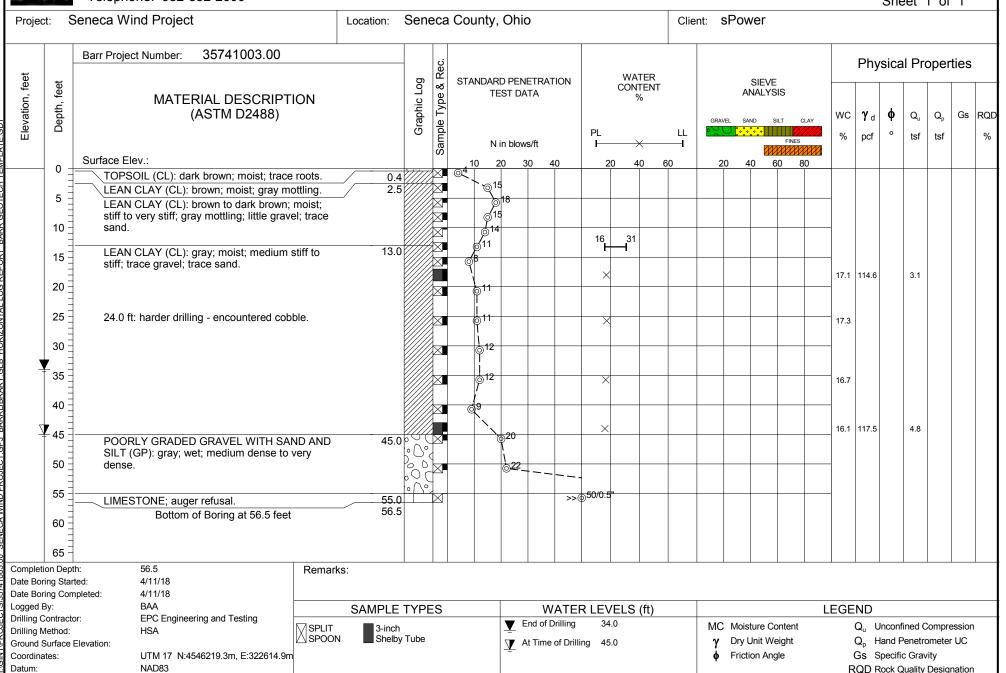


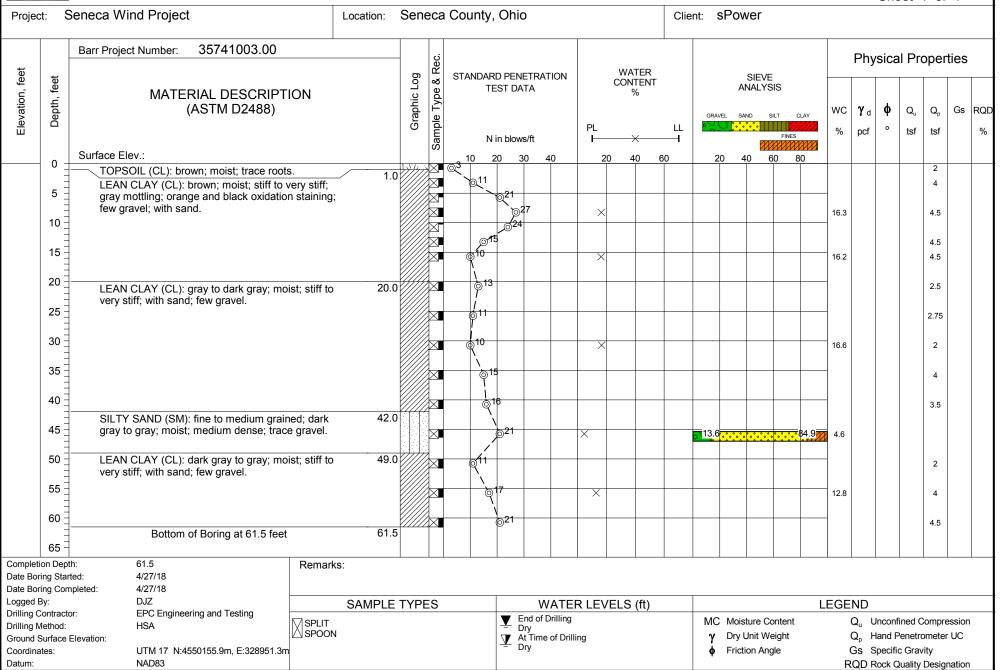
Appendices

Appendix A

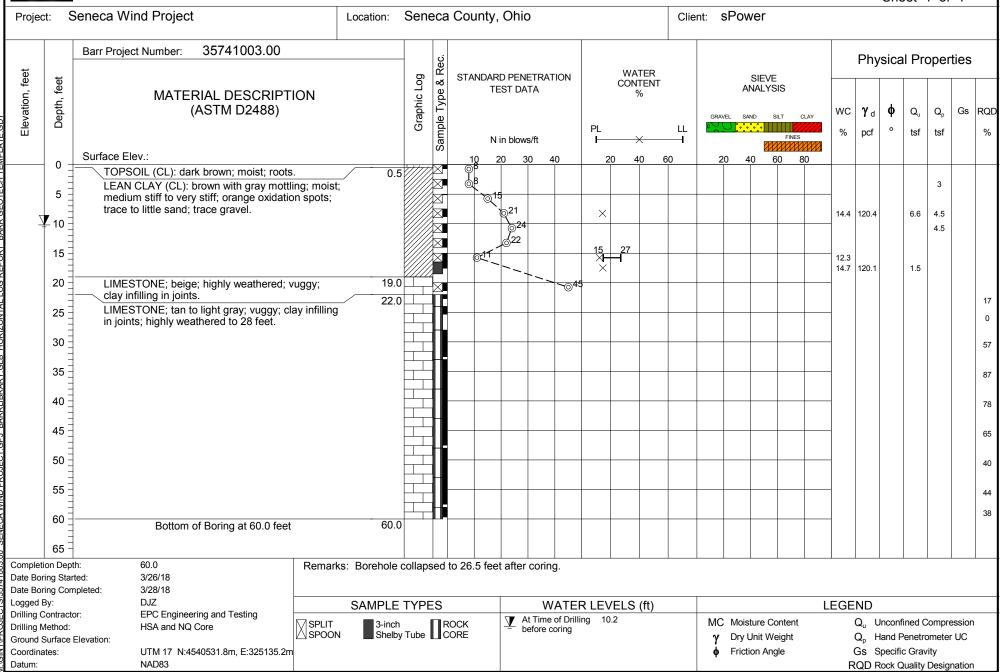
Site Coordinates and Investigation Summary

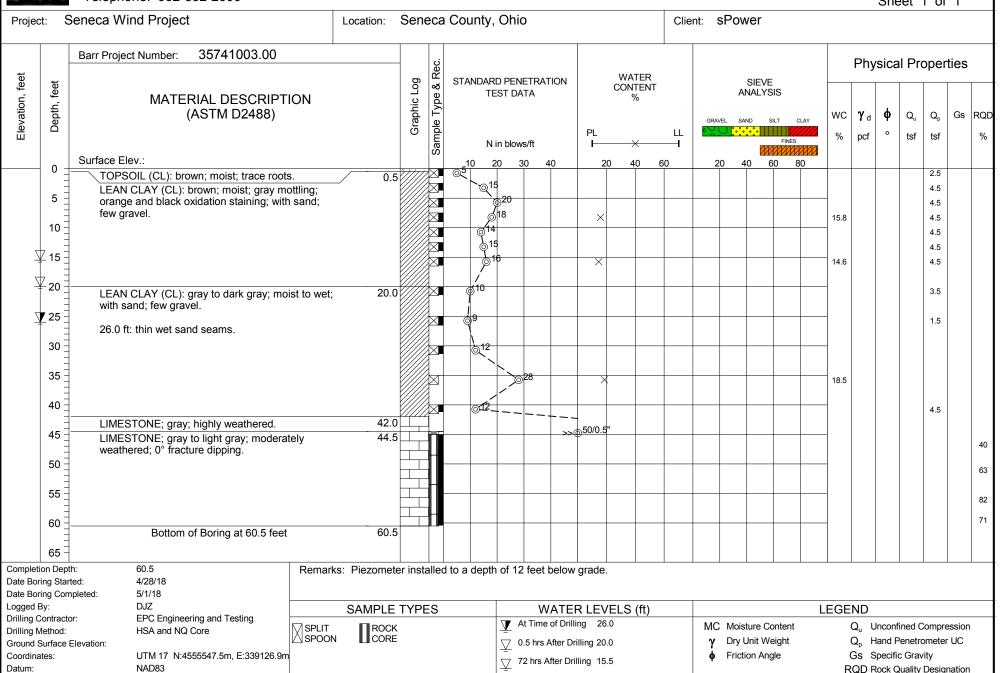

Appendix A Site Coordinates and Investigation Summary

			UTM NAD83	2 714N [m]					
			OTWINADO.	, 2141 4 [iii]	1	Electrical	Thermal		Geophysical
Geotech ID	Turbine ID	Structure Type	Northing	Easting	Soil Boring	Resistivity	Resistivity	Piezometer	Testing
GEO-001	2.3-1	Turbine	4546219.3	322614.9	X	rtesistivity	resistivity	riczometer	resung
GEO-002	2.3-2	Turbine	4550155.9	328951.3	X				
GEO-003	2.3-3	Turbine	4540531.8	325135.2	Х				Х
GEO-004	2.3-4	Turbine	4555547.5	339126.9	Х			Х	
GEO-005	2.3-5	Turbine	4550876.8	330232.5	Х	Χ	Х	Х	
GEO-006	2.3-6	Turbine	4551577.3	334368.0	X	X	X		
GEO-007	2.3-7	Turbine	4553214.6	334691.8	Х			Х	
GEO-008	2.3-8	Turbine	4547748.1	328866.6	Х				
GEO-009	2.3-9	Turbine	4551544.0	338428.4	Х				
GEO-010	2.3-10	Turbine	4548944.7	344822.5					
GEO-011 GEO-012	2.3-107 2.3-12	Turbine Turbine	4552418.4 4549320.8	336574.9 330222.6					
GEO-012 GEO-013	3.8-1	Turbine	4545288.4	319620.5	Х				Х
GEO-013	3.8-2	Turbine	4544715.0	319963.6	X				^
GEO-015	3.8-3	Turbine	4546020.6	323462.6	X	Х	Х		
GEO-016	3.8-4	Turbine	4545670.1	323772.0	X	Λ	,		
GEO-017		Dropped	4542879.1	324854.2					
GEO-018	3.8-6	Turbine	4542650.4	325199.4	Х			Х	
GEO-019	3.8-7	Turbine	4541998.9	325124.8	Х				
GEO-020	3.8-8	Turbine	4541256.1	324761.0	Х				
GEO-021	3.8-9	Turbine	4541120.8	325225.7	Х			Х	
GEO-022	3.8-10	Turbine	4542520.9	326422.2	X				
GEO-023		Dropped	4547723.2	327081.5					
GEO-024	3.8-12	Turbine	4546802.8	326622.5	X				
GEO-025	3.8-13	Turbine	4546402.9	326953.6	Х				
GEO-026	3.8-14	Turbine	4545875.5	327741.3	Х				
GEO-027		Dropped	4546004.7	327761.1					
GEO-028	3.8-15	Turbine	4545425.5	327878.9	X				
GEO-029 GEO-030	3.8-17	Dropped Turbine	4547820.4 4547428.1	327610.2 327749.1	Х				
GEO-030	3.8-18	Turbine	4545328.4	329526.3	X				
GEO-031	3.0-10	Dropped	4545165.1	329395.5	^				
GEO-033	3.8-19	Turbine	4551644.0	337479.1	Х				Х
GEO-034	3.8-20	Turbine	4551541.8	337992.8	X				X
GEO-035	3.8-21	Turbine	4550629.4	338124.3	X			Х	
GEO-036	3.8-22	Turbine	4550103.1	338202.1	Х				
GEO-037	3.8-23	Turbine	4549927.6	338928.3	Х				
GEO-038	3.8-24	Turbine	4549899.6	339979.5	Х	Х	Х		
GEO-039	3.8-25	Turbine	4554829.0	339283.5	Х				
GEO-040	3.8-26	Turbine	4551698.0	340823.8	X				
GEO-041	3.8-27	Turbine	4548942.9	341288.9	Х				
GEO-042	3.8-28	Turbine	4548991.7	344231.2	X				
GEO-043	3.8-29	Turbine	4548203.7	343986.5	X				
GEO-044	3.8-29-2	Turbine	4548181.0	344107.0	X				
GEO-045 GEO-046	3.8-30	Turbine Dropped	4542927.6 4543036.5	326484.0 326466.9	Α				
GEO-046 GEO-047	3.8-31	Turbine	4543036.5	324459.5	Х				
GEO-047 GEO-048	3.8-31-2	Turbine	4542147.8	324459.3	X				
GEO-049	3.8-32	Turbine	4544539.9	326421.6	X				
GEO-050	3.8-33	Turbine	4544111.4	325884.5	X			Х	
GEO-051	3.8-34	Turbine	4543626.0	325869.2	Х				
GEO-052	3.8-35	Turbine	4548866.6	343529.1	Х				
GEO-053	3.8-36	Turbine	4544801.8	319596.9	Х				
GEO-054		Dropped	4545274.7	328724.8					
GEO-055		Dropped	4550584.0	338924.8					
GEO-056	3.8-39	Turbine	4550364.6	339674.3	Х				
GEO-057		Dropped	4548099.8	345470.5					
GEO-058	3.8-41	Turbine	4547477.2	345610.7					
GEO-059	3.8-42	Turbine	4547019.2	345658.2	Х				


			UTM NAD83	3 Z14N [m]					
						Electrical	Thermal		Geophysical
Geotech ID	Turbine ID	Structure Type	Northing	Easting	Soil Boring	Resistivity	Resistivity	Piezometer	Testing
GEO-060	3.8-43	Turbine	4543949.2	325266.8	Х		Ĺ	Х	
GEO-061	3.8-44	Turbine	4553223.6	336017.9	Х				Х
GEO-062	3.8-45	Turbine	4548686.1	328618.5	Х				
GEO-063	3.8-46	Turbine	4552372.8	337543.9	Х				
GEO-064		Dropped	4548400.0	343623.0					
GEO-065		Dropped	4548297.0	343623.0					
GEO-066	3.8-51	Turbine	4543617.4	324704.8	Х				Х
GEO-067		Dropped	4542169.5	325992.6					
GEO-068	3.8-53	Turbine	4544367.3	326870.1	Х				
GEO-069	3.8-54	Turbine	4546020.7	329629.2	Х				
GEO-070	3.8-55	Turbine	4547759.0	328810.0	Х				
GEO-071	2.3-11/3.8-56	Turbine	4553213.4	336408.8	Х				
GEO-072	3.8-57	Turbine	4553078.1	336837.0	Х				
GEO-073	3.8-58	Turbine	4552429.3	336577.0					
GEO-074	3.8-59	Turbine	4552379.1	337006.9	Х				
GEO-075	3.8-60	Turbine	4551391.1	338409.0	Х				
GEO-076	3.8-61	Turbine	4548968.7	343381.3	Х				
GEO-077	3.8-62	Turbine	4548935.4	344812.7	Х				
GEO-078	3.8-63	Turbine	4545354.8	328297.0	Х				
GEO-079	3.8-101	Turbine	4546147.4	325270.7	Х				
GEO-080	3.8-101	Turbine	4550123.9	337534.8					
GEO-081	3.8-104	Turbine	4547664.2	326388.0	Х				
GEO-082	3.8-105	Turbine	4546818.3	326235.2	Х				
GEO-083	3.8-106	Turbine	4546775.0	326708.0	Х				
GEO-084	3.8-5	Turbine	4542846.9	324876.3	Х			Х	
GEO-085	3.8-11	Turbine	4547740.3	327077.5	Х				Х
GEO-086	3.8-14-2	Turbine	4545922.4	327750.9	Х				
GEO-087	3.8-16	Turbine	4547804.6	327652.3	Х	Х	Х		
GEO-088	3.8-18-2	Turbine	4545185.4	329414.1	Х				
GEO-089	3.8-37	Turbine	4545293.9	328728.7	Х	Х	Х		
GEO-090	3.8-38	Turbine	4550571.2	339008.4	Х				
GEO-091	3.8-40	Turbine	4548037.1	345589.1	Х				
GEO-092	3.8-47	Turbine	4548374.3	343629.4	Х			Х	
GEO-093	3.8-47-2	Turbine	4548322.8	343634.7	Х				
GEO-094	3.8-52	Turbine	4542142.6	325974.7	Х				
GEO-095	3.8-48	Turbine	4543793.3	326847.9					
GEO-096	3.8-30-2	Turbine	4543010.5	326543.0	Х				
Sub-Res		Previous Substation	4547035.0	327329.0		Х	Х		

Appendix B Soil Boring Logs

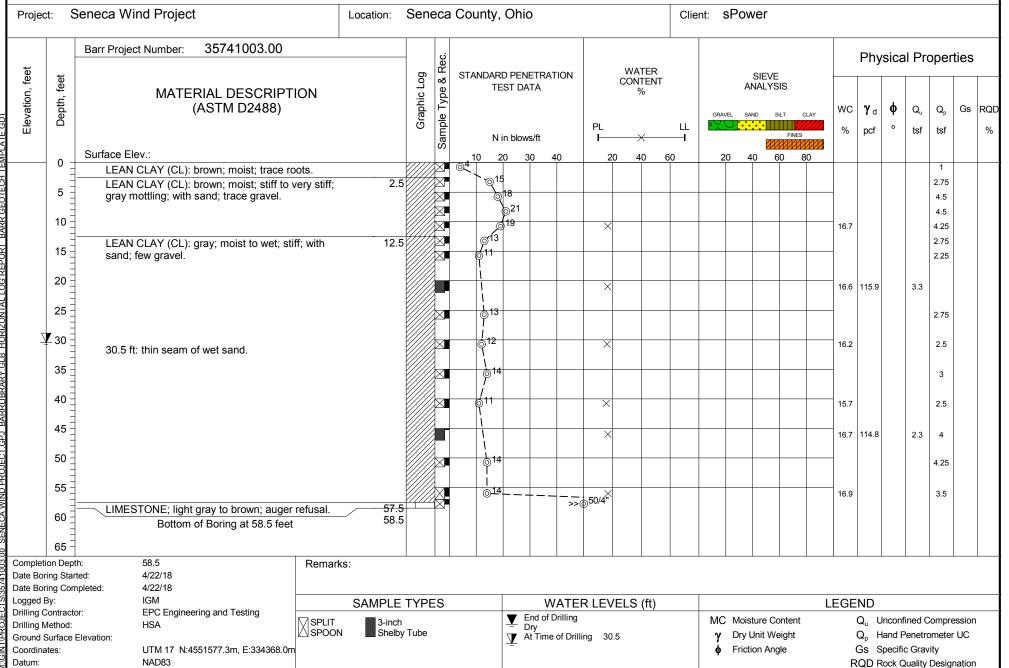

LOG OF BORING GEO-001


LOG OF BORING GEO-002

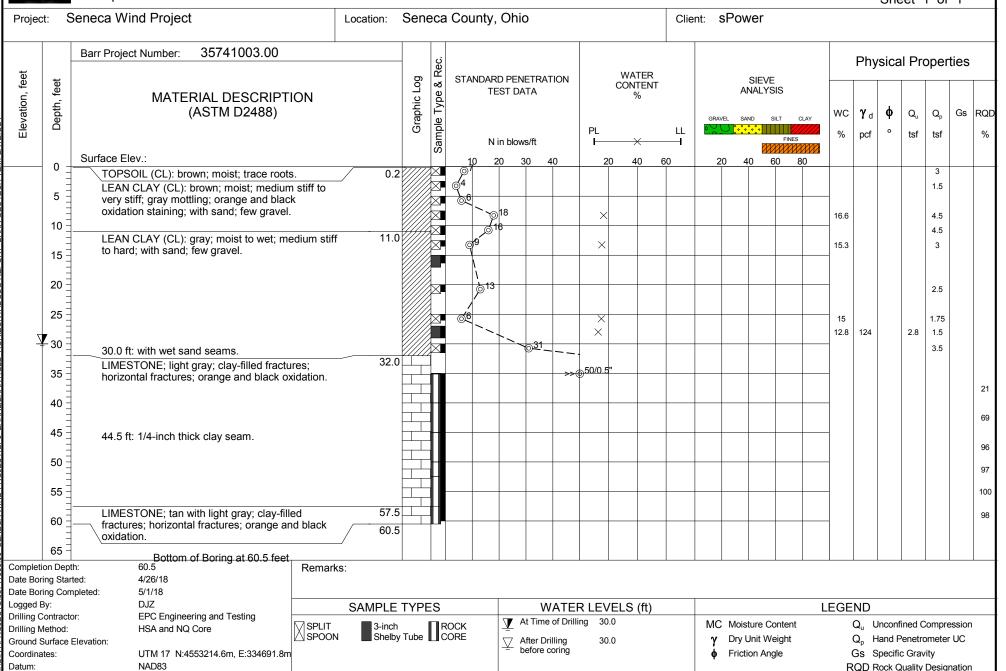
LOG OF BORING GEO-003

LOG OF BORING GEO-004

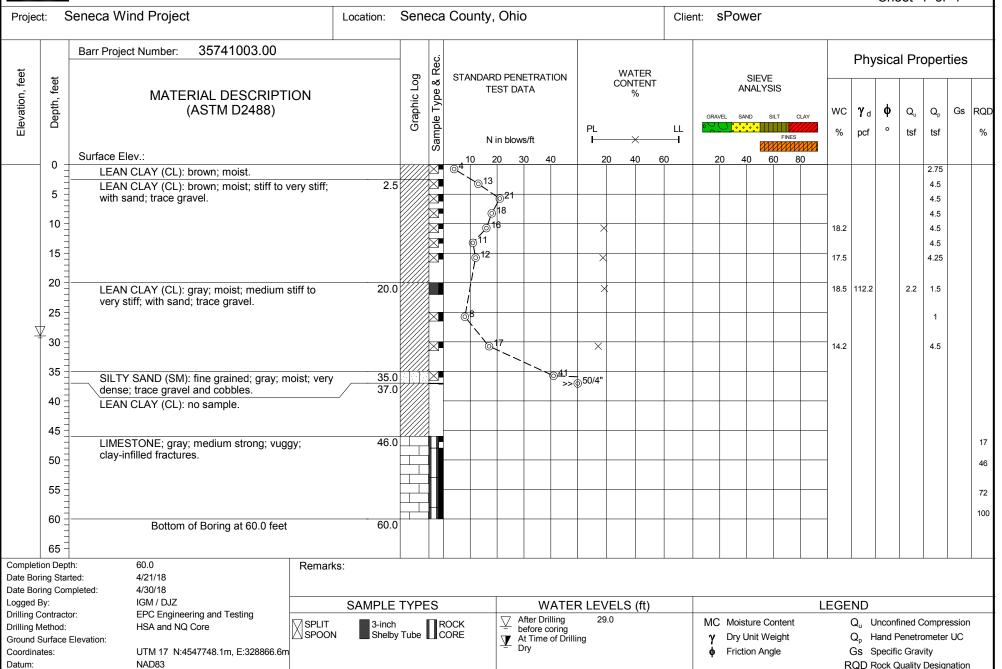
Telephone: 952-832-2600

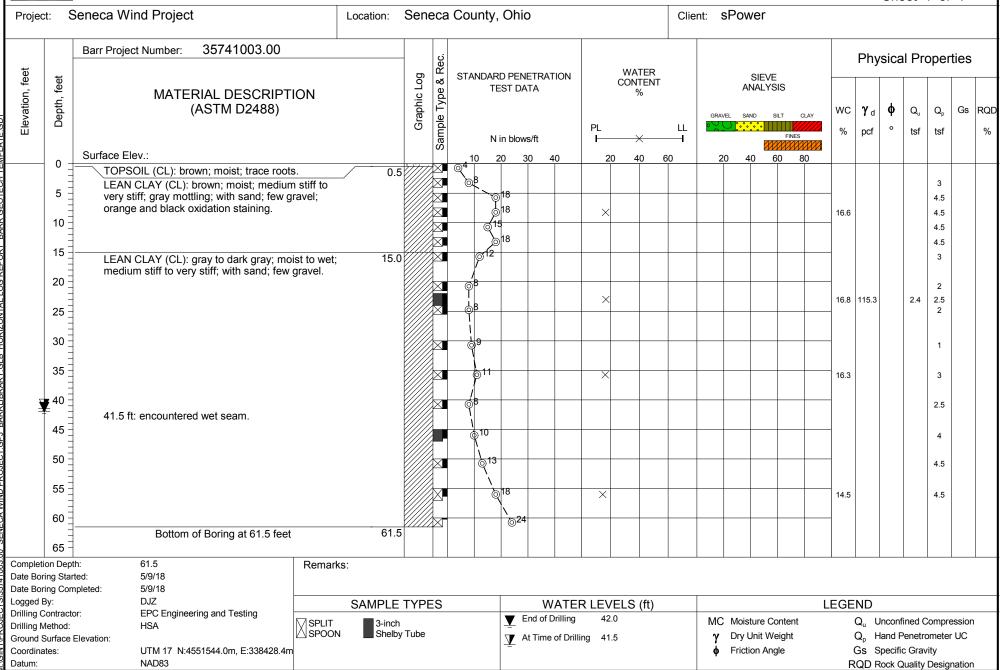

Barr Engineering Company 4300 MarketPointe Drive Suite 200 Minneapolis, MN 55435

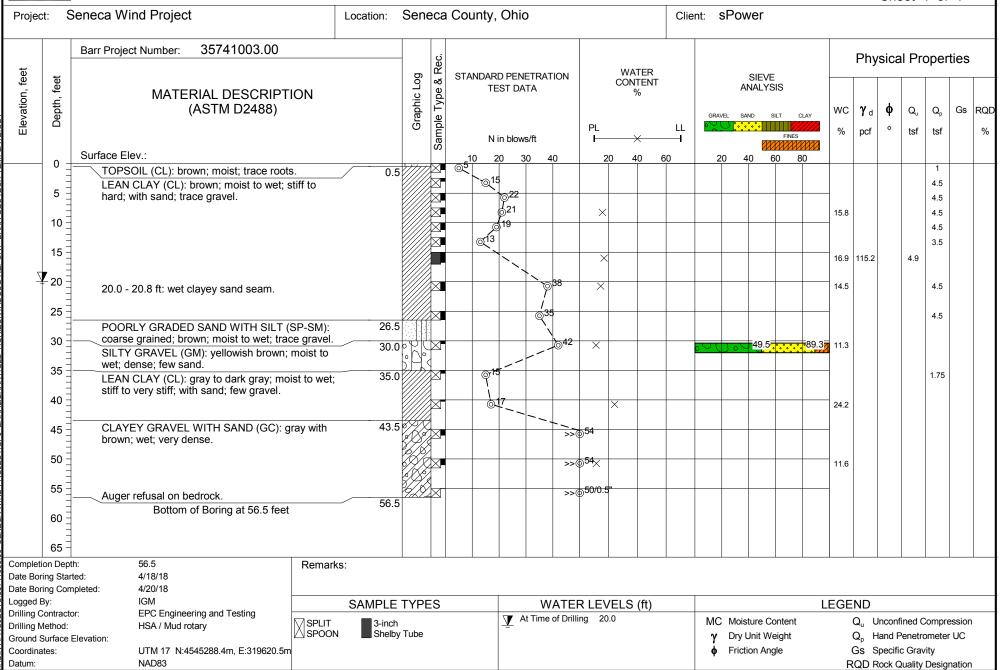
LOG OF BORING GEO-005


Sheet 1 of 1

Seneca Wind Project Seneca County, Ohio Client: sPower Location: Project: 35741003.00 Barr Project Number: **Physical Properties** Sample Type & Rec. WATER Elevation, feet STANDARD PENETRATION Graphic Log SIEVE Depth, feet CONTENT **ANALYSIS** TEST DATA MATERIAL DESCRIPTION (ASTM D2488) φ Gs WC γd Q_{u} Q_n ROD PL LL % pcf tsf tsf % N in blows/ft FINES Surface Elev .: 40 40 60 1.5 TOPSOIL (CL): brown; moist; trace roots. 1.0 LEAN CLAY (CL): brown; moist; medium stiff; 2 5 trace sand. 4.5 5.5 LEAN CLAY (CL): brown to grayish brown; moist; stiff to very stiff; trace to few sand. 10 4.5 \times 15.9 4.5 15 -20 16.7 2.5 25 16.8 115 2.5 4.5 30 | 613 2.5 35 16.4 0 3 40 20 4.5 45 LIMESTONE; light gray; horizontal fractures; 46.0 17 medium hard. 11 50 25 0 55 55.5 ft: trace fossils. 67 60 Bottom of Boring at 60.5 feet 60.5 65 Completion Depth: 60.5 Remarks: Cobbles at surface. Date Boring Started: 4/21/18 Date Boring Completed: 5/2/18 Logged By: IGM / DJZ SAMPLE TYPES WATER LEVELS (ft) **LEGEND** Drilling Contractor: **EPC Engineering and Testing** End of Drilling SPLIT SPOON 3-inch ROCK Shelby Tube MC Moisture Content Q, Unconfined Compression Drilling Method: Dry Dry Unit Weight Q_n Hand Penetrometer UC At Time of Drilling Ground Surface Elevation: Dry UTM 17 N:4550876.8m, E:330232.5m Friction Angle Gs Specific Gravity Coordinates: Datum: NAD83 **RQD** Rock Quality Designation


LOG OF BORING GEO-006


LOG OF BORING GEO-007


LOG OF BORING GEO-008

LOG OF BORING GEO-009

LOG OF BORING GEO-013

LOG OF BORING GEO-014

Sheet 1 of 1

Seneca Wind Project Seneca County, Ohio Client: sPower Location: Project: 35741003.00 Barr Project Number: Rec. **Physical Properties** WATER Elevation, feet STANDARD PENETRATION Graphic Log SIEVE Depth, feet Sample Type & CONTENT **ANALYSIS** TEST DATA MATERIAL DESCRIPTION (ASTM D2488) φ Gs WC γd Q_{u} Q_n ROD SAND PL LL % pcf tsf tsf % N in blows/ft FINES Surface Elev .: 30 40 40 60 TOPSOIL (CL): brown; moist; trace roots. 0.5 ф20 LEAN CLAY (CL): brown; moist; very stiff; trace 5 gravel; trace sand; gray mottling. 10 16.6 15 LEAN CLAY (CL): gray; moist; stiff to very stiff; 15.0 trace gravel; trace sand. 20 14.9 120.5 6.3 25 >>⊕76/11 26.0 POORLY GRADED GRAVEL WITH SAND (GP): gray; moist; medium dense to very dense; heaving 30 ->>\$50/5" OD sand in auger - controlled with drilling mud. 35 13.6 0 0 (**7** 40 >><u></u>81/10 4.5 LEAN CLAY (CL): gray; moist; hard; trace gravel; 40.5 41.5 some sand. 45 >> (84/11.51 SILTY SAND (SM): fine to coarse grained; gray; moist: very dense. 50 >> (50/6" LIMESTONE; gray; massive. 51.5 55 >> 650/5.5 Bottom of Boring at 56.5 feet 56.5 60 65 Completion Depth: 56.5 Remarks: Date Boring Started: 4/11/18 Date Boring Completed: 4/12/18 BAA / BWL Logged By: SAMPLE TYPES WATER LEVELS (ft) **LEGEND Drilling Contractor: EPC Engineering and Testing** At Time of Drilling 41.0 SPLIT SPOON MC Moisture Content Q, Unconfined Compression Drilling Method: HSA / Mud rotary Dry Unit Weight Q_n Hand Penetrometer UC Ground Surface Elevation: Coordinates: UTM 17 N:4544715.0m, E:319963.6m Friction Angle Gs Specific Gravity Datum: NAD83 **RQD** Rock Quality Designation

Telephone: 952-832-2600

Barr Engineering Company 4300 MarketPointe Drive Suite 200 Minneapolis, MN 55435

LOG OF BORING GEO-015

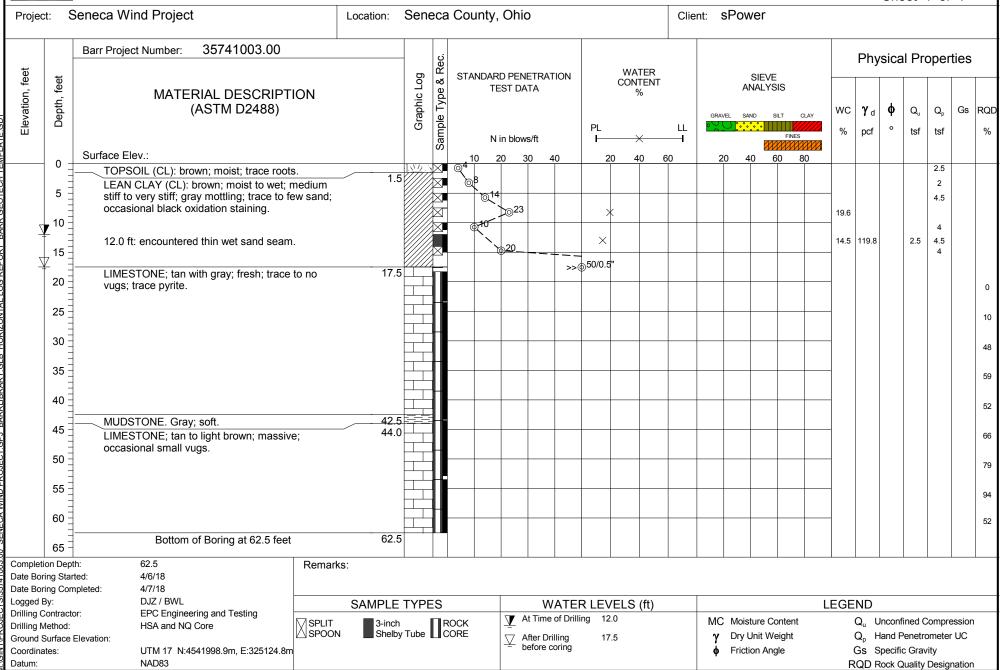
Sheet 1 of 1

Seneca Wind Project Seneca County, Ohio Client: sPower Location: Project: 35741003.00 Barr Project Number: Rec. **Physical Properties** WATER Elevation, feet STANDARD PENETRATION Graphic Log SIEVE Depth, feet Sample Type & CONTENT **ANALYSIS** TEST DATA MATERIAL DESCRIPTION (ASTM D2488) φ Gs WC γd Q_{u} Q_n ROD PL LL % pcf tsf tsf % N in blows/ft FINES Surface Elev .: 30 40 40 60 TOPSOIL (CL): brown; moist; trace roots. 0.2 LEAN CLAY (CL): brown; moist; stiff to very stiff; 4.5 5 gray mottling; with sand; trace to few gravel: 4.5 orange and black oxidation staining. \times 16.8 4.5 10 4.5 4.5 15 -18.1 16.0 LEAN CLAY (CL): gray to dark gray; moist; stiff to very stiff; with sand; few gravel; trace cobbles. 20 3.5 25 16.3 30 2.5 35 38.0 CLAYEY SAND (SC): fine to medium grained; 40 8.9 gray; wet; dense to very dense. 45 45.0 ft: sand heaving up in augers - controlled with >> 650/4" 12.6 48.5 50 Auger refusal on bedrock. Bottom of Boring at 48.5 feet 55 60 65 Completion Depth: 48.5 Remarks: Date Boring Started: 4/20/18 Date Boring Completed: 4/20/18 DJZ Logged By: SAMPLE TYPES WATER LEVELS (ft) **LEGEND** Drilling Contractor: **EPC Engineering and Testing** ▼ End of Drilling SPLIT SPOON MC Moisture Content Q, Unconfined Compression Drilling Method: Dry Unit Weight Q_n Hand Penetrometer UC Ground Surface Elevation: At Time of Drilling 38.0 Coordinates: UTM 17 N:4546020.6m, E:323462.6m Friction Angle Gs Specific Gravity Datum: NAD83 **RQD** Rock Quality Designation

Barr E 4300 M Minnea Teleph

Barr Engineering Company 4300 MarketPointe Drive Suite 200 Minneapolis, MN 55435 Telephone: 952-832-2600

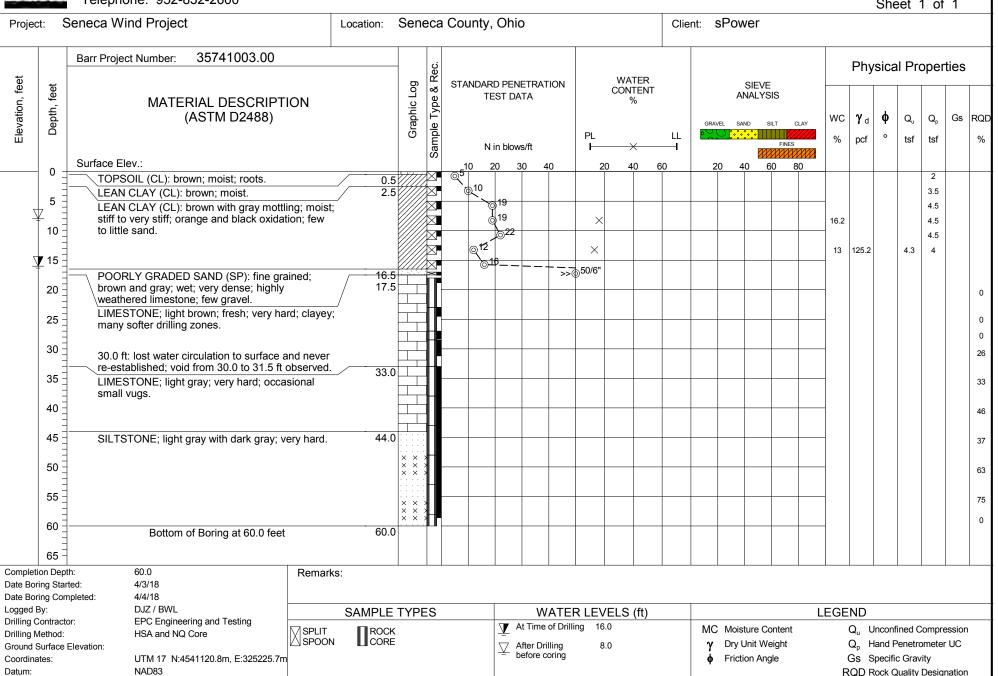
LOG OF BORING GEO-016

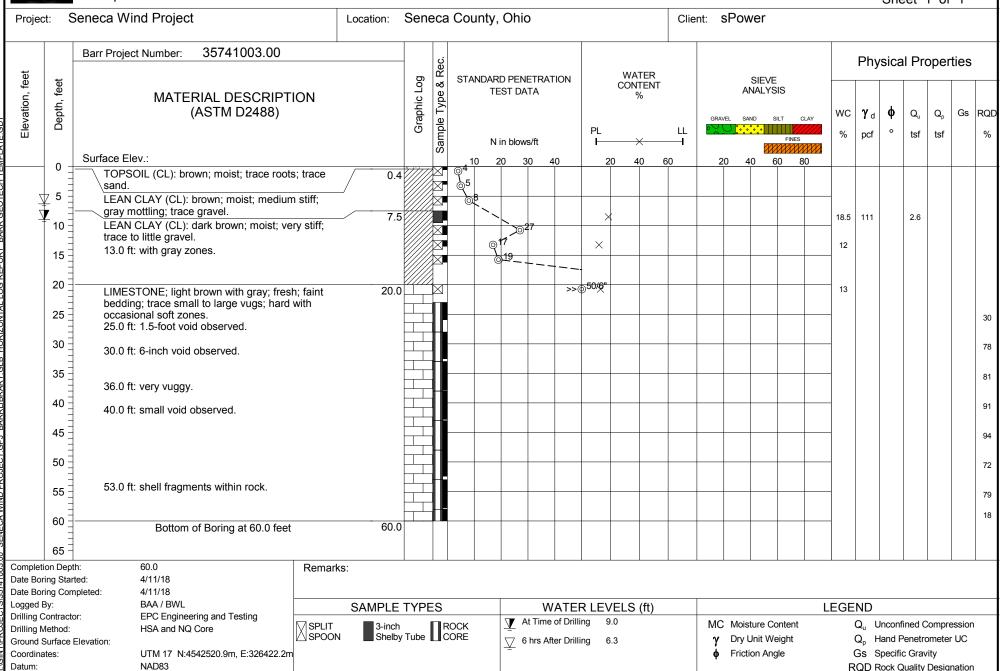

Sheet 1 of 1

Seneca Wind Project Seneca County, Ohio Client: sPower Location: Project: 35741003.00 Barr Project Number: **Physical Properties** Rec. WATER Elevation, feet STANDARD PENETRATION Graphic Log SIEVE Depth, feet Sample Type & CONTENT **ANALYSIS** TEST DATA MATERIAL DESCRIPTION (ASTM D2488) φ Gs WC γd Q_{u} Q_n RQD PL LL % pcf tsf tsf % N in blows/ft FINES Surface Elev .: 30 40 40 60 0 1.5 TOPSOIL (CL): brown; moist; trace roots. 0.2 22 LEAN CLAY (CL): brown; moist; stiff to very stiff; 4.5 5 gray mottling; orange and black oxidation staining; 4.5 with sand; trace to few gravel. _ ე23 4.5 10 15 4.5 4.5 15 4.5 20 17.1 LEAN CLAY (CL): gray to dark gray; moist to wet; 23.0 25 2 medium stiff to very stiff; with sand; few gravel. Ψ_{30} 16.9 115.5 2.7 4 18.3 3.5 35 3 40 <u>ත්12</u> 2 40.0 ft: 2-inch seam of wet fine sand. 45 >> \$0/5" 5.4 45.0 ft: encountered obstruction which refused augers. Switched to rock coring methods, but 50 limited recovery was obtained. It appears that the obstruction was likely a boulder within the clayey glacial till soils. n 55 Recovery in core barrel was limited to few clay pieces and sand and gravel remnants. 60 Bottom of Boring at 60.0 feet 60.0 65 Completion Depth: 60.0 Remarks: Date Boring Started: 4/20/18 Date Boring Completed: 4/30/18 Logged By: DJZ SAMPLE TYPES WATER LEVELS (ft) **LEGEND Drilling Contractor: EPC** Engineering and Testing At Time of Drilling 30.0 SPLIT SPOON 3-inch ROCK Shelby Tube MC Moisture Content Q., Unconfined Compression Drilling Method: HSA and NQ Core Dry Unit Weight Q_n Hand Penetrometer UC Ground Surface Elevation: 100 hrs After Drilling 9.5 before coring Coordinates: UTM 17 N:4545670.1m, E:323772.0m Friction Angle Gs Specific Gravity Datum: NAD83 **RQD** Rock Quality Designation

LOG OF BORING GEO-018

Projec	et: S	Seneca Wind Project	Location	: Se	nec	a Co	unty,	Ohio)			Cli	ent: S	Powe	r							
		Barr Project Number: 35741003.00			9	ي												Phy	sical	Prop	ertie	s
Elevation, feet	Depth, feet	MATERIAL DESCRIPTION (ASTM D2488) Surface Elev.:		20 Loidney	Sample Time 8 Br	Salliple Type o	TE N i	ST DA ⁻	s/ft	PL ├─	WATER CONTEN %	T LL ——•	GRAV	ANA EL SAND J	FINE		WC %	γ _d	φ (Q _u (is R
	Z 0 =	TOPSOIL: brown; moist; roots.		0.5	7//>	1 ⊚ ⁵	10 2	0 30	0 40	2	0 40	60	20	0 40	60	80				2.	75	+
<u> </u>	5 -	LEAN CLAY (CL): brown with gray mottling; moto wet; medium stiff to very stiff; orange oxidation spots and black mottling; trace to little sand.	oist				B (1)	5 10)22_		_{>} 50/0,%	,						17.3			3	.5 4	
	10 =	LIMESTONE; light brown with gray; fresh; massive; trace to no vugs; trace pyrite inclusion		8.5						9												
	15																					
	20 =				#	┢																
	25	LIMESTONE; light gray; trace pyrite inclusions.	: 2	6.0	1												-					
	30	occasional vuggy zones.	,		\pm	i																
	35					▐																
	40					▐						+										
	45				#	▙																
	50				#	┢																
	55				#																	
	60 =	Bottom of Boring at 60.0 feet	- 6	0.0	1							+										
	65																					
te Bor	ion Dept ing Star ing Con	ted: 4/7/18	narks:																			
ogged E	Ву:	DJZ / BWL	SAMP	LE TY	PES	3			WATI	ER LEV	/ELS (ft)					L	EGE	ND				
rilling N		or: EPC Engineering and Testing HSA and NQ Core Elevation: UTM 17 N:4542650.4m, E:325199.4m	.IT ∏ R0					Af	t Time of Dr	illing 3	3.0 3.0		MC γ •		e Content t Weight			Q _u U	nconfine and Per pecific C	etrom		
atum:	atos.	NAD83						$\frac{}{2}$ 12	2 hrs After E at overnight	rilling 2 - measure	2.0 ed in core ba	rrel		TIOUOII	, a igic				ock Qua		signati	on


LOG OF BORING GEO-019

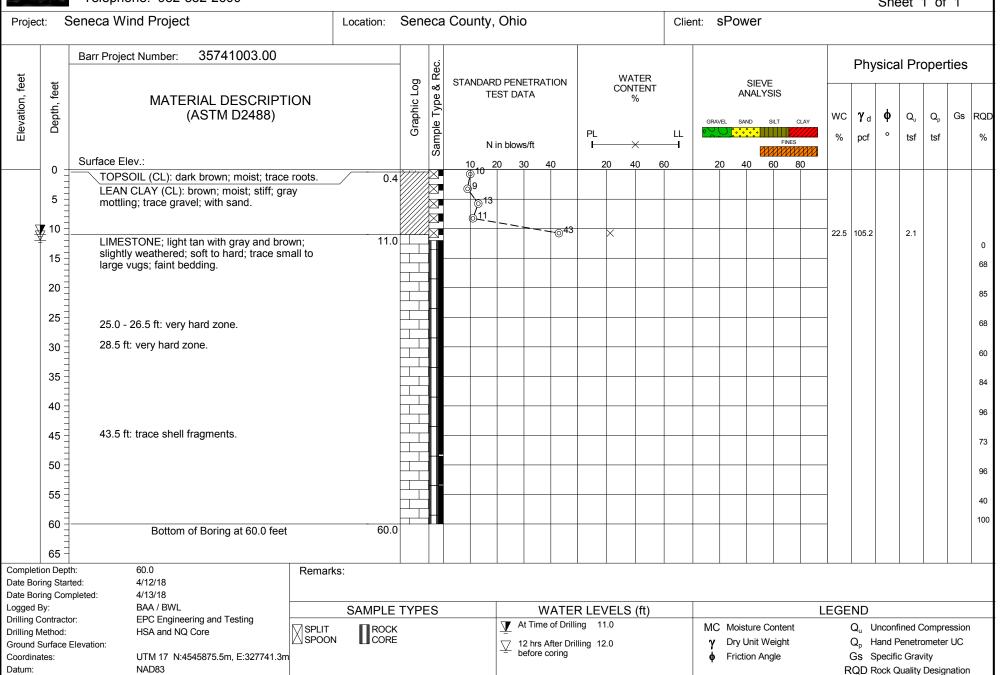

LOG OF BORING GEO-020

<u> </u>		Compace Wind Project		Con		Cauntra	Ohio				Ol:	, aD				31	ieet	1 01	ı	
Projed	et: C	Seneca Wind Project	Location:	Sen	eca	a County,	Onio				Clie	nt: sP	ower							
		Barr Project Number: 35741003.00			ec.										F	hysic	al Pr	oper	ties	
Elevation, feet	Depth, feet	MATERIAL DESCRIPTION (ASTM D2488)		Graphic Log	Sample Type & Rec.	STANDAR TE N	D PENE EST DAT in blows	Ā	PL I	WATER CONTEN %	R IT LL ———I	GRAVEL 0	SIEV ANAL' SAND	YSIS SILT CLAY FINES		γ _d φ	Q _u	Q _p	Gs	RQD %
<u> </u>	5 10 15 20	Surface Elev.: TOPSOIL (CL): brown; moist; trace roots. LEAN CLAY (CL): brown to light brown; moist; with orange and black oxidationstaining; trace sand. LEAN CLAY (CL): brown with gray mottling; moist stiff to very stiff; with orange and black oxidation staining; with gravel and sand. CLAYEY SAND WITH GRAVEL (SC): fine to medium grained; dark brown and gray; wet; loose LEAN CLAY (CL): gray to dark gray; moist to wet; very stiff to hard; few thin sand seams.	14.0	5		510 3 ©13	20 30		× × × × >⊕50/1"	0 40	60	20	40	60 80	17.1 15.3 14.6 12	20.5	2.3	2.5 2 4.5		
	35 - 35 - 40 - 55 - 60 - 60 - 60 - 60 - 60 - 60 - 6	infilled joints. 44.0 - 49.0 ft: few thin shale seams.																		10 0 30 28 32 65 36 45 40
	65 -	Bottom of Boring at 62.0 feet	62.0)																
Complet Date Boil Date Boil Date Boil Dorilling Corolling Coordinate Datum:	ring Sta ring Cor By: Contract Method: Surface	rted: 3/28/18 mpleted: 3/29/18 DJZ tor: EPC Engineering and Testing	SAMPLE 3-inch		ΠR	ROCK	_	WATI Time of Driter Drilling	ER LEV illing 9.			γο	loisture ry Unit \	Content Weight	Q G:	D Unco Hand S Spec D Rock	Penetr	ometei vity	· UC	

LOG OF BORING GEO-021

LOG OF BORING GEO-022

LOG OF BORING GEO-024


Sheet 1 of 1

Seneca Wind Project Seneca County, Ohio Client: sPower Location: Project: 35741003.00 Barr Project Number: **Physical Properties** Sample Type & Rec. WATER Elevation, feet STANDARD PENETRATION Graphic Log SIEVE Depth, feet CONTENT **ANALYSIS** TEST DATA MATERIAL DESCRIPTION (ASTM D2488) φ Gs WC γd Q_{u} Q_n RQD PL LL % pcf tsf tsf % N in blows/ft FINES Surface Elev .: 30 40 40 60 LEAN CLAY (CL): brown; moist; stiff to hard; some sand; little gravel. 5 10 18 15 20 20.9 25 1.5 30 13.9 2 35 1.5 40 17.7 SILTY SAND (SM): fine to medium grained; gray; 40.0 moist; medium dense. 45 1.5 LEAN CLAY (CL): brown; moist; stiff; trace gravel; 45.0 with sand. 47.5 50 Auger refusal on bedrock. Bottom of Boring at 47.5 feet 55 60 65 Completion Depth: 47.5 Remarks: 4/17/18 Date Boring Started: Date Boring Completed: 4/17/18 Logged By: IGM SAMPLE TYPES WATER LEVELS (ft) **LEGEND** Drilling Contractor: **EPC Engineering and Testing** At Time of Drilling before mud rotaryDry SPLIT SPOON MC Moisture Content Q, Unconfined Compression Drilling Method: HSA / Mud rotary Dry Unit Weight Q_n Hand Penetrometer UC Ground Surface Elevation: UTM 17 N:4546802.8m, E:326622.5m Friction Angle Gs Specific Gravity Coordinates: Datum: NAD83 **RQD** Rock Quality Designation

LOG OF BORING GEO-025

Project	t: S	Seneca Wind Project	Location:	Sene	eca	County, Oh	io			Client:	sPov	er						
		Barr Project Number: 35741003.00			ပ္ပ										Phys	sical Pr	operl	ies
Elevation, feet	Depth, feet	MATERIAL DESCRIPTION (ASTM D2488)		Graphic Log	Sample Type & Rec.	STANDARD PE TEST D N in blo	DATA		×	LL GR	AI RAVEL SA	FINE		WC %	γ _d	φ Q _u ° tsf	Q _p	Gs F
	0 =	Surface Elev.: TOPSOIL (CL): brown; moist; trace roots.	0.2	7////		10 20 ©/	30 40	20	40 60		20 4	0 60	80					_
	5	LEAN CLAY (CL): brown; moist; stiff to very stift gray mottling; orange and black oxidation staini with sand; few gravel.	ff;			©16												
	10	with sand, lew graver.				∮20 ⊚18 ⊚16		×						17.2				
	15					Ø ¹⁵		16 X	32 -					17.1				
	20 -	LEAN CLAY (CL): gray to dark gray; moist; stiff with sand; trace gravel.	f; 20.0			©111 \												
	,	POORLY GRADED SAND (SP): fine grained;	26.0			\ o 17												
1	30	gray; moist. LEAN CLAY (CL): gray to dark gray; moist; ven	28.0 y / 31.0	Y////		<u> </u>		×		0	<mark></mark>	54.7		14.5				
¥	35	stiff; with sand. SILTY SAND (SM): fine to medium grained; grawet; medium dense to very dense; weathered					>>	50/5"										
	40	limestone.	40.0		╢╇									-				
	45	LIMESTONE; gray; vuggy; clay infilled fractures hard; horizontal fractures.	s;															
	50							×						3.2	154.3	867.5		
	55				┨┠									-				
	60	57.0 ft: lost circulation and never re-established		H				×						1.9	162.3	874.1		
	3	Bottom of Boring at 60.0 feet	60.0															
Completic	65 -	h: 60.0 Rem	narks:															
Date Borii	ng Star	ted: 4/16/18	iains.															
Date Borin Logged B	-	ppleted: 4/16/18 DJZ	SAMPLE	TYPF	S		\/\	R LEVEL	IS (ft)				1	EGE	ND			
Orilling Co Orilling Mo	ontracto ethod: urface l	or: EPC Engineering and Testing HSA and NQ Core Elevation: UTM 17 N:4546402.9m, E:326953.6m	IT 3-inch				After Drilling before coring At Time of Dril	33.7	LO (III)	M y	Dry l	ure Conten Init Weight on Angle			Q _u Ur Q _p Ha	confined (and Penetr ecific Gra	ometer	
Coordinat Datum:	es.	NAD83								4	, i iiCli	Jii Aligie				ck Quality	•	nation

LOG OF BORING GEO-026

LOG OF BORING GEO-028

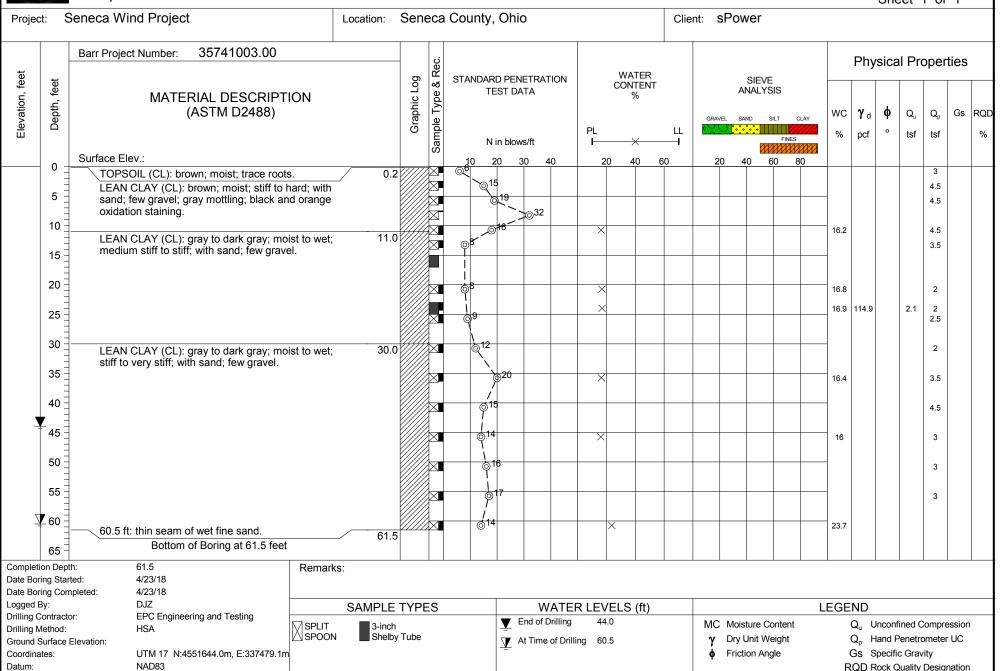
Sheet 1 of 1

Seneca Wind Project Seneca County, Ohio Client: sPower Location: Project: 35741003.00 Barr Project Number: **Physical Properties** Rec. WATER Elevation, feet STANDARD PENETRATION Graphic Log SIEVE Depth, feet Sample Type & CONTENT **ANALYSIS** TEST DATA MATERIAL DESCRIPTION (ASTM D2488) φ Gs RQD WC γd Q_{u} Q_n SAND PL LL % pcf tsf tsf % N in blows/ft FINES Surface Elev .: 40 60 40 60 0 TOPSOIL (CL): brown; moist; trace roots. 0.3 LEAN CLAY (CL): brown; moist; medium stiff; 5 >>(50/5" gray mottling; little gravel. 4.5 7.0 SILTY SAND (SM): fine grained; light gray; moist; very dense; weathered limestone. 10 35 LIMESTONE; brown to tan with gray; fresh; trace small vuos. 15 -9.0 ft: lost water circulation and never 48 re-established. 20 18.5 - 19.5 ft: hard layer. 72 19.5 ft: water is draining out of borehole into 23.5 25 LIMESTONE; tan with gray; fresh; wavy bedding; 85 some massive zones; trace small to medium 30 -71 35 66 40 54 41.0 LIMESTONE; brown with gray; fresh; hard with few soft zones; faint wavy bedding; trace small to 45 84 medium vugs. 50 68 55 71 56 60 Bottom of Boring at 60.0 feet 60.0 65 Completion Depth: 60.0 Remarks: Date Boring Started: 4/12/18 Date Boring Completed: 4/13/18 Logged By: BAA / BWL SAMPLE TYPES WATER LEVELS (ft) **LEGEND Drilling Contractor: EPC Engineering and Testing** At Time of Drilling SPLIT SPOON MC Moisture Content Q, Unconfined Compression ROCK Drilling Method: HSA and NQ Core before coringDry CORE Dry Unit Weight Q_n Hand Penetrometer UC Ground Surface Elevation: UTM 17 N:4545425.5m, E:327878.9m Friction Angle Gs Specific Gravity Coordinates: Datum: NAD83 **RQD** Rock Quality Designation

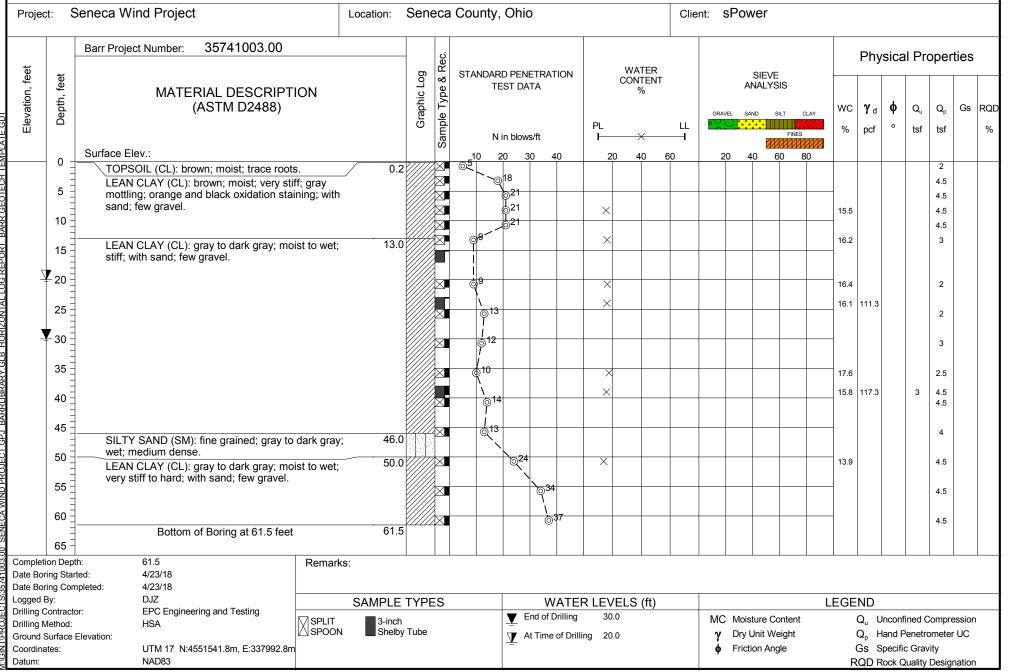
LOG OF BORING GEO-030

Sheet 1 of 1

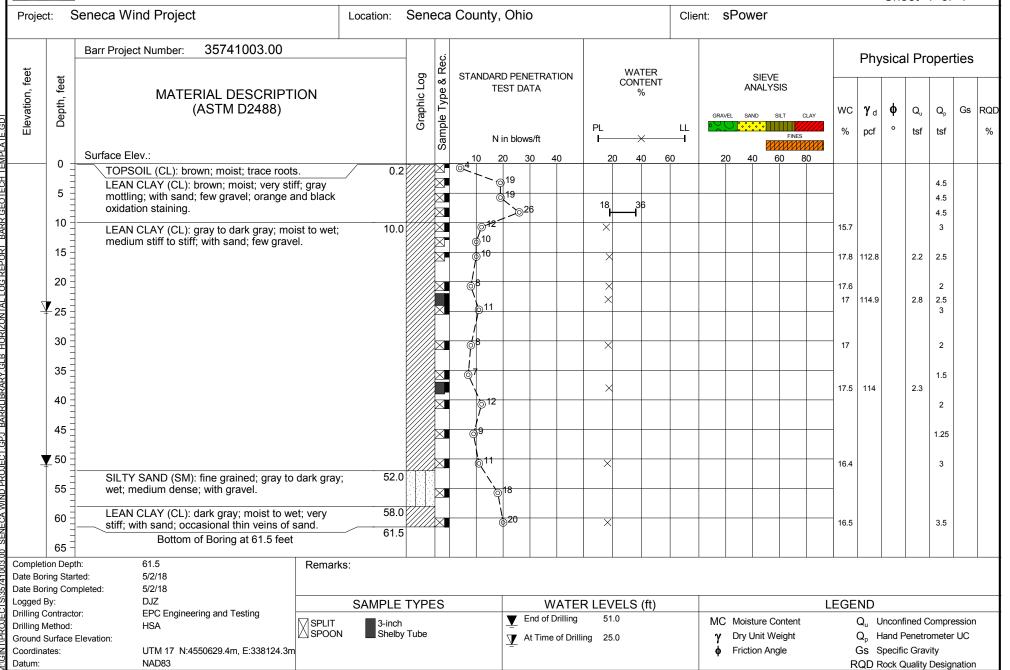
Seneca Wind Project Seneca County, Ohio Client: sPower Location: Project: 35741003.00 Barr Project Number: Rec. **Physical Properties** WATER Elevation, feet STANDARD PENETRATION Graphic Log SIEVE Depth, feet Sample Type & CONTENT **ANALYSIS** TEST DATA MATERIAL DESCRIPTION (ASTM D2488) φ Gs WC γd Q_{u} Q_n ROD PL LL % pcf tsf tsf % N in blows/ft FINES Surface Elev .: 40 40 60 TOPSOIL (CL): brown; moist; trace roots. 0.5 LEAN CLAY (CL): brown; moist; stiff to very stiff; 5 gray mottling; with sand; few gravel; orange and black oxidation staining. 10 10.3 ¥15 7 20 18 CLAYEY SAND (SC): fine grained; gray; wet; 21.0 23.0 medium dense; trace gravel. 25 LEAN CLAY (CL): gray to dark gray; moist to wet; stiff to very stiff; with sand; trace gravel. 30 15.1 97/10 CLAYEY SAND WITH GRAVEL (SC): fine to 31.0 medium grained; gray with brown; wet; medium 35 dense to very dense. 40 39.3 15 CLAYEY SAND (SC): fine to medium grained; 40.0 gray; wet; medium dense. 45 45.0 ft: encountered heaving sand. >>₍₀50/1" Auger refusal on bedrock. 47 5 50 Bottom of Boring at 47.5 feet 55 60 65 Completion Depth: 47.5 Remarks: Encountered heaving sand at 45 ft. Borehole offset 10 ft south and redrilled with a head of mud in augers. Date Boring Started: 4/18/18 Date Boring Completed: 4/18/18 DJZ Logged By: SAMPLE TYPES WATER LEVELS (ft) **LEGEND** Drilling Contractor: **EPC Engineering and Testing** After Drilling SPLIT SPOON Q, Unconfined Compression MC Moisture Content 3-inch Drilling Method: Shelby Tube Dry Unit Weight Q_n Hand Penetrometer UC Ground Surface Elevation: At Time of Drilling 21.0 Coordinates: UTM 17 N:4547428.1m, E:327749.1m Friction Angle Gs Specific Gravity Datum: NAD83 **RQD** Rock Quality Designation

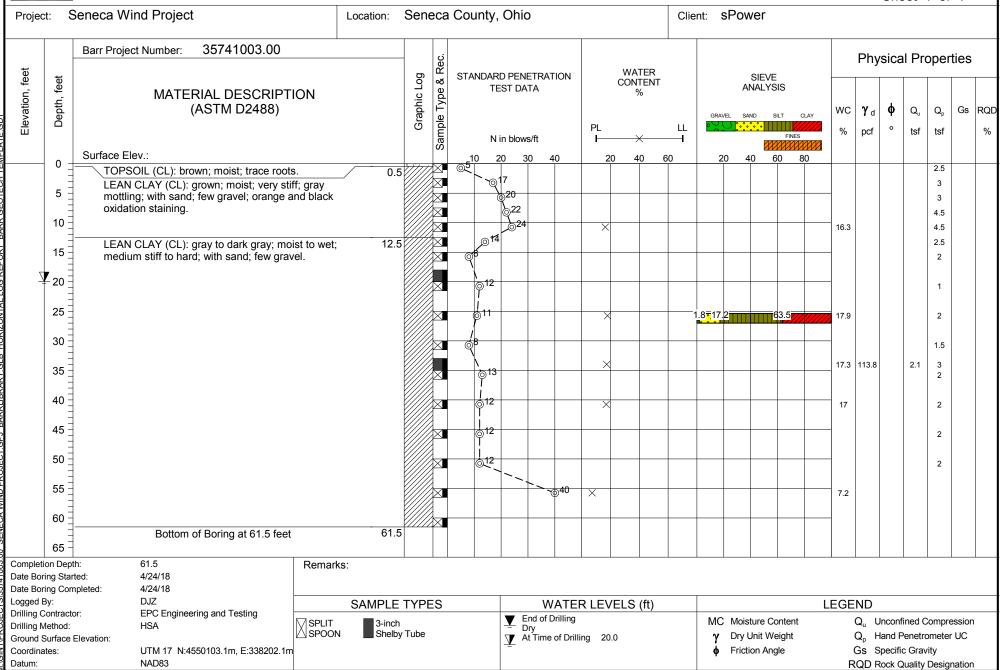

Barr Engineer 4300 MarketP Minneapolis, M Telephone: 9

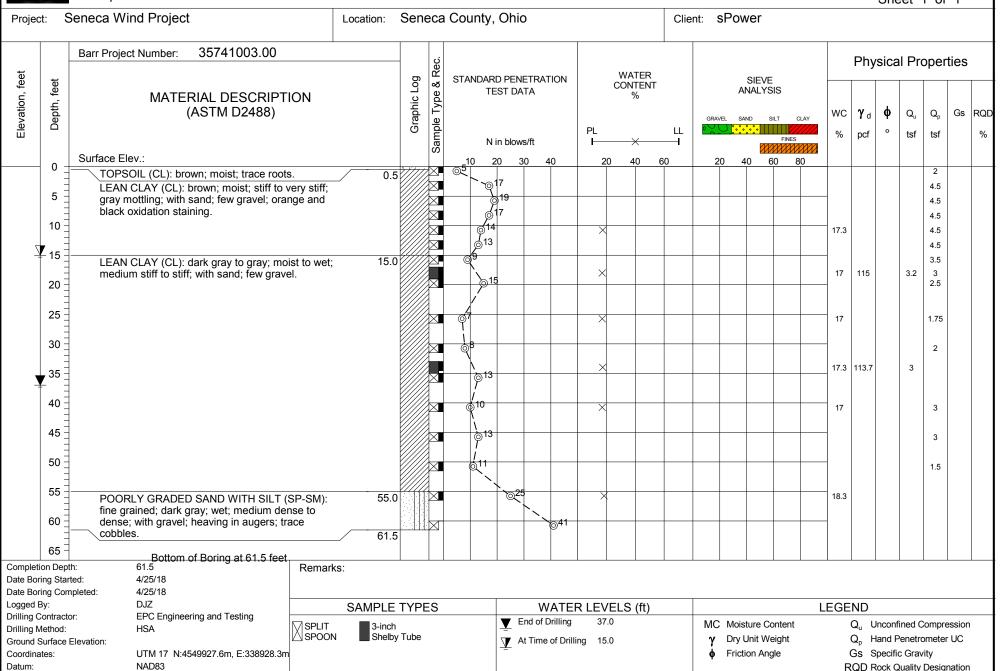
Barr Engineering Company 4300 MarketPointe Drive Suite 200 Minneapolis, MN 55435 Telephone: 952-832-2600

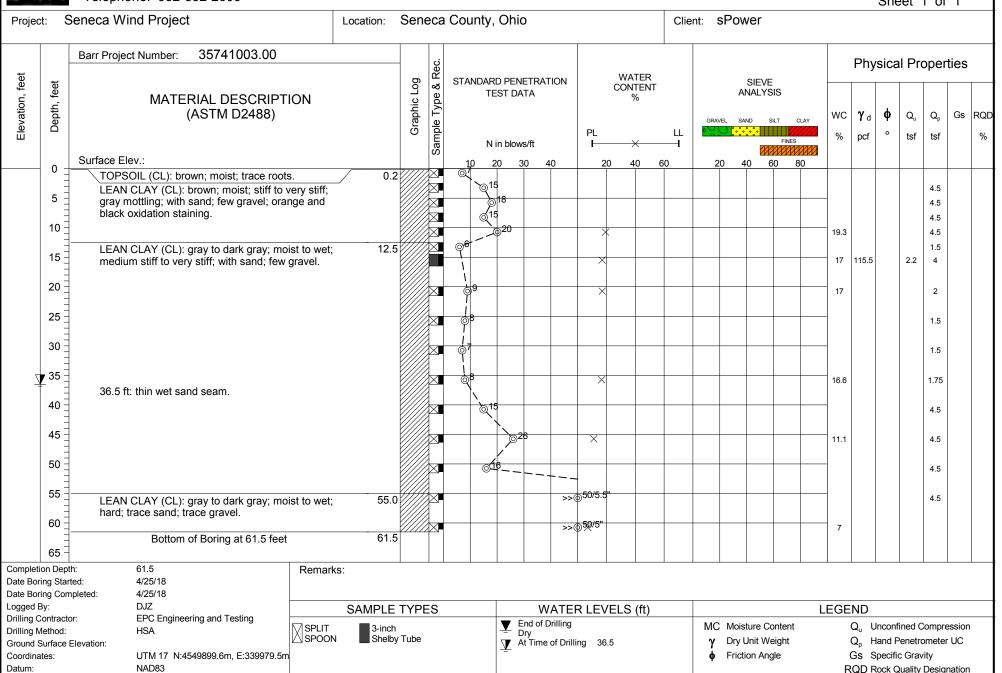

LOG OF BORING GEO-031

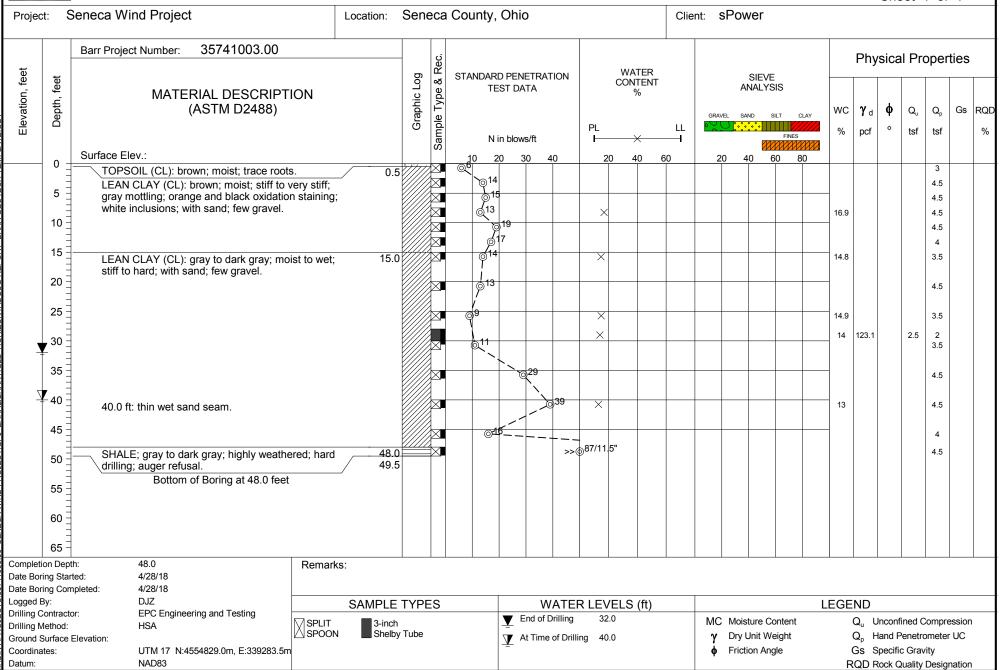
Project: Blevation, feet	Seneca Wind Project Barr Project Number: 35741003.00 MATERIAL DESCRIPTIO (ASTM D2488)		ocation:		eca Co	ounty,	Ohio	1			Clie	ent: S	Powe	r 						
0 5 10 15 20 25		DN		go.	Rec.															
0 5 10 15 20 25	MATERIAL DESCRIPTIC (ASTM D2488)	N		go.	امّا ج												Phys	ical Pi	opert	ies
5 10 15 20 25				Graphic Log	Sample Type & Rec.	TE	D PENE EST DAT		PL I	WATER CONTENT %		GRAVE 0	ANAL		LAY	WC %	γ _d	ф Q _u o tsf	Q _p	Gs F
10 15 20 25	Surface Elev.:			7/7//	V	_10 2	20 30	0 40		20 40	60	20	40	60 8	0					
15 20 25	TOPSOIL (CL): dark brown; moist; trace roughly LEAN CLAY (CL): brown; moist; stiff; little little gravel.		5.0) 10 <u>12</u>														
20 25	LEAN CLAY (CL): dark brown to brown; m	oist;	5.0				⊕20 17		>	<						16.6				
25	POORLY GRADED GRAVEL WITH SAND) (GP):	15.0				18		16 }	29						16.3				
	dark brown; moist; medium dense to very				JI	011_														
30	LIMESTONE; tan to light gray; vuggy; clay	infilled	25.5	000						<u> </u>						23.1				
	joints.								-							2.5	160.6	1280.	9	
35	7																			
40	37.5 ft: trace fossils.				╢╴															
45	5 - 5 - -																			
50	50.0 ft: 1/4-inch coal seam.																			
55	5 - - -																			
60	Bottom of Boring at 60.0 feet		60.0																	
65																				
Completion De Date Boring St	Started: 4/14/18	Remarks:																		
Date Boring Co Logged By:	DJZ		SAMPLE	TYPF	S			WAT	TER LF	VELS (ft)						EGE	ND			
Orilling Contractorilling Methodorical Surfactoring Surfa	od: HSA and NQ Core	SPLIT SPOON	ROCK				▼ At	Time of E		()		γ	Moisture Dry Unit	_		(Q _u Un	confined and Penet ecific Gra	rometer	

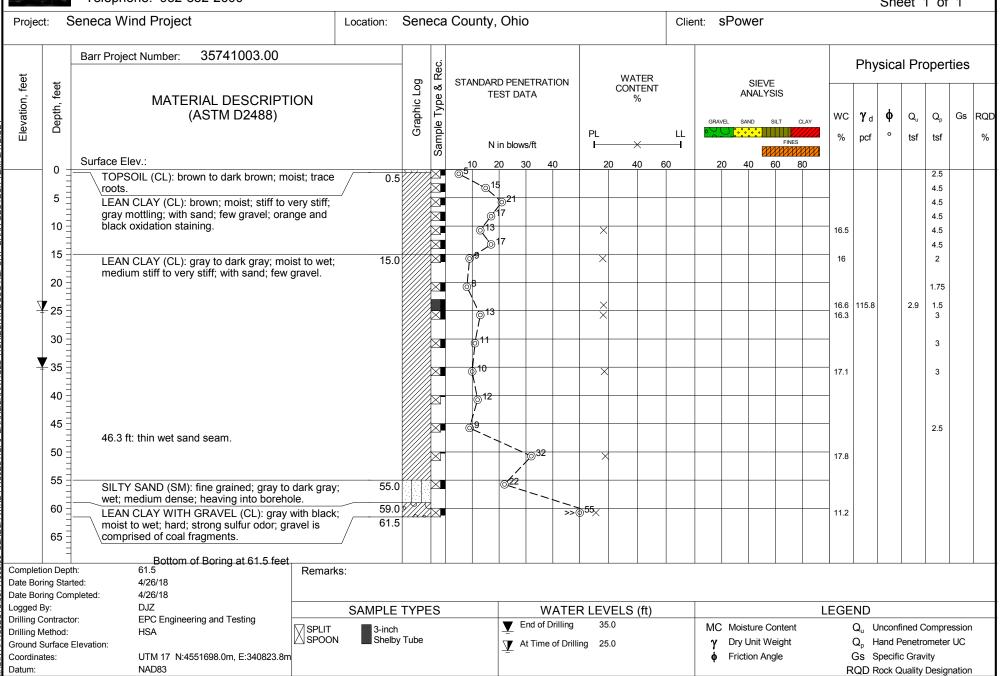

LOG OF BORING GEO-033

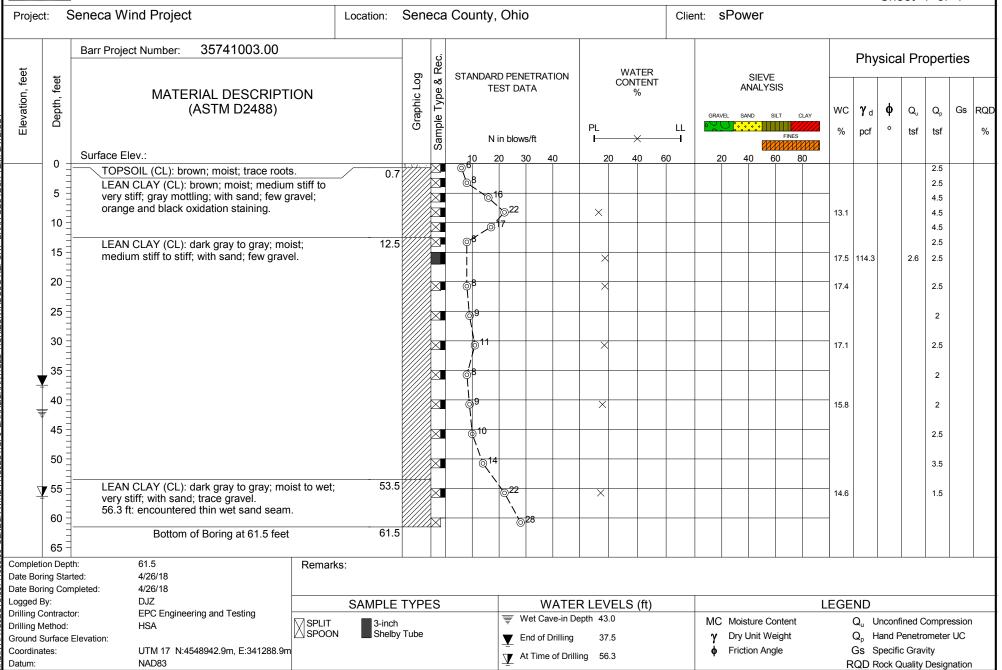

LOG OF BORING GEO-034

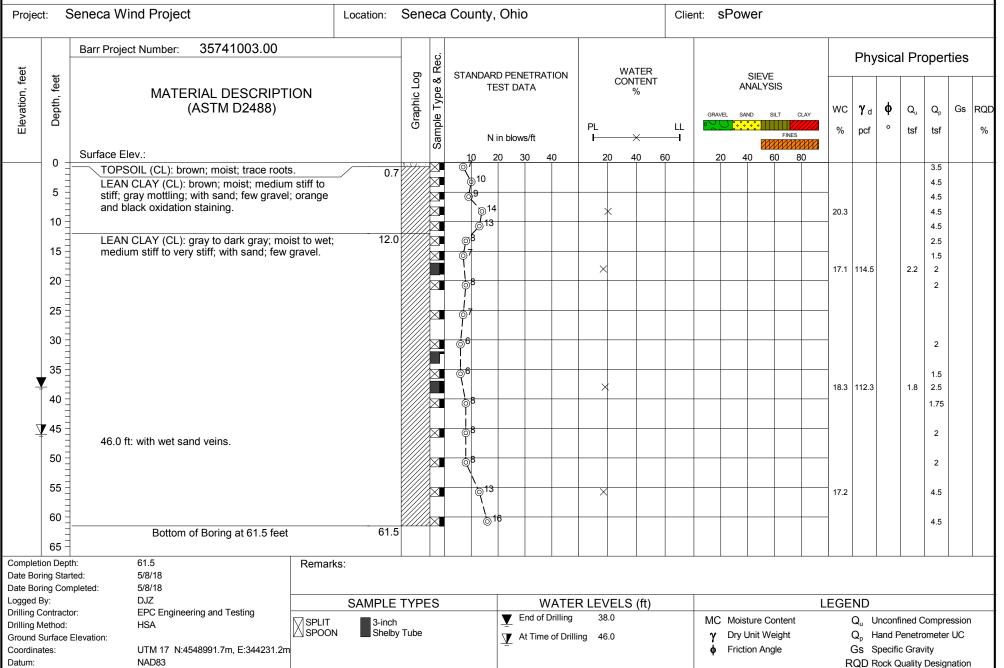

LOG OF BORING GEO-035

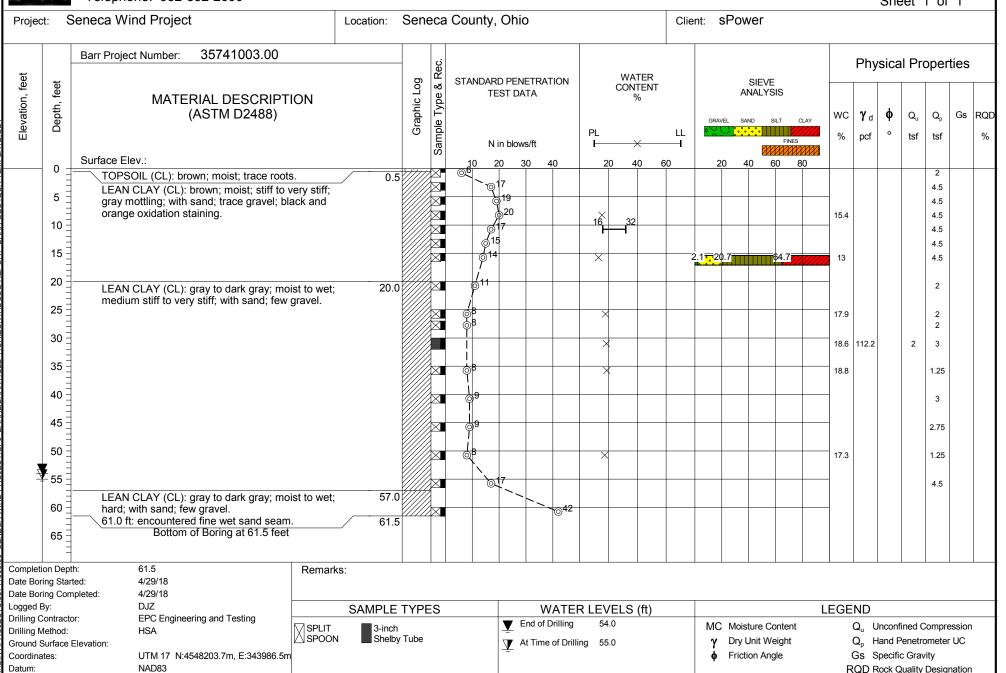

LOG OF BORING GEO-036


LOG OF BORING GEO-037


LOG OF BORING GEO-038


LOG OF BORING GEO-039

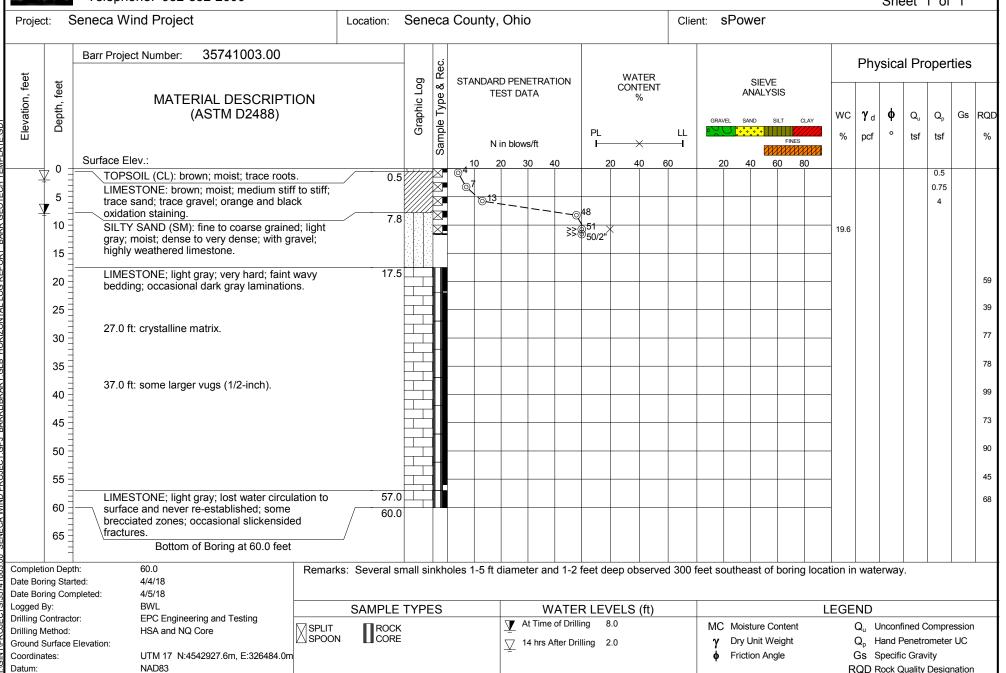

LOG OF BORING GEO-040


LOG OF BORING GEO-041

LOG OF BORING GEO-042

LOG OF BORING GEO-043

Barr Enginee 4300 Market Minneapolis, Telephone: S


Barr Engineering Company 4300 MarketPointe Drive Suite 200 Minneapolis, MN 55435 Telephone: 952-832-2600

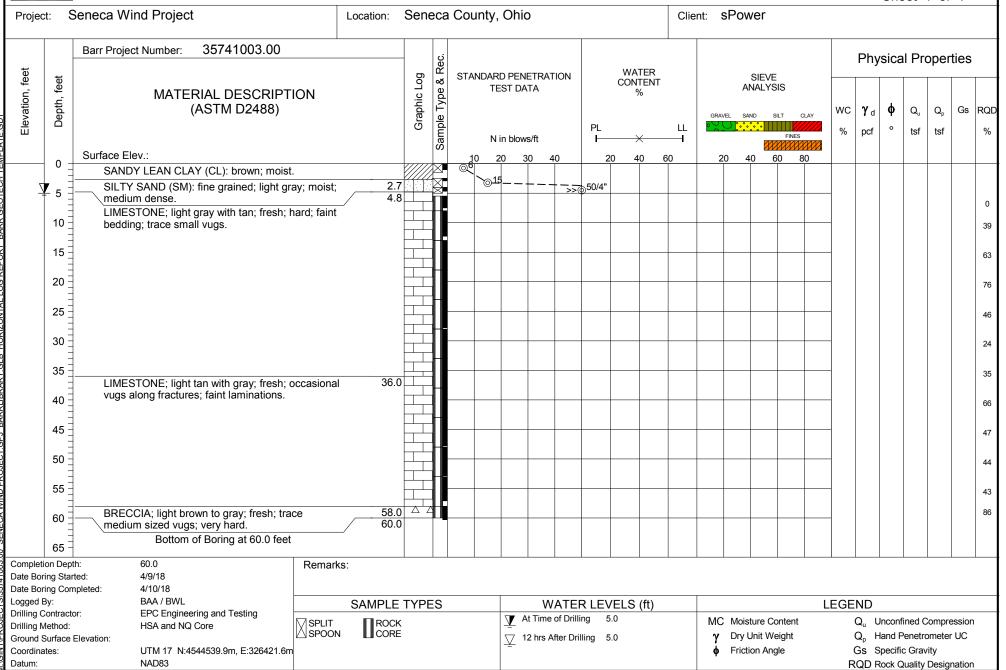
LOG OF BORING GEO-044

Sheet 1 of 1

Seneca Wind Project Seneca County, Ohio Client: sPower Location: Project: 35741003.00 Barr Project Number: **Physical Properties** Rec. WATER Elevation, feet STANDARD PENETRATION Graphic Log SIEVE Depth, feet Sample Type & CONTENT **ANALYSIS** TEST DATA MATERIAL DESCRIPTION (ASTM D2488) φ Gs WC γd Q_{u} Q_n RQD PL LL % pcf tsf tsf % N in blows/ft FINES Surface Elev .: 30 40 40 60 3 TOPSOIL (CL): brown; moist; trace roots. 0.5 LEAN CLAY (CL): brown; moist to wet; stiff to very 4.5 5 stiff; gray mottling; with sand; few gravel; orange 4.5 and black oxidation staining. X 15.1 4.5 10 4.5 \times 15.9 4.5 13.5 ft: 4-inch wet sand seam. 15 -15.0 ft: thin wet fine sand seams. 20 17.7 2.5 20.0 LEAN CLAY (CL): gray to dark gray; moist to wet; stiff; with sand; few gravel. 25 17.7 113.8 2.8 2 30 2 35 18.5 2.5 40 3 45 16.7 LEAN CLAY (CL): gray to dark gray; moist to wet; 45.0 stiff to hard; with sand; few gravel. 50 3.5 50.0 ft: thin wet sand seam. **▼**55 4.5 60 10.5 4.5 Bottom of Boring at 61.5 feet 61.5 65 Completion Depth: 61.5 Remarks: Date Boring Started: 4/29/18 Date Boring Completed: 4/29/18 Logged By: DJZ SAMPLE TYPES WATER LEVELS (ft) **LEGEND Drilling Contractor: EPC Engineering and Testing** ▼ End of Drilling SPLIT SPOON MC Moisture Content Q, Unconfined Compression 3-inch Drilling Method: Shelby Tube Dry Unit Weight Q_n Hand Penetrometer UC Ground Surface Elevation: At Time of Drilling 12.5 UTM 17 N:4548181.0m, E:344107.0m Friction Angle Gs Specific Gravity Coordinates: Datum: NAD83 **RQD** Rock Quality Designation

LOG OF BORING GEO-045

LOG OF BORING GEO-047


	releprione: 952-832-2600					<u> </u>											Sn	eet	1 of	1
Project:	Seneca Wind Project	Location:	Sen	eca C	ounty	, Ohio)				Client:	sPo	wer							
	Barr Project Number: 35741003.00	1		Rec.												Ph	ysica	al Pr	opert	ies
Elevation, feet	MATERIAL DESCRIPTION (ASTM D2488)		Graphic Log	Sample Type & Re	Т	RD PENE EST DA		N PI	CON	ATER ITENT %	GF LL P	RAVEL S	SIEVE ANALYSI:		w %	C γ .		Q _u	Q _p	Gs F
o	Surface Elev.:		102777		10	20 3	0 40		20 4	40 60		20	40 60	80					3	
	TOPSOIL (CL): brown; moist; roots. LEAN CLAY (CL): brown; moist; medium stiff; iron and manganese oxidation; gray mottling; trace sand.	0.5 with 4.5			96 5														4.5 1.5	
10 ¥ 18	10 = CLAYEY SAND (SC): fine to medium grained brown; wet; very loose to loose; orange oxidat few gravel; occasional clay seams.	ion;			4				×						22	.3 93.3	3	1.3	2.5	
	20 =							 >> (50/	4"						13	8				
25	LIMESTONE; light brownish gray; fresh fractu crystalline inclusions; occasional thin wavy bla laminations; occasional small vugs.															.0				
30	LIMESTONE; gray; occasional calcite seams; trace pyrite.	28.0		╂																
35	32.0 - 33.0 ft: large concentration of vugs.																			
40	40LIMESTONE; brown and gray; massive; soft t	0 41.0		╂																
45	hard; occasional thin wavy black laminations. 43.0 - 44.0 ft: lost water circulation to surface. 44.0 - 58.0 ft: limited water circulation to surface.																			
50	49.0 - 54.0 ft: several zones with vugs up to 1			╂																
55	55 =		H	⇈																
	58.0 - 59.0 ft: very vuggy; void observed; lost water circulation to surface and never re-established.	61.0																		
	65 Bottom of Boring at 61.0 feet																			
ompletion D ate Boring S ate Boring (,	marks:																		
gged By:	: DJZ / BWL	SAMPLE	TYPE	ES .					EVELS	(ft)					LEG	END	1			
	thod: HSA and NQ Core rface Elevation:	PLIT 3-inch			K E	\[\sum_{} \] A:	t Time of [fter Drilling	Orilling g	4.5 20.0	. ,	γ	/ Dry	sture Cor Unit Wei	ght		\mathbf{Q}_{u} \mathbf{Q}_{p}	Uncor Hand	Penetro	Compres	
oordinates: atum:	s: UTM 17 N:4542157.5m, E:324459.5m NAD83					<u></u>	0 hrs After	Drilling	15.0		4	, Fric	tion Angl				Specif Rock (nty Design	ation

LOG OF BORING GEO-048

Sheet 1 of 1

Seneca Wind Project Seneca County, Ohio Client: sPower Location: Project: 35741003.00 Barr Project Number: Rec. **Physical Properties** WATER Elevation, feet STANDARD PENETRATION Graphic Log SIEVE Depth, feet Sample Type & CONTENT **ANALYSIS** TEST DATA MATERIAL DESCRIPTION (ASTM D2488) φ Gs WC γd Q_{u} Q_n ROD LL % pcf tsf tsf % N in blows/ft FINES Surface Elev .: 40 40 60 0 1.5 TOPSOIL (CL): brown; moist; roots. 1.0 LEAN CLAY (CL): brown with gray mottling; moist; 4 5 soft to medium stiff; few sand; orange oxidation; 6.0 black oxidation staining. CLAYEY SAND (SC): fine grained; dark brown 10 with gray; wet; medium dense; grades to clay in a 12.0 few zones. ¥ 15 POORLY GRADED SAND WITH CLAY (SP-SC): fine to coarse grained; dark brown to gray; moist 20 to wet; loose to dense; few to little gravel; -, _ _ 50/0.5" occasional clay seams. 22.0 LIMESTONE; light tan to brown with gray; 25 38 occasional small vugs; faint black laminations; hard; no water circulation to surface. 30 -55 35 52 35.0 ft: few 1 to 2-inch voids observed. 36.5 - 37.5 ft: very vuggy. 40 10 LIMESTONE; gray with tan; fresh; massive; 43.0 45 0 calcite filled vugs; highly vuggy; faint laminations. 50 11 55 44 57.5 ft: 6-inch void observed. 60 Bottom of Boring at 60.0 feet 60.0 65 Completion Depth: 60.0 Remarks: Date Boring Started: 4/7/18 Date Boring Completed: 4/8/18 DJZ / BWL Logged By: SAMPLE TYPES WATER LEVELS (ft) **LEGEND** Drilling Contractor: **EPC Engineering and Testing** At Time of Drilling 3-inch Shelby Tube ROCK CORE MC Moisture Content Q, Unconfined Compression **⊠** SPLIT Drilling Method: HSA and NQ Core SPOON Dry Unit Weight Q_n Hand Penetrometer UC Ground Surface Elevation: After Drilling 15.5 UTM 17 N:4542147.8m, E:324163.3m Friction Angle Gs Specific Gravity Coordinates: 12 hrs After Drilling 17.0 Datum: NAD83 **RQD** Rock Quality Designation

LOG OF BORING GEO-049

Telephone: 952-832-2600

Barr Engineering Company 4300 MarketPointe Drive Suite 200 Minneapolis, MN 55435

LOG OF BORING GEO-050

Sheet 1 of 1

Seneca Wind Project Seneca County, Ohio Client: sPower Location: Project: 35741003.00 Barr Project Number: **Physical Properties** Rec. WATER Elevation, feet STANDARD PENETRATION Graphic Log SIEVE Depth, feet Sample Type & CONTENT **ANALYSIS** TEST DATA MATERIAL DESCRIPTION (ASTM D2488) φ Gs WC γd Q_{u} Q_n ROD PL LL % pcf tsf tsf % N in blows/ft FINES Surface Elev .: 30 40 40 60 0 4.5 TOPSOIL (CL): brown; moist; trace roots. 0.5 LEAN CLAY (CL): brown; moist to wet; stiff to very 4.5 5 stiff; trace to few sand; with gray mottling; with 4.5 trace gravel. 4.5 3.0 ft: crystalline gravel. 10 17.9 115.6 2.7 ->, 50/1[∞] 10.0 ft: color transitions to gray. 11.5 LIMESTONE: gray with gray: intensely fractured: 15 -17 horizontal bedding; occasional brecciated zones. LIMESTONE; brown with gray; very hard; some 18 0 20 0 faint bedding; occasional faint wavy laminations. 25 35 30 57 35 50 36.5 LIMESTONE; light brown; vuggy; with siltstone 40 seams. 76 SILTSTONE; light gray with tan and brown; 43.0 45 63 occasional vuggy zones; very hard; occasional brecciated zones. × × × × 50 69 55 67 66 60 Bottom of Boring at 60.0 feet 60.0 65 Completion Depth: 60.0 Remarks: Date Boring Started: 4/5/18 Date Boring Completed: 4/6/18 DJZ / BWL Logged By: SAMPLE TYPES WATER LEVELS (ft) **LEGEND Drilling Contractor: EPC Engineering and Testing** At Time of Drilling SPLIT SPOON MC Moisture Content Q, Unconfined Compression ROCK Drilling Method: HSA and NQ Core CORE Dry Unit Weight Q_n Hand Penetrometer UC After Drilling Ground Surface Elevation: 8.0 Coordinates: UTM 17 N:4544111.4m, E:325884.5m Friction Angle Gs Specific Gravity Datum: NAD83 **RQD** Rock Quality Designation

LOG OF BORING GEO-051

Project	: S	Seneca Wind Project	Location:	Sen	eca	County, Ohio			Cli	ient: SI	Power	•						
		Barr Project Number: 35741003.00			<u>ပ</u> ွဲ									Phy	sical P	rope	rties	
Elevation, feet	Depth, feet	MATERIAL DESCRIPTION (ASTM D2488)		Graphic Log	Sample Type & Rec.	STANDARD PENETRATEST DATA N in blows/ft		WAT CONT % PL I———————————————————————————————————	ΓΕΝΤ 6 LL ← I	GRAVEL 0) <mark></mark>	YSIS SILT CLAY FINES	WC		φ Q, sts	Q _p	Gs	
	0 🚽	Surface Elev.: TOPSOIL (CL): brown; moist; trace roots.	0.9	- 77777		10 20 30 ⊚P	40	20 40	0 60	20	40	60 80				4.5		+
¥	10 -	LEAN CLAY (CL): brown; moist to wet; stiff to v stiff; gray mottling; orange and black oxidation staining; few to little sand; trace to few gravel.	very			©16		X					16.3			4.5 4.5 4.5 4.5		
#	15	CLAYEY SAND (SC): fine to coarse grained; brown; wet; loose to dense; few gravel.	12.0			9	⊚44											
	20 -	20.0 ft: increase in gravel and stone fragments.				\$20	+	× 70/7"					14.7					
	25	LIMESTONE; light gray and brown; very hard; vuggy.	24.0				>>(j, 0.7										
	35	LIMESTONE; gray to dark gray with brown; ver hard.	ry 30.3	3														
	40	39.0 - 45.0 ft: frequent brecciated zones.																
	45	45.0 ft: 2-inch void observed with tooling drop - lost water circulation to surface.	· no		╢													
	50 =	50.7 - 54.0 ft: light gray.																
	55	LIMESTONE; light gray to light brown; massive vuggy; faint laminations.	e; 54.0															
	60 =				┧╟													
	65	Bottom of Boring at 62.0 feet	62.0)														
ompletio ate Borir ate Borir	ng Starl	ted: 4/5/18	narks:															
ogged By	y:	DJZ / BWL	SAMPLE	TYPI	ES	\	VATE	R LEVELS	(ft)				LEGE	ND				_
rilling Co rilling Me fround Su coordinate	ethod: urface l	or: EPC Engineering and Testing HSA and NQ Core Elevation: UTM 17 N:4543626.0m, E:325869.2m	LIT ROCK	ζ Ξ		Ţ At Tim ☐ After [e of Drilli	ng 12.5 8.5		γ	Moisture Dry Unit Friction	•		Q _p F	Inconfined land Pene Specific Gr	tromete		n

Barr Er 4300 M Minnea Telepho

Barr Engineering Company 4300 MarketPointe Drive Suite 200 Minneapolis, MN 55435 Telephone: 952-832-2600

LOG OF BORING GEO-052

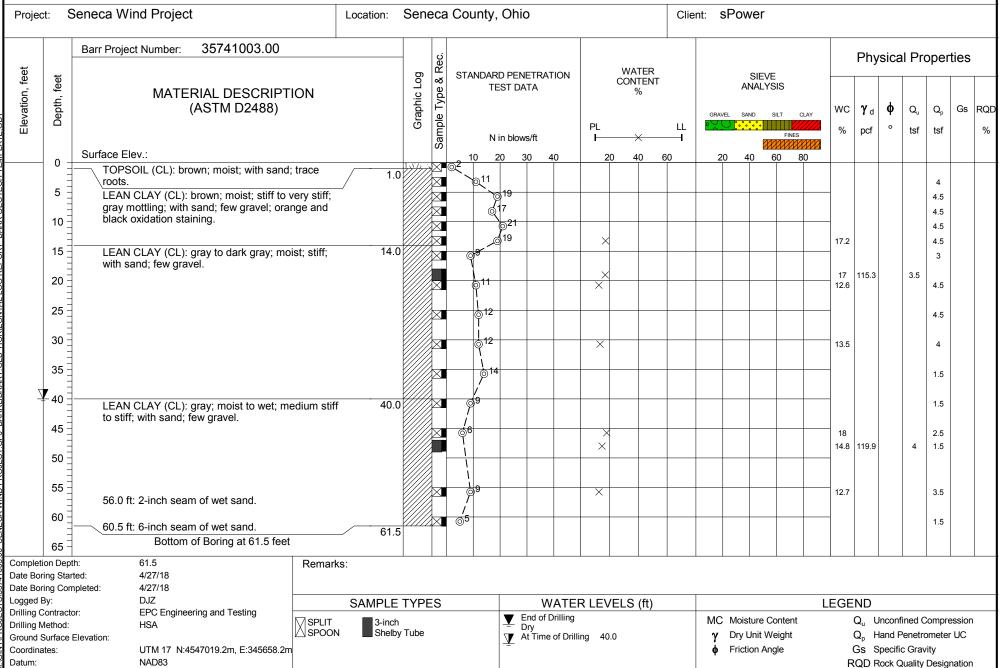
Sheet 1 of 1

Seneca Wind Project Seneca County, Ohio Client: sPower Location: Project: 35741003.00 Barr Project Number: **Physical Properties** Sample Type & Rec. WATER Elevation, feet STANDARD PENETRATION Graphic Log SIEVE Depth, feet CONTENT **ANALYSIS** TEST DATA MATERIAL DESCRIPTION (ASTM D2488) φ Gs WC γd Q_{u} Q_n RQD PL LL % pcf tsf tsf % N in blows/ft FINES Surface Elev .: 40 40 60 2 TOPSOIL (CL): brown; moist; trace roots. 0.7 LEAN CLAY (CL): brown; moist; stiff to very stiff; 2 5 gray mottling; with sand; few gravel; orange and 4.5 black oxidation staining. 20 4.5 10 LEAN CLAY (CL): gray to dark gray; moist; medium stiff to stiff; with sand; few gravel. 14.4 4.5 10.0 | | n 4.5 15 -20 1.5 114 1.5 17.3 2.3 1.5 25 30 1.5 35 19.3 1.5 40 2 45 2 50 2.5 55 19 1.5 60 Bottom of Boring at 61.5 feet 61.5 65 Completion Depth: 61.5 Remarks: 5/8/18 Date Boring Started: Date Boring Completed: 5/8/18 Logged By: DJZ SAMPLE TYPES WATER LEVELS (ft) **LEGEND** Drilling Contractor: **EPC Engineering and Testing** ▼ End of Drilling SPLIT SPOON MC Moisture Content Q, Unconfined Compression 3-inch Drilling Method: Dry Shelby Tube Dry Unit Weight Q_n Hand Penetrometer UC At Time of Drilling Ground Surface Elevation: Dry UTM 17 N:4548866.6m, E:343529.1m Friction Angle Gs Specific Gravity Coordinates: Datum: NAD83 **RQD** Rock Quality Designation

LOG OF BORING GEO-053

-	Telephone: 952-852-2600	1	0		0	Ol-1-											Sheet	1 0	1	
Project: S	Seneca Wind Project	Location:	Sene	eca	County,	Onio				Clier	nt: SF	ower								
	Barr Project Number: 35741003.00	1		Rec.												Phys	sical F	rope	rties	-
Elevation, feet Depth, feet	MATERIAL DESCRIPTIC (ASTM D2488)	DN	Graphic Log	Sample Type & R		D PENET ST DATA n blows/fl			WATER CONTENT %	LL —I	GRAVEL	SIE ANAL SAND	YSIS SILT C	CLAY	WC %	γ _d	ф са ° ts		Gs	F
0 -	Surface Elev.:		1.17.	0)	10 2	0 30	40	20	40 6	0	20	40	60 8	30						
5 =	TOPSOIL (CL): dark brown; moist; trace ro LEAN CLAY (CL): brown; moist. LEAN CLAY (CL): dark brown; moist; stiff	2.5			11															
10 =	few thin silt partings; gray mottling.	to nara,				<u></u> ⊚25_		×							17	114.6	4.	9		
15	11.0 ft: color transitions to gray. SILTY SAND (SM): fine grained; gray; moi					27		51 ×							4.9					
20	medium dense; occasional brown zones; v gravel.	vith			→ pfs															
¥ 25	POORLY GRADED SAND (SP): medium t	to 25.0			√ ⊚8										18.5					
30 =	coarse grained; gray and black; wet; loose medium dense; few to some gravel.	to 20.0			\ \ ⊚13															
35 =	LEAN CLAY (CL): gray; moist to wet; stiff stiff; trace sand; trace gravel.	to very 35.0			j ⊚12			X							14	122.3	3.	2		
40					10															
45					\	*//		×							14.4					
50 =	POORLY GRADED SAND (SP): fine grain		Y////				\ 938													
55 =	gray; moist to wet; dense; trace gravel; traccobbles. CLAYEY GRAVEL (GC): gray; wet; dense	55.0	Yalxa,			(/ 34	×							9.5					
60	sand. WEATHERED LIMESTONE: gray; wet; de	/ 58.0					>>(60												
65 -	Bottom of Boring at 61.5 feet																			\perp
Completion Depo Date Boring Star	rted: 4/10/18	Remarks:																		
Date Boring Con ogged By:	mpleted: 4/10/18 BAA	SAMPLE	TYPE	-S			WATE	R LEVEI	LS (ft)					1	EGE	ND				_
Orilling Contractorilling Method: Ground Surface Coordinates:	HSA and NQ Core	SPLIT 3-inch SPOON Shelby		_0_		At T	me of Drill	ing 25.0 17.5	LO (II <i>)</i>		γ	Moisture Dry Unit Friction A	-	L		Q _u Ui Q _p Ha	nconfined and Pene	etromete		
Datum:	NAD83										Ψ '	. IOUOIT F	" Igic				ock Qual	•	gnatio	n

Telephone: 952-832-2600


Barr Engineering Company 4300 MarketPointe Drive Suite 200 Minneapolis, MN 55435

LOG OF BORING GEO-056

Sheet 1 of 1

Seneca Wind Project Seneca County, Ohio Client: sPower Location: Project: 35741003.00 Barr Project Number: **Physical Properties** Rec. WATER Elevation, feet STANDARD PENETRATION Graphic Log SIEVE Depth, feet Sample Type & CONTENT **ANALYSIS** TEST DATA MATERIAL DESCRIPTION (ASTM D2488) φ Gs WC γd Q_{u} Q_n ROD PL LL % pcf tsf tsf % N in blows/ft FINES Surface Elev .: 30 40 40 60 3 TOPSOIL (CL): brown; moist; trace roots. 0.5 ⊚13 LEAN CLAY (CL): brown; moist; stiff to very stiff; 4.5 5 gray mottling; with sand; few gravel; orange and 4.5 black oxidation staining. \times 16.6 4.5 10 LEAN CLAY (CL): gray to dark gray; moist to wet; 10.0 medium stiff to stiff; with sand; few gravel. 4.5 15 -12.0 - 14.0 ft: with frequent fine sand seams. 16.5 3 17.1 115.4 1.5 2.9 1.5 20 25 17.4 30 0.5 **V** 35 2 35.5 ft. thin wet sand seam 40 0.5 16.7 116.9 1.7 1.5 45 16.2 45.0 ft: heaving sand and gravel in augers. 50 4.5 LEAN CLAY (CL): gray to dark gray; moist to wet; 50.0 stiff to very stiff; with sand; few gravel. 55 4.5 60 5.7 • • • 30.7 70.3 Bottom of Boring at 61.5 feet 61.5 65 Completion Depth: 61.5 Remarks: Date Boring Started: 4/25/18 Date Boring Completed: 4/25/18 DJZ Logged By: SAMPLE TYPES WATER LEVELS (ft) **LEGEND Drilling Contractor: EPC Engineering and Testing** ▼ End of Drilling SPLIT SPOON MC Moisture Content Q, Unconfined Compression 3-inch Drilling Method: Shelby Tube Dry Unit Weight Q_n Hand Penetrometer UC Ground Surface Elevation: At Time of Drilling 35.5 Coordinates: UTM 17 N:4550364.6m, E:339674.3m Friction Angle Gs Specific Gravity Datum: NAD83 **RQD** Rock Quality Designation

LOG OF BORING GEO-059

LOG OF BORING GEO-060

Dunin	-4.	Conces Wind Project	1 4	Con		o Count	, Oh	io					Ol: -	nt: S	Dow	or				2116	eet	1 01		-
Proje	CI:	Seneca Wind Project	Location:	Sen	eca	a County	/, On	110					Cile	nt: S	POW	eı								
		Barr Project Number: 35741003.00			ec.														Phy	/sica	ıl Pro	oper	ties	
Elevation, feet	Depth, feet	MATERIAL DESCRIPTION (ASTM D2488) Surface Elev.:		Graphic Log	Sample Type & Rec.		TEST D	OATA ows/ft		PL I—	CON	ATER ITENT %	LL ——I	GRAVE	AN EL SAN	• <u>••</u>	LT CLAY FINES	wc %	γ _d pcf	ф	Q _u	Q _p	Gs	RQD
	0	LEAN CLAY (CL): brown; moist; few to little sand.		////		10 ⊚ ⁴	20	30 4	10		20 4	40 6	0	20) 40) 6	0 80					2.5		
-	5	LEAN CLAY (CL): brown with gray mottling; moist to wet; medium stiff to hard; some sand; trace gravel. 7.5 ft: fractured rock fragments.	3.0			5	4		· _>>>(₎₎ 52												1		
i -	15 20	with slight dissolution.	5																					52 55 29
	25	23.5 - 24.5 ft: several vuggy zones.																						43
	35 40	zones; rough joints; trace vugs.	33.0																					45 83
Elev	45 50 55	51.0 - 55.0 ft: some small vuggy zones.																						68 65 59
	60	58.0 - 61.0 ft: observed several 2 to 3-inch voids. Bottom of Boring at 61.0 feet	61.0		#																			25
Comple Date Bo	oring St	epth: 61.0 Remark	s:																					
Logged Drilling Drilling	By: Contrac Method Surfactates:	DJZ / BWL ctor: EPC Engineering and Testing	SAMPLE ROCK CORE		ES			At Time After Dr	of Drilli	ng :	VELS 3.0 4.0	(ft)		MC γ φ		ure Co nit We on Ang	ntent			Specific	Penetro c Grav	meter ity	· UC	

Telephone: 952-832-2600

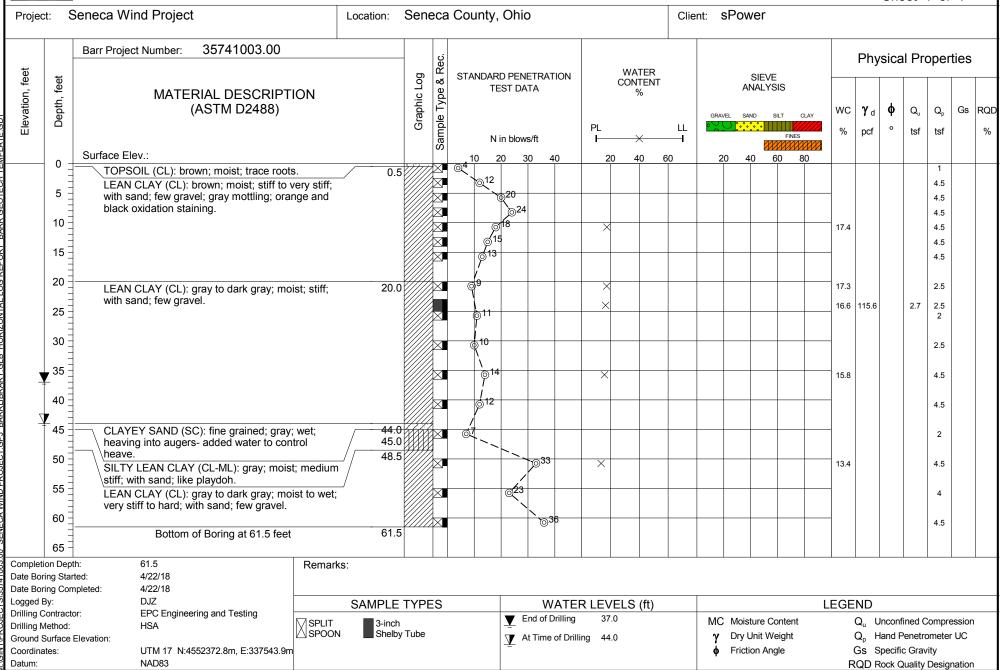
Barr Engineering Company 4300 MarketPointe Drive Suite 200 Minneapolis, MN 55435

LOG OF BORING GEO-061

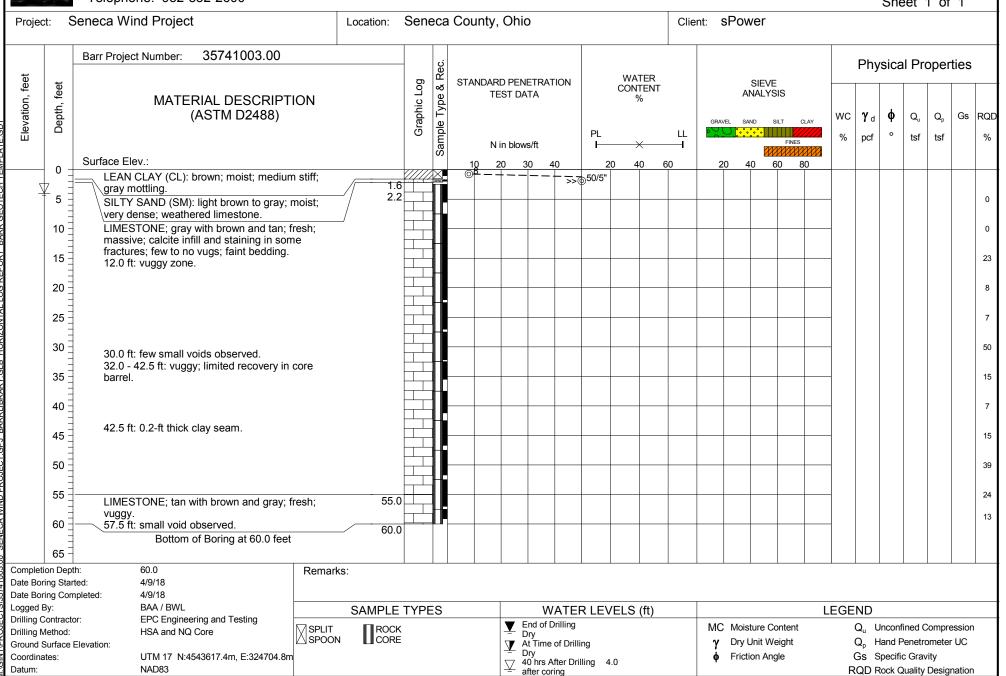
Sheet 1 of 1

Seneca Wind Project Seneca County, Ohio Client: sPower Location: Project: 35741003.00 Barr Project Number: **Physical Properties** Sample Type & Rec. WATER Elevation, feet STANDARD PENETRATION Graphic Log SIEVE Depth, feet CONTENT **ANALYSIS** TEST DATA MATERIAL DESCRIPTION (ASTM D2488) φ Gs WC γd Q_{u} Q_n ROD PL LL % pcf tsf tsf % N in blows/ft FINES Surface Elev .: 30 40 40 60 2 TOPSOIL (CL): dark brown; moist; trace roots. 0.5 LEAN CLAY (CL): brown; moist; stiff to very stiff; 4.5 5 gray mottling; with sand; few gravel; orange and 4.5 black oxidation staining. 4.5 10 15.9 4.5 4.5 15 -LEAN CLAY (CL): gray to dark gray; moist; stiff to 17.5 20 very stiff; with sand; few gravel. 14.8 25 P ⊚13 30 14.1 35 4.5 40 2 40.0 ft: few fine sand seams. 45 12.4 4.5 50 >> \$50/2" Auger refusal on bedrock. 51.5 Bottom of Boring at 51.5 feet 55 60 65 Completion Depth: 51.5 Remarks: Date Boring Started: 4/21/18 Date Boring Completed: 4/21/18 Logged By: DJZ SAMPLE TYPES WATER LEVELS (ft) **LEGEND** Drilling Contractor: **EPC Engineering and Testing** ▼ End of Drilling SPLIT SPOON MC Moisture Content Q, Unconfined Compression Drilling Method: Dry Dry Unit Weight Q_n Hand Penetrometer UC At Time of Drilling Ground Surface Elevation: Dry UTM 17 N:4553223.6m, E:336017.9m Friction Angle Gs Specific Gravity Coordinates: Datum: NAD83 **RQD** Rock Quality Designation

Telephone: 952-832-2600


Barr Engineering Company 4300 MarketPointe Drive Suite 200 Minneapolis, MN 55435

LOG OF BORING GEO-062


Sheet 1 of 1

Seneca Wind Project Seneca County, Ohio Client: sPower Location: Project: 35741003.00 Barr Project Number: **Physical Properties** Rec. WATER Elevation, feet STANDARD PENETRATION Graphic Log SIEVE Depth, feet Sample Type & CONTENT **ANALYSIS** TEST DATA MATERIAL DESCRIPTION (ASTM D2488) φ Gs WC γd Q_{u} Q_n RQD SAND PL LL % pcf tsf tsf % N in blows/ft FINES Surface Elev .: 40 40 60 TOPSOIL (CL): brown; moist; trace roots. 0.5 20 LEAN CLAY (CL): brown; moist; stiff to very stiff; 4.5 5 with sand; gray mottling; few gravel; orange and 4.5 black oxidation staining. X 15 4.5 10 15.2 4.5 4.5 15 4.5 20 4.5 22.5 LEAN CLAY (CL): gray to dark gray; moist to wet; 25 stiff to very stiff; with sand; few gravel. 2 30 16.8 2 35 3 **¥** 40 45 14.6 50 4.5 LEAN CLAY (CL): gray to dark gray; moist to wet; 50.0 very stiff: with sand: few gravel. 55 4.5 60 15.6 4.5 Bottom of Boring at 61.5 feet 61.5 65 Completion Depth: 61.5 Remarks: Date Boring Started: 5/1/18 Date Boring Completed: 5/1/18 Logged By: DJZ SAMPLE TYPES WATER LEVELS (ft) **LEGEND** Drilling Contractor: **EPC Engineering and Testing** ▼ End of Drilling 41.0 SPLIT SPOON MC Moisture Content Q, Unconfined Compression Drilling Method: Dry Unit Weight Q_n Hand Penetrometer UC Ground Surface Elevation: At Time of Drilling 22.5 UTM 17 N:4548686.1m, E:328618.5m Friction Angle Gs Specific Gravity Coordinates: Datum: NAD83 **RQD** Rock Quality Designation

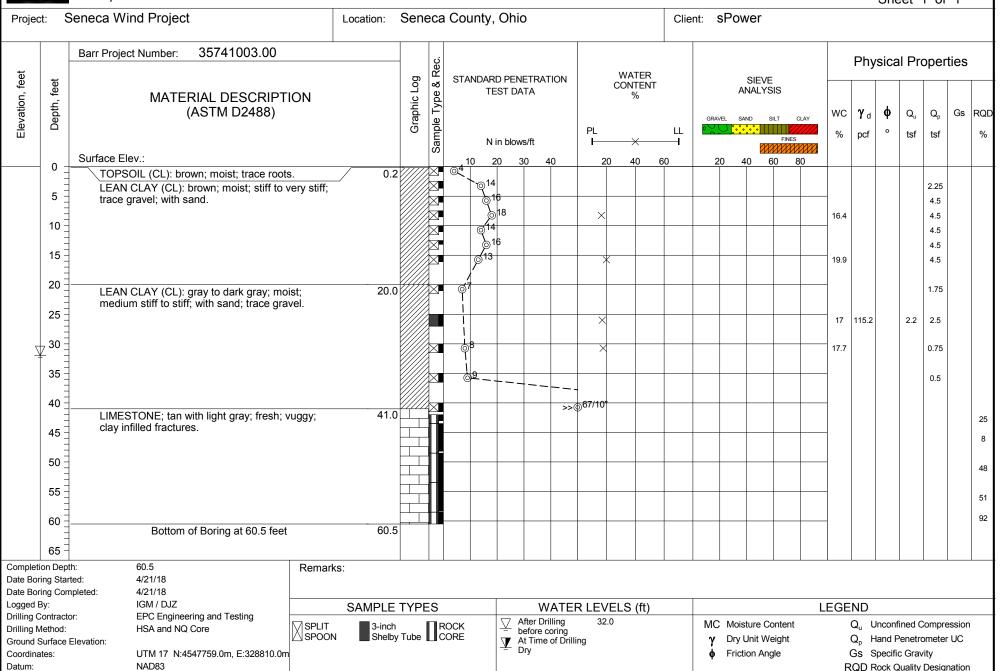
LOG OF BORING GEO-063

LOG OF BORING GEO-066

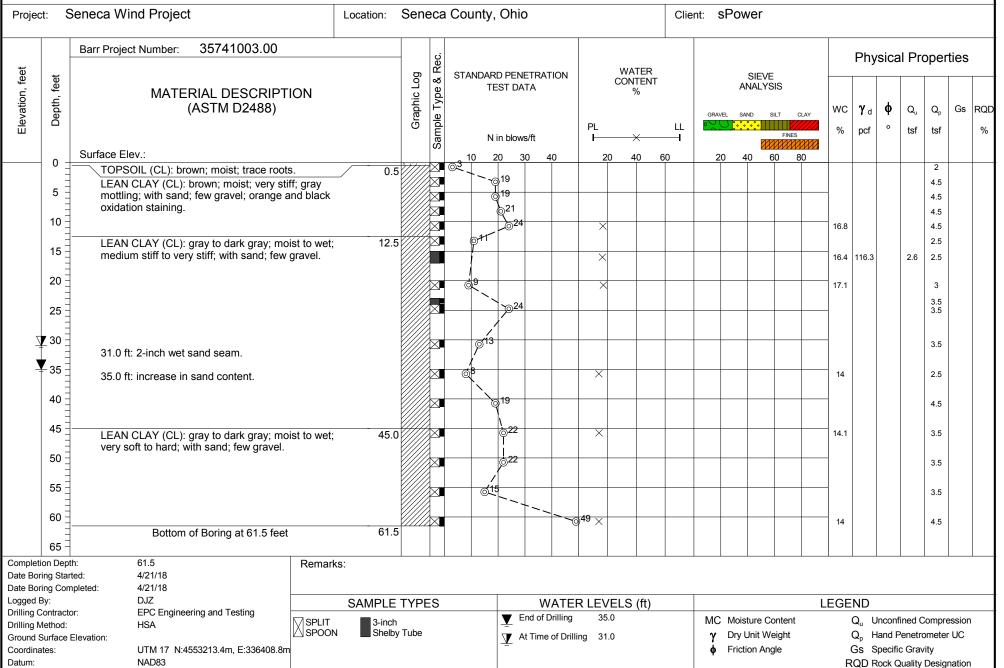
LOG OF BORING GEO-068

		1 elephone: 932-032-2000																		Sne	eet	1 of	1	
Projec	et: S	Seneca Wind Project	Location:	Sen	eca	County	y, Oh	io					Clier	nt: S	Pow	er								
		Barr Project Number: 35741003.00			<u>ن</u>														Ph	ysica	al Pr	oper	ties	
Elevation, feet	Depth, feet	MATERIAL DESCRIPTION (ASTM D2488)		Graphic Log	Sample Type & Rec.		ARD PE TEST D)ATA	ΓΙΟΝ	PL I	WAT CONT %	ΓΕΝΤ	LL —	GRAVE	AN	•:•]]]]		W(γα	ф	Q _u	Q _p		
	0 -	Surface Elev.:				10	20	30 4	10	20	0 40	0 60		20	40	CYYY.	* * * * * * * * *	2 H						
Z	7 =	CLAYEY TO SILTY SAND (SC-SM): brown; moist; trace roots.	2.4			© ⁴ © ⁵																		
7	10 -	CLAYEY SAND (SC): fine grained; brown; moist; loose; lenses of lean clay and poorly graded sand gray mottling.	d; // 6.5			<u>6</u>			>>(
	15 -	SANDY LEAN CLAY (CL): brown; moist; medium stiff; with lenses of clayey sand; trace sand.	12.7						\$58	54 50/3"								17.0						
Elev	20	SILTY SAND WITH GRAVEL (SM): fine grained; light gray; moist; very dense; weathered limestone.			╢																			69
	25	LIMESTONE; light brown with gray; fresh; trace			╫																			55
	30 =				╫																			93 57
	35 =				╫																			89
	40				╂																			78
	45 =	41.5 ft: wavy bedding and brecciated zones.			╫																			34
	50 -		40.5		Ш																			34
		LIMESTONE; dark gray; slightly weathered. LIMESTONE; light brown; fresh; massive; trace	49.5 52.0																					23
	55 _	vugs; some black veinlets.		H																				39
	60 =	Bottom of Boring at 60.5 feet	60.5																					55
Completi Date Bor			ks:						<u> </u>															
Date Bor Logged B	•	npleted: 4/10/18 BAA / BWL	SAMPLE	TVDI	=0			۱۸	۸۲۲	R LEV	/EI © /	(ft)						LEG	END					\dashv
Drilling C Drilling N	Contract Method:		ROCK		_3		_	At Time	of Drilli	ng 6.		(11)		γ	Dry U	ure Cor	ght	LEG	Q _u Q _p	Uncon	Penetro	ometer		1
Coordina Datum:	ites:	UTM 17 N:4544367.3m, E:326870.1m NAD83					-			ling 4	.8			ф	Frictio	n Angl	e			Specifi Rock (•	nation	1

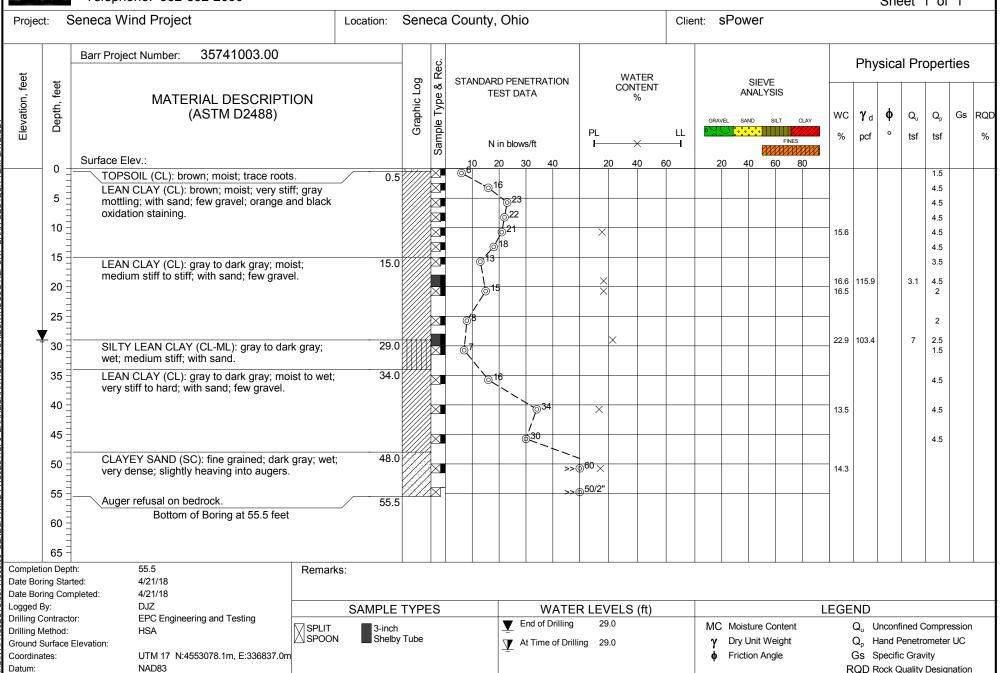
Barr Enginee 4300 Market Minneapolis, Telephone:

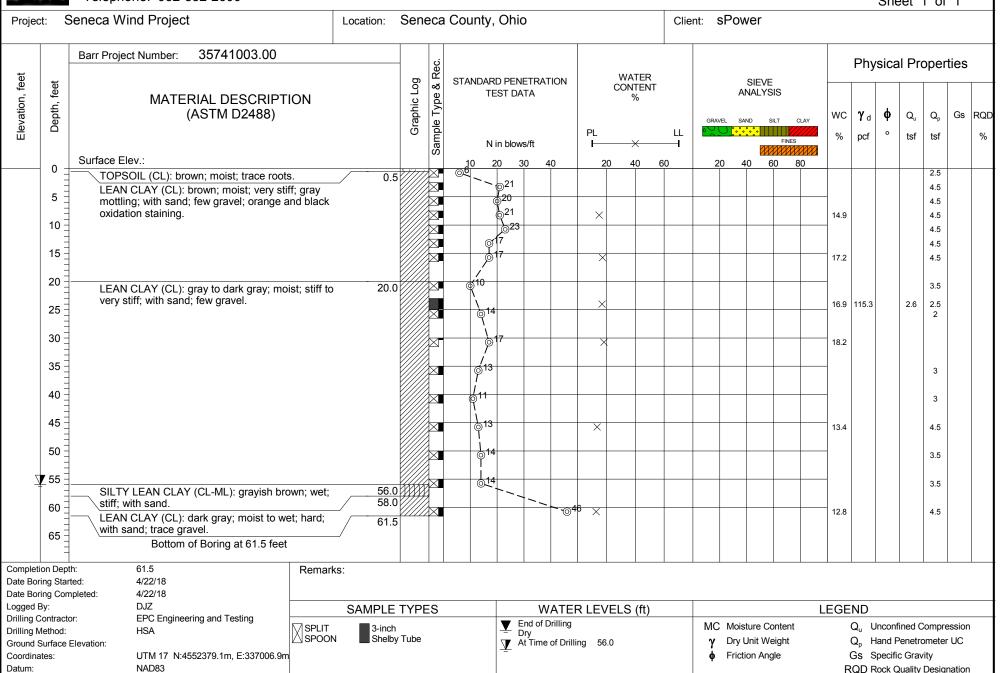

Barr Engineering Company 4300 MarketPointe Drive Suite 200 Minneapolis, MN 55435 Telephone: 952-832-2600

LOG OF BORING GEO-069


Sheet 1 of 1

Seneca Wind Project Seneca County, Ohio Client: sPower Location: Project: 35741003.00 Barr Project Number: **Physical Properties** Rec. WATER Elevation, feet STANDARD PENETRATION Graphic Log SIEVE Depth, feet Sample Type & CONTENT **ANALYSIS** TEST DATA MATERIAL DESCRIPTION (ASTM D2488) φ Gs RQD WC γd Q_{u} Q_n PL LL % pcf tsf tsf % N in blows/ft FINES Surface Elev .: 40 40 60 TOPSOIL (CL): brown; moist; trace roots. 0.5 LEAN CLAY (CL): brown; moist; medium stiff to 5 very stiff; little sand; trace gravel. 10 18.8 15 LEAN CLAY (CL): gray; moist to wet; very stiff; 15.0 little gravel. 20 14.5 20.0 POORLY GRADED SAND WITH SILT (SP-SM): fine grained; brown; wet; medium dense. 23.5 >> @80/11' 25 POORLY GRADED SAND WITH SILT (SP-SM): fine grained; brown; wet; very dense; highly 26.4 weathered limestone. 30 32 LIMESTONE; tan to gray; occasional black laminations; intensely fractured to 35.0 ft. 35 37 37.5 ft: some clay infilling in vugs. 40 40 45 43 50 85 55 80 97 60 Bottom of Boring at 60.0 feet 60.0 65 Completion Depth: 60.0 Remarks: Date Boring Started: 4/16/18 Date Boring Completed: 4/16/18 DJZ Logged By: SAMPLE TYPES WATER LEVELS (ft) **LEGEND** Drilling Contractor: **EPC** Engineering and Testing ▼ End of Drilling SPLIT SPOON ROCK CORE MC Moisture Content Q, Unconfined Compression Drilling Method: HSA and NQ Core Dry Unit Weight Q_n Hand Penetrometer UC Ground Surface Elevation: At Time of Drilling 18.0 Coordinates: UTM 17 N:4546020.7m, E:329629.2m Friction Angle Gs Specific Gravity Datum: NAD83 **RQD** Rock Quality Designation


LOG OF BORING GEO-070


LOG OF BORING GEO-071

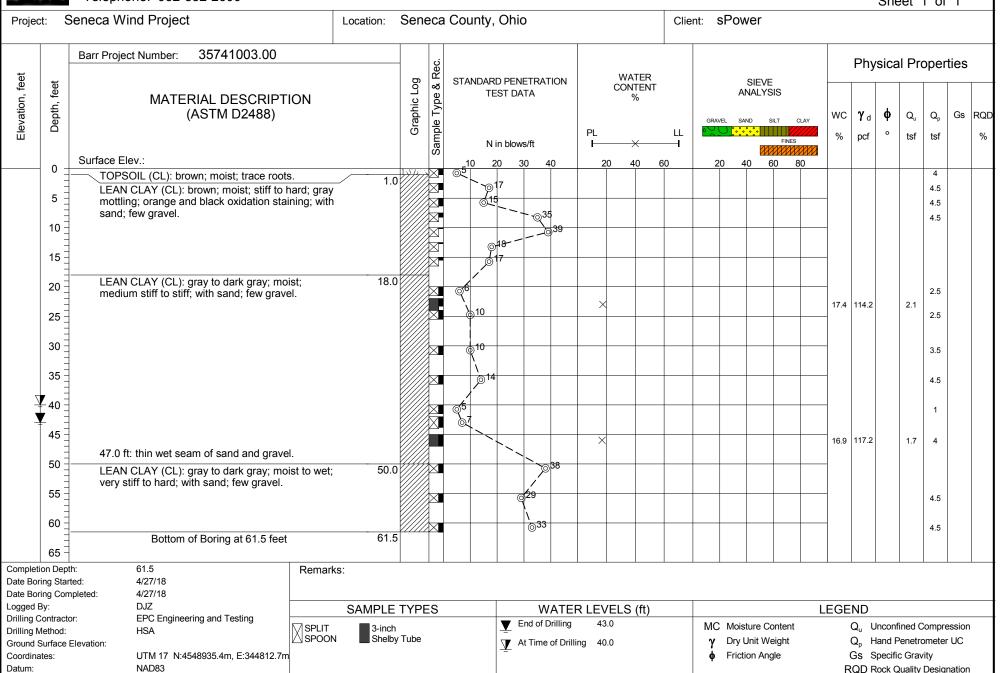
LOG OF BORING GEO-072

LOG OF BORING GEO-074

LOG OF BORING GEO-075

Projec	ot:	Seneca Wind Project	Location:	Sen	ec	a Co	unty, (Ohio			(Client: SF	Power					Sile	CL	1 ОТ	<u> </u>
		Barr Project Number: 35741003.00			e.												Phy	sica	l Pro	perti	es
Elevation, feet	Depth, feet	MATERIAL DESCRIPTION (ASTM D2488)		Graphic Log	Sample Type & Rec.	STA	TES	PENET T DATA		PL	TENT %	GRAVEL 5	SIE\ ANAL` SAND	/SIS SILT CL	AY	WC %	γ _d	ф °	Q _u	Q _p	Gs RQI
	0 -	Surface Elev.:		12222	77		10 20	30	40	20 4	0 60	20	40	60 80	0					3	
Complet Date Bor Date Bor Logged I Drilling C Ground S Coordina Datum:	5	TOPSOIL (CL): brown; moist; trace roots. LEAN CLAY (CL): brown; moist; stiff to very st gray mottling; with sand; few gravel; orange at black oxidation staining.	o.itiff; nd	5			©13			×						15.3				4.5 4.5 4.5 4.5	
	15		wet; 15.0	0			Ø15 Ø11 Ø8			×						16.9				3.75 3.5 2.5	
<u> </u>	25 - 7 30 -	31.5 ft: encountered wet seam.					10													2.5	
	40	CLAYEY SAND (SC): fine grained; dark gray t gray; wet; loose.					10			×						19.8				2.5	
<u> </u>	45	LEAN CLAY (CL): gray to dark gray; moist to very stiff; with sand; few gravel.	wet; 40.0				9 10													3	
	55	50.0 ft: encountered heaving sand in augers.					⊚16 - - - -			×						14.4				4.5	
	60	Bottom of Boring at 61.5 feet	61.8	5			\ 01	19								-				4.5	
Complet Date Boo	ring Sta	oth: 61.5 Rer	marks:																		
Logged I	Ву:	DJZ tor: EPC Engineering and Testing	SAMPLE	TYP	ES			= \^/-	WATE t Cave-in D	R LEVELS	(ft)				L	EGE					
Drilling N	Method: Surface	: HSA SP SP Elevation: UTM 17 N:4551391.1m, E:338409.0m NAD83	PLIT POON				-	▼ Enc	t Cave-in D f of Drilling Fime of Drill	42.0		γ	Moisture Dry Unit \ Friction A	Veight		(Q _p H 3s S	land P	enetro Gravi	ompresometer lity Designation	JC

LOG OF BORING GEO-076


Sheet 1 of 1

Seneca Wind Project Seneca County, Ohio Client: sPower Location: Project: 35741003.00 Barr Project Number: **Physical Properties** Rec. WATER Elevation, feet STANDARD PENETRATION Graphic Log SIEVE Depth, feet Sample Type & CONTENT **ANALYSIS** TEST DATA MATERIAL DESCRIPTION (ASTM D2488) φ Gs RQD WC γd Q_{u} Q_n SAND PL LL % pcf tsf tsf % N in blows/ft FINES Surface Elev .: 40 40 60 0 2 TOPSOIL (CL): brown; moist; trace roots. 0.7 10 LEAN CLAY (CL): brown; moist; soft to very stiff; 4.5 5 gray mottling; with sand; few gravel; orange and 4.5 black oxidation staining. \times 12.3 4.5 8.0 - 9.0 ft: with thin wet sand seams. 10 4.5 2 LEAN CLAY (CL): gray to dark gray; moist; 12.5 15 medium stiff; with sand; few gravel. X 17.7 113.7 1.9 20 2 CLAYEY SAND (SC): fine grained; brown; wet; 20.5 medium dense; few gravel. 23.0 25 2.5 SILTY LEAN CLAY (CL-ML): gray to dark gray; wet; stiff; with sand. 28.0 30 -LEAN CLAY (CL): gray to dark gray; moist to wet; stiff; with sand; few gravel. 2.5 31.5 ft: thin wet sand seam. 35 3 40 18 2 45 2 50 3.5 55 20 2.5 60 3.5 Bottom of Boring at 61.5 feet 61.5 65 Completion Depth: 61.5 Remarks: Date Boring Started: 5/8/18 Date Boring Completed: 5/8/18 Logged By: DJZ SAMPLE TYPES WATER LEVELS (ft) **LEGEND Drilling Contractor: EPC Engineering and Testing** End of Drilling SPLIT SPOON MC Moisture Content Q, Unconfined Compression 3-inch Drilling Method: Dry Shelby Tube Dry Unit Weight Q_n Hand Penetrometer UC At Time of Drilling Ground Surface Elevation: UTM 17 N:4548968.7m, E:343381.3m Friction Angle Gs Specific Gravity Coordinates: Datum: NAD83 **RQD** Rock Quality Designation

Telephone: 952-832-2600

Barr Engineering Company 4300 MarketPointe Drive Suite 200 Minneapolis, MN 55435

LOG OF BORING GEO-077

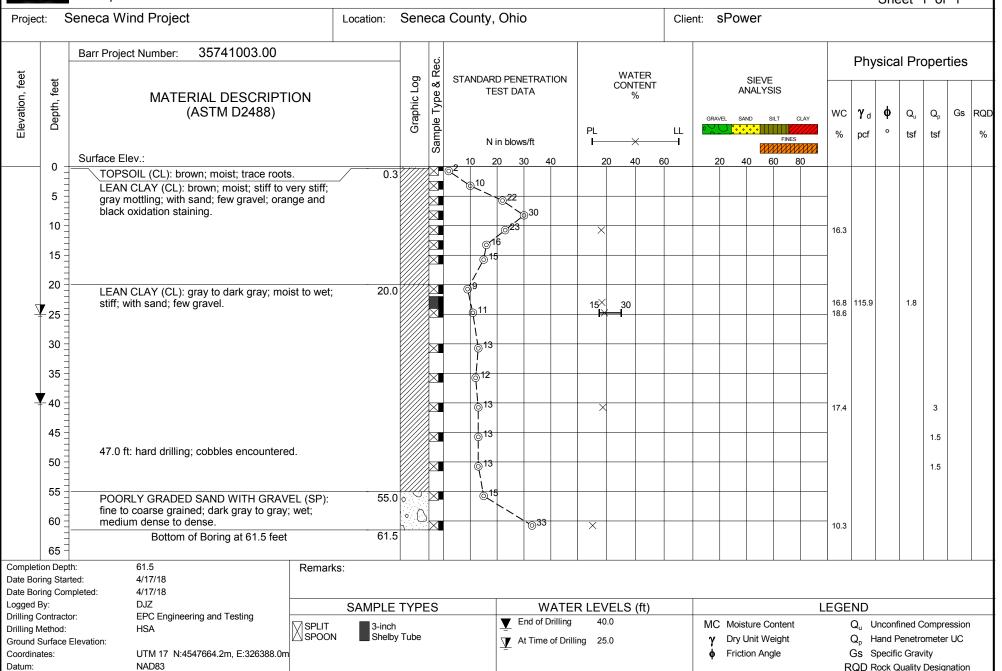
LOG OF BORING GEO-078

Project:	Seneca Wind Project	Location:	Sen	eca Co	unty C	Ohio				Clie	nt: S	Powe	r				Shee	. 1 0	1 1	
i iojeci.	Serieda Willia i Toject	Location.	OCII	cca cc	unity, C	71110				Cile	iii. J	OWC	,ı							
it.	Barr Project Number: 35741003.00			Zec.					WATER							Phy	sical F	rope	rties	;
Elevation, feet Depth. feet	MATERIAL DESCRIPTION (ASTM D2488)		Graphic Log	Sample Type & Rec.		PENETR T DATA blows/ft	ATION	PL I—	CONTENT %	Ц	GRAVE	ANA	EVE LYSIS SILT FINES	CLAY	WC %	γ _d	ф с		Gs	F
o	Surface Elev.:		15175		10 20	30	40	20	0 40 6	0	20	40	60	80						1
5	TOPSOIL (CL): dark brown; moist; trace roots. LEAN CLAY (CL): brown; moist; gray mottling. LEAN CLAY (CL): brown; moist; medium stiff to	1.0 2.5)11 			×	<						19.8					
10	stiff; trace gravel; with sand. LIMESTONE; light tan with brown mottling; fresh; massive; faint bedding; trace small vugs.	7.0					>>@	50/1"												
15	5 =																			
20	0 = = = = = = = = = = = = = = = = = = =			╬																
	5																			
30	0 <u>-</u> 			#																
35	calcite lenses; trace small vugs.	34.0																		
40	0 = 36.0 ft: lost water circulation to surface and never re-established.																			
45	5 LIMESTONE; light tan with gray and brown; fresh calcite crystalization; faint bedding and wavy laminations; hard with few soft zones; trace smal		5																	
50	vugs.			╬																
55	5 - - 																			
60	Bottom of Boring at 60.0 feet	60.0																		
65		1																		1
ompletion D ate Boring S ate Boring O		KS:																		
gged By:	BAA / BWL	SAMPLE	TYP	ES		,	WATER	R LEV	ELS (ft)					L	EGE	ND				_
illing Contra illing Metho ound Surfa oordinates:	od: HSA and NQ Core SPLIT SPOO	N ROCK	(Z	▼ At Tin	ne of Drilli coringDr	ing	. ,		γ		re Content it Weight Angle			Q _p H	nconfine and Pen- pecific G	etromete		

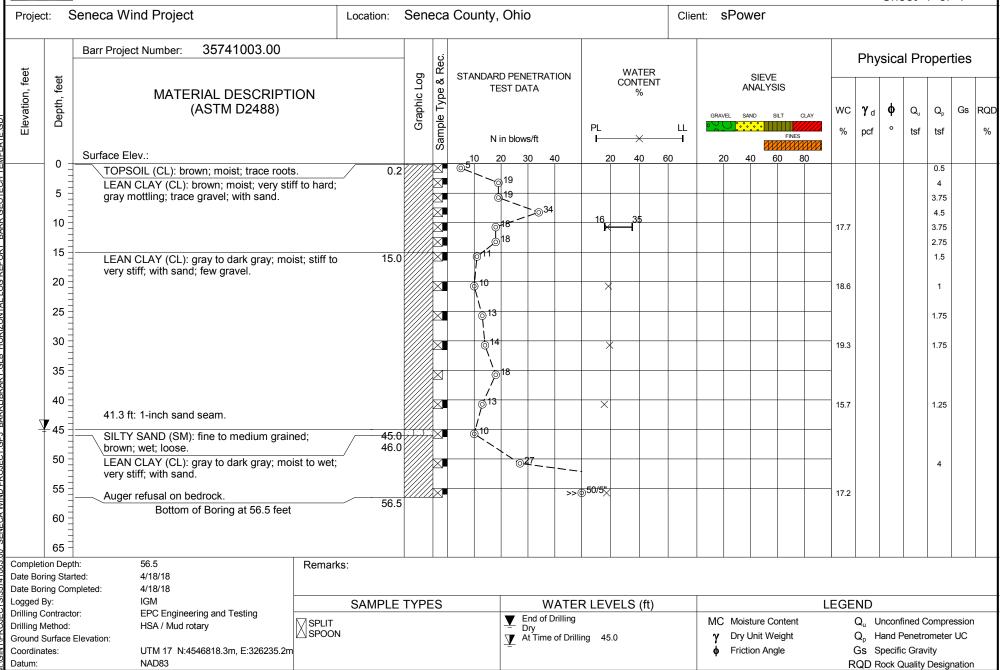
Telephone: 952-832-2600

Barr Engineering Company 4300 MarketPointe Drive Suite 200 Minneapolis, MN 55435

LOG OF BORING GEO-079


Sheet 1 of 1

Seneca Wind Project Seneca County, Ohio Client: sPower Location: Project: 35741003.00 Barr Project Number: **Physical Properties** Rec. WATER Elevation, feet STANDARD PENETRATION Graphic Log SIEVE Depth, feet Sample Type & CONTENT **ANALYSIS** TEST DATA MATERIAL DESCRIPTION (ASTM D2488) φ Gs WC γd Q_{u} Q_n ROD PL LL % pcf tsf tsf % N in blows/ft FINES Surface Elev .: 30 40 40 60 TOPSOIL (CL): brown; moist; trace roots. 0.2 d 19 4.5 LEAN CLAY (CL): brown; moist; stiff to very stiff; 5 19 with sand; trace gravel. 4.5 22 17.2 4.5 10 3.5 15 17.7 2.5 20 \times 17.2 114.8 2.8 2.25 25 1.75 25.0 LEAN CLAY (CL): gray; moist; stiff to very stiff; with sand; trace gravel. 30 17.1 1.5 35 X 17.6 113.9 2.9 0.75 40 2.75 40.5 ft: thin sand seams. 45 18.3 2 ₹ 50 51.5 ft: wet sand seam. 55 CLAYEY GRAVEL WITH SAND (GC): dark gray; 55.0 wet; medium dense. 58.5 60 POORLY GRADED SAND WITH SILT (SP-SM): 13.1 61.5 fine to medium grained; dark gray; wet; medium 65 dense. Bottom of Boring at 61.5 feet Completion Depth: Remarks: Date Boring Started: 4/20/18 Date Boring Completed: 4/20/18 Logged By: IGM SAMPLE TYPES WATER LEVELS (ft) **LEGEND** Drilling Contractor: **EPC Engineering and Testing** ▼ End of Drilling SPLIT SPOON MC Moisture Content Q, Unconfined Compression 3-inch Drilling Method: HSA and NQ Core Shelby Tube Dry Unit Weight Q_n Hand Penetrometer UC Ground Surface Elevation: At Time of Drilling 51.5 Coordinates: UTM 17 N:4546147.4m, E:325270.7m Friction Angle Gs Specific Gravity Datum: NAD83 **RQD** Rock Quality Designation


Telephone: 952-832-2600

Barr Engineering Company 4300 MarketPointe Drive Suite 200 Minneapolis, MN 55435

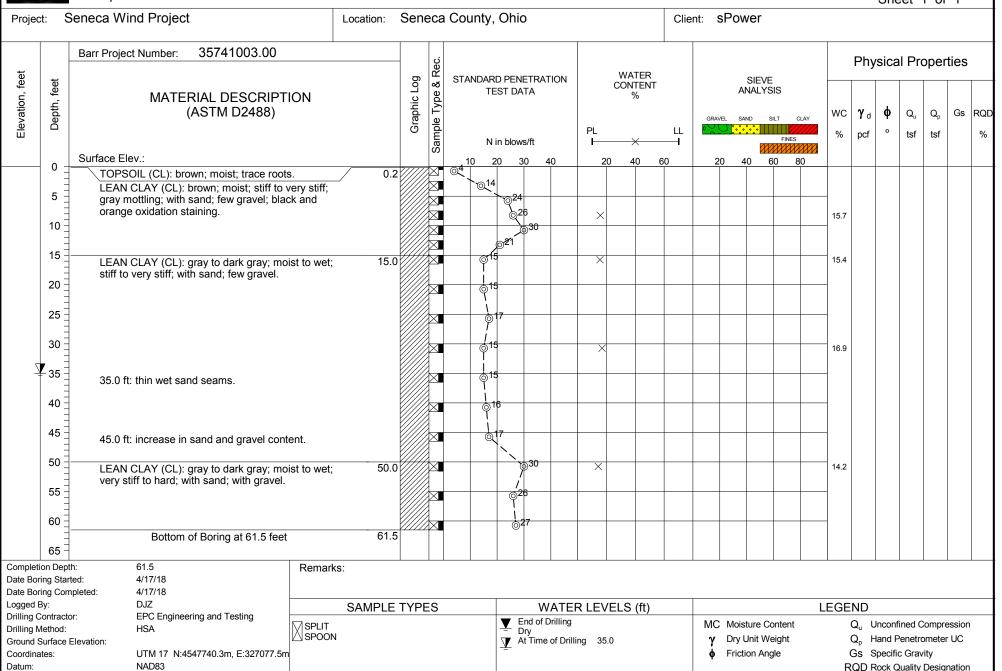
LOG OF BORING GEO-081

LOG OF BORING GEO-082

Barr Eng 4300 Ma Minneap Telephor

Barr Engineering Company 4300 MarketPointe Drive Suite 200 Minneapolis, MN 55435 Telephone: 952-832-2600

LOG OF BORING GEO-083


Sheet 1 of 1

Seneca Wind Project Seneca County, Ohio Client: sPower Location: Project: 35741003.00 Barr Project Number: **Physical Properties** Rec. WATER Elevation, feet STANDARD PENETRATION Graphic Log SIEVE Depth, feet Sample Type & CONTENT **ANALYSIS** TEST DATA MATERIAL DESCRIPTION (ASTM D2488) φ Gs WC γd Q_{u} Q_n ROD SAND PL LL % pcf tsf tsf % N in blows/ft FINES Surface Elev .: 30 40 60 40 60 0 TOPSOIL (CL): brown; moist; trace roots. 0.3 19 LEAN CLAY (CL): brown; moist; very stiff; with 5 sand; few gravel; gray mottling. 10 15.7 LEAN CLAY (CL): gray; moist; medium stiff to 12.5 15 ැරි stiff; with sand; few gravel. 17.5 114 2.3 7 20 15.9 POORLY GRADED SAND WITH SILT (SP-SM): 21.0 fine grained; brown; wet; dense. 25 25.0 LEAN CLAY (CL): gray; moist to wet; very stiff; with sand; trace gravel. 30 16.8 SILTY SAND (SM): fine grained; gray; wet; 30.0 medium dense; trace to some gravel; heaved into 35 augers. 40 611. X 45 >>(6)50/4" SILTY SAND (SM): fine grained; gray; wet; very 45.0 M dense; weathered limestone. >> 650/0.5 M 50 Auger refusal on bedrock. 50.0 Bottom of Boring at 50.0 feet 55 60 65 Completion Depth: 50.0 Remarks: Date Boring Started: 4/16/18 Date Boring Completed: 4/16/18 Logged By: CRL SAMPLE TYPES WATER LEVELS (ft) **LEGEND Drilling Contractor: EPC** Engineering and Testing ▼ End of Drilling SPLIT SPOON MC Moisture Content Q, Unconfined Compression 3-inch Drilling Method: Shelby Tube Dry Unit Weight Q_n Hand Penetrometer UC At Time of Drilling 21.0 Ground Surface Elevation: Coordinates: UTM 17 N:4546775.0m, E:326708.0m Friction Angle Gs Specific Gravity Datum: NAD83 **RQD** Rock Quality Designation

LOG OF BORING GEO-084

Projec	ct: S	Seneca Wind Project	Location:	Sen	ec	a County	, Ohio)			Clie	nt: sPc	wer				SH	CCI	1 OT	<u> </u>
Elevation, feet	Depth, feet	Barr Project Number: 35741003.00 MATERIAL DESCRIPTION (ASTM D2488)		Graphic Log	Sample Type & Rec.	STANDAI	RD PENI EST DA		PL I	WATER CONTENT %	 	GRAVEL	SIEVE ANALYSI:		W(C γ _d		Q _u	opert Q _p tsf	ies Gs RQI
	10 15 15 20 25 30 35 40 45 50	23.0 ft: thin bedding. 34.0 - 35.2 ft: quartz seam.	oist; n 15.9		S	10 (0)	3 0 18 0 19	> 40		<	50	20	40 60	0 80	19.			3.9	2.5 2.5 4.5 4.5 4.5 2.5	30 76 59 71 22 71 47 65 43 0
Complet Date Bo Date Bo Doilling of Drilling of Ground a Coordina Datum:	ring Sta ring Cor By: Contract Method: Surface	Dith: 60.0 Rem	SAMPLE IT 3-inct Shelb				A	WATI at Time of Dr after Drilling 2 hrs After [rilling 12	.0		γ Dr	isture Cor / Unit Wei ction Angle	ght	LEG	Q _p Gs	Hand F Specifi	Penetro ic Grav	Compresometer vity Design.	UC

LOG OF BORING GEO-085

Barr En 4300 M Minnea Telepho

Barr Engineering Company 4300 MarketPointe Drive Suite 200 Minneapolis, MN 55435 Telephone: 952-832-2600

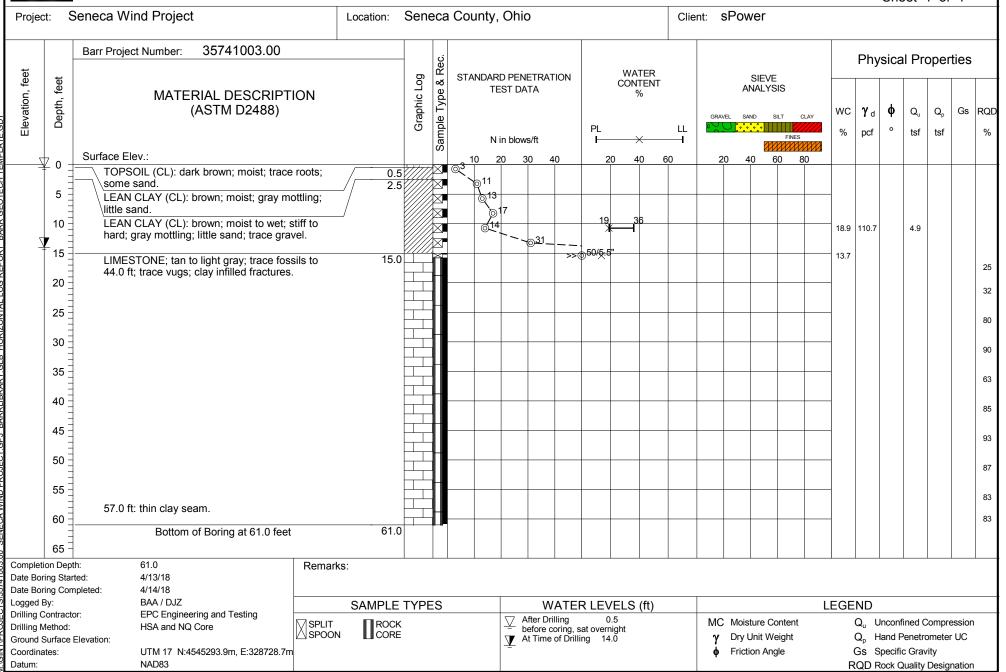
LOG OF BORING GEO-086

	relephone. 952-832-2600	T					<u> </u>				1		_					Sne	et ´	l of	1
Project:	Seneca Wind Project	Location:	Sen	eca	Cou	πy, c	OINC				Clie	ent: S	Powe	: r							
	Barr Project Number: 35741003.00			Rec.													Phy	/sical	Pro	perti	es
Elevation, feet Depth, feet	MATERIAL DESCRIPTION (ASTM D2488)		Graphic Log	Sample Type & R	STAN	TES	PENE T DAT		PL I—	WATER CONTENT %	LL ——I	GRAVE	ANA		CLAY S	WC	γ _d	ф °	Q _u	Q _p	Gs R
0 -	Surface Elev.:		2,777		10	20	30	40	2	0 40	60	20	40	60	80						
5	TOPSOIL (CL): dark brown; moist; trace roots. LEAN CLAY (CL): brown; moist; medium stiff to stiff; with sand; gray mottling.	0.3	3		9				 	<u> </u>						18.3					
10	SILTY SAND (SM): fine grained; gray; moist; ve dense; weathered limestone.	ry 7.0 8.9						>>	⊚50/4 ["]												
15	LIMESTONE; brown with light gray; fresh to slightly weathered; hard to soft; faint wavy bedding; trace small to large vugs.						\dashv														
20	18.5 ft: lost water circulation to surface and never re-established.	er					\dashv														
25	20.5 - 21.5 ft: white, softer zone.			1																	
30	28.5 ft: shell fragments.			1																	
35	- - - - -		Ħ	1																	
40	- - - -																				
45				1																	
50																					
55 -																					
65	Bottom of Boring at 61.5 feet	61.5	5																		
mpletion Dep	arted: 4/12/18	arks:	1	1 1				I	1	<u> </u>	1				1		1	1			
ate Boring Co ogged By:	BAA / BWL	SAMPLE	TYPI	FS				WATF	RIF	/ELS (ft)					ı	FGF	:ND				
rilling Contrac rilling Method: round Surface pordinates:	: HSA and NQ Core SPLI	T MROCK				-	▼ At be	Time of Dri fore coring[(it)	MC Moisture Content γ Dry Unit Weight • Friction Angle					Q _u Unconfined Compression Q _p Hand Penetrometer UC Gs Specific Gravity					
atum:	NAD83	-:4:										, T		J -				•		Designa	ation

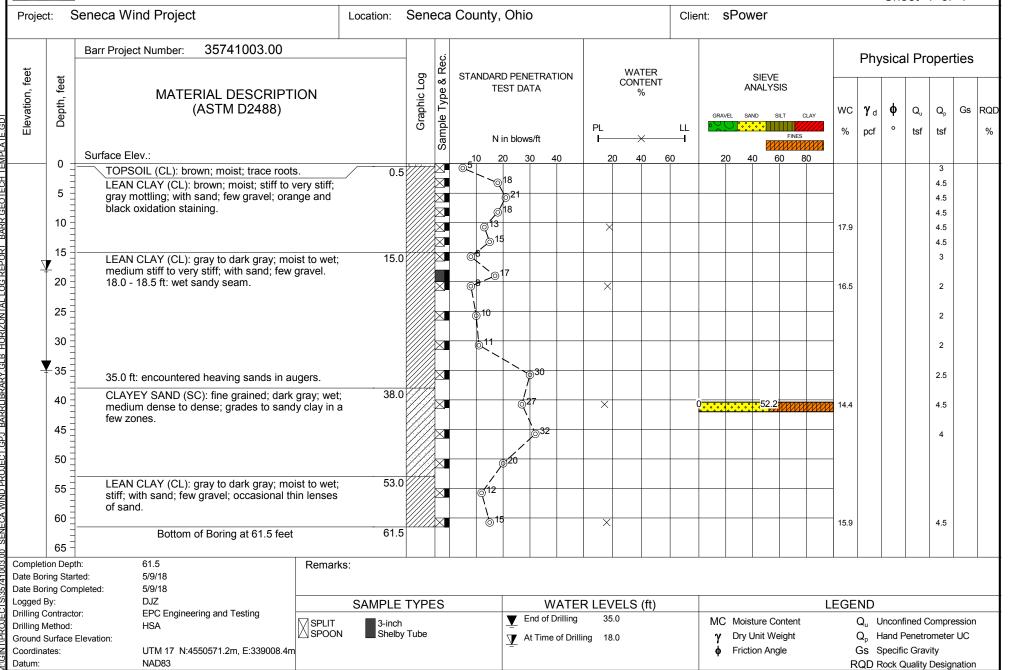
Telephone: 952-832-2600

Barr Engineering Company 4300 MarketPointe Drive Suite 200 Minneapolis, MN 55435

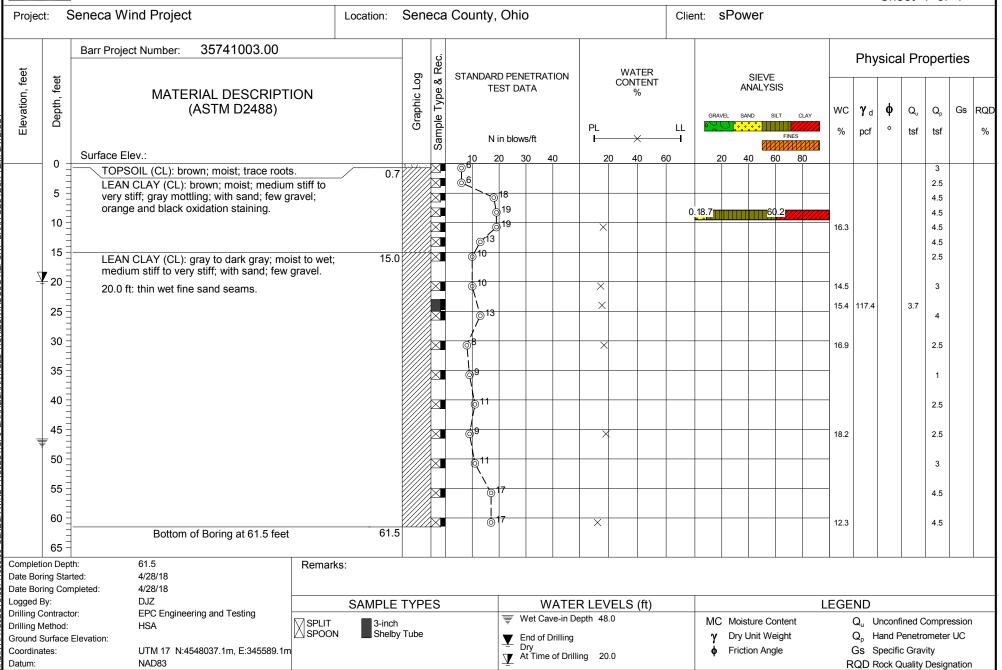
LOG OF BORING GEO-087

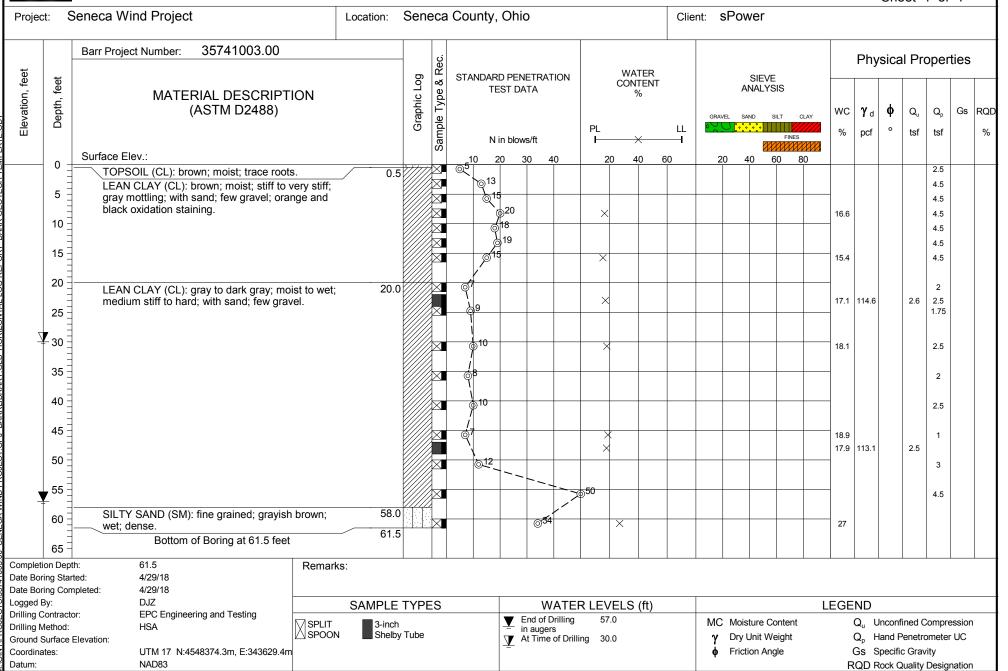

Sheet 1 of 1

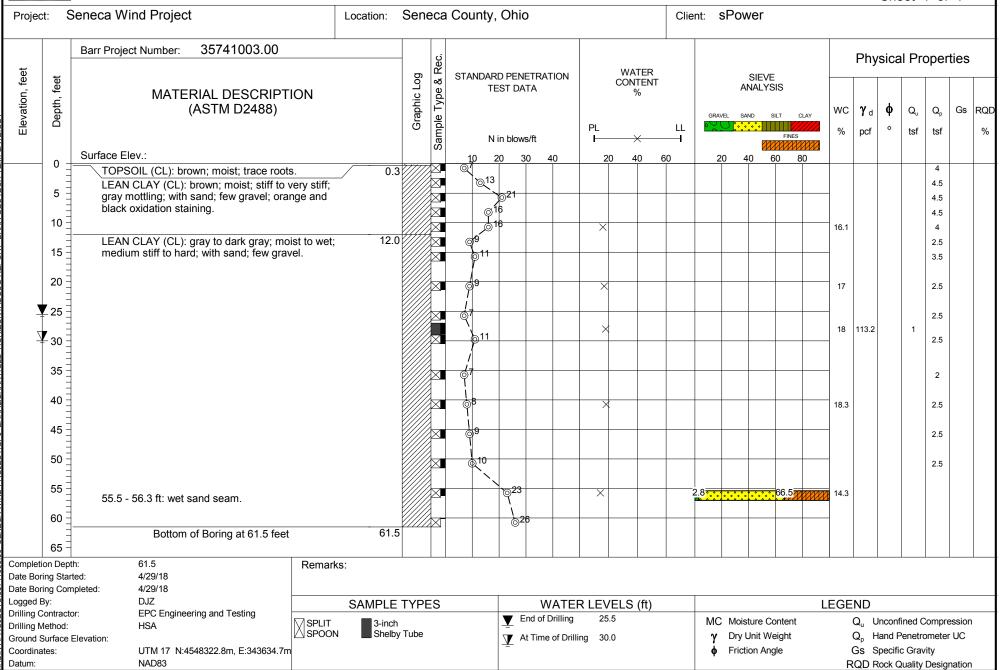
Seneca Wind Project Seneca County, Ohio Client: sPower Location: Project: 35741003.00 Barr Project Number: Rec. **Physical Properties** WATER Elevation, feet STANDARD PENETRATION Graphic Log SIEVE Depth, feet Sample Type & CONTENT **ANALYSIS** TEST DATA MATERIAL DESCRIPTION (ASTM D2488) φ Gs WC γd Q_{u} Q_n RQD SAND PL LL % pcf tsf tsf % N in blows/ft FINES Surface Elev .: 40 40 60 2.5 TOPSOIL (CL): brown; moist; trace roots. 0.2 `⊚|18 LEAN CLAY (CL): brown; moist; very stiff; gray 4.5 5 mottling; with sand; few gravel; orange and black 4.5 oxidation staining. 4.5 10 16.3 4.5 3.5 15 2 LEAN CLAY (CL): gray to dark gray; moist to wet; 15.0 stiff to very stiff; with sand; few gravel. ¥₂₀ 17.1 115 2.4 4 16.4 2 25 3 30 15.4 1.5 35 4.5 LEAN CLAY (CL): gray to dark gray; moist to wet; 35.0 very stiff; with sand; few gravel. 40 <u>⊚</u>23 45 14.8 CLAYEY SAND (SC): fine to medium grained; 45.0 gray; wet; very dense; few gravel. >> 650/1" 50 Auger refusal on bedrock. 50.0 Bottom of Boring at 50.0 feet 55 60 65 Completion Depth: 50.0 Remarks: Date Boring Started: 4/20/18 Date Boring Completed: 4/20/18 Logged By: DJZ SAMPLE TYPES WATER LEVELS (ft) **LEGEND Drilling Contractor: EPC Engineering and Testing** ▼ End of Drilling SPLIT SPOON MC Moisture Content Q, Unconfined Compression 3-inch Drilling Method: Shelby Tube Dry Unit Weight Q_n Hand Penetrometer UC Ground Surface Elevation: At Time of Drilling 20.0 UTM 17 N:4547804.6m, E:327652.3m Friction Angle Gs Specific Gravity Coordinates: Datum: NAD83 **RQD** Rock Quality Designation


LOG OF BORING GEO-088

Proje	ct: S	Seneca Wind Project	Location:	Seneca	a County,	Ohio			Client: sPower			er							
		Barr Project Number: 35741003.00		j.											Physic	cal Pr	oper	ties	-
YTE.GDT Elevation, feet	Depth, feet	MATERIAL DESCRIPTION (ASTM D2488)		Graphic Log Sample Type & Rec.	STANDAR TE	D PENETRA ST DATA in blows/ft	TION		ATER NTENT %	ц		SIEVE ALYSIS	CLAY	wc %	γ _d φ		Q _p	Gs F	RQD %
SENECA WIND PROJECT.GPJ BARRLIBRARY.GLB HORIZONTALLOG REPORT BARR GEOTECH TEMPLATE.GDT Elev	5 - 10 -				3 10 2	0 30	40	20 ×	40 60		20 4	60	80	18					
OG REPORT	15 -	graver.	_		⊚1 ¹		· >>©	50/4"						16.7					
ORIZONTAL L	25 =		21.0																15 52
IBRARY.GLB H	35 _	LIMESTONE; tan with gray; hard.	30.0																50 95
XT.GPJ BARRL	45																		42 63
WIND PROJEC	50 =																		92 78
8	60 =		60.0																
Comple Date Bo	oring Sta	rted: 4/14/18 npleted: 4/15/18																	
Logged Drilling Drilling Ground Coordin Datum:	Contract Method: Surface		SAMPLE ROCK CORE	TYPES		V At Time before		LEVELS	S (ft)			ure Content nit Weight n Angle		(Q _u Unc	d Peneti cific Gra	ometer vity	· UC	


LOG OF BORING GEO-089

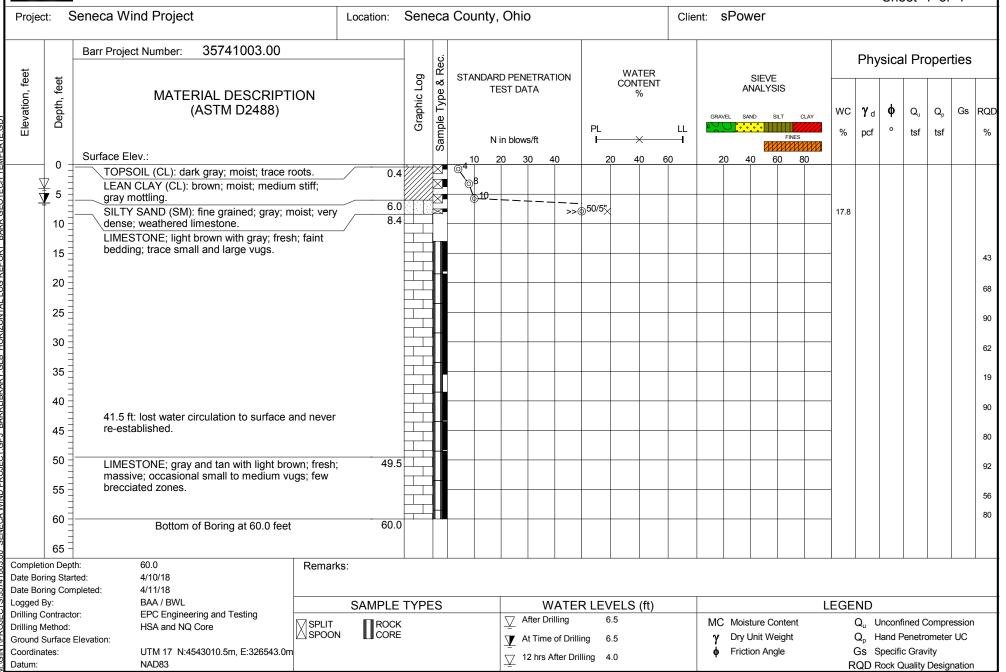

LOG OF BORING GEO-090


LOG OF BORING GEO-091

LOG OF BORING GEO-092

LOG OF BORING GEO-093

Telephone: 952-832-2600


Barr Engineering Company 4300 MarketPointe Drive Suite 200 Minneapolis, MN 55435

LOG OF BORING GEO-094

Sheet 1 of 1

Seneca Wind Project Seneca County, Ohio Client: sPower Location: Project: 35741003.00 Barr Project Number: **Physical Properties** Sample Type & Rec. WATER Elevation, feet STANDARD PENETRATION Graphic Log SIEVE Depth, feet CONTENT **ANALYSIS** TEST DATA MATERIAL DESCRIPTION (ASTM D2488) φ Gs WC γd Q_{u} Q_n ROD PL LL % pcf tsf tsf % N in blows/ft FINES Surface Elev .: 20 30 40 40 60 0 1.5 LEAN CLAY (CL): brown; moist; stiff to very stiff; _©13 with orange and black oxidation staining; trace 4 5 sand; gray mottling. 4.5 4.5 10 14.2 10.0 ft: transition to mainly gray with orange >>(6)50/5" oxidation. 15 >> (54 CLAYEY SAND (SC): fine grained; brown; wet; 15.0 17.0 very dense; few to little gravel. 20 SILTY SAND (SM): brown; wet; very dense; >> (57× 12.3 weathered and fractured limestone. 50/0.5 25 LIMESTONE; light brown with gray; hard to soft; 24.5 some wavy bedding; trace small vugs; trace 23 pyrite. 30 83 35 82 40 85 45 100 50 74 55 100 82 60 Bottom of Boring at 60.5 feet 60.5 65 Completion Depth: 60.5 Remarks: Date Boring Started: 4/8/18 Date Boring Completed: 4/9/18 DJZ / BWL Logged By: SAMPLE TYPES WATER LEVELS (ft) **LEGEND Drilling Contractor: EPC Engineering and Testing** At Time of Drilling 12.5 SPLIT SPOON ROCK CORE MC Moisture Content Q, Unconfined Compression Drilling Method: HSA and NQ Core Dry Unit Weight Q_n Hand Penetrometer UC Ground Surface Elevation: After Drilling 9.5 UTM 17 N:4542142.6m, E:325974.7m Friction Angle Gs Specific Gravity Coordinates: 12 hrs After Drilling 9.0 Datum: NAD83 **RQD** Rock Quality Designation

LOG OF BORING GEO-096

Appendix C

Geophysical Survey Report

May 11, 2018

Robb J. Roy BARR Geotechnical Engineer 4700 West 77th Street Minneapolis, MN 55435 (952) 842-3695

RE: MASW and Seismic Refraction Survey

Seneca Wind Project Seneca County, Ohio THG Project No. 881-6820

Dear Mr. Roy:

THG Geophysics, Ltd. (THG) collected seismic velocity data at the proposed Seneca Wind Project located in Seneca County, Ohio on April 30 - May 1, 2018 (Figure 1). The work scope included the collection of shear wave velocity data (s-wave) using multichannel analysis of surface wave methods (MASW) and compressional body-wave velocity data (p-wave) using a refraction method. THG conducted MASW shear-wave tests and seismic refraction tests at 6 turbine locations throughout the site.

MASW

Multichannel Analysis of Surface Waves (MASW) is a method of collecting shear-wave data using surface wave velocity analysis (Xia, et al., 2000). One-dimensional (MASW) data were collected at six locations (Figures 2-7). Elastic waves were initiated using a 16-pound sledge hammer striking a 10" by 10" aluminum plate. The velocity data were collected using a 24-channel, 4.5-Hz geophone spread with 32 geophones and a 5-foot array.

MASW theory holds that the penetration depth of a surface wave increases with wavelength. Further, propagation velocity (i.e., phase velocity) is determined mainly by shear-wave velocity of penetrated materials; consequently, surface waves have nearly the same velocity as shear wave at depth. Through the use of dispersion curves, or the change of propagation speed (i.e., phase velocity) with wavelength (or frequency), the shear wave velocity with depth can be derived. Four events (5 stacks each) were recorded and post-processed using SurfSeis 4.24. These data were then inverted to obtain the associated shear wave velocities (Figures 2-7).

REFRACTION

Seismic tomographic imaging is a refraction seismic method for showing p-wave velocity at depth in a profile format. A 24-channel (Geometrics Geode) seismograph using 10 Hz geophones collected p-wave velocity data with a 3-meter (10-ft) takeout distance. Five events on each seismic line were initiated with a 16-lb sledge hammer, collected and stacked (5 records) for post processing at each of the 6 locations (Figures 8-13).

Post-processing used of a proprietary processing program, RayFract®, a seismic refraction tomography software that provides reliable imaging of subsurface velocity. The "smoothin-version" algorithm tomographic method is based on physically meaningful modeling of seismic first break energy refraction, transmission and diffraction. Both p-wave and s-wave propagation is modeled with wave paths (also known as Fresnel volumes) instead of conventional seismic rays. This increases the numerical robustness of the method. A smooth initial 1-D gradient model is determined directly from the traveltime data, by averaging Delta-t-V (improved Wiechert-Herglotz) method 1-D velocity-depth profiles along the seismic line. This procedure delivers reliable smoothed models even in case of velocity inversions. The initial model is then refined with true 2-D WET (Wavepath Eikonal Traveltime) tomography.

R.Roy Page 2 May 11, 2018

QUALITY ASSURANCE AND QUALITY CONTROL

The interpretation of geophysically-generated data is not an exact science since the responses to induced disturbance is affected by many phenomena including buried material, operator error, precipitation, wind and net changes in ground saturation conditions. Some sources of spurious data can be overcome through a QA/QC program and use of multiple geophysical methods. The quality control program employed with this study included frequent checks of the equipment and resurveys of lines and locations. The QA/QC program indicates that all geophysical equipment functioned as designed during the survey program.

ANALYSIS

Geophysical data collected at the Seneca Wind Project site was of good quality. S-wave velocities range from approximately 600 ft/s to 4,500 ft/s and p-wave velocities from 3,000 ft/s to 14,500 ft/s (Table 1). The resulting velocities can be grouped into two different categories at the site. Turbine locations GEO-013, GEO-061, and GEO-085 exhibit slower velocities at shallower depths and GEO-003 and GEO-066 exhibit much faster velocities at shallower depths indicating shallower bedrock at turbine locations GEO-003 and GEO-066.

MASW data at all six turbine test locations were used to perform seismic hazard classification (IBS, 2018). All six sites meet the specification of a Site Class C: Very dense soil and soft rock (Table 2).

Should you have any questions or require additional information, please contact our office at (724) 325-3996 or via e-mail hlk@thggeophysics.com.

Respectfully,

THG Geophysics, Ltd.

Heaten I hier

Heather Krivos, G.I.T. Senior Geophysicist

Enclosures

REFERENCES

IBS, (2018). International Building Code; International Code Council, Inc.

Xia, J.; Miller, R. D.; Park, C. B.; Hunter J. A.; Harris, J. B.; and Ivanov, J., (2002), Comparing shear-wave velocity profiles inverted from multi-channel surface wave with borehole measurements: *Soil Dynamics Earthquake Engineering*, Vol. 22, pp. 181-190.

Geophysical investigations are a non-invasive method of interpreting physical properties of the shallow earth using electrical, electromagnetic, or mechanical energy. This document contains geophysical interpretations of responses to induced or real-world phenomena. As such, the measured phenomenon may be impacted by variables not readily identified in the field that can result in a false-positive and/or false-negative interpretation. THG makes no representations or warranties as to the accuracy of the interpretations.

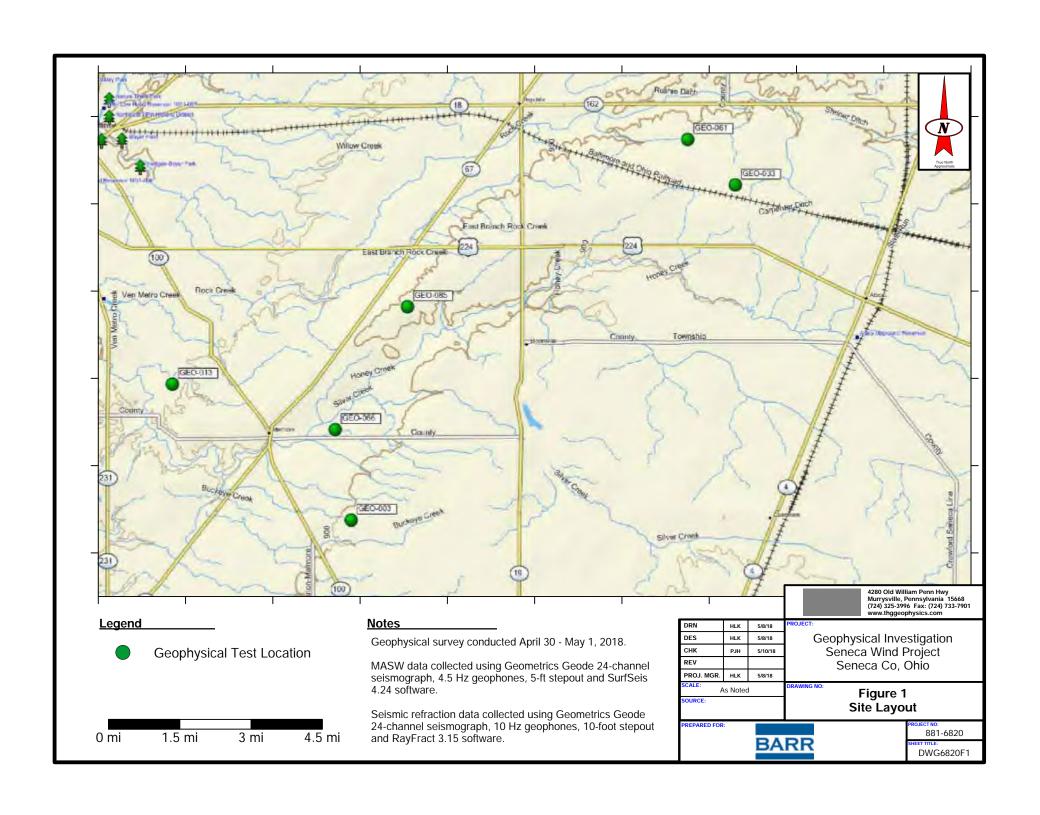
Table 1

Seneca Wind Project Seneca County, Ohio

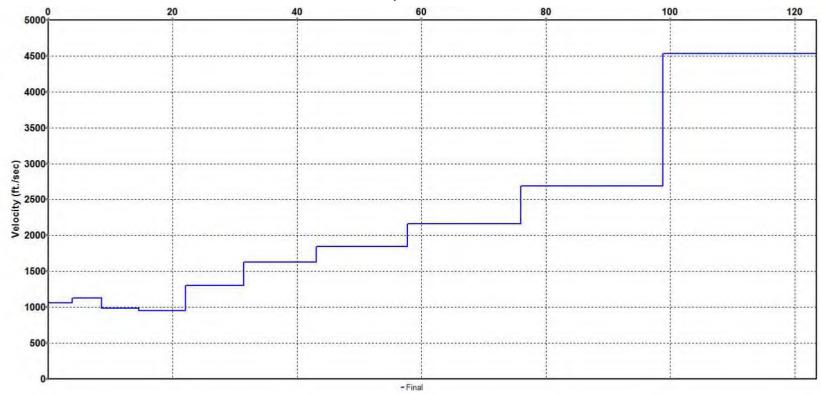
s-wave and p-wave Velocity Table

DEPTH	GEC	0-003	GEC)-013	GEO-033			
(ft below grade)	s-wave velocity (ft/sec)	p-wave velocity (ft/sec)	s-wave velocity (ft/sec)	p-wave velocity (ft/sec)	s-wave velocity (ft/sec)	p-wave velocity (ft/sec)		
-10	987	3,169	1,530	3,126	782	3,992		
-20	955	6,125	1,357	3,499	673	5,344		
-30	1,299	7,903	1,186	4,076	1,021	5,647		
-40	1,629	10,121	1,413	4,579	1,021	5,865		
-50	1,842	11,844	2,050	5,190	1,360	6,312		
-60	2,163	13,365	2,050	6,113	1,564			
-70	2,163	14,644	2,403	7,450	1,564			
-80	2,691		2,403	8,671	1,651			
-90	2,691		2,297	9,705	1,651			
-100	4,529		2,297		2,070			
-110	4,529		2,981		2,070			
-120	4,529		2,981					

DEPTH	GEC	P-061	GEC)-066	GEO-085			
(ft below grade)	s-wave velocity (ft/sec)	p-wave velocity (ft/sec)	s-wave velocity (ft/sec)	p-wave velocity (ft/sec)	s-wave velocity (ft/sec)	p-wave velocity (ft/sec)		
-10	830	3,803	2,251	6,209	830	4,232		
-20	617	4,519	2,299	8,340	643	5,431		
-30	1,067	4,597	2,439		810	5,018		
-40	1,762	5,007	2,492		1,353	5,444		
-50	1,984	5,923	2,272		1,629	6,079		
-60	1,746	6,618	1,833		1,576	6,861		
-70	1,746	7,585	1,833		1,576	8,371		
-80	1,584	8,489	1,784		1,573	9,252		
-90	1,584		1,784		1,753			
-100	3,123		3,399		1,753			
-110	3,123		3,399		2,846			
-120	3,123		3,399		2,846			


Table 2

Seneca Wind Project Seneca County, Ohio


MASW Seismic Site Classification

	GEO-003			GEO-013		GEO-033				
Depth (ft)	Velocity (ft/sec)	Weight	Depth (ft)	Velocity (ft/sec)	Weight	Depth (ft)	Velocity (ft/sec)	Weight		
-3.8	1,059	0.04	-4.1	1,542	0.04	-3.6	807	0.04		
-8.6	1,128	0.05	-9.2	1,585	0.05	-8.1	831	0.05		
-14.6	987	0.06	-15.6	1,530	0.06	-13.8	782	0.06		
-22.1	955	0.08	-23.6	1,357	0.08	-20.8	673	0.07		
-31.4	1,299	0.09	-33.6	1,186	0.10	-29.7	685	0.09		
-43.1	1,629	0.12	-46.1	1,413	0.13	-40.7	1,021	0.11		
-57.7	1,842	0.15	-61.7	2,050	0.16	-54.5	1,360	0.14		
-76.0	2,163	0.18	-81.2	2,403	0.20	-71.7	1,564	0.17		
-98.8	2,691	0.23	-100.0	2,297	0.19	-93.2	1,651	0.22		
-100.0	4,529	0.01				-100.0	2,070	0.07		
Weighted Ave	erage (ft/sec)	1,869	Weighted Av	erage (ft/sec)	1,866	Weighted Ave	1,284			

	GEO-061			GEO-066		GEO-085				
Depth (ft)	Velocity (ft/sec)	Weight	Depth (ft)	Velocity (ft/sec)	Weight	Depth (ft)	Velocity (ft/sec)	Weight		
-3.7	894	0.04	-3.8	2,328	0.04	-3.9	944	0.04		
-8.4	918	0.05	-8.5	2,303	0.05	-8.7	952	0.05		
-14.2	830	0.06	-14.4	2,251	0.06	-14.8	830	0.06		
-21.4	617	0.07	-21.8	2,299	0.07	-22.3	643	0.08		
-30.5	1,067	0.09	-31.1	2,439	0.09	-31.8	810	0.10		
-41.9	1,762	0.11	-42.7	2,492	0.12	-43.6	1,353	0.12		
-56.1	1,984	0.14	-57.1	2,272	0.14	-58.4	1,629	0.15		
-73.8	1,746	0.18	-75.2	1,833	0.18	-76.9	1,576	0.19		
-96.0	1,584	0.22	-97.8	1,784	0.23	-100.0	1,573	0.23		
-100.0	3,123	0.04	-100.0	3,399	0.02					
	·							·		
Weighted Ave	erage (ft/sec)	1,534	Weighted Ave	erage (ft/sec)	2,152	2,152 Weighted Average (ft/sec)				

s-Wave Velocity Profile Depth (feet)

s-WAVE VELOCITY

Depth (ft) Velocity (ft/s)

Notes

Geophysical survey conducted April 30 - May 1, 2018.

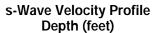
MASW data collected using Geometrics Geode 24-channel seismograph, 4.5 Hz geophones, 5-ft stepout and SurfSeis 4.24 software.

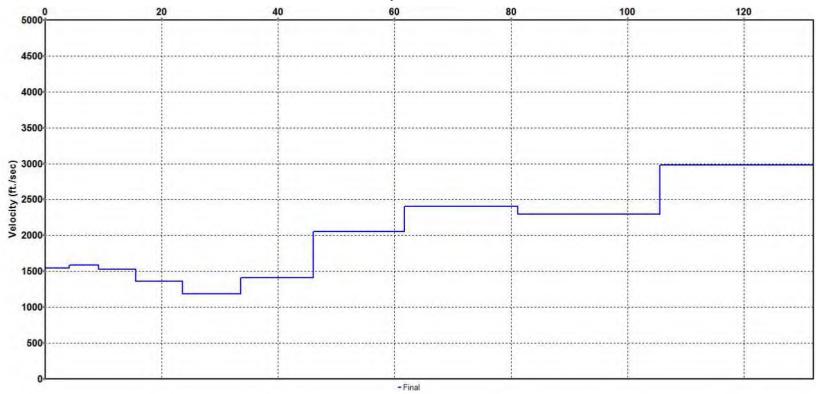
Seismic refraction data collected using Geometrics Geode 24-channel seismograph, 10 Hz geophones, 10-foot stepout and RayFract 3.15 software.

(724) 325-3996 Fax: (724) 733-7901 www.thggeophysics.com
ECT:

DRN	HLK	5/8/18	PROJECT:
DES	HLK	5/8/18	Ge
СНК	PJH	5/10/18	!
REV			
PROJ. MGR.	HLK	5/8/18	
SCALE:	DRAWING NO:		

Seophysical Investigation Seneca Wind Project Seneca Co., Ohio


As Noted DRAWING NO:
S-W


s-Wave Velocity Profile GEO-003

REPARED FOR:

881-6820 SHEET TITLE: DWG6820F2

s-WAVE VELOCITY

Depth (ft) Velocity (ft/s)

4.4	1 5 40
-4.1	1,542
-9.2	1,585
-15.6	1,530
-23.6	1,357
-33.6	1,186
-46.1	1,413
-61.7	2,050
-81.2	2,403
-105.6	2,297
-132.0	2,981

Notes

Geophysical survey conducted April 30 - May 1, 2018.

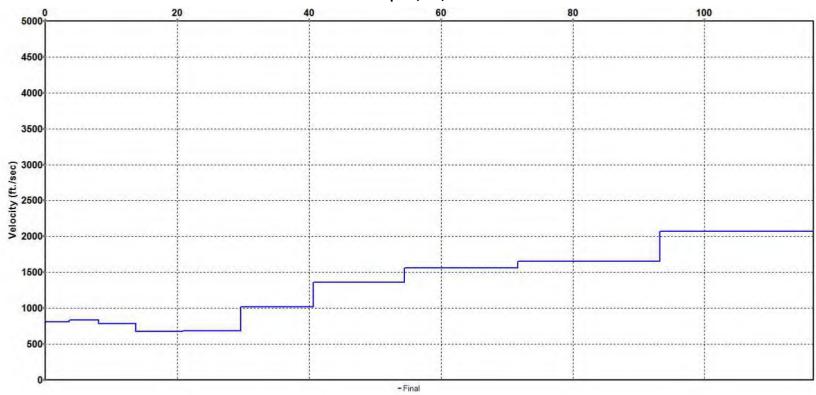
MASW data collected using Geometrics Geode 24-channel seismograph, 4.5 Hz geophones, 5-ft stepout and SurfSeis 4.24 software.

Seismic refraction data collected using Geometrics Geode 24-channel seismograph, 10 Hz geophones, 10-foot stepout and RayFract 3.15 software.

		Mu (72	80 Old William Penn Hwy rrysville, Pennsylvania 15668 4) 325-3996 Fax: (724) 733-7901 w.thggeophysics.com
HLK	5/8/18	PROJECT:	

DRN	HLK	5/8/18	PROJECT:
DES	HLK	5/8/18	Geophy
СНК	PJH	5/10/18	Sene
REV			Sei
PROJ. MGR.	HLK	5/8/18	
SCALE:	s Noted	DRAWING NO:	

seophysical Investigation Seneca Wind Project Seneca Co., Ohio


As Noted DRAWING NO: Figure 3
S-Wave Velocity Profile
GEO-013

PREPARED FOR:

881-6820 SHEET TITLE: DWG6820F3

s-WAVE VELOCITY

Depth (ft) Velocity (ft/s)

-3.6 -8.1 -13.8 -20.8 -29.7 -40.7 -54.5 -71.7 -93.2 -116.5	807 831 782 673 685 1,021 1,360 1,564 1,651 2,070
-116.5	2,070

Notes

Geophysical survey conducted April 30 - May 1, 2018.

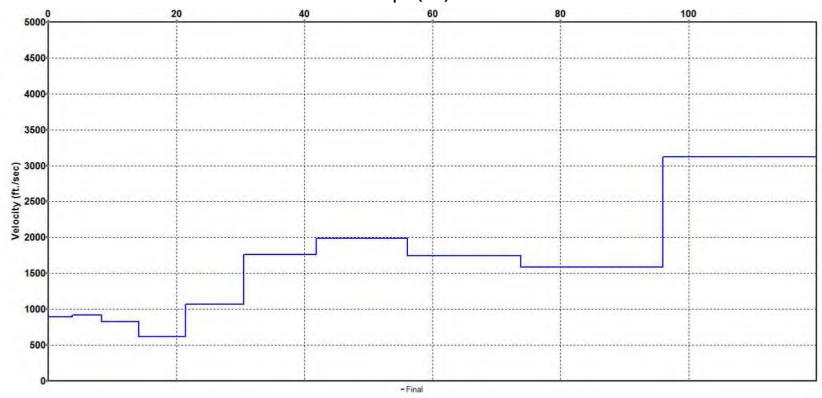
MASW data collected using Geometrics Geode 24-channel seismograph, 4.5 Hz geophones, 5-ft stepout and SurfSeis 4.24 software.

Seismic refraction data collected using Geometrics Geode 24-channel seismograph, 10 Hz geophones, 10-foot stepout and RayFract 3.15 software.

	PROJECT:
	4280 Old William Penn Hwy Murrysville, Pennsylvania 15668 (724) 325-3996 Fax: (724) 733-7901 www.thqqeophysics.com

COLIDOR			- 10/
SCALE:	s Noted	i	DRAWING NO:
PROJ. MGR.	HLK	5/8/18	
REV			Sene
СНК	PJH	5/10/18	Seneca
DES	HLK	5/8/18	Geophys
DRN	HLK	5/8/18	PROJECT.

Seophysical Investigation Seneca Wind Project Seneca Co., Ohio


As Noted DRAWING NO: Figure 4
s-Wave Velocity Profile
GEO-033

PREPARED FOR:

PROJECT NO: 881-6820 SHEET TITLE: DWG6820F4

s-Wave Velocity Profile Depth (feet)

s-WAVE VELOCITY

Depth (ft) Velocity (ft/s)

2.7	004
-3.7	894
-8.4	918
-14.2	830
-21.4	617
-30.5	1,067
-41.9	1,762
-56.1	1,984
-73.8	1,746
-96.0	1,584
-120.0	3,123

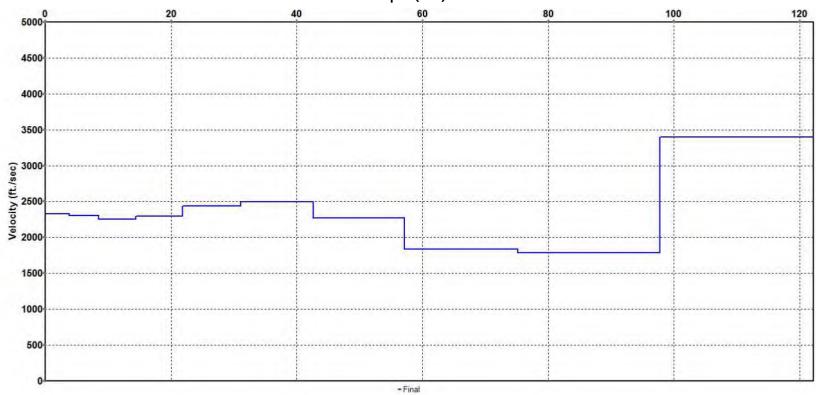
Notes

Geophysical survey conducted April 30 - May 1, 2018.

MASW data collected using Geometrics Geode 24-channel seismograph, 4.5 Hz geophones, 5-ft stepout and SurfSeis 4.24 software.

Seismic refraction data collected using Geometrics Geode 24-channel seismograph, 10 Hz geophones, 10-foot stepout and RayFract 3.15 software.

	PROJECT:
	4280 Old William Penn Hwy Murrysville, Pennsylvania 15668 (724) 325-3996 Fax: (724) 733-7901 www.thqqeophysics.com


SOURCE:			s-Wave Velocity Profile
SCALE:	s Noted	I	DRAWING NO: Figure 5
PROJ. MGR.	HLK	5/8/18	2 2 1 1 2 2 2 3 1 7 2 1 1 2
REV			Seneca Co., Ohio
СНК	PJH	5/10/18	Seneca Wind Project
DES	HLK	5/8/18	Geophysical Investigation
DRIN	HLK	5/8/18	

S-Wave Velocity Profi GEO-061

BARR

881-6820 SHEET TITLE: DWG6820F5

s-Wave Velocity Profile Depth (feet)

s-WAVE VELOCITY

Depth (ft) Velocity (ft/s)

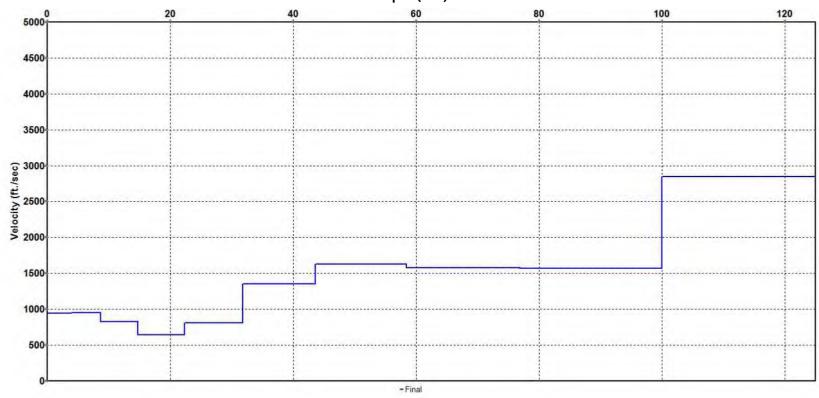
Notes

Geophysical survey conducted April 30 - May 1, 2018.

MASW data collected using Geometrics Geode 24-channel seismograph, 4.5 Hz geophones, 5-ft stepout and SurfSeis 4.24 software.

Seismic refraction data collected using Geometrics Geode 24-channel seismograph, 10 Hz geophones, 10-foot stepout and RayFract 3.15 software.

		4280 Old William Penn Hwy Murrysville, Pennsylvania 15668 (724) 325-3996 Fax: (724) 733-7901 www.thggeophysics.com
HLK	5/8/18	PROJECT:


SOURCE:			c Wayo Volocity Profile
SCALE: As Noted			DRAWING NO: Figure 6
PROJ. MGR.	HLK	5/8/18	2 21.222 2 21, 21.112
REV			Geophysical Investigation Seneca Wind Project Seneca Co., Ohio
СНК	PJH	5/10/18	
DES	HLK	5/8/18	
DRN	HLK	5/8/18	PROJECT:

re 6 s-Wave Velocity Profile GEO-066

881-6820 DWG6820F6

s-Wave Velocity Profile Depth (feet)

s-WAVE VELOCITY

Depth (ft) Velocity (ft/s)

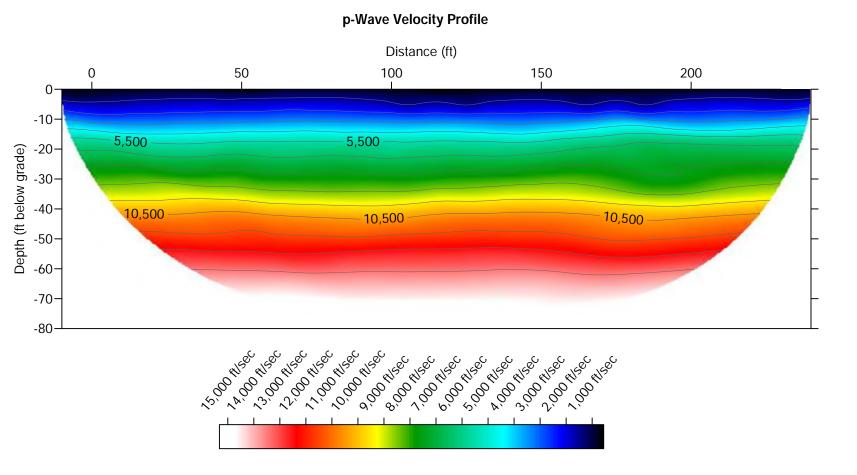
-3.9	944
-8.7	952
-14.8	830
-22.3	643
-31.8	810
-43.6	1,353
-58.4	1,629
-76.9	1,576
-100.0	1,573
-125.0	2,846

Notes

Geophysical survey conducted April 30 - May 1, 2018.

MASW data collected using Geometrics Geode 24-channel seismograph, 4.5 Hz geophones, 5-ft stepout and SurfSeis 4.24 software.

Seismic refraction data collected using Geometrics Geode 24-channel seismograph, 10 Hz geophones, 10-foot stepout and RayFract 3.15 software.


1	1	F 10 14 0	PROJECT:	www.triggeophysics.com
				4280 Old William Penn Hwy Murrysville, Pennsylvania 15668 (724) 325-3996 Fax: (724) 733-7901 www.thqqeophysics.com

SCALE:	s Noted	i	Figure 7
PROJ. MGR.	HLK	5/8/18	· ·
REV			Seneca Co., Ohio
СНК	PJH	5/10/18	Geophysical Investigation Seneca Wind Project
DES	HLK	5/8/18	
DRN	HLK	5/8/18	PROJECT:

gure 7 s-Wave Velocity Profile GEO-085

881-6820 DWG6820F7

p-WAVE VELOCITY

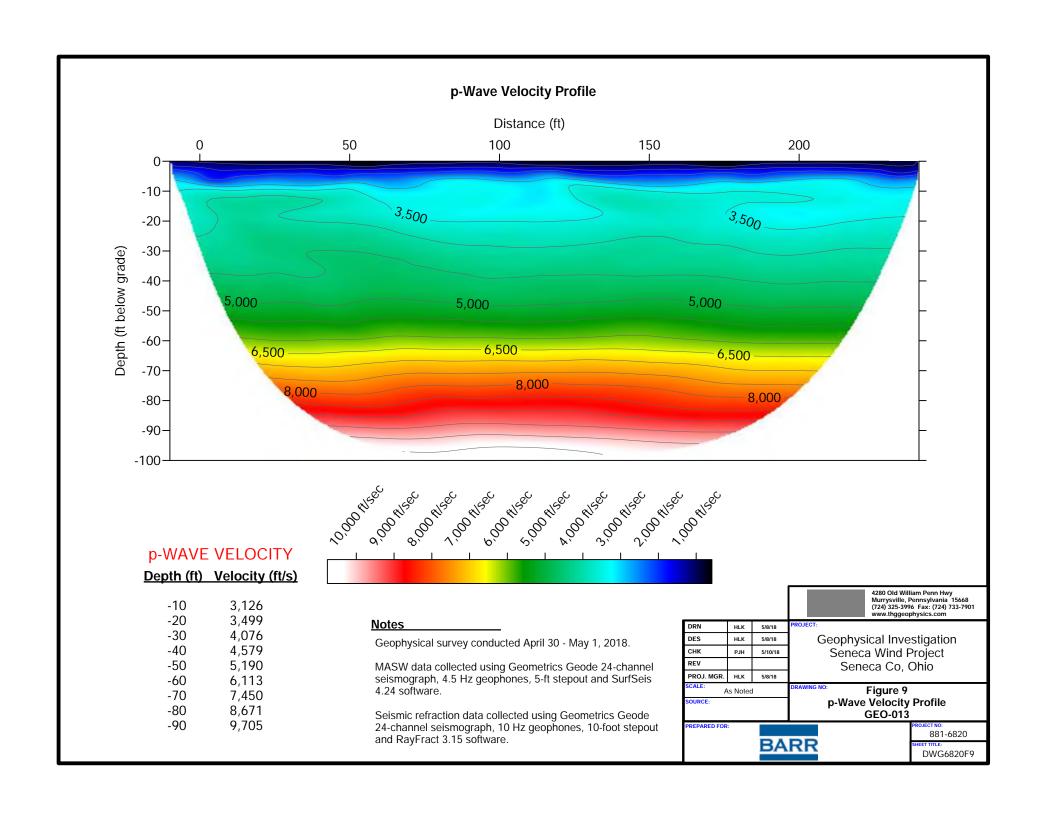
Depth (ft) Velocity (ft/s)

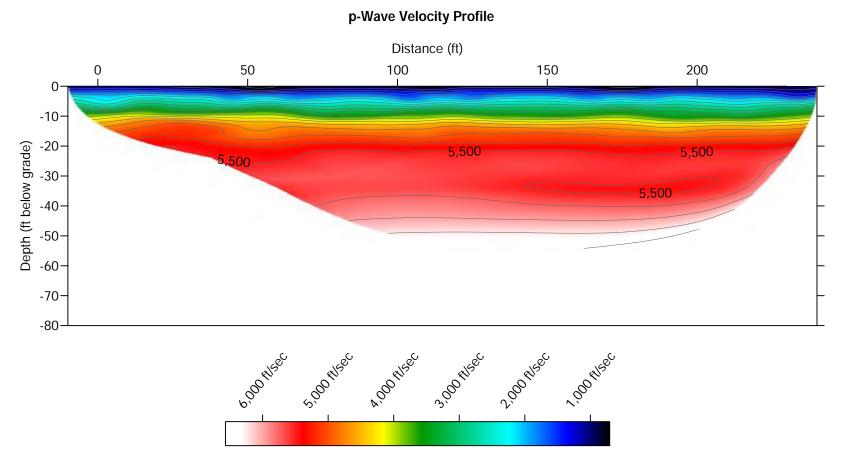
-10	3,169
-20	6,125
-30	7,903
-40	10,121
-50	11,844
-60	13,365
-70	14,644

Notes

Geophysical survey conducted April 30 - May 1, 2018.

MASW data collected using Geometrics Geode 24-channel seismograph, 4.5 Hz geophones, 5-ft stepout and SurfSeis 4.24 software.


Seismic refraction data collected using Geometrics Geode 24-channel seismograph, 10 Hz geophones, 10-foot stepout and RayFract 3.15 software.


					Murrysville, Pennsylvania 15668 (724) 325-3996 Fax: (724) 733-7901 www.thggeophysics.com		
DRN	HLK	5/8/18	PROJECT:				
DES	HLK	5/8/18	Geophysical Investigation				
СНК	PJH	5/10/18	Seneca Wind Project				
REV			Seneca Co, Ohio				
PROJ. MGR.	HLK	5/8/18					
SCALE:	As Noted	i	DRAWING N	IO:	Figure 8		
SOURCE:	SOURCE:			p-Wave Velocity Profile GEO-003			
PREPARED FOR	t:				PROJECT NO:		

BARR

PROJECT NO: 881-6820 SHEET TITLE: DWG6820F8

4280 Old William Penn Hwy

p-WAVE VELOCITY

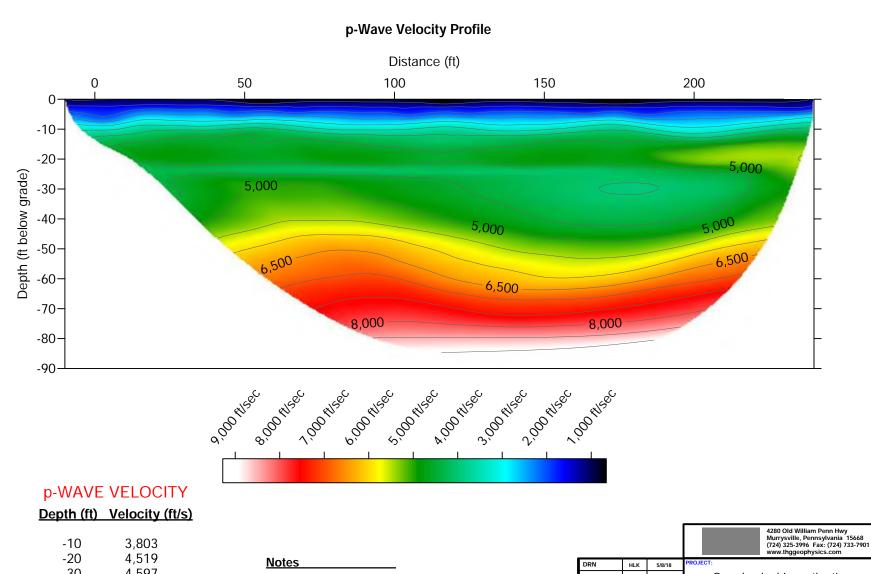
Depth (ft) Velocity (ft/s)

-10	3,992
-20	5,344
-30	5,647
-40	5,865
-50	6 312

Notes

Geophysical survey conducted April 30 - May 1, 2018.

MASW data collected using Geometrics Geode 24-channel seismograph, 4.5 Hz geophones, 5-ft stepout and SurfSeis 4.24 software.


Seismic refraction data collected using Geometrics Geode 24-channel seismograph, 10 Hz geophones, 10-foot stepout and RayFract 3.15 software.

			Murrysville, Pennsylvania 15668 (724) 325-3996 Fax: (724) 733-7901 www.thggeophysics.com
DRN	HLK	5/8/18	PROJECT:
DES	HLK	5/8/18	Geophysical Investigation
СНК	PJH	5/10/18	Seneca Wind Project
REV			Seneca Co, Ohio
PROJ. MGR.	HLK	5/8/18	23
SCALE:	As Noted	i	DRAWING NO: Figure 10
SOURCE:			p-Wave Velocity Profile GEO-033
PREPARED FOR	₹:		PROJECT NO:

BARR

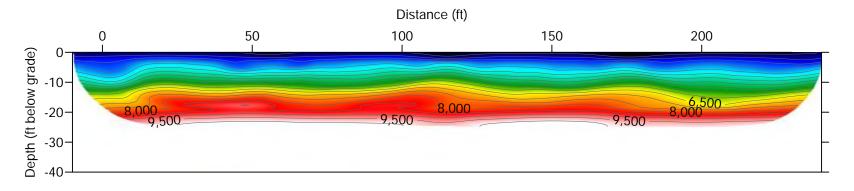
881-6820 SHEET TITLE: DWG6820F10

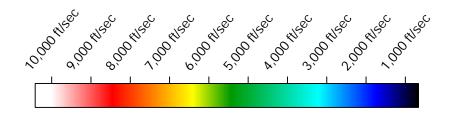
4280 Old William Penn Hwy

-10	3,803
-20	4,519
-30	4,597
-40	5,007
-50	5,923
-60	6,618
-70	7,585
-80	8,489

Geophysical survey conducted April 30 - May 1, 2018.

MASW data collected using Geometrics Geode 24-channel seismograph, 4.5 Hz geophones, 5-ft stepout and SurfSeis 4.24 software.


Seismic refraction data collected using Geometrics Geode 24-channel seismograph, 10 Hz geophones, 10-foot stepout and RayFract 3.15 software.


			(724) 325-3996 Fax: (724) 733-7901 www.thggeophysics.com
DRN	HLK	5/8/18	PROJECT:
DES	HLK	5/8/18	Geophysical Investigation
СНК	PJH	5/10/18	Seneca Wind Project
REV			Seneca Co. Ohio
PROJ. MGR.	HLK	5/8/18	2 2
SCALE:	As Noted		DRAWING NO: Figure 11
SOURCE:			p-Wave Velocity Profile GEO-061
PREPARED FOR	t:		PROJECT NO:

BARR

881-6820 HEET TITLE: DWG6820F11

p-Wave Velocity Profile

p-WAVE VELOCITY

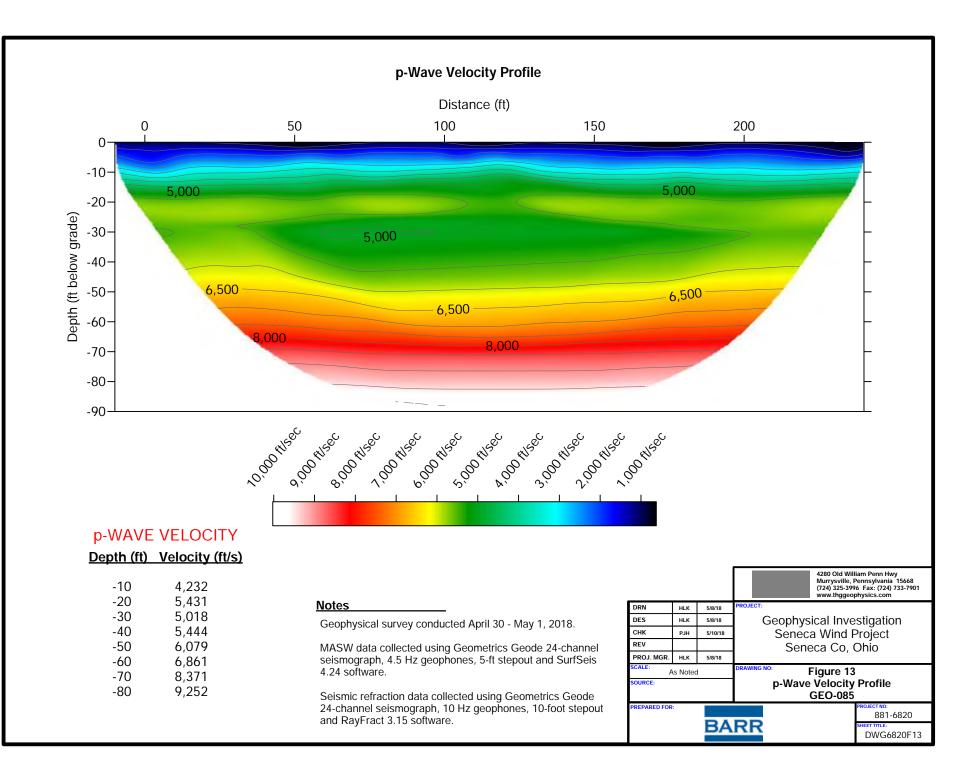
Depth (ft) Velocity (ft/s)

-10 6,209 -20 8,340

Notes

Geophysical survey conducted April 30 - May 1, 2018.

MASW data collected using Geometrics Geode 24-channel seismograph, 4.5 Hz geophones, 5-ft stepout and SurfSeis 4.24 software.


Seismic refraction data collected using Geometrics Geode 24-channel seismograph, 10 Hz geophones, 10-foot stepout and RayFract 3.15 software.

PREPARED FOR	:		PROJECT NO:
SOURCE:			p-Wave Velocity Profile GEO-066
	s Noted	i	DRAWING NO: Figure 12
PROJ. MGR.	HLK	5/8/18	
REV			Seneca Co. Ohio
СНК	РЈН	5/10/18	Seneca Wind Project
DES	HLK	5/8/18	Geophysical Investigation
DRN	HLK	5/8/18	PROJECT:
			Murrysville, Pennsylvania 15668 (724) 325-3996 Fax: (724) 733-7901 www.thggeophysics.com

BARR

881-6820 SHEET TITLE: DWG6820F12

4280 Old William Penn Hwy

Appendix D

Physical Laboratory Test Results

Moisture Contents

	Wat	er Conte	nt Test S	ummary	(ASTM:D	2216)		
Project:		Seneca Wind Job: 1137						<u>11376</u>
Client			Barr Engineeı	ring Compan	y		Date:	4/18/2018
		Sar	mple Informat	ion & Classifi	ication			
Boring #	Geo-001	Geo-001	Geo-003	Geo-014	Geo-014	Geo-018	Geo-019	Geo-020
Sample #								
Depth (ft)	24-25.5	35-36.5	15-16.5	10-11.5	35-36.5	7.5-9	7.5-9	7.5-9
Type	Bag	Bag	Bag	Bag	Bag	Bag	Bag	Bag
Material Classification	Lean Clay w/sand (CL)	Lean Clay w/sand (CL)	Lean Clay w/sand (CL)	Sandy Lean Clay (CL)	Sand w/gravel (SP/SP-SM)	Clayey Sand w/a little gravel (SC)	Sandy Lean Clay w/a little gravel (CL)	Lean Clay w/sand (CL)
Water Content (%)	17.3	16.7	12.3	16.6	13.6	17.3	19.6	17.1
, ,		Sar	mple Informat	ion & Classifi	ication			
Boring #	Geo-020	Geo-021	Geo-022	Geo-022	Geo-045	Geo-047	Geo-051	Geo-051
Sample #								
Depth (ft)	15-16.5	7.5-9	12.5-14	20-20.5	10-11.5	20-21.5	10-11.5	20-21.5
Туре	Bag	Bag	Bag	Bag	Bag	Bag	Bag	Bag
Material Classification	Lean Clay w/sand (CL)	Sandy Lean Clay (CL)	Lean Clay w/sand (CL)	Gravel (GP)	Clayey Sand w/gravel (SC)	Sandy Lean Clay w/gravel (CL/SC)	Sandy Lean Clay (CL)	Clayey Sand w/gravel (SC/SP-SC)
Water Content (%)	15.3	16.2	12.0	13.0	19.6	13.8	16.3	14.7
		Sar	mple Informat	ion & Classifi	ication			
Boring #	Geo-53	Geo-053	Geo-053	Geo-053	Geo-068	Geo-078	Geo-084	Geo-086
Sample #								
Depth (ft)	15-17.5	25-26.5	45-46.5	55-56.5	10-11.5	5-6.5	10-11.5	5-6.5
Туре	Bag	Bag	Bag	Bag	Bag	Bag	Bag	Bag
Material Classification	Gravel w/sand and silt (GP-GM)	Sand (SP/SP-SM)	Sandy Lean Clay (CL)	Clayey Sand w/gravel (SC)	Sandy Silt w/gravel (ML)	Sandy Lean Clay (CL)	Lean Clay (CL)	Lean Clay w/sand (CL)
Water Content (%)	4.9	18.5	14.4	9.5	17.6	19.8	19.3	18.3
		Sar	mple Informat	ion & Classifi	ication			
Boring #	Geo-089	Geo-094	Geo-094	Geo-096				
Sample #								
Depth (ft)	15-16.5	10-11.5	20-21.5	7.5-9				
Туре	Bag	Bag	Bag	Bag				
Material Classification	Lean Clay w/sand and a trace of gravel (CL)	Lean Clay w/sand (CL)	Clayey Gravel (GC)	Sandy Silt (ML/CL-ML)				
Water Content (%)	13.7	14.2	12.3	17.8				

	Wat	er Conte	nt Test S	ummary	(ASTM:D	2216)				
Project:			Seneca	a Wind			Job:	<u>11376</u>		
Client			Barr Enginee	ring Compan	y		Date:	5/16/2018		
	Sample Information & Classification									
Boring #	Geo-002	Geo-002	Geo-002	Geo-002	Geo-002	Geo-004	Geo-004	Geo-004		
Sample #										
Depth (ft)	7.5-9	15-16.5	30-31.5	45-46.5	55-56.5	7.5-9	15-16.5	35-36.5		
Type	Bag	Bag	Bag	Bag	Bag	Bag	Bag	Bag		
Material Classification	Sandy Lean Clay (CL)	Sandy Lean Clay (CL)	Sandy Lean Clay (CL)	Silty Sand w/a little gravel (SM)	Sandy Lean Clay w/a little gravel (CL)	Sandy Lean Clay w/a little gravel (CL)	Sandy Lean Clay (CL)	Sandy Lean Clay (CL)		
Water Content (%)	16.3	16.2	16.6	4.6	12.8	15.8	14.6	18.5		
, /		Sar	nple Informat	ion & Classifi	cation					
Boring #	Geo-005	Geo-005	Geo-005	Geo-006	Geo-006	Geo-006	Geo-006	Geo-007		
Sample #										
Depth (ft)	12.5-14	20-21.5	35-36.5	10-11.5	30-31.5	40-41.5	55-57	7.5-9		
Туре	Bag	Bag	Bag	Bag	Bag	Bag	Bag	Bag		
Material Classification	Sandy Lean Clay (CL)	Sandy Lean Clay w/a little gravel (CL)	Sandy Lean Clay w/a trace of gravel (CL)	Sandy Lean Clay w/a little gravel (CL)	Sandy Lean Clay w/a trace of gravel (CL)	Sandy Lean Clay (CL)	Sandy Lean Clay (CL)	Sandy Lean Clay w/a trace of gravel (CL)		
Water Content (%)	15.9	16.7	16.4	16.7	16.2	15.7	16.9	16.6		
, /		Sar	nple Informat	ion & Classifi	cation					
Boring #	Geo-007	Geo-007	Geo-008	Geo-008	Geo-008	Geo-013	Geo-013	Geo-013		
Sample #										
Depth (ft)	12.5-14	25-26.5	10-11.5	15-16.5	30-31.5	7.5-9	20-21.5	30-31.5		
Туре	Bag	Bag	Bag	Bag	Bag	Bag	Bag	Bag		
Material Classification	Sandy Lean Clay (CL)	Sandy Lean Clay w/a trace of gravel (CL)	Sandy Lean Clay (CL)	Sandy Lean Clay w/a trace of gravel (CL)	Sandy Lean Clay w/a trace of gravel (CL)	Sandy Lean Clay w/gravel (CL)	Lean Clay w/sand (CL)	Gravel w/silt and sand (GP-GM)		
Water Content (%)	15.3	15.0	18.2	17.5	14.2	15.8	14.5	11.3		
		Sar	nple Informat	ion & Classifi	cation					
Boring #	Geo-013	Geo-013	Geo-015	Geo-015	Geo-015	Geo-015	Geo-015	Geo-016		
Sample #										
Depth (ft)	40-41.5	50-51.5	7.5-9	15-16.5	25-26.5	40-41.5	48-48.5	10-11.5		
Туре	Bag	Bag	Bag	Bag	Bag	Bag	Bag	Bag		
Material Classification	Sandy Lean Clay (CL)	Clayey Sand w/gravel (SC)	Lean Clay w/sand (CL)	Sandy Lean Clay w/a trace of gravel (CL)	Sandy Lean Clay w/gravel (CL)	Clayey Gravel (GC)	Clayey Sand w/gravel (SC)	Sandy Lean Clay w/a trace of gravel (CL)		
Water Content (%)	24.2	11.6	16.8	18.1	16.3	8.9	12.6	15.0		

	Wat	er Conte	nt Test S	ummary	(ASTM:D	2216)			
Project:			Seneca	a Wind			Job:	<u>11376</u>	
Client			Barr Enginee	ring Compan	У		Date:	5/16/2018	
Sample Information & Classification									
Boring #	Geo-016	Geo-016	Geo-016	Geo-024	Geo-024	Geo-024	Geo-024	Geo-024	
Sample #									
Depth (ft)	20-21.5	30-31.5	45-46.5	7.5-9	12.5-14	20-21.5	30-31.5	40-41.5	
Туре	Bag	Bag	Bag	Bag	Bag	Bag	Bag	Bag	
Material Classification	Sandy Lean Clay (CL)	Lean Clay w/sand (CL)	Gravel w/sand and silt (GP-GM)	Lean Clay w/sand (CL)	Lean Clay w/sand (CL)	Lean Clay w/sand (CL)	Sandy Lean Clay w/a trace of gravel (CL)	Sand w/silt (SP-SM)	
Water Content (%)	17.1	18.3	5.4	18.5	18.0	20.9	13.9	17.7	
,		Sar	mple Informat	ion & Classifi	cation				
Boring #	Geo-025	Geo-025	Geo-025	Geo-030	Geo-030	Geo-030	Geo-030	Geo-031	
Sample #									
Depth (ft)	7.5-9	15-16.5	30-31.5	10-11.5	20-21.5	30-31.5	40-41.5	7.5-9	
Туре	Bag	Bag	Bag	Bag	Bag	Bag	Bag	Bag	
Material Classification	Lean Clay w/sand (CL)	Lean Clay w/sand (CL)	Silty Sand (SM)	Sandy Lean Clay (CL)	Lean Clay w/sand (CL)	Lean Clay w/sand (CL)	Silty Sand (SM)	Sandy Lean Clay (CL)	
Water Content (%)	17.2	17.1	14.5	10.3	18.0	15.1	15.0	16.6	
		Sar	mple Informat	ion & Classifi	cation				
Boring #	Geo-031	Geo-031	Geo-033	Geo-033	Geo-033	Geo-033	Geo-033	Geo-034	
Sample #									
Depth (ft)	15-16.5	25-26.5	10-11.5	20-21.5	35-36.5	45-46.5	60-61.5	7.5-9	
Type	Bag	Bag	Bag	Bag	Bag	Bag	Bag	Bag	
Material Classification	Lean Clay w/sand (CL)	Silty Sand w/gravel (SM)	Sandy Lean Clay w/a little gravel (CL)	Lean Clay w/sand and a trace of gravel (CL)	Lean Clay w/sand and a trace of gravel (CL)	Lean Clay w/sand (CL)	Sandy Silt (ML)	Sandy Lean Clay w/a little gravel (CL)	
Water Content (%)	16.3	23.1	16.2	16.8	16.4	16.0	23.7	15.5	
, /		Sar	mple Informat		cation				
Boring #	Geo-034	Geo-034	Geo-034	Geo-034	Geo-035	Geo-035	Geo-035	Geo-035	
Sample #									
Depth (ft)	12.5-14	20-21.5	35-36.5	50-51.5	10-11.5	20-21.5	30-31.5	50-51.5	
Type	Bag	Bag	Bag	Bag	Bag	Bag	Bag	Bag	
Material Classification	Lean Clay w/sand (CL)	Lean Clay w/sand (CL)	Lean Clay w/sand (CL)	Clayey Sand (SC)	Sandy Lean Clay (CL)	Sandy Lean Clay w/a trace of gravel (CL)	Sandy Lean Clay w/a trace of gravel (CL)	Sandy Lean Clay w/a trace of gravel (CL)	
Water Content (%)	16.2	16.4	17.6	13.9	15.7	17.6	17.0	16.4	

	Wat	er Conte	nt Test S	ummary	(ASTM:D	2216)					
Project:	Seneca Wind						Job:	<u>11376</u>			
Client			Barr Enginee	ring Compan	y		Date:	5/16/2018			
	Sample Information & Classification										
Boring #	Geo-035	Geo-036	Geo-036	Geo-036	Geo-036	Geo-037	Geo-037	Geo-037			
Sample #											
Depth (ft)	60-61.5	10-11.5	25-26.5	40	55	10-11.5	25-26.5	40-41.5			
Type	Bag	Bag	Bag	Bag	Bag	Bag	Bag	Bag			
Material Classification	Sandy Lean Clay w/a trace of gravel (CL)	Sandy Lean Clay w/a trace of gravel (CL)	Lean Clay w/sand (CL)	Lean Clay w/sand (CL)	Silty Sand w/gravel (SM)	Sandy Lean Clay (CL)	Lean Clay w/sand (CL)	Lean Clay w/sand (CL)			
Water Content (%)	16.5	16.3	17.9	17.0	7.2	17.3	17.0	17.0			
		Sar	mple Informat	ion & Classifi	cation						
Boring #	Geo-037	Geo-038	Geo-038	Geo-038	Geo-038	Geo-038	Geo-039	Geo-039			
Sample #											
Depth (ft)	55-56.5	10-11.5	20-21.5	35-36.5	45-46.5	60-61.5	7.5-9	15-16.5			
Type	Bag	Bag	Bag	Bag	Bag	Bag	Bag	Bag			
Material Classification	Sand w/silt (SP-SM)	Sandy Lean Clay (CL)	Sandy Lean Clay w/a trace of gravel (CL)	Sandy Lean Clay (CL)	Sandy Lean Clay (CL)	Clayey Gravel (GC)	Sandy Lean Clay (CL)	Sandy Lean Clay (CL)			
Water Content (%)	18.3	19.3	17.0	16.6	11.1	7.0	16.9	14.8			
		Sar	mple Informat	ion & Classifi	ication						
Boring #	Geo-039	Geo-039	Geo-040	Geo-040	Geo-040	Geo-040	Geo-040	Geo-040			
Sample #											
Depth (ft)	25-26.5	40-41.5	10-11.5	15-16.5	25-26.5	35-36.5	50-51.5	60-61.5			
Туре	Bag	Bag	Bag	Bag	Bag	Bag	Bag	Bag			
Material Classification	Sandy Lean Clay (CL)	Sandy Lean Clay (CL)	Sandy Lean Clay (CL)	Sandy Lean Clay (CL)	Sandy Lean Clay (CL)	Sandy Lean Clay (CL)	Lean Clay w/sand (CL)	Gravel w/clay and silt (GC-GM)			
Water Content (%)	14.9	13.0	16.5	16.0	16.3	17.1	17.8	11.2			
			nple Informat								
Boring #	Geo-041	Geo-041	Geo-041	Geo-041	Geo-041	Geo-043	Geo-043	Geo-043			
Sample #											
Depth (ft)	7.5-9	20-21.5	30-31.5	40-41.5	55-56.5	7.5-9	15-16.5	25-26.5			
Туре	Bag	Bag	Bag	Bag	Bag	Bag	Bag	Bag			
Material Classification	Sandy Lean Clay w/a little gravel (CL)	Lean Clay w/sand (CL)	Lean Clay w/sand (CL)	Sandy Lean Clay (CL)	Sandy Lean Clay w/a trace of gravel (CL)	Sandy Lean Clay w/a trace of gravel (CL)	Lean Clay w/sand and a trace of gravel (CL)	Lean Clay w/sand (CL)			
Water Content (%)	13.1	17.4	17.1	15.8	14.6	15.4	13.0	17.9			

	Wat	er Conte	nt Test S	ummary	(ASTM:D	2216)					
Project:			Seneca	a Wind			Job:	<u>11376</u>			
Client			Barr Enginee	ring Compan	y		Date:	5/16/2018			
	Sample Information & Classification										
Boring #	Geo-043	Geo-043	Geo-044	Geo-044	Geo-044	Geo-044	Geo-044	Geo-044			
Sample #											
Depth (ft)	35-36.5	50-51.5	7.5-9	12.5-14	20-21.5	35-36.5	45-46.5	60-61.5			
Type	Bag	Bag	Bag	Bag	Bag	Bag	Bag	Bag			
Material Classification	Lean Clay w/sand (CL)	Sandy Lean Clay (CL)	Sandy Lean Clay (CL)	Sandy Lean Clay w/a trace of gravel (CL)	Sandy Lean Clay w/a trace of gravel (CL)	Lean Clay w/sand and a trace of gravel (CL)	Lean Clay w/sand (CL)	Sandy Lean Clay (CL)			
Water Content (%)	18.8	17.3	15.1	15.9	17.7	18.5	16.7	10.5			
, ,	•	Sar	nple Informat	ion & Classifi	ication						
Boring #	Geo-056	Geo-056	Geo-056	Geo-056	Geo-059	Geo-059	Geo-059	Geo-059			
Sample #											
Depth (ft)	7.5-9	15-16.5	25-26.5	45-46.5	7.5-9	12.5-14	20-21.5	30-31.5			
Туре	Bag	Bag	Bag	Bag	Bag	Bag	Bag	Bag			
Material Classification	Lean Clay w/sand (CL)	Sandy Lean Clay w/a trace of gravel (CL)	Sandy Lean Clay w/a trace of gravel (CL)	Sandy Lean Clay (CL)	Lean Clay w/sand (CL)	Lean Clay w/sand (CL)	Sandy Lean Clay w/a trace of gravel (CL)	Sandy Lean Clay w/a trace of gravel (CL)			
Water Content (%)	16.6	16.5	17.4	16.2	16.4	17.2	12.6	13.5			
, ,	•	Sar	nple Informat	ion & Classifi	ication	•					
Boring #	Geo-059	Geo-059	Geo-061	Geo-061	Geo-061	Geo-061	Geo-062	Geo-062			
Sample #											
Depth (ft)	45-46.5	55-56.5	10-11.5	20-21.5	30-31.5	45-46.5	7.5-9	15-16.5			
Туре	Bag	Bag	Bag	Bag	Bag	Bag	Bag	Bag			
Material Classification	Sandy Lean Clay w/a trace of gravel (CL)	Clayey Sand w/a little gravel (SC)	Sandy Lean Clay (CL)	Sandy Lean Clay (CL)	Sandy Lean Clay (CL)	Sandy Lean Clay (CL)	Sandy Lean Clay w/a trace of gravel (CL)	Sandy Lean Clay w/a trace of gravel (CL)			
Water Content (%)	18.0	12.7	15.9	14.8	14.1	12.4	15.0	15.2			
		Sar	nple Informat	ion & Classifi	cation						
Boring #	Geo-062	Geo-062	Geo-062	Geo-063	Geo-063	Geo-063	Geo-063	Geo-069			
Sample #											
Depth (ft)	30-31.5	45-46.5	60-61.5	10-11.5	20-21.5	35-36.5	50-51.5	10-11.5			
Туре	Bag	Bag	Bag	Bag	Bag	Bag	Bag	Bag			
Material Classification	Sandy Lean Clay w/a trace of gravel (CL)	Sandy Lean Clay w/a trace of gravel (CL)	Lean Clay w/sand and a trace of gravel (CL)	Sandy Lean Clay (CL)	Lean Clay w/sand (CL)	Lean Clay w/sand (CL)	Sandy Lean Clay (CL)	Lean Clay w/sand (CL)			
Water Content (%)	16.8	14.6	15.6	17.4	17.3	15.8	13.4	18.8			

	Wat	er Conte	nt Test S	ummary	(ASTM:	2216)		
Project:			Seneca	a Wind			Job:	<u>11376</u>
Client			Barr Enginee	ring Compan	y		Date:	5/16/2018
		Sar	mple Informat	ion & Classifi	cation			
Boring #	Geo-069	Geo-070	Geo-070	Geo-070	Geo-071	Geo-071	Geo-071	Geo-071
Sample #								
Depth (ft)	20-21.5	7.5-9	15-16.5	30-31.5	10-11.5	20-21.5	35-36.5	45-46.5
Туре	Bag	Bag	Bag	Bag	Bag	Bag	Bag	Bag
Material Classification	Silty Sand (SM)	Sandy Lean Clay (CL)	Lean Clay (CL)	Lean Clay w/sand (CL)	Sandy Lean Clay (CL)	Sandy Lean Clay (CL)	Clayey Sand (SC)	Sandy Lean Clay w/a little gravel (CL)
Water Content (%)	14.5	16.4	19.9	17.7	16.8	17.1	14.0	14.1
, ,		Sar	mple Informat	ion & Classifi	cation			
Boring #	Geo-071	Geo-072	Geo-072	Geo-072	Geo-072	Geo-074	Geo-074	Geo-074
Sample #								
Depth (ft)	60-61.5	10-11.5	20-21.5	40-41.5	50-51.5	7.5-9	15-16.5	30-31.5
Туре	Bag	Bag	Bag	Bag	Bag	Bag	Bag	Bag
Material Classification	Sandy Lean Clay w/a little gravel (CL)	Sandy Lean Clay w/a trace of gravel (CL)	Sandy Lean Clay w/a trace of gravel (CL)	Sandy Lean Clay w/a trace of gravel (CL)	Sand w/silt (SP-SM)	Sandy Lean Clay w/a trace of gravel (CL)	Lean Clay w/sand (CL)	Lean Clay w/sand (CL)
Water Content (%)	14.0	15.9	16.5	13.5	14.3	14.9	17.2	18.2
		Sar	mple Informat	ion & Classifi	cation			
Boring #	Geo-074	Geo-074	Geo-079	Geo-079	Geo-079	Geo-079	Geo-079	Geo-081
Sample #								
Depth (ft)	45-46.5	60-61.5	7.5-9	15-16.5	30-31.5	45-46.5	60-61.5	10-11.5
Туре	Bag	Bag	Bag	Bag	Bag	Bag	Bag	Bag
Material Classification	Sandy Lean Clay w/a little gravel (CL)	Sandy Lean Clay w/a little gravel (CL)	Lean Clay w/sand (CL)	Lean Clay w/sand (CL)	Lean Clay w/sand (CL)	Lean Clay w/sand and a trace of gravel (CL)	Sand (SP)	Lean Clay w/sand (CL)
Water Content (%)	13.4	12.8	17.2	17.7	17.1	18.3	13.1	16.3
		Sar	mple Informat	ion & Classifi	cation			
Boring #	Geo-081	Geo-081	Geo-081	Geo-082	Geo-082	Geo-082	Geo-082	Geo-082
Sample #								
Depth (ft)	24-25.5	40-41.5	60-61.5	10-11.5	20-21.5	30-31.5	40-41.5	55-55.9
Туре	Bag	Bag	Bag	Bag	Bag	Bag	Bag	Bag
Material Classification	Lean Clay w/sand (CL)	Sandy Lean Clay w/a trace of gravel (CL)	Sand w/silt and gravel (SP-SM)	Sandy Lean Clay w/a trace of gravel (CL)	Lean Clay w/sand (CL)	Lean Clay w/sand (CL)	Lean Clay w/sand and pockets of clayey sand (CL)	Lean Clay w/sand (CL)
Water Content (%)	18.6	17.4	10.3	17.7	18.6	19.3	15.7	17.2

	Wat	er Conte	nt Test S	ummary	(ASTM:D	2216)		
Project:			Seneca	a Wind			Job:	<u>11376</u>
Client		I	Barr Enginee	ring Compan	у		Date:	5/16/2018
		Sar	nple Informat	ion & Classifi	cation			
Boring #	Geo-083	Geo-083	Geo-083	Geo-085	Geo-085	Geo-085	Geo-085	Geo-087
Sample #								
Depth (ft)	10-11.5	20-21.5	30-31.5	7.5-9	15-16.5	30-31.5	50-51.5	10-11.5
Type	Bag	Bag	Bag	Bag	Bag	Bag	Bag	Bag
Material Classification	Lean Clay w/sand (CL)	Sandy Lean Clay w/a trace of gravel (CL)	Silt w/sand (ML)	Lean Clay w/sand and a trace of gravel (CL)				
Water Content (%)	15.7	15.9	16.8	15.7	15.4	16.9	14.2	16.3
, ,	•	Sar	nple Informat	ion & Classifi	cation			
Boring #	Geo-087	Geo-087	Geo-087	Geo-088	Geo-088	Geo-091	Geo-091	Geo-091
Sample #								
Depth (ft)	20-21.5	30-31.5	45-46.5	7.5-9	15-16.5	10-11.5	20-21.5	30-31.5
Type	Bag	Bag	Bag	Bag	Bag	Bag	Bag	Bag
Material Classification	Lean Clay w/sand (CL)	Sandy Lean Clay (CL)	Sand w/silt and a little gravel (SP-SM)	Sandy Lean Clay (CL)	Lean Clay w/sand (CL)	Lean Clay w/sand (CL)	Sandy Lean Clay w/a trace of gravel (CL)	Lean Clay w/sand (CL)
Water Content (%)	16.4	15.4	14.8	18.0	16.7	16.3	14.5	16.9
		Sar	nple Informat	ion & Classifi	cation			
Boring #	Geo-091	Geo-091	Geo-092	Geo-092	Geo-092	Geo-092	Geo-092	Geo-093
Sample #								
Depth (ft)	45-46.5	60-61.5	7.5-9	15-16.5	30-31.5	45-46.5	60-61.5	10-11.5
Type	Bag	Bag	Bag	Bag	Bag	Bag	Bag	Bag
Material Classification	Lean Clay w/sand (CL)	Sandy Lean Clay (CL)	Lean Clay w/sand (CL)	Lean Clay w/sand (CL)	Lean Clay w/sand (CL)	Lean Clay w/sand and a trace of gravel (CL)	Silt (ML)	Lean Clay w/sand and a trace of gravel (CL)
Water Content (%)	18.2	12.3	16.6	15.4	18.1	18.9	27.0	16.1
		Sar	nple Informat	ion & Classifi	cation			
Boring #	Geo-093	Geo-093	Geo-093					
Sample #								
Depth (ft)	20-21.5	40-41.5	55-56.5					
Туре	Bag	Bag	Bag					
Material Classification	Lean Clay w/sand and a trace of gravel (CL)	Lean Clay w/sand and a trace of gravel (CL)	Silty Sand w/occasional pieces of clay and a trace of gravel (SM)					
Water Content (%)	17.0	18.3	14.3					

	Wat	er Conte	nt Test S	ummary	(ASTM:D	2216)		
Project:			Seneca	a Wind			Job:	<u>11376</u>
Client			Barr Enginee	ring Company	/		Date:	5/25/2018
		Sai	mple Informat	ion & Classifi	cation			
Boring #	Geo-009	Geo-009	Geo-009	Geo-042	Geo-042	Geo-052	Geo-052	Geo-052
Sample #								
Depth (ft)	7.5-9	35-36.5	55-56.5	7.5-9	55-56.5	10-11.5	35-36.5	55-56.5
Туре	Bag	Bag	Bag	Bag	Bag	Bag	Bag	Bag
Material Classification	Lean Clay w/sand (CL)	Lean Clay w/sand (CL)	Lean Clay w/sand and a trace of gravel (CL)	Lean Clay (CL)	Lean Clay (CL)	Lean Clay w/sand (CL)	Lean Clay w/sand (CL)	Lean Clay w/sand (CL)
Water Content (%)	16.6	16.3	14.5	20.3	17.2	14.4	19.3	19.0
		Saı	mple Informat	ion & Classifi	cation			
Boring #	Geo-075	Geo-075	Geo-075	Geo-075	Geo-076	Geo-076	Geo-076	Geo-076
Sample #								
Depth (ft)	10-11.5	20-21.5	35-36.5	55-56.5	7.5-9	25-26.5	40-41.5	55-56.5
Туре	Bag	Bag	Bag	Bag	Bag	Bag	Bag	Bag
Material Classification	Lean Clay w/sand (CL)	Lean Clay w/sand (CL)	Lean Clay (CL)	Lean Clay w/sand and a trace of gravel (CL)	Lean Clay w/sand and pockets of sand (CL)	Silty Clayey (CL-ML/ML)	Lean Clay w/sand (CL)	Lean Clay w/a trace of gravel (CL)
Water Content (%)	15.3	16.9	19.8	14.4	12.3	16.8	18.0	20.0
, ,		Sai	mple Informat	ion & Classifi	cation			
Boring #	Geo-090	Geo-090	Geo-090	Geo-090				
Sample #								
Depth (ft)	10-11.5	20-21.5	40-41.5	60-61.5				
Туре	Bag	Bag	Bag	Bag				
Material Classification	Lean Clay w/sand (CL)	Lean Clay w/sand (CL)	Silty Sand (SM)	Lean Clay w/sand (CL)				
Water Content (%)	17.9	16.5	14.4	15.9				
		Sai	mple Informat	ion & Classifi	cation			
Boring #								
Sample #								
Depth (ft)								
Туре								
Material Classification								
Water Content (%)								

Atterberg Limits

		La	boratory	Test Sur	nmary		
Project:			Seneca	a Wind		Job:	<u>11376</u>
Client:			Barr Enginee	ring Compan	у	Date:	<u>4/19/2018</u>
		Sa	ample Informa	ation & Class	ification		
Boring #	Geo-001	Geo-003	Geo-089				
Sample #							
Depth (ft)	12.5-14	15-16.5	10-11.5				
Sample Type	Bag	Bag	Bag				
Material Classification	Lean Clay w/sand (CL)	Lean Clay w/sand (CL)	Sandy Lean Clay (CL)				
			Atterberg Lim	nits (ASTM:D	4318)		
Liquid Limit	31	27	36				
Plastic Limit	16	15	19				
Plasticity Index	15	12	17				
		Sa	ample Informa	ation & Class	ification		
Boring #							
Sample #							
Depth (ft)							
Sample Type							
Material Classification							
			Atterberg Lim	nits (ASTM:D	4318)		
Liquid Limit							
Plastic Limit							
Plasticity Index							

		La	boratory	Test Sur	nmary			
Project:			Seneca	a Wind			Job:	<u>11376</u>
Client:		l	Barr Enginee	ring Company	/		Date:	<u>5/18/2018</u>
		Sa	ample Informa	ation & Classi	fication			
Boring #	Geo-024	Geo-025	Geo-031	Geo-035	Geo-043	Geo-056	Geo-081	Geo-082
Sample #								
Depth (ft)	20-21.5	15-16.5	15-16.5	7.5-9	10-11.5	55-56.5	24-25.5	10-11.5
Sample Type	Bag	Bag	Bag	Bag	Bag	Bag	Bag	Bag
Material Classification	Lean Clay w/sand (CL)	Lean Clay w/sand (CL)	Lean Clay w/sand (CL)	Sandy Lean Clay (CL)	Sandy Lean Clay (CL)	Lean Clay w/sand (CL)	Lean Clay w/sand (CL)	Sandy Lean Clay w/a trace of gravel (CL)
			Atterberg Lim	nits (ASTM:D4	4318)			
Liquid Limit	31	32	29	36	32	26	30	35
Plastic Limit	16	16	16	18	16	16	15	16
Plasticity Index	15	16	13	18	16	10	15	19
		Sa	ample Informa	ation & Classi	fication			
Boring #								
Sample #								
Depth (ft)								
Sample Type								
Material Classification								
			Atterberg Lim	nits (ASTM:D4	4318)			
Liquid Limit								
Plastic Limit								
Plasticity Index								

		Laboratory	Test Sur	nmary			
Project:		Senec	a Wind			Job:	<u>11376</u>
Client:		Barr Enginee	ring Compan	y		Date:	5/25/2018
		Sample Inform	ation & Class	ification			
Boring #	Geo-076						
Sample #							
Depth (ft)	25-26.5						
Sample Type	Bag						
Material Classification	Silty Clay (CL-ML/ML)						
		Atterberg Lin	nits (ASTM:D	4318)			
Liquid Limit	18						
Plastic Limit	14						
Plasticity Index	4						
		Sample Inform	ation & Class	ification			
Boring #							
Sample #							
Depth (ft)							
Sample Type							
Material Classification							
		Atterberg Lin	nits (ASTM:D	4318)			
Liquid Limit					_		
Plastic Limit							
Plasticity Index							

Grain Size

					Grain	Size	Dis	tribut	ion A	STN	ΛD4	122				Job N	lo. :	11376
	Project: Se															est D		5/7/18
Repor	ted To: B	arr Engine	ering Com	pany		0 1									Rep	ort D	ate:	5/14/18
	Location /	Boring No.	. Sam	ple No.	Depth (ft)	Sample Type					5	Soil Cla	ssification	1				
*	Ge	o-002			45-46.5	Bag				Ç	Silty San	d w/a	little gra	vel (SM)				
•	Ge	o-013			30-31.5	Bag				(Gravel w	/silt aı	nd sand ((GP-GM)				
\Diamond	Ge	o-025			30-31.5	Bag						Silty Sa	and (SM)					
		Grav					Sand						Нус	drometer		ysis		
100	Co	arse	Fine 3/4 3/8	e #4	Coarse #10	Mediu #20		#40	Fine #100	#20	00			Fine	es			
100		<u> </u>	*					7										
90			*															
90			`\	\mathbf{x}														
80			`,						-									
80									1	Ш								
70					+				1									
70			Ì						<u> </u>									
60																		
						$- \setminus \parallel$												
Percent Passing						$-$ \				1								
# 20						*												
Perce																		
– 40					1		+											
					1		+											
30						``\				##								
						1.4				Ш								
20								•										
										*								
10																		
0	00 50	20	10	5	2	1		rain Size (.2	0.1	.05		.02	0.01		.005	.002	² 0.001
	.00		10			1	Gr	rain Size (mm)	0.1				0.01				0.001
			Other Tests		7		T I	cent Passir		_		ſ			1			
		*	•	\Diamond		*		400.0	♦	4		_	*	•	<	>		
	id Limit tic Limit				Mass (g) 687. 2"	.3	400.3	151.2	-		D ₆₀ D ₃₀						
	city Index				1.5							D ₃₀ D ₁₀				\dashv		
	r Content	4.6	11.3	14.5	1	1" 100.	.0	100.0		-		C _U						
	ensity (pcf)				3/4			93.7				C _C						
	fic Gravity				3/8			67.5				arks:						
	orosity				#	4 86.4	Į.	50.5										
Organ	ic Content				#1	0 70.6	5	34.3	100.0									
	рН				#2	49.4	! <u> </u>	23.5	100.0									
Shrink	age Limit				#4		7	18.0	99.8	4								
	trometer				#10			12.6	79.4	4								
	u (psf)				#20	0 15.1		10.7	45.3									
(^ = a	ssumed)																	
						7)IL JGII	VEER	ING				ъ.					

						Grain	Size	D (istrib	oution	ı AS	TI	ΙD	422	<u>)</u>			Job I	No. :	113	76
	Project: Se																-	Γest C	ate:	5/9/	18
Repor	ted To: Ba	arr Engi	neerin	ng Comp	oany												Re	port [oate:	5/14	/18
_	Location /	Boring l	No.	Sam	ple No.	Depth (ft)	Sample Type							Soil Cl	assificati	on					
*	Geo	o-093				55-56.5	Bag			Silty	Sand v	w/oc	casiona	l piece:	s of clay	and a tr	ace of g	gravel (S	6M)		
•																					
\Diamond																					
-		G	ravel					Sa	ınd						Н	ydrome	ter Ana	alysis			$\overline{1}$
	Co	arse	3/4	Fine	#4	Coarse #10	Medi	um 20	#40	Fin	e #100	#20	0			F	ines]
100		+	3/4	*		#10		10	#40	1	+100	#40									7
																					=
90												Ш									
							$\overline{}$														
80																					7
70									\mathbb{R}^{+}												
									\downarrow												1
60																					7
Percent Passing																					
를 50 발																					1
ercei											*										
<u>م</u> 40																					
												\downarrow									1
30																					1
																					3
20												Ш									1
10																					1
10																					3
0	50		20	10	5	2			.5	.2		_	.05		.02	0.0		.005	.(002	
	100			10			1		Grain S	ize (mm)	0	.1				0.0	1			0.	.001
			Oth	ner Tests		- 1		F	Percent P			Ī									
		*	\bot	•	\Diamond	4	_	ĸ	•		\Diamond			_	*	•		\Diamond			
	uid Limit		\bot			Mass (0.6						D ₆₀							
	stic Limit					1	2"							D_{30}							
	icity Index		-			1.5								D ₁₀	<u> </u>	-	_				
	er Content	14.3				_	1"							C _U							
	ensity (pcf)					3/4			-					C^{C}							
	fic Gravity		_			3/8		0.0	1				Rei	narks:							7
	orosity					-	97														
Organ	ic Content		+			#1															
	pН		-			#2															
	kage Limit		-			#4															
	etrometer		-			#10	-														
	u (psf)					#20	0 33	.5	<u> </u>												_
(= 6	assumed)																				
	ç	9530 Jar	mes A	ve Sout	:h		阜	OII NG	_ HNEE	ERINC	ે				BI	oomina	aton. N	∕N 554	31		

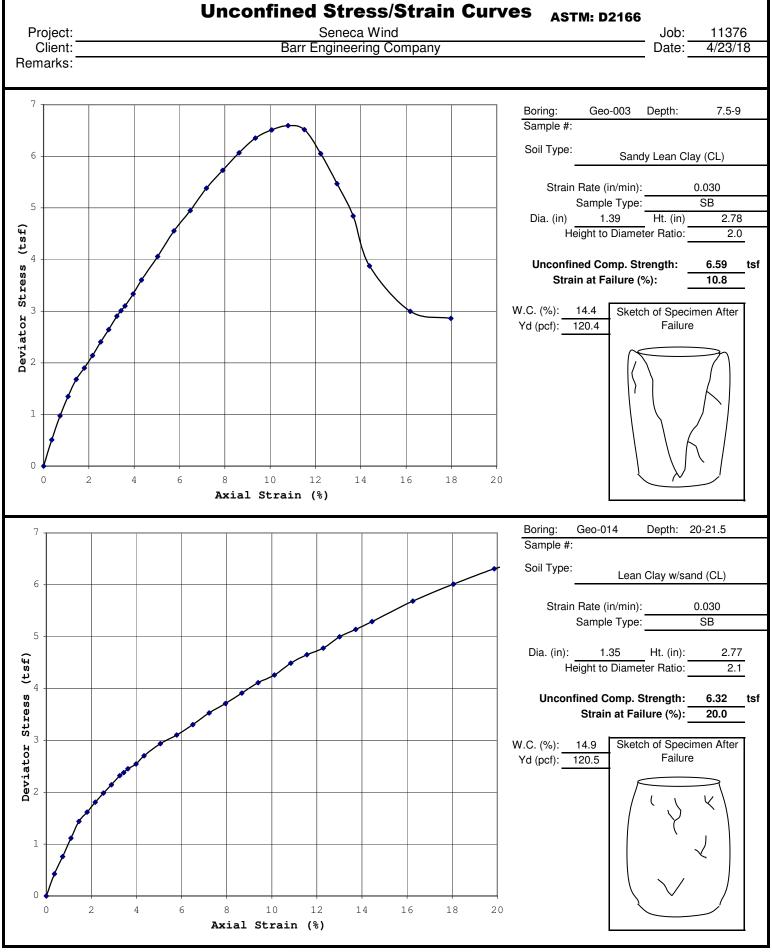
						Grain	Size	Di	istrib	utior	ı AS	TN	ΙD	422	1			Job N	No. :	113	376
	Project: Se																	est D		4/17	'/18
Repor	ted To: Ba	arr Eng	ineerir	ng Comj	pany												Rep	ort D	ate:	4/19	/18
	Location /	Boring	No.	Sam	ple No.	Depth (ft)	Sample Type							Soil Cla	assificatio	on					
*	Geo	o-014				45-46.5	Bag							Silty S	and (SM	1)					
•														-							
\Diamond																					
L		C	Gravel					Saı	nd						Н	ydromete	er Ana	lysis			$\overline{}$
	Cos	arse		Fine	e I	Coarse	Medi		"10	Fin					·	Fii					コ
100			3/4	3/8	*	#10	#.	30	#40		#100	#20					Н				7
												\blacksquare									7
90						\															3
80							$\setminus \bot$					#									7
							\top														=
70							\dashv					Ш									
70							\downarrow					#									1
60							\					#									7
60 m																					3
Percent Passing												Ш									1
a 50								\perp				#									4
ırceı									$\forall \vdash$			\blacksquare									7
<u>40</u>									\downarrow												
									$+\!\!\!\!+\!$			#									_
30																					4
												\blacksquare									7
20												\blacksquare									3
20												` *									1
10												\blacksquare									7
10																					
0	50		20	10	5	2			.5	ize (mm)		1	.05		.02	0.01		.005	.(002	
	100			10			1		Grain S	ize (mm)	0.	1				0.01				U	.001
			Otl	ner Tests		_		P	ercent P	assing											
		*		•	\Diamond		-	K	•		\Diamond				*	•	<	>			
	uid Limit		_			Mass (5.4						D ₆₀			-				
	stic Limit		_			-	2"							D ₃₀			-				
	icity Index		_			1.5								D ₁₀							
	er Content		_			-	'" <u> </u>							C_U							
	ensity (pcf)					3/4	-							C^{C}							
	fic Gravity		_			3/8							Rei	marks:							7
	orosity		_			-	-	0.0													
	ic Content		\perp			#1	-														
	pH		\perp			#2	-														
	kage Limit		\perp			#4	-														
	etrometer		\perp			#10															
	u (psf)					#20	0 17	.9													
(" = 8	assumed)																				
	ç	9530 Ja	mes A	ve Sout	th		阜	OIL NG	, INEE	ERINC	ે				Ble	oomina	ton. M	IN 554	31		

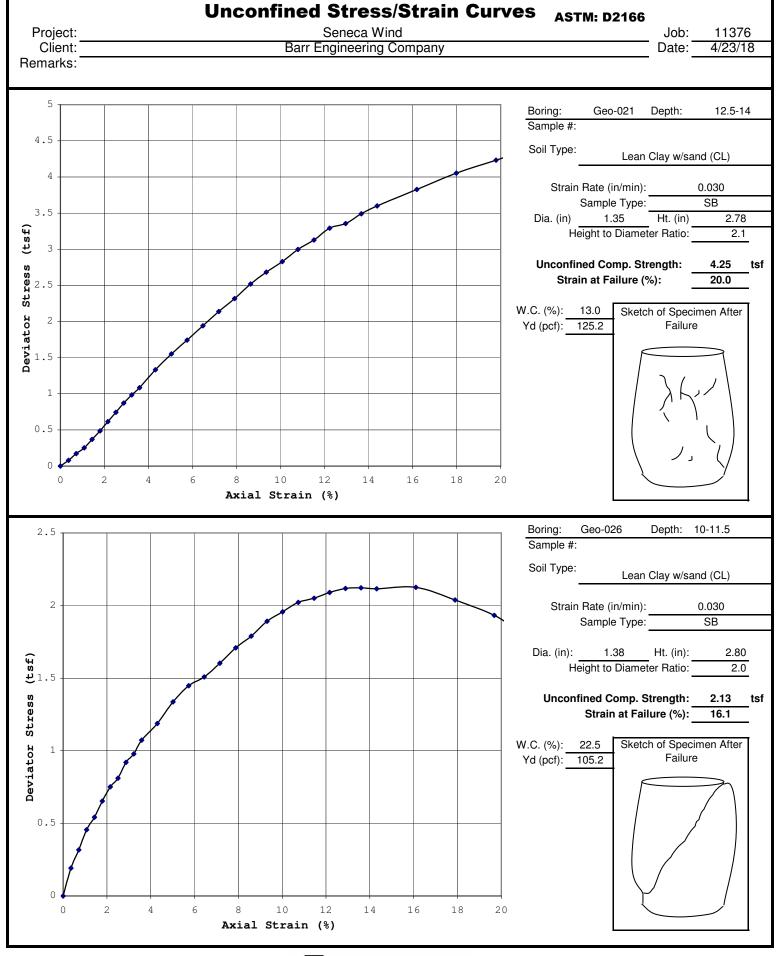
								(Grai	n S	Size	D e	istı	ribı	utic	n	AS	T	M C	42	2					Jo	b N	0. :	11:	376
I	Project:	Seneca	a Wi	nd																						Tes ⁻	t Da	ate:	5/2	2/18
Repor	ted To:	Barr E	Ingir	neerin	g Con	npan	y																		Re	por	t Da	ate:	5/2	5/18
	Locatio	on / Bori	ina N	Īo.	Con	nple l	No	D	epth (fi		ample Type									Coil	Classi	ficatio	_							
<u>,</u> [10.	San	iipic .	INO.																							
*		Geo-090)						40-41.5	+	Bag									Silt	y Sano	i (SM))							
\Diamond								+		-																				
Ľ																														
		Coarse	Gr	avel	Fir	ne		Co	arse		Med	Sa ium	nd		I	Fine						Ну	drom [eter Fine		llysis	S			\dashv
100		2	1	3/4	3/8	8	#	4	#1)		20	#4	0		#10	00	#20	00											
			\blacksquare																											
90			\pm																											
			\mp	+											\forall															
80			\pm												\neg															
00			\pm													\forall														
70			Ħ													\downarrow														
/0			\blacksquare																											
			\pm														\perp													
60 as			Ħ														\rightarrow	Ш												
assin			\blacksquare															\setminus												
H 20			\pm	\bot														$\downarrow \downarrow$												
Percent Passing			\mp	+																										
4 0			\blacksquare																											
			\pm	+																										
30			\forall																											
			\Box																											
20																								\parallel	H					
			\pm																											
10			\pm																											
10			\pm	╁		Ш																		Н						
0		#	+																											
0	100	50		20	10)	5		2		1		.5	. Ci-	.2 e (mm	·/·	0.	.1	.05			02	0.0)1		.005		.0	02	0.001
													31 a11	I SIZC	(11111)	1)														
				Oth	er Test			_		ı			erce		ssing			1			_						7			
			*	+	•	-	\Diamond	\dashv		, .		*	-	•	+	\Diamond				_	-	*	•	•	(\Diamond	-			
	uid Limit					-		_	Mass		15	8.8	1		-					D ₆₀							-			
	stic Limit			-		-		\dashv		2"			-		+					D ₃₀			\vdash		_		-			
	icity Index		1.1.1			-				1.5"					+					D ₁₀							-			
	r Content		14.4	+		-		-		1"			1		-					Cu							1			
	ensity (pcf					+				3/4"									D.	C _C							J			
	fic Gravity prosity			+		1		\dashv		3/8" #4	10	0.0	-		+				K	emark	.s.									\neg
		. –								#4 #10	99																			
Organ	ic Content	-		+		1		\dashv		#10 #20	99		╁		+															
Shrin	рп kage Limit			+				\dashv		#20 #40			\vdash		+															
	etrometer					\vdash		\dashv		100	70		H		+															
	u (psf)			+				\dashv		200					\top															
	assumed)								"	_50			1						<u> </u>											
											5	OII					-													
		9530	Jan	nes A	ve Soı	ıth					Ę	NG	IN.	EE	RIN	IG						Blo	omir	nato	n N	/N 5	543	1		

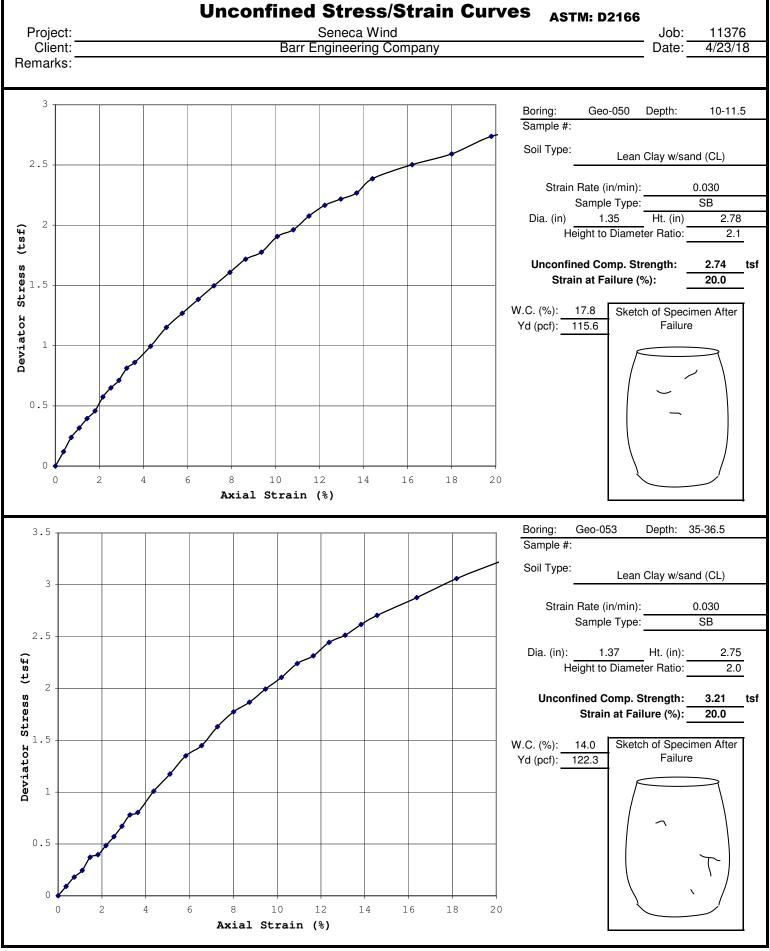
					Gr	ain	Size	e D	ist	rib	utio	on	AS	T	M	D۷	122)				,	Job	o No). :	11	376
	Project: S																							Dat		5/1	1/18
Repor	ted To: B	arr Engine	ering Com	pany																	F	Rep	ort	Dat	te:	5/1	7/18
	Location /	Boring No.	. Sam	nple No.	Deptl		Sample Type									;	Soil Cl	assific	ation								
*	Ge	o-036			25-2	26.5	Bag									Lea	n Clay	w/sa	ınd (CL)							
•	Ge	o-043			15-1	16.5	Bag						L	ean	Clay	w/s	and a	ınd a t	race	of gra	vel	(CL)					
\Diamond	Ge	o-056			60-6	51.5	Bag							Saı	ndy	Lean	Clay	w/a l	ittle g	gravel	(CI	Ĺ)					
		Grav							and										Hyd	romet			ysis				\Box
100	Co	arse	Fine 3.48	e #4	Coarse	#10	Med	ium ‡20	#4	10		Fine #10	00	#2	200					Fi	nes						
100			* -··-	7	•									\blacksquare										\equiv	\equiv		\exists
								*						\pm									Н	\pm	\Rightarrow		\exists
90						<u></u>					,		,	$^{+}$										#	#		=
							1	\$ \				`-}	Ź	\downarrow									П	7	\dashv	_	7
80										_				7		$\overline{}$								\equiv	\equiv		\exists
												· · •	· .	\pm		``		K						#	\Rightarrow		=
70																	1						Н	#	#		=
						+								$^{+}$		Ψ.							Ħ	\mp	\dashv		\exists
60														+		·	\. _{\.\.}		1				Н	\pm	\equiv		
8 00														\pm				<u>`</u> .,	_	Ä				_			\equiv
Percent Passing														\pm					·.		X			#	=		
H 50														\pm								X		#	#		7
erce														$^{+}$						•	8	•	X	\mp	\dashv		7
40														$^{+}$							*		1	\forall	-		=
														\blacksquare								♦.		```			\exists
30														Н	Ш								ì		<i>``</i>		
30														Ш									Н	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\			
• •														\pm										#	#	<u> </u>	
20														$^{+}$									П	=	#		
														+										\pm	\equiv		
10														\pm										_	\Rightarrow		
						+								\pm										\pm	\Rightarrow		\exists
0														Ш													\exists
	100 50	20	10	5		2	1	(.5 Graii	ı Siz	e (mn	2 n)	0.	1		.05		.02		0.0).	005		.0	002	0.001
			Other Tests		_				Perce	nt Pa	assing																
		*	•	\Diamond	_		-	*	-	•	_	\Diamond						k	K	•	_	\Diamond	>				
Liqu	uid Limit			<u> </u>	N	lass (g		4.4		199.5	5	277	.4				D ₆₀				_						
	stic Limit					2	-										D ₃₀				4						
Plast	icity Index					1.5											D ₁₀				_						
Wate	r Content	17.9	13.0	<u> </u>		1	-										C_{U}				_						
Dry De	ensity (pcf)			<u> </u>		3/4	-					100	0.0				C_{C}										
Speci	fic Gravity	2.68*	2.68*	2.68*		3/8	3" 10	0.00		100.	.0	98.	.6		_	Ren	arks:										_
P	orosity					#	4 98	3.2		97.9)	94.	.3														
Organ	ic Content					#1	0 96	5.1		94.9)	89.	.7														
	pН					#2	0 93	3.8		92.1	L	85.	.5														
Shrin	kage Limit					#4	0 91	1.5		89.6	5	81.	.6														
Pene	etrometer					#10	0 86	5.5		83.7	7	74.	.7														
Q	u (psf)					#20	0 82	2.8		79.3	3	69.	.3														
(* = 8	assumed)																										
		0520 Jama					F	OI:	L	ਬਧ	RII	JC.								mine							

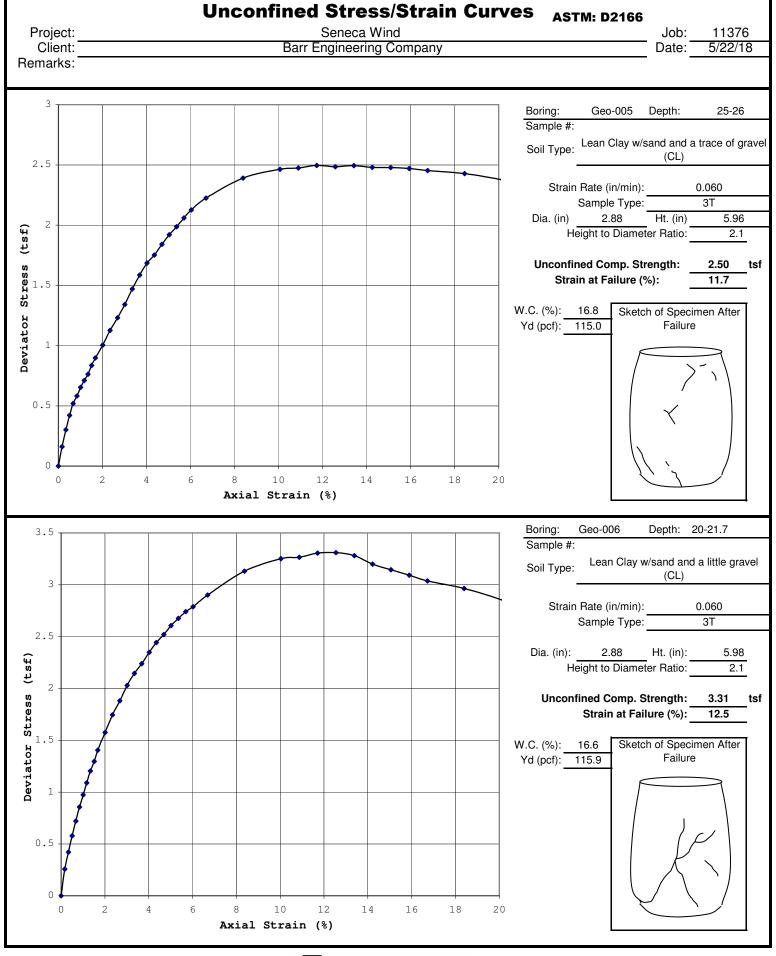
				Grain S	Size D	Distribution ASTM	D422	Job No. : 11376		
	Project: Send	eca Wind						Test Date: 5/11/18		
Repoi	rted To: Barr	: Engineeri	ng Company					Report Date: 5/17/18		
				Donth (ft)	Sample Type		Soil Classification			
	Location / B	oring No.	Sample No.	Depth (ft)	Туре		Soil Classification			
Spec 1	Geo-0	36		25-26.5	Bag		Lean Clay w/sand (CL)			
Spec 2	Geo-0	43		15-16.5	Bag	Lean Clay	w/sand and a trace of g	ravel (CL)		
Spec 3	Geo-0	56		60-61.5	Bag	Sandy	Lean Clay w/a little grav	vel (CL)		
					- (Sieve Data				
	Sn	ecimen ¹	1			Specimen 2		Specimen 3		
	Sieve		% Passing		Sieve	% Passing	Sieve	% Passing		
	2"				2"		2"			
	1.5"		-		1.5"		1.5"			
	1"				1"		1"			
	3/4"				3/4"		3/4"	100.0		
	3/8"		100.0		3/8"	100.0	3/8"	98.6		
	#4		98.2		#4	97.9	#4	94.3		
	#10		96.1		#10	94.9	#10	89.7		
	#20		93.8		#20	92.1	#20	85.5		
	#40		91.5		#40	89.6	#40	81.6		
	#100		86.5		#100	83.7	#100	74.7		
	#200		82.8				#200	69.3		
	0 :						1			
D: -		ecimen								
Diar										
				_						
	0.00.				0.001	24.9				
			20.1		0.001		0.001	20.9		
#200 79.3 #200 69.3 Hydrometer Data Specimen 1 Specimen 2 Specimen 3 Diameter (mm) % Passing Diameter % Passing 0.027 73.4 0.027 72.9 0.028 60.2 0.018 67.2 0.018 66.8 0.018 55.6 0.011 59.7 0.011 58.3 0.011 46.2 0.008 53.0 0.008 52.5 0.008 42.7 0.006 49.3 0.006 45.1 0.006 35.8 0.003 36.5 0.003 35.3 0.003 29.7 0.001 26.7 0.001 24.9 0.001 20.9 Remarks Specimen 3										
	Sp	ecimen ²				Remarks	0.001	20.9		

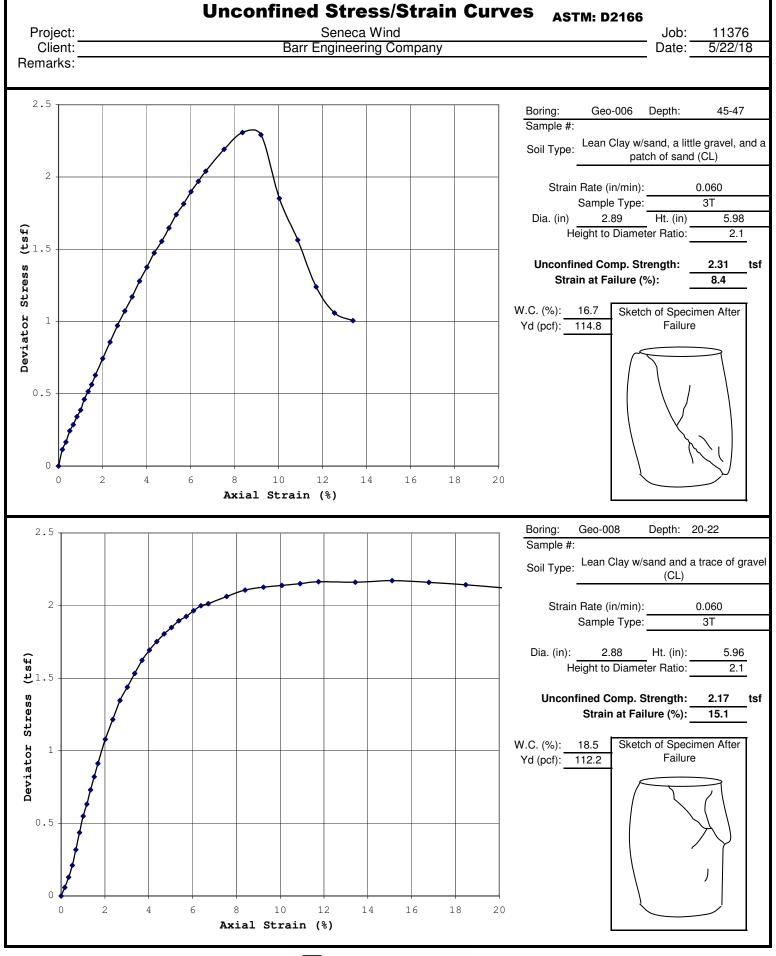
Grain Size Distribution ASTM D422 Job No.: 11376																															
	Project: Seneca Wind Reported To: Barr Engineering Company									Test Date:			5/11																		
Repor	ted T	0 : B	Barr E	ngir	neeri	ing Co	mp	any	7																	Re	por	rt Da	ate:	5/17	/18
	Loca	ation	/ Bori	na N	Jo	S	amr	ole N	Īo.	D	epth (ft)		nple rpe									Soil Cl	assificatio	n.							
. [Loca			iig i	10.	1	anı	one i	10.	1																					
*		Ge	eo-091								7.5-9	В	ag									Lean	Clay (CL	.)							
\Diamond																															
\ \ L																															_
		Co	parse	Gr	avel	F	ine			Coa	arse	1	Medi		ınd	1	F	ine					Ну	drom	eter Fine		alysi	is			4
100		2	Jarse	1	3/4		3/8		#/		#10			20	#	‡40		#10	00	#20	00				1 1110						_
					#		#								_	*-				Ш											
90					+															-											
90																						$\overline{}$									
				\blacksquare	#		╫											1		Ш			*								
80				Ħ	#		#											1		Ш			\searrow								1
					#		#						\blacksquare			╄				Н			-	$\overline{}$							
70					+		₩													Н				$\overline{}$							
				Н	+															Н				Ж							
60					#		Ш											1		Ш					Λ						
				\forall	#		#											#		Ш											
Passi							#													Ш							×				
Percent Passing																				Н											
Perc							₩													Ш											
40					#		#											1		Ш											
					#		#						#					1		Ш											
30				Ħ			#													Н										\rightarrow	
				H	+															Н											
20				H	+		\blacksquare													Н											
20					#		Ш											1		Ш											
					#		#			+								#		Ш											
10				Ħ			#													Н											
0	100	50		Щ	20		111		5		2				5	1	1 1		0 :	Ш.	.05		.02		<u> </u>		.005	<u> </u>	0	02 0	
	100	50			20		10		5		2		1	(Grai	in Siz	.2 ze (mm))	0.1	I	.03		.02	0.0	01		.003	,	.0	0.	.001
					0	ther Te	ata.							т	2000	ant D	assing														
				*	Ť	•	SIS	<	\Diamond	٦		Γ	,	k	CIC	•	assing	\Diamond					*		,	T	\Diamond	1			
Liaı	uid Limi	it									Mass	(a)	17									D ₆₀					•				
	stic Lim						1					2"			t		+					D ₃₀						1			
	icity Ind				+		1				1	.5"					+					D ₁₀						-			
	r Conte				+		+			1		1"			t		+					C _U		†		1		1			
	ensity (p				+						9	3/4"										C _C	-	+				1			
	fic Grav		2	.68*	+							3/8"	10	0.0							Re	marks:				<u> </u>		_			
	orosity	vity		.00			1					#4	99								IKC	marks.									1
	ic Cont	tant			+		\dashv			\dashv		#4 #10	99		+		\dashv		\dashv												
Organ		ıcıll	\vdash		+		ᆉ			\dashv		‡20	99		+		-		-												
CIi-	pH	mit			+		\dashv			\dashv		H			+		+														
	kage Li		\vdash		+		ᆉ			\dashv		‡40 	97		+		+		-												
	etromet	er			+		4			\dashv		00	94		+		-														
	u (psf)	رم. دما)									#2	200	91	.3																	_
(* = 8	assume	ea)												_																	
												į	=	OII	L (TN:	יקן	יאומה														
			9530	Jan	nes	Ave S	out	h									ERIN t, IN						Blo	oomir	ngto	on, I	MN !	5543	1		
														دىن	11.	LIO	, 11N	○ .													

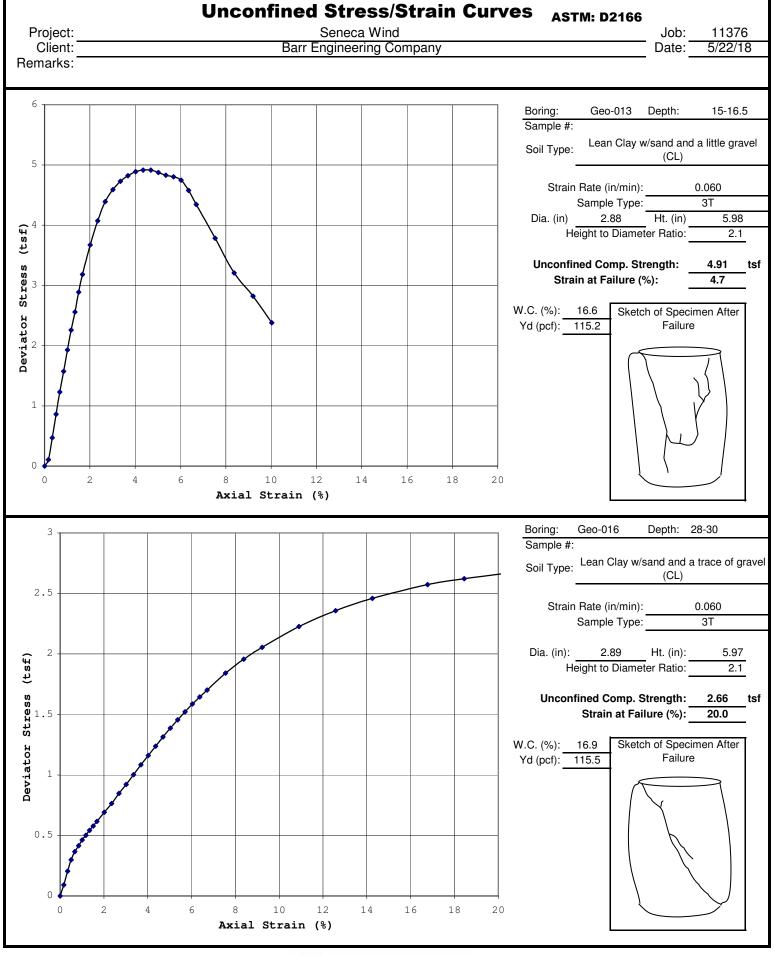

				Grain S	Size	Distribution	on ASTM	D422	Job No. :	11376
	Project: Sene	ca Wind							Test Date:	5/11/18
Repor	ted To: Barr	Engineeri	ing Company						Report Date:	5/17/18
	Location / Bo	oring No.	Sample No.	Depth (ft)	Sample Type			Soil Classification		
Spec 1	Geo-0	91		7.5-9	Bag			Lean Clay (CL)		
Spec 2										
Spec 3										
						Sieve Data				
	Sn	ecimen	1			Specimen 2			Specimen 3	
	Sieve		% Passing		Sieve		% Passing	Sieve		assing
	2"		70 1 G00mig		2"	,	o i doomig	2"	70.10	<u></u>
	1.5"				1.5"			1.5"		
	1"				1"			1"		
	3/4"				3/4"			3/4"		
	3/8"	_	100.0		3/8"			3/8"		
	#4 #10		99.9 99.1		#4 #10			#4 #10		
	#20		98.1		#20			#20		
	#40		97.1		#40			#40		
	#100		94.4		#100			#100		
	#200		91.3		#200			#200		
					H	/drometer Da				
		ecimen				Specimen 2			Specimen 3	
Dian	neter (mm)		% Passing		Diamet	er 9	6 Passing	Diameter	% Pa	assing
	0.026 0.017		84.7 77.4							
	0.017		67.6							
	0.008		58.9							
	0.006		51.6							
	0.003		39.8							
	0.001		29.4							
	0 :	•		1		Remarks		1 .	0	
	Sp	ecimen	1			Specimen 2		;	Specimen 3	
					5	OIL				
	953	0 James <i>A</i>	Ave South		与	OIL NGINEER: ESTING, I		Bloomin	ngton, MN 55431	

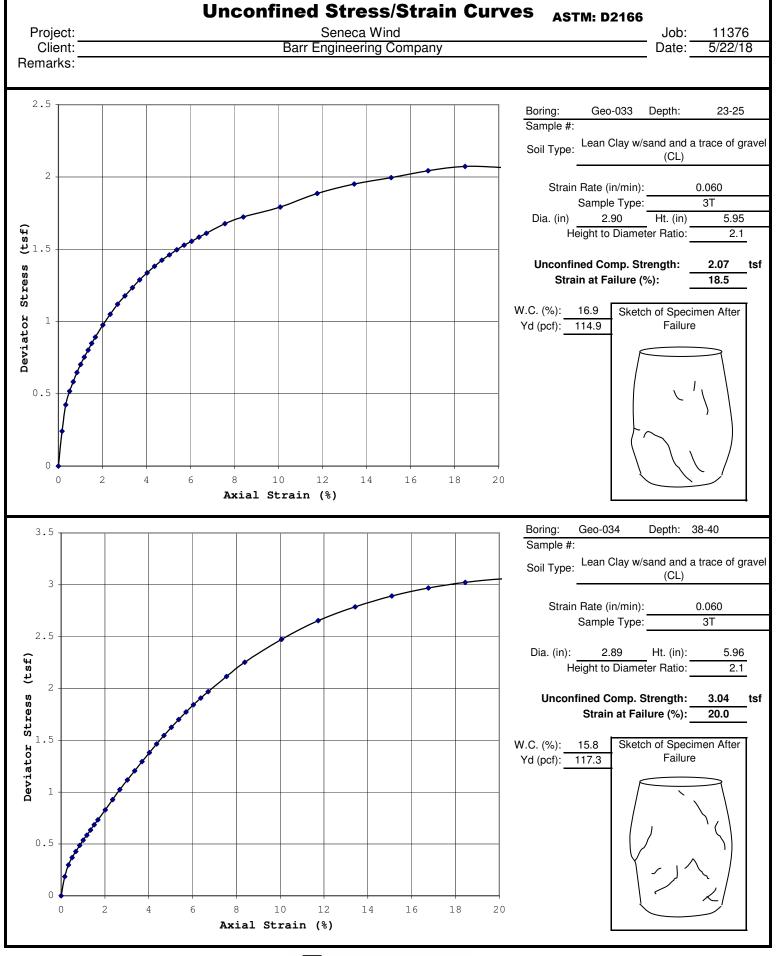

Dry Unit Weight


		Labo	oratory Te	st Summ	ary		
Project:		Job:	<u>11376</u>				
Client:		Date:	<u>5/22/18</u>				
		Samp	le Informatior	ո & Classifica	tion		
Boring #	Geo-034						
Sample #							
Depth (ft)	24-25						
Type or BPF	TWT						
Classification	Sandy Lean Clay w/a trace of gravel (CL)						
		Water Co	ntent, Dry De	ensity (ASTM:	:D7263)		
Water Content (%)	16.1						
Dry Density (pcf)	111.3						
		Samp	le Information	n & Classifica	tion		
Boring #		-					
Sample #							
Depth (ft)							
Type or BPF							
Classification							
		Water Co	ntent, Dry De	ensity (ASTM:	:D7263)		
Water Content (%)							
Dry Density (pcf)							
		Samp	le Information	n & Classifica	tion		
Boring #							
Sample #							
Depth (ft)							
Type or BPF							
Classification							
<u>-</u>		Water Co	ntent, Dry De	ensity (ASTM:	:D7263)		
Water Content (%)							
Dry Density (pcf)							

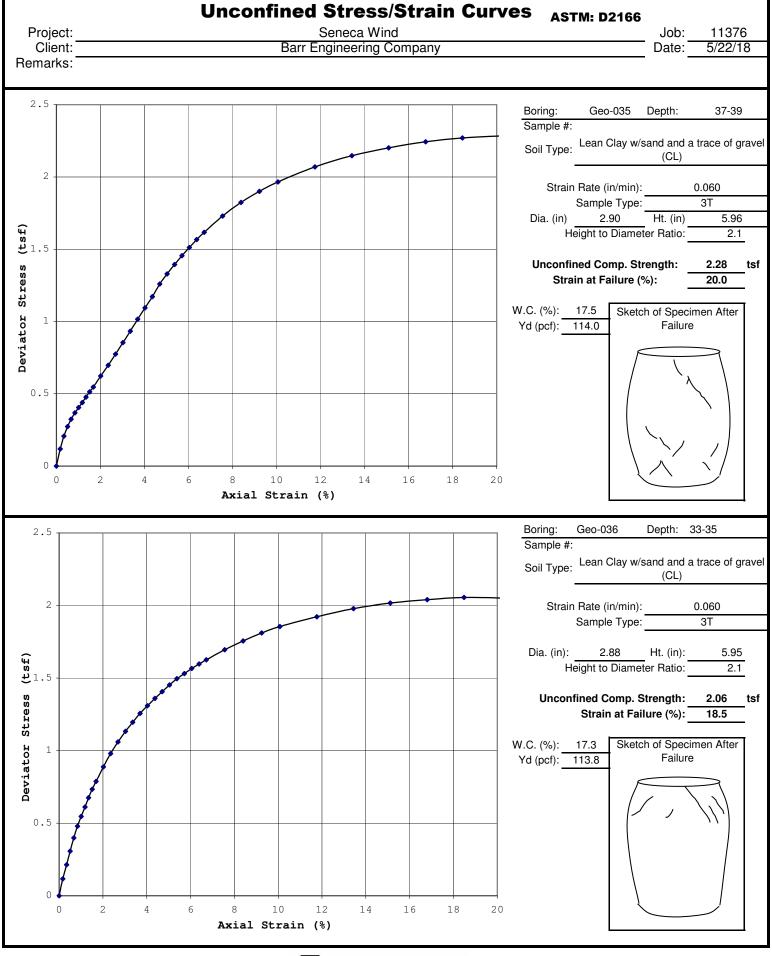

Unconfined Compressive Shear Strength

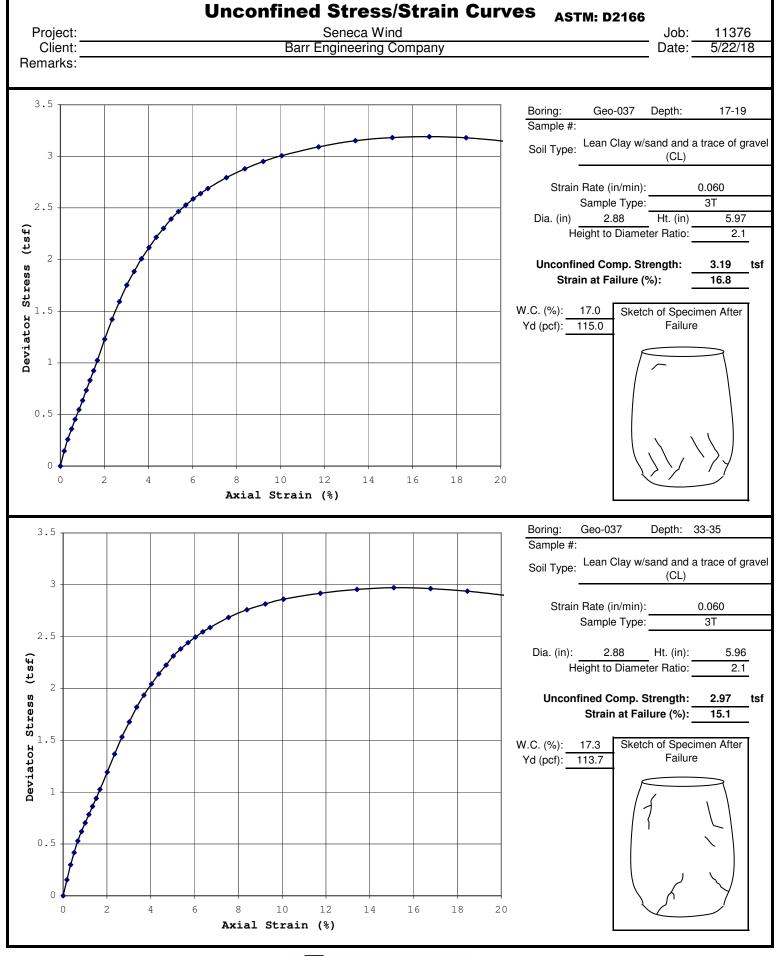


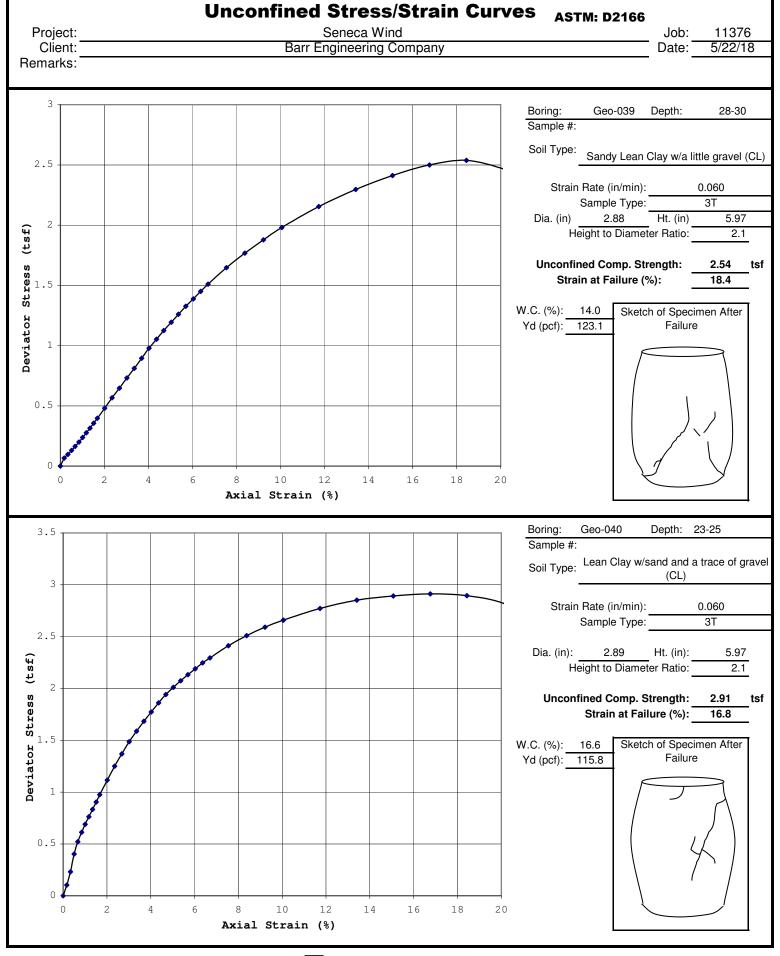


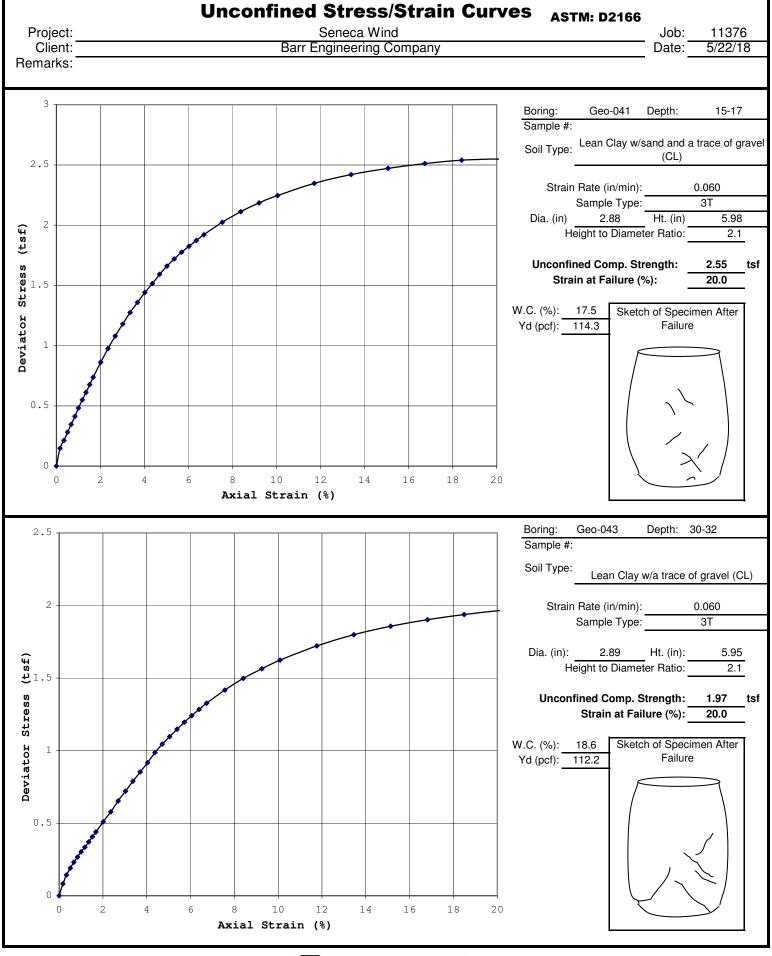


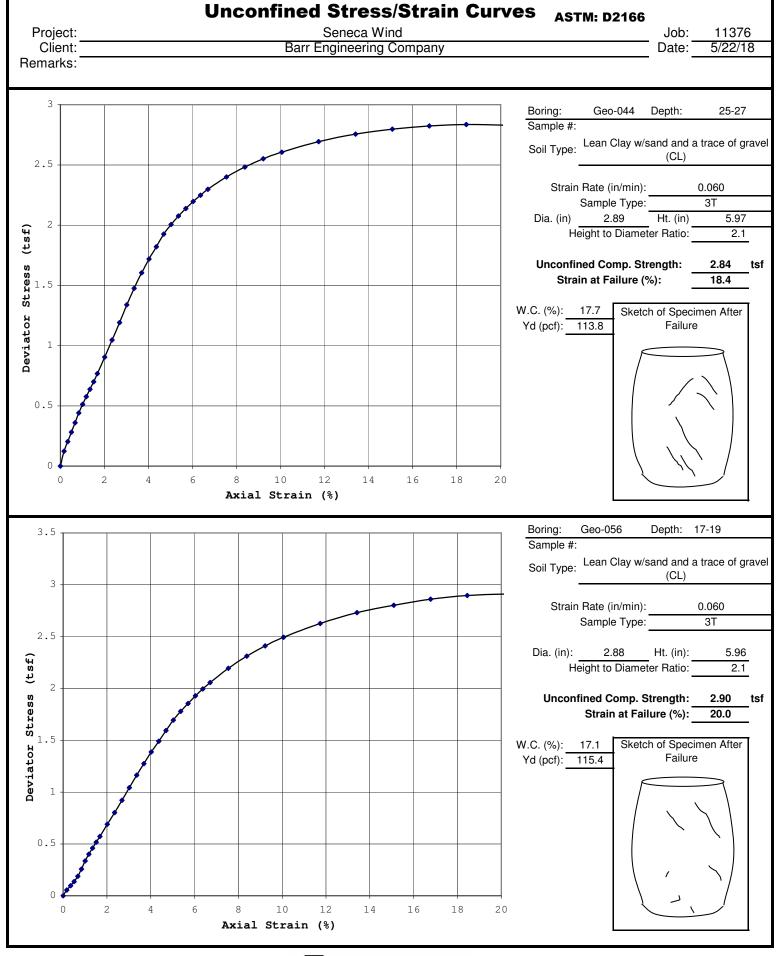
		Stress/Strain Curves	
Proje Clie	ect: Se	eneca Wind ineering Company	Job: 11376 Date: 4/23/18
Remar		incerning Company	Date. 4/20/10
6 T			Boring: Geo-089 Depth: 10-11.5
			Sample #:
			Soil Type: Sandy Lean Clay (CL)
5			
			Strain Rate (in/min): 0.030 Sample Type: SB
4			Dia. (in) 1.36 Ht. (in) 2.78
(tsf)			Height to Diameter Ratio: 2.0
			Unconfined Comp. Strength: 4.93 tsf
Stress			Strain at Failure (%): 11.5
		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	.C. (%): 18.9 Sketch of Specimen After
atoj		• Y	'd (pcf): 110.7 Failure
Deviator 			LL: <u>36</u>
Δ			PL: <u>19</u> PI: <u>17</u>
1 —			'''
	<i>f</i>		
<i> </i>			
0	2 4 6 8 10 12	14 16 18 20	
U	2 4 6 8 10 12 Axial Strain (%)	14 16 18 20	
			·
1			Boring: Depth: Sample #:
0.9			Soil Type:
0.9			
0.8			Strain Rate (in/min):
			Sample Type:
0.7			Dia. (in): Ht. (in):
(tsf) .0			Height to Diameter Ratio:
			Unconfined Comp. Strength: tsf
Deviator Stress			Strain at Failure (%):
₽ ○ 4		w.	.C. (%): Sketch of Specimen After
ato:			'd (pcf): Failure
6Vi			
0.2			
0.1			
0			
	0 2 4 6 8 10 12 Axial Strain (%)	14 16 18 20	
	• •		

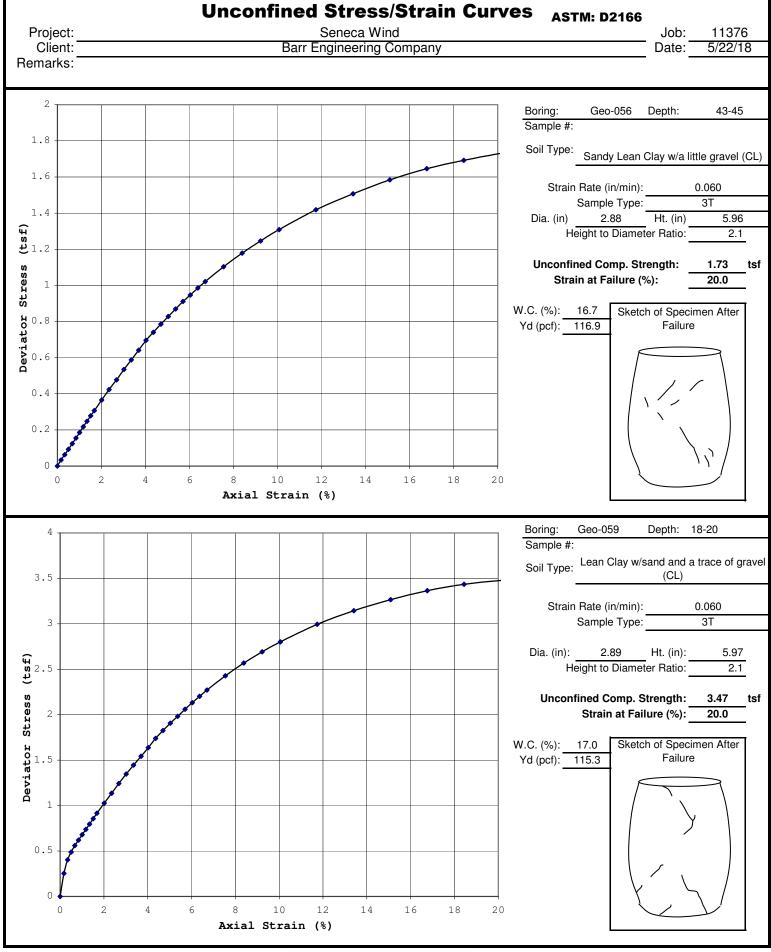


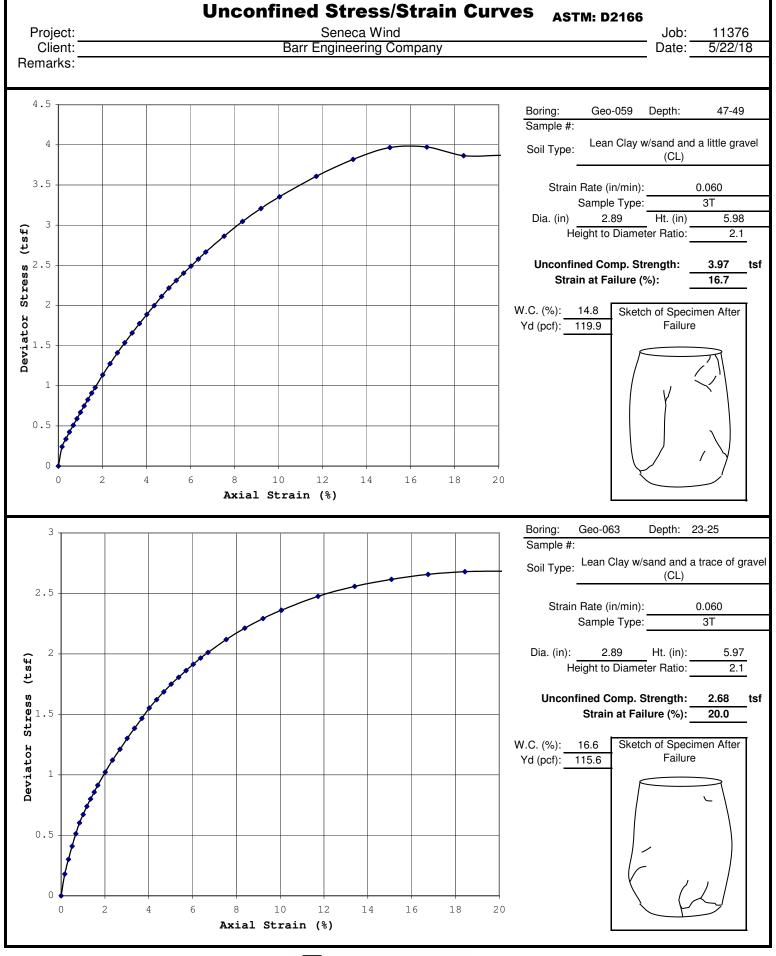


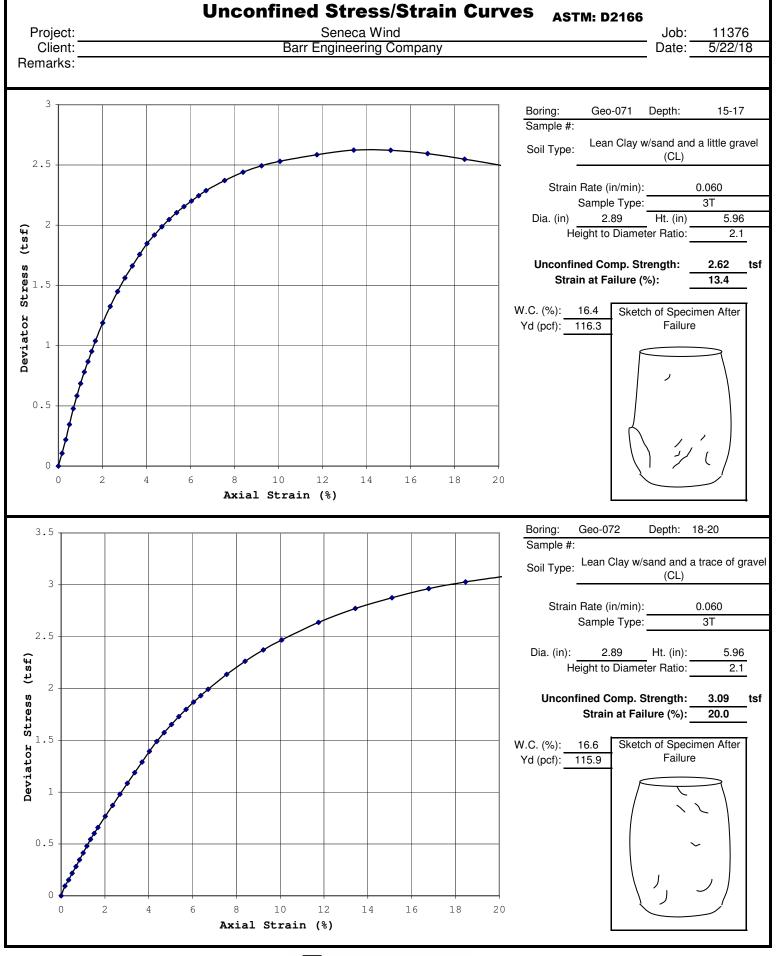


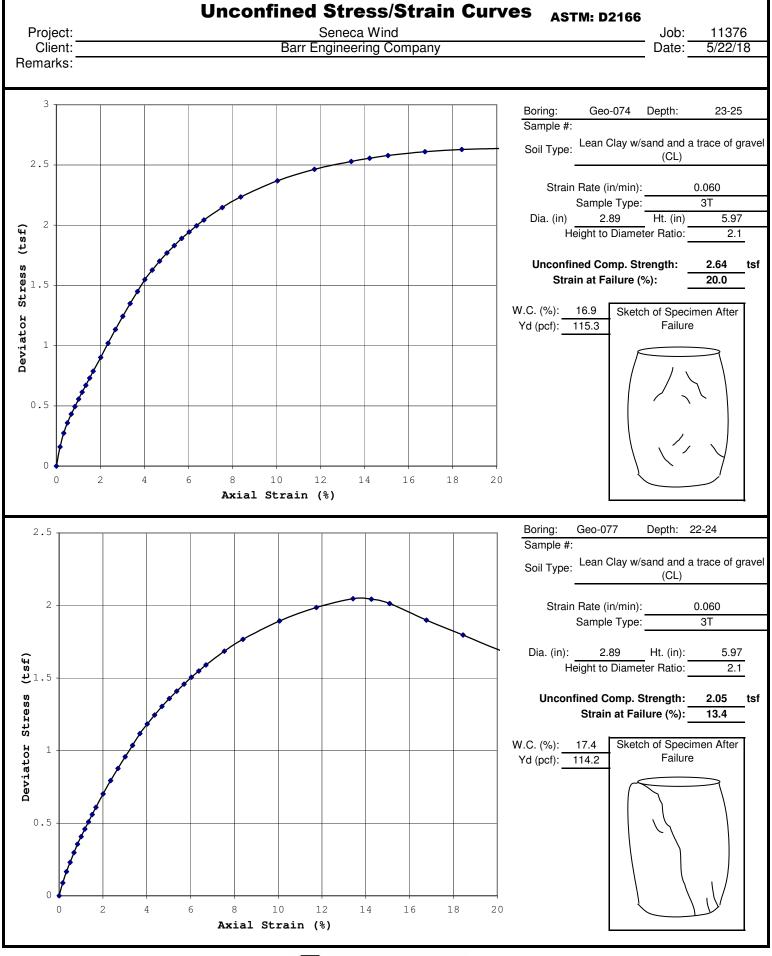


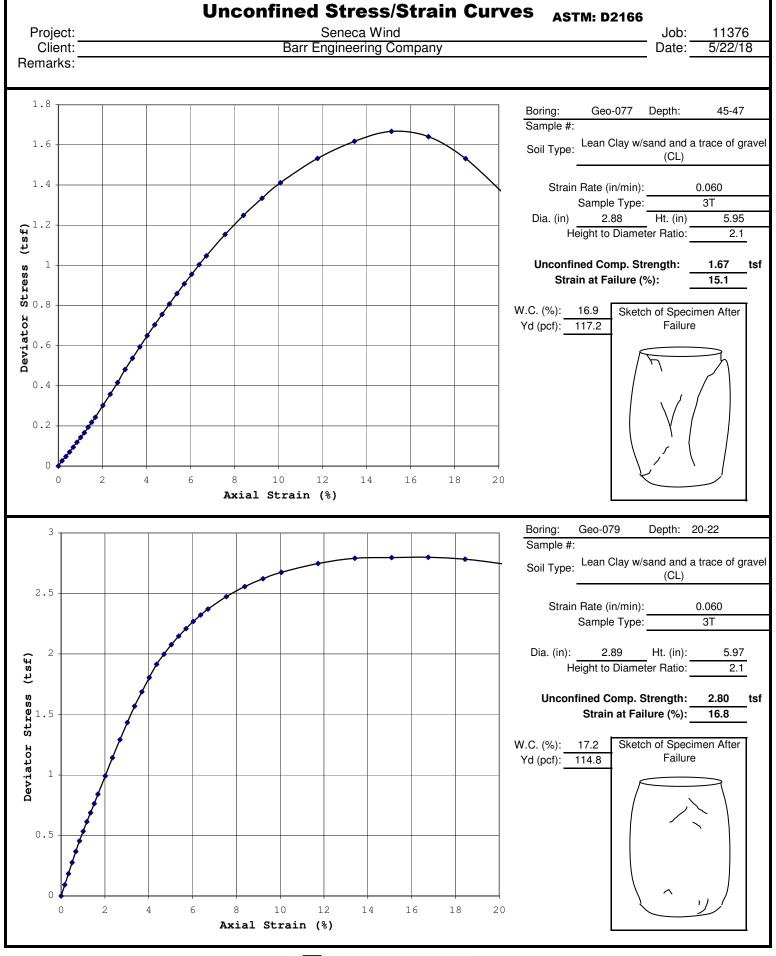


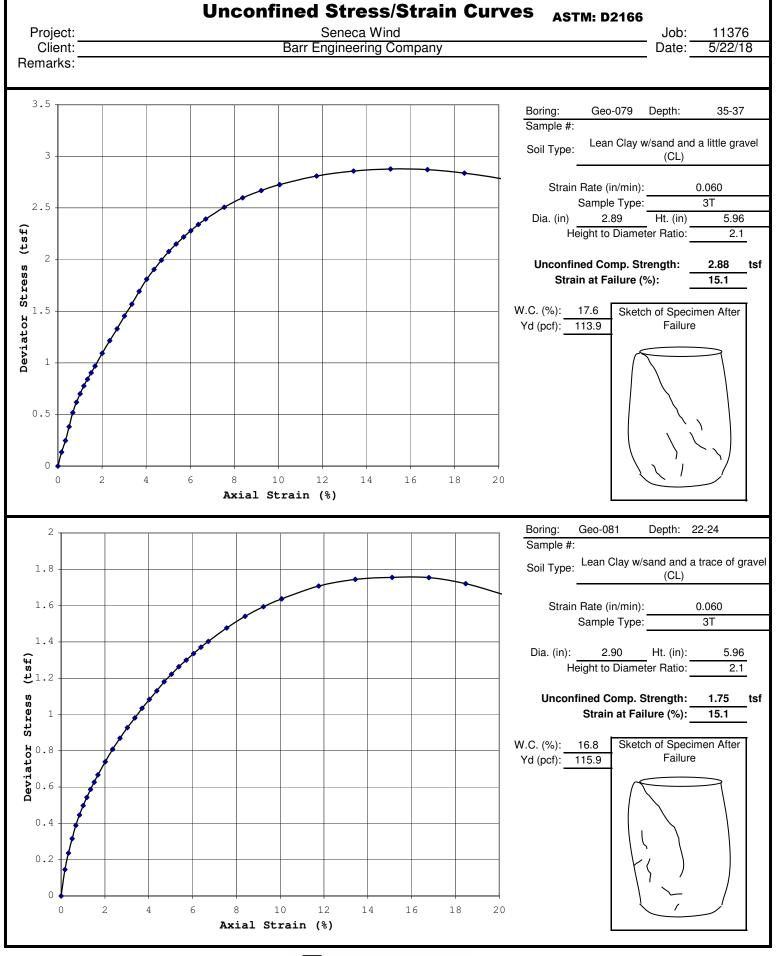


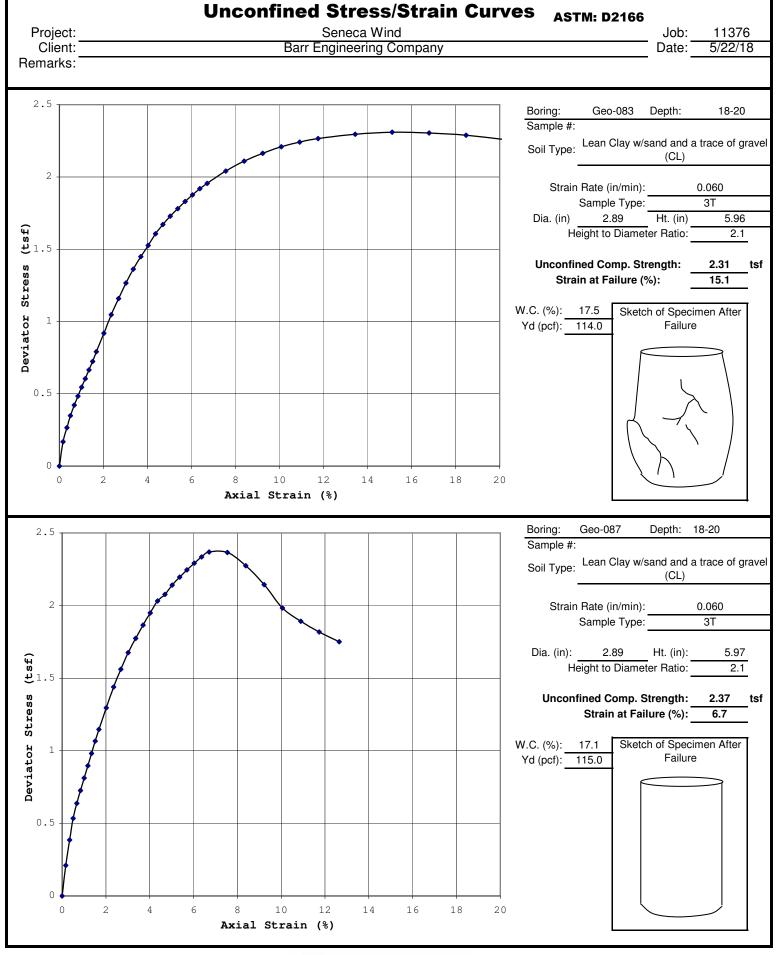


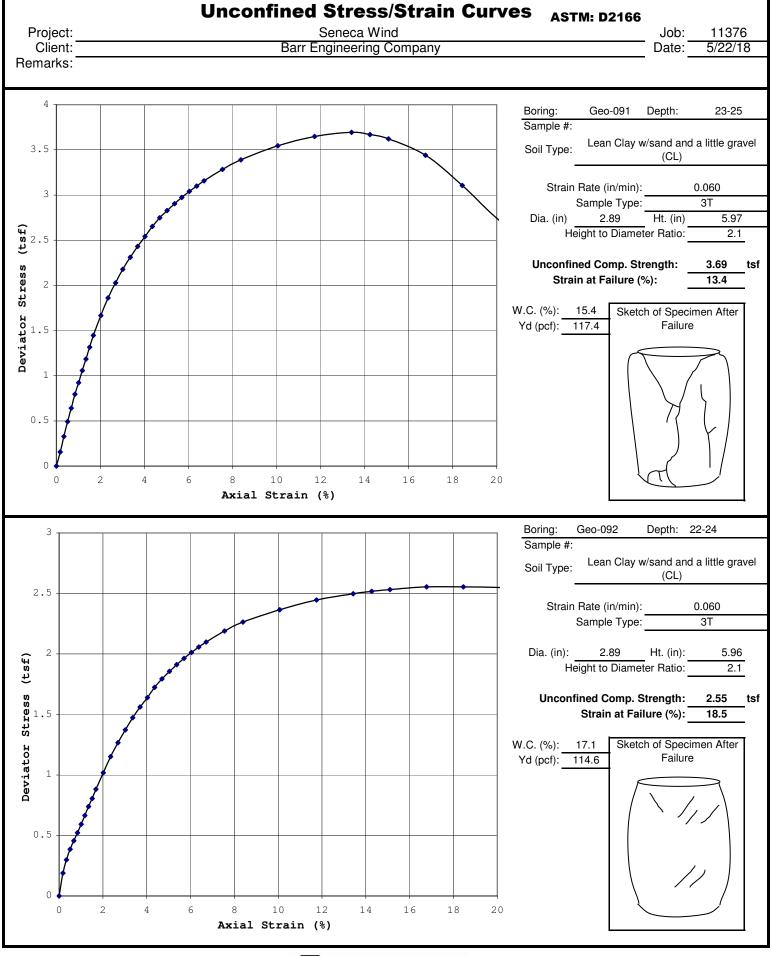


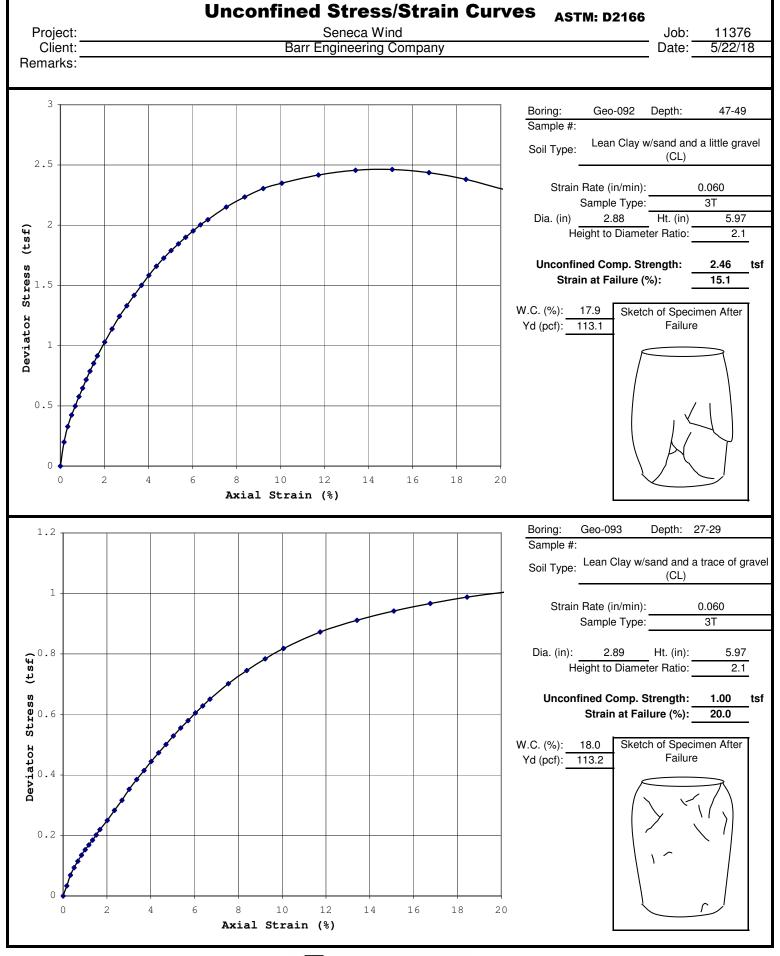


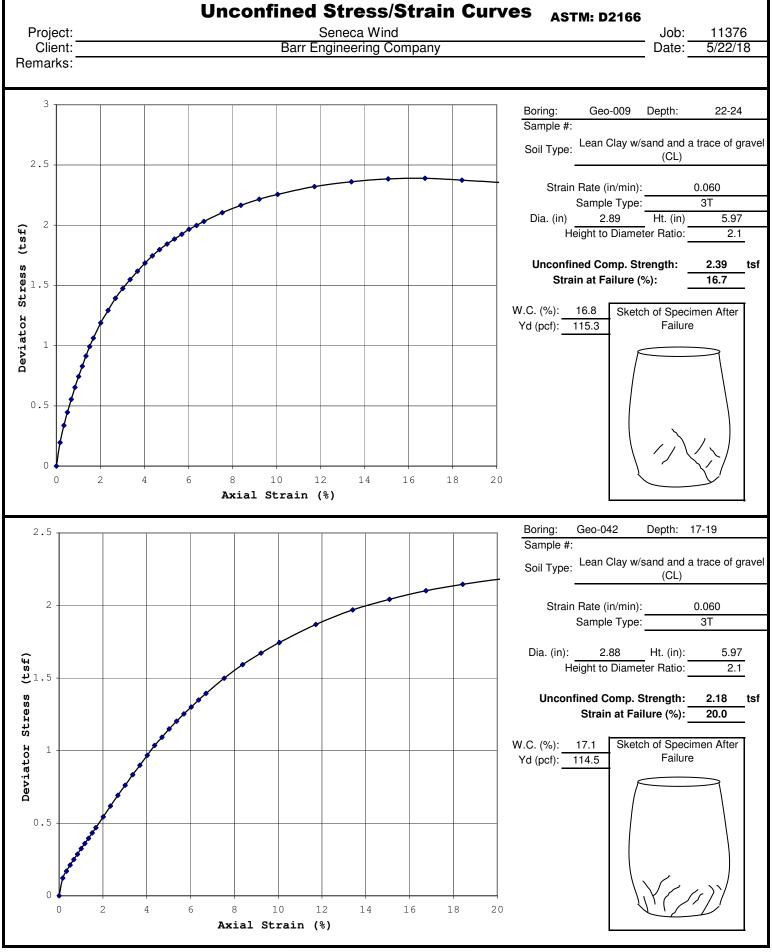


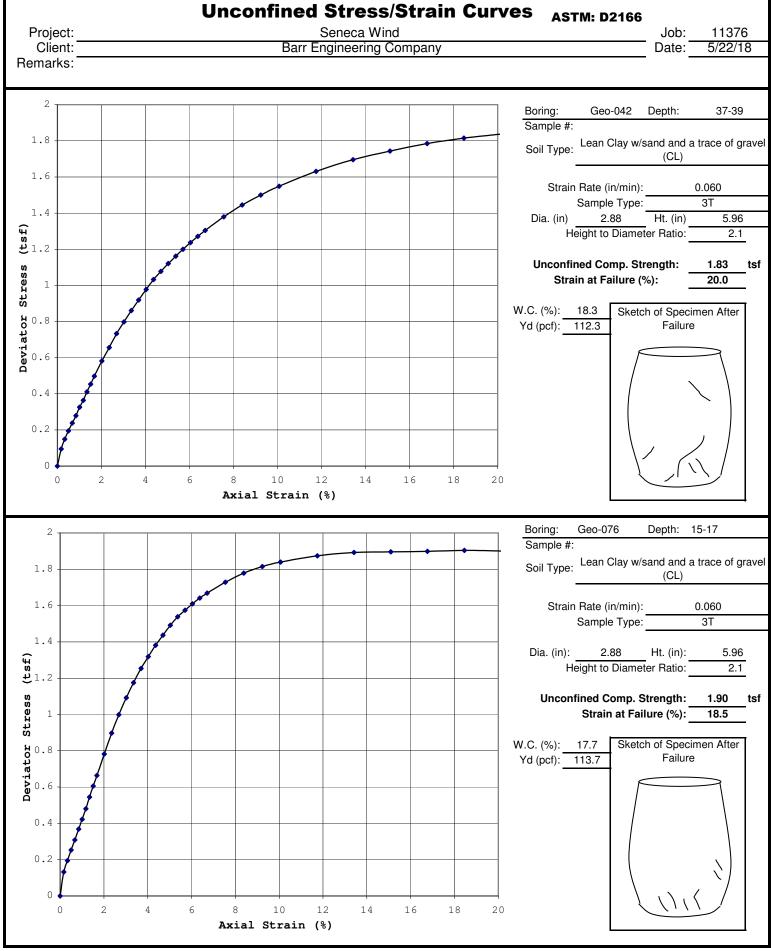












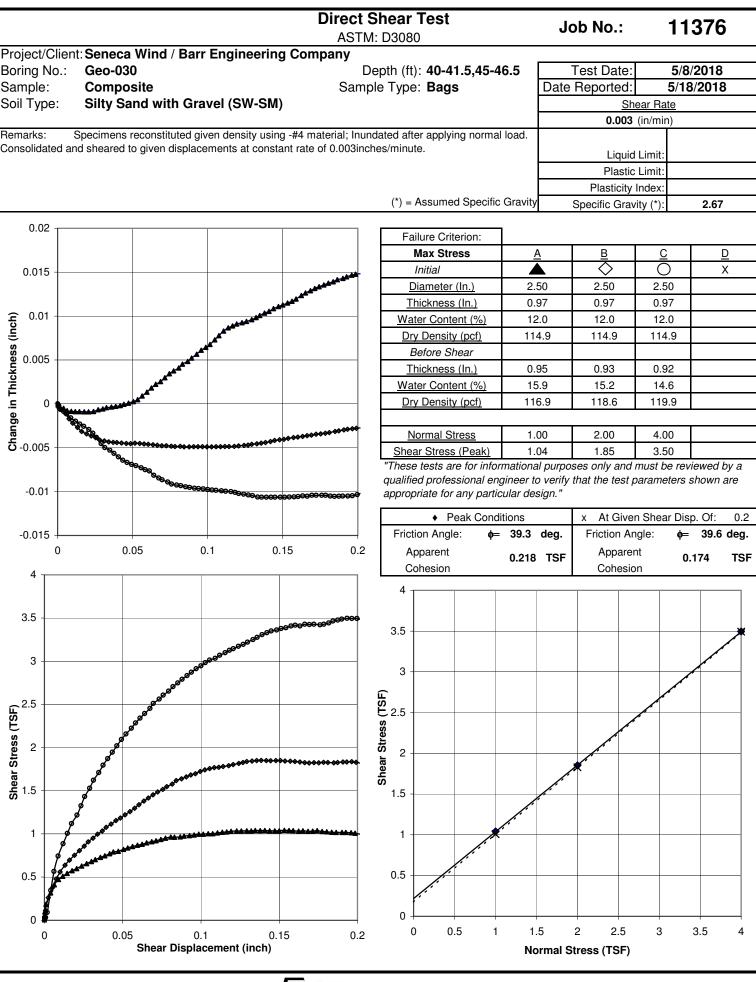
Unconsolidated-Undrained Triaxial Compressive Strength

Triaxial U-U Stress/Strain Curves (ASTM:D2850)	
Project: Seneca Wind	Job: 11376
Client: Barr Engineering Company	Date: 4/23/18
Remarks: Specimens trimmed to given sizes; Allowed to adjust under applied confining pressures for about	ut 10 minutes.
Strain Rate (in/min) Sample Type Dia. (in) 2.89 Height to Diame Max Deviate Strain at Fa Confining	e: 3T Ht. (in) 5.91 eter Ratio: 2.04 or Stress: 3.09 tsf
6 Boring: Geo-001	Depth: 43-44.5
	w/sand and a little gravel (CL)
	(GL)
Strain Rate (in/min)	
Sample Type	e: 3T
Dia. (in): 2.88 Height to Diame	Ht. (in): 6.04 eter Ratio: 2.09
	or Stress: 4.84 tsf
Strain at Fa	ailure (%): 14.1
	Pressure: 2.23 tsf tch of Specimen After
Yd (pcf): 117.5	Failure
W.C. (%): 16.1 Yd (pcf): 117.5	=-
0 2 4 6 8 10 12 14 16 18 20 Axial Strain (%)	

	Triaxial U-U Stress/Strain Curves (ASTM:D2850)		
Projec	et: Seneca Wind	Job:	11376
Clien		Date:	4/24/18
Remarks	S: Specimens trimmed to given sizes; Allowed to adjust under applied confining pressures for about	10 minu	ites.
1.8 —			
1.0	Boring: Geo-003 Sample #:	Depth:	16.5-17.5
1.6			
1.0	Soil Type: Sandy Lean C	lay w/a litt	tle gravel (CL)
1.4	Strain Rate (in/min):	,	0.060
	Sample Type:		3T
1.2		Ht. (in)	5.99
tsf	Height to Diamete	er Ratio:	2.09
I	— — — — — — Max Deviator		1.52 tsf
Stress	Strain at Failu Confining Po		20.0 0.88 tsf
0.0 1		of Specin	
ato]	Yd (pcf): 120.1	Failure	
Deviator .0			\rightarrow_{γ}
			\
0.4		_	
0 0		`	_
0.2			/
0			
0	2 4 6 8 10 12 14 16 18 20		J
	Axial Strain (%)		
2	Boring: Geo-019	Depth:	12-14
3 T	Sample #:	Берии	12-14
	Soil Type:		a little gravel
2.5		(CL)	
2.3	Strain Rate (in/min):	(0.060
	Sample Type:		3T
2		Ht. (in):	5.92
ts f	Height to Diamete		2.05
š.	Max Deviator	Stress:	2.54 tsf
ระ มา 1.5 —	Strain at Failu		20.0
	Confining Pi		0.7 tsf
tor	W.C. (%): 14.5 Sketch	of Specin Failure	nen After
Deviator —			
De		7 10	
	<i>≱</i>	/ \	´ (
0.5	≠		{
			/
/		/ (
0 1	2 4 6 8 10 12 14 16 18 20	/	
U	Axial Strain (%)		

Triaxial U-U Stress/Strain Curves	(ASTM:D2850)
Project: Seneca Wind	Job: 11376
Client: Barr Engineering Company	Date: 4/24/18
Remarks: Specimens trimmed to given sizes; Allowed to adjust under applied co	onfining pressures for about 10 minutes.
2.5	Boring: Geo-020 Depth: 16.5-18.5
	Sample #:
	Soil Type: Sandy Lean Clay w/a little gravel (CL)
	Sandy Lean Clay w/a little graver (CL)
	Strain Rate (in/min): 0.060
	Sample Type: 3T Dia. (in) 2.89 Ht. (in) 5.91
	Height to Diameter Ratio: 2.05
l l l l l l l l l l l l l l l l l l l	Max Deviator Stress: 2.30 tsf
Stress	Strain at Failure (%): 18.6
	W.C. (%) 14.6 Sketch of Specimen After
Deviator	Yd (pcf): 120.5 Sketch of Specimen After
is	
0.5	
0 2 4 6 8 10 12 14 16 18	20
	20
0 2 4 6 8 10 12 14 16 18 Axial Strain (%)	
0 2 4 6 8 10 12 14 16 18	Boring: Geo-022 Depth: 7.5-9.5 Sample #:
0 2 4 6 8 10 12 14 16 18 Axial Strain (%)	Boring: Geo-022 Depth: 7.5-9.5
0 2 4 6 8 10 12 14 16 18 Axial Strain (%)	Boring: Geo-022 Depth: 7.5-9.5 Sample #: Soil Type: Sandy Lean Clay w/a little gravel (CL)
0 2 4 6 8 10 12 14 16 18 Axial Strain (%)	Boring: Geo-022 Depth: 7.5-9.5 Sample #:
0 2 4 6 8 10 12 14 16 18 Axial Strain (%)	Boring: Geo-022 Depth: 7.5-9.5 Sample #: Soil Type: Sandy Lean Clay w/a little gravel (CL) Strain Rate (in/min): 0.060 Sample Type: 3T
0 2 4 6 8 10 12 14 16 18 Axial Strain (%)	Boring: Geo-022 Depth: 7.5-9.5 Sample #: Soil Type: Sandy Lean Clay w/a little gravel (CL) Strain Rate (in/min): 0.060
0 2 4 6 8 10 12 14 16 18 Axial Strain (%)	Boring: Geo-022 Depth: 7.5-9.5 Sample #: Soil Type: Sandy Lean Clay w/a little gravel (CL) Strain Rate (in/min): 0.060 Sample Type: 3T Dia. (in): 2.88 Ht. (in): 5.91 Height to Diameter Ratio: 2.05
0 2 4 6 8 10 12 14 16 18 Axial Strain (%)	Boring: Geo-022 Depth: 7.5-9.5 Sample #: Soil Type: Sandy Lean Clay w/a little gravel (CL) Strain Rate (in/min): 0.060 Sample Type: 3T Dia. (in): 2.88 Ht. (in): 5.91 Height to Diameter Ratio: 2.05 Max Deviator Stress: 2.59 tsf Strain at Failure (%): 13.5
0 2 4 6 8 10 12 14 16 18 Axial Strain (%) 2.5 2 11.5	Boring: Geo-022 Depth: 7.5-9.5 Sample #: Soil Type: Sandy Lean Clay w/a little gravel (CL) Strain Rate (in/min): 0.060 Sample Type: 3T Dia. (in): 2.88 Ht. (in): 5.91 Height to Diameter Ratio: 2.05 Max Deviator Stress: 2.59 tsf Strain at Failure (%): 13.5 Confining Pressure: 0.48 tsf
0 2 4 6 8 10 12 14 16 18 Axial Strain (%) 2.5 2 11.5	Boring: Geo-022 Depth: 7.5-9.5 Sample #: Soil Type: Sandy Lean Clay w/a little gravel (CL) Strain Rate (in/min): 0.060 Sample Type: 3T Dia. (in): 2.88 Ht. (in): 5.91 Height to Diameter Ratio: 2.05 Max Deviator Stress: 2.59 tsf Strain at Failure (%): 13.5
0 2 4 6 8 10 12 14 16 18 Axial Strain (%) 2.5 2 11.5	Boring: Geo-022 Depth: 7.5-9.5 Sample #: Soil Type: Sandy Lean Clay w/a little gravel (CL) Strain Rate (in/min): 0.060 Sample Type: 3T Dia. (in): 2.88 Ht. (in): 5.91 Height to Diameter Ratio: 2.05 Max Deviator Stress: 2.59 tsf Strain at Failure (%): 13.5 Confining Pressure: 0.48 tsf W.C. (%): 18.5 Sketch of Specimen After
0 2 4 6 8 10 12 14 16 18 Axial Strain (%)	Boring: Geo-022 Depth: 7.5-9.5 Sample #: Soil Type: Sandy Lean Clay w/a little gravel (CL) Strain Rate (in/min): 0.060 Sample Type: 3T Dia. (in): 2.88 Ht. (in): 5.91 Height to Diameter Ratio: 2.05 Max Deviator Stress: 2.59 tsf Strain at Failure (%): 13.5 Confining Pressure: 0.48 tsf W.C. (%): 18.5 Sketch of Specimen After
2 4 6 8 10 12 14 16 18 Axial Strain (%) 2.5 2 1 1 1 1 16 18	Boring: Geo-022 Depth: 7.5-9.5 Sample #: Soil Type: Sandy Lean Clay w/a little gravel (CL) Strain Rate (in/min): 0.060 Sample Type: 3T Dia. (in): 2.88 Ht. (in): 5.91 Height to Diameter Ratio: 2.05 Max Deviator Stress: 2.59 tsf Strain at Failure (%): 13.5 Confining Pressure: 0.48 tsf W.C. (%): 18.5 Sketch of Specimen After
0 2 4 6 8 10 12 14 16 18 Axial Strain (%) 2.5 2 11.5	Boring: Geo-022 Depth: 7.5-9.5 Sample #: Soil Type: Sandy Lean Clay w/a little gravel (CL) Strain Rate (in/min): 0.060 Sample Type: 3T Dia. (in): 2.88 Ht. (in): 5.91 Height to Diameter Ratio: 2.05 Max Deviator Stress: 2.59 tsf Strain at Failure (%): 13.5 Confining Pressure: 0.48 tsf W.C. (%): 18.5 Sketch of Specimen After
2 4 6 8 10 12 14 16 18 Axial Strain (%) 2.5 2 1 1 1 1 16 18	Boring: Geo-022 Depth: 7.5-9.5 Sample #: Soil Type: Sandy Lean Clay w/a little gravel (CL) Strain Rate (in/min): 0.060 Sample Type: 3T Dia. (in): 2.88 Ht. (in): 5.91 Height to Diameter Ratio: 2.05 Max Deviator Stress: 2.59 tsf Strain at Failure (%): 13.5 Confining Pressure: 0.48 tsf W.C. (%): 18.5 Sketch of Specimen After
2 4 6 8 10 12 14 16 18 Axial Strain (%) 2.5 2 0 0.5	Boring: Geo-022 Depth: 7.5-9.5 Sample #: Soil Type: Sandy Lean Clay w/a little gravel (CL) Strain Rate (in/min): 0.060 Sample Type: 3T Dia. (in): 2.88 Ht. (in): 5.91 Height to Diameter Ratio: 2.05 Max Deviator Stress: 2.59 tsf Strain at Failure (%): 13.5 Confining Pressure: 0.48 tsf W.C. (%): 18.5 Sketch of Specimen After
2 4 6 8 10 12 14 16 18 Axial Strain (%) 2.5 2 1 1 1 1 16 18	Boring: Geo-022 Depth: 7.5-9.5 Sample #: Soil Type: Sandy Lean Clay w/a little gravel (CL) Strain Rate (in/min): 0.060 Sample Type: 3T Dia. (in): 2.88 Ht. (in): 5.91 Height to Diameter Ratio: 2.05 Max Deviator Stress: 2.59 tsf Strain at Failure (%): 13.5 Confining Pressure: 0.48 tsf W.C. (%): 18.5 Sketch of Specimen After

Triaxial U-U Stress/Strain Curves (AS	STM:D2850)
Project: Seneca Wind	Job: 11376
Client: Barr Engineering Company	Date: 4/24/18
Remarks: Specimens trimmed to given sizes; Allowed to adjust under applied confinir	ng pressures for about 10 minutes.
1.4	Boring: Geo-047 Depth: 10-12 Sample #:
1.2	Soil Type: Silty Sand w/layers of Lean Clay (SM)
	Strain Rate (in/min): 0.060 Sample Type: 3T
	Dia. (in) 2.88 Ht. (in) 5.87 Height to Diameter Ratio: 2.04
ST THE S.	Max Deviator Stress: 1.29 tsf Strain at Failure (%): 8.5 Confining Pressure: 0.6 tsf
Deviator 8	W.C. (%) 22.3 Sketch of Specimen After Yd (pcf): 93.3 Failure
P • 0 • 4	
0 2 4 6 8 10 12 14 16 18 20 Axial Strain (%)	
6	Boring: Geo-053 Depth: 7.5-8.5 Sample #:
	Soil Type: Lean Clay w/sand and a little gravel (CL)
	Strain Rate (in/min): 0.060 Sample Type: 3T
	Dia. (in): 2.89 Ht. (in): 5.82 Height to Diameter Ratio: 2.02
8 8 3	Max Deviator Stress: 4.93 tsf Strain at Failure (%): 6.9
at or	Confining Pressure: 0.43 tsf N.C. (%): 17.0 Sketch of Specimen After Yd (pcf): 114.6 Failure
Deviator	
0	
WYIGT SCLUTTE (4)	


l:D2850)
Job: 11376
Date: 5/22/18
essures for about 10 minutes.
oring: Geo-007 Depth: 27-29 Depth: Strain Rate (in/min): 0.060 Sample Type: 3T (in) 2.89 Ht. (in) 5.92 Height to Diameter Ratio: 2.05 Max Deviator Stress: 2.76 tsf Strain at Failure (%): 14.4 Confining Pressure: 1.5 tsf %) 12.8 Sketch of Specimen After Failure
ing: Geo-038 Depth: 14.5-16.5 Cole #: Cype: Lean Clay w/sand and a trace of gravel (CL) Strain Rate (in/min): 0.060 Sample Type: 3T Consider Ratio: 2.04 Max Deviator Stress: 2.21 Strain at Failure (%): 12.8 Confining Pressure: 0.75 Confining Pressure: 115.5 Sketch of Specimen After Failure

ASTM:D2850)
Job: 11376
Date: 5/22/18
ning pressures for about 10 minutes.
Boring: Geo-070 Depth: 25-27 Sample #: Soil Type: Lean Clay w/sand and a little gravel (CL) Strain Rate (in/min): 0.060 Sample Type: 3T
Dia. (in) 2.89 Ht. (in) 6.00 Height to Diameter Ratio: 2.08 Max Deviator Stress: 2.23 tsf Strain at Failure (%): 10.8 Confining Pressure: 1.25 tsf W.C. (%) 17.0 Sketch of Specimen After Yd (pcf): 115.2 Failure
Boring: Geo-072 Depth: 28-30
Sample #:
Soil Type: Silty Clay (CL-ML/ML)
Strain Rate (in/min): 0.060 Sample Type: 3T
Dia. (in): 2.91 Ht. (in): 5.56 Height to Diameter Ratio: 1.91
Max Deviator Stress: 7.02 tsf Strain at Failure (%): 9.0 Confining Pressure: 1.5 tsf W.C. (%): 22.9 Sketch of Specimen After Failure

	Triax	ial U-U Stress	Strain Curves	(ASTM:D2850)	
Projec	ot:	Sei	neca Wind	Job:113	
Clien			neering Company	Date: 5/22	/18
Remarks	s: Specimens trimmed	I to given sizes; Allowed	to adjust under applied co	onfining pressures for about 10 minutes.	
2.5 ⊤				Boring: Geo-052 Depth: 22-	24
				Sample #:	
				Soil Type: Lean Clay w/sand and a little g	jravel
2 —	-+- -+			Strain Rate (in/min): 0.060	
	ا ا م			Sample Type: 3T	
4				Dia. (in) 2.90 Ht. (in) 5.96 Height to Diameter Ratio: 2.06	
ນ 1.5 —				Max Deviator Stress: 2.26	— tsf
Stress				Strain at Failure (%): 14.3	_
	<i>f</i>			W.C. (%) 17.3 Sketch of Specimen After	tsf
Deviator ⊢	— [—] — +			Yd (pcf): 114.0 Sketch of Specimen Alte	∌i l
evi a					
ă	f				
0.5	+ + - - +				
1					
Ĭ					
0				_\ \ رير ا	
0	2 4 6	8 10 12	14 16 18	20	
		Axial Strain (%)			
1 —				Boring: Depth:	
				Sample #:	
0.9	-+- -+			Soil Type:	
0.8	- + - - +			Strain Rate (in/min):	
				Sample Type:	
0.7		+ _ + _ + _		Dia. (in): Ht. (in):	
0.6 tsf				Height to Diameter Ratio:	
w w				Max Deviator Stress:	tsf
Stress 0.5—		_ _ _ _		Strain at Failure (%):	
N N				W.C. (%): Confining Pressure: Sketch of Specimen After	tsf
Deviator 0.0 4	-+- -+			Yd (pcf): Sketch of Specimen Alte	<u> </u>
0.3 L			_		
ا مُ					1
		The second secon	the state of the s	I I	
0.2	_ + _ _ +		- $+$ $ -$	_	
			_		
0.2					
0.1	_ 	- - -			
	2 4 6	8 10 12	14 16 18	20	

		Tı	riaxia	U-U S	tress	/Strai	in Cı	ırves	(ASTM:D2850)		
Proj	ject:					neca Wir			,	Job:	11376
	ent:				Barr Engii					Date:	4/30/18
Rema	rks: Spec	imens trir	nmed to (given sizes;	Allowed	to adjust	under	applied c	onfining pressures for abou	t 10 minu	tes.
3.5 3 3 2 2 5 2 2 2 2 3 3 3 3 3 3 3 3 3 3			 - - - - -				 		Boring: Geo-084 Sample #: Soil Type: Lean Clay w/ Strain Rate (in/min): Sample Type: Dia. (in) 1.44 Height to Diame Max Deviato Strain at Fai Confining I	Ht. (in) ler Ratio: r Stress: lure (%):	15-15.5 trace of gravel 0.030 3T 2.93 2.04 3.90 10.2 0.78 tsf
Deviator S 1.5		4		8 10 Axial St	12 rain (%)	14		18	W.C. (%) 18.1 Sketc Yd (pcf): 111.3	h of Specin Failure	nen After
1									Boring: Sample #:	Depth:	
0.9	<u> </u>		_	 	_ + -		+ -	 	Soil Type:		
0.8	-+		_		_		+-		- Strain Rate (in/min): Sample Type:		
0.7 0.6		_ _	_		_				Dia. (in): Height to Diame	Ht. (in):	
Stress		-	_ _		_ _				Max Deviato Strain at Fai Confining I W.C. (%): Sketc	lure (%):	tsf nen After
Deviator 0.4			_		_ -		+-		Yd (pcf):	Failure	
0.2			_	 	_		+ -		-		
0											
	0 2	4	6	8 10 Axial Str	12 rain (%)	14	16	18	20		

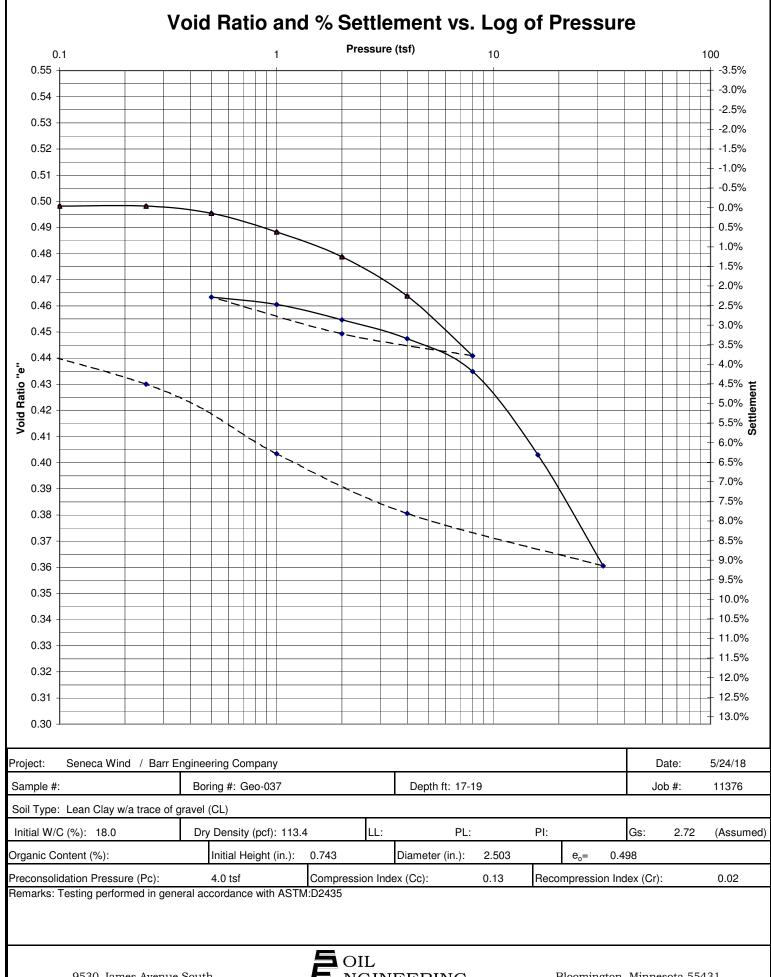
Direct Shear

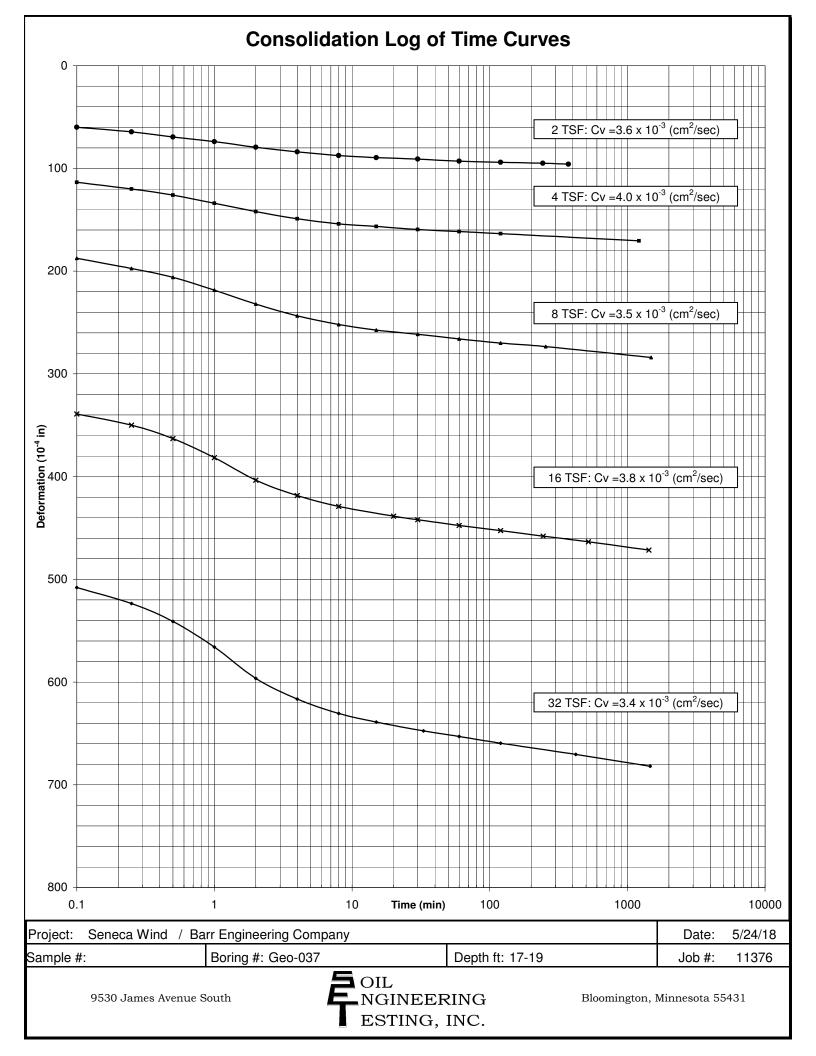
Uniaxial Compressive Shear Strength of Rock

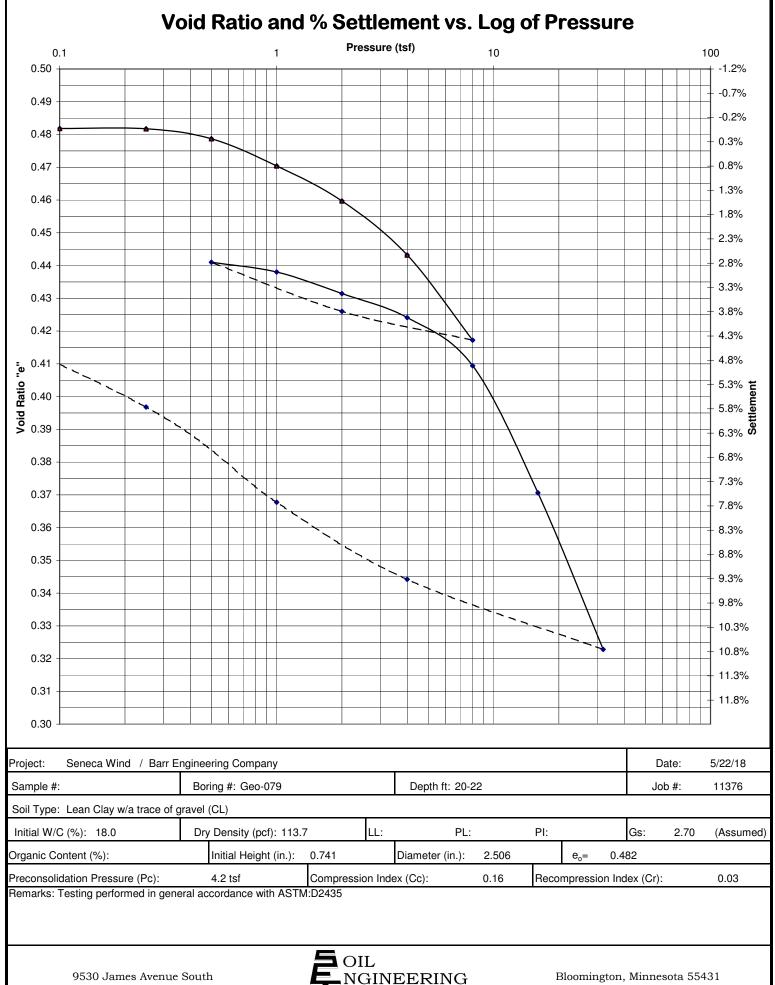
		Uncon	fined Compressive Strength of Intact Rock (ASTM:D7012) Method C			Job:	11376
		Oncon	inica compressive onengui c	Tittact Hock (AS)	M:D7012) Method C	Date:	05/18/18
Project:							
Client:							
-			Sample Ide	entification	•		
Boring:			Geo-025	Location:			
Sample:				Depth:	47.5	5-48	
			Laborator	y Analysis			
Visual Clas	ssification:			Core			
Specimen Dimensions		ensions					
Ht (in):	5	5.01	Peak Strength				
Dia (in):	1	1.99	0.67.5		1004	0	
Area (in2):	3	3.11	867.5	TSF	12048	8	PSI
Moisture	Content %	3.2%	Remarks:: Specimen cut to give	en dimension withou	t the use of water.		
Wet Den	nsity (PCF)	159.3					
Dry Der	nsity (PCF)	154.3					
Ht to Dia.	Ratio:	2.5:1					
		Before	e Test		After Tes	t	

						1-1-	11276
		Unconf	ined Compressive Strength of Intact Rock (ASTM:D7012) Method C			Job:	11376 05/18/18
						Date:	03/16/16
Project:							
Client:				gineering Compa	any		
_			Sample Ide	entificati <u>on</u>			
Boring:			Geo-025	Location:			
Sample:				Depth:	58-5	58.5	
			Laborator	y Analysis			
Visual Clas	ssification:			Core			
Specimen Dimensions		ensions					
Ht (in):	۷	1.54		Peak S	trength		
Dia (in):	1	.99	07/1		10140	`	
Area (in2):	3	3.12	874.1	TSF	12140)	PSI
Moisture	Content %	1.9%	Remarks:: Specimen cut to give	en dimension withou	ut the use of water.		
Wet Der	nsity (PCF)	165.3					
Dry Der	nsity (PCF)	162.3					
Ht to Dia.	Ratio:	2.3:1					
		Before	e Test		After Test	<u> </u>	

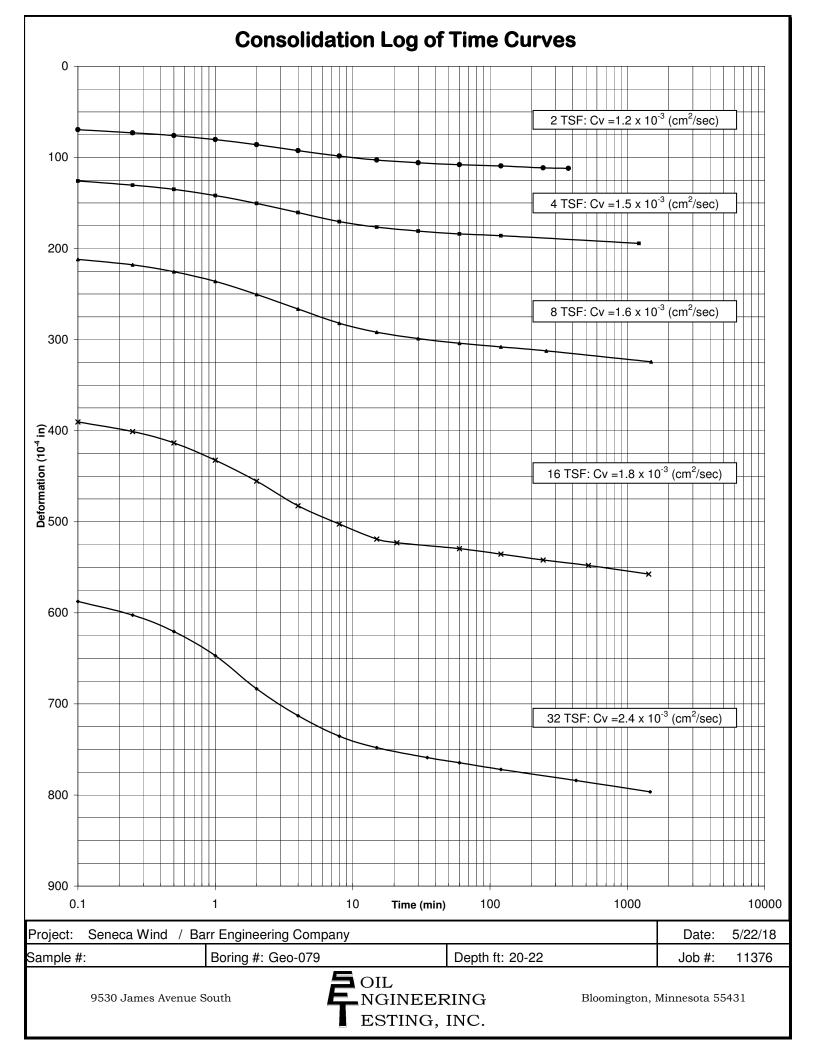
	11	Inconfi	ned Compressive Strength	ressive Strength of Intact Rock (ASTM:D7012) Method C			11376
		JIICOIIII	ned Compressive Strength	or intact nock (AS	TM:D7012) Method C	Date:	05/18/18
Project:							
Client:							
			Sample Id	entification	•		
Boring:		(Geo-031	Location:			
Sample:				Depth:	28		
			Laborato	ry Analysis			
Visual Cla	ssification:			Core			
Specim	nen Dimensio	ons					
Ht (in):	4.61			Peak St	trength		
Dia (in):	2.00		10000		17700		
Area (in2):	3.13		1280.9	TSF	17790		PSI
Moisture	Content % 2.	5%	Remarks:: Specimen cut to give	en dimension withou	it the use of water.		
Wet De	nsity (PCF)	64.6					
Dry De	nsity (PCF)	60.6					
Ht to Dia	. Ratio: 2.3	3:1					
		Refore	Test		After Test		







Consolidation Testing



Chemical Testing

			рН Л	esting S	Summary Sheet	(ASTM:D4972)		
Project:	Seneca Wind						Job:	11376
Client:	Barr Engineering Co	mpany					-	5/18/2018
В	Boring / Location	Sample	Sample Type	Depth (ft)	рН	Visual Classification		
	Geo-005		Bulk	1-3	5.2	Lean Clay (CL)		
	Geo-006		Bulk	1-3	5.5	Lean Clay (CL)		
	Geo-015		Bulk	1-3	5.0	Lean Clay (CL/CH)		
	Geo-038		Bulk	1-3	4.6	Lean Clay w/sand and a trace of grave	el (CL)	
	Geo-087		Bulk	1-3	6.4	Lean Clay (CL)		
	Geo-089		Bulk	1-3	5.1	Lean Clay (CL/CH)		
	Sub-1		Bulk	1-3	7.1	Lean Clay (CL/CH)		
		9530	James Ave South		FOIL NGINEERING ESTING, INC.	Bloomington, MN 55431		

ANALYTICAL REPORT

MyESC

REAL TIME DATA ACCESS

a subsidiary of the Anotherist

a subsidiary of the Anotherist

Soil Engineering Testing, Inc.

Sample Delivery Group: L993601

Samples Received: 05/12/2018

Project Number: 11376

Description: Seneca Wind

Report To: John Whelan

9530 James Ave. South

Bloomington, MN 55431

Entire Report Reviewed By: Jah V Houkins

John Hawkins

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approxil of the laboratory. Where applicable, sampling conducted by SECs performed per guidance provided in laboratory standard operating procedures. 96/3302, 56/3033, and 66/63394.

Cp: Cover Page	1				
Tc: Table of Contents	2				
Ss: Sample Summary	3				
Cn: Case Narrative	4				
Sr: Sample Results	!				
GEO-005 L993601-01	5				
GEO-006 L993601-02	6				
GEO-015 L993601-03	7				
GEO-038 L993601-04	8				
GEO-087 L993601-05	9				
GEO-089 L993601-06	10				
SUB-01 L993601-07	11				
Qc: Quality Control Summary	12				
Wet Chemistry by Method 9056A	12				
GI: Glossary of Terms	14				
Al: Accreditations & Locations					
Sc: Sample Chain of Custody					

34	
4	

GEO-005 L993601-01 Solid			Collected by	Collected date/time 05/11/18 10:00	Received date/time 05/12/18 08:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Wet Chemistry by Method 9056A	WG1110773	1	05/14/18 16:02	05/15/18 06:50	MAJ
GEO-006 L993601-02 Solid			Collected by	Collected date/time 05/11/18 10:00	Received date/time 05/12/18 08:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Wet Chemistry by Method 9056A	WG1114584	1	05/21/18 14:15	05/21/18 20:13	MAJ
GEO-015 L993601-03 Solid			Collected by	Collected date/time 05/11/18 10:00	Received date/time 05/12/18 08:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Wet Chemistry by Method 9056A	WG1114584	1	05/21/18 14:15	05/21/18 20:30	MAJ
GEO-038 L993601-04 Solid			Collected by	Collected date/time 05/11/18 10:00	Received date/time 05/12/18 08:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Wet Chemistry by Method 9056A	WG1114584	1	05/21/18 14:15	05/21/18 21:35	MAJ
GEO-087 L993601-05 Solid			Collected by	Collected date/time 05/11/18 10:00	Received date/time 05/12/18 08:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Wet Chemistry by Method 9056A	WG1114584	1	05/21/18 14:15	05/21/18 21:52	MAJ
GEO-089 L993601-06 Solid			Collected by	Collected date/time 05/11/18 10:00	Received date/time 05/12/18 08:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Wet Chemistry by Method 9056A	WG1114584	1	05/21/18 14:15	05/21/18 22:08	MAJ
SUB-01 L993601-07 Solid			Collected by	Collected date/time 05/11/18 10:00	Received date/time 05/12/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			-1 - 4 - /4:	-1 - 4 - /4:	-

Wet Chemistry by Method 9056A

WG1114584

date/time

05/21/18 14:15

date/time 05/21/18 22:25

MAJ

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All radiochemical sample results for solids are reported on a dry weight basis with the exception of tritium, carbon-14 and radon, unless wet weight was requested by the client. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

³Ss

⁴Cn

PAGE:

4 of 16

Technical Service Representative

GEO-005

SAMPLE RESULTS - 01

ONE LAB. NATIONWIDE.

Collected date/time: 05/11/18 10:00

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg		date / time	
Chloride	249		10.0	1	05/15/2018 06:50	WG1110773
Sulfate	ND		50.0	1	05/15/2018 06:50	WG1110773

SAMPLE RESULTS - 02

ONE LAB. NATIONWIDE.

Collected date/time: 05/11/18 10:00

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Chloride	148		10.0	1	05/21/2018 20:13	WG1114584	
Sulfate	69.4		50.0	1	05/21/2018 20:13	WG1114584	

SAMPLE RESULTS - 03

ONE LAB. NATIONWIDE.

Collected date/time: 05/11/18 10:00

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Chloride	85.2	<u>J3</u>	10.0	1	05/21/2018 20:30	WG1114584
Sulfate	73.0		50.0	1	05/21/2018 20:30	WG1114584

SAMPLE RESULTS - 04

ONE LAB. NATIONWIDE.

Collected date/time: 05/11/18 10:00

	, ,					
	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Chloride	110		10.0	1	05/21/2018 21:35	WG1114584
Sulfate	ND		50.0	1	05/21/2018 21:35	WG1114584

SAMPLE RESULTS - 05

ONE LAB. NATIONWIDE.

Collected date/time: 05/11/18 10:00

	*						
	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>	
Analyte	mg/kg		mg/kg		date / time		
Chloride	169		10.0	1	05/21/2018 21:52	WG1114584	
Sulfate	ND		50.0	1	05/21/2018 21:52	WG1114584	

SAMPLE RESULTS - 06

ONE LAB. NATIONWIDE.

Collected date/time: 05/11/18 10:00

	, ,							
		Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte		mg/kg		mg/kg		date / time		
Chloride		106		10.0	1	05/21/2018 22:08	WG1114584	
Sulfate		77.7		50.0	1	05/21/2018 22:08	WG1114584	

SAMPLE RESULTS - 07

ONE LAB. NATIONWIDE.

Collected date/time: 05/11/18 10:00

	, ,							
		Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte		mg/kg		mg/kg		date / time		
Chloride		104		10.0	1	05/21/2018 22:25	WG1114584	
Sulfate		ND		50.0	1	05/21/2018 22:25	WG1114584	

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 9056A

L993601-01

Method Blank (MB)

Sulfate

(MB) R3309824-1 05/14/1	8 22:53			
	MB Result	MB Qualifier	MB MDL	
Analyte	mg/kg		mg/kg	
Chloride	U		0.795	

Cn

(OS) L993598-02 05/15/18 02:13 • (DUP) R3309824-6 05/15/18 02:28

(,	Original Result				DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	154	208	1	29.8	<u>J3</u>	15
Sulfate	ND	18.3	1	0.000		15

⁷Gl

L993600-08 Original Sample (OS) • Duplicate (DUP)

(OS) L993600-08 05/15/18 06:20 • (DUP) R3309824-7 05/15/18 06:35

. ,	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	68.9	67.2	1	2.56		15
Sulfate	ND	33.9	1	0.000		15

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

MB RDL mg/kg 10.0

50.0

0.570

(LCS) R3309824-2 05/14/18 23:08 • (LCSD) R3309824-3 05/14/18 23:23

(LC3) K3303024-2 (CS) K3503624-2 03/14/16 25:06 • (LC3D) K3503624-3 03/14/16 25:25										
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
Chloride	200	208	191	104	95.5	80.0-120			8.49	15	
Sulfate	200	194	191	97.0	95.3	80.0-120			1.78	15	

05/22/18 16:21

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 9056A

L993601-02,03,04,05,06,07

Method Blank (MB)

(MB) R3312026-1 05/21/1	8 18:02			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Chloride	U		0.795	10.0
Sulfato	H		0.570	50.0

L993601-03 Original Sample (OS) • Duplicate (DUP)

(OS) L993601-03 05/21/18 20:30 • (DUP) R3312026-4 05/21/18 20:46

(,	Original Result				DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	85.2	111	1	26.2	<u>J3</u>	15
Sulfate	73.0	81.2	1	10.6		15

Cn

⁷Gl

L993605-09 Original Sample (OS) • Duplicate (DUP)

(OS) L993605-09 05/22/18 01:42 • (DUP) R3312026-5 05/22/18 01:58

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3312026-2 05/21/18 18:18 • (LCSD) R3312026-3 05/21/18 18:35

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
Chloride	200	211	211	105	105	80.0-120			0.0584	15
Sulfate	200	215	214	107	107	80.0-120			0.119	15

GLOSSARY OF TERMS

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Abbreviations and Definitions

Abbic viations and	
MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier Description

J3

The associated batch QC was outside the established quality control range for precision.

ACCREDITATIONS & LOCATIONS

State Accreditations

Alabama	40660
Alaska	17-026
Arizona	AZ0612
Arkansas	88-0469
California	2932
Colorado	TN00003
Connecticut	PH-0197
Florida	E87487
Georgia	NELAP
Georgia ¹	923
Idaho	TN00003
Illinois	200008
Indiana	C-TN-01
Iowa	364
Kansas	E-10277
Kentucky 16	90010
Kentucky ²	16
Louisiana	Al30792
Louisiana ¹	LA180010
Maine	TN0002
Maryland	324
Massachusetts	M-TN003
Michigan	9958
Minnesota	047-999-395
Mississippi	TN00003
Missouri	340
Montana	CERT0086

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey-NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee 1 4	2006
Texas	T 104704245-17-14
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01
A2LA - ISO 17025 5	1461.02
Canada	1461.01
EPA-Crypto	TN00003

AIHA-LAP,LLC EMLAP	100789
DOD	1461.01
USDA	P330-15-00234

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

ESC Lab Sciences has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. ESC Lab Sciences performs all testing at our central laboratory.

		-	Billing Infor	rmation					Analysis / Co	ntainer / Preservative	3	Their of Custody	Page of
the state of the s			elan nes Ave. South gton, MN SS43		Pres Office						₩.F	SC	
Provent			City/State								12000 Lebenon Rd Mount (uter, TN 371 Phone: 615-758-5856 Phone: 800-787-3856 Fee: 815-758-5859	48.40	
Description SENELA	MIND			Collected:								453	11
Phone. 952-884-6833 Fax: 952-884-6923	Chent Project			Lab Project #			13				1	H19	
Collected by (print):	Site/Facility ID			P.O. #			17	135				Acctnum. SOIE	NG8MN
Collected by (signature):	Same Da	Rush? (Lab MUST Be Natified) Same Day Five Day					ATC	, đ	ч			Template: Prologin:	
Immediately Packed on ice N Y	Next Date Two Date Three Date	5 Day 10 Day	(Rad Only) ry (Rad Only)	Date Resi	ults Needed	Ka.	12.2	11.7	ы		8.4	TSR: 341 - John PB-	Hawkins
Sample ID	Comp/Grab	Matrix ⁴	Depth	Date	Time	Cntrs	1 1 1	3	ы			Shipped Via:	Sample # lab only a
660-005		55	1-3"	5/11/18	10.00	11	X	Х					61
620-606					1 2	11	X	8					572
616-015						1	X	X					03
GEO-038						1	X	χ					04
660-087						1	X	X					05
6i0-089							X	X					84
SUB-01		4)	1	*		1	X	X					01
* Matrix	Remarks:				_	_ _]				Sac	Day Receapt Ch	essitat
SS - Soil AM - Air F - Filter GW - Groundwater 8 - Biodisay										Temp	Bottles At	resent/Intact: !/Accurate :rive intact:	7
WW - WasteWater DW - Drinking Water OT - Other	Samples result	rsed via: edExCou	ırler		racking # 4-7	7101	n/A	s CA.		Other	Sufficient	ttimm usad: ; volume ment:	我一
Automobiled by (Signature)	17	5/11	18		eterned by (Sign	_				Received: Yes (No. HCL / MeoH		ion Correct/Che	cked: TY TN
successfully (Separates)		Spine .			eceived by, [Sign	nature)			Temp:	°C Bottler Received	If preservation	on required by Log	in: Date/Time
Relinquished by : [5/gnature]		Date		Time &	Hillin .	ry: [Signa			5/12	118 0815			Condition NCF / Ox

Appendix E

Electrical Resistivity Report

May 24, 2018

Mr. Mike Goodwin Construction Manager sPower 2180 South 1300 East, Suite 600 Salt Lake City, Utah 84106

Re: Soil Electrical Resistivity Testing Seneca Wind Project Seneca County, Ohio

Dear Mr. Goodwin:

Barr Engineering Co. (Barr), under contract and authorization from sPower, performed soil electrical resistivity measurements at the Seneca Wind Project site in April of 2018 as part of the design phase geotechnical investigation. This letter presents the methods and results of the requested testing.

Methods

A total of seven sets of electrical resistivity tests were conducted at the site by Barr personnel. Six tests were performed at proposed turbine locations, and one test was performed at the proposed substation location. Test locations were provided by s-Power prior to beginning the field investigation.

Barr personnel verified the test locations with a handheld GPS unit. Barr personnel located the electrical resistivity sample locations based on the provided coordinates for the corresponding boring locations.

The test locations are shown on Figure 1. Coordinates of each test location and other pertinent information can be found in Table 1.

Table 1 Testing Conditions and Coordinates

Resistivity Testing	UTM Coordinates, Zone 17 [m] [NAD83]		
Geotech ID (Turbine ID-4/4/18 Array)	Ambient Air Temperature [°F]	Easting	Northing
GEO-005 (2.3-5)	50	330232.5	4550876.8
GEO-006 (2.3-6)	50	334368.0	4551577.3
GEO-015 (3.8-3)	55	323462.6	4546020.6
GEO-038 (3.8-24)	50	339979.5	4549899.6
GEO-087 (3.8-16)	55	327652.3	4547804.6
GEO-089 (3.8-37)	50	328728.7	4545293.9
SUB-Res	55	327329.0	4547035.0

Barr conducted the work in accordance with ASTM method G57 "Standard Test Method for Field Measurement of Soil Resistivity Using the Wenner Four-Electrode Method" (equivalent to IEEE Std. 81). A

single resistivity array orientation was utilized at each test location and resistivity measurements in the array orientation were obtained. Each measurement at the tested locations corresponded to one of five electrode ("a") spacings: 2.5, 5, 10, 20, and 40 feet.

The equipment used to collect the data consisted of a resistivity meter, four metal electrodes and connecting wire. A Mini-Res Ultra resistivity meter manufactured by L & R Instruments, Inc. was used to collect the data. The resistivity meter read in resistance (Ω) directly, and did not require the conversion of electrical potential (V) and inductance (I) to calculate resistance (V/I in Ω). Before and after each array was completed, the resistivity meter was connected to a resistor of known resistance, and the resulting values were compared to the known resistance value for quality assurance and quality control purposes. The meter was properly calibrated for all test locations and no instrument adjustments had to be made.

Co-linear arrays of four electrodes were placed in the ground for each measurement. Electrical current was input to the ground through the two outer electrodes of the array. The voltage drop produced by the resulting electrical field was measured across the two inner electrodes. The "a" spacing was increased with each measurement, expanding the array about a common center for the tested locations. Increasing the electrode separation increases the depth of investigation and indicates vertical variation in resistivity.

Apparent resistivity (ρ_a) was calculated for each measurement and corresponding electrode spacing (a) using the resistance measurement (Ω) and the geometric factor (K) as follows:

$$\rho_a = K(V/I)$$
 where $K = 2\pi a$

All field measurements and calculated values of apparent resistivity are presented in the attachments.

Results and Discussion

Soil resistivity variations are likely associated with differences in soil type, layer thicknesses, and degree of water saturation or frost in the near surface soils. Higher moisture contents generally reduce the electrical resistivity of a soil. Sandy soils generally have a higher resistivity than clayey and silty soils. Clay soils with moderate moisture contents tend to exhibit lower resistivity on the order of 1,000 to 5,000 ohm-centimeters (Ω -cm). Bedrock tends to exhibit relatively high resistivgity values on the order of 10,000 to over 100,000 Ω -cm.

Apparent resistivity measurements at the turbine locations ranged from 2,246 to 16,183 (Ω -cm), with an average of 4,317 Ω -cm. Apparent resistivity measurements at the substation location ranged from 2,662 to 3,827 Ω -cm, with an average of 3,379 Ω -cm.

The test results indicate some variability with the smaller "a" spacings, but in general, the apparent resistivity was relatively consistent across the site. Most of the readings fell within a relatively tight range of about 3,000 to 5,000 Ω -cm, with the exception of measurements at "a" spacings of 20 and 40 feet at GEO-089, which indicated much higher values, likely indicative of relatively shallow bedrock, which was confirmed during the soil borings.

In general, apparent resistivity measurements in soil that are less than 2,000 Ω -cm indicate that the soil could be considered corrosive when in direct contact with steel foundations. The apparent resistivity measurements at the tested locations indicate that the soil is not likely to be corrosive for steel in direct contact with native soils at all tested locations.

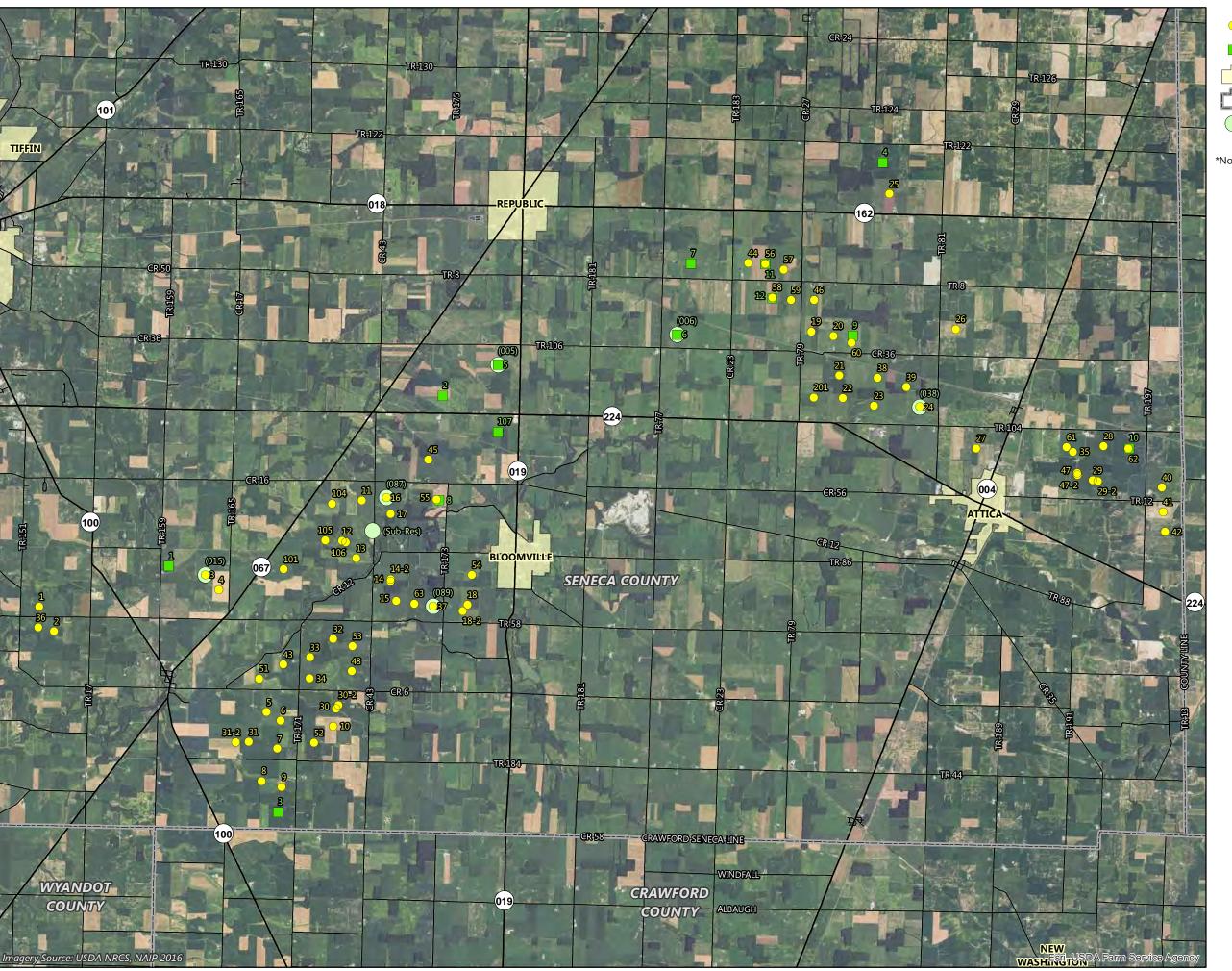
Table 2 provides a summary of the range found in apparent resistivity with electrode "a" spacing at the turbine locations.

Table 2 Summary of Apparent Resistivity versus Electrode Spacing at Turbine Locations

Turbine Locations	Apparent Resistivity [Ω-cm]					
Electrode Spacing [Feet]	Range	Mean	Standard Deviation			
2.5	2,921 - 8,015	4,268	1,469			
5	2,969 - 5,693	3,815	863			
10	2,856 - 5,875	3,810	1,036			
20	2,388 – 8,750	4,109	2,188			
40	2,246 - 16,183	5,585	4,884			

Closing

Thank you for the opportunity to provide this service. Please call me at 952-832-2797 with questions or requests for additional information.


Sincerely,

William W. Kussmann

Attachments:

Electrical Resistivity Testing Results

Figure 1: Electrical Resistivity Testing Locations

Turbine Location - 3.8 (4/4/2018)

Turbine Location - 2.3 (4/4/2018)

City Boundary

County Boundary

Electrical Resistivity Test Locations

*Note: Labeled with GEO- ID in parentheses.

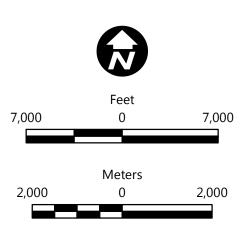
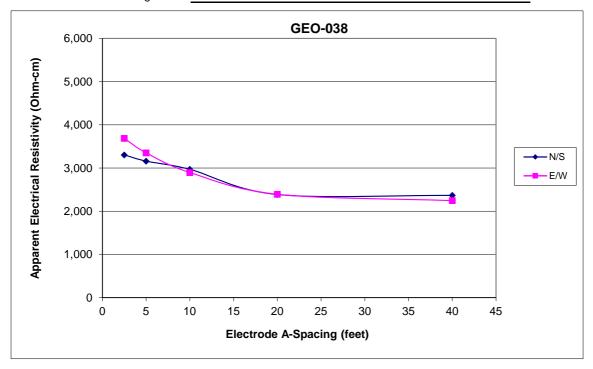


Figure 1

ELECTRICAL RESISTIVITY TEST LOCATIONS

Seneca Wind Project S-Power Seneca County, Ohio

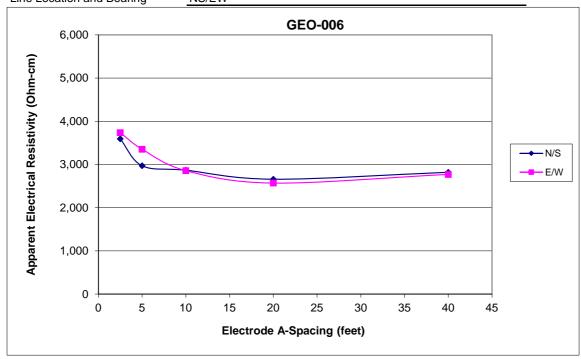

PROJECT: Seneca Wind Project

 Date 4/26/2018

Electrode	Resistance	Geometric	Apparent	Apparent
Spacing		Factor	Resistivity	Resistivity
"a"	V/I	K=2 πa	$\rho_a = K(V/I)$	$\rho_a = K(V/I)$
feet	Ohms	feet	Ohm-feet	Ohm-cm
N/S Orientation				
2.5	6.900	15.71	108.38	3304.4
5	3.300	31.42	103.67	3160.7
10	1.551	62.83	97.43	2970.3
20	0.623	125.66	78.31	2387.6
40	0.309	251.33	77.64	2366.9
E/W Orientation				
2.5	7.700	15.71	120.95	3687.5
5	3.500	31.42	109.96	3352.3
10	1.512	62.83	95.01	2896.8
20	0.625	125.66	78.49	2393.0
40	0.293	251.33	73.66	2245.9

Cultural Features Ground Cover Weather Line Location and Bearing

None
Bean crop
50F
NS/EW

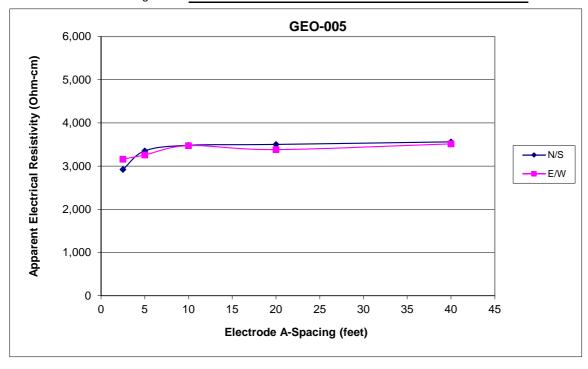

PROJECT: Seneca Wind Project

 Date 4/26/2018

Electrode	Resistance	Geometric	Apparent	Apparent
Spacing		Factor	Resistivity	Resistivity
"a"	V/I	K=2 πa	$\rho_a = K(V/I)$	$\rho_a = K(V/I)$
feet	Ohms	feet	Ohm-feet	Ohm-cm
N/S Orientation				
2.5	7.500	15.71	117.81	3591.8
5	3.100	31.42	97.39	2969.2
10	1.496	62.83	94.01	2866.1
20	0.694	125.66	87.17	2657.7
40	0.368	251.33	92.44	2818.2
E/W Orientation				
2.5	7.800	15.71	122.52	3735.4
5	3.500	31.42	109.96	3352.3
10	1.491	62.83	93.69	2856.4
20	0.670	125.66	84.24	2568.4
40	0.362	251.33	90.85	2770.0

Cultural Features Ground Cover Weather Line Location and Bearing

None
Corn field
50F
NS/EW

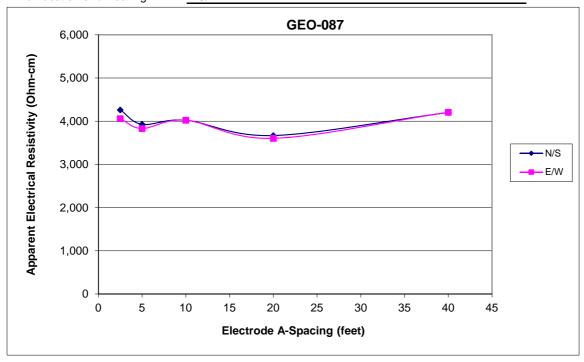

PROJECT: Seneca Wind Project

 Date 4/26/2018

Electrode	Resistance	Geometric	Apparent	Apparent
Spacing		Factor	Resistivity	Resistivity
"a"	V/I	K=2 πa	$\rho_a = K(V/I)$	$\rho_a = K(V/I)$
feet	Ohms	feet	Ohm-feet	Ohm-cm
N/S Orientation				
2.5	6.100	15.71	95.82	2921.3
5	3.500	31.42	109.96	3352.3
10	1.817	62.83	114.18	3481.2
20	0.914	125.66	114.84	3501.3
40	0.465	251.33	116.79	3560.7
E/W Orientation				
2.5	6.600	15.71	103.67	3160.7
5	3.400	31.42	106.81	3256.5
10	1.813	62.83	113.94	3473.8
20	0.883	125.66	110.91	3381.4
40	0.459	251.33	115.26	3514.0

Cultural Features Ground Cover Weather Line Location and Bearing

None
Bean field
50F
NS/EW


PROJECT: Seneca Wind Project

 Date 4/26/2018

Electrode	Resistance	Geometric	Apparent	Apparent
Spacing		Factor	Resistivity	Resistivity
"a"	V/I	K=2 πa	$\rho_a = K(V/I)$	$\rho_a = K(V/I)$
feet	Ohms	feet	Ohm-feet	Ohm-cm
N/S Orientation				
2.5	8.900	15.71	139.80	4262.2
5	5 4.100 31.42		128.81	3927.0
10	2.100	62.83	131.95 120.31	4022.8
20	0.957	125.66		3668.0
40	0.548	251.33	137.83	4202.1
E/W Orientation				
2.5	8.477	15.71	133.16	4059.6
5	4.000	31.42	125.66	3831.2
10	2.100	62.83	131.95	4022.8
20	0.941	125.66	118.19	3603.3
40	0.549	251.33	137.98	4206.7

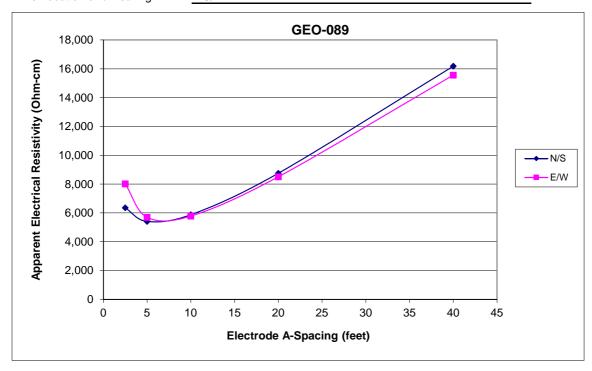
Cultural Features Ground Cover Weather Line Location and Bearing

None
Cornfield
55F
NS/EW

PROJECT: Seneca Wind Project

 Sounding No.
 5

 Observer
 IGM

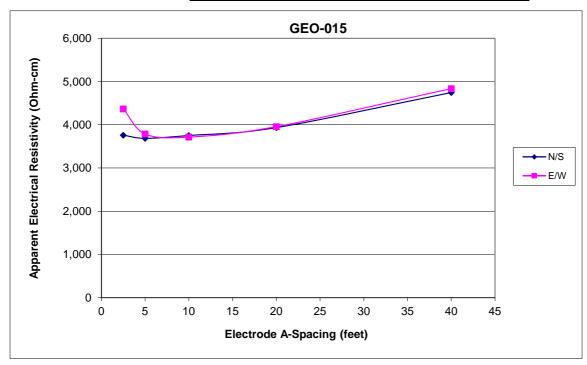

 Location
 GEO-089

Date 4/27/2018

Electrode	Resistance	Geometric	Apparent	Apparent	
Spacing	cing F		Resistivity	Resistivity	
"a"	V/I	K=2 πa	$\rho_a = K(V/I)$	$\rho_a = K(V/I)$	
feet	Ohms	feet	Ohm-feet	Ohm-cm	
N/S Orientation		·			
2.5	13.264	15.71	208.35	6352.1	
5	5 5.648 31.42		177.44	5409.7	
10	3.067	62.83	192.71	5875.2	
20	2.284 125.66 287.02		287.02	8750.5	
40	2.112	251.33	530.80	16183.0	
E/W Orientation		·			
2.5	16.737 15.71		262.90	8015.4	
5	5.944	31.42	186.74	5693.2	
10	3.018	62.83	189.63	5781.3	
20	2.220	125.66	278.97	8505.3	
40	2.031	251.33	510.45	15562.4	

Cultural Features
Ground Cover
Weather
Line Location and Bearing

None
Grassfield
50F
NS/EW


PROJECT: Seneca Wind Project

 Date 4/27/2018

Electrode	Resistance	Geometric	Apparent	Apparent
Spacing		Factor	Resistivity	Resistivity
"a"	V/I	K=2 πa	$\rho_a = K(V/I)$	$\rho_a = K(V/I)$
feet	Ohms	feet	Ohm-feet	Ohm-cm
N/S Orientation				
2.5	7.851	15.71	123.32	3759.9
5	3.850	31.42	120.95	3687.5
10	1.959	62.83	123.09	3752.7
20	1.027	125.66	129.07	3935.0
40	0.620	251.33	155.70	4746.9
E/W Orientation				
2.5	9.124	15.71	143.32	4369.5
5	3.956	31.42	124.28	3789.1
10	1.940	62.83	121.89	3716.3
20	1.033	125.66	129.82	3958.0
40	0.631	251.33	158.69	4838.1

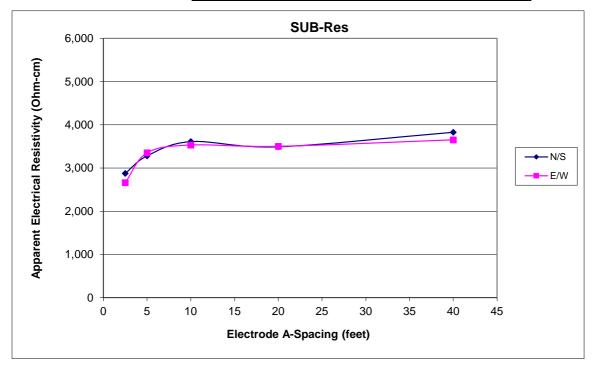
Cultural Features Ground Cover Weather Line Location and Bearing

None
Grass field
55F
NS/EW

PROJECT: Seneca Wind Project

 Sounding No.
 7

 Observer
 IGM


 Location
 SUB-Res

Date 4/27/2018

Electrode	Resistance	Geometric	Apparent	Apparent	
Spacing		Factor		Resistivity	
"a"	V/I	K=2 πa	$\rho_a = K(V/I)$	$\rho_a = K(V/I)$	
feet	Ohms	feet	Ohm-feet	Ohm-cm	
N/S Orientation					
2.5	6.005	15.71	94.33	2875.8	
5	3.425	31.42	107.60	3280.5	
10	1.885	62.83	118.44	3610.9	
20	0.911	125.66	114.50	3491.0	
40	0.500	251.33	125.54	3827.4	
E/W Orientation					
2.5	5.559	15.71	87.32	2662.2	
5	3.499	31.42	109.92	3351.4	
10	1.844 62.83		115.86	3532.4	
20	0.914	125.66	114.88	3502.5	
40	0.477	251.33	119.81	3652.7	

Cultural Features
Ground Cover
Weather
Line Location and Bearing

None
Grass field
55F
NS/EW

Electrical Resistivity Test Results Summary Table Seneca Wind Project Seneca County, Ohio 35741003.00

Summary of Electrical Resistivity Test Results:

	Electrode "a"	GEO-005 Resistivity	GEO-006 Resistivity	GEO-015 Resistivity	GEO-038 Resistivity	GEO-087 Resistivity	GEO-089 Resistivity
	Spacing [feet]	ρ _a =K(V/I) Ohm-cm	$\rho_a = K(V/I)$ Ohm-cm				
on	2.5	2,921	3,592	3,760	3,304	4,262	6,352
tati	5	3,352	2,969	3,688	3,161	3,927	5,410
Orientation	10	3,481	2,866	3,753	2,970	4,023	5,875
	20	3,501	2,658	3,935	2,388	3,668	8,750
S/N	40	3,561	2,818	4,747	2,367	4,202	16,183
on	2.5	3,161	3,735	4,369	3,688	4,060	8,015
ıtati	5	3,257	3,352	3,789	3,352	3,831	5,693
Orientation	10	3,474	2,856	3,716	2,897	4,023	5,781
	20	3,381	2,568	3,958	2,393	3,603	8,505
E/W	40	3,514	2,770	4,838	2,246	4,207	15,562
	Average:	3,360	3,019	4,055	2,877	3,981	8,613

Statistical Summary - Apparent Resistivity Averages (Ohm-cm)							
Electrode "a" Spacing [feet]	Max	Min	Mean (All Directions)	St Dev (All Directions)			
2	8,015	2,921	4,268	1,469			
5	5,693	2,969	3,815	863			
10	5,875	2,856	3,810	1,036			
20	8,750	2,388	4,109	2,188			
40	16,183	2,246	5,585	4,884			

Apparent Resistivity Average - Turbines - Ohm-cm:	4,317

Appendix F Thermal Resistivity Report

May 24, 2018

Mr. Mike Goodwin Construction Manager sPower 2180 South 1300 East, Suite 600 Salt Lake City, Utah 84106

Re: Soil Thermal Resistivity Testing Results

Seneca Wind Project Seneca County, Ohio

Dear Mr. Goodwin:

Barr Engineering Co. (Barr), under contract and authorization from sPower, collected soil samples from select locations at the Seneca Wind Project site in April of 2018. Thermal resistivity laboratory testing was completed on the samples in April and May of 2018. This letter presents the methods and results of the requested testing.

Methods

Six bulk soil samples were collected at select turbine locations and one bulk soil sample was collected the proposed substation location. Sample locations were selected by Barr with approval from sPower Barr prior to beginning the sample collection. Bulk samples were obtained from below the highly organic topsoil at depths of 1 to 3 feet below the ground surface. Bulk samples were placed in 5-gallon buckets and sealed in the field to preserve the in situ moisture content. The samples were transported to Soil Engineering Testing, Inc. (SET) of Bloomington, Minnesota, for laboratory testing.

Barr personnel verified the test sites based on the coordinates using a hand-held GPS unit, which was generally very close to the staked locations. The sample locations are shown on Figure 1. Coordinates of each test location and sample depth can be found in Table 1.

Table 1 Thermal Resistivity Sample Information

Geotech ID (Turbine		UTM Coordinates, Zone 17N [m] [NAD83]		
ID-4/4/18 Array)	Sample Depth [feet]	Northing	Easting	
GEO-005 (2.3-5)	1-3	4550876.8	330232.5	
GEO-006 (2.3-6)	1-3	4551577.3	334368.0	
GEO-015 (3.8-3)	1-3	4546020.6	323462.6	
GEO-038 (3.8-24)	1-3	4549899.6	339979.5	
GEO-087 (3.8-16)	1-3	4547804.6	327652.3	
GEO-089 (3.8-37)	1-3	4545293.9	328728.7	
SUB-Res	1-3	4547035.0	327329.0	

Mr. Mike Goodwin - sPower Seneca Wind Project - Soil Thermal Resistivity Testing May 24, 2018 Page 2

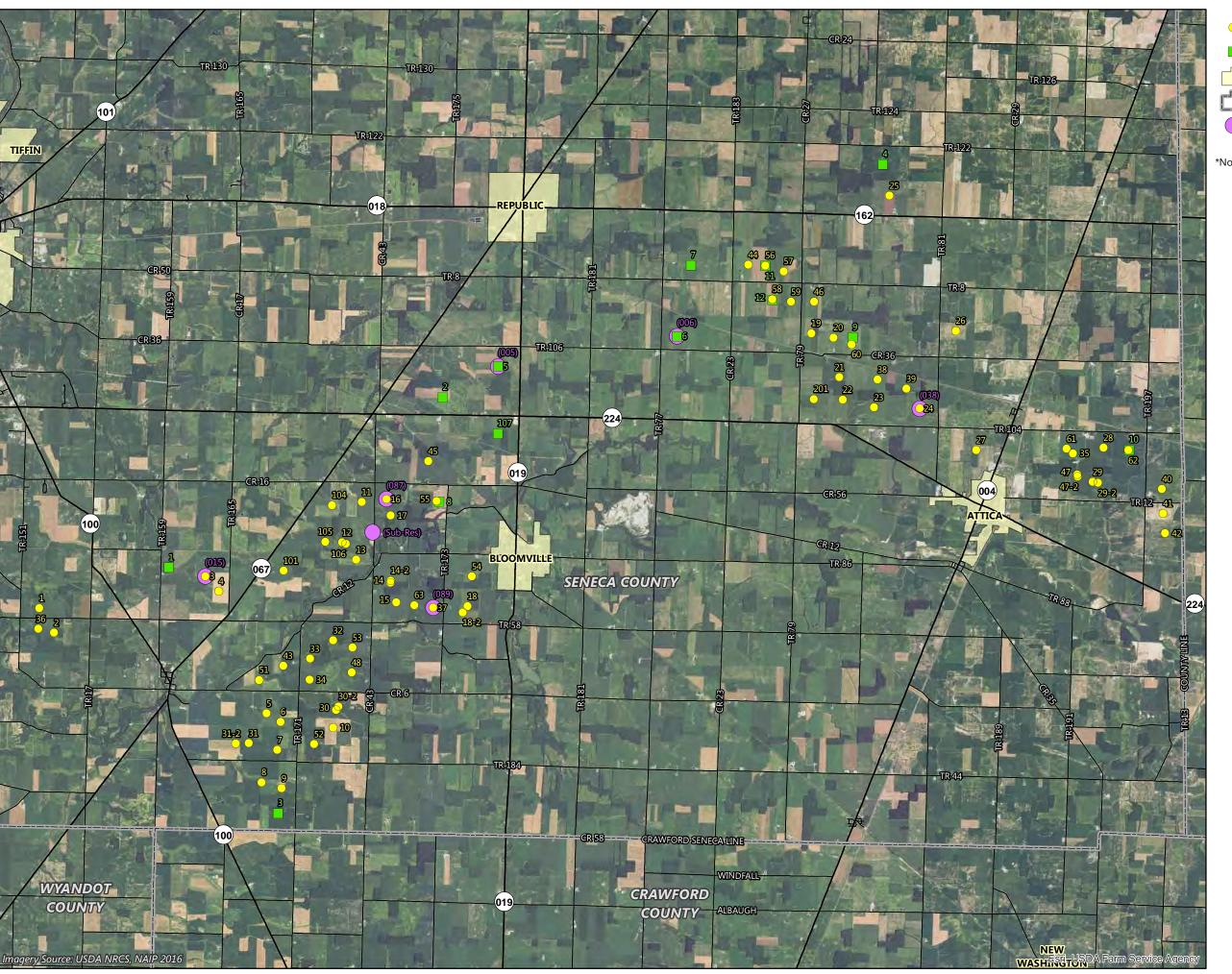
Laboratory testing included measurement of the soil's in-situ moisture content, standard Proctor density and optimum moisture content, and thermal dryout characteristics. All of the bulk samples collected were re-compacted to a density equivalent to approximately 90 percent of standard Proctor maximum dry density near the optimum moisture content for testing. The soil specimens were compacted in four layers in test molds (75 mm diameter by 150 mm high) to minimize contact resistance at the soil/probe interface and to provide for a uniform density.

Thermal dryout characteristics were measured according to ASTM D5334 using a laboratory type thermal needle held central and vertical in the base plate. Thermal resistivity measurements were conducted starting at the remolded moisture content of the soil sample to the totally dry condition. At the end of each drying stage, samples were sealed and brought to thermal equilibrium with the ambient air to maintain uniform moisture re-distribution through the sample. Tests were conducted using a KD2 Pro Thermal Property Analyzer. The instrument was calibrated prior to testing.

Results

The resulting laboratory soil thermal resistivity measurements presented with full dryout curves are included in the attachments.

Closing


Thank you for the opportunity to provide this service. Please call me at 952-832-2797 with questions or requests for additional information.

Sincerely,

William W. Kussmann Barr Engineering Co.

Attachments:

Figure 1: Thermal Resistivity Test Locations Thermal Resistivity Test Results

Turbine Location - 3.8 (4/4/2018)

Turbine Location - 2.3 (4/4/2018)

City Boundary

County Boundary

Thermal Resistivity Test Locations

*Note: Labeled with GEO- ID in parentheses.

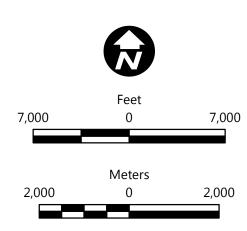
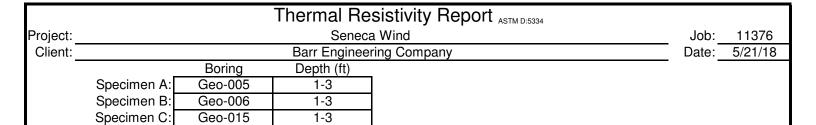
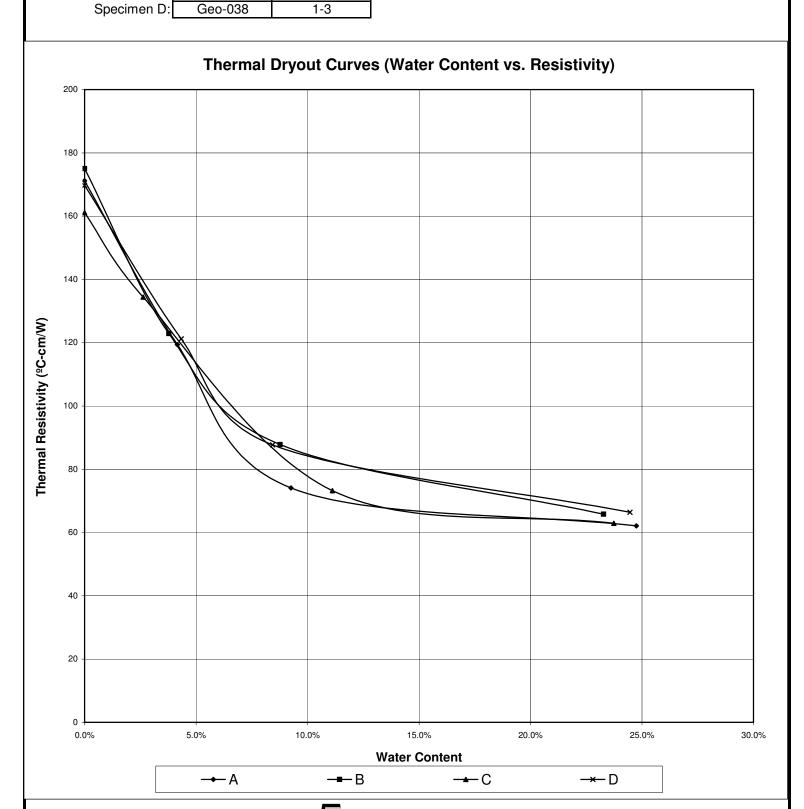


Figure 1

THERMAL RESISTIVITY TEST LOCATIONS


Seneca Wind Project S-Power Seneca County, Ohio

Thermal Resistivity Report ASTM D:5334


Project: Seneca Wi	nd						Job #:	11376
Client: Barr Engin	eering Company						Date:	5/21/18
					ļ	nitial Condit		Dry
Boring	Specimen Type	Depth (ft)	Туре	Classification	Dry Density (PCF)	WC (%)	Thermal Resistivity (ºC-cm/W)	Thermal Resistivity (ºC-cm/W)
- 5	.,	- (-)	71-			(**)	(2 2 .)	(,
Geo-005	Reconstituted	1-3	Bulk	Lean Clay (CL)	93.8	24.7%	62	171
Geo-006	Reconstituted	1-3	Bulk	Lean Clay (CL)	92.9	23.3%	66	175
2 24-	B	4.0	.			00.70/	00	404
Geo-015	Reconstituted	1-3	Bulk	Lean Clay (CL/CH)	92.3	23.7%	63	161
Geo-038	Reconstituted	1-3	Bulk	Lean Clay (CL)	92.6	24.5%	66	170
		-	-					_
	Specimens reconstitute	nd to approvi	mataly 90%	of maximum standard proctor density near the grea	ter of the as	received		
	Specimens reconstitute	εά το αρρισκί		optimum moisture content.	ter or the as	receiveu		
		_						
				=				

outh FOIL NGINEERING ESTING, INC.

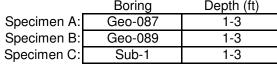
http://www.soilengineeringtesting.com

Geo-015

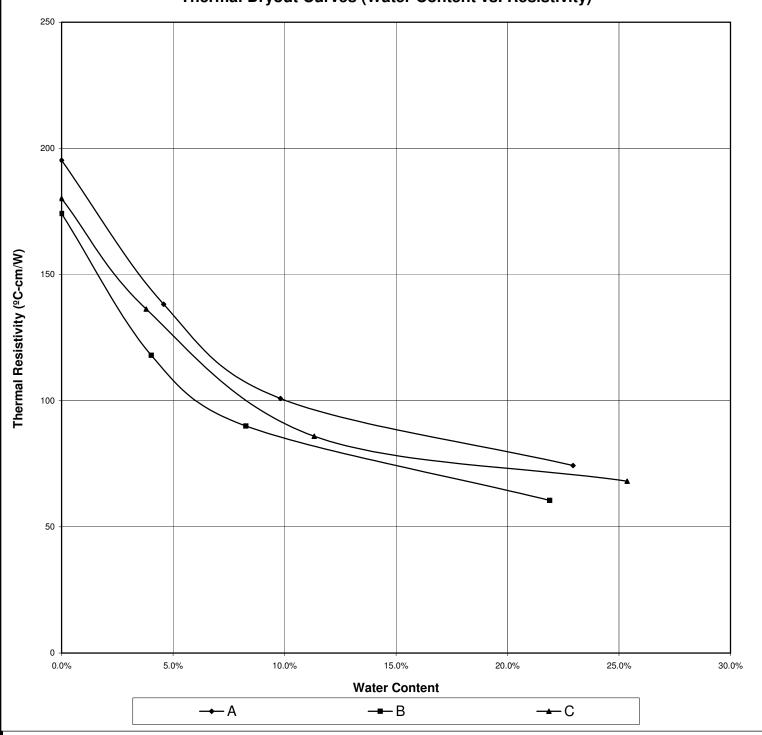
与oil **NGINEERING** ESTING, INC.

Thermal Resistivity Report ASTM D:5334

Project: Seneca Wi	nd						Job #:	11376
Client: Barr Engin	eering Company						Date:	5/21/18
					lı	nitial Condit		Dry
Boring	Specimen Type	Depth (ft)	Type	Classification	Dry Density (PCF)	WC (%)	Thermal Resistivity (ºC-cm/W)	Thermal Resistivity (ºC-cm/W)
Domig	орошнон туро	Boptii (it)	1) 0	Grace modelon.	(1 01)	(73)	(3 3111/11)	(3 3111/11)
Geo-087	Reconstituted	1-3	Bulk	Lean Clay (CL/CH)	92.6	22.9%	74	195
Geo-089	Reconstituted	1-3	Bulk	Lean Clay with sand and a trace of gravel (CL)	94.7	21.9%	61	174
2.1.4	B	4.0	ъ. п		00.7	05.40/	00	100
Sub-1	Reconstituted	1-3	Bulk	Lean Clay (CL/CH)	90.7	25.4%	68	180
	Specimens reconstitute	ed to approxi		of maximum standard proctor density near the grea	ter of the as i	received		
			or	optimum moisture content.				
]			


FOIL NGINEERING ESTING, INC.

 Thermal Resistivity Report ASTM D:5334


 Project:
 Seneca Wind
 Job: 11376

 Client:
 Barr Engineering Company
 Date: 5/21/18

 Boring
 Depth (ft)

9530 James Ave South

http://www.soilengineeringtesting.com

Bloomington, MN 55431

ESTING, INC.

Moisture Density Curve ASTM: D698, Method B Project: **Seneca Wind** 5/4/18 Date: Client: **Barr Engineering Company** Job No. 11376 Boring No. **Geo-005** Depth(ft): **1-3** Location: Sample: Soil Type: Lean Clay (CL) As Received W.C. (%): **24.9** Specific Gravity: 2.67 PI: *Assumed PL: LL: Maximum Dry Density (pcf): 104.1 Opt. Water Content (%): 20.4 108 107 **Proctor Points** Zero Air Voids 106 105 **Dry Density (PCF)**103
102 104 103 101 100 99 98 15 16 18 20 22 23 24 25 Water Content (%) 9530 James Ave South Bloomington, MN 55431 NGINEERING ESTING, INC. SET-R18a

Moisture Density Curve ASTM: D698, Method B Project: **Seneca Wind** Date: 5/4/18 Client: **Barr Engineering Company** Job No. 11376 Boring No. **Geo-006** Depth(ft): <u>1-3</u> Location: Sample: Soil Type: Lean Clay (CL) As Received W.C. (%): **23.4** LL: Specific Gravity: 2.67 PI: *Assumed PL: Opt. Water Content (%): **21.1** Maximum Dry Density (pcf): 103.0 107 106 **Proctor Points** Zero Air Voids 105 104 **Dry Density (PCF)**101
101 103 102 100 99 98 23 16 17 19 24 25 26 Water Content (%) 9530 James Ave South Bloomington, MN 55431 NGINEERING ESTING, INC. SET-R18a

Moisture Density Curve ASTM: D698, Method B Project: **Seneca Wind** Date: 5/4/18 Client: **Barr Engineering Company** 11376 Job No. Boring No. **Geo-015** Sample: Depth(ft): **1-3** Location: Soil Type: Lean Clay (CL/CH) PL: As Received W.C. (%): **23.9** PI: LL: Specific Gravity: 2.67 *Assumed Maximum Dry Density (pcf): 102.3 Opt. Water Content (%): 21.8 106 105 **Proctor Points** Zero Air Voids 104 103 102 Dry Density (PCF) 99 98 97 20 21 22 23 24 27 17 18 19 25 26 Water Content (%) 9530 James Ave South NGINEERING Bloomington, MN 55431 ESTING, INC.

SET-R18a

Moisture Density Curve ASTM: D698, Method B Project: **Seneca Wind** Date: 5/6/18 Client: **Barr Engineering Company** 11376 Job No. Boring No. **Geo-038** Sample: Depth(ft): **1-3** Location: Soil Type: Lean Clay (CL) PL: PI: As Received W.C. (%): **24.8** LL: Specific Gravity: 2.67 *Assumed Maximum Dry Density (pcf): 102.5 Opt. Water Content (%): 21.4 104 103 **Proctor Points** Zero Air Voids 102 101 100 Dry Density (PCF) 99 98 97 96 95 19 20 22 23 16 17 18 21 24 25 26 Water Content (%) 9530 James Ave South Bloomington, MN 55431

NGINEERING ESTING, INC.

Moisture Density Curve ASTM: D698, Method B Project: **Seneca Wind** Date: 5/4/18 Client: **Barr Engineering Company** Job No. 11376 Boring No. **Geo-087** Depth(ft): <u>1-3</u> Location: Sample: Soil Type: Lean Clay (CL/CH) As Received W.C. (%): **23.1** Specific Gravity: 2.67 PI: *Assumed PL: LL: Opt. Water Content (%): 21.2 Maximum Dry Density (pcf): 102.8 106 105 **Proctor Points** Zero Air Voids 104 103 **Dry Density (PCF)**101
100 102 99 98 97 96 16 17 19 23 24 25 26 Water Content (%) 9530 James Ave South Bloomington, MN 55431 NGINEERING ESTING, INC. SET-R18a

Moisture Density Curve ASTM: D698, Method B Project: **Seneca Wind** Date: 5/4/18 Client: **Barr Engineering Company** Job No. 11376 Depth(ft): <u>1-3</u> Boring No. Geo-089 Location: Sample: Soil Type: Lean Clay w/sand and a trace of gravel (CL) As Received W.C. (%): **22.2** Specific Gravity: 2.67 PI: *Assumed LL: PL: Maximum Dry Density (pcf): 105.0 Opt. Water Content (%): 20.0 108 107 **Proctor Points** Zero Air Voids 106 105 **Dry Density (PCF)**103
102 104 103 101 100 99 98 16 17 19 23 24 25 26 Water Content (%) 9530 James Ave South Bloomington, MN 55431 NGINEERING ESTING, INC. SET-R18a

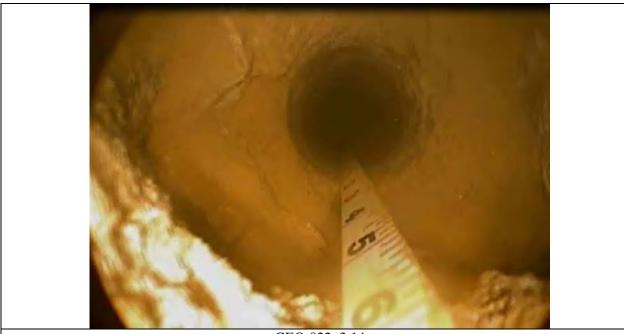
Moisture Density Curve ASTM: D698, Method B Project: Seneca Wind Date: 5/6/18 Client: **Barr Engineering Company** 11376 Job No. Boring No. **Sub-1** Sample: Depth(ft): **1-3** Location: Soil Type: Lean Clay (CL/CH) PL: As Received W.C. (%): **25.8** PI: LL: Specific Gravity: 2.67 *Assumed Maximum Dry Density (pcf): 100.3 Opt. Water Content (%): 22.2 104 103 **Proctor Points** Zero Air Voids 102 101 100 **Dry Density (PCF)** 99 98 97 96 95 21 20 22 23 24 27 17 18 19 25 26 Water Content (%) 9530 James Ave South NGINEERING Bloomington, MN 55431 ESTING, INC.

SET-R18a

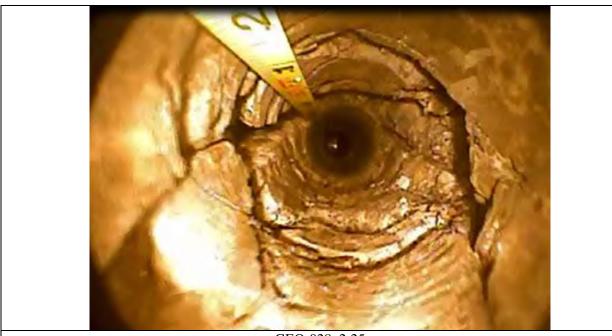
Appendix G

Photographs of Downhole Video Footage

GEO-021, 7:10 28 ft, Very broken rock with missing pieces, has back


GEO-021, 7:52 30 ft, View of void observed during drilling, collapsed borehole


GEO-021, 10:21 31.5 ft, View of tubular opening, camera could not see end of tube


GEO-022, 2:16 26 ft, Large washout, had back

GEO-022, 3:14 37 ft, Large washout, had back

GEO-022, 4:31 40 ft, Large washout, view of sidewalls with back

GEO-028, 2:25 9.5 ft, Where water loss occurred. Highly fractured rock.

GEO-028, 3:36 15.5 ft, 3-inch opening, lots of gravel sized pieces within

GEO-008, 6:28 33 ft, View of thin opening in sidewall, had back

GEO-047, 4:20 Typical borehole in upper 40 feet. Fractures and small openings have backs

GEO-047, 13:05 58 ft, view of "void" noted on log

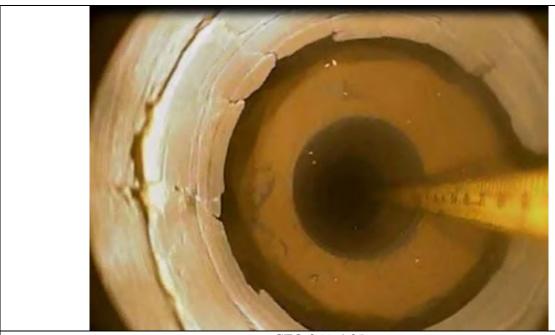
GEO-047, 13:50 58 ft, view of sidewall of "void", rugged dissolution features, had back

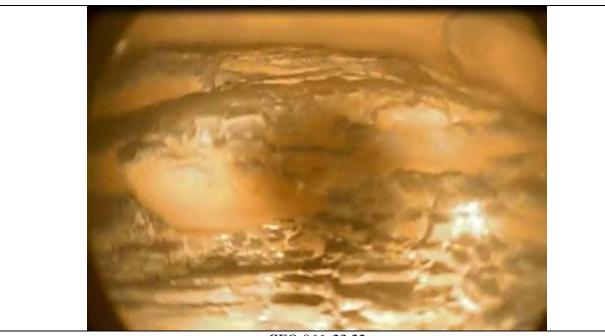
GEO-048, 5:53
26 ft, typical open fracture, had back, several observed to 35 ft in this location

GEO-048, 13:44 45-46 ft, rugged borehole.

58.5 ft, washout observed near depth where geotechnical log indicated, collection of rock debris at base of hole, possible small "void"

15 ft, View of thin opening, note soil on bottom of opening, likely thin soil filled void


GEO-060, 6:43 25 ft, Collection of platy rock debris

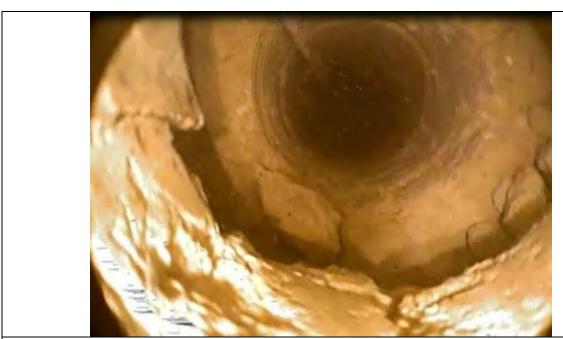

GEO-060, 12:56
58 ft, view of bottom of borehole where "voids" were noted, rugged dissolution features, had back

GEO-066, 7:27 31.5 ft, smaller void, 1" high, 2-3" deep. May be open on right side

GEO-066, 4:35 19.5 ft, typical opening ranging from 2 to 4 inches, frequently observed in video from 10 to 40 feet

GEO-066, 23:22 19.5 ft, typical view looking in to openings, had back

GEO-066, 8:16 31 ft, "void" identified in geotechnical boring


GEO-066, 12:28
42 ft, rugged borehole with large opening and missing pieces, dissolution features

GEO-066, 20:35 43 ft, view of sidewall of opening, had back

GEO-078, 6:41
36 ft, where circulation was lost during coring, too narrow to see into opening

GEO-078, 4:17
18 ft, small opening with soil and gravel infill and missing pieces, had back

GEO-086, 2:04 11.5 ft, 2-inch opening

GEO-086, 3:21
15.5 ft, highly fractured, rugged borehole with pieces missing, near depth where drilling fluid circulation was lost

GEO-086, 9:46 38 ft, small opening, similar observed at 14 and 25 feet

GEO-096, 6:51 20.5 ft, small opening, similar observed at 16.5, 26, 28, 32.5, 43, 43.5, 44.5, 48, and 49.5 ft

GEO-096, 7:04 20.5 ft, view into opening, had back

42.5 ft, near where drilling fluid circulation was lost, small opening with some missing limestone pieces

Appendix H

Further Analysis of Lower Strength Zones

Appendix H: Further Analysis of Lower Strength Zones

Further analysis of the following turbine locations was performed.

1.1.1 GEO-007

A slightly lower strength zone was identified from about 25 to 26.5 feet in the soil boring completed for investigated location GEO-007 through SPT testing. Further review of the soil boring indicates that the other SPT tests indicated that the undrained shear strength met the design value. The results of a laboratory unconfined compressive strength test indicated that the undrained shear strength just below the lower strength layer was approximately 2,800 psf, which meets the design value. The lower strength zone is anticipated to be relatively thin, and is not likely to lead to a bearing capacity failure. Therefore, no soil remediation is recommended at this location.

1.1.2 GEO-008

A slightly lower strength zone was identified from about 25 to 26.5 feet in the soil boring completed for investigated location GEO-008 through hand penetrometer testing. Further review of the soil boring indicates that the other SPT and hand penetrometer tests indicated that the undrained shear strength met the design value. The results of a laboratory unconfined compressive strength test indicated that the undrained shear strength just above the lower strength layer was approximately 2,200 psf, which meets the design value. The lower strength zone is anticipated to be relatively thin, and other measures of shear strength indicate that the strength will meet the design value, and is not likely to lead to a bearing capacity failure. Therefore, no soil remediation is recommended at this location.

1.1.3 GEO-009

A slightly lower strength zone was identified from about 30 to 31.5 feet in the soil boring completed for investigated location GEO-009 through hand penetrometer testing. Further review of the soil boring indicates that the other SPT and hand penetrometer tests indicated that the undrained shear strength met the design value. The results of a laboratory unconfined compressive strength test indicated that the undrained shear strength just above the lower strength layer was approximately 2,400 psf, which meets the design value. The lower strength zone is anticipated to be relatively thin, and other measures of shear strength indicate that the strength will meet the design value, and is not likely to lead to a bearing capacity failure. Therefore, no soil remediation is recommended at this location.

1.1.4 GEO-036

A slightly lower strength zone was identified from about 20 to 21.5 feet in the soil boring completed for investigated location GEO-036 through hand penetrometer testing. Further review of the soil boring indicates that the other SPT and hand penetrometer tests indicated that the undrained shear strength met the design value. The results of a laboratory unconfined compressive strength test indicated that the undrained shear strength just below the lower strength layer was approximately 2,100 psf, which meets the design value. The lower strength zone is anticipated to be relatively thin, and other measures of shear strength indicate that the strength will meet the design value, and is not likely to lead to a bearing capacity failure. Therefore, no soil remediation is recommended at this location.

1.1.5 GEO-042

A slightly lower strength zone was identified from about 30 to 37 feet in the soil boring completed for investigated location GEO-042 through SPT testing. Further review of the soil boring indicates that the other SPT tests indicated that the undrained shear strength met the design value. The results of a laboratory unconfined compressive strength test indicated that the undrained shear strength within the lower strength layer was approximately 1,800 psf, which meets the design value. The lower strength zone is anticipated to be relatively thin, and is not likely to lead to a bearing capacity failure. Therefore, no soil remediation is recommended at this location.

1.1.6 GEO-047

A slightly lower strength zone was identified from about 8 to 20.5 feet in the soil boring completed for investigated location GEO-047 through SPT testing. The results of the soil boring indicate that the sand in that interval is relatively loose, and may be subject to excessive settlement. Barr performed a settlement analysis, and the results indicate that the estimated settlement will be less than the typical threshold for industry standards. Therefore, no soil remediation is recommended at this location.

1.1.7 GEO-052

A slightly lower strength zone was identified from about 20 to 35 feet and 55 to 56.5 feet in the soil boring completed for investigated location GEO-052 through SPT testing. Further review of the soil boring indicates that the other SPT tests indicated that the undrained shear strength met the design value. The results of a laboratory unconfined compressive strength test indicated that the undrained shear strength within the lower strength layer was approximately 2,300 psf, which meets the design value. The lower strength zone at 55 feet is anticipated to be relatively thin and located well below the embedment depth of the foundation, and is not likely to lead to a bearing capacity failure. Therefore, no soil remediation is recommended at this location.

1.1.8 GEO-056

A slightly lower strength zone was identified from about 25 to 35 feet and 40 to 41.5 feet in the soil boring completed for investigated location GEO-056 through SPT testing and hand penetrometer testing. Further review of the soil boring indicates that the other SPT and hand penetrometer tests indicated that the undrained shear strength met the design value. The results of laboratory unconfined compressive strength tests indicated that the undrained shear strength within the lower strength layers ranged from approximately 1,700 to 2,900 psf, which meets the design value. Based on an overall consideration of the field and laboratory test results, no soil remediation is recommended at this location.

1.1.9 GEO-059

A slightly lower strength zone was identified from about 45 to 46.5 feet and 60 to 61.5 feet in the soil boring completed for investigated location GEO-059 through SPT testing. Further review of the soil boring indicates that the other SPT and hand penetrometer tests indicated that the undrained shear strength met the design value. The results of laboratory unconfined compressive strength tests indicated that the undrained shear strength within the lower strength layer was approximately 4,000 psf, which meets the

design value. The lower strength zones are anticipated to be relatively thin and located well below the embedment depth of the foundation, and is not likely to lead to a bearing capacity failure. Therefore, no soil remediation is recommended at this location.

1.1.10 GEO-062

A slightly lower strength zone was identified from about 40 to 41.5 feet in the soil boring completed for investigated location GEO-062 through hand penetrometer testing. Further review of the soil boring indicates that the other SPT and hand penetrometer tests indicated that the undrained shear strength met the design value. The lower strength zone is anticipated to be relatively thin, and other measures of shear strength indicate that the strength will meet the design value, and is not likely to lead to a bearing capacity failure. Therefore, no soil remediation is recommended at this location.

1.1.11 GEO-070

A slightly lower strength zone was identified from about 30 to 36.5 feet in the soil boring completed for investigated location GEO-070 through hand penetrometer testing. Further review of the soil boring indicates that the other SPT and hand penetrometer tests indicated that the undrained shear strength met the design value. The results of a laboratory unconfined compressive strength test indicated that the undrained shear strength just above the lower strength layer was approximately 2,200 psf, which meets the design value. The lower strength zone is anticipated to be relatively thin, and other measures of shear strength indicate that the strength will meet the design value, and is not likely to lead to a bearing capacity failure. Therefore, no soil remediation is recommended at this location.

1.1.12 GEO-077

A slightly lower strength zone was identified from about 20 to 21.5 feet and 40 to 41.5 feet in the soil boring completed for investigated location GEO-077 through SPT and hand penetrometer testing. Further review of the soil boring indicates that the other SPT and hand penetrometer tests indicated that the undrained shear strength met the design value. The results of a laboratory unconfined compressive strength test indicated that the undrained shear strength just below the lower strength layer at 20 feet was approximately 2,100 psf, which meets the design value. The lower strength zones are anticipated to be relatively thin, and other measures of shear strength indicate that the strength will meet the design value, and is not likely to lead to a bearing capacity failure. Therefore, no soil remediation is recommended at this location.

1.1.13 GEO-079

A slightly lower strength zone was identified from about 35 to 36.5 feet in the soil boring completed for investigated location GEO-079 through hand penetrometer testing. Further review of the soil boring indicates that the other SPT and hand penetrometer tests indicated that the undrained shear strength met the design value. The results of a laboratory unconfined compressive strength test indicated that the undrained shear strength within the lower strength layer was approximately 2,900 psf, which meets the design value. The lower strength zone is anticipated to be relatively thin, and other measures of shear

strength indicate that the strength will meet the design value, and is not likely to lead to a bearing capacity failure. Therefore, no soil remediation is recommended at this location.

1.1.14 GEO-082

A slightly lower strength zone was identified from about 20 to 21.5 feet in the soil boring completed for investigated location GEO-082 through hand penetrometer testing. Further review of the soil boring indicates that the other SPT and hand penetrometer tests indicated that the undrained shear strength met the design value. The lower strength zone is anticipated to be relatively thin, and other measures of shear strength indicate that the strength will meet the design value, and is not likely to lead to a bearing capacity failure. Therefore, no soil remediation is recommended at this location.

1.1.15 GEO-083

A slightly lower strength zone was identified from about 15 to 16.5 feet in the soil boring completed for investigated location GEO-083 through SPT testing. Further review of the soil boring indicates that the other SPT tests indicated that the undrained shear strength met the design value. The results of a laboratory unconfined compressive strength test indicated that the undrained shear strength just below the lower strength layer was approximately 2,300 psf, which meets the design value. The lower strength zone is anticipated to be relatively thin, and is not likely to lead to a bearing capacity failure. Therefore, no soil remediation is recommended at this location.

1.1.16 GEO-091

A slightly lower strength zone was identified from about 35 to 36.5 feet in the soil boring completed for investigated location GEO-091 through hand penetrometer testing. Further review of the soil boring indicates that the other SPT and hand penetrometer tests indicated that the undrained shear strength met the design value. The results of a laboratory unconfined compressive strength test indicated that the undrained shear strength just above the lower strength layer was approximately 3,700 psf, which meets the design value. The lower strength zone is anticipated to be relatively thin, and other measures of shear strength indicate that the strength will meet the design value, and is not likely to lead to a bearing capacity failure. Therefore, no soil remediation is recommended at this location.

1.1.17 GEO-092

A slightly lower strength zone was identified from about 45 to 46.5 feet in the soil boring completed for investigated location GEO-092 through hand penetrometer testing. Further review of the soil boring indicates that the other SPT and hand penetrometer tests indicated that the undrained shear strength met the design value. The results of a laboratory unconfined compressive strength test indicated that the undrained shear strength just below the lower strength layer was approximately 2,500 psf, which meets the design value. The lower strength zone is anticipated to be relatively thin, and other measures of shear strength indicate that the strength will meet the design value, and is not likely to lead to a bearing capacity failure. Therefore, no soil remediation is recommended at this location.

1.1.18 GEO-093

A slightly lower strength zone was identified from about 27 to 29 feet in the soil boring completed for investigated location GEO-092 through laboratory testing. Further review of the soil boring indicates that the other SPT and hand penetrometer tests indicated that the undrained shear strength met the design value. The results of a laboratory unconfined compressive strength test indicated that the undrained shear strength in that interval was approximately 1,000 psf, which does not meet the design value. Barr performed a two-layer bearing capacity analysis for the weaker soils, and determined that the resultant bearing capacity would meet the design value. Therefore, no soil remediation is recommended at this location.

This foregoing document was electronically filed with the Public Utilities

Commission of Ohio Docketing Information System on

7/16/2018 11:10:13 AM

in

Case No(s). 18-0488-EL-BGN

Summary: Application Appendix H Part 2 electronically filed by Teresa Orahood on behalf of Dylan F. Borchers