

Legal Department

American Electric Power 1 Riverside Plaza Columbus, OH 43215-2373 AEP.com

May 23, 2018

Hector Garcia Christen M. Blend Senior Counsel – Regulatory Services (614) 716-3410 (P) (614) 716-1915 (P) hgarcia1@aep.com cmblend@aep.com Chairman Asim Z. Haque Ohio Power Siting Board 180 East Broad Street Columbus, Ohio 43215

Re: PUCO Case No. 18-0602-EL-BLN In the Matter of the Letter of Notification for the Dilles Bottom Station and George Washington-Dilles Bottom 138 kV Transmission Line Project

Dear Chairman Haque,

Attached please find a copy of the Letter of Notification for the above-captioned project ("Project") by AEP Ohio Transmission Company, Inc. This filing and notice is in accordance with O.A.C. 4906-6-05

A copy of this filing will also be submitted to the executive director or the executive director's designee. A copy will be provided to the Board Staff, including an electronic copy.

If you have any questions, please do not hesitate to contact me.

Respectfully submitted,

/s/ Christen Blend Christen Blend (0086881), Counsel of Record Hector Garcia (0084517) Counsel for AEP Ohio Transmission Company, Inc.

cc: Jon Pawley, OPSB Staff

LETTER OF NOTIFICATION FOR Dilles Bottom Station and George Washington-Dilles Bottom 138 kV Transmission Line Project

PUCO Case No. 18-0602-EL-BLN

Submitted to: The Ohio Power Siting Board Pursuant to Ohio Administrative Code Section 4906-6-05

Submitted by: AEP Ohio Transmission Company, Inc.

May 23, 2018

LETTER OF NOTIFICATION

AEP Ohio Transmission Company, Inc.'s Dilles Bottom Station and George Washington-Dilles Bottom 138 kV Transmission Line Project

4906-6-05

AEP Ohio Transmission Company, Inc. ("AEP Ohio Transco") is providing this Letter of Notification ("LON") to the Ohio Power Siting Board ("OPSB") in accordance with the accelerated application requirements of Ohio Administrative Code ("O.A.C.") Section 4906-6-05.

4906-6-05(B) General Information

B(1) Project Description

The name of the project and applicant's reference number, names, and reference number(s) of resulting circuits, a brief description of the project, and why the project meets the requirements for a Letter of Notification.

AEP Ohio Transco proposes the Dilles Bottom Station and George Washington-Dilles Bottom 138 kilovolt ("kV") Transmission Line Project ("Project") located in Mead Township, Belmont County, Ohio ("Project Area"). AEP Ohio Transco proposes to rebuild and upgrade the existing Dilles Bottom Station and rebuild approximately 0.1 mile of existing 69 kV transmission line to 138 kV transmission line between the Dilles Bottom Station and the Ohio River. The transmission line to be rebuilt crosses over the Ohio River and continues approximately 1.2 miles to the George Washington Substation, located in Marshall County, West Virginia.

The rebuild and upgrade of the Dilles Bottom Station will increase the footprint of the substation from approximately 0.1 acres to 2.4 acres to accommodate the increase in voltage. Figure 1 (Appendix A) shows the general location of the substation and line rebuild within the Project Area.

The Project meets the requirements for a Letter of Notification because it is within the types of projects defined by (1)(a) and (3) of Appendix A to O.A.C. 4906-1-01, *Application Requirement Matrix For Electric Power Transmission Lines*:

- 1. New construction, extension, or relocation of single or multiple circuit electric power transmission line(s), or upgrading existing transmission or distributions line(s) for operation at a higher transmission voltage, as follows:
- (a) *Line*(*s*) *not greater than 0.2 miles in length.*

and,

3. Constructing a new electric power transmission substation.

The Project has been assigned PUCO Case No. 18-0602-EL-BLN.

B(2) Statement of Need

If the proposed project is an electric power transmission line or natural gas transmission line, a statement explaining the need for the proposed facility.

The Project is a PJM Baseline RTEP project (identifier B2753), which was initially submitted to PJM in May 2016, and revised in September 2017 (Appendix B). The baseline status is due to the project relieving transmission system criteria violations associated with future generation retirements in the region. In addition, a major industrial customer is proposing to build near the Project area. If the customer moves forward with its proposed facility, it will require substantial power, necessitating a substation upgrade near Dilles Bottom. The Project was referenced in the 2018 AEP Ohio Transmission Company LTFR, in section FE-T9 (Planned Electric Transmission Lines), and in section FE-T10 (Proposed Substations) of Ohio Power Company's 2018 LTFR (Appendix B). The existing 69 kV transmission line passing through the Project Area is not of sufficient capacity to meet the area's future power requirements. Constructing a new 138 kV double-circuit transmission line from AEP's George Washington Station in West Virginia to AEP's Dilles Bottom Station in Ohio and connecting to FirstEnergy's 138 kV transmission lines proceeding to Holloway Station, will add a robust, reliable source of power for years to come and resolve the system reliability concerns as studied by the PJM RTO. The Dilles Bottom 138-12 kV station will also serve local AEP Ohio distribution loads in the area and replace the existing Dilles Bottom 69-12 kV Station.

B(3) Project Location

The applicant shall provide the location of the project in relation to existing or proposed lines and substations shown on an area system map of sufficient scale and size to show existing and proposed transmission facilities in the project area.

Figure 1 shows the location of the Project in relation to existing transmission facilities on a United States Geological Survey 1:24,000 quadrangle. Figure 2 identifies the Project components on a 2016 aerial photograph.

B(4) Alternatives Considered

The applicant shall describe the alternatives considered and reasons why the proposed location or route is best suited for the proposed facility. The discussion shall include, but not be limited to, impacts associated with socioeconomic, ecological, construction, or engineering aspects of the project.

The site identified for the new Dilles Bottom Station is adjacent to the existing Dilles Bottom Station and was the only site identified for the Project. The land to be purchased for the Project was previously optioned by an industrial customer who released the option to AEP Ohio Transco in order to construct the new Station. The industrial customer released the option to AEP Ohio Transco with the understanding that the new station would be constructed on the western portion of the property. In addition to the property specifications, the existing Dilles Bottom Station must remain energized until the transmission lines are

rebuilt and the new station is constructed. Therefore, no additional alternatives sites were considered for the rebuild of the Dilles Bottom Station.

The proposed George Washington-Dilles Bottom 138 kV transmission line will be rebuilt adjacent to the existing 69 kV transmission line. Due to outage constraints along the existing 69 kV transmission line and the lack of constraints in the Project area, no other alternatives were considered. Significant negative socioeconomic, ecological, or construction impacts from the proposed 138 kV transmission line are not expected, as the new line will be adjacent to the existing 69 kV transmission line.

B(5) Public Information Program

The applicant shall describe its public information program to inform affected property owners and tenants of the nature of the project and the proposed timeframe for project construction and restoration activities.

AEP Ohio Transco informs affected property owners and tenants about its projects through several different mediums. Within seven days after filing this LON, AEP Ohio Transco will issue a public notice in a newspaper of general circulation in the Project area. The notice will comply with all requirements under O.A.C. 4906-6-08(A)(1)-(6). Further, AEP Ohio Transco mailed a letter, via first class mail, to affected landowners, tenants, contiguous owners, and any other landowner AEP Ohio Transco approached for an easement necessary for the construction, operation, or maintenance of the facility. The letter complies with all the requirements of O.A.C. 4906-6-08(B). AEP Ohio Transco also maintains a website (http://aeptransmission.com/ohio/), which provides the public access to an electronic copy of this LON and the public notice for this LON. A paper copy of the LON will be served to the public library in each political subdivision affected by this proposed Project. Lastly, AEP Ohio Transco retains ROW land agents who discuss project timelines, construction and restoration activities with affected owners and tenants.

B(6) Construction Schedule

The applicant shall provide an anticipated construction schedule and proposed in-service date of the project.

AEP Ohio Transco anticipates construction of the Project will begin in the fall of 2018, and the in-service date of the Project will be approximately November 2019.

B(7) Area Map

The applicant shall provide a map of at least 1:24,000 scale clearly depicting the facility with clearly marked streets, roads, and highways, and an aerial image.

Figure 1 identifies the location of the Project Area on a United States Geological Survey 1:24,000 quadrangle map. Figure 2 is an aerial map of the Project.

To visit the Project from Columbus, Ohio, take I-70 E toward Wheeling, West Virginia for approximately 119 miles. Continue onto I-470 E toward Bellaire/Washington, Pennsylvania for approximately six miles,

LETTER OF NOTIFICATION FOR DILLES BOTTOM STATION AND GEORGE WASHINGTON-DILLES BOTTOM 138 KV TRANSMISSION LINE PROJECT May 23, 2018

toka the name night for OII = and turn night. Drive at miles

take the ramp right for OH-7 and turn right. Drive 11 miles south and turn left onto County Road 54/Dilles Bottom Road/Old State Highway 7. The Dilles Bottom Substation will be 0.9-mile on the left. The approximate address of the Dilles Bottom Substation is 55586 Old State Highway, Shadyside, Ohio 43947 at latitude 39.9210, longitude -80.7897.

B(8) Property Agreements

The applicant shall provide a list of properties for which the applicant has obtained easements, options, and/or land use agreements necessary to construct and operate the facility and a list of the additional properties for which such agreements have not been obtained.

The Project will be constructed adjacent to the existing George Washington-Dilles Bottom 69 kV transmission line ROW. Provided below is a table of parcel numbers and an indication of if the easement/option necessary to construct and operate the facility has been obtained.

Property Parcel Number	Easement/ Option Obtained (Yes/No)*
15-00552.000	Yes
15-00553.000	Yes
15-00552.003	Yes
15-00552.001	Yes
15-00553.002	Yes
15-00553.001	Yes

*AEP Ohio Transco may supplement its existing rights under certain blanket easements identified above

B(9) Technical Features

The applicant shall describe the following information regarding the technical features of the Project:

B(9)(a) Operating characteristics, estimated number and types of structures required, and right-of-way and/or land requirements.

Substation

The Station site will be approximately 2.4 acres (fenced area 300'x350'). The Station site will be graded, stoned, and fenced. Two graveled access roads will be constructed to the Station off of Old State Highway 7.

The equipment and facilities to be installed within the Station site will include the following:

One (1) Distribution Transformer, 12/16/20MVA, 138 kV-13.09 kV Three (3) 7.62 kV Voltage regulators Three (3) 17.5 kV distribution circuit breakers 500' of Plastibeton One (1) 16' x 27' DICM

AEP Ohio Transmission Company, Inc. May 23, 2018

LETTER OF NOTIFICATION FOR DILLES BOTTOM STATION AND GEORGE WASHINGTON-DILLES **BOTTOM 138 KV TRANSMISSION LINE PROJECT**

May 23, 2018

Four (4) 138 kV circuit breakers Two (2) 50KVA power PTs Twelve (12) 138 kV CCVT's One (1) 28.8 MVAR (initial)/ 57.6 MVAR (expandable) 138 kV capacitor bank Three (3) 138 kV Current Transformers for the cap bank One (1) 138 kV Capacitor Switcher. Twenty Two (22) sets of 3 phase, 138 kV Switches.

Transmission Line

The Project will consist of one (1) steel lattice tower to support the aerial transmission line crossing over the Ohio River, and two (2) steel single-circuit mono-pole structures to route each circuit into the Dilles Bottom Station. The tower is projected to be approximately 285-ft in above ground height, and the steel monopoles are to be approximately 100-ft in above ground height. It is projected that the tower and poles will utilize concrete pier foundations pending additional geotechnical exploration and engineering analysis.

The Project has the following characteristics:

Voltage:	138 kV
Structure Type:	Steel lattice tower and steel mono-poles
Shield Wire:	(2) OPGW (Fiber optic communication wire) used above phase conductors
Conductor:	(6) 1,233.6KCM ACSS/TW Type 13 Stranding – "Yukon"
Insulators:	Non-Ceramic Insulators (Polymer) with corona rings

For electric power transmission lines that are within one hundred feet of an occupied residence or institution, the production of electric and magnetic fields during the operation of the proposed electric power transmission line. The discussion shall include:

B(9)(b)(i) Calculated Electric and Magnetic Field Strength Levels

No occupied residences or institutions are located within 100 feet of the Project.

B(9)(b)(ii) Design Alternatives

A discussion of the applicant's consideration of design alternatives with respect to electric and magnetic fields and their strength levels, including alternate conductor configuration and phasing, tower height, corridor location, and right-of-way width.

No occupied residences or institutions are located within 100 feet of the Project.

B(9)(b)(ii)(c) Project Costs

The estimated capital cost of the project.

The estimated capital cost of the Project, comprised of applicable tangible and capital costs, is approximately \$7,000,000.

AEP Ohio Transmission Company, Inc. May 23, 2018

LETTER OF NOTIFICATION FOR DILLES BOTTOM STATION AND GEORGE WASHINGTON-DILLES BOTTOM 138 KV TRANSMISSION LINE PROJECT May 23, 2018

B(10) Social and Economic Impacts

The applicant shall describe the social and ecological impacts of the project.

B(10)(a) Operating Characteristics

Provide a brief, general description of land use within the vicinity of the proposed project, including a list of municipalities, townships, and counties affected.

The Project is located in Mead Township, Belmont County, Ohio. The unincorporated community of Dilles Bottom is located east and west of the Project. The community is generally bounded by industrial development, Ohio Route 7, and the Ohio River, as well as rugged topography dominated by forest.

Land uses in the Project Area consist of developed open space, hay/pasture, herbaceous, deciduous forest, and open water. Commercial/industrial buildings or complexes are present in the area immediately to the east of the Project. Two wetlands and three streams were identified within the Project study area. Impacts to these aquatic resources are not anticipated as part of the Project.

B(10)(b) Agricultural Land Information

Provide the acreage and a general description of all agricultural land, and separately all agricultural district land, existing at least sixty days prior to submission of the application within the potential disturbance area of the project.

The Project is not located within a registered agricultural district land, based on data received from the Belmont County Auditor's Office on March 29, 2018. Additionally, the Project Area does not contain any active agricultural row crop land (see Figure 2).

B(10)(c) Archaeological and Cultural Resources

Provide a description of the applicant's investigation concerning the presence or absence of significant archeological or cultural resources that may be located within the potential disturbance area of the project, a statement of the findings of the investigation, and a copy of any document produced as a result of the investigation.

In April 2018, AEP Ohio Transco's consultant completed Phase I Cultural Resource Management Investigations for the Project, which will be provided to OPSB under separate cover. The field investigations were completed within a 100-foot-wide corridor along the 0.2-mile transmission line and included a 30foot corridor for proposed access roads. In addition, a 10-acre site for the Dilles Bottom Station was also surveyed. Much of the Project area was found to be severely disturbed.

In April 2018, AEP Ohio Transco's consultant completed history/architecture investigations for the Project, which will be submitted to OPSB under separate cover. The history/architecture investigations consisted of a review of historical databases and systematic survey of properties 50 years of age or older that are situated within 1,000 feet on either side of the proposed Project. Two residential properties were identified in the

LETTER OF NOTIFICATION FOR DILLES BOTTOM STATION AND GEORGE WASHINGTON-DILLES **BOTTOM 138 KV TRANSMISSION LINE PROJECT**

May 23, 2018

Project Area, but they are modern and less than 50 years old. No further history/architecture investigations are considered to be necessary for this Project. For more information, see the Phase I Cultural Resource Management Investigations Report provided to OPSB under separate cover.

A response from the Ohio Historic Preservation Office was received on May 10, 2018 and will be provided to OPSB under separate cover.

B(10)(d) Local, State, and Federal Agency Correspondence

Provide a list of the local, state, and federal governmental agencies known to have requirements that must be met in connection with the construction of the project, and a list of documents that have been or are being filed with those agencies in connection with siting and constructing the project.

A Notice of Intent will be filed with the Ohio Environmental Protection Agency ("OEPA") for authorization of construction storm water discharges under General Permit OHC0000005, and AEP Ohio Transco will implement and maintain best management practices, as outlined in the project-specific Storm Water Pollution Prevention Plan, to minimize erosion and control sediment to protect surface water quality during storm events.

A Section 10 permit for the aerial crossing of the Ohio River is required. An application for the permit is necessary and will be submitted to the United States Army Corp of Engineer's Pittsburgh Regulatory District. In addition, coordination with the United States Coast Guard will also be required.

It is also anticipated that the Project will meet the terms and conditions of the pre-authorized Section 401 Water Quality Certification from the OEPA.

The Project is located within a Federal Emergency Management Agency ("FEMA") 100-year floodplain area (specifically, map number 39013C0341E). However, the Project will not be located within a floodway. FEMA floodplain permitting through the Belmont County Engineer may be required for the Project. AEP Ohio Transco will coordinate with the Belmont County Engineer if a floodplain permit is required.

Applicable municipal and state road and driveway permits will be applied for and obtained as necessary prior to construction.

There are no other known local, state, or federal requirements that must be met prior to commencement of the Project.

B(10)(e) Threatened, Endangered, and Rare Species

Provide a description of the applicant's investigation concerning the presence or absence of federal and state designated species (including endangered species, threatened species, rare species, species proposed for listing, species under review for listing, and species of special interest) that may be located within the potential disturbance area of the project, a

LETTER OF NOTIFICATION FOR DILLES BOTTOM STATION AND GEORGE WASHINGTON-DILLES BOTTOM 138 KV TRANSMISSION LINE PROJECT May 23, 2018

statement of the findings of the investigation, and a copy of any document produced as a result of the investigation.

The United States Fish and Wildlife Service ("USFWS") *Ohio County Distribution of Federally-Listed Threatened, Endangered, Proposed, and Candidate Species January, 29 2018* (available at https://www.fws.gov/midwest/endangered/lists/pdf/ OhioCtyList29Jan2018.pdf) was reviewed to determine the threatened and endangered species known to occur in Belmont County. This USFWS publication lists the following species as occurring within Belmont County: Indiana bat (*Myotis sodalis*; federally endangered) and northern long-eared bat (*Myotis septentrionalis*; federally threatened). As part of the ecological study completed for the Project, a coordination letter was submitted to the USFWS' Ohio Ecological Services Field Office seeking technical assistance on the Project for potential impacts to threatened or endangered species. The February 14, 2018 response letter from the USFWS (Project ID 03E15000-2018-TA-0547) indicated that the Project is within the range of the Indiana bat and northern long-eared bat in Ohio, but if tree clearing occurs between October 1 and March 31, they do not anticipate the Project having any adverse effects to these species or any other federally-listed endangered, threatened, proposed, or candidate species. The proposed Project will require tree clearing, however, AEP Ohio Transco anticipates tree clearing will occur between October 1 and March 31.

Several state-listed threatened species, endangered species, and species of concern are listed by the Ohio Department of Natural Resources ("ODNR") (available at <u>http://wildlife.ohiodnr.gov/speces-and-habitats/state-listed-species/state-listed-species-by-county</u>) as occurring, or potentially occurring in Belmont County. These state-listed speces are addressed in detail in the Ecological Survey Report included in Appendix C.

A coordination letter was submitted to the ODNR in January 2018, seeking an environmental review of the proposed Project for potential impacts on state-listed threatened or endangered species. The March 13, 2018 response letter from ODNR (see Appendix C; Project IDs 18-239 and 18-240) indicated the Natural Heritage Database ("NHD") has no records of state-endangered or -threatened plants or animals within the Project area. The NHD also has no records of state-potentially-threatened plants, special interest species or species of concern animals, or any federally-listed species.

Coordination was also conducted with ODNR's Division of Wildlife ("DOW") in January 2018 for the Project. ODNR DOW's response letter, dated March 13, 2018, indicated the Project is within the range of the Indiana bat, a state-endangered species, as well as a federally-endangered species. If tree clearing occurs between October 1 and March 31, the ODNR's Division of Wildlife ("DOW") does not anticipate the Project having adverse effects to the Indiana bat. The Project is also located within the range of the following state-listed mussel species: butterfly (*Ellipsaria lineolata*), threehorn wartyback (*Obliquaria reflexa*), and black sandshell (*Ligumia recta*). However, in-stream impacts to waterbodies where the mussel species may occur are not proposed to occur, therefore, mussel surveys are not required. The Project is also located within the range of the following state-listed fish species: western banded killifish (*Fundulus diaphanous menona*), channel darter (*Percina copelandi*), river darter (*Percina shumardi*), Tippecanoe darter (*Etheostoma tippecanoe*), and paddlefish (*Polyodon spathula*). The DOW recommends no in-water work in perennial streams from April 15 through June 30 to reduce impacts to indigenous aquatic species and their habitat; these species will not be impacted as no in-stream work is proposed for the Project. Lastly,

the Project is also within the range of the eastern hellbender (*Cryptobranchus alleganiensis alleganiensis*), a state-endangered species and a federal species of concern, and the black bear (*ursus americanus*). Due to the location, and that there is no in-water work proposed in a perennial stream of sufficient size to provide suitable habitat, the Project is not likely to impact the eastern hellbender per the DOW. Due to the mobility of the black bear, the Project is not likely to impact the species per the DOW. Consultation with the ODNR and USFWS is provided in Appendix C.

B(10)(f) Areas of Ecological Concern

Provide a description of the applicant's investigation concerning the presence or absence of areas of ecological concern (including national and state forests and parks, floodplains, wetlands, designated or proposed wilderness areas, national and state wild and scenic rivers, wildlife areas, wildlife refuges, wildlife management areas, and wildlife sanctuaries) that may be located within the potential disturbance area of the project, a statement of the findings of the investigation, and a copy of any document produced as a result of the investigation.

The ODNR responded in a letter dated March 13, 2018 (Project IDs 18-239 and 18-240; see Appendix C) indicating the ODNR is unaware of any unique ecological sites, geologic features, animal assemblages, scenic rivers, state wildlife areas, state nature preserves, state or national parks, state or national forests, national wildlife refigures, or other protected natural areas within the Project Area.

Correspondence received from the USFWS (see Appendix C) indicated there are no federal wilderness areas, wildlife refuges, or designated critical habitat in the Project vicinity. No properties identified in the National Conservation Easement Database (http://www.conservationeasement.us) were identified in the Project vicinity.

The FEMA Flood Insurance Rate Map (39013C0341E) was reviewed to identify any floodplains/flood hazard areas that have been mapped within the Project Area. Based on this mapping, FEMA floodplains are located in the Project area. However, the Project is not proposed to be located in a floodway.

A review of the National Wetlands Inventory ("NWI") database indicated there are no NWI-mapped wetlands identified within the Project Area. Wetland and stream delineation field surveys were completed within the Project Area by AEP Ohio Transco's consultant in February 2018. The results of the wetland and stream delineations are presented in the Ecological Survey Report included in Appendix C. Two palustrine emergent wetlands and three perennial streams were identified in the Project Area. Impacts to these aquatic resources are not proposed as part of the Project.

B(10)(g) Unusual Conditions

Provide any known additional information that will describe any unusual conditions resulting in significant environmental, social, health, or safety impacts.

To the best of AEP Ohio Transco's knowledge, no unusual conditions exist that would result in significant environmental, social, health, or safety impacts.

LETTER OF NOTIFICATION FOR DILLES BOTTOM STATION AND GEORGE WASHINGTON-DILLES **BOTTOM 138 KV TRANSMISSION LINE PROJECT**

Appendix A Project Maps May 23, 2018

Appendix A Project Maps

LETTER OF NOTIFICATION FOR DILLES BOTTOM STATION AND GEORGE WASHINGTON-DILLES **BOTTOM 138 KV TRANSMISSION LINE PROJECT**

Appendix A PJM Submittal and 2018 Long Term Forecast May 23, 2018

Appendix B PJM Submittal and Long Term Forecast

PJM Submittal

AEP/ATSI Transmission Zone

Baseline Cost Change (B2753.1-10)

Presented: 8/21/2017 Western Subregional TEAC

- N5076.1/B2753.1 George Washington Station Replace existing 138kV yard with GIS 138kV breaker and a half yard in existing station footprint. Install 138kV revenue metering for new IPP connection. (AEP)
- N5076.2/B2753.2 Dilles Bottom Station Replace Dilles Bottom 69/4kV Distribution station as breaker and a half 138kV yard design including AEP Distribution facilities but initial configuration will constitute a 3 breaker ring bus. (AEP)
- N5076.3/B2753.3 Holloway Station Connect two 138kV 6-wired ckts from "Point A" (currently de-energized and owned by First Energy) in ckt
 positions previously designated Burger #1 & Burger #2. Install interconnection settlement metering on both circuits exiting Holloway station. (AEP)
- N5076.4/B2753.4 Holloway-"Point A" FE "Burger-Cloverdale No.2" 138kV Line 6 wire "Burger-Cloverdale No. 2" 138kV Line for double capacity and connect at Holloway and "Point A" (ATSI)
- N5076.5/B2753.5 Holloway -"Point A" FE "Burger-Longview" 138kV Line 6 wire "Burger-Longview" 138kV Line for double capacity and connect at Holloway and "Point A" (ATSI)
- N5076.6/B2753.6 Dilles Bottom "Point A"138kV Line Build dbl ckt 138kV line from Dilles Bottom to "Point A". Tie each new AEP ckt in with a 6 wired line at Point A. This will create a Dilles Bottom-Holloway 138kV ckt and a George Washington-Holloway circuit. (AEP)
- N5076.7/B2753.7 Dilles Bottom-Bellaire and Moundsville-Dilles Bottom 69kV Lines Retire line sections south of First Energy 138kV line corridor, near "Point A". Tie George Washington-Moundsville 69kV ckt to George Washington-West Bellaire 69kV ckt (AEP)
- N5076.8/B2753.8 Washington-Dilles Bottom 69kV Line Rebuild existing line as dbl ckt 138kV from George Washington to Dilles Bottom. One circuit
 will cut into Dilles Bottom initially and the other will go past with future plans to cut in. (AEP)
- N5076.9/B2753.9 Remove/Open Kammer 345/138 kV transformer #301
- N5076.10/B2753.10 Complete sag study mitigation on the Muskingum Natrium 138 kV line

www.pjm.com

Continued on next slide

75

PJM©2017

AEP/ATSI Transmission Zone

Baseline Cost Change (B2753.1-10) Presented: 8/21/2017 Western Subregional TEAC

Cost Sharing Approach: The interconnection project was to share \$24.5614M of the cost (their ISA commitment) and the Baseline would assume the remainder

Cost Sharing Undate: The interconnection project	Origin	al Split Cost	New S	olit Cost
withdrew, the project is still needed. The baseline	B2753.1: \$0M	N5076.1: \$24M	B2753.1: \$22.32M	N5076.1: Cancelled
cost portion will now be 100% of the required	B2753.2: \$9M	N5076.2: \$0M	B2753.2: \$9M	N5076.2: Cancelled
project cost.	B2753.3: \$2M	N5076.3: \$0M	B2753.3: \$2M	N5076.3: Cancelled
Dequired IS Deter 1/1/2010	B2753.4: \$0.25M	N5076.4: \$0M	B2753.4: \$0.25M	N5076.4: Cancelled
Required IS Date. 1/1/2019	B2753.5: \$0.25M	N5076.5: \$0M	B2753.5: \$0.25M	N5076.5: Cancelled
	B2753.6: \$5M	N5076.6: \$0M	B2753.6: \$5M	N5076.6: Cancelled
	B2753.7: \$4.96M	N5076.7: \$0.5614M	B2753.7: \$5.52M	N5076.7: Cancelled
	B2753.8: \$3.56M	N5076.8: \$0M	B2753.8: \$3.56M	N5076.8: Cancelled
	B2753.9: \$0M	N5076.9: \$0M	B2753.9: \$0M	N5076.9: Cancelled
Continued on next slide	B2753.10: \$2.8M	N5076.10: \$0M	B2753.10: \$2.8M	N5076.10: Cancelled

www.pjm.com

76

PJM©2017

Baseline Cost Change (B2753.1-10) Presented: 8/21/2017 Western Subregional TEAC

Reasons for the Cost Change:

- Queue projects Y3-068 / Z2-048 have been withdrawn. The • shared cost of \$24.761M now is transferred to Baseline B2753.1-10.
- B2753.1 New Scope: George Washington Station -. Replace existing 138kV yard with GIS 138kV breaker and a half yard in existing station footprint. (Due to the withdrawal of the interconnection request, there is no need for the revenue metering for new IPP connection)
- New Estimated Cost: \$50.7M
- New Required IS Date: 5/31/2020

AEP/ATSI Transmission Zone

www.pjm.com

PJM©2017

2018 Long Term Forecast Report

AEP OHIO TRANSMISSION COMPANY, INC.

LONG-TERM FORECAST REPORT TO THE PUBLIC UTILITIES COMMISSION OF OHIO

Case No. 18-1501-EL-FOR

2018

ELECTRIC

Case No. 18-1501-EL-FOR

LONG-TERM FORECAST REPORT

TO THE

PUBLIC UTILITIES COMMISSION OF OHIO

Submitted by

AEP Ohio Transmission Company, Inc. 700 Morrison Road Gahanna, Ohio 43230 Telephone: (614) 716-1000

April 16, 2018

CERTIFICATE OF SERVICE

I hereby certify that:

- 1. Pursuant to Section 4901:5-1-03(F), Ohio Administrative Code, copies of AEP Ohio Transmission Company, Inc.'s 2018 Long-Term Forecast Report have been delivered or mailed to the Office of Consumers' Counsel on the day of the filing;
- Pursuant to Section 4901:5-1-03(G), Ohio Administrative Code, a letter of notification stating where copies of AEP Ohio Transmission Company, Inc.'s 2018 Long-Term Forecast Report to the Public Utilities Commission of Ohio may be obtained, will be sent by first class mail to the appropriate county libraries within three days of filing;
- Pursuant to Section 4901:5-1-03(H), Ohio Administrative Code, AEP Ohio Transmission Company, Inc. will keep at least one copy of their 2018 Long-Term Forecast Report at their principal business office for public inspection during business hours; and
- 4. Pursuant to Section 4901:5-1-03(I), Ohio Administrative Code, AEP Ohio Transmission Company, Inc. will provide a copy of their 2018 Long-Term Forecast Report to any person upon request at a cost to cover the expenses incurred.

Stéve T. Nourse American Electric Power Service Corporation 1 Riverside Plaza Columbus, Ohio 43215 (614) 716-1608 Attorney for AEP Ohio Transmission Company, Inc.

April 16, 2018 Dated this day in Columbus, Ohio

OH Transco 2018

STATEMEMENT PURSUANT TO SECTION 4901:5-1-03(D),

OHIO ADMINISTRATIVE CODE

AEP Ohio Transmission Company, Inc.'s 2018 Long-Term Forecast Report is true and correct to the best of my knowledge and belief.

W. Bradish Robert

Vice President, Transmission Planning and Engineering AEP Ohio Transmission Company, Inc.

April 16, 2018 Dated this day in Columbus, Ohio

AEP OH Transco 2018

TABLE OF CONTENTS

Page

Transmission Forms Cover Page	1
Transmission Forms T7	2
Transmission Forms T8	4
Transmission Forms T9	7
Transmission Forms T10	.55

Appendix	c – List of Libraries	57

AEP OHIO TRANSMISSION COMPANY, Inc.

LTFR TRANSMISSION FORMS

Case No. 18-1501-EL-FOR

PUCO FORM FE-T7 AEP OHIO TRANSMISSION COMPANY CHARACTERISTICS OF EXISTING TRANSMISSION LINES

Substations on the Line	Substation Name											THREE CREEKS SIMTCH			PICKERINGTON RD		1										CLAYBURNE SWITCH				ROSEWOOD SWITCH	MODELL BOAD BILEY CREEK SMITCH BALILINING	MITDELL TOAD, MILERAL SWITCHING			10		STONE PLANT SWITCH							
Circuits	Installed			-		1	1	-	+	-					-	1		1	1	-	-	-	-	-	- ,			1	-	-	-				-	1	-	+	-	-	-	-	-	-	-
Number of	Design	+	•		- 1	1	1	1	+	-				-	1	+	1	1	1	1	-	-	-	-			-	1	-	-	-				-	-	2	1	-	-	٢	-	-	-	-
Type of Supporting Structure	Steel Towers. Wood Poles or Underground, etc. and Number of Miles of the Line of Each Structure	Steel - 1 pole	Steel - Lattice	Steel - 1 pole	Steel - 1 pole	Steel - 1 pole	Steel - 1 pole	Steel - 1 pole	Steel - Lattice	Steel - 1 pole	Steel - 1 pole	Wood - 1 note	Steel - 2 note	Wood - 1 pole	Steel - 3 pole	Steel - Lattice	Steel - 1 pole	Steel - 1 pole	Steel - 1 pole	Steel - 1 pole	Steel - 2 pole	Steel - 2 pole	Steel - Lattice	Steel - Lattice	Steel - Lattice	Steel - 1 pole	Steel - 2 pole	Steel - 2 pole	Steel - H-frame	Steel - Lattice	Steel - Lattice	Steel - 2 pole	Wood - Hermo	Steel - Lattice	Steel - 1 pole	Steel - H-frame	Steel - Lattice	Steel - H-frame	Steel - 1 pole	Steel - 1 pole	Wood - 1 pole	Steel - 3 pole	Wood - 1 pole	Wood - 1 pole with push brace	Steel - 1 pole
Way	Width Max/Min. (feet)	100/100	150/150	100/100	100/100	100/100	100/100	100/100	150/150	100/100	001/001	10011001	100/100	150/150	100/100	150/150	100/100	150/150	100/100	100/100	100/100	150/150	150/150	150/150	150/150	001/001	100/100	100/100	100/100	100/100	100/100	001/001	100/100	100/100	100/100	200/200	100/100	100/100	100/100	100/100	150/150	100/100	100/100	100/100	100/100
Right-of-	Length (Miles)	2.29	0.7	0.04	0.04	1.35	4.2	4.34	0.05	19.2	9.90	4 20	4.32	2.25	19.04	0.03	0.9	0.45	15.21	15.21	2.62	2.25	1.34	0.38	0.38	0.05	4.99	4.69	11	3.06	0.02	0.41	10.7	0.08	0.05	109	4.87	3.69	12.59	12.59	1.34	0.35	4.94	2.24	8.56
Voltage and ige For Each	Design Vottage (KV)	138	138	138	138	138	138	138	345	138	136	138	138	345	138	345	138	345	138	138	138	345	138	345	345	138	138	138	138	138	138	138	138	138	138	765	138	138	138	138	345	138	138	138	138
Indicate Design Operating Volta Line	Operating Voltage (kV)	138	138	138	138	138	138	138	345	138	138	138	138	345	138	345	138	345	138	138	138	345	138	345	345	138	138	138	138	138	138	28 138	138	138	138	765	138	138	138	138	138	138	138	138	138
apability	Emergency Rating	210	858	1069	1069	566	464	572	1967	623	450	183	675	2144	464	3363	452	1781	906	506	243	2144	517	1826	2144	203	293	506	248	517	92	403	281	234	234	4961	464	464	444	444	581	210	404	404	267
Winter C	Normal Rating	210	712	970	016	566	375	541	1781	493	1024	183	541	1781	375	3016	375	1685	408	408	189	1781	427	1781	1781	211	253	408	248	427	92	3/5	261	234	234	4484	375	375	357	357	455	210	325	325	210
Capability	Emergency Rating	167	755	898	898	537	413	498	1655	559	449	145	601	1887	413	2826	398	1409	451	451	219	1887	456	1472	1887	223	254	449	248	456	92	361	223	185	185	4571	413	413	396	396	520	167	360	360	240
Summer (Normal Rating	167	564	766	766	537	296	427	1409	389	383	145	427	1409	296	2365	296	1409	323	323	150	1409	338	1409	1409	612	200	323	248	338	92	290	207	185	185	4047	296	296	283	283	359	167	257	257	167
Point of (Origin - Terminus)	Indicate Location of Line's Beginning and Terminus	Allen - Logtown	Amlin - Hyatt	Amlin - Sumac #1	Amlin - Sumac #2	Azalea - Leesville	Azalea - Yager	Bexley - Groves	Biers Run - Bixby	Biers Run - Circleville	Blets Kun - Delano	Birthy - Groves Road No. 1	Birby - Groves Road No. 2	Bidov - Ohio Central	Bixby - West Lancaster	Blue Creek - Maddox Creek	Britton-Davidson #2	Canton Central - Stemple Sw.	Circleville - Harnson #1	Circleville - Harrison #2	Circleville - Scippo	Conesville - Ohio Central	Corridor - Gahanna 138kV	Corridor - Vassell No. 1	Corridor - Vassell No. 2	Corwin - Elk Delano - Delano Rd (SCP)	Delano - Kenworth - Ross	Delano - Ross #2	Delano - Tuscany	Delaware - Vassell	Dexter Sw Elliott - Poston	East Leipsic - Yellow Greek	East Linia - Tenow Oreen	Firebrick - Gavin	Firebrick - Millbrook	Flatlick - Marysville	Freebyrd - Nottingham	Freebyrd - South Cadiz	Fremont Center - Tiffin Center #1	Fremont Center - Tiffin Center #2	Gahanna - West Millersport	Globe Metal - Muskingum River	Greenlawn - Melmore	Greenlawn - Tiffin Center	Haviland - Timber Switch
Transmission Name & Line No. ⁴	List Each Transmission Line of 125 kV or More	25880	20237	26298	26297	26319	24231	2804	21617	24218	16077	668	2331	20738	593	16797	24899	23297	628	25137	637	20737	677	18637	18638	21641	627	24219	25938	19358	596	1//18	22418	22219	22220	8315	24229	26538	209	21397	18657	4942	22942	710	16677

PUCO FORM FE-T7 AEP OHIO TRANSMISSION COMPANY CHARACTERISTICS OF EXISTING TRANSMISSION LINES

Substations on the Line	Substation Name		NEW MARKET SWITCH				HAZELTON									and the second se	MILLWOOD	EAST SIDE (LIMA)			SOUTH BLOOMINGVILLE SWITCH		DUPONT (CSP)	NEVILLE SWITCH				
Circuits	Installed		1	1	1	1	1	+	- 1	+	+	1		1	1 - 1		1	1	4	1	1	1	1	1	1	- +	1	-
Number of C	Design	-	1		1	1	1	1	1	1	+	1	1	1	1	1	1	1	+	1	1	1	1	1	1	1	2	
Type of Supporting Structure	Steel Towers, Wood Poles or Underground, atc. and Number of Miles of the Line of Each Structure	Wood - 1 pole	Steel - 2 pole	Steel - H-frame	Steel - Lattice	Steel - Lattice	Steel - 2 pole	Steel - 2 pole	Steel - 1 pole	Steel - H-frame	Steel - 1 pole	Steel - H-frame	Steel - H-frame	Steel - 1 pole	Steel - Lattice	Steel - H-frame	Wood - 1 pole	Wood - 1 pole with push brace	Steel - 3 pole	UG Cable - Duct & Manhole	Steel - H-frame	Wood	Wood - 1 pole	Steel - 1 pole	Wood - 1 pole	Steel - 1 pole	Steel - 1 pole	Steel - 1 pole
Vay	Width Max./Min. (feet)	100/100	100/100	100/100	150/150	150/150	150/150	150/150	100/100	200/200	100/100	100/100	200/200	100/100	100/100	100/100	100/100	100/100	100/100	100/100	100/100	100/100	100/100	100/100	100/100	100/100	100/100	150/150
Right-of-V	ength (Miles)	7.36	3.17	19.07	0.41	0.35	12.48	12.29	0.16	0.48	1.01	3.95	0.87	7.14	0.87	4.69	0.71	6.31	0.71	1.13	42.76	5.54	1.42	0.64	0.87	2.42	5.8	0.45
Notage and age For Each e	Design Vottage (kV)	138	138	138	345	345	345	345	138	765	138	138	765	138	138	138	138	138	138	138	138	138	138	138	138	138	138	345
Indicate Design Operating Vott	Operating Voltage (kV)	138	138	138	345	345	138	345	138	765	138	138	765	138	138	138	138	138	138	138	138	138	138	138	138	138	138	345
apability	Emergency Rating	464	239	285	1826	1639	880	1809	404	4961	328	464	5133	474	258	438	143	210	206	409	239	409	227	675	258	258	400	1781
Winter O	Normal Rating	375	216	247	1781	1481	712	1564	325	4484	221	375	5133	379	258	377	143	210	179	323	216	323	189	601	258	247	363	1781
Capability	Emergency Rating	413	220	240	1472	1376	784	1566	360	4571	282	413	4142	423	205	368	133	167	173	392	220	409	180	149	205	205	337	1409
Summer (Normal Rating	296	195	187	1409	1166	564	1239	257	4047	213	296	4142	299	205	285	133	164	136	323	195	323	150	427	205	187	287	1409
Point of (Origin - Terminus)	Indicate Location of Line's Beginning and Terminus	Highland (CSP) - Hillsboro	Highland (CSP) - Seaman	Hocking - West Lancaster	Hyatt - Vassell	Hyatt (OP) - Marysville	Jug Street - Kirk 138kV	Jug Street - Kirk 345kV	Jug Street - Smiths Mill	Kammer - Vassell	Kenny - Roberts	Leesville - Yager	Maliszewski - Vassell	Melmore - Tiffin Center	Muskingum River - South Caldwell #2	Muskingum River - Wolf Creek	North Bellville - Ohio Central	North Delphos - Sterling	Ohio Central - Philo #2	OSU - West Campus	Poston - Ross	Roberts - West Campus	Scioto Trail - Scippo	Scioto Trail(CSP) - Tuscany	South Caldwell - Steamtown	Steamtown - Summerfield	Tidd - Gable SW	Tidd - Stemple
Transmission Name & Line No. ⁴	List Each Transmission Line of 125 kV or More	21117	21678	10217	19359	584	20758	15238	21340	19899	621	24232	19357	21398	24361	21357	22397	24279	22537	17137	2256	17138	670	25939	24359	19398	25559	25279

a. Indicate with * if transmission line is an interconnection with another electric transmission owner and list the other transmission owner's name.

PUCO FOR FE-T8 AEP OHIO TRANSMISSION COMPANY SUMMARY OF EXISTING SUBSTATIONS ON TRANSMISSION LINES

Substation Name	Type Distribution (D) Transmission (T)	Voltage(s) (kV)	Line Association (FE-T7 or FE-T9 Notation)	Notation	Line Existing or Proposed
AZALEA SWITCH		138	Azalea - Yager	24231	Ш
AZALEA SWITCH	Т	138	Azalea - Leesville	26319	ш
BERRYWOOD		138	Berrywood - Delaware	26717	ш
BERRYWOOD	Т	138	Berrywood - Berkshire	26717	ш
BIERS RUN	1	138	Biers Run - Delano	22597	ш
BIERS RUN	T.	138	Biers Run Circleville	24218	ш
BIERS RUN	L	345	Biers Run - Bixby	21617	ш
BIERS RUN	1	345	Biers Run - Don Marquis	21618	Ш
BLUE RACER	T	138	Blue Racer - Summerfield	20577	ш
BLUE RACER	1	138	Blue Racer - Texas Eastern	20578	ш
BLUE RACER	T	138	Blue Racer - SCP Co-op	20579	ш
COLE (CS)	T	138	Amlin - Cole	26897	ш
COLE (CS)	L	345	Beatty - Cole	26781	ш
COLE (CS)	⊢	345	Cole - Hayden	26782	ш
EBERSOLE	T	138	Ebersole - New Liberty	20857	ш
EBERSOLE	Т	138	Ebersole - Fostoria Central #2	20858	ш
EBERSOLE	T	138	Ebersole - Findlay Center	20859	ш
EBERSOLE	T	138	Ebersole - Fostoria Central #1	20860	ш
EBERSOLE	⊢	138	Ebersole - North Findlay	20917	ш
EMERALD SWITCH	T	138	*Kenton (LGE-KU) - Wildcat	18078	ш
FIREBRICK	Т	138	Firebrick - Gavin	22219	ш
FIREBRICK	T	138	Firebrick - Millbrook	2220	ш
FREEBYRD	T	138	Freebyrd - Nottingham	24229	ш
FREEBYRD	Т	138	Freebyrd - South Cadiz	26538	ш
GABLE SWITCH	T	138	Carrollton - Gable SW	25557	ш
GABLE SWITCH	Т	138	Gable SW - South Cadiz	25558	Ш
GABLE SWITCH	T	138	Gable SW - Tidd	25559	ш
GOOD HOPE SWITCH	Т	138	Harrison (Csp) - Poston	634	ш
HOLLOWAY	Т	345	Beverly - Holloway	22497	ш
IRONWOOD SWITCH	Т	138	Bellefonte - East Wheelersburg	193	ш

PUCO FOR FE-T8 AEP OHIO TRANSMISSION COMPANY SUMMARY OF EXISTING SUBSTATIONS ON TRANSMISSION LINES

ubstation Name	Type Distribution (D) Transmission (T)	Voltage(s) (kV)	Line Association (FE-T7 or FE-T9 Notation)	Notation	Line Existing or Proposed
VE ROAD	L	138	Tidd - June Road	26958	ш
VE ROAD	L	138	June Road - Wagenhals	26957	ш
GTOWN	F	138	Logtown - North Delphos	24385	ш
GTOWN	T	138	Allen - Logtown	25880	ш
DDOX CREEK	F	345	East Lima - Maddox Creek	16757	ш
ADDOX CREEK	1	345	Maddox Creek - RP Mone	16758	ш
ADDOX CREEK	F	345	Blue Creek - Maddox Creek	16797	ш
LMORE	L	138	Melmore - Tiffin Center	21398	ш
ELMORE	F	138	Fostoria Central - Melmore	22938	ш
ELMORE	L	138	Howard - Melmore #1	22939	ш
ELMORE	H	138	Melmore - West End Fostoria	22940	ш
ELMORE	F	138	Howard - Melmore #2	22941	ш
LMORE	⊢	138	Greenlawn - Melmore	22942	ш
NERAL SWITCHING	F	138	Elk - Poston	22418	ш
VILLE SWITCH	T	138	Scioto Trail(CSP) - Tuscany	25939	ш
W MARKET SWITCH	Т	138	Highland (CSP) - Seaman	21678	ш
TTINGHAM SWITCH	Т	138	Freebyrd - Nottingham	24229	ш
NDA ROAD	L	138	Tidd - June Road	26958	ш
BERT P. MONE	F	345	Maddox Creek - RP Mone	16758	ш
BERT P. MONE	F	345	Allen - RP Mone	20482	ш
UTH BLOOMINGVILLE SWITCH	Т	138	Poston - Ross	2256	ш
EAMTOWN	T	138	Steamtown - Summerfield	19398	ш
EAMTOWN	Т	138	South Caldwell - Steamtown	24359	ш
EMPLE SWITCH	Т	345	Canton Central - Stemple Sw.	23297	Ш
EMPLE SWITCH	Т	345	Tidd - Stemple	25279	ш
ONE PLANT SWITCH	Т	138	Freebyrd - South Cadiz	18697	Ш
DRNWOOD SWITCH	Т	138	Ebersole - Findlay Center	20859	ш
IBER SWITCH	F	138	Haviland - Timber Switch	16677	ш
IBER SWITCH	Т	138	Timber Road No. 2 - Timber Switch	16817	Ш
SCANY	Т	138	Delano - Tuscany	25938	ш

PUCO FOR FE-T8 AEP OHIO TRANSMISSION COMPANY SUMMARY OF EXISTING SUBSTATIONS ON TRANSMISSION LINES

ubstation Name	Type Distribution (D)	Voltage(s)	Line Association	Notation	Line Existing or
	Transmission (T)	(kV)	(FE-T7 or FE-T9 Notation)		Proposed
USCANY	T	138	Scioto Trail(CSP) - Tuscany	25939	ш
ASSELL	T	138	Delaware - Vassell	19358	ш
ASSELL	T	345	Corridor - Vassell No. 1	18637	ш
ASSELL	T	345	Corridor - Vassell No. 2	18638	ш
ASSELL	T	345	Hyatt - Vassell	19359	ш
ASSELL	T	765	Maliszewski - Vassell	19357	ш
ASSELL	T	765	Kammer - Vassell	19899	ш
ARE ROAD	T	138	Ware Road - Waverly	18299	ш
ARE ROAD	T	138	Adams - Ware Road	22118	ш
INDFALL SWITCH	1	138	South Kenton - West Mount Vernon	748	ш
AGER	T	138	Azalea - Yager	24231	ш
AGER	T	138	Leesville - Yager	24232	ш
ELLOW CREEK	T	138	East Lima - Yellow Creek	21221	ш
ELLOW CREEK	T	138	East Leipsic - Yellow Creek	17718	ш
ELLOW CREEN		001	East Leipsic - Tello	W CLEEK	M CLEAK 1// 10

÷	Line Name and Number:	Amlin-Dublin 138kV Line
N	Points of Origin and Termination:	Amlin, Dublin, Sumac; Intermediate Station - N/A
ė	Right-Of-Way:	3.7 Miles / 100 ft / 2ckts
4	Voltage:	138/138 kV, both circuits
ù.	Application For Certificate:	LON/Application 2018
ö	Construction:	To be completed approx. June 2020
7.	Capital Investment:	Approx. \$21 million
αj	Planned Substations:	Name - N/A; Voltage - N/A; Acreage - N/A; Location - N/A
ю́	Supporting Structures:	Overhead
10.	Participation with Other Utilities:	None
11.	Purpose of the Planned Transmission Line	Mitigate projected contingency overloads on 138kV system due to large load growth.
12.	Consequences of Line Construction Deferment or Termination:	New customer load would need to be limited.
13.	Miscellaneous	

÷	Line Name and Number:	Berlin - Lick - Ross
N'	Points of Origin and Termination:	Heppner/Rhodes; Intermediate Station - N/A
ö	Right-Of-Way:	~4.2 miles / 100 ft / 1 ckt
4	Voltage:	138kV / 69kV
5.	Application For Certificate:	2018
Ö	Construction:	2018
7.	Capital Investment:	\$20M
σ	Planned Substations:	Name - Rhodes; Voltage - 138/12kV; Acreage - N/A; Location - Jackson
о	Supporting Structures:	steel H - frame
10.	Participation with Other Utilities:	N/A
11.	Purpose of the Planned Transmission Line	Tie 138kV Lick-Corwin line to Lick Ross line for reliability
12.	Consequences of Line Construction Deferment or Termination:	Reduced reilability for Jackson County customers
13.	Miscellaneous	

÷-	Line Name and Number:	Blue Racer - Texas Eastern 138kV
N	Points of Origin and Termination:	Blue Racer & Texas Eastern Berne; Intermediate Station - N/A
ю	Right-Of-Way:	0.15 mi / 100 ft / 1 circuit
4.	Voltage:	138kV / 138kV
5.	Application For Certificate:	LON in 2017
6.	Construction:	Est completion in 2020
7.	Capital Investment:	\$0.4 mil
œ	Planned Substations:	Name - N/A; Voltage - N/A; Acreage - N/A; Location - N/A
ດ່	Supporting Structures:	Overhead, Steel, Pole
10.	Participation with Other Utilities:	N/A
11.	Purpose of the Planned Transmission Line	Provide 138kV service to customer; line must be re-routed to facilitate Blue Racer station upgrades
12.	Consequences of Line Construction Deferment or Termination:	Lack of 138kV service for Texas Eastern pipeline; delay of Herlan-Blue Racer PJM RTEP project
13.	Miscellaneous	

÷	Line Name and Number:	Brice Extension 138kV Line
N	Points of Origin and Termination:	Brice, Astor, Groves, Shannon; Intermediate Station - Refugee
ő	Right-Of-Way:	0.7 Miles / 100ft / 2ckts
4.	Voltage:	138/138 kV, both circuits
5.	Application For Certificate:	LON in 2018
6.	Construction:	To be completed approx. October 2019
7.	Capital Investment:	Approx. \$2 million
σ	Planned Substations:	Name - Brice; Voltage - 138/13kV; Acreage - ∼3; Location - 6870 American Parkway
<u>ю</u>	Supporting Structures:	Overhead
10.	Participation with Other Utilities:	None
11.	Purpose of the Planned Transmission Line	Connect new customer delivery point.
12.	Consequences of Line Construction Deferment or Termination:	Customer delivery point could not be energized.
13.	Miscellaneous	Allendale-Fremont Center line rebuild

÷	Line Name and Number:	Buckley Road-East End Fostoria-Fremont Center, 4782
N	Points of Origin and Termination:	Buckley Road-East End Fostoria-Fremont Center, Intermediate Station - West Allendale Switch, South Allendale Switch, Weaver Switch, Amsden Switch
e,	Right-Of-Way:	15.25 mi / 100 / single ckt, some double ckt
4.	Voltage:	138 kV/69 kV
5.	Application For Certificate:	Application, 2017
6.	Construction:	To be completed approx. 12/31/2020
7.	Capital Investment:	\$26.8M
α	Planned Substations:	Name - N/A; Voltage - N/A; Acreage - N/A; Location - N/A
ດ່	Supporting Structures:	Overhead, Steel, Pole
10.	Participation with Other Utilities:	N/A
11.	Purpose of the Planned Transmission Line	Rebuild of existing line for rehabilitation.
12.	Consequences of Line Construction Deferment or Termination:	Continued deterioration and reduced reliability.
13.	Miscellaneous	
2. Poi 3. Rig 4. Volt 5. Apr	nts of Origin and Termination:	
---------------------------------------	--	--
3. Rigi 4. Volt 5. App		Carrollton / Sunnyside; Intermediate Station - N/A
4. Volt 5. Apr	ht-Of-Way:	20 mi / 100 ft / 1 circuit
5. App	tage:	138kV / 138kV
	olication For Certificate:	LON in 2017
6. Cor	nstruction:	Est completion in 2019
7. Cap	oital Investment:	Approx. \$50 M
8. Plai	nned Substations:	Name - N/A; Voltage - N/A; Acreage - N/A; Location - N/A
9. Sup	pporting Structures:	6-wired double-circuit steel poles
10. Par	ticipation with Other Utilities:	N/A
11. Pur	pose of the Planned Transmission Line	Rebuild of 100-year old line which has deteriorated
12. Cor	sequences of Line Construction Deferment or Termination:	Potential reliability issues with 100-yr old T-Line (Tidd-Carrollton)
13. Mis	cellaneous	

-	Line Name and Number:	Corridor-Jua Street Line
		n
N	Points of Origin and Termination:	Corridor Station / Jug Street Station; Intermediate Station - N/A
ő	Right-Of-Way:	6.4 miles / 150 ft / 2ckts
4.	Voltage:	345,345 kV Design / 345,138 kV Operation
5.	Application For Certificate:	2018
Ö	Construction:	To be completed approx. 2019
7.	Capital Investment:	Approx. \$30 million
αj	Planned Substations:	Name - N/A; Voltage - N/A; Acreage - N/A; Location - N/A
6	Supporting Structures:	Overhead
10.	Participation with Other Utilities:	None
11.	Purpose of the Planned Transmission Line	Area reliability/serve increased area capacity.
12	Consequences of Line Construction Deferment or Termination:	Reduced area reliability. Limitations placed on rapid load growth.
13.	Miscellaneous	

÷	Line Name and Number:	Dennison-Yager 69kV (138kV design)
N	Points of Origin and Termination:	Dennison / Yager; Intermediate Station - Irish Run Switch
ë	Right-Of-Way:	7.3 mi / 100 ft / 1 circuit
4.	Voltage:	138kV /69kV
5.	Application For Certificate:	Application approved in 2017
Ö	Construction:	Est completion in 2019
7.	Capital Investment:	\$15 M
σö	Planned Substations:	Name - N/A; Voltage - N/A; Acreage - N/A; Location - N/A
9.	Supporting Structures:	6-wired double-circuit steel poles
10.	Participation with Other Utilities:	N/A
11.	Purpose of the Planned Transmission Line	Area reliability/serve increased customer loads
12.	Consequences of Line Construction Deferment or Termination:	Reduced area reliability; load curtailment at industrial customer sites
13.	Miscellaneous	

		Dexter Sw Elliott - Lemaster 138 kV (Existing
÷	Line Name and Number:	circuit Dexter Sw Elliott - Poston 138 kV circuit renamed due to Poston station being replaced by
		Lemaster station.)
3	Points of Origin and Termination:	Lemaster/ Dexter Sw. Elliott; Intermediate Station - Rosewood Sw
ю	Right-Of-Way:	20.88 miles/100ft, 1 circuit
4.	Voltage:	138 kV/ 138 kV
2.	Application For Certificate:	LON to be filed in Spring 2017.
9.	Construction:	Station construction to start in 2017, Line construction to start in 2018.
7.	Capital Investment:	Approx: \$1.10 million
œ	Planned Substations:	Name - N/A; Voltage - 138 kV; Acreage - Approximately 22 acres.; Location - Athens
ດັ	Supporting Structures:	TBD
10.	Participation with Other Utilities:	N/A
11.	Purpose of the Planned Transmission Line	Relocate to the new Lemaster station.
12.	Consequences of Line Construction Deferment or Termination:	Will not be energized as Poston station will be retired and Lemaster will replace it.
13.	Miscellaneous	

÷	Line Name and Number:	Dilles Bottom-George Washington 138kV
N	Points of Origin and Termination:	Dilles Bottom & George Washington; Intermediate Station - N/A
ю.	Right-Of-Way:	1.5 mi / 100 ft / 2 circuits
4.	Voltage:	138kV / 138kV
5.	Application For Certificate:	LON filing in 2018-19
Ö	Construction:	Est completion in 2020
7.	Capital Investment:	\$2.5 M
œ.	Planned Substations:	Name - Dilles Bottom (expansion); Voltage - 138; Acreage - 3; Location - Dilles Bottom
ō.	Supporting Structures:	Double-circuit steel poles
10.	Participation with Other Utilities:	N/A
11.	Purpose of the Planned Transmission Line	Transmission system reinforcement; customer service
12	Consequences of Line Construction Deferment or Termination:	PJM reliability issues
13.	Miscellaneous	

-	Line Name and Number:	Dilles Bottom-Hollowav 138kV
N	Points of Origin and Termination:	Dilles Bottom & Holloway; Intermediate Station - N/A
ŝ	Right-Of-Way:	1.5 mi / 100 ft / 2 circuits
4.	Voltage:	138kV / 138kV
5.	Application For Certificate:	LON filing in 2018-19
Ö	Construction:	Est completion in 2020
7.	Capital Investment:	\$3.5 M
8	Planned Substations:	Name - Dilles Bottom (expansion); Voltage - 138; Acreage - 3; Location - Dilles Bottom
9.	Supporting Structures:	Double-circuit steel poles
10.	Participation with Other Utilities:	Yes, interconnect with FE ATSI 138kV lines (near former Burger power plant)
11.	Purpose of the Planned Transmission Line	Transmission system reinforcement; customer service
12.	Consequences of Line Construction Deferment or Termination:	PJM reliability issues
13.	Miscellaneous	

÷	Line Name and Number:	East Broad-Kirk 138kV
N	Points of Origin and Termination:	East Broad St., Kirk; Intermediate Station - Mink
ŝ	Right-Of-Way:	0.2 Miles / 100ft / 2 circuits
4	Voltage:	138kV / 138kV
Ċ.	Application For Certificate:	LON 2018
Ö	Construction:	2018
7.	Capital Investment:	\$10M
œ	Planned Substations:	Name - Mink; Voltage - 138kV; Acreage - 3.5; Location - Licking County, OH
9.	Supporting Structures:	Overhead
10.	Participation with Other Utilities:	None
11.	Purpose of the Planned Transmission Line	New customer delivery point
12.	Consequences of Line Construction Deferment or Termination:	Customer cannot be served at desired load and reliability level.
13.	Miscellaneous	

	Line Name and Number:	East Leipsic - New Liberty 138kV
3	Points of Origin and Termination:	East Leipsic - New Liberty; Intermediate Station - McComb, Shawtown Sw
ė	Right-Of-Way:	17 mi / 100 / single ckt
4.	Voltage:	138 kV / 138 kV
5.	Application For Certificate:	2018/2019
6.	Construction:	To be completed approx. 6/1/2020
7.	Capital Investment:	Approx. \$24M
αċ	Planned Substations:	Name - N/A; Voltage - N/A; Acreage - N/A; Location - N/A
о	Supporting Structures:	Overhead, Steel, Pole
6.	Participation with Other Utilities:	N/A
11.	Purpose of the Planned Transmission Line	Rebuild and voltage conversion of existing 34.5kV line to 138kV for operational flexibility
12	Consequences of Line Construction Deferment or Termination:	Transmission Operational issues will continue to be of concern and will grow as new customer load is scheduled to come online in the area.
13.	Miscellaneous	

÷	Line Name and Number:	East Leipsic - Newbery 138kV
N	Points of Origin and Termination:	East Leipsic - Newbery; Intermediate Station - N/A
é	Right-Of-Way:	1.06 mi / 100 / double ckt
4	Voltage:	138kV / 138kV
ŝ	Application For Certificate:	2018
۰.	Construction:	To be completed approx. 12/31/2018
7.	Capital Investment:	Approx. \$2M (for both circuits)
αj	Planned Substations:	Name - Newbery; Voltage - 138/12kV; Acreage 1; Location - Leipsic Area
о ́	Supporting Structures:	Overhead, Steel, Pole
10.	Participation with Other Utilities:	N/A
11.	Purpose of the Planned Transmission Line	These circuits will be created as a result of Newbery station established to serve retail
12	Consequences of Line Construction Deferment or Termination:	Delay of line or station work would affect customer in-service dates.
13.	Miscellaneous	

÷	Line Name and Number:	East Lima - Haviland, 2062
N	Points of Origin and Termination:	East Lima-Haviland; Intermediate Station - N/A (in rebuild section)
ю.	Right-Of-Way:	29.4 mi / 100 / double ckt
4	Voltage;	138 kV / 138 kV
LO.	Application For Certificate:	LON, 2017
ö	Construction:	To be completed approx. 12/18/20
7.	Capital Investment:	\$51.5M for both circuits
α	Planned Substations:	Name - N/A; Voltage - N/A; Acreage - N/A; Location - N/A
9.	Supporting Structures:	Overhead, Steel, Pole
10.	Participation with Other Utilities:	N/A
11.	Purpose of the Planned Transmission Line	Rebuild of existing line for rehabilitation.
12.	Consequences of Line Construction Deferment or Termination:	Continued deterioration and reduced reliability.
13.	Miscellaneous	

 Points of Origin and Right-Of-Way: Voltage: Voltage: Application For Certi Construction: Capital Investment: Capital Investment: Planned Substations Supporting Structure Participation with Ot Purpose of the Plani 	d Termination:	Fast I ima-Maddov Creek' Intermediate Station -
 Right-Of-Way: Voltage: Voltage: Application For Certi Construction: Construction: Planned Substations Supporting Structure Participation with Ot Purpose of the Plani 		Last Finite Madado Oroch, Internediate Octavity
 Voltage: Application For Certi Construction: Capital Investment: Planned Substations Planned Substations Participation with Ot Purpose of the Plani Consequences of Li 		30.34 mi / 150 / single ckt
 Application For Certi Construction: Capital Investment: Planned Substations Supporting Structure Supporting Structure Participation with Ot Purpose of the Plani Consequences of Li 		345 kV / 345 kV
 Construction: Capital Investment: Planned Substations Supporting Structure Participation with Ot Purpose of the Plann Consequences of Li 	ertificate:	LON, 2018
 Capital Investment: Planned Substations Supporting Structure Participation with Ot Purpose of the Plann Consequences of Li 		To be completed approx. 6/1/2021
 Planned Substations Supporting Structure Participation with Ot Purpose of the Plann Consequences of Li 	tt.	Approx \$18.2M
 Supporting Structure Participation with Oth Purpose of the Plani Consequences of Li 	suc:	Name - N/A; Voltage - N/A; Acreage - N/A; Location - N/A
 Participation with Ot Purpose of the Plani Consequences of Li 	ures:	Existing Steel Lattice
11. Purpose of the Planr 12. Consequences of Li	Other Utilities:	N/A
12. Consequences of Lir	anned Transmission Line	Connect and serve new generation customer
	Line Construction Deferment or Termination:	Generation deliverability limitation
13. Miscellaneous		

÷	Line Name and Number:	Elk - Corwin 138 kV
N	Points of Origin and Termination:	Elk/Corwin; Intermediate Station - N/A
ŝ	Right-Of-Way:	12.6 miles / 100 ft / 1 circuit
4	Voltage:	138kV / 138kV
ù.	Application For Certificate:	2012 Case 11-4505-EL-BTX / 2016 Case 16- 0020-EL-BLN
Ö	Construction:	To be completed approx. Summer 2018.
7.	Capital Investment:	Approx \$15.8M
œ	Planned Substations:	Name - N/A; Voltage - N/A; Acreage - N/A; Location - Athens
о	Supporting Structures:	N/A
10.	Participation with Other Utilities:	NIA
11.	Purpose of the Planned Transmission Line	Increase the reliability of the area. Line needs maintenance.
12	Consequences of Line Construction Deferment or Termination:	Reduced area reliability
13.	Miscellaneous	

÷	Line Name and Number:	Elk - Lemaster 138 kV (Existing circuit Elk - Poston 138 kV circuit renamed due to Poston
N	Points of Origin and Termination:	Lemaster /Elk; Intermediate Station - Bolins Mill (Buckeye Co-op)
ë	Right-Of-Way:	21.79 miles/100ft, 1 circuit
4.	Voltage:	138 kV/ 138 kV
5.	Application For Certificate:	LON to be filed in Spring 2017.
Ö	Construction:	Station construction to start in 2017, Line construction to start in 2018.
7.	Capital Investment:	Approx: \$1 million
σ	Planned Substations:	Name - N/A; Voltage - 138 kV; Acreage - Approximately 22 acres.; Location - Athens
6	Supporting Structures:	TBD
10.	Participation with Other Utilities:	N/A
11.	Purpose of the Planned Transmission Line	Relocate to the new Lemaster station.
12	Consequences of Line Construction Deferment or Termination:	Will not be energized as Poston station will be retired and Lemaster will replace it.
13.	Miscellaneous	

÷	Line Name and Number:	Gemini - West Moulton 138kV
N	Points of Origin and Termination:	Gemini - West Moulton; Intermediate Station - N/A
ŝ	Right-Of-Way:	10 mi / 100 / single ckt
4.	Voltage:	138 kV / 138 kV
Q.	Application For Certificate:	2018/2019
Ö	Construction:	To be completed approx. 12/31/2019
7.	Capital Investment:	Approx. \$14M
8	Planned Substations:	Name - Gemini; Voltage - 138kV; Acreage - N/A; Location - N/A
6	Supporting Structures:	Overhead, Steel, Pole
10.	Participation with Other Utilities:	N/A
11.	Purpose of the Planned Transmission Line	Service to new customer delivery point
12.	Consequences of Line Construction Deferment or Termination:	New customer load would not have service in required timeframe
13.	Miscellaneous	

	l ine Name and Number	Glancoa-Spaidal 138kV
-		
N	Points of Origin and Termination:	Glencoe / Speidel; Intermediate Station - South Belmont Switch; Lamira Switch
ë	Right-Of-Way:	13.5 mi / 100 ft / 1 circuit
4.	Voltage:	138kV / 69kV
5.	Application For Certificate:	Application anticipated 2018
6.	Construction:	Est completion in 2021-22
7.	Capital Investment:	Approx. \$25 M
œ.	Planned Substations:	Name - N/A; Voltage - N/A; Acreage - N/A; Location - N/A
9.	Supporting Structures:	Single-circuit steel poles
10.	Participation with Other Utilities:	N/A
11.	Purpose of the Planned Transmission Line	Replace deteriorated 69kV facilities. Support area shale load growth.
12.	Consequences of Line Construction Deferment or Termination:	Increased risk of customer service interruptions, due to deteriorating T-Line facilities
13.	Miscellaneous	

÷	Line Name and Number:	Gristmill - Gemini 138kV
N	Points of Origin and Termination:	Gristmill - Gemini; Intermediate Station - N/A
ë	Right-Of-Way:	4.7 mi / 100 / single ckt
4	Voltage:	138 kV / 138 kV
LO.	Application For Certificate:	2018/2019
Ö	Construction:	To be completed approx. 12/31/2019
7.	Capital Investment:	Approx. \$7M
αċ	Planned Substations:	Name - Gristmill; Voltage - 345/138kV; Acreage - N/A; Location - N/A
ດ່	Supporting Structures:	Overhead, Steel, Pole
10.	Participation with Other Utilities:	N/A
11.	Purpose of the Planned Transmission Line	Service to new customer delivery point
12.	Consequences of Line Construction Deferment or Termination:	New customer load would not have service in required timeframe
13.	Miscellaneous	

, '	Line Name and Number:	Gristmill - Shelby 345kV
N	Points of Origin and Termination:	Gristmill - Shelby; Intermediate Station - N/A
é	Right-Of-Way:	17.75 mi / 150 / single ckt
4	Voltage:	345kV / 345kV
Ú.	Application For Certificate:	2018/2019
Ö	Construction:	To be completed approx. 12/31/2019
7.	Capital Investment:	Approx. \$2M
σ	Planned Substations:	Name - Gristmill; Voltage - 345/138kV; Acreage - N/A; Location - N/A
ດັ	Supporting Structures:	Overhead, Guyed V
10.	Participation with Other Utilities:	N/A
11,	Purpose of the Planned Transmission Line	This circuit is created by cutting into the existing Shelby - Southwest Lima 345kV circuit and terminating at the new Gristmill Station. The only new line construction involves entrance spans to Gristmill station.
12.	Consequences of Line Construction Deferment or Termination:	New customer load would not have service in required timeframe
13.	Miscellaneous	

+	Line Name and Number:	Gristmill - Southwest Lima 345kV
2	Points of Origin and Termination:	Gristmill - Southwest Lima; Intermediate Station - N/A
ю	Right-Of-Way:	10.5 mi / 150 / single ckt
4	Voltage:	345kV / 345kV
Q.	Application For Certificate:	2018/2019
6.	Construction:	To be completed approx. 12/31/2019
7.	Capital Investment:	Approx. \$2M
σö	Planned Substations:	Name - Gristmill; Voltage - 345/138kV; Acreage - N/A; Location - N/A
6	Supporting Structures:	Overhead, Guyed V
10.	Participation with Other Utilities:	N/A
11.	Purpose of the Planned Transmission Line	This circuit is created by cutting into the existing Shelby - Southwest Lima 345kV circuit and terminating at the new Gristmill Station. The only new line construction involves entrance spans to Gristmill station.
12.	Consequences of Line Construction Deferment or Termination:	New customer load would not have service in required timeframe
13.	Miscellaneous	

÷	Line Name and Number:	Guernsey 765kV Extensions
N	Points of Origin and Termination:	Guernsey 765kV station (IPP interconnection); Intermediate Station - N/A
ю.	Right-Of-Way:	0.1 mi / 150 ft / 2 circuits
4.	Voltage:	765kV / 765kV
5.	Application For Certificate:	LON filed in 2017
9.	Construction:	2019-20
7.	Capital Investment:	\$1 M
σÖ	Planned Substations:	Name - Guernsey; Voltage - 765kV; Acreage - 6; Location - Byesville
6	Supporting Structures:	Guyed V or Steel H-frame
10.	Participation with Other Utilities:	N/A
11.	Purpose of the Planned Transmission Line	Extend existing 765kV line to new 765kV station (Guernsey), which will interconnect the proposed Guernsey Power Station
12.	Consequences of Line Construction Deferment or Termination:	Not being able to power new 765kV natural gas power plant
13.	Miscellaneous	

÷	Line Name and Number:	Haviland - Timber Switch 138kV
N	Points of Origin and Termination:	Haviland - Timber Switch; Intermediate Station - N/A
ю.	Right-Of-Way:	8.6 mi / 100 / single ckt
4.	Voltage:	138 kV / 138 kV
5.	Application For Certificate:	LON, 2017
6.	Construction:	To be completed approx. 4/1/2018
7.	Capital Investment:	Approx. \$10.4M
œ	Planned Substations:	Name - N/A; Voltage - N/A; Acreage - N/A; Location - N/A
ő	Supporting Structures:	Overhead, Steel, Pole
10.	Participation with Other Utilities:	N/A
11.	Purpose of the Planned Transmission Line	Rebuild of existing line for rehabilitation and PJM Baseline project b2161
12.	Consequences of Line Construction Deferment or Termination:	Continued deterioration and reduced reliability as well as inability to support PJM baseline project
13.	Miscellaneous	

÷	Line Name and Number:	Herlan - Blue Racer 138kV
N	Points of Origin and Termination:	Herlan & Blue Racer; Intermediate Station - N/A
ŝ	Right-Of-Way;	3.2 mi / 100 ft / 1 circuit
4	Voltage:	138kV / 138kV
Ċ.	Application For Certificate:	Application filed Jan 2017
Ö	Construction:	Est completion in 2020
7.	Capital Investment:	\$7 mil
œ.	Planned Substations:	Name - Herlan; Voltage - 138; Acreage - 4; Location - Seneca Twp, Monroe County
9.	Supporting Structures:	Single-circuit steel poles
10.	Participation with Other Utilities:	N/A
11.	Purpose of the Planned Transmission Line	Area reliability; serve increased customer loads; resolves PJM baseline reliability concerns
12.	Consequences of Line Construction Deferment or Termination:	PJM RTEP planning criteria violations; reduced reliability to major industrial customers
13.	Miscellaneous	

÷	Line Name and Number:	Ironton-Portsmouth 69kV line
N	Points of Origin and Termination:	Millbrook Park / Franklin Furnace; Intermediate Station - N/A
ю.	Right-Of-Way:	~5 miles Ohio portion / 100ft / 2 ckt
4.	Voltage:	138kV / 69kV
5.	Application For Certificate:	2018
6.	Construction:	Possible 2020 - 2023
7.	Capital Investment:	~\$20M Ohio portion
œ	Planned Substations:	Name - N/A; Voltage - N/A; Acreage - N/A; Location - N/A
9.	Supporting Structures:	steel monopole
10.	Participation with Other Utilities:	AEP-KpCo
11.	Purpose of the Planned Transmission Line	Relocate Millbrook Park - Franklin Furnace line
12.	Consequences of Line Construction Deferment or Termination:	Increased risk of failure on the Millbrook Park - Franklin Furnace 69kV ilne
13.	Miscellaneous	

÷	Line Name and Number:	Jug-Kirk 138kV
N	Points of Origin and Termination:	Jug Street, Kirk; Intermediate Station - Babbit
ė	Right-Of-Way:	0.1 Miles / 150ft / 2ckts
4	Voltage:	138kV / 138kV
ù.	Application For Certificate:	LON, 2017-2018
ö	Construction:	2018
7.	Capital Investment:	Approx. \$10M
œ	Planned Substations:	Name - Babbitt; Voltage - 138kV; Acreage - 3.5; Location - Licking County, OH
о ́	Supporting Structures:	Overhead
10.	Participation with Other Utilities:	None
1.	Purpose of the Planned Transmission Line	Serve new customer delivery point
12	Consequences of Line Construction Deferment or Termination:	Customer cannot be served at desired load and reliability level.
13.	Miscellaneous	

÷	Line Name and Number:	Lamping 345kV Extensions
c,	Points of Origin and Termination:	Lamping 345kV station; Intermediate Station - N/A
ë	Right-Of-Way:	0.2 mi / 150 ft / 2 circuits
4	Voltage:	345kV / 345kV
5.	Application For Certificate:	LON in 2018-19
Ö	Construction:	2019
7.	Capital Investment:	\$1 M
σ	Planned Substations:	Name - Lamping; Voltage - 345/138kV; Acreage - 6; Location - Graysville
9.	Supporting Structures:	Steel Poles
10.	Participation with Other Utilities:	N/A
11.	Purpose of the Planned Transmission Line	Extend existing 345kV line to new 345kV station (Lamping)
12.	Consequences of Line Construction Deferment or Termination:	Not being able to power new 345-138kV source station
13.	Miscellaneous	

÷	Line Name and Number:	Lemaster - Ross (Existing circuit Poston - Ross 138 kV circuit renamed due to Poston station being replaced by Lemaster station)
c <mark>i</mark>	Points of Origin and Termination:	Lemaster/Ross; Intermediate Station - South Bloomingville Sw
с.	Right-Of-Way:	42.44 miles/100ft, 1 circuit
4	Voltage:	138 kV/ 138 kV
5.	Application For Certificate:	LON to be filed in Spring 2017.
Ö	Construction:	Station construction to start in 2017. Line construction to start in 2018.
٦.	Capital Investment:	Approx: \$0.803 million
œ.	Planned Substations:	Name - N/A; Voltage - 138 kV; Acreage - Approximately 22 acres.; Location - Athens
o	Supporting Structures:	TBD
10.	Participation with Other Utilities:	N/A
11.	Purpose of the Planned Transmission Line	Relocate to the new Lemaster station.
12.	Consequences of Line Construction Deferment or Termination:	Will not be energized as Poston station will be retired and Lemaster will replace it.
13.	Miscellaneous	

÷	Line Name and Number:	Logtown-North Delphos 138kV, 24385
N	Points of Origin and Termination:	Logtown-North Delphos; Intermediate Station - N/A (in rebuild section)
e,	Right-Of-Way:	25.7 mi / 100 / double ckt
4	Voltage:	138 kV/138 kV
ù.	Application For Certificate:	LON, 2017
ö	Construction:	To be completed approx. 12/31/2018
7.	Capital Investment:	\$28.2M for both circuits
œ	Planned Substations:	Name - N/A; Voltage - N/A; Acreage - N/A; Location - N/A
о ́	Supporting Structures:	Overhead, Steel, Pole
10.	Participation with Other Utilities:	N/A
11.	Purpose of the Planned Transmission Line	Rebuild of existing line for rehabilitation.
12	Consequences of Line Construction Deferment or Termination:	Continued deterioration and reduced reliability.
13.	Miscellaneous	

÷	Line Name and Number:	Lowell 138 kV extension
N	Points of Origin and Termination:	Lowell / Macksburg - Highland Ridge Switch 138 kV; Intermediate Station - N/A
ë	Right-Of-Way:	3.5 miles / 100 ft / 1 circuit
4.	Voltage:	138 kV/138 kV
5.	Application For Certificate:	To be sumbitted 2017 or 2018
6.	Construction:	To be completed approx. Fall 2020
7.	Capital Investment:	Approx \$ 4 M
σ	Planned Substations:	Name - N/A; Voltage - N/A; Acreage - N/A; Location - N/A
9.	Supporting Structures:	Single steel poles with single circuit
10.	Participation with Other Utilities:	N/A
11.	Purpose of the Planned Transmission Line	Increased area reliability
12.	Consequences of Line Construction Deferment or Termination:	Reduced area reliability
13.	Miscellaneous	

÷	Line Name and Number:	Macksburg - Highland Ridge Switch 138 kV
N	Points of Origin and Termination:	Macksburg / Highland Ridge Switch; Intermediate Station - N/A
ë	Right-Of-Way:	11.3 miles / 100 ft / 1 circuit
4.	Voltage:	138 kV/138 kV
5.	Application For Certificate:	Approx February 2016
6.	Construction:	To be completed approx. 2019-20
7.	Capital Investment:	Approx \$30 M
σ	Planned Substations:	Name - N/A; Voltage - N/A; Acreage - N/A; Location - N/A
9.	Supporting Structures:	Single steel poles with single circuit
10.	Participation with Other Utilities:	N/A
11.	Purpose of the Planned Transmission Line	Increased area reliability
12.	Consequences of Line Construction Deferment or Termination:	Reduced area reliability
13.	Miscellaneous	

÷	Line Name and Number:	Miles Avenue Extension (connect to S. Canton-W. Canton #2 138kV)
N	Points of Origin and Termination:	Miles Avenue station; in-and-out loop; Intermediate Station - N/A
°.	Right-Of-Way:	325 ft / 100 ft / 2 circuits
4.	Voltage:	138kV
5.	Application For Certificate:	Construction Notice filed in 2016
6.	Construction:	Est completion in 2019
7.	Capital Investment:	\$420k
σö	Planned Substations:	Name - N/A; Voltage - N/A; Acreage - N/A; Location - N/A
9.	Supporting Structures:	Double-circuit steel poles
10.	Participation with Other Utilities:	N/A
11.	Purpose of the Planned Transmission Line	Serve AEP distribution station with improved reliability; retire switch in residential backyard
12.	Consequences of Line Construction Deferment or Termination:	Continued inaccessibility of AEP transmission facilities; risk of reliability problems
13.	Miscellaneous	

. .	Line Name and Number:	New line, Corner-Coolville 138kV
2	Points of Origin and Termination:	Corner/Coolville; Intermediate Station - N/A
ŝ	Right-Of-Way:	~12 miles / 100 ft / 1 ckt
4.	Voltage:	138kV/138kV
ù.	Application For Certificate:	2019
ö	Construction:	Possible 2020 - 2023
٦.	Capital Investment:	~\$33M
œ	Planned Substations:	Name - Expand Coolville station; Voltage - 138/69/12kV; Acreage - +3 acres; Location - Meigs/Galia
ດັ	Supporting Structures:	TBD
6.	Participation with Other Utilities:	N/A
1.	Purpose of the Planned Transmission Line	Provide source for Coolville and Hemlock- Ravenswood 69 kV line for reliability and voltage support
4	Consequences of Line Construction Deferment or Termination:	Poor reliability for Galia county customers
13.	Miscellaneous	

÷	Line Name and Number:	Newbery - Yellow Creek 138kV
N	Points of Origin and Termination:	Newbery - Yellow Creek; Intermediate Station - N/A
ŝ	Right-Of-Way:	0.67 mi / 100 / double ckt
4	Voltage:	138kV / 138kV
ù.	Application For Certificate:	2018
ö	Construction:	To be completed approx. 12/31/2018
7.	Capital Investment:	Approx. \$2M (for both circuits)
œ	Planned Substations:	Name - Newbery; Voltage - 138/12kV; Acreage - 2; Location - Leipsic Area
о ́	Supporting Structures:	Overhead, Steel, Pole
10.	Participation with Other Utilities:	N/A
1.	Purpose of the Planned Transmission Line	These circuits will be created as a result of Newbery station established to serve retail
12	Consequences of Line Construction Deferment or Termination:	Delay of line or station work would affect customer in-service dates.
1 0	Miscellaneous	

÷	Line Name and Number:	North Delphos - Sterling, 24386
ci	Points of Origin and Termination:	North Delphos-Sterling; Intermediate Station - N/A (in rebuild section)
ю.	Right-Of-Way:	15.4 mi / 100 / double ckt
4.	Voltage:	138 kV / 138 kV
Ċ.	Application For Certificate:	LON, 2017
Ö	Construction:	To be completed approx. 12/18/20
7.	Capital Investment:	\$28.9M for both circuits
œ.	Planned Substations:	Name - N/A; Voltage - N/A; Acreage - N/A; Location - N/A
<u>ס</u>	Supporting Structures:	Overhead, Steel, Pole
10.	Participation with Other Utilities:	N/A
11.	Purpose of the Planned Transmission Line	Rebuild of existing line for rehabilitation.
12.	Consequences of Line Construction Deferment or Termination:	Continued deterioration and reduced reliability.
13.	Miscellaneous	

÷	Line Name and Number:	Portsmouth-Trenton
N	Points of Origin and Termination:	Hillsboro, Hutchings (DP&L); Intermediate Station Clinton County (Duke), Middleboro (DP&L)
ю.	Right-Of-Way:	~36 miles / 100ft / dbl & sgl ckt
4.	Voltage:	138kV/138kV
Ċ.	Application For Certificate:	LON 2018
ö	Construction:	2018-2021
7.	Capital Investment:	\$114.6M
œ.	Planned Substations:	Name - N/A; Voltage - N/A; Acreage - N/A; Location - N/A
<u>.</u>	Supporting Structures:	Steel H-frame & Steel Monopole
10.	Participation with Other Utilities:	Duke & DP&L
11.	Purpose of the Planned Transmission Line	Aging infrastructure
12.	Consequences of Line Construction Deferment or Termination:	Increase risk of line failure and outages to Middleboro
13.	Miscellaneous	

÷	Line Name and Number:	Poston - Elk 138 kV
N	Points of Origin and Termination:	Poston/Elk; Intermediate Station - Mineral and Bolins Mill
с.	Right-Of-Way:	21.79 miles / 100 ft / 1 circuit
4	Voltage:	138kV / 138kV
Ċ.	Application For Certificate:	2012 Case 11-4505-EL-BTX / 2016 Case 16- 0020-EL-BLN
ö	Construction:	To be completed approx. Summer 2018.
7.	Capital Investment:	Approx \$27M
ö	Planned Substations:	Name - N/A; Voltage - N/A; Acreage - N/A; Location - Athens
ю.	Supporting Structures:	N/A
6.	Participation with Other Utilities:	NIA
11.	Purpose of the Planned Transmission Line	Increase the reliability of the area. Line needs maintenance.
12	Consequences of Line Construction Deferment or Termination:	Reduced area reliability
13.	Miscellaneous	

÷	Line Name and Number:	Poston - Harrison 138 kV
N	Points of Origin and Termination:	Poston/Harrison; Intermediate Station - Good Hope
é	Right-Of-Way:	54.33 miles / 100 ft / 1 circuit
4	Voltage:	138kV / 138kV
Ú.	Application For Certificate:	2016
ö	Construction:	To be completed approx. 12-2019.
7.	Capital Investment:	Approx \$61.8M
œ	Planned Substations:	Name - N/A; Voltage - N/A; Acreage - N/A; Location - Athens
<u>б</u>	Supporting Structures:	N/A
10.	Participation with Other Utilities:	N/A
1.	Purpose of the Planned Transmission Line	Increase the reliability of the area. Line needs maintenance.
4	Consequences of Line Construction Deferment or Termination:	Customers would be subject to long outages if there were an outatge due to the line condition
<u>1</u> 3.	Miscellaneous	

÷	Line Name and Number:	Rockhill - West Lima, 743
°.	Points of Origin and Termination:	Rockhill-West Lima; Intermediate Station - N/A (in rebuild section)
3.	Right-Of-Way:	3.0 mi / 100 / double ckt
4	Voltage:	138 kV / 138 kV
Ś	Application For Certificate:	LON, 2017
ö	Construction:	To be completed approx. 12/18/20
7.	Capital Investment:	\$5.6M for both circuits
œ	Planned Substations:	Name - N/A; Voltage - N/A; Acreage - N/A; Location - N/A
ъ.	Supporting Structures:	Overhead, Steel, Pole
1 0.	Participation with Other Utilities:	N/A
11.	Purpose of the Planned Transmission Line	Rebuild of existing line for rehabilitation.
12	Consequences of Line Construction Deferment or Termination:	Continued deterioration and reduced reliability.
13.	Miscellaneous	
-	I inc. Nome and Mi under	Condinio ottonoion
-----	---	--
-		
N	Points of Origin and Termination:	Wild Cat / Kenton 138kV line; Intermediate Station - N/A
ő	Right-Of-Way:	~4 miles / 100 ft / 2 ckt
4.	Voltage:	138kV/138kV
5.	Application For Certificate:	2018
Ö	Construction:	ISD 2021
7.	Capital Investment:	\$12M
σ	Planned Substations:	Name - Possible expansion of Sardinia; Voltage - 138/12kV; Acreage - <1 acre; Location - Highland
6	Supporting Structures:	TBD
10.	Participation with Other Utilities:	N/A
11.	Purpose of the Planned Transmission Line	Retire Seaman - Sardinia lineand provide new rendundant source for Sardinia
12.	Consequences of Line Construction Deferment or Termination:	Increased risk of failure on Seaman-Sardinia line, increased CMI for Sardinia customers
13.	Miscellaneous	

÷	Line Name and Number:	South Caldwell - Macksburg 138kV
N	Points of Origin and Termination:	South Caldwell / Macksburg; Intermediate Station - South Olive Switch
с.	Right-Of-Way:	11.3 miles / 100 ft / 1 circuit
4.	Voltage:	138 kV / 138 kV
5.	Application For Certificate:	Approx. February 2016
6.	Construction:	To be completed approx. June 2018
7.	Capital Investment:	Approx. \$16 million
αj	Planned Substations:	Name - South Olive Switch (proposed); Voltage - 138 kV; Acreage - 0.1; Location - Dexter City,
6	Supporting Structures:	Single steel poles with single circuit
10.	Participation with Other Utilities:	N/A
11.	Purpose of the Planned Transmission Line	Increase area reliability
12.	Consequences of Line Construction Deferment or Termination:	Reduced area reliability
13.	Miscellaneous	

÷	Line Name and Number:	South Kenton - West Mount Vernon, 748
N	Points of Origin and Termination:	South Kenton - West Mount Vernon; Intermediate Station - FULTON (OP), NORTH WALDO,
ю.	Right-Of-Way:	59.1 mi / 100 / single ckt
4.	Voltage:	138 kV / 138 kV
5.	Application For Certificate:	LON, 2017
Ö	Construction:	Target completion 12/1/2020
7.	Capital Investment:	70319000
œ.	Planned Substations:	Name - N/A; Voltage - N/A; Acreage - N/A; Location - N/A
6	Supporting Structures:	Steel Poles
10.	Participation with Other Utilities:	N/A
11.	Purpose of the Planned Transmission Line	Rebuild of existing line for rehabilitation.
12.	Consequences of Line Construction Deferment or Termination:	Reduced reliability as line continues to deteriorate
13.	Miscellaneous	

÷	Line Name and Number:	Speidel-Summerfield 138kV
N	Points of Origin and Termination:	Speidel / Summerfield; Intermediate Station - Batesville; Barnesville
ю.	Right-Of-Way:	19.5 mi / 100 ft / 1 circuit
4.	Voltage:	138kV / 69kV
5.	Application For Certificate:	Application approved in 2017
Ö	Construction:	Est completion in 2020
7.	Capital Investment:	Approx. \$30 M
œ.	Planned Substations:	Name - N/A; Voltage - N/A; Acreage - N/A; Location - N/A
9.	Supporting Structures:	Single-circuit steel poles
10.	Participation with Other Utilities:	N/A
11.	Purpose of the Planned Transmission Line	Replace deteriorated 69kV facilities. Support area shale load growth.
12.	Consequences of Line Construction Deferment or Termination:	Increased risk of customer service interruptions, due to deteriorating T-Line facilities
13.	Miscellaneous	

÷	Line Name and Number:	Summerfield- Blue Racer 138kV
N'	Points of Origin and Termination:	Summerfield & Blue Racer; Intermediate Station - N/A
ë	Right-Of-Way:	3.5 mi / 100 ft / 1 circuit
4.	Voltage:	138 kV/138 kV
5.	Application For Certificate:	LON filed Jan 2018
Ö	Construction:	Est completion in 2020
7.	Capital Investment:	\$7 mil
œ.	Planned Substations:	Name - N/A; Voltage - N/A; Acreage - N/A; Location - N/A
9.	Supporting Structures:	Single-circuit steel poles & steel H-frames
10.	Participation with Other Utilities:	N/A
11.	Purpose of the Planned Transmission Line	Area reliability; serve increased customer loads; replace deteriorated wood pole line
12.	Consequences of Line Construction Deferment or Termination:	Reduced reliability due to limited thermal ratings and T-Line deterioration
13.	Miscellaneous	

÷	Line Name and Number:	West Bellaire-Glencoe 138kV
N	Points of Origin and Termination:	West Bellaire / Glencoe; Intermediate Station - N/A
ю.	Right-Of-Way:	5.8 mi / 100 ft / 2 circuit (1 @ 69kV; 1 @ 138kV)
4.	Voltage:	138kV Design; 1 operate @ 138; 1 operate @ 69
5.	Application For Certificate:	Application approved in 2018
Ö	Construction:	Est completion in mid-2019
7.	Capital Investment:	Approx. \$13 M
œ	Planned Substations:	Name - Glencoe (expansion); Voltage - 138/69; Acreage - 4; Location - Glencoe, Belmont County
9.	Supporting Structures:	Double-circuit steel poles
10.	Participation with Other Utilities:	N/A
11.	Purpose of the Planned Transmission Line	Resolve thermal overload violations
12.	Consequences of Line Construction Deferment or Termination:	Risk of system overloads, which could affect customer reliability in the area
13.	Miscellaneous	

÷	Line Name and Number:	Yager-Desert Road 69kV (138kV design)
N	Points of Origin and Termination:	Yager / Desert Road; Intermediate Station - West Bowerston Switch
ë	Right-Of-Way:	6.8 mi / 100 ft / 1 circuit
4.	Voltage:	138kV /69kV
5.	Application For Certificate:	Application approved in 2017
6.	Construction:	Est completion in 2019
7.	Capital Investment:	\$14 M
σ	Planned Substations:	Name - N/A; Voltage - N/A; Acreage - N/A; Location - N/A
9.	Supporting Structures:	6-wired double-circuit steel poles
10.	Participation with Other Utilities:	N/A
11.	Purpose of the Planned Transmission Line	Area reliability/serve increased customer loads
12.	Consequences of Line Construction Deferment or Termination:	Reduced area reliability; load curtailment at industrial customer sites
13.	Miscellaneous	

PUCO FORM FE-T10 AEP OHIO TRANSMISSION COMPANY SUMMARY OF PROPOSED SUBSTATIONS

Substation Name	Voltage(s) (kV)	Type Distribution (D) Transmission (T)	Timing	Line Association(s)	Line Existing or Proposed	Minimum Substation Site Acreage
Babbit	345/138	т	8/1/2018	Jug-Kirk 138kV => Babbit-Jug 138kV & Babbit-Kirk 138kV	Existing	3.5
Bell Ridge Switch	138	T	2020	Devola - Rouse switch 138 kV	Proposed	TBD
Devola	138/12	D	2020	Mill Creek-Belmont 138kV tie-line; Lamping-Devola 138kV; South Caldwell-Devola 138kV; Gorsuch-Mill Creek 138kV	2 Existing; 2 Proposed	5
Gemini	138	Ţ	7/11/1905	Gristmill - Gemini 138kV, Gristmill - West Moulton 138kV	Proposed	ø
Gristmill	345/138	Т	7/11/1905	Gristmill - Shelby 345kV, Gristmill - Southwest Lima 345kV, Gristmill - Gemini 138kV	Proposed	3
Guernsey (IPP interconnection)	765	T	2019-2020	Kammer-Vassell 765kV	Existing	9
Hannibal (IPP interconnection)	138	Ц. Ц.	2020	Kammer-Ormet #1 , #2, #3, #4 138kV	Existing	4
Heppner	138kV Design, Operated 69kV	т	2018	Lick-Ross 69kV, Rhodes-Heppner 69kV	Existing	2 acres used, 5 acres purchased
Hertan	138	Ŧ	2020	Summerfield - Herlan 138kV; South Caldwell-Herlan 138kV; Herlan - Blue Racer 138kV; Herlan-Natrium #1 & #2 138kV	4 Existing, 1 Proposed	4
Hopetown	138 kV	т	2020	Biers Run - Circleville 138kV	Proposed	estimated 6 acres
Lamping	345/138	Ŧ	2019	Kammer-Muskingum 345kV	Existing	9
Lemaster	138/12kV	D	Estimated 6/1/2018	Poston - Ross 138 kV; Poston - Harrison 138 kV; Poston - Hocking 138 kV; Crooksville - Poston - Strouds Run 138 kV; Corwin - Elk - Poston 138 kV; Dexter - Elliot - Poston 138 kV	Existing	Approx 10 acres
Newbery	138/12	1	7/10/1905	East Leipsic - Newbery 138kV, Newbery - Yellow Creek 138kV	Proposed	1
Pariett	138 (energized at 69)	1	2018	Blackhawk-Parlett 69kV; Sparrow-Parlett 69kV; Dillonvale- Parlett 69kV	Existing	з

PUCO FORM FE-T10 AEP OHIO TRANSMISSION COMPANY SUMMARY OF PROPOSED SUBSTATIONS

Substation Name	Voltage(s) (kV)	Type Distribution (D) Transmission (T)	Timing	Line Association(s)	Line Existing or Proposed	Minimum Substation Site Acreage
Rhodes	138 KV	Т	2018	Corwin-Lick 138kV, Rhodes-Heppner 69kV	Existing	2 acres used, 4.5 acres purchased
Rouse Switch	138	T	2020	Rouse Switch - Devola 138 kV; Rose switch - New Metamoras 138 kV	Proposed	TBD
Ruhlman Tap Switch Station	138 kV	(1)	2021	Central Portsmouth-North Portsmouth 138kV	Existing	Estimated 1 acre
Sunday Switch	138 kV	T	12/1/2018	Crooksville - Poston - Strouds Run 138 kV	Proposed	TBD

LETTER OF NOTIFICATION FOR DILLES BOTTOM STATION AND GEORGE WASHINGTON-DILLES **BOTTOM 138 KV TRANSMISSION LINE PROJECT**

Appendix C Ecological Survey Report May 23, 2018

Appendix C Ecological Survey Report

gaiconsultants.com | transforming ideas into reality.

Ecological Survey Report

AEP Ohio Transmission Company Dilles Bottom Substation Project Belmont County, Ohio

GAI Project Number: C170352.34, Task 001 March 2018

BOUNDLESS ENERGY"

Prepared by: GAI Consultants, Inc. Canton Office 3720 Dressler Road Northwest Canton, Ohio 15120-2700

Prepared for: American Electric Power Service Corporation 1 Riverside Place 22nd Floor Columbus, Ohio 43215-2373

Ecological Survey Report

AEP Ohio Transmission Company Dilles Bottom Substation Project Belmont County, Ohio

GAI Project Number: C170352.34, Task 001

March 2018

Prepared for: American Electric Power Service Corporation 1 Riverside Place 22nd Floor Columbus, Ohio 43215-2373

> Prepared by: GAI Consultants, Inc. Canton Office 3720 Dressler Road Northwest Canton, Ohio 15120-2700

> > **Report Authors:**

George T. Reese, MS, CE Environmental Director

Allison R. Wheaton, WPIT Senior Project Environmental Specialist

Table of Contents

1.0	Introd	uction1						
2.0	Metho	ds1						
	2.1	Wetlands						
		1 Preliminary Data Gathering						
		2.1.2 Onsite Inspection						
	2.2	Waterbodies						
		2.2.1 Preliminary Data Gathering						
		2.2.2 Onsite Inspection						
	2.3	Rare, Threatened, and Endangered Species4						
		2.3.1 Preliminary Data Gathering4						
		2.3.2 Onsite Inspection4						
3.0	Result	s4						
	3.1	Wetlands4						
		3.1.1 Preliminary Data Gathering4						
		3.1.2 Onsite Inspection						
		3.1.3 Regulatory Discussion						
	3.2	Waterbodies						
		3.2.1 Preliminary Data Gathering						
		3.2.2 Unsite Inspection						
	3 3	Pare Threatened and Endangered Species						
	5.5	3 3 1 Preliminary Data Gathering 6						
		3.3.2 Onsite Inspection						
		3.3.3 Regulatory Discussion						
4.0	Conclu	isions						
5.0	Refere	ances 8						
0.0	1101010							
Table	1	Wetlands Identified Within the Project Study Area						
Table	2	Waterbodies Identified Within the Project Study Area						
Table	3	ODNR and USFWS RTE Species and Critical Habitat Review Results						
Figure	e 1	Project Location Map						
Figure	2 2	Resource Location Man						
Eigur	~ 2	Resource Location Map						
Figure	50							
Apper	ndix A	Photographs						
Apper	ndix B	Wetland Determination Data Forms						
Apper	ndix C	Primary Headwater Habitat Evaluation (HHEI) Data Forms						
Apper	ndix D	Ohio Rapid Assessment Method for Wetlands (ORAM) Data Forms						
Apper	ndix E	ODNR and USFWS Correspondence						

© 2018 GAI CONSULTANTS

1.0 Introduction

GAI Consultants, Inc. (GAI), on behalf of American Electric Power Ohio Transmission Company (AEP), completed an ecological survey for the Dilles Bottom Substation Project (Project) located in Belmont County, Ohio (OH). The Project involves upgrading and expanding the existing Dilles Bottom Substation.

The ecological survey was conducted on February 8, 2018. The Project study area consisted of the area of the proposed substation, as shown on Figure 1.

The Project study area is located within the Pipe Creek – Ohio River (United States Geological Survey [USGS] Hydrologic Unit Code [HUC] #050301061207) watershed.

This report details the results of the ecological survey regarding the existence of aquatic resources within the Project area (Figure 2). The United States Army Corps of Engineers (USACE) Wetland Determination Data Forms are provided in Appendix B. Ohio Environmental Protection Agency (OEPA) Primary Headwater Habitat Evaluation (HHEI) Data Forms are provided in Appendix C and Ohio Rapid Assessment Method for Wetlands (ORAM) Data Forms are provided in Appendix D.

2.0 Methods

2.1 Wetlands

The 1987 USACE *Corps of Engineers Wetlands Delineation Manual* (Wetlands Delineation Manual) (USACE, 1987) and the 2012 *Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Eastern Mountains and Piedmont Region, Version 2.0* (Regional Supplement) (USACE, 2012) describe the methods used to identify and delineate wetlands that fall under the jurisdiction of the USACE. This approach recognizes the three parameters of wetland hydrology, hydrophytic vegetation, and hydric soils to identify and delineate wetland boundaries. In accordance with the Wetlands Delineation Manual and Regional Supplement, GAI completed preliminary data gathering and an onsite inspection.

2.1.1 Preliminary Data Gathering

The preliminary data gathering was used to compile and review information that may be helpful in identifying wetlands and/or areas that warrant further inspection during the investigation. The preliminary data gathering included a review of the following:

- USGS 7.5-minute topographic mapping for Businessburg (USGS, 1978) OH and Moundsville (USGS 1977) West Virginia (Figure 1);
- United States Fish and Wildlife Service (USFWS), National Wetlands Inventory (NWI) mapping (USFWS, 2017) (Figure 2);
- Federal Emergency Management Agency (FEMA), National Flood Hazard Layer (FEMA, 2015) (Figure 2); and
- United States Department of Agriculture, Natural Resources Conservation Service (USDA-NRCS, 2017) soil mapping (Figure 2).

Topographic mapping was used to identify mapped streams and the overall shape of the landscape in the Project area to determine potential locations for wetlands, such as floodplains and depressions. NWI mapping was used to determine locations where probable wetlands are located based on infrared photography. Soil mapping was reviewed to determine the location and extent of mapped hydric soils that have a high probability of containing wetlands.

2.1.2 Onsite Inspection

The methodology described in the Regional Supplement identifies areas meeting the definition of a wetland by evaluating three parameters: hydrology, vegetation, and soil. During the onsite inspection, GAI staff traversed the Project study area on foot to determine if any indicators of wetlands were present. When indicators of wetlands were observed, an observation point was established, and a Wetland Determination Data Form (Data Form) was completed to determine if all three wetland indicators were present.

The presence of wetland hydrology was determined by examining the observation point for primary and secondary indicators of wetland hydrology. The presence of any primary indicator signified the presence of wetland hydrology, or the presence of two or more secondary indicators signified the presence of wetland hydrology.

Vegetation was characterized by four different strata. This included trees (woody plants, excluding vines, three inches or more in diameter at breast height [DBH]), saplings/shrubs (woody plants, excluding vines, less than three inches DBH and greater than or equal to 3.28 feet tall), herbs (non-woody plants, regardless of size, and all other plants less than 3.28 feet tall), and woody vines (greater than 3.28 feet tall). In general, trees and woody vines were sampled within a thirty-foot (30') radius, saplings and shrubs were sampled within a fifteen-foot (15') radius, and herbs were sampled within a five-foot (5') radius.

When evaluating an area for the presence of hydrophytes, classification of the indicator status of vegetation was based on *The National Wetland Plant List: 2016 Update of Wetland Ratings* (Lichvar et al., 2016). The list of possible indicator statuses for plants is as follows:

- Obligate Wetland (OBL) Obligate Wetland plants occur in standing water or in saturated soils;
- Facultative Wetland (FACW) Facultative Wetland plants nearly always occur in areas of prolonged flooding or require standing water or saturated soils but may on rare occasions, occur in non-wetlands;
- Facultative (FAC) Facultative plants occur in a variety of habitats, including wetland and mesic to xeric non-wetland habitats but often occur in standing water or saturated soils;
- Facultative Upland (FACU) Facultative Upland plants typically occur in xeric or mesic non-wetland habitats but may frequently occur in standing water or saturated soils; and
- Obligate Upland (UPL) Obligate Upland plants almost never occur in water or saturated soils.

Presence of hydrophytic vegetation was determined by using a Rapid Test, Dominance Test or Prevalence Index (USACE, 2012). The Rapid Test finds a vegetation community to be hydrophytic if all dominant species are OBL or FACW. Hydrophytic vegetation was considered present based on the Dominance Test if more than 50 percent of dominant species are OBL, FACW, or FAC. The Prevalence Index weighs the total percent of vegetation cover based on the indicator status of each plant. Hydrophytic vegetation was considered prevalence Index is less than or equal to 3.0.

To determine the presence of hydric soils, soil data was collected by digging a minimum 16-inch-deep soil pit. The soil profile was studied and described, while possible hydric indicators were examined. Soil indicators described in the Wetlands Delineation Manual and Regional Supplement were used to determine the presence of hydric soils. The presence of any of these indicators signified a hydric soil.

If all three parameters including wetland hydrology, a dominance of hydrophytic vegetation, and hydric soils were identified at a single observation point, the area was determined to be a wetland. Once a wetland was identified, the boundary was delineated.

Wetland boundaries were determined by looking for locations in which one of the three wetland indicators would transition into an upland characteristic. When the transition was identified, a Data Form was completed in the Upland Area. Wetland boundaries were then marked in the field using pink flagging labeled "WETLAND DELINEATION." The locations of the flags were recorded using a Global Positioning System (GPS) unit. Each wetland was codified with a unique identifier indicating the feature type and number (e.g., W001).

Wetlands were then classified using the *Classification of Wetlands and Deepwater Habitats of the United States* (Cowardin et al., 1979) as modified for NWI Mapping Convention. This system classifies wetlands based on topographic position and vegetation type. Palustrine system wetlands found within the study area are classified as Palustrine Emergent (PEM), Palustrine Scrub-Shrub (PSS), Palustrine Forested (PFO), or Palustrine Unconsolidated Bottom (PUB) based on aerial coverage of the vegetative community across the extent of the wetland boundary (Cowardin et al., 1979).

2.2 Waterbodies

As with wetlands, Section 404 of the Clean Water Act (CWA) and state regulations protect waterbodies in OH. Generally, waterbodies are defined as environmental features that have defined beds and banks, an ordinary high water mark (OHWM), and contain flowing or standing water for at least a portion of the year.

2.2.1 Preliminary Data Gathering

During the preliminary data gathering, the USGS 7.5-minute topographic mapping was examined for the presence of mapped waterbodies including perennial and intermittent streams. In addition, the topographic mapping was used to identify areas likely to contain unmapped waterbodies including ephemeral streams (USGS, 1978 and 1977) (Figure 1).

The OEPA Stream Eligibility Web Map was used to determine eligibility coverage under the 401 Water Quality Certification (WQC) for the 2017 Nationwide Permits (NWPs). Furthermore, the map was used to identify any ineligible areas that may require a CWA Section 401 individual permit from the OEPA should stream impacts occur within the Project area (OEPA, 2017) (Figure 3).

2.2.2 Onsite Inspection

During the onsite inspection, GAI staff traversed the study area, concurrently with the wetland inspection, and waterbodies were identified. Waterbodies were identified based on the morphological and hydrologic characteristics of the channel and the presence of aquatic macroinvertebrates.

When a waterbody was identified, field measurements were collected. The measurements included top of bank width, top of bank depth, pool depth, water depth, OHWM width, and OHWM depth. A detailed description of substrate composition was also recorded. Waterbodies were then delineated using white flagging marked with the GAI stream code (e.g., S001). The tops-of-bank for streams wider than 10 feet were delineated and the centerline of smaller streams were delineated. The locations of the flags were recorded using a sub-meter capable hand-held GPS unit.

2.3 Rare, Threatened, and Endangered Species

GAI conducted a literature review of potential Rare, Threatened, and Endangered (RTE) species in the vicinity of the Project study area. Potential habitat for RTE species as a result of the literature review was noted during the ecological survey.

2.3.1 Preliminary Data Gathering

A request for review of the Ohio Natural Heritage Database (ONHD) was submitted to the Ohio Department of Natural Resources (ODNR) to determine if any state-listed Threatened or Endangered species occur within a one-mile radius of the Project area. A request was also submitted to the USFWS Ohio Ecological Services Field Office to determine if any federally-listed Threatened or Endangered species occur within the vicinity of the Project area.

2.3.2 Onsite Inspection

During the onsite inspection, GAI staff traversed the study area in conjunction with the wetland and waterbody inspections to determine if suitable habitat for state- and/or federally-listed RTE species are present within the study area.

3.0 Results

3.1 Wetlands

3.1.1 Preliminary Data Gathering

Desktop review of available USFWS NWI digital data for the Project revealed no NWI mapped wetlands located within the Project study area. (USFWS, 2017).

According to the USDA-NRCS soil mapping, a total of four (4) soil map units are located within the Project study area (Figure 2). None of the soil map units are classified as hydric and one (Nolin silt loam [No]) is known to contain hydric inclusions.

3.1.2 Onsite Inspection

Two (2) PEM wetlands were identified and delineated within the Project study area. In order to document site conditions, USACE Data Forms were completed for each wetland and upland reference. Information on the delineated wetlands can be found in Table 1 and photographs of the wetlands are included in Appendix A.

3.1.3 Regulatory Discussion

The USACE guidance divides waterbodies into three groups: Traditionally Navigable Waters (TNWs), non-navigable Relatively Permanent Waters (RPWs), and non-navigable Non-RPWs. TNWs are waterbodies which have been, are, or may be susceptible to use in interstate commerce, including recreational use of the waterbody. RPWs are waterbodies that flow year round, or at a minimum seasonally, by exhibiting continuous flow for at least three consecutive months, but are not TNWs (USACE, 2007). Non-RPWs are waterbodies that do not flow continuously for at least three consecutive months, are not TNWs or RPWs, but typically exhibit characteristic beds, banks, and OHWM (USACE, 2007).

The status of wetlands is determined partly based on the classification of the waterbody that the wetland is associated with, and the degree of that association. Wetlands that abut or are adjacent to TNWs are jurisdictional. Wetlands that abut RPWs are jurisdictional. Wetlands that abut or are adjacent to RPWs and wetlands that abut or are adjacent to Non-RPWs must be subjected to the Significant Nexus Test (SNT) to determine their jurisdictional status. Generally, the USACE considers wetlands that are isolated, meaning that they are not associated with any

Page 4

other surface water feature, as non-jurisdictional; and wetlands that abut or are adjacent to Non-RPWs as needing further examination by the USACE to determine and verify whether they exhibit a significant nexus to waters of the United States. If these wetlands exhibit a significant nexus, they are jurisdictional; if not, they are not subject to USACE jurisdiction.

Wetlands that do not exhibit an association with any surface water are categorized as "isolated" under present USACE guidance and policy. These wetlands are regulated by the OEPA Division of Surface Water, and may require an Isolated Wetland Permit.

As regulated by Ohio Administrative Code (OAC) rules 3745-1-50 through 3745-1-54, wetlands were also evaluated using the ORAM to determine the appropriate wetland category. Any wetland score that fell within a gray zone between categories was scored one of two ways. Either the wetland was assigned to the higher of the two categories or it was assessed using a non-rapid method to determine its quality (Mack, 2001). The category assigned to a particular wetland determines the requirement, if any, for additional levels of protection administered by the OEPA.

All wetlands within the Project study area were identified as jurisdictional. Jurisdictional status is the opinion of GAI and must be confirmed by USACE and state agencies through the Jurisdictional Determination (JD) process.

3.2 Waterbodies

3.2.1 Preliminary Data Gathering

Desktop review of the available USGS topographic mapping revealed no previously mapped stream segments located within the Project study area (Figure 1). Desktop review of OEPA's Stream Eligibility Web Map revealed that Project is located within an eligible area for automatic 401 WQC coverage (Figure 3).

3.2.2 Onsite Inspection

One (1) perennial stream segment was identified and delineated within the Project study area. Information on the delineated waterbodies and their classifications can be found in Table 2, and photographs of the identified streams are included in Appendix A.

3.2.3 Regulatory Discussion

As with wetlands, present USACE guidance and policy determines the jurisdictional status of waterbodies identified during the Project. TNWs and RPWs are jurisdictional. Non-RPWs must be subjected to the SNT by USACE to determine their jurisdictional status. If Non-RPWs exhibit a Significant Nexus, as defined in USACE guidance documents, they are jurisdictional. If not, they do not fall under the jurisdiction of the USACE.

Streams are generally defined as environmental features that have defined beds and banks, an OHWM as defined in Regulatory Guidance Letter No. 05-05 (USACE, 2005), and contain flowing or standing waters for at least a portion of the year. Streams were classified as perennial, intermittent, or ephemeral based upon presence of flow, estimated duration of flow, stream bed characteristics, and presence of aquatic biota. The USACE *Jurisdictional Determination Form Instructional Guidebook* (USACE, 2007) was used to determine stream classification and flow status.

As regulated by OAC Chapter 3745-1 and Section 401 WQC, streams were also assessed according to OEPA guidance using either the HHEI for watersheds less than one square mile in size, or the Qualitative Habitat Evaluation Index (QHEI) for watersheds between one and 20 square miles in size.

3.3 Rare, Threatened, and Endangered Species

3.3.1 Preliminary Data Gathering

Desktop review of ODNR, Division of Wildlife's Ohio's Listed Species revealed 336 Endangered, Threatened, Species of Concern, and Species of Interest located in OH (ODNR, 2017). Seventeen (17) of the state-listed species are considered federally Endangered, and four (4) are federally Threatened.

A review of the USFWS *County Distribution of Federally-Listed Threatened, Endangered, Proposed, and Candidate Species for Ohio*, as well as the Information for Planning and Consultation (IPaC) website, revealed three (3) federally Endangered or Threatened species that may occur within the Project study area (USFWS, 2017). The list of species includes the following:

- Indiana Bat (Myotis sodalis) Endangered;
- Northern Long-eared Bat (*Myotis septentrionalis*) Threatened; and
- Running Buffalo Clover (*Trifolium stolonifernum*) Endangered.

In addition to the species listed above, there are twelve (12) species of migratory birds that may occur within the Project study area.

3.3.2 Onsite Inspection

Potential habitat for RTE species was evaluated within the Project study area. In general, the habitat encountered within the study area consisted of PEM wetland, an open field, and a wooded buffer between the open field and the existing railroad tracks, immediately adjacent to the Project study area. The Project study area includes two residential homes. One (1) perennial stream was also identified within the Project study area. Representative photographs of the identified habitat types are included in Appendix A.

3.3.3 Regulatory Discussion

State-listed RTE species fall under the jurisdiction of the ODNR, Division of Wildlife, while federally-listed species are covered under Section 7 of the Endangered Species Act. The Bald and Golden Eagle Protection Act and Migratory Bird Act aim to extend protection to certain bird species that fall under the jurisdiction of the USFWS. Based on the desktop review and on-site inspection, informal consultation with the ODNR and USFWS has been initiated to determine if any activities associated with the proposed Project may affect state- and/or federally-listed RTE species. The ODNR and USFWS consultation letters were submitted on January 16, 2018, and are provided in Appendix E. A response from the USFWS was received on February 14, 2018 and is provided in Appendix E. No response from the ODNR has been received, but will be appended once available.

4.0 Conclusions

An ecological survey was conducted within the Project study area on February 8, 2018. Two (2) PEM wetlands and one (1) perennial stream were identified within the Project study area. Summaries of the delineated aquatic features are provided in Tables 1 and 2, and a map of their locations is depicted on Figure 2. Photographs of the wetlands and stream features are included in Appendix A. Wetland Determination Data Forms documenting the investigation are provided in Appendix B, with HHEI and ORAM Data Forms provided in Appendix C and D, respectively.

The jurisdictional status of these features are considered preliminary and should be confirmed with the USACE and state agencies through the JD process.

5.0 References

- Cowardin, D. M., V. Carter, F. C. Golet, and E. T. La Roe. 1979. Classification of Wetlands and Deepwater Habitats of the United States. United States Department of the Interior, Fish and Wildlife Service. Publication No. FWS/OBS 79/31. Washington, D.C.
- Environmental Laboratory. 1987. Corps of Engineers Wetlands Delineation Manual. United States Department of the Army, United States Army Engineer Waterways Experiment Station. Technical Report Y-87-1. Vicksburg, Mississippi.
- Federal Emergency Management Agency. 2015. National Flood Hazard Layer Web Map Service (WMS). Available from https://hazards.fema.gov/femaportal/wps/portal/NFHLWMSkmzdownload.
- Lichvar, R. W., D.L. Banks N. C. Melvin, and W. N. Kirchner. 2016. The National Wetland Plant List: 2016 Update of Wetland Ratings. Phytoneuron 2016-30: 1-17. United States Army Corps of Engineers, Engineer Research and Development Center, Cold Regions Research and Engineering Laboratory, Hanover, New Hampshire, and BONAP, Chapel Hill, North Carolina. Available from http://rsgisias.crrel.usace.army.mil/NWPL/.
- Mack, John J. 2001. Ohio Rapid Assessment Methods for Wetlands Manual for Using Version 5.0. Ohio EPA Technical Bulletin Wetland/2001-1-1. Ohio Environmental Protection Agency, Division of Surface Water, 401 Wetland Ecology Unit, Columbus, Ohio.
- Ohio Administrative Code. 2011. State of Ohio: Water Quality Standards, Chapter 3745-1.
- Ohio Department of Natural Resources, Division of Wildlife. Ohio's Listed Species. https://wildlife.ohiodnr.gov/portals/wildlife/pdfs/publications/information/pub356.pdf.
- Ohio Department of Natural Resources, Division of Wildlife. State-Listed Species by County. http://wildlife.ohiodnr.gov/species-and-habitats/state-listed-species/state-listed-species-by-county.
- Ohio Environmental Protection Agency. 2006. Methods for Assessing Habitat in Flowing Waters: Using the Qualitative Habitat Evaluation Index (QHEI). Ohio EPA Division of Surface Water, Columbus, Ohio.
- Ohio Environmental Protection Agency. 2012. Field Evaluation Manual for Ohio's Primary Headwater Habitat Streams. Version 3.0. Ohio EPA Division of Surface Water, Columbus, Ohio. 117 pp.
- Ohio Environmental Protection Agency, Division of Surface Water. 2017. 401 Water Quality Certification for the Nationwide Permits Stream Eligibility Web Map (2017 Reissuance). http://oepa.maps.arcgis.com/apps/webappviewer/index.html?id=e6b46d29a38f46229c1eb47d eefe49b6
- Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture. Soil Survey Geographic (SSURGO) Database for Belmont County, Ohio. Available online at http://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm.
- United States Army Corps of Engineers. 2005. Regulatory Guidance Letter No. 05-05. Ordinary High Water Mark Identification. Available from http://www.nap.usace.army.mil/Portals/39/docs/regulatory/rgls/rgl05-05.pdf.
- United States Army Corps of Engineers. 2007. *Jurisdictional Determination Form Instructional Guidebook*. Available from http://www.usace.army.mil/Portals/2/docs/civilworks/regulatory/cwa_guide/jd_guidebook_051207 final.pdf

- United States Army Corps of Engineers. 2012. *Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Eastern Mountains and Piedmont Region Version 2.0*, ed. J. S. Wakeley, R. W. Lichvar, C. V. Noble, and J. F. Berkowitz. ERDC/EL TR-10-9. Vicksburg, Mississippi: United States Army Engineer Research and Development Center.
- United States Fish and Wildlife Service. 2017. National Wetlands Inventory for Ohio. Washington, D.C.: U.S. Fish and Wildlife Service, Division of Habitat and Resource Conservation. Available from http://www.fws.gov/wetlands/Data/Mapper.html.
- United States Fish and Wildlife Service. 2017. County Distribution of Federally-Listed Endangered, Threatened, and Proposed Species. U.S. Fish and Wildlife Service, Endangered Species, Midwest Region. Available from https://www.fws.gov/midwest/endangered/lists/ohio-cty.html.
- United States Fish and Wildlife Service, Environmental Conservation Online System. Information for Planning and Consultation. https://ecos.fws.gov/ipac/.
- United States Geological Survey. 1978. Businessburg, Ohio 7.5-Minute Topographic Quadrangle (1:24,000).
- United States Geological Survey. 1977. Moundsville, West Virginia 7.5-Minute Topographic Quadrangle (1:24,000).

TABLES

 Table 1

 Wetlands Identified Within the Project Study Area

Wetland I.D. ¹	Latitude ²	Longitude ²	Proximal Waterbody	al Waterbody USACE Classification ³		Size⁵ (acres)	ORAM v. 5.0 Score ⁶	ORAM Category ⁷	Figure 2 (sheet)
W001-PEM-CAT1	39.922159	-80.787706	UNT to Ohio River	Jurisdictional; Abutting	PEM	0.02	22	1	1
W002-PEM-CAT1	39.920191	-80.790046	UNT to Ohio River	Jurisdictional; Adjacent	PEM	0.19	22	1	1

Notes:

- ¹ GAI map designation.
- ² North American Datum, 1983.
- ³ Jurisdictional status is the opinion of GAI and must be confirmed by USACE and state agencies through the JD process.
- ⁴ PEM Palustrine Emergent;
- ⁵ Total acreage of wetland located within the Project study area.
- ⁶ Interim scoring breakpoints for wetland regulatory categories for ORAM v 5.0 Score: Category 1 score 0 29.9; Category 1 or 2 gray zone ORAM score 30 34.9; Category modified 2 ORAM score 35 44.9; Category 2 ORAM score 45 59.9; Category 2 or 3 ORAM score 60 64.9; Category 3 ORAM score 65 100. OEPA Ecology Unit Division of Surface Water. ORAM v. 5.0 Qualitative Score Calibration. Dated August 15, 2000. http://www.epa.ohio.gov/portals/35/401/oram50sc_s.pdf.
- OAC Rule 3745-1-54(C)(2) defines Category 1 wetlands as wetlands which "...support minimal wildlife habitat, and minimal hydrological and recreation functions," and as wetlands which have "...hydrologic isolation, low species diversity, a predominance of non-native species, no significant habitat or wildlife use, and limited potential to achieve beneficial wetland functions." Category 2 wetlands are defined as wetlands which "...support moderate wildlife habitat, or hydrological or recreational functions," and as wetlands which are "...dominated by native species but generally without the presence of, or habitat for, rare, threatened or endangered species; and wetlands which are degraded but have a reasonable potential for reestablishing lost wetland functions." Degraded but Restorable Category 2 Wetlands are according to OAC Rule 3745-1-54(C) states that wetlands that are assigned to Category 2 constitute the broad middle category that "...support moderate wildlife habitat, or hydrological or recreational functions," but also include "...wetlands which are degraded but have a reasonable potential to achieve beneficial wet a reasonable potential for reestablishing lost wetland functions." Degraded but Restorable Category 2 Wetlands are according to OAC Rule 3745-1-54(C) (2) defines Category 3 wetlands which are degraded but have a reasonable potential for reestablishing lost wetland functions." OAC Rule 3745-1-54(C)(2) defines Category 3 wetlands which "...support support habitat, or hydrological or recreational functions," and as wetlands which have "...hydrological or recreational functions," and as wetlands which have "...hydrological or recreational functions," and as wetlands which have "...hydrological or recreational functions," and as wetlands which have "...hydrological or recreational functions," and as wetlands which have "...hydrological or recreational functions," and as wetlands which have "...hydrological or recreational functions," and as wetlands which have "...hydrological or recreational f

Table 2 Waterbodies Identified Within the Project Study Area

eam I.D. ¹	Waterbody Name	OEPA WQ Designation ²	OEPA Stream Eligibility ³	Stream Type	USACE Classification ⁴	HHEI Score⁵	PHWH Class ⁵	QHEI Score ⁶	Bank Width (feet) ⁷	OHWM Width (feet)	OHWM Depth (inches)	Stream Length ⁸ (feet)	Latitude ⁹	Longitude ⁹	Figure 2 (sheet)
S001	UNT to Ohio River	-	Eligible	Perennial	RPW	60	Modified Class II		8	5	12	418	39.921083	-80.791255	1

Notes:

GAI map designation.

1 2

GAI map designation. As defined by OAC Chapter 3745-1 Water Quality Standards, Water use designations and statewide criteria (OAC 3745-1-07), http://www.epa.ohio.gov/dsw/rules/3745_1_aspx. As defined by OAC Chapter 3745-1 Water Quality Standards, Water use designations and statewide criteria (OAC 3745-1-07), http://www.epa.ohio.gov/dsw/rules/3745_1_aspx. As defined by CAC conditions for stream eligibility coverage under the 2017 NWP program. Streams located in Possibly Eligible areas are eligible for coverage if the HHE is <0.5 or stream flow is ephemeral. Streams located in Possibly Eligible areas are eligible for coverage if the HHE is <0.5 or stream flow is ephemeral. Streams located in Possibly Eligible areas are eligible for coverage if the HHE is <0.5 or stream flow is ephemeral. Streams located in Possibly Eligible areas are eligible for coverage if the HHE is core is <50, or of the date is the opinion of GAI and must be confirmed by USACE and state agencies through the JD process. RPW - Relatively Permanent Waters. Scoring for CPEA Headvater Habitat Evaluation index (HHEI) Primary Headvater Habitats (PHWH). Class I = 0 - 29.9 and include "normally dry channels with little or no aquatic life present". Class II = 30 - 69.9 and are equivalent to "warm water habitat". Class III = 70 - 100 and typically have perennial flow with code-cold water adapted native fauna. Narrative rating for headwater streams using the OEPA Qualitative Habitat Evaluation Index (QHEI). Excellent = ≥70; Good = 55 - 60; Fair = 43 - 54; Poor = 30 - 42; Very Poor = <30. With in feet from tops of stream bank. Total stream length (In feet) located within the Project study area. North American Datum, 1983. 3 4

5

6 7

8 9 North American Datum, 1983.

Table 3
ODNR and USFWS RTE Species and Critical Habitat Review Results ¹

Common Name	Scientific Name	Habitat Type	Listing Status ²	Habitat Type Present Within the Project Area?	Impacts to Habitat/Species Anticipated?	Restricted Construction Dates		
Amphibians								
Eastern hellbender	Cryptobranchus alleganiensis alleganiensis	Swift flowing, unpolluted, and well-oxygenated streams and rivers with large flat rocks	E	No	No; Known habitat types are not present within the Project area	-		
Bats	Bats							
Indiana bat	Myotis sodalis	Trees >3" dbh	E, FE	Yes	No; Avoided with winter tree clearing	April 1 to September 30		
Fish								
Western banded killifish	Fundulus diaphanous menona	Areas with an abundance of rooted aquatic vegetation, clear waters; substrates with clean sand or organic debris free of silt	E	No	No; Known habitat types are not present within the Project area	-		
Tippecanoe darter	Etheostoma tippecanoe	Medium to large streams and rivers in riffles with gravel and small cobble sized rocks	т	No	No; Known habitat types are not present within the Project area	-		
Channel darter	Percina copelandi	Large, coarse sand or fine gravel bars in large rivers or lake shores	т	No	No; Known habitat types are not present within the Project area	-		
River darter	Percina shumardi	Very large rivers in areas of swift current; found over a gravel or rocky bottom in depths of three feet or more	Т	No	No; Known habitat types are not present within the Project area	-		
Paddlefish	Polyodon spathula	Sluggish pools and backwater areas of rivers and streams	Т	No	No; Known habitat types are not present within the Project area	-		

Common Name	Scientific Name	Habitat Type	Listing Status ²	Habitat Type Present Within the Project Area?	Impacts to Habitat/Species Anticipated?	Restricted Construction Dates
Insects						
River jewelwing	Calopteryx aequabilis	Clear streams and rivers with moderate current; small streams in woodlands; rocky shores of large lakes	E	No	No; Known habitat types are not present within the Project area	-
Mammals						
Black bear	Ursus americanus	Large forested areas	E	No	No; Known habitat types are not present within the Project area	-
Mussels						
Butterfly	Ellipsaria lineolata	Large rivers with swift currents in sand or gravel substrates	E	No	No; Known habitat types are not present within the Project area	-
Black sandshell	Ligumia recta	Medium to large rivers in riffles or raceways in gravel or firm sand	Т	No	No; Known habitat types are not present within the Project area	-
Threehorn Wartyback	Obliquaria reflexa	Large rivers with moderate current and stable substrate of gravel, sand, and mud	т	No	No; Known habitat types are not present within the Project area	-
Plants						
White wood-sorrel	Oxalis montana	Moist woods	E	No	No; Known habitat types are not present within the Project area	-
Rock ramalina	Ramalina intermedia	Variety of rock and bark types; restricted to sandstone, generally in light shade	E	No	No; Known habitat types are not present within the Project area	-

Common Name	Scientific Name	Habitat Type	Listing Status ²	Habitat Type Present Within the Project Area?	Impacts to Habitat/Species Anticipated?	Restricted Construction Dates
Plants (Continued)						
Bearded wheat grass	Elymus trachycaulus	Wide range of soils and climates from very dry to very boggy habitats	т	No	No; Known habitat types are not present within the project area	-
Wild pea	Lathyrus venosus	Open sandy soils and deeply shaded forests; Prairies, disturbed sites, woods, riverbanks, slopes, and shores	т	Yes	Unknown; Impacts to known habitat types are anticipated	-
Shale barren aster	Symphyotrichum oblongifolium	Rocky and sandy soils in prairies and bluffs as well as moist woodland habitats	т	No	No; Known habitat types are not present within the project area	-

Notes:

1 Results are tentatively based upon the State Listed Species list(s) for Belmont County and will be updated once the ODNR response is received.

² E = state endangered; T = state threatened; P = state potentially threatened; SC = state species of concern; FE = federal endangered; FT = federal threatened; FSC = federal species of concern; FC = federal candidate.

FIGURES

APPENDIX A Photographs

Photograph 1. Wetland W001-PEM-CAT1, Facing North

Photograph 2. Wetland W001-PEM-CAT1, Facing West

Photograph 1. Wetland W002-PEM-CAT1, Facing North

Photograph 2. Wetland W002-PEM-CAT1, Facing West

Photograph 3. Stream S001, Upstream, Facing North

Photograph 4. Stream S001, Downstream, Facing South

Photograph 5. Representative upland habitat, Facing North

Photograph 6. Representative upland habitat, Facing West

APPENDIX B Wetland Determination Data Forms

C170352.34, Task 001 / March 2018

WETLAND DETERMINATION DATA FORM – Eastern Mountains and Pledmont Region Project/Site: Dill/ Bottom Substation City/County: Mead Two Remartlo Sampling Date: 2/8/19 Applicant/Owner: AEP State: OH Sampling Point: WOOI (PEM Section, Township, Range: NO PISS Investigator(s): REE Landform (hillslope, terrace, etc.): 2000510 Local relief (concave, convex, none): None Slope (%): Long: -20.787720 Subregion (LRR or MLRA): LRR N Lat: 39.922191 Datum: NADS 3 Soll Map Unit Name: Homann very channery loam. 0 -8 905 Upes NWI classification: None Are climatic / hydrologic conditions on the site typical for this time of year? Yes X___ (If no, explain in Remarks.) No Are Vegetation N, Soll N, or Hydrology N significantly disturbed? Are "Normal Circumstances" present? Yes X Are Vegetation N, Soll N, or Hydrology N naturally problematic? (If needed, explain any answers In Remarks.) SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, Important features, etc. Hydrophytic Vegetation Present? Yes No Is the Sampled Area Hydric Soll Present? Yes No Yes X No within a Wetland? Wetland Hydrology Present? Yes No Remarks: taken along roadside WOOL - PEM-CATI PEM representative to HYDROLOGY Wetland Hydrology Indicators: Secondary Indicators (minimum of two required) Primary Indicators (minimum of one is required; check all that apply) Surface Soll Cracks (B6) A Surface Water (A1) ____ Sparsely Vegetated Concave Surface (B8) True Aquatic Plants (B14) High Water Table (A2) Hydrogen Sulfide Odor (C1) Dralnage Patterns (B10) L Saturation (A3) Oxidized Rhizospheres on Living Roots (C3) Moss Trim Lines (B16) Water Marks (B1) Presence of Reduced Iron (C4) Dry-Season Water Table (C2) SedIment Deposits (B2) Recent Iron Reduction In Tilled Solis (C6) Crayfish Burrows (C8) Drift Deposits (B3) Thin Muck Surface (C7) Saturation Visible on Aerial Imagery (C9) Algal Mat or Crust (B4) Other (Explain In Remarks) Stunted or Stressed Plants (D1) Iron Deposits (B5) X Geomorphic Position (D2) Inundation Visible on Aerial Imagery (B7) Shallow Aquitard (D3) Water-Stained Leaves (B9) Microtopographic Relief (D4) X FAC-Neutral Test (D5) Aquatic Fauna (B13) Fleid Observations: No Depth (Inches): Surface Water Present? No No Depth (Inches):_____ Water Table Present? Saturation Present? Wetland Hydrology Present? Yes No _____ Depth (Inches):__ (Includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available: Remarks: Wetland hydrody indicators are AI, AZ, D7 4 DS

VEGETATION (Four Strata) – Use scientific names of plants.

Sampling Point: WOO (PEM)

Tree Stratum (Plot size: 20 × 30) % Cover Species? Status Number of Dominant Species That Are OBL, FACW, or FAC: 2	(A) (B) 272 (A/B) <u>Y:</u>
2. Total Number of Dominant 3. . 4. . 5. . 6. . 7. . 50% of total cover: 20% of total cover: 7. . Sapiling/Shrub Stratum (Plot size: . 1. Avsent 2. . 3. .	(B) 20 (A/B) V:
4.	9 2 (А/В) <u>У:</u>
6	<u>y:</u>
7	<u>v:</u>
	<u>y.</u>
50% of total cover: 20% of total cover: OBL species x1 = Sapling/Shrub Stratum (Plot size: 50% of total cover: FACW species x2 = 1. Ato Sector FAC species x3 = 2. FACU species x4 = 3. UPL species x5 =	
Sapling/Shrub Stratum (Plot size: 5×15) FACW species x2 = 1. Absent FAC species x3 = 2 FACU species x4 = 3 UPL species x5 =	
1. Grosent FAC species x3 = 2. FACU species x4 = 3. UPL species x5 =	
2 FACU species x 4 = 3. UPL species x 5 =	
3. UPL species x 5 =	
	(B)
4 (v)	(b)
5 Prevalence Index = B/A =	-
6 Hvdrophvtic Vegetation Indicators:	
7 1_ Danid Test for Hydrophytic Vegetatik	חר
9 2 - Dominance Test is >50%	
- Total Cover	
50% of total cover: 20% of total cover: 4 - Morphological Adaptations' (Provide	supporting
data In Remarks or on a separate sh	eet)
Hero Stratum (Piot Size:)	xplain)
1. Typha latitolia 10 to Col	
2. TUNY IS A PRISES Indicators of bydric soll and wetland bydroic	oav must
3. Epilopium coloratum 4 N FACW be present, unless disturbed or problematic.	
4. Vectores no offernition 2 N FAC Definitions of Four Vegetation Strata:	
5	
6 Tree – Woody plants, excluding vines, 3 in. (more in diameter at breast height (DBH), reg	(7.6 cm) or gardless of
o	
9 Sapling/Shrub – Woody plants, excluding v than 3 in. DBH and greater than or equal to m) tall.	'Inès, less 3.28 ft (1
11 Herb – All herbaceous (non-woody) plants, r	regardless
50% of total cover: 4% $\frac{10}{20\%}$ of total cover 20 of size, and woody plants less than 3.20 it ta	111.
Woody Vine Stratum (Plot size: 30x30) Woody vines greater than height.	3.28 ft In
2	
3	
4 Hydrophytic	
5 Vegetation	
= Total Cover Present? Yes X No	_
50% of total cover: 20% of total cover:	
Remarks: (Include photo numbers here or on a separate sheet.)	
transport as an intervent	
Wetland Voletarian is clamin	
U U	

SOIL

Sampling Point: WOOI (PEM)

Lindingal	Color (moist)	%	Color (moist)	% Features	Type ¹		Texture	Remarks
	10412211	90	101/24/10		<u> </u>	M		
ype: C=C ydric Soli _ Histosol _ Histic Ej _ Black Hi	oncentration, D=Dep Indicators: (A1) olpedon (A2) stic (A3)	letion, RM=Re	duced Matrix, M Dark Surface Polyvalue Be Thin Dark Su	S=Masked e (S7) elow Surfac urface (S9)	Sand Gra ce (S8) (N (MLRA 1	alns. ILRA 147, 47, 148)	² Location: PL=I Indicato 2 cm 148) Coa: (N	Pore Lining, M=Matrix. rs for Problematic Hydric Solis ³ : n Muck (A10) (MLRA 147) st Prairle Redox (A16) MLRA 147, 148)
 Hydroge Stratified 2 cm Mu Depleted Thick Da Sandy N MLR/ Sandy G Sandy R Stripped 	n Sulfide (A4) I Layers (A5) Ick (A10) (LRR N) I Below Dark Surface ark Surface (A12) Iucky Mineral (S1) (L A 147, 148) Bileyed Matrix (S4) Matrix (S6) Aver (If observed)	e (A11) _RR N,	Loamy Gleye Depleted Ma Redox Dark Depleted Da Redox Depre Iron-Mangan MLRA 13 Umbric Surfa Pledmont Flo Red Parent M	ed Matrix (I trix (F3) Surface (F rk Surface (F essions (FE esse Masse 6) ace (F13) (I podplain So Material (F2	⁻ 2) (F7) 3) es (F12) (MLRA 13 bills (F19) 21) (MLR	LRR N, 6, 122) (MLRA 14 A 127, 147	Pled (N Very Othe ³ Indica (8) wetian (7) unles:	mont Floodplain Solis (F19) /ILRA 136, 147) y Shallow Dark Surface (TF12) er (Explain in Remarks) tors of hydrophytic vegetation and nd hydrology must be present, s disturbed or problematic.
Type:			-				Hydric Soll Pr	esent? Ves X No
emarks:			-					
mee	ts Flo-	Redo	× clar	KSI	N FO	ace		

WETLAN	D DETERMINATION DA	TA FORM – Eastern	n Mountains and Pie	edmont Region
Project/Site: Dillo	Bottom Substan	TON City/County: M	od Two Rein	Out Sampling Date: 18/10
Applicant/Owner: AEP			State:	OH Sampling Point: WOOL-UPL
Investigator(s): DF7		Section, Townsh	p. Range: KOCO PL	ss
Landform (hillslope, terrace, etc	Flat KILIN	Local relief (concave	e, convex, none): NO	Slope (%):
Subregion (LRR or MLRA):	00 N Lat: 399	22119	Long: -80. 787	799 Datum: NAUR3
Soll Man Linit Name: THOOD	IN VERY CLAMPER	100m 0-890	SIODES NWICK	assification: NOVC
Are climatic / bydrologic condition	ons on the site typical for this tir	me of year? Ves	No (If no explain	In Remarks)
Are Venetation N Soil 1	V or Hydrology AL sign	lificantly disturbed?	Are *Normal Circumstan	cost present? Yes X No
Are Vegetation N. Soll 1	or Hydrology sign	rally problematic?	(If needed, evolain any a	nswers in Remarks)
	<u>C</u> , of Hydrology <u>ro</u> hat	ewing compling pr	int loostions, trans	este important festures eta
	55 – Allach sile map sh	owing sampling po		ects, important reatures, etc.
Hydrophytic Vegetation Prese Hydric Soll Present? Wetland Hydrology Present?	nt? Yes No Yes No Yes No	Is the Sar within a V	npled Area Vetland? Yes _	No_ <u>X</u>
Remarks:	0		1	
Upland darla	point tar	W001-1211-C	HI	
TOVADO	out a table and the	10		
l'aneri in pr	aintained bic			
HYDROLOGY				
Wetland Hydrology Indicato	rs:		Secondary I	Indicators (minimum of two required)
Primary Indicators (minimum o	of one is required; check all that	t apply)	Surface	e Soll Cracks (B6)
Surface Water (A1)	True Ac	Juatic Plants (B14)	Sparsel	ly Vegetated Concave Surface (B8)
High Water Table (A2)	Hydrog Ovidize	en Sullide Odor (CT) ad Phizospheres on Living	Poots (C3) Moss T	rim Lines (B16)
Water Marks (B1)	Presen	ce of Reduced Iron (C4)	Dry-Sea	ason Water Table (C2)
SedIment Deposits (B2)	Recent	Iron Reduction in Tilled S	Solls (C6) Crayfisl	h Burrows (C8)
Drlft Deposits (B3)	Thin Mu	uck Surface (C7)	Saturat	Ion Visible on Aerial Imagery (C9)
Algal Mat or Crust (B4)	Other (I	Explain in Remarks)	Stunted	I or Stressed Plants (D1)
Iron Deposits (B5)			Geomo	rphic Position (D2)
Inundation Visible on Aeri Water Stalped Leaves (P)	al Imagery (B7)		Shallow	Aquitard (D3)
Aquatic Fauna (B13)	")		EAC-Ne	eutral Test (D5)
Fleid Observations:				
Surface Water Present?	Yes No V Depth	(inches):		
Water Table Present?	Yes No Depth	(Inches):		
Saturation Present?	Yes No 🔬 Depth	(Inches):	Wetland Hydrology P	resent? Yes No 🖌
Describe Recorded Data (strea	am gauge, monitoring well, aer	lal photos, previous inspe	ctions), If available:	
Dec. de				
Remarks:				
NO primary	OK Scronda	iry metlar	a indicate	is observed
(1		

VEGETATION (Four Strata) – Use scientific names of plants.

Sampling Point: (200) - UPL

2012-1	Absolute Dominant Indicator	Dominance Test worksheet:
<u>Tree Stratum</u> (Plot size: <u>SOX SO</u>) 1. <u>Alosent</u>	<u>% Cover Specles? Status</u>	Number of Dominant Species That Are OBL, FACW, or FAC: (A)
2 3		Total Number of Dominant ((B)
4 5		Percent of Dominant Species That Are OBL, FACW, or FAC: (A/B)
6		Provalence Index worksheet:
7,		Total % Cover of: Multiply by:
	= Total Cover	
50% of total cover:	20% of total cover:	
Sapling/Shrub Stratum (Plot size: 15 X 15)		
1. HUSENT		
2		FACU species x 4 =
3		UPL species x 5 =
4		Column Totals: (A) (B)
5		Prevalence Index = B/A =
7	· ·	Hydrophytic Vegetation Indicators:
0		1 - Rapid Test for Hydrophytic Vegetation
8		2 - Dominance Test is >50%
9		3 - Prevalence Index Is ≤3.0 ¹
	= Total Cover	4 - Morphological Adaptations ¹ (Provide supporting
		data In Remarks or on a separate sheet)
Herb Stratum (Plot size:)	90 V FINAL	Problematic Hydrophytic Vegetation ¹ (Explain)
1. POR PROTENSIS	E PHUD	
2. Chechoma nelevacea	S W FACO	¹ Indicators of hydric soll and wetland hydrology must
3. Kumex acetosella	S_N PATCO	be present, unless disturbed or problematic.
4	<u> </u>	Definitions of Four Vegetation Strata:
5		
6		more in diameter at breast height (DBH), regardless of
7		height.
8		Sanling/Shrub - Woody plants excluding vines less
9		than 3 ln. DBH and greater than or equal to 3.28 ft (1
10		m) tall.
11		Herb – All herbaceous (non-woody) plants, regardless
and the second se	= Total Cover	of size, and woody plants less than 3.28 ft tall.
50% of total cover: <u>SC</u>	2 20% of total cover: 40	Woody vine – All woody vines greater than 3 28 ft in
Woody Vine Stratum (Plot size: 30x 30)		height.
2		
2		
F.		Hydrophytic
5	Tatal Causa	Present? Yes No X
50% of total cover:	20% of total cover:	
Remarks: (Include photo numbers here or on a separate	sheet.)	
Upland Vogetation is	Clominant	

SOIL

Sampling Point: WOOL -UPL

(Inches)	IVICITIA	Redux realules		
An a	Color (moist) %	<u>Color (molst)</u> <u>%</u> <u>Type¹</u> Loc ²		Remarks
0-3	10-12-113 100		Loam -	
		· · · · · · · · · · · · · · · · · · ·	-	
			i	
			2	
Type: C=Co	oncentration, D=Depletion, RN	1=Reduced Matrix, MS=Masked Sand Grains.	Location: PL=P	ore Lining, M=Matrix.
yaric Soll	Indicators:	Dark Surface (SZ)	2 cm	Muck (A10) (MI PA 147)
HISTOSOI HISTIC Fr	(AI) Dinedon (A2)	Polyvalue Below Surface (S8) (MLRA 14	7, 148) Coas	t Prairie Redox (A16)
Black HI	stic (A3)	Thin Dark Surface (S9) (MLRA 147, 148)	(M	LRA 147, 148)
Hydroge	en Sulfide (A4)	Loamy Gleyed Matrix (F2)	Pled	nont Floodplain Solis (F19)
Stratified	d Layers (A5)	Depleted Matrix (F3)	(M	LRA 136, 147)
2 cm Mu	ick (A10) (LRR N) d Rolow Dark Surface (A11)	Redox Dark Surface (F6)	very Othe	r (Explain in Remarks)
Thick Da	ark Surface (A12)	Redox Depressions (F8)		
Sandy N	lucky Mineral (S1) (LRR N,	Iron-Manganese Masses (F12) (LRR N,		
MLRA	A 147, 148)	MLRA 136)	2	
Sandy G	Gleyed Matrix (S4)	Umbric Surface (F13) (MLRA 136, 122)	°Indicat	ors of hydrophytic vegetation and
Sandy R	Redox (S5)	Pledmont Floodplain Solis (F19) (MLRA Bod Paropt Material (E21) (MI DA 127 1	148) wettar 47) unless	d hydrology must be present,
Surpped	Laver (If observed):			
Type:	Vaue			
Type:	ches):	-	Hydric Soli Pre	esent? Yes No 🗶
Type: Depth (Ind }emarks:	ches): 3		Hydric Soli Pro	esent? Yes <u>No X</u>
Type: Depth (Inc ≷emarks:	ches): 3		Hydric Soll Pro	esent? Yes <u>No X</u>
Type: Depth (Inc Remarks:	ches): 3"		Hydric Soll Pro	esent? Yes <u>No X</u>
Type: Depth (Ind Remarks:	n Myclice E	-0:15.	Hydric Soll Pro	esent? Yes <u>No X</u>
Type: Depth (Inc Remarks:	n Myclice E	oils.	Hydric Soll Pro	esent? Yes <u>No X</u>
Type: 4 Depth (Inv Remarks:	have have Nycwic E	.oils.	Hydric Soll Pro	esent? Yes <u>No X</u>
Type: Depth (Inc Remarks: Noc	velly fill	below 3"	Hydric Soll Pro	esent? Yes <u>No X</u>
Type: A Depth (Inv Remarks: Nov Gra	velly fill	below 3"	Hydric Soll Pro	esent? Yes <u>No X</u>
Type: A Depth (Inv Remarks: Nov Groo	velly fill	below 3"	Hydric Soll Pro	esent? Yes <u>No X</u>
Type: A Depth (Inv temarks: Noc Gra	velly fill	below 3"	Hydric Soll Pro	esent? Yes <u>No X</u>
Type: A Depth (Inv Remarks: Nov Groo	velly fill	below 3"	Hydric Soll Pro	esent? Yes <u>No X</u>
Type: A Depth (Inv temarks: Nov Gro	velly fill	below 3"	Hydric Soll Pro	esent? Yes <u>No X</u>
Type: A Depth (Inv Remarks: Nov Grad	n Myclice E velly fill	below 3"	Hydric Soll Pro	esent? Yes <u>No X</u>
Type: A Depth (Inv Remarks: Nov Groo	velly fill	below 3"	Hydric Soll Pro	esent? Yes <u>No X</u>
Type: A Depth (Inv Remarks: Nov Gra	n Myclic E velly fill	below 3"	Hydric Soll Pro	esent? Yes <u>No X</u>
Type: A Depth (Inv Remarks: Nov Gra	n Myclic E Nelly Fill	below 3"	Hydric Soll Pro	esent? Yes <u>No X</u>
Type: A Depth (Inv Remarks: Nov Groo	velly fill	below 3"	Hydric Soll Pro	esent? Yes <u>No X</u>
Type: A Depth (Inv Remarks: Nov Groo	n Myclice E velly fill	oils. Delow 3"	Hydric Soli Pro	esent? Yes <u>No X</u>
Type: A Depth (Inv temarks: Nov Gra	n Myclice E Nelly Fill	oils. Delow 3"	Hydric Soll Pro	esent? Yes <u>No X</u>
Type: A Depth (Inv remarks: Nov Gra	n Myclic E velly fill	oils. Delow 3"	Hydric Soll Pro	esent? Yes <u>No X</u>

1

WETLAND DETERMINATION DATA FORM – Eastern Mountains and Piedmont Region Project/Site: Dilles Bottom Substation City/County: Mean Tuxe Belmont Co Sampling Date: 2818 State: OH Sampling Point: WOOZ (PEM) Applicant/Owner: AEV ____ Section, Township, Range: NO Prss Investigator(s): _______ Landform (hillslope, terrace, etc.): 22 Ditch Local relief (concave, convex, none): Cancave Slope (%): 290 Subregion (LRR or MLRA): LRR N Lat: 39.919973 Long: - 80.789299 Datum:NAD83 Soll Map Unit Name: It mannery bar 0-8% stopes NWI classification: NONO Are climatic / hydrologic conditions on the site typical for this time of year? Yes 🗶 No _____ (If no, explain in Remarks.) Are Vegetation N, Soll Y, or Hydrology N significantly disturbed? Are "Normal Circumstances" present? Yes 🔽 No Are Vegetation N, Soll N, or Hydrology N naturally problematic? (If needed, explain any answers in Remarks.) SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc. Hydrophytic Vegetation Present? Yes V No Is the Sampled Area V___ No___ Hydric Soll Present? Yes X No within a Wetland? Wetland Hydrology Present? Yes V. No____ Remarks: Taken within linear vesetated RR citics at base of embankment REM representative to WOOZ- PEM-CATI HYDROLOGY Wetland Hydrology Indicators: Secondary Indicators (minimum of two required) Primary Indicators (minimum of one is required; check all that apply) Surface Soll Cracks (B6) _____ Surface Water (A1) ____ Sparsely Vegetated Concave Surface (B8) ____ True Aquatic Plants (B14) High Water Table (A2) Drainage Patterns (B10) ____ Hydrogen Sulfide Odor (C1) V Saturation (A3) Oxidized Rhizospheres on Living Roots (C3) ____ Moss Trim Lines (B16) ____ Dry-Season Water Table (C2) Water Marks (B1) Presence of Reduced Iron (C4) SedIment Deposits (B2) ____ Recent Iron Reduction In Tilled Solls (C6) Crayfish Burrows (C8) ____ Saturation Visible on Aerial Imagery (C9) Drift Deposits (B3) ____ Thin Muck Surface (C7) Stunted or Stressed Plants (D1) Algal Mat or Crust (B4) Other (Explain in Remarks) $\underline{\mathcal{X}}$ Geomorphic Position (D2) Iron Deposits (B5) Inundation Visible on Aerial Imagery (B7) ____ Shallow Aquitard (D3) Microtopographic Relief (D4) Water-Stained Leaves (B9) FAC-Neutral Test (D5) Aquatic Fauna (B13) Fleid Observations: Yes X No Depth (Inches): Surface Water Present? Water Table Present? Yes _____ No X ____ Depth (Inches): Wetland Hydrology Present? Yes 🗶 No Yes V No Depth (Inches): Saturation Present? (Includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available: Remarks: Wetland hydrology indicators are AI, A3, DZ + DS

VEGETATION (Four Strata) – Use scientific names of plants.

Sampling Point (DOOZ (PEM)

The Share (51.1.1. 26,20')	Absolute Dominant Indicator	Dominance Test worksheet:
1. Hosent	<u>% Cover Specles? Status</u>	Number of Dominant Species That Are OBL, FACW, or FAC:(A)
2		Total Number of Dominant
		Species Across All Strata: (B)
5		Percent of Dominant Species That Are OBL, FACW, or FAC: 100% (A/B)
6		
7		Prevalence Index worksheet:
	= Total Cover	Total % Cover of: Multiply by:
50% of total cover:	20% of total cover:	OBL species x 1 =
Sapling/Shrub Stratum (Plot size: 15×15')		FACW species X 2 =
1. Hosent		FAC species x 3 =
2.		FACU species x 4 =
3		UPL species x 5 =
4.	<u> </u>	Column Totals: (A) (B)
5		Prevalence Index - B/A -
6		Hydrophytic Vegetation Indicators:
l		1 - Rapid Test for Hydrophytic Vegetation
8		X 2 - Dominance Test is >50%
9		3 - Prevalence Index Is < 3.01
	= Total Cover	5 - Norphological Adaptations ¹ (Provide supporting
50% of total cover:	20% of total cover:	data In Pomarks or on a congrate cheat)
Herb Stratum (Plot size: 5×5')		Droblometic Liverschittle Megetetter ¹ (Evelope)
1. Malaris armainacea	TS Y FACH	Problematic Hydrophytic Vegetation (Explain)
2. Vernonia novebora censis	S N FACW	
3. Cirsum arvense	3 N PACU	Indicators of hydric soll and wetland hydrology must
4. Andropoarn viranicus	Z N FACU	De present, unless disturbed of problematic.
5.		Definitions of Four vegetation Strata:
6		Tree - Woody plants, excluding vines, 3 In. (7.6 cm) or
7		more In diameter at breast height (DBH), regardless of
0		neight.
a		Sapling/Shrub - Woody plants, excluding vines, less
9		than 3 ln. DBH and greater than or equal to 3.28 ft (1
10	· · · · · · · · · · · · · · · · · · ·	
11,		Herb – All herbaceous (non-woody) plants, regardless
110	5 = Total Cover	of size, and woody plants less than 3.28 ft tall.
50% of total cover:	20% of total cover: T	Woody vine – All woody vines greater than 3.28 ft in
Woody Vine Stratum (Plot size: 30 V 30')		height.
1. 410 Sent		
2		
3		
4		Hudrophytic
5.		Vegetation
	= Total Cover	Present? Yes X No
50% of total cover:	20% of total cover:	t -
Remarks: (Include photo numbers here or on a separate	sheet)	
Presentation of on a separate		
In Alland in a	1	
WETLAND VORD-Extion is	Anni nant	

-	-	-	_
C	\mathbf{n}		
_			
-	-	٠	-

Sampling Point: WOO2(PEM)

Depth	Matrix		Redox	Features						
Inches)	Color (moist)	_%	Color (moist)	_%	Type	Loc ²	Texture		Remarks	
) - (0	10/12 -12	95	10-142-40	0	C	m	LOav	n	_	
										_
			-	_			-		_	
									_	
ype: C=C	oncentration, D=Depl	etion, RM=	Reduced Matrix, MS	=Masked	Sand Gra	Ins.	² Location: I	PL=Pore Lin	ing, M=Matrb	(.
ydric Soll	Indicators:		D 1 0.1	(07)			Indic	ators for P	roblematic H	lydric Solls*:
HISTOSOI HISTIC Fr	(AI) Nedon (A2)		Dark Surface	(S7) ow Surfac	e (S8) (M	I RA 147	148)	2 CM MUCK (Coast Prairie	A10) (MLRA Pedox (A16	14 <i>1</i>)
Black HI	stic (A3)		Thin Dark Sur	face (S9)	(MLRA 1	47, 148)		(MLRA 14	17, 148)	·/
_ Hydroge	n Sulfide (A4)		Loamy Gleyed	d Matrix (F	2)			Pledmont Fl	oodplain Solls	s (F19)
Stratified	Layers (A5)		Depleted Matr	ix (F3) urface (E4	5)		,	(MLRA 13	36, 147) v Dark Surfac	o (TE12)
2 cm wid	Below Dark Surface	(A11)	Depleted Dark	Surface	ッ (F7)		—	Other (Expla	in in Remark	s)
Thick Da	irk Surface (A12)	. ,	Redox Depres	slons (F8)		_	•••		
_ Sandy N	lucky Mineral (S1) (L	RR N,	Iron-Mangane	se Masse	s (F12) (l	.RR Ń,				
Sandy G	ileved Matrix (S4)		MLKA 136 Umbric Surfac) :e(F13)(N	ALRA 13	5, 122)	³ In	dicators of h	vdrophytic ve	enetation and
_ Sandy R	edox (S5)		Pledmont Floo	dplain So	lls (F19)	(MLRA 14	18) w	etland hydro	ology must be	e present,
_ Stripped	Matrix (S6)	_	Red Parent M	aterial (F2	1) (MLR/	127, 14 7	7) u	nless disturb	ed or probler	natic.
Turner	ayer (if observed):	54								
Depth (Inc	thes): 10 ⁺		-				Hydric Sol	l Present?	Ves V	No
emarks:		_							100_0_	
NOD	AS TI	Ded			~ (-				
ITTE	ers to-	Kell	ox Dar	K	SUG	race				

WETLAND DETERMINATION DATA FORM – Eastern Mountains and Piedmont Region

Project/Site: Dilles Bottom substation city/co	unty: Mend Twop Belmont Osampling Date: 2/8/18
Applicant/Owner:	State: OH Sampling Point: WOO2-UPL
Investigator(s): REZ Section	n, Township, Range: NO PLSS
Landform (hillslope, terrace, etc.): Flott Jawn Local relie	f (concave, convex, none): Nane Slope (%):
Subregion (LRR or MLRA): LRE N Lat: 391, 92052	Long: <u>-80 791270</u> Datum: <u>NAD83</u>
Soll Map Unit Name: Hmann Very channery loar	m 0-890 Slues NWI classification: None
Are climatic / hydrologic conditions on the site typical for this time of year? Ye	s K No (If no, explain in Remarks.)
Are Vegetation \mathbb{N} , Soli \mathbb{N} , or Hydrology \mathbb{N} significantly disturb	ed? Are "Normal Circumstances" present? Yes X No
Are Vegetation W. Soli W or Hydrology N paturally problemat	Ic? (If needed, explain any answers in Remarks)
SUMMARY OF FINDINGS – Attach site map showing sample	pling point locations, transects, important features, etc.
Hydrophytic Vegetation Present? Yes No Hydric Soll Present? Yes No Wetland Hydrology Present? Yes No	Is the Sampled Area within a Wetland? Yes No
Remarks:	
Taken within edge of lawn.	area, upside of wooz-PENLERTI
HYDROLOGY	
Wetland Hydrology Indicators:	Secondary Indicators (minimum of two required)
Primary indicators (minimum of one is required; check all that apply)	Surface Soll Cracks (B6)
Surface Water (A1) True Aquatic Plants (B	14) Sparsely Vegetated Concave Surface (B8)
High Water Table (A2) Hydrogen Sulfide Odor	(C1) DraInage Patterns (B10)
Saturation (A3)Oxidized Rhizospheres	is on Living Roots (C3) Moss Trim Lines (B16)
Water Marks (B1) Presence of Reduced	ron (C4) Dry-Season Water Table (C2)
Drtft Deposits (B3)	() Saturation Visible on Aerial Imagery (C0)
Algal Mat or Crust (B4) Other (Explain In Rema	arks) Stunted or Stressed Plants (D1)
Iron Deposits (B5)	Geomorphic Position (D2)
Inundation Visible on Aerial Imagery (B7)	Shallow Aquitard (D3)
Water-Stained Leaves (B9)	Microtopographic Relief (D4)
Aquatic Fauna (B13)	FAC-Neutral Test (D5)
Field Observations:	
Surface Water Present? Yes No X Depth (Inches):	
Water Table Present? Yes No X Depth (Inches):	
Saturation Present? Yes <u>No X</u> Depth (inches):	Wetland Hydrology Present? Yes No
Describe Recorded Data (stream gauge, monitoring well, aerial photos, previ	ous inspections), if available:
Remarks:	
NO primary or secondary	wetland hydrology indicutors
NOVE NOTAL	•
WE'L OWSERVED	

VEGETATION (Four Strata) – Use scientific names of plants.

Sampling Point: WOO2-UPL

2012.1	Absolute	Dominan	t Indicator	Dominance Test worksheet:
1. Plex new und o	<u>% Cover</u>	Species	PAC	Number of Dominant Species That Are OBL, FACW, or FAC: (A)
2. Rhus typhina #	30	4	DPL	Total Number of Dominant
4			\equiv	Percent of Dominant Species
5				That Are OBL, FACW, or FAC: <u>1070</u> (A/B)
7		-		Prevalence index worksheet:
<i>n</i> .	40	= Total Co	ver	Total % Cover of: Multiply by:
50% of total cover: 20	20% of	total cove	r: 8	OBL species x 1 =
Sapling/Shrub Stratum (Plot size: 15×15)				FACW species $\frac{10}{10}$ x 2 = $\frac{70}{10}$
1. Dhytolacca americana	5	N	FALU	FAC species $50 \times 3 = 150$
2. Acer negundo	30	N	FAC	FACU species $x = 340$
3. 12050 MUSHiflora	10	N	FACU	UPL species $5 = 50$
4. Ulmus rubra	_10_	N	FACIN	Column Totals: $(+,5)$ (A) $(+,0)$ (B)
6		-		Prevalence Index = $B/A = 5.777$
7.	-			Hydrophytic Vegetation Indicators:
8.				1 - Rapid Test for Hydrophytic Vegetation
9.				2 - Dominance Test is >50%
	55	= Total Co	ver	3 - Prevalence Index Is ≤3.0°
, 50% of total cover:	20% of	total cove	n	4 - Morphological Adaptations (Provide Supporting
Herb Stratum (Plot size: 5 X 5')			-	Droblomatic Hydrophytic Vogotation ¹ (Evolution)
1. Rumer crispus	5	N	FAC	
2. Verbesina alternitolia	5	N	FAL	¹ Indicators of hydric soil and wetland hydrology must
3. Anavopogon virginicus	20	4	FACO	be present, unless disturbed or problematic.
4. Laraxacun officinale	10	-14	PACY	Definitions of Four Vegetation Strata:
5. Glechoma Negeracea	10	-10	TACD	Tree – Woody plants, excluding vines, 3 in (7.6 cm) or
6. TO a pratensio	50	<u> </u>	TACU	more in diameter at breast height (DBH), regardless of height.
8		à		Sapling/Shrub - Woody plants, excluding vines, less
9		-		than 3 In. DBH and greater than or equal to 3.28 ft (1
10				
	03	= Total Co	ver	Herb – All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall.
50% of total cover: 40	20% of	total cove	01.1	Weady view All woody views grapter than 2.20.6 In
Woody Vine Stratum (Plot size: 30 × 30)				helght.
1. Absent				
2	·	-		
3		-		
4				Hydrophytic
5		-		Vegetation
50% of total covor	20% of	= Total Co	ver	
Domarks: (Include photo numbers here or on a separate s	20 /0 U	Iolai cove		
* Not listed in plant	list	- 0	ssig	nel UPL indicator
upland vegetation	is de	smir	lant	

SOIL

Sampling Point: 10002-UR

Bopar	Matrix	Redox Features		
(Inches)	Color (moist) %	Color (molst) <u>%</u> Type ¹ Lo	oc ² Texture	Remarks
0-7	10 412 13 10		Loan	1
			_	
			_	
			_	
Type: C=Co	ncentration, D=Depletion, R	M=Reduced Matrix, MS=Masked Sand Grains.	² Location: P	L=Pore Lining, M=Matrix.
ydric Soll li	ndicators:	Dark Surface (SZ)	Indica	ators for Problematic Hydric Solis":
Histic Ep	pedon (A2)	Polyvalue Below Surface (S8) (MLR/	4 147, 148)	Coast Prairie Redox (A16)
Black His	tic (A3)	Thin Dark Surface (S9) (MLRA 147,	148)	(MLRA 147, 148)
Hydroger	Sulfide (A4)	Loamy Gleyed Matrix (F2)	F	Pledmont Floodplain Solls (F19)
2 cm Muc	Layers (A5) :k (A10) (LRR N)	Redox Dark Surface (F6)	v	Very Shallow Dark Surface (TF12)
Depleted	Below Dark Surface (A11)	Depleted Dark Surface (F7)		other (Explain in Remarks)
_ Thick Da	k Surface (A12)	Redox Depressions (F8)		
Sandy Mi MLRA	JCKy Mineral (S1) (LRR N, 147, 148)	Iron-Manganese Masses (F12) (LRR MLRA 136)	N,	
Sandy GI	eyed Matrix (S4)	Umbric Surface (F13) (MLRA 136, 12	22) ³ Ind	licators of hydrophytic vegetation and
_ Sandy Re	edox (S5)	Pledmont Floodplain Solis (F19) (ML	RA 148) we	atland hydrology must be present,
Stripped	Matrix (S6) aver (if observed):	Red Parent Material (F21) (MLRA 12	(7, 147) un	less disturbed or problematic.
Type:	Iravel Fill			
Depth (Incl	nes): 4 "		Hydric Sol	Present? Yes No
emarks:				
FC 1				
No	n Nydric	soils		
No	n Nydric	soils		
No	n hydric	Soils		
No	n Nydric	Soils		
No	n hydric	Soils		
No	n hydric	Soils		
No	n Nydric	Soils		
No	n Nydric	Soils		
No	n Nydric	Soils		
No	n Nydric	Soils		
No	n Nydric	Soils		
No	n Nydric	Soils		
No	n Nydric	Soils		
No	n Nydric	Soils		
Nor	n Nydric	Soils		
No	n Nydric	Soils		

APPENDIX C Primary Headwater Habitat Evaluation (HHEI) Data Forms

C170352.34, Task 001 / March 2018

TE NAME/LOCATION ENGTH OF STREAM F ATE 2 8 18 NOTE: Complete A	SITE NUMBER SITE NUMBER EACH (ft) 700 SCORER 2E7	LAT. <u>29.9</u> COI	RIVER BA	100 SIN <u>OVI O</u> IG: <u>80-191265</u> RI DH-REZ-D Iluation Manual fo	VER CODE 12 7 Ohio's PHV	AINAGE AREA (mi²) RIVER MILE VH Streams" for Instru	Jctions
TREAM CHANNEL		ATURAL CHA	NNEL AR		COVERING	RECENT OR NO RECO	VERY
SUBSTRATE (E (Max of 32). Add TYPE BLDR SLAE BOULDER (BEDROCK BEDROCK COBBLE (64 A) GRAVEL (2 SAND (<2 m Total of P	Estimate percent of e d total number of signit S [16 pts] >256 mm) [16 pts] [16 pt] 5-256 mm) [12 pts] 64 mm) [9 pts] am) [6 pts] ercentages of des Cobble Bodrack	PERCENT	ubstrate pres types found TYPE	ent. Check ONLY two (Max of 8). Final metri SILT [3 pt] LEAF PACK/WOOD FINE DETRITUS [3 CLAY or HARDPAN MUCK [0 pts] ARTIFICIAL [3 pts]	y predominant : c score is sum Y DEBRIS [3 p pts] [0 pt]	substrate TYPE boxes of boxes A & B. PERCENT 2 C> ts] (B) 2	HHE Metr Poin Substr Max = 5 A + B
Maximum Pool evaluation. Avoi > 30 centimeters > 22.5 - 30 cm [> 10 - 22.5 cm [COMMENTS	PREDOMINATE SUE Depth (Measure the d plunge pools from ro [20 pts] 30 pts] 25 pts]	maximum poo	ES:	TOTAL NUMBI in the 61 meter (200 ipes) (Check ONL) > 5 cm - 10 cm [15 < 5 cm [5 pts] NO WATER OR M MAXIMUM F	ER OF SUBST ft) evaluation ra fone box): pts] OIST CHANNE POOL DEPTH	RATE TYPES:	Pool De Max = 25
BANK FULL W > 4.0 meters (> 13 > 3.0 m - 4.0 m (> 1.5 m - 3.0 m (COMMENTS	DTH (Measured as th) [30 pts] > 9' 7" - 13') [25 pts] > 9' 7" - 4' 8") [20 pts] 3' (()	e average of :	3-4 measure	nents) (Che > 1.0 m - 1.5 m (> 3 ≤ 1.0 m (≤ 3'3") [5 	ck <i>ONLY</i> one 3' 3" - 4' 8") [15 p ts] BANKFULL WI	box): pts] DTH (meters)	Bankf Widtl Max=3 20
RIPARIA RIPAR L R (Per I Wide Mode Mode	AN ZONE AND FLOOD IAN WIDTH Bank) >10m rate 5-10m w <5m		nformation n ITY ☆NN LAIN QUALIT (Most Predo Mature Fore Immature Fore Field Residential, Fenced Pas	nust also be complet DTE: River Left (L) and Minant per Bank) st, Wetland orest, Shrub or Old Park, New Field ture	ed d Right (R) as I C C C C C C C C C C C C C C C C C C C	ooking downstream☆ Conservation Tillage Urban or Industrial Open Pasture, Row Crop Mining or Construction	
FLOW R Stream F Subsurfa COMME	EGIME (At Time of En lowing 2e flow with isolated po NTS	valuation) (Ch pols (Interstitia	neck ONLY oi I)	ne box); Moist Char Dry channe	inel, isolated p I, no water (E	ools, no flow (Intermittent) ohemeral)	
SINUOS None	ITY (Number of bends	per 61 m (200 1.0) ft) of channe	(Check ONLY one 2.0 2.5	e box):	3.0	

Ostobor	24	2002	Douteior
October	24,	2002	Revision

	(If Yes, Attach Completed QHEI Form)
DOWNSTREAM DESIGNATED USE(S)	Distance from Evaluated Stream (950
CWH Name:	Distance from Evaluated Stream
EWH Name:	Distance from Evaluated Stream
MAPPING: ATTACH COPIES OF MAPS, INCLUDING THE ENTI	RE WATERSHED AREA. CLEARLY MARK THE SITE LOCATION
USGS Quadrangle Name: BUSS in ess burg, OH	NRCS Soil Map Page: NRCS Soil Map Stream Order
County: Belmant CO. Townsh	ip/City: Meach Two
MISCELLANEOUS	
Base Flow Conditions? (Y/N): Date of last precipitation:2	7/18 Quantity: 0.57
Photograph Information:	
Elevated Turbidity? (Y/N): Canopy (% open):	>
Were samples collected for water chemistry? (Y/N): (Note lab s	sample no. or id. and attach results) Lab Number
Field Measures: Temp (°C) Dissolved Oxygen (mg/l)	pH (S.U.) Conductivity (µmhos/cm)
Is the sampling reach representative of the stream (Y/N) / If not, p	lease explain:
Additional comments/description of pollution impacts:	
Performed? (Y/N):	collections optional. NOTE: all voucher samples must be labeled with the sisheets from the Primary Headwater Habitat Assessment Manual) served? (Y/N) <u>M</u> Voucher? (Y/N) <u>M</u> Voucher? (Y/N) <u>N</u> Wacroinvertebrates Observed? (Y/N) <u>V</u> Voucher? (Y/N) <u>N</u>
DRAWING AND NARRATIVE DESCRIPTION	OF STREAM REACH (This <u>must</u> be completed):
DRAWING AND NARRATIVE DESCRIPTION	OF STREAM REACH (This <u>must</u> be completed): site evaluation and a narrative description of the stream's location
DRAWING AND NARRATIVE DESCRIPTION	OF STREAM REACH (This <u>must</u> be completed): site evaluation and a narrative description of the stream's location
DRAWING AND NARRATIVE DESCRIPTION	OF STREAM REACH (This <u>must</u> be completed): site evaluation and a narrative description of the stream's location
DRAWING AND NARRATIVE DESCRIPTION Include Important landmarks and other features of Interest for Uard	OF STREAM REACH (This <u>must</u> be completed): site evaluation and a narrative description of the stream's location
DRAWING AND NARRATIVE DESCRIPTION Include Important landmarks and other features of Interest for Under Standard	OF STREAM REACH (This must be completed): site evaluation and a narrative description of the stream's location
DRAWING AND NARRATIVE DESCRIPTION Include Important landmarks and other features of Interest for Yard	OF STREAM REACH (This must be completed): site evaluation and a narrative description of the stream's location
DRAWING AND NARRATIVE DESCRIPTION Include Important landmarks and other features of Interest for Yard	OF STREAM REACH (This must be completed): site evaluation and a narrative description of the stream's location
DRAWING AND NARRATIVE DESCRIPTION Include Important landmarks and other features of Interest for Yard	OF STREAM REACH (This <u>must</u> be completed): site evaluation and a narrative description of the stream's location
DRAWING AND NARRATIVE DESCRIPTION Include Important landmarks and other features of Interest for Yard	OF STREAM REACH (This <u>must</u> be completed): site evaluation and a narrative description of the stream's location
DRAWING AND NARRATIVE DESCRIPTION Include Important landmarks and other features of Interest for Yard	OF STREAM REACH (This <u>must</u> be completed): site evaluation and a narrative description of the stream's location
DRAWING AND NARRATIVE DESCRIPTION Include Important landmarks and other features of Interest for Yard	OF STREAM REACH (This <u>must</u> be completed): site evaluation and a narrative description of the stream's location
DRAWING AND NARRATIVE DESCRIPTION Include Important landmarks and other features of Interest for Yard	OF STREAM REACH (This <u>must</u> be completed): site evaluation and a narrative description of the stream's location

October 24, 2002 Revision

APPENDIX D Ohio Rapid Assessment Method for Wetlands (ORAM) Data Forms

C170352.34, Task 001 / March 2018

End of Quantitative Rating. Complete Categorization Worksheets.

End of Quantitative Rating. Complete Categorization Worksheets.

and of highest quality

APPENDIX E ODNR and USFWS Correspondence

C170352.34, Task 001 / March 2018

gai consultants

Canton Office 3720 Dressler Road Northwest Canton, Ohio 44718

January 16, 2018 Project C170352.34

Environmental Review Staff Ohio Department of Natural Resources Division of Wildlife - Ohio Natural Heritage Program 2045 Morse Road, Building G-3 Columbus, Ohio 43229-6693

American Electric Power Dilles Bottom Substation Project Request for Technical Assistance Regarding Threatened and Endangered Species and Critical Habitat Belmont County, Ohio

Dear Staff:

GAI Consultants, Inc. (GAI), on behalf of American Electric Power (AEP), is requesting information regarding state- and federally-listed threatened and endangered species in the vicinity of the Dilles Bottom Substation Project (Project) in Belmont County, Ohio. As part of this request, please provide information specific to any threatened and endangered bats. GAI is also requesting the locations of any known golden or bald eagle nests in the area.

The proposed Project involves the upgrade and expansion of the existing Dilles Bottom Substation.

The study area for the Project is shown on the attached map (Figure 1). The study area consists of an open field which is directly adjacent to a state highway and is surrounded by residential properties. Project shapefiles have been included to aid in your review.

GAI and AEP thank you in advance for your assistance. Please contact me at 330.324.9148 or via email at a.wheaton@gaiconsultants.com if you have any questions or require further information.

Sincerely, GAI Consultants, Inc.

Allison R. Wheaton, WPIT Senior Project Environmental Specialist

ARW/kea

Attachments: Attachment 1 (Project Location Map) Project Shapefiles January 16, 2018 Project C170352.34

ATTACHMENT 1

PROJECT LOCATION MAP

gaiconsultants.com

From:susan_zimmermann@fws.govon behalf of Ohio, FW3To:Allison WheatonSubject:GAI C170352.34, AEP Dilles Bottom Substation, Belmont Co., OHDate:Wednesday, February 14, 2018 11:09:33 AMAttachments:Capture of Dan.PNG

UNITED STATES DEPARTMENT OF THE INTERIOR U.S. Fish and Wildlife Service Ecological Services Office 4625 Morse Road, Suite 104 Columbus, Ohio 43230 (614) 416-8993 / Fax (614) 416-8994

TAILS# 03E15000-2018-TA-0546

Dear Ms. Wheaton,

We have received your recent correspondence requesting information about the subject proposal. There are no Federal wilderness areas, wildlife refuges or designated critical habitat within the vicinity of the project area.

FEDERALLY LISTED, PROPOSED, AND CANDIDATE SPECIES COMMENTS: Due to the project, type, size, and location, we do not anticipate adverse effects to federally endangered, threatened, proposed, or candidate species. Should the project design change, or during the term of this action, additional information on listed or proposed species or their critical habitat become available, or if new information reveals effects of the action that were not previously considered, consultation with the U.S. Fish and Wildlife Service should be initiated to assess any potential impacts.

If you have questions, or if we can be of further assistance in this matter, please contact our office at (614) 416-8993 or <u>ohio@fws.gov</u>.

Sincerely,

Dan Everson Field Office Supervisor

Canton Office 3720 Dressler Road Northwest Canton, Ohio 44718 T 330.433.2680F 330.433.2694

January 16, 2018 Project C170352.34

Mr. Dan Everson United States Fish and Wildlife Service Ohio Ecological Services Field Office 4625 Morse Road, Suite 104 Columbus, Ohio 43230

American Electric Power Dilles Bottom Substation Project Request for Technical Assistance Regarding Threatened and Endangered Species and Critical Habitat Belmont County, Ohio

Dear Mr. Everson:

GAI Consultants, Inc. (GAI), on behalf of American Electric Power (AEP), is requesting information regarding state- and federally-listed threatened and endangered species in the vicinity of the Dilles Bottom Substation Project (Project) in Belmont County, Ohio. As part of this request, please provide information specific to any threatened and endangered bats. GAI is also requesting the locations of any known golden or bald eagle nests in the area.

The proposed Project involves the upgrade and expansion of the existing Dilles Bottom Substation.

The study area for the Project is shown on the attached map (Figure 1). The study area consists of an open field which is directly adjacent to a state highway and is surrounded by residential properties. Project shapefiles have been included to aid in your review.

GAI and AEP thank you in advance for your assistance. Please contact me at 330.324.9148 or via email at a.wheaton@gaiconsultants.com if you have any questions or require further information.

Sincerely, GAI Consultants, Inc.

Allison R. Wheaton, WPIT Senior Project Environmental Specialist

ARW/kea

Attachments: Attachment 1 (Project Location Map) Project Shapefiles January 16, 2018 Project C170352.34

ATTACHMENT 1

PROJECT LOCATION MAP

gaiconsultants.com

gaiconsultants.com | transforming ideas into reality.

Ecological Survey Report

AEP Ohio Transmission Company George Washington – Dilles Bottom 138kV Line Rebuild Project Belmont County, Ohio

GAI Project Number: C170352.33, Task 001

March 2018

BOUNDLESS ENERGY"

Prepared for: American Electric Power Service Corporation 1 Riverside Place 22nd Floor Columbus, Ohio 43215-2373

Prepared by: GAI Consultants, Inc. Canton Office 3720 Dressler Road Northwest Canton, Ohio 15120-2700

Ecological Survey Report

AEP Ohio Transmission Company George Washington – Dilles Bottom 138kV Line Rebuild Project Belmont County, Ohio

GAI Project Number: C170352.33, Task 001

March 2018

Prepared for: American Electric Power Service Corporation 1 Riverside Place 22nd Floor Columbus, Ohio 43215-2373

> Prepared by: GAI Consultants, Inc. Canton Office 3720 Dressler Road Northwest Canton, Ohio 15120-2700

> > **Report Authors:**

George T. Reese, MS, CE Environmental Director

Allison R. Wheaton, WPIT Senior Project Environmental Specialist

Table of Contents

1.0	Introd	uction1			
2.0	Metho	ds1			
	21	Wetlands 1			
	_	2.1.1 Preliminary Data Gathering			
		2.1.2 Onsite Inspection			
	2.2 Waterbodies				
		2.2.1 Preliminary Data Gathering			
		2.2.2 Onsite Inspection			
	2.3	Rare, Threatened, and Endangered Species4			
		2.3.1 Preliminary Data Gathering4			
		2.3.2 Onsite Inspection			
3.0	Result	Results4			
	3.1	Wetlands4			
		3.1.1 Preliminary Data Gathering4			
		3.1.2 Onsite Inspection			
		3.1.3 Regulatory Discussion			
	3.2	Waterbodies			
		3.2.1 Preliminary Data Gathering5			
		3.2.2 Unsite Inspection			
	2.2	3.2.3 Regulatory Discussion			
	3.3	2.2.1 Proliminary Data Cathoring			
		3.3.2 Onsite Inspection 6			
		3.3.2 Onsite inspection			
1.0	Const				
4.0	Conclusions7				
5.0	Refere	ences			
Table	1	Wetlands Identified Within the Project Study Area			
Table 2 Waterbodies Identified Within the		Waterbodies Identified Within the Project Study Area			
Table	3	ODNR and LISEWS RTE Species and Critical Habitat Review Results			
Table	U				
Figure 1 Pro		Project Location Map			
Figure 2 Res		Resource Location Map			
Figure 3 Stream Eligibility Map		Stream Eligibility Map			
Apper	ndix A	Photographs			
Appondix P		Wetland Determination Data Forms			
Appendix B V		Wettand Determination Data Forms			
Appendix C Primary Head		Primary Headwater Habitat Evaluation (HHEI) Data Forms			
Apper	ndix D	Ohio Rapid Assessment Method for Wetlands (ORAM) Data Forms			
Apper	ndix E	ODNR and USFWS Correspondence			

© 2018 GAI CONSULTANTS

1.0 Introduction

GAI Consultants, Inc. (GAI), on behalf of American Electric Power Ohio Transmission Company (AEP), completed an ecological survey for the George Washington – Dilles Bottom 138kV Line Rebuild Project (Project) located in Belmont County, Ohio (OH). The Project involves the rebuild and upgrade of approximately 0.2 mile of the existing 69 kilovolt (kV) transmission line to a 138 kV transmission line.

The ecological survey was conducted on February 8, 2018. The Project study area consisted of a 500foot-wide corridor centered along the proposed transmission line and a 50-foot-wide corridor centered along the potential access routes, as shown on Figure 1.

The Project study area is located within the Pipe Creek – Ohio River (United States Geological Survey [USGS] Hydrologic Unit Code [HUC] #050301061207) watershed.

This report details the results of the ecological survey regarding the existence of aquatic resources within the Project area (Figure 2). The United States Army Corps of Engineers (USACE) Wetland Determination Data Forms are provided in Appendix B. Ohio Environmental Protection Agency (OEPA) Primary Headwater Habitat Evaluation (HHEI) Data Forms are provided in Appendix C and Ohio Rapid Assessment Method for Wetlands (ORAM) Data Forms are provided in Appendix D.

2.0 Methods

2.1 Wetlands

The 1987 USACE *Corps of Engineers Wetlands Delineation Manual* (Wetlands Delineation Manual) (USACE, 1987) and the 2012 *Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Eastern Mountains and Piedmont Region, Version 2.0* (Regional Supplement) (USACE, 2012) describe the methods used to identify and delineate wetlands that fall under the jurisdiction of the USACE. This approach recognizes the three parameters of wetland hydrology, hydrophytic vegetation, and hydric soils to identify and delineate wetland boundaries. In accordance with the Wetlands Delineation Manual and Regional Supplement, GAI completed preliminary data gathering and an onsite inspection.

2.1.1 Preliminary Data Gathering

The preliminary data gathering was used to compile and review information that may be helpful in identifying wetlands and/or areas that warrant further inspection during the investigation. The preliminary data gathering included a review of the following:

- USGS 7.5-minute topographic mapping for Businessburg (USGS, 1978) OH and Moundsville (USGS 1977) West Virginia (Figure 1);
- United States Fish and Wildlife Service (USFWS), National Wetlands Inventory (NWI) mapping (USFWS, 2017) (Figure 2);
- Federal Emergency Management Agency (FEMA), National Flood Hazard Layer (FEMA, 2015) (Figure 2); and
- United States Department of Agriculture, Natural Resources Conservation Service (USDA-NRCS, 2017) soil mapping (Figure 2).

Topographic mapping was used to identify mapped streams and the overall shape of the landscape in the Project area to determine potential locations for wetlands, such as floodplains and depressions. NWI mapping was used to determine locations where probable wetlands are located based on infrared photography. Soil mapping was reviewed to determine the location and extent of mapped hydric soils that have a high probability of containing wetlands.

2.1.2 Onsite Inspection

The methodology described in the Regional Supplement identifies areas meeting the definition of a wetland by evaluating three parameters: hydrology, vegetation, and soil. During the onsite inspection, GAI staff traversed the Project study area on foot to determine if any indicators of wetlands were present. When indicators of wetlands were observed, an observation point was established, and a Wetland Determination Data Form (Data Form) was completed to determine if all three wetland indicators were present.

The presence of wetland hydrology was determined by examining the observation point for primary and secondary indicators of wetland hydrology. The presence of any primary indicator signified the presence of wetland hydrology, or the presence of two or more secondary indicators signified the presence of wetland hydrology.

Vegetation was characterized by four different strata. This included trees (woody plants, excluding vines, three inches or more in diameter at breast height [DBH]), saplings/shrubs (woody plants, excluding vines, less than three inches DBH and greater than or equal to 3.28 feet tall), herbs (non-woody plants, regardless of size, and all other plants less than 3.28 feet tall), and woody vines (greater than 3.28 feet tall). In general, trees and woody vines were sampled within a thirty-foot (30') radius, saplings and shrubs were sampled within a fifteen-foot (15') radius, and herbs were sampled within a five-foot (5') radius.

When evaluating an area for the presence of hydrophytes, classification of the indicator status of vegetation was based on *The National Wetland Plant List: 2016 Update of Wetland Ratings* (Lichvar et al., 2016). The list of possible indicator statuses for plants is as follows:

- Obligate Wetland (OBL) Obligate Wetland plants occur in standing water or in saturated soils;
- Facultative Wetland (FACW) Facultative Wetland plants nearly always occur in areas of prolonged flooding or require standing water or saturated soils but may on rare occasions, occur in non-wetlands;
- Facultative (FAC) Facultative plants occur in a variety of habitats, including wetland and mesic to xeric non-wetland habitats but often occur in standing water or saturated soils;
- Facultative Upland (FACU) Facultative Upland plants typically occur in xeric or mesic non-wetland habitats but may frequently occur in standing water or saturated soils; and
- Obligate Upland (UPL) Obligate Upland plants almost never occur in water or saturated soils.

Presence of hydrophytic vegetation was determined by using a Rapid Test, Dominance Test or Prevalence Index (USACE, 2012). The Rapid Test finds a vegetation community to be hydrophytic if all dominant species are OBL or FACW. Hydrophytic vegetation was considered present based on the Dominance Test if more than 50 percent of dominant species are OBL, FACW, or FAC. The Prevalence Index weighs the total percent of vegetation cover based on the indicator status of each plant. Hydrophytic vegetation was considered prevalence Index is less than or equal to 3.0.

To determine the presence of hydric soils, soil data was collected by digging a minimum 16-inch-deep soil pit. The soil profile was studied and described, while possible hydric indicators were examined. Soil indicators described in the Wetlands Delineation Manual and Regional Supplement were used to determine the presence of hydric soils. The presence of any of these indicators signified a hydric soil.

If all three parameters including wetland hydrology, a dominance of hydrophytic vegetation, and hydric soils were identified at a single observation point, the area was determined to be a wetland. Once a wetland was identified, the boundary was delineated.

Wetland boundaries were determined by looking for locations in which one of the three wetland indicators would transition into an upland characteristic. When the transition was identified, a Data Form was completed in the Upland Area. Wetland boundaries were then marked in the field using pink flagging labeled "WETLAND DELINEATION." The locations of the flags were recorded using a Global Positioning System (GPS) unit. Each wetland was codified with a unique identifier indicating the feature type and number (e.g., W001).

Wetlands were then classified using the *Classification of Wetlands and Deepwater Habitats of the United States* (Cowardin et al., 1979) as modified for NWI Mapping Convention. This system classifies wetlands based on topographic position and vegetation type. Palustrine system wetlands found within the study area are classified as Palustrine Emergent (PEM), Palustrine Scrub-Shrub (PSS), Palustrine Forested (PFO), or Palustrine Unconsolidated Bottom (PUB) based on aerial coverage of the vegetative community across the extent of the wetland boundary (Cowardin et al., 1979).

2.2 Waterbodies

As with wetlands, Section 404 of the Clean Water Act (CWA) and state regulations protect waterbodies in OH. Generally, waterbodies are defined as environmental features that have defined beds and banks, an ordinary high water mark (OHWM), and contain flowing or standing water for at least a portion of the year.

2.2.1 Preliminary Data Gathering

During the preliminary data gathering, the USGS 7.5-minute topographic mapping was examined for the presence of mapped waterbodies including perennial and intermittent streams. In addition, the topographic mapping was used to identify areas likely to contain unmapped waterbodies including ephemeral streams (USGS, 1978 and 1977) (Figure 1).

The OEPA Stream Eligibility Web Map was used to determine eligibility coverage under the 401 Water Quality Certification (WQC) for the 2017 Nationwide Permits (NWPs). Furthermore, the map was used to identify any ineligible areas that may require a CWA Section 401 individual permit from the OEPA should stream impacts occur within the Project area (OEPA, 2017) (Figure 3).

2.2.2 Onsite Inspection

During the onsite inspection, GAI staff traversed the study area, concurrently with the wetland inspection, and waterbodies were identified. Waterbodies were identified based on the morphological and hydrologic characteristics of the channel and the presence of aquatic macroinvertebrates.

When a waterbody was identified, field measurements were collected. The measurements included top of bank width, top of bank depth, pool depth, water depth, OHWM width, and OHWM depth. A detailed description of substrate composition was also recorded. Waterbodies were then delineated using white flagging marked with the GAI stream code (e.g., S001). The tops-of-bank for streams wider than 10 feet were delineated and the centerline of smaller streams were delineated. The locations of the flags were recorded using a sub-meter capable hand-held GPS unit.

2.3 Rare, Threatened, and Endangered Species

GAI conducted a literature review of potential Rare, Threatened, and Endangered (RTE) species in the vicinity of the Project study area. Potential habitat for RTE species as a result of the literature review was noted during the ecological survey.

2.3.1 Preliminary Data Gathering

A request for review of the Ohio Natural Heritage Database (ONHD) was submitted to the Ohio Department of Natural Resources (ODNR) to determine if any state-listed Threatened or Endangered species occur within a one-mile radius of the Project area. A request was also submitted to the USFWS Ohio Ecological Services Field Office to determine if any federally-listed Threatened or Endangered species occur within the vicinity of the Project area.

2.3.2 Onsite Inspection

During the onsite inspection, GAI staff traversed the study area in conjunction with the wetland and waterbody inspections to determine if suitable habitat for state- and/or federally-listed RTE species are present within the study area.

3.0 Results

3.1 Wetlands

3.1.1 Preliminary Data Gathering

Desktop review of available USFWS NWI digital data for the Project revealed no NWI mapped wetlands located within the Project study area. (USFWS, 2017).

According to the USDA-NRCS soil mapping, a total of four (4) soil map units are located within the Project study area (Figure 2). None of the soil map units are classified as hydric and one (Nolin silt loam [No]) is known to contain hydric inclusions.

3.1.2 Onsite Inspection

One (1) PEM wetland was identified and delineated within the Project study area. In order to document site conditions, USACE Data Forms were completed for the wetland and upland reference. Information on the delineated wetland can be found in Table 1 and photographs of the wetland are included in Appendix A.

3.1.3 Regulatory Discussion

The USACE guidance divides waterbodies into three groups: Traditionally Navigable Waters (TNWs), non-navigable Relatively Permanent Waters (RPWs), and non-navigable Non-RPWs. TNWs are waterbodies which have been, are, or may be susceptible to use in interstate commerce, including recreational use of the waterbody. RPWs are waterbodies that flow year round, or at a minimum seasonally, by exhibiting continuous flow for at least three consecutive months, but are not TNWs (USACE, 2007). Non-RPWs are waterbodies that do not flow continuously for at least three consecutive months, are not TNWs or RPWs, but typically exhibit characteristic beds, banks, and OHWM (USACE, 2007).

The status of wetlands is determined partly based on the classification of the waterbody that the wetland is associated with, and the degree of that association. Wetlands that abut or are adjacent to TNWs are jurisdictional. Wetlands that abut RPWs are jurisdictional. Wetlands that abut or are adjacent to RPWs and wetlands that abut or are adjacent to Non-RPWs must be subjected to the Significant Nexus Test (SNT) to determine their jurisdictional status. Generally, the USACE considers wetlands that are isolated, meaning that they are not associated with any

other surface water feature, as non-jurisdictional; and wetlands that abut or are adjacent to Non-RPWs as needing further examination by the USACE to determine and verify whether they exhibit a significant nexus to waters of the United States. If these wetlands exhibit a significant nexus, they are jurisdictional; if not, they are not subject to USACE jurisdiction.

Wetlands that do not exhibit an association with any surface water are categorized as "isolated" under present USACE guidance and policy. These wetlands are regulated by the OEPA Division of Surface Water, and may require an Isolated Wetland Permit.

As regulated by Ohio Administrative Code (OAC) rules 3745-1-50 through 3745-1-54, wetlands were also evaluated using the ORAM to determine the appropriate wetland category. Any wetland score that fell within a gray zone between categories was scored one of two ways. Either the wetland was assigned to the higher of the two categories or it was assessed using a non-rapid method to determine its quality (Mack, 2001). The category assigned to a particular wetland determines the requirement, if any, for additional levels of protection administered by the OEPA.

The wetland within the Project study area was identified as jurisdictional. Jurisdictional status is the opinion of GAI and must be confirmed by USACE and state agencies through the Jurisdictional Determination (JD) process.

3.2 Waterbodies

3.2.1 Preliminary Data Gathering

Desktop review of the available USGS topographic mapping revealed one (1) previously mapped stream segment, the Ohio River, located within the Project study area (Figure 1). Desktop review of OEPA's Stream Eligibility Web Map revealed that Project is located within an eligible area for automatic 401 WQC coverage (Figure 3).

3.2.2 Onsite Inspection

Two (2) perennial stream segments were identified and delineated within the Project study area. Information on the delineated waterbody and its classification can be found in Table 2, and photographs of the identified stream are included in Appendix A.

3.2.3 Regulatory Discussion

As with wetlands, present USACE guidance and policy determines the jurisdictional status of waterbodies identified during the Project. TNWs and RPWs are jurisdictional. Non-RPWs must be subjected to the SNT by USACE to determine their jurisdictional status. If Non-RPWs exhibit a Significant Nexus, as defined in USACE guidance documents, they are jurisdictional. If not, they do not fall under the jurisdiction of the USACE.

Streams are generally defined as environmental features that have defined beds and banks, an OHWM as defined in Regulatory Guidance Letter No. 05-05 (USACE, 2005), and contain flowing or standing waters for at least a portion of the year. Streams were classified as perennial, intermittent, or ephemeral based upon presence of flow, estimated duration of flow, stream bed characteristics, and presence of aquatic biota. The USACE *Jurisdictional Determination Form Instructional Guidebook* (USACE, 2007) was used to determine stream classification and flow status.

As regulated by OAC Chapter 3745-1 and Section 401 WQC, streams were also assessed according to OEPA guidance using either the HHEI for watersheds less than one square mile in size, or the Qualitative Habitat Evaluation Index (QHEI) for watersheds between one and 20 square miles in size.

One stream segment (S002) located within the Project study area is identified the Ohio River, which is designated as a Warm Water Habitat (WWH) by OAC Chapter 3745-1-13. The remaining stream segment is identified as an UNT to the Ohio River. All stream segments are located within an eligible area for automatic coverage under the 401 WQC for NWPs.

3.3 Rare, Threatened, and Endangered Species

3.3.1 Preliminary Data Gathering

Desktop review of ODNR, Division of Wildlife's Ohio's Listed Species revealed 336 Endangered, Threatened, Species of Concern, and Species of Interest located in OH (ODNR, 2017). Seventeen (17) of the state-listed species are considered federally Endangered, and four (4) are federally Threatened.

A review of the USFWS *County Distribution of Federally-Listed Threatened, Endangered, Proposed, and Candidate Species for Ohio*, as well as the Information for Planning and Consultation (IPaC) website, revealed three (3) federally Endangered or Threatened species that may occur within the Project study area (USFWS, 2017). The list of species includes the following:

- Indiana Bat (Myotis sodalis) Endangered;
- Northern Long-eared Bat (*Myotis septentrionalis*) Threatened; and
- Running Buffalo Clover (*Trifolium stolonifernum*) Endangered.

In addition to the species listed above, there are twelve (12) species of migratory birds that may occur within the Project study area.

3.3.2 Onsite Inspection

Potential habitat for RTE species was evaluated within the Project study area. In general, the habitat encountered within the study area consisted of PEM wetland, mixed deciduous forest and an open field. The Project study area is surrounded by residential properties and intersects an existing railroad. Two (2) perennial streams were also identified within the Project study area. Representative photographs of the identified habitat types are included in Appendix A.

3.3.3 Regulatory Discussion

State-listed RTE species fall under the jurisdiction of the ODNR, Division of Wildlife, while federally-listed species are covered under Section 7 of the Endangered Species Act. The Bald and Golden Eagle Protection Act and Migratory Bird Act aim to extend protection to certain bird species that fall under the jurisdiction of the USFWS. Based on the desktop review and on-site inspection, informal consultation with the ODNR and USFWS has been initiated to determine if any activities associated with the proposed Project may affect state- and/or federally-listed RTE species. The ODNR and USFWS consultation letters were submitted on January 16, 2018, and are provided in Appendix E. A response from the USFWS was received on February 14, 2018 and is provided in Appendix E. No response from the ODNR has been received, but will be appended once available.

4.0 Conclusions

An ecological survey was conducted within the Project study area on February 8, 2018. One (1) PEM wetland was identified within the Project study area. Two (2) perennial stream segments were also identified within the Project study area. Summaries of the delineated aquatic features are provided in Tables 1 and 2, and a map of their locations is depicted on Figure 2. Photographs of the wetland and stream features are included in Appendix A. Wetland Determination Data Forms documenting the investigation are provided in Appendix B, with HHEI and ORAM Data Forms provided in Appendix C and D, respectively.

The jurisdictional status of these features are considered preliminary and should be confirmed with the USACE and state agencies through the JD process.

5.0 References

- Cowardin, D. M., V. Carter, F. C. Golet, and E. T. La Roe. 1979. Classification of Wetlands and Deepwater Habitats of the United States. United States Department of the Interior, Fish and Wildlife Service. Publication No. FWS/OBS 79/31. Washington, D.C.
- Environmental Laboratory. 1987. Corps of Engineers Wetlands Delineation Manual. United States Department of the Army, United States Army Engineer Waterways Experiment Station. Technical Report Y-87-1. Vicksburg, Mississippi.
- Federal Emergency Management Agency. 2015. National Flood Hazard Layer Web Map Service (WMS). Available from https://hazards.fema.gov/femaportal/wps/portal/NFHLWMSkmzdownload.
- Lichvar, R. W., D.L. Banks N. C. Melvin, and W. N. Kirchner. 2016. *The National Wetland Plant List: 2016 Update of Wetland Ratings*. Phytoneuron 2016-30: 1-17. United States Army Corps of Engineers, Engineer Research and Development Center, Cold Regions Research and Engineering Laboratory, Hanover, New Hampshire, and BONAP, Chapel Hill, North Carolina. Available from http://rsgisias.crrel.usace.army.mil/NWPL/.
- Mack, John J. 2001. Ohio Rapid Assessment Methods for Wetlands Manual for Using Version 5.0. Ohio EPA Technical Bulletin Wetland/2001-1-1. Ohio Environmental Protection Agency, Division of Surface Water, 401 Wetland Ecology Unit, Columbus, Ohio.
- Ohio Administrative Code. 2011. State of Ohio: Water Quality Standards, Chapter 3745-1.
- Ohio Department of Natural Resources, Division of Wildlife. Ohio's Listed Species. https://wildlife.ohiodnr.gov/portals/wildlife/pdfs/publications/information/pub356.pdf.
- Ohio Department of Natural Resources, Division of Wildlife. State-Listed Species by County. http://wildlife.ohiodnr.gov/species-and-habitats/state-listed-species/state-listed-species-by-county.
- Ohio Environmental Protection Agency. 2006. Methods for Assessing Habitat in Flowing Waters: Using the Qualitative Habitat Evaluation Index (QHEI). Ohio EPA Division of Surface Water, Columbus, Ohio.
- Ohio Environmental Protection Agency. 2012. Field Evaluation Manual for Ohio's Primary Headwater Habitat Streams. Version 3.0. Ohio EPA Division of Surface Water, Columbus, Ohio. 117 pp.
- Ohio Environmental Protection Agency, Division of Surface Water. 2017. 401 Water Quality Certification for the Nationwide Permits Stream Eligibility Web Map (2017 Reissuance). http://oepa.maps.arcgis.com/apps/webappviewer/index.html?id=e6b46d29a38f46229c1eb47d eefe49b6
- Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture. Soil Survey Geographic (SSURGO) Database for Belmont County, Ohio. Available online at http://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm.
- United States Army Corps of Engineers. 2005. Regulatory Guidance Letter No. 05-05. Ordinary High Water Mark Identification. Available from http://www.nap.usace.army.mil/Portals/39/docs/regulatory/rgls/rgl05-05.pdf.
- United States Army Corps of Engineers. 2007. *Jurisdictional Determination Form Instructional Guidebook*. Available from http://www.usace.army.mil/Portals/2/docs/civilworks/regulatory/cwa_guide/jd_guidebook_051207 final.pdf

- United States Army Corps of Engineers. 2012. *Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Eastern Mountains and Piedmont Region Version 2.0*, ed. J. S. Wakeley, R. W. Lichvar, C. V. Noble, and J. F. Berkowitz. ERDC/EL TR-10-9. Vicksburg, Mississippi: United States Army Engineer Research and Development Center.
- United States Fish and Wildlife Service. 2017. National Wetlands Inventory for Ohio. Washington, D.C.: U.S. Fish and Wildlife Service, Division of Habitat and Resource Conservation. Available from http://www.fws.gov/wetlands/Data/Mapper.html.
- United States Fish and Wildlife Service. 2017. County Distribution of Federally-Listed Endangered, Threatened, and Proposed Species. U.S. Fish and Wildlife Service, Endangered Species, Midwest Region. Available from https://www.fws.gov/midwest/endangered/lists/ohio-cty.html.
- United States Fish and Wildlife Service, Environmental Conservation Online System. Information for Planning and Consultation. https://ecos.fws.gov/ipac/.
- United States Geological Survey. 1978. Businessburg, Ohio 7.5-Minute Topographic Quadrangle (1:24,000).
- United States Geological Survey. 1977. Moundsville, West Virginia 7.5-Minute Topographic Quadrangle (1:24,000).

TABLES

Table 1 Wetlands Identified Within the Project Study Area

Wetland I.D. ¹	Latitude ²	Longitude ²	Proximal Waterbody	USACE Classification ³	Cowardin Classification ⁴	Size⁵ (acres)	ORAM v. 5.0 Score ⁶	ORAM Category ⁷	Figure 2 (sheet)
W001-PEM-CAT1	39.920191	-80.790046	UNT to Ohio River	Jurisdictional; Adjacent	PEM	0.189	22	1	1

Notes:

- ³ Jurisdictional status is the opinion of GAI and must be confirmed by USACE and state agencies through the JD process.
- 4 PEM Palustrine Emergent;
- ⁵ Total acreage of wetland located within the Project study area.
- Interim scoring breakpoints for wetland regulatory categories for ORAM v 5.0 Score: Category 1 score 0 29.9; Category 1 or 2 gray zone ORAM score 30 34.9; Category modified 2 ORAM score 35 - 44.9; Category 2 ORAM score 45 - 59.9; Category 2 or 3 ORAM score 60 - 64.9; Category 3 ORAM score 65 - 100. OEPA Ecology Unit Division of Surface Water. ORAM v. 5.0 Qualitative Score Calibration. Dated August 15, 2000. http://www.epa.ohio.gov/portals/35/401/oram50sc_s.pdf.
- OAC Rule 3745-1-54(C)(2) defines Category 1 wetlands as wetlands which "...support minimal wildlife habitat, and minimal hydrological and recreation functions," and as wetlands which have "..hydrologic isolation, low species diversity, a predominance of non-native species, no significant habitat or wildlife use, and limited potential to achieve beneficial wetland functions." Category 2 wetlands are defined as wetlands which "...support moderate wildlife habitat, or hydrological or recreational functions," and as wetlands which are "...dominated by native species but generally without the presence of, or habitat for, rare, threatened or endangered species; and wetlands which are degraded but have a reasonable potential for reestablishing lost wetland functions." Degraded but Restorable Category 2 Wetlands are according to OAC Rule 3745-1-54(C) states that wetlands that are assigned to Category 2 constitute the broad middle category that "...support moderate wildlife habitat, or hydrological or recreational functions," but also include "...wetlands which are degraded but have a reasonable potential for reestablishing lost wetland muctions." Degraded but Restorable Category 2 Wetlands are according to OAC Rule 3745-1-54(C) states that wetlands that are assigned to Category 2 constitute the broad middle category that "...support moderate wildlife habitat, or hydrological or recreational functions," but also include "...wetlands which are degraded but have a reasonable potential for reestablishing lost wetland functions," on AC Rule 3745-1-54(C)(2) defines Category 3 wetlands which are used which "...support superior habitat, or hydrological or recreational functions," and as wetlands which have "...high levels of diversity, a high proportion of native species, or high functional values."

¹ GAI map designation.

² North American Datum, 1983.

Table 2 Waterbodies Identified Within the Project Study Area

Stream I.D. ¹	Waterbody Name	OEPA WQ Designation ²	OEPA Stream Eligibility ³	Stream Type	USACE Classification ⁴	HHEI Score⁵	PHWH Class ⁵	QHEI Score ⁶	Bank Width (feet) ⁷	OHWM Width (feet)	OHWM Depth (inches)	Stream Length ⁸ (feet)	Latitude ⁹	Longitude ⁹	Figure 2 (sheet)
S001	UNT to Ohio River	-	Eligible	Perennial	RPW	50	Modified Class II	-	6	3	4	113.92	39.919793	-80.791858	1
S002	Ohio River	WWF	Eligible	Perennial	RPW	-	-	-	1,200	1,000	36	566.13	39.918622	-80.789280	1

Notes: 1

GAI map designation 2

3

4

GAI map designation. As defined by OAC Chapter 3745-1 Water Quality Standards, Water use designations and statewide criteria (OAC 3745-1-07). http://www.epa.ohio.gov/dsw/rules/3745_1_aspx. As defined by DAC Chapter 3745-1 Water Quality Standards, Water use designations and statewide criteria (OAC 3745-1-07). http://www.epa.ohio.gov/dsw/rules/3745_1_aspx. As defined by the 401 WQC conditions for stream eligibility coverage under the 2017 NWP program. Streams located in Possibly Eligible areas are eligible for coverage (If the pH is <6.5 or stream flow is ephemeral. Streams located in Possibly Eligible areas are eligible for coverage (If the pH is <6.5 or stream flow is ephemeral. Streams located in Possibly Eligible areas are eligible for coverage (If the pH is <6.5 or stream flow is ephemeral. Streams located in Possibly Eligible areas are eligible for coverage (If the pH is <6.5 or stream flow is ephemeral. Streams located in Possibly Eligible areas are also eligible for coverage (If the HHEI score is <6.5 or stream flow is ephemeral. Streams located in Possibly Eligible areas are eligible for coverage (If the pH is <6.5 or stream flow is ephemeral. Streams located in Possibly Eligible areas are eligible for coverage (If the pH is <6.5 or stream flow is ephemeral. Streams located in Possibly Eligible areas are eligible for coverage (If the pH is <6.5 or stream flow is ephemeral. Streams located in Possibly Eligible areas are eligible for coverage (If the pH is <6.5 or stream flow is ephemeral. Streams located in Possible Streams located in Possible Streams located in Possible Streams located in Possible Streams located area and epice streams using the OGM water Habitats (PHWH). Class I = 0 - 29.9 and include "normally dry channels with little or no aquatic life present"; Class II = 30 - 69.9 and are equivalent to "warm water habitat"; Class III = 70 - 100 and typically have perential flow with cod-coid water adapted native Total stream length (In feel) focated within the Project study area. Narrative rat 5

6

Width in feet from tops of stream bank. North American Datum, 1983. 8 9

Table 3
ODNR and USFWS RTE Species and Critical Habitat Review Results ¹

Common Name	Scientific Name	Habitat Type	Listing Status ³	Habitat Type Present Within the Project Area?	Impacts to Habitat/Species Anticipated?	Restricted Construction Dates
Amphibians						
Eastern hellbender	Cryptobranchus alleganiensis alleganiensis	Swift flowing, unpolluted, and well-oxygenated streams and rivers with large flat rocks	E	No	No; Known habitat types are not present within the Project area	-
Bats						
Indiana bat ²	Myotis sodalis	Trees >3" dbh	E, FE	Yes	No; Avoided with winter tree clearing	April 1 to September 30
Northern long-eared bat ²	Myotis septrentrionalis	Roost in cavities or in crevices of both live trees and snags; Hibernate in caves and mines with constant temperatures, high humidity, and no air currents	SC, FT	Yes	No; Avoided with winter tree clearing	April 1 to September 30
Fish						
Western banded killifish	Fundulus diaphanous menona	Areas with an abundance of rooted aquatic vegetation, clear waters; substrates with clean sand or organic debris free of silt	E	No	No; Known habitat types are not present within the Project area	-
Tippecanoe darter	Etheostoma tippecanoe	Medium to large streams and rivers in riffles with gravel and small cobble sized rocks	Т	Yes	No; In-stream work is not proposed	-
Channel darter	Percina copelandi	Large, coarse sand or fine gravel bars in large rivers or lake shores	Т	No	No; Known habitat types are not present within the Project area	-
River darter	Percina shumardi	Very large rivers in areas of swift current; found over a gravel or rocky bottom in depths of three feet or more	т	Yes	No; In-stream work is not proposed	-

Common Name	Scientific Name	Habitat Type	Listing Status ³	Habitat Type Present Within the Project Area?	Impacts to Habitat/Species Anticipated?	Restricted Construction Dates
Fish (Continued)						
Paddlefish	Polyodon spathula	Sluggish pools and backwater areas of rivers and streams	Т	No	No; Known habitat types are not present within the Project area	-
Insects						
River jewelwing	Calopteryx aequabilis	Clear streams and rivers with moderate current; small streams in woodlands; rocky shores of large lakes	E	Yes	No; Known habitat types are not present within the Project area	-
Mammals						
Black bear	Ursus americanus	Large forested areas	E	Yes	No; Impacts are not anticipated due to the migratory nature of this species	-
Mussels						
Butterfly	Ellipsaria lineolata	Large rivers with swift currents in sand or gravel substrates	E	Yes	No; In-stream work is not proposed	-
Black sandshell	Ligumia recta	Medium to large rivers in riffles or raceways in gravel or firm sand	Т	No	No; Known habitat types are not present within the Project area	-
Threehorn Wartyback	Obliquaria reflexa	Large rivers with moderate current and stable substrate of gravel, sand, and mud	т	No	No; Known habitat types are not present within the Project area	-
Plants						
White wood-sorrel	Oxalis montana	Moist woods	E	No	No; Known habitat types are not present within the Project area	-

Common Name	Scientific Name	Habitat Type	Listing Status ³	Habitat Type Present Within the Project Area?	Impacts to Habitat/Species Anticipated?	Restricted Construction Dates
Plants (Continued)						
Rock ramalina	Ramalina intermedia	Variety of rock and bark types; restricted to sandstone, generally in light shade	E	No	No; Known habitat types are not present within the Project area	-
Bearded wheat grass	Elymus trachycaulus	Wide range of soils and climates from very dry to very boggy habitats	т	No	No; Known habitat types are not present within the Project area	-
Wild pea	Lathyrus venosus	Open sandy soils and deeply shaded forests; Prairies, disturbed sites, woods, riverbanks, slopes, and shores	т	Yes	Unknown; Impacts to known habitat types are anticipated	-
Shale barren aster	Symphyotrichum oblongifolium	Rocky and sandy soils in prairies and bluffs as well as moist woodland habitats	Т	No	No; Known habitat types are not present within the Project area	-

Notes:

¹ Results are tentatively based upon the State Listed Species list(s) for Belmont County and will be updated once the ODNR response is received.

² Federally listed species, migratory bird, or species of concern comments included in the USFWS response, dated February 14, 2018.

³ E = state endangered; T = state threatened; P = state potentially threatened; SC = state species of concern; FE = federal endangered; FT = federal threatened; FSC = federal species of concern; FC = federal candidate.

FIGURES

APPENDIX A Photographs

Photograph 1. Wetland W001-PEM-CAT1 Facing North

Photograph 2. Wetland W001-PEM-CAT1, Facing West

Photograph 5. Stream S001, Upstream, Facing East

Photograph 6. Stream S001, Downstream, Facing West

Photograph 5. Stream S002 (Ohio River), Upstream, Facing East

Photograph 6. Stream S002 (Ohio River), Downstream, Facing West

Photograph 7. Representative upland habitat, Facing North

Photograph 8. Representative upland habitat, Facing West

APPENDIX B Wetland Determination Data Forms

WETLAND DETERMINATION DATA FORM	 Eastern Mountains and Piedmont Region
Project/Site: APOR Washington - Dilles Battomcityo	County: Mean Two Belmant (0. Sampling Date: 2/8/18
Applicant/Owner: AFP	State: OH Sampling Point: WY2 1- JEAN
Investigator(s): DEZ Section	on, Township, Range: NO PLSS
Landform (hillslope, terrace, etc.): DD Ditch Local rel	lef (concave, convex, none): Concave Slope (%): 290
Subregion (LRR or MLRA): 1. R. R. N. Lat: 39. 919973	Long: -80.389299 Datum: NAD83
Soll Map Unit Name: Itmann very channery loam O.	8% Slopes NWI classification: None
Are climatic / hydrologic conditions on the site typical for this time of year? Y	/es K. No (If no, explain in Remarks.)
Are Vegetation \underline{N} , Soll $\underline{-Y}$, or Hydrology $\underline{-Y}$ significantly distur	bed? Are "Normal Circumstances" present? Yes X No
Are Vegetation, Soll, or Hydrology naturally problem:	atic? (If needed, explain any answers in Remarks.)
SUMMARY OF FINDINGS – Attach site map showing san	npling point locations, transects, important features, etc.
Hydrophytic Vegetation Present? Yes <u>X</u> No Hydric Soll Present? Yes <u>X</u> No Wetland Hydrology Present? Yes <u>X</u> No Remarks: Taken within linear vegetated PEM representative to WOO	Is the Sampled Area within a Wetland? Yes X No RR ditch at base of embountment 01-PEM-CATT
HYDROLOGY	
Wetland Hydrology Indicators:	Secondary Indicators (minimum of two required)
Primary indicators (minimum of one is required; check all that apply)	Surface Soll Cracks (B6)
Surface Water (A1) True Aquatic Plants ((B14) Sparsely Vegetated Concave Surface (B8)
High water Lable (A2) Hydrogen Sulfide Od X) Saturation (A3) Ovidized Phizospher	or (C1) Drainage Patterns (B10)
Water Marks (B1)	d Iron (C4) Dry-Season Water Table (C2)
Sediment Deposits (B2) Recent Iron Reductio	n In Tilled Solis (C6) Crayfish Burrows (C8)
Drift Deposits (B3) Thin Muck Surface (C	C7) Saturation Visible on Aerial Imagery (C9)
Algal Mat or Crust (B4) Other (Explain In Rer	marks) Stunted or Stressed Plants (D1)
Inundation Visible on Aerial Imagery (B7)	Shallow Agultard (D3)
Water-Stained Leaves (B9)	Microtopographic Relief (D4)
Aquatic Fauna (B13)	FAC-Neutral Test (D5)
Field Observations:	. 11
Surface Water Present? Yes <u>> No</u> Depth (Inches): <u>C</u>	
Water Table Present? Yes No X Depth (Inches):	
(Includes capillary fringe)	
Describe Recorded Data (stream gauge, monitoring well, aerial photos, pre	vious Inspections), if available:
Remarks:	
Wetland hydrology indicators	are AI, A3, D2 4 D5

VEGETATION (Four Strata) – Use scientific names of plants.

Sampling Point: (PEM)

Palue I	Absolute Dominant Indicator	Dominance Test worksheet:
<u>Tree Stratum</u> (Plot size: <u>SO X 30</u>) 1. <u>A M SUNT</u>	<u>% Cover</u> <u>Species?</u> <u>Status</u>	Number of Dominant Species That Are OBL, FACW, or FAC: (A)
23		Total Number of Dominant
4.		
5		Percent of Dominant Species That Are OBL, FACW, or FAC: (A/B)
6		Drevalence Index worksheet
7		Total % Cover of Multiply by
	= Total Cover	
50% of total cover:	20% of total cover:	
Sapling/Shrub Stratum (Plot size: 13 × 15)		
1. HUSENT		
2		FACU species X 4 =
3		UPL species X 5 =
4		Column Totals: (A) (B)
5		Prevalence Index = B/A =
6		Hydrophytic Vegetation Indicators:
7		1 - Ranid Test for Hydronhytic Vegetation
8		$\sqrt{2}$ - Dominance Test is 50%
9		2 - Dominiance results >50%
	= Total Cover	- 3 - Prevalence index is \$3.0
50% of total cover:	20% of total cover:	4 - Morphological Adaptations' (Provide supporting
Herb Stratum (Plot size: 5×5')		data in Remarks or on a separate sheet)
1. Phalans arundinorga	75 Y FACW	Problematic Hydrophytic Vegetation' (Explain)
2. Vernon; a nove pararensis	5 N FAUN	
3 Civesium arylense	3. N PAN	¹ Indicators of hydric soll and wetland hydrology must
A AMERICARDER VIRGINICIUS	7 N FAGO	be present, unless disturbed or problematic.
- manoresen manness		Definitions of Four Vegetation Strata:
ð		Tree - Woody plants, excluding vines, 3 In. (7.6 cm) or
o		more In diameter at breast height (DBH), regardless of
h		height.
8		Sapling/Shrub – Woody plants, excluding vines, less
9		than 3 In. DBH and greater than or equal to 3.28 ft (1
10		m) tali.
11		Herb – All herbaceous (non-woody) plants, regardless
. 7	35 = Total Cover	of size, and woody plants less than 3.28 ft tall.
50% of total cover: US	20% of total cover: 1 T	Woody vine – All woody vines greater than 3.28 ft in
Woody Vine Stratum (Plot size: 30 × 30)		height.
1. AUSENT		
2		
3		
4		Hydrophytic
5		Vegetation
	= Total Cover	Present? Yes No
50% of total cover:	20% of total cover:	
Remarks: (Include photo numbers here or on a separate s	sheet.)	
wetland vegetection	is dominan	t
-		
	14	

Sampling Point: 1001 (PEm)

unchesi	- IVIDUIA		Rede	ox Features					
	Color (moist)	_%	Color (molst)	- <u>%</u> Type'	Loc ²			Remarks	
2-10	DURCER	15	10 yk 416	2	- <u>M</u>	Logm			
_				·					
							+		
		_							
	-								
				-		-			
		-							
-									
ype: C=Co	oncentration, D=Dep	letion, RM	Reduced Matrix, M	S=Masked Sand G	rains.	² Location: Pl	L=Pore Lining	M=Matrix.	
dric Soll I	Indicators:					Indica	ators for Pro	blematic Hyd	Iric Solis ³ :
_ HIstosol	(A1)		Dark Surface	e (S7)		2	cm Muck (A1	10) (MLRA 14	7)
_ Histic Ep	olpedon (A2)		Polyvalue Be	elow Surface (S8) (MLRA 147,	148) C	oast Prairie F	Redox (A16)	
- Black His Hydroge	SIIC (A3) n Sulfide (A4)		I nin Dark Si	urface (S9) (MLRA ad Matrix (E2)	147, 148)	D	(MLRA 147, Iedmont Elec	, 148) dolalo Solic (l	10)
_ Stratified	Layers (A5)		Depleted Ma	trix (F3)		— '	(MLRA 136.	upiairi 30iis (i . 147)	- 19)
_ 2 cm Mu	ck (A10) (LRR N)		Redox Dark	Surface (F6)		v	ery Shallow [Dark Surface ((TF12)
_ Depleted	Below Dark Surface	e (A11)	Depleted Da	rk Surface (F7)		_ 0	ther (Explain	In Remarks)	
_ Thick Da Sandy M	irk Surface (A12) lucky Minoral (S1) /I		Redox Depre	essions (F8)					
_ Sanuy W	147. 148)	LPEPE IN,	MIRA 13	iese masses (F 12)	(LRR N,				
_ Sandy G	leyed Matrix (S4)		Umbric Surfa	ace (F13) (MLRA 1	36, 122)	³ Ind	cators of hyd	rophytic vege	tation and
_ Sandy R	edox (S5)		Pledmont Flo	odplain Solis (F19) (MLRA 14	8) we	tland hydrolo	gy must be pr	esent,
_ Strlpped	Matrix (S6)	_	Red Parent I	Vaterlal (F21) (MLI	RA 127, 147	7) uni	ess disturbed	d or problemat	ilc.
estrictive L	ayer (If observed):								
Time D	160005						Drocont?	X an	Ne
Type: 12	thest Lot						PLOSEILIZ	res //	
Type: 2	thes): 67		-			Hydric Soll	Treacht:		
Type: 12 Depth (Inc	thes): 07				-				
Type: Depth (Inc	thes): 01								
Type: Depth (Inc marks:	S F (q - 1)	Recl	ox Darv	L surfa	ce				
Type: Depth (Inc marks:	S Flar	Recl	ox Darv	L surfa	ce				
Type: Depth (Inc emarks:	S F (q - 1)	Red	ox Darv	L surfa	ce				
Type: 2 Depth (Inc emarks:	S F (a - 1)	Red	ox Darv	L surfa	ce				
Type: 2 Depth (Inc emarks:	S F (a - b)	Red	ox Dark	L surfa	ce				
Type: 12 Depth (Inc emarks:	S F (a - b)	R-ed	ox Dark	L sinta	ce				
Type: 2 Depth (Inc marks:	S F (a - b)	Red	ox Dark	L sinfa	ce				
Type: 2 Depth (Inc marks:	S F (a - b)	Rect	ox Darv	L sinfa	ce				
Type: 2 Depth (Inc marks:	S F (a - b)	Red	ox Darv	L sinfa	ce				
Type: 2 Depth (Inc emarks:	S F (a - b)	Red	ox Dark	L surfa	ce				
Type: 2 Depth (Inc emarks:	S F (a - b)	Red	ox Darv	L surfa	ce				
Type: 12 Depth (Inc emarks:	S F (a - b)	R-ed	ox Darv	L sinfa	ce				
Type: 12 Depth (Inc emarks:	S F (a - b)	R-ed	ox Dark	L surfa	ce	Hyaric Soli			
Type: 12 Depth (Inc emarks:	S Flo-	R-ect	ox Darv	L Surfa	ce				
Type: 12 Depth (Inc emarks:	S F (a - b)	R-ect	ox Darv	L sinfa	ce				
Type: Z Depth (Inc marks: Med	S F (a - b)	R-ed	ox Dark	L Surfa	ce				
Type: Z Depth (Inc marks: M&	S F (a - 1)	Red	ox Dark	L Surfa	ce	Hyaric Soli			

WETLAND DETERMINATION DATA FORM – Eastern Mountains and Piedmont Region

Project/Site: George Nashington -Dilles Bottom City/C	county: Mead Two Belment Co. Sampling Date: 1/8/8
Applicant/Owner: AEP	State: OH Sampling Point: 10001-021
Investigator(s): <u>RET</u> Section	on, Township, Range: NO PLSS
Landform (hillislope, terrace, etc.): Flat laun Local rel	lef (concave, convex, none): NOne Slope (%): O
Subregion (LRR or MLRA): LRR N Lat: 39.97052	Long: -80.791270 Datum: NA083
Soll Map Unit Name: Itmann very channers by	am 0-8% Slures NWI classification: None
Are climatic / hydrologic conditions on the site typical for this time of year?	/es X No (If no, explain in Remarks.)
Are Vegetation N. Soli N. or Hydrology N. significantly distur	bed? Are "Normal Circumstances" present? Yes V No
Are Vegetation N Soll N or Hydrology N paturally problems	atic? (If needed evalate any answers in Remarks)
SUMMARY OF FINDINGS – Attach site map showing sam	npling point locations, transects, important features, etc.
Hydrophytic Vegetation Present? Yes No Hydric Soli Present? Yes No Wetland Hydrology Present? Yes No	Is the Sampled Area within a Wetland? Yes No
Remarks:	
Taken within Maintained lawn,	area, upslore of wool-pem-catti
HYDROLOGY	
Wetland Hydrology Indicators:	Secondary Indicators (minimum of two required)
Primary Indicators (minimum of one is required; check all that apply)	Surface Soil Cracks (B6)
Surface Water (A1) True Aquatic Plants (B14) Sparsely Vegetated Concave Surface (B8)
High Water Table (A2) Hydrogen Sulfide Od	or (C1) Drainage Patterns (B10)
Saturation (A3) Oxidized Rhizosphere	es on Living Roots (C3) Moss Trim Lines (B16)
Water Marks (B1) Presence of Reduced	I Iron (C4) Dry-Season Water Table (C2)
Sediment Deposits (B2) Recent Iron Reductio	n In Tilled Solis (C6) Crayfish Burrows (C8)
Dhit Deposits (B3) Thin Muck Surface (C	./) Saturation Visible on Aerial Imagery (C9)
Iron Deposits (B5)	Geomorphic Poeltion (D2)
Inundation Visible on Aeriai Imagery (B7)	Shallow Agultard (D3)
Water-Stained Leaves (B9)	Microtopographic Relief (D4)
Aquatic Fauna (B13)	FAC-Neutral Test (D5)
Fleid Observations:	
Surface Water Present? Yes No X Depth (Inches):	
Water Table Present? Yes No X Depth (Inches):	
Saturation Present? Yes No V Depth (Inches):	Wetland Hydrology Present? Yes No
Describe Recorded Data (stream gauge, monitoring well, aerial photos, pre-	vious inspections), if available:
Remarks:	
No primary or secondary we	tland hydrology indicators
Were observed.	

VEGETATION (Four Strata) – Use scientific names of plants.

Sampling Point: WOO 1-UPL

20,20	Absolute	Dominar	nt Indicator	Dominance Test worksheet:
Tree Stratum (Plot size: <u>30 × 50</u>)	% Cover	Species	? Status	Number of Dominant Species
1. FLET NEGLACIO	- 10	4	+HC	That Are OBL, FACW, or FAC: (A)
2. Rhus typhinax	- 30	. <u> </u>	OUL	Total Number of Dominant
3				Species Across All Strata: (B)
4				Descent of Descinent Creation
5				That Are OBL FACW or FAC: 4070 (A/B)
6.				
7				Prevalence Index worksheet:
	UM	- Total Co		Total % Cover of: Multiply by:
50% of total cover: 7	20% 01	f total cove		OBL species x 1 =
Sapling/Shrub Stratum /Diot size: K X/S	2070 01		aQ	FACW species $1()$ x 2 = 20
	P	14	Electro	FAC species 50 x3- 150
Elandra americana	17.0		FACO	FACIL species 85 x4= 34D
2. Muer pegundo	50	<u> </u>	- MAC	$\frac{1}{10} = \frac{30}{10} + \frac{150}{10}$
3. Losa Multiplara	10	<u> </u>	PACU	$\frac{1}{1} \frac{1}{1} \frac{1}$
4. WIMDS FUGRA	10	<u> </u>	FACW	Column Totals: (A) $(UOO$ (B)
5				Brouglange Index - P/A - 371
6				
7.				Hydrophytic vegetation indicators:
8				1 - Rapid Test for Hydrophytic Vegetation
0				2 - Dominance Test is >50%
9,	25			3 - Prevalence Index Is ≤3.0 ¹
× × × × × × × × × × × × × × × × × × ×		= Total Co	over	4 - Morphological Adaptations ¹ (Provide supporting
50% of total cover:	20% of	total cove	er:	data In Remarks or on a separate sheet)
Herb Stratum (Plot size: <u>3 X S</u>)	~		Tin	Problematic Hydrophytic Vegetation ¹ (Explain)
1. Rumela CHISPUS	5	10	-FAC	
2. Verbesina alternifolia	0	YV	FAL	Indiantee of builds and undiand builts is such that
3. Anchro pogon virginicus	20	Y	FACU	be present unless disturbed or problematic
A. Taraxacum officinale	10	N	PACU	Definitions of Four Vegetation Strate
5. Gleenana nederace a	10	N	FACU	Definitions of Four Vegetation Strata.
6 DOG GRATEVISIS	30	V	TACU	Tree - Woody plants, excluding vines, 3 In. (7.6 cm) or
- post presidente			- [1153	more in diameter at breast height (DBH), regardless of
^				neight.
8		-		Sapling/Shrub - Woody plants, excluding vines, less
9				than 3 In. DBH and greater than or equal to 3.28 ft (1
10				m) tall.
11,				Herb – All herbaceous (non-woody) plants, regardless
110	\$02	= Total Co	over , ,	of size, and woody plants less than 3.28 ft tall.
50% of total cover: 90	20% of	total cove	r: 10	Woody ytpo All woody yipos greater than 2.29 ft in
<u>Woody Vine Stratum</u> (Plot size: $30 \times 30'$)				height.
1. ADDSENT	-			
2.				
3				
4				
F				Hydrophytic
5				Present? Ves No V
		= Total Co	over	
50% of total cover:	20% of	total cove	r:	
Remarks: (Include photo numbers here or on a separate s	sheet.)			
Much lister in Phytic	ist -	0.55	isined	OPL indicator
NOT HOICE IN TRAIN			0	
holdend VPAPtaina :	. doo	nina	wt	
Munice regeneration is		1111(0		

SOIL

Sampling Point:

(Inches)	O-le (1 th		Re	dox Features	1 . 2	-		
3-4	Invingit	<u>%</u> _	Color (moist)	<u> </u>	pe Loc		Rema	arks
<u>/ </u> -	10 112 113	100 -				LOAM		
	-							
			_					
			_					
							-	
	1							
ype: C=Con	ncentration, D=Dep	letion, RM=R	educed Matrix,	MS=Masked San	d Grains.	² Location: PL	=Pore Lining, M=Ma	atrix.
dric Soil In	dicators:					Indicat	tors for Problemat	Ic Hydric Solis ³ :
_ Histosol (A	A1)		Dark Surfa	ce (S7)		20	m Muck (A10) (ML	RA 147)
– HISTIC EPIP Black HIST	pedon (A2) IIc (A3)		Polyvalue Thin Dark	Below Surrace (S Surface (S9) (M I	8) (MLRA 147, RA 147 148)	148) <u> </u>	ast Prairie Redox (/ (MI RA 147 148)	A16)
Hydrogen	Sulfide (A4)		Loamy Gle	yed Matrix (F2)		Ple	edmont Floodplain S	Solls (F19)
_ Stratified L	Layers (A5)		Depleted N	latrix (F3)			(MLRA 136, 147)	
2 cm Muck	k (A10) (LRR N) Dalaw Dark Surfac	- (611)	Redox Dar	k Surface (F6)		Ve	ry Shallow Dark Su	rface (TF12)
_ Depleted t Thick Dari	Below Dark Surrac k Surface (A12)	e (AT1)	Depleted L Redox Der	Vark Surrace (F7)		Or	ner (Explain in Rem	narks)
_ Sandy Mu	icky Mineral (S1) (I	LRR N,	Iron-Manga	anese Masses (F	12) (LRR N,			
MLRA 1	147, 148)		MLRA	136)				
_ Sandy Gle	eyed Matrix (S4)		Umbric Su	rface (F13) (MLR	A 136, 122)	³ India	cators of hydrophyte	c vegetation and
Stripped N	dox (S5) Aatrix (S6)		Pleamont I Red Paren	t Material (F21) (MLRA 127, 143	N unle	iand nydrology mus iss disturbed or pro	t be present, blematic
estrictive La	yer (If observed);							bicindite.
			-					
Туре:	travel til					Hydric Soll I	Present? Yes	No <u>/\</u>
Type: Depth (Inch	11avel +11		-					
Type: Depth (Incher marks:	1(avel +1) nes): <u>4</u> "	_	-					
Type: Depth (Inch emarks:	1(avel 11) nes): <u> </u>		-					
Type: Depth (Inch amarks:	1(avel 11) nes): <u>4</u> "							
Type: Depth (Inch amarks:	<u>aravel til</u> <u>les): 4"</u>	(50	:15					
Type: Depth (Inch emarks:	11 (/vi	(SO	:15					
Type: Depth (Inch emarks:	My (1/1)	C SO	:15					
Type: Depth (Inch emarks:	My (/Vi	(SO	:15					
Type: Depth (Inch emarks:	$\frac{1}{1000} = \frac{1}{1000}$	C SO	:15					
Type: Depth (Inch emarks:	$\frac{1}{1000} = \frac{1}{1000}$	C SO	:15					
Type: Depth (Inch amarks:	$\frac{1}{1000} = \frac{1}{1000}$	(SO	:15	. 1				
Type: <u>P</u> Depth (Inch emarks:	1 ((/ V i	C SO	:15	. 1		•		
Type: Depth (Inch emarks:	1 ((/ V i)	(SO	:15	1				
Type: <u>P</u> Depth (Inch emarks:	My (/Vi	(SO	:15					
Type: <u>P</u> Depth (Inch emarks:	1 (() V ((50	:15			*		
Type: Depth (Inch emarks:	1 ((\ V i)	(SO	115					
Type: Depth (Inch emarks:	1 ((/ V i)	(SO	15					
Type: Depth (Inch emarks:	1 (() V ((50	:15					
Type: Depth (Inch marks:	1 ((/ V i)	(SO	115					
Type: Depth (Inch marks: N M	1 (() V i	(SO	115			-		

APPENDIX C Primary Headwater Habitat Evaluation (HHEI) Data Forms

LENGTH OF DATE 28 NOTE: Co	STREAM REACH (ft) 200 STREAM REACH (ft) 200 STREAM REACH (ft) 200 SCORER 227	RIVER LAT. <u>39.91993</u> L COMMENTS COMMENTS	BASIN 04:0 ONG. 80 791858 RIV SOH - 247 - 0 Evaluation Manual for	DRAINA /ER CODE] 3 Ohio's PHWH S	AGE AREA (mi²) <u>()</u> RIVER MILE treams" for Instru	21mi
STREAM C MODIFICA	HANNEL ONNE/N/	ATURAL CHANNEL			CENT OR NO RECO	VERY
I. SUB (Ma) TYPE C E C E C C C C Bldr SCORE OF T	STRATE (Estimate percent of ex x of 32). Add total number of signif BLDR SLABS [16 pts] BOULDER (>256 mm) [16 pts] BEDROCK [16 pt] COBBLE (65-256 mm) [12 pts] GRAVEL (2-64 mm) [9 pts] SAND (<2 mm) [6 pts] Total of Percentages of Slabs, Boulder, Cobble, Bedrock _ WO MOST PREDOMINATE SUB	Very type of substrate p icant substrate types fou PERCENT 200 200 (A) STRATE TYPES:	resent. Check ONLY two nd (Max of 8). Final metric SILT [3 pt] LEAF PACK/WOODY FINE DETRITUS [3 CLAY or HARDPAN MUCK [0 pts] ARTIFICIAL [3 pts]	predominant subst c score is sum of bo Y DEBRIS [3 pts] pts] [0 pt] ER OF SUBSTRATE	(B)	HHE Metri Point Max = 4 15 A+B
2. Max evalution > 30 (> 22.3 > 10 CON	imum Pool Depth (Measure the i uation. Avoid plunge pools from ro centimeters [20 pts] 5 - 30 cm [30 pts] - 22.5 cm [25 pts]	maximum pool depth w ad culverts or storm wate [ithin the 61 meter (200 f eppipes) (Check ONLY 0 > 5 cm - 10 cm [15 < 5 cm [5 pts]	it) evaluation reach 'one box): pts] DIST CHANNEL [0 OOL DEPTH (cent	at the time of	Pool Dep Max = 3
B. BAN → 4.0 → 3.0 → 1.5 CON	IK FULL WIDTH (Measured as th meters (> 13') [30 pts] m - 4.0 m (> 9' 7" - 13') [25 pts] m - 3.0 m (> 9' 7" - 4' 8") [20 pts] MMENTS	e average of 3-4 measu $g(S^{1} - S, S')$	rrements) (Chec	ck <i>ONLY</i> one box): ' 3" - 4' 8") [15 pts] pts] ANKFULL WIDTH	(meters)	Bankfu Width Max=30 20
	RIPARIAN ZONE AND FLOOD <u>RIPARIAN WIDTH</u> (Per Bank) Wide >10m Moderate 5-10m Narrow <5m None COMMENTS	This information PLAIN QUALITY & FLOODPLAIN QUA L R (Most Pro- Mature F Mature F Mature F Immature Field Resident Fenced F	n <u>must</u> also be complet rNOTE: River Left (L) and <u>LITY</u> edominant per Bank) orest, Wetland Forest, Shrub or Old ial, Park, New Field Pasture	ed Bright (R) as lookin C Co C Cri C Cri Min	ng downstream☆ nservation Tillage oan or Industrial oen Pasture, Row op ning or Construction	
内	FLOW REGIME (At Time of Ev Stream Flowing Subsurface flow with isolated po COMMENTS	valuation) (Check ONL) pols (Interstitial) _per 61 m (200 ft) of cha	Yone box): Moist Chan Dry channe nnel) (Check ONLY one	nel, isolated pools, I, no water (Ephem : box);	no flow (Intermittent) eral)	

October 24, 2002 Revision

PHWH Form Page - 1

ADDITIONAL STREAM INFORMATION (Thi	s Information Must Also be	Completed):	
	No QHEI Score	(If Yes, Attach Completed QHEI F	Form)
DOWNSTREAM DESIGNATED US	SE(S)	Distance from Eva	luated Streamuated Stream
EWH Name:		Distance from Eval	uated Stream
	APS, INCLUDING THE ENTIR	E WATERSHED AREA. CLEARLY MA	RK THE SITE LOCATION
USGS Quadrangle Name: BUSSines	sburg, Otl N	RCS Soil Map Page: NRCS	Soil Map Stream Order
County: BRIMONT CO.	Township	Icity: Mead Twy	
MISCELLANEOUS		1 -	a
Base Flow Conditions? (Y/N): Date	of last precipitation: 21=	7/18Quantity:	57
Photograph Information:			
Elevated Turbidity? (Y/N): Car	nopy (% open): <u>20</u> %	-	
Were samples collected for water chemistry?	(Y/N): (Note lab sa	mple no. or id. and attach results) La	Number
Field Measures: Temp (°C) Disso	blved Oxygen (mg/l)	pH (S.U.) Conductivity	(µmhos/ст)
Is the sampling reach representative of the st	ream (Y/N) If not, plea	ase explain:	
1			
Additional comments/description of pollution	mpacts:		
Performed? (Y/N): (If Yes, Record ID number. In Fish Observed? (Y/N) Voucher? (Y/N Frogs or Tadpoles Observed? (Y/N) Vo Comments Regarding Biology:	d all observations. Voucher co clude appropriate field data sh N)_N Salamanders Obse ucher? (Y/N)_N Aquatic M	llections optional, NOTE: all voucher s eets from the Primary Headwater Habit rved? (Y/N) Voucher? (Y/N)_ facroinvertebrates Observed? (Y/N)	amples must be labeled with the site at Assessment Manual) <u>V</u> Voucher? (Y/N) <u>V</u>
DRAWING AND NARRAT	IVE DESCRIPTION O	F STREAM REACH (This <u>m</u>	ist be completed):
Include important landmarks and othe	er features of interest for si	e evaluation and a narrative descri	otion of the stream's location
	Cord	y Floorplain	-19
FLOW	1	ravel	Gravel
B	- Ce	immature (
	to a book of the second second		
Ontoher 24 2002 Basisian	PHWH For	m Page - 2	

APPENDIX D Ohio Rapid Assessment Method for Wetlands (ORAM) Data Forms

22

End of Quantitative Rating. Complete Categorization Worksheets.

3

quality or in small amounts of highest quality

Present in moderate or greater amounts

and of highest quality

APPENDIX E ODNR and USFWS Correspondence

Canton Office 3720 Dressler Road Northwest Canton, Ohio 44718 T 330.433.2680F 330.433.2694

January 16, 2018 Project C170352.33

Environmental Review Staff Ohio Department of Natural Resources Division of Wildlife - Ohio Natural Heritage Program 2045 Morse Road, Building G-3 Columbus, Ohio 43229-6693

American Electric Power George Washington – Dilles Bottom 138kV Line Rebuild Project Request for Technical Assistance Regarding Threatened and Endangered Species and Critical Habitat Belmont County, Ohio

Dear Staff:

GAI Consultants, Inc. (GAI), on behalf of American Electric Power (AEP), is requesting information regarding state- and federally-listed threatened and endangered species in the vicinity of the George Washington – Dilles Bottom 138kV Line Rebuild Project (Project) in Belmont County, Ohio. As part of this request, please provide information specific to any threatened and endangered bats. GAI is also requesting the locations of any known golden or bald eagle nests in the area.

The proposed Project involves the rebuild of approximately 0.2-mile of existing 69 kilovolt (kV) transmission line to 138kV transmission line in OH.

The study area for the Project is shown on the attached map (Figure 1). The study area consists of mixed deciduous forest and an open field. The study area is surrounded by residential properties and intersects with an existing railroad. Project shapefiles have been included to aid in your review.

GAI and AEP thank you in advance for your assistance. Please contact me at 330.324.9148 or via email at a.wheaton@gaiconsultants.com if you have any questions or require further information.

Sincerely, GAI Consultants, Inc.

Allison R. Wheaton, WPIT Senior Project Environmental Specialist

ARW/kea

Attachments: Attachment 1 (Project Location Map) Project Shapefiles
January 16, 2018 Project C170352.33

ATTACHMENT 1

PROJECT LOCATION MAP

gaiconsultants.com

From:	susan zimmermann@fws.gov on behalf of Ohio, FW3
То:	Allison Wheaton
Cc:	nathan.reardon@dnr.state.oh.us; kate.parsons@dnr.state.oh.us
Subject:	GAI C170352.33 - AEP George Washington - Dilles Bottom 138 kV Rebuild, Belmont Co.
Date:	Wednesday, February 14, 2018 11:40:51 AM
Attachments:	Capture of Dan.PNG

UNITED STATES DEPARTMENT OF THE INTERIOR U.S. Fish and Wildlife Service Ecological Services Office 4625 Morse Road, Suite 104 Columbus, Ohio 43230 (614) 416-8993 / Fax (614) 416-8994

TAILS# 03E15000-2018-TA-0547

Dear Ms. Wheaton,

We have received your recent correspondence requesting information about the subject proposal. There are no federal wilderness areas, wildlife refuges or designated critical habitat within the vicinity of the project area. The following comments and recommendations will assist you in fulfilling the requirements for consultation under section 7 of the Endangered Species Act of 1973, as amended (ESA).

The U.S. Fish and Wildlife Service (Service) recommends that proposed developments avoid and minimize water quality impacts and impacts to high quality fish and wildlife habitat (e.g., forests, streams, wetlands). Additionally, natural buffers around streams and wetlands should be preserved to enhance beneficial functions. If streams or wetlands will be impacted, the Corps of Engineers should be contacted to determine whether a Clean Water Act section 404 permit is required. Best management practices should be used to minimize erosion, especially on slopes. All disturbed areas should be mulched and revegetated with native plant species. Prevention of non-native, invasive plant establishment is critical in maintaining high quality habitats.

FEDERALLY LISTED SPECIES COMMENTS: All projects in the State of Ohio lie within the range of the federally endangered Indiana bat (Myotis sodalis) and the federally threatened northern long-eared bat (Myotis septentrionalis). In Ohio, presence of the Indiana bat and northern long-eared bat is assumed wherever suitable habitat occurs unless a presence/absence survey has been performed to document absence. Suitable summer habitat for Indiana bats and northern long-eared bats consists of a wide variety of forested/wooded habitats where they roost, forage, and travel and may also include some adjacent and interspersed non-forested habitats such as emergent wetlands and adjacent edges of agricultural fields, old fields and pastures. This includes forests and woodlots containing potential roosts (i.e., live trees and/or snags =3 inches diameter at breast height (dbh) that have any exfoliating bark, cracks, crevices, hollows and/or cavities), as well as linear features such as fencerows, riparian forests, and other wooded corridors. These wooded areas may be dense or loose aggregates of trees with variable amounts of canopy closure. Individual trees may be considered suitable habitat when they exhibit the characteristics of a potential roost tree and are located within 1,000 feet (305 meters) of other forested/wooded habitat. Northern long-eared bats have also been observed roosting in human-made structures, such as buildings, barns, bridges, and bat houses; therefore, these structures should also be considered potential summer habitat. In the winter, Indiana bats and northern long-eared bats hibernate in caves and abandoned mines.

Should the proposed site contain trees =3 inches dbh, we recommend that trees be saved wherever possible. If any caves or abandoned mines may be disturbed, further coordination with this office is requested to determine if fall or spring portal surveys are warranted. If no caves or abandoned mines are present and trees =3 inches dbh cannot be avoided, we recommend that removal of any trees =3 inches dbh only occur between October 1 and March 31. Seasonal clearing is being recommended to avoid adverse effects to Indiana bats and northern long-eared bats. While incidental take of northern long-eared bats from most tree clearing is exempted by a 4(d) rule (see<u>http://www.fws.gov/midwest/endangered/mammals/nleb/index.html</u>), incidental take of Indiana bats is still prohibited without a project-specific exemption. Thus, seasonal clearing is recommended where Indiana bats are assumed present.

If implementation of this seasonal tree cutting recommendation is not possible, summer surveys may be conducted to document the presence or probable absence of Indiana bats within the project area during the summer. If a summer survey documents probable absence of Indiana bats, the 4(d) rule for the northern long-eared bat could be applied. Surveys must be conducted by an approved surveyor and be designed and conducted in coordination with the Endangered Species Coordinator for this office. Surveyors must have a valid federal permit. Please note that summer surveys may only be conducted between June 1 and August 15.

If there is a federal nexus for the project (e.g., federal funding provided, federal permits required to construct), no tree clearing should occur on any portion of the project area until consultation under section 7 of the ESA, between the Service and the federal action agency, is completed. We recommend that the federal action agency submit a determination of effects to this office, relative to the Indiana bat and northern long-eared bat, for our review and concurrence.

Due to the project type, size, and location, we do not anticipate adverse effects to any other federally endangered, threatened, proposed, or candidate species. Should the project design change, or during the term of this action, additional information on listed or proposed species or their critical habitat become available, or if new information reveals effects of the action that were not previously considered, consultation with the Service should be initiated to assess any potential impacts.

These comments have been prepared under the authority of the Fish and Wildlife Coordination Act (48 Stat. 401, as amended; 16 U.S.C. 661 et seq.), the ESA, and are consistent with the intent of the National Environmental Policy Act of 1969 and the Service's Mitigation Policy. This letter provides technical assistance only and does not serve as a completed section 7 consultation document. We recommend that the project be coordinated with the Ohio Department of Natural Resources due to the potential for the project to affect state listed species and/or state lands. Contact John Kessler, Environmental Services Administrator, at (614) 265-6621 or at john.kessler@dnr.state.oh.us.

If you have questions, or if we can be of further assistance in this matter, please contact our office at (614) 416-8993 or <u>ohio@fws.gov</u>.

Sincerely,

Dan Everson Field Office Supervisor

cc: Nathan Reardon, ODNR-DOW Kate Parsons, ODNR-DOW

Canton Office 3720 Dressler Road Northwest Canton, Ohio 44718 T 330.433.2680F 330.433.2694

January 16, 2018 Project C170352.33

Mr. Dan Everson United States Fish and Wildlife Service Ohio Ecological Services Field Office 4625 Morse Road, Suite 104 Columbus, Ohio 43230

American Electric Power George Washington – Dilles Bottom 138kV Line Rebuild Project Request for Technical Assistance Regarding Threatened and Endangered Species and Critical Habitat Belmont County, Ohio

Dear Mr. Everson:

GAI Consultants, Inc. (GAI), on behalf of American Electric Power (AEP), is requesting information regarding state- and federally-listed threatened and endangered species in the vicinity of the George Washington – Dilles Bottom 138kV Line Rebuild Project (Project) in Belmont County, Ohio. As part of this request, please provide information specific to any threatened and endangered bats. GAI is also requesting the locations of any known golden or bald eagle nests in the area.

The proposed Project involves the rebuild of approximately 0.2-mile of existing 69 kilovolt (kV) transmission line to 138kV transmission line in OH.

The study area for the Project is shown on the attached map (Figure 1). The study area consists of mixed deciduous forest and an open field. The study area is surrounded by residential properties and intersects with an existing railroad. Project shapefiles have been included to aid in your review.

GAI and AEP thank you in advance for your assistance. Please contact me at 330.324.9148 or via email at a.wheaton@gaiconsultants.com if you have any questions or require further information.

Sincerely, GAI Consultants, Inc.

Allison R. Wheaton, WPIT Senior Project Environmental Specialist

ARW/kea

Attachments: Attachment 1 (Project Location Map) Project Shapefiles January 16, 2018 Project C170352.33

ATTACHMENT 1

PROJECT LOCATION MAP

gaiconsultants.com

This foregoing document was electronically filed with the Public Utilities

Commission of Ohio Docketing Information System on

5/23/2018 12:52:35 PM

in

Case No(s). 18-0602-EL-BLN

Summary: Letter of Notification electronically filed by Ms. Christen M. Blend on behalf of AEP Ohio Transmission Power Company, Inc.