
.

L	I	4
-		Ī
Ē	ĩ	2

÷

PUCO EXHIBIT FILING

Date of Hearing: April 9, 2019	
Case No. 16-0253-BTX -	
PUCO Case Caption:	
In the Matter of the Application of Duke	
Energy Ohio, Inc.; for a Certificate of	
Environmental Compatibility and Public Need for	
the C314V Central Corridor Ripeline Extension.	
Volume I.	
List of exhibits being filed:	
<u>City/County 1</u>	
NOPE 1. 4. 6. 7:8	RECEIVED
	APR 12
$\mathbb{R} = \{\lambda \in \mathbb{R} \mid \lambda \in \mathbb{R} \mid \lambda \in \mathbb{R} \mid \lambda \in \mathbb{R} \mid \lambda \in \mathbb{R} \}$	PM
rotate rocea and con	2: 52
reproduction	
· ۵۵٬۰۰۰ ۲۵٬۰۰۰ ۲۵٬۰۰۰ ۲۵٬۰۰۰ ۲۵٬۰۰۰ ۲۵٬۰۰۰ ۲۵٬۰۰۰ ۲۵٬۰۰۰ ۲۵٬۰۰۰ ۲۵٬۰۰۰ ۲۵٬۰۰۰ ۲۵٬۰۰۰ ۲۵٬۰۰۰ ۲۵٬۰۰۰ ۲۵٬۰۰۰ ۲۵٬	
Reporter's Signature: Maier Sue Liber	
Date Submitted: 4-12-2019	

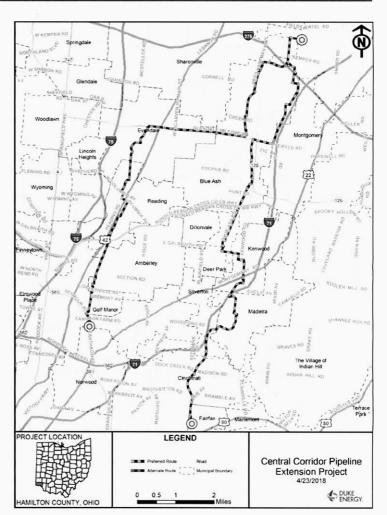
Central Corridor Pipeline Extension Project

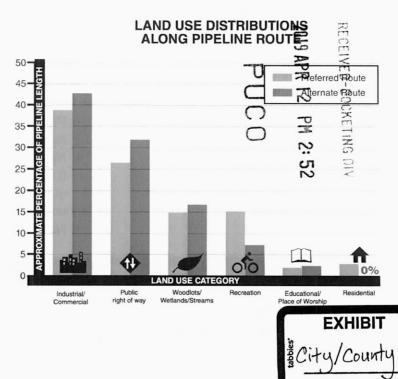
INTRODUCTION

Duke Energy has proposed a new natural gas pipeline to serve its southwest Ohio natural gas distribution system. This project is part of a largescale plan to improve, protect and expand our system to continue reliable delivery of natural gas to our customers.

The new pipeline will:

- Serve the Duke Energy gas distribution system and supply natural gas solely to local customers,
- · Enhance reliability and flexibility of gas supply,
- · Replace and modernize aging infrastructure,
- Reduce dependence on propane peaking facilities and Kentucky transmission lines.


PIPELINE AND ROUTE DETAILS


Two potential routes are under consideration, as shown in the map to the right. The Preferred Route (Eastern) is shown in orange, and the Alternate Route (Western) is shown in green. The proposed natural gas pipeline will be located in Hamilton County and will connect to existing natural gas lines to the north and south. It will begin just south of the boundaries of Hamilton, Butler and Warren counties and end in either Fairfax (Eastern Route) or Norwood (Western Route).

The pipeline will be:

- 20-inch diameter,
- · About 400 psi operating pressure,
- · About 14 miles in length, and
- A minimum of 4 feet deep, with many areas deeper when directional drilling techniques are used.

Duke Energy will strive to complete the project with the least overall impact as possible to the community. With this in mind, the selected routes limit the number of residential properties directly affected by the pipeline. In fact, there are no residential properties crossed along the Alternate Route. See the graph to the right.

built to be SAFE AND SECURE

Safety, security and environmental stewardship are core values at Duke Energy. Our company has been operating natural gas pipeline systems safely for more than 175 years. This dedication to safe system operation is why the new pipeline will be:

FULLY COMPLIANT with state and federal regulations,

> CONSTRUCTED of thick-walled steel pipe,

COATED WITH anti-corrosion fusion bonded epoxy,

INSTALLED with cathodic protection for additional corrosion prevention,

RIGOROUSLY TESTED using the most advanced technologies available,

INSPECTED REGULARLY using multiple inspection methods, and

> EQUIPPED with remote control shut-off valves.

In addition to these pipeline safety features, Duke Energy will coordinate with local fire departments and government officials along the pipeline route to adequately engage them and develop planning scenarios.

PROJECT TIMELINE

While this project has been part of Duke Energy's long-term plan for more than 15 years, the timing and project details were developed through a comprehensive study completed in 2015. Preliminary routes were selected in early 2016. In August 2017, Duke Energy requested a delay in OPSB's procedural schedule to allow more time to conduct additional environmental investigations along the alternate route. In April 2018, Duke restarted its amended application with the OPSB.

Project Milestones Completed

- February 2016: Met with community leaders along routes.
- · March and June 2016: Held three public open houses.
- July 2016: Met with Hamilton County leadership in public meeting.
- · September 2016: Submitted OPSB application.
- January 2017: Held fourth public open house.
- Winter/Spring 2017: Continued design and surveying/soil borings. OPSB resumed review of Duke Energy's application.
- · June 2017: OPSB held public hearing at UC Blue Ash.

Anticipated Future Milestones

- March 2019: OPSB holds public hearing at UC Blue Ash.
- April 2019: OPSB holds adjudicatory hearing in Columbus.
- Summer 2019: OPSB issues permit to construct the pipeline.
- · Summer 2019: Easement negotiations begin.
- Spring/Summer 2020: Start construction.
- · Fall 2021: Complete construction.
- · Spring 2022: Complete restoration.

Construction may span 14-16 months, but individual properties will be affected for a much shorter time period – likely three to six weeks or less, depending on the size of the property.

NATURAL GAS PIPELINE FACTS

According to the Pipeline and Hazardous Materials Safety Administration/U.S. Department of Transportation:

- Pipelines are the safest, most environmentally friendly, and most efficient and reliable mode of transporting natural gas.
- Natural gas pipelines also make the most economic sense. It would take nearly 750 tanker trucks constantly shipping out every two minutes, around the clock, to transport the equivalent of a small to medium diameter pipeline.
- Natural gas supplies 25% of the energy Americans consume.

For more information about the Central Corridor Pipeline Extension Project, VISIT: duke-energy.com/centralcorridor CALL 513.287.2130 EMALL: CentCorridorPipeline@duke-energy.com

2017

LONG-TERM FORECAST REPORT

FOR GAS DEMAND, GAS SUPPLY, AND FACILITY PROJECTIONS

Case No. 17-1317-GA-FOR

OF

DUKE ENERGY OHIO, INC.

139 EAST FOURTH STREET


CINCINNATI, OHIO 45202

A SUBSIDIARY OF DUKE ENERGY CORPORTION

TO THE PUBLIC UTILITIES COMMISSION OF OHIO DIVISION OF FORECASTING

PREFACE

Duke Energy Ohio, Inc. has prepared this Long-Term Forecast Report as a response to Section 4935.04(C) of the Ohio Revised Code. The organization of the report follows the order of those Rules and Regulations relating to such forecast reports in Ohio Administrative Code 4901.5-7-03.

(3) Energy Conservation

Changes in gas use due to energy conservation cannot be easily identified within the forecast. Energy conservation tends to occur in response to energy price changes. As such, the effects of energy conservation are included in the energy-price impacts discussed in Section (4) below. However, in the residential sector, the level of energy conservation in the forecast due to increasing furnace efficiency can be estimated. It should be recognized that energy conservation due to increasing furnace efficiency is still a price-driven conservation effect although there is a somewhat longer time lag between cause and effect. The difference between a residential forecast based upon a zero increase in furnace efficiency and the actual forecast is the basis for the gas energy conservation impacts provided in Table 1.

TABLE 1 FURNANCE EFFFICIENCY-INDUCED CONSERVATION MCF

	RESIDENTIAL	<u>SENDOUT</u>	<u>PEAK</u>
2017	167,113	168,008	3,697
2018	362,958	364,901	4,343
2019	582,422	585,540	4,858
2020	821,165	825,560	5,265
2021	1,072,288	1,078,028	5,561
2022	1,331,265	1,338,391	5,770
2023	1,595,494	1,604,034	5,915
2024	1,862,559	1,872,528	5 <i>,</i> 968
2025	2,126,410	2,137,792	5, 9 18
2026	2,385,433	2,398,201	5,818
2027	2,636,536	2,650,648	5,652

June 1, 2017

Public Utilities Commission of Ohio Division of Forecasting 180 East Broad Street Columbus, OH 43266-0573

RE: 2017 LONG-TERM FORECAST REPORT FOR GAS DEMAND, GAS SUPPLY, AND FACILITY PROJECTIONS

Pursuant to Ohio Administrative Code Rule 4905:5-3-01, Duke Energy Ohio, Inc. ("Duke Energy Ohio") submits an original and 20 copies of its 2017 Long-Term Forecast Report for Gas Demand, Gas Supply, and Facility Projections.

Portions of this forecast are based upon information and conditions that were current in the spring of 2017. This information is subject to the same degree of review and modification by Duke Energy Ohio as would be exercised by it with respect to its forecasts in general.

Questions regarding the contents of this document should be directed to Mr. Jeff L. Kern at Duke Energy Ohio's regional offices located at 139 E. Fourth Street, EX460, Cincinnati, Ohio 45202, Telephone (513) 287-2837.

Please note that Ms. Elizabeth Watts, Legal Department, is the Attorney of Record for the forecast.

Sincerely,

1 Liken

Jeff L. Kern Lead, Gas Resources Duke Energy Corporation

Attachments

ATTACHEMENT "A"

DUKE ENERGY OHIO, INC. 2017 GAS LONG-TERM FORECAST REPORT

CERTIFICATE OF SERVICE

The undersigned states that he is Lead Gas Resources, Duke Energy Business Services; that he is duly authorized in such capacity to execute and file this Long-Term Forecast on behalf of Duke Energy Ohio, Inc.; that the facts set forth in this Long-Term forecast are true and correct to the best of his knowledge, information, and belief, and that all other matters set forth herein reflect the best judgment of Duke Energy Corporation at this time.

I hereby certify that, concurrently with the filing of the 2017 Long-Term forecast Report for Gas Demand, Gas Supply, and Facility Projections and pursuant to the Ohio Administrative Code Rule 4901:5-1-03(E), one copy of the Report has been filed with the Ohio Power Siting board and one copy has been sent to the public libraries listed on page iv of this Report (Attachment "B").

One copy of this Report will be kept at the principal business address of Duke Energy Ohio, Inc. (139 East Fourth Street, Cincinnati, Ohio) for public inspection during office hours. A copy of the Report will be provided to any person, upon request, at cost to cover expenses incurred.

hhen

Jeff L. Kern Lead, Gas Resources **Duke Energy Corporation**

<u>6/1/17</u> DATE

ATTACHEMENT "B"

LIBRARIES RECEIVING A COPY OF DUKE ENERGY OHIO'S 2017 GAS LONG-TERM FORECAST REPORT FOR GAS DEMAND, GAS SUPPLY, AND FACILITY PROJECTIONS

·		
<u>County</u>	<u>Library</u>	<u>Address</u>
Adams	Manchester Branch Library	401 Pike Street
		Manchester, Ohio 45144
Brown	Mary P. Shelton Library	200 West Grant Avenue
		Georgetown, Ohio 45121
Butler	Lane Public Library	300 North Third Street
Dutier		Hamilton, Ohio 45011
Butler	Middletown Public Library	125 South Broad Street
Datiel	magictown r abiic Library	Middletown, Ohio 45044
		Madietown, onio 43044
Clermont	Clermont County Public	180 South Third Street
Clermont	Library	Batavia, Ohio 45103
	Cibiary	
Clinton	Wilmington Public Library	268 North South Street
Childon	Willington Laber Library	Wilmington, Ohio 45177
		Winnington, Onio 43177
Hamilton	Public Library of Cincinnati	800 Vine Street
Tarimton	and Hamilton County	Cincinnati, Ohio 45202
	and Hamilton County	Cincinnati, Onio 45202
Montgomery	Dayton and Montgomery	215 East Third Street
montgottery	County Public Library	Dayton, Ohio 45402
	councy rubic clorary	549401, Olio 45402
Preble	Preble County District Library	450 North Baron Street
,		Eaton Ohio 45320
		2000 000 40020
Warren	Lebanon Public Library	101 South Broadway
Harten	Leballon r ubile cibrary	Lebanon, Ohio 45036
Highland	Highland County District	10 Whillettsville Pike
	Library	Hillsboro, Ohio 45133
		111135519, 5110 43133
Hamilton	University of Cincinnati	2600 Clifton Avenue
	Library-Reference Division	Cincinnati, Ohio 45221

DUKE ENERGY OHIO

TABLE OF CONTENTS (Continued)

RESPONSE TO OAC RULE 4901:5-7-04 NATURAL GAS SUPPLY Number

Page

(A)	General Guidelines	4-1
(B)	Special Subject Areas	4-1
(C)	Discussion of Gas Supply	4-2
(D)	Projected Sources of Gas	4-3
(E)	Reliability of Gas Sources	4-6
(F)	Analysis of Peak System and Winter Season Planning	4-6
(G)	Supply Forecast Forms	4-8 4-9 4-10 4-11 4-12
	V-/	

RESPONSE TO OAC RULE 4901:5-7-05 RESOURCE FORECASTS AND SITE INVENTORIES OF TRANSMISSION FACILITIES Number

Page

(A)	Gene	eral Guidelines	
(B)	Spec	ific Requirements	
	(1)	Existing Transmission System	
	•••	FORM FG3-1	
		DE-Ohio's Existing Transmission System Map	APPENDIX I*
	(2)	Planned Transmission System	
	. ,	FORM FG3-2	
		DE-Ohio's Planned Transmission System	
	(3)	Transmission Forecast Forms	
	<i>V</i> -7	Existing Transmission System: FORM FG3-1	
		Planned Transmission System: FORM FG3-2	
		· · · · · · · · · · · · · · · · · · ·	

*APPENDIX I and II contain critical infrastructure information and are available for review at Duke Energy's office upon request.

DUKE ENERGY OHIO

TABLE OF CONTENTS

RULE	PONSE TO OAC E 4901:5-7-01 NITIONS Der	Page
(A)	Definitions	1-1
RULE	PONSE TO OAC E 4901:5-7-02 POSE AND SCOPE Der	Page
(A)	Purpose and scope	2-1
RULE	PONSE TO OAC 24901:5-7-03 AND NATURAL GAS DEMAND FORECAST per	Page
(A)	General Guidelines	3-1
(B) (C)	Special Subject Areas (1) Description of Forecast Preparation and Coordination (2) State Energy Policy (3) Energy Conservation (4) Energy Price Relationship Forecast Documentation	3-1 3-1 3-2 3-3 3-4 3-4 3-4 3-17 3-17
(D)	 (4) Gas Equations and Statistical Test Results Demand Forecast Forms (1) Service Area Natural Gas Demand FORM FG1-1 (2) Gas Demand By Industrial Sector FORM FG1-2 (3) Monthly Gas Sendout FORM FG1-3 (4) Range of Forecasts FORM FG1-4a FORM FG1-4b (5) Peak and Forecast 	3-30 3-30 3-34 3-30 3-35 3-30 3-36 3-30 3-37 3-38 3-38 3-32
	FORM FG1-5 (6) Self Help and Other Transported Gas FORM FG1-6	

DUKE ENERGY OHIO

TABLE OF CONTENTS (Continued)

Duke Energy Corp. 2016 Annual Report is available at:

www.duke-energy.com/ /media/pdfs/our-company/investors/de-annual-reports/2016/2016annualreport.pdf

Or by visiting <u>www.duke-energy.com</u> and selecting "Our Company", "Investors" and "2016 Annual Report"

4901:5-7-01 **DEFINITIONS**

- (A) No response necessary.
- (B) No response necessary.
- (C) No response necessary.
- (D) No response necessary.
- (E) No response necessary.
- (F) No response necessary.
- (G) No response necessary.
- (H) Duke Energy Ohio" refers to Duke Energy Ohio, Inc. and its service area, not the consolidated system.
- (I) No response necessary

4901:5-7-02 <u>PURPOSE AND SCOPE</u>

- (A) No response necessary.
- (B) No response necessary.
- (C) No response necessary.

4901:5-7-03 GAS AND NATURAL GAS DEMAND FORECASTS FOR GAS DISTRIBUTION COMPANIES SERVING MORE THAN FIFTEEN THOUSAND CUSTOMERS

(A) GENERAL GUIDELINES

No response required for items (1) through (4)

(B) SPECIAL SUBJECT AREAS

- (1) Description of Forecast Preparation and Coordination
 - (a) Duke Energy Ohio coordinates its load forecasts with those of Duke Energy Kentucky, Inc., an affiliated company operating in Northern Kentucky. The load forecasts and peak demand forecasts are prepared under common supervision and direction using the same forecasting methodology. Currently, the Duke Energy Ohio gas and electric load forecasts are prepared in the same department and under the same assumptions regarding energy prices and the future course of the local economy.
 - (b) Duke Energy Ohio also owns a propane peak-shaving plant and has access to 64% of the output from a peak shaving plant which is owned by Duke Energy Kentucky. Duke Energy Ohio also has an interconnection with Vectren Inc. (formally the Dayton Power and Light Company) for the sole purpose of transporting gas, on an interruptible basis, to Vectren Inc. from the Texas Gas Transmission. There is no reason to coordinate Duke Energy Ohio's forecasting activities with those of Vectren Inc.
 - (c) Duke Energy Ohio develops the gas load forecast through the use of econometric computer modeling techniques. Duke Energy relies on Moody's Analytics for all of its national and local economic projections. All series used for the forecast that are available annually or at a greater frequency are updated at least once a year.
- (2) State Energy Policy
 - (a) No response required.
 - (b) No response required.

The estimate of the conservation impact is developed using the same equations and models as the base forecast. For the forecast period, the conservation impact is identified by comparing the base forecast to one in which residential furnace efficiency is held constant, i.e., no improvement in efficiency. The difference in gas energy usage and peak demand between the two forecasts represents the projected impact of residential conservation due to the improvement in furnace efficiencies.

- (4) Energy Price Relationships
 - (a) Energy conservation identified within the forecast period reflects changes in gas usage due to changes in the real price of energy. The difference between a forecast based upon a zero percent increase in real energy price and the base forecast provides estimates for the gas conservation impacts seen in Table 2.

	RESIDENTIAL	COMMERCIAL		SENDOUT	PEAK
2017	1,681	(3,307)	190,281	189,666	1,987
2018	(25,400)	(29,002)	221,425	167,917	2,271
2019	(49,470)	(81,785)	255,762	125,174	2,593
2020	(85,417)	(141,387)	293,046	66,596	2,954
2021	(26,461)	(212,773)	327,360	88,598	3,269
2022	73,945	(143,779)	285,779	217,101	2,820
2023	109,909	(33,427)	220,670	298,742	2,152
2024	124,892	6,196	197,269	330,114	1,900
2025	139,871	23,162	187,160	352,067	1,783
2026	174,102	41,16 5	176,218	393,581	1,660
2027	208,211	79,967	153,071	443,611	1,424

TABLE 2 PRICE-INDUCED CONSERVATION MCF

(b) The impact of energy-price changes is based upon the same equations and models as the base forecast. For the forecast period, energy-price impacts

were identified by comparing the base forecast to one with a zero percent annual increase in the real average price of natural gas. The resulting difference in energy usage and peak demand represents the forecasted impact of conservation due to changes in the real price of energy.

(C) FORECAST DOCUMENTATION

- (1) Forecast Methodology
 - (a) The general framework of the Gas Energy and Peak Load Forecast of Duke Energy Ohio and Subsidiary Companies involves a national economic forecast, a local or service area economic forecast, and the gas load forecast. The following sections discuss the national and service area economic forecasts, and the methodological framework of the gas energy model and peak load model:

<u>National Economic Forecast</u>: The national economic forecast is prepared by Moody's Analytics and provides information on the prospective growth of the national economy. This involves projections for future levels of numerous national economic and demographic concepts such as population, employment, gross product, inflation, and income. The national economic forecast is obtained from Moody's Analytics, a national economic consulting firm.

<u>Service Area Economic Forecast</u>. The service area, or local economic forecast is prepared by Moody's Analytics. The service area forecast incorporates both national and local impacts into the local economic forecast. This forecast is used as a driver within the energy and peak models that produce the gas load forecast.

There are four major sectors to the service area forecast: employment, income, production, and population. These forecasts serve as inputs into the energy and peak load forecast models.

<u>Employment</u>. Total service area employment can be broken into three major categories: commercial, industrial, and governmental sectors.

<u>Income</u>: Income is broken into five components, which together produce total nominal service area income. The five components are:

- + Wage and salary disbursements,
- + Governmental transfer payments,
- + Property income,
- + Proprietors' income, and
- Personal contributions for social insurance.

<u>Population</u>: Service area population projections are provided for each five-year age-cohort by Moody's Analytics.

Inflation is measured by changes in the Personal Consumption Expenditure Index (PCE) as provided by Moody's Analytics.

Gas Energy Forecast

Duke Energy Ohio supplies and distributes gas in the Southern Ohio counties within the Greater Cincinnati metropolitan area, while Duke Energy Kentucky supplies and distributes natural gas in Northern Kentucky counties within the Greater Cincinnati metropolitan area. Duke Energy Ohio and Duke Energy Kentucky forecast models employ econometric equations that estimate gas load using local and regional data from each territory. The sum of these forecasts is equivalent to the consolidated system.

<u>The Residential Sector</u>. The forecast of residential gas usage is broken into two major parts: A forecast of the number of residential customers, and a forecast of gas usage (MCF) per residential customer. The forecast

of total residential sales is the product of the residential customer forecast and the use per customer forecast, or:

Residential Sales =

Residential Customers x Use per Residential Customer

<u>Residential Customers</u>. The residential customer forecast is driven by the projected population in the Duke Energy Ohio territory.

<u>Residential Use per Customer</u>. The general structure of the relationship is as follows:

ResidentialGasupc

= f(Real Average Gas Price, HDD, Real Household Median Income)

In general, residential natural gas consumption is dependent upon usage for space heating, water heating, cooking, and to a lesser extent, clothes drying. If a customer has obtained gas service, the usage of gas tends to exhibit a regular pattern that follows weather conditions, though it has experienced some downward pressure due to conservation, driven by increasing equipment efficiencies. This phenomenon is evidenced by the historical downward trend in gas usage per customer.

In the gas use per customer model above (*ResidentialGas*_{UPC}), the estimated coefficient for real average gas price represents an estimate of the price elasticity. One issue regarding this estimate is the degree of price-reversibility inherent in the way consumers use natural gas. In other words, perfect price-reversibility assumes that consumers react the same to a price increases as to a price decrease, while imperfect price reversibility implies that consumer responses to a price change can vary depending upon whether the price increased or decreased.

An article in an issue of the <u>Energy Journal</u> (Dermot Gately, "Imperfect Price-Reversibility of U.S. Gasoline Demand: Asymmetric Responses to

Price Increases and Declines," <u>Energy Journal</u>, Volume 13 (4), 1992 pp. 179-207), examined this issue, and proposed one model for estimating price elasticity for price increases and another for price declines. The reasoning behind the differences in price elasticity follows from the realization that once a more efficient piece of equipment has been installed, price declines do not evoke the same type of increase in energy use as price increases.

Applying the same logic to residential natural gas sales, once insulation levels have been raised or a more efficient furnace has been installed, price declines do not bring the same degree of response as price increases. Presumably, as prices rose in the past, consumers adjusted their thermostats in the short-run, but eventually in the longer-term, consumers adjusted the energy efficiency of their thermal shell, furnaces, or other pieces of their energy—using capital stock. Once the investments have been made, they are not likely to be removed. As a result, one should expect that the percentage impact on sales and usage from a specific percent decline in price be less than that from a similar percent increase in price. Likewise, if a price increase causes the price to exceed its highest level historically, the consumer response is expected to vary from other price increases, as well as price declines.

<u>Commercial Sector</u>. There are two components to the total commercial sector gas forecast: Commercial firm and Commercial interruptible sales. The distinction between firm and interruptible usage is required due to the differences in supply conditions and gas prices. The forecast is prepared for firm commercial deliveries and interruptible commercial deliveries (which both include transportation gas). Total commercial gas usage is computed as the sum of firm and interruptible deliveries.

<u>Commercial Gas Deliveries—Firm</u>. An econometric equation structure can be used to forecast Duke Energy Ohio firm commercial deliveries. Commercial firm gas deliveries are found to be dependent upon household

Page 3-7

projections, the real average price of gas, and normal heating degree weather. The general form of the equation is as follows:

CommercialGasDeliveries_{Firm}

= f(Total Employment, Real Average Gas Price, Billed HDD)

<u>Commercial Gas Deliveries—Interruptible</u>. Duke Energy Ohio Interruptible commercial gas sales are forecast using a relationship similar to firm commercial gas deliveries.

<u>Industrial Gas Deliveries—Firm</u>. An econometric equation structure can be used to forecast Duke Energy Ohio firm industrial deliveries. Industrial firm gas deliveries are found to be dependent upon real manufacturing gross product, the real average price of gas, and normal heating degree weather. The general form of the equation is as follows:

IndustrialGasDeliveries_{Firm} = f(RealManufacturing GDP, Real Average Gas Prices, HDD)

<u>Industrial Gas Deliveries—Interruptible</u>. Duke Energy Ohio Interruptible industrial gas deliveries are forecast using a relationship similar to firm industrial gas deliveries.

Gas transported through our system for industrial customers are included in the amount of interruptible deliveries. Preparing the forecast in this manner provides an indication of the total gas usage and hence the available market for gas.

<u>Other Public Authority Gas Deliveries ("OPA")</u>. The forecast model for the OPA sector is similar in structure to the commercial sector model. The two components that make up the OPA forecast include OPA firm and OPA interruptible gas deliveries

<u>OPA Gas Deliveries—Firm</u>. An econometric equation structure can be used to forecast Duke Energy Ohio firm OPA deliveries. OPA firm gas

deliveries are found to be dependent upon projected OPA customers, the real average price of gas, and normal heating degree weather. The general form of the equation is as follows:

OPAFirmGasDeliveries

= f(Governmental Employment, Real Average Gas Prices, HDD)

<u>OPA Gas Deliveries—Interruptible</u>. Duke Energy Ohio Interruptible OPA gas deliveries are forecast using a relationship similar to firm OPA gas deliveries.

<u>Street Lighting</u>. Gas deliveries to Duke Energy Ohio Street Lighting customers are directly related to the projected number of Street Lighting gas customers, which is driven by the projected number of households.

<u>Inter-Departmental ("ID") Gas Sales</u>. The Duke Energy Ohio ID sales forecast is generated using a seasonal trend projection.

<u>Company Use ("CU") Gas Sales</u>. The Duke Energy Ohio CU sales forecast is generated using a seasonal trend projection.

<u>Total System Deliveries</u>. Once the forecasts for all sectors are completed, the forecast for total system deliveries can be prepared. This requires that all individual sector forecasts be combined along with the Inter-Departmental sales forecast:

Total System Deliveries = sum(TotalRESGas, TotalCOMGas, TotalINDGas, TotalOPAGas, TotalSLGas, TotalIDGas)

A projection for pipeline losses is then computed, using the annual historical average of pipeline losses for the past three years:

Projected Gas Line Losses = Average(Annual Gas Losses_1 , Annual Gas Losses_2 , Annual Gas Losses_3)

<u>Total System Sendout</u>. Once the projection for losses are computed, a forecast for Gas Sendout can be generated, which is a function of Total System Deliveries, Company Use, and Gas Line Losses:

Gas Sendout = sum(Total System Deliveries, CU, Gas Line Losses)

Once the gas sendout forecast is completed, the gas peak load forecast can be generated.

The Peak Load Forecast

The winter peak demand forecast is generated using econometric modeling. The econometric model was obtained by examining the historical relationship between monthly peak and factors such as weather, the economy, and space heating saturation. Therefore, the winter peak forecast is driven by the energy model's forecast of total system deliveries and weather. The peak forecast is produced under specific assumptions regarding the weather conditions that normally occur at the time of the peak.

<u>Peak Load Specification</u>. The winter peak equation has the following specification:

Peak = f(Historical Daily Deliveries, Weather)

Weather conditions at time of winter peak are represented by the heating degree days on the day of the peak. Specifications that include the heating degree days on the day before the peak were also considered. A daily model estimates the historical peaks, with forecast peaks then projected using the growth rates from the gas volume forecast.

<u>Weather-Normalized Deliveries</u>. The level of peak demand is related to economic conditions such as manufacturing GDP and prices. The best

indicator of the combined influences of economic variables on peak demand is the level of base load demand exclusive of aberrations caused by abnormal weather. Thus, the first step in developing the above described peak equation is to weather normalize monthly deliveries. Historical weather normalized deliveries is found by summing the component pieces of sendout after these have been weather normalized. That is, the historical values of residential, commercial and other sales are adjusted to what they would have been if normal weather had occurred. This adjustment is performed using the results from the equations described in earlier sections. In all cases, the equations used to explain historical sales and to forecast sales into the future can be separated into a weather component and a component dependent upon economic variables as follows:

MCF = f(W)g(E)MCF = f(W)g(E)

Where: MCF = Sales

W = Weather Variables

E = Economic and other variables.

In the case of historical sales figures, actual sales resulted from actual weather conditions so the equation can be rewritten as:

 $MCF_a = f(W_a)g(E)$

With the "a" subscript referring to actual weather conditions.

Similarly, under "normal" conditions the equation would be:

 $MCF_n = f(W_n)g(E)$

Page 3-11

With the "n" subscript referring to "normal" weather conditions.

Dividing equation (8b) by equation (8a) yields:

$$MCF_n = MCF_a \frac{fW_n}{fW_a}$$

Thus, weather normal sales are found by scaling actual sales using a factor based on the forecast model equations.

This weather-adjusted sendout was then used as the driving variable in the winter peak equation.

Forecast Procedure

The seasonal winter peak is assumed to occur in January of the winter season (November through March) of the year for which it is reported. Since the energy model produces forecasts under the assumption that normal weather will prevail, the forecast of sendout is "weather normalized" by design. Thus, the forecast of deliveries drives the forecast of the peaks. In the forecast, the equation weather variables are set to values determined to be normal peak-producing conditions. These values were derived using historical weather data.

Gas Price

A key ingredient throughout the development of econometric models for use in projecting gas consumption is the selection of the gas price variable. Due to the historical use of declining block rates, a degree of simultaneity exists between the bill charged a customer and the customer's energy usage. If, for example, a customer or group of customers would increase their usage due to extreme weather conditions (or other circumstances), the average price of gas, \$/MCF, would fall as those customers' usage moved into higher MCF consumption blocks with lower marginal energy rates. In an econometric model, this could be incorrectly interpreted to mean that the price decrease

brought about an increase in gas consumption instead of the correct cause the extreme weather.

The price variable issue has received significant attention in the economic literature, most noticeably after the publication of two articles in 1975, one by Robert Halvorsen and the other by Lester Taylor. Numerous solutions have been offered and, in turn, criticized since that time. Most of the attention, however, has been focused on electricity demand, but the same situation exists for any price schedule containing declining or increasing block rates, including gas and water rates. Some of the suggested solutions offered in the literature are as follows:

--Average price is appropriate since that is the price customers observe

--Marginal price should be employed because that is the price to which customers actually respond.

--An estimated average price is appropriate where the estimated price is developed from a first stage equation that incorporates the factors affecting the level of gas price (i.e., labor, capital, and fuel costs).

--Marginal price should be employed with an income premium variable to account for the income effects associated with declining block rates.

The existence of simultaneity between energy consumption and average price is potentially quite serious. If average price were employed in an econometric model using time series data, conservation by customers over time could raise the average price and result in an incorrect estimation of the price elasticity.

To avoid this problem in the Duke Energy Ohio forecast, a fixed level of consumption is used to select the price from the relevant rate schedule at each point in time. This is not a restrictive procedure because the range of consumption within a block is rather wide for the relevant blocks.

This approach was employed for the development of historical price data for the customer classes.

This technique avoids the serious problem of simultaneity between usage and price and allows the true price changes which customers have experienced to be reflected in the data and the econometric models.

(b) Specific Analytical Techniques Used

Regression Analysis

Ordinary least squares is the principal regression technique employed to estimate the relationships among the relevant variables. However, quite often there is a lagged response between the change in one variable and a subsequent change in another variable. For example, if the real price of gas changes, consumers usually do not fully adjust to the price change in the same time period. Rather, it takes several months or more for the consumer to alter the stock of energy using equipment in the home and to complete the adjustment process. To incorporate this concept of lagged response, the energy model equations employ a polynomial distributed lag structure.

Polynomial Distributed Lag Structure

One method of accounting for the lag between a change in one variable and its ultimate impact on another variable is through the use of polynomial distributed lags. This technique is also referred to as Almon lags. Polynomial distributed lag structures derive their name from the fact that the lag weights follow a polynomial of specified degree. That is, the lag weights all lie on a line, parabola, or higher order polynomial as required. This technique is employed in developing econometric models for most of the energy equations.

Serial Correlation

It is often the case in forecasting an economic time series that forecast errors in one period are related to those in a previous period. By correcting for serial correlation of the estimated residuals, forecast error is reduced. The Marquardt algorithm (similar to the Gauss-Newton method) is employed to correct for the existence of autocorrelation. This correction technique was used in numerous instances in the development of the econometric equations.

Qualitative Variables

In several equations, qualitative variables are employed. In estimating an econometric relationship using time series data, it is quite often the case that outliers will occur. The unusual deviations in the data can be the result of data problems such as errors in the reporting of data or other such perturbations that do not repeat with predictability. Therefore, in order to identify the underlying economic relationship between the dependent and independent variables, qualitative variables are employed to remove the outliers.

- (c) The relationship between specific techniques are discussed in (b)
- (d) Summary of Statistical Techniques Used
 - i. <u>Equations</u>

A display of all the relevant equations used in the forecast can be viewed starting on page 3-18. Specifically, for each of the equations in the Gas Energy Forecast Model and Gas Peak Load Model the following information is included:

ii. Statistical Test Results

The results of the estimation of each of the stochastic equations in the models is provided. Included are the estimated coefficients and the

results of appropriate statistical tests. Those equations which required a correction for serial correlation are so indicated.

The computer output for each variable lists the estimated coefficient, standard error, and the t-statistic. In the forecast equations, lagged variables and the number of periods lagged are denoted in the definition column.

iii. A description of the statistical technique

A comprehensive overview of statistical techniques are provided in (C)(1)(b) above

iv. Rationale for using the chosen techniques

A comprehensive overview rationalizing the validity of the techniques used are provided in (C)(1)(b) above

v. <u>Computer Software</u>

All of the equations in the Gas Energy Forecast Model and Gas Peak Load Model were estimated and forecasted on personal computers using the MetrixND software from Itron, Inc.

(e) Interruptible Load Forecast

Duke Ohio energy has interruptible gas volumes in the commercial, industrial, and governmental classes. All three sectors use the same forecast methodology as the traditional gas volume forecast models.

(f) <u>Use Per Customer</u>

An overview of the use per customer projection is provided in section C(1)(a).

(g) Methodology Changes

No significant forecast methodology change has been made for any customer class to develop the 2017 OH IRP gas forecast, compared to the previous IRP. One subtle difference is the switch in analytical software from Eviews to Itron.

- (2) Assumptions and Special Information.
 - (a) No special information (planned industrial expansion, etc.) was used in this forecast.
 - (b) No special information (planned industrial expansion, etc.) was used in this forecast.
- (3) Data base documentation
 - (a) Data sets used to develop the Duke Energy Ohio gas forecast:
 - i. Historical customers, sales, and price data. Source: Duke Energy Ohio
 - ii. Regional, state, and U.S. economic projections: Moody's Analytics

Moody's Analytics is widely recognized as a reliable provider of economic projections worldwide. Duke Energy Ohio has used Moody's Analytics for years as their economic vendor. Each year, this relationship is evaluated to determine its value in relation to its cost and effectiveness.

- (b) No action necessary.
- (c) No action necessary.

-

GAS EQUATIONS AND STATISTICAL TEST RESULTS

DEO RESIDENTIAL CUSTOMER MODEL

		Variable	Coefficient	StdErr	T-Stat	P-Value		
Ē	con CO	GE_SU16.POP_TOTAL	234.406		2394.764	0.00%		
		ors.MAR11	2261.534	170.923	13.231	0.00%		
n	Indicate	ors.JUN11	491.714	222.260	2.212	3.23%		
n	Indicate	ors.JUL11	-2015.248	224.950	-8.959	0.00%		
n	Indicate	ors.SEP11	-1365.358	172.112	-7.933	0.00%		
n	Indicate	ors.MAR13	-3195.440	168.816	-18.928	0.00%		
n	Indicate	ors.DEC14	591.327	166.866	3.544	0.10%		
n	Calend	ar.Jan	1088.641	111.606	9.754	0.00%		
п	Calend	ar.Feb	1105.866	138.828	7.966	0.00%		
n	Calend	ar.Mar	968.039	112.657	8.593	0.00%		
n	Calend	ar.May	-1976.964	122.700	-16.112	0.00%		
	Calend		-3716.627	196.728	-18.892	0.00%		
lu lu	Calend	ar.Jul	-4816.120	232.758	-20.692	0.00%		
In	Calend	ar.Aug	-6177.078	239.473	-25.794	0.00%		
	Calend		-5471.116	230.277	-23.759	0.00%		
	Calend		-4492.304	191.885	-23.411	0.00%		
n [Calend	ar.Nov	-1981.303	125.580	-15.777	0.00%		
A	R(1)		1.167	0.126	9.243	0.00%		
A	R(2)		-0.394	0.092	-4.287	0.01%		
R-Squared Adjusted R-Squared AIC BIC F-Statistic Prob (F-Statistic) Log-Likelihood Model Sum of Squar		0.997 0.996 11.238 11.890 #NA #NA -417.35 867,575,258.22	390000				•	
Sum of Squared Err	ors	2,551,662.61	375000					
Mean Squared Error		59,340.99	375000	38000		5000	390000	39500
Std. Error of Regres		243.60			Predict	ted		
Mean Abs. Dev. (MA		161.97						
Mean Abs. % Err. (N		0.04%						
Durbin-Watson Stati	istic	2.273						
Durbin-H Statistic		#NA						
Ljung-Box Statistic		20.52						
Prob (Ljung-Box)		0.6669						
Skewness		0.247						
Kurtosis		2.996						
Jarque-Bera		0.630						

DEO RESIDENTIAL USE PER CUSTOMER MODEL

	Variable	Coefficient	StdErr		P-Value	Units	Definition	1		
	CGE_SU16.POP_20_64	-0.005	0.001	3.859 -2.370	0.05%					
PRIC	E_LAGS UPC_C_PRICE_LAG	G 0 204	0.039	5 236	0.00%					
	ther_by_month_JAN_C_HDD5 ther_by_month_MAR_C_HDD5		0.000	128 040 57.918	0.00%					
	ther_by_month_APR_C_HDD5	9 0.020	0.001	31.076	0.00%					
	ther_by_month_MAY_C_HDD5 ther_by_month_OCT_C_HDD5		0 001	10 737 23 631	0.00%					
	ther_by_month.NOV_C_HDD5		0.000	53.678	0.00%					
Wea	ther_by_month.DEC_C_HDD5	9 0.014	0.000	86.295	0.00%					
	<pre>ther_by_month FEB_C_HDD4 licators MAR11</pre>	5 0 009	0.001 0.166	16 902 -5 968	0.00%					
mInd	licators.JAN12	0.582	0.134	4.339	0.01%					
	licators.FEB12 licators.APR12	-1.141 -1.405	0.193	-5.925 -9.958	0.00%					
mInd	licators FEB13	0 455	0 161	2 823	0.77%					
	licators.MAR13 licators.NOV13	-2.312 -0.569	0.203	-11 378 -3.989	0.00%					
mInd	licators FEB14	0 355	0 150	2 374	2 31%					
and the second se	licators MAR14 licators.JAN15	-2 091	0.186	11 271	0.00%					
mInd	licators.APR15	-1.029	0.143	-7.210	0.00%					
	licators DEC15 licators JAN16	-0 543 -0 463	0 143	-3 808 -3 068	0.05%					
mInd	licators FEB16	-0 660	0 188	-3 503	0 12%					
	licators.MAR16 licators.APR16	-0.728	0.153	-4.748 -8 569	0.00%					
	lendar.Feb	8 465	0.262	32 269	0.00%					
Model Statistics				SIDENTIAL				AST		
Iterations	1			Actual vs P	redicted Co	orrelation (Graph			
Adjusted Observations	64 20-							-		-
Deg. of Freedom for Error	36									
-								1		
					:				•	
R-Squared	1.000								•	
Adjusted R-Squared	0.999								•	_
Adjusted R-Squared AIC	0.999 -3.919						▲	•	•	-
Adjusted R-Squared AIC BIC	0.999 -3.919 -2.974						••	•	•	-
Adjusted R-Squared AIC BIC F-Statistic	0.999 -3.919 -2.974 #NA						• *	•		•
Adjusted R-Squared AIC BIC	0.999 -3.919 -2.974 #NA #NA						• *	•	•	•
Adjusted R-Squared AIC BIC F-Statistic	0.999 -3.919 -2.974 #NA #NA				•••		• *	••	•	
Adjusted R-Squared AIC BIC F-Statistic Prob (F-Statistic) Log-Likelihood	0.999 -3.919 -2.974 #NA #NA				• ••		• *			
Adjusted R-Squared AIC BIC F-Statistic Prob (F-Statistic) Log-Likelihood Model Sum of Squares	0.999 -3.919 -2.974 #NA #NA 62.59 1,619.05			•	• ••		• •	•		
Adjusted R-Squared AIC BIC F-Statistic Prob (F-Statistic) Log-Likelihood Model Sum of Squares Sum of Squared Errors	0.999 -3.919 -2.974 #NA #NA 62.59 1,619.05 0.53 0.01			•	• • •		•	•		
Adjusted R-Squared AIC BIC F-Statistic Prob (F-Statistic) Log-Likelihood Model Sum of Squares Sum of Squared Errors Mean Squared Error	0.999 -3.919 -2.974 #NA #NA 62.59 1,619.05 0.53 0.01 5-			• •	• ••		• •	•		-
Adjusted R-Squared AIC BIC F-Statistic Prob (F-Statistic) Log-Likelihood Model Sum of Squares Sum of Squared Errors Mean Squared Error Std. Error of Regression	0.999 -3.919 -2.974 #NA #NA 62.59 1,619.05 0.53 0.01 5-		o 000 00'	• ••	• ••		• •	•		5
Adjusted R-Squared AIC BIC F-Statistic Prob (F-Statistic) Log-Likelihood Model Sum of Squares Sum of Squared Errors Mean Squared Error Std. Error of Regression Mean Abs. Dev. (MAD)	0.999 -3.919 -2.974 #NA #NA 62.59 1,619.05 0.53 0.01 5- 0.12 0.06		o 000 00.	•	• ••		• •	•		-
Adjusted R-Squared AIC BIC F-Statistic Prob (F-Statistic) Log-Likelihood Model Sum of Squares Sum of Squared Errors Mean Squared Error Std. Error of Regression Mean Abs. Dev. (MAD) Mean Abs. % Err. (MAPE)	0.999 -3.919 -2.974 #NA #NA 62.59 1,619.05 0.53 0.01 0.12 0.06 2.76%		• *** **	• ••	• ••		• •	•		-
Adjusted R-Squared AIC BIC F-Statistic Prob (F-Statistic) Log-Likelihood Model Sum of Squares Sum of Squared Errors Mean Squared Error Std. Error of Regression Mean Abs. Dev. (MAD) Mean Abs. % Err. (MAPE) Durbin-Watson Statistic	0.999 -3.919 -2.974 #NA #NA #NA 62.59 1,619.05 0.53 0.01 5- 0.06 2.76% 1.896 0	an and	• • • •	• ••	• ••		• •	•		-
Adjusted R-Squared AIC BIC F-Statistic Prob (F-Statistic) Log-Likelihood Model Sum of Squares Sum of Squared Errors Mean Squared Error Std. Error of Regression Mean Abs. Dev. (MAD) Mean Abs. % Err. (MAPE) Durbin-Watson Statistic Durbin-H Statistic	0.999 -3.919 -2.974 #NA #NA 62.59 1,619.05 0.53 0.01 5. 0.06 2.76% 1.896 0 #NA		• • • • •	•	•		•	15		- 20
Adjusted R-Squared AIC BIC F-Statistic Prob (F-Statistic) Log-Likelihood Model Sum of Squares Sum of Squared Errors Mean Squared Error Std. Error of Regression Mean Abs. Dev. (MAD) Mean Abs. % Err. (MAPE) Durbin-Watson Statistic	0.999 -3.919 -2.974 #NA #NA 62.59 1,619.05 0.53 0.01 5- 0.12 0.06 2.76% 1.896 0		• • • • •	•	• • 10 Predict		•	15	- 	20
Adjusted R-Squared AIC BIC F-Statistic Prob (F-Statistic) Log-Likelihood Model Sum of Squares Sum of Squared Errors Mean Squared Error Std. Error of Regression Mean Abs. Dev. (MAD) Mean Abs. % Err. (MAPE) Durbin-Watson Statistic Durbin-H Statistic Ljung-Box Statistic	0.999 -3.919 -2.974 #NA #NA 62.59 1,619.05 0.53 0.01 5. 0.06 2.76% 1.896 0 #NA 36.01		• • • • •	•			•	15	- 	20
Adjusted R-Squared AIC BIC F-Statistic Prob (F-Statistic) Log-Likelihood Model Sum of Squares Sum of Squared Errors Mean Squared Error Std. Error of Regression Mean Abs. Dev. (MAD) Mean Abs. % Err. (MAPE) Durbin-Watson Statistic Durbin-H Statistic Ljung-Box Statistic Prob (Ljung-Box)	0.999 -3.919 -2.974 #NA #NA 62.59 1,619.05 0.53 0.01 5.0.12 0.06 2.76% 1.896 0.06 2.76% 1.896 0.01 0.0548		• • • • •	•			•	15	- 	
Adjusted R-Squared AIC BIC F-Statistic Prob (F-Statistic) Log-Likelihood Model Sum of Squares Sum of Squared Errors Mean Squared Error Std. Error of Regression Mean Abs. Dev. (MAD) Mean Abs. Dev. (MAD) Mean Abs. % Err. (MAPE) Durbin-Watson Statistic Durbin-H Statistic Ljung-Box Statistic Prob (Ljung-Box) Skewness	0.999 -3.919 -2.974 #NA #NA 62.59 1,619.05 0.53 0.01 5- 0.12 0.06 2.76% 1.896 0.6 36.01 0.0548 -0.129		• • • • •	•			•	15	- 	20
Adjusted R-Squared AIC BIC F-Statistic Prob (F-Statistic) Log-Likelihood Model Sum of Squares Sum of Squared Errors Mean Squared Error Std. Error of Regression Mean Abs. Dev. (MAD) Mean Abs. Dev. (MAD) Mean Abs. % Err. (MAPE) Durbin-Watson Statistic Durbin-H Statistic Ljung-Box Statistic Prob (Ljung-Box) Skewness Kurtosis	0.999 -3.919 -2.974 #NA #NA 62.59 1,619.05 0.53 0.01 5- 0.06 2.76% 1.896 0.06 2.76% 1.896 0.06 2.76% 1.896 0.0548 -0.129 3.711		• • • • •	•			•	15	- 	20
Adjusted R-Squared AIC BIC F-Statistic Prob (F-Statistic) Log-Likelihood Model Sum of Squares Sum of Squared Errors Mean Squared Error Std. Error of Regression Mean Abs. Dev. (MAD) Mean Abs. Dev. (MAD) Mean Abs. % Err. (MAPE) Durbin-Watson Statistic Durbin-H Statistic Ljung-Box Statistic Prob (Ljung-Box) Skewness	0.999 -3.919 -2.974 #NA #NA 62.59 1,619.05 0.53 0.01 5- 0.12 0.06 2.76% 1.896 0.6 36.01 0.0548 -0.129		• • • • •	•			•	15		20

Page 3-20

DEO COMMERCIAL FIRM CUSTOMER MODEL

	Variable	the second second	Coefficient	StdErr	T-Stat	P-Value	
CGE_EC	ON_CNTY_SU16.CG	E_EMPLY_GO		0.870	298.792	0.00%	
mIndicato	rs.MAR11		229.694	86.994	2.640	1.14%	
mIndicato	rs.MAR13		-388.396	86.833	-4.473	0.01%	
mIndicato	rs.NOV13		252.839	86.939	2.908	0.57%	
mIndicato	rs.APR14		250.272	88.780	2.819	0.72%	
mIndicato	rs.MAY15		-204.497	87.408	-2.340	2.39%	
mCalenda	r.Feb		149.727	37.183	4.027	0.02%	
mCalenda	r.Apr		-739.917	66.629	-11.105	0.00%	
mCalenda	r.May		-1730.679	101.874	-16.988	0.00%	
mCalenda	ir.Jun		-2479.290	126.398	-19.615	0.00%	
mCalenda	r.Jul		-2945.875	140.851	-20.915	0.00%	
mCalenda	r.Aug		-3159.615	145.392	-21.732	0.00%	
mCalenda	r.Sep		-3248.750	140.820	-23.070	0.00%	
mCalenda	r.Oct		-2701.260	126.610	-21.335	0.00%	
mCalenda			-1302.713	102.542	-12.704	0.00%	
mCalenda	r Dec		-329.159	61.771	-5.329		
AR(1)			1.234	0.141	8.764	0.00%	
AR(2)			-0.397	0.135	-2.945	0.51%	
Model Statistics							
Iterations	17		DE0.00				
Adjusted Observations	62			DMMERCIAL FI			
Deg. of Freedom for Error	44		AC	tual vs Predicte	d Correlation	Graph	
R-Squared	0.993	38000					
Adjusted R-Squared	0.990					-	
AIC	9.950						
BIC	10.568	37000					
F-Statistic			1			1	
	#NA					1	
Prob (F-Statistic)	#NA	36000	·		·····	·····	4
Log-Likelihood	-378.43		1				q •
Model Sum of Squares	102,162,384.42		ł				
Sum of Squared Errors	727,091.32	ਰ 35000 -·····	·			·····	
Mean Squared Error	16,524.80	Actual Actual Actual					
Std. Error of Regression	128.55	¥	i	٠	\$.		
Mean Abs. Dev. (MAD)	91.48						
Mean Abs. % Err. (MAPE)	0.26%						
Durbin-Watson Statistic	1.982						
Durbin-H Statistic	#NA	33000					
Ljung-Box Statistic	25.32	•	+0 [*]				
Prob (Ljung-Box)	0.3884	••					
Skewness	-0.033	32000	i		1		
			, ,		0.4500		, , , , , , , , , , , , , , , , , , , ,
Kurtosis	2.105	32500	33500		34500	35500	3650
Jarque-Bera Prob (Jarque-Bera)	2.081			Pr	edicted		
	0.3532						

DEO COMMERCIAL FIRM SALES FORECAST

and the second second second	Variable	Coefficient	StdErr	T-Stat	P-Value	
CGE_ECON	CNTY_SU16.CGE_EMPLY_TTL		41.547	15.065	0.00%	
PRICE_LAG	S.COM_C_LAG	-127320.147	27248.010	-4.673	0.00%	
Weather_by	month.JAN_C_HDD59	788.146	153.941	5.120	0.00%	
Weather_by	month.FEB_C_HDD59	3011.346	47.920	62.841	0.00%	
Weather by	month.MAR_C_HDD59	3164.521	79.811	39.650	0.00%	
Weather by	month.MAY_C_HDD59	3815.009	285.686	13.354	0.00%	
Weather by	month.NOV_C_HDD59	2464.462	62.681	39.317	0.00%	
	month DEC_C_HDD59	2827 774		46 104	0 00%	
mIndicators		334019.341		13.809	0.00%	
mIndicators		584860.867		15.459	0.00%	
mIndicators.		364090.687		5.958	0.00%	
mIndicators.		-358144.712		-5.715	0.00%	
mIndicators.		-228914.913		-4.893	0.00%	
mIndicators.		-548089.880		-12.948	0.00%	
mIndicators		-183160.059		-5.583	0.00%	
mIndicators.		-164121.832		-4.821	0.00%	
mIndicators.		124054.217		2.780	0.88%	
mindicators.		264058.519		4.756	0.00%	
mindicators.		251670.009		4.750	0.00%	
mIndicators.		65956.081 626611.972		2.125	4.09%	
mIndicators.				16.351		
mIndicators.		-382131.888		-12.083	0.00%	
mIndicators.		226704.749		9.123	0.00%	
mIndicators.		176665.732		5.476	0.00%	
mCalendar.J			133477.419	12.881	0.00%	
mCalendar /	.pr	502928.268		25.703	0.00%	
AR(1) AR(2)		1.200		10.150 -5.932	0.00%	
Iterations Adjusted Observations	<u> </u>		DEO COMMERCIA		CORCACT	
Deg. of Freedom for Error	34			dicted Correlation		
Deg. of Freedom for Error R-Squared	34 0.999	4000000				
Deg. of Freedom for Error R-Squared Adjusted R-Squared	34 0.999 0.998	4000000				
Deg. of Freedom for Error R-Squared Adjusted R-Squared AIC	34 0.999 0.998 21.452	4000000				
Deg. of Freedom for Error R-Squared Adjusted R-Squared AIC BIC	34 0.999 0.998 21.452 22.413					•••
Deg. of Freedom for Error R-Squared Adjusted R-Squared AIC BIC F-Statistic	34 0.999 0.998 21.452 22.413 #NA	4000000				••
Deg. of Freedom for Error R-Squared Adjusted R-Squared AIC BIC F-Statistic	34 0.999 0.998 21.452 22.413					•••
Deg. of Freedom for Error R-Squared Adjusted R-Squared AIC BIC F-Statistic Prob (F-Statistic)	34 0.999 0.998 21.452 22.413 #NA					••
Deg. of Freedom for Error R-Squared Adjusted R-Squared AIC BIC F-Statistic Prob (F-Statistic) Log-Likelihood	34 0.999 0.998 21.452 22.413 #NA #NA -724.99					•••
Deg. of Freedom for Error R-Squared Adjusted R-Squared AIC BIC F-Statistic Prob (F-Statistic) Log-Likelihood Model Sum of Squares	34 0.999 0.998 21.452 22.413 #NA #NA -724.99 61,355,907,160,280.20	3000000				•••
Deg. of Freedom for Error R-Squared Adjusted R-Squared AIC BIC F-Statistic Prob (F-Statistic) Log-Likelihood Model Sum of Squares Sum of Squared Errors	34 0.999 0.998 21.452 22.413 #NA #NA -724.99 61,355,907,160,280.20	3000000				•••
Deg. of Freedom for Error R-Squared Adjusted R-Squared AIC BIC F-Statistic Prob (F-Statistic) Log-Likelihood Model Sum of Squares Sum of Squared Errors Mean Squared Error	34 0.999 0.998 21.452 22.413 #NA #NA -724.99 61,355,907,160,280.20 52,071,293,133.59 1,531,508,621.58	3000000				•••
Deg. of Freedom for Error R-Squared Adjusted R-Squared AIC BIC F-Statistic Prob (F-Statistic) Log-Likelihood Model Sum of Squares Sum of Squared Errors Mean Squared Error Std. Error of Regression	34 0.999 0.998 21.452 22.413 #NA #NA -724.99 61,355,907,160,280.20 52,071,293,133.59 1,531,508,621.58 39,134.49	3000000				•••
Deg. of Freedom for Error R-Squared Adjusted R-Squared AIC BIC F-Statistic Prob (F-Statistic) Log-Likelihood Model Sum of Squares Sum of Squared Errors Mean Squared Error Std. Error of Regression Mean Abs. Dev. (MAD)	34 0.999 0.998 21.452 22.413 #NA #NA -724.99 61,355,907,160,280.20 52,071,293,133.59 1,531,508,621.58 39,134.49 24,555.39	3000000				•••
Deg. of Freedom for Error R-Squared Adjusted R-Squared AIC BIC F-Statistic Prob (F-Statistic) Log-Likelihood Model Sum of Squares Sum of Squared Errors Mean Squared Error Std. Error of Regression Mean Abs. Dev. (MAD) Mean Abs. % Err. (MAPE)	34 0.999 0.998 21.452 22.413 #NA #NA -724.99 61,355,907,160,280.20 52,071,293,133.59 1,531,508,621.58 39,134.49 24,555.39 3.38%	3000000				•••
Deg. of Freedom for Error R-Squared Adjusted R-Squared AIC BIC F-Statistic Prob (F-Statistic) Log-Likelihood Model Sum of Squares Sum of Squared Errors Mean Squared Error Std. Error of Regression Mean Abs. Dev. (MAD) Mean Abs. % Err. (MAPE) Durbin-Watson Statistic	34 0.999 0.998 21.452 22.413 #NA #NA -724.99 61,355,907,160,280.20 52,071,293,133.59 1,531,508,621.58 39,134.49 24,555.39 3.38% 1.543	3000000				•••
Deg. of Freedom for Error R-Squared Adjusted R-Squared AIC BIC F-Statistic Prob (F-Statistic) Log-Likelihood Model Sum of Squares Sum of Squared Error Std. Error of Regression Mean Abs. Dev. (MAD) Mean Abs. % Err. (MAPE) Durbin-Watson Statistic Durbin-H Statistic	34 0.999 0.998 21.452 22.413 #NA #NA -724.99 61,355,907,160,280.20 52,071,293,133.59 1,531,508,621.58 39,134.49 24,555.39 3.38% 1.543 #NA	3000000				•••
Deg. of Freedom for Error R-Squared Adjusted R-Squared AIC BIC F-Statistic Prob (F-Statistic) Log-Likelihood Model Sum of Squares Sum of Squared Errors Mean Squared Error Std. Error of Regression Mean Abs. Dev. (MAD) Mean Abs. % Err. (MAPE) Durbin-Watson Statistic Durbin-H Statistic Ljung-Box Statistic	34 0.999 0.998 21.452 22.413 #NA #NA -724.99 61,355,907,160,280.20 52,071,293,133.59 1,531,508,621.58 39,134.49 24,555.39 3.38% 1.543 #NA 28.57	3000000				•••
Deg. of Freedom for Error R-Squared Adjusted R-Squared AIC BIC F-Statistic Prob (F-Statistic) Log-Likelihood Model Sum of Squares Sum of Squared Error Std. Error of Regression Mean Abs. Dev. (MAD) Mean Abs. % Err. (MAPE) Durbin-Watson Statistic Durbin-H Statistic Ljung-Box Statistic Prob (Ljung-Box)	34 0.999 0.998 21.452 22.413 #NA #NA -724.99 61,355,907,160,280.20 52,071,293,133.59 1,531,508,621.58 39,134.49 24,555.39 3.38% 1.543 #NA	3000000 2000000 1000000 0	Actual vs Pred	ficted Correlation	Graph	•••
Deg. of Freedom for Error R-Squared Adjusted R-Squared AIC BIC F-Statistic Prob (F-Statistic) Log-Likelihood Model Sum of Squares Sum of Squared Error Std. Error of Regression Mean Abs. Dev. (MAD) Mean Abs. % Err. (MAPE) Durbin-Watson Statistic Durbin-H Statistic Ljung-Box Statistic Prob (Ljung-Box)	34 0.999 0.998 21.452 22.413 #NA #NA -724.99 61,355,907,160,280.20 52,071,293,133.59 1,531,508,621.58 39,134.49 24,555.39 3.38% 1.543 #NA 28.57	3000000 2000000 1000000		1cted Correlation		• • • 40000
Deg. of Freedom for Error R-Squared Adjusted R-Squared AIC BIC F-Statistic Prob (F-Statistic) Log-Likelihood Model Sum of Squares Sum of Squared Error Std. Error of Regression Mean Abs. Dev. (MAD) Mean Abs. % Err. (MAPE) Durbin-Watson Statistic Durbin-H Statistic Ljung-Box Statistic Prob (Ljung-Box) Skewness	34 0.999 0.998 21.452 22.413 #NA #NA -724.99 61,355,907,160,280.20 52,071,293,133.59 1,531,508,621.58 39,134.49 24,555.39 3.38% 1.543 #NA 28.57 0.2369	3000000 2000000 1000000 0	Actual vs Pred	ficted Correlation	Graph	• • • 40000
Deg. of Freedom for Error R-Squared Adjusted R-Squared AIC BIC F-Statistic Prob (F-Statistic) Log-Likelihood Model Sum of Squares	34 0.999 0.998 21.452 22.413 #NA #NA -724.99 61,355,907,160,280.20 52,071,293,133.59 1,531,508,621.58 39,134.49 24,555.39 3.38% 1.543 #NA 28.57 0.2369 0.425	3000000 2000000 1000000 0	Actual vs Pred	1cted Correlation	Graph	• • • 40000

	ariable	New York Street	Coefficient	StdErr	T-Stat	P-Value		
CGE_ECON_CNTY_	SU16.CGE_EI	MPLY_MFG	2.386	8.737	0.273	78.60%		
mIndicators.FEB14			68.720	6.776	10.141	0.00%		
mIndicators.MAY14			-32.844	7.644	-4.296	0.01%		
mIndicators.MAR15			26.968	6.886	3.916	0.03%		
mIndicators.MAY15			-22.366	7.645	-2.925	0.52%		
mCalendar.Jan			11.407	2.894	3.942	0.03%		
mCalendar.Apr			-28.046	3.792	-7.396	0.00%		
mCalendar May			-59.090	5.676	-10.411	0.00%		
mCalendar.Jun			-91.821	5.866	-15.654	0.00%		
mCalendar Jul			-107.913	6.205	-17.390	0.00%		
mCalendar Aug			-113,214	6,218	-18 207	0.00%		
mCalendar Sep			-113.311	5,907	-19.181	0.00%		
mCalendar.Oct			-94,609	5.215	-18.141	0.00%		
mCalendar Nov			-42.705	3.945	-10.825	0.00%		
AR(1)			0.999	0.002	443.593	0.00%		
Model Statistics terations	21							
Adjusted Observations				DEO INDUSTRIAL CUSTOMER MODEL				
Deg. of Freedom for Error	48			vs Predicted Corre				
R-Squared	0.978	1550						
Adjusted R-Squared	0.971							
AIC	4.697							
BIC	5.207	1500			••••••	• • •		
-Statistic	#NA							
Prob (F-Statistic)	#NA			1	14			
og-Likelihood	-222.36	1450			2,4	•••••••		
Model Sum of Squares	189,822.98	+						
Sum of Squared Errors	4,290.45	≣ 1400		<u> </u>	•••			
Mean Squared Error	89.38							
Std. Error of Regression	9.45	A		• •				
Mean Abs. Dev. (MAD)	7.03	1350			·····			
Mean Abs. % Err. (MAPE)	0.50%		*	Γ				
Durbin-Watson Statistic	1.984							
Durbin-H Statistic	#NA	1300	•	1	•••••			
jung-Box Statistic	39.27	-						
Prob (Ljung-Box)	0.0255	1250						
Skewness	0.365			250	1150			
Kurtosis	2.321	1250	1	350 Predicted	1450		155	
larque-Bera	2.612			Predicted				
and a bound	E.012							

DEO INDUSTRIAL FIRM CUSTOMER FORECAST MODEL

DEO INDUSTRIAL FIRM SALES FORECAST

	Vanable OH_Econ_SU16 GDP_REAI	MEG	Coefficient 4.518	0 242	T-Stat 18.693	0.00%		
	PRICE LAGS IND C LAG		-124819 134		-7 518	0.00%		
	Weather by month JAN_C	HDD59	388.866	17.275	22.510	0.00%		
	Weather_by_month.FEB_C	HDD59	512.200	21.335	24.007	0.00%		
	Weather_by_month MAR_C		415.937	28 137 103 352	14 783	0.00%		
	Weather_by_month_APR_C Weather_by_month_MAY_C		455 440 1520.244	424.279	4.407	0.01%		
	Weather_by_month_NOV_C		310.790	30.552	10.172	0.00%		
	Weather_by_month DEC_C		478 313	27 201	17 584	0.00%		
	mIndicators FEB11	-	-54403 857		-1 936	6 06%		
	mIndicators.MAY11		-129810.377		-3.104	0.36%		
	mIndicators.JUL11 mIndicators.SEP11		-56122.177 -57711 431		-2.121	4.07% 3.31%		
	mIndicators DEC11		-104109 600		-3 585	0 10%		
	mIndicators FEB12		93029 991		3 362	0.18%		
	mIndicators APR12		-74632.722		-2.509	1.66%		
	mIndicators.DEC12 mIndicators APR13		-82985.767 48477 640		-2.874 1.520	0.67% 13 71%		
	mindicators SEP13		-36341 901		-1.387	17 38%		
	mIndicators.JAN14		54287.960		1.792	8.13%		
	mIndicators.FEB14		-124397.210		-4.149	0.02%		
	mIndicators APR14		133770 804		4 620	0.00%		
	mIndicators OCT14 mIndicators.JAN15		63114 870 197678.874		2 348 6.875	2 44% 0.00%		
	mindicators.MAR15		230170.396		8.167	0.00%		
	mIndicators JUL15		43660 138	26071 558	1 675	10.24%		
	mIndicators AUG15		61335 823		2 353	2 41%		
Model Statistics								
BUILD HIM THE VER BUILD								
Iterations	1							
Adjusted Observations	64			[DEO INDUST	RIAL SALES MODI	EL	
Deg. of Freedom for Error	37			Ac	ctual vs Pred	cted Correlation Gri	aph	
R-Squared	0.989		00000					
		10	00000				1	
Adjusted R-Squared	0.981							
AIC	20.585							
BIC	21.496		Ī					
F-Statistic	#NA	1 7	50000					
Prob (F-Statistic)	#NA							
Log-Likelihood	-722.53						4	
Model Sum of Squares	2,074,191,659,548.29		÷				• ¥	
Sum of Squared Errors	23,967,108,475.52		00000					
Mean Squared Error	647,759,688.53	a 5	00000 +					
Std. Error of Regression	25,451.12	Actual				. 8		
		× ا				F •		
Mean Abs. Dev. (MAD)	13,758.15							
Mean Abs. % Err. (MAPE)	4.07%							
Durbin-Watson Statistic	1.539	2	50000					
Durbin-H Statistic	#NA			- HORT				
Ljung-Box Statistic	30.37		+	•				
Prob (Ljung-Box)	0.1727							
Skewness	0.421		0	+	+			+
Kurtosis	3.305		0	250	000	500000	750000	100000
Jarque-Bera	2.139		U	200	000		1,0000	10000
						Predicted		
Prob (Jarque-Bera)	0.3431							
	0.3431							

DEO GOVERNMENTAL FIRM CUSTOMER FORCAST

Vi	ariable		Coefficient	StdErr	T-Stat	P-Value	
CGE_ECON_CNTY_S	SU16.CGE_E	MPLY_GOV	9.865	0.022	451.625	0.00%	
mIndicators.FEB11			23.219	4.892	4.747	0.00%	
mIndicators.JUL11			-12.381	5.289	-2.341	2.35%	
mIndicators.OCT12			12.005	6.029	1.991	5.22%	
mIndicators.NOV12			11.214	6.025	1.861	6.88%	
mIndicators.MAR13			-42.927	4.749	-9.040	0.00%	
mIndicators.APR15			-6.592	4.944	-1.333	18.88%	
mCalendar.May			-7.767	2.807	-2.767	0.80%	
mCalendar.Jun			-12.618	3.454	-3.653	0.06%	
mCalendar.Jul			-13.810	3.893	-3.548	0.09%	
mCalendar.Aug			-16.968	3.827	-4.434	0.01%	
mCalendar.Sep			-19.463	3.726	-5.224	0.00%	
mCalendar.Oct			-14.153	3.615	-3.915	0.03%	
mCalendar Nov			-11.051	2.957	-3.737	0.05%	
AR(1)			0.723	0.075	9.591	0.00%	
Model Statistics							
Iterations	13						
Adjusted Observations	63		DEO GOVERNI	MENTAL FIRM CUS	TOMER FORECA	ST	
Deg. of Freedom for Error	48			vs Predicted Correl			
R-Squared	0.794	1400					
Adjusted R-Squared	0.734						
AIC	3.754					•	
BIC	4.264					•	
F-Statistic	#NA				· · ·		
Prob (F-Statistic)	#NA						
Log-Likelihood	-192.63	1375					
Model Sum of Squares	6,437.53			1			
Sum of Squared Errors	1,670.02	_		• •	\$1		
Mean Squared Error	34.79	Actual		• 19			
Std. Error of Regression	5.90	A					
Mean Abs. Dev. (MAD)	4.40	1350	•				
Mean Abs. % Err. (MAPE)	0.32%						
Durbin-Watson Statistic	1.836						
Durbin-H Statistic	#NA		·				
Ljung-Box Statistic	26.89						
Prob (Ljung-Box)	0.3094	1005					
Skewness	-0.088	1325					-
Kurtosis	1.865	1325	13	50	1375		1400
Jarque-Bera	3.461			Predicted			
Prob (Jarque-Bera)	0.1772						
	0.1112						

DEO GOVERNMENTAL FIRM SALES FORECAST MODEL

	Varia	blo	Coefficient	StdErr	T-Stat	P-Value		
	OH_Econ_SU16 GE		1.040	0.068	15 278	0 00%		
	PRICE_LAGS.OPA		-6580.392	2290 880	-2.872	0 66%		
	Weather_by_month Weather_by_month		407.811 440.477	4.351	93.738 96.567	0.00%		
	Weather_by_month		503.829	10.879	46.311	0.00%		
	Weather_by_month		566.112	25 465	22 231	0 00%		
	Weather_by_month		722 221	61 240	11 793	0 00%		
	Weather_by_month		388.315	17.992	21.583	0.00%		
	Weather_by_month Weather_by_month		363.181 439 789	7.031 6 349	51.653 69.268	0.00%		
	mindicators FEB11	020_0_00055	36278 485		6 029	0.00%		
	mIndicators.MAR11		51734.477		7.279	0.00%		
	mIndicators.NOV11		21124.689		3.586	0.09%		
	mIndicators.JAN12		70064.276 40577 558		11.320 6.615	0.00%		
	mindicators FEB13 mindicators MAR13		-57943.495		-6 903	0.00%		
	mindicators.APR13		24780.215		3.578	0.10%		
	mIndicators.OCT13		-23944.407	6306.405	-3.797	0.05%		
	mindicators DEC13		40281 934		-5.929	0 00%		
	mindicators JAN14 mindicators.MAR14		30022 903 -26957.934		4 379	0.01%		
	mIndicators.JUL14		-17787.536		-3.110	0.35%		
	mIndicators.JAN15		73074.518	6463 881	11.305	0.00%		
	mIndicators DEC15		21315 096		3 528	0 11%		
	mindicators MAY15 mindicators.APR16		-26554.461 -23414.410		-4 588 -3.419	0.00%		
Model Statistics Iterations Adjusted Observations	1	750000				RM SALES FO Correlation Gra		
Deg. of Freedom for Error	and the second se	750000						
	20	150000-			1		1	
	38	75000-						
R-Squared	0.999	150000-						
R-Squared Adjusted R-Squared	0.999 0.999	150000-						
R-Squared Adjusted R-Squared AIC	0.999 0.999 17.547	130000						
R-Squared Adjusted R-Squared AIC BIC	0.999 0.999						•	
R-Squared Adjusted R-Squared AIC BIC	0.999 0.999 17.547	500000						
R-Squared Adjusted R-Squared AIC BIC F-Statistic	0.999 0.999 17.547 18.424							
R-Squared Adjusted R-Squared AIC BIC F-Statistic Prob (F-Statistic)	0.999 0.999 17.547 18.424 #NA					• • •	•	
R-Squared Adjusted R-Squared AIC BIC F-Statistic Prob (F-Statistic) Log-Likelihood	0.999 0.999 17.547 18.424 #NA #NA -626.31	500000					•	
R-Squared Adjusted R-Squared AIC BIC F-Statistic Prob (F-Statistic) Log-Likelihood Model Sum of Squares	0.999 0.999 17.547 18.424 #NA #NA -626.31 1,400.525,463 232.82	500000					•	
R-Squared Adjusted R-Squared AIC BIC F-Statistic Prob (F-Statistic) Log-Likelihood Model Sum of Squares Sum of Squared Errors	0.999 0.999 17.547 18.424 #NA #NA -626.31 1,400.525,463 232.82 1,185,333 083.93				•	•• ••	•	
R-Squared Adjusted R-Squared AIC BIC F-Statistic Prob (F-Statistic) Log-Likelihood Model Sum of Squares Sum of Squared Errors Mean Squared Error	0.999 0.999 17.547 18.424 #NA -626.31 1,400.525,463 232 82 1,185,333,083.93 31,192,975.89	- 500000 			•	•• ••	•	
R-Squared Adjusted R-Squared AIC BIC F-Statistic Prob (F-Statistic) Log-Likelihood Model Sum of Squares Sum of Squared Errors Mean Squared Error Std. Error of Regression	0.999 0.999 17.547 18.424 #NA +NA -626.31 1,400.525,463 232 82 1,185,333 083.93 31,192,975.89 5,585.07				•	•• ••	•	
R-Squared Adjusted R-Squared AIC BIC F-Statistic Prob (F-Statistic) Log-Likelihood Model Sum of Squares Sum of Squared Errors Mean Squared Error Std. Error of Regression Mean Abs. Dev. (MAD)	0.999 0.999 17.547 18.424 #NA +NA -626.31 1,400.525,463 232.82 1,185,333 083.93 31,192,975.89 5,585.07 3,155.45	- 500000 			•	** **	•	
R-Squared Adjusted R-Squared AIC BIC F-Statistic Prob (F-Statistic) Log-Likelihood Model Sum of Squares Sum of Squared Errors Mean Squared Error Std. Error of Regression Mean Abs. Dev. (MAD) Mean Abs. % Err. (MAPE)	0.999 0.999 17.547 18.424 #NA -626.31 1,400.525,463 232 82 1,185,333 083.93 31,192,975.89 5,585.07 3,155.45 3.76%	500000 90000 250000			•	** **	•	
R-Squared Adjusted R-Squared AIC BIC F-Statistic Prob (F-Statistic) Log-Likelihood Model Sum of Squares Sum of Squared Errors Mean Squared Error Std. Error of Regression Mean Abs. Dev. (MAD) Mean Abs. % Err. (MAPE) Durbin-Watson Statistic	0.999 0.999 17.547 18.424 #NA +NA -626.31 1,400.525,463 232.82 1,185,333 083.93 31,192 975.89 5,585.07 3,155.45 3.76% 1.754	500000 90000 250000			•	** **	•	
R-Squared Adjusted R-Squared AIC BIC F-Statistic Prob (F-Statistic) Log-Likelihood Model Sum of Squares Sum of Squared Errors Mean Squared Error Std. Error of Regression Mean Abs. Dev. (MAD) Mean Abs. % Err. (MAPE) Durbin-Watson Statistic Durbin-H Statistic	0.999 0.999 17.547 18.424 #NA #NA -626.31 1,400.525,463 232.82 1,185,333 083.93 31,192 975.89 5,585.07 3,155.45 3,76% 1.754 #NA	500000 90000 250000		,	•	**	•	
R-Squared Adjusted R-Squared AIC BIC F-Statistic Prob (F-Statistic) Log-Likelihood Model Sum of Squares Sum of Squared Errors Mean Squared Error Std. Error of Regression Mean Abs. Dev. (MAD) Mean Abs. % Err. (MAPE) Durbin-Watson Statistic Durbin-H Statistic	0.999 0.999 17.547 18.424 #NA +NA -626.31 1,400.525,463 232.82 1,185,333 083.93 31,192 975.89 5,585.07 3,155.45 3.76% 1.754	500000 90000 250000	AT 200 T	,	•	**	•	
R-Squared Adjusted R-Squared AIC BIC F-Statistic Prob (F-Statistic) Log-Likelihood Model Sum of Squares Sum of Squared Errors Mean Squared Error Std. Error of Regression Mean Abs. Dev. (MAD) Mean Abs. % Err. (MAPE) Durbin-Watson Statistic Durbin-H Statistic Ljung-Box Statistic	0.999 0.999 17.547 18.424 #NA #NA -626.31 1,400.525,463 232.82 1,185,333 083.93 31,192 975.89 5,585.07 3,155.45 3,76% 1.754 #NA 52.66	500000 90000 250000	of out	,	•		•	
R-Squared Adjusted R-Squared AIC BIC F-Statistic Prob (F-Statistic) Log-Likelihood Model Sum of Squares Sum of Squared Errors Mean Squared Error Std. Error of Regression Mean Abs. Dev. (MAD) Mean Abs. % Err. (MAPE) Durbin-Watson Statistic Durbin-H Statistic Ljung-Box Statistic Prob (Ljung-Box)	0.999 0.999 17.547 18.424 #NA #NA -626.31 1,400.525,463 232.82 1,185,333 083.93 31,192 975.89 5 585.07 3,155.45 3,76% 1.754 #NA 52.66 0.0006	500000 90000 250000 - 0	68 PM 8	44 4	•		•	75000
R-Squared Adjusted R-Squared AlC BIC F-Statistic Prob (F-Statistic) Log-Likelihood Model Sum of Squares Sum of Squared Errors Mean Squared Error Std. Error of Regression Mean Abs. Dev. (MAD) Mean Abs. % Err. (MAPE) Durbin-Watson Statistic Durbin-H Statistic Ljung-Box Statistic Prob (Ljung-Box) Skewness	0.999 0.999 17.547 18.424 #NA #NA -626.31 1,400.525,463 232.82 1,185,333 083.93 31,192 975.89 5,585.07 3,155.45 3,76% 1.754 #NA 52.66 0.0006 -0.028	500000 500000 250000	98 940 ¹⁸	** * *	• • 0000		•	750000
R-Squared Adjusted R-Squared AlC BIC F-Statistic Prob (F-Statistic) Log-Likelihood Model Sum of Squares Sum of Squared Errors Mean Squared Error Std. Error of Regression Mean Abs. Dev. (MAD) Mean Abs. Dev. (MAD) Mean Abs. % Err. (MAPE) Durbin-Watson Statistic Durbin-H Statistic Ljung-Box Statistic Prob (Ljung-Box) Skewness Kurtosis	0.999 0.999 17.547 18.424 #NA #NA -626.31 1,400.525,463 232.82 1,185,333 083.93 31,192 975.89 5,585.07 3,155.45 3,76% 1.754 #NA 52.66 0.0006 -0.028 2.830	500000 90000 250000 - 0	98 940 ¹⁸	** * *	• • 0000 Pred		•	750000
R-Squared Adjusted R-Squared AlC BIC F-Statistic Prob (F-Statistic) Log-Likelihood Model Sum of Squares Sum of Squared Errors Mean Squared Error Std. Error of Regression Mean Abs. Dev. (MAD) Mean Abs. % Err. (MAPE) Durbin-Watson Statistic Durbin-H Statistic Ljung-Box Statistic Prob (Ljung-Box) Skewness Kurtosis Jarque-Bera Prob (Jarque-Bera)	0.999 0.999 17.547 18.424 #NA #NA -626.31 1,400.525,463 232.82 1,185,333 083.93 31,192 975.89 5,585.07 3,155.45 3,76% 1.754 #NA 52.66 0.0006 -0.028	500000 90000 250000 - 0	68 960 W	** ** 250			• • 500000	75000

DEO COMMERCIAL INTERRUPTIBLE SALES FORECAST MODEL

	Variable		Coefficient	StdErr	T-Stat	P-Value			
	OH_Econ_SU16.GDP_F CUST_OEU_COM_SU10		0 121 2078 082	0 019 320 879	6 418 6 476	0.00%			
	Weather by month JAN		149 179	3 627	41 133	0.00%			
	Weather_by_month FEE		130 699	3 760	34 763	0.00%			
	Weather_by_month MA		122 486	4 941	24 792	0.00%			
	Weather_by_month_APP		111 477	9.638 36.740	11.566 4.666	0.00%			
	Weather_by_month.MA' Weather_by_month.OC		373 964	47.094	7.941	0.00%			
	Weather_by_month_NOV		253 302	12 432	20.374	0.00%			
	Weather_by_month DEC	C_B_HDD59	142 665	5 036	28 327	0.00%			
	mIndicators APR11 mIndicators MAY11		11145 792	6165 619 6540 080	1 808 2 519	8 04%			
	mindicators AUG11		11574 215	5680 033	2 038	5 02%			
	mIndicators JUN11		26104 351	5726 856	4 558	0.01%			
	mIndicators.JUL11		18347 994	5687.153	3.226	0.30%			
	mIndicators.OCT11 mIndicators.NOV11		11854 642	6219.179 6207.209	1.906	6.59% 0.11%			
	mIndicators APR12		24350 147	5613 267	4 338	0.01%			
	mIndicators AUG12		-9236 580		-1.659	10.72%			
	mIndicators NOV12		17598 310	6810 456 5869 945	-2.589 2.998	1 45% 0 53%			
	mIndicators DEC12 mIndicators MAR13		25629 041		4.101	0.03%			
	mIndicators JUL13		21830 012		3 942	0.04%			
	mIndicators.OCT13		12313 677	5667 194	2.173	3.76%			
	mIndicators.AUG14 mIndicators.FEB15		-14237 194 33147 443	5531.170 6188.172	-2.574 5.357	1.51% 0.00%			
	mindicators JUN15		-8517 052	5632 484	-1 512	14 06%			
	mIndicators JAN16		29833 659		4.989	0.00%			
	mindicators MAR16		31621 843	5652 929	5 594	0.00%			
Iterations	1		DE			RRUPTIBLE S cted Correlatio	ALES FORECA n Graph	ST	
Iterations	1 60	350000 т	DE					ST	
Model Statistics Iterations Adjusted Observations Deg. of Freedom for Error		350000	DE					ST	
Iterations Adjusted Observations Deg. of Freedom for Error	60	350000	DE					ST	
Iterations Adjusted Observations Deg. of Freedom for Error R-Squared	60 31 0.993	-	DE					ST	
Iterations Adjusted Observations Deg. of Freedom for Error R-Squared Adjusted R-Squared	60 31 0.993 0.987	350000 - 300000 -	DE					ST	
Iterations Adjusted Observations Deg. of Freedom for Error R-Squared Adjusted R-Squared AIC	60 31 0.993 0.987 17.467	-	DE					ST	
Iterations Adjusted Observations Deg. of Freedom for Error R-Squared Adjusted R-Squared AIC BIC	60 31 0.993 0.987 17.467 18.479	-	DE					ST	
Iterations Adjusted Observations Deg. of Freedom for Error R-Squared Adjusted R-Squared AIC	60 31 0.993 0.987 17.467	-	DE					ST	
Iterations Adjusted Observations Deg. of Freedom for Error R-Squared Adjusted R-Squared AIC BIC F-Statistic	60 31 0.993 0.987 17.467 18.479	300000 -	DE					ST	
Iterations Adjusted Observations Deg. of Freedom for Error R-Squared Adjusted R-Squared AIC BIC F-Statistic Prob (F-Statistic)	60 31 0.993 0.987 17.467 18.479 #NA #NA	300000 -	DE					ST	
Iterations Adjusted Observations Deg. of Freedom for Error R-Squared Adjusted R-Squared AIC BIC F-Statistic Prob (F-Statistic) Log-Likelihcod	60 31 0.993 0.987 17.467 18.479 #NA #NA -580.14	300000 - 250000 -	DE					ST	
Iterations Adjusted Observations Deg. of Freedom for Error R-Squared Adjusted R-Squared AIC BIC F-Statistic Prob (F-Statistic) Log-Likelihcod Model Sum of Squares	60 31 0.993 0.987 17.467 18.479 #NA #NA -580.14 124,979,105,043.27	300000 - 250000 -	DE					ST	
Iterations Adjusted Observations Deg. of Freedom for Error R-Squared Adjusted R-Squared AIC BIC F-Statistic Prob (F-Statistic) Log-Likelihcod Model Sum of Squares Sum of Squared Errors	60 31 0.993 0.987 17.467 18.479 #NA #NA -580.14 124,979,105,043.27 879,085,050.24	300000 - 250000 -	DE					ST	
Iterations Adjusted Observations Deg. of Freedom for Error R-Squared Adjusted R-Squared AIC BIC F-Statistic Prob (F-Statistic) Log-Likelihcod Model Sum of Squares Sum of Squared Errors Mean Squared Error	60 31 0.993 0.987 17.467 18.479 #NA #NA -580.14 124,979,105,043.27 879,085,050.24 28,357,582.27	300000 - 250000 - 250000 -	DE					ST	
Iterations Adjusted Observations Deg. of Freedom for Error R-Squared Adjusted R-Squared AIC BIC F-Statistic Prob (F-Statistic) Log-Likelihcod Model Sum of Squares Sum of Squared Errors Mean Squared Error	60 31 0.993 0.987 17.467 18.479 #NA #NA -580.14 124,979,105,043.27 879,085,050.24	300000 - 250000 -	DE					ST	
Iterations Adjusted Observations Deg. of Freedom for Error R-Squared Adjusted R-Squared AIC BIC F-Statistic Prob (F-Statistic) Log-Likelihcod Model Sum of Squares Sum of Squared Errors Mean Squared Error Std. Error of Regression	60 31 0.993 0.987 17.467 18.479 #NA #NA -580.14 124,979,105,043.27 879,085,050.24 28,357,582.27 5,325.18	300000 - 250000 - 250000 -	DE					ST	
Iterations Adjusted Observations Deg. of Freedom for Error R-Squared Adjusted R-Squared AIC BIC F-Statistic Prob (F-Statistic) Log-Likelihcod Model Sum of Squares Sum of Squared Errors Mean Squared Error Std. Error of Regression Mean Abs. Dev. (MAD)	60 31 0.993 0.987 17.467 18.479 #NA #NA -580.14 124,979,105,043.27 879,085,050.24 28,357,582.27 5,325.18 2,569.55	300000 - 250000 - 250000 -	DE					ST	
Iterations Adjusted Observations Deg. of Freedom for Error R-Squared Adjusted R-Squared AIC BIC F-Statistic Prob (F-Statistic) Log-Likelihcod Model Sum of Squares Sum of Squared Errors Mean Squared Error Std. Error of Regression Mean Abs. Dev. (MAD) Mean Abs. % Err. (MAPE)	60 31 0.993 0.987 17.467 18.479 #NA #NA -580.14 124,979,105,043.27 879,085,050.24 28,357,582.27 5,325.18 2,569.55 1.76%	300000 - 250000 - 2200000 - 200000 - 150000 -	DE					ST	
Iterations Adjusted Observations Deg. of Freedom for Error R-Squared Adjusted R-Squared AIC BIC F-Statistic Prob (F-Statistic) Log-Likelihcod Model Sum of Squares Sum of Squared Errors Mean Squared Error Std. Error of Regression Mean Abs. Dev. (MAD) Mean Abs. % Err. (MAPE) Durbin-Watson Statistic	60 31 0.993 0.987 17.467 18.479 #NA #NA -580.14 124,979,105,043.27 879,085,050.24 28,357,582.27 5,325.18 2,569.55 1.76% 1.808	300000 - 250000 - 250000 -	DE					ST	
Iterations Adjusted Observations Deg. of Freedom for Error R-Squared Adjusted R-Squared AIC BIC F-Statistic Prob (F-Statistic) Log-Likelihcod Model Sum of Squares Sum of Squared Errors Mean Squared Error Std. Error of Regression Mean Abs. Dev. (MAD) Mean Abs. % Err. (MAPE) Durbin-Watson Statistic Durbin-H Statistic	60 31 0.993 0.987 17.467 18.479 #NA #NA -580.14 124,979,105,043.27 879,085,050.24 28,357,582.27 5,325.18 2,569.55 1.76% 1.808 #NA	300000 - 250000 - 2200000 - 200000 - 150000 -	DE					ST	
Iterations Adjusted Observations Deg. of Freedom for Error R-Squared Adjusted R-Squared AIC BIC F-Statistic Prob (F-Statistic) Log-Likelihcod Model Sum of Squares Sum of Squared Errors Mean Squared Error Std. Error of Regression Mean Abs. Dev. (MAD) Mean Abs. % Err. (MAPE) Durbin-Watson Statistic Durbin-H Statistic Ljung-Box Statistic	60 31 0.993 0.987 17.467 18.479 #NA #NA -580.14 124,979,105,043.27 879,085,050.24 28,357,582.27 5,325.18 2,569.55 1.76% 1.808 #NA 41.60	300000 - 250000 - 2200000 - 150000 - 100000 -	DE					ST	
Iterations Adjusted Observations Deg. of Freedom for Error R-Squared Adjusted R-Squared AIC BIC F-Statistic Prob (F-Statistic) Log-Likelihcod Model Sum of Squares Sum of Squared Errors Mean Squared Error Std. Error of Regression Mean Abs. Dev. (MAD) Mean Abs. % Err. (MAPE) Durbin-Watson Statistic Durbin-H Statistic Ljung-Box Statistic	60 31 0.993 0.987 17.467 18.479 #NA #NA -580.14 124,979,105,043.27 879,085,050.24 28,357,582.27 5,325.18 2,569.55 1.76% 1.808 #NA	300000 - 250000 - 2200000 - 200000 - 150000 -	DE					ST	
Iterations Adjusted Observations Deg. of Freedom for Error R-Squared Adjusted R-Squared AIC BIC F-Statistic Prob (F-Statistic) Log-Likelihcod Model Sum of Squares Sum of Squared Errors Mean Squared Error Std. Error of Regression Mean Abs. Dev. (MAD) Mean Abs. % Err. (MAPE) Durbin-Watson Statistic Durbin-H Statistic Ljung-Box Statistic Prob (Ljung-Box)	60 31 0.993 0.987 17.467 18.479 #NA #NA -580.14 124,979,105,043.27 879,085,050.24 28,357,582.27 5,325.18 2,569.55 1.76% 1.808 #NA 41.60 0.0143	300000 - 250000 - 2200000 - 150000 - 100000 - 50000 -		Actu	Jal vs Predi	cted Correlatio	n Graph		35000
Iterations Adjusted Observations Deg. of Freedom for Error R-Squared Adjusted R-Squared AIC BIC F-Statistic Prob (F-Statistic) Log-Likelihcod Model Sum of Squares Sum of Squared Errors Mean Squared Error Std. Error of Regression Mean Abs. Dev. (MAD) Mean Abs. % Err. (MAPE) Durbin-Watson Statistic Durbin-H Statistic Ljung-Box Statistic Prob (Ljung-Box) Skewness	60 31 0.993 0.987 17.467 18.479 #NA #NA -580.14 124,979,105,043.27 879,085,050.24 28,357,582.27 5,325.18 2,569.55 1.76% 1.808 #NA 41.60 0.0143 0.824	300000 - 250000 - 2200000 - 150000 - 100000 -			150000	200000		ST 300000	35000
Iterations Adjusted Observations Deg. of Freedom for Error R-Squared Adjusted R-Squared AIC BIC F-Statistic Prob (F-Statistic) Log-Likelihcod Model Sum of Squares Sum of Squared Errors Mean Squared Error Std. Error of Regression Mean Abs. Dev. (MAD) Mean Abs. Dev. (MAD) Mean Abs. % Err. (MAPE) Durbin-Watson Statistic Durbin-H Statistic Ljung-Box Statistic Prob (Ljung-Box) Skewness Kurtosis	60 31 0.993 0.987 17.467 18.479 #NA #NA -580.14 124,979,105,043.27 879,085,050.24 28,357,582.27 5,325.18 2,569.55 1.76% 1.808 #NA 41.60 0.0143 0.824 4.277	300000 - 250000 - 2200000 - 150000 - 100000 - 50000 -		Actu	150000	cted Correlatio	n Graph		35000
Iterations Adjusted Observations Deg. of Freedom for Error R-Squared Adjusted R-Squared AIC BIC F-Statistic Prob (F-Statistic) Log-Likelihcod Model Sum of Squares Sum of Squared Errors Mean Squared Error Std. Error of Regression Mean Abs. Dev. (MAD) Mean Abs. Dev. (MAD) Mean Abs. % Err. (MAPE) Durbin-Watson Statistic Durbin-H Statistic Ljung-Box Statistic Prob (Ljung-Box) Skewness	60 31 0.993 0.987 17.467 18.479 #NA #NA -580.14 124,979,105,043.27 879,085,050.24 28,357,582.27 5,325.18 2,569.55 1.76% 1.808 #NA 41.60 0.0143 0.824	300000 - 250000 - 2200000 - 150000 - 100000 - 50000 -		Actu	150000	200000	n Graph		350000

DEO INDUSTRIAL INTERRUPTIBLE SALES FORECAST MODEL

	Variable		Coefficient	StdErr	T-Stat	P-Value		
	OH_Econ_SU16.GDP_F		8.862	0.524	16.914	0.00%		
	CUST_OEU_IND_SU16 Weather_by_month_JAN		3059.577 486.001	489.884 19.580	6.246 24 821	0.00%		
	Weather_by_month.FEE		410.855	18.971	21.657	0.00%		
	Weather_by_month MA	R_B_HDD59	502.909	28.912	17.394	0.00%		
	Weather_by_month_API		337.406	51.988	6.490	0.00%		
	Weather_by_month_MA Weather_by_month.OC		1381 267 1645.759	240.035 230.133	5 754 7.151	0.00%		
	Weather_by_month.NO		800.008	59.281	13.495	0.00%		
	Weather_by_month DE		394 897	33 231	11 883	0.00%		
	mIndicators APR11		-92490 369		-2 797	0.85%		
	mIndicators.MAY11 mIndicators.JUN11		-161156.276 -137215.585		-4.189	0.02%		
	mIndicators DEC11		59162 246		1 775	8.51%		
	mIndicators.JUL11		194443 500		6 337	0.00%		
	mIndicators AUG11		-165735.494		-5.418	0.00%		
	mIndicators.SEP11 mIndicators FEB12		-193518.927 103291 586		-6.331 3 232	0.00%		
	mIndicators MAY13		-67209 588		1 843	7 44%		
	mIndicators.SEP13			30157.838	1.365	18.15%		
	mIndicators.OCT13		135578.059		4.434	0.01%		
	mIndicators NOV13 mIndicators.DEC13		116713.203	33464 373 36747.424	3 488 2 635	0 14%		
	mindicators.MAR15		-85526.061		-2.308	2.74%		
	mIndicators NOV15		-94614 216	32007 729	-2 956	0 57%		
	mIndicators JAN16		103953 738		3 162	0 34%		
	mIndicators.MAR16		81538.540	31304.001	2.588	1.42%		
Model Statistics								
The second s								
Iterations	60						FORECAST	
Adjusted Observations			D			UPTIBLE SALES		
Deg. of Freedom for Error	33			ACIUA	IVS PIEDICIE	ed Correlation Gra	pn	
R-Squared	0.983	17500					!	
Adjusted R-Squared	0.970							
AIC	20.864						1	
BIC	21.807							
		450000	20					
F-Statistic	#NA	15000	J U + · · · · · · · · · · · · · · · · · ·				A. *	
Prob (F-Statistic)	#NA						A	
Log-Likelihood	-684.06		·					
Model Sum of Squares	1,657,648,385,051.05							
Sum of Squared Errors	28,084,361,125.38	ਰ 12500	n			• •		
								999996000000000000
Mean Squared Error	851,041,246.22	O O			++			
Std. Error of Regression	29,172.61		•		A			
Mean Abs. Dev. (MAD)	16,206.34			1	5			
Mean Abs. % Err. (MAPE)	1.33%	10000	00 00					
Durbin-Watson Statistic	1.442							
	10000000000000000000000000000000000000			• *				
Durbin-H Statistic	#NA							
Ljung-Box Statistic	29.87							
Prob (Ljung-Box)	0.1892	7500)0+		+		• • • • • • • • • • • • • • • • • • • •	
Skewness	-0.160	1	50000	100000	0	1250000	1500000	175000
	2.722					edicted	100000	
Kurlosis								
Jarque-Bera	0.450							
Prob (Jarque-Bera)	0.7984							

DEO GOVERNMENTAL INTERRUPTIBLE SALES FORECAST MODEL

		Variable	Coefficient	StdErr	T-Stat	P-Value			
		U_OPA_SU16 LagDep(1 y_month JAN_B_HDD59) 0 931 88 468	0 012 9 046	75 156 9 779	0 00%			
		y_month_JAN_B_HDD59 y_month_NOV_B_HDD59		24 677	6 774	0 00%			
	Weather_b	y_month DEC_B_HDD59	50 511	13 257	3 810 -4 167	0 06%			
	mindicators		-63707 741 75095 748		4 969	0.00%			
	mIndicators	s JUL11	93286 359	15213 971	6 132	0.00%			
	mindicators		33286 114 33234 933		2 189 2 175	3.60% 3.72%			
	mindicators	s.DEC11	22414.975	16272.625	1.377	17.79%			
	mindicators		60948 683 50752 695		3 935 3 249	0 04% 0 27%			
	mIndicator	s.JUL12	63004.015		4.025	0.03%			
	mindicator		-93725.074 -40683.157		-5.934 -2.635	0.00%			
	mIndicator	s.MAR13	39690.251	15266.082	2.600	1.40%			
	mIndicator		-39761.160 37180.745		-2.595 2.453	1.42%			
	mIndicator	5.JUL13	54095.588	15209.223	3.557	0 12%			
	mIndicator		-28689.860 -34461.519		-1.886	6.84% 3.29%			
	mIndicator	s APR14	-72068.417	15295.611	-4.712	0.00%			
	mIndicator		28829.971 -47569.264		1.911	6 50% 0 36%			
	mindicator	s.OCT14	31211.294	15013.533	2.079	4.57%			
	mindicator		55391.662 -65833.849		3.637	0.10%			
	mindicator	s.APR15	-45603.319	15135.475	-3.013	0 50%			
	mindicator mindicator		97100.862 47328.359		6.465	0.00%			
Model Statistics									
terations	1								
Adjusted Observations	62		DED COVE	DIMENTAL	INTEDD		ALES FORE	TZAST	
Deg. of Freedom for Error	32			Actual vs P				101	
		600000			i suicicu (o upi		
R-Squared	0.977	600000		:			1		
Adjusted R-Squared	0.955	-							
AIC	19.532	500000							
BIC	20.562			:					
F-Statistic	#NA	1							
Prob (F-Statistic)	#NA	400000	••••••	·····					
Log-Likelihood	-663.47						1		
Model Sum of Squares	298,144,958,305.94			1			1		
Sum of Squared Errors	7,159,016,903.31	ਬ 300000	••••••			A:			
Mean Squared Error	223,719,278.23	Actual Actual Actual		1	45		1		
Std. Error of Regression	14,957.25	₹ 200000		: المنهز	1 th				
Mean Abs. Dev. (MAD)	6,882.06	20000		:	•	1	1		
Wean Abs. % Err (MAPE)	3.16%	-							
Durbin-Watson Statistic	2.309	100000							
				1					
Durbin-H Statistic	-1.222	1		i					
Ljung-Box Statistic	21.07	0	+	+ +	+	+ +		+	+
Prob (Ljung-Box)	0.6348	0	100000	20000	00 3	300000	400000	500000	60000
Skewness	-0.075				Predi				
Kurtosis	3.442								
NULIUSIS	0.564								
Jarque-Bera									
Jarque-Bera									
	0.7541								
Jarque-Bera									

(D) <u>DEMAND FORECAST FORMS</u>

(1) SERVICE AREA NATURAL GAS DEMAND

The Duke Energy Ohio and Subsidiary Companies' total natural gas service area includes areas outside of Ohio. The gas load forecast is prepared for the consolidated system that includes the non-Ohio portion of the service area. The forecast for Ohio represents a portion of the consolidated forecast. Form FG1-1 contains the history and forecast of gas usage for the Ohio portion of the service area.

(2) GAS DEMAND BY INDUSTRIAL SECTOR

Form FG1-2, "Historical and Forecast Annual Gas Demand by Industrial Sector", provides historic and forecasted gas demands by selected manufacturing sectors displayed according to the Standard Industrial Classification (SIC) Code. It should be noted that "transportation gas" is reflected both in the actual period and the forecast period on Form FG1-2. Recent shifts in how customers are classified within the billing system have changed anticipated allocations across industry groups.

(3) MONTHLY GAS SENDOUT

Form FG1-3, "Monthly Ohio Gas Sendout", shows a month by month forecast of total gas sendout, including transportation, for the years 2016, 2017 and 2018 and is based on the forecast data detailed in this report. As a reminder, the forecast was prepared in mid-2016.

(4) RANGE OF FORECASTS: HIGHEST, LOWEST, MOST LIKELY

The two major sources of forecast uncertainty were studied in the development of forecast ranges. First, abnormally harsh and abnormally mild weather conditions were employed to generate high and low forecasts. For the second study, alternate economic scenarios - optimistic and pessimistic - were used to set the bounds for a high and a low forecast. The

most likely forecast relied upon normal weather and a base-case economic forecast.

Weather-Based Ranges

The overall level of Duke Energy Ohio's gas sales are highly sensitive to weather conditions. If an extreme weather situation develops, there can be a large difference between actual and projected sales. For system sendout, variability in the forecast depends upon the level of heating degree days.

In a simulation study, the gas energy model was solved using weather that was colder than normal and warmer than normal based on heating degree days, respectively. Using the results of these simulations, ranges were developed to show the sensitivity of gas sales to the weather.

The upper band for total gas sendout reflects a ten percent increase above normal in the number of heating degree days. Similarly, the lower band represents a ten percent decrease below normal in the number of heating degree days.

In another simulation study, a gas peak model was solved fifty separate times using the weather that occurred in each of the winter seasons between 1964 and 2013. Using the results of these simulations, probability ranges were developed to show the sensitivity of the gas peak to the weather and to develop forecasts of the gas peak under abnormal weather conditions.

The upper limit to the band for the gas peak reflects a five percent probability that weather conditions will be more severe than those that generated the upper band. Similarly, the lower limit to the band represents a five percent probability that weather conditions could be milder than those used to generate the band.

Form FG1-4(a) provides the forecasts of sendout and peak day deliveries expected under alternate weather conditions. The probability range calculation as described above was applied to the weather term in the peak model to simulate an

extreme peak forecast for the 1% most extreme weather conditions on day of peak; this forecast is referred to as a "design" peak.

Confidence Interval Based Ranges

The most likely forecast of gas energy load is generated using base-case forecasts of numerous economic variables and under the assumption of normal weather. The source of the national economic forecast is Moody's Analytics.

In generating the high and low forecasts, the Company used the standard errors of the regression from the econometric models used to produce the base energy forecast. The bands are based on a 95% confidence interval around the forecast which equates to +/-1.96 standard deviations. These calculations were used to adjust the base forecast up or down, thus providing high and low bands around the most likely forecast. In general, the upper band reflects relatively optimistic assumptions about the future growth of gas sales while the lower band depicts the impact of a pessimistic scenario.

In Form FG1-4(b), forecasts of industrial gas usage and total energy usage are provided for the high, low, and most likely forecasts.

(5) PEAK AND FORECAST DESIGN DAY REQUIREMENTS

The detailed information to complete Form FG1-5, "Historic Peak and Forecast Design Day requirements," is not available. Duke Energy Ohio does not forecast peak day requirements by sector, but only by total system requirements as discussed in Section (C)(1)(a) of this report. For forecasting purposes, the simulation study that produced the weather-based ranges discussed above is also used to determine peak design day requirements. Based on the standard error of the weather term in the peak forecasting model, the peak day design level chosen reflects a three percent probability that peak load will be more severe than the peak day design level because of extreme weather. For operating purposes, it is Duke

Energy Ohio's policy to supply all firm requirements at temperatures that can reasonably be expected to occur.

(6) <u>SELF-HELP AND OTHER TRANSPORTED GAS</u>

.

Form FG1-6 provides the forecast of self-help and transportation gas.

-

DUKE ENERGY OHIO

MV: RESIDENTIAL RESIDENTIAL RESIDENTIAL RESIDENTIAL RESIDENTIAL 1,773 014 1,773 014 1,773 014 1,773 015 1,4,773 016 1,4,773 017 1,3,555 1,4,773 016 1,4,773 016 1,4,773 017 1,3,555 1,4,773 018 1,3,555 1,3,956 1,	FORM FG1-1: UNITS:		HISTORICAL AN MMCEVFAR	ID FORECAST :	SERVICE ARE	HISTORICAL AND FORECAST SERVICE AREA ANNUAL GAS DEMAND MMCF/YEAR	DEMAND										
	COMPANY		DUKE ENERGY (оню		AVERAGE BTU	CONTENT		1076.2								
ALEST Control ALLEST C	ſ	Ē	(2)	(3)	(4)	(5)		(7) VTUED	(8)	(6)	(10)	(11)	(12)	(13)	(14)	(15)	(16)
VEM SMLEF SMLEF MUTUE CUTOWINES REAME MUTUE CONSUMMTION CONSUMTION CONSUMTION CONSUM		residential ⁽	COMMERCIAL	INDUSTRIAL		SALES TO ULTIMATE		SALES		COMPANY	TOTAL	NET ⁴ INJECTIONS	LOSSES	TOTAL		INIECTIONS TO	I OT AL WITHDRAWAL FROM
2124,7735,5647102,1(3402,1344,62,191-226132,106607,76521313,3555,882100923,7660023,7764,623,252-231106,0026,0021614,7755,862100923,7660023,7764,723,325-1,1211262006,00221613,8655,77094621,3360018,3351,12123,426000201613,9655,7709465,3607,1123,4261,123,42500021613,9655,5507,17108,3351,21,24620,1410000201613,9655,5507,1123,451,24620,141000000201613,9655,550718,3350010720,1410000201713,9655,5507120,141070,171000000201813,9655,3507120,171010720,17400000201713,9655,3507120,171010720,17400000201813,9455,3507420,174020,174000 <th>YEAR</th> <th>SALES</th> <th>SALES¹</th> <th>SALES</th> <th>UTILITIES</th> <th>CUSTOMERS [(1)+(2)+(3)+(4)</th> <th></th> <th></th> <th>SALES 5)+(6)+(7)</th> <th></th> <th>CONSUMPTION (8)+(9)</th> <th>TO STORAGE</th> <th></th> <th>DEMAND 10)+(11)+(12)</th> <th>(1) THRU (4)</th> <th>STORAGE</th> <th>STORAGE</th>	YEAR	SALES	SALES ¹	SALES	UTILITIES	CUSTOMERS [(1)+(2)+(3)+(4)			SALES 5)+(6)+(7)		CONSUMPTION (8)+(9)	TO STORAGE		DEMAND 10)+(11)+(12)	(1) THRU (4)	STORAGE	STORAGE
213 13.35 582 108 23.246 0 23.246 4 23.282 -291 05 20,10 0 8,022 2014 5,773 7,057 946 23.776 0 23.776 4 7 23.823 -1121 129 22.829 0 8,772 2016 13,776 64 23.776 10 8.333 -1246 98 7.256 0 8,772 2016 13,665 5,770 196 21,396 1 23,823 -1246 98 7.256 0 2,787 2017 1366 5,377 136 1 12,365 12 124 2 12 12 2016 13,665 5,772 13 13,937 -124 2 2 12		14,779	5,554			21,134	0	0	21,134	46	21,18		₽	21,066	o	7,165	ESE'1
1 5/71 7.05 946 2.376 0 2.376 4/7 2.3823 -111 126 2.2823 0 2.326 0 2.372 2016 1.3867 5.770 019 2.1369 0 2.336 37 2.1365 980 11 2.462 0 0.728 2017 1.3867 5.770 019 2.1369 0 1.375 1.246 98 7.226 0 0 7.281 2017 1.3867 5.377 6.77 1.3756 5.17 1.476 5.176 1.246 98 7.226 0 0 7.281 2018 5.377 5.377 1.3976 5.37 1.363 5.377 1.246 98 7.226 0 0 2.482 2018 5.377 1.3976 5.377 1.393 5.360 7.21 0 9.231 2013 1.3563 5.360 7.21 0 1.07 2.0174 0 0	-I 2013	13,355 1	5,882		~	20,246	•	0	20,246	46	20,230		ĝ	20,110	o	8,032	8,323
2016 M, Y, B 5, 7, 0 616 21, 306 4, 7 21, 365 953 14 24, 42 0 7, 20 2016 12, 886 5, 252 67 8, 336 37 -12, 45 96 7, 256 0 2, 247 2017 13, 866 5, 377 6, 37 8, 373 -12, 46 96 7, 256 0 8, 231 2018 13, 866 5, 377 6, 377 12, 46 96 7, 266 97 7, 266 97 7, 266 96 7, 247 0 9, 243 2018 5, 377 6, 377 5, 366 7 9, 363 20, 47 26 8, 23 7 9, 24 0 9, 24 2020 14, 46 5, 366 7 20, 47 53 20, 47 0 0 2, 24 0 9, 23 2020 13, 46 5, 366 7 10 8, 73 20, 47 0 0 2, 24 0 0 2, 24	-3 20H	15,773	7,057		"	23.776	0	0	23,776	47	23,820		128	22,829	Ð	8,732	3,853
2016 12,887 4,704 665 18,336 0 1,246 9 7,226 0 7,281 2017 13,866 5,532 677 13,75 1 12,46 9 7,226 0 7,281 2017 13,866 5,532 677 13,76 5 1 12,46 9 7,226 0 2,237 2018 13,966 5,337 6,377 1 9 93 5 13,983 0 17 20,99 0 9,231 0 2,247 0 0 2,377 0 0 2,323 0 2,324 0 2,317 0 0 2,324 0 0 2,324 0 2,324 0 2,324 0 2,324 0 2,324 0 2,324 0 2,324 0 2,324 0 2,324 0 2,324 0 2,324 0 2,324 0 2,324 0 2,324 0 <	-2 2015	14,719	5,770		~	21,308	0	•	21,308	47	21,355			22,462	0	8,777	7.724
20713665.26267713.766713.96513.965.3766.713.965.3766.713.9613.9535.39307120.04013.9530101013.953013.9530101013.953013.953 <t< td=""><td>-1 2016</td><td>12,887</td><td>4,784</td><td></td><td>10</td><td>18,336</td><td>0</td><td>•</td><td>18,336</td><td>37</td><td>18,372</td><td></td><td>8</td><td>17,226</td><td>D</td><td>7.287</td><td>8,533</td></t<>	-1 2016	12,887	4,784		10	18,336	0	•	18,336	37	18,372		8	17,226	D	7.287	8,533
208 1396 5.37 697 *5.30 0 19.83 5.300 0 70 8.321 6.37 6.37 6.37 6.37 6.37 6.37 6.37 6.37 6.37 6.37 6.37 6.37 6.37 6.37 6.37 6.37 7.1 2.004 7.3 2.067 0 0 0 0 8.21 2000 14045 5.365 721 2.0147 0 2.0167 0 0 0 0 8.21 2020 13.954 5.365 721 2.0165 0 2.0167 0 0 0 0 0 8.21 2021 13.944 5.337 728 2.0166 0 2.0174 0 0 0 8.21 2022 13.944 5.337 748 2.0168 0 2.0175 0 0 0 0 0 8.21 2023 13.944 5.337 740 0 2.0165<	0 2017	13.856	5,262		~	19,796	0	0	19,796	5	19,84)	•	1 0	19,95 3	0	8,321	8,321
203 13,55, 13,55 5,350 71 20,04 0 20,04 53 20,057 0 07 2074 0 8,231 2020 41,045 5,355 721 20,122 0 20,125 54 20,956 0 6,2234 0 6,321 2021 13,978 5,355 722 20,056 0 20,125 54 20,975 0 96 20,234 0 8,221 2021 13,944 5,337 7.38 20,056 0 20,055 55 21,21 0 96 23,234 0 8,221 2022 13,944 5,337 7.38 20,056 57 20,075 0 0 97 20,759 0 8,221 2023 13,944 5,337 7.48 20,056 57 20,075 0 0 92 20,759 0 92 20,759 0 9,213 9,321 9,321 9,321 10,323 10	1 2018	13,916	5,317		*	19,930	0	•	006'61	23	38;61	•	107	20,030	0	8,321	8,321
2020 H,1H, 13,7R 5,385 721 20,122 0 20,125 54 20,185 0	2 2019	13,953	5,350		-	20.014	•	0	20.014	53	20,067	0	107	20,174	0	8,321	132.8
2071 13.976 5.355 7.22 20.066 0 20.065 56 20.171 0 06 8.223 0 8.221 2022 13.944 5.337 7.38 20.066 5 20.075 0 07 20.83 0 8.221 2022 13.944 5.337 7.38 20.078 0 20.075 0 07 20.83 0 8.21 2023 13.944 5.337 7.49 19.983 0 20.075 0 07 20.83 0 8.21 2025 13.944 5.337 7.49 19.983 0 20.075 0 20.075 0 8.21 2026 13.944 5.323 7.49 20.072 5 20.175 0 0 07 20.82 0 8.21 2025 13.944 5.323 749 20.072 5 20.175 0 0 0 8.21 2025 13.945	3 2020	14,046 	5,365		-	20,132	•	•	20,132	54	20,186	0	8 <u>0</u>	20,294	0	8,321	8,321
202 13.94 5.337 7.38 20.018 0 20.075 0 00 0 0.21 0.221 2023 13.94 5.317 7.48 20.018 0 20.015 0 00 0 0.221 2023 13.94 5.317 740 13.953 0 0 8.933 58 20.051 0 0 0.7 20.83 0 8.21 2026 13.94 5.323 748 20.072 0 20.132 0 0 0 0.7 20.89 0 8.21 2026 13.552 5.34 755 20.020 0 20.029 0 0 0.7 20.83 0 8.21 2026 13.547 5.323 763 20.025 52 20.099 0 07 20.82 0 8.21 2026 13.547 5.328 771 20.023 10 07 0 9.21 2027 <	4 2021	13,978 ,	5,365		~	20,066	•	•	20,066	56	20,12	0 1	ĝ	20,229	0	8,321	125'8
2023 13341 5,311 740 19393 0 10 107 20,568 0 8,221 2004 14,001 5,323 748 20,072 0 0 107 20,568 0 8,221 2005 13,552 5,314 755 20,072 59 20,132 0 00 8,271 2005 13,552 5,314 755 20,020 0 20,020 0 20,030 0 8,271 2005 13,547 5,323 763 20,020 0 20,020 0 20,030 0 8,271 2005 13,347 5,323 763 20,022 62 20,030 0 0 0 20,213 0 0 8,271 2005 5,328 771 20,039 0 20,035 63 20,036 0 0 8,221 2007 13,335 5,328 771 20,039 0 20,033 0	5 2022	13,944	5,337		~	20,018	•	•	20.018	25	20,075	0	202	20,183	0	8,321	125.8
2024 14.001 5.223 748 20.072 0 0 20.132 0 068 20.239 0 8.321 2025 13.552 5.314 755 20,020 0 20,020 60 20,060 0 107 20,168 0 8.321 2025 13.547 5.323 753 20,022 60 20,060 0 107 20,168 0 8.321 2026 13.947 5.323 753 20,032 62 20,064 0 10 107 20,188 0 8.321 2027 13.335 5.328 771 20,033 13 20,102 0 0 20,321 10 8.221	6 2023	13,941	5,311		-	586°61	0	0	19 ,993	58	20,05	0	107	20.158	0	8,321	8,321
2025 13,552 5,34 755 20,020 0 20,060 0 07 21,868 0 8,321 2026 13,947 5,323 763 20,032 0 2,0,034 0 0 8,221 2027 13,335 5,328 771 20,033 6 20,034 0 06 20,201 0 8,221 2027 13,335 5,328 771 20,033 6 20,034 0 06 20,201 0 8,321	7 2024	14,001	5,323		~	20.02	•	0	20,072	65	20,132	0	ĝ	20,239	0	8,321	12E'B
2026 13.947 5.323 763 20.022 0 0 20.022 62 20.094 0 008 20.201 0 8.321 2027 13.339 5.328 771 20,033 0 0 20,033 63 20,002 0 03 20,203 0 8.321	8 2025	13,952	5,314		10	20,020	•	0	20,020	60	20,080	-	107	20,188	0	8,321	8,321
2027 13,339 5,328 771 20,033 0 0 20,039 63 20,102 0 108 20,209 0 8,321		13,947	5,323		~	20,032	•	0	20,032	83	20,094	•	<u>8</u>	20,201	0	8,321	8,321
		13,939	5,328		-		0	0	20,039	ខ	20, 02	•	ğ	20,209	0	8,321	8,321

¹ Includes Sales to Other Public Authonities, Interdepartmental Sales, and Street Lighting ² Includes municipals and small natural gas companies ³ Includes Lease and Plant Fuel and Pipeline Fuel if applicable

* Not injections to Starge (MTS) = Tatal injections to Starge (Column 15) • Tatal Withdrewal from Starge (Column 15). MTS:(0, then NTS = 0 * LOAD DEFINITION: FS SALES ON Y-40D TRANSPORTATION, ND INTERPUPTIBLE ALL VOLUMES ARE CALENDAR HISTORICAL CALENDAR SALES ARE NDT WEATHER NDRWALIZED.

Page 3-34

DUKE ENERGY OHIO 4901:5-7-03	
---------------------------------	--

-

FORM FG1-2: HISTORICAL AND FORECAST OF ANNUAL GAS DEMAND BY INDUSTRIAL SECTOR (MMCF/YEAR) AVERAGE BTJ CONTENT: 1076.2 (FOR THE YEAR 2016)

; Strials ¹	69 69	85	66	10	76	51	54	3	14	92	37	8	61	41	43	
(15) TOTAL INDUSTRIALS ¹	18,169 19,602	20,1	19,2	19,7	20,3	20,7	20,9	21,0	21,2	21,3	21,5	21,6	21,8	22,0	22,22	
(14) All other Industrials	817 841	248	237	242	250	255	257	258	261	263	265	266	269	271	273	
(13) 37 37 Ation Equipment Meg	2,165 2,389	1,221	1,168	1,192	1,233	1,255	1,268	1,273	1,284	1,294	1,303	1,312	1,323	1,334	1,346	
(12) (13) 36 37 86 37 ELECTRICIAL COMPUTER EQUIPMENT, AND APPLIANCE TRANSPORT AND APPLIANCE TRANSPORT ELECTRONIC AND ATION PRODUCT COMPONENT EQUIPMENT MFG MFG MFG 11	930 886	269	257	262	271	276	279	280	283	285	287	289	291	294	296	
COMPUTER AND ELECTRONIC PRODUCT MFG	00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
(11) 35 MACHINERY MFG	2,023 2,103	707	676	690	713	727	734	737	743	749	754	759	765	772	6/1	
(10) 34 34 FABRICATE D METAL PRODUCT MFG	2,336 2,416	857	819	836	865	881	068	893	901	3 08	914	921	928	936	944	
(9) 33 PRIMARY METAL MFG	1,176 1,299	874	835	853	882	898	907	911	918	926	932	939	946	954	963	
(8) 32 NON- METALLIC MENERAL PRODUCTS MFG	521 600	138	132	134	139	142	143	144	145	146	147	148	149	150	152	
(7) 30 PLASTICS PLASTICS PRODUCTS MFG	519 506	593	567	579	599	610	616	618	624	629	633	637	643	648	654	
(6) 28 28 CHEMICAL PRODUCT MFG	3,685 4,150	9,474	9,058	9,246	9,563	9,739	9,834	9,875	9,957	10,040	10,108	10,180	10,260	10,344	10,440	IROUGH (15)
(5) 29 PETROLEUM AND COAL PRODUCTS MFG	142 198	1,114	1,065	1,088	1,125	1,146	1,157	1,161	1,171	1,181	1,189	1,197	1,207	1,217	1,228	IS ITEMS (1) TH
(4) 27 27 PRINTING AND RELATED SUPPORT ACTIVITIES	1,019 882	275	263	268	278	283	285	287	289	291	293	295	298	800	303	F ALL PREVIOU
(3) 26 26 ALLED ALLED PRODUCT MFG	1,627 1,712	2,271	2,171	2,216	2,292	2,334	2,357	2,367	2,386	2,406	2,423	2,440	2,459	2,479	2,502	TO THE SUM O.
(2) 22, 23 APPAREL MFG	86 <mark>0</mark> 3	24	53	53 13	24	24	25	25	25	25	25	26	26	26	26	WIN IS EQUAL
(1) 311, 312 Food, Beverage AND MFG	1,109 1,518	2,121	2,028	2,070	2,141	2,181	2,202	2,211	2,230	2,248	2,263	2,280	2,297	2,316	2,338	I THE TOTAL INDUSTRIAL COLUMN IS EQUAL TO THE SUM OF ALL PREVIOUS ITEMS (1) THROUGH (1
YEAR	2012 2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	E TOTALINE
	ń. 4	ņ	'n	÷	•	-	м	m	4	ŝ	9	2	80	O N	9	H H

1 THE TOTAL INDUSTRIAL COLUMN IS EQUAL TO THE SUM OF ALL PREVIOUS ITEMS (1) THROUGH (15) NOTE: THESE FIGURES INCLUDE TRANSPORTATION AND INTERRUPTIBLE GAS ON A CALENDAR BASIS

DUKE ENERGY OHIO

r

-

FORM FG1-3: MONTHLY OHIO GAS SENDOUT (MMCF)

COMPANY: DUKE OHIO

AVERAGE BTU CONTENT: 1021.0

	YEAR O	YEAR 1	YEAR 2
JANUARY	10,325	10,331	10,368
FEBRUARY	8,672	9,078	9,130
MARCH	4,890	7,272	7,311
APRIL	3,470	3,212	3,255
MAY	1,641	1,573	1,607
JUNE	1,244	1,423	1,461
JULY	1,345	1,347	1,385
AUGUST	1,218	1,320	1,362
SEPTEMBER	1,382	1,382	1,423
OCTOBER	2,096	2,151	2,189
NOVEMBER	5,181	5,196	5,229
DECEMBER	9,051	9,098	9,129

DUKE ENERGY OHIO 4901-5-7-01 FORM FG1-4a RANGE OF DEMAND FORECASTS WEATHER BANDS FOR SENDOUT (MCF) SENDOUT

·...,

YEAR	MILD	BASE	HARSH
2014	76,700,317	80,823,551	84,961,728
2015	70,782,025	74,403,256	78,022,142
2016	68,018,238	71,667,071	75,278,924
2017	71,072,635	74,696,829	78,312,752
2018	71,721,436	75,344,587	78,961,553
2019	72,247,272	75,870,123	79,487,389
2020	72,923,415	76,556,436	80,184,100
2021	73,209,919	76,833,478	80,450,036
2022	73,465,114	77,090,204	80,705,231
2023	73,721,438	77,348,009	80,961,555
2024	74,269,676	77,906,876	81,530,361
2025	74,488,167	78,116,130	81,728,284
2026	74,868,626	78,497,241	82,108,743
2027	75,239,349	78,868,849	82,479,467

PEAK DAY DELIVERIES AND EXTREME WEATHER CASE (MCF)¹

	TOTAL	MEAN WEATHER	EXTREME WEATHER
YEAR	50%		
2017	640,227	640,227	756,956
2018	644,259	644,259	761,723
2019	645,573	645,573	763,277
2020	646,652	646,652	764,552
2021	647,271	647,271	765,285
2022	649,585	649,585	768,020
2023	651,809	651,809	770,650
2024	653,418	653,418	772,551
2025	653,374	653,374	772,500
2026	654,961	654,9 6 1	774,377
2027	656,552	656,552	776,257

¹The column headings give the probability of experiencing more severe weather conditions.

Page 3-37

DUKE ENERGY OHIO 4901:5-7-01 FORM FG1-4b: RANGE OF DEMAND FORECASTS ECONOMIC BANDS FOR INDUSTRIAL, SENDOUT, AND PEAK (MCF)

,

:

	PESSIMISTIC	BASE	OPTMISTIC
INDUSTRIAL			
2017	20,140,020	20,376,344	20,612,669
2018	20,514,698	20,751,022	20,987,347
2019	20,717,478	20,953,802	21,190,127
2020	20,803,724	21,040,049	21,276,373
2021	20,978,102	21,214,427	21,450,752
2022	21,156,032	21,392,357	21,628,682
2023	21,300,652	21,536,976	21,773,301
2024	21,454,100	21,690,425	21,926,750
2025	21,624,542	21,860,867	22,097,191
2026	21,804,550	22,040,875	22,277,199
2027	22,007,083	22,243,407	22,479,732
SENDOUT			
2017	73,785,056	74,696,829	75,608,602
2018	74,432,814	75,344,587	76,256,360
2019	74,958,350	75,870,123	76,781,896
2020	75,644,663	76,556,436	77,468,209
2021	75,921,706	76,833,478	77,745,251
2022	76,178,431	77,090,204	78,001,977
2023	76,436,236	77,348,009	78,259,782
2024	76,995,104	77,906,876	78,818,649
2025	77,204,357	78,116,130	79,027,903
2026	77,585,468	78,497,241	79,409,014
2027	77,957,076	78,868,849	79,780,622
PEAK			
2017	605,168	640,227	671,900
2018	609,086	644,259	676,042
2019	610,487	645,573	677,291
2020	611,679	646,652	678,276
2021	612,437	647,271	678,781
2022	614,801	649,585	681,062
2023	617,081	651,809	683,249
2024	618,604	653,418	684,935
2025	618,563	653,374	684,890
2026	620,066	654,961	686,553
2027	621,571	656,552	688,221

Page 3-38

1

Ê		TOTAL ²		(8)+(8)	347	292	373	340	287	332	968 968	397	397	397	398 208	309	6	§	6	ŧ
6)		UNACCOUNTED	FOR		•	•		,	•	•	•	•	•	•	•		•			•
(8)		TOTAL	SALES	(5)+(8)+(7)	•			,			,	•	,	•	•	,	ı	•		•
e	OTHER	SALES FOR	RESALE				•	•		•		•	•	•	ı	•	۱		,	
(9)	SALES FOR RESALE TO	MUNICPALS AND SMALL SALES FOR	NATURAL GAS CO.				•	,			1	•	·	•	•	·		·	•	
(2)	SALES TO	ULTIMATE	CUSTOMERS	(1)+(2)+(3)+(4)	•	,	,	ı	ı	•	•				,		,	ı	ı	•
(7	SALES TO	ELECTRIC .	UTLITES		,			,				•	,	,	ı	,	,			
(8)		INDUSTIRAL	SALES			,	,	,		,		ı	1		1	,	1		,	
(2)		RESIDENTIAL COMMERCIAL ¹	SALES				,	,	1	3		,	1				,		•	
(E)		RESIDENTIAL	SALES				,	,		,						•				,
			YEAR		2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027
			-		ዋ	4	Ŷ	Ņ	Ţ	0	-	2	ო	4	S	8	~	8	0	ę

Page 3-39

FORM FG1-5: HISTORIC PEAK AND FORECAST DESIGN DAY REQUIREMENTS UNITS: MMCF/ DAY COMPANY NAME: DUKE ENERGY OHIO

AVERAGE BTU CONTENT: 1076.2

NOTE

1 Includes Sales to Other Public Authorities, Interdepartmental Sales and Street Lighting.

2 Does not include gas supply obtained from unregulated suppliers through the FT and RFT services.

DUKE ENERGY OHIO 4901:5-7-03

	(8)				VOLUMES	TRANSPORTED	(4)+(7)	45,110	53,990	56,725	54 043	54,639	50, 115	50,822	51,278	51,604	51,906	52,117	52,240	52,501	52,686	52,943	53,216	
	e	TOTAL VOLUMES	TRANSPORTED	BY RESPONDENT	FOR OFF-SYSTEM	CUSTOMERS	(5)+(6)	•	•	•	•	•	•	•		•		•	•	•	•	•	•	
AVERAGE BTU CONTENT: 1076.2	(9)	Q.	TRANSPORTED	TRANSPORTED BY RESPONDENT	DFF-SYSTEM BY FOR OFF-SYSTEM FOR OFF-SYSTEM	CUSTOMERS		•	•	1	•	•	•	•		•	•	•	•				•	
AVERA	(2)	OHO	PRODUCED GAS	TRANSPORTED	DFF-SYSTEM BY	RESPONDENT		•	,	•	1	•	•	•	,	•	,	•	•		,	•	•	
	(4)	TOTAL VOLUMES	TRANSPORTED	BY RESPONDENT	FOR ON-SYSTEM	CUSTOMERS	(1)+(2)+(3)	45,110	53,990	56,725	54,043	54,639	50,115	50,822	51,278	51,604	51,906	52,117	52,240	52,501	52,686	52,943	53,216	
	(2)	OTHER VOLUMES	TRANSPORTED	BY RESPONDENT	FOR ON-SYSTEM	CUSTOMERS		45,110	53,990	56,725	54,043	54,639	50,115	50,822	51,278	51,604	51,908	52,117	52,240	52,501	52,686	52,943	53,216	
OHO	(Z)	OHIO PRODUCED GAS	TRANSPORTED FROM TRANSPORTED	OTHER COMPANY TO	RESPONDENT FOR ON-	SYSTEM CUSTOMERS		-	,	T	•			•	•	,		,		1		•	•	
COMPANY NAME: DUKE ENERGY OHK	(1) OHIO PRODUCED	RED		RESPONDENT FOR	ONSYSTEM	CUSTOMERS			1	•	•	•		•	•			•			ſ		•	
MPANY I			YEAR					5 2012	1 2013		2015	1 2016	2017	1 2018	2 2019	3 2020	2021	5 2022	8 2023	2024	8 2025	2028	2027	
5 <u>8</u>								ç.	1	Ŷ	17	7	_	,-			4		2	.~			¥	

FORM FG1-8: SUPPLY AND DISPOSITION OF SELF-HELP AND OTHER TRANSPORTED VOLUMES UNITS: MMCF/ DAY COMPANY NAME: DUKE ENERGY OHIO

-

DUKE ENERGY OHIO 4901:5-7-03

Page 3-40

4901: 5-7-04 GAS AND NATURAL GAS SUPPLY FORECASTS FOR GAS DISTRIBUTION COMPANIES SERVING MORE THAN FIFTEEN THOUSAND CUSTOMERS

(A) <u>General Guidelines</u>

No response required.

(B) Special Subject Areas

Duke Energy Ohio has historically purchased Ohio-produced gas if supply is reliable and the price is competitive. However, the Company's service territory is not conducive to natural gas formation. Most of Ohio's oil and gas wells are located in the northeast region of the state and in the Marcellus and Utica regions at the far eastern edge of the state. Duke Energy Ohio monitors the delivered price of Appalachian gas supplies (which includes Ohio-produced gas) and compares it to the price of delivered natural gas from other supply regions in the United States.

Duke Energy Ohio's contract to purchase recovered methane gas from the Rumpke Sanitary Landfill represents a source of Ohio gas. The Rumpke Sanitary Landfill is located in Colerain Township, Hamilton County, Ohio. The recovered methane is mixed with flowing natural gas in Duke Energy Ohio's distribution system and delivered to customers. As of September 1, 2009, the recovered methane gas is sold directly to a third party which then sells it to Duke Energy Ohio for distribution to its customers. The recovery of methane gas has several environmental benefits: it reduces methane gas emissions that escape from the landfill and enter the Earth's atmosphere; it reduces the danger of explosion to surrounding buildings; and it reduces odors from the landfill. Global warming is a concern of nations worldwide. Duke Energy Ohio's involvement in the Rumpke Landfill methane recovery project partially addresses two of the Company's

commitments: one, to the Department of Energy's <u>Climate Challenge</u> program; and two, to the Environmental Protection Agency's <u>Landfill Methane Outreach Program</u>.

(C) Gas and Natural Gas Supply Forecast Discussion

 Duke Energy Ohio's historical and projected supply of gas, by source, are shown in Section 4901:5-7-04 (1), on Form FG2-1, <u>Annual Gas Supply</u>.

Currently, the only long-term supply contracted by Duke Energy Ohio are for fixed and collared prices as part of the Company's hedging program. Duke Energy Ohio continues to rely on contracts for short-term, seasonal supply for the majority of the requirements to serve its firm sales customers. This strategy allows greater flexibility for changes in demand, while providing a portfolio of fixed and indexed prices. A small portion of winter supply is sometimes purchased on the daily spot market. Summer supply is purchased through firm seasonal contracts or monthly spot market purchases depending on market conditions during the preceding spring.

Duke Energy Ohio's supply contracts typically include provisions that allow for a variety of pricing structures (i.e. index, fixed price, price caps and collars). The strategy is to lower the risk of price volatility. The contracted firm supply may have a premium attached by the supplier for that service.

Duke Energy Ohio also owns a propane peak-shaving plant and has access to 64% of a plant owned by Duke Energy Kentucky. The two facilities yield a combined total of 135,940 per day in equivalent dekatherms for peak day usage.

(2) Historical and projected gas prices by supplier are shown in Section 4901:5 7-04 (G) (2), on Form FG2-2, <u>Gas Supply Prices</u>. Projected gas prices are based upon NYMEX futures prices, utilizing current rates on each pipeline. (3) Duke Energy Ohio does not own any storage facilities. Duke Energy Ohio subscribes to storage services on the Columbia Gas Transmission system, and the Texas Gas Transmission system.

(D) <u>Projected Sources of Gas</u>

(1) Form FG2-1, <u>Annual Gas Supply</u> in Section 4901:5-7-04 (G) (1), shows Duke Energy Ohio's historical and projected supply of gas by source. Projected supply is predominantly expected to come from "All other interstate supply", which represents amounts to be purchased through seasonal firm contracts. Current long term contracts are carried out through their date of termination. It is assumed that injections will equal withdrawals on an annual basis, so the net withdraws are projected to be zero. Duke Energy Ohio does not have company-owned gas. Duke Energy Ohio does not own, nor is it currently proposing to construct, any storage facilities, nor lease storage facilities outside of its gas service area at this time.

It is anticipated that the FERC and PUCO will continue to advocate open access, nondiscriminatory transportation on interstate pipelines, as evidenced in FERC Order #636, and on the local distribution companies' systems, as evidenced by PUCO Order #85-800. Correspondingly, Duke Energy Ohio is continuing the process of unbundling traditional utility services to small industrial, commercial and residential customers through its Firm Transportation (FT) and Residential Firm Transportation (RFT) services. Participating customers have the option under this program of directly securing gas supply from unregulated suppliers. Those volumes are transported on various interstate pipelines that serve Duke Energy Ohio. Once delivered at the utility's city gate, Duke Energy Ohio has the obligation to deliver, on a firm basis, such volumes to burner tip.

In response to Duke Energy Ohio's FT and RFT Programs, Duke Energy Ohio continuously reviews its gas procurement upstream pipeline contracts in order to minimize

contract commitment costs from pipelines and suppliers for capacity or supply that may be unused due to customers switching from sales service to transportation service on Duke Energy Ohio's system. As a result of Duke Energy Ohio's collaborative process with PUCO Staff, Ohio Consumers Counsel and FT/RFT Program suppliers in 2007, changes to the FRAS tariff allow for assignment of some of Duke Energy Ohio's upstream interstate pipeline capacity as participation in the FT and RFT programs grows.

(2) Duke Energy Ohio is proposing to construct those facilities identified in 4901:5-7-05(B)(2). In addition, Duke Energy Ohio is proposing to further improve its integrated system through the C314V Central Corridor Pipeline Extension Project. This project, which is a continuation of the C314 pipeline constructed in 2003, is integral to the Company's long-term plan to retire propane-air plants and balance system supply from north to south. To more readily achieve this second objective, Duke Energy Ohio originally intended to propose a 30-inch pipeline engineered to an operating pressure of 600 pounds per square inch gauge (PSIG). Through the process of meetings with elected representatives, community leaders, and members of the public, and through the review of over 2,900 comments, Duke Energy Ohio has determined that it will reduce the size and scope of the project to a pipeline that is consistent with the pipelines already in use in southwest Ohio and that have been operated safely by Duke Energy Ohio for decades. As a result of these reductions in the design specifications, Duke Energy Ohio anticipates achieving its long-term plan through a combination of the Project and other infrastructure modernization efforts implemented over many years to come.

	1/1/17	1/1/18	1/1/19
PIPELINE FT:			
TEXAS GAS	48,250	6,250	0
TENN/KO TRANS	23,788	23,926	23,926
COL GULF/KO TRANS	69,383	69,785	69,785
PANHANDLE/TEXAS EASTERN	0	0	0
TOTAL FT	141,421	99,961	93,711
PIPELINE STORAGE:			
COLUMBIA GAS FSS	216,514	216,514	216,514
TEXAS GAS NNS	25,000	25,000	0
TOTAL STORAGE	241,514	241,514	216,514
TOTAL UPSTREAM CAPACITY	382,935	341,475	310,225
	562,755	J41,47J	510,225
PROPANE	135,940	135,940	135,940
	,	,	,-
PEAKING/City Gate SERVICE	46,000		
TOTAL PEAK CAPACITY	564,875	477,415	446,165
	A1 A 3 A		
PEAK DAY DESIGN*	814,636	819,766	821,439

DUKE ENERGY OHIO CITY GATE PEAK DAY FIRM CAPACITY (DTH/D)

(*) - Includes peak day requirements for the RFT/FT customers.

SEASONAL STORAGE QUANTITIES

	1/1/14	1/1/15	1/1/16
COLUMBIA FSS	9,244,079	9,244,079	9,244,079
TEXAS GAS NNS	2,350,000	2,350,000	0

(E) Reliability of Gas Sources

- (1) Reliable gas sources are those gas suppliers with industry experience, and in which Duke Energy Ohio has confidence in the deliverability of contracted amounts of gas to Duke Energy Ohio on a peak day, seasonal and/or annual basis without interruption.
- (2) Duke Energy Ohio believes that to ensure a reliable supply of gas on peak days and on a seasonal/annual basis, it is necessary to diversify its "firm" gas purchases among proven gas suppliers with the capability to deliver gas into pipelines connected to, or located near, Duke Energy Ohio's gas service area. It is Duke Energy Ohio's policy to assure its firm customers, those with no alternate fuel capability, with the most reliable gas supplies. Utilizing storage capacity, firm interstate pipeline capacity, and proven gas suppliers currently provides the most reliable gas supplies. Duke Energy Ohio continues to monitor the reliability factor regarding its gas supply sources and to determine potential changes from state and federal orders and/or rules.
- (3) The reliability of Duke Energy Ohio's suppliers regarding peak day gas supply over the past five (5) years has been near 100%. During the winter of 2013-2014, the supplier providing peaking service delivered to Duke Energy Ohio's city gate failed to deliver the full contracted volume on 2 days. The cut volumes were relatively minor, with 8,315 dth cut on January 6, 2014 and 5,293 cut on January 7, 2014. Due to these cuts, the supplier waived the reservation fees for the entire winter, but continued to provide the peaking service. Duke Energy Ohio anticipates that the reliability of supply from its current suppliers will remain high over the forecast period, and will require the winning bidders for peaking service to provide documentation that they have relevant firm transportation to Duke Energy Ohio's city gate.
- (F) Analysis of System Peak and Winter Season Planning
 - (1) Form FG2-3, Historical Peak and Forecast Design Day Supply, is shown in Section 4901:5-7-04 (G) (3). The design day peak level is based on the econometric model

described fully on pages 3-1 through 3-33. For the winter of 2016 - 2017, the design peak day was 814,636 dth (756,956 mcf x 1.0762, See page 3-37). The total peak winter season requirements are estimated based on the weather conditions from the winter of 1995 - 1996, the equations utilized to estimate typical load to calculate the Target Supply Quantity (TSQ) for FT/RFT pools, and the forecasted number of customers. For the winter of 2016 - 2017, this resulted in estimated firm seasonal load for an extremely cold winter of 49 million dth.

The calculated peak day and peak season requirements represent the total firm load, including the load that will be supplied by third parties in FT/RFT program. To determine the amount of capacity that Duke Energy Ohio needs to acquire, the peak day and peak season requirements are reduced by the estimated amount of supply that will be provided by third parties for the FT/RFT pools. The calculated capacity requirements are further adjusted based on the fact that Duke Energy Ohio releases capacity to third party suppliers to the FT/RFT program per the Full Requirements Aggregation Service (FRAS) tariff.

(G) <u>Supply Forecast Forms</u>

- (1) Gas Supplies, Form FG2-1; see page 4-8.
- (2) Gas Prices, Form FG2-2; see page 4-9.
- (3) Peak and Design Day Supply, Form FG2-3; see page 4-10.
- (4) Natural Gas Storage Facilities, Form FG2-4; see page 4-11.
- (5) Propane Facilities, Form FG2-5; see page 4-12.
- (6) Other Peaking Facilities, Form FG2-6; Duke Energy Ohio owns no peaking facilities other than those identified on Form FG2-5; page 4-13.

		ŝ	ଚ	~	~	~	~	6		~	2	~	~	6	_	~	~		0	~
(11)	TOTAL	SUPPLIES	(01) + (6)	1076.2	23,012	22,388	25,356	21,756	17,954	19,413	19,587	19,749	19,888	19,986	20.00	19,979	20,048	20,085	20,152	20,207
(01)	NET	WITHDRAWAL	FROM STORAGE		228	291	1,121	4	1,246	ing the second					第二分 アイドネア・ドラ					
(6)	TOTAL	REQUIREMENTS	(1) THRU (8)	1076.2	22,784	22,097	24,235	21,756	16,708	19,413	19,587	19,749	19,888	19,986	20,001	19,979	20,048	20,085	20,152	20,207
(8)		OTHER			1	1	1	ł	1	1	ł	ł	ł	1	1	ł	I	ł	I	l
ε		ŝ			1	I	I	1	I	I	I	I	1	I	ł	L	4	I	1	1
6)		SNG			1	I	ι	1	1	I	1	I	I	t	1	I	ł	I	1	I
(2)		PROPANE SNG LNG OTHER		1347.7	4	44	236	80	156	91	81	81	81	81	81	81	81	81	81	81
(†)	OHO	PRODUCTION		977.6	1,238	1,324	1,344	1,424	1,467	1,359	1,359	1,359	1,359	680		•	ı	·		1
(8)	ALL OTHER	INTERSTATE	SUPPLY	1078.2	17,190	18,378	17,582	14,048	12,337	16,606	16,790	17,974	18,448	19,225	19,920	19,898 ~	19,967	20,004	20,071	20,126
(2)	SPOT MKT	INTERSTATE	SUPPLY		•	•	1,006	1,937	I	B	I	ı	F	,	ł	ŀ	,	ı	1	١
(1)		Z	SUPPLY		4,352	2,351	4,087	4,267	2,748	1,357	1,357	335	•	,	1	,	,	ł	•	
		YEAR			2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027
				55	မှ	4	ကိ	Ŷ	7	0	-	2	ო	4	S	9	~	Ø	6	9

AVERAGE BTU CONTENT: 1076.2

FORM FG2-1: ANNUAL GAS SUPPLY UNITS: MMCF/YEAR COMPANY NAME: DUKE ENERGY OHIO

Page 4-8

NOTE

Column (3) - Represents contracted seasonal firm supply.

Column (10) - Includes net storage withdrawal volumes from Columbia Gas Transmission and Texas Gas NNS.

DUKE ENERGY OHIO, INC 4901: 5-7-04

(10)	TOTAL	SUPPLIES	(WACOG)	1076.2	\$3.45	\$3.86	\$4.75	\$3.12	\$2.84	\$3.44	\$3.29	\$3.30	\$3.38	\$3.53	\$3.56	\$3.56	\$3.56	\$3.56	\$3.56	\$3.56	
(6)		WITHDRAWAL	FROM STORAGE		\$5.44	\$4.80	54.47	\$4.21	\$3.54	\$3.45	\$3.25	\$3.15	\$3.17	\$3.25	\$3.25	\$3.25	\$3.25	\$3.25	\$3.25	\$3.25	
(8)		SNG LNG OTHER			-	1	ı	I	1	I	I	I	t	ł	I	I	I	1	ı	I	
ê		2 Z			ł	ł	1	I	ł	ł	I	F	I	١	ł	1	1	I	I	ł	_
(9)		SNG			1	I	I	I	ł	1	I	1	I	1	1	1	I	I	I	I	
(5)		PROPANE		1347.7	\$6.87	\$6.97	\$14.11	\$11.74	\$10.69	\$12.92	\$12.92	\$12.92	\$12.92	\$12.92	\$12.92	\$12.92	\$12.92	\$12.92	\$12.92	\$12.92	
(4)	OHO	PRODUCTION		977.6	\$2.82	\$3.68	\$4.39	\$ 2.5 4	\$2.31	\$3.12	8 2.94	\$2.73	\$2.73	\$2.78	ı	I	t	ı	I	I	
(3)	ALL OTHER	INTERSTATE	SUPPLY	1078.2	\$2.93	\$3.73	2 8	\$2.78	\$2.47	\$3.39	\$3.28	\$3.30	\$3.39	\$3.52	\$3.52	\$3.52	\$3.52	\$3.52	\$3.52	\$3.52	
(Z)	SPOT MKT				1	I	\$7.28	\$3.47	I	I	I	ł	I	1	I	1	1	I	I	1	
(J)	LONG-TERM	INTERSTATE	SUPPLY				\$4.17								I	I	ł	I	ı	ł	
		YEAR			2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023					
		•		вти	Ŷ	4	ማ	Ņ	7	0	-	2	ო	4	ŝ	9	7	Ø	ð	5	

AVERAGE BTU CONTENT: 1076.2

FORM FG2-2: GAS SUPPLY PRICES UNITS: \$/MCF COMPANY NAME: DUKE ENERGY OHIO

NOTE:

Column (3) - Represents contracted seasonal firm supply.

Column (9) - Includes storage volumes from Columbia Gas Transmission and Texas Gas NNS. - Demand Charges associated with the storage and transport are included in the rate.

DUKE ENERGY OHIO, INC 4901: 5-7-04

Page 4-9

NO O	COMPANY N	COMPANY NAME: DUKE ENERGY O	VERGY OHIO		-	AVERAGE BTU CONTENT:	2 8	NTEN		1076.2		
		(1)	(2)	(8)	(4)	(2)	(9)	e	8	(6)	(10)	(11)
		LONG-TERM	SPOT MKT	ALL OTHER	QHO					TOTAL		TOTAL
	YEAR	INTERSTATE	INTERSTATE	INTERSTATE	PRODUCTION	PROPANE	SNG	DNG	LNG OTHER	REQUIREMENTS	WITHDRAWAL	SUPPLIES
		SUPPLY	SUPPLY	SUPPLY						(1) THRU (8)	FROM STORAGE	(9) + (10)
BTU				1078.2	977.6	1347.7				1076.2		1076.2
ማ		10		136	£	0	1	I	1	149	198	347
4	2013	80	ı	88	N	9	1	I	1	106	186	292
Ϋ́	2014	10	39	92	0	8	1	I	ı	224	149	373
Ņ	_	1	71	75	7	1	1	ı	1	170	170	340
7	2016		•	107	ಕ್	25	I	ı	ł	145	142	287
0	2017	4	•	<u>1</u> 06	4	40	1	1	ł	154	178	332
*-	2018	4	•	118	e	47	1	1	1	172	224	396
2	2019	4	•	119	ę	47	1	1	ı	173	224	397
ç	2020	•	•	126	0	47	1	1	ł	173	224	397
4	2021	•	1	126	0	47	I	1	ı	173	77	397
in N	2022	•	•	127	0	47	1	1	ı	174	224	388
9	_	4	ŧ	128	0	47	1	I	ı	175	224	399
7	2024	•	,	129	0	47	ł	1	ı	176	224	6 0
8		•	•	129	0	47	I	1	1	176	224	4 0
6	2026		ı	129	0	47	١	I	1	176	224	6 4
9		ı	•	130	0	47	I	I	ı	177	224	401
								_				

FORM FG2-3: HISTORICAL PEAK AND FORECASTED DESIGN PEAK DAY UNITS: MMCF COMPANY NAME: DUKE ENERGY OHIO

.

NOTE: Column (3) - Rapresents contracted seasonal firm supply.

Column (10) - Includes storage withdrawal volumes from Columbia Gas Transmission and Texas Gas NNS.

DUKE ENERGY OHIO, INC 4901: 5-7-04

Page 4-10

FORM FG2-4: EXISTING AND PROPOSED STORAGE FACILITIES (In MMCF)

COMPANY NAME: DUKE ENERGY OHIO

.

		Capa	acity		
Reservoir Name		Cushion	Working		Completion
(Percent Ownership)	Location	(Base) Gas	(Top) Gas	Total	Date

Note: Duke Energy Ohio neither owns, nor is currently proposing To construct any storage facilities.

.

FORM FG2-5: EXISTING AND PROPOSED PROPANE FACILITIES (In Gallons)

COMPANY NAME: DUKE ENERGY OHIO

Facility Name	Location	Capacity	Completion Date
Eastern Ave. Plant	2817 Eastern Ave. Cincinnati, OH	8,000,000 Gals.	Year: 1946-47 Addition: 1963-64
Erlanger Plant (1)	3000 Crescent Springs Rd. Erlanger, KY	7,000,000 Gals	Year: 1961

(1) Owned by Duke Energy Kentucky, a subsidiary company.

Note: Duke Energy Ohio is currently not proposing to construct additional propane facilities.

FORM FG2-6: OTHER PEAKING FACILITIES

.

COMPANY NAME: DUKE ENERGY OHIO

			<u> </u>
Facility Name	Location	Capacity	Completion Date

Note: Duke Energy Ohio neither owns, nor is currently proposing to construct, any peaking facilities other than those identified in Form FG2-4 and Form FG2-5 in this report.

۰.

4901: 5-7-05 RESOURCE FORECASTS AND SITE INVENTORIES OF TRANSMISSION FACILITIES FOR GAS DISTRIBUTION COMPANIES SERVING MORE THAN FIFTEEN THOUSAND CUSTOMERS

COMPANY: Duke Energy Ohio, Inc.

(A) <u>General Guidelines</u>

Duke Energy Ohio, Inc. (Duke Energy) has plans for additional gas transmission lines and replacement of sections of existing transmission lines. Pipelines reported on form FG3-1 includes the entire length of the pipeline where some segments along the pipeline operate below 20% SMYS. Data reported is as of 5/25/17.

(B) Specific Requirements

1) Existing Transmission System

- a) Duke Energy has fifteen (15) existing pipelines that qualify as gas transmission lines under the PUCO, Division of Forecasting and Siting definitions. The characteristics of these gas transmission pipelines are listed on Form FG3-1, Pages 5-2 and 5-3 of this report.
- b) (i) A detailed map showing Duke Energy's present gas transmission system is presented in Appendix I. All fifteen (15) existing pipelines are identified on this map. (ii) Duke Energy is participating in the PUCO joint mapping project and has met the requirement of providing a map to the PUCO.
- 2) Planned Transmission System

The specifications and identifying names and numbers of the proposed gas transmission pipelines are listed on Form FG3-2, Pages 5-4 through 5-15.

- a) A detailed map of the proposed and existing gas transmission system is presented in Appendix II.
- b) Duke Energy is participating in the PUCO joint mapping project and has met the requirement of providing a map to the PUCO.
- 3) Transmission Forecast Forms
 - a) Existing Transmission Lines, Form FG3-1; see pages 5-2 and 5-3
 - b) Planned Transmission Lines, Form FG3-2; see page 5-4 through 5-15

ODOE FORM FG3-1: CHARACTERISTICS OF EXISTING GAS TRANSMISSION LINES

COMPANY: <u>Duke Energy Ohio, Inc.</u>

.

.

٢

Name & <u>Number</u>	Point of Origin <u>& Terminus</u>	Size & <u>Capacity</u>	Line <u>Length</u>	Associated Facilities	<u>Year</u>
"A"	Centerville Sta. to Norwood Sta.	20" 225 PSI	112,872 feet	1. Centerville Sta. No. 9	1950-91
		150 PSI	88,236 feet	 Huntsville Sta. No. 22 Norwood Sta. No. 36 	1950-98
" D "	California Sta. to East Works Sta.	24" 200 PSI 388 PSI 175 PSI	23,766 feet	 California Sta. No. 7 Riverside Dr. Sta. No. 81 	1948-49
"V"	Line "D" to Norwood Sta.	20" 200 PSI 175 PSI	45,116 feet	4 Stations	1950-89
"AA"	Anderson Ferry Sta. to North Bend Rd. Sta.	20"-24" 175 PSI	86,588 feet	12 Stations	1956-94
"EE"	California Sta. to Line "V"	24" 200 PSI	25,481 f eet	1. California Sta. No. 7	1960-79
"CG07"	Butler Sta. to Dicks Creek Sta.	10" & 12", 16" 400 PSI 438 PSI 800 PSI	25,443 feet	 Butler Sta. No. 146 Dicks Creek Sta. No. 120 	1964-89
"LP2"	Dicks Creek Sta. to Line "A"	20" 225 PSI 438 PSI 800 PSI	1,524 Feet	None	1958
"LP5"	Dicks Creek Sta. to AK Steel Back-Up Station	8" & 12" 438 PSI	4,371 fæt	 Dicks Creek Sta. Lefferson Rd. Sta. No. 3 	1965-66
"C210"	Princeton Rd. to Woodsdale Plant	16" 670 PSI 24" 500 PSI 400 PSI	24,359 feet	 Liberty Sta. No. 512 Woodsdale Sta. No. 563 	1991
"CG04"	Line "AA" to Livingston Rd.	20" 175 PSI	20,754 feet	 Jessup Rd. Sta. No. 330 Blue Rock Rd. Sta. No. 216 	1965

ODOE FORM FG3-1: CHARACTERISTICS OF EXISTING GAS TRANSMISSION LINES

COMPANY: Duke Energy Ohio, Inc.

•

Name & <u>Number</u>	Point of Origin <u>& Terminus</u>	Size & <u>Capacity</u>	Line <u>Length</u>	Associated <u>Facilities</u>	<u>Year</u>
"C314"	Mason Rd. @ Texas Gas to F/L "WW" on Fields Ertel Rd.	24" 670 PSI	56,303 feet	1. Mason Rd. Sta. No. 726 2. Sta. No. 727 at F/L "WW"	2003
"C338"	Ohio River to Bethel Sta. #760	12" 535 PS I	86,967 feet	1. Sta. No. 760	2008
"C340"	Sta. #759 (Bracken Co., KY) to F/L "C338" on Ohio shore	12" 535 PSI	3,699 feet	l. Sta, No. 759 @ F/L "AM09"	2008
C251	STA 137 Minton Rd to Miami Western Dr.	8"360 PSI	38,387feet	1. Sta. No. 137	1991 - 93
"CG63"	LP02 TAP TO Sta 311 & 181	8 438 PSI	582 f eet	1. Sta, No. 311 2. Sta. No 181	1968

•

ODOE FORM FG3-2: SPECIFICATONS OF PLANNED GAS TRANSMISSION LINES

COMPANY: <u>Duke Energy Ohio, Inc.</u>

•

1. LINE NAME AND NUMBER:	T/L C314 Lebanon Connector
2. POINTS OF ORIGIN AND TERMINATION:	Existing Line "C314" to Lebanon gas pipeline Hub (Warren Co)
3. SIZE AND CAPACITY:	24-inch nominal diameter welded steel pipeline rated for MAOP of 720 psig
4. RIGHT-OF-WAY: ~	Length: Approx. 48,000 feet Width: Approx. 50 feet
5. ASSOCIATED FACILITIES:	None
6. CONSTRUCTION:	Proposed 2023
7. CAPITAL INVESTMENT:	Undetermined
8. APPLICATION TIMING:	Undetermined
9. PARTICIPATION WITH OTHE UTILITIES:	R None
10. PURPOSE OF THE PLANNEI LINE:	DGAS Loop current pipeline to increase capacity for system, load growth and provide greater operational alternatives
11. CONSEQUENCES OF CONST DEFERMENT:	TRUCTION Higher degree of customer curtailment and lack of future growth in the area
12. CLASS DESIGNATION:	Ш
13. MISCELLANEOUS:	None

ODOE FORM FG3-2: SPECIFICATONS OF PLANNED GAS TRANSMISSION LINES

COMPANY: <u>Duke Energy Ohio, Inc.</u>

ç

1.	LINE NAME AND NUMBER:	T/L C338 Part 2
2.	POINTS OF ORIGIN AND TERMINATION:	Existing Line "C338" at Bethel to Blanchester in Clermont County
3.	SIZE AND CAPACITY:	12-inch nominal diameter welded steel pipeline rated for MAOP of 650 psig
4.	RIGHT-OF-WAY:	Length: Approx. 132,000 feet Width: Approx. 50 feet
5.	ASSOCIATED FACILITIES:	Unknown
6.	CONSTRUCTION:	Proposed 2024
7.	CAPITAL INVESTMENT:	Undetermined
8.	APPLICATION TIMING:	Undetermined
9.1	PARTICIPATION WITH OTHER UTILITIES:	None
10.	PURPOSE OF THE PLANNED GAS LINE:	Loop current pipeline to increase capacity for system for future industrial growth
11.	CONSEQUENCES OF CONSTRUCTION DEFERMENT:	Higher degree of customer curtailment and Lack of future growth in the area
12.	CLASS DESIGNATION:	Ш
13.	MISCELLANEOUS:	None

ODOE FORM FG3-2:	SPECIFICATI TRANSMISSI	ONS OF PLANNED GAS ON LINES
COMPANY: Duke Energy (<u> Dhio, Inc.</u>	
1. LINE NAME AND NUME	BER:	D000b Replacement From 10-Year Plan WP #27b
2. POINTS OF ORIGIN AND TERMINATION:)	Start at our East Works Plant at the intersection of Riverside Drive and Corbin St. replacing east to just past Kellogg Ave and Stites Rd.
3. SIZE AND CAPACITY:		20-inch and 24-inch nominal diameter welded steel pipeline rated for MAOP of 500 psig
4. RIGHT-OF-WAY:		Length: Approx. 17,600 feet Width: Varies
5. ASSOCIATED FACILITIE	ES:	None
6. CONSTRUCTION:		2017
7. CAPITAL INVESTMENT	:	Approximate \$14M
8. APPLICATION TIMING:		Spring 2017
9. PARTICIPATION WITH C UTILITIES:	THER	None
10. PURPOSE OF THE PLAN LINE:	INED GAS	Replacing aging infrastructure with high pressure distribution main.
11. CONSEQUENCES OF CO DEFERMENT:	ONSTRUCTION	Higher O&M cost possible smaller replacements due to aging infrastructure.
12. CLASS DESIGNATION:		ш
13. MISCELLANEOUS:		None

ODOE FORM FG3-2: SPECIFICATIONS OF PLANNED GAS TRANSMISSION LINES

COMPANY: Duke Energy Ohio, Inc.

1.	LINE NAME AND NUMBER:	A000b Replacement From 10-Year Plan WP #48
2.	POINTS OF ORIGIN AND TERMINATION:	Replace approx. 2,000 lf from our Huntsville facility south.
3.	SIZE AND CAPACITY:	20-inch nominal diameter welded steel pipeline rated for MAOP of 500 psig
4.	RIGHT-OF-WAY:	Length: Approx. 2,000 feet Width: Approx. 50 feet
5.	ASSOCIATED FACILITIES:	None
6.	CONSTRUCTION:	Proposed 2018
7.	CAPITAL INVESTMENT:	Undetermined
8.	APPLICATION TIMING:	Undetermined
9.]	PARTICIPATION WITH OTHER UTILITIES:	None
10.	PURPOSE OF THE PLANNED GAS LINE:	Replacing aging infrastructure with high pressure distribution main.
11.	CONSEQUENCES OF CONSTRUCTION DEFERMENT:	Higher O&M cost possibly smaller replacements due to aging infrastructure.
12.	CLASS DESIGNATION:	ш
13.	MISCELLANEOUS:	None

•

ODOE FORM FG3-2:	SPECIFICATI TRANSMISSI	ONS OF PLANNED GAS ON LINES
COMPANY: Duke Energy O	<u>hio, Inc.</u>	
 LINE NAME AND NUMB POINTS OF ORIGIN AND TERMINATION: 		EE00 Replacement From 10-Year Plan WP #36 Replace approx. 3,000 lf from Renslar Ave. & Kellogg Ave north and approx 5,000 lf from Beechmont Ave & Wilmer going south east.
3. SIZE AND CAPACITY:		24-inch nominal diameter welded steel pipeline rated for MAOP of 500 psig
4. RIGHT-OF-WAY:		Length: Approx. 8,000 feet Width: Approx. 50 feet
5. ASSOCIATED FACILITIE	S:	None
6. CONSTRUCTION:		Proposed 2018
7. CAPITAL INVESTMENT:		Undetermined
8. APPLICATION TIMING:		Undetermined
9. PARTICIPATION WITH O UTILITIES:	THER	None
10. PURPOSE OF THE PLAN LINE:	NED GAS	Replacing aging infrastructure
11. CONSEQUENCES OF CO DEFERMENT:	NSTRUCTION	Higher O&M cost possibly smaller replacements due to aging infrastructure.
12. CLASS DESIGNATION:		ш
13. MISCELLANEOUS:		None

	SPECIFICATI FRANSMISSI	ONS OF PLANNED GAS ON LINES
COMPANY: <u>Duke Energy Ohi</u>	io, Inc.	
1. LINE NAME AND NUMBER	R:	CG07b Replacement and ILI Retrofits From 10-Year Plan WP #88
2. POINTS OF ORIGIN AND TERMINATION:		Replace approx. 6,000 lf in various sections in HCA areas and perform ILI retrofits.
3. SIZE AND CAPACITY:		16-inch nominal diameter welded steel pipeline rated for MAOP of 500 psig
4. RIGHT-OF-WAY:		Length: Approx. 6,000 feet Width: Approx. 50 feet
5. ASSOCIATED FACILITIES:	:	None
6. CONSTRUCTION:		Proposed 2019
7. CAPITAL INVESTMENT:		Undetermined
8. APPLICATION TIMING:		Undetermined
9. PARTICIPATION WITH OTH UTILITIES:	HER	None
10. PURPOSE OF THE PLANNI LINE:	ED GAS	Replacing aging infrastructure.
11. CONSEQUENCES OF CONS DEFERMENT:	STRUCTION	Higher O&M cost possibly smaller replacements due to aging infrastructure.
12. CLASS DESIGNATION:		Ш
13. MISCELLANEOUS:		None

ODOE FORM FG3-2:		ONS OF PLANNED GAS
	TRANSMISSI	ON LINES
COMPANY: <u>Duke Energy Ol</u>	<u>hio, Inc.</u>	/
1. LINE NAME AND NUMBE	ER:	EE00 Replacement and ILI Retrofits From 10-Year Plan WP #93
2. POINTS OF ORIGIN AND TERMINATION:		Replace approx. 17,000 lf in various sections in HCA areas and perform ILI retrofits.
3. SIZE AND CAPACITY:		24-inch nominal diameter welded steel pipeline rated for MAOP of 500 psig
4. RIGHT-OF-WAY:		Length: Approx. 17,000 feet Width: Approx. 50 feet
5. ASSOCIATED FACILITIES	S:	None
6. CONSTRUCTION:		Proposed 2021
7. CAPITAL INVESTMENT:		Undetermined
8. APPLICATION TIMING:		Undetermined
9. PARTICIPATION WITH OT UTILITIES:	THER	None
10. PURPOSE OF THE PLANN LINE:	NED GAS	Replacing aging infrastructure.
11. CONSEQUENCES OF CON DEFERMENT:	NSTRUCTION	Higher O&M cost possibly smaller replacements due to aging infrastructure.
12. CLASS DESIGNATION:		ш
13. MISCELLANEOUS:		None

ODOE FORM FG3-2:	SPECIFICATIONS OF PLANNED GAS
	TRANSMISSION LINES

COMPANY: <u>Duke Energy Ohio, Inc.</u>

1. LINE NAME AND NUMBER:	V000 Replacement and ILI Retrofits
2. POINTS OF ORIGIN AND TERMINATION:	From 10-Year Plan WP #103 Replace approx. 2,200 lf in various sections in HCA areas and perform ILI retrofits.
3. SIZE AND CAPACITY:	20-inch nominal diameter welded steel pipeline rated for MAOP of 500 psig
4. RIGHT-OF-WAY:	Length: Approx. 2,200 feet Width: Approx. 50 feet
5. ASSOCIATED FACILITIES:	None
6. CONSTRUCTION:	Proposed 2022
7. CAPITAL INVESTMENT:	Undetermined
8. APPLICATION TIMING:	Undetermined
9. PARTICIPATION WITH OTHER UTILITIES:	None
10. PURPOSE OF THE PLANNED GAS LINE:	Replacing aging infrastructure.
11. CONSEQUENCES OF CONSTRUCTION DEFERMENT:	Higher O&M cost possibly smaller replacements due to aging infrastructure.
12. CLASS DESIGNATION:	ш
13. MISCELLANEOUS:	None

		ONS OF PLANNED GAS
	TRANSMISSI	ON LINES
COMPANY: <u>Duke Energy Of</u>	<u>nio, Inc.</u>	
1. LINE NAME AND NUMBE	ER:	C251 ILI Retrofits From 10-Year Plan WP #105
2. POINTS OF ORIGIN AND TERMINATION:		Based on ILI study replace varies fittings to accommodate ILI.
3. SIZE AND CAPACITY:		8-inch nominal diameter welded steel pipeline rated for MAOP of 500 psig
4. RIGHT-OF-WAY:		Length: Varies Width: Varies
5. ASSOCIATED FACILITIES	S:	None
6. CONSTRUCTION:		Proposed 2023
7. CAPITAL INVESTMENT:		Undetermined
8. APPLICATION TIMING:		Undetermined
9. PARTICIPATION WITH OT UTILITIES:	THER	None
10. PURPOSE OF THE PLANN LINE:	NED GAS	Based on ILI study replace varies fittings to accommodate ILI.
11. CONSEQUENCES OF CON DEFERMENT:	NSTRUCTION	Unable to use ILI tool.
12. CLASS DESIGNATION:		Ш
13. MISCELLANEOUS:		None

ODOE FORM FG3-2:		ONS OF PLANNED GAS
	TRANSMISSI	ON LINES
COMPANY: <u>Duke Energy O</u>	<u>Dhio, Inc.</u>	
1. LINE NAME AND NUMB	ER:	CG04 ILI Retrofits From 10-Year Plan WP #86
2. POINTS OF ORIGIN AND TERMINATION:		Based on ILI study replace varies fittings to accommodate ILI.
3. SIZE AND CAPACITY:		20-inch nominal diameter welded steel pipeline rated for MAOP of 500 psig
4. RIGHT-OF-WAY:		Length: Varies Width: Varies
5. ASSOCIATED FACILITIE	S:	None
6. CONSTRUCTION:		Proposed 2023
7. CAPITAL INVESTMENT:		Undetermined
8. APPLICATION TIMING:		Undetermined
9. PARTICIPATION WITH O' UTILITIES:	THER	None
10. PURPOSE OF THE PLAN LINE:	NED GAS	Based on ILI study replace varies fittings to accommodate ILI.
11. CONSEQUENCES OF CO DEFERMENT:	NSTRUCTION	Unable to use ILI tool.
12. CLASS DESIGNATION:		Ш
13. MISCELLANEOUS:		None

,

ODOE FORM FG3-2: SPECIFICATI TRANSMISS	IONS OF PLANNED GAS ION LINES
COMPANY: Duke Energy Ohio, Inc.	
1. LINE NAME AND NUMBER:	A000a Replacement From 10-Year Plan WP #28
2. POINTS OF ORIGIN AND TERMINATION:	Replace approx. 18,500 If in various sections in HCA areas.
3. SIZE AND CAPACITY:	20-inch nominal diameter welded steel pipeline rated for MAOP of 500 psig
4. RIGHT-OF-WAY:	Length: Approx. 18,500 feet Width: Approx. 50 feet
5. ASSOCIATED FACILITIES:	None
6. CONSTRUCTION:	Proposed 2024
7. CAPITAL INVESTMENT:	Undetermined
8. APPLICATION TIMING:	Undetermined
9. PARTICIPATION WITH OTHER UTILITIES:	None
10. PURPOSE OF THE PLANNED GAS LINE:	Replacing aging infrastructure.
11. CONSEQUENCES OF CONSTRUCTION DEFERMENT:	Higher O&M cost possibly smaller replacements due to aging infrastructure.
12. CLASS DESIGNATION:	ш
13. MISCELLANEOUS:	None

ODOE FORM FG3-2:	SPECIFICATI TRANSMISSI	IONS OF PLANNED GAS ION LINES
COMPANY: <u>Duke Energy O</u>	<u>hio, Inc.</u>	
1. LINE NAME AND NUMB	ER:	AA00 ILI Retrofits From 10-Year Plan WP #53
2. POINTS OF ORIGIN AND TERMINATION:		Based on ILI study replace varies fittings to accommodate ILI.
3. SIZE AND CAPACITY:		20-inch and 24-inch nominal diameter welded steel pipeline rated for MAOP of 500 psig
4. RIGHT-OF-WAY:		Length: Varies Width: Varies
5. ASSOCIATED FACILITIE	S:	None
6. CONSTRUCTION:		Proposed 2025
7. CAPITAL INVESTMENT:		Undetermined
8. APPLICATION TIMING:		Undetermined
9. PARTICIPATION WITH O UTILITIES:	THER	None
10. PURPOSE OF THE PLAN LINE:	NED GAS	Based on ILI study replace varies fittings to accommodate ILI.
11. CONSEQUENCES OF CO DEFERMENT:	NSTRUCTION	Unable to use ILI tool.
12. CLASS DESIGNATION:		ш
13. MISCELLANEOUS:		None

.

This foregoing document was electronically filed with the Public Utilities

Commission of Ohio Docketing Information System on

6/1/2017 1:53:07 PM

in

Case No(s). 17-1317-GA-FOR

Summary: Report Duke Energy Ohio, Inc., Long-Term Forecast Report for Gas Demand, Gas Supply and Facility Projections electronically filed by Mrs. Adele M. Frisch on behalf of Duke Energy Ohio, Inc. and Spiller, Amy B and Watts, Elizabeth H

.

Duke Energy Ohio Case No. 16-253-GA-BTX CITY Second Set Interrogatories Date Received: June 5, 2017

CITY-INT-02-008

REQUEST:

Your response to STAFF-DR-12-001 states your expectation that the proposed 20-inch pipeline will reduce reliance on the Foster Station from 55 percent to 45 percent.

- a. Does this expectation assume the Preferred Route is used?
- b. What is the expectation with respect to the Alternate Route?

RESPONSE:

a. Yes

b. It is expected that use of the Alternate route would reduce reliance on Foster Station from 55 percent to approximately 50 percent.

PERSON RESPONSIBLE:

Vince Andres

Pipeline and Hazardous Materials Safety Administration 233 Peachtree Street Ste. 600 Atlanta, GA 30303

NOTICE OF PROBABLE VIOLATION PROPOSED CIVIL PENALTY and PROPOSED COMPLIANCE ORDER

CERTIFIED MAIL - RETURN RECEIPT REQUESTED

May 15, 2018

Ms. Lynn J. Good Chairman, President and Chief Executive Officer Duke Energy Kentucky, Inc. 139 East Fourth Street, Mail Drop EX403 Cincinnati, OH, 45202

CPF 2-2018-6002

RECEIVED-DOCKETING My

Dear Ms. Good:

Between July 31, 2017 and September 21, 2017, representatives of the Pipeline and Hazardous Materials Safety Administration (PHMSA), Office of Pipeline Safety (OPS), pursuant to Chapter 601 of 49 United States Code (U.S.C.) inspected Duke Energy Kentucky, Inc.'s (Duke Energy) records in its Cincinnati, Ohio and Erlanger, Kentucky offices, and inspected Duke Energy's facilities in Kenton County, Kentucky.

As a result of the inspection, it is alleged that Duke Energy committed probable violations of the Pipeline Safety Regulations, Title 49, Code of Federal Regulations (CFR). The items inspected and the probable violations are:

1. §195.1 Which pipelines are covered by this Part?

(a) Covered. Except for the pipelines listed in paragraph (b) of this Section, this Part applies to pipeline facilities and the transportation of hazardous liquids or carbon dioxide associated with those facilities in or affecting interstate or foreign commerce, including pipeline facilities on the Outer Continental Shelf (OCS). Covered pipelines include, but are not limited to:

(1) Any pipeline that transports a highly volatile liquid;

(2) Any pipeline segment that crosses a waterway currently used for commercial navigation;

(3) Except for a gathering line not covered by paragraph (a)(4) of this Section, any pipeline located in a rural or non-rural area of any diameter regardless of operating pressure;

(4) Any of the following onshore gathering lines used for transportation of petroleum:

(i) A pipeline located in a non-rural area;

(ii) A regulated rural gathering line as provided in §195.11; or

(iii) A pipeline located in an inlet of the Gulf of Mexico as provided in §195.413.

Duke Energy failed to comply with the regulation because it did not incorporate its Constance Cavern Liquid Propane Gas (LPG) Storage Facility (Constance Cavern) into all relevant portions of its pipeline safety program.

Section 195.2 defines *pipeline* or *pipeline system* as "all parts of a pipeline facility through which a hazardous liquid or carbon dioxide moves in transportation, including, but not limited to, line pipe, valves, and other appurtenances connected to line pipe, pumping units, fabricated assemblies associated with pumping units, metering and delivery stations and fabricated assemblies therein, and breakout tanks." Furthermore, § 195.2 defines *pipeline facility* as "new and existing pipe, rights-of-way and any equipment, facility, or building used in the transportation of hazardous liquids or carbon dioxide."

Duke Energy's Constance Cavern meets the above-referenced definition of "pipeline facility" because the submerged pumps and appurtenances within the cavern transfer LPG out of the storage cavern to the bi-directional pipeline for transport downstream (relative to the cavern) to the Erlanger plant. Furthermore, the cavern receives LPG from the same bi-directional pipeline via trucking injection at the Erlanger plant. Consequently, Constance Cavern is covered under § 195.1.

2. §195.49 Annual report.

Each operator must annually complete and submit DOT Form PHMSA F 7000-1.1 for each type of hazardous liquid pipeline facility operated at the end of the previous year. An operator must submit the annual report by June 15 each year, except that for the 2010 reporting year the report must be submitted by August 15, 2011. A separate report is required for crude oil, HVL (including anhydrous ammonia), petroleum products, carbon dioxide pipelines, and fuel grade ethanol pipelines. For each state a pipeline traverses, an operator must separately complete those sections on the form requiring information to be reported for each state.

Duke Energy failed to comply with the regulation because it did not complete its 2016 Annual Report as required by § 195.49.

Part F, Section 5 of the Annual Report requires operators to provide "Mileage Inspected and Actions Taken in Calendar Year Based on Other Inspection Techniques." Review of Duke Energy's integrity assessment plan indicated that, in Calendar Year 2016, Duke Energy conducted an integrity assessment on its Line LP03 using "Other Technology" (LP-ICDA). Duke Energy failed to include this data in Part F, Section 5 of its 2016 Annual Report. 3. §195.402 Procedural manual for operations, maintenance, and emergencies.
(a) General. Each operator shall prepare and follow for each pipeline system a manual of written procedures for conducting normal operations and maintenance activities and handling abnormal operations and emergencies. This manual shall be reviewed at intervals not exceeding 15 months, but at least once each calendar year, and appropriate changes made as necessary to insure that the manual is effective. This manual shall be prepared before initial operations of a pipeline system commence, and appropriate parts shall be kept at locations where operations and maintenance activities are conducted.

Duke Energy failed to comply with the regulation because it could not demonstrate that it reviewed its emergency plans and procedures at intervals not exceeding 15 months, but at least once each calendar year. Specifically, Duke Energy could not demonstrate that it had reviewed its *Plan for Emergencies and Natural Disasters* at intervals not exceeding 15 months, but at least once each calendar year.

Records provided to the PHMSA inspectors consisted of the first page of the 2014, 2015, and 2016 revisions of the *Plan for Emergency and Natural Disasters*. The pages referenced only the December revision (edition) dates of the prior year. While Duke Energy personnel provided plan approval records for the referenced years, these records did not indicate that the plans had been <u>reviewed</u> as required of the regulations.

Similarly, records documenting the required annual reviews of Duke Energy's Hazardous Liquid Operations Plan (HLOP) referenced review due dates for years 2014, 2015, and 2016, but did not provide the dates the reviews were completed.

4. §195.446 Control room management.

(a) General. This section applies to each operator of a pipeline facility with a controller working in a control room who monitors and controls all or part of a pipeline facility through a SCADA system. Each operator must have and follow written control room management procedures that implement the requirements of this section. The procedures required by this section must be integrated, as appropriate, with the operator's written procedures required by §195.402. An operator must develop the procedures no later than August 1, 2011, and must implement the procedures according to the following schedule. The procedures required by paragraphs (b), (c)(5), (d)(2) and (d)(3), (f) and (g) of this section must be implemented no later than October 1, 2011. The procedures required by paragraphs (c)(1) through (4), (d)(1), (d)(4), and (e) must be implemented no later than August 1, 2012. The training procedures required by paragraph (h) must be implemented no later than August 1, 2012, except that any training required by another paragraph.

Duke Energy failed to comply with the regulation because it did not have and follow written control room management (CRM) procedures that implement the requirements of § 195.446. Specifically, Duke Energy did not identify the Erlanger air-propane plant office (Erlanger office) as a control room, as defined in § 195.2

Control room is defined in § 195.2 as "an operations center staffed by personnel charged with the responsibility for remotely monitoring and controlling a pipeline facility." Furthermore, *controller* is defined in § 195.2 as "a qualified individual who remotely monitors and controls the safety-related operations of a pipeline facility via a SCADA system from a control room, and who has operational authority and accountability for the remote operational functions of the pipeline facility." During the inspection, PHMSA inspectors interviewed personnel at the Erlanger office regarding certain plant operators' roles in operating and controlling Duke Energy's Line LP03, as well as its Constance Cavern facility.

Based on the information and facts listed below, the Erlanger office is a Control Room and certain Erlanger plant operators are Controllers, per § 195.2.

- August 3, 2017 interview with the gas Control Manager (Cincinnati): Control Center calls the Erlanger air-propane plant (Erlanger Plant), located at the north end of Line LP03, and instructs Erlanger personnel when to operate the pipeline. (See below regarding Erlanger operation of the pipeline.) Cincinnati Gas Control monitors the LP03 line pressures, receives safety-related alarms, and has the ability to shut down the pumps at Constance Cavern.
- August 4, 2017 and September 21, 2017 interviews at Erlanger plant with the Systems Operations Manager and an Erlanger Plant Operator:
 - Erlanger could be called on to start and operate the LP03 line to supply its natural gas system during certain peak demand days during winter months.
 - Starting the pipeline on peak days to supply the propane-air plant: Erlanger operator(s) remotely start the submerged pump(s) and manipulate certain valves located at Constance Cavern (3.41 pipeline miles from Erlanger), via the use of Erlanger SCADA screen data and pump on/off and valve positioning commands. Erlanger operators monitor the pipeline operation and pressure on a 24/7 basis when the line is operating in withdrawal mode.
 - Refilling Constance Cavern: propane trucks typically pump the propane into the pipeline at Erlanger, and the product moves down the pipeline into the cavern via gravity flow. May take a month to refill the cavern, depending on storage volume and number of Mon-Fri 12-hour daytime (only) shifts when re-filling the cavern.
- November 10, 2017 email response conveys that Duke Energy considers Cincinnati Gas Control to be its only control room. Procedure GD50.1263-2, titled "Erlanger Gas Plant – Starting, Operating And Shutting Down Mixing System," also conveys pipeline start up and shutdown as part of the Erlanger plant operation.

As of PHMSA's inspection, Duke Energy did not consider the Erlanger office as a Control Room, and the referenced operators as Controllers, subject to the Control Room Management requirements of § 195.446. Furthermore, Duke Energy provided no records or related procedures, indicating it conducted any study referencing the *Control Room* and *Controller* definitions in § 195.2, to determine whether the Erlanger was a Control Room. The Erlanger office is located at the south end of the 3.41-mile long Line LP03, and

remotely controls the pipeline; therefore, it meets the definition of a Control Room, as defined in § 195.2. Because the Erlanger office is a Control Room, Duke Energy was required to have and follow written CRM procedures that implement the requirements of § 195.446.

5. §195.446 Control room management.

...(j) Compliance and deviations. An operator must maintain for review during inspection:

(1) Records that demonstrate compliance with the requirements of this section.

Duke Energy failed to comply with the regulation because it did not maintain records relating to alarm management as prescribed in §195.446(e)(3).

Section 195.446(e)(3) requires that "[e]ach operator using a SCADA system must have a written alarm management plan to provide for effective controller response to alarms. An operator's plan must include provisions to... [v]erify the correct safety-related alarm setpoint values and alarm descriptions when associated field instruments are calibrated or changed and at least once each calendar year, but at intervals not to exceed 15 months." Duke Energy's CRM records did not accurately describe a pressure deviation alarm for Line LP03 in its annual (not to exceed 15 months) safety-related alarm reviews, as required by § 195.446(e)(3). Duke Energy's 2014, 2015, and 2016 safety-related alarm review records describe the pressure deviation alarm as "RTU Calculation Based on Pressures." However, in its response to PHMSA's request to describe the programming/algorithm(s) in its Supervisory Control and Data Acquisition (SCADA) system that would trigger the leak detection alarm(s), Duke Energy described the alarm as "When comparison of Constance Cavern outlet pressure and Erlanger Gas Plant pressure deviates more than 5 psig for a period of more than 2 minutes."

6. §195.452 Pipeline integrity management in high consequence areas. ...(b) What program and practices must operators use to manage pipeline integrity? Each operator of a pipeline covered by this section must: ...(5) Implement and follow the program.

Duke Energy failed to comply with the regulation because it did not follow its Integrity Management (IM) program as follows:

A. Duke Energy performed an integrity assessment on its Line LP03 in 2016 using a Liquid Petroleum Internal Corrosion Direct Assessment (LP-ICDA) assessment method. At the time of the assessment, which was completed on July 1, 2016, Section 8 of Duke Energy's Hazardous Liquid Pipeline IMP, dated September 30, 2013, and Duke Energy Procedure GD70.06-006, titled "Assessment Methods Selection Process Flowchart," did not specify LP-ICDA as an approved integrity assessment method. Duke Energy drafted a LP-ICDA procedure in February of 2016, prior to the 2016 assessment, but the procedure was not finalized until April 6, 2017. Furthermore, as of PHMSA's 2017 inspection, Duke Energy had not incorporated the above-referenced LP-ICDA procedure into its IM program.

B. Item 4A of Duke Energy Procedure GD75.01-008, titled "Hazardous Liquid IMP Liquid Analysis," requires that "Within 150 days of completion of the Integrity Assessment for each pipeline, a review of the assessments results will be completed and the Information Analysis will be performed." Following a June 6, 2016, External Corrosion Direct Assessment (ECDA) of Line LP03, the required Information Analysis was submitted to Duke Energy on July 20, 2017, 259 days after the 150-day deadline required by the above-referenced procedure.

C. Section 3 of Duke Energy Procedure GD75.01-007 (Effective Date November 25, 2013), titled "Continuing Evaluation and Assessment," requires that Duke Energy perform formal evaluations of the integrity of its pipelines, including the development and documentation of a formal process for such evaluations. Furthermore, the same procedure requires that the evaluations "will consider the results of the baseline and subsequent assessments, the information analysis performed after each assessment, decisions regarding remediation and decisions regarding preventive and mitigative measures." Duke Energy conducted an ECDA assessment of its Line LP03 on June 6, 2016. At the time of PHMSA's inspection, Duke Energy personnel were unable to produce a record of the required formal evaluation. Duke Energy stated that its Continual Assessment Plan (CAP) complied with this requirement. However, the CAP does not provide the information required by the above-referenced procedure, such as the results of the assessment, the information analysis, decisions regarding remediation, and decisions regarding remediation analysis, decisions regarding remediation, and decisions regarding remediation analysis, decisions regarding remediation, and decisions regarding remediation.

D. Duke Energy failed to compile Integrity Management Program (IMP) performance measures for Calendar Years 2013, 2014, and 2015 on the *Performance Measures* spreadsheet, as required to be gathered annually by Duke Energy's Hazardous Liquid Pipeline IMP "Section 9 – Performance Plan, and Appendix B - Performance Measures."

7. §195.452 Pipeline integrity management in high consequence areas. ...(f) What are the elements of an integrity management program? An integrity management program begins with the initial framework. An operator must continually change the program to reflect operating experience, conclusions drawn from results of the integrity assessments, and other maintenance and surveillance data, and evaluation of consequences of a failure on the high consequence area. An operator must include, at minimum, each of the following elements in its written integrity management program...

Duke Energy failed to comply with the regulation because it did not change its IM program to reflect operating experience, conclusions drawn from results of the integrity assessments, and other maintenance and surveillance data. Specifically, Duke Energy did not include, nor reference in its IM program, the LP-ICDA procedures that were used to assess Line LP03 in 2015 after it determined that the line could not be assessed using in-line inspection (ILI) tools.

Duke Energy installed ILI tool launchers and receivers on its Line LP03 in preparation for an integrity assessment in 2015. When attempting to run the ILI tool(s) it was discovered that restrictions in the line prevented a successful tool run. As an alternative, a LP-ICDA assessment was conducted 2016 on Line LP03 in 2016, between Constance Cavern and the Erlanger air-propane plant. The 2016 LP-ICDA report conveys that the assessment was conducted according to Duke Energy Energy's LP-ICDA procedure, as well as guidance from NACE Standard Practice (SP) 0208-2008, titled "Internal Corrosion Direct Assessment Methodology for Liquid Petroleum Pipelines." However, such procedures were neither approved nor incorporated into Duke Energy's IMP.

8. §195.452 Pipeline integrity management in high consequence areas.

...(j) What is a continual process of evaluation and assessment to maintain a pipeline's integrity?—(1) General. After completing the baseline integrity assessment, an operator must continue to assess the line pipe at specified intervals and periodically evaluate the integrity of each pipeline segment that could affect a high consequence area.

...(5) Assessment methods. An operator must assess the integrity of the line pipe by any of the following methods. The methods an operator selects to assess low frequency electric resistance welded pipe or lap welded pipe susceptible to longitudinal seam failure must be capable of assessing seam integrity and of detecting corrosion and deformation anomalies.

(i) In-Line Inspection tool or tools capable of detecting corrosion and deformation anomalies, including dents, gouges, and grooves. For pipeline segments that are susceptible to cracks (pipe body and weld seams), an operator must use an in-line inspection tool or tools capable of detecting crack anomalies. When performing an assessment using an In-Line Inspection tool, an operator must comply with §195.591;
(ii) Pressure test conducted in accordance with subpart E of this part;
(iii)External corrosion direct assessment in accordance with §195.588; or
(iv) Other technology that the operator demonstrates can provide an equivalent understanding of the condition of the line pipe. An operator choosing this option must notify OPS 90 days before conducting the assessment, by sending a notice to the address or facsimile number specified in paragraph (m) of this section.

Duke Energy failed to comply with the regulation because it did not notify OPS 90 days before conducting an assessment using "other technology." Specifically, Duke Energy conducted a LP-ICDA on its Line LP03 in 2016 and did not notify OPS. LP-ICDA is considered "other technology" under § 195.452(j)(5).

Duke Energy assessed Line LP03 for the identified threat of internal corrosion in 2016. Duke Energy personnel conveyed to the PHMSA inspector that the LP-ICDA assessment served as a P&MM for continual monitoring of the internal corrosion threat. This explanation notwithstanding, Duke Energy's reassessment plan reviewed by PHMSA indicated the 2016 LP-ICDA assessment of Line LP03 was an integrity re-assessment.

§195.452 Pipeline integrity management in high consequence areas. ...(l) What records must an operator keep to demonstrate compliance? (1) An operator must maintain, for the useful life of the pipeline, records that demonstrate compliance with the requirements of this subpart. At a minimum, an operator must maintain the following records for review during an inspection:

...(ii) Documents to support the decisions and analyses, including any modifications, justifications, deviations and determinations made, variances, and actions taken, to implement and evaluate each element of the integrity management program listed in paragraph (f) of this section.

Duke Energy failed to comply with the regulation because it did not maintain records or documents to support its decisions and analyses, including any modifications, justifications, deviations and determinations made, variances, and actions taken, to implement and evaluate each element of the integrity management program listed in § 195.452(f).

Duke Energy could not produce records or documentation as to why the segments listed below were not assessed within Duke Energy's prescribed time period, contrary to the requirements of § 195.452(l)(1)(ii). Each segment was baseline-assessed by pressure test on October 20, 2005 and, per the procedure, each was required to be re-assessed by October 20, 2010. It is noted that the below-listed segments were components of pipelines that were still in service as of the dates of the PHMSA inspection.

- Segment in Casing 23: 400-foot Interstate I-71/75 crossing; pipe was not reassessed, and was replaced on November 15, 2011.
- Segment in Casing 55: Amsterdam Road; re-assessed on December 5, 2012.
- Segment in Casing 39: Crescent Springs Pike crossing; pipe was not re-assessed, and was abandoned in place on August 3, 2012.
- Segment in Casing 13221 I-275 crossing; pipe was not re-assessed, and was replaced on September 10, 2012.

10. §195.573 What must I do to monitor external corrosion control?
(a) Protected pipelines. You must do the following to determine whether cathodic protection required by this subpart complies with §195.571:

(1) Conduct tests on the protected pipeline at least once each calendar year, but with intervals not exceeding 15 months. However, if tests at those intervals are impractical for separately protected short sections of bare or ineffectively coated pipelines, testing may be done at least once every 3 calendar years, but with intervals not exceeding 39 months.

Duke Energy failed to comply with the regulation because it did not conduct tests on its protected pipeline at least once each calendar year, but with intervals not exceeding 15 months.

Per records documenting Duke Energy's 2014 annual cathodic protection (CP) survey, pipe-to-soil (p/s) potential readings were taken at three test stations in the vicinity of Duke Energy's Erlanger air-propane plant on February 9, 2014. Records documenting the 2015 annual CP survey indicate the subsequent p/s potential readings at the above-referenced test stations were taken on August 26, 2015, exceeding the 15-month interval by 109 days. Records indicate that, on March 31, 2015, the corrosion technician "couldn't get inside the Duke Energy station," leading to Duke Energy exceeding with 15-month interval.

11. §195.588 What standards apply to direct assessment?

...(b) The requirements for performing external corrosion direct assessment are as follows:

(1) General. You must follow the requirements of NACE SP0502 (incorporated by reference, see §195.3). Also, you must develop and implement a External Corrosion Direct Assessment (ECDA) plan that includes procedures addressing pre-assessment, indirect examination, direct examination, and post-assessment.

Duke Energy failed to comply with the regulation because it did not follow the requirements of NACE SP0502 (incorporated by reference, *see* §195.3). Specifically, Duke Energy did not follow the pre-assessment step in NACE SP0502 when conducting continual ECDA integrity assessments on its Line LP03 in 2012 and 2016, as follows.

A. Duke Energy combined segments of multiple pipelines into one ECDA Region. Duke Energy included the hazardous liquid 8-inch Line LP03 cased pipe segment (Casing #55) and predominantly 24-inch natural gas transmission pipeline cased segments into a single Region when conducting the 2012 Cased Pipe ECDA (CECDA) on Line LP03. NACE SP0502-2008 Sections 3.5.1.1.1 and 3.5.1.3 indicate that an ECDA region is, in part, a portion of a pipeline segment.

From NACE SP0502-2008^a (emphasis added):

3.5 Identification of ECDA Regions

3.5.1 The pipeline operator shall analyze the data collected in the Pre-assessment Step to identify ECDA regions.

3.5.1.1 The pipeline operator should define criteria for identifying ECDA regions. 3.5.1.1.1 An ECDA region is **a portion of a pipeline segment** that has similar physical characteristics, corrosion histories, expected future corrosion conditions, and that uses the same indirect inspection tools.

B. The 2016 Line LP03 ECDA Preassessment Step Data Element Sheet indicates the pipeline joint coating types as "Heat shrinks and hot wax with paper were applied at the joints." This description is incomplete because the original pipeline joint coating type was not included. 1961 engineering records indicate that 156 rolls of Royston "4-in. wide Hi-flo Quik-wrap" and 10 gallons of "Raybond A-36 primer" were specified for the initial construction project, indicating that a hand-applied tape wrap coating was applied at the girth weld joints during original construction.

Certain shrink sleeves and hand-applied tapes are known to be shielding coatings which, in the event of a disbondment or loss of adhesion, diverts or prevents the flow of cathodic protection current from its intended path. Table 1 of NACE SP0502-2010, titled "ECDA Data Elements," requires joint coating type to be determined during the Preassessment Step, and conveys that "ECDA may not be appropriate for coatings that cause shielding." The above-referenced records indicate that Duke Energy failed to meet the NACE SP0502-2010 requirement for joint coating type to be determined

^a The 2012 CECDA records indicate that NACE SP0502-2010 was used; regardless, at the time of the assessment the 2008 edition was the code-referenced edition. The 2010 edition became effective March 6, 2015.

during the Preassessment Step. Furthermore, Table 2 of NACE SP0502-2010, titled "*ECDA Tool Selection Matrix,*" conveys the following:

"Shielding by Disbonded Coating: None of these survey tools is capable of detecting coating conditions that exhibit no electrically continuous pathway to the soil."

12. 195.589 What corrosion control information do I have to maintain?

...(c) You must maintain a record of each analysis, check, demonstration, examination, inspection, investigation, review, survey, and test required by this subpart in sufficient detail to demonstrate the adequacy of corrosion control measures or that corrosion requiring control measures does not exist. You must retain these records for at least 5 years, except that records related to §§195.569, 195.573(a) and (b), and 195.579(b)(3) and (c) must be retained for as long as the pipeline remains in service.

Duke Energy failed to comply with the regulation because it did not maintain a record of each analysis, check, demonstration, examination, inspection, investigation, review, survey, and test required by this subpart in sufficient detail to demonstrate the adequacy of corrosion control measures or that corrosion requiring control measures does not exist.

During PHMSA's inspection, Duke Energy personnel were unable to produce records confirming inspection for evidence of internal corrosion when pipe was removed in 2014 to install an ILI tool launcher and receiver on Line LP03.

Proposed Civil Penalty

Under 49 U.S.C. § 60122 and 49 CFR § 190.223, you are subject to a civil penalty not to exceed \$209,002 per violation per day the violation persists, up to a maximum of \$2,090,022 for a related series of violations. For violations occurring prior to November 2, 2015, the maximum penalty may not exceed \$200,000 per violation per day, with a maximum penalty not to exceed \$2,000,000 for a related series of violations. The Compliance Officer has reviewed the circumstances and supporting documentation involved in the above probable violations and has recommended that you be preliminarily assessed a civil penalty of \$55,700 as follows:

Item number	<u>PENALTY</u>	
6	\$39,200	
9	\$16,500	

Warning Items

With respect to Items 2, 3, 5, 7, 8, 10, 11, and 12, we have reviewed the circumstances and supporting documents involved in this case and have decided not to conduct additional enforcement action or penalty assessment proceedings at this time. We advise you to promptly correct these items. Failure to do so may result in additional enforcement action.

Proposed Compliance Order

With respect to items 1 and 4, pursuant to 49 U.S.C. § 60118, the Pipeline and Hazardous Materials Safety Administration proposes to issue a Compliance Order to Duke Energy Kentucky, Inc. Please refer to the *Proposed Compliance Order*, which is enclosed and made a part of this Notice.

Response to this Notice

Enclosed as part of this Notice is a document entitled *Response Options for Pipeline Operators in Compliance Proceedings.* Please refer to this document and note the response options. All material you submit in response to this enforcement action may be made publicly available. If you believe that any portion of your responsive material qualifies for confidential treatment under 5 U.S.C. 552(b), along with the complete original document you must provide a second copy of the document with the portions you believe qualify for confidential treatment redacted and an explanation of why you believe the redacted information qualifies for confidential treatment under 5 U.S.C. 552(b).

Following the receipt of this Notice, you have 30 days to submit written comments, or request a hearing under 49 CFR § 190.211. If you do not respond within 30 days of receipt of this Notice, this constitutes a waiver of your right to contest the allegations in this Notice and authorizes the Associate Administrator for Pipeline Safety to find facts as alleged in this Notice without further notice to you and to issue a Final Order. If you are responding to this Notice, we propose that you submit your correspondence to my office within 30 days from receipt of this Notice. This period may be extended by written request for good cause.

In your correspondence on this matter, please refer to CPF 2-2018-6002 and, for each document you submit, please provide a copy in electronic format whenever possible.

Sincerely,

James A. Urisko Director, Office of Pipeline Safety PHMSA Southern Region

Enclosures: Proposed Compliance Order Response Options for Pipeline Operators in Compliance Proceedings

PROPOSED COMPLIANCE ORDER

Pursuant to 49 United States Code § 60118, the Pipeline and Hazardous Materials Safety Administration (PHMSA) proposes to issue to Duke Energy Kentucky, Inc. (Duke Energy) a Compliance Order incorporating the following remedial requirements to ensure the compliance of Duke Energy with the pipeline safety regulations:

- 1. In regard to Item 1 of the Notice pertaining to Duke Energy's failure to include its Constance Cavern facility in all relevant portions of its pipeline safety program,
 - a. Duke Energy must revise its written plans and procedures to incorporate the Constance Cavern Liquid Propane Gas (LPG) Storage Facility (Constance Cavern), to include all *pipeline facilities* as defined in 195.2 that are located at the plant site and on plant property, including plant property security fencing. The referenced revisions, as a minimum and as applicable to each facility, must be in accordance with Duke Energy's written plans and procedures it uses to administer its pipeline safety program including, but not limited to, those written plans and procedures required of Subparts F and G of Title 49, CFR Part 195 (Part 195).
 - b. Duke Energy must provide to PHMSA for approval a written list of activities, with a completion schedule, that are required to be performed in order for Constance Cavern to be in compliance with Duke Energy's revised written plans and procedures that are described in Item 1a. above.
 - c. Duke Energy must complete all activities described in Item 1b. above.
- In regard to Item 4 of the Notice pertaining to Duke Energy's failure to identify the Erlanger air-propane plant office (Erlanger office) as a control room, as defined in § 195.2,
 - a. Duke Energy must revise its written control room management (CRM) procedures to incorporate its Erlanger office as a *Control room*, and identify the individuals located at the Erlanger office who control Line LP03 as *Controllers*, all as defined in § 195.2.
 - b. Duke Energy must provide to PHMSA for approval a written list of activities, with a completion schedule, that are required to be performed in order for the Erlanger office and individuals. as referenced in item 1b. above, to be in compliance with Duke Energy's revised CRM procedures and § 195.2.
 - c. Duke Energy must complete all activities described in Item 2b. above.
- 3. Duke Energy must complete the above Items within the following time requirements.
 - a. Within 30 days of receipt of the Final Order Duke Energy must complete the requirements of Items 1a. and 1b. above.
 - b. Within 60 days of receipt of the Final Order Duke Energy must complete the requirements of Items 2a. and 2b. above.

c. Within 150 days of receipt of the Final Order Duke Energy must provide written documentation confirming the completion of Items 1 and 2 above to the Director, Office of Pipeline Safety, PHMSA Southern Region.

ŝ

4. It is requested (not mandated) that Duke Energy maintain documentation of the safety improvement costs associated with fulfilling this Compliance Order and submit the total to the Director, Office of Pipeline Safety, PHMSA Southern Region. It is requested that these costs be reported in two categories: 1) total cost associated with preparation/revision of plans, procedures, studies and analyses, and 2) total cost associated with replacements, additions and other changes to pipeline infrastructure.

U.S. Department of Transportation

Pipeline and Hazardous Materials Safety Administration 233 Peachtree Street Ste. 600 Atlanta, GA 30303

NOTICE OF PROBABLE VIOLATION PROPOSED CIVIL PENALTY and PROPOSED COMPLIANCE ORDER

<u>CERTIFIED MAIL - RETURN RECEIPT REQUESTED</u>

June 29, 2018

Ms. Lynn J. Good Chairman, President and Chief Executive Officer Duke Energy Kentucky, Inc. KO Transmission Company 139 East Fourth Street, Mail Drop EX403 Cincinnati, OH, 45202

DE A 3616 1664

RECEIVED-DOCKETING DIV

2019 APR 12 PH 2:

52

CPF 2-2018-1004

Dear Ms. Good:

Between July 31, 2017, and September 21, 2017, representatives of the Pipeline and Hazardous Materials Safety Administration (PHMSA), Office of Pipeline Safety (OPS), pursuant to Chapter 601 of 49 United States Code (U.S.C.) inspected KO Transmission Company (KO) records in its Cincinnati, Ohio and Erlanger, Kentucky offices, and inspected KO's facilities in Ohio and Kentucky. KO is a subsidiary of Duke Energy Kentucky, Inc.

As a result of the inspection, it is alleged that KO has committed probable violations of the Pipeline Safety Regulations, Title 49, Code of Federal Regulations (CFR). The items inspected and the probable violations are:

1. § 192.805 Qualification program.

Each operator shall have and follow a written qualification program. The program shall include provisions to:

(a) ...

(c) Allow individuals that are not qualified pursuant to this subpart to perform a covered task if directed and observed by an individual that is qualified;
(d) ...

	EXHIBIT	
tabbles	NOPE7	

(g) Identify those covered tasks and the intervals at which evaluation of the individual's qualifications is needed;

(h) After December 16, 2004, provide training, as appropriate, to ensure that individuals performing covered tasks have the necessary knowledge and skills to perform the tasks in a manner that ensures the safe operation of pipeline facilities; and

(i) After December 16, 2004, notify the Administrator or a state agency participating under 49 U.S.C. Chapter 601 if the operator significantly modifies the program after the administrator or state agency has verified that it complies with this section. Notifications to PHMSA may be submitted by electronic mail to *InformationResourcesManager@dot.gov*, or by mail to ATTN: Information Resources Manager DOT/PHMSA/OPS, East Building, 2nd Floor, E22-321, New Jersey Avenue SE., Washington, DC 20590.

KO failed to comply with the regulation because its written qualification program did not adequately include the provisions of §§ 192.805(c), 192.805(g), 192.805(h), and 192.805(i), as follows:

- § 192.805(c): KO's Operator Qualification (OQ) Plan, titled "Natural Gas Operator Qualification Plan," revision date February 11, 2016, copied the language of the regulation regarding allowance of non-qualified individuals to perform a covered task if directed and observed by an individual that is qualified. The plan, however, failed to provide details directly applying the regulation to its system. For example, KO's OQ Plan was silent on whether KO had developed a span of control ratio used to manage direct observation and supervision which would include provisions for verbal communications, for applicable covered tasks.
- § 192.805(g): KO's OQ Plan requires a 5 year covered task re-qualification cycle "on the majority of covered tasks," and lists criteria to be applied to each covered task to determine if a more frequent qualification interval is appropriate. KO personnel were unable to provide documentation showing how and if the criteria had been applied to establish the re-qualification intervals. It is noted that KO personnel conveyed that KO normally re-evaluates individuals on a 3 year interval.
- § 192.805(h): KO's OQ Plan did not address the requirement to, after December 16, 2004, provide training, as appropriate, to ensure that individuals performing covered tasks have the necessary knowledge and skills to perform the tasks in a manner that ensures the safe operation of pipeline facilities.
- § 192.805(i): KO's OQ Plan did not require KO to notify the Administrator or a state agency if KO significantly modifies the program after the Administrator or state agency has verified that the program complies with § 192.805.

- 2. § 192.809 General.
 - (a) ...

(d) After October 28, 2002, work performance history may not be used as a sole evaluation method.

(e) After December 16, 2004, observation of on-the-job performance may not be used as the sole method of evaluation.

KO failed to comply with the requirements of § 192.809 as follows:

- § 192.809(d): KO's written OQ Plan did not dis-allow the use, as sole evaluation methods, of work performance history reviews after October 28, 2002.
- § 192.809(e): KO's written OQ Plan did not dis-allow the use, as a sole evaluation method, of observation of on-the-job performance after December 16, 2004.
- 3. § 192.945 What methods must an operator use to measure program effectiveness? (a) General. An operator must include in its integrity management program methods to measure whether the program is effective in assessing and evaluating the integrity of each covered pipeline segment and in protecting the high consequence areas. These measures must include the four overall performance measures specified in ASME/ANSI B31.8S (incorporated by reference, see §192.7 of this part), section 9.4, and the specific measures for each identified threat specified in ASME/ANSI B31.8S, Appendix A. An operator must submit the four overall performance measures as part of the annual report required by §191.17 of this subchapter.

KO failed to comply with the regulation because its methods to measure whether the program is effective in assessing and evaluating the integrity of each covered pipeline segment and in protecting the high consequence areas (HCAs) were incorrect.

Potential threats that an operator must consider include, but are not limited to, the threats listed in ASME/ANSI B31.8S (incorporated by reference, see § 192.7), section 2, which are grouped under the following four categories:

(1) Time dependent threats such as internal corrosion, external corrosion, and stress corrosion cracking;

- (2) Static or resident threats, such as fabrication or construction defects;
- (3) Time independent threats such as third party damage and outside force damage; and

(4) Human error.

Specifically, KO failed to measure its program effectiveness in its integrity management (IM) program regarding manufacturing and construction defects as required by ASME B31.8S, section 2.2. KO's IM program incorrectly defines the method for evaluating manufacturing and construction defects. The KO report, titled "2015-2016 Performance Measures Report," lists the following question for Manufacturing Defects and for Construction defects:

"Has pressure exceeded MAOP for preceding 5 year pre-TIMP highest pressure."

Per § 192.917(e)(3), Manufacturing and Construction Defects, the correct reference would be whether the operating pressure on the covered segment had increased over the maximum operating pressure experienced during the five years preceding identification of the HCA.

§ 191.17 Transmission systems; gathering systems; liquefied natural gas facilities; and underground natural gas storage facilities: Annual report.
(a) Transmission or Gathering. Each operator of a transmission or a gathering pipeline system must submit an annual report for that system on DOT Form PHMSA 7100.2.1. This report must be submitted each year, not later than March 15, for the preceding calendar year, except that for the 2010 reporting year the report must be submitted by June 15, 2011.

KO failed to comply with the regulation because it did not submit the following data in its annual reports:

 KO did not report data related to the 0.425 miles of transmission line crossing the Ohio River (0.298 miles in Kentucky and 0.127 miles in Ohio). KO personnel conveyed that the KO considers the segment to be distribution, and not transmission, because the line operates at a hoop stress of less than 20-percent of the pipe's specified minimum yield strength (SMYS).

Section 192.3 defines a transmission line as:

Transmission line means a pipeline, other than a gathering line, that:

(1) Transports gas from a gathering line or storage facility to a distribution center, storage facility, or large volume customer that is not down-stream from a distribution center;

- (2) operates at a hoop stress of 20 percent or more of SMYS; or
- (3) transports gas within a storage field.

The segment meets the definition of a *transmission line* in § 192.3 because it is not a gathering line, and transports gas which ultimately comes from upstream gas gathering lines and/or storage field, to distribution center(s). Likewise, KO's FERC Gas Tariff and the tariff-referenced system map convey and illustrate that KO provides transportation services, via its Line AM04, to delivery point(s) in Ohio.

- KO did not report data related to 0.17 HCA miles (Kentucky side of the Ohio River) traversed by the segment of its Line AM-04 transmission line segment which operates under 20-percent SMYS, as required in Part B of PHMSA Form F7100.2-1, referenced in § 191.17.
- KO integrity assessed (via pressure-test) approximately 8.5 miles of its Line AM00A in 2016, but failed to report the mileage in Part F its 2016 Annual Report, submitted using PHMSA Form F7100.2-1, referenced in § 191.17.
- KO did not report the addition of approximately 8.5 miles of its Line AM00A as "Internal Inspection ABLE" pipe in Part R of submitted Annual Reports, submitted using PHMSA Form F7100.2-1, referenced in § 191.17.

5. § 191.29 National Pipeline Mapping System.

(a) Each operator of a gas transmission pipeline or liquefied natural gas facility must provide the following geospatial data to PHMSA for that pipeline or facility:
(1) Geospatial data, attributes, metadata and transmittal letter appropriate for use in the National Pipeline Mapping System. Acceptable formats and additional information are specified in the NPMS Operator Standards Manual available at www.npms.phmsa.dot.gov or by contacting the PHMSA Geographic Information Systems Manager at (202) 366-4595.

KO failed to comply with the regulation because it did not provide to PHMSA certain geospatial data required in § 191.29(a)(1). The segment of KO's Line AM-04B that crosses the Ohio River from Kentucky into Ohio was not included in mapping submitted to PHMSA's National Pipeline Mapping System (NPMS). KO personnel conveyed that, because the segment at under 20 percent of pipe SMYS, KO considers the segment to be distribution and is not required to be submitted to the NPMS. PHMSA has determined the segment to be transmission for the reasons stated in Item 4 above.

6. § 192.465 External corrosion control: Monitoring.

(a) Each pipeline that is under cathodic protection must be tested at least once each calendar year, but with intervals not exceeding 15 months, to determine whether the cathodic protection meets the requirements of §192.463. However, if tests at those intervals are impractical for separately protected short sections of mains or transmission lines, not in excess of 100 feet (30 meters), or separately protected service lines, these pipelines may be surveyed on a sampling basis. At least 10 percent of these protected structures, distributed over the entire system must be surveyed each calendar year, with a different 10 percent checked each subsequent year, so that the entire system is tested in each 10-year period.

KO failed to comply with the regulation because it did not test, at least once each calendar year, but with intervals not exceeding 15 months, to determine whether its cathodic protection (CP) meets the requirements of § 192.463 at several test stations.

The table below summarizes seven test stations where the CP surveys exceeded the abovereferenced required frequency. The exceedances ranged from 70 days to 120 days.

The explanation given by KO's corrosion technician for exceeding the frequency was that the test stations were "no locate" stations, meaning that the stations could not be located and as such, the time period (once each calendar year, but with intervals not exceeding 15 months) re-starts at the "no locate" date. Being unable to locate a test station does not excuse the operator from its obligation to comply with pipeline safety regulations. Likewise, KO personnel were not following KO's written procedures, which do not authorize this practice.

Line ID	Test Station ID	Date of Test Station Read	"On" Reading	"Off" Reading	Comments	Per Technician	Exceedance (days beyond 15-months)
AM09	36830	4/3/2015	-1.52	-1.32	FOUND AT LOCATION		
AM09	36830	4/12/2016		****		"no locate"	
<u>AM09</u>	36830	10/3/2016	-1.18	-1.08	FOUND AT LOCATION		92
AM00A	32408	4/27/2015	-1,38	-1.25	FOUND AT LOCATION		
AMOOA	32408	4/13/2016	***			"no locate"	
AM00A	32408	10/27/2016	-1.35	-1.21	FOUND AT LOCATION		92
AM04A	36858	4/8/2015	-1.14	-1.11	WATER GONE		
AM04A	36858	4/12/2016	·			"no locate"	
AM04A	36858	10/3/2016	-1.09	-0.92			87
AMOOA	32340	4/8/2015	-1.33	-1.14	FOUND AT LOCATION		
AM00A	32340	4/14/2016		***		"no locate"	
AM00A	32340	9/16/2016	-1.18	-0.99	FOUND AT LOCATION		70
AM04B	32322	4/3/2015	-1.54	-1.13	FOUND AT LOCATION		
AM04B	32322	4/7/2016	****			"no locate"	L
AM04B	32322	10/17/2016	-0.50		BEST READ		
AM04B	32322	10/27/2016	-1.15	-1.07	FOUND AT LOCATION		116
AM04B	32327	3/18/2015	-1.52	-1.08			
AM04B	32327	4/8/2016				"no locate"	
AM04B	32327	10/17/2016	-1.62	-1,43			121
AM09	31933	4/3/2015	-1.49	-1.31	FOUND AT LOCATION		
<u>AM09</u>	31933	4/12/2016	***	~~~		"no locate"	
AM09	31933	10/3/2016	-1.15	-1.09	FOUND AT LOCATION		92

- 7. § 192.605 Procedural manual for operations, maintenance, and emergencies.
 - (a) General. Each operator shall prepare and follow for each pipeline, a manual of written procedures for conducting operations and maintenance activities and for emergency response. For transmission lines, the manual must also include procedures for handling abnormal operations. This manual must be reviewed and updated by the operator at intervals not exceeding 15 months, but at least once each calendar year. This manual must be prepared before operations of a pipeline system commence. Appropriate parts of the manual must be kept at locations where operations and maintenance activities are conducted.

KO failed to comply with the requirements of § 192.605(a) as follows:

- KO did not provide evidence that it had conducted annual reviews in years 2014 and 2016, of its written operations and maintenance (O&M) procedures, included in its O&M manual, titled "Duke Energy Natural Gas Operations Plan." KO provided the inspectors with a print out from a program used to track annual review data called "Open Pages, however," this document lists due dates for the required reviews, not the actual review dates for years 2014 and 2016. Similarly, for reviews of the Plan for Emergencies and Natural Disasters, the "Open Pages" document, although listing review due dates, did not provide the actual review dates for years 2014, 2015, and 2016. KO only provided cover pages of the respective plans that indicate the year.
- KO did not adequately complete its Job Control Forms (JCF), as required by its O&M program. Specifics are as follows:
 - Line AM00A Line Segment Installation near Chapman Lane, August 22, 2016: the JCF was incomplete in that the description of the work performed, including results of the pipe inspections (exposed pipe, coating, etc.) was not recorded.
 - o Line AM09 Creek Crossing Replacement, October 27, 2016: KO personnel did not complete the "Reported By" section of two JCFs, both dated October 27, 2016, and thus did not identify on the form the person who inspected the existing pipe.

8. § 192.615 Emergency plans.

(a) ...

(b) Each operator shall:

(1) ...

(2) Train the appropriate operating personnel to assure that they are knowledgeable of the emergency procedures and verify that the training is effective.

KO failed to comply with the regulation because it did not provide documentation demonstrating that emergency response personnel are knowledgeable of the emergency procedures and that KO had verified its training effectiveness.

9. § 192.709 Transmission lines: Record keeping.

Each operator shall maintain the following records for transmission lines for the periods specified:

(a) ...

(c) A record of each patrol, survey, inspection, and test required by subparts L and M of this part must be retained for at least 5 years or until the next patrol, survey, inspection, or test is completed, whichever is longer.

KO failed to comply with § 192.709(c) as follows:

 KO personnel were unable to provide a record of the most recent inspection for evidence of atmospheric corrosion of above-ground facilities at KO's Alexandria station. PHMSA inspectors observed significant coating and paint failure at the facility.

- A segment of Line AM09 was replaced in 2016 at a creek crossing. KO personnel, however, were unable to provide records documenting the inspection of the internal surface of the replaced segment for evidence of corrosion in accordance with § 192.475(b).
- 10. § 192.907 What must an operator do to implement this subpart?
 (a) General. No later than December 17, 2004, an operator of a covered pipeline segment must develop and follow a written integrity management program that contains all the elements described in § 192.911 and that addresses the risks on each covered transmission pipeline segment. The initial integrity management program must consist, at a minimum, of a framework that describes the process for implementing each program element, how relevant decisions will be made and by whom, a time line for completing the work to implement the program element, and how information gained from experience will be continuously incorporated into the program. The framework will evolve into a more detailed and comprehensive program. An operator must make continual improvements to the program.

KO failed to comply with the regulation because it did not follow its written IM program as detailed below.

• KO's IM program requires that a Performance Measures Report be completed annually. The above-referenced report for Calendar Year (CY) 2016 did not accurately convey certain metric data, as indicated below.

	CY2018 Reported	CY2016 Correct
Pressure test miles assessed	0	8.5 (Line AM00A)
Increase in % of <u>piggable</u> pipe	0%	TBD based on corrected total miles
Increase in miles of piggable pipe	0	8.5 (Line AM00A)

Furthermore, as relates to manufacturing and construction defects, the abovereferenced form includes the following question:

"Has pressure exceeded MAOP for preceding 5 year pre-TIMP highest pressure"

For CYs 2015 and 2016, this question was unanswered.

 KO did not follow its Section 6 of Procedure GD70.06-32, titled "Determination of Stable Threats," because it did not perform the required annual review in CY 2016. Section 6 required annual reviews of pipeline segments in HCAs with stable Manufacturing/Construction threats for specified changes that would re-classify the threat as unstable. KO conveyed that the 2016 review was not done.

11. § 192.925 What are the requirements for using External Corrosion Direct Assessment (ECDA)?

(a) ...

(b) General requirements. An operator that uses direct assessment to assess the threat of external corrosion must follow the requirements in this section, in ASME/ANSI B31.8S (incorporated by reference, see § 192.7), section 6.4, and in NACE SP0502 (incorporated by reference, see § 192.7). An operator must develop

and implement a direct assessment plan that has procedures addressing preassessment, indirect inspection, direct examination, and post assessment. If the ECDA detects pipeline coating damage, the operator must also integrate the data from the ECDA with other information from the data integration (§ 192.917(b)) to evaluate the covered segment for the threat of third party damage and to address the threat as required by § 192.917(e)(1).

KO failed to comply with the regulation because it did not follow the requirements in in NACE SP0502 (incorporated by reference, see § 192.7), as required by § 192.925(b).

- KO records documenting a 2012 Casing External Corrosion Direct Assessment (ECDA) of casings on its Line AM00 indicate that "the casings are believed to be bare and not filled with a dielectric material." Furthermore, KO's form, titled "Cased Piping Data Element Sheet," indicated that all AM00 casings were bare. KO personnel were unable to provide documentation or validation of the casings' assumed "bare" status, nor were they able to confirm whether the casings were dielectrically filled. Table 1 of NACE SP0502 requires detailed information about casing materials and construction techniques to be determined during the Preassessment Step.
- KO records indicate that during the indirect examination phase of a 2016 ECDA of Line AM04A, KO switched from direct current voltage gradient (DCVG) to alternating current voltage shift (ACVG) in HCA Segment 10 because it was not achieving a sufficient pipe-to-soil (p/s) potential shift to use DCVG within that segment. Per Section 4.3.4.1 of NACE SP0502-2010, cathodic protection current demand is a factor to be used in establishing and validating ECDA regions. KO was unable to provide documentation of any consideration given the site-specific cathodic protection demand, and resulting p/s potentials. Furthermore, KO was unable to justify its decision to not reclassify this area as an additional region.

12. § 192.225 Welding procedures.

(a) Welding must be performed by a qualified welder or welding operator in accordance with welding procedures qualified under section 5, section 12, Appendix A or Appendix B of API Std 1104 (incorporated by reference, see § 192.7), or section IX of the ASME Boiler and Pressure Vessel Code (ASME BPVC) (incorporated by reference, see § 192.7) to produce welds meeting the requirements of this subpart. The quality of the test welds used to qualify welding procedures must be determined by destructive testing in accordance with the applicable welding standard(s).

KO failed to comply with the regulation because it did not ensure that welders were tested in accordance with KO's qualified welding procedures.

PHMSA's review of records documenting a 2016 pipe replacement project along KO's Line AM09, as well as a 2017 pipe replacement project along Line AM04A, revealed that welders were not tested in accordance with KO's governing procedures, as detailed below:

• Two welders performed welds on KO's 2016 Line AM09 replacement project, as well as the 2017 Line AM04a replacement project, located from Station 4+74 to Station 5+00. PHMSA's review of KO's documentation of the projects revealed that

both welders tested and qualified on Grade X-42 pipe, with 0.250-inch wall thickness. Paragraph 2, Section B1 of KO Procedure GD55-505-1 requires welders to be tested on Grade X-52 pipe, with a 0.188 wall thickness.

 A welder performing welds on KO's 2017 KO Line AM04A Bracken Station Line Take-off Construction project. PHMSA's review of KO's documentation of the project revealed that the welder tested and qualified on Grade X-42 pipe, with 0.250-inch wall thickness. Paragraph 2, Section B1 of KO Procedure GD55-505-1 requires welders to be tested on Grade X-52 pipe, with a 0.188 wall thickness.

13. § 192.947 What records must an operator keep?

An operator must maintain, for the useful life of the pipeline, records that demonstrate compliance with the requirements of this subpart. At minimum, an operator must maintain the following records for review during an inspection. (a) ...

(d) Documents to support any decision, analysis and process developed and used to implement and evaluate each element of the baseline assessment plan and integrity management program. Documents include those developed and used in support of any identification, calculation, amendment, modification, justification, deviation and determination made, and any action taken to implement and evaluate any of the program elements;

KO failed to comply with the regulation because it did not maintain documents that adequately supported determinations or changes made, as detailed below.

- KO's list of HCA segments for its Line AM04 in 2011 and 2013 included HCA30, with a length of 851 feet and 855 feet, respectively. KO did not include HCA30 in its list of HCA segments for the referenced line in 2012. KO personnel were unable to provide any documentation or justification for why HCA30 was not listed in 2012.
- At the time of PHMSA's inspection, and per KO's cased pipe assessment schedule, dated September 15, 2017, the Grandview Road cased pipe segment, located in HCA Segment #20 on Line AM04B, had not been baseline-assessed. Records indicate that the pipe in HCA Segment #20 was installed in 1948, and was identified as an HCA in 2004. Duke did not have documentation explaining the reasons why the segment had not been base-line assessed.

14. § 192.921 How is the baseline assessment to be conducted?

(a) Assessment methods. An operator must assess the integrity of the line pipe in each covered segment by applying one or more of the following methods depending on the threats to which the covered segment is susceptible. An operator must select the method or methods best suited to address the threats identified to the covered segment (See §192.917).

KO failed to comply with the regulation because it did not conduct a baseline assessment or assess the integrity of the line pipe in each covered segment by applying one of more of the methods listed in § 192.921:

- KO's records indicate that line segment HCA30 segment, which was identified as an HCA, includes a cased road crossing that has never been the subject of an integrity assessment. KO personnel were unable to provide any documentation or justification for why this segment had not been baseline-assessed.
- KO records indicate that a segment of its Line AM04B was identified as being within an HCA in 2004. This HCA segment, identified as HCA20 in KO records, includes a cased road crossing at Grandview Road. PHMSA's review of KO's cased pipe assessment schedule, dated September 15, 2017, indicates the Grandview Road cased crossing had not yet been the subject of a base-line assessment. KO personnel were unable to provide any documentation or justification for why the cased pipe segment at Grandview Road had not been baseline-assessed.
- 15. § 192.917 How does an operator identify potential threats to pipeline integrity and use the threat identification in its integrity program?

(a) Threat identification. An operator must identify and evaluate all potential threats to each covered pipeline segment. Potential threats that an operator must consider include, but are not limited to, the threats listed in ASME/ANSI B31.8S (incorporated by reference, see § 192.7), section 2, which are grouped under the following four categories:

(1) Time dependent threats such as internal corrosion, external corrosion, and stress corrosion cracking;

(2) Static or resident threats, such as fabrication or construction defects;

(3) Time independent threats such as third party damage and outside force

damage; and

(4) Human error.

KO failed to comply with the regulation because it did not identify and evaluate all potential threats to each covered pipeline segment, as indicated below.

KO did not determine which KO segments were considered to have the unstable Manufacturing and Construction (M&C) threat until years 2015 and 2016.

KO issued its current procedure, titled "Determination of Stable Threats GD70.06-032," on October 1, 2015, which required determination of unstable M&C threats, including those presented by low frequency electric resistance welded (LFERW) pipe. KO IM procedures in place prior to October 1, 2015 did not require KO to integrity-assess low frequency electric resistance welded (LFERW) pipe (reference Sec 6.2.4 of KO's IM manual, titled "Natural Gas TIMP," revision date February 19, 2014).

16. § 192.709 Transmission lines: Record keeping.

Each operator shall maintain the following records for transmission lines for the periods specified:

(a) ...

(c) A record of each patrol, survey, inspection, and test required by subparts L and M of this part must be retained for at least 5 years or until the next patrol, survey, inspection, or test is completed, whichever is longer.

KO failed to comply with the regulation because it did not maintain adequate record of each pipeline right-of-way (ROW) patrol in CYs 2016 and 2017 as follows:

- KO records documenting ROW patrols for CYs 2016 and 2017 indicated 49.65 miles were patrolled, whereas 51.7 miles were reported by KO on annual reports for the same years;
- KO records documenting ROW patrols for CYs 2016 and 2017 did not indicate the method of patrol;
- KO records documenting ROW patrols for CYs 2016 and 2017 did not indicate or confirm that highway and railroad crossings were patrolled in accordance with § 192.705(b); and
- KO records documenting ROW patrols for CYs 2016 and 2017 did not adequately
 describe the area of patrol on the north end of Line AM04B (near the south side of
 the Ohio River) the ROW portion was identified only as "D." Consequently,
 PHMSA inspectors were unable to confirm that the entirety of Line AM04B had
 been patrolled, as required by § 192.705(a);

Proposed Civil Penalty

Under 49 U.S.C. § 60122 and 49 CFR § 190.223, you are subject to a civil penalty not to exceed \$209,002 per violation per day the violation persists, up to a maximum of \$2,090,022 for a related series of violations. For violations occurring prior to November 2, 2015, the maximum penalty may not exceed \$200,000 per violation per day, with a maximum penalty not to exceed \$2,000,000 for a related series of violations. The Compliance Officer has reviewed the circumstances and supporting documentation involved in the above probable violations and has recommended that you be preliminarily assessed a civil penalty of \$94,900 as follows:

Item number	<u>PENALTY</u>		
6	\$42,400		
14	\$52,500		

Warning Items

With respect to items 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 15 and 16, we have reviewed the circumstances and supporting documents involved in this case and have decided not to conduct additional enforcement action or penalty assessment proceedings at this time. We advise you to promptly correct these items. Failure to do so may result in additional enforcement action.

Proposed Compliance Order

With respect to Items 1 and 2, pursuant to 49 U.S.C. § 60118, the Pipeline and Hazardous Materials Safety Administration proposes to issue a Compliance Order to KO Transmission Company. Please refer to the *Proposed Compliance Order*, which is enclosed and made a part of this Notice.

Response to this Notice

Enclosed as part of this Notice is a document entitled Response Options for Pipeline Operators in Compliance Proceedings. Please refer to this document and note the response options. All material you submit in response to this enforcement action may be made publicly available. If you believe that any portion of your responsive material qualifies for confidential treatment under 5 U.S.C. 552(b), along with the complete original document you must provide a second copy of the document with the portions you believe qualify for confidential treatment redacted and an explanation of why you believe the redacted information qualifies for confidential treatment under 5 U.S.C. 552(b).

Following the receipt of this Notice, you have 30 days to submit written comments, or request a hearing under 49 CFR § 190.211. If you do not respond within 30 days of receipt of this Notice, this constitutes a waiver of your right to contest the allegations in this Notice and authorizes the Associate Administrator for Pipeline Safety to find facts as alleged in this Notice without further notice to you and to issue a Final Order. If you are responding to this Notice, we propose that you submit your correspondence to my office within 30 days from receipt of this Notice. This period may be extended by written request for good cause.

In your correspondence on this matter, please refer to CPF 2-2018-1004 and, for each document you submit, please provide a copy in electronic format whenever possible.

Sincerely,

James A. Urisko Director, Office of Pipeline Safety PHMSA Southern Region

Enclosures: Proposed Compliance Order **Response Options for Pipeline Operators in Compliance Proceedings**

PROPOSED COMPLIANCE ORDER

Pursuant to 49 United States Code § 60118, the Pipeline and Hazardous Materials Safety Administration (PHMSA) proposes to issue to KO Transmission Company (KO) a Compliance Order incorporating the following remedial requirements to ensure the compliance of KO with the pipeline safety regulations:

- 1. In regard to Item Number 1 of the Notice pertaining to KO's failure to include certain provisions required of Part 192 in its written qualification program, KO must revise its written operator qualification program (OQ program) as follows:
 - a) For each covered task that KO allows "not qualified" individuals to perform, develop a justifiable "span of control ratio" for the purpose of assuring that such individuals will be directed and observed by a qualified individual when performing the task;
 - b) For each covered task, determine an evaluation interval, based on a written justification, at which evaluation of individuals' qualifications are needed;
 - c) Develop and/or identify a written training program that meets the requirements of §192.805(h). Include, or make reference to, the training program in the written OQ program, and include cross references between each covered task and the applicable required training; and,
 - d) Include the notification requirement as specified in §192.805(i).
- 2. In regard to Item Number 2 of the Notice, KO must revise its written program to include the program restrictions specified in §192.809(d) and §192.809(e).
- 3. Within 60 days of receipt of the Final Order, KO must complete the requirements of Items 1 and 2 above, and provide written documentation confirming completion to the Director, Office of Pipeline Safety, PHMSA Southern Region.
- 4. It is requested (not mandated) that KO maintain documentation of the safety improvement costs associated with fulfilling this Compliance Order and submit the total to the Director, Office of Pipeline Safety, PHMSA Southern Region. It is requested that these costs be reported in two categories: 1) total cost associated with preparation/revision of plans, procedures, studies and analyses, and 2) total cost associated with replacements, additions and other changes to pipeline infrastructure.

Duke Energy Ohio Case No. 16-253-GA-BTX NOPE Second Set Interrogatories Date Received: July 18, 2017

NOPE-INT-02-003

REQUEST:

Would Duke Energy be able to retire the propane-air plants with the addition of a LNG peak shaving plant?

a. Please describe the reasons for your Answer to this Interrogatory, whether

it is in the affirmative or in the negative.

RESPONSE:

Yes, although an LNG peak-shaving plant would not address the other objectives of the pipeline project.

a. LNG would be a direct replacement for the propane peak-shaving facilities.

PERSON RESPONSIBLE: Chad Fritsch / David Emerick

RECEIVED-DOCKETING DIV 2019 APR 12 PM 2: 52

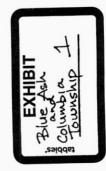
PUCO

OHIO FOR YOUR HOME FOR YOUR BUSINESS OUR COMPANY PARTNER WITH US

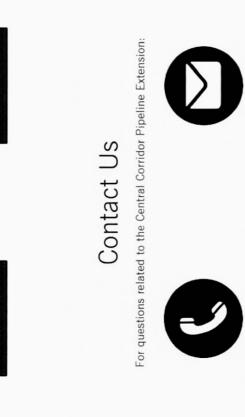
Natural Gas Projects

ENERGY.

\Lambda OUTAGES 🕻 CUSTOMER SERVICE 🔟 SIGN IN Q


MENU <

Central Corridor Gas Pipeline Extension Project



000d Natural Gas Pipeline Construction Project

RECEIVED-DOCKETING DIV 2019 APR 12 PM 2: 52

C FEEDBACK

CALL 513.287.2130>

MENU <

ו וח|ברו

Natural Gas Projects

ENERGY.

expand our system for current and future customers. This pipeline extension project will enhance gas supply reliability and flexibility across the system, This project is part of a larger project designed to improve, protect and replace and modernize aging infrastructure and enable Duke Energy to supply natural gas in southwest Ohio.

Letters of Support>

LEARN MORE

Proposed Route Map>

LEARN MORE

MENU <		Construction Schedule > This is an estimated schedule for the pipeline project.	LEARN MORE	
	Project Information	Construction Process > This pipeline will be completed in several phases of construction.	LEARN MORE	¢.
Natural Gas Projects	Project In	Pipeline Video> Duke Energy is constantly looking to improve the safety and reliability of our natural gas pipelines.	LEARN MORE	
Nati		and rt> eted an upply		

C DUKE ENERGY.

Project Summary and Letters of Support>

In 2015, Duke Energy completed an extensive study of our gas supply system.

LEARN MORE

C FEEDBACK

n

ENERGY.

Natural Gas Projects

Frequently Asked Questions

BACKGROUND SAFETY ROUTE EASEMENTS CONSTRUCTION

How does safety factor into the materials used for the pipeline itself?

Because a portion of this route is in a densely populated area, the pipe will be designed to a class four location. This means the attributes of the pipe will be more stringent than in more rural areas. The grade of steel will be stronger, the wall thickness will increase, or a combination of both will be specified.

An epoxy coating will be applied to protect the pipe from corrosion. In addition, pipelines involved in horizontal directional bores will have an additional coating called POWERCRETE® to help protect against abrasions when pulling the pipe through the bore hole.

What features will help you make sure any problem is identified and addressed quickly?

Remote control shut-off valves will be installed to help isolate individual pipeline segments and to reconfigure the system to maintain its integrity. All pipeline segments will be located within 2.5 miles of a remote control shut-off valve. Our central gas control team monitors pressures 24/7 at various locations on the natural gas network to ensure the integrity of the natural gas system. This team of experts is trained annually to handle abnormal operating conditions that may arise.

What is a cathodic protection system?

A cathodic protection system is used to ensure the metal does not deteriorate from corrosion over time and to maintain the integrity of the pipe. Part of the cathodic protection system is the coating and the other is a process called cathodic protection, which mitigates the corrosive effects of the environment in which the pipeline exist. Anodes are placed at strategic locations on the pipe to provide cathodic protection which will mitigate the effects of corrosion.

The maximum allowable operating pressure (MAOP) is significantly less than the pipe's pressure capacity. What does this mean?

The proposed pipeline will have a normal operating pressure of approximately 400 psi and a maximum allowable operating pressure (MAOP) of 500 psi. Duke Energy is only pressuring the pipe to less than 20% of its designed and manufactured maximum capacity.

							C LEEDBACK
	I		I				
Natural Gas Projects	I've heard people mention a "danger area." What is that?	Duke Energy does not calculate a "danger area," as such. There is no governmental definition of this term. However, the Code of Federal Regulations does define a Potential Impact Radius (PIR) for the purpose of integrity management. The distance determined as the PIR is based on the pressure in the pipeline, the diameter of the pipeline, and a factor that addresses the type of gas being transported. The PIR for this pipeline is 326 feet on either side of the center of the pipeline.	If there are contractors working nearby, how will they know that there is an underground natural gas pipeline?	We will install yellow-capped gas markers along the route so that the pipeline path can be seen. Contractors are also required by law to call 811, "Call Before You Dig," to have underground utilities marked in advance.	Will the work area on my property be safe so my kids, pets or animals don't fall in trenches during work on the project?	The work area will be fenced off to ensure safety. If you notice the fencing has been tampered with, notify Duke Energy immediately.	Is there anything I can do as a home owner to protect my family from a pipeline accident?
ENERGY.							

ENERGY.

Natural Gas Projects

-

All gas within the Duke Energy system is odorized to help detect leaks. If you smell natural gas, which is often described as a rotten egg smell, there could be a gas leak. You should leave the area, go to a safe place, immediately call 911, and call us at 800.634.4300.

If you notice any land erosion along the right-of-way or excavation that does not appear to have an Ohio Utilities Protection Services (OUPS) indication of the line (the paint on the grass or pavement), call Duke Energy at 800.634.4300. We will respond with a crew at your home in a short period of time. Is Duke Energy planning to assist local first responders with training, equipment, resources, funding, etc. to be prepared to handle a failure in the pipeline?

Numerous pipelines already exist in southwest Ohio, for which the community emergency response organizations are prepared to respond. We attend the Hamilton County Fire Chiefs Association Meetings regularly. This topic has been addressed, and we will coordinate an effort with the fire chiefs to adequately engage the government officials and work with them on planning scenarios. Duke Energy also provides grant opportunities for fire departments.

Have you evaluated emergency access routes in the event of an incident and informed first responders and medical facilities of these routes?

At this point in the process, it is too early to advise local responders as the final route has not been selected.

MENU <

חכבוו זבוברובח

What measures are in place to learn from gas pipeline incidents like San Bruno so as not to repeat them?

Any incident or safety-related condition, as defined by the Pipeline and Hazardous Material Safety Administration (PHMSA), undergoes an extensive investigation to determine the root cause of the incident. Lessons learned are included in that investigation and Duke Energy works collaboratively with PHMSA and/or the Public Utilities Commission of Ohio to develop additional actions that we must take to prevent that type of incident from occurring again.

What studies have been or will be made to determine the corrosivity of the flow?

The gas purchased from interstate pipelines is monitored by gas analyzers at gate stations for H2S, 02, H2O, and CO2 (molecules that can contribute to corrosion) before entering our distribution system. If the analyzer readings exceed limits, alerts are received.

Duke Energy Ohio also completed an Internal Corrosion Direct Assessment (ICDA) Program in 2007 and 2014 on its system and found no evidence of internal corrosion.

How can you assure the public that the pipeline will maintain its integrity in the event of an earthquake?

The Transmission Integrity Management Program regulations require risk analysis. Duke Energy is expected to consider all information that can affect the likelihood and consequences of

pipeline failure, including weather-related and outside-force threats. Topography, soil conditions, and earthquake faults all are among the data to be integrated. Thus, if such external risk factors are significant, they must be considered.

How does Duke intend to balance the benefits of the pipeline vs. the known risks?

Strengthening its gas system by replacing and retiring aging infrastructure reduces risk and provides a dependable, flexible gas system for future generations in southwest Ohio. The two propane peaking plants are specific examples of aging infrastructure that need to be retired. On the coldest days of the year, these plants currently provide more than 10% of the system load on a peak day.

After the propane plants are retired, Duke Energy will not be able to supply gas to all of its customers on a peak day without this pipeline project. The pipeline will be designed, constructed, tested and monitored to reduce or eliminate known risks associated with the installation and operation of a natural gas pipeline.

Who regulates this pipeline?

Duke Energy is proposing to construct and operate this pipeline following industry best management practices and in full compliance with modern engineering safety and regulatory controls. The US Department of Transportation Pipeline and Hazardous Materials Safety Administration (PHMSA) has jurisdiction over pipeline safety. It has delegated the responsibility for supervising inspections in Ohio to the Public Utilities Commission of Ohio. Duke Energy, therefore, is subject to regulation at both the federal and state levels.

MENU <

החעב רוובוצא, ווובובוחוב, וז מעשברו וט וכצעומווטוו מו טטווו וווב ובעבומו מווט אמום ובעבום.

What regulations are in place?

PHMSA's current Transmission Integrity Management Program regulations, established in 2004, require operators to identify threats, rank risks and implement integrity management assessments to maintain structural integrity and safety of the transmission lines in High Consequence Areas (HCAs).

HCAs include areas such as residential neighborhoods, apartments, schools, hospitals, shopping centers, businesses, retirement communities, ballparks and parks. It is important to note that, even though only segments of the pipeline will be in identified HCAs, Duke Energy plans to construct the entire pipeline to adhere to the more stringent regulations of the pipelines in HCAs.

How will the pipeline be tested before going into service?

Prior to installation, the lead engineer will confirm that the pipeline is constructed in accordance with the design. During installation, 100 percent of every weld will be X-rayed to confirm the weld meets the specifications. All joints must achieve 100 percent pass rate.

Prior to lowering the pipe into the trench, all pipes, including the joints, are checked for coating holidays, or defects, using mechanical detection equipment called a jeep.

Once the pipeline construction is complete, strength testing the pipe proves the structural soundness of the installed pipe and the capability to safely operate at the designed pressures. The pipeline will be filled with water, and the test pressure will increase to 1.5 times the maximum allowable operating pressure, which must hold for 8 hours. After this process, the

C ENERGY

Natural Gas Projects

maximum allowable operating pressure, which must hold for 8 hours. After this process, the pipe is certified and dewatered. The air will be purged from the line and natural gas introduced into the facility ready to commence operations. What specific inspection methods will be used once the line is in service, and how often will these measures take place?

Once the pipe is commissioned, there are requirements mandated by the code of federal regulations that ensure the pipeline is maintained and operated safely. Annual Surveys: A leak survey is performed over the entire length of the line by patrolling over the top of the pipe with leak detection equipment, and a cathodic protection survey is performed and data is taken along the pipe to ensure the line is not corroding. The remotecontrol shut-off valves also are inspected annually to ensure the equipment is in the proper working condition.

Quarterly Inspection: A line patrol is performed four times every year, during which the representative will walk the route, observing soil conditions, the coloration of the surrounding vegetation, encroachment concerns, and whether markers are in place.

In-Line Inspection: A safety standard required by the code of federal regulations is to design and construct this type of pipe so it can accommodate in-line inspection tools. This in-line inspection equipment utilizes non-destructive techniques to detect, measure, and record irregularities in pipelines. This data is used to determine the condition of the pipeline and identify safety concerns. This is performed on a cycle not to exceed seven years. Construction and Project Planning: As required by law, Duke Energy Ohio also locates its facilities for excavations. An inspector will be dispatched to a transmission line excavation site to observe and ensure the integrity of the facility when a third party calls 811 for an

to observe and ensure the integrity of the facility when a third party calls 811 for an excavation. In addition, we will locate its facilities for planning projects. This aids in identification of facilities on plans to help reduce third-party damage.

Who will inspect the line?

Although Duke Energy is accountable for inspecting its pipelines, the Natural Gas Pipeline Safety division of the Public Utilities Commission of Ohio audits its inspections on a regular basis to ensure compliance with Ohio laws and federal laws governing safety.

Do all leaks in the pipeline have to be repaired?

Duke Energy follows regulations and industry best practices to identify and fix potential concerns before leaks occur. On the slight chance that a leak would be identified on this line, it would be repaired immediately. What violations has Duke incurred with PHMSA and Occupational Safety and Health Administration (OSHA) over the past 20 years? What have you done to make sure similar incidents don't happen in the future?

Duke Energy Ohio's Gas Operations Department has not incurred any OSHA or PHMSA violations over the past 20 years in the state of Ohio on high-pressure distribution or transmission pipelines.

Five PHMSA violations have occurred from 1996 to present in the state of Ohio on low-

MENU <

<u>بر</u>
0
шХ
天田
Z
ωш
G.

FIVE FITIMOM VIDIATION FLAVE OCCUTED TOTAL TOTAL TO PRESENT IN THE SLATE OF OTH OF TOWApressure distribution pipelines. Duke Energy has taken precautions by implementing new work methods and safety precautions to continuously improve the safety of our pipelines. 1998. A small pit hole in the 2-inch bare steel service allowed gas to migrate underground into the residence, resulting in an explosion.

How Duke Energy Changed: New software was implemented to alert our dispatch team when multiple odor calls occur within a certain distance and within a short time period. Additional crews are sent to the area to find the source of the odor and make the area safe if there is a leak on one of our pipelines.

We also implemented new work processes and 24/7 emergency response crews to enable a better response to odor notifications.

2000: A service riser failed causing an explosion

How Duke Energy Changed: We implemented additional service riser inspections to look for corrosion or other factors that could cause a riser to fail. We also initiated a service riser replacement program to improve the safety of certain service risers.

2006: A plumbing contractor auguring a sewer lateral struck a gas service, allowing gas migrate into the home, resulting in an explosion.

9

How Duke Energy Changed: A public education campaign was developed to increase awareness to check sewer laterals before auger activities to ensure that no gas line crosses that sewer lateral. Duke also initiated a sewer lateral camera program to identify similar sewer laterals and relocate any gas pipelines to remediate. We worked in conjunction with the Metropolitan Sewer

MENU <

rerocate any gas pripernies to rementate, we worked in conjunction with the inecurpointan pewer District of Greater Cincinnati and Middletown Sewer District to develop safer procedures relating to trenchless technology around sanitary and storm sewers. **2010:** An apartment property maintenance worker remodeled a vacant apartment and failed to properly remove a gas line in the laundry room. The open gas line was ignited when the new tenant used a cigarette lighter, which resulted in an explosion.

How Duke Energy Changed: We updated procedures to include a pressure test for all gas meters being turned on. 2016: An excavation contractor struck a buried gas service that had not been properly marked by a Duke Energy contractor, causing an ignition of gas and property damage.

How Duke Energy Changed: We reviewed the proper procedure with our local contractor, for situations when gas pipelines are unable to be traced and marked by electronic equipment. We established weekly and monthly meetings with the locating contractor to review their performance metrics, provided refreshed map training, stressed improved quality of their services and began conducting random checks of their work performance.

Announcements and Meetings

Announcements

Application amended with Ohio Public Siting Board on 4/13/18

MENU <

ENERGY.

Natural Gas Projects

Application amended with Ohio Public Siting Board on 4/13/18 Application filed with Ohio Power Siting Board on 9/13/16 Application amended with Ohio Power Siting Board on 1/20/17

Meetings

PSB Public Hearing: An additional public hearing will be held at 3:00 p.m. on Thursday, March 21, 2019, to allow statements from members of the affected public who are not parties to the case. (An initial public hearing was held in June 2017.) The public hearing will be held at the University of Cincinnati-Blue Ash:

University of Cincinnati-Blue Ash 9555 Plainfield Road Muntz Hall, Room 119 Blue Ash, OH 45236 OPSB Evidentiary Hearing: The evidentiary (adjudicatory) hearing will be held at 10:00 a.m. on Tuesday, April 9, 2019, to allow parties to the case to provide sworn testimony and cross-examine witnesses. This hearing will take place at the Public Utilities Commission of Ohio (PUCO) at:

PUCO Hearing Room 11-A 180 E. Broad Street Columbus, OH 43215

C ENERGY. Natural Gas Projects

וובטטעונסט

See links below

•

SHOW All

TITLE	TYPE	DATE
🖉 Central Corridor Pipeline Ext Fact Sheet	Fact Sheet	01/04/2019
Ohio Power Sitting Board schedules two hearings for Duke Energy Ohio's proposed Central Corridor Pipeline	News Releases	12/19/2018
$\overset{\mathbf{R}}{\rightarrow}$ Duke Energy Ohio asks the Ohio Power Siting Board to move forward with its consideration of the Central Corridor Pipeline application	News Releases	04/13/2018
🐣 Amendment of Application	Application	04/13/2018
🛧 Final Project Application	Application	03/30/2017

٩

SHOW MORE <

MENU <

MENU <

BUILDING A SMARTER ENERGY FUTURE *

@ Sign up for Email
0
ll.
٥
in

ł

Investors	Suppliers	High Water and Dam Safety	Employee Engagement	
Caraare	deeat Parmian	Natural Cas Safats	Farmer Anniatement Deserves	BUSINESS ENERGY
calcela	Asset Necovery	Natural Gas Salety	chergy Assistance Frograms	
News Center	Builders Developers and Contractors	Overhead Power Lines	Lakes	
Social Media	Property Managers	Electric Safety	Trees and Rights of Way	
Environment	Economic Development	Nuclear Safety	Alumni Network	
Sustainability	Real Estate Properties	Identifying Our Employees		
		Kids Safety	ENERGY EDUCATION	
		Workers and First Responders		
		Call Before You Dig		

SERVICES

CE

C Duke Energy Corporation. All Rights Reserved.

Privacy Spanish Terms of Use Accessibility Report Environmental Concern

CENTRAL CORRIDOR PIPELINE PROJECT

BUILDING A SMARTER ENERGY FUTURE.

Project Background

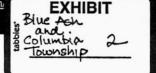
Duke Energy Ohio has proposed a new natural gas distribution pipeline to serve our southwest Ohio customers. The Central Corridor Pipeline is the next phase in our long-term plan to continue providing safe and reliable natural gas service today and for generations to come.

Southwest Ohio Needs the Central Corridor Pipeline

- Duke Energy Ohio has critical propane peaking facilities that help provide natural gas to our customers on the coldest days of the winter. These peaking plants must be retired. They were placed in service in 1964 and although we continue to responsibly maintain them, they reflect outdated technology. The facilities include cavern. located man-made 400-feet a underground, to store propane. There is no present-day repair for the cavern walls. If the integrity of the walls is compromised, we would immediately shut the plant down. A loss of the propane facilities on just one day during the winter season could be devastating because 30,000 homes and businesses could likely lose natural gas service. Restoration of service could safety be lengthy given mandatory requirements.
- The Central Corridor Pipeline will enable us to upgrade existing older pipelines without interrupting natural gas service to our customers. Some of our existing pipelines have been in service for over fifty years.
- ✓ Duke Energy needs the flexibility to bring natural gas into Hamilton County from a diverse supply of pipelines located north of our Ohio service territory. Due to the way our system is configured, we cannot bring additional supplies of natural gas from the south.

Safety is a Top Priority

Safety, security and environmental stewardship are core values at Duke Energy Ohio. We've listened to our customers' concerns and made significant changes in the design of the Central Corridor Pipeline and the way it will be installed and maintained. We will exceed federal regulations, including:


- higher grade of steel
- increased pipe wall thickness
- pipe installed deeper, minimum four feet of cover
- x-ray every weld to confirm specifications with a 100 percent pass rate
- decreased distance between remote control shut-off valves, allowing segments of the system to be isolated quicker
- sophisticated in-line inspection tools
- monitoring the pipeline 24/7, 365 days per year

Construction

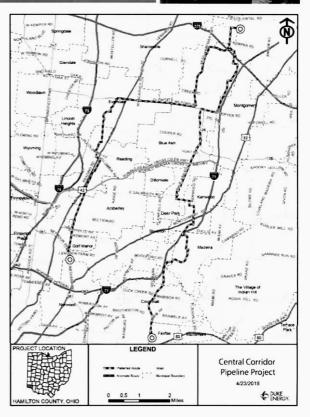
Duke Energy Ohio realizes that pipeline construction will be disruptive and challenging for customers, but we are committed to working with each and every neighborhood along the pipeline route to make the process as smooth as possible.

- Duke Energy Ohio officials will communicate individually with property owners to negotiate easements and discuss what to expect during construction and restoration.
- The company will work very hard to restore our neighborhoods to their pre-construction condition, within acceptable parameters.
- The pipeline will consist of a 20-inch diameter thick-walled steel pipe with an epoxy coating, with a typical operating pressure around 400 pounds per square inch.
- Once construction begins, the pipeline is targeted for completion in 14-16 months.
- Multiple sections of the route will be constructed simultaneously and work on individual properties should be completed in three to six weeks.
- We will work closely with local communities to ensure pedestrian and traffic safety during construction.

April 2019

CENTRAL CORRIDOR PIPELINE PROJECT

BUILDING A SMARTER ENERGY FUTURE.



Overview of Project Corridor

- Approximately 14 miles long, the Central Corridor Pipeline will be located in Hamilton County.
- Two proposed route corridors were carefully selected for consideration. The Eastern Route is shown on the map in orange and Western Route is shown on the map in green.
- The northern end of the pipeline will begin near the border of Hamilton, Butler and Warren counties, where it will connect with existing natural gas lines near Sycamore Township. On the southern end, it will terminate in either Norwood or Fairfax, where it will connect to Duke Energy Ohio pipelines at either Norwood Station or Red Bank Station.
- The Central Corridor Pipeline will be similar to the nearly 200 miles of high-pressure, largediameter pipelines Duke Energy safely operates in the region.
- Because of system pressures, this distribution pipeline can only supply natural gas to local customers.

Key Pipeline Benefits

- ✓ A Safer Natural Gas Delivery System. Outdated natural gas infrastructure will be retired and replaced with a modern pipeline constructed from stronger materials with state-of-the-art monitoring equipment and inspection technology.
- ✓ Increased Reliability of Natural Gas Service. The Central Corridor Pipeline will allow Duke Energy Ohio to continue to provide reliable service to southwest Ohio customers throughout the year.
- ✓ Economic Growth. Once the pipeline is completed, it is expected to provide an infusion of \$2 million in tax revenue for local communities and position the region for growth.

For more about the Central Corridor Natural Gas Pipeline project VISIT: <u>www.duke-energy.com/centralcorridor</u> CALL: 513.287.2130; or EMAIL: <u>CentCorridorPipeline@duke-energy.com</u>