41

I tried to add something to your website. However, I would appreciate you putting a restraining order on the Emerson Creek Wind Project also.

Without a good newspaper in the Bellevue area and four counties and each of their unique legal systems, I believe that the APEX Clean Energy group is trying to find one county that will agree with the pilot and force the rest of the wind turbines on all of the communities. I80 - 200 wind turbines in a ten-mile radius is difficult for the landscape. Also, the highest to second highest U.S. wind turbines in such a high populated area, and the size of the foundation footings to support each wind turbine will cause water flow issues in this highly un-stable geographic area.

I would like to understand the size of the footing and what State of Ohio engineers to communicate and sign off on the footings. I know that my mother's property has issue with water draining if rains too long or too much. Please compare the "Article POV Wind Tallest Structures" which I would on an internet and the topographic map in the "Bellevue Final Report Spring 2008" as issued by the ODNR - Division of Water. Similar areas being discussed.

Thank You. I will send pictures of my Mom's front and side yard from a heavy rain.

2019 FEB 22 PM 1:13



February 21, 2019

Ohio Power Siting Board 180 East Broad Street Columbus, OH 43215

Cc: Ron Brown, Trustee of Groton Township, Erie County Ohio

Dear Ohio Power Siting Board:

Subject: Against the Emerson Creek Wind, Seneca Wind & Republic Wind Projects

Last summer employees of APEX Clean Energy (APEX) approached my mother's house and requested that I sign a petition supporting the wind turbines. I honestly do not know if I signed or not. But based on the information over the last two months, we are respectively going on record that we are **AGAINST** the Emerson Creek Wind, Seneca Wind and Republic Wind projects.

We oppose the Emerson Wind Turbine project and all of the wind initiatives surrounding Bellevue for the following reasons:

- **Height/Width of Turbines:** Installing two hundred (200), 600+ or 500+ foot wind turbines that are the highest and second highest wind turbines in the U.S. within a 10-mile radius, which is more highly populated area of the U.S., is dangerous. From blade to blade, these turbines are wider than most homes in this area length wise. How many are really being installed in Groton Township and each of the neighboring communities? What are their exact placements?
- Limestone Bedrock: Beneath the city of Bellevue and the areas to the north and south of the city is a six-mile wide band of limestone bedrock due to ice glaciers. The bedrock around here is 20 feet deep, while the bedrock closer to central Ohio is 50 feet. In the Spring/Summer of 2008, the Bellevue area experienced ground level induced flooding. According to ODNR Division of Water, see the attached "Ground Water Induced Flooding in the Bellevue Ohio Area Spring and Summer 2008", "The presence of over 1000 sinkholes in the Thompson, York, Lyme and Groton Townships allowed surfaced water to flow directly into the ground water system." In conclusion, "Local government agencies should consider mandating no permanent structures within the areas that flooded and recommend no basements in structures located adjacent to these areas."

Has the Ohio Power Siting Board and APEX consulted with the ODNR – Division of Water and State of Ohio engineers to understand the impact on the topology when these massive footings are installed? How wide and deep will the footings be? What will the impact be to the limestone bedrock and the underlying aqua ducts? Is the State of Ohio prepared to face the law suits from flooded residents?

- Dynamite Blasting: The Hanson Aggregates Sandusky Quarry (Quarry) on Portland Road, Sandusky Ohio dynamites frequently. We live approximately 5.5 miles from the Quarry. There are fine crack lines in the basement as a result of these frequent blasting and you can feel the ground shaking at night. So how big and deep will the footings of these wind turbines be in order to support a 600 foot wind turbine from both wind and underground blasting?
- Decrease in House Values: The house values of Bellevue homes have declined in value
  or flat due to declining businesses in the area. Who really wants to live next to hundreds
  of wind turbines? Is each State's County Auditor ready to process the thousands of
  requests for lower house assessments from existing home holders? While others will just
  start selling at lower market value prices, which impacts local taxes either way.
- Terrorism Target: Over the last two years, the Emerson Wind Turbine area (south of
  the Sandusky and north of Bellevue) has installed the NEXUS pipeline and installed new
  electrical sub-stations connecting to the Fremont facility. Bellevue is a railroad hub.
  One of the proposed wind turbines sites was next to the NEXUS pipeline and the Ohio
  turnpike, thereby making this area a target for terrorism.
- Communication of the APEX Management Team. If the wind turbines are good for the community and the State of Ohio, why does Apex operate in a cloak of mystery? There has not been much communication between the APEX Team on where the turbines placement, impacted on each residential energy bill, the noise level, etc. for the nonfarmers. Shouldn't we have more open communication via paper? Shouldn't all four counties and their Trustees be presented at each meeting regardless of which county/township?

Bellevue and the surrounding communities have been hit hard in the last twenty-five years. Major employers have closed their doors in Bellevue and surrounding communities – The Bellevue Gazette (newspaper), General Electric, Armstrong Heating & Air Conditioning, Chrysler, Ford and General Motors. Bellevue's downtown area is close to being a ghost town. No issue for APEX to locate an office in the middle of the town.

Thank you Ohio Power Siting Board! You have successfully been able to turn this closely-knit community with its generations of families and turned them against each other. Neighbor against neighbor; family against family. You are putting a nail in this community's existence, while creating a small group of farmers growing wind turbines for money with no regard for the other residents.

I hope this Committee can please put this act on hold until everybody takes a look at the community impact.

#### Attachments:

- Ground Water Inducted Flooding in the Bellevue Ohio Spring and Summer 2008 (final report)
- The Advertiser-Tribune: Wind turbine misconceptions
- The Advertiser-Tribune: Points of View: Wind Turbines- among tallest structures in Ohio
- The Advertiser-Tribune: Wind power just doesn't add up

### The Advertiser-Tribune

**BREAKING NEWS** 

Winter weather advisory

## Wind turbine misconceptions

In a recent A-T article about wind turbines, Gary Baldosser was quoted at some length describing how turbines work to provide power.

Unfortunately, his description left some hefty misconceptions in the minds of readers who are unfamiliar with the subject.

When Baldosser states that wind turbines' "efficiency is that they are quickly able to go on and off line" and if we need extra power it is easy to "put more turbines online," it leaves the impression that wind turbines are turned on and off with a switch and that the wind is always there to use at a moment's notice. This is just not the case.

In real life, the variable wind only blows enough for the turbines to generate one third of the electricity they could if they ran full power all the time. And, as every reader knows, the wind blows when it wants to, not when you want it to. In real life, the turbines are seldom if ever "switched off" if they happen to be turning. The wind companies are loathe to do so because they do not want to lower their average output to even less than one third.

The intermittent output of turbines is one of their big downfalls. Some people like to say that it's not a problem because they are connected to the grid and some other generating source will fill in the gaps. Currently, the only reliable source of power that is always ready to ramp up at a moment's

notice is certain kinds of natural gas generators. In the end, they will generate the two-thirds of the electricity that the turbines were suppose to provide but can't because of variable winds. If you like the fracking that enables the supply of natural gas, then you will love having more turbines. And, because of the physics involved in using gas as a backup, the inefficiencies cause as much or more gas to be used in backing up wind turbines as would be used in more efficient full-time gas generators making all the electricity and not building any turbines in the first place. That is why wind turbines do not save on CO2 emissions. And remember, whenever you read that "wind energy is now the cheapest form of electricity" the cost of backing it up when the wind slows is not included in that price. Intermittent electricity has little value to you as the end user.

But what about batteries, you say? Baldosser's 55-gallon drums sound like batteries! Giant batteries that could soak up power when the wind blows and then disperse it when the wind slows would be wonderful. But the many stories we read about batteries for such purposes are talking about sometime in the future, if ever. While there are a few installed in California and Australia, they are only capable of storing a few seconds' or minutes' worth of power, and they do so at a very high cost. While there are many storage ideas being researched, there is nothing even close to being developed or deployed that can store the massive amount of electricity needed at an affordable price. Maybe someday, but certainly not anytime soon. If we were to ramp up current battery technology to the required scale, besides being extremely expensive, it would involve many environmental impacts and require moving mountains of earth on a scale even greater than mining coal to acquire the necessary natural elements like lithium, etc.

In the end, there is no perfect way to generate electricity without causing some issue. If we think CO2 is the immediate biggest problem, then we should be installing more nuclear plants, as they are the only thing that can generate massive amounts of stable electricity with no CO2. But then

people worry about the waste lasting thousands of years. If, as we see in the news, the world is going to end in 10-20 years if we don't stop emitting CO2, then which should be our top priority, the 10-year problem or the 1,000-year problem? It is too bad that we have to let politicians and politician-appointed state agencies sort this all out. Their focus will always be on doing whatever the current fad is to gain votes and collect money. Eventually, they will realize that large number of voters being forced to live near wind turbines will not be happy with their current politicians. At that point, the wind fad will be over, but we will be left to live among the huge flailing armed machines for decades into the future, while things like solar panels would have had very few effects on surrounding residents.

Some will make lots of money on wind power and they will be happy. They are the ones so busily promoting it now. Every fad in history was pushed to its maximum by those making money on it.

Jim Feasel,

Tiffin

### The Advertiser-Tribune

**BREAKING NEWS** 

Winter weather advisory

## Wind power just doesn't add up

There has been a lot of rhetoric coming out of Washington, D.C., and California lately about transforming our electrical power sources to 100-percent renewable energy. We also have heard local comments about replacing the output of Davis-Besse nuclear power plant with wind energy. Both comments are totally unrealistic.

Davis-Besse has a rated capacity of 894 megawatts. Per the Energy Services Group International, nuclear power is on average 91-percent efficient while natural gas is 50-percent, coal is 59-percent and wind power is 32-percent.

So how many wind turbines would it take to replace Davis-Besse's net capacity of 813MW? If we use General Electric 2.8-127 turbines, which is the turbine model that Seneca Wind plans to use, we would need 936 turbines. This is the equivalent of 4.4 times the number of turbines being proposed for the Republic Wind, Seneca Wind and Emerson Creek project combined! This number of turbines would spread over 600,000 acres, which is 1.7 times the size of Seneca County. Northwest Ohio would look like a turbine forest.

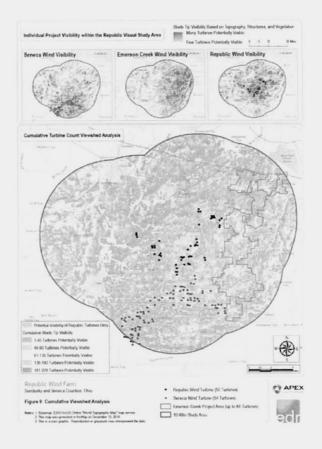
Furthermore, fossil-fuel power generators still would be needed as backup generators for when the wind doesn't blow or during peak demand periods. Consumers want the lights to come on when they flip the switch and, if we rely on 100-percent wind power, we won't have that guarantee.

Ohio is part of the PJM power grid that extends from New Jersey, Delaware, Pennsylvania, Maryland, Virginia, West Virginia, eastern Kentucky and the Chicago area. The power supplied to this grid at 6 a.m. Feb. 15 was 95,000 MW. Wind power contributed 6.6 percent of the power, while coal, gas and nuclear combined to produce 86,000 MW, which equals 90 percent of the total. It would take nearly 100,000 turbines to replace the power generated by fossil fuels on this specific day, but backup power still would be needed. How many turbines would be needed for the entire country?

Given the sheer lack of capacity of wind turbines and their inherent inefficiency, it isn't practical to consider them as a viable power source to displace nuclear,- gas- or coal-powered sources. So when you hear the rhetoric of green energy, renewable energy and converting to 100-percent renewables, remember that the physics and the math just don't add up.

At the end of the day, the discussion ends up being all about politics and money at the expense of the taxpayer and the rural residents who are forced to sacrifice their quality of life.

Greg Smith,


Bloomville

## The Advertiser-Tribune

**BREAKING NEWS** 

Winter weather advisory

# Points of view: Wind turbines among tallest structures in Ohio would be visible from most of county



IMAGES BY APEX ENERGY This map indicates how many turbines from the proposed Republic Wind, Seneca Wind and Emerson Creek projects would be visible from within 10 miles of wind farm sites.

Opinions vary widely on whether wind farms are a good fit for Seneca County.

No matter which side an individual chooses — or no side at all — if wind turbines are erected in the county, some would be 652 feet tall and others would be 500-plus feet tall, making the local wind turbines the tallest in Ohio and the second-tallest in the United States.

Two proposed wind farm projects are in the works in Seneca County — Seneca Wind Farm and Republic Wind Farm. Plans have changed for a third wind farm, Emerson Creek, which no longer plans turbines in Seneca County but is proposed for Huron and Erie counties along the eastern edge of Seneca.

If approved, the proposed projects would place wind turbines in the eastern part of the county designed to generate electricity using wind power. Each of them is in a different stage of requesting a certificate from the Ohio Power Siting Board that would allow construction to begin.

To put turbine height in perspective, consider these comparisons.

The well-known Perry's Victory and International Peace Memorial on Putin-Bay is 352 feet tall, a little more than height a turbine.

Davis Besse Nuclear Power Plant on Lake Erie is 493 feet tall.

The tallest building in Columbus is 624 feet tall.

Turbines would be 5.2 times taller than the Seneca County Justice Center and 3.6 times taller than the steeple at St. Joseph Church.

Turbines in Van Wert and the western part of Ohio are 400-some feet tall.

Because of the height of the turbines, the "viewshed" — or the area from which the turbines could be seen — would include most of the county and parts of other counties (see map).

The accompanying map from APEX has a color-coded legend that shows the numbers of turbines that would be seen from a 10-mile area around the wind farm sites.

One example of large numbers of turbines being see is at Sorrowful Mother Shrine, 4106 SR 269, Bellevue, where it's estimate people would be able to see turbines from both projects totaling more than 200, said Greg Smith, a Bloom Township resident and spokesman for Seneca Anti-Wind Union.

As another example, Smith said people in Bascom would be able to see between 136 and 180.

Numbers of turbines that may be seen depend on the flatness of the ground and objects that might limit visibility.

### Energy needs

Whether it's seen as positive or negative, the viewshed is one aspect that makes the wind farms a countywide issue.

Other countywide wind-related issues are economic development and financial considerations (discussed in an upcoming story).

And a third viewpoint is a positive one in which people envision turbines blades turning and adding electricity to the country's power grid.

No matter how individuals see them, the look of rural Seneca County would change, particularly on the eastern side.

From the wind company perspective, Natasha Montague, public engagement manager for Apex Clean Energy, said there are positives.

"Some people complain about the way turbines look, while others find them beautiful," she said. "Ultimately, both are subjective claims, but communities that host wind farms have experienced increases in tourism because of the renewable facilities."

She said there is a form of tourism based around looking at wind turbines, and some people travel to wind farms around the country to enjoy the view and take scenic pictures.

Dan Williamson, spokesperson for Seneca Wind, said wind farms represent change.

"Some people have said they do not like the look of the turbines," he said. "For some, the project represents change, which takes getting used to for any community. However, wind farms are a common sight in rural areas throughout the world and people live happily and healthily among them."

Seneca County Commissioner Holly Stacy said there's a need for diverse types of energy resources to be added to Ohio's portfolio.

"We all have one thing in common," she said. "We want that light switch to work when we turn it on and that outlet to work when we plug something in.

"We want to make sure you and I and future generations have that power," she said. "This is one way Ohio is addressing that."

Stacy said she looks at wind farms as Seneca County doing its part to meet that goal.

"There might be more than one reason (landowners) chose to sign lease agreements," she said.

One of the landowners and farmers with a lease is Gary Baldosser, who sees wind turbines as a need for producing electricity everyone needs.

"Nuclear plants are not receiving their operation license renewals," he said. "Davis Besse is closing down. Where is that deficit going to be made up?"

He said the entire country needs more power-generation options.

"Our society is more and more dependent on electricity," Baldosser said. "Where are we going to generate the power for that need? The need is greater is highly populated areas than it is in areas with low population density."

Baldosser said electricity can be moved only so far without losing efficiency.

"The further its moved, the more loss there is and the greater the cost," he said.

For example, he said running a 300-foot extension cord to the end of a driveway to plug in Christmas lights means the electricity at the end of that cord is less efficient that plugging directly into an outlet.

"You have a loss with moving that electricity 300 feet from the source to where you need it," he said.

On a larger scale, he said, that's how the nation's electric grid system works.

Baldosser said he uses an analogy to help understand the grid system. He said he gathered his information from electric companies as he researched the wind farm idea.

"We have 55-gallon drums of electricity sitting in various parts of the county that communities use to get their power from," he said.

In his example, if Chicago has a heat wave and everybody turns up their air conditioners, Toledo and Cleveland send some of their power to Chicago to make up the greater need.

In turn, Cleveland gets some power from New York so everybody continues to have a reliable supply of power.

However, the farther the electricity is moved, the less efficient it is.

Baldosser said that's where the wind turbines strength comes in. Electricity generated would go into the eastern grid and local power needs are drawn from that grid, "but we're not going to plug into the bottom of the grid."

While nuclear plants are either operating or not, Baldosser said wind turbines can be shut down and started much more easily.

"The operators can bring turbines online or take them offline," he said. "If we get to the point where they're not needed, the drums are full, they can be shut down for maintenance. Their efficiency is they are able to go quickly on and off line."

If Toledo has a heat wave and more power is needed, electricity from the turbines can help fill that need.

"If all of a sudden the demand is greater, it's harder to ramp up a coal or gas-fired plant than it is to put more turbines online," he said. "If the drum's running over, it's wasted. If it runs dry, somebody has a brown out."

Viewpoints

On the other hand, turbines would change the view.

"We're setting ourselves up to ruin our scenic landscapes in the county," Smith said. "Some people think they're sleek and cool. I, personally, don't see anything appealing about them at all."

Steve Shuff, an Eden Township resident, said the blades are "as long as a football field, or close to it."

Speaking as a private citizen and not as a common pleas court judge, Shuff said "the viewshed will be unbelievable all over our rural landscape. You're not going to see the rural landscape anymore unless you like to see 652-foot turbines."

He said he's working for the best interests of the county.

"It would be easier for me to not do anything," Shuff said. "But I think these will ruin the rural landscape of our county.

"I believe in the future of Seneca County and I believe this is one of the worst things that can happen to Seneca County," Shuff said. "Industrial wind turbines are not what we need in our county and I think in the long run they will be very detrimental to our county.

"My vested interest is not money," Shuff said. "I'm in this for my children and grandchildren. And for my neighbors. I don't want to sit on my patio and see wind turbines instead of God's beautiful earth."

County Commissioner Mike Kerschner said he's concerned about putting wind farms in an area where 56,000 people live.

"Nobody is against alternative energy, right," Kerschner said. "What it needs to be is in much less densely populated areas than Seneca County."

He said Seneca County is one of the most populated areas that has been proposed for wind farms.

Smith said Seneca Wind is proposing a wind farm of 56,000 acres, but have leases on only 25,000 acres.

"Those are islands within the 56,000 acres," he said. "The rest of the people are unwilling and unknowing and didn't sign leases."

Within that area, Smith said, several turbines in the Seneca Wind plans do not meet state-required setbacks of 1,330 feet from neighboring property

lines. He said a proposal would change the setback requirements so they would be measured from a house instead of from a property line, and SAWU is against the change.

Smith said Seneca Wind is requesting waivers from property owners who have not signed easements, offering \$500 a year to owners who allow turbines to be placed within the setback area.

Overall, several opponents were concerned there would be more wind projects in the future, while people in favor of wind projects look forward to their expansion and the economic benefits they bring with them.

(



ODNR—Division of Water James Raab, Bill Haiker, and Wayne Jones

and

ODNR—Division of Geological Survey Michael Angle, Rick Pavey, Mac Swinford, and Donovan Powers

**ODNR Division of Water Technical Report of Investigation 2009-1** 

January 2009







#### **CONTENTS**

| Introduction                                                          | 1  |
|-----------------------------------------------------------------------|----|
| Summary of hydrologic conditions                                      | 1  |
| General geology                                                       | 1  |
| Ground water level response to heavy precipitation                    | 5  |
| Synoptic ground water level survey                                    | 9  |
| Conclusions and recommendations                                       | 9  |
| References                                                            | 14 |
|                                                                       |    |
| FIGURES                                                               |    |
| Location map of the study area                                        | 2  |
| Bedrock geology of north central Ohio                                 | 3  |
| Karst areas in north central Ohio                                     | 4  |
| Drift thickness map of north central Ohio                             | 6  |
| Spring discharge from Rockwell Springs Trout Club                     | 7  |
| Ground water contribution zone for the flooded areas                  | 8  |
| Water table map of the Bellevue area as measured on September 3, 2008 | 11 |
| Water table map of the Bellevue area as measured on October 22, 2008  | 12 |
| Water level difference map                                            | 13 |
| TABLE                                                                 |    |
| Synoptic ground water level data                                      | 10 |
| APPENDICES                                                            |    |
| Appendix A. Diagrams showing the typical progression of karst geology | 15 |
| Appendix B. Frequently asked questions                                | 17 |
| Appendix C. Bellevue flood map, 2008                                  | 19 |

### Ground Water Induced Flooding in the Bellevue Ohio Area Spring and Summer 2008

#### INTRODUCTION

On March 18, 2008 ground water levels rose to 40-yearhigh levels in the Bellevue, Ohio area. Sinkholes, rounded depressions in the landscape formed by solution of bedrock or collapse of an underlying cavity, which typically accept surface water, were acting as springs. Flooding of fields, roadways and homes occurred because of the lack of a defined surface drainage. The purpose of this report is to outline the geologic, hydrologic, and meteorological conditions that led to the flooding experienced in the vicinity of Bellevue, Ohio in the spring and summer of 2008. Figure 1 is a map showing the areas that experienced flooding. A combination of geologic conditions present at the surface and near-surface, and unique increases in precipitation, created a situation where a rising ground water table breached the ground surface, flowed from existing sinkholes, filled existing closed basins and karst features, and drained slowly over the course of months.

#### SUMMARY OF HYDROLOGIC CONDITIONS

Unlike most flooding events caused by surface water runoff, the flooding that occurred in and north of Bellevue in the
spring and summer of 2008 was caused by excessive ground
water upwelling through near-surface openings in the underlying limestone bedrock. Although this phenomenon is common
to the north of this area as represented by the perpetual flow
from the "blue holes", flooding due to upwelling ground water
in the area in close proximity to Bellevue has happened only six
times since 1800. The last two occurrences prior to 2008 were
in 1969 and 1937. All three of these occasions were in response
to heavy precipitation events.

Ground water supplies are replenished by precipitation; especially by the rain and snow that falls from November through April, a period referred to as the ground water recharge season. Record and near-record amounts of rain had fallen throughout much of Ohio during the recharge season of 2008. Cumulative precipitation from October 2007 through March 2008 in the North Central climatic region of Ohio, which includes the Bellevue area, had totaled a record 23.55 inches, 9.14 inches above normal (Kirk, 2008). This surpassed the previous record of 21.56 inches set in 1898. Ending this wet period was near-record precipitation that fell in March, averaging 5.41 inches for the north-central region, making it the third wettest March in the past 114 years. Much of this precipitation fell as snow and did not melt until mid-month. Due to the karst geology in this

area, much of this surface water flowed into the sinkholes causing the ground water levels to rise.

#### GENERAL GEOLOGY

The Bellevue area surface and near-surface geology is unique, creating a situation which allowed the unusual karst flooding to occur in a localized area. Beneath the city of Bellevue and areas to the north and south of the city is a six-mile-wide band of limestone bedrock, the Delaware and Columbus Formations (denoted as Dc and Dd on Figure 2). This band trends in a generally north-south direction from Lake Erie through Central Ohio. The Olentangy Shale (Do) and Ohio Shale (Doh) are younger bedrock formations that overly the Delaware Limestone to the east. The Salina Dolomite (Ss) underlies the Columbus Limestone and is present at the surface to the west. Contacts between the bedrock units generally run north and south because of the gentle eastward tilting of the bedrock units as they descend into the Appalachian Basin to the east. Figure 2 is a bedrock geology map of north central Ohio.

The Columbus Limestone, and to a lesser extent, the Delaware Limestone are prone to the formation of sinkholes, caves, and caverns (collectively called karst) due to the dissolution of the high-calcium, generally coarsely crystalline nature of the rock. Slightly acidic ground water flowing through pore and fracture spaces in these formations dissolve the limestone and result in the numerous karst features in this localized area. Collapse of more competent limestone above the solutioned zones has formed some of the caves and caverns in this area. Seneca Caverns, the largest cavern in northern Ohio, was formed in this manner. Appendix A shows a typical progression in the development of karst geology. The Olentangy Shale and Ohio Shale to the east are not prone to the formation of karst. Thus, karst features abruptly stop near the interpreted contact with the Delaware Limestone and the overlying Olentangy/Ohio Shale. Figure 3 shows the area prone to karst features. To the west, the Salina Dolomite is near the surface, but dolomite (chemical composition of Mg Ca CO<sub>3</sub>) is less prone to dissolution than limestone (chemical composition of Ca CO<sub>3</sub>) and therefore karst formation is less frequent or developed.

The glacial geology of the area also contributes to the development of karst in the Bellevue region. Ice Age glaciers covered north central Ohio on several occasions and commonly deposited 50 or more feet of clay-rich glacial till. However, in the Bellevue area the thickness of the glacial drift is commonly less than 20 feet or not present at all. The lack of glacial till allows



Figure 1.—Location map of the study area...

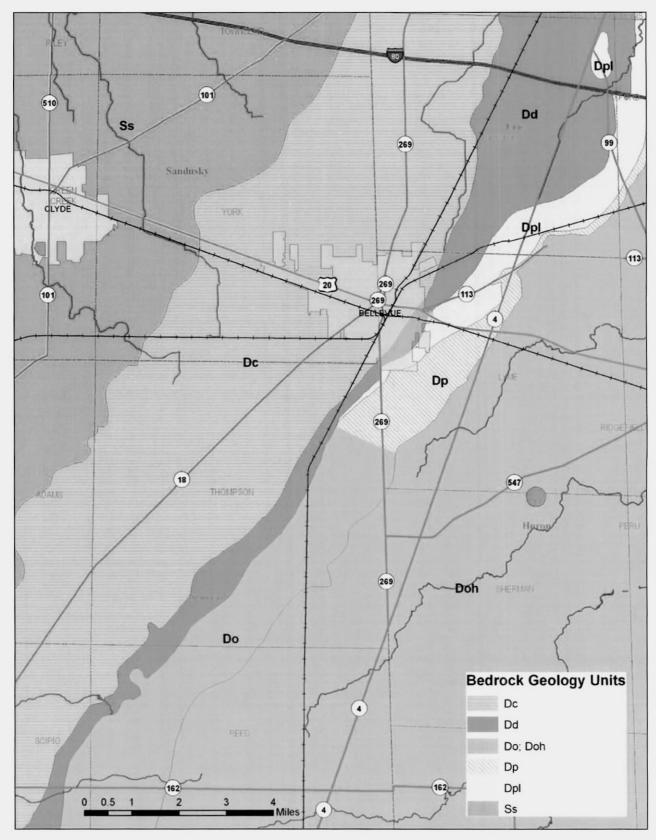
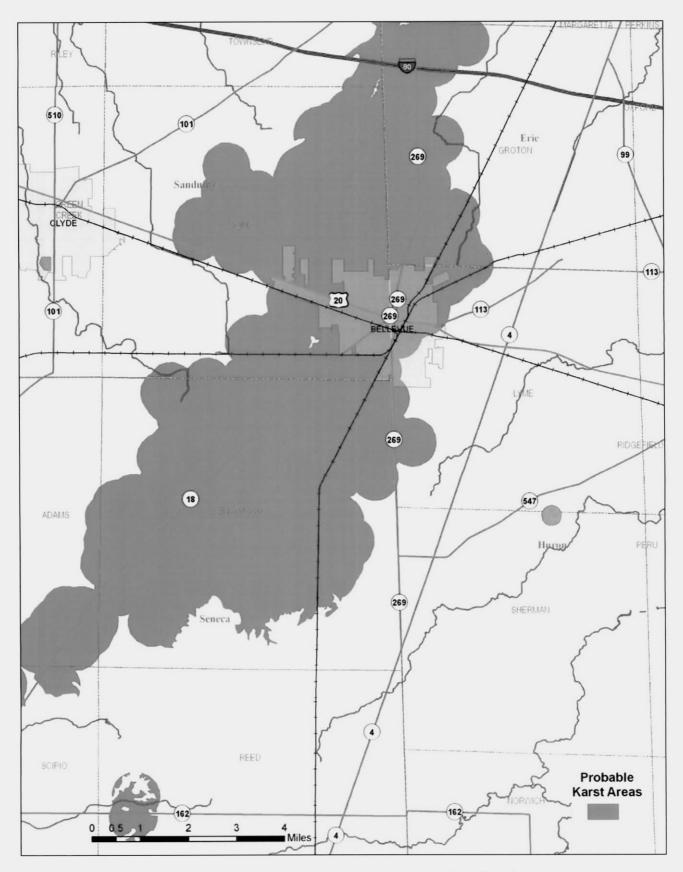




Figure 2.—Bedrock geology of north central Ohio. **Dc**-Columbus Limestone, **Dd**-Delaware Limestone, **Do**-Olentangy Shale, **Doh**-Ohio Shale, **Dp**-Prout Limestone, **Dpl**-Plum Brook Shale, **Ss**-Salina Group. Modified from Bedrock Geologic Map of Ohio, Slucher, E.R., et al.



 $Figure \ 3. - Karst\ areas\ in\ north\ central\ Ohio.\ Modified\ from\ Known\ and\ Probable\ Karst, Pavey, R.\ et\ al.$ 

the surface water direct contact with underlying limestone and provides more opportunity for dissolution. The drift thickness map (figure 4) shows the approximate areas of less than 20 feet of glacial drift. Karst is generally best developed where thin drift overlies the Delaware and Columbus Limestones. One potential reason for the thinner glacial drift in the vicinity of Bellevue is that the Columbus Limestone was resistant to erosion and formed a ridge that impeded glacial erosion and minimized deposition. Another cause is that the Bellevue area was inundated by waters of Lake Maumee and other ancestral lakes, and wave erosion from these lakes stripped much of the previously deposited drift away. Prominent sandy beach ridges associated with these ancestral lakes are visible just to the west of Bellevue and Castalia. The Columbus and Delaware Limestones are subject to dissolution where highly permeable sandy beach ridges overlie these units and thick clay deposits are absent. Thicker drift deposits covering the Delaware and Columbus Limestones probably protected the units from contact with significant amounts of surface water, preventing initiation of large dissolution features. Other regions of the state that have well-developed karst features, such as along the Scioto River in Delaware and Franklin Counties, and portions of Highland and Adams Counties, occur in limestone and dolomite units in areas of thin glacial drift or areas in which glacial drift is absent.

Joints (breaks in rock along which no movement has occurred) are found throughout the local bedrock formations. Regionally, the joints in bedrock generally trend NE-SW and NW-SE and are natural pathways for ground water to flow within the rock formations. These narrow joints are widened through the dissolution of the limestone by the surface and ground water that flows though them, leading to the eventual widening of the joints into a pathway. The northeast-southwest trending joints play a particularly important role in the travel of ground water in the Bellevue area and are crucial to understanding the karst flooding along the trend.

The relationship between these joint patterns and sinkholes is complex and variable. Two adjacent sinkholes may or may not be interconnected by joints. Water will preferentially flow along certain joint patterns. The net result is that different sinkholes are able to accept water at different rates, and in reverse may "flood" areas with different intensities if hydraulic pressures build up like they did in the spring 2008.

#### GROUND WATER LEVEL RESPONSE TO HEAVY PRECIPITATION

The presence of over 1000 sinkholes in Thompson, York, Lyme, and Groton Townships allow surface water to flow directly into the ground water system. Surface runoff flows into these sinkholes. With no soil present to act as a filter, millions of gallons of water were able to flow into the ground water system over a short period of time, causing a quick rise in the water table level. Sinkholes located north of Bellevue that typically accepted water became springs because the water table had risen above land surface.

A 1992 ground water study conducted by the ODNR - Division of Water (DOW) determined that ground water levels in Thompson Township of Seneca County had risen 27 feet in four days in response to receiving less than 3 inches of rain (ODNR, 1994). After 17 days, the water table had declined only 14 feet. Another storm later that same year dropped approximately 5 inches of rain over a six day period. Ground water levels increased almost 50 feet in three days. After one month of intermittent rains, the ground water level was still 30 feet higher than before the initial 5-inch rainfall event. It would take approximately 70 days to return to pre-storm level if little to no precipitation occurred.

Dick Bell, owner of the Seneca Caverns, noted that on April 1, 2008; the ground water level at the Caverns was approximately 35 feet below land surface (pers. comm., 2008). By July 28, the ground water level had dropped approximately 47 feet or to 82 feet below land surface. This translates to an average rate of decline in the aquifer of 0.4 foot/day. Mr. Bell noted that during dry times the water table dropped 8-12 inches/day but after different rainfall events, the water table stabilized for one to two days at a time.

Spring discharge data has been collected by personnel at the Rockwell Springs Trout Club. This spring is located near the intersection of County Roads 310 and 247 in Sandusky County and is down-gradient of the flooded areas. Data for the past 18 years was sent to the DOW. This spring is very responsive to precipitation events, which indicates that it is connected to the shallow ground water flow system. Data for 2007 and 2008 shows that the spring discharge was slightly above normal starting in December 2007, but then peaked the third week of March, more than doubling the average flow for that time period (see Figure 5). Spring discharge stayed above average until the third week of August.

The DOW has been in the process of mapping the potentiometric surface within the aquifers in Ohio. These maps, which use existing water well record data, show the direction and gradient of ground water flow. By using these maps, the ground water capture zone for the flooded areas in York and Groton Townships was determined to be approximately 57,000 acres in size. Figure 6 shows the approximate ground water recharge area that contributed to the flooding. This area encompasses most of Thompson Township and portions of Reed, York, Lyme and Groton Townships. Most of this area, especially Thompson and York Townships, has minimal surface drainage because of the high concentration of sinkholes. Ground water recharge is

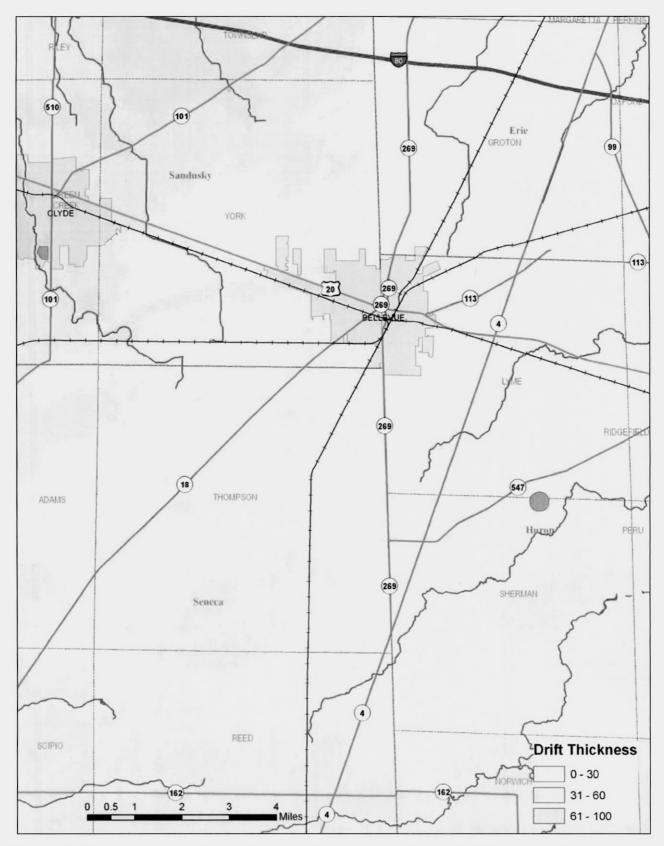



Figure 4.—Drift thickness map of north central Ohio. Drift thickness is measured in feet. Modified from Shaded Drift Thickness of Ohio, Powers, D.M. and E.M. Swinford.

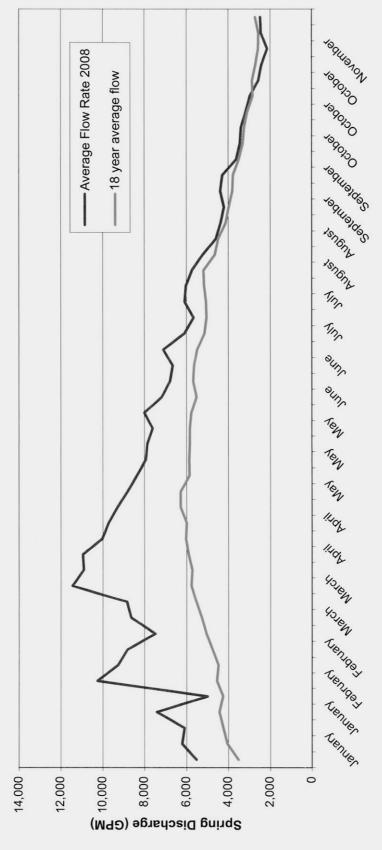



Figure 5.—Spring discharge from Rockwell Springs Trout Club



Figure 6.—Ground water contribution zone for the flooded areas.

almost instantaneous in these areas as surface water enters the sinkholes. Assuming 30% of the precipitation that falls within the capture zone drains into the sinkholes and thus the aquifer, of the 5.41 inches that fell during March 2008, approximately 2.5 billion gallons recharged the aquifer. Since the air temperature was fairly cool in March and evapotranspiration was low, the amount of precipitation that entered the ground water system could have been higher.

#### SYNOPTIC GROUND WATER LEVEL SURVEY

On September 3, and October 22, 2008, personnel from the DOW measured the depth to water in 26 water wells in the area north and west of Bellevue, Ohio. This area lies within both Sandusky and Erie Counties. This is the area that experienced the most severe ground water flooding during the spring and summer 2008. The purpose of the study was to record synoptic ground water levels and to document the changes in the water table in the limestone aquifer.

Table 1 shows the data that was collected in addition to the existing information obtained from the water well records on file with the DOW. The original static is the depth from land surface to the water table as measured by the driller when the well was installed. The M Static 9/3/08 and M Static 10/22/2008 columns record the depth to water measured by DOW personnel on those dates. The Water Level Difference column is the difference between the October 22 static water level and the September 3 static water level. A negative number indicates that the ground water level was higher on September 3 than on October 22, 2008. All but two wells had a higher ground water level on September 3rd than on October 22nd.. The average decline in ground water levels over this 49 day period was approximately 7 feet. This translates to a decline in ground water levels of approximately 2 inches/day. Using flood elevation data collected by the Erie County Engineer's Office as a high ground water level mark, ground water levels have declined 45-50 feet in the heaviest hit areas since the end of March. This is equivalent to a decline in the ground water levels of approximately 3 inches/day. Of the 26 wells that were measured, the average depth to water was within one foot of the average static water level measured when these wells were drilled. This indicates that ground water levels had returned to near-normal conditions by the end of October.

Contour maps were created using the data from both synoptic water level surveys (see Figures 7 and 8). These maps show the locations of the wells that were measured along with the corresponding elevation of the water table that was measured. This data was contoured using a 10-foot contour interval. Ground water flows from areas of high elevation to areas of lower elevation, in a direction perpendicular to the contour

lines. From Figures 7 and 8, it shows that ground water flows from the west, south and east into the area that experienced the worst flooding. Synoptic water level data collected in Thompson Township in the early 1990's also support this finding (ODNR, 1994). The orientation of this ground water low coincides with the orientation of the major joint trend observed in the Columbus Limestone.

A contour map was created that shows the change in ground water over this 49-day period (see Figure 9). There is a band of wells that measured greater than a 10-foot decline. This band trends in a northeast direction and coincides with the center of the ground water basin. This is the area that experienced the most prolonged flooding. The well located at the corner of State Route 269 and Portland Road shows a much higher static water level elevation. After examination of the water well record, it appears that this well did not intercept any cavities or fractures. The original test rate was 8 gallons per minute (gpm) with total drawdown after one hour. Wells that encounter fractures or cavities can be pumped at rates exceeding 100 gpm (Walker, 1986). The well located on Deyo Road that was measured in this study shows similar ground water fluctuations. The characteristics of these two wells indicate that these wells do not intercept any major fractures or cavity zones. Ground water flow to these two wells is through primary porosity.

#### CONCLUSIONS AND RECOMMENDATIONS

The extent and duration of flooding that was experienced in and north of Bellevue during the spring and summer 2008 was not the typical sporadic surface flooding of a few sinkhole basins. The flooding during this time period was due to the ground water levels rising above ground level in many sinkhole basins. Record October 2007 to March 2008 precipitation levels, culminating with 5.41 inches of rain in March, added billions of gallons of water into the aquifer. The last two times this type of flooding has occurred in this area were in 1969 and 1937.

The formations present in this area that are favorable for karst development are the Columbus Limestone and to a lesser degree the Delaware Limestone. These limestones outcrop in a six-mile-wide band that trends almost north-south. The thin-to-absent glacial drift over these limestones makes the Bellevue area prime for karst development. Regionally, the joints in bedrock generally trend NE-SW and NW-SE and are natural pathways for ground water to flow within the rock formations.

The presence of over 1000 sinkholes in the Bellevue area allows surface water to rapidly flow directly into the ground water system. Ground water levels were not measured in the Bellevue area prior to the flooding. However, ground water levels measured in a previous study showed that ground water levels can rise up to 50 feet over a few day period in response to five

Table 1.—Synoptic ground water level data collected in the Bellevue, Ohio area

| Address              | Latitude<br>(degrees) | Longitude<br>(degrees) | M Static<br>9/3/2008 | M Static<br>10/22/2008 | Original<br>Static<br>(feet) | Depth<br>(feet) | Elevation<br>(feet msl) | Water<br>Level<br>Elevation<br>9/3/2008 | Water<br>Level<br>Elevation<br>10/22/2008 | Water<br>Level<br>Difference<br>9/3 to 10/22 |
|----------------------|-----------------------|------------------------|----------------------|------------------------|------------------------------|-----------------|-------------------------|-----------------------------------------|-------------------------------------------|----------------------------------------------|
| 530 CR 308           | 41.33044              | -82.85929              | 64                   | 72.12                  | 99                           | 142             | 725.9                   | 661.90                                  | 653.78                                    | -8.12                                        |
| 938 CR 308           | 41.3184               | -82.85939              | 64.89                | 74.92                  | 70                           | 140             | 737.3                   | 672.41                                  | 662.38                                    | -10.03                                       |
| 1260 CR 308          | 41.30879              | -82.86102              | 25.63                | 31.51                  | 09                           | 125             | 726.1                   | 700.47                                  | 694.59                                    | -5.88                                        |
| 468 CR 294           | 41.33752              | -82.89548              | 47.73                | 50.7                   | 99                           | 114             | 6.689                   | 642.17                                  | 639.2                                     | -2.97                                        |
| 1002 CR 302          | 41.31808              | -82.8789               | 41.3                 | 50.82                  | 30                           | 103             | 735                     | 693.70                                  | 684.18                                    | -9.52                                        |
| 1929 CR 302          | 41.29004              | -82.87844              | 57.98                | 71.09                  | 79                           | 145             | 750                     | 692.02                                  | 678.91                                    | -13.11                                       |
| 2588 CR 302          | 41.27065              | -82.87902              | 80.88                | 94.77                  | 80                           | 150             | 780                     | 699.12                                  | 685.23                                    | -13.89                                       |
| 2104 CR 292          | 41.28443              | -82.8985               | 29.85                | 36.06                  | 09                           | 115             | 763.5                   | 733.65                                  | 727.44                                    | -6.21                                        |
| 2636 CR 292          | 41.26962              | -82.89841              | 22.52                | 37.56                  | 09                           | 80              | 776.1                   | 753.58                                  | 738.54                                    | -15.04                                       |
| 6416 Kilroy          | 41.35952              | -82.82903              | 52.49                | 57.59                  | 98                           | 125             | 700.47                  | 647.98                                  | 642.88                                    | -5.1                                         |
| 7219 Deyo            | 41.35026              | -82.81739              | 20.05                | 20.35                  | 30                           | 103             | 712.8                   | 692.75                                  | 692.45                                    | -0.3                                         |
| 11801 Strecker       | 41.32899              | -82.82743              | 42.7                 | 53.23                  | 99                           | 84              | 711.3                   | 09.899                                  | 658.07                                    | -10.53                                       |
| 12314 Strecker       | 41.32172              | -82.83894              | 52.1                 | 63.91                  | 92                           | 06              | 720                     | 06.799                                  | 626.09                                    | -11.81                                       |
| 9208 Bragg           | 41.32244              | -82.80443              | 35.02                | 37.33                  | 25                           | 100             | 714.4                   | 679.38                                  | 677.07                                    | -2.31                                        |
| 6906 SR 269          | 41.3534               | -82.82991              | 41.52                | 46.87                  | 80                           | 105             | 684.1                   | 642.58                                  | 637.23                                    | -5.35                                        |
| 7706 SR 269          | 41.34251              | -82.83005              | 21.09                | 19.78                  | 13                           | 105             | 735                     | 713.91                                  | 715.22                                    | 1.31                                         |
| 8906 SR 269          | 41.32564              | -82.82939              | 41.17                | 51.51                  | 48                           | 103             | 709.9                   | 668.73                                  | 658.39                                    | -10.34                                       |
| 10318 SR 269         | 41.30565              | -82.8286               | 37.5                 | 50.36                  | 20                           | 110             | 718.04                  | 680.54                                  | 89'.299                                   | -12.86                                       |
| 400 S. CR 312        | 41.33457              | -82.84576              | 91.05                | 98.79                  | 70                           | 130             | 750                     | 658.95                                  | 651.21                                    | -7.74                                        |
| 10318 SR 269 Monitor | 41.30518              | -82.82762              | 30.6                 | 43.56                  | 12.8                         | 150             | 717.6                   | 687.00                                  | 674.04                                    | -12.96                                       |
| 12416 Dining         | 41.35078              | -82.84128              | 45.33                | 50.99                  | 49                           | 100             | 697.35                  | 652.02                                  | 646.36                                    | -5.66                                        |
| Cunningham Monitor   | 41.33749              | -82.80006              | 38.98                | 40.03                  | 30.5                         | 150             | 710.2                   | 671.22                                  | 670.17                                    | -1.05                                        |
| Keller Monitor       | 41.33985              | -82.76007              | 22.54                | 20.9                   | 19.85                        | 150             | 715                     | 692.46                                  | 694.1                                     | 1.64                                         |
| Young Monitor        | 41.31853              | -82.77008              | 29.16                | 29.62                  | 21.2                         | 150             | 720                     | 690.84                                  | 86.069                                    | -0.46                                        |
| 10817 Billings       | 41.30137              | -82.79293              | 41.31                | 46.07                  | 27.4                         | 150             | 730                     | 69.889                                  | 683.93                                    | -4.76                                        |
| 9102 Rogers          | 41.37185              | -82.84366              | 45.34                | 48.97                  | 45                           | 100             | 685                     | 99.669                                  | 636.03                                    | -3.63                                        |
|                      |                       |                        |                      |                        |                              |                 |                         |                                         |                                           |                                              |

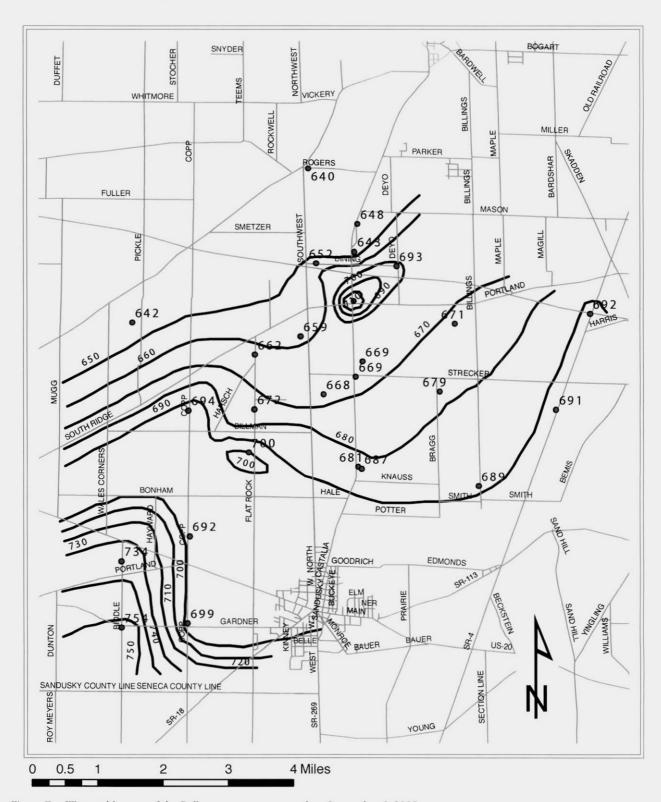



Figure 7.—Water table map of the Bellevue area as measured on September 3, 2008.

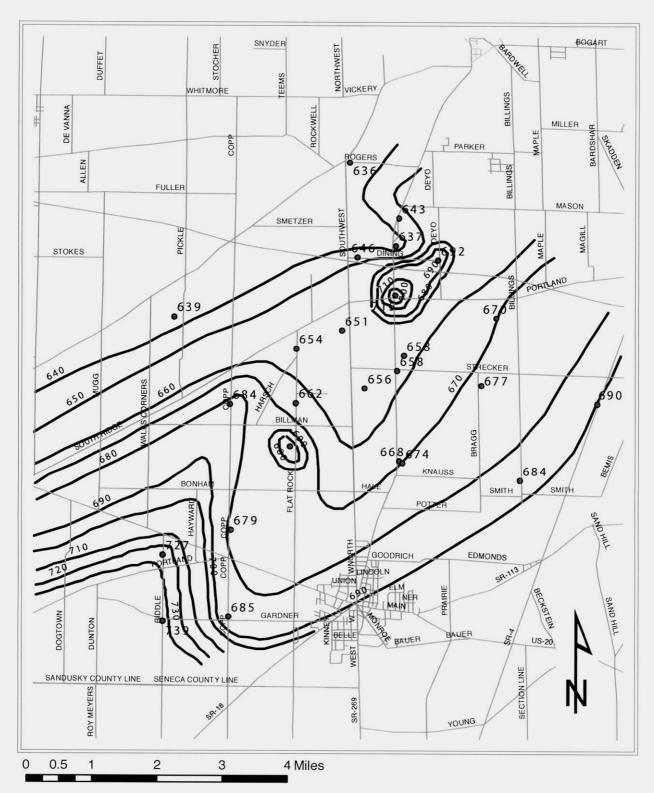



Figure 8.—Water table map of the Bellevue area as measured on October 22, 2008.

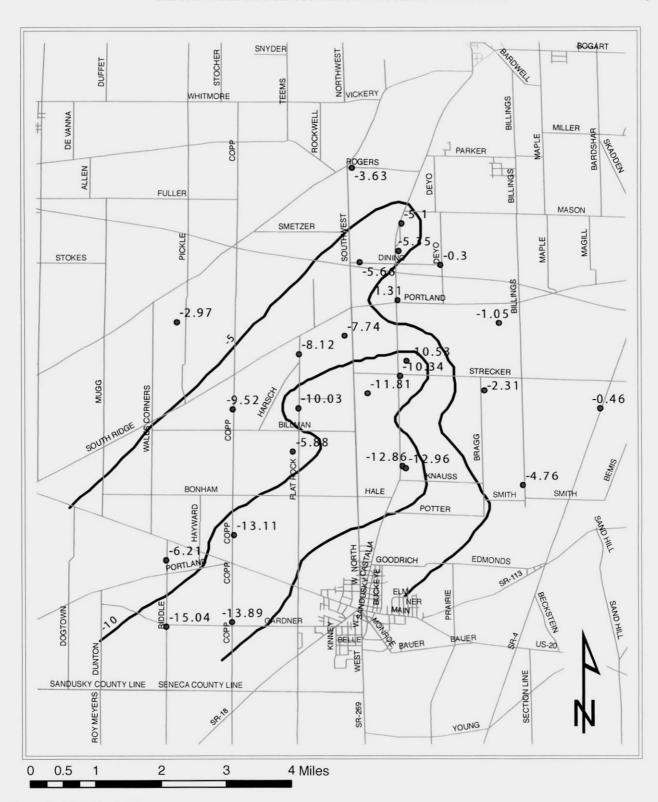



Figure 9.—Water level difference map.

inches of rain, but take weeks to return to pre-flood conditions. Ground water levels at Seneca Caverns declined on average 4 inches/day and had dropped approximately 65 feet from April 1 to October 22, 2008. Ground water levels measured in October 2008 by DOW staff indicate that the water table has declined 45 to 50 feet north of Bellevue since the spring 2008. This equates to a 3 inches/day decline.

The approximate size of the ground water watershed that contributed water to the flooded karst area is 57,000 acres. This area encompasses most of Thompson Township and portions of Reed, York, Lyme and Groton Townships. Synoptic ground water level surveys conducted in the fall 2008 indicate that there is a ground water low area. This low parallels the major joint orientation measured in the Columbus limestone and lies beneath the area that experienced the worst flooding.

This document along with figures and maps can be used as an historic document, so that steps can be taken to avoid property damage when flooding occurs again. Local government agencies should consider mandating no permanent structures within the areas that flooded and recommend no basements in structures located adjacent to these areas.

Best management practices, such as sinkhole structures and grassed buffer strips and waterways should be implemented around sinkholes to minimize ground water contamination and to keep the sinkholes open to prevent surface flooding.

Even though ground water levels have returned to normal levels, two or three wells completed in the karst zone should be regularly monitored to get a better understanding of how ground water levels change in response to precipitation events. The monitor well located at 10318 State Route 269 could be

used as one of these wells. Other monitor locations would be southwest of this well. Equipping these wells with pressure transducers that record ground water levels multiple times per day would lead to a better understanding of the dynamic nature of the karst aquifer system.

During the time of the flooding, a Frequently Asked Questions fact sheet was put together by the DOW. Since then a few other questions were raised. Appendix B is a list of frequently asked questions with responses from DOW personnel.

#### REFERENCES

Bell, Dick, personal communication, 2008.

Ohio Department of Natural Resources, Division of Water, Seneca County SWCD, L. Drane, and R. Kocher, 1994, Impact of Best Management Practices on Surface Runoff and Ground Water Quality in a Solutioned Limestone Area, Thompson Township, Seneca County, Ohio, 54 pp.

Monthly Water Inventory Report for Ohio, March 2008, compiled by Scott Kirk Ohio Department of Natural Resources, Division of Water Technical Report.

Pavey, Richard, Dennis N. Hull, C. Scott Brockman, Gregory A. Schumacher, David A. Stith, E. Mac Swinford, Terry L. Sole, Kim E. Vorbau, Kevin Kallini, Emily E. Evans, Ernie R. Slucher, and Robert G. Van-Horn, 2007, Known and Probable Karst in Ohio, Ohio Department of Natural Resources. Division of Geological Survey Map EG-1.

Powers, D.M. and Swinford, E.M., 2004, Shaded Drift Thickness of Ohio: Ohio Department of Natural Resources, Division of Geological Survey Map GS-3.

Ruedisili, L.C., G.E. Kihn, and R.C. Bell, 1990, Geology of Seneca Caverns, Seneca County, Ohio, Ohio Journal of Science 90(4):106-111.

Slucher, E.R., E.M. Swinford, G.E. Larsen, G.A. Schumacher, D.L. Shrake, C.L. Rice, M.R. Caudill, and R.G. Rea, 2006, Bedrock Geologic Map of Ohio, Ohio Department of Natural Resources, Division of Geological Survey Map BG-1.

Walker, Alfred C., 1986, Ground Water Resources of Erie County, Ohio Department of Natural Resources, Division of Water, map.

#### APPENDIX A

Block diagrams showing the typical progression of karst geology.

Graphics used with permission from the Columbus Dispatch. Slightly modified.

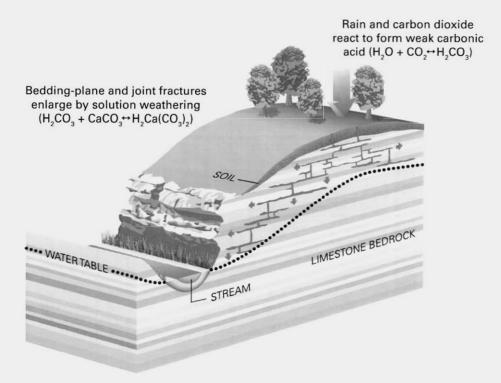



Figure A-1.—Rainwater falling through the air reacts with atmoshperic carbon dioxide to form carbonic acid ( $H_2O + CO_2 \Leftrightarrow H_2CO_3$ ). Upon entering the soil, rainwater reacts with carbon dioxide released from decaying vegetation to form additional carbonic acid. As part of the groundwater environment, carbonic-acid-charged water continues to move downward under the force of gravity into underlying limestone bedrock. The water moves laterally along horizontal fractures (bedding planes) and downward along vertical fractures (joints) until it reaches a depth where all fractures and pore spaces within the rock are filled with water (the water table). As the water moves along fractures, both above and below the water table, small amounts of limestone are dissolved by carbonic acid ( $H_2CO_3 + CaCO_3 \Leftrightarrow H_2Ca(CO_3)_2$ ). Additional limestone is mechanically abraded and removed by the movement of the water.

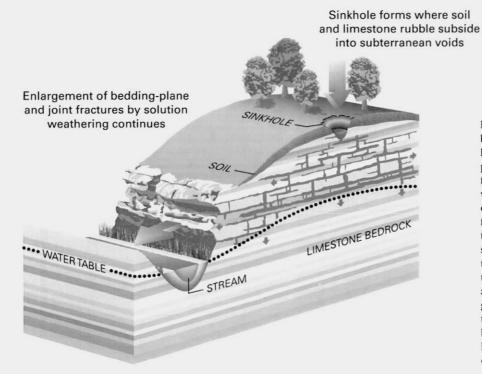



Figure A-2.—With the passing of time, bedrock fractures become greatly enlarged by the dissolution and abrasion process. Sinkholes (dolines) begin to form on the surface where enlarged vertical fractures allow soil and rock debris to collapse into the earth. Surface drainage is diverted directly into the ground-water environment where sinkholes intersect drainageways, thereby accelerating the rate of fracture enlargement through mechanical abrasion. The water table is lowered as ground water escapes to the surface through springs. The terrain created by the presence of numerous sinkholes and other solution features is called karst.

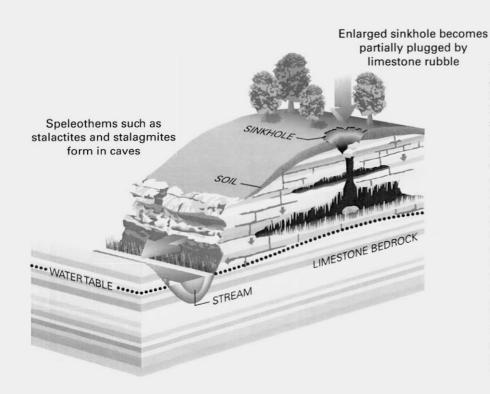



Figure A-3.—Over the course of many centuries, sinkholes continue to enlarge and coalesce with other sinkholes as underground voids collapse and ongoing abrasion and/or dissolution continue to remove bedrock. Horizontal and vertical fractures become enlarged to the extent that they can be classified as a cave (an underground passage large enough for a person to enter). The water table continues to drop in elevation as internal drainage networks within the cave system become more integrated and efficient in collecting and discharging ground water. Ground water saturated with calcium carbonate (calcite) and dripping from cave ceilings and walls or flowing along the cave floor evaporates, causing calcite to be deposited as cave formations (speleothems) such as stalactites, stalagmites, flowstone, and travertine.

#### APPENDIX B

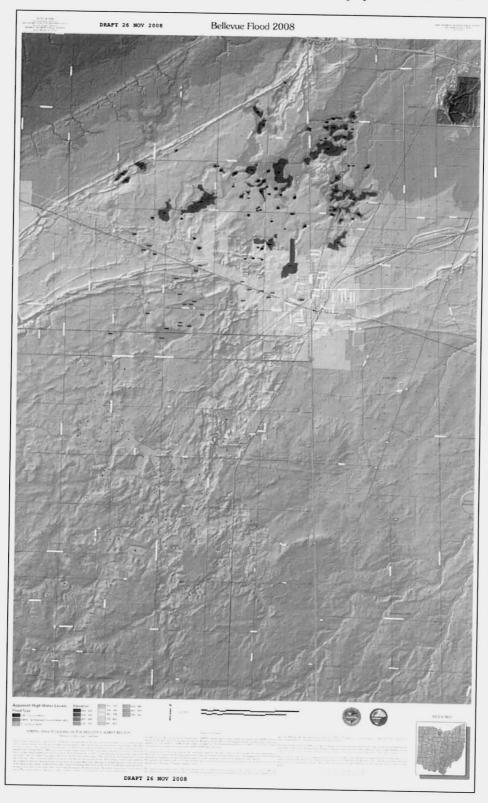
Frequently asked questions concerning the Bellevue area ground water flooding Answered by the Ohio Department of Natural Resources—Division of Water

- Q: Why did the flooding occur in the Bellevue area?
- A: The North Central Region of Ohio, which includes the Bellevue area, reported total precipitation from 10/1/07 through 3/31/08 at 23.55 inches. This record amount of precipitation for this 6-month period is 1.99 inches greater than the previous record of 21.56 inches set in 1898. It was the third wettest March in this region over the past 126 years. The fact that excessive amounts of precipitation fell over the fractured limestone bedrock caused the water table in the limestone aquifer to rise more than 40 feet above normal levels. This would be analogous to quickly dumping 100 gallons of water into a bathtub with the drain open. Water will be leaving the bathtub, but because of the quick influx of water, there will be water standing in the tub until the water can drain out. Flow through the fractures and caverns in the limestone can not keep pace with the influx of water during large storm events

The ODNR-Division of Water has been in the process of mapping the potentiometric surface within the aquifers in Ohio. These maps show the direction of ground water flow. Using these maps the ground water capture zone for the flooded areas in York and Groton Townships was determined to be approximately 57,000 acres in size. This area encompasses most of Thompson Township and portions of Reed, York, Lyme and Groton Townships. Most of this area, especially Thompson and York Townships have minimal surface drainage because of the high concentration of sinkholes. Ground water recharge is almost instantaneous in these areas as surface water enters the sinkholes. Assuming 30% of the precipitation that falls within the capture zone drains into the sinkholes and thus the aquifer, of the 5.41 inches that fell during March 2008, approximately 2.5 billion gallons recharged the aquifer

- Q: How fast does the ground water level fluctuate?
- A: That depends on the rate and amount of precipitation in the watershed. During a ground water study in 1992, observed ground water levels in Thompson Township had risen 27 feet in four days in response to receiving less than 3 inches of rain. After 17 days, the water table had only declined 14 feet. Another storm later that same year dropped ap-

proximately 5 inches of rain over a six-day period. Ground water levels increased almost 50 feet in three days. After one month of intermittent rains, the ground water level was still 30 feet higher than before the initial 5-inch rainfall event. Assuming the same rate of decline, it would take approximately 70 days to return to pre-storm level if little to no precipitation occurred.


During the 2008 flooding event, ground water levels declined on average 3-4 inches per day. As of October 2008, ground water levels had declined 45-50 feet since March 2008.

- Q: Will the ground water flooding happen again?
- A: Most likely. Unlike most flooding events caused by surface water run-off, the flooding that occurred in and north of Bellevue was caused by excessive ground water upwelling through near-surface openings in the underlying limestone bedrock. Although this phenomenon is common to the north of this area as represented by the perpetual flow from the "blue holes", flooding in the area in close proximity to Bellevue has happened only six times since 1800. The last two occurrences were in 1969 and 1937. All three of these occasions were in response to heavy precipitation events. It cannot be ruled out that heavy precipitation events will not occur in the Bellevue area in the future so there is the chance that flooding will occur.
- Q: Has the flow in the aquifer been blocked?
- A: No. However, the number of sinkholes and the pathways for ground water movement change over time. During the Thompson Township dye trace study in the early to mid 1990's, Division of Water personnel observed at least 20 new sinkholes form. Existing sinkholes were drastically modified by erosion. It is estimated that sinkholes that do not have grassed buffers and waterways leading to them accept hundreds of tons of sediment each year. This sediment could temporarily block ground water pathways. The hydraulic pressure will build up in the aquifer until a new pathway is opened up or the obstruction is blown out. Division of Water personnel measured ground water levels on two occasions in the area of ground water flooding. The

- area that experienced the severest flooding from March to June, 2008 showed the greatest decline in ground water levels from September to October, 2008. This indicates that the aquifer is not plugged.
- Q: Would ditch maintenance prevent future ground water flooding that was experienced during the spring and summer 2008?
- A: No. However, creating and maintaining grassed buffer strips and waterways will reduce the amount of sediment flowing into the sinkholes, which could help surface drainage. Maintaining the ditches could help prevent sinkhole clogging. The large amount of precipitation that fell in March, in combination with the above-normal precipitation during the preceding four months, resulted in millions of gallons of water recharging the aquifer. This caused the ground water levels to rise above land surface in some lower lying areas.

### APPENDIX C

A draft, page-size version of the Division of Geological Survey's map, EG-5, Bellevue Flood 2008, by Richard R. Pavey and Donovan M. Powers. Currently under preparation and review.



I tried to add something to your website. However, I would appreciate you putting a restraining order on the Emerson Creek Wind Project also.

Without a good newspaper in the Bellevue area and four counties and each of their unique legal systems, I believe that the APEX Clean Energy group is trying to find one county that will agree with the pilot and force the rest of the wind turbines on all of the communities. I80 - 200 wind turbines in a ten-mile radius is difficult for the landscape. Also, the highest to second highest U.S. wind turbines in such a high populated area, and the size of the foundation footings to support each wind turbine will cause water flow issues in this highly un-stable geographic area.

I would like to understand the size of the footing and what State of Ohio engineers to communicate and sign off on the footings. I know that my mother's property has issue with water draining if rains too long or too much. Please compare the "Article POV Wind Tallest Structures" which I would on an internet and the topographic map in the "Bellevue Final Report Spring 2008" as issued by the ODNR - Division of Water. Similar areas being discussed.

Thank You. I will send pictures of my Mom's front and side yard from a heavy rain.