Large Filing Separator Sheet

Case Number: 14-1297-EL-SSO
File Date: $\quad 1 / 25 / 2016$
Part: 2 of 2
Number of Pages: 152
Description of Document: Exhibits continued Company Exhibits No. 171 and 172 OCC/NOPEC No. 11A

TABLE OF CONTENTS

	TABLE NUMBER	CHART PAGE	TABLE PAGE
EXECUTIVE SUMMARY		1	
ECONOMIC FORECAST SUMMARY		4	
FORECAST COMPARISON:			
Each Zone and PJM RTO - Comparison to Prior Summer Peak Forecasts	A-1		42
Each Zone and PJM RTO - Comparison to Prior Winter Peak Forecasts	A-2		44
PEAK LOAD FORECAST AND ANNUAL GROWTH			
RATES:			

TABLE	CHART	TABLE
NUMBER	PAGE	PAGE

LOCATIONAL DELIVERABILITY AREA SEASONAL PEAKS:
Central Mid-Atlantic: BGE, MetEd, PEPCO, PL andUGI Seasonal PeaksC-1
Western Mid-Atlantic: MetEd, PENLC, PL and UGI Seasonal Peaks C-2
Eastern Mid-Atlantic: AE, DPL, JCPL, PECO, PS and RECO Seasonal Peaks C-3 80
Southern Mid-Atlantic: BGE and PEPCO Seasonal Peaks C-4
EXTREME WEATHER (90/10) PEAK LOAD FORECASTS
Summer 90/10 Peak Forecasts of each Zone, Geographic Region and PJM RTO D-1 82
Winter 90/10 Peak Forecasts of each Zone, Geographic Region and PJM RTO D-2 84
NET ENERGY FORECAST AND ANNUAL GROWTH RATES:
Annual Net Energy Forecasts of each Zone,Geographic Region and PJM RTO E-186
Monthly Net Energy Forecasts of each Zone, Geographic Region and PJM RTO E-2 90
Monthly Net Energy Forecasts of FE/GPU and PLGrp E-3 92
PJM HISTORICAL DATA:
Historical RTO Summer and Winter Peaks F-1 93
Historical RTO Net Energy for Load F-2
ECONOMIC GROWTH
Average Economic Growth of each Zone and RTO G-1 95

TERMS AND ABBREVIATIONS USED IN THIS REPORT

AE	Atlantic Electric zone (part of Pepco Holdings, Inc)
AEP	American Electric Power zone (incorporated 10/1/2004)
APP	Appalachian Power, sub-zone of AEP
APS	Allegheny Power zone (incorporated 4/1/2002)
ATSI	American Transmission Systems, Inc. zone (incorporated 6/1/2011)
Base Load	Average peak load on non-holiday weekdays with no heating or cooling load. Base load is insensitive to weather.
BGE	Baltimore Gas \& Electric zone
CEI	Cleveland Electric Illuminating, sub-zone of ATSI
COMED	Commonwealth Edison zone (incorporated 5/1/2004)
Contractually Interruptible	Load Management from customers responding to direction from a control center
Cooling Load	The weather-sensitive portion of summer peak load
CSP	Columbus Southern Power, sub-zone of AEP
Direct Control	Load Management achieved directly by a signal from a control center
DAY	Dayton Power \& Light zone (incorporated 10/1/2004)
DEOK	Duke Energy Ohio/Kentucky zone (incorporated 1/1/2012)
DLCO	Duquesne Lighting Company zone (incorporated 1/1/2005)
DOM	Dominion Virginia Power zone (incorporated 5/1/2005)
DPL	Delmarva Power \& Light zone (part of Pepco Holdings, Inc)
EKPC	East Kentucky Power Cooperative (incorporated 6/1/2013)
FE-East	The combination of FirstEnergy's Jersey Central Power \& Light, Metropolitan Edison, and Pennsylvania Electric zones (formerly GPU)
Heating Load	The weather-sensitive portion of winter peak load
INM	Indiana Michigan Power, sub-zone of AEP
JCPL	Jersey Central Power \& Light zone
KP	Kentucky Power, sub-zone of AEP

METED	Metropolitan Edison zone
MP	Monongahela Power, sub-zone of APS
NERC	North American Electric Reliability Corporation
Net Energy	Net Energy for Load, measured as net generation of main generating units plus energy receipts minus energy deliveries
OEP	Ohio Edison, sub-zone of ATSI
OP	Ohio Power, sub-zone of AEP
PECO	PECO Energy zone
PED	Potomac Edison, sub-zone of APS
PEPCO	Potomac Electric Power zone (part of Pepco Holdings, Inc)
PL	PPL Electric Utilities, sub-zone of PLGroup
PLGroup/PLGRP	Pennsylvania Power \& Light zone
PENLC	Pennsylvania Electric zone
PP	Pennsylvania Power, sub-zone of ATSI
PS	Public Service Electric \& Gas zone
RECO	Rockland Electric (East) zone (incorporated 3/1/2002)
TOL	Toledo Edison, sub-zone of ATSI
UGI	UGI Utilities, sub-zone of PLGroup
Unrestricted Peak	Peak load prior to any reduction for load management, accelerated energy efficiency or voltage reduction.
WP	West Penn Power, sub-zone of APS
Zone	Areas within the PJM Control Area, as defined in the PJM Reliability Assurance Agreement

2016 PJM LOAD FORECAST REPORT

EXECUTIVE SUMMARY

- This report presents an independent load forecast prepared by PJM staff.
- The report includes long-term forecasts of peak loads, net energy, load management and distributed solar generation for each PJM zone, region, locational deliverability area, and the total RTO.
- All load models were estimated with historical data from January 1998 through August 2015. The models were simulated with weather data from years 1994 through 2014, generating 273 scenarios. The economic forecast used was Moody's Analytics' October 2015 release. Equipment indexes reflect the 2015 update of Itron's end-use data, which is consistent with the Energy Information Administration's 2015 Annual Energy Outlook.
- Table B-7 has been revised to reflect the transition of Demand Resource options available under the Capacity Performance rules of the Reliability Pricing Model.
- Table B-8 has been modified; it now represents the amount of distributed solar generation subtracted from each forecast year. These values reflect the impact of historical distributed solar generation at peak as well as the forecasted amount of solar additions at peak in each forecast year. Distributed solar generation forecast values have already been subtracted from all forecast tables in the report.
- With the adoption of a new load forecast model, PJM has reverted to publishing only one set of E-Tables (net energy).
- Since the 2015 report, PJM has significantly revised its load forecast model. The treatment of weather has been restructured to provide more variable load response to weather across a wide range of conditions. Three variables (cooling, heating, and other) were added to account for trends in equipment/appliance saturation and efficiency, and distributed solar generation is now reflected in the historical load data used to estimate the models, with a separately-derived solar forecast used to adjust load forecasts. Detailed information on the development of the distributed solar generation forecast can be found at: http://www.pim.com/planning/resource-adequacy-planning/load-forecast-dev-process.aspx.
- The economic regions used for each zone have been revised to be consistent with the revised definitions of metropolitan areas of the U.S. Office of Management and Budget. An exception is DOM zone, for which economic data for the Commonwealth of Yirginia is now used. Weather station mixtures have been revised for AEP, EKPC, and PL zones.
- PJM has also significantly revised its process for developing the weather-normalized peaks that appear in the report. The new process involves estimating each zone's load and weather relationship for each season and evaluating that relationship at typical peak day weather conditions.
- The forecasts of the following zones have been adjusted to account for large, unanticipated load changes (see Table B-9 for details):
- The forecast of the APS zone has been adjusted to account for accelerating load related to natural gas processing plants, adding 120-280 MW from 2016 through 2020 before declining to 200 MW in 2030.
- The forecast of the DOM zone has been adjusted to account for substantial on-going growth in data center construction, which adds 240-1,050 MW to the summer peak beginning in 2016.
- The PJM RTO weather-normalized summer peak for 2015 was 150,295 MW (using the new normalization method). The projection for the 2016 PJM RTO summer peak is $152,131 \mathrm{MW}$, an increase of $1,836 \mathrm{MW}$, or 1.2%, from the 2015 normalized peak.
- Summer peak load growth for the PJM RTO is projected to average 0.6% per year over the next 10 years, and 0.6% over the next 15 years. The PJM RTO summer peak is forecasted to be $161,891 \mathrm{MW}$ in 2026, a 10 -year increase of $9,760 \mathrm{MW}$, and reaches 167,469 MW in 2031, a 15 -year increase of $15,338 \mathrm{MW}$. Annualized 10-year growth rates for individual zones range from -0.1% to 1.2%.
- Winter peak load growth for PJM RTO is projected to average 0.8% per year over the next 10 -year period, and 0.8% over the next 15 -years. The PJM RTO winter peak load in 2025/26 is forecasted to be 140,912 MW, a 10 -year increase of $10,669 \mathrm{MW}$, and reaches $146,225 \mathrm{MW}$ in 2030/31, a 15 -year increase of $15,982 \mathrm{MW}$. Annualized 10 -year growth rates for individual zones range from 0% to 1.6%.
- Compared to the 2015 Load Report, the 2016 PJM RTO summer peak forecast shows the following changes for three years of interest:
- The next delivery year -2016 $-5,781$ MW (-3.7%)
- The next RPM auction year - $2019 \quad-5,660$ MW (-3.5%)
- The next RTEP study year -2021 -8,406 MW (-5.1\%)

NOTE:
Unless noted otherwise, all peak and energy values are non-coincident, unrestricted peaks, which represent the peak load or net energy after reductions for distributed solar generation and prior to reductions for load management impacts.
All compound growth rates are calculated from the first year of the forecast.

Summary Table
SUMMER PEAK LOAD (MW) AND GROWTH RATES FOR
PJM RTO AND SELECTED GEOGRAPHIC REGIONS

METERED	UNRESTRICTED			
$\mathbf{2 0 1 5}$	2015	NORMAL $\mathbf{2 0 1 5}$		THIS YEAR
$\mathbf{2 0 1 6}$				

[^0]m

Adam Ozimek, 610-235-5127

Summary of the December 2015 U.S. macro forecast

The U.S. economy performed well in 2015, and 2016 should be even better. The economy is on track to return to full employment by midyear. It will have been almost a decade since the economy was last operating at full tilt.
Full employment is consistent with a 5% unemployment rate, which has already been achieved, and a 9\% underemployment rate. Underemployment includes the unemployed, part-timers who want more hours, and potential workers that have stepped out of the workforce and thus are not counted as unemployed but say they want a job. This is the so-called U-6 unemployment rate, which currently stands at 9.8%. On a full-time equivalent basis-translating the part-timers into full-timers-it is about 9.6\%.

At the current pace of job growth of more than 200,000 per month, if sustained, the economy will be back to full employment by next summer. To be even more precise, given that the working-age population is growing by only 100,000 per month, the underemployment or U-6 unemployment rate should stand at 9% by August. There is clearly much uncertainty around this estimate, but there is little doubt that full employment is approaching fast.

Job machine

Businesses are adding jobs at a consistent and prodigious rate. Payrolls will expand by almost 3 million in 2015, about the same as the year before and the year before that. The last time job growth was as consistently strong was during the technology boom of the late 1990s.

The oil price collapse and resulting rationalization in the energy industry, and the stronger U.S. dollar and weakening in trade-sensitive manufacturing have slowed job growth a notch in recent months. But these constraints should fade by the spring. Moreover, job creation in the rest of the economy shows no signs of slowing.

Most encouraging is that job openings are about as plentiful as they have ever been. There are now less than three underemployed for every open job position.

For context, at the worst of the recession, there was closer to 11 underemployed for each open position. Openings are widespread across most industries, but particularly in healthcare and professional services-two industries adding aggressively to their roles. Layoffs also remain extraordinarily low, with nearly record low numbers filing for unemployment insurance.

Wage resurgence

The tightening job market is evident from the recent firming in wage growth. According to the Bureau of Labor Statistics, average hourly earnings and wages as measured by the employment cost index have picked up meaningfully over the past year. After abstracting from the short-term ups and downs in these measures, wage growth is up nearly half a percentage point over the past year, well over the near 2% year-over-year growth that had prevailed since the recession.

Wage growth is even stronger than indicated by the BLS wage data. The• BLS calculates wages based on reports from establishments that average pay across all their employees. Measured wage growth is being depressed as many lower-paid millennials are coming into the workforce, while higher-paid boomers are leaving it. The tighter labor market also means that those now finding jobs are likely less productive and thus lower-paid.

The importance of these worker-mix effects is evident from wage data constructed by Moody's Analytics based on payroll records maintained by human resource company ADP. The ADP data are derived by tracking the wages of individuals and are thus not impacted by the changing mix of workers in establishments. According to ADP, year-over-year wage growth for individuals is just more than 4%. Like the BLS data, ADP measured wage growth has accelerated by about half a percentage point over the past year.

A positive near-term leading indicator of future wage growth in the ADP data is the pickup in wages paid to workers switching jobs. Across all switchers, pay increases have risen substantially over the past year.

Scurces: ADP Moody's Aralytics

Part-timers switching to either another part-time job or a full-time job enjoyed the biggest improvement. Switcher wages have accelerated across all but the energy industry and are up most in the construction trades and in healthcare. All age groups are enjoying increased switcher wages, but those in their prime working years of 35 to 54 have seen the largest acceleration. Switcher wages are up in all parts of the country, but most in the South and Midwest.

Wage risks

Wage growth is expected to accelerate substantially as the economy attains full employment. It may take a while, but wages are ultimately expected to reach a 3.5% growth rate. This is equal to the sum of inflation, which is expected to be near the Federal Reserve's 2\% target, and 1.5\% trend labor productivity growth. At this pace of growth, labor's share of national income will stabilize; labor's share has been shrinking more or less since the early 1980s.

There are both downside and upside risks to this outlook. On the downside is persistently weak productivity growth, which has been well below 1% per annum in recent years. Productivity is expected to pick up as businesses refocus on it. With labor costs so low since the recession, businesses have felt little pressure to invest in labor-saving technologies. This should change as businesses realize that their labor costs are rising with the tightening job market, but this is still a forecast.

On the upside is the likelihood that the job market will overshoot full employment. By the end of 2016, it will be clear that the economy's biggest problem is not unemployment, but a lack of quatified labor. Businesses in a rising number of industries will be in bidding wars for workers. According to
homebuilders, this is already an issue in the construction trades, and manufacturers are also complaining they cannot find the highly skilled workers they need.

Rate normalization

Firming wage growth is the signal that the Federal Reserve has needed to begin normalizing interest rates. Policymakers indicate that the coming rate hikes will be gradual, with the funds rate ending 2016 at just more than 1%. This is a reasonable forecast, given that inflation remains well below the Fed's target, and the Fed's desire to err on the side of too strong an economy rather than a struggling one. The Fed desperately wants to avoid backtracking on the rate hikes or, even worse, having to resume quantitative easing or adopting other nontraditional policies.

Policymakers also rightly want to see what impact the rate hikes will have on broader financial market conditions. The stock market appears vulnerable, given its currently high valuation; an even stronger U.S. dollar seems likely; and credit spreads have the potential to significantly gap out, particularly for below-investment-grade corporate bonds. The seeming lack of transactional liquidity in markets could also exacerbate the volatility in all markets.

Financial pressures on already-fragile emerging markets could also intensify. Most vulnerable are countries that rely heavily on capital inflows and whose nonfinancial businesses have issued debt in dollars.

These include Turkey, South Africa, and a number of countries in Latin America and Southeast Asia. Growth in the EMs slowed sharply this past year, and the best that can be expected in the coming year is that they stabilize.

R^{*} equilibrium

Just where the rate hikes end depends on the equilibrium funds rate, or R^{*}-that funds rate consistent with an economy operating at its potential and inflation at the Fed's 2% target. There is a general consensus that R^{*} has fallen since the Great Recession, but there is little consensus regarding by how much. The Fed's long-run forecast of the funds rate would suggest that the equilibrium funds rate is approximately 3.5%. This is equal to the sum of the Fed's 2% inflation target, the economy's potential growth rate, and the impact of various economic "headwinds."

Although not well-defined, the most significant headwind is the higher required capitalization and liquidity of the banking system post-crisis.

If regulators require that banks must hold more capital and be more liquid, then the banks' return on equity and assets will be lower. Thus for the system to extend the same amount of credit to the economy at the same lending rates, the system's cost of funds needs to fall by a like amount as its returns. That is, banks' lending margins-loan rates less cost of funds-must be maintained. This can be achieved if the Fed adopts a lower R^{*}, and thus lower banks' cost of funds. Like the Fed, we also estimate R^{*} to be 3.5%, equal to 2% inflation, plus 2.2% potential real GDP growth, less 0.7% to account for the economic headwinds. The actual federal funds rate is expected to reach our 3.5\% R* by spring 2018.

Rate risks

The Fed's path to R^{*} is rife with risk. The equilibrium funds rate could be much lower than we are estimating, either because potential growth is lower or the headwinds are blowing harder. Financial markets seemingly believe this, as the futures market for fed funds puts the funds rate at closer to 2% by early 2018. However, there is also the risk that the economy will overshoot full employment, generating significant wage and prices pressures and forcing the Fed to ultimately play catch-up in raising rates. Indeed, the more gradual the rate hikes are in 2016, the more likely the Fed will have to increase rates more aggressively in 2017-2018 to forestall an overheating economy.

Certainly a lot could go wrong between now and 2018. But that should be a worry for another day. We should enjoy 2016 and a full-employment economy.

Risks to the U.S. outlook

If the Fed jumps the gun and is forced to reverse course, quantitative easing would be restarted and negative interest rates would be possible. There are other options. Former Fed Chairman Ben Bernanke recounts in his new book some of the policies the Fed considered but did not implement during the Great Recession. They include negative interest rates, funding for lending, raising the inflation target, and pegging interest rates on securities with maturities of two years or less. The latter would be a commitment to keep rates low for at least two years, but the balance sheet would increase substantially. Nominal GDP targeting would be a radical option. The options Bernanke discussed could be the playbook if the Fed has to quickly reverse course.

Softer global demand, particularly in China and Europe, will hurt domestic exports and could cause GDP growth to fall short of expectations should the situation deteriorate further. The slowdown in China's economy is weighing heavily on the emerging economies in Asia and Latin America; this in turn has led to steep corrections in international equity markets. Further, Chinese policymakers could fumble in their efforts to try and stimulate growth, leading to further selloffs in China's equity markets. Slower global growth will hurt Midwest factories and coastal shipping hubs and is already subtracting from U.S. output growth. The main risk is that weakness will persist for longer than anticipated.

The weakness in global demand for U.S. exports will be aggravated by a stronger U.S. dollar. Trade data have been soft in recent months as the rising greenback has squeezed the market share of domestic firms. The impact has been most apparent in low-value-added industries that already struggle with fierce international competition. The widening divergence between U.S. monetary policy and monetary policy in Europe and Asia could cause the greenback to strengthen more than expected. The baseline forecast already assumes that the dollar will appreciate relative to the euro and the yen, as central bankers in these regions have initiated large-scale quantitative easing programs that will weaken their currencies. If foreign policymakers adopt even more expansionary policies, or if U.S. rates rise faster than expected, the dollar will push beyond the baseline forecast, further widening the trade deficit and causing GDP to fall below expectations.

Global tensions pose an indirect threat to the U.S. economy through the channels of global trade, consumer sentiment and financial markets. The conflict between Ukraine and Russia has led to a standoff between Russia and the West. With no resolution in sight, sanctions will likely prevail through next year and could push Russia deeper into recession. The consequences of the sanctions are disruptive for the euro zone economy, especially Germany, and could derail the euro zone's fragile recovery.

Conflicts in Iraq and Syria threaten to further destabilize the region. While the war against the Islamic State has been confined to Iraq and Syria, it could spread to
other Middle Eastern countries, risking increased intervention by the West. The worst-case scenario involves escalated tensions in the region that could cause not only a spike in oil prices but also greater turmoil in global financial markets, leading to a drop in trade and slower global growth. Furthermore, instability in the region has triggered an exodus of refugees from Syria. The wave of migrants puts the EU's immigration system under tremendous stress as EU members struggle to establish a system to relocate refugees from overburdened countries.

Output growth will suffer if the U.S. dollar strengthens faster than expected. The currency will appreciate relative to the euro and the yen as monetary actions in the U.S., Europe and Japan are expected to diverge further and spreads between policy rates widen. A stronger dollar will be a net negative for the U.S. Exports will slow further and imports will rise rapidly, trends already evident in the U.S. trade deficit widening to $\$ 43.9$ billion in October.

Further, the relationship is nonlinear, with the dollar subtracting an increasingly larger share of gross domestic output as it gains. Additionally, if foreign policymakers initiate even more expansive policies, or if U.S. rates rise faster than expected, the dollar will rise above the baseline forecast. In this event, U.S. exporters will be hit hard, imports will rise faster, and GDP will fall below expectations.

Summary of the forecast for PJM service territories

The PJM service territory covers all or parts of 13 states and the District of Columbia, accounting for more than 52 million people, or about a sixth of the U.S. population. The regional economies of the service territory include metro areas in the Midwest, South and Northeast and run the gamut from highly diversified, large economies such as Chicago, to small economies that depend heavily on one industry, such as Elkhart-Goshen IN.

Overall, education/healthcare remains the dominant industry in the service territory. Job growth for the industry has consistently outpaced the overall service territory economy and the gap has widened over the past year. This is attributable to the fading adjustment costs from the Affordable Care Act. Over the longer term, increasing demand from the aging population within the service territory and out will support job gains because of its greater utilization of healthcare services. Healthcare is an export industry to some economies in the service territory.

Consistent with the historical trend, education- and healthcare-related services will provide a significant share of new jobs in the forecast period.

On average, the concentration of manufacturing in the service territory is roughly in line with the national average. However, approximately 60% of the metro areas, mainly smaller old-line manufacturing localities in the Northeast and Midwest, rely more heavily on industrial production for growth. The highest concentration of manufacturing is in Elkhart-Goshen $\mathbb{I N}$, where nearly half of all jobs are in manufacturing. In contrast, the lowest concentration is in CaliforniaLexington Park MD, where less than 1% of employment is in manufacturing.

The natural resources and mining industry represents a small portion of the service territory's economy, but has been a source of weakness recently. Low energy prices, a glut of natural gas, and heightened regulatory burdens on coal producers have left the industry shedding employment in 2015. The losses have been widespread in the service territory, with significant declines in Pennsylvania, Ohio, Virginia and West Virginia. Weakness is visible outside of manufacturing as the appreciation in the U.S. dollar, weakness in global demand, and a turn in the inventory cycle have weighed on output. Some of these weights will prove more persistent than others. The dollar will likely appreciate further as the Fed will be the first major central bank to begin tightening monetary policy while many others continue to ease.

While the public sector has a slightly smaller presence in the service territory than it does nationally, there is a greater concentration of federal government employment. This is largely due to the presence of the Washington-ArlingtonAlexandria metro division, which contains the nation's capital and is home to one out of 10 federal government employees. With federal budget deficits under 3\% and the deficit forecast over the next 10 years improving, the political pressure for austerity has declined. However, poor state fiscal positions in Illinois and Pennsylvania present a risk to the forecast for the service territory.

Recent Performance

The service territory economy continues to improve. While the estimate of GDP growth from the third quarter of 2014 to the third quarter of 2015 is lower than expected, it is due to an upward revision to GDP in 2014. ' Similarly, total employment growth of only 1.3% in the year to the third quarter of 2015 falls short of the forecast of 1.7%, however this is again due to a stronger than expected end to 2014. Total employment is essentially equal to the 19.6 million forecast.

Healthcare/education has tracked the forecast, as job growth has accelerated. The acceleration is due to fading adjustment costs from the Affordable Care Act, which had weighed on hospital profitability and employment in particular. In addition, declining uninsured rates due to the Affordable Care Act and state Medicaid expansions are increasing the demand for healthcare services as well.

The tightening in the job market and increased churn have boosted income as jobs are more plentiful and employers must increasingly raise wages to hire and retain workers. Real income growth to the second quarter, the most recent available data, has outpaced the forecast by almost a full percentage point. The added income has boosted consumer spending, which has benefited leisure/hospitality. Employment in leisure/hospitality is rising nearly twice as fast as overall employment, and is now well above last year's forecast.

Manufacturing employment is up slightly from a year ago as it outperformed in 2014 before falling short of expectations this year. Manufacturing is an important driver, particularly in many of the territory's Midwest metal-producing and autorelated metro areas. A stronger dollar has held job growth back recently by eroding international competitiveness of manufacturing exports. However, manufacturing has benefited from robust growth in auto demand and transportation equipment manufacturing, which significantly outpaced overall factory production over the last year. Toledo OH , for example, experienced fast growth because of its auto assemblers and parts manufacturers. U.S. vehicle sales are robust, exceeding 18 million annualized units in each of the past three months.

Finance has been another source of job gains, outperforming the forecast for most of the last year. One factor is that headwinds from a recent spate of bank mergers and acquisitions have eased. In recent years, mergers and acquisitions have weighed on growth as banks have sought efficiencies and economies of scale. BB\&T Corp. alone has spent $\$ 4.3$ billion on acquisitions in Pennsylvania, making it the fourth largest bank in the state. These headwinds appear to have weakened somewhat in 2015, however finance in the service territory is still lagging that of

[^1]the U.S. overall, which suggests they remain a factor. Also, financial market conditions tightened in the second half of this year amid initial concerns about the Fed's exit strategy and the deterioration in China's economy.

While some metro areas grew fast in the service territory, others suffered job losses this year. The biggest losses were in Atlantic City NJ, where the casino industry has struggled under stiff regional competition. Total employment in the Atlantic City metro area is among the lowest since the early 1990s. Lebanon PA was also one of the worst-performing metro areas, in part because of the closing of a large distribution center.

While the economy is improving overall, the service territory is adding jobs more slowly than the nation partly because low growth in government employment has disproportionately affected the service territory. Federal government accounts for 3% of total employment, compared with 2% in the rest of the U.S. The concentration is noticeably higher in the District of Columbia, Maryland, and Virginia. Moreover, federal workers earn more in the Mid-Atlantic than elsewhere in the country. Therefore, federal layoffs do more damage to incomes.

Local government is adding jobs again thanks to steady improvement in the housing market that has lifted property taxes. However, it remains a source of weakness in some areas because of state and local fiscal problems, in particular Illinois and Pennsylvania. Increasing pension costs are weighing on some areas, which has led local government employment to fall in Philadelphia, AllentownBethlehem and Lebanon PA.

Pennsylvania and Ohio are steadily adding jobs, which account for a substantial portion of PJM's customers. Ohio and Pennsylvania metro areas make up 36% of the territory's payroll employment.

Ohio's recovery remains on track, driven by robust gains in high-paying professional and financial services as well as healthcare. High-value-added whitecollar services including consulting and computer systems design are booming in Cincinnati and Columbus. Auto manufacturing is also powering forward thanks to major capital investments and rising national vehicle demand even though broad-based growth in the factory sector has eased because of protracted weakness in steel production.

Pennsylvania's economy is improving, but poor demographics and state fiscal problems are limiting job growth, which ranks in the bottom quintile of U.S. states.

Income growth across the region is helping tourism flourish and generating strong job gains in arts/entertainment/recreation, especially in Philadelphia, Pittsburgh and Allentown-Bethlehem.

Near-term outlook and changes to the forecast

The October 2015 regional baseline forecast was generated in the context of the U.S. macro forecast. Changes to the near-term outlook for the PJM service territory are similar to those in the U.S. macro forecast. The recent performance was slightly weaker than expected. As a result, the forecast has been lowered for the next few quarters, but raised starting in the end of 2016.

Manufacturing is an area that fell short of expectations in 2015 because of the stronger dollar, low energy prices, weakness in global demand, and a turn in the inventory cycle in the second half of the year. However, following a wider U.S. trend, the near-term outlook for manufacturing job growth has been lifted, and employment is expected to expand through the end of 2017. Manufacturing employment grew an estimated 1.3% since the third quarter of 2014, falling short of expectations of a 1.7% increase. As the U.S. economy heats up over the next two years, this will spur more domestic demand for manufacturing and drive job growth.

The single-family housing market has improved somewhat, but the robust catchup in single-family permitting that was expected has not materialized. Longlasting scars from the Great Recession and slack in the job market have left households hesitant to make the investment in single-family housing. This has spurred demand for multifamily housing, but not enough to prevent overall permitting from falling short of the forecast.

Despite the disappointing housing market, construction employment in the service territory has tracked the forecast as commercial and infrastructure projects have helped fill the gap. Both Pennsylvania and Illinois have passed significant infrastructure spending bills in recent years. In Pennsylvania, more than $\$ 1.7$ billion is being spent on turnpike projects alone in 2015.

Overall, the return of the service territory economy to full employment will be more gradual than expected, and as a result above-trend job growth will last longer than previously expected. This short-term outlook mirrors the U.S. macro forecast. Over the past year, the service sector has fallen short of expectations. Service growth will improve into 2016 and deliver a less rapid but more prolonged recovery period before settling into longer-term growth rates.

Long-term outlook

The October 2015 forecast for long-term GDP growth in metro areas in the PJM service territory has been slightly upgraded from 2014. Over the next few years, faster household formation than previously expected will boost economic growth.

Sobices. Census Bureau, kiocdy's Anamtiks

For the metro areas in the service territory that are comparable to the previous forecast, the October 2015 forecast is for population to expand 5.7% between 2015 and 2030 , down from 6.6% in the October 2014 forecast. As a result the forecast population will be 435,000 lower by 2030 than previously expected. For the full service territory, including newly added and changed metro areas, population growth over this period will be 7%.

Weaker population growth translates to fewer households in the long run. However, in the near term the household formation rate is expected to increase thanks to an improving economy. Scars from the Great Recession have kept the household formation rate below equilibrium. As the labor market tightens and income growth accelerates over the next two years, household formation will pick up and make up for lost ground. Once catch-up household formation has been exhausted, the formation rate will decline to levels consistent with the service territory's slowly growing population.

Overall, the long-term GDP forecast has not been altered substantially. The PJM service territory will underperform the U.S., with average annual real GDP growth of 1.9% from 2016 to 2030 , compared with the U.S. average of 2.1%. Relative to last year, GDP growth in the parts of the service territory that are comparable to last year are expected to grow 0.2 percentage point faster.

The southernmost metro areas, including the southem parts of Pennsylvania, are expected to be among the fastest-growing in the PJM service territory. The biggest comparative advantage for these areas is their favorable demographic trends, which will help boost overall final demand. While the long-term forecast is weaker, household formation will rebound in 2016 and will drive growth in consumer-based services, including education/healthcare and leisure/hospitality.

Suburban areas are outperforming the cities they neighbor in several cases, thanks to higher levels of education and the regulatory and policy problems that big cities face. For example, the Elgin metro division is expected to outpace the Chicago metro division in terms of population and GDP growth, and Montgomery-Bucks-Chester will do the same for Philadelphia. Washington DC will outperform the service territory thanks to a highly educated labor force, productivity growth, and positive demographic trends.

Stronger Demographics Benefit the South

Avg annual household growh from 2015 to 2030 . \%

Metro areas in Ohio, West Virginia, and western and northern Pennsylvania will expand more slowly. Expansion in those states will be more restrained as the region transitions away from manufacturing toward more service-oriented economies. With lower-value-added services accounting for a larger part of the regional economies, income gains are expected to be more restrained. Weaker demographics will also undermine long-term growth, as workers and their families are expected to seek opportunities in stronger labor markets outside of the slowgrowth metro areas in the Midwest and Northeast.

Service Territory Will Underperform the U.S.
Avg real GDP growth from 2015 to $2030, \%$

Sources. Corsus Bureau. Mopdy's Arabytics

Of the 10 areas with the weakest increases in the number of households, five are in Ohio and four are in Pennsylvania. Eight of these areas will post net declines in the number of households. In Pennsylvania, the long-run decline of manufacturing is exacerbated by poor public sector finances that will weigh on local government employment as well as taxpayers.

\&V'AS/LNSDYGd

SUMMER PEAK DEMAND FOR PJM RTO

 GEOGRAPHIC ZONE

WINTER PEAK DEMAND FOR PJM RTO GEOGRAPHIC ZONE

SUMMER PEAK DEMAND FOR PJM MID-ATLANTIC GEOGRAPHIC ZONE

WINTER PEAK DEMAND FOR PJM MID-ATLANTIC GEOGRAPHIC ZONE

YEAR

WINTER PEAK DEMAND FOR EASTERN MID-ATLANTIC GEOGRAPHIC ZONE

SUMMER PEAK DEMAND FOR SOUTHERN MID-ATLANTIC GEOGRAPHIC ZONE

WINTER PEAK DEMAND FOR SOUTHERN MID-ATLANTIC GEOGRAPHIC ZONE

YEAR
$\left[\begin{array}{lllll}\hline \text { Unrestricted Peak } & \cdots & \text { Weather Normalized Peak } & 00015 \text { Forecast } & \cdots \infty 2016 \text { Forecast } \\ \hline\end{array}\right.$

WINTER PEAK DEMAND FOR PJM WESTERN

 GEOGRAPHIC ZONE

SUMMER PEAK DEMAND FOR AE GEOGRAPHIC ZONE

WINTER PEAK DEMAND FOR AE

 GEOGRAPHIC ZONE

[^2]SUMMER PEAK DEMAND FOR BGE GEOGRAPHIC ZONE

WINTER PEAK DEMAND FOR BGE

 GEOGRAPHIC ZONE

SUMMER PEAK DEMAND FOR DPL

GEOGRAPHIC ZONE

WINTER PEAK DEMAND FOR DPL GEOGRAPHIC ZONE

YEAR

SUMMER PEAK DEMAND FOR JCPL

 GEOGRAPHIC ZONE

WINTER PEAK DEMAND FOR JCPL GEOGRAPHIC ZONE

SUMMER PEAK DEMAND FOR METED GEOGRAPHIC ZONE

WINTER PEAK DEMAND FOR METED GEOGRAPHIC ZONE

Unrestricted Peak \quad Weather Normalized Peak 2016 Forecast

WINTER PEAK DEMAND FOR PECO GEOGRAPHIC ZONE

$[$ Unrestricted Peak $\quad \leftrightarrow$ Weather Normalized Peak 2015 Forecast $\quad \rightarrow$ 2016 Forecast

SUMMER PEAK DEMAND FOR PENLC

 GEOGRAPHIC ZONE

WINTER PEAK DEMAND FOR PENLC

 GEOGRAPHIC ZONE

- Uaresticted Peak	\cdots	Weather Normalized Peak	2015 Forecast	\cdots

SUMMER PEAK DEMAND FOR PEPCO GEOGRAPHIC ZONE

WINTER PEAK DEMAND FOR PEPCO GEOGRAPHIC ZONE

SUMMER PEAK DEMAND FOR PL

 GEOGRAPHIC ZONE

WINTER PEAK DEMAND FOR PL

GEOGRAPHIC ZONE

YEAR
$[$ Unrestricted Peak $\quad \omega$ Weather Normalized Peak 2015 Forecast $\quad \omega$ Forecast

WINTER PEAK DEMAND FOR PS

 GEOGRAPHIC ZONE
$\left[\begin{array}{llll}\hline \text { Unrestricted Peak } & \text { Weather Normalized Peak } & 2015 \text { Forecast } & \text { 2016 Forecast } \\ \hline\end{array}\right.$

SUMMER PEAK DEMAND FOR RECO

 GEOGRAPHIC ZONE
\square Unrestricted Peak $\quad \cdots$ Weather Normalized Peak $\quad \because 0 \Leftrightarrow 2015$ Forecast $\quad 2016$ Forecast

WINTER PEAK DEMAND FOR RECO
 GEOGRAPHIC ZONE

Unrestricted Peak	\cdots Weather Normalized Peak	$0-0-02015$ Forecast	*-* 2016 Forecast

WINTER PEAK DEMAND FOR UGI GEOGRAPHIC ZONE

YEAR
$[$ Unrestricted Peak $\quad \omega$ Weather Notmalized Peak 0002015 Forecast $\quad 2016$ Forecast

SUMMER PEAK DEMAND FOR AEP

 GEOGRAPHIC ZONE

WINTER PEAK DEMAND FOR AEP GEOGRAPHIC ZONE

YEAR
\square Unrestricted Peak $\quad \omega$ Weather Normalized Peak $\quad \omega 000$ 2015 Forecast $\quad \omega$ Forecast

SUMMER PEAK DEMAND FOR APS

GEOGRAPHIC ZONE

WINTER PEAK DEMAND FOR APS GEOGRAPHIC ZONE

SUMMER PEAK DEMAND FOR ATSI

GEOGRAPHIC ZONE

WINTER PEAK DEMAND FOR ATSI GEOGRAPHIC ZONE

$[$ Unrestricted Peak \quad Weather Normalized Peak 2015 Forecast $0-16$ Forecast

WINTER PEAK DEMAND FOR COMED GEOGRAPHIC ZONE

SUMMER PEAK DEMAND FOR DAYTON

GEOGRAPHIC ZONE

WINTER PEAK DEMAND FOR DAYTON GEOGRAPHIC ZONE

Unrestricted Peak	\cdots Weather Normalized Peak	0-0 2015 Forecast	-0- 2016 Forecast

SUMMER PEAK DEMAND FOR DEOK

 GEOGRAPHIC ZONE

WINTER PEAK DEMAND FOR DEOK

 GEOGRAPHIC ZONE

SUMMER PEAK DEMAND FOR DLCO GEOGRAPHIC ZONE

WINTER PEAK DEMAND FOR DLCO GEOGRAPHIC ZONE

YEAR
U- Unrestricted Peak Weather Normalized Peak 2016 Forecast

SUMMER PEAK DEMAND FOR EKPC

 GEOGRAPHIC ZONE

WINTER PEAK DEMAND FOR EKPC GEOGRAPHIC ZONE

SUMMER PEAK DEMAND FOR DOM

 GEOGRAPHIC ZONE

WINTER PEAK DEMAND FOR DOM GEOGRAPHIC ZONE

Ni.

$$
\begin{aligned}
& \text { N్ర్తి }
\end{aligned}
$$

Table A-1

PJM WESTERN REGION, PJM SOUTHERN REGION AND PJM RTO
SUMMER PEAK LOAD COMPARISONS OF THE CURRENT FORECAST

$$
\stackrel{\sim}{N}
$$

N

Table A-2
PJM WESTERN REGION, PJM SOUTHERN REGION AND PJM RTO
WINTER PEAK LOAD COMPARISONS OF THE CURRENT FORECAST
TO THE JANUARY 2015 LOAD FORECAST REPORT

젱
E

15/16
会

[^3]
\[

$$
\begin{aligned}
& \text { DIVERSITY - MID-ATLANTIC(-) } \\
& \text { PJM MID-ATLANTIC }
\end{aligned}
$$
\]

苞
Table B-1
SUMMER PEAK LOAD (MW) AND GROWTH RATES FOR
EACH PJM WESTERN AND PJM SOUTHERN ZONE, GEOGRAPHIC REGION AND RTO

	$\begin{array}{r} \text { METERED } \\ 2015 \end{array}$	UNRESTRICTED 2015	$\begin{array}{r} \text { NORMAL } \\ 2015 \end{array}$	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	Annual Growth Rate (10 yr)
AEP	21,877	21,877	22,490	23,006	23,309	23,584	23,799	23,819	23,943	24,119	24,280	24,517	24,690	24,891	0.8\%
				2.3\%	1.3\%	1.2\%	0.9\%	0.1\%	0.5\%	0.7\%	0.7\%	1.0\%	0.7\%	0.8\%	
APS	8,257	8,257	8,480	8,817	9,014	9,127	9,215	9,248	9,266	9,314	9,350	9,413	9,497	9,554	0.8\%
				4.0\%	2.2\%	1.3\%	1.0\%	0.4\%	0.2\%	0.5\%	0.4\%	0.7\%	0.9\%	0.6\%	
ATSI	12,357	12,357	12,870	12,921	13,004	13,089	13,149	13,129	13,158	13,207	13,236	13,313	13,361	13,413	0.4\%
				0.4\%	0.6\%	0.7\%	0.5\%	-0.2\%	0.2\%	0.4\%	0.2\%	0.6\%	0.4\%	0.4\%	
COMED	19,766	19,768	21,950	22,001	22,216	22,438	22,633	22,659	22,767	22,935	23,045	23,248	23,449	23,633	0.7\%
				0.2\%	1.0\%	1.0\%	0.9\%	0.1\%	0.5\%	0.7\%	0.5\%	0.9\%	0.9\%	0.8\%	
DAYTON	3,269	3,269	3,300	3,403	3,453	3,496	3,524	3,512	3,526	3,548	3,568	3,599	3,622	3,647	0.7\%
				3.1\%	1.5\%	1.2\%	0.8\%	-0.3\%	0.4\%	0.6\%	0.6\%	0.9\%	0.6\%	0.7\%	
DEOK	5,123	5,123	5,180	5,436	5,500	5,566	5,616	5,621	5,648	5,685	5,714	5,771	5,824	5,853	0.7\%
				4.9\%	1.2\%	1.2\%	0.9\%	0.1\%	0.5\%	0.7\%	0.5\%	1.0\%	0.9\%	0.5\%	
DLCO	2,805	2,805	2,870	2,893	2,918	2,938	2,950	2,942	2,942	2,948	2,951	2,963	2,973	2,985	0.3\%
				0.8\%	0.9\%	0.7\%	0.4\%	-0.3\%	0.0\%	0.2\%	0.1\%	0.4\%	0.3\%	0.4\%	
EKPC	1,920	1,920	1,920	1,924	1,947	1,960	1,974	1,977	1,985	1,989	2,006	2,021	2,031	2,041	0.6\%
				0.2\%	1.2\%	0.7\%	0.7\%	0.2\%	0.4\%	0.2\%	0.9\%	0.7\%	0.5\%	0.5\%	
DIVERSITY - WESTERN(-)				1,572	1,589	1,564	1,558	1,559	1,580	1,614	1,493	1,547	1,574	1,574	
PJM WESTERN	74,531	74,579	77,980	78,829	79,772	80,634	81,302	81,348	81,655	82,131	82,657	83,298	83,873	84,443	0.7\%
				1.1\%	1.2\%	1.1\%	0.8\%	0.1\%	0.4\%	0.6\%	0.6\%	0.8\%	0.7\%	0.7\%	
DOM	18,980	19,024	18,920	19,531	20,052	20,499	20,813	20,882	21,054	21,244	21,421	21,640	21,854	22,041	1.2\%
				3.2\%	2.7\%	2.2\%	1.5\%	0.3\%	0.8\%	0.9\%	0.8\%	1.0\%	1.0\%	0.9\%	
DIVERSITY - INTERREGIONPJM RTO				3,403	3,411	3,414	3,621	3,866	3,661	3,827	3,718	3,788	4,076	4,146	
	143,447	143,497	150,295	152,131	154,149	155,913	156,958	156,887	157,358	157,986	158,975	159,991	160,947	161,891	0.6\%
				1.2\%	1.3\%	1.1\%	0.7\%	-0.0\%	0.3\%	0.4\%	0.6\%	0.6\%	0.6\%	0.6\%	

Table B-1 (Continued)

 SUMMER PEAK LOAD (MW) AND GROWTH RATES FOREACH PJM WESTERN AND PJM SOUTHERN ZONE, GEOGRAPHIC REGION AND RTO

AEP
APS
ATSI
COMED
DAYTON
DEOK
DLCO
EKPC
DIVERSITY - WESTERN(-)
PJM WESTERN
DOM
DIVERSITY - INTERREGIONAL(-)
PJM RTO

WINTER PEAK LOAD (MW) AND GROWTH RATES FOR EACH PJM MID-ATLANTIC ZONE AND GEOGRAPHIC REGION 2015/16-2025/26															
	METERED $14 / 15$	UNRESTRICTED $14 / 15$	NORMAL 14/15	15/16	16/17	17/18	18/19	19/20	20/21	21/22	22/23	23/24	24/25	25/26	$\begin{array}{r} \text { Annual } \\ \text { Growth Rate } \\ \text { (10 yr) } \end{array}$
AE	1,705	1,705	1,610	$1,626$	$\begin{aligned} & 1,632 \\ & 04 \% \end{aligned}$	$1,640$	1,647 0.4%	1,634 -0.8%	1,620 -0.9%	1,620 0.0%	1,621 0.1%	1,623 0.1%	1,623 0.0%	1,624	(0.0\%)
BGE	6,712	6,712	5,760	5,941	5,994	6,044	6,078	6,080	6,077	6,098	6,118	6,142	6,168	6,199	0.4\%
				3.1\%	0.9\%	0.8\%	0.6\%	0.0\%	-0.0\%	0.3\%	0.3\%	0.4\%	0.4\%	0.5\%	
DPL	4,114	4,114	3,480	3,413	3,461	3,507	3,538	3,545	3,548	3,560	3,577	3,598	3,623	3,646	0.7\%
				-1.9\%	1.4\%	1.3\%	0.9\%	0.2\%	0.1\%	0.3\%	0.5\%	0.6\%	0.7\%	0.6\%	
JCPL	3,805	3,805	3,730	3,766	3,822	3,880	3,914	3,881	3,853	3,857	3,859	3,874	3,885	3,892	0.3\%
				1.0\%	1.5\%	1.5\%	0.9\%	-0.8\%	-0.7\%	0.1\%	0.1\%	0.4\%	0.3\%	0.2\%	
METED	2,799	2,799	2,610	2,593	2,637	2,679	2,711	2,704	2,700	2,711	2,730	2,748	2,767	2,784	0.7\%
				-0.7\%	1.7\%	1.6\%	1.2\%	-0.3\%	-0.1\%	0.4\%	0.7\%	0.7\%	0.7\%	0.6\%	
PECO	7,034	7,034	6,620	6,654	6,770	6,858	6,909	6,891	6,862	6,899	6,929	6,964	6,996	7,030	0.6\%
				0.5\%	1.7\%	1.3\%	0.7\%	-0.3\%	-0.4\%	0.5\%	0.4\%	0.5\%	0.5\%	0.5\%	
PENLC	3,025	3,025	2,860	2,814	2,828	2,836	2,849	2,841	2,829	2,830	2,833	2,835	2,834	2,834	0.1\%
				-1.6\%	0.5\%	0.3\%	0.5\%	-0.3\%	-0.4\%	0.0\%	0.1\%	0.1\%	-0.0\%	0.0\%	0.\%
PEPCO	6,066	6,066	5,370	5,386	5,455	5,514	5,555	5,572	5,564	5,593	5,617	5,643	5,668	5,684	0.5\%
				0.3\%	1.3\%	1.1\%	0.7\%	0.3\%	-0.1\%	0.5\%	0.4\%	0.5\%	0.4\%	0.3\%	
PL	7,845	7,845	7,140	7,210	7,297	7,385	7,437	7,427	7,404	7,417	7,438	7,475	7,511	7,541	0.4\%
				1.0\%	1.2\%	1.2\%	6.7\%	-0.1\%	-0.3\%	0.2\%	0.3\%	0.5\%	0.5\%	0.4\%	
PS	6,697	6,697	6,570	6,712	6,801	6,868	6,923	6,890	6,847	6,842	6,856	6,871	6,886	6,904	0.3\%
				2.2\%	1.3\%	1.0\%	0.8\%	-0.5\%	-0.6\%	-0.1\%	0.2\%	0.2\%	0.2\%	0.3\%	
RECO	232	232	220	232	234	235	237	235	234	235	235	235	234	234	0.1\%
				5.5\%	0.9\%	0.4\%	0.9\%	-0.8\%	-0.4\%	0.4\%	0.0\%	0.0\%	-0.4\%	0.0\%	
UGI	211	211	200	192	194	196	197	195	194	193	193	193	193	193	0.1\%
				-4.0\%	1.0\%	1.0\%	0.5\%	-1.0\%	-0.5\%	-0.5\%	0.0\%	0.0\%	0.0\%	0.0\%	
DIVERSITY - MID-ATLANTIC(-)				717	621	632	738	798	733	670	659	644	761	745	
PJM MID-ATLANTIC	49,369	49,369	45,485	45,822	46,504	47,010	47,257	47,097	46,999	47,185	47,347	47,557	47,627	47,820	0.4\%
				0.7\%	1.5\%	1.1\%	0.5\%	-0.3\%	-0.2\%	0.4\%	0.3\%	0.4\%	0.1\%	0.4\%	
FE-EAST	9,505	9,505	9,140	9,095	9,229	9,335	9,406	9,336	9,305	9,323	9,358	9,403	9,411	9,442	0.4\%
				-0.5\%	1.5\%	1.1\%	0.8\%	-0.7\%	-0.3\%	0.2\%	0.4\%	0.5\%	0.1\%	0.3\%	
PLGRP	8,055	8,055	7,335	7,387	7,476	7,566	7,610	7,584	7,578	7,595	7,614	7,653	7,680	7,711	0.4\%
				0.7\%	1.2\%	1.2\%	0.6\%	-0.3\%	-0.1\%	0.2\%	0.3\%	0.5\%	0.4\%	0.4\%	

ले			
읓	笑		
$\begin{aligned} & \text { N } \\ & \stackrel{N}{\infty} \end{aligned}$	風面		
$\stackrel{\infty}{N}$	以 No		状 응 ふた。
$\begin{aligned} & \text { N } \\ & \mathbf{N} \end{aligned}$	No No 犬io o		$\begin{aligned} & \text { nion } \\ & \text { ¢in in in in } \\ & \text { cion } \end{aligned}$

DIVERSITY－MID－ATLANTIC（ - ）
PJM MID－ATLANTIC
FE－EAST
PLGRP

	METERED 14/15	UNRESTRICTED $14 / 15$	$\begin{gathered} \text { NORMAL } \\ 14 / 15 \end{gathered}$	15/16	16/17	17/18	18/19	19/20	20/21	21/22	22/23	23/24	24/25	25/26	Annual Growth Rate (10 yr)
AEP	24,739	24,739	21,990	22,506	22,889	23,295	23,615	23,697	23,764	23,948	24,127	24,356	24,565	24,783	1.0\%
				2.3\%	1.7\%	1.8\%	1.4\%	0.3\%	0.3\%	0.8\%	0.7\%	0.9\%	0.9\%	0.9\%	
APS	9,594	9,594	8,640	8,526	8,778	9,009	9,149	9,200	9,201	9,256	9,306	9,373	9,442	9,494	1.1\%
				-1.3\%	3.0\%	2.6\%	1.6\%	0.6\%	0.0\%	0.6\%	0.5\%	0.7\%	0.7\%	0.6\%	
ATSI	11,041	11,041	10,630	10,549	10,657	10,747	10,851	10,823	10,806	10,848	10,906	10,949	10,995	11,038	0.5\%
				-0.8\%	1.0\%	0.8\%	1.0\%	-0.3\%	-0.2\%	0.4\%	0.5\%	0.4\%	0.4\%	0.4\%	
COMED	15,951	15,951	15,120	15,579	15,832	16,051	16,296	16,325	16,297	16,403	16,532	16,669	16,788	16,974	0.9\%
				3.0\%	1.6\%	1.4\%	1.5\%	0.2\%	-0.2\%	0.7\%	0.8\%	0.8\%	0.7\%	1.1\%	
DAYTON	2,999	2,999	2,960	2,848	2,901	2,955	2,987	2,979	2,980	2,997	3,021	3,044	3,062	3,083	0.8\%
				-3.8\%	1.9\%	1.9\%	1.1\%	-0.3\%	0.0\%	0.6\%	0.8\%	0.8\%	0.6\%	0.7\%	
DEOK	4,750	4,750	4,500	4,422	4,489	4,549	4,597	4,609	4,620	4,658	4,688	4,723	4,754	4,792	0.8\%
				-1.7\%	1.5\%	1.3\%	1.1\%	0.3\%	0.2\%	0.8\%	0.6\%	0.7\%	0.7\%	0.8\%	
DLCO	2,315	2,315	2,180	2,158	2,180	2,195	2,210	2,204	2,198	2,201	2,207	2,210	2,216	2,223	0.3\%
				-1.0\%	1.0\%	0.7\%	0.7\%	-0.3\%	-0.3\%	0.1\%	0.3\%	0.1\%	0.3\%	0.3\%	
EKPC	3,123	3,123	2,370	2,602	2,634	2,665	2,694	2,702	2,714	2,732	2,752	2,769	2,786	2,809	0.8\%
				9.8\%	1.2\%	1.2\%	1.1\%	0.3\%	0.4\%	0.7\%	0.7\%	0.6\%	0.6\%	0.8\%	
DIVERSITY - WESTERN(-) PJM WESTERN				1,373	1,370	1,417	1,658	1,784	1,602	1,497	1,565	1,553	1,551	1,676	
	71,834	71,834	66,940	67,817	68,990	70,049	70,741	70,755	70,978	71,546	71,974	72,540	73,057	73,520	0.8\%
				1.3\%	1.7\%	1.5\%	1.0\%	0.0\%	0.3\%	0.8\%	0.6\%	0.8\%	0.7\%	0.6\%	
DOM	21,651	21,651	17,690	17,431	18,063	18,622	19,048	19,165	19,322	19,547	19,774	20,011	20,212	20,460	1.6\%
				-1.5\%	3.6\%	3.1\%	2.3\%	0.6\%	0.8\%	1.2\%	1.2\%	1.2\%	1.0\%	1.2\%	
DIVERSITY - INTERREGIO PJM RTO				827	1,075	1,036	967	995	897	1,015	1,085	918	934	888	
	142,762	142,762	128,270	130,243	132,482	134,645	136,079	136,022	136,402	137,263	138,010	139,190	139,962	140,912	0.8\%
				1.5\%	1.7\%	1.6\%	1.1\%	-0.0\%	0.3\%	0.6\%	0.5\%	0.9\%	0.6\%	0.7\%	

 $\underset{\sim}{\infty} \underset{\sim}{\infty}$ －が

䓂皆

AE
BGE
DPL
JCPL
METED
PECO
PENLC
PEPCO
PL
PS
RECO
UGI

DIVERS
PJM MID
FE-EAST
PLGRP
Table B-3
SPRING PEAK LOAD (MW) FOR
EACH PJM WESTERN AND PJM SOUTHERN ZONE, GEOGRAPHIC REGION AND RTO

	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031
AEP	20,452	20,806	21,200	21,421	21,406	21,701	21,782	21,924	22,077	22,259	22,578	22,798	22,936	23,126	23,321	23,491
APS	7,765	8,012	8,151	8,251	8,242	8,323	8,344	8,419	8,437	8,503	8,604	8,673	8,719	23,757	8,814	23,491
ATSI	10,409	10,499	10,597	10,702	10,459	10,485	10,700	10,745	10,858	10,717	10,761	10,791	11,031	11,119	11,214	11,076
COMED	16,703	16,948	17,183	17,380	17,255	17,329	17,578	17,722	17,916	18,023	18,214	18,319	18,591	18,801	18,961	19,093
DAYTON	2,750	2,797	2,844	2,877	2,844	2,855	2,896	2,919	2,945	2,960	2,979	3,003	3,051	18,801 3,083	18,91 3,102	19,09 3,120
DEOK	4,433	4,487	4,562	4,616	4,553	4,574	4,654	4,683	4,754	4,757	4,771	4,812	4,895	4,963	5,002	5,016
DLCO	2,340	2,359	2,381	2,396	2,381	2,384	2,391	2,397	2,410	2,412	2,424	2,436	2,453	2,467	2,477	2,480
EKPC	2,057	2,090	2,112	2,126	2,132	2,166	2,171	2,189	2,190	2,208	2,241	2,258	2,262	2,271	2,287	2,303
DIVERSITY - WESTERN(-)	4,303	4,393	4,452	4,656	4,899	5,168	4,738	4,765	4,854	5,137	5,419	5,374	5,130	5,086		5,231
PJM WESTERN	62,606	63,605	64,578	65,113	64,373	64,649	65,778	66,233	66,733	66,702	67,153	67,716	68,808	69,501	69,920	70,211
DOM	17,013	17,508	18,223	18,589	18,621	18,735	18,810	18,954	19,385	19,510	19,716	19,897	19,959	20,286	20,470	20,610
DIVERSITY - INTERREGIONAL(-)	3,519	3,973	4,015	4,599	4,581	4,467	3,859	4,189	4,481	4,479	4,701	4,541	4,343	4,411	4,549	
PJM RTO	119,518	121,445	123,572	124,006	122,346	122,600	125,306	126,116	126,902	126,854	127,013	127,912	130,644	131,883	132,440	132,741

$$
\begin{aligned}
& \text { DIVERSITY - MID-ATLANTIC(}) \\
& \text { PJM MID-ATLANTIC }
\end{aligned}
$$

$$
\begin{aligned}
& \text { FALL PEAK LOAD (MW) FOR } \\
& \text { EACH PJM MID-ATLANTIC ZONE AND GEOGRAPHIC REGION }
\end{aligned}
$$

FE-EAST
PLGRP

AEP
ATSI
COMED
DAYTON
DEOK
DLCO
EKPC
DIVERSITY－WESTERN（－）
PJM WESTERN
DOM
DIVERSITY－INTERREGIONAL $(-)$
PJM RTO

MLD-ATLANTIC

 NૂN

 ๙ N

n ~

으여N

 응ㅇㅇㅇ

 "

COMED	DAYTON	DEOK	DLCO	EKPC	WESTERN DIVERSITY	$\begin{gathered} \text { PJM } \\ \text { WESTERN } \end{gathered}$	DOM	$\begin{aligned} & \text { INTER } \\ & \text { REGION } \end{aligned}$	
15,433	2,848	4,422	2,158	2,602	DIVERSIT 1,227	WESTERN	DOM	DIVERSITY	PJM RTO
15,180	2,745	4,247	2,090	2,365	1,445	65,242	16,087	649	124,357
13,803	2,548	3,905	1,989	2,057	1,818	60,399	15,912	809	114,674
13,636	2,452	3,840	2,072	1,690	2,250	56,677	15,692	1,041	108,204
16,703	2,750	4,433	2,340	1,564	2,533	62,606	17,013	3,519	119,518
20,493	3,184	5,176	2,796	1,841	1,137	75,434	18,687	4,188	144,073
22,001	3,403	5,436	2,893	1,924	1,572	78,829	19,531	3,403	152,131
21,325	3,337	5,386	2,828	1,918	989	77,812	19,226	3,661	147,904
18,021	2,922	4,760	2,478	1,716	1,289	67,944	17,296	4,091	128,424
13,755	2,398	3,876	1,994	1,655	2,100	55,722	15,102	2,474	105,965
13,931	2,504	3,794	1,946	1,940	1,186	58,945	14,793	1,867	110,896
15,832	2,759	4,276	2,145	2,369	1,083	66,335	16,257	1,340	125,824
COMED	DAY'TON	DEOK	DLCO	EKPC	DIVERSITY	WESTERN	DOM	DIVERSITY	PJM RTO
15,661	2,901	4,489	2,180	2,634	1,199	68,990	18,063	1,075	132,482
15,389	2,796	4,309	2,115	2,397	1,591	66,113	16,685	673	126,550
14,081	2,594	3,976	2,002	2,090	1,817	61,540	16,415	1,977	115,740
13,795	2,471	3,916	2,067	1,704	2,651	57,079	16,163	2,442	107,929
16,948	2,797	4,487	2,359	1,578	2,489	63,605	17,508	3,973	121,445
20,801	3,238	5,231	2,825	1,856	1,265	76,367	19,210	4,114	146,155
22,216	3,453	5,500	2,918	1,947	1,589	79,772	20,052	3,411	154,149
21,599	3,384	5,442	2,851	1,931	896	78,865	19,711	3,690	149,900
18,269	2,949	4,803	2,491	1,718	1,697	68,388	17,925	4,174	129,761
14,136	2,465	3,984	2,023	1,674	2,314	57,001	15,763	2,827	108,770
14,164	2,545	3,867	1,964	1,964	1,251	60,077	15,460	2,064	112,969
16,051	2,805	4,317	2,153	2,400	1,226	67,150	16,740	1,082	127,831
COMED	DAYTON	DEOK	DLCO	EKPC	DIVERSITY	WESTERN	DOM	DIVERSITY	PJM RTO
15,940	2,955	4,549	2,195	2,665	1,306	70,049	18,622	1,036	134,645
15,650	2,850	4,353	2,126	2,423	1,786	66,988	17,187	598	128,586
14,282	2,640	4,041	2,016	2,112	1,851	62,464	17,019	2,198	117,200
14,213	2,556	4,077	2,189	1,731	1,896	59,644	16,756	453	113,782
17,183	2,844	4,562	2,381	1,594	2,513	64,578	18,223	4,015	123,572
20,934	3,277	5,295	2,840	1,866	1,324	77,088	19,679	4,224	147,487
22,438	3,496	5,566	2,938	1,960	1,564	80,634	20,499	3,414	155,913
21,770	3,425	5,502	2,873	1,943	946	79,625	20,167	4,827	150,331
18,353	2,969	4,813	2,496	1,731	1,892	68,690	18,459	4,575	130,600
14,541	2,567	4,051	2,180	1,696	1,339	59,667	16,313	2,543	112,755
14,290	2,574	3,916	1,985	1,973	1,179	60,954	16,011	2,401	114,369
16,296	2,857	4,388	2,186	2,439	1,382	68,231	17,207	1,176	129,648

Table B-6

MONTHLY PEAK FORECAST (MW) FOR

畏

-For DYs 2018 and 2019, Limited and Extended Summer DR are assumed to become Base DR while Annual DR is assumed to become CP DR.

[^4]
The following assumptions are made to forecast the new products that begin in DY 2018:

PJM WESTERN REGION AND PJM SOUTHERN REGION LOAD MANAGEMENT

た

	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031
AE	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BGE	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DPL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
JCPL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
METED	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PECO	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PENLC	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PEPCO	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PS	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RECO	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
UGI	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AEP	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
APS	120	220	250	280	280	270	260	260	250	240	230	230	220	210	210	200
ATSI	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
COMED	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DAYTON	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DEOK	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DLCO	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EKPC	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DOM	240	410	560	680	730	810	860	900	930	960	990	1,010	1,020	1,040	1,050	1,050
PJM RTO	360	630	810	960	1,010	1,080	1,120	1,160	1,180	1,200	1,220	1,240	1,240	1,250	1,260	1,250

	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031
AE	2,435	2,442	2,447	2,445	2,430	2,418	2,414	2,415	2,415	2,414	2,409	2,405	2,404	2,402	2,392	2,389
BGE	6,663	6,716	6,765	6,758	6,778	6,763	6,773	6,813	6,833	6,894	6,917	6,924	6,964	7,014	7,013	7,072
DPL	3,838	3,878	3,907	3,916	3,917	3,908	3,912	3,926	3,941	3,966	3,977	3,982	4,003	4,023	4,027	4,038
JCPL	5,749	5,820	5,883	5,891	5,859	5,860	5,856	5,871	5,886	5,905	5,916	5,946	5,958	5,996	5,993	6,020
METED	2,824	2,856	2,907	2,937	2,931	2,940	2,950	2,960	3,009	3,034	3,058	3,087	3,100	3,148	3,183	3,211
PECO	8,255	8,363	8,454	8,497	8,500	8,491	8,527	8,587	8,646	8,694	8,796	8,837	8,923	9,010	9,075	9,144
PENLC	2,764	2,774	2,776	2,779	2,781	2,769	2,768	2,772	2,773	2,772	2,786	2,785	2,790	2,794	2,798	2,799
PEPCO	6,288	6,333	6,353	6,387	6,415	6,404	6,384	6,407	6,426	6,471	6,512	6,525	6,529	6,560	6,581	6,631
PL	6,906	6,982	7,051	7,083	7,059	7,073	7,096	7,128	7,167	7,205	7,243	7,303	7,350	7,412	7,452	7,501
PS	9,719	9,787	9,863	9,868	9,841	9,818	9,810	9,820	9,805	9,830	9,843	9,869	9,879	9,896	9,875	9,907
RECO	388	391	393	393	392	391	391	391	391	392	392	392	393	393	393	393
UGI	180	182	183	183	182	181	181	181	182	182	183	183	184	184	185	185
AEP	22,139	22,439	22,706	22,901	22,876	23,017	23,164	23,369	23,574	23,723	23,891	24,119	24,362	24,594	24,809	24,990
APS	8,495	8,696	8,812	8,891	8,895	8,920	8,958	9,022	9,074	9,132	9,184	9,245	9,314	9,384	9,442	9,511
ATSI	12,396	12,476	12,545	12,617	12,581	12,618	12,649	12,692	12,767	12,801	12,845	12,922	12,977	13,057	13,143	13,193
COMED	21,212	21,456	21,693	21,855	21,864	21,976	22,120	22,271	22,451	22,623	22,782	22,994	23,199	23,347	23,603	23,799
DAYTON	3,229	3,276	3,317	3,344	3,330	3,341	3,359	3,385	3,416	3,435	3,456	3,482	3,514	3,550	3,577	3,600
DEOK	5,193	5,258	5,329	5,374	5,386	5,402	5,432	5,477	5,527	5,571	5,605	5,643	5,698	5,754	5,807	5,854
DLCO	2,772	2,796	2,818	2,827	2,817	2,819	2,822	2,831	2,840	2,848	2,858	2,874	2,889	2,905	2,917	2,928
EKPC	1,858	1,880	1,895	1,906	1,908	1,916	1,918	1,938	1,952	1,960	1,968	1,980	1,994	2,007	2,020	2,028
DOM	18,827	19,347	19,813	20,104	20,145	20,332	20,503	20,716	20,916	21,094	21,269	21,491	21,723	21,963	22,127	22,274
PJM RTO	152,130	154,148	155,910	156,956	156,887	157,357	157,987	158,972	159,991	160,946	161,890	162,988	164,147	165,393	166,412	167,467
PJM MID-ATLANTIC	56,009	56,524	56,982	57,137	57,085	57,016	57,062	57,271	57,474	57,759	58,032	58,238	58,477	58,832	58,967	59,290
EASTERN MID-ATLANTIC	30,384	30,681	30,947	31,010	30,939	30,886	30,910	31,010	31,084	31,201	31,333	31,431	31,560	31,720	31,755	31,891
SOUTHERN MLD-ATLANTIC	12,951	13,049	13,118	13,145	13,193	13,167	13,157	13,220	13,259	13,365	13,429	13,449	13,493	13,574	13,594	13,703

Notes:
All forec
All forecast values represent unrestricted peaks, after reductions for distributed solar generacion and prior to reductions for load management.
Load values for Zones and Locational Deliverability Areas are coincident with the PJM RTO peak.
This table will be used for the Reliability Pricing Model.
Sunmer season indicates peak from June, July, August.

Table B-11												
PJM CONTROL AREA - JANUARY 2016 SUMMER TOTAL INTERNAL DEMAND FORECAST (MW) FOR EACH NERC REGION 2016-2026												
PJM - RELIABILITY FIRST	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	Annual Growth Rate (10 yr)
TOTAL INTERNAL DEMAND	130,676	132,150	133,454	134,171	134,028	134,319	134,753	135,548	136,330	137,062	137,809	0.5\%
\% TOTAL		1.1\%	1.0\%	0.5\%	-0.1\%	0.2\%	0.3\%	0.6\%	0.6\%	0.5\%	0.5\%	
CONTRACTUALLY INTERRUPTIBLE	7,604	7,686	7,759	7,802	2,938	2,943	2,952	2,962	2,986	3,003	3,025	
DIRECT CONTROL	277	279	281	282	106	107	107	107	107	108	108	
TOTAL LOAD MANAGEMENT	7,881	7,965	8,040	8,084	3,044	3,050	3,059	3,069	3,093	3,111	3,133	
NET INTERNAL DEMAND	122,795	124,185	125,414	126,087	130,984	131,269	131,694	132,479	133,237	133,951	134,676	0.9\%
\% NET		1.1\%	1.0%	0.5\%	3.9\%	0.2\%	0.3\%	0.6\%	0.6\%	0.5\%	0.5\%	
PJM - SERC												
TOTAL INTERNAL DEMAND	21,455	21,999	22,459	22,787	22,859	23,039	23,233	23,427	23,661	23,885	24,082	1.2\%
\% TOTAL		2.5\%	2.1\%	1.5\%	0.3\%	0.8\%	0.8\%	0.8\%	1.0\%	0.9\%	0.8\%	
CONTRACTUALLY INTERRUPTIBLE	792	811	828	840	329	330	333	337	340	343	345	
DIRECT CONTROL	104	107	109	111	43	44	44	44	45	45	46	
TOTAL LOAD MANAGEMENT	896	918	937	951	372	374	377	381	385	388	391	
NET INTERNAL DEMAND	20,559	21,081	21,522	21,836	22,487	22,665	22,856	23,046	23,276	23,497	23,691	1.4\%
\% NET		2.5\%	2.1\%	1.5\%	3.0\%	0.8\%	0.8\%	0.8\%	1.0\%	0.9\%	0.8\%	
PJM RTO												
TOTAL INTERNAL DEMAND	152,131	154,149	$155,913$	$156,958$	156,887	157,358	157,986	158,975	159,991	160,947	161,891	0.6\%
\% TOTAL		1.3%	1.1%	0.7%	-0.0%	0.3\%	0.4\%	0.6\%	0.6\%	0.6\%	0.6\%	
CONTRACTUALLY INTERRUPTIBLE	8,396	8,497	8,587	8,642	3,266	3,274	3,285	3,299	3,326	3,346	3,370	
DIRECT CONTROL	381	386	390	393	150	150	151	151	152	153	154	
TOTAL LOAD MANAGEMENT	8,777	8,883	8,977	9,035	3,416	3,424	3,436	3,450	3,478	3,499	3,524	
NET INTERNAL DEMAND	143,354	145,266	$146,936$	147,923	153,471	153,934	154,550	155,525	156,513	157,448	158,367	1.0\%
\% NET		1.3\%	1.1\%	0.7\%	3.8\%	0.3\%	0.4\%	0.6\%	0.6\%	0.6\%	0.6\%	

Table B-11 (Continued)
PJM CONTROL AREA - JANUARY 2016
SUMMER TOTAL INTERNAL. DEMAND FORECAST (MW) FOR EACH NERC REGION

| SUMMER TOTAL INTERNAL DEMAND FORECAST (MW) FOR EACH NERC REGION | | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| | 2027-2031 | | | | |

$$
\begin{array}{ll}
\text { ơ } \\
\text { oे }
\end{array}
$$

$$
\stackrel{\text { だ }}{\underset{\sim}{\circ}}
$$

$$
\begin{aligned}
& \text { oे } \\
& \text { గ̀ }
\end{aligned}
$$

PJM - RELIABILITY FIRST
TOTAL INTERNAL DEMAND
\% TOTAL
CONTRACTUALLY INTERRUPTIBLE
DIRECT CONTROL
TOTAL LOAD MANAGEMENT
NET INTERNAL DEMAND
\% NET
PJM - SERC
TOTAL INTERNAL DEMAND
\% TOTAL
CONTRACTUALLY INTERRUPTIBLE
DIRECT CONTROL
TOTAL LOAD MANAGEMENT
NET INTERNAL DEMAND
\% NET
PJM RTO
TOTAL INTERNAL DEMAND
\% TOTAL
CONTRACTUALLY INTERRUPTIBLE
DIRECT CONTROL
TOTAL LOAD MANAGEMENT
NET INTERNAL DEMAND
\% NET

Table B-12 (Continued)

 23,134
1.1%

41,987
 AL DEMAND FORECA
2026/27-2030/31
PJM CONTROL AREA - JANUARY 2016
WINTER TOTAL INTERNAL DEMAND FORECAST (MW) FOR EACH NERC REGION

PJM CONTROL AREA - JANUARY 2016 WINTER TOTAL INTERNAL DEMAND FORECAST (MW) FOR EACH NERC REGION 2026/27-2030/31						
PJM - RELIABILTTY FIRST	$26 / 27$	$27 / 28$	28/29	29/30	30/31	Annual Growth Rate (15 yr)
TOTAL INTERNAL DEMAND	118,458	119,353	119,860	120,993	121,705	0.7\%
\% TOTAL	0.7\%	0.8\%	0.4\%	0.9\%	0.6\%	
CONTRACTUALLY INTERRUPTIBLE	3,039	3,054	3,078	3,104	3,130	
DIRECT CONTROL	109	109	109	110	111	
TOTAL LOAD MANAGEMENT	109	109	109	110	111	
NET INTERNAL DEMAND	118,349	119,244	119,751	120,883	121,594	0.7\%
\% NET	0.7\%	0.8\%	0.4\%	0.9\%	0.6\%	
PJM - SERC						
TOTAL INTERNAL DEMAND	23,529	23,796	24,057	24,310	24,520	1.4\%
\% TOTAL	1.1\%	1.1\%	1.1\%	1.1\%	0.9\%	
CONTRACTUALLY INTERRUPTIBLE	349	352	355	359	362	
DIRECT CONTROL	46	47	47	47	48	
TOTAL LOAD MANAGEMENT	395	399	402	406	410	
NET INTERNAL DEMAND	23,134	23,397	23,655	23,904	24,110	1.3\%
\% NET	1.1\%	1.1\%	1.1\%	1.1\%	0.3\%	
PJM RTO						
TOTAL INTERNAL DEMAND	141,987	143,149	143,917	145,303	146,225	0.8\%
\% TOTAL	0.8\%	0.8\%	0.5\%	1.0\%	0.6\%	
CONTRACTUALLY INTERRUPTIBLE	3,388	3,406	3,433	3,462	3,492	
DIRECT CONTROL	155	156	156	158	159	
TOTAL LOAD MANAGEMENT	3,543	3,562	3,589	3,620	3,651	
NET INTERNAL DEMAND	138,444	139,587	140,328	141,683	142,574	0.6\%
\% NET	0.8\%	0.8\%	0.5\%	1.0\%	0.6\%	

Table C-1
 CENTRAL MID-ATLANTIC: BGE, METED, PEPCO, PL and UGI

EXTREME WEATHER (90/10)		
FORECAST		
SPRING	SUMMER	FALL
20,493	24,995	21,534
20,709	25,237	21,747
20,908	25,258	21,935
21,009	25,563	22,036
20,957	25,628	21,936
20,981	25,625	22,023
21,077	25,620	22,097
21,174	25,761	22,189
21,284	25,887	22,315
21,288	26,134	22,432
21,502	26,260	22,491
21,643	26,388	22,696
21,810	26,487	22,849
21,961	26,463	23,012
22,064	26,812	23,143
22,157	27,079	23,282

Table C-2

،

Table C-3

EXTREME WEATHER (90/10) FORECAST		
SPRING	SUMMER	FALL
26,215	33,422	27,466
26,534	33,995	27,807
26,813	34,014	27,937
26,910	34,34	28,187
26,824	34,160	28,184
26,803	34,072	27,961
26,853	34,069	27,968
26,935	34,359	28,098
27,024	34,420	28,335
27,124	34,604	28,783
27,235	34,640	28,653
27,379	34,712	28,603
27,506	35,019	28,709
27,625	34,925	28,826
27,716	35,217	29,204
27,831	35,447	29,699

FE-EAST
PLGRP

AEP
APS
ATSI
COMED
DAYTON
DEOK
DLCO
EKPC
DIVERSTTY - WESTERN(-)
PJM WESTERN
DOM
DIVERSITY - INTERREGIONAL(-)
PMM RTO

엉

		Table D-2							
		WINTER EXTREME WEATHER (90/10) PEAK LOAD FOR EACH PJM MID-ATLANTIC ZONE AND GEOGRAPHIC REGION 2015/16-2030/31							
15/16	16/17	17/18	18/19	19/20	20/21	21/22	22/23	23/24	24/25
1,674	1,679	1,685	1,685	1,671	1,667	1,663	1,662	1,663	1,663
6,185	6,230	6,281	6,304	6,297	6,309	6,324	6,348	6,372	6,399
3,565	3,613	3,659	3,682	3,683	3,694	3,707	3,728	3,749	3,773
3,846	3,902	3,955	3,993	3,946	3,930	3,934	3,944	3,952	3,940
2,662	2,716	2,758	2,790	2,784	2,782	2,787	2,813	2,830	2,839
6,841	6,938	7,023	7,064	7,029	7,037	7,059	7,094	7,132	7,164
2,871	2,886	2,896	2,906	2,883	2,881	2,883	2,884	2,891	2,883
5,625	5,673	5,735	5,763	5,769	5,783	5,800	5,825	5,851	5,877
7,428	7,509	7,596	7,630	7,606	7,610	7,622	7,649	7,681	7,709
6,818	6,888	6,945	6,979	6,947	6,918	6,930	6,944	6,952	6,950
236	239	240	241	238	238	239	240	240	238
201	202	204	204	202	201	201	201	201	201
578	333	282	332	308	393	328	349	314	407
47,374	48,142	48,695	48,909	48,747	48,657	48,821	48,983	49,200	49,229
9,350	9,462	9,568	9,644	9,568	9,558	9,565	9,592	9,627	9,637
7,628	7,711	7,800	7,834	7,808	7,811	7,823	7,850	7,882	7,909

	かN No 융 HiN Nom No N		$\begin{aligned} & \text { J } \\ & \text { N } \\ & \text { Nै } \end{aligned}$

$$
\begin{aligned}
& \text { AER } \\
& \text { APS } \\
& \text { ATSI } \\
& \text { COMED } \\
& \text { DAYTON } \\
& \text { DEOK } \\
& \text { DLCO } \\
& \text { EKPC } \\
& \\
& \text { DIVERSITY - WESTERN(-) } \\
& \text { PJM WESTERN } \\
& \text { DOM } \\
& \\
& \text { DIVERSITY - INTERREGIONAL(-) } \\
& \text { PJM RTO }
\end{aligned}
$$

Table E-1 (Continued)

要 台 至

MDD-ATLANTIC

 EACH PJM MID-ATLANTIC ZONE AND GEOGRAPHIC REGION

a

 M以్N M N N N NN NO N N N MN (nNo我

永 	0 $\stackrel{2}{2}$	0

 	$\begin{aligned} & \text { N N N } \\ & \text { N } \end{aligned}$	
 	号 NㅓㅇNNㅇㅇN 	
NNNNNNNNNNNN		
엉 거앵ㅇㅇㅇㅇㅇㅇㅇㅇㅇ ∞ N $-\infty \infty$ 		 O人N
on in in in ó ónino	\＆	

MONTHLY NET ENERGY FORECAST (GWh) FOR

FE_EAST PLGRP

PJM Manual 19:

Load Forecasting and Analysis

Revision: 29
Effective Date: December 1, 2015

Prepared by
Resource Adequacy Planning
© PJM 2015

PJM Manual 19:

Load Forecasting and Analysis

Table of Contents
Table of Contents ii
Table of Exhibits iji
Approval 1
Current Revision 1
Introduction 2
About PJM Manuals. 2
About This Manual. 2
Using This Manual 3
What You Will Find In This Manual. 4
Section 1: Overview. 5
1.1 Overview of Load Forecasting and Analysis 5
Section 2: PJM Hourly Load Data 6
2.1 Load Data Overview 6
2.2 load Data Reporting Business Rules. 6
Section 3: PJM Load Forecast Model 9
3.1 Forecast Model Overview 9
3.2 Development of the Forecast. 9
3.3 NON-ZONE PEAK FORECAST. 13
3.4 Review of the forecast. 13
Section 4: Weather Normalization and Coincident Peaks 22
4.1 Weather Normalization Overview 22
4.2 Weather Normalization Procedure 22
4.3 Peak Load Allocation (5CP) 23
Attachment A: Load Drop Estimate Guidelines 24
load Drop Estimates for load Management Customers 24
Event Compliance for Guaranteed load Drop (GLD) Customers. 26
Load Drop Estimates for PRD Customers 27
Attachment B: Legacy Direct Load Control Load Research Guidelines 29
Attachment C: Load Forecast Adjustment Guidelines 32
Attachment D: Residential Non-Interval Metered Guidelines 35
Revision History 42

Manual 19: Load Forecasting and Analysis Table of Exhibits

Table of Exhibits

Exhibit 1: Model Variable Definitions 18
EXhibit 2: Assignment of Weather Stations to Zones 19
Exhibit 3: Assignment of Metropolitan Areas, Census Divisions and States to Zones21

Thomas A. Falin, Manager
Resource Adequacy Planning Department

Current Revision

Revision 29 (12/01/2015):

- Section 3: This extensive revision incorporates changes to the load forecast model to add variables to account for trends in appliance usage and energy efficiency, revisions in weather variables, and the introduction of an autoregressive error correction. It also adds assignment of Census Divisions to zones and updates the assignments of economic regions and weather stations to zones. Section 4: the weather normalization procedure used for coincident and non-coincident peaks has been revised. This revision serves as the required periodic review of the Manual.

Introduction

Welcome to the PJM Manual for Load Forecasting and Analysis. In this Introduction you will find the following information:

- What you can expect from the PJM Manuals in general (see "About PJM Manuals").
- What you can expect from this PJM Manual (see "About This Manual")
- How to use this manual (see "Using This Manual").

About PJM Manuals

The PJM Manuals are the instructions, rules, procedures, and guidelines established by the PJM Office of the Interconnection for the operation, planning, and accounting requirements of the PJM RTO and the PJM Energy Market. The manuals are grouped under the following categories:

- Transmission
- PJM Energy Market
- Generation and transmission interconnection
- Reserve
- Accounting and billing
- PJM administrative services
- Miscellaneous

For a complete list of all PJM Manuals, go to www.pim.com and select "Manuals" under the "Documents" pull-down menu.

About This Manual

The PJM Manual for Load Forecasting and Analysis is one of a series of manuals within the Reserve group of manuals. This manual focuses on load-related topics. This manual describes the data input requirements, the processing performed on the data, computer programs involved in processing the data, and the reports that are produced. It then describes processes used to analyze load data and produce a long-term planning forecast.

The PJM Manual for Load Forecasting and Analysis consists of four sections. These sections are listed in the table of contents beginning on page ii.

Intended Audience

The intended audiences for the PJM Manual for Load Forecasting and Analysis are:

Electric Distribution Company (EDC) planners - The EDC planners are responsible for supplying historical load data in the required format, for using coincident peaks to allocate normalized peaks, and for input data verification.

Load Serving Entity (LSE) planners - LSEs use allocated peaks and the Load Management systems to determine their capacity obligations.

PJM staff—PJM is responsible for the calculation of hourly PJM loads, normalizing PJM seasonal peaks, forecasting RTO and zonal peaks for capacity obligations, compiling the PJM Load Forecast Report, and administering Load Management. This information is used in calculating the capacity obligations.

Planning Committee members - The Planning Committee is responsible for the stakeholder review of the peak forecasts and techniques for their determination.

Reliability Assurance Agreement Signatories - The Markets Reliability Committee is involved in the review of rules, methods and parameters associated with Load Forecasting and Analysis.

References

There are several references to other documents that provide background or additional detail. The PJM Manual for Load Forecasting and Analysis does not replace any information in these reference documents. The following documents are the primary source of specific requirements and implementation details:

- Power Meter documentation
- eLRS documentation
- PJM Load Forecast Report
- PJM Manual for Emergency Operations (M-13)
- Reliability Assurance Agreement
- Behind-the-Meter Generation Business Rules (in Manual M-14D)
- Deemed Savings Estimates for Legacy Air Conditioning and Water Heating Direct Load Control Programs in PJM Region

Using This Manual

We believe that explaining concepts is just as important as presenting the procedures. This philosophy is reflected in the way we organize the material in this manual. We start each section with an overview. Then, we present details, procedures or references to procedures found in other PJM manuals. The following provides an orientation to the manual's structure.

What You Will Find In This Manual

- A table of contents that lists two levels of subheadings within each of the sections.
- An approval page that lists the required approvals and a brief outline of the current revision.
- Sections containing the specific guidelines, requirements, or procedures including PJM actions and PJM Member actions.
- Attachments that include additional supporting documents, forms, or tables in this PJM Manual.
- A section at the end detailing all previous revisions of this PJM manual.

Section 1: Overview

Welcome to the Overview section of the PJM Manual for Load Forecasting and Analysis. In this section you will find the following information:

- An overview of the Load Forecasting and Analysis (see "Overview of Load Forecasting and Analysis")

1.1 Overview of Load Forecasting and Analysis

Load Forecasting and Analysis utilizes the PJM Power Meter load data, Load Management, PJM Load Forecast Model, and Weather Normalization and Peak Allocation.

PJM Hourly Load Data - After-the-fact hourly load data are entered by EDCs and used by PJM for deriving seasonal load profiles, weather normalization factors, 1CP zonal load contributions for Network Service billing, charts contained in the PJM Load Forecast Report, and the Monthly Operations Report.

PJM Load Forecast Model - PJM staff produces an independent forecast of monthly and seasonal peak load and load management, for each PJM zone, region, the RTO, and selected combinations of zones. The PJM Load Forecast Report includes tables and charts presenting the results.

Weather Normalization and Peak Allocation - PJM uses approved techniques for weathernormalizing historical summer and winter zonal peaks, and determining RTO unrestricted coincident peaks.

Section 2: PJM Hourly Load Data

Welcome to the PJM Hourly Load Data section of the PJM Manual for Load Forecasting and Analysis. In this section you will find the following information:

- An overview of the historic hourly load data file (see "Load Data Overview")
- Guidelines for reporting load data to PJM (see "Load Data Reporting Business Rules")

2.1 Load Data Overview

Official historic hourly load data for each EDC with revenue-metered tie data reported to PJM are collected via the Power Meter application. For EDCs submitting all internal generation, Power Meter will calculate a revenue-quality load based on submitted tie and generation meter values. This ensures that all customer demand is counted once and only once, on an aggregated and dispersed basis. EDCs may accept these values as their reported hourly service territory load, with the option to input data directly through the application's user interface or via uploaded XML files. The entered data are available through Power Meter screens, postings on the PJM website, or in several reports produced by the Performance Compliance Department.
[For details on submitting data into Power Meter, refer to the information posted on the PJM Website (under "Tools Sign In", select "Power Meter.")]

Load Data Definitions

Actual Net Metered Interchange: The sum of allocated tie metered values to which the EDC is a party.

Total Internal Generation: The sum of all meter values for non-500kV generators electrically located in the EDC's zone. For PJM Western and Southern regions, 500 kV generation will be counted as part of internal generation.

Allocated Mid-Atlantic 500kV Losses: Participant's share of total PJM Mid-Atlantic 500kV losses

Calculated Load $=$ Actual Net Metered Interchange + Total Internal Generation + Allocated 500 kV Losses.

2.2 Load Data Reporting Business Rules

As established by the PJM Planning Committee, the following guidelines govern the reporting of load data into the PJM Power Meter application:

Data Reporting Responsibility: It will be the responsibility of each PJM electric distribution company (EDC) with fully-metered tie flows to report hourly load data for its metered area(s), regardless of which entity is responsible for serving end-use customers.

For all entities using network transmission service, it will be the responsibility of the signatory to the Network Integration Transmission Service Agreement to ensure that hourly load data are reported to PJM for its customers via PJM inschedules.

Curtailment Service Providers (CSPs) are responsible for providing information to estimate load management impacts as detailed in Attachment A.

Data Specifications: Load data supplied to Power Meter will reflect each entity's total impact to the system, counting all customer demand once and only once, and will therefore need to properly account for system losses and flows. PJM will adjust loads for their assigned share of Extra High Voltage losses. LSEs providing load management impact estimates will adjust loads for system losses. Data are accepted in Power Meter in 0.001 MWh increments.

Reporting Schedule: The data for each day should initially be entered within the following ten calendar days, except during peak periods, when the data must be entered daily. PJM contacts EDCs when daily reporting is needed.

Edits to load data should be made by the tenth calendar day of the following month.
PJM will adjust submitted load data, as necessary, to reflect additional load that is determined by PJM after-the-fact, resulting from third-party supply of generator station power requirements.

EDC ability to submit loads via Power Meter is subject to a reporting window that includes the current month and three previous months. For example, in April, values for April, March, February, and January can be freely edited. For updates to months older than three full months prior, the participant must have PJM make the submission on their behalf. PJM may be contacted at mrkt_settlement_ops@pjm.com to arrange for assistance.

Failure to report data to PJM in a timely and complete manner will subject responsible parties to Data Submission Charges, as outlined in Schedule 13 of the Reliability Assurance Agreement and the PJM West Reliability Assurance Agreement.

EDC/ CSP Actions:

- Enter Hourly Load Data - PJM EDCs submit aggregate hourly load values into Power Meter, as required. CSPs provide resource-specific settlements data to quantify Load Management impacts into the eLRS application. (See Attachment A).
- Edit the Data as necessary - All hourly load value changes for a given month must be entered and edited by the 10th of the following month.
- Notify PJM of All Changes - Without this notification, PJM can only determine that changes have been made but cannot readily identify specific changes which were made.

PJM Actions:

- Allocate Extra High Voltage Losses: - 500 kV losses in the PJM Mid-Atlantic region are calculated as the total 500 kV system energy injections minus withdrawals. Hourly 500 kV losses are allocated to each PJM Mid-Atlantic EDC with revenue metered tie flows reported to Power Meter, in proportion to their real-time load ratio share.
- Distribute Reports: - By the 10th of each month, PJM makes reports of load data from the previous month available to the EDCs. These data include a summary Daily Load Report for each day of the month, showing daily peak loads and the monthly energy total for each LSE and for the PJM RTO. A monthly summary report also is provided.
- Post Zonal Data: - PJM will publish zonal load data in an electronic format on a monthly basis.
- Data Usage: - PJM uses the hourly load data for operational analysis, for calculating seasonal load factors, developing weather normalization curves, for allocating the PJM weather normalized seasonal peaks, and for preparing various charts and tables in the PJM Load Forecast Report, and for reporting to regulatory and other authorities.

Section 3: PJM Load Forecast Model

Welcome to the PJM Load Forecast Model section of the PJM Manual for Load Forecasting and Analysis. In this section you will find the following information:

- An overview of the PJM Load Forecast Model (see "Forecast Model Overview").
- A description of the methodology used to produce the PJM forecast (see "Development of the Forecast").
- A description of the forecast review and approval process (see "Review and Approval the Forecast").

3.1 Forecast Model Overview

The PJM Load Forecast Model produces 15-year monthly forecasts of unrestricted peaks assuming a range of weather conditions for each PJM zone, locational deliverability area (LDA) and the RTO. The model uses trends in equipment and appliance usage, anticipated economic growth and historical weather patterns to estimate growth in peak load and energy use. It is used to set the peak loads for capacity obligations, for reliability studies, and to support the Regional Transmission Expansion Plan. Net energy forecasts are used in reporting requirements of FERC and NERC, and for market efficiency studies. The forecast is produced by P.JM and released prior to each Planning Period, typically in January.

3.2 Development of the Forecast

The PJM Load Forecast employs econometric multiple regression models to estimate daily peak load for each PJM zone (the non-coincident peak), the zone's contribution to the daily RTO peak (the coincident peak), and monthly net energy for load. Definitions of each model variable are presented in Exhibit 1. The variables included are:

Dependent Variable - Load:

Hourly metered load data are supplemented with estimated load drops (as outlined in Attachment A) to obtain unrestricted hourly loads. For the non-coincident models, the maximum value for each day is used in the regressions. For the coincident models, the zone's contribution to the daily RTO/LDA unrestricted peak load is used in the regressions. For the net energy models, the sum of each day's hourly loads is used in the regressions.

Calendar Effects:

Days of the week, month of the year, holiday, and Daylight Saving Time impacts are included in the model using binary variables. Holiday seasonal lighting load is reflected using a trend variable.

Weather Data:

Weather is included in the models using different variables for heating, cooling and shoulder seasons. Weather variables are specified as splines over defined ranges. For the heating season (December, January and February), the Winter Weather Parameter is defined as:

$$
\begin{gathered}
\text { If } W \text { IND }>10 \mathrm{mph} \\
W W P=D B-\left(0.5^{*}(W / \mathrm{ND}-10)\right) \\
\text { If } W I N D \leq 10 \mathrm{mph} \\
W W P=D B
\end{gathered}
$$

Where: WIND = Wind velocity, in miles per hour;
$W W P=$ Wind speed adjusted dry bulb temperature;
$D B=$ Dry bulb temperature (${ }^{\circ} \mathrm{F}$).

For the cooling season (May, June, July, August, and September), Temperature-Humidity Index (THI) is used as the weather variable:

$$
\begin{gathered}
\text { If } D B \geq 58, \\
T H I=O B-0.55^{*}(1-H U M) *(D B-58) \\
\text { If } D B<58, \\
T H I=D B
\end{gathered}
$$

Where: $\mathrm{TH}=$ Temperature humidity index;

$$
D B=\text { Dry bulb temperature }\left(^{\circ} F\right) ;
$$

HUM $=$ Relative Humidity (where $100 \%=1$).
For shoulder months (March, April, October and November), a combination of wind-adjusted temperature and temperature-humidity index serves as the weather variable.

Additionally, measures of heating and cooling degree days are included, using the current and previous day's weather. Weather data for each PJM zone are calculated according to the mapping presented in Exhibit 2.

Manual 19: Load Forecasting and Analysis Section 3: PJM Load Forecast Model

Economic Drivers:

Measures of economic and demographic activity are included in the forecast models, representing total U.S., state, or metropolitan areas, depending upon their predictive value. Economic drivers for states and metropolitan areas are assigned to each PJM zone according to the mapping presented in Exhibit 3. Models for each PJM zone share the same general specification.

End-Use Trends:

Measures of the stock and efficiency of various electrical equipment and appliances used in residential and commercial settings are included in the forecast models, grouped by heating, cooling, and other. End-use variables for each PJM zone are applied by Census Division, as presented in Exhibit 3. End-use variables are weighted by the Residential and Commercial sales of each zone, per FERC Form 1 filings.

Load Adjustments:

In cases where a zone has experienced or is anticipated to experience a significant load change that may not be captured in the load forecast, PJM may elect to apply a load forecast in one of two ways: 1) for identified changes that have not yet occurred, by an explicit adjustment to the modeled forecast; and 2) for changes that have already occurred, by the introduction of a binary variable into the affected zone's model specification.

In cases where the load change has not yet occurred, PJM will base any adjustment on information received from EDC load forecasters in response to PJM's annual request for details on large load changes that are known to the EDC. PJM will handle these requests on a case-by-case basis and perform (or have performed) whatever analysis is required to establish the degree of certainty and magnitude of the load change. Attachment C provides load forecast adjustment guidelines.

In cases where a zone has experienced a large, sudden shift in load (or following the use of a manual load adjustment in a prior forecast), a load adjustment dummy (binary) variable may be added to the zone's model specification. The resulting model coefficient must satisfy the following criteria:

- Be explained by an identifiable occurrence (such as the migration of load from another service territory, factory shutdown, or a price shock);
- Be statistically significant;
- Have a sign in the expected direction;
- Have a magnitude that is consistent with the expected load shift;
- Have a magnitude, relative to the zone's metered peak, large enough to make a discernible difference in the forecast; and
- Make an appreciable improvement to model fit statistics.

Non-Coincident Base and 90/10 Scenarios

For each PJM zone, a distribution of non-coincident peak (NCP) forecasts is produced using a Monte Carlo simulation process. Monte Carlo simulation is useful for simulating a phenomenon (in this case, electrical load) with significant uncertainty with regard to one or more of its driving influences (in this case, the weather conditions that will occur in the future). Using the Monte Carlo approach, load forecasts are developed for each zone using the actual weather patterns that were observed in that zone over many years. The simulation process produces a distribution of monthly forecast results by selecting the 12 monthly peak values per forecast year for each weather scenario. For each year, by weather scenario, the maximum daily NCP load for a zone over each season is found. For each zone and year, a distribution of zonal NCP by weather scenario is developed. From this distribution, the median values are used to shape the monthly profile within each season.

The median result is used as the base (50/50) forecast; the values at the 10th percentile and 90th percentile are assigned to the $90 / 10$ weather bands.

RTO and Coincident Forecasts

To obtain the RTO/LDA peak forecast, the solution for each of the zonal coincident peak (CP) models are summed by day and weather scenario to obtain the RTO/LDA peak for the day. By weather scenario, the maximum daily RTO/LDA value for the season is found. For the RTO/LDA, a distribution of the seasonal RTO/LDA peak vs. weather scenario is developed. From this distribution, the median result is used as the base (50/50) forecast; the values at the 10th percentile and 90th percentile are assigned to the $90 / 10$ weather bands.

To determine the final zonal RTO/LDA -coincident peak (CP) forecasts, a methodology similar to the process for deriving zonal NCPs is applied. By weather scenario, the maximum daily CP load for a zone over the summer season is found. For each zone a distribution of zonal CP vs. weather scenario is developed. From this distribution the median value is selected. The median zonal CPs are summed and this sum is then used to apportion the forecasted RTO/LDA peak to produce the final zonal CP forecasts.

Net Energy for Load Forecasts

For each PJM zone, a distribution of forecasts is produced using a Monte Carlo simulation process. The weather distributions are developed using observed historical weather data. The simulation process produces a distribution of monthly forecast results by summing the daily values per forecast year for each weather scenario.

Load Management, Energy Efficiency, Price Responsive Demand and Behind-theMeter Generation

PJM incorporates assumptions of load management, energy efficiency, price responsive demand and behind-the-meter generation to supplement the base, unrestricted forecast.

Manual 19: Load Forecasting and Analysis
Section 3: PJM Load Forecast Model
For Demand Resources (DR), forecasted values for each zone are computed based on the following procedure. The forecast is based on the PJM final summer season Committed DR amount, where the Committed DR means all DR that has committed through RPM, Base Residual Auction and all Incremental Auctions, or a Fixed Resource Requirement plan.

1. Compute the final amount of Committed DR for each of the most recent three Delivery Years. Express the Committed DR amount as a percentage of the zone's $50 / 50$ forecast summer peak from the January Load Forecast Report immediately preceding the respective Delivery Year.
2. Compute the most recent three year average Committed DR percentage for each zone.
3. The DR forecast for each zone shall be equal to the zone's $50 / 50$ forecast summer peak multiplied by the result from Step 2.

The impact of price responsive demand equals the amount subscribed through the RPM process. The amount subscribed for the last RPM auction year is held constant for the remainder of the forecast.
[Note: More information on behind-the-meter generation can be found in the Behind-theMeter Generation Business Rules in the PJM Manual for Generator Operational Requirements (M-14D) posted on PJM.com.]

3.3 Non-Zone Peak Forecast

For use in the Reliability Pricing Model (RPM), PJM staff develops summer peak forecasts of the recognized non-zone loads. These forecasts are produced separately from the PJM Load Forecast Model, and utilize methods appropriate for each situation. Non-zone forecasted loads are added to the associated PJM zone for RPM purposes only.

3.4 Review of the Forecast

The PJM Load Forecast is reviewed by the Load Analysis Subcommittee and the Planning Committee.

A member of the Planning Committee may submit an appeal (detailing the issue and outlining a solution) for a review of part or all of the forecast, which will be forwarded by the Chair of the Planning Committee to PJM, upon a vote of the Committee.

Calendar Data

Day of week

Variable Name	Type/	
	Formula	Description
Monday	Binary	Day of the Week
Tuesday	Binary	Day of the Week
Wednesday	Binary	Day of the Week
Thursday	Binary	Day of the Week
Friday	Binary	Day of the Week
Saturday	Binary	Day of the Week
		Holiday
MartinLutherKingDay	Fuzzy	MLK Day Holiday
PresidentsDay	Fuzzy	President's Day Holiday
GoodFriday	Binary	Good Friday Religious Holiday
MemorialDay	Fuzzy	Memorial Day Holiday
July4th	Fuzzy	Independence Day and surrounding days
LaborDay	Fuzzy	Labor Day Holiday
Thanksgiving	Binary	Thanksgiving Holiday
FridayAfterThanksgiving	Fuzzy	Friday After Thanksgiving Holiday
XMasWkB4	Fuzzy	Week Before Christmas
ChristmasEve	Fuzzy	Christmas Eve (value depends on day of week)
ChristmasDay	Binary	Christmas Day
XMasWk	Fuzzy	Week after Christmas Holiday
NewYearsEve	Fuzzy	New Years Eve(value depends on day of week)
NewYearsDay	Binary	New Years Day Holiday
XMasLights	Trend	Christmas Lights/Retail Operations Trend
		Month
January	Binary	Month of the Year
February	Binary	Month of the Year
March	Binary	Month of the Year
April	Binary	Month of the Year
May	Binary	Month of the Year
June	Binary	Month of the Year
July	Binary	Month of the Year
August	Binary	Month of the Year
September	Binary	Month of the Year
October	Binary	Month of the Year
November	Binary	Month of the Year
		Other
DLSav_EPA2005	Binary	Daylight Saving Time conversion
Notes:		
Binary - A variable which has Fuzzy - A variable which has Trend - A variable which has a otherwise the value is	lue of 1 for th ditional valu we with incre	indicated characteristic, otherwise the value is 0 . or the indicated characteristic, otherwise the value is 0 . ing then decreasing value for the indicated characteristic,

End-Use/ Weather Variables

S1_THI	If (month ≥ 5 \& month 59)
	AND MaxTHI \leq Spline2 Threshold
	THEN MaxTHI ${ }^{1}$
	ELSE 0
Cool_S2_THI	IF (month ≥ 5 \& month ≤ 9)
	AND Spline2 Threshold < MaxTHI \leq Spline3 Threshold
	THEN Cool * (MaxTHI - Spline2 Threshold)
	ELSE 0
Cool_S3_THI	IF (month ≥ 5 \& month ≤ 9)
	AND Spline3 Threshold < MaxTHI \leq Spline4 Threshold
	THEN Cool * (MaxTHI - Spline3 Threshold)
	ELSE 0
Cool_S4_THI	IF (month ≥ 5 \& month ≤ 9)
	AND MaxTHI > Spline4 Threshold
	THEN Cool * (MaxTHI - Spline4 Threshold)
	ELSE 0
```Cool = (Residential Equipment Index * (R/(R+C)) * (Commercial Equipment Index * (C/(R+C))```	
$\mathrm{R}=$ Residential sector electricity sales	
	$\mathrm{C}=$ Commercial sector electricity sales
Residential Equipment Index $=\sum_{u=1-n, y=1998-y r}$ (Saturation ${ }_{u, y} /$ Efficiency $\left.y_{u, y}\right) /$	
Commercial Equipment Index $=\sum_{u=1-n, y=1998-y r}$ (Saturation ${ }_{u, y} /$ Efficiency $_{u, y}$ )/	
$Y=\text { year }$	

[^5]| Heat_S1_WWP | IF (month $\leq 2$ or month $=12)$ |
| :--- | :--- |
|  | AND WWP_HR19 $\geq$ Spline2 2 Threshold |
|  | THEN Heat * WWP_HR19 |

## End-Use/Economic/Weather Data

Variable Name

Formula
Cool*DailyEconIndex*CDD

Description
Cooling equipment index interacted with degree days and economic index

[^6]Cool_IN2_LAG1CDD Cool *DailyEconIndex *CDD_LAG ${ }^{3}$ Interacted with lagged degree days and economic index equipment index
Heat_IN2_HDD
Heat_IN2_LAG1 Heat *DailyEconIndex *HDD Heating equipment index interacted with
degree days and economic index

## End-Use/Economic Data

Other_IN2 Other * DailyEconIndex Other equipment index interacted with
economic index
Other $=\left(\right.$ Residential Equipment Index * $(R /(R+C))^{*}($ Commercial Equipment Index *
$(C /(R+C))$

[^7]
## Economic Data

Variable Name

DailyEconIndex

## Description

Economic index quarterly values converted to daily

```
EconIndex \(=\) ResWt \(x\left(H H_{y}, m / H H_{b a s e}\right)^{0.47} \times\left(\right.\) Pop \(_{y, m} /\) Popbase \() .{ }^{0.26} \times(\text { PIncy }, m / \text { PIncbase })^{0.27}\)
 + ComWt \(x\) (NMEmpy,\(m /\) NMEmpbase \()^{0.47} x\) (GDPy,m/GDPbase) \({ }^{0.20} x\) (GMPy
 \({ }_{, m} /\) GMP \(_{\text {base }}\)).\(^{0.16} x\) (Popy, \(m /\) Popbase) \({ }^{0.17}\)
 + IndWt \(x\) (GDP \(y, m / G D P_{\text {base }}\)). \(\left.{ }^{0.47} \times\left(G M P_{y, m} / G M P_{\text {base }}\right)\right)^{0.53}\)
```

Where: ResWt is the residential sector sales percentage to total zonal electric sales in year (y);
HH is the number of households in year $(\mathrm{y})$ and month ( m );
Pop is the population in year ( y ) and month ( m );
Plnc is the value of total real personal income in year ( y ) and month ( m );
ComWt is the commercial sector sales percentage to total zonal electric sales in year (y);
NMEmp is the number of non-manufacturing employees in the metro area(s) in year ( y ) and month ( m );
GDP is the value of total real gross domestic product in the United States in year (y) and month ( m );
GMP is the value of total real gross metropolitan product in the metro area(s) in year (y) and month
(m);

IndWt is industrial sector sales percentage to total zonal electric sales in year (y);
And base indexes the base year.

## Load Adjustment

Exhibit 1: Model Variable Definitions

	Weather		Weight
Zone	Station	Airport Name	1
AE	ACY	Atlantic City International	0.151
AEP	CAK	Akron-Canton Regional Airport	0.234
AEP	CMH	Columbus Port Columbus International	0.226
AEP	CRW	Charleston Yeager Airport	0.227
AEP	FWA	Fort Wayne International Airport	0.162
AEP	ROA	Roanoke Regional Airport	0.3
APS	IAD	Washington Dulles	0.7
APS	PIT	Pittsburgh International	0.465
ATSI	CAK	Akron-Canton Regional Airport	0.3
ATSI	CLE	Cleveland Hopkins Airport	0.15
ATSI	TOL	Toledo Express Airport	0.085
ATSI	PIT	Pittsburgh International Airport	1
BGE	BWI	Baltimore Washington International	1
COMED	ORD	Chicago O'Hare International	1
DAY	DAY	Cox-Dayton International	1
DEOK	CVG	Cincinnati Northern KY Airport	1
DLCO	PIT	Pittsburgh International	1
DOM	IAD	Washington Dulles	0.3333
DOM	ORF	Norfolk International	0.3333
DOM	RIC	Richmond International	0.3334
DPL	ILG	Wilmington New Castle County Airport	0.7
DPL	WAL	Wallops Island Flight Center	0.3
EKPC	CVG	Cincinnati Northern KY Airport	0.25
EKPC	LEX	Blue Grass Airport	0.49
EKPC	SDF	Louisville International Airport	0.26
JCPL	EWR	Newark International	0.75
JCPL	ACY	Atlantic City International	0.25
METED	PHL	Philadelphia International	0.5
METED	ABE	Allentown Lehigh Valley International	0.5
PECO	PHL	Philadelphia International	1
PENLC	ERI	Erie International	0.5
PENLC	IPT	Williamsport Regional	0.5
PEPCO	DCA	Washington Reagan National	1
PL	ABE	Allentown Lehigh Valley International	0.25
PL	AVP	Wilkes-Barre Scranton International	0.25
PL	IPT	Williamsport Regional	0.25
PL	MDT	Harrisburg International	0.25
PS	EWR	Newark International	1
RECO	EWR	Newark International	1
UGI	AVP	Wilkes-Barre Scranton International	1
			1

Exhibit 2: Assignment of Weather Stations to Zones

Zone	State(s)	Metro Area Name(s)	Census Division
AE	NJ	Atlantic City-Hammonton NJ , Ocean City NJ , VinelandBridgeton NJ	Middle Atlantic
		Elkhart-Goshen IN, Fort Wayne IN, Muncie IN, South Bend-Mishawaka IN-MI, Niles-Benton Harbor MI,	East North Central
AEP	OH, WV.   VA, IN	Canton-Massillon OH , Columbus OH , Lima OH , Kingsport-Bristol TN, Blacksburg-ChristiansburgRadford, VA, Lynchburg VA, Roanoke VA, Beckley, WV, Charleston WV, Huntington-Ashland WV-KY-OH, Weirton-Steubenville WV -OH	
APS	$\mathrm{PA}, \mathrm{OH},$   WV	Cumberland MD-WV, Hagerstown-Martinsburg MDWV, Chambersburg-Waynesboro PA, State College PA, Winchester VA-WV, Morgantown WV, Parkersburg-Vienna WV	South Atlantic
ATSI	$\mathrm{PA}, \mathrm{OH}$	Akron OH , Cleveland-Elyria OH , Mansfield OH , Springfield OH , Toledo OH , Youngstown-WarrenBoardman OH-PA, Pittsburgh PA	East North Central
BGE	MD	Baltimore-Columbia-Towson MD	South Atiantic
COMED	IL	Chicago-Naperville-Arlington Heights IL, Elgin IL, Kankakee IL, Lake County-Kenosha County IL-WI, Rockford IL	East North Central
DAY	OH	Dayton OH	East North Central
DEOK	OH	Cincinnati OH-KY-IN	East North Central
DLCO	PA	Pittsburgh PA	Middle Atlantic
DOM	VA	Charlottesville VA, Harrisonburg VA, Richmond VA, Roanoke VA, Staunton-Waynesboro VA, Virginia Beach-Norfolk-Newport News VA,	South Atlantic
DPL	DE	Dover DE, Wilmington DE-MD-NJ, Salisbury MD-DE	South Atlantic
EKPC	KY	Cincinnati OH-KY-IN, Louisville/Jefferson County KYIN, Elizabethtown-Fort Knox KY, Bowling Green KY, Lexington-Fayette KY, Huntington-Ashland WV-KY-OH	East South Central
JCPL	NJ	Camden NJ , Newark NJ J-PA, Trenton NJ	Middle Atlantic
METED	PA	Allentown-Bethlehem-Easton PA-NJ, East Stroudsburg PA, Gettysburg PA, Lebanon PA, Reading PA, YorkHanover PA,	Middie Atlantic
PECO	PA	Montgomery County-Bucks County-Chester County PA, Philadelphia PA	Middle Atlantic
PENLC	PA	Altoona PA, Erie PA, Johnstown PA	Middle Atlantic
PEPCO	MD	Washington D.C., California-Lexington Park MD	South Atlantic
PL	PA	Allentown-Bethlehem-Easton PA, Bloomsburg-Berwick PA, East Stroudsburg PA, Harrisburg-Carlisle PA, Lancaster PA, Scranton-Wilkes-Barre-Hazleton PA, Williamsport PA	Middle Atlantic
PS	NJ	Camden NJ , Newark NJ -PA, Trenton NJ	Middle Atlantic

Manual 19: Load Forecasting and Analysis Section 3: PJM Load Forecast Model

RECO	NJ	Newark NJ-PA	Middle Atlantic
UGI	PA	Scranton-Wikes-Barre-Hazleton PA	Middle Atlantic
	Exhibit 3: Assignment of Metropolitan Areas, Census Divisions and States to Zones		

## Section 4: Weather Normalization and Coincident Peaks

Welcome to the Weather Normalization and Coincident Peaks section of the PJM Manual for Load Forecasting and Analysis. In this section you will find the following information:

- An overview of the weather normalization process (see "Weather Normalization Overview").
- A description of the weather normalization procedure (see "Weather Normalization Procedure").
- A description of the identification and calculation of PJM unrestricted coincident peaks (see "Peak Load Allocation (5CP)").


### 4.1 Weather Normalization Overview

PJM performs load studies on summer and winter loads, for both coincident and noncoincident peaks, according to the procedures described below. The weather normalized (W/N) coincident peaks are used by EDCs to determine capacity peak load shares for wholesale and retail customers. W/N non-coincident peaks are provided by PJM for use by stakeholders in reviewing the PJM load forecast.

### 4.2 Weather Normalization Procedure

For non-coincident weather-normalized seasonal peaks, daily zonal peak loads on nonholiday weekdays for a three-year period (the study year and two prior years) are regressed against a seasonal weather variable. The seasonal weather variables are those used in the load forecast model (as described in Section 3.2). Regressions only include days in the heating/cooling range (summer > 74 WTHI , winter < 45 WWP ). A binary adjustment is applied for each of the two earlier years, to allow for load growth. The resulting regression equation is solved at each zone's weather standard, which is the average of the extreme seasonal weather variable values on non-holiday weekdays for a period consistent with the load forecast.

To determine coincident zonal weather-normalized seasonal peaks, the results of the noncoincident process described above are adjusted by each zone's average annual diversity to the PJM RTO seasonal peak over available history. The zonal values are summed to determine the PJM RTO seasonal weather-normalized peak.

## EDC/ CSP Actions:

- Enter hourly load data into Power Meter as described in Section 2 of this manual.
- Provide resource-specific settlements data to quantify Load Management impacts into the eLRS application
- Submit voltage reduction and loss of Load Drop Estimates as described in Attachment A of this manual.
- Participate in review of seasonal load studies, through the Load Analysis Subcommittee.


## PJM Actions:

- Obtain weather observations
- Produce voltage reduction load drop estimates, as described in Attachment $A$ of this manual.
- Weather-normalize the zonal RTO-coincident winter and summer peak loads.


### 4.3 Peak Load Allocation (5CP)

Zonal weather-normalized RTO-coincident summer peak loads are allocated to the wholesale and retail customers in the zones using EDC-specific methodologies that typically employ the customer's shares of RTO actual peaks. The resulting Peak Load Contributions are then used in the determination of capacity obligations.

PJM establishes and publishes information, referred to as the 5CP, to aid EDCs in the calculation of Peak Load Contributions (also known as "tickets"). For each summer:

- Hourly metered load and load drop estimate data are gathered for the period June 1 through September 30
- RTO unrestricted loads are created by adding load drop estimates to metered load
- From the unrestricted values, the five highest non-holiday weekday RTO unrestricted daily peaks (5CP) are identified

5CP data are typically released in mid-October.

## Attachment A: Load Drop Estimate Guidelines

## General

Load Drop Estimates (also referred to as addbacks) are produced for three types of occurrences:

1. Curtailment of load for customers registered in the PJM emergency or preemergency program either as a Load Management resource (Demand Resource) or an Emergency - Energy Only resource, or customers registered to meet a Price Responsive Demand (PRD) commitment for either the Reliability Pricing Model (RPM) or the FRR Alternative.
2. Voltage Reductions implemented by PJM or an EDC
3. Significant losses of load.

PJM is responsible for producing Load Management/Emergency/Pre-Emergency load drop estimates, from CSP and EDC input into the appropriate PJM system. EDCs are responsible for reporting the estimated impact of voltage reductions (optional) or significant losses of load on their systems.

PJM is responsible for producing PRD load drop estimates, from PRD Provider input into the appropriate PJM system. For purposes of 5CP identification, PRD Providers that registered price responsive demand to satisfy a PRD commitment for either RPM or FRR Alternative must provide PJM with meter data for a set of high load days to be identified by PJM by the end of each September. Meter data is entered at the site level; load drop estimates will be calculated at the registration level. Load drop estimates will only be applied for Maximum Emergency Generation hours as well as for any 5CP hours when there was no Maximum Emergency Generation event.

Load drop estimates are used to construct unrestricted loads used in the PJM Load Forecast Model, weather normalization of PJM seasonal peaks, and to calculate the unrestricted Peak Load Contributions used in formulating capacity obligations.

These rules also apply to Non-Retail Behind-the-Meter Generation as provided in Section G of Schedule 6 to the Reliability Assurance Agreement.

## Load Drop Estimates for Load Management Customers

The table below summarizes the requirements for producing load drop estimates for customers registered as a Demand Resource, or in the Emergency- Energy Only option, or as Economic load response, depending upon the cause of the load curtailment. Following the table are descriptions of the methods used by PJM to calculate load drop estimates for each load management type (Legacy Direct Load Control, Firm Service Level, and Guaranteed Load Drop).

Manual 19: Load Data System Attachment A: Load Drop Estimate Guidelines

## Requirements for Production of Load Drop Estimates

$\left.\begin{array}{|l|l|l|l|l|}\hline \begin{array}{l}\text { Reason } \\ \text { for } \\ \text { Load } \\ \text { Drop }\end{array} & & \begin{array}{l}\text { PJM-Initiated } \\ \text { Emergency or } \\ \text { Pre-Emergency or } \\ \text { CSP-Initiated Test }\end{array} & \text { Economic } & \begin{array}{l}\text { EDC- or } \\ \text { CSP-Initiated }\end{array} \\ \hline & \begin{array}{l}\text { Emergency/Pre } \\ \text {-Emergency } \\ \text { Full (DR) or } \\ \text { Emergency/Pre }\end{array} & \begin{array}{l}\text { Load Drop Estimates } \\ \text { must be produced for } \\ \text { any interruptions } \\ \text { from June 1 through } \\ \text { September 30. }\end{array} & \begin{array}{l}\text { Load Drop Estimates } \\ \text { must be produced for } \\ \text { any settled } \\ \text { interruptions from } \\ \text { June 1 through } \\ \text { September 30. } \\ \text { Emergency } \\ \text { Capacity Only } \\ \text { (DR) }\end{array} & \begin{array}{l}\text { No Load Drop } \\ \text { Estimates }\end{array} \\ \text { required. }\end{array}\right]$

Actual Emergency and Pre-Emergency Load Response and Economic Load Response load reductions for Load Management resources registered as Emergency Full or Emergency Capacity Only resources which occur from June 1 through September 30, will be added back for the purpose of calculating peak load for capacity for the following Delivery Year and consistent with the load response recognized for capacity compliance as set forth in the Manual.

## Non-Interval Metered Customers Including Legacy Direct Load Control

Prior to June 1, 2016: the nominated quantity (MW) of Load Management provided by noninterval metered customers * Loss Factor will be the estimated load drop added back to the zone for a load management emergency, pre-emergency or test event. If the resource participates as an economic resource, then the hourly MW settled under the economic program will be used for the load drop that is added back to the zone. Non-interval metered customers may not participate in Load Management under Legacy Direct Load Control (LDLC) after May 31, 2016

## Contractually Interruptible

The estimated load drop for Firm Service Level and Guaranteed Load Drop customers is calculated as follows unless it is for DR Capacity Performance, Base or Economic resource for non-summer period (October 1 through May 31 of following year). Non-summer capacity performance will be determined for such resources and time period based on the economic CBL as described in Manual 11, section 10.:

For Guaranteed Load Drop end-use customers, the lesser of (a) comparison load used to best represent what the load would have been if PJM did not declare a Load Management event or the CSP did not initiate a test as outlined in the PJM Manuals, minus the metered load ("Load") and then multiplied by the loss factor ("LF") or (b) the current Delivery Year peak load contribution ("PLC") minus the metered load multiplied by the loss factor ("LF"). A load reduction will only be recognized for capacity compliance if the metered load multiplied by the loss factor is less than the current Delivery Year peak load contribution. The calculation is represented by:

Minimum of $\{($ comparison load - Load) * LF, PLC - (Load * LF) $\}$
For Firm Service Level end-use customers the current Delivery Year peak load contribution ("PLC") minus the metered load ("Load") multiplied by the loss factor ("LF"). The calculation is represented by:

PLC-(Load * LF)
Note: When Generation interval meter data is provided to determine test or event compliance, and interval metering on load is available, the interval metered load data should be provided to ensure load drop is below the PLC. It is expected that interval load data will be available for all customers that have a PLC >0.5 MW. If no interval meter load data exists, such Generation interval meter data multiplied by loss factor will be used as the estimated load drop.

## Event Compliance for Guaranteed Load Drop (GLD) Customers

For purposes of determining compliance with a PJM-initiated Load Management event or test for Guaranteed Load Drop customers, several options are available to estimate comparison loads. The method used should result in the best possible estimate of what load level would have occurred in the absence of an emergency, pre-emergency or test event.

The CSP will be responsible for supplying all necessary load data to PJM in order to calculate the load reduction for each registered end use customer. PJM will calculate the load drop amount unless otherwise indicated below or approved by PJM. The amount of load data required will depend on the GLD method selected where the minimum amount shall be 24 hours for one full calendar day.

Comparable Day: The customer's actual hourly loads on one of the prior 10 calendar days before the test or emergency or pre-emergency event day selected by the CSP which best represents what the load level would have been absent the emergency or pre-emergency or test event. The CSP may request use of an alternative day for extenuating circumstances with supporting documentation that clarifies why the alternative day should be utilized. PJM must approve the use of any alternative day. CSP must provide usage data for all 10 days such that PJM may validate an appropriate day was selected.

Same Day (Before/After Event): The customer's average hourly integrated consumption for two full hours prior to notification of an emergency or pre-emergency event or prior to one full hour before a test and for two full hours after skipping first full hour after the event or test. This option is appropriate for high load factor customers with no weather sensitivity.

Customer Baseline: The Customer's estimated baseline used to calculate load drops for PJM economic demand resources as defined on the applicable PJM economic registration.

Regression Analysis: The customer's estimated hourly loads from a regression analysis of the customer's actual loads versus weather. This option is appropriate for customers with significant weather sensitivity. The CSP will perform the regression analysis and provide results including supporting information to PJM. The information should include all load and weather data and associated regression statistics used to estimate the load impact on the event or test day.

Generation: The hourly integrated output from a generator used to provide Guaranteed Load Drop. This method may only be utilized if the generation would not have otherwise been deployed on the emergency or pre-emergency event or test day and must comply with the provisions contained in the PJM Manuals.

## Load Drop Estimates for PRD Customers

Load Drop Estimates are applicable to price responsive demand registrations that are used to satisfy a PRD commitment for either RPM or FRR Alternative. Load Drop Estimates are not applicable to Energy Only PRD registrations.

For Maximum Emergency Generation hour or a 5CP hour without Maximum Emergency Generation:

Load Drop Estimate $=$ Customer Expected Peak Load - (Metered Load * EDC Loss Factor)

Where: Expected Peak Load = PLC * Final Zonal Peak Load Forecastoy/ Zonal Weather Normalized Peak ${ }_{D Y-1}$;

PLC $=$ Peak Load Contribution for the registration;
DY = Delivery Year

## Missing Data

If an end use customer meter malfunctions during a Load Management test, retest or emergency or pre-emergency event and the end use customer performed the required load reduction activity and no interval meter data is available to use for purposes of measuring capacity compliance or to determine applicable energy settlements, then PJM may allow CSP one of the following two remedies, otherwise the end use customer will be considered to have taken no load reduction actions during such period:

1. CSP may provide supporting information to quantify the load reduction amount which includes an engineering analysis or meter data from a comparable site that reduced load based on the same actions during a comparable time, or;
2. CSP may perform a separate test for the end use customer(s) to quantify the load reduction that will be used for the test, retest or event time period compliance and, as appropriate, energy settlement(s). The test will need to be performed at comparable time and conditions to when the test, retest or emergency or preemergency event occurred.

Remedies will only be considered if the CSP and associated metering entity followed Good Utility Practice as outlined in the OATT, no interval load data is available from the EDC, and the CSP can provide supporting information, such as building automation system logs, to verify the load reduction action was taken during the test, or retest or emergency or preemergency event when the meter malfunctioned. CSP must also provide evidence that the meter did malfunction.

PJM must approve any remedy and CSP must meet appropriate load data submission deadline.

## Voltage Reduction

Whenever a part of the PJM system experiences a voltage reduction, whether it is PJM- or locally initiated, the distribution companies involved are to estimate its impact on hourly load levels. The estimated impact of a $5 \%$ voltage reduction will be $1.7 \%$ of the load in the affected area at the time of the voltage reduction. Variances from this guideline are acceptable in cases where a thorough analysis was performed. In such cases, a written explanation of the estimate must accompany the reported values.

## Loss of Load

Whenever a part of the PJM system experiences a loss of load event (beyond the level of nominal localized outages), the Distribution Company involved is to estimate its impact on hourly load levels. The method used to estimate the impact of the loss of load event will vary by the circumstances involved, but the outcome of the estimation should represent the best approximation of the actual hourly loads that would have occurred if the loss of load event had not occurred. A written explanation of the loss of load event and how its impact was estimated is to accompany the report.

# Attachment B: Legacy Direct Load Control Load Research Guidelines 

These guidelines are in effect prior to June 1, 2016 only.
The intention of these guidelines is to ensure that the estimated per-participant impacts of Legacy Direct Load Control program reliably represent the amount of load shed, on average, for active program participants.

Curtailment Service Providers with Legacy Direct Load Control programs which employ a radio signal may elect to either submit a load research study supporting base per-participant impacts for their program, or utilize the base per-participant impacts contained in the "Deemed Savings Estimates for Legacy Air Conditioning and Water Heating Direct Load Control Programs in PJM Region" report
(http://www.pjm.com/~/media/documents/reports/20070406-deemed-savings-report-acheat. ashx). Providers utilizing other technology must submit a load research study. All Providers must submit switch operability studies once every five years.

## Requirements for Provider-Submitted Studies

## Study Design

DLC load research base per-participant impact studies will be designed to achieve a minimum accuracy of $90 \%$ Confidence with $20 \%$ error.

## Study Detail

Load research studies submitted must present estimated per-participant impacts in a matrix which details average impacts on non-holiday weekdays by hour, for the hours ending 13:00 through 20:00 (PJM Eastern Region) or 8:00 through 21:00 (PJM Western Region), and by weather condition (over a range of local conditions under which it can reasonably be expected that the program will be implemented). Separate matrices must be estimated:

By program (and/or cycling scheme);
By PJM zone.

## Switch Operability Rate

In addition to base per-participant impacts, studies submitted to PJM must also include the average switch operability rate, reflecting the percentage of aff active switches which both receive the control signal and operate. The switch operability rate must be supplied with the original base impact study, and then updated every five years. Any Provider with a switch operability study older than five years will be given a switch operability rate of $50 \%$. See below for full requirements for switch operability studies.

## Utilizing the Deemed Savings Estimates

[Note: The "Deemed Savings Estimates" study report is available on the PJM.com website.]

## Eligibility

Load Management Providers with Legacy Direct Load Control programs which employ a radio signal may elect to utilize the base per-participant impacts contained in the "Deemed Savings Estimates for Legacy Air Conditioning and Water Heating Direct Load Control Programs in PJM Region" report.

## Base Impact Value

Base impacts for air conditioning programs will be established utilizing the aggregate values detailed in Appendix F of the Deemed Savings Estimates report. The Provider must supply the applicable duty cycle strategy (percentage of each hour the unit is interrupted) and an appropriate weather station or mix of weather stations. PJM will determine the WTHI standard value from average historical peak load weather conditions (coincident with the RTO peak). The Provider may opt to customize the base impact by supplying a research study which stratifies its program by A/C usage or connected A/C load. In this case, base impacts will be drawn from the aggregate results presented in Appendix G or H , as appropriate.

Base impacts for water heating programs will be established utilizing the aggregate values detailed in Appendix J. The Provider must supply an appropriate weather station or mix of weather stations. PJM will determine the WTHI standard value from average historical peak load weather conditions (coincident with the RTO peak)

EDCs with base impacts presented in the Deemed Savings report (BGE, JCPL, and PSEG) may elect to use those impacts.

## Switch Operability Rate

1. A random sample of customers must be selected to test. The sample must meet the following requirements:
a. The study must be designed for a minimum accuracy of $90 \%$ confidence, $10 \%$ error.
b. The sample must be randomly selected from the entire population of customers who will be counted for load reduction. No customers can be excluded and there can be no restrictions (e.g. only selecting customers within certain zip codes, only selecting customers with certain meters, only selecting customers that have enrolled in the last 12 months, etc.).
c. The sample must be stratified by equipment type if using multiple types of equipment to receive the signal and control the device.
d. The sample may be stratified by program segmentation (e.g. cycling level).
2. The following must be tested/verified at each customer in the sample:
a. The switching device needs to be properly installed, wired, etc.
b. A signal needs to be sent to the device to cycle it. Verification that the device receives this signal must be obtained. The signal must be sent in the same manner it would be sent during an event (i.e. over a public paging system, not from a local handheld device).
c. If the test in (2.b) does not provide verification of switch operation (i.e., it only tests signal reception), a technician must verify that the switch cycles the unit when the signal is received. This signal does not need to be sent in the same manner as it would during the event - it can be sent from a local handheld device.
d. If (2.a), (2.b) and (2.c) do not determine that the unit can properly receive the signal and control the device, the device is counted as inoperable. A technician may fix inoperable switches, however the device must still be counted as inoperable for the study.
3. Any Provider with a switch operability study older than five years will be given a switch operability rate of $50 \%$

## Attachment C: Load Forecast Adjustment Guidelines

The intention of these guidelines is to ensure that any adjustments made to PJM's load forecast model are properly identified, estimated, and reviewed prior to incorporation into the forecast.

## Issue Identification

- PJM annually solicits information from its member Electric Distribution Companies (EDC) for large load shifts (either positive or negative) which are known to the EDC but may be unknown to PJM. PJM will send the request in mid-July with responses expected in time for any proposed adjustments to be reviewed with the Load Analysis Subcommittee in October/November.
- Any other load changes which are brought to PJM's attention.


## Issue Verification - verify that identified issue is real and significant, using the following methods:

- Determine if the load change has been publically acknowledged through the media, press release, regulatory process, etc.
- Verify that requesting EDC has adjusted its own financial/planning forecast
- Ascertain that the load shift is related to a single site or a limited number of related sites (not a systemic cause)
- Discuss with economic forecast vendor(s) whether or not the load shift is reflected in its/their economic forecast(s). Also, determine if the requested load adjustment's load impact is consistent with its economic impact. Additionally, determine if the requested load adjustment is tied to any of the metro areas that PJM uses to define the economic variable of a zone.
- Verify that any behind-the-meter generation adjustment has complied with PJM's behind-the-meter process
- Determine adjustment's significance, either by sheer magnitude or percentage of a zone's load.


## Adjustment Estimation- for each identified and verified issue, estimate its impact on peak load using the following methods (which may be combined):

- Acquire load history for the load that has/will change and produce analysis to isolate the impact (e.g., forecast runs with and without the load involved, trend analysis)
- Acquire any contracted amounts of load changes
- For any after-the-fact adjustments, review the zone's forecast model's residual pattern
- Review any available independent analysis of the impact of the load change.


## Adjustment Review - Each proposed load forecast adjustment will be reviewed with the Load Analysis Subcommittee prior to inclusion in the load forecast. The final decision on any load adjustment is made by PJM.

## Example 1: Loss of a Single Industrial Load

Issue Identification - in response to PJM's annual solicitation for information regarding large load shifts, a member EDC notified PJM that it was losing a large industrial load, which was a plant scheduled to shut down in a few months (and prior to the release of the next load forecast)

Issue Verification - PJM reviewed the EDC's request and through conference calls, e-mail exchanges, an EDC-provided case statement, and PJM independent investigation it was determined that:

- The plant closing was widely reported in local media as well as by a press release from the end-use customer;
- The EDC had adjusted its own financial and planning forecasts to reflect a closure at the plant;
- The affected load was confined to one site/customer account.
- The customer's peak load was approximately 500 MW.

Additionally, PJM consulted with its economic forecast supplier and determined that the forecasts of metropolitan areas within the affected zone were not adjusted to reflect the plant closure. Based on these findings, PJM concluded that the load shift was factual and material.

Adjustment Estimation - PJM requested and received historical load data for the end-use customer. An attempt was made to separately model the zone's peak load without the customer's load in order to draw a comparison to the forecast of the zone's full load. While the model produced a reasonable result for the first forecast year ( -370 MW ), the difference quickly shrank and eventually became negative. As an alternative, the average daily peak over the model's estimation was computed. This value ( -369 MW ) was essentially equal to the difference between the two models in the first forecast years. PJM notified the EDC and members that the zone's load forecast would be lowered by 370MW.

## Example 2: Accelerating Load

Issue Identification - A member EDC proactively notified PJM that it was in the early stages of preparing to integrate a large amount of accelerating load associated with one industry through 2023 and requested a face-to-face meeting to discuss the issue.

Issue Verification - PJM met with the EDC and through follow-up conference calls, e-mail exchanges and PJM independent investigation it was determined that:

- The load in question was associated with greenfield construction and was confined to a cluster of sites in one small area of the zone.

Manual 19: Load Forecasting and Analysis Attachment C: Load Forecast Adjustment Guidelines

- The EDC had adjusted its own financial and planning forecasts to reflect the increased load;
- The new load sites have the characteristic of an extremely low number of employees per site, and therefore have a peak load impact out of proportion to their economic impact.
- Expected growth in the next three years was already underway and contracts with the EDC, construction companies, and suppliers were in place.

PJM consulted with its economic forecast supplier to verify the claim that the new load would involve very little employment increases or other economic impact and that the forecasts of metropolitan areas within the affected zone were not adjusted to reflect the activity associated with expected construction and on-going business. Based on these findings, PJM concluded that the matter merited further review.

Adjustment Estimation - The requesting EDC provided PJM with a third-party consultant's report analyzing the expected load expansion. The report detailed how the electric load in the industry had expanded within the EDC zone and how the consultants had extrapolated that growth to estimate the amount of peak load already incorporated into the PJM load forecast. Separately, a set of four forecast scenarios were generated to estimate the total industry load in the zone's subarea, representing 1) continuation of the historical trend established in the area; 2) continuation of growth at a reduction of $15 \%$ from the historical trend established in the area; 3) continuation of growth at the average industry expectation; and 4) continuation of growth at a $45 \%$ reduction in historical trends. The estimated amount of peak load already contained in the PJM forecast was netted from each scenario forecast to derive the amount of load growth not captured in the PJM forecast.

PJM was given access to the consultants who prepared the report, and through phone and e-mail reviewed the report and supplied questions to the consultants. PJM requested and received the detailed data used to generate the report's analysis and replicated it. PJM staff then reviewed the report and forecasts with PJM management. It was decided that the scenario based on the $15 \%$ reduction from the historical trend was most likely and it was used as adjustments to the PJM forecast.

## Attachment D: Residential Non-Interval Metered Guidelines

## Statistical sampling for residential customers:

Residential customers without interval metering may participate in the Synchronized Reserve, Capacity, and Energy markets using a statistical sample extrapolated to the population to determine compliance and energy settlements. The sample data must be from the same time interval as the event being settled.

## Qualifications:

A registration may participate using statistical sampling to determine compliance and energy settlements under the following conditions, and subject to PJM approval:

- The registration consists entirely of residential customers.
- Locations can be sampled to accurately reflect the population load data.
- Curtailment at each location uses Direct Load Control Technology.
- Synchronized Reserve: Locations otherwise qualify for participation in the Synchronized Reserve Market. Locations do not have meters that record load data at a period of 1 minute or shorter.
- Economic Energy: Locations otherwise qualify for participation in the Economic Energy Markets. Locations do not have meters that record load data at a period of 1 hour or shorter.
- Load Management: Locations otherwise qualify for Load Management. Locations do not have meters that record load data at a period of 1 hour or shorter.


## Sample Design:

Samples must be designed to achieve a maximum error of $10 \%$ at $90 \%$ confidence. The locations in the sample must be randomly selected from all the locations in the population group (a population group is a group of registrations that can share a sample based on the criteria listed below). The sample must be stratified by control device size (minimum of 2 strata) and geographic location, unless otherwise approved by PJM.

For Load Management registrations that participate in the energy market, a sample is required for each combination of EDC, CSP, end-use device (such as air conditioner or water heater) or device grouping, curtailment algorithm and switch vintage if there is substantial variation among installed switch capability.

For economic registrations that participate in the Energy Markets, a sample is required for each combination of dispatch group or registration, end-use device or device grouping, curtailment algorithm, and switch vintage if switch capability is substantially different.

Manual 19: Load Forecasting and Analysis
Attachment D: Residential Non-Interval Metered Guidelines
For economic registrations that participate in the Synchronized Reserve market, a sample is required for each combination of SR subzone, dispatch group or registration, end-use device or device grouping, curtailment algorithm, and switch vintage if switch capability is substantially different.

## Sample Size Determination:

A variance study is used to determine the initial sample size. Interval data must be collected from at least 75 randomly selected and stratified customers during the season the end use device is in use in order to determine the variance of the load data for the sample. Synchronized Reserves: At least 2 weeks of continuous meter data collected at a period of 1 minute or smaller.

Load Management and Economic Energy: At least 4 weeks of continuous meter data collected at a period of 1 hour or smaller.

The number of locations in the sample is then calculated as follows, unless otherwise approved by PJM:
$n=$ number of sampled customers in variance study, $\geq 75$
$X_{i, t}=$ meter reading for customer $i$ during interval $t$

Calculate the mean and variance of the meter data across all customers for each interval:

$$
\begin{aligned}
& \operatorname{Mean}\left(X_{t}\right)=\overline{X_{t}}=\frac{1}{n} \sum_{i=1}^{n} X_{i, t} \\
& \operatorname{Var}\left(X_{t}\right)=s_{X_{\mathrm{X}}}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i, t}-\overline{X_{t}}\right)^{2}
\end{aligned}
$$

Calculate the sample size necessary to get $10 \%$ error at $90 \%$ confidence for each interval:

$$
M_{t}=\left(\frac{Z \alpha / 2}{e}\right)^{2} \frac{s_{t}^{2}}{\overline{X_{t}{ }^{2}}}
$$

## Where

$$
Z x / 2=1.645=\text { critical value at } 90 \% \text { confidence }(\alpha=0.1)
$$

$$
e=0.1=\text { error }
$$

Take the average sample size across all intervals to determine $M$, the sample size:

$$
M=\frac{1}{T} \sum_{t=1}^{T} M_{t}
$$

Where $T$ is the total number of intervals. $T$ should be at least 20,160 for SR ( 2 weeks of 1 minute intervals) and 672 for economic energy and Load management ( 4 weeks of hourly intervals).

Alternate calculations may be used subject to PJM approval.

## Sample Recalibration:

The sample must be recalibrated annually as follows:

1. The sample size must be recalculated using the same method listed above using data from all locations in the sample.
2. If the population was expanded in a non-random manner, the sample must be expanded appropriately, so that the sample is representative of the population.
3. The number of locations in each stratum in the sample must be adjusted so that the number of locations in each stratum is proportional to the population in that stratum within $+/-1$ location.

## Data Validation and Estimation:

Data must be validated and estimated in accordance with the NAESB Validating, Editing, and Estimating (VEE) Protocol. This protocol should be used for validation and estimation of 1-minute data for the SR market as well as hourly data for capacity and energy markets. Note: All rules for hourly data shall apply to 1 minute data where the only difference is the use of 1 minute interval instead of $\uparrow$ hour interval.

If 5 minutes or more are missing or faulty from 1 minute meter data for a single event, or 2 hours or more are missing or faulty from hourly meter data for a single event, data from that meter may not be used for that event. If there is 1 way switch communication, the data for that meter must be reported as the PLC level for every reported interval on the event day. If there is 2 way switch communication and a sufficient number of locations in the sample without the missing meter data to meet the minimum sample size, then the an estimate for the missing meter data should not be reported for this event. If there is 2 way switch

Manual 19: Load Forecasting and Analysis Attachment D: Residential Non-Interval Metered Guidelines
communication and an insufficient number of locations in the sample without the missing meter data to meet the minimum sample size, then the PLC value should be reported for every reported interval for the event day for each location with missing meter data such that there are enough locations to meet the sample requirements unless otherwise approved by PJM.

Example with one-way switch communication: The minimum required sample size is 300 . There are 305 meters in the sample. 7 meters have missing or faulty data that cannot be corrected. The CSP must include data from the 298 correctly functioning meters, and report the data from the 7 faulty meters as the PLC value for each of the 7 EDC accounts for every reportable hour that day.

Example with two-way switch communication: The minimum required sample size is 300 . There are 305 meters in the sample. 7 meters have missing or faulty data that cannot be corrected. The CSP must include data from the 298 correctly functioning meters, and report the data from 2 randomly selected faulty meters as the PLC value for those 2 EDC accounts for every reportable hour that day.

## Switch Operability

Two-way switch communication: Two-way switch communication is when the CSP receives verification from the switch that it successfully cycled base on CSP instruction. When there is two way switch communication in place, the CSP will calculate the performance factor, $F$, as the total number of switches in the population that were sent the instruction to cycle for that event divided by number of switches in the population that successfully cycled for that event. The meter data will be multiplied by this value before submission to PJM to scale the sample average load data to the represent the population that performed the load reductions.

One-way switch communication: One-way switch communication is when the CSP cannot accurately determine if each switch in the population successfully cycled based on CSP instruction. In this case the operability value is implicit in the sample. The CSP must report all data from all meters in the sample, even if a switch in the sample is faulty. The CSP may not repair any faulty devices in the sample that could also be faulty in the population (for example an air conditioner cycling switch cannot be repaired/replaced but a 1-minute meter could be repaired/replaced) unless the CSP repairs/replaces those same devices that are faulty in the population. Switch failure in the sample must be reported to PJM within 2 business days.

## Converting sample data to meter data

Note that the sample data must be from the same time interval being settled.
$X_{i, t}$ is the meter reading for customer $i$ during interval $t$ after VEE protocol is applied per this Manual.
$B$ is the
$=$ set of EDC accounts in sample that are to be included in estimation (after subject to rules in this manual)
$M_{s}=$ Sample size (number of EDC accounts in $B$ )
$M_{c}=$ Population of Cycled customers
$F$ is the opearbility factor, calculated subject to this manual (1 for one way switch communication)

The meter data value to be submitted to PJM for interval $t$ is $Y_{t}$ :

$$
Y_{t}=F \frac{M_{c}}{M_{s}} \sum_{i \in B} X_{i, t}
$$

## Measurement and Verification Plan

The CSP must submit a Measurement and Verification (M\&V) plan to PJM before the registration is submitted. The M\&V plan must be approved by PJM before the registration is submitted. CSP is to resubmit an updated M\&V plan annually to continue participation in the PJM markets.

The M\&V plan must include details on: how the variance study was conducted and sample size was determined; sample selection and stratification; meter qualification and quality assurance; data validation and error correction protocol; and how sample meter data will be converted to population meter data. A template of the M\&V plan is to be published on pjm.com.

## Churn and Customer Documentation

Note: Parts of this section apply to interval metered residential customers, as indicated below.

## Applicable to alf residential customer registrations (interval metered and non-interval metered):

- CSP to submit initial list of customers to PJM at time of registration, including all EDC account numbers PLCs and zip codes. Where legal or regulatory conditions prohibit provision of EDC account number as personally identifiable customer information the EDC may use unique identifying numbers for EDC account numbers, through $5 / 31 / 16$ or as otherwise approved by PJM. EDC is responsible to maintain list of EDC account numbers and associated unique identifying numbers when used. EDC may need to check for duplicate as approved by PJM.
- Replacement allowed for customer who moves from their premises or customer terminates contract with CSP.
- CSP must maintain list of all replacement and furnish to PJM within 2 business days of request.
- CSP must maintain list of customers who were cycled during an event.
- All customer lists, meter data, and documentation must be furnished to PJM within 2 business days of request and be maintained by CSP for 2 years.

Applicable to interval-metered Load Management:

- CSP to submit list of PLC values for each EDC account at time of registration.
- Replacement customers must be selected to maintain PLC and load drop.
- CSP must maintain list of customers for each event and maintain for 2 years from event date.
- CSP may not add/remove customers (other than replacement). If number of customers falls below registered number, CSP must report to PJM within 2 business days and is subject to RPM Resource Deficiency Charges if applicable.

Applicable to non-interval metered Load Management:

- CSP to submit list of PLC values for each EDC account at time of registration.
- Replacement customers must be randomly selected to maintain integrity of strata, and if applicable PLC and load drop.
- CSP must maintain list of customers for each event and maintain for 2 years from event date.
- CSP may not add/remove customers (other than replacement). If the number of customers falls below registered number, CSP must report to PJM within 2 business days and is subject to RPM Resource Deficiency Charges if applicable.

Applicable to interval metered Economic Energy and Synchronized Reserve:

- There are no restrictions on replacement customers since actual meter data is submitted.
- CSP must maintain list of customers for each offer for 2 years from date of offer.
- CSP may add/remove customers at any time, but must maintain documentation and update the value on the location in eLRS. This value must be accurate every day an offer is submitted.

Manual 19: Load Forecasting and Analysis
Attachment D: Residential Non-Interval Metered Guidelines

- List of offered customers must be finalized at time of offer. Number of offered customers cannot exceed number of customers on location.


## Applicable to non-interval metered Economic Energy and Synchronized Reserve:

- Replacement customers must be randomly selected to maintain the integrity of the strata.
- CSP must maintain list of customers for each offer for 2 years from date of offer.
- CSP may add/remove customers at any time, if it can be done such that the sample remains representative of the population. CSP must maintain documentation and update the value on the location in eLRS. This value must be accurate every day an offer is submitted.
- If CSP offers partial list of customers to market, then such customers must be randomly assigned from pool of all registered customers. List of offered customers must be finalized at time of offer. Number of offered customers cannot exceed number of customers on location.


## Revision History

## Revision 28 (08/03/2015):

- Conforming revisions for FERC Order ER15-1849, accepted on 7/23/15 and effective $8 / 3 / 15$, to improve measurement and verification procedures for CSPs with Residential Demand Response Customers. Direct Load Control is re-defined as Legacy Direct Load Control and is only effective through May 31, 2016. Statistical sampling may be used instead of customer-specific measurement and verification information for residential customers without interval metering, as outlined in Attachment $D$ of this manual.


## Revision 27 (03/26/2015):

- Section 3.2: Revised DR forecast methodology


## Revision 26 (11/01/2014):

- Section 3: Revised to clarify the current process of applying adjustments to load forecasts.
- Attachment C: Added to provide guidelines for load forecast adjustments and examples.


## Revision 25 (06/01/2014):

- Conforming revisions for FERC Order ER14-822, accepted on 05/09/2014, and effective on 06/01/2014 for various DR operational changes.
- Attachment A updated for new distinction between Emergency and Pre-Emergency DR.


## Revision 24 (04/11/2014):

- Two of the eSuite Applications have been renamed. Moving forward EES will be known as ExSchedule and eMTR will be known as Power Meter.


## Revision 23 (6/1/2013):

Section 3: Exhibits 2 and 3 revised to reflect updated economic and weather station mappings. The definition of winter load management is revised.

Attachment B; added specific requirements for load management switch operability studies.

## Revision 22 (2/28/2013):

- Administrative Change: update all references of "eSchedules" to "InSchedules"

Revision 21 (10/01/2012):
Attachment A revised to add guidelines for load drop estimates for Price Responsive Demand participants.

## Revision 20 (06/28/2012):

Attachment A updated based on PJM Interconnection, L.L.C., Docket No. ER11-3322 (Capacity measurement and verification). This tariff and RAA update specifically requires GLD to provide reductions below the PLC and aligns any recognized reductions used to determine capacity compliance with add back process.

Revision 19 (02/23/2012):
Attachment A changed to update Comparable Day definition, clarify data required if Generation data is used to substantiate load reduction and have PJM perform the compliance calculation.

## Revision 18 (11/16/2011):

Section 3: Revisions reflect adoption of Itron, Inc recommendations regarding the economic driver used in the load forecast model. References to the now-defunct Interruptible Load for Reliability option of Load Management were removed.

## Revision 17 (07/14/2011):

Attachment A: 24 hour data submission required and additional clarification for use of generation data to substantiate compliance (FERC Docket \#: ER11-2898-000, 4/18/11). Also added revisions concerning how add backs are applied to DLC as approved by the MRC.

## Revision 16 (04/01/2011):

Section 3: Integrated the description of the net energy forecast model into the general model description.

Revised Exhibits 2 and 3 to reflect updated economic and weather station mappings.
Attachment A: Revised load drop estimate guidelines based on Load Management Task Force proposal approved at November 2010 Markets and Reliability Committee and January 2011 Members Committee. Corresponding tariff language changes were filed with FERC under Docket ER11-2898-000.

## Revision 15 (10/01/2009):

Attachment A: Revised load drop estimate guidelines to reflect the FERC-approved business rules. Section 3: added price responsive demand to the adjustments made to the load forecast.

## Revision 14 (12/01/2008):

Section 3: Revised load forecast model specification to allow for a load adjustment dummy variable. Clarified the review and approval process for the Load Forecast Report.

Section 4: Revised the Weather Normalization approval process to clarify that Board approval is not required.

## Revision 13 (06/01/2008):

A new Exhibit 1 was added, presenting definitions of variables used in the load forecast model. Other exhibits were re-numbered.

Exhibit 2 was revised to reflect a new weather station assignment for the DAY zone.
Section 4: Removed note from Weather Normalization Procedure description (the process is finalized).

Attachment A: Revised to reflect that the guidelines apply to both capacity- and energyrelated load drop estimates.

## Revision 12 (06/01/2007):

Removed Section 3 and moved content to Manual 18.
Removed Section 7 and moved content to Manual 18.

## Revision 11 (06/01/07):

This extensive revision incorporates changes to Load Data Systems due to the implementation of the Reliability Pricing Model (RPM). Sections on Active Load Management and Qualified Interruptible Load have been replaced with a new Load Management section. The Zonal Scaling Factor section reflects a revised calculation. The Load Forecast Model section has been updated for enhancements made to the model specification as well as revised coincident peak forecast method. The Weather Normalization section was revised to reflect that seasonal peaks are now normalized using the load forecast model.

## Revision 10 (06/01/06):

- Exhibit 1-Updated to include the new Manual 30: Alternative Collateral Program.
- Section 3-Revised to reflect changes in the handling of outlier observations in weather normalization of seasonal peaks.
- Section 4—Revised to incorporate the addition of the Full Emergency option of Load Response.
- Updated the penalties/rewards section under Compliance.


## Revision 09 (01/01/06):

This revision includes a complete revision to Section 6 to detail the PJM-produced load forecast which will be used for capacity and system planning purposes. The previous Section 3 (PJM Load Forecast Report) has been removed since Member input is no longer required for its production.

## Revision 08 (06/01/05):

Updated Exhibit 1 to include new PJM Manuals.
This revision includes changes to Section 3 to reflect reporting requirements for sub-Zones. Section 4 was completely revised to reflect a new weather normalization method and revised basis for calculating 5CPs. Section 8 has been modified to reflect revised release dates for Zonal Scaling Factors.

## Revision 07 (07/01/04):

This revision includes changes to Section 2, to reflect that 500 kV generation will be treated differently in the PJM Western and Southern regions than the Mid-Atlantic Region. Section 4 was revised to reflect that peak load allocation will be impacted for market integration. Section 5 has been modified to reflect that the Active Load Management program has been fully incorporated into the eCapacity application.

## Revision 06 (10/01/03):

This revision incorporates a new presentation format. Substantive changes were made to Section 4, to reflect changes in peak normalization procedures. Section 5 and Attachment $B$ were revised to reflect the change in load research requirements for cycling programs to a five year cycle. The previous Section 6 (Forecast Peak Period Load) has been deleted. The section on Qualified Interruptible Load now reflects that it is the same as Active Load Management. New sections have been added for the PJM Entity Forecast and Zonal Scaling Factors. Attachment A includes an additional load drop estimate technique, Customer Baseline. Throughout the document, changes were made to reflect the new committee structure, and the Board of Managers enhanced authority.
Changed all references from "PJM Interconnection; L.L.C." to "PJM."
Changed all references from "the PJM Ol" to "PJM."
Renamed Exhibits to consecutive numbering.
Reformatted to new PJM formatting standard.
Renumbered pages to consecutive numbering.

## Revision 05 (01/01/03):

This revision contains changes to Section 2, which was revised to reflect that hourly load data are reported through the new Power Meter application. Section 5 was revised to clarify wording on existing Active Load Management rules and procedures.

## Revision 04 (06/01/02):

This revision contains changes to Section 3, which was revised to reflect a new reporting format for the PJM Load Forecast Report. Section 7 was revised to incorporate firm level customers into the Qualified Interruptible Load program.

## Revision 03 (01/01/02):

This revision incorporates changes resulting from the addition of PJM West into the Interconnection. Section 4 was revised to add a description of the peak normalization process for PJM West. Sections 6 (Qualified Interruptible Load) and 7 (Forecast Period Peak Load) were added.

## Revision 02 (10/01/00):

This revision contains changes to Section 4 to include a clarification of the weather normalization overview, and revises the summer season weather normalization to reflect the newly adopted PJM summer weather parameter. Also, the removal of Attachment A: Definitions and Abbreviations. Attachment $A$ is being developed into a 'new' PJM Manual for Definitions and Abbreviations ( $M-35$ ). Attachments $\mathrm{B}, \mathrm{C}$, and D have been renamed $\mathrm{A}, \mathrm{B}$, and C respectively. Also, changes to the 'new' Attachment A: ALM Load Drop Estimate Guidelines (previously listed as Attachment B) have been in effect since 6/01/00; however, they are now being addressed in this revision.

## Revision 01 (06/01/00):

This revision contains changes to Sections 3,4 , and 5 , to reflect the influence of retail choice, including the creation of a peak allocation, revamped Active Load Management rules and procedures, and revamped PJM Load Forecast Report. Also, it details a revised weather normalization procedure.

## Revision 00 (07/15/97):

This revision is the complete draft of the PJM Manual for Load Data Systems.

## ERRATA TO KAHAL SECOND SUPPLEMENTAL DIRECT TESTIMONY

Page 14, lines 5 and 16 , change $\$ 3.2$ to $\$ 2.9$
Page 18, line 13, change $\$ 2,969$ to $\$ 2,713$
Page 18, line 15 , change $\$ 3,912$ to $\$ 3,614$
Page 19, line 12, change $\$ 4,102$ to $\$ 3,803$ and change $\$ 4,192$ to $\$ 3,893$
Page 27 , line 4 , change $\$ 2,969$ to $\$ 2,713$
Page 27, line 5, change $\$ 3,260$ to $\$ 3,350$ to $\$ 2,902$ to $\$ 2,992$

Page 36 , line 8 , change $\$ 3.2$ to $\$ 2.9$

Page 36 , line 15 , change $\$ 3.2$ to $\$ 2.9$ and change $\$ 4$ to $\$ 3.8$

This foregoing document was electronically filed with the Public Utilities

## Commission of Ohio Docketing Information System on

## 1/6/2016 3:36:21 PM

in

## Case No(s). 14-1297-EL-SSO

Summary: Correspondence Errata to Kahal Second Supplemental Testimony electronically filed by Dane Stinson on behalf of Northeast Ohio Public Energy Council and Office of the Ohio Consumers' Counsel


[^0]:    Note:
    Normal 2015 and all forecast values are non-coincident as estimated by PJM staff. Except as noted, all values reflect the membership of the PJM RTO as of June 1,2015.

[^1]:    ${ }^{1}$ The metro definitions used were changed by the U.S. Office of Management and Budget, making a comparison of the 2014 to 2015 forecast impossible for the full service territory. When direct comparisons of the 2014 and 2015 forecast for the service territory are discussed, they will refer to only a subset of the metro areas and metro divisions for which this comparison is possible. These areas cover $71 \%$ of the total service territory employment.

[^2]:    - Unrestricted Peak
    $\ldots$ Weather Normalized Peak
    2015 Forecast
    *-* 2016 Forecast

[^3]:    Notes:
    Normal 2015 and all forecast values are non-coincident as estimated by PM staff.
    Nommal 2015 and all forecast values represent unrestricted peaks, after reductions for
    

[^4]:    Winter load management is equal to Annual for Delivery Years 2016 and 2017. After those Delivery Years, winter load management is equal to Capacity Performance.

[^5]:    Intermediate Calculations:
    1 MaxTHI Maximum THI over 24 hours

[^6]:    2 WWP_HR19 WWP for hour ending 19:00

[^7]:    3 CDD_LAG Cooling degree days from prior day 4 HDD_LAG Heating degree days from prior day

