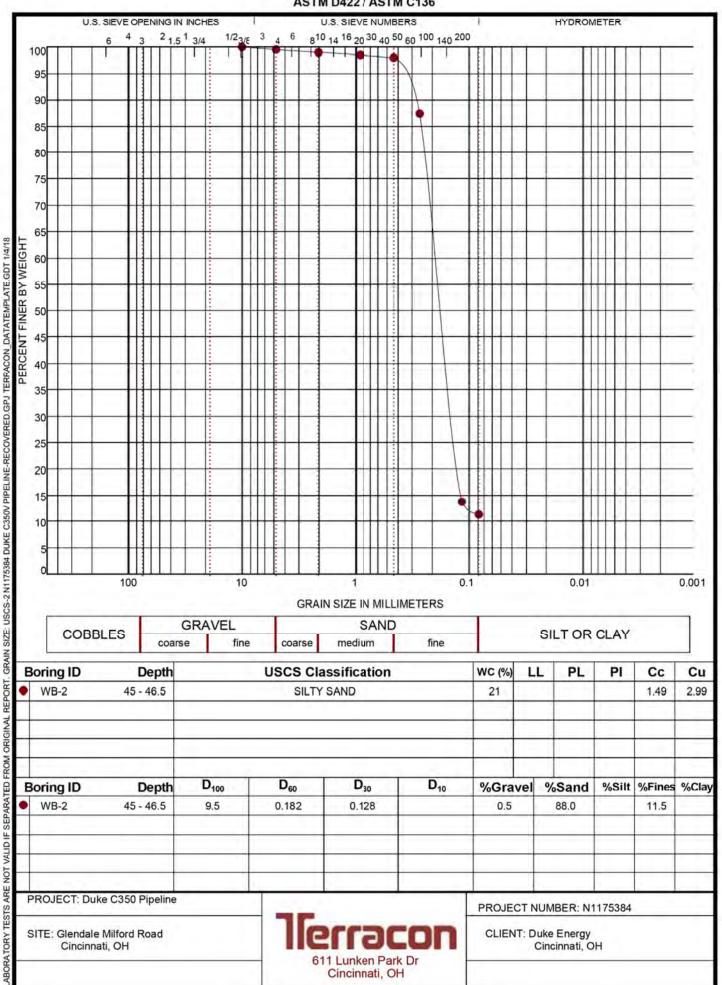

	ROJECT: Central Corridor Pipeline C350	CLIE	CLIENT: Duke Energy Cincinnati, OH											
SIT	TE: Hamilton County Cincinnati, Ohio													
GRAPHIC LOG	LOCATION See Exploration Plan Latitude: 39.2592° Longitude: -84.3805° Surface Elev.: DEPTH ELEVA	837.1 (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (%)	FIELD TEST RESULTS	LABORATORY HP (tsf)	UNCONFINED COMPRESSIVE STRENGTH (tsf)	WATER CONTENT (%)	LIMI			
	<u>103</u> TOPSOIL (4 inches) <u>AGGREGATE (2 inches)</u> <u>FAT CLAY (CH)</u> , with sand and silt, trace small gravel,	837			X	78	7-5-5 N=10	3.75 (HP)		19				
	olive-brown with reddish iron mottles, stiff to very stiff		-		X	89	4-6-6 N=12	2.75 (HP)		23				
					X	100	6-7-10 N=17	3.25 (HP)		26				
			5-		X	100	4-5-8 N=13	3.0 (HP)		26 6	0-24-3			
			-		X	100	4-7-8 N=15	3.25 (HP)		27				
			-		X	100	5-6-8 N=14	2.5 (HP)		23 5	7-21-3			
	9.8 FAT CLAY, with silt, tannish-brown with gray and orange-brown striations, hard (Residuum)	827.5	10-		X	100	11-8-12 N=20	4.5+ (HP)		19				
					X	89	34-30-28 N=58	4.5+ (HP)		15				
	15.8 16.4 Shale: Slightly weathered, very weak, gray Limestone: Unweathered, strong, light gray Boring Terminated at 16.4 Feet	821.5 <u>820.5</u>	15-	V	X	64	16-35-50/5"							
	Stratification lines are approximate. In-situ, the transition may be gradual. ncement Method: low Stem Auger See Exploration and description of field a used and additional of	nd laboratory			_	Hamme otes:	r Type: Automatic							
Bori	donment Method: ring backfilled with cement-bentonite grout upon mpletion.	mation for ex	planatio	on of										
7	WATER LEVEL OBSERVATIONS No water observed during drilling Water observed at 16 1' after 1 hour	ЭС	0	Π	-	ring Sta II Rig: T	arted: 10-24-2017 Track	-	Boring Completed: 10-24-2 Driller: A. Moore					
V	Water observed at 16.1' after 1 hour. 611 Lu	Inken Park D cinnati, OH	-		-		rack	Dril	ler: A. Mo	oore				

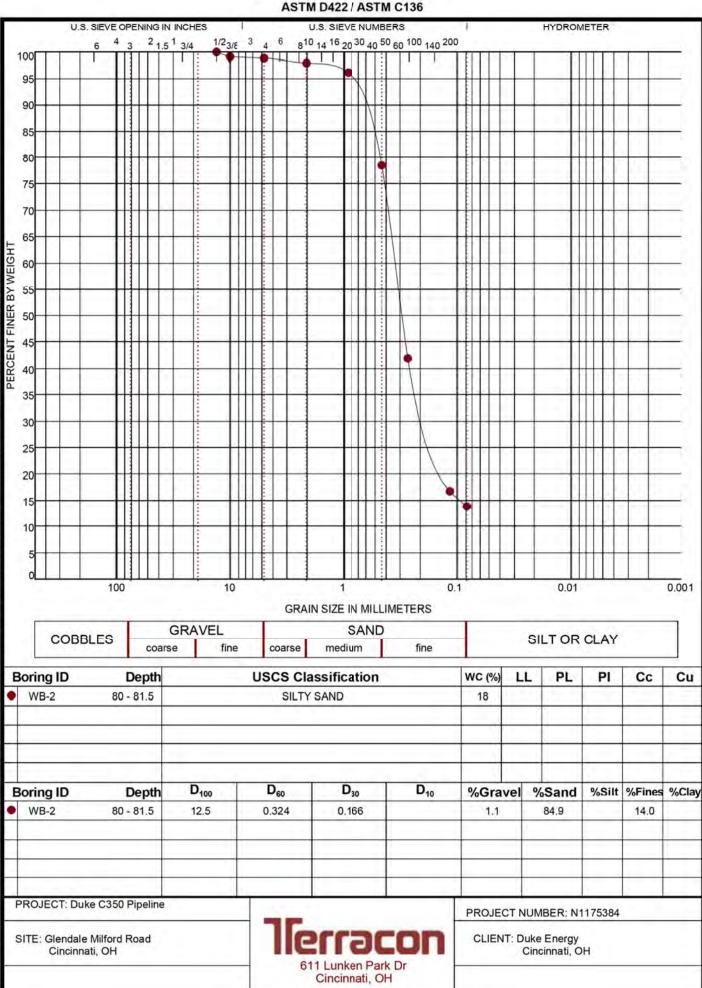

PR	BORING LO	1				-	v		F	age	1 of 1		
		CLIENT: Duke Energy Cincinnati, OH											
SIT	E: Hamilton County Cincinnati, Ohio												
CLOG	LOCATION See Exploration Plan Latitude: 39.2158° Longitude: -84.4438°		(Ft.)	ATIONS	TYPE	RY (%)	IEST LTS	TORY sf)	FINED SSSIVE TH (tsf)	ER VT (%)			
GRAPH	Surface Elev	.: 561 (Ft.) TION (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (%)	FIELD TEST RESULTS	LABORATORY HP (tsf)	UNCONFINED COMPRESSIVE STRENGTH (tsf)	WATER CONTENT (%)	LL-PL-I		
	FILL, lean clay, trace sand, with shale, rock and limestone fragments, gray with brown						_	1					
×.			-		X	33	3-5-5 N=10						
			4		X	100	3-3-3 N=6						
			5 -		X	44	10-9-4 N=13						
X	7.0	554	-		X	50	4-3-4 N=7						
	FILL, sandy lean clay, with rock fragments, black to brown with iron concretions, black to brown with iron concretions		-		X	100	3-14-14 N=28						
			- 10-		X	100	7-6-3 N=9	3.5 (HP)		18 3	0-17-13		
	13.5 SILTY CLAY (CL-ML), with sand, brown, medium stiff to very stiff	547.5			X	27	2-3-5 N=8						
	Rock fragments encountered at 18.5 feet 20.0 Boring Terminated at 20 Feet	541			X	100	3-5-8 N=13	3.0 (HP)		11	21-13		
	Stratification lines are approximate. In-situ, the transition may be gradual.				,	Hammer	Type: Automatic	,					
	sement Method: See Exploration and description of field a used and additional See Support International Internati	nd laborator data (If any).	y proced	lures	N	lotes:		_					
Borir	onment Method: ng backfilled with cement-bentonite grout upon pletion.		Aplanati	511 01									
⊻_	WATER LEVEL OBSERVATIONS Water observed at 13.5' during drilling	190	-		Bo	ring Sta	rted:05-07-2018	Bo	ring Com	pleted: (05-07-201		
		I CIL			Dri	ill Rig: T	rack	Dri	ller: R. M	ann			
		cinnati, OH		· · ·	Pre	oject No	: N1175384						

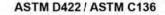

GRAIN SIZE DISTRIBUTION ASTM D422 / ASTM C136 U.S. SIEVE NUMBERS HYDROMETER U.S. SIEVE OPENING IN INCHES 1/23/8 4 2 1.5 1 3 6 810 14 16 20 30 40 50 60 100 140 200 3/4 4 L

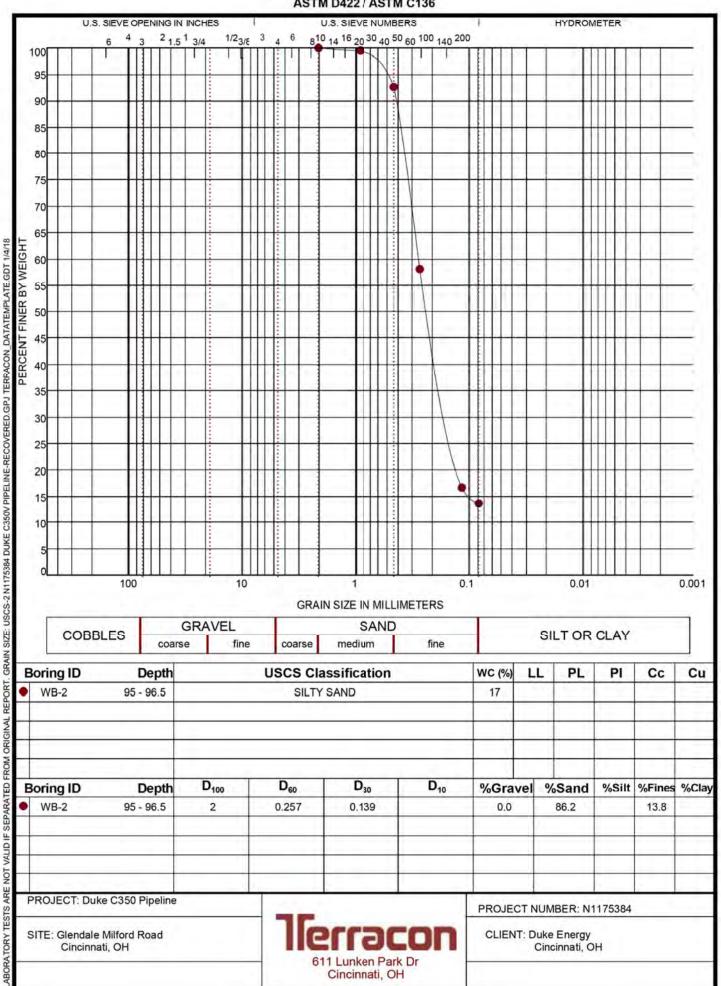

6

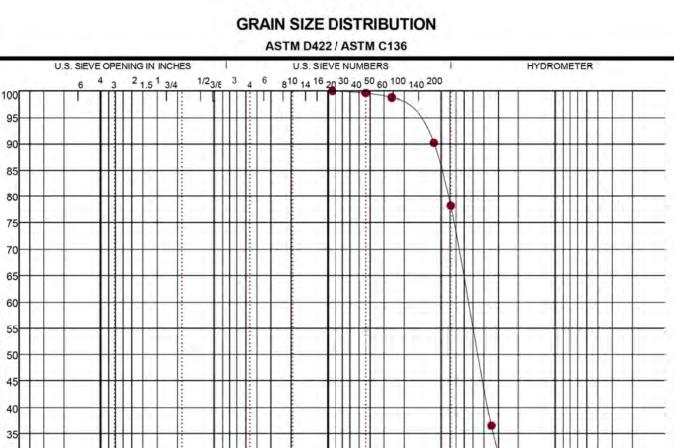




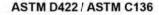


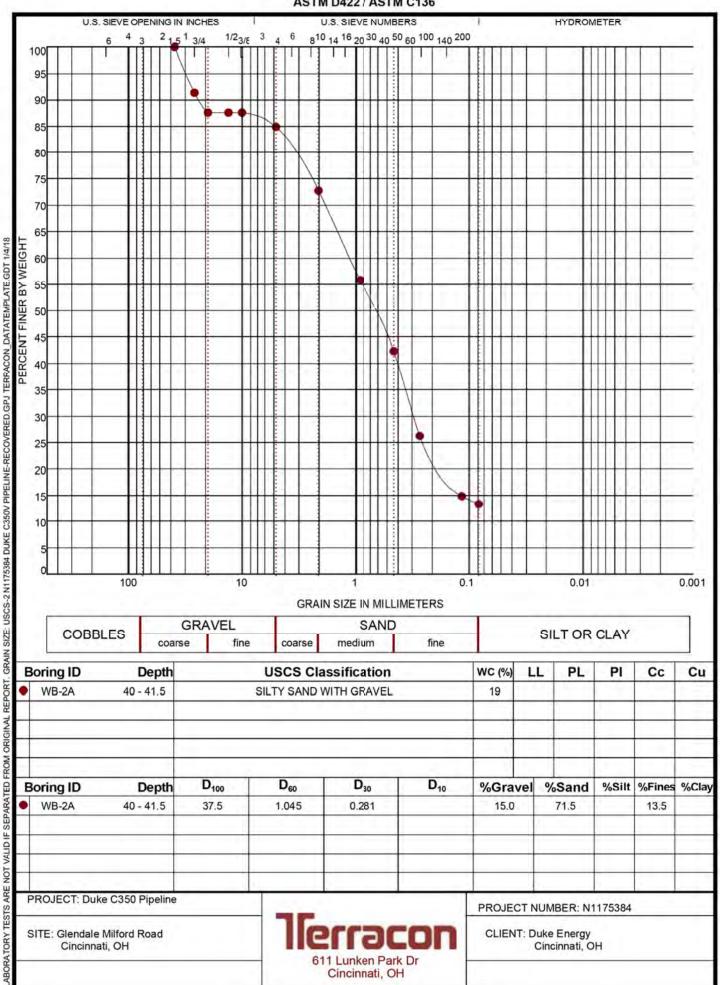


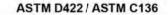


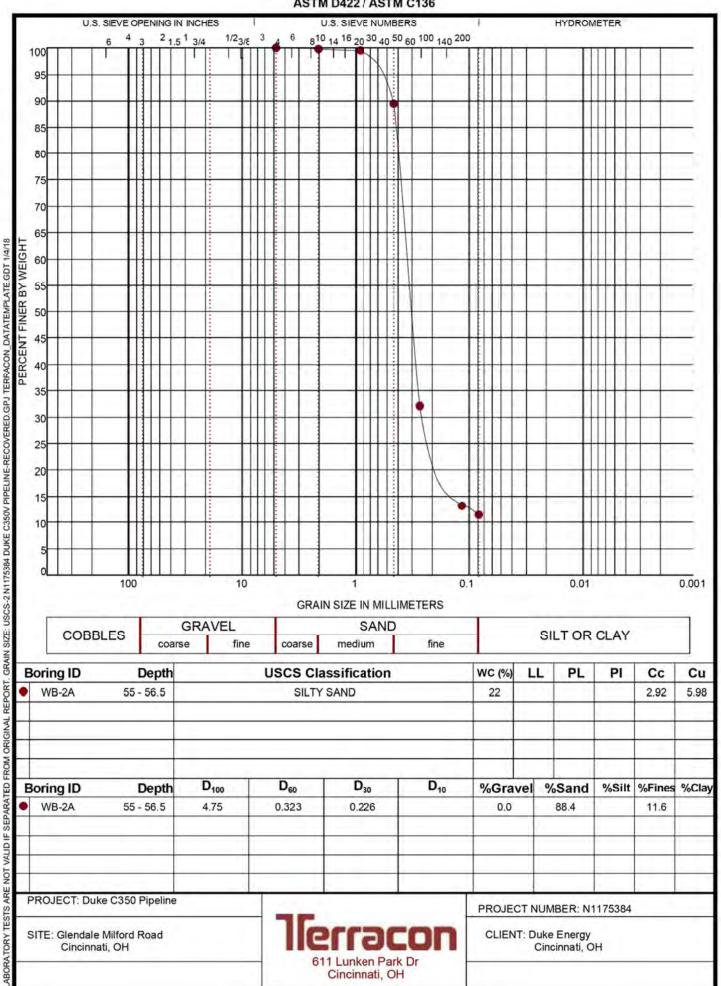


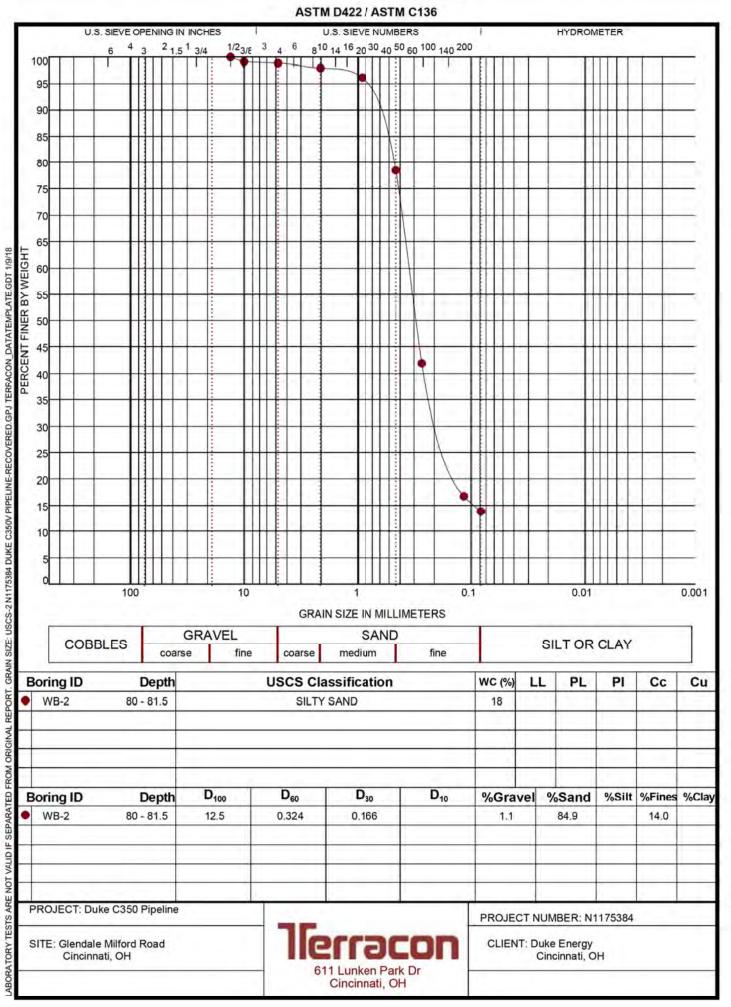
ABORATORY TESTS ARE NOT VALID IF SEPARATED FROM ORIGINAL REPORT, GRAIN SIZE: USCS-201175384 DUKE C350V PIPELINE-RECOVERED.GPJ TERFACON. DATATEMPLATE.GDT 1/4/18

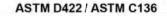


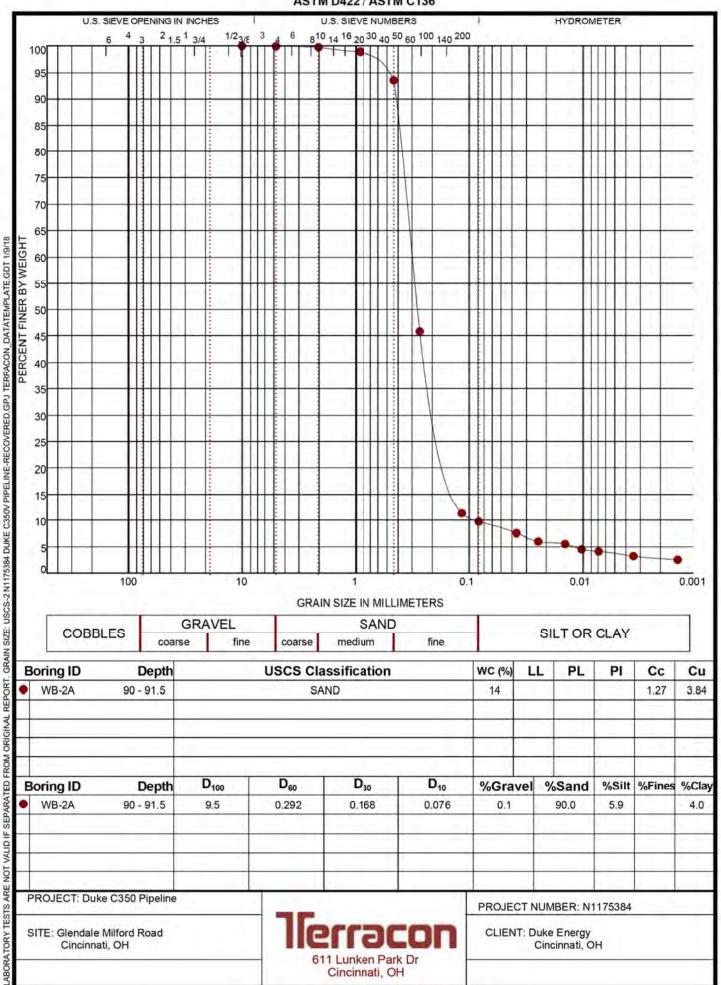


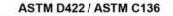


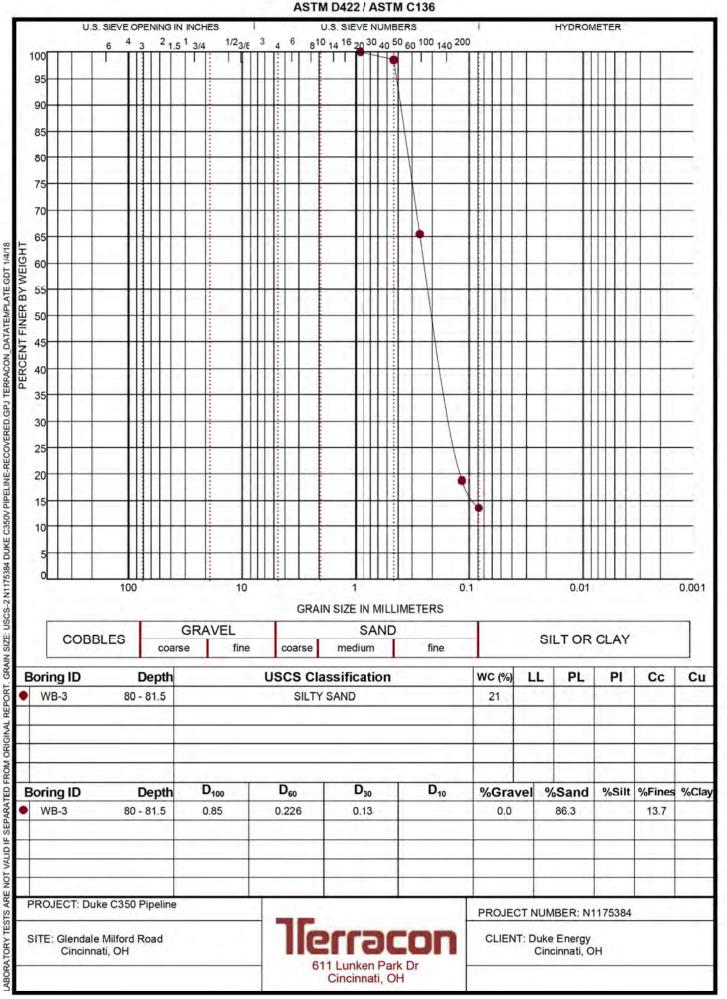

LABORATORY TESTS ARE NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GRAIN SIZE: USCS-201175384 DURE C350V PIPELINE-RECOVERED.GPJ TERFACON_DATATEMPLATE.GDT 1/9/18 (

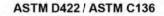

65									+								-	
60 55																	Ξ.	
50						1.1.1			Щ	1	11							
45								-	╫				-			+ +-	=)	
40													7				-	
35									Ť	-			T					
30 25																		
20								_									_	
15								_	+				-	•			-	
10									╈						•			
5									Ħ									
		100			10		GRAI	1 N SIZE	IN M			0.1		0.01			0.001	
	со	BBLES		GRAVE				1	SAN			SILT OR CLAY						
-	ing ID		coars	se	fine	-	parse	medi	_		fine	WC (%)	LL	. PL	PI	Cc	Cu	
_	ing ID VB-2A		Depth 35 - 36.5				GRAY SILT WITH					18		. PL	PI	1.78	6.99	
								_										
	ing ID VB-2A		Depth 36.5	D ₁₀₀		D, 0.0) ₃₀ 026		D ₁₀	%Gra		%Sand 21.7	%Silt 68.7	%Fines	%Cla 9.6	
V	VB-ZA	- 35	30.5	0.05		0.0	52	0.0	120		0.007	0.0		21.7	00.7		9.0	
Ī					-				_	-		-						
PRO	DJECT:	Duke C350 F	Pipeline				_											
		dale Milford F				٦	6	rr			on	CLIEN		JMBER: N			-	
		innati, OH	2005		_		61	11 Lunk	ken F	Park	Dr		C	incinnati, C	н			
								Cincin	nati	, OH								

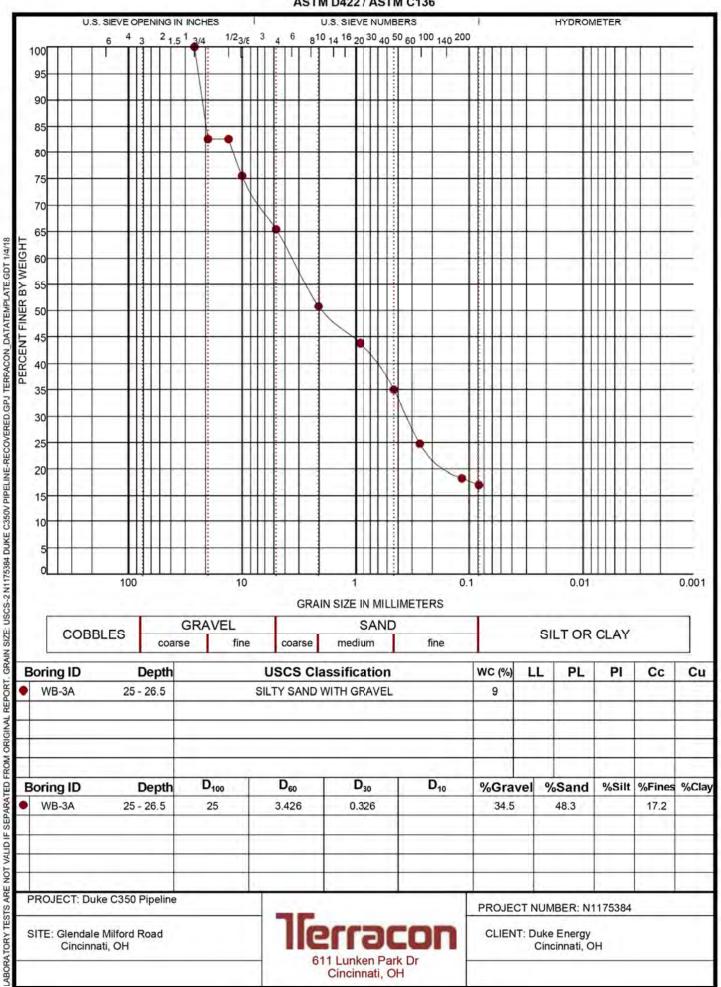


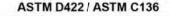


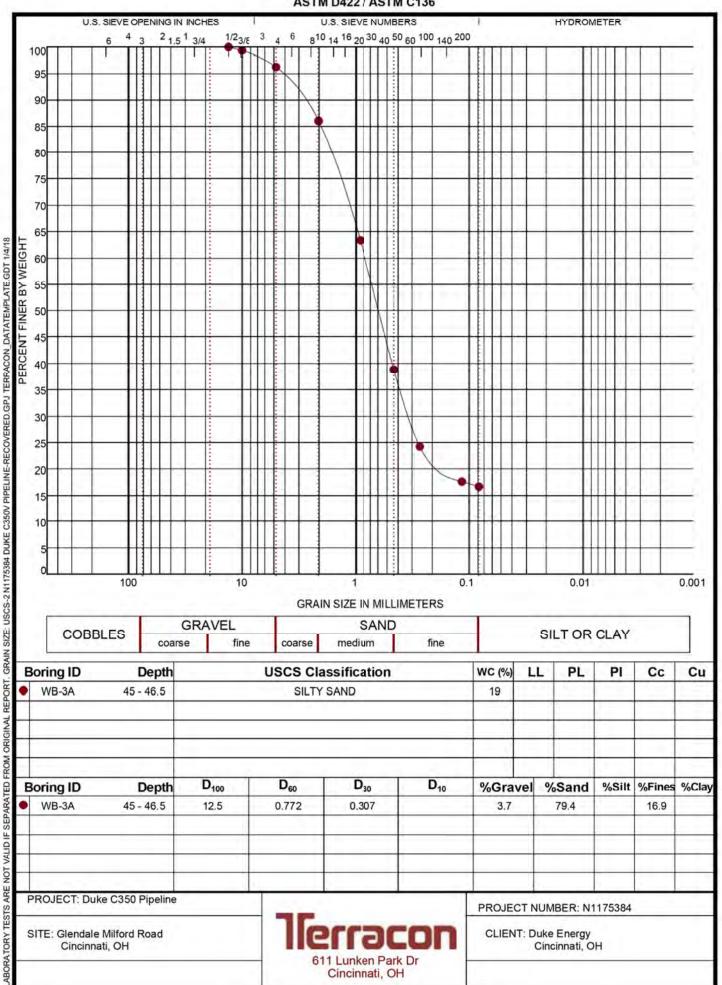


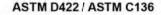


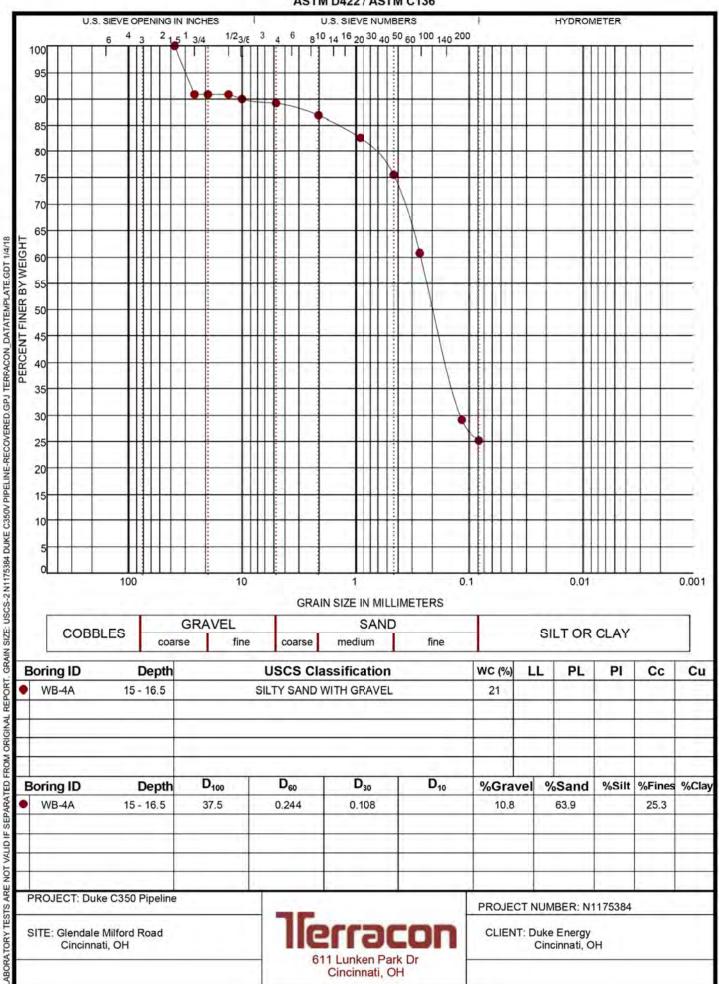


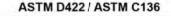


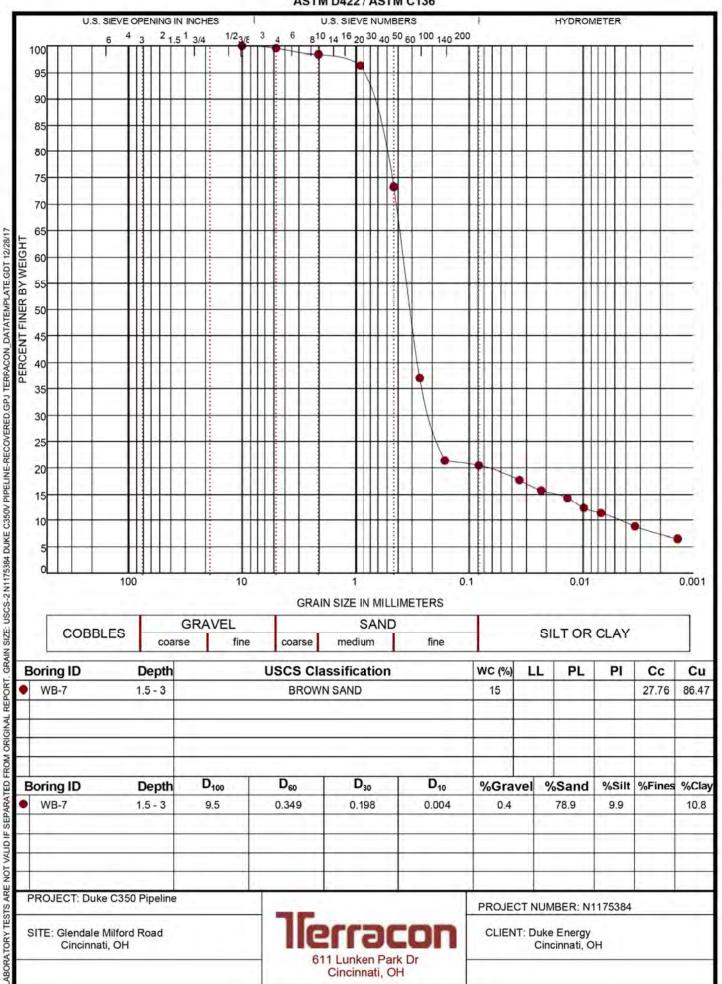


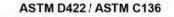


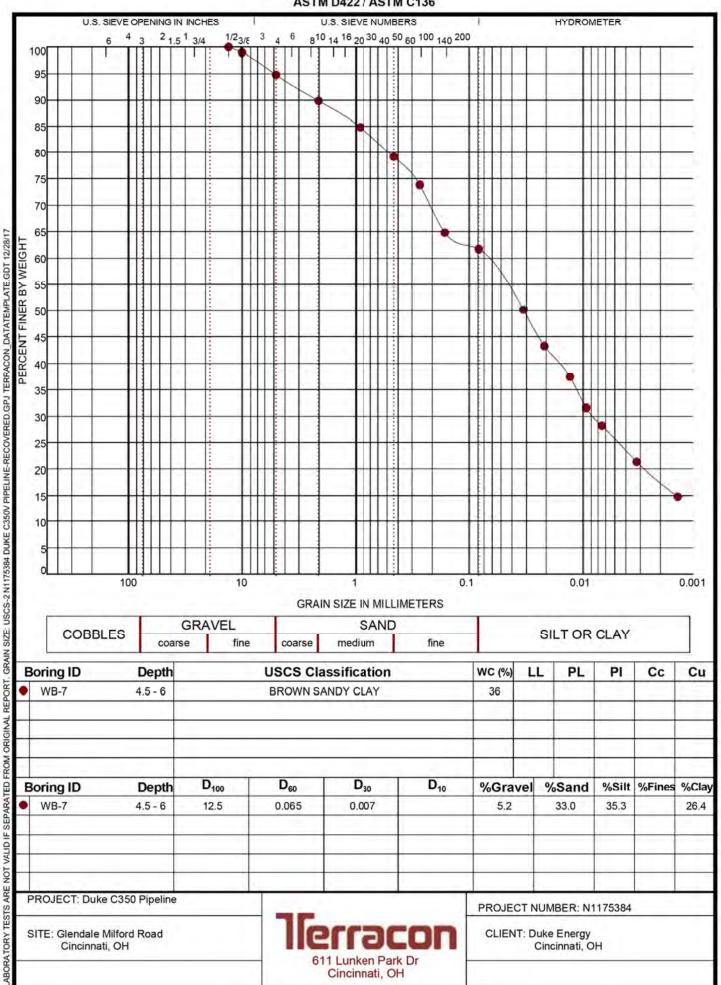


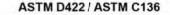


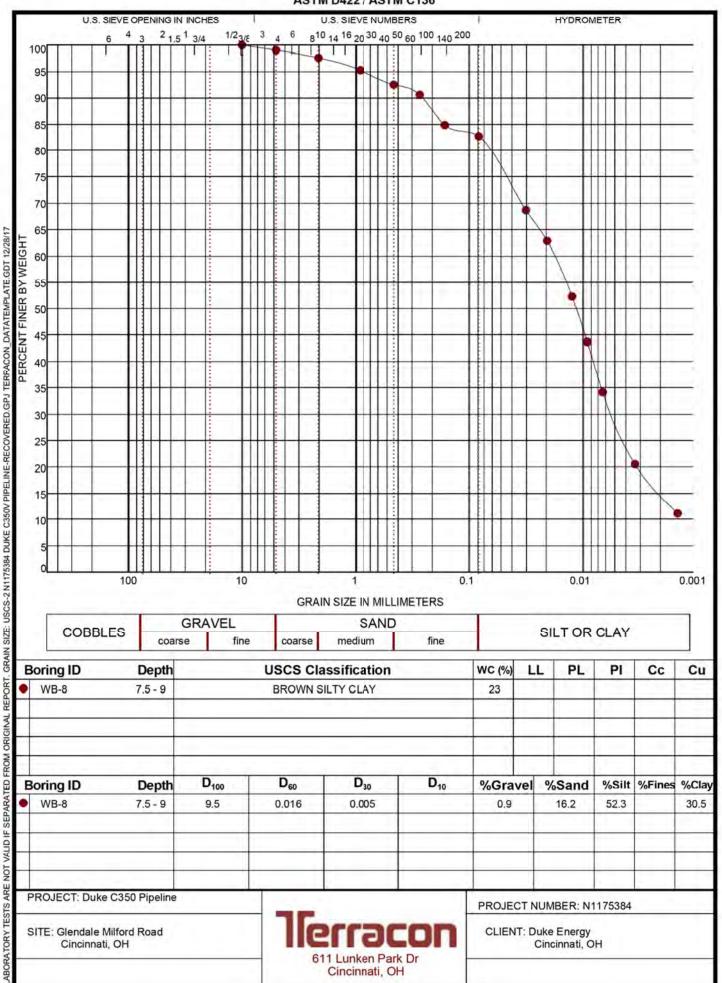


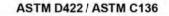


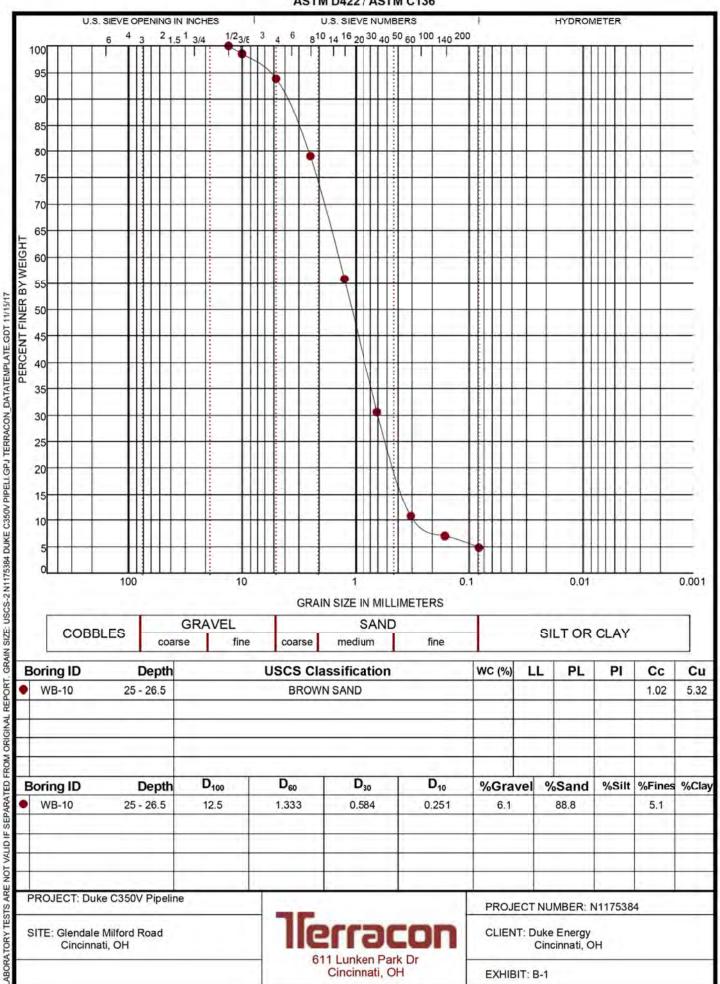


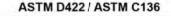


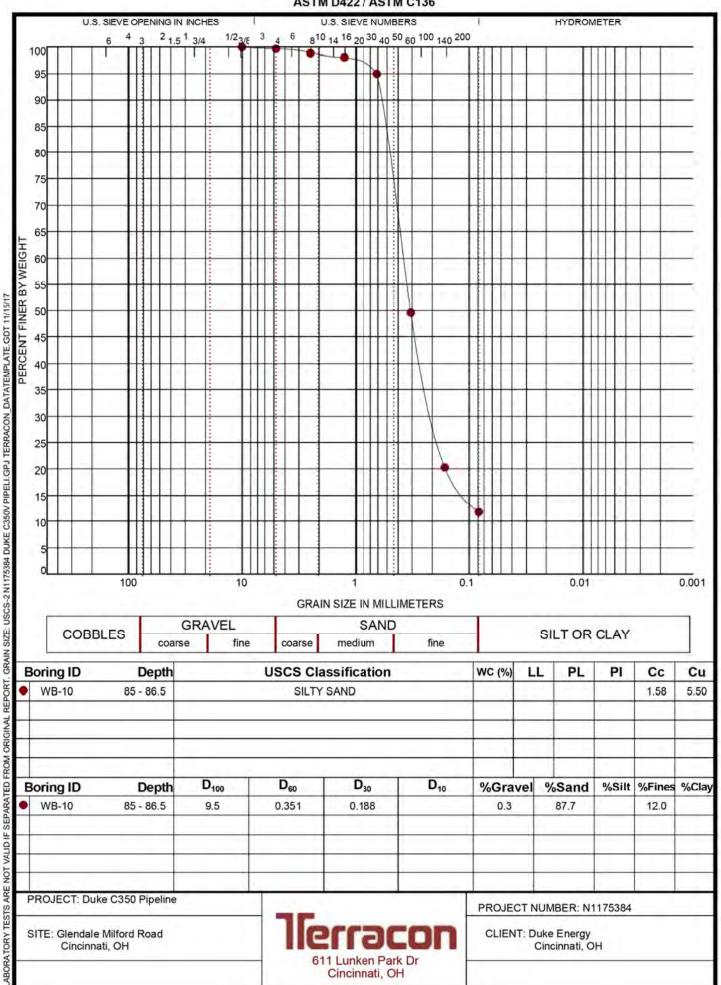


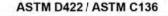


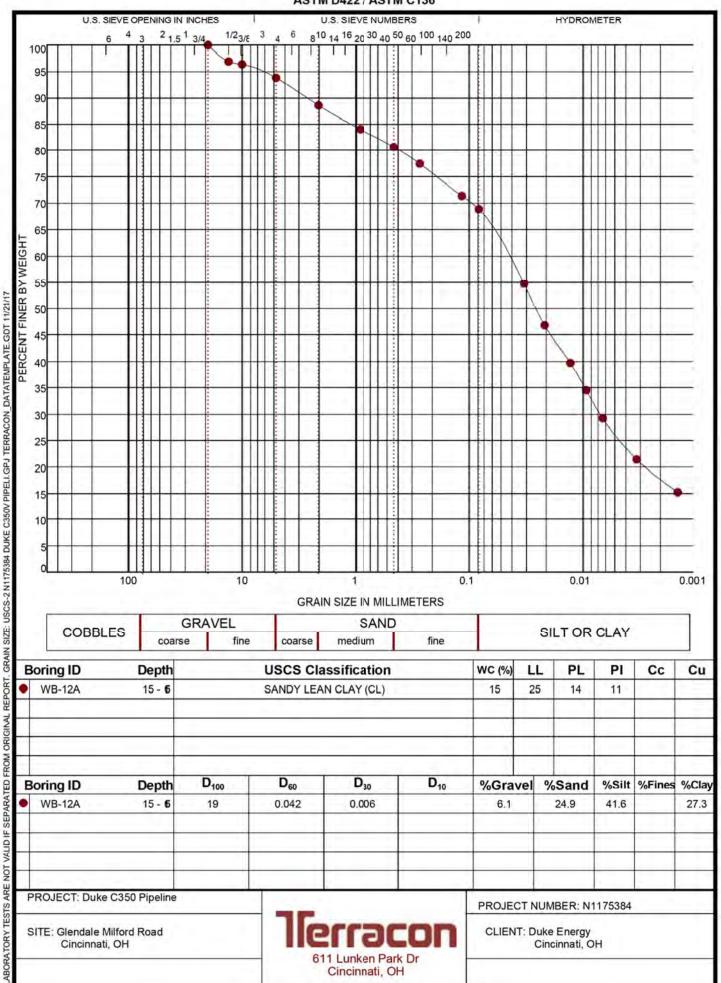


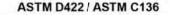


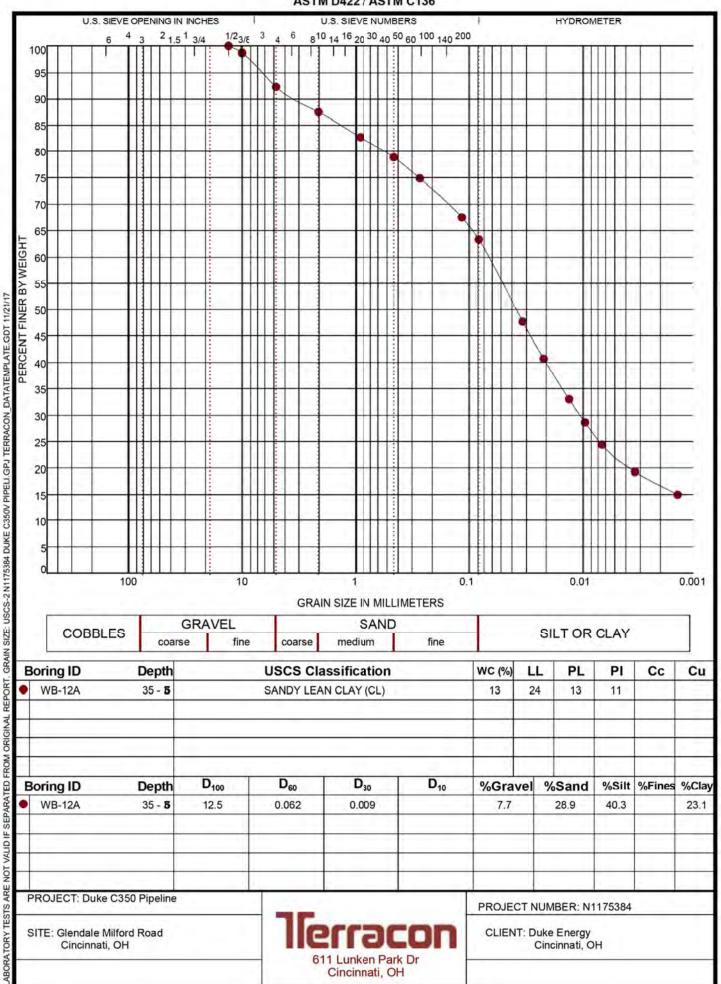


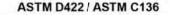


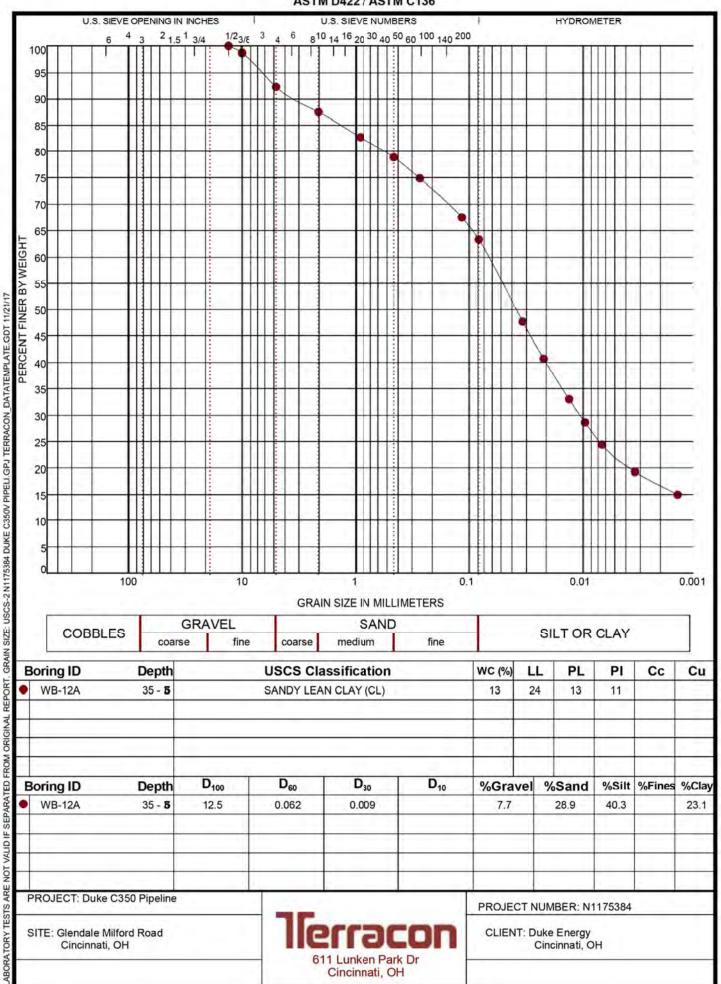


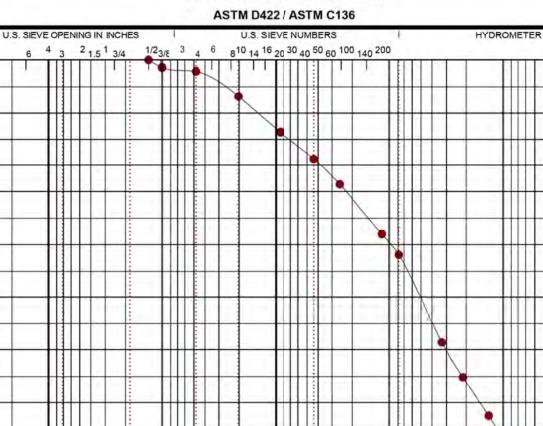


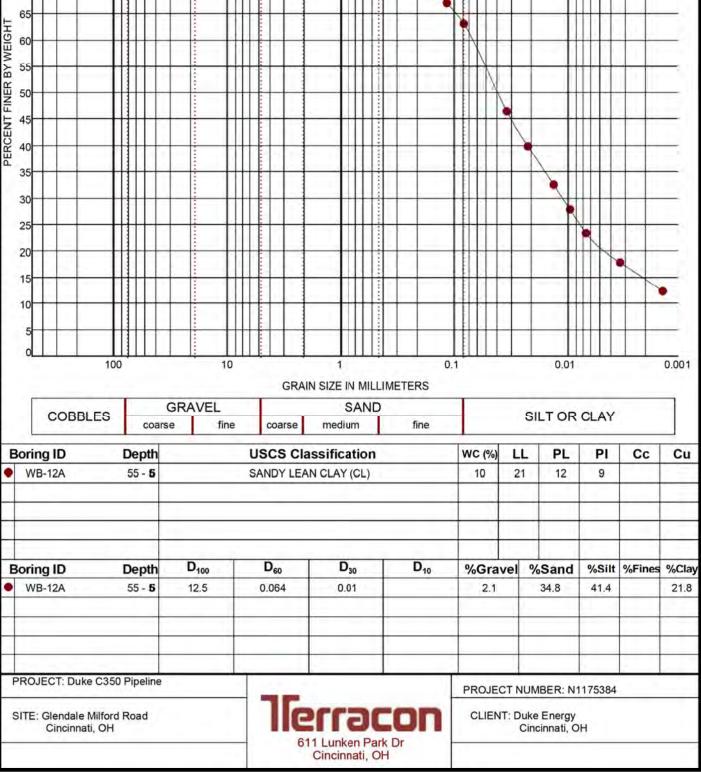


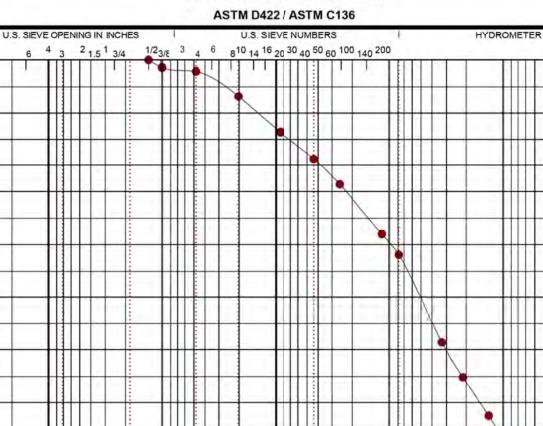


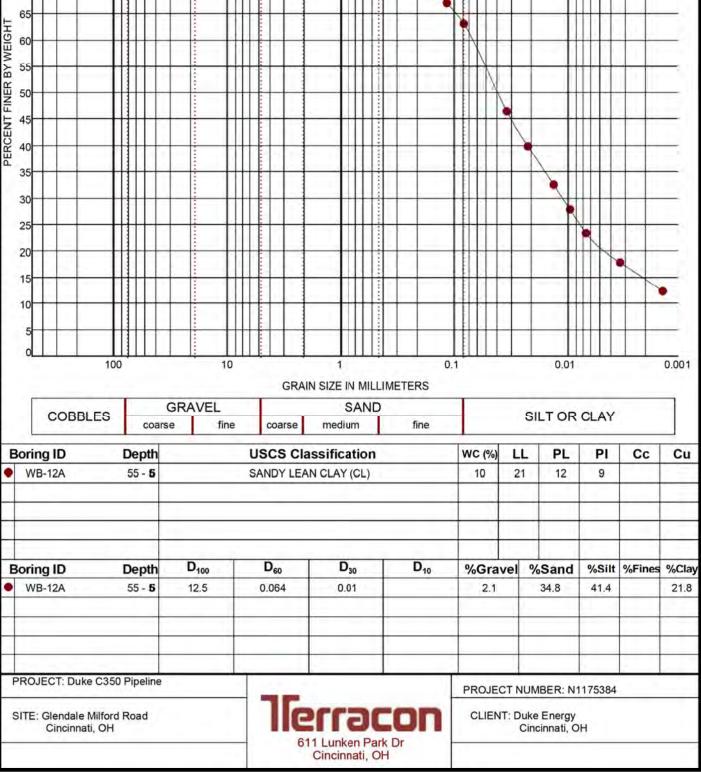


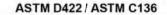


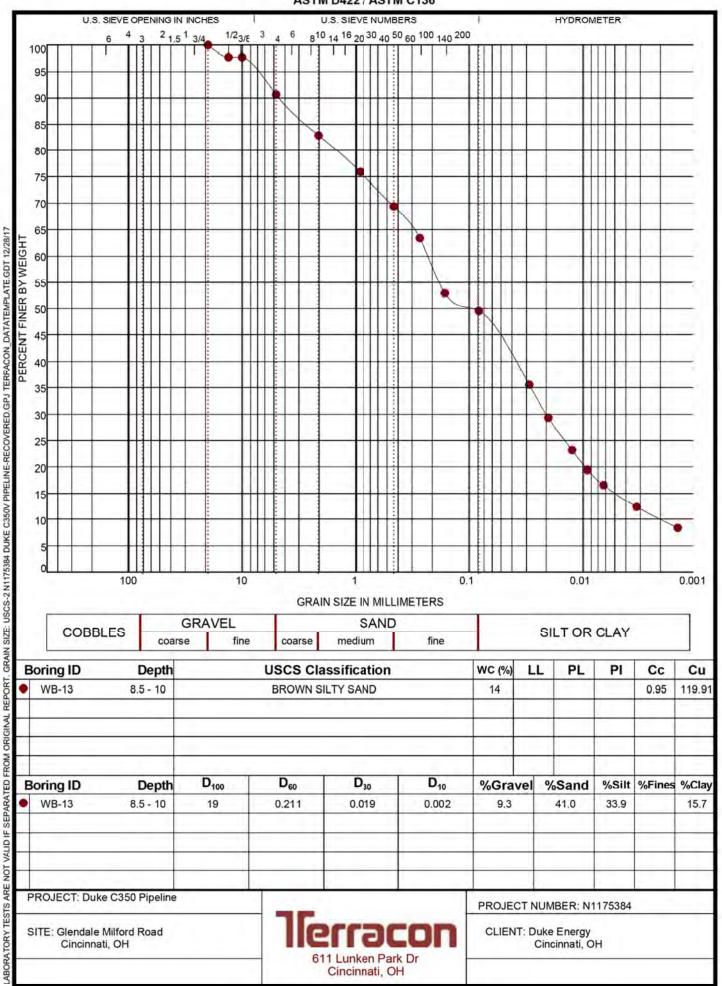


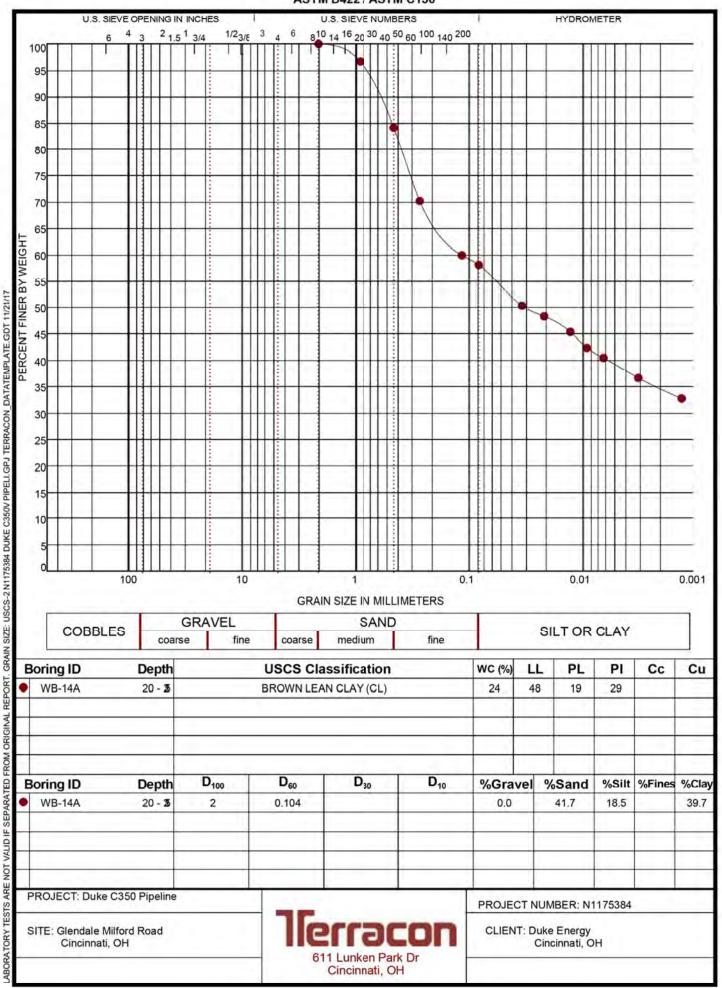




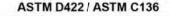


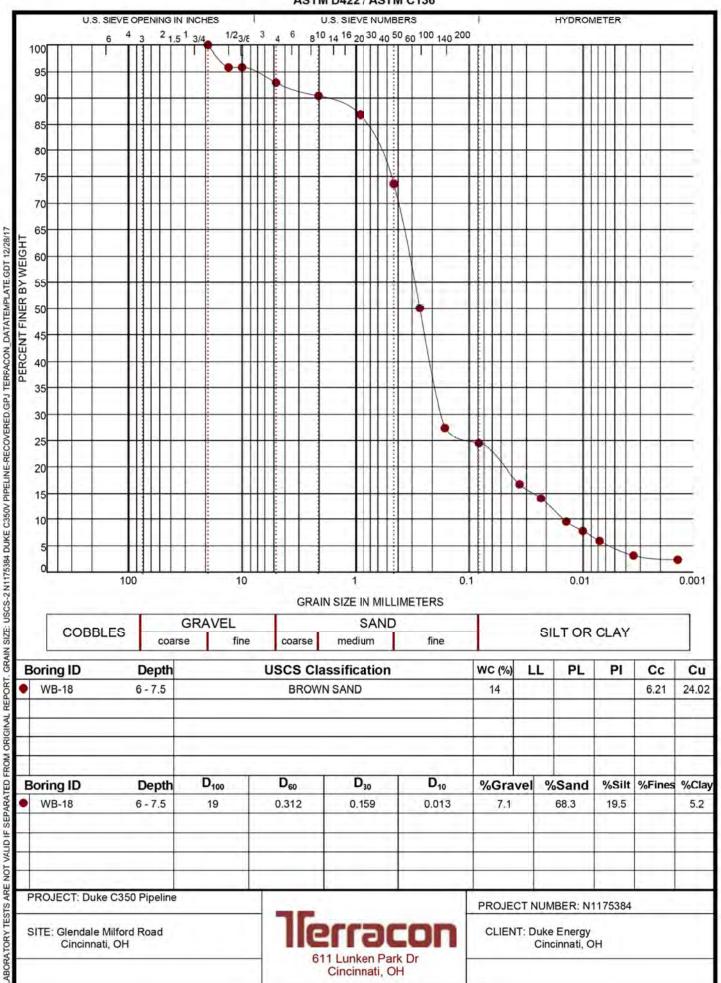

ABORATORY TESTS ARE NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GRAIN SIZE: USCS-201175384 DUKE C350V PIPELI.GPJ TERRACON DATATEMPLATE.GDT 11/2/17

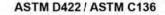


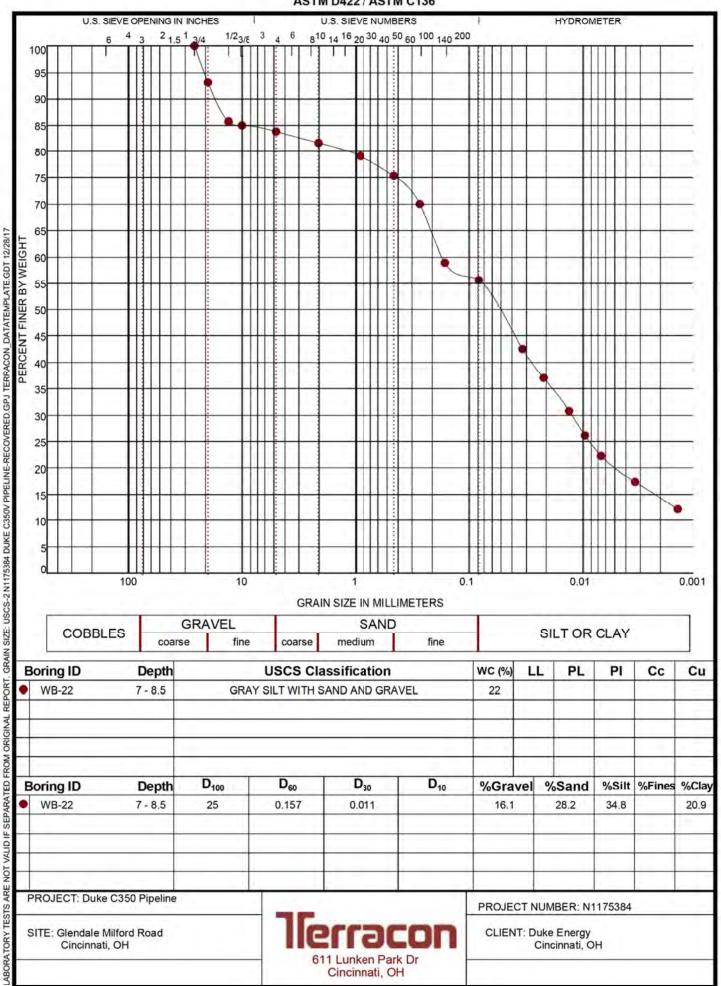


ABORATORY TESTS ARE NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GRAIN SIZE: USCS-201175384 DUKE C350V PIPELI.GPJ TERRACON DATATEMPLATE.GDT 11/2/17

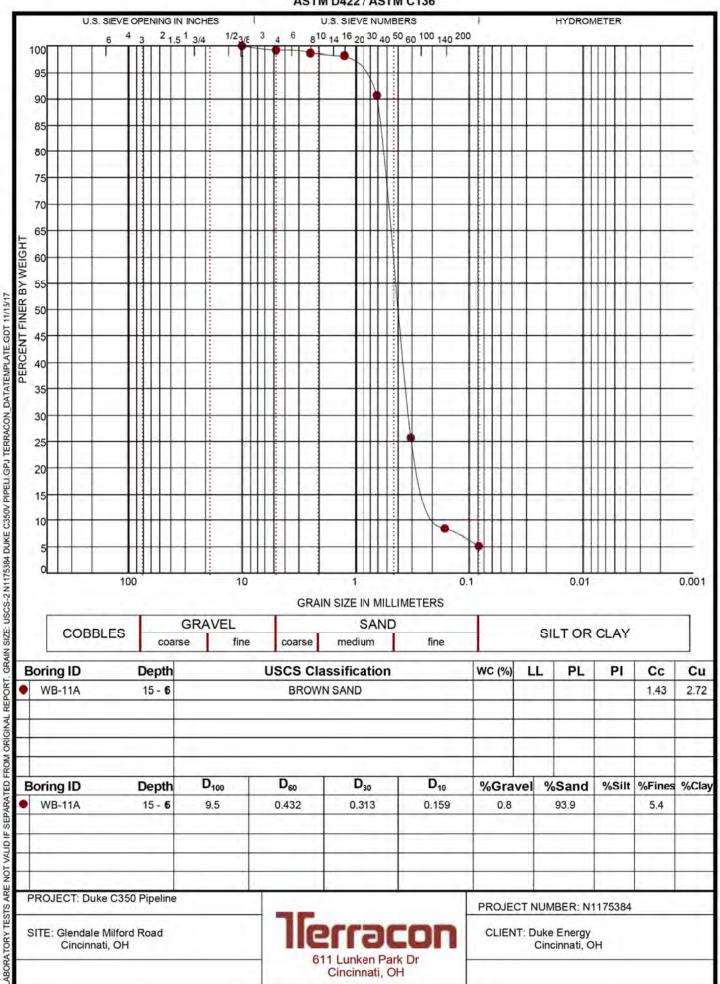


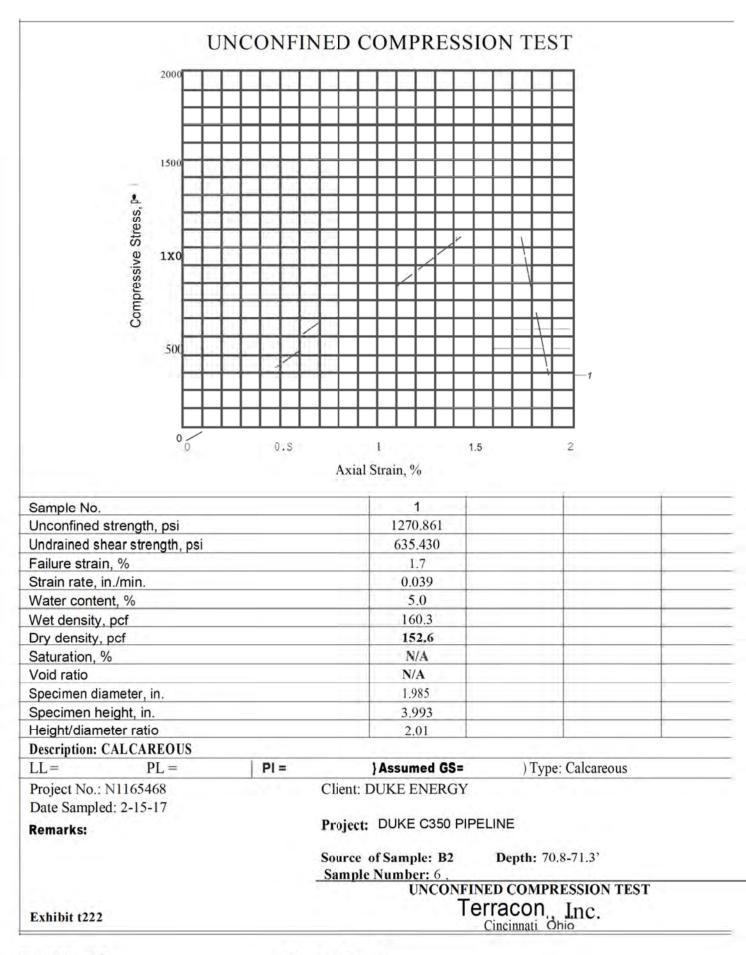







ASTM D422 / ASTM C136




		UN	СС	DNF	IN	ED	со	MF	RE	SS	SION	TE	ES	Т
	60	T	П		П	T		Г	Т	П	TT	T		
			\square	-		-		-				-	-	
	45													-1
s, psi		-		-										
Compressive Stress, psi	30	_												
pressiv				_										
	+	-		-										
	15											1		
	-			-		+								
	ф Q		1	1		Axi	2 al Stra	ain, 9	6	3			4	
Sample No.									1					
Unconfined strength, p									661					
Undrained shear streng	gth, p	osi	_			_	-	26.					-	
Failure strain, %							_		.9	_			+	
Strain rate, in./min. Water content, %)39 .1	-			-	
Wet density, pcf								_	.1 1,3				+	
Dry density, pcf						_			8.6	-			+	
Saturation, %									8.0 /A					
Void ratio							-		/A	-		_	+	
Specimen diameter, in									080					
Specimen height, in.	_								050					
Height/diameter ratio								2.	00					
Description: CALCARE	OUS	S SHA	LE											· · · · · · · · · · · · · · · · · · ·
LV = PL =	=			PI =		-	A	ssur	ned G	S=		Ту	pe:	Calcareous Shale
Project No.: N 1165468 Date Sampled: 2- 15— 1							: DUK				Nu			
Remarks:					1	Projec	t: DU	KE (350 F	PIPEI	LINE			
							e of S			I	Dep	oth: 4	1.3-	41.8'
								l	NCO	NFI	NED C	OMP	RE	SSION TEST
Exhibit 1207										Te	rrac	on	J.	nc.

		UN	ICO	NFI	NE	D	со	MP	RE	SS	101	ΝT	ES	т		
	400		TT	1			П	1			П	T	П			
	ľ												\square			
	[_												
										\square						
	300			-	-	-		¥					$\left \right $	_		
ī			++	+		-	F	+		+	\vdash	+	$\left \cdot \right $	—		
ä	ł		++			1	+	+		+	\vdash	+	$\left \right $	—		
less	ł					4	$\left \right $			+		+	\vdash	\neg		
St	200			61.51	1								\square			
sive	200			1												
les																
Compressive Stress, ps	ļ												\square			
S	-					_		-		+		_		_		
	ł		-	-	-		++	+		+		_	\vdash	_		
	ł		+ +				+	+		+	\vdash		$\left - \right $	-		
						-	++	+		+	+	+	\vdash	—		
	t						++	+		+			\square	\neg		
	J			it na			\vdash	+					\square			
	05			1			2	1.1			3			4		
						Ax	ial St	rain,	%							
Sample No									1							
Unconfined strength						_	-		.223	-				-		-
Undrained shear str	eng	th, psi	_						.111	-				-		-
Failure strain, %						_	-		.8	-			_	-		
Strain rate, in./min. Water content, %							-		.3	-						
Wet density, pcf						_			.5 6.6	-						
Dry density, pcf							-		7.3	-				-		
Saturation, %									/A	+						
Void ratio									/A			_				
Specimen diameter	, in.					_			9J2							
Specimen height, in								4.)J9							
Height/diameter rati								2.	07							
Description: CALCA		DUS SH		_		_										
L = PL	-		F	9 =	_	_			ned G	_			Тур	e: Calca	reous S	hale
Project No.: NI165					(Client	t: DT.	IXE E	ENER	RGY						
Date Sampled: 2- 1fi Remarks:	-17				I	Proje	ct: DL	IKE (350	PIPE		=				
							ceof			3J	C	Dept	n: 51	2.5-58.3	3'	
					-	samp	ole Nu	edmi	JNC	DNF	INE	DCC	MPI	RESSIC Inc.	NTES	T
Exhibit 1208																

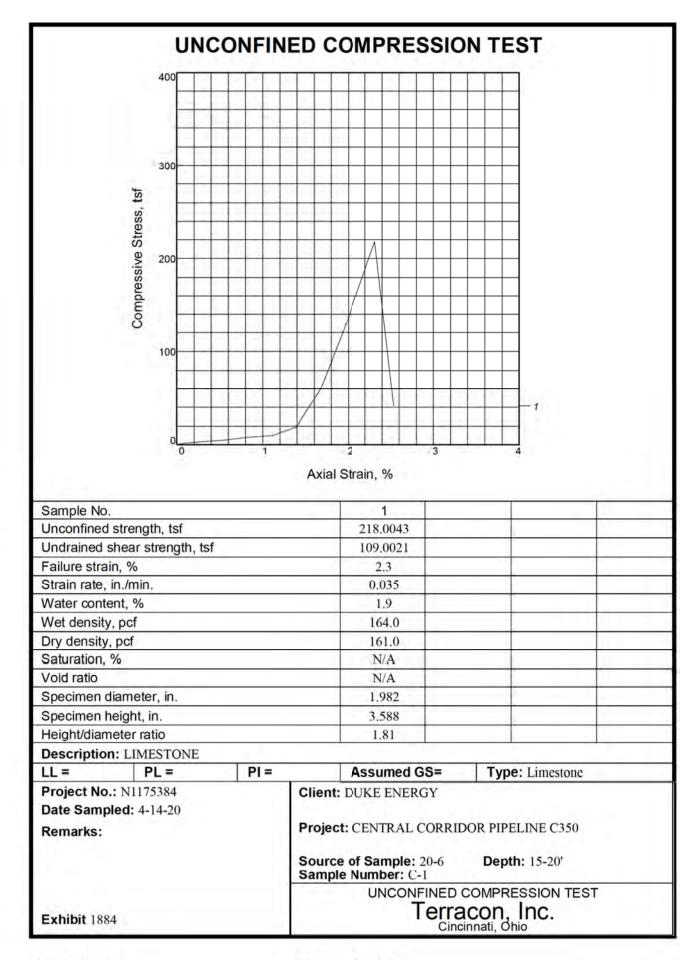
hibit 1209												-7g,3' SSION TEST	
			P	rojec	t: DU	IKE (2350	PIPE	LINE				
7													
			C	lient:									
		PI =			A	ssur	ned	GS=]	Гуре:	Calcareous SI	hale
US SHAI	E												
				-									
					1								
				-									
					-								
				-				-			-		-
											-		
				-	-								
n, psi				_	-	_					-		-
				_	-						-		
				_				_					
				Axia	al Stra								-1
0		1			2							4	
	11								_				
						\square]	
	11			T								1	
	Τť	\uparrow				++		tt				1	
	11	1		\uparrow				H			1	1	
	$^{++}$	1		+	ti	+	1	tt				1	
		17	í I			+						1	
	++				+	++	+	++	+	\vdash	+	1	
	++	+		┢┤	+	++	+	++	+	\vdash	+	1	
	++	+	-	+	+	++	+	++	+	\vdash	+	1	
	++	+		+	+	╉╋	+	++	+-	\vdash	┿	1	
	++	+		+	+	++	+	┢╋╋	+	\vdash	+	1	
	++	+		$\left \right $	+	++	+	++	+	\vdash	+	-	
	++	+	-	+	+	++	+	++	+	\vdash	+	-	
	++	+	-	+	+	++	+	┢┼┝	+-	\vdash	╇	-	
	++	+	-	+	+	++	+	++	+	\vdash	+	-	
+ + +	++	+		+	+	++	+	++	+	\vdash	+	-	
\vdash	++		-			\square		\square				-	
\vdash	++	+		+	-	++	-	++	-	\vdash	+	-	
				1 1		1 1					- 1		
it		i th, psi	i th, psi DUS SHALE PI =	i h, psi DUS SHALE PI = 7 7 P	DUS SHALE PI = Glient: 7 Projec Sourc	PI = A Glient: DUR Glient:	Image: strain of the second	$ \begin{array}{c cccc} & & & & & & & & & & & & & & & & & & &$	$\frac{1}{1}$	Image: state of the state	Image: Source of Sample: Bl Pl = Assumed GS= Glient: DUKE C350 PIPELINE Source of Sample: Bl Depth: Sample Number: IO Depth: Sample Number: IO Depth:	1 2 1 1 1 1 1 1 1 2 0	1 2 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Exhibit t210	iibit t210																SSION	TEST	
							rce o				BI		Dep	oth	: 84	.5-8	35.0'		
Remarks:	eur					Proj	ect: [DUK	EC	350	PIP	ELIN	NE						
Project bio.: N11654 Date Sampled: 2-I S						Cile	nt. D	IIKE	EN	ER	Gĭ								
	$L = \frac{1}{68}$	_		PI =	-	011	nt: D	Ass	100 M	1. A.)1	уре	: Cs	tcareous	Shale	
Description: CnLCA		JS SH	ALE	D!							00				_			0 ¹	
Height/diameter rat		10.011							2.0	5									
Specimen height, in							_	-	4.0	_									
Specimen diameter,									1.9						_				
Void ratio									N/.										_
Saturation, %								1.1	N/.	2.4									
Dry density, pcf									154	_									
Wet density, pcf									159	.9									
Water oontent, °f									3.	5									
Strain rate, in./min.	5.2								0.04										1
Failure strain, %		114							1.				_						1
Undrained shear st		n, psi						_	249		-				-	1		_	1
Unconfined strength	, psi							2	498	_	d = 1			_					1
Sample No.					_		Т	-	1			_	_		-			-	T
						A	xial \$	Strai	in, %	6									
	° ó			0.5								1.5				2			
					\square					\uparrow									
	F	+		<u> </u>	\vdash	\vdash	+	\vdash	+	+	+	\square		┥	+	\neg			
				1.10	-		+	\vdash	+	+	+	\vdash	L.	\dashv	+	-			
	1000		-	1			+		-	+	+			\dashv	\dashv	-			
0	F				1														
Con																			
bre		-04																	
Campressive Stress, psi							\top		\leftarrow										
ve	2000						+	\vdash		4	1-	H		┥	+	\neg			
Stre	H			-		-	+	┢┤	+	╈	Ť	1		+	-	\neg			
ŝ	H		-		+	-	+	┢┥	+	╋		7	┝╌┦	\dashv	-	\neg			
psi	H	++	-	\vdash		-	+	\vdash	+	+	+	$\left \right $	\vdash	\dashv	\dashv	_			
		+	1					\square			+		Ц	_	\downarrow				
	- F		_							\top	\square		\square						
	Ľ																		
	F				\square			\square		1									
	F	++			H	\vdash	+	H	+	+	1		\vdash	+	+	-			
												1 . I		. 1					
	4000	TT	_				_	_	_	-	-	-	<u> </u>	_	-	_			

		1	UN	ICC	DNI	FIN	١E	D	СС	M	PF	RE	SS	SIC	NC	1]	ΓE	SI	Г	
	4000		-	TT	-	1	-		-	-	-	-	-		_			_	1	
		+	+	++	+	+	-		-	+	-	-	-	-		-		_		
		+	+	-			-		-	+	-	-				-				
	ł	+	-	++	-	-	-	-	-	+	-	-	-		-	-	1.1	-		
		-	-	+	+	+	-	-	-	+	+	-	1	-		-	-	-		
	3000	+		++	-	+	1			1			1				-			
<u>.</u>						1			7	+	1		1					1		
Compressive Stress, psi	[-				1	-		1	-			1				E	1	1	
les	[1	1	1					E.				1		
St			1	Ĭ				A		į.				1			F.L			
sive	2000	_	-			1-		1			-	111		1	- 3	1				
ess				-				-		-		1.	÷	1	1.51	1.1	5.23	_		
idu		4	_	+			1/			\perp	\vdash								— 1	
Õ		-	-	-	-	-	ł.		-	-	-	-			201		-			
	1000	-	_		_	17				-	-	-		T	_			_		
	1000	-			1	1	-	1		-	1	1	-	1			1111	-		
		-	-	ľ	1	+	-	-	-	-	-	-	-	24				_		
	-	+	+		+				-	1	-	-		-		-				
		+	-	X					-	-	-	-	-	-	-					
	L o	1	1		0.25		1	_	0.1		1	-	-	.75		_		-		
								Axi	al Str		%									
Sample No.									_		1		-							
Unconfined strengt									-		17.3		-	_			_	-		_
Indrained shear stre	ength,	psi	_						-		23.6	95	-	_				_		
ailure strain, %	_			-			-	-	_		0.7	-	_		-					
Strain rate, in./min.	_							-	-		.040)	4	_				_		
Water content, %									-		0.8	_	-		_			_		
Net density, pcf											66.1		-					-		
Dry density, pcf								_	-		64.8		-	_			_	+		-
Saturation, %									-		N/A	-	-	-		_	_			
	in								-		J/A	-						-		
Specimen diameter,									-	-	.981	_	-	_				-		
Specimen height, ir Height/diameter rat								_	-		.048 2.04						-			
Description: LIMES		2								-	2.04	-	_	-			-			
	PL =	-		1	PI =					Assu	me	dG	S=	-		-	Ty	ne:	Limestone	
Project No.: N11654							CI	ont	: DU					-			1 y	pe.	Linestone	
Date Sampled: 2—15–							U	ent		NE I	SIVE	nu	1							
	1/						Pr	oiec	t: C	אוור	FC	350		DEI	INI	2				
Remarks:								ojec	L	JUN		550	11	- EL		-				
									e of le N				2		De	eptl	1: 5	5.3	-53.7'	
E.,Libit 1221	ibit 1221																		ession test Inc.	Г

Date Sampled: 2-16 Remarks:							oject: D									
LL = 1 Project No.: NI1654	PL =			PI :	=	C] A		ed G	-	7	Ту	pe: Ca	lcareous	s Shale	
Description: CALCA		S SH	ALE		_		1		.10	0		T		1	01-1	
Height/diameter rat								2	.02							
Specimen height, ir	۱.								018							
Specimen diameter	, in.								985				-			
Void ratio							_		I/A I/A				-			
Dry density, pcf Saturation, %									5.2				-			
Wet density, pcf									51.3		_					
Water content, %									3.9							
Strain rate, in./min.								0.	040							
Failure strain, %	0								2.0							
Undrained shear st		psi							0.824							
Unconfined strengt	n, psi								1.648				-			
Sample No.									1				-		T	
	U						Axial St	rain,	%				4			
	0					1							4			
	-	_	+	-		-	\rightarrow			+			$\left - \right $			
	-		\square			1	\square									
	soc		17						\vdash	++	+		\square			
ö		+	++	-			++	-	++	++			\square			
Compressive Stress, psi	+		++	-		-		_	\vdash	++		_	$\left - \right $			
less							\square									
sive	180				1											
Str	- F	+	++				++	-	++	++			\square			
e so	-	-	++	-			++	-	++	++			\square			
bs	-		+	-		-	++	_	$\left \right $	++			\square			
	-		+	-		-	\square			+			\square			
	1500					_										
		+	\vdash	+	\vdash	+				++			\square			
	\vdash	+-	\vdash	+	\vdash	-	++	-	++	++			\vdash			
	-		++	-		-	\rightarrow			+ +	_	_	\square			
	Z000															

CheckedB, y:GS


Exhibit 1224												UN			rra	CO CO CO CO	n	PRESSION TES	ST
								Sou San			ımb	er:	t0			1		1.9-92.3'	
Remarks:								Proj						IPEI					
Date Sampled: 2-16	-17																		
Project No.: NI 1654	68							Clie	nt:	DUI	KE I	ENE	RC	GΥ					
	PP =		and the	1	Ы	=				}As	sur	ned	GS	=)	Тур	e: Calcareous Sh	ale
Description: CALCA	1 A 4 4 4 1 4 1	JS S	HAI	E		-			-					-					
Height/diameter rati		_								-		.03	-	-			-		
Specimen height, in		-								-)17		+					
Void ratio Specimen diameter,	in								_			/A 980	_	-					
Saturation, %									-	-		/A	-	-			-	-	
Dry density, pcf								_	_			1.1		-			-		
Wet density, pcf										-		9.1	_	-			_		
Water content, %								_		-		.2		-			_		
Strain rate, in./min.									_			040		-				4	
Failure strain, %	2.2	-										.7						_	
Undrained shear stre			_								503	.957	7						
Unconfined strengt											100	7.91	3						
Sample No.												1							
								A	xial	Stra	in, 9	6							
		D	-1			1			-1	2		-	-	3	1			4	
	the second se	-	-	-					-	1	-		+	-					
	ł	+	-	+			-		+	+			+	-			-		
	ŀ		_	1						+		-	+		-	$\left \right $	-	_	
	500	-		-	1	1			_	-	$\mid \mid$	-	+	_	-			_	
	500						4	/										_	
Cor																			
Compressive Stress, psi																			
ess	F										\square								
ive	1000		-						+	+	\square	+	+	+	+	\square	+	-	
Stre	ŀ	+		-		-	\vdash		+	+	\vdash	+	+	+	+	+		\neg	
SS,	-	+	-	+-	-	-	\vdash		+	+	+	+	+	+	+	+	\dashv		
sd	+	-	-	-	-				+	+	\vdash	+	+	+	+	$\left \right $	\rightarrow	_	
	-	-	-	1		-			+	-	$\mid \mid$	\rightarrow	+	_	-	$\left \right $		_	
	1500						1												
				1							\square		+			[]			
	1		+	+					+	+		+	+	-		\vdash			
	2000												- H.		123	1 1			

												ber	ole: : I UN	i CO	ONF	IN	ED	C	DM	PR	-99.t' ESSION TEST DC.	i.
Date Sampled: 2-16- Remarks:	• 17							Pre	ojec	t: D	DU	KE	СЗ	50	PIF	PEL	INE	Ξ				
Project No.: NI 1654							1	Cl	ient	: DI	IKE	EE	NEF	RGY	Y							
the second se	L=			1	PI	=					As	sun	ned	G	S=				Ту	pe:	Limestone	
Description: LIMES		3			1C																	
Height/diameter rati										1		_	.02				_					
Specimen height, in									_	+		_	009		1					t		
Specimen diameter	. in.									+	-	_)83	-			_		-			
Void ratio									_	1	-		/A				_					-
Saturation, %										+			/A		1	_						
Dry density, pcf										+	-	_	6.0		+	-						
Wet density, pcl										+	-		6.8		-		-			-		
Water content, %					-	-	-	-	-	+	_		.5	_	-		_			+		
Strain rate, in./min.							_			+	_	_)40	-	+		-					
Failure strain, %	engu	i, p.	51						_	+	- 2	_	.7	0	-		_		_	-		
Undrained shear str		_	si							+	-	-	1.19	-	-	-						
Unconfined strength	1. psi								-	+	5	_	2.39	6	-	_	-		_	-		
Sample No.						_	_			-			1		Ť	_						
									Axi			in, S	%									
	0	0		1	0	.25				0)5	-			0	.75	_				6	
				+	K	-		-								-						
				+-		\lor		┡	Ц													
		11-14	1.0		1		1		Ц			_										
	1500																					
				1				1														
Con	1								Ζ													
ubre				1	F				Η	ŕ						1		\vdash				
essi					t				Η	7				-	-		\vdash	\uparrow	\vdash	-	-1	
Compressive Stee	3000		+	+	t				Η		7	-						$\overline{\mathbf{N}}$				
Ste			+	+	┢				Н	Η	7	-	-		Η			\vdash	-			
		+	+	+	┢				Н	\vdash	-	/	\dashv		-	\vdash	$\left \right\rangle$	\vdash	\vdash	\vdash		
s, psi		-	+	+	┝	-	-	-	Н	\vdash		/	"		-	\vdash		⊢	\vdash	\vdash		
			+	+	┝	\vdash		\vdash		\square		-	\neq		-	\vdash		\vdash	-			
		-	-	+	-	\vdash	-	-	Н				-	1		$\left \right\rangle$	-	-				
		\square							Ц						\sim							
												_			4							
	6000	_		_	_	_	_	_	_	_		_	_	_								

Exhibit 1543			Sourc <u>Sam</u> r	e of San de Numb	ple: B: er: I UNCC	ONFINE Teri	Depth D COM raco	n de la constante de la consta	ssion test Inc.
Remarks:			Proje	et: DUK	E C350	PIPELI	NE		
Project No.: N 7 i 63 Date Sampled: 2-2 l			Glient	: DUKE	ENERG	Ϋ́			
LL =	PL =	PI =			imed G			Type:	Shale Clay
Description: SHALE	ECLAY								
Height/diameter ra					2.04				
Specimen height,					.965				
Specimen diameter	r, in.				.945	_		2	
Void ratio					N/A		_		1
Saturation, %					N/A			1	
Wet density, pcf Dry density, pcf		_			48.1			1	
Water content, %					8.4			÷	
Strain rate, in./min.				1	N/A	-		1	
Failure strain, %					1.5			1	
Undrained shear st	rength, psi	-		5	6.199			-+	
Unconfined strengt					2.398	-	_	1	
Sample No.				1.	1				
1.0			Axi	al Strain,	%				
		0.5			-	1.5			
		4							
	20							_	
	50								
Con								-	
nore							_	-	
1555							_	-	
Compressive Stress psi	100				F				
tree				1			_		-1
S			_						
	150								
								-	
									6.0
	1								
	200								1

	2		UN	100	JN	FIL	NE]	50	.ON	AP.	RES	51	UN	T	ES) I		
	200				Π			Π		Π		Π		Π	Τ			
		\Box								\Box								
	L.	$ \rightarrow $	\perp		\square			Ц		\square		\square		\downarrow	\rightarrow			
	ļ	\rightarrow	\perp	\perp	\square	\perp	\perp	\square	\perp	\square		\square	\perp	\downarrow	\rightarrow			
	150	\rightarrow	-	+-		+	-	\vdash	+	\vdash	_	\vdash	+	++	\rightarrow	_		
		+	-+-	+	++	+	+	\vdash	+	++	+	\vdash	+	++	+	_		
Compressive Stress, psi	ł	+		+	+	+	+	\vdash	+	++	+	\vdash	+	++	+	_		
SS	ł	-	++	+		+	+	\vdash	+	++	+	++	+	++	+	+		
Stre	$^{\circ}$	÷	+	+	++	+	+	\vdash	+	┼┼	+	┼┼	+	+	+	-		
AG VG	100	+	+	+	H	+	4-	\vdash	+	+	+	\vdash	+	++	+	-		
SSI		+	+	+	++	4	+	\vdash	+	┢┼╋	+	\vdash	+	++	+	\neg		
bre	t					+		\vdash	+	+	+	++		11	+	-		
or	ľ	1		1	\square			\square	+	\square		\vdash		\square	\neg			
0	t						1							\square				
	[
	[1					Ц		П		Π						
	ļ	_	4		\square		-	\square		\square		\square		++	\rightarrow	_		
	1	\rightarrow	4	1	++	+		\square	_	\downarrow	_	\vdash	_	++	4	_		
	4	1																
Sample No.		_						-		1	_					1		
Unconfined strength,								_		128.		_			_	-		
Undrained shear stren	ngth	, ps	51						-	64.3		-			_	-		
Failure strain, %	_							_		2.		-			-	-		-
Strain rate, in./min.									-	0.0		-				-		-
Water content, %									-	6.		-			_	-		-
Wet density, pcf Dry density, pcf									-	153								
Saturation, %									-	143 N/					-			-
Void ratio					_	_	_		-	N/.		-			-	-		-
Specimen diameter, i	n.									1.9					-	-		-
Specimen height, in.									-	3.9		-				-		
HeighVdiameter ratio										2.0						1		
Description: SHALE		Y															_	
LV =)PL		-		1	PI =				As	sum	d G	5=		11	ype	: Shale Cl	ay	
Project hlo.: N11654							CI	ent			NER			13		<u></u>	-	
Date Sampled: 2-21-																		
Remarks:							Pr	oject	: DU	KE C	350 I	PIPE	LINE					
									of Sa		e: B3	3	D	epth	91	.1-91.3'		
	hibit 1544							mpl	e ivu			NFIN	NED	сом	PRI	ESSION T	EST	-

	UNC	ONFIN	ED	CON	ΛP	RE	SSI	ON	TE	ST
Stress, tsf	15									
Compressive Stress, tsf		1	Axi	2 ial Stra	ain, %		3			4
Sample No.					1		1			
Unconfined streng				-	11.58		-			
Undrained shear s	trength, tsf				5.79		-			
Failure strain, % Strain rate, in./min				-	3.0		-			
Water content, %				-	6.3		-		- 7	
Wet density, pcf				-	156		-		-	
Dry density, pcf				-	136		-		-	
Saturation, %				-	N/2		-			
Void ratio				-	N/A		-			
Specimen diamete	er, in,			1	1.98				-	
Specimen height, i					4.34					
Height/diameter ra					2.2					
Description: SHA		1.1					12.			
	PL =	PI =		A	ssun	ned	GS=	1	Тур	e: Shale
Project No.: N117 Date Sampled: 4- Remarks:	5384		Proj Sou	nt: DU	KE E ENTI Sam	ENER RAL	.GY CORF 20-5	RIDOF	R PIP	ELINE C350 th: 20-25'
Exhibit 1875			Jan	ipie M	_	CON	FINE			ESSION TEST Inc. hio

 Project Number: N1175384

 Service Date:
 04/16/20

 Report Date:
 04/29/20

 Task:
 04/29/20

Client

Duke Energy

Project

Central Corridor Pipeline

Sample Submitted By: Terracon (N1)

Date Received: 4/13/2020

Lab No.: 20-0409

Lab Number	1898	1899	1900	1901
Sample Number	7	7	7	7
Sample Location	20-4	20-5	20-6	20-7
Sample Depth (ft.)	9.0-10.5	9.0-10.5	9.0-10.5	9.0-10.5
pH Analysis, AWWA 4500 H	8.11	8.06	7.50	7.55
Water Soluble Sulfate (SO4), ASTM C 1580 (percent %)	0.01	0.03	0.02	0.01
Sulfides, AWWA 4500-S D, (mg/kg)	Nil	Nil	Nil	Nil
Chlorides, ASTM D 512, (mg/kg)	295	55	48	48
	+687	+686	+683	+684
Total Salts, AWWA 2540, (mg/kg)	2106	1635	1131	702
Resistivity, ASTM G 57, (ohm-cm)	970	1164	2425	3298

Results of Corrosion Analysis

Analyzed By:

Trisha Campo Chemist

 Project Number: N1175384

 Service Date:
 01/10/18

 Report Date:
 01/19/18

 Task:
 01/19/18

750 Pilot Road, Suite F Las Vegas, Nevada 89119 (702) 597-9393

Client

Duke Energy

Project

Duke Energy C350 Pipeline

Sample Submitted By: Terracon (N1)

Date Received: 1/5/2018

Lab No.: 18-0043

Lab Number	10826 & 10827	10837 & 10838	10846 & 10847	10870 & 10871
Sample Number	S-2 & S-3	S-2 & S-3	S-2 & S-3	S-2 & S-3
Sample Location	WB-1	WB-1A	WB-2	WB-2A
Sample Depth (ft.)	2.5 & 5.0	2.5 & 5.0	2.5 & 5.0	2.5 & 5.0
pH Analysis, AWWA 4500 H	7.14	7.56	7.69	7.31
Water Soluble Sulfate (SO4), ASTM C 1580 (percent %)	0.01	0.01	0.01	0.01
Sulfides, AWWA 4500-S D, (mg/kg)	Nil	Nil	Nil	Nil
Chlorides, ASTM D 512, (mg/kg)	35	80	70	60
Red-Ox, AWWA 2580, (mV)	+687	+680	+726	+682
Total Salts, AWWA 2540, (mg/kg)	821	815	222	448
Resistivity, ASTM G 57, (ohm-cm)	5238	3540	3346*	6790

Results of Corrosion Analysis

WB-2 combined with WB-20

*

Trisha Campo Chemist

The tests were performed in general accordance with applicable ASTM, AASHTO, or DOT test methods. This report is exclusively for the use of the client indicated above and shall not be reproduced except in full without the written consent of our company. Test results transmitted herein are only applicable to the actual samples tested at the location(s) referenced and are not necessarily indicative of the properties of other apparently similar or identical materials.

Analyzed By:

 Project Number: N1175384

 Service Date:
 01/10/18

 Report Date:
 01/19/18

 Task:
 01/19/18

Client

Duke Energy

750 Pilot Road, Suite F Las Vegas, Nevada 89119 (702) 597-9393

Project

Duke Energy C350 Pipeline

Sample Submitted By: Terracon (N1)

Date Received: 1/5/2018

Lab No.: 18-0043

Lab Number	10826 & 10827	10837 & 10838	10846 & 10847	10870 & 10871
Sample Number	S-2 & S-3	S-2 & S-3	S-2 & S-3	S-2 & S-3
Sample Location	WB-1	WB-1A	WB-2	WB-2A
Sample Depth (ft.)	2.5 & 5.0	2.5 & 5.0	2.5 & 5.0	2.5 & 5.0
pH Analysis, AWWA 4500 H	7.14	7.56	7.69	7.31
Water Soluble Sulfate (SO4), ASTM D 516 (mg/kg)	133	41	93	98
Sulfides, AWWA 4500-S D, (mg/kg)	Nil	Nil	Nil	Nil
Chlorides, ASTM D 512, (mg/kg)	35	80	70	60
Red-Ox, AWWA 2580, (mV)	+687	+680	+726	+682
Total Salts, AWWA 2540, (mg/kg)	821	815	222	448
Resistivity, ASTM G 57, (ohm-cm)	5238	3540	3346*	6790

Results of Corrosion Analysis

WB-2 combined with WB-20

*

Trisha Campo Chemist

The tests were performed in general accordance with applicable ASTM, AASHTO, or DOT test methods. This report is exclusively for the use of the client indicated above and shall not be reproduced except in full without the written consent of our company. Test results transmitted herein are only applicable to the actual samples tested at the location(s) referenced and are not necessarily indicative of the properties of other apparently similar or identical materials.

Analyzed By:

 Project Number: N1175384

 Service Date:
 01/10/18

 Report Date:
 01/19/18

 Task:
 01/19/18

Client

Duke Energy

750 Pilot Road, Suite F Las Vegas, Nevada 89119 (702) 597-9393

Project

Duke Energy C350 Pipeline

Sample Submitted By: Terracon (N1)

Date Received: 1/5/2018

Lab No.: 18-0043

10892	10934 & 10935	10634 & 10635	9168 & 9169
S-1	S-4 & S-5	S-3 & S-4	S-4 & S-5
WB-3	WB-5	WB-7	WB-9
0	4.5 & 6.0	3.0 & 4.5	4.5 & 5.0
7.84	7.82	7.22	7.39
0.02	0.01	0.01	0.09
Nil	Nil	Nil	Nil
98	50	72	65
+677	+675	+699	+711
1103	694	179	2285
1891*	2231**	4462***	2377****
	S-1 WB-3 0 7.84 0.02 Nil 98 +677 1103	S-1 S-4 & S-5 WB-3 WB-5 0 4.5 & 6.0 7.84 7.82 0.02 0.01 Nil Nil 98 50 +677 +675 1103 694	S-1 S-4 & S-5 S-3 & S-4 WB-3 WB-5 WB-7 0 $4.5 & 6.0$ $3.0 & 4.5$ 7.84 7.82 7.22 0.02 0.01 0.01 Nil Nil Nil 98 50 72 +677 +675 +699 1103 694 179

Results of Corrosion Analysis

* WB-3 combined with WB-18
** WB-5 combined with WB-11
*** WB-7 combined with WB-16
**** WB-9 calculated reciprocal of Total Salts

Analyzed By:

Trisha Campo Chemist

 Project Number: N1175384

 Service Date:
 01/10/18

 Report Date:
 01/19/18

 Task:
 01/19/18

Client

Duke Energy

750 Pilot Road, Suite F Las Vegas, Nevada 89119 (702) 597-9393

Project

Duke Energy C350 Pipeline

Sample Submitted By: Terracon (N1)

Date Received: 1/5/2018

Lab No.: 18-0043

10892	10934 & 10935	10634 & 10635	9168 & 9169
S-1	S-4 & S-5	S-3 & S-4	S-4 & S-5
WB-3	WB-5	WB-7	WB-9
0	4.5 & 6.0	3.0 & 4.5	4.5 & 5.0
7.84	7.82	7.22	7.39
168	76	55	932
Nil	Nil	Nil	Nil
98	50	72	65
+677	+675	+699	+711
1103	694	179	2285
1891*	2231**	4462***	2377****
	S-1 WB-3 0 7.84 168 Nil 98 +677 1103	S-1 S-4 & S-5 WB-3 WB-5 0 4.5 & 6.0 7.84 7.82 168 76 Nil Nil 98 50 +677 +675 1103 694	S-1 S-4 & S-5 S-3 & S-4 WB-3 WB-5 WB-7 0 4.5 & 6.0 $3.0 & 4.5$ 7.84 7.82 7.22 168 76 55 Nil Nil Nil 98 50 72 +677 +675 +699 1103 694 179

Results of Corrosion Analysis

* WB-3 combined with WB-18
** WB-5 combined with WB-11
*** WB-7 combined with WB-16
**** WB-9 calculated reciprocal of Total Salts

Analyzed By:

Trisha Campo Chemist

 Project Number: N1175384

 Service Date:
 01/10/18

 Report Date:
 01/19/18

 Task:
 01/19/18

Client

Duke Energy

750 Pilot Road, Suite F Las Vegas, Nevada 89119 (702) 597-9393

Project

Duke Energy C350 Pipeline

Sample Submitted By: Terracon (N1)

Date Received: 1/5/2018

Lab No.: 18-0043

Lab Number	9153 & 9154	9185 & 9186	9194 & 9195	10659 & 10660
Sample Number	S-2 & S-3	S-3 & S-4	S-3 & S-4	S-3 & S-4
Sample Location	WB-11	WB-14	WB-16	WB-18
Sample Depth (ft.)	2.5 & 5.0	4.0 & 5.5	3.0 & 4.5	3.0 & 4.5
pH Analysis, AWWA 4500 H	8.14	7.83	7.73	7.08
Water Soluble Sulfate (SO4), ASTM C 1580 (percent %)	0.01	0.01	0.01	0.01
Sulfides, AWWA 4500-S D, (mg/kg)	Nil	Nil	Nil	Nil
Chlorides, ASTM D 512, (mg/kg)	145	77	52	62
Red-Ox, AWWA 2580, (mV)	+669	+715	+732	+686
Total Salts, AWWA 2540, (mg/kg)	659	223	157	1016
Resistivity, ASTM G 57, (ohm-cm)	2231*	7372	4462**	1891***
-				-

Results of Corrosion Analysis

* WB-11 combined with WB-5

** WB-16 combined with WB-7

*** WB-18 combined with WB-3

Analyzed By:

Trisha Campo Chemist

 Project Number: N1175384

 Service Date:
 01/10/18

 Report Date:
 01/19/18

 Task:
 01/19/18

Client

Duke Energy

750 Pilot Road, Suite F Las Vegas, Nevada 89119 (702) 597-9393

Project

Duke Energy C350 Pipeline

Sample Submitted By: Terracon (N1)

Date Received: 1/5/2018

Lab No.: 18-0043

Lab Number	9153 & 9154	9185 & 9186	9194 & 9195	10659 & 10660
Sample Number	S-2 & S-3	S-3 & S-4	S-3 & S-4	S-3 & S-4
Sample Location	WB-11	WB-14	WB-16	WB-18
Sample Depth (ft.)	2.5 & 5.0	4.0 & 5.5	3.0 & 4.5	3.0 & 4.5
pH Analysis, AWWA 4500 H	8.14	7.83	7.73	7.08
Water Soluble Sulfate (SO4), ASTM D 516 (mg/kg)	121	47	66	128
Sulfides, AWWA 4500-S D, (mg/kg)	Nil	Nil	Nil	Nil
Chlorides, ASTM D 512, (mg/kg)	145	77	52	62
Red-Ox, AWWA 2580, (mV)	+669	+715	+732	+686
Total Salts, AWWA 2540, (mg/kg)	659	223	157	1016
Resistivity, ASTM G 57, (ohm-cm)	2231*	7372	4462**	1891***

Results of Corrosion Analysis

* WB-11 combined with WB-5

** WB-16 combined with WB-7

*** WB-18 combined with WB-3

Analyzed By:

Trisha Campo Chemist

 Project Number: N1175384

 Service Date:
 01/10/18

 Report Date:
 01/19/18

 Task:
 01/19/18

Client

Duke Energy

750 Pilot Road, Suite F Las Vegas, Nevada 89119 (702) 597-9393

Project

Duke Energy C350 Pipeline

Sample Submitted By: Terracon (N1)

Date Received: 1/5/2018

Lab No.: 18-0043

Lab Number	10677 & 10678	10685 & 10686	9202 & 9203	
Sample Number	S-4 & S-5	S-3 & S-4	S-4 & S-5	
Sample Location	WB-20	WB-22	WB-24	4 & 5
Sample Depth (ft.)	4.5 & 6.0	4.0 & 5.5	4.5 & 6.0	S-1
				4.5-7.5
pH Analysis, AWWA 4500 H	7.40	7.07	7.20	8.02
Water Soluble Sulfate (SO4), ASTM C 1580 (percent %)	0.01	0.01	0.01	50
Sulfides, AWWA 4500-S D, (mg/kg)	Nil	Nil	Nil	Nil
Chlorides, ASTM D 512, (mg/kg)	75	58	68	857
Red-Ox, AWWA 2580, (mV)	+700	+700	+702	+714
Total Salts, AWWA 2540, (mg/kg)	221	749	709	125
Resistivity, ASTM G 57, (ohm-cm)	3346*	1552**	1552**	1649

Results of Corrosion Analysis

* WB-20 combined with WB-2
 ** WB-22 combined with WB-24

Jerisha Cangoo

Trisha Campo Chemist

The tests were performed in general accordance with applicable ASTM, AASHTO, or DOT test methods. This report is exclusively for the use of the client indicated above and shall not be reproduced except in full without the written consent of our company. Test results transmitted herein are only applicable to the actual samples tested at the location(s) referenced and are not necessarily indicative of the properties of other apparently similar or identical materials.

Analyzed By:

 Project Number: N1175384

 Service Date:
 01/10/18

 Report Date:
 01/19/18

 Task:
 01/19/18

Client

Duke Energy

750 Pilot Road, Suite F Las Vegas, Nevada 89119 (702) 597-9393

Project

Duke Energy C350 Pipeline

Sample Submitted By: Terracon (N1)

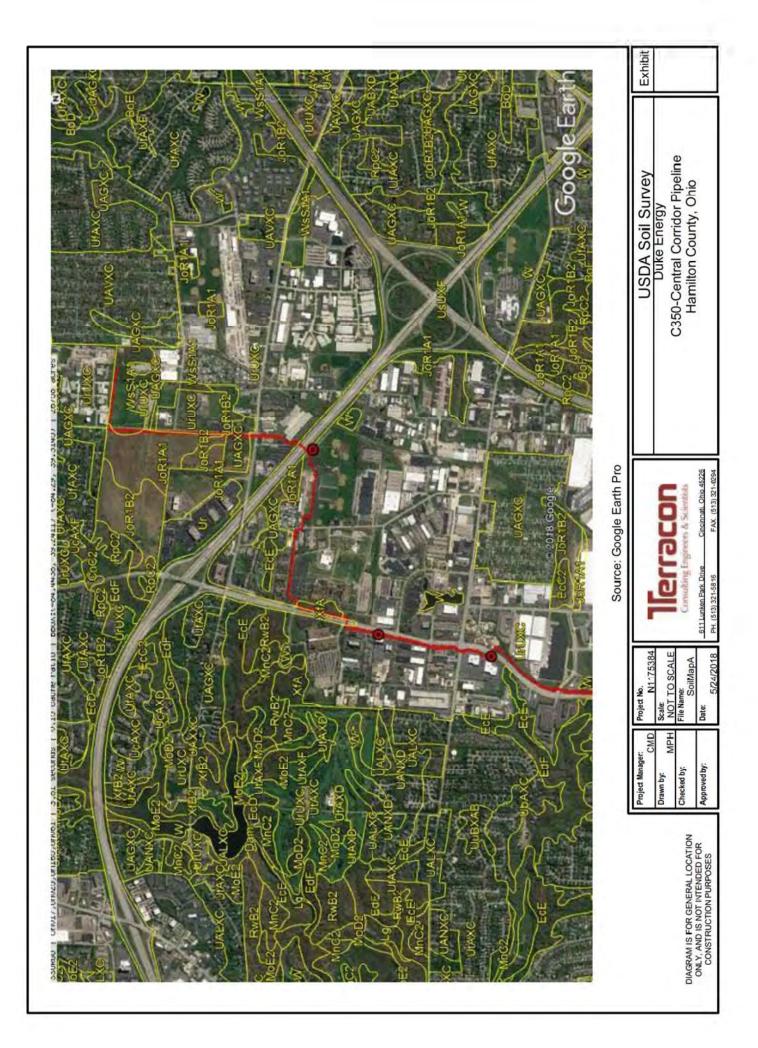
Date Received: 1/5/2018

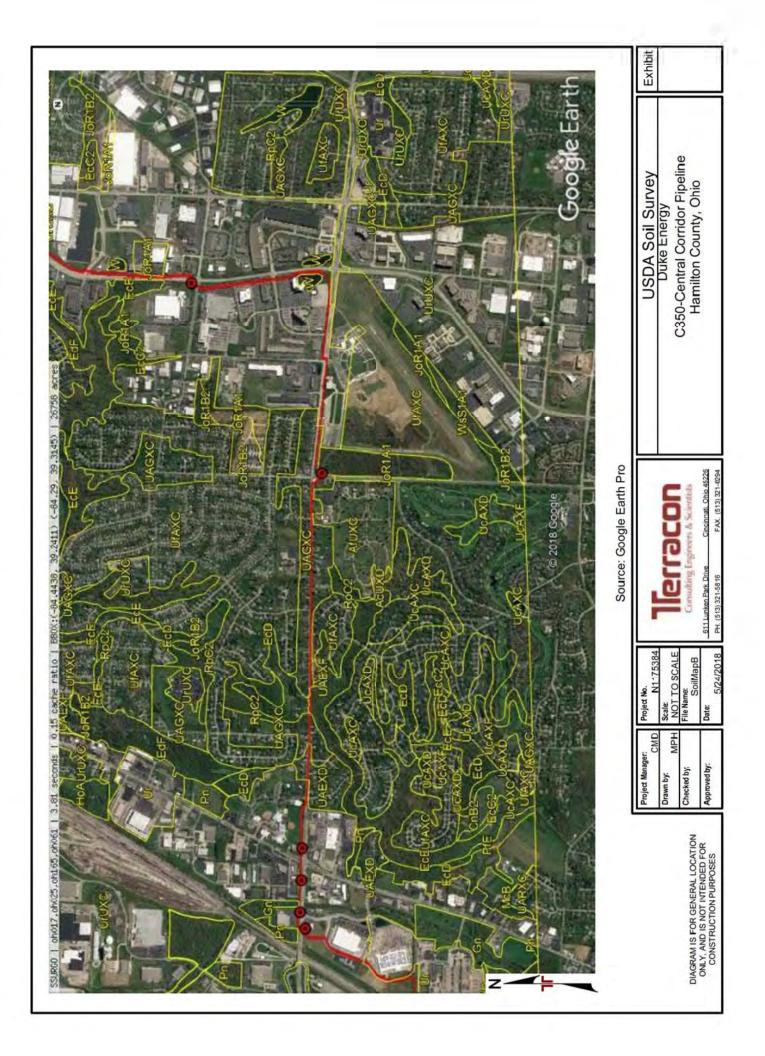
Lab No.: 18-0043

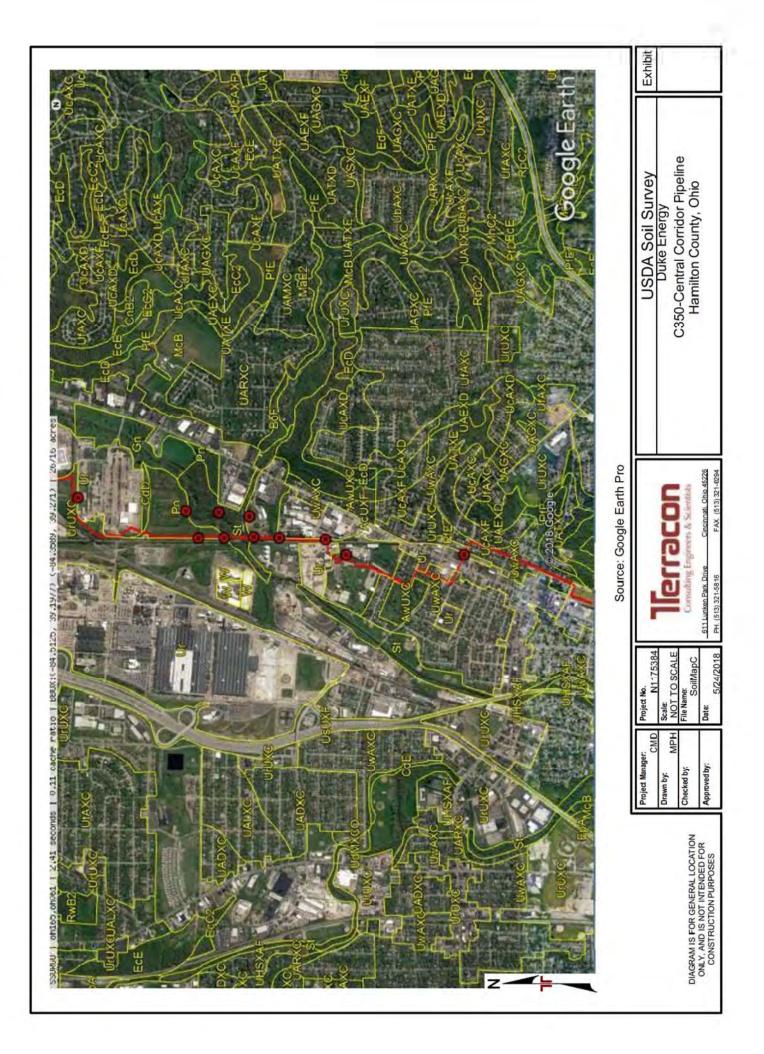
Lab Number	10677 & 10678	10685 & 10686	9202 & 9203
Sample Number	S-4 & S-5	S-3 & S-4	S-4 & S-5
Sample Location	WB-20	WB-22	WB-24
Sample Depth (ft.)	4.5 & 6.0	4.0 & 5.5	4.5 & 6.0
pH Analysis, AWWA 4500 H	7.40	7.07	7.20
Water Soluble Sulfate (SO4), ASTM D 516 (mg/kg)	121	47	117
Sulfides, AWWA 4500-S D, (mg/kg)	Nil	Nil	Nil
Chlorides, ASTM D 512, (mg/kg)	75	58	68
Red-Ox, AWWA 2580, (mV)	+700	+700	+702
Total Salts, AWWA 2540, (mg/kg)	221	749	709
Resistivity, ASTM G 57, (ohm-cm)	3346*	1552**	1552**

Results of Corrosion Analysis

* WB-20 combined with WB-2
 ** WB-22 combined with WB-24


Jerisha Cangac


Trisha Campo Chemist


The tests were performed in general accordance with applicable ASTM, AASHTO, or DOT test methods. This report is exclusively for the use of the client indicated above and shall not be reproduced except in full without the written consent of our company. Test results transmitted herein are only applicable to the actual samples tested at the location(s) referenced and are not necessarily indicative of the properties of other apparently similar or identical materials.

Analyzed By:


USDA SOIL SURVEY

SUPPORTING INFORMATION

GENERAL NOTES

DESCRIPTION OF SYMBOLS AND ABBREVIATIONS

Central Corridor Pipeline C350 Cincinnati, Ohio 6/22/2018 Terracon Project No. N1175384

SAMPLING	WATER LEVEL	FIELD TESTS
Standard Penetration Test	 Water Initially Encountered Water Level After a Specified Period of Time Water Level After a Specified Period of Time Water levels indicated on the soil boring logs are the levels measured in the borehole at the times indicated. Groundwater level variations will occur over time. In low permeability soils, accurate determination of groundwater levels is not possible with short term water level observations. 	N Standard Penetration Test Resistance (Blows/Ft.) (HP) Hand Penetrometer (T) Torvane \vee V Dynamic Cone Penetrometer UC Unconfined Compressive Strength (PID) Photo-Ionization Detector (OVA) Organic Vapor Analyzer

DESCRIPTIVE SOIL CLASSIFICATION

Soil classification is based on the Unified Soil Classification System. Coarse Grained Soils have more than 50% of their dry weight retained on a #200 sieve; their principal descriptors are: boulders, cobbles, gravel or sand. Fine Grained Soils have less than 50% of their dry weight retained on a #200 sieve; they are principally described as clays if they are plastic, and silts if they are slightly plastic or non-plastic. Major constituents may be added as modifiers and minor constituents may be added according to the relative proportions based on grain size. In addition to gradation, coarse-grained soils are defined on the basis of their in-place relative density and fine-grained soils on the basis of their consistency.

LOCATION AND ELEVATION NOTES

Unless otherwise noted, Latitude and Longitude are approximately determined using a hand-held GPS device. The accuracy of such devices is variable. Surface elevation data annotated with +/- indicates that no actual topographical survey was conducted to confirm the surface elevation. Instead, the surface elevation was approximately determined from topographic maps of the area.

		STRENGTH TER	MS	
(More than 50%	OF COARSE-GRAINED SOILS retained on No. 200 sieve.) Standard Penetration Resistance	Consistency de	CONSISTENCY OF FINE-GRAINE (50% or more passing the No. 200 termined by laboratory shear strength to procedures or standard penetration re	sieve.) esting, field visual-manual
Descriptive Term (Density)	Standard Penetration or N-Value Blows/Ft.	Descriptive Term (Consistency)	Unconfined Compressive Strength Qu, (tsf)	Standard Penetration o N-Value Blows/Ft.
Very Loose	0 - 3	Very Soft	less than 0.25	0 - 1
Loose	4 - 9	Soft	0.25 to 0.50	2 - 4
Medium Dense	10 - 29	Medium Stiff	0.50 to 1.00	4 - 8
Dense	30 - 50	Stiff	1.00 to 2.00	8 - 15
Very Dense	> 50	Very Stiff	2.00 to 4.00	15 - 30
4	· · · · · · · · · · · · · · · · · · ·	Hard	> 4.00	> 30

RELATIVE PROPORTIO	NS OF SAND AND GRAVEL	RELATIVE PROPOR	TIONS OF FINES
Descriptive Term(s) of other constituents	Percent of Dry Weight	Descriptive Term(s) of other constituents	Percent of Dry Weight
Trace	<15	Trace	<5
With	15-29	With	5-12
Modifier	>30	Modifier	>12
GRAIN SIZE	TERMINOLOGY	PLASTICITY DE	SCRIPTION
Major Component of Sample	Particle Size	Term	Plasticity Index
Boulders	Over 12 in. (300 mm)	Non-plastic	0
Cobbles	12 in. to 3 in. (300mm to 75mm)	Low	1 - 10
Gravel	3 in. to #4 sieve (75mm to 4.75 mm)	Medium	11 - 30
Sand	#4 to #200 sieve (4.75mm to 0.075mm	High	> 30
Silt or Clay	Passing #200 sieve (0.075mm)		

UNIFIED SOIL CLASSIFICATION SYSTEM

C350 Central Corridor Pipeline Expansion . Cincinnati, Hamilton County, Ohio

June 22, 2018 - Terracon Project No. N1175384

10 7

4

0

CL - ML

10 16 20

ML or OL

40

30

50

60

LIQUID LIMIT (LL)

70

80

90

100

110

Terracon GeoReport

	ing Group Symbols	and Group Names	Using Laboratory	Fests A	Group Symbol	Soil Classification Group Name ^B
	Ormulai	Clean Gravels:	$Cu \ge 4$ and $1 \le Cc \le 3^{E}$		GW	Well-graded gravel F
Coarse-Grained Soils: More than 50% retained on No. 200 sieve	Gravels: More than 50% of coarse fraction retained on No. 4 sieve	Less than 5% fines C Gravels with Fines: More than 12% fines C	$Cu \le 4$ and $r \le Cc \le 0$ Cu < 4 and/or 1 > Cc or 0	20 3 E	GP	Poorly graded gravel
			Fines classify as ML or M		GM	Silty gravel F, G, H
			Fines classify as CL or C		GC	Clayey gravel F, G, H
	Sands: 50% or more of coarse fraction passes No. 4 sieve	Clean Sands: Less than 5% fines D	$Cu \ge 6$ and $1 \le Cc \le 3^{E}$		SW	Well-graded sand 1
			Cu < 6 and/or $1 > Cc > 3$	E	SP	Poorly graded sand
		Sands with Fines: More than 12% fines	Fines classify as ML or M		SM	Silty sand G, H, I
			Fines classify as CL or C		SC	Clayey sand G, H, I
Fine-Grained Soils:	Silts and Clays:	Inorganic:	PI > 7 and plots on or abo	ove "A"	CL	Lean clay K, L, M
			PI < 4 or plots below "A"		ML	Silt K, L, M
	Liquid limit less than 50	N - 2	Liquid limit - oven dried	1.1.11		Organic clay K, L, M, I
	the mark the star	Organic:	Liquid limit - not dried	< 0.75	OL	Organic silt K, L, M, O
50% or more passes the		Lating 1	PI plots on or above "A" I	ine	СН	Fat clay K, L, M
No. 200 sieve	Silts and Clays:	Inorganic:	PI plots below "A" line		MH	Elastic Silt K, L, M
	Liquid limit 50 or more	1	Liquid limit - oven dried			Organic clay K, L, M, I
	Equila initi ou or more	Organic:	Liquid limit - not dried	< 0.75	OH	Organic silt K, L, M, Q
Highly organic soils:	Primarily	organic matter, dark in co			PT	Peat
	ell-graded sand with clay, orly graded sand with clay	SP-SM poorly graded	"sandy" to group name	9.		inantly sand, add
If soil contains $\ge 15\%$ sat	nd, add "with sand" to gro	up name.	MIf soil contains ≥ 30% p "gravelly" to group nan N PI ≥ 4 and plots on or O PI < 4 or plots below " P I plots on or above "/ O PI plots below "A" line.	ne. above "A" A"line. A" line.		
	nd, add "with sand" to gro L, use dual symbol GC-G	up name.	"gravelly" to group nam N PI ≥ 4 and plots on or O PI < 4 or plots below " P PI plots on or above "/	ne. above "A" A"line. A" line.		

DESCRIPTION OF ROCK PROPERTIES

C350 Central Corridor Pipeline Expansion . Cincinnati, Hamilton County, Ohio

June 22, 2018 Terracon Project No. N1175384

	WEATHERING
Term	Description
Unweathered	No visible sign of rock material weathering, perhaps slight discoloration on major discontinuity surfaces.
Slightly weathered	Discoloration indicates weathering of rock material and discontinuity surfaces. All the rock material may be discolored by weathering and may be somewhat weaker externally than in its fresh condition.
Moderately weathered	Less than half of the rock material is decomposed and/or disintegrated to a soil. Fresh or discolored rock is present either as a continuous framework or as corestones.
Highly weathered	More than half of the rock material is decomposed and/or disintegrated to a soil. Fresh or discolored rock is present either as a discontinuous framework or as corestones.
Completely weathered	All rock material is decomposed and/or disintegrated to soil. The original mass structure is still largely intact.
Residual soil	All rock material is converted to soil. The mass structure and material fabric are destroyed. There is a large change in volume, but the soil has not been significantly transported.

MEATHEDING

	STRENGTH OR HARDNESS	
Description	Field Identification	Uniaxial Compressive Strength, psi (MPa)
Extremely weak	Indented by thumbnail	40-150 (0.3-1)
Very weak	Crumbles under firm blows with point of geological hammer, can be peeled by a pocket knife	150-700 (1-5)
Weak rock	Can be peeled by a pocket knife with difficulty, shallow indentations made by firm blow with point of geological hammer	700-4,000 (5-30)
Medium strong	Cannot be scraped or peeled with a pocket knife, specimen can be fractured with single firm blow of geological hammer	4,000-7,000 (30-50)
Strong rock	Specimen requires more than one blow of geological hammer to fracture it	7,000-15,000 (50-100)
Very strong	Specimen requires many blows of geological hammer to fracture it	15,000-36,000 (100-250)
Extremely strong	Specimen can only be chipped with geological hammer	>36,000 (>250)
	DISCONTINUITY DESCRIPTION	the second s

Fracture Spacing (Joints, Faults, Other Fractures)		Bedding Spacing (May Include Foliation or Banding)		
Description	Spacing	Description	Spacing	
Extremely close	< ¾ in (<19 mm)	Laminated	< ½ in (<12 mm)	
Very close	¾ in – 2-1/2 in (19 - 60 mm)	Very thin	1/2 in – 2 in (12 – 50 mm)	
Close	2-1/2 in - 8 in (60 - 200 mm)	Thin	2 in – 1 ft. (50 – 300 mm)	
Moderate	8 in – 2 ft. (200 – 600 mm)	Medium	1 ft 3 ft. (300 - 900 mm)	
Wide	2 ft 6 ft. (600 mm - 2.0 m)	Thick	3 ft. – 10 ft. (900 mm – 3 m)	
Very Wide	6 ft. – 20 ft. (2.0 – 6 m)	Massive	> 10 ft. (3 m)	

Discontinuity Orientation (Angle): Measure the angle of discontinuity relative to a plane perpendicular to the longitudinal axis of the core. (For most cases, the core axis is vertical; therefore, the plane perpendicular to the core axis is horizontal.) For example, a horizontal bedding plane would have a 0-degree angle.

Description	RQD Value (%)	
Very Poor	0 - 25	
Poor	25 - 50	
Fair	50 – 75	
Good	75 – 90	
Excellent	90 - 100	

percentage of the total core run length.

Reference: U.S. Department of Transportation, Federal Highway Administration, Publication No FHWA-NHI-10-034, December 2009 <u>Technical Manual for Design and Construction of Road Tunnels – Civil Elements</u>

PHOTOGRAPHS OF SITE CONDITIONS

C350 Central Corridor Pipeline Expansion Cincinnati, Hamilton County, Ohio

June 22, 2018 - Terracon Project No. N1175384

Terracon

Photo 1: WB-1 Before

Photo 2: WB-1 After

C350 Central Corridor Pipeline Expansion
Cincinnati, Hamilton County, Ohio

June 22, 2018 - Terracon Project No. N1175384

Terracon

Photo 3: WB-1A Before

Photo 4: WB-1A After

C350 Central Corridor Pipeline Expansion E Cincinnati, Hamilton County, Ohio

June 22, 2018 - Terracon Project No. N1175384

Photo 5: WB-2 Before

Photo 6: WB-2 After

C350 Central Corridor Pipeline Expansion
Cincinnati, Hamilton County, Ohio

June 22, 2018 - Terracon Project No. N1175384

Terracon

Photo 7: WB-2A Before

Photo 8: WB-2A After

C350 Central Corridor Pipeline Expansion E Cincinnati, Hamilton County, Ohio

June 22, 2018 - Terracon Project No. N1175384

Photo 9: WB-3 Before

Photo 10: WB-3 After

C350 Central Corridor Pipeline Expansion E Cincinnati, Hamilton County, Ohio

June 22, 2018 - Terracon Project No. N1175384

Terracon

Photo 11: WB-3A Before

Photo 12: WB-3A After

C350 Central Corridor Pipeline Expansion E Cincinnati, Hamilton County, Ohio

June 22, 2018 - Terracon Project No. N1175384

Terracon

Photo 13: WB-4 Before

Photo 14: WB-4 After

C350 Central Corridor Pipeline Expansion . Cincinnati, Hamilton County, Ohio

June 22, 2018 - Terracon Project No. N1175384

Photo 15: WB-5 Before

Photo 16: WB-5 After

C350 Central Corridor Pipeline Expansion
Cincinnati, Hamilton County, Ohio

June 22, 2018 - Terracon Project No. N1175384

Photo 17: WB-7 Before

Photo 18: WB-7 After

C350 Central Corridor Pipeline Expansion
Cincinnati, Hamilton County, Ohio

June 22, 2018 - Terracon Project No. N1175384

Photo 19: WB-8 Before

Photo 20: WB-8 After

Terracon

C350 Central Corridor Pipeline Expansion
Cincinnati, Hamilton County, Ohio

June 22, 2018 - Terracon Project No. N1175384

Terracon

Photo 21: WB-9 Before

Photo 22: WB-9 After

C350 Central Corridor Pipeline Expansion
Cincinnati, Hamilton County, Ohio

June 22, 2018 - Terracon Project No. N1175384

Terracon

Photo 23: WB-10 Before

Photo 24: WB-10 After

C350 Central Corridor Pipeline Expansion
Cincinnati, Hamilton County, Ohio

June 22, 2018 - Terracon Project No. N1175384

Photo 25: WB-11 Before

Photo 26: WB-11 After

C350 Central Corridor Pipeline Expansion
Cincinnati, Hamilton County, Ohio

June 22, 2018 - Terracon Project No. N1175384

Terracon

Photo 27: WB-12 Before

Photo 28: WB-12 After

C350 Central Corridor Pipeline Expansion E Cincinnati, Hamilton County, Ohio

June 22, 2018 - Terracon Project No. N1175384

Terracon

Photo 29: WB-13 Before

Photo 30: WB-13 After

C350 Central Corridor Pipeline Expansion . Cincinnati, Hamilton County, Ohio

June 22, 2018 - Terracon Project No. N1175384

Terracon

Photo 31: WB-14 Before

Photo 32: WB-14 After

C350 Central Corridor Pipeline Expansion
Cincinnati, Hamilton County, Ohio

June 22, 2018 - Terracon Project No. N1175384

Terracon

Photo 33: WB-15 Before

Photo 34: WB-15 After

C350 Central Corridor Pipeline Expansion
Cincinnati, Hamilton County, Ohio

June 22, 2018 Terracon Project No. N1175384

Photo 35: WB-16 Before

Photo 36: WB-16 After

C350 Central Corridor Pipeline Expansion
Cincinnati, Hamilton County, Ohio

June 22, 2018 - Terracon Project No. N1175384

Photo 37: WB-18 Before

Photo 38: WB-18 After

C350 Central Corridor Pipeline Expansion
Cincinnati, Hamilton County, Ohio

June 22, 2018 - Terracon Project No. N1175384

Photo 39: WB-19 Before

Photo 40: WB-19 After

C350 Central Corridor Pipeline Expansion E Cincinnati, Hamilton County, Ohio

June 22, 2018 - Terracon Project No. N1175384

lerracon

Photo 41: WB-20 Before

Photo 42: WB-20 After

C350 Central Corridor Pipeline Expansion
Cincinnati, Hamilton County, Ohio

June 22, 2018 - Terracon Project No. N1175384

Terracon

Photo 43: WB-22 Before

Photo 44: WB-22 After

C350 Central Corridor Pipeline Expansion
Cincinnati, Hamilton County, Ohio

June 22, 2018 - Terracon Project No. N1175384

Photo 45: WB-24 Before

Photo 46: WB-24 After

C350 Central Corridor Pipeline Expansion
Cincinnati, Hamilton County, Ohio

June 22, 2018 - Terracon Project No. N1175384

Photo 47: E-101 Before

Photo 48: E-101 After

C350 Central Corridor Pipeline Expansion
Cincinnati, Hamilton County, Ohio

June 22, 2018 - Terracon Project No. N1175384

Photo 49: E-102 Before

C350 Central Corridor Pipeline Expansion E Cincinnati, Hamilton County, Ohio

June 22, 2018 - Terracon Project No. N1175384

Photo 51: E-103 Before

Photo 52: E-103 After

C350 Central Corridor Pipeline Expansion
Cincinnati, Hamilton County, Ohio

June 22, 2018 - Terracon Project No. N1175384

Terracon

Photo 54: E-104 After

C350 Central Corridor Pipeline Expansion
Cincinnati, Hamilton County, Ohio

June 22, 2018 - Terracon Project No. N1175384

Terracon

Photo 55: E-105 Before

Photo 56: E-105 After

C350 Central Corridor Pipeline Expansion
Cincinnati, Hamilton County, Ohio

June 22, 2018 - Terracon Project No. N1175384

Terracon

Photo 57: E-106 Before

Photo 58: E-106 After

C350 Central Corridor Pipeline Expansion
Cincinnati, Hamilton County, Ohio

June 22, 2018 - Terracon Project No. N1175384

Terracon

Photo 59: E-107 Before

Photo 60: E-107 After

C350 Central Corridor Pipeline Expansion
Cincinnati, Hamilton County, Ohio

June 22, 2018 - Terracon Project No. N1175384

Terracon

Photo 61: E-108 Before

Photo 62: E-108 After

C350 Central Corridor Pipeline Expansion
Cincinnati, Hamilton County, Ohio

June 22, 2018 - Terracon Project No. N1175384

Terracon

Photo 63: E-109 Before

Photo 64: E-109 After

C350 Central Corridor Pipeline Expansion
Cincinnati, Hamilton County, Ohio

June 22, 2018 - Terracon Project No. N1175384

Terracon

Photo 65: E-110 Before

Photo 66: E-110 After

C350 Central Corridor Pipeline Expansion . Cincinnati, Hamilton County, Ohio

June 22, 2018 - Terracon Project No. N1175384

Photo 67: E-111 Before

Photo 68: E-111 After

C350 Central Corridor Pipeline Expansion
Cincinnati, Hamilton County, Ohio

June 22, 2018 - Terracon Project No. N1175384

Terracon

Photo 69: E-114 Before

Photo 70: E-114 After

This foregoing document was electronically filed with the Public Utilities

Commission of Ohio Docketing Information System on

10/30/2020 4:27:08 PM

in

Case No(s). 16-0253-GA-BTX

Summary: Correspondence Duke Energy Ohio, Inc.'s adherence with Condition No. 39 electronically filed by Carys Cochern on behalf of Duke Energy Ohio, Inc.