From: webmaster@puc.state.oh.us
To: PUCO ContactThePUCO
Subject: PUCO CONTACT FORM: 109332
Received: 10/5/2016 1:25:16 PM
Message:
WEB ID: 109332 AT:10-05-2016 at 01:25 PM
Related Case Number: 16-0253
TYPE: Comment
NAME: Mr. John Myers
CONTACT SENDER ? Yes

MAILING ADDRESS:

- 477 Maple Circle Dr
- Cincinnati , Ohio 45246
- USA

PHONE INFORMATION:

- Home: 513-671-0076
- Alternative: (no alternative phone provided?)
- Fax: 513-671-5646

E-MAIL: JohnRMyersCo@AOL.com
INDUSTRY:Gas

ACCOUNT INFORMATION:

- Company: Duke Energy
- (no account name provided?)
- (no service address provided?)
- (no service phone number provided?)
- (no account number provided?)

COMMENT DESCRIPTION:

This is to certisy that the fmocos anonaring ane at accurate and compete reprocuction of a one fise docunent delivered in the regular course of bisiness.
 OCT 062016

I suspect that the people of Hamilton County who are affected by the Duke Energy pipeline are being far more emotional than practical. Now I see from a Cincinnati Enquirer article that Duke has reduced the capacity of their pipeline to $1 / 3$ of their needs in order to satisfy whomever. I will assume that Duke proposed this gas pipeline because it was necessary for their gas business or they would not have proposed it at all. Their original proposal is reported to have called for a $30^{\prime \prime}$ diameter line at $600-720 \mathrm{psi}$. They are now proposing a $20^{\prime \prime}$ diameter line at 400-500 psi. A $30^{\prime \prime}$ line has 225% more volume than a $20^{\prime \prime}$ line! [pi x radius squared $=$ area of a circle] Add in a higher pressure, \& the capacity of the $30^{\prime \prime}$ line will be more than 3 times the capacity of the $20^{\prime \prime}$ line. Excavating a ditch for a $30^{\prime \prime}$ line is only $10^{\prime \prime}$ wider \& $10^{\prime \prime}$ deeper than a $68^{\prime \prime}$ ditch for a $20^{\prime \prime}$ line. Considering all the factors involved in digging any continuous ditch about 6 ft . deep $\& 3 \mathrm{ft}$. wide \& you can assume that the cost difference to $\operatorname{dig} 10^{\prime \prime}$ deeper $\& 10^{\prime \prime}$ wider is minimal. The much larger cost may be the cost of the larger pipe. The disruption to property owners \& to all the other underground utilities will be the same for either pipe! Therefore, it makes no practical sense to me to reduce the size of the ditch or the pipe when considering this project, regardless of its route. It appears that Duke will do a very similar amount of work, costs \& disruption, \&

