

# [WPAA005\_UDP\_002E] facing east



# [WPAA005\_UDP\_003W] facing west

### WETLAND DETERMINATION DATA FORM – Northcentral and Northeast Region

| Project/Site: AEP - Allen Station                                | City/County: Paulding                                 | Sampling Date: 7/15/15                 |
|------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------|
| Applicant/Owner: <u>AEP</u>                                      | State: <u>C</u>                                       | OH   Sampling Point:   WPAA004_WDP     |
| Investigator(s): SCI Engineering, Inc.                           | Section, Township, Range: <u>30, 1N, R1</u>           | E                                      |
| Landform (hillslope, terrace, etc.): Depression                  | Local relief (concave, convex, none): <u>Conc</u>     | :ave Slope (%):                        |
| Subregion (LRR or MLRA): LRR L, MLRA 99 Lat: 4                   | 1.01800472 Long: -84.6765431                          | 2 Datum: NAD83                         |
| Soil Map Unit Name: Hoytville silty clay                         | NWI                                                   | classification: N/A                    |
| Are climatic / bydrologic conditions on the site typical for the | his time of year? Yes No X (If no expl                | ain in Remarks )                       |
| Are Vegetation Y Soil Y or Hydrology N                           | cignificantly disturbed?                              | and in reconditions,                   |
| Are Vegetation, Soll, or Hydrology                               | Are Normal Circumsta                                  |                                        |
| Are vegetation, Soll, or Hydrology                               | naturally problematic? (If needed, explain any        | answers in Remarks.)                   |
| SUMMARY OF FINDINGS – Attach site map                            | o showing sampling point locations, tran              | sects, important features, etc.        |
| Hydrophytic Vegetation Present? Ves X                            | No. Is the Sampled Area                               |                                        |
| Hydrophylic Vegetation reserve res                               | No within a Wetland? Yes                              | s <u>×</u> No                          |
| Wetland Hydrology Present? Yes X                                 | No If ves. optional Wetland Site ID:                  |                                        |
| Remarks: (Explain alternative procedures here or in a su         | eparate report.)                                      |                                        |
| Wetland is located in a depression in a                          | a corn field Corn growth is sparse                    | Some small specimens of                |
| vellow fortail present. The entire field                         | is wet and has little relief. This field              | t may have been planted                |
| Jeter on the earn is short on the high of                        | s wet and has little relief. This lief                | aturbed by forming                     |
| later, as the corn is short on the high s                        | spots as well. Vegetation and soll of                 | sturbed by farming.                    |
|                                                                  |                                                       |                                        |
|                                                                  |                                                       |                                        |
| HYDROLOGY                                                        |                                                       |                                        |
| Wetland Hydrology Indicators:                                    | Secondar                                              | y Indicators (minimum of two required) |
| Primary Indicators (minimum of one is required; check al         | I that apply) ✓ Surfa                                 | ace Soil Cracks (B6)                   |
| ✓ Surface Water (A1) Wa                                          | ater-Stained Leaves (B9) Drain                        | age Patterns (B10)                     |
| ✓ High Water Table (A2) Ac                                       | uatic Fauna (B13) Moss                                | ; Trim Lines (B16)                     |
| ✓ Saturation (A3) Ma                                             | arl Deposits (B15) Dry-S                              | Season Water Table (C2)                |
| Water Marks (B1) Hy                                              | rdrogen Sulfide Odor (C1) Crayf                       | fish Burrows (C8)                      |
| Sediment Deposits (B2) O>                                        | idized Rhizospheres on Living Roots (C3) Satur        | ration Visible on Aerial Imagery (C9)  |
| Drift Deposits (B3) Pr                                           | esence of Reduced Iron (C4) Stunt                     | ed or Stressed Plants (D1)             |
| Algal Mat or Crust (B4) Re                                       | ecent Iron Reduction in Tilled Soils (C6) 🧹 Geon      | norphic Position (D2)                  |
| Iron Deposits (B5) Th                                            | in Muck Surface (C7) Shall                            | ow Aquitard (D3)                       |
| Inundation Visible on Aerial Imagery (B7) Ot                     | her (Explain in Remarks) Micro                        | otopographic Relief (D4)               |
| Sparsely Vegetated Concave Surface (B8)                          | FAC-                                                  | Neutral Test (D5)                      |
| Field Observations:                                              |                                                       |                                        |
| Surface Water Present? Yes X No D                                | epth (inches): 1                                      |                                        |
| Water Table Present? Yes X No D                                  | epth (inches): surface                                |                                        |
| Saturation Present? Yes X No D                                   | epth (inches): surface Wetland Hydrology              | Present? Yes X No                      |
| (includes capillary fringe)                                      | ······································                |                                        |
| Describe Recorded Data (stream gauge, monitoring well            | , aerial photos, previous inspections), if available: |                                        |
|                                                                  |                                                       |                                        |
| Remarks:                                                         |                                                       |                                        |
|                                                                  |                                                       |                                        |
|                                                                  |                                                       |                                        |
|                                                                  |                                                       |                                        |
|                                                                  |                                                       |                                        |
|                                                                  |                                                       |                                        |

Sampling Point: WPAA004\_WDP

| Tree Stratum (Distaire)                               | Absolute       | Dominant         | Indicator | Dominance Test worksheet:                                                                            |
|-------------------------------------------------------|----------------|------------------|-----------|------------------------------------------------------------------------------------------------------|
| <u>Tree Stratum</u> (Plot size:)                      | <u>% Cover</u> | <u>Species</u> ? | Status    | Number of Dominant Species                                                                           |
| 1                                                     |                |                  | ·         | That Are OBL, FACW, or FAC: (A)                                                                      |
| 2                                                     |                |                  | ·         | Total Number of Dominant                                                                             |
| 3                                                     |                |                  | ·         | Species Across All Strata: <u>2</u> (B)                                                              |
| 4                                                     |                |                  |           | Percent of Dominant Species                                                                          |
| 5                                                     |                |                  | ·         | That Are OBL, FACW, or FAC: 50.0% (A/B)                                                              |
| 6.                                                    |                |                  |           | Browslands Index workshoot                                                                           |
| 7                                                     | _              |                  |           | Tetal % Cover of: Multiply by:                                                                       |
| ·                                                     |                | - Total Ca       |           |                                                                                                      |
|                                                       |                |                  | vei       |                                                                                                      |
| Sapling/Shrub Stratum (Plot size:)                    |                |                  |           | FAC species 5 x 3 = 15                                                                               |
| 1                                                     |                |                  | ·         | FACIL species x4 =                                                                                   |
| 2                                                     |                |                  | ·         | $\frac{1100 \text{ species}}{5} \qquad x_5 = \frac{25}{25}$                                          |
| 3                                                     |                |                  |           | Column Totals: $10$ (A) $40$ (B)                                                                     |
| 4                                                     |                |                  | ·         |                                                                                                      |
| 5.                                                    |                |                  |           | Prevalence Index = $B/A = 4.0$                                                                       |
| 6                                                     |                |                  |           | Hydrophytic Vegetation Indicators:                                                                   |
| 7                                                     |                |                  | ·         | 1 - Rapid Test for Hydrophytic Vegetation                                                            |
| /:                                                    |                |                  | ·         | 2 - Dominance Test is >50%                                                                           |
| E'                                                    |                | = Total Co       | ver       | 3 - Prevalence Index is ≤3.0 <sup>1</sup>                                                            |
| Herb Stratum (Plot size: 5)                           | _              |                  |           | 4 - Morphological Adaptations <sup>1</sup> (Provide supporting                                       |
| 1. Zea mays                                           | 5              | Yes              | UPL       | data in Remarks or on a separate sheet)                                                              |
| 2. Setaria pumila                                     | 5              | Yes              | FAC       | ✓ Problematic Hydrophytic Vegetation <sup>1</sup> (Explain)                                          |
| 3                                                     |                |                  |           | 1                                                                                                    |
| 4.                                                    |                |                  |           | Indicators of hydric soil and wetland hydrology must<br>be present, unless disturbed or problematic. |
| 5                                                     |                |                  |           |                                                                                                      |
| 6                                                     |                |                  | ·         | Definitions of Vegetation Strata:                                                                    |
|                                                       |                |                  | ·         | Tree – Woody plants 3 in. (7.6 cm) or more in diameter                                               |
| /                                                     |                |                  | ·         | at breast height (DBH), regardless of height.                                                        |
| 8                                                     |                |                  | ·         | Sapling/shrub – Woody plants less than 3 in. DBH                                                     |
| 9                                                     |                |                  |           | and greater than or equal to 3.28 ft (1 m) tall.                                                     |
| 10                                                    |                |                  |           | Herb – All herbaceous (non-woody) plants, regardless                                                 |
| 11                                                    |                |                  |           | of size, and woody plants less than 3.28 ft tall.                                                    |
| 12                                                    |                |                  |           | Woody vines – All woody vines greater than 3.28 ft in                                                |
|                                                       | 10             | = Total Co       | ver       | height.                                                                                              |
| Woody Vine Stratum (Plot size:                        |                |                  |           |                                                                                                      |
| (1 101 0120)                                          |                |                  |           |                                                                                                      |
|                                                       |                |                  | ·         |                                                                                                      |
| 2                                                     |                |                  | ·         |                                                                                                      |
| 3                                                     |                |                  | ·         | Hydrophytic                                                                                          |
| 4                                                     |                |                  |           | Present? Yes No X                                                                                    |
|                                                       |                | = Total Co       | ver       |                                                                                                      |
| Remarks: (Include photo numbers here or on a separate | sheet.)        |                  |           |                                                                                                      |
| 001N, 002E, 003W                                      |                |                  |           |                                                                                                      |
|                                                       |                |                  |           |                                                                                                      |
|                                                       |                |                  |           |                                                                                                      |
|                                                       |                |                  |           |                                                                                                      |
|                                                       |                |                  |           |                                                                                                      |
|                                                       |                |                  |           |                                                                                                      |
|                                                       |                |                  |           |                                                                                                      |
|                                                       |                |                  |           |                                                                                                      |

| Deptil                                                                                                                                         | Motrix                                                                                                                                                                                                                |                      | Pod                                                                                                                                                                                                                    | ov Egotur                                                                                                     | 20                                                      |                            |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (inches)                                                                                                                                       | Color (moist)                                                                                                                                                                                                         | %                    | Color (moist)                                                                                                                                                                                                          | <u>%</u>                                                                                                      | Type <sup>1</sup>                                       | Loc <sup>2</sup>           | Texture                                                                                                                  | Remarks                                                                                                                                                                                                                                                                                                                                                                                                |
| 0-3                                                                                                                                            | 10YR 3/2                                                                                                                                                                                                              | 100                  |                                                                                                                                                                                                                        |                                                                                                               |                                                         |                            | sic                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3-6                                                                                                                                            | 10YR 3/2                                                                                                                                                                                                              | 100                  |                                                                                                                                                                                                                        |                                                                                                               |                                                         |                            | С                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                        |
| 6-14                                                                                                                                           | 10YR 3/2                                                                                                                                                                                                              | 95                   | 10YR 5/6                                                                                                                                                                                                               | 5                                                                                                             | С                                                       | Μ                          | С                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                        |
| 14-22                                                                                                                                          | 10YR 3/2                                                                                                                                                                                                              | 70                   | 10YR 5/8                                                                                                                                                                                                               | 30                                                                                                            | С                                                       | Μ                          | С                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                |                                                                                                                                                                                                                       |                      |                                                                                                                                                                                                                        |                                                                                                               |                                                         |                            |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                |                                                                                                                                                                                                                       |                      |                                                                                                                                                                                                                        |                                                                                                               |                                                         |                            |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                        |
| <sup>1</sup> Type: C=C                                                                                                                         | oncentration, D=De                                                                                                                                                                                                    | pletion, RI          | /I=Reduced Matrix, M                                                                                                                                                                                                   | IS=Maske                                                                                                      | d Sand Gr                                               | ains.                      | <sup>2</sup> Location:                                                                                                   | PL=Pore Lining, M=Matrix.                                                                                                                                                                                                                                                                                                                                                                              |
| Histoso<br>— Histic E<br>Black H<br>Hydroge<br>Stratifie<br>Deplete<br>— Thick D<br>— Sandy M<br>— Sandy G<br>— Sandy F<br>Stripped<br>Dark Su | I (A1)<br>pipedon (A2)<br>istic (A3)<br>en Sulfide (A4)<br>d Layers (A5)<br>d Below Dark Surfa<br>ark Surface (A12)<br>Mucky Mineral (S1)<br>Gleyed Matrix (S4)<br>Redox (S5)<br>d Matrix (S6)<br>urface (S7) (LRR R, | ice (A11)<br>MLRA 14 | <ul> <li>Polyvalue Belo</li> <li>MLRA 149B</li> <li>Thin Dark Surf</li> <li>Loamy Mucky</li> <li>Loamy Gleyed</li> <li>Depleted Matri</li> <li>✓ Redox Dark Su</li> <li>Depleted Dark</li> <li>Redox Depres</li> </ul> | ow Surface<br>3)<br>ace (S9) (<br>Mineral (F<br>Matrix (F:<br>x (F3)<br>urface (F6<br>Surface (<br>sions (F8) | e (S8) (LR<br>(LRR R, M<br>⊡1) (LRR k<br>2)<br>)<br>F7) | R R,<br>LRA 149B)<br>(, L) | 2 cm Mu<br>Coast P<br>5 cm Mu<br>Polyvalu<br>Thin Da<br>Iron-Mai<br>Piedmoi<br>Mesic S<br>Red Par<br>Very Sh<br>Other (E | uck (A10) (LRR K, L, MLRA 149B)<br>rairie Redox (A16) (LRR K, L, R)<br>ucky Peat or Peat (S3) (LRR K, L, R)<br>rface (S7) (LRR K, L)<br>ue Below Surface (S8) (LRR K, L)<br>rk Surface (S9) (LRR K, L)<br>nganese Masses (F12) (LRR K, L, R)<br>nt Floodplain Soils (F19) (MLRA 149B)<br>podic (TA6) (MLRA 144A, 145, 149B)<br>rent Material (F21)<br>allow Dark Surface (TF12)<br>Explain in Remarks) |
| <sup>3</sup> Indicators c<br>Restrictive                                                                                                       | of hydrophytic veget<br>Laver (if observed                                                                                                                                                                            | ation and v          | vetland hydrology mu                                                                                                                                                                                                   | st be pres                                                                                                    | sent, unles                                             | s disturbed                | or problematic.                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                        |
| Type:                                                                                                                                          |                                                                                                                                                                                                                       | ,-                   |                                                                                                                                                                                                                        |                                                                                                               |                                                         |                            |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                        |
| Depth (in                                                                                                                                      | ches):                                                                                                                                                                                                                |                      |                                                                                                                                                                                                                        |                                                                                                               |                                                         |                            | Hydric Soil F                                                                                                            | Present? Yes $\frac{X}{No}$ No                                                                                                                                                                                                                                                                                                                                                                         |
| Remarks:                                                                                                                                       |                                                                                                                                                                                                                       |                      |                                                                                                                                                                                                                        |                                                                                                               |                                                         |                            |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                |                                                                                                                                                                                                                       |                      |                                                                                                                                                                                                                        |                                                                                                               |                                                         |                            |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                        |

### WETLAND DETERMINATION DATA FORM – Northcentral and Northeast Region

| Project/Site: AEP - Allen Station                                                                                                                                          | City/County: Paulding                                                            | _ Sampling Date: 7/15/15              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------|
| Applicant/Owner: AEP                                                                                                                                                       | State: OH                                                                        | Sampling Point: WPAA004_UDP           |
| Investigator(s): SCI Engineering, Inc.                                                                                                                                     | _ Section, Township, Range: S30 T1N R1E                                          |                                       |
| Landform (hillslope, terrace, etc.): Flats                                                                                                                                 | _ocal relief (concave, convex, none): <u>None</u>                                | Slope (%): <u>1</u>                   |
| Subregion (LRR or MLRA): LRR L, MLRA 99 Lat: 41.018004                                                                                                                     | 72 Long: <u>-84.67654312</u>                                                     | Datum: NAD83                          |
| Soil Map Unit Name: Hoytville silty clay                                                                                                                                   | NWI classifi                                                                     | cation: N/A                           |
| Are climatic / hydrologic conditions on the site typical for this time of Are Vegetation $\underline{Y}$ , Soil $\underline{Y}$ , or Hydrology $\underline{N}$ significant | year? Yes No X (If no, explain in F<br>tly disturbed? Are "Normal Circumstances" | Remarks.)<br>present? Yes No <u>X</u> |
| Are Vegetation <u>N</u> , Soil <u>N</u> , or Hydrology <u>N</u> naturally                                                                                                  | problematic? (If needed, explain any answe                                       | ers in Remarks.)                      |
| SUMMARY OF FINDINGS – Attach site map showin                                                                                                                               | ng sampling point locations, transects                                           | s, important features, etc.           |
| Hydrophytic Vegetation Present?     Yes     No     X       Hydric Soil Present?     Yes     No     X                                                                       | Is the Sampled Area<br>within a Wetland? Yes                                     | No <u>X</u>                           |
| Wetland Hydrology Present?   Yes No X                                                                                                                                      | _ If yes, optional Wetland Site ID:                                              |                                       |
| Remarks: (Explain alternative procedures here or in a separate rep                                                                                                         | port.)                                                                           |                                       |
| Upland point is on a higher spot in the field up<br>considered disturbed due to active farming.                                                                            | nder the existing power lines. Veg                                               | jetation and soils                    |
|                                                                                                                                                                            |                                                                                  |                                       |

#### HYDROLOGY

| Wetland Hydrology Indicators:                                                        | Secondary Indicators (minimum of two required)       |
|--------------------------------------------------------------------------------------|------------------------------------------------------|
| Primary Indicators (minimum of one is required; check all that apply)                | Surface Soil Cracks (B6)                             |
| Surface Water (A1) Water-Stained Leaves (B9)                                         | Drainage Patterns (B10)                              |
| High Water Table (A2) Aquatic Fauna (B13)                                            | Moss Trim Lines (B16)                                |
| Saturation (A3) Marl Deposits (B15)                                                  | Dry-Season Water Table (C2)                          |
| Water Marks (B1) Hydrogen Sulfide Odor (C1)                                          | Crayfish Burrows (C8)                                |
| Sediment Deposits (B2) Oxidized Rhizospheres on Living                               | Roots (C3) Saturation Visible on Aerial Imagery (C9) |
| Drift Deposits (B3) Presence of Reduced Iron (C4)                                    | Stunted or Stressed Plants (D1)                      |
| Algal Mat or Crust (B4) Recent Iron Reduction in Tilled S                            | bils (C6) Geomorphic Position (D2)                   |
| Iron Deposits (B5) Thin Muck Surface (C7)                                            | Shallow Aquitard (D3)                                |
| Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks)                 | Microtopographic Relief (D4)                         |
| Sparsely Vegetated Concave Surface (B8)                                              | FAC-Neutral Test (D5)                                |
| Field Observations:                                                                  |                                                      |
| Surface Water Present? Yes <u>No X</u> Depth (inches): <u>N/A</u>                    |                                                      |
| Water Table Present?   Yes   No   X   Depth (inches):   >21                          |                                                      |
| Saturation Present? Yes No X Depth (inches): >21                                     | Wetland Hydrology Present? Yes No $\frac{X}{2}$      |
| (includes capillary fringe)                                                          | tiona) if available:                                 |
| Describe Recorded Data (stream gauge, morntoning well, aenai photos, previous inspec | uons), ii available.                                 |
|                                                                                      |                                                      |
| Remarks:                                                                             |                                                      |
|                                                                                      |                                                      |
|                                                                                      |                                                      |
|                                                                                      |                                                      |
|                                                                                      |                                                      |
|                                                                                      |                                                      |
|                                                                                      |                                                      |
|                                                                                      |                                                      |
|                                                                                      |                                                      |
|                                                                                      |                                                      |
|                                                                                      |                                                      |

Sampling Point: WPAA004\_UDP

|                                                       | Absolute | Dominant   | Indicator | Dominance Test worksheet:                                      |
|-------------------------------------------------------|----------|------------|-----------|----------------------------------------------------------------|
| I ree Stratum (Plot size:)                            | % Cover  | Species?   | Status    | Number of Dominant Species                                     |
| 1                                                     |          | ·          | ·         | That Are OBL, FACW, or FAC: (A)                                |
| 2                                                     |          | ·          |           | Total Number of Dominant                                       |
| 3                                                     |          |            |           | Species Across All Strata: <u>1</u> (B)                        |
| 4                                                     |          |            |           | Percent of Dominant Species                                    |
|                                                       |          | ·          |           | That Are OBL, FACW, or FAC: 0.00% (A/B)                        |
| o                                                     |          | ·          | ·         |                                                                |
| 6                                                     |          | ·          | ·         | Prevalence Index worksheet:                                    |
| 7                                                     |          | ·          |           | Total % Cover of: Multiply by:                                 |
|                                                       |          | = Total Co | ver       | OBL species x 1 =                                              |
| Sapling/Shrub Stratum (Plot size: )                   |          |            |           | FACW species x 2 =                                             |
| 1                                                     |          |            |           | FAC species x 3 =                                              |
|                                                       |          | ·          |           | FACU species x 4 =                                             |
| 2                                                     |          | ·          |           | UPL species $10$ x 5 = $50$                                    |
| 3                                                     |          |            | ·         | Column Totals: 10 (A) 50 (B)                                   |
| 4                                                     |          |            |           |                                                                |
| 5.                                                    |          |            |           | Prevalence Index = $B/A = 5.0$                                 |
| 6                                                     |          |            |           | Hydrophytic Vegetation Indicators:                             |
| 0                                                     |          | ·          | ·         | 1 - Rapid Test for Hydrophytic Vegetation                      |
| 7                                                     |          | ·          |           | 2 - Dominance Test is >50%                                     |
|                                                       |          | = Total Co | ver       | $\frac{2}{2} = \frac{2}{2} = \frac{1}{2} = \frac{1}{2}$        |
| Herb Stratum (Plot size: 5' )                         |          |            |           | 5 - Prevalence index is >5.0                                   |
| <sub>1.</sub> Zea mays                                | 10       | Yes        | UPL       | data in Remarks or on a separate sheet)                        |
| 2                                                     |          |            |           | Problematic Hydrophytic Vegetation <sup>1</sup> (Explain)      |
| 3                                                     |          |            |           | The Product of the data and the data data to the second second |
| 4.                                                    |          |            |           | be present unless disturbed or problematic                     |
| 5                                                     |          |            |           |                                                                |
|                                                       |          | ·          | ·         | Definitions of Vegetation Strata:                              |
| b                                                     |          | ·          | ·         | Tree – Woody plants 3 in. (7.6 cm) or more in diameter         |
| 7                                                     |          | ·          | ·         | at breast height (DBH), regardless of height.                  |
| 8                                                     |          | ·          |           | Sapling/shrub – Woody plants less than 3 in. DBH               |
| 9                                                     |          |            |           | and greater than or equal to 3.28 ft (1 m) tall.               |
| 10.                                                   |          |            |           | Herb – All berbaceous (non-woody) plants, regardless           |
| 11                                                    |          |            |           | of size, and woody plants less than 3.28 ft tall.              |
| ···                                                   |          | ·          |           | Weedy vince All weedy vince greater than 2.29 ft in            |
| 12                                                    | 40       | ·          | ·         | height.                                                        |
|                                                       | 10       | = Total Co | ver       |                                                                |
| Woody Vine Stratum (Plot size:)                       |          |            |           |                                                                |
| 1                                                     | _        |            |           |                                                                |
| 2                                                     |          |            |           |                                                                |
| 2                                                     |          | ·          |           |                                                                |
| 3                                                     |          | ·          | ·         | Hydrophytic<br>Vegetation                                      |
| 4                                                     |          | ·          | ·         | Present? Yes No $\frac{X}{X}$                                  |
|                                                       |          | = Total Co | ver       |                                                                |
| Remarks: (Include photo numbers here or on a separate | sheet.)  |            |           | ·                                                              |
| 001N. 002E. 003W                                      |          |            |           |                                                                |
|                                                       |          |            |           |                                                                |
|                                                       |          |            |           |                                                                |
|                                                       |          |            |           |                                                                |
|                                                       |          |            |           |                                                                |
|                                                       |          |            |           |                                                                |
|                                                       |          |            |           |                                                                |
|                                                       |          |            |           |                                                                |

#### SOIL

| Profile Desc              | cription: (Describe                      | to the de   | oth needed to docur           | nent the                  | indicator              | or confirm  | the absence           | of indicators.)                              |
|---------------------------|------------------------------------------|-------------|-------------------------------|---------------------------|------------------------|-------------|-----------------------|----------------------------------------------|
| Depth<br>(inches)         | Matrix<br>Color (moist)                  | %           | Color (moist)                 | <u>x Feature</u><br>%     | S<br>Type <sup>1</sup> | $l oc^2$    | Texture               | Remarks                                      |
| <u>0-3</u>                | 10YR 3/3                                 | 100         |                               |                           |                        |             | sic                   | Komuno                                       |
| 3-9                       | 10YR 3/3                                 | 85          | 5YR 4/6                       | 15                        | С                      | Μ           | С                     |                                              |
| 9-21                      | 10YR 3/3                                 | 100         |                               |                           |                        | <u> </u>    | С                     | Small gravel                                 |
|                           |                                          |             |                               |                           |                        | ·           |                       |                                              |
|                           |                                          |             |                               |                           |                        |             |                       |                                              |
|                           |                                          | ·           |                               |                           | ·                      | ·           |                       |                                              |
|                           |                                          | <u></u>     |                               |                           |                        |             |                       |                                              |
|                           |                                          |             |                               |                           |                        |             |                       |                                              |
|                           |                                          |             |                               |                           |                        |             |                       |                                              |
|                           |                                          |             |                               |                           |                        |             |                       |                                              |
| <sup>1</sup> Type: C=C    | oncentration, D=Dep                      | letion, RM  | Reduced Matrix, MS            | S=Maske                   | d Sand G               | rains.      | <sup>2</sup> Location | PI =Pore Lining, M=Matrix                    |
| Hydric Soil               | Indicators:                              | iouori, rui |                               |                           |                        |             | Indicators            | for Problematic Hydric Soils <sup>3</sup> :  |
| Histosol                  | (A1)                                     |             | Polyvalue Below               | w Surface                 | e (S8) ( <b>LR</b>     | R R,        | 2 cm N                | Muck (A10) (LRR K, L, MLRA 149B)             |
| Histic El<br>Black Hi     | oipedon (A2)                             |             | MLRA 149B)<br>Thin Dark Surfa | )<br>ace (S9) (1          |                        |             | Coast                 | Prairie Redox (A16) (LRR K, L, R)            |
| Hydroge                   | en Sulfide (A4)                          |             | Loamy Mucky N                 | лос (00) (I<br>Лineral (F | 1) ( <b>LRR</b>        | (, L)       | Dark S                | Surface (S7) (LRR K, L)                      |
| Stratified                | d Layers (A5)                            |             | Loamy Gleyed                  | Matrix (F2                | 2)                     |             | Polyva                | alue Below Surface (S8) (LRR K, L)           |
| Deplete<br>Thick D        | d Below Dark Surfac<br>ark Surface (A12) | e (A11)     | Depleted Matrix               | (F3)<br>Inface (F6)       |                        |             | Thin D                | ark Surface (S9) (LRR K, L)                  |
| Sandy N                   | Aucky Mineral (S1)                       |             | Depleted Dark                 | Surface (F                | ,<br>=7)               |             | Piedm                 | ont Floodplain Soils (F19) (MLRA 149B)       |
| Sandy G                   | Bleyed Matrix (S4)                       |             | Redox Depress                 | ions (F8)                 |                        |             | Mesic                 | Spodic (TA6) ( <b>MLRA 144A, 145, 149B</b> ) |
| Sandy F                   | Redox (S5)                               |             |                               |                           |                        |             | Red P                 | arent Material (F21)                         |
| Dark Su                   | rface (S7) (LRR R, N                     | /ILRA 149   | B)                            |                           |                        |             | Other                 | (Explain in Remarks)                         |
| <sup>3</sup> Indicators o | f hydrophytic vegeta                     | tion and w  | etland hydrology mus          | st be pres                | ent, unles             | s disturbed | or problematio        | 2.                                           |
| Restrictive               | Layer (if observed):                     |             |                               |                           |                        |             |                       |                                              |
| Type.                     | ches).                                   |             |                               |                           |                        |             | Hydric Soil           | Present? Yes No X                            |
| Remarks:                  | mall gravel m                            | ov indi     |                               | cturbo                    | d Thi                  | o io io th  |                       |                                              |
| 5                         | mail gravel m                            | ay indi     | caled it was di               | sturbe                    | a. Thi                 | s is in tr  | ie location           | i of a former railroad grade.                |
|                           |                                          |             |                               |                           |                        |             |                       |                                              |
|                           |                                          |             |                               |                           |                        |             |                       |                                              |
|                           |                                          |             |                               |                           |                        |             |                       |                                              |
|                           |                                          |             |                               |                           |                        |             |                       |                                              |
|                           |                                          |             |                               |                           |                        |             |                       |                                              |
|                           |                                          |             |                               |                           |                        |             |                       |                                              |
|                           |                                          |             |                               |                           |                        |             |                       |                                              |
|                           |                                          |             |                               |                           |                        |             |                       |                                              |
|                           |                                          |             |                               |                           |                        |             |                       |                                              |
|                           |                                          |             |                               |                           |                        |             |                       |                                              |
|                           |                                          |             |                               |                           |                        |             |                       |                                              |

|                | Ohio Rapid Assessment Method for Wetlands<br>10 Page Form for Wetland Categorization |                                     |  |  |  |  |
|----------------|--------------------------------------------------------------------------------------|-------------------------------------|--|--|--|--|
| Vorsion 50     | Background Information                                                               |                                     |  |  |  |  |
| v el siuli 3.0 | Scoring Boundary Worksheet                                                           |                                     |  |  |  |  |
|                | Narrative Rating                                                                     | Ohio EPA, Division of Surface Water |  |  |  |  |
|                | Field Form Quantitative Rating                                                       | Final: February 1, 2001             |  |  |  |  |
|                | <b>ORAM Summary Worksheet</b>                                                        |                                     |  |  |  |  |
|                | Wetland Categorization Worksheet                                                     |                                     |  |  |  |  |
|                |                                                                                      |                                     |  |  |  |  |

### **Instructions**

The investigator is *STRONGLY URGED* to read the Manual for Using the Ohio Rapid Assessment Method for Wetlands for further elaboration and discussion of the questions below prior to using the rating forms.

The Narrative Rating is designed to categorize a wetland or to provide alerts to the Rater based on the presence or possible presence of threatened or endangered species. The presence or proximity of such species is often an indicator of the quality and lack of disturbance of the wetland being evaluated. In addition, it is designed to categorize certain wetlands as very low quality (Category 1) or very high quality (Category 3) regardless of the wetland's score on the Quantitative Rating. In addition, the Narrative Rating also alerts the investigator that a particular wetland *may* be a Category 3 wetland, again, regardless of the wetland's score on the Quantitative Rating.

It is *VERY IMPORTANT* to properly and thoroughly answer each of the questions in the ORAM in order to properly categorize a wetland. To *properly* answer all the questions, the boundaries of the wetland being assessed must be correctly identified. Refer to Scoring Boundary worksheet and the User's Manual for a discussion of how to determine the "scoring boundaries." In some instances, the scoring boundaries may differ from the "jurisdictional boundaries."

Refer to the most recent ORAM Score Calibration Report for the scoring breakpoints between wetland categories. The most recent version of this document is posted on Ohio EPA's Division of Surface Water web page at: <u>http://www.epa.ohio.gov/dsw/wetlands/WetlandEcologySection.aspx</u>

# **Background Information**

| _                                                                                         |         |
|-------------------------------------------------------------------------------------------|---------|
| Name:<br>AEP - Allen Station                                                              |         |
| Date:<br>7/15/2015                                                                        |         |
| Affiliation:<br>SCI Engineering                                                           |         |
| Address:<br>650 Pierce Boulevard, O'Fallon, IL 62269                                      |         |
| Phone Number:<br>618-624-6969                                                             |         |
| e-mail address:                                                                           |         |
| Name of Wetland:                                                                          |         |
| Vegetation Communit(ies):<br>Farmed Emergent                                              |         |
| HGM Class(es):<br>Depressional                                                            |         |
| Location of Wetland: include map, address, north arrow, landmarks, distances, roads, etc. |         |
| Approximately 250' south of State Route 114 and 0.6 miles east of Township Highv          | vay 59. |
| HWY 59 A                                                                                  |         |
| N State R+ 114                                                                            |         |
| 1250'                                                                                     |         |
| Co.6mi                                                                                    |         |
| Road                                                                                      |         |
| 511                                                                                       |         |
|                                                                                           |         |
|                                                                                           |         |
|                                                                                           |         |
| Lat/Long or UTM Coordinate 41.01800472, -84.67654312                                      |         |
| USGS Quad Name Payne                                                                      |         |
| County Paulding                                                                           |         |
| Township 1N                                                                               |         |
| Section and Subsection 30                                                                 |         |
| Hydrologic Unit Code 4100007                                                              |         |
| Site Visit 7/15/15                                                                        |         |
| National Wetland Inventory Map<br>n/a                                                     |         |
| Ohio Wetland Inventory Map n/a                                                            |         |
| Soil Survey Hoytville Silty Clay                                                          |         |
| Delineation report/map n/a                                                                |         |



## **Scoring Boundary Worksheet**

INSTRUCTIONS. The initial step in completing the ORAM is to identify the "scoring boundaries" of the wetland being rated. In many instances this determination will be relatively easy and the scoring boundaries will coincide with the "jurisdictional boundaries." For example, the scoring boundary of an isolated cattail marsh located in the middle of a farm field will likely be the same as that wetland's jurisdictional boundaries. In other instances, however, the scoring boundary will not be as easily determined. Wetlands that are small or isolated from other surface waters often form large contiguous areas or heterogeneous complexes of wetland and upland. In separating wetlands for scoring purposes, the hydrologic regime of the wetland is the main criterion that should be used. Boundaries between contiguous or connected wetlands should be established where the volume, flow, or velocity of water moving through the wetland changes significantly. Areas with a high degree of hydrologic interaction should be scored as a single wetland. In determining a wetland's scoring boundaries, use the guidelines in the ORAM Manual Section 5.0. In certain instances, it may be difficult to establish the scoring boundary for the wetland being rated. These problem situations include wetlands that form a patchwork on the landscape, wetlands divided by artificial boundaries like property fences, roads, or railroad embankments, wetlands that are contiguous with streams, lakes, or rivers, and estuarine or coastal wetlands. These situations are discussed below, however, it is recommended that Rater contact Ohio EPA, Division of Surface Water, 401/Wetlands Section if there are additional questions or a need for further clarification of the appropriate scoring boundaries of a particular wetland.

| #      | Steps in properly establishing scoring boundaries                                                                                                                                                                                                                                                                                                                                                                                                                                | done? | not applicable |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------|
| Step 1 | Identify the wetland area of interest. This may be the site of a proposed impact, a reference site, conservation site, etc.                                                                                                                                                                                                                                                                                                                                                      | х     |                |
| Step 2 | Identify the locations where there is physical evidence that hydrology<br>changes rapidly. Such evidence includes both natural and human-<br>induced changes including, constrictions caused by berms or dikes,<br>points where the water velocity changes rapidly at rapids or falls,<br>points where significant inflows occur at the confluence of rivers, or<br>other factors that may restrict hydrologic interaction between the<br>wetlands or parts of a single wetland. | Х     |                |
| Step 3 | Delineate the boundary of the wetland to be rated such that all areas<br>of interest that are contiguous to and within the areas where the<br>hydrology does not change significantly, i.e. areas that have a high<br>degree of hydrologic interaction are included within the scoring<br>boundary.                                                                                                                                                                              | Х     |                |
| Step 4 | Determine if artificial boundaries, such as property lines, state lines, roads, railroad embankments, etc., are present. These should not be used to establish scoring boundaries unless they coincide with areas where the hydrologic regime changes.                                                                                                                                                                                                                           | х     |                |
| Step 5 | In all instances, the Rater may enlarge the minimum scoring boundaries discussed here to score together wetlands that could be scored separately.                                                                                                                                                                                                                                                                                                                                | Х     |                |
| Step 6 | Consult ORAM Manual Section 5.0 for how to establish scoring<br>boundaries for wetlands that form a patchwork on the landscape,<br>divided by artificial boundaries, contiguous to streams, lakes or rivers,<br>or for dual classifications.                                                                                                                                                                                                                                     | Х     |                |

End of Scoring Boundary Determination. Begin Narrative Rating on next page.

## **Narrative Rating**

INSTRUCTIONS. Answer each of the following questions. Questions 1, 2, 3 and 4 should be answered based on information obtained from the site visit or the literature *and* by submitting a Data Services Request to the Ohio Department of Natural Resources, Division of Natural Areas and Preserves, Natural Heritage Data Services, 1889 Fountain Square Court, Building F-1, Columbus, Ohio 43224, 614-265-6453 (phone), 614-265-3096 (fax), <u>http://www.dnr.state.oh.us/dnap</u>. The remaining questions are designed to be answered primarily by the results of the site visit. Refer to the User's Manual for descriptions of these wetland types. Note: "Critical habitat" is legally defined in the Endangered Species Act and is the geographic area containing physical or biological features essential to the conservation of a listed species or as an area that may require special management considerations or protection. The Rater should contact the Region 3 Headquarters or the Columbus Ecological Services Office for updates as to whether critical habitat has been designated for other federally listed threatened or endangered species. "Documented" means the wetland is listed in the appropriate State of Ohio database.

| #  | Question                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Circle one                                                              |                           |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------|
| 1  | <b>Critical Habitat.</b> Is the wetland in a township, section, or subsection of a United States Geological Survey 7.5 minute Quadrangle that has been designated by the U.S. Fish and Wildlife Service as "critical habitat" for any threatened or endangered plant or animal species? Note: as of January 1, 2001, of the federally listed endangered or threatened species which can be found in Ohio, the Indiana Bat has                                                                                                                                   | YES<br>Wetland should be<br>evaluated for possible<br>Category 3 status | NO 🗙<br>Go to Question 2  |
|    | had critical habitat designated (50 CFR 17.95(a)) and the piping plover<br>has had critical habitat proposed (65 FR 41812 July 6, 2000).                                                                                                                                                                                                                                                                                                                                                                                                                        | Go to Question 2                                                        |                           |
| 2  | Threatened or Endangered Species. Is the wetland known to contain<br>an individual of, or documented occurrences of federal or state-listed<br>threatened or endangered plant or animal species?                                                                                                                                                                                                                                                                                                                                                                | YES Wetland is a Category 3 wetland.                                    | NO 🗙<br>Go to Question 3  |
| 3  | <b>Documented High Quality Wetland.</b> Is the wetland on record in Natural Heritage Database as a high quality wetland?                                                                                                                                                                                                                                                                                                                                                                                                                                        | YES<br>Wetland is a Category<br>3 wetland                               | NO 🗙<br>Go to Question 4  |
| 4  | <b>Significant Breeding or Concentration Area.</b> Does the wetland contain documented regionally significant breeding or nonbreeding waterfowl, neotropical songbird, or shorebird concentration areas?                                                                                                                                                                                                                                                                                                                                                        | YES Wetland is a Category<br>3 wetland                                  | NO 🗙<br>Go to Question 5  |
| 5  | <b>Category 1 Wetlands.</b> Is the wetland less than 0.5 hectares (1 acre) in size and <b>hydrologically isolated</b> and either 1) comprised of vegetation that is dominated (greater than eighty per cent areal cover) by <i>Phalaris arundinacea, Lythrum salicaria,</i> or <i>Phragmites australis,</i> or 2) an acidic pond created or excavated on mined lands that has little or no vegetation?                                                                                                                                                          | YES Wetland is a Category<br>1 wetland<br>Go to Question 6              | NO 🗙<br>Go to Question 6  |
| 6  | <b>Bogs.</b> Is the wetland a peat-accumulating wetland that 1) has no significant inflows or outflows, 2) supports acidophilic mosses, particularly <i>Sphagnum</i> spp., 3) the acidophilic mosses have >30% cover, 4) at least one species from Table 1 is present, and 5) the cover of invasive species (see Table 1) is <25%?                                                                                                                                                                                                                              | YES<br>Wetland is a Category<br>3 wetland<br>Go to Question 7           | NO 🗙<br>Go to Question 7  |
| 7  | <b>Fens.</b> Is the wetland a carbon accumulating (peat, muck) wetland that<br>is saturated during most of the year, primarily by a discharge of free<br>flowing, mineral rich, ground water with a circumneutral ph (5.5-9.0)<br>and with one or more plant species listed in Table 1 and the cover of<br>invasive species listed in Table 1 is <25%?                                                                                                                                                                                                          | YES Wetland is a Category<br>3 wetland<br>Go to Question 8a             | NO 🗙<br>Go to Question 8a |
| 8a | "Old Growth Forest." Is the wetland a forested wetland and is the<br>forest characterized by, but not limited to, the following characteristics:<br>overstory canopy trees of great age (exceeding at least 50% of a<br>projected maximum attainable age for a species); little or no evidence<br>of human-caused understory disturbance during the past 80 to 100<br>years; an all-aged structure and multilayered canopies; aggregations of<br>canopy trees interspersed with canopy gaps; and significant numbers<br>of standing dead snags and downed logs? | YES Wetland is a Category 3 wetland.                                    | NO 🗙<br>Go to Question 8b |

| 8b | Mature forested wetlands. Is the wetland a forested wetland with                                                                                                                                                                                                                                                                                | YES                                                               | NO 🗙                               |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------|
|    | 50% or more of the cover of upper forest canopy consisting of deciduous trees with large diameters at breast height (dbh), generally diameters greater than 45cm (17.7in) dbh?                                                                                                                                                                  | Wetland should be<br>evaluated for possible<br>Category 3 status. | Go to Question 9a                  |
|    |                                                                                                                                                                                                                                                                                                                                                 | Go to Question 9a                                                 |                                    |
| 9a | Lake Erie coastal and tributary wetlands. Is the wetland located at                                                                                                                                                                                                                                                                             | YES 🔲                                                             | NO 🗙                               |
|    | elevation, or along a tributary to Lake Erie that is accessible to fish?                                                                                                                                                                                                                                                                        | Go to Question 9b                                                 | Go to Question 10                  |
| 9b | Does the wetland's hydrology result from measures designed to                                                                                                                                                                                                                                                                                   | YES 🗖                                                             | NO 🗙                               |
|    | partially hydrologically restricted from Lake Erie due to lakeward or<br>landward dikes or other hydrological controls?                                                                                                                                                                                                                         | Wetland should be<br>evaluated for possible<br>Category 3 status  | Go to Question 9c                  |
|    |                                                                                                                                                                                                                                                                                                                                                 | Go to Question 10                                                 |                                    |
| 9c | Are Lake Erie water levels the wetland's primary hydrological influence,                                                                                                                                                                                                                                                                        | YES                                                               | NO 🗙                               |
|    | border alterations), or the wetland can be characterized as an<br>"estuarine" wetland with lake and river influenced hydrology. These<br>include sandbar deposition wetlands, estuarine wetlands, river mouth                                                                                                                                   | Go to Question 9d                                                 | Go to Question 10                  |
| 9d | Does the wetland have a predominance of native species within its                                                                                                                                                                                                                                                                               | YES 🗖                                                             | NO 🗙                               |
|    | vegetation communities, although non-native or disturbance tolerant                                                                                                                                                                                                                                                                             |                                                                   |                                    |
|    | native species can also be present?                                                                                                                                                                                                                                                                                                             | 3 wetland is a Category                                           | Go to Question 9e                  |
|    |                                                                                                                                                                                                                                                                                                                                                 | Go to Question 10                                                 |                                    |
| 9e | Does the wetland have a predominance of non-native or disturbance                                                                                                                                                                                                                                                                               | YES                                                               | NO 🗙                               |
|    |                                                                                                                                                                                                                                                                                                                                                 | Wetland should be<br>evaluated for possible<br>Category 3 status  | Go to Question 10                  |
|    |                                                                                                                                                                                                                                                                                                                                                 | Go to Question 10                                                 |                                    |
| 10 | Lake Plain Sand Prairies (Oak Openings) Is the wetland located in                                                                                                                                                                                                                                                                               | YES                                                               | NO 🗙                               |
|    | characterized by the following description: the wetland has a sandy<br>substrate with interspersed organic matter, a water table often within                                                                                                                                                                                                   | Wetland is a Category 3 wetland.                                  | Go to Question 11                  |
|    | gramineous vegetation listed in Table 1 (woody species may also be<br>present). The Ohio Department of Natural Resources Division of<br>Natural Areas and Preserves can provide assistance in confirming this<br>type of wetland and its quality.                                                                                               | Go to Question 11                                                 |                                    |
| 11 | Relict Wet Prairies. Is the wetland a relict wet prairie community                                                                                                                                                                                                                                                                              | YES                                                               | NOX                                |
|    | dominated by some or all of the species in Table 1. Extensive prairies<br>were formerly located in the Darby Plains (Madison and Union<br>Counties), Sandusky Plains (Wyandot, Crawford, and Marion<br>Counties), northwest Ohio (e.g. Erie, Huron, Lucas, Wood Counties),<br>and portions of western Ohio Counties (e.g. Darke, Mercer, Miami, | Wetland should be<br>evaluated for possible<br>Category 3 status  | Complete<br>Quantitative<br>Rating |
|    | wongomery, van wert etc.).                                                                                                                                                                                                                                                                                                                      | Rating                                                            |                                    |

| invasive/exotic spp   | fen species                    | bog species                     | 0ak Opening species      | wet prairie species       |
|-----------------------|--------------------------------|---------------------------------|--------------------------|---------------------------|
| Lythrum salicaria     | Zygadenus elegans var. glaucus | Calla palustris                 | Carex cryptolepis        | Calamagrostis canadensis  |
| Myriophyllum spicatum | Cacalia plantaginea            | Carex atlantica var. capillacea | Carex lasiocarpa         | Calamogrostis stricta     |
| Najas minor           | Carex flava                    | Carex echinata                  | Carex stricta            | Carex atherodes           |
| Phalaris arundinacea  | Carex sterilis                 | Carex oligosperma               | Cladium mariscoides      | Carex buxbaumii           |
| Phragmites australis  | Carex stricta                  | Carex trisperma                 | Calamagrostis stricta    | Carex pellita             |
| Potamogeton crispus   | Deschampsia caespitosa         | Chamaedaphne calyculata         | Calamagrostis canadensis | Carex sartwellii          |
| Ranunculus ficaria    | Eleocharis rostellata          | Decodon verticillatus           | Quercus palustris        | Gentiana andrewsii        |
| Rhamnus frangula      | Eriophorum viridicarinatum     | Eriophorum virginicum           |                          | Helianthus grosseserratus |
| Typha angustifolia    | Gentianopsis spp.              | Larix laricina                  |                          | Liatris spicata           |
| Typha xglauca         | Lobelia kalmii                 | Nemopanthus mucronatus          |                          | Lysimachia quadriflora    |
|                       | Parnassia glauca               | Schechzeria palustris           |                          | Lythrum alatum            |
|                       | Potentilla fruticosa           | Sphagnum spp.                   |                          | Pycnanthemum virginianum  |
|                       | Rhamnus alnifolia              | Vaccinium macrocarpon           |                          | Silphium terebinthinaceum |
|                       | Rhynchospora capillacea        | Vaccinium corymbosum            |                          | Sorghastrum nutans        |
|                       | Salix candida                  | Vaccinium oxycoccos             |                          | Spartina pectinata        |
|                       | Salix myricoides               | Woodwardia virginica            |                          | Solidago riddellii        |
|                       | Salix serissima                | Xyris difformis                 |                          |                           |
|                       | Solidago ohioensis             | 5 00                            |                          |                           |
|                       | Tofieldia glutinosa            |                                 |                          |                           |
|                       | Triglochin maritimum           |                                 |                          |                           |
|                       | Triglochin palustre            |                                 |                          |                           |

End of Narrative Rating. Begin Quantitative Rating on next page.



subtotal this page last revised 1 February 2001 jjm



|       | Х      | None (0)                 |        |
|-------|--------|--------------------------|--------|
| 6c.   | Cove   | rage of invasive plants. | Refer  |
| to Ta | able 1 | I ORAM long form for lis | t. Add |

Moderately low (2)

or deduct points for coverage

Low (1)



6d. Microtopography.

Score all present using 0 to 3 scale.



#### mod Native spp are dominant component of the vegetation, although nonnative and/or disturbance tolerant native spp can also be present, and species diversity moderate to moderately high, but generally w/o presence of rare threatened or endangered spp high A predominance of native species, with nonnative spp and/or disturbance tolerant native spp absent or virtually absent, and high spp diversity and often, but not always, the presence of rare, threatened, or endangered spp

#### Mudflat and Open Water Class Quality

|   | -                                       |
|---|-----------------------------------------|
| 0 | Absent <0.1ha (0.247 acres)             |
| 1 | Low 0.1 to <1ha (0.247 to 2.47 acres)   |
| 2 | Moderate 1 to <4ha (2.47 to 9.88 acres) |
| 3 | High 4ha (9.88 acres) or more           |

#### **Microtopography Cover Scale**

| 0 | Absent                                                              |
|---|---------------------------------------------------------------------|
| 1 | Present very small amounts or if more common<br>of marginal guality |
|   |                                                                     |
| 2 | Present in moderate amounts, but not of highest                     |
|   | quality or in small amounts of highest quality                      |
| 3 | Present in moderate or greater amounts                              |
|   | and of highest quality                                              |

#### 22

End of Quantitative Rating. Complete Categorization Worksheets.

|                        |                                                                        | circle    |                                                            |  |
|------------------------|------------------------------------------------------------------------|-----------|------------------------------------------------------------|--|
|                        |                                                                        | answer or |                                                            |  |
|                        |                                                                        | insert    | Result                                                     |  |
|                        |                                                                        | score     |                                                            |  |
| Narrative Rating       | Question 1 Critical Habitat                                            | YES NO    | If yes, Category 3.                                        |  |
|                        | Question 2. Threatened or Endangered Species                           | YES NO    | If yes, Category 3.                                        |  |
|                        | Question 3. High Quality Natural Wetland                               | YES NO    | If yes, Category 3.                                        |  |
|                        | Question 4. Significant bird habitat                                   | YES NO    | If yes, Category 3.                                        |  |
|                        | Question 5. Category 1 Wetlands                                        | YES NO    | If yes, Category 1.                                        |  |
|                        | Question 6. Bogs                                                       | YES NO    | If yes, Category 3.                                        |  |
|                        | Question 7. Fens                                                       | YES NO    | If yes, Category 3.                                        |  |
|                        | Question 8a. Old Growth Forest                                         | YES NO    | If yes, Category 3.                                        |  |
|                        | Question 8b. Mature Forested Wetland                                   | YES NO    | If yes, evaluate for<br>Category 3; may also be<br>1 or 2. |  |
|                        | Question 9b. Lake Erie Wetlands -<br>Restricted                        | YES NO    | If yes, evaluate for<br>Category 3; may also be<br>1 or 2. |  |
|                        | Question 9d. Lake Erie Wetlands –<br>Unrestricted with native plants   | YES NO    | If yes, Category 3                                         |  |
|                        | Question 9e. Lake Erie Wetlands -<br>Unrestricted with invasive plants | YES NO    | If yes, evaluate for<br>Category 3; may also be<br>1 or 2. |  |
|                        | Question 10. Oak Openings                                              | YES NO    | If yes, Category 3                                         |  |
|                        | Question 11. Relict Wet Prairies                                       | YES NO    | If yes, evaluate for<br>Category 3; may also be<br>1 or 2. |  |
| Quantitative<br>Rating | Metric 1. Size                                                         | 0         |                                                            |  |
|                        | Metric 2. Buffers and surrounding land use                             | 1         |                                                            |  |
|                        | Metric 3. Hydrology                                                    | 16        |                                                            |  |
|                        | Metric 4. Habitat                                                      | 3         |                                                            |  |
|                        | Metric 5. Special Wetland Communities                                  | 0         |                                                            |  |
|                        | Metric 6. Plant communities, interspersion, microtopography            | 2         |                                                            |  |
|                        | TOTAL SCORE                                                            | 22        | Category based on score<br>breakpoints<br>1                |  |

## **ORAM Summary Worksheet**

Complete Wetland Categorization Worksheet.

| Choices                                                                                                                                                                                                                                                                                                                          | Circle one                                                                                                                                                                |                                                                                 | Evaluation of Categorization Result of ORAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Did you answer "Yes" to any<br>of the following questions:<br>Narrative Rating Nos. 2, 3,<br>4, 6, 7, 8a, 9d, 10                                                                                                                                                                                                                 | YES Wetland is categorized as a Category 3 wetland                                                                                                                        | NO X                                                                            | Is quantitative rating score <i>less</i> than the Category 2 scoring threshold ( <i>excluding</i> gray zone)? If yes, reevaluate the category of the wetland using the narrative criteria in OAC Rule 3745-1-54(C) and biological and/or functional assessments to determine if the wetland has been over-categorized by the ORAM                                                                                                                                                                                                                                                                                            |
| Did you answer "Yes" to any<br>of the following questions:<br>Narrative Rating Nos. 1, 8b,<br>9b, 9e, 11                                                                                                                                                                                                                         | YES Wetland should be<br>evaluated for<br>possible Category<br>3 status                                                                                                   | NO 🗙                                                                            | Evaluate the wetland using the 1) narrative criteria in OAC<br>Rule 3745-1-54(C) and 2) the quantitative rating score. If<br>the wetland is determined to be a Category 3 wetland using<br>either of these, it should be categorized as a Category 3<br>wetland. Detailed biological and/or functional assessments<br>may also be used to determine the wetland's category.                                                                                                                                                                                                                                                  |
| Did you answer "Yes" to<br>Narrative Rating No. 5                                                                                                                                                                                                                                                                                | YES<br>Wetland is<br>categorized as a<br>Category 1 wetland                                                                                                               | NO 🗙                                                                            | Is quantitative rating score <i>greater</i> than the Category 2<br>scoring threshold <i>(including</i> any gray zone)? If yes,<br>reevaluate the category of the wetland using the narrative<br>criteria in OAC Rule 3745-1-54(C) and biological and/or<br>functional assessments to determine if the wetland has<br>been under-categorized by the ORAM                                                                                                                                                                                                                                                                      |
| Does the quantitative score<br>fall within the scoring range<br>of a Category 1, 2, or 3<br>wetland?                                                                                                                                                                                                                             | YES<br>Wetland is<br>assigned to the<br>appropriate<br>category based on<br>the scoring range                                                                             | NO 🔲                                                                            | If the score of the wetland is located within the scoring<br>range for a particular category, the wetland should be<br>assigned to that category. In all instances however, the<br>narrative criteria described in OAC Rule 3745-1-54(C) can<br>be used to clarify or change a categorization based on a<br>quantitative score.                                                                                                                                                                                                                                                                                              |
| Does the quantitative score<br>fall with the <i>"gray zone"</i> for<br>Category 1 or 2 or Category<br>2 or 3 wetlands?                                                                                                                                                                                                           | YES Vetland is<br>assigned to the<br>higher of the two<br>categories or<br>assigned to a<br>category based on<br>detailed<br>assessments and<br>the narrative<br>criteria | NO 🗙                                                                            | Rater has the option of assigning the wetland to the higher<br>of the two categories or to assign a category based on the<br>results of a nonrapid wetland assessment method, e.g.<br>functional assessment, biological assessment, etc, and a<br>consideration of the narrative criteria in OAC rule 3745-1-<br>54(C).                                                                                                                                                                                                                                                                                                      |
| Does the wetland otherwise<br>exhibit <i>moderate OR superior</i><br>hydrologic OR habitat, OR<br>recreational functions AND<br>the wetland was <i>not</i><br>categorized as a Category 2<br>wetland (in the case of<br>moderate functions) or a<br>Category 3 wetland (in the<br>case of superior functions) by<br>this method? | YES Wetland was<br>undercategorized<br>by this method. A<br>written justification<br>for recategorization<br>should be provided<br>on Background<br>Information Form      | NO<br>Wetland is<br>assigned to<br>category as<br>determined<br>by the<br>ORAM. | A wetland may be undercategorized using this method, but<br>still exhibit one or more superior functions, e.g. a wetland's<br>biotic communities may be degraded by human activities,<br>but the wetland may still exhibit superior hydrologic<br>functions because of its type, landscape position, size, local<br>or regional significance, etc. In this circumstance, the<br>narrative criteria in OAC Rule 3745-1-54(C)(2) and (3) are<br>controlling, and the under-categorization should be<br>corrected. A written justification with supporting reasons or<br>information for this determination should be provided. |

|            | Fir        | nal Category |            |
|------------|------------|--------------|------------|
| Choose one | Category 1 | Category 2   | Category 3 |

## End of Ohio Rapid Assessment Method for Wetlands.

# [WPAA004\_WDP\_002E] facing east



[WPAA004\_WDP\_001N] facing north





[WPAA004\_WDP\_003W] facing west



# [WPAA004\_UDP\_001N] facing north



[WPAA004\_UDP\_002E] facing east



[WPAA004\_UDP\_003W] facing west

### WETLAND DETERMINATION DATA FORM – Northcentral and Northeast Region

| Project/Site: AEP - Allen Station                           | City/County: Pau                    | lding                        | Sampling Date: 7/15/15                   |
|-------------------------------------------------------------|-------------------------------------|------------------------------|------------------------------------------|
| Applicant/Owner: AEP                                        |                                     | State: OH                    | Sampling Point: WPAA003_WDP              |
| Investigator(s): SCI Engineering, Inc.                      | Section, Township                   | , Range: 30, 1N, R1E         | 0.00004700030000000000000000000000000000 |
| Landform (hillslope, terrace, etc.): Depression             | Local relief (concave,              | convex, none): Concave       | Slope (%): 1                             |
| Subregion (LRR or MLRA). LRR L, MLRA 99                     | 41.01785189                         | Long84.67321512              | Datum: NAD83                             |
| Soil Map Unit Name: Hoytville silty clay                    |                                     | NWI classi                   | ification: N/A                           |
| Are climatic / hydrologic conditions on the site typical fr | or this time of year? Yes           | No X (If no explain in       | Remarks )                                |
| Are Vegetation Y Soil Y or Hydrology N                      | aignificantly disturbed?            |                              | " propert? Vec No X                      |
| Are vegetation, Soli, or Hydrology                          |                                     |                              |                                          |
| Are Vegetation, Soil, or Hydrology                          | naturally problematic?              | (If needed, explain any answ | vers in Remarks.)                        |
| SUMMARY OF FINDINGS – Attach site m                         | nap showing sampling poi            | nt locations, transec        | ts, important features, etc.             |
| Hydrophytic Vegetation Present? Yes X                       | No Is the Sam                       | pled Area                    |                                          |
| Hydric Soil Present? Yes X                                  | No within a W                       | etland? Yes X                | No                                       |
| Wetland Hydrology Present? Yes X                            | _ No If yes, optic                  | onal Wetland Site ID:        |                                          |
| Remarks: (Explain alternative procedures here or in         | a separate report.)                 |                              |                                          |
| Wetland is located in a depression i                        | n a cornfield. Above no             | ormal rainfall and re        | ecent rains have kept                    |
| this area wet for an extended period                        | I. The entire field is we           | t and has stunted o          | corn. but this area is                   |
| holding more water and corn grown                           | is sparse. Vegetation               | and soils disturbed          | by farming activities                    |
|                                                             | ie opareer vegetation (             |                              | by laining douvloor                      |
|                                                             |                                     |                              |                                          |
| HYDROLOGY                                                   |                                     |                              |                                          |
| Wetland Hydrology Indicators:                               |                                     | Secondary Ind                | cators (minimum of two required)         |
| Primary Indicators (minimum of one is required; chec        | k all that apply)                   | Surface So                   | bil Cracks (B6)                          |
| ✓ Surface Water (A1)                                        | Water-Stained Leaves (B9)           | Drainage F                   | Patterns (B10)                           |
| ✓ High Water Table (A2)                                     | Aquatic Fauna (B13)                 | Moss Trim                    | Lines (B16)                              |
| ✓ Saturation (A3)                                           | Marl Deposits (B15)                 | Dry-Seaso                    | n Water Table (C2)                       |
| Water Marks (B1)                                            | Hydrogen Sulfide Odor (C1)          | Crayfish B                   | urrows (C8)                              |
| Sediment Deposits (B2)                                      | Oxidized Rhizospheres on Living     | Roots (C3) Saturation        | Visible on Aerial Imagery (C9)           |
| Drift Deposits (B3)                                         | Presence of Reduced Iron (C4)       | ✓ Stunted or                 | Stressed Plants (D1)                     |
| ✓ Algal Mat or Crust (B4)                                   | Recent Iron Reduction in Tilled So  | oils (C6) 🗹 Geomorph         | ic Position (D2)                         |
| Iron Deposits (B5)                                          | Thin Muck Surface (C7)              | Shallow A                    | quitard (D3)                             |
| Inundation Visible on Aerial Imagery (B7)                   | Other (Explain in Remarks)          | Microtopog                   | graphic Relief (D4)                      |
| Sparsely Vegetated Concave Surface (B8)                     |                                     | FAC-Neutr                    | ral Test (D5)                            |
| Field Observations:                                         |                                     |                              |                                          |
| Surface Water Present? Yes X No                             | _ Depth (inches): 2                 |                              |                                          |
| Water Table Present? Yes X No                               | Depth (inches): surface             |                              |                                          |
| Saturation Present? Yes X No                                | Depth (inches): surface             | Wetland Hydrology Pres       | ent? Yes X No                            |
| (includes capillary fringe)                                 | well aerial photos, previous inspec | tions) if available:         |                                          |
| Describe recorded Data (stream gauge, monitoring v          |                                     |                              |                                          |
|                                                             |                                     |                              |                                          |
| Remarks:                                                    |                                     |                              |                                          |
|                                                             |                                     |                              |                                          |
|                                                             |                                     |                              |                                          |
|                                                             |                                     |                              |                                          |
|                                                             |                                     |                              |                                          |
|                                                             |                                     |                              |                                          |
|                                                             |                                     |                              |                                          |
|                                                             |                                     |                              |                                          |
|                                                             |                                     |                              |                                          |
|                                                             |                                     |                              |                                          |

Sampling Point: WPAA003\_WDP

| Tree Stratum (Plot size:                                | Absolute<br>% Cover | Dominant<br>Species? | Indicator<br>Status | Dominance Test worksheet:                                                                                                                                                                  |
|---------------------------------------------------------|---------------------|----------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                                                       | <u></u>             | 000000               |                     | Number of Dominant Species                                                                                                                                                                 |
| ·                                                       |                     |                      | ·                   | That are OBL, FACW, of FAC: (A)                                                                                                                                                            |
| 2                                                       |                     |                      |                     | Total Number of Dominant<br>Species Across All Strate: 1 (B)                                                                                                                               |
| 3                                                       | ·                   |                      |                     |                                                                                                                                                                                            |
| 4                                                       |                     |                      | ·                   | Percent of Dominant Species<br>That Are OBL_EACW_or_EAC: 0.0% (A/B)                                                                                                                        |
| 5                                                       |                     |                      | ·                   |                                                                                                                                                                                            |
| 6                                                       |                     |                      | ·                   | Prevalence Index worksheet:                                                                                                                                                                |
| 7                                                       |                     |                      | ·                   | Total % Cover of:Multiply by:                                                                                                                                                              |
|                                                         |                     | = Total Co           | ver                 | OBL species x 1 =                                                                                                                                                                          |
| Sapling/Shrub Stratum (Plot size:)                      |                     |                      |                     | FACW species x 2 =                                                                                                                                                                         |
| 1                                                       |                     |                      |                     | FAC species x 3 =                                                                                                                                                                          |
| 2                                                       |                     |                      |                     | FACU species $x = 25$                                                                                                                                                                      |
| 3                                                       |                     |                      | ·                   | $\begin{array}{c} \text{OPL species}  \underline{0} \qquad & \text{X } 5 = \underline{20} \\ \text{Column Totals:}  5 \qquad & \text{(A)}  \underline{25} \qquad & \text{(P)} \end{array}$ |
| 4                                                       |                     |                      |                     |                                                                                                                                                                                            |
| 5.                                                      |                     |                      |                     | Prevalence Index = $B/A = 5.0$                                                                                                                                                             |
| 6.                                                      |                     |                      |                     | Hydrophytic Vegetation Indicators:                                                                                                                                                         |
| 7                                                       |                     |                      |                     | 1 - Rapid Test for Hydrophytic Vegetation                                                                                                                                                  |
| ·                                                       |                     | Total Ca             |                     | 2 - Dominance Test is >50%                                                                                                                                                                 |
| List Obstance (Distributed 5)                           |                     | = 1018100            | ver                 | 3 - Prevalence Index is ≤3.0 <sup>1</sup>                                                                                                                                                  |
| Herb Stratum (Plot size:)                               | 5                   | Ves                  | IIPI                | 4 - Morphological Adaptations <sup>1</sup> (Provide supporting                                                                                                                             |
| 1. <u>200 mays</u>                                      | <u> </u>            | 103                  |                     | data in Remarks or on a separate sheet)                                                                                                                                                    |
| 2                                                       |                     |                      | ·                   |                                                                                                                                                                                            |
| 3                                                       |                     |                      | ·                   | <sup>1</sup> Indicators of hydric soil and wetland hydrology must                                                                                                                          |
| 4                                                       |                     |                      | ·                   | be present, unless disturbed or problematic.                                                                                                                                               |
| 5                                                       |                     |                      |                     | Definitions of Vegetation Strata:                                                                                                                                                          |
| 6                                                       |                     |                      |                     | <b>Tree</b> Weedy plants 3 in (7.6 cm) or more in diameter                                                                                                                                 |
| 7                                                       |                     |                      |                     | at breast height (DBH), regardless of height.                                                                                                                                              |
| 8                                                       |                     |                      | ·                   | Sapling/shrub – Woody plants less than 3 in DBH                                                                                                                                            |
| 9                                                       |                     |                      |                     | and greater than or equal to 3.28 ft (1 m) tall.                                                                                                                                           |
| 10                                                      |                     |                      |                     | Herb – All herbaceous (non-woody) plants, regardless                                                                                                                                       |
| 11.                                                     | -                   |                      |                     | of size, and woody plants less than 3.28 ft tall.                                                                                                                                          |
| 12                                                      |                     |                      |                     | Woody vines – All woody vines greater than 3.28 ft in                                                                                                                                      |
|                                                         | 5                   | – Total Co           | vor                 | height.                                                                                                                                                                                    |
| Woody Vine Stratum (Plot size:                          |                     | - 10101 00           | VCI                 |                                                                                                                                                                                            |
|                                                         |                     |                      |                     |                                                                                                                                                                                            |
| l                                                       | ·                   |                      |                     |                                                                                                                                                                                            |
| <u></u>                                                 |                     |                      | ·                   |                                                                                                                                                                                            |
| 3                                                       |                     |                      | ·                   | Hydrophytic<br>Vegetation                                                                                                                                                                  |
| 4                                                       |                     |                      | ·                   | Present? Yes $\frac{X}{NO}$                                                                                                                                                                |
|                                                         |                     | = Total Co           | ver                 |                                                                                                                                                                                            |
| Remarks: (Include photo numbers here or on a separate s | sheet.)             |                      |                     |                                                                                                                                                                                            |
| 001N, 002E, 003W                                        |                     |                      |                     |                                                                                                                                                                                            |
|                                                         |                     |                      |                     |                                                                                                                                                                                            |
|                                                         |                     |                      |                     |                                                                                                                                                                                            |
|                                                         |                     |                      |                     |                                                                                                                                                                                            |
|                                                         |                     |                      |                     |                                                                                                                                                                                            |
|                                                         |                     |                      |                     |                                                                                                                                                                                            |
|                                                         |                     |                      |                     |                                                                                                                                                                                            |

### SOIL

| (inches)                                                                                                                                                                                                  | Color (moist)                                                                                                                                                                                               | %                       | Color (moist)                                                                                                                    | %                                                                                 | Type <sup>1</sup>                       | Loc <sup>2</sup> | Texture Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| 0-2                                                                                                                                                                                                       | 10YR 3/2                                                                                                                                                                                                    | 100                     | <u></u>                                                                                                                          |                                                                                   |                                         |                  | sic                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                   |
| 2-6                                                                                                                                                                                                       | 10YR 3/2                                                                                                                                                                                                    | 98                      | 10YR 5/4                                                                                                                         | 2                                                                                 | С                                       | Μ                | sic                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                   |
| 6-12                                                                                                                                                                                                      | 10YR 3/2                                                                                                                                                                                                    | 85                      | 10YR 5/6                                                                                                                         | 15                                                                                | С                                       | М                | С                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                   |
| 12-21                                                                                                                                                                                                     | 10YR 4/1                                                                                                                                                                                                    | 70                      | 10YR 5/8                                                                                                                         | 30                                                                                | С                                       | M                | С                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                   |
|                                                                                                                                                                                                           |                                                                                                                                                                                                             |                         |                                                                                                                                  |                                                                                   |                                         | <br><br>         |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                   |
|                                                                                                                                                                                                           |                                                                                                                                                                                                             |                         |                                                                                                                                  |                                                                                   |                                         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                   |
| Type: C=C<br>Iydric Soil                                                                                                                                                                                  | oncentration, D=De                                                                                                                                                                                          | epletion, RN            | I=Reduced Matrix, M                                                                                                              | IS=Maske                                                                          | d Sand G                                | irains.          | <sup>2</sup> Location: PL=Pore Lining, M=Ma<br>Indicators for Problematic Hydric                                                                                                                                                                                                                                                                                                                                                                 | atrix.<br>Soils <sup>3</sup> :                                                                                    |
| <ul> <li>Histic E</li> <li>Black H</li> <li>Hydroge</li> <li>Stratifie</li> <li>Deplete</li> <li>Thick D</li> <li>Sandy N</li> <li>Sandy C</li> <li>Sandy F</li> <li>Stripped</li> <li>Dark Su</li> </ul> | pipedon (A2)<br>istic (A3)<br>en Sulfide (A4)<br>d Layers (A5)<br>d Below Dark Surfa<br>ark Surface (A12)<br>Mucky Mineral (S1)<br>Gleyed Matrix (S4)<br>Redox (S5)<br>d Matrix (S6)<br>Irface (S7) (LRR R, | ace (A11)<br>, MLRA 149 | MLRA 149E<br>Thin Dark Surf<br>Loamy Mucky<br>Loamy Gleyed<br>Depleted Matri<br>✓ Redox Dark Su<br>Depleted Dark<br>Redox Depres | B)<br>Mineral (F<br>Matrix (F<br>(x (F3)<br>urface (F6<br>Surface (<br>sions (F8) | (LRR R, M<br>51) (LRR<br>2)<br>)<br>F7) | /ILRA 1498       | <ul> <li>Coast Prairie Redox (A16) (LRI</li> <li>5 cm Mucky Peat or Peat (S3)</li> <li>Dark Surface (S7) (LRR K, L)</li> <li>Polyvalue Below Surface (S8) (</li> <li>Thin Dark Surface (S9) (LRR K</li> <li>Iron-Manganese Masses (F12)</li> <li>Piedmont Floodplain Soils (F19)</li> <li>Mesic Spodic (TA6) (MLRA 144)</li> <li>Red Parent Material (F21)</li> <li>Very Shallow Dark Surface (TF</li> <li>Other (Explain in Remarks)</li> </ul> | (LRR K, L, R)<br>(LRR K, L, R)<br>(LRR K, L)<br>(LRR K, L, R)<br>(URR K, L, R<br>(MLRA 149<br>4A, 145, 149<br>12) |
| Indicators o                                                                                                                                                                                              | of hydrophytic veget                                                                                                                                                                                        | tation and w            | vetland hydrology mu                                                                                                             | ist be pres                                                                       | sent, unle                              | ss disturbed     | or problematic.                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                   |
| Туре:                                                                                                                                                                                                     |                                                                                                                                                                                                             | ,                       |                                                                                                                                  |                                                                                   |                                         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                   |
| Depth (in                                                                                                                                                                                                 | ches):                                                                                                                                                                                                      |                         |                                                                                                                                  |                                                                                   |                                         |                  | Hydric Soil Present? Yes X                                                                                                                                                                                                                                                                                                                                                                                                                       | No                                                                                                                |
|                                                                                                                                                                                                           |                                                                                                                                                                                                             |                         |                                                                                                                                  |                                                                                   |                                         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                   |

### WETLAND DETERMINATION DATA FORM – Northcentral and Northeast Region

| Project/Site: AEP - Allen Station                                                                                                                                                                                                                                                                      | City/Co                                                                              | unty: Paulding                                                              |                                                                                                 | Sampling Date: 7/                                                        | 15/15                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------|
| Applicant/Owner: AEP                                                                                                                                                                                                                                                                                   |                                                                                      | -                                                                           | State: OH                                                                                       | Sampling Point:                                                          | WPAA003_UDF                 |
| Investigator(s): SCI Engineering, Inc.                                                                                                                                                                                                                                                                 | Section                                                                              | , Township, Range:                                                          | S30 T1N R1E                                                                                     |                                                                          |                             |
| Landform (hillslope, terrace, etc.): Flats                                                                                                                                                                                                                                                             | Local relie                                                                          | f (concave, convex, n                                                       | none): None                                                                                     | Slope                                                                    | (%): 1                      |
| Subregion (LRR or MLRA): LRR L, MLRA 99 Lat: 41                                                                                                                                                                                                                                                        | .01785189                                                                            | Long:                                                                       |                                                                                                 | Datum:                                                                   | NAD83                       |
| Soil Map Unit Name: Hoytville silty clay                                                                                                                                                                                                                                                               |                                                                                      |                                                                             | NWI classifi                                                                                    | cation: N/A                                                              |                             |
| Are climatic / hydrologic conditions on the site typical for the Are Vegetation $\underline{Y}_{}$ , Soil $\underline{Y}_{}$ , or Hydrology $\underline{N}_{}$ are Vegetation $\underline{N}_{}$ , Soil $\underline{N}_{}$ , or Hydrology $\underline{N}_{}$ and SUMMARY OF FINDINGS – Attach site map | is time of year? Ye<br>significantly disturb<br>naturally problemati<br>showing samp | s <u>No X</u><br>ed? Are "Norm<br>ic? (If needed<br><b>Ding point locat</b> | _ (If no, explain in F<br>al Circumstances"  <br>I, explain any answe<br><b>ions, transects</b> | Remarks.)<br>present? Yes<br>prs in Remarks.)<br><b>5, important fea</b> | <sub>No_X</sub> tures, etc. |
| Hydrophytic Vegetation Present?       Yes N         Hydric Soil Present?       Yes N         Wetland Hydrology Present?       Yes N                                                                                                                                                                    | No X<br>No X<br>No X                                                                 | Is the Sampled Area<br>within a Wetland?<br>If yes, optional Wetla          | Yes                                                                                             | No <u>X</u>                                                              |                             |
| Remarks: (Explain alternative procedures here or in a se<br>Upland point is on slightly higher groun<br>wetter areas. Vegetation and soils dist                                                                                                                                                        | parate report.)<br>nd than the w<br>turbed by farr                                   | etland point. (<br>ming.                                                    | Corn is short,                                                                                  | but taller than                                                          | n that in                   |
| HYDROLOGY                                                                                                                                                                                                                                                                                              |                                                                                      |                                                                             |                                                                                                 |                                                                          |                             |
| Wetland Hydrology Indicators:                                                                                                                                                                                                                                                                          |                                                                                      |                                                                             | Secondary Indica                                                                                | ators (minimum of tw                                                     | vo required)                |
| Primary Indicators (minimum of one is required; check all                                                                                                                                                                                                                                              | that apply)                                                                          |                                                                             | Surface Soil                                                                                    | Cracks (B6)                                                              |                             |
| Surface Water (A1) Wa                                                                                                                                                                                                                                                                                  | ter-Stained Leaves                                                                   | (B9)                                                                        | Drainage Pa                                                                                     | atterns (B10)                                                            |                             |

| Primary Indicators (minimum of one is required; | check all that apply)                      | Surface Soil Cracks (B6)                             |
|-------------------------------------------------|--------------------------------------------|------------------------------------------------------|
| Surface Water (A1)                              | Water-Stained Leaves (B9)                  | Drainage Patterns (B10)                              |
| High Water Table (A2)                           | Aquatic Fauna (B13)                        | Moss Trim Lines (B16)                                |
| Saturation (A3)                                 | Marl Deposits (B15)                        | Dry-Season Water Table (C2)                          |
| Water Marks (B1)                                | Hydrogen Sulfide Odor (C1)                 | Crayfish Burrows (C8)                                |
| Sediment Deposits (B2)                          | Oxidized Rhizospheres on Living            | Roots (C3) Saturation Visible on Aerial Imagery (C9) |
| Drift Deposits (B3)                             | Presence of Reduced Iron (C4)              | Stunted or Stressed Plants (D1)                      |
| Algal Mat or Crust (B4)                         | Recent Iron Reduction in Tilled S          | oils (C6) Geomorphic Position (D2)                   |
| Iron Deposits (B5)                              | Thin Muck Surface (C7)                     | Shallow Aquitard (D3)                                |
| Inundation Visible on Aerial Imagery (B7)       | Other (Explain in Remarks)                 | Microtopographic Relief (D4)                         |
| Sparsely Vegetated Concave Surface (B8)         |                                            | FAC-Neutral Test (D5)                                |
| Field Observations:                             |                                            |                                                      |
| Surface Water Present? Yes No                   | X Depth (inches): N/A                      |                                                      |
| Water Table Present? Yes No                     | X Depth (inches): >20                      |                                                      |
| Saturation Present? Yes No                      | X Depth (inches): >20                      | Wetland Hydrology Present? Yes No X                  |
| (includes capillary fringe)                     |                                            |                                                      |
| Describe Recorded Data (stream gauge, monito    | oring well, aerial photos, previous inspec | ctions), if available:                               |
|                                                 |                                            |                                                      |
|                                                 |                                            |                                                      |
| Remarks:                                        |                                            |                                                      |
|                                                 |                                            |                                                      |
|                                                 |                                            |                                                      |
|                                                 |                                            |                                                      |
|                                                 |                                            |                                                      |
|                                                 |                                            |                                                      |
|                                                 |                                            |                                                      |
|                                                 |                                            |                                                      |
|                                                 |                                            |                                                      |
|                                                 |                                            |                                                      |
|                                                 |                                            |                                                      |

Sampling Point: WPAA003\_UDP

|                                                       | Absolute | Dominant   | Indicator | Dominance Test worksheet:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------------------------------------------------|----------|------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| I ree Stratum (Plot size:)                            | % Cover  | Species?   | Status    | Number of Dominant Species                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1                                                     |          | ·          | ·         | That Are OBL, FACW, or FAC: (A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2                                                     |          | ·          |           | Total Number of Dominant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3                                                     |          |            |           | Species Across All Strata: 1 (B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 4                                                     |          |            |           | Bereast of Dominant Species                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                       |          | ·          |           | That Are OBL, FACW, or FAC: 0.00% (A/B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5                                                     |          | ·          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6                                                     |          | ·          | ·         | Prevalence Index worksheet:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 7                                                     |          | ·          |           | Total % Cover of: Multiply by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                       |          | = Total Co | ver       | OBL species x 1 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Sapling/Shrub Stratum (Plot size: )                   |          |            |           | FACW species x 2 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1                                                     |          |            |           | FAC species x 3 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                       |          | ·          |           | FACU species x 4 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2                                                     |          | ·          |           | UPL species $5$ x 5 = $25$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 3                                                     |          |            | ·         | Column Totals: 5 (A) 25 (B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 4                                                     |          |            |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5.                                                    |          |            |           | Prevalence Index = $B/A = 5.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 6                                                     |          |            |           | Hydrophytic Vegetation Indicators:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0                                                     |          | ·          | ·         | 1 - Rapid Test for Hydrophytic Vegetation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 7                                                     |          | ·          |           | 2 - Dominance Test is >50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                       |          | = Total Co | ver       | $\frac{2}{2} = \frac{2}{2} = \frac{1}{2} = \frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Herb Stratum (Plot size: 5' )                         |          |            |           | 5 - Prevalence index is >5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <sub>1.</sub> Zea mays                                | 10       | Yes        | UPL       | data in Remarks or on a separate sheet)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2                                                     |          |            |           | Problematic Hydrophytic Vegetation <sup>1</sup> (Explain)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 3                                                     |          |            |           | The discrete set in the set of th |
| 4.                                                    |          |            |           | be present unless disturbed or problematic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 5                                                     |          |            |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                       |          | ·          | ·         | Definitions of Vegetation Strata:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| b                                                     |          | ·          | ·         | Tree – Woody plants 3 in. (7.6 cm) or more in diameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 7                                                     |          | ·          | ·         | at breast height (DBH), regardless of height.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 8                                                     |          | ·          |           | Sapling/shrub – Woody plants less than 3 in. DBH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 9                                                     |          |            |           | and greater than or equal to 3.28 ft (1 m) tall.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 10.                                                   |          |            |           | Herb – All berbaceous (non-woody) plants, regardless                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 11                                                    |          |            |           | of size, and woody plants less than 3.28 ft tall.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ···                                                   |          | ·          |           | Weedy vince All weedy vince greater than 2.29 ft in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 12                                                    | 40       | ·          | ·         | height.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                       | 10       | = Total Co | ver       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Woody Vine Stratum (Plot size:)                       |          |            |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1                                                     | _        |            |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2                                                     |          |            |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2                                                     |          | ·          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3                                                     |          | ·          | ·         | Hydrophytic<br>Vegetation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 4                                                     |          | ·          | ·         | Present? Yes No $\frac{\chi}{\chi}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                       |          | = Total Co | ver       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Remarks: (Include photo numbers here or on a separate | sheet.)  |            |           | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 001N. 002E. 003W                                      |          |            |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                       |          |            |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                       |          |            |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                       |          |            |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                       |          |            |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                       |          |            |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                       |          |            |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                       |          |            |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| Depth                                                                                                                    | Matrix                                                                                                                                                                                                                             | e to the de                                  | Rec                                                                                                                                                                                                                                                                                                                 | lox Feature | es                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |                           | uicators.)                 |
|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------------|----------------------------|
| (inches)                                                                                                                 | Color (moist)                                                                                                                                                                                                                      | %                                            | Color (moist)                                                                                                                                                                                                                                                                                                       | %           | Type <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Loc <sup>2</sup> | Texture                   | Remarks                    |
| 0-3                                                                                                                      | 10YR 3/3                                                                                                                                                                                                                           | 100                                          |                                                                                                                                                                                                                                                                                                                     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  | sic                       |                            |
| 3-13                                                                                                                     | 10YR 3/3                                                                                                                                                                                                                           | 100                                          |                                                                                                                                                                                                                                                                                                                     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  | с                         |                            |
| 13-21                                                                                                                    | 10YR 4/3                                                                                                                                                                                                                           | 80                                           | 10YR 5/8                                                                                                                                                                                                                                                                                                            | 20          | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Μ                | С                         |                            |
|                                                                                                                          |                                                                                                                                                                                                                                    |                                              |                                                                                                                                                                                                                                                                                                                     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |                           |                            |
|                                                                                                                          |                                                                                                                                                                                                                                    |                                              |                                                                                                                                                                                                                                                                                                                     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |                           |                            |
|                                                                                                                          |                                                                                                                                                                                                                                    |                                              |                                                                                                                                                                                                                                                                                                                     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |                           |                            |
| <sup>1</sup> Type: C=C                                                                                                   | Concentration, D=De                                                                                                                                                                                                                | epletion, RM                                 | /I=Reduced Matrix, N                                                                                                                                                                                                                                                                                                | /IS=Maske   | d Sand G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Grains.          | <sup>2</sup> Location: PL | =Pore Lining, M=Matrix.    |
| Hydric Soil                                                                                                              | Indicators:                                                                                                                                                                                                                        |                                              | Dehavely a Del                                                                                                                                                                                                                                                                                                      | our Curto o | - (CO) (LI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | Indicators for P          | Problematic Hydric Soils": |
| Histic E<br>Histic E<br>Black H<br>Hydrog<br>Stratifie<br>Deplete<br>Sandy I<br>Sandy I<br>Sandy I<br>Strippe<br>Dark St | ipipedon (A2)<br>ispipedon (A2)<br>ilistic (A3)<br>en Sulfide (A4)<br>ed Layers (A5)<br>ed Below Dark Surfa<br>park Surface (A12)<br>Mucky Mineral (S1)<br>Gleyed Matrix (S4)<br>Redox (S5)<br>d Matrix (S6)<br>urface (S7) (LRR R | ace (A11)<br>, <b>MLRA 14</b><br>ation and v | <ul> <li>Polyvalue Below Surface (S8) (LRR R,<br/>MLRA 149B)</li> <li>Thin Dark Surface (S9) (LRR R, MLRA 149B)<br/>Loamy Mucky Mineral (F1) (LRR K, L)<br/>Loamy Gleyed Matrix (F2)<br/>Depleted Matrix (F3)<br/>Redox Dark Surface (F6)<br/>Depleted Dark Surface (F7)</li> <li>Redox Depressions (F8)</li> </ul> |             | <ul> <li>2 cm Muck (A10) (LRR K, L, MLRA 149B)</li> <li>Coast Prairie Redox (A16) (LRR K, L, R)</li> <li>5 cm Mucky Peat or Peat (S3) (LRR K, L, R)</li> <li>Dark Surface (S7) (LRR K, L)</li> <li>Polyvalue Below Surface (S8) (LRR K, L)</li> <li>Thin Dark Surface (S9) (LRR K, L)</li> <li>Iron-Manganese Masses (F12) (LRR K, L, R</li> <li>Piedmont Floodplain Soils (F19) (MLRA 149</li> <li>Mesic Spodic (TA6) (MLRA 144A, 145, 149E</li> <li>Red Parent Material (F21)</li> <li>Very Shallow Dark Surface (TF12)</li> <li>Other (Explain in Remarks)</li> </ul> |                  |                           |                            |
| Restrictive                                                                                                              | Layer (if observed                                                                                                                                                                                                                 | I):                                          | , ,,                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |                           |                            |
| Type:                                                                                                                    |                                                                                                                                                                                                                                    |                                              |                                                                                                                                                                                                                                                                                                                     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |                           | X                          |
| Depth (ir                                                                                                                | nches):                                                                                                                                                                                                                            |                                              |                                                                                                                                                                                                                                                                                                                     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  | Hydric Soil Pres          | ent? Yes <u>No </u>        |
| S                                                                                                                        | Soil profile ma                                                                                                                                                                                                                    | iy be m                                      | ixed due to its                                                                                                                                                                                                                                                                                                     | sampl       | e loca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | tion in th       | ie former railr           | oad bed right-of-way.      |

|                | Ohio Rapid Assessment Metho<br>10 Page Form for Wetland Cate | d for Wetlands<br>egorization       |
|----------------|--------------------------------------------------------------|-------------------------------------|
| Vorsion 50     | <b>Background Information</b>                                |                                     |
| v el siuli 3.0 | Scoring Boundary Worksheet                                   |                                     |
|                | Narrative Rating                                             | Ohio EPA, Division of Surface Water |
|                | Field Form Quantitative Rating                               | Final: February 1, 2001             |
|                | <b>ORAM Summary Worksheet</b>                                |                                     |
|                | Wetland Categorization Worksheet                             |                                     |
|                |                                                              |                                     |

### **Instructions**

The investigator is *STRONGLY URGED* to read the Manual for Using the Ohio Rapid Assessment Method for Wetlands for further elaboration and discussion of the questions below prior to using the rating forms.

The Narrative Rating is designed to categorize a wetland or to provide alerts to the Rater based on the presence or possible presence of threatened or endangered species. The presence or proximity of such species is often an indicator of the quality and lack of disturbance of the wetland being evaluated. In addition, it is designed to categorize certain wetlands as very low quality (Category 1) or very high quality (Category 3) regardless of the wetland's score on the Quantitative Rating. In addition, the Narrative Rating also alerts the investigator that a particular wetland *may* be a Category 3 wetland, again, regardless of the wetland's score on the Quantitative Rating.

It is *VERY IMPORTANT* to properly and thoroughly answer each of the questions in the ORAM in order to properly categorize a wetland. To *properly* answer all the questions, the boundaries of the wetland being assessed must be correctly identified. Refer to Scoring Boundary worksheet and the User's Manual for a discussion of how to determine the "scoring boundaries." In some instances, the scoring boundaries may differ from the "jurisdictional boundaries."

Refer to the most recent ORAM Score Calibration Report for the scoring breakpoints between wetland categories. The most recent version of this document is posted on Ohio EPA's Division of Surface Water web page at: <u>http://www.epa.ohio.gov/dsw/wetlands/WetlandEcologySection.aspx</u>

# Background Information

| Name:<br>AEP - Allen Station                                                              |       |
|-------------------------------------------------------------------------------------------|-------|
| Date:<br>7/15/2015                                                                        |       |
| Affiliation:<br>SCI Engineering                                                           |       |
| Address:<br>650 Pierce Boulevard, O'Fallon, IL 62269                                      |       |
| Phone Number:<br>618-624-6969                                                             |       |
| e-mail address:                                                                           |       |
| Name of Wetland:                                                                          |       |
| Vegetation Communit(ies):<br>PEMf                                                         |       |
| HGM Class(es):<br>Depressional                                                            |       |
| Location of Wetland: include map, address, north arrow, landmarks, distances, roads, etc. |       |
| Approximately 400' south of State Route 114 and approximately 700' west of Roa            | ad 71 |
|                                                                                           |       |
|                                                                                           |       |
|                                                                                           |       |
|                                                                                           |       |
|                                                                                           |       |
|                                                                                           |       |
|                                                                                           |       |
|                                                                                           |       |
|                                                                                           |       |
| Lat/Long or UTM Coordinate 41.01785189, -84.67321512                                      |       |
| USGS Quad Name Payne                                                                      |       |
| County Paulding                                                                           |       |
| Township 1N                                                                               |       |
| Section and Subsection 30                                                                 |       |
| Hydrologic Unit Code 4100007                                                              |       |
| Site Visit 7/15/15                                                                        |       |
| National Wetland Inventory Map n/a                                                        |       |
| Ohio Wetland Inventory Map n/a                                                            |       |
| Soil Survey<br>Hoytville Silty Clay                                                       |       |
| Delineation report/map n/a                                                                |       |
|                                                                                           |       |

| Name of Wetland:<br>//PAA003                                                                       |                                                                       |                                               |
|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------|
| Wetland Size (acres, hectares): 0.3 acres                                                          |                                                                       |                                               |
| Sketch: Include north arrow, relationship with other su                                            | rface waters, vegetation zones, etc.                                  | L                                             |
| Л                                                                                                  |                                                                       |                                               |
|                                                                                                    | CORN<br>A<br>A<br>NPAA 003                                            |                                               |
| Comments, Narrative Discussion, Justification of Cate                                              | gory Changes:                                                         |                                               |
| Farmed wetland in a depression within a corn fiestunted, but this area is wetter and is a pronound | eld. The majority of the entire fie<br>ced depression. Corn growth he | eld is wet and corn is<br>ere is more sparse. |
| Final score : 24                                                                                   | Cate                                                                  | gory: 1                                       |

## **Scoring Boundary Worksheet**

INSTRUCTIONS. The initial step in completing the ORAM is to identify the "scoring boundaries" of the wetland being rated. In many instances this determination will be relatively easy and the scoring boundaries will coincide with the "jurisdictional boundaries." For example, the scoring boundary of an isolated cattail marsh located in the middle of a farm field will likely be the same as that wetland's jurisdictional boundaries. In other instances, however, the scoring boundary will not be as easily determined. Wetlands that are small or isolated from other surface waters often form large contiguous areas or heterogeneous complexes of wetland and upland. In separating wetlands for scoring purposes, the hydrologic regime of the wetland is the main criterion that should be used. Boundaries between contiguous or connected wetlands should be established where the volume, flow, or velocity of water moving through the wetland changes significantly. Areas with a high degree of hydrologic interaction should be scored as a single wetland. In determining a wetland's scoring boundaries, use the guidelines in the ORAM Manual Section 5.0. In certain instances, it may be difficult to establish the scoring boundary for the wetland being rated. These problem situations include wetlands that form a patchwork on the landscape, wetlands divided by artificial boundaries like property fences, roads, or railroad embankments, wetlands that are contiguous with streams, lakes, or rivers, and estuarine or coastal wetlands. These situations are discussed below, however, it is recommended that Rater contact Ohio EPA, Division of Surface Water, 401/Wetlands Section if there are additional questions or a need for further clarification of the appropriate scoring boundaries of a particular wetland.

| #      | Steps in properly establishing scoring boundaries                                                                                                                                                                                                                                                                                                                                                                                                                                | done? | not applicable |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------|
| Step 1 | Identify the wetland area of interest. This may be the site of a proposed impact, a reference site, conservation site, etc.                                                                                                                                                                                                                                                                                                                                                      | х     |                |
| Step 2 | Identify the locations where there is physical evidence that hydrology<br>changes rapidly. Such evidence includes both natural and human-<br>induced changes including, constrictions caused by berms or dikes,<br>points where the water velocity changes rapidly at rapids or falls,<br>points where significant inflows occur at the confluence of rivers, or<br>other factors that may restrict hydrologic interaction between the<br>wetlands or parts of a single wetland. | Х     |                |
| Step 3 | Delineate the boundary of the wetland to be rated such that all areas<br>of interest that are contiguous to and within the areas where the<br>hydrology does not change significantly, i.e. areas that have a high<br>degree of hydrologic interaction are included within the scoring<br>boundary.                                                                                                                                                                              | Х     |                |
| Step 4 | Determine if artificial boundaries, such as property lines, state lines, roads, railroad embankments, etc., are present. These should not be used to establish scoring boundaries unless they coincide with areas where the hydrologic regime changes.                                                                                                                                                                                                                           | х     |                |
| Step 5 | In all instances, the Rater may enlarge the minimum scoring boundaries discussed here to score together wetlands that could be scored separately.                                                                                                                                                                                                                                                                                                                                | Х     |                |
| Step 6 | Consult ORAM Manual Section 5.0 for how to establish scoring<br>boundaries for wetlands that form a patchwork on the landscape,<br>divided by artificial boundaries, contiguous to streams, lakes or rivers,<br>or for dual classifications.                                                                                                                                                                                                                                     | Х     |                |

End of Scoring Boundary Determination. Begin Narrative Rating on next page.

## **Narrative Rating**

INSTRUCTIONS. Answer each of the following questions. Questions 1, 2, 3 and 4 should be answered based on information obtained from the site visit or the literature *and* by submitting a Data Services Request to the Ohio Department of Natural Resources, Division of Natural Areas and Preserves, Natural Heritage Data Services, 1889 Fountain Square Court, Building F-1, Columbus, Ohio 43224, 614-265-6453 (phone), 614-265-3096 (fax), <u>http://www.dnr.state.oh.us/dnap</u>. The remaining questions are designed to be answered primarily by the results of the site visit. Refer to the User's Manual for descriptions of these wetland types. Note: "Critical habitat" is legally defined in the Endangered Species Act and is the geographic area containing physical or biological features essential to the conservation of a listed species or as an area that may require special management considerations or protection. The Rater should contact the Region 3 Headquarters or the Columbus Ecological Services Office for updates as to whether critical habitat has been designated for other federally listed threatened or endangered species. "Documented" means the wetland is listed in the appropriate State of Ohio database.

| #  | Question                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Circle one                                                              |                           |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------|
| 1  | <b>Critical Habitat.</b> Is the wetland in a township, section, or subsection of a United States Geological Survey 7.5 minute Quadrangle that has been designated by the U.S. Fish and Wildlife Service as "critical habitat" for any threatened or endangered plant or animal species? Note: as of January 1, 2001, of the federally listed endangered or threatened species which can be found in Ohio, the Indiana Bat has                                                                                                                                   | YES<br>Wetland should be<br>evaluated for possible<br>Category 3 status | NO 🗙<br>Go to Question 2  |
|    | had critical habitat designated (50 CFR 17.95(a)) and the piping plover<br>has had critical habitat proposed (65 FR 41812 July 6, 2000).                                                                                                                                                                                                                                                                                                                                                                                                                        | Go to Question 2                                                        |                           |
| 2  | Threatened or Endangered Species. Is the wetland known to contain<br>an individual of, or documented occurrences of federal or state-listed<br>threatened or endangered plant or animal species?                                                                                                                                                                                                                                                                                                                                                                | YES Wetland is a Category 3 wetland.                                    | NO 🗙<br>Go to Question 3  |
| 3  | <b>Documented High Quality Wetland.</b> Is the wetland on record in Natural Heritage Database as a high quality wetland?                                                                                                                                                                                                                                                                                                                                                                                                                                        | YES<br>Wetland is a Category<br>3 wetland                               | NO 🗙<br>Go to Question 4  |
| 4  | <b>Significant Breeding or Concentration Area.</b> Does the wetland contain documented regionally significant breeding or nonbreeding waterfowl, neotropical songbird, or shorebird concentration areas?                                                                                                                                                                                                                                                                                                                                                        | YES Wetland is a Category<br>3 wetland                                  | NO 🗙<br>Go to Question 5  |
| 5  | <b>Category 1 Wetlands.</b> Is the wetland less than 0.5 hectares (1 acre) in size and <b>hydrologically isolated</b> and either 1) comprised of vegetation that is dominated (greater than eighty per cent areal cover) by <i>Phalaris arundinacea, Lythrum salicaria,</i> or <i>Phragmites australis,</i> or 2) an acidic pond created or excavated on mined lands that has little or no vegetation?                                                                                                                                                          | YES Wetland is a Category<br>1 wetland<br>Go to Question 6              | NO 🗙<br>Go to Question 6  |
| 6  | <b>Bogs.</b> Is the wetland a peat-accumulating wetland that 1) has no significant inflows or outflows, 2) supports acidophilic mosses, particularly <i>Sphagnum</i> spp., 3) the acidophilic mosses have >30% cover, 4) at least one species from Table 1 is present, and 5) the cover of invasive species (see Table 1) is <25%?                                                                                                                                                                                                                              | YES<br>Wetland is a Category<br>3 wetland<br>Go to Question 7           | NO 🗙<br>Go to Question 7  |
| 7  | <b>Fens.</b> Is the wetland a carbon accumulating (peat, muck) wetland that<br>is saturated during most of the year, primarily by a discharge of free<br>flowing, mineral rich, ground water with a circumneutral ph (5.5-9.0)<br>and with one or more plant species listed in Table 1 and the cover of<br>invasive species listed in Table 1 is <25%?                                                                                                                                                                                                          | YES Wetland is a Category<br>3 wetland<br>Go to Question 8a             | NO 🗙<br>Go to Question 8a |
| 8a | "Old Growth Forest." Is the wetland a forested wetland and is the<br>forest characterized by, but not limited to, the following characteristics:<br>overstory canopy trees of great age (exceeding at least 50% of a<br>projected maximum attainable age for a species); little or no evidence<br>of human-caused understory disturbance during the past 80 to 100<br>years; an all-aged structure and multilayered canopies; aggregations of<br>canopy trees interspersed with canopy gaps; and significant numbers<br>of standing dead snags and downed logs? | YES Wetland is a Category 3 wetland.                                    | NO 🗙<br>Go to Question 8b |

| 8b | Mature forested wetlands. Is the wetland a forested wetland with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | YES                                                               | NO 🗙                               |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------|
|    | 50% or more of the cover of upper forest canopy consisting of deciduous trees with large diameters at breast height (dbh), generally diameters greater than 45cm (17.7in) dbh?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Wetland should be<br>evaluated for possible<br>Category 3 status. | Go to Question 9a                  |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Go to Question 9a                                                 |                                    |
| 9a | Lake Erie coastal and tributary wetlands. Is the wetland located at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | YES 🔲                                                             | NO 🗙                               |
|    | elevation, or along a tributary to Lake Erie that is accessible to fish?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Go to Question 9b                                                 | Go to Question 10                  |
| 9b | Does the wetland's hydrology result from measures designed to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | YES 🗖                                                             | NO 🗙                               |
|    | partially hydrologically restricted from Lake Erie due to lakeward or<br>landward dikes or other hydrological controls?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Wetland should be<br>evaluated for possible<br>Category 3 status  | Go to Question 9c                  |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Go to Question 10                                                 |                                    |
| 9c | Are Lake Erie water levels the wetland's primary hydrological influence,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | YES                                                               | NO 🗙                               |
|    | border alterations), or the wetland can be characterized as an<br>"estuarine" wetland with lake and river influenced hydrology. These<br>include sandbar deposition wetlands, estuarine wetlands, river mouth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Go to Question 9d                                                 | Go to Question 10                  |
| 9d | Does the wetland have a predominance of native species within its                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | YES 🗖                                                             | NO 🗙                               |
|    | vegetation communities, although non-native or disturbance tolerant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                   |                                    |
|    | native species can also be present?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3 wetland is a Category                                           | Go to Question 9e                  |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Go to Question 10                                                 |                                    |
| 9e | Does the wetland have a predominance of non-native or disturbance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | YES                                                               | NO 🗙                               |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Wetland should be<br>evaluated for possible<br>Category 3 status  | Go to Question 10                  |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Go to Question 10                                                 |                                    |
| 10 | Lake Plain Sand Prairies (Oak Openings) Is the wetland located in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | YES                                                               | NO 🗙                               |
|    | characterized by the following description: the wetland has a sandy<br>substrate with interspersed organic matter, a water table often within                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Wetland is a Category 3 wetland.                                  | Go to Question 11                  |
|    | gramineous vegetation listed in Table 1 (woody species may also be<br>present). The Ohio Department of Natural Resources Division of<br>Natural Areas and Preserves can provide assistance in confirming this<br>type of wetland and its quality.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Go to Question 11                                                 |                                    |
| 11 | Relict Wet Prairies. Is the wetland a relict wet prairie community                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | YES                                                               | NOX                                |
|    | dominated by some or all of the species in Table 1. Extensive prairies were formerly located in the Darby Plains (Madison and Union Counties), Sandusky Plains (Wyandot, Crawford, and Marion Counties), northwest Ohio (e.g. Erie, Huron, Lucas, Wood Counties), and portions of western Ohio Counties (e.g. Darke, Mercer, Miami, Montenano, Martine, M | Wetland should be<br>evaluated for possible<br>Category 3 status  | Complete<br>Quantitative<br>Rating |
|    | wongomery, van wert etc.).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Rating                                                            |                                    |

| invasive/exotic spp   | fen species                    | bog species                     | 0ak Opening species      | wet prairie species       |
|-----------------------|--------------------------------|---------------------------------|--------------------------|---------------------------|
| Lythrum salicaria     | Zygadenus elegans var. glaucus | Calla palustris                 | Carex cryptolepis        | Calamagrostis canadensis  |
| Myriophyllum spicatum | Cacalia plantaginea            | Carex atlantica var. capillacea | Carex lasiocarpa         | Calamogrostis stricta     |
| Najas minor           | Carex flava                    | Carex echinata                  | Carex stricta            | Carex atherodes           |
| Phalaris arundinacea  | Carex sterilis                 | Carex oligosperma               | Cladium mariscoides      | Carex buxbaumii           |
| Phragmites australis  | Carex stricta                  | Carex trisperma                 | Calamagrostis stricta    | Carex pellita             |
| Potamogeton crispus   | Deschampsia caespitosa         | Chamaedaphne calyculata         | Calamagrostis canadensis | Carex sartwellii          |
| Ranunculus ficaria    | Eleocharis rostellata          | Decodon verticillatus           | Quercus palustris        | Gentiana andrewsii        |
| Rhamnus frangula      | Eriophorum viridicarinatum     | Eriophorum virginicum           |                          | Helianthus grosseserratus |
| Typha angustifolia    | Gentianopsis spp.              | Larix laricina                  |                          | Liatris spicata           |
| Typha xglauca         | Lobelia kalmii                 | Nemopanthus mucronatus          |                          | Lysimachia quadriflora    |
|                       | Parnassia glauca               | Schechzeria palustris           |                          | Lythrum alatum            |
|                       | Potentilla fruticosa           | Sphagnum spp.                   |                          | Pycnanthemum virginianum  |
|                       | Rhamnus alnifolia              | Vaccinium macrocarpon           |                          | Silphium terebinthinaceum |
|                       | Rhynchospora capillacea        | Vaccinium corymbosum            |                          | Sorghastrum nutans        |
|                       | Salix candida                  | Vaccinium oxycoccos             |                          | Spartina pectinata        |
|                       | Salix myricoides               | Woodwardia virginica            |                          | Solidago riddellii        |
|                       | Salix serissima                | Xyris difformis                 |                          |                           |
|                       | Solidago ohioensis             | 5 00                            |                          |                           |
|                       | Tofieldia glutinosa            |                                 |                          |                           |
|                       | Triglochin maritimum           |                                 |                          |                           |
|                       | Triglochin palustre            |                                 |                          |                           |

End of Narrative Rating. Begin Quantitative Rating on next page.



subtotal this page last revised 1 February 2001 jjm



|       |        | Low (1)                  |        |
|-------|--------|--------------------------|--------|
|       | Х      | None (0)                 |        |
| 6c.   | Cove   | rage of invasive plants. | Refer  |
| to Ta | able 1 | I ORAM long form for lis | t. Add |

Moderately low (2)

or deduct points for coverage



6d. Microtopography.

Score all present using 0 to 3 scale.



#### mod Native spp are dominant component of the vegetation, although nonnative and/or disturbance tolerant native spp can also be present, and species diversity moderate to moderately high, but generally w/o presence of rare threatened or endangered spp high A predominance of native species, with nonnative spp and/or disturbance tolerant native spp absent or virtually absent, and high spp diversity and often, but not always, the presence of rare, threatened, or endangered spp

#### Mudflat and Open Water Class Quality

| 0 | Absent <0.1ha (0.247 acres)             |
|---|-----------------------------------------|
| 1 | Low 0.1 to <1ha (0.247 to 2.47 acres)   |
| 2 | Moderate 1 to <4ha (2.47 to 9.88 acres) |
| 3 | High 4ha (9.88 acres) or more           |

#### **Microtopography Cover Scale**

| 0 | Absent                                                              |
|---|---------------------------------------------------------------------|
| 1 | Present very small amounts or if more common<br>of marginal guality |
|   |                                                                     |
| 2 | Present in moderate amounts, but not of highest                     |
|   | quality or in small amounts of highest quality                      |
| 3 | Present in moderate or greater amounts                              |
|   | and of highest quality                                              |

#### 24

End of Quantitative Rating. Complete Categorization Worksheets.
|                        |                                                                        | circle    |                                                            |  |  |  |
|------------------------|------------------------------------------------------------------------|-----------|------------------------------------------------------------|--|--|--|
|                        |                                                                        | answer or |                                                            |  |  |  |
|                        |                                                                        | insert    | Result                                                     |  |  |  |
|                        |                                                                        | score     |                                                            |  |  |  |
| Narrative Rating       | Question 1 Critical Habitat                                            | YES NO    | If yes, Category 3.                                        |  |  |  |
|                        | Question 2. Threatened or Endangered Species                           | YES NO    | If yes, Category 3.                                        |  |  |  |
|                        | Question 3. High Quality Natural Wetland                               | YES NO    | If yes, Category 3.                                        |  |  |  |
|                        | Question 4. Significant bird habitat                                   | YES NO    | If yes, Category 3.                                        |  |  |  |
|                        | Question 5. Category 1 Wetlands                                        | YES NO    | If yes, Category 1.                                        |  |  |  |
|                        | Question 6. Bogs                                                       | YES NO    | If yes, Category 3.                                        |  |  |  |
|                        | Question 7. Fens                                                       | YES NO    | If yes, Category 3.                                        |  |  |  |
|                        | Question 8a. Old Growth Forest                                         | YES NO    | If yes, Category 3.                                        |  |  |  |
|                        | Question 8b. Mature Forested Wetland                                   | YES NO    | If yes, evaluate for<br>Category 3; may also be<br>1 or 2. |  |  |  |
|                        | Question 9b. Lake Erie Wetlands -<br>Restricted                        | YES NO    | If yes, evaluate for<br>Category 3; may also be<br>1 or 2. |  |  |  |
|                        | Question 9d. Lake Erie Wetlands –<br>Unrestricted with native plants   | YES NO    | If yes, Category 3                                         |  |  |  |
|                        | Question 9e. Lake Erie Wetlands -<br>Unrestricted with invasive plants | YES NO    | If yes, evaluate for<br>Category 3; may also be<br>1 or 2. |  |  |  |
|                        | Question 10. Oak Openings                                              | YES NO    | If yes, Category 3                                         |  |  |  |
|                        | Question 11. Relict Wet Prairies                                       | YES NO    | If yes, evaluate for<br>Category 3; may also be<br>1 or 2. |  |  |  |
| Quantitative<br>Rating | Metric 1. Size                                                         | 2         |                                                            |  |  |  |
|                        | Metric 2. Buffers and surrounding land use                             | 1         |                                                            |  |  |  |
|                        | Metric 3. Hydrology                                                    | 16        |                                                            |  |  |  |
|                        | Metric 4. Habitat                                                      | 3         |                                                            |  |  |  |
|                        | Metric 5. Special Wetland Communities                                  | 0         |                                                            |  |  |  |
|                        | Metric 6. Plant communities, interspersion, microtopography            | 2         |                                                            |  |  |  |
|                        | TOTAL SCORE                                                            | 24        | Category based on score<br>breakpoints<br>1                |  |  |  |

## **ORAM Summary Worksheet**

Complete Wetland Categorization Worksheet.

| Choices                                                                                                                                                                                                                                                                                                                          | Circle one                                                                                                                                                                |                                                                                 | Evaluation of Categorization Result of ORAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Did you answer "Yes" to any<br>of the following questions:<br>Narrative Rating Nos. 2, 3,<br>4, 6, 7, 8a, 9d, 10                                                                                                                                                                                                                 | YES Wetland is categorized as a Category 3 wetland                                                                                                                        | NO X                                                                            | Is quantitative rating score <i>less</i> than the Category 2 scoring threshold ( <i>excluding</i> gray zone)? If yes, reevaluate the category of the wetland using the narrative criteria in OAC Rule 3745-1-54(C) and biological and/or functional assessments to determine if the wetland has been over-categorized by the ORAM                                                                                                                                                                                                                                                                                            |
| Did you answer "Yes" to any<br>of the following questions:<br>Narrative Rating Nos. 1, 8b,<br>9b, 9e, 11                                                                                                                                                                                                                         | YES Wetland should be<br>evaluated for<br>possible Category<br>3 status                                                                                                   | NO 🗙                                                                            | Evaluate the wetland using the 1) narrative criteria in OAC<br>Rule 3745-1-54(C) and 2) the quantitative rating score. If<br>the wetland is determined to be a Category 3 wetland using<br>either of these, it should be categorized as a Category 3<br>wetland. Detailed biological and/or functional assessments<br>may also be used to determine the wetland's category.                                                                                                                                                                                                                                                  |
| Did you answer "Yes" to<br>Narrative Rating No. 5                                                                                                                                                                                                                                                                                | YES<br>Wetland is<br>categorized as a<br>Category 1 wetland                                                                                                               | NO 🗙                                                                            | Is quantitative rating score <i>greater</i> than the Category 2<br>scoring threshold <i>(including</i> any gray zone)? If yes,<br>reevaluate the category of the wetland using the narrative<br>criteria in OAC Rule 3745-1-54(C) and biological and/or<br>functional assessments to determine if the wetland has<br>been under-categorized by the ORAM                                                                                                                                                                                                                                                                      |
| Does the quantitative score<br>fall within the scoring range<br>of a Category 1, 2, or 3<br>wetland?                                                                                                                                                                                                                             | YES<br>Wetland is<br>assigned to the<br>appropriate<br>category based on<br>the scoring range                                                                             | NO 🗖                                                                            | If the score of the wetland is located within the scoring<br>range for a particular category, the wetland should be<br>assigned to that category. In all instances however, the<br>narrative criteria described in OAC Rule 3745-1-54(C) can<br>be used to clarify or change a categorization based on a<br>quantitative score.                                                                                                                                                                                                                                                                                              |
| Does the quantitative score<br>fall with the <i>"gray zone"</i> for<br>Category 1 or 2 or Category<br>2 or 3 wetlands?                                                                                                                                                                                                           | YES Vetland is<br>assigned to the<br>higher of the two<br>categories or<br>assigned to a<br>category based on<br>detailed<br>assessments and<br>the narrative<br>criteria | NO 🗙                                                                            | Rater has the option of assigning the wetland to the higher<br>of the two categories or to assign a category based on the<br>results of a nonrapid wetland assessment method, e.g.<br>functional assessment, biological assessment, etc, and a<br>consideration of the narrative criteria in OAC rule 3745-1-<br>54(C).                                                                                                                                                                                                                                                                                                      |
| Does the wetland otherwise<br>exhibit <i>moderate OR superior</i><br>hydrologic OR habitat, OR<br>recreational functions AND<br>the wetland was <i>not</i><br>categorized as a Category 2<br>wetland (in the case of<br>moderate functions) or a<br>Category 3 wetland (in the<br>case of superior functions) by<br>this method? | YES Wetland was<br>undercategorized<br>by this method. A<br>written justification<br>for recategorization<br>should be provided<br>on Background<br>Information Form      | NO<br>Wetland is<br>assigned to<br>category as<br>determined<br>by the<br>ORAM. | A wetland may be undercategorized using this method, but<br>still exhibit one or more superior functions, e.g. a wetland's<br>biotic communities may be degraded by human activities,<br>but the wetland may still exhibit superior hydrologic<br>functions because of its type, landscape position, size, local<br>or regional significance, etc. In this circumstance, the<br>narrative criteria in OAC Rule 3745-1-54(C)(2) and (3) are<br>controlling, and the under-categorization should be<br>corrected. A written justification with supporting reasons or<br>information for this determination should be provided. |

| Final Category |            |            |            |  |  |  |  |  |  |
|----------------|------------|------------|------------|--|--|--|--|--|--|
| Choose one     | Category 1 | Category 2 | Category 3 |  |  |  |  |  |  |

## End of Ohio Rapid Assessment Method for Wetlands.

## [WPAA003\_WDP\_002E] facing east



[WPAA003\_WDP\_001N] facing north





[WPAA003\_WDP\_003W] facing west



## [WPAA003\_UDP\_001N] facing north



[WPAA003\_UDP\_002E] facing east



[WPAA003\_UDP\_003W] facing west

#### Survey Description Project Name: Waterbody Name: Waterbody ID: Date: **AEP Allen Station** SPAB001 State Line Ditch 7/13/15 County: Company: Crew Member Initials: State: Photo ID(s): OH SCI Engineering ME/JM 1s, 2n, 3w Paulding Tract Number(s): Milepost Entry: Milepost Exit: Associated Wetland ID(s): 0330S-00300, 0330S-00400 N/A Survey Type: Centerline Re-Route (check one) Access Road Other: Physical Attributes Stream Classification: (check one) Perennial Connecting swale<sup>a</sup> Ephemeral Intermittent Waterbody Type: (check one) Lake Pond: River Stream Drainage Other: (define) Ditch OHWM **OHWM Indicator:** Scouring (check all that apply) Clear line Shelving Wrested Water |Width: 9 on bank vegetation staining ft. Wrack line Bent, matted, or Litter and Abrupt plant Soil characteristic Height: 1.5 missing vegetation debris community change change ft Width of Waterbody - Water Edge to Depth of Water at Centerline: Width of Waterbody - Top of Bank to Water Edge at Centerline: Top of Bank at Centerline: (Approx.) 1.5 <sub>ft.</sub> 9 <sub>ft.</sub> 30 <sub>ft.</sub> Sinuosity: Water velocity: Bank slope Bank height (check one) (Approx.) 10<sub>. ft.</sub> **Right: Right:** Straight 80 degrees 0.01 <sub>fps</sub> 10 <sub>ft.</sub> Meandering Left: Left: 80 degrees Qualitative Attributes Water Appearance ✓ Other: Slightly Turbid (check one) No water Clear Turbid Sheen Surface Algal on surface scum mats Sand Bedrock Gravel Silt/clay Other: Substrate: Organic (check all that apply) 30 % 30 % 40 % % of Substrate: % % % Width of Riparian Zone: Vegetative Layers: (check all that apply) Shrubs: Trees: Herbs 20 ft. Avg. DBH of Dominants: in. in. (approx.) Dominant Bank Vegetation: Typa angustifolia, Phalaris arundinacea, Rubus ideaus Aquatic Habitats (ex: submerged or emerged aquatic vegetation, overhanging banks/roots, leaf packs, large submerged wood, riffles, deep pools): submerged vegetation Aquatic Organisms Observed: Northern Leopard Frogs Invasive and/or T&E Species Observed: (list) N/A Tributary is: Manipulated (check one) Natural Artificial, man-made Disturbances: (check all that apply) Livestock Manure in Waste discharge Other: waterbody access pipes Stream Quality<sup>b</sup>: ✓ Moderate (check one) High Low

Waterbody Data Sheet

<sup>2</sup>**Connecting swales** are water features that do not meet the definition of a waterbody (not an ephemeral waterbody) in that there is not a defined bed, bank, and ordinary high water mark, however, it is a water conveyance feature that is characterized by flow volume, frequency, and duration to make it more than just an erosional feature and connects two potential waters of the U.S. and thereby may be subject to Section 404 permitting.

<sup>b</sup> High Quality: Natural channel, natural vegetation extends at least one or two active channel widths on each side; banks stable and protected by roots; water color is clear to tea-colored; no barriers to fish movement; many fish cover types available; diverse and stable aquatic habitat; no disturbance by livestock or man.

**Moderate Quality:** Altered channel evidenced by rip-rap; natural vegetation extends 1/3-1/2 of the active channel width on each side; filtering function or riparian vegetation only moderately compromised; banks moderately unstable; water color is cloudy, submerged objects covered with greenish film; moderate odor; minor barriers to fish movement; fair aquatic habitat; minimum disturbance by livestock or man.

Low Quality: Channel is actively down cutting or widening; rip rap and channelization excessive; natural vegetation less than 1/3 of the active channel width on each side; lack of regeneration; filtering function severely compromised; banks unstable (eroding); water color is muddy and turbid; obvious pollutants (algal mats, surface scum, surface sheen); heavy odor; severe barriers to fish movement; little to no aquatic habitat; severe disturbance from livestock or man.

Waterbody ID:

SPAB001

# Waterbody Sketch Include north arrow, centerline, distance from centerline, photo locations, and survey area/corridor if applicable. 5PA13001 lude north arrow, certienine, distance north contention processing ÎN 0-9 В 1 Culve r Beans en 52 2 1/2 State Line Ditch Notes State Line Ditch flows south to north across the ROW. Majority of the stream segment has been encapsulated by a culvert for field access.



Qualitative Habitat Evaluation Index and Use Assessment Field Sheet

| Stream & Location:                                                                                                                                                                           | State Line Ditch                                                                                                                               | SPAB001                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                 |                                                                                                                               | <i>RM:</i> <u>N</u> /                                                                   | A_ <b>_</b> Date                                                                        | <u>7   13  </u>                                                                                            | 15                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------|
|                                                                                                                                                                                              |                                                                                                                                                |                                                                                                                                                                      | Scorers Ful                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | I Name & A                                                                                                      | ffiliation:                                                                                                                   | Mark Eldrido                                                                            | e / SCI Engine                                                                          | ering                                                                                                      | rified                   |
| River Code: N/A-                                                                                                                                                                             |                                                                                                                                                | STORET #: N/                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0 83 - decimal °) —                                                                                             | <u>1 . 0177</u>                                                                                                               | <u>1 <b>/8</b>4</u> .                                                                   | <u>80316</u>                                                                            | loc                                                                                                        | ation                    |
| 1] SUBSTRATE Chec<br>estim<br>BEST TYPES<br>BLDR /SLABS [10]<br>BOULDER [9]<br>COBBLE [8]<br>GRAVEL [7]<br>GRAVEL [7]<br>BEDROCK [5]<br>NUMBER OF BEST<br>Comments                           | K ONLY Two subtrate % or note exponentiate % or note exponentiate %         POOL RIFFLE         40         30         TYPES: 4 c         7 3 c | OTHER TYPE BOXE<br>(very type present<br>OTHER TYP<br>HARDPAN<br>DETRITUS<br>DETRITUS<br>SILT [2]<br>CScore natu<br>(Score natu<br>or more [2] sludge<br>or less [0] | S;<br>ES POOL RIFF<br>[4]<br>[3]<br>30<br>[0]<br>. [0]<br>. [0] | FLE OI<br>I LIMES<br>TILLS<br>TILLS<br>U TILLS<br>U HARD<br>ARD<br>ARD<br>ARD<br>ARD<br>ARD<br>ARD<br>ARD       | Check C<br><b>RIGIN</b><br><b>STONE [1]</b><br>[1]<br>ANDS [0]<br>PAN [0]<br>STONE [0]<br>STURINE [0]<br>E [-1]<br>FINES [-2] | SILT                                                                                    | average)<br>QUA<br>HEAVY<br>MODER<br>NORMA<br>FREE [1<br>EXTENS<br>MODER                | LITY<br>[-2]<br>ATE [-1]<br>J<br>Sive [-2]<br>ATE [-1]<br>L [0]<br>1]                                      | 14<br>14<br>aximum<br>20 |
| 2] INSTREAM COVE<br>quality; 3-Highest quality i<br>diameter log that is stable<br>0 UNDERCUT BANK<br>0 OVERHANGING VI<br>0 SHALLOWS (IN SL<br>0 ROOTMATS [1]<br>Comments                    | R Indicate pres<br>quality; 2-Mo<br>n moderate or g<br>, well developed<br>S [1]<br>EGETATION [1]<br>OW WATER) [1                              | ence 0 to 3: <b>0</b> -Abse<br>derate amounts, bu<br>reater amounts (e.g<br>d rootwad in deep /<br><u>0</u><br><u>POOLS &gt;</u><br><u>0</u><br><u>BOULDE</u>        | ent; 1-Very smal<br>it not of highest<br>g., very large bo<br>fast water, or de<br><b>70cm [2]</b> 0<br><b>.DS [1]</b> 0<br><b>.RS [1]</b> 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | amounts or if<br>quality or in sn<br>ulders in deep<br>rep, well-define<br>OXBOWS,<br>AQUATIC I<br>LOGS OR 1    | more commo<br>nall amounts<br>or fast water,<br>id, functional<br>BACKWATE<br>MACROPHYT<br>WOODY DEE                          | n of margin<br>of highest<br>, large<br>pools. [<br>RS [1] [<br>IES [1] [<br>BRIS [1] [ | Al AMC<br>Check ONE (<br>EXTENSIV<br>MODERAT<br>SPARSE 5-<br>NEARLY A                   | DUNT<br>Or 2 & averag<br>E >75% [11]<br>E 25-75% [7]<br>-<25% [3]<br>BSENT <5%  <br>Cover<br>Maximum<br>20 | (1)                      |
| 3] CHANNEL MORPH         SINUOSITY       DEV         □ HIGH [4]       □ E         □ MODERATE [3]       □ C         □ LOW [2]       □ F         □ NONE [1]       □ F         Comments       □ | HOLOGY Che<br>IELOPMENT<br>EXCELLENT [7]<br>GOOD [5]<br>FAIR [3]<br>POOR [1]                                                                   | ck ONE in each cat<br>CHANNE<br>NONE [6]<br>RECOVERE<br>RECOVERIN<br>RECENT OF                                                                                       | egory (Or 2 & a<br>LIZATION<br>D [4]<br>NG [3]<br>& NO RECOVER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Verage)<br>STA<br>□ HIG<br>□ MO<br>☑ LOV<br>RY [1]                                                              | BILITY<br>H [3]<br>DERATE [2]<br>V [1]                                                                                        |                                                                                         |                                                                                         | <b>Channel</b><br>Maximum<br>20                                                                            | 11                       |
| 4] BANK EROSION /<br>River right looking downstre<br>EROSION<br>☐ I NONE / LITTLE [3]<br>☐ MODERATE [2]<br>☐ HEAVY / SEVERE [1]<br>Comments                                                  | AND RIPARI<br>RIPA<br>B B WIDE :<br>B B MODE<br>B B MODE<br>ANDR<br>C VERY<br>B B NONE                                                         | AN ZONE Check<br>RIAN WIDTH<br>> 50m [4]<br>RATE 10-50m [3]<br>OW 5-10m [2]<br>NARROW < 5m [1]<br>[0]                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ategory for <b>EAC</b><br>LOOD PLA<br>T, SWAMP [3]<br>OR OLD FIEI<br>ENTIAL, PARK<br>D PASTURE [<br>PASTURE, RO | CH BANK (O)<br>IN QUALI<br>D [2]<br>NEW FIELD<br>1]<br>WCROP [0]                                                              | r 2 per bank<br>TY<br>[1] R<br>Indicate<br>past 10                                      | & average)<br>CONSERVATI<br>JRBAN OR IN<br>MINING / CON<br>predominant<br>00m riparian. | ON TILLAGE<br>IDUSTRIAL [0<br>ISTRUCTION<br>land use(s)<br><i>Riparian</i><br>Maximum<br>10                | [1]<br>0]<br>[0]<br>4    |
| 5] POOL / GLIDE AN<br>MAXIMUM DEPTH<br>Check ONE (ONLY!)<br>> 1m [6]<br>0.7-<1m [4]<br>0.4-<0.7m [2]<br>0.2-<0.4m [1]<br>2 < 0.2m [0]<br>Comments                                            | D RIFFLE / I<br>CHA<br>Check O<br>POOL WID<br>POOL WID                                                                                         | RUN QUALITY<br>NNEL WIDTH<br>NE (Or 2 & average<br>TH > RIFFLE WIDTH<br>TH = RIFFLE WIDTH<br>TH < RIFFLE WIDTH                                                       | C<br>+ [2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Check ALL ti<br>ENTIAL [-1]<br>FAST [1]<br>[1]<br>ERATE [1]<br>cate for reach -                                 | ELOCITY<br>hat apply<br>SLOW [1]<br>INTERSTIT<br>INTERMIT<br>EDDIES [1]<br>pools and rif                                      | <b>TIAL [-1]</b><br><b>TENT [-2]</b><br>]<br><i>Tles.</i>                               | Recreation<br>Primary<br>Seconda<br>(circle one and o                                   | Pool /<br>Current<br>Maximum<br>12                                                                         |                          |
| Indicate for func<br>of riffle-obligate<br>RIFFLE DEPTH<br>BEST AREAS > 10cm [2<br>BEST AREAS 5-10cm [1<br>BEST AREAS < 5cm<br>[metric=0<br>Comments                                         | tional riffles<br>species:<br>RUN I<br>] MAXIMU<br>] MAXIMU                                                                                    | ; Best areas m<br>Che<br>DEPTH R<br>M > 50cm [2] □ S<br>M < 50cm [1] □ M<br>☑ U                                                                                      | ust be large<br>eck ONE (Or 2 &<br>IFFLE / RUN<br>TABLE (e.g., Co<br>OD. STABLE (e.g.<br>NSTABLE (e.g.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e enough to<br>& average).<br>N SUBSTRA<br>obble, Boulde<br>e.g., Large Gra<br>, Fine Gravel, S                 | Support a<br>ATE RIFF<br>r) [2]<br>avel) [1]<br>Sand) [0]                                                                     | a popula<br>ELE / RUI<br>D N<br>Lu<br>M<br>E                                            | tion<br>N EMBEDD<br>ONE [2]<br>OW [1]<br>ODERATE [0]<br>KTENSIVE [-1                    | PRIFFLE [me<br>DEDNESS<br>CRIffle /<br>Run<br>Maximum<br>8                                                 | <u>tric=0]</u>           |
| 6] GRADIENT ( N/A<br>DRAINAGE AREA<br>(                                                                                                                                                      | ft/mi) □ VE<br>☑ ☑ Mo<br>mi²) □ Hi                                                                                                             | RY LOW - LOW [2<br>DDERATE [6-10]<br>GH - VERY HIGH [                                                                                                                | -4]<br>10-6]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | %POOI<br>%RUN:                                                                                                  |                                                                                                                               | %GLIDE<br>%RIFFLE                                                                       |                                                                                         | Gradient<br>Maximum<br>10                                                                                  | 7                        |

| AJ SAMPLED REACH<br>Check ALL that apply                                                                                                                                                                                                                        | Comment RE: Reach consistency/<br>State Line Ditch flows south                                                                                                                                                                                     | s reach typical of steam?, <i>Recreatior</i> to north across the ROW.                                                                                                                                                                                                                                                                 | n/Observed - Inferred, Other | ✓ Sampling observations, Concerns, Acc                                                                                                                                                                                                                                                                                                                                                                                      | ess directions, etc.                                                                                                                                                                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| METHOD     STAGE       BOAT     1st-sample pass- 2nd       WADE     HIGH       L. LINE     UP       OTHER     NORMAL       DISTANCE     DRY                                                                                                                     | Majority of the stream segm                                                                                                                                                                                                                        | ent has been encapsulated by                                                                                                                                                                                                                                                                                                          | / a culvert for field acce   | ess.                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                       |
| □       0.5 Km         □       0.2 Km         □       0.15 Km         □       0.15 Km         □       0.12 Km         □       20-<40 cm | BJ AESTHETICS<br>NUISANCE ALGAE<br>INVASIVE MACROPHYTES<br>EXCESS TURBIDITY<br>DISCOLORATION<br>FOAM / SCUM<br>OIL SHEEN<br>NUISANCE ODOR<br>NUISANCE ODOR<br>SLUDGE DEPOSITS<br>CSOs/SSOs/OUTFALLS<br>EATION AREA DEPTH<br>POOL: ] >100ft2 ] >3ft | DJ MAINTENANCE<br>PUBLIC / PRIVATE / BOTH / NA<br>ACTIVE / HISTORIC / BOTH / NA<br>YOUNG-SUCCESSION-OLD<br>SPRAY / SNAG / REMOVED<br>MODIFIED / DIPPED OUT / NA<br>LEVEED / ONE SIDED<br>RELOCATED / CUTOFFS<br>MOVING-BEDLOAD-STABLE<br>ARMOURED / SLUMPS<br>ISLANDS / SCOURED<br>IMPOUNDED / DESICCATED<br>FLOOD CONTROL / DRAINAGE | Circle some & COMMENT        | <i>EJ ISSUES</i><br>WWTP / CSO / NPDES / INDUSTRY<br>HARDENED / URBAN / DIRT&GRIME<br>CONTAMINATED / LANDFILL<br>BMPs-CONSTRUCTION-SEDIMENT<br>LOGGING / IRRIGATION / COOLING<br>BANK / EROSION / SURFACE<br>FALSE BANK / MANURE / LAGOON<br>WASH H <sub>2</sub> 0 / TILE / H <sub>2</sub> 0 TABLE<br>ACID / MINE / QUARRY / FLOW<br>NATURAL / WETLAND / STAGNANT<br>PARK / GOLF / LAWN / HOME<br>ATMOSPHERE / DATA PAUCITY | FJ MEASUREMENTS<br>$\bar{x}$ width<br>$\bar{x}$ depth<br>max. depth<br>$\bar{x}$ bankfull width<br>bankfull $\bar{x}$ depth<br>W/D ratio<br>bankfull max. depth<br>floodprone x <sup>2</sup> width<br>entrench. ratio<br>Legacy Tree: |

## Stream Drawing:

See Waterbody Dataform



## [SPAB001\_001S up] facing south upstream



## [SPAB001\_002N down] facing north downstream



## [SPAB001\_003E across] facing east across bank

| Waterbody Data Sheet                                  |                   |                             |                  |                 |                       |                       |                       |
|-------------------------------------------------------|-------------------|-----------------------------|------------------|-----------------|-----------------------|-----------------------|-----------------------|
| Survey Description                                    |                   |                             |                  |                 |                       |                       |                       |
| Project Name:                                         | Waterbo           | dy Name:                    |                  |                 | Waterbody ID:         | :                     | Date:                 |
| AEP Allen Station                                     | unnam             | ed tributary to Di          | ckerson          | Ditch           | SPAB002               |                       | 7/14/15               |
| State: County:                                        | (                 | Company:                    |                  | Crew Me         | mber Initials:        | Photo ID(s):          |                       |
| OH Paulding                                           |                   | SCI Engine                  | erina            | ME/JM           |                       | 1s, 2n, 3w            |                       |
| Tract Number(s):                                      | 1                 | Wilepost Entry:             | Milepost I       | Exit:           | Associated W          | etland ID(s):         |                       |
| 03-30-001-00                                          |                   | -                           | -                |                 | WPAB004,              | WPAB005               |                       |
| Survey Type:<br>(check one)                           | E I               | Re-Route                    | Access R         | load            | Other:                |                       |                       |
| Physical Attributes                                   |                   |                             |                  |                 |                       |                       |                       |
| Stream Classification:<br>(check one)                 | <b></b>           | ntermittent                 | Perennia         | I               | Connectin             | ng swale <sup>a</sup> |                       |
| Waterbody Type:<br>(check one) Lake Pond:<br>(define) | :                 | River                       |                  | Stream          | Drainage<br>Ditch     | Other:                |                       |
| OHWM OHWM Indi<br>Width: 5                            | icator:<br>apply) | Clear line                  |                  | Shelving        | Wrestee<br>vegetat    | d 🖌 Scour             | ing Water<br>staining |
| Height: 1 the mission                                 | matted, or        | Wrack                       |                  | Litter and      | Abrupt                | plant                 | Soil characteristic   |
| Width of Waterbody - Top of Bank to                   | Wid               | th of Waterbody - W         | ater Edge        | to              | Depth of Wat          | ter at Centerline:    | onango                |
| Top of Bank at Centerline:                            | Wat               | er Edge at Centerlin        | e:               |                 | (Approx.)             | 1                     |                       |
| 8 ft.                                                 |                   | 5                           | _ ft.            |                 |                       | f                     | t.                    |
| Sinuosity: Wat<br>(check one) (Appr                   | er velocity       | y:                          | Bank h           | eight           |                       | Bank slope            |                       |
| ✓ Straight                                            |                   | 0.01                        | r                |                 | 1 <sub>ft.</sub>      | Rigr                  | <b>11:</b> 70 degrees |
| Meandering                                            |                   | 0.01 fps                    |                  | Left:           | 1 <sub>ft.</sub>      | Le                    | ft: 70 degrees        |
| Qualitative Attributes                                |                   |                             |                  |                 |                       |                       |                       |
| Water Appearance:<br>(check one) No water Cle         | ear 🗌 -           | Furbid Sheer<br>on sur      | face             | Surface<br>scum | Algal mats            | Other:                |                       |
| Substrate: Bedrock Gr.                                | avel              | Sand                        | Silt/clay        |                 | Organic               | Other:                |                       |
| % of Substrate:%                                      | %                 | %                           | 100              | %               | %                     |                       | %                     |
| Width of Riparian Zone: Vegetative                    | e Layers:         |                             |                  |                 |                       |                       |                       |
| ft. Avg. DBH (approx.)                                | of Domin          | ants:                       | in.              | L               | Shrubs:               | in.                   | Herbs                 |
| Dominant Bank Vegetation:                             |                   |                             |                  |                 |                       |                       |                       |
| Glycine max, Seteria pumila, A                        | sclepias          | syriaca, Poa spr            | ).               |                 |                       |                       |                       |
| Aquatic Habitats (ex: submerged or emerged aq         | uatic vegetatio   | on, overhanging banks/roots | , leaf packs, la | irge submerge   | d wood, riffles, deep | pools):               |                       |
| submerged vegetation, leaf page                       | ck                |                             |                  |                 |                       |                       |                       |
| Aquatic Organisms Observed:                           |                   |                             |                  |                 |                       |                       |                       |
| frog                                                  |                   |                             |                  |                 |                       |                       |                       |
| Invasive and/or T&E Species Observed:                 | :                 |                             |                  |                 |                       |                       |                       |
| Tributary is:<br>(check one) Natural                  |                   | Artificial, man-made        | Ma               | nipulated       |                       |                       |                       |
| Disturbances:<br>(check all that apply)               |                   | Manure in waterbody         | Waste o          | lischarge       | Oth                   | ier:                  |                       |
| Stream Quality <sup>b</sup> :                         |                   | Moderate                    | Low              |                 |                       |                       |                       |

<sup>2</sup>**Connecting swales** are water features that do not meet the definition of a waterbody (not an ephemeral waterbody) in that there is not a defined bed, bank, and ordinary high water mark, however, it is a water conveyance feature that is characterized by flow volume, frequency, and duration to make it more than just an erosional feature and connects two potential waters of the U.S. and thereby may be subject to Section 404 permitting.

<sup>b</sup> High Quality: Natural channel, natural vegetation extends at least one or two active channel widths on each side; banks stable and protected by roots; water color is clear to tea-colored; no barriers to fish movement; many fish cover types available; diverse and stable aquatic habitat; no disturbance by livestock or man.

**Moderate Quality:** Altered channel evidenced by rip-rap; natural vegetation extends 1/3-1/2 of the active channel width on each side; filtering function or riparian vegetation only moderately compromised; banks moderately unstable; water color is cloudy, submerged objects covered with greenish film; moderate odor; minor barriers to fish movement; fair aquatic habitat; minimum disturbance by livestock or man.

Low Quality: Channel is actively down cutting or widening; rip rap and channelization excessive; natural vegetation less than 1/3 of the active channel width on each side; lack of regeneration; filtering function severely compromised; banks unstable (eroding); water color is muddy and turbid; obvious pollutants (algal mats, surface scum, surface sheen); heavy odor; severe barriers to fish movement; little to no aquatic habitat; severe disturbance from livestock or man.

|                            |                                      |                                | Waterbod                    | y ID:              |
|----------------------------|--------------------------------------|--------------------------------|-----------------------------|--------------------|
|                            |                                      |                                | SPABO                       | 002                |
| Waterbody Sketch           |                                      |                                |                             |                    |
| Include north arrow, cente | erline, distance from centerline, pl | hoto locations, and survey are | ea/corridor if applicable.  |                    |
| TN                         |                                      |                                |                             |                    |
|                            |                                      |                                |                             |                    |
|                            |                                      |                                |                             |                    |
|                            |                                      |                                |                             |                    |
|                            |                                      | A                              |                             |                    |
|                            |                                      |                                |                             |                    |
|                            | P                                    |                                | . /                         |                    |
|                            | pears                                |                                | Beens                       |                    |
|                            |                                      | '                              |                             |                    |
|                            |                                      | A                              |                             |                    |
|                            |                                      |                                |                             |                    |
|                            |                                      | A                              |                             |                    |
|                            |                                      |                                |                             |                    |
|                            |                                      |                                |                             |                    |
|                            |                                      | ' (                            |                             |                    |
| Notes                      |                                      |                                |                             |                    |
| Agricultural ditch th      | nat separates fields. Mappe          | ed per Rod Ginter. High        | water level due to heavy re | ecent rain events. |
|                            |                                      |                                |                             |                    |
|                            |                                      |                                |                             |                    |
|                            |                                      |                                |                             |                    |
|                            |                                      |                                |                             |                    |
|                            |                                      |                                |                             |                    |
|                            |                                      |                                |                             |                    |
|                            |                                      |                                |                             |                    |
|                            |                                      |                                |                             |                    |
|                            |                                      |                                |                             |                    |
|                            |                                      |                                |                             |                    |
|                            |                                      |                                |                             |                    |
|                            |                                      |                                |                             |                    |
|                            |                                      |                                |                             |                    |

| <b>ChieEPA</b> |
|----------------|
|----------------|

Qualitative Habitat Evaluation Index and Use Assessment Field Sheet

QHEI Score: 23.5

| Stream & Location: SPAB002                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <i>RM:</i> <u>N</u> / <u></u>                                                                      | ADate:7_/                                                                                                             | 14 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UNT to Dickerson Ditch                                                                                                                                                                                                             | Scorers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | s Full Name & Affiliation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | : Mark Eldridge                                                                                    | / SCI Engineering                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| River Code: N/A                                                                                                                                                                                                                    | <b>STORET #:_</b> N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7 <u>69</u> <b>/8</b> 4                                                                            | <u>78871</u>                                                                                                          | Office verified<br>location ☑                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1] SUBSTRATE Check ONLY Two<br>estimate % or not<br>BEST TYPES<br>BLDR /SLABS [10]<br>BOULDER [9]<br>COBBLE [8]<br>GRAVEL [7]<br>BEDROCK [5]<br>NUMBER OF BEST TYPES:<br>Comments                                                  | substrate TYPE BOXES;<br>e every type present<br>DTHER TYPES<br>POOL<br>HARDPAN [4]<br>DETRITUS [3]<br>MUCK [2]<br>SILT [2]<br>ARTIFICIAL [0]<br>(Score natural substrar<br>4 or more [2] sludge from point<br>3 or less [0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Check ORIGIN ULINESTONE [1] UTILLS [1] UTILLS [1] UNIT CANDS [0] UNIT CANDSTONE [1] UNIT CANDSTONE [2] UNIT | SILT<br>SILT                                                                                       | Verage) QUALITY HEAVY [-2] MODERATE NORMAL [0] FREE [1] MODERATE MODERATE MODERATE NORMAL [0] NORMAL [0]              | [-1] Substrate<br>[-2] 3<br>[-1] Maximum<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2] INSTREAM COVER Indicate p<br>quality; 3-Highest quality in moderate<br>diameter log that is stable, well develor<br>0 UNDERCUT BANKS [1]<br>0 OVERHANGING VEGETATION<br>0 SHALLOWS (IN SLOW WATER<br>0 ROOTMATS [1]<br>Comments | Presence 0 to 3: 0-Absent; 1-Very<br>-Moderate amounts, but not of hig<br>or greater amounts (e.g., very lar<br>ped rootwad in deep / fast water,<br><u>0</u> POOLS > 70cm [2]<br>[1] 0 ROOTWADS [1]<br>0 BOULDERS [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | y small amounts or if more comr<br>ghest quality or in small amoun<br>ge boulders in deep or fast wat<br>, or deep, well-defined, function<br>0 OXBOWS, BACKWAT<br>0 AQUATIC MACROPH<br>0 LOGS OR WOODY D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | non of marginal<br>ts of highest<br>er, large C<br>al pools.<br>IERS [1]<br>IYTES [1]<br>EBRIS [1] | AMOUN<br>heck ONE (Or 2 &<br>EXTENSIVE >75<br>MODERATE 25-<br>SPARSE 5-<25%<br>NEARLY ABSEN<br>C<br>Max               | T         & average)         % [11]         75% [7]         6 [3]         IT <5% [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3] CHANNEL MORPHOLOGY<br>SINUOSITY DEVELOPME<br>HIGH [4] EXCELLENT<br>MODERATE [3] GOOD [5]<br>LOW [2] FAIR [3]<br>NONE [1] POOR [1]<br>Comments                                                                                   | Check ONE in each category ( <i>Or</i><br>INT CHANNELIZATIO<br>[7] ☑ NONE [6]<br>□ RECOVERED [4]<br>□ RECOVERING [3]<br>□ RECENT OR NO REC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2 & average)<br>DN STABILITY<br>U HIGH [3]<br>MODERATE [2]<br>:OVERY [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2]                                                                                                 | <b>Ch</b><br>Max                                                                                                      | annel<br>imum<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 4] BANK EROSION AND RIPA<br>River right looking downstream<br>EROSION<br>RI<br>NONE / LITTLE [3]<br>MODERATE [2]<br>HEAVY / SEVERE [1]<br>VE<br>Comments                                                                           | RIAN ZONE       Check ONE in e         PARIAN WIDTH       Image: Red transform [3]         DE > 50m [4]       Image: Red transform [3]         DERATE 10-50m [3]       Image: Red transform [3]         RROW 5-10m [2]       Image: Red transform [3]         RY NARROW < 5m [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ach category for <i>EACH BANK</i> (<br>FLOOD PLAIN QUAI<br>OREST, SWAMP [3]<br>HRUB OR OLD FIELD [2]<br>ESIDENTIAL, PARK, NEW FIEL<br>ENCED PASTURE [1]<br>PEN PASTURE, ROWCROP [(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Or 2 per bank &<br>LITY<br>D C<br>D [1]<br>Indicate p<br>past 1000                                 | average)<br>DNSERVATION TI<br>RBAN OR INDUS<br>NING / CONSTRU<br>Dredominant land u<br>m riparian. <b>Rip</b><br>Maxi | LLAGE [1]<br>TRIAL [0]<br>JCTION [0]<br>Jarian<br>imum<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 5] POOL / GLIDE AND RIFFLE<br>MAXIMUM DEPTH C<br>Check ONE (ONLY!) Chec<br>□ > 1m [6] □ POOL V<br>□ 0.7-<1m [4] ☑ POOL V<br>□ 0.4-<0.7m [2] □ POOL V<br>□ 0.2-<0.4m [1]<br>☑ < 0.2m [0]<br>Comments                                | Image: Provide state st | CURRENT VELOCIT<br>Check ALL that apply<br>TORRENTIAL [-1] SLOW [1<br>VERY FAST [1] INTERS<br>FAST [1] INTERM<br>MODERATE [1] EDDIES<br>Indicate for reach - pools and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Y<br>ITTIAL [-1]<br>ITTENT [-2]<br>[1]<br>riffles.                                                 | Recreation Po<br>Primary Co<br>Secondary C<br>(circle one and comme<br>Cu<br>Max                                      | Pool / 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Indicate for functional riff<br>of riffle-obligate species:<br>RIFFLE DEPTH RU<br>BEST AREAS > 10cm [2] MAXI<br>BEST AREAS 5-10cm [1] MAXI<br>BEST AREAS < 5cm<br>[metric=0]<br>Comments                                           | Ies; Best areas must be I<br>Check ONE (<br>N DEPTH RIFFLE /<br>MUM > 50cm [2] STABLE (e<br>MUM < 50cm [1] MOD. STAB<br>UNSTABLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | arge enough to suppor<br>Or 2 & average).<br>RUN SUBSTRATE RI<br>.g., Cobble, Boulder) [2]<br>BLE (e.g., Large Gravel) [1]<br>E (e.g., Fine Gravel, Sand) [0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | t a population<br>FFLE / RUN<br>D NOI<br>D LOV<br>MO<br>D EXT                                      | ON<br>EMBEDDEDN<br>NE [2]<br>N [1]<br>DERATE [0]<br>K<br>TENSIVE [-1]<br>Max                                          | Image: State |
| 6] GRADIENT (N/A ft/mi) ☑<br>DRAINAGE AREA □<br>( mi²) □                                                                                                                                                                           | VERY LOW - LOW [2-4]<br>MODERATE [6-10]<br>HIGH - VERY HIGH [10-6]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | %POOL:<br>%RUN: 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ) %GLIDE:<br>)%RIFFLE:(                                                                            | Gra<br>Max                                                                                                            | indient 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

Comment RE: Reach consistency/ Is reach typical of steam?, Recreation/Observed - Inferred, Other/ Sampling observations, Concerns, Access directions, etc. A] SAMPLED REACH Check ALL that apply **METHOD** STAGE **BOAT** 1st -sample pass- 2nd HIGH WADE L. LINE ✓ NORMAL □ ✓ OTHER DISTANCE ō 0.5 Km **B] AESTHETICS** F] MEASUREMENTS CLARITY D] MAINTENANCE E] ISSUES Circle some & COMMENT 0.2 Km 1st --sample pass-- 2nd PUBLIC / PRIVATE BOTH NA WWTP / CSO / NPDES / INDUSTRY □ NUISANCE ALGAE 🗌 0.15 Km x width ✓ < 20 cm</p> □ INVASIVE MACROPHYTES ACTIVE / HISTORIC / BOTH / NA HARDENED / URBAN / DIRT&GRIME 0.12 Km x depth □ 20-<40 cm EXCESS TURBIDITY YOUNG-SUCCESSION-OLD **CONTAMINATED / LANDFILL** ✓ OTHER max. depth 40-70 cm SPRAY SNAG / REMOVED **BMPs-CONSTRUCTION-SEDIMENT** DISCOLORATION x bankfull width 33 □ > 70 cm/ CTB MODIFIED / DIPPED OUT / NA LOGGING (IRRIGATION) COOLING FOAM / SCUM bankfull  $\overline{x}$  depth meters **BANK / EROSION / SURFACE** □ OIL SHEEN LEVEED / ONE SIDED W/D ratio TRASH / LITTER **RELOCATED / CUTOFFS** FALSE BANK / MANURE / LAGOON CANOPY 1st\_ cm bankfull max. depth □ NUISANCE ODOR MOVING-BEDLOAD-STABLE WASH H<sub>2</sub>0 / TILE / H<sub>2</sub>0 TABLE oass ✓ > 85%- OPEN floodprone x<sup>2</sup> width □ SLUDGE DEPOSITS **ARMOURED / SLUMPS** ACID / MINE / QUARRY / FLOW 55%-<85% 2nd cm CSOs/SSOs/OUTFALLS entrench. ratio **ISLANDS / SCOURED** NATURAL / WETLAND / STAGNANT 30%-<55% **IMPOUNDED / DESICCATED** PARK / GOLF / LAWN / HOME Legacy Tree: □ 10%-<30% AREA DEPTH **CI RECREATION** FLOOD CONTROL / DRAINAGE **ATMOSPHERE / DATA PAUCITY** *POOL*: □ >100ft<sup>2</sup> □ >3ft <10%- CLOSED</p>

#### Stream Drawing:

See Waterbody Dataform



[SPAB002\_001S UP] facing south upstream



[SPAB002\_002 N DOWN] facing north downstream



## [SPAB002\_003E ACROSS] facing east across bank

| Waterbody [                                    | Data Sheet                                              |                                 |                               |                  |                     |                       |                              |                            |
|------------------------------------------------|---------------------------------------------------------|---------------------------------|-------------------------------|------------------|---------------------|-----------------------|------------------------------|----------------------------|
| Survey Descr                                   | ription                                                 |                                 |                               |                  |                     |                       |                              |                            |
| Project Name:                                  |                                                         | Waterbo                         | ody Name:                     |                  |                     | Waterbody ID          | :                            | Date:                      |
| AEP Allen Sta                                  | ation                                                   | Eibling                         | g Ditch                       |                  |                     | SPAA002               |                              | 7/14/15                    |
| State: Cour                                    | nty:                                                    |                                 | Company:                      |                  | Crew Me             | mber Initials:        | Photo ID(s):                 |                            |
| OH Pau                                         | ulding                                                  |                                 | SCI Engine                    | ering            | JS/ TC              |                       | 001 up 002 o                 | down 003 across            |
| Tract Number(s)                                | :                                                       |                                 | Milepost Entry:               | Milepost E       | xit:                | Associated W          | etland ID(s):                |                            |
| 03-30-001-00                                   |                                                         |                                 | n/a                           | n/a              |                     | None                  |                              |                            |
| (check one)                                    |                                                         | ne                              | Re-Route                      | Access R         | oad                 | Other:                |                              |                            |
| Physical Attri                                 | ibutes                                                  |                                 |                               |                  |                     |                       |                              |                            |
| Stream Classific<br>(check one)                | ation:                                                  | ral                             | Intermittent                  | Perennia         |                     | Connectin             | ng swale <sup>a</sup>        |                            |
| Waterbody Type<br>(check one)                  | :<br>Lake Po                                            | ond:<br>efine)                  | River                         |                  | Stream              | Drainage<br>Ditch     | Other:                       |                            |
| OHWM<br>Width:                                 | OHWM I<br>(check all th                                 | hat apply)                      | Clear line<br>on bank         |                  | Shelving            | Wrester<br>vegetat    | d Scour                      | ing Water<br>staining      |
| Height:                                        | $\_^{\text{ft.}}$<br>5 $\blacksquare$ $\blacksquare$ Be | nt, matted, or<br>ssing vegetat | r Wrack<br>ion line           |                  | itter and<br>lebris | Abrupt                | plant                        | Soil characteristic change |
| Width of Waterbo                               | ody - Top of Bank to                                    | Wie                             | dth of Waterbody - W          | ater Edge        | to                  | Depth of Wa           | ter at Centerline:           |                            |
| Top of Bank at C                               | enterline:<br>24 <sub>ft</sub>                          | Wa                              | ter Edge at Centerlin<br>5    | ie:              |                     | (Approx.)             | 1 <sub>f</sub>               | t.                         |
| Sinuosity:                                     | n.                                                      | Nater veloci                    | ty:                           | Bank he          | eight               |                       | Bank slope                   |                            |
| (check one)                                    | Straight                                                | Approx.)                        | -                             | F                | light:              | 8.                    | Righ                         | nt: 60                     |
|                                                |                                                         |                                 | .5 <sub>fos</sub>             |                  |                     | ft.                   |                              | degrees                    |
|                                                | Meandering                                              |                                 | ips                           |                  | Left:               | 8 ft.                 | Le                           | ft: 45<br>degrees          |
| Qualitative At                                 | ttributes                                               |                                 |                               |                  |                     |                       |                              |                            |
| Water Appearane<br>(check one)                 | ce:                                                     | Clear 🖌                         | Turbid Sheer<br>on sur        | face             | Surface<br>scum     | Algal mats            | Other:                       |                            |
| Substrate:<br>(check all that apply)           | Bedrock                                                 | Gravel                          | Sand                          | Silt/clay        |                     | Organic               | Other:                       |                            |
| % of Substrate:                                | %                                                       | %                               | %                             | 100              | %                   | %                     |                              | %                          |
| Width of Riparia                               | n Zone: Vegeta                                          | tive Layers:                    |                               |                  |                     | Chruba                |                              | Horbo                      |
| 10                                             | ft. Avg. D<br>(approx.)                                 | BH of Domi                      | nants:                        | in.              | <b>V</b>            |                       | .5 <sub>in.</sub>            | <b>√</b> Herbs             |
| Dominant Bank                                  | Vegetation:<br>us pratensis                             |                                 |                               |                  |                     |                       |                              |                            |
| Aquatic Habitats                               | (ex: submerged or emerge                                | d aquatic vegetat               | tion, overhanging banks/roots | , leaf packs, la | rge submerge        | d wood, riffles, deep | pools):                      |                            |
| In-stream v                                    | vegetation                                              |                                 |                               |                  |                     |                       |                              |                            |
| Aquatic Organis<br>( <sup>(list)</sup><br>None | ms Observed:                                            |                                 |                               |                  |                     |                       |                              |                            |
| Invasive and/or                                | T&E Species Observ<br>/ense                             | ved:                            |                               |                  |                     |                       |                              |                            |
| Tributary is:<br>(check one)                   | Natural                                                 |                                 | Artificial, man-made          | 🖌 Ma             | nipulated           |                       |                              |                            |
| Disturbances:<br>(check all that apply)        | Livestoc                                                | k 🗌                             | ] Manure in                   | Waste d          | ischarge            | Vth                   | <sup>ler:</sup> drain tile d | ischarge                   |
| Stream Quality <sup>b</sup> :<br>(check one)   | High                                                    | $\checkmark$                    | Moderate                      | Low              |                     |                       |                              |                            |

<sup>2</sup>**Connecting swales** are water features that do not meet the definition of a waterbody (not an ephemeral waterbody) in that there is not a defined bed, bank, and ordinary high water mark, however, it is a water conveyance feature that is characterized by flow volume, frequency, and duration to make it more than just an erosional feature and connects two potential waters of the U.S. and thereby may be subject to Section 404 permitting.

<sup>b</sup> High Quality: Natural channel, natural vegetation extends at least one or two active channel widths on each side; banks stable and protected by roots; water color is clear to tea-colored; no barriers to fish movement; many fish cover types available; diverse and stable aquatic habitat; no disturbance by livestock or man.

**Moderate Quality:** Altered channel evidenced by rip-rap; natural vegetation extends 1/3-1/2 of the active channel width on each side; filtering function or riparian vegetation only moderately compromised; banks moderately unstable; water color is cloudy, submerged objects covered with greenish film; moderate odor; minor barriers to fish movement; fair aquatic habitat; minimum disturbance by livestock or man.

Low Quality: Channel is actively down cutting or widening; rip rap and channelization excessive; natural vegetation less than 1/3 of the active channel width on each side; lack of regeneration; filtering function severely compromised; banks unstable (eroding); water color is muddy and turbid; obvious pollutants (algal mats, surface scum, surface sheen); heavy odor; severe barriers to fish movement; little to no aquatic habitat; severe disturbance from livestock or man.

Waterbody ID:

SPAA002

#### Waterbody Sketch

Include north arrow, centerline, distance from centerline, photo locations, and survey area/corridor if applicable.





Qualitative Habitat Evaluation Index and Use Assessment Field Sheet

Stream & Location: Eibling Ditch SPAA002 RM: N/A. Date:7 / 14 / 15 Paulding County,OH **AEP Allen Station** Scorers Full Name & Affiliation: J. Stone/ SCI Engineering Office verified location ☑ Lat./Long.: 41.01760 /84.78399 River Code: N/A-STORET #:\_N/A 1] SUBSTRATE Check ONLY Two substrate TYPE BOXES: Check ONE (Or 2 & average) estimate % or note every type present OTHER TYPES POOL RIFFLE **BEST TYPES** ORIGIN QUALITY POOL RIFFLE LIMESTONE [1] HEAVY [-2] 🗌 🗌 HARDPAN [4] BLDR /SLABS [10] TILLS [1] DETRITUS [3] MODERATE [-1] Substrate **BOULDER** [9] SILT WETLANDS [0] COBBLE [8] NORMAL [0] **MUCK** [2] HARDPAN [0] GRAVEL [7] 🗸 🗸 SILT [2] FREE [1] -1 ✓ EXTENSIVE [-2] SANDSTONE [0] SAND [6] ARTIFICIAL [0] RIP/RAP [0] MODERATE [-1] BEDROCK [5] (Score natural substrates; ignore Maximum NUMBER OF BEST TYPES: 4 or more [2] sludge from point-sources) 20 SHALE [-1] ✓ 3 or less [0] Comments COAL FINES [-2] 2] INSTREAM COVER Indicate presence 0 to 3: 0-Absent; 1-Very small amounts or if more common of marginal AMOUNT quality; 2-Moderate amounts, but not of highest quality or in small amounts of highest quality; 3-Highest quality in moderate or greater amounts (e.g., very large boulders in deep or fast water, large diameter log that is stable, well developed rootwad in deep / fast water, or deep, well-defined, functional pools. Check ONE (Or 2 & average) EXTENSIVE >75% [11] 0 **UNDERCUT BANKS [1]** 0 POOLS > 70cm [2] \_0 **OXBOWS, BACKWATERS [1]** MODERATE 25-75% [7] 1 **OVERHANGING VEGETATION** [1] 0 **ROOTWADS** [1] 0 **AQUATIC MACROPHYTES [1]** SPARSE 5-<25% [3] SHALLOWS (IN SLOW WATER) [1] 0 0 ☑ NEARLY ABSENT <5% [1]</p> **BOULDERS** [1] 0 LOGS OR WOODY DEBRIS [1] **ROOTMATS** [1] 0 Cover Comments Maximum 2 20 3] CHANNEL MORPHOLOGY Check ONE in each category (Or 2 & average) SINUOSITY DEVELOPMENT **CHANNELIZATION** STABILITY EXCELLENT [7] **NONE [6]** HIGH [3] MODERATE [3] GOOD [5]  $\Box$ **RECOVERED** [4]  $\overline{}$ MODERATE [2] LOW [2] **FAIR** [3] RECOVERING [3] LOW [1] Channel ✓ NONE [1] POOR [1] RECENT OR NO RECOVERY [1] Maximum Comments 20 4] BANK EROSION AND RIPARIAN ZONE Check ONE in each category for EACH BANK (Or 2 per bank & average) River right looking downstream **RIPARIAN WIDTH** FLOOD PLAIN QUALITY EROSION 🔲 🗋 WIDE > 50m [4] FOREST, SWAMP [3] CONSERVATION TILLAGE [1] 🖸 🖸 NONE / LITTLE [3] URBAN OR INDUSTRIAL [0] **MODERATE 10-50m [3]** □ □ SHRUB OR OLD FIELD [2] ☐ ☐ MODERATE [2] □ □ NARROW 5-10m [2] □ □ HEAVY / SEVERE [1] ☑ ☑ VERY NARROW < 5m [1] FENCED PASTURE [1] Indicate predominant land use(s) □ □ NONE [0] OPEN PASTURE, ROWCROP [0] past 100m riparian. Riparian Δ Comments Maximum 10 5] POOL / GLIDE AND RIFFLE / RUN QUALITY Recreation Potential MAXIMUM DEPTH **CHANNEL WIDTH CURRENT VELOCITY** Check ONE (ONLY!) Check ONE (Or 2 & average) Check ALL that apply Primary Contact POOL WIDTH > RIFFLE WIDTH [2] □ TORRENTIAL [-1] □ SLOW [1] 🗌 > 1m [6] Secondary Contact 0.7-<1m [4] ✓ POOL WIDTH = RIFFLE WIDTH [1] VERY FAST [1] INTERSTITIAL [-1] (circle one and comment on back) FAST [1] 0.4-<0.7m [2] □ POOL WIDTH < RIFFLE WIDTH [0] INTERMITTENT [-2] MODERATE [1] EDDIES [1] ✓ 0.2-<0.4m [1] Pool / □ < 0.2m [0] Indicate for reach - pools and riffles. Current 3 Maximum Comments 12 Indicate for functional riffles; Best areas must be large enough to support a population ✓ NO RIFFLE [metric=0] of riffle-obligate species: Check ONE (Or 2 & average). **RIFFLE DEPTH RUN DEPTH RIFFLE / RUN SUBSTRATE RIFFLE / RUN EMBEDDEDNESS** BEST AREAS > 10cm [2] MAXIMUM > 50cm [2] STABLE (e.g., Cobble, Boulder) [2] **NONE** [2] MAXIMUM < 50cm [1] MOD. STABLE (e.g., Large Gravel) [1] BEST AREAS 5-10cm [1] LOW [1] BEST AREAS < 5cm [metric=0] Riffle / UNSTABLE (e.g., Fine Gravel, Sand) [0] MODERATE [0] 0 Comments 8 6] GRADIENT ( N/A VERY LOW - LOW [2-4] ft/mi) %POOL %GLIDE: Gradient 2 **MODERATE** [6-10] **DRAINAGE AREA** Maximum %RIFFLE HIGH - VERY HIGH [10-6] %RUN: 100 mi<sup>2</sup>) ( 10

17

QHEI Score:

| AJ SAMPLED REACH<br>Check ALL that apply                                                                                                                                        | MPLED REACH       Comment RE: Reach consistency/ Is reach typical of steam?, Recreation/ Observed - Inferred, Other/ Sampling observations, Concerns, Access directions, etc         Unnamed ditch channelized from a stream. Uniform banks and channel, little habitat. Very turbid from overnight heavy rains. |                                                                                                                                                                                                                                                                                                                                       |                           |                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                              |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| METHOD     STAGE       BOAT     1st-sample pass-2nd       WADE     HIGH       L. LINE     UP       OTHER     NORMAL       DISTANCE     DRY                                      | Several tile discharge outlet                                                                                                                                                                                                                                                                                    | s. Adjacent landowner indica                                                                                                                                                                                                                                                                                                          | ted that it flows year ro | und.                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                              |  |
| □       0.5 Km       CLARITY         □       0.2 Km       1stsample pass 2n         □       0.15 Km       ✓       20 cm       □         □       0.12 Km       ✓       20-<40 cm | BJ AESTHETICS<br>NUISANCE ALGAE<br>INVASIVE MACROPHYTES<br>EXCESS TURBIDITY<br>DISCOLORATION<br>FOAM / SCUM<br>OIL SHEEN<br>OIL SHEEN<br>TRASH / LITTER<br>NUISANCE ODOR<br>NUISANCE ODOR<br>SLUDGE DEPOSITS<br>CSOs/SSOs/OUTFALLS<br>EATION AREA DEPTH<br>POOL: ] >100ft2 ] >3ft                                | DJ MAINTENANCE<br>PUBLIC / PRIVATE / BOTH / NA<br>ACTIVE / HISTORIC / BOTH / NA<br>YOUNG-SUCCESSION-OLD<br>SPRAY / SNAG / REMOVED<br>MODIFIED / DIPPED OUT / NA<br>LEVEED / ONE SIDED<br>RELOCATED / CUTOFFS<br>MOVING-BEDLOAD-STABLE<br>ARMOURED / SLUMPS<br>ISLANDS / SCOURED<br>IMPOUNDED / DESICCATED<br>FLOOD CONTROL / DRAINAGE | Circle some & COMMENT     | <i>EJ ISSUES</i><br>WWTP / CSO / NPDES / INDUSTRY<br>HARDENED / URBAN / DIRT&GRIME<br>CONTAMINATED / LANDFILL<br>BMPs-CONSTRUCTION-SEDIMENT<br>LOGGING / IRRIGATION / COOLING<br>BANK / EROSION / SURFACE<br>FALSE BANK / MANURE / LAGOON<br>WASH H <sub>2</sub> 0 / TILE / H <sub>2</sub> 0 TABLE<br>ACID / MINE / QUARRY / FLOW<br>NATURAL / WETLAND / STAGNANT<br>PARK / GOLF / LAWN / HOME<br>ATMOSPHERE / DATA PAUCITY | FJ MEASUREMENTS<br>$\bar{x}$ width<br>$\bar{x}$ depth<br>max. depth<br>$\bar{x}$ bankfull width<br>bankfull $\bar{x}$ depth<br>W/D ratio<br>bankfull max. depth<br>floodprone $x^2$ width<br>entrench. ratio<br>Legacy Tree: |  |

## Stream Drawing:

See waterbody dataform



[SPAA002\_001S] facing south upstream



[SPAA002\_002N] facing north downstream



## [SPAA002\_003W] facing west across bank

| Waterbo                               | dy Data Sh                          | leet                       |                      |                               |                         |                     |                        |                              |                            |
|---------------------------------------|-------------------------------------|----------------------------|----------------------|-------------------------------|-------------------------|---------------------|------------------------|------------------------------|----------------------------|
| Survey D                              | escription                          |                            |                      |                               |                         |                     |                        |                              |                            |
| Project Nan                           | ne:                                 |                            | Waterbo              | ody Name:                     |                         |                     | Waterbody ID           | :                            | Date:                      |
| AEP Alle                              | n Station                           |                            | Henry                | Ditch                         |                         |                     | SPAA001                |                              | 7/13/15                    |
| State:                                | County:                             |                            |                      | Company:                      |                         | Crew Me             | mber Initials:         | Photo ID(s):                 |                            |
| IN                                    | Allen                               |                            |                      | SCI Engine                    | ering                   | JS/ TC              |                        | 001 up 002 c                 | lown 003 across            |
| Tract Numb                            | per(s):                             |                            |                      | Milepost Entry:               | Milepost E              | xit:                | Associated W           | etland ID(s):                |                            |
| 03-29-01                              | 3-00, 0329S                         | -01901                     |                      | n/a                           | n/a                     |                     | None                   |                              |                            |
| (check one)                           |                                     | Centerline                 | ;                    | Re-Route                      | Access R                | oad                 | Other:                 |                              |                            |
| Physical                              | Attributes                          |                            |                      |                               |                         |                     |                        |                              |                            |
| Stream Clas<br>(check one)            | ssification:                        | Ephemera                   | al 🗸                 | Intermittent                  | Perennial               |                     | Connectir              | ng swale <sup>a</sup>        |                            |
| Waterbody<br>(check one)              | Type:<br>Lake                       | Pon<br>(defir              | nd:<br>              | Rive                          | r 🔽                     | Stream              | Drainage<br>Ditch      | Other:                       |                            |
| OHWM<br>Width:                        | 4                                   | OHWM In<br>(check all that | dicator:<br>t apply) | Clear line<br>on bank         |                         | Shelving            | Wrester<br>vegetat     | d Scour                      | ing Water<br>staining      |
| Height:                               | π.<br>.5 <sub>ft</sub>              | <b>I</b> Bent<br>miss      | t, matted, o         | r Wrack<br>line               |                         | itter and<br>lebris | Abrupt                 | plant                        | Soil characteristic change |
| Width of Wa                           | aterbody - Top                      | of Bank to                 | Wie                  | dth of Waterbody - W          | /ater Edge              | to                  | Depth of Wa            | ter at Centerline:           |                            |
| Top of Ban                            | k at Centerline<br>30 <sub>ft</sub> |                            | Wa                   | iter Edge at Centerlin<br>ह   | ne:<br>5 <sub>ft.</sub> |                     | (Approx.)              |                              | t.                         |
| Sinuosity:                            |                                     | W                          | ater veloci          | ty:                           | Bank he                 | eight               |                        | Bank slope                   |                            |
| (спеск опе)                           | 🖌 Straight                          | (Ap                        | prox.)               |                               | F                       | light:              | 8 <sub>ft</sub>        | Righ                         | nt: 45                     |
|                                       | Meande                              | ring                       | -                    | 1<br>fps                      |                         | Left:               | 1<br>8 ,               | Le                           | eft: 60 .                  |
| Qualitativ                            | /e Attributes                       |                            |                      |                               |                         |                     | π.                     |                              | degrees                    |
| Water Appe                            | earance:                            |                            |                      |                               |                         |                     |                        | _                            |                            |
| (check one)                           | No w                                | vater C                    | Clear 🖌              | Turbid Sheer<br>on su         | n<br>rface              | Surface<br>scum     | Algal<br>mats          | Other:                       |                            |
| Substrate:<br>(check all that a       | pply) Bedr                          | ock                        | Gravel               | Sand                          | Silt/clay               |                     | Organic                | Other:                       |                            |
| % of Substr                           | rate:                               | %                          | %                    | %                             | 100                     | %                   | %                      |                              | %                          |
| Width of Ri                           | parian Zone:                        | Vegetati                   | ve Layers:           |                               |                         | Г                   | Shrube                 |                              | Horbs                      |
| _                                     | 10<br>ft.                           | Avg. DB<br>(approx.)       | H of Domi            | nants:                        | in.                     | L                   |                        | in.                          |                            |
| Dominant E                            | Bank Vegetations<br>s inermis       | n:                         |                      |                               |                         |                     |                        |                              |                            |
| Aquatic Hal                           | bitats (ex: submer                  | ged or emerged a           | aquatic vegeta       | tion, overhanging banks/roots | s, leaf packs, la       | rge submerge        | ed wood, riffles, deep | pools):                      |                            |
| Aquatic Ord                           | anisms Obser                        | ved:                       |                      |                               |                         |                     |                        |                              |                            |
| <sup>(list)</sup> None                | <b>.</b>                            |                            |                      |                               |                         |                     |                        |                              |                            |
| Invasive an<br><sup>(list)</sup> None | d/or T&E Spec                       | ies Observe                | d:                   |                               |                         |                     |                        |                              |                            |
| Tributary is<br>(check one)           | :<br>[                              | Natural                    |                      | Artificial, man-made          | e 🖌 Ma                  | nipulated           |                        |                              |                            |
| Disturbance<br>(check all that a)     | es:<br>pply)                        | Livestock<br>access        |                      | Manure in waterbody           | Waste d                 | ischarge            | Vth                    | <sup>ler:</sup> drain tile d | ischarge                   |
| Stream Qua<br>(check one)             | ality <sup>b</sup> :                | High                       | $\checkmark$         | Moderate                      | Low                     |                     |                        |                              |                            |

<sup>2</sup>**Connecting swales** are water features that do not meet the definition of a waterbody (not an ephemeral waterbody) in that there is not a defined bed, bank, and ordinary high water mark, however, it is a water conveyance feature that is characterized by flow volume, frequency, and duration to make it more than just an erosional feature and connects two potential waters of the U.S. and thereby may be subject to Section 404 permitting.

<sup>b</sup> High Quality: Natural channel, natural vegetation extends at least one or two active channel widths on each side; banks stable and protected by roots; water color is clear to tea-colored; no barriers to fish movement; many fish cover types available; diverse and stable aquatic habitat; no disturbance by livestock or man.

**Moderate Quality:** Altered channel evidenced by rip-rap; natural vegetation extends 1/3-1/2 of the active channel width on each side; filtering function or riparian vegetation only moderately compromised; banks moderately unstable; water color is cloudy, submerged objects covered with greenish film; moderate odor; minor barriers to fish movement; fair aquatic habitat; minimum disturbance by livestock or man.

Low Quality: Channel is actively down cutting or widening; rip rap and channelization excessive; natural vegetation less than 1/3 of the active channel width on each side; lack of regeneration; filtering function severely compromised; banks unstable (eroding); water color is muddy and turbid; obvious pollutants (algal mats, surface scum, surface sheen); heavy odor; severe barriers to fish movement; little to no aquatic habitat; severe disturbance from livestock or man.

Waterbody ID:

SPAA001

#### Waterbody Sketch





Qualitative Habitat Evaluation Index and Use Assessment Field Sheet

QHEI Score: 17

| Stream & Location: Unnamed E                                                                                                                                                                                                       | Ditch SPAA001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                      | <i>RM:</i> <u>N/A</u> .                                                                | _ <b>Date:</b> 7 _ <b>/</b> _13 _ <b>/</b> _15_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AEP Allen Station                                                                                                                                                                                                                  | Scorers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Full Name & Affiliation: J                                                                                                                                                                                           | . Stone/ SCI Engi                                                                      | neering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <i>River Code:</i> <u>N/A</u>                                                                                                                                                                                                      | <i>STORET #:_</i> N/ <u>A</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Lat./ Long.: 41 . 0176                                                                                                                                                                                               | 2 <b>/8</b> <u>4.77</u>                                                                | 449 Office verified<br>location ☑                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1] SUBSTRATE Check ONLY Twestimate % or no<br>BEST TYPES POOL RIF<br>BLDR /SLABS [10]<br>BOULDER [9]<br>COBBLE [8]<br>GRAVEL [7]<br>BEDROCK [5]<br>NUMBER OF BEST TYPES:<br>Comments                                               | o substrate TYPE BOXES;<br>ote every type present<br>FLE OTHER TYPES POOL<br>  HARDPAN [4]<br>  DETRITUS [3]<br>  DETRITUS [3]<br>  MUCK [2]<br>  SILT [2]<br>  ARTIFICIAL [0]<br>  (Score natural substrat<br>  4 or more [2] sludge from point<br>  3 or less [0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Check Of<br>ORIGIN<br>LIMESTONE [1]<br>☐ TILLS [1]<br>☐ WETLANDS [0]<br>✓ ☐ HARDPAN [0]<br>☐ SANDSTONE [0]<br>HACUSTURINE [0]<br>COAL FINES [-2]                                                                     |                                                                                        | Age)<br>QUALITY<br>HEAVY [-2]<br>MODERATE [-1]<br>NORMAL [0]<br>FREE [1]<br>EXTENSIVE [-2]<br>MODERATE [-1]<br>NORMAL [0]<br>NONE [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2] INSTREAM COVER Indicate<br>quality; 3-Highest quality in moderate<br>diameter log that is stable, well deve<br>OUNDERCUT BANKS [1]<br>OVERHANGING VEGETATIO<br>OSHALLOWS (IN SLOW WATE<br>OROOTMATS [1]<br>Comments             | presence 0 to 3: 0-Absent; 1-Very<br>2-Moderate amounts, but not of hig<br>e or greater amounts (e.g., very lar<br>loped rootwad in deep / fast water,<br>POOLS > 70cm [2]<br>N [1] O ROOTWADS [1]<br>BOULDERS [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | small amounts or if more common<br>ghest quality or in small amounts of<br>ge boulders in deep or fast water,<br>or deep, well-defined, functional p<br>OXBOWS, BACKWATER<br>AQUATIC MACROPHYT<br>OLOGS OR WOODY DEB | o of marginal<br>of highest Chec<br>bools. EX<br>RS [1] MO<br>ES [1] SP,<br>RIS [1] NE | AMOUNT<br>k ONE (0r 2 & average)<br>TENSIVE >75% [11]<br>DERATE 25-75% [7]<br>ARSE 5-<25% [3]<br>ARLY ABSENT <5% [1]<br>Cover<br>Maximum<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3] CHANNEL MORPHOLOGY         SINUOSITY       DEVELOPM         □ HIGH [4]       □ EXCELLEN         □ MODERATE [3]       □ GOOD [5]         □ LOW [2]       □ FAIR [3]         ☑ NONE [1]       ☑ POOR [1]         Comments       □ | Check ONE in each category ( <i>Or</i><br>ENT CHANNELIZATIC<br>T [7] INONE [6]<br>RECOVERED [4]<br>RECOVERING [3]<br>RECENT OR NO REC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2 & average)<br>DN STABILITY<br>HIGH [3]<br>MODERATE [2]<br>LOW [1]<br>OVERY [1]                                                                                                                                     |                                                                                        | Channel<br>Maximum<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 4] BANK EROSION AND RIP<br>River right looking downstream<br>EROSION<br>COMME / LITTLE [3]<br>MODERATE [2]<br>HEAVY / SEVERE [1]<br>Comments                                                                                       | ARIAN ZONE       Check ONE in exception of the second | ach category for <b>EACH BANK</b> (Or<br><b>FLOOD PLAIN QUALIT</b><br>DREST, SWAMP [3]<br>HRUB OR OLD FIELD [2]<br>ESIDENTIAL, PARK, NEW FIELD [<br>ENCED PASTURE [1]<br>PEN PASTURE, ROWCROP [0]                    | 2 per bank & ave<br>Y B CONS CONS CONS CONS CONS CONS CONS CONS                        | erage)<br>ERVATION TILLAGE [1]<br>N OR INDUSTRIAL [0]<br>G / CONSTRUCTION [0]<br>ominant land use(s)<br>parian.<br><i>Riparian</i><br>Maximum<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 5] POOL / GLIDE AND RIFFL<br>MAXIMUM DEPTH<br>Check ONE (ONLY!) Che<br>□ > 1m [6] □ POOL<br>0.7-<1m [4] ☑ POOL<br>0.4-<0.7m [2] □ POOL<br>0.2-<0.4m [1]<br>□ < 0.2m [0]<br>Comments                                                | E / RUN QUALITY<br>CHANNEL WIDTH<br>eck ONE (Or 2 & average)<br>WIDTH > RIFFLE WIDTH [2]<br>WIDTH = RIFFLE WIDTH [1]<br>WIDTH < RIFFLE WIDTH [0]<br>U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CURRENT VELOCITY<br>Check ALL that apply<br>TORRENTIAL [-1] SLOW [1]<br>VERY FAST [1] INTERSITI<br>FAST [1] INTERSITI<br>MODERATE [1] EDDIES [1]<br>Indicate for reach - pools and riffi                             | AL [-1]<br>ENT [-2]                                                                    | creation Potential<br>primary Contact<br>condary Contact<br>e one and comment on back)<br>Pool /<br>Current<br>Maximum<br>12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Indicate for functional rif<br>of riffle-obligate species<br>RIFFLE DEPTH R<br>BEST AREAS > 10cm [2] MAX<br>BEST AREAS 5-10cm [1] MAX<br>BEST AREAS < 5cm<br>[metric=0]<br>Comments                                                | ifles; Best areas must be I         Check ONE (I         UN DEPTH       RIFFLE /         (IMUM > 50cm [2]       STABLE (e.         (IMUM < 50cm [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | arge enough to support a<br>Or 2 & average).<br>RUN SUBSTRATE RIFF<br>.g., Cobble, Boulder) [2]<br>BLE (e.g., Large Gravel) [1]<br>: (e.g., Fine Gravel, Sand) [0]                                                   | E / RUN EM                                                                             | NO RIFFLE [metric=0]     IBEDDEDNESS     IBEDDEDNESS     IBEDDEINESS      IBEDDEINESS     IBEDDEINESS     IBEDDEINESS     IBEDDEINESS     IBEDDEINESS     IBEDDEINESS     IBEDDEINESS     IBEDDEINESS     IBEDDEINESS     IBEDDEINESS     IBEDDEINESS     IBEDDEINESS     IBEDDEINESS     IBEDDEINESS     IBEDDEINESS     IBEDDEINESS     IBEDDEINESS     IBEDDEINESS     IBEDDEINESS     IBEDDEINESS     IBEDDEINESS     IBEDDEINESS     IBEDDEINESS     IBEDDEINESS     IBEDDEINESS     IBEDDEINESS     IBEDDEINESS     IBEDDEINESS     IBEDDEINESS      IBEDDEINESS      IBEDDEINESS      IBEDDEINESS |
| 6] GRADIENT ( N/A ft/mi) [<br>DRAINAGE AREA [<br>( mi <sup>2</sup> ) [                                                                                                                                                             | VERY LOW - LOW [2-4]<br>MODERATE [6-10]<br>HIGH - VERY HIGH [10-6]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | %POOL:<br>%RUN: 100 %                                                                                                                                                                                                | %GLIDE:<br>%RIFFLE:                                                                    | Gradient<br>Maximum<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| AJ SAMPLED REACH<br>Check ALL that apply                                                                                                                        | Comment RE: Reach consistency/<br>Stream is a deep channelize | ls reach typical of steam? <i>, Recreation</i><br>ed ditch parallel to County Roa                                                                                                                                                                                                                                                     | n/Observed - Inferred, O <i>ther</i><br>ad 17. Water level is u | ∕ Sampling observations, Concerns, Acc<br>p due to recent heavy rains and                                                                                                                                                                                                                                                                                                                                                   | ess directions, etc.<br>significant input from                                                                                                                                                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| METHOD     STAGE       BOAT     1st-sample pass- 2nd       WADE     HIGH       L. LINE     UP       OTHER     NORMAL       DISTANCE     DRY                     | drain tiles.                                                  |                                                                                                                                                                                                                                                                                                                                       |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                           |
| □       0.5 Km       CLARITY         □       0.2 Km       1stsample pass 2n         □       0.15 Km       20 cm       1         □       0.12 Km       20-<40 cm | BJ AESTHETICS                                                 | DJ MAINTENANCE<br>PUBLIC / PRIVATE / BOTH / NA<br>ACTIVE / HISTORIC / BOTH / NA<br>YOUNG-SUCCESSION-OLD<br>SPRAY / SNAG / REMOVED<br>MODIFIED / DIPPED OUT / NA<br>LEVEED / ONE SIDED<br>RELOCATED / CUTOFFS<br>MOVING-BEDLOAD-STABLE<br>ARMOURED / SLUMPS<br>ISLANDS / SCOURED<br>IMPOUNDED / DESICCATED<br>FLOOD CONTROL / DRAINAGE | Circle some & COMMENT                                           | <i>EJ ISSUES</i><br>WWTP / CSO / NPDES / INDUSTRY<br>HARDENED / URBAN / DIRT&GRIME<br>CONTAMINATED / LANDFILL<br>BMPs-CONSTRUCTION-SEDIMENT<br>LOGGING / IRRIGATION / COOLING<br>BANK / EROSION / SURFACE<br>FALSE BANK / MANURE / LAGOON<br>WASH H <sub>2</sub> 0 / TILE / H <sub>2</sub> 0 TABLE<br>ACID / MINE / QUARRY / FLOW<br>NATURAL / WETLAND / STAGNANT<br>PARK / GOLF / LAWN / HOME<br>ATMOSPHERE / DATA PAUCITY | FJ MEASUREMENTS<br>$\overline{x}$ width<br>$\overline{x}$ depth<br>max. depth<br>$\overline{x}$ bankfull width<br>bankfull $\overline{x}$ depth<br>W/D ratio<br>bankfull max. depth<br>floodprone x <sup>2</sup> width<br>entrench. ratio<br>Legacy Tree: |

## Stream Drawing:

See waterbody dataform



[SPAA001\_001S] facing south upstream



[SPAA001\_002N] facing north downstream



## [SPAA001\_003W] facing west across bank

| Waterbody Data Sheet                                                                         |                                |                              |                |                    |                       |                       |                            |
|----------------------------------------------------------------------------------------------|--------------------------------|------------------------------|----------------|--------------------|-----------------------|-----------------------|----------------------------|
| Survey Description                                                                           |                                |                              |                |                    |                       |                       |                            |
| Project Name:                                                                                |                                | Waterbody Name:              |                |                    | Waterbody ID:         |                       | Date:                      |
| AEP Allen Station Me                                                                         |                                | Mercia Ditch                 |                |                    | SPAB003               |                       | 7/14/15                    |
| State: County:                                                                               |                                | Company:                     |                | Crew Mer           | mber Initials:        | Photo ID(s):          |                            |
| OH Paulding                                                                                  |                                | SCI Engine                   | ering          | ME/JM              |                       | 1s, 2n, 3w            |                            |
| Tract Number(s):                                                                             |                                | Milepost Entry:              | Milepost E     | xit:               | Associated W          | etland ID(s):         |                            |
| 0328S-00500                                                                                  |                                | -                            | -              |                    | N/A                   |                       |                            |
| (check one)                                                                                  | e 🗌                            | Re-Route                     | Access R       | oad                | Other:                |                       |                            |
| Physical Attributes                                                                          |                                |                              |                |                    |                       |                       |                            |
| Stream Classification:<br>(check one)                                                        | al                             | Intermittent                 | Perennia       |                    | Connectin             | ng swale <sup>a</sup> |                            |
| (check one)                                                                                  | nd:<br><sup>fine)</sup>        | River                        | <b>√</b> €     | stream             | Drainage<br>Ditch     | Other:                |                            |
| OHWM OHWM Ir<br>Width: 6                                                                     | ndicator:<br>at apply)         | Clear line<br>on bank        |                | Shelving           | Wrester<br>vegetat    | d Scour               | ing Water<br>staining      |
| Height: 1 Height:                                                                            | nt, matted, or<br>sing vegetat | ion Wrack                    |                | itter and<br>ebris | Abrupt                | plant                 | Soil characteristic change |
| Width of Waterbody - Top of Bank to                                                          | Wic                            | dth of Waterbody - W         | ater Edge      | to                 | Depth of Wa           | ter at Centerline:    | 0                          |
| Top of Bank at Centerline:<br>20 "                                                           | Wa                             | ter Edge at Centerlin<br>6   | e:             |                    | (Approx.)             | 1 <sub>f</sub>        | t                          |
| Sinuosity:                                                                                   | ater veloci                    |                              | Bank he        | eiaht              |                       | Bank slope            |                            |
| (check one) (A                                                                               | Approx.)                       |                              | F              | ight:              | 6                     | Righ                  | nt: 70                     |
|                                                                                              |                                | 0.01                         |                |                    | ft.                   |                       | degrees                    |
| Meandering                                                                                   | _                              | ips                          |                | Left:              | 6 <sub>ft.</sub>      | Le                    | ft: 70 degrees             |
| Qualitative Attributes                                                                       |                                |                              |                |                    |                       |                       |                            |
| Water Appearance:<br>(check one)                                                             | Clear 🖌                        | Turbid Sheen<br>on sur       | face           | Surface<br>scum    | Algal mats            | Other:                |                            |
| Substrate: Bedrock                                                                           | Gravel                         | Sand                         | Silt/clay      |                    | Organic               | Other:                |                            |
| % of Substrate:%                                                                             | %                              | %                            | 100            | %                  | %                     |                       | %                          |
| Width of Riparian Zone: Vegetat                                                              | tive Layers:                   |                              |                |                    |                       |                       |                            |
| ft. Avg. DE                                                                                  | BH of Domii                    | nants:                       | in.            | L                  |                       | in.                   | Herbs                      |
| Dominant Bank Vegetation:                                                                    |                                |                              |                |                    |                       |                       |                            |
| Typha angustifolia, Juncus et                                                                | ffusus, Ca                     | arex vulpinoidea, S          | Schoeno        | olectus a          | icutus                |                       |                            |
| Aquatic Habitats (ex: submerged or emerged<br>( <i>list</i> )<br>submerged vegetation, overh | l aquatic vegetat              | ion, overhanging banks/roots | leaf packs, la | rge submerge       | d wood, riffles, deep | pools):               |                            |
| Aquatic Organisms Observed:                                                                  | 0 0                            | <u> </u>                     |                |                    |                       |                       |                            |
| (list)<br>Northern Leopard frogs                                                             |                                |                              |                |                    |                       |                       |                            |
| Invasive and/or T&E Species Observe                                                          | ed:                            |                              |                |                    |                       |                       |                            |
| Tributary is:<br>(check one) Natural                                                         |                                | Artificial, man-made         | 🖌 Ma           | nipulated          |                       |                       |                            |
| Disturbances:<br>(check all that apply)                                                      |                                | Manure in waterbody          | Waste d        | ischarge           | Oth                   | ner:                  |                            |
| Stream Quality <sup>b</sup> :<br>(check one) High                                            |                                | Moderate                     | Low            |                    |                       |                       |                            |

<sup>2</sup>**Connecting swales** are water features that do not meet the definition of a waterbody (not an ephemeral waterbody) in that there is not a defined bed, bank, and ordinary high water mark, however, it is a water conveyance feature that is characterized by flow volume, frequency, and duration to make it more than just an erosional feature and connects two potential waters of the U.S. and thereby may be subject to Section 404 permitting.

<sup>b</sup> High Quality: Natural channel, natural vegetation extends at least one or two active channel widths on each side; banks stable and protected by roots; water color is clear to tea-colored; no barriers to fish movement; many fish cover types available; diverse and stable aquatic habitat; no disturbance by livestock or man.

**Moderate Quality:** Altered channel evidenced by rip-rap; natural vegetation extends 1/3-1/2 of the active channel width on each side; filtering function or riparian vegetation only moderately compromised; banks moderately unstable; water color is cloudy, submerged objects covered with greenish film; moderate odor; minor barriers to fish movement; fair aquatic habitat; minimum disturbance by livestock or man.

Low Quality: Channel is actively down cutting or widening; rip rap and channelization excessive; natural vegetation less than 1/3 of the active channel width on each side; lack of regeneration; filtering function severely compromised; banks unstable (eroding); water color is muddy and turbid; obvious pollutants (algal mats, surface scum, surface sheen); heavy odor; severe barriers to fish movement; little to no aquatic habitat; severe disturbance from livestock or man.

Waterbody ID:

SPAB003

### Waterbody Sketch

|                       | ustance nom centenine, pro |               | survey area/corric |             |              |  |
|-----------------------|----------------------------|---------------|--------------------|-------------|--------------|--|
| 1n                    |                            |               |                    |             |              |  |
|                       |                            |               |                    |             |              |  |
|                       |                            | SPA           | Baoz               |             |              |  |
|                       |                            | 1             |                    |             |              |  |
|                       |                            | 1             |                    |             |              |  |
|                       | $C_0/\Lambda$              | 1             |                    | $\int dx$   | ^            |  |
|                       |                            |               |                    | 01          | 1            |  |
|                       |                            |               |                    |             |              |  |
|                       | Begns                      | 91            |                    |             |              |  |
|                       | p • • • )                  |               |                    |             |              |  |
|                       |                            | $\Lambda$     |                    |             |              |  |
|                       |                            | · /           |                    |             |              |  |
| Notes                 |                            |               | 1                  |             |              |  |
| Ephemeral stream that | flows S to N across RO     | W. High water | level due to h     | eavy recent | rain events. |  |
|                       |                            | 0             |                    | ,           |              |  |
|                       |                            |               |                    |             |              |  |
|                       |                            |               |                    |             |              |  |
|                       |                            |               |                    |             |              |  |
|                       |                            |               |                    |             |              |  |
|                       |                            |               |                    |             |              |  |
|                       |                            |               |                    |             |              |  |
|                       |                            |               |                    |             |              |  |
|                       |                            |               |                    |             |              |  |
|                       |                            |               |                    |             |              |  |
| <b>ChicEPA</b> |  |
|----------------|--|
|----------------|--|

Qualitative Habitat Evaluation Index and Use Assessment Field Sheet

QHEI Score: 27

| Stream & Location: SPAB003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <i>RM:</i> <u>N</u> /                                                                                                                                                                                   | A_Date                                                                                       | 7 / 14 / 15                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Mercia Ditch Scorers Full Name & Affiliation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Mark Eldrido                                                                                                                                                                                            | ie / SCI Enginee                                                                             | ering                                                                                         |
| <i>River Code:</i> N/A <i>STORET #:</i> N/A <i>Lat./Long.:</i> 41.0178                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u>33</u> <b>/8</b> <u>4</u> .                                                                                                                                                                          | <u>76491</u>                                                                                 | Office verified<br>location                                                                   |
| 1] SUBSTRATE Check ONLY Two substrate TYPE BOXES;<br>estimate % or note every type present       Check C         BEST TYPES       POOL RIFFLE       OTHER TYPES       ORIGIN         BLDR /SLABS [10]       Image: Comparison of the                                                                                                                                                                                                                                                                                                                                                                                                 | SILT                                                                                                                                                                                                    | average)<br>QUAL<br>HEAVY [<br>MODER/<br>NORMAI<br>FREE [1]<br>EXTENS<br>MODER/<br>S NORMAI  | LITY<br>-2]<br>ATE [-1]<br>L [0]<br>IVE [-2]<br>ATE [-1]<br>L [0]<br>]<br>Maximum<br>20       |
| 2] INSTREAM COVER Indicate presence 0 to 3: 0-Absent; 1-Very small amounts or if more commo quality; 2-Moderate amounts, but not of highest quality or in small amounts quality; 3-Highest quality in moderate or greater amounts (e.g., very large boulders in deep or fast water, diameter log that is stable, well developed rootwad in deep / fast water, or deep, well-defined, functional 0 UNDERCUT BANKS [1] 0 POOLS > 70cm [2] 0 OXBOWS, BACKWATE 0 OVERHANGING VEGETATION [1] 0 BOULDERS [1] 0 AQUATIC MACROPHYT 0 BOULDERS [1] 0 COMMATS [1]                                                                                                                                                                                                                                                                    | n of margina<br>of highest<br>, large<br>pools. [<br>RS [1] [<br>IES [1] [<br>BRIS [1] [                                                                                                                | A AMO<br>Check ONE ((<br>EXTENSIVE<br>MODERATE<br>SPARSE 5<br>NEARLY AE                      | Dr 2 & average)         5 > 75% [11]         2 > 75% [7]         <25% [3]                     |
| 3] CHANNEL MORPHOLOGY Check ONE in each category (Or 2 & average)         SINUOSITY       DEVELOPMENT       CHANNELIZATION       STABILITY         HIGH [4]       EXCELLENT [7]       NONE [6]       HIGH [3]         MODERATE [3]       GOOD [5]       RECOVERED [4]       MODERATE [2]         LOW [2]       FAIR [3]       RECOVERING [3]       LOW [1]         NONE [1]       POOR [1]       RECENT OR NO RECOVERY [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                         |                                                                                              | Channel<br>Maximum<br>20                                                                      |
| 4] BANK EROSION AND RIPARIAN ZONE       Check ONE in each category for EACH BANK (OR         River right looking downstream       RIPARIAN WIDTH         REROSION       RIPARIAN WIDTH         MIDE > 50m [4]       FOREST, SWAMP [3]         MODERATE [2]       MODERATE 10-50m [3]         HEAVY / SEVERE [1]       VERY NARROW < 5m [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | r 2 per bank<br>TY<br>[1] C R<br>[1] C R<br>C C C<br>C C C C<br>C C C C<br>C C C C C<br>C C C C C C C C C C C C C C C C C C C C | & average)<br>CONSERVATIC<br>JRBAN OR IN<br>MINING / CONS<br>e predominant l<br>Om riparian. | DN TILLAGE [1]<br>DUSTRIAL [0]<br>STRUCTION [0]<br>Cand use(s)<br>Riparian<br>Maximum<br>10   |
| 5] POOL / GLIDE AND RIFFLE / RUN QUALITY<br>MAXIMUM DEPTH<br>Check ONE (ONLY!)<br>> 1m [6]<br>0.7-<1m [4]<br>0.4-<0.7m [2]<br>0.2-<0.4m [1]<br>Comments<br>Check ONE (Or 2 & average)<br>POOL WIDTH > RIFFLE WIDTH [2]<br>POOL WIDTH = RIFFLE WIDTH [2]<br>POOL WIDTH = RIFFLE WIDTH [1]<br>CHECK ONE (ORLY!)<br>Check ALL that apply<br>Check ALL that apply<br>CHECK ONE (I)<br>CHECK ONE (I) | FIAL [-1]<br>TENT [-2]<br>]<br>files.                                                                                                                                                                   | Recreation<br>Primary<br>Secondar<br>(circle one and c                                       | n Potential<br>Contact<br>ry Contact<br>omment on back)<br>Pool /<br>Current<br>Maximum<br>12 |
| Indicate for functional riffles; Best areas must be large enough to support a<br>of riffle-obligate species: Check ONE (Or 2 & average).<br>RIFFLE DEPTH RUN DEPTH RIFFLE / RUN SUBSTRATE RIFF<br>BEST AREAS > 10cm [2] MAXIMUM > 50cm [2] STABLE (e.g., Cobble, Boulder) [2]<br>BEST AREAS 5-10cm [1] MAXIMUM < 50cm [1] MOD. STABLE (e.g., Large Gravel) [1]<br>BEST AREAS < 5cm<br>[metric=0] UNSTABLE (e.g., Fine Gravel, Sand) [0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | a populat<br>FLE / RUN<br>D C<br>D C<br>D M<br>D E                                                                                                                                                      | tion<br>✓ NO<br>NEMBEDD<br>DNE [2]<br>DW [1]<br>ODERATE [0]<br>KTENSIVE [-1]                 | RIFFLE [metric=0]<br>EDNESS<br>Riffle /<br>Maximum<br>8                                       |
| 6] <i>GRADIENT</i> (N/A ft/mi)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | %GLIDE<br>%RIFFLE                                                                                                                                                                                       |                                                                                              | Gradient<br>Maximum<br>10                                                                     |

| AJ SAMPLED REACH<br>Check ALL that apply                                                                                                                                                                                                                                                | Comment RE: Reach consistency/I<br>Ephemeral stream that flows | s reach typical of steam?, <i>Recreation</i><br>s south to north across ROW.                                                                                                                                                                                                                                                     | /Observed - Inferred, <i>Other</i><br>High water level due to | Sampling observations, Concerns, Acc<br>heavy recent rains.                                                                                                                                                                                                                                                                                                                              | ess directions, etc.                                                                                                                                                                                                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| METHOD STAGE BOAT 1st-sample pass- 2nd WADE HIGH L. LINE UP OTHER NORMAL DISTANCE DRY                                                                                                                                                                                                   |                                                                |                                                                                                                                                                                                                                                                                                                                  |                                                               |                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                            |
| □       0.5 Km         □       0.2 Km         □       0.15 Km         □       0.15 Km         □       0.12 Km         □       20-<40 cm | BJ AESTHETICS                                                  | D] MAINTENANCE<br>PUBLIC / PRIVATE (BOTH) NA<br>ACTIVE / HISTORIC / BOTH / NA<br>YOUNG-SUCCESSION-OLD<br>SPRAY SNAG / REMOVED<br>MODIFIED / DIPPED OUT / NA<br>LEVEED / ONE SIDED<br>RELOCATED / CUTOFFS<br>MOVING-BEDLOAD-STABLE<br>ARMOURED / SLUMPS<br>ISLANDS / SCOURED<br>IMPOUNDED / DESICCATED<br>FLOOD CONTROL (DRAINAGE | Circle some & COMMENT                                         | EJ ISSUES<br>WWTP / CSO / NPDES / INDUSTRY<br>HARDENED / URBAN / DIRT&GRIME<br>CONTAMINATED / LANDFILL<br>BMPs-CONSTRUCTION-SEDIMENT<br>LOGGING (IRRIGATION) COOLING<br>BANK / EROSION / SURFACE<br>FALSE BANK / MANURE / LAGOON<br>WASH H20 / TILE / H20 TABLE<br>ACID / MINE / QUARRY / FLOW<br>NATURAL / WETLAND / STAGNANT<br>PARK / GOLF / LAWN / HOME<br>ATMOSPHERE / DATA PAUCITY | <b>FJ MEASUREMENTS</b><br>$\bar{x}$ width<br>$\bar{x}$ depth<br>max. depth<br>$\bar{x}$ bankfull width<br>bankfull $\bar{x}$ depth<br>W/D ratio<br>bankfull max. depth<br>floodprone $x^2$ width<br>entrench. ratio<br><i>Legacy Tree:</i> |

## Stream Drawing:

See Waterbody Dataform





## [SPAB003\_001N DOWN] facing north downstream





## [SPAB003\_003E ACROSS] facing east across bank

| Waterbody Data Sheet                                                             |                    |                               |                   |                      |                        |                       |                              |
|----------------------------------------------------------------------------------|--------------------|-------------------------------|-------------------|----------------------|------------------------|-----------------------|------------------------------|
| Survey Description                                                               |                    |                               |                   |                      |                        |                       |                              |
| Project Name:                                                                    | Waterbo            | ody Name:                     |                   |                      | Waterbody ID           | :                     | Date:                        |
| AEP Allen Station                                                                | Shilts             | Ditch                         |                   |                      | SPAB004                |                       | 7/14/15                      |
| State: County:                                                                   |                    | Company:                      |                   | Crew Me              | mber Initials:         | Photo ID(s):          |                              |
| OH Paulding                                                                      |                    | SCI Engine                    | ering             | ME/JM                |                        | 1n, 2s, 3e            |                              |
| Tract Number(s):                                                                 |                    | Milepost Entry:               | Milepost          | Exit:                | Associated W           | etland ID(s):         |                              |
| 0328S-00500, 0328S-00302                                                         |                    | -                             | -                 |                      | WPAB006                |                       |                              |
| Survey Type:<br>(check one)                                                      |                    | Re-Route                      | Access F          | load                 | Other:                 |                       |                              |
| Physical Attributes                                                              |                    |                               |                   |                      |                        |                       |                              |
| Stream Classification:<br>(check one)                                            |                    | Intermittent                  | Perennia          | I                    | Connectin              | ng swale <sup>a</sup> |                              |
| Waterbody Type:<br>(check one)                                                   | d:<br>e)           | Rive                          | r 🖌               | Stream               | Drainage<br>Ditch      | Other:                |                              |
| OHWM OHWM Inc<br>(check all that                                                 | licator:<br>apply) | Clear line                    | , D               | Shelving             | Wrester<br>vegetat     | d Scour               | ing Water<br>staining        |
| Height: 1 Height:                                                                | matted, o          | r Vrack                       |                   | _itter and<br>debris | Abrupt<br>commu        | plant                 | ] Soil characteristic change |
| Width of Waterbody - Top of Bank to                                              | Wie                | dth of Waterbody - W          | ater Edge         | to                   | Depth of Wa            | ter at Centerline:    | <u> </u>                     |
| Top of Bank at Centerline:                                                       | Wa                 | ter Edge at Centerlir،<br>ج   | ie:               |                      | (Approx.)              | 1,                    |                              |
| ft.                                                                              |                    |                               | ft.               | aiabt                |                        | Bank alana            | t.                           |
| (check one)                                                                      | prox.)             | ty:                           | Bank n            | eight<br>Riaht:      | F                      | Bank slope<br>Righ    | nt: zo                       |
| Straight                                                                         |                    | 0.01                          |                   |                      | э <sub>ft.</sub>       | 5                     | degrees                      |
| Meandering                                                                       | -                  | fps                           |                   | Left:                | 5 <sub>ft.</sub>       | Le                    | eft: 70 degrees              |
| Qualitative Attributes                                                           |                    |                               |                   |                      |                        | <b>I</b>              | 0                            |
| Water Appearance:                                                                |                    |                               |                   | ,                    |                        |                       |                              |
| (check one)                                                                      | lear 🗸             | Turbid Sheer<br>on su         | n<br>rface        | Surface<br>scum      | Algal<br>mats          | Other:                |                              |
| Substrate: Bedrock G                                                             | ravel              | Sand                          | Silt/clay         |                      | Organic                | Other:                |                              |
| % of Substrate:%                                                                 | %                  | %                             | 100               | %                    | %                      |                       | %                            |
| Width of Riparian Zone: Vegetativ                                                | /e Layers:         |                               |                   | Г                    | Chruba                 |                       | Llarka                       |
| ft. Avg. DBH                                                                     | H of Domi          | nants:                        | in.               | L                    |                        | in.                   | Meibs                        |
| Dominant Bank Vegetation:                                                        |                    |                               |                   |                      |                        |                       |                              |
| Carex vulpinoidea, Schoenopl                                                     | ectus ac           | utus, Daucus car              | ota, Fest         | uca arud             | linacea                |                       |                              |
| Aquatic Habitats (ex: submerged or emerged a<br>(list)<br>overhanging vegetation | quatic vegetat     | tion, overhanging banks/roots | s, leaf packs, la | arge submerge        | ed wood, riffles, deep | pools):               |                              |
| Aquatic Organisms Observed:                                                      |                    |                               |                   |                      |                        |                       |                              |
| <sup>(list)</sup> N/A                                                            |                    |                               |                   |                      |                        |                       |                              |
| Invasive and/or T&E Species Observed                                             | l:                 |                               |                   |                      |                        |                       |                              |
| Daucus carota                                                                    |                    |                               |                   |                      |                        |                       |                              |
| Tributary is:<br>(check one) Natural                                             |                    | Artificial, man-made          | Ma                | nipulated            |                        |                       |                              |
| Disturbances:         (check all that apply)         Livestock         access    |                    | Manure in waterbody           | Waste of pipes    | lischarge            | Oth                    | er:                   |                              |
| Stream Quality <sup>b</sup> :<br>(check one) High                                |                    | Moderate                      | Low               |                      |                        |                       |                              |

<sup>2</sup>**Connecting swales** are water features that do not meet the definition of a waterbody (not an ephemeral waterbody) in that there is not a defined bed, bank, and ordinary high water mark, however, it is a water conveyance feature that is characterized by flow volume, frequency, and duration to make it more than just an erosional feature and connects two potential waters of the U.S. and thereby may be subject to Section 404 permitting.

<sup>b</sup> High Quality: Natural channel, natural vegetation extends at least one or two active channel widths on each side; banks stable and protected by roots; water color is clear to tea-colored; no barriers to fish movement; many fish cover types available; diverse and stable aquatic habitat; no disturbance by livestock or man.

**Moderate Quality:** Altered channel evidenced by rip-rap; natural vegetation extends 1/3-1/2 of the active channel width on each side; filtering function or riparian vegetation only moderately compromised; banks moderately unstable; water color is cloudy, submerged objects covered with greenish film; moderate odor; minor barriers to fish movement; fair aquatic habitat; minimum disturbance by livestock or man.

Low Quality: Channel is actively down cutting or widening; rip rap and channelization excessive; natural vegetation less than 1/3 of the active channel width on each side; lack of regeneration; filtering function severely compromised; banks unstable (eroding); water color is muddy and turbid; obvious pollutants (algal mats, surface scum, surface sheen); heavy odor; severe barriers to fish movement; little to no aquatic habitat; severe disturbance from livestock or man.

Waterbody ID: SPAB004 Waterbody Sketch Include north arrow, centerline, distance from centerline, photo locations, and survey area/corridor if applicable. IN SPAPOOU (orn \_\_\_\_ Two Begns Notes Ephemeral stream that flows S to N across ROW. A two-track road runs parallel to the stream. Water level due to heavy recent rain events.



Qualitative Habitat Evaluation Index and Use Assessment Field Sheet

QHEI Score: 27

| Stream & Location                                                                                                                                                                | SPAB004 Shilts Ditch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                               |                                                                                                                                                                                                            | <i>RM:</i> <u>N/A</u> _ <i>Da</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | l <b>te:</b> 7 <u>  14   15</u>                                                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Scorers Full N                                                                                                                                                                                                                | ame & Affiliation:                                                                                                                                                                                         | Mark Eldridge / SCI Eng                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ineering<br>Office verified —                                                                                            |
| Al SUBSTRATE Che                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\underline{N / A} = - (\underline{NAD 83})$                                                                                                                                                                                  | $\frac{1}{4} \frac{1}{1} \cdot \frac{01}{8} \frac{84}{8}$                                                                                                                                                  | <u>2 <b>18</b>4.76020</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | location                                                                                                                 |
| BEST TYPES<br>BEST TYPES<br>BLDR /SLABS [10<br>BOULDER [9]<br>COBBLE [8]<br>GRAVEL [7]<br>BEDROCK [5]<br>NUMBER OF BEST<br>Comments                                              | POOL RIFFLE OTHER T<br>POOL RIFFLE OTHER T<br>D HARDPA<br>D DETRITU<br>D MUCK [2<br>C Solution 2<br>C Solution 2 | AZES,<br>tr<br>ty<br>ty<br>ty<br>ty<br>ty<br>ty<br>ty<br>ty<br>ty<br>ty                                                                                                                                                       | Check Of<br>ORIGIN                                                                                                                                                                                         | NE (Or 2 & average)<br>QU<br>SILT MOD<br>SILT NORI<br>FREE<br>DEON DEON MOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ALITY<br>'Y [-2]<br>ERATE [-1]<br>MAL [0]<br>[1]<br>NSIVE [-2]<br>ERATE [-1]<br>MAL [0]<br>3<br>Maximum<br>20            |
| 2] INSTREAM COV<br>quality; 3-Highest quality<br>diameter log that is stab<br>0 UNDERCUT BAN<br>1 OVERHANGING<br>0 SHALLOWS (IN S<br>0 ROOTMATS [1]<br>Comments                  | ER       Indicate presence 0 to 3: 0-A quality; 2-Moderate amounts.         / in moderate or greater amounts       le, well developed rootwad in dee KS [1]         / EGETATION [1]       0       POOLS         SLOW WATER) [1]       0       BOULD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | bssent; 1-Very small am         , but not of highest qua         (e.g., very large boulde         p / fast water, or deep,         S > 70cm [2]       0         WADS [1]       0         DERS [1]       0                     | ounts or if more common<br>lity or in small amounts c<br>ers in deep or fast water,<br>well-defined, functional p<br>DXBOWS, BACKWATER<br>AQUATIC MACROPHYT<br>OGS OR WOODY DEB                            | of marginal AI<br>of highest<br>large Check ONI<br>pools. EXTENS<br>RS [1] MODER<br>ES [1] SPARSE<br>RIS [1] NEARLY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AOUNT<br>E (Or 2 & average)<br>IVE >75% [11]<br>ATE 25-75% [7]<br>5-<25% [3]<br>ABSENT <5% [1]<br>Cover<br>Maximum<br>20 |
| 3] CHANNEL MORF         SINUOSITY       DE         HIGH [4]                                                                                                                      | <b>HOLOGY</b> Check ONE in each <b>VELOPMENTCHANI</b> EXCELLENT [7]Image: None [6]GOOD [5]Image: RecoveFAIR [3]Image: RecovePOOR [1]Image: Recent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | category ( <i>Or 2 &amp; avera</i><br>NELIZATION<br>]<br>:RED [4]<br>:RING [3]<br>'OR NO RECOVERY [ <sup>7</sup>                                                                                                              | age)<br>STABILITY<br>☐ HIGH [3]<br>☑ MODERATE [2]<br>☐ LOW [1]                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Channel<br>Maximum<br>20                                                                                                 |
| 4] BANK EROSION<br>River right looking downst<br>EROSION<br>☐ Ø NONE / LITTLE [3<br>☐ MODERATE [2]<br>☐ HEAVY / SEVERE<br>Comments                                               | AND RIPARIAN ZONE       Ch         ream       R         RIPARIAN WIDTH         I       I         I       I         I       I         I       I         I       I         I       I         I       I         I       I         I       I         I       I         I       I         I       I         I       I         I       I         I       I         I       I         I       I         I       I         I       I         I       I         I       I         I       I         I       I         I       I         I       I         I       I         I       I         I       I         I       I         I       I         I       I         I       I         I       I         I       I         I       I    <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | in each categ         I       R         I       FOREST, S         I       SHRUB OR         I       RESIDENTI         II       FORCED P         III       FENCED P         III       OPEN PAS                                  | ory for <b>EACH BANK</b> (Or<br>OD PLAIN QUALIT<br>WAMP [3]<br>& OLD FIELD [2]<br>AL, PARK, NEW FIELD [<br>ASTURE [1]<br>TURE, ROWCROP [0]                                                                 | 2 per bank & average)<br>Y<br>B<br>CONSERVA<br>CONSERVA<br>CONSERVA<br>URBAN OR<br>III URBAN OR<br>Indicate predomina<br>past 100m riparian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TION TILLAGE [1]<br>INDUSTRIAL [0]<br>DNSTRUCTION [0]<br>Int land use(s)<br>Maximum<br>10                                |
| 5] POOL / GLIDE A<br>MAXIMUM DEPT<br>Check ONE (ONLY!)<br>> 1m [6]<br>0.7-<1m [4]<br>0.4-<0.7m [2]<br>0.2-<0.4m [1]<br>V < 0.2m [0]<br>Comments                                  | ND RIFFLE / RUN QUALIT<br>H CHANNEL WIDT<br>Check ONE (Or 2 & aver<br>POOL WIDTH > RIFFLE WII<br>POOL WIDTH = RIFFLE WII<br>POOL WIDTH < RIFFLE WII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TY<br>HCUR<br>rage) CI<br>DTH [2] TORRENT<br>DTH [1] VERY FA:<br>DTH [0] FAST [1]<br>MODERA<br>Indicate                                                                                                                       | RENT VELOCITY<br>heck ALL that apply<br>TIAL [-1] SLOW [1]<br>ST [1] INTERSTITI<br>INTERMITT<br>TE [1] EDDIES [1]<br>for reach - pools and riffl                                                           | AL [-1]<br>ENT [-2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | tion Potential<br>ary Contact<br>dary Contact<br>nd comment on back)<br>Pool /<br>Current<br>Maximum<br>12               |
| Indicate for fun<br>of riffle-obligat<br>RIFFLE DEPTH<br>BEST AREAS > 10cm<br>BEST AREAS 5-10cm<br>BEST AREAS < 5cm<br>[metric:<br>Comments<br>6] GRADIENT ( N/A<br>DRAINAGE ARE | ctional riffles; Best areas<br>⇒ species: (<br>RUN DEPTH<br>[2] □ MAXIMUM > 50cm [2] □<br>[1] ☑ MAXIMUM < 50cm [1] □<br>=0]<br>ft/mi) ☑ VERY LOW - LOW<br>A □ MODERATE [6-10<br>mi <sup>2</sup> ) □ HIGH - VERY HIG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s must be large er         Check ONE (Or 2 & av         RIFFLE / RUN S         STABLE (e.g., Cobb         MOD. STABLE (e.g., Cobb         MOD. STABLE (e.g., Fin         UNSTABLE (e.g., Fin         V [2-4]         H [10-6] | Nough to support a         erage).         UBSTRATE         UBSTRATE         RIFF         le, Boulder)         Large Gravel)         [1]         be Gravel, Sand)         %POOL:         %RUN:         100 | population         Image: LE / RUN EMBEL         Image: NONE [2]         Image: Low [1]         Image: Low [1] <td< td=""><td>NO RIFFLE [metric=0]<br/>DEDNESS<br/>[0] Riffle /<br/>Run<br/>[-1] Maximum<br/>8<br/>0<br/>Gradient<br/>Maximum<br/>10</td></td<> | NO RIFFLE [metric=0]<br>DEDNESS<br>[0] Riffle /<br>Run<br>[-1] Maximum<br>8<br>0<br>Gradient<br>Maximum<br>10            |
| EPA 4520                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                               |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 06/16/06                                                                                                                 |

| Waterbody Data Sheet                              |                          |                               |                   |                      |                        |                                       |                              |
|---------------------------------------------------|--------------------------|-------------------------------|-------------------|----------------------|------------------------|---------------------------------------|------------------------------|
| Survey Description                                |                          |                               |                   |                      |                        |                                       |                              |
| Project Name:                                     |                          | Waterbody Name:               |                   |                      | Waterbody ID:          |                                       | Date:                        |
| AEP Allen Station                                 | Unnar                    | med Tributary to V            | Vest For          | k Ditch              | SPAA003                |                                       | 7/14/15                      |
| State: County:                                    |                          | Company:                      |                   | Crew Me              | mber Initials:         | Photo ID(s):                          |                              |
| OH Paulding                                       |                          | SCI Engine                    | ering             | JS/ TC               |                        | 001 up 002 d                          | down 003 across              |
| Tract Number(s):                                  |                          | Milepost Entry:               | Milepost I        | xit:                 | Associated W           | etland ID(s):                         |                              |
| 0327S-00101                                       |                          | n/a                           | n/a               |                      | None                   |                                       |                              |
| (check one)                                       | e                        | Re-Route                      | Access F          | load                 | Other:                 |                                       |                              |
| Physical Attributes                               |                          |                               |                   |                      |                        |                                       |                              |
| Stream Classification:<br>(check one)             | al 🗌                     | Intermittent                  | Perennia          | I                    | Connectin              | ng swale <sup>a</sup>                 |                              |
| Waterbody Type:<br>(check one)                    | nd:<br>ine)              | Rive                          | r 🗌               | Stream               | Drainage Ditch         | Other:                                |                              |
| OHWM OHWM In<br>Width: 2                          | dicator:<br>at apply)    | Clear line                    | e []              | Shelving             | Wrester<br>vegetat     | d Scour                               | ing Water<br>staining        |
| Height: .5 ft Meight:                             | t, matted, o             | r Wrack                       |                   | ⊥itter and<br>debris | Abrupt                 | plant                                 | ] Soil characteristic change |
| Width of Waterbody - Top of Bank to               | Wie                      | dth of Waterbody - W          | ater Edge         | to                   | Depth of Wa            | ter at Centerline:                    |                              |
| Top of Bank at Centerline:                        | Wa                       | ter Edge at Centerlin         | ne:               |                      | (Approx.)              | 2                                     |                              |
| ft.                                               |                          |                               | , ft.             |                      |                        | f                                     | t.                           |
| Check one)                                        | /ater veloci<br>pprox.)  | ty:                           | Bank h            | eight<br>Pight:      | _                      | Bank slope                            |                              |
| Straight                                          |                          | 5                             |                   |                      | 6 <sub>ft.</sub>       | i i i i i i i i i i i i i i i i i i i | degrees                      |
| Meandering                                        | -                        | fps                           |                   | Left:                | 6 <sub>ft.</sub>       | Le                                    | ft: 60 degrees               |
| Qualitative Attributes                            |                          |                               |                   |                      |                        |                                       |                              |
| Water Appearance:<br>(check one) No water         | Clear 🖌                  | Turbid Sheer<br>on su         | n                 | Surface scum         | Algal [                | Other:                                |                              |
| Substrate: Bedrock                                | Gravel                   | Sand                          | Silt/clay         |                      | Organic                | Other:                                |                              |
| % of Substrate: %                                 | %                        | %                             | 100               | %                    | %                      |                                       | %                            |
| Width of Riparian Zone: Vegetat                   | ive Layers:              | %                             |                   | <u></u>              | //                     |                                       | %                            |
| 10 (check all t<br>Avg. DE<br>(approx)            | hat apply)<br>BH of Domi | Trees:                        | in.               | L                    | Shrubs:                | in.                                   | ✓ Herbs                      |
| Dominant Bank Vegetation:                         |                          |                               |                   |                      |                        |                                       |                              |
| <sup>(//st)</sup> Schedonorus pratensis           |                          |                               |                   |                      |                        |                                       |                              |
| Aquatic Habitats (ex: submerged or emerged (list) | aquatic vegetat          | tion, overhanging banks/roots | s, leaf packs, la | irge submerge        | ed wood, riffles, deep | pools):                               |                              |
| In-stream vegetation                              |                          |                               |                   |                      |                        |                                       |                              |
| Aquatic Organisms Observed:                       |                          |                               |                   |                      |                        |                                       |                              |
| Invasive and/or T&E Species Observe               | ed:                      |                               |                   |                      |                        |                                       |                              |
| <sup>(list)</sup> Cirsium arvense                 |                          |                               |                   |                      |                        |                                       |                              |
| Tributary is:<br>(check one) Natural              |                          | Artificial, man-made          | 🖌 Ma              | inipulated           |                        |                                       |                              |
| Disturbances:<br>(check all that apply)           |                          | Manure in waterbody           | Waste o           | lischarge            | Oth                    | ier:                                  |                              |
| Stream Quality <sup>b</sup> :<br>(check one) High | $\checkmark$             | Moderate                      | Low               |                      |                        |                                       |                              |

<sup>2</sup>**Connecting swales** are water features that do not meet the definition of a waterbody (not an ephemeral waterbody) in that there is not a defined bed, bank, and ordinary high water mark, however, it is a water conveyance feature that is characterized by flow volume, frequency, and duration to make it more than just an erosional feature and connects two potential waters of the U.S. and thereby may be subject to Section 404 permitting.

<sup>b</sup> High Quality: Natural channel, natural vegetation extends at least one or two active channel widths on each side; banks stable and protected by roots; water color is clear to tea-colored; no barriers to fish movement; many fish cover types available; diverse and stable aquatic habitat; no disturbance by livestock or man.

**Moderate Quality:** Altered channel evidenced by rip-rap; natural vegetation extends 1/3-1/2 of the active channel width on each side; filtering function or riparian vegetation only moderately compromised; banks moderately unstable; water color is cloudy, submerged objects covered with greenish film; moderate odor; minor barriers to fish movement; fair aquatic habitat; minimum disturbance by livestock or man.

Low Quality: Channel is actively down cutting or widening; rip rap and channelization excessive; natural vegetation less than 1/3 of the active channel width on each side; lack of regeneration; filtering function severely compromised; banks unstable (eroding); water color is muddy and turbid; obvious pollutants (algal mats, surface scum, surface sheen); heavy odor; severe barriers to fish movement; little to no aquatic habitat; severe disturbance from livestock or man.

This foregoing document was electronically filed with the Public Utilities

Commission of Ohio Docketing Information System on

2/26/2016 4:21:32 PM

in

Case No(s). 16-0074-EL-BLN

Summary: Letter of Notification AEP Transco LON for Timber Switch-Haviland Project electronically filed by Mr. Hector Garcia on behalf of AEP Ohio Transmission Company