Firelands Wind, LLC Case No. 18-1607-EL-BGN

Application Part 10 of 17

Part 10 includes:

• Exhibit Z Ecological Assessment (Part 1 of 8)

Date Filed: January 31, 2019

Christine M.T. Pirik (0029759) (Counsel of Record) Terrence O'Donnell (0074213) William V. Vorys (0093479) Dickinson Wright PLLC 150 East Gay Street, Suite 2400 Columbus, Ohio 43215 Phone: (614) 591-5461 Email: <u>cpirik@dickinsonwright.com</u> <u>todonnell@dickinsonwright.com</u> <u>wvorys@dickinsonwright.com</u>

Attorneys for Firelands Wind, LLC

Firelands Wind, LLC Case No. 18-1607-EL-BGN

Exhibit Z Ecological Assessment

A complete copy of Exhibit Z can be found on the enclosed USB. Due to the large size, not all attachments were hard copied.

Christine M.T. Pirik (0029759) (Counsel of Record) Terrence O'Donnell (0074213) William V. Vorys (0093479) Dickinson Wright PLLC 150 East Gay Street, Suite 2400 Columbus, Ohio 43215 Phone: (614) 591-5461 Email: <u>cpirik@dickinsonwright.com</u> <u>todonnell@dickinsonwright.com</u> wvorys@dickinsonwright.com

Attorneys for Firelands Wind, LLC

ECOLOGICAL ASSESSMENT EMERSON CREEK WIND FARM ERIE, HURON AND SENECA COUNTIES, OHIO

JANUARY 2019

PREPARED BY: **THE MANNIK & SMITH GROUP, INC.** 1800 INDIAN WOOD CIRCLE MAUMEE, OHIO 43537

ECOLOGICAL ASSESSMENT EMERSON CREEK WIND FARM ERIE, HURON AND SENECA COUNTIES, OHIO

PREPARED BY:

IVY S. MARTIN

ENVIRONMENTAL TECHNICIAN

PREPARED BY:

KATIE L. SIMON NATURAL RESOURCES SCIENTIST

MATTHEW S. PESCI, CPG SENIOR PROJECT MANAGER

APPROVED BY:

<u>SECT</u>	<u> 10N:</u>			PAGE NO.:	
1.0	INTRODUCTION				
2.0	LAND (JSE		2	
3.0	GEOLO 3.1 3.2	GLACIA	L DRIFT TERRAIN	4	
4.0	SOILS 4.2 4.3	HIGHLY	ERODIBLE SOILS / STEEP SLOPES SOILS		
5.0	BIOLO 5.1 5.2	VEGET/ 5.1.1 5.1.2 5.1.3	CONSERVATION ATIVE COMMUNITY AGRICULTURAL LAND FORESTLAND DISTURBED / DEVELOPED. NDS AND WATERBODIES	12 12 12 12 12	
		5.2.1 5.2.2 5.2.3 5.2.4	NAVIGABLE WATERS FLOODPLAINS SURFACE WATER DELINEATION OHIO EPA 401 WATER QUALITY CERTIFICATION (WQC)		
	5.3	WILDLII 5.3.1 5.3.2 5.3.3	E RESOURCES BIRDS BATS BALD EAGLES AND RAPTORS	15 16	
	5.4	Rare, 5.4.1 5.4.2	THREATENED, AND ENDANGERED SPECIES FEDERAL LISTINGS STATE LISTINGS	17	
TARI	FS				

TABLE OF CONTENTS

IADLLJ		
TABLE 2.1	Land Use within the Study Area	3
TABLE 4.1	Soils within the Study Area	9
TABLE 5.1	USFWS OHIO COUNTY DISTRIBUTION OF FEDERALLY-LISTED THREATENED, ENDANGERED, PROPO)SED,
	AND CANDIDATE SPECIES – ERIE, HURON AND SENECA COUNTIES	18

APPENDICES

- APPENDIX A FIGURES
- APPENDIX B ODNR LISTS
- APPENDIX C SURFACE WATER DELINEATION REPORT

1.0 INTRODUCTION

The Mannik & Smith Group, Inc. (MSG) prepared an ecological assessment for the proposed Emerson Creek Wind Farm (Project) (Figure 1, Appendix A). The area evaluated (Study Area) is comprised of 23,024 acres located within rural portions of Erie, Huron, and Seneca Counties, Ohio, including all areas within 100-feet of the potential construction impact area of the facility.

The ecological assessment included a review of readily available Geographic Information Systems (GIS) data, as well as review of data and field observations from vegetation and surface water surveys completed in 2018. GIS data sources included, but were not limited to, the U.S. Department of Agriculture (USDA) Natural Resources Conservation Service (NRCS) Soil Surveys for Erie, Huron, and Seneca Counties; historical aerial photographs and farmed wetland maps from the USDA Farm Service Agency (FSA); U.S. Fish and Wildlife Service (USFWS) National Wetland Inventory (NWI) maps; Ohio Wetland Inventory (OWI) maps; U.S. Geological Survey (USGS) topographic maps; the USGS National Hydrography Dataset (NHD); Multi Resolution Land Characteristics Consortium (MRLC; Ohio Department of Natural Resources (ODNR) State-listed Plant and Wildlife Species by County lists; USFWS Ohio County Distribution lists; Audubon Important Bird Areas data; The Cornell Lab of Ornithology eBird data; and recent aerial imagery. Figures and ODNR species lists are provided in Appendices A and B, respectively.

2.0 LAND USE

The land use categories within the Study Area are classified according to the predominant land use based on MRLC data (MRLC 2014), as follows:

- Cultivated Crops: Areas used for the production of annual crops, such as corn, soybeans, vegetables, tobacco, and cotton, and also perennial woody crops such as orchards and vineyards. Crop vegetation accounts for greater than 20% of total vegetation. This class also includes all land being actively tilled.
- **Deciduous Forest**: Areas dominated by trees generally greater than five meters tall, and greater than 20% of total vegetation cover. More than 75% of the tree species shed foliage simultaneously in response to seasonal change.
- Developed, High Intensity: Includes highly developed areas where people reside or work in high numbers. Examples include apartment complexes, row houses and commercial/industrial. Impervious surfaces account for 80 to 100 percent of the total cover.
- Developed, Low Intensity: Includes areas with a mixture of constructed materials and vegetation. Impervious surfaces account for 20-49 percent of total cover. These areas most commonly include single-family housing units.
- Developed, Medium Intensity: Includes areas with a mixture of constructed materials and vegetation. Impervious surfaces account for 50-79 percent of the total cover. These areas most commonly include single-family housing units.
- Developed, Open Space: Areas with a mixture of some constructed materials, but mostly vegetation in the form of lawn grasses. Impervious surfaces account for less than 20% of total cover. These areas most commonly include large-lot single-family housing units, parks, golf courses, and vegetation planted in developed settings for recreation, erosion control, or aesthetic purposes.

- Evergreen Forest: Areas dominated by trees generally greater than five meters tall, and greater than 20% of total vegetation cover. More than 75 percent of the tree species maintain their leaves all year. Canopy is never without green foliage.
- **Grassland/Herbaceous:** Areas dominated by grammanoid or herbaceous vegetation, generally greater than 80% of total vegetation. These areas are not subject to intensive management such as tilling, but can be utilized for grazing.
- Hay/Pasture: Areas of grasses, legumes, or grass-legume mixtures planted for livestock grazing or the production of seed or hay crops, typically on a perennial cycle. Pasture/hay vegetation accounts for greater than 20% of total vegetation.
- Mixed Forest: Areas dominated by trees generally greater than five meters tall, and greater than 20% of total vegetation cover. Neither deciduous nor evergreen species are greater than 75 percent of total tree cover.
- Open Water: All areas of open water, generally with less than 25% cover or vegetation or soil.
- Scrub Shrub: Areas dominated by shrubs; less than 5 meters tall with shrub canopy typically greater than 20% of total vegetation. This class includes true shrubs, young trees in an early successional stage or trees stunted from environmental conditions and the soil or substrate is periodically saturated or covered with water.
- Woody Wetlands: Areas where forest or shrub land vegetation accounts for greater than 20 percent of vegetative cover and the soil or substrate is periodically saturated with or covered with water.

The Study Area consists mainly of Cultivated Crops (87%); followed by Deciduous Forest (6%); Developed, Open Space (~5%); and Hay/Pasture (2%; Table 2.1, Figure 2). All other land uses accounted for 1% or less of the total acreage in the Study Area. A summary is provided in Table 2.1 below.

Land Use of the Study Area is illustrated in Figure 2.

Туре	Study Area (acres)	Study Area (%)			
Agriculture, Cultivated Crops	19,580.75	87%			
Deciduous Forest	1,422.76	6%			
Developed, High Intensity	4.99	<1%			
Developed, Low Intensity	224.90	1%			
Developed, Medium Intensity	26.02	<1%			
Developed, Open Space	728.38	3%			
Evergreen Forest	1.63	<1%			
Grassland / Herbaceous	8.73	<1%			
Hay/Pasture	422.68	2%			
Mixed Forest	2.58	<1%			
Open Water	50.57	<1%			
Scrub Shrub	3.12	<1%			
Woody Wetlands	2.98	<1%			
TOTAL	23,024				

 Table 2.1
 Land Use within the Study Area

3.0 <u>GEOLOGY</u>

The Study Area is located within the Huron-Erie Lake Plains and Till Plains Sections of the Central Lowland Physiographic Province of Ohio. The Study Area includes three Physiographic Regions: the Bellevue-Castalia Karst Plain, Erie Lake Plain, and Central Ohio Clayey Till Plain, which are described as follows:

- The Bellevue-Castalia Karst Plain is composed of Columbus and Delaware Limestone overlain by thin clay till and wave-planed clay till. Elevations range from 570 to 825 feet above sea level (Ohio Division of Geological Survey, 1998, Physiographic Regions of Ohio).
- The Erie Lake Plain is comprised of Pleistocene-age lacustrine sand, silt, clay, and wave-planed till over Devonian-and Mississippian-age shales and sandstones. Elevations range from 570 to 800 feet above sea level (Ohio Division of Geological Survey, 1998, Physiographic Regions of Ohio).
- The Central Ohio Clayey Till Plain is comprised of clayey, high-lime Wisconsinan-age till from the Erie glacial lobe and lacustrine materials over Lower Paleozoic-age carbonate rocks and shales. Elevations range from 700 to 1,150 feet above sea level (Ohio Division of Geological Survey, 1998, Physiographic Regions of Ohio).

The Study Area is underlain by four bedrock groups within the Devonian bedrock formation, specifically, the Ohio Shale, Plum Brook Shale member, Delaware Limestone and Columbus Limestone (Ohio Division of Geological Survey, 2006, Bedrock Geologic Map of Ohio). The Devonian bedrock formation is comprised of sedimentary rocks, mainly shale and siltstone with some sandstone.

Bedrock geology of the Study Area is illustrated in Figure 3.

3.1 Glacial Drift

Glacial drift depths are considered during the engineering phase of the Project, for subsidence and foundation requirements. Glacial drift is defined as the thickness and distribution of glacially derived sediments and post-glacial stream sediments overlying the buried bedrock surface. Glacial drift depths were calculated by subtracting bedrock-surface elevations from land-surface elevations. The glacial drift thickness within the Study Area varies from zero to 150 feet. The majority of glacial drift throughout the Study Area is between 0 and 20 feet thick.

Glacial drift thickness of the Study Area is depicted in Figure 4.

3.2 Karst Terrain

The dissolution of limestone, dolomite, and gypsum forms a type of landform known as karst. Karst is characterized by the presence of features such as sinkholes, underground drainage through solution-enlarge fracture and caves. Karst landforms and features provide habitat to some of Ohio's rarest fauna. Karst terrain can also be a significant geologic hazard.

The westernmost portions of the Study Area are located near probable karst areas.

4.0 <u>SOILS</u>

A total of 75 soil types are present within the Study Area (Table 4.1, Figure 5). Project soil information was obtained from the Web Soil Survey, an application of the NRCS, and from the Soil Surveys of Huron, Erie, and Seneca Counties, Ohio (USDA, 1988, 1992, and 1977, respectively). The dominant soil series are the

Bennington series (27%), Pewamo series (26%), Blount series (12%), and Cardington series (10%). The remaining soil series accounted for less than 2% of the Study Area. Soil series within the Study Area were identified as primarily low slope.

The Bennington series, approximately 27% of the total Study Area, consists of very deep, somewhat poorly drained soils formed in loamy till of medium lime content. Permeability in the soil series is slow. Most areas are cultivated. Corn, soybeans, small grain, and hay are the principal crops. Some areas are in pasture or woodland. Native vegetation is mixed hardwoods.

The Pewamo series, approximately 26% of the total Study Area, consists of very deep, very poorly drained soils formed in till on moraines, near-shore zones (relict), and lake plains. Slope ranges from 0 to 2 percent. The potential for surface runoff is negligible to low and permeability is moderately slow. Most areas are used to grow corn, soybeans, small grains, and hay.

The Blount series, approximately 12% of the total Study Area, consists of very deep, somewhat poorly drained soils that are moderately deep or deep to dense till. Permeability is slow in the solum and slow or very slow in the dense till. Almost all areas of Blount soils are cultivated. Corn, soybeans, small grain, and meadow are the principal crops. Native vegetation is hardwood forest.

The Cardington series, approximately 10% of the total Study Area, consists of very deep, moderately well drained soils formed in loamy till of medium lime content. Permeability is slow. Most areas are cultivated. Corn, soybeans, small grain, and hay are the principal crops. Some areas are in pasture or woodland. Native vegetation is mixed hardwoods.

The Glynwood series, approximately 2% of the total Study Area, consists of very deep, moderately well drained soils that are moderately deep or deep to dense till. Permeability is slow in the solum and slow or very slow in the dense till. A large proportion is under cultivation, primarily corn, grass-legume hay, oats, soybeans, and wheat. A relatively small proportion is in permanent bluegrass pasture or in woodland. Native vegetation is deciduous forest, principally ash, beech, elm, hickory, oak, and maple.

The Condit series, approximately 2% of the total Study Area, consists of very deep, very poorly drained soils formed in loamy till on ground moraines. Permeability is slow. Most areas are cultivated. Some areas are in pasture or woodland. Corn, soybeans, small grain, and hay are the principal crops. Native vegetation is mixed hardwoods.

The Lobdell series, approximately 2% of the total Study Area, consists of very deep, moderately well drained soils that formed in recent loamy alluvium. Permeability is moderate in the solum and moderate or moderately rapid in the underlying material. Some areas of the soil are used for cultivation, chiefly corn, small grain, hay, and improved pasture. Other areas are in woodland or permanent pasture. The native vegetation consists of deciduous forest, chiefly beech, ash, elm, sugar maple, and sycamore.

The Mermill series, approximately 2% of the total Study Area, consists of very deep, very poorly drained soils on lake plains and till plains. They formed in loamy glaciolacustrine or water-sorted material 51 to 102 cm (20 to 40 inches) thick and in the underlying till. Slope ranges from 0 to 2 percent. Permeability is moderate in the loamy material and slow or very slow in the underlying till. The potential for surface runoff is negligible or very low. Nearly all of the Mermill soils have been drained and are used for cropland.

The Hornell series, approximately 2% of the total Study Area, consists of moderately deep, somewhat poorly drained soils formed in till overlying shale or siltstone. Permeability is moderate in the surface layer and slow or very slow in the subsoil and substratum. Cleared areas are used at low intensity levels for

growing small grains, hay, potatoes, and pasture. Native vegetation is sugar maple, red maple, white ash, black cherry, oak, eastern hemlock, and eastern white pine.

The Millsdale series, approximately 2% of the total Study Area, consists of moderately deep, very poorly drained soils formed in till overlying limestone or dolostone. They are on till plains, lake plains, and terraces. Slope ranges from 0 to 2 percent. The potential for surface runoff is negligible to high. Saturated hydraulic conductivity is moderately high. Permeability is moderately slow. Most areas are cultivated.

The Haskins series, approximately 1% of the total Study Area, consists of very deep, somewhat poorly drained soils that are moderately deep or deep to dense till. Permeability is moderate in the loamy material and slow or very slow in the underlying till. A large proportion is under cultivation, primarily corn, soybeans, wheat, oats, and hay. Some areas are used for tomatoes and sugar beets. Native vegetation is deciduous, mixed hardwood forest.

The Pandora series, approximately 1% of the total Study Area, consists of very deep, poorly drained soils formed in moderately fine textured till. These soils are on nearly level to slightly depressional till plains. Slope ranges from 0 to 2 percent. These soils have frequent, brief surface ponding in late winter or early spring. The potential for surface runoff in negligible to low and permeability is moderately slow. Most areas are cultivated

The Colwood series, approximately 1% of the total Study Area, consists of very deep, poorly drained or very poorly drained soils formed in stratified silty and loamy glaciolacustrine deposits or outwash. Permeability is moderate or moderately slow. Most areas are cultivated. Corn, beans, small grain, and alfalfa hay are the principal crops. A few areas are in truck crops. A small part, including areas that lack adequate drainage, is in permanent pasture or forest. Native vegetation is chiefly red maple, American elm, quaking aspen, alder, and marsh grasses.

The Castalia series, less than 1% of the total Study Area, consists of moderately deep, well drained soils formed in beach or eolian deposits mixed with glacially displaced limestone or dolostone fragments of local origin. Permeability is rapid. This soil is used for pasture, woodland, and idle land. Some areas are used for cropland. Small grains and hay are the principal crops in the cropland areas. Native vegetation is hardwood forest with a dense cover of grasses.

The Chili series, less than 1% of the total Study Area, consists of very deep, well drained soils on outwash plains, terraces, kames, and beach ridges. The potential for surface runoff is negligible to high. Permeability is moderately rapid in the subsoil and rapid in the underlying material. Most areas having less than 12 percent slopes are cleared and used for general farming, specialty crops, or pasture. Principal crops are corn, oats, wheat, and mixed hay. Steeper areas are mostly wooded, mainly to oaks and hickories. Native vegetation was deciduous hardwood forest.

The Dunbridge series, less than 1% of the total Study Area, consists of moderately deep, well drained soils formed in sandy and loamy drift overlying limestone or dolostone bedrock. Permeability is moderately rapid. A large part has been cleared and is cultivated. Corn, soybeans, wheat, and hay are the principal crops. Some areas are in woodland, permanent pasture, or are idle. Native vegetation is deciduous forest.

The Elliott series, less than 1% of the total Study Area, consists of very deep, somewhat poorly drained soils on till plains. Permeability is slow. Most areas are cultivated. Corn, soybeans, small grain, and meadow are the principal crops. Native vegetation is prairie grasses.

The Fries series, less than 1% of the total Study Area, consists of moderately deep, very poorly drained, slowly permeable soils formed in fine textured glacial till over shale bedrock on till plains and lake plains.

Permeability is slow. Most areas are used for cropland. Principal crops are corn, soybeans, and small grains. Native vegetation is marsh grasses and some swamp deciduous forest, principally of elm, red maple, sycamore, and cottonwood.

The Holly series, less than 1% of the total Study Area, consists of very deep, very poorly and poorly drained soils formed in loamy alluvium on flood plains. Some areas of Holly soils have been cleared and used for pasture or cultivation. Many areas are used as natural areas for wetland wildlife habitat. Native vegetation is soft maple, elder, willow, and other trees tolerant of wet sites.

The Jimtown series, less than 1% of the total Study Area, consists of very deep, somewhat poorly drained soils formed in outwash deposits on stream terraces, outwash terraces, outwash plains, and beach ridges. Permeability is moderate in the solum and moderate or moderately rapid in the substratum. Soils are used for row crops, pasture, and woodland. Native vegetation is mixed hardwoods where ash, elm, sugar maple, and beech are dominant species.

The Joliet series, less than 1% of the total Study Area, consists of shallow, poorly drained soils formed in loamy drift overlying limestone or dolostone bedrock. Permeability is moderate. Most areas are in pasture; some areas are used for general farming. Native vegetation is water-tolerant prairie grasses and sedges.

The Kibbie series, less than 1% of the total Study Area, consists of very deep, somewhat poorly drained soils on lake plains, ground moraines, outwash plains, and deltas. Permeability is moderate. Most areas are cultivated. Corn, small grains, beans, and hay are the principal crops. A small part is in permanent pasture or in woodland. Native vegetation is forests of American elm, American beech, red maple, and American basswood.

The Milford series, approximately <1% of the total Study Area, consists of very deep, poorly drained and very poorly drained soils formed in lacustrine sediments. These soils are on glacial lake plains. Slope ranges from 0 to 2 percent. The potential for surface runoff is negligible to low. Permeability is moderately slow. Most areas are used for cultivated crops.

The Millgrove series, approximately <1% of the total Study Area, consists of very deep, very poorly drained soils on outwash plains and terraces. They formed in loamy and gravelly outwash overlying sandy, gravelly, and loamy outwash deposits. Slope ranges from 0 to 2 percent. The potential for surface runoff is negligible to low. Permeability is moderate in the solum and moderately rapid in the underlying material. Nearly all areas are drained and used for cropland.

The Milton series, approximately <1% of the total Study Area, consists of moderately deep, well drained soils formed in loess and the underlying till and residuum from limestone or dolomite. They are on till plains. The potential for surface runoff is negligible to high. Permeability is moderate or moderately slow, but water movement is rapid in the underlying limestone where it is fractured and porous. A large part is cultivated but steep areas remain in woodland or permanent pasture.

The Miner series, approximately <1% of the total Study Area, consists of very deep, very poorly drained soils formed in low-lime till principally derived from acid shale on lake plains and till plains. Slope ranges from 0 to 2 percent. The potential for surface runoff is negligible or low. Frequent long duration ponding occurs during extended wet periods. Cleared areas are used for small grain, soybeans, hay, and pasture with smaller amounts of corn. A large acreage remains in woodland in which elm, soft maple, and ash are the major species. Many areas adjacent to urban areas are in nonagricultural uses.

The Orrville series, approximately <1% of the total Study Area, consists of very deep, somewhat poorly drained soils formed in loamy alluvium on flood plains. Permeability is moderate in the upper solum and

moderate or moderately rapid in the lower solum and underlying material. Slope ranges from 0 to 3 percent. The potential for surface runoff is low. Use is dependent on frequency of flooding and the accessibility. Areas in wider valleys are cropped to corn, soybeans, and hay. Narrow areas and those dissected by old stream channels are in woodland and permanent pasture.

The Oshtemo series, approximately <1% of the total Study Area, consists of very deep, well drained soils formed in stratified loamy and sandy deposits on outwash plains, valley trains, moraines, and beach ridges. Slope ranges from 0 to 55 percent. The potential for surface runoff is negligible to medium. Permeability is moderately rapid in the upper loamy materials and very rapid in the lower sandy materials. Most areas are cultivated.

The Otisville series, approximately <1% of the total Study Area, consists of very deep, excessively drained soils formed in outwash on Wisconsinan age terraces, kames, eskers, and beaches. Permeability is rapid in the solum and rapid or very rapid in the substratum. Slope ranges from 0 to 60 percent. The potential for surface runoff ranges from negligible to low. The soils are mainly idle or used for pasture, hay, corn, and small grain.

The Prout series, approximately <1% of the total Study Area, consists of moderately deep, somewhat poorly drained soils formed in loamy till overlying residuum from shale. These soils are on lake plains and till plains. Slopes range from 0 to 2 percent. Permeability is moderately slow and the potential for surface runoff is negligible to low. Most areas are cultivated.

The Randolph series, approximately <1% of the total Study Area, consists of moderately deep, somewhat poorly drained soils formed in till overlying residuum from limestone or dolostone. They are on till plains. Slope ranges from 0 to 6 percent. The potential for surface runoff is negligible to medium and permeability is moderately slow. Most areas are used as cropland.

The Rawson series, approximately <1% of the total Study Area, consists of very deep, moderately well drained soils that formed in loamy sediments and till on till plains, outwash plains and lake plains. They are moderately deep or deep to dense till. Slope ranges from 0 to 12 percent. Potential for surface water runoff is low to very high. Permeability is moderate in the loamy sediments, moderately slow in the 2B horizons, and slow or very slow in the underlying dense till. Nearly all areas are cultivated.

The Rimer series, approximately <1% of the total Study Area, consists of very deep, somewhat poorly drained soils that are deep or moderately deep to dense till. These soils formed in sandy glaciolacustrine deposits and in the underlying till. They are on lake plains, wave-worked till plains, till-floored lake plains, and till plains. Slope ranges from 0 to 6 percent. The potential for surface runoff is low to high. Permeability is rapid in the sandy material, slow in the lower part of the subsoil, and slow or very slow in the substratum. Most areas of Rimer soils are cultivated.

The Ritchey series, approximately <1% of the total Study Area, consists of shallow, well drained soils formed in till over limestone or dolostone bedrock on till plains. Slope ranges from 0 to 60 percent. Potential for surface runoff ranges from negligible to high and permeability is moderate. Some areas are cultivated and the remainder is used as pasture or woodland.

The Shoals series, approximately <1% of the total Study Area, consists of very deep, somewhat poorly drained soils that formed in alluvium on flood plains. Slope ranges from 0 to 2 percent. Potential for surface runoff is negligible or very low. Permeability is moderate in the solum and moderate or moderately rapid in the substratum. These soils are subject to rare to frequent flooding. Mainly used to grow corn and soybeans, but some areas are used for forest or pasture.

The Spinks series, approximately <1% of the total Study Area, consists of very deep, well drained soils formed in sandy eolian or outwash material. They are on dunes, moraines, till plains, outwash plains, beach ridges, and lake plains. Slope ranges from 0 to 70 percent. Potential for surface runoff is negligible to medium depending on slope gradient. Permeability is moderately rapid. Spinks soils are used mostly for hay production or pasture.

The Tioga series, approximately <1% of the total Study Area, consists of very deep, well drained soils formed in alluvium on higher positions in flood plains. Permeability is moderate or moderately rapid in the solum and moderate to rapid in the underlying material. Slope ranges from 0 to 3 percent. The potential for surface runoff is negligible to low. Most areas have been cleared and are used for growing corn, small grains, hay, or vegetables. Woodlots contain maple, ash, red oak, and elm.

The Tiro series, approximately <1% of the total Study Area, consists of very deep, somewhat poorly drained soils formed in silty lacustrine deposits, a thin layer of loamy water-sorted material, and the underlying loamy till on water modified till plains. Slope ranges from 0 to 6 percent. The potential for surface runoff is low to high depending upon slope gradient. Permeability is moderate in the upper part of the solum and moderately slow or slow in the lower part. Most areas have been cleared and are used for cropland or permanent pasture.

The Tuscola series, approximately <1% of the total Study Area, consists of very deep, moderately well drained soils on lake plains and deltas. They formed in stratified loamy and silty lacustrine deposits. Slope ranges from 0 to 12 percent. Potential for surface runoff is negligible to medium and permeability is moderate. Most areas are cultivated.

Туре	Map Unit Description	Acres	Percentage of Area	Hydric Rating	Wind Erodibility Group
AdD2	Alexandria silty clay loam, 12 to 18 percent slopes, eroded	13.56	<1%	5	6
BgA	Bennington silt loam, 0 to 2 percent slopes	5614.9	24	8	6
BgB	Bennington silt loam, 2 to 6 percent slopes	598.97	3	6	6
BkA	Bixler loamy fine sand, 0 to 2 percent slopes	48.64	<1%	4	2
Ble1A1	Blount silt loam, end moraine, 0 to 2 percent slopes	575.13	3	6	6
Ble1B1	Blount silt loam, end moraine, 2 to 4 percent slopes	531.62	2	6	6
Blg1A1	Blount silt loam, ground moraine, 0 to 2 percent slopes	1184.10	5	9	6
Blg1B1	Blount silt loam, ground moraine, 2 to 4 percent slopes	466.54	2	9	6
CaA	Cardington silt loam, 0 to 2 percent slopes		<1%	0	5
CcA	Castalia very channery loam, 0 to 2 percent slopes	78.81	<1%	5	6
СсВ	Castalia very channery loam, 2 to 6 percent slopes	2.51	<1%	3	6
СдВ	Castalia channery silt loam, 2 to 6 percent slopes	2.23	<1%	3	5
ChB	Chili loam, loamy substratum, 2 to 6 percent slopes	18.78	<1%	0	5

Table 4.1Soils within the Study Area

Туре	Map Unit Description	Acres	Percentage of Area	Hydric Rating	Wind Erodibility Group
Cm	Colwood silt loam	124.86	<1%	99	5
CmA	Colwood loam, 0 to 1 percent slopes	7.90	<1%	90	5
CnA	Colwood silt loam, bedrock substratum, 0 to 1 percent slopes	138.88	<1%	90	5
Со	Condit silty clay loam	486.24	2	98	6
Crd1B1	Cardington silt loam, 2 to 6 percent slopes	1473.52	6	7	5
Crd1C2	Cardington silt loam, 6 to 12 percent slopes, eroded	104.71	<1%	4	6
DuA	Dunbridge loamy sand, 0 to 2 percent slopes	8.66	<1%	0	2
EcA	Elliott silt loam, bedrock substratum, 0 to 2 percent slopes	108.96	<1%	10	6
EnA	Elnora loamy fine sand, 1 to 3 percent slopes	10.07	<1%	1	2
Fr	Fries silty clay loam	92.13	<1%	93	6
FrA	Fries silty clay loam, 0 to 1 percent slopes	11.15	<1%	90	6
Gwd5C2	Glynwood clay loam, 6 to 12 percent slopes, eroded	68.63	<1%	0	6
Gwe5B2	Glynwood clay loam, end moraine, 2 to 6 percent slopes, eroded	295.90	1	6	6
Gwg1B1	Glynwood silt loam, ground moraine, 2 to 6 percent slopes	3.47	<1%	6	6
Gwg5B2	Glynwood clay loam, ground moraine, 2 to 6 percent slopes, eroded	171.70	<1%	6	6
HkA	Haskins loam, 0 to 2 percent slopes	326.3	1	15	5
Но	Holly silt loam, frequently flooded	17.2	<1%	92	6
НрВ	Hornell loam, 2 to 6 percent slopes	2.02	<1%	10	6
HsA	Hornell silty clay loam, 0 to 2 percent slopes	485.74	2	10	6
JtA	Jimtown loam, 0 to 2 percent slopes	117.69	<1%	15	5
JuA	Joliet silt loam, 0 to 1 percent slopes	157.7	<1%	95	4L
KbA	Kibbie fine sandy loam, 0 to 2 percent slopes	10.79	<1%	10	3
Ln	Lobdell silt loam, rarely flooded	65.51	<1%	5	6
Lo	Lobdell silt loam, frequently flooded	353.83	2	6	6
MeA	Mermill silty clay loam, 0 to 1 percent slopes	421.8	2	90	6
MfA	Milford silty clay loam, 0 to 1 percent slopes	91.02	<1%	95	4
MgA	Millgrove loam, 0 to 1 percent slopes	4.65	<1%	90	6
MkA	Millsdale silty clay loam, 0 to 1 percent slopes	90.24	<1%	90	6
Mm	Millsdale silty clay loam	153.03	<1%	95	6
MmA	Millsdale silty clay loam, 0 to 1 percent slopes	505.83	2	90	6
MnA	Milton silt loam, 0 to 2 percent slopes	97.51	<1%	0	6
MnB	Milton silt loam, 2 to 6 percent slopes	136.78	<1%	0	6
MsA	Miner silt loam, shale substratum, 0 to 2 percent slopes	60.61	<1%	100	6
Or	Orrville silt loam, frequently flooded	46.1	<1%	3	5
OsB	Oshtemo loamy sand, 0 to 6 percent slopes	85.38	<1%	0	2
OtB	Otisville gravelly sandy loam, 2 to 6 percent slopes	13.5	<1%	2	5
Ра	Pandora silty clay loam	271.66	1	95	6

Туре	Map Unit Description	Acres	Percentage of Area	Hydric Rating	Wind Erodibility Group
Pb	Pandora silty clay loam	22.23	<1%	95	6
PcA	Pewamo silty clay loam, 0 to 1 percent slopes	2734.81	12	90	6
Pk	Pits, quarry	349.51	2	0	-
PkA	Pewamo silty clay loam, 0 to 1 percent slopes	66.00	<1%	91	6
Pm	Pewamo silty clay loam	3295.44	14	98	6
PuA	Prout silt loam, 0 to 2 percent slopes	69.43	<1%	8	6
RaA	Randolph silt loam, 0 to 2 percent slopes	38.95	<1%	10	6
RcA	Rawson sandy loam, 0 to 2 percent slopes	2.56	<1%	5	3
RcB	Rawson sandy loam, 2 to 6 percent slopes	8.81	<1%	5	3
RgA	Rimer loamy fine sand, 0 to 2 percent slopes	3.37	<1%	5	2
RhA	Ritchey loam, 0 to 2 percent slopes	101.94	<1%	0	6
RhB	Ritchey loam, 2 to 6 percent slopes	73.87	<1%	0	6
Sd	Shoals silt loam, 0 to 2 percent slopes, frequently flooded	7.86	<1%	8	6
Sh	Shoals silt loam, 0 to 2 percent slopes, frequently flooded	78.29	<1%	8	6
SpB	Spinks loamy fine sand, 2 to 6 percent slopes	88.52	<1%	0	2
SrB	Spinks loamy fine sand, 2 to 6 percent slopes	0.53	<1%	0	2
Tg	Tioga loam, occasionally flooded	157.21	<1%	0	5
TrA	Tiro silt loam, 0 to 2 percent slopes	10.04	<1%	8	5
TrB	Tiro silt loam, 2 to 6 percent slopes	5.96	<1%	3	5
TuA	Tuscola fine sandy loam, 0 to 2 percent slopes	11.95	<1%	10	3
TuB	Tuscola fine sandy loam, 2 to 6 percent slopes	6.81	<1%	0	3
Ud	Udorthents, loamy	6.43	<1%	0	-
UdB	Udorthents, loamy, 0 to 6 percent slopes	43.07	<1%	0	-
W	Water	45.12	<1%	0	

4.2 Highly Erodible Soils / Steep Slopes

Based on a review of the NRCS Web Soil Survey, the Study Area soils are not classified as highly erodible soils, all with Wind Erodibility Group (WEG) ratings between 2 and 6 (1 being highly erodible; 8 being least erodible). Additionally, no soil types within the Study Area are found to have 18% slopes or greater.

4.3 Hydric Soils

Approximately one third of the Study Area is located in areas of predominantly hydric soils, as listed in Table 4.1 above. The poor draining qualities of hydric soils combined with local flat or bowl-shaped topography make these locations predisposed to containing wetland areas.

5.0 BIOLOGICAL / CONSERVATION

Information on biological resources in the Study Area and the area within 100-feet of potential construction impact was obtained from a variety of sources, including observations during field surveys, and publicly available data from federal and state agencies as outlined above. Based on the current land use, species

present in the vicinity of the Study Area and the area within 100-feet of potential construction impact are primarily associated with agricultural fields, pasture grasslands, isolated wooded lots, and remote wetland areas.

5.1 Vegetative Community

Vegetative communities within the Study Area and the area within 100-feet of potential construction impact were characterized based on the analysis of aerial photography and field surveys completed during fall 2018 and winter 2019. The field survey confirmed the land use analysis in Section 2.0 in that the Study Area is comprised predominantly of agricultural land with small patches of forestland and areas of disturbed/developed land. Successional communities (e.g., old fields and shrub land) do not appear to comprise a significant portion of the Study Area. All of the major plant communities found within the Study Area are common to Ohio. Brief descriptions of each of the vegetative communities in the Study Area are provided below.

5.1.1 Agricultural Land

The majority of the Study Area and the area within 100-feet of potential construction impact is used for agricultural production. Soy beans and corn were observed as the dominant crops on the agricultural lands within the Study Area. During the winter months, fields may be planted in a cover crop such as winter wheat (*Triticum aestivum*) to control erosion and restore soil nutrients. Most agricultural fields within the Study Area are currently active or recently fallowed.

5.1.2 Forestland

Forestland observed within the Study Area and the area within 100-feet of potential construction impact included windrows and isolated woodlots. Windrows were comprised of narrow forested strips between cultivated areas, and likely served as property boundaries historically. Typically ranging between 30 and 60 feet in depth, windrows occasionally contained man-made ditches which may have been originally constructed to improve drainage along adjacent agricultural fields. The woodlots observed within the Study Area ranged in size, but were often surrounded by agricultural land along at least two sides. Larger woodlots are likely utilized for recreational purposes.

Both the windrows and woodlots have a dominance of weedy vegetation along the edges including blackberry (*Rubus* spp.), and poison ivy (*Toxicodendron radicans*). Mature trees along windrows and inside of the woodlots included: maples (*Acer* spp.), oaks (*Quercus* spp.), American elm (*Ulmus americana*), American beech (*Fagus grandifolia*), American sycamore (*Platanus occidentalis*) and hickories (*Carya* spp.).

5.1.3 Disturbed / Developed

Disturbed/developed lands are found in low densities throughout the Study Area and within 100 feet of proposed disturbance. These areas are characterized by the presence of buildings, parking lots, paved and unpaved roads, and lawns/landscaped areas. Vegetation in these areas is generally either lacking or highly managed including ornamental plantings and managed lawns of tall fescue (*Festuca arundinacea*). In areas that are not intensely managed, weedy herbaceous species such as dandelion (*Taraxacum officinale*), thistle (*Cirsium vulgare*), ragweed (*Ambrosia artemesiifolia*), clover (*Trifolium* spp.), and common purslane (*Portulaca oleracea*) were observed.

5.2 Wetlands and Waterbodies

MSG completed a desktop review of wetlands using NWI (USFWS, 2018) and NHD (USGS, 2018) data prior to a field survey of the Study Area and the area within 100-feet of potential construction impact. A field survey was also completed, the results of which are presented below and in the Surface Water Delineation Report included as Appendix C.

5.2.1 Navigable Waters

There are no navigable waterways within the Study Area and the area within 100-feet of potential construction impact (USACE, 2018). The Study Area is located within the Huron-Vermilion and Sandusky Drainage Basins (Hydrologic Unit Code [HUC]-8), which flow into Lake Erie via the Huron, Sandusky, and Vermilion Rivers. The nearest navigable waterway to the Study Area is the Huron River, which is located approximately two miles to the east. The Huron River is navigable from the mouth at Lake Erie to Milan, Ohio, approximately 10 miles upstream. However, tributaries to the Huron River are located within the Study Area including Frink Run, Megginson Creek, Mud Run, Seymour Creek and Slate Run.

5.2.2 Floodplains

The majority (90%) of the Study Area and the area within 100-feet of potential construction impact is outside areas designated as 100-Year Floodplains by Federal Emergency Management Agency (FEMA) Flood Insurance Maps (FEMA, 2018). The portions of the Study Area located within 100-Year Floodplains are depicted on Figure 7.

5.2.3 Surface Water Delineation

A total of 129 wetlands, 115 streams, and 24 waterbodies were delineated within the Study Area during field surveys, totaling approximately 577 acres. Based on the current design, it is anticipated that construction of the facility will results in 0.142 acres of permanent impacts to wetlands, 1.983 acres of temporary impacts to wetlands, 0.146 acres of permanent impacts to streams, 0.631 acres of temporary impacts to streams and 0.001 acre temporary impacts to waterbodies. As currently designed, facility impacts from the construction of this project can be authorized under NWP 12.

5.2.4 Ohio EPA 401 Water Quality Certification (WQC)

The 401 WQC and IWP Section of the Ohio EPA reviews applications for projects that propose the placement of fill or dredged material into WOTUS as well as isolated waterbodies and wetlands that do not have a significant nexus to a WOTUS, which are considered waters of Ohio (as defined under OAC Rule 3745-1-02 (b)(77)[1]). Areas where projects are eligible, ineligible, or may be eligible to use a NWP for 401 coverage are identified in OEPA's Stream Eligibility Map (Figure 8). The Study Area has proposed infrastructure in all three water quality areas; however, impacts are limited to Eligible and Possibly Eligible areas as follows:

1. Eligible Areas: The majority of the Study Area (approximately 16,779 acres) falls within the "Eligible Area" (Figure 8); therefore, as long as the Study Area meets the

Ohio 401 Certification Special Limitation and Conditions described below, no individual WQC is needed.

- Possibly Eligible Areas: Some of the Study Area (approximately 6,168 acres) is within area designated as Possibly Eligible (depicted as yellow in Figure 8); however, all stream impacts in this area will be avoided by utilizing horizontal boring methods for stream crossings. Therefore, as long as the Study Area meets the Ohio 401 Certification Special Limitation and Conditions described below, no individual WQC is needed.
- 3. Ineligible Areas: Some of the Study Area (approximately 77 acres) is within area designated as Ineligible (depicted as purple in Figure 8); however, there are no impacts planned to streams in this designation area.

The 2017 NWP 12 Ohio 401 Certification special limitations and conditions are:

- 1. Ohio State certification general limitations and conditions apply to this NWP.
- 2. Except for maintenance activities authorized under this NWP, individual 401 WQC is required for use of this NWP when temporary or permanent impacts are proposed on or in any of the following waters:
 - a. Category 1 or 2 wetlands when impacts exceed 0.50 acre;
 - b. streams located in ineligible areas as depicted in the Geographic Information System (GIS) NWPs Stream Eligibility Map (see Figure 8: OEPA Stream Eligibility (2017) for the Study Area);
 - c. streams located in possibly eligible areas as depicted in the GIS NWPs Stream Eligibility Map determined to be high quality through one of the NWP eligibility flowcharts;
 - d. State wild and scenic rivers;
 - e. national wild and scenic rivers; and
 - f. general high quality water bodies which harbor Federally- and State-listed threatened or endangered aquatic species.
- 3. Temporary or permanent impacts to Category 3 wetlands are limited to less than 0.10 acre for activities involving the repair, maintenance, replacement, or safety upgrades to existing infrastructure that meets the definition of public need. OEPA will make the determination if a project meets public need during the ORAM verification process.
- 4. Temporary or permanent impacts as a result of stream crossings shall not exceed a total of three per stream mile per stream.
- 5. For an individual stream, while the repair or replacement of an existing culvert of any length is not limited by this certification, any culvert extension shall not exceed 300 linear feet (l.f.)
- All hydric soils up to 12 inches in depth within wetlands shall be stockpiled and replaced as the topmost backfill layer. Best management practices, such as silt fencing and soil stabilization, shall be implemented to reduce erosion and sediment runoff into adjacent wetlands.
- 7. Buried utility lines shall be installed at a 90-degree angle to the stream bank to the maximum extent practicable. When a 90-degree angle is not possible, the length of

any buried utility line within any single water body shall not exceed twice the width of that water body at the location of the crossing.

8. The total width of any excavation, grading or mechanized clearing of vegetation and soil shall not exceed a maximum of 50 feet.

If the Project cannot meet the 2017 NWP 12 Ohio 401 Certification special limitations and conditions, then an Individual 401 WQC Permit will need to be obtained.

5.3 Wildlife Resources

Wildlife resources such as, birds, bats, terrestrial, and aquatic organisms have the potential to occur within the Study Area and the area within 100-feet of potential construction impact. Generally, these species will be adapted to the human disturbance associated with agricultural activities prominent within the Study Area. Typical wildlife species that were observed during field surveys included white-tailed deer and common woodland and grassland songbirds.

Major species, as defined by Ohio Administrative Code (OAC) Chapter 4906-17, are those species with recreational or commercial value, or are listed as Federal- or State-listed threatened or endangered species. A discussion of potential rare, threatened, and endangered (RTE) species is found below in Section 5.4. Common game species in northern Ohio include cottontail rabbit (*Sylvilagus floridanus*), northern bobwhite (*Colinus virginianus*), Canada goose (*Branta canadensis*), gray and fox squirrel (*Sciurus carolinensis, Sciurus niger*), mallard (*Anas platrhynchos*) and other ducks, mourning dove (*Zenaida macroura*), ring-necked pheasant (*Phasianus colchicus*), ruffed grouse (*Bonasa umbellus*), white-tailed deer (*Odocoileus virginianus*), and wild turkey (*Meleagris gallopavo*). Other than the agricultural crops and livestock in the area, no commercially valuable species are anticipated to be present in the Study Area.

Results of the literature review pertaining to for birds, raptors and bald eagles, and bats in relation to the Study Area are provided below.

5.3.1 Birds

The Audubon Society designates Important Bird Areas (IBA) around the globe as places of international significance for the conservation of birds and other biodiversity. IBAs include sites for breeding, wintering, and/or migrating birds. IBAs are afforded no special regulatory protection other than that provided by its current land use or ownership. IBAs range from a few acres to thousands of acres in size. There is one recognized IBA, Lake Erie Central Basin, located adjacent to the north Study Area boundary (Figure 6). This IBA provides open water habitat for migrating land birds. As discussed above, the Study Area is primarily agricultural in nature, considered low quality habitat, and therefore is not expected to have any adverse effects to the bird populations using this area.

MSG also reviewed eBird, which provides a real-time online program that aggregates basic bird data provided by recreational and professional bird watchers (https://ebird.org/home). The program was launched in 2002 by the Cornell Lab of Ornithology and National Audubon Society. An eBird "hotspot" is a public birding location created by eBird users, where multiple birders can enter data into the same shared location. Hotspots often present unique areas where many species, or unique species, may be observed at certain times of year and thus are useful in characterizing the bird

community at that location; however, a "hotspot" does not necessarily have to be an outstanding location for birds or birding – the goal is to have a set of public locations that people regularly visit for birding, somewhat regardless of how amazing they are for birds. eBird "hotspots" are afforded no special regulatory protection other than that provided by the current land use or ownership at the location. Eight eBird hotspots were identified near the Study Area (Figure 6 of Appendix A), and each is described as follows:

- 1. Attica Reservoir is located approximately three miles from the southwest corner of the Study Area. Thirty-six (36) bird species have been identified in this area, none are designated as state listed.
- 2. Bellevue Reservoir #3 is located approximately 0.5 mile west of the western Study Area. Seventy-four (74) bird species have been identified in this area, including one state-listed species of concern (great egret, *Ardea alba*).
- 3. Bellevue Reservoir #4 is located approximately 0.5 mile west of the western Study Area. Seventy-eight (78) bird species have been identified in this area, including one state-listed species of concern (Great Egret).
- 4. Bellevue Reservoir #5 is located immediately east of the eastern Study Area. Sixtyeight (68) bird species have been identified in this area, including one state-listed endangered species (Northern harrier, *Circus hudsonius*) and one state-listed species of special interest (American Black Duck, *Anas rubripes*).
- 5. Billman Road Skypools is located approximately one mile west of the western Study Area. Sixty-five (65) bird species have been identified in this area, including one state-listed species of concern (Great Egret).
- 6. Erie Sand Barrens Nature Preserve is located approximately 1.4 mile north of the northern Study Area. One hundred and two (102) bird species have been identified in this area, none are designated as state listed.
- 7. Monroeville Reservoir is located approximately one mile east of the eastern Study Area. Eighteen (18) bird species have been identified in this area, none are designated as state listed.
- 8. OH 269 Skypools is located approximately 1.8 miles west from the western Study Area. Two (2) bird species have been identified in this area, none are designated as state listed.

No Federal- or State-listed bird species were observed during the field efforts completed by MSG. It is likely that many of the bird species would opt for higher quality habitat in the region, such as the IBAs listed above for roosting, foraging and breeding.

5.3.2 Bats

Of the 46 listed bat species in the United States, nine potentially occur in the Study Area based on the Ohio Department of Natural Resources (ODNR) Erie, Huron and Seneca County listings:

Indiana bat – Myotis sodalis (Federally-listed and State-listed endangered)

- Northern-long-eared bat *Myotis septentrionalis* (Federally-listed and State-listed threatened)
- Silver-haired bat Lasionycteris noctivagans (Ohio species of concern)
- Big Brown bat *Eptesicus fuscus* (Ohio species of concern)
- Red bat Lasiurus borealis (Ohio species of concern)
- Hoary bat Lasiurus cinereus (Ohio species of concern)
- Little brown bat Myotis lucifugus (Ohio species of concern)
- Tri-colored bat Perimyotis subflavus (Ohio species of concern)
- Evening bat Nycticeius humeralis (Ohio special interest)

MSG observed no evidence of bat activity during the ecological assessment field surveys; however, these were not the purpose of these surveys. Acoustic and mist-netting surveys were completed separately to evaluate bat species composition, activity and location of important bat resources and are appended in full to the OPSB application.

5.3.3 Bald Eagles and Raptors

The bald eagle is protected under the Bald and Golden Eagle Protection Act (BGEPA). This Act was passed in 1940 to prevent the extinction of the bald eagle and was amended in 1962 to include protection of golden eagles. In addition, the Migratory Bird Treaty Act (MBTA) establishes provisions for the protection of migratory birds that are not necessarily threatened or endangered, which includes all raptors likely to occur in the Study Area. One State-listed endangered raptor, the northern harrier, was identified as potentially occurring in Huron and Erie Counties.

MSG observed no evidence of bald eagle or other raptor species nests or activity during the ecological assessment field surveys; however, these were not the purpose of these surveys. Raptor use and nest surveys were completed separately to evaluate raptor use of the Project area and are appended in full to the OPSB application.

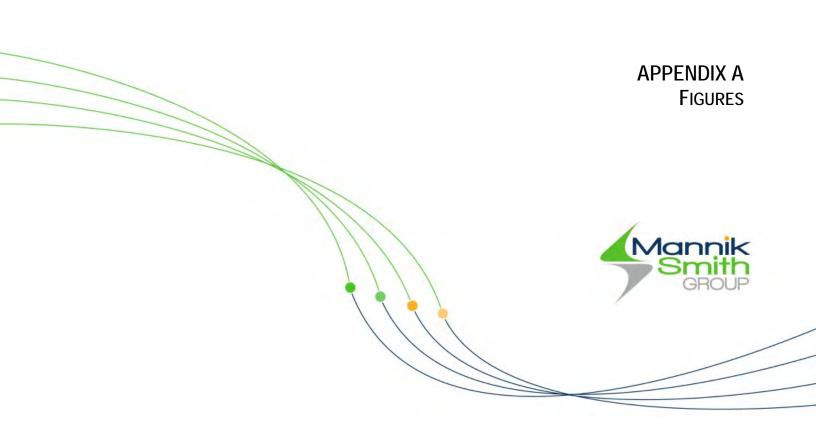
5.4 Rare, Threatened, and Endangered Species

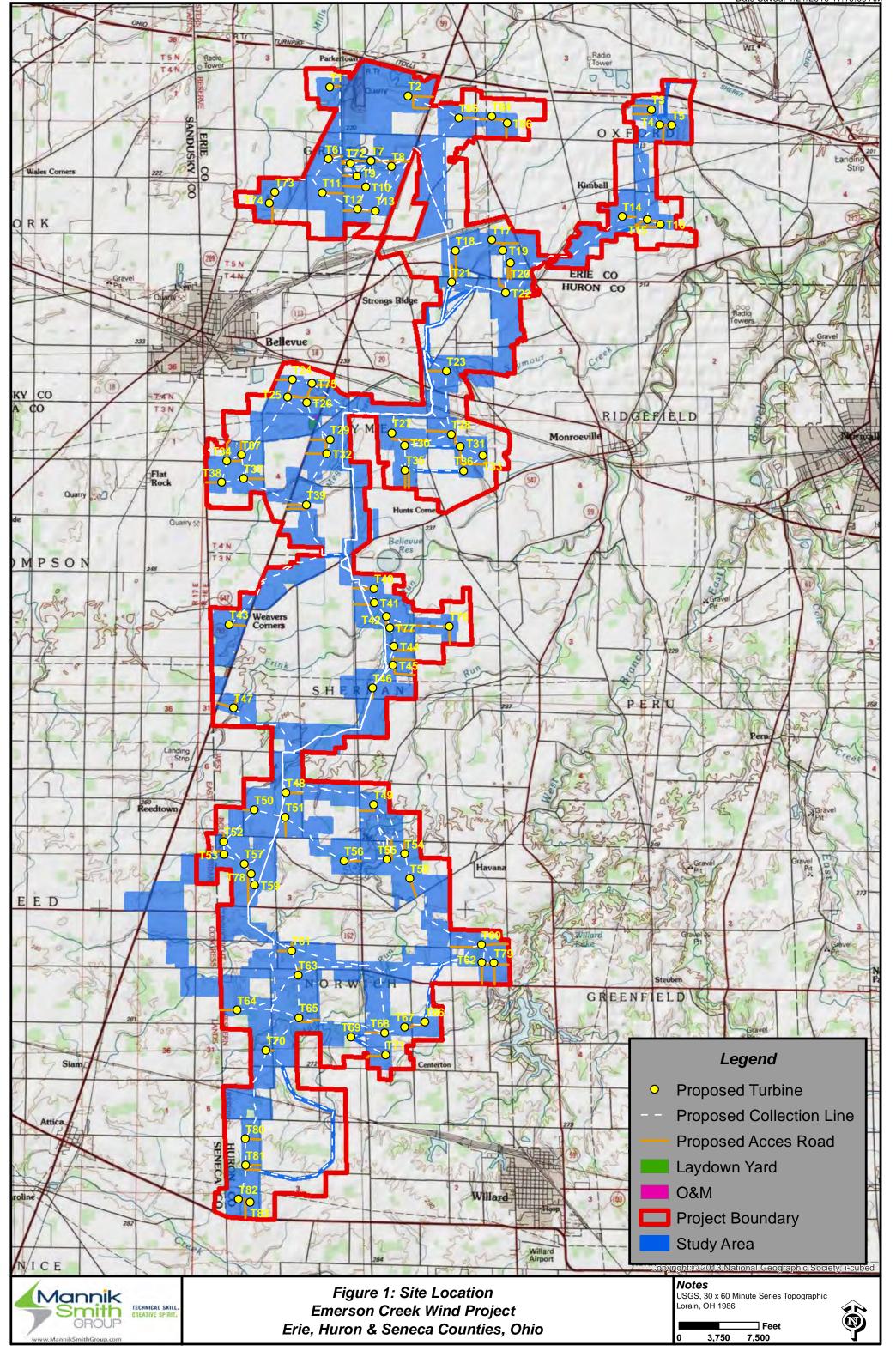
The federal Endangered Species Act (ESA) and related state regulations (Ohio Rev. Code. §1518) were designed to protect and recover imperiled species and the ecosystems upon which they depend. Under these regulations, it is unlawful to "take" a listed animal without a permit. Take is defined as "to harass, harm, pursue, hunt, shoot, wound, kill, trap, capture, or collect or attempt to engage in such conduct." Significant changes to the habitats of protected species can be considered "harm" to the species and may require special permitting from the USFWS and/or the state of Ohio. Significant changes to the habitats of protected species is not expected to occur from the construction and operation of the Facility.

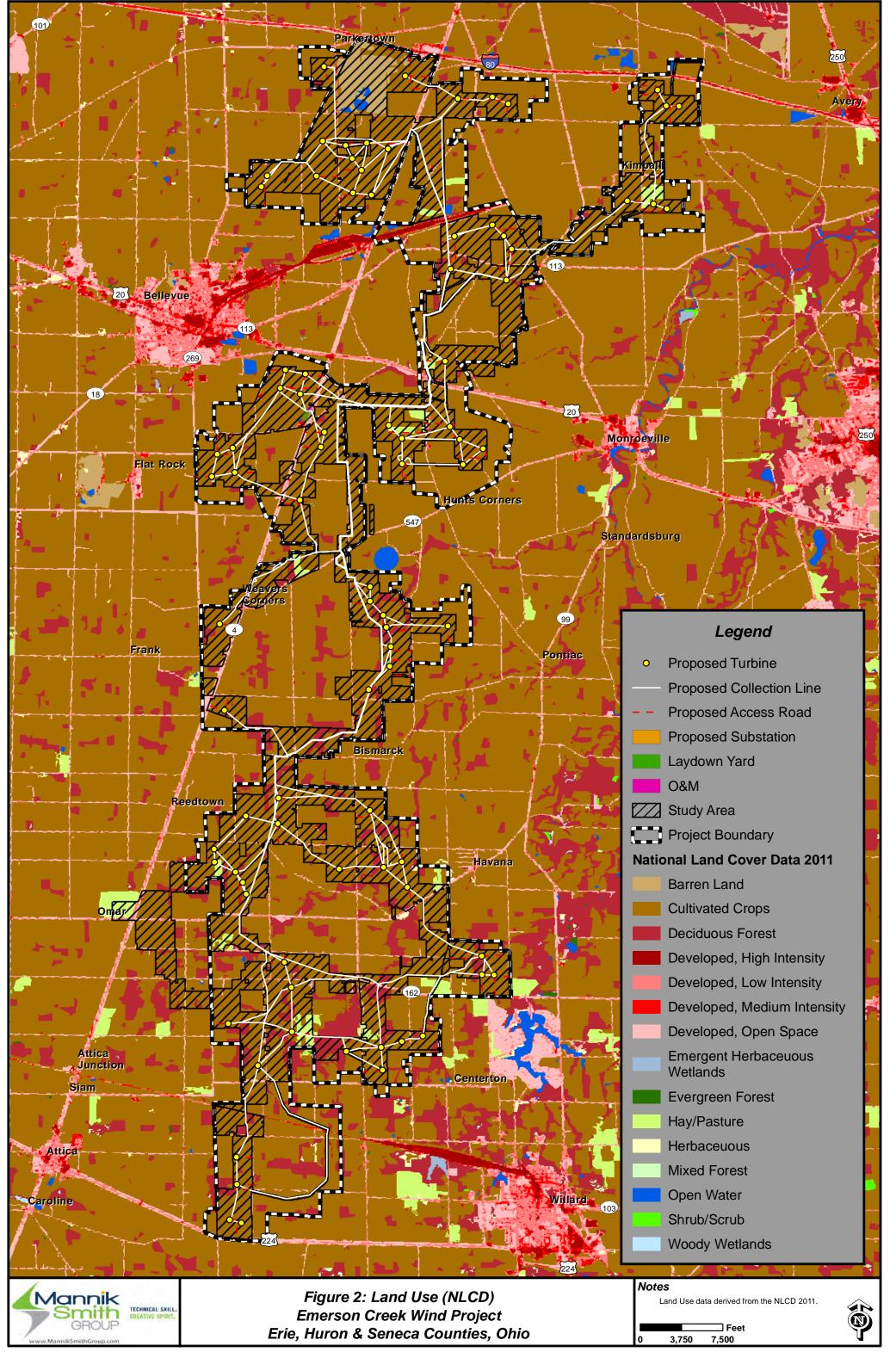
5.4.1 Federal Listings

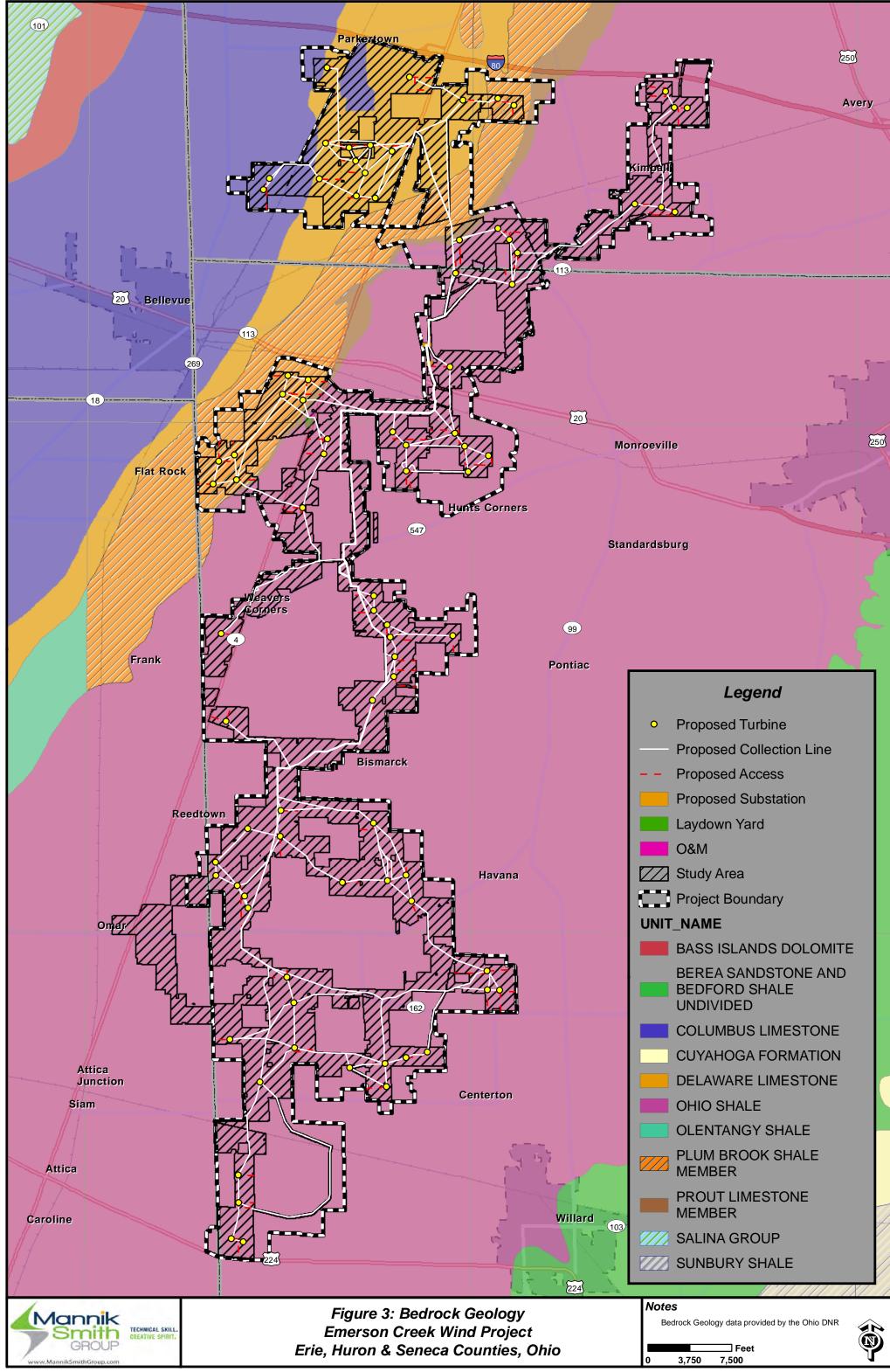
The USFWS distributes information on federally-listed species by county. The distribution lists for Erie, Huron and Seneca Counties, Ohio (USFWS, updated January 29, 2018) included one endangered bat species, one threatened bat species, one threatened snake species, two endangered bird species, one threatened bird species and one threatened plant species (Table 5.1 below).

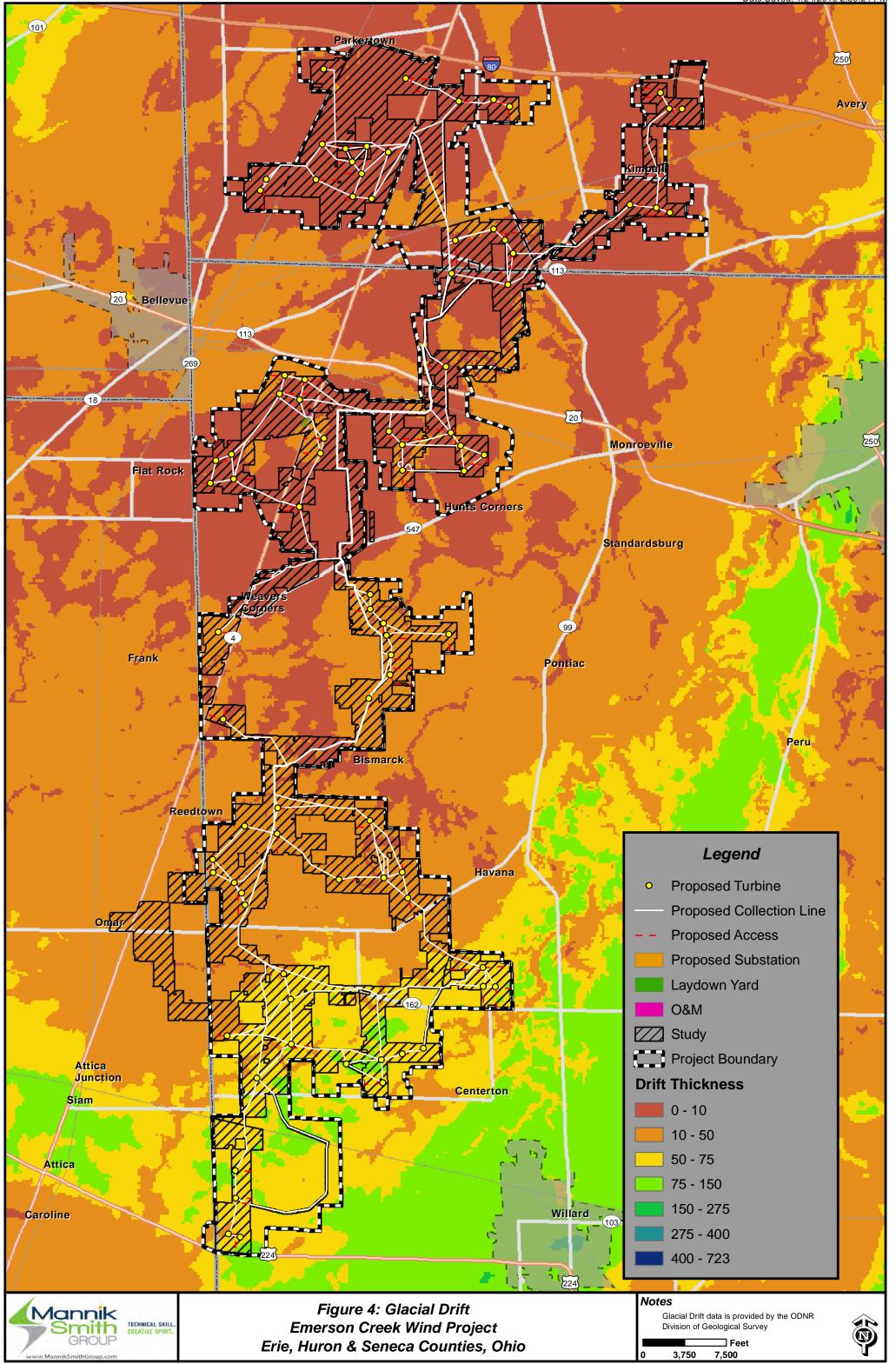
Candidate Species – Erie, Huron and Seneca Counties				
County	Species	Federal Status	Habitat	
Erie Huron Seneca	Indiana Bat (<i>Myotis sodalis)</i>	Endangered	Hibernates in caves and mines; Maternity and foraging habitat includes small stream corridors with well-developed riparian woods and upland forests	
	Northern Long-Eared Bat (<i>Myotis septentrionalis)</i>	Threatened	Hibernates in caves and mines - swarming in surrounding wooded areas in autumn. During late spring and summer roosts and forages in upland forests.	
Erie Huron	Eastern Massasauga (<i>Sistrurus catenatus</i>)	Threatened	Wetlands and adjacent uplands	
	Kirtland's warbler (<i>Dendroica kirtlandii</i>)	Endangered	Kirtland's warblers are known to migrate along the Lake Erie shoreline counties (Ashtabula, Cuyahoga, Erie, Lake, Lorain, Lucas, Ottawa, Sandusky counties) through Ohio in late April- May and late August-early October.	
Erie	Lakeside daisy <i>(Hymenoxys herbacea</i>) (Formerly <i>H. acaulis) var. glabra</i>)	Threatened	Dry rocky prairies; limestone rock surfaces including outcrops and quarries	
	Piping plover (Charadrius melodus)	Endangered	Beaches along shorelines of the Great Lakes	
	Red Knot (Rufa) Calidris canutus rufa	Threatened	Present in Ohio during spring and fall migration	

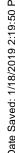

Table 5.1 USFWS Ohio County Distribution of Federally-Listed Threatened, Endangered, Proposed, and Candidate Species – Erie, Huron and Seneca Counties

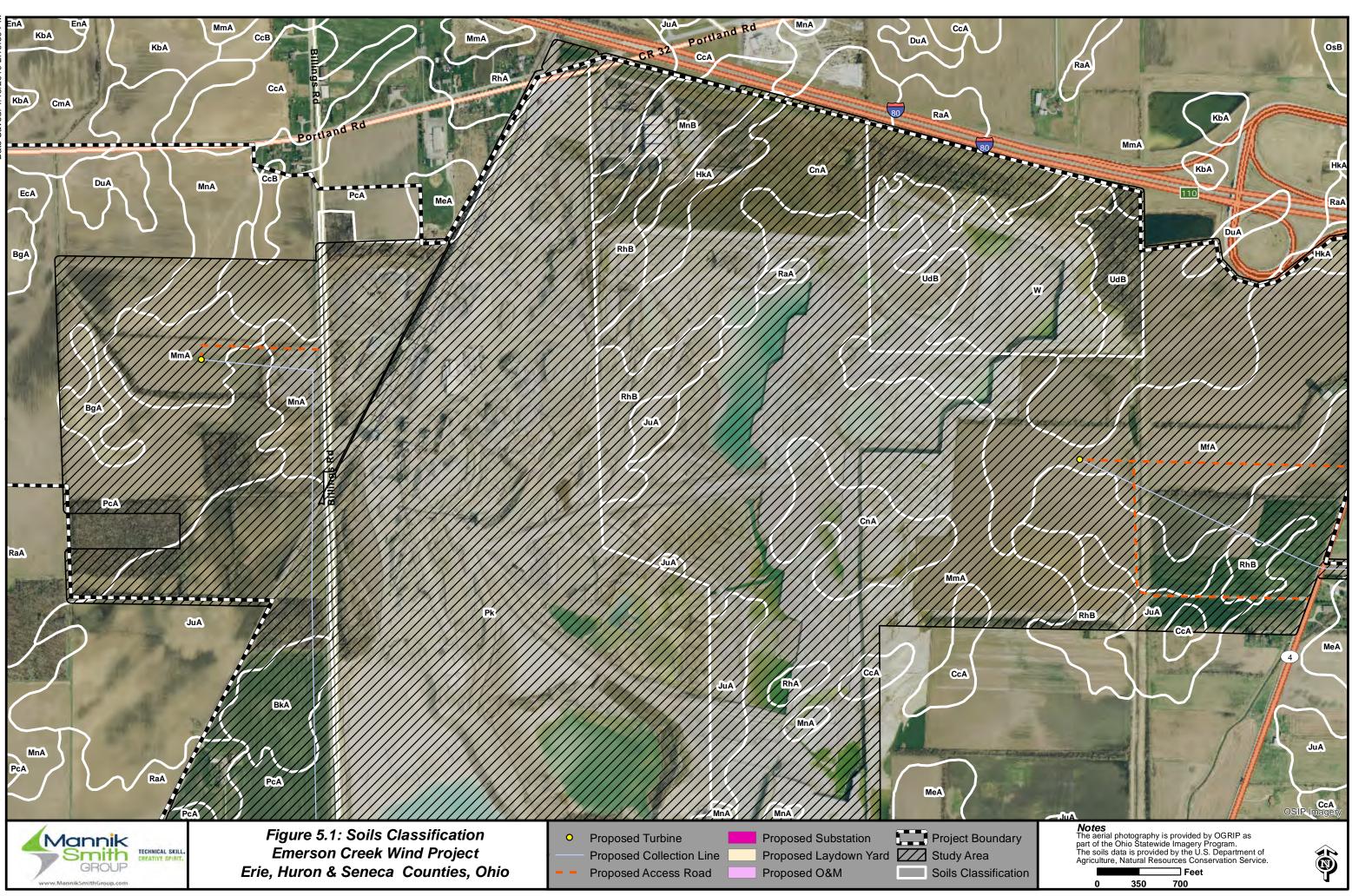

5.4.2 State Listings

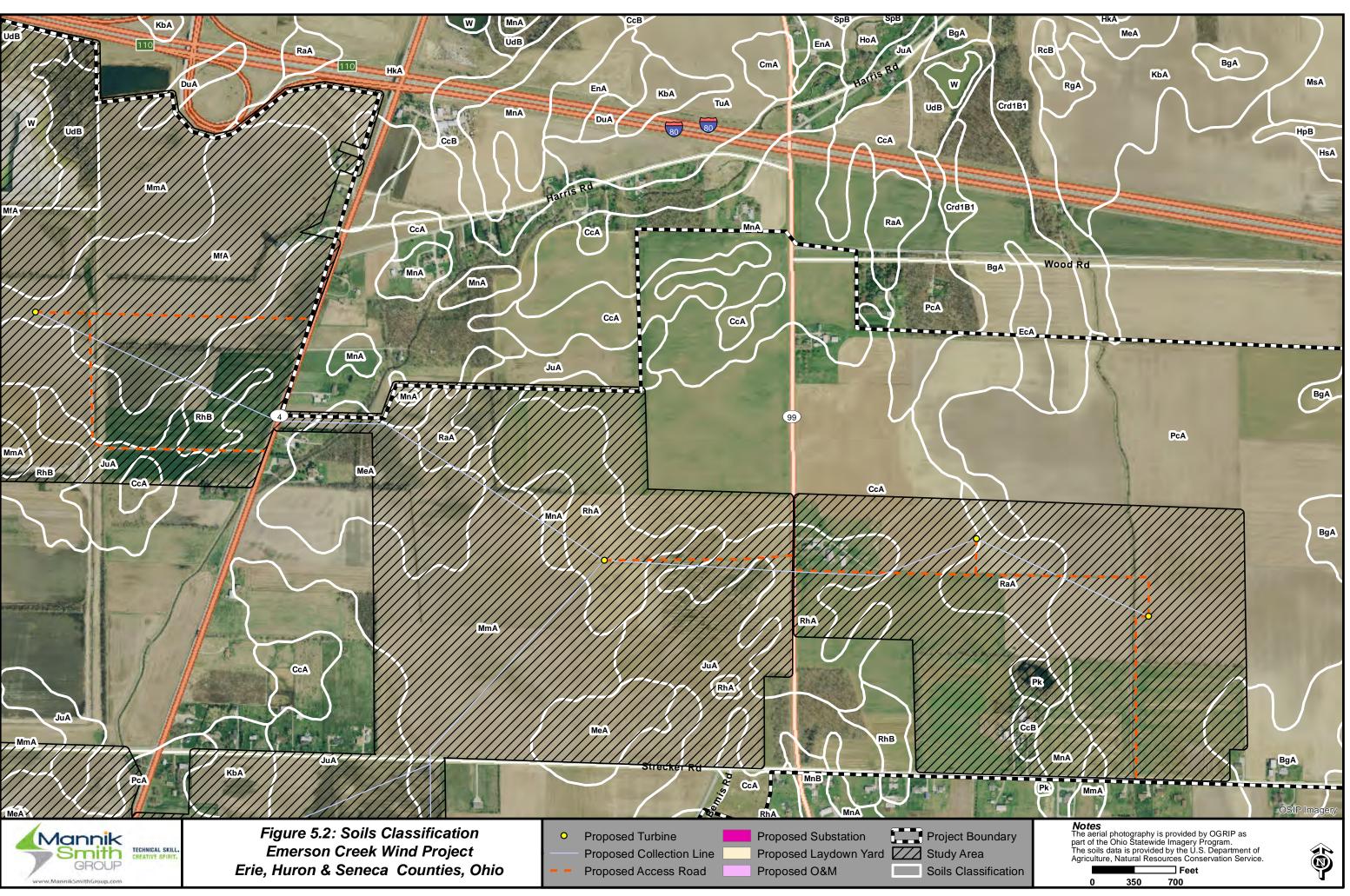

MSG reviewed the available ODNR Division of Wildlife (DOW) State species listings from ODNR's State-listed Plant and Wildlife Species by County lists, dated June 2016, for Erie and Huron Counties.

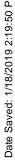

ODNR's State-listed Plant Species list for Erie County includes 15 State-listed endangered species, 37 State-listed threatened species, and 46 State-listed potentially endangered species (ODNR, 2016). The ODNR State-listed Plant Species list for Huron County includes one State-listed threatened species and seven State-listed potentially endangered species (ODNR, 2016). The ODNR State-listed Plant Species list for Seneca County includes four State-listed endangered species, three State-listed threatened species and seven State-listed threatened species and seven State-listed threatened species and seven State-listed potentially endangered species (ODNR, 2016). None of the listed plants were observed by MSG during the ecological assessments; however, MSG did not complete species-specific surveys.

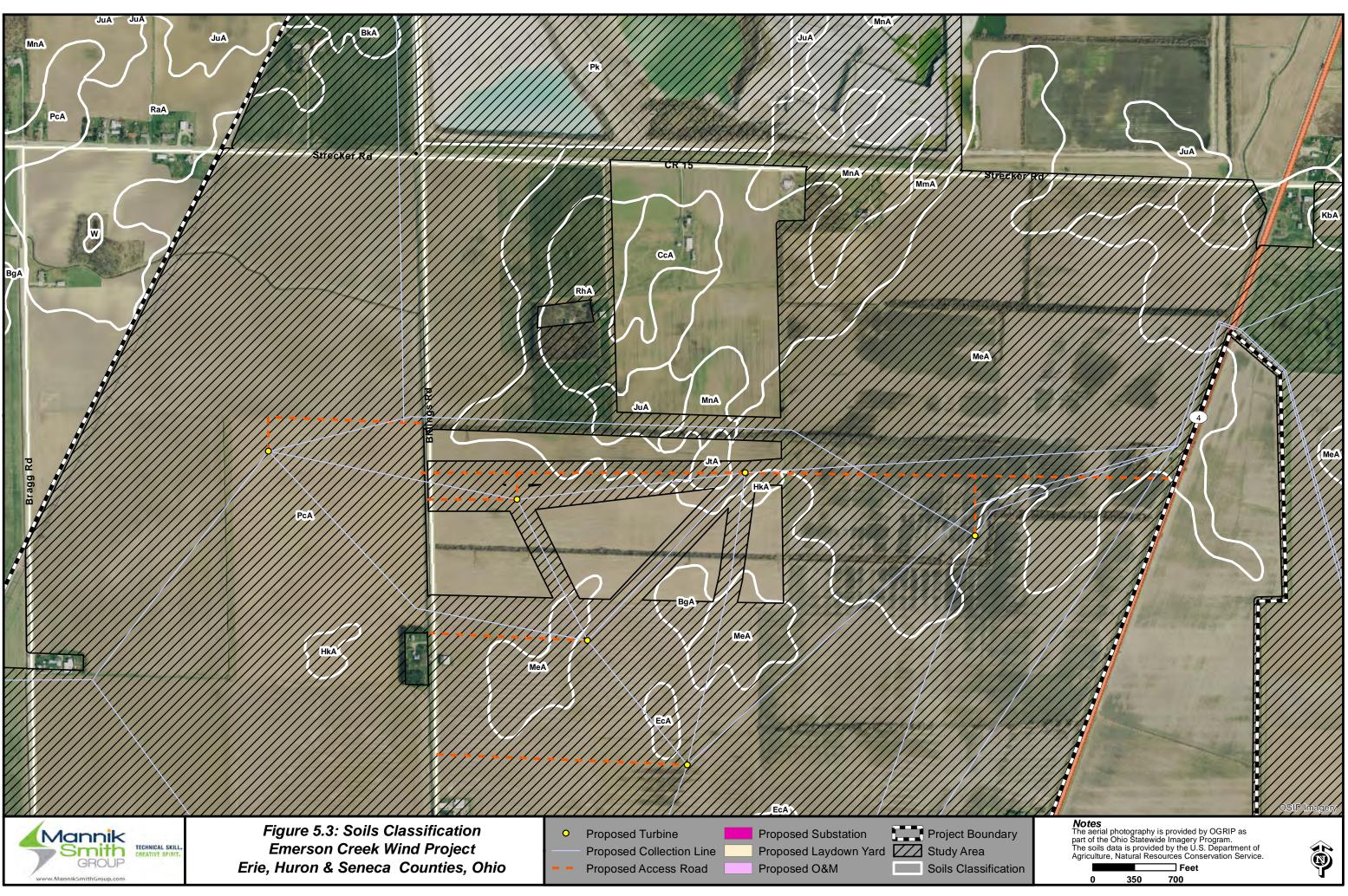

Given that the majority of the Study Area and the area within 100-feet of potential construction impact is located within active agricultural lands in Erie, Huron and Seneca Counties, significant populations of these State-listed plant species are unlikely to occur in the Study Area and the area within 100-feet of potential construction impact. A complete listing of State-listed plant species for Erie, Huron and Seneca Counties is included in Appendix B.

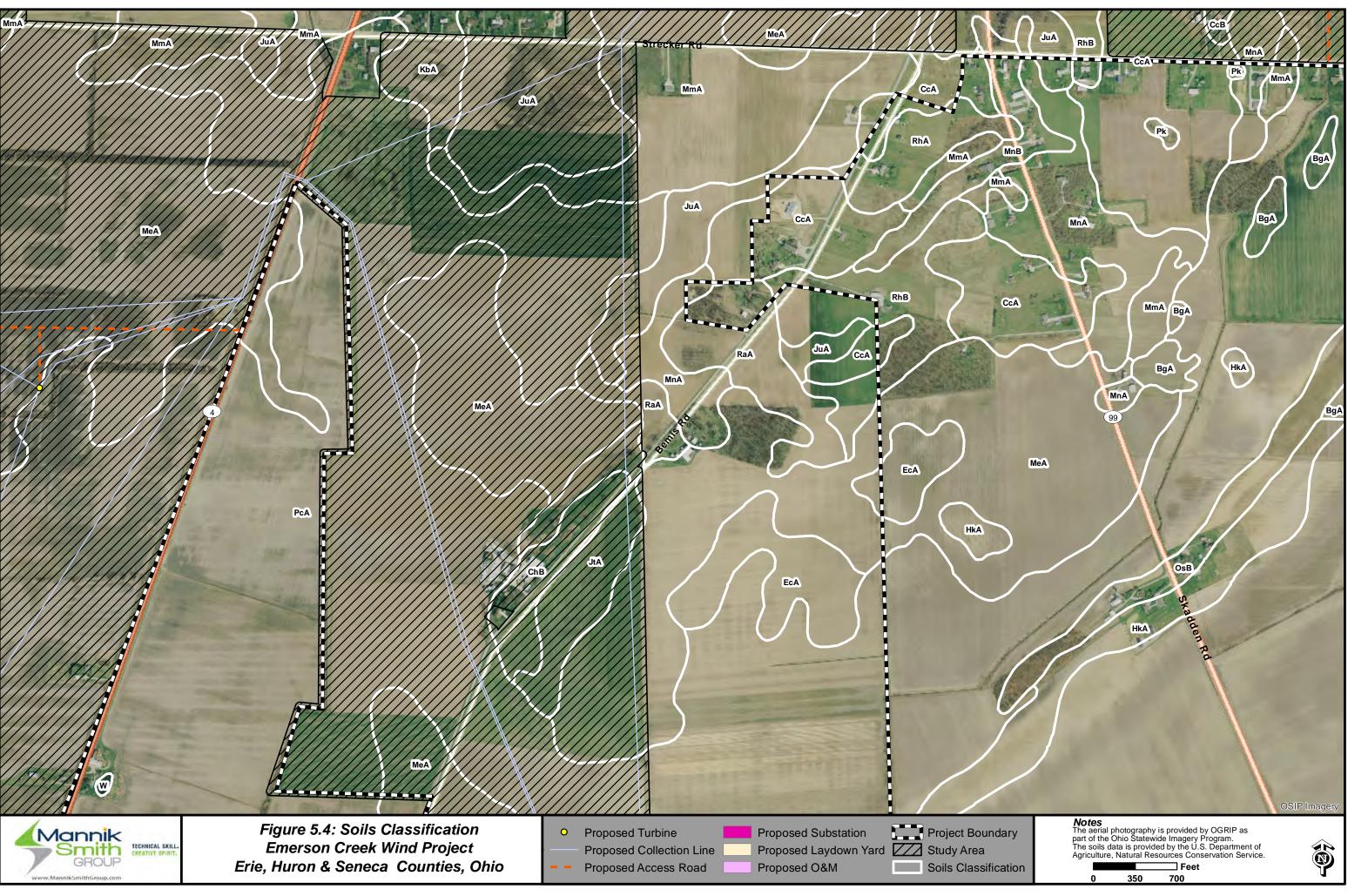


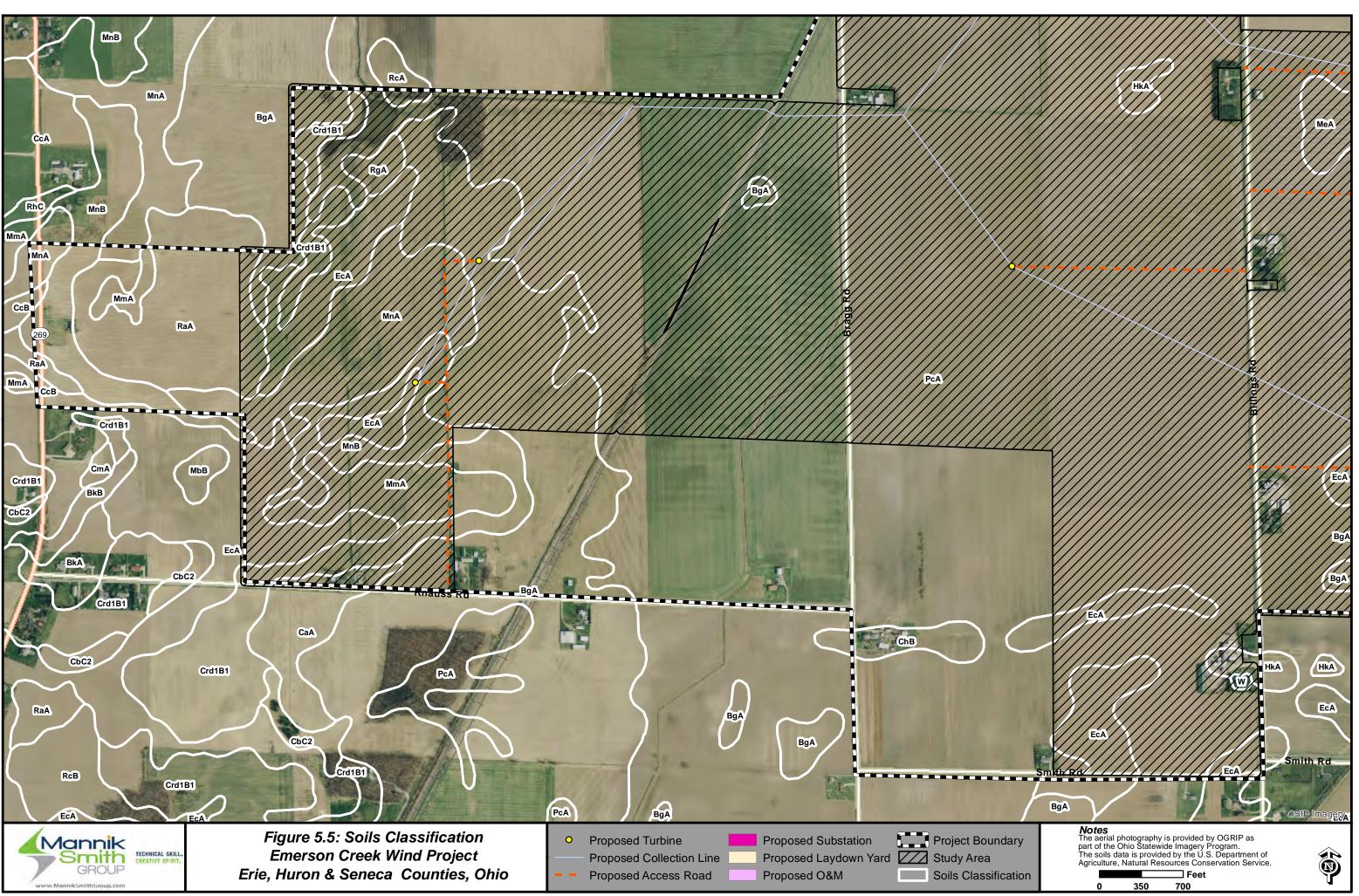


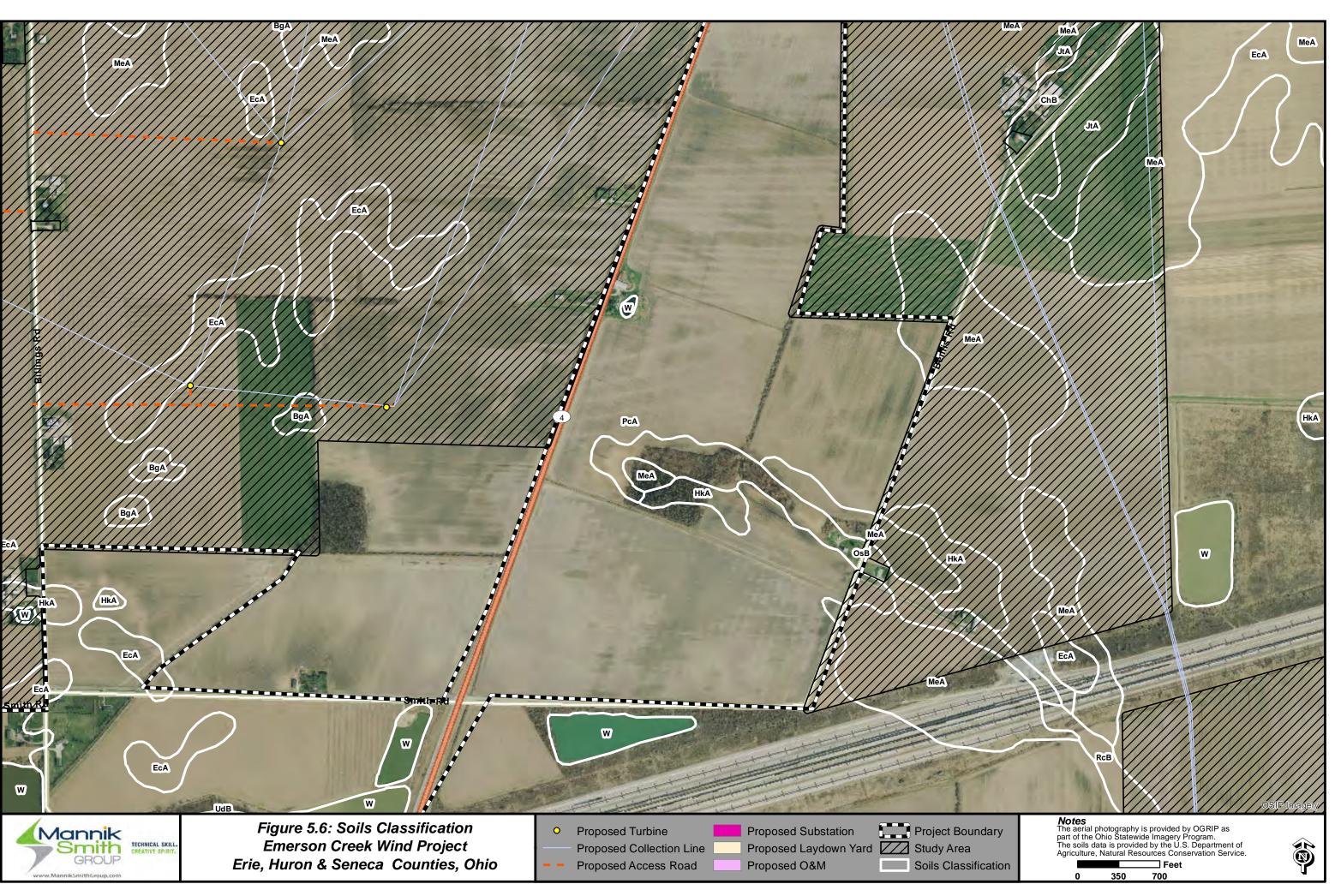


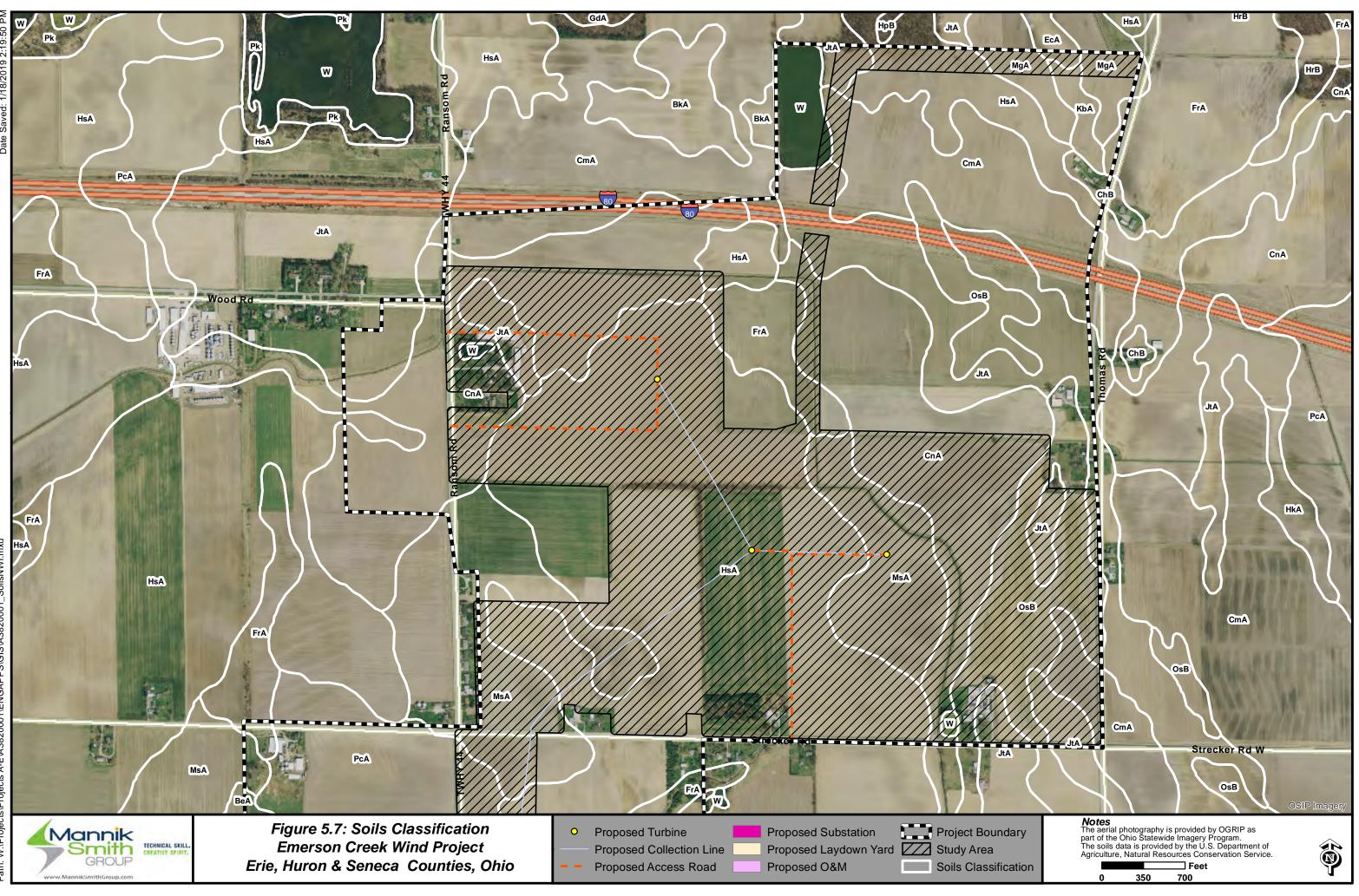


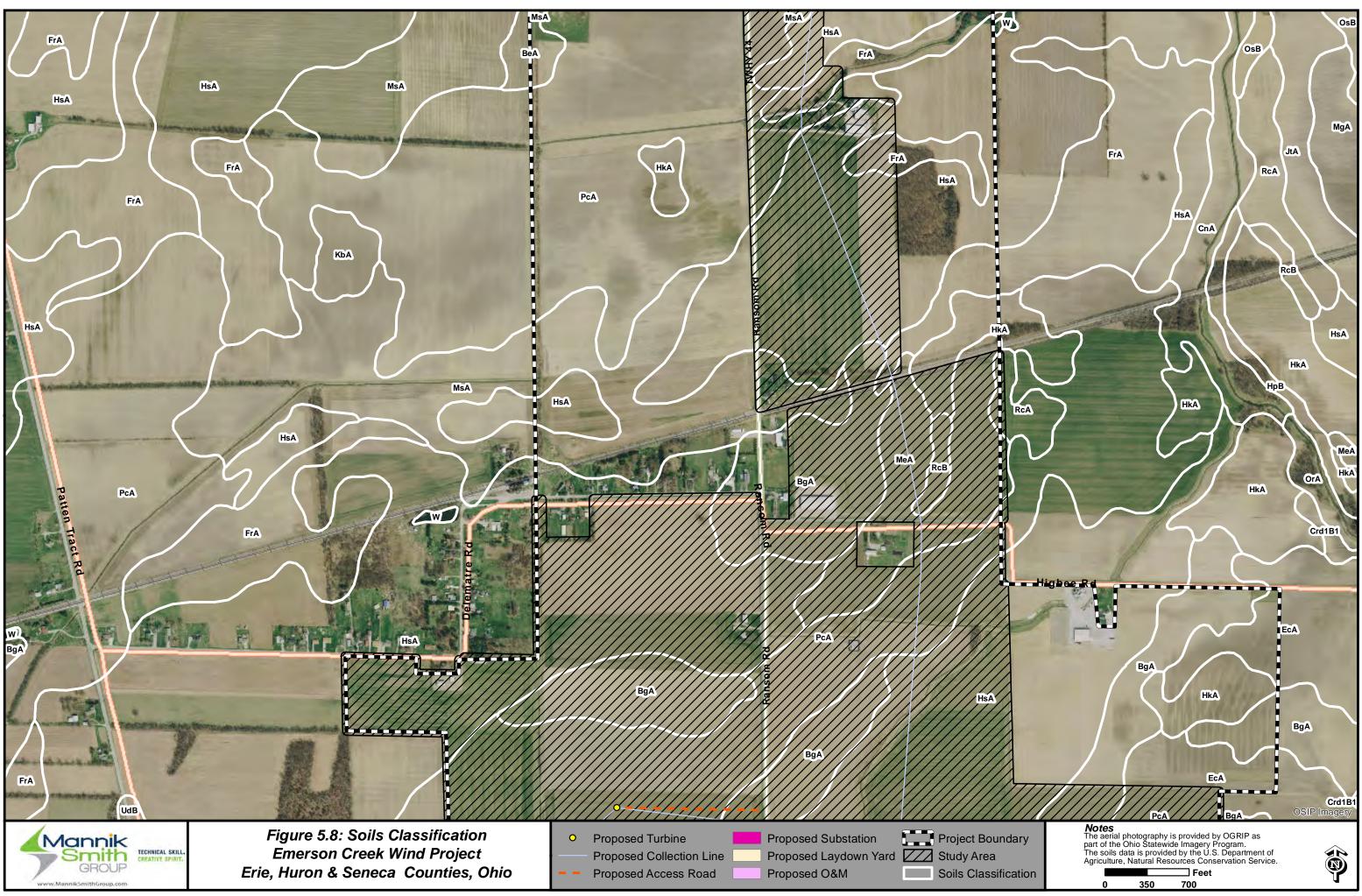


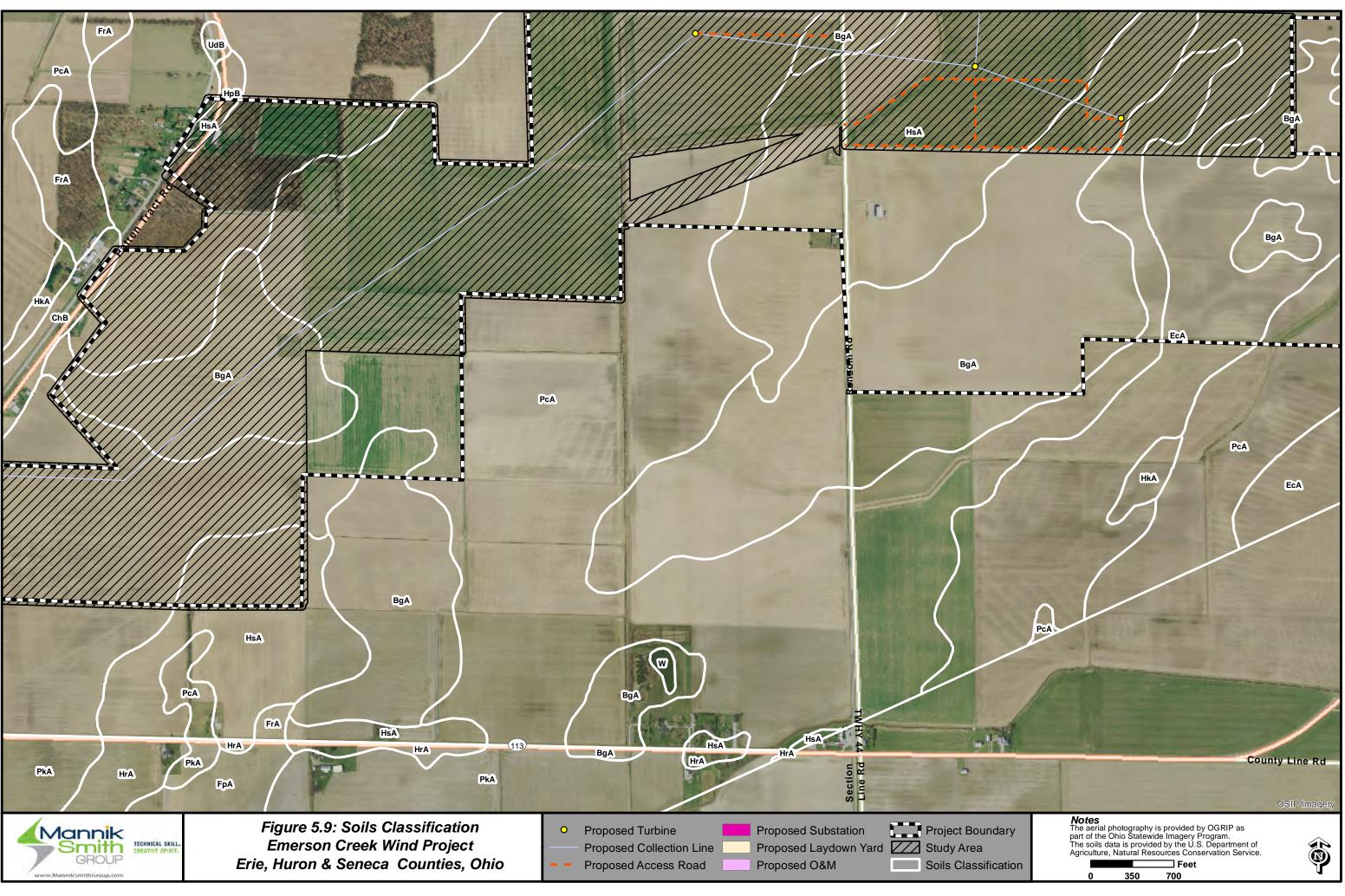


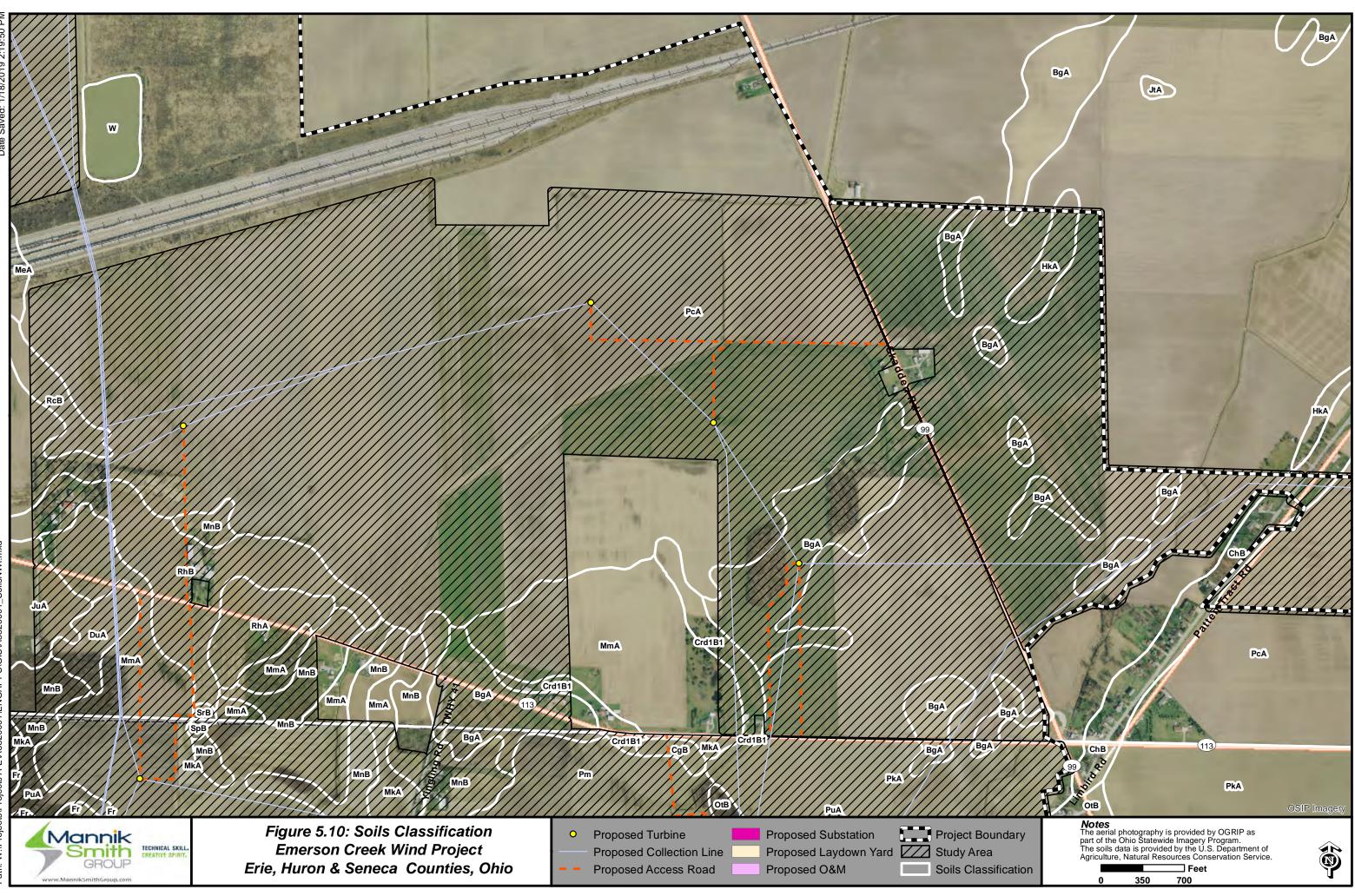


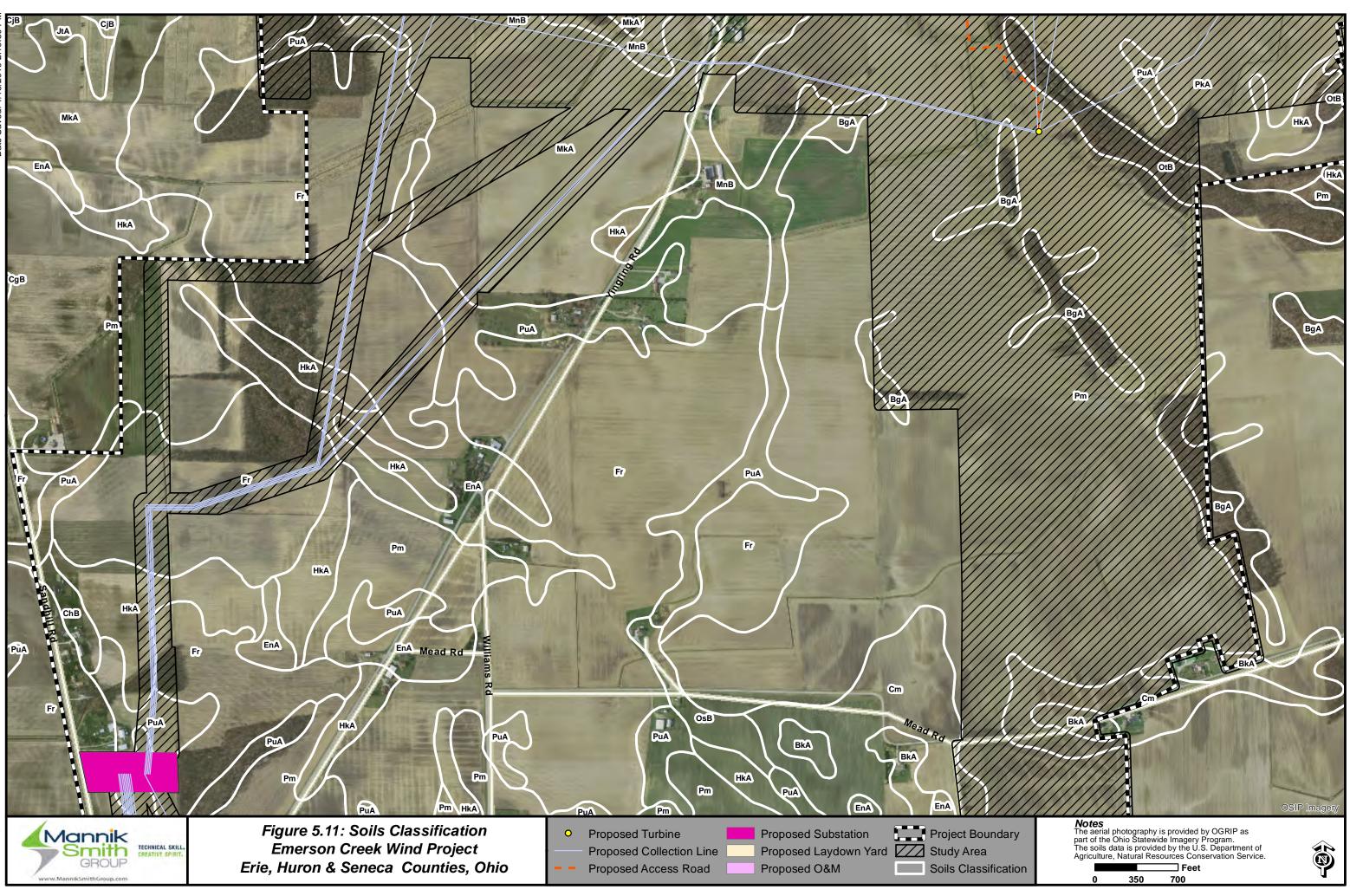


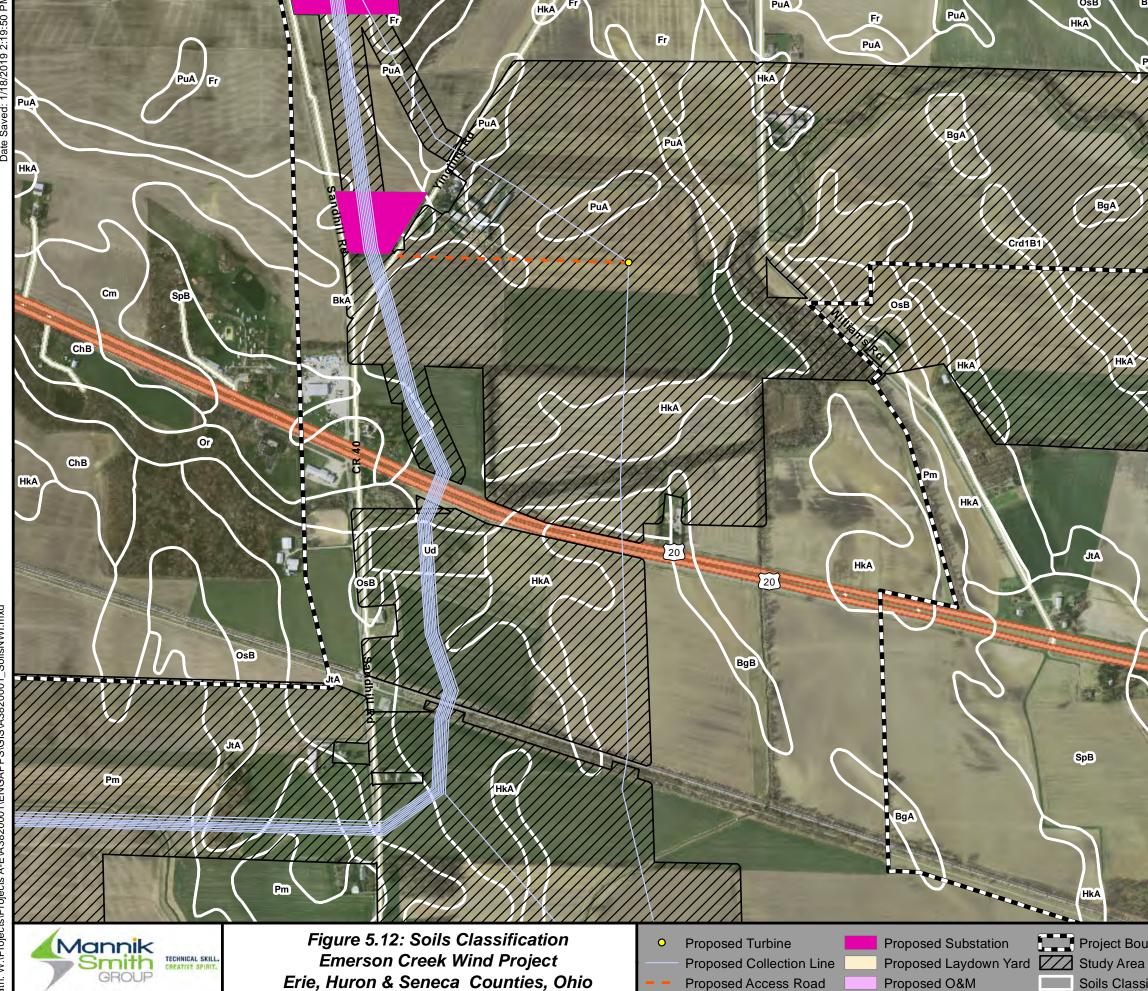


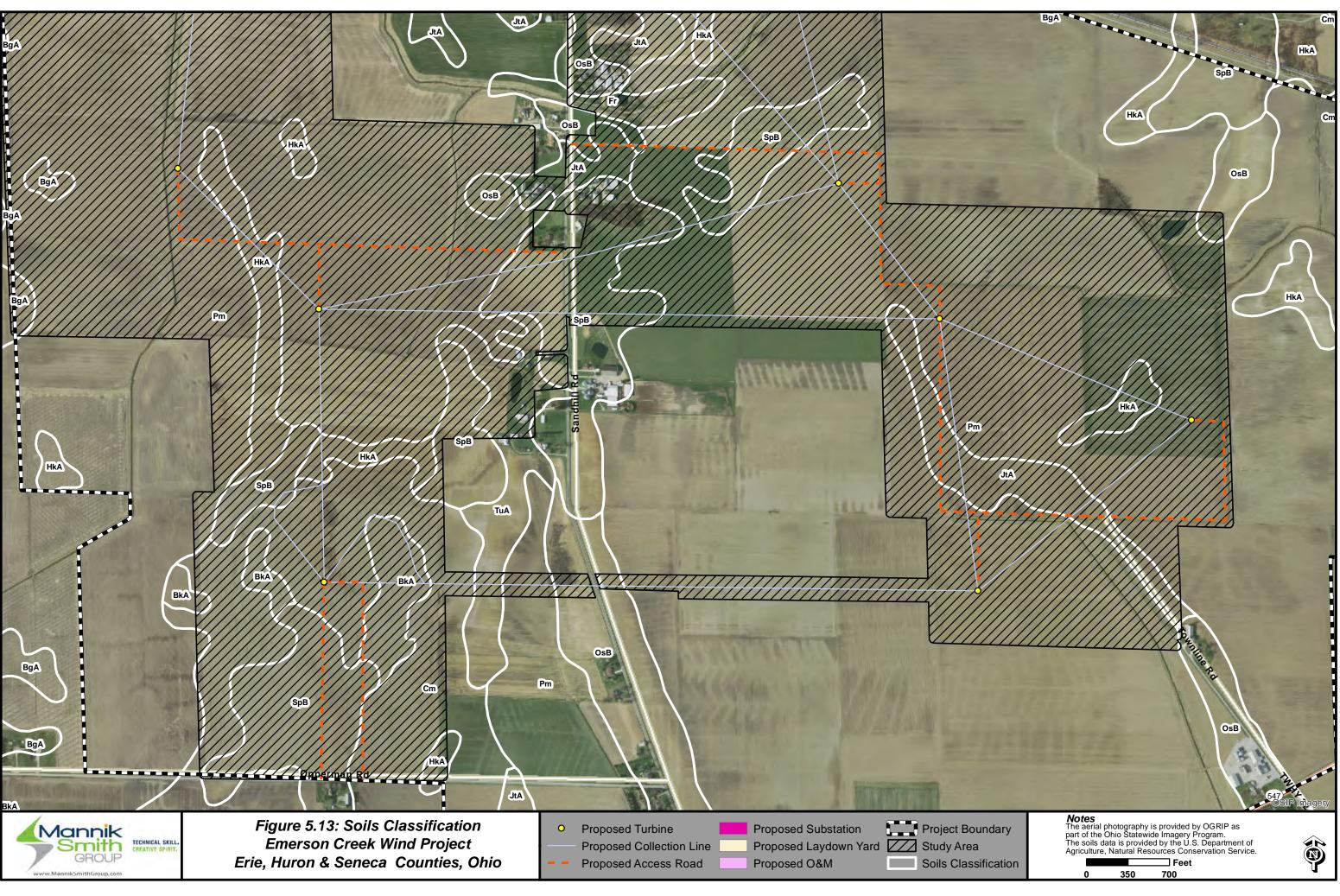


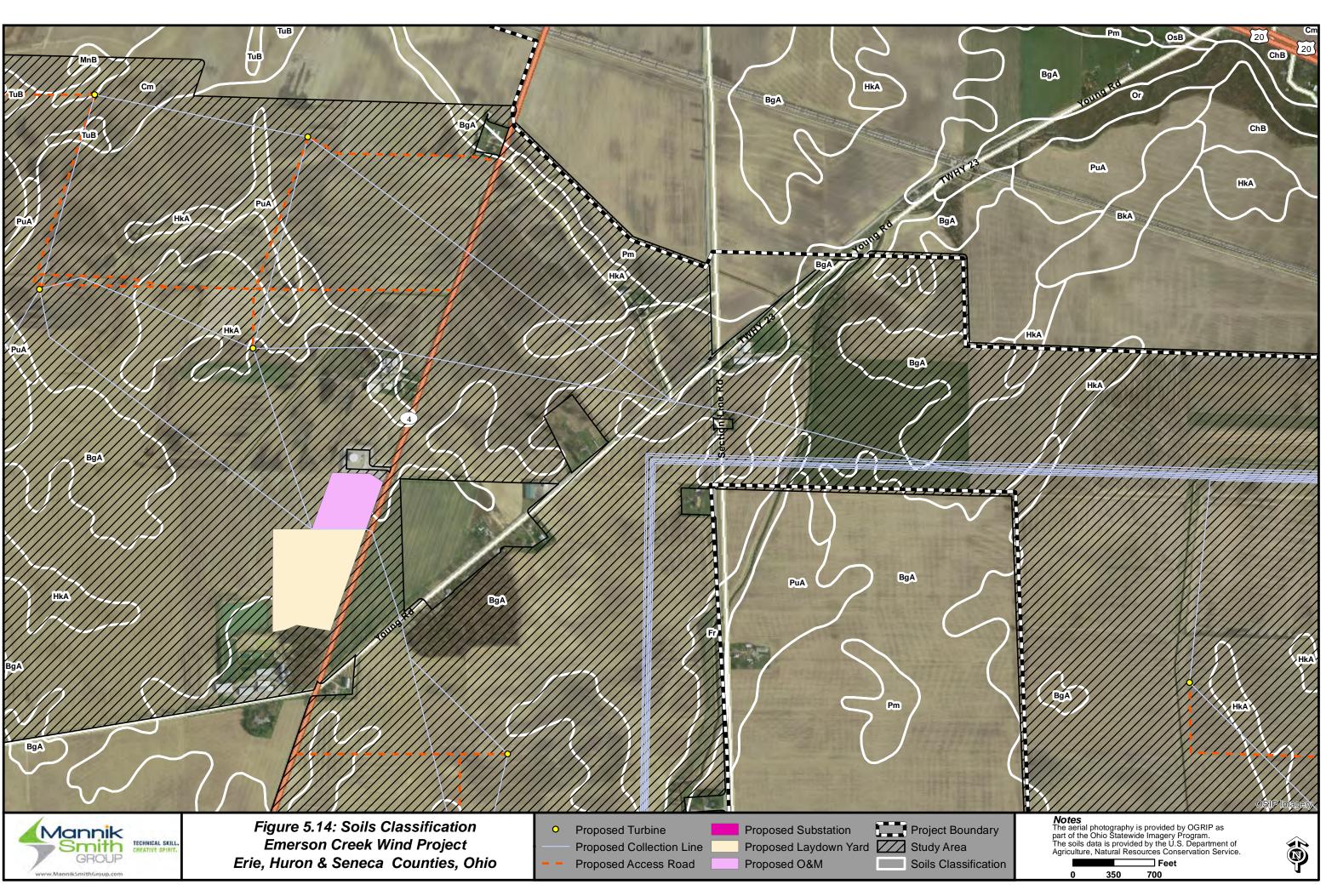


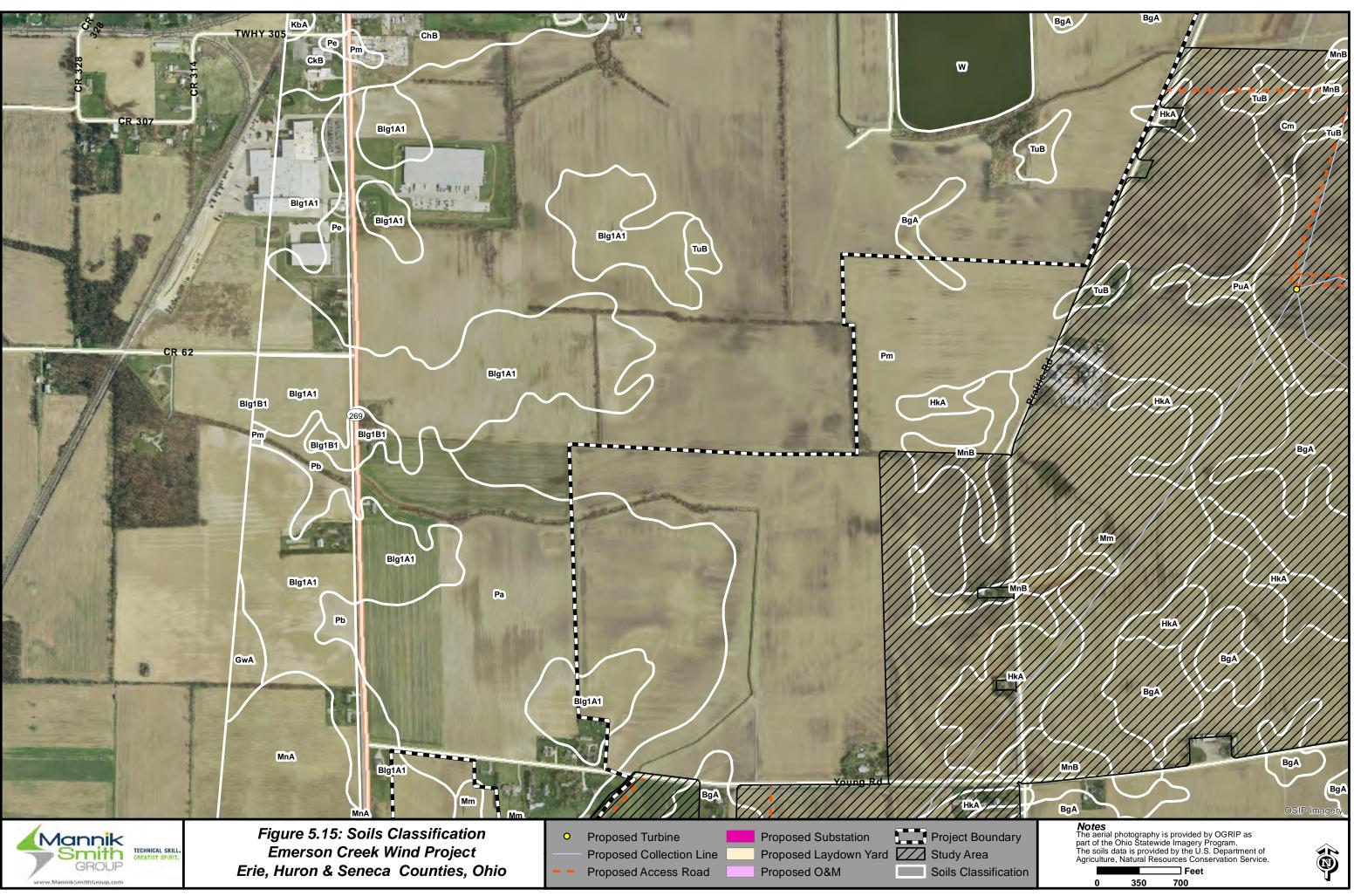


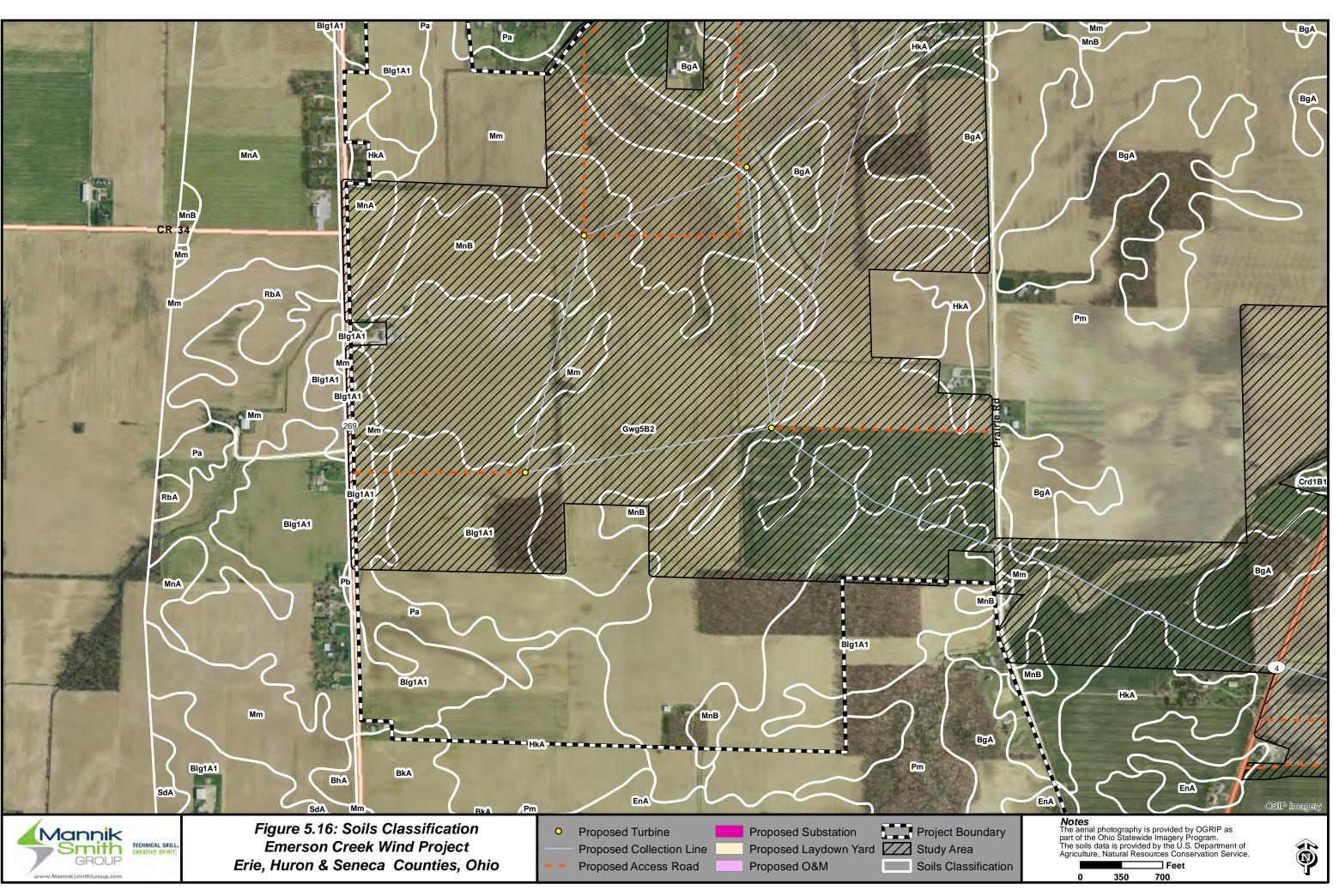


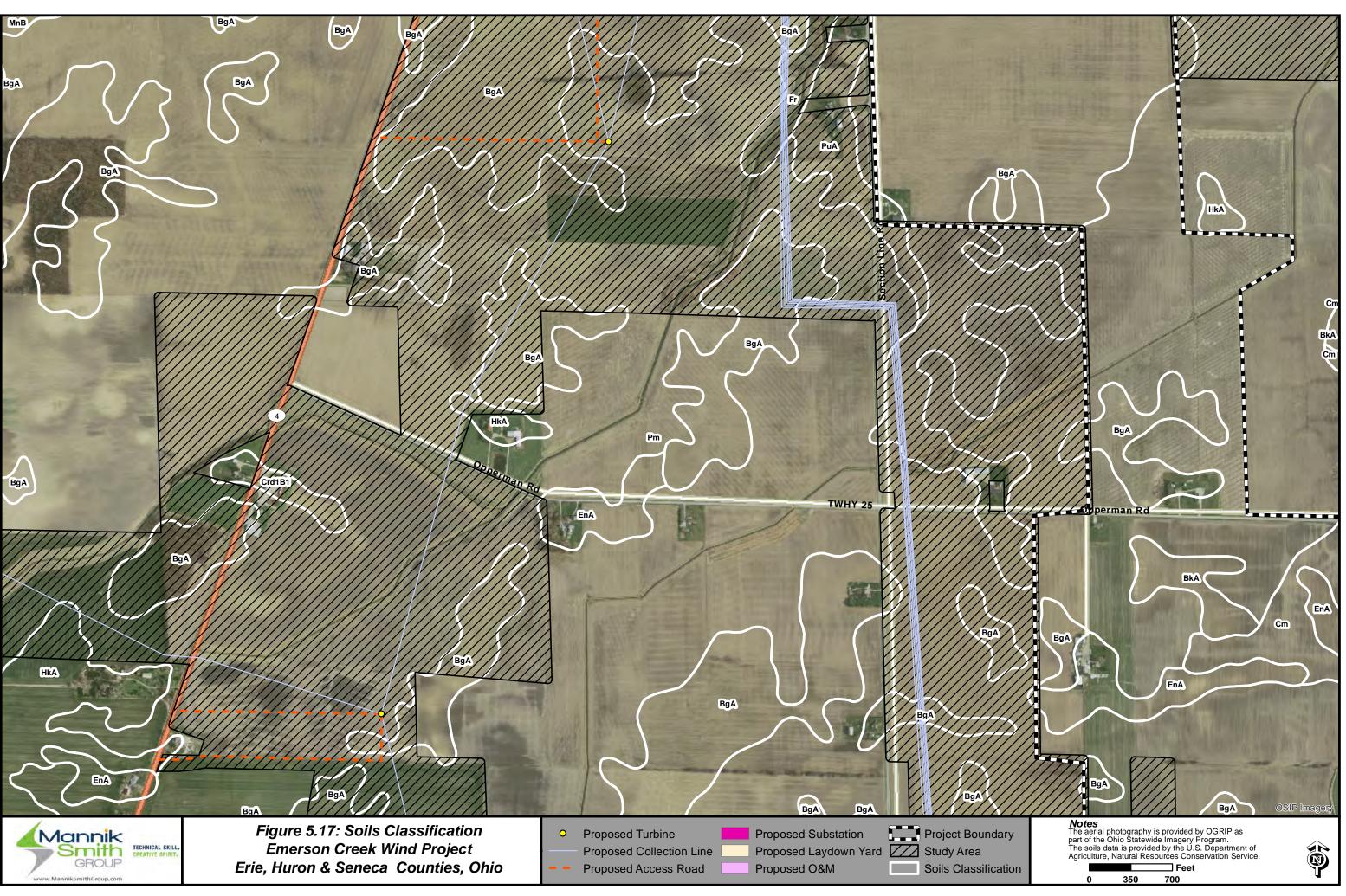


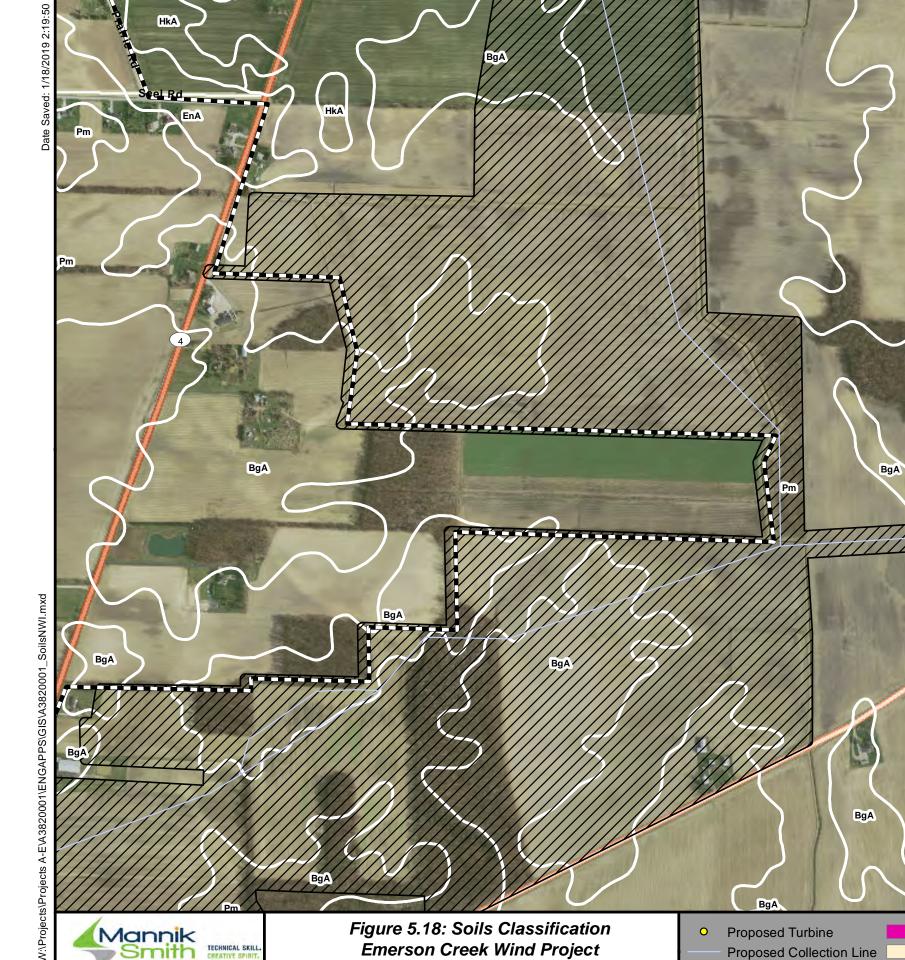





Project Boundary Soils Classification





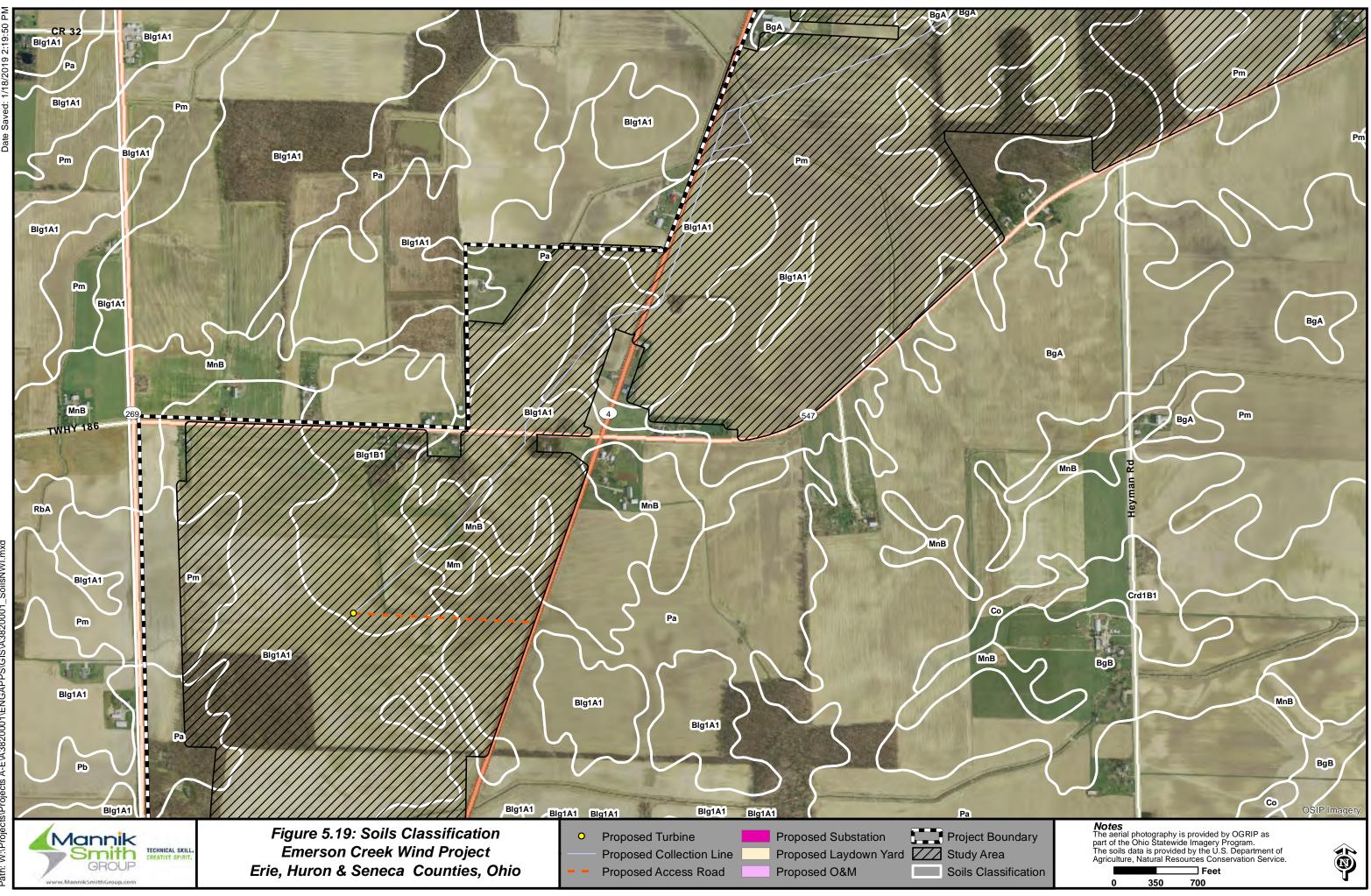


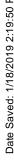
Erie, Huron & Seneca Counties, Ohio

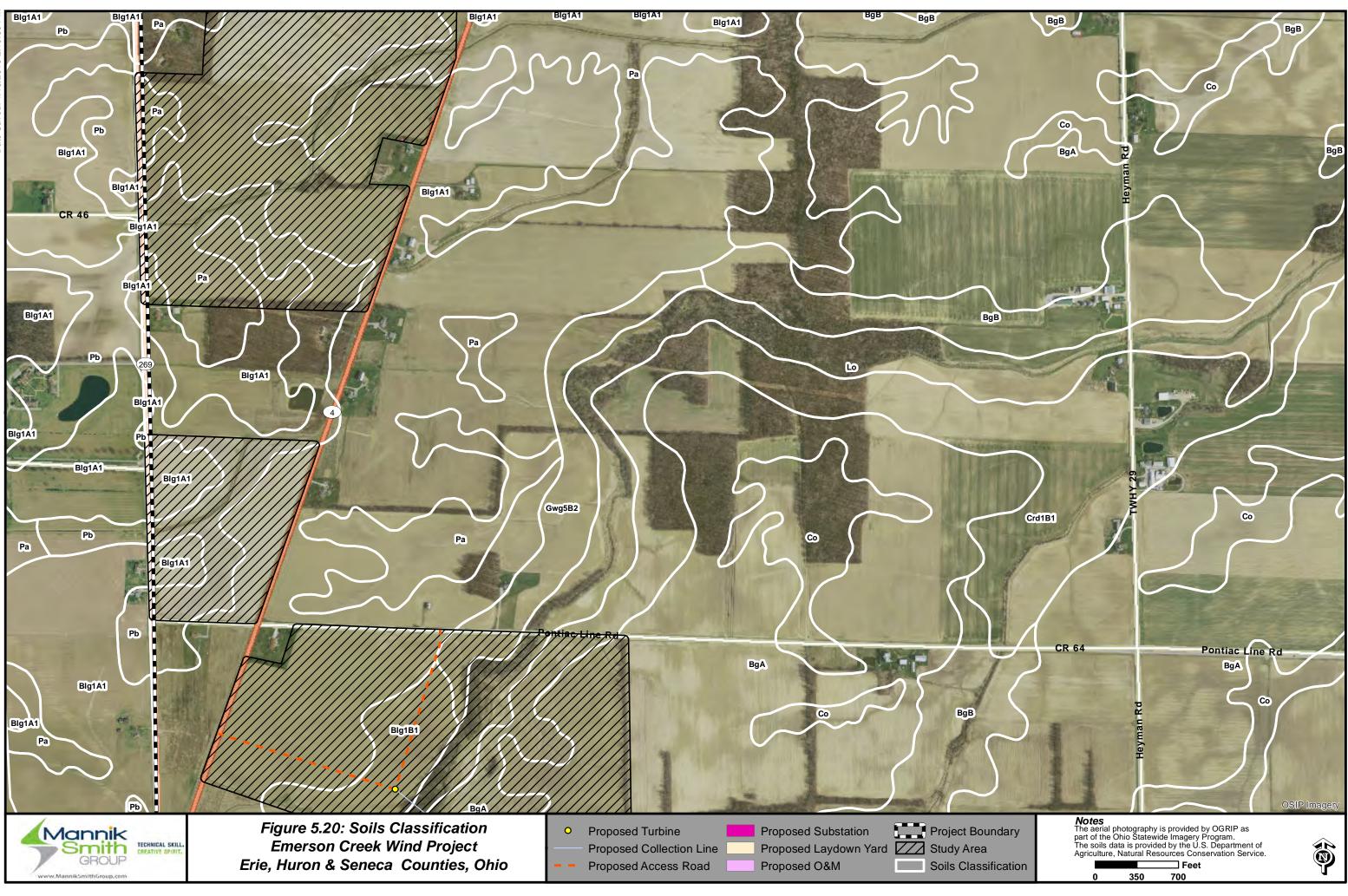
EnA

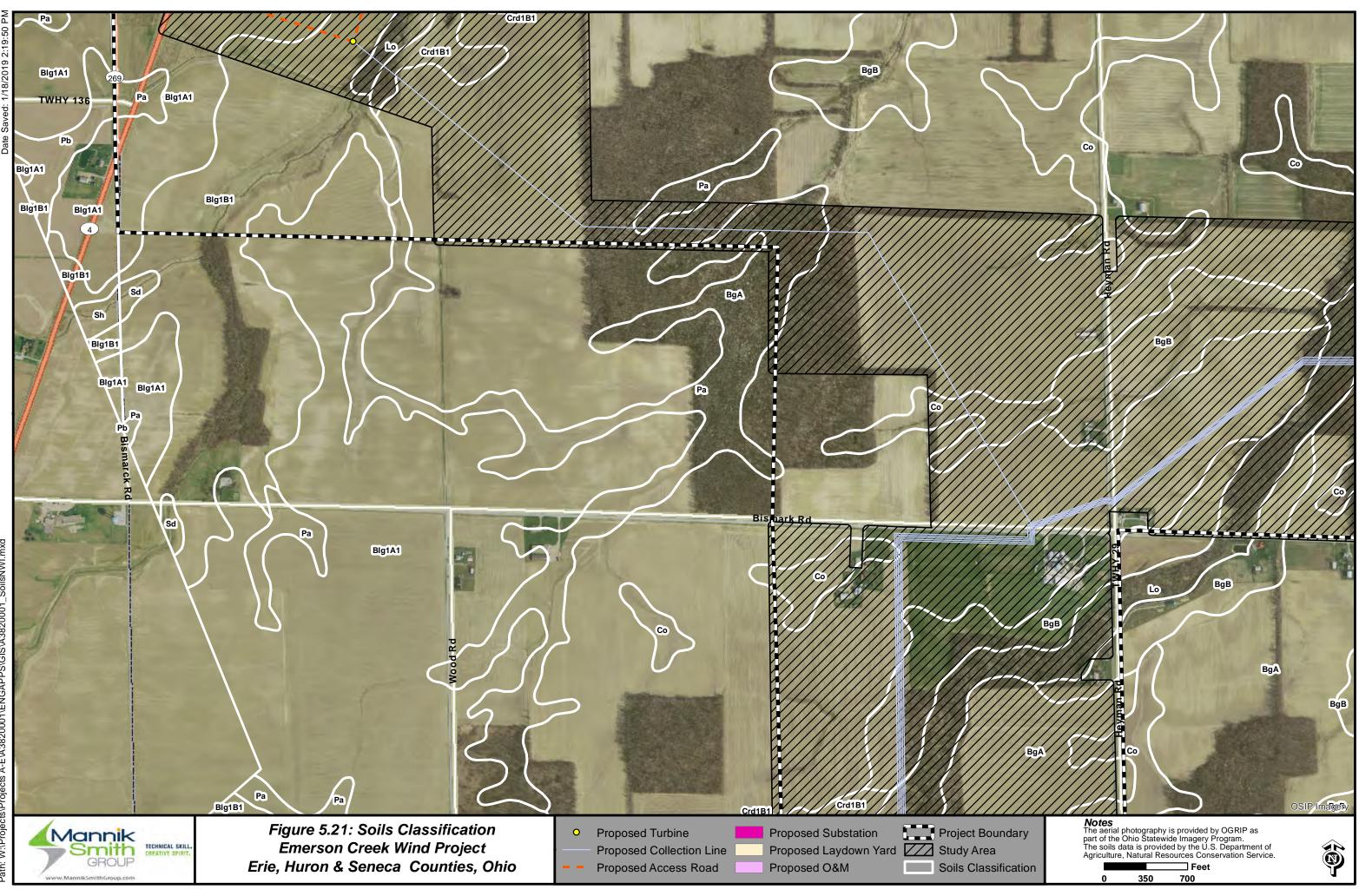
GROUP

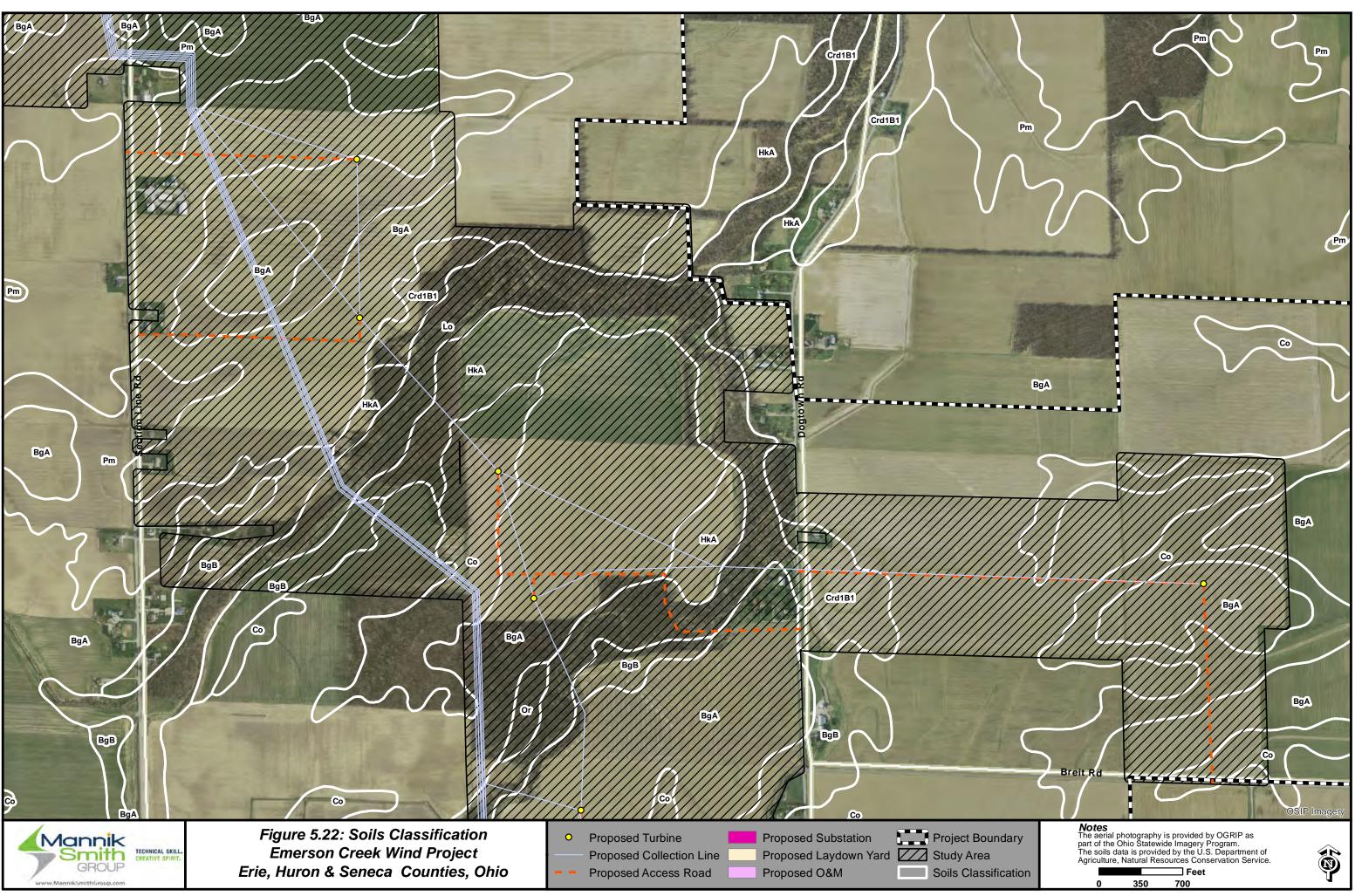
Proposed Substation

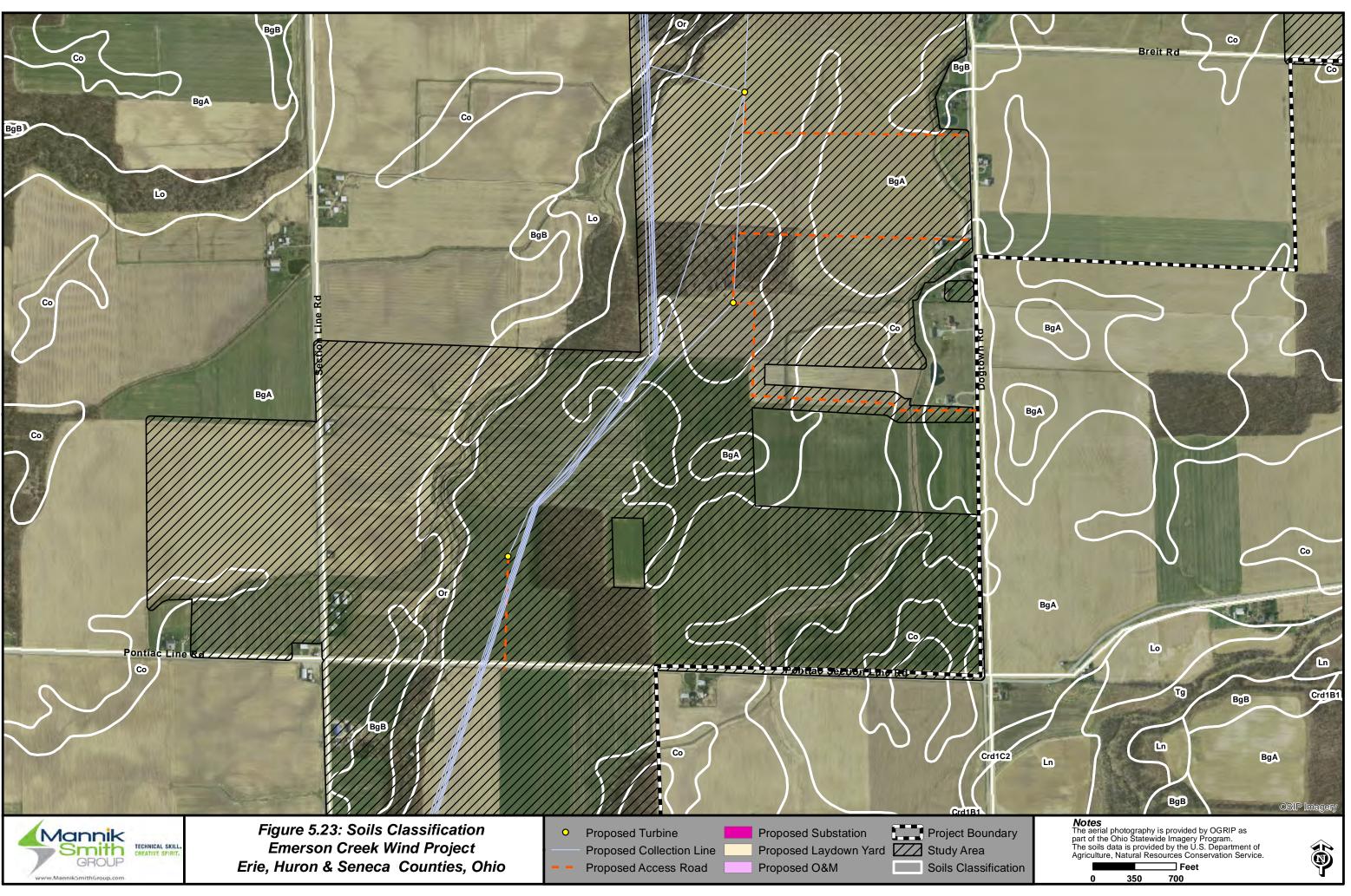

Proposed O&M

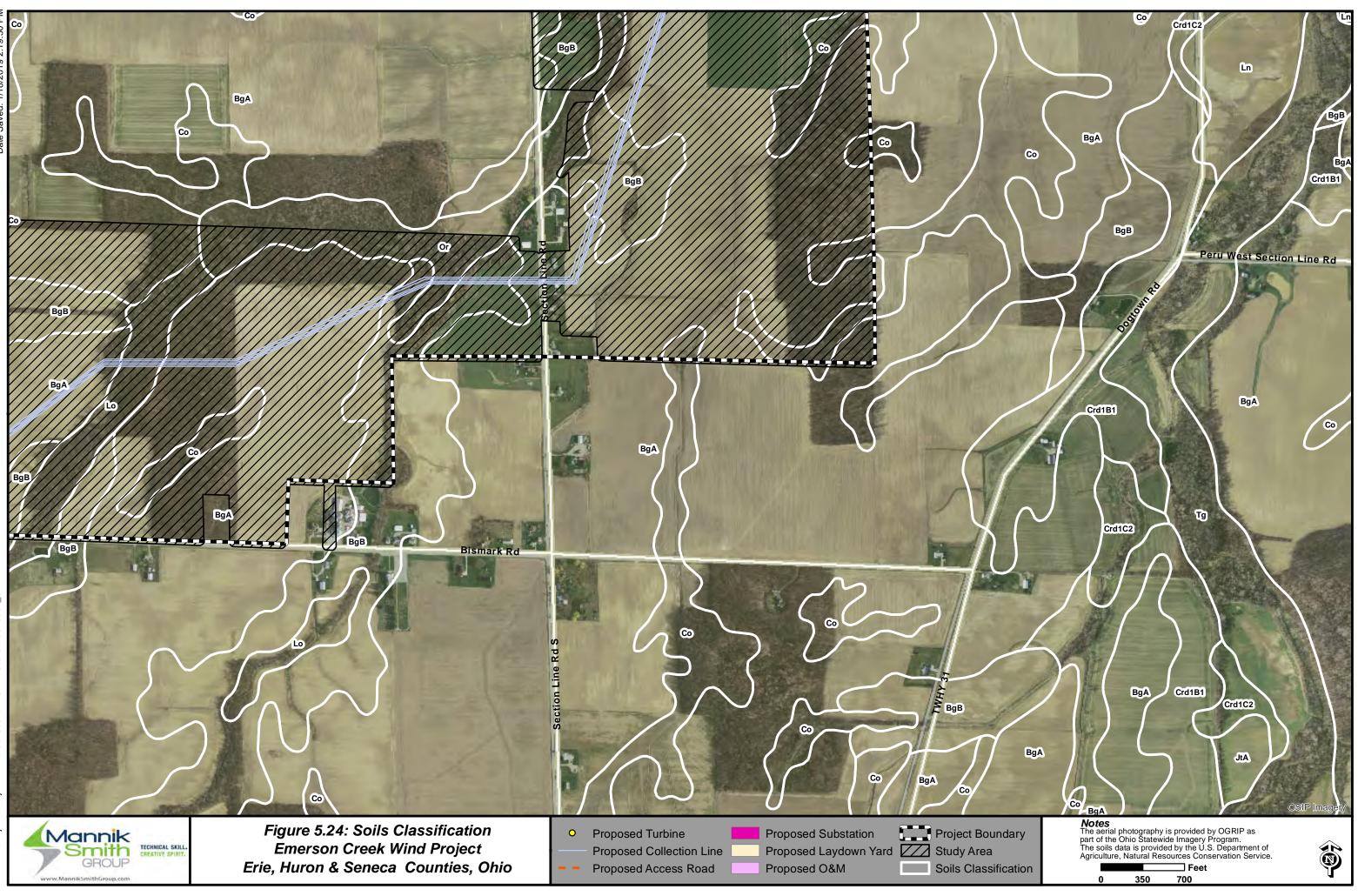

Proposed Access Road

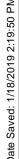

BgA

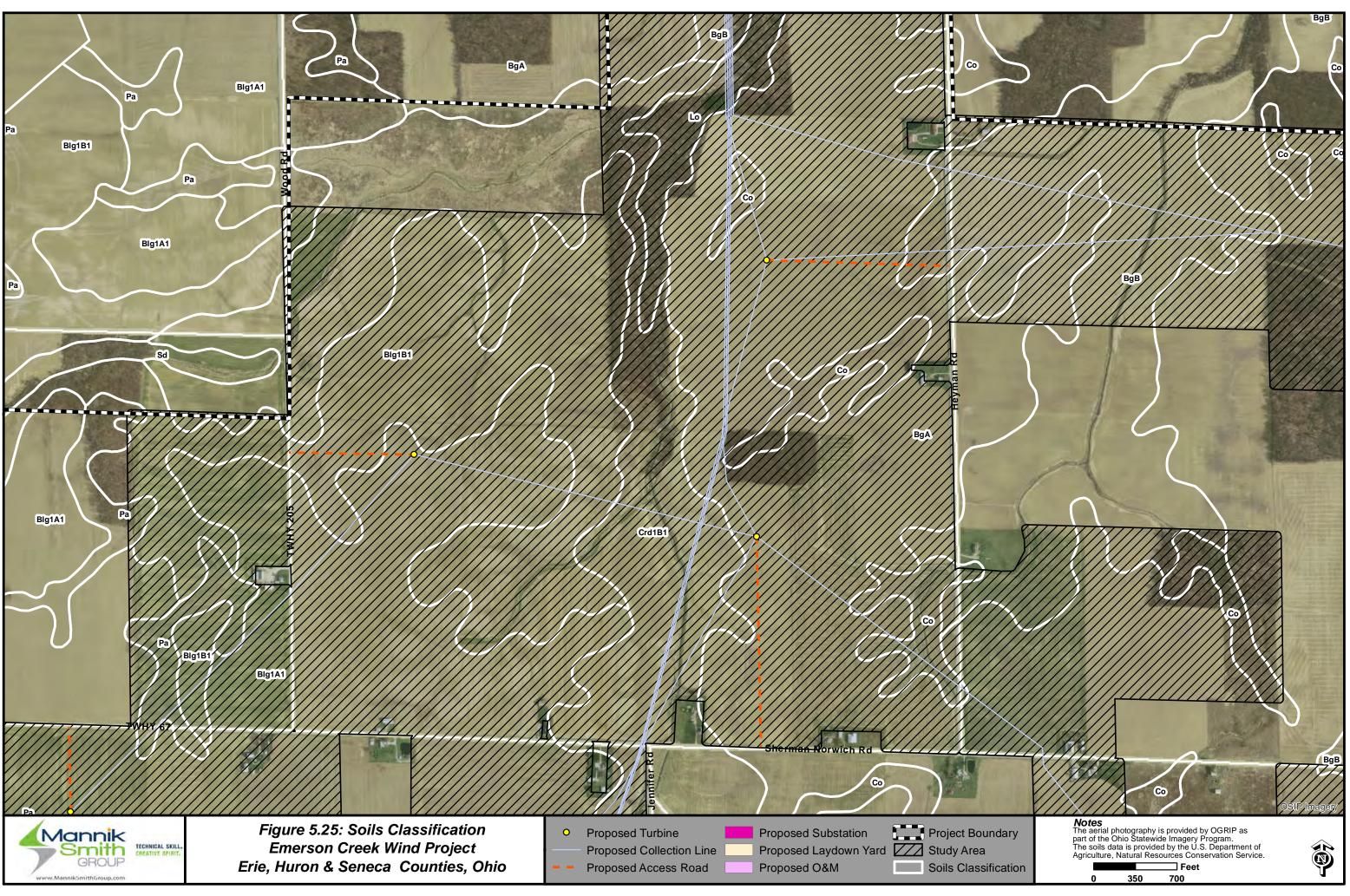

BgA

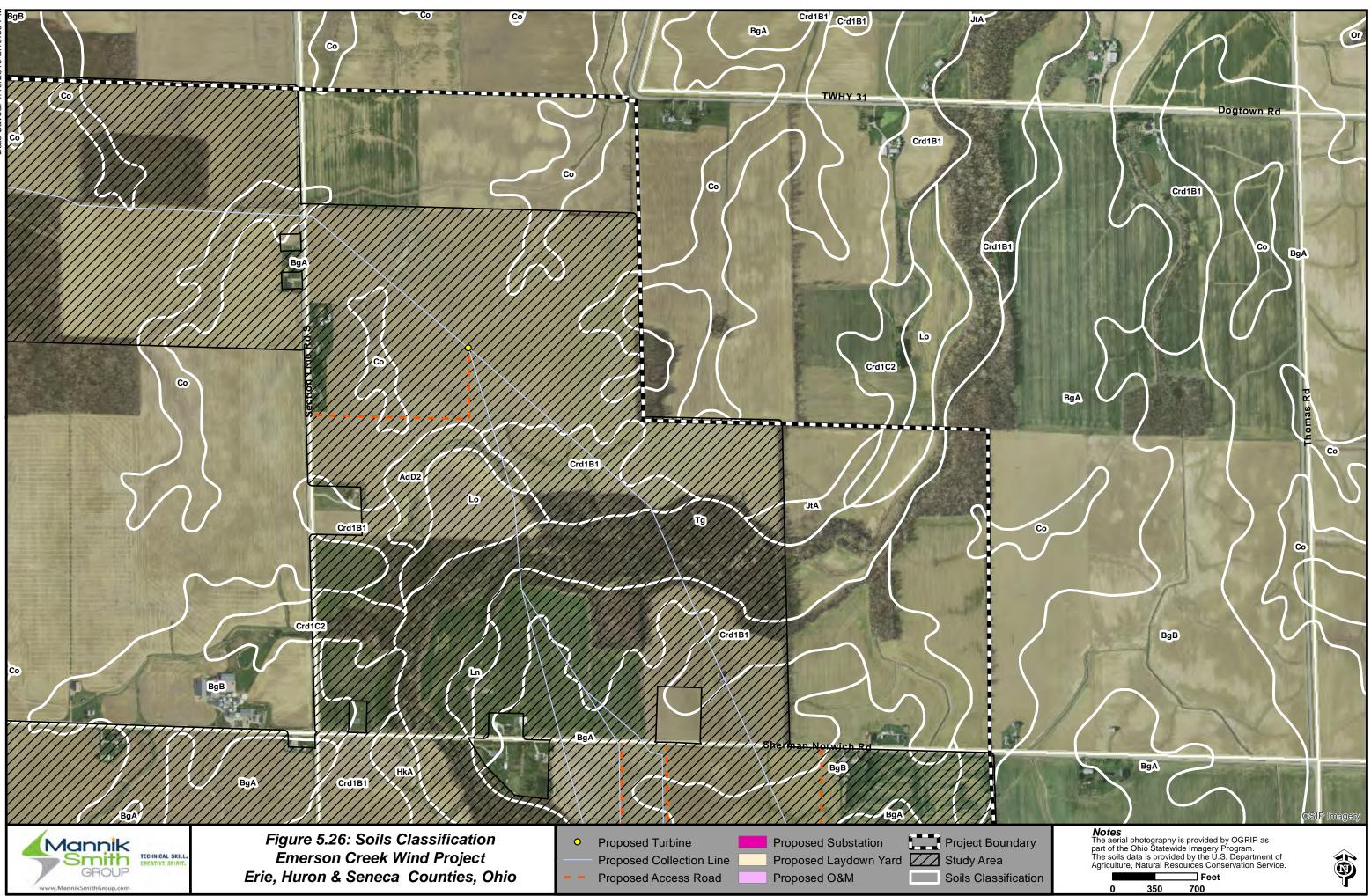


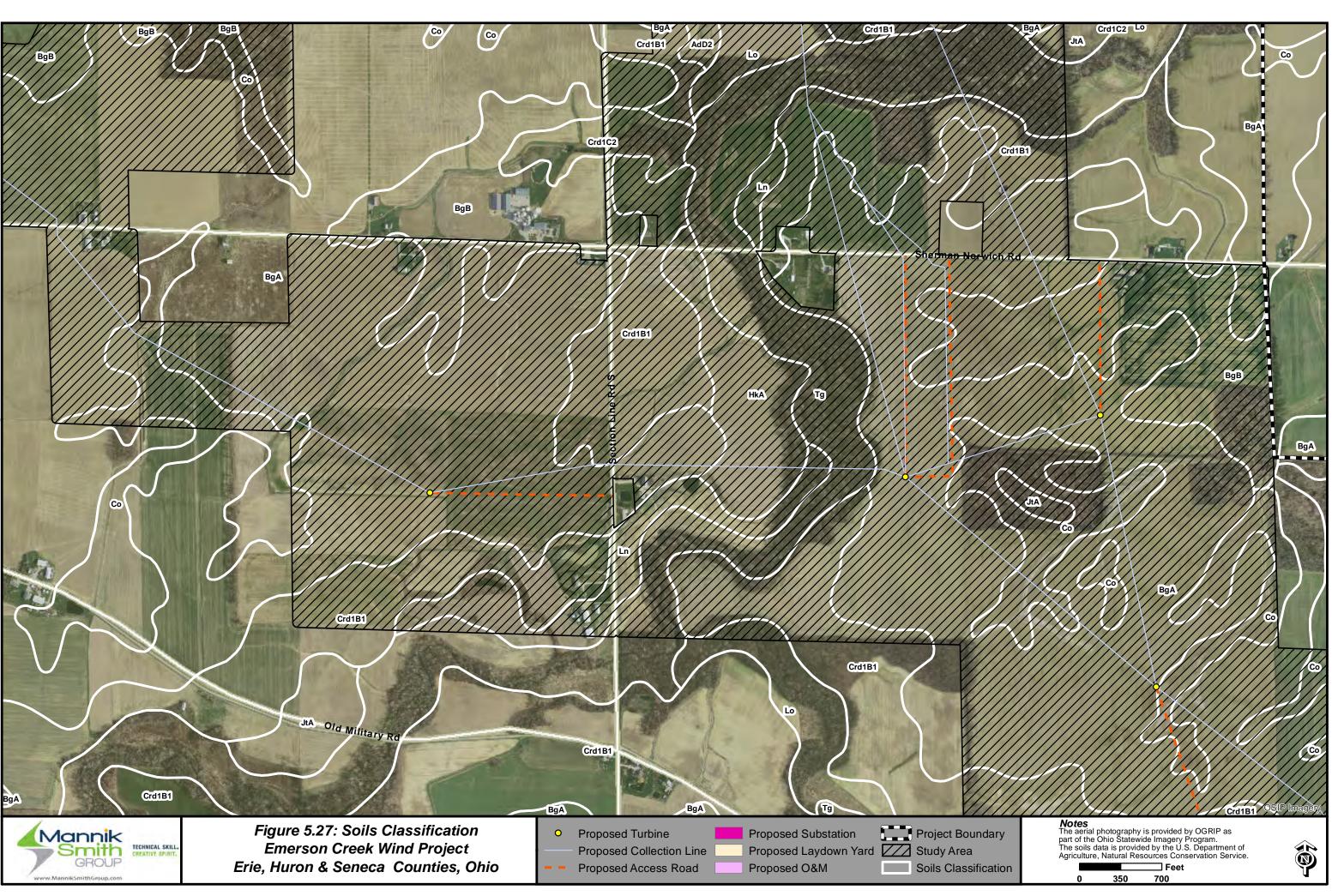


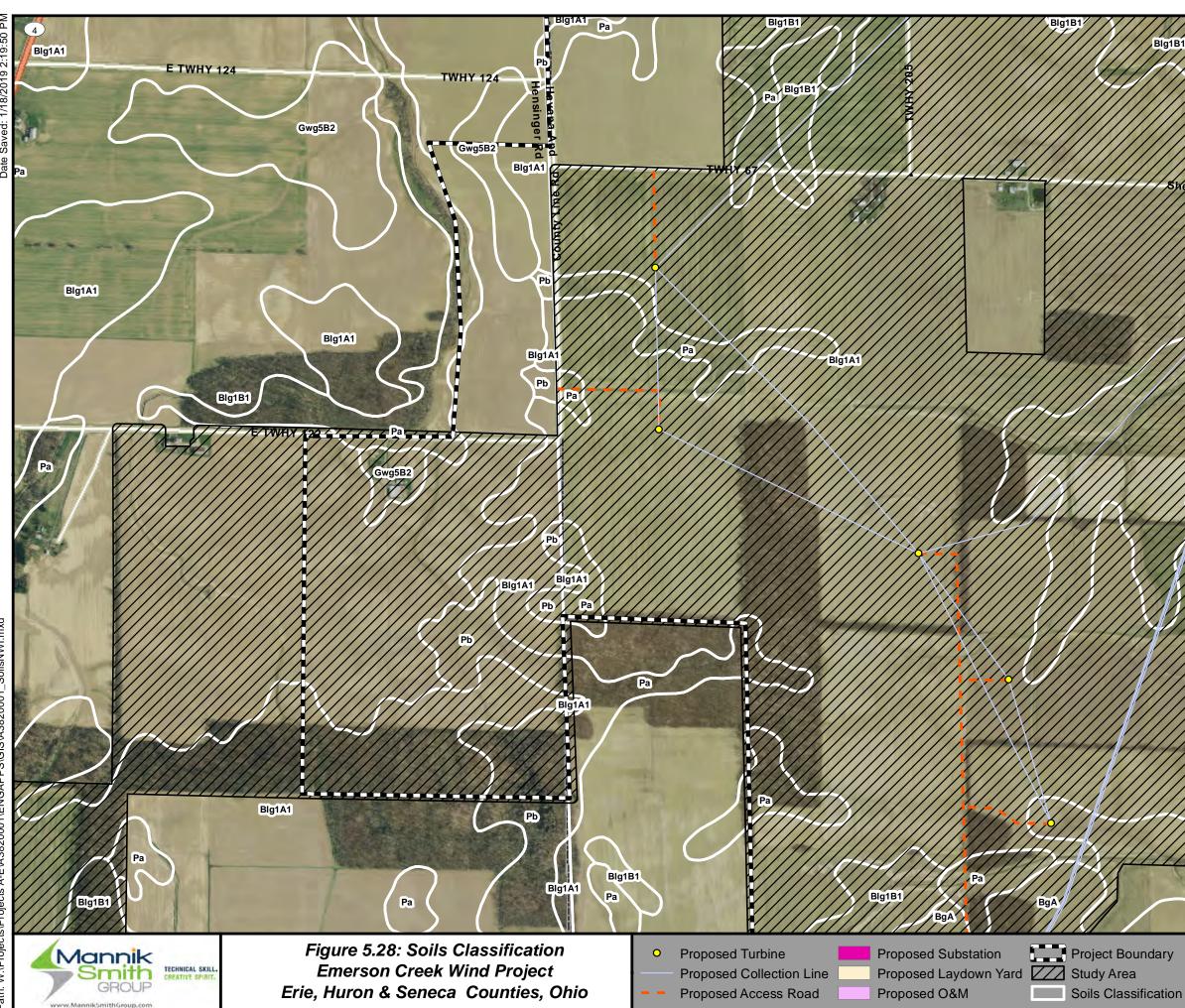


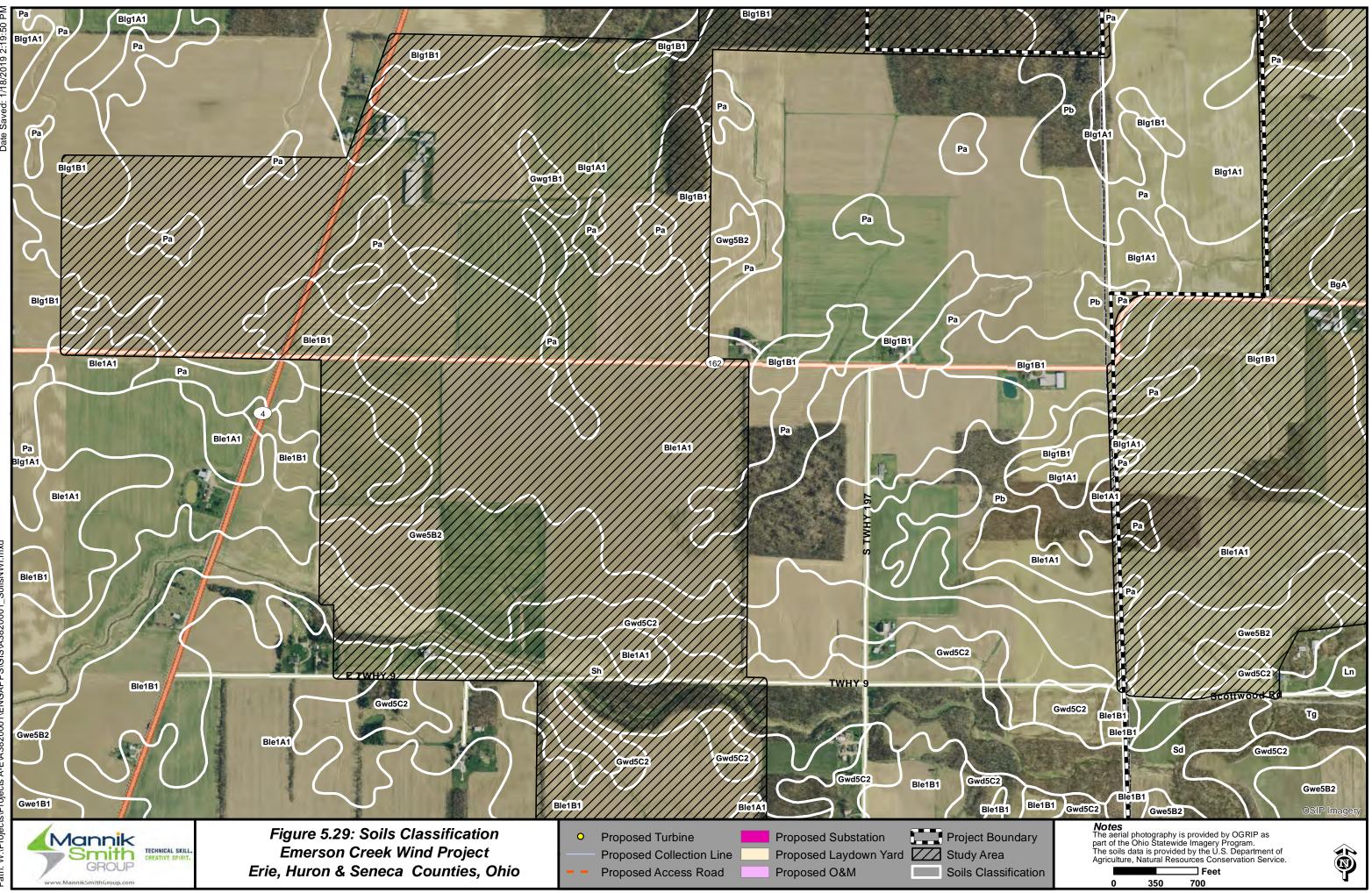


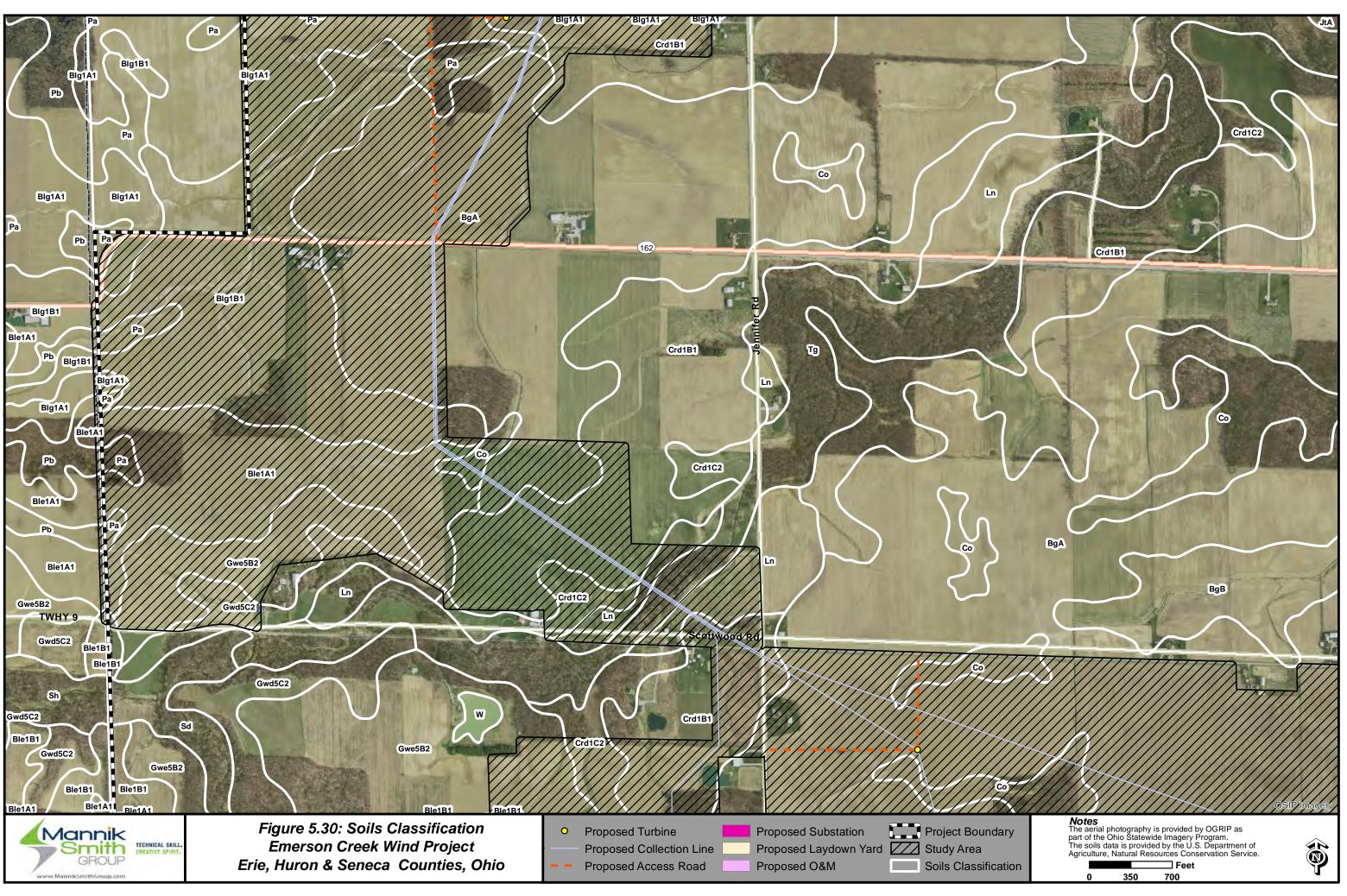


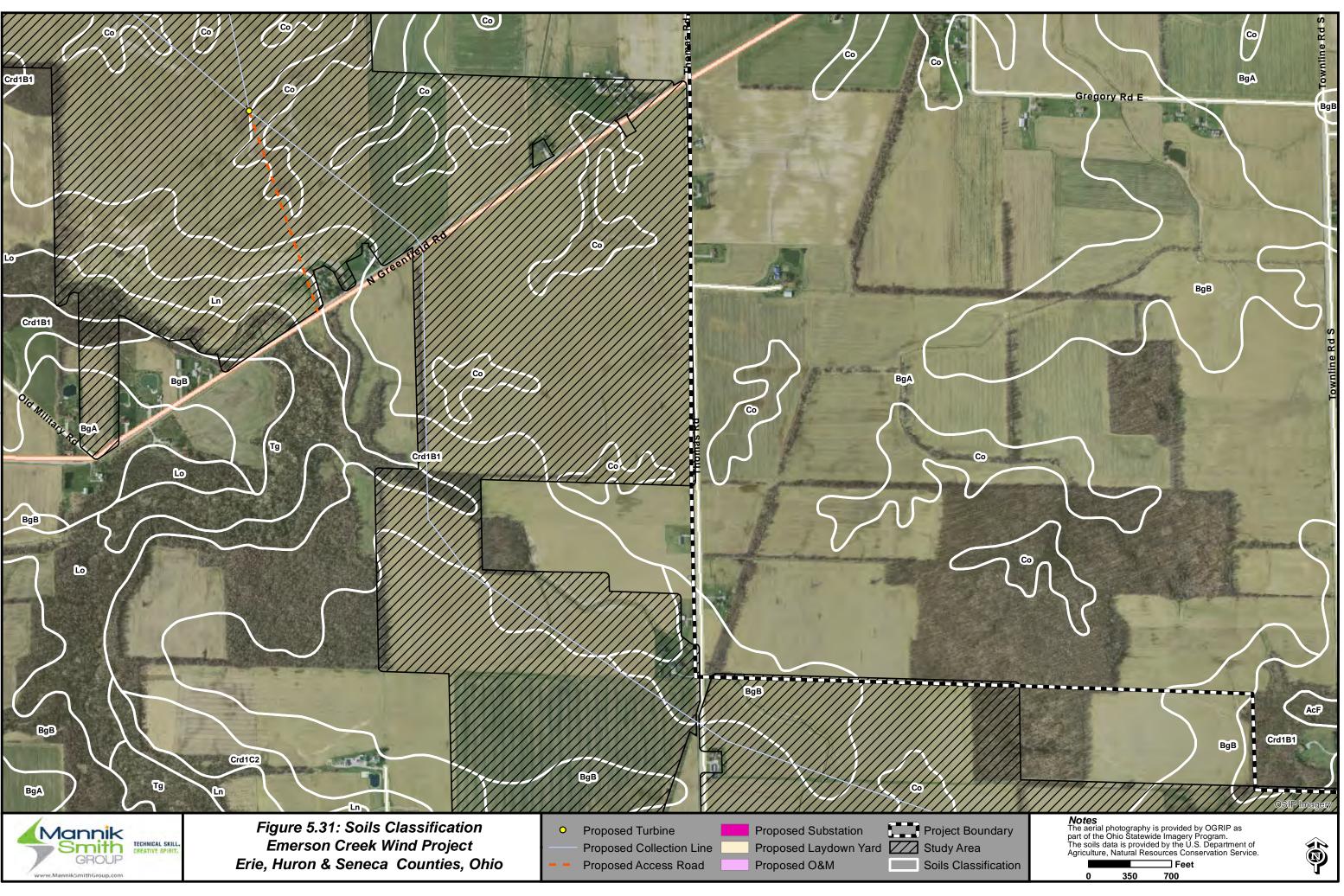


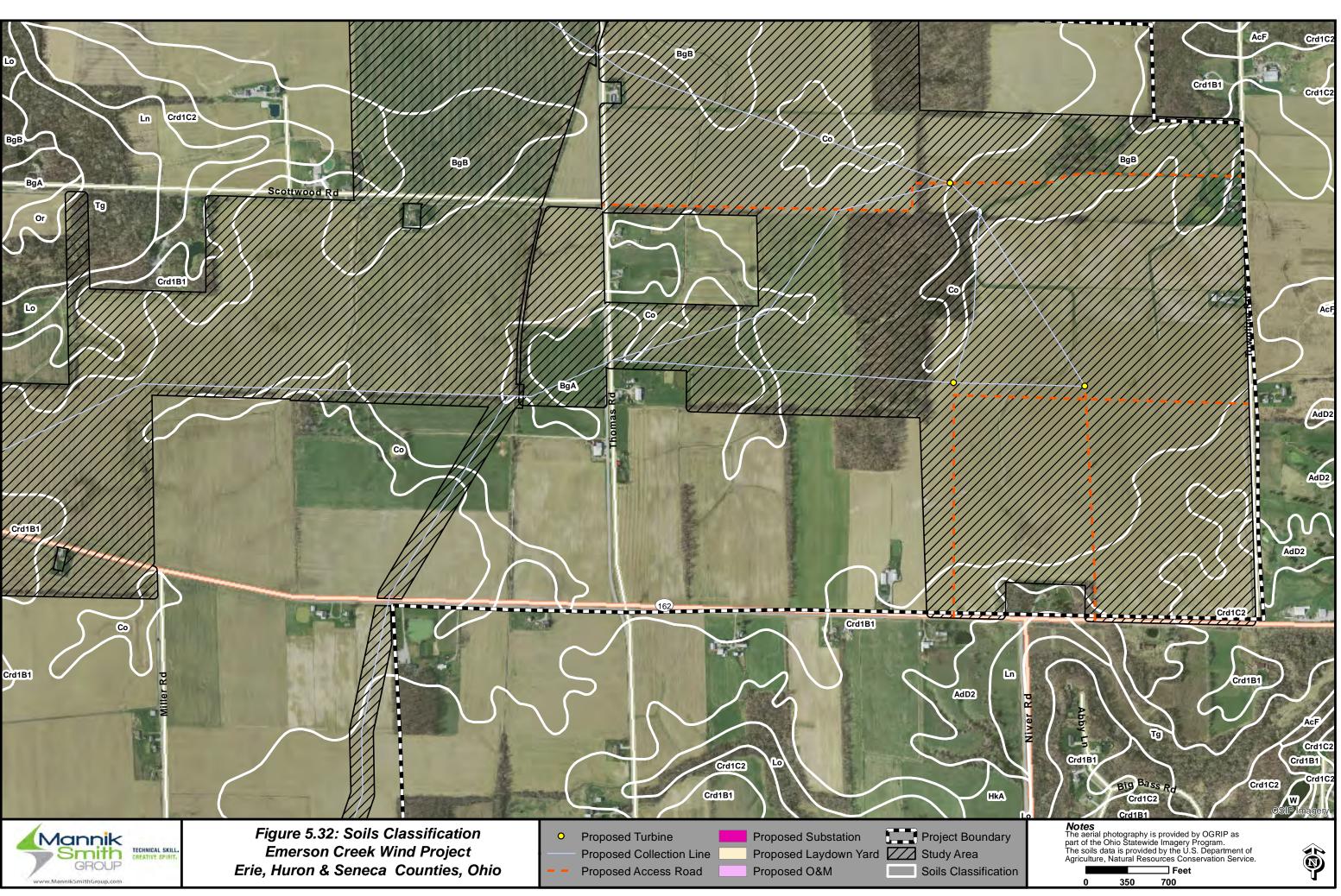


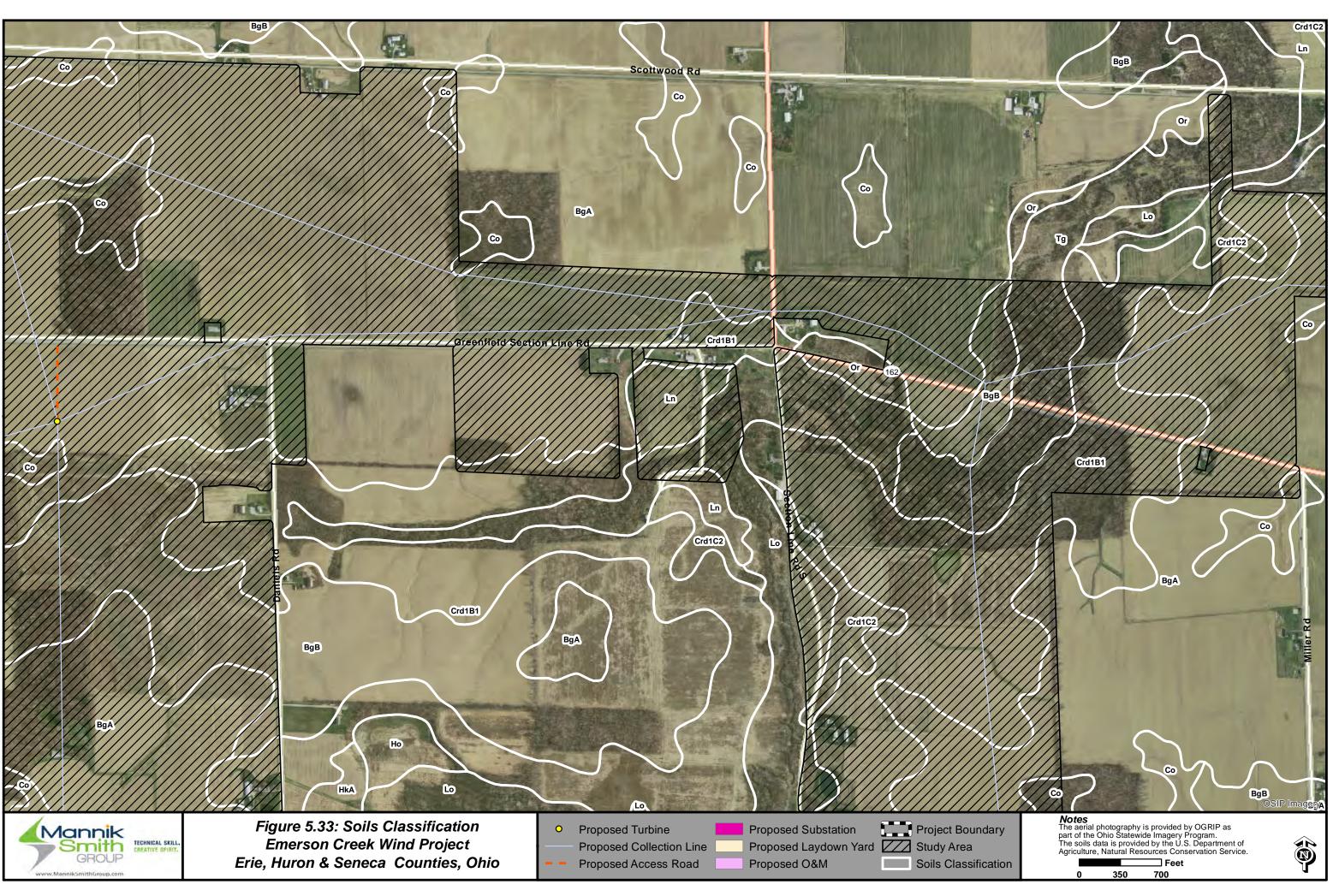


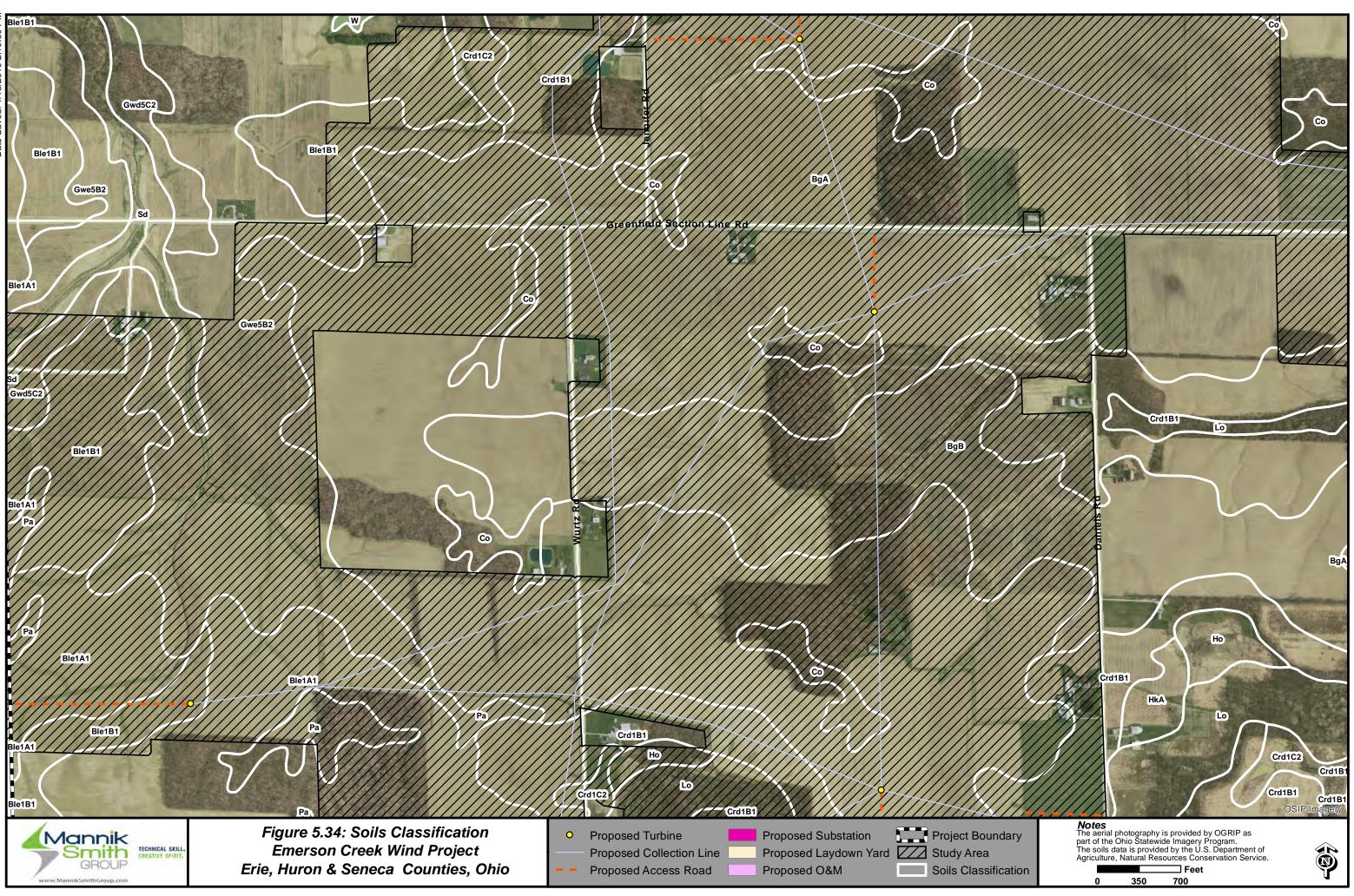


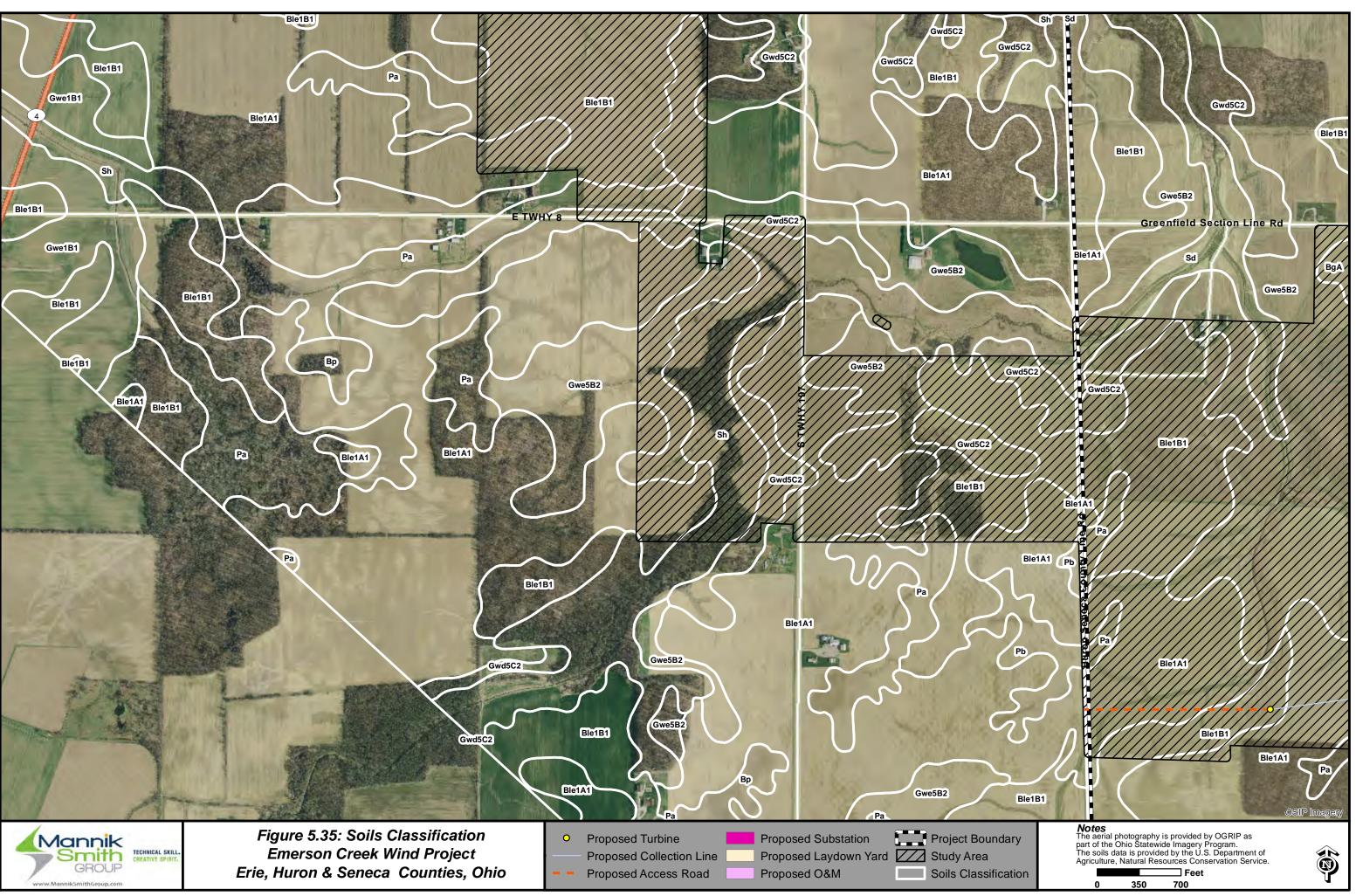


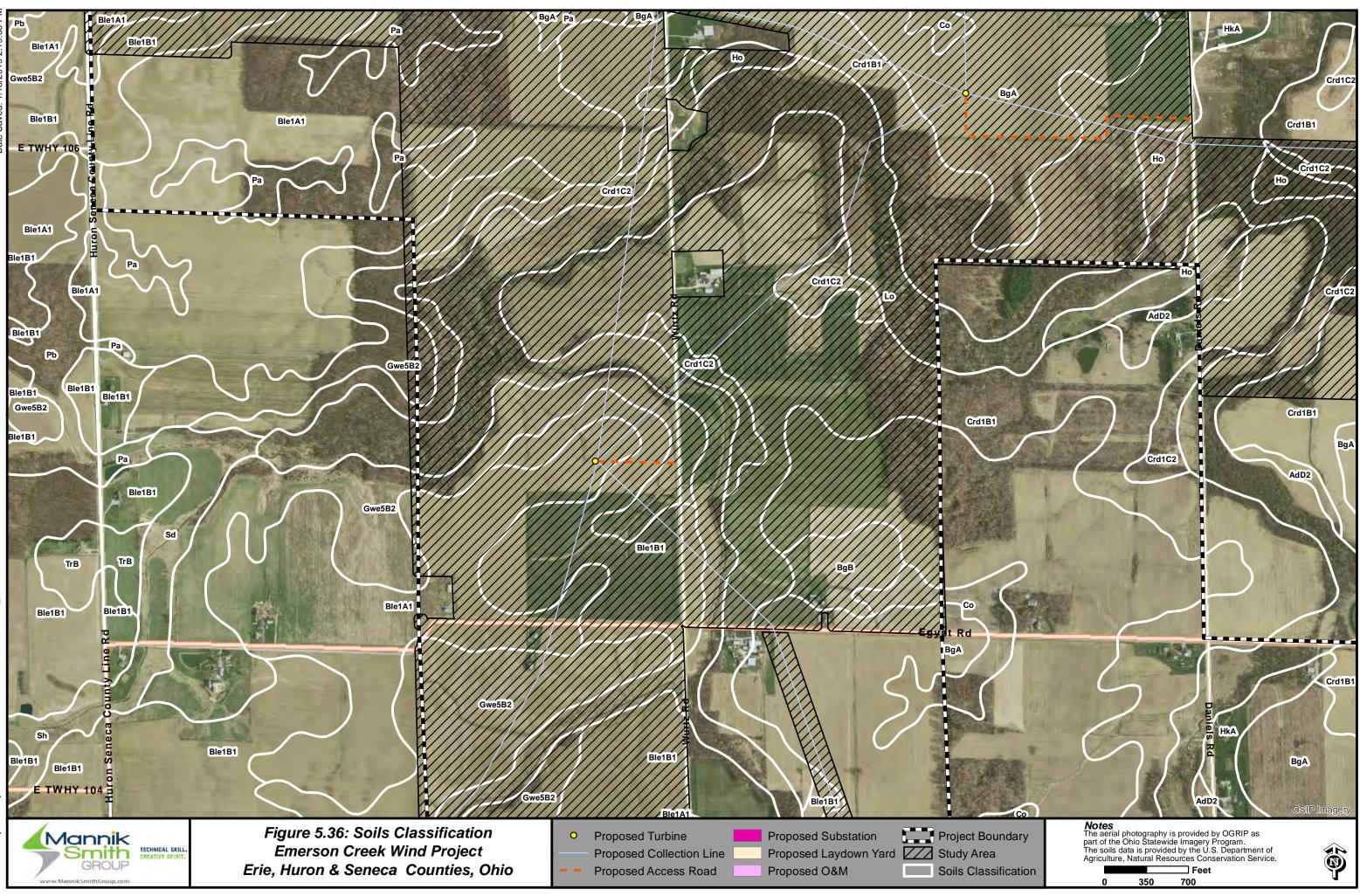


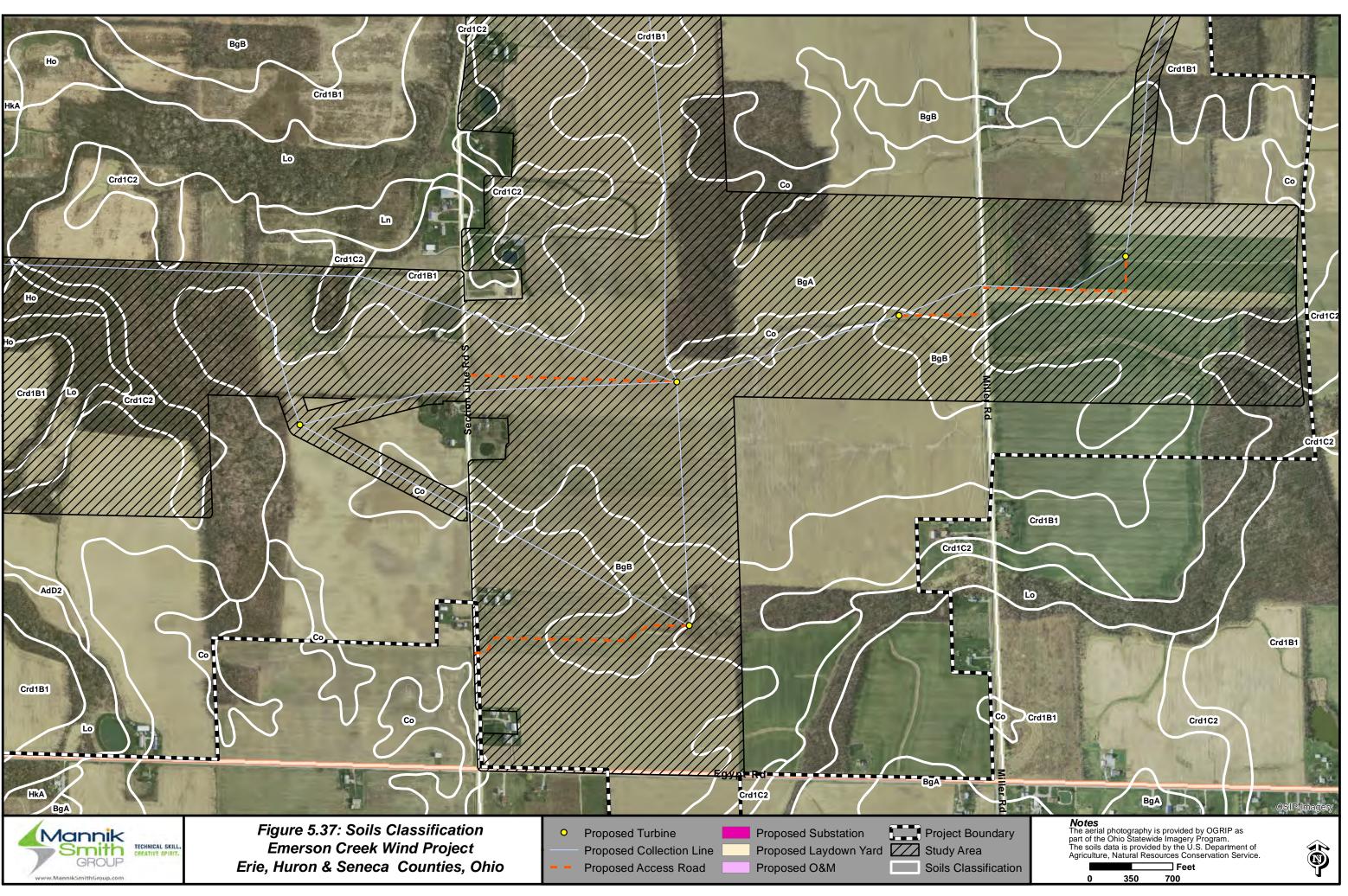


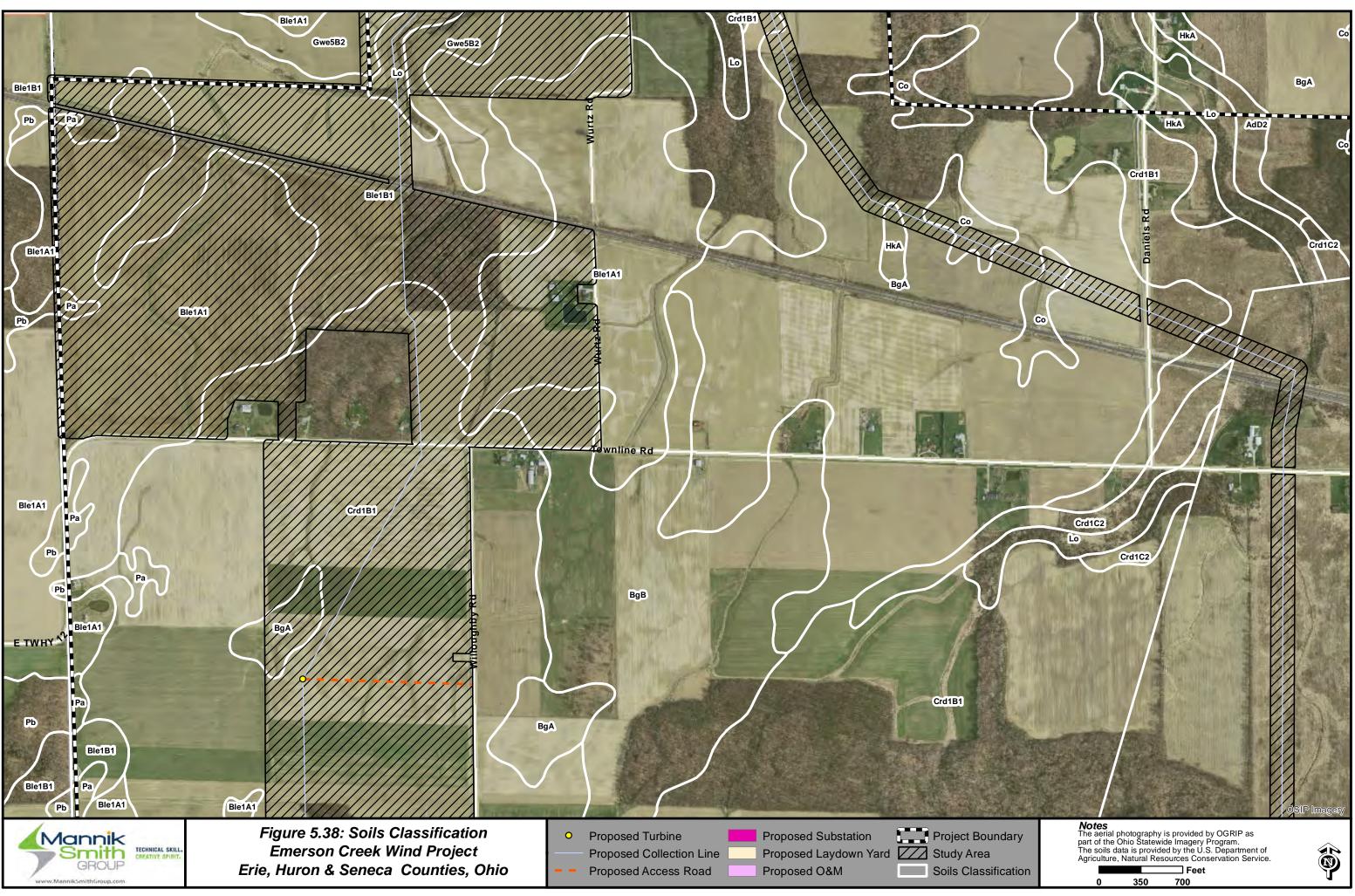


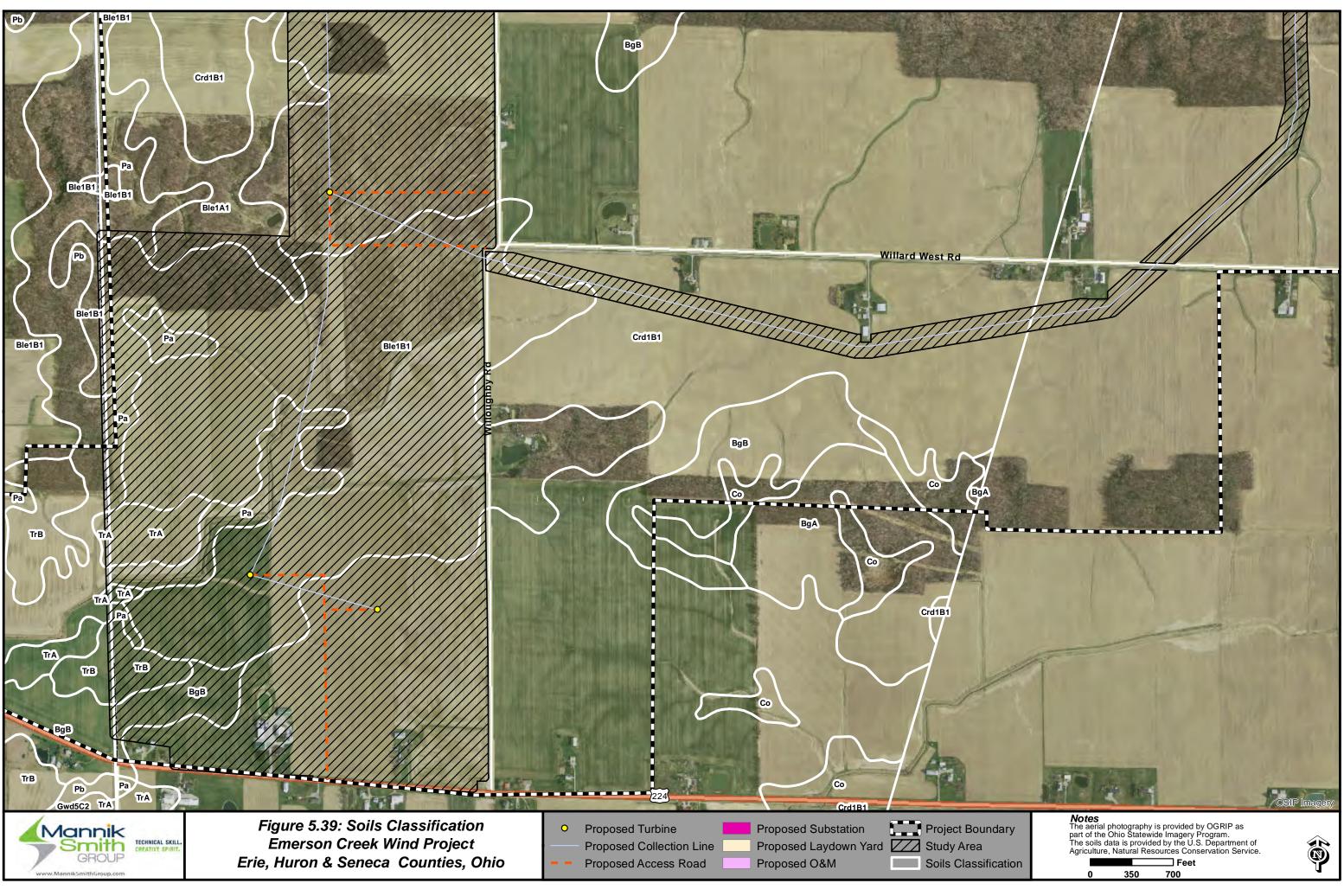


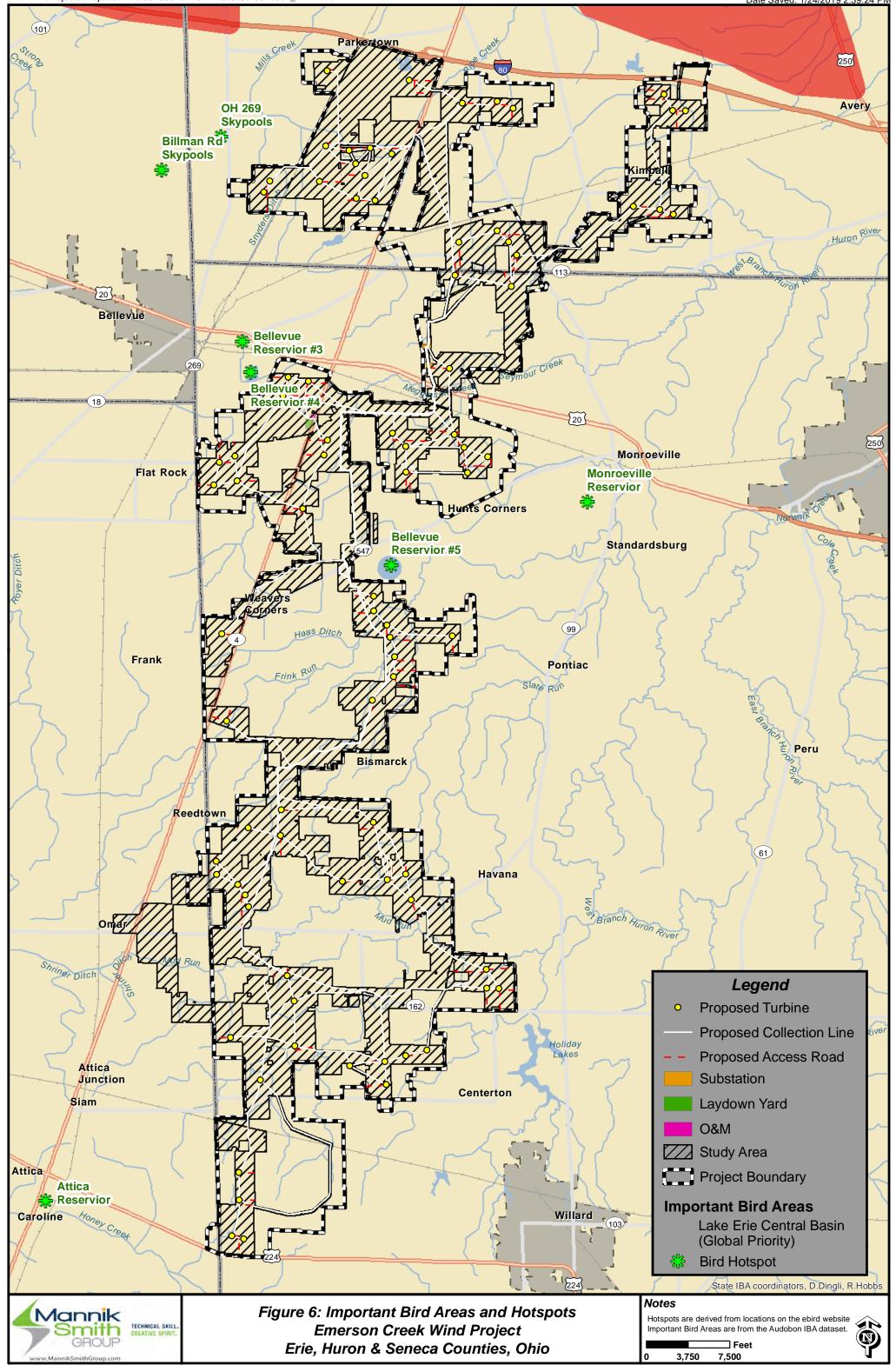


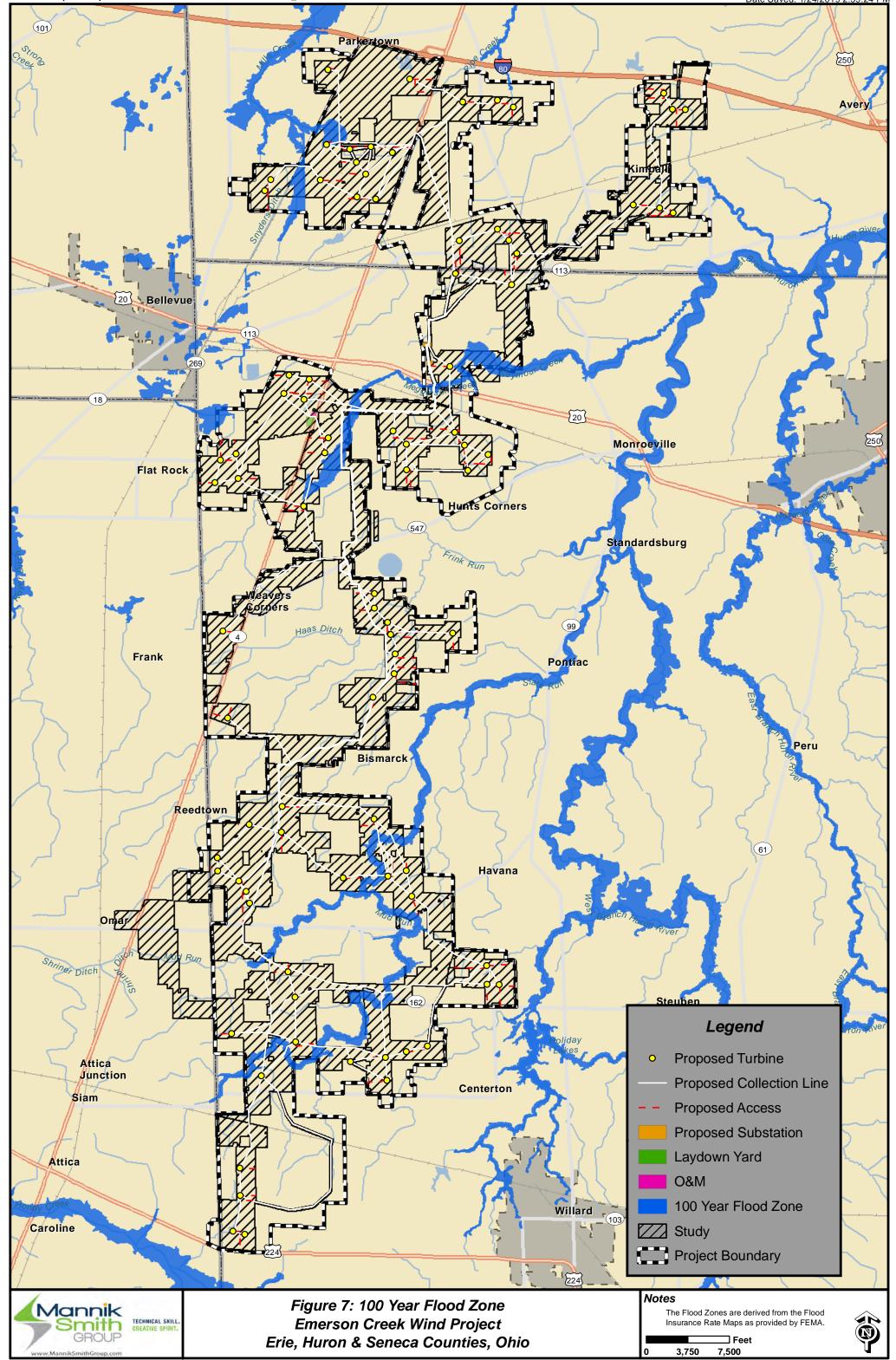


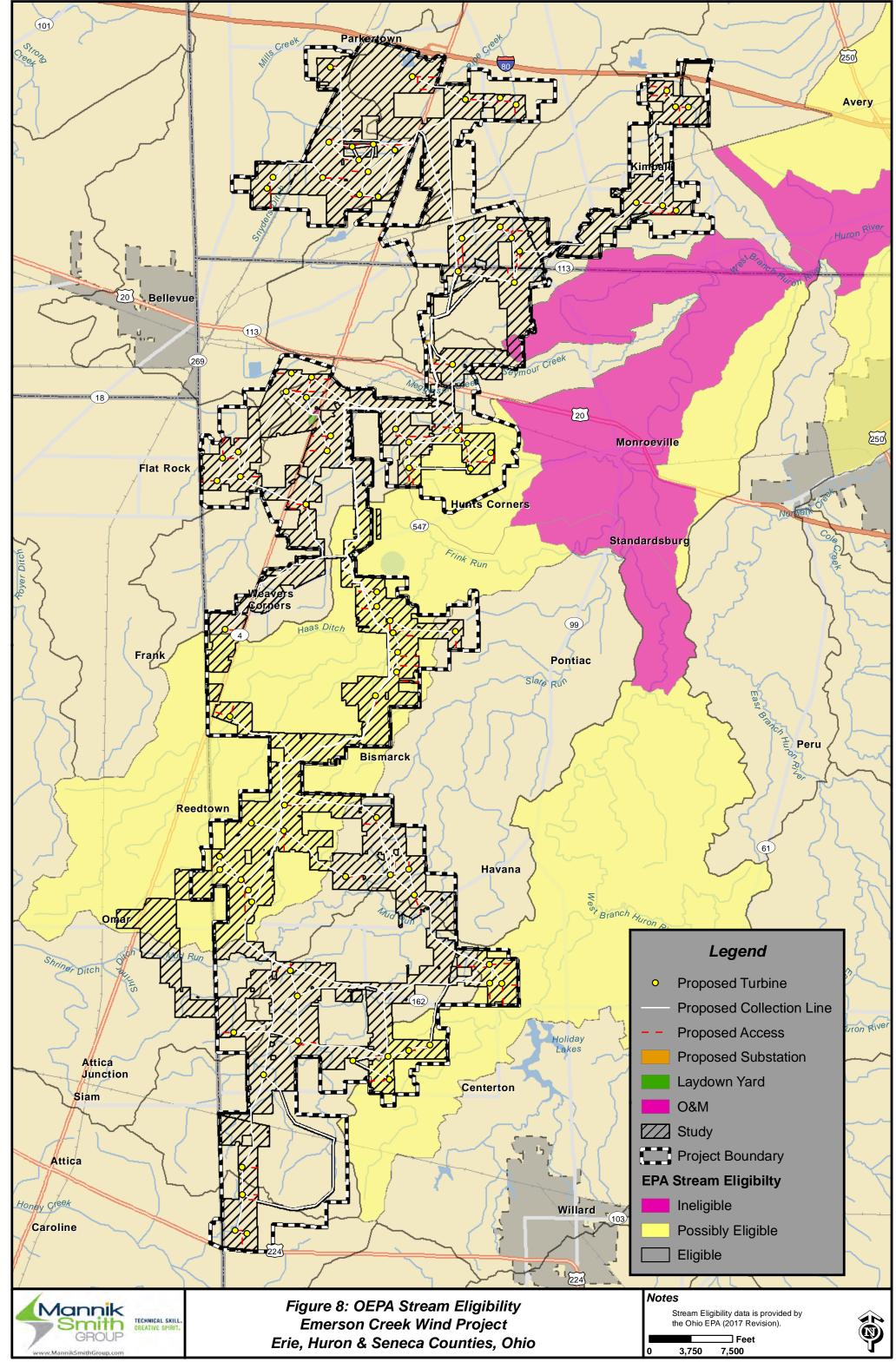


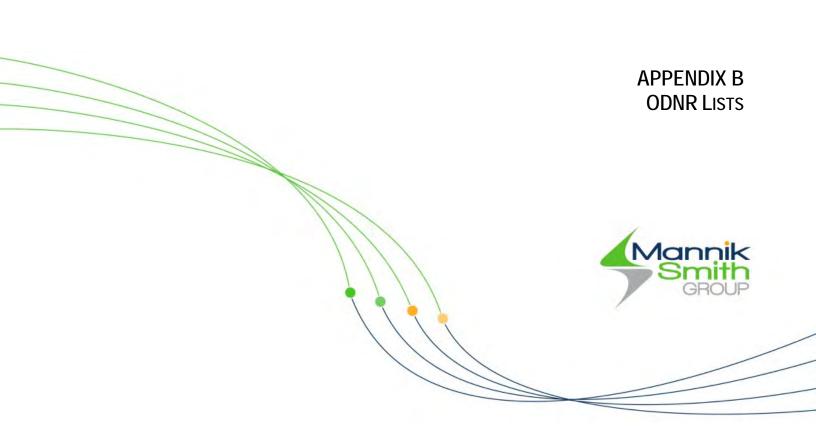












ERIE COUNTY

State Status	Federal Status	County	Category	Species	CommonName	Sensitive Species	Most Recent Record	FWS
Endangered		Erie	Amphibian - Salamander	Ambystoma laterale	Blue-spotted Salamander	Yes	1961	
Endangered	Endangered	Erie	Bird	Charadius melodus	Piping Plover	No		•
Endangered	Endangered	Erie	Bird	Dendroica kirtlandii	Kirtland's Warbler	No		*
Endangered	Ū	Erie	Insect - butterfly	Speyeria idalia	Regal Fritillary	No	1978	
Endangered		Erie	Insect - moth	Hypocoena enervata	0 9	No	1988	
Endangered		Erie	Insect - moth	Papaipema beeriana		No	1986	
Endangered		Erie	Insect - moth	Papaipema silphii		No	1987	
Endangered		Erie	Insect - moth	Spartiniphaga inops		No	1985	
Endangered		Erie	Insect - moth	Trichoclea artesta		No	1982	
Endangered		Erie	Insect - moth	Tricholita notata		No	1987	
Endangered		Erie	Insect - odonate	Gomphus externus	Plains Clubtail	No	1984	
Endangered		Erie	Invert fw bivalve	Ligumia nasuta	Eastern Pondmussel	No	1967	
Endangered	Endangered	Erie	Mammal	Myotis sodalis	Indiana Myotis	Yes		*
Endangered	Candidate	Erie	Reptile - Snake	Sistrurus catenatus catenatus	Eastern Massasauga	Yes		*
Endangered	Cumulato	Erie	Mammal	Ursus americanus	Black Bear	No	2000	
Threatened		Erie	Fish	Percina copelandi	Channel Darter	No	2012	
Threatened		Erie	Fish	Salvelinus fontinalis	Brook Trout	No	2012	
Threatened		Erie	Insect - moth	Faronta rubripennis	The Pink-streak	No	1986	
Threatened		Erie	Insect - moth	Spartiniphaga panatela		No	1987	
Threatened		Erie	Invert fw bivalve	Ligumia recta	Black Sandshell	No	1990	
Threatened		Erie	Invert fw bivalve	Obliquaria reflexa	Threehorn Wartyback	No	2006	
Threatened		Erie	Invert fw bivalve	Truncilla donaciformis	Fawnsfoot	No	1966	
Threatened	Species of Concern	Erie	Reptile - Snake	Nerodia sipedon insularum	Lake Erie Watersnake	No		
Threatened		Erie	Reptile - Turtle	Emydoidea blandingii	Blanding's Turtle	Yes	2005	
Species of Concern		Erie	Amphibian - Frog / Toad	Acris crepitans crepitans	Eastern Cricket Frog	No	2008	
Species of Concern		Erie	Fish	Esox masquinongy	Muskellunge	No	1993	
Species of Concern		Erie	Fish	Rhinichthys cataractae	Longnose Dace	No	1993	
Species of Concern		Erie	Insect - moth	Agroperina lutosa		No	1986	
Species of Concern		Erie	Insect - moth	Smerinthus cerisyi	One-Eyed Sphinx	No	1905	
Species of Concern		Erie	Insect - moth	Tarachidia binocula		No	1986	
Species of Concern		Erie	Invert fw bivalve	Alasmidonta marginata	Elktoe	No	2008	
Species of Concern		Erie	Invert fw bivalve	Cyclonaias tuberculata	Purple Wartyback	No	2006	
Species of Concern		Erie	Invert fw bivalve	Lasmigona compressa	Creek Heelsplitter	No	2008	
Species of Concern		Erie	Invert fw bivalve	Pleurobema sintoxia	Round Pigtoe	No	2008	
Species of Concern		Erie	Invert fw bivalve	Ptychobranchus fasciolaris	Kidneyshell	No	2006	
Species of Concern		Erie	Invert fw bivalve	Truncilla truncata	Deertoe	No	2008	
Species of Concern		Erie	Mammal	Eptesicus fuscus	Big Brown Bat	No	2012	
Species of Concern		Erie	Mammal	Lasionycteris noctivagans	Silver-haired Bat	No	1908	
Species of Concern		Erie	Mammal	Lasiurus borealis	Red Bat	No	2012	
Species of Concern		Erie	Mammal	Lasiurus cinereus	Hoary Bat	No	2012	
Species of Concern		Erie	Mammal	Myotis lucifugus	Little Brown Bat	No	2012	
Species of Concern	Threatened	Erie	Mammal	Myotis septentrionalis	Northern Long-eared Bat	No	2012	
Species of Concern		Erie	Mammal	Perimyotis subflavus	Tri-colored Bat	No	2012	
Species of Concern		Erie	Mammal	Peromyscus maniculatus	Deer Mouse	No	2005	
Species of Concern		Erie	Mammal	Taxidea taxus	Badger	No	2006	
Species of Concern		Erie	Reptile - Snake	Heterodon platirhinos	Eastern Hognose Snake	No	1937	
Species of Concern		Erie	Reptile - Snake	Pantherophis vulpinus	Eastern Foxsnake	No	1963	
Species of Concern		Erie	Reptile - Snake	Regina septemvittata	Queensnake	No	1966	
Special Interest		Erie	Insect - moth	Archanara subflava	Subflava Sedge Borer Moth	No	1987	
Special Interest		Erie	Insect - moth	Protorthodes incincta		No	1982	
Extirpated		Erie	Mammal	Cervus elaphus	Wapiti (Elk)	No	1913	

	Erie County		-	
DVNSKN OF WILDLIFE			State	Federal
Scientific Name	Common Name	Last Observed	Status	Status
Acorus americanus	American Sweet-flag	1989-06-28	Р	
Ammophila breviligulata	American Beach Grass	1991-09-11	Т	
Anemone cylindrica	Prairie Thimbleweed	1991-09-11	Т	
Arabis pycnocarpa var. adpressipilis	Southern Hairy Rock Cress	2010-05-19	Р	
Arabis pycnocarpa var. pycnocarpa	Western Hairy Rock Cress	1970-05	Х	
Aristida purpurascens	Purple Triple-awned Grass	2001-09-20	Р	
Artemisia campestris	Beach Wormwood	2007-08-16	Т	
Baptisia lactea	Prairie False Indigo	2001-08	Р	
Barbula indica	Twisted Teeth Moss	1993-05-22	Х	
Calamintha arkansana	Limestone Savory	1997-08-12	Р	
Calopogon tuberosus	Grass-pink	1970	Р	
Carex alata	Broad-winged Sedge	1994-06-14	Р	
Carex aquatilis	Leafy Tussock Sedge	1998-06-16	Р	
Carex atherodes	Wheat Sedge	1994-06-16	Р	
Carex aurea	Golden-fruited Sedge	2008-06-05	Р	
Carex bebbii	Bebb's Sedge	2000-09-07	Р	
Carex bicknellii	Bicknell's Sedge	1998-05-26	Т	
Carex brevior	Tufted Fescue Sedge	2008-08-01	Р	
Carex conoidea	Field Sedge	2001-06-09	Т	
Carex cryptolepis	Little Yellow Sedge	1996-05-28	Р	
Carex flava	Yellow Sedge	1998-05-28	Р	
Carex garberi	Garber's Sedge	2012-05-11	Е	
Carex lasiocarpa	Slender Sedge	1998-06-16	Р	
Carex limosa	Mud Sedge	2008-06-05	Е	
Carex mesochorea	Midland Sedge	1985-06-01	т	
Carex projecta	Necklace Sedge	1967-07	Т	
Carex straminea	Straw Sedge	1994-07-07	Р	
Carex viridula	Little Green Sedge	2009-08-27	т	

	Erie County		C 1 - 1 -	E. J.
Scientific Name	Common Name	Leat Observed	State Status	Federa Status
		Last Observed 2011-06-12		Status
Coeloglossum viride	Long-bracted Orchid		E	
Conyza ramosissima	Bushy Horseweed	2009-07-16	Р	
Corallorhiza maculata	Spotted Coral-root	1965-09-07	Р	
Cornus rugosa	Round-leaved Dogwood	1966-06-13	Р	
Cyperus diandrus	Low Umbrella-sedge	2007-08-16	P	
Cyperus schweinitzii	Schweinitz' Umbrella-sedge	2008-08-18	Т	
Cypripedium candidum	White Lady's-slipper	1995-05-30	E	
Descurainia pinnata	Tansy Mustard	2010-05-19	Т	
Dichanthelium lindheimeri	Lindheimer's Panic Grass	2000-07-20	Т	
Dichanthelium meridionale	Southern Hairy Panic Grass	1994-07-07	Т	
Draba reptans	Carolina Whitlow-grass	2010-05-19	Т	
Eleocharis compressa	Flat-stemmed Spike-rush	2009-08-27	Р	
Eleocharis flavescens	Green Spike-rush	1997-09-11	Т	
Eleocharis geniculata	Caribbean Spike-rush	2009-08-27	E	
Eleocharis ovata	Ovate Spike-rush	2001-10-03	Е	
Eleocharis tenuis	Slender Spike-rush	2001-08-23	Т	
Euphorbia polygonifolia	Seaside Spurge	2008-09-04	Р	
Euthamia remota	Great Lakes Goldenrod	1997-08-20	Т	
Gentianopsis crinita	Fringed Gentian	1997-09-30	Р	
Gentianopsis procera	Small Fringed Gentian	2001-09-25	Р	
Gratiola virginiana	Round-fruited Hedge-hyssop	2001	Т	
Gymnocarpium dryopteris	Common Oak Fern	2001-06-01	Е	
Hedeoma hispida	Rough Pennyroyal	2001	Р	
Helianthemum bicknellii	Plains Frostweed	1970-08-09	Р	
Helianthus mollis	Ashy Sunflower	2001	т	
Hypericum canadense	, Canada St. John's-wort	1978-07-31	Е	
Hypericum gymnanthum	Least St. John's-wort	2008-08-01	Е	
Hypericum kalmianum	Kalm's St. John's-wort	1997-08-28	Т	

	Erie County			
WITCH IF			State	Federal
Scientific Name	Common Name	Last Observed	Status	Status
Iris brevicaulis	Leafy Blue Flag	2009-06-17	Т	
Juncus alpinoarticulatus	Alpine Rush	2009-08-27	Т	
Juncus balticus	Baltic Rush	1997-08-28	Р	
Juncus greenei	Greene's Rush	2001	Т	
Juncus platyphyllus	Flat-leaved Rush	2008-08-01	Е	
Liatris scariosa	Large Blazing-star	1994-09-07	Т	
Lipocarpha micrantha	Dwarf Bulrush	2008-08-01	Т	
Minuartia michauxii	Rock Sandwort	2010-05-19	Р	
Myriophyllum sibiricum	American Water-milfoil	1998-06-02	Е	
Oenothera oakesiana	Oakes' Evening-primrose	2008-09-04	Р	
Opuntia humifusa	Common Prickly Pear	2011-08-01	Р	
Packera paupercula	Balsam Squaw-weed	2012-05-11	Т	
Panicum philadelphicum	Philadelphia Panic Grass	2008-09-05	E	
Panicum tuckermanii	Tuckerman's Panic Grass	2000-09-07	Е	
Phragmites australis ssp. americanus	American Reed Grass	2003-08-28	Р	
Potamogeton natans	Floating Pondweed	1990-09-18	Р	
Potentilla paradoxa	Bushy Cinquefoil	2001-10-03	Т	
Prenanthes aspera	Rough Rattlesnake-root	2001	Т	
Prenanthes racemosa	Prairie Rattlesnake-root	2001-09-25	Р	
Ranunculus fascicularis	Early Buttercup	2011-05-06	Т	
Rhexia virginica	Virginia Meadow-beauty	2001-08-04	Р	
Rosa blanda	Smooth Rose	2007-07-26	Р	
Sagittaria cuneata	Wapato	2001-10-03	т	
Sagittaria rigida	Deer's-tongue Arrowhead	2001-10-03	Р	
Salix candida	Hoary Willow	1970	т	
Salix myricoides	Blue-leaved Willow	1997-10-25	Р	
Schoenoplectiella smithiii	Smith's Bulrush	2010-08-26	т	
Scleria triglomerata	Tall Nut-rush	2008-08-01	Р	

	Erie County			
PRINTON OF WILDLIFF			State	Federal
Scientific Name	Common Name	Last Observed	Status	Status
Shepherdia canadensis	Canada Buffalo-berry	1965-09-07	Р	
Sisyrinchium montanum	Northern Blue-eyed-grass	1995-05-27	Т	
Sisyrinchium mucronatum	Narrow-leaved Blue-eyed-grass	1998-05-28	Т	
Solidago speciosa	Showy Goldenrod	2001-09-08	Р	
Solidago squarrosa	Leafy Goldenrod	2011-09-28	Т	
Spiranthes lucida	Shining Ladies'-tresses	2010-05-22	Р	
Spiranthes magnicamporum	Great Plains Ladies'-tresses	2009-08-27	Р	
Symphyotrichum dumosum	Bushy Aster	2008-08-01	Т	
Triglochin palustris	Marsh Arrow-grass	1997-08-12	Р	
Ulmus thomasii	Rock Elm	2007-07-26	Р	
Vernonia fasciculata	Prairie Ironweed	1983-08-10	Е	
Viola lanceolata	Lance-leaved Violet	2008-08-01	Р	
Viola nephrophylla	Northern Bog Violet	2011-05-20	Т	
Xanthoria elegans	Elegant Sunburst Lichen	2008-05-08	Е	
Xyris torta	Twisted Yellow-eyed-grass	2000-08-08	Т	

Ohio Division of Wildlife Ohio Natural Heritage Database Date Accessed: March 6, 2015 Status based on2014-15 Rare Plant List.

Status:

- X = Extirpated
- E = Endangered
- T = Threatened
- P = Potentially Threatened

	Erie County			
EVILES OF			State	Federal
Scientific Name	Common Name	Last Observed	Status	Status

List Created: July 2016

HURON COUNTY

State Status	Federal Status	County	Category	Species	CommonName	Sensitive Species	Most Recent Record	FWS
Endangered		Huron	Bird	Bubulcus ibis	Cattle Egret	No	1992	
Endangered		Huron	Bird	Circus cyaneus	Northern Harrier	No	1992	
Endangered	Endangered	Huron	Mammal	Myotis sodalis	Indiana Myotis	Yes		*
Endangered	Candidate	Hardin	Reptile - Snake	Sistrurus catenatus catenatus	Eastern Massasauga	Yes	1946	*
Threatened		Huron	Bird	Nycticorax nycticorax	Black-crowned Night-Heron	No	1995	
Threatened		Huron	Invert fw bivalve	Ligumia recta	Black Sandshell	No	2008	
Threatened		Huron	Invert fw bivalve	Truncilla donaciformis	Fawnsfoot	No	1936	
Threatened		Huron	Invert fw bivalve	Uniomerus tetralasmus	Pondhorn	No	2008	
Species of Concern		Huron	Bird	Ardea alba	Great Egret	No	1996	
Species of Concern		Huron	Bird	Dolichonyx oryzivorus	Bobolink	No	2004	
Species of Concern		Huron	Invert fw bivalve	Alasmidonta marginata	Elktoe	No	2007	
Species of Concern		Huron	Invert fw bivalve	Lampsilis fasciola	Wavy-rayed Lampmussel	No	2006	
Species of Concern		Huron	Invert fw bivalve	Lasmigona compressa	Creek Heelsplitter	No	2007	
Species of Concern		Huron	Invert fw bivalve	Pleurobema sintoxia	Round Pigtoe	No	2008	
Species of Concern		Huron	Invert fw bivalve	Ptychobranchus fasciolaris	Kidneyshell	No	2008	
Species of Concern		Huron	Mammal	Eptesicus fuscus	Big Brown Bat	No	2012	
Species of Concern		Huron	Mammal	Lasiurus borealis	Red Bat	No	2012	
Species of Concern		Huron	Mammal	Lasiurus cinereus	Hoary Bat	No	2012	
Species of Concern		Huron	Mammal	Myotis lucifugus	Little Brown Bat	No	2012	
Species of Concern	Threatened	Huron	Mammal	Myotis septentrionalis	Northern Long-eared Bat	No	2012	
Species of Concern		Huron	Mammal	Perimyotis subflavus	Tri-colored Bat	No	2012	
Species of Concern		Huron	Mammal	Peromyscus maniculatus	Deer Mouse	No	1928	
Species of Concern		Huron	Mammal	Taxidea taxus	Badger	No	1986	
Special Interest		Huron	Bird	Anas rubripes	American Black Duck	No	1995	
Special Interest		Huron	Bird	Empidonax minimus	Least Flycatcher	No	2009	
Special Interest		Huron	Bird	Sturnella neglecta	Western Meadowlark	No	1990	
Special Interest		Huron	Mammal	Nycticeius humeralis	Evening Bat	No	2012	

	Huron County			
			State	Federal
Scientific Name	Common Name	Last Observed	Status	Status
Acorus americanus	American Sweet-flag	1972-08-07	Р	
Carex lupuliformis	False Hop Sedge	2000-08-05	Р	
Corallorhiza maculata	Spotted Coral-root	2000-07-21	Р	
Luzula bulbosa	Southern Woodrush	2008-07-31	Р	
Plagiothecium latebricola	Lurking Leskea	1997-09-14	Т	
Rosa blanda	Smooth Rose	2000-06-08	Р	
Sagittaria platyphylla	Elliptic-leaved Arrowhead	1972-08-07	Х	
Triphora trianthophora	Three-birds Orchid	2000-07-21	Р	
Ulmus thomasii	Rock Elm	2000-05-26	Р	

Ohio Division of Wildlife Ohio Natural Heritage Database Date Accessed: March 6, 2015 Status based on 2014-15 Rare Plant List.

Status:

X = Extirpated

E = Endangered

T = Threatened

P = Potentially Threatened

List Created: July 2016

SENECA COUNTY

State Status	Federal Status	County	Category	Species	CommonName	Sensitive Species	Most Recent Record	FWS
Endangered		Seneca	Bird	Bartramia longicauda	Upland Sandpiper	No	1998	
Endangered		Seneca	Bird	Circus cyaneus	Northern Harrier	No	2004	
Endangered		Seneca	Bird	Lanius Iudovicianus	Loggerhead Shrike	No	2000	
Endangered		Seneca	Insect - odonate	Gomphus externus	Plains Clubtail	No	2005	
Endangered	Endangered	Seneca	Invert fw bivalve	Epioblasma torulosa rangiana	Northern Riffleshell	No	1976	
Endangered	Endangered	Seneca	Invert fw bivalve	Villosa fabalis	Rayed Bean	No	1971	
Endangered	Endangered	Seneca	Mammal	Myotis sodalis	Indiana Myotis	Yes		*
Threatened		Seneca	Fish	Moxostoma valenciennesi	Greater Redhorse	No	2009	
Threatened		Seneca	Invert fw bivalve	Ligumia recta	Black Sandshell	No	2008	
Species of Concern		Seneca	Bird	Ammodramus henslowii	Henslow's Sparrow	No	2014	
Species of Concern		Seneca	Bird	Ardea alba	Great Egret	No	2011	
Species of Concern		Seneca	Bird	Cistothorus palustris	Marsh Wren	No	1997	
Species of Concern		Seneca	Bird	Colinus virginianus	Northern Bobwhite	No	2006	
Species of Concern		Seneca	Bird	Dolichonyx oryzivorus	Bobolink	No	2014	
Species of Concern		Seneca	Fish	Esox masquinongy	Muskellunge	No	1981	
Species of Concern		Seneca	Fish	Moxostoma carinatum	River Redhorse	No	2009	
Species of Concern		Seneca	Insect - moth	Smerinthus cerisyi	One-Eyed Sphinx	No	1956	
Species of Concern		Seneca	Invert fw bivalve	Alasmidonta marginata	Elktoe	No	2008	
Species of Concern		Seneca	Invert fw bivalve	Cyclonaias tuberculata	Purple Wartyback	No	2009	
Species of Concern		Seneca	Invert fw bivalve	Lampsilis fasciola	Wavy-rayed Lampmussel	No	1971	
Species of Concern		Seneca	Invert fw bivalve	Lasmigona compressa	Creek Heelsplitter	No	1936	
Species of Concern		Seneca	Invert fw bivalve	Pleurobema sintoxia	Round Pigtoe	No	2008	
Species of Concern		Seneca	Invert fw bivalve	Ptychobranchus fasciolaris	Kidneyshell	No	2008	
Species of Concern		Seneca	Mammal	Eptesicus fuscus	Big Brown Bat	No	2012	
Species of Concern		Seneca	Mammal	Lasiurus borealis	Red Bat	No	2012	
Species of Concern		Seneca	Mammal	Lasiurus cinereus	Hoary Bat	No	2012	
Species of Concern		Seneca	Mammal	Myotis lucifugus	Little Brown Bat	No	2012	
Species of Concern	Threatened	Seneca	Mammal	Myotis septentrionalis	Northern Long-eared Bat	No	2012	
Species of Concern		Seneca	Mammal	Perimyotis subflavus	Tri-colored Bat	No	2012	
Species of Concern		Seneca	Mammal	Peromyscus maniculatus	Deer Mouse	No	1975	
Species of Concern		Seneca	Mammal	Synaptomys cooperi	Southern Bog Lemming	No	1937	
Species of Concern		Seneca	Mammal	Taxidea taxus	Badger	No	2007	
Special Interest		Seneca	Bird	Carpodacus purpureus	Purple Finch	No	2005	
Extirpated		Seneca	Invert fw bivalve	Actinonaias ligamentina ligamentina	Mucket	No	1976	

Seneca County

DIVISION OF WILDLIFE			State	Federal
Scientific Name	Common Name	Last Observed	Status	Status
Betula pumila	Swamp Birch	1994-05-25	Т	
Carex alata	Broad-winged Sedge	2004-06-22	Р	
Carex bebbii	Bebb's Sedge	1999-07-15	Р	
Carex cryptolepis	Little Yellow Sedge	2007-06-28	Р	
Carex lasiocarpa	Slender Sedge	1993-06-22	Р	
Carex pseudocyperus	Northern Bearded Sedge	2013-08-19	Е	
Carex viridula	Little Green Sedge	1990-05	т	
Collema crispum	Crinkled Jelly Lichen	1962-07-09	Х	
Cypripedium candidum	White Lady's-slipper	1994-05-25	E	
Eleocharis engelmannii	Engelmann's Spike-rush	1969-09-09	E	
Eleocharis quinqueflora	Few-flowered Spike-rush	2013-08-19	Т	
Phragmites australis ssp. ame	erican American Reed Grass	2006-10-18	Р	
Potamogeton gramineus	Grass-like Pondweed	1986-06-05	E	
Rhynchospora alba	White Beak-rush	2013-08-19	Р	
Spiranthes lucida	Shining Ladies'-tresses	1980-06-06	Р	

Ohio Division of Wildlife Ohio Natural Heritage Database Date Accessed: March 6, 2015 Status based on 2014-15 Rare Plant List.

Status:

- X = Extirpated
- E = Endangered
- T = Threatened
- *P* = *Potentially Threatened*

List Created: July 2016

SURFACE WATER DELINEATION REPORT

EMERSON CREEK WIND FARM ERIE, HURON, AND SENECA COUNTIES, OHIO

JANUARY 2019

PREPARED BY: **THE MANNIK & SMITH GROUP, INC.** 1800 INDIAN WOOD CIRCLE MAUMEE, OHIO 43537

SURFACE WATER DELINEATION REPORT

EMERSON CREEK WIND FARM ERIE, HURON, AND SENECA COUNTIES, OHIO

PREPARED BY:

IVY S MARTIN **ENVIRONMENTAL TECHNICIAN**

REVIEWED BY:

KATIF L. SIMON NATURAL RESOURCES TEAM LEADER

MATTHEW S. PESCI, CPG SENIOR PROJECT MANAGER

APPROVED BY:

<u>SECTIO</u>	<u>DN:</u>	PAG	<u>ge no.:</u>
1.0	INTROD	DUCTION	1
2.0	METHO	DS	
	2.1	WETLAND DELINEATION	1
	2.2	ORAM SURVEY OF WETLAND FUNCTIONS	2
	2.3	STREAM HABITAT ASSESSMENTS	3
	2.4	WATERBODIES	3
3.0	RESULT	۲S	3
4.0	CONCLU	USIONS AND RECOMMENDATIONS	5

TABLE OF CONTENTS

TABLES

TABLE 2.1	DEFINITIONS OF WETLAND INDICATOR STATUS DESIGNATIONS	.2
TABLE 2.2	Ohio Rapid Assessment Categories	.2
Table 3.1	POTENTIAL WOTUS IMPACTS ASSOCIATED WITH THE EMERSON CREEK WIND FARM	3
TABLE 3.2	POTENTIAL STREAM IMPACTS ASSOCIATED WITH THE EMERSON CREEK WIND FARM	5

FIGURES

FIGURE 1	SITE LOCATION
FIGURE 2	SOILS CLASSIFICATION
FIGURE 3	NWI
FIGURE 4	SURFACE WATER DELINEATION

APPENDICES

- APPENDIX A SUMMARY TABLES APPENDIX B WETLAND DETERMINATION DATA FORMS
- APPENDIX C SITE PHOTOGRAPHS
- APPENDIX D ORAM FORMS
- APPENDIX E STREAM ASSESSMENT FORMS

1.0 INTRODUCTION

During September through December 2018 and January 2019, The Mannik & Smith Group, Inc. (MSG) completed a Surface Water Delineation (SWD) for the proposed Emerson Creek Wind Farm in Erie, Huron, and Seneca Counties (Study Area) (Figure 1). The purpose of the SWD was to identify areas that may be considered a jurisdictional wetland or other surface water, such as a regulated stream by either the USACE or state of Ohio, in the Study Area.

The Code of Federal Regulations 33 Part 328 defines a wetland as an area that is inundated or saturated by surface or ground water at a frequency and duration sufficient to support, and that under normal circumstances does support, a prevalence of vegetation typically adapted for life in saturated soil conditions. The United States Army Corp of Engineer's (USACE) Wetland Delineation Manual further defines a wetland as having the following characteristics: hydric soils, evidence of inundated or saturated conditions (hydrology), and a predominance of hydrophytic vegetation. When all three of these criteria are met, a wetland is present and is subject to Federal and/or State regulations and permitting. Regulated streams are defined as any channel that has a bed, bank, and visible sign of an ordinary high water mark.

During a surface water delineation, data are collected on the vegetation, soils, and hydrology present to determine if the criteria for a jurisdictional wetland are met, and the wetland/non-wetland boundaries are then flagged. The wetland/non-wetland boundaries and the sample locations are surveyed and placed on the Study Area map. From the wetland map, the acreage of each wetland is calculated. A preliminary determination is also made as to whether each wetland is considered a water of the United States (WOTUS) and thus under the jurisdiction of USACE or not a WOTUS and thus under the jurisdiction of the State of Ohio Isolated Wetland Permit Program (IWPP). This determination is based on the 2015 Clean Water Rule (CWR).

2.0 <u>METHODS</u>

2.1 Wetland Delineation

MSG performed the SWD in accordance with the 2010 Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Midwest Region, Version 2.0 and 2012 Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Northcentral and Northeast Region, Version 2.0 (The Manual). The Manual defines a wetland as any area that contains a predominance of wetland vegetation, hydric soils, and positive indicators of wetland hydrology. Sample points for vegetation, soils, and hydrology were placed on either side of the wetland boundary to inform delineation.

Vegetation observed in each sample plot was recorded according to vegetation stratum (tree, sapling, shrub, herb, and woody vine). Plot sizes for each vegetation stratum were determined in accordance with The Manual; however, plot sizes were adjusted in order to keep the plot sampling entirely within the limits of the wetland boundaries when necessary. Absolute cover was assessed by estimating the percent cover for each plant species. Once plant data were collected, the dominant species from each vegetation stratum were recorded on the Wetland Determination Data Form. The wetland indicator status of each dominant species was determined using the *U.S. Army Corps of Engineers 2016, National Wetland Plant List, version 3.3* (2016). The wetland indicator status reflects the likelihood of a species occurring in a wetland or non-wetland area. The indicator status designations are described in Table 2.1.

Indicator Status	Symbol	Definition
Obligate Wetland Species	OBL	Almost always (estimated probability > 99%) occurs in wetlands
Facultative Wetland Species	FACW	Usually (estimated probability 67% – 99%) occurs in wetlands
Facultative Species	FAC	Equally likely to occur in wetlands and non-wetlands (estimated probability 34% – 66%)
Facultative Upland Species	FACU	Usually occurs in non-wetlands (estimated probability 67% – 99%)
Obligate Upland Species	UPL	Almost always (estimated probability > 99%) occurs in non-wetlands

 Table 2.1
 Definitions of Wetland Indicator Status Designations

Soils were examined by digging a pit at each sample point. Soils were then inspected for hydric soil indicators, as identified in the *Field Indicators of Hydric Soils of the United States, A Guide for Identifying and Delineating Hydric Soils, Version 8.2 (2018)*, published by the United States Department of Agriculture (USDA), Natural Resource Conservation Service. Primary and/or secondary indicators of wetland hydrology were also noted when present. Soil information from the Soil Surveys of Erie County, Ohio (USDA, 2006), Huron County (USDA, 1994) and Seneca County (USDA, 1980) is available in Figure 2. National Wetland Inventory (NWI) information is provided in Figure 3.

The wetland/upland boundary was surveyed using a Trimble Geo XH GPS receiver with sub-meter accuracy. Wetland Determination Data Forms are included in Appendix B; digital images of each wetland are included in Appendix C. After the wetland was delineated, MSG described the hydrological connection (if any) to waters of the United States and the probable jurisdictional status of the wetland.

2.2 ORAM Survey of Wetland Functions

MSG also characterized the quality of the wetland using the Ohio Rapid Assessment Method (ORAM), version 5.0, included in Appendix D. The Ohio Environmental Protection Agency (Ohio EPA) has established three primary and three intermediate categories of wetland quality which are based on a wetland's size, its hydrologic function, the types of plant communities present, the physical structure of the wetland plant community and the wetland's level of disturbance (OAC 3745-1-54). The relationship between the various wetland categories and their respective ORAM scores is presented in Table 2.2.

Table 2.2 Onlo Rapid Assessment Categories							
Category Number	Range of ORAM Scores						
Category 1	0–29.9						
Category 1 or 2 (Gray Zone)	30-34.9						
Modified Category 2	35-44.9						
Category 2	45–59.9						
Category 2 or 3	60-64.9						
Category 3	65–100						

 Table 2.2
 Ohio Rapid Assessment Categories

Category 3 wetlands have the highest quality and are generally characterized by a high level of biological diversity and topographical variation, large numbers of native species, or a high level of functional importance to its surroundings. Category 2 wetlands have the capability to support a

moderate wildlife community or maintain mid-level hydrological functions. Category 2 also includes wetlands that may be of lower quality or degraded, but have reasonable potential to be restored (Modified Category 2). Category 1 wetlands are of the lowest quality, and are generally characterized by hydrological isolation, lack of plant species diversity, insufficient habitat availability, and limited potential to perform major wetland functions (OAC 3745-1-54).

2.3 Stream Habitat Assessments

Streams are identified based on the presence of a distinct bed, bank and ordinary high watermark. Streams are evaluated using one of two Ohio EPA methods. A stream containing pools greater than 40 cm deep or with a watershed greater than a square mile is evaluated using the Qualitative Habitat Evaluation Index (QHEI). Streams with pools less than 40 cm deep or a watershed less than a square mile are evaluated using the Primary Headwater Habitat Evaluation (HHEI). HHEI and QHEI forms are available in Appendix E. Based on GIS analysis of the identified streams, an average stream width of 25 feet was estimated for stream impact calculations.

2.4 Waterbodies

Waterbodies are defined as other waters such as farm and stock watering ponds, irrigation ponds, settling basins, and ornamental ponds. A summary of waterbodies identified within the Study Area is available in Table 3 of Appendix A.

3.0 <u>RESULTS</u>

MSG identified 129 wetlands in the Study Area, totaling approximately 577 acres. Appendix A, Table 1 lists the wetlands along with their sizes, wetland community types, ORAM scores and categories, potential jurisdictional statuses, temporary impacts, permanent impacts and crossing methodology. MSG also identified 115 streams and 24 waterbodies in the Study Area, which are listed in Appendix A, Tables 2 and 3, respectively. Wetland, stream and waterbody locations are depicted on Figure 4. MSG reviewed the Study Area conditions to determine the probable jurisdictional status of the wetlands based on current USACE guidance and policy and finds that all wetlands, streams and other waterbodies would be considered jurisdictional by the USACE. A Jurisdictional Determination (JD) from USACE and an ORAM evaluation would be necessary if confirmation of this recommendation is required.

Based on the current design, it is anticipated that construction of the facility will results in 0.142 acres of permanent impacts to wetlands, 1.983 acres of temporary impacts to wetlands, 0.146 acres of permanent impacts to streams, 0.631 acres of temporary impacts to streams and 0.001 acre temporary impacts to waterbodies. Potential impacts to WOTUS associated with the Emerson Creek Wind Farm are summarized in Tables 3.1 and 3.2 below.

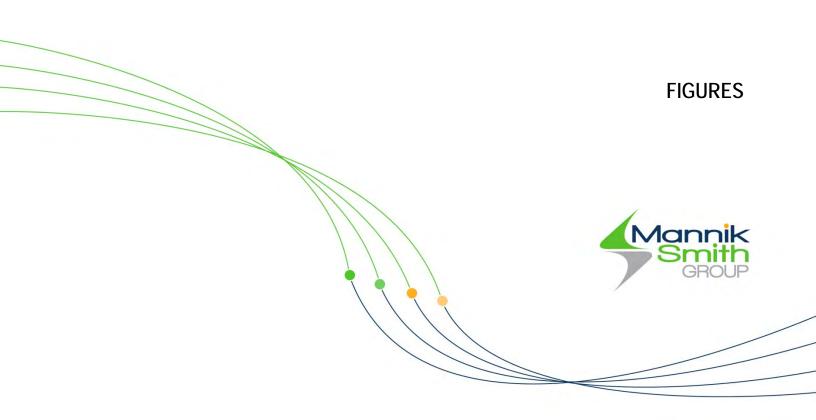
WOTUS ID	WOTUS Type ¹	Figure No.	Proposed Infrastructure	Length of Crossing (ft)	Temporary Impact to WOTUS (ac)	Permanent Impact to WOTUS (ac)
W1M-032	PFO Wetland	4.26	Collection Line	305	0.175	0.0
W1M-043	PEM Wetland	4.43	Collection Line	21	0.012	0.0

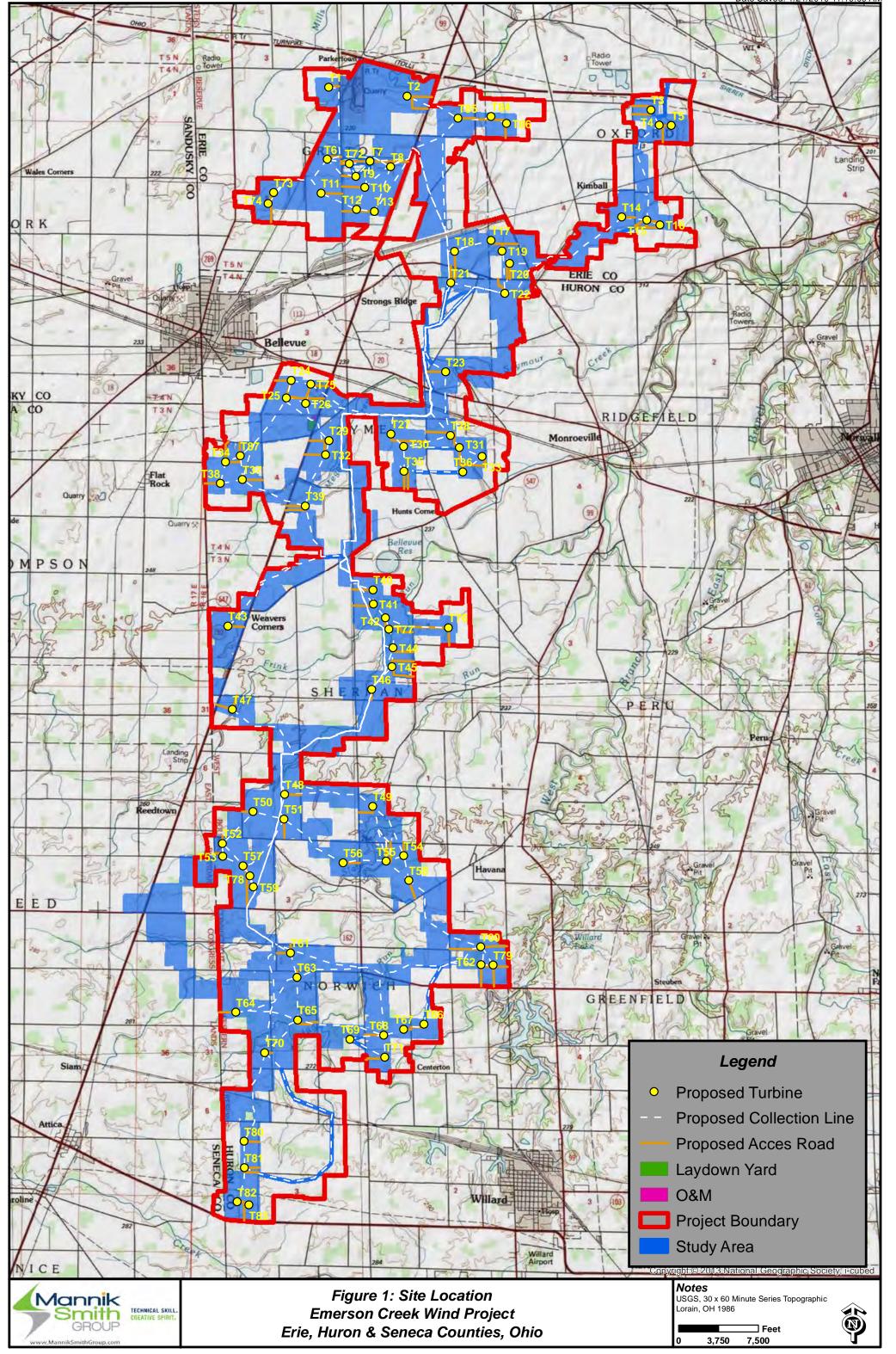
 Table 3.1
 Potential WOTUS Impacts Associated with the Emerson Creek Wind Farm

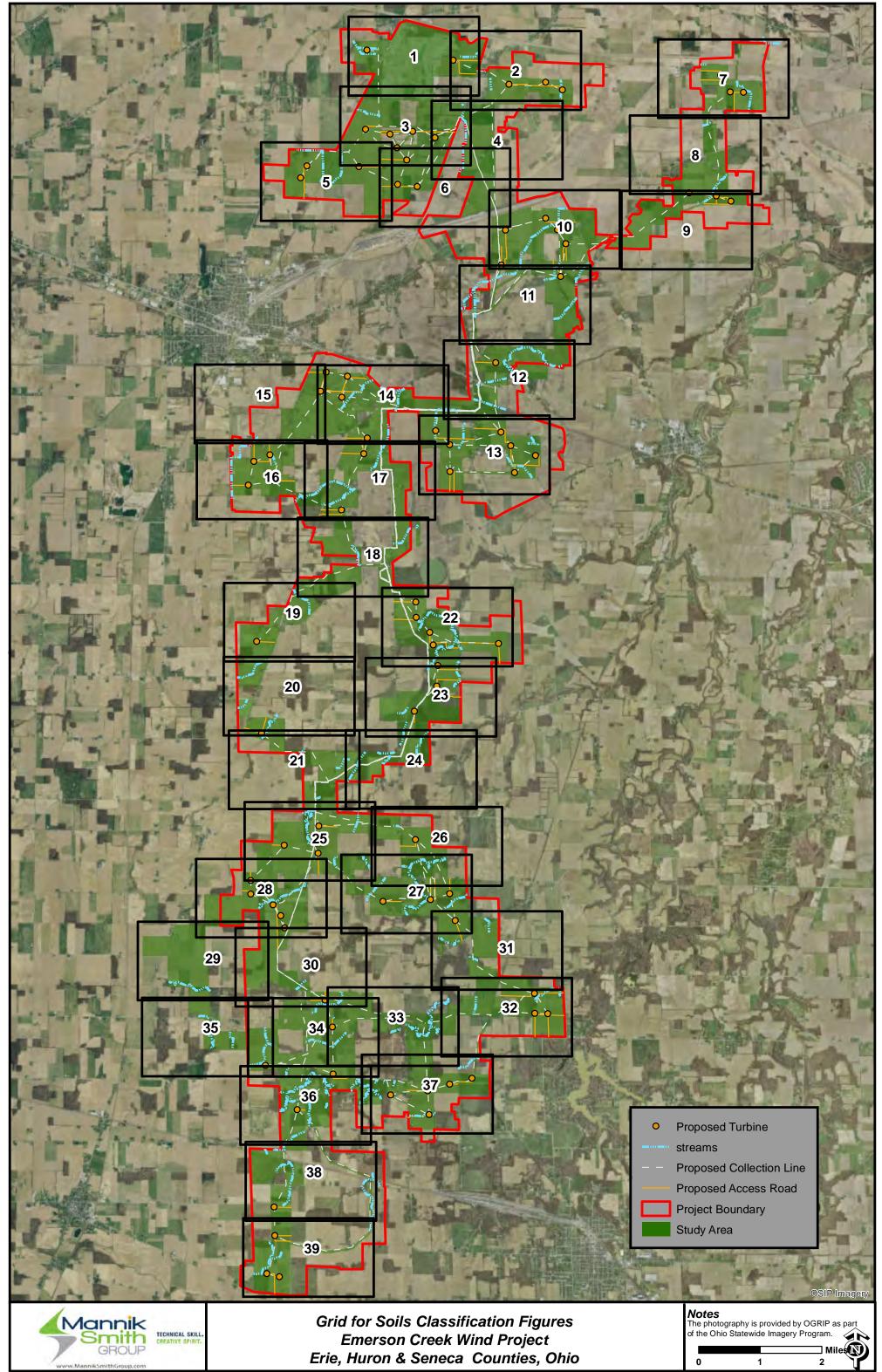
WOTUS ID	WOTUS Type ¹	Figure No.	Proposed Infrastructure	Length of Crossing (ft)	Temporary Impact to WOTUS (ac)	Permanent Impact to WOTUS (ac)	
W1M-045	PFO/PEM Wetland	4.43	Collection Line	131	0.075	0.0	
W1M-076	PFO Wetland	4.47	Collection Line	300	0.284	0.0	
W1M- 079/78	PFO Wetland	4.47	Collection Line	89	0.033	0.0	
W1M-090	PFO Wetland	4.30	Collection Line	43	0.025	0.0	
W1M- 091/097	PFO/PSS/PEM Wetland	4.30	Access Road	391	0.320	0.142	
W1M-117	PEM Wetland	4.56	Collection Line	23	0.013	0.0	
W1M-124	PFO/PSS/PEM Wetland	4.56	Collection Line	32	0.004	0.0	
W1M-133	PFO/PEM Wetland	4.52	Collection Line	82	0.048	0.0	
W1M-137	PEM Wetland	4.5	Collection Line	143	0.064	0.0	
W1M-140	PSS/PEM Wetland	4.30	Collection Line	146	0.058	0.0	
W1M-152	PSS/PEM Wetland	4.1	Collection Line	18	0.008	0.0	
W1M-156	PFO Wetland	4.60	Collection Line	82	0.045	0.0	
W2M-004	PFO Wetland	4.14	Collection Line	24	0.014	0.0	
W2M-028	PFO/PSS/PEM Wetland	4.32	Collection Line	254	0.108	0.0	
W2M-052	PFO/PSS/PEM Wetland	4.41	Collection Line	222	0.128	0.0	
W2M-063	PFO Wetland	4.54	Collection Line	434	0.249	0.0	
W2M-066	PFO/PEM/PSS Wetland	4.55	Collection Line	575	0.311	0.0	
W2M-072	PFO Wetland	4.48	Collection Line	16	0.009	0.0	
WB2M- 083	Constructed Waterbody	4.51	Collection Line	36	0.001	0.0	

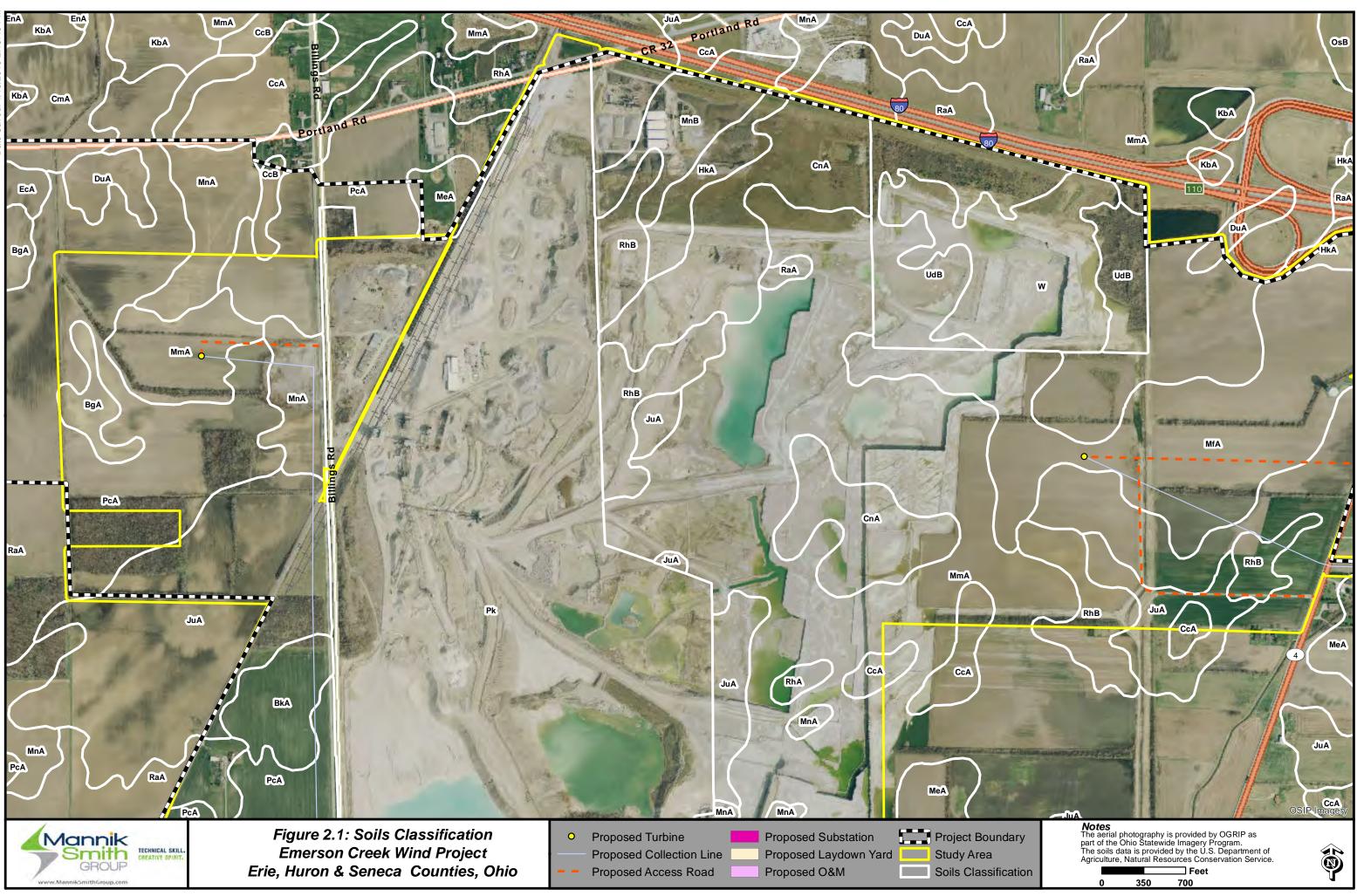
¹Wetland community type: PEM=palustrine emergent; PSS= palustrine scrub/shrub; PFO=palustrine forested and POW=palustrine open water

			Access Roads				Collection Lines	
Stream ID QHEI Score		Crossing Method	Temporary Impacts		Permanent Impacts		Temporary Impacts	
	Score		Linear feet	acres	Linear feet	acres	Linear feet	acres
S1M-011-1	37	Trench	0	0.000	0	0.000	545	0.318
S1M-013-1	22	Culvert/HDD	36	0.081	16	0.036	0	0.000
S1M-053	50.5	Culvert/HDD	41	0.023	18	0.010	0	0.000
S1M-055	58	Culvert/HDD	72	0.040	32	0.018	0	0.000
S1M-143	48	Culvert/HDD	39	0.022	17	0.010	0	0.000
S1M-147	62	Culvert/HDD	37	0.021	16	0.009	0	0.000
S1M-159	33	Culvert/HDD	0	0.000	16	0.009	0	0.000
S2M-007	46	Culvert/HDD	36	0.025	16	0.009	0	0.000
S2M-017	50	Culvert	36	0.021	16	0.009	0	0.000
S2M-059	59	Culvert	36	0.021	16	0.009	0	0.000
S2M-062	55	Culvert/HDD	51	0.029	22	0.013	0	0.000
S2M-073	69	Culvert	52	0.030	23	0.013	0	0.000

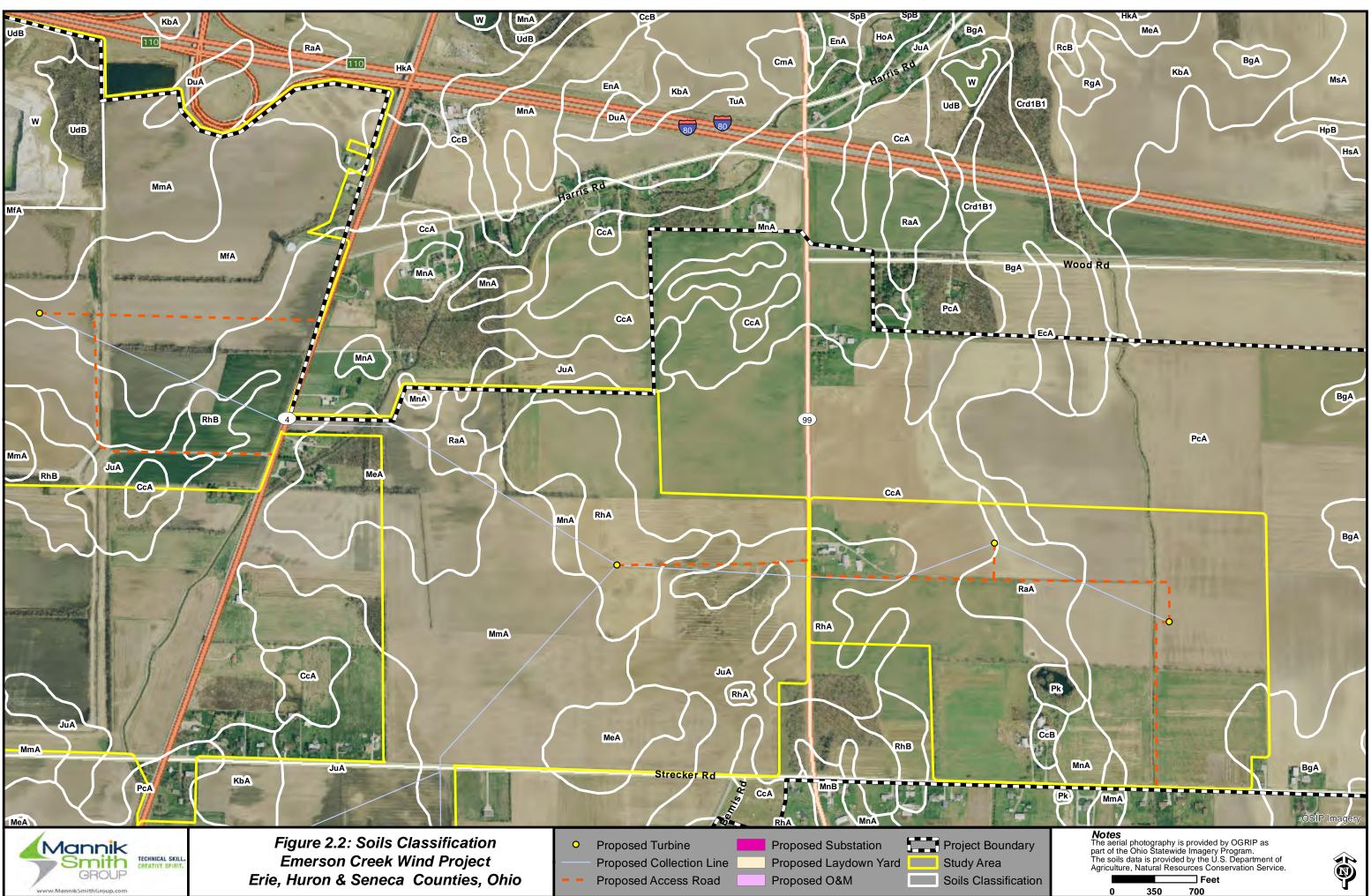

 Table 3.2
 Potential Stream Impacts Associated with the Emerson Creek Wind Farm

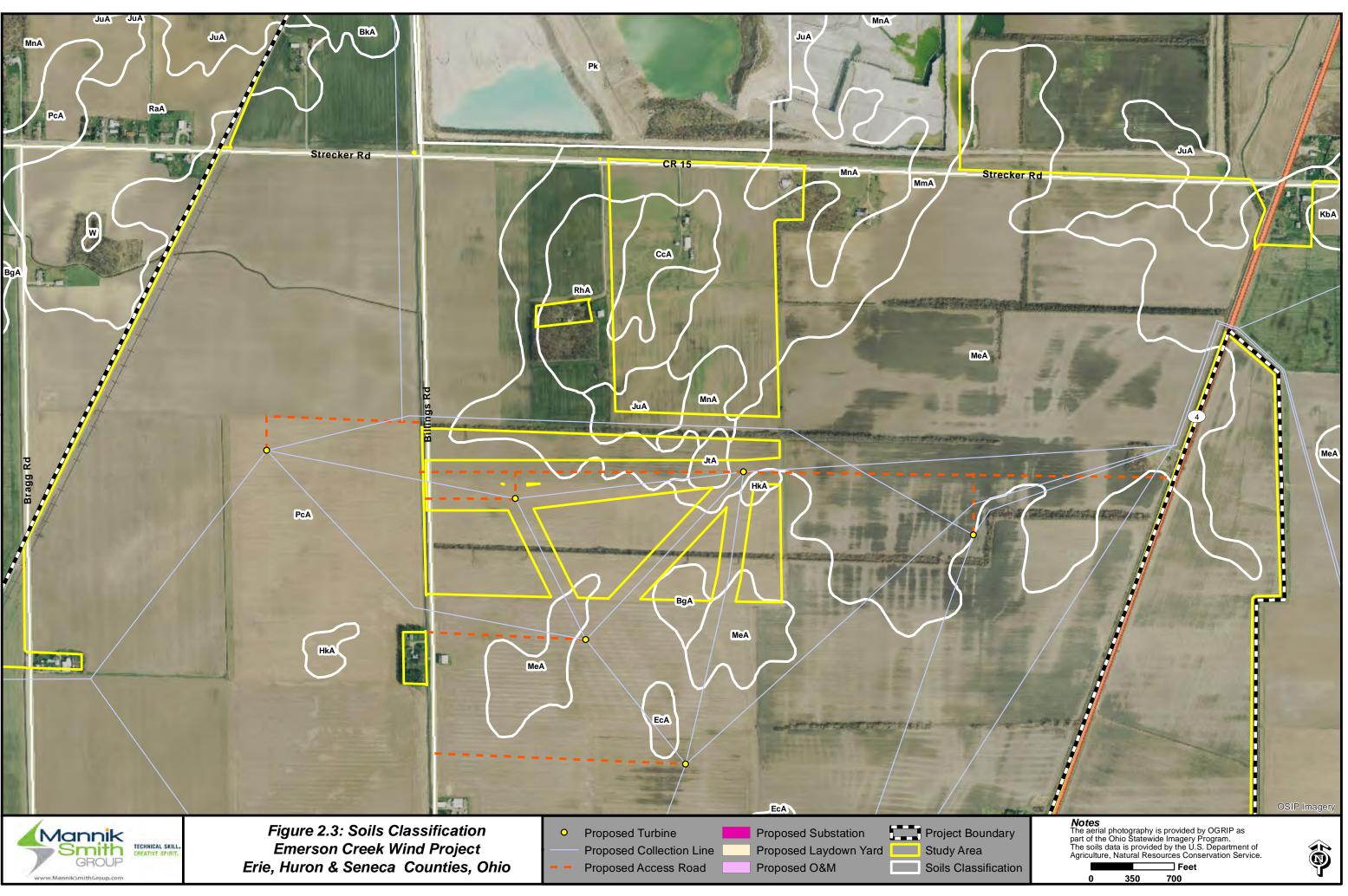

4.0 CONCLUSIONS AND RECOMMENDATIONS

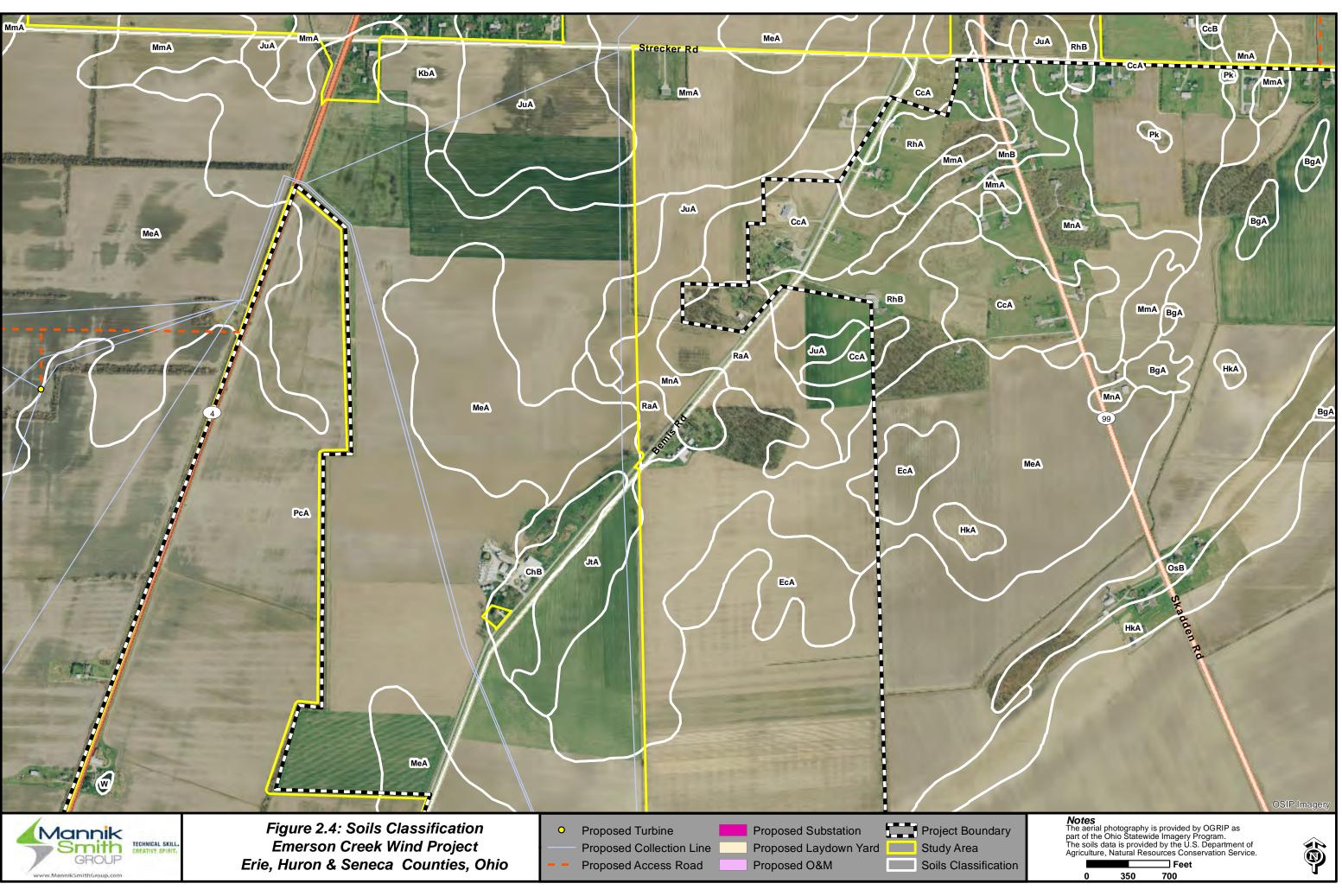

For the purposes of this delineation and impact assessment, all surface waters were delineated and are assumed jurisdictional; however, officially determining and verifying the locations and boundaries of wetlands and other WOTUS, along with their jurisdictional status under Section 404 of the CWA and Section 10 of the RHA, can only be done by the USACE.

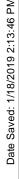

Based on the Project's latest layout, the proposed Project's infrastructure will cross (or intersect) 33 potential WOTUS (Tables 3.1 and 3.2, Figures 4.1 through 4.63). These include 10 emergent wetlands, 10 forested wetlands, 12 streams, and one constructed waterbody (Tables 3.1 and 3.2). Each single and complete linear crossing that would result in the placement of dredged or fill materials into a potential WOTUS would meet the requirements for authorization under NWP 12.

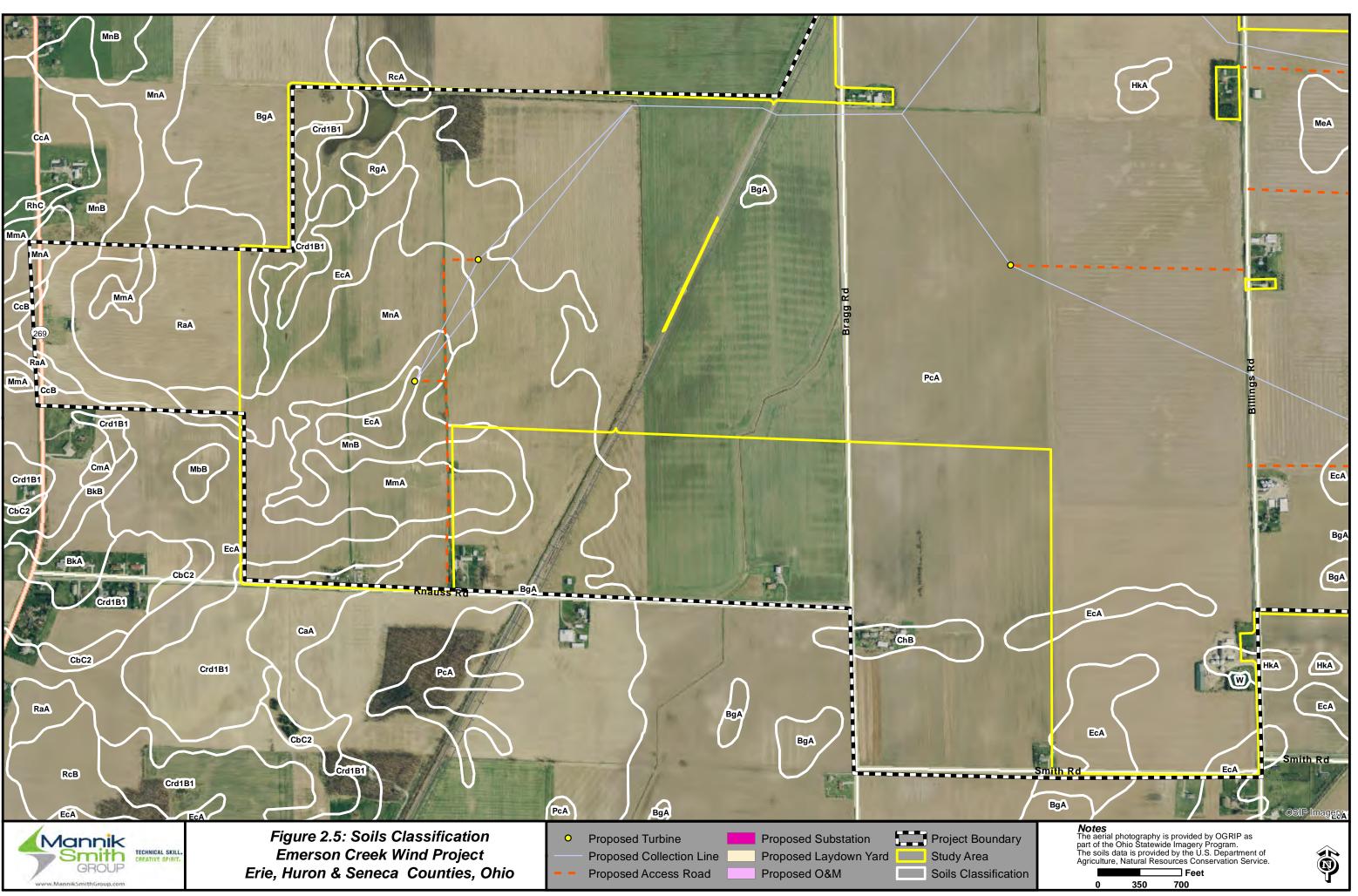
NWP 12 requires adherence to both general and regional conditions, as previously discussed. With regards to regional conditions that require a PCN (or revoke the use of specified NWPs), nine potential WOTUS have temporary or permanent impact greater than 0.1 acre, thereby requiring a PCN.

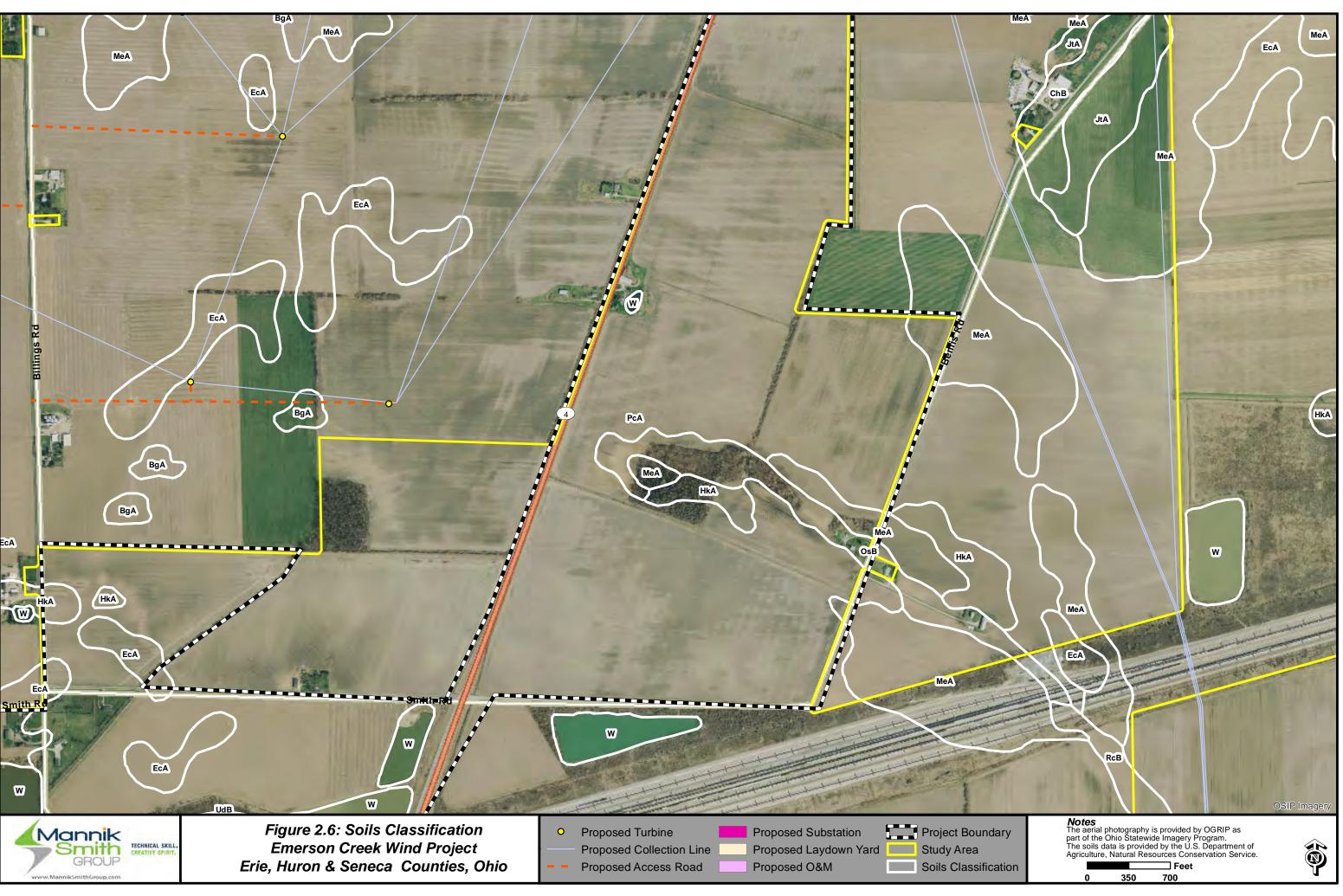


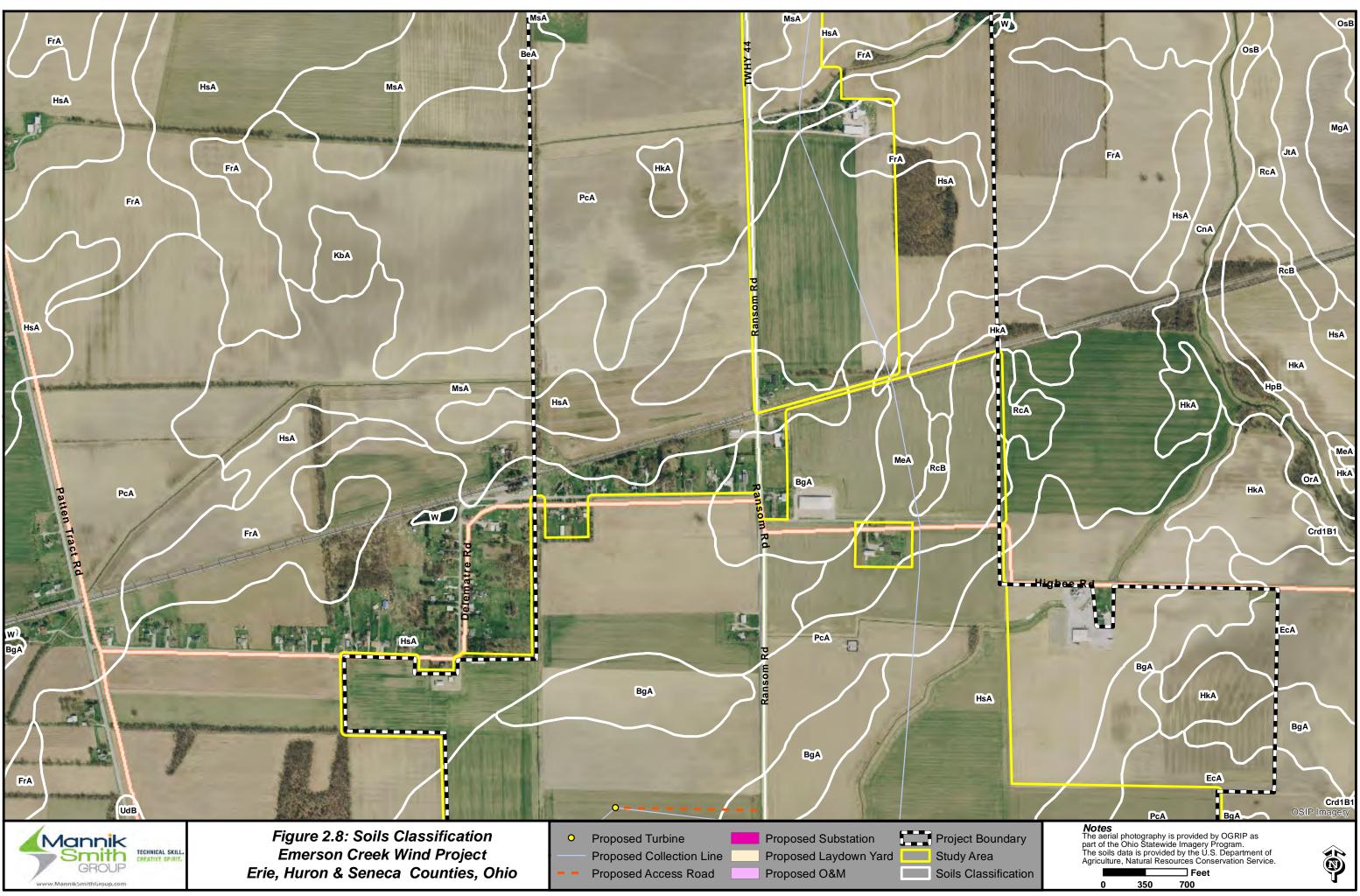


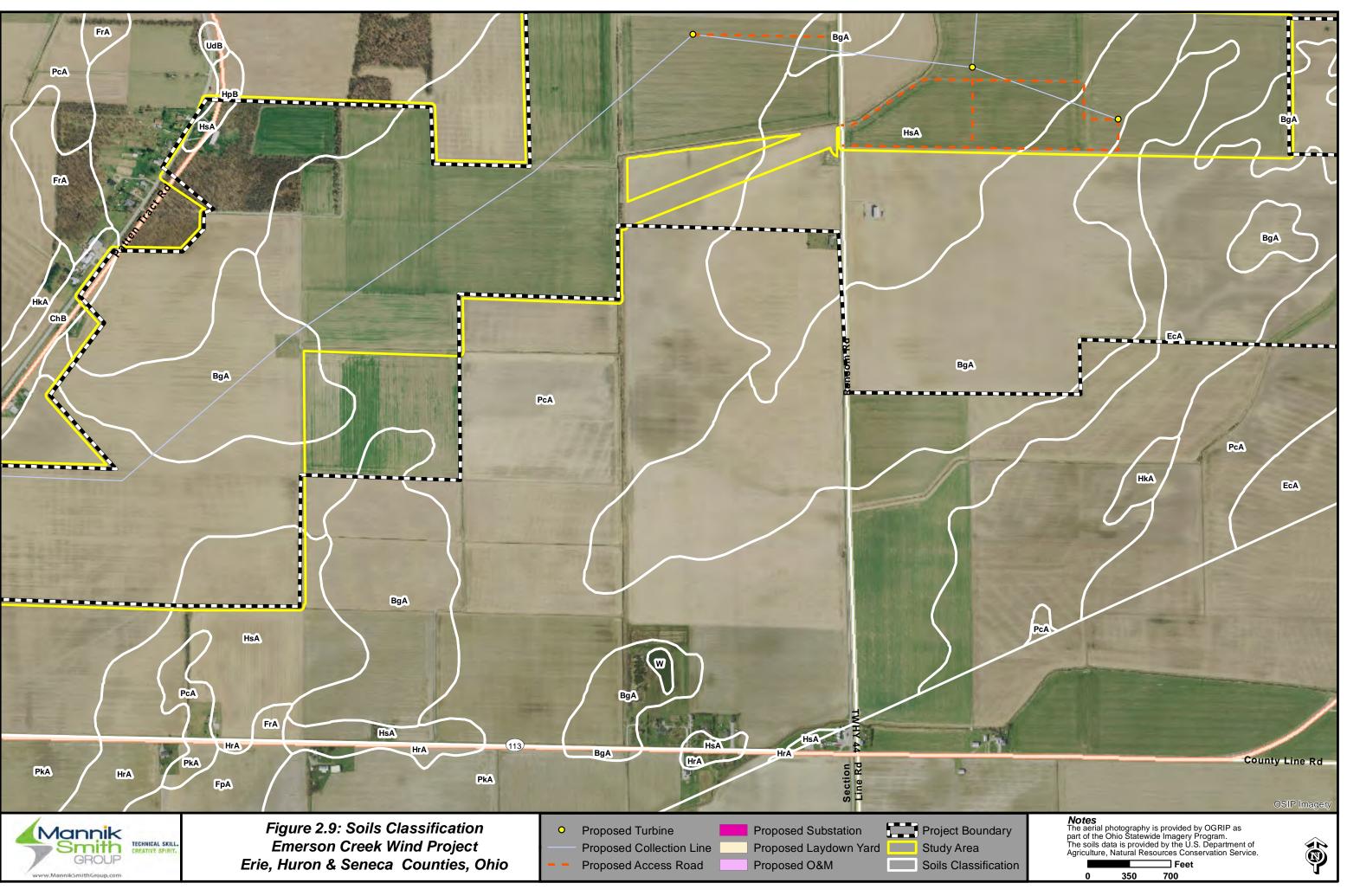


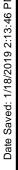

ž

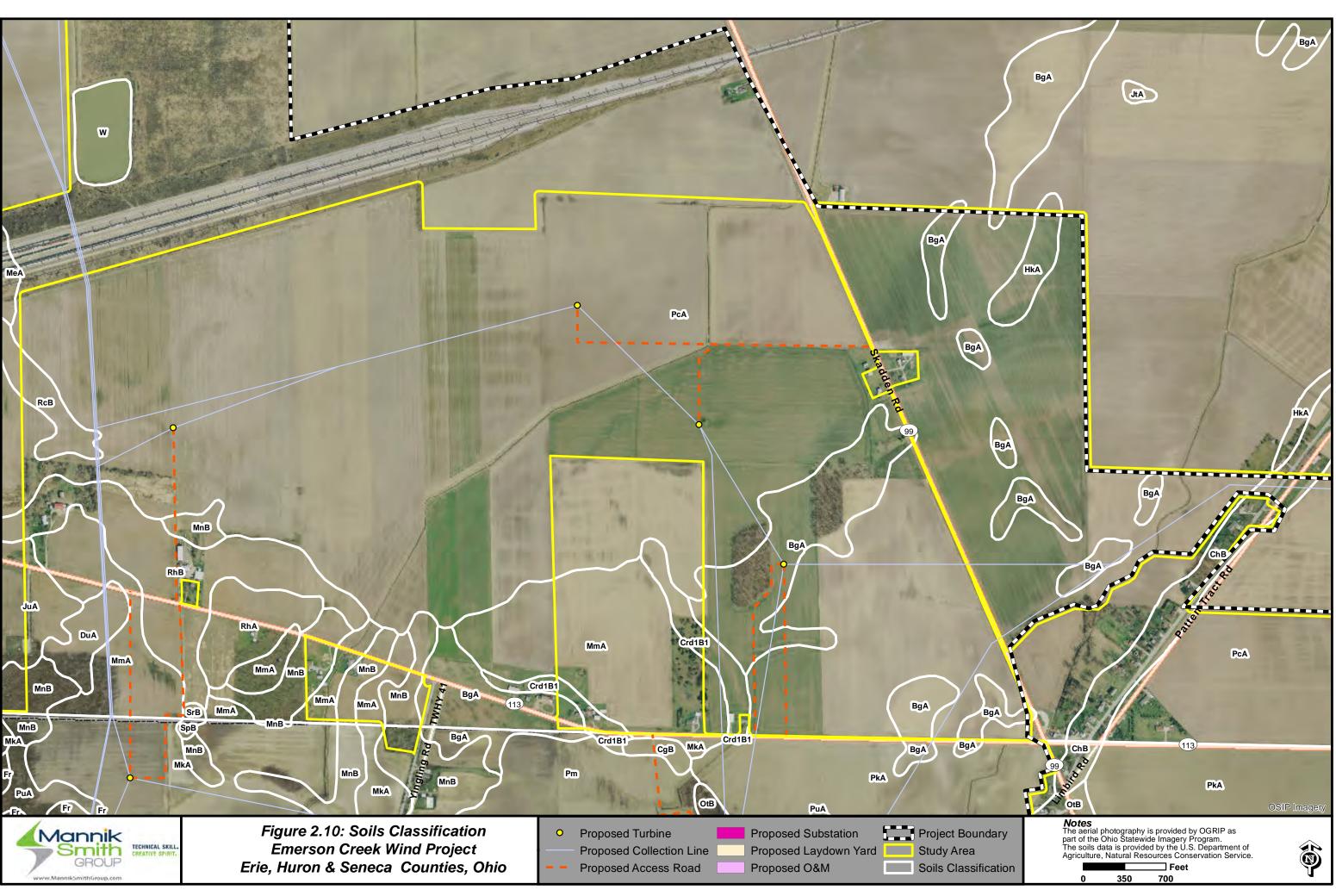


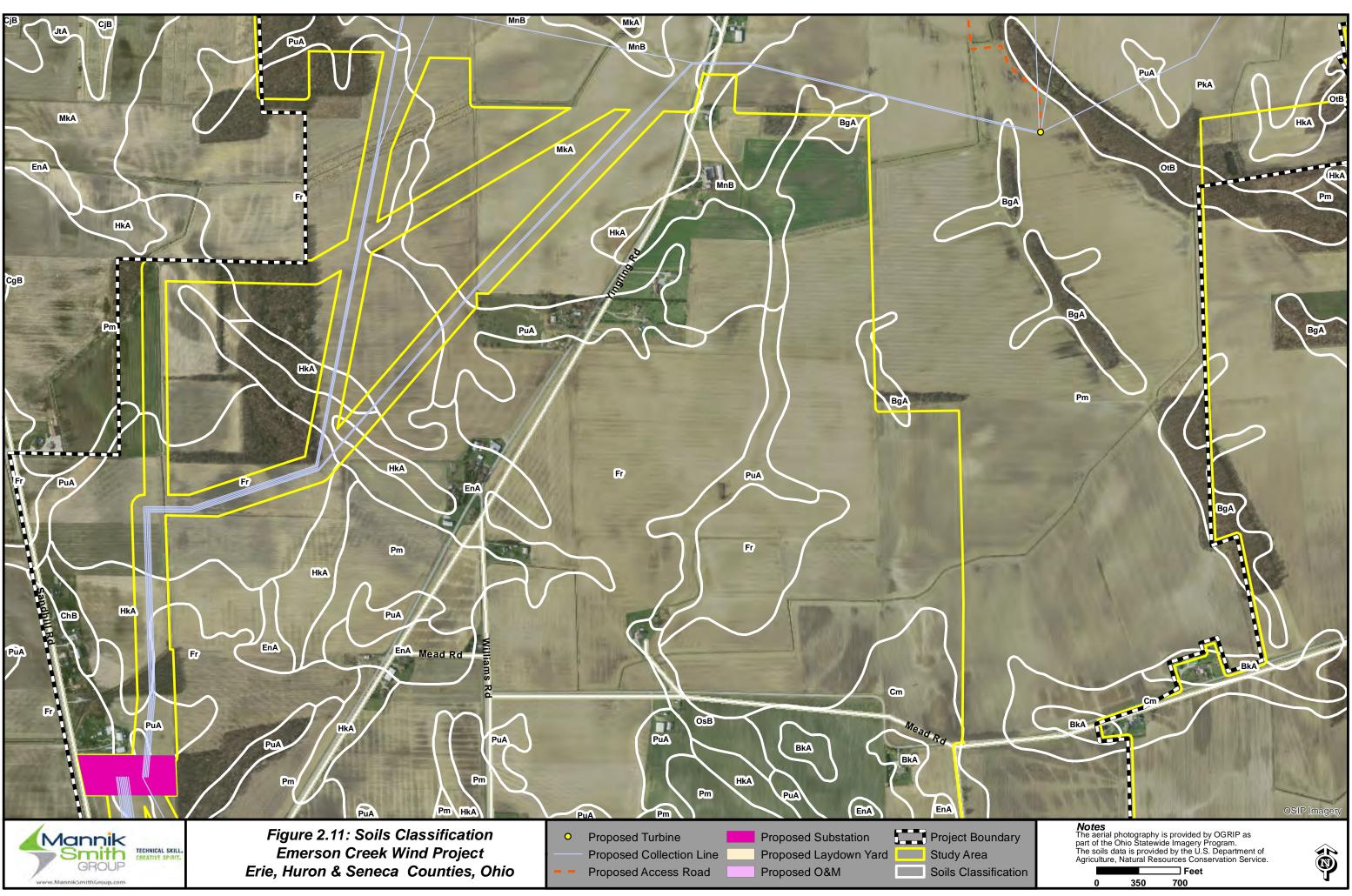


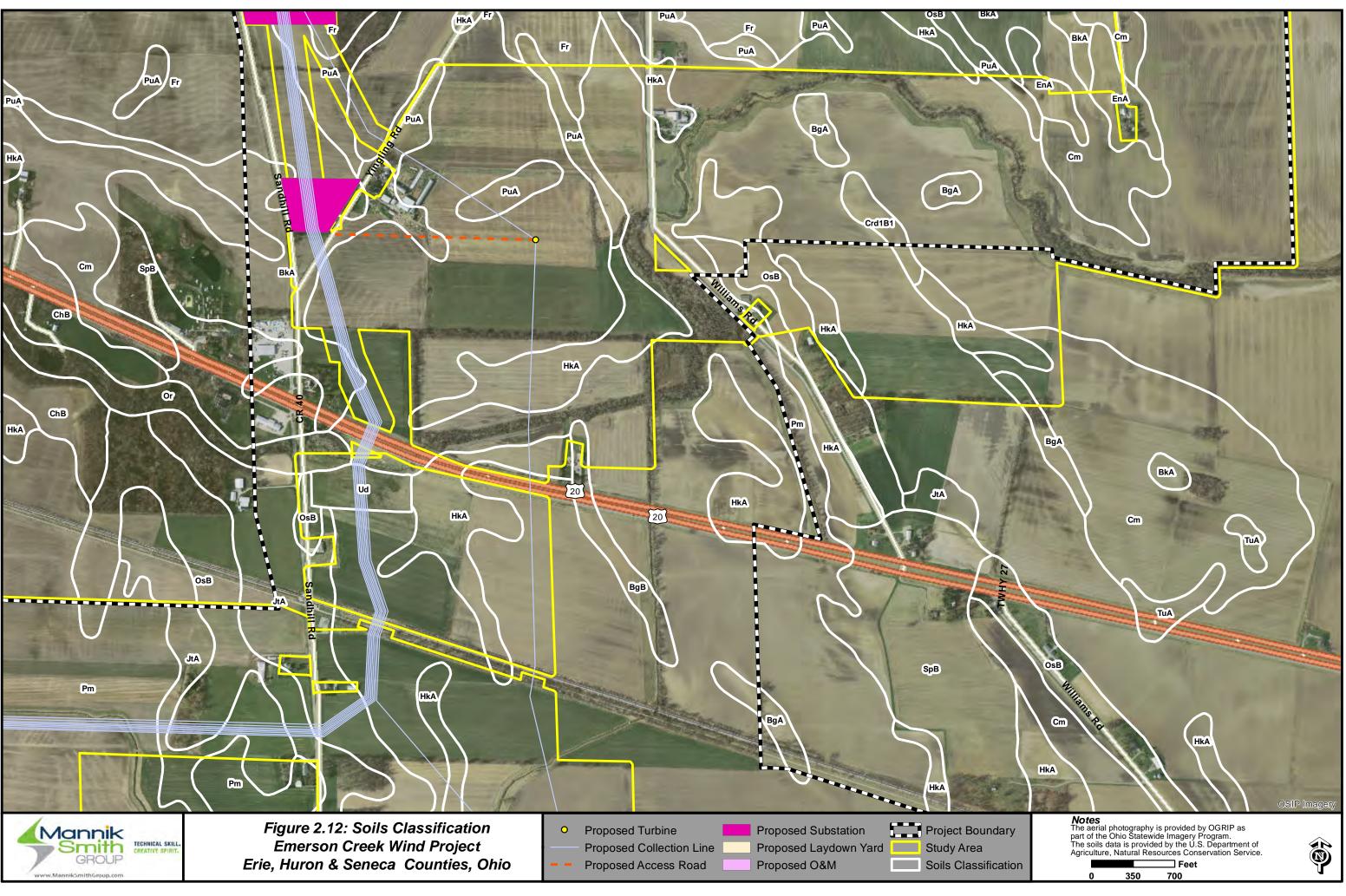


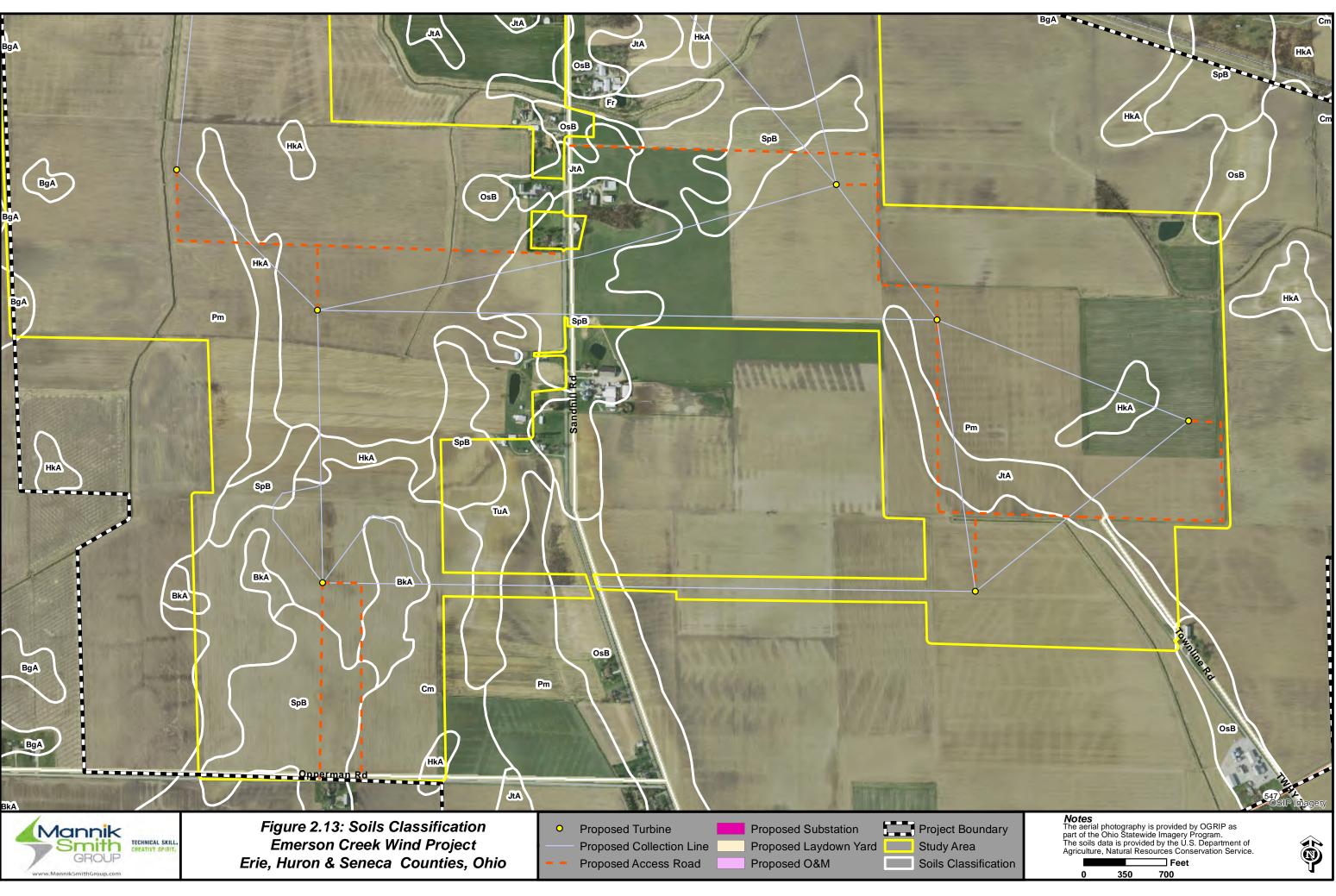


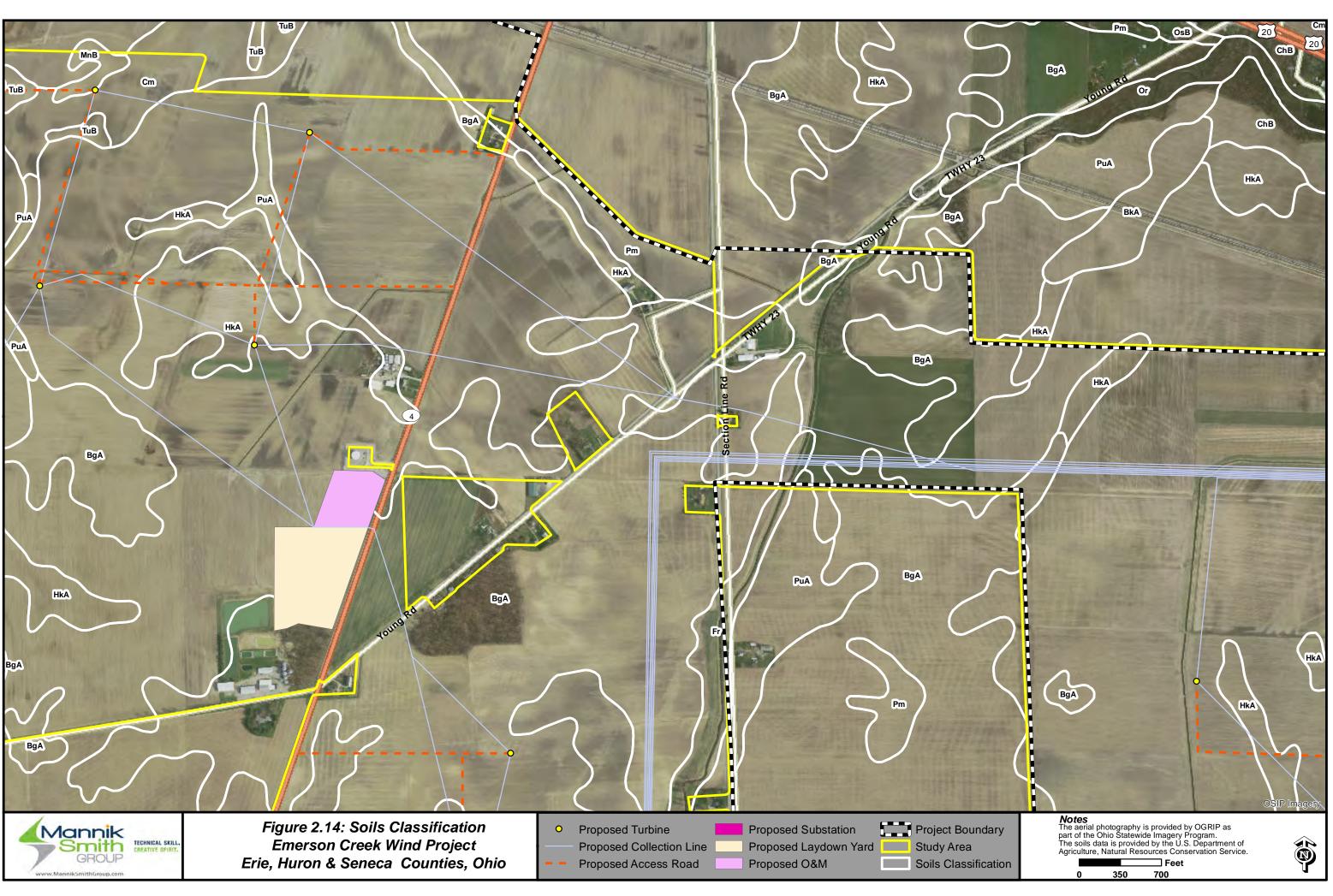

ŝ

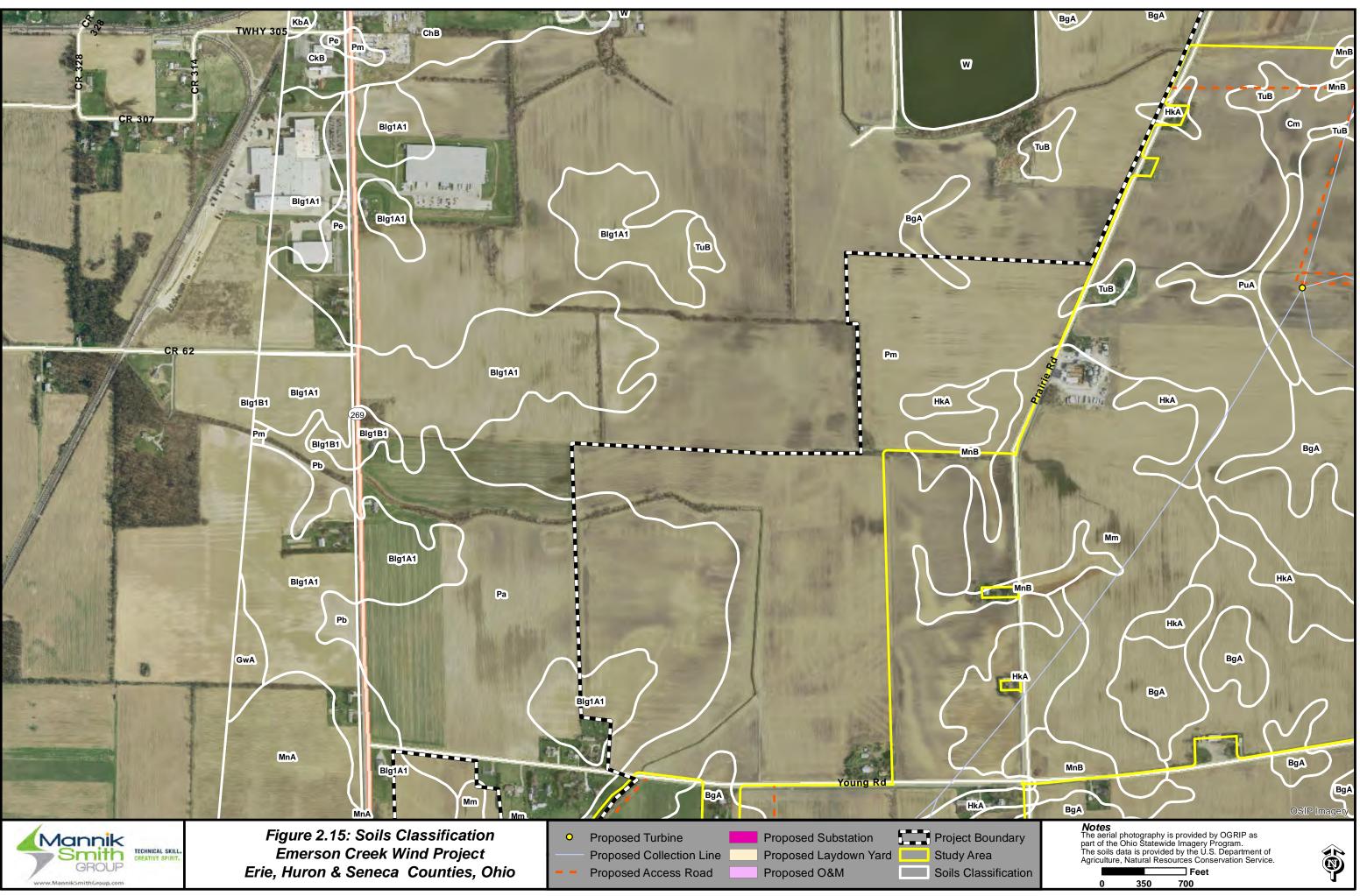


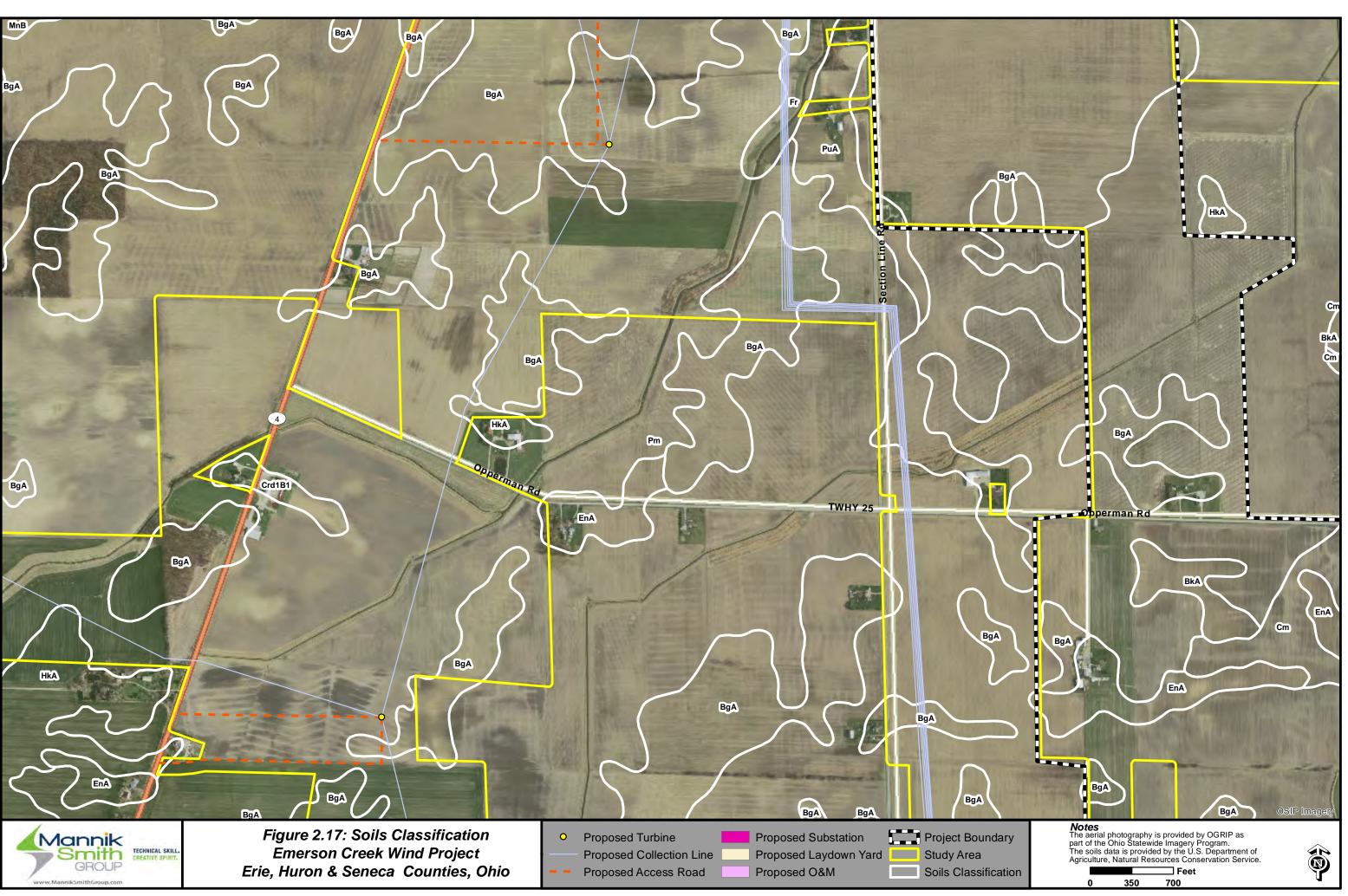


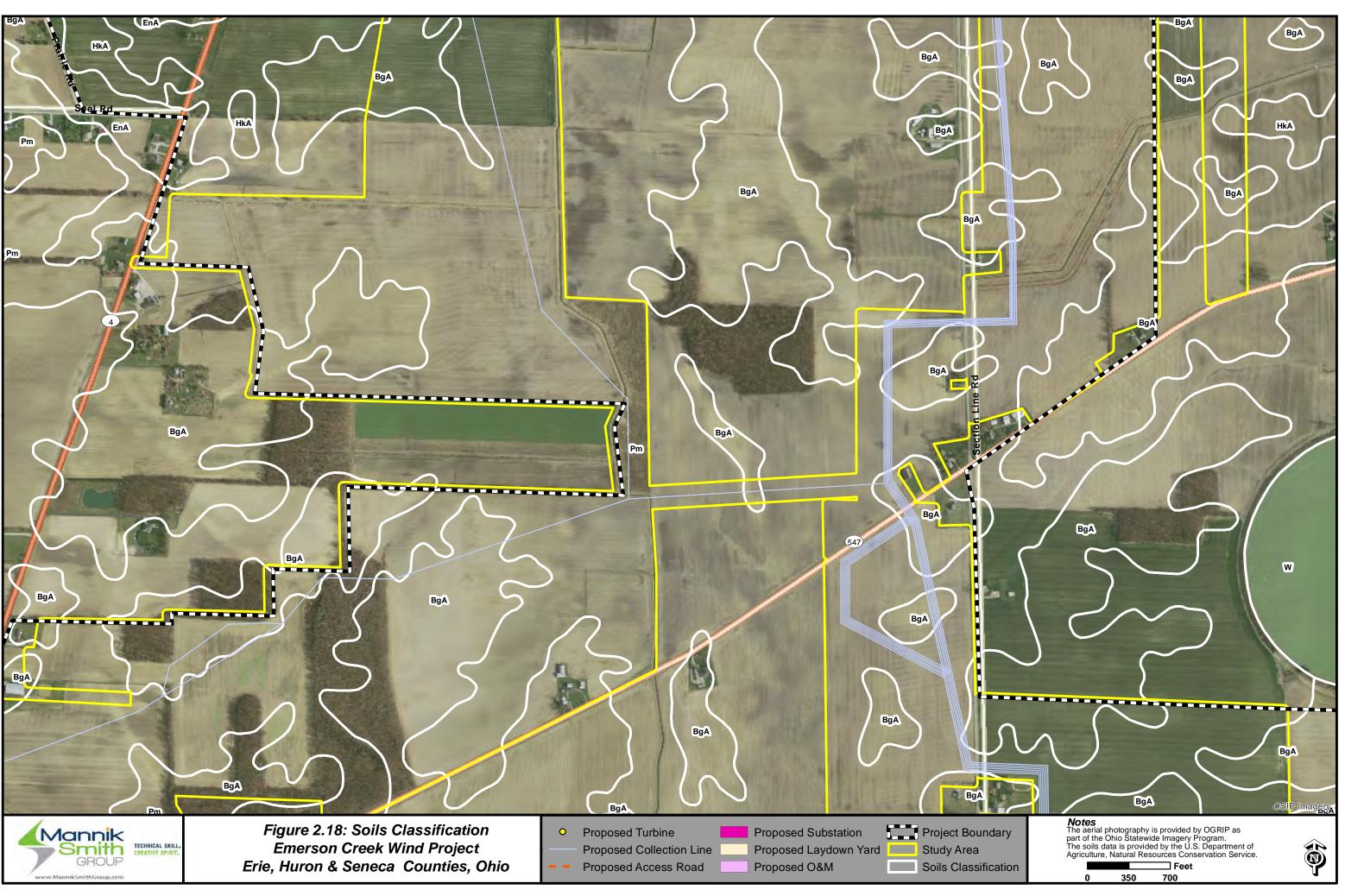


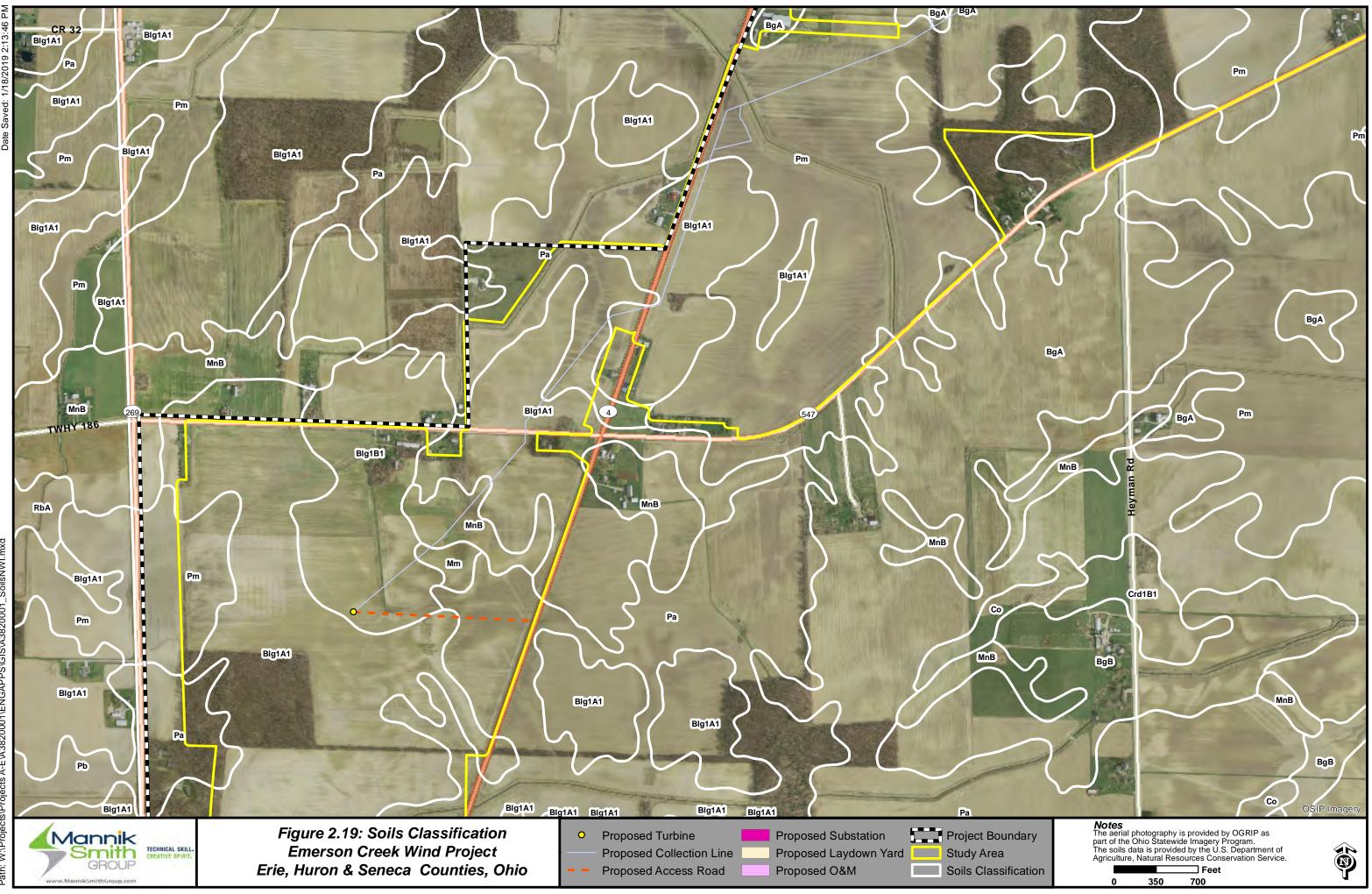


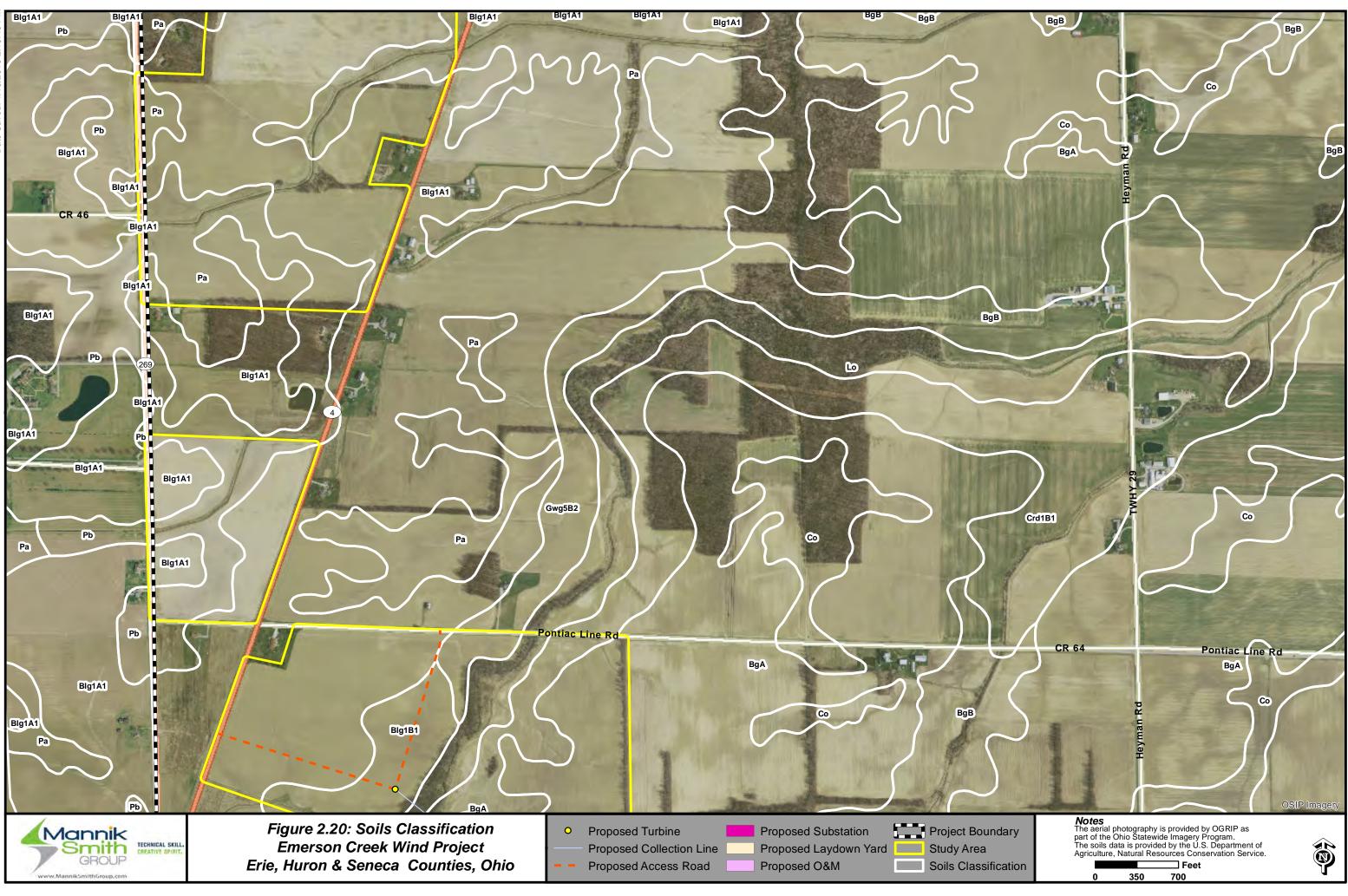

хq

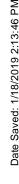


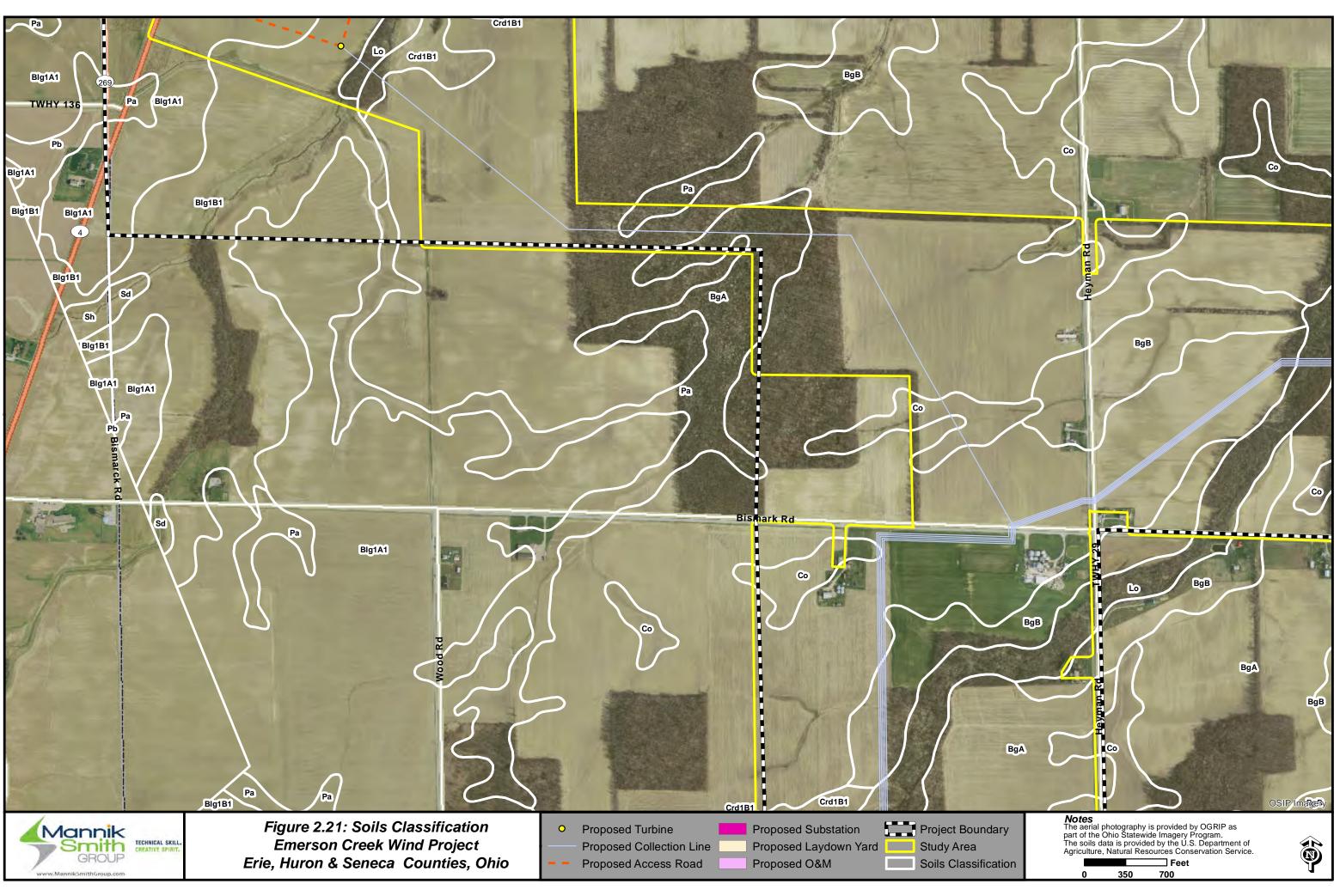


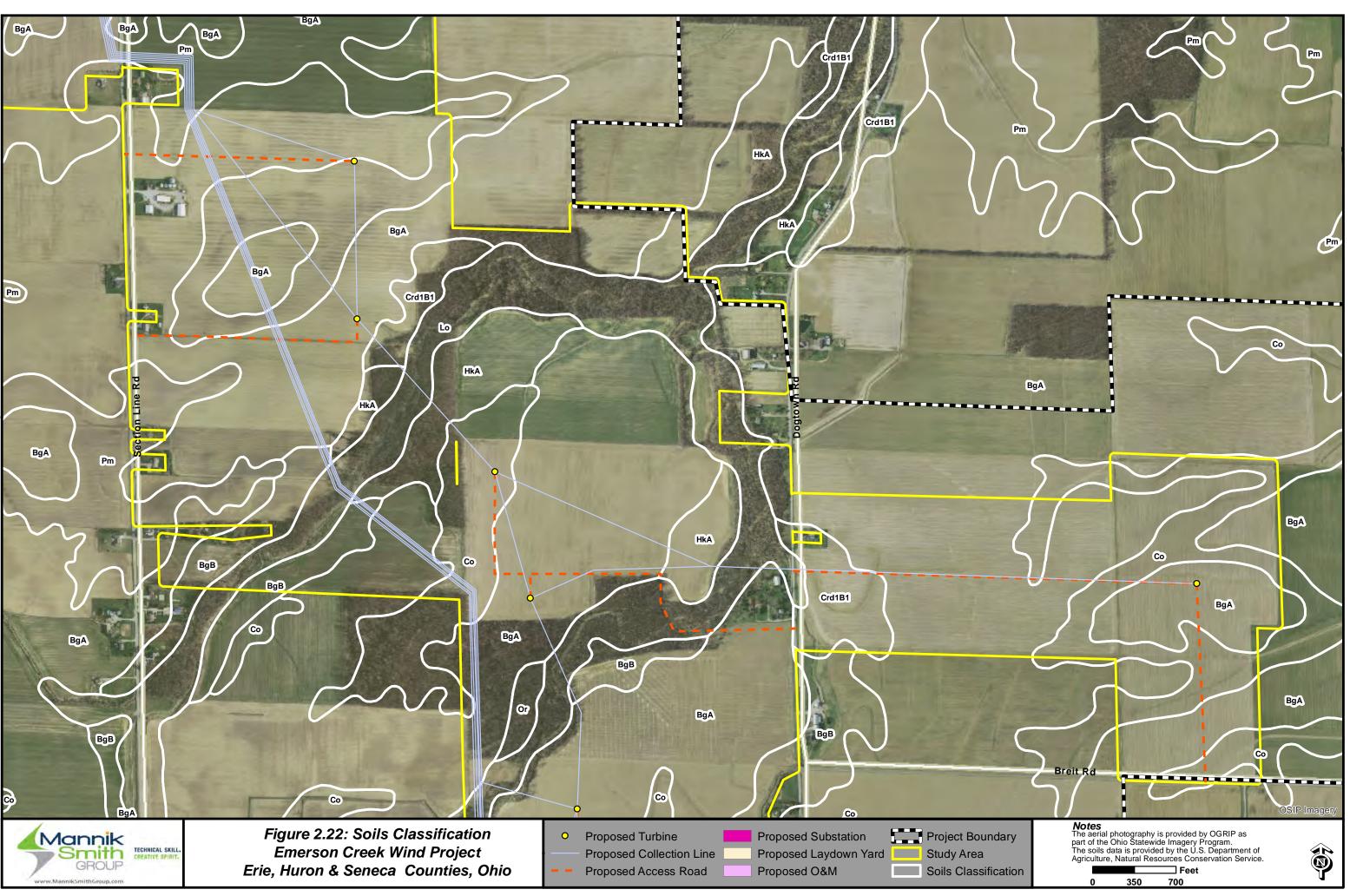


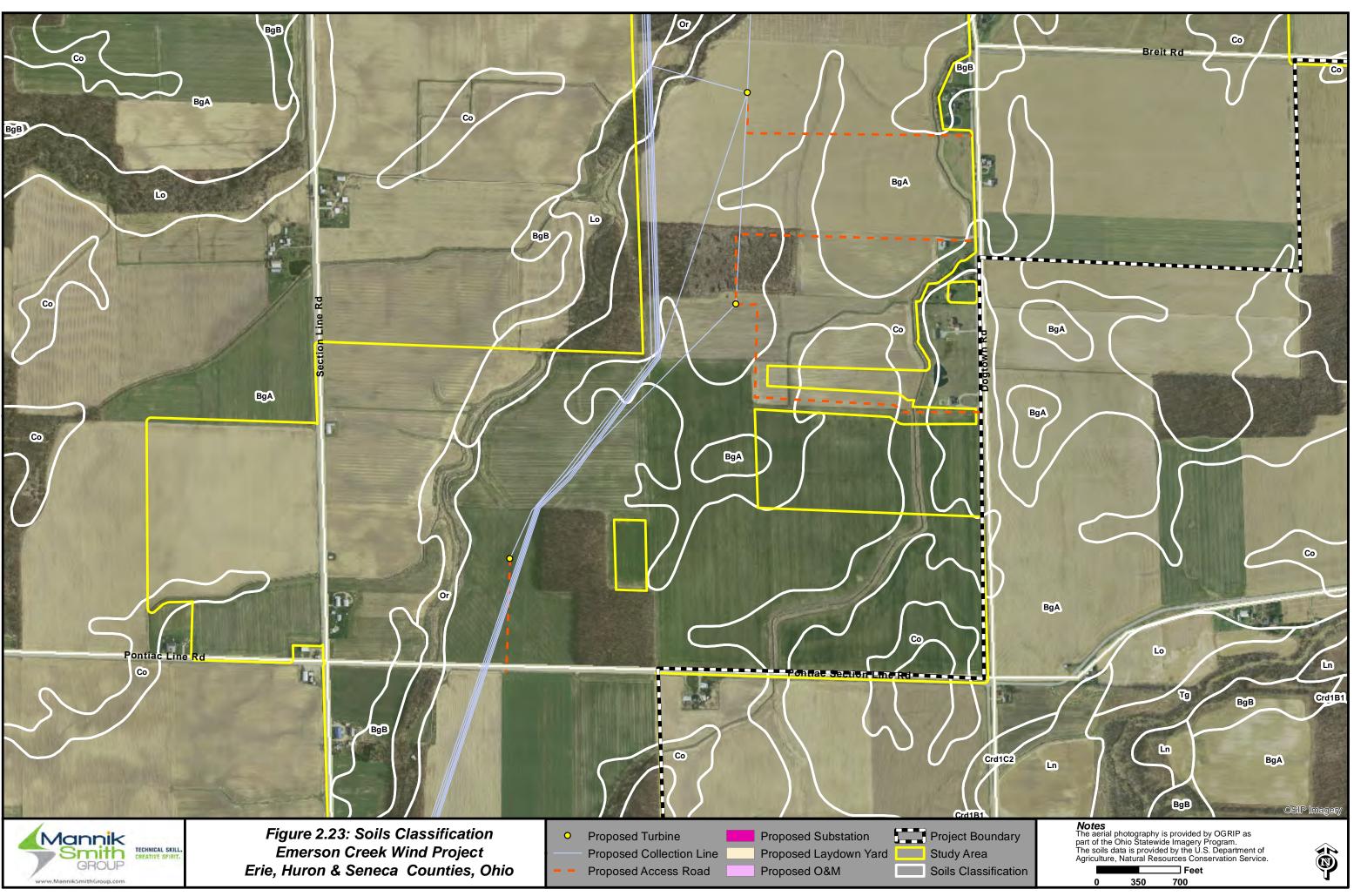




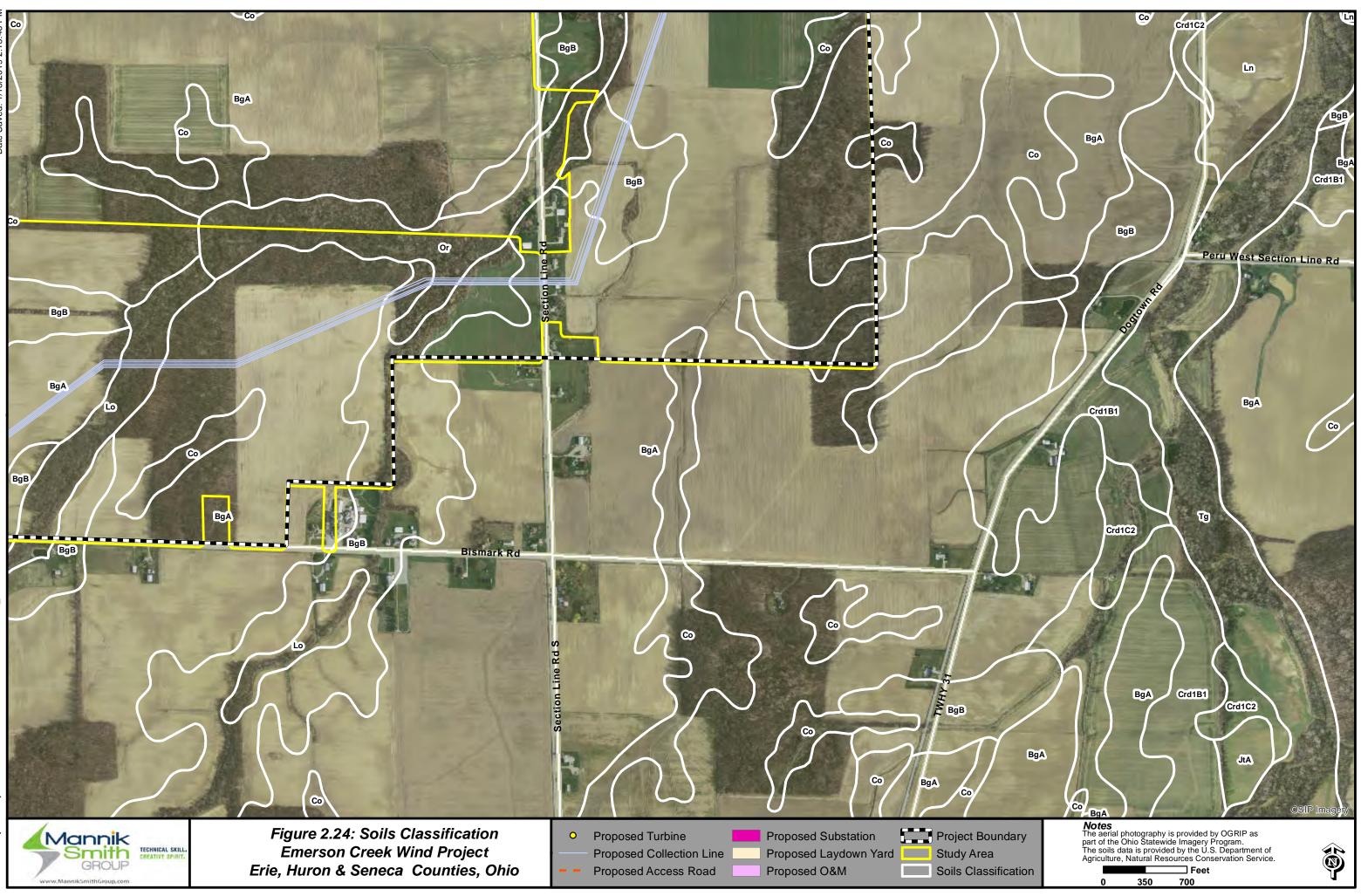

Š



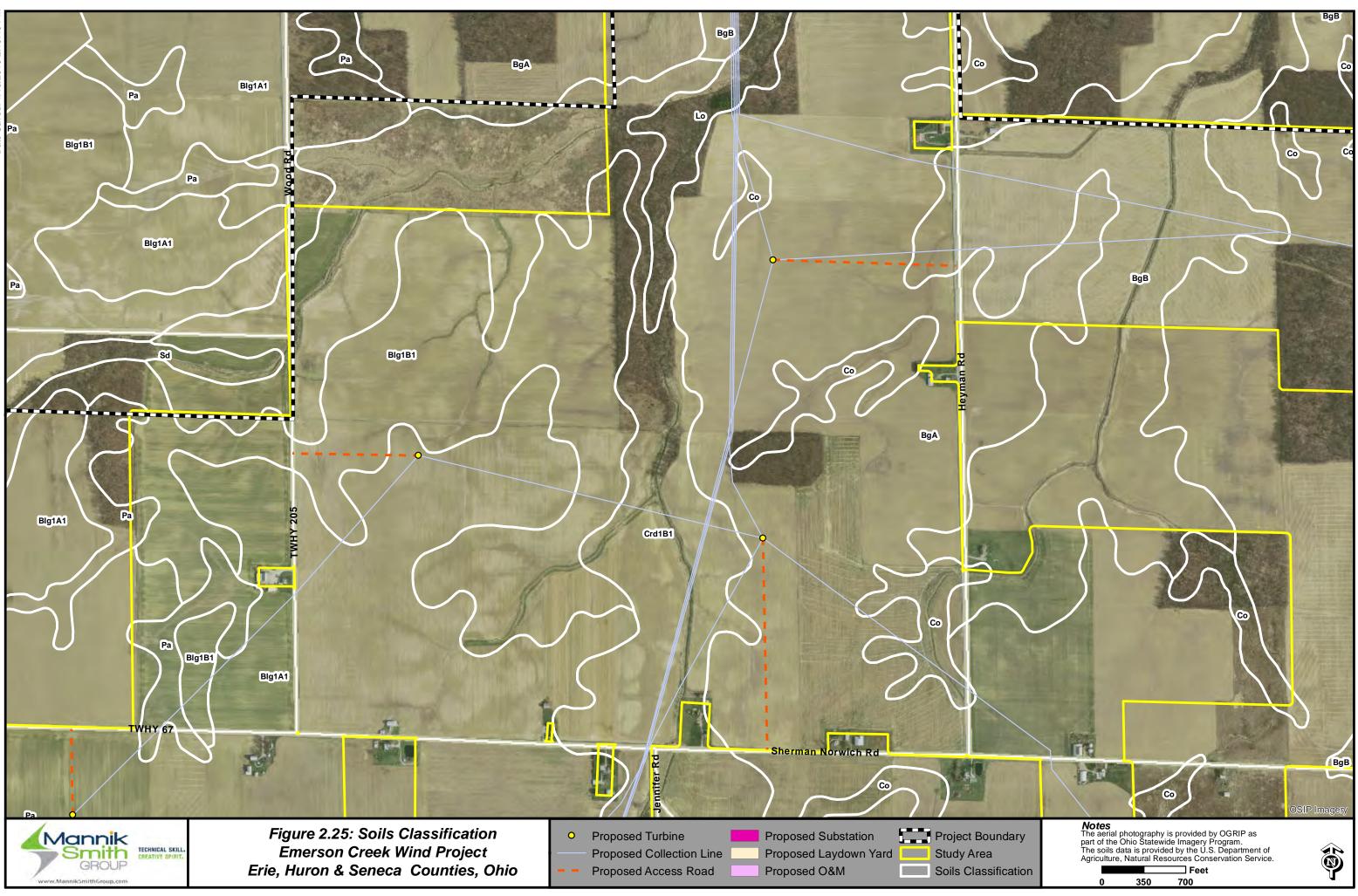


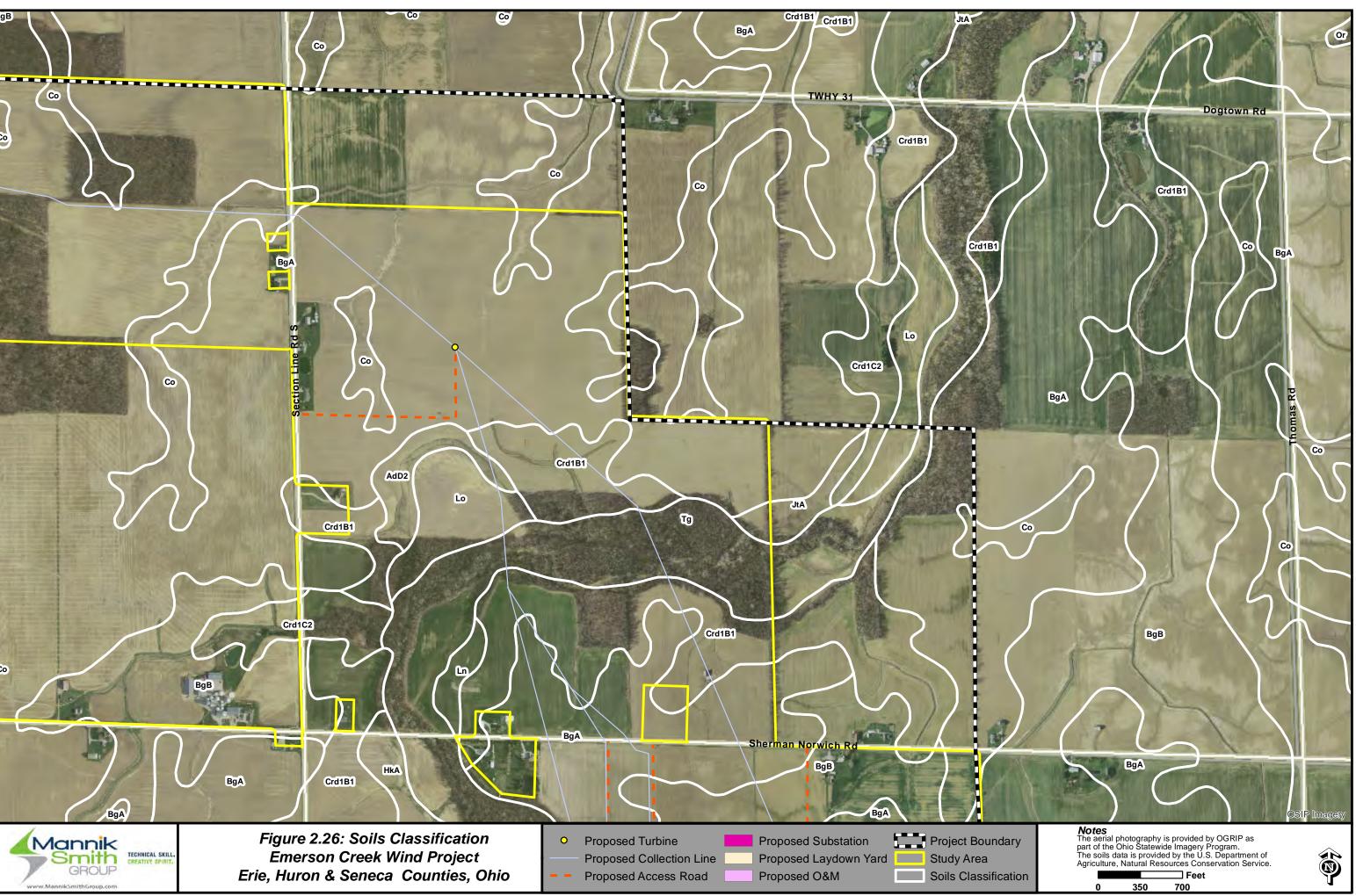


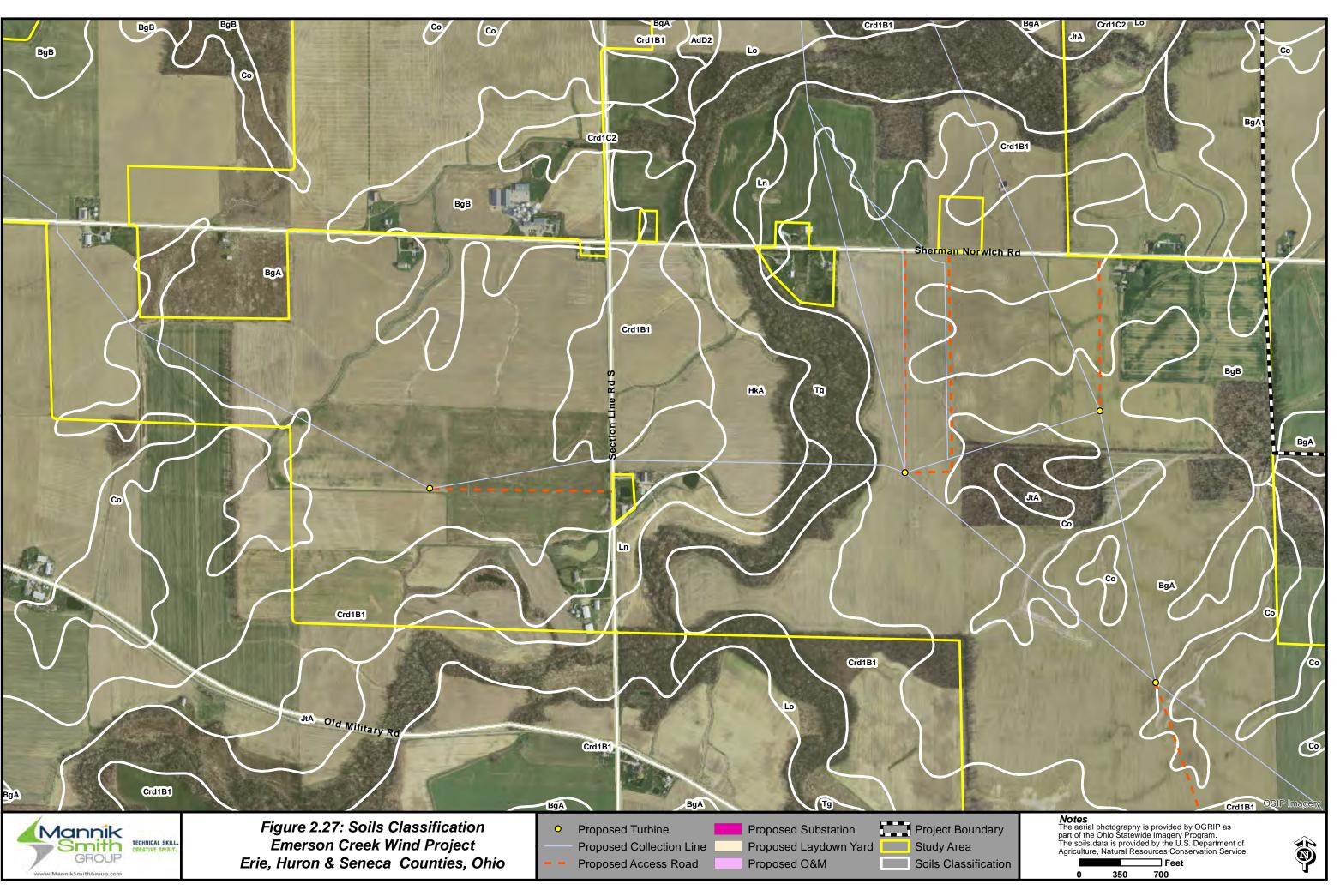
bxu

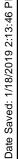


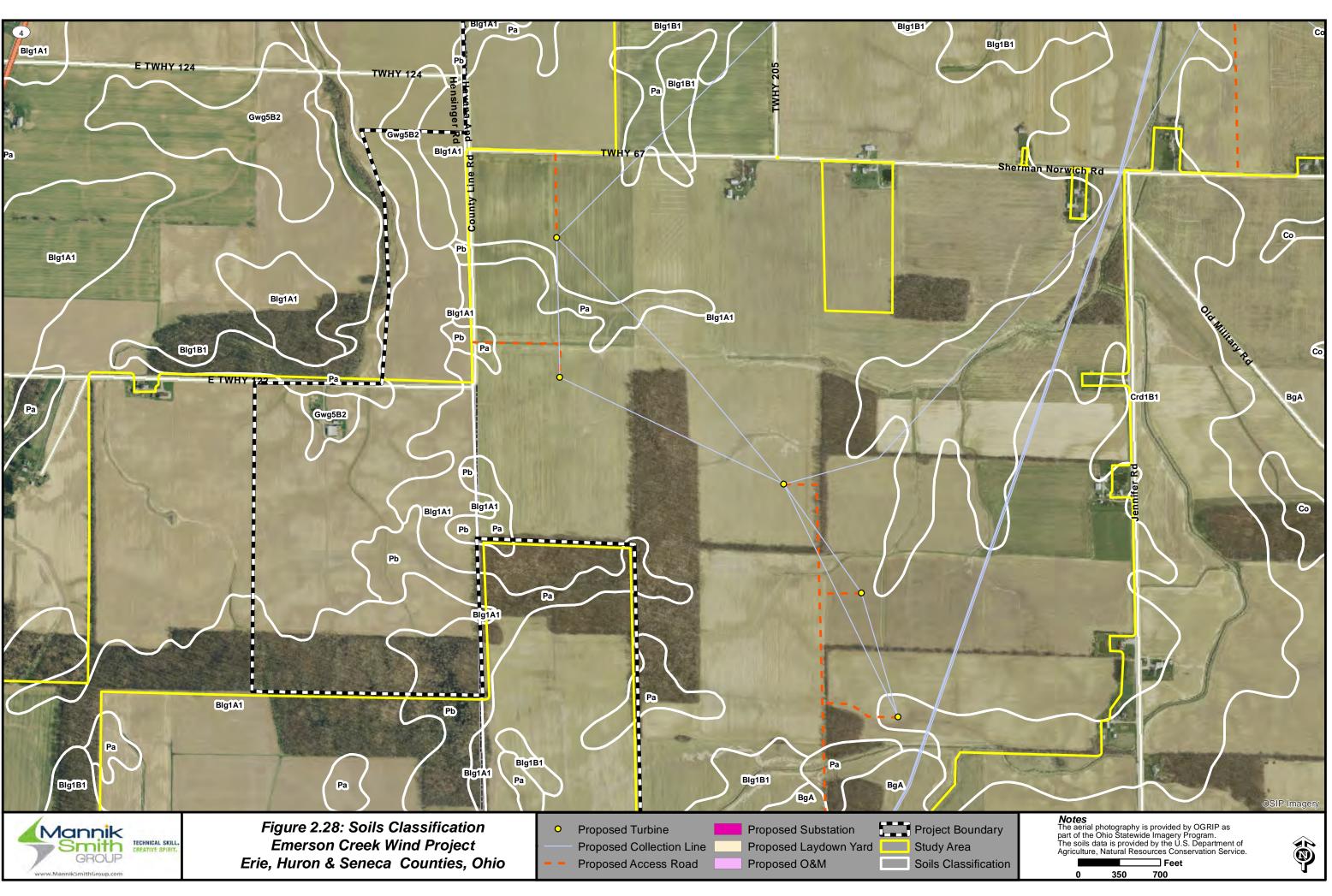


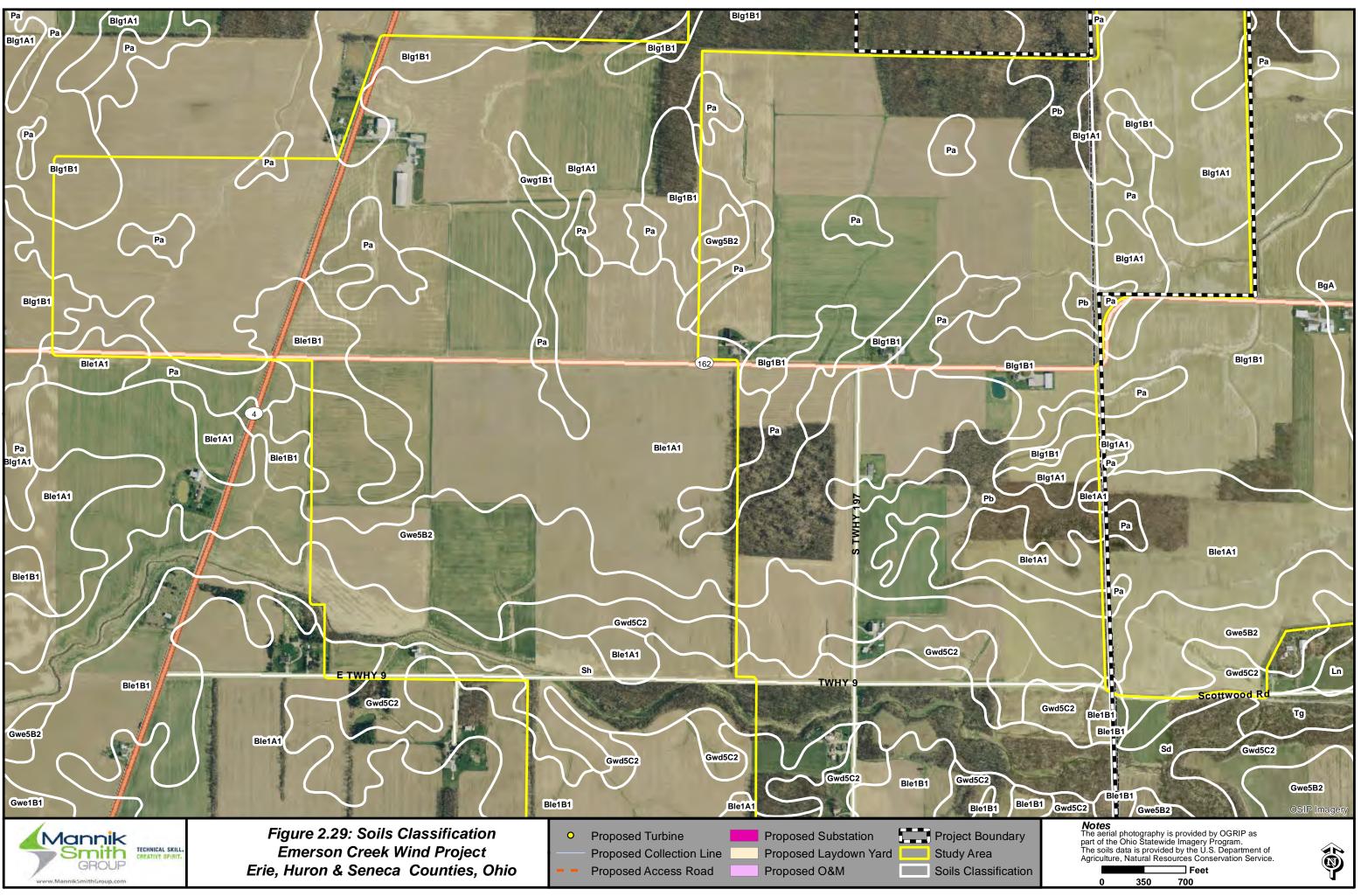


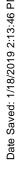

хd

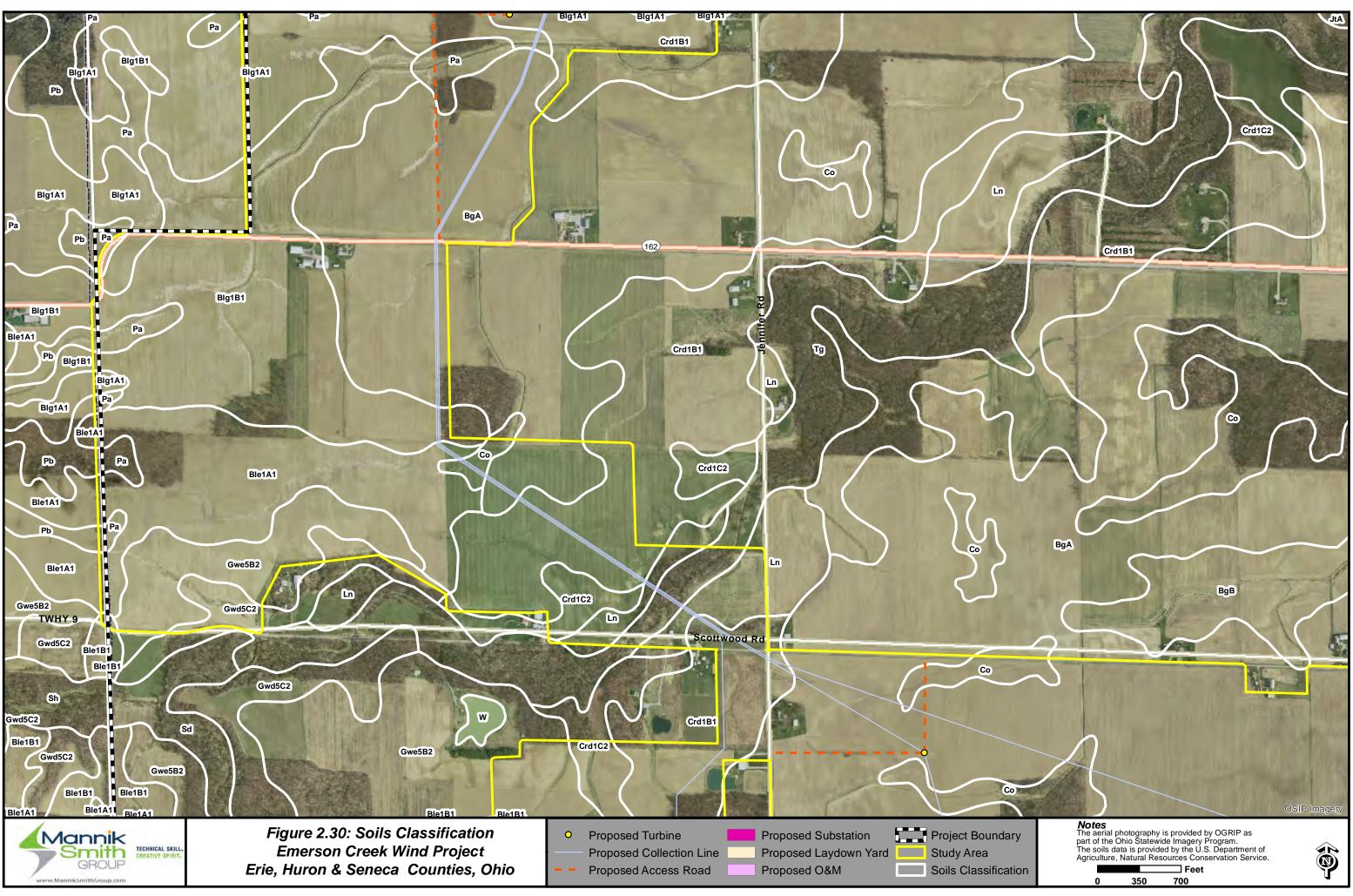


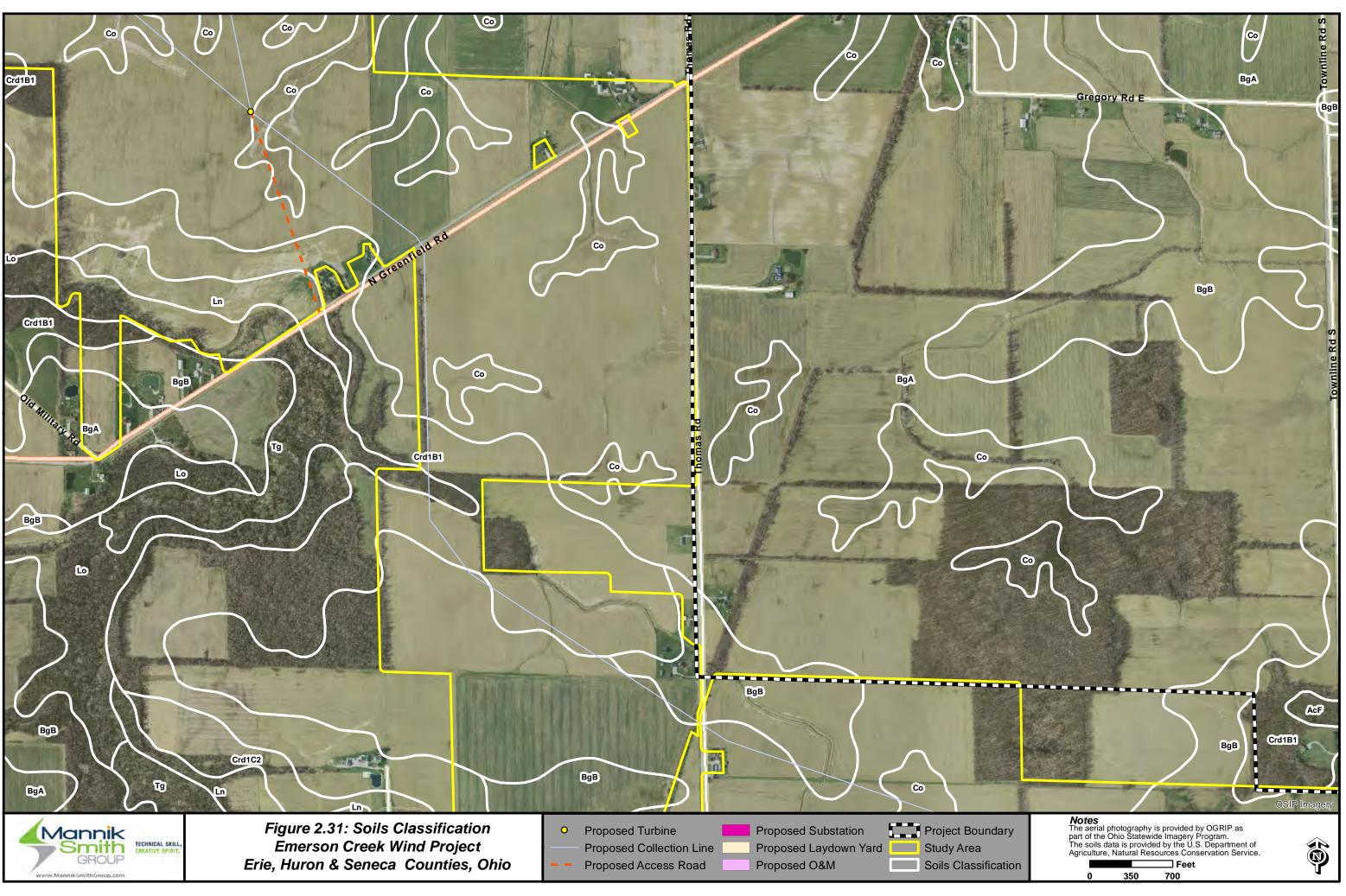




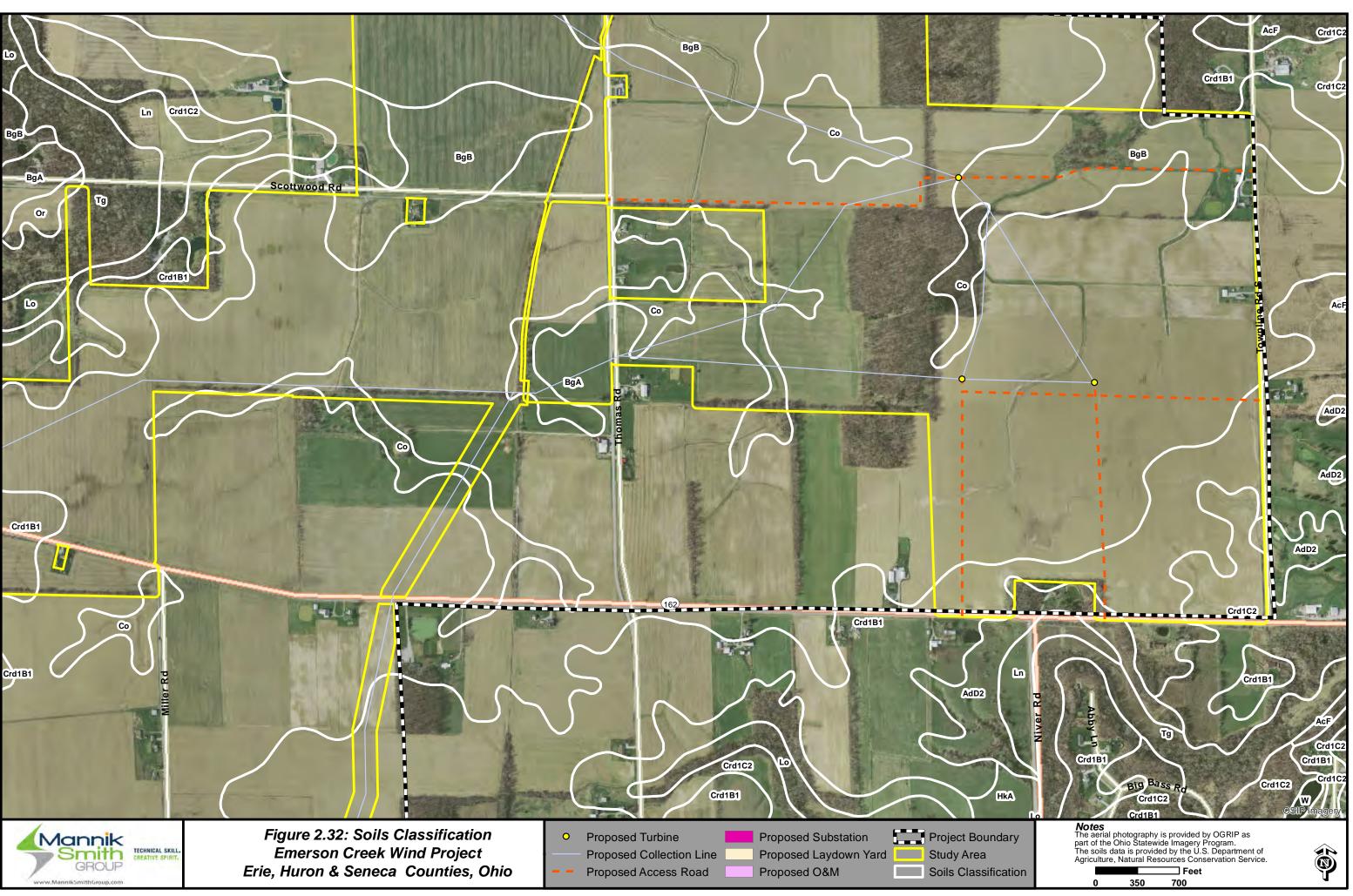


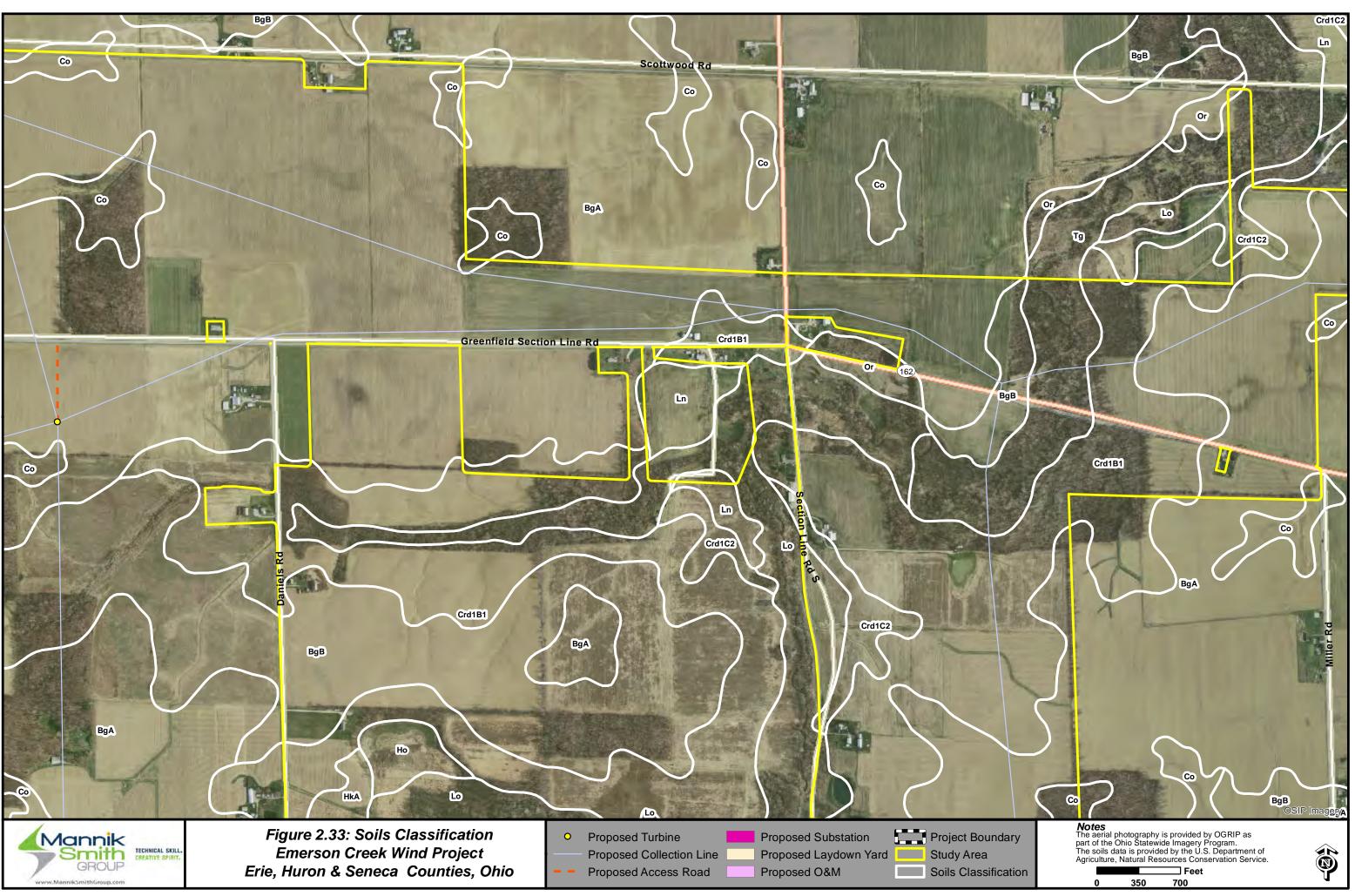


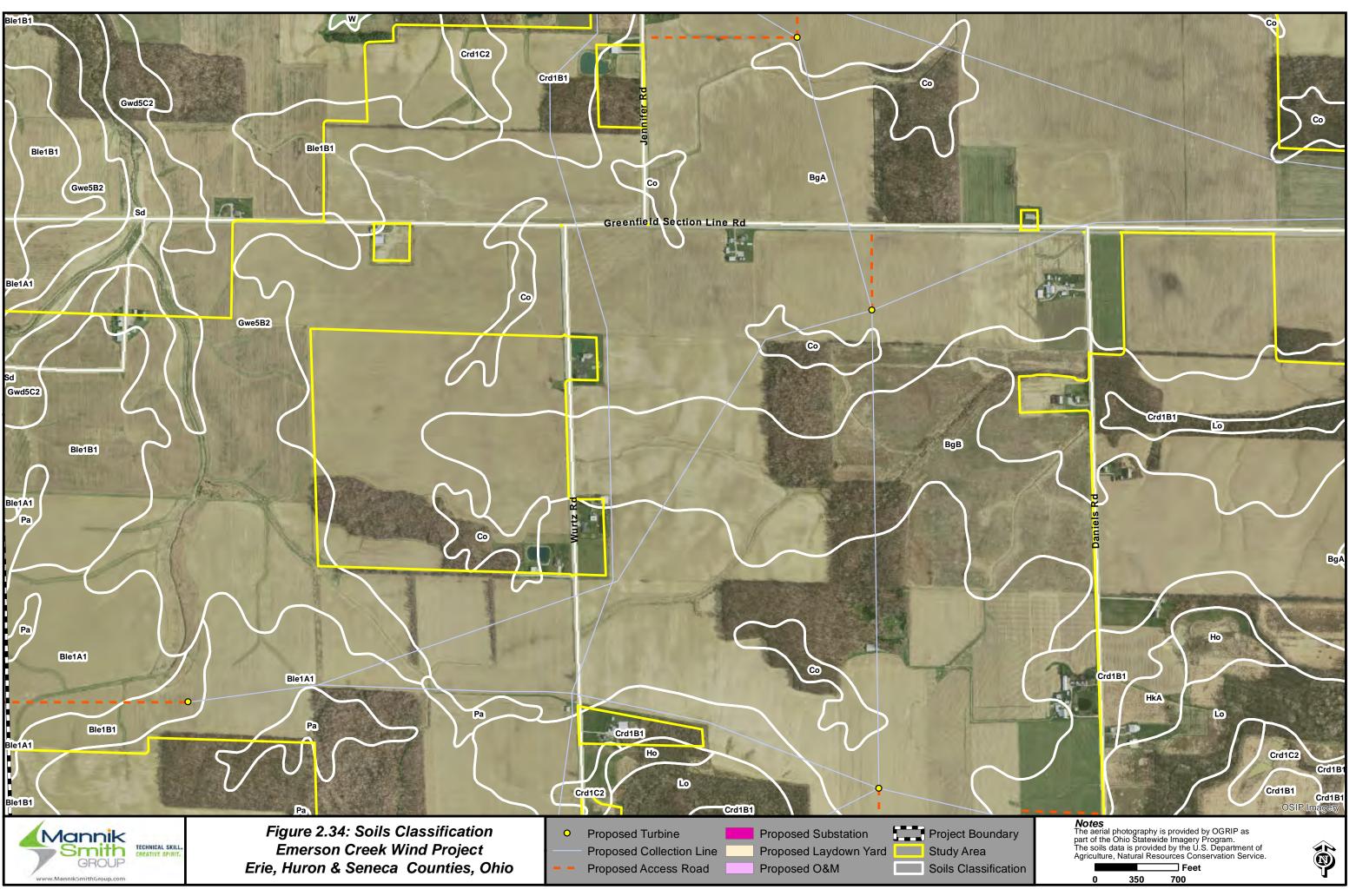


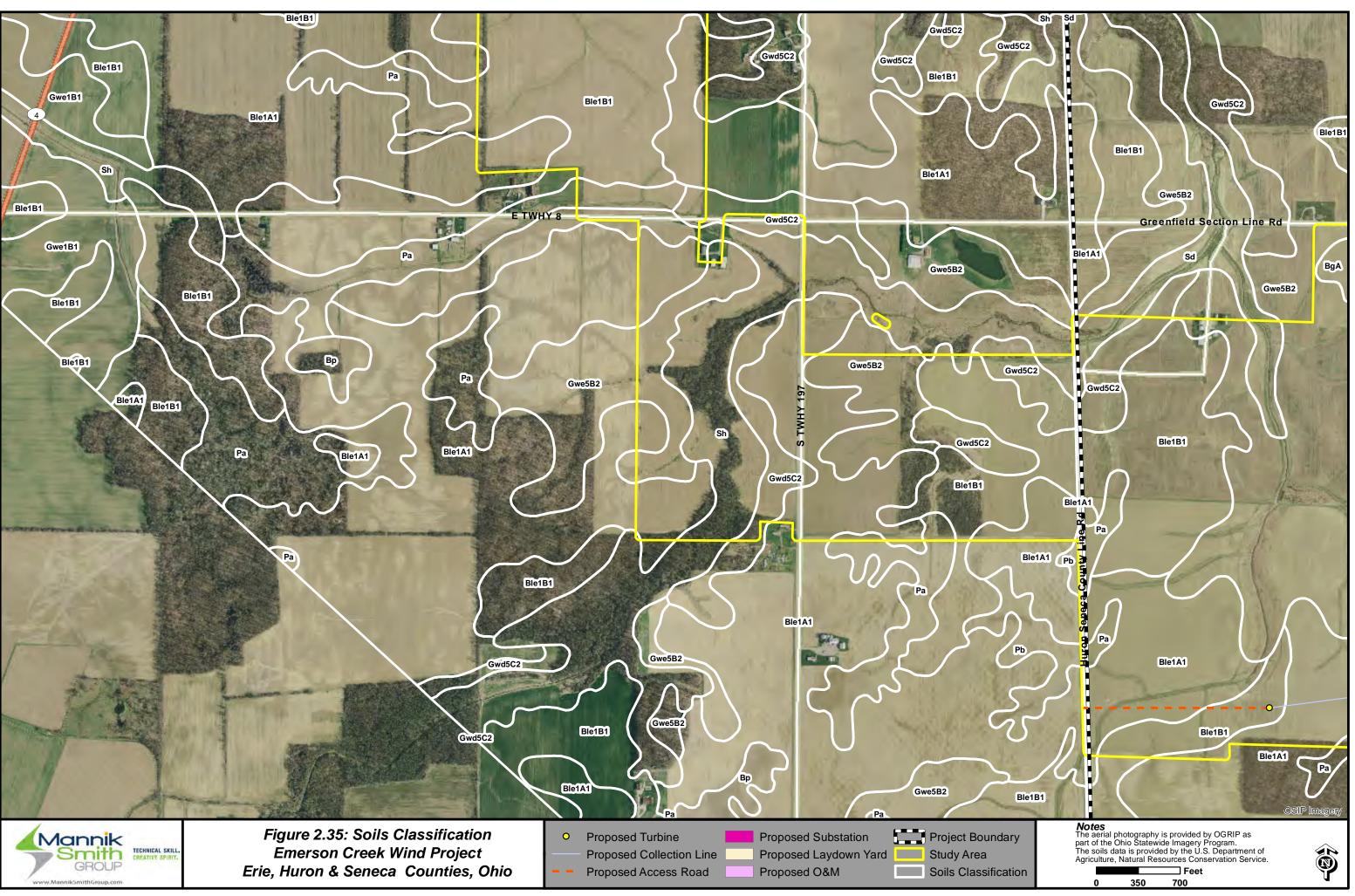


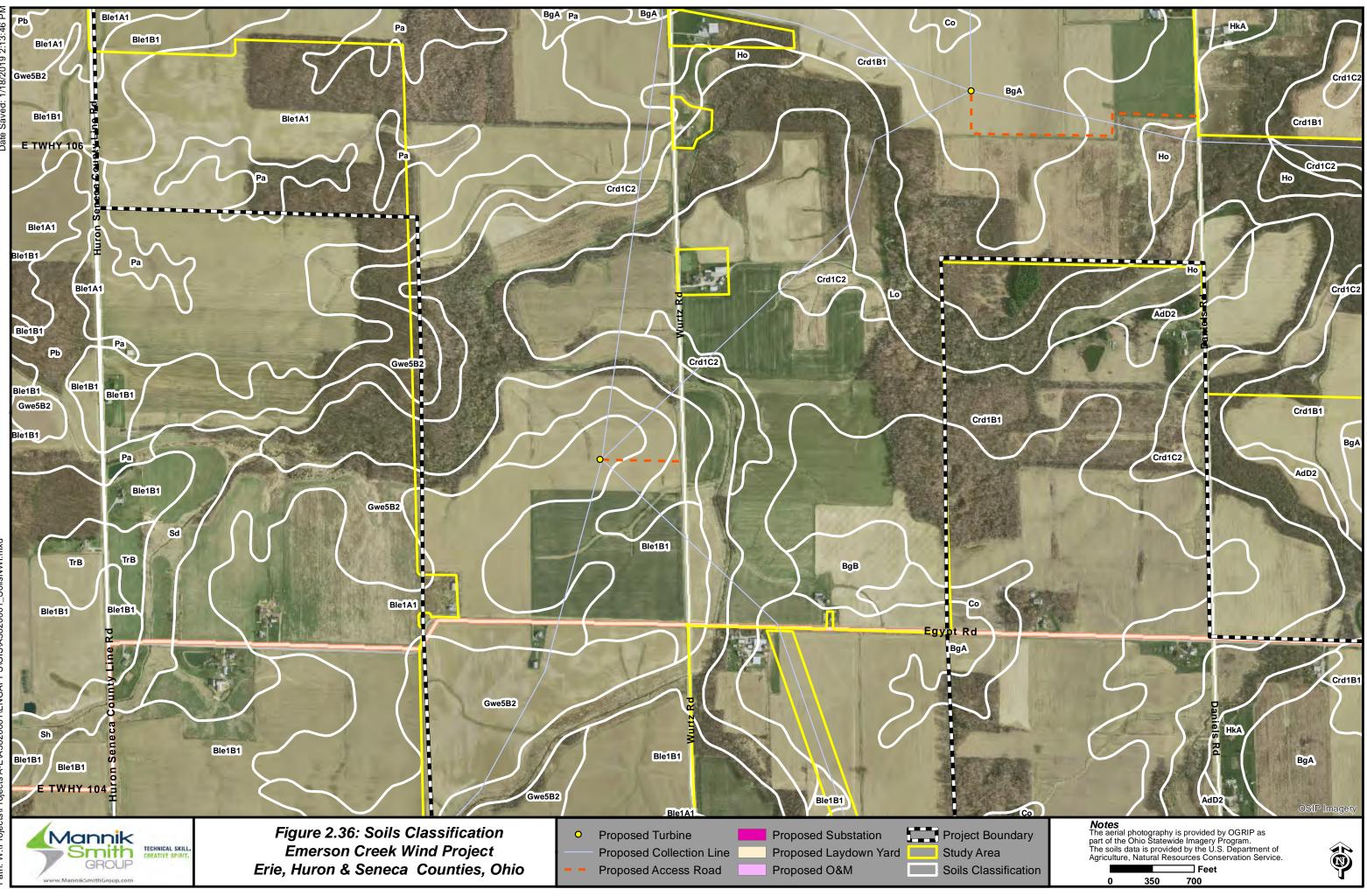


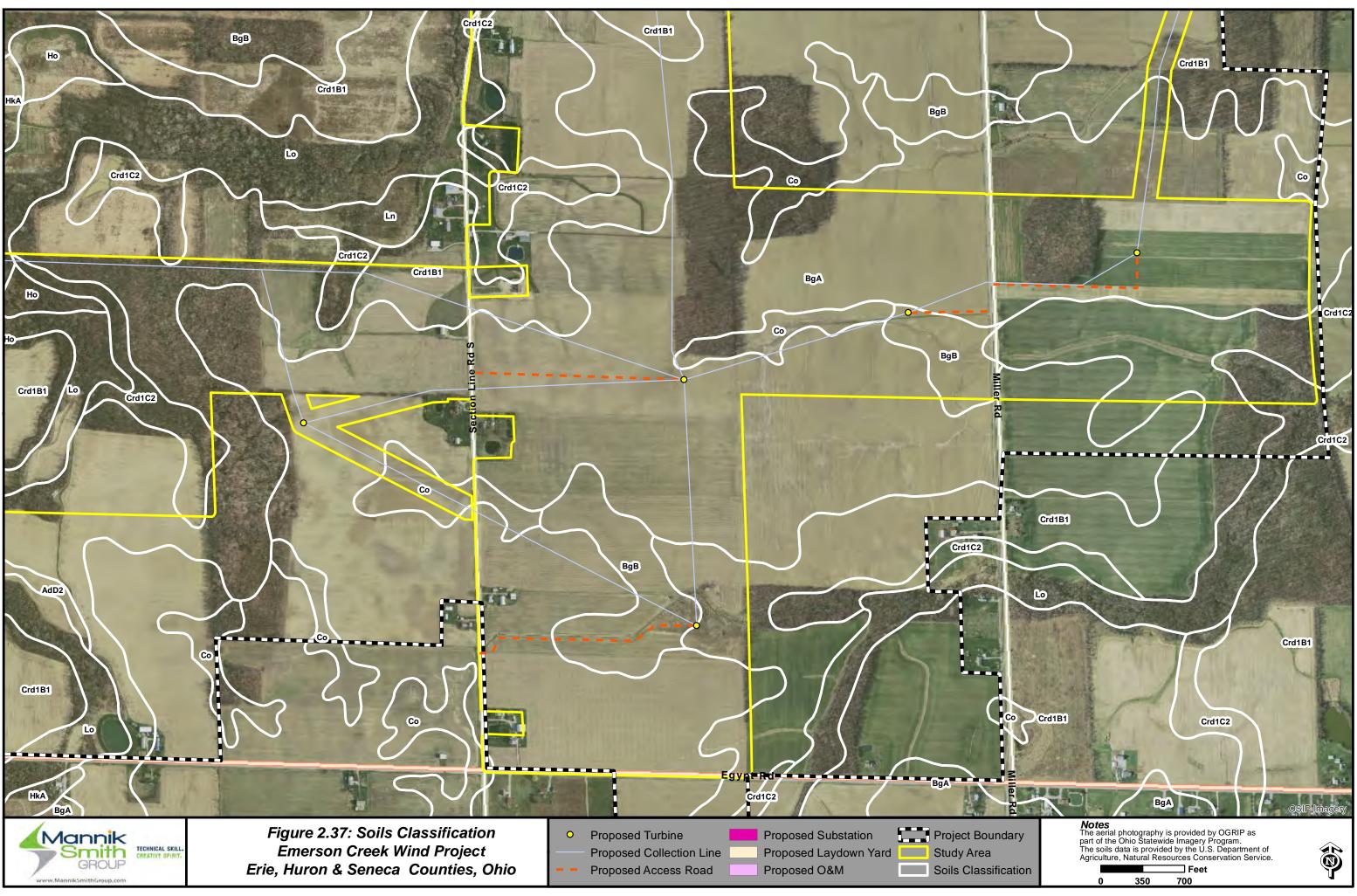


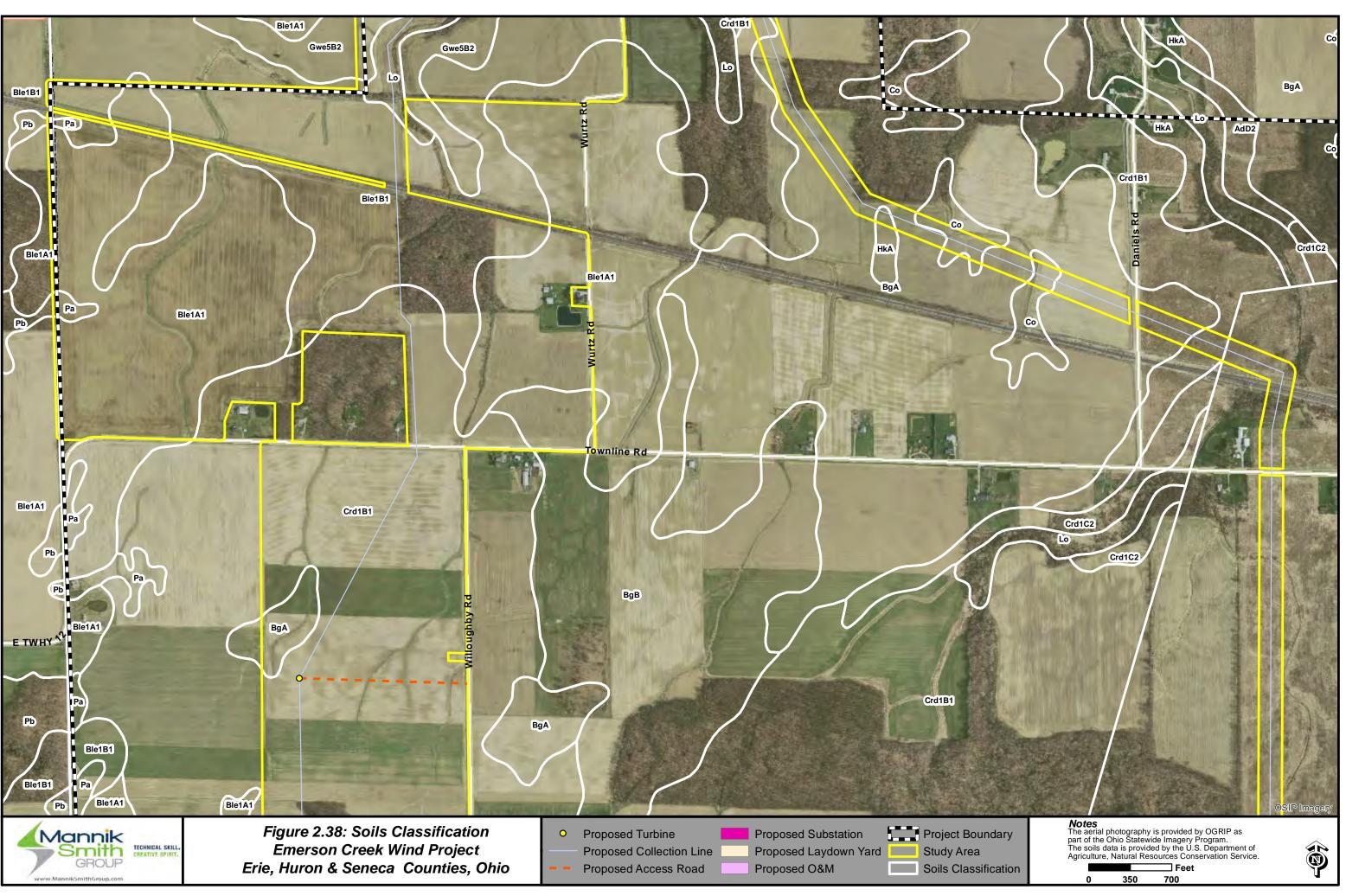




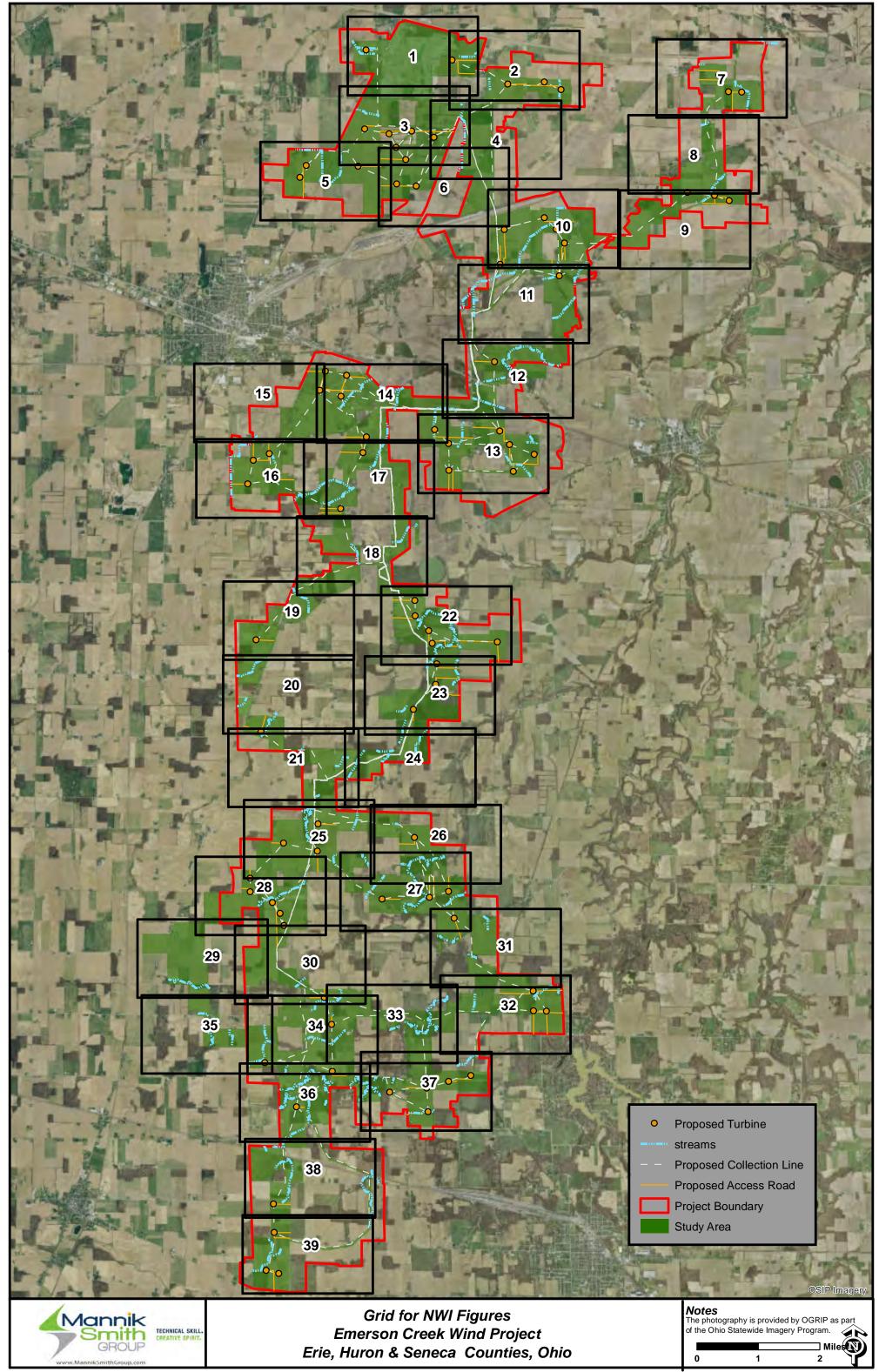


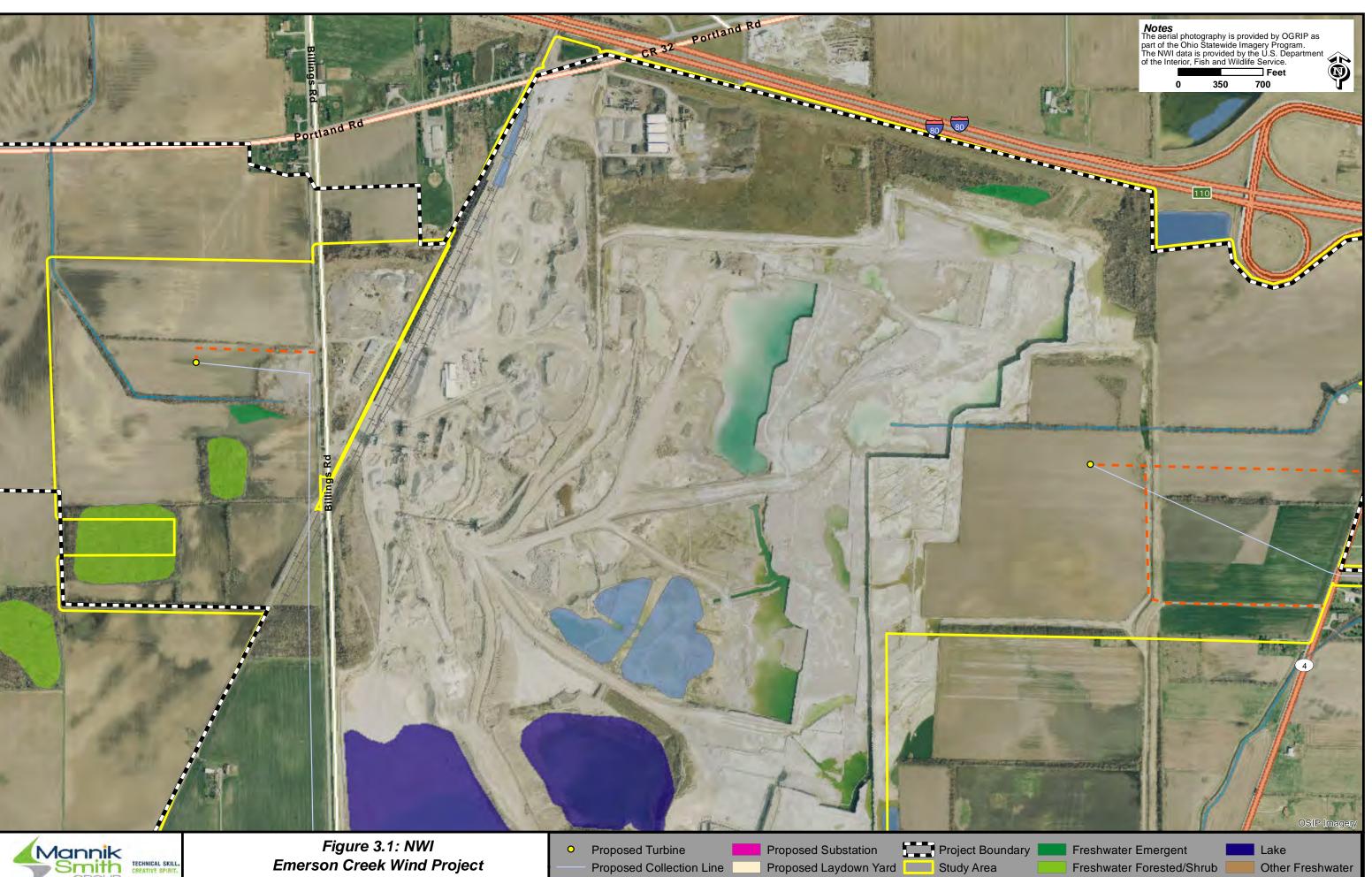



Х



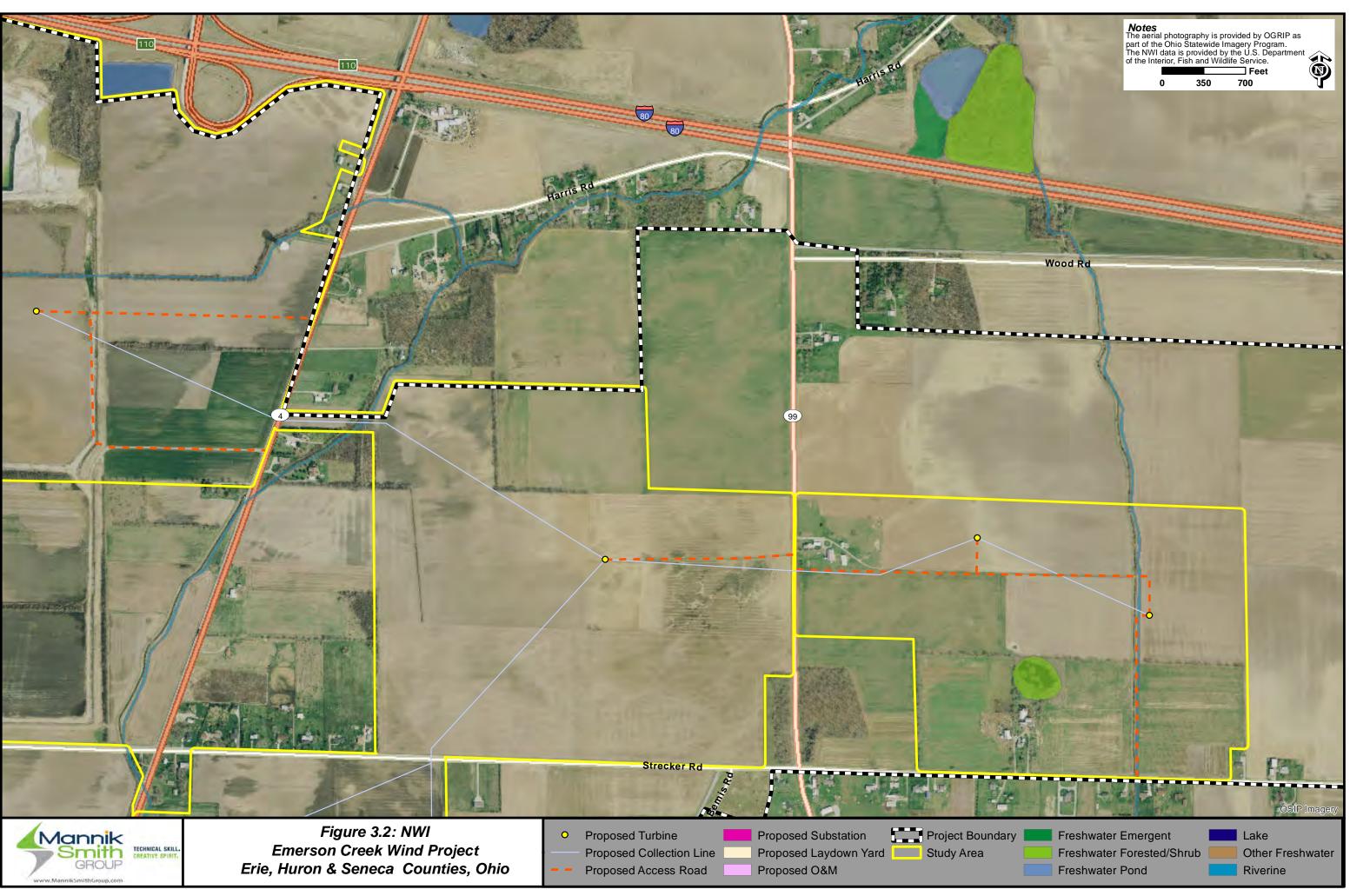




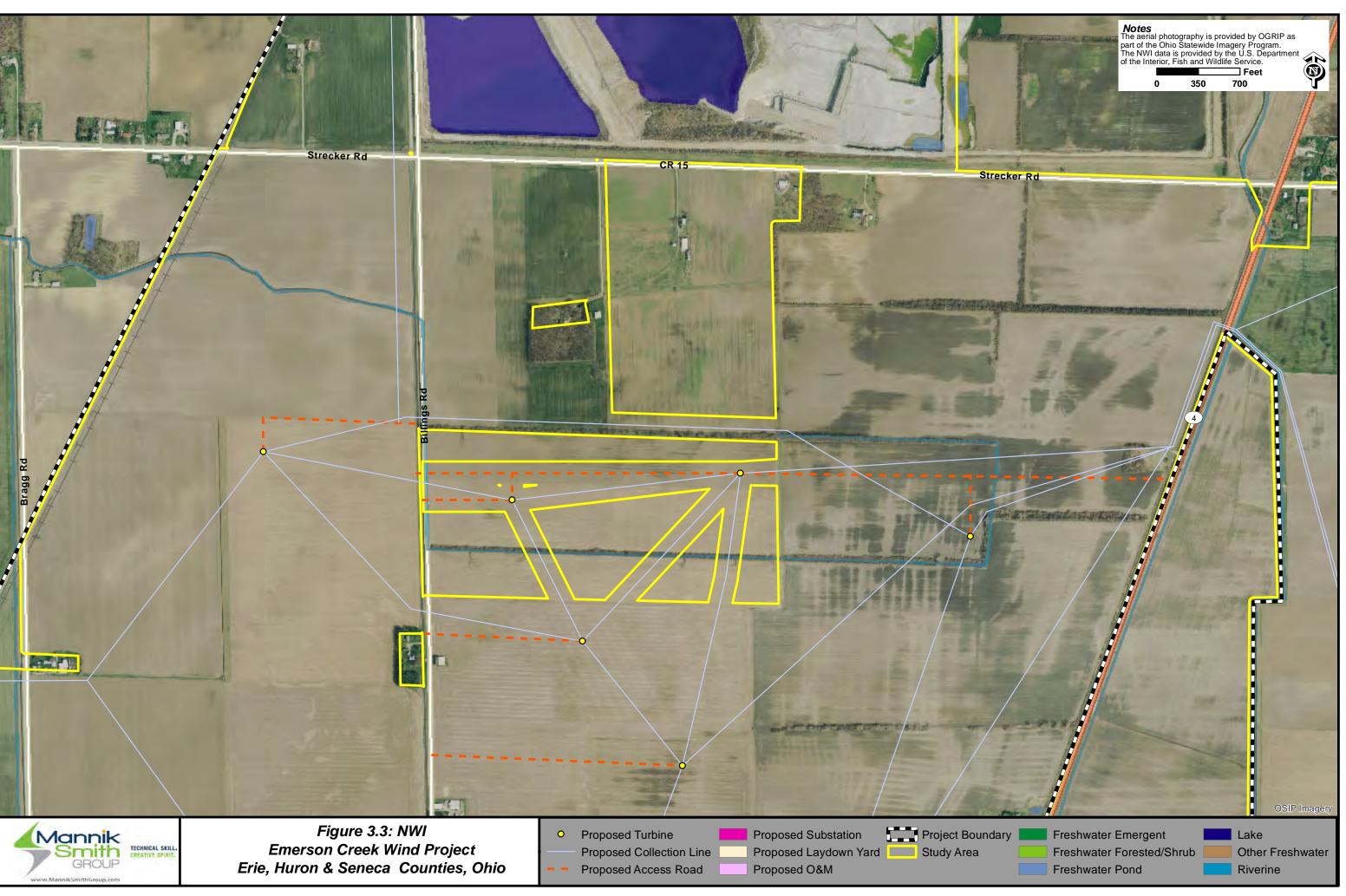


Proposed Access Road

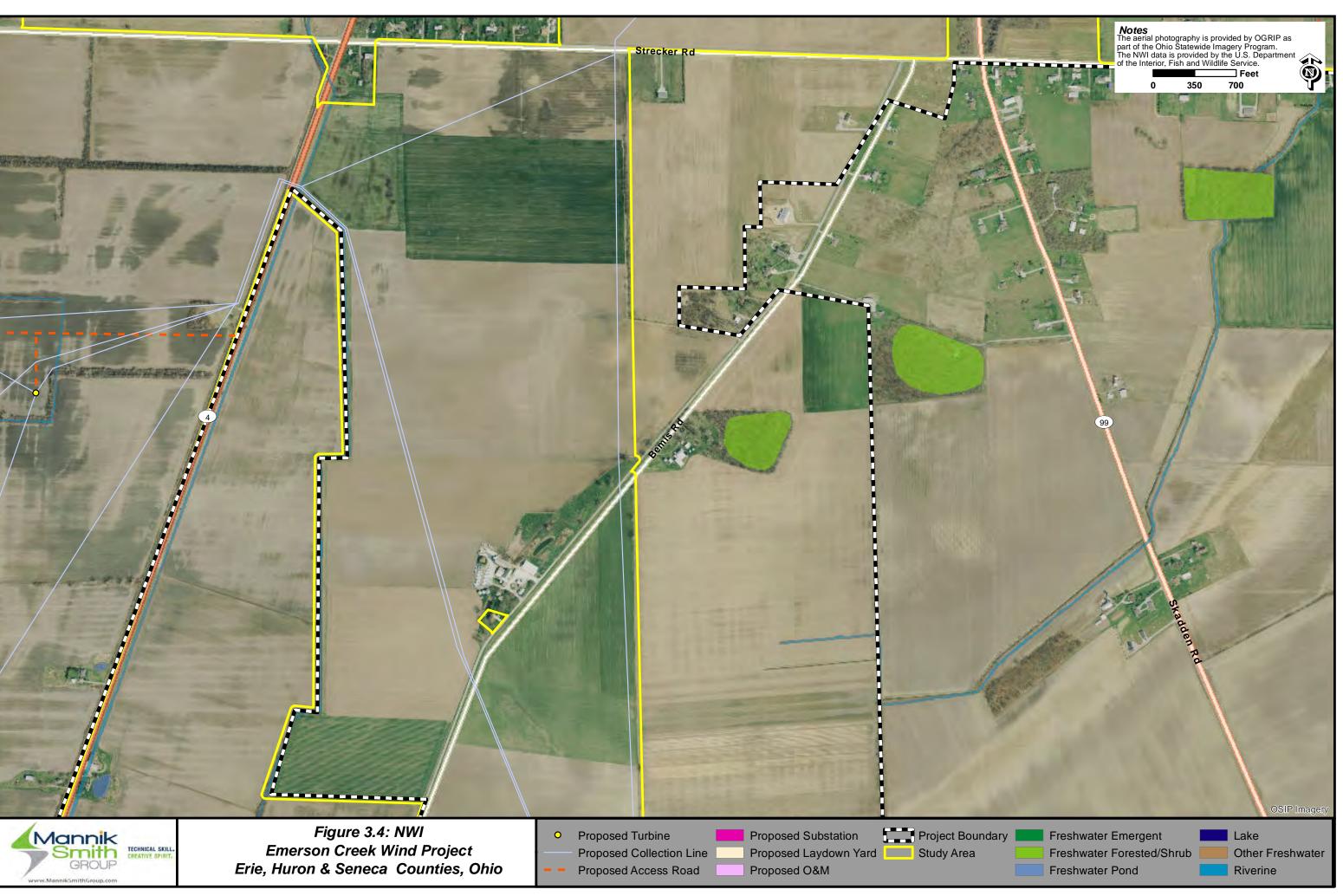
Proposed O&M

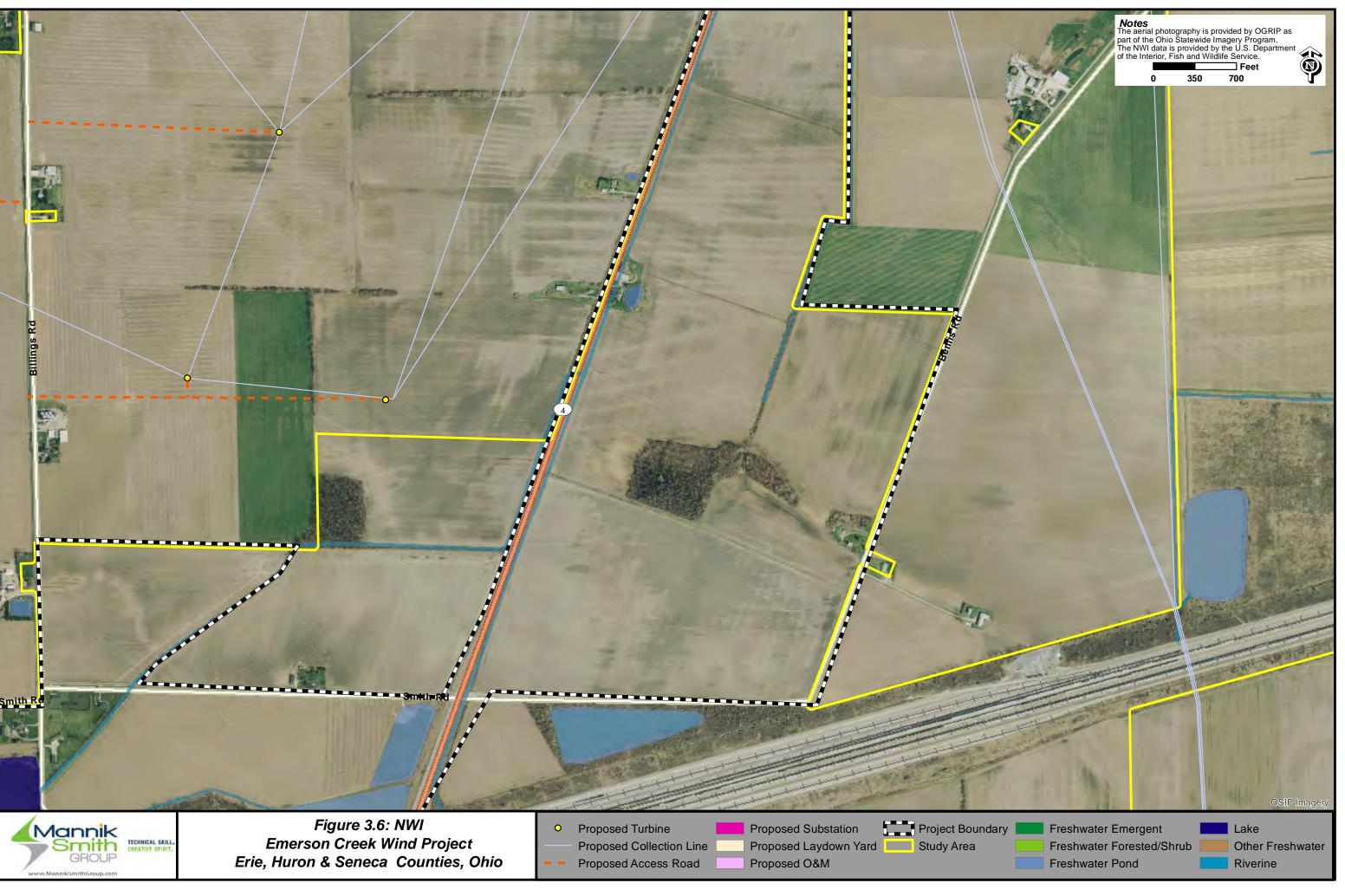

GROUP

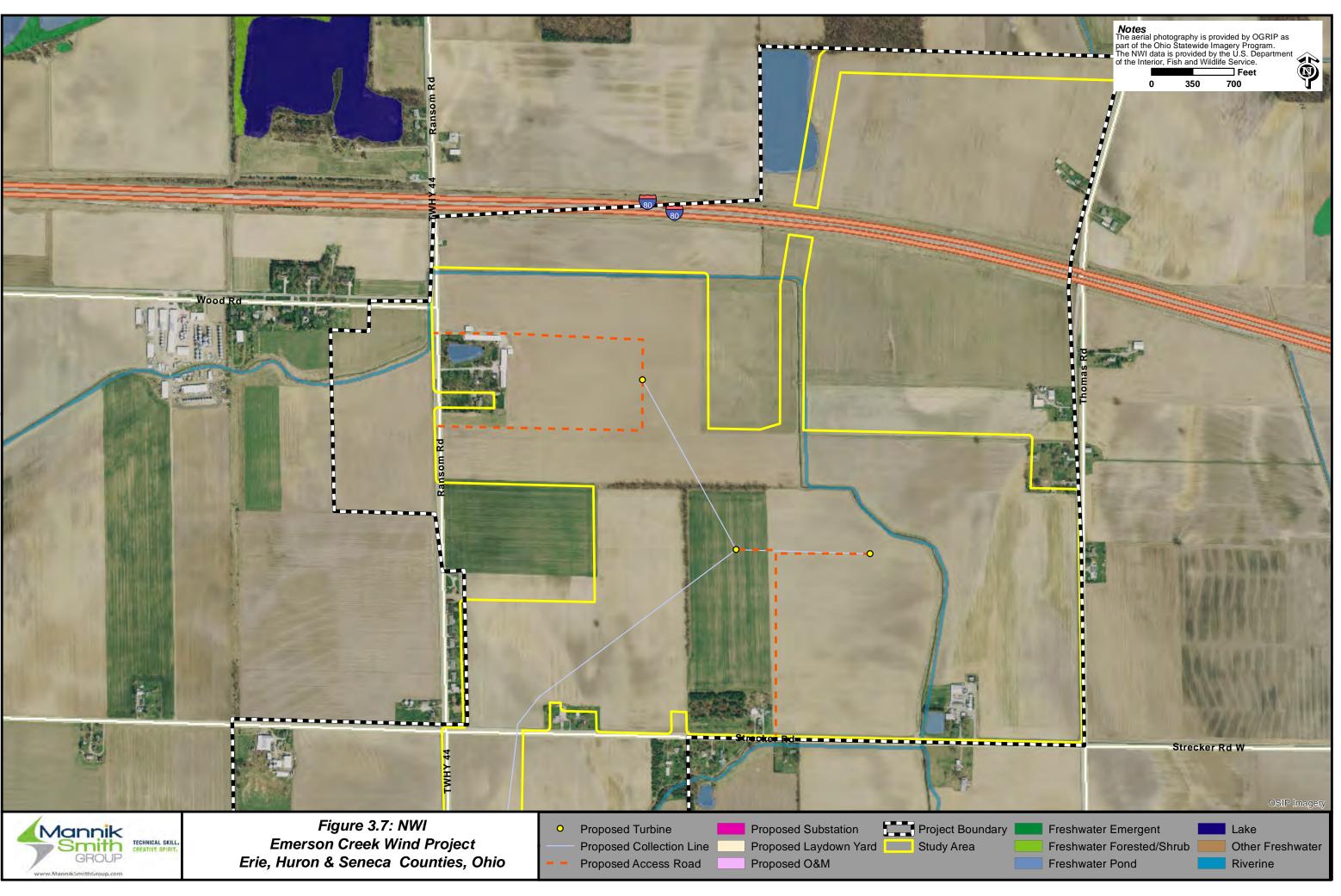
Erie, Huron & Seneca Counties, Ohio

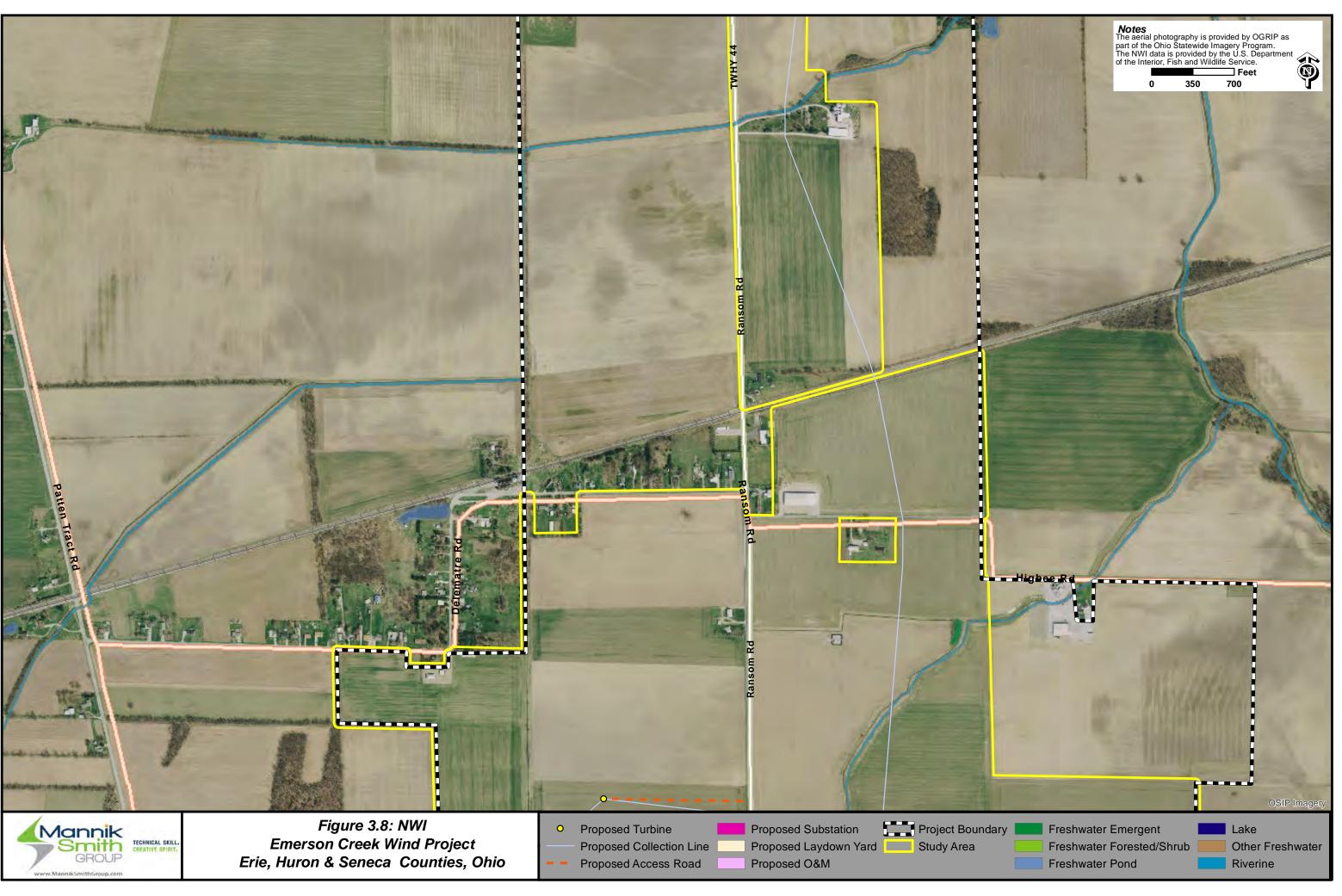

Freshwater Forested/Shrub Freshwater Pond

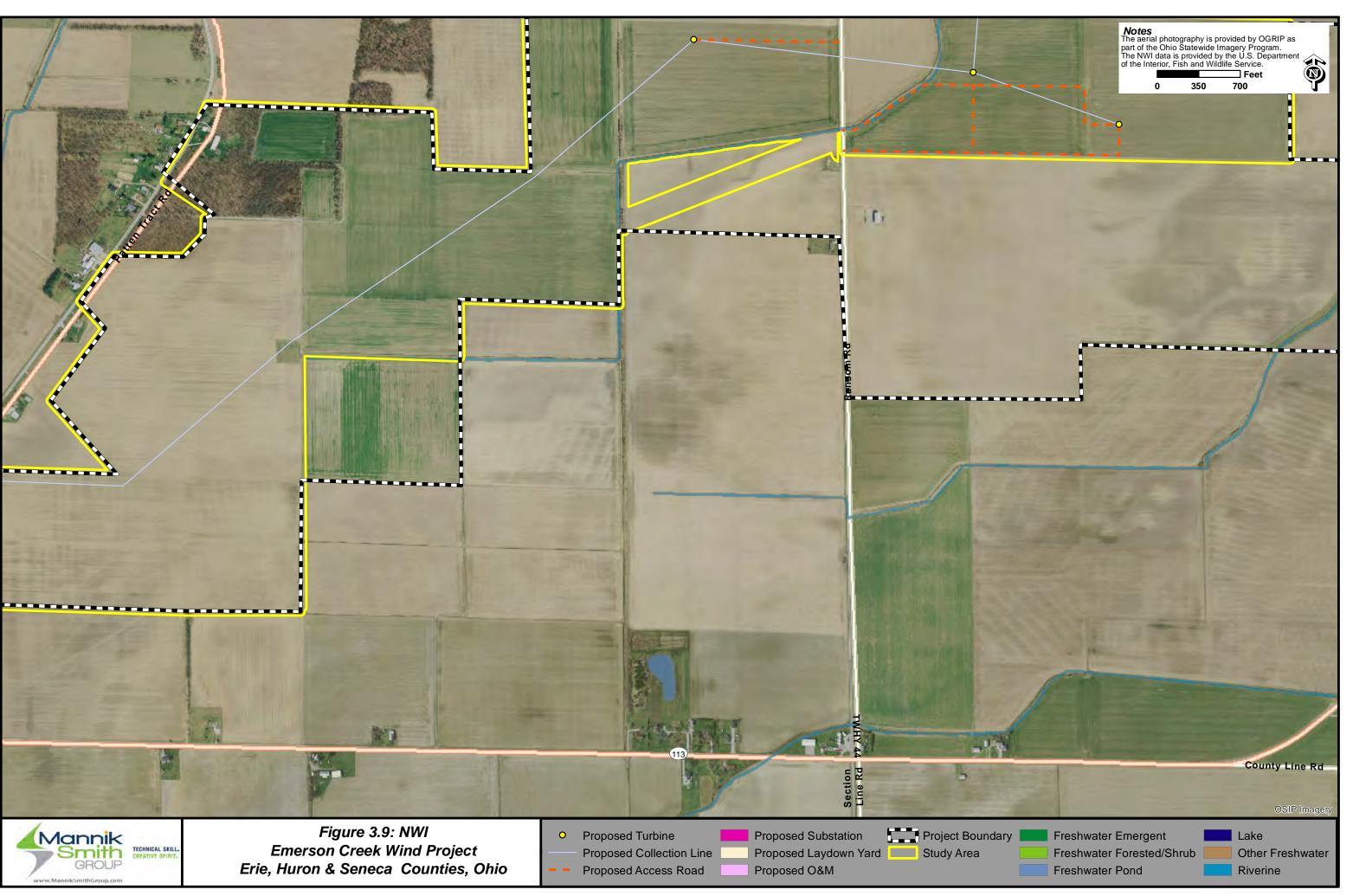
Other Freshwater Riverine

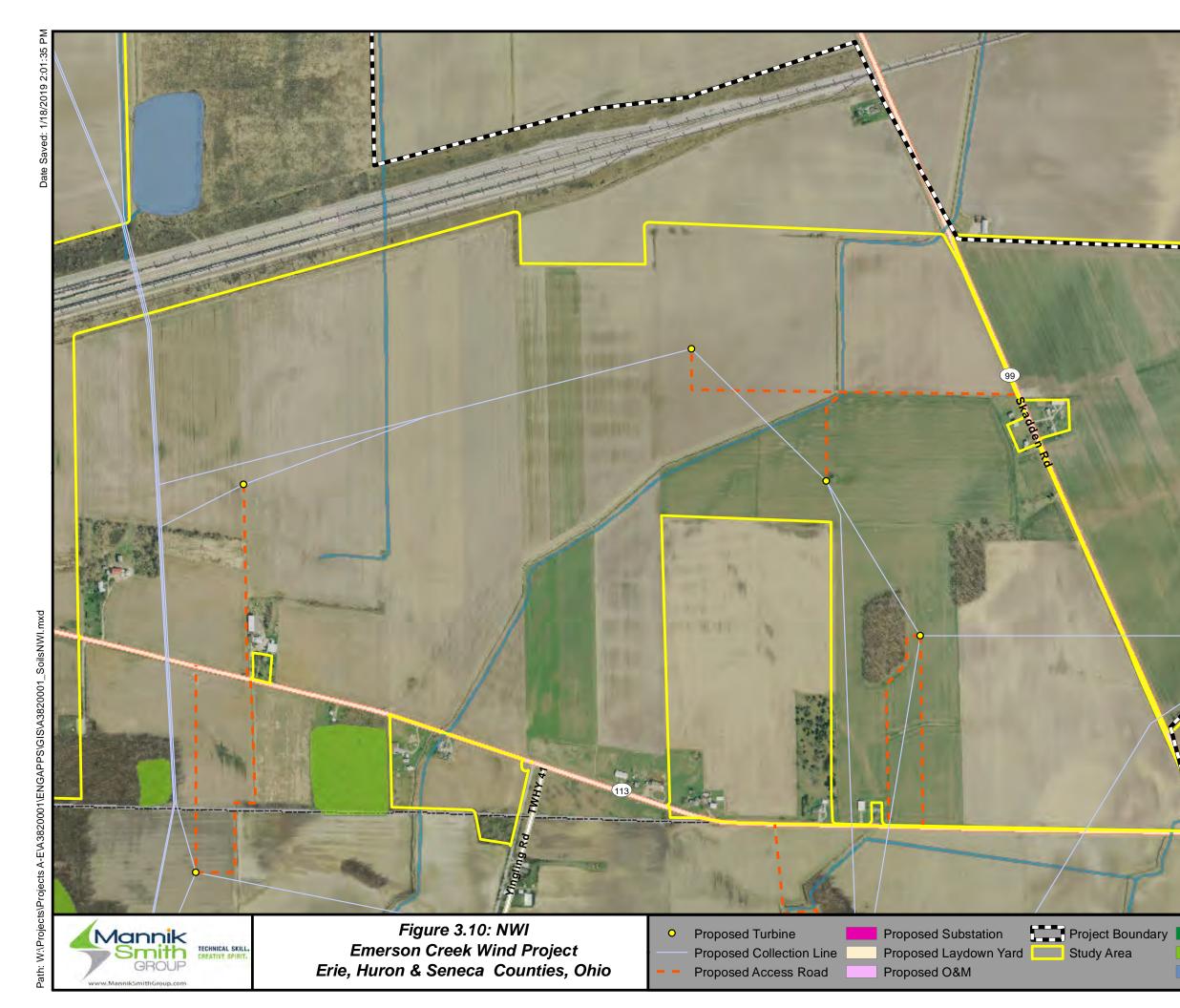


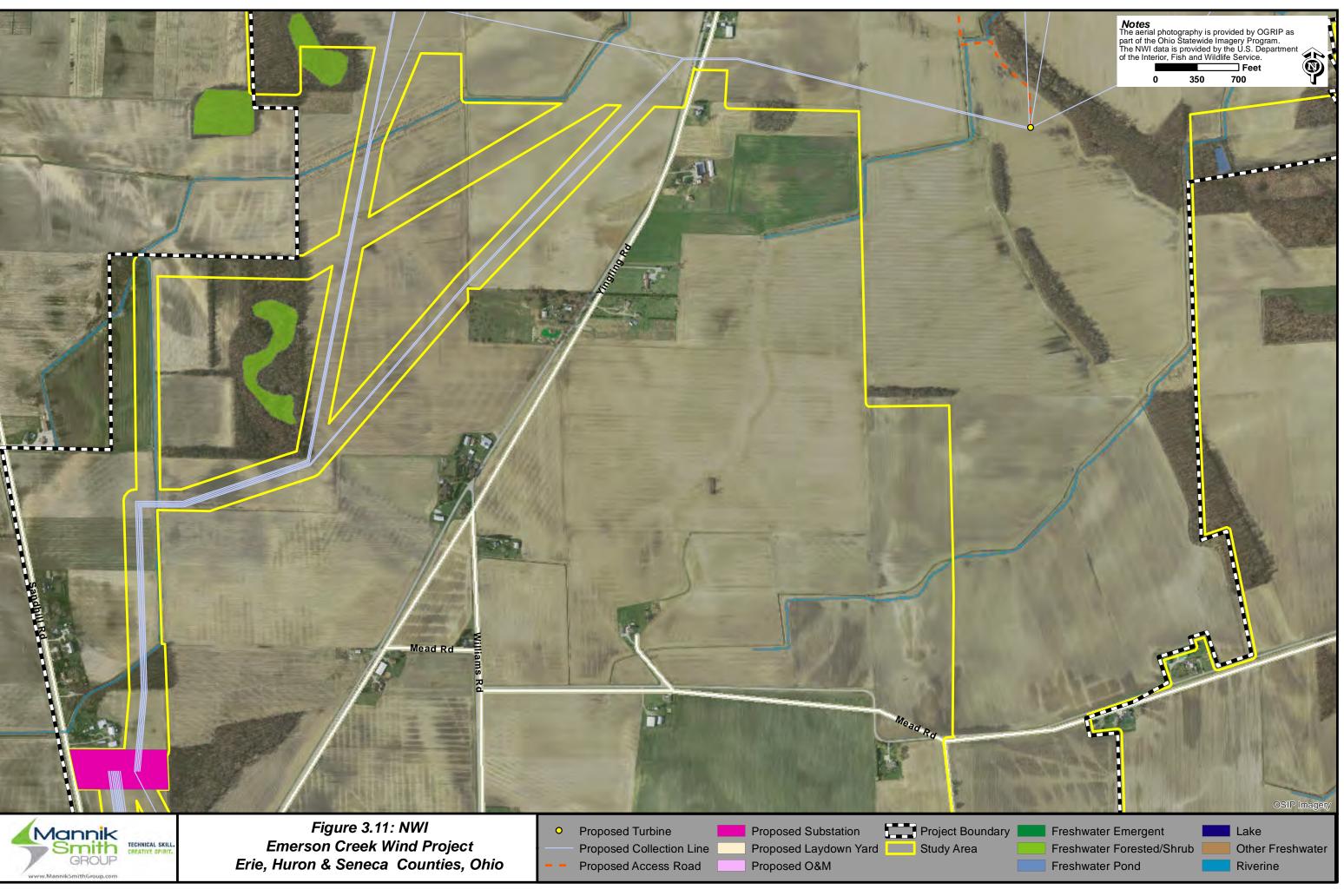

Figure 3.5: NWI Emerson Creek Wind Project Erie, Huron & Seneca Counties, Ohio

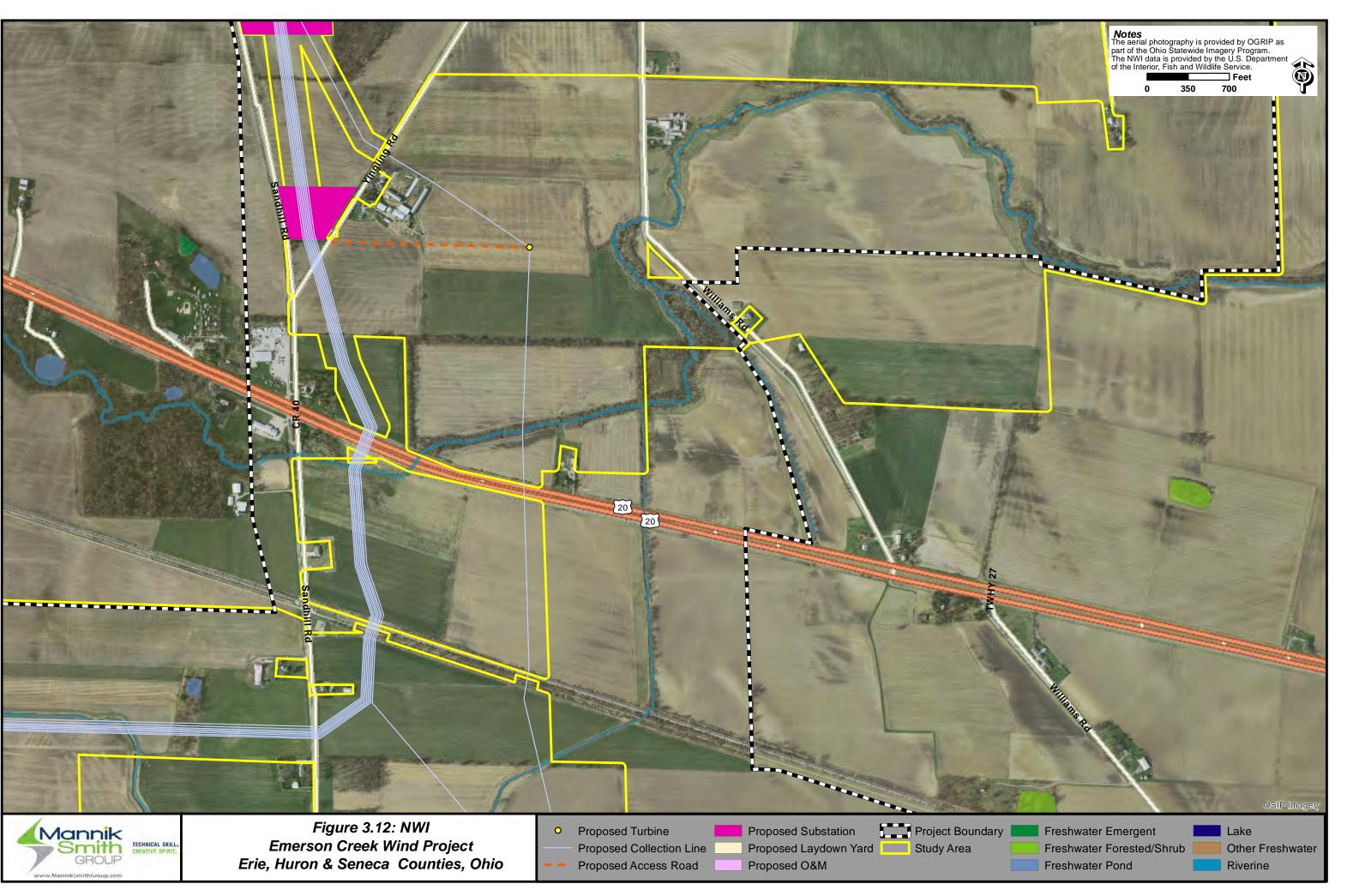

Anauss Rt

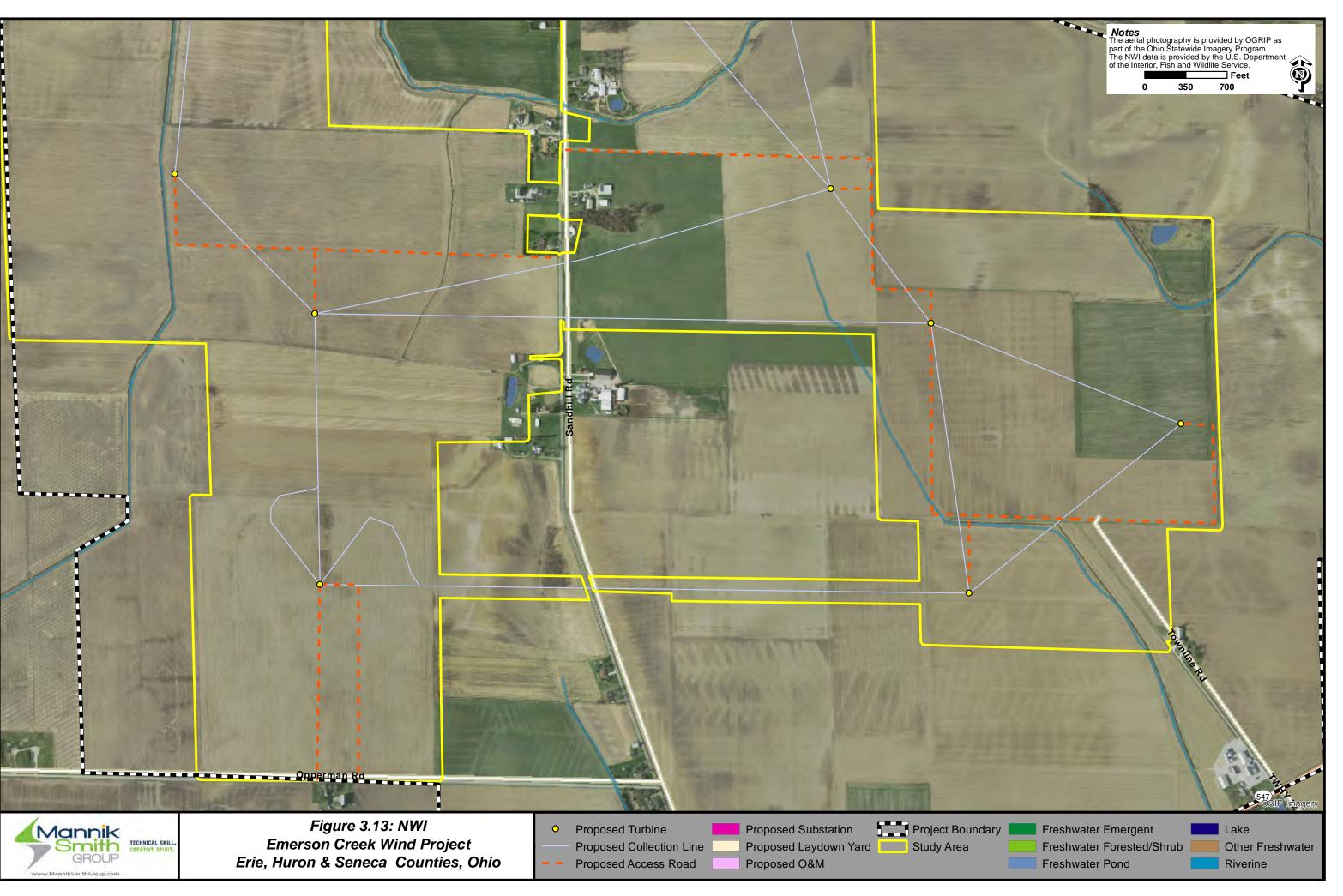

- Proposed Turbine Proposed Collection Line Proposed Access Road
- Proposed Substation
 - Proposed Laydown Yard Study Area Proposed O&M

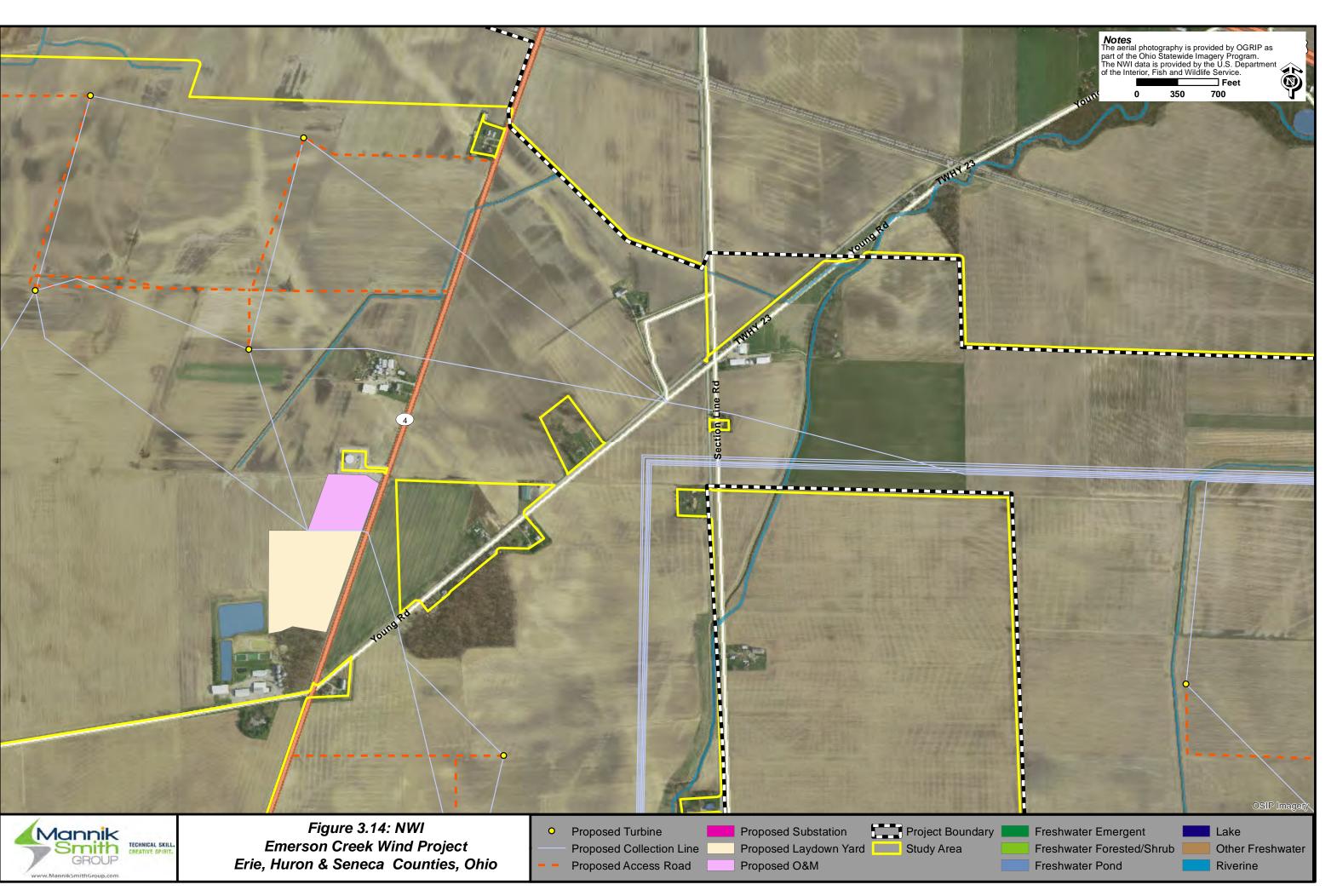

Bragg Rd

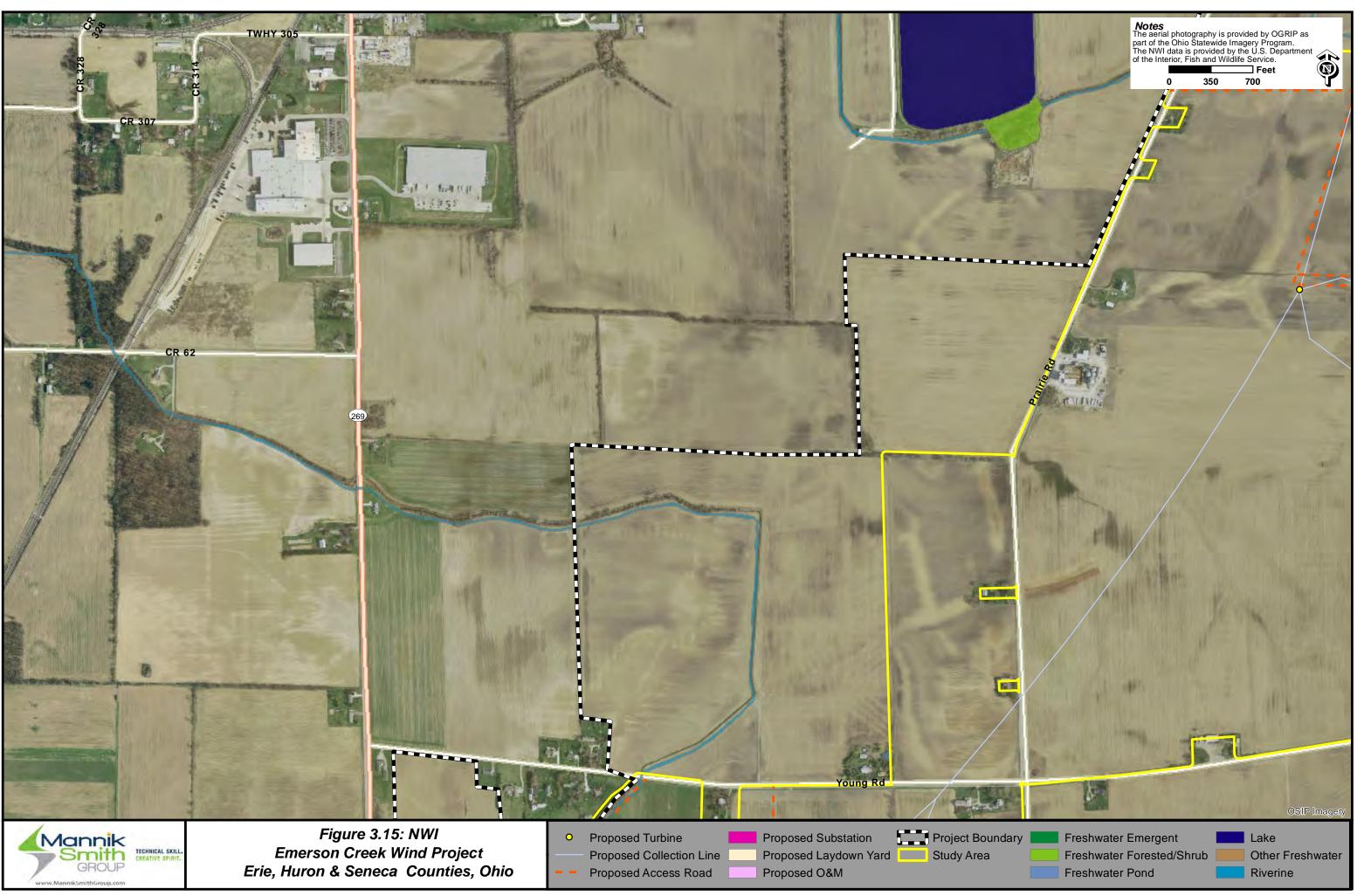


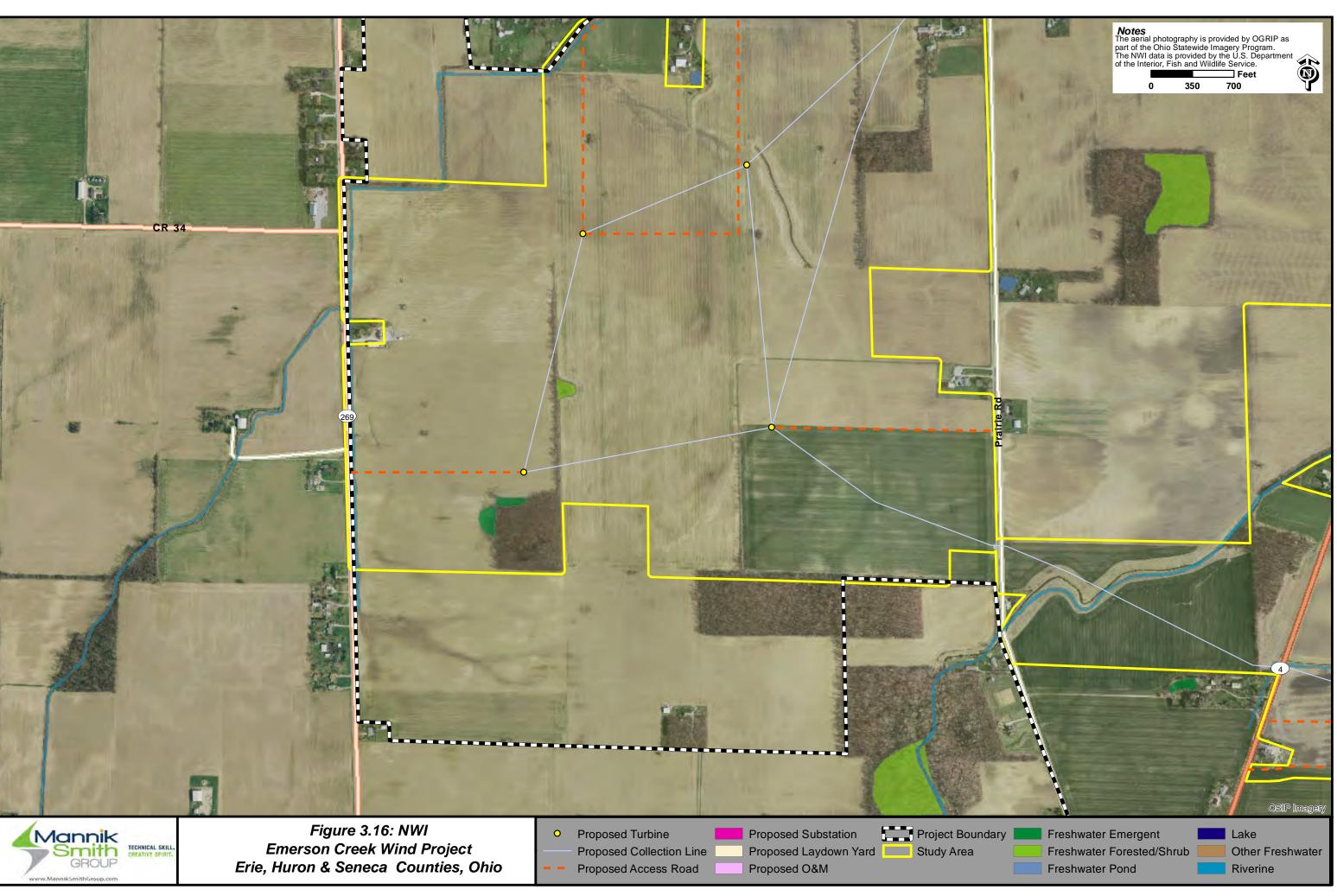


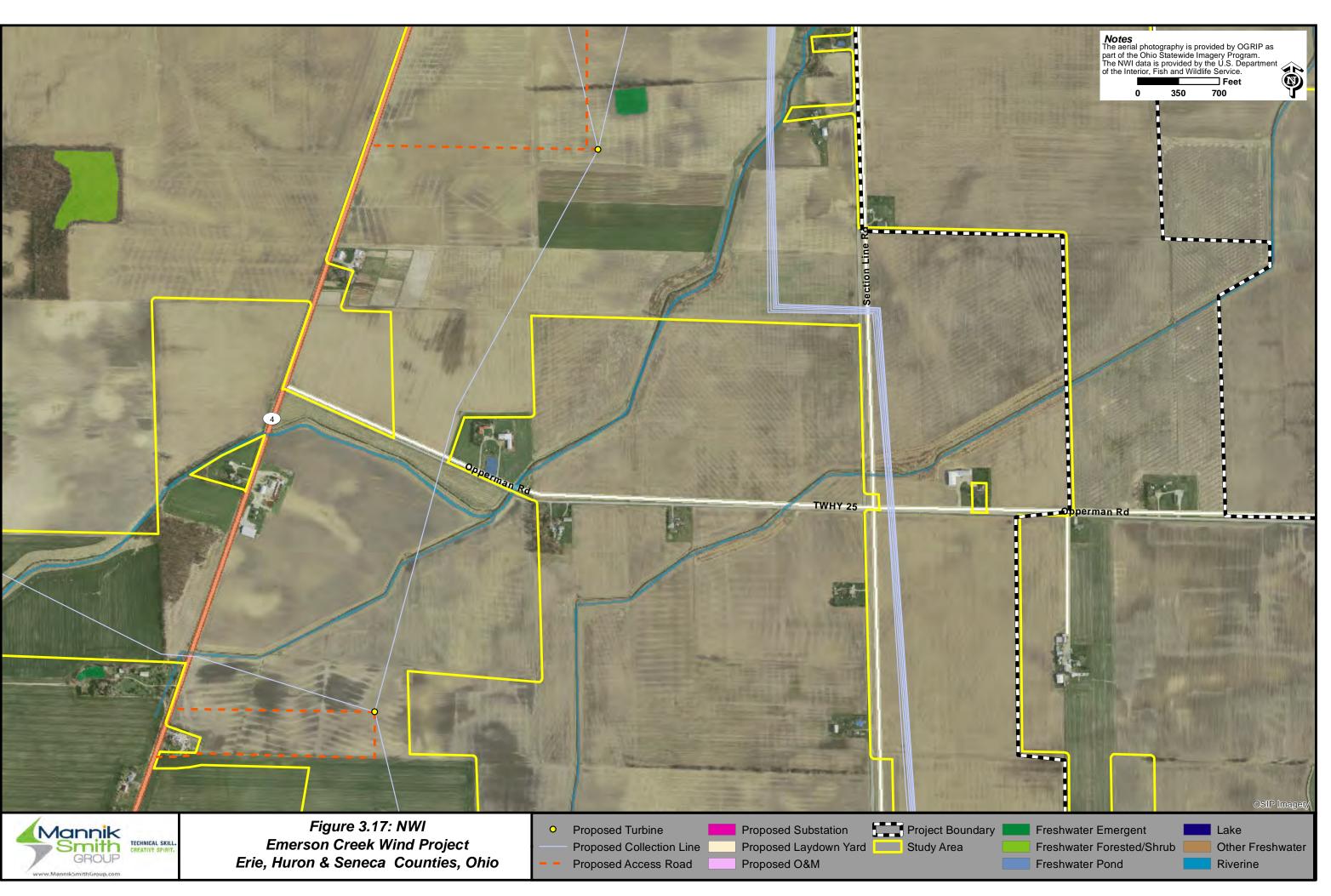


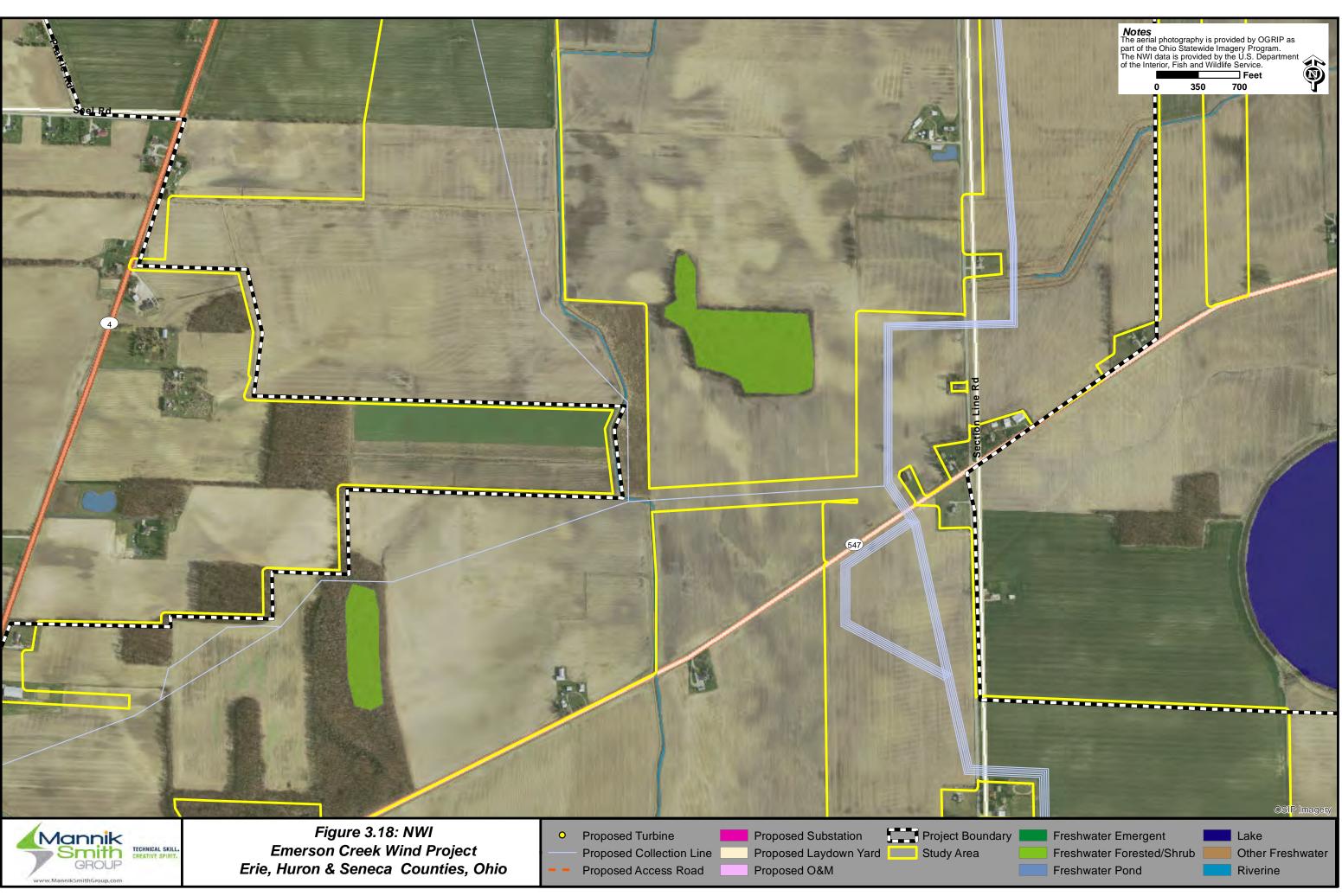


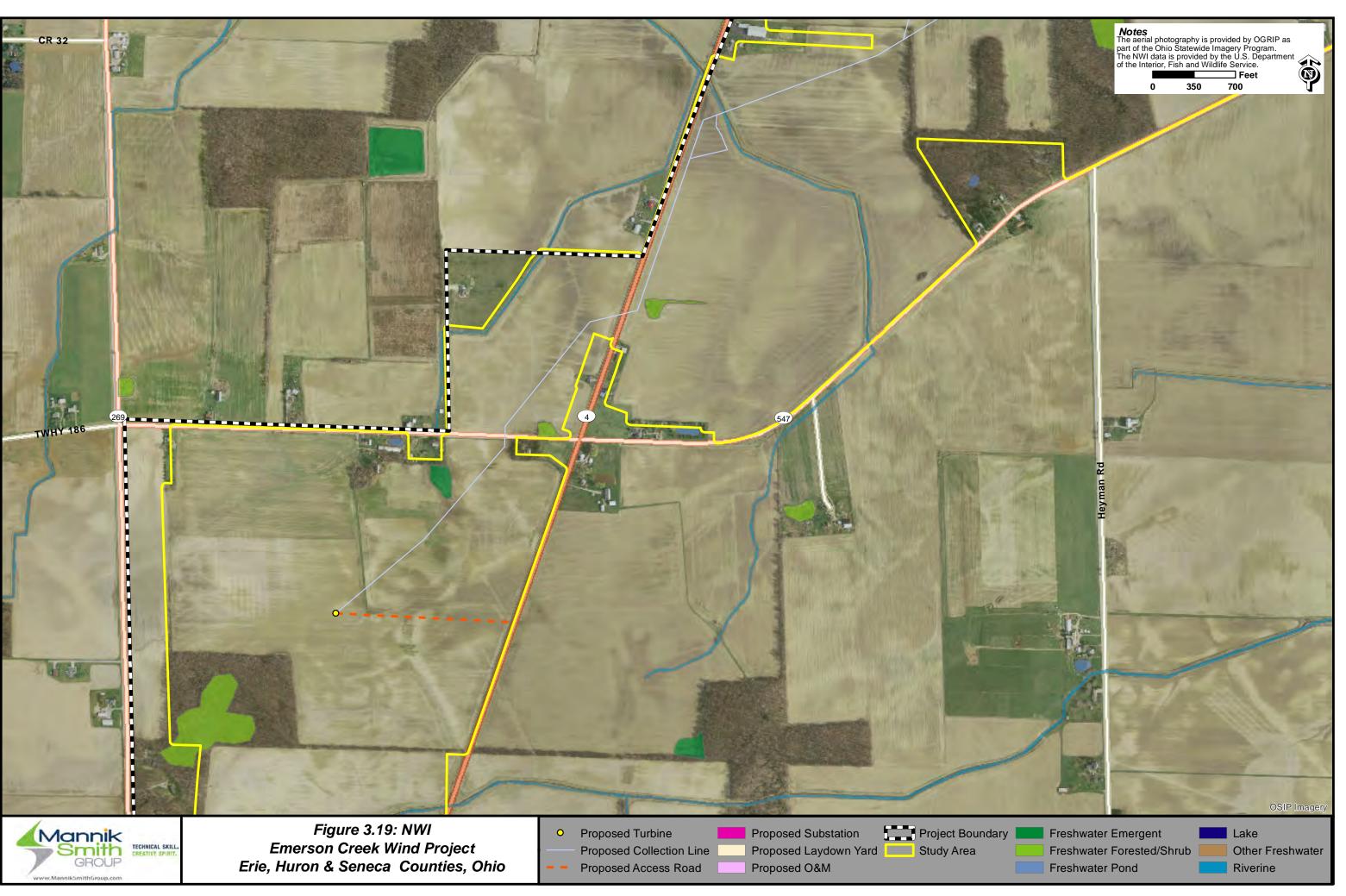


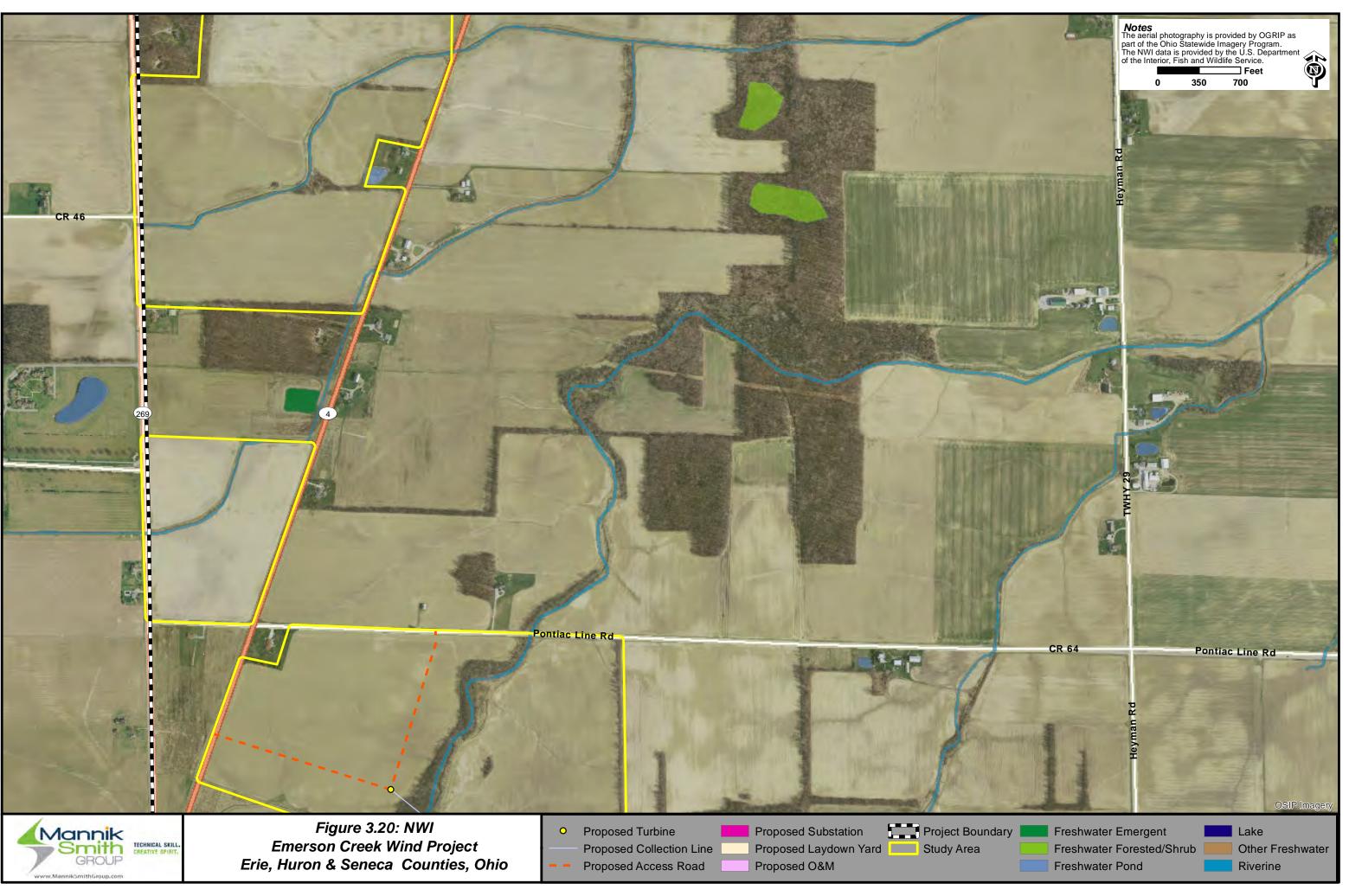


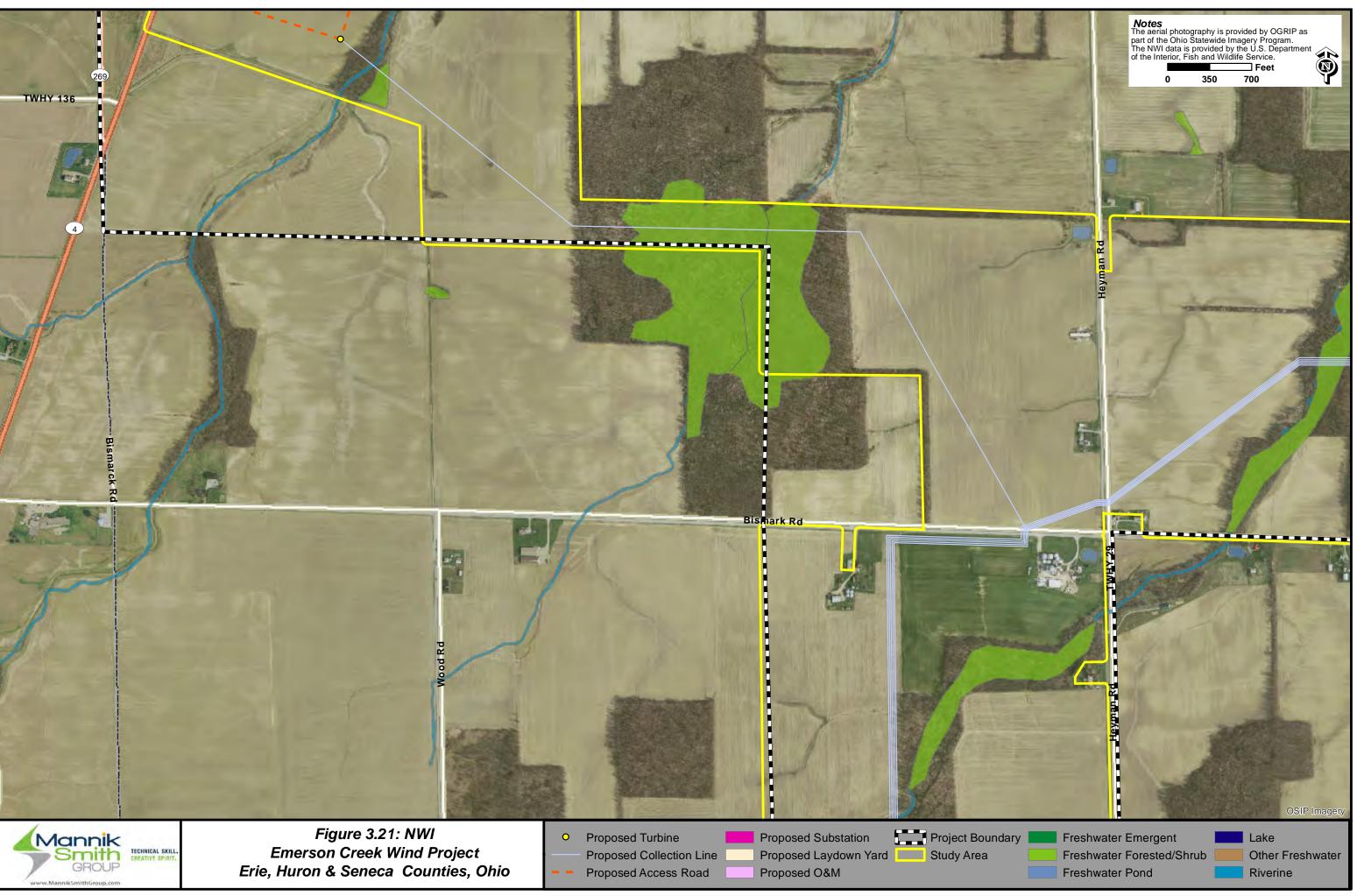


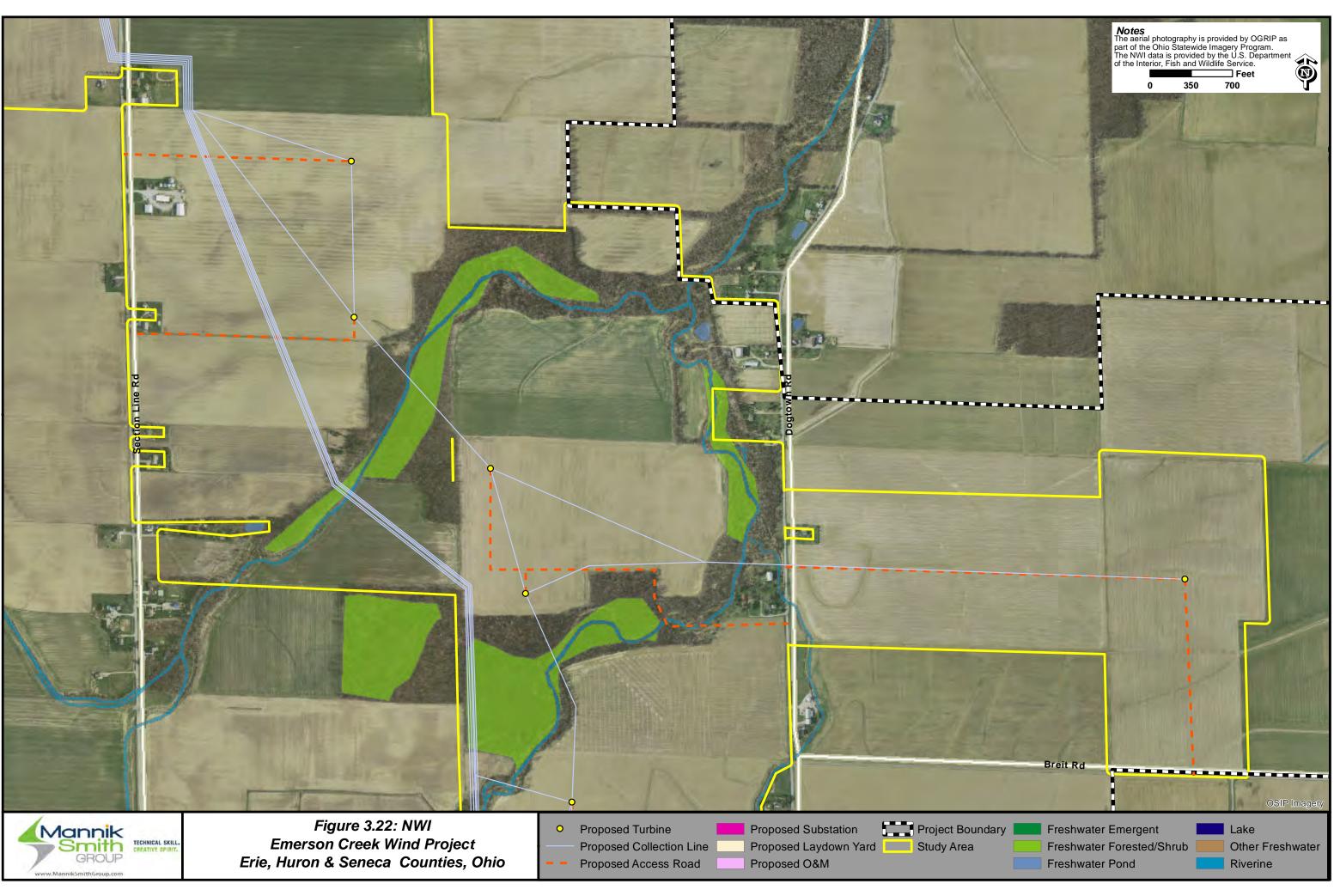


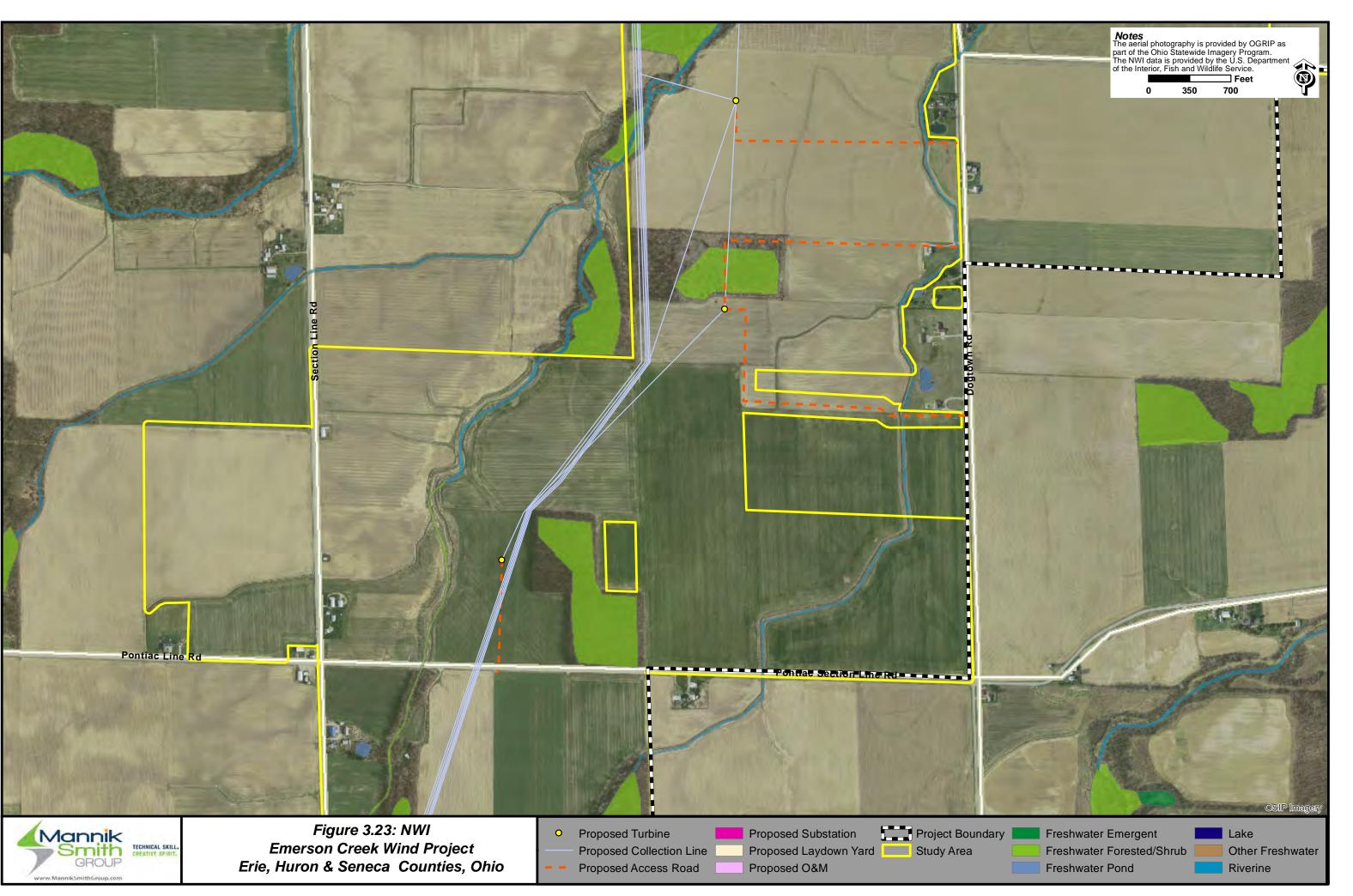


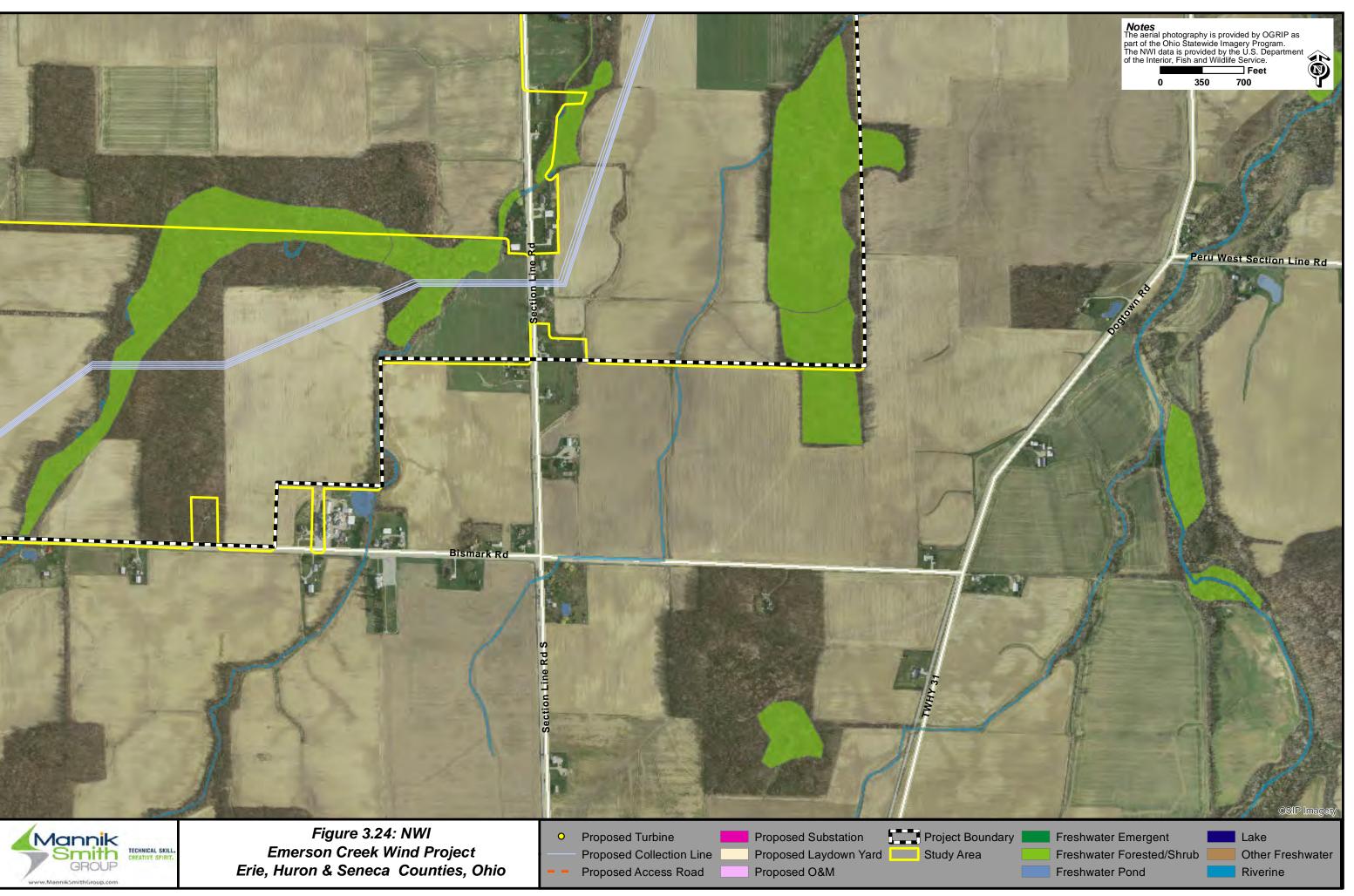


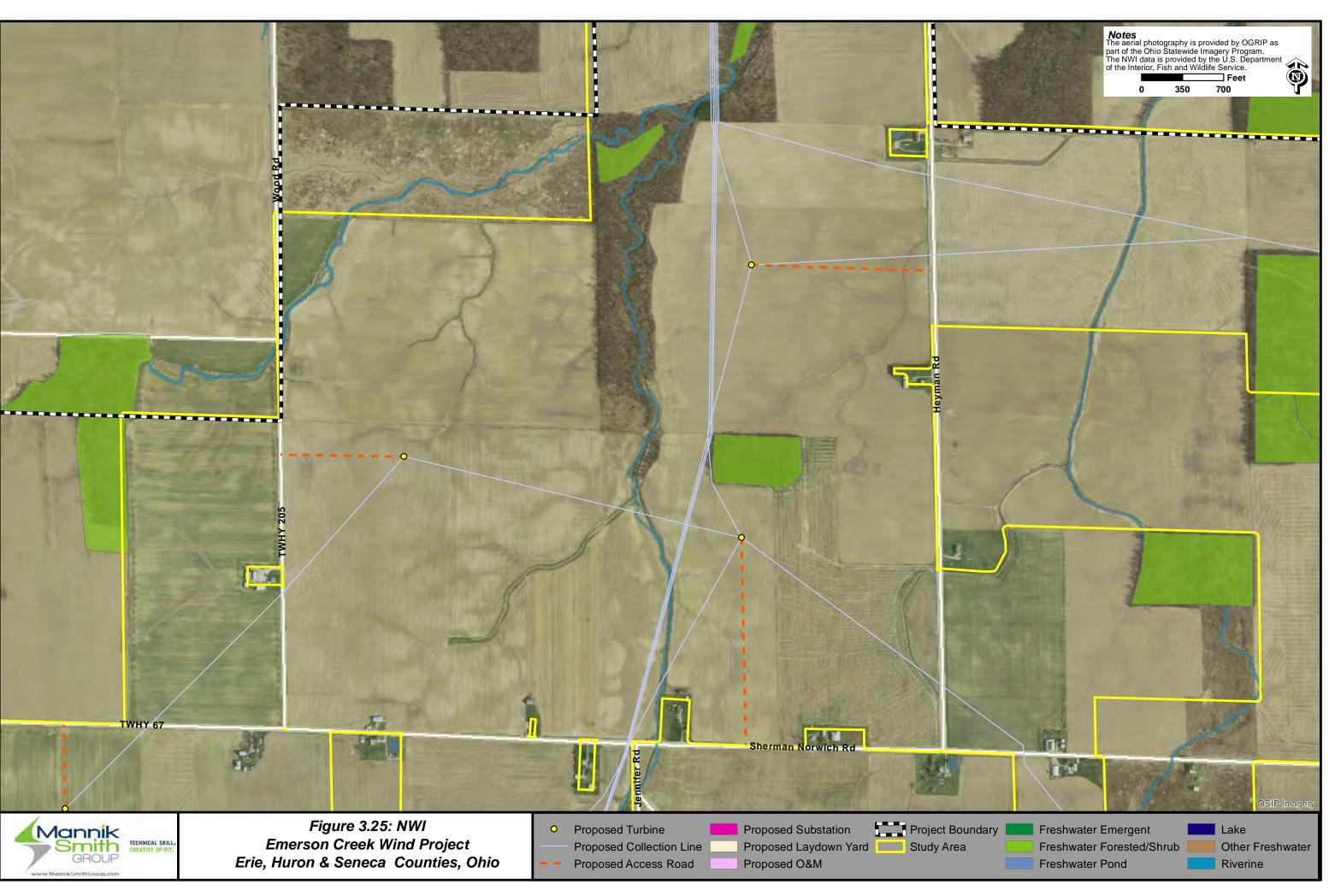


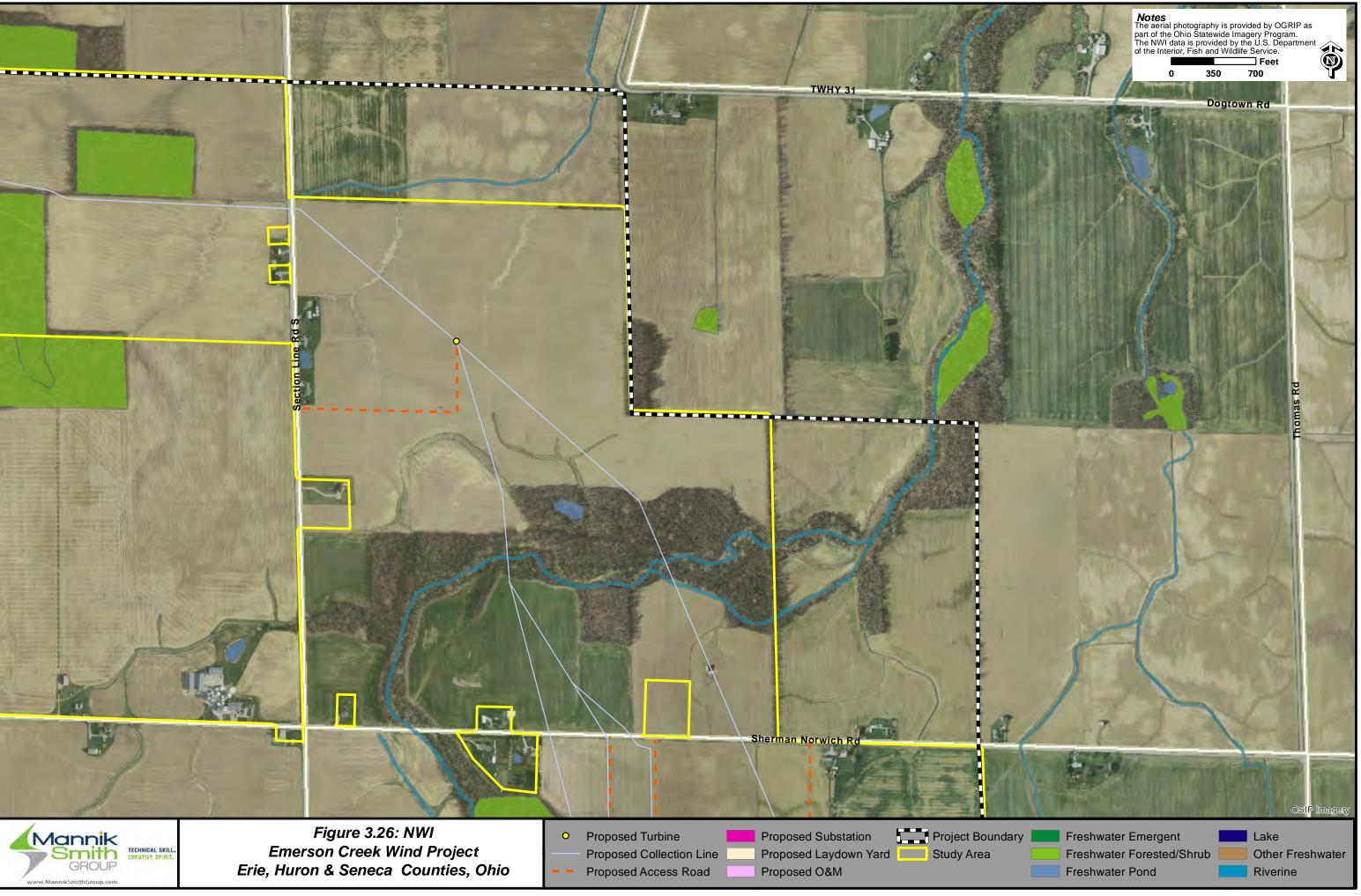


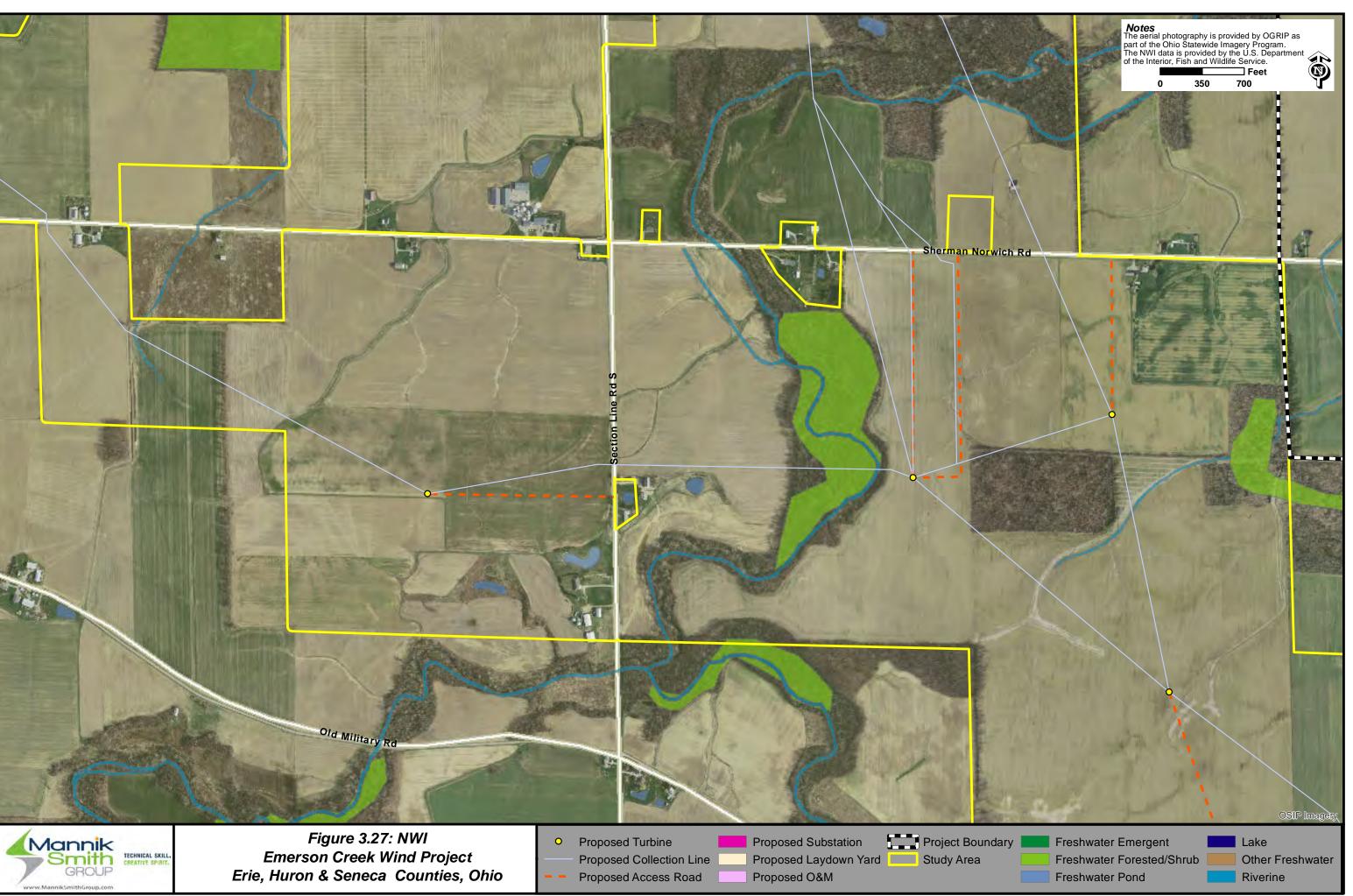


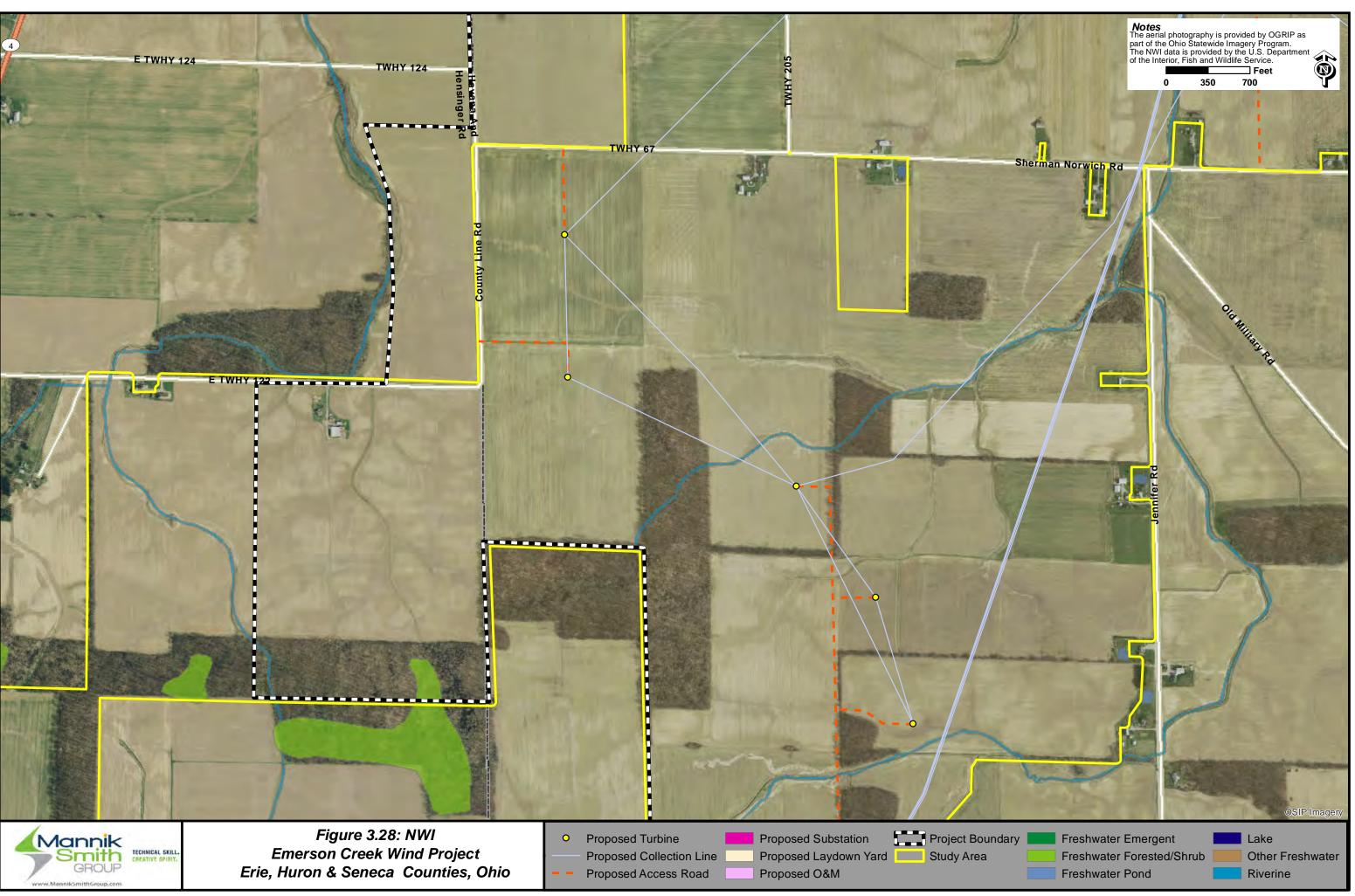


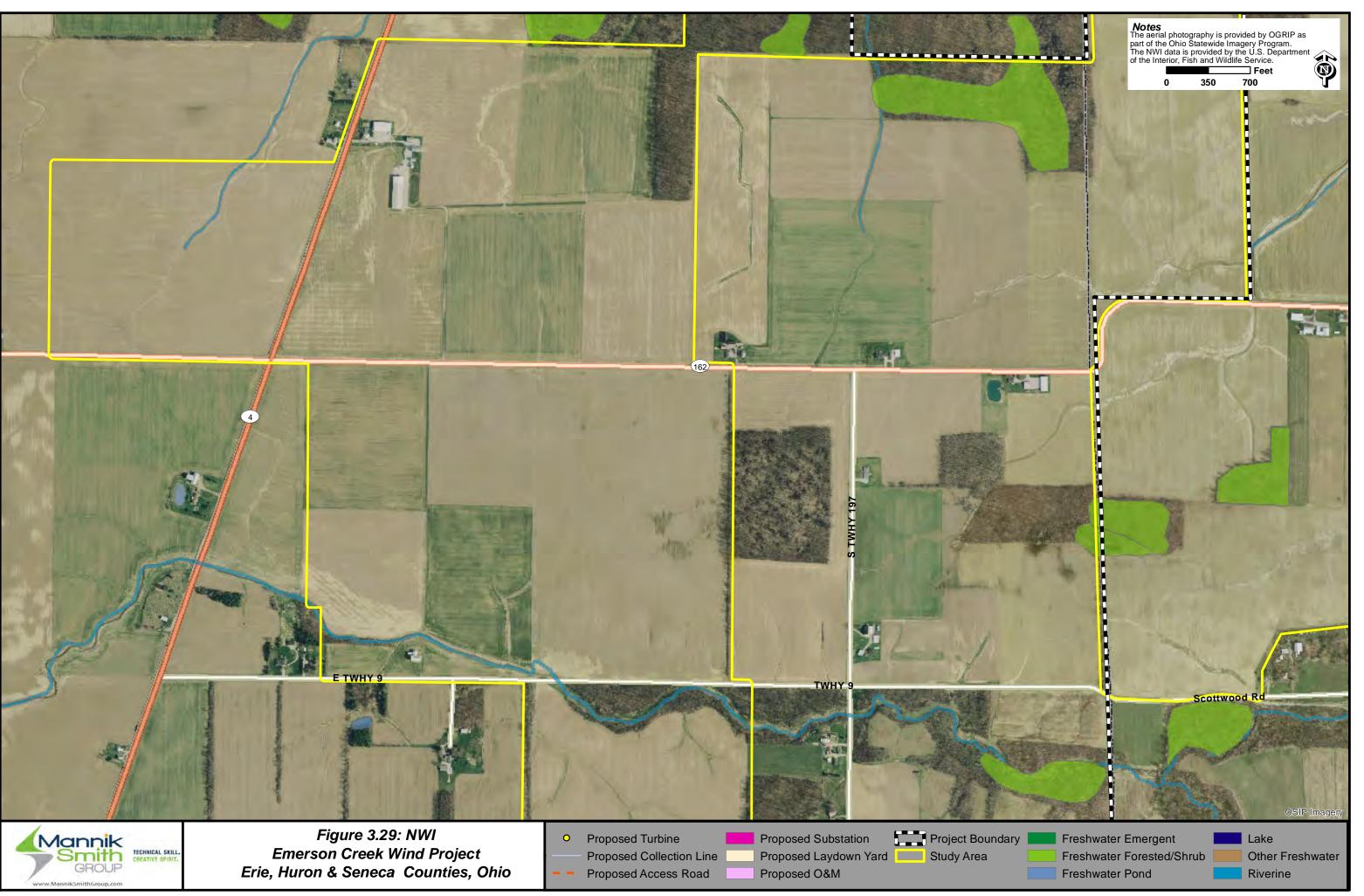


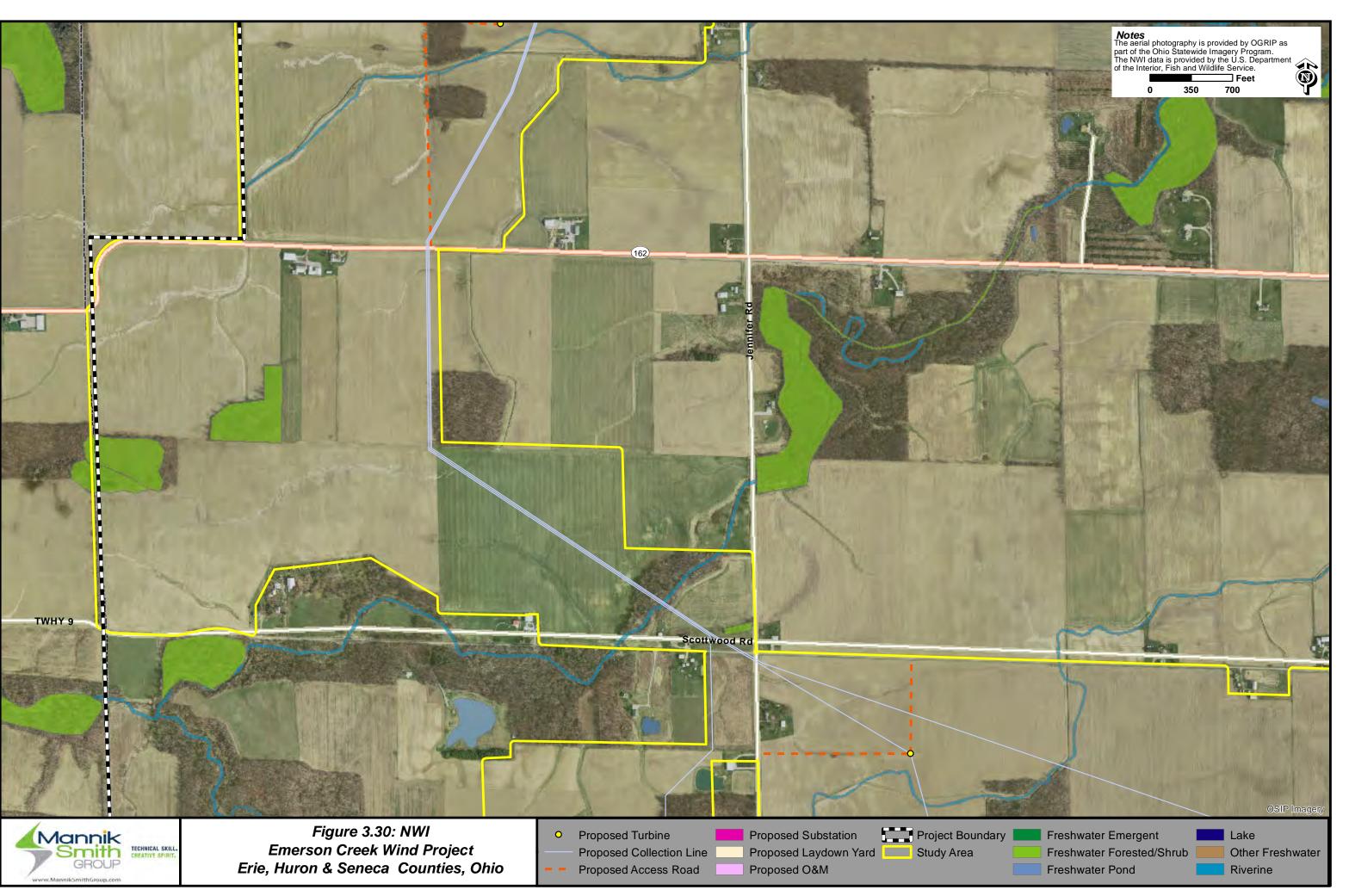


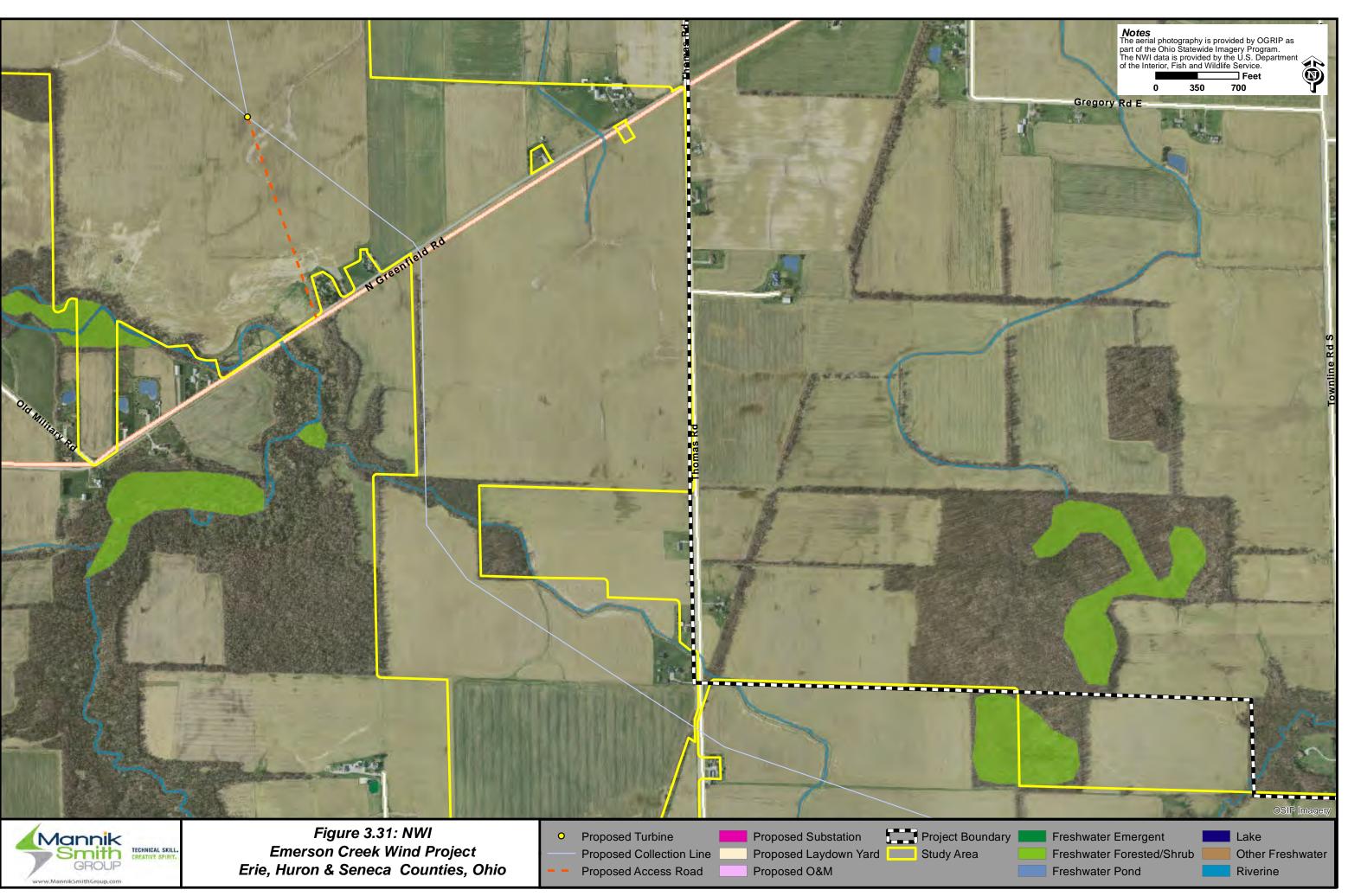


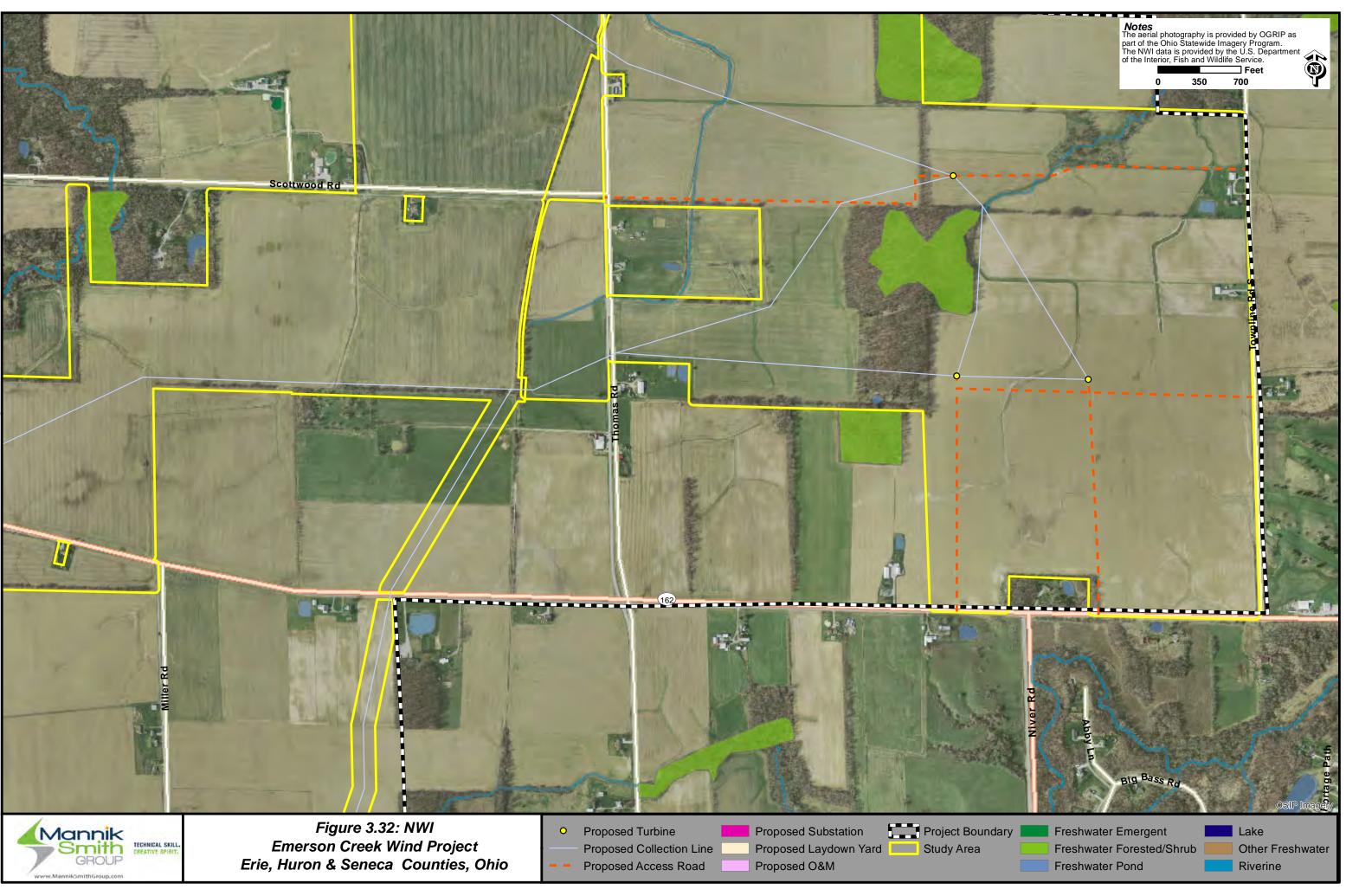


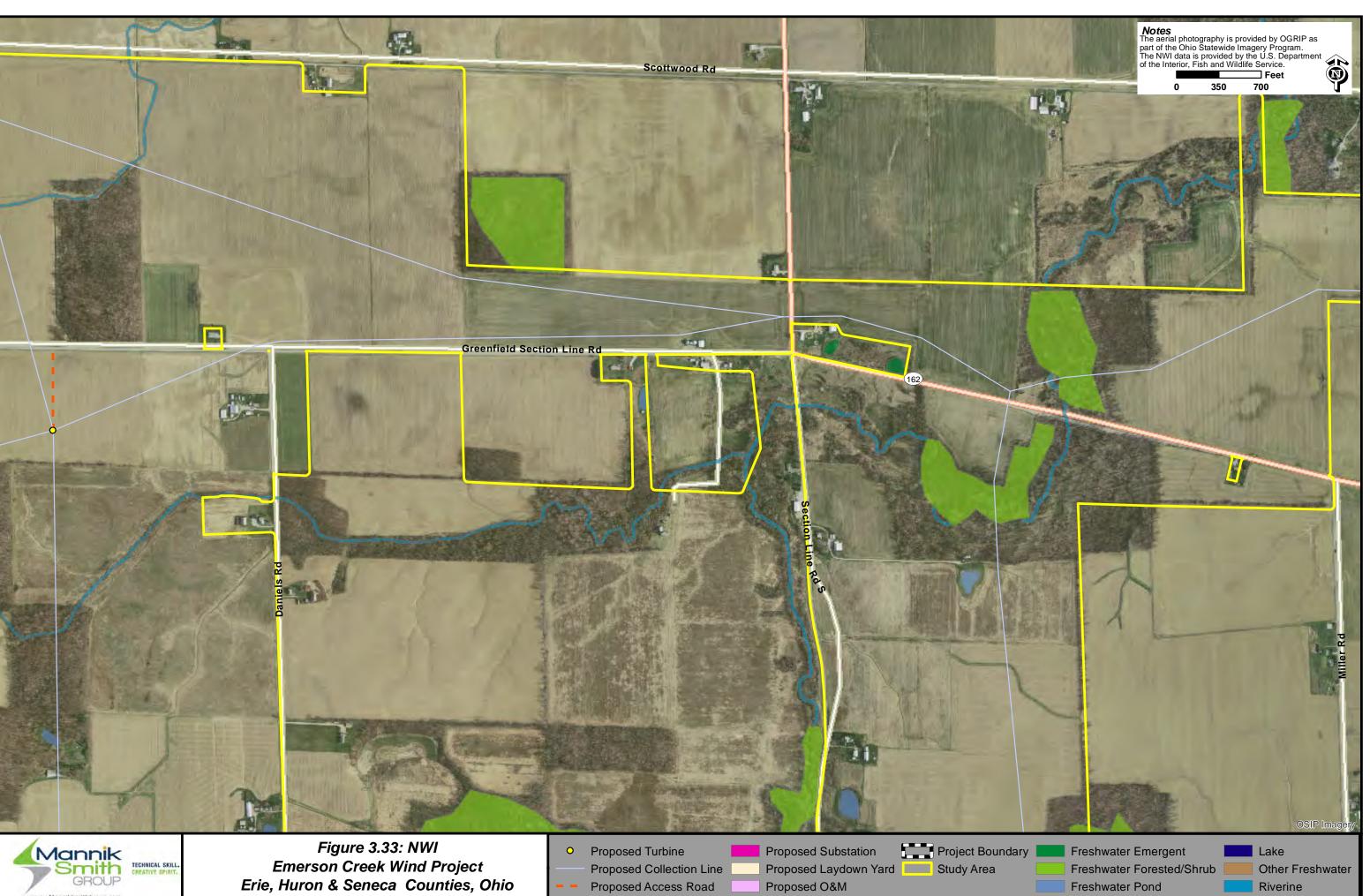


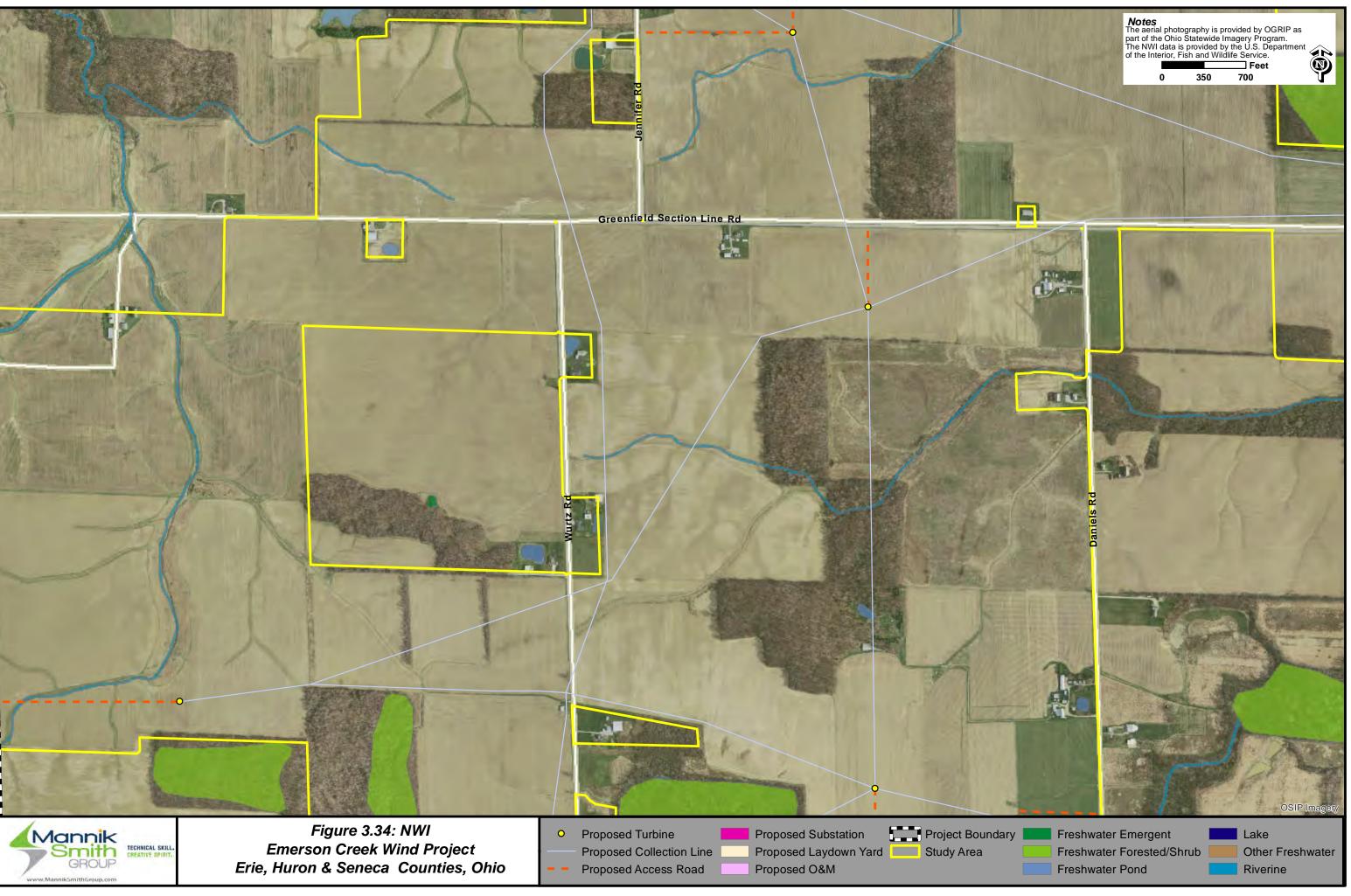


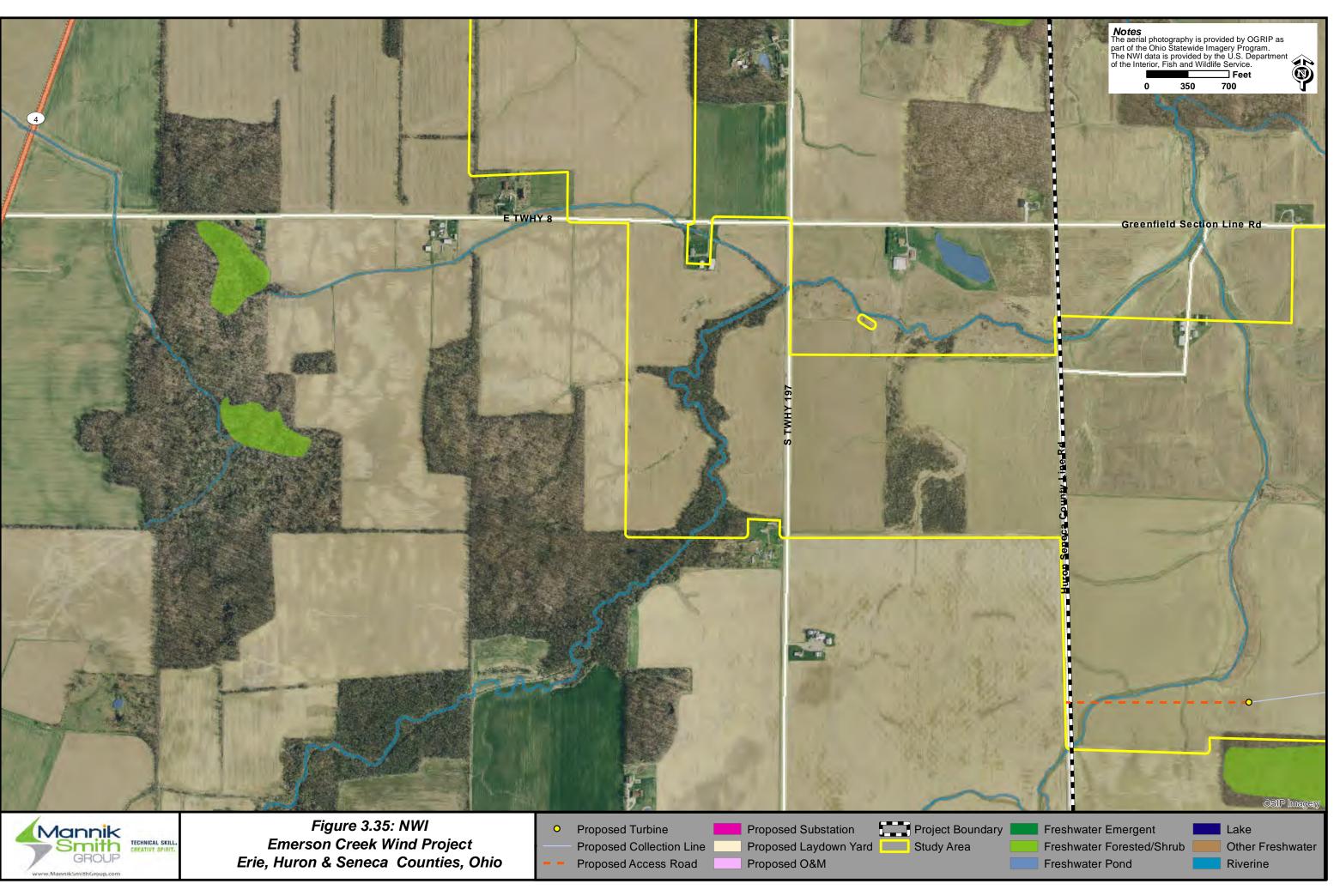


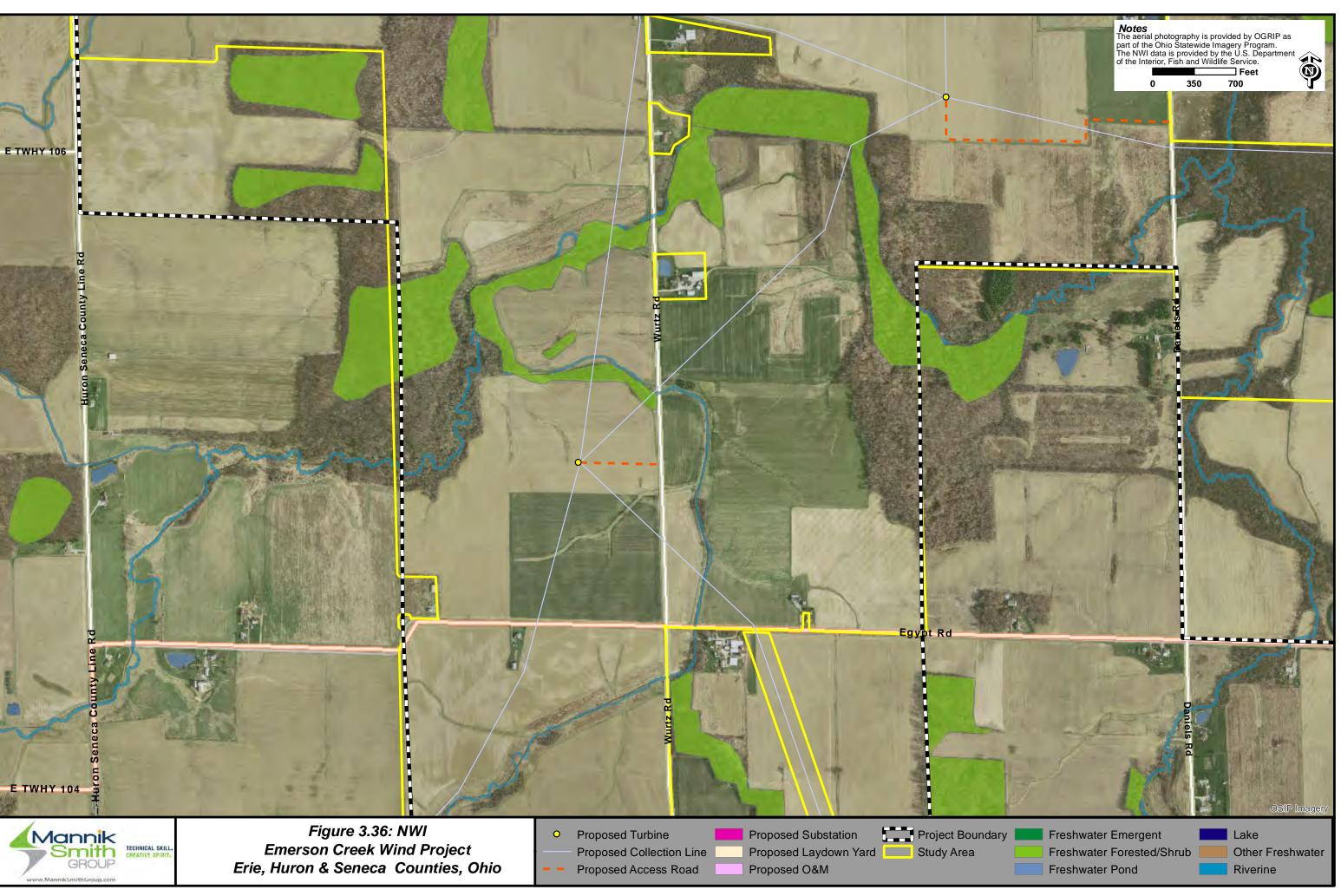


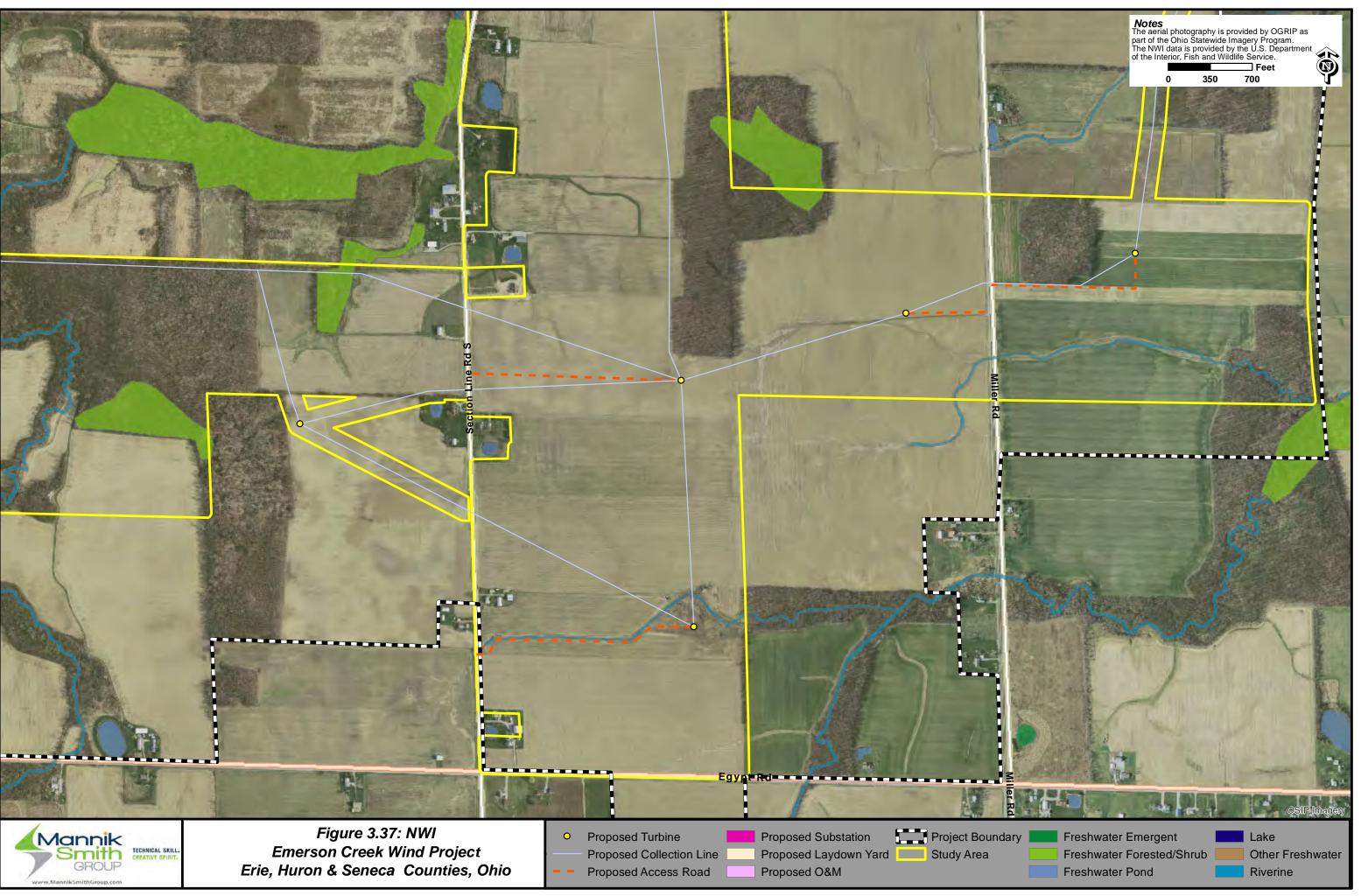


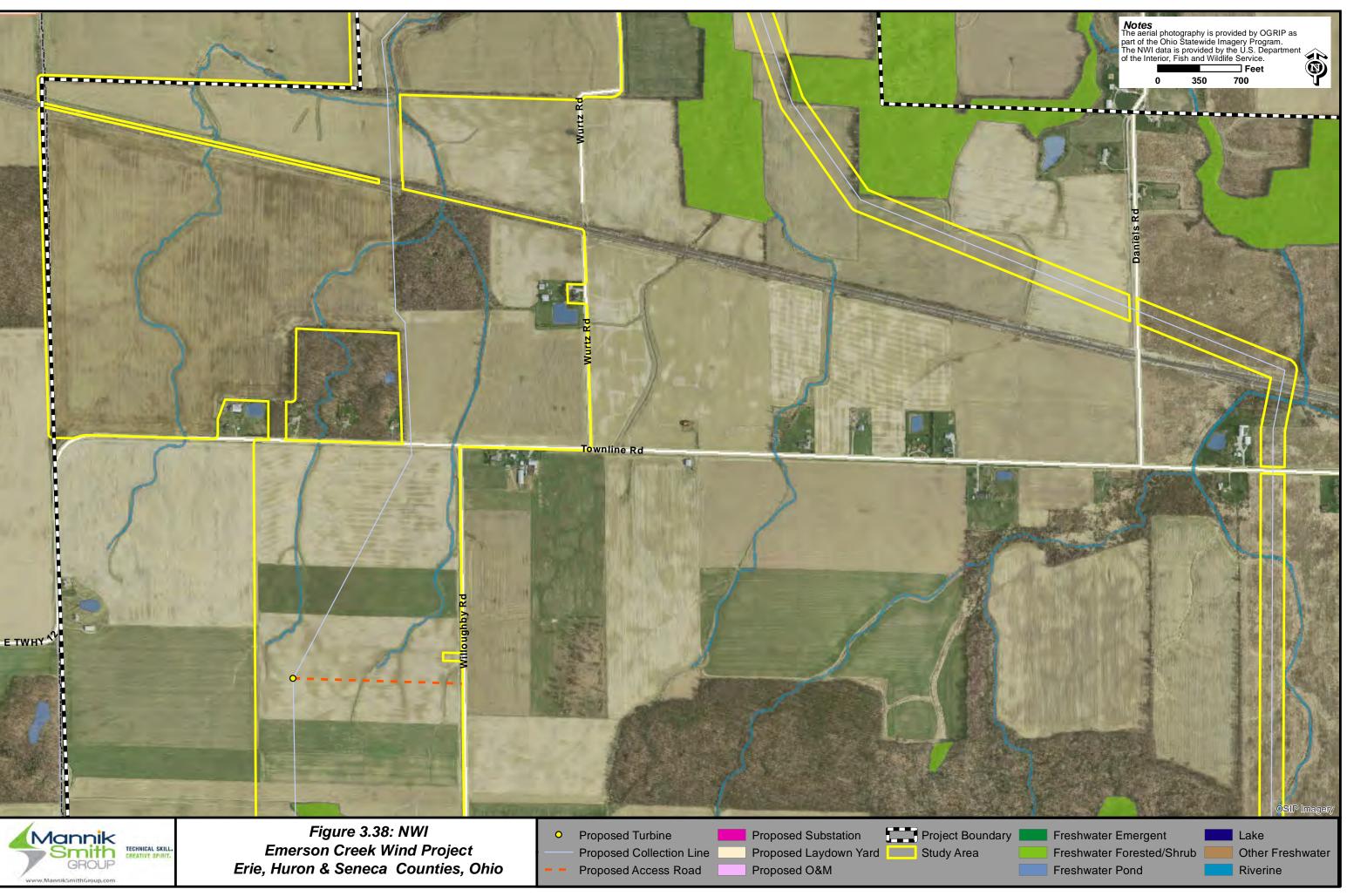


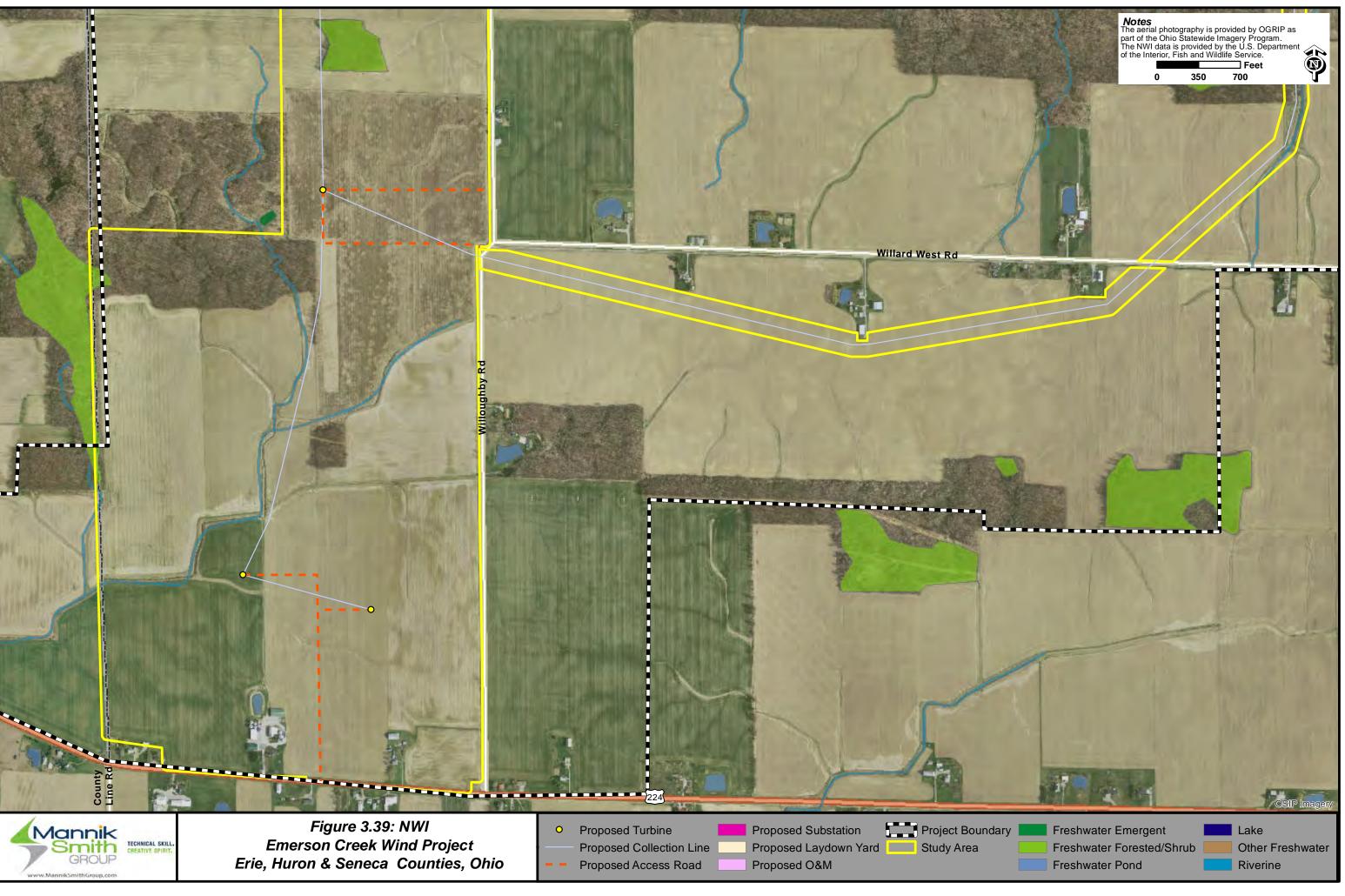


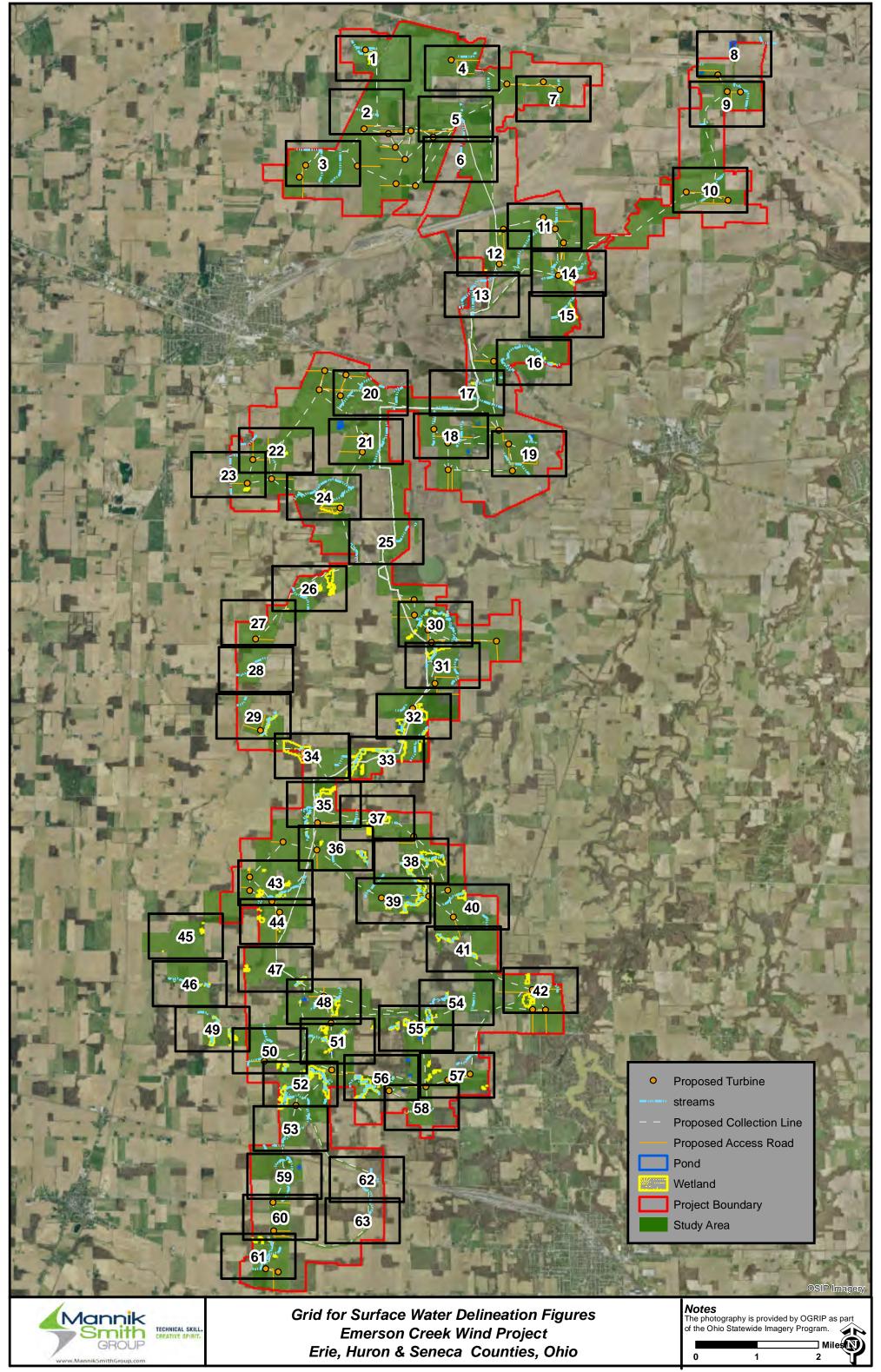


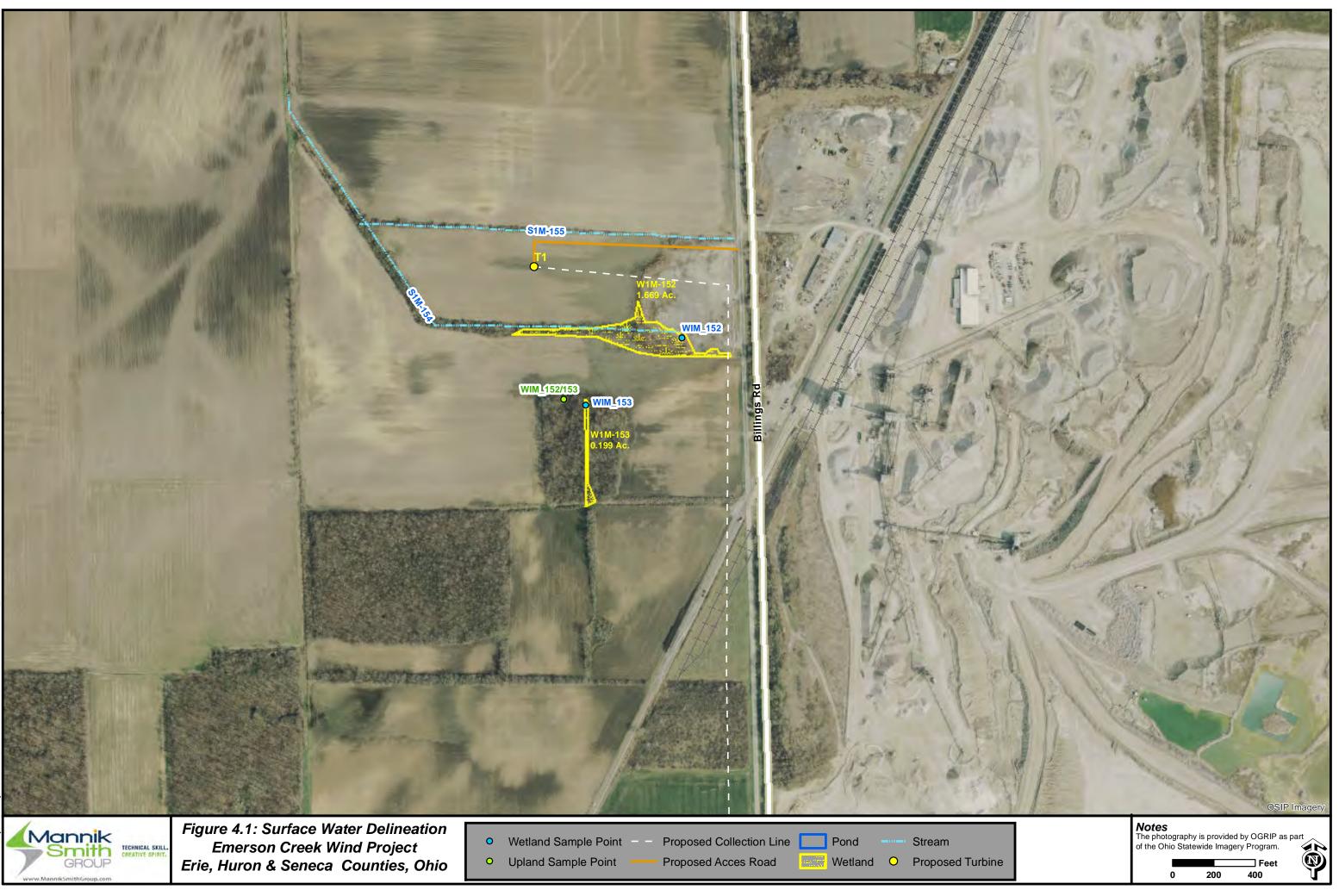


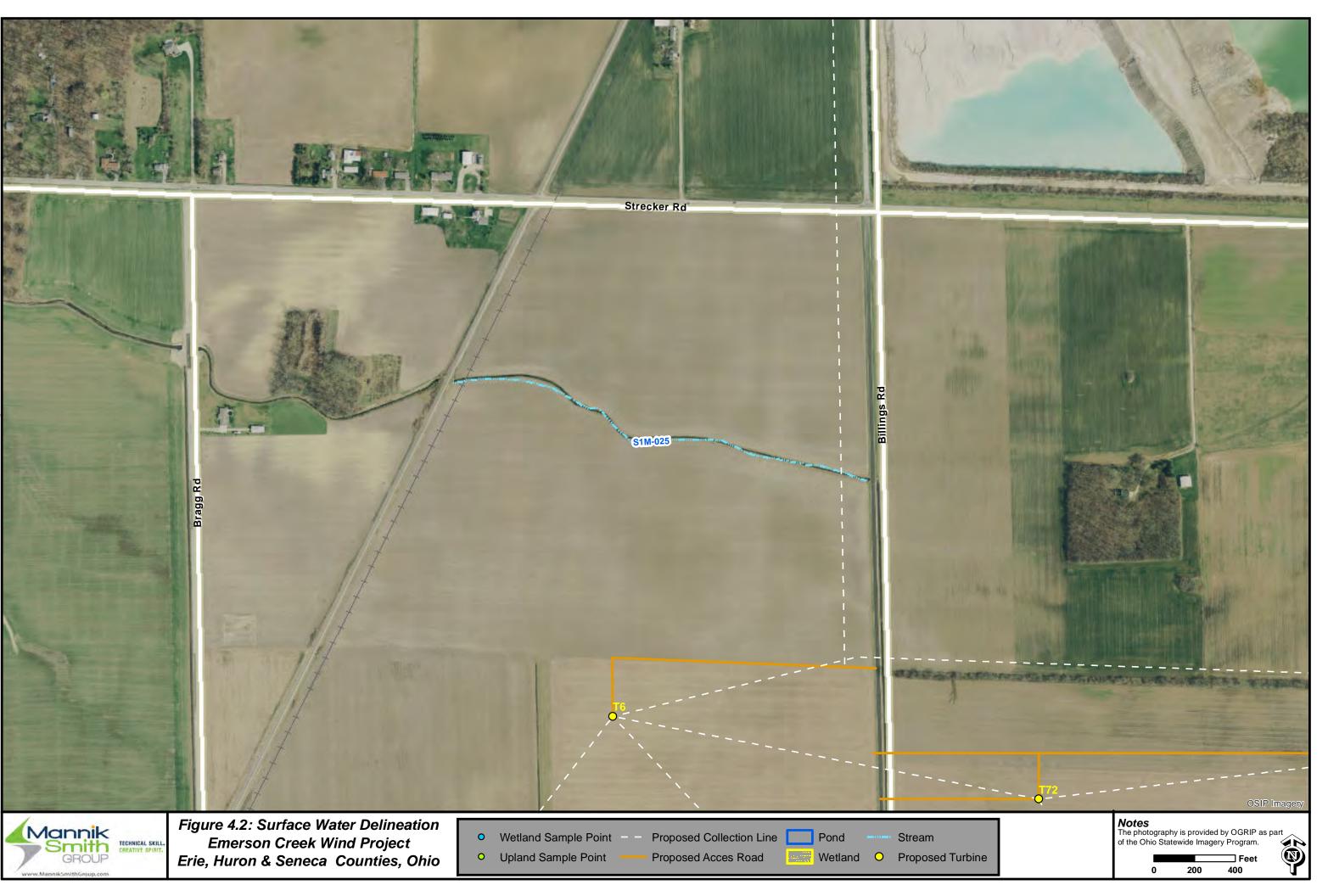


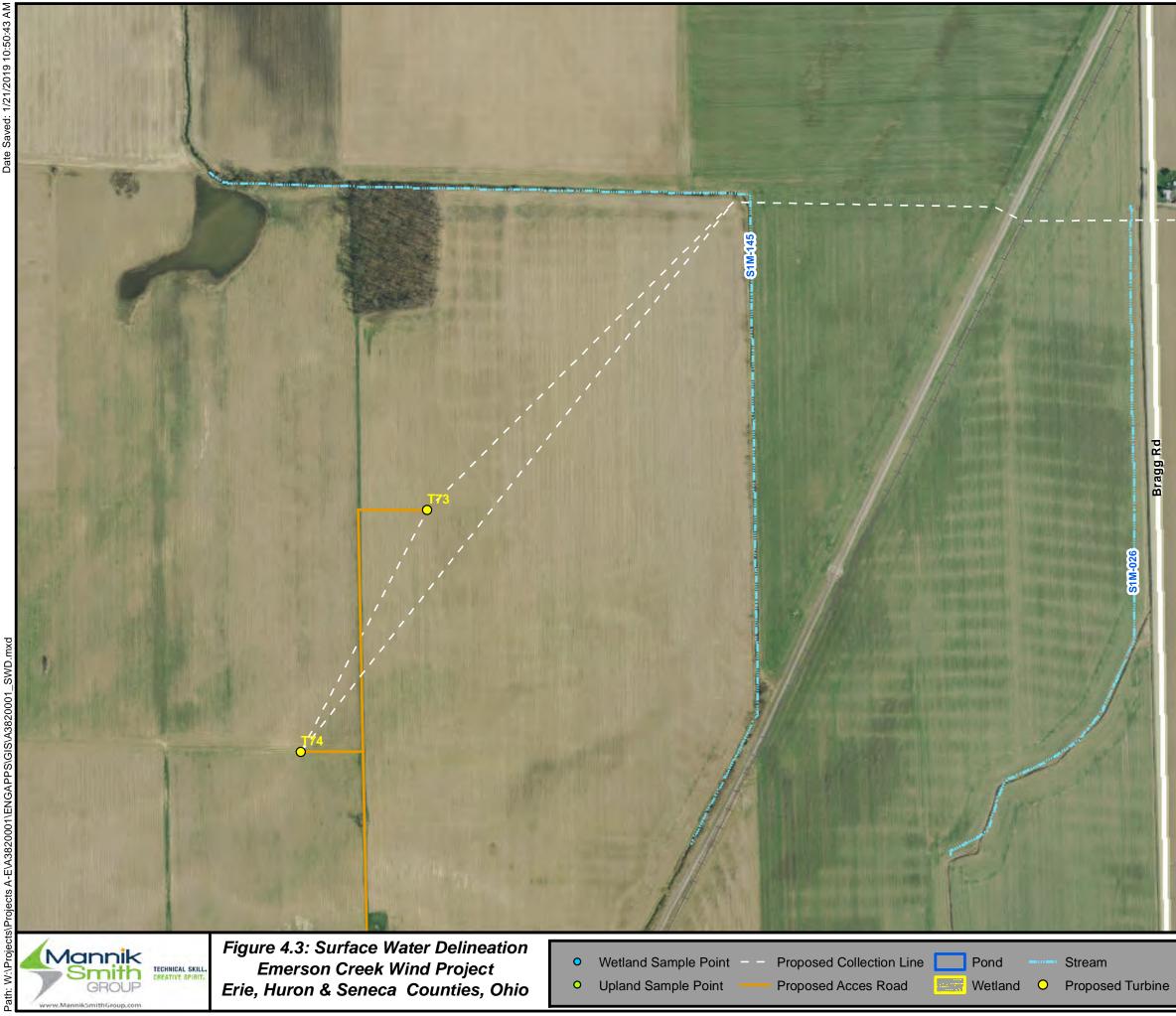


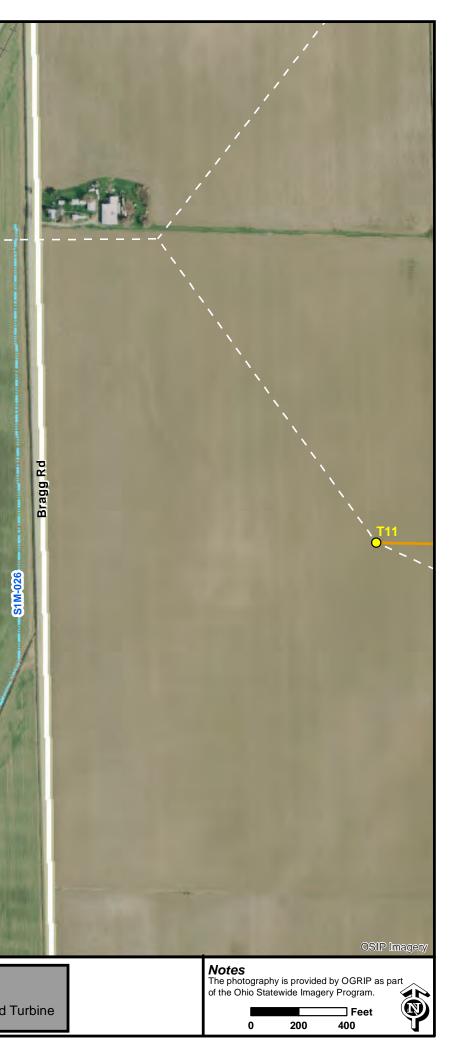


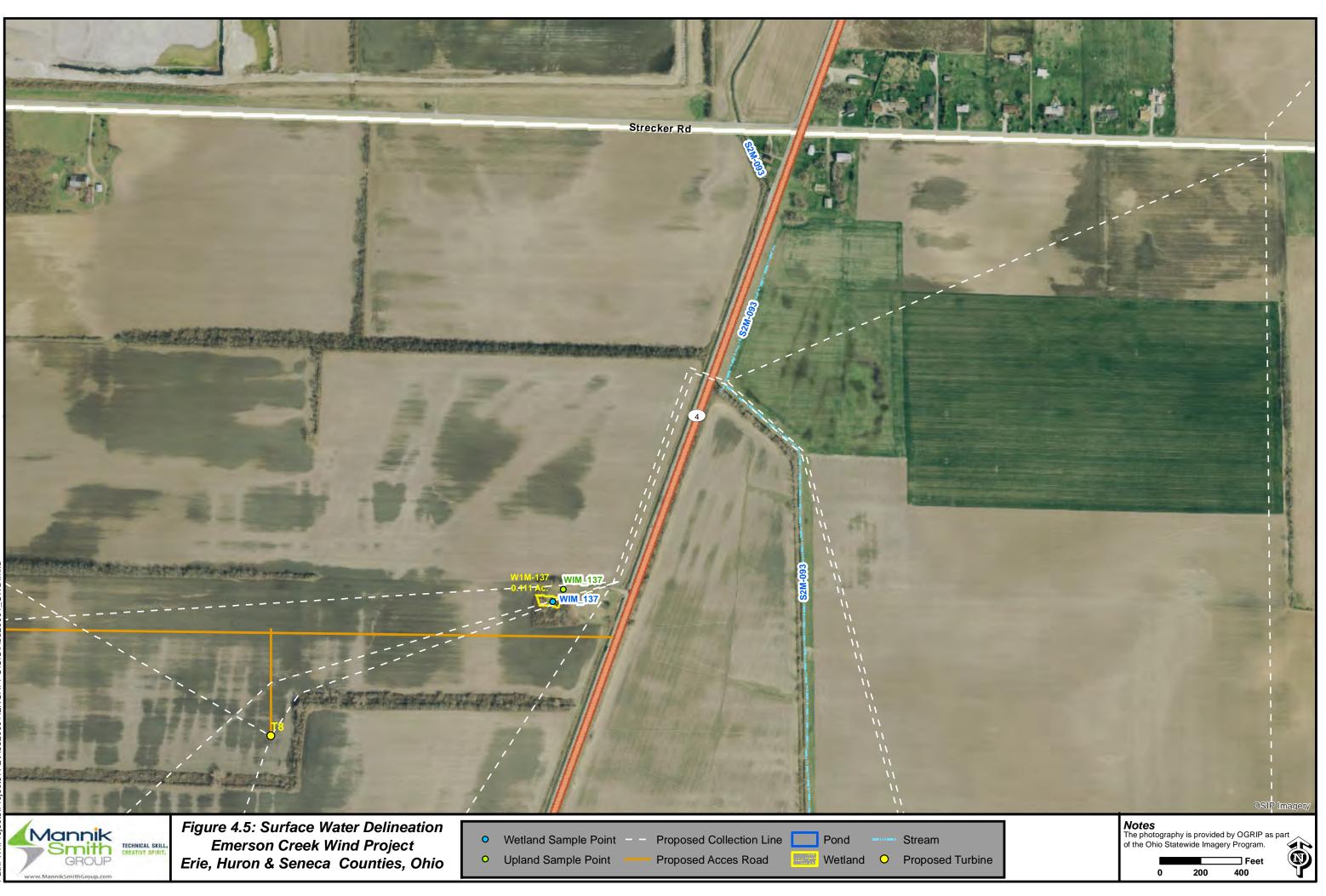


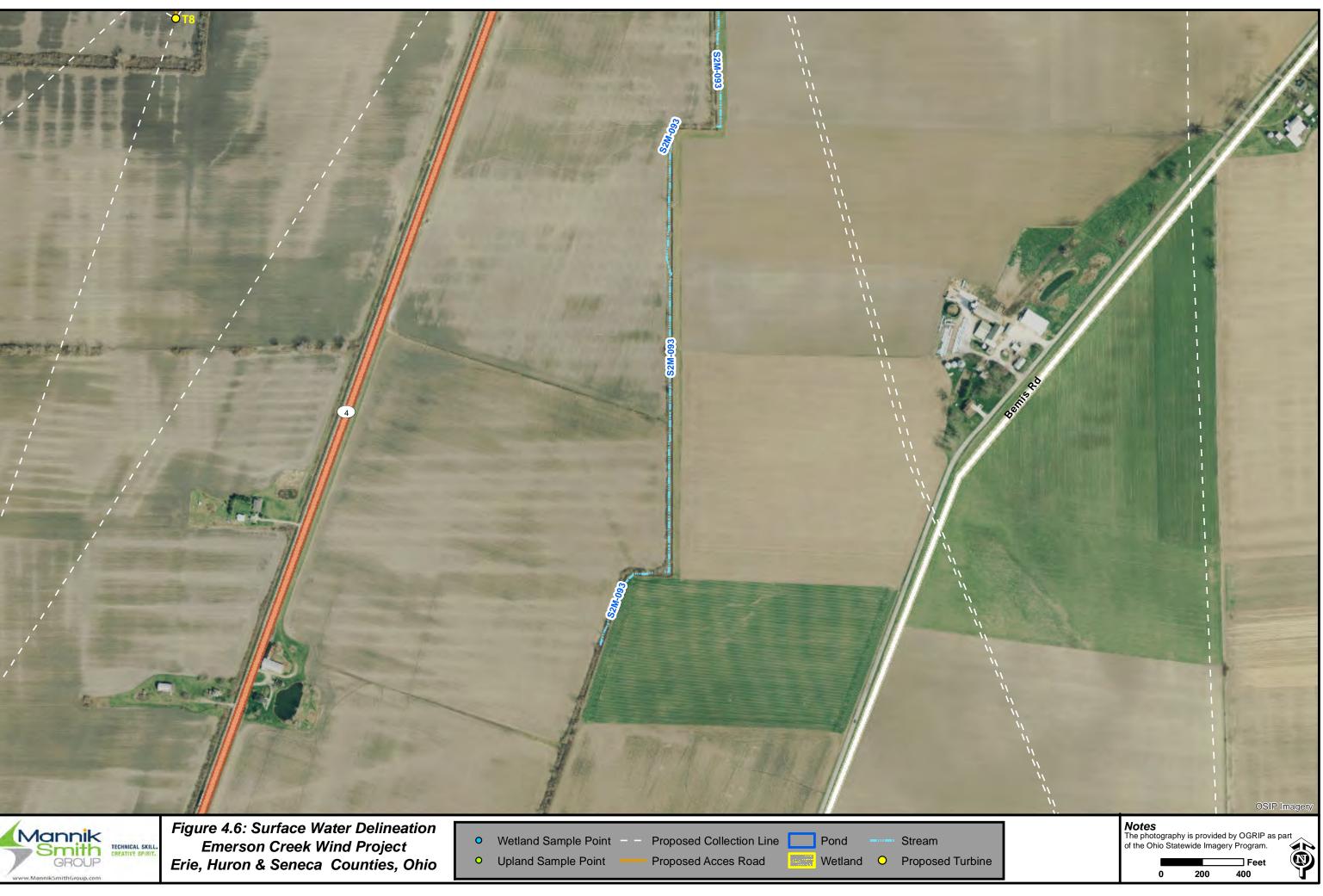


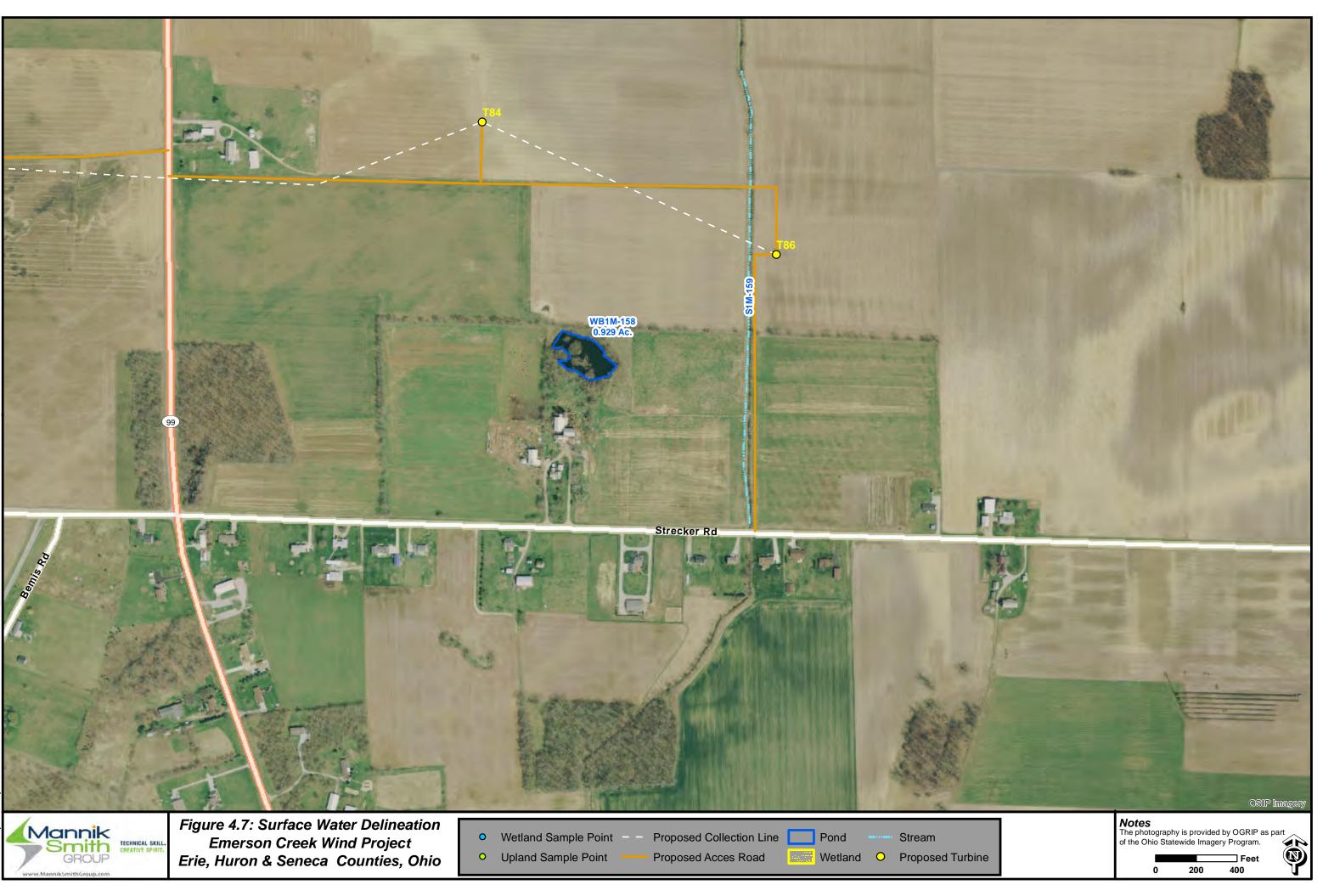


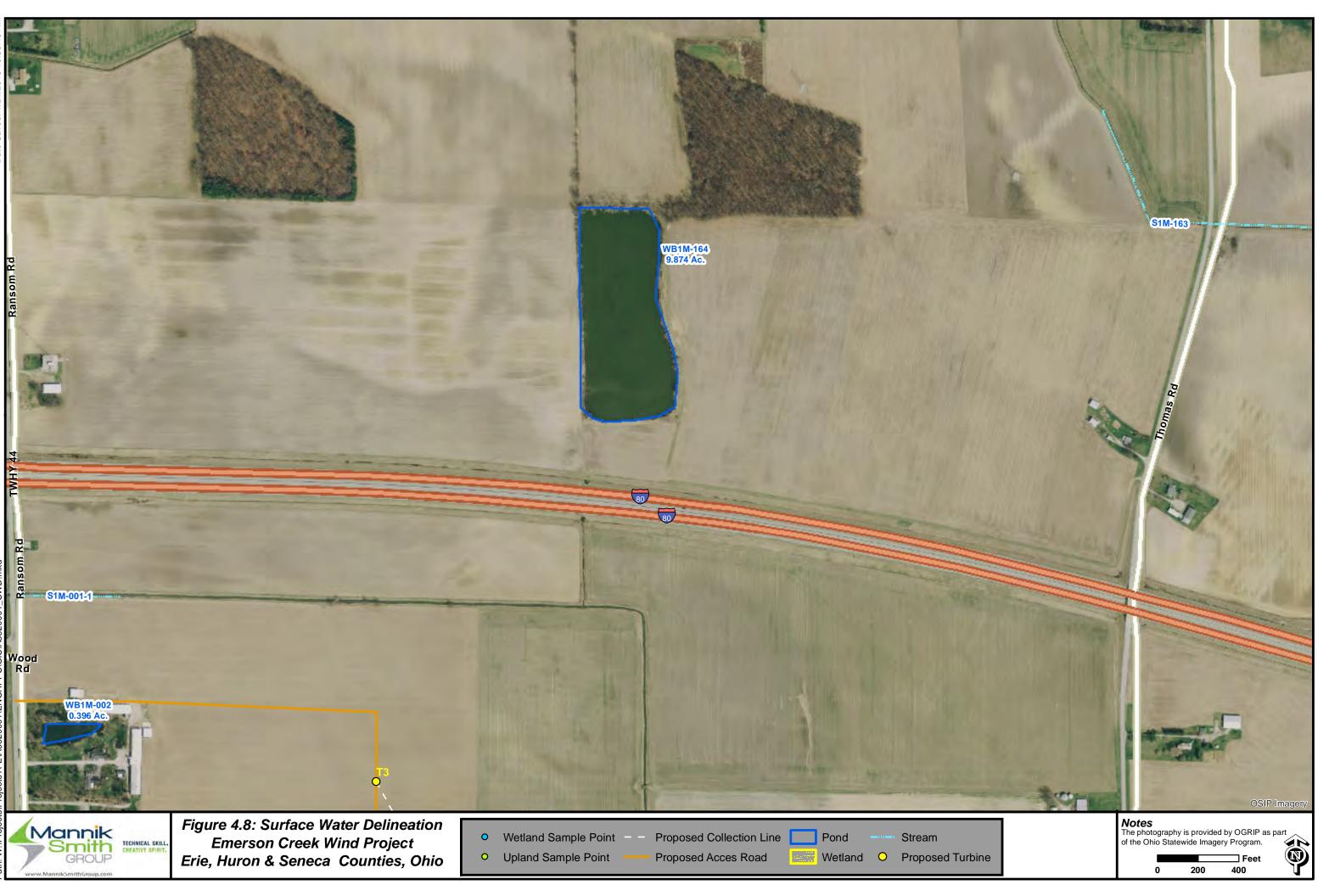


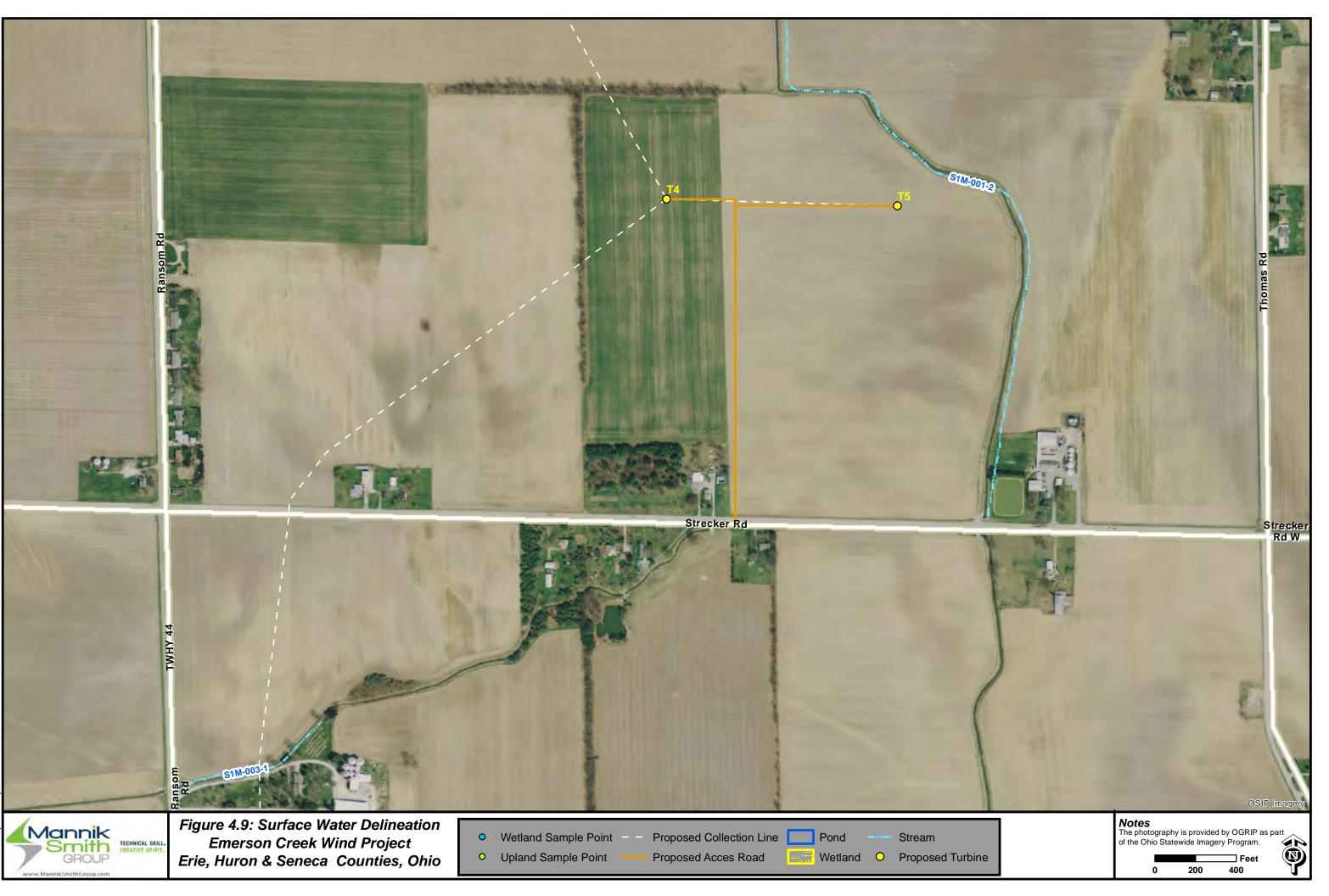

Date Saved: 1/21/2019 10:13:59 AM

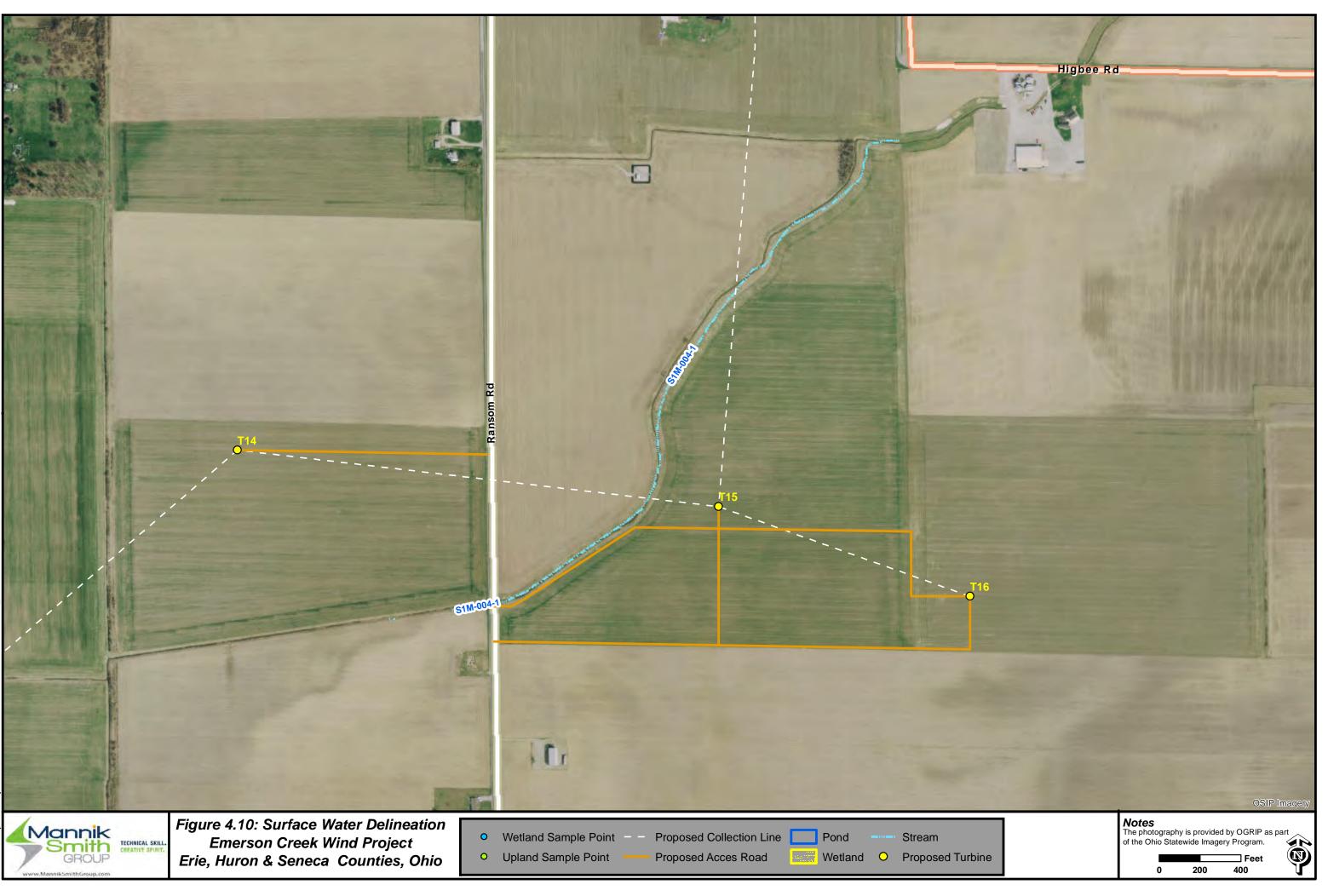




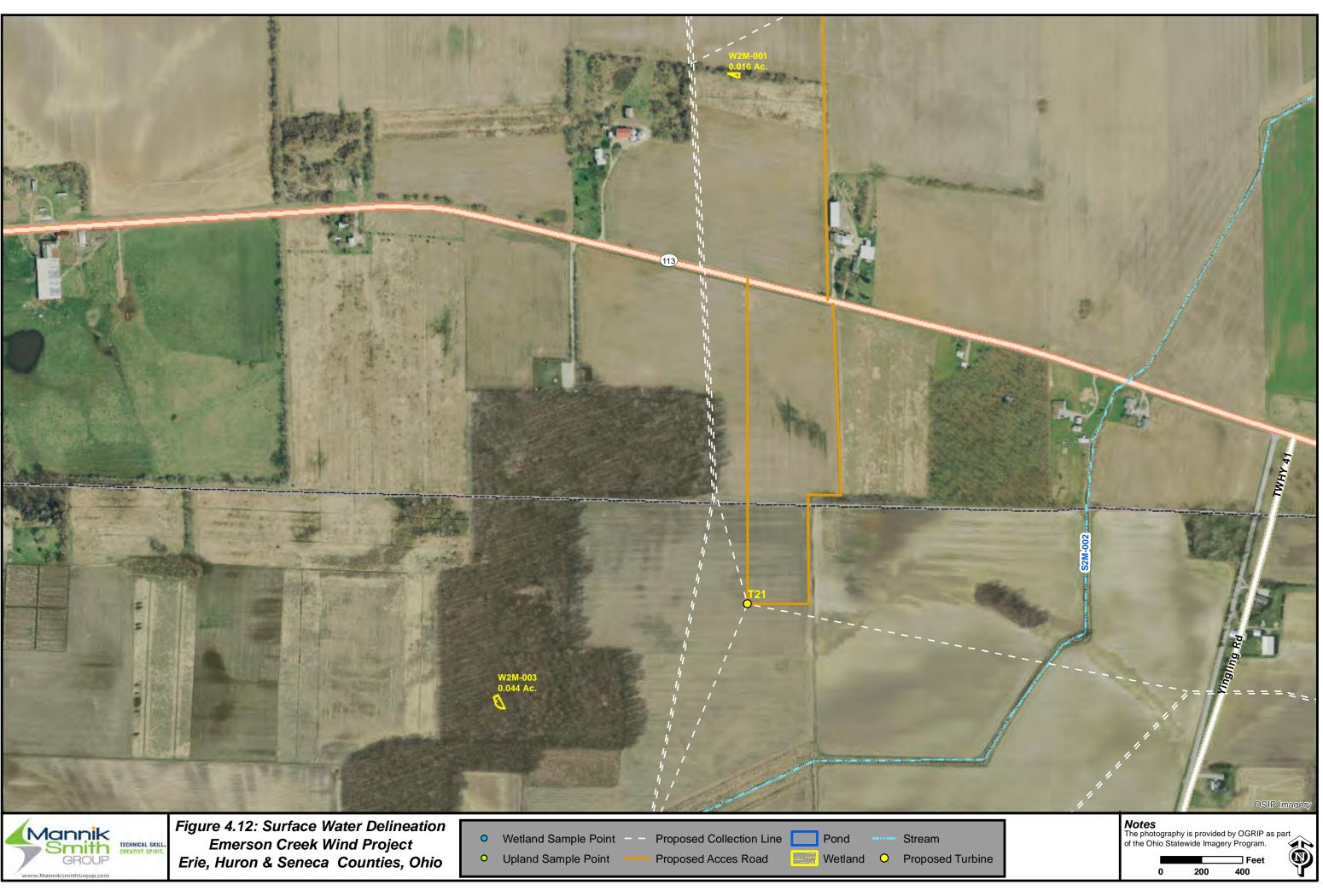


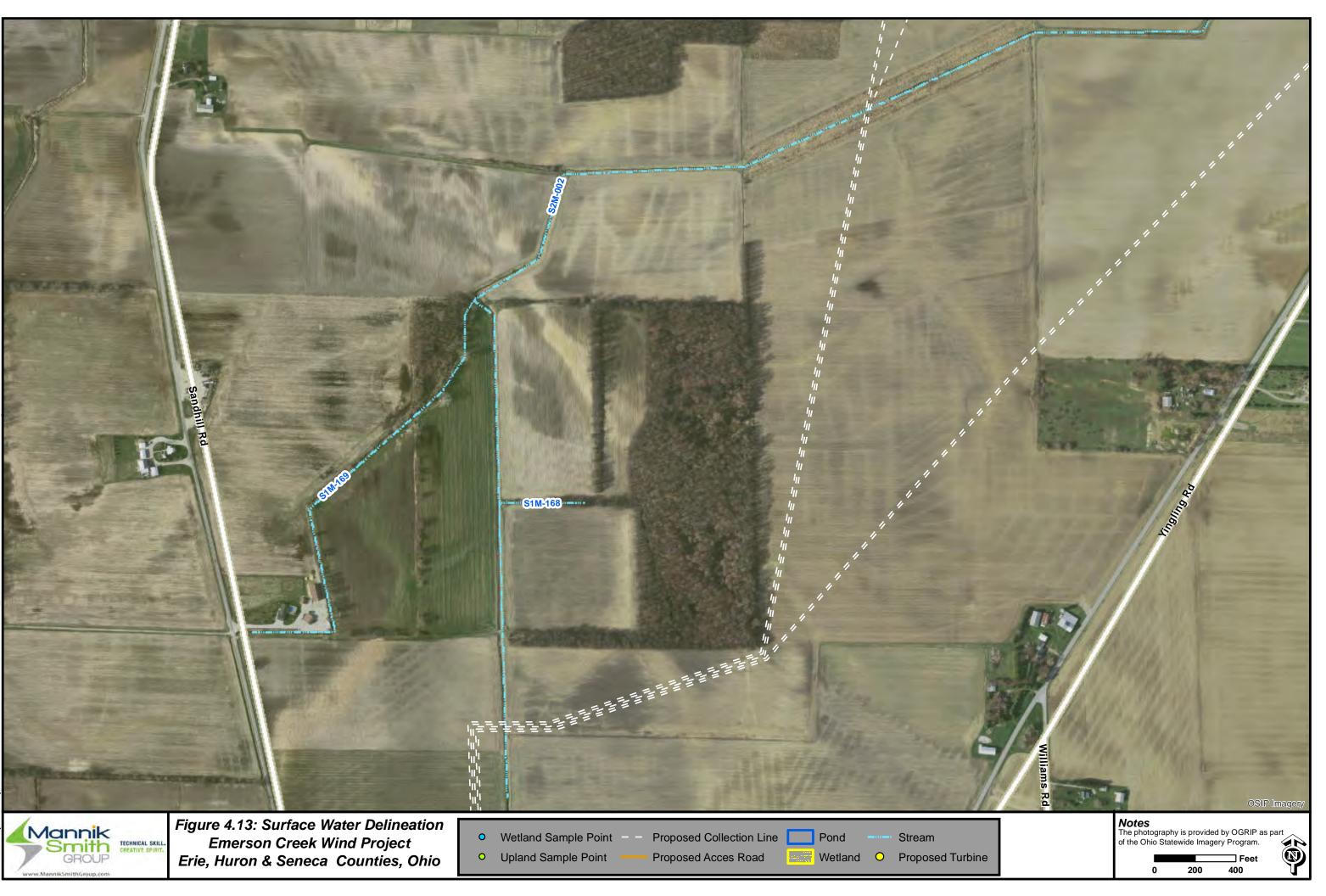


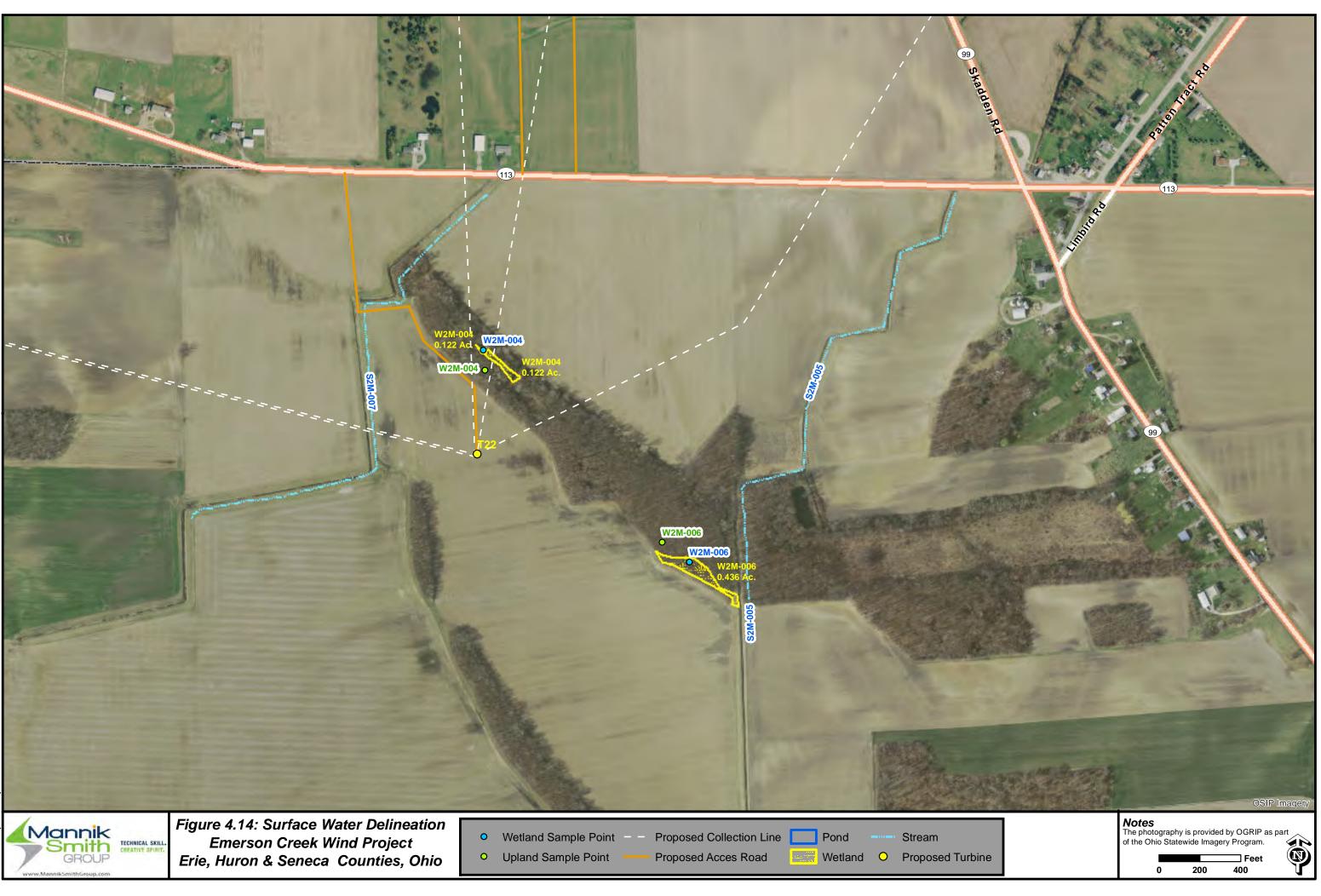


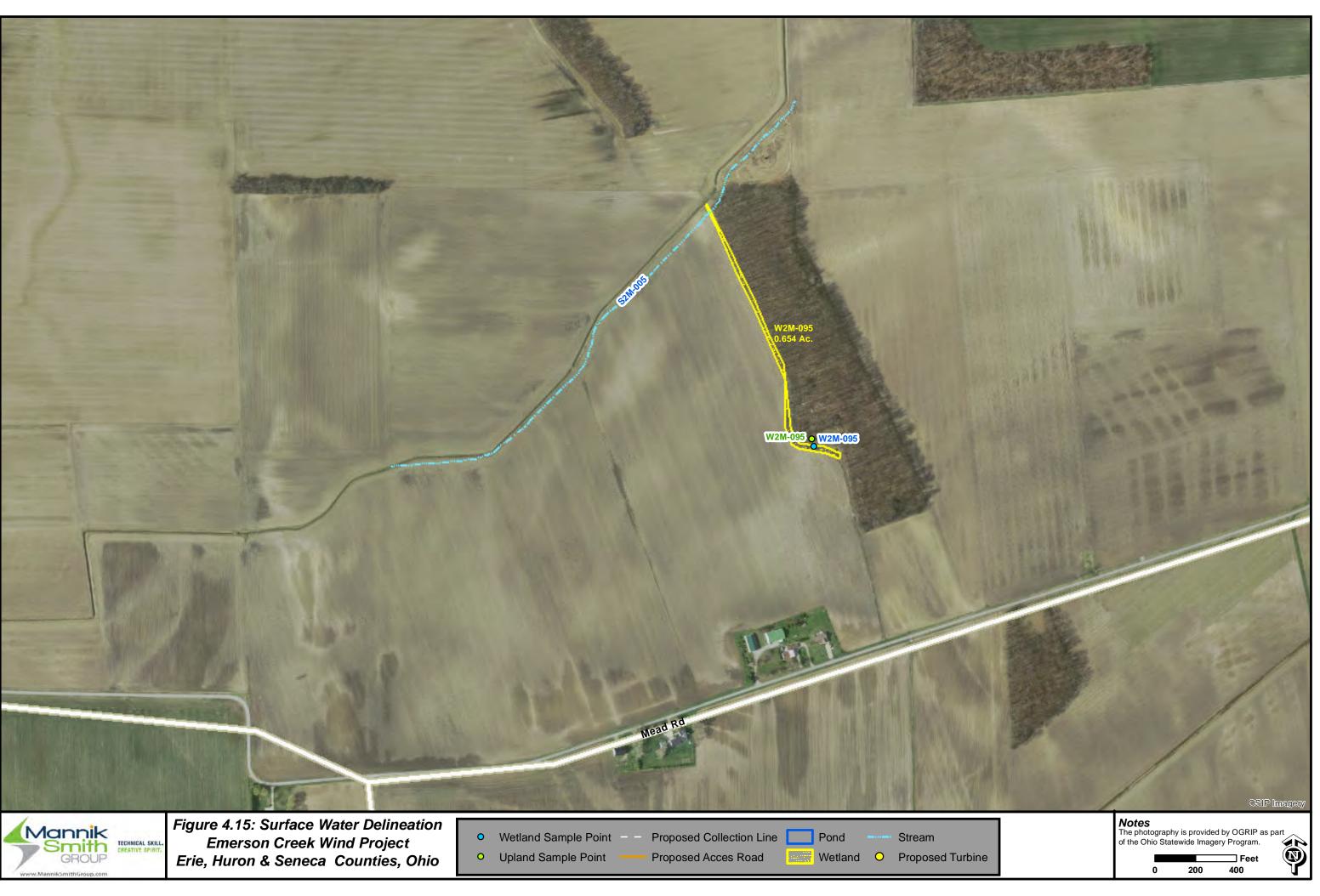


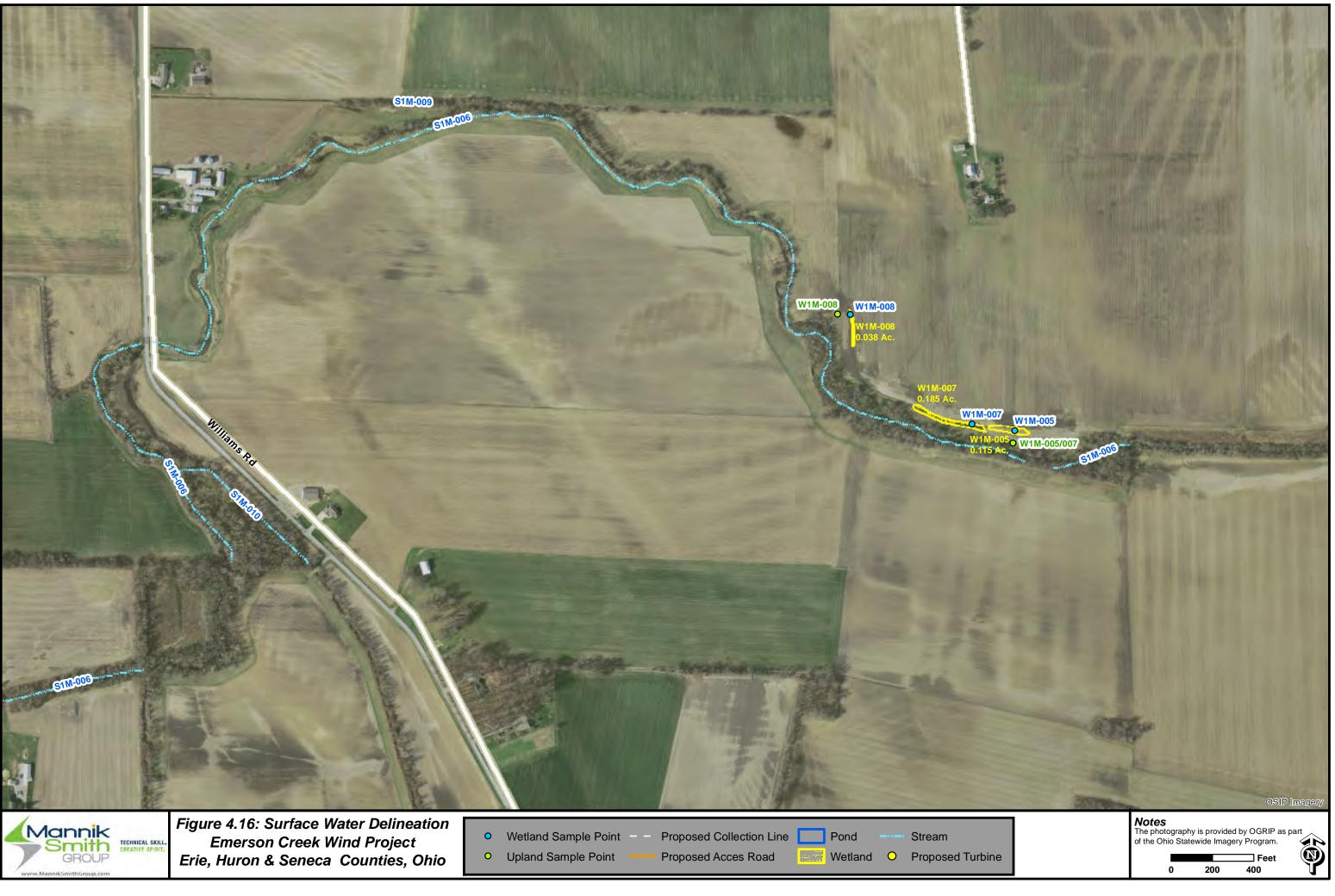


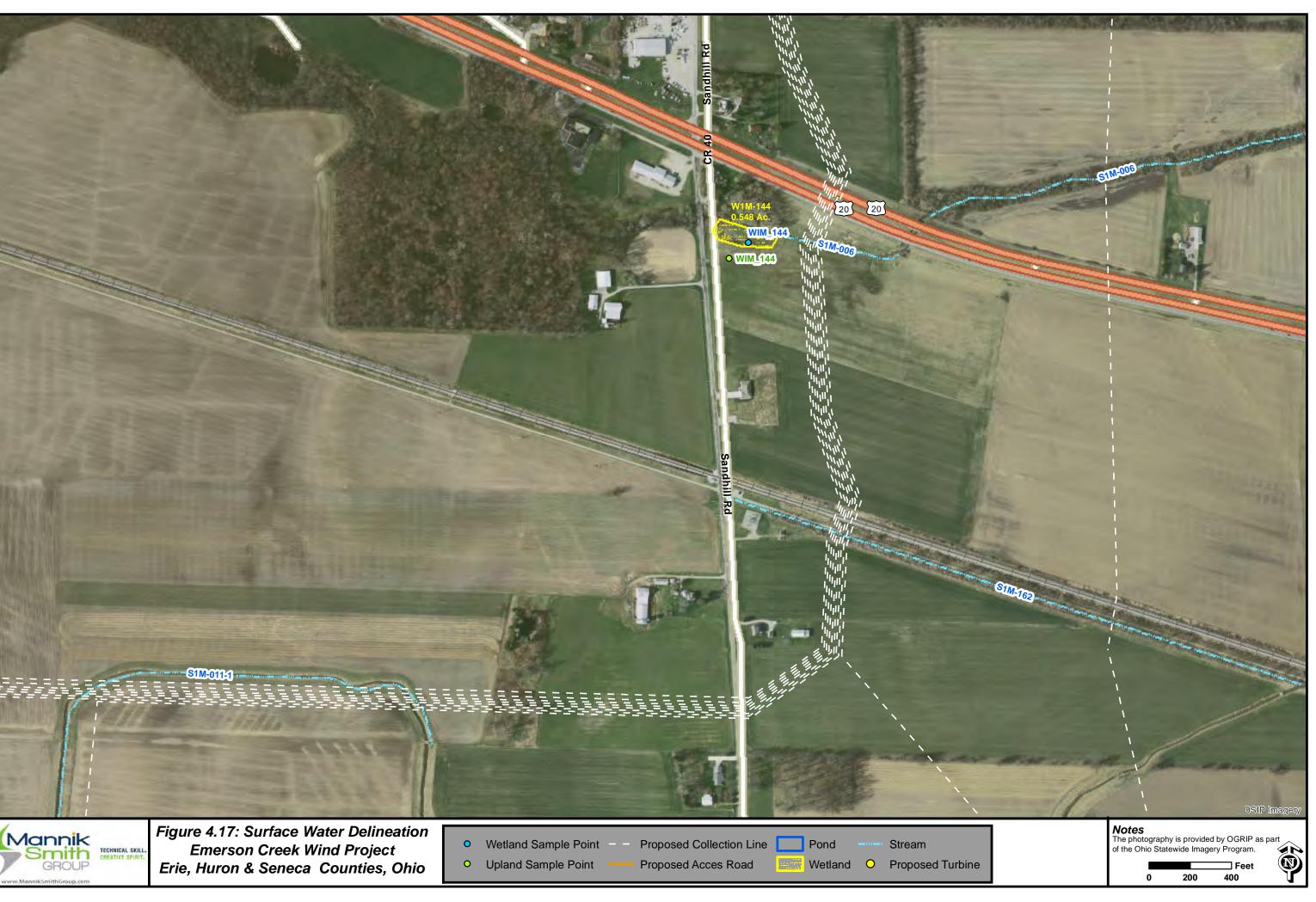


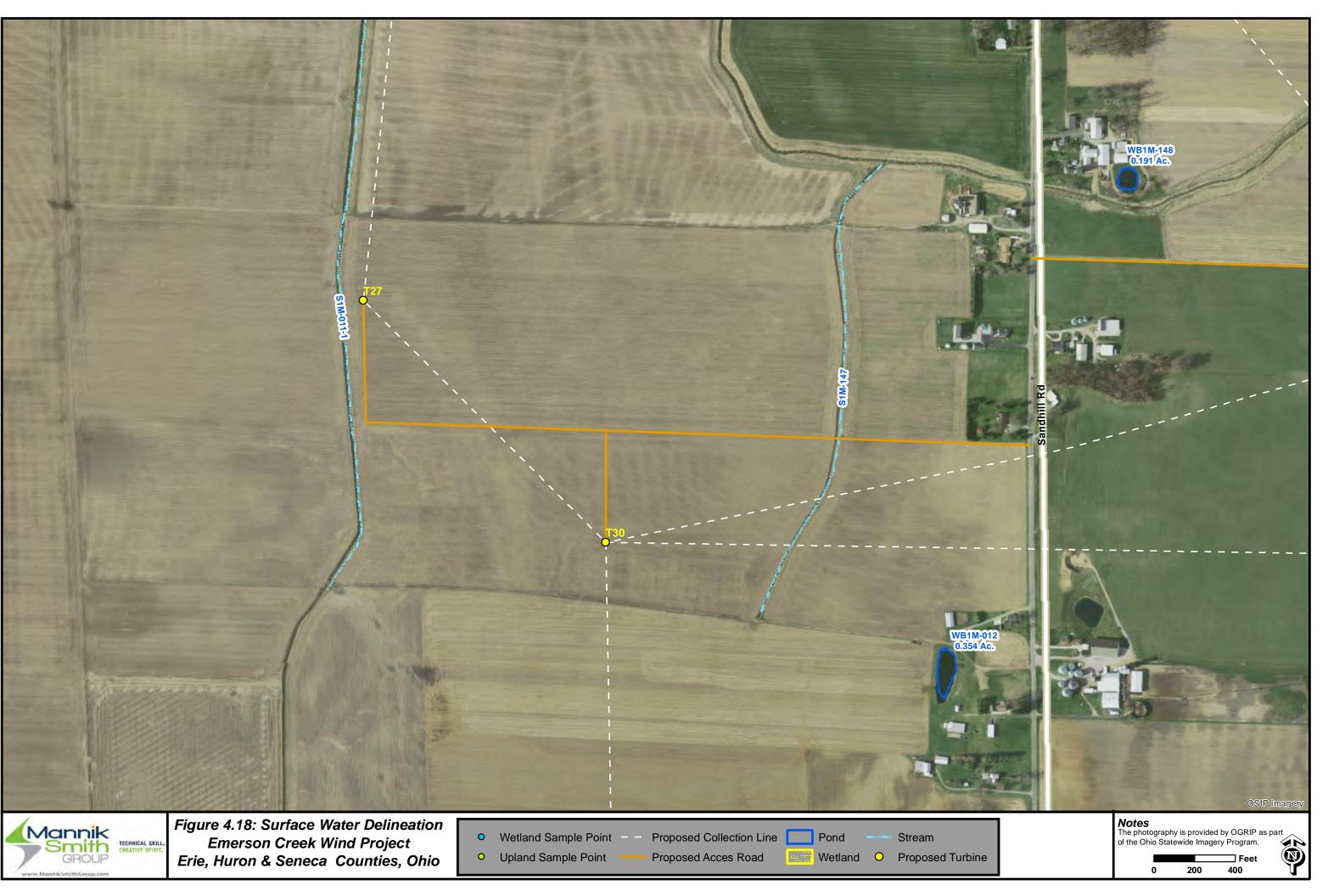


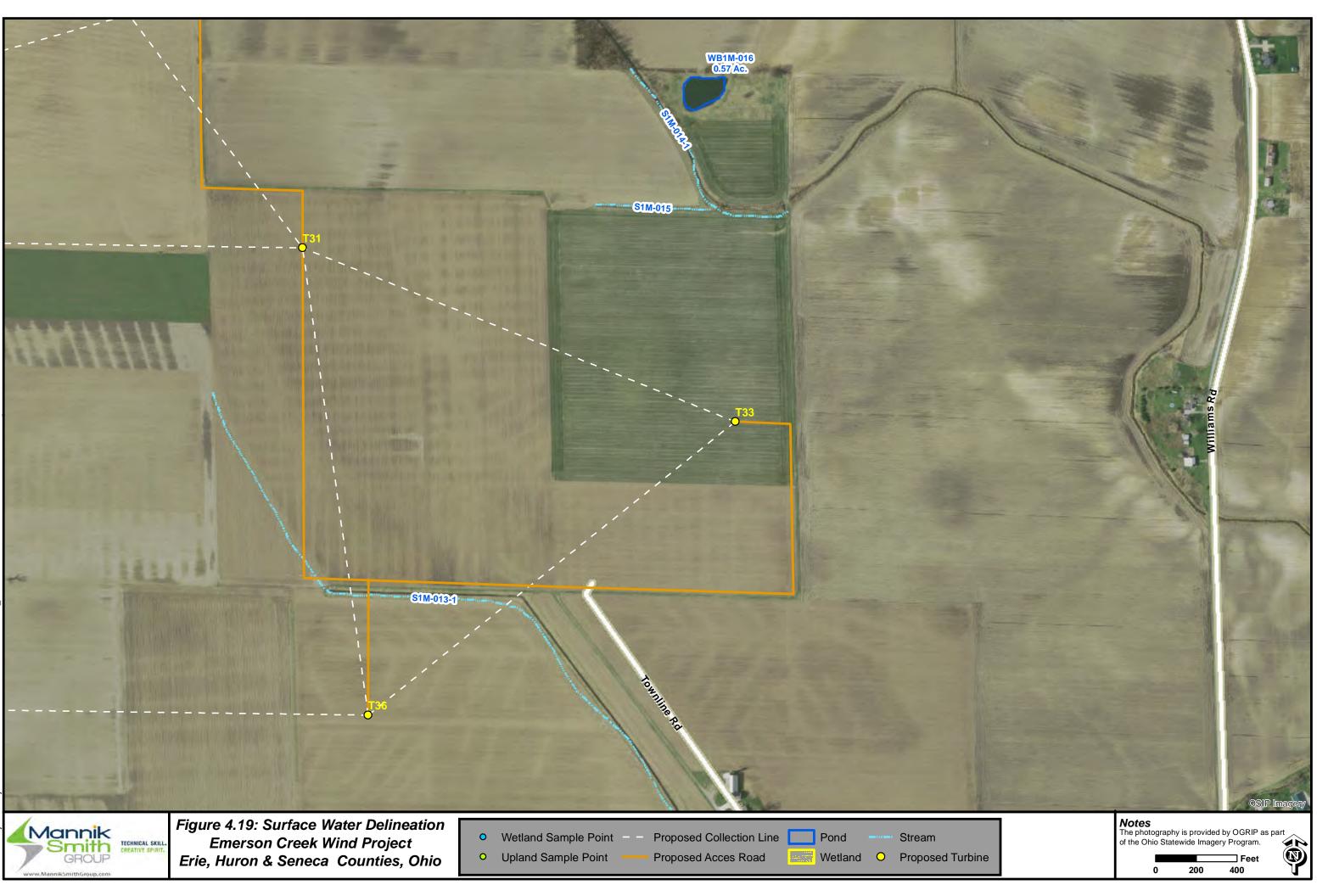


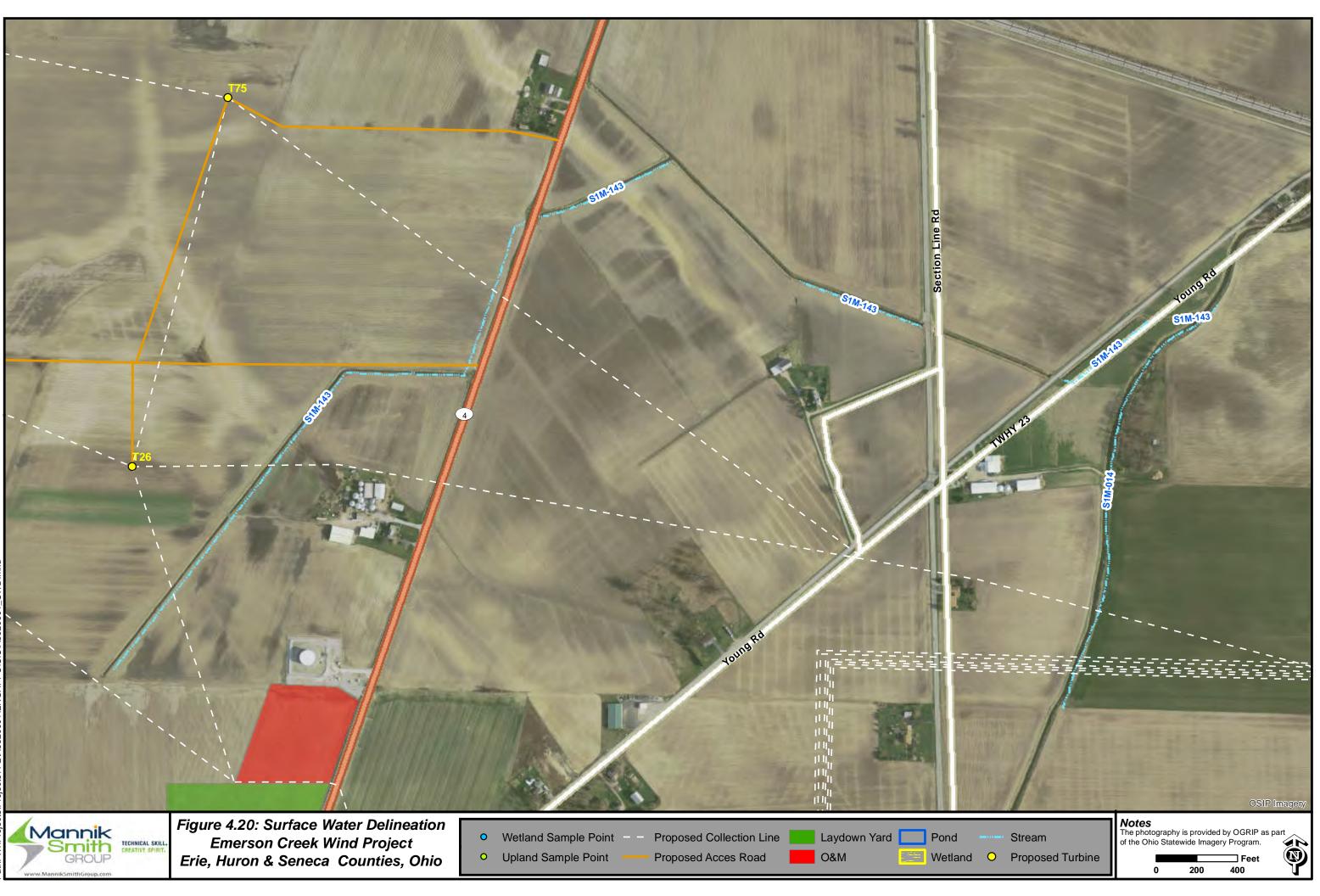


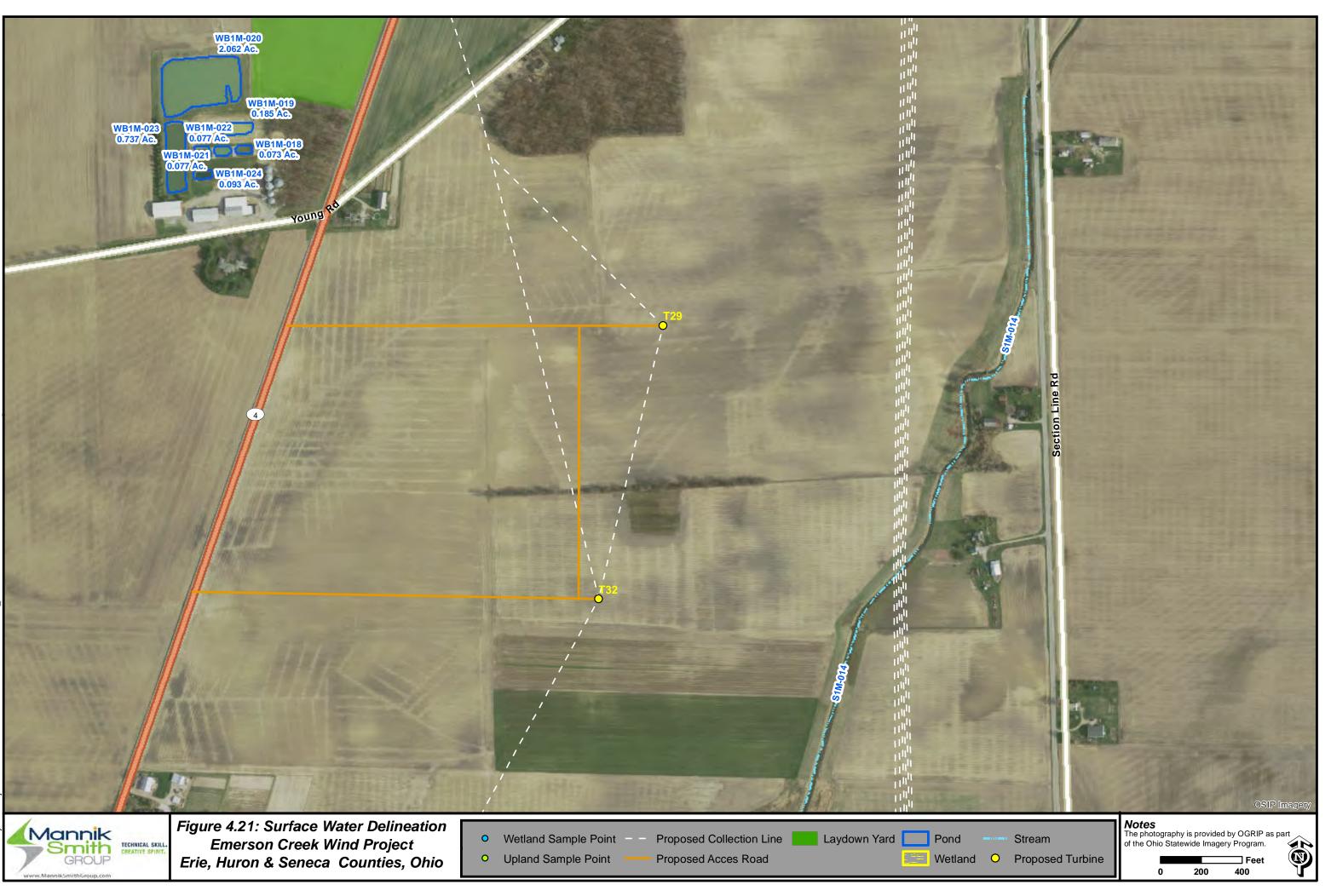


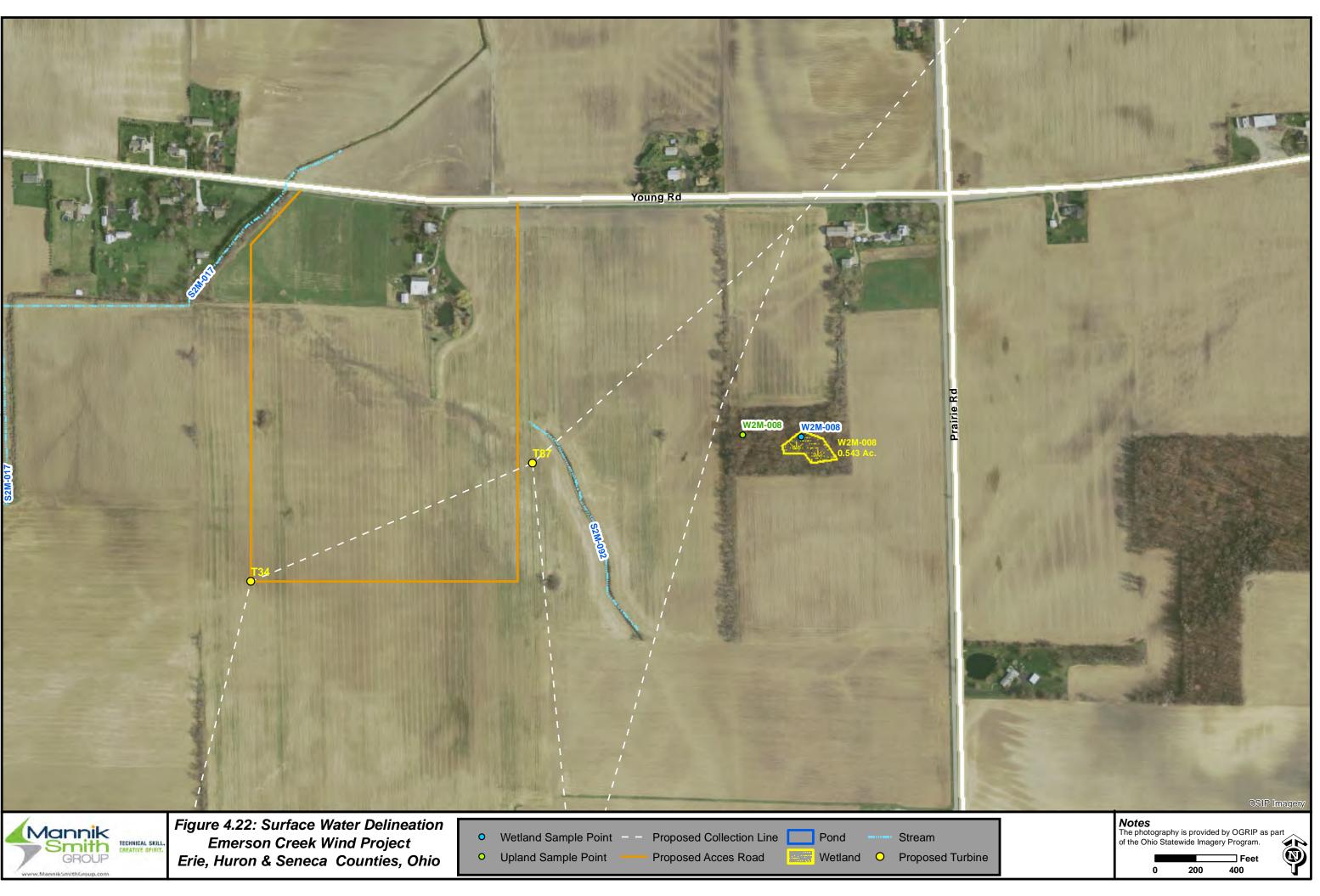


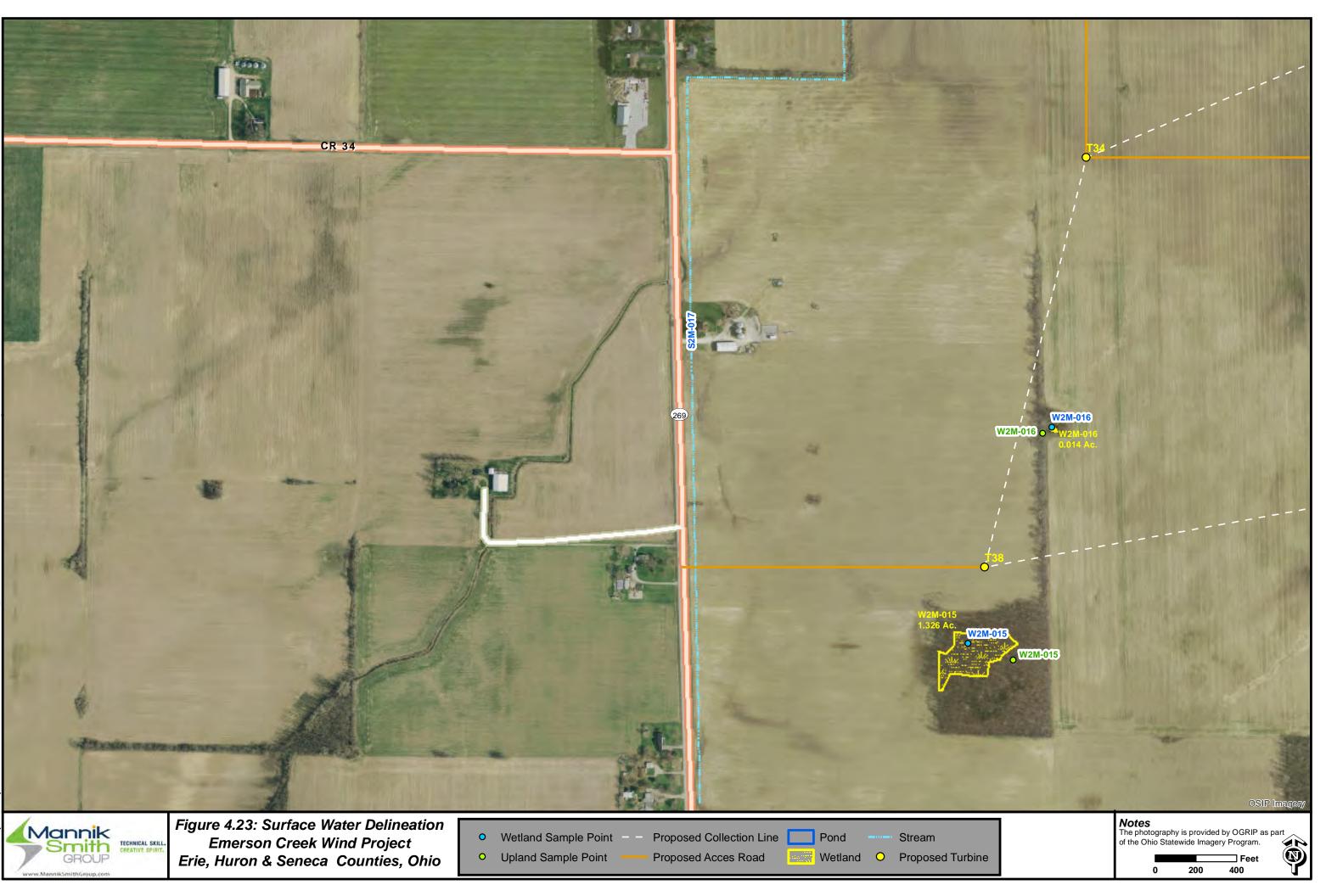


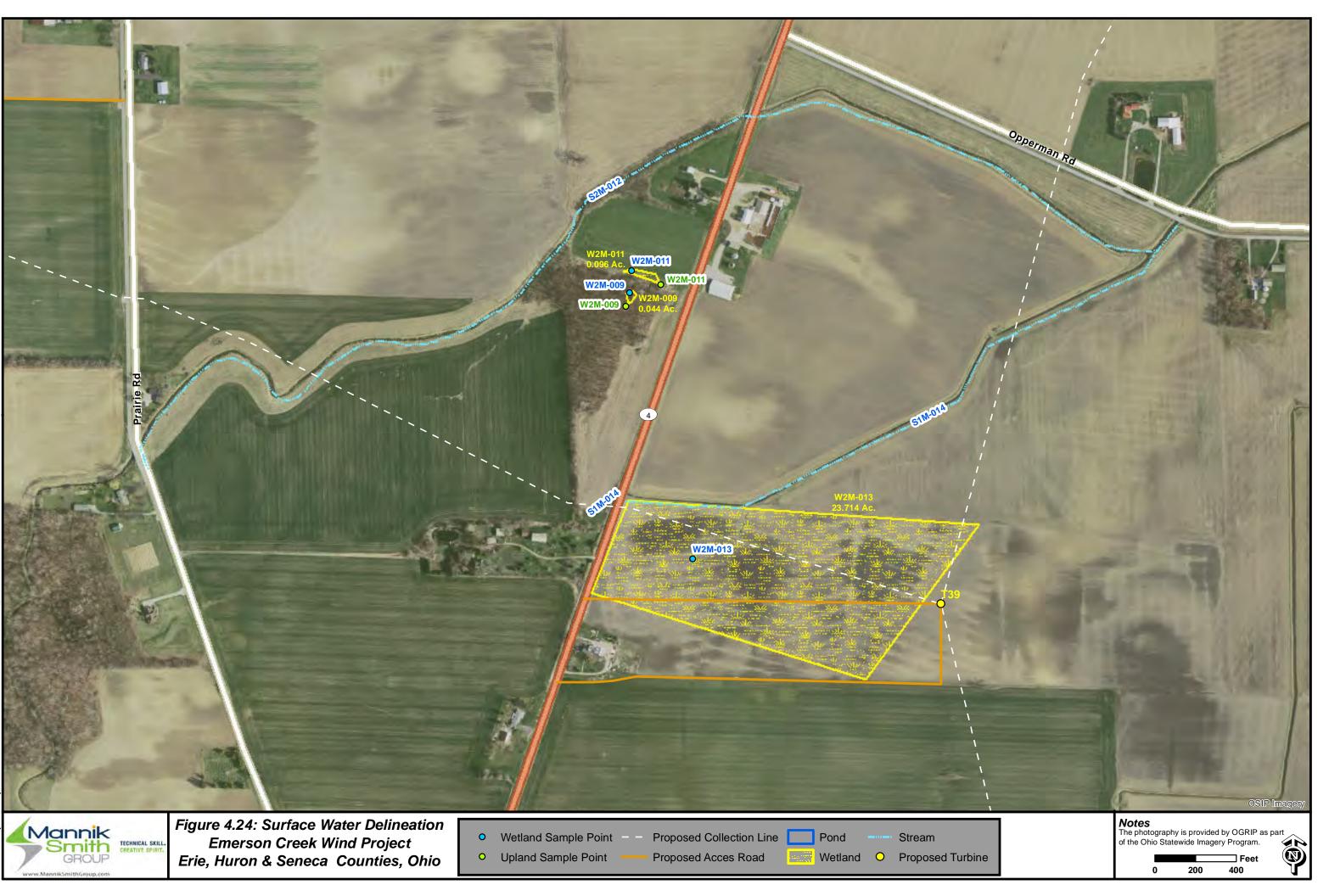


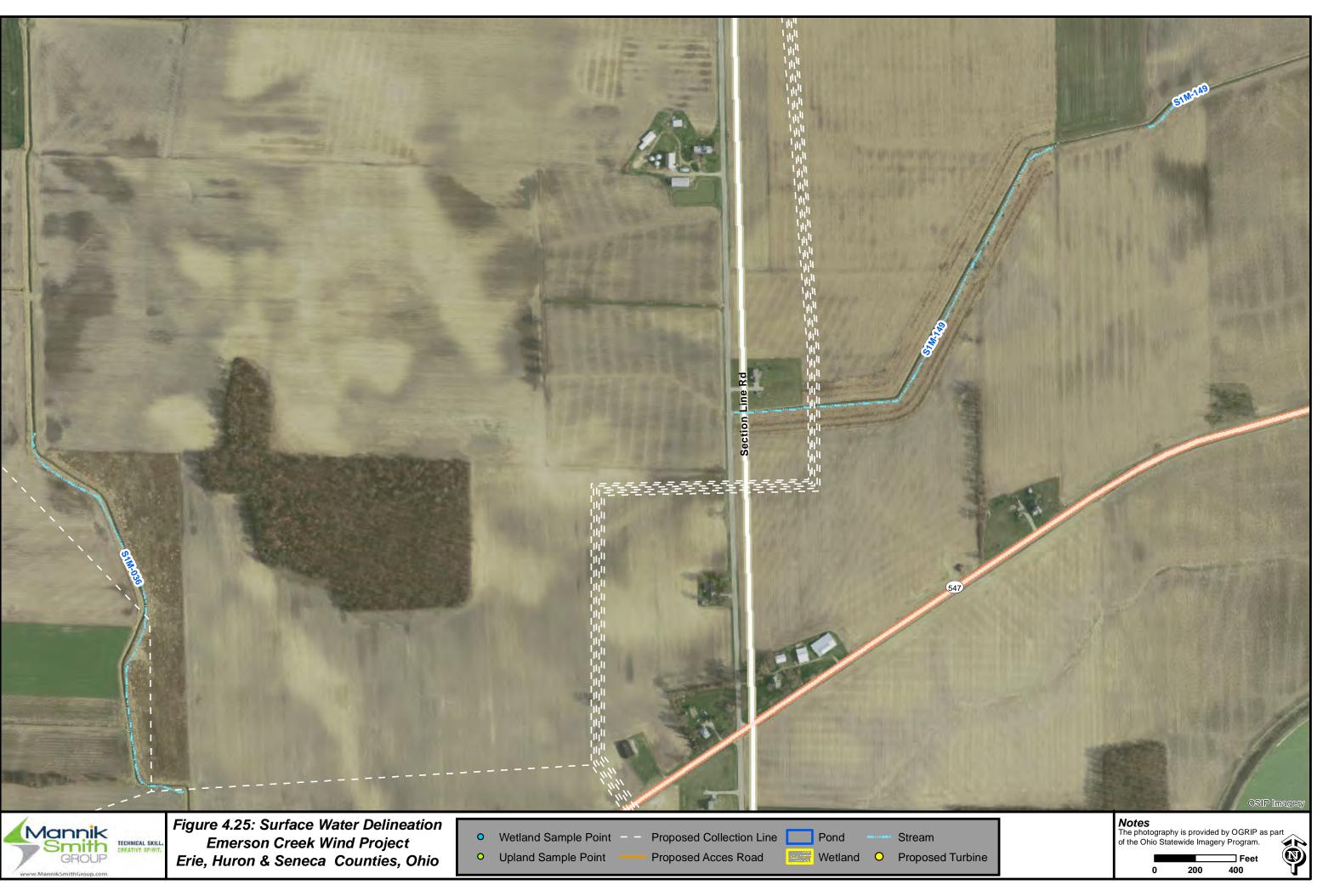


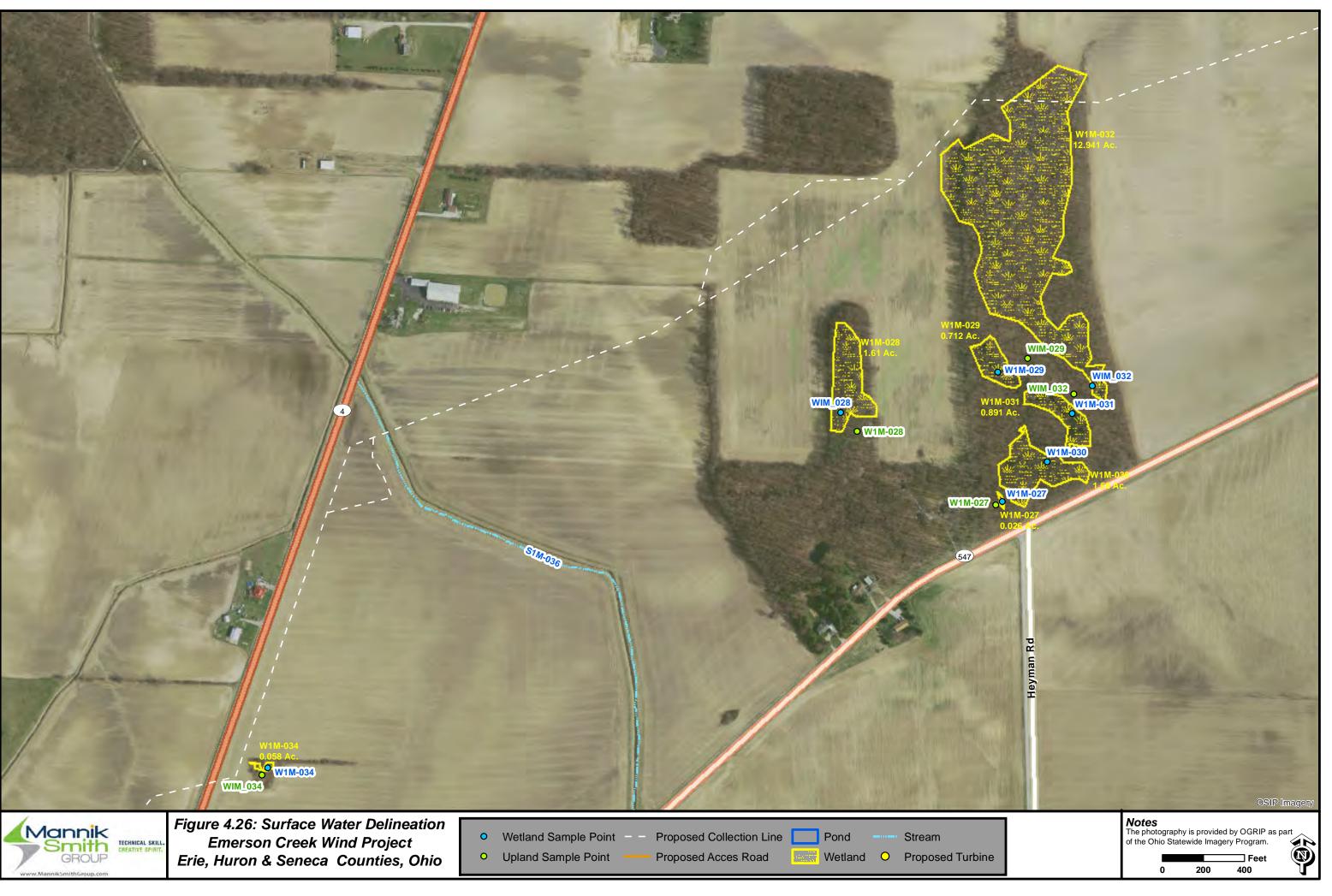


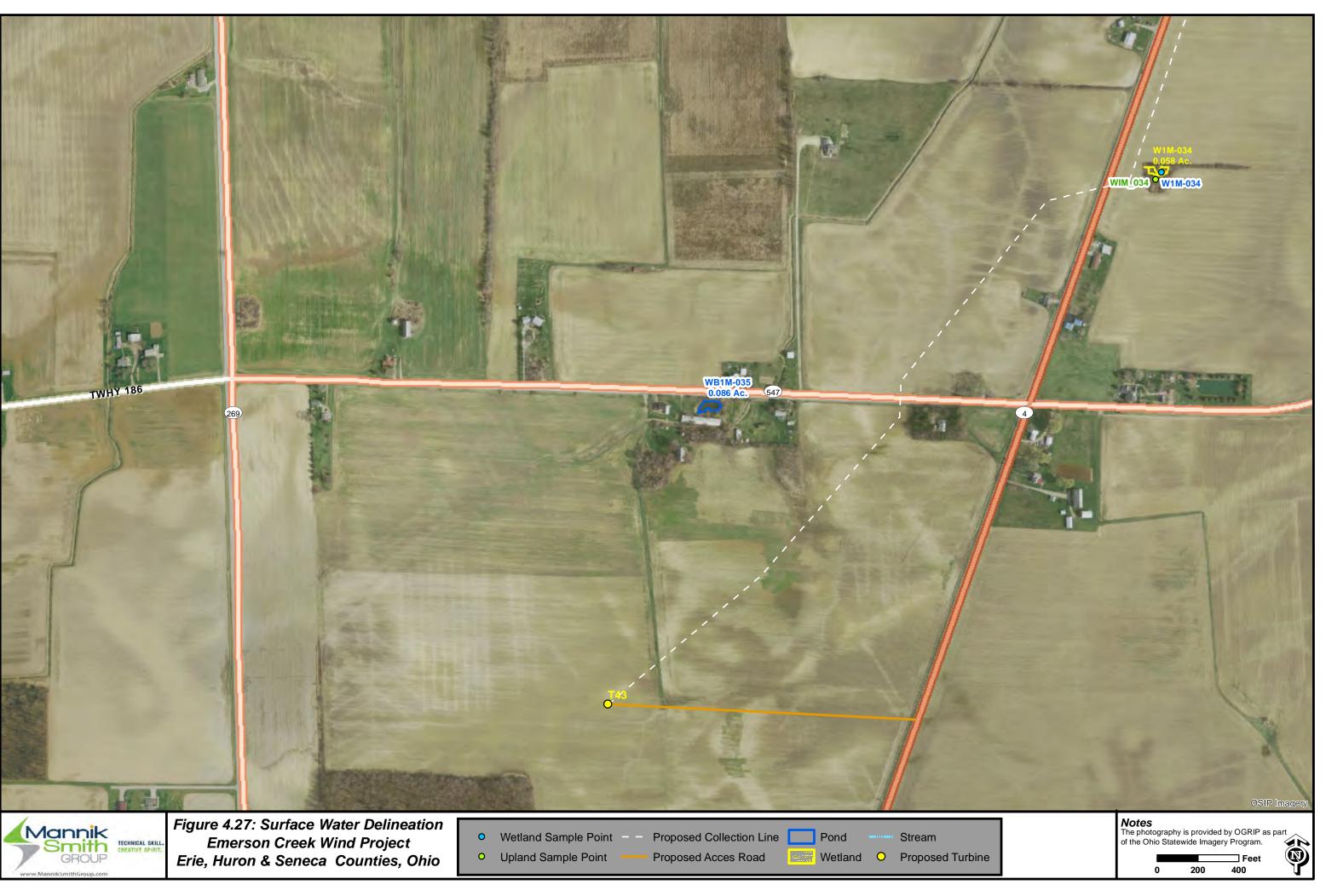




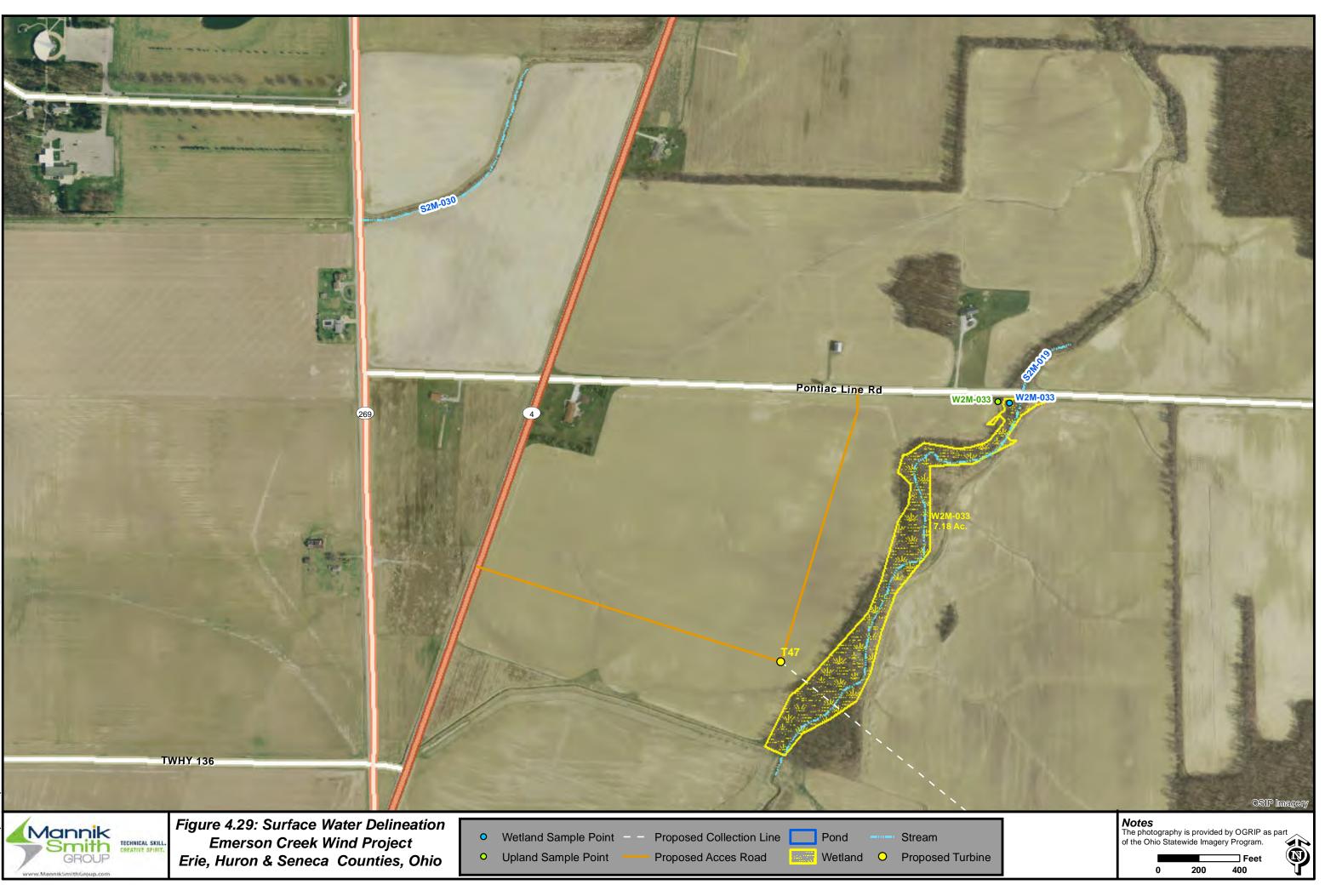


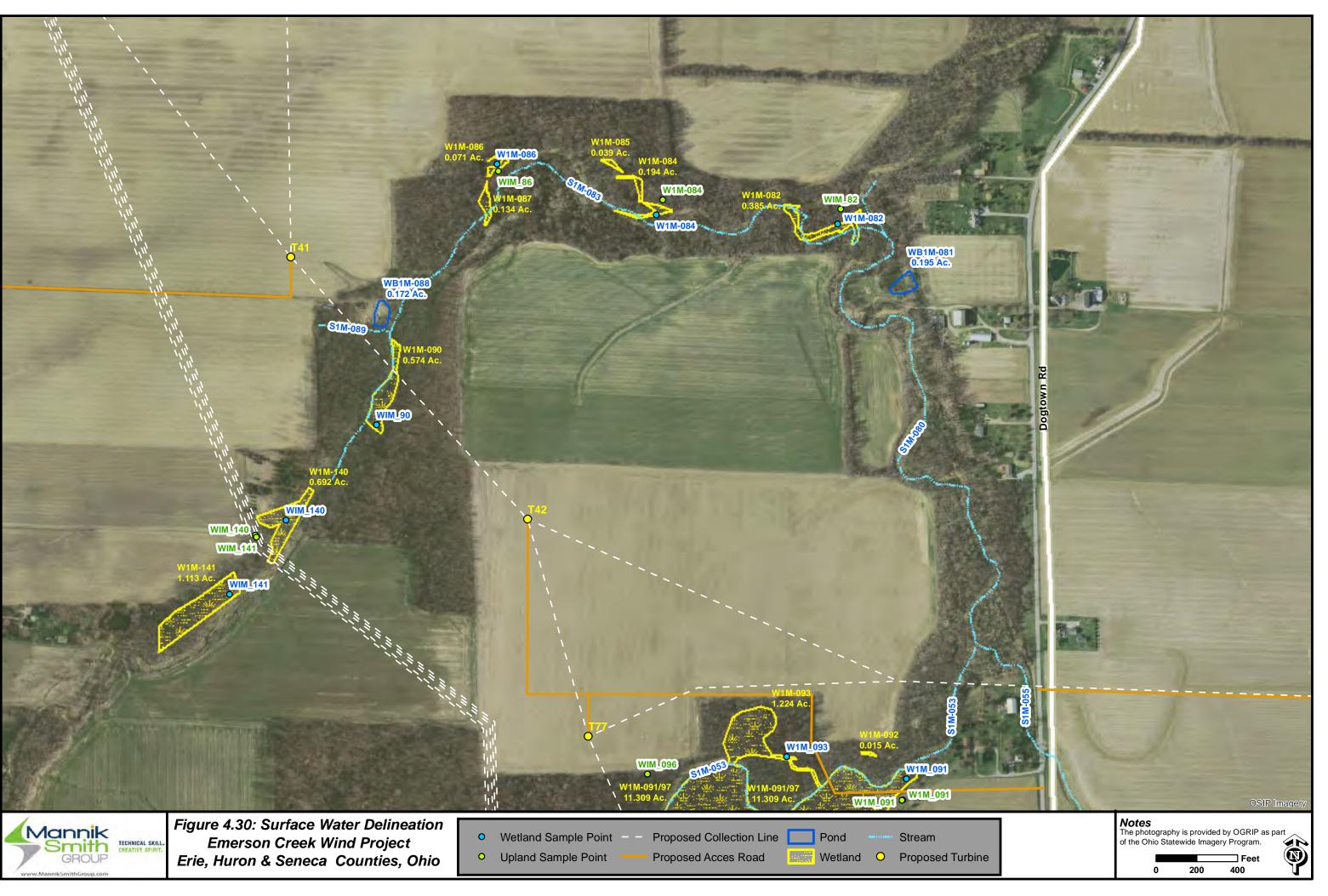


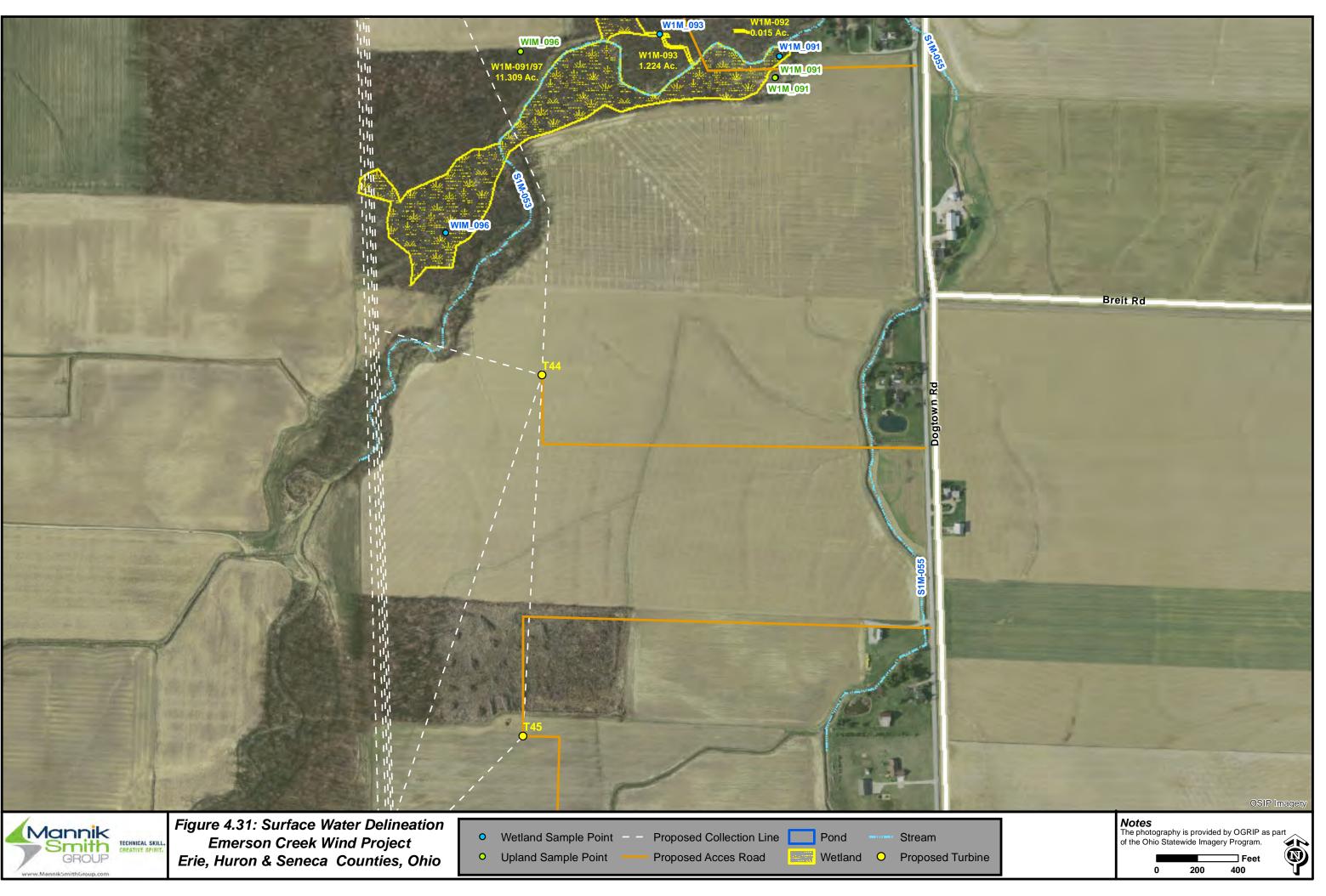


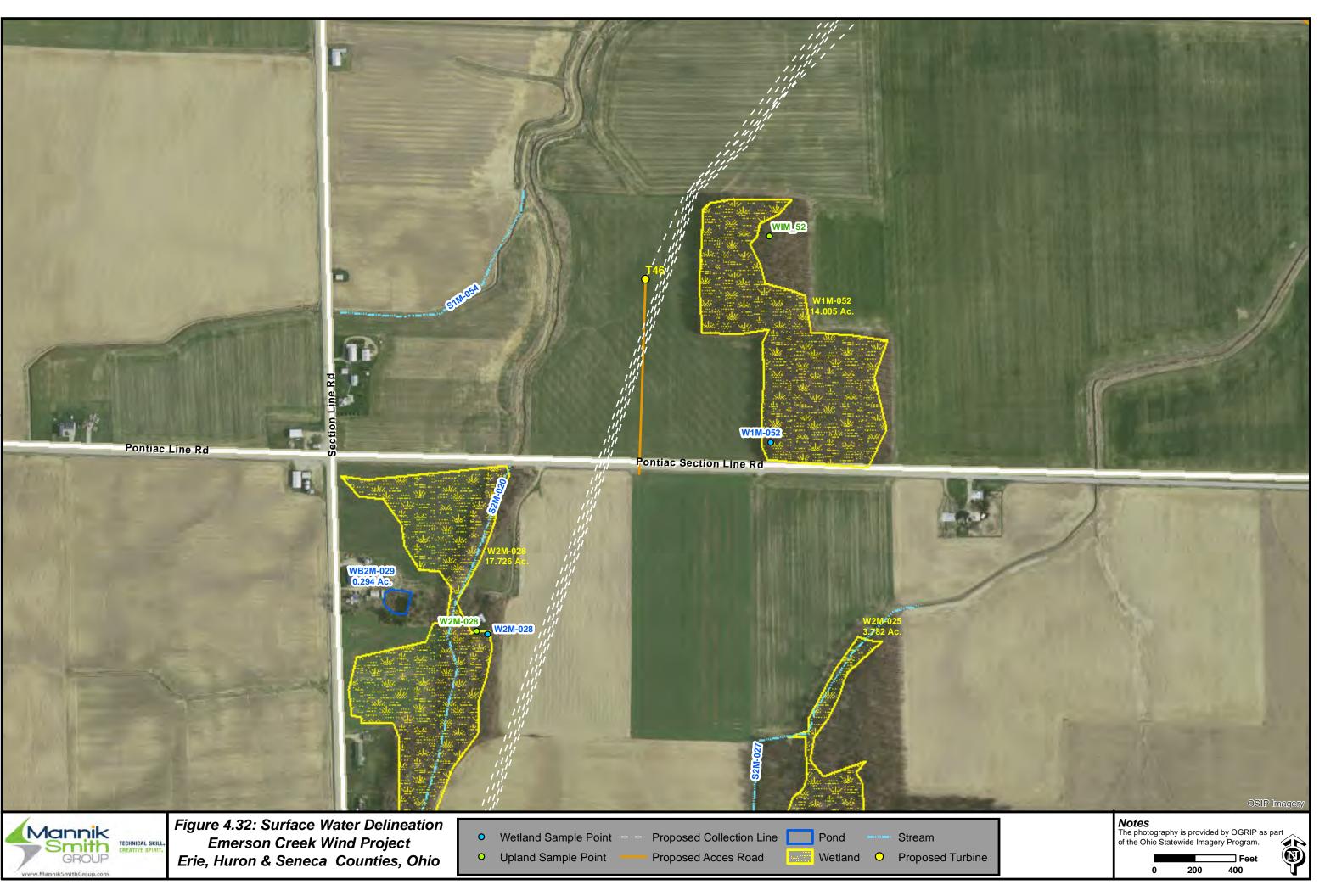


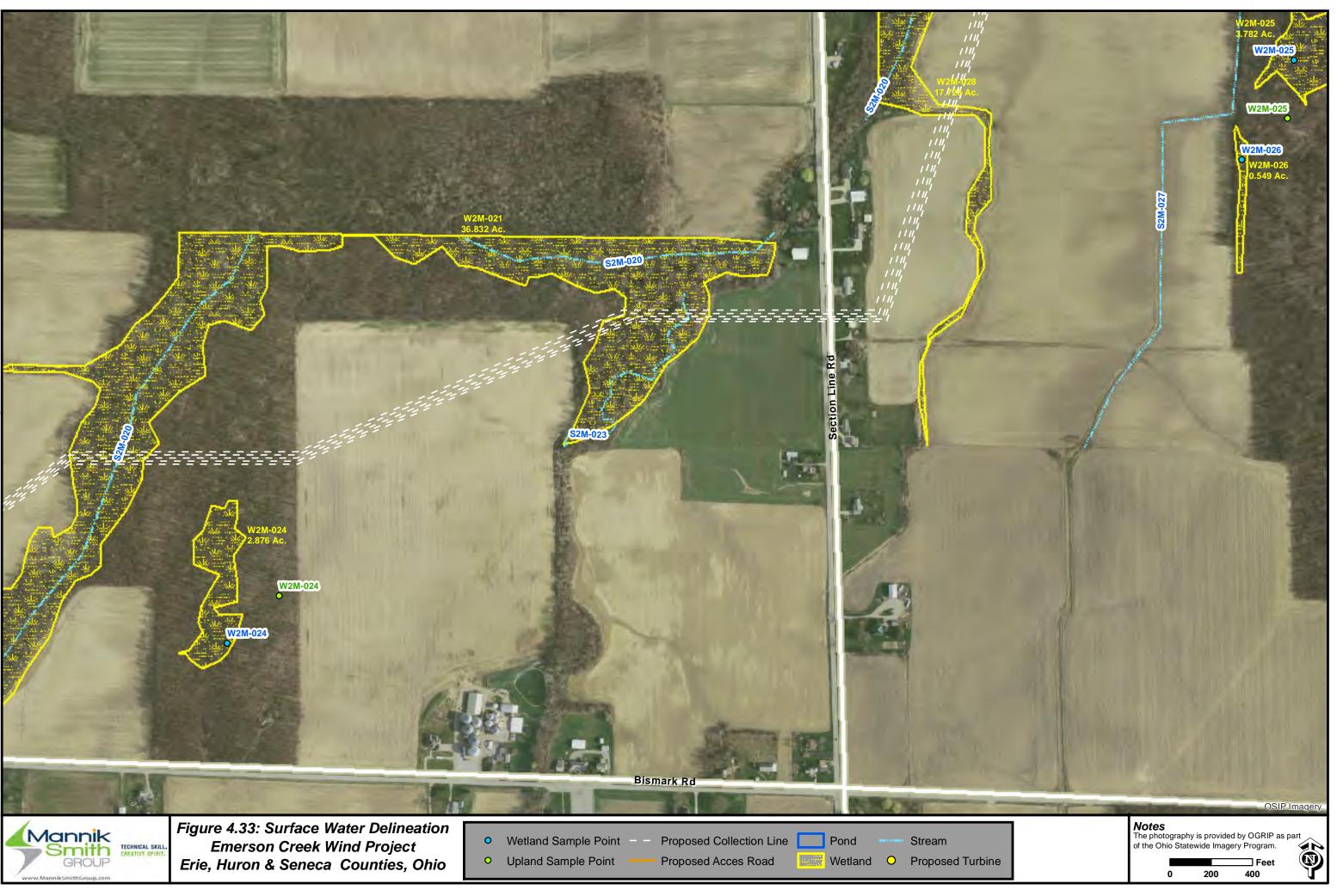


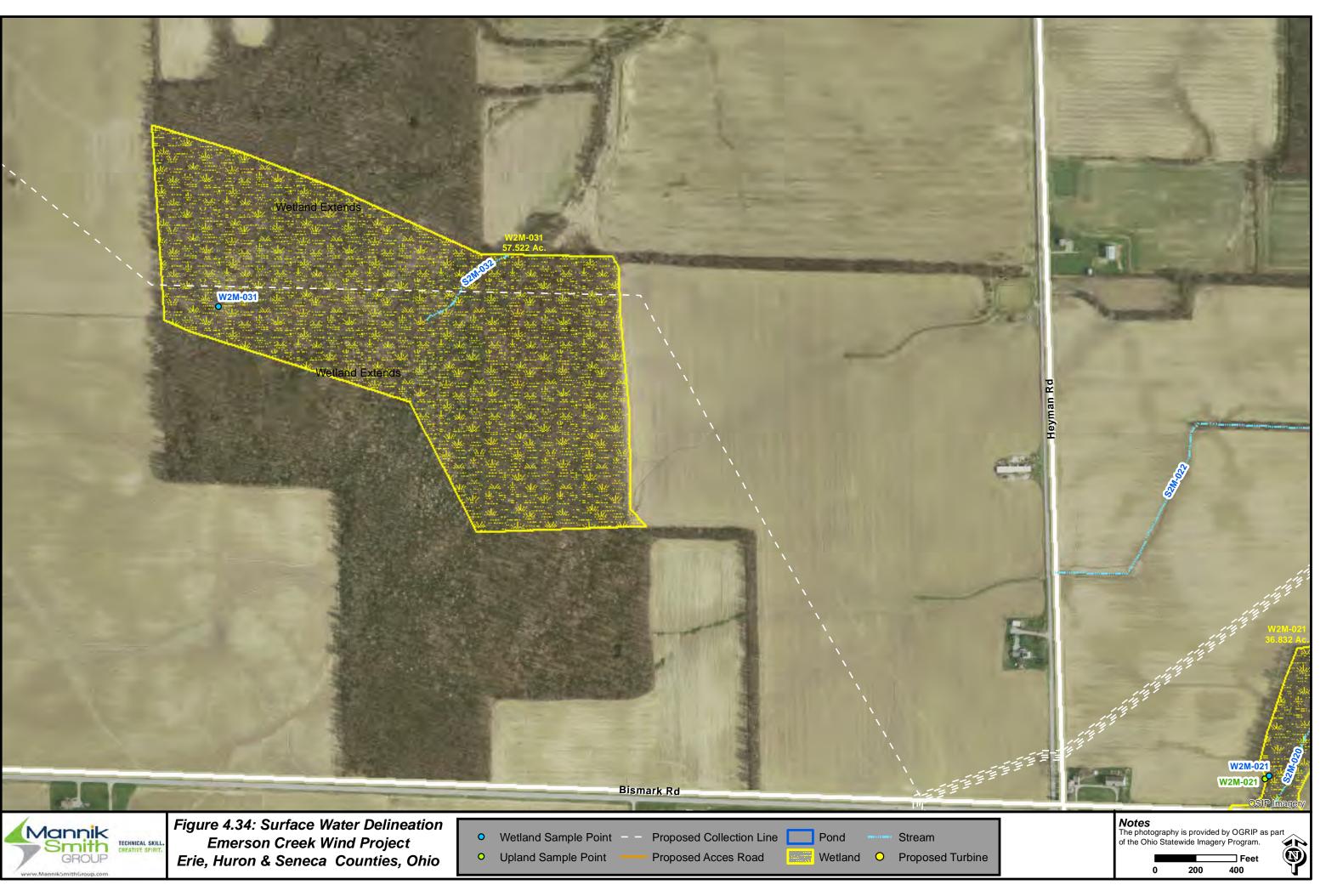


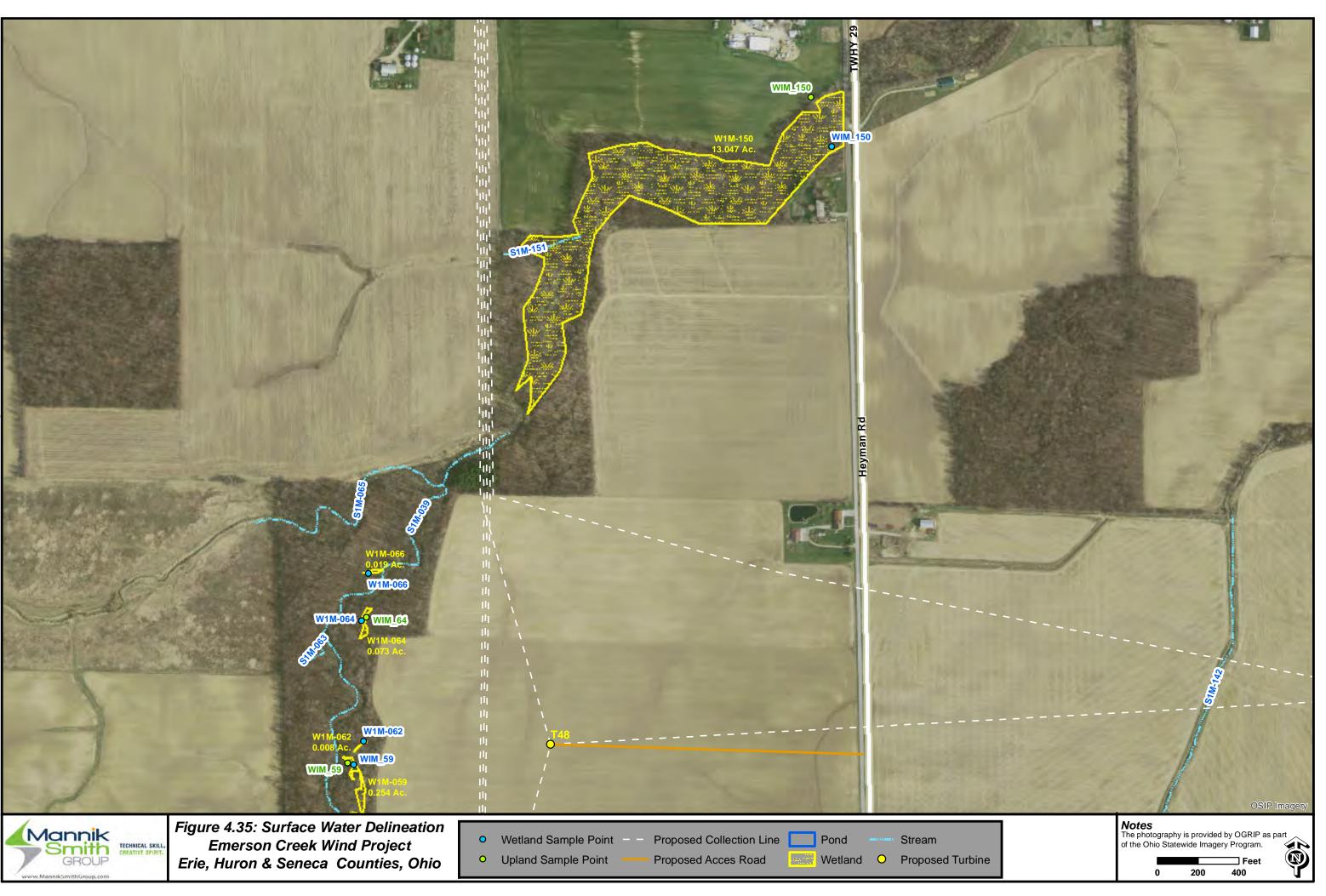


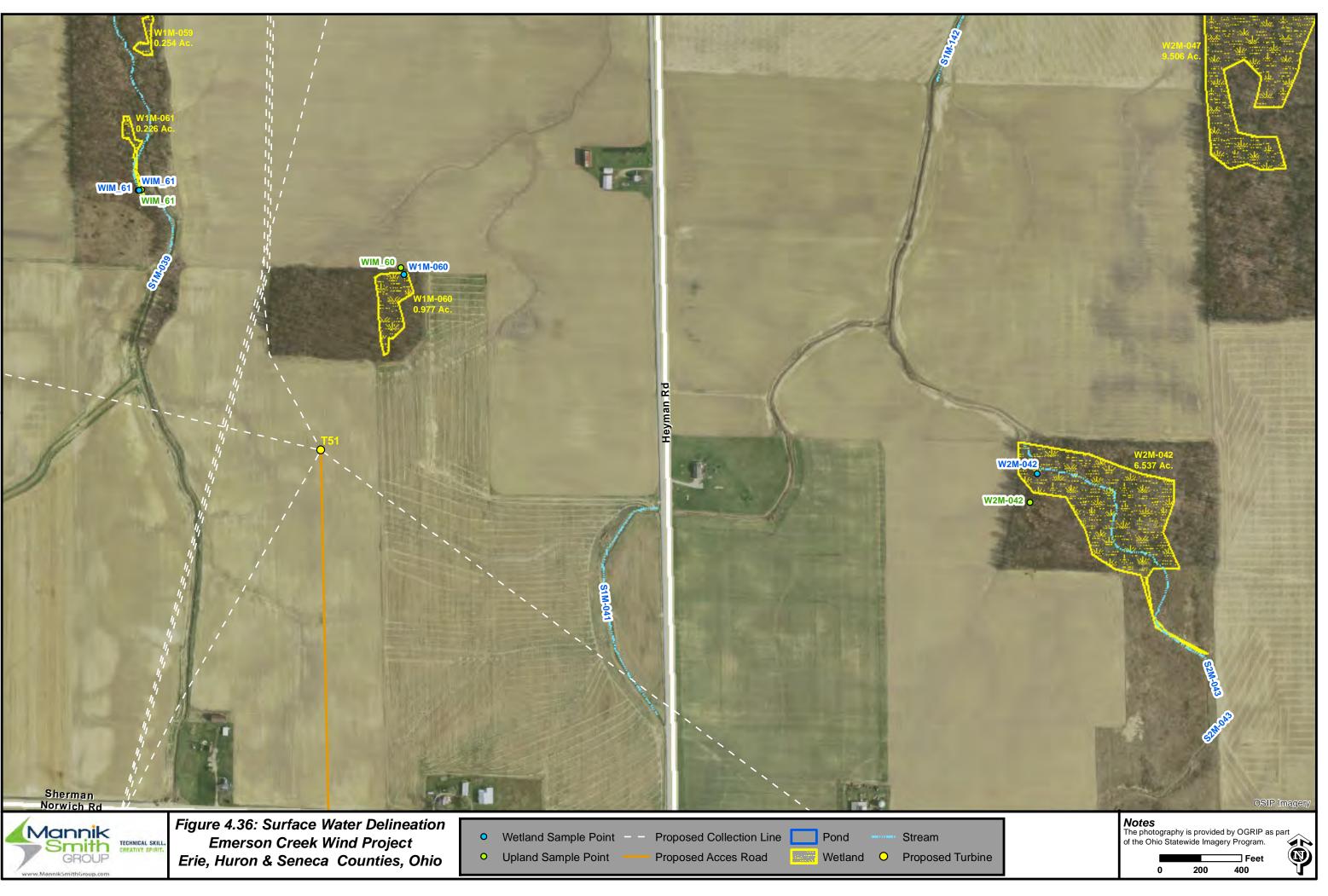


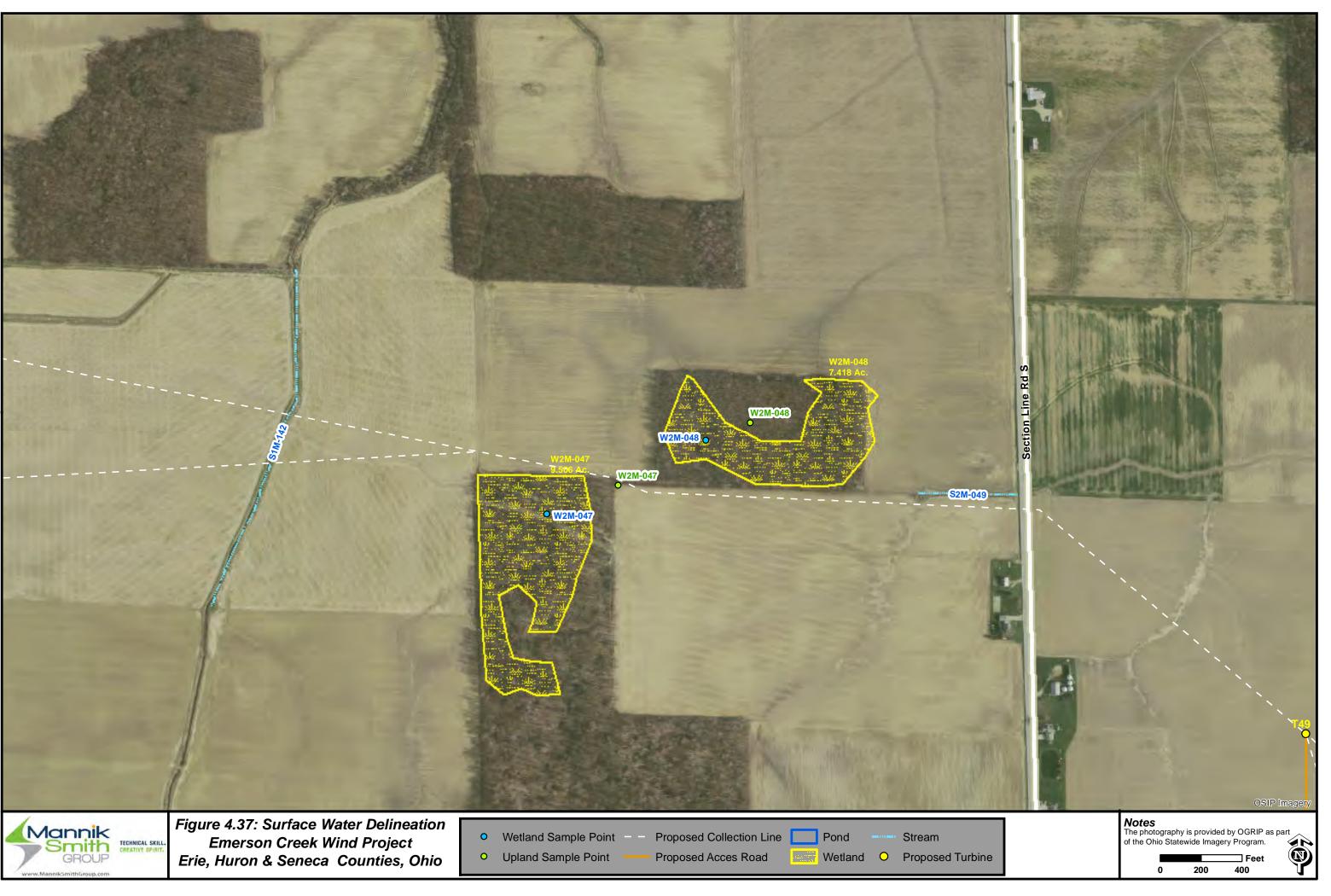

â

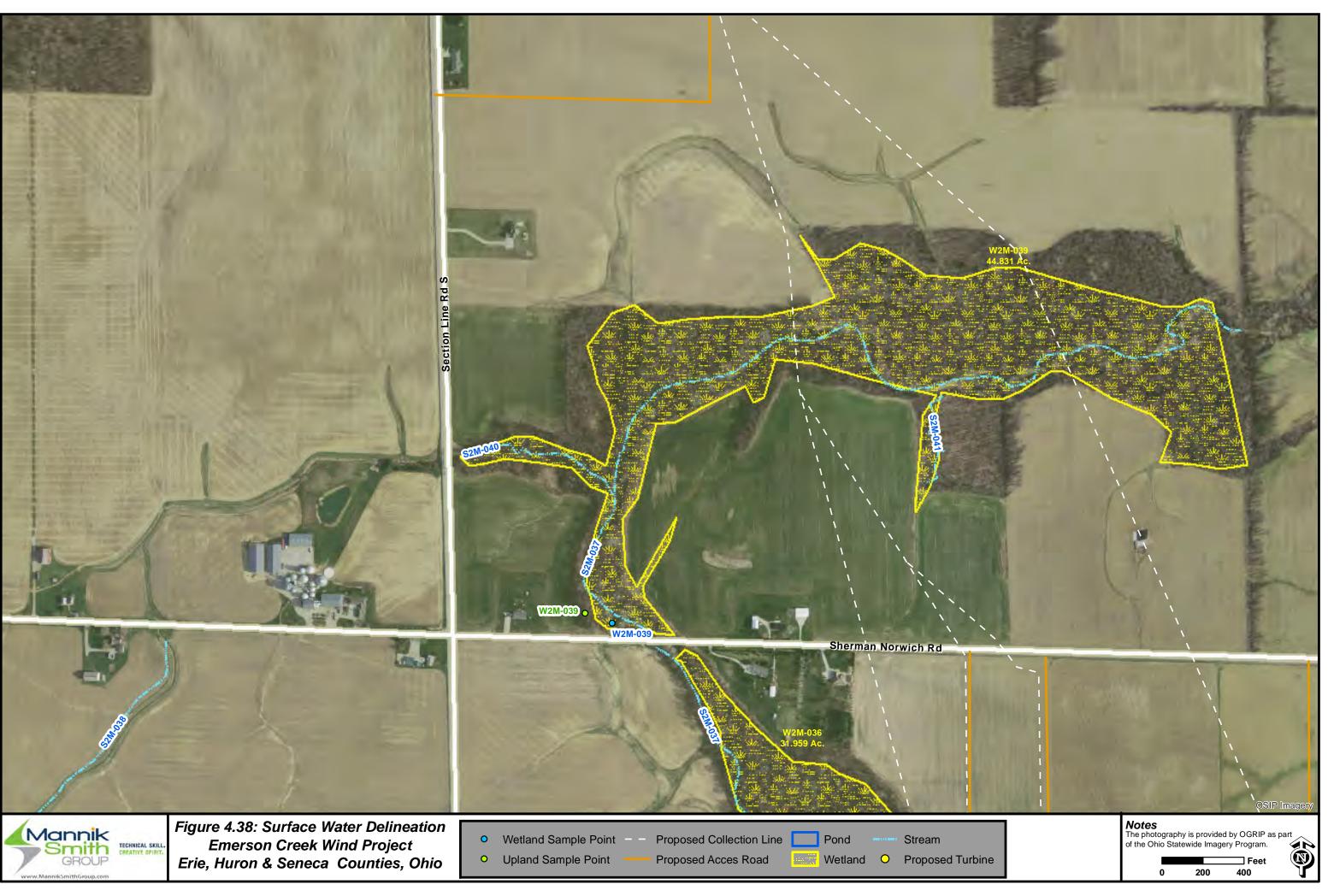


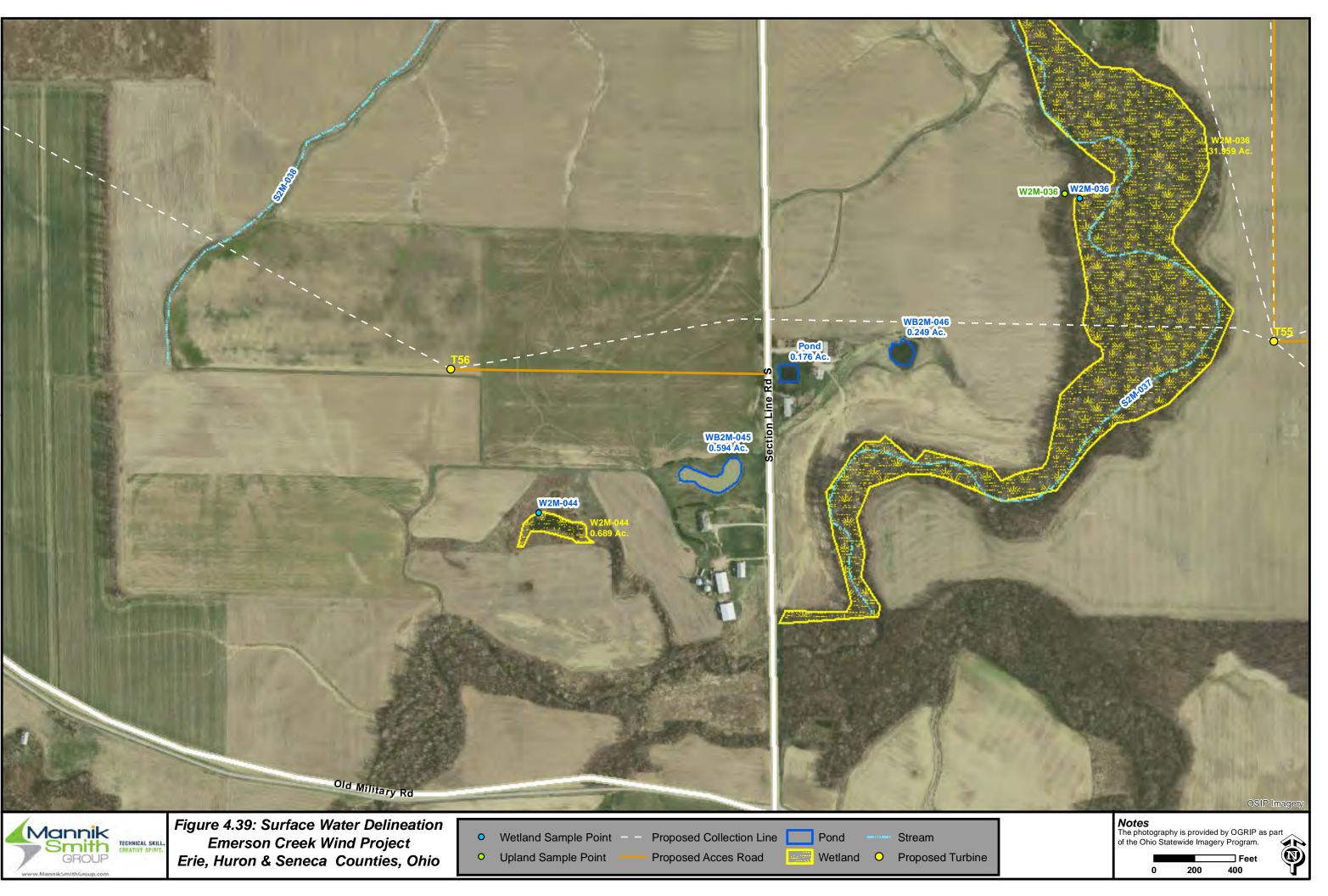


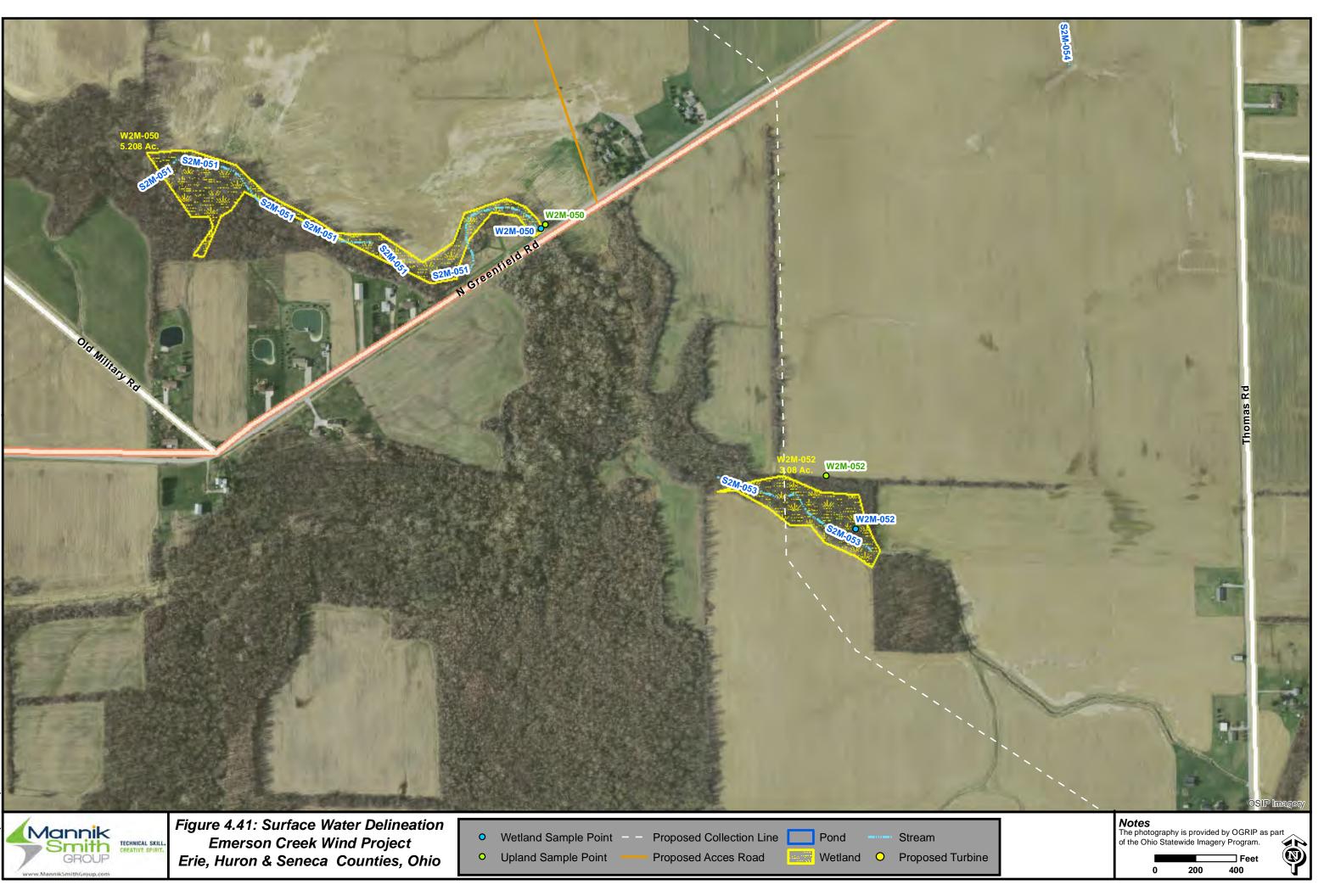


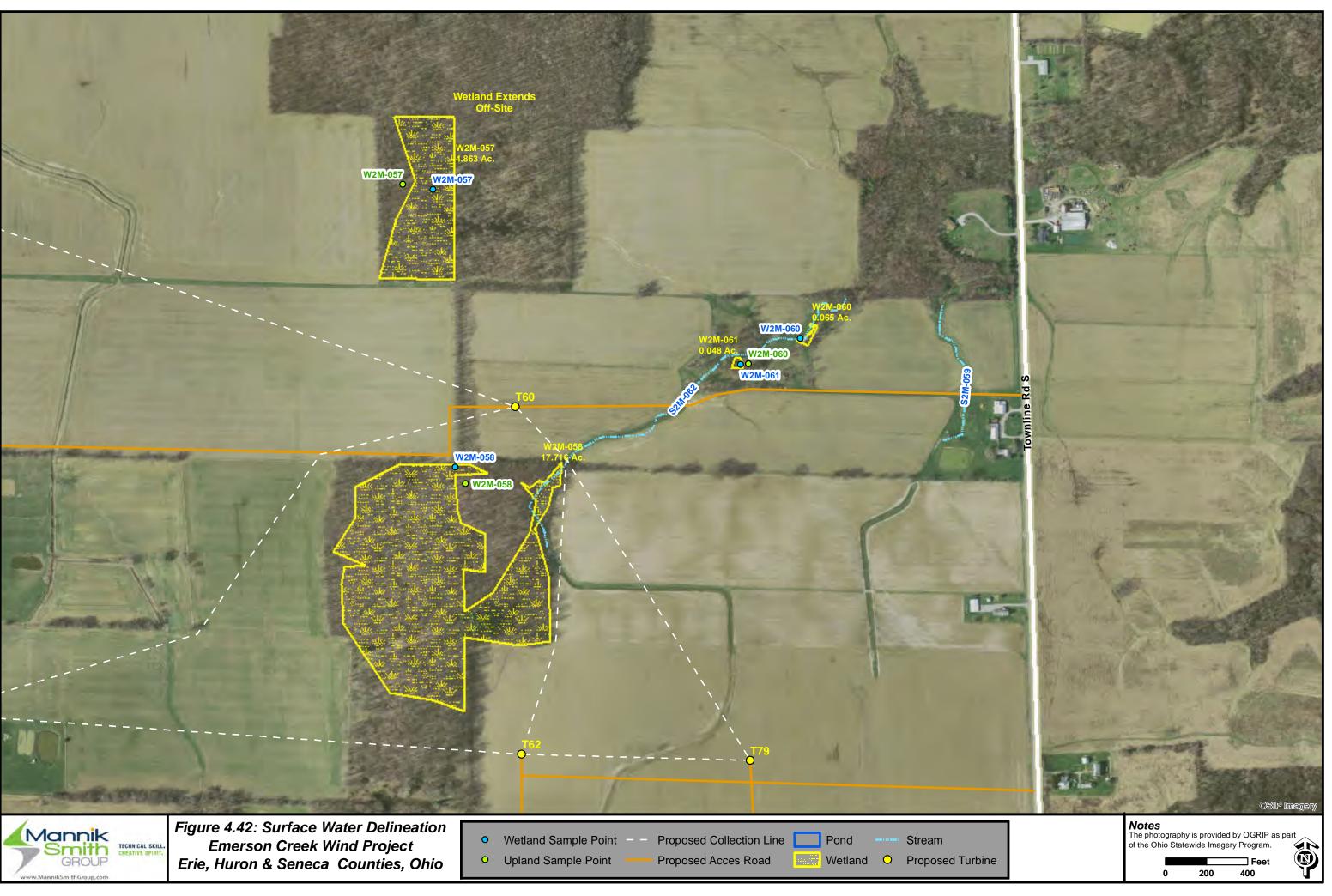


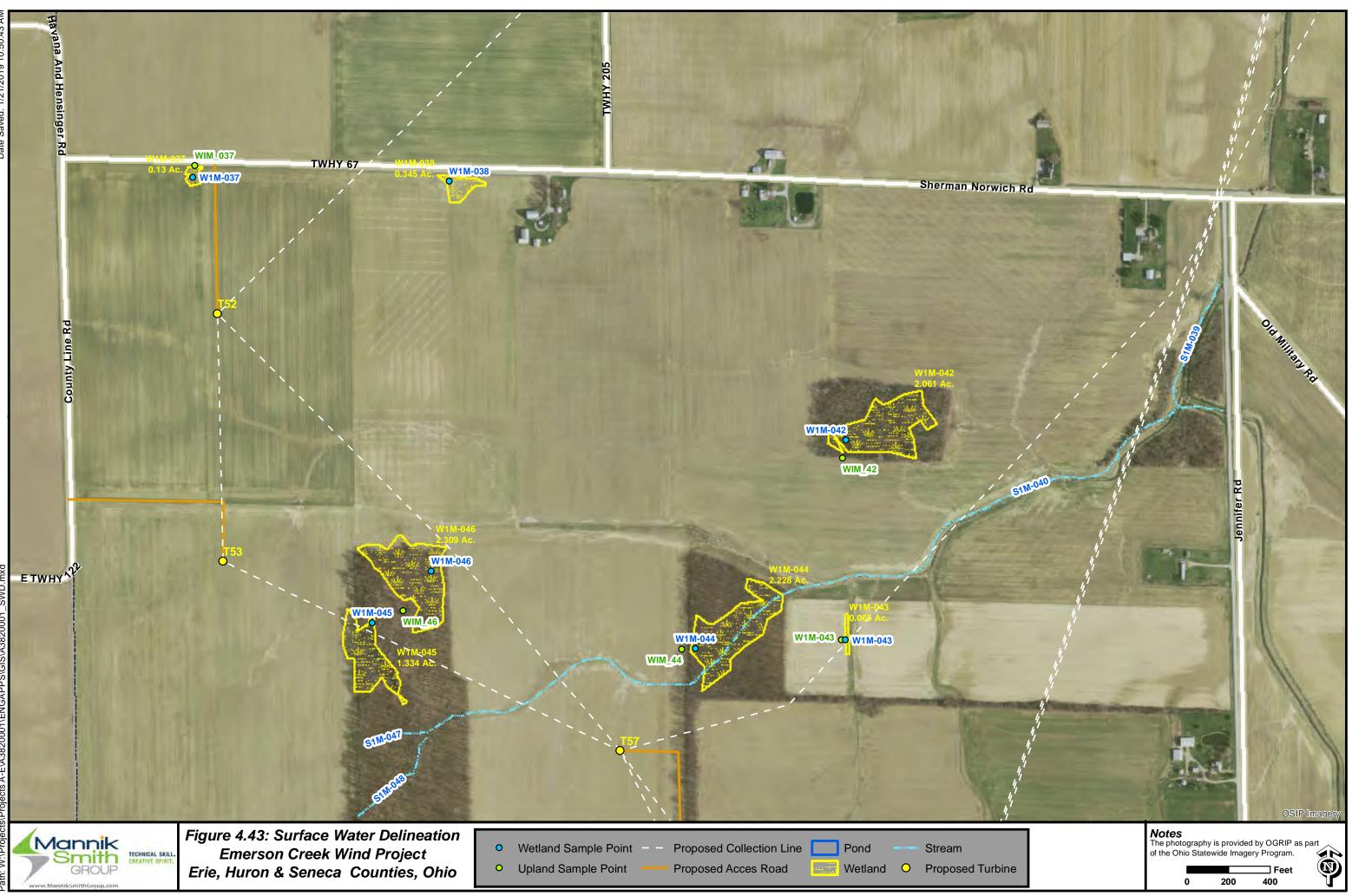


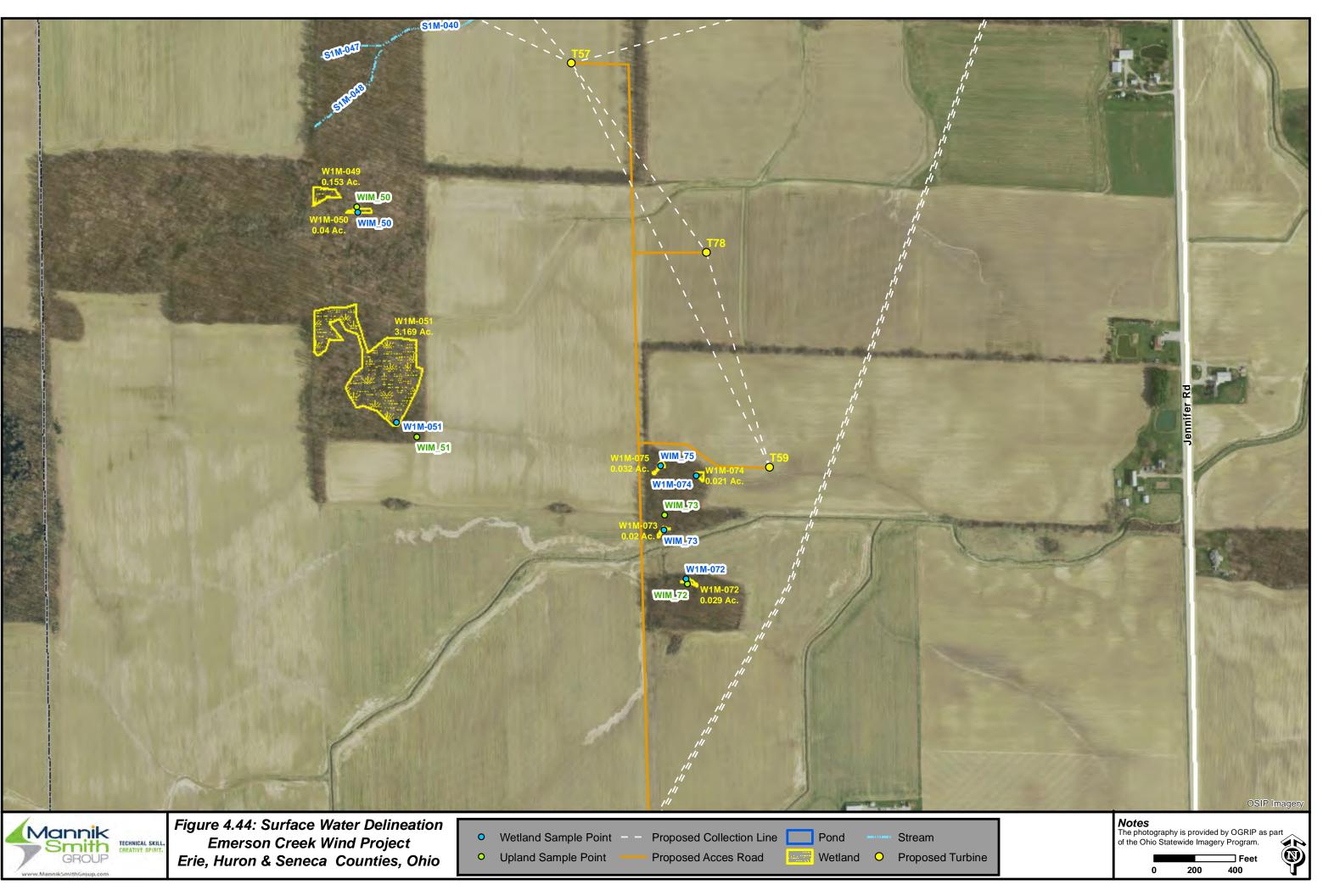


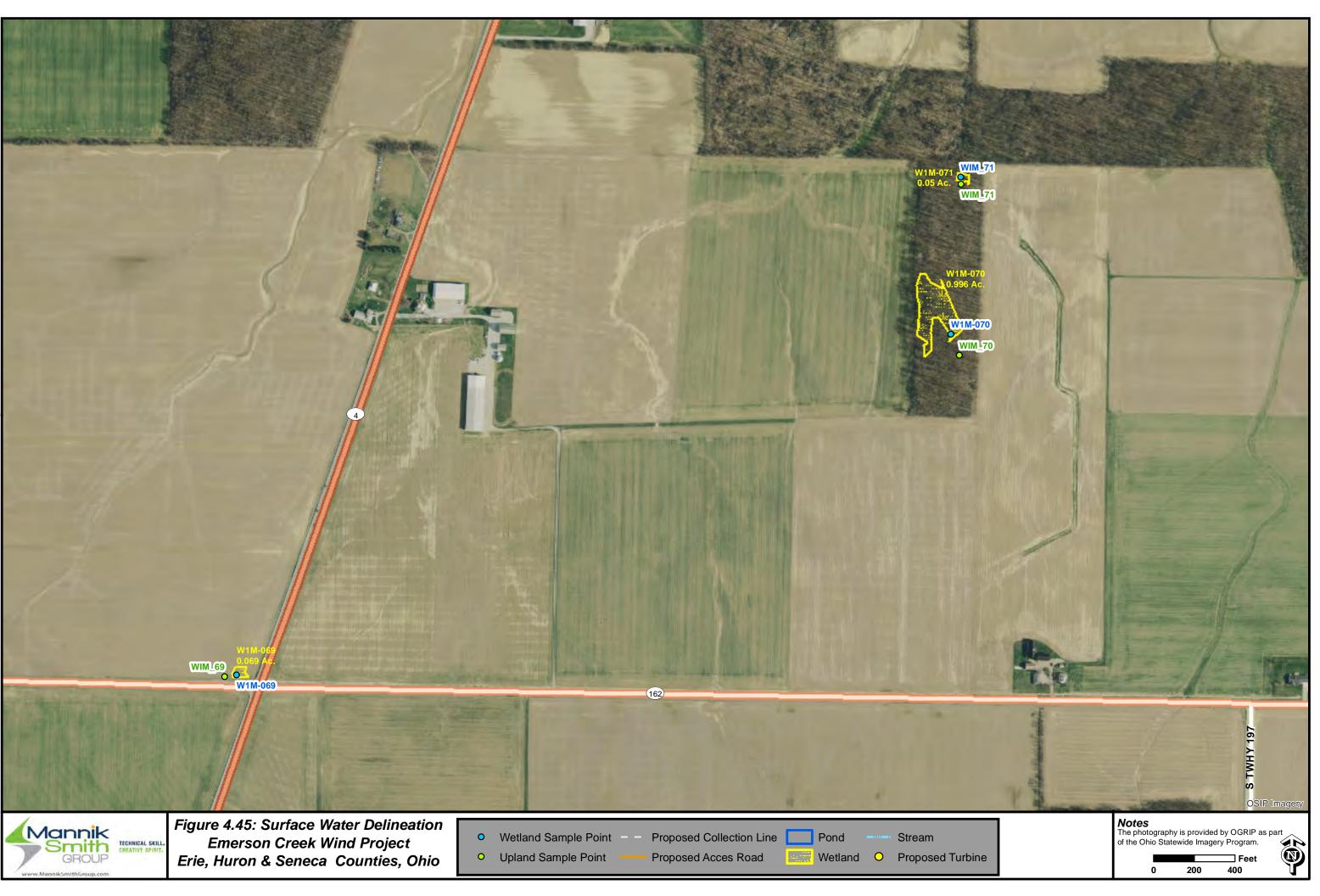


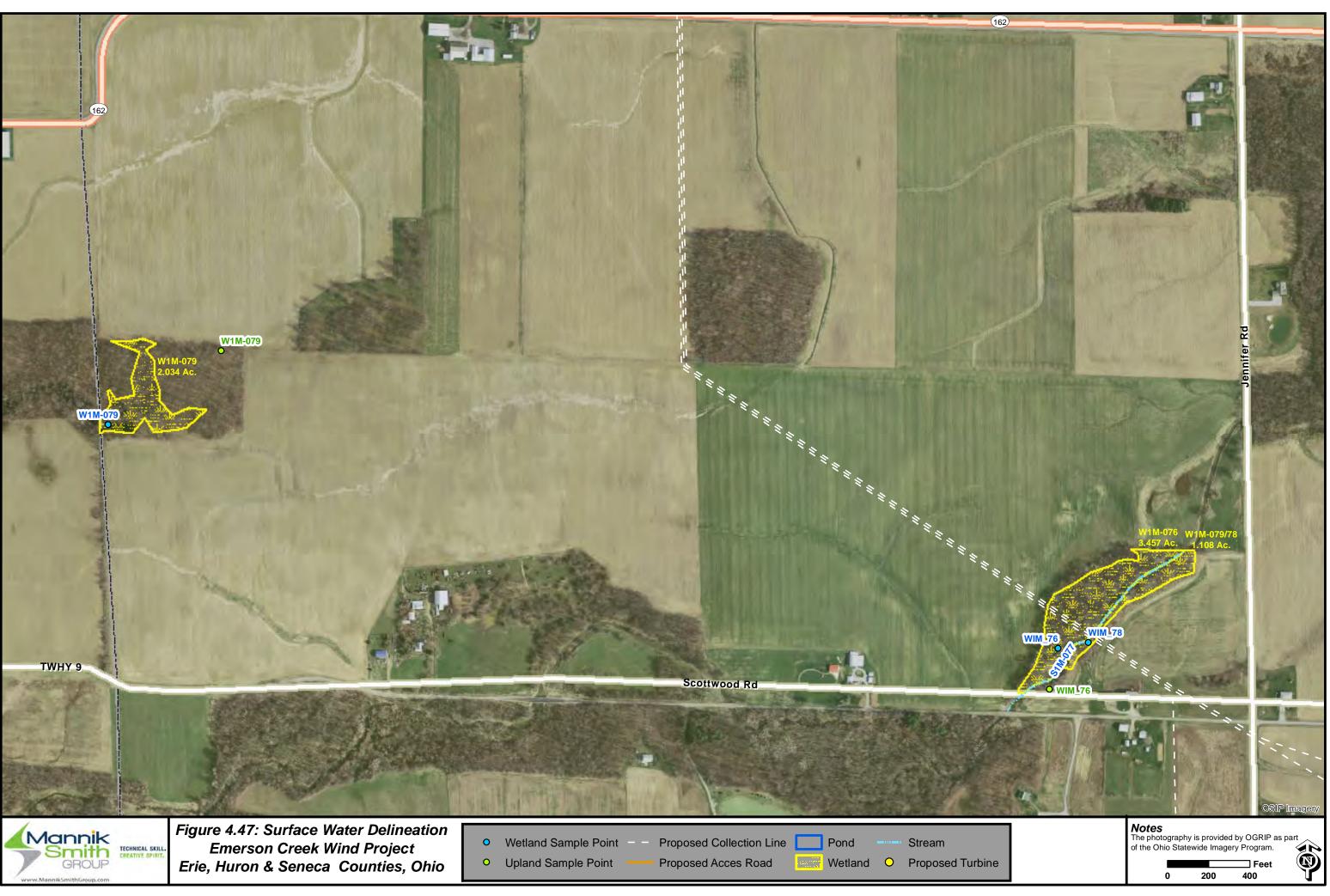


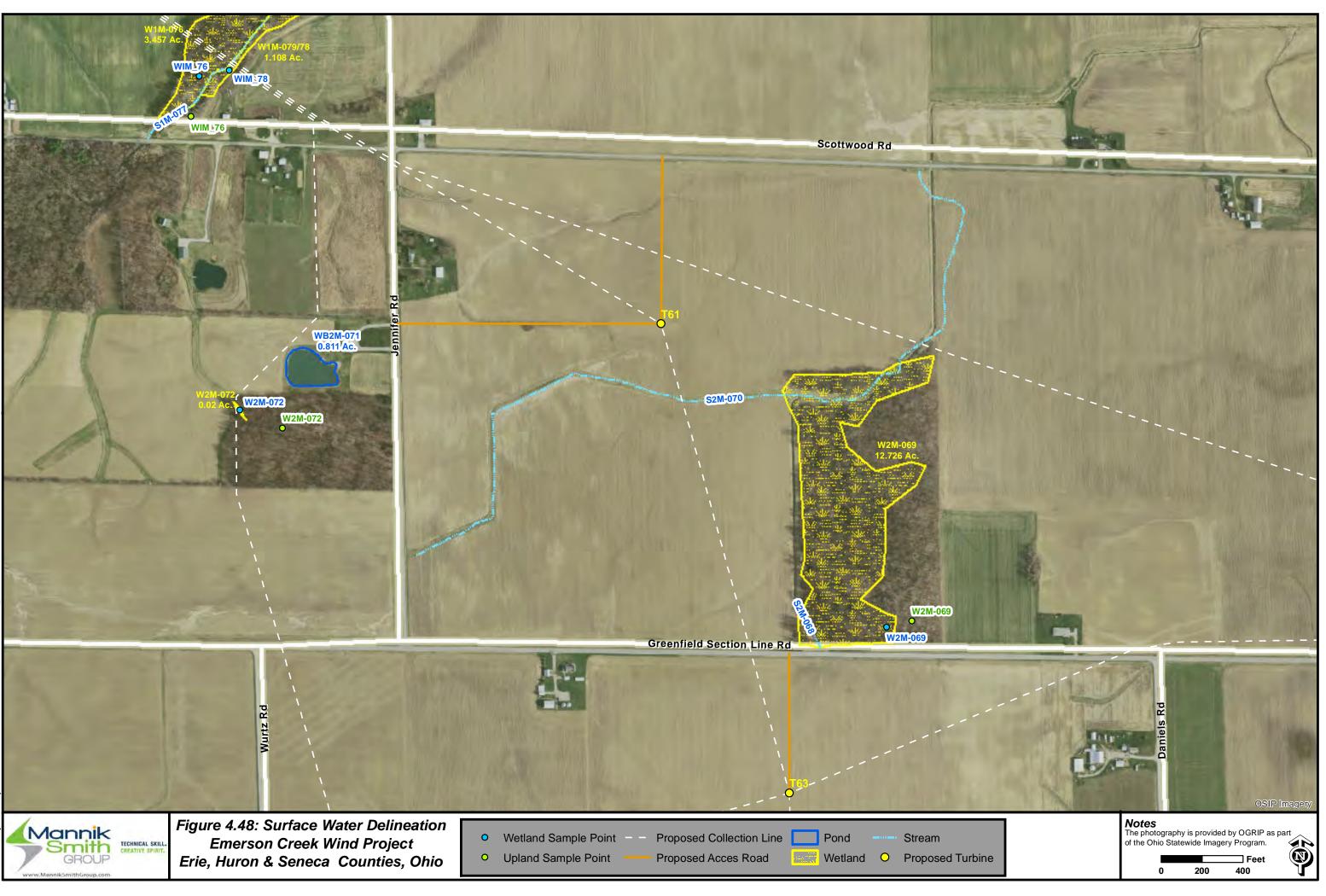


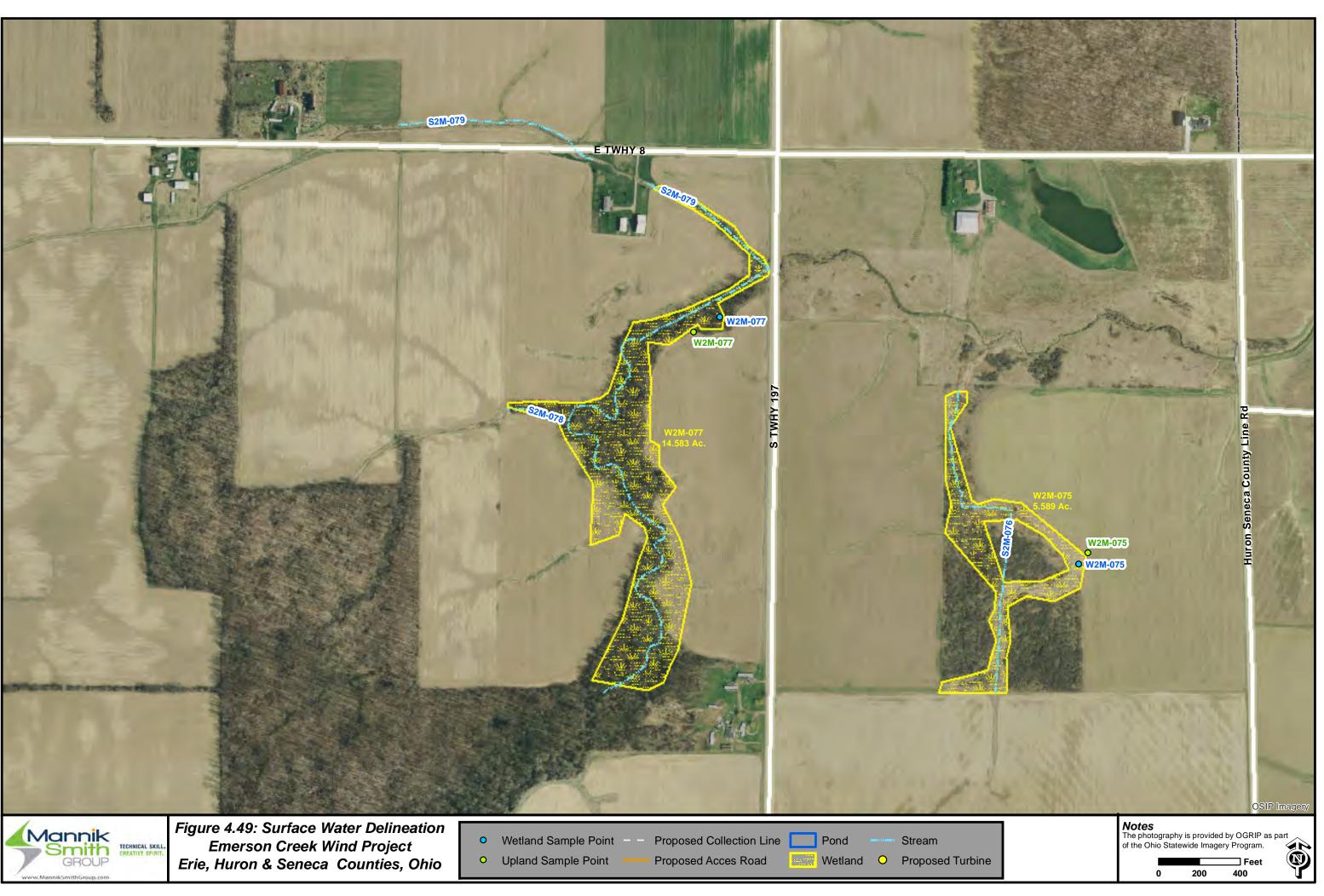

W2M-034 W3M-034 Figure 4.40: Surface Water Delineation GROUP TECHNICAL SKILL. Proposed Collection Line • Wetland Sample Point Pond Stream Emerson Creek Wind Project • Upland Sample Point Wetland O Proposed Turbine Proposed Acces Road Erie, Huron & Seneca Counties, Ohio

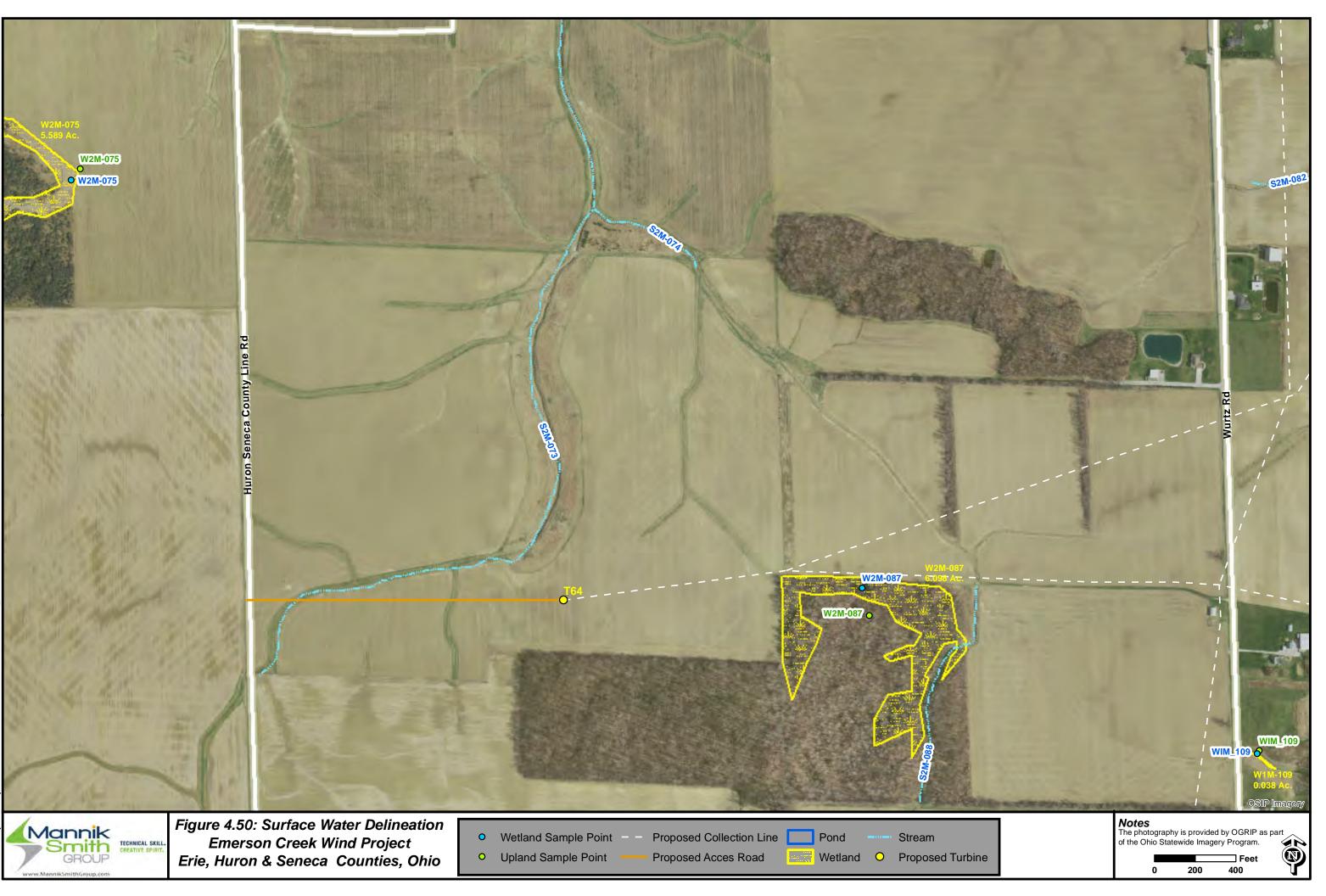


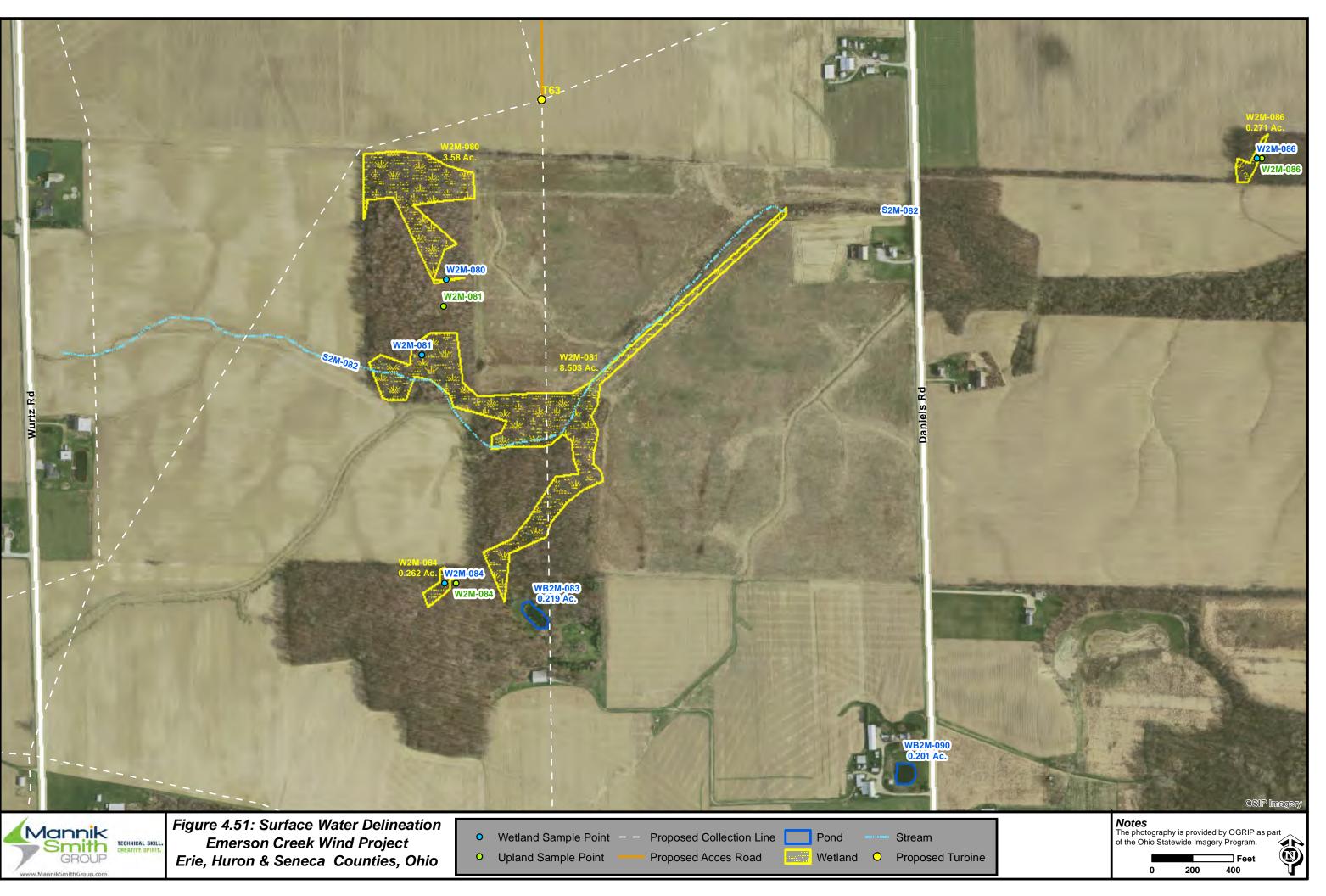


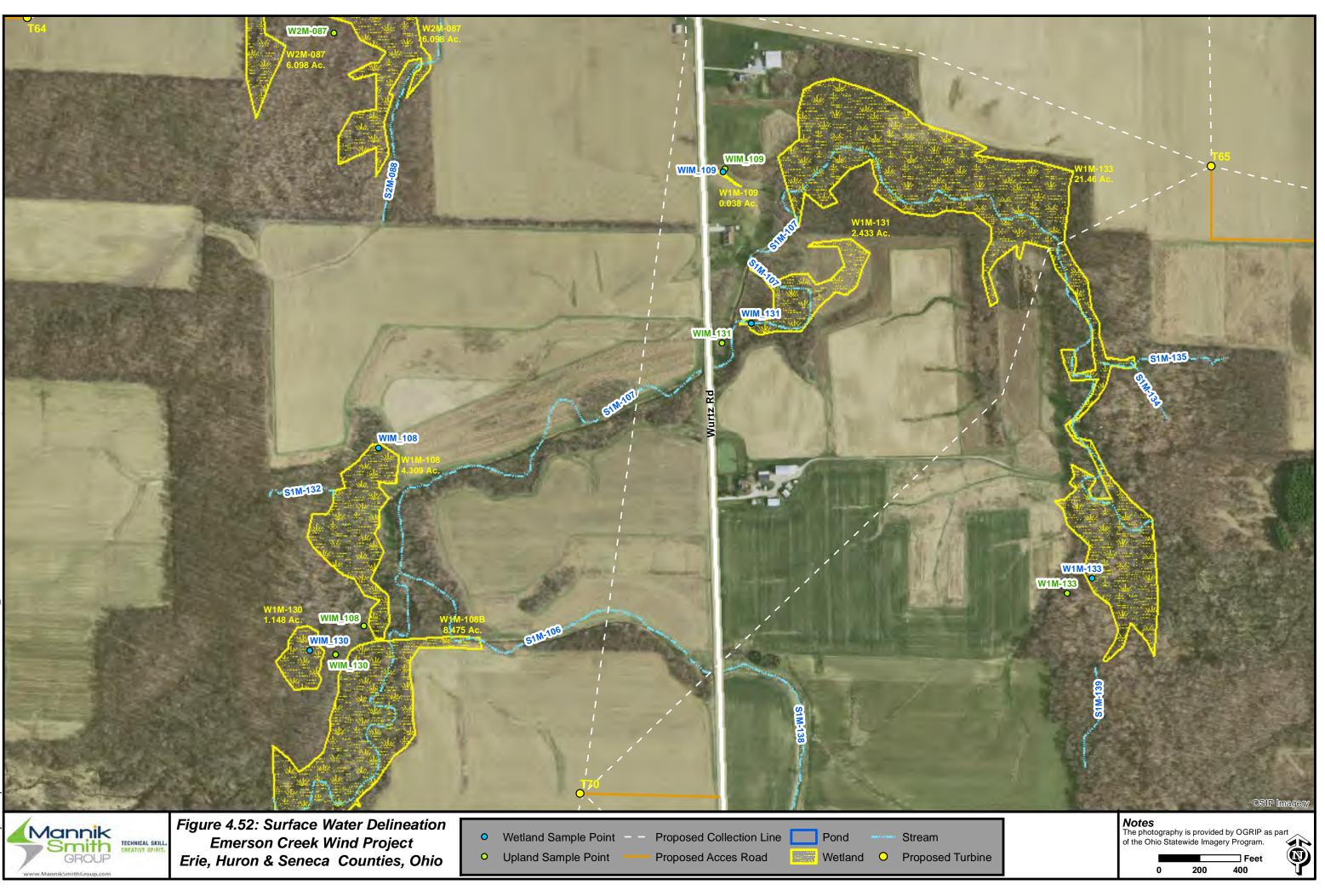


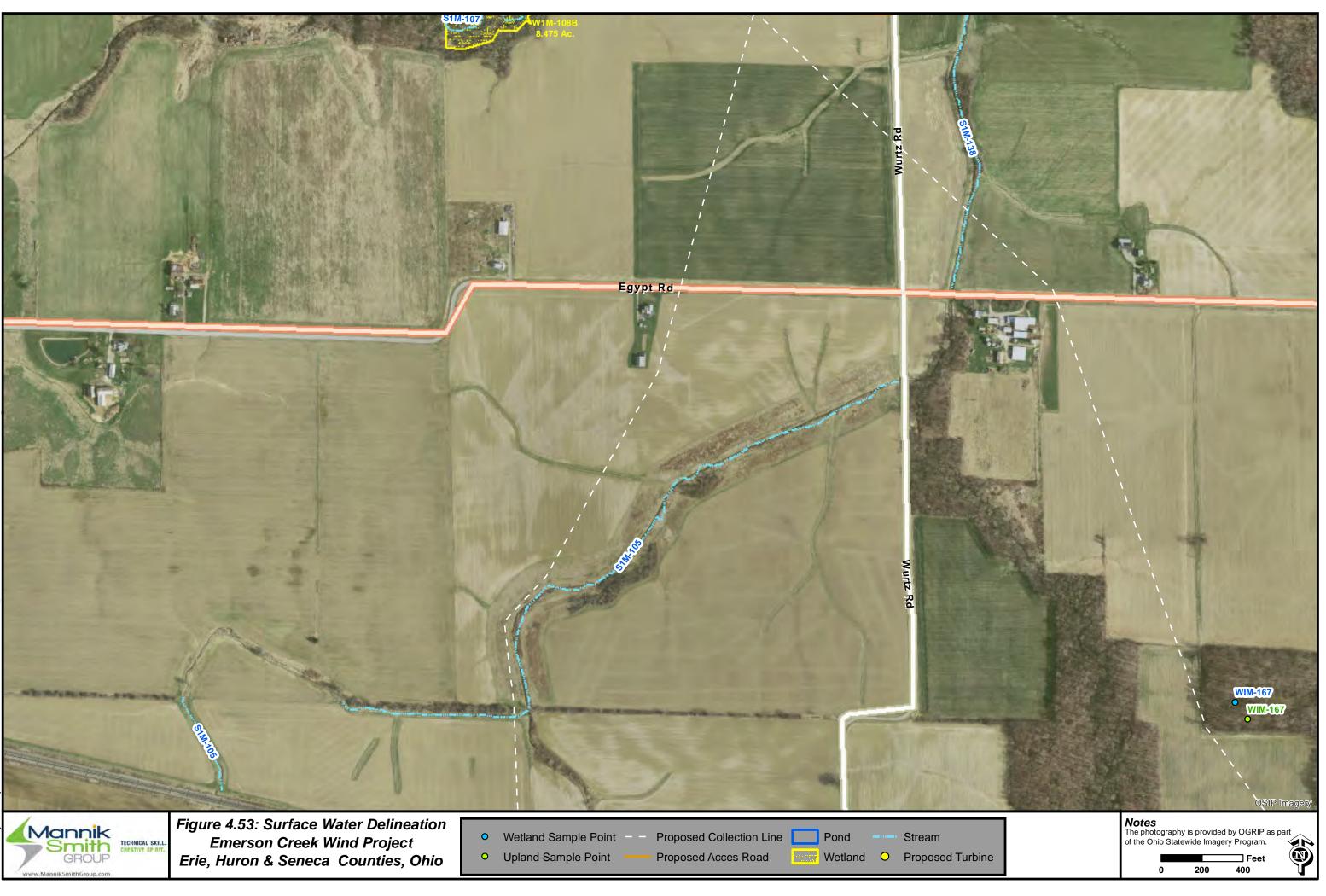


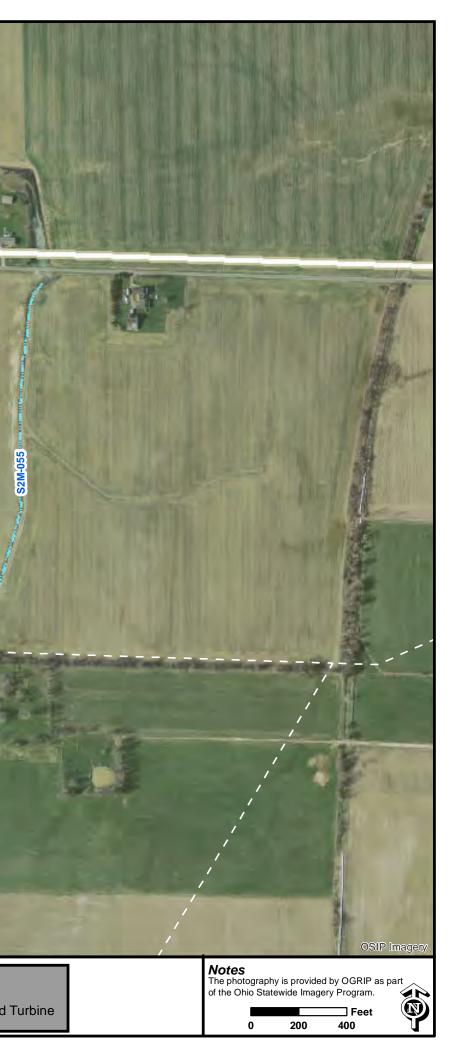


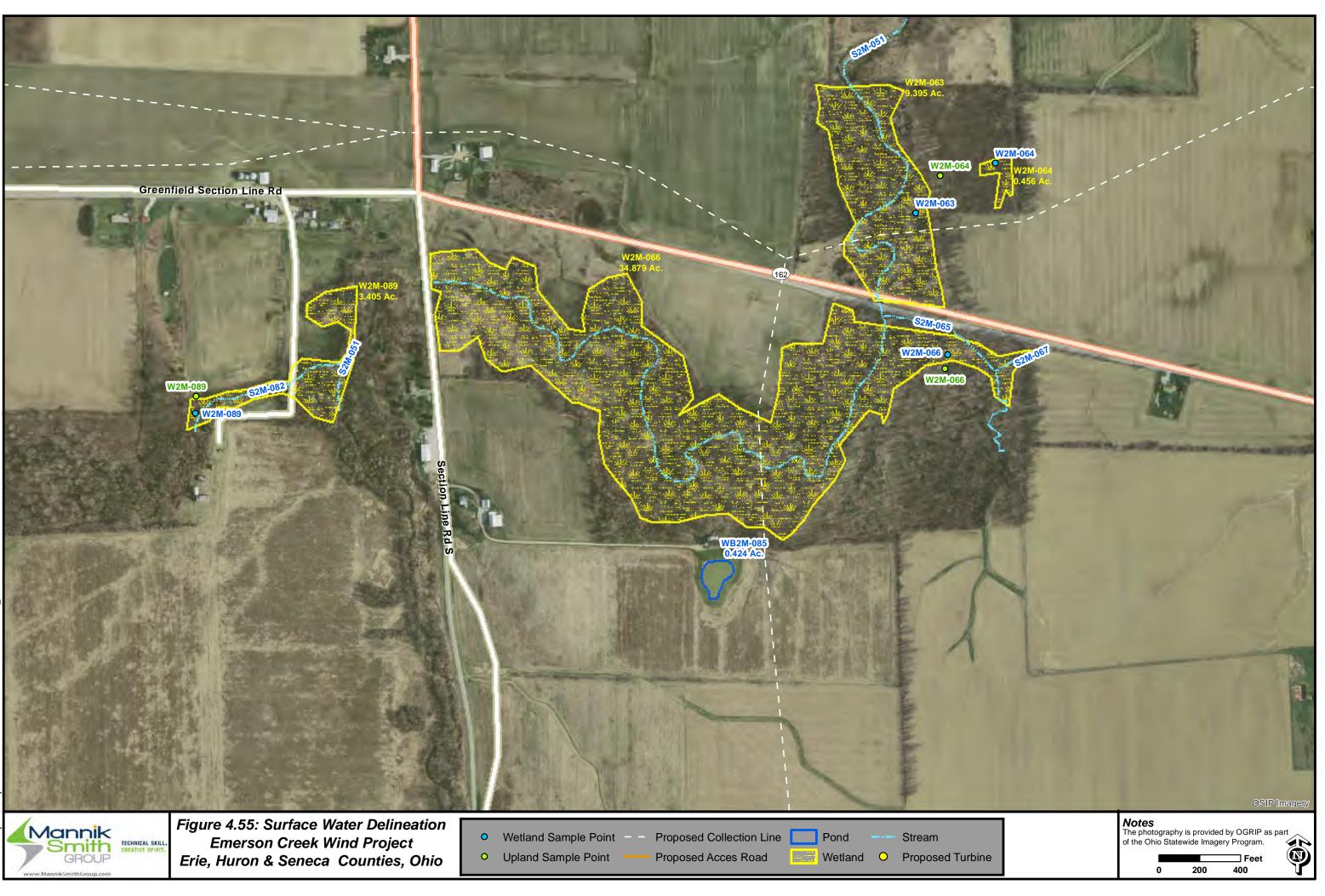


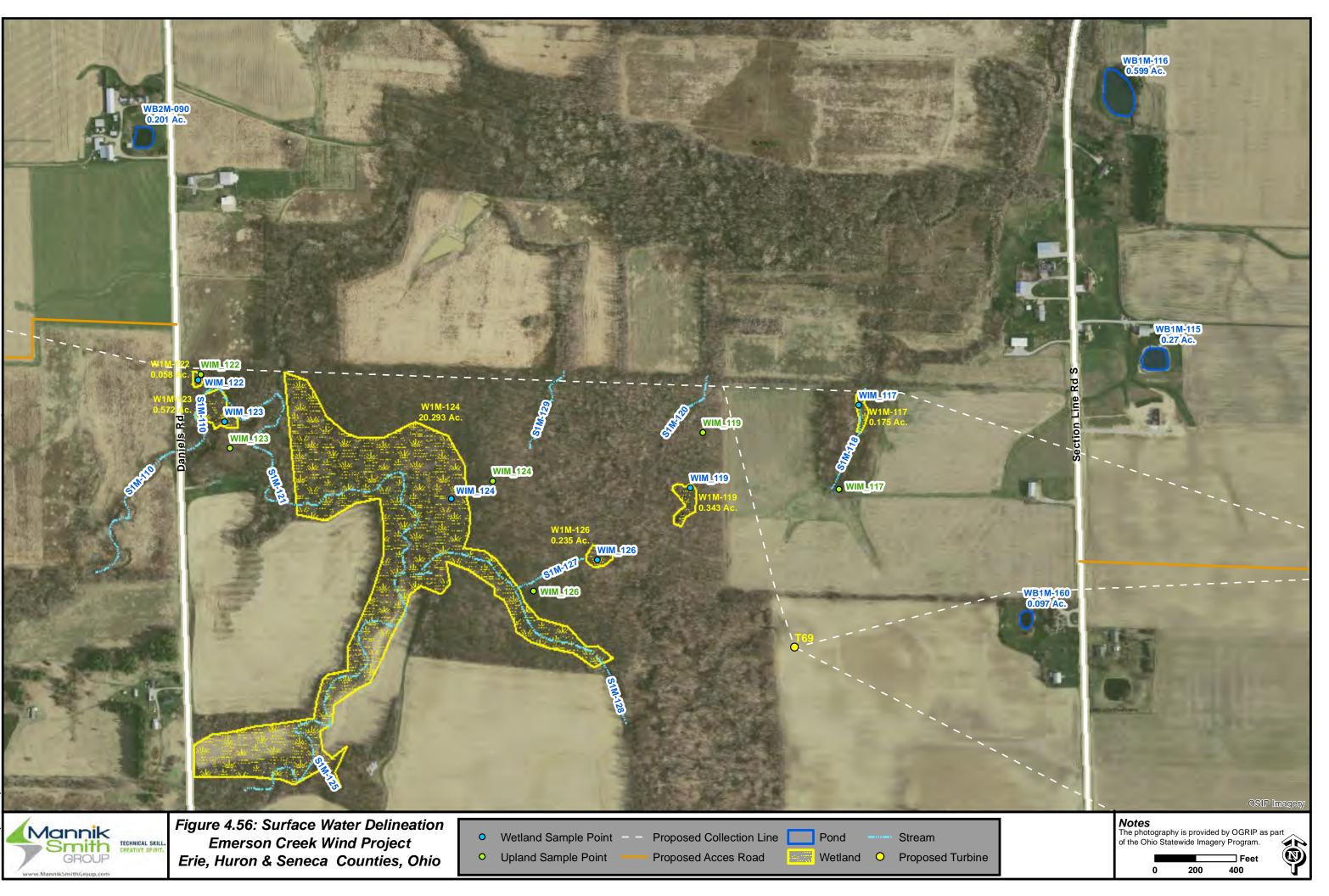


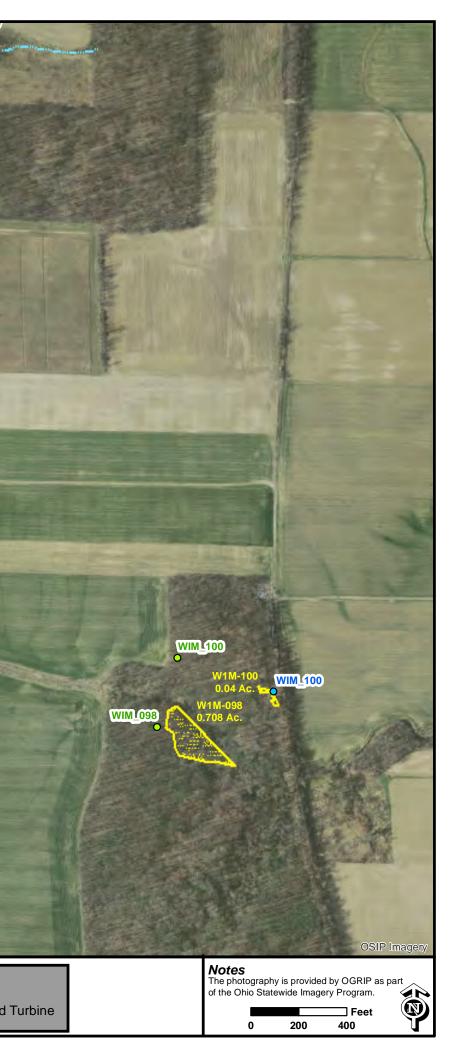


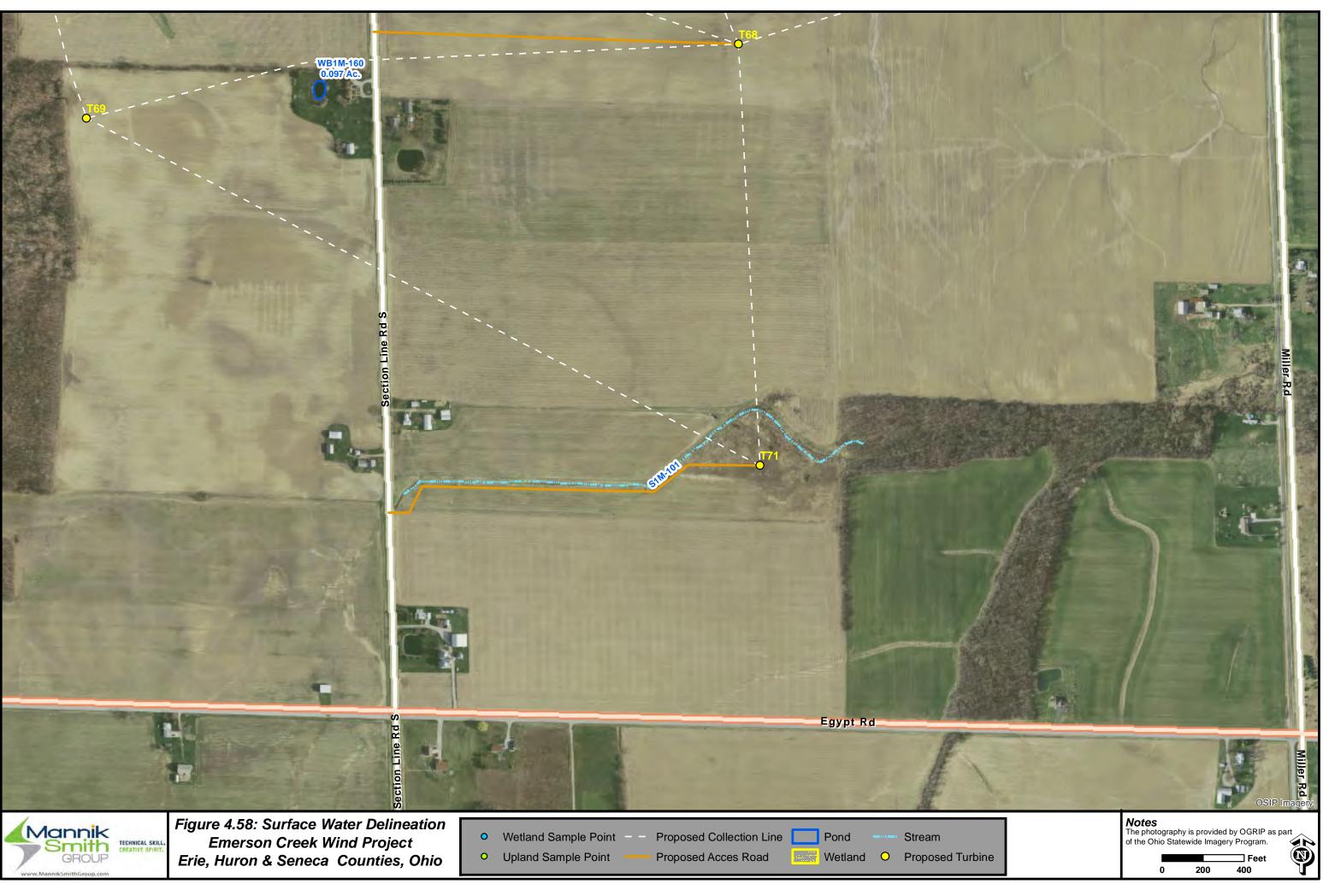


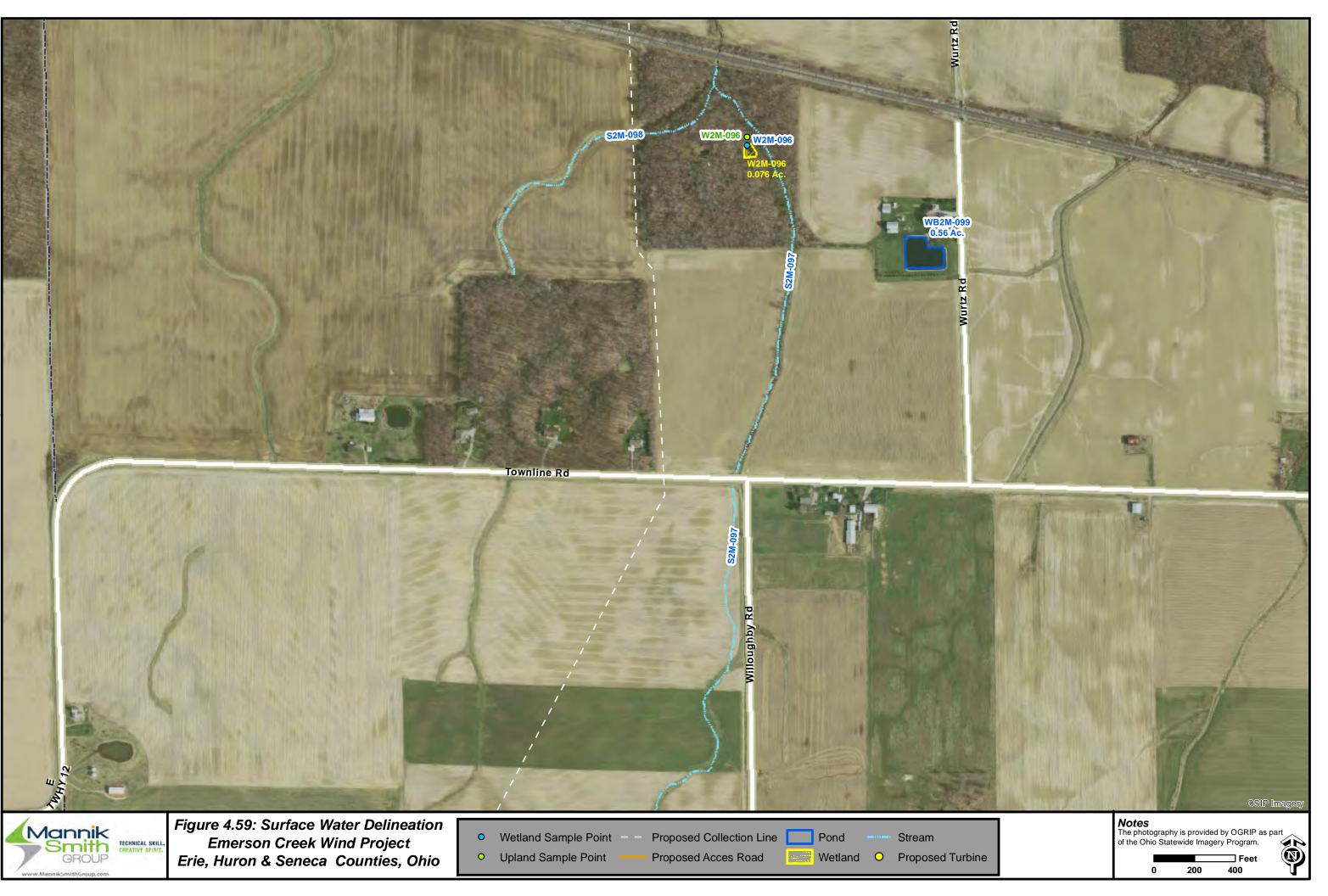


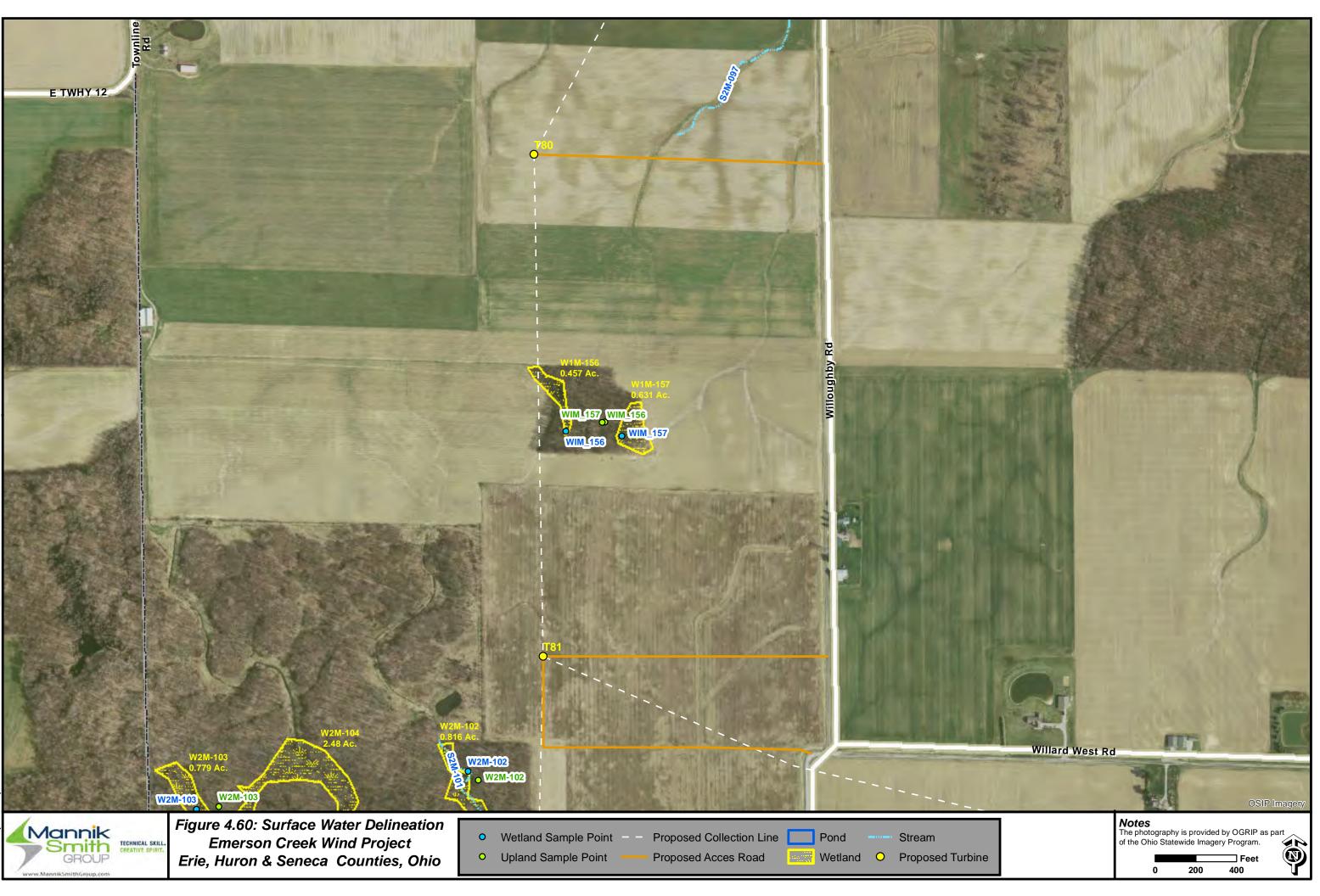


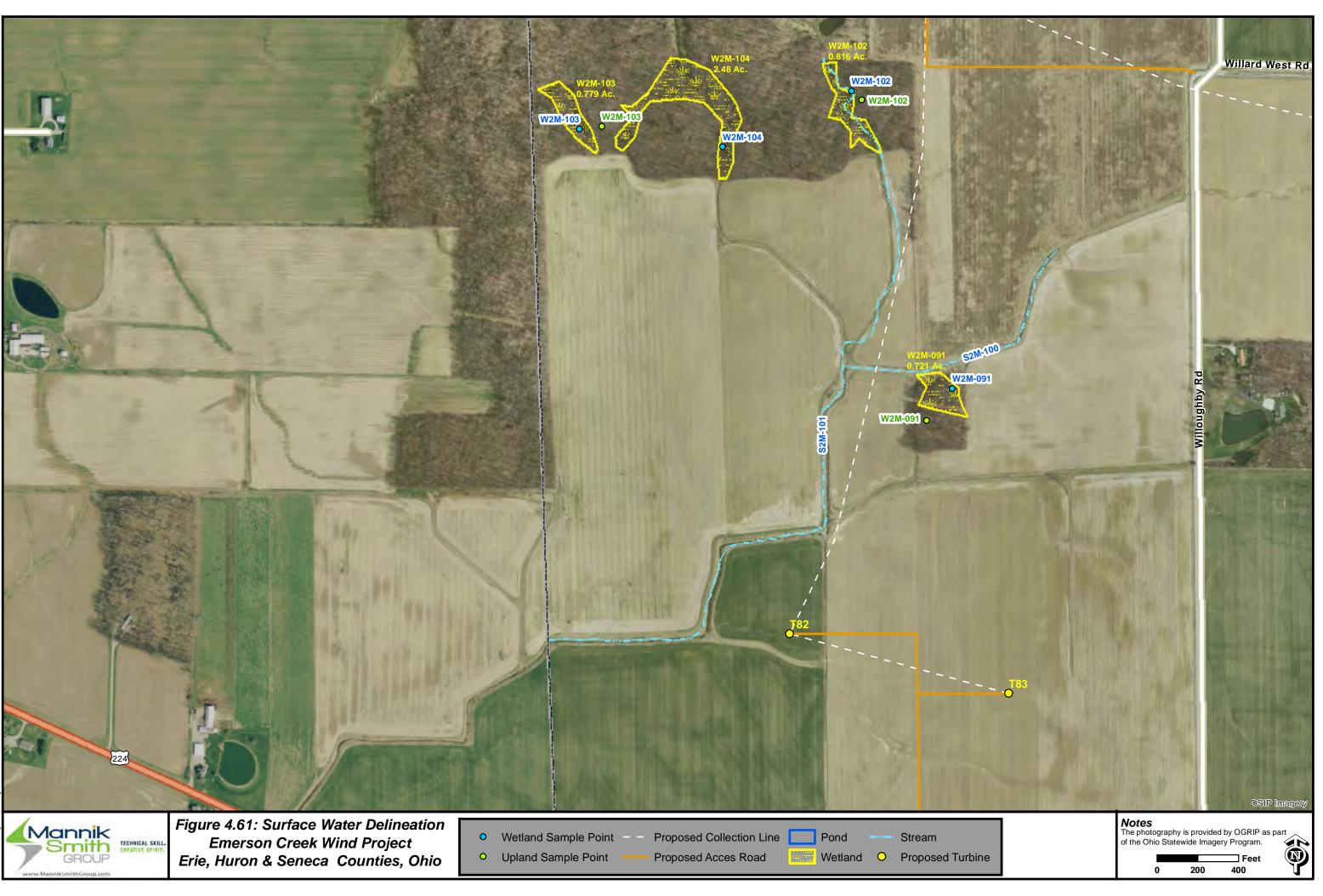


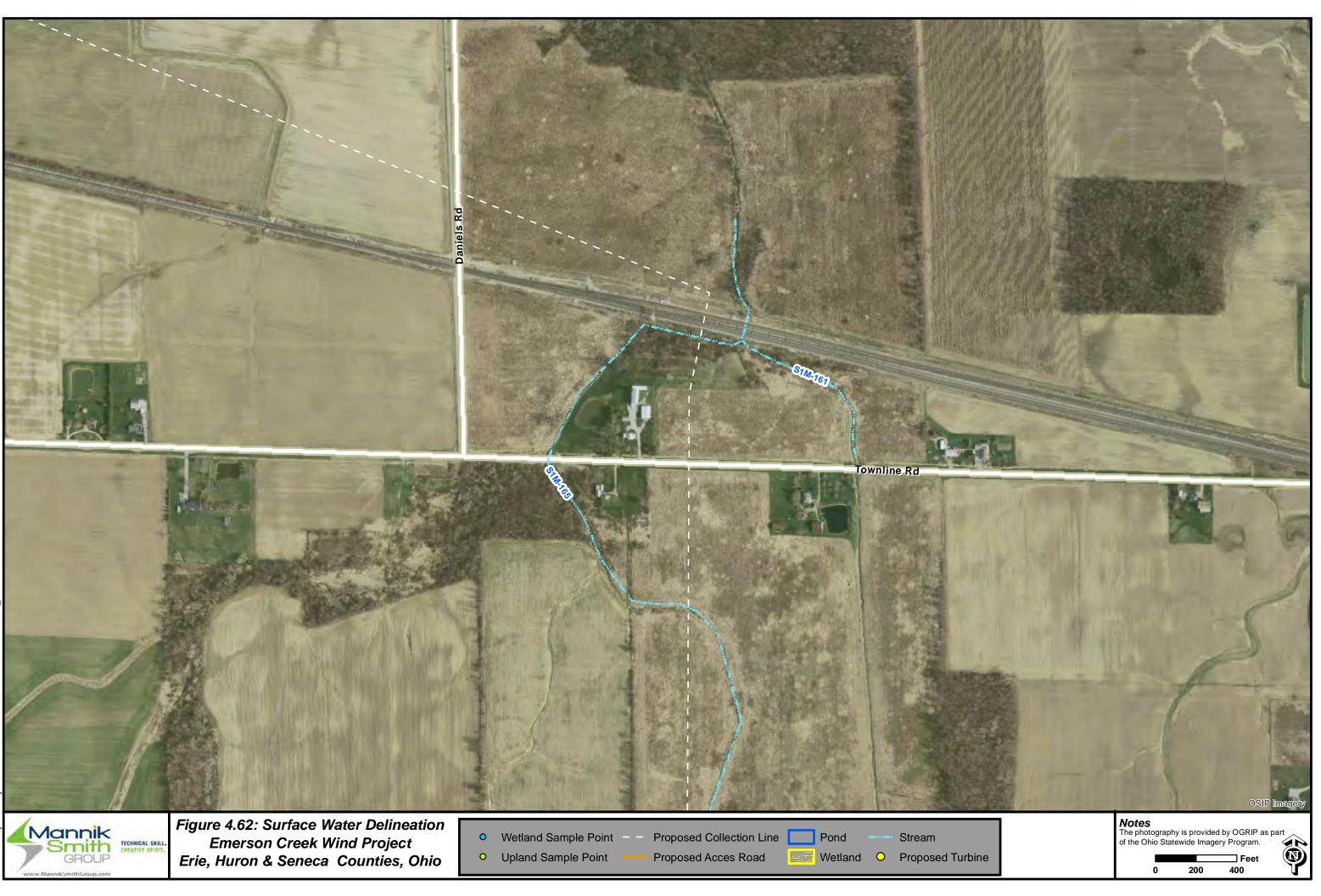

Scottwood Rd W2M-056) Cold Street of Lot W2M-056 W2M-064 W2M-064 W2M-063 32M-067 W2M-066 Figure 4.54: Surface Water Delineation Mannik Smith GROUP Proposed Collection Line • Wetland Sample Point Pond Stream Emerson Creek Wind Project TECHNICAL SKILL. • Upland Sample Point Wetland O Proposed Turbine Proposed Acces Road Erie, Huron & Seneca Counties, Ohio

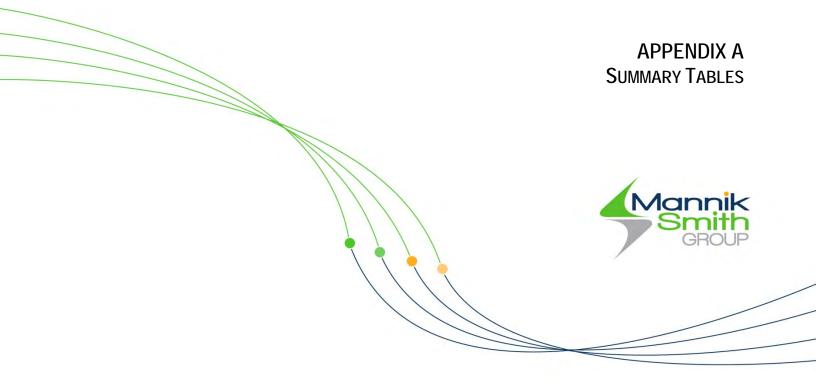












Wetland ID	Sample Point	Delineated Acreage within Study Area	Wetland Type ¹	ORAM Score	Wetland Category	Temporary Impacts (acres)	Permanent Impacts (acres)	Crossing Methodology	Potential Jurisdiction ²
W1M-005	W1M-005-SP	0.115	PEM	12	1	0	0		USACE
W1M-007	W1M-007-SP	0.185	PEM	11	1	0	0		USACE
W1M-008	W1M-008-SP	0.0377	PEM	10	1	0	0		USACE
W1M-027	W1M-027-SP	0.0255	PFO	59	2	0	0		USACE
W1M-028	W1M-028-SP	1.61	PSS	48	2	0	0		USACE
W1M-029	W1M-029-SP	0.518	PFO	59	2	0	0		USACE
W1M-030	W1M-030-SP	1.68	PFO	59	2	0	0		USACE
W1M-031	W1M-031-SP	0.891	PFO	59	2	0	0		USACE
W1M-032	W1M-032-SP	12.94	PFO	64	2 or 3	0.175	0	Trench	USACE
W1M-034	W1M-034-SP	0.0577	PEM	27	1	0	0		USACE
W1M-037	W1M-037-SP	0.13	PEM	16.5	1	0	0		USACE
W1M-038	W1M-038-SP	0.345	PEM	16.5	1	0	0		USACE
W1M-042	W1M-042-SP	2.06	PFO	28	1	0	0		USACE
W1M-043	W1M-043-SP	0.0648	PEM	17	1	0.012	0	Trench	USACE
W1M-044	W1M-044-SP	2.23	PFO	40	Modified 2	0	0		USACE
W1M-045	W1M-045-SP	1.33	PFO/PEM	38	Modified 2	0.075	0	Trench	USACE
W1M-046	W1M-046-SP	2.31	PFO/PEM	35	Modified 2	0	0		USACE
W1M-049	W1M-049-SP	0.153	PFO	47	2	0	0		USACE
W1M-050	W1M-050-SP	0.04	PEM	31	2	0	0		USACE
W1M-051	W1M-051-SP	1.704	PSS/PFO/PEM	48	2	0	0		USACE
W1M-052	W1M-052-SP	14	PFO	36	Modified 2	0.156	0.03	Bore	USACE
W1M-058	W1M-058-SP	2.347	PEM/PSS/PFO	33	2	0	0		USACE
W1M-059	W1M-059-SP	0.253	PFO	49	2	0	0		USACE
W1M-060	W1M-060-SP	0.976	PFO/PEM	35.5	Modified 2	0	0		USACE
W1M-061	W1M-061-SP	0.226	PFO	41	Modified 2	0	0		USACE
W1M-062	W1M-062-SP	0.0084	PFO	42	Modified 2	0	0		USACE
W1M-064	W1M-064-SP	0.0734	PFO	49	2	0	0		USACE
W1M-066	W1M-066-SP	0.0191	PFO	42	Modified 2	0	0		USACE
W1M-067	W1M-067-SP	0.284	PSS/PFO	27	1	0	0		USACE

Wetland ID	Sample Point	Delineated Acreage within Study Area	Wetland Type ¹	ORAM Score	Wetland Category	Temporary Impacts (acres)	Permanent Impacts (acres)	Crossing Methodology	Potential Jurisdiction ²
W1M-068	W1M-068-SP	0.158	PFO	39	Modified 2	0	0		USACE
W1M-069	W1M-069-SP	0.0694	PEM	13	1	0	0		USACE
W1M-070	W1M-070-SP	0.996	PFO	52.5	2	0	0		USACE
W1M-071	W1M-071-SP	0.0501	PFO	48	2	0	0		USACE
W1M-072	W1M-072-SP	0.0292	PFO	42	Modified 2	0	0		USACE
W1M-073	W1M-073-SP	0.0201	PFO	41	Modified 2	0	0		USACE
W1M-074	W1M-074-SP	0.0209	PFO	41	Modified 2	0	0		USACE
W1M-075	W1M-075-SP	0.031	PFO	41	Modified 2	0	0		USACE
W1M-076	W1M-076-SP	3.456	PFO	44.5	Modified 2	0.284	0	Trench (woods) / Bore (stream bed)	USACE
W1M-079/078	W1M-078-SP	1.107	PFO	49.5	Modified 2	0.033	0	Trench	USACE
W1M-079	W1M-079-SP	2.034	PFO/PEM	49.5	Modified 2	0	0		USACE
W1M-082	W1M-082-SP	0.384	PFO	52.5	2	0	0		USACE
W1M-084	W1M-084-SP	0.193	PFO	51	2	0	0		USACE
W1M-085	W1M-085-SP	0.039	PFO	51	2	0	0		USACE
W1M-086	W1M-086-SP	0.07	PFO	56	2	0	0		USACE
W1M-087	W1M-087-SP	0.1339	PFO	56	2	0	0		USACE
W1M-090	W1M-090-SP	0.574	PFO	36	Modified 2	0.025	0	Trench	USACE
W1M-092	W1M-092-SP	0.0149	PFO	41	Modified 2	0	0		USACE
W1M-093	W1M-093-SP	1.223	PFO	49	2	0	0		USACE
W1M-091/097	W1M-097-SP	11.3	PFO/PSS/PEM	46	2	0.577	0.142	Trench/Bore	USACE
W1M-098	W1M-098-SP	0.707	PFO	57	2	0	0		USACE
W1M-100	W1M-100-SP	0.04	PFO	51	2	0	0		USACE
W1M-102	W1M-102-SP	0.027	PEM	32	1 or 2 (Gray Zone)	0	0		USACE
W1M-103	W1M-103-SP	0.082	PFO	32	1 or 2 (Gray Zone)	0	0		USACE
W1M-104	W1M-104-SP	0.235	PFO	32	1 or 2 (Gray Zone)	0	0		USACE

Wetland ID	Sample Point	Delineated Acreage within Study Area	Wetland Type ¹	ORAM Score	Wetland Category	Temporary Impacts (acres)	Permanent Impacts (acres)	Crossing Methodology	Potential Jurisdiction ²
W1M-108	W1M-108-SP	12.7	PFO	51	2	0	0		USACE
W1M-109	W1M-109-SP	0.0384	PEM	7	1	0	0		USACE
W1M-111	W1M-111-SP	0.45	PFO	65	3	0	0		USACE
W1M-112	W1M-112-SP	0.579	PFO	68	3	0	0		USACE
W1M-113	W1M-113-SP	1.059	PFO	62	1 or 2 (Gray Zone)	0	0		USACE
W1M-114	W1M-114-SP	2.423	PFO	45	2	0	0		USACE
W1M-117	W1M-117-SP	0.174	PEM	35	Modified 2	0.013	0	Trench	USACE
W1M-119	W1M-119-SP	0.342	PFO	61	2 or 3	0	0		USACE
W1M-122	W1M-122-SP	0.057	PFO	40	Modified 2	0	0		USACE
W1M-123	W1M-123-SP	0.572	PFO	67	3	0	0		USACE
W1M-124	W1M-124-SP	20.29	PSS/PFO/PEM	61	2 or 3	0.004	0	Trench	USACE
W1M-126	W1M-126-SP	0.235	PFO	67	3	0	0		USACE
W1M-130	W1M-130-SP	1.148	PFO	77	3	0	0		USACE
W1M-131	W1M-131-SP	2.432	PSS/PEM/PFO	37	Modified 2	0	0		USACE
W1M-133	W1M-133-SP	21.45	PFO/PEM	68	3	0.048	0	Trench	USACE
W1M-137	W1M-137-SP	0.11	PEM	11	1	0.064	0	Trench	USACE
W1M-140	W1M-140-SP	0.691	PEM/PSS	33	1 or 2 (Gray Zone)	0.058	0	Trench	USACE
W1M-141	W1M-141-SP	1.112	PFO	47	2	0	0		USACE
W1M-144	W1M-144-SP	0.548	PEM	23	1	0	0		USACE
W1M-150	W1M-150-SP	13.04	PFO	46	2	0	0		USACE
W1M-152	W1M-152-SP	1.669	PEM/PSS	17	1	0.008	0	Trench	USACE
W1M-153	W1M-153-SP	0.199	PFO	34	1 or 2 (Gray Zone)	0	0		USACE
W1M-156	W1M-156-SP	0.457	PFO	45	2	0.045	0	Trench	USACE
W1M-157	W1M-157-SP	0.631	PFO	39	Modified 2	0	0		USACE
W1M-167	W1M-167-SP	0.268	PFO	33	1 or 2 (Gray Zone)	0	0		USACE

Wetland ID	Sample Point	Delineated Acreage within Study Area	Wetland Type ¹	ORAM Score	Wetland Category	Temporary Impacts (acres)	Permanent Impacts (acres)	Crossing Methodology	Potential Jurisdiction ²
W2M-001	W2M-001-SP	0.0158	PFO	15.5	1	0	0		USACE
W2M-003	W2M-003-SP	0.044	PFO	58	2	0	0		USACE
W2M-004	W2M-004-SP	0.122	PFO	35	Modified 2	0.014	0	Trench	USACE
W2M-006	W2M-006-SP	0.4356	PFO/PEM	46	2	0	0		USACE
W2M-008	W2M-008-SP	0.5428	PFO	47	2	0	0		USACE
W2M-009	W2M-009-SP	0.0436	PFO	41	Modified 2	0	0		USACE
W2M-011	W2M-011-SP	0.096	PEM	13	1	0	0		USACE
W2M-013	W2M-013-SP	23.71	PEM	24.5	1	0.980	0	Bore	USACE
W2M-015	W2M-015-SP	1.325	PFO	41	Modified 2	0	0		USACE
W2M-016	W2M-016-SP	0.0136	PEM	17.5	1	0	0		USACE
W2M-021	W2M-021-SP	36.83	PFO	81	3	1.665	0	Bore	USACE
W2M-024	W2M-024-SP	2.876	PFO	65	3	0	0		USACE
W2M-025	W2M-025-SP	3.78	PFO	65	3	0	0		USACE
W2M-026	W2M-026-SP	0.701	PFO	63	2 or 3	0	0		USACE
W2M-028	W2M-028-SP	17.73	PFO/PEM/PSS	45	2	0.108	0	Trench	USACE
W2M-031	W2M-031-SP	83.53	PFO	60	2 or 3	1.286	0	Bore	USACE
W2M-033	W2M-033-SP	7.18	PEM/PSS	27.5	1	0.131	0	Bore	USACE
W2M-034	W2M-034-SP	7.091	PFO/PEM	54.5	2	0	0		USACE
W2M-036	W2M-036-SP	31.96	PFO	72.5	3	0.398	0	Bore	USACE
W2M-039	W2M-039-SP	44.83	PFO	72.5	3	0.467	0	Bore	USACE
W2M-042	W2M-042-SP	6.537	PFO/PEM	52	2	0	0		USACE
W2M-044	W2M-044-SP	0.688	PEM	30	2	0	0		USACE
W2M-047	W2M-047-SP	9.51	PFO/PEM	46	2	0	0		USACE
W2M-048	W2M-048-SP	7.418	PFO/PEM	54	2	0	0		USACE
W2M-050	W2M-050-SP	5.21	PFO	57	2	0	0		USACE
W2M-052	W2M-052-SP	3.08	PFO/PSS/PEM	52.5	2	0.128	0	Trench (woods) / Bore (stream bed)	USACE
W2M-056	W2M-056-SP	1.422	PFO	67	3	0	0		USACE
W2M-057	W2M-057-SP	4.863	PFO	56	2	0	0		USACE

Wetland ID	Sample Point	Delineated Acreage within Study Area	Wetland Type ¹	ORAM Score	Wetland Category	Temporary Impacts (acres)	Permanent Impacts (acres)	Crossing Methodology	Potential Jurisdiction ²
W2M-058	W2M-058-SP	17.72	PFO	60	2 or 3	0	0		USACE
W2M-060	W2M-060-SP	0.0649	PSS	19	1	0	0		USACE
W2M-061	W2M-061-SP	0.0477	PEM	28	1	0	0		USACE
W2M-063	W2M-063-SP	9.39	PFO	73	3	0.249	0	Trench (woods) / Bore (stream bed)	USACE
W2M-064	W2M-064-SP	0.456	PFO	43	Modified 2	0	0		USACE
W2M-066	W2M-066-SP	34.89	PFO/PEM/PSS	68	3	0.311	0	Trench (woods) / Bore (stream bed)	USACE
W2M-069	W2M-069-SP	12.73	PFO	51.5	2		0		USACE
W2M-072	W2M-072-SP	0.0205	PFO	38	Modified 2	0.009	0	Trench	USACE
W2M-075	W2M-075-SP	5.589	PSS/PEM	34	2	0	0		USACE
W2M-077	W2M-077-SP	14.58	PFO	43.5	Modified 2	0	0		USACE
W2M-080	W2M-080-SP	3.579	PFO	48	2	0	0		USACE
W2M-081	W2M-081-SP	8.503	PFO	56	2	0.263	0	Bore	USACE
W2M-084	W2M-084-SP	0.262	PFO	46	2	0	0		USACE
W2M-086	W2M-086-SP	0.271	PFO	37	Modified 2	0	0		USACE
W2M-087	W2M-087-SP	6.097	PFO	48.5	2	0	0		USACE
W2M-089	W2M-089-SP	3.41	PFO	61	2 or 3	0	0		USACE
W2M-091	W2M-091-SP	0.721	PFO	30	2	0	0		USACE
W2M-095	W2M-095-SP	0.654	PFO	33.5	2	0	0		USACE
W2M-096	W2M-096-SP	0.075	PFO	42.5	Modified 2	0	0		USACE
W2M-102	W2M-102-SP	0.816	PFO	45	2	0	0		USACE
W2M-103	W2M-103-SP	0.778	PFO	44	Modified 2	0	0		USACE
W2M-104	W2M-104-SP	2.479	PFO	39	Modified 2	0	0		USACE

¹ Wetland community type: PEM=palustrine emergent; PSS= palustrine scrub/shrub; PFO=palustrine forested and POW=palustrine open water

² Potential jurisdiction based on current USACE guidance and policy

			Access	s Roads		Collectio	on Lines	
Stream ID	HHEI/QHEI Score	Tempora	ry Impacts	Permane	nt Impacts	Temporar	y Impacts	Crossing Methodology
		Linear feet	acres	Linear feet	acres	Linear feet	acres	-1
S1M-001-1	47.5	0	0.000	0	0.000	0	0.000	
S1M-001-2	26.5	0	0.000	0	0.000	0	0.000	
S1M-003-1	35	0	0.000	0	0.000	0	0.000	Bore
S1M-004-1	33	0	0.000	0	0.000	0	0.000	Bore
S1M-006-3	48	0	0.000	0	0.000	0	0.000	Bore
S1M-009	26	0	0.000	0	0.000	0	0.000	
S1M-010	14	0	0.000	0	0.000	0	0.000	
S1M-011-1	37	0	0.000	0	0.000	545	0.318	Trench
S1M-013-1	22	36	0.081	16	0.036	0	0.000	Bore/Trench
S1M-014-1	30	0	0.000	0	0.000	0	0.000	Bore
S1M-015	31	0	0.000	0	0.000	0	0.000	
S1M-017-1	32	0	0.000	0	0.000	0	0.000	
S1M-025-1	27	0	0.000	0	0.000	0	0.000	Bore
S1M-026-1	42	0	0.000	0	0.000	0	0.000	Bore
S1M-033-1	30	0	0.000	0	0.000	0	0.000	
S1M-036	17	0	0.000	0	0.000	0	0.000	Bore
S1M-039-1	38.5	0	0.000	0	0.000	0	0.000	
S1M-039-2	64	0	0.000	0	0.000	0	0.000	
S1M-040	59	0	0.000	0	0.000	0	0.000	Bore
S1M-041	42	0	0.000	0	0.000	0	0.000	Bore
S1M-047	14	0	0.000	0	0.000	0	0.000	
S1M-048	12	0	0.000	0	0.000	0	0.000	
S1M-053	50.5	41	0.023	18	0.010	0	0.000	Bore/Trench
S1M-054	30	0	0.000	0	0.000	0	0.000	
S1M-055	58	72	0.040	32	0.018	0	0.000	Bore/Trench
S1M-056	37	0	0.000	0	0.000	0	0.000	
S1M-057	39	0	0.000	0	0.000	0	0.000	
S1M-063	21	0	0.000	0	0.000	0	0.000	
S1M-065	67.5	0	0.000	0	0.000	0	0.000	Bore
S1M-077	52.25	0	0.000	0	0.000	0	0.000	Bore
S1M-080	57	0	0.000	0	0.000	0	0.000	
S1M-083	69	0	0.000	0	0.000	0	0.000	Bore
S1M-089	22	0	0.000	0	0.000	0	0.000	Bore
S1M-099	65	0	0.000	0	0.000	0	0.000	

			Access	Roads		Collectio	on Lines	
Stream ID	HHEI/QHEI Score	Tempora	ry Impacts	Permaner	nt Impacts	Temporary	y Impacts	Crossing Methodology
		Linear feet	acres	Linear feet	acres	Linear feet	acres	
S1M-101	45	0	0.000	0	0.000	0	0.000	Bore
S1M-105	41	0	0.000	0	0.000	0	0.000	Bore
S1M-106	57.5	0	0.000	0	0.000	0	0.000	Bore
S1M-107	53	0	0.000	0	0.000	0	0.000	Bore
S1M-110	62	0	0.000	0	0.000	0	0.000	
S1M-118	16	0	0.000	0	0.000	0	0.000	Bore
S1M-120	44	0	0.000	0	0.000	0	0.000	Bore
S1M-121	66.5	0	0.000	0	0.000	0	0.000	
S1M-125	32	0	0.000	0	0.000	0	0.000	Ī
S1M-127	39	0	0.000	0	0.000	0	0.000	
S1M-128	52	0	0.000	0	0.000	0	0.000	
S1M-129	37	0	0.000	0	0.000	0	0.000	Bore
S1M-132	32	0	0.000	0	0.000	0	0.000	
S1M-134	15	0	0.000	0	0.000	0	0.000	
S1M-135	26	0	0.000	0	0.000	0	0.000	
S1M-136	29	0	0.000	0	0.000	0	0.000	
S1M-138	42	0	0.000	0	0.000	0	0.000	Bore
S1M-139	43	0	0.000	0	0.000	0	0.000	
S1M-142	49	0	0.000	0	0.000	0	0.000	Bore
S1M-143	48	39	0.022	17	0.010	0	0.000	Bore/Trench
S1M-145	57	0	0.000	0	0.000	0	0.000	Bore
S1M-146	42	0	0.000	0	0.000	0	0.000	
S1M-147	62	37	0.021	16	0.009	0	0.000	Bore/Trench
S1M-149	48	0	0.000	0	0.000	0	0.000	Bore
S1M-151	37	0	0.000	0	0.000	0	0.000	
S1M-154	59	0	0.000	0	0.000	0	0.000	
S1M-155	46	0	0.000	0	0.000	0	0.000	
S1M-159	33	0	0.000	16	0.009	0	0.000	Bore/Trench
S1M-161	42	0	0.000	0	0.000	0	0.000	
S1M-162	62	0	0.000	0	0.000	0	0.000	Bore
S1M-163	53	0	0.000	0	0.000	0	0.000	
S1M-165	70	0	0.000	0	0.000	0	0.000	Bore
S1M-166	50	0	0.000	0	0.000	0	0.000	Bore
S1M-168	33	0	0.000	0	0.000	0	0.000	

			Access	s Roads		Collectio		
Stream ID	HHEI/QHEI Score	Tempora	ry Impacts	Permane	nt Impacts	Temporar	y Impacts	Crossing Methodology
		Linear feet	acres	Linear feet	acres	Linear feet	acres	
S1M-169	44	0	0.000	0	0.000	0	0.000	
S2M-002	40	0	0.000	0	0.000	0	0.000	Bore
S2M-005	54	0	0.000	0	0.000	0	0.000	
S2M-007	46	36	0.025	16	0.009	0	0.000	Bore/Trench
S2M-012	21	0	0.000	0	0.000	0	0.000	Bore
S2M-014	51	0	0.000	0	0.000	0	0.000	
S2M-017	50	36	0.021	16	0.009	0	0.000	Trench
S2M-018	36	0	0.000	0	0.000	0	0.000	
S2M-019	43	0	0.000	0	0.000	0	0.000	Bore
S2M-020	51	0	0.000	0	0.000	0	0.000	Bore
S2M-022	32	0	0.000	0	0.000	0	0.000	
S2M-023	47.5	0	0.000	0	0.000	0	0.000	Bore
S2M-027	27	0	0.000	0	0.000	0	0.000	
S2M-030	56	0	0.000	0	0.000	0	0.000	
S2M-032	54	0	0.000	0	0.000	0	0.000	Bore
S2M-035	35	0	0.000	0	0.000	0	0.000	Bore
S2M-037	83	0	0.000	0	0.000	0	0.000	Bore
S2M-038	39	0	0.000	0	0.000	0	0.000	Bore
S2M-040	61	0	0.000	0	0.000	0	0.000	
S2M-041	60	0	0.000	0	0.000	0	0.000	
S2M-043	66	0	0.000	0	0.000	0	0.000	
S2M-049	34	0	0.000	0	0.000	0	0.000	
S2M-051	75	0	0.000	0	0.000	0	0.000	Bore
S2M-053	67	0	0.000	0	0.000	0	0.000	Bore
S2M-054	34	0	0.000	0	0.000	0	0.000	
S2M-055	67	0	0.000	0	0.000	0	0.000	Bore
S2M-059	59	36	0.021	16	0.009	0	0.000	Culvert
S2M-062	55	51	0.029	22	0.013	0	0.000	Culvert/HDD
S2M-065	55	0	0.000	0	0.000	0	0.000	
S2M-067	31	0	0.000	0	0.000	0	0.000	
S2M-068	53	0	0.000	0	0.000	0	0.000	
S2M-070	56	0	0.000	0	0.000	0	0.000	Bore
S2M-073	69	52	0.030	23	0.013	0	0.000	Culvert
S2M-074	54	0	0.000	0	0.000	0	0.000	

			Access	s Roads		Collecti	on Lines	
Stream ID	HHEI/QHEI Score	Tempora	ry Impacts	Permane	nt Impacts	Tempora	y Impacts	Crossing Methodology
		Linear feet	acres	Linear feet	acres	Linear feet	acres	1
S2M-076	64	0	0.000	0	0.000	0	0.000	
S2M-078	74	0	0.000	0	0.000	0	0.000	
S2M-079	58	0	0.000	0	0.000	0	0.000	
S2M-082	64	0	0.000	0	0.000	0	0.000	Bore
S2M-088	37	0	0.000	0	0.000	0	0.000	
S2M-092	48	0	0.000	0	0.000	0	0.000	Bore
S2M-093	54	0	0.000	0	0.000	0	0.000	Bore
S2M-094	49	0	0.000	0	0.000	0	0.000	
S2M-097	69	0	0.000	0	0.000	0	0.000	
S2M-098	49	0	0.000	0	0.000	0	0.000	Bore
S2M-100	59	0	0.000	0	0.000	0	0.000	Bore
S2M-101	52	0	0.000	0	0.000	0	0.000	Bore
S2M-105	47	0	0.000	0	0.000	0	0.000	

Waterbody ID	Туре	Temporary Impacts (acres)	Permanent Impacts (acres)	Crossing Methodology
WB1M-012	Constructed	0	0	
WB1M-016	Constructed	0	0	
WB1M-018	Constructed	0	0	
WB1M-019	Constructed	0	0	
WB1M-020	Constructed	0	0	
WB1M-021	Constructed	0	0	
WB1M-022	Constructed	0	0	
WB1M-023	Constructed	0	0	
WB1M-024	Constructed	0	0	
WB1M-035	Constructed	0	0	
WB1M-081	Constructed	0	0	
WB1M-088	Constructed	0	0	
WB1M-115	Constructed	0	0	
WB1M-116	Constructed	0	0	
WB1M-148	Constructed	0	0	
WB1M-158	Constructed	0	0	
WB2M-029	Constructed	0	0	
WB2M-045	Constructed	0	0	
WB2M-046	Constructed	0	0	
WB2M-071	Constructed	0	0	
WB2M-083	Constructed	0.001	0	Trench
WB2M-085	Constructed	0	0	
WB2M-090	Constructed	0	0	
WB2M-099	Constructed	0	0	

WETLAND DETERMINATION DATA FORM – Midwest Region

Project/Site: A3820001/EMERSON C	REEK	WIND F	ARMS	City/Cour	nty: <u>NORW</u>	Sampling Date:	9/12/2018	
Applicant/Owner: <u>APEX CLEAN ENE</u>	RGY					State: OH	Sampling Point:	W1M-005
Investigator(s): J. FREELAND, A. PE	TERS			Section,	Township, Ra	ange: T4N R23W		
Landform (hillslope, terrace, etc.): SIDES	SLOPES	3			_ Local relief	(concave, convex, none):	CONVEX	
Slope (%): 0 Lat: 41.26331	879			Long: <u>-8</u>	2.7382633		Datum:	
Soil Map Unit Name:						NWI classific	ation:	
Are climatic / hydrologic conditions on the	site typic	al for this	s time of ye	ar? Yes	<u> </u>	(If no, explain in R	emarks.)	
Are Vegetation <u>X</u> , Soil, or Hy	/drology	s	ignificantly	disturbed	Are	"Normal Circumstances"	oresent? Yes 🚬	×Νο
Are Vegetation, Soil, or Hy	drology	r	aturally pro	blematic	? (lf n	eeded, explain any answe	ers in Remarks.)	
SUMMARY OF FINDINGS - Att	ach sit	e map	showing	sampl	ing point l	locations, transects	, important f	eatures, etc.
Hydrophytic Vegetation Present?	Yes	N	• X					
Hydric Soil Present?	Yes	X N	o		the Sampleo			
Wetland Hydrology Present?	Yes	<u>Х N</u>	o	wi	ithin a Wetla	nd? Yes 🔨	No	_
Remarks:								
WETLAND W1M-005. SURROUN	DED BA	AGRIC	ULTURA	LFARN	ILAND, HA	S BEEN PLOWED		
VEGETATION – Use scientific na	imes of	plants						
Tree Stratum (Plot size:)		Absolute % Cover		ant Indicator s? Status	Dominance Test work		
1			<u>_/0 COver</u>	opecies		Number of Dominant S That Are OBL, FACW,		(A)
2								(1)
3						Total Number of Domin Species Across All Stra	0	(B)
4.						·		(2)
5						Percent of Dominant S That Are OBL, FACW,		(A/B)
				= Total C	Cover			
Sapling/Shrub Stratum (Plot size:						Prevalence Index wor		hi hu
1						<u> </u>	x 1 = _0	bly by:
2						FACW species 10	x 2 = 20)
3						FAC species 0	x 3 = 0	
5.						FACU species 93	x 4 = 37	2
				= Total C	 Cover	UPL species 0	x 5 = 0	
Herb Stratum (Plot size:)					Column Totals: 103	(A) 39	
1. Abutilon theophrasti			40	_X	FACU		2.04	
2. Sida spinosa			40	Χ	_ FACU	Prevalence Index		
3. Cyperus esculentus 4. BRISTLE GRASS SP???			- <u>10</u>		FACW	Hydrophytic Vegetatio		
4. Glycine max			- 8		FACU	1 - Rapid Test for l 2 - Dominance Tes		etation
6. Hibiscus trionum			- 5		- FACU	3 - Prevalence Inde		
7. XANTHIUM DINERDE?					_ FACO	4 - Morphological A		
8. Amaranthus retroflexus			- 5		FACU		s or on a separate	
			- <u> </u>			Problematic Hydro	phytic Vegetation	¹ (Explain)
9 10.								
10			116	= Total C		¹ Indicators of hydric so		
Woody Vine Stratum (Plot size:		_)		rotar c		be present, unless dist	urbed or problem	atic.
1						Hydrophytic		
2						Vegetation Present? Ye	sNo_	×
				= Total C	Cover	resentr fe	3 NU	<u> </u>
Remarks: (Include photo numbers here	or on a s	eparate	sheet.)					

L

SOIL

0-8 10YR 3/1 100 sil 8-12 10YR 4/2 90 10YR 5/4 10 C M sil 12-18 10YR 5/2 60 7.5YR 5/6 40 C M, PL cl 12-18 10YR 5/2 60 7.5YR 5/6 40 C M, PL cl 12-18 10YR 5/2 60 7.5YR 5/6 40 C M, PL cl 12-18 10YR 5/2 60 7.5YR 5/6 40 C M, PL cl 12-18 10YR 5/2 60 7.5YR 5/6 40 C M, PL cl 12-18 10YR 5/2 60 7.5YR 5/6 40 C M, PL cl 12-18 10YR 5/2 60 7.5YR 5/6 40 C M, PL cl 12-18 10YR 5/2 60 7.5YR 5/6 40 C M, PL cl 12-18 10x16 51 53 53 53 54 5	Depth (inches)	Matrix Color (moist)	%	Color (moist)	ox Feature %	Type ¹	Loc ²	Texture	Remarks
8-12 10YR 4/2 90 10YR 5/4 10 C M sil 12:18 10YR 5/2 60 7.5YR 5/6 40 C M, PL cl 12:18 10YR 5/2 60 7.5YR 5/6 40 C M, PL cl 12:18 10YR 5/2 60 7.5YR 5/6 40 C M, PL cl 12:19 C:Concentration, PL=Pore Lining, M=Matrix. Indicators: Indicators: Indicators: Histosol (A1)					70				Remains
10YR 5/2 60 7.5YR 5/6 40 C M, PL cl Type:				10YR 5/4	10	- <u></u>			
Type: C=Concentration, D=Depletion, RM=Reduced Matrix, MS=Masked Sand Grains. ² Location: PL=Pore Lining, M=Matrix. Hidicators: Histosol (A1)									
Hydric Soil Indicators: Indicators for Problematic Hydric Soils*: Histic Epigedon (A2) Sandy Redox (S5) Dark Surface (S7) Black Histic (A3) Stripped Matrix (S6) Iron-Manganese Masses (F12) Hydrogen Suffide (A4) Loamy Mucky Mineral (F1) Very Shallow Dark Surface (TF12) Stratified Layers (A5) Loamy Kucky Mineral (F1) Very Shallow Dark Surface (TF12) Depleted Below Dark Surface (A11) Redox Dark Surface (F6) Thick Dark Surface (A12) Depleted Bark Surface (F7) Sandy Mucky Mineral (S1) Redox Depressions (F8) wetland hydrology must be present, unless disturbed or problematic. Sastrictive Layer (If observed): Type:	12-18	10YR 5/2		7.5YR 5/6	_ <u>40</u>		M, PL		
Hydric Soil Indicators: Indicators for Problematic Hydric Soils*: Histic Epigedon (A2) Sandy Redox (S5) Dark Surface (S7) Black Histic (A3) Stripped Matrix (S6) Iron-Manganese Masses (F12) Hydrogen Suffide (A4) Loamy Mucky Mineral (F1) Very Shallow Dark Surface (TF12) Stratified Layers (A5) Loamy Kucky Mineral (F1) Very Shallow Dark Surface (TF12) Depleted Below Dark Surface (A11) Redox Dark Surface (F6) Thick Dark Surface (A12) Depleted Bark Surface (F7) Sandy Mucky Mineral (S1) Redox Depressions (F8) wetland hydrology must be present, unless disturbed or problematic. Sastrictive Layer (If observed): Type:									
Hydric Soil Indicators: Indicators for Problematic Hydric Soils*: Histic Epigedon (A2) Sandy Redox (S5) Dark Surface (S7) Black Histic (A3) Stripped Matrix (S6) Iron-Manganese Masses (F12) Hydrogen Suffide (A4) Loamy Mucky Mineral (F1) Very Shallow Dark Surface (TF12) Stratified Layers (A5) Loamy Kucky Mineral (F1) Very Shallow Dark Surface (TF12) Depleted Below Dark Surface (A11) Redox Dark Surface (F6) Thick Dark Surface (A12) Depleted Bark Surface (F7) Sandy Mucky Mineral (S1) Redox Depressions (F8) wetland hydrology must be present, unless disturbed or problematic. Sastrictive Layer (If observed): Type:									
Histosol (A1)			oletion, RM	I=Reduced Matrix, M	S=Maske	d Sand Gr	ains.		
									-
Black Histic (A3) Stripped Matrix (S6) Iron-Manganese Masses (F12) Hydrogen Sulfide (A4) Loamy Mucky Mineral (F1) Very Shallow Dark Surface (TF12) Stratified Layers (A5) Loamy Gleyed Matrix (F2) Other (Explain in Remarks) 2 cm Muck (A10) Epeleted Matrix (F3) Other (Explain in Remarks) Depleted Dark Surface (A11) Redox Dark Surface (F6) Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. S cm Mucky Peat or Peat (S3) Redox Depressions (F8) wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed): Type:		. ,							
Stratified Layers (A5) Loamy Gleyed Matrix (F2) Other (Explain in Remarks) 2 cm Muck (A10) X Depleted Matrix (F3) Depleted Below Dark Surface (A11) Redox Dark Surface (F6) Thick Dark Surface (A12) Depleted Dark Surface (F7) ³ Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Sandy Mucky Mineral (S1) Redox Dark Surface (F7) *Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if Observed): Type:		()				,			
□ Depleted Below Dark Surface (A11)	Stratifie	ed Layers (A5)		Loamy	Gleyed N	latrix (F2)			
		· ,				. ,			
Sandy Mucky Mineral (S1) Redox Depressions (F8) wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed):			e (A11)			· ,		3	
		, ,				,)		
Restrictive Layer (if observed): Type:		• • • •	3)		Depressio	5115 (FO)			
Pepth (inches): Hydric Soil Present? Yes No Remarks: Primary Indicators: Primary Indicators (minimum of one is required: check all that apply) Secondary Indicators (minimum of two required: Matheware, (Matheware, (Matheware, Matheware, (Matheware, Matheware, Mathe									
Pepth (inches): Hydric Soil Present? Yes No Remarks: Primary Indicators: Primary Indicators (minimum of one is required: check all that apply) Secondary Indicators (minimum of two required: Matheware, (Matheware, (Matheware, Matheware, (Matheware, Matheware, Mathe	Type:								×
YDROLOGY Wetland Hydrology Indicators: Primary Indicators (minimum of one is required: check all that apply) Secondary Indicators (minimum of two required) Surface Water (A1) Water-Stained Leaves (B9) Surface Soil Cracks (B6) High Water Table (A2) Aquatic Fauna (B13) Drainage Patterns (B10) Saturation (A3) True Aquatic Plants (B14) Dry-Season Water Table (C2) Water Marks (B1) Hydrogen Sulfide Odor (C1) Crayfish Burrows (C8) Sediment Deposits (B2) Oxidized Rhizospheres on Living Roots (C3) Saturation Visible on Aerial Imagery (C9) Drift Deposits (B3) Presence of Reduced Iron (C4) Stunted or Stressed Plants (D1) Algal Mat or Crust (B4) Recent Iron Reduction in Tilled Soils (C6) Geomorphic Position (D2) Iron Deposits (B5) Thin Muck Surface (C7) K FAC-Neutral Test (D5) Inundation Visible on Aerial Imagery (B7) Gauge or Well Data (D9) Sparsely Vegetated Concave Surface (B8) Other (Explain in Remarks)								Hydric Soil Pre	esent? Yes X No
Wetland Hydrology Indicators: Primary Indicators (minimum of one is required: check all that apply) Secondary Indicators (minimum of two required) Surface Water (A1) Water-Stained Leaves (B9) Surface Soil Cracks (B6) High Water Table (A2) Aquatic Fauna (B13) Drainage Patterns (B10) Saturation (A3) True Aquatic Plants (B14) Dry-Season Water Table (C2) Water Marks (B1) Hydrogen Sulfide Odor (C1) Crayfish Burrows (C8) Sediment Deposits (B2) Oxidized Rhizospheres on Living Roots (C3) X Saturation Visible on Aerial Imagery (C9) Infit Deposits (B3) Presence of Reduced Iron (C4) Stunted or Stressed Plants (D1) Algal Mat or Crust (B4) Recent Iron Reduction in Tilled Soils (C6) X Geomorphic Position (D2) Inon Deposits (B5) Thin Muck Surface (C7) X FAC-Neutral Test (D5) Inundation Visible on Aerial Imagery (B7) Gauge or Well Data (D9) Sparsely Vegetated Concave Surface (B8) Other (Explain in Remarks)	Remarks:								
Wetland Hydrology Indicators: Primary Indicators (minimum of one is required: check all that apply) Secondary Indicators (minimum of two required) Surface Water (A1) Water-Stained Leaves (B9) Surface Soil Cracks (B6) High Water Table (A2) Aquatic Fauna (B13) Drainage Patterns (B10) Saturation (A3) True Aquatic Plants (B14) Dry-Season Water Table (C2) Water Marks (B1) Hydrogen Sulfide Odor (C1) Crayfish Burrows (C8) Sediment Deposits (B2) Oxidized Rhizospheres on Living Roots (C3) X Saturation Visible on Aerial Imagery (C9) Infit Deposits (B3) Presence of Reduced Iron (C4) Stunted or Stressed Plants (D1) Algal Mat or Crust (B4) Recent Iron Reduction in Tilled Soils (C6) X Geomorphic Position (D2) Inon Deposits (B5) Thin Muck Surface (C7) X FAC-Neutral Test (D5) Inundation Visible on Aerial Imagery (B7) Gauge or Well Data (D9) Sparsely Vegetated Concave Surface (B8) Other (Explain in Remarks)									
Wetland Hydrology Indicators: Primary Indicators (minimum of one is required: check all that apply) Secondary Indicators (minimum of two required) Surface Water (A1) Water-Stained Leaves (B9) Surface Soil Cracks (B6) High Water Table (A2) Aquatic Fauna (B13) Drainage Patterns (B10) Saturation (A3) True Aquatic Plants (B14) Dry-Season Water Table (C2) Water Marks (B1) Hydrogen Sulfide Odor (C1) Crayfish Burrows (C8) Sediment Deposits (B2) Oxidized Rhizospheres on Living Roots (C3) X Saturation Visible on Aerial Imagery (C9) Infit Deposits (B3) Presence of Reduced Iron (C4) Stunted or Stressed Plants (D1) Algal Mat or Crust (B4) Recent Iron Reduction in Tilled Soils (C6) X Geomorphic Position (D2) Inon Deposits (B5) Thin Muck Surface (C7) X FAC-Neutral Test (D5) Inundation Visible on Aerial Imagery (B7) Gauge or Well Data (D9) Sparsely Vegetated Concave Surface (B8) Other (Explain in Remarks)									
Wetland Hydrology Indicators: Primary Indicators (minimum of one is required: check all that apply) Secondary Indicators (minimum of two required) Surface Water (A1) Water-Stained Leaves (B9) Surface Soil Cracks (B6) High Water Table (A2) Aquatic Fauna (B13) Drainage Patterns (B10) Saturation (A3) True Aquatic Plants (B14) Dry-Season Water Table (C2) Water Marks (B1) Hydrogen Sulfide Odor (C1) Crayfish Burrows (C8) Sediment Deposits (B2) Oxidized Rhizospheres on Living Roots (C3) X Saturation Visible on Aerial Imagery (C9) Infit Deposits (B3) Presence of Reduced Iron (C4) Stunted or Stressed Plants (D1) Algal Mat or Crust (B4) Recent Iron Reduction in Tilled Soils (C6) X Geomorphic Position (D2) Inon Deposits (B5) Thin Muck Surface (C7) X FAC-Neutral Test (D5) Inundation Visible on Aerial Imagery (B7) Gauge or Well Data (D9) Sparsely Vegetated Concave Surface (B8) Other (Explain in Remarks)									
Wetland Hydrology Indicators: Primary Indicators (minimum of one is required: check all that apply) Secondary Indicators (minimum of two required) Surface Water (A1) Water-Stained Leaves (B9) Surface Soil Cracks (B6) High Water Table (A2) Aquatic Fauna (B13) Drainage Patterns (B10) Saturation (A3) True Aquatic Plants (B14) Dry-Season Water Table (C2) Water Marks (B1) Hydrogen Sulfide Odor (C1) Crayfish Burrows (C8) Sediment Deposits (B2) Oxidized Rhizospheres on Living Roots (C3) X Saturation Visible on Aerial Imagery (C9) Infit Deposits (B3) Presence of Reduced Iron (C4) Stunted or Stressed Plants (D1) Algal Mat or Crust (B4) Recent Iron Reduction in Tilled Soils (C6) X Geomorphic Position (D2) Inon Deposits (B5) Thin Muck Surface (C7) X FAC-Neutral Test (D5) Inundation Visible on Aerial Imagery (B7) Gauge or Well Data (D9) Sparsely Vegetated Concave Surface (B8) Other (Explain in Remarks)									
Primary Indicators (minimum of one is required: check all that apply) Secondary Indicators (minimum of two required) Surface Water (A1) Water-Stained Leaves (B9) Surface Soil Cracks (B6) High Water Table (A2) Aquatic Fauna (B13) Drainage Patterns (B10) Saturation (A3) True Aquatic Plants (B14) Dry-Season Water Table (C2) Water Marks (B1) Hydrogen Sulfide Odor (C1) Crayfish Burrows (C8) Sediment Deposits (B2) Oxidized Rhizospheres on Living Roots (C3) Saturation Visible on Aerial Imagery (C9) Drift Deposits (B3) Presence of Reduced Iron (C4) Stunted or Stressed Plants (D1) Algal Mat or Crust (B4) Recent Iron Reduction in Tilled Soils (C6) K Geomorphic Position (D2) Iron Deposits (B5) Thin Muck Surface (C7) K FAC-Neutral Test (D5) Inundation Visible on Aerial Imagery (B7) Gauge or Well Data (D9) FAC-Neutral Test (D5) Sparsely Vegetated Concave Surface (B8) Other (Explain in Remarks) Description in Remarks)									
Surface Water (A1) Water-Stained Leaves (B9) Surface Soil Cracks (B6) High Water Table (A2) Aquatic Fauna (B13) Drainage Patterns (B10) Saturation (A3) True Aquatic Plants (B14) Dry-Season Water Table (C2) Water Marks (B1) Hydrogen Sulfide Odor (C1) Crayfish Burrows (C8) Sediment Deposits (B2) Oxidized Rhizospheres on Living Roots (C3) Saturation Visible on Aerial Imagery (C9) Drift Deposits (B3) Presence of Reduced Iron (C4) Stunted or Stressed Plants (D1) Algal Mat or Crust (B4) Recent Iron Reduction in Tilled Soils (C6) X Geomorphic Position (D2) Iron Deposits (B5) Thin Muck Surface (C7) X FAC-Neutral Test (D5) Inundation Visible on Aerial Imagery (B7) Gauge or Well Data (D9) FAC-Neutral Test (D5) Sparsely Vegetated Concave Surface (B8) Other (Explain in Remarks) FAC-Neutral Test (D5)	-			uired: check all that a	nnlv)			Secondary	Indicators (minimum of two required
High Water Table (A2) Aquatic Fauna (B13) Drainage Patterns (B10) Saturation (A3) True Aquatic Plants (B14) Dry-Season Water Table (C2) Water Marks (B1) Hydrogen Sulfide Odor (C1) Crayfish Burrows (C8) Sediment Deposits (B2) Oxidized Rhizospheres on Living Roots (C3) X Drift Deposits (B3) Presence of Reduced Iron (C4) Stunted or Stressed Plants (D1) Algal Mat or Crust (B4) Recent Iron Reduction in Tilled Soils (C6) X Geomorphic Position (D2) Iron Deposits (B5) Thin Muck Surface (C7) X FAC-Neutral Test (D5) Inundation Visible on Aerial Imagery (B7) Gauge or Well Data (D9) Cher (Explain in Remarks)						ves (B9)			
Saturation (A3) True Aquatic Plants (B14) Dry-Season Water Table (C2) Water Marks (B1) Hydrogen Sulfide Odor (C1) Crayfish Burrows (C8) Sediment Deposits (B2) Oxidized Rhizospheres on Living Roots (C3) Saturation Visible on Aerial Imagery (C9) Drift Deposits (B3) Presence of Reduced Iron (C4) Stunted or Stressed Plants (D1) Algal Mat or Crust (B4) Recent Iron Reduction in Tilled Soils (C6) Saturation (D2) Iron Deposits (B5) Thin Muck Surface (C7) FAC-Neutral Test (D5) Inundation Visible on Aerial Imagery (B7) Gauge or Well Data (D9) FAC-Neutral Test (D5) Sparsely Vegetated Concave Surface (B8) Other (Explain in Remarks) FAC-Neutral Test (D5)		. ,				, ,			
Water Marks (B1) Hydrogen Sulfide Odor (C1) Crayfish Burrows (C8) Sediment Deposits (B2) Oxidized Rhizospheres on Living Roots (C3) Saturation Visible on Aerial Imagery (C9) Drift Deposits (B3) Presence of Reduced Iron (C4) Stunted or Stressed Plants (D1) Algal Mat or Crust (B4) Recent Iron Reduction in Tilled Soils (C6) X Geomorphic Position (D2) Iron Deposits (B5) Thin Muck Surface (C7) X FAC-Neutral Test (D5) Inundation Visible on Aerial Imagery (B7) Gauge or Well Data (D9) FAC-Neutral Test (D5) Sparsely Vegetated Concave Surface (B8) Other (Explain in Remarks) FAC-Neutral Test (D5)	_ •	. ,							
Sediment Deposits (B2) Oxidized Rhizospheres on Living Roots (C3) X Saturation Visible on Aerial Imagery (C9) Drift Deposits (B3) Presence of Reduced Iron (C4) Stunted or Stressed Plants (D1) Algal Mat or Crust (B4) Recent Iron Reduction in Tilled Soils (C6) X Geomorphic Position (D2) Iron Deposits (B5) Thin Muck Surface (C7) X FAC-Neutral Test (D5) Inundation Visible on Aerial Imagery (B7) Gauge or Well Data (D9) Other (Explain in Remarks)									
Algal Mat or Crust (B4) Recent Iron Reduction in Tilled Soils (C6) X Geomorphic Position (D2) Iron Deposits (B5) Thin Muck Surface (C7) X FAC-Neutral Test (D5) Inundation Visible on Aerial Imagery (B7) Gauge or Well Data (D9) FAC-Neutral Test (D5) Sparsely Vegetated Concave Surface (B8) Other (Explain in Remarks) FAC-Neutral Test (D5)		. ,					ing Roots		
Iron Deposits (B5) Thin Muck Surface (C7) X FAC-Neutral Test (D5) Inundation Visible on Aerial Imagery (B7) Gauge or Well Data (D9) Sparsely Vegetated Concave Surface (B8) Other (Explain in Remarks)	Drift De	eposits (B3)							
Inundation Visible on Aerial Imagery (B7) Gauge or Well Data (D9) Sparsely Vegetated Concave Surface (B8) Other (Explain in Remarks)	Algal M	lat or Crust (B4)		Recent In	on Reduct	tion in Tille	d Soils (C	6) 🔀 Geomo	orphic Position (D2)
Sparsely Vegetated Concave Surface (B8) Other (Explain in Remarks)	Iron De	posits (B5)		Thin Muc	k Surface	(C7)		X FAC-Ne	eutral Test (D5)
	Inundat	tion Visible on Aerial	Imagery (E	B7) Gauge or	Well Data	a (D9)			
	Sparse	ly Vegetated Concav	e Surface	(B8) Other (Ex	plain in R	emarks)			
Surface Water Present? Yes No _X_ Depth (inches):				No X Depth (ir					

 Water Table Present?
 Yes _____ No X
 Depth (inches): ______

 Saturation Present?
 Yes _____ No X
 Depth (inches): ______

 (includes capillary fringe)
 Wetland Hydrology Present?
 Yes X
 No _____

 Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:
 Remarks:
 Remarks:

WETLAND DETERMINATION DATA FORM – Midwest Region

Project/Site: A3820001/EMERSON CREEK WIND F	ARMS	City/County	NORWA	ALK	Samp	ling Date:	9/12/20	018
Applicant/Owner: <u>APEX CLEAN ENERGY</u>				State: OH	Samp	ling Point:	W1M-0	005
Investigator(s): J. FREELAND, A. PETERS		_ Section, Township, Range:						
Landform (hillslope, terrace, etc.): <u>FLAT</u>		I	_ocal relief	(concave, convex, n	one):			
Slope (%): Lat: _41.26315348		Long: -82.	73829459)	Datun	n:		
Soil Map Unit Name:				NWI cla	assification:			
Are climatic / hydrologic conditions on the site typical for this	s time of ve	ar? Yes >	< _{No}	(If no, explain	n in Remark	s.)		
Are Vegetation, Soil, or Hydrology s				Normal Circumstand			X No	D
Are Vegetation, Soil, or Hydrology n				eded, explain any a				
SUMMARY OF FINDINGS – Attach site map						,	eatures	s, etc.
Hydrophytic Vegetation Present? Yes N	. <u>X</u>							
Hydric Soil Present? Yes N	• <u>X</u>		e Sampled			\sim		
Wetland Hydrology Present? Yes N		with	in a Wetlar	nd? Yes	M	No <u>X</u>	_	
Remarks: UPLAND W1M-005								
VEGETATION – Use scientific names of plants.								
Tree Stratum (Plot size:)	Absolute % Cover	Dominant Species?		Dominance Test	worksheet:			
1. Rhus glabra	10	X	FACU	Number of Domina That Are OBL, FA		. 0		(A)
2					011, 0117,0			
3				Total Number of D Species Across Al		4		(B)
4					rotrata.			
5.				Percent of Domina That Are OBL, FA		. 0		(A/B)
	10	= Total Cov	ver			·		(700)
Sapling/Shrub Stratum (Plot size:)				Prevalence Index	worksheet	:		
1. Rhus glabra	10	<u>X</u>	FACU	Total % Cover			oly by:	-
2				OBL species		x = 0		-
3						$x_{2} = \frac{50}{60}$		-
4						×		-
5				FACO species		x 4 = 47		-
Herb Stratum (Plot size:)	10	= Total Cov	er			x = 0	32	-
1. Glycine max	40	Х	FACU	Column Totals: _1	03	(A) <u>50</u>	52	_ (B)
2. Dactylis glomerata	30	X	FACU	Prevalence I	ndex = B/A	= 3.57		
3. Verbesina alternifolia	25		FACW	Hydrophytic Veg				
4. Solidago canadensis	20		FACU	1 - Rapid Test	t for Hydrop	hytic Vege	etation	
5. Ambrosia trifida	10		FAC	2 - Dominance	e Test is >5(0%		
6. Rubus allegheniensis	5		FACU	3 - Prevalence				
7. Equisetum arvense	5		FAC	4 - Morpholog			vide sup	porting
8. Toxicodendron radicans	5		FAC	data in Rei	marks or on	a separat	e sheet)	
g. Rhus glabra	3		FACU	Problematic H	lydrophytic \	/egetatior	¹ (Explai	n)
10								
Woody Vine Stratum (Plot size:)	143	= Total Cov	er	¹ Indicators of hydr be present, unless				nust
1,				Hydrophytic				
2				Vegetation			\checkmark	
		= Total Cov	er	Present?	Yes	No _	<u> </u>	
Remarks: (Include photo numbers here or on a separate s	sheet.)			1				

SOIL

Profile Desc	cription: (Describe	to the de	pth needed to docu	ment the	indicator	or confirm	m the absence of indicators.)	
Depth	Matrix			ox Feature				
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	_Loc ²		_
0-13	10YR 3/2	100						_
13-18	10YR 4/3	70	10YR 5/3	30	С	Μ		
								_
———								-
								_
								_
								_
¹ Type: C=C	oncentration. D=Der	letion. RM	I=Reduced Matrix, M	– IS=Maske	d Sand Gr	ains.	² Location: PL=Pore Lining, M=Matrix.	-
Hydric Soil							Indicators for Problematic Hydric Soils ³ :	
Histosol	(A1)		Sandy	Gleyed M	atrix (S4)		Coast Prairie Redox (A16)	
Histic Ep	pipedon (A2)		Sandy	Redox (S	5)		Dark Surface (S7)	
Black Hi	istic (A3)		Strippe	d Matrix (S6)		Iron-Manganese Masses (F12)	
	en Sulfide (A4)		Loamy Mucky Mineral (F1)				Very Shallow Dark Surface (TF12)	
	d Layers (A5)				latrix (F2)		Other (Explain in Remarks)	
	uck (A10)			ed Matrix				
I — ·	d Below Dark Surfac	e (A11)		Dark Surf	· · ·		³ Indiastors of hydrophytic vocatation and	
	ark Surface (A12) /lucky Mineral (S1)			Depression	urface (F7))	³ Indicators of hydrophytic vegetation and wetland hydrology must be present,	
	ucky Peat or Peat (S	3)		Depressio	5115 (1-0)		unless disturbed or problematic.	
	Layer (if observed)							
Type:								
	ches):						Hydric Soil Present? Yes No	-
Remarks:								
Remarks.								
								_
HYDROLO	GY							
Wetland Hy	drology Indicators:							
Primary India	cators (minimum of o	one is requ	<u>iired; check all that a</u>	pply)			Secondary Indicators (minimum of two required	1)
Surface	Water (A1)		Water-Sta	ained Lea	ves (B9)		Surface Soil Cracks (B6)	
High Wa	ater Table (A2)		Aquatic F	auna (B13	3)		Drainage Patterns (B10)	
Saturati	on (A3)		True Aqu	atic Plants	s (B14)		Dry-Season Water Table (C2)	
Water M	larks (B1)		Hydrogen Sulfide Odor (C1) Crayfish Burrows (C8)					
Sedimer	nt Deposits (B2)		Oxidized	Rhizosph	eres on Liv	ing Roots	(C3) Saturation Visible on Aerial Imagery (C9)	

- Stunted or Stressed Plants (D1)

Drift Deposits (B3) Presen		Presence of Reduced Iron (C4)	Stunted or Stressed Plants (D1)
Algal Mat or Crust (B4)		Recent Iron Reduction in Tilled S	Soils (C6) Geomorphic Position (D2)
Iron Deposits (B5)		Thin Muck Surface (C7)	X FAC-Neutral Test (D5)
Inundation Visible on Aer	ial Imagery (B7)	Gauge or Well Data (D9)	
Sparsely Vegetated Cond	ave Surface (B8)	Other (Explain in Remarks)	
Field Observations:			
Surface Water Present?		Depth (inches):	
Water Table Present?	Yes No	Depth (inches):	
Saturation Present?	Yes No	X Depth (inches):	Wetland Hydrology Present? Yes X No X
(includes capillary fringe)			
(includes capillary fringe)		pring well, aerial photos, previous inspe	
(includes capillary fringe)			
(includes capillary fringe)			
(includes capillary fringe) Describe Recorded Data (stre			
(includes capillary fringe) Describe Recorded Data (stre			
(includes capillary fringe) Describe Recorded Data (stre			

WETLAND DETERMINATION DATA FORM – Midwest Region

Project/Site: A3820001/EMERSON C	REEK	WINE	FARMS	_ City/0	County		ALK Sampling Date: 9/12/2018
Applicant/Owner: APEX CLEAN ENERGY					State: OH Sampling Point: W1M-0		
				Section, Township, Range: T4N R23W			
Landform (hillslope, terrace, etc.): DEPR							(concave, convex, none):
Slope (%): Lat: 41.26340				Long	: -82. ⁻	73901345	Datum:
Soil Map Unit Name:				_ 0			NWI classification:
•	Are climatic / hydrologic conditions on the site typical for this time of year? Yes X No (If no, explain in Remarks.)						
							"Normal Circumstances" present? Yes X No
Are Vegetation, Soil, or Hydrology significantly disturbed? Are "Normal Circumstances" present? Yes X No Are Vegetation, Soil, or Hydrology naturally problematic? (If needed, explain any answers in Remarks.)							
SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.							
Hydrophytic Vegetation Present?		Х	-	-		51	,,,,,,, _
Hydric Soil Present?	Yes _	X	No	_	Is th	e Sampled	
Wetland Hydrology Present?	Yes _	<u> </u>	No	_	with	in a Wetlar	nd? Yes <u>X</u> No
Remarks:							
WETLAND W1M-007							
VEGETATION – Use scientific na	ames d	of plan	ts.				
	``		Absolut			Indicator	Dominance Test worksheet:
Tree Stratum (Plot size:						Status	Number of Dominant Species That Are OBL, FACW, or FAC: 2 (A)
1 2							That Are OBL, FACW, or FAC: _2 (A)
23							Total Number of Dominant Species Across All Strata: 2 (B)
4							Species Across All Strata: <u>2</u> (B)
5							Percent of Dominant Species That Are OBL, FACW, or FAC: 100 (A/B)
				_ = To	tal Cov	/er	
Sapling/Shrub Stratum (Plot size:							Prevalence Index worksheet:
1							<u>Total % Cover of:</u> <u>Multiply by:</u> ORL species 20 x 1 = 20
2							
3							0
4							FAC species 0 $x_3 = 0$ FACU species 8 $x_4 = 32$
5				— — – To	tal Cov		UPL species 0 $x 5 = 0$
Herb Stratum (Plot size:)			10	nai Cov	/er	Column Totals: 113 (A) 222 (B)
1. Cyperus esculentus			50	<u> </u>		FACW	
2. Panicum dichotomiflorum			30	X		FACW	Prevalence Index = B/A =
3. Symphyotrichum puniceum			20			OBL	Hydrophytic Vegetation Indicators:
4. Sida spinosa			5			FACU	1 - Rapid Test for Hydrophytic Vegetation
5. Bidens discoidea			5			FACW	\times 2 - Dominance Test is >50%
6. Hibiscus trionum			3			FACU	\times 3 - Prevalence Index is $\leq 3.0^1$
7							4 - Morphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet)
8							Problematic Hydrophytic Vegetation ¹ (Explain)
9							
10			113	— <u>—</u>	tal Car		¹ Indicators of hydric soil and wetland hydrology must
Woody Vine Stratum (Plot size:)	110	_ = 10	otal Cov	/er	be present, unless disturbed or problematic.
1							Hydrophytic
2							Vegetation
				= To	otal Cov	/er	Present? Yes X No
Remarks: (Include photo numbers here	Remarks: (Include photo numbers here or on a separate sheet.)						

Depth Matrix Redox Features Tracture Remarks 0-7 10VR 3/1 100 % Type Loc ² sil sil	Profile Desc	ription: (Describe	to the dep	th needed to docur	nent the	indicator	or confirn	n the absence of in	ndicators.)
0-7 10YR 3/1 100	· · · ·								
7.12 10YR 4/2 80 10YR 5/4 20 C M sil 111-18 10YR 5/2 70 10YR 5/4 30 C M, PL, cl 111-18 10YR 5/2 70 10YR 5/4 30 C M, PL, cl 111-18 10YR 5/2 70 10YR 5/4 30 C M, PL, cl 111-18 10YR 5/2 70 10YR 5/4 30 C M, PL, cl 111-18 10YR 5/2 70 10YR 5/4 30 C M, PL, cl 111-18 10YR 5/2 70 10YR 5/4 30 C M, PL, cl 111-18 10YR 5/2 70 10YR 5/4 30 C M, PL, cl 111-18 110cleastors 10YR 5/4 30 C Mathemathemathemathemathemathemathemathem				Color (moist)	%	Type'	_Loc ²		Remarks
11-18 10YR 5/2 70 10YR 5/4 30 C M, PL d 11-18 10YR 5/2 70 10YR 5/4 30 C M, PL d 11-18 10YR 5/2 70 10YR 5/4 30 C M, PL d 11-18 10YR 5/2 70 10YR 5/4 30 C M, PL d 11-18 10YR 5/2 70 10YR 5/4 30 C M, PL d 11-18 10YR 5/2 70 10YR 5/4 30 C Mathia Mathia<								sil	
"Type: C=Concentration, D=Depletion, RM=Reduced Matrix, MS=Masked Sand Grains. ² Location: PL=Pore Lining, M=Matrix. Hydric Soil Indicators: Indicators for Problematic Hydric Soils?: Indicators for Problematic Hydric Soils?: Histosoi (A1) Sandy Redox (S5) Coast Prairie Redox (A16) Black Histis (A3) Striped Matrix (S4) Coast Prairie Redox (A16) Black Histis (A3) Striped Matrix (F2) Other (Explain in Remarks) 2 cm Muck (A10) Xurface (F17) "Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed): Type: Hydric Soil Present? Yes X No Type: Wetland Hydrology Indicators: Hydric Soil Present? Yes X No Surface Water (A1) Water Stained Leaves (B9) Surface Water (A1) Surface Water (A1) Presence (B13) Drainage Patterns (B10) Surface Water (A1) Water Stained Leaves (B9) Surface Soil Cracks (B8) "Hydrology Indicators (B1) Presence (B1) Drainage Patterns (B10) Surface Water (A1) Presence of Reduced Inn	7-12	10YR 4/2	80	10YR 5/4	20	<u> </u>	<u>M</u>		
Hydric Soil Indicators: Indicators for Problematic Hydric Soils ¹ : Histos (A1)	11-18	10YR 5/2	70	10YR 5/4	30	<u>C</u>	M, PL		
Hydric Soil Indicators: Indicators for Problematic Hydric Soils ¹ : Histos (A1)									
Hydric Soil Indicators: Indicators for Problematic Hydric Soils ¹ : Histos (A1)									
Hydric Soil Indicators: Indicators for Problematic Hydric Soils ¹ : Histos (A1)									
Hydric Soil Indicators: Indicators for Problematic Hydric Soils ¹ : Histos (A1)									
Hydric Soil Indicators: Indicators for Problematic Hydric Soils ¹ : Histos (A1)	¹ Type: C=Co	oncentration, D=Dep	letion. RM=	Reduced Matrix, MS	- S=Maske	 d Sand Gr	ains.	² Location: PL	=Pore Lining, M=Matrix,
Black Histic (A3)	Histosol	(A1)		Sandy (Gleyed M	atrix (S4)		Coast Prai	rie Redox (A16)
Hydrogen Sulfide (A4) Loamy Mucky Mineral (F1) Very Shallow Dark Surface (TF12) Stratified Layers (A5) Loamy Gleyed Matrix (F2) Other (Explain in Remarks) 2 cm Mucky (A10) Redox Dark Surface (F6) Thick Dark Surface (A12) Depleted Matrix (F3) Sandy Mucky Mineral (S1) Redox Dark Surface (F7) Indicators of hydrophytic vegetation and wettand hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed): Type:	Histic Ep	pipedon (A2)		Sandy F	Redox (St	5)		Dark Surfa	ice (S7)
		. ,				,			
2 cm Muck (A10) X Depleted Matrix (F3) □ Depleted Below Dark Surface (A11) Redox Dark Surface (F6) □ Thick Dark Surface (A12) □ Depleted Dark Surface (F7) □ Sandy Mucky Mineral (S1) Redox Depressions (F8) □ Sandy Mucky Mineral (S1) Redox Depressions (F8) □ Presence Layer (if observed): Type: □ Depth (inches): Hydric Soil Present? Yes X No Remarks: Hydric Soil Present? Yes X No		()							
□ Depleted Below Dark Surface (A11) □ Redox Dark Surface (F6) ³Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Sandy Mucky Miental (S1) □ Redox Depressions (F8) wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed): Type: □ Depth (inches): No □ Depth (inches): □ Depth (inches): No □ □ Remarks: □ Wetland Hydrology Indicators: No □ □ Primary Indicators (minimum of one is required: check all that apply) Secondary Indicators (minimum of two required) □ Surface Soil Cracks (B6) □ High Water Table (A2)		• · ·						Other (Exp	biain in Remarks)
		· ,	e (A11)			. ,			
	· — ·					. ,)	³ Indicators of h	hydrophytic vegetation and
Restrictive Layer (if observed): Type:		, ,				,			
Type:	5 cm Mu	icky Peat or Peat (S	3)					unless dist	urbed or problematic.
Depth (inches): Hydric Soil Present? Yes X No Remarks: HYDROLOGY Wetland Hydrology Indicators: Primary Indicators (minimum of one is required: check all that apply) Secondary Indicators (minimum of two required)	Restrictive I	Layer (if observed):							
Beptin (incres).	Type:							Hydric Soil Pre	sant? Vas X No
HYDROLOGY Wetland Hydrology Indicators: Primary Indicators (minimum of one is required: check all that apply) Secondary Indicators (minimum of two required)	Depth (inc	ches):						Hydric Soli Fre	
Wetland Hydrology Indicators: Primary Indicators (minimum of one is required: check all that apply) Secondary Indicators (minimum of two required)	Remarks:								
Wetland Hydrology Indicators: Primary Indicators (minimum of one is required: check all that apply) Secondary Indicators (minimum of two required)									
Wetland Hydrology Indicators: Primary Indicators (minimum of one is required: check all that apply) Secondary Indicators (minimum of two required)									
Wetland Hydrology Indicators: Primary Indicators (minimum of one is required: check all that apply) Secondary Indicators (minimum of two required)									
Wetland Hydrology Indicators: Primary Indicators (minimum of one is required: check all that apply) Secondary Indicators (minimum of two required)									
Primary Indicators (minimum of one is required: check all that apply) Secondary Indicators (minimum of two required)	HYDROLO	GY							
	Wetland Hyd	drology Indicators:							
High Water Table (A2) Aquatic Fauna (B13) Drainage Patterns (B10) Saturation (A3) True Aquatic Plants (B14) Dry-Season Water Table (C2) Water Marks (B1) Hydrogen Sulfide Odor (C1) Crayfish Burrows (C8) Sediment Deposits (B2) Oxidized Rhizospheres on Living Roots (C3) X Saturation Visible on Aerial Imagery (C9) Drift Deposits (B3) Presence of Reduced Iron (C4) Stunted or Stressed Plants (D1) Algal Mat or Crust (B4) Recent Iron Reduction in Tilled Soils (C6) X Geomorphic Position (D2) Iron Deposits (B5) Thin Muck Surface (C7) X FAC-Neutral Test (D5) Inundation Visible on Aerial Imagery (B7) Gauge or Well Data (D9) Sparsely Vegetated Concave Surface (B8) Other (Explain in Remarks) Field Observations: Surface Water Present? Yes No Surface Water Present? Yes No Depth (inches): Image	Primary India	cators (minimum of o	ne is requir	ed; check all that ap	oply)			Secondary Ir	ndicators (minimum of two required)
Saturation (A3) True Aquatic Plants (B14) Dry-Season Water Table (C2) Water Marks (B1) Hydrogen Sulfide Odor (C1) Crayfish Burrows (C8) Sediment Deposits (B2) Oxidized Rhizospheres on Living Roots (C3) Saturation Visible on Aerial Imagery (C9) Drift Deposits (B3) Presence of Reduced Iron (C4) Stunted or Stressed Plants (D1) Algal Mat or Crust (B4) Recent Iron Reduction in Tilled Soils (C6) X Geomorphic Position (D2) Iron Deposits (B5) Thin Muck Surface (C7) X FAC-Neutral Test (D5) Inundation Visible on Aerial Imagery (B7) Gauge or Well Data (D9) FAC-Neutral Test (D5) Sparsely Vegetated Concave Surface (B8) Other (Explain in Remarks) Ves No Field Observations: Surface Water Present? Yes No Depth (inches): Imagery		. ,				, ,			
Water Marks (B1) Hydrogen Sulfide Odor (C1) Crayfish Burrows (C8) Sediment Deposits (B2) Oxidized Rhizospheres on Living Roots (C3) Saturation Visible on Aerial Imagery (C9) Drift Deposits (B3) Presence of Reduced Iron (C4) Stunted or Stressed Plants (D1) Algal Mat or Crust (B4) Recent Iron Reduction in Tilled Soils (C6) X Geomorphic Position (D2) Iron Deposits (B5) Thin Muck Surface (C7) X FAC-Neutral Test (D5) Inundation Visible on Aerial Imagery (B7) Gauge or Well Data (D9) Sparsely Vegetated Concave Surface (B8) Other (Explain in Remarks) Field Observations: Yes No Depth (inches):	·								
	1								
Drift Deposits (B3) Presence of Reduced Iron (C4) Stunted or Stressed Plants (D1) Algal Mat or Crust (B4) Recent Iron Reduction in Tilled Soils (C6) Iron Deposits (B5) Thin Muck Surface (C7) X FAC-Neutral Test (D5) Inundation Visible on Aerial Imagery (B7) Gauge or Well Data (D9) Sparsely Vegetated Concave Surface (B8) Other (Explain in Remarks) Field Observations: Surface Water Present? Yes No X Depth (inches):		• •							
Algal Mat or Crust (B4)		,			•		•		
	· - ·	. ,					,		
Inundation Visible on Aerial Imagery (B7) Gauge or Well Data (D9) Sparsely Vegetated Concave Surface (B8) Other (Explain in Remarks) Field Observations: Surface Water Present? Yes No Depth (inches):							a Solis (Ce		
	· - ·		magani (P					A FAC-Ne	utrai rest (D5)
Field Observations: Surface Water Present? Yes NoX Depth (inches):									
Surface Water Present? Yes No Depth (inches):		<u> </u>				sinaiksj			
			es l		ches).				
water raber reserve: res res beput (incres)									
Saturation Present? Yes No X Depth (inches): Wetland Hydrology Present? Yes X No								and Hydrology Br	asant? Vas X Na

Remarks:

Project/Site: A3820001/EMERSON C	REE		D FARMS	City/Coun	ty: NORWA	ALK Sampling Date: 9/12/2018
Applicant/Owner: <u>APEX CLEAN ENE</u>	RGY					State: OH Sampling Point: W1M-008
Investigator(s): <u>J. FREELAND, A. PE</u>	TERS			Section, 1	Fownship, Ra	ange: T4N R24W
Landform (hillslope, terrace, etc.): <u>SWAL</u>	.E				Local relief	(concave, convex, none):
Slope (%): Lat: _41.26485	224			Long: <u>-8</u>	2.74115866	6 Datum:
Soil Map Unit Name:						NWI classification:
Are climatic / hydrologic conditions on the	site typ	oical for	this time of ye	ear? Yes_	X_ No_	(If no, explain in Remarks.)
Are Vegetation $\underline{\times}$, Soil $\underline{\times}$, or Hy	ydrolog	у	_ significantly	disturbed	? Are	"Normal Circumstances" present? Yes 🔀 No
Are Vegetation, Soil, or H	ydrolog	у	naturally pr	oblematic?		eeded, explain any answers in Remarks.)
SUMMARY OF FINDINGS - Att	ach s	ite ma	ap showing	a sampli	ng point l	ocations, transects, important features, etc.
Hydrophytic Vegetation Present?	Yes		No			
Hydric Soil Present?	Yes	X	No	ls	the Sampled	
Wetland Hydrology Present?	Yes_	<u> </u>	No	wi	thin a Wetla	nd? Yes <u>X</u> No
Remarks:						
WETLAND W1M-008, PREVIOUS	LY FA	RMED	AND PLOV	VED		
VEGETATION – Use scientific na	ames	of plar				
Tree Stratum (Plot size:)		Absolute % Cover		nt Indicator ? Status	Dominance Test worksheet:
1						Number of Dominant Species That Are OBL, FACW, or FAC: 1 (A)
2						()
3						Total Number of Dominant Species Across All Strata: 1 (B)
4						
5						Percent of Dominant Species That Are OBL, FACW, or FAC: 100 (A/B)
Cooling/Chruk Stratum (Blat aire)		,		_ = Total C	over	Prevalence Index worksheet:
Sapling/Shrub Stratum (Plot size:						Total % Cover of: Multiply by:
1						$\begin{array}{c} \hline \hline \\ $
23						FACW species 80 $x = 160$
4						FAC species 0 $x 3 = 0$
5.						FACU species 16 x 4 = 64
				= Total C	over	UPL species 0 x 5 = 0
Herb Stratum (Plot size:)			-		Column Totals: <u>96</u> (A) <u>224</u> (B)
1. Panicum dichotomiflorum				- <u>X</u>	_ FACW	$\mathbf{D}_{\mathrm{rest}}$
2. Amaranthus retroflexus 3. Glycine max			<u> </u>	X	- FACU	Prevalence Index = B/A = 2.33
3. Givenne max 4. Sida spinosa			$-\frac{5}{3}$		- FACU FACU	Hydrophytic Vegetation Indicators: 1 - Rapid Test for Hydrophytic Vegetation
					_ <u>FACU</u> _	\overline{X} 2 - Dominance Test is >50%
5						$\frac{1}{2}$ 3 - Prevalence Index is $\leq 3.0^{1}$
6						4 - Morphological Adaptations ¹ (Provide supporting
7						data in Remarks or on a separate sheet)
8						Problematic Hydrophytic Vegetation ¹ (Explain)
9 10.						
10			96	= Total C	over	¹ Indicators of hydric soil and wetland hydrology must
Woody Vine Stratum (Plot size:)			0101	be present, unless disturbed or problematic.
1						Hydrophytic
2						Vegetation Present? Yes X No
				_ = Total C	over	Present? Yes <u> No </u>
Remarks: (Include photo numbers here	or on a	separa	ate sheet.)			

(inches)	Matrix Color (moist)	%	Color (moist)	ox Feature	Type ¹	Loc ²	Texture	Remarks
0-4	10YR 3/2	100					sil	
4-11	10YR 4/2	80	10YR 5/4	20		M	sil	
11-18	2.5Y 5/2	70	7.5YR 5/6	30	с	M, PL	cl	
¹ Type: C=C	 Concentration, D=Dep		 M=Reduced Matrix, M	 S=Maske	 d Sand Gr	ains.	² Location:	PL=Pore Lining, M=Matrix.
	Indicators:							or Problematic Hydric Soils ³ :
Histoso	ol (A1)		Sandy	Gleyed M	atrix (S4)		Coast P	rairie Redox (A16)
	pipedon (A2)			Redox (S				rface (S7)
	listic (A3)			d Matrix (,			nganese Masses (F12)
_ / ~	en Sulfide (A4)				ineral (F1)			allow Dark Surface (TF12)
	ed Layers (A5) luck (A10)		X Deplete	d Matrix	latrix (F2)			xplain in Remarks)
	ed Below Dark Surfac	e (A11)		Dark Surf				
	ark Surface (A12)	(,			urface (F7)	³ Indicators of	of hydrophytic vegetation and
Sandy	Mucky Mineral (S1)		Redox	Depressio	ons (F8)		wetland	hydrology must be present,
5 cm M	ucky Peat or Peat (S	3)					unless c	isturbed or problematic.
Restrictive	Layer (if observed)	:						
Туре:							Hydric Soil F	resent? Yes <u>×</u> No
Depth (ir	nches):						Hyuric Soli F	
YDROLO	DGY							
Wetland Hy	drology Indicators							
Wetland Hy	drology Indicators		uired; check all that a	oply)			Secondar	y Indicators (minimum of two required
Wetland Hy Primary Ind Surface	ydrology Indicators icators (minimum of o Water (A1)		Water-Sta	ined Lea	, ,		Surfa	ce Soil Cracks (B6)
Wetland Hy Primary Ind Surface High W	rdrology Indicators icators (minimum of d Water (A1) later Table (A2)		Water-Sta Aquatic F	ained Lea auna (B13	3)		Surfa Drain	ce Soil Cracks (B6) age Patterns (B10)
Wetland Hy Primary Ind Surface High W Saturat	ydrology Indicators icators (minimum of e Water (A1) ater Table (A2) ion (A3)		Water-Sta Aquatic F True Aqua	ained Lea auna (B13 atic Plants	3) s (B14)		Surfa Drain Dry-S	ce Soil Cracks (B6) age Patterns (B10) eason Water Table (C2)
Wetland Hy Primary Ind Surface High W Saturat Water N	ydrology Indicators icators (minimum of d water (A1) ater Table (A2) ion (A3) Marks (B1)		Water-Sta Aquatic F True Aqua Hydrogen	ained Lear auna (B13 atic Plants Sulfide C	3) s (B14) 9dor (C1)		Surfa Drain Dry-S Crayf	ce Soil Cracks (B6) age Patterns (B10) eason Water Table (C2) ish Burrows (C8)
Wetland Hy Primary Ind Surface High W Saturat Water M Sedime	ydrology Indicators icators (minimum of d e Water (A1) later Table (A2) ion (A3) Marks (B1) ent Deposits (B2)		Water-Sta Aquatic F True Aqua Hydrogen Oxidized	ained Leav auna (B13 atic Plants Sulfide C Rhizosph	3) 5 (B14) 9dor (C1) eres on Liv	-	(C3) Xuffa	ce Soil Cracks (B6) age Patterns (B10) eason Water Table (C2) ish Burrows (C8) ation Visible on Aerial Imagery (C9)
Wetland Hy Primary Ind Surface High W Saturat Water M Sedime Drift De	ydrology Indicators: icators (minimum of d e Water (A1) later Table (A2) ion (A3) Marks (B1) ent Deposits (B2) eposits (B3)		Water-Sta Aquatic F True Aqua Hydrogen Oxidized Presence	auna (B1 auna (B1 atic Plants Sulfide C Rhizosphi of Reduc	3) s (B14) odor (C1) eres on Liv ed Iron (C	4)	Crayf (C3) X Satur	ce Soil Cracks (B6) age Patterns (B10) eason Water Table (C2) ish Burrows (C8) ation Visible on Aerial Imagery (C9) ed or Stressed Plants (D1)
Wetland Hy Primary Ind Surface High W Saturat Water N Sedime Drift De Algal M	ydrology Indicators: icators (minimum of d water (A1) later Table (A2) ion (A3) Marks (B1) ent Deposits (B2) eposits (B3) lat or Crust (B4)		Water-Sta Aquatic F True Aqua Hydrogen Oxidized Presence Recent In	auna (B13 auna (B13 atic Plants Sulfide C Rhizospho of Reduct	3) 5 (B14) Odor (C1) eres on Liv ed Iron (C- tion in Tille	4)	(C3) X Geon	ce Soil Cracks (B6) age Patterns (B10) eason Water Table (C2) ish Burrows (C8) ation Visible on Aerial Imagery (C9) ed or Stressed Plants (D1) norphic Position (D2)
Wetland Hy Primary Ind Surface High W Saturat Water I Sedime Drift De Algal M Iron De	ydrology Indicators: icators (minimum of d e Water (A1) fater Table (A2) ion (A3) Marks (B1) ent Deposits (B2) eposits (B3) lat or Crust (B4) eposits (B5)	one is req	Water-Sta Aquatic F True Aqua Hydrogen Oxidized Presence Recent Ind Thin Mucl	auna (B13 auna (B13 atic Plants Sulfide C Rhizosphi of Reduct on Reduct Surface	3) s (B14) Odor (C1) eres on Liv ed Iron (C tion in Tille (C7)	4)	(C3) X Geon	ce Soil Cracks (B6) age Patterns (B10) eason Water Table (C2) ish Burrows (C8) ation Visible on Aerial Imagery (C9) ed or Stressed Plants (D1)
Wetland Hy Primary Ind Surface High W Saturat Water I Sedime Drift De Algal M Iron De Inundat	ydrology Indicators: icators (minimum of d water (A1) later Table (A2) ion (A3) Marks (B1) ent Deposits (B2) eposits (B3) lat or Crust (B4) eposits (B5) tion Visible on Aerial	one is req Imagery (Water-Sta Aquatic F Aquatic F True Aqua Hydrogen Oxidized Presence Recent Ira Thin Mucl B7) Gauge or	auna (B1) auna (B1) atic Plants Sulfide C Rhizosphi of Reduc on Reduct Surface Well Data	B) b (B14) b dor (C1) eres on Liv ed Iron (C- cion in Tille (C7) a (D9)	4)	(C3) X Geon	ce Soil Cracks (B6) age Patterns (B10) eason Water Table (C2) ish Burrows (C8) ation Visible on Aerial Imagery (C9) ed or Stressed Plants (D1) norphic Position (D2)
Wetland Hy Primary Ind Surface High W Saturat Water I Sedime Drift De Algal M Iron De Inundat Sparse	ydrology Indicators: icators (minimum of d e Water (A1) later Table (A2) ion (A3) Marks (B1) ent Deposits (B2) eposits (B3) lat or Crust (B4) eposits (B5) tion Visible on Aerial ly Vegetated Concav	one is req Imagery (Water-Sta Aquatic F Aquatic F True Aqua Hydrogen Oxidized Presence Recent Ira Thin Mucl B7) Gauge or	auna (B1) auna (B1) atic Plants Sulfide C Rhizosphi of Reduc on Reduct Surface Well Data	B) b (B14) b dor (C1) eres on Liv ed Iron (C- cion in Tille (C7) a (D9)	4)	(C3) X Geon	ce Soil Cracks (B6) age Patterns (B10) eason Water Table (C2) ish Burrows (C8) ation Visible on Aerial Imagery (C9) ed or Stressed Plants (D1) norphic Position (D2)
Primary Ind Surface High W Saturat Water I Sedime Drift De Algal M Iron De Inundat Sparse	ydrology Indicators: icators (minimum of d e Water (A1) later Table (A2) ion (A3) Marks (B1) ent Deposits (B2) eposits (B3) lat or Crust (B4) eposits (B5) tion Visible on Aerial ly Vegetated Concav rvations:	one is req Imagery (e Surface	Water-Sta Aquatic F Aquatic F True Aqua Hydrogen Oxidized Presence Recent Irc Thin Mucl B7) Gauge or (B8) Other (Ex	auna (B1 auna (B1 satic Plants Sulfide C Rhizosphe of Reduct on Reduct Surface Well Data plain in R	B) b (B14) b dor (C1) eres on Liv ed Iron (C- cion in Tille (C7) a (D9)	4)	(C3) X Geon	ce Soil Cracks (B6) age Patterns (B10) eason Water Table (C2) ish Burrows (C8) ation Visible on Aerial Imagery (C9) ed or Stressed Plants (D1) norphic Position (D2)
Wetland Hy Primary Ind Surface High W Saturat Water N Sedime Drift De Algal M Iron De Inundat Sparse Field Obse	Adrology Indicators: icators (minimum of of Water (A1) Vater Table (A2) ion (A3) Marks (B1) ent Deposits (B2) eposits (B3) lat or Crust (B4) eposits (B5) tion Visible on Aerial ly Vegetated Concav rvations: ter Present?	one is req Imagery (e Surface	Water-Sta Aquatic F Aquatic F True Aqua Hydrogen Oxidized Presence Recent Ira Thin Mucl B7) Gauge or	auna (B1 auna (B1 atic Plants Sulfide C Rhizosphi of Reduct on Reduct Surface Well Data plain in R	B) b (B14) b dor (C1) eres on Liv ed Iron (C- cion in Tille (C7) a (D9)	4)	(C3) X Geon	ce Soil Cracks (B6) age Patterns (B10) eason Water Table (C2) ish Burrows (C8) ation Visible on Aerial Imagery (C9) ed or Stressed Plants (D1) norphic Position (D2)

Yes _____ No X Depth (inches): ____

Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:

Saturation Present? (includes capillary fringe) Wetland Hydrology Present? Yes \times No ____

Project/Site: A3820001/EMERSON CREEK WIND F	ARMS	_ City/County: NORWALK Sampling Date: 9/12/2018				
Applicant/Owner: APEX CLEAN ENERGY		State: OH Sampling Point: W1M-008				
Investigator(s): J. FREELAND, A. PETERS		Section, T	ownship, Ra	nge:		
Landform (hillslope, terrace, etc.): FLAT			Local relief	(concave, convex, none): <u>CONVEX</u>		
Slope (%): Lat:		Long: <u>-82</u>	2.74138295	5 Datum:		
Soil Map Unit Name:				NWI classification:		
Are climatic / hydrologic conditions on the site typical for this	s time of yea	ar? Yes _	<u>×</u> _{No}	(If no, explain in Remarks.)		
Are Vegetation, Soil, or Hydrologys	ignificantly	disturbed?	Are °	'Normal Circumstances" present? Yes 🔀 No		
Are Vegetation, Soil, or Hydrology n	aturally pro	blematic?	(lf ne	eeded, explain any answers in Remarks.)		
SUMMARY OF FINDINGS – Attach site map	showing	sampli	ng point l	ocations, transects, important features, etc.		
Hydrophytic Vegetation Present? Yes N	• <u>X</u>					
Hydric Soil Present? Yes N			he Sampled			
Wetland Hydrology Present? Yes N	• <u> X </u>	wit	hin a Wetlar	nd? Yes <u>No X</u>		
Remarks:						
UPLAND W1M-008						
VEGETATION – Use scientific names of plants.						
Tree Stratum (Plot size:)	Absolute % Cover		nt Indicator 2 Status	Dominance Test worksheet:		
1				Number of Dominant Species That Are OBL, FACW, or FAC: 0 (A)		
2				Total Number of Dominant		
3				Species Across All Strata:(B)		
4				Percent of Dominant Species		
5				That Are OBL, FACW, or FAC: 0 (A/B)		
Sapling/Shrub Stratum (Plot size:)		= Total Co	over	Prevalence Index worksheet:		
1				Total % Cover of: Multiply by:		
2				OBL species x 1 =		
3				FACW species $8 \times 2 = 16$		
4				FAC species 5 x 3 = 15		
5				FACU species $80 \times 4 = 320$		
Harb Stratum (Plat size)		= Total Co	over	UPL species 2 $x = 10$		
Herb Stratum (Plot size:) 1 Plantago lanceolata	70	х	FACU	Column Totals: <u>95</u> (A) <u>361</u> (B)		
2 Cirsium arvense	10	X	FACU	Prevalence Index = B/A =		
3. Fraxinus pennsylvanica	8		FACW	Hydrophytic Vegetation Indicators:		
4. Plantago major	5		FAC	1 - Rapid Test for Hydrophytic Vegetation		
5. Daucus carota	2		UPL	2 - Dominance Test is >50%		
6				3 - Prevalence Index is ≤3.0 ¹		
7				4 - Morphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet)		
8				Problematic Hydrophytic Vegetation ¹ (Explain)		
9						
10	05			¹ Indicators of hydric soil and wetland hydrology must		
Woody Vine Stratum (Plot size:)	95	= Total Co	over	be present, unless disturbed or problematic.		
1,				Hydrophytic		
2				Vegetation		
		= Total Co	over	Present? Yes <u>No X</u>		
Remarks: (Include photo numbers here or on a separate s	sheet.)					

Depth Matrix		Redox	Features					
(inches)	Color (moist)	%	Color (moist)	% Type ¹	Loc ²	Texture	Remark	6
0-16	10YR 3/2	100						
	Concentration, D=De	pletion, RM	=Reduced Matrix, MS=	=Masked Sand Gra	ains.	² Location: PL=P Indicators for Pro		
Histos Histic Black Hydro Stratifi	sol (A1) Epipedon (A2) Histic (A3) gen Sulfide (A4) ied Layers (A5) Muck (A10)		Sandy Re Stripped I Loamy M Loamy G	eyed Matrix (S4) edox (S5) Matrix (S6) ucky Mineral (F1) leyed Matrix (F2) Matrix (F3)		Coast Prairie I Dark Surface (Iron-Mangane	Redox (A16) S7) se Masses (F12 Dark Surface (T	:)
Thick Sandy 5 cm I	 2 cm Muck (A10) Depleted Below Dark Surface (A11) Thick Dark Surface (A12) Sandy Mucky Mineral (S1) 5 cm Mucky Peat or Peat (S3) 		Depleted	ark Surface (F6) Dark Surface (F7) epressions (F8)		³ Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic.		
Type: _	e Layer (if observed)	·				Hydric Soil Presen	t? Yes	NoX
Remarks:						1		
IYDROL	OGY							
Wetland H	lydrology Indicators	:						
Primary In	dicators (minimum of	one is requ	ired; check all that app	ly)		Secondary Indic	ators (minimum	of two required
Surfac	ce Water (A1)		Water-Stain	ed Leaves (B9)		Surface Soi	l Cracks (B6)	
High Water Table (A2)			Aquatic Fau	na (B13)		Drainage Patterns (B10)		

____ True Aquatic Plants (B14)

____ Thin Muck Surface (C7)

___ Gauge or Well Data (D9)

_

Yes _____ No X Depth (inches): ____

Yes _____ No X Depth (inches): ___

Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:

Yes _____ No X Depth (inches): _____

____ Hydrogen Sulfide Odor (C1)

Presence of Reduced Iron (C4)

Other (Explain in Remarks)

____ Recent Iron Reduction in Tilled Soils (C6)

____ Saturation (A3)

___ Water Marks (B1)

___ Drift Deposits (B3)

___ Iron Deposits (B5)

Field Observations:

Surface Water Present?

Water Table Present?

Saturation Present? (includes capillary fringe)

____ Sediment Deposits (B2)

___ Algal Mat or Crust (B4)

____ Inundation Visible on Aerial Imagery (B7)

_ Sparsely Vegetated Concave Surface (B8)

___ Dry-Season Water Table (C2)

____ Stunted or Stressed Plants (D1)

Wetland Hydrology Present? Yes \times No \times

___ Geomorphic Position (D2)

___ FAC-Neutral Test (D5)

___ Crayfish Burrows (C8)

____ Oxidized Rhizospheres on Living Roots (C3) ____ Saturation Visible on Aerial Imagery (C9)

Project/Site: A3820001/EMERSON CREE	K WIND F	ARMS (City/County: NORWALK Sampling Date:					
Applicant/Owner: APEX CLEAN ENERGY			State: OH Sampling Point: W1M-027					
Investigator(s): J. FREELAND, A. PETERS	6	:	_ Section, Township, Range: <u>T3N R24W</u>					
Landform (hillslope, terrace, etc.): FLAT								
Slope (%): Lat: 41.20887453			Long: -82	.80831783		Datum:		
Soil Map Unit Name:			-			ation:		
Are climatic / hydrologic conditions on the site ty				X _{No}	(If no, explain in Re	emarks.)		
Are Vegetation, Soil, or Hydrolo								
Are Vegetation, Soil, or Hydrolo					eded, explain any answer			
SUMMARY OF FINDINGS – Attach								
	<u> </u>	o						
Hydric Soil Present? Yes	<u> </u>	>		he Sampled				
, , ,	<u> </u>	>	wit	hin a Wetlar	id? Yes <u>^</u>	No		
Remarks:								
WETLAND W1M-027								
VEGETATION – Use scientific names	of plants.							
Tree Stratum (Plot size:)		Absolute % Cover		t Indicator	Dominance Test works			
1. Quercus rubra		15	X	FACU	Number of Dominant Sp That Are OBL, FACW, o			
2. Carya glabra		10	Х	FACU				
3. Ulmus americana		10	Х	FACW	Total Number of Domina Species Across All Strat	7		
4								
5					Percent of Dominant Spe That Are OBL, FACW, o			
		35	= Total Co	over				
Sapling/Shrub Stratum (Plot size:)	15	V		Prevalence Index work			
1. Ulmus americana		<u>15</u> 10	X	FACW	Total % Cover of: OPL species 3	$\underline{\qquad \qquad Multiply by:} \\ x 1 = \underline{3}$		
2. Fraxinus pennsylvanica			<u>X</u>	FACW	OBL species FACW species 40	$\begin{array}{c} x & y = 0 \\ x & 2 = 80 \end{array}$		
3					FAC species 5	x 3 = 15		
5					FACU species 25	x 4 = 100		
		25	= Total Co	over	UPL species 0	x 5 = 0		
Herb Stratum (Plot size:)					Column Totals: 73	(A) 198 (B)		
1. Fraxinus pennsylvanica		5	<u>X</u>	FACW		2.71		
2. Symphyotrichum lanceolatum 3. Symphyotrichum puniceum		<u>5</u> 3	_X	FAC	Prevalence Index			
A CAREX SP		$\frac{3}{3}$		OBL	Hydrophytic Vegetation	n Indicators: ydrophytic Vegetation		
· · · · · · · · · · · · · · · · · · ·					\overline{X} 2 - Dominance Test			
5					\overline{X} 3 - Prevalence Index	$x \text{ is } \le 3.0^{1}$		
6 7						daptations ¹ (Provide supporting		
8					data in Remarks	or on a separate sheet)		
9					Problematic Hydrop	hytic Vegetation ¹ (Explain)		
10								
		40	= Total Co	over	¹ Indicators of hydric soil be present, unless distu	and wetland hydrology must rbed or problematic.		
Woody Vine Stratum (Plot size:								
1					Hydrophytic			
2					Vegetation Present? Yes	<u> </u>		
Remarks: (Include photo numbers here or on	a senarate e		= Total Co	over				
	a separate s							

Profile Des	cription: (Describe	to the dep	oth needed to docu	ment the	indicator	or confiri	m the absence of in	dicators.)	
Depth	Matrix		Redo	ox Feature	s				
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	_Loc ²	Texture	Remarks	
0-1	10YR 2/2	100					muck		
1-10	10YR 5/2	90	7.5YR 5/6	10	С	Μ	cl		
———									
					·				
	oncentration, D=Dep		-Reduced Matrix M	S-Mackor			² Location: PL	=Pore Lining, M=Matrix.	
Hydric Soil				S-Maske	u Sanu Gi	dii 15.		Problematic Hydric Soils ³ :	
Histoso			Sandy	Gleyed Ma	atrix (S4)			ie Redox (A16)	
I —	pipedon (A2)			Redox (St			Dark Surfac		
Black H	istic (A3)		Strippe	d Matrix (S6)		Iron-Manganese Masses (F12)		
Hydrogen Sulfide (A4)		Loamy	Mucky Mi	neral (F1)		Very Shallo	Very Shallow Dark Surface (TF12)		
Stratified Layers (A5)			<u></u>	Gleyed M			Other (Expl	ain in Remarks)	
	uck (A10)			ed Matrix (,				
	d Below Dark Surfac	e (A11)		Dark Surfa			31		
	ark Surface (A12)			ed Dark Su)		ydrophytic vegetation and	
· —	Mucky Mineral (S1) ucky Peat or Peat (S	2)	Redox	Depressio	ons (F8)		,	Irology must be present, Irbed or problematic.	
	Layer (if observed)							ibed of problematic.	
	ARDPAN	•							
	iches): 10						Hydric Soil Pres	sent? Yes \times No	
Remarks:									
r tomanto.									
HYDROLO	GY								
Wetland Hy	drology Indicators:								
Primary Indi	cators (minimum of o	one is requ	ired; check all that a	pply)			Secondary In	dicators (minimum of two required)	
Surface	Water (A1)		X Water-Sta	ained Leav	ves (B9)		Surface S	Soil Cracks (B6)	
High Wa	ater Table (A2)		Aquatic F	auna (B13	3)		Drainage	Patterns (B10)	
Saturati	on (A3)		True Aqua	atic Plants	(B14)		Dry-Seas	son Water Table (C2)	
Water M	/larks (B1)		Hydrogen	Sulfide O	dor (C1)		Crayfish	Burrows (C8)	
Sedime	nt Deposits (B2)		X Oxidized	Rhizosphe	eres on Liv	ing Roots	(C3) Saturatio	n Visible on Aerial Imagery (C9)	

Drift Deposits (B3)		Presence of Reduced Iron (C4)	Stunted or Stressed Plants (D1)						
Algal Mat or Crust (B4)		Recent Iron Reduction in Tilled S	oils (C6) Geomorphic Position (D2)						
Iron Deposits (B5)		Thin Muck Surface (C7) FAC-Neutral Test (D5)							
Inundation Visible on Aeria	al Imagery (B7)								
X Sparsely Vegetated Conca	X Sparsely Vegetated Concave Surface (B8) Other (Explain in Remarks)								
Field Observations:									
Surface Water Present?	Yes No _	X Depth (inches):							
Water Table Present?	Yes No _	X Depth (inches):							
		V							
Saturation Present? (includes capillary fringe)	Yes No _	X Depth (inches):	Wetland Hydrology Present? Yes X No						
(includes capillary fringe)		ring well, aerial photos, previous inspec							
(includes capillary fringe)									
(includes capillary fringe)									
(includes capillary fringe) Describe Recorded Data (strea									
(includes capillary fringe) Describe Recorded Data (strea									

Project/Site: A3820001/EMERSON CREEK WIND F	ARMS	City/County: NORWALK Sampling Date: 9/14				
Applicant/Owner: APEX CLEAN ENERGY				State: OH Sampling Point: W1M-027		
Investigator(s): J. FREELAND, A. PETERS		Section,	Township, Rai	nge:		
Landform (hillslope, terrace, etc.): FLAT			Local relief	(concave, convex, none):		
Slope (%): Lat: 41.20883138		Long: <u>-82.80843083</u> Datum:				
Soil Map Unit Name:				NWI classification:		
Are climatic / hydrologic conditions on the site typical for thi	is time of yea	ar? Yes	<u> </u>	(If no, explain in Remarks.)		
Are Vegetation, Soil, or Hydrologys	significantly	disturbed	d? Are "	Normal Circumstances" present? Yes 🔀 No		
Are Vegetation, Soil, or Hydrology r	naturally pro	blematic	? (If ne	eded, explain any answers in Remarks.)		
SUMMARY OF FINDINGS – Attach site map	showing	sampl	ling point le	ocations, transects, important features, etc.		
Hydrophytic Vegetation Present? Yes N	10 <u>X</u>					
Hydric Soil Present? Yes N	10 <u>X</u>		the Sampled			
Wetland Hydrology Present? Yes N	10 <u>X</u>	w	ithin a Wetlan	nd? Yes <u>No X</u>		
Remarks:						
UPLAND W1M-027						
VEGETATION – Use scientific names of plants	•					
Tree Stratum (Plot size:)	Absolute % Cover		ant Indicator s? Status	Dominance Test worksheet:		
1. Quercus rubra	40	X	FACU	Number of Dominant Species That Are OBL, FACW, or FAC: 2 (A)		
2. Carya glabra	30	X	FACU			
3				Total Number of Dominant Species Across All Strata: 6 (B)		
4						
5.				Percent of Dominant Species That Are OBL, FACW, or FAC: 33.3 (A/B)		
	70	= Total C	Cover			
Sapling/Shrub Stratum (Plot size:)				Prevalence Index worksheet:		
1. Ulmus americana	_ 20	<u>X</u>	FACW	Total % Cover of: Multiply by:		
2. <u>Carya glabra</u>	20	<u>X</u>	FACU			
3				FACW species 25 $x 2 = \frac{50}{30}$ FAC species10 $x 3 = \frac{30}{30}$		
4						
5						
Herb Stratum (Plot size:)	_40	= Total C	Cover	UPL species 0 x 5 = 0 Column Totals: 160 (A) 580 (B)		
1. Parthenocissus quinquefolia	30	Х	FACU			
2. Toxicodendron radicans	10	Х	FAC	Prevalence Index = B/A =		
3. Fraxinus pennsylvanica	5		FACW	Hydrophytic Vegetation Indicators:		
4				1 - Rapid Test for Hydrophytic Vegetation		
5				2 - Dominance Test is >50%		
6				3 - Prevalence Index is ≤3.0 ¹		
7				4 - Morphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet)		
8				Problematic Hydrophytic Vegetation ¹ (Explain)		
9						
10	45			¹ Indicators of hydric soil and wetland hydrology must		
Woody Vine Stratum (Plot size:)	45	= Total C	Cover	be present, unless disturbed or problematic.		
1				Hydrophytic		
2				Hydrophytic Vegetation		
		= Total 0	Cover	Present? Yes <u>No X</u>		
Remarks: (Include photo numbers here or on a separate				·		

Profile Desc	ription: (Describe	to the dep	th needed to docum	nent the	indicator	or confirr	m the absence of indicators.)
Depth	Matrix		Redo	x Feature	es		
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture Remarks
0-6	10YR 3/2	100					<u>cl</u>
6-8	10YR 4/3	100					
8-12	10YR 5/3	95	7.5YR 5/4	5	<u>C</u>	M	
							·
							·
		letion, RM	Reduced Matrix, MS	S=Maske	d Sand Gr	ains.	² Location: PL=Pore Lining, M=Matrix.
Hydric Soil							Indicators for Problematic Hydric Soils ³ :
Histosol	. ,			-	atrix (S4)		Coast Prairie Redox (A16)
· — ·	pipedon (A2)			Redox (S	,		Dark Surface (S7)
Black Histic (A3) Stripped M			,	,		Iron-Manganese Masses (F12)	
Hydrogen Sulfide (A4)					ineral (F1)		Very Shallow Dark Surface (TF12)
Stratified	d Layers (A5)		Loamy (Gleyed M	latrix (F2)		Other (Explain in Remarks)
2 cm Mu	ıck (A10)		Deplete	d Matrix	(F3)		
Depleted	d Below Dark Surfac	e (A11)	Redox [Dark Surf	ace (F6)		
Thick Da	ark Surface (A12)		Deplete	d Dark S	urface (F7)	³ Indicators of hydrophytic vegetation and
Sandy M	lucky Mineral (S1)		Redox [Depressio	ons (F8)		wetland hydrology must be present,
5 cm Mu	icky Peat or Peat (S	,	_				unless disturbed or problematic.
	Layer (if observed):						
· · —	RDPAN						Hydric Soil Present? Yes No
Depth (ind Remarks:	ches): <u>12</u>						
Remarks:							
HYDROLO	GY						
-	drology Indicators:						
Primary India	cators (minimum of o	ne is requi	red; check all that ap	ply)			Secondary Indicators (minimum of two required)
	Water (A1)		Water-Stai		, ,		Surface Soil Cracks (B6)
High Wa	ater Table (A2)		Aquatic Fa	una (B13	3)		Drainage Patterns (B10)

Wetland Hydrology Indicators:		
Primary Indicators (minimum of one is required;	check all that apply)	Secondary Indicators (minimum of two required)
 Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) 	 Water-Stained Leaves (B9) Aquatic Fauna (B13) True Aquatic Plants (B14) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres on Living Roots (C Presence of Reduced Iron (C4) Recent Iron Reduction in Tilled Soils (C6) Thin Muck Surface (C7) Gauge or Well Data (D9) Other (Explain in Remarks) 	 Surface Soil Cracks (B6) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) 3) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1) Geomorphic Position (D2) FAC-Neutral Test (D5)
Field Observations:	\sim	
	X Depth (inches):	
	X Depth (inches):	
Saturation Present? Yes No _ (includes capillary fringe)	X Depth (inches): Wetlar	d Hydrology Present? Yes X No X
Describe Recorded Data (stream gauge, monito	pring well, aerial photos, previous inspections), if	available:
Remarks:		

Project/Site: A3820001/EMERSON CREEK WIND F/	ARMS	City/County	NORWA	ALK	_ Sampling Date: <u>9/14/2018</u>	
Applicant/Owner: APEX CLEAN ENERGY		State: OH Sampling Point: W1M-028				
Investigator(s): J. FREELAND, A. PETERS		Section, To	wnship, Ra	nge: T3N R24W		
Landform (hillslope, terrace, etc.): DEPRESSION			Local relief	(concave, convex, none)):	
Slope (%): Lat:		Long:			Datum:	
Soil Map Unit Name:					ication:	
Are climatic / hydrologic conditions on the site typical for this						
Are Vegetation, Soil, or Hydrology si					present? Yes X No	
Are Vegetation, Soil, or Hydrology na				eded, explain any answ		
SUMMARY OF FINDINGS – Attach site map s						
Hydrophytic Vegetation Present? Yes X No)					
Hydric Soil Present? Yes X No		Is th	e Sampled		1	
Wetland Hydrology Present? Yes X No	·	with	in a Wetla	nd? Yes X	< No	
Remarks:						
WETLAND W1M-028						
VEGETATION – Use scientific names of plants.						
	Absolute	Dominant	Indicator	Dominance Test wor	rksheet:	
Tree Stratum (Plot size:)		Species?		Number of Dominant S		
1. Tilia americana	15	<u> </u>	FACU	That Are OBL, FACW,	, or FAC: (A)	
2				Total Number of Domi		
3				Species Across All Str	rata: <u>4</u> (B)	
4				Percent of Dominant S	Species	
5	45	·		That Are OBL, FACW,		
Sapling/Shrub Stratum (Plot size:)	15	= Total Co	ver	Prevalence Index wo	orkshoot.	
1. Lindera benzoin	60	Х	FACW	Total % Cover of:		
				OBL species 60	$x_1 = _{60}^{60}$	
2				FACW species 80	x 2 = 160	
3				FAC species 10	x 3 = <u>30</u>	
5.				FACU species 30	x 4 = 120	
	60	= Total Co		UPL species 0	x 5 = 0	
Herb Stratum (Plot size:)		10tai 00	401	Column Totals: 180		
1. Scirpus atrovirens	60	<u>X</u>	OBL		(*), (-)	
2. Lindera benzoin	20		FACW	Prevalence Inde	ex = B/A = 2.06	
3. Solidago canadensis	8		FACU	Hydrophytic Vegetat	ion Indicators:	
4. Symphyotrichum dumosum	5		FAC	I — ·	Hydrophytic Vegetation	
5. Toxicodendron radicans	5		FAC	2 - Dominance Te		
6. Parthenocissus quinquefolia	3		FACU	X 3 - Prevalence Inc		
7					Adaptations ¹ (Provide supportin ks or on a separate sheet)	
8					ophytic Vegetation ¹ (Explain)	
9						
10				¹ Indicators of hydric ea	oil and wetland hydrology must	
Manda Man Obstance (Distai	101	= Total Co	ver	be present, unless dis		
<u>Woody Vine Stratum</u> (Plot size:) 1. Parthenocissus quinquefolia	4	х	FACU			
	4		FACU	Hydrophytic Vegetation		
2	4	- Tatal 0			es <u>X</u> No	
Remarks: (Include photo numbers here or on a separate s		= Total Co	ver			
remarks. (include proto numbers here of on a separate s	neet.)					

(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks		
)-2	10YR 3/2	100		_			sicl			
2-6	10YR 4/2	80	7.5YR 4/6	20	С	М	sic			
6-18	10YR 6/1	70	10YR 5/6	30	С	Μ	sic			
Гуре: С=С	oncentration, D=Dep		- M=Reduced Matrix, M	 /IS=Masked	d Sand Gr	ains.	² Location:	PL=Pore Lining, M=Matrix.		
ydric Soil	Indicators:							or Problematic Hydric Soils ³ :		
_ Histosol	(A1)		Sandy	Gleyed Ma	atrix (S4)		Coast P	rairie Redox (A16)		
	pipedon (A2)			Redox (St	,			Irface (S7)		
	istic (A3)			ed Matrix (S	,			nganese Masses (F12)		
_ / 0	en Sulfide (A4)			/ Mucky Mi				allow Dark Surface (TF12)		
	d Layers (A5) uck (A10)		× /	/ Gleyed M ted Matrix (Other (E	Explain in Remarks)		
	d Below Dark Surfac	ο (Δ11)		Dark Surfa						
	ark Surface (A12)			ted Dark Su)	³ Indicators	of hydrophytic vegetation and		
	Aucky Mineral (S1)				· ·	/	wetland hydrology must be present,			
5 cm Mu	ucky Peat or Peat (S	3)	_		_ Sandy Mucky Mineral (S1) Redox Depressions (F8) 5 cm Mucky Peat or Peat (S3)					
octrictive								listurbed or problematic.		
estrictive	Layer (if observed)	:								
Type:	Layer (if observed)	:								
Туре:	Layer (if observed)	:					Hydric Soil F			
Туре:		:								
Type: Depth (in		:								
Type: Depth (ind temarks:	ches):									
Type: Depth (ind Remarks:	ches):									
Type: Depth (inc Remarks: YDROLO Vetland Hyd	ches): PGY drology Indicators:		uired; check all that a	apply)			Hydric Soil F			
Type: Depth (ind Remarks: YDROLO Vetland Hyd Primary India Surface	ches): GY drology Indicators: cators (minimum of o Water (A1)		X Water-St	ained Leav			Hydric Soil F	Present? Yes X No y Indicators (minimum of two required ce Soil Cracks (B6)		
Type: Depth (ind temarks: YDROLO Vetland Hyd trimary India Surface High Wa	ches): GY drology Indicators: cators (minimum of o Water (A1) ater Table (A2)		X Water-St Aquatic F	ained Leav Fauna (B13	3)		Hydric Soil F	Present? Yes X No y Indicators (minimum of two required ce Soil Cracks (B6) age Patterns (B10)		
Type: Depth (ind temarks: YDROLO Vetland Hyd Trimary India Surface High Wa Saturatio	ches): GY drology Indicators: cators (minimum of o Water (A1) ater Table (A2) on (A3)		X Water-St Aquatic F True Aqu	ained Leav Fauna (B13 uatic Plants	3) (B14)		Hydric Soil F Hydric Soil F Secondar Surfa Drain Dry-S	Present? Yes X No y Indicators (minimum of two required ce Soil Cracks (B6) age Patterns (B10) Season Water Table (C2)		
Type: Depth (ind remarks: // // // // // // // // // // // // //	ches): GGY drology Indicators: cators (minimum of of Water (A1) ater Table (A2) on (A3) farks (B1)		X Water-St Aquatic F True Aqu Hydroge	ained Leav Fauna (B13 uatic Plants n Sulfide O	6) (B14) dor (C1)		Hydric Soil FSecondarSurfaDrainDry-SCrayf	Present? Yes X No y Indicators (minimum of two required ce Soil Cracks (B6) age Patterns (B10) Season Water Table (C2) ish Burrows (C8)		
Type: Depth (in emarks: //DROLO /etland Hy rimary India Surface Saturatia Saturatia Water M Sedimer	ches): GGY drology Indicators: cators (minimum of of Water (A1) ater Table (A2) on (A3) flarks (B1) nt Deposits (B2)		X Water-St Aquatic F True Aqu Hydroge Oxidized	ained Leav Fauna (B13 uatic Plants n Sulfide O Rhizosphe	3) (B14) dor (C1) eres on Liv		Hydric Soil F	Present? Yes X No y Indicators (minimum of two require ce Soil Cracks (B6) age Patterns (B10) Season Water Table (C2) ish Burrows (C8) ation Visible on Aerial Imagery (C9)		
Type: Depth (inv temarks: //DROLO //etland Hyv rimary India Surface High Wa Saturatia Saturatia Sedimer Drift Dep	ches): GGY drology Indicators: cators (minimum of of Water (A1) ater Table (A2) on (A3) farks (B1) nt Deposits (B2) posits (B3)		X Water-St Aquatic F True Aqu Hydroge Oxidized	ained Leav Fauna (B13 uatic Plants n Sulfide O Rhizosphe e of Reduce) (B14) dor (C1) eres on Liv ed Iron (C	4)	Hydric Soil F	Present? Yes No y Indicators (minimum of two required ce Soil Cracks (B6) age Patterns (B10) Geason Water Table (C2) ish Burrows (C8) ation Visible on Aerial Imagery (C9) ed or Stressed Plants (D1)		
Type: Depth (in/ emarks: //DROLO /etland Hyv rimary India Surface High Wa Saturatio X Saturatio X Sedimer Drift Dep Algal Ma	ches): GGY drology Indicators: cators (minimum of c Water (A1) ater Table (A2) on (A3) farks (B1) nt Deposits (B2) posits (B3) at or Crust (B4)		X Water-St Aquatic F True Aqu Hydroge Oxidized Presence	rained Leav Fauna (B13 uatic Plants n Sulfide O Rhizosphe e of Reduce ron Reduct) (B14) dor (C1) eres on Liv ed Iron (C ion in Tille	4)	Hydric Soil F Hydric Soil F Secondar Surfa Drain Dry-S (C3) Satur Stunt (6) Geon	Present? Yes No y Indicators (minimum of two required ce Soil Cracks (B6) age Patterns (B10) Season Water Table (C2) ish Burrows (C8) ation Visible on Aerial Imagery (C9) ed or Stressed Plants (D1) norphic Position (D2)		
Type: Depth (inv emarks: //DROLO /etland Hyv rimary India Surface High Wa Saturatio X Water M Sedimer Drift Dep Algal Ma Iron Dep	ches): drology Indicators: cators (minimum of c Water (A1) ater Table (A2) on (A3) flarks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5)	: one is req	X Water-St Aquatic F True Aqu Hydroge Oxidized Presence Recent In Thin Muc	ained Leav Fauna (B13 Jatic Plants n Sulfide O Rhizosphe e of Reduce ron Reducti ck Surface	(B14) dor (C1) eres on Liv ed Iron (C ion in Tille (C7)	4)	Hydric Soil F Hydric Soil F Secondar Surfa Drain Dry-S (C3) Satur Stunt (6) Geon	Present? Yes No y Indicators (minimum of two required to the second		
Type: Depth (ind emarks: // / / / / / / / / / / / / / / / / /	ches): drology Indicators: cators (minimum of of Water (A1) ater Table (A2) on (A3) flarks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) fon Visible on Aerial	: one is req Imagery (X Water-St Aquatic F True Aqu Hydroge Oxidized Presence Recent In Thin Muc B7) Gauge o	ained Leav Fauna (B13 uatic Plants n Sulfide O Rhizosphe e of Reduce ron Reduct ck Surface r Well Data	(B14) dor (C1) eres on Liv ed Iron (C- ion in Tille (C7) (C9)	4)	Hydric Soil F Hydric Soil F Secondar Surfa Drain Dry-S (C3) Satur Stunt (6) Geon	Present? Yes No y Indicators (minimum of two requir ce Soil Cracks (B6) age Patterns (B10) Season Water Table (C2) ish Burrows (C8) ation Visible on Aerial Imagery (C9) ed or Stressed Plants (D1) norphic Position (D2)		
Type: Depth (ind remarks: // // // // // // // // // // // // //	ches): drology Indicators: cators (minimum of of Water (A1) ater Table (A2) on (A3) flarks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) ion Visible on Aerial y Vegetated Concav	: one is req Imagery (X Water-St Aquatic F True Aqu Hydroge Oxidized Presence Recent In Thin Muc B7) Gauge o	ained Leav Fauna (B13 uatic Plants n Sulfide O Rhizosphe e of Reduce ron Reduct ck Surface r Well Data	(B14) dor (C1) eres on Liv ed Iron (C- ion in Tille (C7) (C9)	4)	Hydric Soil F Hydric Soil F Secondar Surfa Drain Dry-S (C3) Satur Stunt (6) Geon	Present? Yes No y Indicators (minimum of two requir ce Soil Cracks (B6) age Patterns (B10) Season Water Table (C2) ish Burrows (C8) ation Visible on Aerial Imagery (C9) ed or Stressed Plants (D1) norphic Position (D2)		
Type: Depth (inv remarks: TOROLO Vetland Hyv rimary India Surface High Wa Surface High Wa Saturatio Sedimer Drift Dep Algal Ma Iron Dep Inundati Sparsely ield Obser	ches): drology Indicators: cators (minimum of of Water (A1) ater Table (A2) on (A3) flarks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) ion Visible on Aerial y Vegetated Concav vations:	: one is req Imagery (e Surface	X Water-St Aquatic F True Aqu Hydroge Oxidized Presence Recent In Thin Muc B7) Gauge o (B8) Other (E	ained Leav Fauna (B13 uatic Plants n Sulfide O Rhizosphe e of Reduce ron Reducti ck Surface r Well Data xplain in Re	(B14) dor (C1) eres on Liv ed Iron (C- ion in Tille (C7) (D9) emarks)	4) d Soils (C	Hydric Soil F Hydric Soil F Secondar Surfa Drain Dry-S (C3) Satur Stunt (6) Geon	Present? Yes No y Indicators (minimum of two requir ce Soil Cracks (B6) age Patterns (B10) Season Water Table (C2) ish Burrows (C8) ation Visible on Aerial Imagery (C9) ed or Stressed Plants (D1) norphic Position (D2)		
Type: Depth (in: Remarks: YDROLO Yetland Hy Primary India Surface High Wa Saturatia X Water M Sedimer Drift Dep Algal Ma Iron Dep Inundati Sparsely iield Obser Surface Wat	ches): drology Indicators: cators (minimum of of Water (A1) ater Table (A2) on (A3) flarks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) on Visible on Aerial y Vegetated Concav vations: ter Present?	: one is req Imagery (e Surface (es	X Water-St Aquatic F True Aqu Hydroge Oxidized Presence Recent In Thin Muc B7) Gauge o (B8) Other (E	ained Leav Fauna (B13 uatic Plants n Sulfide O Rhizosphe e of Reduce ron Reduct ck Surface (r Well Data xplain in Re nches):	(B14) dor (C1) eres on Liv ed Iron (C- ion in Tille (C7) (D9) emarks)	4) d Soils (C	Hydric Soil F Hydric Soil F Secondar Surfa Drain Dry-S (C3) Satur Stunt (6) Geon	Present? Yes No y Indicators (minimum of two required to the second		
Type: Depth (inc Remarks: YDROLO Vetland Hyu Primary India Surface High Wa Saturatio X Water M Sedimer Drift Dep Algal Ma Iron Dep Inundati Sparsely `ield Obser	ches): drology Indicators: cators (minimum of controls) (atter Table (A2) on (A3) farks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) fon Visible on Aerial y Vegetated Concav vations: ter Present? Present?	Imagery (e Surface /es	X Water-St Aquatic F True Aqu Hydroge Oxidized Presence Recent In Thin Muc B7) Gauge o (B8) Other (E	ained Leav Fauna (B13 Jatic Plants n Sulfide O Rhizosphe e of Reduce ron Reducti ck Surface (r Well Data xplain in Re nches): nches):	(B14) dor (C1) eres on Liv ed Iron (C4) ion in Tille (C7) (C9) emarks)	4) d Soils (C	Hydric Soil F	Present? Yes No y Indicators (minimum of two requir ce Soil Cracks (B6) age Patterns (B10) season Water Table (C2) ish Burrows (C8) ation Visible on Aerial Imagery (C9) ed or Stressed Plants (D1) norphic Position (D2)		

Remarks:

Project/Site: A3820001/EMERSON CREEK WIND FA	ARMS	City/County	NORWA	ALK Sampling Date: 9/14/2018
Applicant/Owner: APEX CLEAN ENERGY				State: OH Sampling Point: W1M-028
Investigator(s): J. FREELAND, A. PETERS		Section, To	wnship, Ra	nge:
Landform (hillslope, terrace, etc.): <u>RIDGE</u>			Local relief	(concave, convex, none): <u>CONVEX</u>
Slope (%): Lat: 41.20980782		Long: <u>-82.</u>	81088959	Datum:
Soil Map Unit Name:		-		NWI classification:
Are climatic / hydrologic conditions on the site typical for this	time of ye	ar? Yes	× _{No}	(If no, explain in Remarks.)
Are Vegetation, Soil, or Hydrology sig	-			"Normal Circumstances" present? Yes X No
Are Vegetation, Soil, or Hydrology na				eeded, explain any answers in Remarks.)
SUMMARY OF FINDINGS – Attach site map s				
Hydrophytic Vegetation Present? Yes No	X			
Hydric Soil Present? Yes No	<u> </u>	Is th	e Sampled	
Wetland Hydrology Present? Yes No	<u> </u>	with	in a Wetlar	nd? Yes No <u>X</u>
Remarks: UPLAND W1M-028				
VEGETATION – Use scientific names of plants.				
	Absolute	Dominant		Dominance Test worksheet:
	<u>% Cover</u> 30	Species? X	<u>Status</u> FACU	Number of Dominant Species
1. Tilia americana 2. Juglans nigra	20	×	FACU	That Are OBL, FACW, or FAC: _4(A)
				Total Number of Dominant Species Across All Strata: 8 (B)
3				Species Across All Strata: _8(B)
5.				Percent of Dominant Species
	50	= Total Cov	ver	That Are OBL, FACW, or FAC: <u>50</u> (A/B)
Sapling/Shrub Stratum (Plot size:)				Prevalence Index worksheet:
1. Lindera benzoin	25	<u>X</u>	FACW	Total % Cover of:Multiply by:
2. Carya cordiformis	15	<u>X</u>	FACU	OBL species $\frac{0}{20}$ x 1 = $\frac{0}{20}$
3. Fraxinus pennsylvanica	5		FACW	FACW species $\frac{30}{73}$ $x_2 = \frac{60}{219}$
4				FAC species X3 =
5				FACU species 110 x 4 = 440
Hark Stratum (Distaire)	45	= Total Co	ver	UPL species 0 $x 5 = 0$ 710
Herb Stratum (Plot size:) 1 Geum canadense	40	Х	FAC	Column Totals: <u>213</u> (A) <u>719</u> (B)
2. Parthenocissus quinquefolia	40	X	FACU	Prevalence Index = B/A =3.38
3. Viola sororia	30	X	FAC	Hydrophytic Vegetation Indicators:
4. Symphyotrichum dumosum	5		FAC	1 - Rapid Test for Hydrophytic Vegetation
5. Rubus idaeus	5		FACU	2 - Dominance Test is >50%
				3 - Prevalence Index is ≤3.0 ¹
7				4 - Morphological Adaptations ¹ (Provide supporting
8				data in Remarks or on a separate sheet)
9				Problematic Hydrophytic Vegetation ¹ (Explain)
10				1
	120	= Total Co	ver	¹ Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
Woody Vine Stratum (Plot size:)		X	540	
1. Smilax tamnoides	3	_X	FAC	Hydrophytic
2	3			Vegetation Present? Yes No _X
Pomorkov (Includo photo pumboro horo er er e coversta		= Total Co	ver	
Remarks: (Include photo numbers here or on a separate s				

Depth (inches) Matrix Redox Features 0-6 10YR 3/2 100 % Type1 Loc2 Texture Remarks 0-6 10YR 3/2 100 sil dry 6-10 10YR 5/3 100 sil dry 8-10-14 10YR 6/3 100 sil dry
0-6 10YR 3/2 100 sil dry 6-10 10YR 5/3 100 sil dry 8-10-14 10YR 6/3 100 sil dry
6-10 10YR 5/3 100 sil dry 8-10-14 10YR 6/3 100 sil dry
8-10-14 10YR 6/3 100 sil dry
¹ Type: C=Concentration, D=Depletion, RM=Reduced Matrix, MS=Masked Sand Grains. ² Location: PL=Pore Lining, M=Matrix. Hydric Soil Indicators: Indicators for Problematic Hydric Soils ³ :
Hydric Soil Indicators: Indicators for Problematic Hydric Soils ³ :
Hydric Soil Indicators: Indicators for Problematic Hydric Soils ³ :
Hydric Soil Indicators: Indicators for Problematic Hydric Soils ³ :
Hydric Soil Indicators: Indicators for Problematic Hydric Soils ³ :
Hydric Soil Indicators: Indicators for Problematic Hydric Soils ³ :
Histosol (A1) Sandy Gleyed Matrix (S4) Coast Prairie Redox (A16) Histic Epipedon (A2) Sandy Redox (S5) Dark Surface (S7)
Histic Epipedon (A2) Sandy Redox (S5) Dark Surface (S7)
Black Histic (A3) Stripped Matrix (S6) Iron-Manganese Masses (F12)
Hydrogen Sulfide (A4) Loamy Mucky Mineral (F1) Very Shallow Dark Surface (TF12)
Stratified Layers (A5) Loamy Gleyed Matrix (F2) Other (Explain in Remarks)
2 cm Muck (A10) Depleted Matrix (F3)
Depleted Below Dark Surface (A11) Redox Dark Surface (F6)
Thick Dark Surface (A12) Depleted Dark Surface (F7) ³ Indicators of hydrophytic vegetation and
Sandy Mucky Mineral (S1) Redox Depressions (F8) wetland hydrology must be present,
5 cm Mucky Peat or Peat (S3) unless disturbed or problematic.
Restrictive Layer (if observed):
Type:
Depth (inches): No
Remarks:
HYDROLOGY
Wetland Hydrology Indicators:
Primary Indicators (minimum of one is required; check all that apply) Secondary Indicators (minimum of two required)
Surface Water (A1) Water-Stained Leaves (B9) Surface Soil Cracks (B6)
High Water Table (A2) Aquatic Fauna (B13) Drainage Patterns (B10)
Saturation (A3) True Aquatic Plants (B14) Dry-Season Water Table (C2)
Water Marks (B1) Hydrogen Sulfide Odor (C1) Crayfish Burrows (C8)
Sediment Deposits (B2) Oxidized Rhizospheres on Living Roots (C3) Saturation Visible on Aerial Imagery (C9)

- Presence of Reduced Iron (C4)
 Stunted or Stressed Plants (D1)

 Recent Iron Reduction in Tilled Soils (C6)
 Geomorphic Position (D2)

Iron Deposits (B5)		Thin Muck Surface (C7)	FAC-Neutral Test (D5)	
Inundation Visible on Aeri	ial Imagery (B7)	Gauge or Well Data (D9)		
Sparsely Vegetated Conc	ave Surface (B8)	Other (Explain in Remarks)		
Field Observations:				
Surface Water Present?	Yes No _	X Depth (inches):		
Water Table Present?	Yes No _	X Depth (inches):		
Saturation Present? (includes capillary fringe)	Yes No _	X Depth (inches):	Wetland Hydrology Present? Yes <u>×</u>	No <u>×</u>
Describe Recorded Data (stre	am gauge, monitor	ring well, aerial photos, previous inspec	tions), if available:	
Remarks:				

___ Drift Deposits (B3) ____ Algal Mat or Crust (B4)

Project/Site: A3820001/EMERSON CREEK WIND F	City/Co	ounty:	NORWA	LK Sampling Date:	9/14/2018	
Applicant/Owner: APEX CLEAN ENERGY	State: OH Sampling Po				W1M-029	
Investigator(s): J. FREELAND, A. PETERS	_ Section, Township, Range: <u>T3N R24W</u>					
Landform (hillslope, terrace, etc.): DEPRESSION			L	ocal relief	(concave, convex, none): <u>CONCAVE</u>	
Slope (%): Lat:		Long:			Datum:	
Soil Map Unit Name:					NWI classification:	
Are climatic / hydrologic conditions on the site typical for this	time of ye	ar? Ye	$_{es}$ \ge	No	(If no, explain in Remarks.)	
Are Vegetation, Soil, or Hydrology si	gnificantly	disturb	ped?	Are "	Normal Circumstances" present? Yes	×_ №
Are Vegetation, Soil, or Hydrology na	aturally pro	blema	tic?	(lf ne	eded, explain any answers in Remarks.)	
SUMMARY OF FINDINGS - Attach site map	showing	sam	pling	point l	ocations, transects, important f	eatures, etc.
Hydrophytic Vegetation Present? Yes X No	>					
Hydric Soil Present? Yes X No	·			Sampled		
Wetland Hydrology Present? Yes X No	·		withi	n a Wetlar	nd? Yes X No	-
Remarks:						
WETLAND W1M-029						
VEGETATION – Use scientific names of plants.						
VEGETATION – Ose scientific frames of plants.	Absolute	Dom	inant	Indicator	Dominance Test worksheet:	
Tree Stratum (Plot size:)	<u>% Cover</u>				Number of Dominant Species	
1. Acer rubrum	40	_X		FAC	That Are OBL, FACW, or FAC: 2	(A)
2. Quercus rubra	30	X		FACU	Total Number of Dominant	
3. Ulmus americana	25	<u> </u>		FACW	Species Across All Strata: 3	(B)
4					Percent of Dominant Species	
5	05				That Are OBL, FACW, or FAC: 66.6	(A/B)
Sapling/Shrub Stratum (Plot size:)	95	= Tota	al Cove	ər	Prevalence Index worksheet:	
1					Total % Cover of: Multip	bly by:
2.					OBL species x 1 = _0	
3.					EACW species 25 $x_2 = 50$)
4					FAC species x 3 =2	20
5					FACU species _30 x 4 = _12	
		= Tota	al Cove	er	UPL species _0 x 5 = _0	
Herb Stratum (Plot size:)					Column Totals: 95 (A) 29	90 (B)
1 2					Prevalence Index = $B/A = -3.05$	
3					Hydrophytic Vegetation Indicators:	
4					1 - Rapid Test for Hydrophytic Vege	atation
5					2 - Dominance Test is >50%	
6					3 - Prevalence Index is ≤3.0 ¹	
7					4 - Morphological Adaptations ¹ (Pro	vide supporting
8					data in Remarks or on a separat	
9					Problematic Hydrophytic Vegetation	(Explain)
10					¹ Indicators of hydric soil and wetland hydric	drology must
Woody Vine Stratum (Plot size:)		= Tota	al Cove	er	be present, unless disturbed or problem.	
1					Hudronbutio	
2					Hydrophytic Vegetation	
			al Cove	er	Present? Yes X No	<u> </u>
Remarks: (Include photo numbers here or on a separate s	heet.)				1	

		o the dept				or confir	m the absence of indicators.)		
Depth (inches)	<u>Matrix</u> Color (moist)	%	Color (moist)	lox Featur %	es Type ¹	Loc ²	Texture Remarks		
0-1	10YR 2/2	100					muck		
1-7	10YR 5/2	90	7.5YR 5/6	10	C	М	cl		
7-16	10YR 6/2	90	7.5YR 5/8	10	С	Μ	cl		
							· ·		
	·						· · ·		
1							2		
	Concentration, D=Deple	etion, RM=	Reduced Matrix, N	/IS=Maske	ed Sand Gr	ains.	² Location: PL=Pore Lining, M=Mat		
·	Indicators:		Carada	Claurad	atriv (CA)		Indicators for Problematic Hydric	Solis	
Histoso	pipedon (A2)			Gleyed M Redox (S			Coast Prairie Redox (A16) Dark Surface (S7)		
	listic (A3)			ed Matrix (,		Iron-Manganese Masses (F12)		
	en Sulfide (A4)				ineral (F1)		Very Shallow Dark Surface (TF1	2)	
	d Layers (A5)				Aatrix (F2)		Other (Explain in Remarks)	,	
2 cm Muck (A10) Z cm Muck (A10)									
Deplete	ed Below Dark Surface	(A11)		Dark Sur					
	ark Surface (A12)		·		urface (F7)	³ Indicators of hydrophytic vegetation and		
· — ·	Mucky Mineral (S1)		Redox	Depressi	ons (F8)		wetland hydrology must be present,		
	ucky Peat or Peat (S3))					unless disturbed or problematic.		
_	Layer (if observed):								
Type:							Hydric Soil Present? Yes 🔀	No	
Depth (in	icnes):								
Remarks:									
HYDROLC									
-	drology Indicators:								
	icators (minimum of on	ne is requir					Secondary Indicators (minimum of	two required)	
	Water (A1)		X Water-St				Surface Soil Cracks (B6)		
•	ater Table (A2)			auna (B1	,		Drainage Patterns (B10)		
	ion (A3)			atic Plant	. ,		Dry-Season Water Table (C2)	1	
	Marks (B1)			n Sulfide (Crayfish Burrows (C8)	(00)	
	ent Deposits (B2)				eres on Liv	-	· / <u> </u>	••••	
	eposits (B3)				ed Iron (C	,	Stunted or Stressed Plants (D	(1)	
	at or Crust (B4)				tion in Tille	a Soils (C	, <u> </u>		
	posits (B5)	(5-		k Surface	. ,		FAC-Neutral Test (D5)		
Inundat	tion Visible on Aerial In	nagery (B7	Gauge of Gauge of	r Well Dat	a (D9)				

× /	rial imagery (B7) Gauge of well Data (D9)	
X Sparsely Vegetated Conc	cave Surface (B8) Other (Explain in Remarks)	
Field Observations:		
Surface Water Present?	Yes No X Depth (inches):	
Water Table Present?	Yes No Depth (inches):	_
Saturation Present? (includes capillary fringe)	Yes No _X Depth (inches):	Wetland Hydrology Present? Yes X No
Describe Recorded Data (stre	eam gauge, monitoring well, aerial photos, previous in	spections), if available:
Remarks:		
Remarks:		
Remarks:		

Project/Site: A3820001/EMERSON CREEK WIND F	FARMS	City/Cou	nty: <u>NORWA</u>	LK Sampling Date: 9/14/2018
Applicant/Owner: <u>APEX CLEAN ENERGY</u>				State: OH Sampling Point: W1M-029
Investigator(s): J. FREELAND, A. PETERS		Section,	Township, Ra	nge:
Landform (hillslope, terrace, etc.): FLAT			Local relief	(concave, convex, none):
Slope (%): Lat: 41.21078843		Long: <u>-</u> 8	32.80787572	2 Datum:
Soil Map Unit Name:				NWI classification:
Are climatic / hydrologic conditions on the site typical for th	is time of yea	ar? Yes		
Are Vegetation, Soil, or Hydrology	significantly	disturbe	d? Are "	Normal Circumstances" present? Yes 🔀 No
Are Vegetation, Soil, or Hydrology				eded, explain any answers in Remarks.)
SUMMARY OF FINDINGS – Attach site map	showing	samp	ling point le	ocations, transects, important features, etc.
Hydrophytic Vegetation Present? Yes N	No_X_			
Hydric Soil Present? Yes N		ls	the Sampled	
Wetland Hydrology Present? Yes N	No <u>X</u>	w	vithin a Wetlar	nd? Yes No
Remarks:				
UPLAND W1M-029				
VEGETATION – Use scientific names of plants	s.			
	Absolute		ant Indicator	Dominance Test worksheet:
Tree Stratum (Plot size:)	<u>% Cover</u> 40	X	<u>s?</u> <u>Status</u> FACU	Number of Dominant Species That Are OBL, FACW, or FAC: <u>3</u> (A)
2. Carya glabra	$-\frac{10}{20}$	$\frac{x}{x}$	FACU	That Are OBL, FACW, or FAC: <u>3</u> (A)
3. Ostrya virginiana	$-\frac{20}{20}$	X	FACU	Total Number of Dominant Species Across All Strata: 6 (B)
4				Species Across All Strata: <u>6</u> (B)
5.				Percent of Dominant Species
·	80	= Total (Cover	That Are OBL, FACW, or FAC: 50 (A/B)
Sapling/Shrub Stratum (Plot size:)				Prevalence Index worksheet:
1. Ulmus americana		Х	FACW	Total % Cover of:Multiply by:
2				OBL species $\frac{0}{15}$ x 1 = $\frac{0}{20}$
3				FACW species 15 x 2 = 30 30
4				FAC species10 $x = 30$ FACU species83 $x = 332$
5				
Herb Stratum (Plot size:)	2	= Total (Cover	100 300
1. Toxicodendron radicans	10	Х	FAC	Column Totals: <u>108</u> (A) <u>592</u> (B)
2. Ribes americanum	8	Х	FACW	Prevalence Index = B/A =3.63
3. Fraxinus pennsylvanica	5		FACW	Hydrophytic Vegetation Indicators:
4. Parthenocissus quinquefolia	3		FACU	1 - Rapid Test for Hydrophytic Vegetation
5				2 - Dominance Test is >50%
6				3 - Prevalence Index is ≤3.0 ¹
7				4 - Morphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet)
8				Problematic Hydrophytic Vegetation ¹ (Explain)
9				
10				¹ Indicators of hydric soil and wetland hydrology must
Woody Vine Stratum (Plot size:)	26	= Total (Cover	be present, unless disturbed or problematic.
1				Hudrophytic
2				Hydrophytic Vegetation
		= Total (Cover	Present? Yes <u>No X</u>
Remarks: (Include photo numbers here or on a separate				

Profile Des	cription: (Describe	to the dep	th needed to document the indicator or confin	m the absence	e of indicators.)
Depth	Matrix		Redox Features		
(inches)	Color (moist)	%	Color (moist) % Type ¹ Loc ²		Remarks
0-4	10YR 3/2	100		sil	dry
4-9	10YR 4/2	100		sil	dry
9-16	10YR 6/3	100		cl	dry
17				21 +	DI - David Linia - Ma Matrix
Hydric Soil		pletion, RIVI	=Reduced Matrix, MS=Masked Sand Grains.		n: PL=Pore Lining, M=Matrix. s for Problematic Hydric Soils ³ :
Histoso			Sandy Gleyed Matrix (S4)		Prairie Redox (A16)
I —	pipedon (A2)		Sandy Redox (S5)		Surface (S7)
	istic (A3)		Stripped Matrix (S6)		langanese Masses (F12)
	en Sulfide (A4)		Loamy Mucky Mineral (F1)		Shallow Dark Surface (TF12)
	d Layers (A5)		Loamy Gleyed Matrix (F2)		(Explain in Remarks)
1	uck (A10)		Depleted Matrix (F3)		(,
	d Below Dark Surfac	e (A11)	Redox Dark Surface (F6)		
I — ·	ark Surface (A12)	. ,	Depleted Dark Surface (F7)	³ Indicators	s of hydrophytic vegetation and
	Mucky Mineral (S1)		Redox Depressions (F8)		d hydrology must be present,
5 cm M	ucky Peat or Peat (S	3)		unless	s disturbed or problematic.
Restrictive	Layer (if observed)	:			
Туре:					
Depth (in	ches):			Hydric Soi	I Present? Yes No _X
Remarks:					
HYDROLC	GY				
Wetland Hy	drology Indicators:	:			
Primary Indi	cators (minimum of o	one is requi	red; check all that apply)	Second	ary Indicators (minimum of two required)
Surface	Water (A1)		Water-Stained Leaves (B9)	Sur	face Soil Cracks (B6)
High Wa	ater Table (A2)		Aquatic Fauna (B13)	Dra	inage Patterns (B10)
Saturati	on (A3)		True Aquatic Plants (B14)	Dry	-Season Water Table (C2)
Water M	/larks (B1)		Hydrogen Sulfide Odor (C1)	Cra	yfish Burrows (C8)
Sedime	nt Deposits (B2)		Oxidized Rhizospheres on Living Roots	s (C3) Sat	uration Visible on Aerial Imagery (C9)
Drift De	posits (B3)		Presence of Reduced Iron (C4)	Stu	nted or Stressed Plants (D1)

____ Recent Iron Reduction in Tilled Soils (C6)

____ Thin Muck Surface (C7)

___ Gauge or Well Data (D9)

Yes _____ No ____ Depth (inches): _____

Yes _____ No ____ Depth (inches): ______

Yes _____ No X Depth (inches): ____

Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:

Remarks:

____ Algal Mat or Crust (B4)

____ Inundation Visible on Aerial Imagery (B7)

___ Sparsely Vegetated Concave Surface (B8) ___ Other (Explain in Remarks)

___ Iron Deposits (B5)

Field Observations:

Water Table Present?

Saturation Present? (includes capillary fringe)

Surface Water Present?

___ Geomorphic Position (D2)

Wetland Hydrology Present? Yes X No X

___ FAC-Neutral Test (D5)

Project/Site: A3820001/EMERSON C	REE		D FARMS	City/County	NORWA	ALK Sampling Date: 9/17/2018
Applicant/Owner: <u>APEX CLEAN ENE</u>	RGY					State: OH Sampling Point: <u>W1M-030</u>
nvestigator(s): J. FREELAND, A. PE	TERS			Section, To	wnship, Ra	ange:
Landform (hillslope, terrace, etc.): DEPR						(concave, convex, none):
				Long:		Datum:
Soil Map Unit Name:						NWI classification:
Are climatic / hydrologic conditions on the						
Are Vegetation, Soil, or Hy						"Normal Circumstances" present? Yes X No
Are Vegetation, Soil, or Hy						eeded, explain any answers in Remarks.)
						locations, transects, important features, etc
Hydrophytic Vegetation Present?		X	-		g point i	
Hydric Soil Present?	_		No		e Sampled	
Wetland Hydrology Present?			No	with	in a Wetla	nd? Yes X No
Remarks:						
WETLAND W1M-030						
VEGETATION – Use scientific na	mes	of plar	nts.			
			Absolute		Indicator	Dominance Test worksheet:
Tree Stratum (Plot size:)			Species?		Number of Dominant Species
1. Quercus bicolor			$-\frac{40}{10}$	- <u>X</u>	FACW	That Are OBL, FACW, or FAC: _4 (A)
2. Ulmus americana			10		FACW	Total Number of Dominant
3						Species Across All Strata: _5(B)
4						Percent of Dominant Species
5						That Are OBL, FACW, or FAC: <u>80</u> (A/B)
Sapling/Shrub Stratum (Plot size:)	50	= Total Cov	ver	Prevalence Index worksheet:
1. Ulmus americana		,	25	Х	FACW	Total % Cover of: Multiply by:
2. Carya laciniosa			20	- <u></u>	FACW	OBL species 20 x 1 = 20
3. Fraxinus pennsylvanica			8		FACW	FACW species 103 $x_2 = 206$
4. CRATAEGUS SP.			5			FAC species 10 x 3 = 30
5.						FACU species x 4 =
			58	= Total Cov	ver	UPL species x 5 = _0
Herb Stratum (Plot size:)			-		Column Totals: <u>133</u> (A) <u>256</u> (B)
1. CAREX SP			75	<u> </u>		1.02
2. Glyceria striata					OBL	Prevalence Index = B/A = <u>1.92</u>
3. Toxicodendron radicans					FAC	Hydrophytic Vegetation Indicators:
4						$\frac{1}{2} - \text{Rapid Test for Hydrophytic Vegetation}$ 2 - Dominance Test is >50%
5						$\frac{1}{2}$ 2 - Dominance Test is >50% $\frac{1}{2}$ 3 - Prevalence Index is <3.0 ¹
6						4 - Morphological Adaptations ¹ (Provide supporting
7						data in Remarks or on a separate sheet)
8						Problematic Hydrophytic Vegetation ¹ (Explain)
9						
10			105	- T-t-l O-		¹ Indicators of hydric soil and wetland hydrology must
Woody Vine Stratum (Plot size:)	100	_ = Total Cov	ver	be present, unless disturbed or problematic.
1						Hydrophytic
2						Vegetation
				= Total Cov	ver	Present? Yes X No
Remarks: (Include photo numbers here	or on a	separa	ate sheet.)			1

Depth			pui needed to docu		maicator	or confirm	n the absence of	multators.)
	Matrix			x Feature				
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	_Loc ²	Texture	Remarks
0-7	10YR 3/1	98	7.5YR 4/4	2	С	PL	sicl	
7-16	2.5YR 4/1	65	10YR 5/6	35	C	M	sic	
	oncentration D=De	nletion R	/=Reduced Matrix, M		- <u> </u>	aine	² Location:	PL=Pore Lining, M=Matrix.
Hydric Soil				0-IVIASKE	u Sanu Gr	ams.		r Problematic Hydric Soils ³ :
Histosol			Sandy	Gleved M	atrix (S4)			airie Redox (A16)
	pipedon (A2)			Redox (S			Dark Surf	
· — ·	istic (A3)			d Matrix (,			ganese Masses (F12)
Hydroge	en Sulfide (A4)		Loamy	Mucky M	neral (F1)		Very Sha	llow Dark Surface (TF12)
Stratified	d Layers (A5)				atrix (F2)		Other (Ex	plain in Remarks)
	uck (A10)		X Deplete					
· — ·	d Below Dark Surfa	ce (A11)	X Redox		· ,		31	
	ark Surface (A12) /lucky Mineral (S1)			ed Dark S Depressio	urface (F7))		hydrophytic vegetation and ydrology must be present,
· — ·	ucky Peat or Peat (S	3)		Depressio	JIIS (FO)			sturbed or problematic.
	Layer (if observed)							subed of problemate.
Type:		,.						
Depth (in	ches).						Hydric Soil Pr	esent? Yes X No
Remarks:								
r tomanto.								
	GY							
HYDROLO		:						
Wetland Hy	drology Indicators		uired: check all that ar				Secondary	Indicators (minimum of two required)
Wetland Hy	drology Indicators cators (minimum of		uired: check all that an X Water-Sta		/es (B9)			Indicators (minimum of two required)
Wetland Hy Primary India Surface	drology Indicators cators (minimum of Water (A1)		X Water-Sta	ined Lea	, ,		Surface	e Soil Cracks (B6)
Wetland Hy Primary India Surface High Wa	drology Indicators cators (minimum of Water (A1) ater Table (A2)		X Water-Sta Aquatic Fa	ined Lea auna (B13	3)		Surface Draina	e Soil Cracks (B6) ge Patterns (B10)
Wetland Hy Primary India Surface High Wa Saturatio	drology Indicators cators (minimum of Water (A1) ater Table (A2) on (A3)		X Water-Sta Aquatic Fa True Aqua	ined Lea auna (B13 atic Plants	3) 5 (B14)		Surface Draina Dry-Se	e Soil Cracks (B6) ge Patterns (B10) ason Water Table (C2)
Wetland Hy Primary India	drology Indicators cators (minimum of Water (A1) ater Table (A2) on (A3) Iarks (B1)		X Water-Sta Aquatic Fa True Aqua Hydrogen	ined Leav auna (B13 atic Plants Sulfide C	3) 5 (B14) 9dor (C1)	ing Roots	Surface Draina Dry-Se Crayfis	e Soil Cracks (B6) ge Patterns (B10) ason Water Table (C2) h Burrows (C8)
Wetland Hy Primary India	drology Indicators cators (minimum of Water (A1) ater Table (A2) on (A3) larks (B1) nt Deposits (B2)		X Water-Sta Aquatic Fa True Aqua Hydrogen Oxidized F	ined Leav auna (B13 atic Plants Sulfide C Rhizosph	3) 5 (B14) 9dor (C1) eres on Liv		Crayfis (C3)	e Soil Cracks (B6) ge Patterns (B10) ason Water Table (C2) h Burrows (C8) tion Visible on Aerial Imagery (C9)
Wetland Hy Primary India	drology Indicators cators (minimum of Water (A1) ater Table (A2) on (A3) larks (B1) nt Deposits (B2) posits (B3)		X Water-Sta Aquatic Fa True Aqua Hydrogen Oxidized F Presence	ined Leav auna (B13 atic Plants Sulfide C Rhizospho of Reduc	3) 6 (B14) 9dor (C1) eres on Liv ed Iron (C4	4)	Crayfis (C3) Crainal Crayfis (C3) Satural	e Soil Cracks (B6) ge Patterns (B10) ason Water Table (C2) h Burrows (C8) tion Visible on Aerial Imagery (C9) d or Stressed Plants (D1)
Wetland Hy Primary India	drology Indicators cators (minimum of Water (A1) ater Table (A2) on (A3) larks (B1) nt Deposits (B2)		X Water-Sta Aquatic Fa True Aqua Hydrogen Oxidized F	ined Leav auna (B13 atic Plants Sulfide C Rhizosphi of Reduct	3) 5 (B14) 9dor (C1) eres on Liv ed Iron (C4 ion in Tille	4)	(C3) Surface Drainage Dry-Se Crayfis Saturate 6) Geomo	e Soil Cracks (B6) ge Patterns (B10) ason Water Table (C2) h Burrows (C8) tion Visible on Aerial Imagery (C9)
Wetland Hy Primary India	drology Indicators cators (minimum of Water (A1) ater Table (A2) on (A3) farks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5)	<u>one is req</u>	X Water-Sta Aquatic Fa True Aqua Hydrogen Oxidized F Presence Recent Irc Thin Muck	auna (B13 auna (B13 atic Plants Sulfide C Rhizosphi of Reduct on Reduct Surface	3) 5 (B14) odor (C1) eres on Liv ed Iron (C4 ion in Tille (C7)	4)	(C3) Surface Drainage Dry-Se Crayfis Saturate 6) Geomo	e Soil Cracks (B6) ge Patterns (B10) ason Water Table (C2) h Burrows (C8) tion Visible on Aerial Imagery (C9) d or Stressed Plants (D1) orphic Position (D2)
Wetland Hy Primary India	drology Indicators cators (minimum of Water (A1) ater Table (A2) on (A3) larks (B1) nt Deposits (B2) posits (B3) at or Crust (B4)	<u>one is req</u>	X Water-Sta Aquatic Fa True Aqua Hydrogen Oxidized F Presence Recent Irc Thin Muck B7) Gauge or	auna (B13 auna (B13 atic Plants Sulfide C Rhizosphi of Reduc on Reduct Surface Well Data	3) 5 (B14) bdor (C1) eres on Liv ed Iron (C4 ion in Tille (C7) a (D9)	4)	(C3) Surface Drainage Dry-Se Crayfis Saturate 6) Geomo	e Soil Cracks (B6) ge Patterns (B10) ason Water Table (C2) h Burrows (C8) tion Visible on Aerial Imagery (C9) d or Stressed Plants (D1) orphic Position (D2)
Wetland Hy Primary India	drology Indicators cators (minimum of Water (A1) ater Table (A2) on (A3) larks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) on Visible on Aerial y Vegetated Concav	<u>one is req</u>	X Water-Sta Aquatic Fa True Aqua Hydrogen Oxidized F Presence Recent Irc Thin Muck B7) Gauge or	auna (B13 auna (B13 atic Plants Sulfide C Rhizosphi of Reduc on Reduct Surface Well Data	3) 5 (B14) bdor (C1) eres on Liv ed Iron (C4 ion in Tille (C7) a (D9)	4)	(C3) Surface Drainage Dry-Se Crayfis Saturate 6) Geomo	e Soil Cracks (B6) ge Patterns (B10) ason Water Table (C2) h Burrows (C8) tion Visible on Aerial Imagery (C9) d or Stressed Plants (D1) orphic Position (D2)
Wetland Hy Primary India	drology Indicators cators (minimum of Water (A1) ater Table (A2) on (A3) farks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) on Visible on Aerial y Vegetated Concav vations:	one is req Imagery (re Surface	X Water-Sta Aquatic Fa True Aquat Hydrogen Oxidized F Presence Recent Iro Thin Muck B7) Gauge or (B8) Other (Exp	ined Lear auna (B1 atic Plants Sulfide C Rhizospho of Reduct on Reduct s Surface Well Data plain in R	B) Generation (C1) Generation (C4) C4) C7) Generation (C4) C7) Generation (C4) C7) Generation (C4) Generation (C4)	4) d Soils (C	(C3) Surface Drainage Dry-Se Crayfis Saturate 6) Geomo	e Soil Cracks (B6) ge Patterns (B10) ason Water Table (C2) h Burrows (C8) tion Visible on Aerial Imagery (C9) d or Stressed Plants (D1) orphic Position (D2)
Wetland Hy Primary India	drology Indicators cators (minimum of Water (A1) ater Table (A2) on (A3) larks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) on Visible on Aerial y Vegetated Concav vations: er Present?	one is req Imagery (ve Surface Yes	X Water-Sta Aquatic Fa True Aquatic Hydrogen Oxidized F Presence Recent Irc Thin Muck B7) Gauge or (B8) Other (Exp No X Depth (in	ined Lear auna (B1; atic Plants Sulfide C Rhizosphi of Reduc on Reduc s Surface Well Data plain in R ches):	B) G(B14) Hodor (C1) Heres on Live ed Iron (C4 ion in Tille (C7) a (D9) Hemarks)	4) d Soils (Cr	(C3) Surface Drainage Dry-Se Crayfis Saturate 6) Geomo	e Soil Cracks (B6) ge Patterns (B10) ason Water Table (C2) h Burrows (C8) tion Visible on Aerial Imagery (C9) d or Stressed Plants (D1) orphic Position (D2)
Wetland Hy Primary India	drology Indicators cators (minimum of Water (A1) ater Table (A2) on (A3) Marks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) on Visible on Aerial y Vegetated Concav vations: er Present?	Imagery (re Surface Yes Yes	X Water-Sta Aquatic Fa True Aqua Hydrogen Oxidized F Presence Recent Irc Thin Muck B7) Gauge or (B8) Other (Exp No X Depth (in No X Depth (in	ined Lear auna (B1 atic Plants Sulfide C Rhizosphi of Reduct on Reduct surface Well Data plain in R ches): ches):	B) G (B14) Hodor (C1) Heres on Live eres on Live eres on Live ion in Tille (C7) a (D9) hemarks)	4) d Soils (Cr	(C3) Surface Drainay Dry-Se Crayfis (C3) Saturay Stunted 6) Geomo FAC-N	e Soil Cracks (B6) ge Patterns (B10) ason Water Table (C2) h Burrows (C8) tion Visible on Aerial Imagery (C9) d or Stressed Plants (D1) orphic Position (D2) eutral Test (D5)
Wetland Hy Primary India Surface High Wa Saturatio Water M Sedimen Drift Deg Algal Ma Iron Deg Inundati Sparsely Field Obser Surface Wate Water Table Saturation P (includes cap	drology Indicators cators (minimum of Water (A1) ater Table (A2) on (A3) Marks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) on Visible on Aerial y Vegetated Concav vations: er Present? Present?	Imagery (re Surface Yes Yes	X Water-Sta Aquatic Fa True Aqua Hydrogen Oxidized F Presence Recent Irc Thin Muck B7) Gauge or (B8) Other (Exp No X Depth (in No X Depth (in	ined Lear auna (B1 atic Plants Sulfide C Rhizosphi of Reduct on Reduct surface Well Data plain in R ches): ches): ches):	3) is (B14) odor (C1) eres on Liv ed Iron (C4 ion in Tille (C7) a (D9) emarks)	4) d Soils (Ci	Surface Drainae Dry-Se Crayfis (C3)Saturae Stuntee G)Geomo FAC-N	e Soil Cracks (B6) ge Patterns (B10) ason Water Table (C2) h Burrows (C8) tion Visible on Aerial Imagery (C9) d or Stressed Plants (D1) orphic Position (D2) eutral Test (D5)
Wetland Hy Primary India Surface High Wa Saturatio Water M Sedimen Drift Deg Algal Ma Iron Deg Inundati Sparsely Field Obser Surface Wate Water Table Saturation P (includes cap	drology Indicators cators (minimum of Water (A1) ater Table (A2) on (A3) Marks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) on Visible on Aerial y Vegetated Concav vations: er Present? Present?	Imagery (re Surface Yes Yes	X Water-Sta Aquatic Fa True Aqua Hydrogen Oxidized F Presence Recent Irc Thin Muck B7) Gauge or (B8) Other (Exp No X Depth (in No X Depth (in	ined Lear auna (B1 atic Plants Sulfide C Rhizosphi of Reduct on Reduct surface Well Data plain in R ches): ches): ches):	3) is (B14) odor (C1) eres on Liv ed Iron (C4 ion in Tille (C7) a (D9) emarks)	4) d Soils (Ci	Surface Drainae Dry-Se Crayfis (C3)Saturae Stuntee G)Geomo FAC-N	e Soil Cracks (B6) ge Patterns (B10) ason Water Table (C2) h Burrows (C8) tion Visible on Aerial Imagery (C9) d or Stressed Plants (D1) orphic Position (D2) eutral Test (D5)
Wetland Hy Primary India Surface High Wa Saturatio Water M Sedimen Drift Deg Algal Ma Iron Deg Inundati Sparsely Field Obser Surface Wate Water Table Saturation P (includes cap	drology Indicators cators (minimum of Water (A1) ater Table (A2) on (A3) Marks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) on Visible on Aerial y Vegetated Concav vations: er Present? Present?	Imagery (re Surface Yes Yes	X Water-Sta Aquatic Fa True Aqua Hydrogen Oxidized F Presence Recent Irc Thin Muck B7) Gauge or (B8) Other (Exp No X Depth (in No X Depth (in	ined Lear auna (B1 atic Plants Sulfide C Rhizosphi of Reduct on Reduct surface Well Data plain in R ches): ches): ches):	3) is (B14) odor (C1) eres on Liv ed Iron (C4 ion in Tille (C7) a (D9) emarks)	4) d Soils (Ci	Surface Drainae Dry-Se Crayfis (C3)Saturae Stuntee G)Geomo FAC-N	e Soil Cracks (B6) ge Patterns (B10) ason Water Table (C2) h Burrows (C8) tion Visible on Aerial Imagery (C9) d or Stressed Plants (D1) orphic Position (D2) eutral Test (D5)

Project/Site: A3820001/EMERSON CREEK WIND FA	ARMS	City/County:	NORWA	ALK Sampling Date: 9/17/2018		
Applicant/Owner: APEX CLEAN ENERGY		State: OH Sampling Point: W1M-031				
Investigator(s): J. FREELAND, A. PETERS		Section, Township, Range:				
Landform (hillslope, terrace, etc.): DEPRESSION		I	ocal relief	(concave, convex, none):		
Slope (%): Lat:		Long:		Datum:		
Soil Map Unit Name:				NWI classification:		
Are climatic / hydrologic conditions on the site typical for this	time of yea	ar?Yes_>	< Νο	(If no, explain in Remarks.)		
Are Vegetation, Soil, or Hydrology si	gnificantly	disturbed?	Are "	Normal Circumstances" present? Yes 🔀 No		
Are Vegetation, Soil, or Hydrology na	aturally pro	blematic?	(If ne	eeded, explain any answers in Remarks.)		
SUMMARY OF FINDINGS – Attach site map s	showing	sampling	g point le	ocations, transects, important features, etc.		
Hydrophytic Vegetation Present? Yes X No)					
			e Sampled			
Wetland Hydrology Present? Yes X No	·	with	n a Wetlar	nd? Yes <u>X</u> No		
Remarks:						
WETLAND W1M-031						
VEGETATION – Use scientific names of plants.						
Tree Stratum (Plot aize:	Absolute	Dominant		Dominance Test worksheet:		
Tree Stratum (Plot size:) 1. Quercus rubra	30	<u>Species?</u> X	FACU	Number of Dominant Species That Are OBL, FACW, or FAC: (A)		
2. Acer rubrum	25		FAC			
3. Ulmus americana	25	X	FACW	Total Number of Dominant Species Across All Strata: 5 (B)		
4						
5				Percent of Dominant Species That Are OBL, FACW, or FAC: 80 (A/B)		
	50	= Total Cov	er			
Sapling/Shrub Stratum (Plot size:)	45	V		Prevalence Index worksheet:		
1. Fraxinus pennsylvanica			FACW			
2				OBL species0 $x 1 = 0$ FACW species60 $x 2 = 120$		
3				FAC species 25 $x_3 = 75$		
4 5.				FACU species 30 $x = 120$		
··	15	= Total Cov	er	UPL species 0 x 5 = 0		
Herb Stratum (Plot size:)		10101 001		Column Totals: 115 (A) 315 (B)		
1. Fraxinus pennsylvanica	20	_X	FACW	2.74		
2				Prevalence Index = B/A = 2.74		
3				Hydrophytic Vegetation Indicators:		
4				1 - Rapid Test for Hydrophytic Vegetation 2 - Dominance Test is >50%		
5				X 3 - Prevalence Index is $\leq 3.0^{1}$		
6				4 - Morphological Adaptations ¹ (Provide supporting		
7				data in Remarks or on a separate sheet)		
9				Problematic Hydrophytic Vegetation ¹ (Explain)		
10						
	~~	= Total Cov	er	¹ Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.		
Woody Vine Stratum (Plot size:)				se present, unless disturbed of problematic.		
1				Hydrophytic		
2				Vegetation Present? Yes X No		
Pomorko: (Includo photo pumboro hara anos a construitos		= Total Cov	er			
Remarks: (Include photo numbers here or on a separate s	neet.)					

Depth inches)	Color (moist)	%	Color (moist)	ox Feature	Type ¹	Loc ²	Texture	Remarks
)-4	10YR 3/2	92	7.5YR 4/6	8	C	PL	sicl	
-16	10YR 4/1	85	10YR 5/8	15	С	М	sic	
							· ·	
		bletion, RM	I=Reduced Matrix, M	S=Maske	d Sand G	rains.		PL=Pore Lining, M=Matrix.
•	Indicators:							or Problematic Hydric Soils ³ :
Histosol	. ,			Gleyed M				rairie Redox (A16)
	pipedon (A2)			Redox (S	,		Dark Su	
	istic (A3) en Sulfide (A4)			d Matrix (Mucky M	56) ineral (F1)			nganese Masses (F12) allow Dark Surface (TF12)
	d Layers (A5)				latrix (F2)			Explain in Remarks)
	uck (A10)			ed Matrix				
	d Below Dark Surfac	ce (A11)	X Redox					
	ark Surface (A12)				urface (F7)	³ Indicators of	of hydrophytic vegetation and
Sandy M	Mucky Mineral (S1)		Redox	Depressio	ons (F8)		wetland	hydrology must be present,
5 cm Mu	ucky Peat or Peat (S	3)					unless d	listurbed or problematic.
Restrictive	Layer (if observed)	:						
Туре:							Hudria Sail B	Procent? Vac X No
Depth (in	ches):						Hydric Soil P	Present? Yes X No
Depth (in	ches):						Hydric Soil P	Present? Yes X No
Depth (in	ches):						Hydric Soil P	Present? Yes X No
Depth (in	ches):						Hydric Soil P	Present? Yes X No
Depth (in	ches):						Hydric Soil P	Present? Yes <u>X</u> No
Depth (in	ches):						Hydric Soil P	Present? Yes <u>X</u> No
Depth (in Remarks:							Hydric Soil P	Present? Yes <u>X</u> No
Depth (in Remarks: YDROLO							Hydric Soil P	Present? Yes <u>X</u> No
Depth (in Remarks: YDROLO Netland Hy	IGY drology Indicators		uired: check all that a	pply)				Present? Yes X No
Depth (in Remarks: YDROLO Netland Hy Primary India	IGY drology Indicators		uired: check all that a		ves (B9)		Secondan	
Depth (in Remarks: YDROLO Vetland Hy Primary India Surface	OGY drology Indicators cators (minimum of c			ained Lea			<u>Secondan</u>	y Indicators (minimum of two requi
Depth (in Remarks: YDROLO Vetland Hy Primary India Surface High Wa Saturati	OGY drology Indicators cators (minimum of a Water (A1) ater Table (A2) on (A3)		X Water-Sta	ained Lea auna (B1	3)		<u>Secondan</u> Surfa Drain:	y Indicators (minimum of two requi ce Soil Cracks (B6)
Depth (in Remarks: YDROLO Vetland Hy Primary India Surface High Wa Saturati	OGY drology Indicators cators (minimum of a Water (A1) ater Table (A2) on (A3)		X Water-Sta	ained Lea auna (B1 atic Plants	3) s (B14)		<u>Secondar</u> Surfa Draina Dry-S	<u>γ Indicators (minimum of two requi</u> ce Soil Cracks (B6) age Patterns (B10)
Depth (in Remarks: YDROLO Vetland Hy Primary India Surface High Wa Saturati X Water M	OGY drology Indicators cators (minimum of a Water (A1) ater Table (A2) on (A3)		X Water-Sta Aquatic F True Aqu	ained Lea auna (B1 atic Plants Sulfide C	3) s (B14))dor (C1)	ving Roots	Secondari Surfar Draina Dry-S Crayfi	y Indicators (minimum of two requi ce Soil Cracks (B6) age Patterns (B10) reason Water Table (C2)
Depth (in Remarks: YDROLO YDROLO Vetland Hy Primary India Surface High Wa Saturati Saturati X Water M Sedimen	IGY drology Indicators cators (minimum of o Water (A1) ater Table (A2) on (A3) Marks (B1)		X Water-Sta Aquatic F True Aqu Hydroger	ained Lea auna (B1 atic Plants Sulfide C Rhizosph	3) s (B14) Odor (C1) eres on Liv		Secondari Surfar Draina Dry-S Crayfi s (C3) Satur	y Indicators (minimum of two requi ce Soil Cracks (B6) age Patterns (B10) leason Water Table (C2) ish Burrows (C8)
Depth (in Remarks: YDROLO Vetland Hy Primary India Saturati Saturati Saturati Saturati Saturati Drift Dej Algal Ma	DGY drology Indicators cators (minimum of of Water (A1) ater Table (A2) on (A3) Marks (B1) nt Deposits (B2) posits (B3) at or Crust (B4)		X Water-Sta Aquatic F True Aqu Hydroger Oxidized	ained Lea auna (B1 atic Plants Sulfide C Rhizosph of Reduc	3) s (B14) odor (C1) eres on Liv ed Iron (C	4)	Secondan Surfa Draina Dry-S Crayfi (C3) Satura Sturte (6) Georr	y Indicators (minimum of two requi ce Soil Cracks (B6) age Patterns (B10) eason Water Table (C2) ish Burrows (C8) ation Visible on Aerial Imagery (C9 ed or Stressed Plants (D1) norphic Position (D2)
Depth (in Remarks: YDROLO Vetland Hy Primary India Saturati X Water M Sedimen Sedimen Drift Dej Algal Ma Iron Deg	PGY drology Indicators: cators (minimum of e Water (A1) ater Table (A2) on (A3) Marks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5)	: one is requ	X Water-Sta Aquatic F True Aqu Hydrogen Oxidized Presence Recent In Thin Muc	ained Lea auna (B1 atic Plants Sulfide C Rhizosph of Reduc on Reduc k Surface	3) s (B14) Odor (C1) eres on Liv ed Iron (C tion in Tille (C7)	4)	Secondan Surfa Draina Dry-S Crayfi (C3) Satura Sturte (6) Georr	y Indicators (minimum of two requi ce Soil Cracks (B6) age Patterns (B10) eason Water Table (C2) ish Burrows (C8) ation Visible on Aerial Imagery (C9 ed or Stressed Plants (D1)
Depth (in Remarks: YDROLO Vetland Hy Primary India Saturatia Saturatia Water M Sedimen Drift Dej Algal Ma Iron Deg Inundatia	PGY drology Indicators: cators (minimum of of Water (A1) ater Table (A2) on (A3) Marks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) ion Visible on Aerial	: one is requ	X Water-Sta Aquatic F True Aqu Hydrogen Oxidized Presence Recent In Thin Muc 37) Gauge or	ained Lea auna (B1 atic Plants Sulfide C Rhizosph of Reduc on Reduc k Surface Well Data	3) s (B14) odor (C1) eres on Liv ed Iron (C tion in Tille (C7) a (D9)	4)	Secondan Surfa Draina Dry-S Crayfi (C3) Satura Sturte (6) Georr	y Indicators (minimum of two requi ce Soil Cracks (B6) age Patterns (B10) eason Water Table (C2) ish Burrows (C8) ation Visible on Aerial Imagery (C9 ed or Stressed Plants (D1) norphic Position (D2)
Depth (in Remarks: YDROLO Vetland Hy Primary India Saturatia Saturatia X Water M Sedimen Drift Dej Algal Ma Iron Deg Inundatia	PGY drology Indicators: cators (minimum of e Water (A1) ater Table (A2) on (A3) Marks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5)	: one is requ	X Water-Sta Aquatic F True Aqu Hydrogen Oxidized Presence Recent In Thin Muc 37) Gauge or	ained Lea auna (B1 atic Plants Sulfide C Rhizosph of Reduc on Reduc k Surface Well Data	3) s (B14) odor (C1) eres on Liv ed Iron (C tion in Tille (C7) a (D9)	4)	Secondan Surfa Draina Dry-S Crayfi (C3) Satura Sturte (6) Georr	y Indicators (minimum of two requi ce Soil Cracks (B6) age Patterns (B10) eason Water Table (C2) ish Burrows (C8) ation Visible on Aerial Imagery (C9 ed or Stressed Plants (D1) norphic Position (D2)
Depth (in Remarks: YDROLO Vetland Hy Primary India Saturatia X Water M Saturatia X Water M Sedimei Drift Dep Algal Ma Iron Dep Inundati X Sparsel	DGY drology Indicators: cators (minimum of o Water (A1) ater Table (A2) on (A3) Marks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) ion Visible on Aerial y Vegetated Concav vations:	: one is requ Imagery (I e Surface	X Water-Sta Aquatic F True Aqu Hydrogen Oxidized Presence Recent In Thin Muc 37) Gauge or (B8) Other (Ex	ained Lea auna (B1 atic Plants Sulfide C Rhizosphi of Reduc on Reduc on Reduc k Surface Well Data plain in R	3) s (B14) odor (C1) eres on Liv ed Iron (C tion in Tille (C7) a (D9) emarks)	4) ed Soils (C	Secondan Surfa Draina Dry-S Crayfi (C3) Satura Sturte (6) Georr	y Indicators (minimum of two requi ce Soil Cracks (B6) age Patterns (B10) eason Water Table (C2) ish Burrows (C8) ation Visible on Aerial Imagery (C9 ed or Stressed Plants (D1) norphic Position (D2)
Depth (in Remarks: YDROLO Wetland Hy Primary India Surface High Wa Saturati X Water M Sedimel Drift Dep Algal Ma Iron Dep Inundati X Sparsel Field Obser	GY drology Indicators: cators (minimum of of Water (A1) ater Table (A2) on (A3) Marks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) ion Visible on Aerial y Vegetated Concav vations: ter Present?	: one is requ Imagery (I e Surface (es	X Water-Sta Aquatic F True Aqu Hydrogen Oxidized Presence Recent In Thin Muc 37) Gauge or (B8) Other (Ex No X Depth (in	ained Lea auna (B1 atic Plants Sulfide C Rhizosphi of Reduc on Reduc k Surface Well Data plain in R	3) s (B14) odor (C1) eres on Liv ed Iron (C tion in Tille (C7) a (D9) emarks)	4) ed Soils (C	Secondan Surfa Draina Dry-S Crayfi (C3) Satura Sturte (6) Georr	y Indicators (minimum of two requi ce Soil Cracks (B6) age Patterns (B10) eason Water Table (C2) ish Burrows (C8) ation Visible on Aerial Imagery (C9 ed or Stressed Plants (D1) norphic Position (D2)
Depth (in Remarks: YDROLO Wetland Hy Primary India Surface High Wa Saturati X Water M Sedimed Drift Dej Algal Ma Iron Deg Inundati	DGY drology Indicators: cators (minimum of of Water (A1) ater Table (A2) on (A3) Marks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) ion Visible on Aerial y Vegetated Concav vations: ter Present?	Imagery (I e Surface /es	X Water-Sta Aquatic F True Aqu Hydroger Oxidized Presence Recent In Thin Muc 37) Gauge or (B8) Other (Ex No X Depth (ir No X Depth (ir	ained Lea auna (B1) atic Plants Sulfide C Rhizosphi of Reduct on Reduct k Surface Well Data plain in R	3) s (B14) odor (C1) eres on Liv ed Iron (C tion in Tille (C7) a (D9) emarks)	4) ed Soils (C	Secondan Surfa Drain: Dry-S Crayfi (C3) Saturi (C3) Sturte (C3) Geom FAC-I	y Indicators (minimum of two requi ce Soil Cracks (B6) age Patterns (B10) eason Water Table (C2) ish Burrows (C8) ation Visible on Aerial Imagery (C9 ed or Stressed Plants (D1) norphic Position (D2) Neutral Test (D5)
Depth (in Remarks: YDROLO Wetland Hy Primary India Surface High Wa Saturati X Water M Sedimer Surface Inundati X Sparsel Field Obser Surface Wat Nater Table Saturation P	DGY drology Indicators: cators (minimum of of Water (A1) ater Table (A2) on (A3) Marks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) ion Visible on Aerial y Vegetated Concav vations: ter Present?	Imagery (I e Surface /es	X Water-Sta Aquatic F True Aqu Hydrogen Oxidized Presence Recent In Thin Muc 37) Gauge or (B8) Other (Ex No X Depth (in	ained Lea auna (B1) atic Plants Sulfide C Rhizosphi of Reduct on Reduct k Surface Well Data plain in R	3) s (B14) odor (C1) eres on Liv ed Iron (C tion in Tille (C7) a (D9) emarks)	4) ed Soils (C	Secondan Surfa Drain: Dry-S Crayfi (C3) Saturi (C3) Sturte (C3) Geom FAC-I	y Indicators (minimum of two requi ce Soil Cracks (B6) age Patterns (B10) eason Water Table (C2) ish Burrows (C8) ation Visible on Aerial Imagery (C9 ed or Stressed Plants (D1) norphic Position (D2)

Remarks:

Project/Site: A3820001/EMERSON CR	EEK WIND FA	RMS (City/Coun	ty: <u>NORWA</u>	LK	Sampling Date: 9/17/20)18
Applicant/Owner: APEX CLEAN ENERG	βY				State: OH	Sampling Point: W1M-C)32
Investigator(s): J. FREELAND, A. PETE	RS	:	Section, T	ownship, Ra	nge:		
Landform (hillslope, terrace, etc.): FLAT				Local relief	(concave, convex, none):		
Slope (%): Lat:			Long:			Datum:	
Soil Map Unit Name:					NWI classifica		
Are climatic / hydrologic conditions on the sit	e typical for this	time of vea	ar? Yes	X _{No}	(If no. explain in Re	emarks.)	
Are Vegetation, Soil, or Hydr					Normal Circumstances" p)
Are Vegetation, Soil, or Hydr					eded, explain any answer		
SUMMARY OF FINDINGS - Attac							s, etc.
Hydrophytic Vegetation Present?	es X No						
	es X No			the Sampled			
Wetland Hydrology Present? Y	'es <u>X</u> No		wit	thin a Wetlar	nd? Yes X	No	
Remarks:							
WETLAND W1M-032							
VEGETATION - Use scientific nam	es of plants.						
		Absolute		nt Indicator	Dominance Test works	sheet:	
<u>Tree Stratum</u> (Plot size:	_) _	<u>% Cover</u> 40	<u>Species</u> X	<u>Status</u> FACU	Number of Dominant Sp	-	
2. Quercus bicolor		20	X	FACW	That Are OBL, FACW, c	or FAC: _5	(A)
3. Carya laciniosa		20	X	FACW	Total Number of Domina	6	
4. Ulmus americana		10		FACW	Species Across All Strat	a: <u> </u>	(B)
5.					Percent of Dominant Sp		
		90	= Total C	over	That Are OBL, FACW, c	FAC: 0010	(A/B)
Sapling/Shrub Stratum (Plot size:)				Prevalence Index work	sheet:	
1. Carya laciniosa		10	X	FACW	Total % Cover of:		-
2. Fraxinus pennsylvanica		5	X	_ FACW_	70	x = 0	-
3					FACW species 70	x 2 = 140	-
4					FAC species 0	x = 0 x 4 = 160	-
5		45				x 4 = 100 x 5 = 0	-
Herb Stratum (Plot size:		15	= Total C	over		200	
1. Fraxinus pennsylvanica	_ /	5	Х	FACW	Column Totals: <u>110</u>	(A)	_ (B)
2					Prevalence Index	= B/A =2.73	_
3.					Hydrophytic Vegetatio	n Indicators:	
4					1 - Rapid Test for H	lydrophytic Vegetation	
5					2 - Dominance Test	t is >50%	
6					X 3 - Prevalence Inde		
7						daptations ¹ (Provide supp s or on a separate sheet)	oorting
8						bhytic Vegetation ¹ (Explain	n)
9						Lingto regetation (Explain	
10					¹ Indicators of hydric soil	and wetland hydrology m	nust
Woody Vine Stratum (Plot size:)	5	= Total C	over	be present, unless distu		
1					Hydrophytic		
2					Hydrophytic Vegetation	X	
			= Total C	over	Present? Yes	s_XNo	
Remarks: (Include photo numbers here or	on a separate sh				1		

Depth	Matrix			ox Featur			_	- ·
inches)	Color (moist)	%	Color (moist)	%	Type ¹			Remarks
-7	10YR 5/1	92	10YR 5/6	8	<u> </u>	PL		
-14	10YR 4/1	90	7.5YR 4/4	10	<u>C</u>	M	clay	
							·	
		pletion, RN	/I=Reduced Matrix, N	IS=Maske	d Sand G	ains.		PL=Pore Lining, M=Matrix.
	Indicators:							Problematic Hydric Soils ³ :
_ Histosol	. ,			-	latrix (S4)			nirie Redox (A16)
	bipedon (A2)			Redox (S	,		Dark Surf	, ,
Black Hi	n Sulfide (A4)			ed Matrix (Mucky M	ineral (F1)			ganese Masses (F12) low Dark Surface (TF12)
	Layers (A5)				latrix (F2)			plain in Remarks)
2 cm Mu				ed Matrix				
	Below Dark Surfac	ce (A11)		Dark Sur				
_ Thick Da	ark Surface (A12)		Deplet	ed Dark S	urface (F7)	³ Indicators of	hydrophytic vegetation and
_ Sandy M	lucky Mineral (S1)		Redox	Depressi	ons (F8)		wetland h	ydrology must be present,
	icky Peat or Peat (S	\$3)					unless dis	sturbed or problematic.
estrictive I								
	_ayer (if observed)):						
Type:	_ayer (if observed)):					Hydric Soil Pr	asant? Vas X No
Type: Depth (inc	_ayer (if observed)						Hydric Soil Pr	esent? Yes X No
Туре:							Hydric Soil Pr	esent? Yes X No
Type: Depth (inc							Hydric Soil Pr	esent? Yes X No
Type: Depth (inc							Hydric Soil Pr	esent? Yes X No
Type: Depth (inc							Hydric Soil Pr	esent? Yes X No
Type: Depth (inc emarks:	ches):						Hydric Soil Pr	esent? Yes <u>X</u> No
Type: Depth (inc emarks:	Ches):						Hydric Soil Pr	esent? Yes X No
Type: Depth (inc emarks: TDROLO etland Hyperest	ches): GY drology Indicators		uired: check all that a					
Type: Depth (inc emarks: /DROLO /etland Hyc rimary Indic	GY GY Grology Indicators cators (minimum of e		uired: check all that a				<u>Secondary</u>	Indicators (minimum of two requir
Type: Depth (inc emarks: //DROLO /etland Hyc rimary Indic Surface	GY drology Indicators cators (minimum of o Water (A1)		X Water-Sta	ained Lea			<u>Secondary</u> Surface	Indicators (minimum of two requir e Soil Cracks (B6)
Type: Depth (inc emarks: /DROLO /etland Hyc rimary Indic Surface ` High Wa	GY drology Indicators cators (minimum of a Water (A1) ter Table (A2)		X Water-Sta	ained Lea auna (B1	3)		<u>Secondary</u> Surface Drainag	Indicators (minimum of two requir e Soil Cracks (B6) ge Patterns (B10)
Type: Depth (inc emarks: //DROLO /etland Hyc rimary Indic Surface ' High Wa Saturatic	GY drology Indicators cators (minimum of of Water (A1) ter Table (A2) on (A3)		X Water-Sta Aquatic F True Aqu	ained Lea auna (B1 atic Plant	3) s (B14)		<u>Secondary</u> Surface Drainag Dry-Se	Indicators (minimum of two requir e Soil Cracks (B6) ge Patterns (B10) ason Water Table (C2)
Type: Depth (inc emarks: //DROLOG /etland Hyo rimary Indic Surface High Wa High Wa Saturatic X Water M	GY drology Indicators eators (minimum of of Water (A1) ter Table (A2) on (A3) arks (B1)		X Water-Sta Aquatic F True Aqu Hydroger	ained Lea auna (B1 atic Planta n Sulfide C	3) s (B14) Odor (C1)	/ing Roots	<u>Secondary</u> Surface Drainag Dry-Se Crayfis	Indicators (minimum of two requir e Soil Cracks (B6) ge Patterns (B10) ason Water Table (C2) h Burrows (C8)
Type: Depth (inc emarks: //DROLOO /etland Hyo rimary Indic Surface ` High Wa Saturatic Water M Sediment	GY drology Indicators cators (minimum of a Water (A1) tter Table (A2) on (A3) arks (B1) at Deposits (B2)		X Water-Sta Aquatic F True Aqu Hydroger Oxidized	ained Lea auna (B1 atic Plant Sulfide C Rhizosph	3) s (B14) Odor (C1) eres on Liv		<u>Secondary</u> Surface Drainag Dry-Se Crayfis Crayfis	Indicators (minimum of two requir e Soil Cracks (B6) ge Patterns (B10) ason Water Table (C2) h Burrows (C8) ion Visible on Aerial Imagery (C9
Type: Depth (inc emarks: DROLOO Tetland Hyd Tetland Hyd Content Surface High Wa Saturatic Water M Sedimen Drift Dep	GY drology Indicators cators (minimum of a Water (A1) tter Table (A2) on (A3) arks (B1) arks (B1) arks (B2) posits (B3)		X Water-Sta Aquatic F True Aqu Hydroger Oxidized Presence	ained Lea auna (B1 atic Plants Sulfide C Rhizosph of Reduc	3) s (B14) Odor (C1) eres on Liv ed Iron (C	4)	<u>Secondary</u> <u>Surface</u> <u>Drainag</u> <u>Dry-Se</u> <u>Crayfis</u> (C3) <u>Saturat</u> <u>Stuntee</u>	Indicators (minimum of two requir e Soil Cracks (B6) ge Patterns (B10) ason Water Table (C2) h Burrows (C8) ion Visible on Aerial Imagery (C9) d or Stressed Plants (D1)
Type: Depth (inc emarks: DROLO TOROLO Vetland Hyd Setland Hyd Saturatic Water M Saturatic Water M Sedimen Drift Dep Algal Ma	GY drology Indicators cators (minimum of of Water (A1) tter Table (A2) on (A3) arks (B1) nt Deposits (B2) posits (B3) at or Crust (B4)		X Water-Sta Aquatic F True Aqu Hydroger Oxidized Presence Recent Ir	ained Lea auna (B1 atic Plants on Sulfide C Rhizosph of Reduct on Reduct	3) s (B14) Odor (C1) eres on Liv eed Iron (C tion in Tille	4)	<u>Secondary</u> <u>Surface</u> <u>Drainag</u> <u>Dry-Se</u> <u>Crayfis</u> (C3) <u>Saturat</u> <u>Stunted</u> 6) <u>Geomo</u>	Indicators (minimum of two requir e Soil Cracks (B6) ge Patterns (B10) ason Water Table (C2) h Burrows (C8) ion Visible on Aerial Imagery (C9) d or Stressed Plants (D1) orphic Position (D2)
Type: Depth (inc emarks: DROLO TOROLO Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal Contemporal	GY drology Indicators cators (minimum of of Water (A1) tter Table (A2) on (A3) arks (B1) tt Deposits (B2) posits (B3) at or Crust (B4) posits (B5)	: one is requ	X Water-Sta Aquatic F True Aqu Hydroger Oxidized Presence Recent Ir Thin Muc	ained Lea auna (B1 atic Plants Sulfide C Rhizosph of Reduc on Reduc k Surface	3) s (B14) Odor (C1) eres on Liv eed Iron (C tion in Tille (C7)	4)	<u>Secondary</u> <u>Surface</u> <u>Drainag</u> <u>Dry-Se</u> <u>Crayfis</u> (C3) <u>Saturat</u> <u>Stunted</u> 6) <u>Geomo</u>	Indicators (minimum of two requir e Soil Cracks (B6) ge Patterns (B10) ason Water Table (C2) h Burrows (C8) ion Visible on Aerial Imagery (C9 d or Stressed Plants (D1)
Type: Depth (inc emarks: 'DROLO 'etland Hyc rimary Indic Surface ' High Wa Saturatic <u>` Saturatic</u> High Wa Saturatic <u>` Sedimen</u> Drift Dep Algal Ma Iron Dep Inundatic	GY drology Indicators cators (minimum of of Water (A1) tter Table (A2) on (A3) arks (B1) arks (B1) arks (B2) oosits (B2) oosits (B3) at or Crust (B4) oosits (B5) on Visible on Aerial	: one is requ	X Water-Sta Aquatic F True Aqu Hydroger Oxidized Presence Recent Ir Thin Muc B7) Gauge or	ained Lea auna (B1 atic Planta Sulfide C Rhizosph of Reduc on Reduc k Surface	3) s (B14) Odor (C1) eres on Liv eed Iron (C tion in Tille (C7) a (D9)	4)	<u>Secondary</u> <u>Surface</u> <u>Drainag</u> <u>Dry-Se</u> <u>Crayfis</u> (C3) <u>Saturat</u> <u>Stunted</u> 6) <u>Geomo</u>	Indicators (minimum of two requir e Soil Cracks (B6) ge Patterns (B10) ason Water Table (C2) h Burrows (C8) ion Visible on Aerial Imagery (C9 d or Stressed Plants (D1) orphic Position (D2)
Type: Depth (inc emarks: /DROLOG /etland Hyo rimary Indic Surface High Wa Saturatic X Water M Sedimen Drift Dep Algal Ma Iron Dep Inundatic X Sparsely	GY drology Indicators cators (minimum of of Water (A1) ter Table (A2) on (A3) arks (B1) th Deposits (B2) posits (B3) at or Crust (B4) posits (B5) on Visible on Aerial v Vegetated Concav	: one is requ	X Water-Sta Aquatic F True Aqu Hydroger Oxidized Presence Recent Ir Thin Muc B7) Gauge or	ained Lea auna (B1 atic Planta Sulfide C Rhizosph of Reduc on Reduc k Surface	3) s (B14) Odor (C1) eres on Liv eed Iron (C tion in Tille (C7) a (D9)	4)	<u>Secondary</u> <u>Surface</u> <u>Drainag</u> <u>Dry-Se</u> <u>Crayfis</u> (C3) <u>Saturat</u> <u>Stunted</u> 6) <u>Geomo</u>	Indicators (minimum of two requir e Soil Cracks (B6) ge Patterns (B10) ason Water Table (C2) h Burrows (C8) ion Visible on Aerial Imagery (C9 d or Stressed Plants (D1) orphic Position (D2)
Type: Depth (inc emarks: (DROLO /etland Hyo rimary Indic Surface ' Surface ' High Wa Saturatic High Wa Saturatic Nurface ' High Wa Sedimen Drift Dep Algal Ma Iron Dep Inundatic X Sparsely ield Observer	GY drology Indicators cators (minimum of of Water (A1) ter Table (A2) on (A3) arks (B1) th Deposits (B2) posits (B3) at or Crust (B4) posits (B5) on Visible on Aerial v Vegetated Concav vations:	: one is required Imagery (re Surface	X Water-Sta Aquatic F True Aqu Hydroger Oxidized Presence Recent Ir Thin Muc B7) Gauge or (B8) Other (Ex	ained Lea auna (B1 atic Plants Sulfide C Rhizosph of Reduc on Reduc k Surface Well Data splain in R	3) s (B14) Odor (C1) eres on Liv ed Iron (C tion in Tille (C7) a (D9) eemarks)	4) ed Soils (C	<u>Secondary</u> Surface Drainag Dry-Se Crayfis 4 (C3) Saturat Stunted 6) Geomo	Indicators (minimum of two requir e Soil Cracks (B6) ge Patterns (B10) ason Water Table (C2) h Burrows (C8) ion Visible on Aerial Imagery (C9 d or Stressed Plants (D1) orphic Position (D2)
Type: Depth (inc temarks: YDROLOO Vetland Hyo Vetland Hyo Vetland Hyo Saturatic Saturatic X Water M Saturatic X Water M Saturatic X High Wa Saturatic X High Wa Saturatic X Sparsely ield Observ Surface Water	GY drology Indicators cators (minimum of e Water (A1) ter Table (A2) on (A3) arks (B1) at Deposits (B2) bosits (B3) at or Crust (B4) bosits (B5) on Visible on Aerial v Vegetated Concav vations: er Present?	: one is required Imagery (re Surface	X Water-Sta Aquatic F Aquatic F Yrue Aqu Hydroger Oxidized Presence Recent Ir Thin Muc B7) Gauge or (B8) Other (Ex No X Depth (ii	ained Lea auna (B1 atic Plants Sulfide C Rhizosph of Reduc on Reduc k Surface Well Data cplain in R	3) s (B14) Odor (C1) eres on Liv ed Iron (C tion in Tille (C7) a (D9) emarks)	4) ed Soils (C	<u>Secondary</u> Surface Drainag Dry-Se Crayfis 4 (C3) Saturat Stunted 6) Geomo	Indicators (minimum of two requir e Soil Cracks (B6) ge Patterns (B10) ason Water Table (C2) h Burrows (C8) ion Visible on Aerial Imagery (C9) d or Stressed Plants (D1) orphic Position (D2)
Type: Depth (inc temarks: YDROLOO Vetland Hyo Vetland Hyo Vetland Hyo Saturatic Surface ' High Wa Saturatic X Water M Sedimen Drift Dep Algal Ma Iron Dep Inundatic X Sparsely ield Obser	GY drology Indicators cators (minimum of a Water (A1) ter Table (A2) on (A3) arks (B1) arks (B1) arks (B1) tor Crust (B2) posits (B3) arks (B5) on Visible on Aerial v Vegetated Concav vations: er Present? Present?	Imagery (ve Surface Yes	X Water-Sta Aquatic F True Aqu Hydroger Oxidized Presence Recent Ir Thin Muc B7) Gauge or (B8) Other (Ex	ained Lea auna (B1 atic Plants Sulfide C Rhizosph of Reduc on Reduc k Surface Well Dats cplain in R	3) s (B14) Odor (C1) eres on Liv eres on Liv eres on Liv ced Iron (C tion in Tille (C7) a (D9) emarks)	4) ed Soils (C	Secondary	Indicators (minimum of two requir e Soil Cracks (B6) ge Patterns (B10) ason Water Table (C2) h Burrows (C8) ion Visible on Aerial Imagery (C9 d or Stressed Plants (D1) orphic Position (D2)

Remarks:

Project/Site: A3820001/EMERSON CREEK WIND	FARMS	City/County	NORWA	IK s	ampling Date: 9/17/2018
Applicant/Owner: APEX CLEAN ENERGY				State: OH S	ampling Point: W1M-032
Investigator(s): J. FREELAND, A. PETERS		Section, To	wnship, Ra	nge:	
Landform (hillslope, terrace, etc.): DEPRESSION		I	ocal relief	(concave, convex, none):	
		Long: -82.	8070545	D)atum:
Soil Map Unit Name:		•			ion:
Are climatic / hydrologic conditions on the site typical for th		ar? Yes >			
Are Vegetation, Soil, or Hydrology					esent? Yes X No
Are Vegetation, Soil, or Hydrology				eded, explain any answers	
SUMMARY OF FINDINGS – Attach site map					
Hydrophytic Vegetation Present? Yes X	No				_
Hydric Soil Present? Yes X Wetland Hydrology Present? Yes	No	ls th	e Sampled		
Wetland Hydrology Present? Yes	No <u>X</u>	with	in a Wetlar	nd? Yes	_ No_X
Remarks:					
UPLAND W1M-032					
VEGETATION - Use scientific names of plants	s.				
	Absolute	Dominant		Dominance Test worksh	ieet:
Tree Stratum (Plot size:)	<u>30</u>	Species? X	FACW	Number of Dominant Spe That Are OBL, FACW, or	
2. Ostrya virginiana	20	X	FACU		
3. Ulmus americana	10	X	FACW	Total Number of Dominan Species Across All Strata	7
4. Quercus rubra	10		FACU		, (b)
5.				Percent of Dominant Spectrum That Are OBL, FACW, or	
	70	= Total Cov	ver		
Sapling/Shrub Stratum (Plot size:)				Prevalence Index works	
1. Ulmus americana		<u>X</u>	FACW	Total % Cover of:	Multiply by:
2. <u>Celtis occidentalis</u>	8	<u>X</u>	FAC	OBL species	
3				FACW species 65 FAC species 48	$x_2 = \frac{144}{144}$
4				FACU species 30	x 4 = 120
5	23	= Total Cov	er	UPL species 0	x 5 = 0
Herb Stratum (Plot size:)		- 10181000		Column Totals: 143	(A) 394 (B)
1. Geum canadense	30	<u>X</u>	FAC		
2. Fraxinus pennsylvanica	10	<u>X</u>	FACW	Prevalence Index =	
3. Toxicodendron radicans	10	<u> </u>	FAC	Hydrophytic Vegetation	
4		·		1 - Rapid Test for Hy 2 - Dominance Test is	drophytic Vegetation
5				X 2 - Dominance Test is X 3 - Prevalence Index	3 >50%
6					aptations ¹ (Provide supporting
7					or on a separate sheet)
8				Problematic Hydroph	ytic Vegetation ¹ (Explain)
9					
10	50	= Total Cov	er.		ind wetland hydrology must
Woody Vine Stratum (Plot size:)		10101000		be present, unless disturb	ed or problematic.
1				Hydrophytic	
2				Vegetation Present? Yes	No_X
		= Total Cov	er		
Remarks: (Include photo numbers here or on a separate	e sheet.)				
٢					

Depth	cription: (Describe Matrix	to the ut		lox Featur		or comm	in the absence of t	naitators.j
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	_Loc ²	Texture	Remarks
0-5	10YR 2/2	100					cl	
5-9	10YR 5/3	90	7.5YR 5/6	10	С	М	cl	
9-16	10YR 6/2	90	7.5YR 5/6	10	С	М	cl	
							·	
¹ Type: C=C		bletion, R	M=Reduced Matrix, I	MS=Maske	ed Sand Gr	ains.	² Location: P	L=Pore Lining, M=Matrix.
Histoso	()				Aatrix (S4)		Coast Prai	Problematic Hydric Soils ³ : rie Redox (A16)
Black H Hydrog Stratifie	Epipedon (A2) Histic (A3) Jen Sulfide (A4) Ed Layers (A5) Juck (A10)		Stripp Loam		(S6) lineral (F1) Matrix (F2)		Very Shall	ace (S7) anese Masses (F12) ow Dark Surface (TF12) blain in Remarks)
Deplete Thick D Sandy	ed Below Dark Surfac Dark Surface (A12) Mucky Mineral (S1) lucky Peat or Peat (S		Redox Deple	Dark Sur	face (F6) Surface (F7)	wetland hy	nydrophytic vegetation and drology must be present, turbed or problematic.
Туре:	Layer (if observed)	:					Hydric Soil Pre	esent? Yes X No
Remarks:								
IYDROLO	DGY							
Wetland Hy	drology Indicators	:						
Primary Ind	icators (minimum of	one is req	uired; check all that	apply)			Secondary I	ndicators (minimum of two required)
Surface	e Water (A1)		Water-S	ained Lea	ves (B9)		Surface	Soil Cracks (B6)
High W	ater Table (A2)		Aquatic	Fauna (B1	3)		Drainag	e Patterns (B10)
Saturat	ion (A3)		True Aq	uatic Plant	s (B14)		Dry-Sea	ason Water Table (C2)
Water M	Marks (B1)		Hydroge	n Sulfide (Odor (C1)		Crayfish	n Burrows (C8)
	ent Deposits (B2)		Oxidized	Rhizosph	eres on Liv	ving Roots	(C3) Saturati	on Visible on Aerial Imagery (C9)
Drift De	eposits (B3)		Presenc	e of Reduc	ced Iron (C	4)	Stunted	or Stressed Plants (D1)
Algal M	lat or Crust (B4)		Recent I	ron Reduc	tion in Tille	d Soils (C	6) Geomo	rphic Position (D2)
Iron De	posits (B5)		Thin Mu	ck Surface	e (C7)		FAC-Ne	eutral Test (D5)

FAC-Neutral Test (D5)

Inundation Visible on Ae	rial Imagery (B7)	Gauge or Well Data (D9)		
Sparsely Vegetated Con	cave Surface (B8)	Other (Explain in Remarks)		
Field Observations:				
Surface Water Present?		X Depth (inches):	-	
Water Table Present?		X Depth (inches):	-	
Saturation Present? (includes capillary fringe)	Yes No _	X Depth (inches):	Wetland Hydrology Present? Yes	NoX
Describe Recorded Data (stre	eam gauge, monito	ring well, aerial photos, previous insp	ections), if available:	
Remarks:				

Project/Site: A3820001/EMERSON CREEK WIND F	ARMS	City/Count	y: NORWA	ALK Sampling Date: 9/17/2018
Applicant/Owner: APEX CLEAN ENERGY				State: OH Sampling Point: <u>W1M-034</u>
Investigator(s): J. FREELAND, A. PETERS		Section, T	ownship, Ra	ange:
Landform (hillslope, terrace, etc.): DEPRESSION			Local relief	(concave, convex, none): <u>CONCAVE</u>
Slope (%): Lat:		Long:		Datum:
Soil Map Unit Name:				NWI classification:
Are climatic / hydrologic conditions on the site typical for thi	s time of ye	ar? Yes _	XNo	(If no, explain in Remarks.)
Are Vegetation, Soil, or Hydrology s	significantly	disturbed?	Are	"Normal Circumstances" present? Yes 🔀 No
Are Vegetation, Soil, or Hydrology r				eeded, explain any answers in Remarks.)
SUMMARY OF FINDINGS – Attach site map	showing	sampli	ng point l	ocations, transects, important features, etc
Hydrophytic Vegetation Present? Yes X N	o			
Hydric Soil Present? Yes X	o	ls t	he Sampled	
Wetland Hydrology Present? Yes X N	o	wit	hin a Wetla	nd? Yes X No
Remarks:				
WETLAND W1M-034				
VEGETATION – Use scientific names of plants				
	Absolute	Dominar	nt Indicator	Dominance Test worksheet:
Tree Stratum (Plot size:)		Species?		Number of Dominant Species
1. Quercus palustris	- 35	- <u>X</u>	- FACW	That Are OBL, FACW, or FAC: 5 (A)
2. Populus deltoides	- <u>15</u> 10	X	- FAC OBL	Total Number of Dominant
3. <u>Salix nigra</u>				Species Across All Strata: _5(B)
4				Percent of Dominant Species
5				That Are OBL, FACW, or FAC: 100 (A/B)
Sapling/Shrub Stratum (Plot size:)	60	= Total Co	over	Prevalence Index worksheet:
				Total % Cover of:Multiply by:
1				$\begin{array}{c c c c c c c c c c c c c c c c c c c $
2				FACW species 48 $x_2 = 96$
4				FAC species 25 $x = 75$
5.				FACU species 0 $x 4 = 0$
		= Total Co		UPL species 0 $x 5 = 0$
Herb Stratum (Plot size:)		10(a) 0(2461	Column Totals: 110 (A) 300 (B)
1. Typha angustifolia	15	<u>X</u>	OBL	
2. Bidens discoidea	8	X	FACW	Prevalence Index = B/A =2.73
3. Lysimachia nummularia	5		FACW	Hydrophytic Vegetation Indicators:
4				1 - Rapid Test for Hydrophytic Vegetation
5				2 - Dominance Test is >50%
6				X 3 - Prevalence Index is ≤3.0 ¹
7				4 - Morphological Adaptations ¹ (Provide supporting
8				data in Remarks or on a separate sheet)
9				Problematic Hydrophytic Vegetation ¹ (Explain)
10				Indicators of hydric soil and wattend hydrology
	28	= Total Co	over	¹ Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
Woody Vine Stratum (Plot size:)	10	V		
1. Toxicodendron radicans	10	<u> </u>	FAC	Hydrophytic
2	10			Vegetation Present? Yes X No
		= Total Co	over	
Remarks: (Include photo numbers here or on a separate	sneet.)			

Profile Desc	cription: (Describe	to the dep	oth needed to docur	ment the	indicator	or confir	m the absence	of indicators.)
Depth	Matrix		Redo	x Feature	s		_	
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	_Loc ²	Texture	Remarks
0-3	7.5YR 3/2	100						HIGH O.M.
3-6	10YR 4/1	97	5YR 4/4	3	<u>C</u>	PL	cl	
			10YR 5/6	4	С	Μ		
6-16	10YR 5/1	75	10YR 5/6	25	C	M	cl	
<u> </u>								
——								
——								
		lotion BM	=Reduced Matrix, M				21 continu	n: PL=Pore Lining, M=Matrix.
Hydric Soil		Dietion, Rivi	-Reduced Matrix, Mi	5=Maske	a Sana Gr	ains.		for Problematic Hydric Soils ³ :
Histosol			Sandy (Gleyed Ma	atrix (SA)			Prairie Redox (A16)
	oipedon (A2)			Redox (St				Surface (S7)
· — ·	istic (A3)			d Matrix (langanese Masses (F12)
	en Sulfide (A4)				neral (F1)			Shallow Dark Surface (TF12)
	d Layers (A5)			Gleyed M				(Explain in Remarks)
	uck (A10)		X Deplete					
	d Below Dark Surfac	ce (A11)		Dark Surf				
· — ·	ark Surface (A12)	()			urface (F7)	³ Indicators	s of hydrophytic vegetation and
	lucky Mineral (S1)			Depressio		,		d hydrology must be present,
· ·	ucky Peat or Peat (S	3)	—		. ,			disturbed or problematic.
Restrictive I	Layer (if observed)	:						
Туре:								
Depth (in	ches):						Hydric Sol	Present? Yes X No
Remarks:								
HYDROLO	GY							
Wetland Hy	drology Indicators:	:						
Primary India	cators (minimum of o	one is requ	ired; check all that ap	oply)			Second	ary Indicators (minimum of two required)
Surface	Water (A1)		🔀 Water-Sta	ined Leav	/es (B9)		Sur	face Soil Cracks (B6)
High Wa	ater Table (A2)		Aquatic Fa	auna (B13	3)		Dra	inage Patterns (B10)
Saturatio	on (A3)		True Aqua	atic Plants	(B14)		Dry	-Season Water Table (C2)
Water M	larks (B1)		Hydrogen				Cra	yfish Burrows (C8)
Sedimer	nt Deposits (B2)		Oxidized F	Rhizosphe	eres on Liv	ving Roots		uration Visible on Aerial Imagery (C9)
	posits (B3)		Presence	-		-		nted or Stressed Plants (D1)
· — ·	at or Crust (B4)		Recent Iro			,		omorphic Position (D2)
	posits (B5)		Thin Muck					C-Neutral Test (D5)
I — ·	on Visible on Aerial	Imagery (F						· · · · · · · · · · · · · · · · · · ·
	v Vegetated Concav							
Field Obser				-	,			
Surface Wat	er Present?	/es	No X Depth (in	ches):		_		
Water Table			No X Depth (in					
Saturation P			No X Depth (in				tland Hydrolog	y Present? Yes \times No
(includes cap	oillary fringe)							
Describe Re	corded Data (stream	n gauge, m	onitoring well, aerial	photos, p	revious ins	spections)), if available:	

Remarks:

Project/Site: A3820001/EMERSON CREEK WIND F/	ARMS	City/County:	NORWA	ALK Sampling Date: 9/17/2018
Applicant/Owner: APEX CLEAN ENERGY				State: OH Sampling Point: W1M-034
				nge:
				(concave, convex, none):
				Datum:
Soil Map Unit Name:				NWI classification:
Are climatic / hydrologic conditions on the site typical for this		、 、	/	
				(If no, explain in Remarks.) 'Normal Circumstances' present? Yes X No
Are Vegetation, Soil, or Hydrology si				
Are Vegetation, Soil, or Hydrology na SUMMARY OF FINDINGS – Attach site map s				eeded, explain any answers in Remarks.) ocations, transects, important features, etc.
Hydrophytic Vegetation Present? Yes No)			
Hydric Soil Present? Yes X No Wetland Hydrology Present? Yes No		Is the	e Sampled	
Wetland Hydrology Present? Yes No	<u> </u>	with	in a Wetlar	nd? Yes No
Remarks:				
UPLAND W1M-034				
VEGETATION – Use scientific names of plants.				
	Absolute	Dominant		Dominance Test worksheet:
	<u>% Cover</u> 30	Species?	<u>Status</u> FACW	Number of Dominant Species
1. Quercus palustris		<u> </u>		That Are OBL, FACW, or FAC: <u>3</u> (A)
2				Total Number of Dominant
3				Species Across All Strata: (B)
4				Percent of Dominant Species
5	30	- Total Cau		That Are OBL, FACW, or FAC: 75 (A/B)
Sapling/Shrub Stratum (Plot size:)		= Total Cov	er	Prevalence Index worksheet:
1				Total % Cover of:Multiply by:
2				OBL species x 1 =
3				FACW species <u>38</u> x 2 = <u>76</u>
4				FAC species 30 x 3 = 90
5				FACU species <u>30</u> x 4 = <u>120</u>
		= Total Cov	er	UPL species 0 x 5 = 0
Herb Stratum (Plot size:) 1 Juncus tenuis	30	Х	FAC	Column Totals: <u>98</u> (A) <u>286</u> (B)
2. Fragaria virginiana	15	X X	FACU	Prevalence Index = B/A = _2.92
3. Solidago canadensis	10		FACU	Hydrophytic Vegetation Indicators:
4. Rubus idaeus	5		FACU	1 - Rapid Test for Hydrophytic Vegetation
5				\overline{X} 2 - Dominance Test is >50%
6				X 3 - Prevalence Index is ≤3.0 ¹
7				4 - Morphological Adaptations ¹ (Provide supporting
8				data in Remarks or on a separate sheet)
9				Problematic Hydrophytic Vegetation ¹ (Explain)
10				1
	50	= Total Cov	er	¹ Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
Woody Vine Stratum (Plot size:)	0	V		,
1. <u>Vitis riparia</u>	8	<u> </u>	FACW	Hydrophytic
2	8			Vegetation Present? Yes No X
Remarks: (Include photo numbers here or on a separate s		= Total Cov	er	
Remarks. (include photo numbers here of on a separate s	neet.)			

Profile Des Depth	cription: (Describe Matrix	to the de	•	ument the dox Featur		or confir	m the absence of i	ndicators.)
(inches)	Color (moist)	%	Color (moist)		Type ¹	Loc ²	Texture	Remarks
0-5	10YR 4/3	100					cl	
5-10	10YR 4/2	80	7.5YR 5/4	20		М	cl	
10-16	10YR 5/3	95	7.5YR 5/6	5	С	М	cl	
							·	
¹ Type: C=C	 Concentration, D=Dep	bletion, R	/	MS=Maske	ed Sand Gr	ains.	² Location: Pl	L=Pore Lining, M=Matrix.
	Indicators:							Problematic Hydric Soils ³ :
Black ⊢ Hydrog Stratifie 2 cm M	ol (A1) Epipedon (A2) Histic (A3) en Sulfide (A4) ed Layers (A5) luck (A10) ed Below Dark Surfac	se (A11)	Sandy Stripp Loam Loam Deple	/ Redox (S ed Matrix y Mucky M	(S6) lineral (F1) Matrix (F2) (F3)		Dark Surfa Iron-Mang Very Shall	irie Redox (A16) ace (S7) anese Masses (F12) ow Dark Surface (TF12) plain in Remarks)
Thick D	ark Surface (A12) Mucky Mineral (S1) lucky Peat or Peat (S	. ,	Deple		Surface (F7)	wetland hy	hydrophytic vegetation and drology must be present, turbed or problematic.
	Layer (if observed)	,						
Type:								
Depth (ir	nches):						Hydric Soil Pre	esent? Yes X No
Remarks:								
HYDROLO	DGY							
Wetland Hy	drology Indicators	:						
Primary Ind	icators (minimum of e	one is req	uired; check all that	apply)			Secondary I	ndicators (minimum of two required)
Surface	e Water (A1)		Water-S	tained Lea	ives (B9)		Surface	Soil Cracks (B6)
High W	ater Table (A2)		Aquatic	Fauna (B1	3)		Drainag	e Patterns (B10)
	tion (A3)			uatic Plant	, ,			ason Water Table (C2)
	Marks (B1)			n Sulfide (. ,			n Burrows (C8)
	ent Deposits (B2)			•	eres on Liv	0		on Visible on Aerial Imagery (C9)
	eposits (B3)				ced Iron (C	,		or Stressed Plants (D1)
	lat or Crust (B4)				tion in Tille	d Soils (C	, <u> </u>	rphic Position (D2)
Iron De	posits (B5)		Thin Mu	ck Surface	e (C7)		FAC-Ne	eutral Test (D5)

Inundation Visible on Aerial Imagery (B7) _____Gauge or Well Data (D9) ______Sparsely Vegetated Concave Surface (B8) ______Other (Explain in Remarks)

 Field Observations:

 Surface Water Present?
 Yes ______No X_____Depth (inches): _______

 Water Table Present?
 Yes ______No X_____Depth (inches): ________

 Saturation Present?
 Yes ______No X_____Depth (inches): ________

 (includes capillary fringe)
 Wetland Hydrology Present? Yes ______No X_____

 Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:

 Remarks:

Project/Site: A3820001/EMERSON CR	EEK WIND	FARMS	City/County:	NORWA	ALK	Sampling Date: 9/18/	2018
Applicant/Owner: <u>APEX CLEAN ENERG</u>	iΥ				State: OH	Sampling Point: W1N	1-037
nvestigator(s): J. FREELAND, A. PETE	RS		Section, To	wnship, Ra	nge:		
Landform (hillslope, terrace, etc.): DEPRES	SSION		I	_ocal relief	(concave, convex, none):	FLAT	
Slope (%): Lat:							
Soil Map Unit Name:					NWI classific		
Are climatic / hydrologic conditions on the sit	e typical for th	nis time of ye	ar? Yes 💙				
Are Vegetation, Soil, or Hydr					"Normal Circumstances" p		No
Are Vegetation, Soil, or Hydr					eeded, explain any answe		
SUMMARY OF FINDINGS – Attac							es, etc.
		No		51		, , ,	,
	es X		Is th	e Sampled			
Wetland Hydrology Present? Y	'es <u>X</u> 1	No	with	in a Wetla	nd? Yes X	No	
Remarks:							
WETLAND W1M-037							
VEGETATION – Use scientific nam	es of plants						
Tree Stratum (Plot size:)	Absolute % Cover	Dominant Species?		Dominance Test work		
1					Number of Dominant S That Are OBL, FACW, o		(A)
2.					Total Number of Domin	ent	,
3					Species Across All Stra	0	_ (B)
4					Percent of Dominant Sp	nacias	
5					That Are OBL, FACW, o		_ (A/B)
Sapling/Shrub Stratum (Plot size:)		= Total Cov	er	Prevalence Index wor	ksheet:	
1					Total % Cover of:		
2					OBL species 45	x 1 = 45	
3.					FACW species 5	$x_{2} = 10$	
4					FAC species 0	x 3 =	
5					FACU species	x 4 =	
			= Total Cov	ver		x 5 = 0	
Herb Stratum (Plot size:	_)	35	Х	OBL	Column Totals: 50	(A)55	(B)
2. Lindernia dubia		_ <u>33</u>	× X	OBL	Prevalence Index	= B/A = 1.10	
3. Echinochloa crus-galli		5		FACW	Hydrophytic Vegetatio		
4					, , , , , , , , , , , , , , , , , , , ,	Hydrophytic Vegetation	
5					2 - Dominance Tes	st is >50%	
6					X 3 - Prevalence Inde		
7					4 - Morphological A	Adaptations ¹ (Provide su	
8						s or on a separate shee	,
9					Problematic Hydro	phytic Vegetation' (Exp	lain)
10						i and wetlend budgeless	
Manda Mana Olashara (Distaisa)	`	28	= Total Cov	er	¹ Indicators of hydric soi be present, unless distu		must
Woody Vine Stratum (Plot size:							
12					Hydrophytic Vegetation		
2			= Total Cov			s_X No	
Remarks: (Include photo numbers here or	on a separate		- 10(a) 000		1		
、		,					

Depth	Matrix or (moist)	%	Color (moist)	<u>ox Feature</u> %	s _Type ¹	Loc ²	Texture	Remarks
<u>inches) Colo</u>)-10 10YR		98	7.5YR 5/6	2	C	<u>Loc</u>	cl	
					<u> </u>			
							·	
		·						
		letion, RM=	Reduced Matrix, N	IS=Masked	I Sand Gr	ains.		PL=Pore Lining, M=Matrix.
dric Soil Indicato	ors:			~				for Problematic Hydric Soils ³ :
_ Histosol (A1)	(4.0)			Gleyed Ma				Prairie Redox (A16)
Histic Epipedon				Redox (S5	,		Dark S	. ,
Black Histic (A3) Hydrogen Sulfide				d Matrix (S Mucky Mi				anganese Masses (F12) hallow Dark Surface (TF12)
_ Hydrogen Sunda _ Stratified Layers				Gleyed M				Explain in Remarks)
2 cm Muck (A10			×7	ed Matrix (
Depleted Below	,	e (A11)		Dark Surfa	,			
Thick Dark Surfa		- (/		ed Dark Su	1 1)	³ Indicators	of hydrophytic vegetation and
Sandy Mucky Mi	· · ·			Depressio		,		hydrology must be present,
_ 5 cm Mucky Pea	at or Peat (S	3)	_				unless	disturbed or problematic.
estrictive Layer (if	observed):							
Туре:								Present? Yes X No
Depth (inches):							Hydric Soil	Present? Yes X No
							Hydric Soil	Present? Yes <u>~</u> No
Depth (inches):							Hydric Soil	Present? Yes <u>No</u> No
Depth (inches):							Hydric Soil	Present? Yes <u>No</u> No
Depth (inches):							Hydric Soil	Present? Yes <u>No</u> No
Depth (inches):							Hydric Soil	Present? Yes <u>~</u> No
Depth (inches): emarks: 'DROLOGY							Hydric Soil	Present? Yes <u>~</u> No
Depth (inches): emarks: //DROLOGY /etland Hydrology	Indicators:							
Depth (inches): emarks: /DROLOGY /etland Hydrology rimary Indicators (m	Indicators:						Seconda	ry Indicators (minimum of two requi
Depth (inches): emarks: /DROLOGY /etland Hydrology rimary Indicators (m ≤ Surface Water (A	Indicators: ninimum of o A1)		Water-Sta	ained Leav	, ,		<u>Seconda</u>	ry Indicators (minimum of two requinated ace Soil Cracks (B6)
Depth (inches): emarks: /DROLOGY /etland Hydrology rimary Indicators (m <u>/</u> Surface Water (A _ High Water Tabl	Indicators: ninimum of o A1) e (A2)		Water-Sta Aquatic F	ained Leav auna (B13)		<u>Seconda</u> Surfa Drain	ry Indicators (minimum of two requinace Soil Cracks (B6) nage Patterns (B10)
Depth (inches): emarks: //DROLOGY /etland Hydrology rimary Indicators (m High Water Tabl High Water Tabl Saturation (A3)	Indicators: ninimum of o A1) e (A2)		Water-Sta Aquatic F True Aqu	ained Leav auna (B13 atic Plants) (B14)		<u>Seconda</u> <u>Seconda</u> <u>Drain</u> Drain _ Dry-	ry Indicators (minimum of two requir ace Soil Cracks (B6) nage Patterns (B10) Season Water Table (C2)
Depth (inches): emarks: //DROLOGY /etland Hydrology rimary Indicators (m 	Indicators: ninimum of o A1) e (A2) 1)		Water-Sta Aquatic F True Aqu Hydroger	ained Leav fauna (B13 atic Plants n Sulfide O) (B14) dor (C1)		<u>Seconda</u> Surfa Drain Dry- Cray	ry Indicators (minimum of two requir ace Soil Cracks (B6) nage Patterns (B10) Season Water Table (C2) fish Burrows (C8)
Depth (inches): emarks: /DROLOGY /etland Hydrology rimary Indicators (m Surface Water (A High Water Table Saturation (A3) Water Marks (B1 Sediment Depose	Indicators: ninimum of o A1) e (A2) I) sits (B2)		Water-Sta Aquatic F True Aqu Hydroger Oxidized	ained Leav auna (B13 atic Plants n Sulfide O Rhizosphe) (B14) dor (C1) res on Liv		<u>Seconda</u> <u>Seconda</u> <u>Suffa</u> Drain <u>Drain</u> Cray s (C3) <u>Satu</u>	ry Indicators (minimum of two requinace Soil Cracks (B6) nage Patterns (B10) Season Water Table (C2) rfish Burrows (C8) ration Visible on Aerial Imagery (C9
Depth (inches): emarks: (DROLOGY /etland Hydrology rimary Indicators (m Surface Water (A High Water Table Saturation (A3) Water Marks (B1 Sediment Depose Drift Deposits (B	Indicators: ninimum of o A1) e (A2) 1) sits (B2) 3)		Water-Sta Aquatic F True Aqu Hydroger Oxidized Presence	ained Leav auna (B13 atic Plants n Sulfide O Rhizosphe e of Reduce) (B14) dor (C1) res on Liv ed Iron (C	4)	<u>Seconda</u> <u>Surfa</u> <u>Drain</u> <u>Dry-</u> <u>Cray</u> s (C3) <u>Stun</u>	ry Indicators (minimum of two requin ace Soil Cracks (B6) nage Patterns (B10) Season Water Table (C2) fish Burrows (C8) ration Visible on Aerial Imagery (C9 ted or Stressed Plants (D1)
Depth (inches): emarks: /DROLOGY /etland Hydrology <u>rimary Indicators (m</u> <u>/</u> Surface Water (A High Water Table Saturation (A3) Water Marks (B1 Sediment Deposes Drift Deposits (B Algal Mat or Cru	Indicators: ninimum of o A1) e (A2) I) sits (B2) 3) st (B4)		Water-Sta Aquatic F True Aqu Hydroger Oxidized Presence Recent Ir	ained Leav auna (B13 atic Plants on Sulfide O Rhizosphe of Reduce on Reducti) (B14) dor (C1) res on Liv ed Iron (C on in Tille	4)	<u>Seconda</u> <u>Seconda</u> <u>Surfa</u> Drai <u>Dry-</u> Cray (C3) <u>Satu</u> Stun (6) <u>Geo</u>	ry Indicators (minimum of two requinace Soil Cracks (B6) nage Patterns (B10) Season Water Table (C2) fish Burrows (C8) ration Visible on Aerial Imagery (C9 ted or Stressed Plants (D1) morphic Position (D2)
Depth (inches): temarks: /DROLOGY /etland Hydrology /rimary Indicators (m X Surface Water (A High Water Table Saturation (A3) Water Marks (B1 Sediment Depos Drift Deposits (B Algal Mat or Cru Iron Deposits (B	Indicators: ninimum of o A1) e (A2) I) sits (B2) 3) st (B4) 5)	one is requi	Water-Sta Aquatic F True Aqu Hydroger Oxidized Presence Recent Ir Thin Muc	ained Leav auna (B13 atic Plants Sulfide O Rhizosphe of Reduce on Reducti k Surface () (B14) dor (C1) res on Liv ed Iron (C on in Tille (C7)	4)	<u>Seconda</u> <u>Seconda</u> <u>Surfa</u> Drai <u>Dry-</u> Cray (C3) <u>Satu</u> Stun (6) <u>Geo</u>	ry Indicators (minimum of two requin ace Soil Cracks (B6) nage Patterns (B10) Season Water Table (C2) fish Burrows (C8) ration Visible on Aerial Imagery (C9 ted or Stressed Plants (D1)
Depth (inches): temarks: /DROLOGY /etland Hydrology rimary Indicators (m X Surface Water (A High Water Table Saturation (A3) Water Marks (B1 Sediment Depos Drift Deposits (B Algal Mat or Cru Iron Deposits (B Inundation Visible	Indicators: ninimum of o A1) e (A2) I) sits (B2) 3) st (B4) 5) le on Aerial I	one is requii	Water-Sta Aquatic F True Aqu Hydroger Oxidized Presence Recent Ir Thin Muc 7) Gauge or	ained Leav fauna (B13 atic Plants o Sulfide O Rhizosphe o Reducti k Surface () (B14) dor (C1) res on Liv ed Iron (C on in Tille (C7) (D9)	4)	<u>Seconda</u> <u>Seconda</u> <u>Surfa</u> Drai <u>Dry-</u> Cray (C3) <u>Satu</u> Stun (6) <u>Geo</u>	ry Indicators (minimum of two requinace Soil Cracks (B6) nage Patterns (B10) Season Water Table (C2) fish Burrows (C8) ration Visible on Aerial Imagery (C9 ted or Stressed Plants (D1) morphic Position (D2)
Depth (inches): temarks: /DROLOGY /etland Hydrology /rimary Indicators (m X Surface Water (A High Water Table Saturation (A3) Water Marks (B1 Sediment Depos Drift Deposits (B Algal Mat or Cru Iron Deposits (B	Indicators: ninimum of o A1) e (A2) I) sits (B2) 3) st (B4) 5) le on Aerial I	one is requii	Water-Sta Aquatic F True Aqu Hydroger Oxidized Presence Recent Ir Thin Muc 7) Gauge or	ained Leav fauna (B13 atic Plants o Sulfide O Rhizosphe o Reducti k Surface () (B14) dor (C1) res on Liv ed Iron (C on in Tille (C7) (D9)	4)	<u>Seconda</u> <u>Seconda</u> <u>Surfa</u> Drai <u>Dry-</u> Cray (C3) <u>Satu</u> Stun (6) <u>Geo</u>	ry Indicators (minimum of two requinace Soil Cracks (B6) nage Patterns (B10) Season Water Table (C2) fish Burrows (C8) ration Visible on Aerial Imagery (C9 ted or Stressed Plants (D1) morphic Position (D2)
Depth (inches): temarks: YDROLOGY Vetland Hydrology Vetland Hydrology Vetlan	Indicators: ninimum of o A1) e (A2) 1) sits (B2) 3) st (B4) 5) le on Aerial I ited Concave	one is requir magery (B Surface (I	 Water-Sta Aquatic F True Aqu Hydroger Oxidized Presence Recent In Thin Muc Thin Muc 7) Gauge or B8) Other (Exemption) 	ained Leav auna (B13 atic Plants Sulfide O Rhizosphe of Reduce on Reducti k Surface (Well Data cplain in Re) (B14) dor (C1) res on Liv ed Iron (C on in Tille (C7) (D9)	4)	<u>Seconda</u> <u>Seconda</u> <u>Surfa</u> Drai <u>Dry-</u> Cray (C3) <u>Satu</u> Stun (6) <u>Geo</u>	ry Indicators (minimum of two requinace Soil Cracks (B6) nage Patterns (B10) Season Water Table (C2) fish Burrows (C8) ration Visible on Aerial Imagery (C9 ted or Stressed Plants (D1) morphic Position (D2)
Depth (inches): temarks: YDROLOGY Vetland Hydrology <u>trimary Indicators (m</u> X Surface Water (A High Water Table X Saturation (A3) Water Marks (B1 Sediment Depos Drift Deposits (B Algal Mat or Cru Iron Deposits (B Sparsely Vegeta	Indicators: ninimum of o A1) e (A2) 1) sits (B2) 3) st (B4) 5) le on Aerial I tted Concave tted Concave	magery (B [*] e Surface (I	Water-Sta Aquatic F Aquatic F True Aqu Hydroger Oxidized Presence Recent Ir Thin Muc 7) Gauge or B8) Other (Ex No Depth (in	ained Leav auna (B13 atic Plants o Sulfide O Rhizosphe of Reduce on Reducti k Surface (Well Data cplain in Re) (B14) dor (C1) res on Lived Iron (C on in Tille (C7) (D9) emarks)	4) ed Soils (C	<u>Seconda</u> <u>Seconda</u> <u>Surfa</u> Drai <u>Dry-</u> Cray (C3) <u>Satu</u> Stun (6) <u>Geo</u>	ry Indicators (minimum of two requinace Soil Cracks (B6) nage Patterns (B10) Season Water Table (C2) fish Burrows (C8) ration Visible on Aerial Imagery (C9 ted or Stressed Plants (D1) morphic Position (D2)
Depth (inches): temarks: YDROLOGY Vetland Hydrology <u>trimary Indicators (m</u> <u>X</u> Surface Water (A High Water Table <u>X</u> Surface Water (A3) Water Marks (B1 <u>X</u> Sediment Deposes Drift Deposits (B3 Algal Mat or Cru- Iron Deposits (B3 Sparsely Vegeta Sparsely Vegeta Sparsely Vegeta	Indicators: ninimum of o A1) e (A2) I) sits (B2) 3) st (B4) 5) le on Aerial I ted Concave ent? Y ? Y	imagery (B Surface (I ses	 Water-Sta Aquatic F True Aqu Hydroger Oxidized Presence Recent In Thin Muc Thin Muc 7) Gauge or B8) Other (Exemption) 	ained Leav ained Leav auna (B13 atic Plants of Sulfide O Rhizosphe of Reduce on Reducti k Surface (Well Data cplain in Re nches): 2 nches):) (B14) dor (C1) res on Lived Iron (C on in Tille (C7) (D9) emarks)	4) ed Soils (C	Seconda Seconda Drain Dry- Cray Cray Stun Stun Stun Stun Stun Geo X FAC	ry Indicators (minimum of two requinace Soil Cracks (B6) nage Patterns (B10) Season Water Table (C2) fish Burrows (C8) ration Visible on Aerial Imagery (C9 ted or Stressed Plants (D1) morphic Position (D2)

Remarks:

Project/Site: A3820001/EMERSON CREEK WIND F	ARMS	City/County	<u>NORWA</u>	ALK Sampling Date: 9/18/2018				
Applicant/Owner: APEX CLEAN ENERGY				State: OH Sampling Point: W1M-037				
Investigator(s): J. FREELAND, A. PETERS		Section, To	wnship, Ra	nge:				
Landform (hillslope, terrace, etc.): DEPRESSION			Local relief	(concave, convex, none): <u>FLAT</u>				
Slope (%): Lat: 41.14394907		Long: <u>-82.</u>	83307085	5 Datum:				
Soil Map Unit Name:				NWI classification:				
Are climatic / hydrologic conditions on the site typical for this	s time of yea	ar?Yes_	<u> × No</u>	(If no, explain in Remarks.)				
Are Vegetation, Soil, or Hydrologys	significantly	disturbed?	Are "	'Normal Circumstances" present? Yes 🔀 No				
Are Vegetation, Soil, or Hydrology r	naturally pro	blematic?	(If ne	eeded, explain any answers in Remarks.)				
SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.								
Hydrophytic Vegetation Present? Yes N								
Hydric Soil Present? Yes N			e Sampled					
Wetland Hydrology Present? Yes <u>X</u> N	o	with	in a Wetlar	nd? Yes <u>No X</u>				
Remarks:								
UPLAND W1M-037								
VEGETATION – Use scientific names of plants.		D		Deminent Texture text				
Tree Stratum (Plot size:)	Absolute % Cover		Indicator Status	Dominance Test worksheet: Number of Dominant Species				
1				That Are OBL, FACW, or FAC: _0 (A)				
2				Total Number of Dominant				
3				Species Across All Strata:(B)				
4				Percent of Dominant Species				
5				That Are OBL, FACW, or FAC: 0 (A/B)				
Sapling/Shrub Stratum (Plot size:)		= Total Cov	/er	Prevalence Index worksheet:				
1				Total % Cover of:Multiply by:				
2				OBL species 0 x 1 = 0				
3				FACW species 5 $x = 10$				
4				FAC species 0 x 3 = 0				
5				FACU species $\frac{14}{2}$ x 4 = $\frac{56}{45}$				
Herb Stratum (Plot size:)		= Total Cov	/er	UPL species 3 $x 5 = \frac{15}{81}$				
1 FESTUCA SP	50	Х		Column Totals: <u>22</u> (A) <u>81</u> (B)				
2. Aruncus dioicus	10		FACU	Prevalence Index = B/A =				
3. Echinochloa crus-galli	5		FACW	Hydrophytic Vegetation Indicators:				
4. Asclepias syriaca	4		FACU	1 - Rapid Test for Hydrophytic Vegetation				
5. Daucus carota	3		UPL	2 - Dominance Test is >50%				
6				3 - Prevalence Index is ≤3.0 ¹				
7				4 - Morphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet)				
8				Problematic Hydrophytic Vegetation ¹ (Explain)				
9								
10				¹ Indicators of hydric soil and wetland hydrology must				
Woody Vine Stratum (Plot size:)	50	= Total Cov	/er	be present, unless disturbed or problematic.				
1,				Hydrophytic				
2				Vegetation				
		= Total Cov	ver	Present? Yes No X				
Remarks: (Include photo numbers here or on a separate s	sheet.)							
L								

Profile Desc	cription: (Describe	e to the depth	needed to docur	ment the indicato	r or confirr	m the absence	of indicate	ors.)	
Depth	Matrix		Redo	x Features					
(inches)	Color (moist)	%	Color (moist)	%Type ¹	Loc ²	Texture		Remarks	
0-16	10YR 4/2	100				cl	moist		
——									
						·			
——									
						·			
¹ Type: C=C	oncentration, D=De	pletion, RM=F	Reduced Matrix, M	S=Masked Sand G	rains.	² Location	: PL=Pore	Lining, M=Matrix.	
Hydric Soil	Indicators:	•				Indicators	for Proble	matic Hydric Soils ³ :	
Histosol	(A1)		Sandy (Gleyed Matrix (S4)		Coast	Prairie Red	ox (A16)	
Histoser (AT) Histo Epipedon (A2)				Redox (S5)		Dark Surface (S7)			
Black Histic (A3)				d Matrix (S6)		Iron-Manganese Masses (F12)			
Hydrogen Sulfide (A4)				Mucky Mineral (F1)	Very Shallow Dark Surface (TF12)			
Stratified Layers (A5)				Gleyed Matrix (F2)			Other (Explain in Remarks)		
2 cm Muck (A10)				ed Matrix (F3)		_			
Depleted Below Dark Surface (A11)			Redox	Dark Surface (F6)					
Thick Dark Surface (A12)		Deplete	d Dark Surface (F	7)	³ Indicators of hydrophytic vegetation and				
Sandy Mucky Mineral (S1)		Redox	Depressions (F8)		wetland hydrology must be present,				
5 cm Mucky Peat or Peat (S3)						unless	disturbed of	or problematic.	
Restrictive	Layer (if observed):						-	
Type:									
I ~ _	ches):					Hydric Soil	Present?	Yes No	
Remarks:									
HYDROLO	GY								
	drology Indicators								
Drimony India	cators (minimum of	one is require	d: check all that ar	anly)		Second	any Indicato	rs (minimum of two required)	

Primary Indicators (minimum of one is required; check all that apply)	Secondary indicators (minimum of two required)
Surface Water (A1) Water-Stained Leaves (B9)	Surface Soil Cracks (B6)
High Water Table (A2) Aquatic Fauna (B13)	Drainage Patterns (B10)
X Saturation (A3) True Aquatic Plants (B14)	Dry-Season Water Table (C2)
Water Marks (B1) Hydrogen Sulfide Odor (C1)	Crayfish Burrows (C8)
Sediment Deposits (B2) Oxidized Rhizospheres on L	iving Roots (C3) Saturation Visible on Aerial Imagery (C9)
Drift Deposits (B3) Presence of Reduced Iron (0	C4) Stunted or Stressed Plants (D1)
Algal Mat or Crust (B4) Recent Iron Reduction in Till	ed Soils (C6) Geomorphic Position (D2)
Iron Deposits (B5) Thin Muck Surface (C7)	FAC-Neutral Test (D5)
Inundation Visible on Aerial Imagery (B7) Gauge or Well Data (D9)	
Sparsely Vegetated Concave Surface (B8) Other (Explain in Remarks)	
Field Observations:	
Surface Water Present? Yes No X Depth (inches):	
Water Table Present? Yes No X Depth (inches):	
Saturation Present? Yes X No Depth (inches): 8	Wetland Hydrology Present? Yes X No
(includes capillary fringe)	
Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous in	spections), if available:
Remarks:	

roject/Site: A3820001/EMERSON CREEK WIND FARMS City/Cour				ty: NORWA	ALK	Sampling Date: 9/18/2018			
plicant/Owner: APEX CLEAN ENERGY					State: OH	Sampling Point: W1M-C)38		
Investigator(s): <u>J. FREELAND, A. PE</u>	TERS			:	Section, 1	Fownship, Ra	inge:		
Landform (hillslope, terrace, etc.): FLAT						_ Local relief	(concave, convex, none):	FLAT	
Slope (%): Lat:				I	_ong:			Datum:	
Soil Map Unit Name:							NWI classific	ation:	
Are climatic / hydrologic conditions on the	site typ	oical for	this ti	me of yea	ar? Yes_	XNo	(If no, explain in R	emarks.)	
Are Vegetation, Soil, or Hy	/drolog	у	_ sigr	ificantly	disturbed	? Are	"Normal Circumstances" p	present? Yes X No	
Are Vegetation, Soil, or Hy	/drolog	у	_ natu	arally pro	blematic?	? (If ne	eeded, explain any answe	rs in Remarks.)	
SUMMARY OF FINDINGS - Atta	ach s	ite ma	p sh	owing	sampli	ing point l	ocations, transects	, important features	s, etc.
Hydrophytic Vegetation Present?			-			51		<u>, , , , , , , , , , , , , , , , , , , </u>	
Hydric Soil Present?		X			ls	the Sampled			
Wetland Hydrology Present?	Yes	X	No		wi	thin a Wetla	nd? Yes X	No	
Remarks:									$\neg \neg$
WETLAND W1M-038									
VEGETATION – Use scientific na	mes	of plan	its.						
				bsolute		nt Indicator	Dominance Test work	sheet:	
Tree Stratum (Plot size:						<u>Status</u>	Number of Dominant S That Are OBL, FACW,	· .	(A)
2							Total Number of Domin	ant	
3							Species Across All Stra	4	(B)
4							Percent of Dominant Sp	pecies	
5							That Are OBL, FACW,		(A/B)
Sapling/Shrub Stratum (Plot size:)	-		= Total C	over	Prevalence Index wor	ksheet:	
1							Total % Cover of:	Multiply by:	_
2							OBL species 0	x 1 = _0	-
3							FACW species 90	x 2 = 180	-
4							FAC species 5	x 3 = 15	-
5							FACU species 0	x 4 =	-
Hark Chatter (Dist size)	、		_		= Total C	over	UPL species 0		-
Herb Stratum (Plot size:)		(90	Х	FACW	Column Totals: 95	(A)195	_ (B)
2. Setaria pumila				5		FAC	Prevalence Index	= B/A = 2.05	
3							Hydrophytic Vegetatio		-
4							1 - Rapid Test for H	Hydrophytic Vegetation	
5							2 - Dominance Tes	st is >50%	
6							X 3 - Prevalence Inde		
7								Adaptations ¹ (Provide supp	orting
8								s or on a separate sheet)	
9								phytic Vegetation ¹ (Explair	ן יי
10							¹ Indicators of hydric soi	il and wetland hydrology m	ust
Mandu Vina Stratum (Plataiza)		``	-	95	= Total C	over	be present, unless distu		
Woody Vine Stratum (Plot size:									
1 2							Hydrophytic Vegetation		
					= Total C	over	Present? Ye	s_X No	
Remarks: (Include photo numbers here	or on a	separa	te she				1		

This foregoing document was electronically filed with the Public Utilities

Commission of Ohio Docketing Information System on

1/31/2019 2:42:03 PM

in

Case No(s). 18-1607-EL-BGN

Summary: Application - Part 10 of 17 electronically filed by Christine M.T. Pirik on behalf of Firelands Wind, LLC